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Abstract—An open-end winding arrangement is fed with two
typical 2-level voltage source inverters (VSIs) on either side to
accomplish multilevel inversion. Two voltage source modules
(VSIs) DC-link voltages are kept at a 2:1 ratio to realize the open-
end winding induction motor (OEW-IM) power circuit’s four-level
configuration. However, the higher DC-link voltage capacitor
overcharges its lower DC-link voltage counterpart in the 4-level
power circuit configuration. This article proposes a new hybrid-
clamping space vector PWM (SVPWM) approach to prevent
overcharging. Based on the sample moment, the suggested
SVPWM technique clamps one inverter and switches to another
inverter. Additionally, it clamps one of the inverter’s switching
phases. The proposed PWM method has been found to reduce
switching power loss in contrast to earlier SVPWM methods. The
proposed SVPWM scheme for the 4-level OEW-IM drive is tested
and verified using an experimental laboratory setup.

1. INTRODUCTION

Multilevel inverters (MLIs) have been used in medium-
voltage and high-power industrial applications. Several
MLI topologies have been presented in the literature, with
neutral-point-clamped, flying-capacitor (FC), and cascaded
converter topologies being the most frequently employed.
Low dv/dt, an improved harmonic profile, and lower
switch-blocking voltage are the primary advantages of
MLIs [1].

Due to its simplicity and fault tolerance, the dual-
inverter configuration has recently gained popularity among
cascaded converters [2]. The dual-inverter configuration
uses two 2-level VSIs to achieve the multilevel output. The
topology does not have neutral-point voltage fluctuations
like in the diode-clamped converter. It uses fewer capaci-
tors and DC sources than flying capacitors and cascaded
converters. The dual-inverter configuration is more reliable
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because if anyone inverter fails to operate, the second
inverter is used to run the load at a reduced power

Electric Power Components and Systems, Vol. 52 (2024), No. 3

The dual-inverter-fed OEW-IM has potential application
in more electric craft, electric vehicles, renewable energy

level [3]. systems, and other industrial applications of induction
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FIGURE 1. Dual-inverter-fed OEW-IM circuit configurations.
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motor drive [4-6]. Three different power source arrange-
ments proposed in the literature for the dual-inverter-fed
OEW-IM are shown in Figure 1. The power circuit

3(-+)
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3'(-+-) 2'(++-)

6 ()

|
g

FIGURE 2. Space-vector diagrams of Inverter-1 (left) &
Inverter-2 (right).

configurations of OEW-IM have either common DC-links
(Figure 1(a)), isolated DC-links (Figure 1(b)), or DC-links
with flying capacitors (Figure 1(c)) [7-9].

Figure 1(a) lets zero-sequence currents (ZSCs) flow in
the stator winding of the motor and does a 3-level multi-
level inversion. Either by changing the way the circuit is
setup [10] or by using SVPWM techniques [7], the ZSCs
can be suppressed. However, the circuit configuration calls
for more devices to be added [10], the SVPWM technique
loses its advantage (a 15% boost in DC-link voltage) [7],
and more ripple in the motor phase current.

By isolating the power sources, Figure 1(b) configur-
ation prevents the flow of zero-sequence currents. To
achieve the four-level inversion, the voltage ratio of the

26'

FIGURE 3. 4-level OEW-IM space vector diagram.

oG= 2VDC/3
OU =Vpc
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individual power supply is maintained at 2:1. A biased
SVPWM [11] is suggested in the literature to reduce the
motor phase current ripple. However, in some switching
vector combinations, the higher DC-link voltage capacitor
(HDC-LVC) overcharges its counterpart lower DC-link
voltage capacitor (LDC-LVC).

The overcharging of the LDC-LVC (capacitor having a
DC-link voltage of Vpc/3) can be evaded by employing
decoupled SVPWM methods [11]. Decoupled SVPWM
schemes can switch both inverters; however, this comes at
the expense of increased switching power loss (SPL). In
the literature, phase-clamped SVPWM approaches [12—-14]
are also mentioned to lower the SPL of a dual-inverter sys-
tem with an OEW-IM drive.

A method to avoid overcharging new topologies with
asymmetric power supplies is also proposed in the Ref. [15,
16]. However, the topology described in Ref. [15] provides
a path for zero-sequence current to circulate. The topology
[16] is suitable only for 6n-pole induction motor drives.

The circuit configuration shown in Figure 1(c) uses the
FC and is charged using the inverter-1. However, the
OEW-IM drive’s efficiency decreases since the FC is
charged via the motor’s phase windings [17].

After reviewing the relevant literature, it is clear that
none of those mentioned earlier methods for reducing the
current ripple in a four-level OEW-IM drive is optimal.
The approach described in Ref. [14] develops hybrid
SVPWM techniques by combining decoupled SVPWM
with biased SVPWM. The hybrid SVPWM method
switches all phases in the switching inverter using the cen-
ter-spaced SVPWM method.

This article introduces the phase-clamped SVPWM tech-
nique to reduce the SPL further and improve the perform-
ance of the SVPWM techniques proposed in Ref. [14]. The
phase clamping and the arrangement of the circuit config-
uration in Figure 1(b) create asymmetry. The proposed
SVPWM technique is used to make waveform symmetry
possible, even though the power circuit and PWM tech-
nique are not symmetrical.

The proposed SVPWM method is tested with the experi-
mental setup and simulated with MATLAB/SIMULINK
software. By considering Total Harmonic Distortion
(THD), weighted THD (WTHD), switching power loss
(SPL), conduction power loss (CPL), total dual inverter
loss (TDIL), and the torque-ripple as performance indices,
its performance is compared to that of the existing
SVPWM techniques. The following section explains the
four-level (4-L) OEW-IM.

2. 4-LEVEL OPEN-END WINDING INDUCTION
MOTOR

The four-level OEW-IM power circuit feeds two 2-level
VSIs on both sides of an IM, either by removing the star
neutral point or the delta end-connections while maintain-
ing a 2:1 DC-link voltage ratio, as illustrated in Figure
1(b). It is called a dual-inverter system because it has two
2-level VSIs. Each inverter has eight switching vectors, as
shown in Figure 2. Figure 3 shows the dual-inverter-fed
OEW- IM vector diagram with 64 switching vector possi-
bilities in 37 locations.

The inverter-1 toggles between +Vpc/3 and — Vpc/3,
whereas the inverter-2 switches between + Vpc/6 and

— Vpc/6. Table 1 displays the resulting voltage levels
between the OEW-IM phases. It can be shown in Table 1
that OEW-IM can accomplish four levels throughout the
motor phase winding when using a power supply with a
2:1 ratio.

Phase voltage of
OEW-IM

(Vaa’ = Vao — va'o’)

Pole voltage
of inverter-1 (v,,)

Pole voltage of
inverter-2 (Vao)

+Vpe/3 + Vpe/6 + Vpc/6
+Vpe/3 — Vpe/6 + Vpc/2
—Vpe/3 + Vpc/6 — Vpe/2
—Vpe/3 —Vpc/6 —Vpc/6

TABLE 1. Voltage levels across the OEW-IM.

FIGURE 4. OEW-IM equivalent circuit diagram for
switching vector combination (a) 22' and (b) 23'".
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FIGURE 5. Principle of operation of proposed SVPWM technique.

As said earlier, in some switching vector combinations,
the LDC-LVC sees the HDC-LVC directly [11], which
causes the LDC-LVC to be overcharged. The troublesome
combinations of switching vectors are (see Figure 3) 11,
22, 33, 44, 55, and 66. The switching vector combinations
at H, J, L, N, Q, and S also result in the LDC-LVC being
overcharged by its opposite when the motor is loaded.
Figures 4(a) and 4(b) show the OEW-IM equivalent circuit
diagrams for the switching vector combinations 22
and 23'.

It is evident from Figure 4 that, for the switching vector
combinations stated above, the counterpart capacitor over-
charges the lower DC-link voltage capacitor. The following
section describes how to use the proposed SVPWM technique
to eliminate the charging combinations mentioned above.

3. PROPOSED SPACE VECTOR PWM STRATEGY

The modulating waveforms for the dual-inverter

system are produced using the reference voltage vector
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FIGURE 6. Flowchart of proposed SVPWM strategy.
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(OT) illustrated in Figure 3. The length of the voltage
vector is determined by the modulation index (m,).
According to Eq. (1), the modulation index (m,) is defined.

|OT|
ou

where OU = DC link voltage of the dual-inverter setup.
The modulation index decides the operating frequency
(f) of the OEW-IM drive and controls the output voltage
of the dual-inverter system. The limit of the linear
modulation index at the rated supply conditions (i.e., volt-

()

age and frequency) of the OEW-IM is +/3/2. The
Inverter-1 Number =4 Inverter-2 Inverter-1 Sample Number =7 Inverter-2
d ‘ 1 1
0 0 0
1 l 1 1 ’—
0 | 0 0 0
1—| 1 1 1
0 0 0 0
1.8 1.9 2 24, 22 23 1.8 1.9 2 21 22 23 36 37 38 39 4 4.1 36 37 38 39 4 4.1
x10% Time (s) %103 x10° Time (s) x10°

FIGURE 8. Pole voltages at sample numbers 4 (left) and 7 (right).

FIGURE 9. A view of the experlmental setup of a 4-level OEW-IM.
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5 1 R

1 11 1 1

397.0617Hz
12.05%

794.2181Hz
76.05%

:CH2
:CH2

Freq
Duty

Max  :CH2
Freq :CH3
—_

0.055kV
283.4547Hz

Freq :CH1
Duty :CH1

FIGURE 11. Experimental pole-voltage of inverter-1 (top),
inverter-2 (middle) and common mode voltage (bottom) of
OEW-IM drive at m, = 0.7.

operating frequency of the OEW-IM can be calculated as
follows:
mg X 50

V3/2

To obtain the waveform symmetries, the voltage vector
is sampled 42 times every cycle [11]. The dual-inverter
system’s sampling period (7) is given as,

1
Iy=——
Yf ox 42

f= @)

3)

The OT is the vector addition of the voltage vectors
OG and GT (Figure 3). One inverter must be clamped,

and the second inverter must be switched around the offset
of the clamped inverter to produce the least current ripple,
reduce SPL, and optimize the harmonic profile of OEW-
IM phase voltage.

The ideal situation is achieved by clamping inverter-1
(i.e., the inverter with an HDC-LV) and switching inverter-
2. Hence, the OG and GT voltage vectors are respectively
realized by inverter-1 and inverter-2.

However, if inverter-1 is clamped, as indicated in Ref.
[11] for specific combinations of space vectors, the LDC-
LVC is overcharged by the HDC-LVC. Additionally, not
all space vector combinations are achieved (see Figure 3,
white shaded area).

The vector OT in the white-shaded area is realized
by: (i) switching the two inverters or (ii) switching
the inverter-1 around the clamped inverter-2. However,
because both inverters are switching in the former
case, SPL is more significant than in the latter PWM [14].

As said earlier, the entire space vector diagram was
sampled 42 times over a cycle. The space vector
diagram corresponding to these 42 samples can be
obtained, as shown in Figure 5. The 42 samples are
colored either green or orange. The green-colored sam-
ples cover the white-shaded area where inverter-1 is
switched around the clamped inverter-2 to avoid over-
charging the lower DC-link voltage capacitor. The
orange-colored samples cover the remaining space vec-
tor locations, where inverter-2 switched around the
clamped inverter-1 [14].
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FIGURE 12. Simulate OEW-IM phase aa’ voltage (left) and current (right) at a m, = 0.7.
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FIGURE 13. Experimental OEW-IM phase aa’ voltage
(top) and current (bottom) at a m, = 0.7.
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FIGURE 14. Simulated harmonic analysis of phase-aa’
voltage at m, = 0.7.

The SVPWM scheme suggested in Ref. [18] uses
imaginary switching periods to realize the gating signal for
the semiconductor devices. The
extended to this article. The algorithm uses an offset period

same algorithm was

(Toiset) to introduce center space switching or 120° phase
clamp switching, as shown in Figure 6.

To reduce the SPL and to achieve the waveform sym-
metries, the Tyee¢ fOr the green-colored sample is kept as

Te-Tax. The Togpeee for the samples numbered 1, 7, 8, 14,
15, 21, 22, 28, 29, 35, 36, and 42 is % — Tmin (i.e., center
spacing SVPWM). For the 2, 9, 16, 23, 30, and 37 sam-
ples, the Togrset 1S —T'min, and for the remaining orange-col-
ored samples, the Tyggset 1S Ts~Tmax (i.€., 120° phase clamp
SVPWM). Figures 7 and 8, respectively, show the modu-
lating waveform and pole voltages of the proposed
SVPWM technique.

Figure 7 shows that both inverters are clamped based on their
sample period. It also may be observed from Figure 8 that either
inverter-1 (sample number = 7) or inverter-2 (sample number =
4) are clamped, and switching inverter phase-A is clamped (sam-
ple number = 7), resulting in a reduction of the SPL.

4. RESULTS AND DISCUSSION

The proposed SVPWM approach is initially tested on two
2-level VSIs fed by a 3-phase, 5-HP, and 400V, 50Hz,
and a 1445RPM OEW-IM with open-loop v/f control. A
dSPACEI104 controller is used to generate the dual-
inverter system’s gating signals, and the experimental setup
is shown in Figure 9.

The dual-inverter system’s total DC-link voltage for testing
is selected as 300 V (JOU| in Figure 3). The total DC-link volt-
age is divided into a 2:1 ratio to operate at four levels. This
results in inverter-1 and inverter-2 having corresponding DC-
link voltages of 200V and 100 V. The OEW-IM simulation
parameters are stator resistance (R;) = 4.215Q; rotor resist-
ance refereed to the stator (R,)= 4.185 Q; stator and rotor leak-
age reactance (x; = x,,) = 5.502Q; magnetizing reactance
(Xn) = 1623Q; Motor inertia (J) = 0.0131 Kg— m?;
Friction coefficient (B) = 0.002985 N —m —s.

4.1.

This section shows the experimental and simulation results
at a m, of 0.7 and 1. The modulation index is above 0.866,

Results from Experimentation and Simulation
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my, = 1.
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Duty :CH2 17.19%
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FIGURE 16. Experimental pole-voltage of inverter-1 (top),
inverter-2 (middle) & common mode voltage (bottom) of
OEW-IM drive at m, = 1.

and the OEW-IM operates at a rated supply frequency (i.e.,
50Hz).

Figure 10 depicts the simulated pole voltages of
inverter-1 and inverter-2 and the common mode voltage
existing between the two common points of DC-source
0O0' (see Figure 1(b)) of OEW-IM at a modulation index
of 0.7. The corresponding experimental results are shown
in Figure 11.

The simulated and experimental phase - voltage and cur-
rent of the OEW-IM drive at a m, = 0.7 are shown in
Figures 12 and 13, respectively. The FFT of OEW-IM
phase-aa’ voltage is shown in Figure 14.

The experimental & simulated results of OEW-IM pole vol-
tages, common-mode voltage, phase-voltage aa’, and current,
respectively, are shown in Figures 15-18 at m, = 1. From
Figures 10-18, it may be observed that the simulation results
of the proposed SVPWM technique are validated with the help
of experimental results. The suggested SVPWM approaches
will significantly minimize the SPL of the dual-inverter sys-
tem, as demonstrated by experimental pole voltages.

4.2. Dynamics of Lower DC-Link Voltage Capacitor

As described in section 2, the LDC-LVC is overcharged by
its counterpart for certain switching vector combinations.
The SVPWM approach suggested here eliminates trouble-
some switching vector combinations. When the m,, value is
close to 0.6, and the OEW-IM is loaded, the mild charging
switching vector combinations may overcharge the LDC-
LVC by its counterpart.

The OEW-IM drive ran at a m, of 0.6 to demonstrate
the effectiveness of the planned SVPWMs in preventing
the overcharging of LDC-LVC. Figure 19 depicts the cor-
responding DC-link voltages and motor currents when the
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FIGURE 19. Experimental balanced DC-Link capacitor
voltages of inverter-1 (top), inverter-2 (middle) and OEW-
IM phase aa’ current (bottom) at m, = 0.6.

motor is loaded. Figure 19 reveals that the DC-link voltage
of inverter-2 remains constant even when the OEW-IM
drive is loaded.
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4.3. Performance Evaluation

THD in phase voltage, WTHD, SPL, CPL, TDIL, and tor-
que ripple are performance indicators that are taken to
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FIGURE 23. Total conduction power loss of the dual-
inverter system.
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FIGURE 24. Total dual-inverter loss vs. m,,.

Hybrid SVPWM-1
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evaluate the OEW-IM drive’s performance (Figures 20-25,
respectively). The new and existing SVPWM [14]
approaches are compared on all performance metrics. The
THD and WTHD are calculated at no-load on the OEW-
IM. While calculating the switching and conduction power
losses, the motor is loaded at 20 N-m for the entire range
of modulation index.

From Figure 20, it is observed that the proposed
SVPWM phase voltage THD is comparable to the hybrid
SVPWM-1 and lower than hybrid SVPWM-2 in the low
and medium speed range of OEW-IM. However, the pro-
posed SVPWM introduces one-phase clamping in the
switching inverter; hence, the WTHD is slightly higher
than the existing SVPWMs in Figure 21. The loss model
used in Ref. [15] is used to calculate both the CPL and
SPL of the dual inverter system.

Figures 22 through 24 illustrate, respectively, the SPL,
CPL, and TDIL of the dual-inverter system of the OEW-
IM drive. Figure 22 shows that the SPL rises linearly with
m, and falls after it reaches a linear modulation limit (i.e.,
0.866). And it may observe that the SPL is lower than the
hybrid SVPWM techniques. While the TDIL of the dual-
inverter system (in Figure 24) exhibits the same SPL pat-
tern, the conduction loss (in Figure 23) is comparable to
that of the other two SVPWMSs. From Figure 25, it may
observe that the steady-state torque ripple is the same for
the three SVPWMs. It can be seen from the performance

Proposed SVPWM

1.2 12 |
E
<
(0]
o |
&
kS

0 =

0.6 1 0.6

FIGURE 25. Torque ripple at m, = 0.7.

Time (S) 1 0.6 1



Lakhimsetty et al.: Hybrid-Clamping SVPWM Scheme for a Four-Level Open-End Winding Induction Motor Drive

indices that the proposed SVPWM voltage THD is on par
with one of the existing SVPWMs and decreases switching
and total dual-inverter system power loss.

5. CONCLUSIONS

This article suggests a new SVPWM scheme for driving a
4-level open-end wound induction motor. The voltage
THD of the proposed SVPWM is almost the same as that
of the Hybrid SVPWM-1 technique and better than that of
the Hybrid SVPWM-2 technique in the low and medium
speed range of OEW-IM drive. Also, the proposed
SVPWM scheme achieves waveform symmetry, prevents
overcharging of the lower DC-link voltage capacitor, and
reduces switching power loss and overall dual-inverter loss
compared to existing SVPWM techniques.
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