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Abstract—The use of optimization tools in complex problems
is becoming increasingly crucial to overcome the challenging
task of achieving efficient results. The Novel Adaptive Fuzzy
Campus Placement based Optimization Algorithm (AFCPOA) is
a new method for solving optimization problems that is based
on campus recruiting process used in universities. In this study,
two power system optimization problems, namely, Economic
Load Dispatch (ELD) and Optimal Power Flow (OPF) have
been tested on IEEE 30 bus test system. The main objective
of ELD is scheduling generation units to lower costs while
meeting system constraints, whereas OPF decides how to dispatch
generating units to meet the demand for power at the lowest
possible cost. The proposed method (AFCPOA) is applied on
16 Congress on Evolutionary Computation (CEC) benchmark
test functions for validation and subsequently applied to two
power system optimization problems ELD and OPF under
MATLAB environment. The proposed AFCPOA method shows
significant improvement in results compared with other methods
for optimization problems.

Index Terms—Particle Swarm Optimization (PSO), Jaya Al-
gorithm (JA), Optimal Power Flows (OPF), Economic Load
Dispatch (ELD), Adaptive Fuzzy Campus Placement based Op-
timization Algorithm (AFCPOA).

NOMENCLATURE
d; Voltage angle of it" bus
§; Voltage angle of j** bus
0; Admittance angle of i*" and j** bus
a;, b;, ¢; it" Generator cost coefficients
B;; Matrix of loss coefficients

F(Pg(i)) Fuel cost of i" generator in $/hr
Ng Number of generator

Ny, Number of shunt elements

N7y, Number of Taps

Pp(i) Active power demand of ' generator

P5(i) Active power generation of i*" generator
Pza®  Maximum limit of active power generation
PZ@™  Minimum limit of active power generation

Qp(i) " generator reactive power demand

Qc(i) " generator reactive power generation
QE  Maximum limit of reactive power generation
QE™  Minimum limit of reactive power generation
S Line flow limit of I*" line

S[**  Maximum line flow limit of I** line
T,(I) Tap value of [*" branch
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T;* (1) Maximum tap value of I'" branch
77 (1) Minimum tap value of /" branch

Vi it" Bus Voltage in p.u
V; jt" Bus Voltage in p.u
Y. Line admittance between 3" and j*" buses

Y, (m) Shunt admittance of m** bus

Y% () Maximum shunt admittance of m** bus
Y (;m) Minimum shunt admittance of m!" bus
ABC Artificial Bee Colony

BBBC Big Bang and Big Crunch

cgpa  Cumulative Grade Point Average

DE Differential Evolution

FA Firefly Algorithm

GA Genetic Algorithm

GWO Grey Wolf Optimization

SD Standard Deviation

TLBO Teaching Learning Based Optimization
WOA Whale Optimization Algorithm

@y Bis Vi it" Generator cost coefficients

I. INTRODUCTION

Power system planning, operation, and control problems
have been solved using mathematical optimization (algorith-
mic) methods over the years. Mathematical formulations of
real-world problems are developed under particular assump-
tions, and even under these assumptions, large-scale power
system solutions are not straightforward. On the other hand,
because power systems are huge, complicated, and geograph-
ically dispersed, there are uncertainties in power system gen-
eration. Over the past few years, a wide variety of meta-
heuristics algorithms have been developed and applied to solve
unconstrained and constrained optimization problems given in
[1] and [2], respectively. One of the main optimization issues
in power systems is Economic Load Dispatch (ELD), which
aims to minimize generation costs while respecting operational
limitations including environmental effect and system depend-
ability [3]. Complex economic load dispatch issues can be
optimally solved with evolutionary programming, particularly
when non-convex cost curves and valve-point effects are
present [4]. By integrating a dynamic autoregressive moving
average (ARMA) model, the best approach enhances economic
load dispatch, improving fuel cost accuracy, and achieving a



0.15% reduction in total costs over standard methods [5]. The
new enhanced aggrandized class topper optimization algorithm
(A-CTO), Gradient-Based Optimizer (GBO), and Search and
Rescue optimization algorithm (SAR) were used to address
the ELD and Combined Economic and Emission Dispatch
(CEED) problems within the power system and were also
evaluated on a number of CEC benchmark test functions in [6]
and [7]. The Search and Rescue (SAR) optimization algorithm
has demonstrated superior performance in minimizing fuel
and emission costs for ELD and CEED problems compared
to several metaheuristic methods [8]. The incorporation of
continuous network flexibility to chance constrained economic
dispatch has been shown to improve operational efficiency and
mitigate congestion under renewable uncertainties [9]. Optimal
power flow (OPF) can be efficiently solved by minimizing
costs or losses through the adjustment of control variables,
utilizing Newton’s method and gradient-based algorithms to
meet system constraints [10]. The quick Newton-Raphson
approach effectively solves the optimal power flow problem
while preserving safe voltage levels and reducing fuel ex-
penses [11]. An improved genetic algorithm is applied to
solve the optimal power flow problem, with an emphasis on
increasing power system management accuracy and efficiency
[12]. Authors of [13]- [14] have implemented the improvised
algorithm to reduce the computational hurdles involved in
solving the optimal power flow problem in both traditional and
market-based power systems to improve efficiency, scalability,
and constraint handling. In multi-energy systems, optimal
power flow improves efficiency and reduces costs by maximiz-
ing energy conversion and dispatch across gas, heating, and
electricity networks [15]. Investigation of optimal power flow
problem for the IEEE 30 bus test system, taking into account
a variety of design variables, with a variety of single and
multiple objectives, utilizing several meta-heuristic algorithms,
was carried out in [16]- [17].

The purpose of this study is to demonstrate an application
of a recently developed optimization algorithm known as
AFCPOA in 2023. In section II, the fuel cost minimization
as an objective of two power system optimization problems
are provided. The proposed AFCPOA method is described
in section III. The results and discussions are summarized in
sections IV, and conclusions are in section V.

II. POWER SYSTEM OPTIMIZATION PROBLEM
FORMULATION

The aim of solving the power system optimization problem
is to either maximize the desired factors (such as profit, quality
power, efficiency, etc.) or minimize undesirable factors (such
as energy cost, energy loss, and voltage variations) under
some constraints. Long-term planning is accomplished using
the simplest planning technique called ELD. In ELD, the
majority of system constraints are not taken into account. The
OPF problem aims to regulate generation and consumption in
order to maximize specific goals, such as reducing the cost of
generating power or power loss in the network.

A. Economic Load Dispatch Problem Formulation

Economic Load dispatch is an optimization method that
chooses the least expensive generators to meet the total amount
of electricity needed within the limits of operation of each
generator. The formulation of ELD optimization problem is
drawn from [19].

+a;Pg(i)* (1)
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Such that it satisfies the following equality and inequality
constraints,
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B. Optimal Power Flow Problem Formulation

Optimal Power Flow determines the dispatch of generating
units to satisfy the electricity demand at the minimum cost
while complying with technical limits of the system. The
formulation of OPF optimization problem is drawn from [20].
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Such that it satisfies the following equality and inequality
constraints,
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III. ADAPTIVE Fuzzy CAMPUS PLACEMENT BASED
OPTIMIZATION ALGORITHM (AFCPOA)

The authors of this paper have developed a novel Adap-
tive Fuzzy Campus Placement based Optimization Algorithm
(AFCPOA) [22] for solving optimization problems. A cohort
of students is slightly adjusted and fitted into the framework
of an optimization algorithm after going through tests and
recurrent training to obtain the highest knowledge level for
project deployment.
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COMPARISON OF THE AFCPOA WITH OTHER ALGORITHMS ON THE OPTIMIZATION OF Fil. To F8_. BENCHMARK UNCONSTRAINED TEST FUNCTIONS

TABLE I

COMPARISON OF THE AFCPOA WITH OTHER ALGORITHMS ON THE OPTIMIZATION OF G% TO G? BENCHMARK CONSTRAINED TEST FUNCTIONS [2]

[18] & [1]
AFCPOA
F. No Statistic GA [1] PSO [1] DE [1] ABC [1] TLBO JA [ (Proposed)
[1]
F, Mean -5.66052 -2.08701 -10.1532 | -10.1532 - - -1.01528
SD 3.86674 1.17846 0 0 - - 0.000747
Best - - - - - - 0
F, Mean -5.34409 -1.989871 -10.40294 | -10.402941 - - -10.4028
SD 3.517134 1.420602 0 0 - - 0.000352
Best - - - - - - -10.1532
Fo. Mean -186.731 -186.73091 -186.7309 | -186.73091 - - -185.669
SD 0 0 0 0 - - 0.8803207
Best - - - - - - -186.651
F., Mean 1.11E+03 0 0 0 0 0 0
SD 74.214474 0 0 0 0 0 0
Best - - - - - 0 0
F, Mean 1.17E+03 0 0 0 - - 0
SD 76.5615 0 0 0 - - 0
Best - - - - - - 0
Fo. Mean 1.48E+02 0 0 0 0 0 0
SD 74.214474 0 0 0 0 0 0
Best - - - - - 0 0
F., Mean -49.9999 -50 -50 -50 -50 -50 -50
SD 2.25E-05 0 0 0 0 0 0
Best - - - - - -50 -50
F, Mean 0.193417 0 0 0 0 -210 210
SD 0.035313 0 0 0 0 0 0
Best - - - - - -210 -210
TABLE 1II

S.No Function Statistic GA [1] PSO [1] ABC [1] TLBO [1] JA 1] AFCPOA
(Proposed)
1 Gi Best -14.44 -15 -15 -15 -15 -15
Worst . -13 -15 -15 -15 -15
Mean -14.236 -14.71 -15 -15 -15 -15
2 Gi Best -0.99 -1 -1 -1.0005 -1.005 -1.0005
Worst . -0.46 -1 -1 -1 -1.005
Mean -0.976 -0.764813 -1 -1 -1 -1
3 Gi Best -30626.053 -30665.539 -30665.539 -30665.5387 -30665.5387 -30665.53867
Worst . -30665.539 -30665.539 -30665.5387 -30665.5387 -30665.53867
Mean -30590.455 -30665.539 -30665.539 -30665.5387 -30665.5387 -30665.53867
4 Gg Best - 5126.484 5126.484 5126.486 5126.486 5126.4967
Worst - 5249.825 5438.387 5127.4197 5126.635 5126.9
Mean - 5135.973 5185.714 5126.5146 5126.5061 5126.5042
5 G‘z Best -6952.472 -6961.814 -6961.814 -6961.814 -6961.814 -6961.8138
Worst . -6961.814 -6961.805 -6961.814 -6961.814 -6960.3
Mean -6872.204 -6961.814 -6961.813 -6961.814 -6961.814 -6961.81
6 Gg Best 31.097 24.37 24.33 24.3101 24.3062 24.3062
Worst . 56.055 24.19 26.7483 24.8932 24.4442
Mean 34.98 32.407 24.493 24.6482 24.3092 24.4797
7 G’ Best 0.75 0.749 0.75 0.7499 0.7499 0.7499
Worst . 0.749 0.75 0.7499 0.7499 0.75
Mean 0.75 0.749 0.75 0.7499 0.7499 0.7499
8 G§ Best 961.7150 961.7568 961.7150 961.7150 961.7150
Worst 972.3170 970.3170 961.7150 961.7150 961.7194
Mean 965.5154 966.2868 961.7150 961.7150 961.7163
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Fig. 1. Convergence plot of Test function G
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Fig. 2. Convergence plot of Test function G2
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TABLE IIT
COMPARISON OF AFCPOA WITH OTHER ALGORITHMS FOR OPTIMIZING ECONOMIC LOAD DISPATCH PROBLEM ON IEEE 30 BUS TEST SYSTEM
Algorithm GA [19] ACO [19] DE [21] FA [21] WOA [19] PSO [19] AFCPOA (Pro-
posed)
P1G (MW) 179.367 177.863 177.51 175.07 174.379 176.94 184.174
P2G (MW) 44.24 3.8366 48.61 43.29 47.8294 48.71 46.4821
P5G (MW) 24.61 20.893 2091 21.84 21.4578 21.27 19.0438
P% (MW) 19.9 23.1231 12.64 13.63 25.6931 21.09 10
Plc:l (MW) 10.71 14.0255 12.47 14.43 10.1262 11.83 10
Pg (MW) 14.09 13.1199 12.02 22.24 12.1515 12 12
Fuel Cost ($/hr) 803.699 803.123 803.07 803.96 800.2825 798.43 761.7114
TABLE IV
COMPARISON OF AFCPOA WITH OTHER ALGORITHMS FOR SOLVING OPTIMAL POWER FLOW PROBLEM ON IEEE 30 BUS TEST SYSTEM
Algorithm Base Case GA [22] BBBC [22] SFLA [22] GWO [22] JA [22] AFCPOA (Pro-
[22] posed)
Pé (MW) 139.36 187.1 176.6 179.19 177.029 178.6 177.0916
P2G (MW) 57.56 44.09 44.97 46.67 48.839 47.89 48.6827
Pi’; (MW) 24.56 17.64 26.66 21.3 21.548 21.6 21.7297
PZ, (MW) 35 14.39 15.84 15.33 21.632 20.98 20.5695
Pg (MW) 17.93 13.01 16.69 13.84 12.1 11.63 13.0765
Pg (MW) 16.91 17.62 12 16.87 12.002 12.45 12.00
Fuel Cost ($/hr) 817.02 806.5 803.942 804.612 803.942 803.4 801.7101
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Performance of AFCPOA in solving ELD
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Fig. 9. Convergence plot of ELD problem using AFCPOA

Performance of AFCPOA in solving OPF
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Fig. 10. Convergence plot of OPF problem using AFCPOA

Step 1 - Initialisation : Generate a cohort of candidates with
a size of N, (the population’s size) and NV, (the search space’s
dimension) which fits within the defined set of limits.

Step 2 - Evaluation: A candidate’s chances of getting
employed rely on their skills and abilities. Subjective mea-
surements based on fitness value are used to increase the
algorithm’s authenticity. Written test and Interview are the
two assessments that are specified. The written test is divided
into three sub-components: Cumulative Grade Point Average
(cgpa), aptitude, and programming. The interview comprises
three sub components: research output, projects, and commu-
nication abilities.

Fitness — min(Fitness)

cgpa = - =

max(Fitness) — min(Fitness) (13)

(Cgpama:v o Cgpamin) + Cgpami’ﬂ

. B cgpa

Aptitude = AptToar cgpamar (14

. cgpa
Programming = Prog_ar. s )
Research = Researchey * Researchyay, % (16)

_ . ) cgpa
Project = Projectcs  Projectyyil, « - wom (1)
Commun = rand x Communication.or, % _copa_ (18)
Cgpamam

There is a human uncertainty element that cannot be prop-
erly defined when determining a candidate’s final written exam
score and final interview score. A fuzzy inference engine with
a rule base on common sense has been developed for the
written test score/ interview score sub components. Here, fuzzy
rules were developed using triangular membership functions.

The candidate’s final score, known as the “caliber score,” is a
weighted sum of written test and interview scores.

Calibrescore = 0.6 * Writtenscore + 0.4 % Interviewscore

(19)

Step 3 - Probation: During probation, the cohort is divided

into trainable and untrainable candidates based on their caliber

scores. Initially the trainable candidates who have improved

their performance on training will have better knowledge

levels. Subsequently, the remaining trainable candidates are
further trained to maximize their performance.

perturbepite = elitecand; + sigmoid(attempt )

Upim + 2 * Ugim * Tand (20)
100
perturbegngi = candi + (—1 + 2 * rand)* o

(elitecandi — abs(candi))

The algorithm is iterated through Steps 2 and Step 3 until
it converges. The algorithm’s basic concept is to maximize
candidates knowledge levels.

IV. RESULTS AND DISCUSSIONS

AFCPOA’s performance was evaluated on 16 CEC bench-
mark test functions and two power system optimization prob-
lems using MATLAB -R2022b software [23] on a computer
with an Intel (R) Core (TM) i7-3770 CPU clocked at 3.40GHz
and 8GB of RAM. The proposed AFCPOA’s results of test
functions were compared with other algorithms viz. JA, ABC,
TLBO, DE, PSO, and GA [1]. The proposed AFCPOA was
run 30 times on each benchmark functions and the statistical
results were compared with other algorithms for the same
number of runs. The comparative results of 8 benchmark
unconstrained test functions and 8 constrained bench mark
test functions with are tabulated in Table I and Table II, re-
spectively. The convergence plots of constrained test functions
are given in Figure 1 to Figure 8. AFCPOA is implemented
on IEEE 30 Bus test system to mitigate overall fuel cost by
optimizing ELD and OPF. The IEEE 30 Bus test system data
is drawn from [19].

A. Economic Load Dispatch problem Results

There are 6 generating units for which the generation can
be controlled. The fuel cost coefficients, physical generation
limits of generators and loss coefficients are taken from the
[19]. The optimization variables are the powers generated
from the 6 generators. The physical limits of generators serve
as the bounds of optimization space. The 6 generators are
expected to support a load of 283.4MW. This serves as an
equality constraint. AFCPOA is run with an initial population
of 200 for 200 epochs. Figure 9 shows the convergence plot in
minimizing the fuel cost. Table III presents a comparison of
solution to ELD by AFCPOA with other existing algorithms in
the literature. It can be seen that the AFCPOA has the lowest
overall fuel cost for generating at 761.7114 $/hr in comparison
with other methods.
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B. Optimal Power flow problem Results

The IEEE 30 Bus test system data (line and bus data)
including control variables (active power generation limits),
constraints, and fuel cost coefficients, are taken from [20].
Table IV compares the numerical results of the proposed
method to the OPF problem’s solution utilizing various op-
timization algorithms. The total fuel cost results obtained
by proposed method is better than other existing methods.
AFCPOA technique has the lowest overall fuel cost for gener-
ation at 801.7101 $/hr in comparison with other methods. The
cost-variation convergence plot based on AFCPOA is given in
Figure 10.

V. CONCLUSIONS

This study tested the performance of the proposed AFCPOA
in solving unconstrained and constrained benchmark test
functions. Two power system optimization problems, namely,
economic load disptach and optimal power flow problems were
solved using AFCPOA method. The possibility of obtaining
global optimal solution is very high vis-a-vis other optimiza-
tion methods. The performance of AFCPOA in comparison
with other meta heuristic optimization algorithms is quite
significant. In further studies, the proposed method can be
applied to several optimization problems in different areas of
engineering.
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