2024 IEEE Students Conference on Engineering and Systems (SCES) | 979-8-3503-7471-1/24/$31.00 ©2024 IEEE | DOI: 10.1109/SCES61914.2024.10652559

2024 IEEE Students Conference on Engineering and Systems (SCES), June 21- 23, 2024, Prayagraj, India

Semi-Supervised Machine Learning Model For
Sizing of Distributed Renewable Energy Sources

Kuber Kushwaha", Graduate Student Member, IEEE and Ch. Venkaiah®, Senior Member, IEEE
Department of Electrical Engineering, National Institute of Technology Warangal, Hanumakonda, TS, India
“kuberkushwaha08 @ieee.org, *ch.venkaiah@ieee.org

Abstract—This study presents a significant advancement in
energy planning for grid-connected homes with plug-in electric
vehicles (PEVs). A cutting-edge model has been developed to
accurately size battery storage systems (BSS), small wind tur-
bines (SWT), and solar photovoltaic panels (SPV). The model
considers real-world factors like grid limitations and component
degradation, resulting in more realistic outcomes. To tackle the
complex problem, a semi-supervised machine learning algorithm
approach was employed, combining unsupervised and super-
vised methods. This innovative algorithm outperforms traditional
machine learning techniques and metaheuristic methods. By
analyzing a wide range of configurations using both labeled
and unlabeled data, the optimal setup to minimize electricity
costs is identified. In addition, a real-time, rule-based, and
efficient home energy management system is presented. The study
is based on real data from Australia, including temperature,
wind speed, solar radiation, load, and economic and technical
information on solar, wind, batteries, and plug-in electric vehicles.
The results demonstrate that the proposed model significantly
outperforms the conventional Group Method of Data Handling
(GMDH), marking a significant advancement in energy planning
technology.

Index Terms—Inverters, semi-supervised machine learning,
plug-in electric vehicle, DRES, BSS.

NOMENCLATURE

Superscripts

act Actual

chr Charging

dch Discharging

max  Maximum limit

min  Minimum limit

plt Project lifetime
Subscripts

dpd ~ Dumped power

drs Distributed renewable energy sources
exrp Export

hm Home

hmpev Total load, home plus pev
imp  Import

wit Inverters
j Types of components
Abbreviations

AC  Annual COE exchange between home and grid ($)
GC  Capital cost for charger of EV (§)

IOCT Initial operating cell temperature (°C)

TPC Total net present cost of components ($)
Parameters
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D Annual degradation (%)
Ig

s Incident global solar radiation
Ig Standard insolation (kWh/m?)
K, Power temperature coefficient (%/°C)
t Time (hr)

Tem  Ambient temperature (°C)

T, Cell temperature (°C)

Yy Derating factor resulting from dust accumulation
B8 Numbers of optimized components

I. INTRODUCTION

Technological advances bring benefits like improved energy
efficiency, safety, and affordability to wind, solar, and battery
storage systems (BSS). The growing demand for residential
plug-in electric vehicles (PEVs) is significantly driving the
necessity for home fast-chargers [1]. The PEV, equipped with
a fast charger, provides the convenience of rapid vehicle
charging [2]. To achieve an intelligent, cost-effective, and eco-
friendly energy supply for PEVs and homes, it is essential
to install distributed renewable energy sources (DRESs) and
BSSs [3]. Utilizing small wind turbines (SWTs) and rooftop
solar photovoltaics (SPVs) is a feasible choice for implement-
ing Distributed Renewable Energy Systems (DRESs) in resi-
dential homes. In capacity planning (sizing), energy manage-
ment systems (EMS), and economic analysis, a grid-connected
home featuring a TOU tariff, PEV, DRESs, and BSS poses a
complex problem. For such a house, developing an effective
EMS is crucial to determine optimal sizes for BSS and DRES
at the most cost-effective rates. Incentives for purchasing SPV,
SWT, and BSS include time-varying electricity pricing are
provided by network operators and government subsidies for
SPV and BSS acquisitions. Numerous studies in the residential
sector have been conducted to address the sizing challenges
associated with renewable sources systems. The optimal ca-
pacities for BSS and SPV in a grid-tied house without a PEV
were identified in [4]. Capacity planning was explored in [5],
but an EMS was not specifically developed for its operation.
In [7], a stochastic optimization framework was investigated,
considering the influence of real-time pricing (RTP). Since an
electric vehicle (EV) is probably being charged at home and
will probably need to be changed during peak hours, this is
very crucial. But with a BSS, TOU can become more cost-
effective. However, the studies conducted so far have not taken
into account the impact of PEV with SSML on the optimal
capacity planning of the DRES model problem. Several studies

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 26,2025 at 12:52:19 UTC from IEEE Xplore. Restrictions apply.



have investigated optimal capacity planning considering PEV.
In [10], PEVs were integrated into residential neighborhoods,
maximizing the capacity of solar, wind, and battery. Resource
organization and distribution of PEV charging stations were
studied in [1]. The impact of PEV’s load modeling on the
planning model was analyzed in [1]. Nevertheless, previous
studies have not tackled the sizing aspect for homes connected
to the grid with fast-charging PEVs. This remains a significant
gap in achieving optimal planning for a renewable energy
sources system, and addressing it can lead to effective cost
reduction through the adoption of a fast-charging model with
SSML approach. Traditional mathematical techniques often
face challenges in addressing sizing issues, particularly in
dealing with non-linearities and the intricacies of problems
such as determining battery lifespan based on degradation [8].
Consequently, metaheuristic techniques like tabu search algo-
rithm (TSA) [9] and particle swarm optimization (PSO) [5] are
preferred over conventional methods. Yet, in dealing with vast
search spaces, these metaheuristic approaches show shortages
like extended computational time and limited exploration
efficiency. To overcome these challenges, SSML algorithm,
known for its model-free nature and adeptness in handling
complex issues, can be employed [1]. Because the fast charger
enables rapid PEV charging, it enhances the flexibility in
EMS design. However, this study introduces a new, specially
designed EMS with unique rules for homes equipped with fast-
charging PEVs, aiming to reduce electricity costs. Considering
that State of Charge (SOC) fluctuates between 20% and 100%,
typical slow chargers, with a rating of approximately 7 kW, can
recharge a 100 kWh capacity of PEV in 12 hours. Conversely,
fast chargers, specifically designed for residential use, have
a 22 kW rating, allowing them to recharge PEVs in fewer
than five hours [1]. While the model designed for the purpose
is comprehensive, it integrates actual measured data from an
Australian case study to yield meaningful results. The model
developed encompasses the degradations of battery, solar,
and wind-turbine. Investigations were conducted to assess the
impacts on optimization outcomes, considering factors such as
rapid charger power, maximum import/export powers from/to
the grid, and the battery capacity of the PEV.

The key advancements achieved by this study, in comparison
to previous studies, can be summarized as follows:

« A novel capacity planning model is developed for BSS,
SWT, and SPV in grid-connected houses with fast-
charging PEVs. The model integrates realistic parameters,
such as grid limitations and actual data, incorporating an
offset value and accounting for component degradation.

o A semi-supervised machine learning algorithm, com-
bining both unsupervised and supervised approaches,
is employed to address the capacity planning problem.
The semi-supervised algorithm shows encouraging results
when compared to alternative machine learning (ML) and
metaheuristic methods.

The rest of this paper is organized as follows. Section II
deals with modeling of the system, including the model for the
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actual DRES, flowchart of the operation strategy, time-of-use
tariff model, and inverter model. Section III describes the op-
timal capacity planning model containing problem formulation
and constraints, SSML model algorithm. Section IV presents
the case study. Section V presents the results and discussion
of this paper. Finally, Section VI provides conclusion.

II. MODELLING

In this section, an overview of the work, a flowchart de-
tailing the operation strategy, and the integration of renewable
sources model into SSML are presented.

A. Overview of the Present Work

Fig. 1 depicts the configuration of a distributed renewable
energy sources system integrated with the main grid, PEV,
homes, inverters, choppers, smart meters, fast chargers, and
rooftop solar panels, providing an effective and affordable
solution for residential areas. The figure also shows the con-
nection of SWT, SPV, and BSS through a DC link bus and
converters. This system is planned using Machine Learning
algorithm, which avoids charging the BSS from the main grid
due to battery degradation. Additionally, the study excludes
PEV operations in vehicle-to-grid or vehicle-to-home modes

[7].

B. Flowchart of Operation Strategy

This work introduces a novel rule-based home energy
management system (HEMS) operation technique for grid-
connected houses, providing simplicity, adaptability, and user-
friendliness. The real-time strategy, as depicted in Fig.2, fac-
tors in time-of-use tariffs, charging rates, electricity costs, time
of day, renewable generation, and battery status. It addresses
grid restrictions and battery limits, uniquely designed for
houses equipped with fast-charging infrastructure.
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Fig. 2. An HEMS for the proposed model based on real-time rules.

C. Time-of-use (TOU) tariff Model

The TOU tariff technique divides the power price into off-
peak (21-07) and peak (08-20) periods, with one-third of the
electricity cost charged during off-peak hours [9]. Considering
a PEV battery capacity of 100 kWh, a 22 kW fast charger (for
household use), and a departure time not earlier than 5 am, the
key hour is set at 12 midnight. Even in adverse conditions, with
a PEV SOC of 20% and no generation from the battery-solar-
wind system, selecting this crucial hour allows the primary
22 kW of grid power to fully charge the PEV in 5 hours
(12 midnight to 5 a.m.). The operation strategy recommends
identifying a critical hour (hc) to minimize electricity costs.
If the PEV arrives before this crucial hour, it incurs charges
only for the BSS and DRESs. Charging the PEV from the
main grid is also an option beyond the crucial hour.

D. Mathematical Modelling

1) DRESs: Here, the equation incorporates parameters for
SWT and SPV, calculating their output powers from equations
(1) and (3), as described in [9] based on real-time data of solar
radiation, wind speed, and temperature. The data is utilized to
update the actual power of DRESs as needed, which can be
calculated using equation (4).

0, if v(t) <wve or v(t) > veo
v3(t) — 3
Pyt (t) = P if v(t) > v & o(t) <wv. (1)
1, " if v(t) > v, & v(t) < Veo
I0CT —20
T.(t) =Tym () + Igs(t)T (2)
Io(t K
Py, (1) =Yg Glé ) 1- W’B (T.(t) — Tsrc) 3)

(t) = ﬂswt (1 - Dswt)plt-Pswt (t)
+ ﬂspv-(l - Dspv>plt~Psp'u (t) (4)

The cut-in, rated, and cut-out wind speeds are denoted
as g, Up, and v, respectively. Considering the significant
dependence of these parameters on the size of the SWT, a 50
kW wind turbine was selected for the design objective. The
chosen values for these parameters are 3, 10, and 20 m/s for
Veis Up, and v, respectively.

2) PEVs Charging: When the PEV is at rest in its home
location, the SOC of its battery for each time interval is
expressed by equation (5). The power available for charging
the PEV is calculated using equation (6).

Pa ct

drs

Pch'r t). ChT.At
SOCpey (t+ At) = SOCpey (t) + 2 ( 1; Tpev- 28 (5
pev
P;I;v (t) = min (Bpey.Ppev, (Epev/At) .
(SOCIA — SOC,e (1)) ©)

3) Battery Charging: During each time interval, the charg-
ing/discharging power of the Battery Storage System (BSS)
must not surpass an available power limit. The input and
output power limits for charging/discharging of BSS are
determined by equations (7) and (8), while the SOC of BSS
for each time interval is computed by equation (9).

PP (t) = min <5bss~Pbss, (EAzlS;;)

% (SOCI™ — SOCss (1)) @
Pt (0 = min (B P, (52

X (SOChss () — SOCTI™) (®)
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SOChss (t+ At) = SOChss (1) +
(Pehr (t) mghr — Pl (t) /mil) At

ac )
Ebsg
ll)l:: /Bbsa Ebas (10)

Where 1,55 is the efficiency of BSS. At is the time interval.
4) Inverter: The inverter’s nominal capacity ought to ex-
ceed the power that flows through it.

Mivt - (P(;T(: ( ) Plgs(.sh ( )) S Bivt-Pivt

Where as 7;,: efficiency of inverters.

(1)

III. OPTIMAL CAPACITY PLANNING MODEL

In this section, the objective function for sizing is described,
constraints are discussed, and the problem-solving process in-
volves utilizing a semi-supervised machine learning algorithm.

A. Capacity Planning and Constraints Model

The aim of this study is to minimize the cost of electricity
(COE). The objective function (13) provided below represents
a crucial economic metric.

COE _TPC+GC AC (12)
Ermpev Ermpev
Objectivefn =min(COE) (13)
Subject to the following constraints:

Bim < By < B (14)

P (8) + Pinp(1) + Py (£) = Pexp(t) — Pat () — Prev (1)
= Phm(t) + Papa(t) (15)
SOC{;“H < SOChs(t) < SOCh™ (16)
SOCgeli,n < SOCpe (1) < SOCE;?X a7
0 < P (t) < RA(t) (18)
< Bt < R(t) (19)
0< REX(E) < PR (20)
0 < Pmp(t) < Bpp™ (21)
0 < Fexp(t) < PA5™ (22)
SOCey (departure time) > SOCpey™ (23)

The number of components is limited, as stated in (14).
Power balance, crucial for maintaining equilibrium between
generation and consumption, is governed by (15). Constraints
(16) and (17) set limits on the SOC for the battery and PEV,
respectively. Furthermore, (18) and (19) specify the constraints
on charging and discharging power for the BSS. The charging
power of the PEV should not surpass the available input power,
as stated in (20). The imported and exported power to/from
the grid must not surpass their respective maximum values, as
specified by equations (21) and (22), respectively. Lastly, (23)
ensures that the SOC of the PEV at departure time remains
above the specified minimum limit, as detailed in [1].

B. SSML Algorithm Model

In supervised learning, every data point is linked to an
output label. This approach is also referred to as group
method data handling. The algorithm gains knowledge from a
labeled dataset in which input features are matched with their
corresponding output labels. And in unsupervised learning,
there are no predefined output labels for each data point.
Instead, the algorithm explores data patterns and structures
without explicit guidance, commonly tackling tasks like clus-
tering and anomaly detection. Consider a situation where
we have a limited set of labeled data (with output labels)
and a significantly larger pool of unlabeled data. In semi-
supervised learning, the algorithm utilizes both labeled and
unlabeled data for training. The objective remains alike to
supervised learning — predicting the output variable from input
features. By combining labeled and unlabeled data, the hybrid
technique enhances optimization by accurately predicting COE
and clustering similar configurations.

1) Training Process:

(a) Generated Featured Space:

« Using historical data from various component config-
urations (SPV, SWT, BSS), create a feature space.

(b) For Clustering applied Unsupervised Learning:

o Apply k-means clustering to group similar configura-
tions, assigning cluster labels to all historical data.

(c) Collected Labeled (Clustered) Data:

o Label each configuration with the cluster to which it
belongs when storing the clustered data.

(d) Train the Supervised Model:

o Apply supervised regression on labeled data to predict
COE based on component configurations.

2) Process to calculate Optimal Solution::

(a) Initialization:
o Set the parameters of the algorithm, like the maximum
number of iterations.
(b) Iteration for Optimization:
e start iterations ( 1000 iterations).

o Choose a configuration at random from each cluster or
according to the cluster centroids.

(c) Prediction of Unlabeled Data:
« Employ the trained unsupervised model to assign clus-
ters for configurations lacking explicit labels.
(d) Prediction of Supervised Model:
« Forecast the COE for each chosen configuration using
the trained supervised model, regardless of labeling.
(e) Optimized Processing:
o Compare the initial optimal COEQ with the COE of
the newly chosen configuration.
o Update COEQ to reflect the new COE if the current
COE is lower than COEQ.

(f) Track the Optimized Solution:
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« Maintain a record of the ideal configuration producing
the lowest COE.
(2) End Condition:

o Reached the predetermined maximum number of iter-
ations, stop the iterations.

TABLE I
COMPARISON IN COMPUTING COE MAXIMUM CAPACITY OF
COMPONENTS AND TIME BY VARIOUS ALGORITHMS

Method COE | SPV | SWT | BSS | IVT | Time
($/kWh) | kW) | W) | &Wh) | &W) | (sec)
SSML 2583 9 6 2 17 532
GMDH [1] | 26.77 20 5 2 17 5.46
MLP [9] 26.89 19 9 q 6 | 2326
PSO [3] 26.84 20 6 3 17 | 12421

IV. CASE STUDY

In this study, a real system from Adelaide, Australia, was
examined through an actual case study, considering a three-
phase grid-connected houses.

A. Technical and Economic Data

Tariffs based on TOU regulations determine electricity
import and export rates. Off-peak (21-07) and peak hours
(08-20) import prices are 27.90 ¢/kWh and 42.90 ¢/kWh,
respectively [1]. The export rate is set at one-third of the
import price. Costs are presented in Australian dollars. Project
input data and component details such as PEV, solar, wind,
inverter, and battery are sourced from [1]. SPV experiences a
0.95% annual degradation [5]. SWT undergoes a 1.6% annual
deterioration. BSS and PEV batteries have a 92% round-trip
efficiency, with a 10-year project lifespan. Grid limitations pre-
vent overloading. Values align with current South Australian
market pricing.

B. Meteorological and Load Consumption Data

Utilizing real hourly wind velocity and solar radiation data
obtained from the Australian Government’s Bureau of Meteo-
rology Climate Data Online [12] the actual power generated by
DRESs was calculated by equation (4), as shown in Figure 3.
Load consumption data for a typical South Australian house is
sourced from [1], providing average, minimum, and maximum
values of 0.83 kW, 0.32 kW, and 3.41 kW, respectively. The
annual energy consumption is recorded as 4136.676 kWh [5].
Annually, Australia receives over 58 million petajoules of solar
radiation, exceeding the country’s energy use 10,000 times.
In South Australia, the average daily solar exposure is 7.12
kWh/m?/day, and the average ambient temperature is 17.9 °C
[7]1. A 1 kW solar system yields a daily generation of 6.12
kWh. For wind velocity, minimum, average, and maximum
values are 0.00 m/s, 6.10 m/s, and 13.63 m/s, respectively.

C. Annual Stochastic Data For PEV

The lognormal probability distribution function (PDF) was
employed to model the arrival SOC of PEVs and their asso-
ciated data, including departure and arrival times. [1]. Annual
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stochastic statistics for the PEV’s initial SOC upon arrival
and departure/arrival times are provided [1]. In comparison,
the smart slow charger, priced at $800 for a 7 kW output, is
contrasted with the smart fast charger, priced at $1200, capable
of reaching a charging power of 22 kW [2]. Both chargers have
a 10-year lifespan.

V. RESULTS AND DISCUSSION

The experiments in this study were carried out on Google
Colab [10], an open-source platform provided by Google.
To implement the operational strategy in DRESs, the pro-
posed model was built using Python 3.11 64-bit [11]. The
proposed SSML algorithm technique is applied to a typical
DRESs System model for homes connected to the grid with
fast-charging PEVs. Optimization results were obtained by
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employing various algorithms in this study, and the training
process of semi-supervised learning was analyzed, along with
the sizing of components.

A. Analysis of Training Process of SSML

Fig. 4 demonstrates the application of SSML algorithm
in this study to achieve the lowest COE. Optimization was
conducted with varying training sample sizes, ranging from
500 to 20,000 in increments of 500 samples for SSML training.
Notably, the SSML algorithm consistently achieves a minimal
COE of $25.83/kWh, and this performance remains constant
even beyond 9,000 samples. Therefore, 9,000 samples were
considered a reliable quantity for training the SSML algorithm
for optimal sizing.

B. Optimal Capacity With Different Algorithms

When compared to alternative methods, the SSML ap-
proach demonstrates the lowest COE, as depicted in Table
I. Specifically, the COE is 0.94 $/kWh lower than for GMDH
approach and exhibits superior performance compared to MLP
technique. In addition, when compared to multi-layer percep-
tron (MLP) method, the PSO algorithm demonstrates a lower
COE by approximately 0.05 $/kWh The computational time
associated with SSML is 5.32 sec and is the lowest compared
to other algorithms.

C. Convergence Pattern of ML

Fig. 5 illustrates the convergence patterns for SSML (semi-
supervised machine learning) and GMDH (group method data
handling). Both machine learning methods run for 100%
of the generation, where a generation represents how many
times all training vectors are utilized to update weights in
machine learning algorithms. The SSML approach converges
to minimum COE at 8% of the generation, while GMDH
converges. At 12% of the generation for their respective COEs.

D. Advantages of SSML compared to GMDH

This paper employed- unlabeled data, by handling limited
labeled data, enhancing model robustness, capturing complex
patterns, reducing dependence on expert labeling, adapting to
changing environments, and exploring novel configurations.

VI. CONCLUSION

This study designed a model for a distributed renewable

energy source system in grid-connected homes with plug-in
electric vehicles using the semi-supervised machine learning
algorithm. Optimal capacity results were obtained for SPV,
SWT, and BSS at 19 kW, 6 kW, and 2 kW, respectively. The
convergence was faster compared to existing studies, and the
COE was 0.94 $/kWh less than the existing study that uses
GMDH algorithm.
This research can be further extended by incorporating dif-
ferent charging models, especially with DC fast charging in-
frastructure to reduce charging time. Additional enhancements
may include exploring various machine learning algorithms
and evaluating their impact on the cost of electricity for
vehicle-to-grid and vehicle-to-home scenarios.
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