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Abstract

The environment is adversely affected by greenhouse gas (GHG) emissions

from conventional combustion engines. In this regard, electric vehicles (EVs)

are a viable transportation option that benefit the environment in reducing

GHG emissions. Although the installation of rapid charging stations (RCSs)

helps to promote EVs, installing these at improper locations in the distribution

network worsens the voltage profile, increases power loss, and energy loss

while travelling from EV's current location to RCS. Furthermore, RCS installa-

tion cost and waiting time at RCS need to be considered. Therefore, a two-

stage optimal planning is proposed in this article to address the issues stated

above. In the first stage, simultaneous optimal planning of RCS and distributed

generators is done to minimize active power loss, voltage deviation, EV user

cost and to maximize voltage stability index. In the second stage, optimal num-

ber of connectors are decided to minimize the installation cost and waiting

time in queue at RCS. Here, M1=M2=C queuing model is considered to deter-

mine the waiting time. A test network of coupled IEEE 33 bus distribution sys-

tem and transport network is proposed to validate the proposed methodology.

Multi objective Rao algorithm (MORA) is used to solve the formulated optimi-

zation problems, and results are compared with non dominated sorting genetic

algorithm (NSGA-II) algorithm.
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1 | INTRODUCTION

The use of electric vehicles (EVs) for transportation has
been increasing in recent years. Adopting EVs for trans-
portation can reduce CO2 emissions from 50 to 100 g per
mile.1 Customers are interested in EVs for transportation
due to government initiatives, the reduction of fossil
fuels, and rising oil prices. As a result, the population of
EVs has increased by 1.5% in China, 6.5% in Netherlands,

and 28.8% in Norway. However, longer charging times
and shorter driving ranges will impact EV adoption.

The challenges posed by short driving range can be
mitigated by installing adequate charging infrastructure.
There are mainly three charging methodologies, namely,
Type 1, Type 2, and Type 3. Type 1 and 2 take more time
for charging, whereas Type 3 is DC Rapid charging meth-
odology, which takes less time. However, integrating
RCS may create technical problems for the power system
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due to increased system load.2,3 Voltage deviations, com-
ponent overloading, and higher system losses are a few of
them. The design and feasibility analysis of charging sta-
tion (CS) was done in Reference 4 with the consider-
ations of different configurations and techno-economic
performance. Integration of RCS has a significant influ-
ence on distribution sysytem (DS) and this may lead to
adverse impact if RCS were located at improper places.5,6

The presence of a CS in the distribution system
increases power loss and voltage deviation. As improper
locations increase severity, the authors in Reference 7,
placed CS at optimal locations to improve the DS perfor-
mance. Sometimes a combination of slow and fast charg-
ing connectors are needed at the same charging station.
In Reference 8, installation of level 1, level 2, and level
3 connectors was done at CS. Though the CS is located at
proper places, high loading on DS cause the increase in
power loss and voltage deviation. Integrating the DGs
into the DS could improve the DS performance. In Refer-
ence 9, optimal placement of CS and solar power DGs
has been done by considering the CS investor decision
index, land cost index and EV population index. In Refer-
ence 10, the authors used a hybrid meta-heuristic algo-
rithm to identify CS locations with randomly distributed
PVs in DS. These authors considered the minimization of
power loss, voltage deviation, and voltage stability index
(VSI) as objectives. In Reference 11, the authors proposed
a methodology to optimally plan CS, DGs, and shunt
capacitors (SCs). Integration of SC reduced power loss
and improved voltage profile. In Reference 12, the
authors proposed hybrid grey wolf optimizer and PSO
algorithm to optimally locate (electric vehicle charging
station) EVCS and DGs in a distribution system. Authors
in Reference 13 used demand side management approach
for coordination of DGs, battery energy storages, and
photo voltaic sources in the presence of EVs. In Refer-
ence 14, the authors used the Arithmetic Optimization
Algorithm for optimal planning of CSs and DGs. In the
aforementioned literature, a distributed system is used as
a test system. However, the transportation network also
plays a key role in determining optimal CS locations.

From a user and utility perspective, consideration of
the road network ensures a superior site. In planning for
CS, very few authors have considered the transportation
network.15-19 To plan a CS near an existing CS, the
author in Reference 15 suggested a two-level method.
The minimization of power loss, voltage deviation, and
CS installation cost were considered as objectives. The
authors of Reference 16, proposed a method for CS and
wind based DG planning while minimizing power loss,
voltage deviation, and EV user cost. The optimal plan-
ning of fast CSs and DGs has been done simultaneously
in the coupled network to minimize installation cost and

to improve the performance of distribution system in Ref-
erence 17. In Reference 18, the authors applied enhanced
heuristic descent gradient (EHDG) and Voronoi diagram
to optimally plan CSs by considering route distributions,
consumption profile, and operating cost. In Reference 19,
the authors proposed a strategy to place CSs at optimal
locations in a coupled network by minimizing land cost,
power losses, voltage deviations, and to maximize the
serving of CS. In Reference 20, the authors proposed a
multi objective approach to determine the optimal loca-
tions for CSs. Probabilistic load modelling is used to cap-
ture the uncertainty of EVs and electric demand.

Queuing theory was rarely used by authors in the
domain of EVs. By using a queuing analysis, the authors
of Reference 21 modelled the load of plug-in EVs. The
authors only considered the transportation system while
determining the position and size of the CS in Reference
22. The authors in Reference 23, suggested a queue
theory-based CS planning by minimizing power loss, EV
user cost, installation costs, and maximizing VSI for the
coupled network. In Reference 24, the waiting time at CS
was minimized together with power loss, voltage devia-
tion, and accessibility index. However, DG installation can
further enhance the performance of distribution system.

In the literature,7-12 the authors considered only dis-
tribution system,15-19 authors considered coupled net-
work for CS placement. Most of the articles considered
the minimization of power loss and voltage deviation
(VD) in optimal planning of RCS. But voltage stability
not only depends on voltage deviation, but also VSI.
Moreover, very few authors have considered the maximi-
zation of VSI as an objective. Furthermore, consideration
of maximum connectors at RCS is not an economic
approach. But the reduction in connectors increases the
waiting time at RCS. To solve the above issues optimal
planning of RCS and DGs has been done in two stages.
Optimal location of RCS and optimal planning of DGs
has been done in the first stage by minimizing power
loss, voltage deviation, EV user cost and maximizing VSI.
Optimal number of connectors was identified in second
stage to minimize the waiting time in queue and installa-
tion cost of RCS. The PSO, chicken swarm optimization,
grey wolf optimization, and different hybrid algorithms
were the most often employed algorithms in the litera-
ture. The parameter tuning determines both the accuracy
and the convergence speed. Thus, a novel multi objective
Rao algorithm (MORA) is employed in this article to
determine the optimal solutions.

The contributions of this article are listed below:

• For the best planning of RCS and DGs, the coupled
network of electrical distribution and road transporta-
tion network is taken into account.
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• The suggested two stage strategy yields the best size
and locations of RCS and DGs.

• Minimization of EV user cost and maximization of VSI
are considered along with the minimization of power
loss and VD in Stage 1.

• In Stage 2, the application of queuing theory was
employed to determine the optimal number of connec-
tors at RCS by minimizing waiting time in queue at
RCS and RCS installation costs.

• MORA is used for solving the formulated objective
function and results are verified with the outcomes of
non dominated sorting genetic algorithm (NSGA-II).

The structure of the article is as follows. Section 2 for-
mulates the objectives of the problem under consider-
ation. The MORA and the flowchart of the proposed
approach are described in Section 3. The discussion on
the simulated results is reported in Section 4 and a sum-
mary of the article figures in Section 5.

2 | PROBLEM FORMULATION

This section presents two stage approach for optimal
planning of RCS and DGs in a coupled network, objective
functions, operational constraints considered in each
stage, DG modelling, and RCS modelling.

2.1 | Two stage approach

In this article, optimal planning of RCS and DGs has
been done in two stages (Figure 1). Integration of only

RCS into the distribution system cause the performance
degradation. In this context, DG integration is adopted
and analysed the test system in Stage I. Based on the
results achieved from Stage I, optimal number of connec-
tors are determined in Stage II to benefit EV user and
RCS owner.

2.1.1 | Stage I: Optimal location of RCS and
optimal location and sizing of DGs in a coupled
network

In Stage I, optimal locations of RCS and optimal planning
of DGs has been done through two scenarios. In Scenario
1, the impact of RCS on the performance of distribution
system is analysed through various cases (explained in
Section 4.2.1). In Scenario 2, concurrent optimal planning
of RCS and DGs is done and analysed the performance of
distribution system through various cases (explained in
Section 4.2.2). Optimal sitting of RCS, optimal sitting and
sizing of DGs were done by minimising of power loss
(Ploss), maximum voltage deviation (MVD), EV user cost
(EVUC), and maximizing the VSI. Equation (1) shows
the objective function in Stage I, where feasible locations
of RCS (lRCS), locations of DGs (lDG), and size of DGs
(SDG) were the decision variables.

f lRCS, lDG,SDGð Þ¼ min Ploss,MVD,EVUC, 1=VSIð Þð Þ ð1Þ

Here, certain constraints exist while planning the RCS
and DGs optimally in the coupled network. Feed forward
and backward sweep algorithm is used for load flow
study to achieve the power loss, node voltages, and VSI.

FIGURE 1 Proposed two stage

model for optimal planning of RCS

and DGs.
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While planning RCS and DGs in a coupled network opti-
mally in Stage I, few equality and inequality constraints
are considered. The real and reactive power balance in
the distribution system is considered using Equa-
tions (2) and (3). Addition of the RCS results in dete-
rioration of voltage profile. Hence, to maintain
voltage limits, Equation (4) was used as constraint.
DGs minimum active power limits and total active
power supplied by all DGs were used as constraints
using Equations (5) and (6), respectively. In
Equation (6), the contribution from all DGs was lim-
ited by minimum active power consumption over a
24 h period.

Psubþ
X

Pdg ¼PDþ
X

PRCSþPloss ð2Þ

Qsubþ
X

Qdg ¼QDþ
X

QRCSþQloss ð3Þ

jVmin j ≤ jVn j ≤ jVmax j n¼ 1,2,…Nbus ð4Þ

Pmin
dg ≤Pdg ≤Pmax

dg ð5Þ

Pdg ≤PT,max
dg < min Pn,Dð Þ ð6Þ

Here Psub and Qsub are real power and reactive powers of
substations, respectively. PD and QD are real and reactive
power demands in distribution system. Ploss and Qloss are
real power loss and reactive power loss. Here RCS has
real power loads (PRCS) and reactive power load (QRCS).
Vmin , Vmax , Pmin

dg , and Pmax
dg are the lower voltage limit,

upper voltage limit, DGs lower real power limit and DGs
upper real power limit, respectively. PT,max

dg is the maxi-
mum limit of total active power supplied by all DGs. Pn,D

real power demand at nth node of distribution system.

2.1.2 | Stage II: Optimal sizing of RCS

After identifying the optimal locations of RCS, optimal
locations and sizes of DGs, number of assigned EVs at
each RCS calculated in Stage I are considered as input
information to Stage 2. Based on this, arrival rate is calcu-
lated and is used in M1/M2/C queuing model for finding
the waiting time in queue at RCS. In Stage II, optimal siz-
ing of RCS has been done by determining the optimal
number of connectors at each RCS locations. Installation
cost of RCS (ICRCS) and waiting time (WT) in queue at
RCS were depends on the number of connectors at RCS.
In Stage II, optimal number of connectors were deter-
mined by minimizing the ICRCS and WT . Equation (7)
shows objective function in Stage II, where feasible

number of connectors (C) at each RCS were decision
variables.

f Cð Þ¼ min WT , ICRCSð Þ ð7Þ

Equation (8) is supporting the fact that every RCS should
have minimum one connector, it is used in Stage II while
determining the optimal number of connectors at RCS.
Where, CSconnectori is the number of connectors at ith RCS.

CSconnectori ≥ 1 i¼ 1,2, ::z number of RCSð Þ ð8Þ

2.2 | DG modelling

Modelling of DGs is necessary for the load flow studies.
DGs can be modelled either as PQ mode or PV mode. In
this article, DG is modelled in PQ mode that is, negative
load model. Here, the DG reactive power output is calcu-
lated from Equation (9) with known quantities of real
power output (Pdg) and power factor (pf).

Qdg ¼ Pdg� tan cos�1 pfð Þ� � ð9Þ

2.3 | RCS modelling

In this work, RCS is modelled in PQ mode. Real power load
(PRCS

i ) and reactive power load (QRCS
i ) due to EVs at ith

RCS are obtained by Equations (10) and (11), respectively.
PRCS
i depends on the total number of EVs (NEV

i ) at ith RCS
and rating of EV battery (Pmax

EV ). The effective real and
reactive power loads (PEffload

n ,QEffload
n ) at nth bus in distribu-

tion system are calculated using Equation (14) and (15),
respectively. It is considered that CS is operating at 0.95 lag
power factor.11 Equations (12) and (13) are used to determine
the connectors and capacity of ith RCS, respectively. Here, Rc

is the connector capacity, Pevc is the charging probability
of EVs.

PRCS
i ¼NEV

i �Pmax
EV ð10Þ

QRCS
i ¼ PRCS

i � tan cos�1 pfð Þ� � ð11Þ

RCSconnectorsi ¼ max Pevcð Þ�NEV
i ð12Þ

RCScapacityi ¼RCSconnectorsi �Rc ð13Þ

PEffload
n ¼Pload

n �Pdg
n þPRCS

n ð14Þ

QEffload
n ¼Qload

n �Qdg
n þQRCS

n ð15Þ
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2.4 | Network power loss

RCS integration results in high active power loss as there will
be an increase in current flow through the branches. Fur-
thermore, RCS location has a significant impact on distribu-
tion system performance. Power loss can be calculated from
the feed forward and backward sweep load flow algorithm.
Equation (16) gives the total network power loss at tth hour.
Daily power loss was calculated using Equation (17).

ploss tð Þ¼
Xnb
b¼1

ibð Þ2� Rbð Þ ð16Þ

Ploss¼
X24
t¼1

ploss tð Þ ð17Þ

where ib is b
th branch current, Rb is b

th branch resistance,
and nb is the total number of branches. Rapid charging
stations (RCS) impose additional load on the network,
resulting in increased power loss, and voltage magnitude
degradation at the buses.

2.5 | Voltage deviation

Voltage variations beyond the permissible limits are pro-
duced by RCS loading. As a result, the system may
become unstable. The voltage stability of the system is
achieved by reducing the MVD and increasing the VSI.
The load flow algorithm gives the voltage magnitude at
each bus, Equation (18) gives the maximum value of volt-
age deviation (VDmax tð Þ) at time t. MVD over a day can
be calculated by Equation (19).

VDmax tð Þ¼ max 1� v ið Þ, tð Þ i¼ 1,2,3…Ndistnodes ð18Þ

MVD¼
X24
t¼1

VDmax tð Þ ð19Þ

2.6 | Voltage Stability Index

VSI (Equation [20]) is one of the important factors that
gives information about system voltage stability. Utility
expects VSI at each bus to be near unity. VSI varies with
loading that is, as the loading increases, VSI would
reduce. The bus having maximum VSI ≤ 1ð Þ is strong,
and is capable of taking extra load.

VSIr ¼ 2V 2
s V

2
r �V 4

r �2V2
r PrR kð ÞþQrX kð Þð Þ� zj j2 P2

r þQ2
r

� �
ð20Þ

where VSIr is VSI at receiving end of a line k, Vr and Vs

are receiving end and sending end voltages, Pr and Qr are
real and reactive power at receiving end of line k, R kð Þ
and X kð Þ are resistance and reactance of line k.

2.7 | EV user cost

When moving from an EV location to RCS, energy is lost.
The EV user selects the closest CS available for charging.
The best locations for RCS must take EV user behaviour
into account when choosing the RCS to use. Minimiza-
tion of the user cost of EVs is considered in the objective
function while locating RCS.

Consider m (m� S) RCSs dispersed at various sites
(C1,C2, ::Cs). The transportation network is segmented
into Z zones, with EVs assumed to be present at each
zone's geometrical center. RCS can be placed at intercon-
nected points of distribution network and transportation
network in a coupled network. Figure 2 shows the con-
sidered test system, where each zone and feasible CS
locations were identified by its coordinates that is,
xZ1 ,yZ1

� �
and xC1 ,yC1

� �
, respectively. In a test system, dis-

tribution network nodes are the possible locations for RCS
placement. So, there is a need to find the distance between
all zones to selected m CS locations in optimal planning.
Equation (21) can determine the distance between the
selected m CSs and each zone. Information about the dis-
tances between all zones and particular CSs is provided by
D matrix Equation (22). Each element in DD matrix reflects
the distance between the nearest RCS among the selected
RCSs and the corresponding zones and is determined by
the minimum value in each row of the D matrix using
Equation (23). EVs located at the zones are assigned to
nearest RCS.

dZ1�C1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xZ1 � xC1ð Þ2þ yZ1

� yC1

� �2q
ð21Þ

D¼

dZ1�C1 dZ1�C2 :: dZ1�Cm

dZ2�C1 dZ2�C2 :: dZ2�Cm

: : : :

: : : :

dZz�C1 dZz�C2 :: dZz�Cm

2
6666664

3
7777775

ð22Þ

DD¼

min dZ1�C1dZ1�C2 ::dZ1�Cmð Þ
min dZ2�C1dZ2�C2 ::dZ2�Cmð Þ

min ::::ð Þ
min ::::ð Þ

min dZz�C1dZz�C2 ::dZz�Cm

� �

2
6666664

3
7777775

ð23Þ
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EVusercost ¼
Xz

n¼1

DD ið Þ�NEV
i �Ec�Pe ð24Þ

Equation (24) gives the EV user cost. Here NEV
i is the

number of EVs getting charged from ith RCS, Ec is the
average energy consumption of EVs and Pe is the cost of
electricity.

2.8 | Installation cost of RCS (ICRCS)

The installation cost of an RCS is important from a CS
owner perspective. ICRCS depends on the number of
connectors (RCSconnectorsi ) at RCS, and is computed using
Equation (25).

ICRCS ið Þ¼ Cinitþ25�Cland�RCSconnectorsi

þ Ccon RCSconnectorsi �1
� ��Pc

ð25Þ

where Cinit is initial investment cost, Cland is land cost,
RCSconnectorsi is number of connectors at ith RCS, Ccon is
connector cost, and Pc is connector rating.

2.9 | RCS connector operation model

The M1/M2/C queuing model is taken into account in
this study to describe the serviceability of CSs.21 M1
denotes the rate of EV arrivals per hour, M2 is the rate
of RCS connector service per hour, and C denotes the

number of service points at the CS. EVs often drive up
to a CS to charge their batteries. They arrive at a rate of
λ=hour on average. It is modelled as a non-
homogeneous Poisson process as it is time-dependent.
Connectors are available in the RCS to charge the
EV. These connectors perform the role of servers and
charge the EVs at a service rate of μ=hour. In this case,
the waiting line for EVs is assumed to be infinitely long.
To ensure service to all EVs in the RCS, the arrival rate
must always be lower than the service rate
(Equation [27]).

λ tð Þ¼NiCS
ev �Pevc ð26Þ

ρ¼ λ tð Þ
Cμt

<1 ð27Þ

The probability of number of EVs charging at each
RCS simultaneously is modelled using Equation (28).

pt nð Þ¼ Cρð Þn
n!

�pt 0ð Þ n¼ 1,2,3,…,C ð28Þ

pt 0ð Þ¼
XC�1

s¼0

Cρð Þs
s!

þ Cρð ÞC
C!

1
1�ρð Þ

" #�1

ð29Þ

where pt 0ð Þ as expressed in above equations is the proba-
bility of no EV getting charged.

According to Little's equations, Equation (30) gives
the expected number of EV users waiting at the RCS at
tth hour.

FIGURE 2 Test system (coupled network of transportation network with IEEE 33 bus radial distribution network).
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Et n½ � ¼ pt 0ð Þ 1
C�1ð Þ!

λt
μt

� �C λtμt
Cμt�λtð Þ2

" #
ð30Þ

Waiting time in queue of EV at tth hour can be calculated
using Equation (31). Total waiting time in a 24 hours
period at all RCS is calculated using Equation (32)

W tð Þ¼Et n½ �
λ tð Þ ð31Þ

WT ¼
Xm
i¼1

X24
t¼1

W tð Þ ð32Þ

It is necessary to calculate the minimum and maxi-
mum limit for connectors at each RCS to satisfy
Equation (27). The arrival rate at RCS is calculated using
Equation (26). Equation (12) can be used to calculate the
maximum number of connectors (Cmax ) at RCS, while
Equation (33) can be used to get the minimum number
of connectors (Cmin ).

λmax

μ
<Cmin λmax � λ tð Þ ð33Þ

3 | MULTI-OBJECTIVE
OPTIMIZATION ALGORITHMS

Multi-objective optimization is preferable to identify the
best solution for achieving multiple goals. Multiple-objective
issues can be resolved using scalarization techniques and
Pareto-based approaches. The weighted sum strategy is used
in scalarization approaches to combine all the objectives
into a single objective function. Here, a single objective is
the sum of individual objectives, multiplied by weights
according to their priority. However, this approach is not
optimal for multi-objective problems with conflicting objec-
tives. In this case, Pareto dominance-based multi-objective
approaches provide the most efficient solutions.

3.1 | Non dominated sorting genetic
algorithm

A multi objective optimization problem with conflicting
objectives can be solved using NSGA II, proposed by Kal-
yan Deb in Reference 25. To achieve optimal Pareto
front, crowding distance and dominance principle are
used. Since the objectives are inherently conflicting, the
best compromise solution is selected using a fuzzy min-
max decision-making method.

3.2 | Multi objective Rao
Algorithm (MORA)

Dominance principle and crowding distance analysis
must be used to determine Pareto optimal solutions in a
system with multiple objectives that are in conflict with
each other. In this study, MORA proposed by Rao in
202126 was used to find the best solution. Fewer algorith-
mic parameters (population size and maximum itera-
tions) make MORA simpler to understand and use.

The population of a feasible decision variable (Po)
with size (N) is initially generated at random. The rank
and crowding distance were used to determine the best
and worst solutions after evaluating the fitness function.
New solutions (Pn) were determined using Equation (34).
A set of solutions of size (N) was chosen from a set
(PoUPn) based on rank and crowding distance after the
evaluation of the fitness function for the new solution.

X
0
i,j,k ¼Xi,j,kþ r1j,k Xj,best,k�j Xj,worst,k

� �� �
þr2j,k jXi,j,korXr,j,k j

� �� Xr,j,korXi,j,k
� �� � ð34Þ

FIGURE 3 Flowchart of MORA26 for the proposed problem.
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Here X
0
i,j,k is the new solution of ith candidate, jth variable

in kth iteration. Xi,j,k is the old solution of ith candidate,
jth variable in kth iteration, r1,r2 are random values
between [0,1]. Xj,best,k is the best value of jth variable of X
in kth iteration. Xj,worst,k is the worst value of jth variable
of X in kth iteration. Xr,j,k randomly selected rth candi-
date, jth variable in kth iteration. The flowchart of MORA
for optimal planning is shown in Figure 3 (Tables 1–3).

4 | SIMULATION RESULTS AND
DISCUSSION

The effectiveness of the proposed method for RCS and
DG optimal planning in coupled networks was evalu-
ated by the proposed test system. The proposed test sys-
tem is a coupled network of IEEE 33 bus distribution
system superimposed on a 20�38 km2 transportation
area. The transportation area in chosen test system is
divided into 190 zones with each zone having an area of
2 km2. It is considered that EVs are located at the geo-
metrical center of each zone, and the distribution of
600 EVs throughout 190 zones in the transportation
area is represented in Table 4. In the first Stage, the
best location for RCS and the best location and size for
DGs were determined simultaneously. Queuing theory
was employed in the second Stage to size RCS properly.
In both stages, MORA was used to solve optimization
problems with a population size of 30 and 100 itera-
tions. The optimal results obtained by MORA were
compared with the results obtained by NSGA-II algo-
rithm. The parameters considered for NSGA-II in opti-
mization are 30 population size, 100 maximum
generations, crossover probability of 0.8, and mutation
probability of 0.33.

Figure 4 shows the probability of EVs charging at RCS.
Observations show that EVs do not charge before 5:00 AM

and after 9:00 PM. The line and load data for IEEE 33 bus
system were taken from Reference 5. There are 33 buses
and 32 lines in the test system. Of the 33 buses, 17 carry
residential loads, 9 carry industrial loads, and 5 carry com-
mercial loads (Table 3). In this study, the variation in load
was also taken into account, Figure 5 depicts the load
demand variation over 24 hours. Simulations were carried
out in the MATLAB 2014b software with the PC specifica-
tion of Intel core i3 processor and 4 GB RAM.

TABLE 1 Parameters of EV.

Parameters Values

EV battery capacity 27.69 kWh

No of EVs 600

Avg. power consumption 0.142 kWh/km

Connector rating (Pc) 96 kW

TABLE 2 Cost coefficients of land.

Coefficients Costs

Cinit 70 000 $

Cland 240 $/m2

Ccon 280.33 $/kW

TABLE 3 Classification of connected loads in IEEE 33

bus RDS.

Residential loads Commercial loads Industrial loads

2, 3, 5, 6, 7, 8 4, 11, 12, 18 22, 26, 27, 28

9, 10, 13, 14, 15 19 29, 30, 31, 32

16, 17, 20, 23, 24 – 33

TABLE 4 Assumed number of

electric vehicles assigned to each of the

190 zones of transportation system.

1 4 3 1 5 1 1 2 3 4 4 5 5 4 2 5 3 3 4

3 4 2 4 1 3 3 1 5 5 4 4 2 1 2 4 5 1 4

3 5 4 1 1 5 4 5 4 4 3 1 3 3 5 2 5 5 2

4 1 2 2 5 2 2 4 4 4 5 4 2 3 5 2 2 5 1

4 3 4 4 4 5 4 1 4 3 4 4 4 1 2 1 5 3 4

2 4 5 3 3 4 2 3 3 5 3 4 3 3 1 5 4 2 1

5 5 4 2 2 2 4 4 5 5 2 5 4 2 2 3 3 3 2

5 5 4 2 4 4 3 5 5 4 1 1 1 5 3 4 3 3 3

1 4 3 1 1 1 4 2 1 3 5 4 4 2 2 1 4 3 3

4 1 1 1 5 1 4 3 5 2 1 2 4 3 5 4 1 5 4
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4.1 | Base case

The analysis of test system was done without integrating
RCS and DGs in base case. The feed forward-backward
sweep algorithm was employed to analyse the network,
because the test system consists of IEEE 33 bus radial dis-
tribution system, which has high R/X ratio. It reported a
base case active power loss of 2811 kW, MVD of 1.5816
(p.u.), and voltage stability index (VSImin ) of 0.6479.
Figure 6 shows a plot of voltage profiles of IEEE 33 bus
RDS for 24 hours at each bus. It is observed from Figure 6
that at 17th hour the system's minimum voltage is 0.8968
(p.u.) at the 18th bus of IEEE 33 Bus RDS.

4.2 | Stage 1: Optimal location of RCS
and optimal location and sizing of DGs

MORA was used to find the optimal locations for RCS
and optimal locations and sizes for DGs in the first stage.
Two scenarios, with three cases in each, were used to
analyse the optimal planning.

4.2.1 | Scenario 1: Optimal planning of RCS
in coupled network

In this scenario, the analysis of network was done by
integrating RCS. In Scenario 1, three cases were

FIGURE 4 Electric vehicle charging probability.

FIGURE 5 Plot of load demands of various types of loads.

FIGURE 6 Plot of voltage profiles at each bus of IEEE 33 bus RDS for 24 hours without the integration of RCS and DGs.
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considered to analyse the network for optimal planning
of RCS. MORA algorithm was applied in each case to get
the optimal fronts.

Case 1. Optimal planning of RCS by minimiz-
ing Ploss, MVD, and EVUC.

Case 2. Optimal planning of RCS by minimiz-
ing Ploss, 1=VSImin , and EVUC.

Case 3. Optimal planning of RCS by minimiz-
ing Ploss, MVD, 1=VSImin , and EVUC.

Fuzzy min max decision making technique was
employed to achieve the compromised optimal solution.
The optimal Pareto front in Case 3 by MORA is shown in
Figure 7. Optimal locations of RCS and the

corresponding objective function parameters are given in
Tables 5 and 6, respectively.

From Table 6, it is observed that MORA algorithm
yielded better objective parameters compared to NSGA II
with Ploss of 3560.3 kW, MVD of 1.7217 (p.u), VSImin of
0.6182, and EVUC of 60.0221 $ in Case 1. The maximiza-
tion of VSI in place of MVD resulted in improvement of
voltage profile in Case 2. Better values of Ploss, MVD,
and VSImin were obtained by MORA in Case 2. However,
highest EVUC was encountered by MORA (EVUC
88.6718 $) compared to NSGA II (EVUC 60.9249 $). The
consideration of VSI maximization along with minimiza-
tion of Ploss, MVD, and EVUC resulted in better voltage
profile (MVD, VSI) and Ploss in Case 3 compared to all
cases in Scenario 1. In Case 3, MORA yielded Ploss of
2997.1 kW, MVD of 1.5898 (p.u), VSImin of 0.6464, and
EVUC 86.7004 $. From Figures 8 and 9, it is observed
that, the presence of RCS in the test system resulted in
reduction of system minimum voltage to 0.8963 (p.u) and
0.8951 (p.u) at 18th bus in 17th hour by MORA and NSGA
II algorithms, respectively compared to base case (0.8968
(p.u)). From Scenario 1, it is clear that though the RCS
are placed at proper locations in the distribution net-
work, it resulted in increased power loss that is, 1.07% of
Base case (Ploss) and deteriorated voltage profile.

4.2.2 | Scenario 2: Concurrent optimal
planning of RCS and DGs

Though the RCSs are located at optimal places, loading
due to RCS would reduce the performance of the distri-
bution system. To solve the above issue, Renewable type
DGs of size 5 kW to 1 MW placement in distribution

FIGURE 7 Optimal Pareto-front of Ploss, MVD, VSI, and

EVUC by MORA in Case 3.

TABLE 5 Optimal locations of RCS

and the number of EVs assigned to RCS

in Scenario 1 by NSGA II and MORA

for different cases.

NSGA II25 MORA

Case no. RCS location Number of EVs RCS location Number of EVs

Case 1 2, 23, 27 150, 69, 381 2, 19, 27 134, 70, 396

Case 2 2, 22, 27 165, 77, 358 2, 19, 24 103, 198, 299

Case 3 2, 19, 23 102, 235, 263 2, 19, 22 171, 57, 372

TABLE 6 Objective function parameters in Scenario 1 by NSGA II and MORA for different cases.

NSGA II25 MORA

Case no. Ploss (kW) MVD (p.u) VSImin EVUC ($) Ploss (kW) MVD (p.u) VSImin EVUC ($)

Case 1 3572.8 1.7223 0.6182 60.7222 3560.3 1.7217 0.6182 60.0221

Case 2 3499.8 1.7093 0.6219 60.9249 3124.5 1.6124 0.6424 88.6718

Case 3 3026 1.6093 0.6430 94.2015 2977.1 1.5898 0.6464 86.7004
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system was adopted in this article in Scenario 2. The dis-
tribution system has a minimum active power demand of
1420 kW at 4th hour (Figure 10). To prevent reverse
power flow, the total active power supplied by DGs is
limited to less than or equal to 1400 kW. Three cases were
considered in this scenario to analyse the network.

Case 4. Concurrent optimal planning of RCS
and DGs in coupled network by minimizing
the Ploss, EVUC, and MVD.

Case 5. Concurrent optimal planning of RCS

FIGURE 8 Plot of voltage profiles at each bus of IEEE 33 bus RDS for 24 hours with the integration of RCS by MORA in Case 3.

FIGURE 9 Plot of voltage profiles at each bus of IEEE 33 bus RDS for 24 hours with the integration of RCS by NSGA II in Case 3.
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and DGs in coupled network by minimizing
the Ploss, EVUC, and 1/VSImin.

Case 6. Concurrent optimal planning of RCS
and DGs in coupled network by minimizing
the Ploss, EVUC, 1/VSImin, and MVD.

MORA and NSGA-II algorithms were applied on the
test system to obtain optimal locations and sizes of RCS
and DGs. Fuzzy min max decision making was employed
to obtain best compromised solution from optimal fronts.
The optimal front by MORA is shown in Figure 11. The
optimal locations of RCS and assigned EVs at RCS
obtained by MORA and NSGA II algorithms are men-
tioned in Table 7. Optimal locations and sizes of DGs
obtained by MORA and NSGA II are given in Table 8.
Objective parameters obtained in various cases by MORA
and NSGA II algorithms in Scenario 2 are listed in
Table 9.

Table 9 shows that the integration of DG reduced
power loss, MVD, and improved VSI of distribution sys-
tem compared to Scenario 1. In Case 4, MORA algorithm
led to lower power loss (1228.1 kW), MVD (0.6955 [p.u]),
and EVUC (52.5431 $) compared to NSGA II. However,
better VSImin (0.7870) was obtained by NSGA II.

In Case 5, lower Ploss (1274.2 kW), MVD (0.7035
[p.u]), and better VSImin (0.7797) were obtained by
MORA compared to NSGA II. Furthermore, the maximi-
zation of VSI along with the minimization of Ploss and
EVUC resulted in better values of VSImin (0.7797) in
Case 5 compared to Case 4 (VSImin [0.7785]) by MORA.
Collective consideration of Ploss, MVD, VSImin and
EVUC parameters in objective function resulted in lowest

Ploss (1182.3 kW), MVD (0.6864 [p.u]), and better value
of VSImin of 0.7946 and EVUC of 53.4033 $ in Case 6 by
MORA. The system minimum voltage is 0.9432 (p.u) in
Case 6, at bus 33 in 17th hour (Figure 12). It is more com-
pared to 0.9428 (p.u) by NSGA-II in Case 6 (Figure 13).
The voltage at 18th bus 17th hour improved to 0.9461
(p.u) compared to base case (0.8968 [p.u]).

The objective function parameters of best cases from
Scenario 1 (Case 3), Scenario 2 (Case 6) and base case are
listed in Table 10. Table 10 shows concurrent optimal
planning of RCS and DGs (Case 6) solved the issues
caused by the integration of RCS (Case 3). Ploss was 42%
of base case Ploss in Case 6 where as 107% in Case 3.
MVD was 43.17% of base case MVD in Case 6 where as
100.6% in Case 3.

Maximum value of VSImin was obtained in Case 6
compared to base case and Case 3. Furthermore, lowest

FIGURE 10 Daily real power demand with and without RCS load.

FIGURE 11 Optimal Pareto-front of Ploss, MVD, VSI, and

EVUC by MORA in Case 6.
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TABLE 7 Optimal locations of RCS

and the number of EVs assigned to RCS

in Scenario 2 by NSGA II and MORA

for different cases.

NSGA II25 MORA

Case no. RCS location Number of EVs RCS location Number of EVs

Case 4 2, 21, 32 178, 138, 284 2, 22, 32 196, 135, 269

Case 5 2, 21, 30 167, 107, 326 2, 21, 29 163, 33, 338

Case 6 2, 21, 33 183, 157, 260 2, 22, 33 201, 151, 248

TABLE 8 Optimal locations and

sizes of DGs in Scenario 2 by NSGA II

and MORA for different cases.

NSGA II25 MORA

Case no. DG location DG size DG location DG size

Case 4 18, 30, 33 383, 246, 748 9, 18, 33 280, 300, 804

Case 5 15, 18, 33 708, 226, 443 11, 17, 32 280, 250, 854

Case 6 17, 30, 32 383, 276, 718 14, 30, 32 483, 103, 804

TABLE 9 Objective function parameters in Scenario 2 by NSGA II and MORA for different cases.

NSGA II25 MORA

Case no. Ploss (kW) MVD (p.u) VSImin EVUC ($) Ploss (kW) MVD (p.u) VSImin EVUC ($)

Case 4 1272.4 0.7003 0.7870 53.2199 1228.1 0.6955 0.7785 52.5431

Case 5 1408.3 0.7267 0.7619 53.3290 1274.2 0.7035 0.7797 54.7130

Case 6 1218.2 0.6964 0.7933 54.4474 1182.3 0.6864 0.7946 53.4033

FIGURE 12 Plot of voltage profiles at each bus of IEEE 33 bus RDS for 24 hours with the integration of RCS and DGs by MORA in

Case 6.
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FIGURE 14 Plot of waiting time

and RCS total installation cost by

MORA and NSGA II.

TABLE 10 Comparison of objective function parameters in base case, Case 3, and Case 6.

Case no. Ploss (kW) MVD (p.u) VSImin EVUC ($)

Base case 2811 1.5816 0.6479 –

Case 3 2977.1 1.5898 0.6464 86.7004

Case 6 1182.3 0.6864 0.7946 53.4033

FIGURE 13 Plot of voltage profile at each bus of IEEE 33 bus RDS for 24 hours with the integration of RCS and DGs by NSGA II in

Case 6.
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EVUC (53.4033 $) was obtained in Case 6 compared to
Case 3. Therefore, the proposed method of integration of
DGs along with the RCS is a viable method to optimally
locate RCS without losing the distribution system perfor-
mance. Furthermore, selecting optimal number of con-
nectors at each RCS is necessary to minimize the
installation cost of RCS and waiting time in queue at
RCS. This would benefit the RCS owner economically. To
achieve this goal, the optimal number of connectors were
calculated in Stage 2.

4.3 | Stage 2: Optimal sizing of RCS

The number of connectors at RCS decides its size, cost,
and waiting time for EVs to be charged at RCS. In the lit-
erature, Equations (12) and (13) were used to calculate
the connectors at RCS and RCS capacity. However,
Equation (12) gives maximum connectors at RCS. Con-
sideration of maximum connectors at RCS results in high
installation cost and less waiting time in queue. However,
it is not feasible. Hence, it is necessary to determine opti-
mal number of connectors.

From Stage 1, it is observed that in Case 6 better
objective parameters are obtained by MORA. In Case 6,
three RCS were optimally located at 2nd, 22nd, and 33rd

buses of distributions system with each assigned EVs of
201, 151, and 248, respectively (Figure 14).

To employ queue theory, arrival rate (λ tð Þ) at each
RCS and service rate of connector is required. Here,
Arrival rate (λ tð Þ) at RCS is time dependent, and it is
obtained by Equation (26). EV battery takes 22minutes
to get 85% charge.21 Hence service rate μ=hour of
2:73=hour was considered in this article. Here the num-
ber of connectors (C) at each RCS is a variable, its mini-
mum Cmin

� �
and maximum Cmaxð Þ limits are calculated

according to Equations (33) and (27), respectively. NSGA
II and MORA algorithms were applied to obtain the com-
promised optimal feasible solution for sizing of RCS with
C limits of Cmin ¼ 8,6,10½ � and Cmax ¼ 20,15,25½ �. Fuzzy
min max decision making was used to find the best solu-
tion among solutions from Pareto front.

Table 11 shows that, traditionally 20, 15, and 25 con-
nectors were installed at RCS 1, RCS 2, and RCS 3, respec-
tively. This resulted in maximum installation cost of
3:15�106$ and minimum waiting time in queue of
0.0088minutes, that is, approximately no waiting time in
queue. However, it is not economical for the owner of
RCS because of which waiting time was considered in
the proposed approach. NSGA II using the proposed
approach yielded 2:01�106$ installation cost and
36.96minutes of waiting time in queue for 9, 13, and
15 connectors at RCS 1, RCS 2, and RCS 3, respectively.
Best compromised objective parameters of 1:75�106$
installation cost and 27.9801minutes of waiting time in
queue were obtained with 10, 8, and 14 connectors by
MORA. These optimal connectors decided the size of
RCS 1 as 960 kW, RCS 2 as 768 kW, and RCS 3 as
1344 kW by MORA. The plot between waiting time in
queue and installation cost by NSGA II and MORA
(Figure 13) shows the effectiveness of MORA in achiev-
ing optimal results.

5 | CONCLUSION

The planning of CS should be of use to electrical net-
work, EV user, and CS owner. Though the RCS might
be located at proper places, RCS integration would raise
power loss and VD in distribution system. Consider-
ation of EV user loss, RCS installation cost, and waiting
time in queue at RCS plays a vital role in obtaining
optimal locations for RCS, and these are in conflicting
in nature. To address the above issues, this article pro-
posed a two-stage approach to determine the optimal
size and locations of RCS and DGs using Pareto based
multi objective approach. Optimal location of RCS and
optimal location and size of DGs are determined by
minimizing power loss, voltage deviation, EV user cost,
and maximizing the VSI in the first stage. M1/M2/C
queuing model was used for finding the waiting in
queue at RCS. Minimization of waiting time and instal-
lation cost of RCS were considered as objectives to
determine the optimal number of connectors at RCS in

TABLE 11 Comparison of results in traditional and proposed approach in Stage 2.

Traditional approach
Proposed approach

Parameter NSGA II25 MORA

Optimal no of connectors 20, 15, 25 9, 13, 15 10, 8, 14

RCS capacity (kW) 1920, 1440, 2400 864, 1248, 1440 960, 768, 1344

ICRCS ($) 3:15�106 2:01�106 1:75�106

WT (min) 0.0088 35.5202 27.9801
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second stage. During the analysis, the variation of vari-
ous types of loads and variation of probability of charg-
ing of EVs was considered. The optimization problem
was solved by MORA and NSGA II. The advantages of
metaphor-less, few parameters and ability to move can-
didate solution towards the best solution and away
from the worst solution of MORA ensured faster con-
vergence and better performance, and was verified by
NSGA II algorithm. The integration of reactive power
compensating devices along with RCS and DGS to
improve the performance of the distribution system in
coupled network would be potential areas for future
research.
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