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I. INTRODUCTION

Selecting a cloud service provider (CSP) is a complex task
for enterprises, as each CSP offers a distinct set of quality
of service (QoS) attributes with varying values [1]. These
attributes include durability, response time, best practices,
throughput, availability, compliance, latency, reliability, and
successability [2]. Traditionally, researchers have employed a
multi-attribute decision-making (MADM) algorithm to select
a suitable CSP, operating under the assumption that complete
QoS attribute values are available. However, certain QoS
attribute values may be unavailable in many CSPs. This lack of
values makes the selection process non-transparent for enter-
prises, hindering their ability to identify the most suitable CSP.
Consequently, the unavailable values can be imputed using
either simple or advanced techniques to facilitate the selection
of a suitable CSP. Common imputation techniques include
mean, minimum, maximum, regression, k-nearest neighbour,
and rough set theory. After the imputation process, an MADM
algorithm can then be applied to identify the most suitable
CSP. Such MADM algorithms include the technique for order
preference by similarity to ideal solution (TOPSIS), the best
holistic adaptable ranking of attributes technique (BHARAT),
and multi-objective optimization on the basis of ratio analysis
(MOORA) [3], [4].

Tomar et al. [3] have developed a hybrid MADM algorithm
for selecting a suitable CSP using the TOPSIS algorithm.
They have performed a sensitivity analysis to ensure a robust
and comprehensive assessment of CSP. Jong and Ahmed
[4] have used the TOPSIS algorithm to identify an optimal
solar energy site. The above works have selected a suitable
CSP or solar energy sites by assuming all the QoS attribute
values are available. Recently, our earlier work has considered
unavailable QoS attribute values and applied three simple
imputation techniques: mean, minimum, and maximum [2].
It reveals that TOPSIS, combined with the mean imputation
technique (i.e., QTOPSIS), outperforms other techniques. This
phenomenon motivates us to develop an MADM algorithm
with an enhanced imputation technique to further improve
the efficiency of cloud service selection. This paper presents
the QoS-aware rough set TOPSIS (Q-RUST) algorithm, which
integrates the rough set theory (RST) and the TOPSIS algo-
rithm. Q-RUST imputes unavailable values with lower and
upper approximations, as applicable, and applies the TOPSIS

algorithm to determine the best CSP. The lower and upper
approximations define the boundary region, representing the
certain and possible values of the unavailable QoS attributes.

II. DESIGN

Consider an incomplete decision matrix, as depicted in Eq.
(1), which consists of m CSPs, n QoS attributes, and their
corresponding weights W . Here, Pij is the performance value
of CSPi, 1 ≤ i ≤ m, on QoS attribute Aj , 1 ≤ j ≤ n, and ×
denotes unavailable QoS attribute values with respect to CSPs.
Each attribute Aj is classified as either beneficial (maximized)
or non-beneficial (minimized). The problem is to select the
most suitable CSP when some of the QoS attribute values
for CSPs in the decision matrix are unavailable. Alternatively,
the problem is to rank the CSPs based on their comparative
performance.
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To determine the most suitable CSP from the decision ma-
trix in Eq. (1) when some values are unavailable, the Q-RUST
algorithm is employed. Q-RUST is an MADM algorithm that
ranks CSPs by comparing them to an ideal solution. It involves
data normalization, handling unavailable values using RST,
finding the maximum and minimum values, calculating the
best and worst ideal solutions, determining the overall score,
and ranking CSPs, which are described as follows.

(1) Data Normalization: It is performed by dividing the
performance value, Pij , by the square root of the sum of
squares of the corresponding QoS attribute values across all
the CSPs. Mathematically,

Nij =
Pij√∑m
i=1(Pij)2

, 1 ≤ i ≤ m, 1 ≤ j ≤ n (2)

where Nij is the normalized performance value of CSPi on
QoS attribute Aj .

(2) Handling Unavailable Values using RST: To handle
unavailable values, RST is employed in the decision ma-
trix [5]. RST approximates unavailable values based on the
similarity among attribute values through lower and upper



approximations. The cloud service selection (S) is defined as
a two-tuple, <C, A>, where C is the set of CSPs and A =
CA ∪ DA, in which CA represents the condition attributes
and DA represents the decision attribute. The indiscernibility
(IND) relation for B is mathematically expressed as follows.

IND(B) = {(x, y) ∈ C × C | ∀a ∈ B, a(x) = a(y)} (3)

where B is any subset of the set C. The equivalence class of
x ∈ U is [x]B = {y ∈ C | (x, y) ∈ IND(B)}. For each
decision class X ⊆ C, the lower and upper approximations
are mathematically defined as follows.

B(X) = {x ∈ C | [x]B ⊆ X} (4)

B(X) = {x ∈ C | [x]B ∩X ̸= ∅} (5)

If the performance value is unavailable, RST estimates it
based on the equivalence class to which the object belongs as
follows. If the value lies in the lower approximation (certainly
belongs to a QoS attribute value), the unavailable value of that
QoS attribute replaces within B(X). If the value lies in the
upper approximation (may belong to a QoS attribute value),
the unavailable value is replaced by the most frequent value
among the QoS attribute values in B(X). This RST-based
imputation preserves the dependency relationships between
condition and decision attributes, allowing for the realistic
estimation of unavailable values.

(3) Finding the Maximum and Minimum Values: Q-RUST
multiplies the weights by the normalized value and calculates
the minimum and maximum value of each QoS attribute.

(4) Calculate the Best and Worst Ideal Solutions: The ideal
best and worst solutions are calculated using Eq. (6) and
Eq. (7). Here, the maximum (or minimum) value is used for
beneficial attributes, and the minimum (or maximum) value is
used for non-beneficial attributes to determine the ideal best
(or worst) solution. Mathematically,

Dibest =

√√√√ n∑
j=1

(Nij −maxj or minj)2, 1 ≤ i ≤ m (6)

Diworst =

√√√√ n∑
j=1

(Nij −minj or maxj)2, 1 ≤ i ≤ m (7)

(5) The overall score for each CSP is determined as follows.

SIi =
Diworst

Dibest +Diworst
(8)

(6) Finally, the Q-RUST algorithm ranks all CSPs, and the
CSP with the highest overall score is selected as the most
suitable CSP.

III. EVALUATION

The simulations were conducted using the QoS for web
services (QWS) dataset [6] to evaluate the performance of the
Q-RUST algorithm in comparison with the QTOPSIS and the
traditional TOPSIS algorithms. This dataset consists of 2507
CSPs and 8 attributes. The results of the QTOPSIS algorithm

were taken from our earlier work [2] for comparison. Fig.
1 illustrates that the top three CSPs remain consistent across
all three algorithms, demonstrating high correlation in ranking
performance, with minor variations observed in lower-ranked
CSPs. Further, the sensitivity analysis shown in Fig. 2 con-
firms that the Q-RUST algorithm exhibits strong robustness,
maintaining stable CSP rankings across ten different scenarios.
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Fig. 1: Comparison of top five CSPs.
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Fig. 2: Sensitivity analysis of the Q-RUST, QTOPSIS, and TOPSIS algorithms.

IV. CONCLUSION AND FUTURE WORK

This paper has introduced the Q-RUST algorithm, which
integrates RST and the TOPSIS algorithm to impute un-
available values and enhance the efficiency of CSP ranking.
The proposed algorithm effectively handles incomplete QoS
attribute values, providing stable and reliable ranking out-
comes. This study can be further extended by integrating fuzzy
and hybrid imputation strategies or applying the framework
to other service selection domains, such as edge and fog
computing environments.
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