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Abstract 
 

Materials with an extreme lattice thermal conductivity (L) are indispensable for 

thermal energy management applications. Therefore, microscopic understanding of 

phonon transport is critically important for designing functional materials. In the 

present thesis, a systematic investigation has been made for in-depth understanding of 

phonon transport in binary and ternary compounds using first principles calculations in 

combination with Boltzmann transport theory. In contrast to the expected trend based 

on their atomic mass, anomalous trends for L are observed in binary systems, namely 

Alkaline-earth chalcogenides and Alkali halides. It has been shown how atomic mass 

contrast can tune the contribution of optical phonons to L and its implications on 

scattering rates either enhancing or suppressing L. Ternary alkaline-earth halofluorides 

and Bismuth halooxides provide an avenue for designing functional materials with low 

L due to their intrinsic bonding heterogeneity. Investigation of iso-structural layered 

materials with varying average atomic mass is intriguing because they allow to make 

structure-property correlations by exploring the interplay between bonding 

heterogeneity and atomic mass and their implications on lattice dynamics thereby 

tailoring the phonon transport properties. Overall, the present thesis focused on 

understanding interplay amongst crystal structure, atomic mass, chemical bonding, 

mechanical properties, lone pair activity, and their role in phonon transport properties, 

which would aid in designing extremely low L materials.  This is indispensable for the 

development of sustainable energy conversion devices for future thermal energy 

management applications. 

 

The Thesis consists of six chapters, the finer details are provided below. 

 

Chapter 1:  It provides an introduction to the domain of phonon transport in extended 

solids and why low L plays a crucial role in thermal management applications. It also 

provides a comprehensive view of the various mechanisms affecting the phonon 

transport, both extrinsic and intrinsic with a comprehensive literature survey of the 

mechanisms to lower L. 

Chapter 2:  This chapter provides the theoretical background for the current work and 

the computational methodology utilized for this work.  
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The Density Functional Theory (DFT) formalism and an overview of first principles 

calculations are discussed. Both harmonic and anharmonic approximations concerning 

the phonons and phonon transport has been discussed followed by the Boltzmann 

transport theory for obtaining L, phonon-phonon scattering mechanism has been 

discussed, specifically three phonon scattering, as the same has been considered in the 

current work. The methodology employed in the present study, known as Temperature 

Dependent Effective Potential (TDEP), is elaborated upon, this is followed by an 

overview of list of packages utilized for the current work. 

 

Chapter 3:  The first part of the chapter focuses on a detailed and comparative study 

on phonon transport of Alkaline Earth Chalcogenides (AEC’s) MCh (M = Mg, Ca, Sr, 

Ba and Ch = O, S, Se,Te)  compounds in order to provide insights to achieve low L 

materials through phonon engineering. More light is shed on understanding lattice 

dynamics, phonon transport, and mechanical properties of 16 MCh (M = Mg, Ca, Sr, 

Ba and Ch = O, S, Se, Te) compounds. The second part of this chapter deals with 

another set of isostructural binary systems, Alkali Halides (AH’s), consisting of 20 MX 

( M = Li, Na, K, Rb, Cs and X = F, Cl, Br, I) compounds and presented in comparison 

with the results obtained with AEC’s. This chapter provides an in-depth understanding 

of atomic mass and its effect on phonon transport properties of AH’s and AEC’s. 

Furthermore, this reveals that by manipulating the atomic masses, one can engineer 

materials with both high and low values of L, providing exciting possibilities for 

tailored thermal conductivity in various applications. 

 

Chapter 4:  This chapter explores layered materials which are bonded through strong 

covalent/ionic bonds within the plane (in-plane) and coupled by weak van der Waals 

(vdW) interactions in the perpendicular (out-of-plane) direction i.e., bonding 

heterogeneity, thus resulting in a strong structural anisotropy. Therefore, through 

bonding heterogeneity, these layered materials provide an avenue for tailoring phonon 

transport properties. Investigation of iso-structural layered materials with varying 

average atomic mass is intriguing because they allow structure-property correlations by 

exploring the inter-play between bonding heterogeneity and atomic mass and their 

implications on lattice dynamics, thereby fine-tuning the phonon transport properties. 

Consequently, for layered materials, a microscopic understanding of crystal structure, 



 
 

v 
 

bonding, anharmonic lattice dynamics, and phonon transport properties is of the utmost 

importance. 

Alkaline-earth halofluorides, MXF (M = Ca, Sr, Ba and X = Cl, Br, I) belong to the 

class of matlockite (PbClF)-type layered materials and they provide an avenue to ex-

plore the interplay between crystal structure, atomic mass, and bonding heterogeneity 

and thereby to fine tune their phonon transport properties. The outcomes of the chapter 

are that structural anisotropy and/or bonding plays a crucial role along with atomic mass 

in determining the L in these iso-structural MXF compounds. This study on MXF 

compounds provides an in-depth understanding on interplay among crystal structure, 

atomic mass and bonding heterogeneity, which would aid in designing extreme L 

materials by manipulating in-plane and out-of-plane bonding for future thermal energy 

management applications. 

 

Chapter 5:  This chapter explores another family of layered materials known as 

Bismuth halooxides, BiXO (X= Cl, Br, I). BiXO is composed of a series of ionically 

bonded X-Bi-O-O-Bi-X layers stacked perpendicular to the c-axis. These layers are 

held together by weak van der Waals (vdW) interactions; consequently, these 

compounds exhibit bonding heterogeneity, featuring in-plane ionic bonding and out-of-

plane weak vdW bonding. The rattling mechanism owing to bonding heterogeneity that 

results in an ultralow L has been described. 

 

Chapter 6:   This chapter summarizes the results that are obtained and consolidates 

the same by proposing few design principles for obtaining low L materials followed 

by the future scope of work. 
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1.1. Thermal Transport 

 Solid state materials, in particular semiconductors and metals play a key role in 

designing functional devices, which has profound applications in our day-to-day life. 

Therefore, understanding the electronic and/or phonon transport is critically important 

for enhancing the performance of electronic and energy conversion devices.  Phonons 

play a significant role in determining the thermal properties of solid-state materials, 

serving as the primary carriers of thermal energy, and contributing to both thermal 

conductivity and heat capacity. In the context of semiconductors and insulators, 

phonons play a dominant role in facilitating heat transport, whereas in metals, electrons 

are primary carriers for thermal transport. Therefore, it is crucial to have a thorough 

understanding of heat transport in solid state materials to aid for discovering advanced 

functional materials to design efficient devices for thermal energy management 

applications.   

 

1.2. Why Lattice Thermal Conductivity  

 Thermal conductivity is an extremely important parameter for the 

semiconductor industry. Many electronic and opto-electronic applications demand high 

thermal conductivity materials because they efficiently disperse heat from the material 

and lower device temperature, enhancing performance and durability, whereas 

thermoelectric conversion and thermal insulation [1] require materials with low lattice 

thermal conductivity. 

From the local cooling of electronics [2] to the provision of electricity for deep-space 

probes [3], thermoelectric devices are used in a wide range of solid-state power 

generating [4] and refrigeration applications [5]. Many novel materials have been 

studied as potential thermoelectric materials during the past few years [6]. Despite the 

thorough examinations of new and traditional materials, there is always a need to study 

new classes of materials, with unique physical features that may result in higher 

thermoelectric performance with extremely low lattice thermal conductivity. 

When heat is transferred via a thermoelectric material, an electric potential difference 

is produced as a result of the movement of charge carriers. This phenomenon may be 

used for the purpose of power generation. The efficiency [7] of the conversion process 
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is considered favorable when the thermoelectric figure of merit (ZT) exhibits a high 

value.  

    𝑍𝑇 =
𝜎𝑆2

κ
𝑇 

The Seebeck coefficient is denoted by the symbol S, the thermal conductivity is 

represented by , the electrical conductivity is represented by σ, and the temperature is 

denoted by T.  Semiconductors exhibit a high potential for attaining the desired value 

due to their characteristic combination of lower lattice thermal conductivity and 

favorable electrical conductivity. It is crucial to comprehend that the thermal 

conductivity k has two distinct constituents ( = e + L): an electronic component e, 

which arises from the diffusion of charge carriers, and a lattice component L, which 

arises from lattice vibrations, simply called as phonons. 

The Wiedemann-Franz law postulates that the thermal conductivity resulting from 

electronic contributions is directly proportional to the electrical conductivity (σ) due to 

the fact that the charge carriers responsible for electrical conduction also heat transport. 

One of the challenges in optimizing the figure of merit for a material lies in the fact that 

a thermal conductivity typically accompanies a high electrical conductivity. 

Notwithstanding this issue, the identification of optimal thermoelectric materials may 

be achieved through the search for materials characterized by a lower lattice thermal 

conductivity. Suppressing the lattice thermal conductivity without compromising 

electrical characteristics can improve the figure of merit of thermoelectric materials. 

In numerous applications, materials possessing an exceptionally low lattice thermal 

conductivity are indispensable. Thermal barrier coatings (TBCs) [8], [9] applied on gas 

turbine engine blades serve to enhance their efficiency and power generation 

capabilities. This necessitates the use of multifunctional materials that possess desirable 

attributes such as low thermal conductivity, thermomechanical stability, and chemical 

resistance. These materials are crucial in safeguarding the blades from the adverse 

effects of high temperatures [10]. Solid-state energy conversion devices, such as 

thermoelectrics, necessitate the use of materials with low thermal conductivity. The 

combination of this requirement with the need for certain electrical properties presents 

a complex and intriguing problem. Effective thermal insulation materials are essential 

in order to minimize parasitic heat transfers across various heat engines, heat pumps, 
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refrigerators, and air conditioning systems. The utilization of low- k materials for 

thermal insulation is of utmost importance in order to minimize the dissipation of heat 

from the storage unit to the surrounding environment, hence ensuring a high level of 

storage efficiency. One other noteworthy application of thermal insulation material in 

the context of energy storage is its utilization as thermal barriers inside battery packs 

[11]. This particular usage aims to impede or delay the spread of thermal runaway from 

a single cell to the entire pack, hence mitigating the potential consequences of accidents. 

 This research focuses on phonon-based thermal transport in extended non-

metallic systems as many thermoelectric materials are semiconducting. Discovering 

materials with low lattice thermal conductivity and/or finding mechanisms to achieve 

low lattice thermal conductivity is the main goal of the present thesis work. 

 

1.3. Phonon Transport  

Gaining a comprehensive understanding of phononic behaviour is of paramount 

importance in order to make informed decisions on the management of heat conduction 

in electrical devices. 

Phonons, being the oscillations of the periodic lattice of atoms in crystals come 

together to produce a spectrum of permitted frequencies, {f}, for atom vibrations that 

are harmonics of one another. The harmonic term refers to the lowest order term that 

characterizes variations in potential energy resulting from the displacement of an atom 

from its equilibrium position. This term may be utilised to determine the fundamental 

frequencies of vibration. The highest frequency, which is usually on the scale of several 

THz, is associated with the fast vibrational motion that occurs when two nearby atoms 

travel in different directions from one another. The basic resonant mode of the 

macroscopic crystal is the sound wave, which has the lowest frequency, usually in the 

tens or hundreds of Hz range. One way to visualise a perfect crystal is as a three-

dimensional ball-and-spring lattice, where the atoms are represented by balls with mass 

m and the interatomic forces by springs with spring constant K.  The force on each atom 

is F(δ) = Kδ, if one further assumes that the springs are perfect, meaning that K does 

not rely on the displacement, δ, of the atoms from their typical position. Atomic 

vibrations in such a lattice have a spectrum of frequencies, {f}, that depends only on K, 

mass of atom, m, and the propagation velocity, v; it is not dependent on δ.  



 
 

5 
 

A real system's deviation from this assumption is measured by its anharmonicity: in an 

anharmonic solid, the force is not proportional to the displacement, transforming K and 

the resonant frequency spectrum into functions of δ, the distance between atoms, and 

the volume, V, of the crystal's unit cell. The lowest order harmonic approximation is 

limited to linear forces between atoms and is therefore considered inadequate for 

elucidating phenomena such as thermal conductivity and expansion, which are 

attributable to non-linear anharmonic interactions, referred to as phonon anharmonicity 

(more details provided in Chapter-2). 

In the realm of condensed matter physics, the thermal conductivity (L) 

primarily arises from two fundamental factors: the anharmonicity of atomic bonding 

and the presence of crystal defects that possess various dimensions and scales [12], 

[13]. In the context of solid materials, the constituent atoms exhibit vibrational motion 

in the vicinity of their equilibrium locations. In the context of anharmonicity, when 

phonon transport occurs and atoms experience deviations from their equilibrium 

positions, the relationship between the applied force and the atomic displacement is no 

longer linear. This phenomenon results in the occurrence of non-equilibrium phonon 

transport and enhances the scattering between phonons, thus leading to a substantial 

reduction in the lattice thermal conductivity (L) [14], [15] , the atomic bonding in the 

majority of materials exhibits anharmonicity, characterized by varying degrees of 

anharmonicity [16]. The presence of significant anharmonicity in a material leads to the 

occurrence of intrinsic phonon scattering, mostly caused by Umklapp processes [17]. 

This anharmonicity plays a crucial role in determining the inherently low thermal 

conductivity (L) observed in materials with multidimensional crystal structures.  

The mechanisms for reducing the lattice thermal conductivity in thermoelectric 

systems may be categorized into two distinct parts: (a) Extrinsic mechanisms - the 

inducement of extrinsic phonon scattering by the introduction of crystal defects with 

numerous dimensions and high-range scales into the matrix, and (b) Intrinsic 

mechanisms - the realisation of inherently low L in diverse crystal structures. 

1.3.1 Extrinsic Mechanisms 

In order to augment the anharmonicity of a given material, it is imperative to 

induce significant lattice distortion within that material, hence compelling the atoms to 

stray from their state of equilibrium. The introduction of different crystal defects into 

the material enables the realization of this phenomenon [18], [19]. Concurrently, these 
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external imperfections significantly contribute to enhancing phonon scattering and 

diminishing the lattice thermal conductivity (L) [20], [21] 

Point defects with zero dimensions (0D), such as atomic substitutions, 

vacancies, and interstitial and filling atoms in particular structures, have the ability to 

significantly scatter high-frequency phonons. This scattering occurs due to the 

induction of atomic-scale lattice distortions and the presence of high-density strains in 

the vicinity of these defects. As a result, the thermal conductivity, L, is reduced [22]–

[24]. Thermoelectric materials mostly exhibit one-dimensional (1D) linear defects, 

predominantly in the form of edge dislocations, which effectively disperse mid-

frequency phonons [25], [26]. Two-dimensional (2D) planar defects, such as stacking 

faults and boundaries between grains and phases, have been seen to cause scattering of 

low frequency phonons in the presence of dislocation arrays [27], [28]. The scattering 

of phonons with a wide range of frequencies is successfully achieved by three-

dimensional (3D) body defects, which arise from variations in the diameters of 

nanoprecipitates, secondary phases, and porous structures [29]–[31]. 

The use of multiscale extrinsic defects as a means to decrease the lattice thermal 

conductivity, L, has emerged as a highly sophisticated technique within the realm of 

thermoelectric research [32]–[35]. Furthermore, recent research has demonstrated the 

efficacy of atomic ordering and high-entropy engineering in reducing L and improving 

the ZT values of several materials [36]. The transfer of heat inside the lattice is 

facilitated by phonons, which are quantized vibrations with various modes and 

frequency. The thermal conductivity of the lattice, L, is the aggregate of all individual 

thermal conductivities. In order to reduce the L of specific materials, it is common 

practice to introduce extrinsic scattering centers consisting of defects of various sizes 

and dimensions into the matrix [37], [38]. 

Nevertheless, the use of extrinsic approaches often results in the scattering of 

the carriers, a phenomenon that can have detrimental effects on electrical transport and 

impede the improvement of thermoelectric efficiency. One potential approach to 

enhance the thermoelectric efficiency is the exploration of materials possessing 

inherently low L. 

 

1.3.2 Intrinsic Mechanisms 
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The relationship expressing the phonon thermal conductivity, L, has been 

established and validated by both kinetic theory and the Boltzmann transport equation 

[39].  

    𝜅L =
1

3
∫ 𝐶v(𝜔) ⋅ 𝜈(𝜔) ⋅ 𝑙(𝜔)d𝜔 

Here, 𝐶v represents the specific heat capacity, 𝜈(𝜔) denotes the phonon group velocity, 

𝑙(𝜔) represents the phonon mean free path (or the scattering processes), and 𝜔 signifies 

the phonon frequency. 𝐶v is defined as the partial derivative of the total energy with 

respect to temperature. It quantifies the amount of energy contained in the excitations 

of phonons. Now, in order to get a low L, which is a desirable characteristic for thermal 

management applications, it is expected that a low specific heat, a brief relaxation 

period, and a slower propagation velocity would be essential. The focus is on 

approaches to reduce the phonon thermal conductivity. These approaches are classified 

into various categories and often involve the synergistic effects of multiple strategies. 

For instance, DiSalvo [7] and Slack [40] postulated that compounds characterized by a 

low melting point, heavy elements, and a large unit cell could exhibit a reduction in 

thermal conductivity. A low elastic modulus is associated with a low melting point, 

resulting in a correspondingly low sound velocity, or phonon group velocity. The sound 

velocity is also diminished by the heavy elements. The proportion of energy transmitted 

via acoustic modes is diminished when the unit cell is large, a consequence that is 

associated with the specific heat. 

1.3.2.1. Specific Heat: A crystal unit cell composed of p atoms contains three acoustic 

branches and 3p-3 optical branches [41]. The acoustic branch makes a greater 

contribution to phonon thermal conductivity than the optical branch due to the higher 

phonon group velocities in the former relative to the latter. Therefore, in a crystal 

characterized by a significant number of atoms per unit cell, specifically a large unit 

cell, the acoustic branch carries only a minute portion of the overall thermal energy 

contained within the solid, as evidenced in zinc antimonides [42].  

Many high-frequency phonons might not be sufficiently excited by the quantity of heat 

energy present at low temperatures, resulting in a low specific heat. Conversely, 

elevated temperatures induce the activation of the majority of accessible phonon modes, 

resulting in a state of specific heat (Cv) saturation referred to as the Dulong–Petit limit 
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(3kBT per atom). Thermal expansion may cause the specific heat at high temperatures 

to marginally surpass this limit. 

Given that the operational temperatures of thermoelectrics are typically sufficient to 

induce excitation of the majority of phonons, resulting in a specific heat that approaches 

this threshold, there are only a limited number of proven methods to decrease L by 

decreasing the overall specific heat. Nevertheless, a significant proportion of the 

specific heat that contributes to L is generated by acoustic phonons due to their 

considerably greater group velocity in comparison to optical phonons [40], [43]. For a 

low L, an augmentation in the complexity of the crystal structure results in a 

corresponding decrease in the specific heat. 

Few methods have been shown to effectively reduce Cv in thermoelectrics when 

operating at high temperatures. This is because, at high temperatures in bulk materials, 

the energy transported by each atom approaches 3kBT, as predicted by classical 

statistical theory [44]. 

This makes it challenging to manipulate the specific heat of thermoelectric materials, 

since the high-temperature specific heat approaches the Dulong-Petit limit. 

 

1.3.2.2. Liquid like conduction: Cu2X ( X = S, Se) compounds containing liquid Cu 

ions have been shown to have a specific heat at high temperatures that is lower than the 

Dulong-Petit limit [45], [46]. It is the Se(S) ions that build a stiff framework in these 

copper chalcogenides, whereas the Cu ions are very disordered and diffusive at high 

temperatures. Liquid-like ions are thought to prevent the propagation of shear 

vibrations, which results in a lower specific heat of transverse mode(s) and, 

consequently, a lower specific heat of the system as a whole [45], [46]. The poor lattice 

thermal conductivity is primarily due to the presence of liquid-like species. The above 

approach confirms the poor lattice thermal conductivity of a family of materials 

containing liquid-like ions [45], [47]. 

 

1.3.2.3. Group Velocities: The lattice thermal conductivity is influenced by the group 

velocity (vg), which is frequency dependent in practice. However, for simplicity, it is 

commonly approximated as the sound velocity (vs). This approximation is convenient 

for measurement purposes and is equivalent to the group velocity at the Γ point in the 

Brillouin zone. By employing the sound velocity as an approximation for the overall 
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group velocity, it is shown that a decrease in sound velocity corresponds to a decrease 

in lattice thermal conductivity. 

As mentioned before, the lattice can be represented by atoms of average mass M, which 

are interconnected by spring-like chemical bonds with a restoring force of F. In this 

simplified model, the sound velocity is approximately proportional to the square root 

of the ratio of F to M. This suggests that a low sound velocity can be achieved by the 

presence of a weak restoring force and/or a heavy atomic mass of the component atoms. 

Determining the atomic mass of component elements in a material is a relatively basic 

task, however quantifying the strength of chemical bonds, which may be seen as the 

restoring force, is a more complex challenge. 

In experimental studies, it has been observed that weak chemical bonds and/or the 

presence of heavy component elements have a significant role in the reduction of 

thermal conductivity L in several high-performance thermoelectric materials [48] . 

The presence of weak chemical bonds in α-MgAgSb results in a comparatively low 

sound velocity of around thereby leading to a low L [49]. The (Bi,Sb)2Se3 alloys 

exhibit a reduction in sound velocity to  due to chemical bond softening caused by a 

structural transition. This is in contrast to the sound velocities of the parent compounds, 

Bi2Se3 and Sb2Se3 [50] . In addition, several novel thermoelectric materials that possess 

inherently low lattice thermal conductivity have remarkably low sound velocities as 

observed in argyrodite compounds (Ag8MX6, M = Si, Ge, Sn and X = S, Se, Te) [51]. 

 

1.3.2.4. Phonon Relaxation times: To minimize L for thermoelectric applications, the 

phonon relaxation period must be as short as feasible. When phonons are disrupted by 

a temperature gradient, the phonon system relaxes towards its equilibrium distribution, 

which takes time (relaxation time). As a result, relaxation time measures the time 

intervals between phonon collisions [52], Because the rate of change in the distribution 

function is the core of phonon scattering [53],phonon scattering owing to lattice 

anharmonicity and the related thermal resistance is inherent in all materials [54]. 

 

1.3.2.5. Intrinsic Vacancies: There are naturally occurring vacancies in some of the 

sample materials, which results in a significant amount of phonon scattering. For 

instance, it was discovered that Cu2SnSe4, which has intrinsic cation vacancies, shows 

a relatively low value for L [55]. In contrast to the other similar materials (Cu2SnCdSe4 



 
 

10 
 

and Cu2SnZnSe4) that are devoid of vacancies, Cu2SnSe4 exhibits the lowest L and, 

thus, the greatest ZT across the board across all temperature ranges. Similarly, the 

presence of a large concentration of intrinsic cation vacancies in Ga2Te3 results in a 

lattice thermal conductivity that is exceedingly low [56] . 

 

1.3.2.6. Lone Pair Electrons: A lone pair of outermost valence electrons (LPEs) are 

those that are not shared by any other elements. The correlation between phonon 

anharmonicity and non-bonding LPEs is due to the fact that the LPEs are anticipated to 

generate a shell with a comparatively large radius, thereby inducing the bonding 

asymmetry. During thermal vibration, when atoms approach each other, a nonlinear 

repulsive electrostatic force is generated due to the overlapping wave functions of 

nearby valence electrons and non-interacting LPEs. This force causes structural 

instability and anharmonic atomic displacements, which ultimately results in phonon 

anharmonicity [57], [58]. Typically, an intense interaction between the p orbitals of 

cations and anions and the crystal structure perturbation is required for the formation 

of LPEs [59]. To illustrate, consider an atom with the valence configuration ns2npx. If 

a single valence electron from the np orbitals forms a bond with the anion, the bond 

will not require the ns2 electron pair to transition to an isolated state known as the "lone 

pair" state; thus, the LPEs are produced. Very recent studies pertaining to the 

contribution of LPEs to thermal conductivity are provided [60]–[62] . 

 

1.3.2.7. Resonant Bonding: Strong anharmonicity is induced in a variety of substances 

by LPEs, including ternary oxides,[63]ternary chalcogenides [64], [65], and binary 

oxides [66], [67] Rocksalt and rocksalt-like structures [68]are examples of highly 

symmetric structures that can nonetheless exhibit lattice anharmonicity due to resonant 

bonding [69]. Resonant bonding is characterized by extraordinary electron 

delocalization, which significantly increases electronic polarizability. Strong 

anharmonicity of long-range interatomic force constants may be regularly induced by 

resonant bonding in rocksalt formations [70]. Latest studies on obtaining low lattice 

thermal conductivity through chemical bonding are as follows [71]–[74]. 

 

1.3.2.8. Rattling: The phenomenon known as rattling vibration can be defined as 

follows: within an oversized atomic cage, the guest atoms (or molecules) are only 



 
 

11 
 

loosely bonded and relatively autonomous from the other atoms; these atoms vibrate 

anharmonically with significant displacements. Sievers and Takeno [75] were the first 

to report this rattling behavior. One of the most prominent characteristics of guest atoms 

causing rattling vibrational behaviors is that the restoring pressures on them weaken 

when the available space in the host cages is bigger than their ionic radii. In a more 

localized location, the phonon frequencies will drop and act in an inharmonic fashion. 

This results in the flattening and lowering of the dispersion of these guest phonons [76], 

[77]. The size of the cage in relation to the guest atom determines whether the rattling 

guest atom is on or off centre in the cage [78]. There will be a disparity in phonon 

dispersion [79] between on-center and off-center atoms. Materials having cage 

structures (such as skutterudite [80]and clathrate [81], [82], non-cage structures (such 

as CsPbI3 [83]and Cu12Sb4S13 [84]), and even 2D-layered structures such as Mg3Sb2 

[85] have all been shown to exhibit rattling vibration. Rattling mechanism is observed 

in the recent works [86]–[89]. 

 

1.3.2.9. Atomic Mass: Atomic mass of constituent elements of a compound has a role 

in the phonon transport. Lindsay et al. showed that compounds with high mass ratios 

result in substantial frequency differences between acoustic and optic phonons (such as 

BSb, BAs, BeTe, BeSe) show a decrease in thermal conductivity (k) when pressure (P) 

increases [90]. The abnormal dependency of  on P is due to the fundamentally distinct 

nature of the intrinsic scattering mechanisms for heat-carrying acoustic phonons in 

compounds with large mass ratios compared to those with small mass ratios. Also, in 

contrast to the view that thermal conductivity often decreases with increasing atomic 

mass, Chang et al. demonstrated that for some compounds within a family of 

compounds, trends in thermal conductivity with rising atomic mass deviate 

substantially [91]. More works on effect of mass/mass ratios on phonon transport are 

provided [92]–[96]. 

1.3.2.10. Ferroelectric Instability: The manifestation of ferroelectric instability in a 

solid material is characterized by the occurrence of a softening phenomenon in 

transverse optical (TO) phonons at the center of the Brillouin zone. This softening 

causes the energy of TO phonons to approach the energy level of the acoustic phonons 

responsible for heat conduction. Consequently, a robust optical-acoustic phonon 

coupling arises, resulting in a significant enhancement of the scattering of acoustic 



 
 

12 
 

phonons responsible for heat transport. Hence, the implementation of ferroelectric 

instability in a material can serve as a viable approach to decrease L [97]–[99]. 

 

1.3.2.11. Bond Heterogeneity: The presence of heterogeneous bonding adversely 

impacts the transmission of phonons in a solid. A strong bond works as a smooth 

channel for phonon transmission, whereas a weak bond suggests that the atoms will 

vibrate at a higher frequency on thermal agitation and operate as phonon scattering 

centers. Therefore, the presence of various forms of bonding within a solid disrupts the 

uniformity needed for the propagation of phonons, resulting in a significant reduction 

in the L of the material. Bonding heterogeneity within the crystal lattice of the cubic 

rocksalt AgBiS2 has only recently come to light [100] . Similar bonding heterogeneity 

has been observed in a number of other compounds, including 

BaAgYTe3,Cu17.6Fe17.6S32 Zintl phases and CdTe2  that have intrinsically extremely 

low L [101]–[103]. Recent works on impact of bonding heterogeneity on phonon 

transport are as follows [104]–[106]. 

In some cases, there might be an interplay of two or more factors of the above 

mentioned intrinsic mechanisms [107]–[110] affecting the phonon transport. 

Fig 1.1: Few Intrinsic mechanisms for lowering lattice thermal conductivity 
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Having looked at various mechanisms for lowering L , the focus of this thesis 

pertains to the phenomenon of thermal transport by phonons in extended non-metallic 

systems (isostructural families), as the majority of thermoelectric materials exhibit 

semiconducting properties, and the key focus is to look for materials with low or 

ultralow lattice thermal conductivity (L) with intrinsic mechanisms. 

The compounds that are explored in the current work are Alkaline Earth 

Chalcogenides, MCh ( M = Mg, Ca, Sr, Ba and Ch = O, S ,Se, Te), Alkali Halides, MX 

(M = Li, Na, K, Rb, Cs and X = F, Cl, Br, I) Alkaline Earth Halo Fluorides, MXF ( M 

= Ca, Sr, Ba and X = Cl, Br, I) & Bismuth Halooxides, BiXO ( X = Cl, Br, I) (more 

details in the following chapters). 

 

1.3 Objectives of the current work 

 

• Understanding phonon transport and proposing designing principles to 

achieve low L in known materials. 

• Exploring the reasons for the anomalous behaviour in L trends in Alkaline 

Earth Chalcogenides (AEC’s) and Alkali Halides (AH’s). 

• In-depth understanding of various factors like atomic mass, interatomic 

bonding, crystal structure, and anharmonicity to L. 

• Exploring the tensile lattice strain-dependent phonon transport properties 

for binary compounds and disclose the dominant factor(s) to influence L. 

• Investigation of iso-structural layered materials (Alkaline earth halo 

fluorides & Bismuth halooxides) with varying average atomic mass for 

structure-property correlations by exploring the interplay between bonding 

heterogeneity, atomic mass, lone pair induced anharmonicity, rattling 

behavior and their implications on lattice dynamics thereby tailoring the 

phonon transport properties. 

 

The current thesis is divided into six chapters, consisting of an introduction (this 

chapter) with a comprehensive literature survey followed by theoretical background 

with computational details, results and discussion concerning on L in binary Alkaline 

Earth Chalcogenides (AEC’s) and Alkali Halides (AH’s), followed by L in ternary 

layered materials like Alkaline earth halo fluorides and Bismuth halooxides and then 
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followed by the summary, conclusions and future scope emerging from the present 

thesis work. 
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2.1. First Principles Calculations 

During the transition from the 19th to the 20th century, significant progress was 

made in formulating a theoretical framework that elucidates the behaviour of matter at 

the microscopic level. In the year 1926, Erwin Schrödinger developed his renowned 

equation [1], which, upon solving, enables the comprehensive description of any 

physical system existing at the atomic level. The development of this approach has 

enabled the modelling of a system without the need for empirical parameters. This 

category of calculations is commonly referred to as first principles calculations. 

2.2 Density functional theory 

Consider a system with N electrons and M nuclei, the Schrodinger wave 

equation can be written as: 

                                                                     𝐻̂Ψ = 𝐸Ψ             − − − − −  2.1        

Here, 

                Ψ = Ψ(𝐫1, … , 𝐫𝑁, 𝐫1
𝑛, … , 𝐫𝑀

𝑛)          − − − − −  2.2 

Ψ  is a wavefunction which is dependent upon the position of all the electrons {𝐫} as 

well as nuclei {𝐫𝑛}, the Hamiltonian can be written as: 

𝐻̂ = −
ℏ2

2𝑚𝑒
∑ 

𝑖

 ∇𝑖
2 −
ℏ2

2
∑  

𝑘

 
∇𝑘
2

𝑀𝑘
+
1

2
∑  

𝑖≠𝑗

 
𝑒2

|𝐫𝑖 − 𝐫𝑗|

 +
1

2
∑  

𝑘≠𝑙

 
𝑍𝑘𝑍𝑙

|𝐫𝑘
𝑛 − 𝐫𝑙

𝑛|
−∑  

𝑖,𝑘

 
𝑒𝑍𝑘

|𝐫𝑖 − 𝐫𝑘
𝑛|
.  − − − − −   2.3

 

The above terms describe the kinetic energy of the electrons and nuclei, as well as the 

electrostatic interactions involving the electrons, nuclei and the interactions between 

nuclei and electrons respectively. 

 With the exception of the hydrogen atom, solving the many-body problem within a 

quantum mechanical framework is a challenging task. This difficulty arises from the 

intricate multi-body structure of the system and the two-body nature of the Coulomb 

interaction, which results in the inseparability of the Schrodinger equation mentioned 

above. To address this issue, researchers have devised a range of approximations that 
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are carefully controlled and applicable to a diverse set of problems. The incorporation 

of the significant disparities in the masses of electrons and nuclei may lead to a 

simplification of the many body Hamiltonian. The Born-Oppenheimer (BO) 

approximation is a phenomenon where the electrons move in the field of stationary 

nuclei due to the significant weight difference between protons and electrons. This 

weight difference causes the nucleus to move at a slower pace compared to the 

electrons, with the proton weighing approximately 1800 times more than the electron. 

One implication of the nuclear objects remaining stationary in space is that their kinetic 

energy can be approximated as zero. So, the Hamiltonian can now be written as 

𝐻̂ = −
ℏ2

2𝑚𝑒
∑ 

𝑖

∇𝑖
2 +
1

2
∑  

𝑖≠𝑗

𝑒2

|𝐫𝑖 − 𝐫𝑗|
−∑  

𝑖,𝑘

𝑒𝑍𝑘

|𝐫𝑖 − 𝐫𝑘
𝑛|
    − − − − −  2.4 

These terms correspond to the kinetic energy, the electron-electron interaction and the 

external potential (electron-nucleus interaction). The utilisation of the Born-

Oppenheimer approximation leads to a notable reduction in the overall complexity of 

the system. Nevertheless, the complexity of the problem persists as a result of the 

interactions between electrons. 

Although electrons in solid systems are generally regarded as non-interacting classical 

particles, they do exhibit certain interactions, primarily through Coulomb two-body 

forces. The probability of electron localization within an atom, which contains Z 

electrons, is dependent upon the spatial arrangement of (Z-1) additional electrons. 

Hence, it is not appropriate to consider the single electron as an individual and distinct 

entity. This is commonly denoted as correlation. Consequently, in numerous instances, 

the applicability of one-particle wave functions isn't considered viable. In order to solve 

this many body problem, in 1964 Hohenberg and Kohn [2] had formulated the density 

functional theory (DFT). The mechanism provided henceforth is as detailed by Eshrig 

[3]. 

The key idea here is to rewrite equation 2.4 so that it contains an equation for the 

electron density rather than the many-body problem. Because it is a function of all three 

spatial dimensions, the density will also contain the electronic degrees of freedom 
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implicitly. Their first formulation includes two theorems that state this is doable, and 

they are as follows: 

The ground state density n, up to some arbitrary constant, is the only thing that can 

definitively determine the potential 𝑉ext . A universal total energy functional, denoted 

𝐹HK, is associated with every external potential. The exact density of the ground state 

would result in minimization of total energy functional 𝐸t[𝑛]. 

 The Hohenberg-Kohn functional is defined as follows 

𝐹HK[𝑛] = 𝐸t[𝑛] − ∫  𝑉ext[𝑛]𝑛𝑑𝑟            − − − − −  2.5 

where 𝐸t[𝑛] is the total energy functional. 

DFT was formulated as a theoretical framework for addressing many-body systems and 

is capable of addressing systems with interacting particles, drawing upon the 

foundational theorems proposed by Kohn and Hohenberg. The Kohn and Hohenberg 

density functional theory (DFT) theorems assert that the properties of a system can be 

calculated by incorporating the density of the ground state. Nevertheless, this approach 

does not offer a means of ascertaining the electronic densities of the system. The Kohn-

Sham equations [4] offer a practical method to compute the energy density of the 

ground state. The primary idea revolves around replacing a complex many-body 

problem with a simplified system of non-interacting particles subject to a suitable 

external potential. 

The fundamental concept involves substituting actual electrons with non-interacting 

quasiparticles that yield the accurate ground state density, while consolidating all 

unknown terms into a single term referred to as exchange and correlation. With this, the 

universal functional assumes the form 

𝐹HK[𝑛] = 𝑇[𝑛] + 𝐸H[𝑛] + 𝐸xc[𝑛] − ∫  𝑉ext[𝑛]𝑛𝑑𝑟     − − − − −  2.6 

The terms involved above are the kinetic energy (𝑇), Hartree energy (𝐸H), the external 

potential (𝑉ext ) and a single term that contains all the many-body terms, 𝐸xc. The exact 
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form of the exchange-correlation is not known, but later it can be observed that it could 

be approximated. The total energy functional can now be written as  

𝐸t[𝑛] = 𝑇[𝑛] + 𝐸H[𝑛] + 𝐸xc[𝑛] + ∫  𝑉ext(𝐫)𝑛(𝐫)𝑑𝑟   − − − −−  2.7 

The objective is to determine the density that minimises the energy functional. To do 

this, a restricted search is conducted to identify the stationary spots. The restriction is 

imposed by maintaining a fixed particle number N, while the Lagrange multipliers 𝜖𝑖  

are utilised: 

ℒ = 𝐸t[𝑛] − 𝜖𝑖 (∫  𝑛(𝐫)𝑑𝑟 − 𝑁) ,

𝛿ℒ = ∫  
𝛿ℒ

𝛿𝑛
𝛿𝑛𝑑𝑟 = 0

            − − − − −  2.8 

Now, Ψ0 stands for the ground state many-body wavefunction for the quasiparticles 

that do not interact with one another. This may invariably be expressed as a 

determinantal condition of one-particle wavefunctions, as follows: 

Ψ0 =
1

√𝑁!
∥∥𝜙𝑖(𝐫𝑗)∥∥,  ⟨𝜙𝑖 ∣ 𝜙𝑗⟩ = 𝛿𝑖𝑗            − − − −−  2.9 

The density could be expressed in orbitals as below: 

𝑛 =∑  

𝑖

 𝜙𝑖
∗𝜙𝑖

𝛿𝑛 =∑  

𝑖

 𝛿𝜙𝑖
∗𝜙𝑖 + 𝜙𝑖

∗𝛿𝜙
                          − − − − −  2.10 

So, the kinetic energy functional can now be defined as,  

             𝑇[𝑛] =
1

2
∑  

𝑖

⟨𝜙𝑖|T̂|𝜙𝑖⟩                 − − − − −  2.11 

Now, a variation on 𝑇 with respect to 𝜙𝑗
∗ makes this 
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𝛿𝑇 = 𝑇[𝑛 + 𝛿𝜙𝑗
∗] − 𝑇[𝑛] =

 = ⟨𝜙𝑗 + 𝛿𝜙𝑗
∗|T̂|𝜙𝑗⟩ − ⟨𝜙𝑗|T̂|𝜙𝑗⟩ =

 = ∫  T̂𝜙𝑗𝛿𝜙𝑗
∗𝑑𝑟 = ∫  

𝛿𝑇

𝛿𝜙𝑗
∗ 𝛿𝜙𝑗

∗𝑑𝑟

                     − − − − −  2.12 

So, 

𝛿𝑇

𝛿𝜙𝑖
∗ = T̂𝜙𝑖 = ∫  

𝛿𝑇

𝛿𝑛(𝐫′)

𝛿𝑛(𝐫′)

𝛿𝜙𝑖
∗(𝐫)

𝑑𝑟′ =
𝛿𝑇

𝛿𝑛
𝜙𝑖               − − − − −  2.13 

Putting equation 2.11 into 2.9 gives 

𝛿ℒ =∑  

𝑖

∫  
𝛿ℒ

𝛿𝑛
𝜙𝑖⏟  

=0

𝛿𝜙𝑖
∗𝑑𝑟 +∑  

𝑖

∫  
𝛿ℒ

𝛿𝑛
𝜙𝑖
∗

⏟  
=0

𝛿𝜙𝑑𝑟 = 0  − − − − − 2.14 

This results in the constraints on the orbitals. 

𝛿ℒ

𝛿𝑛
𝜙𝑖 = (

𝛿𝑇

𝛿𝑛
+
𝛿𝐸H
𝛿𝑛
+
𝛿𝐸xc
𝛿𝑛

+ 𝑉ext − 𝜖𝑖)𝜙𝑖 = 0         − − − − − 2.15 

With these terms, the Hartree potential is 

                    
𝛿𝐸H[𝑛]

𝛿𝑛
= ∫  

𝑛(𝐫′)

|𝐫′ − 𝐫|
𝑑𝑟′ = 𝑉H[𝑛]          − − − − − 2.16 

and 

                                  
𝛿𝐸xc[𝑛]

𝛿𝑛
= 𝑉xc[𝑛]                            − − − − −  2.17 

𝑉xc[𝑛] is the exchange-correlation potential. Putting all these together, 

                               (T̂ + 𝑉H + 𝑉xc + 𝑉ext − 𝜖𝑖)𝜙𝑖 = 0             − − − − −  2.18 

Considering the potentials into one term as shown, 𝑉eff = 𝑉H + 𝑉xc + 𝑉ext, the 

Schrodinger-like Kohn-Sham equations for the quasiparticle orbitals 𝜙𝑖, which are 

responsible for obtaining the ground state density, are as follows  

                                  (T̂ + 𝑉eff[𝑛])𝜙𝑖 = 𝜖𝑖𝜙𝑖                         − − − − −  2.19 

Then, the total energy functional can be written as 
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    𝐸t[𝑛] =∑  

𝑖

𝜖𝑖 +∫  𝑛(𝐫)𝑉eff[𝑛]𝑑𝑟                    − − − − −  2.20 

It is now possible to obtain the electronic ground state density by solving equations 

2.10, 2.19, and 2.20 in a self-consistent manner. 

Currently, Spin-polarized densities have not yet been addressed. In the event that the 

precise 𝐸xc is known and the Kohn-Sham equations are successfully solved for an 

oxygen atom, density functional theory would accurately provide the ground state 

energy and density. However, it would not provide any insights on spin polarisation. In 

practical applications, the use of approximate exchange-correlation energy (𝐸xc) 

necessitates the explicit incorporation of spin-polarized densities and spin-dependent 

𝐸xc in order to achieve precise characterization of the electronic structure in magnetic 

systems. The Kohn-Sham equations for this may be derived using a similar approach. 

2.2.1 Exchange-correlation 

Until this point, no approximations have been employed, and the theory remains 

exact. In order to effectively solve the equations, it is necessary to provide a suitable 

definition for the unknown variable 𝑉xc. The local density approximation (LDA) was 

concurrently introduced with the Kohn-Sham equations and looks like this;  

                  𝐸xc
LDA = ∫  𝜖(𝑛(𝐫))𝑛(𝐫)𝑑𝑟    − − − − −  2.21 

Here, 𝜖 is the exchange-correlation of a uniform electron gas, which could be obtained 

using quantum Monte Carlo method. The previously mentioned approximation 

demonstrates a high degree of success, producing favourable results over a wide 

spectrum of materials. An appropriate progression in this context involves including 

the density gradient and deriving the exchange and correlation effects from a uniform 

electron gas with a gradient. This leads to the generalized gradient approximation 

(GGA) [5], which looks like; 

          𝐸xc
GGA = ∫  𝑓(𝑛(𝐫), ∇𝑛(𝐫))𝑛(𝐫)𝑑𝑟    − − − − − 2.22 
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Since there is no one foolproof method for calculating the gradient dependency of the 

uniform electron gas, various variants of GGA have been developed, each one 

optimised for a specific use case. The usefulness of these functions is severely 

constrained. For example, the band gap of semiconductors is frequently underestimated 

(and, in extreme cases, completely absent, indicating a metallic state). Furthermore, 

lattice parameters are under-estimated by the LDA and over-estimated by the GGA. 

2.2.2. Pseudopotentials  

In the process of solving the Kohn-Sham equations for a crystalline solid, it is 

seen that the resultant wavefunctions exhibit fast oscillations in the vicinity of the 

nuclei, while displaying slower variations in the interstitial areas. In order to get 

numerical solutions for the equations, it is necessary to employ a basis set. The 

identification of basis functions capable of accurately describing both the vicinity 

around the nucleus, where atomic orbitals are effective, and the interstitial area, where 

plane waves are more appropriate, is a significant challenge. It would be advantageous 

to devise a method for disregarding the deep core states as well. These states provide a 

negligible contribution to bonding and are only mildly impacted by it.  

The computational complexity often exhibits an 𝒪(𝑁3) scaling, where N represents the 

quantity of electrons. The omission of any electron would significantly enhance 

computing efficiency. 

The pseudopotential methodology was initially proposed by Hellmann  [6], and then 

refined into its contemporary version by Phillips and Kleinman [7] . It was shown that 

one could construct a modified valence wave function 𝜙̃𝑣 with the true core 𝜙𝑐 and 

valence wave functions 𝜙𝑣 

|𝜙̃𝑣⟩ = |𝜙𝑣⟩ +∑  

𝑐

𝑎𝑐𝑣|𝜙𝑐⟩,  𝑎𝑐𝑣 = ⟨𝜙𝑐 ∣ 𝜙̃𝑣⟩     − − − − −  2.23 

The pseudo-wavefunction must satisfy 

(𝐻̂ +∑  

𝑐

  (𝜖𝑣 − 𝜖𝑐)|𝜙𝑐⟩⟨𝜙𝑐|) |𝜙̃𝑣⟩ = 𝜖𝑣|𝜙̃𝑣⟩      − − − − −  2.24  
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The eigenvalues of the pseudowave functions are equivalent to those of real 

wavefunctions. An additional term is incorporated into the Hamiltonian. This initial 

endeavour demonstrated the feasibility of distinguishing between core and valence 

states, and employing predetermined core states significantly reduces the number of 

electrons involved in the task. There exist several pseudopotential methodologies that 

are specifically tailored to address diverse tasks [8].  

The Normconserving and Ultrasoft pseudopotentials are widely recognised as the 

predominant types of pseudopotentials. The concept of norm-conserving 

pseudopotentials [9] was proposed by D. Hamann, M. Schlüter, and C. Chiang in 1979. 

The primary objective of these pseudopotentials is to enhance the transferability of the 

pseudopotential. In contrast to previous methodologies that need orthogonalization to 

the core states and renormalization for charge densities outside the core area, 

the approach ensures the continued effectiveness and representativeness of the 

pseudopotential in diverse chemical environments.  Ultrasoft pseudopotentials [10] 

have the advantage of not needing norm-conservation, hence enabling the use of a 

reduced basis set and significantly smaller cut-off values. The effects seen cannot be 

adequately described using non-interacting quasiparticles. The materials encompassed 

within this category consist of transition metal oxides, Mott insulators among others. 

The initial attempts to address these issues were presented by Hubbard [11], [12]. 

Currently, the most often employed approaches include LDA+U [13] , hybrid 

functionals [14], [15], and dynamical mean-field theory (DMFT) [16]. 

The projector augmented wave (PAW) [17]method was utilised in this thesis. This 

method is a contemporary method that maintains the all-electron wave function by the 

use of a linear transformation.                                                              

             𝒯 = 1 + ∑  𝑐 𝒯𝑐                        − − −− −  2.25 

in which 𝒯𝑐 only exerts its influence inside a zone centred on nuclei 𝑐.  

This transformation may be performed to any operator 𝐴̃ = 𝒯−1𝐴̂𝒯, 

which makes it possible for it to act on smooth pseudowaves while preserving the 

information from the entire wavefunction. This results in an increase in the 

transferability of the potentials. 

2.3 Harmonic and Anharmonic approximations 



 
 

37 
 

The dynamical theory of lattices was developed by Born and von Kármán [18]. 

It focuses on figuring out what occurs when the lattice is heated [19] and how the system 

reacts to a displaced atom and the resultant vibrations.  

The free energy criteria are often employed in the analysis of crystalline materials to 

establish the direction of spontaneity. This necessitates equilibrium with a minimum 

free energy 𝐹. 

      𝐹 = 𝑈 − 𝑇𝑆                                  − − − − −  2.26 

the atomic configuration at absolute zero temperature 𝑇 = 0 K corresponds to the 

position that minimises the total internal energy 𝑈. This may be mathematically 

represented by a Taylor series expansion with respect to displacement of the atoms 

from their equilibrium position, this serves as the basis for understanding lattice 

dynamics. 

𝑈 = 𝑈0 +∑  

𝑖=1

∂𝑈

∂𝑥𝑖
𝑑𝑥𝑖 +

1

2
∑  

𝑖,𝑗=1

∂2𝑈

∂𝑥𝑖 ∂𝑥𝑗
𝑑𝑥𝑖𝑑𝑥𝑗 

                                +
1

6
∑  

𝑖,𝑗,𝑘=1

∂3𝑈

∂𝑥𝑖 ∂𝑥𝑗 ∂𝑥𝑘
𝑑𝑥𝑖𝑑𝑥𝑗𝑑𝑥𝑘 +⋯    − − − − − 2.27         

where 𝑖 goes to to 3N , where N is the total number of atoms in the system. The first 

term may be seen as zero, and the second term is likewise zero when assessed in the 

state of equilibrium. The term with the highest degree that remains is the second order 

derivative. When higher order components are ignored, the resulting approximation is 

known as the harmonic approximation.  

The total kinetic energy of the system can be written as: 

                                       𝑇 =
1

2
∑  

𝑖=1

𝑚𝑖𝑥𝑙̇
2                       − − − − −  2.28 

where 𝑥𝑖 denotes 𝑑𝑥𝑖 for simplicity. Under the Harmonic approximation, Hamiltonian 

can be written as  
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                        𝐻 = 𝑈 + 𝑇 =
1

2
∑  

𝑖=1

𝑚𝑖𝑥̇𝑙
2 +
1

2
∑  

𝑖,𝑗=1

∂2𝑈

∂𝑥𝑖 ∂𝑥𝑗
𝑑𝑥𝑖𝑑𝑥𝑗  − − − − −  2.29 

Using the canonical Hamiltonian equation, one can write 

𝑚𝑘𝑥𝑘̈ = 𝑝̇𝑘 = −
∂𝐻

∂𝑥𝑘
= −

1

2
∑  

𝑖,𝑗=1

 
∂2𝑈

∂𝑥𝑖 ∂𝑥𝑗

∂(𝑥𝑖𝑥𝑗)

∂𝑥𝑘

 = −
1

2
∑  

𝑖,𝑗=1

 
∂2𝑈

∂𝑥𝑖 ∂𝑥𝑗
𝛿𝑖𝑘𝑥𝑗 −

1

2
∑  

𝑖,𝑗=1

 
∂2𝑈

∂𝑥𝑖 ∂𝑥𝑗
𝛿𝑗𝑘𝑥𝑗 = − − − −− 2.30

 −
1

2
∑  

𝑗

 
∂2𝑈

∂𝑥𝑘 ∂𝑥𝑗
𝑥𝑗 −

1

2
∑  

𝑗

 
∂2𝑈

∂𝑥𝑘 ∂𝑥𝑖
𝑥𝑖 = −∑  

𝑗

 
∂2𝑈

∂𝑥𝑘 ∂𝑥𝑖
𝑥𝑖        

 

On rearranging equation 2.30, 

             𝑥𝑘̈ +∑  

𝑖

1

𝑚𝑖

∂2𝑈

∂𝑥𝑖 ∂𝑥𝑗
𝑥𝑗 = 0                           − − − − − 2.31 

Under the assumption that the phonon mode is a plane wave, the following solution 

can be obtained: 

            𝑥𝑖
𝛼 = 𝐴𝑒𝑖(𝒒⋅𝒙−𝜔𝑡)𝑒𝛼  ̂                               − − − − − 2.32 

where 𝛼 takes 𝑥, 𝑦 and 𝑧. 𝑒𝛼̂ is the normal vector in 𝛼 direction. Then, Equation 2.31 

can be rewritten as, 

𝑥̈𝑘
𝛼 +∑  

𝛽

∑ 

𝑁

𝑗=1

1

𝑚𝑖

∂2𝑈

∂𝑥𝑖
𝛼 ∂𝑥𝑗

𝛽
𝑥𝑗
𝛽
= 0                   − − − −−  2.33 

Now considering equations 2.32 and 2.33, 

𝜔2𝑒𝛼̂ −∑  

𝛽

∑ 

𝑁

𝑗=1

1

𝑚𝑖

∂2𝑈

∂𝑥𝑖
𝛼 ∂𝑥𝑗

𝛽
𝑒𝑖𝑞⋅(𝑥𝑗−𝑥𝑖)𝑒𝛽̂ = 0 − − − − −  2.34 

Let’s define 

         𝐷𝛼𝛽(𝒒) =∑  

𝑁

𝑗=1

1

𝑚𝑖

∂2𝑈

∂𝑥𝑖
𝛼 ∂𝑥𝑗

𝛽
𝑒𝑖𝒒⋅(𝒙𝑗−𝒙𝑖)         − − − − −  2.35 
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to be the dynamical matrix, Equation 2.34 can be written as: 

                     𝜔2𝑒𝛼̂ −∑  

𝛽

𝐷𝛼𝛽(𝒒)𝑒𝛽̂ = 0                  − − − − −  2.36 

Based on the principles of linear algebra, it is necessary to establish the following 

secular equation in order to obtain a nontrivial solution for 𝑒𝛼̂. 

                               det |𝐷𝛼𝛽(𝒒) − 𝜔
2𝛿𝛼𝛽| = 0            − − − − −  2.37 

The phonon dispersion relation is defined as the solved eigenvalue 𝜔 as a function of 

𝒒. Phonons can be thought of as the decoupled lattice vibration mode with some 

frequencies as indicated by Equation 2.32. For all crystalline materials, more 

generically, the following relation holds good;  

𝜔2𝑒𝛼(𝑠)̂ −∑  

𝛽

∑ 

𝑠′

𝐷𝛼𝛽(𝒒, 𝑠, 𝑠
′)𝑒𝛽̂(𝑠

′) = 0              − − − − −  2.38 

here the dynamical matrix is 

𝐷𝛼𝛽(𝒒, 𝑠, 𝑠
′) =∑  

𝑁

𝑗=1

1

√𝑚(𝑠)𝑚(𝑠′)

∂2𝑈

∂𝑥𝑖
𝛼(𝑠) ∂𝑥𝑗

𝛽(𝑠′)
𝑒𝑖𝒒⋅(𝑥𝑗−𝑥𝑖) −− −−−  2.39 

The calculation of the dynamical matrix is the primary challenge for phonons since the 

phonon dispersion relation might result in complete information on the thermodynamic 

parameters of a system. One of the most important aspects to consider here is the second 

order force constants  
∂2𝑈

∂𝑥𝑖
𝛼(𝑠) ∂𝑥

𝑗
𝛽(𝑠′)

= Φ𝛼𝛽(𝑖 − 𝑗, 𝑠, 𝑠
′). Given the knowledge of the 

crystal structure and the accessibility of second order force constants as an input, it 

becomes possible to compute several phonon harmonic properties, including but not 

limited to group velocity and specific heat. 

The determination of second order force constants can be done through first-principles 

simulations utilising the crystal structure. 

2.4 Boltzmann Transport Equation 

2.4.1 Phonon-Phonon Scattering 
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The majority of quasiparticle transport properties are computed using the 

semiclassical Boltzmann transport equation, which treats electrons and phonons as 

particles and re-distributes the nonequilibrium state distribution function upon 

collision. Both electron and phonon Boltzmann transport equations have the following 

general form: 

𝑑𝑓𝛼(𝒓, 𝒌, 𝑡)

𝑑𝑡
= (
∂𝑓𝛼
∂𝑡
)

coll 

=
∂𝑓𝛼
∂𝑡
+ 𝑣(𝒌) ⋅ ∇𝒓𝑓𝛼 +

𝑭

ℏ
⋅ ∇𝒌𝑓𝛼    − − − − −  2.40 

Here, the distribution of electrons or phonons with band index 𝛼 is denoted as 𝑓(𝒓, 𝒌, 𝑡) 

in the context of nonequilibrium. The wavevector is represented by 𝒌, while the external 

field, denoted as 𝑭, which is zero in the case of phonons and corresponds to the 

electrical field in electron transport. In a condition of equilibrium, the rate of change 

over time is equal to zero. In the vicinity of a state of near equilibrium, it is possible to 

expand the distribution function on the left-hand side and consider the lowest order 

terms. It is reasonable to make the assumption that the distribution function is solely 

dependent on spatial coordinates through temperature, and that the dependence of the 

momentum distribution is solely driven by the electrochemical potential gradient. This 

assumption is justified by the fact that in the case of heat transfer, the transport of 

phonons and electrons is primarily driven by temperature gradient and electrochemical 

potential gradient. By employing this approximation, one can get the linearized 

Boltzmann transport equation [20] for both phonons and electrons. 

𝑣𝛼(𝒌) ⋅
∂𝑓𝛼
0(𝒌)

∂𝑇
∇𝑇 − 𝑒𝑣𝛼(𝒌) ⋅

∂𝑓𝛼
0(𝒌)

∂𝐸
∇𝜙 = (

∂𝑓𝛼
∂𝑡
)
𝑐𝑜𝑙𝑙
   − − − − −  2.41 

and 

                     𝑣𝜆(𝒒) ⋅
∂𝑛𝜆
0(𝒒)

∂𝑇
∇𝑇 = (

∂𝑛𝜆
∂𝑡
)
𝑐𝑜𝑙𝑙
                         − − − − − 2.42 

where 𝑓𝛼
0(𝒌) =

1

𝑒(𝐸𝛼
0 (𝑘)−𝜇)/𝑘𝑇+1

 and 𝑛𝛼
0(𝒌) =

1

𝑒
ℏ𝜔𝜆
0(𝑞)/𝑘𝑇

−1
 is the equilibrium Fermi-

Dirac distribution and Bose-Einstein distribution of electron band 𝛼 in wavevector 𝒌 

and phonon mode 𝜆 in wavevector 𝒒. 

The single mode relaxation time approximation (SMRTA) is a widely used and 

straightforward method for solving the Boltzmann transport equation. In this technique, 
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the relaxation time associated with each phonon mode or electron band is considered 

as the average time interval between scattering events. The collision phrase on the right-

hand side in the context of SMRTA can be expressed as: 

(
∂𝑛𝜆
∂𝑡
)

coll 

= −
𝑛𝜆 − 𝑛𝜆

0

𝜏𝜆(𝒒)
                       − − − − −  2.43 

Considering equations 2.43 and 2.42 together, one can solve the nonequilibrium 

distribution function: 

𝑛𝜆(𝒒) = −𝜏𝜆(𝒒)𝑣𝜆(𝒒) ⋅
∂𝑛𝜆
0(𝒒)

∂𝑇
∇𝑇    − − − − −  2.44 

where the total heat flux contributed by a single phonon mode is 𝒒𝜆𝒒 = 

1

𝑉
𝑣𝜆𝒒ℏ𝜔𝜆𝒒(𝑛𝜆𝒒 − 𝑛𝜆𝒒

0 ), and 𝒒𝜆𝒒 = −𝜅𝜆𝒒∇𝑇. One could obtain the expression for 

thermal conductivity in a single phonon mode. 

            𝜅𝜆𝒒 = 𝑐𝜆𝒒𝑣𝜆
2𝜏𝜆𝒒                              − − − − −  2.45 

where 𝑐𝜆𝒒 =
ℏ𝜔𝜆𝒒

𝑉

∂𝑛𝜆
0(𝐪)

∂T
=
1

𝑉

∂𝑈𝜆𝒒

∂𝑇
 is the single mode specific heat. By aggregating the 

collective impact of all phonon modes and mitigating the influence of varying 

reciprocal space sampling, the lattice thermal conductivity is given by, 

𝜿 =
1

𝑁𝑞
∑ 

𝒒𝜆

𝑐𝒒𝜆𝑣𝒒𝜆
2 𝜏𝒒𝜆       − − − − −  2.46 

This is under the assumption that distinct phonon modes are decoupled from one 

another and that they would decay separately. Here phonon velocity 𝑣𝜆𝒒 =
∂𝜔𝜆𝒒

∂𝒒
 as 

well as specific heat 𝑐𝜆𝒒 can both be calculated from the phonon dispersion relation 

but phonon relaxation time remains unknown so far. 

The relaxation time approximation can also be employed to represent thermoelectric 

and electrical conductivity characteristics by utilising electron group velocity and 

the relaxation time [20], [21]. 
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𝜎 = −
𝑒2

𝑁𝑉
∑  

𝑛,𝒌

 𝑣𝑛,𝒌
2 𝜏𝑛,𝒌

∂𝑓𝑛,𝒌
∂𝐸𝑛,𝒌

𝑆 = −
1

𝑒𝑇

∑  𝑛,𝒌   (𝐸𝑛,𝒌 − 𝐸𝐹)𝑣𝑛,𝒌
2 𝜏𝑛,𝒌

∂𝑓𝑛,𝒌

∂𝐸𝑛,𝒌

∑  𝑛,𝒌  𝑣𝑛,𝒌
2 𝜏𝑛,𝒌

∂𝑓𝑛,𝒌

∂𝐸𝑛,𝒌

𝜅𝑒 =
1

𝑁𝑉
∑  

𝑛,𝒌

 −
(𝐸𝑛,𝒌 − 𝐸𝐹)

2

𝑇
𝑣𝑛,𝒌
2 𝜏𝑛,𝒌

∂𝑓𝑛,𝒌
∂𝐸𝑛,𝒌

− 𝑇 × 𝑆2𝜎

   − − − − −  2.47 

Because all phonon modes are decoupled there would be no phonon-phonon scattering 

if simply harmonic approximation was used. However, the finite value of lattice 

thermal conductivity indicates that anharmonic factors might influence phonon 

transport. The second order force constant can be extended to third order force 

constants, where 
∂3𝑈

∂𝑥0
𝛼(𝑠) ∂𝑥𝑚

𝛽 (𝑠′) ∂𝑥𝑛
𝛾(𝑠′′)

= Φ𝛼𝛽𝛾(0,𝑚, 𝑛, 𝑠, 𝑠
′, 𝑠′′). While omitting the 

derivation procedure, it is possible to obtain the three-phonon scattering matrix and the 

creation and annihilation operator form of the third order Hamiltonian [22] using the 

third order force constant. 

V3(𝒒𝜆, 𝒒
′𝜆′, 𝒒′′𝜆′′)

 = (
ℏ

8𝑁0𝜔𝒒𝜆𝜔𝒒′𝜆𝜔𝒒′′𝜆
)

1

2

∑  

𝑚,𝑛,𝑠,𝑠′,𝑠′′

 
Φ
0,𝑚,𝑛,𝑠,𝑠′,𝑠′′
𝛼𝛽𝛾

𝑒𝑖𝒒⋅𝒎𝑒𝑖𝒒
′⋅𝒏𝑒𝒒𝜆

𝑠𝛼𝑒
𝒒′𝜆′
𝑠′𝛽
𝑒
𝒒′′𝜆′′
𝑠′′𝛾

√𝑚𝑠𝑚𝑠′𝑚𝑠′′

V3 =
𝑖ℏ

6
∑  

𝒒𝜆,𝒒′𝜆′,𝒒′′𝜆′′

 𝛿𝑮,𝒒+𝒒′+𝒒′′V3(𝒒𝜆, 𝒒
′𝜆′, 𝒒′′𝜆′′)(𝑎𝒒𝜆

† − 𝑎−𝒒𝜆) (𝑎𝒒′𝜆′
† − 𝑎−𝒒′𝜆′) (𝑎𝒒′′𝜆′′

†

         − 𝑎−𝒒′′𝜆′′)                                                                                        − − − − −  2.48

      

Here, 𝑚𝑠 is the atomic mass of this atom and 𝑒𝒒𝜆
𝑠𝛼 is the 𝛼-th Cartesian components in 

phonon eigenvector of mode with wavevector 𝒒 and branch 𝜆 for atom 𝑠 in the primitive 

cell.  

From Equation 2.47, one could observe a quasi-momentum conservation relation 𝒒 +

𝒒′ + 𝒒′′ = 𝑮 which is required in case of three-phonon scattering, where 𝑮 is a 

reciprocal lattice vector. 𝑮 = 0 is the case of normal scattering, while a nonzero 𝑮 

implies the Umklapp scattering. 
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The phonon Boltzmann transport equation can incorporate the three-phonon scattering 

matrix by applying Fermi's Golden Rule, a principle that governs the probability of 

transitions in time-dependent perturbation theory. 

                    𝑃 =
2𝜋

ℏ
|⟨𝑓|𝑉3|𝑖⟩|

2𝛿(𝐸𝑓 − 𝐸𝑖)                               − − − − − 2.49 

where |𝑓⟩ and |𝑖⟩ are the final and initial states respectively and 𝐸𝑓 and 𝐸𝑖 are their 

corresponding energies. 

Figure 2.1 illustrates two distinct forms of three-phonon scattering: one phonon mode 

can divide into two phonon modes, and two phonon modes can be combined to form 

one. Energy conservation (shown in Equation 2.49) and quasi-momentum 

conservation (shown in Equation 2.48) is obeyed. In these two cases, one could 

express the scattering process in terms of changing of phonon occupations: when 

|𝑖⟩ = |𝑛𝒒𝜆, 𝑛𝒒′𝜆′ , 𝑛𝒒′′𝜆′′⟩ and |𝑓⟩ = |𝑛𝒒𝜆 − 1, 𝑛𝒒′𝜆′ + 1, 𝑛𝒒′′𝜆′′ + 1⟩; These can be 

considered in equation (2.49). This leads 

to

𝑃𝑞𝜆,
𝒒′′𝜆′′,𝒒′𝜆′

=
2𝜋

ℏ
|⟨𝑛𝒒𝜆 − 1, 𝑛𝒒′𝜆′ + 1, 𝑛𝒒′′𝜆′′ + 1|𝑉3|𝑛𝒒𝜆, 𝑛𝒒′𝜆′ , 𝑛𝒒′′𝜆′′⟩|

2
𝛿(𝜔𝒒𝜆 −

                                                                                                      𝜔𝒒′𝜆′ − 𝜔𝒒′′𝜆′′)     

𝑃
𝑞𝜆,𝒒′𝜆′
𝒒′′𝜆′′

=
2𝜋

ℏ
|⟨𝑛𝒒𝜆 − 1, 𝑛𝒒′𝜆′ − 1, 𝑛𝒒′′𝜆′′ + 1|𝑉3|𝑛𝒒𝜆, 𝑛𝒒′𝜆′ , 𝑛𝒒′′𝜆′′⟩|

2
𝛿(𝜔𝒒𝜆 + 𝜔𝒒′𝜆′ −

                                                                                                                𝜔𝒒′′𝜆′′)   − − −  2.50     

        

Since both these two are phonon scattering schemes, the net scattering rate for the these 

two processes are 𝑃
𝒒𝜆,𝒒′𝜆′
𝒒′′𝜆′′

− 𝑃
𝒒′′𝜆′′
𝒒𝜆,𝒒′𝜆′

, and 𝑃𝑞𝜆
𝒒′𝜆′,𝒒′′𝜆′′

− 𝑃
𝑞′𝜆′,𝒒′′𝜆′′
𝒒𝜆

. By carefully taking 

the forms of the Equation 2.50 & 2.44 and counting the scattering contribution from 

phonon 𝒒′𝜆′ and 𝒒′′𝜆′′, the equation is: 

𝑣𝜆(𝒒) ⋅
∂𝑛𝜆
0(𝒒)

∂𝑇
∇𝑇 = 

= ∑  

𝑞′𝜆′,𝑞′′𝜆′′

[(𝑃
𝑞𝜆,𝒒′𝜆′
𝒒′′𝜆′′

− 𝑃
𝒒′′𝜆′′,

𝒒𝜆,𝒒′𝜆′
) +
1

2
(𝑃𝑞𝜆
𝒒′𝜆′,𝒒′′𝜆′′

− 𝑃
𝒒′𝜆′,𝒒′′𝜆′′
𝒒𝜆

)]     − − − − 2.51 
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The full phonon BTE can be determined now by utilising Equation 2.48 as the form of 

the three-phonon scattering matrix and Equation 2.50 as an expression for the Fermi 

Golden Rule pertaining to the three phonon scattering rate. 

Solving the problem becomes intricate due to the interdependence of the phonon 

distribution 𝑛𝒒𝜆, 𝑛𝒒′𝜆′ , 𝑛𝒒′′𝜆′′, which are connected on the right-hand side of equation 

2.51. One often employed method involves utilising an iterative approach, wherein the 

nonequilibrium phonon distribution function is initially approximated by expanding it 

in the vicinity of its equilibrium counterpart. 

                    𝑛𝑞𝜆 = 𝑛𝑞𝜆
0 −

𝑘𝐵𝑇

ℏ

∂𝑛𝒒𝜆

∂𝜔𝒒𝜆
Λ𝐪𝜆                                − − − −  2.52 

Where the expansion coefficient Λ𝐪𝜆 is unknown so far. 

 

Fig. 2.1: Two types of three-phonon scattering process. 

Phonons are shown as solid lines accompanied by arrows in figure 2.1. Here, a) 

illustrates the process wherein a phonon of high frequency undergoes decay, resulting 

in the production of two phonon modes. Conversely, (b) demonstrates the 

amalgamation of two phonons, leading to the formation of a single phonon with an 

elevated frequency. 

When considering the whole phonon Boltzmann transport equation (BTE), neglecting 

the expansion component initially results in an analogous solution to the phonon 

relaxation time approximation (RTA) solution. By conducting a comparative analysis 

between the phonon relaxation time approximation (RTA) solution and the 

comprehensive three-phonon scattering rates, it is possible to derive the phonon 

relaxation time. 
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1

𝜏𝒒𝜆
= 2𝜋 ∑  

𝒒′𝜆′𝒒′′𝜆′′

 [|𝑉3(𝒒𝜆, 𝒒
′𝜆′, −𝒒′′𝜆′′)|2(𝑛𝒒′𝜆′ − 𝑛𝒒′′𝜆′′)𝛿(𝜔𝒒𝜆 + 𝜔𝒒′𝜆′ − 𝜔𝒒′′𝜆′′)𝛿(𝒒

+𝒒′ − 𝒒′′ + 𝑮)

 +|𝑉3(−𝒒𝜆, 𝒒
′𝜆′, 𝒒′′𝜆′′)|2(𝑛𝒒′𝜆′ + 𝑛𝒒′′𝜆′′ + 1)𝛿(𝜔𝒒𝜆 − 𝜔𝒒′𝜆′  

−𝜔𝒒′′𝜆′′)𝛿(𝒒 − 𝒒
′ − 𝒒′′ + 𝑮)]                                           − − − − 2.53

 

This expression pertains to the characterization of two important factors in three 

phonon scattering: the first one concerns the magnitude of the three-phonon scattering, 

which is specified by the 𝑉3 scattering matrix. According to equation 2.48, the matrix 

exhibits a dependence on the third order force constants. In the absence of phonon 

anharmonicity, the scattering is inherently zero, thereby establishing a direct 

relationship between phonon anharmonicity and the strength of three-phonon 

scattering. Specifically, greater phonon anharmonicity corresponds to increased three-

phonon scattering intensity. The second aspect pertains to the scattering phase space 

[23] for three phonon scattering, this factor quantifies the number of scattering channels 

that can occur while adhering to the conservation principles of energy and momentum. 

The development of a comprehensive iterative solution extends beyond the RTA 

approach. RTA treats all scattering processes equally, which includes both the 

Umklapp process and the normal process, whereas the normal process does not 

contribute to thermal resistance. This is the rationale to go beyond RTA.  

Equation 2.52 serves as the starting point for this iterative solution, in which the Λ𝐪𝜆 

is decomposed into three Cartesian components based on the temperature gradient: 

Λ𝑞𝜆 =∑  

𝛼

Θ𝑞𝜆
𝛼 ∇𝛼𝑇                                        − − − − 2.54 

By using this in the phonon BTE, 

𝑣𝜆
𝛼(𝒒) ⋅

∂𝑛𝜆
0(𝒒)

∂𝑇
 

 = ∑  

𝒒′𝜆′,𝒒′′𝜆′′

  [𝑃̃
𝑞𝜆,𝒒′𝜆′
𝒒′′𝜆′′

(Θ𝒒′′𝜆′′
𝛼 − Θ𝒒′𝜆′

𝛼 − Θ𝒒𝜆
𝛼 ) +

1

2
𝑃̃𝑞𝜆
𝒒′′𝜆′′,𝒒′𝜆′

(Θ𝒒′′𝜆′′
𝛼 + Θ𝒒′𝜆′

𝛼

−Θ𝒒𝜆
𝛼 )]                                                                                                 − − − − 2.55
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 where 𝑃̃
𝑞𝜆,𝑞′𝜆′
𝑞′′𝜆′′

 is the transition probabilities corresponding to equilibrium probabilities 

(the RTA transition probability). In order to solve this equation, the first Brillouin zone 

is discretized into a uniform grid, and subsequently, the RTA solution is utilised as the 

basis for the iterative solution. In order to ensure numerical stability [24] ,the energy 

conservation principle is commonly represented as a Gaussian function with adaptive 

broadening, rather than a delta function. 

2.5.  Temperature Dependent Effective Potential (TDEP) Methodology 

In order to calculate the Lattice thermal conductivity, it is necessary to acquire 

third-order force constants. The force constants as seen in above section is of a third-

order expansion in the Taylor series representation of the lattice potential energy. 

Various software packages may be employed to derive force constants from ab initio 

computations. Examples of such software are Phono3py [25], [26], ShengBTE [27]. 

The temperature-dependent effective potential (TDEP) method, as established by 

Hellman et al. [28][29][30] , is a promising approach for conducting finite temperature 

lattice dynamics. The TDEP package comprises programmes designed for the 

extraction of effective force constants of second, third, or higher orders. Additionally, 

this computational tool may be employed to determine other parameters, including as 

phonon dispersions, free energies, and the lattice thermal conductivity (LTC), while 

considering various phonon scattering processes. 

In the present study, the technique of TDEP employs atomic positions and forces 

obtained by Density Functional Theory (DFT) calculations as an input. 

The TDEP approach is mostly utilized for the purpose of obtaining a model 

Hamiltonian in order to carry out lattice dynamics. When the Hamiltonian is expanded 

to the third order, the expression that follows is; 

𝐻̂ = 𝑈0 +∑  

𝑖𝛼

𝑝𝑖𝛼
2

2𝑚𝑖
+
1

2!
∑  

𝑖,𝑗

∑ 

𝛼,𝛽

Φ𝑖𝑗
𝛼𝛽
𝑢𝑖
𝛼𝑢𝑗
𝛽
+
1

3!
∑  

𝑖,𝑗,𝑘

∑  

𝛼,𝛽,𝛾

Φ𝑖𝑗𝑘
𝛼𝛽𝛾
𝑢𝑖
𝛼𝑢𝑗
𝛽
𝑢𝑘
𝛾
   

                                                                                                                       − − − − 2.56 

 

The first two components on the right-hand side pertain to the potential energy of the 

stationary lattice and the kinetic energy of the atoms. The displacement of equilibrium 

of atom 𝑖 in a particular direction 𝛼 is indicated by 𝑢𝑖
𝛼, and Φ𝑖𝑗

𝛼𝛽
 and Φ𝑖𝑗𝑘

𝛼𝛽𝛾
 are the 
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second- and third-order force constants respectively, accounting for two- and three-

body atomic interactions. The force constants in question are commonly denoted as 

harmonic and anharmonic force constants. The force constant matrix for a two-body 

interaction consists of 32  variables and is given as  

                     Φ𝑖𝑗 =

(

 
 
Φ𝑖𝑗
𝛼𝛼 Φ𝑖𝑗

𝛼𝛽
Φ𝑖𝑗
𝛼𝛾

Φ𝑖𝑗
𝛽𝛼

Φ𝑖𝑗
𝛽𝛽

Φ𝑖𝑗
𝛽𝛾

Φ𝑖𝑗
𝛾𝛼

Φ𝑖𝑗
𝛾𝛽

Φ𝑖𝑗
𝛾𝛾

)

 
 
                           − − − − 2.57 

 

In the case of three-body interaction, the force constant matrix comprises a total of 33 

variables. Various methodologies have been applied in the context of TDEP (Time-

Dependent Effective Potential) to effectively minimise the number of fforce constants 

that need to be calculated. One strategy that can be employed involves the utilisation of 

constraints from the principles of crystal symmetry. The presence of symmetry 

constraints leads to the inclusion of both reducible (symmetry equivalent) and 

irreducible (inequivalent) components in the variable Φ, hence lowering the overall 

number of unknown variables. The cutoff radius, denoted as 𝑟𝑐, is an additional factor 

that influences the number of force constants. The variable 𝑟𝑐 denotes a region of 

sphere that encompasses the two- or three-body interactions. In the region beyond the 

sphere, the interactions are assumed to be zero. 

Convergence testing can yield an adequate choice for the 𝑟𝑐 parameter, unless the 

simulation explicitly accounts for all potential interactions within the simulation cell. 

Depending on the material property to be calculated and the intended degree of 

precision, its value will vary. In the context of the TDEP framework, it is possible to 

assign distinct values to 𝑟𝑐 for second- and third-order force constants. A detailed 

analysis can be found here [31]. 

The cumulative force acting on an atom arises from the collective influence of all 

potential n-body interactions. However, for the model, the force exerted on the atom is 

dependent upon two- and three-body interactions specifically involving the atom. The 

force exerted on atom 𝑖 in the direction 𝛼 can be mathematically represented as 

                   𝑓𝑖𝛼
M =∑  

𝑗

∑ 

𝛽

Φ𝑖𝑗
𝛼𝛽
𝑢𝑗
𝛽
+
1

2
∑  

𝑗𝑘

∑ 

𝛽𝛾

Φ𝑖𝑗𝑘
𝛼𝛽𝛾
𝑢𝑗
𝛽
𝑢𝑘
𝛾
    − − − − 2.58 
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The forces acting on the atoms within the cell may be collectively categorised as the 

force vector 𝐅M. The TDEP methodology operates by aligning the forces of the model, 

denoted as 𝐅M, with the forces computed using Density Functional Theory (DFT), 

represented as 𝐅DFT By reducing the difference between 𝐅M and 𝐅DFT, one may derive 

force constants that most accurately depict the system. The minimization problem is 

given as 

min
Φ
 Δ𝐅 =

1

𝑁c
∑ 

𝑁c

𝑖=1

|𝐅DFT
𝑖 − 𝐅M

𝑖 |                         − − − − 2.59 

here the sum is spread out over 𝑁c configurations and a least-squares solution is used 

to minimize the force difference. 

The idea is to create thermally excited configurations that are uncorrelated, which will 

serve as supercells for input in density functional theory (DFT) computations to 

determine the 𝐅DFT . The selected configurations should exhibit a comprehensive and 

varied representation of the phase space. The use of ab initio molecular dynamics is 

frequently employed in order to acquire realistic configurations at the designated 

temperature. One limitation of this technique is that there exists a high degree of 

correlation among the various configurations obtained at each time step in the 

molecular dynamics simulation. Hence, it is advantageous to extract a subset of the 

molecular dynamics run, such as by selectively analyzing every fifth- or tenth-time step. 

Hence, only a portion of the computations proves to be valuable as input for TDEP. In 

the context of molecular dynamics, it is imperative to ensure that the system is 

equilibrated at the designated temperature prior to commencing the sampling process. 

 

The process of acquiring a collection of thermally excited configurations is as follows: 

1) In order to obtain the equilibrium positions, the primitive cell is relaxed. 2) The 

elastic tensor is computed. 3) The relaxed cell is utilized to construct an adequately 

sized supercell. 4) The configurations of thermally excited supercells are computed 

using the atomic displacements and velocities that were calculated. Then, the second- 

and third-order force constants at a designated temperature, T, could be obtained by 

gathering configurations from an ensemble existing at T [32].  

TDEP is an efficient method for obtaining force constants of the second and third 

orders; however, it requires substantial computational resources. As a general rule, it is 
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specified [90] that convergence testing can commence with approximately ten 

equations per irreducible force constant. 3𝑁𝑎 equations are generated for every 

supercell configuration whose forces are computed using DFT, where 𝑁𝑎 denotes the 

number of atoms. 

 

2.6 Packages Utilized 

The list of packages utilized in the current work are as follows:  i) VASP ii) 

CASTEP iii) VESTA   iv) TDEP  

 

VASP: The Vienna Ab initio Simulation Package (VASP) [33] is a software 

package designed for the purpose of simulating materials at the atomic scale. 

Furthermore, it may be employed for the examination of quantum mechanical 

molecular dynamics. This computational method offers approximate solutions to the 

many-body Schrödinger equation through the resolution of the Kohn-Sham equations 

utilising plane wave basis sets. The Kohn-Sham equations allow for the determination 

of numerous physical parameters, including orbitals, electronic charge density, and 

local potential. In order to establish the interactions between ions and electrons, the use 

of norm-conserving pseudopotentials or a projector-augmented wave technique is often 

employed. The aforementioned is a licenced commercial product, and VASP has 

several applications including the calculation of frequency dependent dielectric 

function, band structures, structural optimisations, phonons, density of states, and 

optical characteristics. In the current investigation, the Vienna Ab initio Simulation 

Package (VASP) is utilised to conduct Density Functional Theory (DFT) analysei. 

 

CASTEP: The CASTEP package [34], is extensively employed in the field of materials 

science for doing calculations based on density functional theory (DFT) to determine a 

range of material characteristics.  This computational tool exhibits the capacity to do 

calculations pertaining to atomic structure, electronic response, and energetics. 

Furthermore, it has the capability to simulate several characteristics of atomic materials, 

including but not limited to optical qualities, band structure, and mechanical properties. 

The current investigation uses CASTEP as a tool for doing Raman Spectral analysis.  

 

VESTA: The VESTA [35] software package is a freely available 3D visualisation tool 

designed for academic usage. It facilitates the examination and interpretation of diverse 
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structural models and data. The current investigation employs VESTA as a tool for 

visualising crystal structures. 

 

TDEP: As mentioned, the TDEP Package (Temperature-Dependent Effective Potential 

Package) [28][29][30], is a comprehensive set of tools designed for the study of lattice 

dynamics under finite temperature conditions. The features encompassed comprise of 

obtaining temperature-dependent phonon frequencies, anharmonic free energy, and 

lattice thermal conductivity, amongst others. The current work employs the use of 

TDEP for performing lattice thermal conductivity analysis. 
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                  CHAPTER-3 

Phonon transport and anomalous 

lattice thermal conductivity in 

Alkaline earth Chalcogenides and 

Alkali Halides. 
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The first part of this chapter focuses on a detailed and comparative study on phonon 

transport of Alkaline earth chalcogenides (AEC’s) consisting of MCh (M = Mg, Ca, Sr, 

Ba and Ch = O, S, Se,Te)  compounds in order to provide insights to achieve low L 

materials through phonon engineering. More light is shed on understanding lattice 

dynamics, phonon transport, and mechanical properties of 16 MCh (M = Mg, Ca, Sr, 

Ba and Ch = O, S, Se, Te) compounds. 

The second part of this chapter deals with another set of isostructural binary 

systems, Alkali Halides (AH’s), consisting of MX (M = Li, Na, K, Rb, Cs and X = F, 

Cl, Br, I) compounds and presented in comparison with the results obtained with 

AEC’s. 

Materials exhibiting a low lattice thermal conductivity (L) have garnered 

significant attention due to their potential applications in several fields such as 

thermoelectrics [1], [2], thermal barrier coatings [3], thermal insulation [4], and thermal 

energy management. Over the last decade, researchers have made significant efforts to 

create suitable materials for energy conversion applications. The binary systems of 

alkaline-earth chalcogenides, denoted as MCh (where M represents Mg, Ca, Sr, and Ba, 

and Ch represents O, S, Se, and Te), have garnered significant interest due to their 

applications in thermoelectrics [5]–[7]. Several materials have been identified as 

having promising thermoelectric properties, including Bulk MX and its 2D equivalents 

[5]–[8], p-type PbTe and MTe nanocrystals[9], CaTe-SnTe [10], highly doped SrTe 

with PbTe [11], [12], and BaTe-PbTe [13]. These materials have demonstrated 

outstanding thermoelectric figure of merit (ZT) values ranging from 0.5 to 1.32 [5], 

[14]. 

 

3.1. Alkaline Earth Chalcogenides, MCh (M = Mg, Ca, Sr, Ba and Ch = O, S, 

Se,Te)  

The MCh (M = Mg, Ca, Sr, and Ba and Ch = O, S, Se, and Te) compounds are 

extensively studied from the theoretical perspective, which mainly focused on 

exploring the elastic [15], [16],lattice dynamics [17]–[20], thermodynamic [21], [22] 

and thermoelectric properties [5]–[7] at ambient and/or high-pressure conditions. 

Nevertheless, there has been limited work focused on understanding the phonon 

transport in compounds such as MgSe [23], MgTe [24], CaCh (where Ch represents O, 

S, Se, and Te) [25], and MTe (where M represents Mg, Ca, Sr, Ba, and Pb) [26]. Hence, 
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doing a comprehensive and comparative analysis of phonon transport in MCh 

compounds (where M represents Mg, Ca, Sr, and Ba, and Ch represents O, S, Se, and 

Te) offers valuable insights into the development of materials with significantly 

reduced thermal conductivity (referred to as (ultra)low L) by phonon 

engineering which is of utmost importance in the quest for discovering high 

thermoelectric figure of merit (ZT) materials. This work aims to provide more insights 

into the lattice dynamics, phonon transport, and mechanical characteristics of 16 MCh 

compounds (where M represents Mg, Ca, Sr, and Ba, and Ch represents O, S, Se, and 

Te) under ambient conditions. It is noteworthy that there are anomalous patterns 

observed in the values of L for the CaCh (CaS > CaO > CaSe > CaTe), SrCh (SrSe > 

SrO > SrS > SrTe), and BaCh (BaTe > BaSe > BaS > BaO) series. In particular, the 

observed anomalous [27] trend in the BaCh (and to some extent in SrCh and CaCh [25]) 

series deviates from the trend predicted by their atomic mass. In our study, it is observed 

that BaO, BaS, and MgTe, which are among the 16 compounds analysed, demonstrated 

a low L behaviour during the temperature range of 300−800 K. This observation is 

noteworthy considering their relatively low atomic mass and their crystalline structure, 

which resembles that of rocksalt NaCl-type (B1). The calculated lattice dynamics, 

phonon lifetimes, scattering rates, phonon group velocities at 300 K, and mechanical 

characteristics are used to comprehensively analyse the underlying processes for such 

abnormal trends and low L behaviour. Additionally, the impact of tensile strain on the 

phonon transport properties and lattice dynamics of the compounds BaO, BaS, and 

MgTe has been examined and thoroughly discussed. 

3.1.1 Computational Details 

All first-principles calculations for MCh (Mg, Ca, Sr, and Ba with Ch = O, S, 

Se, and Te) compounds were performed using the Vienna Ab initio Simulation Package 

(VASP) [28]. The PBEsol functional was utilised to analyse the exchange-correlation, 

while the pseudopotential based projected augmented wave (PAW) method was 

employed to examine the electron−ion interactions. As plane wave basis orbitals, 10 

and 6 valence electrons were used for alkaline-earth metals (Mg, Ca, Sr, and Ba) and 

chalcogens (O, S, Se, and Te). For the expansion of the plane wave basis set, a 

cutoff energy of 520 eV was used. In the irreducible Brillouin zone, a spacing of 2π × 

0.024 Å−1 was utilised for the k-mesh. MCh compounds (where M represents Mg, Ca, 
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Sr, and Ba and Ch represents O, S, Se, and Te) are classified as polar semiconductors, 

in order to account for dipole−dipole interactions, Born effective charges and dielectric 

constants are computed utilizing density functional perturbation theory. The 

temperature-dependent effective potential (TDEP) [29]–[31] approach is used to 

determine the lattice dynamics and thermal conductivity of MCh compounds (M = Mg, 

Ca, Sr, and Ba; Ch = O, S, Se, and Te), taking into consideration harmonic (second) 

and anharmonic (third) interatomic force constants (IFCs). The expansion of 

interatomic force constants (IFCs) was considered up to the third order in the current 

study, and the corresponding model Hamiltonian is shown below: 

𝐻 = 𝑈0 +∑  

𝑖

𝑝𝑖
2

2𝑚𝑖
+
1

2!
∑  

𝑖𝑗

∑ 

𝛼𝛽

Φ𝑖𝑗
𝛼𝛽
𝑢𝑖
𝛼𝑢𝑗
𝛽

+
1

3!
∑  

𝑖𝑗𝑘

∑ 

𝛼𝛽𝛾

𝜓𝑖𝑗𝑘
𝛼𝛽𝛾
𝑢𝑖
𝛼𝑢𝑗
𝛽
𝑢𝑘
𝛾

            − − − − 3.1 

where 𝑝𝑖
1 and 𝑢𝑖

𝛼 are the momentum and displacement of atom i, respectively. Φ𝑖𝑗
𝛼𝛽

 and 

𝜓𝑖𝑗𝑘
𝛼𝛽𝛾

 are second- and third-order force constant matrices, respectively. In order to 

calculate the harmonic (second) and anharmonic (third) interatomic force constants 

(IFCs), ab initio molecular dynamics (AIMD) simulations at 300 K were conducted 

using the VASP. The AIMD calculations were performed for all the compounds under 

investigation for 5000 MD steps with a time-step of 1 fs (equivalent to 5 ps) and a 

supercell of 128 atoms (4 × 4 × 4). To assure convergence of calculated lattice dynamics 

and phonon transport properties, interactions up to the ninth nearest neighbour were 

incorporated for second and third order IFCs. A Nose−Hoover thermostat [32], [33] 

was utilised to regulate the temperature. The calculation of lattice thermal conductivity 

involves the iterative solution of the complete Boltzmann transport equation (BTE), 

which takes into account isotope and three-phonon scatterings originating from the 

natural distribution on a 25 ×25 × 25 q-point grid. 

The thermal conductivity tensor is given by 

𝑘𝛼𝛽 =
1

(2𝜋)3
∑ 

𝑠

∫ 𝑑𝑞𝐶𝜆𝑣𝜆𝛼𝑣𝜆𝛽𝜏𝜆𝛽         − − − − 3.2 

where 𝐶𝜆 is the contribution per mode λ= (s, q) to specific heat, α and β are Cartesian 

components, and 𝑣𝛽 and 𝜏𝛽 are phonon velocity and scattering time, respectively. The 

scattering rates are calculated from a full inelastic phonon Boltzmann equation which 

is given by  
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𝑘B𝑇𝑣𝜆∇𝑇
∂𝑛0𝜆
∂𝑇

= ∑  

𝜆′𝜆′′

[𝑃𝜆𝜆′𝜆′′
+ (Ψ𝜆′′ −Ψ𝜆′ −Ψ𝜆)

+
1

2
𝑃𝜆𝜆′𝜆′′
− (Ψ𝜆′′ +Ψ𝜆′ −Ψ𝜆)]

   − − − − 3.3 

 

The left-hand side represents the phonon diffusion induced by the thermal gradient ∇𝑇 

and 𝑛0𝜆 is the equilibrium phonon distribution function. The right-hand side 

corresponds to the collision term for three-phonon interactions. 𝑣𝜆 is the phonon 

velocity in mode 𝜆, 𝑃𝜆𝜆′𝜆′′
+ , and 𝑃𝜆𝜆′𝜆′′

− are three phonon scattering rates for absorption 

(𝜆 + 𝜆′ → 𝜆′′) and emission (𝜆 → 𝜆′ + 𝜆′′) processes, respectively. 

3.1.2 Results and discussion 

3.1.2.1 Crystal structure 

Binary alkaline-earth chalcogenides, denoted as MCh (where M represents Mg, 

Ca, Sr, and Ba and Ch represents O, S, Se, and Te), crystallize in the face-centered 

cubic (FCC) structure of NaCl (B1)-type rocksalt structure having a space group of 

Fm3m with Z =4 formula units (f.u.) per unit cell at ambient conditions [34]–

[39]. MgSe and MgTe have a high degree of polymorphism and crystallize in rocksalt 

(B1), zincblende (B3), wurtzite (B4), and NiAs (B8) forms. At ambient temperature, 

MgTe crystallizes into the B3 [40] and B8 [41] structures, as determined by X-ray 

diffraction. The thermodynamic stability of the B3 [42] phase for MgSe, as well as both 

B3 [42] and B8 [43]–[45] for MgTe, is revealed by first-principles calculations under 

ambient conditions. In addition, both MgSe and MgTe compounds exhibit dynamic 

stability (metastability) in the rocksalt-type B1 structure. So, rocksalt-type B1 structure 

is considered for all sixteen MCh compounds where (M = Mg, Ca, Sr, and Ba and Ch 

= O, S, Se, and Te) are under investigation.  

This enables a direct comparison of the calculated properties of these compounds. The 

ground-state equilibrium lattice constant for MCh compounds is presented in Table 3.1. 

This value is compared to previously reported X-ray diffraction measurements [34]–

[39][46]–[48] and previous first-principles calculations [5]–[7][49]–[52], and a strong 

agreement is observed between the two. Furthermore, the electron localization function 

(ELF) was computed for the compounds BaO and MgTe. 
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Fig 3.1: Crystal structure of BaO and electron localization function (ELF) of BaO and 

MgTe along the (001) plane. Light green, red, thick orange and light brown color balls 

represent Ba, O, Mg and Te atoms, respectively. 

 

Table 3.1: Calculated equilibrium lattice constant (a, in A˚) of MCh (M = Mg, Ca, Sr, 

Ba and Ch = O, S, Se, Te) compounds at ambient pressure using PBEsol functional and 

are compared with available X-ray diffraction data and other first principles 

calculations. 

Compound This work Expt.            Others 

MgO 4.21 4.21 [53] 4.165 [49],4.213 [54] 

MgS 5.176 5.203 [55] 5.19 [56],5.234 [42] 

MgSe 5.445 5.463 [46] 5.46 [56],5.512 [42] 

MgTe 5.901 - 5.98 [56],5.980 [42] 

CaO 4.776 4.81 [47] 4.72 [49],4.828 [6] 

CaS 5.639 5.689 [39] 5.67 [19],5.712 [6] 

CaSe 5.874 5.916 [39] 5.91 [19],5.965 [6] 

CaTe 6.298 6.348 [39] 6.33 [19],6.399 [6] 

SrO 5.134 5.16 [34] 5.073 [49],5.184 [7] 

SrS 5.978 6.024 [35] 6.076[52],6.05 [7] 

SrSe 6.205 6.236 [39] 6.323 [52],6.3 [7] 

SrTe 6.614 6.66 [57] 6.76 [52],6.718 [7] 

BaO 5.533 5.52 [36] 5.562 [58],5.614 [5] 

BaS 6.363 6.387 [36] 6.44 [59],6.407 [58] 

BaSe 6.578 6.59 [60] 6.593 [61],6.640 [58] 

BaTe 6.968 6.99 [60] 7.006 [61],6.989 [58] 

Figure 3.1 shows that metal cations (Mg2+, Ba2+) donate electrons while anions 

(O2-, Te2-) gain electrons, indicating a complete charge transfer and resulting in strong 

ionic bonding, and this is consistent with the fact that a large electronegativity (on the 
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Pauling scale) difference (2.55 for BaO) between Ba (0.89) and O (3.44) results in 

strong ionic character. The low electronegativity difference (0.79 for MgTe) between 

Mg (1.31) and Te (2.10) atoms implies that MgTe has polar covalent bonding as well 

as ionic bonding. The distinct type of chemical bonding has a significant impact on the 

L of these materials. 

3.1.2.2 Anharmonic lattice dynamics and thermal conductivity 

It is essential to investigate lattice dynamics, including anharmonic effects, in 

order to comprehend phonon transport in materials. As a preliminary step, the phonon 

dispersion curves (Figure 3.2) of MCh (M = Mg, Ca, Sr, and Ba ; Ch = O, S, Se, and 

Te) compounds at 300 K were calculated and carefully analysed. The absence of 

imaginary frequencies along high symmetry directions of the Brillouin zone (as shown 

in Figure 3.2) indicates that each material under investigation is dynamically 

stable.  MCh (M = Mg, Ca, Sr, and Ba and Ch = O, S, Se, and Te) compounds contain 

two atoms per primitive cell, resulting in six vibrational modes, three of which are 

optical and three of which are acoustic (3N; N = number of atoms per primitive cell). 

The accurate description of phonon spectra in polar materials is dependent on 

dipole−dipole interactions.  

Calculated Born effective charges (see Table 3.2) and high-frequency dielectric 

constants integrate these interactions into a dynamic matrix, resulting in a splitting 

between the longitudinal optic (LO) and transverse optic (TO) phonon modes (Figure 

3.2). The three phonon optic modes divide into two degenerate TO (ωTO) and one LO 

(ωLO) modes along the Γ-direction as a result of this LO-TO splitting. In particular, 

large LO-TO splitting is found for MO (M = Mg, Ca, Sr, and Ba) compounds; it 

decreases from MO > MS > MSe > MTe (M = Mg, Ca, Sr, and Ba) compounds and 

increases from MgO < CaO <SrO < BaO (see Figure 3.2 and Tables 3.2 and 3.3). The 

compounds MCh (where M = Mg, Ca, Sr, and Ba and Ch = O, S, Se, and Te) exhibit 

comparable phonon band characteristics and displayed a notable phonon softening as 

atomic mass increased, from Mg → Ca → Sr → Ba to O → S → Se → Te. These 

features correlate with earlier first-principles lattice dynamics computations [5]–

[7][26]. 
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Fig 3.2: Calculated room temperature phonon dispersion curves of (a) MgCh, (b) CaCh, 

(c) SrCh and (d) BaCh compounds at PBEsol equilibrium volume; where Ch = O, S, Se 

and Te. 

 

Table 3.2: Calculated Born effective charges (BECs,in electron charge) for MCh (M = 

Mg, Ca, Sr, Ba and Ch = O, S, Se, Te) compounds. The values given in parenthesis are 

the difference between LO and TO modes (LO-TO, in THz). 

  
O S Se Te 

Mg 1.98 (9.16) 2.31 (4.63) 2.43 (4.38) 2.67 (2.88) 

Ca 2.36 (8.11) 2.35 (3.48) 2.35 (2.4) 2.38 (1.73) 

Sr 2.46 (7.62) 2.4 (3.05) 2.39 (1.89) 2.4 (1.33) 

Ba 2.77 (8.54) 2.62 (3.08) 2.6 (1.91) 2.59 (1.25) 

 

 

Table 3.3: Calculated transverse optical (ωTO, in cm−1), longitudinal optical (ωLO, in 

cm−1) phonon modes and the difference between LO and TO modes (ωLO - ωTO, in cm−1) 

at 300 K for 16 MCh compounds are compared with the available experimental and 

previous first-principles calculations. The values given in parenthesis are in THz units. 

 

Compound Method      ωTO      ωLO ωLO - ωTO 

MgO This work 390.11 

(11.68) 

696.06 

(20.84) 

305.94 

(9.16) 
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MgS This work 243.82 (7.3) 398.46 

(11.93) 

154.64 

(4.63) 
 

Others 220.64 [50] 385.06 [50] 165.06 

MgSe This work 185.04 

(5.54) 

331.33 (9.92) 146.29 

(4.38) 
 

Others 171 [62] 296 [62] 123.31 

MgTe This work 147.29 

(4.41) 

243.49 (7.29) 96.19 (2.88) 

 
Others 141 [63] 234.1 [63] 99.68 

CaO This work 317.63 

(9.51) 

588.51 

(17.62) 

270.87 

(8.11) 
 

Expt 311 [64] 585 [64] 
 

CaS This work 224.11 

(6.71) 

340.35 

(10.19) 

116.23 

(3.48) 
 

Others 231.42 [65] 336.65 [65] 
 

 
Expt 229[66] 342 [66] 

 

CaSe This work 177.02 (5.3) 257.18 (7.7) 80.16 (2.4) 
 

Others 178.4 [63] 251.4 [63] 
 

 
Expt 168 [66] 220 [66] 

 

CaTe This work 155.98 

(4.67) 

213.76 (6.4) 57.78 (1.73) 

 
Others 156.2 [63] 209 [63] 

 

SrO This work 202.74 

(6.07) 

457.25 

(13.69) 

254.51 

(7.62) 
 

Others 217.85 [67] 474.13 [67] 
 

 
Expt 224.15 [68] 484.99 [68] 

 

SrS This work 179.02 

(5.36) 

280.90 (8.41) 101.87 

(3.05) 
 

Others 194.045 [69] 290.577 [69] 
 

SrSe This work 136.60 

(4.03) 

197.73 (5.92) 63.13 (1.89) 

 
Others 127.496 [69] 193.193 [69] 
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SrTe This work 113.90 

(3.41) 

158.32 (4.74) 44.42 (1.33) 

 
Others 110.717 [69] 156.738 [69] 

 

BaO This work 107.55 

(3.22) 

392.78 

(11.76) 

285.24 

(8.54) 
 

Expt 146 [64] 440 [64] 
 

BaS This work 142.95 

(4.28) 

245.82 (7.36) 102.87 

(3.08) 
 

Expt 150 [66] 246 [66] 
 

BaSe This work 99.19 (2.97) 162.99 (4.88) 63.79 (1.91) 
 

Expt 100 [66] 156 [66] 
 

BaTe This work 90.18 (2.7) 131.93 (3.95) 41.75 (1.25) 

 

 
Fig 3.3: Calculated lattice thermal conductivity (L) of (a) MgCh, (b) CaCh, (c) SrCh 

and (d) BaCh compounds as a function of temperature; Ch = O, S, Se and Te at PBEsol 

equilibrium volume. 

 

Table 3.4: Calculated lattice thermal conductivity (L, in Wm−1K−1) at 300 K for 16 

MCh compounds.  𝑘L
𝑎 - calculated at the PBESol equilibrium lattice constant; 𝑘L

E𝑏- 

calculated at the experimental lattice constant. 
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        This Work                                     Others 

Compound 𝒌𝐋
𝒂  𝒌𝐋

𝐄𝒃  Expt 𝒌𝟑𝐩𝐡
𝐇𝐀   𝒌𝟑𝐩𝐡

𝐒𝐂𝐏𝐇 𝒌𝟑,𝟒𝐩𝐡
𝐒𝐂𝐏𝐇  Others 

MgO 61.65 61.65 52 

[70] 

52.1 

[71] 

58.7 

[71] 

50.1 

[71] 

- 

MgS 22.59 18.74 - - - - - 

MgSe 9.8 7.55 - - - - - 

MgTe 4.45 4.45 - - - - 3 [26] 

CaO 29.94 24.77 30 

[70] 

21.3 

[71] 

25.1 

[71] 

22.2 

[71] 

- 

CaS 33.66 28.39 - - - - - 

CaSe 15.56 13.21 - - - - - 

CaTe 10.17 8.33 - - - -  8.5 

[26] 

SrO 13.61 11.65 10 

[70] 

9.0 [71] 11.0 

[71] 

9.9 [71] - 

SrS 12.81 11.6 - - - - - 

SrSe 19.36 15.8 - - - - - 

SrTe 10.64 9.66 - - - - 10.5 

[26] 

BaO 5.63 6.76 3 [70] 2.8 [71] 4.4 [71] 3.3 [71] - 

BaS 6.17 6.28 - - - - - 

BaSe 9.85 10.06 - - - - - 

BaTe 10.14 9.84 - - - - 10.2 

[26] 

 

The lattice thermal conductivity (L) as a function of temperature (300-800 K) 

was then computed, and the results are shown in Figure 3.3. Because of increasing 

anharmonicity with temperature, the obtained L values decrease with temperature for 

all 16 compounds under investigation. Because of their large atomic mass, materials 

with the same crystal structure that include heavy elements often have lower L than 

those that contain light elements. L decreases with increasing atomic mass of anion, 

i.e., from MgO → MgS → MgSe → MgTe in MgX compounds, but L shows 
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anomalous trends for the CaCh (CaS > CaO > CaSe > CaTe), SrCh (SrSe > SrO > SrS 

> SrTe), and BaCh (BaTe > BaSe > BaS > BaO). The BaCh series, in particular, exhibits 

an opposite trend for L, which contradicts the predicted trend based on their atomic 

mass. However, when L is estimated at the experimental lattice constant for SrCh (SrSe 

> SrO > SrS > SrTe) and BaCh (BaSe >BaTe > BaO > BaS) compounds, the foregoing 

trends are somewhat changed, but the general trends remain more or less similar in both 

cases (see Figures 3.3 and Figures 3.4). 

 

Fig 3.4: Calculated lattice thermal conductivity of (a) MO, (b) MS, (c) MSe and (d) 

MTe compounds as a function of temperature at the experimental lattice constant; 

where M = Mg, Ca, Sr and Ba. 

 

To gain insight into the observed anomalous trends, the obtained L values at 300 K 

were plotted as a function of mass ratio (i.e., metal atom's atomic mass to a nonmetal 

atom's atomic mass), as shown in Figure 3.6. Low L values are seen in materials with 

great mass contrast, i.e. with either low or high mass ratios. For example, compared to 

those with mass ratios close to unity, which are having larger L values, MgTe, BaS, 

and BaO have comparatively low L values of 4.45, 6.17, and 5.63 W m−1 K−1 with 

mass ratios of 0.19, 4.3, and 8.6, respectively. For instance, the mass ratio of BaTe is 

1.1, and its L value is 10.14 W m−1 K−1, greater than that of the high mass contrast 
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systems, BaO and MgTe. Furthermore, MgTe and BaTe compounds were considered 

for the case study to comprehend why materials with significant mass contrast have 

comparatively low L values compared to materials with mass ratios near to unity [72]. 

Figure 3.7a illustrates that MgTe exhibits a phonon gap between its acoustic and optic 

phonon branches, which extend across about ∼0−8 THz. 

 

Fig 3.5: Calculated L of (a) MgCh, (b) CaCh, (c) SrCh and (d) BaCh compounds as a 

function of temperature at the experimental lattice constant; where Ch = O, S, Se and 

Te. 

 

 

In contrast, BaTe lacks a phonon gap throughout the whole frequency range of ∼0–4 

THz due to its mass ratio being close to unity (1.1). According to slack theory,[73] 

When the optic phonon velocity is high and the distance between the acoustic and optic 

phonon branches is relatively small, then heat is also carried by optic phonons in 

crystalline materials. Therefore, the optic phonons in BaTe also facilitate heat 

conduction (refer to Figure 3.7d), whereas in MgTe, the phonon gap accompanied by 

low TO optic phonon velocities could potentially hinder phonon transport (refer to 

Figure 3.7c). 
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Fig 3.6: Calculated lattice thermal conductivity (L) at 300 K as function of mass ratio 

for MCh (M = Mg, Ca, Sr, Ba and Ch = O, S, Se, Te) compounds. The vertical line 

corresponds to mass ratio equal to unity, where metal and non-atoms have equal mass 

ratio. 

 

Moreover, in the frequency range of 1−4 THz, MgTe exhibits shorter phonon lifetimes 

than BaTe (refer to Figure 3.7b). As a result of MgTe's reduced phonon propagation 

and shortened phonon lifetimes in comparison to BaTe, L is decreased. This 

explanation also holds good for anomalous trends seen in other compounds (Figure 3.8 

for CaO and CaS).  

This demonstrates conclusively that a finite phonon gap between acoustic-optic 

branches is essential for achieving (ultra)low L behaviour when designing low kappa 

materials with a combination of heavy and light elements into materials with high mass 

contrast.  

Phonon dispersion curves (refer to Figures 3.2 and 3.7a) revealed the presence of 

phonon softening in compounds characterized by a high mass contrast. The TO modes 

of MO (M = Ca, Sr, and Ba), SrS, and BaS compounds are shown in Figure 2c and d. 

These modes are low-lying and fall into the acoustic mode region for all compounds, 

particularly for BaO7 and SrO6 compounds (see Figure 3.2). Furthermore, in contrast 

to the other compounds in the BaCh series (Ch = S, Se, and Te), BaO exhibits an 

additional phonon softening of transverse acoustic modes near the L point, despite its 

relatively low atomic mass.  
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Among the sixteen systems currently being examined, it is noteworthy that three 

compounds with high mass contrast demonstrate low L values at 300 K, specifically 

below ∼6 W m−1 K−1, these are BaO, BaS, and MgTe.  

Furthermore, in comparison to BaTe, MgTe demonstrates phonon softening of the 

transverse acoustic phonon modes near the X and L points (refer to Figure 7a). This is 

despite its relatively low atomic mass. The observed trend coincides with findings from 

a prior study on compressive sensing lattice dynamics (CSLD) [26], but diverges from 

the phenomenological Debye−Callaway model investigation [74] concerning the lattice 

thermal transport of MTe compounds (M = Mg, Sr, Ba, and Pb). Furthermore, the 

Debye-Callaway model significantly underestimates the values (refer to Table 3.4). 

 

Fig 3.7: Calculated (a) phonon dispersion curves (b) phonon lifetimes of MgTe and 

BaTe as a function of frequency, (c) group velocity as a function of frequency for 

MgTe, (d) group velocity as a function of frequency for BaTe. 

 

So far, four significant factors have been identified as having a substantial impact on 

the L behavior of MgTe, BaO, and BaS compounds: (1) a high mass contrast between 

metal and nonmetal atoms (see Figure 3.6); (2) low lying TO phonon modes for BaO 

and BaS transition into the acoustic mode region (see Figure 3.2d); (3) MgTe exhibits 
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soft transverse acoustic (TA) phonon modes despite having a lower atomic mass than 

BaTe (see Figure 3.5a); and (4) the phonon lifetimes of MgTe and BaTe are illustrated 

in Figure 3.7b. In particular, the latter one is crucial in determining trends in L; this is 

elaborated upon in the following section. 

 

 

Fig 3.8: Calculated (a) phonon dispersion curves (b) phonon lifetimes of CaO and 

CaS as a function of frequency, (c) group velocity as a function of frequency for CaO, 

(d) group velocity as a function of frequency for CaS. 

 

 In an effort to gain a more comprehensive understanding of the mechanisms at 

play behind the peculiar behaviour of L in compounds including MgTe, CaCh (Ch = 

O and S), SrCh (Ch = O, S, and Se), and BaCh (Ch = O, S, Se, and Te) (refer to Figure 

3.3 and Figure 3.6 and 3.7), the scattering rates, phonon mean free paths (MFPs), and 

group velocities and lifetimes were computed. In Figure 3.9, the calculated phonon 

MFPs as a function of frequency are displayed. A significant proportion of the phonon 

MFPs for each MCh compound fall above the minimum interatomic distance, also 

known as the Ioffe−Regel limit. Consequently, the phonon Boltzmann transport theory 

adequately describes the thermal transport occurring within MCh compounds. Heat 

transfer in crystalline materials may be thought of as the propagation of phonons and 

their scatterings among themselves. Materials with low values of τ(ω) and v(ω) are 
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anticipated to have low L, as L is constrained by these two variables. The phonon 

lifetime decreases from MgO > MgS > MgSe > MgTe across the entire frequency 

range, as shown in Figure 3.10. The corresponding trend is observed for L in MgCh. 

CaO's phonon lifetimes in the frequency range of ∼2−8 THz are comparatively shorter 

than those of CaS (refer to Figure 3.10b). This discrepancy in L values between CaS 

and CaO, CaSe, and CaTe, and the subsequent anomalous trend (CaS > CaO > CaSe > 

CaTe) in the CaCh series, may account for CaO's lower L. This trend aligns with the 

findings of a prior lattice thermal conductivity investigation [25] utilising ShengBTE 

on CaCh compounds (where Ch represents O, S, Se, and Te).  

Fig 3.9: Calculated mean free paths of (a) MgCh, (b) CaCh, (c) SrCh and (d) BaCh 

compounds as a function of frequency; where Ch = O, S, Se and Te. The horizontal 

solid line (magenta) represents Ioffe-Regel limit for mean free paths. 

 

SrSe and SrO have considerably higher and shorter phonon lifetimes in the ∼1-4 

THz and ∼2- 4 THz frequency ranges, respectively. This might explain the 

anomalous trend in the SrCh (Ch = O, S, Se, and Te) series for L (SrSe > SrO > SrS > 

SrTe). Finally, BaO and BaS have shorter phonon lifetimes than BaSe and BaTe, 

resulting in low L, which is consistent with the anticipated trend of BaTe > BaSe > 

BaS > BaO for L in BaCh (Ch = O, S, Se, and Te) compounds[27]. Total scattering 
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rates are obtained by adding absorption, emission, and isotope scattering rates from the 

three phonon processes for all 16 MCh (M = Mg, Ca, Sr, and Ba and Ch = O, S, Se, and 

Te) compounds, as illustrated in Figures 3.11 and 3.12. 

 

Fig 3.10: Calculated phonon lifetimes of (a) MgCh, (b) CaCh, (c) SrCh and (d) BaCh 

compounds as a function of frequency; where Ch = O, S, Se and Te. 

 

Absorption scattering rates dominate in the low-frequency domain (for example, below 

3 THz for BaO). Phonon scattering processes in the low-frequency range are most likely 

caused by the conversion of a low-energy phonon to a high-energy phonon via phonon 

absorption.  

 

The contribution of emission scattering rates increases with frequency and is mainly 

significant in the high-frequency region, where phonon scattering processes are likely 

to occur via conversion of a high-energy phonon to a low-energy phonon with phonon 

emission. Finally, across the whole frequency range, a moderate contribution from 

isotope scattering rates is observed, for example, in BaCh (Ch = O, S, Se, Te) 

compounds (see Figure 3.12). 
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Fig 3.11: Calculated scattering rates of (a) MgCh, (b) CaCh, (c) SrCh and (d) BaCh 

compounds as a function of frequency; where Ch = O, S, Se and Te. 

 

Fig 3.12: Calculated (a) absorption (b) emission (c) isotope and (d) total scattering rates 

of BaCh (Ch = O, S, Se and Te) compounds as a function of frequency. 
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3.1.2.3 Effect of Tensile Strain on Lattice Thermal Conductivity 

Three (BaO, BaS, and MgTe) of the sixteen MCh compounds (M = Mg, Ca, Sr, and Ba 

and Ch = O, S, Se, and Te) have been found to have low L values (less than 6 W m−1 

K−1) over the temperature range of 300−800 K that was investigated. The phonon 

dispersion curves, phonon lifetimes, scattering rates, and L values of the BaO, BaS, 

and MgTe compounds were compared, as shown in Figure 3.13. The low L behaviour 

exhibited by BaO, BaS, and MgTe compounds can be attributed to phonon softening in 

both the acoustic and optical modes which is caused by phonon gaps and high scattering 

rates (Figure 3.13a, 3.13b), as well as short phonon lifetimes (Figure 3.13c). The 

observed L values precisely correspond to the decreasing order of phonon lifetimes as 

specified below for these three compounds: BaS > BaO > MgTe (see Figure 3.13c, d). 

Based on that trend and the trends observed for the remaining compounds (refer to 

Figure 3.10), it was proposed that the phonon lifetime (τ) significantly influences the 

L behaviour of isostructural compounds possessing identical crystal symmetry. 

Fig 3.13: Calculated (a) phonon dispersion curves, (b) phonon scattering rates, (c) 

phonon lifetime, and (d) lattice thermal conductivity (L) of BaO, BaS, MgTe and PbTe 

compounds at PBEsol equilibrium volume. 
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Subsequently the impact of tensile strain on lattice dynamics and phonon transport was 

examined by analysing these three BaO, BaS, and MgTe compounds. In addition, the 

tensile strain method was utilized, an effective method for achieving a (ultra)low L in 

materials, to decrease L. A gradual increase in the obtained equilibrium lattice constant 

upto 6% was done, but soft phonon modes were observed with tensile strains ≥5% of 

the equilibrium lattice constant for BaO. Consequently, the impact of tensile strains of 

up to 4% were investigated on the three mentioned compounds. As depicted in Figures 

3.14a, 3.15a, and 3.16a, as strain increases, the coupling strength between the acoustic 

and TO phonon modes is strengthened due to the softening of the acoustic and TO 

phonon modes. As strain increases, phonon−phonon scattering rates inevitably increase 

(refer to Figures 3.14b, 3.15b, and 3.16b), resulting in a decrease in L throughout the 

temperature range under investigation. With an increase in tensile strain, the phonon 

lifetime decreases substantially (see Figures 3.14c, 3.15c, and 3.16c) due to the high 

scattering rates for both the acoustic and low-lying TO modes; this further reduces L 

(see Figures 3.14d, 3.15d, and 3.16d).  

 

The obtained L values for 4% of tensile strain at 300 K are ∼2.06, ∼2.38, and ∼1.05 

W m−1 K−1 for BaO, BaS, and MgTe, respectively. The ultralow L of strained MgTe 

might be a better candidate for energy conversion applications. From the present and 

previous studies[25], one can expect a similar behavior for other MCh (M = Mg, Ca, 

Sr, and Ba and Ch = O, S, Se, and Te) compounds with an application of tensile strain. 
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Fig 3.14: Calculated tensile strain dependent (a) phonon dispersion curves, (b) phonon 

scattering rates, (c) phonon lifetime, and (d) lattice thermal conductivity (L) of BaO. 

 
Fig 3.15: Calculated tensile strain dependent (a) phonon dispersion curves, (b) phonon 

scattering rates, (c) phonon lifetime, and (d) lattice thermal conductivity (L) of BaS. 
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Fig 3.16: Calculated tensile strain dependent (a) phonon dispersion curves, (b) phonon 

scattering rates, (c) phonon lifetime, and (d) lattice thermal conductivity (L) of MgTe. 

3.1.2.4 Elastic constants and mechanical properties 

In order to examine the mechanical stability, interatomic bonding strength, and lattice 

anharmonicity of the compounds under investigation, second-order elastic constants 

(Cij) were computed. The MCh compounds under investigation (M = Mg, Ca, Sr, and 

Ba; Ch = O, S, Se, and Te) exhibit a cubic (Fm3m) crystal structure. As a result, they 

possess three distinct elastic constants: longitudinal (C11), transverse (C12), and shear 

(C44). These constants are determined by symmetry constraints; C11 = C22 = C33, C12 = 

C13 = C23, C44 = C55 = C66, and Cij = Cji. The second-order elastic constants, which have 

been determined and are presented in Table 3.5, exhibit consistency with the available 

Brillouin scattering and ultrasonic pulse echo measurements [75]–[77], in addition to 

previous first-principles calculations[5], [22], [74] ,59−63. 

 

Table 3.5:  Calculated second order elastic constants (C11, C12, C44, in GPa) for MCh 

(M = Mg, Ca, Sr, and Ba and Ch = O, S, Se, and Te) compounds in rock-salt structure 

type. 
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                      This work                            Others 

Compound C11 C12 C44 C11 C12 C44 

MgO 298.03 88.15 143.96 297 [78] 99.6 [78] 151.9 

[78] 
 

- - - 296.5 [76] 95.1 [76] 155.9 

[76] 
 

- - - 297.9 [79] 95.8 [79] 154.4 

[79] 

MgS 153.47 39.75 53.58 168.4 [80] 42.2 [80] 55.2 [80] 

MgSe 127.78 32.9 42.55 112.66 

[62] 

33.49 

[62] 

42.65 

[62] 

MgTe 100.58 24.88 29.99 94 [74] 24 [74] 29 [74] 

CaO 230.72 58.9 77.14 198.8 [16] 57.1 [16] 75.3 [16] 
 

- - - - - 81[77] 
 

- - - 220.5 [81] 57.67 

[81] 

80.03 

[81] 

CaS 139.88 23.27 34.05 122.1 [16] 23.9 [16] 33.5 [16] 

CaSe 119.12 18.97 27.42 104.3 [16] 19.4 [16] 26.6 [16] 

CaTe 94.34 13.92 18.7 94.13 [82] 13.76 

[82] 

17.34 

[82] 

SrO 186.69 48.25 55.15 159.7 [83] 46.7 [83] 54.3 [83] 

SrS 122.77 18.4 26.17 109.7 [83] 19.1 [83] 26.3 [83] 

SrSe 106.57 14.63 21.33 93.6 [83] 15.2 [83] 21.1 [83] 

SrTe 86.14 10.33 14.75 54.8 [22] 13 [22] 21 [22] 

BaO 142.02 44.61 36.04 121.99 [5] 42.12 [5] 36.33 [5] 
   

- - - 34[75] 

BaS 104.74 16.6 18.58 91.29 [5] 16.7 [5] 18.74 [5] 

BaSe 93.43 12.91 15.53 78.42 [5] 13.14 [5] 15.61 [5] 

BaTe 78.04 8.56 11.09 68.36 [5] 9.1 [5] 11.26 [5] 

 

 The obtained elastic constants fulfil the Born stability criteria [84], exhibiting that all 

of these MCh (M = Mg, Ca, Sr, and Ba and Ch = O, S, Se, and Te) compounds are 

mechanically stable.  
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𝐶11 − 𝐶12 > 0, 𝐶11 > 0, 𝐶44 > 0, 𝐶11 + 2𝐶12 > 0 − − − −3.4 

Using eq 3.5, the bulk (B) and shear (G) moduli were estimated from the calculated 

elastic constants using the VoigtReussHill (VRH) approximation. Later, the acquired 

B and G values are utilised to determine Young's modulus (E). MgO is the stiffest 

material among the 16 MCh (M = Mg, Ca, Sr, and Ba and Ch = O, S, Se, and Te) 

compounds because it has the greatest E value. 

𝐵 =
𝐶11 + 2𝐶12

3

𝐺 =
1

2
[
𝐶11 − 𝐶12 + 3𝐶44

5
+

5𝐶44(𝐶11 − 𝐶12)

4𝐶44 + 3(𝐶11 − 𝐶12)
]    − − − − 3.5 

𝐸 =
9𝐵𝐺

3𝐵 + 𝐺

 

The observed reduction in the calculated Cij values and E, B, and G moduli (Table 

3.6.)from MO to MTe (where M represents Mg, Ca, Sr, and Ba) suggests that 

weak electrostatic and interatomic interactions occur in the lattice as the atomic size 

increases, specifically from Mg to Ba and O to Te. As a consequence, materials 

possessing greater atomic size are susceptible to deformation when subjected to 

mechanical stress, leading to systems with greater atomic mass exhibiting flexible 

lattices or low elastic moduli.  

𝜈 =
3𝐵 − 2𝐺

2(3𝐵 + 𝐺)

𝛾𝜈 =
3

2
(
1 + 𝜈

2 − 3𝜈
)

                                           − − − − 3.6 

The Poisson's ratio (𝜈) is typically 0.1 and 0.25 for covalent and ionic materials, 

respectively [83]. The obtained values are in the 0.18-0.28 range, implying a significant 

ionic contribution to interatomic bonding for these MCh (M = Mg, Ca, Sr, and Ba ; Ch 

= O, S, Se, and Te) compounds. MgO (0.18) and BaO (0.28), respectively, have the 

least and biggest values among the 16 MCh (M = Mg, Ca, Sr, and Ba and Ch = O, S, 

Se, and Te) compounds. Further, the 𝜈 values are utilised to computed the Grüneisen 

parameter (𝛾𝜈). The strength of the lattice anharmonicity of a material is indicated by 

the Grüneisen parameter (𝛾𝜈), which is commonly determined via phonon. 
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                                 (a)                                                                       (b) 

Fig 3.17: Calculated L as a function of (a) Gruneisen parameter (𝛾𝜈) and (b) density 

(ρ) and for 16 MX compounds. 

 

However, computing 𝛾𝜈 includes a sequence of costly phonon computations, which 

must be repeated for 16 compounds, which is computationally demanding. To prevent 

this, an efficient procedure was employed to calculate the Poisson's ratio (𝜈) [85]. The 

results derived using eq 3.6 for materials with rocksalt structure are in great accord with 

previous studies [86], [87]. Because the 16 materials under consideration crystallise in 

the rocksalt structure, eqn. 3.6 was utilized to compute 𝛾𝜈 based on the values of 

obtained 𝜈 . As seen in Figure 3.17, BaO has the highest 𝛾𝜈, indicating comparatively 

greater anharmonicity of BaO over the rest of the MCh (M = Mg, Ca, and Sr and Ch = 

O, S, Se, and Te) compounds, which leads to a low L values. 

𝑣l = √
𝐵 +

4𝐺

3

𝜌

𝑣𝑡 = √
𝐺

𝜌

𝑣m = [
1

3
(
1

𝑣1
3) + (

2

𝑣t
3)]

−1/3

ΘD =
ℎ

𝑘B
[(
3𝑁

4𝜋𝑉
)]
1/3

𝑣m

                                  − − − − 3.7 

Then the sound velocities (vl, vt, vm,) and the Debye temperature (ΘD) were calculated 

using the relationships as provided in eq 3.7. Here, ρ, h, kB, N, and V are the crystal 

density, Planck constant, Boltzmann constant, and number of atoms and volume of unit 

cell. The calculated vl, vt, vm, and ΘD values decrease from MO to MTe (M = Mg, Ca, 
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Sr, and Ba). Figure 3.18 and Figure 3.19 show the variation of L as a function of Debye 

temperature (ΘD) and average (vm), longitudinal (vl), and transverse (vt) sound 

velocities for the 16 MCh (M = Mg, Ca, Sr, and Ba and Ch = O, S, Se, and Te) 

compounds. The similar trend can be seen for all four properties, vl, vt, vm, and ΘD. 

According to the Slack hypothesis, low ΘD values in materials indicate low L values. 

In reality, the presence of LLO phonons softens the acoustic phonon modes, resulting 

in low group velocities and frequencies for acoustic phonons and hence low ΘD. In 

contrast to other MTe (M = Ca, Sr, Ba), BaSe, and SrSe compounds, BaO, BaS, and 

MgTe exhibit low L values despite possessing higher vl, vt, vm, and ΘD. Furthermore, 

estimated phonon group velocities for BaCh (Ch = O, S, and Se) compounds (see Figure 

3.20) follow the atomic mass trend, which is in line with sound velocities. Overall, the 

results of the present study strongly suggest that high mass contrast and phonon 

lifetimes are the dominant factors that are responsible for the observed anomalous 

trends in MCh (M = Mg, Ca, Sr, and Ba and Ch = O, S, Se, and Te) compounds. 

 

Table 3.6: Calculated Young’s modulus (E, in GPa), Bulk modulus (B, in GPa), Shear 

modulus (G, in GPa), density (ρ, in gr/cc), sound velocities (vl, vt and vm, in km/s), 

Debye temperature (ΘD, in K), Poisson’s ratio (σ) and Gruneisen parameter ( 

𝛾𝜈) for MCh compounds. 

Compou

nd 

E B G ρ vl vt Vm ΘD σ 𝜸𝝂 

MgO 300.2

3 

158.1

1 

126.8

4 

3.5

9 

9.55 5.95 6.55 927.1

4 

0.18 1.2

3 

Others 

[78] 

305 165.5 127.9 3.0 9.83 6.12 6.74 902  0.25

2 

- 

MgS 133.2

3 

77.66 54.87 2.7 7.47 4.51 4.98 573.5

5 

0.21 1.2

4 

Others 

[42] 

- 73.1 - - - - - - - - 

Others 

[88] 

- 79.44 - - - - - - - - 

Others 

[50] 

- 72.3 - - - - - - - - 

MgSe 108.4

3 

64.52 44.44 4.2

5 

5.4 3.23 3.58 391.4

5 

0.22 1.3

6 

Others 113.1 

[24] 

60.2 

[42] 

46.3 

[24] 

- - - - - 0.22

2 

[24] 

- 

Others  109.2 

[62] 

67.7 

[24] 

45.7 

[62] 

- - - - - - - 

 
- 65.15 

[88] 

- - - - - - -- - 
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MgTe 81.03 50.11 32.92 4.9

1 

4.38 2.59 2.87 289.5

4 

0.23 1.4

1 

Others 

[74] 

77 - 31 - 4.42 2.24 - 251 0.33 - 

 
- 50.45 

[88] 

- - - - - - - - 

 
- 44.6 

[50] 

- - - - - - - - 

CaO 196.2

6 

116.1

7 

80.54 3.4

2 

8.09 4.85 5.37 669.6

1 

0.22 1.3

6 

Others 178.5 

[16] 

104.3

2 [16] 

73.47 

[16] 

3.2  

[78

] 

8.39 

[78] 

5.08 

[78] 

5.61 

[78] 

691 

[78] 

0.21 - 

 
205.6 

[78] 

118.8 

[78] 

84.88 

[78] 

- - - - - 0.22 

[78] 

- 

CaS 103.4

3 

62.14 42.3 2.6

7 

6.66 3.98 4.4 465.1

2 

0.22 1.3

7 

Others 

[16] 

95.27 56.62 39.06 - - - - - 0.22 - 

 
- 62.90 

[82] 

- - - - - - - - 

 
- 64 

[39] 

- - - - - - - - 

CaSe 85.82 52.35 34.98 3.9 5.04 2.99 3.32 336.2

1 

0.23 1.3

9 

Others 

[16] 

78.69 47.70 32.12 - - - - - 0.23 - 

 
- 52.17 

[82] 

- - - - - - - - 

 
- 51 

[82] 

- - - - - - - - 

CaTe 63.39 40.73 25.55 4.4

6 

4.1 2.4 2.65 251.0

8 

0.24 1.4

5 

Others 

[74] 

6 - 25g - 4.24 1.99 - 209 - - 

 
- 40.45 

[82] 

- - - - - - - - 

 
- 41.8 

[82] 

- - - - - - - - 

SrO 149.3

6 

94.4 60.41 4.3 6.38 3.75 4.15 481.9

8 

0.24 1.4

3 

Others 

[83] 

135.8 82.4  55.13  - - - - - 0.23 - 

Others 

[78] 

139 87.6 56.28 4.9 5.74 3.38 3.75 430 0.22 - 

SrS 85.36 53.19 34.63 3.7

2 

5.17 3.05 3.38 336.8 0.23 1.4

2 

Others 

[83] 

80.48 47.3 32.77 - - - - - 0.23 - 
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SrSe 72.04 45.28 29.17 4.6

3 

4.26 2.51 2.78 266.9

8 

0.23 1.4

3 

Others 

[83] 

66.80 40.3 27.14 - - - - - 0.23 - 

SrTe 54.24 35.6 21.77 4.9

4 

3.62 2.1 2.33 209.7

8 

0.25 1.4

8 

Others 

[89]  

64.77 22.12 23.54 - - - - 119.4 0.01

9 

 

Others 

[74] 

 
- - - 3.99

6 

1.71

4 

- 172 0.39 - 

BaO 103.7

5 

77.08 40.66 6.0

1 

4.67 2.6 2.9 311.7

9 

0.28 1.6

3 

Others 

[78] 

106.2 76.3 41.88 5.7 4.76 2.67 2.97 316 0.25

5 

- 

BaS 66.63 45.98 26.47 4.3

7 

4.31 2.46 2.74 256.1

4 

0.26 1.5

4 

Others 88.24 

[5] 

41.6 

[21] 

24.93

5 [21] 

- 4.2 

[90] 

- 2.67 

[21] 

247.2

6 [21] 

0.18 

[5] 

- 

 
- - - - - 2.37 

[90] 

2.64 

[90] 

247 

[90] 

0.25 

[21] 

- 

BaSe 57.85 39.75 23 5.0

5 

3.73 2.13 2.38 214.8

1 

0.26 1.5

3 

Others 76.21 

[5] 

34.0 

[91] 

21.41 

[21] 

- 3.64 

[90] 

2.07 

[90] 

2.3 

[21] 

205.7 

[21] 

0.25 

[21] 

- 

 
- 36.26 

[21] 

- - - - 2.31 

[90] 

208 

[90] 

0.25

2 

[92] 

- 

BaTe 45.17 31.72 17.89 5.2 3.27 1.85 2.06 176.2

8 

0.26 1.5

6 

Others 67.15 

[5] 

27.04 

[91] 

16.69

7 [21] 

- 3.68 

[74] 

1.46 

[74] 

1.99 

[21] 

171.2

2 [21] 

0.25 

[21] 

- 

 
- 28.23 

[21] 

- - - - - 139 

[74] 

0.27 

[92] 

- 

                       (a)                                                                                    (b)  

Fig 3.18: Calculated L as a function of (a) average (vm) sound velocity, (b) Debye 

temperature (ΘD) for 16 MCh compounds. 
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                        (a)                                                                        (b) 

Fig 3.19: Calculated L as a function of (a) longitudinal (vl) (b) transverse (vt) sound 

velocities for 16 MCh compounds. 

(a)                                                                             (b) 

 

                 (c) 

Fig 3.20: Calculated phonon group velocities of (a) BaO, (b) BaS, (c) BaSe compounds 

as a function of frequency. 

 

In summary, the lattice dynamics, phonon transport, and mechanical 

characteristics of 16 binary compounds with rocksalt-type structures were 

systematically examined. Anomalous trends in L were predicted for the CaCh series 

of compounds (CaS > CaO > CaSe > CaTe), SrCh series (SrSe > SrO > SrS > SrTe), 
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and BaCh series (BaTe > BaSe > BaS > BaO) compounds. Specifically, an inverse trend 

for L in the BaCh series (Ch= O, S, Se, and Te) was noted, which contradicts the trend 

predicted by their atomic masses. Due to the sensitivity of L to the experimental lattice 

constant, the aforementioned trends are marginally modified for SrCh (Ch = O, S, and 

Se) and BaCh (Ch = O, S, Se, and Te) compounds when L is calculated at the 

experimental lattice constant. A few conclusions regarding the design of (ultra)low L 

materials are derived from this research: (1) Design a material comprising a blend of 

light and heavy elements to generate a substantial mass contrast, thereby establishing 

an acoustic-optic phonon gap; (2) phonon softening of transverse acoustic (TA) modes 

attributable to the heavy atomic mass element; (3) constituent elements within a 

substance with a substantial electronegativity difference induce a substantial LO-TO 

splitting, which results in LLO (TO) phonon modes, some of which may fall into the 

acoustic mode region; and these are accountable for the phonon softening of a of 

acoustic phonon modes or enhancing the overlap between the LLO and longitudinal 

acoustic (LA) phonon modes, thereby increasing scattering rates thus resulting in 

shorter phonon lifetimes; and (4) selection of a material with a relatively high density 

(ρ). In BaO, BaS, and MgTe, L is decreased further by tensile strain via phonon 

softening, which increases scattering rates and consequently shortens phonon lifetimes. 

In short, the present study offers valuable insights into phonon engineering in simple 

crystal systems to produce (ultra)low L materials, this is crucial in the advancement of 

sustainable energy conversion devices intended for future energy applications. 

 

3.2. Alkali Halides, MX (M = Li, Na, K, Rb, Cs and X = F, Cl, Br, I): 

Now, in this section, another set of isostructural binary systems, Alkali Halides 

(AH’s), consisting of MX (M = Li, Na, K, Rb, Cs and X = F, Cl, Br, I) compounds are 

considered and are presented in comparison with the results obtained with AEC’s. 

The Keye's rule [93] and the Slack theory [73] both state that the lattice thermal 

conductivity (L) has an inverse relationship to the average atomic mass. In contrast, it 

is observed that certain materials within a particular series exhibit greater L values 

than expected trend inspite of their high average atomic mass. This phenomenon is 

known as anomalous behaviour of L or anomalous phonon transport. Although alkali 

halides (AHs) and alkaline-earth chalcogenides (AECs) generally have high average 
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atomic masses, it is seen that RbBr has a greater L value compared to RbCl. Similarly, 

CsI demonstrates a larger L value when compared to CsCl and CsBr [94].In the same 

way, it can be observed that CaS exhibits a larger L value in comparison to CaO [25], 

[95]. Furthermore, SrSe demonstrates a higher L value when compared to both SrO 

and SrS. In the context of systems with a high average atomic mass, BaTe exhibits a 

higher L value in contrast to systems with lesser atomic masses, namely BaO, BaS, 

and BaSe, within the BaCh (Ch = O, S, Se, and Te) series. Additionally, ternary 

chalcopyrite systems, namely TlBiCh2 (with TlBiS2 < TlBiSe2 > TlBiTe2) [96] and 

CuAlCh2 (with CuAlS2 < CuAlSe2 > CuAlTe2) [97] exhibit anomalous trends in 

lattice thermal conductivity (L). Further, certain mixed-anion compounds, namely 

Ba4Sb2Se, Ba4Sb2Te4 [98], as well as transition metal dichalcogenides MoSSe and 

WSSe [99], demonstrate the anomalous tendency in L within their respective series. 

This trend has also been detected in the lattice thermal conductivity measurements of 

several other materials [97] [100]–[103]. Lindsay et al conducted a comprehensive 

investigation on the anomalous behaviour observed in BAs, BSb, BeSe, and BeTe when 

subjected to high pressure [104]. Their findings indicate that the anomalous pressure 

dependence of L originates mainly from unique intrinsic scattering mechanisms 

affecting acoustic phonons responsible for heat conduction in compounds with 

significant mass ratios, as opposed to those with smaller mass ratios. This work 

demonstrates that in addition to mass ratio, the influence of chemical bonding and 

crystal symmetry on determining L is significant. For instance, the monolayer (ML) 

BeO [105] has a greater thermal conductivity (L) compared to ML-MgO and ML-CaO. 

This disparity may be attributed to the presence of strong covalent bonding in BeO. 

Additionally, zincblend-MgTe[24] shows a higher L value than rocksalt-MgTe5 [24] 

owing to its distinct bonding characteristics. However, further comprehensive research 

is required to examine the interplay between mass ratio and chemical bonding. The 

above-mentioned studies [95], [104], [105] [105] [104]raise many fundamental 

questions: (1) does atomic mass alone play a key role in determining the magnitude of 

L? (2) what are the dominant factors (group velocities and/or phonon lifetimes) that 

determine the low or high L behavior and what is the role of optical phonon modes in 

phonon transport in small or large mass ratio compounds? (3) is interplay between 

atomic mass and anharmonicity well understood? and (4) is four-phonon scattering 

important for small mass ratio systems? The current work focusses on addressing the 
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first two issues: comprehending the microscopic origins of abnormal trends in L for 

AHs and AECs, the role of optical phonons in L, and the dominating factors that 

significantly impact L. 

 

3.2.1 Computational Details 

The present study employed the Vienna Ab-initio Simulation Package (VASP) 

[28] to conduct first-principles calculations. The PBEsol functional was employed to 

account for electron-electron interactions, while the pseudopotential-based projector-

augmented wave (PAW) technique was utilized to account for electron-ion interactions. 

The applied parameters for the plane wave basis set expansion include a plane wave 

cutoff energy of 520 eV and a spacing of 2π × 0.024 A−1 for the kmesh in the irreducible 

Brillouin zone. The initial step involves obtaining crystal structures of various alkali 

halides (LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RF, RbCl, 

RbBr, RbI, and CsF) in the rocksalt NaCl-type, CsCl-type (CsCl, CsBr, and CsI), and 

alkaline-earth chalcogenides (MgO, MgS, MgSe, MgTe, CaO, CaS, CaSe, CaTe, SrO, 

SrS, SrSe, SrSe, BaO, BaS, BaSe, BaSe, and BaTe) from X-ray diffraction data. These 

crystal structures are then subjected to full structural optimization at a temperature of 0 

K.  

Fig 3.21: Representative crystal structures of (a−d) rocksalt NaCltype SrSe (a) 

primitive cell, (b) unit cell, 4 × 4 × 4 super cell (128 atoms) at (c) T = 0 and (d) 300 K, 

and (e−g) CsCl-type CsI (e) primitive/unit cell, 4 × 4 × 4 super cell (128 atoms) at (f) 

T = 0 and (g) 300 K. 
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Figure 3.21 shows the optimised primitive, unit cell, and supercell structures of 

SrSe with a NaCl-type crystal structure and CsI with a CsCl-type crystal structure. 

These structures are indicative of the investigated compounds in the current work. 

Subsequently, ab initio molecular dynamics (AIMD) simulations were performed at a 

temperature of 300 K, utilising the VASP software, to investigate the ground state 

structures acquired at T = 0 K. The molecular dynamics (MD) simulations in the 

canonical ensemble (NVT) were conducted for a total of 5000 MD steps. The time-step 

used in the simulations was 1 fs, resulting in a simulation duration of 5 ps. The supercell 

size employed was 4 × 4 × 4, corresponding to a total of 128 atoms. The simulations 

were performed using a Γ-centered kmesh.  

The temperature was regulated using a Nosé−Hoover thermostat [32], [33]. The TDEP 

(temperature-dependent effective potential) method [29], [106], has been employed for 

postprocessing purposes. This method enables the extraction of both harmonic (2nd 

order) and anharmonic (3rd order) interatomic force constants (IFCs). To achieve this, 

forces obtained from AIMD (ab initio molecular dynamics) simulations conducted with 

VASP are utilised. Subsequently, lattice dynamical and lattice thermal conductivity 

calculations are performed at finite temperature using the TDEP code. The lattice 

thermal conductivity is determined using an iterative solution of the complete 

Boltzmann transport equation (BTE) using a q-mesh of dimensions 25 × 25 × 25. In the 

computation of lattice dynamics and phonon transport properties, all permissible 

interactions inside the supercell were included for second and third order interatomic 

force constants (IFCs).  The detailed methodology can be found in previous studies 

[95], [107]. In order to conduct a more comprehensive examination of the impact of 

mass ratio on lattice dynamics and L, an additional calculation was performed to 

determine the cophonicity. As described in previous studies, [108], [109], this metric 

provides a quantitative measure of the degree of overlap between the phonon density 

of states for a specific atomic pair throughout a certain range of phonon energy. To 

investigate the role of atomic mass and its contribution to both acoustic and optical 

phonons, cophonicity is determined throughout the whole frequency range for each 

compound under consideration. Only the absolute value of cophonicity (|Cph|(A-B)) is 

taken into account. 

3.2.2 Results and discussion 
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3.2.2.1 Role of Mass Contrast on Lattice Dynamics and Thermal Conductivity 

To gain a more comprehensive understanding of the phonon transport properties 

of crystalline solids, a thorough investigation of the lattice dynamics is required. In this 

work, simple binary systems, AHs and AECs, have been considered for a case study, 

these crystallize in the face centred cubic (FCC) or NaCl-type structure, with the 

exception of CsX (X = Cl, Br, and I), which crystallize in the body centred cubic (BCC) 

structure and exhibit anomalous L behavior [95] [94], [95]. The phonon dispersion 

curves along high symmetry directions at room temperature for the following series of 

compounds: LiX, NaX, RbX, CsX (where X represents F, Cl, Br, and I), MSe, MTe, 

SrCh, and BaCh (where M represents Mg, Ca, Sr, Ba, and Ch represents O, S, Se, and 

Te), and MO and MS (where M represents Mg and Ca), are presented in Figures 3.22 

and 3.23. The colour bar additionally illustrates the atomic contribution to phonon 

vibration through the projection of eigen displacements. Each of the compounds 

examined above is composed of two elements per primitive cell (Z = 1), and their 

phonon dispersion curves illustrate a total of six vibrational modes. Three of the six 

phonon modes are acoustic, while the other three are optical. The absence of imaginary 

frequencies suggests that the compounds under investigation are dynamically stable at 

300 K. The phonon band profiles exhibit a similarity mostly attributed to the same 

number of atoms within each primitive cell, with the exception of a distinct distinction 

between acoustic and optical phonons, commonly referred to as a phonon band gap or 

a−o band gap. The disparity in atomic mass between alkali/alkaline-earth metals and 

halogen or chalcogen nonmetals plays a crucial role in determining the a−o gap. This 

phenomenon is only observable in materials that exhibit a substantial contrast in atomic 

mass, as indicated in Table 3.7. Examples of such materials include MgSe, MgTe, 

RbCl, CaTe, BaS, KI, SrO, SrS, LiBr, BaS, LiI, NaBr, NaI, CsF, and RbF, as illustrated 

in Figures 3.22 and 3.23.  

In addition, as the atomic mass of both metal and nonmetal atoms increases, the acoustic 

and optical phonon frequencies show a red shift for these compounds. The longitudinal 

optical-transverse optical (LO-TO) splitting strength is significant in metal halides and 

oxides, but it decreases as metal and nonmetal atom sizes increase because the 

difference in electronegativity of the constituent elements decreases (Figures 3.22 and 

3.23) [95] [94], [95]. 
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Fig 3.22: Phonon dispersion curves of selected alkali halides (a) LiF, (b) NaF, (c−e) 

RbX, and (f−h) CsX (where X = Cl, Br, and I) at 300 K. (i−p) Phonon dispersion curves 

of MSe and MTe (M = Mg, Ca, Sr, and Ba) at 300 K. 

 

 

In specific, materials with a mass ratio close to unity exhibit a significant overlap in 

phonon bands between acoustic and optical modes. This is in contrast to systems with 

a significant contrast in mass, as seen in Figure 3.22. The substantial overlap in the low-

lying optical phonon modes greatly enhances the value of L for NaF, KCl, CsI, SrSe, 

and BaTe in their respective series. 

In order to get an in-depth understanding of the significance of mass contrast, the 

variation of L as a function of mass ratio for AHs and AECs is provided in Figure 

3.24a and 3.24b, correspondingly. The data pertaining to alkali halides in Figure 3.24a 

have been obtained by TDEP calculations carried out in the present study, whilst the 

data concerning AECs in Figure 3.24b was compiled from previous section. Figure 

3.24a includes the prior results of Cheng et al. [94] for AHs, allowing for a 

comprehensive comparison. 
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Fig 3.23: Phonon dispersion curves of selected AHs and AECs at 300 K. Mass contrast 

leads to acoustic-optical phonon gap. 

 

 

Table 3.7: Calculated Lattice Constant (a, in Å), Average Atomic Mass (Mavg, in amu), 

Average Sound Velocity (vm, in km/s), Debye Temperature (ΘD, in K), Grüneisen 

Parameter (γν), Specific Heat (Cv, in J/mol K), Mass Ratio, Absolute Value of 

Cophonicity (|Cph|, in THz), and Lattice Thermal Conductivity (L, in W/m K) for 

Alkali Halides. 

 

Comp

ound 

a Mavg vm ΘD γν Cv mass 

ratio 

|Cph|   L 

LiF 4.003 12.96 5.05 751.3 1.32 40.27 2.74 3.44 24.2 

LiCl 5.061 21.19 3.69 435.2 1.38 45.88 5.11 3.11 6.13 
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LiBr 5.409 43.42 2.55 250.5

8 

1.39 47.13 11.51 4.06 4.23 

LiI 5.902 66.92 2.07 209.1

3 

1.39 47.89 18.28 3.94 3.75 

NaF 4.546 20.99 3.92 513.6

8 

1.39 44.89 1.21 0.73 41.25 

NaCl 5.557 29.22 2.98 320 1.495 47.81 1.54 0.55 11.1 

NaBr 5.892 51.44 2.17 219 1.54 48.61 3.47 1.68 4.42 

NaI 6.377 74.95 1.75 163.3 1.595 48.98 5.52 1.94 2.7 

KF 5.309 29.04 3.04 340.7

7 

1.595 47.33 2.06 1.46 9.25 

KCl 6.249 37.27 2.49 237.1

7 

1.606 48.62 1.1 0.14 10.38 

KBr 6.557 59.5 1.9 173.1 1.62 49.1 2.04 0.98 3.49 

KI 7.014 83 1.54 130.9 1.683 49.32 3.24 1.27 2.62 

RbF 5.599 52.23 2.21 235.6

7 

1.69 48.12 4.5 2.56 4.17 

RbCl 6.546 50.46 1.92 174.7

5 

1.67 49.06 2.41 1.15 3.22 

RbBr 6.851 82.68 1.59 138.5

8 

1.68 49.43

4 

1.07 0.01 5.2 

RbI 7.299 106.1

9 

1.34 109.8

3 

1.74 49.57 1.48 0.36 2.44 

CsF 5.949 75.95 1.75 175.1

2 

1.85 48.66 6.99 2.56 2.48 

CsCl 4.072 84.18 1.82 168.3 1.52 49.17 3.75 1.56 1.5 

CsBr 4.247 106.4 1.59 141 1.49 49.51 1.66 0.5 1.46 

CsI 4.512 129.9 1.44 119.6 1.47 49.64 1.05 0.13 2.35 

 

 

The L values obtained using TDEP exhibit a high degree of similarity to those 

reported in prior research, with the exception of LiF and NaF, as seen in Figure 3.24a 

[94][110]. In order to understand the potential factors contributing to the observed 
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deviation in L, ab initio molecular dynamics (AIMD) simulations were performed for 

an extended duration of 10 picoseconds (ps). The thermal conductivity (L) value 

acquired from these simulations, utilizing the temperature-dependent effective potential 

(TDEP) method at 300 Kelvin, was determined to be 42.93 (W/m K). Notably, this 

value nearly coincides with the L value of 41.25 W/m K obtained using a 5 ps 

simulation with TDEP.  

In order to provide additional confirmation, the computed L value (34.50 W/m 

K) for NaF was compared with the one obtained using ShengBTE [111]at the same 

lattice constant. The L values obtained exhibit a greater magnitude compared to those 

obtained through the (ShengBTE). 

 

The validity of the result is pending, awaiting further measurements of lattice thermal 

conductivity on single crystals of pure NaF and LiF. Binary systems that have a mass 

ratio near to unity have a relatively high L. Examples of such systems are NaF, NaCl, 

KCl, MgO, and CaS. Additionally, these systems may exhibit anomalous behaviour in 

their series of MCh compounds, where M represents Mg, Ca, Sr, and Ba, and Ch 

represents O, S, Se, and Te. Furthermore, the compounds RbX and CsX, where X 

represents Cl, Br, and I, also display similar anomalous behaviour. 
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Fig 3.24: (a,b) Lattice thermal conductivity as a function of atomic mass ratio for alkali 

halides and alkaline-earth chalcogenides. The lattice thermal conductivity values are 

taken from the present work and previous literature.[94] [95]In panel (a) △ refer to 

values obtained from the present work, ○ refer to values considered from [94], and ◊ 

refers to values taken from [110]. 

 

To gain insight into the anomalous trends, the calculated spectral and cumulative L of 

LiF, NaF, RbX, and CsX (X = Cl, Br, and I), MSe, MTe, SrCh, and BaCh (M = Mg, 

Ca, Sr, and Ba and Ch = O, S, Se, and Te) compounds have been plotted, as shown in 

Figures 3.25a-c and 3.26a-d. 
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Fig 3.25:  (a−c) Calculated spectral and cumulative lattice thermal conductivity of 

LiF,NaF, RbX, and CsX (X = Cl, Br, and I) compounds as a function of frequency. 

 

Although they possess a greater average atomic mass, they have a greater L value, as 

seen in Table 3.7. In the instances of AHs [94] [94], [110][112], it is evident that despite 

the much greater average atomic mass of NaF in comparison to LiF, NaF exhibits a 

considerably higher L [110] over LiF [112]. This may be attributed to the mass ratio 

of NaF being near to unity (1.21) as depicted in Figures 3.24a and 3.25a. In the same 

way, the mass ratio is nearly equal to one for KCl (1.10), RbBr (1.07), and CsI (1.05). 

These compounds exhibit greater L values in the KX (X = F, Cl, Br, and I), RbX [94], 

and CsX (X = Cl, Br, and I) [94] series. This information is depicted in Figure 3.25b 

and 3.25c for RbX and CsX, respectively. Similiarly, CaS exhibits a greater average 

atomic mass compared to both CaO and MgS. 
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Fig 3.26: (a−d) Calculated spectral and cumulative lattice thermal conductivity of MSe, 

MTe, SrCh, and BaCh (M = Mg, Ca, Sr, and Ba; Ch = O, S, Se, and Te) series of 

compounds as a function of frequency. 

 

Fig 3.27: Spectral and cumulative lattice thermal conductivity of MgO, CaO, and CaS 

as a function of frequency. 

 

 However, it is worth noting that CaS also has a larger L value in comparison 

to CaO (as depicted in Figure 3.27) and MgS (as depicted in Figure 3.28). The optical 

phonons associated with MgO and CaS exhibit a notable contribution to the thermal 



 
 

97 
 

conductivity (L) when compared to CaO and MgS, as demonstrated by Figures 3.26 

and 3.28.  

Fig 3.28: Spectral and cumulative lattice thermal conductivity of CaS and MgS as a 

function of frequency. 

 

While the dispersion of optical phonons in MgS and CaO is significant, their 

impact on the thermal conductivity (L) is comparatively minimal when compared to 

the contribution of optical phonons to L in CaS. The mass ratio of CaS is almost equal 

to unity, compared to the mass ratios of CaO (2.51) and MgS (1.32). SrSe and CaSe 

exhibit larger L values compared to BaSe, whereas MgSe has a lower L value in 

comparison to MSe (where M represents Ca, Sr, and Ba). Among the compounds MgSe, 

CaSe, SrSe, and BaSe, it is seen that the mass ratio of SrSe (1.11) is about equal to 

unity. Notably, in SrSe, the optical phonons play a substantial role in determining the 

thermal conductivity L, as depicted in Figure 3.24b. Hence, it can be shown from 

Figure 3.26c that SrSe exhibits a greater thermal conductivity (L) compared to SrO 

and SrS, despite the fact that these materials possess highly dispersive optical phonon 

bands. The whole BaCh (Ch = O, S, Se, and Te) series exhibits an anomalous behaviour, 

as seen in Figure 3.26d. This trend can be attributed to the significant influence of 

optical phonons on the thermal conductivity (L), which is comparable to the behaviour 

reported in CaS and SrSe. The compounds MgSe and MgTe exhibit lower L values 

compared to MSe and MTe (where M represents Ca, Sr, and Ba), as seen in Figure 3.24. 

Typically, the dominant factor in phonon transport is the contribution of 

acoustic phonons to L. Nevertheless, it is evident Figures 3.25 and 3.26 that the 

primary factor influencing L in these AHs and AECs is the contribution of optical 
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phonons. This effect is particularly pronounced in systems where the mass ratio 

approaches unity, as depicted in Figure 3.24. Chang et al. [94] postulated that a smaller 

difference in atomic mass result in an increased dispersive optical phonon. 

Consequently, this phenomenon contributes to an increased group velocity of optical 

phonons, ultimately increasing L. As seen in Figure 3.22, the optical phonon bands 

exhibit a greater degree of dispersion in LiF as compared to NaF. However, it is 

noteworthy that the lower-frequency optical phonon considerably contributes to the 

thermal conductivity (L) in NaF as compared to LiF, as evidenced by Figure 3.25a. 

This may be attributed to the fact that the mass ratio of NaF is close to unity. Similiarly, 

it can be shown from Figure 3.24b that BaO exhibits optical phonons that are extremely 

dispersive, characterised by a substantial mass ratio of 8.59. However, in comparison 

to the other compounds in the BaCh series (where Ch represents S, Se, or Te), the 

contribution of optical phonons to L in BaO is very little. Hence, it is proposed that 

materials exhibiting a mass ratio approaching unity or possessing a small atomic mass 

difference have a reduced presence of dispersive optical phonons. However, despite 

their low energy levels, these optical phonons make a substantial contribution to phonon 

transport, hence increasing the thermal conductivity (L). Materials that exhibit a 

high difference in mass have relatively low L values in the corresponding series. This 

is primarily attributed to the limited or negligible involvement of optical phonons in L, 

which can be attributed to the distinct separation between acoustic and optical phonons. 

Additionally, the presence of a small phonon band gap may further facilitate the 

suppression of L through Umklapp scattering. 

As previously mentioned, the Slack model [73] suggests that various parameters are 

influential in determining lattice thermal conductivity. Average atomic mass, 

interatomic bonding, crystal structure, and anharmonicity are among those factors. 

Table 3.7 shows a variety of material parameters, including average atomic mass, mass 

ratio, average sound velocity, Gruneisen parameter and specific heat at constant 

volume in order to establish correlations between these properties and the lattice 

thermal conductivity of AHs and AECs. Harmonic parameters such as phonon group 

velocity and specific heat capacity can explain the observed trends in L in certain cases 

when a fixed alkali/alkaline-earth metal atom is considered, as illustrated in Table 3.7. 

One example of this is the increased phonon group velocities of LiF, NaF, and MgO in 
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comparison to the compounds LiX, NaF, and NaX that were examined in this study, 

which account for their high L values. 

Nevertheless, the calculated L for the remaining compounds fails to correspond with 

the trends observed in the harmonic properties. For example, despite the fact that the  

Fig 3.29: Calculated lattice thermal conductivity L (in W/m K) at 300 K is plotted as 

a function of (a,b) specific heat at constant volume (Cv, in J/mol K), (b) zoomed-in 

image of the bottom right portion of panel (a), (c) average atomic mass (Mavg, in amu), 

(d) Debye temperature (ΘD, in K),(e) Grüneisen parameter (γν), and (f) absolute value 

of cophonicity (|Cph|, in THz) for AHs and AECs. 

 

group velocity (vg) and Debye temperature (ϴD) of BaO are considerably higher than 

those of BaTe, BaTe demonstrates a much greater L. Therefore, it is critical to take 

into account the anharmonic nature of compounds in order to comprehend the trends in 
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L, whether they pertain to a fixed group (e.g., BaCh, where Ch represents O, S, Se, 

and Te) or across different compounds. 

In order to illustrate the influence of atomic masses on vibrational properties, 

additionally cophonicity was computed, this is a metric utilised to quantify the overlap 

in atomic contributions within a designated range of vibrational frequencies. The 

cophonicity values for all the compounds under investigation are displayed in Table 

3.7. The relationship between cophonicity and the evolution of lattice thermal 

conductivity is visually depicted in Figure 3.29f. Compounds with comparable atomic 

masses (mass ratios close to 1) ought to demonstrate cophonicity close to zero. This 

value close to zero represents atomic displacements, in which the average velocity of 

motion for both atoms is identical. As illustrated in Table 3.7, the mass ratios of RbBr 

and BaTe are 1.07 and 1.08, respectively, and these elements exhibit a cophonicity of 

0.01. This is consistent with the atomic contributions of projected phonons, in which 

the vibrational spectrum is uniformly influenced by both atomic pairs throughout the 

entire frequency range. In addition, although cophonicity tends to follow the trend of 

L in certain series (Ch = O, S, Se, and Te) including BaCh, SrCh, and CaCh (where 

Te is present), a direct correlation between L and cophonicity is typically not observed. 

This discovery emphasizes the fact that L is determined by a complex interplay of 

harmonic and anharmonic properties. A comprehensive examination of these properties 

is essential in order to understand the trend in lattice thermal conductivity. Further 

investigation reveals that anharmonicity, as reflected by phonon lifetime, is critical in 

determining the trend of lattice thermal conductivity in the AHs and AECs studied in 

this work. In order to figure out the microscopic origins of the anomalous trends 

observed in L, the lifetimes (τ) and phonon group velocities (gv) are represented in 

Figures 3.30 and 3.31.  
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 Fig. 3.30: Phonon (a,c,e) group velocities (b,d,f) lifetimes of (a,b) LiF and NaF and 

(c,d) RbX and (e,f) CsX (X = Cl, Br, I). 

 

The phonon group velocities of alkali/alkaline-earth metals decrease as their atomic 

mass increases, whereas nonmetal halogens/chalcogens exhibit no anomalous 

behaviour (Figures 3.31a,c, 3.32a, and Figure 3.33a). The significance of the trend of 

L in materials with a mass ratio approaching unity is largely determined by the 

lifetimes of optical phonon modes, as illustrated in Figures 3.30b,d,f, 3.31c,d. To 

illustrate, the phonon lifetimes of CsI, NaF, RbBr, and SrSe are comparatively higher 

in the frequency ranges of ∼1−3, ∼0.5−2, and ∼4−7.5 THz, respectively, while those 

of BaTe are notably smaller at 2−4 THz. 
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Fig. 3.31: Phonon (a,c) group velocities and (b,d) lifetimes of (a,b) MSe and (c,d) MTe 

series of compounds, where M = Mg, Ca, Sr, and Ba. 

In addition, the characteristics of the absorption and emission scattering rates of the 

compounds that belong to the BaCh series are illustrated in Figure 3.34. The graphs 

show that absorption dominates in the low-frequency zone of scattering rates, whereas 

emission dominates in the high-frequency zone. In addition, materials having a narrow 

acoustic-optical gap have comparatively higher scattering rates in the acoustic-optical 

gap region. In general, materials with a mass ratio close to unity have relatively modest 

scattering rates. As a result, these materials have longer phonon lifetimes (τ) and so 

abnormally high L relative to materials with mass contrast. 
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(a)                                                                 (b) 

Fig. 3.32: Phonon (a) group velocities (b) lifetimes of MgO, CaO and CaS.  

 

(a)                                                              (b) 

Fig. 3.33: Phonon (a) group velocities (b) lifetimes of MgS and CaS. 

Fig. 3.34: Phonon scattering rates of (a) BaO, (b) BaS, (c) BaSe, and (d) BaTe 
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3.2.2.2 Effect of Tensile Lattice Strain on Lattice Thermal Conductivity 

To conduct a more comprehensive examination of the impact of atomic mass variation 

on L, the influence of tensile lattice strain has been explored in relation to lattice 

dynamics and phonon transport. This investigation focuses on two specific materials, 

namely MgTe with a significant mass contrast of 5.25 and BaTe with a mass ratio close 

to unity of 1.08. These materials have been selected as case studies from a pool of 36 

compounds that are currently under scrutiny. The equilibrium lattice constant is then 

incremented in a systematic manner, resulting in the observation of soft phonon modes 

for MgTe when subjected to a lattice strain of 6% (Figure 3.35a). Consequently, the 

impact of lattice strain has also been investigated for BaTe, with the study extending 

up to 6%. The phonon dispersion curves of BaTe, calculated for various lattice strains, 

are depicted in Figure 3.35b. 

Fig. 3.35: Tensile lattice strain dependent (a, b) Phonon dispersion curves (c, d) 

lattice thermal conductivity of (a, c) MgTe and (b, d) BaTe. 

 

It is noteworthy that no imaginary frequencies are detected for BaTe throughout a range 

of 6% lattice strain. This observation suggests that BaTe remains dynamically stable 

when subjected to the applied tensile strain. The dispersion of optical phonon modes in 

both MgTe and BaTe materials is shown to increase under the influence of tensile strain, 

as depicted in Figure 3.35a and Figure 3.35b. Furthermore, it has been observed that 
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the acoustic and optical phonon modes of both MgTe and BaTe undergo softening 

under the influence of tensile strain (Figure 3.35a,b). This phenomenon leads to an 

increase in the coupling strength between the acoustic and optical phonon modes, 

Fig 3.36: Tensile strain-dependent spectral and cumulative lattice thermal 

conductivities of (a) MgTe and (b) BaTe as a function of frequency. 

 

particularly the transverse optical (TO) mode. The observed phenomenon implies a rise 

in phonon-phonon scattering rates, leading to a related reduction in the thermal 

conductivity (L) as the tensile lattice strain increases. This relationship is illustrated in 

Figure 3.35c and Figure 3.35d for MgTe and BaTe, respectively. The measured thermal 

conductivity values exhibit a decline from 10.1 W/m K (4.78) to 2.22 W/m K (1.04) at 

a temperature of 300 K when subjected to an applied tensile lattice strain ranging from 

0 to 6 (4) percent for the materials BaTe and MgTe, respectively. The calculated L 

values exhibit a monotonic decline with increasing temperature. 

Subsequently, spectral and cumulative L values were computed as a function 

of frequency for BaTe and MgTe. The significance of the contribution of optical 

phonons to the lattice thermal conductivity (L) in BaTe, compared to MgTe, is evident 

from the data shown in Figure 3.36 as tensile strain is increased. Furthermore, as tensile 
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lattice strain increases, the contribution of optical phonons to L decreases 

progressively as a result of substantial phonon softening. The study of the effect of 

tensile lattice strain on BaTe and MgTe makes it evident that optical phonons contribute 

significantly to determining phonon transport in materials, particularly in those where 

the atomic mass ratio is almost unity. 

 To gain a better understanding of how L decreases with tensile strain, phonon 

group velocities (gv) and lifetimes (τ) were estimated as a function of tensile lattice 

strain, because L is proportional to gv and (τ). The tensile strain-dependent group 

velocities are shown in Figure 3.37a,b; the gv's of acoustic modes decrease with strain 

due to phonon softening, whereas the gv's of optical modes increase with strain due to 

a rise in the dispersive nature of MgTe as a function of strain. In the case of BaTe, it 

can be shown that both the group velocities (gv) of the acoustic and optical modes 

decrease with strain.  

 Fig 3.37: Tensile strain-dependent phonon (a,b) group velocities and (c,d) lifetimes of 

(a,c) MgTe and (b,d) BaTe.  

 

This phenomenon may be attributed to the relatively low dispersive character 

of the optical phonons in BaTe compared to MgTe. Hence, the (gv's) do not serve as the 

dominant factor for the observed trends in L. Phonon lifetimes are calculated and 

depicted in Figure 3.37c,d, illustrating their dependence on strain. It is evident from 

Figure 3.37c that the τ values for MgTe decrease in accordance with strain. Conversely, 

the decline in phonon lifetimes for optical phonons may significantly affect the trends 
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observed for L in BaTe. As the applied tensile lattice strain increases, the associated 

phonon lifetimes decrease (Figure 3.37) due to the increased scattering rates. Overall, 

when tensile lattice strain is applied to MgTe and BaTe, L is suppressed due to the 

dominant role of τ and the modest contribution of gv's due to increased phonon−phonon 

scattering. This clearly shows the dominance of phonon scattering rates/lifetimes and 

the contribution of optical phonon modes to L even when tensile strain is applied. 

 

The complete study described above gives some crucial insights into the 

relationship between mass ratio and L: (a) When there is a minimum variation in 

atomic mass between elements in a material, it leads to a large enhancement of the 

contribution of optical phonons to the thermal conductivity (L), ultimately leading in 

an overall rise in L. (b) Materials with a mass ratio near to unity and low atomic masses 

in a binary system, such as NaF, NaCl, KCl, MgO, CaO, and MgS, have a higher 

presence of dispersive optical phonons. The optical phonons have a significant role in 

the thermal conductivity, L.  (c) On the other hand, in a binary system where the mass 

ratio is close to unity but the atomic masses are heavier, such as RbBr, CsI, SrSe, SrTe, 

and BaTe, there is a reduced presence of dispersion optical phonons. These optical 

phonons exhibit sharp peaks within a narrow frequency range, leading to a relatively 

more minor contribution to κL compared to acoustic phonons. (d) In general, materials 

with a mass ratio near to unity have longer phonon lifetimes, which continue to be a 

dominant factor for attaining high values of L. Materials comprised of elements with 

similar atomic masses have, on average, relatively high values of L; conversely, 

materials comprising elements with dissimilar atomic masses have lower values of L. 

 

This study carefully investigates the microscopic origins of anomalous trends 

observed in the thermal conductivity (L) of alkali halides (AHs) and alkaline-earth 

chalcogenides (AECs). Given that AHs and AECs are binary systems characterised by 

a diverse range of L values, they present an opportunity to investigate the underlying 

factors contributing to their anomalous behaviour, particularly in relation to various 

mass ratios. It has been shown that the presence of low-lying optical phonons has a 

substantial role in enhancing the thermal conductivity (L) in some materials (namely 

NaF, NaCl, KCl, MgO, CaO, MgS, SrSe, SrTe, and BaTe) that have a mass ratio near 

to unity, in addition to their average atomic mass. Materials that have a mass ratio near 
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to unity have very low scattering rates, leading to longer lifetimes of phonons. As a 

consequence, these materials demonstrate an unusually high thermal conductivity (L) 

within a certain series. The phonon transport characteristics of BaTe and MgTe are 

influenced by the tensile lattice strain-dependent strain, which in turn affects the phonon 

lifetimes. These phonon lifetimes have a significant impact on the observed trends in 

L. In general, the dominant factor influencing the anomalous trends in L for AHs and 

AECs with a mass ratio close to one is the phonon scattering rates, which are inversely 

proportional to the phonon lifetimes. Phonon group velocities, on the other hand, have 

little effect in this regard. The present work offers a comprehensive analysis of the 

relationship between atomic mass and the phonon transport characteristics of AHs and 

AECs. Furthermore, this study reveals that by manipulating the atomic masses, 

materials could be engineered with high and low L values, providing exciting 

possibilities for tailored thermal conductivity in various applications. 
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Discovery and design of functional quasi two dimensional (2D) layered materials with 

extremely low or high lattice thermal conductivity (L) are crucial for thermal energy 

management applications [1], [2]. Ultralow L materials find potential applications in 

thermoelectrics [3], [4], thermal insulation [5], [6], thermal storage [7], [8] , thermal 

barrier coatings [9]–[12], while high L materials find applications in power electronics 

and solid state lighting [13], [14]. 

 A plethora of mechanisms [15]–[21] were proposed to achieve low L. Among 

them, bonding heterogeneity is an essential mechanism and it is an intrinsic property of 

layered materials. The layered materials are bonded through strong covalent/ionic 

bonds in the in-plane and coupled by weak van der Waals (vdWs)/strong electrostatic 

interactions in the out-of-plane direction i:e:, bonding heterogeneity thus resulting in a 

strong/weak structural anisotropy [1], [22]. Therefore, through bonding heterogeneity, 

these layered materials provide an avenue for tailoring phonon transport properties. 

Investigation of iso-structural layered materials with varying average atomic mass is 

intriguing because they allow to make structure-property correlations by exploring the 

interplay between bonding heterogeneity and atomic mass and also their implications 

on lattice dynamics thereby fine tuning the phonon transport properties [1], [2].  

Exploring mechanisms to achieve low L is essential for discovering functional 

materials through chemical intuition in layered materials by fine tuning the phonon 

group velocities and scattering rates/lifetimes. 

 

4.1. Alkali halo fluorides 

MXF (M = Ca, Sr, Ba and X = Cl, Br, I) compounds are quasi-2D materials 

crystallizing in the tetragonal crystal structure with space group P4/nmm (Fig. 4.1a). 

The structure is obtained from ionically bonded X-M-F-F-M-X layers that are stacked 

along the c-axis and bound to each other by weak vdW forces (Fig. 4.1b). These 

materials attracted tremendous attention because of their unique electronic properties 

and promising applications such as energy storage, photo-detectors, optoelectronic 

devices [23]–[25]. Barhoumi et al. [26] investigated the vibrational and electronic 

properties of monolayers of BaFBr, CaFBr, and BaFCl. According to the findings of 

Tan et al. [27], lead dihalides with bandgaps ranging from 2.3 eV (PbI2) to 5.8 eV (PbF2) 
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are optimal wide bandgap semiconductors for the fabrication of UV photodetectors. In 

numerous applications, including power electronics and solid-state lightings, ultra-wide 

bandgap (UWBG) semiconductors have been utilized extensively [13], [14]. Recently, 

materials with UWBG and ultralow L have gained lot of attention as these materials 

find promising applications in thermal barrier coatings and turbine industries [9]–[12]. 

As the MXF materials are layered with bonding heterogeneity and the variation of 

alkaline-earth metal (M) and halogen (X) atomic mass provides an opportunity to 

explore the interplay between bonding heterogeneity and atomic mass on the phonon 

transport. Although MXF materials have been investigated extensively, only a few 

studies were focused to comprehend the phonon transport properties and anharmonic 

lattice dynamics under ambient conditions [28], [29]. Therefore, in the present study, a 

detailed investigation has been carried out to explore chemical bonding, anharmonic 

lattice dynamics and phonon transport properties of these layered PbClF-type materials. 

4.2 Computational Details 

The Vienna Ab-initio Simulation Package (VASP) [30] was employed to 

perform the first-principles calculations. The Perdew-Burke-Ernzerhof revised for 

solids (PBEsol) functional within the generalized gradient approximation (GGA) was 

utilized to treat the exchange-correlation interactions. The electron-ion 

interactions were treated employing the projector augmented wave (PAW) 

pseudopotential approach. The plane wave basis orbitals listed below were regarded as 

valence electrons. F: 2s2,2p5; Cl: 3s2,3p5; Br: 4s2,4p5; I: 5s2,5p5; Ca: 4s2, Sr: 5s2, Ba: 

6s2. A plane wave energy cutoff of 560 eV was used for plane wave basis set expansion 

and a spacing of 2π× 0.025 A-1 for k-mesh in the irreducible Brillouin zone for the 

structural optimization, as well as the calculation of elastic constants using the stress-

strain approach, born effective charges, and dielectric constants using density 

functional perturbation theory (DFPT). Later, ab-initio molecular dynamics (AIMD) 

simulations have been carried out using VASP at 300 K by considering the optimized 

structures at 0 K within DFT. The AIMD simulations at high temperature (Fig. 1c,d) 

were run for 5000 MD steps with a time-step of 1 fs (i.e., 5 ps) with a supercell sizes as 

summarized in Table 4.1 at Γ centred k-mesh for the MXF compounds. The temperature 

was controlled with a Nose-Hoover thermostat [31], [32]. The AIMD output obtained 

using VASP was post-processed using temperature dependent effective potential 
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(TDEP) [33] method to compute lattice dynamics and phonon transport properties of 

MXF compounds including harmonic (2nd) and anharmonic (3rd) interatomic force 

constants (IFCs). Up to 9th nearest neighbours were considered for both 2nd and 3rd order 

IFCs to calculate phonon dispersion curves and phonon transport properties. The lattice 

thermal conductivity is determined by repeatedly solving the full Boltzmann transport 

equation (BTE) using a q-mesh specified in Table 4.1 for the explored MXF 

compounds. 

4.3 Results and discussion 

4.3.1 Crystal structure, chemical bonding and Raman spectra 

Matlockite-type, MXF (Ca, Sr, Ba, Pb and X = Cl, Br and I) compounds 

crystallize in the primitive tetragonal P4/nmm symmetry with Z = 2 (f.u./cell) at 

ambient conditions [34]. The metal M (Ca, Sr, Ba, Pb), non-metal X (Cl, Br, and I) and 

F atoms are located at Wyckoff 5 sites 2c:(0.25, 0.25, v), 2c: (0.25, 0.25, u), and 

2a:(0.75, 0.25, 0), respectively, where u and v are the internal variable coordinates of 

X and M atoms, respectively. By considering the crystal structures determined from X-

ray diffraction (XRD) measurements [34] full structural optimization has been 

performed to obtain the equilibrium or ground state structures for all the MXF 

compounds under investigation and are compared with the XRD data and there is a 

good agreement between them as presented in Tables 4.2 – 4.4. In total, there are 4 

inequivalent bonds, one M-F, three M-X (M-X1, M-X2 and M...X3) bonds in these 

MXF compounds, in which M-F bond lengths are shorter than M-X bond lengths (Table 

4.5), M-X1 and M-X2, M...X3 are equatorial and axial bonds, respectively, M-X2 is 

bond between M and halogen (X2) within the layer whereas M...X3 is bond between 

M and halogen (X3) in the adjacent layer (Fig. 4.1a). As shown in Fig. 4.1a, the 

optimized crystal structure consists of two metal (M) cations per primitive cell based 

on the multiplicity of their Wyckoff site (2c), each M cation is surrounded by a 4-fold 

coordination of F anions in the form of square planar and a 5-fold coordination of X 

(Cl, Br, I) anions. M with four X’s lying in the same plane forms 4 equatorial (M-X1) 

bonds whereas with X2 and X3, M forms M-X2/M...X3 bond within the 

(mono)layer/adjacent layer (see Fig. 4.1a), thus resulting in a total coordination number 

of 9 with a structural motif of MX5F4 (Fig. 4.1a). Bond length of M...X3 is lower than 
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M-X2 bond in CaClF, SrClF, SrBrF, BaXF (X = Cl, Br, I) compounds while the bond 

length of M...X3 is greater than M-X2 bond in CaBrF, CaIF and SrIF, which 

differentiates the later three compounds from the former 6 iso-structural compounds. 

The inequivalent M-X1, M-X2 and M...X3 bonds play a critical role in determining the 

layered nature of these materials. M-X1 and M...X3 bond lengths are closely 

comparable in CaClF, SrClF and BaClF (Table 1). (Table 4.5). In contrast, with 

increasing size of X (Cl → Br → I), the axial M-X2/M...X3 bond length is higher than 

equatorial M-X1 bond length for MXF  (M = Ca, Sr, Ba and X = Br, I). With increasing 

size of X (Cl → Br → I), the packing of halide sublattice becomes largely constrained, 

therefore, this stress is relieved by stretching of the lattice  

Fig 4.1: (a) Primitive/unit cell of MXF compounds with one axial (M-X2) and four 

equatorial (M-X1) bonds (b) Side view of layered structure with a layer sequence X-

M-F-F-M-X (M = Ca, Sr, Ba and X = Cl, Br, I), and these layers are stacked along the 

c-axis with vdW gaps between X...X layers. Snapshot of heated CaIF supercell viewed 

along bc-plane (c) 300 K and (d) 900 K using AIMD simulations and visualized using 

VESTA software. 
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along the c-axis [35]. This results in increasing the axial M-X2/M...X3 bond length, 

which is manifested by the axial (c/a) ratio as given in Table 4.6. The bonding in CaBrF, 

CaIF, and SrIF is different compared to the other 6 compounds in the MXF series. The 

intralayer M-X1 and M-F bonds compare well with the ones calculated from the 

effective ionic radii (for Ca, Sr, Ba and Cl, Br, I, are 1.18, 1.31, 1.47 and 1.31, 1.81, 

1.96, 2.20 in A˚, respectively), suggesting strong ionic bonding within the layers. 

However, the interlayer M...X3 bond is significantly longer in CaBrF, CaIF, and SrIF 

by 0.908 A˚, 1.506 A˚, and 1.048 A˚, respectively. This points to a change in the 

interlayer bonding character from ionic to vdWs bonding. The increase of axial M-

X2/M...X3 bond length strongly determines the quasi two dimensional layered nature 

of the MXF compounds by stretching the X...X layer distance (Table 4.5). The c/a ratio 

is mirroring the effect observed in the bond distances, showing a decrease from CaIF 

to SrIF to BaIF due to a decrease of axial M-X2/M...X3 and increase of equatorial M-

X1 bond lengths and the same is observed in iso-structural MHI (M = Ca, Sr, Ba) 

compounds [34]. The increase of axial M-X1 bond length strongly determines the quasi 

two-dimensional layered nature of the MXF compounds by stretching the X...X layer 

distance (Table 4.5), in particular, the c/a ratio is greater than 2 for CaBrF, CaIF and 

SrIF, enhancing the layered character in these three compounds (Fig. 4.1b). The c/a 

ratio increases with size of the X, while it decreases with increase in size of M (see 

Table 4.6). The bond angle between opposite F’s (F-M-F) increases with increasing 

size of X, which causes the lattice to flatten out equatorially by stretching the M-F bond 

length while the bond angle X1-M-X3 decreases with increasing the size of X, squeezes 

the halide sublattice thus enhancing the electron density in the equatorial M-X1 bonds 

[35]. 

Table 4.1:  Supercell and K-mesh details of MXF (M = Ca, Sr, Ba and X =Cl, Br, I) 

compounds considered for computations in current study. 

Compound 

    Supercell 

(No. of atoms) q-mesh 

CaClF 4*4*2 (192) 19*19*19 

CaBrF 4*4*2 (192) 22*22*10 

CaIF 5*5*2 (300) 21*21*9 

SrClF 3*3*2 (108) 20*20*12 
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SrBrF 4*4*2 (192) 20*20*11 

SrIF 4*4*2 (192) 20*20*9 

BaClF 4*4*2 (192) 19*19*12 

BaBrF 4*4*2 (192) 19*19*11 

BaIF 4*4*2 (192) 18*18*11 

 

Table 4.2: Calculated structural properties i.e. lattice constants (a,c) (in Ao), Volume 

V (in (Ao)3), internal coordinates (v,u) of CaXF (X = Cl, Br and I) compounds using 

PBEsol are compared with available X-ray diffraction data and other theoretical 

calculations. 

Compound Method a c V v u 

CaClF This Work  3.854 6.742 100.14 0.196 0.642 

 
Expt.[36] 3.894 6.818 103.38 0.1962 0.6432 

 
Others 

3.939 

[37], 

3.894 [38]   

6.898 

[37], 

6.811 [38]   - 

0.194902 

[37] 

0.642250 

[37] 

CaBrF This Work  3.84 8.043 118.6 0.164 0.667 

 
Expt.[39] 3.883 8.05 121.38 0.17 0.67 

 
Others 

3.926 

[37],  

3.829 [38]   

8.139 

[37],  

7.926 [38]   - 

0.165145 

[37] 

0.665408 

[37] 

CaIF This Work  3.965 9.046 142.21 0.139 0.679 

 
Others [37] 4.029 9.669 - 0.132683 0.691725 

 

Table 4.3: Calculated structural properties i.e. lattice constants (a,c) (in Ao), Volume 

V (in (Ao)3), internal coordinates (v,u) of SrXF (X = Cl, Br and I) compounds using 

PBEsol are compared with available X-ray diffraction data and other theoretical 

calculations. 

Compound Method a c V v u 

SrClF This Work  4.092 6.915 115.79 0.202 0.643 

 
Expt.[40] 4.126 6.958 118.452 0.2015 0.6429 
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Others 

4.185 [41], 

4.129 [38] 

7.057 [41], 

6.966 [38] - 

0.20152 

[41] 

0.642900 

[41] 

  
4.163 [42]  6.827 [42] - 0.189 [42] 0.664 [42] 

SrBrF This Work  4.184 7.284 127.51 0.187 0.646 

 
Expt.[43] 4.218 7.337 130.536 0.1859 0.6479 

 
Others 

4.261 [44], 

4.084 [45] 

7.482 [44], 

 7.105 [45] - 

0.187089 

[44] 

0.645628 

[44] 

  
4.212 [38] 6.985 [38] - 0.184 [38] 0.668 [38] 

SrIF This Work  4.211 8.834 156.65 0.151 0.667 

 
Expt.[44] 4.253 8.833 159.77 0.167 0.657 

 
Others 

4.305 [44] 

4.173 [45] 

8.916 [44] 

8.667 [45] 143.96 [46] 

0.152826 

[44] 0.664 [44] 

  
4.4469 [46] 7.2801 [46] 

   
 

Table 4.4: Calculated structural properties i.e. lattice constants (a,c) (in Ao), Volume 

V (in (Ao)3), internal coordinates (v,u) of BaXF (X = Cl, Br and I) compounds using 

PBEsol are compared with available X-ray diffraction data and other theoretical 

calculations. 

Compound Method a c V v u 

BaClF 

This 

Work 4.368 7.201 137.39 0.206 0.648 

 
Expt.[40] 4.394 7.225 139.49 0.2049 0.6472 

 
Others 

4.450 [37], 

4.391 [25] 

7.317 

[37], 

 7.22 

[25] 139.48[47] 

0.204436 

[37] 

0.647142 

[37] 

  

4.427 [42], 

4.3934[25] 

7.126 

[42], 

7.2264 

[25] 

139.48 

[25] 

0.191 

[42] 

0.660 

[42] 

BaBrF 

This 

Work 4.482 7.419 149.04 0.193 0.648 
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Expt.[36] 4.508 7.441 151.22 0.1911 0.6497 

 

Others 

[42] 4.536 7.639 - 0.192544  0.648100 

 
Others 4.479 [47] 

 

7.229 

[47] 
 

- 

0.1911 

[47] 

0.662 

[47] 

BaIF 

This 

Work 4.625 7.896 168.9 0.172 0.648 

 
Expt.[36] 4.654 7.962 172.45 0.1704 0.6522 

 
Others 

4.634 [42], 

4.709 [47] 

7.752 

[42], 

8.085 

[47] - 

0.173 

[42], 

0.170359 

[47] 

0.6522 

[42] 

0.649649 

[47] 

Table 4.5: Calculated bond lengths (in Ao) and angles (in 0) of MXF (M = Ca, Sr, Ba 

and X = Cl, Br, I) compounds. 

Compound Method M-F ∠F-M-F M…X3 M-X1 

 

M-X2 
∠X1-

M-X3 

CaClF This Work  2.338 111 3.007 2.934 3.735 68.2 

 
Others[36] 2.32 111 3.048 2.963 - 68.3 

CaBrF This Work 2.328 111.1 4.048 3.037 3.994 63.4 

CaFI This Work 2.349 115.1 4.886 3.248 4.16 59.7 

SrClF This Work 2.477 111.4 3.054 3.085 3.862 69.7 

 
Others [40] 2.494 111.6 3.072 3.112 - 69.6 

SrBrF This Work 2.495 113.9 3.346 3.201 3.938 67.6 

 
Others [44] 2.511 - - 3.222 - - 

SrIF This Work 2.494 115.2 4.558 3.382 4.276 61.7 

BaClF This Work 2.641 111.6 3.179 3.263 4.022 71.2 

 
Others[36] 2.649 112.1 3.196 3.286 - 71 

BaBrF This Work 2.659 114.9 3.375 3.382 4.044 69.6 

 
Others[36] 2.665 115.5 3.412 3.401 - 69.6 

BaIF This Work 2.682 119.1 3.762 3.564 4.134 66.6 
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Others[36] 2.694 119.5 3.836 3.581 - 66.8 

 

Table 4.6: Calculated (c/a) ratio compared with other theory and experiments. 

Compound This Work Theory Experiment 

CaClF 1.749 1.751 [41], 1.749[38] 1.751 [36] 

CaBrF 2.095 2.073 [41], 2.070[45] 2.073 [44] 

CaIF 2.281 2.399 [41] - 

SrClF 1.689 1.686 [41],1.687 [38],1.639 [42] 1.686 [40] 

SrBrF 1.741 1.765 [41],1.74 [38],1.658 [42] 1.739 [44] 

SrIF 2.098 2.071 [41],2.07 [38] 2.071 [44] 

BaClF 1.648 1.644 [41],1.644 [38],1.609 [42] 

1.644 [40],1.64[48], 

1.646[49] 

BaBrF 1.655 1.684 [41],1.651 [38],1.614 [42] 1.651 [36],1.65 [48] 

BaIF 1.707 1.728 [41],1.711 [38],1.673 [42] 1.711 [36],1.71 [48] 

Overall, the crystal structure is formed by a sequence of ionically (as evidenced from 

the calculated Bader charges presented in Table 4.7) bonded X-M-F-F-M-X layers [22], 

[50], which are stacked perpendicular to c-axis and these layers are bonded through 

weak van der Waals (vdW) interactions along the c-axis (Fig. 4.1b), thus, resulting in a 

bonding heterogeneity [15] i:e:, intralayer ionic and weak interlayer vdW bonding in 

these class of PbClF-type or matlockite-type materials.  

Table 4.7: Calculated Bader Charges for MXF (M = Ca, Sr, Ba and X = Cl, Br,I) 

compounds. 

Compound      M     F      X 

CaClF 1.616 -0.827 -0.789 

CaBrF 1.596 -0.831 -0.764 

CaFI 1.572 -0.846 -0.728 

SrClF 1.632 -0.838 -0.793 

SrBrF 1.617 -0.848 -0.77 
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SrIF 1.596 -0.855 -0.741 

BaClF 1.626 -0.834 -0.792 

BaBrF 1.604 -0.843 -0.762 

BaIF 1.57 -0.853 -0.717 

To further reveal the bonding nature of MXF compounds, the potential energy 

curves are calculated by off-centering M, X, F atoms from their equilibrium position. 

As shown in Fig. 4.2, the potential energy curves show deep potential wells for M and 

X atoms, when they are displaced along the out-of-plane direction. While the shallow 

potential well is observed along in-plane direction for X atoms, this indicates rattling 

motion of X atoms originating from the bonding heterogeneity, especially for materials 

with axial ratio (c/a) > 2, such as CaBrF, CaIF and SrIF, which would be highly 

anistropic and expected to have low L along the out-of-plane direction. 

Fig 4.2:  Potential energy curves for (a) CaClF, (b) CaBrF, (c) CaIF, (d) SrClF, (e) 

SrBrF, (f) SrIF, (g) BaClF, (h) BaBrF and (i) BaIF by off-centering M (Ca, Sr, Ba), X 

(Cl, Br, I), F atoms from their equilibrium positions. 

Zone center Raman and/or IR spectra are used to further explore the chemical 

bonding and lattice dynamics of materials. The zone center phonon frequencies are 

extensively studied for PbClF-type materials [15], [28] [51]–[54]. The PbClF-type 
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materials consist of six atoms per primitive cell resulting in total of 18 (3 acoustic and 

15 optic) phonon modes. Group theory predicts the symmetry decomposition of phonon 

modes at Γ-point for P4/nmm space group is given as follows: 

                    Γ18 = 2A1𝑔⊕B1𝑔⊕3E𝑔⊕3E𝑢⊕3A2𝑢, 

in which six are Raman active (A1g, B1g, Eg) and four are IR active (A2u, Eu) modes. 

Here, "E" denotes the doubly degenerate vibrational modes in xy-plane, whereas "A" 

and "B" modes represent vibrations along c-axis or out-of-plane direction (Table 4.8). 

The detailed phonon vibrational mode analysis can be found elsewhere [15], [28] [51]–

[54]. In this study, Raman spectra and Raman-shift for MXF (Ca, Sr Ba and X = Cl, Br 

and I) compounds have been calculated and are presented in Figure 4.3 and Tables 4.9 

– 4.11, respectively. 

As it can be clearly seen from Fig. 4.3, all the 9 compounds under investigation have 6 

Raman active modes due to their iso-structure. However, these compounds show 

significant differences in the Raman spectra owing to difference in atomic mass as well 

as nature of layered structure in Ca, Sr and Ba series. As lighter atoms can vibrate with 

higher frequency compared to heavier ones, the Raman-shift shows a red-shift with 

increase in atomic mass of alkaline-earth metal (M) and halogen (X). In addition, this 

red-shift is much more pronounced in CaXF and SrXF series over BaXF series. The 

red-shift observed in the low-frequency optic phonon modes is greater than in the high-

frequency optic phonon modes. A strong A1g mode is observed for layered materials 

(CaBrF, CaIF and SrIF) especially with axial ratio greater than 2, which might serve as 

an indication from Raman spectra to distinguish between strongly anisotropic materials 

from the isotropic ones. 

Table 4.8 : Factor group analysis for the crystal structure of tetragonal MFX unit cell. 

Ion 

Wyckoff 

site 

Site 

symmetry 

       Irreducible           

    Representation 

M 2c 4mm (C4v) A1𝑔⊕A2𝑢⊕E𝑔⊕E𝑢 

F 2a -4m2 (D2d) A2𝑢⊕B1𝑔⊕E𝑔⊕E𝑢 

X 2c 4mm (C4v) A1𝑔⊕A2𝑢⊕E𝑔⊕E𝑢 
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Fig 4.3: Raman Spectra for MXF (M = Ca, Sr, Ba and X = Cl, Br, I) at ambient 

conditions. The Raman intensities are scaled for CaClF (×15), CaBrF (×3), SrClF (×15) 

and SrBrF (×10), BaClF (×5), BaBrF (×5) and BaIF (×3). 

Table 4.9: Calculated Raman active modes for CaXF (X = Cl, Br, I) compounds 

compared with available experimental and other previous studies. 

Compound Raman Mode 

                 Frequency 

(This work) Experiment Others 

CaClF Eg(1) 147.6 156[55] 168[56] 

 
Eg(2) 184.37 209 [55] 204 [56] 

 
A1g(1) 187.86 192 [55] 202 [56] 

 
B2g 250.24 252 [55] 262 [56] 

 
A1g(2) 262.21 265 [55] 278 [56] 

 
Eg(3) 332.72 336 [55] 347 [56] 

CaBrF Eg(1) 79.36 - - 

 
A1g(1) 107 - - 

 
Eg(2) 172.53 - - 

 
B2g 246.36 - - 

 
A1g(2) 259.59 - - 

 
Eg(3) 336.84 - - 
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CaIF Eg(1) 53.64 - - 

 
A1g(1) 77.88 - - 

 
Eg(2) 169.56 - - 

 
B2g 235.67 - - 

 
A1g(2) 241.4 - - 

 
Eg(3) 304.82 - - 

Table 4.10: Calculated Raman active modes for SrXF (X = Cl, Br, I) compounds 

compared with available experimental and other previous studies. 

Compound 

Raman 

 Mode 

                            Frequency 

 

This 

work      Experiment              Others 

SrClF Eg(1) 105.17 107[57] 

105.45 [58], 107 [59], 115 

[56] 

 
Eg(2) 161.18 167 [57],164[55] 

160.99 [58],168 [59],180 

[56] 

 
A1g(1) 162.05 159 [57] 

161.76 [58],170 [59],173 

[56] 

 
A1g(2) 190.76 

196 [57], 194 

[55] 

190.74 [58], 201 [59] ,214 

[56] 

 
B2g 231.5 

243 [57], 241 

[55] 

242.72 [58], 230 [59], 251 

[56] 

 
Eg(3) 292.72 

298 [57], 296 

[55] 

296.28 [58], 289 [59], 312 

[56] 

SrBrF Eg(1) 91.7 - 97[42] 

 
A1g(1) 110.41 - 114 [42] 

 
Eg(2) 127.4 - 138 [42] 

 
A1g(2) 162.01 - 186 [42] 

 
B2g 237.02 - 235 [42] 

 
Eg(3) 275.63 - 241 [42] 

SrIF Eg(1) 56.83 - - 
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A1g(1) 71.42 - - 

 
Eg(2) 121.12 - - 

 
A1g(2) 160.15 - - 

 
B2g 224.35 - - 

 
Eg(3) 270.58 - - 

 Table 4.11: Calculated Raman active modes for BaXF (X = Cl, Br, I) compounds 

compared with available experimental and other previous studies. 

Compound 

Raman  

Mode 

                      Frequency  

This 

work    Experiment       Others 

BaClF Eg(1) 80.15 89 [57],82 [55] 

81.34 [51], 

83[60], 79[56] 

 
A1g(1) 132.79 

125 [57], 132 

[55] 

128.36 [51],145 [60], 

131 [56] 

 
Eg(2) 135.27 

142 [57], 143 

[55] 

135.54 [51],147 [60], 

141 [56] 

 
A1g(2) 163.9 

162 [57], 165 

[55] 

161.64 [51],169 [60], 

165 [56] 

 
B2g 215.17 

212 [57], 216 

[55] 

216.73 [51], 

237 [60],215 [56] 

 
Eg(3) 250.02 

247 [57], 251 

[55] 

308.72 [51], 

277 [60],253 [56] 

BaBrF Eg(1) 74.09 76 [57], 76 [55] 

74.46 [51], 

70 [56],76[61] 

 
A1g(1) 101.29 

105 [57], 103 

[55] 

99.85 [51], 

95 [56],105 [61] 

 
Eg(2) 106.21 

109 [57], 109 

[55] 

104.71 [51], 

98 [56],109 [61] 
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A1g(2) 125.58 

119 [57], 123 

[55] 

122.94 [51], 

123 [56],119 [61] 

 
B2g 209.4 

215 [57], 211 

[55] 

208.85 [51], 

211 [56],215 [61] 

 
Eg(3) 235.99 

240 [57], 238 

[55] 

315.90 [51], 

234 [56],240 [61] 

BaIF Eg(1) 66.35 40[48],67 [55] 70[62],64 [56] 

 
A1g(1) 74.15 81 [48], 78 [55] 79 [62],76 [56] 

 
Eg(2) 101.41 74 [48], 111 [55] 105 [62],101 [56] 

 
A1g(2) 112.27 

113 [48], 102 

[55] 113 [62],118 [56] 

 
B2g 201.52 

205 [48], 203 

[55] 203 [62],205 [56] 

 
Eg(3) 215.75 

221 [48], 219 

[55] 218 [62],227 [56] 

4.3.2 Elastic constants and poly-crystalline properties 

To furthermore investigate the bonding heterogeneity, elastic constants are 

calculated for the nine MXF compounds and are presented in the Table 4.12. Since the 

PbClF-type materials crystallize in the primitive tetragonal symmetry (P4/nmm), they 

possess six independent elastic constants C11, C33, C12, C13, C44 and C66. The computed 

elastic constants obey Born's stability criteria [63], [64], which clearly indicates that the 

investigated MXF materials are mechanically stable at ambient pressure. The out-of-

plane elastic constant C33 is less than the in-plane elastic constant C11 indicating that 

the lattice is weaker along the c- axis compared to a-axis for all these MXF systems, 

and it is due to weakly bonded vdW interactions between the X-M-F-F-M-X layers 

stacked along the c-axis. 

Table 4.12: Calculated second order elastic constants (in GPa) at PBEsol equilibrium 

volume for MXF (M = Ca, Sr, Ba and X = Cl, Br, I) compounds. 

Compound Method C11 C33 C44 C66 C12 C13 

CaClF This Work 106.8 72.5 33.9 36.4 36 46.6 
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Others [50] 98.9 69.7 24.4 32.9 38.1 52.9 

 
Others [65] 110.8 93.2 34.8 38.2 35.7 50.5 

CaBrF This Work 93.7 15.3 18.3 29.2 21.1 17.7 

 
Others [50] 93 24.3 10 27.2 18.7 15.6 

CaIF This Work 79.3 16.6 8.9 22.3 12 9.1 

SrClF This Work 92.4 78 27.8 30.3 28.8 42.2 

 
Expt-1 [66] 91.2 77 29.5 30.9 29 40.2 

 
Expt-2 [67] 93.8 76.8 28.7 31.5 29.6 - 

 
Others [68] 93 76.1 29.8 31.2 29.2 42.2 

 
Others [50] 81 65.3 28.3 27.8 26.3 38.9 

SrBrF This Work 83.3 50.9 27.9 30.8 28.4 35.8 

 
Expt. [43] 88.7 53.3 27.4 - - 35 

 
Others [50] 73.6 57.7 29.4 28.9 27.6 37.6 

 
Others [65] 80.9 68.2 26.1 27.9 26.1 36.9 

SrIF This Work 66.1 13.7 13.7 23.5 12.8 14 

 
Others [46] 80.87 30.65 23.42 26.69 19.05 23.37 

 
Others [50] 71.3 24.3 31.5 30.2 27.2 29.8 

 
Others [65] 65.5 55.2 20.6 22.6 21 30 

BaClF This Work 76.8 66.9 19.8 23.8 26.3 39.7 

 
Others [69] 73.1 67.3 19.8 26.1 29.3 34 

 
Expt. [65] 74.3 65.7 21 24.1 25.2 33 

 
Expt. [65] 74.3 65.9 21.3 23.5 24.9 36 

BaBrF This Work 70 54.8 19.6 24.9 25.9 34.4 

 
Others [69] 71.9 56.1 21.1 27.2 26.7 33.2 

 
Others [65] 65.3 55 20.5 22.5 21 29.8 

BaIF This Work 60.4 35.7 21.2 25.3 24.5 27.4 

 
Others [69] 59.2 33.8 20.4 26.69 24.3 27.3 
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Others [65] 55.5 46.8 17.5 19.1 17.9 25.3 

 The bulk (B), shear (G), and Young's (E) moduli have been derived from the 

obtained elastic constants using the relationships as given in the ref. [70]. CaClF has 

the highest E value among the MXF (M = Ca, Sr, Ba and X = Cl, Br, I) compounds, 

indicating that CaClF is the stiffest compound. The derived elastic moduli (E, B, G) 

decrease with increasing size of halogen (X) in a series (Tables 4.13 & 4.14). For 

instance, in CaXF (X = Cl, Br, I) series, this indicates weak electrostatic/interatomic 

interactions in the lattice as atomic size increases, i:e: from Cl to I and the same is true 

for SrXF and BaXF series, where X = Cl, Br, I. As a result, materials with larger anionic 

sizes are more easily deformed under mechanical stress. In contrast, anomalous trends 

are observed with increasing size of the alkaline-earth metal (M) in these MXF (X = 

Br, I) compounds. For example, the elastic moduli (E, B, G) values are lower for CaBrF 

over SrBrF and BaBrF, similarly, lower elastic moduli are observed for CaIF and SrIF 

compared to BaIF, which will be reflected in lowering L for the CaBrF, CaIF and SrIF. 

For covalent and ionic materials, typical Poisson's ratio (σ) values are 0.1 and 0.25, 

respectively [71]. The MXF compounds investigated here have σ values from 0.21 to 

0.32, implying a significant ionic contribution to the interatomic bonding. B/G ratio aid 

to differentiate the material's brittleness from ductility. According to Pugh's criteria 

[72], the material is brittle, if B/G ratio is less than 1.75, and is ductile, if it is greater 

than 1.75. As can be seen from Table 4.14, CaBrF, CaIF and SrIF are brittle while the 

remaining six compounds are ductile in nature.  

Table 4.13: Calculated average atomic mass (Mavg, in amu), Bulk and Shear moduli 

(B,G, in GPa), average sound velocity (vm, in km/s), Debye temperature (ϴD, in K), 

specific Heat (Cv, in J/mol-K), and lattice thermal conductivity (L, in W/m-K) for 

alkaline halofluorides. Cv values are given at 300 K and L are given at 300 K and 900 

K. 

Compo

und 

Metho

d    Mavg     B   G  G/B   vm     ϴD    Cv 

L 

at 

300

K 

L 

at 

900

K 

CaClF 

This 

Work  31.51 60 29.9 0.498 3.44 401.4 45.61 4.22 1.44 

CaBrF 

This 

Work  46.33 25.17 18.44 0.732 2.4 264.86 46.19 2.51 0.85 
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CaIF 

This 

Work  61.99 20.76 14.86 0.716 2.04 211.96 46.74 2.98 0.99 

SrClF 

This 

Work  47.36 54.45 26.6 0.488 2.85 316.53 46.54 3.34 1.13 

 
Others 54.3 [68] 

27.4 

[68] - - - 

320.3 

[68], 

305[73] - - - 

 
Expt 61 [74] - - - - - - - - 

SrBrF 

This 

Work  62.17 45.49 23.45 0.515 2.45 263.24 47.25 2.91 0.97 

 
Others - - - - - 

260 

[73], 

255[65] - - - 

SrIF 

This 

Work  77.84 19.53 14.19 0.726 1.87 187.8 47.56 1.93 0.64 

 
Others 

32.54 

[46] 

21.01 

[46] - - - 

170 

[73], 

212 

[65] - - - 

BaClF 

This 

Work  63.93 48 19.79 0.412 2.3 242.69 47.32 3.46 1.15 

 
Others 51.04 [69] 

42.1 

[60] 

21.21 

[69] - - 

241 

[65] 
 

- - 

 
Expt 

45 [75], 

62 [74] 
 

- - - - - - - 

BaBrF 

This 

Work  78.74 42.9 18.78 0.438 2.11 215.62 47.81 3.35 1.12 

 
Others - 

49.85 

[69] 

21.2 

[69] - - 

212 

[65] - - - 

 
Expt - 

42 [75], 

44 [74] - - - - - - - 

BaIF 

This 

Work  94.41 34.13 16.98 0.497 1.95 192.63 48.12 2.37 0.78 
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Others - 

41.88 

[69] 

17.21 

[69] - - 

180 

[65] - - - 

 
Expt - 36 [75] - - - - - - - 

 

Table 4.14: Calculated Young's modulus (E, in GPa), (B/G), density (ρ, in gr/cc), sound 

velocities (vl and vt in km/s) and Poisson's ratio (σ) for MXF compounds. 

Compound Method E B/G   ρ  vl  vt      σ 

CaClF This Work 76.96 2 3.14 5.64 3.09 0.286 

CaBrF This Work 44.47 1.37 3.89 3.58 2.18 0.206 

CaIF This Work 35.99 1.4 4.34 3.06 1.85 0.211 

SrClF This Work 68.64 2.05 4.07 4.7 2.56 0.289 

SrBrF This Work 60.04 1.94 4.86 3.98 2.2 0.28 

SrIF This Work 34.27 1.38 4.95 2.79 1.69 0.207 

 

Others 

[46] 51.87 1.55 - - - 0.234 

BaClF This Work 52.22 2.42 4.63 4.01 2.07 0.319 

 

Others 

[49] 55.88 - - - - 0.3175 

BaBrF This Work 49.17 2.28 5.26 3.59 1.89 0.309 

 

Others 

[49] 55.70 - - - - 0.3153 

BaIF This Work 43.69 2.01 5.57 3.19 1.75 0.287 

 

Others 

[49] 45.40 - - - - 0.3193 

Later, longitudinal (vl), transverse (vt), and average (vm) sound velocities are calculated 

from the derived elastic moduli (B, G) and crystal density with the formulae given in 

our previous study [70]. The vl, vt, and vm are decreasing owing to low elastic moduli 

(B, G) and high crystal density with increasing size of both metal (M) and halogen (X). 

According to the Slack theory, low Debye temperature (ϴD) is an indicative of low L  

in materials. SrIF has the lowest vm and ϴD, which might have the lowest L among the 

nine investigated MXF compounds in the present study. 
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4.3.3 Anharmonic lattice dynamics and lattice thermal conductivity 

To compute L, phonon dispersion curves and phonon density of states have been 

calculated and thoroughly analyzed for the nine investigated MXF compounds 

including anharmonic (3rd order IFCs) effects at 300 K and plotted them along high 

symmetry points of the Brillouin zone as well as in-plane (Γ-X) and out-of-plane (Γ-Z) 

directions (Fig. 4.4 & Figs. 4.2 – 4.4). As illustrated in Fig. 4.4, the phonon bands along 

Γ-X (a-axis) are more dispersive while they are at along Γ-Z (c-axis) especially for 

materials with c/a ratio > 2, which is due to bonding heterogeneity. 

Fig 4.4: Phonon dispersion curves of MXF (M = Ca, Sr, Ba and X = Cl, Br, I)                     

compounds along X-Γ-Z high symmetry directions of the Brillouin zone at                      

300 K. 



 
 

143 
 

The phonon bands show red-shift with increasing size of both M and X as shown 

in Figs. 4.5 – 4.7. The low frequency phonon bands mainly arise from M and X, whereas 

the high frequency bands are mainly dominated by the F atoms. They show significant 

differences in their phonon dispersion curves due to variation of alkaline-earth metal 

(M) and halogen (X) despite the same crystal symmetry. 

Fig 4.5: Phonon dispersion curves and atom projected phonon density of states for 

CaXF (X = Cl, Br, I) compounds. 

In CaClF, the phonon bands are highly dispersive and overlap with low frequency 

phonon bands of Ca and Cl with high frequency F phonon bands as shown in Fig. 4.5a. 
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However, with increase in size of X, phonon bands of Br and I are well separated from 

F bands in CaBrF and CaIF except for a very small contribution of Ca around 4 THz. 

In case of SrXF and BaXF (X = Cl, Br, I), a gap between phonon bands of M, X and F 

has been observed, which is due to atomic mass difference between Sr/Ba, X and F 

atoms. Moreover, the overlapping nature of M and X phonon bands increase with 

increasing size of X (Cl →Br→ I). The c/a ratio, a measure of the anisotropy of the 

structure , is large for CaXF and SrXF compared to the BaXF compounds. CaXF and 

SrXF possess large c/a ratio over BaXF compounds. 

Fig 4.6: Phonon dispersion curves and atom projected phonon density of states for 

SrXF (X = Cl, Br, I) compounds. 
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Therefore, highly at and soft (along Γ-Z and A-Z/R-Z directions) phonon bands are 

expected for the CaXF and SrXF series of compounds, especially with heavy X over 

BaXF series of compounds as illustrated in Fig. 4.5 – 4.7. Significant phonon softening 

is observed along Γ-Z and A-Z/R-Z directions for CaBrF, CaIF and SrIF compounds, 

which have axial (c/a) ratio > 2.  

Fig 4.7: Phonon dispersion curves and atom projected phonon density of states for 

BaXF (X = Cl, Br, I) compounds. 

The flat bands results in sharp peaks in the phonon density of states (PhDOS) in the low 

frequency region for CaBrF (Fig. 4.5b), CaIF (Fig. 4.5c) and SrIF (Fig. 4.5c) indicating 



 
 

146 
 

that the heavy X can serve as a rattler in these highly anisotropic compounds, especially 

along the a-axis as clearly seen from the calculated potential energy curves (Fig. 4.2). 

 As shown in Fig. 4.8, the obtained L values are decreasing monotonically with 

temperature. As expected for the layered materials due to bonding heterogeneity, the 

L values along out of- plane direction are lower than the in-plane direction for all these 

MXF compounds over the studied temperature range. However, there are some 

anomalous behavior observed for in plane or out-of-plane L values in these 

compounds, despite their high average atomic mass.  

The contribution of low-lying optical phonons to L along in-plane direction are 

responsible for higher L in CaIF over CaBrF. Similarly, SrBrF (BaBrF) has higher L 

over SrClF (BaClF) along the out-of-plane direction due to relatively more contribution 

of low-lying optical phonons to L in this direction as previously reported for few binary 

alkali halides and alkaline-earth chalcogenides [76]. CaIF possesses ultralow L (0.39 

W/m-K) along the out-of plane direction due to extremely low contribution of acoustic 

and optical phonons to L. In addition, CaIF has the highest phonon transport anisotropy 

ratio (in-plane L to out-of plane L) of 10.95 at 300 K (Table 4.13) due to highly 

anisotropic crystal structure with the highest axial ratio (c/a) of 2.281.  

The phonon transport anisotropy ratio values slightly increase for all the compounds at 

900 K (Table 4.13) except for SrClF. Similarly, ultralow L values are predicted for 

CaBrF (0.79 W/m-K) and SrIF (0.70 W/m-K) along the out of- plane direction. 

Moreover, the out-of-plane L values of CaXF (X = Br, I) and SrXF (X = Br, I) are 

significantly lower than the BaXF (X = Br, I) due to strong quasi two-dimensional 

nature. This is clearly seen from the very soft acoustic and at phonon bands along Γ-Z 

direction (Fig. 4.4) for CaXF and SrXF series of compounds (Figs. 4.5-4.6), while 

relatively high acoustic and dispersive optical phonon bands for BaXF (Fig. 4.6). 

Relatively higher L of CaIF along in-plane direction results in high average L 

of CaIF over CaBrF. All these layered MXF compounds are found to have low L (< 5 

W/m-K). SrIF is found have the lowest L of 1.93 W/m-K at 300 K among all these 

materials. Overall, CaBrF, CaIF and SrIF materials exhibit quite intriguing anisotropic 

phonon transport properties among the nine investigated MXF compounds, which 

might be helpful to find their possible applications in opto-electronics. With UWBG 
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nature[22], [50], As presented in Table 4.15, high temperature L values at 900 K ( ~ 

1-1.5 W/mK) and G/B ratio less than 0.571 (except CaBrF, CaIF and SrIF) suggest their 

possible applications in TBCs [77]. 

Fig 4.8:   (a, c, e) Anisotropic and (b, d, f) average lattice thermal conductivities (L) 

of (a b) CaXF, (c, d) SrXF and (e,f) BaXF compounds, where X = Cl, Br, I. 

Table 4.15:  Anisotropic L values (in W/m-K) and anisotropic phonon transport ratio 

for MXF (M = Ca, Sr, Ba and X = Cl, Br, I) compounds at 300 K and 900 K. (along ‘a’ 

axis- 𝜅𝐿
𝑥𝑥 and along ‘c’ axis-𝜅𝐿

𝑧𝑧) 

 
             300K              900K 

Compound 𝜿𝑳
𝒙𝒙 𝜿𝑳

𝒛𝒛 𝜿𝑳
𝒙𝒙/𝜿𝑳

𝒛𝒛 𝜿𝑳
𝒙𝒙 𝜿𝑳

𝒛𝒛 𝜿𝑳
𝒙𝒙/𝜿𝑳

𝒛𝒛 

CaClF 5.1 2.47 2.06 1.75 0.83 2.11 

CaBrF 3.37 0.79 4.27 1.14 0.26 4.38 
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CaIF 4.27 0.39 10.95 1.42 0.12 11.83 

SrClF 4.28 1.47 2.91 1.45 0.5 2.9 

SrBrF 3.37 2 1.68 1.13 0.66 1.71 

SrIF 2.54 0.7 3.63 0.84 0.23 3.65 

BaClF 4.05 2.27 1.78 1.35 0.75 1.8 

BaBrF 3.76 2.52 1.49 1.27 0.83 1.53 

BaIF 2.74 1.62 1.69 0.91 0.53 1.72 

Fig 4.9:  Anisotropic group velocities of (a) CaXF, (b) SrXF and (c) BaXF                 

            compounds, where X = (Cl, Br, I). 
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However, their low elastic moduli, high temperature phase stability and low melting 

temperatures (for instance, melting temperature of SrIF is 1073K [73]) are the major 

disadvantages to limit their possible applications in TBCs.Further enhancing the 

aforementioned properties might be a good scope for the future investigations on these 

MXF compounds. To get further insights on L and the factors that strongly influence 

its trends in these MXF compounds, phonon group velocities and phonon lifetimes 

Fig 4.10:   Cumulative and spectral lattice thermal conductivity of MXF (M = Ca, Sr, 

Ba and X = Cl, Br, I) compounds along 'a' (xx
L) and 'c' (zz

L) axes. Here, dotted lines 

represent the spectral thermal conductivity. 

are calculated and presented along with cumulative and spectral thermal conductivities 

in Fig. 4.10 – 4.12. The calculated phonon group velocities are higher along in-plane 

direction over out-of-plane direction as depicted in Fig. 4.9 due to relatively high 

dispersive nature of phonons along Γ-X over Γ-Z direction. This behavior is clearly 

seen from group velocities of CaBrF, CaIF and SrIF, thus indicating highly anistropic 

L in these materials (Fig. 4.9) similar to the iso-structural PbXF (X = Cl, Br, I) 

compounds due to bonding hierarchy.  

The phonon scattering rates are relatively low for CaClF compared to CaBrF and CaIF, 

(Fig. 4.12) therefore, CaClF has relatively high phonon lifetimes, which in turn results 

in high L in CaXF series. CaBrF has high scattering rates in the frequency range of 0-

3.5 and 5-10 THz, which results in relatively low phonon lifetimes (Fig. 4.11) along 
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with low in-plane phonon group velocities in CaBrF resulting in relatively low L for 

CaBrF over CaIF despite very low phonon group velocities along the out-of-plane 

direction for CaIF. 

Fig 4.11: Phonon lifetimes of (a) CaXF, (b) SrXF and (c) BaXF compounds, where X 

=(Cl, Br, I). 

However, no anomalous trends are observed for scattering rates or phonon lifetimes in 

MXF (M = Sr, Ba and X = Cl, Br, I) (Fig. 4.13 & 4.14). To get further insights on 

anomalous trends of L, it is plotted as a function of elastic moduli (B, G) (Fig. 4.15), 

sound velocities (vl, vt and vm) and ϴD (Fig. 4.16) . This clearly demonstrates that the 

convolutionary effect of B, G moduli and crystal density (ρ) to lower the L. The 

average phonon group velocities also follow the same trend (Fig. 4.17). 
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Fig 4.12: Absorption, emission and total scattering rates for (a) CaClF, (b)               

CaBrF, (c) CaIF and (d) CaXF (X = Cl, Br, I) compounds. 

 

Fig 4.13: Absorption, emission and total scattering rates for (a) SrClF, (b) 

SrBrF, (c) SrIF and (d) SrXF (X = Cl, Br, I) compounds. 
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For instance, bulk modulus of BaIF is higher than CaBrF but the shear modulus value 

of CaBrF is higher than BaIF, but the highest ρ of BaIF to have relatively low vm (due 

to inverse proportionality) and ϴD in turn resulting in relatively low L for BaIF 

compared to CaBrF and CaIF. Overall, CaBrF, CaIF, and SrIF are found to have 

ultralow L (< 1 W/m-K) along the out-of-plane direction and these L values are much 

lower than BaXF compounds (despite their high average atomic mass) due to large axial 

ratio (c/a) or (M-X1) bond length thereby strong bonding hierarchy.  

Fig 4.14:  Absorption, emission and total scattering rates for (a) BaClF, (b) BaBrF, (c) 

BaIF and (d) BaXF (X = Cl, Br, I) compounds.  

                               (a)                                                                      (b)  

Fig 4.15:  Calculated L as a function of (a) bulk (B) modulus (b) shear (G) modulus 

for MXF (M = Ca, Sr, Ba and X = Cl, Br, I) compounds. 
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(a)                                                             (b) 

(c)                                                             (d) 

                                    (e)                                             (f) 

Fig 4.16: Calculated L as a function of  (a) longitudinal (vl) sound velocities (b)               

transverse (vt) sound velocities (c) density and (d) Poisson ratio (e) average                

sound velocities (f) Debye temperature for MXF (M = Ca, Sr, Ba and X = Cl, Br, I) 

compounds 

This comprehensive study on MXF compounds not only provides insights on 

role of layered structure and bonding on phonon transport properties but also aid in 

designing low L materials by exploiting them through chemical intuition in quasi-2D 

layered materials. 
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Fig 4.17:  Average phonon group velocities of MXF (M = Ca, Sr, Ba and X  = Cl, Br, 

I) compounds 

 

In summary, a systematic investigation has been carried out to explore the 

structure, bonding, lattice dynamics and phonon transport properties of PbClF-type 

alkaline-earth halo fluorides, MXF (M = Ca, Sr, Ba and X = Cl, Br, I) in combination 

with first principles calculations and Boltzmann transport theory. MXF compounds 

exhibit anisotropy from both crystal structure and elastic properties. The axial bond (M-

X1) strongly determines its structural anisotropy, which is attributed to the large axial 
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ratio (c/a > 2) especially for CaBrF, CaIF and SrIF compared to the rest of the six 

investigated MXF compounds. Interestingly, Br/I acts as a rattler in CaBrF, CaIF and 

SrIF compounds as showed from potential energy curves and phonon density of states. 

BaXF (X = Cl, Br, I) compounds possess relatively isotropic L over CaXF and SrXF 

series of compounds. The large phonon transport anisotropy ratio 10.95 of CaIF reveals 

that highly anisotropic phonon transport in CaIF while a small phonon transport 

anisotropy ratio 1.49 of BaBrF indicating the isotropic phonon transport in BaBrF at 

300 K. Moreover, ultralow out-of-plane L (< 1 W/m-K) has been predicted for CaBrF, 

CaIF and SrIF due to weak vdW bonding along the out-of-plane direction. This detailed 

study on MXF compounds provides an in-depth understanding on interplay among 

crystal structure, atomic mass and bonding heterogeneity, which would aid in designing 

extreme L materials by manipulating in-plane and out-of-plane bonding for future 

thermal energy management applications.     
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Materials with low or ultralow lattice thermal conductivity (L) are indispensable for 

designing efficient energy harvesting devices. These functional low or ultralow L 

materials are crucial for various thermal energy management applications such as 

thermoelectrics [1]–[3], thermal barrier coatings [4]–[7], and thermal insulation [8], [9]. 

Intensive research has been done and being progressed to explore various mechanisms 

to achieve ultralow L materials. For instance, weakly bound atoms or atomic clusters 

can serve as rattler and these rattlers can scatter phonons to enhance phonon scattering 

rates and thereby lowering phonon lifetimes to suppress L [10]–[13][14]. Materials 

having stereochemically active lone pair of electrons (ns2, n= 4, 5, 6) (i.e. presence of 

one or more post-transition elements in a material with specific oxidation states) induce 

strong anharmonicity, which increases phonon scattering channels to reduce L [15]–

[18]. Usually materials consisting of heavy atomic mass elements result in less 

dispersive phonon dispersion curves, thus resulting in lowering phonon group velocities 

to reduce L [19]–[23]. However, some exceptional cases exist where lighter atomic 

mass elements in a material possess relatively lower L [24]. Moreover, materials with 

layered crystal structure possess distinct bonding nature along in-plane and cross-plane 

directions [19], [25]–[27], i.e. bonding heterogeneity. Understanding the interplay 

among the aforementioned mechanisms or convolutionary effect on phonon transport 

would be quite intriguing to aid in selecting or designing materials with ultralow L. 

 

5.1. Bismuth halooxides, BiXO (X= Cl, Br, I) 

Layered materials with post-transition element(s) have intrinsic bonding 

heterogeneity, lone pair electrons induced anharmonicity, and heavy atomic mass 

elements [28]. We have considered Bismuth halooxides, which are promising materials 

for photocatalysis [29]–[31] and thermoelectric applications [32]–[37]. These materials 

received tremendous research interest due to their chemical and thermal stability. The 

family of materials containing Bismuth are being researched intensively for 

thermoelectric applications [36], [38], [39] because of their potential applications in 

energy storage and conversion devices [40]–[42]. The electronic and phonon transport 

properties of layered bismuth oxysulfide [18] [43], [44] and oxyselenide [45]–[47] 

materials have been theoretically investigated. Moreover, Bi2Te3 and its derivatives 

[48] find potential applications in thermoelectrics [49], [50]. In particular, Bismuth 
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halooxides, BiXO (X = Cl, Br, I) belong to the class of layered materials, in which Bi3+ 

consists of 6s2 lone pair electrons and strong bonding heterogeneity from their layered 

crystal structure. The BiXO series provide an opportunity to explore interplay among 

heavy atomic mass of Bi and I, lone pair 6s2 electrons of Bi3+ cation induced 

anharmonicity and bonding heterogeneity to achieve ultralow L. 

 

5.2. Computational details 

All the first principles calculations have been carried out using Vienna Ab-initio 

Simulation Package (VASP) [51]. The exchange-correlation interactions were treated 

with PBE parameterization for solids (PBEsol) functional within the generalized 

gradient approximation (GGA), whereas the electron-ion interactions were treated with 

projector augmented wave (PAW) pseudopotential approach. The following plane 

wave basis orbitals were considered as valence electrons O: 2s2,2p4; Cl: 3s2,3p5; Br: 

4s2,4p5; I: 5s2,5p5; Bi: 5d10 6s2 6p3. A plane wave energy cutoff of 560 eV was used for 

plane wave basis set expansion and a spacing of 2π × 0.025 ˚A−1 for k-mesh in the 

irreducible Brillouin zone for the structural optimization. Elastic constants were 

computed using stress-strain method as implemented in VASP.  

By considering the obtained ground state structure at 0 K, ab-initio molecular dynamics 

(AIMD) simulations have been carried out using VASP at 300 K. The AIMD 

simulations were run for 5000 MD steps with a time-step of 1 fs (i.e., 5 ps) with a 

supercell size of 4×4×2 and 5×5×2 at Γ-centred k-mesh for the BiClO, BiBrO and BiIO, 

respectively. The temperature was controlled with a Nose Hoover thermostat [52], [53]. 

Lattice dynamics and phonon transport properties of BiXO (X = Cl, Br, I) compounds 

were computed using temperature dependent effective potential (TDEP) [54] method 

including harmonic (2nd) and anharmonic (3rd) interatomic force constants (IFCs). 9th 

and 7th nearest neighbours were considered for 2nd and 3rd order IFCs, respectively to 

calculate phonon dispersion curves, phonon density of states and phonon transport 

properties. The lattice thermal conductivity is calculated by iteratively solving the full 

Boltzmann transport equation (BTE) with a q-mesh of 25×25×11. 

5.3 Results and discussion 
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5.3.1 Crystal structure, bonding and mechanical properties 

Multifunctional behavior of Bismuth halooxides, BiXO (X = Cl, Br, I) arose 

tremendous research interest from both experimental and theoretical perspective. BiXO 

crystallizes in the primitive tetragonal (P4/nmm) crystal structure (PbClF-type) with Z 

= 2 f.u./cell at ambient conditions [55]. The metal Bi, non-metal X (Cl, Br, and I) and 

O atoms are located at Wyckoff positions 2c: (0.25, 0.25, v), 2c: (0.25,0.25, u), and 2a: 

(0.75,0.25,0), respectively, where u and v are the internal variable coordinates of X and 

Bi atoms, respectively. Full structural optimization was performed (i.e. both lattice 

constants and fractional coordinates) to obtain ground state crystal structure with an 

initial crystal structure determined from X-ray diffraction (XRD) measurements [55]. 

Table 5.1 shows the calculated ground state structural properties, which agree with the 

XRD [55] and earlier studies employing first principles calculations. 

Table 5.1: Calculated ground state lattice parameters (a, c in A˚), bond lengths (in A˚) 

and bond angles (in o) of BiXO (X = Cl, Br, I) compounds. 

Compound Work      a      c    Bi-O 

∠O1-Bi-

O2 Bi-X1 Bi-X2 

∠X1-

Bi-X2 

BiClO 

This 

Work 3.887 7.354 2.326 113.36 3.467 3.054 64.15 

 

Others 

3.8743 

[56] 

7.3997 

[56] 

2.237 

[57] 

114.22 

[57] 

3.462 

[57] 

2.961 

[57] - 

 

3.89 

[58] 

7.38 

[58] - - - - - 

 

3.894 

[59] 

7.369 

[59] - - - - - 

BiBrO 

This 

Work 3.923 8.105 2.336 114.22 4.023 3.175 60.88 

 

Others 

3.924 

[59] 

8.101 

[59] 

2.245 

[57], 

2.325 

[60] 

115.316 

[57] 

4.033 

[57] 

3.086 

[57] - 

 

3.93 

[35] 

8.06 

[35] - - - - - 
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BiIO 

This 

Work 3.995 9.151 2.352 116.25 4.829 3.369 56.96 

 

Others 

3.992 

[59] 

9.15 

[59] 

2.262 

[57] 

117.39 

[57] 

4.826 

[57] 

3.275 

[57] - 

 

4.02 

[34] 

9.04 

[34] - - - - - 

 

Each Bi atom is surrounded by four O atoms, four X's, and one X from the 

adjacent layer, as illustrated in Figure 5.1(a). This arrangement results in a BiO4X5 

structural motif with a coordination number of 9. As seen in Figure 5.1(a), the crystal 

structure of BiXO has three non-equivalent bonds: one Bi-O bond and two Bi-X bonds 

(Bi-X1 and Bi-X2). The strength of the Bi-O, Bi-X1, and Bi-X2 bonds in BiXO 

increases as the size of X (Cl → Br → I) increases. As the size of X increases from Cl 

to Br and then to I in BiXO, the packing of the halide sublattice becomes significantly 

restricted. To relieve this stress, the lattice stretches along the c-axis by increasing the 

axial Bi-X1 bond length. This behaviour is similar to that observed in the iso-structural 

BaXF (X = Cl, Br, I). As the size of X increases, the axial ratio (c/a) of BiOCl, BiOBr, 

and BiOI increases from 1.892 to 2.066 to 2.291, respectively. 

Hence, the increase of the axial Bi-X1 bond accounts for the quasi-two-dimensional 

layered structure in the PbClF-type materials.  

The crystal structure of BiXO consists of a series of X-Bi-O-O-Bi-X layers that are 

bonded together through weak van der Waals (vdW) interactions. These layers are 

stacked perpendicular to the c-axis, resulting in a bonding heterogeneity [28]. 

Specifically, there is an in-plane ionic bonding and cross-plane weak vdW bonding in 

these BiXO compounds. 
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Fig. 5.1: Crystal structure of layered Bismuth halooxides, BiXO (X = Cl, Br, I) (a) 

Primitive/unit cell of BiXO compounds with one axial (Bi-X1) and equatorial (Bi-X2) 

bonds (b) Side view of layered structure (c) Top view (d) Electron localization function 

(ELF) of BiXO along the (001) plane. 

In order to have a deeper comprehension of chemical bonding, the potential energy is 

determined by off-centering the Bi, O, and X atoms from their equilibrium position. A 

deep potential well appears for all atoms when they are displaced in the cross-plane 

direction, whereas a shallow potential well is observed in the in-plane direction for all 

atoms (Figure 5.2). This suggests that the Bi and X atoms exhibit a rattling motion, 

which arises from the bonding heterogeneity. 

In order to examine the mechanical stability and bonding heterogeneity of BiXO, as 

well as to determine any potential relationship between mechanical and phonon 

transport properties, computed elastic constants for BiXO compounds are presented in 

table 5.2. PbClF-type materials have a primitive tetragonal symmetry (P4/nmm) and 

feature six distinct elastic constants: C11, C33, C12, C13, C44, and C66. 
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Fig. 5.2: Potential energy curves for (a) BiClO (b) BiBrO and (c) BiIO compounds by 

off-centering each atom from its equilibrium position. 

The calculated elastic constants adhere to Born's stability requirements, indicating that 

all the examined BiXO materials are mechanically stable under normal pressure 

conditions. For the three BiXO compounds, the cross-plane elastic constant C33 is lower 

than the in-plane elastic constant C11, indicating that the lattice is weaker along the ‘c’ 

axis than along the ‘a’ axis. This is due to the presence of weakly bonded van der Waals 

(vdW) interactions between the stacked X-Bi-O-O-Bi-X layers along the c-axis. C12 has 

a much greater value than C13, suggesting that when a typical stress is applied along the 

'a' axis, a larger strain will result along the 'c' axis. The elastic constant C44 has the 

smallest value, thus applying shear force will result in the highest strain. Consequently, 

this crystal is more prone to cracking along the 'c' axis. 

The findings indicate the robust bonding within the ab-plane of BiXO and the weak 

bonding along the c-axis. 

Table 5.2: Calculated second order elastic constants (in GPa) for BiXO (X = Cl, 

Br, I) compounds 

Compo

und 

Method C11 C33 C44 C66 C12 C13 

BiClO This 

work 

135.98 46.67 60.8 25.05 71.11 35.09 
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BiBrO This 

work 

118.24 22.75 53.87 19.19 59.29 22.06 

BiIO This 

work 

101.68 24.37 43.64 12.24 41.88 14.23 

 
Others 

[61] 

99 17.1 43.7 9.5 39.9 10.8 

 

The calculated bulk modulus of BiXO (refer to table 5.3) is greater than its shear 

modulus, suggesting that BiXO is more resistant to changes in volume than to shape 

deformation (table 5.3). BiOI possesses the lowest Young's modulus value compared 

to other BiXO compounds. This suggests that BiOI has a high degree of flexibility, 

allowing it to be readily stretched or compressed. The calculated Poisson's ratio (σ) 

values for BiXO are in close proximity to 0.25, suggesting that the ionic contribution 

to interatomic bonding might be substantial. The formulas provided in our earlier work 

[23] are used to compute the longitudinal (vl), transverse (vt), and average (vm) sound 

velocities based on the elastic moduli (B, G) and crystal density. The decrease in vl, vt, 

and vm can be attributed to the low elastic moduli (B, G) that occur when both the metal 

(M) and halogen (X) increase in size. According to the Slack hypothesis, materials with 

a low Debye temperature (ΘD) have a correspondingly low thermal conductivity (L). 

BiOI has the lowest (vm) and Debye temperature (ΘD) compared to other BiXO 

compounds. Consequently, it is probable that BiOI possesses the lowest thermal 

conductivity (L) among these compounds. 

Table 5.3 : Computed polycrystalline aggregate properties, bulk moduli (BV , BR, BVRH 

in GPa), shear moduli (GV , GR, GVRH in GPa), Young’s modulus (E in GPa), density 

(ρ in gr/cc), sound velocities (vl, vt and vm, in km/s) and Debye temperature (in K) for 

BiXO (X = Cl, Br, I) compounds. 

 

Parameter BiClO BiOBr BiIO 

ρ 7.81 8.12 8 

BV 66.8 51.78 40.93 

GV 41.15 35.75 30.38 

BR 45.01 22.88 22.91 

GR 31.39 22.27 20.8 

BVRH 55.91 37.33 31.92 
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GVRH 36.27 29 25.59 

E 89.46 69.12 60.59 

σ 0.23 0.19 0.18 

vl 3.65 3.06 2.87 

vt 2.15 1.89 1.79 

vm 2.39 2.08 1.97 

ΘD 268.73 225.84 202.55 

 

5.3.2 Born effective charges and chemical bonding 

Born effective charges (BEC’s) are critical parameters that quantify the 

relationship between atomic displacement and the evolution of lattice polarisation. 

Materials comprised of lone pair cations, wherein the outermost ns2 (n = 4, 5, 6) 

electrons are completely occupied, exhibit improved BEC’s as a consequence of mixed 

ionic-covalent bonding. Consequently, these materials exhibit increased static dielectric 

constants as a consequence of their strong lattice polarisation, which enhances BEC’s 

[18], [28], [61], [62]. The substantial separation between longitudinal optic (LO) and 

transverse optic (TO) modes caused by the increased BEC's results in soft TO modes 

and brings the lattice to the verge of ferroelectric instability or lattice instability. This 

is an exceptionally advantageous method for attaining ultralow L [28]. Figure 5.1(d) 

demonstrates that BiXO, analogous to PbXF (X = Cl, Br, I) materials, possesses a lone 

pair at the Bi3+ cation that is stereochemically active. This is demonstrated by the polar 

semiconductor properties of the 6s2 lone pair Bi3+ cation and the tetragonal symmetry 

(P4/nmm) structure of BiXO [28]. In the in-plane direction, the BEC’s obtained are 

nearly double or greater than double their formal ionic charges Bi (+3), O (-2), and X 

(-1) ions, particularly for halogens (refer to Table 5.4). 

The fact that the magnitude of BEC’s increases from Cl to Br to I is consistent with the 

Bader charge (Table 5.5) and ELF analysis (Figure 5.1d) and suggests that the covalent 

character of these compounds is intensifying. 
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Table 5.4: Born effective charge (Z*), electronic dielectric constant (ϵ∞), and ionic 

dielectric constant (ϵ0) of BiXO (X = Cl, Br, I). The symbols ‘a’ and ‘c’ represent the 

in-plane and cross-plane directions, respectively. 

  

Compound Atom 𝐙𝒂
∗  𝐙𝒄

∗ 𝝐𝒂
∞  (𝝐𝒄

∞) 𝝐𝒂
𝟎    (𝝐𝒄

𝟎) 
BiClO Bi 5.34 3.63 6.57 (5.23) 41.59 (7.89) 
 

O -3.24 -2.15 - - 
 

Cl -2.09 -1.48 - - 

BiBrO Bi 5.62 3.43 7.37 (5.48) 43.87 (4.80) 
 

O -3.47 -2.23 - - 
 

Br -2.15 -1.2 - - 

BiIO Bi 5.93 3.42 8.72 (6.23) 50.15 (3.39) 
 

O -2.13 -1.02 - - 
 

I -3.8 -2.4 - - 

 

 Table 5.5: Calculated Bader Charges for BiXO (X = Cl, Br, I) compounds. 

 

 

 

5.3.3 Raman spectra, lattice dynamics and thermal conductivity 

Due to the fact that BiXO is composed of six elements per primitive cell, the 

zone centre exhibits a total of eighteen vibrational modes, of which fifteen are optical 

modes and three are acoustic modes. 

The following is a classification of the phonon modes of the P4/nmm space group in 

accordance with group theory:  

Γ18 = 2A1g ⊕ B1g ⊕ 3Eg ⊕ 3Eu ⊕ 3A2u 

where six are Raman active (A1g, B1g, Eg) and four are IR active (A2u, Eu) modes (table 

5.6). Here, "A" and "B" modes correspond to vibrations in the c-axis or cross-plane 

direction, whereas the "E" mode represents doubly degenerate vibrational modes on the 

Compound BiClO BiBrO BiIO 

Bi 1.796 1.719 1.631 

O -1.143 -1.146 -1.154 

Cl/Br/I -0.654 -0.573 -0.478 
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a-axis or in-plane direction. Figure 5.3 shows that the Raman-shift undergoes a red-

shift as the atomic mass of the halogen (X) grows. This phenomenon occurs because 

lighter atoms possess the ability to vibrate at greater frequencies when compared to 

heavier atoms.  

The red-shift in the low-lying optical phonon modes becomes more pronounced with 

an increase in the size of X , this is in contrast to the shift in the high frequency optical 

phonon modes. The low-frequency optical phonon modes play a crucial role in phonon 

transport as they may either enhance or reduce the lattice component of thermal 

conductivity, depending on whether they have a dispersive or flat band character in the 

phonon branches. The high dispersive and flat-band nature of optical phonons exhibit 

relatively low and high L in BiClO and BiIO, respectively. 

In order to gain a deeper comprehension of lattice dynamics, the phonon dispersion 

curves and phonon density of states were calculated and plotted, taking into account the 

effects of anharmonic (3rd order force constants) at a temperature of 300 K. 

Fig. 5.3: Raman Spectra for BiXO (X = Cl, Br, I) compounds. 
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Table 5.6: Calculated Raman active modes for BiXO (X = Cl, Br, I) compounds 

compared with available experimental and previous first principles calculations. 

 

Compound 

Raman 

mode 

                 Frequency 

This work Experiment Others 

BiClO Eg(1) 64.08 59.5 [63] 87.7 [64] 
 

Eg(2) 138.69 150 [63] 161.1 [64] 
 

A1g(1) 141.56 144.5 [63], 

146 [65] 

153.3 [64] 

 
A1g(2) 200.91 201.5 [63] 200 [64] 

 
B2g 389.37 400 [65] 451.9 [64] 

 
Eg(3) 450.58 - 499.9 [64] 

BiBrO Eg(1) 62.83 59 [60] 70 [60] 
 

Eg(2) 81.56 93 [60] , 

92 [65] 

98 [60] 

 
A1g(1) 106.71 113 [60], 

113 [65] 

115 [60] 

 
A1g(2) 164.69 162 [60] 167 [60] 

 
B2g 374.54 384 [60], 

385 [65] 

382 [60] 

 
Eg(3) 433.18 425 [60], 

410 [65] 

429 [60] 

BiIO Eg(1) 31.61 - - 
 

Eg(2) 139.08 - - 
 

A1g(1) 165.97 - - 
 

A1g(2) 243.2 - - 
 

B2g 420.21 - - 
 

Eg(3) 516.92 - - 

 

These computations were carried out along the Brillouin zone's high symmetry points 

(Figure 5.4), in addition to the in-plane (Γ-X) and cross-plane (Γ-Z) directions (Figure 

5.5). The phonon bands exhibit a red-shift as the size of X increases, as seen in figure 

5.4. 
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The low frequency phonon bands mostly originate from the Bi and X elements, whereas 

O atoms predominantly influence the high frequency phonon bands. These O atoms are 

highly isolated from the Bi and X phonon bands, as seen in Figure 5.4. The phonon 

bands of chlorine (Cl), bromine (Br), and iodine (I) in BiXO compounds exhibit a 

noticeable red-shift as the size of X increases. Furthermore, the degree of overlap 

between Bi and X phonon bands intensifies as the size of X increases (from Cl to Br to 

I). 

 

Fig. 5.4: Phonon dispersion curves for BiXO (X=Cl,Br and I) compounds. 
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Fig. 5.5: Phonon dispersion curves for BiIO compound along in-plane and cross-plane 

directions. 

As seen in Figure 5.6, the L values obtained exhibit a consistent reduction as 

temperature increases. The L values obtained at a temperature of 300 K are as follows: 

5.69, 5.89, and 4.08 W/m-K for the in-plane direction of BiClO, BiBrO, and BiIO, 

respectively. For the cross-plane direction, the L values are 0.77, 0.42, and 0.30 W/m-

K for BiClO, BiBrO, and BiIO, respectively. Consistent with the nature of layered 

materials, the L values in the cross-plane direction are lower than those in the in-plane 

direction for all three BiXO compounds over the temperature range. This is attributed 

to the presence of substantial bonding heterogeneity. The computed anisotropic and 

average cumulative and spectral L clearly indicate that optical phonons make a 

significant contribution to L, in addition to the contribution from acoustic phonons, 

along the in-plane direction. However, the contribution from acoustic phonons to L 

along the cross-plane direction is almost negligible for BiBrO and BiIO. Relatively 

large contribution of acoustic and optical phonons to L (3.93 w/m-K) for BiBrO 

increase its L value (4.05 w/m-K) approximately close to BiClO, as shown in Figure 

5.7 and Figure 5.8. 
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Fig. 5.6: Variation of (a) lattice thermal conductivity (L) along in-plane and cross-

plane directions and (b) average (L) as a function of temperature for BiXO (X = Cl, Br 

and I) compounds. 

 

This is noteworthy considering the relatively high average atomic mass of BiBrO. The 

three compounds have extremely low L values in the cross-plane direction. Overall, 

the typical L values exhibited by them are quite low, measuring below 5 W/m-K as 

seen in Table 5.7. 
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Fig. 5.7: Average cumulative and spectral lattice thermal conductivity for BiXO (X = 

Cl, Br and I) compounds. 

To obtain a better understanding of L and the factors that greatly impact its trends in 

these BiXO compounds, phonon lifetimes and phonon group velocities are computed 

and shown in Figs. 5.9 and 5.11, respectively. Phonons that are highly dispersive have 

a greater slope of dω/dk, which determines the magnitude of phonon group 

velocities (vg).  

 

Table 5.7: Anisotropic and average L values (in W/m-K) for BiXO (X = Cl, Br, I) 

compounds at 300 K. 

 

Compound Method 𝜿𝑳
𝒙𝒙 𝜿𝑳

𝒛𝒛 𝜿𝑳
𝒙𝒙/𝜿𝑳

𝒛𝒛 LAvg 

BiClO This work 5.69 0.77 7.4 4.049 

BiBrO This work 5.68 0.42 13.5 3.926 

BiIO This work 4.08 0.3 15.6 2.82 
 

Others [34] 4 0.5 - - 
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Fig. 5.8: Cumulative (solid lines) and spectral (dotted lines) lattice thermal conductivity 

for BiXO (X = Cl, Br and I) compounds along in-plane and cross-plane directions. 

Fig. 5.9: Phonon lifetimes for BiXO (X = Cl, Br and I) compounds. The observed 

troughs originated from flat bands observed in the computed phonon dispersion curves. 
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 Figure 5.11 demonstrates that the calculated phonon group velocities are greater in the 

in-plane direction than in the cross-plane direction. This is explained by the fact that 

phonons are more dispersive in the Γ-X direction than they are along the Γ-Z direction. 

Furthermore, the phonon group velocities of BiIO are somewhat lower in comparison 

to those of BiClO and BiBrO. The phonon lifetimes are found to decrease in the 

following order: BiClO > BiBrO > BiIO across all frequencies. As a result, BiOI 

exhibits a lower L compared to BiClO and BiBrO. The phonon dispersion curves (Fig. 

5.4) reveal flat bands that correspond to severe troughs in the phonon lifetimes, as seen 

in Figure 5.9. These troughs are caused by an increase in three-phonon scattering, 

leading to reduced phonon lifetimes. The phonon scattering rates of BiOI are 

comparatively higher than those of BiOBr and BiOCl, as shown in Figure 5.10.  

Fig. 5.10: Scattering rates for (a) BiClO (b) BiBrO (c) BiIO compounds. 

Consequently, BiOI exhibits very short phonon lifetimes and low phonon group 

velocities (Figure 5.12), leading to a low L in BiIO compared to BiClO and BiBrO.  

The significant reduction in phonon frequencies is attributed to the large atomic mass 

of Bi and I atoms, whereas the low phonon group velocities are a consequence of the 

strong bonding heterogeneity.  
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Fig. 5.11: Group velocities along in-plane (open black circles) and cross-plane (open 

red circles) for BiXO (X = Cl, Br and I) compounds 

Fig. 5.12: Average Velocity plots for BiXO (X=Cl,Br and I). 

Additionally, the flat phonon bands and the influence of lone pairs create 

anharmonicity, leading to shorter phonon lifetimes and ultimately resulting in poor 

thermal conductivity (L) in BiIO. 

In summary, the current study employed a comprehensive methodology that involved 

static first principles computations, first principles molecular dynamics simulations, 

and Boltzmann transport theory. The objective was to examine the chemical bonding, 

lattice dynamics, and phonon transport features of layered matlockite PbClF-type 
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Bismuth halooxides. For BiBrO and BiIO, the large axial ratio (c/a > 2) is attributable 

to the large axial Bi-X1 bond, which determines the structural (c > a) and elastic (C11 > 

C33) anisotropy in BiXO compounds. This property is similar to  BaXF compounds, 

which have weak van der Waals bonds in the cross-plane direction. The three 

compounds under investigation have been predicted to have an ultralow cross-plane L 

(< 1 W/m-K). Furthermore, the presence of structural and elastic anisotropy leads to a 

significant phonon transport anisotropy ratio of 13.5 for BiBrO and 15.6 for BiIO at a 

temperature of 300 K. This indicates a highly anisotropic phonon transport in these two 

compounds. The computed potential energy curves demonstrate that Bi and Br/I atoms 

function as rattlers within the compounds BiBrO and BiIO. The presence of 6s2 lone 

pair electrons causes enhanced Born effective charges are observed along in-plane 

directions.  

An in-depth understanding of the interplay between the atomic mass, lone pair induced 

anharmonicity, and bonding heterogeneity is provided by the comprehensive 

understanding of crystal structure, chemical bonding, mechanical properties, lattice 

dynamics, and phonon transport properties. This is crucial for the selection of elements 

or the discovery of extremely low L materials for future thermal energy management 

applications. 
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The current thesis focuses on understanding the phonon transport in extended solids 

using ab-initio molecular dynamics simulations in combination with Boltzmann 

transport theory.  In total 51 extended solids were considered, which consisted of binary 

systems namely Alkaline Earth Chalcogenides (AEC’s) (16 compounds) and Alkali 

Halides (AH’s) (20 compounds) and layered ternary materials like Alkaline Earth halo 

fluorides (12 compounds) and Bismuth halooxides (03 compounds). The current thesis 

provides some critical-insights or design principles to obtain low-lattice thermal 

conductivity (L) materials. 

The comprehensive study on AEC’s and AH’s provides insights on how atomic mass 

contrast can fine tune the contribution of optical phonons to L and its implications on 

scattering rates by either enhancing or suppressing L. These insights would aid in the 

selection of elements for designing new functional materials with and without atomic 

mass contrast to achieve relatively high and low L values, respectively. The study on 

layered ternary materials provides an in-depth understanding on interplay among 

crystal structure, atomic mass and bonding heterogeneity, rattling phenomenon, which 

would aid in designing extremely low L materials by manipulating in-plane and out-

of-plane bonding for future thermal energy management applications. 

 

Chapter 3: 

 

In summary, lattice dynamics, phonon transport, and mechanical properties of Alkaline 

Earth Chalcogenides (AEC’s) with rocksalt-type structure were systematically 

investigated. Anomalous trends were observed for L in CaCh (CaS > CaO > CaSe > 

CaTe), SrCh (SrSe > SrO > SrS > SrTe), and BaCh (BaTe > BaSe > BaS > BaO) (where 

Ch = O, S, Se, Te) series of compounds. In particular, an opposite trend for L was 

observed in the BaCh (X = O, S, Se, and Te) series, which contrasts with the expected 

trend from their atomic mass. A few observations are proposed from this study to design 

(ultra)low L materials, which are as follows: (1) design a material with a combination 

of heavy and light elements to have high mass contrast, which produces an acoustic-

optic phonon gap, (2) phonon softening of transverse acoustic (TA) modes due to heavy 

atomic mass element; (3) constituent elements in a material with a high 

electronegativity difference produce a large LO-TO splitting, resulting in LLO (TO) 

phonon modes, which might fall into the acoustic mode region, and they are responsible 
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for the softening of acoustic phonon modes or enhancing the overlap between the LLO 

and longitudinal acoustic (LA) phonon modes, thereby increasing scattering rates thus 

resulting in shorter phonon lifetimes; and (4) selection of a material with a relatively 

high density (ρ). The application of tensile strain further reduces L in binary systems 

through phonon softening, which increases scattering rates, thereby lowering phonon 

lifetimes and eventually lowering L. 

The detailed study on AH’s provides several critical insights regarding the relationship 

between mass ratio and L: (a) when the difference in atomic mass between elements 

in a material is minimal, it significantly boosts the contribution of optical phonons to 

L ultimately resulting in an overall increase in L. (b) Materials with a mass ratio close 

to unity and low atomic masses within a binary system exhibit more dispersive optical 

phonons. These optical phonons make a substantial contribution to L. (c) Conversely, 

materials with a mass ratio close to unity but heavier atomic masses in a binary system 

display less dispersion optical phonons with sharp peaks in the narrow frequency range, 

resulting in a relatively less contribution of optical phonons (compared with acoustic 

phonons) to L. (d) In general, materials with a mass ratio approaching unity tend to 

feature longer phonon lifetimes, which remain dominant in achieving high L values. 

These findings suggest that materials composed of elements with similar atomic masses 

exhibit relatively higher values of L in a given series of compounds. 

It is found that low-lying optical phonons contribute significantly to phonon transport 

to enhance L in materials (NaF, NaCl, KCl, MgO, CaO, MgS, SrSe, SrTe, and BaTe) 

with a mass ratio close to unity along with their average atomic mass. Relatively low 

scattering rates for materials with a mass ratio close to unity result in high phonon 

lifetimes, thereby resulting in an anomalously high L in a given series. Tensile lattice 

strain-dependent phonon transport properties of BaTe and MgTe reveal that phonon 

lifetimes play a dominant role in determining the trends in L. Overall, phonon 

scattering rates (inverse of phonon lifetimes) play a predominant role over phonon 

group velocities in determining the anomalous trends in L for AHs and AECs with a 

mass ratio close to one. The present study provides an in-depth understanding of atomic 

mass and its effect on phonon transport properties of AHs and AECs. Furthermore, this 

study reveals that by manipulating the atomic masses, one can engineer materials with 



 
 

195 
 

both high and low L values, providing exciting possibilities for tailored thermal 

conductivity in various applications. 

 

Chapter 4: 

 

For the Alkaline earth halo fluorides, MXF (M = Ca, Sr, Ba and X = Cl, Br, I) which 

are layered ternary materials that crystallize in P4/nmm symmetry, these exhibit 

anisotropy from their crystal structure, which is strongly determined by the axial bond, 

and it is attributed to large axial ratio (c/a > 2) where halogen atom acts as a rattler as 

evidenced from potential energy curves and phonon density of states. Low axial (c/a) 

ratio leads to relatively isotropic L values in BaXF compared to CaXF and SrXF series 

(X = Cl, Br, I) . The MXF compounds exhibit highly anisotropic (large phonon transport 

anisotropy ratio 10.95 for CaIF) to isotropic (small phonon transport anisotropy ratio 

1.49 for BaBrF) for κL values despite their iso-structure. Moreover, ultralow L (<1 

W/m-K) values have been predicted for CaBrF, CaIF and SrIF in the out-of-plane 

direction due to weak van der Waals (vdW) bonding. Overall, the comprehensive study 

on MXF compounds provides insights on designing low L layered materials by fine 

tuning in-plane and out-of-plane bonding through chemical intuition.  

 

Chapter 5: 

 

The chemical bonding, lattice dynamics, and phonon transport features of layered 

matlockite PbClF-type Bismuth halooxides, BiXO (X =Cl,Br,I) were studied. For 

BiBrO and BiIO, the large axial ratio (c/a > 2) is attributable to the large axial Bi-X1 

bond, which determines the structural (c > a) and elastic (C11 > C33) anisotropy in BiXO 

compounds. This property is similar to that of BaXF (X =Cl, Br, I) compounds, which 

have weak van der Waals bonds in the cross-plane direction. The three compounds 

under investigation i.e. BiClO, BiBrO and BiIO have been predicted to have an ultralow 

cross-plane L (< 1 W/m-K). Furthermore, the presence of structural and elastic 

anisotropy leads to a significant phonon transport anisotropy ratio of 13.5 for BiBrO 

and 15.6 for BiIO at a temperature of 300 K. This indicates a highly anisotropic phonon 

transport in these two compounds. The computed potential energy curves demonstrate 
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that Bi and Br/I atoms function as rattlers within the compounds BiBrO and BiIO. The 

presence of 6s2 lone pair electrons cause enhanced Born effective charges are observed 

along in-plane directions. The comprehensive understanding of crystal structure, 

chemical bonding, mechanical properties, lattice dynamics and phonon transport 

properties provides an in-depth understanding of interplay among atomic mass, lone 

pair induced anharmonicity and bonding heterogeneity, which would aid in the 

selection of elements or discovery of extremely low L materials for future thermal 

energy management applications. 

 

Future scope of work: 

 

1. To explore the phonon transport in 2D materials and monolayers. 

2. Employing machine learning potentials to investigate materials at higher 

temperatures. 

3. To look for the feasibility of quantifying the contributions of the several factors 

that play a dominant role in L 

4. To explore more families of isostructural compounds so that these could serve 

as descriptors for designing low L materials for thermal management 

applications. 

5.  Compute the electronic contributions as well to thermal conductivity and realize 

functional materials with a very good figure of merit. 

6.  To collaborate with experimental groups and realise the applications of low L 

materials. 
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