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Summary

During shading, the mismatch between the panels in the photovoltaic
(PV) array mitigates the global maximum power (GMP). Besides, the mismatch
in the irradiation levels of distinct rows of the PV array instigates multiple
power peaks (MPPs) in the array characteristics. Distinguishing the local and
global peaks among MPPs for tracking the GMP is highly challenging for maxi-
mum power point tracking (MPPT) controllers. So, to mitigate the MPPs and
enhance the GMP, array reconfiguration is preferred. Nevertheless, most exis-
ting reconfiguration techniques exhibit poor shade dispersal, distorted electri-
cal characteristics, multiple MPPs, increased mismatch, scalability issues, etc.
To overcome these challenges, this paper proposes a new Padovan transform-
based encryption strategy for array reconfiguration. The proposed method was
evaluated for both symmetric and unsymmetrically sized arrays. Its perfor-
mance has also been compared to that of 23 other strategies. The proposed
reconfiguration strategy integrated with MPPT is validated experimentally
using a prototype model. A nonparametric statistical hypothesis test with a p-
value of 0.05 has been used for a pairwise fair comparison study among the
examined approaches. The proposed approach constantly outperforms the cur-
rent methods because of its unique shade dispersion generated through intelli-
gent reconfiguration offering the GMP improvement of 34.429%, 12.51%,
5.05%, and 37.40%, 22.93%, 16.51% for 9 x 9 and 4 x 8 PV arrays, respectively.

KEYWORDS

global maximum power, image encryption, mismatch, multiple power peaks, Padovan
series, reconfiguration

Partial shadowing (PS) is a typical and common occurrence experienced by photovoltaic (PV) panels. The electrical
properties of the PV panels are altered when they are shaded. Mismatch losses occur when the characteristics of the
panels of the array differ, resulting in a mismatch.! Because of shadowing, the shaded panel serves as a power sink,
whereas the unshaded ones serve as a power source. The massive accumulation of currents at the shaded part causes
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the formation of hotspots, which can lead to fire-related hazards. To overcome these negative consequences, protection
diodes that bypass the current during PS should be incorporated. These diodes, on the other hand, cause a lot of peaks
distorting the array characteristics.” Because of the multiple local and global power peaks (MPPs), an efficient maxi-
mum power point tracking (MPPT) algorithm® is required to operate the PV array at global maximum power (GMP).
Nonetheless, simple and traditional MPPT approaches may get stuck in the local maxima, resulting in sub-optimal out-
put. As a result, an effective MPPT controller is necessary to extract the GMP, and numerous novel approaches have
been proposed. An enhanced P&O MPPT approach for a two-stage grid-connected PV system with effective open-circuit
voltage estimate is proposed and tested under realistic solar radiation.* A global MPPT algorithm using modified honey
badger optimization for triple-junction PV system is proposed to track the GMP under partial shading condition.’
Recently, a new three-stage current-mode MPPT strategy with fixed and varying current-perturbation steps is proposed
in Sousa et al.® to track the optimal MPP and enhance its robustness and performance. However, regardless of their
sophistication, these controllers are incapable of extracting the array's full capacity and can only track its GMP. Further-
more, array reconfiguration is preferred to improve the array output even further than what can be achieved by using
the MPPT alone.

The detailed literature review on state-of-the-art PV array reconfiguration strategies with their pros and cons is pres-
ented in Table 1. Based on the way of functioning, reconfiguration techniques are generally categorized as static and
dynamic. Electrical array reconfiguration (EAR),”® artificial intelligence (AI),”'° and metaheuristic-based'' ™’
approaches are the three main types of dynamic strategies. The Al-based solutions reduce mismatch losses, but they
include both static and adaptive sections of an array, with only the adaptive section being able to be changed, failing to
find the best solution. Furthermore, they necessitate a large number of switches, a switching matrix, advanced control
mechanisms, sensors, driver circuits, and other components, making the solution extremely expensive. Furthermore,
the fuzzy approaches use a lot of memory to operate the switching matrix. The aforementioned devices are also used in
EAR-based techniques for proper operation, and implementing EAR for larger PV farms is quite difficult. They also
generate a large number of switching pulse patterns in order to find the best one. A recent rise in the popularity of
metaheuristic-based algorithms can be attributed to their success in creating switching matrix structures for dynamic
array reconfiguration. However, all of these algorithms have serious issues, including lengthy computation times, con-
vergence process issues, a variety of parameters, parameter selection difficulties, tuning parameter and weighting factor
issues, the likelihood of getting stuck at local maxima, a large search space, numerous iterations, complex algorithms,
the use of unpredictability, and more than one stage to solve. Hence, the one-time/fixed/static reconfiguration
approaches are recommended because of the aforementioned problems and practicality issues associated with dynamic
reconfiguration.

Static reconfiguration techniques, unlike the dynamic ones, do not necessitate sensors, switching matrices, switches,
or any other associated devises to operate, making them a cost-effective alternative for mitigating the impacts of partial
shading. Nevertheless, as shown in Table 1, many of the available static approaches have several limitations. Scalability
concerns, indiscriminate shade distribution, various solution sets, increased mismatch in rows, inconsistent perfor-
mance, and a large number of MPPs in the array characteristics are limitations that the previous solutions inherit which
burdens the MPPT systems to distinguish the local and global optimum. To address all the aforementioned shortcom-
ings, a Padovan transform-based reconfiguration approach using the well-known Padovan sequence is proposed. This
proposed work's novel aspects and main contributions are as follows:

« A very effective, uncomplicated, scalable, switchless, sensor-less integer series-based solar array reconfiguration strat-
egy is provided to effectively distribute the shade, and the effectiveness of this approach is assessed using image qual-
ity indices.

« The proposed Padovan transform (PT) approach intelligently disperses the shade, unlike numerous static approaches
that indiscriminately distribute the shade. This is accomplished by the intelligent property of the PT technique,
which reduces the correlation between neighboring shaded panels of an array in a column, row, and diagonal, hence
increasing the total irradiation of a specific row of an array.

« The proposed technique, unlike many static reconfiguration strategies, is scalable for any sizing of PV array and has
been validated for various sizes such as9 x 9,4 x 4,and 4 x 8.

« The performance of the proposed PT is compared with the 23 static reconfiguration strategies that were recently
developed.

« A detailed pictorial comparative row current variation analysis of various configurations under distinct shading cases
is presented.
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TABLE 1
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Ref Approach

7

11

14

15

17

18

19

20

21

Dynamical EAR

Dynamic

Neural network
(NN)

Fuzzy related

Genetic
algorithm
(GA)

Particle swarm

optim.

Butterfly optim.

Grey wolf
optim.

Grasshopper
optim.

Two-step GA

Artificial
ecosystem

Sudoku (SP)

Futoshiki puzzle
(FT)

Shift modified
(ST)

Column index
(NC)

Category

EAR,
Dynamic

Al, Dynamic

Metaheuristic,
Dynamic

Puzzle-based,
static

Shift-based,
static

Size

3x2

2x2

3x4

3x4

9x%x9

9x%x9

9x9

9x%x9

9x%x9

9x9

9x9

9x%x9

9x9

9x9

9x%x9

Literature review on state-of-the-art PV array reconfiguration strategies.

Description

Electrical reconfiguration by
inserting an adjustable
switching matrix between PV
array and inverter

Introduced dynamic
reconfiguration approach for
water pumping

Used NN approach to coordinate
adaptive and fixed parts of
array to equalize row
irradiation

Reconfiguration based on the
partial shadowing detection

Finds optimal switching pattern
using GA algorithm for
maximizing GMP

Obtains optimal switching
pattern using PSO method for
mitigating MPPs

Implemented to distribute the
shade requiring few
parameters in methodology

Enhances the GMP by
minimizing row current
variation solving as a multi-
objective problem

Finds the optimal reconfigured
matrix pattern for a particular
shading condition

Changes to electrical circuit
connections are made using a
two-stage reconfiguration
method based on GA

Attains uniform shade dispersion
employing less parameters

PV array reconfiguration based
on SP pattern to increase GMP
extraction

Implemented FT-based shade
dispersion to obtain better
array characteristics

physically repositions panels in
an array while maintaining
electrical circuitry

Fixed and one-time
reconfiguration approach
employed to mitigate the
mismatch losses

Related problems

Employs communication matrix, data
acquisition system, data recorder,
monitoring system, complex controlling
unit, numerous switches and sensors

Large-scale feasibility is difficult to achieve
since it necessitates the coordination of
several switches

Utilizes various sensors, switches, and
controller units but falls short of offering
the best solution

For detection and reconfiguration, switches,
sensors, switching matrix, and a
complicated algorithm are required.

Parameter selection difficulty, weighted-
sum approach, convergence issues, may
traps at local optimum

Easily stuck in local maxima, tunning
parameter issues, weighted-sum approach

Tested only under one type (diagonal) of
shading conditions, quite limited analysis

Weighted-sum method, choosing the wrong
weights yields a less than ideal result

Complex computation, inconsistent
behavior, low convergence, easily trapped
in local maxima

Complex algorithm involving two stages in
reconfiguration, suffer GA methodology
drawbacks

Complex methodology, contains random
parameters values resulting in lower
output

Incompatible for unsymmetrical array sizes,
there are various solution sets, Finding
the ideal pattern is not practical.

Not scalable to unsymmetrical arrays,
inconsistent performance, exists many
solution sets

Failed to validate the effectiveness of
algorithm for unsymmetrical arrays

Methodology not tested for unsymmetrical
PV arrays; very limited analysis
performed
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Difficulties with compatibility, same SP
method restrictions, variable performance

Same limitations as that of SP, not scalable

Improper diagonal shading distribution of
shade, unable to support asymmetrical

Disadvantages similar to those of the SD
approach, performance issues when

Fails when shading is diagonal, difficulties
with compatibility, many solution sets

Not compatible to all arrays, cannot be
applicable to other than 3n x 3n arrays,

correlation among diagonal panels of an

Poor shade dispersion results from the
remaining half of the panels being in the

frequently performs below expectations

Unable to work with all arrays, many
solution sets exist, Finding the ideal

50% of the panels remain in the same rows,
exhibits numerous MPPs, inconsistent

Displays extremely low performance in
circumstances of diagonal and other

inconsistent performance, compatibility

Not applicable for asymmetric arrays, exists

NAIK ET AL.
TABLE 1 (Continued)
Ref Approach Category Size Description Related problems
22 Optimal Sudoku  Puzzle-based, 9 x 9 Modified version of sudoku
arrangement Static puzzle pattern applied to 9 x 9
(OPS) PV array to disperse the shade
22 Non-optimal 9x9 Employs additional rules to the
Sudoku (NO) Sudoku rules to find for asymmetric array sizes
rearranged pattern
2 Latin square 4 x4 Physical panel relocation for
(LAS) TCT-configured array
employing LAS pattern arrays
24 Improved 9x9 Relocation based on improved
Sudoku (IS) Sudoku-puzzle pattern for
minimizing MPPs experiencing diagonal shading
2 Skyscraper (SK)  Puzzle-based, 9 x 9 Uses skyscraper puzzle pattern
static to lessen protection diodes
losses exist
26 Lo Shu puzzle Magic-square, 9 x 9 Employs shadow dispersion
(LP) static based on the Lo-Shu grid for
augmenting array's electrical variable performance
characteristics
27 Diagonal- Logic-based, 9%x9 To spread the row shading the Yields poor performance because of
arrangement static method arranges all of the
(DA) panels diagonally array
8 Magic square Magic-square, 4 x 4 Mitigates the row mismatch Lacks effective shade dispersion, not
(MGS) static based on magic-square pattern scalable to unsymmetrical arrays
under low irradiation
conditions
2 Odd-even Number- 6 x4 Proposed analytical strategy for
(ODE) based, static reconfigured matrix using odd
and even numbers same row, displays a lot of MPPs,
0 Optimal Sudoku  Puzzle-based, 9 x 9 Reconfigures the conventional
(0S) static total cross tied array
configuration based on OS configuration is not feasible.
technique
3 Odd-even prime  Number- 9x9 Extended version of ODE
(OEP) based, static incorporating prime elements
in obtaining reconfigured performance
matrix
2 Diagonal TCT Shift-based, 4 x4 Reconfigures the conventional
(DIT) static TCT-configured array based on
shifting operations shadings, low-GMP improvement
33 Multi-diagonal Puzzle-based, 9x9 Based on the multi-diagonal Poor shade distribution under some
Sudoku (MS) static Sudoku arrangement this shadings, unable to scale for
technique configures the asymmetrical arrays
panels
33 Canonical 9%x9 Canonical Sudoku pattern-based  Significant row current mismatch,
Sudoku (CS) physical relocation of panels
issues
34 Advanced 9x9 Physical relocation of panels
Sudoku (AS) based on the advanced variant numerous solution sets

of Sudoku pattern

(Continues)
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TABLE 1 (Continued)
Ref Approach Category Size Description Related problems
» Henon map Chaotic- 9x09, Minimizes row current Not effective under column shading, low
(HEM) based, 3%5 mismatch using a Henon GMP enhancement
static chaotic map for array
restructuring
36 Spiral pattern Pattern-based, 9 x 9 PV array rearranged to maximize = Poor reconfiguration strategy, ineffective
array (SPP) static GMP using spiral-step design under diagonal shading, not scalable
37 Twisted two- Repositioning, 9 x 9 Reconfigures the array by During column shading there is poor shade
step static swapping the panels in z dispersion, underperforms in many shady
sequence to mitigate mismatch situations
8 Chaos map Chaotic- 6 %6 Switchless and sensor less Cannot be applicable for unsymmetrical
(CAM) based, 7x7 method inspired by image arrays, poor shade dispersal, exhibit
static processing several MPPs

« A laboratory experimental prototype of the proposed configuration was developed and tested using conventional
MPPT controller under distinct shading conditions.

« To verify the consistency and reliability of the new technique statistically compared to the current ones, a pairwise
unbiased comparison analysis utilizing a nonparametric statistical Wilcoxon signed rank sum test with a significance
of 0.05 is conducted.

2 | PADOVAN TRANSFORM-BASED IMAGE ENCRYPTION STRATEGY

An integer sequence is an ordered set of integers in mathematics. It can be explicitly defined by giving a formula to its
m ™ term, or it can be defined inferentially by showing a relationship between its terms. There are several such integer
sequences, with the Padovan sequence® being one of the most well-known which is described as follows:

2.1 | Padovan series and its transform

The Padovan sequence (Py), ., named after the architect Padovan is a ternary recurrence relation®” defined as

if n=1{0,1,2}

1
P, = .
Py >+Py_3 ifn>3

with the initial conditions Py =0,P; = P, = 1. The first few terms of Padovan sequence are

n 0 1 2 3 4 5 6 7 8 9 10 11
p, 1 1 1 2 2 3 4 5 7 9 12 16

It is noted that the first three terms of the series are 1 and then from the fourth term, each term is the sum of one
but preceding two terms, that is, fourth term is the sum of the second and the first terms of the sequence; the fifth term
is the sum of third and second terms and so on. The ratio of n'® term to the (n — 1)™ term in the Padovan series as

n— oo is called limiting ratio “z”,*' which is by definition as

Py
Pnfl

n— oo, =7.
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P P Pyy o Ppo_ 3 . .
53 =p s Xp X pt=1x1x 7= and from Equation (1), we can write

As n— oo
Pyi3=Ppi1+ Py (2)
By dividing Equation (2) by P,, we get

Puys  Ppi

1= ©°=7+1 3
b, Pn+ =7+ (3)

The characteristic equation, 7> — 7 — 1 =0, in Equation (3) has roots a, f, y = p,,** where

(ri+r)+ \/—_3(’”1 —12)
12

a:(}’l—g}’z);ﬂ:_

with r; = /108 +121/69, r, = v/108 — 121/69
Equation (3) has three roots: one real root “p” and two complex conjugate roots “f” and “y.” The unique positive
real solution of the cubic equation in Equation (3) is known as plastic number “a” which is a mathematical constant™

and is given as
Lt /23+31 L X TN
“V2TeV3 V2T eVE T

The Padovan sequence involving the roots a, 8, y*° can be expressed by a formula (known as Binet-like formula for
Padovan numbers) as follows

P,=ad"+bp"+cy", foralln>0 (4)

whereq=—2t1l __ p=_ L1l __ o—__vil __}

(a—p)(a—y)’ (F=a)(f—y)”> = (y=a)(vy=h) . . . . . . 2

Generally, a transformation matrix is used in the image encryption approach for relocating the pixels in an image.

The pixels are successfully relocated by the transformation matrices created by the integer sequences. The Padovan
sequence-based transform preserves uniformity by spreading all neighboring pixels in such a manner that they are all
equidistant from one another, leading to enhanced encryption. It should be noted that a 2 x 2 matrix made up of the
four successive terms of the Padovan sequence is a unimodular matrix (and it contains many of such sets) that effec-
tively relocates a matrix's pixel coordinates and can thus be used for image processing via encryption.*® The general
form of PT is a mapping F : T? — T? that can be written as follows:

Bl = Lo, i Do g

In Equation (5), xand y € {0, 1, 2, 3, ... .N — 1}, x(i), y(i) are the old positions and x(i+1), y(i+1) are the new posi-
tions of the matrix, P; is i™ term in a Padovan sequence, “mod” is the modulo operation, and “N” is the size of the
image. So, by using the Padovan transformation matrix, the old positions are replaced by the new ones. By denoting
{ Pi Py

PP } as PT;, the first, second, and third transformation matrices of the Padovan sequence are given as follows:
i+2 i+3

P, P, 01 P, P; 11 P; P,
PT, = = :PT, = = :PT; =
P; P, 11 P, Ps 12 Ps Pg

The transformation matrix of the Padovan series can also take on numerous other forms for various
ther improving the encryption process is iterating Equation (5) with the subsequent process.

Il
1
NS ]
N =
| I

[
1

values. Fur-
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Equilateral triangles with the edge lengths specified by the Padovan series are assembled in a spiral pattern in an
anticlockwise direction as seen in Figure 1A. Further, the most remarkable aspect of the Padovan recurrence sequence
is that it can be obtained from the Pascal's triangle by summing up the numbers of its diagonals, as seen in Figure 1B.

2.2 | Employment of PT approach in reconfiguration

The image is encrypted by repositioning its pixels using the 2 x 2 transformation matrix created by the Padovan series.
For example, in Figure 2, the element “6” that is basically situated in (2, 3) coordinates of the original 3 x 3 matrix is

FIGURE 1 (A) Golden spiral obtained by Padovan series. (B) Pascal's triangle Padovan series mapping. [Colour figure can be viewed at
wileyonlinelibrary.com]

Original image Pixel map

T en ii
o el le
: I: 31132 3,3 :: T“EIIT
1,1]23(33 }i ﬂlﬂli
321 22| 1,3 ::Z'IZ
HEOH

2,1
Scrambled Transformed
Pixel map I | matrix |

———— — —— — — — — — — — — — — — — — — — — —— — — —

FIGURE 2 Description of image encryption process. [Colour figure can be viewed at wileyonlinelibrary.com]
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Original Image Atiteration 1 At iteration 3 At iteration 5

FIGURE 3 Original image and the encrypted image over the iterations obtained by PT. PT, Padovan transform. [Colour figure can be
viewed at wileyonlinelibrary.com]

now relocated to (1, 2) coordinates based on the rearranged matrix obtained by the transformation matrix of the encryp-
tion algorithm. Accordingly, all the pixels in the image (matrix) are effectively repositioned to achieve the lowest corre-
lation between the rearranged matrix's neighboring pixels. It is noted from Figure 3 that the pixels of the original image
are effectively repositioned over five iterations when it is applied with the proposed Padovan transform-based
(PT) encryption strategy. To produce the rated output, the solar PV array consists of solar panels coupled in parallel
and series, just like the image is composed of numerous pixels clustered together. By treating each PV panel individu-
ally as a pixel and the entire PV array as the image's collection of pixels, PT based-encryption process is implemented.
The PV array is configured based on the rearranged matrix pattern obtained by the PT approach for distributing the
shadow equally over the array, thereby mitigating the row current fluctuation under partial shading conditions.

The PV array is optimally reconfigured using a predetermined configuration pattern derived using the PT approach
without changing the electrical interconnections. This reduces the shading effect while maintaining the electrical char-
acteristics of the array. A rearranged PT matrix directs the physical relocation of the panels of the TCT-configured array.
The PV panel number 36 that is in the third row and sixth column shown in Figure 4 is now placed in the third row
and second column based on the obtained PT matrix as shown in the figure. Similarly, using the generated PT matrix,
all of the panels are properly reconfigured to disperse the shadow uniformly. Now, if the shade occurs in the first row
of the PT-configured array with PV panel numbers 77, 61, 52, 43, 34, 25, and 16, the row shading is diffused to all rows,
equalizing the irradiation between the rows because these panels are physically positioned in the first row but are elec-
trically connected to various rows of an array. As a result, the proposed Padovan transform-based array reconfiguration
approach minimizes the row-current mismatch effectively during shading conditions. The flow chart of the overall PT
-based PV array reconfiguration approach is shown in Figure 4.

2.3 | Performance evaluation using image quality indices

The proposed PT intelligently and uniformly disperses all the pixels resulting in superior encryption. Because the
suggested technique may be employed as an image scrambler in the picture encryption process, its efficacy can be more
accurately evaluated using the image quality evaluation metrics** shown in Table 2. A successful encryption algorithm
has the following characteristics: the least correlation, the highest mean square error (MSE), the peak signal-to-noise
ratio (PSNR), and the least structural similarity index (SSIM). The degree to which the algorithm has decorrelated adja-
cent pixels as much as is practical can be seen in the least correlation. The highest inaccuracy between the actual and
encrypted images is indicated by greater MSE and lower PSNR values. Furthermore, the smaller the SSIM, the less
structurally similar the images are. All of these indicators are optimized using the proposed PT approach.

3 | CONVENTIONAL INCREMENTAL CONDUCTANCE-BASED MPPT

The PV energy is becoming increasingly popular for use in electrical power applications. It still has a low conversion
efficiency, though. As a result, efficiency can be increased by utilizing high-efficiency power MPPT trackers which are
developed to harvest the maximum amount of power from the PV system. Numerous MPPT methods have been pro-
posed, including the incremental conductance (INC) method is frequently taken into consideration because of its good
performance, which includes simple installation, quick tracking, and improved effectiveness. With this approach,
which focuses solely on power variations, the PV panel's conductance and incremental conductance are calculated
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TABLE 2
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Flow chart of the overall Padovan transform-based PV array reconfiguration approach. PV, photovoltaic. [Colour figure can
be viewed at wileyonlinelibrary.com]

Performance evaluation of PT using image quality indices.*

Correlation
+0.0001
—0.0198
40.0230

MSE

1346.70
257.50
254.50

SSIM

+0.0281
—0.0194
+0.0244

Note: MSE, mean square error; PT, Padovan transform; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

instantly, rising to the left of the MPP and falling to the right. When the derivative of array power by voltage (dP/dV) is
zero, the maximum power point (MPP) is reached. The fundamental equations of this approach are deduced from the
conceptualization that the array's P — V characteristics at maximum power have a slope of zero, as stated in
Equation (6). Figure 5 shows the flowchart for the incremental conductance approach.*” In this paper, we have used

incremental conductance-based MPPT algorithm in Section 4.4 for tracking the GMP of the PV array.

dpP

At GMP
dv

PSNR

—31.2926
—24.1078
—24.0569

(7)
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FIGURE 5 Flow chart of the incremental conductance-based MPPT algorithm. MPPT, maximum power point tracking. [Colour figure

can be viewed at wileyonlinelibrary.com]

Equation (6) can be further written as

dpP dl
v IV ay
I+V di =0
av
dI
—=—— AtGMP
dv
dI 1
1 1
ar < —= Right of GMP
av %4

4 | RESULTS AND DISCUSSION

(10)

(11)

(12)

(13)

The majority of the reconfiguration strategies have experimented with their performance for a 9 x 9 symmetrical PV
array under various shading conditions. So, in order to study the performance of the proposed PT strategy with respect
to the existing techniques, a 12.809 kW, 9 x 9 PV array (with nominal voltage and current at Pp,,, are 194.89 V and
65.722A, overall efficiency of 12.46%) is developed and analyzed in the MATLAB simulation environment. To demon-
strate the effectiveness of the proposed PT, the system is investigated under five distinct shading scenarios and the
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obtained results are compared to that of the available 21 techniques of 9 x 9 array. A Kyocera Solar KC175GT solar
panel is considered at 900 W/m?, 25°C in the simulation studies where the panel is assumed to receive 900 and 400 W/
m? under normal and shading cases, respectively. The row irradiation of PV array for 9 x 9 array before and after
implementation of the proposed PT strategy is shown in Table 4.

4.1 | Analysis on symmetric 9 x 9 PV array

A triangle-patterned uniform shadowing case is considered in Case 1, which limits the irradiation in the bottom half of
the PV array as shown in Figure 6. In this scenario, the OS technique outperformed all other techniques that were
investigated. Following the OS, the proposed PT and SPP techniques perform on par yielding an enhancement of nearly
34.5% in GMP (from Table 3). Although the existing OS has the best result in Case 1, it performs poorly in Case 2 and
dramatically fails in Cases 4 and 5, dropping output by 1.73% and 4.07%, respectively, when compared to benchmark
TCT. Additionally, one of OS's major limitations is that it cannot be used for asymmetric arrays. Furthermore, in this
case, SPP outperforms PT by a little margin. SPP, however, fails to provide consistency, as its performance in Case 2 is
poor, and in Cases 4 and 5, because of its poor shadow dispersal capability, it yields a 20.41% and 13.81% reduction in
GMP, respectively, exhibiting substantially unsatisfactory performance. As shown in Figure 8, the effectiveness of
approaches such as SP, FT, OPS, ST, NO, SK, IS, LP, OEP, MS, CS, AS, and CAM is approximately equal to each other
and lower than that of the proposed PT. Furthermore, the current NC, DA, and HEM improve the GMP by almost
26.8%. Besides, the GMP augmentation is limited to only 17.8% because of the ODE's arbitrary reconfiguration and
inadequate shade dispersal, which is the least of all. It is evident from the array characteristics shown in Figure 7 that
the proposed PT improves the characteristics considerably by significantly mitigating the MPPs.

Because of its uniform shade dispersing ability, the proposed PT approach yielded the highest GMP in Case
2, increasing the GMP by 12.51%. Following PT, the existing OPS and IS both perform better. The SP, FT, NO, SK, LP,
CS, and AS strategies improve the GMP by about 10%, whereas the ODE, DA, and SPP approaches only improve it by
about 3.98%. Even when compared to standard TCT, the number-based OEP method produces 1.51% less GMP.

Once again, the proposed approach achieves the greatest GMP under Case 3 shading. The GMP yielded by PT is
10,572 W (from Table 3), which is 12.51% greater. The existing SPP, FT, and OS techniques generate 10,553, 10,551, and
10,527 W, respectively, under this case. Other approaches, such as DA and MS, show only a minor increase in GMP.
Both ODE and OEP techniques yield the least satisfactory outcomes, resulting in a reduction in output. Except for
where they are in the array, the shading patterns in Cases 2 and 3 are identical. The proposed PT results in the same
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FIGURE 6 Distinct shading cases and the respective shade dispersion by PT approach. PT, Padovan transform. [Colour figure can be
viewed at wileyonlinelibrary.com]|
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TABLE 3 Global maximum power obtained (in watt) by various configurations under Cases 1-5.

Technique Case 1 Case 2 Case 3 Case 4 Case 5
TCT 7701.5 9393.7 9393.7 8823.5 10,571
Sp'8 10,259 10,350 10,271 8014.2 9782.8
FT" 10,259 10,350 10,551 8014.3 10,175
ST 10,334 10,167 10,143 8451.5 9690.1
NC* 9661.5 10,257 10,197 7725.2 9571.3
OPS* 10,350 10,551 10,257 9271.4 9677.6
NO** 10,335 10,342 10,350 8575.1 10,271
s 10,245 10,511 10,350 8941.6 9250.3
SK* 10,347 10,350 10,350 8675.1 9808.8
Lp*¢ 10,340 10,341 10,271 8682.7 10,549
DAY 9764.2 9767.4 9767.2 6871.8 8411.3
ODE* 9071.1 9787.7 9333.2 6425.9 9641.5
0s* 10,552 10,347 10,527 8671.2 10,123
OEP*! 10,197 9251.6 9171.9 8673.9 9773.3
MS?? 10,347 10,350 9761.0 8957.6 9808.6
cs* 10,293 10,350 10,267 8018.1 9711.6
AS* 10,210 10,345 10,267 8949.8 10,350
HEM?*» 9767.2 9393.9 9393.9 8823.5 10,571
SPp** 10,374 9767.2 10,553 7023.5 9095.8
CAM™® 10,146 10,146 10,145 8451.5 10,571
Proposed PT 10,356 10,572 10,572 9274.4 10,571

(and highest) output power, increasing the GMP by 12.50%, as seen in the results of these two shading cases (2 and 3)
in Figure 8. This is because the proposed PT maintains homogeneity by spreading the shade of adjoining panels and
ensuring that they are all evenly distributed. The shadow is equally diffused throughout the entire array as a result of
its intelligence in maintaining uniformity when reconfiguring panels in the array, ensuring consistent performance
regardless of the location of shading. On the contrary, as shown in Figure 8, all existing approaches produce different
results for the very same shadowing pattern (when it occurs at a different location), resulting in inconsistent perfor-
mance. For example, in Case 2, MS generates a 10.17% augmentation, but in Case 3, it only yields an augmentation of
3.8%. The SPP technique, which yields a 12.34% improvement in Case 3, only gains 3.9% in Case 2. In addition, the
ODE, which yielded a 4.2% improvement in Case 2, now reduces the GMP by 0.65% in Case 3. The existing indiscrimi-
nate reconfiguration procedures of the array are the main reason for this inconsistency in performance. Therefore, the
intelligence involved in the proposed methodology proved to be a consistent and efficient solution for reconfiguring
the array to distribute the shade evenly.

In Case 4, two edges of the array are considered to be experiencing shadowing of two distinct irradiation levels. The
proposed PT approach disperses the shade intelligently while minimizing current variations across the PV array's differ-
ent rows improving the GMP by 5.06%. Furthermore, the IS, AS, and MS provide sub-optimal performance, with only a
1.35% improvement. Furthermore, all other existing approaches such as SP, FT, ST, NC, NO, SK, LP, OS, ODE, OEP,
DA, CS, CAM, and SPP perform poorly even when compared to the benchmark TCT because of their indiscriminate
shade dispersion.

In Case 5, the diagonal shading condition that limits the irradiation of an array's diagonal panels is examined. The
diagonal shading is very prevalent in the reality; yet, it has not been adequately examined in prior reconfiguration
research investigations. Only the proposed PT, as well as the present LP, CAM, and HEM approaches, provides optimal
shade dispersal in this scenario. In contrast, all other existing approaches, especially when compared to traditional
TCT, provide much lower GMP, as shown in Table 3 and Figure 8. As a result, the arbitrary reconfiguration of the
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FIGURE 7 Power-voltage characteristics of 9 x 9 array under Cases 1-5. [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 8 Percentage enhancement of GMP of various configurations of 9 x 9 array compared to TCT configuration. GMP, global
maximum power. [Colour figure can be viewed at wileyonlinelibrary.com]

existing techniques results in a substantial loss of power rather than a gain. In addition to the existing mismatch losses,
indiscriminate shade dispersion causes more additional losses. The ideal reconfiguration method is one that consis-
tently produces improved performance regardless of partially shaded conditions. The proposed PT approach demon-
strated its ability to consistently deliver superior results. Figure 7 shows that the array characteristics achieved via PT
are greatly improved, with very few MPPs. As a result, using PT simplifies the operation of tracking the GMP by the
MPPT controllers. Furthermore, the suggested PT technique exhibits a narrow variation in row currents (as shown in
Figure 9) when compared to the existing approaches that greatly reduces mismatch losses. It is also noted from
Figure 9 that the existing CAM performs better in exhibiting moderate row current variation compared to TCT; how-
ever, it exhibits numerous power peaks which is a major drawback. Similarly, all the existing techniques exhibit many
power peaks. When compared to the existing ones, the proposed PT exhibits enhanced characteristics with fewer peaks
because of its balanced shade dispersion and hence is proved to be the best solution for shading related issues.

Table 4 demonstrates the effect of implementing the proposed PT strategy on mitigating the difference of irradiation
of PV array rows before and after the reconfiguration. After the reconfiguration, the range between the minimum and
maximum sum of row irradiations significantly narrows compared to the initial range before array adjustment. This
reduction highlights an improvement in array characteristics and a decrease in mismatch losses.

4.2 | Scalability and effectiveness of proposed strategy for asymmetric arrays

Because most of the present static reconfiguration strategies are developed on logic-based, puzzle-based, and magic
square-based procedures that are only applicable to symmetric grids,**™ they are incompatible with asymmetric arrays.
However, the solar PV arrays can indeed be symmetric or asymmetric in practicality. The number-based ODE*’ and
OEP,*' as well as the chaotic-based HEM>® approaches, have recently been proposed to overcome this disadvantage of
the aforementioned techniques. The OE, OEP, and HEM approaches, despite being functional with asymmetric arrays,
have poor shade dispersion. A 4 x 8 array is studied and evaluated under eight different circumstances to validate the
efficiency of the suggested PT approach for asymmetric arrays, as shown in Figure 10. Their performance was also com-
pared to that of the more recent ODE*’ and OEP*' approaches.

The proposed strategy, as shown in Figure 10, exhibits even shade distribution, resulting in fewer MPPs (power
peaks) and improved the PV characteristics greatly, as demonstrated in Figure 11. Unlike the existing configurations,
the PV characteristics obtained by the proposed PT are smoother having only one or two peaks making the GMP track-
ing quite easier for the MPPT controllers. In consequence, the cost and complexity of the MPPT controller necessitated
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FIGURE 9 Row current variation and number of MPPs of various configurations of 9 x 9 array. MPPs, multiple power peaks. [Colour
figure can be viewed at wileyonlinelibrary.com]

is significantly reduced. The proposed PT also has the highest GMP in all shading circumstances because of its superior
shade dispersion. As a result, it is worth noting that the proposed FT approach is both compatible and efficacious in
partial shading scenarios.
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TABLE 4 Row irradiation of PV array for 9 x 9 array before and after the implementation of the proposed PT strategy.

Row irradiation (W/m?)

Shading case Range Before reconfiguration Difference After reconfiguration Difference

Case 1 Min 3600 4500 6600 500
Max 8100 7100

Case 2 Min 5600 2500 6600 500
Max 8100 7100

Case 3 Min 5600 2500 6600 500
Max 8100 7100

Case 4 Min 5300 2800 5600 800
Max 8100 6400

Case 5 Min 6600 500 6600 500
Max 7100 7100
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FIGURE 10 Distinct shading cases and the respective shade dispersion by PT approach. PT, Padovan transform. [Colour figure can be
viewed at wileyonlinelibrary.com]

4.3 | Experimental validation of proposed strategy

The proposed reconfiguration mechanism for a 4 x 4 PV array is shown in Figure 12 by a laboratory experimental pro-
totype that has been created. The experimental test bench is made up of sixteen 3-W solar panels, a source of artificial
lighting made up of numerous double-ended halogen light bulbs with a knob to control intensity, a load that is a
(300, 1.5 A) variable sliding rheostat, plug connectors to reconfigure the array in different configurations, and transpar-
ent sheets to limit the irradiation to simulate various artificial shading conditions. To measure the respective PV array
current and voltage, two multimeters were connected in series and parallel to the array. With the proper arrangement
of halogen bulbs over the PV panels, homogeneous irradiation levels are maintained over all of the panels. Each halo-
gen lamp typically produces up to 400 W/m? of irradiation. A portable solar power meter and an infrared temperature
gun are used to measure the incident irradiance and operational temperature of the panels. Each module of the proto-
type model has positive and negative tapings, enabling it to be reconfigured using banana connections in distinct con-
figurations. The array output terminals are connected to a variable rheostat that would be adjusted to harvest
maximum power from different array configurations. Because the proposed configuration is static, no extra electrical or
electronic equipment/devices are required for hardware execution. This eliminates the need for sensors, switches, and
other costly equipment. The designed 4 x 4 array generates 17.2 W under normal unshaded operation conditions, with
incoming irradiation from artificial illumination source estimated to be roughly 330 W/m? and an operating tempera-
ture of around 29°C. The 4 x 4 PV modules are configured in TCT, LAS,* MGS,*® DIT,*® and PT topologies and evalu-
ated under six shading conditions, as illustrated in Figure 13. The irradiation levels for the non-shaded and shaded
panels are around 300 and 150 W/m?, respectively.

Because of its uniform shade dispersion across the array, the proposed PT approach produces the lowest row current
mismatch, resulting in the highest output in all shading circumstances. On the contrary, as shown in Figure 14, existing
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FIGURE 11 Power-voltage characteristics of 4 x 8 asymmetric PV array under Cases 6-13. PV, photovoltaic. [Colour figure can be
viewed at wileyonlinelibrary.com]

Connectors for
Reconfiguring PV array

Solar Power Meter

FIGURE 12 Laboratory experimental prototype of the proposed reconfiguration system. [Colour figure can be viewed at
wileyonlinelibrary.com]

approaches deliver very unreliable performance. The existing DIT improves the power output just in two cases (Cases
12 and 14), whereas the MGS and LAS topologies enhance power output in three of six conditions. This inconsistency
is because of their indiscriminate reconfiguration method, which has resulted in arbitrary shade dispersion. Further-
more, the MGS, LAS, and DIT configurations fail in diagonally shading cases 18 and 19 as a result, even when com-
pared to normal TCT, the output is the lowest. However, as demonstrated in Figure 14, the proposed PT strategy
maintains its consistency in producing superior performance in all scenarios (because of its intelligent shadow disper-
sion). The power-voltage characteristics of a 4 x 4 PV array under Cases 14-19 are shown in Figure 15.
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FIGURE 13 Distinct shading cases and corresponding shading obtained by PT-based topology. PT, Padovan transform. [Colour figure
can be viewed at wileyonlinelibrary.com]
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FIGURE 14 Experimental values of power output of various configurations under distinct shading cases. [Colour figure can be viewed
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4.4 | Experimental validation of reconfiguration strategy with MPPT controller

The effectiveness of the proposed reconfiguration methodology for the PV array and its advantages has been demon-
strated by validating it with the conventional MPPT controller. The widely used INC-based MPPT control has been
employed to track the GMP. The laboratory experimental setup for the real-time validation is shown in Figure 16. For
emulating the solar irradiation, the Chroma 62100H-600S solar PV emulator has been used. The solar emulator works
with the supply voltage of 400 V as supply and hence a three-phase auto transformer is used to set up the required volt-
age to the emulator. The required array characteristics are loaded in the PV emulator using the excel file containing the
voltages and currents of the array. A DC-DC boost converter connected to a resistive load is supplied from the emula-
tor. The array's voltage and current from the PV emulator is sensed using the voltage sensor (LV-25P) and current sen-
sor (LA-25P) and is given to the dSPACE controller. The conventional INC-based MPPT algorithm (described in
Section 3) has been dumped in the dSPACE controller. Based on the sensed data of voltage and current, the dSPACE
controller generates pulses to the MOSFET of the converter through the gate driver circuit board as shown in
Figure 17. The employed sensors and driver board is powered with 15-V AC supply. The linkage between the test bench
components and devices of the overall experimental setup is shown in Figure 17. The resistive load is kept constant
throughout the procedure, and the tracking of GMP by the INC MPPT controller for various varying shading conditions
is observed and studied. The specifications of overall PV system used in experimentation is shown in Table A3.
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FIGURE 16 Laboratory experimental setup for the real-time validation using MPPT control. MPPT, maximum power point tracking.
[Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 17 Linkage between the test bench components and devices. [Colour figure can be viewed at wileyonlinelibrary.com]

The proposed reconfiguration methodology has been implemented for the PV array and tested under the shading
cases shown in Figure 18. Generally in some cases, the conventional MPPT control algorithms like INC and P & O fails
to tracks the GMP effectively. Because of their inherit limitations, they stuck at the local maxima failing to track the
GMP. This is reflected in the experimental results as shown in Figures 21 and 22. Before reconfiguration, the MPPT
controller tracks the GMP of 197.1 W in Case 20 effectively (Figure 19), whereas after reconfiguration, the local peaks
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Shading cases (20 and 21) and corresponding shading obtained by PT-based topology. PT, Padovan transform. [Colour
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Power-voltage characteristics under Case 20 shading. [Colour figure can be viewed at wileyonlinelibrary.com]
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are eliminated and further the GMP value is also enhanced to 222.8 W which is a significant increment (Figure 20). In
Case 21 shading, the PV array exhibits five multiple power peaks (Figure 21), out of which the conventional MPPT con-
troller gets trapped in the local maxima thereby yielding only 136.5 W (Figure 22). The actual GMP that has to be
tracked by the MPPT controller is 163.6 W. However, upon implementing the proposed algorithm, all the multiple
peaks have been eliminated because of the uniformly dispersed shading, and in consequence, the GMP is also signifi-

cantly enhanced to 197.2 W.
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TABLE 5 Values of R+, R—, and p-value for various configurations.

PT vs R, R_ p-value PT vs R, R_ p-value
TCT 10 0 0.067889 DA% 15 0 0.043113
sp'8 15 0 0.043113 ODE? 15 0 0.043113
FT 15 0 0.043113 0os* 10 0 0.067889
ST 15 0 0.043113 OEP*! 15 0 0.043113
NC* 15 0 0.043113 DIT* 21 0 0.027707
0SA*? 15 0 0.043113 MS* 15 0 0.043113
NO* 15 0 0.043113 cs® 15 0 0.043113
LAS* 10 0 0.067889 AS* 15 0 0.043113
1s* 15 0 0.043114 HEM?* 10 0 0.067889
SK*® 10 0 0.067889 SPA3® 10 0 0.067889
Lp* 10 0 0.067889 CAM>® 10 0 0.067889

5 | EVALUATION OF OVERALL PERFORMANCE USING THE WILCOXON
SIGNED-RANK TEST

A pairing-wise independent comparison study of the evaluated procedures, as shown in Table 5, was conducted using a
nonparametric statistical hypothesis Wilcoxon signed-rank sum test>" with a statistically significant difference, p-value
of 0.05 to determine the reliability and consistency in performance by PT approach under various shade situations and

858017 SUOWILLIOD 8A11E81D) Bdedldde ay) Aq peusenob a.e s9oile O ‘@S Jose|n. 10} ArIq1T8UIIUQ A1 UO (SUOTHIPUCD-PUE-SULBIWO A8 | 1M AlRIq 1 BU1|UO//SANLY) SUORIPUOD PUe SWIB | 8L 88S *[5202/TT/92] Uo Ariqiauliuo A8|iM ‘JO 8Ininsu| feuoieN Aq #T6€19/200T 0T/I0P/W0d A8 | 1M Aeiq iUl |uo//Sdny Woiy papeojumod ‘2 ‘7202 ‘X.00.60T


http://0.05.to
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

NAIK ET AL.

D A
- High
Al, EAR-based Metaheuristic-based Puzzle-based Shift-based
[7-10] [11-17] [18-19, 22-25, 30, 33-34] [20-21, 32, 37]
B Cc
A D A
Low - High
F E
Magic square-based Number-based Chaotic-based g
26, 28] 129, 31] 35, 38] Proposed FT-based

FIGURE 23 Radar charts showing the comparison of overall performance of existing reconfiguration approaches with the existing ones.
GMP, global maximum power. MPPs, multiple power peaks. [Colour figure can be viewed at wileyonlinelibrary.com]

to quantitatively highlight its notable deviation compared to previous techniques. The below procedure is followed to
carry out the test.

1. Determine the GMP for various solar array configurations in different partial shading scenarios.

2. Calculate “R+,” the sum of positive ranks for which the proposed technique outperforms the previous ones in terms
of GMP.

3. Find the value of “R—,” the sum of negative rankings for which current methods provide higher GMP compared
with the proposed approach.

4. In a statistical hypothesis test, calculate a p-value that indicates the significant variation of the collected results. The
lower the p-value (0.05), the more evidence there is against the null hypothesis, implying a significant difference
between the methodologies.

The p-values for 14 approaches are less than 0.05 (as shown in Table 5), indicating that there is a significant difference
between the proposed PT and the existing techniques. Furthermore, the p-values for the remaining eight approaches are
0.067 (slightly higher than 0.05), implying that there is still a substantial difference in their performances. Because R+ is
significantly greater than R—, the evaluated R+, R—, and p values suggest that the proposed PT is competent of obtaining
the largest GMP than the existing ones. Furthermore, the proposed technique demonstrates its superiority in delivering
an effectively constant performance for various array sizes under all shading situations. The radar charts shown in
Figure 23 shows the comparison of overall performance of existing reconfiguration approaches with the proposed PT.

6 | CONCLUSIONS

A comprehensive literature review of existing reconfiguration approaches is presented, along with their pros and cons.
To reduce shading losses efficiently, a distinctive reconfiguration strategy motivated by the number sequence-based PT
while adopting the principle of image processing is suggested. The proposed PT approach overcomes the shortcomings
of the existing strategies to a larger degree. Further, it is tested for symmetrical and asymmetric PV arrays during
21 shading scenarios, and its efficacy is compared to the 23 existing static reconfiguration strategies. The GMP enhance-
ment with the proposed PT configuration for 9 x 9 and 4 x 8 PV arrays is in the range of (5.06-34.43)% and (4.34-
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37.40)%, respectively. The PT approach is unique in that it evenly distributes shade by minimizing the row current mis-
match by decreasing the correlation between neighboring shaded modules of an array. This distinguishing feature
obtained the highest GMP with better characteristics only with fewest MPPs, alleviating the stress on MPPT controllers.
The proposed reconfiguration strategy integrated with MPPT is validated experimentally using a prototype model. Addi-
tionally, the statistical Wilcoxon signed-rank sum analysis with the lowest p-value shows that the proposed method is
more consistent and efficient than the ones currently in use. The proposed PT-based encryption strategy for
reconfiguration offers the best solution for significantly reducing shading impact with the enhanced array characteris-
tics, based on the comprehensive qualitative and quantitative study.
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APPENDIX A

TABLE A1 Parameters of the KC175GT module.

Maximum power 175 W
Maximum power current 742 A
Maximum power voltage 236V
Short-circuit current 8.09 A
Open-circuit voltage 292V
Cells per module 48

TABLE A2 Specifications of the modules used in experimental validation of proposed reconfiguration strategy in Section 4.3.

Maximum power 3w

Maximum power current 0.34 A
Maximum power voltage 9.01V
Short-circuit current 0.38 A
Open-circuit voltage 10.8 V

TABLE A3 Specifications of the overall PV system used in experimental validation of the combined reconfiguration-MPPT controller in

Section 4.4.

PV module 10 W,
PV array (5 x 5 array) 250 W,
Switching frequency 5000 Hz
Load resistance 159.2 Q
Boost capacitor 6.5 uF
Boost inductor 2.01 mH
DC link capacitor 500 pF
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