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Abstract—Risk-based microgrid energy management refers
to the strategy of managing the operation and control of a
microgrid while considering various risk factors associated with
its components and external factors. Microgrids are localized
energy systems that can operate independently or in conjunction
with the traditional grid, typically incorporating renewable
energy sources, energy storage systems, and advanced control
technologies. However, managing a microgrid can be challenging
due to the intermittency of renewable energy sources, such as
wind, solar, load fluctuations, grid price and energy storage
system performance. A Microgrid Energy Management System
(Microgrid EMS) is a software platform designed to monitor,
control, and optimize the operation of a microgrid considering
the uncertainties involved.The risk contributing factors consid-
ered for this work includes, uncertain behaviour of distributed
energy resources (DERs) like solar panels, wind turbines, load
uncertainty and grid price. These uncertainties make microgrid
operation more challenging. The paper presents a risk based
microgrid EMS model that can be used to manage the integration
of uncertain renewable energy sources into the main grid, which
is a critical step towards achieving a more sustainable energy
future.

Index Terms—Microgrid EMS, Distributed Energy Resources,
Smart Loads, Uncertainty handling, Mean variance analysis

I. INTRODUCTION

In recent years, microgrid have emerged as a promising
solution for addressing the challenges of integrating distributed
energy resources (DERs) into the power grid. A microgrid is
a localized energy system that can operate independently of
the main power grid or in coordination with it. It typically
includes a variety of distributed generation sources, such as
solar photovoltaic (PV), wind turbines, fuel cells, and energy
storage systems (ESS), along with loads like electric vehicles
(EVs) & many power electronics loads. The implementation
of microgrid requires the development of advanced energy
management systems (EMS) that can optimize the use of
DERs, balance supply and demand, ensure grid stability, and
provide reliable and resilient power supply to customers.
Microgrid energy management involves a range of tasks, such
as forecasting renewable energy generation, managing energy
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storage, controlling power flow, and coordinating with the
main grid.

To address these challenges, researchers and practitioners
have developed various approaches to microgrid energy man-
agement, including model based and data-driven methods,
optimization techniques, and control strategies. These methods
have been widely used in microgrid energy management,
and several studies have demonstrated their effectiveness [1]
[2]. Another approach is to use robust optimization, which
generates an optimal schedule that is robust to worst-case
scenarios [3] [4]. However, these methods do not consider the
uncertainty and variability of renewable energy sources, which
can impact the reliability and cost of the system. In addition to
optimization techniques, several studies have proposed using
machine learning techniques, such as artificial neural networks
or support vector machines, to predict the output of renewable
energy sources [5]–[8].

In this paper, we focus on the development of a robust
and scalable microgrid energy management system that can
effectively manage the uncertainties and variability of renew-
able energy sources and provide reliable and cost-effective
power supply to customers. The EMS framework explained
here integrates advanced optimization techniques, probabilistic
forecasting methods, and manages the demand-side. The paper
proposes a mean-variance optimization approach for designing
microgrid energy management systems (Microgrid-EMS). The
objective is to maximize the expected revenue (minimize
the expected cost of energy purchase) while minimizing the
risk of tieline power fluctuation due to uncertain renewable
energy generation and load demand. The proposed approach
incorporates robust and risk-aware optimization techniques,
including chance constraints to ensure reliable and efficient
microgrid operation under uncertainty and variability.

II. MICROGRID ENERGY MANAGEMENT FRAMEWORK

A. Schematic Representation of Microgrid Energy Manage-
ment System

A schematic diagram of a microgrid EMS is shown in the
fig 1. The microgrid is a part of the distribution system that
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is connected to the main grid through a point of common
coupling. Microgrid EMS is the brain of the microgrid that
controls energy management within the microgrid by opti-
mally dispatching power from the DERs, Controlling the non-
essential loads and properly utilizing the storage capacity. The
microgrid EMS receives load data from the customers, their
load changing preferences, forecasted generation information
from the DERs and grid price. Based on these information’s it
determines the power flow limits, utility power purchases, load
dispatch, and DG/DER scheduling. The proposed microgrid

Fig. 1. Illustration of Microgrid Energy management System (EMS)

here is consists of
• Two solar PV and two wind generators as generating

source
• Two load varieties as Critical and Non-Critical loads
• Two battery energy storage systems
• One point of common coupling with utility grid
The power supply to the critical loads is always guaranteed,

while the power supply to the interruptible loads is based on
an optimized operational solution by the MG-EMS. Critical
loads may include essential services like hospitals, emergency
services, few emergency industrial loads, supply to the com-
munication networks etc. The interruptible loads include non-
essential services like air conditioning, heating, and lighting
in residential or commercial buildings. Advanced techniques
such as demand response and load shifting are used to manage
the demand-side of the microgrid.

B. Input data for the Microgrid-EMS

Data plays a crucial role in the optimal operation of a
microgrid. Three essential data sources are considered for this
work; 1) Day-ahead Wind and Solar power prediction, 2)Load
forecasting, and 3) energy market Price. Day-ahead Wind and
Solar power prediction provides an estimate of the power
output from the wind turbines and photovoltaic panels for the
next day. Different forecasting techniques, such as numerical
weather prediction models, artificial neural networks, machine

learning approaches, and statistical models are mostly used
prediction techniques. The work here has used AutoRegressive
Integrated Moving Average (ARIMA) a statistical analysis
model for wind and solar power prediction.

Energy price is another data source that is useful for the
Microgrid-EMS. Real-Time energy Price is the price of elec-
tricity in the wholesale market at any given time. Uncertainty
in energy price also plays a major role in introducing risk in
the planning procedure [9] [10]. Microgrid-EMS uses energy
price data to optimize the operation of the microgrid, such
as scheduling the charging and discharging of energy storage
systems and shifting energy consumption to off-peak periods.
The energy price data considered here are from historical data
set. Forecasted load data are considered to model the demand
side of the proposed Microgrid-EMS.

C. Uncertainty Consideration
With stochastic behavior of RE generation, load variation

and grid price, more optimal risk modelling is done consid-
ering multiple scenarios of occurrence of a particular event.
There are many available methods in literature for scenario
generation using historical data such as k-means clustering,
sampling based approach, scenario reduction technique [11].
Monte Carlo approach is another classical way to generate
scenarios [12]. The risk constraint multi-objectives Microgrid-
EMS modelling have two parts.

• The first part of the objective function is modelled as
a financial benefit to the microgrid. It is commonly
formulated as a maximization of profit or minimization
of the operating cost of the microgrid over a given period
of time.

• The second part of the objective function is the financial
risk modelling. As per the modern portfolio theory, risk
is always modelled with a ‘risk aversion factor’ value
ranging from 0 to 1. The zero (0) value indicated that
the microgrid is a risk neutral decision maker. With
increasing value of risk factor, the microgrid becomes
risk averse.

Mathematically, both the objective functions modelled together
as a single objective functions as,

min

T∑
t=1

Operating cost(OC) +
(
η × V ariance(V )

)
(1)

where, T - Total no of time periods (24 hrs.)
Operating cost(OC) - Operating cost of the microgrid to
purchase power from the main grid.
η - Risk aversion factor
V ariance(V ) - Measure/estimates the risks by considering
covariance relation between the risk factors. Var and CoVar
relation between wind and PV power output is considered as
risk factors in the proposed model. Variance measures the
variability of PV/WT output from its mean value whereas
covariance measures the degree to which these two variables
change together. This interdependency between wind and
PV power outputs is valuable for energy system planning,
optimization, and risk management of a microgrid.
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Wind power generation is characterized by its stochastic and
intermittent nature, which makes it challenging to accurately
predict the power output. Eq 2 below is used to describe this
uncertainty range.

Ω = [(1− αw,t)P
f
wind,w, (1 + αw,t)P

f
wind,w] (2)

where,
Ω - Uncertainty Set
P f
wind,w - forecasted power output of wind farm w at time t

αw,t is the uncertainty ratio. This represents the uncertainty
in the wind power calculation in relation to wind speed uncer-
tainty. If the typical wind speed uncertainty ranges between
2-3% , as the power output is cubical of the wind speed, the
wind power uncertainty ratio is taken as 20-30% [15].

Like wind power, PV power generation is also subject to
uncertainties and variations due to weather conditions and
shading effects. Eq 3 below is used to describe this uncertainty
range.

Γ = [(1− αpv,t)P
f
pv,S , (1 + αpv,t)P

f
pv,S ] (3)

where,
Γ - Uncertainty Set
P f
pv,S - forecasted power output of solar PV plant S at time t

αpv,t is the uncertainty ratio. The uncertainty ratio for the PV
power output typically ranges from 5-10% [16].

III. PROBLEM FORMULATION

In the proposed MG-EMS, the objective function is to
minimize both the expected operating cost and the variance of
the tie-line power fluctuations simultaneously. The expected
operating cost includes the cost of buying electricity from the
main grid, the cost of operating the energy storage system,
and the cost of any curtailment or spillage of renewable
energy sources. On the other hand, the variance of tie-line is
considered as risk term, which represents power fluctuations
between the microgrid and the main grid. The tieline power
fluctuation is modelled as covariance relationship between
considered scenarios of wind, PV and interruptible loads. Eq
(4) shows the expected profit of the microgrid.

E(Pwind,t, Ppv,t, Pinr,t, Pchg,t) = λt

( Nw∑
w=1

Pwind,w,t +

Ns∑
s=1

Ppv,s,t −
Nd∑
j=1

Pd,j,t −
Ni∑
i=1

Pinr,i,t −

Nc∑
c=1

(Pchg,c,t − Pchg,c,t−1)

)
− λinr,t

Ni∑
i=1

(P cap
inr,i,t − Pinr,i,t)

−
Nw∑
w=1

λwind,w,t(P
f
wind,w,t − Pwind,w,t)−

NS∑
S=1

λpv,s,t(P
f
pv,s,t − Ppv,s,t) (4)

The risk part of the proposed model is, the fluctuation in the
tieline power(injected/drawal) to the maingrid from microgrid

or vice-versa because of fluctuation in wind, PV and EV
behavior residing in the microgrid. The following is modelled
by taking the variance and covariance relations as given in eq
(5).

V (Pwind,t, Ppv,t, Pinr,t, Pchg,t) =

T∑
t=1

√
P

′
tHCOVH ′Pt

(5)
where,
E - Expected revenue of the proposed Microgrid EMS model
V - Variance in power fluctuation
λt - Forecasted price of electricity in the wholesale market
Pinr,t - price of interruptible load
λwind,w,t, λpv,s,t - Economic punishment for power curtail-
ment of wind farm w and solar farm s respectively
Pwind,w,t, Ppv,s,t - dispatched value of wind and solar power
of wind farm w and solar farm s respectively
P f
wind,w,t, P

f
pv,s,t - forecasted wind power and solar power of

wind farm w and solar farm s respectively (Input data)
Pd,j,t- critical load j at time t
P cap
inr,i,t - capacity of the interruptible load i at time instant t

Pchg,c,t, Pchg,c,t−1 - charging states of energy storage systems
at time t and t− 1 respectively
Nw, Ns, Nd, Ni and Nc - number of wind power stations,
PV power stations, critical load, interruptible loads and BESS
respectively resides inside the microgrid.
H - Diagonal Matrix containing uncertainty ratio of both wind
and PV power plants
COV - covariance relation matrix.
P

′

t - matrix has entries of dispatched power of wind and PV
plants.
All price values are in $/kWh and all power figures are in
kW. Eq (4) and eq (5) together with a risk aversion factor
forms a risk assessment objective function for the microgrid
EMS with an aim to minimize the operating cat as well as
minimize the risk considering wind and PV uncertainty. The
above proposed objective function is subjected to the following
system constraints.

The first constraints is the tie-line power constraint given
in eq (6) and eq (7) limits the power exchange between the
microgrid and the utility grid. This constraint is important be-
cause excessive power exchange can lead to voltage instability
and even blackouts.

Pmin
tieline ≤

Nw∑
w=1

(1− αw,t)Pwind,w,t +

Ns∑
s=1

(1− αpv,t)Ppv,s,t − (6)

Nd∑
j=1

Pd,j,t −
Ni∑
i=1

Pinr,i,t

Nw∑
w=1

(1 + αw,t)Pwind,w,t +

Ns∑
s=1

(1 + αpv,t)Ppv,s,t − (7)

Nc∑
c=1

(Pchg,c,t − Pchg,c,t−1) ≤ Pmax
tieline
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The second constraint given in eq (8) and eq (9) are the en-
ergy storage constraint. The energy storage system is designed
to store excess renewable energy during periods of low demand
and discharge it during periods of high demand. However, the
energy storage system has a limited capacity, which means
that it must be operated within its charge/discharge rate and
state of charge (SOC) constraints to ensure that it can meet
the load demand when required.

−P limit
chg,c γc ≤ Pchg,c,t − Pchg,c,t−1 ≤ P limit

chg,c γc (8)

−P limit
chg,c SOCmin ≤ Pchg,c,t ≤ P limit

chg,c SOCmax (9)

here, γc is the rate of charging/discharging of the energy
storage system. P limit

chg,c is the maximum cap limit for charg-
ing/discharging.

The third constraint is the the interruptible load capacity
constraint given in eq (10). Interruptible loads are those loads
that can be temporarily curtailed or shed during periods of
high demand. The capacity of the interruptible loads is limited,
and the microgrid must ensure that they do not exceed their
capacity during operation.

0 ≤ Pinr,i,t ≤ P cap
inr,i,t (10)

The forth constraint is the wind and solar power constraints
given in eq (11) and eq (12) . These constraint ensures that
the system operates within the limits of the available wind and
solar power.

0 < Pwind,w,t < P f
wind,w,t (11)

0 < Ppv,s,t < P f
pv,s,t (12)

The fifth and last constraint given in eq (13) limits the
maximum power flow through the distribution line to prevent
overloading and damage to the equipment.

|PTieline,t| ≤ Pmax
Tieline (13)

The above constraints ensures the safe and reliable operation
of the microgrid EMS.

IV. RESULTS

The above proposed mathermatical model of microgrid
EMS is built in MATLAB environment as a second order cone
programming (SOCP). We have used commercially available
’coneprog’ function which solves the proposed (SOCP) prob-
lems using an interior-point algorithm [13]–[15]. The input
data related to the microgrid EMS optimization model is given
in the table

A. Considered Input data

The proposed risk model is analyzed in a modified IEEE
14 bus as shown in fig 2 below. The system has 2 WTs
are considered at bus 2 and bus 3 respectively; 2 BESS are
considered at on buses 6 and 8; two PVs are considered
at buses 4 and 5. In terms of demand side management, 3
interruptible loads located on buses 12,13 and 14. Rest all
loads are considered as critical (non-Interruptible) load. The

TABLE I
INPUT PARAMETERS

Parameters Value
Economic punishment for wind curtailment(Rs/kW) 1.5,1.7
capacity of WT1 and WT2 (kW) 100, 200
Economic punishment for PV curtailment(Rs/kW) 0.6,0.7
Capacity of PV1 and PV2 (KW) 30,25
Curtailment Price of Interruptible loads [IL1;IL2;IL3] (Rs/KWh) 1,1.1,1.2
Capacity of IL1;IL2;IL3 (KW) 10,15,20
Capacity limits of BESS1 and BESS2 (KWh) 20;30
Charge/Discharge limit of BESS (A/Ah) 0.8,0.2
SOC limits of BESS (%) 40,90

forecasted generation data from the Considered solar power
plants and wind power plants with forecasted are shown in fig
3 and fig 4. ARIMA model is used to generate the scenarios
from the forecasted output of PV and wind turbines.

Fig. 2. Modified IEEE 14 Bus system

Fig. 3. Forecasted solar power generation profiles
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Fig. 4. Forecasted wind power generation profiles

The forecasted day ahead market price used for the revenue
calculation and the microgrid forecasted day ahead load is
plotted in the fig 5 and fig 6 below.

Fig. 5. Forecasted Day Ahead Market Price Curve

Fig. 6. Forecasted Day Ahead Load curve

B. Results
The microgrid-EMS use these data to plan and schedule

energy production and consumption, ensuring a reliable and
cost-effective operation of the microgrid at the same time
managing the risk of fluctuation in the tie line connection
to the main grid. The time horizon considered is 24 hours
with a time period of 1 hour. The forecasted generation, load
and market price data are given as inputs to the developed
optimization model in Section III.

a) Demand Side Management: Of all the loads, three
loads are considered as interruptible loads for optimal demand
side management. IL1, IL2 and IL3 are the interruptible loads
(ILs) considered. When the generation is less than the load
demand and electricity price is higher than the expense of
shedding load, these ILs shows willingness to curtail their
load to the allowable capacity for revenue generation of the
microgrid. The analysis of the microgrid system revealed that
there is a peak load in the system from 10-16 hours. During
this period, the generation is primarily from solar power. The
wind power generation is relatively low. To cope up with
the generation and stabilize the system, it was observed that
interruptible loads were shed down during this period based
on the incentive factor λinr,t used in eq (4). This shed is an
effective way of balancing the generation and load demands
in the microgrid system as shwon in fig 7.

Fig. 7. Scheduled load shedding of ILs (in kWh)

b) Tieline Power: The tie-line power obtained in plotted
in fig 8 below. Based on the results obtained, it can be observed
that during the hours of (1-6hrs) and (16-24hrs), the tieline
power to the main grid is high, as the power generation from
the wind farms is greater than the load. This excess power is
sold to the main grid through the tieline. On the other hand,
during the hours of (6-16hrs), the power generation in the
system is mainly from solar sources, and the energy storage
units act as a power source to meet the peak load demand.
However, for some peak hours, when the generation in the
system is lesser than the load, power is purchased from the
main grid through the Tie line (the negative values). The tie-
line power fluctuation maximum limit is considered as 80kW
for this study.

V. CONCLUSIONS

In conclusion, the results of the study demonstrated here
shows the effectiveness and importance of risk manage-
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Fig. 8. Variation of Tie-Line Power

ment study in optimizing the energy management of a grid-
connected microgrid. By analyzing the wind and solar power
generation curves, we were able to develop an optimal day-
ahead operating schedule for the microgrid, taking into account
the variability in renewable energy availability. Load shedding
during peak periods was observed to stabilize the system, and
the tieline power was effectively used to balance the energy
supply and demand. The study highlights the potential benefits
of adopting a proper approach for robust and risk-aware
optimization of grid-connected microgrid energy management.
The findings of this study have provided valuable insights into
the operation and management of grid-connected microgrid
using a robust and risk-aware mean-variance optimization
approach.
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