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Abstract—Motivated by the ever-increasing demand for energy
and guided by economic and environmental considerations, the
smart grid represents a future of tremendous opportunities.
It must evolve to seamlessly incorporate the intermittent and
decentralized production of renewable energies. This paper con-
ducts a comprehensive analysis of four well-known meta-heuristic
algorithms utilized for addressing energy management challenges
in smart grids: Particle Swarm Optimization (PSO), Gorilla
Troop Optimizer (GTO), Manta Ray Foraging Optimization
(MRFO), and Bald Eagle Search (BES). The study evaluates
the performance of each algorithm in terms of solution quality,
convergence speed, and efficiency. The experiments specifically
examine the adaptability of the algorithms to dynamic changes
and their ability to optimize energy utilization within a real-world
smart grid scenario.

Index Terms—Smart Grid, renewable energy resources, op-
timization technique, energy management system, intelligent
control of power systems

I. INTRODUCTION

The electricity sector holds a considerable share of the re-
sponsibility for global carbon emissions. Under the pressure of
policies aimed at reducing these emissions, Renewable Energy
Sources (RES) are rapidly being integrated into the electrical
grid [4]. However, this transition to RES presents a major
challenge to electrical grid operators, namely, maintaining the
balance between production and demand [11], while evolving
towards Smart Grids [8].

A Smart Grid is a power grid that can intelligently integrate
the actions of all users connected to it, including generators,
consumers, and those who do both, in order to efficiently
deliver sustainable, affordable, and secure electricity supplies
[18]. It is also known as an intelligent grid or futuregrid. It
makes use of cutting-edge goods and services as well as clever
technology for communication, control, monitoring, and self-
healing [17].

The integration of an energy management system proves
crucial in addressing the challenges associated with managing
a smart grid, particularly when dealing with the inherent
variability and unpredictability of RES such as solar and
wind power [7], [9]. This system can efficiently coordinate
energy sharing and trading among all available resources,
ensuring reliable, secure, and economically optimal power sys-
tem operation under diverse conditions [15]. Furthermore, the

energy management system uses optimal control approaches
to dynamically modify different components operations in
real time. With the use of these strategies, the system is
able to make well-informed choices about energy production,
distribution, and storage while taking system limitations, costs,
and demand into account [16], [20].

Several research has focused on the development of optimal
control methods for the energy management and control of
microgrids [10], [13]. In [5], an optimal management approach
based on reducing the electricity cost for a residential customer
in the Smart Grid is developed. The proposed cost minimiza-
tion problem is solved by a Lyapunov optimization technique;
however, uncertainties related to the solar forecasting data
are present since the sunshine is highly variable and cannot
be taken into account. An incremental welfare consensus
algorithm is presented in [14] relating to coordination between
distributed generation and load. The proposed algorithm was
evaluated through numerical case studies.

The performance and operating costs of Smart Grid are
significantly influenced by the uncertainties and variabilities of
the weather, grid, and load. Constant deregulation of the mod-
ern power system poses a unique challenge for the Smart Grid
to assess and compute optimal time for the energy exchange.
The limitations of existing objective functions and constraints
in addressing these conditions have a direct impact on the
performance of microgrids. Consequently, it is imperative to
devise a novel optimization algorithm that takes into account
the mentioned challenges to effectively ascertain the optimal
performance of Smart Grids.

In this paper, we aim to extend the study of Optimal
Control-Based Energy Management in a Real Smart Grid
using a Genetic Algorithm (GA) as presented in [2] to the
utilization of four other well-known metaheuristic algorithms.
The innovations in our work lie in the comprehensive analysis
and comparison of these four widely recognized metaheuristic
algorithms commonly employed to address energy manage-
ment challenges in smart grids. Unlike previous studies, our
research offers a systematic evaluation of the performance and
efficiency of these algorithms in real smart grid scenarios

The structure of the paper is given as follows: The opti-
mal control strategy for Smart Grid is proposed in section
II. Section III presents the different metaheuristic methods

2024 10th International Conference on Control, Decision and Information Technologies 
CoDIT 2024 | Valletta, Malta / July 01-04, 2024 Technically co-sponsored by IEEE & IFAC

979-8-3503-7397-4/24/$31.00 ©2024 IEEE - 791 -

20
24

 1
0t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 C
on

tro
l, 

D
ec

is
io

n 
an

d 
In

fo
rm

at
io

n 
Te

ch
no

lo
gi

es
 (C

oD
IT

) |
 9

79
-8

-3
50

3-
73

97
-4

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

C
oD

IT
62

06
6.

20
24

.1
07

08
17

9

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 27,2025 at 06:12:28 UTC from IEEE Xplore.  Restrictions apply. 



applied in this research work. The results of the proposed
model, in comparison with different techniques, are discussed
in Section IV. Finally, conclusions are drawn and future works
of research are outlined in Section V.

II. PROPOSED STRATEGY FOR SMART GRID
CONTROL

The engagement profile approach to designing an ideal
controller is described in this section. Subsection II-A in-
troduces the general hierarchical control architecture of the
smart grid as well as the coordination model between the grid
supplier and the smart grid. The optimization problem is then
developed in subsection II-B.
In the following, t denotes the current time and N ∈ N the
optimal control horizon.

A. General Architecture of Smart Grid Control System

The smart grid typical architecture is described in Fig.1. It
contains a public distribution power grid (G), a Photovoltaic
array (PV), an Energy Storage System (ESS) and a load (L).
Furthermore, it is equipped with inverters and transformers.

Fig. 1. Smart grid typical architecture.

Where PPV , PESSd , PESSc and PL represent respectively
the power supplied by the PV array, the power supplied by
the battery, the power received by the battery and the power
received by the load (t = 1, ..., N ). The smart grid can, at any
time, either inject (i.e. supply) power to the grid, or withdraw
power from it.

The coordination model between the smart grid and the grid
supplier is defined by (1).

ηtransPV ηinvPV P
PV (t) + ηtransESS (PESSd(t)− PESSc(t))...

− P los(t)− PL(t) = PG(t) ∀t = 1, ..., T (1)

with ηtransPV , ηinvPV and ηtransESS are the efficiencies (values be-
tween 0 and 1) of the PV array converter, the PV array output
transformer and the battery output transformer, respectively.
This model also considers power losses P los due to the cooling
of components (converters, transformers, etc.).

As they are often neglected in the literature, we do not
consider in this model the efficiencies of converters and
transformers (ηtransPV = ηinvPV P

PV (t) = ηtransESS = 1). Thus,
P los(t) = 0. Therefore, the model balance of the grid given
by (1) becomes:

PPV (t) + (PESSd(t)− PESSc(t))− PL(t) = PG(t) (2)

B. Objective Function

The control objective involves tracking a power profile
mandated by the grid supplier, EDF (Electricité De France), to
enhance the efficiency of smart grids. The aim is to minimize
the cost associated with the exchanged energy between the
smart grid and the EDF supplier, as indicated by the criterion
detailed in [12].

J =
N∑
t=1

αρ(t)PG(t) (3)

Where:

• α is the duration of a time step in hours;

• ρ(t) represents the price of exchanged electricity between
the grid supplier and the smart grid. It is given in C\Kwh
by (4).

ρ(t) =

{
0, 38 if 1140 ≤ t ≤ 1259
0, 18 if not (4)

Note that an increase in this price is planned for the evening
peak period (from 7pm to 9pm).

When the smart grid operator does not respect its com-
mitment, i.e. at each moment of the horizon, it supplies a
quantity of electricity greater (overproduction) or less (un-
derproduction), with tolerance margin e around the engaged
power PGD(t), it is penalized [12]. These penalties are given
by (5).

C(PG, PGD ) =


0 if d−(t) ≤ PG(t) ≤ d+(t)

PG(t) if d+(t) ≤ PG(t) ≤ 0, 8PMax

Pbis(t) if − 0, 7PMax ≤ PG(t) ≤ d−(t)
(5)

where
• PMax the maximum power of the smart grid test bench.
• d+t and d−t are given respectively by (6) (∀t = 1, ..., T ). d+(t) = PGD (t) + e

d−(t) = PGD (t)− e
(6)
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• Pbis(t) is a power given by the following equation:

Pbis(t) =
(PG(t)− d+(t))

2 − (d−(t)− d+(t))
2

PMax
(7)

Using (5), the criterion J given by (3) becomes:

J =
T∑

t=1

αρ(t)
[
PG(t)− C(PG

t , PGD (t))
]

(8)

To maximize the usefulness of smart grids, the optimization
problem that gives the optimal exchanged cost ρ̂exch, can thus
be formulated as:

ρ̂exch = max
T∑

t=1

αρ(t)
[
PG(t)− C(PG(t), PGD (t))

]
(9)

C. Constraints

The power exchanged between the smart grid and the grid
is given by equation (2) The State of Charge (SOC) of the
ESS expresses its capacity to provide/receive energy at the
beginning of time step t. The dynamics of this variable are
expressed by equation (10)

SOC(t) = SOC(t− 1)− σ

Bnom

(
ηcP

ESSc(t)− PESSd(t)

ηd

)
(10)

where Bnom represents the nominal capacity of the ESS,
respectively. The state initial ESS charge SOC0 is known,
as well as the minimum SOCMin and maximum SOCMax.
The SOC at the terminals of the battery at each moment:

SOCMin ≤ SOC(t) ≤ SOCMax (11)

The ESS cannot be charged and discharged at the same time.
The limits during charging or discharging of a battery are given
by the equations (12) and (13).

0 ≤ PESSc(t) ≤ PESSc

Max (12)

0 ≤ PESSd(t) ≤ PESSd

Max (13)

where the parameters PESSd

Max and PESSc

Max are the maximum
power that the ESS can supply or receive at each instant.
The Constraint (14) represents the exchanged power on a time
step t = 1, ..., N . It is symbolized in our model by the variable
PG(t). It has fixed limits proportional to the maximum power
PMax of the smart grid test bench.

−0, 7PMax ≤ PG(t) ≤ 0, 8PMax (14)

III. METAHEURISTIC ALGORITHM

The metaheuristic methods applied in this research work
are Particle Swarm Optimization (PSO), Manta Ray Foraging
Optimization (MRFO), Gorilla Troop Optimizer (GTO) and
Bald Eagle Search (BES). Table I gives the references from
which these meta-heuristic algorithms were referred and im-
plemented.

PSO is a robust and well-researched metaheuristic algo-
rithm. It has been widely applied to solve different optimiza-
tion problems. PSO is based on the collective behavior of

TABLE I
META-HEURISTIC TECHNIQUES

Sr. No. Name Reference
1 PSO [6]
2 MRFO [19]
3 GTO [1]
4 BES [3]

fishes and birds. It also indirectly mimics the human brain.
The movement of the particles is affected by their previous
movements and collective social behavior. Each iteration is
used to change the position of the particle and evaluate its
objective function value.

MRFO is derived from the foraging behavior of the Manta
Rays. Manta Rays forage for food in a collective and indi-
vidualistic manner. This behavior leads to explorative and ex-
ploitative search. There are three foraging steps implemented
in MRFO. In the first step, the mantas form a chain from
head to tail and follow the manta preceding it. In the second
step, the mantas form a chain as in the previous step but also
follow the optimal solution in the population. In the last step,
the manta shall pivot around the solution and will enter an
exploitative search.

GTO is derived from the behavior of gorillas in a troop.
The basic search process is divided into exploitation and
exploration. Exploitation of the search space is further clas-
sified under two processes i.e., following the silverback and
competing for females. On the other hand, the exploration
phase is classified into three parts i.e., migration to known
places, migration to unknown places, and move to other
gorillas.

BES optimization is based on the foraging behavior of bald
eagles. The search process is divided into three parts i.e., select
space, search space, and swoop. In the first part, the bald eagles
identify and enter into the search space. In the second step, the
bald eagles accelerate the search by moving spirally. It also
gets into a position to swoop onto its prey. In the last step,
the bald eagles swoop on the prey i.e., the optimal solution.

IV. RESULTS AND DISCUSSION

This section presents the results of the research study,
providing an in-depth analysis of the effectiveness of the four
meta-heuristic methods applied to energy optimization within
the smart grid.
The designed optimal controller was implemented on the
real smart grid system available at ESTP Paris, France (see
Fig.2). All specifications of this system have been taken into
consideration while implementing the metaheuristic methods.

It is a micro-grid connected to the grid. The components
are:

• Renewable Energy Source: A photovoltaic (PV)
emulator installed on the test bench allows genuine
electrical powers (10kW maximum, or 400m2 of PV
array) to be implemented.
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Fig. 2. The test bench smart grid at ESTP Paris.

• Energy Storage System: A lithium-ion battery bank (B)
for storing the generated renewable energy is part of the
test bench. It is made up of an assembly of 14 battery
modules connected in series.

• Energy Load: There is a Regatron load emulator on the
test bench. It is a 4 quadrant 3-phase AC programmable
power source that is totally digital (50kW maximum).

• Electric Vehicle Charging Station: A Schneider EVlink
Electric Vehicle (EV) charging station with a maximum
capacity of 14kW is also included in the testbed. The
electric vehicle that is compatible with the ESTP is linked
to this EV charging station.

Furthermore, a hypervisor is used to monitor the smart grid
test bench. It serves as the main component that connects the
operator, the Energy Management System (EMS), and the
programmable logic controller (PLC). It is also possible to
control this test bench in real-time with MATLAB Real-Time
Workshop.
The profiles of PV production and consumption are shown in
Fig.3.
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Fig. 3. PV production power profile (blue curve) and load profile (red curve).
.

The convergence curves generated for each method revealed
interesting trends in the optimization process (see Fig.4). It is
clear from analyzing each method’s performance that some of
these methods work better than others in certain optimization
scenarios.

Fig. 4. Convergence Curves of Meta-heuristic Methods.

In Fig. 5, a comparison between the optimal power obtained
using different metaheuristic techniques and the engaged
power is shown. Each algorithm produces varying results
in terms of the best solution and objective function value.
However, the MRFO tends to deviate slightly from the target,
while the PSO struggles to reach the optimal solution.

Fig. 5. Comparison between the obtained power for each algorithm and the
engaged power (red curve).

To further evaluate the efficiency of each proposed algo-
rithm, Table II gives the optimal cost associated with the
exchanged energy between the smart grid and the grid supplier.
GTO and BES are found to obtain optimal costs. BES showed
more consistency in obtaining the best results.
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TABLE II
COST OBTAINED FOR EACH META-HEURISTIC TECHNIQUE

Meta-heuristic Technique Cost
BES 85, 5

MRFO 85, 4272
GTO 85, 5
PSO 83, 7815

V. CONCLUSION

The increased efficiency and reliability of the smart grid is
expected to save consumers money. The study’s findings in
this paper provide an invaluable overview of the effectiveness
of metaheuristic methods for energy optimization within smart
grids. The ESTP Paris test bed is used in this research work.
BES and GTO were found to obtain optimal results. These
findings also pave the way for further research aimed at
refining and adapting these techniques, such as integrating
different energy markets into the optimization problem, to
meet the evolving needs of this technology. Furthermore, the
algorithms studied could be applied to other areas of energy
management, such as energy storage optimization, and the co-
ordination of electric vehicles. The proposed framework could
also be extended to include considerations of cybersecurity,
fault resilience, and critical load management in emergency
scenarios.
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