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Chapter 1

Preliminaries and Review

1.1 Introduction

The connection between fluid dynamics and nature, as well as its numerous applications

and real-world problems, has made fluid dynamics a passionate, thought-provoking, and

challenging field of modern science. The quest for a deep comprehension of the subject has

advanced related mathematical sciences as well as the field itself, including applied mathe-

matics, numerical computing, physical and mechanical sciences, and applied mathematics.

A listing of all fluid dynamics applications in technology would be impossible due to the

wide use of fluids in technological devices.

Pure science fields such as atmospheric sciences (global circulation, global warming,

mesoscale weather patterns), oceanography (pollution effect on living organisms, ocean cir-

culation patterns), geophysics (study of plate tectonics, earthquakes, volcanoes, magnetic

fields), astronomy (galactic structure, clustering, stellar evolution, supernovae), and bio-

logical sciences (circulatory, cellular processes, and respiratory systems in animals) can all

benefit from the axioms and principles of fluid dynamics.

The literature on fluid dynamics has been greatly enriched by studies of convective heat

and mass transfer across different geometries and cross sections. The patterns of fluid flow

around surfaces of different cross-sections, such as spheres, cylinders, and cones, are real-
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istic to examine. These flows have gained strong interest in view of their wide range of

applications in a broad variety of engineering processes. These include fiber technology,

high-speed thermal aerodynamics, nuclear cooling systems, surface treatment, spray depo-

sition processes, polymer engineering, etc. In the past, simplified formulations were used to

analyze fluid flow behavior analytically.

1.2 Casson fluid

Fluids that obey Newton’s Law of Viscosity are known as Newtonian fluids. Some examples

of Newtonian fluids include water and organic solvents. For those fluids, the viscosity is only

dependent on temperature.

Non-Newtonian fluids are a type of fluid that doesn’t follow Newton’s law of viscosity,

which states that the rate of deformation (shear strain) of a fluid is directly proportional to

the applied shear stress. In simpler terms, the viscosity of Newtonian fluids remains constant

regardless of the applied force or shear rate.

However, non-Newtonian fluids change their viscosity when a force is applied to them.

This means their flow behavior depends on factors such as shear rate, stress, temperature,

and time.

The Casson fluid model was proposed by Casson [1]. The fluid is shear-thinning. These

fluids exhibit no viscosity at infinite shear rates and infinite viscosity at zero shear rates. It

is noteworthy that this model reduces to a Newtonian liquid if yield stress is less than shear

stress. For use in practical applications, it offers a simple way to calculate the two parameters:

apparent yield stress and Casson viscosity. As a consequence of its applications in the fields

of drilling operations, metallurgy, food processing, polymer processing industries, synthetic

lubricants, biomedical fields, printing ink preparation, and so forth, the Casson fluid model

is being employed in a broad spectrum of theoretical and computational studies. Casson

fluid the rheological equation of the state are

τij =

2( τy√
2π

+ µB)eij for π > πc

2( τy√
2πc

+ µB)eij for π < πc
(1.1)

where τy is yield stress, µB is plastic dynamic viscosity of the Casson fluid, eij represent

the (i, j)th component of the rate of deformation, π = eijeij, πc is the critical value π.
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The momentum equation for Casson Fluid

ρ(q̄ · ∇)q̄ = −∇P + µB(1 +
1

β
)∇2q̄ + ρf̄ (1.2)

where β =
µB

√
2πc

τy
is the Casson fluid parameter.

1.3 Basic Terminology

Boundary Layer Theory

The boundary layer theory was proposed by Prandtl in 1904 [2].The main idea is to divide the

flow into two major parts. The larger portion is concerned with a free stream of fluid that is

farther away from the wall and is deemed inviscid. The smaller portion is a thin layer near the

wall that experiences the effects of viscosity. This thin layer where friction effects cannot be

ignored is called the boundary layer. Through experimental observations, Prandtl found

that large velocity gradients normal to the streamlines occur only in regions close to the

wall. Using this, one can obtain a simplified form of governing equations by estimating the

order of magnitude of the various terms in the conservation equations. Hence, the derived

equations are called boundary layer equations [3].

There are many reasons why boundary layer theory is used very frequently in solving fluid

flow and heat transfer problems (Bradshaw and Cebeci [4], Bejan [5]). The most important

reason is that the boundary layer equations are parabolic, while the full Navier-Stokes equa-

tions are elliptic or sometimes even hyperbolic, which are of considerable complexity. Thus,

parabolic partial differential equations can be solved much easier. Further, boundary layer

theory also gives more information about the flow separation from the surface of a body

than full Navier-Stokes equations. However, the boundary layer equations are available only

up to the separation point, and beyond this point, the full Navier-Stokes equations have to

be solved with much complexity.

Heat Transfer

When internal energy is transferred between areas or components within a medium, heat

transfer occurs. It often occurs from a region with higher temperatures to one with lower
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ones. There are three modes in which heat transfer takes place. Convection, radiation,

and conduction are them. In a thermodynamic system, conduction is the molecular transfer

of heat within or between bodies. The fluid in the medium, or the fluid medium itself, is

the subject of convection. Convection is the term used to describe the heat transfer that

occurs when a fluid moves from one area of the medium to another. The process by which

a substance’s internal energy is transformed into radiant energy is known as radiation heat

transfer. Convective heat is heat transferred by both convection and conduction.

Mass Transfer

Mass transfer is the tendency of a component in a mixture to move from a region of high

concentration to a region of a region of low concentration. There are two ways that mass

is transferred: diffusion mass transfer and convective mass transfer. A concentration gra-

dient, temperature gradient, or pressure gradient can all lead to diffusion mass transfer. A

phenomenon known as convective mass transfer occurs when matter moves from a fluid to a

solid surface or back, transferring mass between the fluid and the surface.

Mixed Convection

Mixed convection is a heat transfer phenomenon that occurs when both natural convection

and forced convection mechanisms contribute to heat transfer in a fluid (liquid or gas). In

natural convection, heat transfer is driven by buoyancy forces that arise due to temperature

differences in the fluid, causing the fluid to move and transfer heat. Forced convection, on

the other hand, involves the movement of fluid induced by external means such as a pump

or a fan.

In mixed convection, both natural and forced convection effects are present simultane-

ously, and their relative importance depends on various factors such as the geometry of the

system, flow conditions, and the magnitude of external forces.

Cross Diffusion Effects

The flow in simultaneous heat and mass transfer mechanisms is driven by density variations

induced by a temperature or concentration gradient and material composition at the same

time.
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The mass flux generated by temperature gradients is known as thermal diffusion, also

identified as thermo-diffusion or the Soret effect [6]. The Dufour effect, also known as the

diffusion-thermo effect, describes the heat flux generated by a concentration gradient.

Variable fluid properties

In most of the studies, the thermophysical properties of fluids were assumed to be constant.

However, it is known that these properties may change with temperature, especially for fluid

viscosity and thermal conductivity. For example, the absolute viscosity of water decreases by

240% when the temperature increases from 10oC to 500oC. The increase in temperature in

lubricating fluids causes internal friction, which changes the viscosity of the fluid, which no

longer remains constant. The increase in temperature accelerates the transport process by

lowering viscosity throughout the temperature boundary layer, influencing the heat transfer

rate. Therefore, to predict the heat transfer rate accurately, it is necessary to take into

account this variation in viscosity and thermal conductivity.

Kays and Crawford [7] presented many correlations between fluid physical characteristics

and temperature. The first researchers to look at the impact of variable fluid characteristics

on laminar boundary layer flow were Herwig and Gersten [8]. Applications include the

drawing of plastic films and glass fiber, the study of spilling pollutant crude oil over the

surface of seawater, the cooling of nuclear reactors, petroleum reservoir operations, food

processing, welding and casting in manufacturing processes, wire drawing, paper production,

glass fiber production, the glueing of labels on hot bodies, etc. Despite its importance in

many applications, this effect has received little attention. In recent years, fewer researchers

have analyzed the influence of variable properties on convective flows over stretched surfaces.

Thermal Radiation

Applications for the radiative effect are numerous in the domains of physics and engineering,

space technology, high-temperature processes, power generation, cooling nuclear reactors,

and liquid metal fluids. However, the impact of radiation on boundary layer flows is largely

unknown. Thermal radiation has a considerable impact on heat transfer and temperature

distribution in the boundary layer flow when temperatures are high. When heat-controlling

factors have a partial influence on the final product’s quality, thermal radiation influence

may be a major factor in managing heat transfer. The radiation term is linearized in the
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majority of studies that are presently available in the literature.

Chemical Reaction

A chemical reaction is the process by which a mixture of chemical components is changed into

something else. Traditionally, chemical reactions have been defined by a chemical equation

and have included just the locations of electrons in the formation and breaking of chemical

bonds between atoms; no modifications were made to the elements present or to the nuclei.

A branch of science known as ”nuclear chemistry” studies the chemical interactions between

radioactive and unstable materials, which can result in both nuclear and electronic changes.

The influence of chemical reactions is a crucial aspect in analyzing heat and mass transport

in many disciplines of engineering, industry, and science.

Viscous Dissipation

Viscous dissipation refers to the conversion of mechanical energy into heat due to internal

friction or viscosity within a fluid. This phenomenon occurs when a fluid, such as a liquid

or gas, experiences deformation or flow, and the viscous forces within the fluid lead to the

generation of heat. It is required in viscous fluids such as polymers and oils. It has numerous

uses in industry and technology. Viscous dissipation is commonly used in electrical equipment

like light bulbs, electric heaters, electric stoves, and electric fuses.

1.4 Successive Linearization Method

The Successive Linearisation Method (SLM) is one of the linearization methods and it is

proposed and developed by Makukula et al. [9] and Motsa and Sibanda [10]. This procedure

has been used effectively to linearize several boundary value problems in heat and mass

transfer investigations ([11, 12], [13], [14] erc.).

To solve the nonlinear boundary value problem in an unknown function z(x) using SLM,

we assume that z(x) is approximated by

z(x) = zr(x) +
r−1∑
m=0

zm(x) (1.3)
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where zr(x) is an unknown function and z0(x), z1(x) · · · zr−1(x) are known approximate so-

lutions. The unknown function zr(x) can be determined by solving the linearized differential

equation in zr(x) obtained by substituting (1.3) in the given nonlinear differential equation

and linearizing the resulting differential equation using Taylor’s series expansion. Hence, the

subsequent solutions zr(x), r ≥ 1, are obtained by successively solving the linear equations

for zr(x), r ≥ 1 given that the previous guess zr−1(x) is known. The initial guess z0(x) is

taken such that it satisfy the given conditions on the boundary.

Any numerical scheme can used to solve the above iterative sequence of linearized dif-

ferential equations. The SLM method has been successfully applied to a wide variety of

scientific models over finite and semi-infinite intervals. The SLM approximation was applied

to boundary value problems which possess smooth solutions.

1.5 Chebyshev Collocation Method

The Chebyshev collocation method ([15, 16, 17, 18]) is based on the Chebyshev polynomials

defined on the interval [−1, 1]. To solve a differential equation, in an unknown function z(x),

on [−1, 1], the interval [−1, 1] is to be descritized at N +1 Gauss-Lobatto collocation points,

which are given by

ξj = cos
πj

N
, j = 0, 1, 2, ......, N (1.4)

Next, the unknown function z(x) and its derivatives are guestimated at the collocation

points as follows

z(ξ) =
N∑
k=0

z(ξk)Tk(ξj)
drz

dxr
=

N∑
k=0

[
2

(b− a)
Dkj

]r
z(ξk), (1.5)

where Tk(ξ) = cos (kcos−1ξ) is the kth Chebyshev polynomial and D being the Chebyshev

spectral differentiation matrix whose entries are defined as ([15, 17, 18]) “

D00 =
2N2+1

6

Djk =
cj
ck

(−1)j+k

ξj−ξk
, j ̸= k; j, k = 0, 1, 2 · · · , N,

Dkk = − ξk
2(1−ξk2)

, k = 1, 2 · · · , N − 1,

DNN = −2N2+1
6

 (1.6)

” Substituting equations (1.4)-(1.5) into the given differential equation, we obtain the system
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of the algebraic equation gven by

Ar−1Xr = Rr−1, (1.7)

in which Ar−1 is a square matrix of order (N +1)× (N +1) while Xr and Rr−1 are (N +1)th

order coloumn vectors. Writing the boundary conditions in terms of Chebyshev polynomi-

als, incorporating them in the above system of equations and solving the reduced system

of algebraic equations, we obtain the solution of the given differential equation. If the do-

main is [a, b], then it will be transformed to the domain [−1, 1] by using the using suitable

transformation.

1.6 Literature Review

The examination of non-Newtonian fluid flow intrigued many investigators on account of its

applicability to a variety of engineering problems. These include crystal growth, tarry fuel

abstraction from petroleum-based goods, the freezing of nuclear reactors, the manufacture of

plastic materials, etc. Numerous analytical and numerical analyses have been reported in the

literature for the examination of the boundary layer flow of Newtonian and non-Newtonian

fluids over different body shapes, such as a flat plate, a stretching sheet, an elastic sheet with

variable thickness, a horizontal cylinder, a stretching cylinder, a stretching disk, a sphere, a

Riga plate, etc. The boundary layer flow and heat transfer generated by a thin needle have

significance for hot wire anemometers, wire coating, biomedicine, blood flow, aerodynamic

extrusion of plastic sheets, lubrication, and power generation. Thin needle problems have

implications for microstructured electronic gadgets, blood transportation, microscale cooling

gadgets, cancer therapy, and many others. A parabola that is rotated along its axis creates

a smearing surface known as thin-needle geometry. Lee [19] proposed a boundary layer flow

around a moving needle in a parallel free stream and discussed the asymptotic behaviour of an

approximation solution. The similarity solutions for convective flow over a needle were then

found by Narain and Uberoi [20, 21, 22]. Later, several investigators analyzed Newtonian

and non-Newtonian fluid flows over a thin needle. Soid et al. [23] investigated the forced

convective nanofluid flow around a horizontal needle. The flow around a tiny needle with

variable thermal conductivity and viscosity was studied by Qasim et al. [24]. Prashar et al.

[25] have reported on the effects of hybrid nanoparticles on the flow across a heated needle.

Nazar et al. [26] investigated the effects of radiation, magnetic fields, and viscous dissipation

on fluid flow across a moving needle in a fluid containing hybrid nanoparticles. Despite the
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importance of Casson fluid flow over a thin, moving needle, not much has been published in

this field of study. Souayeh et al. [27] analyzed the impact of cross diffusion and non-linear

radiation on the MHD Casson nanofluid across tiny needles. Ibrar et al. [28] considered the

effect of Navier slip on the nano Casson fluid towards a tiny needle in the presence of thermal

radiation and magnetic fields. Hamid [29] examined the magnetic field heat source/sink and

non-linear thermal radiation effects on a 2-dimenisonal mixed convection flow of Casson

nanofluid over a thin needle moving vertically. Akinshilo et al. [33] scrutinized internal heat

generation and non-linear radiation on the nanofluid flow past a thin needle in a Casson

flow. Bilal and Urva [30] analyzed the consequences of nonlinear radiation on the mixed

convective Casson nanofluid over a thin needle. Naveen Kumar et al. [31] studied the flow

of a Casson fluid down a horizontal, thin moving needle using the Soret/Dufour effect and

thermophoretic particles. Prashar [32] examined the Blasius and Sakiadis hybrid Casson

nanofluid flow over a tiny heated needle.

It is well known that fluid characteristics, like viscosity and thermal conductivity, fluctu-

ate with temperature. By reducing viscosity over the entire thermal barrier layer, temper-

ature enhancement accelerates the transport phenomenon, which affects how quickly heat

transfers. The increased internal friction caused by the increased temperature of lubricat-

ing fluids changes the fluid’s viscosity, causing it to no longer be constant. The impact of

variable fluid characteristics on boundary layer flow was investigated by Herwig and Ger-

sten [34]. Since then, several investigators have looked at the results of changeable thermal

conductivity and varying viscosity on the Casson fluid stream in various physical configu-

rations. Animasaun et al. [35] investigated how the natural convective Casson fluid stream

over an exponentially extending sheet is affected by magnetic fields, suction, heat genera-

tion, thermal conductivity, and temperature-dependent viscosity. Mondal et al. [36] ana-

lyzed the viscous dissipative chemically reacted Casson fluid across a vertical sheet having

temperature-dependent viscosity. Sivaraj et al. [37] quantitatively examined the implications

of cross-diffusion on the Casson fluid stream in the presence of varied fluid characteristics.

The peristaltic flow of a Casson fluid in an inclined channel was examined by Prasad et al.

[38] in relation to the impacts of variable transport parameters and a magnetic field. Govin-

daraj et al. [39] examined the magnetic, Soret, and Dufour effects on the flow of Casson fluid

with thermal radiation and changing physical parameters.

Temperature gradients can cause mass flux, which is known as thermal diffusion, thermo-

diffusion, or the Soret effect. The heat flux caused by a concentration gradient is known as the

Dufour effect or diffusion-thermo effect. These impacts are usually regarded as a second-order

effect and may become important in fields such as petrology, geosciences, hydrology, and so
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on. Eckert and Drake [40] presented several Dufour effect applications.. The Soret effect was

employed to divide isotopes and gas mixtures of intermediate (N2, air) and exceedingly light

(H2, He) molecular weights[41]. There has been a significant amount of study published in

the literature on Newtonian and non-Newtonian fluid streams in several geometries, with

an emphasis on the Soret and Dufour effect. Shojaei et al. [42] inspected the flow of a non-

Newtonian liquid through a cylinder influenced by Soret, Dufour, and warm radiation effects.

Waini et al. [43] investigated the implications of Soret and Dufour on the stream of Al2O3-

water nanoliquid through a narrow needle. Salleh et al. [44] scrutinized the consequences

of Soret and Dufour on the convective stream near a moving, slender needle. Rehman et

al. [?] examined cross diffusive streams on a moving tiny needle, focusing attention on the

consequences of Soret and Dufour, heat absorption and generation, nonlinear heat radiation,

thermal activation, and chemical reaction properties. Reddy et al. [46] used the stream of

hybrid (Al2O3-Cu/Ethylene glycol) Casson nanofluids over a moving tiny needle to analyze

MHD, thermal radiation, and Dufour and Soret effects.

The increase in fluid temperature caused by flow-induced friction at the surface is referred

to as viscous dissipation. It is required in viscous fluids such as polymers and oils. It has

numerous uses in industry and technology. Viscous dissipation is commonly used in electrical

equipment like light bulbs, electric heaters, electric stoves, and electric fuses. Furthermore,

the influence of chemical reactions is a crucial aspect in analyzing heat and mass transport

in many disciplines of engineering, industry, and science. Khan et al. [47] examined the

effects of chemical reaction on Casson fluid flowing on a stretched sheet. Sulochana et al.

[49] covered viscous dissipation and non-uniform heat source/sink in a 2-D forced convective

MHD ferrofluid stream upon a horizontally moving needle. Afridi et al. [48] examined the

Rosseland radiation and entropy generation of a moving tiny needle on self-similar surfaces

in the existence of viscous dissipation. Raju et al. [50] studied effect of Darcy-Forchheimer

flow on a tiny needle in viscoelastic fluid. Upreti and Kumar [51] checked For moving a

tiny needle, the flow behavior over a tiny needle under joule heating, thermal radiation, and

viscous dissipation. Hamid [29] used a chemical reaction and non-linear thermal radiation to

analyze the MHD Casson nanofluid stream upon a tiny needle located vertically. Nayak et

al. [52] concentrated on examining the effects of heat generation, viscous dissipation, Joulian

dissipation, buoyancy, variable Prandtl number, and transverse magnetic field on a stream

of nanofluids across a tiny needle moving in a parallel stream. Khan et al. [53] analyzed the

effects of a magnetic field, a hall current, and viscous dissipation on a chemically reactive

nanofluid stream past a tiny moving needle. Sulatana et al. [54] analyze the simulations

effects of exponential solar radiation and dissipative transport of a steady mixed convective
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hybrid nanofluid stream past a non-isothermal moving tiny needle. The interactions of

thermal radiation and viscous dissipation on a steady MHD stream through a moving tiny

needle in hybrid nanofluid were covered by Nazar et al. [26]. Ali et al. [55] covered the effects

of nanoparticle aggregation, MHD, and viscous dissipation on nanofluid over a tiny needle.

A combination of forced and free convection occurring at the same time, mixed convection

has applications in most modern industries and technological processes. Examples include

heat exchangers that are kept in a low-velocity condition in order to cool nuclear reactors

during emergency interruptions, as well as fan-driven cooling systems for electrical equip-

ment. Wang [56] performed a numerical analysis of mixed convection over a vertical needle

and discovered that opposing flows can have single, dual, or no results, whereas assisting

flows can only have unique solutions. Ahmed et al. [57] examined the mixed convection flow

of a viscous fluid along a moving vertical tiny needle. Ahmed et al. [58] investigated the

impact of changeable heat flux on the mixed convection of a viscous fluid across vertically

moving tiny needles. Trimbitas et al. [59] considered the mixed convective flow of nanofluid

across a vertical needle with a changeable wall temperature. Salleh et al. [60] discussed the

mixed convection flow of nanofluid caused by the motion of a tiny vertical needle. Qasim

and Afridi [61] studied the entropy generation in mixed convection flow across a thin needle.

Many investigators have explored the effect of an applied magnetic field on both Newto-

nian and non-Newtonian streams across different geometries in the instance of an electrically

conducting fluid. Raza [63] investigated the various responses of a mixed convection stream

of Casson fluid in a porous channel beneath the force of a magnetic field. The impacts of

a consistent transverse magnetic field, heat radiation, and chemical reaction on the erratic

Casson fluid stream flowing past an upright plate that oscillates and is utilized in a porous

medium were estimated by Kataria and Patel [64]. Ahmed [65] analyzed the MHD narrowing

stream of a Casson fluid presented among parallel plates. Jain and Parmar [66] examined the

slip stream of Casson fluid across a stretching sheet with magnetic implications. Senapati et

al. [67] numerically looked at the Casson nanofluid stream beyond the stretching sheet. In a

study conducted by Raghunath and Obulesu [68], the investigation involved the analysis of

the unsteady magnetohydrodynamic oscillatory flow of Casson fluid past an inclined upright

porous plate. The study considered the continuation of chemical reactions along with heat

consumption and soret effects. The magnetohydrodynamic Casson fluid flowed steadily and

incompressibly in two dimensions over an extended sheet placed in an absorbent medium,

as demonstrated by Saeed et al. [69]. With the assistance of thermal radiation and chemical

reaction, Rasheed et al. [70] provided a numerical explanation of the steady two-dimensional

MHD free convective stream of Casson fluid above the upright surface. Umavathi et al.
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[71] concluded magnetohydrodynamic narrowing of Casson nanofluid streams among par-

allel convectively heated disks. Nandhini et al. [72] investigate the consequences of ethyl

alcohol, a universal solvent, on radiation absorption and chemical reactions when combined

with Casson fluid via an exponentially stretched sheet. The existence of a heat sink or source

can significantly affect a stream of Casson fluid, leading to changes in temperature, velocity,

and shear stress distribution within the fluid.

Casson fluid flow with a heat source includes various industrial processes, such as polymer

processing, food processing, and oil and gas production, where the occurrence of a heat source

is prevalent and can severely impair the functioning of the system. Mythili and Sivraj [73]

examined the implications of an uneven heat source on an unsteady chemically reacted

Casson fluid stream above an upright cone and flat plate with thermal conductivity and

viscosity variations. Makinde and Rundora [74] explored time dependent convective streams

of a chemically reactive Casson fluid in an upright channel with permeable walls containing

the porous medium. Zia et al. [75] hypothesized the consequences of cross diffusion, radiation,

and exponential heat sources on three-dimensional mixed convective Casson fluid streams

by a heated surface. Goud et al. [76] provided the implication of heat source on motion of a

Casson fluid through an upright fluctuating permeable plate. Awais et al. [77] analyzed the

implications of magnetic field on the stream of Casson fluid in a porous medium caused by

a shrinking surface subjected to heat absorption or germination.

1.7 The Aim of the Thesis

The aim of the present thesis is to study the boundary layer flow of a Casson fluid past a

thin, moving needle. This study examines characteristics such as Soret and Dufour effects,

magnetic fields, thermal radiation, chemical reactions, and variable properties.

The problems studied concern the geometry of horizontally moving needles in natural

and mixed convection.

1.8 Overview of the Thesis

This thesis consists of four parts and ten chapters.

Chapter 1 is an introduction and gives motivation for the investigations carried out in
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the thesis. An overview of relevant literature is provided, highlighting the significance of the

problems considered in the thesis. This chapter presents the basic equations governing the

casson fluid.

Part-II deals with the natural convective boundary layer flow of Casson fluid across a

horizontally moving thin needle. This consists of four chapters, i.e., chapters 2 through

5. In these chapters, the governing equations, which are nonlinear in nature, and their

accompanying conditions on the boundary are initially transformed into dimensionless form

using suitable transformations. Subsequently, successive linearization is used to linearize

the resulting nonlinear set of ordinary differential equations, and then Chebyshev spectral

collocation is employed to solve it. In several cases, the resulting numerical results agree

well with previously reported data.

Chapter 2 describes the boundary layer flow over a thin, horizontal needle moving in

a Casson fluid. Initially, similarity transformations are used to transform the governing

equations into a set of ordinary differential equations. A graphic representation and analysis

are provided for the impact of the needle size and Casson fluid parameter on the temperature

and velocity profiles, as well as the skin friction coefficient and Nusselt number.

Chapter 3 deals with the flow past a horizontally moving needle submerged in Casson

fluid. The viscosity and thermal conductivity are assumed to be dependent on temperature.

The effects of the Casson fluid parameter, needle size, and viscosity parameter on velocity

and temperature, along with the coefficient of skin friction and local heat transfer rate, are

analyzed.

Chapter 4 studies Soret and Dufour effects on steady two-dimensional laminar boundary

layer flow past a horizontal, thin needle immersed in a Casson fluid. The influences of needle

size, Casson fluid parameter, Soret, and Dufour parameters on the velocity, temperature,

and concentration profiles, as well as on the skin friction coefficient, heat, and mass transfer

rates, are studied.

Chapter 5 considers the stream of Casson fluid past a horizontal, tiny needle under the

influence of thermal radiation, viscous dissipation, and chemical reaction. A numerical so-

lution has been obtained for velocity, temperature, and concentration through successive

linearizing techniques followed by the Chebyshev method. The effect of dimensionless pa-

rameters on velocity, temperature, concentration, skin friction coefficient, Nusselt number,

and Sherwood number is scrutinized in detail.

Part III deals with the mixed convective boundary layer flow of Casson fluid past a
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horizontal, thin, moving needle. This consists of four chapters, i.e., chapter 6 to 9. In these

chapters, the nonlinear governing equations and their associated boundary conditions are

initially cast into dimensionless forms using similarity transformations.

Chapter 6 deals with Casson fluid flow with mixed convection past a thin, horizontal

needle. Graphical representations of the local heat transfer rate and coefficient of skin

friction are shown, along with the effects of needle size and mixed convection parameters on

temperature and velocity.

Chapter 7 examines the significance of magnetic field, chemical reaction and heat source

on a mixed convection stream through a horizontal, tiny needle consumed in Casson fluid.

The effects of pertinent parameters, including needle size and Casson fluid parameters, on

the stream and thermal fields are concluded. The effects of needle size and Casson fluid

parameters on stream and heat transfer in terms of velocity and temperature should be

investigated.

Chapter 8 examines the impact of variable properties on a mixed convection stream along

a horizontal, thin, moving needle immersed in Casson fluid. The effects of needle size and

Casson fluid parameters on velocity and thermal fields are included.

Chapter 9 studies the Soret and Dufour effects on a mixed convection flow along a hori-

zontal, thin needle moving in a Casson fluid. The effects of the mixed convection parameter,

needle size, Casson fluid parameter, Soret, and Dufour parameters on the velocity, temper-

ature, and concentration profiles, as well as on the skin friction coefficient, heat, and mass

transfer rates, are studied.

Part IV consists of a single chapter, i.e., Chapter 10. In this chapter, the main conclusions

of the earlier chapters and the directions for further investigations are indicated.

In all the above chapters (Chapter 2 to Chapter 9), similarity transformations are em-

ployed to convert the governing system of partial differential equations to nonlinear ordi-

nary differential equations. The resulting equations were linearized using the successive lin-

earization method [78]. Thus, the obtained linear equations are solved using the Chebyshev

pseudo-spectral collocation method [79].

A list of references is given at the end of the thesis and is arranged in alphabetical order.

A considerable part of the work in the thesis has been published or accepted for publica-

tion in reputed international journals. The remaining part is communicated for publication.

The details are presented below.
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Chapter 2

Casson Fluid Flow Over a Moving

Thin Needle 1

2.1 Introduction

Several researchers were intrigued in Casson fluid flow because of its potential application

to a wide range of engineering problems. These include in drilling operations, metallurgy,

food processing, polymer processing industries, synthetic lubricants, biomedical fields, the

preparation of printing ink, etc. A few studies, for example, Souayeh et al. [27], Bilal et al.

[30], Ibrar [28], Akinshilo et al. [33] etc. on the Casson nanofluid flow over a thin needle

with different physical effects have been published.

This chapter examines the steady flow of a Casson fluid across a horizontal moving

thin needle. The flow equations are first transformed into a system of ordinary differential

equations, which are then solved using the Chebyshev collocation method after sequential

linearization has been applied.

2.2 Formulation of the Problem

Consider the steady, laminar and incompressible flow of Casson fluid over a horizontally

moving thin needle. Assume that the uniform velocity of the fluid be U∞ and the moving

velocity of the needle be Uw. Figure 2.1 shows the schematic of the problem along with

1Accepted for publication in “WSEAS Transactions on Heat and Mass Transfer ”
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coordinate system. The radius of the needle is given by r = R(x). The needle is assumed to

be thin, with a thickness smaller than that of the boundary layer that surrounds it. Let Tw

and T∞ where Tw > T∞ are the temperatures the needle and surrounding fluid.

Figure 2.1: ”Coordinate system and physical flow model”.

The flow equations are obtained by using the boundary layer postulations and the afore-

mentioned assumptions.

∂(ru)

∂x
+
∂(rv)

∂y
= 0 (2.1)

u
∂u

∂x
+ v

∂u

∂r
= ν

(
1 +

1

β

)
1

r

∂

∂r

(
r
∂u

∂r

)
(2.2)

u
∂T

∂x
+ v

∂T

∂r
= α

(
1

r

∂

∂r

(
r
∂T

∂r

))
(2.3)

where u denote the axial velocity component, v denote radial velocity component, T rep-

resents the fluid temperature, ρ represents the fluid density, ν represents the kinematic

viscosity, β represents Casson fluid parameter, and α represents the thermal conductivity.

The boundary conditions are

u = uw, v = 0, T = Tw at r = R(x)

u→ u∞, T → ∞ at r → ∞
(2.4)
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The similarity Transformations are defined as:

ψ = νxf(η), θ(η) =
T − T∞
Tw − T∞

, η =
Ur2

νx
(2.5)

using Eq. (2.5), the equation for the surface of the needle η = a, (where a is dimensionless

constant), can be written as R = (νax
U
)
1
2 which characterizes the size and shape of the needle.

Making use of similarity transformations given in (2.5) in equation (2.1) to (2.3) we get

2η[1 +
1

β
]f

′′′
+ 2[1 +

1

β
]f

′′
+ ff

′′
= 0 (2.6)

ηθ
′′
+
Pr

2
θ
′
f + θ′ = 0 (2.7)

The modified conditions on boundary are

f
′
(η) =

λ

2
, f(η) =

λa

2
, θ(η) = 1 at η = a

f
′
(η) → 1− λ

2
, θ(η) → 0 at η → ∞

(2.8)

where λ is the velocity ratio parameter,Pr = µ
α0

denotes the Prandtl number.

The non-dimensional form of coefficient of skin friction (Cf ) and the heat transfer rate

(Nusselt number (Nu)) are

Re
1
2Cf = 8a

1
2 (1 +

1

β
)f

′′
(a), Re

−1
2 Nu = −2a

1
2 θ

′
(a) (2.9)

2.3 Solution of the Problem

The system of differential Eqns. (2.6) and (2.7) are solved by using successive linearization

method (SLM) along with the Chebyshev collocation method.

It is assumed in SLM that the unknown functions F(η) = [f(η), θ(η)] can be represented

as

F(η) = Fj(η) +

j−1∑
m=0

Fm(η), (2.10)

where the unknown function Fj(η) (j = 1, 2, ...) is an approximation. The linearized set of

equations obtained by putting on equation (2.10) to the equations (2.6) and (2.7) and can
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be solved to determine this estimate. The fundamental principle is that, even as j grows

enormous, Fj shrinks dramatically, allowing non-linear factors in Fj and their differential to

be ignored.

Using Eq.(2.10) in the Eqs. (2.6) to (2.7) and ignoring nonlinear terms containing fj,θj

and ϕj , we get

a1f
′′′

i + a2f
′′

i + a3fi = r1 (2.11)

b1fi + b2θ
′′

i + b3θi
′ = r2 (2.12)

where

a1 = 2η

(
1 +

1

β

)
, a2 = 2

(
1 +

1

β

)
+
∑

fm, a3 =
∑

f ′′
m

r1 = −2η

(
1 +

1

β

)
(
∑

f ′′′
m)− 2

(
1 +

1

β

)
(
∑

f ′′
m)− (

∑
Fm)(

∑
f ′′
m)

b1 =
Pr

2
(
∑

θ′m), b2 = η, b3 =
Pr

2
(
∑

fm) + 1

r2 = −η(
∑

θ′′m)−
Pr

2
(
∑

θ′m)(
∑

fm)− (
∑

θ′m)

The set of linearized Eqs.(2.11) - Eq.(2.12) is solved by using the Chebyshev collocation

method [79].

The solution region for this problem is changed to [a,B]; B is chosen to acquire the condi-

tions that are far from the body. In order to use this technique, the following transformation

is once again used to turn [a,B] to [−1, 1].

η =
(a+B)− (a−B)ξ

2
, −1 ≤ ξ ≤ 1 (2.13)

The unknown functions fi and θi are approximated at the Gauss-Lobatto collocation

points on [−1, 1]

ξi = cos
πi

N
, i = 0, 1, 2, 3.....N (2.14)

as
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fj(ξ) =
N∑
k=0

fj(ξk)Tk(ξi), θj(ξ) =
N∑
k=0

θj(ξk)Tk(ξi), i = 0, 1, 2...N (2.15)

whereTk(ξ) is the k
th Chebyshev polynomial.

Similarly, the rthdifferentials of fi and θi and are guesstimated as

drFj
dηr

=
N∑
k=0

Dr
kiFj(ξk),

drθj
dηr

=
N∑
k=0

Dr
kiθj(ξk), i = 0, 1, 2...N (2.16)

where D = 2
B
D with D is the Chebyshev differential matrix.

Equations (2.15) - (2.16) are substituted into equations (2.11), and (2.12) to get the the

following matrix equation

Ai−1Xi = Ri−1 (2.17)

where Aj−1 is a 2(N +1)× 2(N +1) order matrix and Xj and Rj−1 are 2(N +1)× 1 column

matrix given by

Ai−1 =

(
A11 A12

A21 A22

)
, Xi =

(
Fi

Θi

)
, Ri−1 =

(
r1,i−1

r2,i−2

)
(2.18)

where

Fj = [fj(ξ0), fj(ξ1), ...., fj(ξN−1), fj(ξN)]
T ,

Θj = [θj(ξ0), θj(ξ1), .., θj(ξN−1), θj(ξN)]
T ,

A11 = a1D
3 + a2D

2 + a3I, A12 = O,

A21 = b1I, A22 = b2D
2 + b3D,

r1 = [r1(ξ1), r1(ξ2), r1(ξ3)...., r1(ξN+1)]
T ,

r2 = [r2(ξ1), r2(ξ2), r2(ξ3)...., r2(ξN)]
T ,

The superscript T stands for transpose, I is the identity matrix, O is the zero matrix.
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Writing the boundary conditions at the collocation points, the solution is provided by

Xj = A−1
j−1Rj−1

The current model concentrates mainly on the implications of three dimensionless pa-

rameters: the velocity ratio parameter (λ), the Casson fluid parameter (β), and the needle

size (a). Figs. 2.2–2.6 illustrate the impacts of these parameters on temperature, velocity,

skin friction coefficient, and heat transfer rate (Nusselt Number).

The effect of needle size on velocity and temperature profiles is shown in Figure 2.2. As

the size of the needle lowers, the velocity increases, as shown in Fig. 2.2(a). Physically,

the fluid’s surface area shrinks as the thin needle’s size lowers, reducing force and raising

velocity in the process. Moreover, the boundary layer thickness for the velocity decreases

with decreasing needle size. As can be seen in Fig.2.2(b), the temperature and its boundary

layer decrease with the thin needle size.

Figure 2.3 shows how the Casson fluid parameter (β) affects temperature and velocity.

As β increases, the velocity increases, as can be seen in Fig. 2.3(a). Moreover, the velocity

increases with η. The temperature is seldom affected by β, as Fig. 2.3(b) illustrates. It is

evident that the temperature decreases as η increases.

Figure 2.4 displays the temperature and velocity fluctuations for various velocity ratio

parameter values. As one advances away from the needle’s wall, the velocity drops, whereas

an increase in λ increases the velocity close to the needle’s wall (Figure 2.4(a)). The tem-

perature is unaffected by the velocity ratio parameter, as Fig. 2.4(b) illustrates.

The impact of needle size on the Nusselt number and coefficient of skin friction is seen

in Figure 2.5. As illustrated in Fig. 2.5(a), skin friction lowers with an improving value of

β and a constant needle size. Furthermore, the skin friction coefficient falls with increasing

needle size. As the needle size grows, the rate of heat transmission reduces, as Fig. 2.5(b)

illustrates. As seen in Fig. 2.5(b), the Casson fluid parameter has no discernible impact on

the Nusselt number.

Figure 2.6 illustrates how the velocity ratio parameter affects the coefficient of skin friction

and Nusselt number. Figure 2.6(a) shows that as the velocity ratio parameter increases, the

skin friction coefficient decreases. As the velocity ration parameter increases, the rate of

heat transfer increases, as shown in Fig. 2.6(b).
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2.4 Conclusion

This study examines the effects of parameters related to flow on the temperature, velocity,

skin friction coefficient, and heat transfer rate in the flow over a thin horizontal needle moving

in a Casson fluid. The following are the primary conclusions of the current investigation:

• As the needle size decreases, the velocity profile increases, and as the Casson fluid

parameter increases, it decreases.

• As the thin needle’s size decreases, the temperature profile decreases. The Casson fluid

and velocity ratio parameters have negligible effects.
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Figure 2.2: “Effects of needle size on the (a) Velocity profile (b) Temperature Profile”
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Figure 2.3: “Effect of Casson fluid parameter on the (a) Velocity (b) Temperature”
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Chapter 3

Effect of Variable Properties on The

Flow Past a Needle Moving in a

Casson Fluid 1

3.1 Introduction

It is well known that fluid characteristics, like viscosity and thermal conductivity, fluctuate

with temperature. By reducing viscosity over the entire thermal barrier layer, the temper-

ature enhancement accelerates the transport phenomenon, which affects how quickly heat

transfers. The impact of variable fluid characteristics on boundary layer flow was inves-

tigated by Herwig and Gersten [34]. Since then, several investigators have looked at the

results of changeable thermal conductivity and varying viscosity on Casson fluid stream in

various physical configurations. Animasaun et al. [35] examined how natural convective

Casson fluid stream over an exponentially extending sheet is affected by magnetic field, suc-

tion, heat generation, thermal conductivity, and temperature-dependent viscosity. Mondal

et al. [36] analyzed the viscous dissipative chemically reacted Casson fluid across a vertical

sheet having temperature dependent viscosity. Sivaraj et al. [37] quantitatively examined

the implications of cross-diffusion on the Casson fluid stream in the presence of varied fluid

characteristics. The peristaltic flow of Casson fluid in an inclined channel was examined by

Prasad et al. [38] in relation to the impacts of variable transport parameters and a magnetic

field. Govindaraj et al. [39] examined magnetic, Soret, and Dufour effects on the stream of

1Accepted for publication in “Discontinuity, Nonlinearity, and Complexity ”,
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Casson fluid with thermal radiation and changing physical parameters.

This chapter considers the flow of Casson fluid over a horizontal moving needle. The vis-

cosity and thermal conductivity are assumed to be dependent on temperature. The governing

equations of the flow are converted into a set of non-linear ordinary differential equations

utilising appropriate transforms. The resulting equations are linearized by using successive

linearization, and then solved by Chebyshev spectral collocation technique.

3.2 Formulation of the Problem

Consider the steady, laminar and incompressible flow of Casson fluid over a horizontally

moving thin needle as shown in Figure 2.1 Apart from the assumption of Chapter - 2, here

we assume that the viscosity and thermal conductivity depends on the temperature.

Hence, the equations goerning thw flow becomes

∂(ru)

∂x
+
∂(rv)

∂r
= 0 (3.1)

ρu
∂u

∂x
+ ρv

∂u

∂r
=

1

r

(
1 +

1

β

)
∂

∂r

(
µ(T )r

∂u

∂r

)
+ gβT cosα(T − T∞) (3.2)

v
∂T

∂r
+ u

∂T

∂x
=

1

r

∂

∂r

(
α(T )r

∂T

∂r

)
(3.3)

where the quantities used in the above equations are already defined in Chapter - 2.

It is presumed that thermal conductivity and viscosity are linearly dependent on the

temperature as

α(T ) = α0[1 + E(T − T∞)] and µ(T ) = µ∞[1 + b(Tw − T )] (3.4)

where α0 and µ∞ are the absolute thermal conductivity and viscosity, b and E are constants.

The boundary conditions are:

u = uw, v = 0, T = Tw at r = R(x)

u→ u∞, T → ∞ at r → ∞
(3.5)

To non-dimensionlize the equations (3.1) to (3.3), we use the following similarity trans-
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formations:

η =
Ur2

νx
, ψ = νxf(η), θ(η) =

T − T∞
Tw − T∞

, (3.6)

where U = Uw+U∞ is the composite velocity and ψ is the stream function given by u = 1
r
∂ψ
∂r

and v = −1
r
∂ψ
∂x

Using Eq. (3.6) in the equation to the surface of the wall η = a, it can be written as

R =
√

νax
U

which characterizes shape and size of the needle.

Substituting the similarity variables given in (3.6) in Eqns. (3.1) to (3.3), we obtain[
2

(
1 +

1

β

)
(1 + A(1− θ))

](
ηf

′′′
+ f

′′
)
− 2Aη

(
1 +

1

β

)
θ
′
f

′′
+ ff

′′
+Grθ = 0 (3.7)

[
2

(
1 + ϵθ

Pr

)](
ηθ

′′
+ θ

′
)
+

2ηϵ

Pr
θ′

2
+ fθ′ = 0 (3.8)

where A is viscosity parameter, Gr is Grashof number, Pr = ν
α
, is Prandtl number, λ = Uw

U

is velocity ratio parameter and ϵ is thermal conductivity parameter.

The modified conditions on boundary becomes

f
′
(η) =

λ

2
, f(η) =

λa

2
, θ(η) = 1 at η = a

f
′
(η) → 1− λ

2
, θ(η) → 0 at η → ∞

(3.9)

The non-dimensional form of local Nusselt number Nu and the skin friction coefficient

Cf are
√
ReCf = 8

√
a

(
1 +

1

β

)
f

′′
(a),

Nu√
Re

= −2
√
aθ

′
(a) (3.10)

3.3 Solution of the Problem

The combined Eqns. (3.7) and (3.8) and conditions on boundary (3.9) are linearized through

the successive linearization method (SLM) [78]. The solution of resulting linearized equations

is obtained by Chebyshev collocation method. On applying the procedure explained in

Chapter 2 to the equations Eqns. (3.7) and (3.8), we get the following linearized equations.

a1f
′′′

j + a2f
′′

j + a3fj + a4θj
′ + a5θj = r1 (3.11)
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b1fj + b2θ
′′

j + b3θj
′ + b4θj = r2 (3.12)

where

a1 = 2η

(
1 +

1

β

)(
1 + A− A(

∑
θm)
)

a2 = 2

(
1 +

1

β

)(
1 + A− A(

∑
θm)− A(

∑
θ′m)
)
+ (
∑

fm)

a3 = (
∑

f ′′
m) a4 = −2Aη

(
1 +

1

β

)
(
∑

f ′′
m)

a5 = Gr − 2A

(
1 +

1

β

)(
η(
∑

f ′′′
m)− (

∑
f ′′
m)
)

r1 = −2

(
1 +

1

β

)(
η(
∑

f ′′′
m)− Aη(

∑
f ′′′
m)− 2(

∑
f ′′
m)

+2Aη(
∑

θm)(
∑

f ′′′
m)− 2A(

∑
f ′′
m)

+2A(
∑

θm)(
∑

f ′′
m) + 2Aη(

∑
θ′m)(

∑
f ′′
m)
)

−(
∑

fm)(
∑

f ′′
m)−Gr(

∑
θm)

b1 = (
∑

θ′m) b2 =
2η

Pr
+

2ηϵ

Pr
(
∑

θm)

b3 =
2

Pr
+

2ϵ

Pr
(
∑

θm) +
4ηϵ

Pr
(
∑

θ′m) + (
∑

fm)

b4 =
2ηϵ

Pr
(
∑

θ′′m) +
2ϵ

Pr
(
∑

θ′m)

r2 = − 2η

Pr
(
∑

θ′′m) +
2ηϵ

Pr
(
∑

θm)(
∑

θ′′m)−
2

Pr
(
∑

θ′m)−
2ϵ

Pr
(
∑

θm)(
∑

θ′m)

−2ηϵ

Pr
(
∑

θ′m)
2 − (

∑
fm)(

∑
θ′m)

As explained in Chapter - 2, using Chebyshev collocation method on the system of

linearized equations. (3.11) and (3.12), we obtain the following equation in matrix form

Aj−1Xj = Rj−1 (3.13)

where Aj−1 is a 2(N +1)× 2(N +1) order matrix and Xj and Rj−1 are 2(N +1)× 1 column
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matrix given by

Aj−1 =

(
A11 A12

A21 A22

)
, Xj =

(
Fj

Θj

)
, Rj−1 =

(
r1,j−1

r2,j−2

)
(3.14)

where

Fj = [fj(ξ0), fj(ξ1), ...., fj(ξN−1), fj(ξN)]
T ,

Θj = [θj(ξ0), θj(ξ1), .., θj(ξN−1), θj(ξN)]
T ,

A11 = a1D
3 + a2D

2 + a3I, A12 = a4D + a5I,

A21 = b1I, A22 = b2D
2 + b3D,

r1 = [r1(ξ1), r1(ξ2), r1(ξ3)...., r1(ξN+1)]
T ,

r2 = [r2(ξ1), r2(ξ2), r2(ξ3)...., r2(ξN)]
T ,

The superscript T stands for transpose, I is the identity matrix, O is the zero matrix.

Imposing the boundary conditions in terms of the collocation points, the solution is

provided by

Xj = A−1
j−1Rj−1

3.4 Results and Discussion

The four dimensionless parameter effects are primarily the focus of the current model. They

are size of needle (a), variable viscosity parameter (A), velocity ratio parameter (λ), thermal

conductivity parameter (ϵ), on velocity and temperature profiles together with the local

heat transfer rate (Nusselt Number) Nu√
Re

and coefficient of skin friction
√
ReCf . A detailed

numerical parametric analysis is conducted to assure a greater comprehension of the technical

issue, and the findings are presented graphically (Figs. 3.1-3.11). Numerous a, λ, A, and ∈
values have been calculated numerically.

Figure3.1 illustrates how the needle’s size affects the velocity and temperature profiles.

As shown in Fig.3.1(a), enlarging a elevates the velocity. As a rises, the temperature is also

increasing, as presented in Fig. 3.1(b).
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The fluctuation of velocity and temperature with the Casson fluid parameter β is shown

in Fig.3.2. As the Casson fluid parameter increases, velocity increases, as illustrated in

Fig. 3.2(a). As depicted in Fig. 3.2(b), the impact β on the temperature profile is almost

negligible.

The consequence of the thermal conductivity parameter ϵ on velocity and temperature

is given in Fig. 3.3. It is represented in Fig. 3.3(a) that the velocity improves slightly as

the variable thermal conductivity parameter rises. The temperature profile is also enhanced

with an enhancement in ϵ, as depicted in Fig. 3.3(b).

The fluctuation of profiles of velocity and temperature with velocity ratio parameter λ

is given in Fig.3.4. As presented in Fig.3.4(a), intensifying λ decreases velocity close to

the needle, then increases velocity farther from the needle. The effect of the velocity ratio

parameter on temperature is negligible, as depicted in Fig. 3.4(b).

Figre 3.5 represents the impact of the Grashof number on the velocity and tempera-

ture. Fig. 3.5(a) exhibits that velocity rises as Grashof number rises. The variation in the

temperature profile is independent of Gr as shown in Fig. 3.5(b).

The impact of the variable viscosity parameter (A) on velocity and temperature is given

in Fig. 3.6. It is detected from Fig. 3.6(a) that the velocity enhances as the variable

viscosity parameter rises. As displayed in Fig. 3.6(b), the temperature profile relative to A

is constant.

The effect of size of needle a on the local heat transfer rate Nu√
Re

and coefficient of local

skin friction
√
ReCf is illustrated in Fig.3.7. As depicted in Fig.3.7(a), the skin friction

coefficient is improved by increasing a. As a enhances, the local Nusselt number is also

increasing, as seen in Fig. 3.7(b).

The impact of ϵ on the local rate of heat transfer Nu√
Re

and the coefficient of local skin

friction
√
ReCf is given in Fig. 3.8. It is understood from Fig. 3.8(a) that the

√
ReCf

enhances as the variable thermal conductivity parameter rises. As exhibited in Fig. 3.8(b),
Nu√
Re

is also enhanced with an enhancement in ϵ.

Figure 3.9 presents the influence of the Grashof number Gr on the Nu√
Re

and
√
ReCf . Fig.

3.9(a) exhibits that the
√
ReCf rises as the Grashof number rises. The variation in the Nu√

Re

independent of Gr is depicted in Fig. 3.9(b).

The fluctuation of Nu√
Re

and
√
ReCf with velocity ratio parameter λ is given in Fig.3.10. As

presented in Fig.3.10(a), intensifying λ increases the skin friction coefficient. An increase in
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the velocity ratio parameter increases the local Nusselt number, as depicted in Fig. 3.10(b).

The impact of the variable viscosity parameter A on Nu√
Re

and
√
ReCf is given in Fig.

3.11. It is noticed from Fig. 3.11(a) that the
√
ReCf enhances as the variable viscosity

parameter rises. Fig. 3.11(b) exhibits that the local Nusselt number is decreasing with an

increase in A.

3.5 Conclusion

The assumption that viscosity and thermal conductivity change with temperature is used to

explore the boundary layer stream over a thin needle of casson fluid. The Chebyshev spectral

technique is used to find the solution of the resulting set after non-dimensional equations are

linearized using a successive linearized procedure.

• The velocity, temperature, skin friction coefficient, and heat transfer coefficient all rise

with increasing needle size.

• The velocity rises and the heat transfer rate reduces with an improvement in the

viscosity parameter.

• A rise in the thermal conductivity parameter leads to an increase in velocity, temper-

ature, and heat transfer rate.
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Figure 3.1: “Effect of a on the (a) Velocity Profile and (b) temperature profile”
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Figure 3.2: “Effect of β on the (a) Velocity Profile and (b) temperature profile”
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Figure 3.3: “Effect of ϵ on the (a) Velocity Profile and (b) temperature profile”
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Figure 3.4: “Effect of λ on the (a) Velocity Profile and (b) temperature profile”
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Figure 3.5: “Effect of Gr on the (a) Velocity Profile and (b) temperature profile”
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Figure 3.6: “Effect of A on the (a) Velocity Profile and (b) temperature profile”
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Figure 3.7: “Effect of a on the (a) coefficient of Skin friction and (b) local Nusselt number ”
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Figure 3.11: “Effect of A on the a) coefficient of Skin friction and b) local Nusselt number”
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Chapter 4

Casson Fluid Flow past a Thin Needle

with Cross Diffusion Effects. 1

4.1 Introduction

Temperature gradients can cause mass flux, which is known as thermal diffusion, thermo-

diffusion, or the Soret effect . The heat flux caused by a concentration gradient is known

as the Dufour effect or diffusion-thermo effect. These impacts are usually regarded as a

second-order effect and may become important in fields such as petrology, geosciences, hy-

drology, and so on. Eckert and Drake [40] presented several Dufour effect applications. The

Soret effect was employed to divide isotopes and gas mixtures of intermediate (N2, air) and

exceedingly light (H2, He) molecular weights.[41]. There has been a significant amount of

study published in the literature on Newtonian and non-Newtonian fluid streams in several

geometries, with an emphasis on the Soret and Dufour effect. Shojaei et al. [42] inspected

the flow of a non-Newtonian liquid thru a cylinder influenced by Soret, Dufour and warm

radiation effects. Waini et al. [43] investigated implications of Soret and Dufour on the

stream of Al2O3-water nanoliquid through a narrow needle. Salleh et al.[44] scrutinized the

consequences of Soret and Dufour on the convective stream near a moving slender needle.

Rehman et al. [62] examined cross diffusive stream on moving tiny needle, focusing atten-

tion on the consequences of Soret and Dufour, heat absorption / generation, nonlinear heat

radiation, thermal activation and chemical reaction properties. Reddy et al. [46] used the

stream of hybrid (Al2O3-Cu/Ethylene glycol) Casson nanofluids over a moving tiny needle

1Communicated to “International Journal of Applied and Computational Mathematics
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to analyze MHD, thermal radiation, and Dufour and Soret effects.

This chapter deals with a steady two-dimensional laminar boundary layer flow along a

horizontal tiny needle submerged in a Casson fluid in the presence of cross diffusion effects.

The flow-governing equations are first changed into a set of nonlinear ordinary differential

equations utilising appropriate transformations. The resulting equations are linearized util-

ising successive linearization. The linearized equations are solved using Chebyshev spectral

collocation technique.

4.2 Formulation of the Problem

Consider the stream of Casson fluid with uniform velocity U∞ over a tiny needle moving

horizontally with a velocity Uw. Assume that the flow is steady, laminar, and incompressible.

The x-axis runs horizontally from main edge of needle, and the radial axis runs perpendicular

to it as shown in Fig. 2.1. Apart from the assumption of Chapter - 2, here we assume Soret

and DuFour effects are present in the medium.

With the above assumptions and invoking boundary layer approximations, the equations

governing the flow are

∂(ru)

∂x
+
∂(rv)

∂y
= 0 (4.1)

u
∂u

∂x
+ v

∂u

∂r
= ν

(
1 +

1

β

)
1

r

∂

∂r

(
r
∂u

∂r

)
(4.2)

u
∂T

∂x
+ v

∂T

∂r
= α

(
1

r

∂

∂r

(
r
∂T

∂r

))
+
DmkT
cscp

∂2C

∂r2
(4.3)

u
∂C

∂x
+ v

∂C

∂r
= Dm

∂2C

∂r2
+
DmkT
Tm

∂2T

∂r2
(4.4)

where Cp represents specific heat, Dm is the diffusivity of the solute, Cs represents con-

centration susceptibility,KT represents thermal diffusion ratio and Tm is the mean fluid

temperature. The remaining quantities are already defined in Chapter - 2.

The conditions on the surface of the needle are

u = uw, v = 0, T = Tw, C = Cw at r = R(x)

u→ u∞, T → ∞, C → ∞ at r → ∞
(4.5)
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To non-dimensionalize the Eqs.(4.2)-(4.5), we use the following similarity transformations

ψ = νxf(η), θ(η) =
T − T∞
Tw − T∞

, ϕ(η) =
C − C∞

Cw − C∞
η =

Ur2

νx
(4.6)

where U = Uw + U∞ is the composite velocity and ψ is stream function

If the equation η = a , where ‘a’ is dimensionless constant, represent the needle wall, the

surface of the needle, using Eq.(4.6), can be written as R = (νax
U
)
1
2 which characterizes the

shape and size of the needle.

By putting equation (4.6) in equation (4.1) to (4.4) we get

2[1 +
1

β
][ηf

′′′
+ f

′′
] + ff

′′
= 0 (4.7)

η

Pr
θ
′′
+

1

Pr
θ
′
+

1

2
fθ

′
+ ηDfηϕ

′′
+Dfϕ

′
= 0 (4.8)

η

Sc
ϕ

′′
+

1

Sc
ϕ

′
+

1

2
fϕ

′
+ ηSrθ

′′
+ Srθ

′
+ = 0 (4.9)

The modified conditions on boundary are

f
′
(a) =

λ

2
, f(a) =

λa

2
, θ(a) = 1, ϕ(a) = 1

f
′
(∞) → 1− λ

2
, θ(∞) → 0, ϕ(∞) → 0

(4.10)

where λ is the velocity ratio parameter, Pr =
ν

α
denotes the Prandtl number, Df =

DsKT (Cw − C∞)

CsCpν(Tw − T∞)
denotes the Dufour number, Sr =

DsKT (Tw − T∞)

Tmν(Cw − C∞)
denotes the Soret

number and Sc =
ν

Ds

denotes the Schmidt number.

The modified conditions on boundary becomes

f
′
(η) =

λ

2
, f(η) =

λa

2
, θ(η) = 1 at η = a

f
′
(η) → 1− λ

2
, θ(η) → 0 at η → ∞

(4.11)

The local Nusselt number Nu and coefficient of skin friction Cf are the relevant physical
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parameters for this modeland are given by

√
ReCf = 8

√
a

(
1 +

1

β

)
f

′′
(a),

Nu√
Re

= −2
√
aθ

′
(a) (4.12)

4.3 Solution of the Problem

The combined Eqns. (4.7) to (4.9) and conditions on boundary (4.12) are linearized through

the successive linearization method (SLM) [78]. The solution of resulting linearized equations

is obtained by Chebyshev collocation method.

On applying the procedure explained in Chapter 2 to the equations Eqns. (4.7) and (4.9),

we get the following linearized equations.

a1f
′′′

j + a2f
′′

j + a3fj = r1 (4.13)

b1fj + b2θ
′′

j + b3θj
′ + b4ϕj

′′ + b5ϕj
′ = r2 (4.14)

c1fj + c2θ
′′

j + c3θj
′ + c4ϕj

′′ + c5ϕj
′ = r3 (4.15)

a1 = 2η

(
1 +

1

β

)
, a2 = 2

(
1 +

1

β

)
+
∑

fm, a3 =
∑

f ′′
m

r1 = −2η

(
1 +

1

β

)
(
∑

f ′′′
m)− 2

(
1 +

1

β

)
(
∑

f ′′
m)− (

∑
Fm)(

∑
f ′′
m)

b1 = (
∑

θ′m), b2 =
2η

Pr
, b1 =

2

Pr
+ (
∑

fm), b4 = Dfη, b5 = Df

r2 = −(
∑

fm)(
∑

θ′m)−
2

Pr
(
∑

θ′m)−
2η

Pr
(
∑

θ′′m)−Dfη(
∑

ϕ′′
m)−Df (

∑
ϕ′
m)

c1 = (
∑

ϕ′
m), c2 = Sr2η, c3 = Sr, c4 =

2η

Sc
, c5 = (

∑
fm) +

1

Sc

r3 = −(
∑

fm)(
∑

ϕ′
m)−

1

Sc
(
∑

ϕ′
m)−

2η

Sc
(
∑

ϕ′′
m)− Sr(

∑
θ′m)− Sr2η(

∑
θ′m)

As explained in Chapter - 2, using Chebyshev collocation method on the system of

linearized equations. (4.13) to (4.15), we obtain the following equation in matrix form

Aj−1Xj = Rj−1 (4.16)

where Aj−1 is a 3(N +1)× 3(N +1) order matrix and Xj and Rj−1 are 3(N +1)× 1 column
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matrix given by

Aj−1 =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 , Xj =

 Fj

Θj

Φj

 , Rj−1 =

 r1,j−1

r2,j−2

r3,j−3

 (4.17)

where

Fj = [fi(ξ0), fi(ξ1), ...., fi(ξN−1), fi(ξN)]
T ,

Θj = [θi(ξ0), θi(ξ1), .., θi(ξN−1), θi(ξN)]
T ,

Φj = [ϕi(ξ0), ϕi(ξ1), .., ϕi(ξN−1), ϕi(ξN)]
T ,

A11 = a1D
3 + a2D

2 + a3D + a4I, A12 = O,A13 = O

A21 = b1I, A22 = b2D
2 + b3D,A23 = b4D

2 + b5D

A31 = c1I, A32 = c2D
2 + c3D,A33 = c4D

2 + c5D

r1 = [r1(ξ0), r1(ξ1), ...., r1(ξN−1), r1(ξN)]
T ,

r2 = [r2(ξ0), r2(ξ1), ...., r2(ξN−1), r2(ξN)]
T ,

r3 = [r3(ξ0), r3(ξ1), ...., r3(ξN−1), r3(ξN)]
T

The superscript T stands for transpose, I is the identity matrix, O is the zero matrix.

Imposing the boundary conditions in terms of the collocation points, the solution is provided

by

Xj = A−1
j−1Rj−1

4.4 Results and Discussion

4.1 Effect of the wall of the needle, velocity ratio parameter, Casson fluid pa-

rameter, Soret, and Dufour numbers on velocity:

The impact of a, β, λ, Df , and Sr on the velocity is exhibited in Figures 4.1(a) to 4.1(e).

From Figure 4.1(a), it is detected that the velocity reduces as ‘a′ increases. For increasing

values of the Casson fluid parameter, the velocity is decreasing, as depicted in Figure 4.1(b).

From Figure4.1(c), it is detected that for intensifying, the velocity ratio parameter decreases

the velocity close to the needle, then increases the velocity further from the needle. The
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velocity does not change with changing the values of Df and Sr, as illustrated in Figures

4.1(d) and 4.1(e).

4.2 Effect of Wall of the needle, Velocity ratio parameter, Casson fluid pa-

rameter, Soret and Dufour numbers on Temperature:

The impact of a, β, λ, Df , and Sr on the temperature is exhibited in Figures 4.2(a)

to 4.2(e). From Figure 4.2(a), it is noticed that the temperature decreases as ‘a′ increases.

It is clear from the figure 4.2(b) that there is no real impact of the Casson fluid parameter

on temperature. The influence of the velocity ratio parameter on the temperature profile is

negligible, as presented in Figure 4.2(c). The temperature is decreasing for enhancing values

of Df , as depicted in figure 4.2(d). There is slight variation in the temperature for enhancing

values of the Soret number, as presented in Figure 4.2(e).

4.3 Effect of Wall of the needle, Velocity ratio parameter, Casson fluid pa-

rameter, Soret and Dufour numbers on Concentration:

The impact of a, β, λ, Df , and Sr on the temperature is presented in Figures 4.3(a) to

4.3(e). From Figure 4.3(a), it is observed that concentration reduces as ‘a′ increases. It is

clear from the figure 4.3(b) that there is no real impact of the Casson fluid parameter on

concentration. As depicted in Figure 4.3(c), the impact of the velocity ratio parameter on

the concentration is almost negligible. The concentration is decreasing for enhancing values

of Df , as depicted in figure 4.3(d). There is a slight variation in concentration for increasing

values of the Soret number, as presented in Figure 4.3(e).

4.4 Effect of the wall of the needle, velocity ratio parameter, Soret, and Dufour

numbers on skin friction coefficient:

The influence of a, λ, Df , and Sr on the skin friction coefficient is presented in Figures

4.4(a) to 4.4(d). From Figures 4.4(a) and 4.4(b), it is noticed that skin friction coefficient

reduces as ‘a′ and velocity ratio parameter enhances. The skin friction does not change with

changing the values of Df and Sr, as exhibited in Figures 4.4(c) and 4.4(d).

4.5 Effect of Wall of the needle, Velocity ratio parameter, Soret and Dufour

numbers on Nusselt number:

The influence of a, λ, Df , and Sr on the Nusselt number is presented in Figures 4.5(a)

to 4.5(d). From Figures 4.5(a), it is noticed that the Nusselt number decreases as ‘a′ in-

creases. An increase in the velocity ratio parameter increases the local Nusselt number, as

illustrated in Figure 4.5(b). As exhibited in Figure 4.5(c), the Nusselt number decreases as
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‘Df ′ increases. The Nusselt number increases as ‘Sr′ increases, which is illustrated in Figure

4.5(d).

4.6 Effect of the wall of the needle, velocity ratio parameter, Soret and Dufour

numbers on the Sherwood number

The influence of a, λ, Df , and Sr on the Nusselt number is presented in Figures 4.6(a) to

4.6(d). From Figures 4.6(a), it is noticed that the Sherwood number decreases as ‘a′ increases.

A rise in the velocity ratio parameter enhances the Sherwood number, as portrayed in Figure

4.6(b). As exhibited in Figure 4.6(c), the Sherwood number increases as ‘Df ′ increases. The

Sherwood number decreases as ‘Sr′ increases, as portrayed in Figure 4.6(d).

4.5 Conclusion

In the presence of cross-diffusion effects, the steady flow over a horizontal, thin needle sub-

merged in Casson fluid is investigated. The flow equations are initially converted into a set of

ordinary differential equations employing suitable transformations, then linearized by means

of successive linearization. With the use of the Chebyshev spectral collocation method, the

linearized equations are solved.

• The velocity reduces and temperature, and concentration improve with the increasing

size of the needle.

• A rise in Df leads to a rise in temperature and concentration profiles.

• An upsurge in Sr produces a rise in temperature and concentration distribution.

• Skin friction coefficient, local heat, and mass transfer coefficients reduce with enhancing

needle size.

• The implications of Df and Sr on the Nusselt and Sherwood numbers are in reverse.
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Figure 4.1: “Effect of (a) a (b) β (c) λ (d) Df (e) Sr on the velocity”
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Figure 4.2: “Effect of (a) a (b) β (c) λ (d) Df (e) Sr on the temperature”
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Figure 4.3: “Effect of (a) a (b) β (c) λ (d) Df (e) Sr on the Concentration”
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Figure 4.5: “Effect of (a) a (b) λ (c) Df (d) Sr on Nu(Re)
−1
2 ”
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Chapter 5

Casson Fluid Flow Past a Thin Needle

with Radiation, Viscous Dissipation

and Chemical Reaction Effects 1

5.1 Introduction

The increase in fluid temperature caused by flow-induced friction at the surface is referred

to as viscous dissipation. It is required in viscous fluids such as polymers and oils. It has

numerous uses in industry and technology. Viscous dissipation is commonly used in electrical

equipment like light bulbs, electric heaters, electric stoves, and electric fuses. Furthermore,

the influence of chemical reactions is a crucial aspect in analyzing heat and mass transport

in many disciplines of engineering, industry, and science. Khan et al. [47] examined effects

of chemical reaction on Casson fluid flowing on stretched sheet. Sulochana et al. [49] cov-

ered viscous dissipation and non-uniform heat source/sink in 2-D forced convective MHD

ferrofluid stream upon a horizontally moving needle. Afridi et al. [48] examined the Rosse-

land radiation and entropy generation of moving tiny needle on self-similar surface in the

existence of viscous dissipation. Raju et al. [50] studied effect of Darcy-Forchheimer flow on

a tiny needle in viscoelastic fluid.

According to reviews of the literature, no research have yet been published that examine

stream of Casson fluid across needle when radiation, viscous dissipation and chemical reaction

are used. This study investigates how Casson fluid stream across tiny needle is affected by

1Publication in“Journal of Xidian University”
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altering viscous dissipation, chemical reaction and thermal radiation.

5.2 Formulation of the Problem

Consider the stream of Casson fluid with uniform velocity U∞ over a tiny needle moving

horizontally with a velocity Uw . Assume that the flow is steady, laminar, and incompressible.

The x-axis runs horizontally from main edge of needle, and the radial axis runs perpendicular

to it as shown in Fig. 2.1. Apart from the assumption of Chapter - 2, here we assume that

Radiation, Viscous dissipation and Chemical reaction effects are present in the medium. The

governing equations of the flow are

∂(rv)

∂r
+
∂(ru)

∂x
= 0 (5.1)

v
∂u

∂r
+ u

∂u

∂x
=

1

r

(
1 +

1

β

)
ν
∂

∂r

(
r
∂u

∂r

)
(5.2)

v
∂T

∂r
+ u

∂T

∂x
=

1

r
α
∂

∂r

(
r
∂T

∂r

)
− 1

ρcρ

1

r

∂

∂r
(rqr) +

µ

ρcρ

(
1 +

1

β

)(
∂u

∂r

)2

(5.3)

v
∂C

∂r
+ u

∂C

∂x
= Dm

1

r

∂

∂r

(
r
∂C

∂r

)
−K∗(C − C∞) (5.4)

where qr is radiative heat flux, K
∗ is reaction rate of solute and the remaining quantities are

already defined in Chapter - 2

The boundary conditions are:

v = 0, T = Tw, u = uw, C = Cw at r = R(x)

T → ∞, u→ u∞, C → ∞ at r → ∞
(5.5)

To non-dimensionlize the equations (5.1) to (5.4), we use the following similarity trans-

formations:

η =
Ur2

νx
, ψ = νxf(η), θ(η) =

T − T∞
Tw − T∞

, ϕ(η) =
C − C∞

Cw − C∞
(5.6)

where ψ is the stream function

Surface η = a refers to the needle’s wall and relates to the revolution’s surface. Substi-

tuting η = a in Eq. (5.6) characterises both the shape and size the physical body’s surface.
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and is given by R =
√

νax
U

Substituting the similarity variables given in (5.6) in Eqns. (5.1) to (5.4), we obtain

2η

(
1 +

1

β

)
f

′′′
+ 2

(
1 +

1

β

)
f

′′
+ ff

′′
= 0 (5.7)

8ηEc

(
1 +

1

β

)
(f

′′
)2 +

2η

Pr

(
1 +

4R1

3

)
θ
′′
+

2

Pr

(
1 +

4R1

3

)
θ
′
+ fθ′ = 0 (5.8)

1

Sc

(
2ηϕ

′′
+ 2ϕ

′
)
+ fϕ′ − kϕ

2
= 0 (5.9)

where R1 is Radiation parameter, Ec is Eckert number, Sc is Schmidth number, and k is

chemical reaction parameter.

The modified conditions on boundary becomes

f
′
(η) =

λ

2
, f(η) =

λa

2
, θ(η) = 1 ϕ(η) = 1 at η = a

f
′
(η) → 1− λ

2
, θ(η) → 0 ϕ(η) → 0 at η → ∞

(5.10)

The non-dimensional form of skin friction coefficient, local Nusselt number and sherwood

number are

√
ReCf = 8

√
a

(
1 +

1

β

)
f

′′
(a),

Nu√
Re

= −2
√
aθ

′
(a),

Sh√
Re

= −2
√
aθ

′
(a) (5.11)

5.3 Solution of the Problem

The combined Eqns. (5.7) to (5.9) and conditions on boundary (5.10) are linearized through

the successive linearization method (SLM) [78]. The solution of resulting linearized equations

is obtained by Chebyshev collocation method.

On applying the procedure explained in Chapter 2 to the equations Eqns. (5.7) to (5.9),

we get the following linearized equations.

a1f
′′′

j + a2f
′′

j + a3fj+ = r1 (5.12)

b1f
′′

j + b2fj + b3θ
′′

j + b4θ
′

j = r2 (5.13)
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c1fj + c2ϕ
′′

j + c3ϕ
′

j + c4ϕj = r3 (5.14)

where

a1 = 2η

(
1 +

1

β

)
, a2 = 2

(
1 +

1

β

)
+ (
∑

fm), a3 = (
∑

f ′′
m)

r1 = −2η

(
1 +

1

β

)
(
∑

f ′′′
m)− 2

(
1 +

1

β

)
(
∑

f ′′
m))− (

∑
fm)(

∑
f ′′
m)

b1 = 16ηEc

(
1 +

1

β

)
(
∑

f ′′
m), b2 = (

∑
θ′m), b3 =

2η

Pr

(
1 +

4R1

3

)
,

b4 = (
∑

fm) +
2

Pr

(
1 +

4R1

3

)

r2 = −(8ηEc)

(
1 +

1

β

)
(
∑

f ′′
m)

2 − (
∑

fm)(
∑

θ′m)−
2η

Pr

(
1 +

4R1

3

)
(
∑

θ′′m)

− 2

Pr

(
1 +

4R1

3

)
(
∑

θ′m)

c1 = (
∑

ϕ′
m), c2 =

2η

Sc
, c3 = (

∑
fm) +

2

Sc
, c4 = −k

2

r3 =
k

2
(
∑

ϕm)−
2η

Sc
(
∑

ϕ′′
m)−

2

Sc
(
∑

ϕ′
m)− (

∑
fm)(

∑
ϕ′
m)

As explained in Chapter - 2, using Chebyshev collocation method on the system of

linearized equations. (5.12) to (5.14), we obtain the following equation in matrix form

Aj−1Xj = Rj−1 (5.15)

where Aj−1 is a 3(N +1)× 3(N +1) order matrix and Xj and Rj−1 are 3(N +1)× 1 column

matrix given by

Aj−1 =

A11 A12 A13

A21 A22 A22

A31 A32 A33

 , Xj =

 Fj

Θj

Φj

 , Rj−1 =

 r1,j−1

r2,j−2

r3,j−2

 (5.16)

where

Fj = [fj(ξ0), fj(ξ1), ...., fj(ξN−1), fj(ξN)]
T ,
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Θj = [θj(ξ0), θj(ξ1), .., θj(ξN−1), θj(ξN)]
T ,

Φj = [ϕj(ξ0), ϕj(ξ1), .., ϕj(ξN−1), ϕj(ξN)]
T ,

A11 = a1D
3 + a2D

2 + a3I, A12 = O,A13 = O,

A21 = b1D
2 + b2I, A22 = b3D

2 + b4D,A23 = O,

A31 = c1I, A32 = O,A33 = c2D
2 + c3D + c4I,

r1 = [r1(ξ1), r1(ξ2), r1(ξ3)...., r1(ξN+1)]
T ,

r2 = [r2(ξ1), r2(ξ2), r2(ξ3)...., r2(ξN)]
T ,

r3 = [r3(ξ1), r3(ξ2), r3(ξ3)...., r3(ξN)]
T ,

The superscript T stands for transpose, I is the identity matrix, O is the zero matrix.

Imposing the boundary conditions in terms of the collocation points, the solution is

provided by

Xj = A−1
j−1Rj−1

5.4 Results and Discussion

The five dimensionless parameter effects are primarily the focus of the current model. They

are size of the needle (a), velocity ratio parameter (λ), Eckert number (Ec), chemical reaction

parameter (k), radiation parameter (R1) on velocity and temperature profiles together with

local Nusselt number Nu√
Re

and coefficient of local skin friction
√
ReCf . A detailed numerical

parametric analysis is conducted to assure a greater comprehension of the technical issue,

and the findings are presented graphically (Figs. 5.1-5.13). Numerous a, λ, k, Ec, and R1

values have been calculated numerically.

The effect of the size of the needle on velocity, temperature, and concentration profiles

is depicted in Fig. 5.1. As shown in Fig.5.1, enlarging a elevates the velocity. As a rises,

temperature and concentration are also increasing.

The variation of velocity, temperature, and concentration profiles with the Casson fluid

parameter β is given in Fig.5.2. It is understood from Fig. 5.2(a) that velocity improves as

the Casson fluid parameter decreases. The effect of the Casson fluid parameter on temper-

ature and concentration profiles is almost negligible.
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The fluctuation of Eckert number Ec on velocity, temperature, and concentration profiles

is given in Fig. 5.3. It is represented in Fig. 5.3(b) that temperature improves slightly as the

Eckert parameter rises. The effect of Eckert number on velocity and concentration profile is

almost negligible, as shown in Figs. 5.3(a) and 5.3(c).

Figure 5.4 presents the effect of the chemical reaction parameter on velocity, temperature,

and concentration profiles. Figs. 5.4(a) and 5.4(b) exhibit that velocity and temperature

profile are independent of k. It is depicted in Fig. 5.4(c) that concentration rises as the

chemical reaction parameter decreases.

The variation of velocity, temperature, and concentration profiles with the velocity ratio

parameter λ is given in Fig. 5.5. As presented in Fig.5.5(a), intensifying λ decreases veloc-

ity near the needle and then increases velocity away from the needle. It is represented in

Fig.5.5(b) that temperature improves slightly as the The velocity ratio parameter rises. The

effect of the velocity ratio parameter on concentration is negligible, as presented in Fig.

5.5(c).

The impact of the radiation parameter (R1) on velocity, temperature, and concentration

profiles is given in Fig. 5.6. It is detected from Fig. 5.6(b) that temperature enhances as the

radiation parameter rises. As displayed in Figs. 5.6(a) and 5.6(c), velocity and concentration

distribution relative to R1 are constant.

Figure 5.7 presents the impact of Schmidth number on velocity, temperature, and con-

centration profiles. Figs. 5.7(a) and 5.7(b) exhibit that velocity and temperature profile are

independent of Sc. It is depicted in Fig. 5.7(c) that concentration rises as Sc decreases.

The impact of size of needle a on Nusselt number Nu√
Re
, coefficient of local skin friction√

ReCf , and Sherwood number Sh√
Re

is depicted in Fig.5.8. As shown in Fig.5.8(a),
√
ReCf

is improved by increasing a. As a enhances, Nu√
Re

and Sh√
Re

are also increasing, as seen in Fig.

5.8(b) and 5.8(c).

The impact of the thermal Eckert number Ec on the local Nusselt number Nu√
Re
, the

coefficient of local skin friction
√
ReCf , and the Sherwood number Sh√

Re
is given in Fig. 5.9.

It is understood from Figs. 5.9(a) and 5.9(c) that
√
ReCf and Sh√

Re
are independent of Ec.

As shown in Fig.5.9(b), the Nu√
Re

is improved by decreasing Ec.

Figure 5.10. presents the influence of the chemical reaction parameter k on the Nu√
Re
,√

ReCf , and
Sh√
Re
. The variation in the

√
ReCf and Nu√

Re
are independent of k, as depicted

in Figs. 5.10(a) and 5.10(b). Fig. 5.10(c) exhibits that the Sh√
Re

rises as k rises.
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The fluctuation of Nu√
Re
,
√
ReCf , and

Sh√
Re

with velocity ratio parameter λ is given in

Fig.5.11. As presented in Fig.5.11(a), dropping the value of λ increases the skin friction co-

efficient. An increase in the velocity ratio parameter decreases the Nusselt number, as shown

in Fig. 5.11(b). An enhancement in the velocity ratio parameter enhances the Sherwood

number, as depicted in Fig. 5.11(c).

The effect of the radiation parameter R1 on Nu√
Re
,
√
ReCf and

Sh√
Re

is given in Fig. 5.12. It

is noticed from Fig. 5.12(b) that the Nu√
Re

enhances as the velocity ratio parameter decreases.

Figs. 5.11(a) and 5.11(c) exhibit that the variation in the
√
ReCf and Sh√

Re
are independent

of R1.

Figure 5.13. presents variations of Schmidth number Sc on the Nu√
Re
,
√
ReCf , and

Sh√
Re
.

The variation in the
√
ReCf and Nu√

Re
are independent of k, as depicted in Figs. 5.13(a) and

5.13(b). Fig. 5.13(c) exhibits that the Sh√
Re

rises as Sc rises.

5.5 Conclusion

The assumption that radiation and chemical reactions change with temperature and con-

centration is used to explore the boundary layer stream across a tiny needle in casson fluid.

The Chebyshev spectral technique is utilized to locate the solution of the resulting system

after the non-dimensional equations are linearized using a successive linearized procedure.

• While concentration, temperature, and velocity of flow rise as needle size increases,

skin friction coefficient, heat transfer coefficient, and Sherwood number decrease.

• With improved concentration distribution, the chemical reaction parameter decreases,

and with an increased chemical reaction parameter, the Sherwood number rises.

• The temperature rises as the radiation parameter is improved, whereas the Nusselt

number rises as the radiation parameter is reduced.
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Figure 5.1: “Effect of a on the velocity,temperature and concentration profiles”
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Figure 5.2: “Effect of β on the velocity,temperature and concentration profiles”
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Figure 5.3: “Effect of Ec on the velocity,temperature and concentration profiles”
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Figure 5.4: “Effect of k on the velocity,temperature and concentration profiles”
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Figure 5.5: “Effect of λ on the velocity,temperature and concentration profiles”
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Figure 5.6: “Effect of R1 on the velocity,temperature and concentration profiles”
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Figure 5.7: “Effect of Sc on the velocity, temperature and concentration profiles”
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Figure 5.9: “Effect of Ec on the coefficient of skin friction, Nusselt number and Sherwood

number”
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Figure 5.10: “Effect of k on the coefficient of skin friction, Nusselt number and Sherwood

number”
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Figure 5.11: “Effect of λ on the coefficient of skin friction, Nusselt number and Sherwood

number”
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Figure 5.12: “Effect of R1 on the coefficient of skin friction, Nusselt number and Sherwood

number”
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Figure 5.13: “Effect of Sc on the coefficient of skin friction, Nusselt number and Sherwood

number”
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Chapter 6

Mixed Convection Flow Past a Thin

Needle in a Casson fluid 1

6.1 Introduction

Modern industries and technologies are mostly involved in processes that use convection in

mixed which is outcome of forced and free convection occurring simultaneously. Examples in-

clude heat-exchangers maintained in a reduced velocity environment to cool nuclear reactors

during emergency shutdowns and fans-driven electrical equipment cooling techniques. Wang

[56] calculated the numerical solutions for mixed convective boundary layer stream over

vertical needle and found that while result for opposing flows may be single, dual, or nonex-

istent, solutions for aiding flows are unique. In both supporting and opposing flow scenarios,

Ahmed et al. [57] correlated the problem, boundary layer stream of constant laminar mixed

convection of a viscous incompressible liquid moving along vertical tiny needles. Ahmed et

al. [58]investigated both aiding and opposing stream situations boundary layer stream of

continuous laminar mixed convection of a viscous incompressible liquid across vertical mov-

ing tiny needles with changing heat flux. Trimbitas et al. [59] combined heat transmission

through vertical needle with a changeable wall temperature and convective boundary layer

flow by using nanofluids. Salleh et al. [60] discusses both assisting and opposing situations

of mixed convection stream of nanofluid caused by motion of tiny vertical needle. Qasim and

Afridi [61] looked at how different thermal conductivities and energy dissipation affected the

rate at which entropy developed in mixed convection flow. Rehman et al. [62] examines the

1Accepted to “Journal of Advanced Research in Fluid Mechanics and Thermal Sciences”
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Cross fluid’s magnetohydrodynamic mixed convection stream. A moving, tiny needle with

the Soret and Dufour effect is the cause of stream. The energy equation makes use of both

nonlinear heat radiation and heat generation/absorption.

This chapter deals with a steady mixed convection flow past a horizontal tiny needle

submerged in Casson fluid is inspected. The flow-governing equations are changed into a

set of non-linear ordinary differential equations utilising proper transforms. Utilising suc-

cessive linearization, the resulting equations are linearized, and then the Chebyshev spectral

collocation technique is implemented. The affect of needle size and mixed convection pa-

rameter on stream on velocity and temperature, together with graphical representations of

the coefficient of skin friction and local heat transfer rate, are provided.

6.2 Formulation of the Problem

Consider boundary layer stream of mixed convection in Casson fluid with uniform velocity

Ū∞(x̄) over a tiny needle moving horizontally with a velocity Ūw(x̄). Assume that the stream

is steady, laminar, and incompressible. The (̄x)-axis runs horizontally from main edge of

needle, and the radial axis runs perpendicular to it as shown in Fig. 6.1. The equation for

radius of the needle r̄ = R(x̄). It is believed that needle is thin while the needle’s thickness is

less than that of boundary layer surrounding it. Temperature of the needle is T̄w(x̄), whereas

temperature of surrounding fluid is T∞, where T̄w > T∞ .

Figure 6.1: ”Coordinate system and physical flow model”.
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With the above premises, the governing equations becomes

∂(r̄ū)

∂x̄
+
∂(r̄v̄)

∂r̄
= 0 (6.1)

v̄
∂ū

∂r̄
+ ū

∂ū

∂x̄
= Ū

dŪ

dx̄
+ ν

(
1 +

1

β

)
1

r̄

∂

∂r̄

(
r̄
∂ū

∂r̄

)
+ gβ(T̄ − T∞) (6.2)

v̄
∂T̄

∂r̄
+ ū

∂T̄

∂x̄
= α

(
1

r̄

∂

∂r̄

(
r̄
∂T̄

∂r̄

))
(6.3)

where ū and v̄ represents the velocity components in the axial and radial directions repec-

tively. T represents the fluid temperature, ν represent the kinematic viscosity,β represents

Casson parameter,α represents the thermal conductivity, g represents extent of gravity’s

acceleration.

The conditions on the surface of the needle are

v̄ = 0, ū = 0, T̄ = T̄w(x̄) at r̄ = R̄(x̄)

T̄ → T∞, ū→ Ū(x̄) at r̄ → ∞
(6.4)

The non-dimensional variables listed below

r = Re1/2
r̄

L
, x =

x̄

L
,R(x) = Re1/2

R̄(x̄)

L
, u =

ū

U∞
,

U(x) =
Ū(x̄)

U∞
, v = Re1/2

v̄

U∞
, T =

T̄ − T∞
∆T

,

(6.5)

Substituting Eq.(6.5) into Eq.(6.1)-(6.3), we get

∂(ru)

∂x
+
∂(rv)

∂r
= 0 (6.6)

u
∂u

∂x
+ v

∂u

∂r
= U

dU

dx
+

(
1 +

1

β

)
1

r

∂

∂r

(
r
∂u

∂r

)
+ λT (6.7)

u
∂T

∂x
+ v

∂T

∂r
=

1

Pr

(
1

r

∂

∂r

(
r
∂T

∂r

))
(6.8)

where λ = Gr
Re2

is mixed convection parameter, Pr is Prandtl number.
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Conditions on boundary Eq. (6.4) become

u = 0, v = 0, T = Tw(x) at r = R(x)

u→ U(x), T → ∞ as r → ∞
(6.9)

Similarity Transformations are described as:

ψ = xf(η), T (x) = x2m−1θ(η), η = xm−1r2 (6.10)

where ψ is stream function detailed as :

u =
1

r

∂ψ

∂r
andv =

−1

r

∂ψ

∂x
(6.11)

Using Eq. (6.10) in the equation to the surface of the wall η = a, it can be written as

R = a1/2x(1−m)/2 which characterizes shape and size of the needle.

8η[1 +
1

β
]f

′′′
+ 8[1 +

1

β
]f

′′
+m[1− 4(f

′
)2] + 4ff

′′
+ λθ = 0 (6.12)

2η

Pr
θ
′′
+

2

Pr
θ
′
+ fθ′ − (2m− 1)f

′
θ = 0 (6.13)

The modified conditions on boundary becomes

f(η) = 0, θ(a) = 1, f
′
(η) = 0 at η = a

f
′
(η) → 1

2
, θ(η) → 0 as η → ∞

(6.14)

where λ is the mixed convection parameter,Pr = µ
α0

denotes the Prandtl number.

The non-dimensional form of skin friction coefficient (Cf ) and the heat transfer rate

(Nusselt number (Nu)) are

Re
1
2Cf = 8a

1
2 (1 +

1

β
)f

′′
(a), Re

−1
2 Nu = −2a

1
2 θ

′
(a) (6.15)

6.3 Solution of the Problem

The combined Eqns. (6.12) and (6.13) and conditions on boundary (6.14) are linearized

through the successive linearization method (SLM) [78]. The solution of resulting linearized
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equations is obtained by Chebyshev collocation method.

On applying the procedure explained in Chapter 2 to the equations Eqns. (6.12) and

(6.13), we get the following linearized equations.

a1f
′′′

j + a2f
′′

j + a3f
′

j + a4fj + a5θj = r1 (6.16)

b1f
′

j + b2fj + b3θ
′′

j + b4θj
′ + b5θj = r2 (6.17)

where

a1 = 8η

(
1 +

1

β

)
, a2 = 8

(
1 +

1

β

)
+ 4

∑
fm,

a3 = −8m
∑

f ′
m, a4 = 4

∑
f ′′
m, a5 = λ,

r1 = −8η

(
1 +

1

β

)
(
∑

f ′′′
m)− 8

(
1 +

1

β

)
(
∑

f ′′
m) + 4m(

∑
f ′
m)

2

−4(
∑

Fm)(
∑

f ′′
m)− λ(

∑
θm)−m

b1 =
∑

θm − 2m(
∑

θm), b2 =
∑

θ′m, b3 =
2η

Pr
,

b4 =
2

Pr
+ (
∑

fm), b5 =
∑

f ′
m − 2m(

∑
f ′
m),

r2 = − 2η

Pr
(
∑

θ′′m)−
2

Pr
(
∑

θ′m)−(
∑

fm)(
∑

θ′m)+2m(
∑

f ′
m)(
∑

θm)−(
∑

f ′
m)(
∑

θm)

As explained in Chapter - 2, using Chebyshev collocation method on the system of

linearized equations. (6.16) and (6.17), we obtain the following equation in matrix form

Aj−1Xj = Rj−1 (6.18)

where Aj−1 is a 2(N +1)× 2(N +1) order matrix and Xj and Rj−1 are 2(N +1)× 1 column

matrix given by

Aj−1 =

(
A11 A12

A21 A22

)
, Xj =

(
Fj

Θj

)
, Rj−1 =

(
r1,j−1

r2,j−2

)
(6.19)

where
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Fj = [fj(ξ0), fj(ξ1), ...., fj(ξN−1), fj(ξN)]
T ,

Θj = [θj(ξ0), θj(ξ1), .., θj(ξN−1), θj(ξN)]
T ,

A11 = a1D
3 + a2D

2 + a3D + a4I, A12 = a5I,

A21 = b1D + b2I, A22 = b3D
2 + b4D + b5I,

r1 = [r1(ξ1), r1(ξ2), r1(ξ3)...., r1(ξN+1)]
T ,

r2 = [r2(ξ1), r2(ξ2), r2(ξ3)...., r2(ξN)]
T ,

The superscript T stands for transpose, I is the identity matrix, O is the zero matrix.

Imposing the boundary conditions in terms of the collocation points, the solution is

provided by

Xj = A−1
j−1Rj−1

6.4 Results and Discussion

The effects of dimensionless parameters on velocity and temperature, together with the local

heat transfer rate (Nusselt number) Nu√
Re

and the coefficient of local skin friction
√
ReCf , are

the primary focus of the current model. The dimensionless parameters are: size of the needle

(a), mixed convection parameter (λ), and power index (m). A detailed numerical calculation

for numerous values of a, λ, and m to assure a greater comprehension of the technical issue,

and the findings are presented graphically in Figs. 6.2– 6.7.

The effect of the size of the needle on velocity and temperature for both aiding and

opposing cases is represented in Fig. 6.2. It is understood from Figs. 6.2(a) and 6.2(b)

show that as a reduces, the velocity improves for both cases. Similarity: as a reduces, the

temperature decreases in both cases, as presented in Figs. 6.2(c) and 6.2(d).

The fluctuation of velocity and temperature profiles with the Casson fluid parameter β is

given in Fig.6.3. It is understood from Fig. 6.3(a) that velocity improves as the Casson fluid

parameter rises for assisting flow. But the velocity reduces as the Casson fluid parameter

rises in the opposite case, as depicted in Fig. 6.3(b). Figs. 6.3(c) and 6.3(d) reveal that the

effect of the Casson fluid parameter on temperature is almost negligible in both cases.

The variation of velocity and temperature with mixed convection parameter λ is given
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in Fig.6.4. As presented in Fig. 6.4(a), intensifying λ increases the velocity in the assisting

case. The velocity is decreasing in the opposing case, as given in Fig. 6.4(b). The effect of

the mixed convection parameter on temperature is negligible in both cases, as presented in

Figs. 6.4(c) and 6.4(d).

Figure 6.5 presents the effect of power index on velocity and temperature. Figs. 6.5(a)

and 6.5(b) exhibit that the velocity rises as the power index rises for both aiding and opposing

cases. The temperature decreases as m rises for both aiding and opposing cases, as depicted

in Figs. 6.5(c) and 6.5(d).

The impact of the size of the needle on the coefficient of skin friction
√
ReCf and the

nusselt number Nu√
Re

is depicted in Fig. 6.6. As depicted in Figs. 6.6(a) and 6.6(b), the skin

friction coefficient is improved by decreasing a for both aiding and opposing cases. As a

decreasing, local Nusselt number is also enhancing in both cases, as presented in Figs. 6.6(c)

and 6.6(d).

The effect of power index on the coefficient of skin friction
√
ReCf and the Nusselt

number Nu√
Re

is given in Fig. 6.7. It is understood from Figs.6.7(a) and 6.7(b) that the√
ReCf enhances as the power index rises in both the assisting and opposing cases of the

flow. As exhibited in Fig.6.7(c) and 6.7(d), Nu√
Re

is also enhanced with an enhancement in m

in both aiding and opposing cases.

6.5 Conclusion

A mixed convection flow past a horizontal needle in Casson fluid is analyzed. The flow

equations are changed into a set of non-linear ordinary differential equations utilizing appro-

priate transforms and then linearized using successive linearization. The Chebyshev spectral

collocation technique is implemented to find the resulting equations.

• As the size of the needle reduces, velocity, coefficient of skin friction, and Nusselt

number are improved in both cases, whereas temperature decreases in both cases.

• Intensifying λ increases the velocity in the assisting case and decreases in the opposing

case, where the effect of the mixed convection parameter on temperature is negligible.

• The velocity rises and the temperature decreases as the power index rises for both

aiding and opposing cases.
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Figure 6.2: “Effect of size of the needle on the velocity and temperature”

82



0 2 4 6 8
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

F'

η

 β = 1
 β = 2
 β = 3
 β = 4

(a) Velocity profile (aiding flow)

0 2 4 6 8
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

F'
η

 β = 1
 β = 2
 β = 3
 β = 4

λ = - 1

(b) Velocity profile (Opposing flow)

0 2 4 6 8
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

θ

η

 β = 1
 β = 2
 β = 3
 β = 4

(c) Temperature profile (aiding flow)

0 2 4 6 8
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

θ

η

 β = 1
 β = 2
 β = 3
 β = 4

     λ = - 1

(d) Temperature profile (Opposing flow)
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Chapter 7

Heat source and Chemical reaction

effects on a MHD mixed convection of

a Casson fluid flow over a thin needle
1

7.1 Introduction

Numerous researchers have examined how magnetic fields affect fluid stream and heat trans-

fer properties with applications to a wide range of engineering issues, including plasma stud-

ies, MHD power generators, nuclear reactor cooling, crystal growth, the petroleum industry,

and boundary layer control in aerodynamics.Many investigators have explored affect of an

applied magnetic field on both Newtonian and non-Newtonian streams across different ge-

ometries in the instance of an electrically conducting fluid. Raza [63] investigated the various

responses of mixed convection stream of Casson fluid in a porous channel beneath the force

of magnetic field. The impacts of a consistent transverse magnetic field, heat radiation, and

chemical reaction on the erratic Casson fluid stream flowing past upright plate that oscillates

and is utilized in a porous medium were estimated by Kataria and Patel [64]. Ahmed [65]

analyzed the MHD narrowing stream of a Casson fluid is presented among parallel plates.

According to reviews of the literature, no research has yet been published on the examination

of magnetic fields on heat transfer characteristics in a mixed convection stream through a

1Communicated to “Journal of Applied and Computational Mathematics”
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horizontal tiny needle in Casson fluid.

This study investigates how the dimensionless parameters, namely size of needle and

mixed convection parameter influence the heat transfer attributes in a mixed convective

Casson fluid flow over a thin needle. The velocity component, temperature, and heat transfer

rate are thoroughly examined.

7.2 Formulation of the Problem

Consider boundary layer stream of mixed convection in Casson fluid with uniform velocity

Ū∞(x̄) across tiny needle moving horizontally with a velocity Ūw(x̄). Assume that the stream

is steady, laminar, and incompressible. The (̄x)-axis runs horizontally from main edge of nee-

dle, and radial axis runs perpendicular to it as shown in Fig.6.1.Apart from the assumption

of Chapter - 6, In addition, we assume Heat Source and Chemical reaction effects are present

in the medium.

With the above premises,governing equations becomes

∂(r̄v̄)

∂r̄
+
∂(r̄ū)

∂x̄
= 0 (7.1)

ū
∂ū

∂x̄
+ v̄

∂ū

∂r̄
= Ū

dŪ

dx̄
+ ν

(
1 +

1

β

)
1

r̄

∂

∂r̄

(
r̄
∂ū

∂r̄

)
+ gβ(T̄ − T∞)− σ

B2ū

ρ
(7.2)

ū
∂T̄

∂x̄
+ v̄

∂T̄

∂r̄
= α

(
1

r̄

∂

∂r̄

(
r̄
∂T̄

∂r̄

))
+Q(T̄ − T∞) (7.3)

ū
∂C̄

∂x̄
+ v̄

∂C̄

∂r̄
= Dm

(
1

r̄

∂

∂r̄

(
r̄
∂C̄

∂r̄

))
−K∗(C̄ − C∞) (7.4)

where the quantities used in the above equations are already defined in Chapter - 6.

The conditions on the surface of the needle are

ū = 0, v̄ = 0, T̄ = T̄w(x̄), C̄ = C̄w at r̄ = R̄(x̄)

ū→ Ū(x̄), T̄ → T∞, C̄ → C∞ at r̄ → ∞
(7.5)
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The following are the non-dimensional variables:

x =
x̄

L
, r = Re1/2

r̄

L
, R(x) = Re1/2

R̄(x̄)

L
, u =

ū

U∞
,

v = Re1/2
v̄

U∞
, U(x) =

Ū(x̄)

U∞
, T =

T̄ − T∞
∆T

,C =
C̄ − C∞

∆C

(7.6)

Substituting Eq.(7.5) into Eq.(7.1) to (7.4) , we get

∂(rv)

∂r
+
∂(ru)

∂x
= 0 (7.7)

v
∂u

∂r
+ u

∂u

∂x
= U

dU

dx
+

(
1 +

1

β

)
1

r

∂

∂r

(
r
∂u

∂r

)
+ λT −Mu (7.8)

v
∂T

∂r
+ u

∂T

∂x
=

1

Pr

1

r

∂

∂r

(
r
∂T

∂r

)
+Q1T (7.9)

v
∂C

∂r
+ u

∂C

∂x
=

1

Sc

1

r

∂

∂r

(
r
∂C

∂r

)
−K1C (7.10)

Conditions on boundary Eq.7.5 become

v = 0, u = 0, T = Tw(x), C = Cw(x) at r = R(x)

u→ U(x), T → 0, C → 0 as r → ∞
(7.11)

Similarity Transformations are specified as:

ψ = xf(η), T (x) = x2m−1θ(η), η = xm−1r2 (7.12)

where ψ is the stream function

Using Eq. (7.12) in the equation to the surface of the wall η = a, it can be written as

R = a1/2x(1−m)/2 which characterizes shape and size of the needle.

Making use of above similarity variables in Eq.(7.8) to (7.10), we obtain

8η[1 +
1

β
]f

′′′
+ 8[1 +

1

β
]f

′′
+m[1− 4(f

′
)2] + 4ff

′′
+ λθ − 2Mf

′
= 0 (7.13)

2η

Pr
θ
′′
+

2

Pr
θ
′
+ fθ′ − (2m− 1)f

′
θ +

Qθ

2
= 0 (7.14)

90



2η

Sc
ϕ

′′
+

2

Sc
ϕ

′
+ fϕ′ − (2m− 1)f

′
ϕ− Kϕ

2
= 0 (7.15)

The modified conditions on boundary becomes

f
′
(η) = 0, f(η) = 0, θ(η) = 1, ϕ(η) = 1 at η = a

f
′
(η) → 1

2
, θ(η) → 0, ϕ(η) → 0 as η → ∞

(7.16)

In additions to desired allotment for this model is Skin Friction Cf and the local Nusselt

number Nu, Sherwood number Sh which are represented as:

Re
1
2Cf = 8a

1
2 (1 +

1

β
)f

′′
(a), Re

−1
2 Nu = −2a

1
2 θ

′
(a), Re

−1
2 Sh = −2a

1
2 θ

′
(a) (7.17)

7.3 Solution of the Problem

The combined Eqns. (7.13) to (7.15) and conditions on boundary (7.16) are linearized

through the successive linearization method (SLM) [78]. The solution of resulting linearized

equations is obtained by Chebyshev collocation method.

On applying the procedure explained in Chapter 2 to the equations Eqns. (7.13) to

(7.15), we get the following linearized equations.

a1f
′′′

i + a2f
′′

i + a3f
′

i + a4fi + a5θi = r1 (7.18)

b1f
′

i + b2fi + b3θ
′′

i + b4θi
′ + b5θi = r2 (7.19)

c1f
′

i + c2fi + c3ϕ
′′

i + c4ϕi
′ + c5ϕi = r3 (7.20)

where

a1 = 8η

(
1 +

1

β

)
, a2 = 8

(
1 +

1

β

)
+ 4

∑
fm

a3 = −8m
∑

f ′
m − 2M, a4 = 4

∑
f ′′
m, a5 = λ

r1 = −8η

(
1 +

1

β

)
(
∑

f ′′′
m)− 8

(
1 +

1

β

)
(
∑

f ′′
m) + 4m(

∑
f ′
m)

2

−4(
∑

Fm)(
∑

f ′′
m) + 2M(

∑
f ′
m)− λ(

∑
θm)−m
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b1 =
∑

θm − 2m(
∑

θm), b2 =
∑

θ′m, b3 =
2η

Pr

b4 =
2

Pr
+ (
∑

fm), b5 =
∑

f ′
m − (2m− 1)(

∑
f ′
m)

r2 = − 2η

Pr
(
∑

θ′′m)−
2

Pr
(
∑

θ′m)− (
∑

fm)(
∑

θ′m)

+(2m− 1)(
∑

f ′
m)(
∑

θm)−
Q

2
(
∑

θm)

c1 = −(2m− 1)(
∑

ϕm), c2 = (
∑

ϕ′
m), c3 =

2η

Sc

c4 =
2

Sc
+ (
∑

fm), b5 = −(2m− 1)(
∑

f ′
m)−

K

2

r3 = −2η

Sc
(
∑

ϕ′′
m)−

2

Sc
(
∑

ϕ′
m)− (

∑
fm)(

∑
ϕ′
m)

+(2m− 1)(
∑

f ′
m)(
∑

ϕm) +
K

2
(
∑

ϕm)

As explained in Chapter - 2, using Chebyshev collocation method on the system of

linearized equations. (7.18) t0 (7.20), we obtain the following equation in matrix form

Aj−1Xj = Rj−1 (7.21)

where Aj−1 is a 3(N + 1) × 3(N + 1) order matrix and Xj and Rj−1 are 3(N + 1) × 1

column matrix given by

Aj−1 =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 , Xj =

 Fj

Θj

ϕj

 , Rj−1 =

 r1,j−1

r2,j−2

r3,j−3

 (7.22)

Where

Fj = [fi(ξ0), fi(ξ1), ...., fi(ξN−1), fi(ξN)]
T ,

Θj = [θi(ξ0), θi(ξ1), .., θi(ξN−1), θi(ξN)]
T ,

Φj = [ϕi(ξ0), ϕi(ξ1), .., ϕi(ξN−1), ϕi(ξN)]
T ,
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A11 = a1D
3 + a2D

2 + a3D + a4I, A12 = a5I, A13 = O

A21 = b1D + b2I, A22 = b3D
2 + b4D + b5I, A23 = O

A31 = c1D + c2I, A32 = O,A33 = c3D
2 + c4D + c5I

r1 = [r1(ξ0), r1(ξ1), ...., r1(ξN−1), r1(ξN)]
T ,

r2 = [r2(ξ0), r2(ξ1), ...., r2(ξN−1), r2(ξN)]
T ,

r3 = [r3(ξ0), r3(ξ1), ...., r3(ξN−1), r3(ξN)]
T

the superscript T stands for transpose, I is the identity matrix, O is the zero matrix.

Imposing the boundary conditions in terms of the collocation points, the solution is provided

by

Xj = A−1
j−1Rj−1

7.4 Results and Discussion

The effects of dimensionless parameters on velocity and temperature, together with the local

heat transfer rate (Nusselt number) Nu√
Re
, the sherwood number Sh√

Re
, and the coefficient of

local skin friction
√
ReCf , are the primary focus of the current model. The dimensionless

parameters are: size of the needle (a), mixed convection parameter (λ), magnetic parameter

(M), chemical reaction parameter (K), heat source parameter (Q), casson fluid parameter

(β). A detailed numerical calculation for numerous values of a,M , K, Q, and β is performed

to assure a greater comprehension of the problem, and the findings are presented graphically

in Figs. 7.1 – 7.11.

The effect of the size of the needle on velocity, temperature, and concentration distri-

bution is represented in Fig. 7.1. It is understood from Fig. 7.1(a) that as the size of the

needle reduces, velocity improves. Similarly, as a reduces, temperature and concentration

decrease, as presented in Figs. 7.1(b) and 7.1(c).

The fluctuation of velocity, temperature, and concentration profiles with the Casson fluid

parameter β is given in Fig.7.2. It is understood from Fig. 7.2(a) that velocity improves as

the Casson fluid parameter rises. Figs. 7.2(b) and 7.2(c) reveal that the effect of beta on

temperature and concentration is almost negligible.

The variation of velocity, temperature, and concentration profiles on the chemical reaction
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parameter (K) is given in Fig. 7.3. Figs. 7.3(a), 7.3(b), and 7.3(c) reveal that the effect of

K on velocity, temperature, and concentration is almost negligible.

Figure 7.4 presents the effect of the magnetic parameter (M) on velocity, temperature,

and concentration. Fig. 7.4(a) exhibits that the velocity reduces as M rises. Figs. 7.4(b)

and 7.4(c) reveal that the effect ofM on temperature and concentration is almost negligible.

The fluctuation of velocity, temperature, and concentration profiles with the heat source

parameter (Q) is given in Fig. 7.5. It is understood from Fig. 7.5(a) that The effect of Q

on velocity is almost negligible. Figs. 7.5(b) and 7.5(c) reveal that as the heat source rises,

the temperature and concentration increase.

Figure 7.6 presents the effect of λ on velocity, temperature, and concentration. Fig.

7.6(a) exhibits that the velocity increases as λ rises. Figs. ?? and 7.6(c) reveal that as λ

reduces, the temperature and concentration increase.

The impact of the size of the needle (a) on
√
ReCf ,

Nu√
Re
, and Sh√

Re
is presented in Fig. 7.7.

As depicted in Fig.7.7(a), skin friction coefficient is improved by lowering a. As a decreases,
Nu√
Re

and Sh√
Re

are also enhanced, as presented in Figs. 7.7(b) and 7.7(c).

Figure 7.8 presents the effects of K on
√
ReCf ,

Nu√
Re
, and Sh√

Re
. Figs. 7.8(a),7.8(b), and

7.8(c) reveal that the effect of the chemical reaction parameter on
√
ReCf ,

Nu√
Re
, and Sh√

Re
is

almost negligible.

The effect of magnetic parameters on
√
ReCf ,

Nu√
Re
, and Sh√

Re
is presented in Fig. 7.9.

Fig.7.9(a) clarifies that when the magnetic parameter decreases, the
√
ReCf rises. The values

of Nu√
Re

and Sh√
Re

also increase as the magnetic parameter decreases, as represented in Figs.

7.9(b) and 7.9(c).

The effect of heat source on
√
ReCf ,

Nu√
Re
, and Sh√

Re
is presented in Fig. 7.10. As the heat

source parameter decreases, it is evident from Fig.7.10(a) that
√
ReCf rises. Nu√

Re
and Sh√

Re

are also increasing with a decrease in heat source parameter, as illustrated in Figs.7.10(b)

and 7.10(c).

The effect of λ on Sh√
Re
, Nu√

Re
, and

√
ReCf is illustrated in Fig. 7.11. Lowering λ improves√

ReCf , as illustrated in Fig.7.11(a). According to Figs. 7.11(b) and 7.11(c), Nu√
Re

and Sh√
Re

increase with λ .
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7.5 Conclusion

A constant mixed convection stream past a horizontal needle in Casson fluid is analyzed. The

flow equations are changed into a scheme of non-linear ordinary differential equations utilizing

appropriate transforms and then linearized using successive linearization. The Chebyshev

spectral collocation technique is implemented to find the resulting equations.

• As the size of the needle reduces, velocity and the coefficient of skin friction improve,

whereas temperature, the Nusselt number, and the Sherwood number decrease.

• While skin friction coefficient, Nusselt number, and Sherwood number increase with

a decline in the magnetic parameter, velocity decreases when the magnetic parameter

intensifies.

• When the heat source is enhanced, temperature and concentration increase while Sher-

wood and Nusselt numbers decrease.

• With a gain in the mixed convection parameter, the Nusselt number and Sherwood

number increase.
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Figure 7.1: ”Effect of a on the velocity, temperature and concentratrion”
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Figure 7.2: ”Effect of β on the velocity, temperature and concentratrion”
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Figure 7.3: “Effect of K on the velocity, temperature and concentratrion”
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Figure 7.4: “Effect of M on the velocity, temperature and concentratrion”
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Figure 7.5: “Effect of Q on the velocity, temperature and concentratrion”
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Figure 7.6: “Effect of λ on the velocity, temperature and concentratrion”
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Chapter 8

Effects of Variable Properties on

Mixed Convection of a Casson Fluid

Flow Over a Thin Needle 1

8.1 Introduction

The boundary layer flow and heat transfer along tiny needle have wide range of application

including biomedicine, lubrication and power generation, microstructure electronic devices,

hot wire anemometers, aerodynamics, microscale cooling devices, blood flow, cancer therapy,

wire coating, and many more. In the past, Lee[19] introduced a boundary layer stream

across a thin moving needle in a parallel free stream and described asymptotic behaviour

of approximation solution. Thereafter, Narain and Uberoi [20, 21, 22] presented similarity

solutions for convective flow over an isothermal needle.

This chapter studies the effect of variable properties on the mixed convective Casson fluid

flow over a thin needle. The effect of dimensionless parameters, namely size of needle and

mixed convection parameter on the The velocity component, temperature, and heat transfer

rate are explained through graphs.

1Communicated to “Heat Source”
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8.2 Formulation of the Problem

Consider the steady, laminar and mixed convection flow of Casson fluid over a horizontally

moving thin needle. Assume that the uniform velocity of the fluid be Ū∞(x̄) and the moving

velocity of the needle be Ūw(x̄). Figure 6.1 shows the schematic of the problem along with

coordinate system. The radius of the needle is given by r = R(x̄). Apart from the assumption

of Chapter - 6, In addition, we assume the viscosity and thermal conductivity depends on

the temperature.

With the above premises, the governing equations becomes

∂(r̄ū)

∂x̄
+
∂(r̄v̄)

∂r̄
= 0 (8.1)

ū
∂ū

∂x̄
+ v̄

∂ū

∂r̄
= Ū

dŪ

dx̄
+

(
1 +

1

β

)
1

r̄

∂

∂r̄

(
µ(T̄ )r̄

∂ū

∂r̄

)
+ gβT (T̄ − T∞) (8.2)

ū
∂T̄

∂x̄
+ v̄

∂T̄

∂r̄
=

(
α(T̄ )

1

r̄

∂

∂r̄

(
r̄
∂T̄

∂r̄

))
(8.3)

where the quantities used in the above equations are already defined in Chapter - 6.

The conditions on the surface of the needle are

ū = 0, v̄ = 0, T̄ = T̄w(x̄) at r̄ = R̄(x̄)

ū→ Ū(x̄), T̄ → T∞ at r̄ → ∞
(8.4)

The following non-dimensional variables:

x =
x̄

L
, r = Re1/2

r̄

L
, R(x) = Re1/2

R̄(x̄)

L
, u =

ū

U∞
,

v = Re1/2
v̄

U∞
, U(x) =

Ū(x̄)

U∞
, T =

T̄ − T∞
∆T

(8.5)

Substituting Eq.(8.4) into Eq.(8.1) to (8.3) , we get

∂(ru)

∂x
+
∂(rv)

∂r
= 0 (8.6)

u
∂u

∂x
+ v

∂u

∂r
= U

dU

dx
+

(
1 +

1

β

)
1

r

∂

∂r

(
(1 + A(1− θ)r

∂u

∂r

)
+ λT (8.7)

108



u
∂T

∂x
+ v

∂T

∂r
=

1

Pr

1

r

∂

∂r

(
(1 + ϵθ)r

∂T

∂r

)
(8.8)

It is presumed that thermal conductivity and viscosity are linearly dependent on the

temperature as

α(T ) = α0[1 + E(T − T∞)] and µ(T ) = µ∞[1 + b(Tw − T )] (8.9)

where α0 and µ∞ are the absolute thermal conductivity and viscosity, b and E are constants.

Conditions on boundary Eq.(8.4) become

u = 0, v = 0, T = Tw(x) at r = R(x)

u→ U(x), T → 0 as r → ∞
(8.10)

Similarity Transformations are defined as:

ψ = xf(η), T (x) = x2m−1θ(η), η = xm−1r2 (8.11)

Using Eq. (8.11) in the equation to the surface of the wall η = a, it can be written as

R = a1/2x(1−m)/2 which characterizes shape and size of the needle.

Making use of above similarity variables in Eq.(8.6) to (8.8), we obtain

8η[1+
1

β
][1−A(1+θ)]f ′′′

+8[1+
1

β
][1−A(1−θ)]f ′′−8η[1+

1

β
]Aθ

′
f

′′
+4ff

′′−4m(f
′
)2+m+λθ = 0

(8.12)
2η

Pr
(1 + ϵθ)θ

′′
+

2ηϵ

Pr
(θ

′
)2 +

2

Pr
(1 + ϵθ)θ

′
+ fθ′ − (2m− 1)f

′
θ = 0 (8.13)

where A is viscosity parameter, Pr = ν
α
, is Prandtl number, λ = Gr

Re
is mixed convection

parameter and ϵ is thermal conductivity parameter.

The modified conditions on boundary becomes

f
′
(η) = 0, f(η) = 0, θ(η) = 1 at η = a

f
′
(η) → 1

2
, θ(η) → 0, as η → ∞

(8.14)

In additions to desired allotment for this model is Skin Friction Cf and the local Nusselt
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number Nu which are represented as:

√
ReCf = 8

√
a

(
1 +

1

β

)
f

′′
(a),

Nu√
Re

= −2
√
aθ

′
(a) (8.15)

8.3 Solution of the Problem

The combined Eqns. (8.12) and (8.13) and conditions on boundary (8.14) are linearized

through the successive linearization method (SLM) [78]. The solution of resulting linearized

equations is obtained by Chebyshev collocation method.

On applying the procedure explained in Chapter 2 to the equations Eqns. (8.12) and

(8.13), we get the following linearized equations.

a1f
′′′

i + a2f
′′

i + a3f
′

i + a4fi + a5θ
′

i + a6θi = r1 (8.16)

b1f
′

i + b2fi + b3θ
′′

i + b4θi
′ + b5θi = r2 (8.17)

Where

a1 = 8η

(
1 +

1

β

)[
1− A− A(

∑
θm)
]
,

a2 = 8

(
1 +

1

β

)[
1 + A− Aη(

∑
θ′m)− A(

∑
θm)
]
+ 4

∑
fm,

a3 = −8m
∑

f ′
m, a4 = 4

∑
f ′′
m,

a5 = 8Aη

(
1 +

1

β

)∑
f ′′
m, a6 = λ− 8A

(
1 +

1

β

)∑
f ′′
m − 8Aη

(
1 +

1

β

)∑
f ′′′
m

r1 = −a1(
∑

f ′′′
m)− a2(

∑
f ′′
m)−m− 4m(

∑
f ′
m)

2 − λ(θm)

b1 = −(2m− 1)(
∑

θm), b2 =
∑

θ′m, b3 =
2ηϵ

Pr
(
∑

θm) +
2η

Pr
,

b4 =
4ηϵ

Pr
(
∑

θ′m) +
2

Pr
+

2ϵ

Pr
(
∑

θm) + (
∑

fm)

b5 =
2ηϵ

Pr
(
∑

θ′′m)−
2ϵ

Pr
(
∑

θ′m)− (2m− 1)(
∑

f ′
m)
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r2 = −b3(
∑

θ′′m)−
2ηϵ

Pr
(
∑

θ′m)
2 − 2

Pr
(
∑

θ′m)−
2ϵ

Pr
(
∑

θm)(
∑

θ′m)

−(
∑

fm)(
∑

θ′m) + (2m− 1)(
∑

f ′
m)(
∑

θm)

As explained in Chapter - 2, using Chebyshev collocation method on the system of

linearized equations. (8.16) t0 (8.17), we obtain the following equation in matrix form

Aj−1Xj = Rj−1 (8.18)

where Aj−1 is a 2(N + 1) × 2(N + 1) order matrix and Xj and Rj−1 are 2(N + 1) × 1

column matrix given by

Aj−1 =

(
A11 A12

A21 A22

)
, Xj =

(
Fj

Θj

)
, Rj−1 =

(
r1,j−1

r2,j−2

)
(8.19)

where

Fj = [fj(ξ0), fj(ξ1), ...., fj(ξN−1), fj(ξN)]
T ,

Θj = [θj(ξ0), θj(ξ1), .., θj(ξN−1), θj(ξN)]
T ,

A11 = a1D
3 + a2D

2 + a3D + a4I, A12 = a5D + a6I,

A21 = b1D + b2I, A22 = b3D
2 + b4D + b5I,

r1 = [r1(ξ1), r1(ξ2), r1(ξ3)...., r1(ξN+1)]
T ,

r2 = [r2(ξ1), r2(ξ2), r2(ξ3)...., r2(ξN)]
T ,

The superscript T stands for transpose, I is the identity matrix, O is the zero matrix.

Imposing the boundary conditions in terms of the collocation points, the solution is

provided by

Xj = A−1
j−1Rj−1
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8.4 Results and Discussion

The effect of six dimensionless parameters—size of the needle (a), mixed convection param-

eter (λ), casson fluid parameter (β), thermal conductivity parameter (ϵ), variable viscosity

parameter (A), power index (m)—on the relevant physical quantities is the primary focus of

the current model. To ensure a deeper understanding of the technical problem, a comprehen-

sive numerical parametric analysis is carried out, and the results are displayed graphically

(Figs. 8.1-8.11).

Figure8.1 illustrates how the needle’s size affects the velocity and temperature profiles.

As shown in Fig.8.1(a), enlarging a elevates the velocity. As a rises, the temperature is

increasing, as presented in Fig. 8.1(b).

The variation of velocity and temperature with β is shown in Fig.8.2. As the Casson

fluid parameter decreases, velocity increases, as illustrated in Fig. 8.2(a). As depicted in

Fig. 8.2(b), the influence of β on the temperature profile is insignificant.

The consequence of the thermal conductivity parameter ϵ on velocity and temperature is

given in Fig. 8.3. It is represented in Fig. 8.3(a) that the velocity improves slightly as the

variable thermal conductivity parameter reduces. The temperature profile is also enhanced

with an enhancement in ϵ, as depicted in Fig. 8.3(b).

The variation of velocity and temperature with λ is presented in Fig.8.4. As shown in

Fig.8.4(a), increasing λ improves the velocity. The effect of the velocity ratio parameter on

temperature is negligible, as depicted in Fig. 8.4(b).

Figure 8.5 explains the effect of power index on velocity and temperature. Fig. ??

exhibits that the velocity rises as the power index rises. The temperature decreases as m

rises, as depicted in Fig. 8.5(b).

The impact of the variable viscosity parameter (A) on velocity and temperature is given

in Fig. 8.6. It is detected from Fig. 8.6(a) that the velocity enhances as the variable

viscosity parameter rises. As displayed in Fig. 8.6(b), the temperature profile relative to A

is constant.

The influence of size of needle a on the coefficient of skin friction
√
ReCf and Nusselt

number Nu√
Re

is presented in Fig. 8.7. As depicted in Fig.8.7(a), the skin friction coefficient

is improved by lowering a. As a decreases, Nu√
Re

is also enhanced, as presented in Fig. 8.7(b).

The impact of ϵ on the local rate of heat transfer Nu√
Re

and the coefficient of local skin
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friction
√
ReCf is given in Fig. 8.8. It is understood from Fig. 8.8(a) that the

√
ReCf

enhances as the variable thermal conductivity parameter reduces. As exhibited in Fig.

8.8(b), Nu√
Re

is also enhanced with diminution in ϵ.

The fluctuation of Nu√
Re

and
√
ReCf with velocity ratio parameter λ is given in Fig.8.11.

As presented in Fig.8.9(a), intensifying λ increases the skin friction coefficient. A decrease in

the velocity ratio parameter increases the local Nusselt number, as depicted in Fig. 8.9(b).

The effect of power index on Nu√
Re

and
√
ReCf is given in Fig. 8.10. It is understood from

Fig.8.10(a) that
√
ReCf enhances as the power index rises. As exhibited in Fig.??, Nu√

Re
is

also enhanced with an enhancement in m.

The impact of the variable viscosity parameter A on Nu√
Re

and
√
ReCf is given in Fig.

8.11. It is noticed from Fig. 8.11(a) that the
√
ReCf enhances as the variable viscosity

parameter rises. Fig. 8.11(b) exhibits that the local Nusselt number is decreasing with an

increase in A.

8.5 Conclusion

A steady mixed convection flow past a horizontal needle in Casson fluid is investigated by

considering the variable thermal conductivity and variable viscosity. Using suitable trans-

forms, the flow-equations are transformed into a set of non-linear ordinary differential equa-

tions, which are then linearized through successive linearization. The approach of Chebyshev

spectral collocation is used to solve the resulting equations.

• Temperature and velocity both improve as needle size grows, while Nusselt number

and the coefficient of skin friction both drop.

• Temperature rises and skin friction coefficient, Nusselt number, and velocity decrease

with increasing thermal conductivity parameter.

• Temperature reduces and skin friction coefficient, Nusselt number, and velocity increase

with increasing power index.

• Increasing the variable viscosity parameter and decreasing the Nusselt number leads

to improvements in velocity and the coefficient of skin friction.
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Figure 8.1: ”Effect of a on the velocity, temperature ”
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Figure 8.2: ”Effect of β on the velocity and temperature ”
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Figure 8.3: ”Effect of ϵ on the velocity and temperature”
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Figure 8.4: ”Effect of λ on the velocity and temperature ”
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Figure 8.5: ”Effect of m on the velocity and temperature ”

0 2 4 6 8
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

F'

η

 A = 0
 A = 0 . 5
 A = 1

(a)

0 2 4 6 8
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

θ

η

 A = 0
 A = 0 . 5
 A = 1

(b)

Figure 8.6: ”Effect of A on the velocity and temperature ”
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Chapter 9

Cross Diffusion Effects on Mixed

Convection of a Casson Fluid Flow

Over a Thin Needle 1

9.1 Introduction

Temperature gradients can cause mass flux, which is known as thermal diffusion, thermo-

diffusion, or the Soret effect . The heat flux caused by a concentration gradient is known

as the Dufour effect or diffusion-thermo effect. These impacts are usually regarded as a

second-order effect and may become important in fields such as petrology, geosciences, hy-

drology, and so on. Waini et al. [43] investigated implications of Soret and Dufour on the

stream of Al2O3-water nanoliquid through a narrow needle. Salleh et al.[44] scrutinized the

consequences of Soret and Dufour on the convective stream near a moving slender needle.

Rehman et al. [62] examined cross diffusive stream on moving tiny needle, focusing atten-

tion on the consequences of Soret and Dufour, heat absorption / generation, nonlinear heat

radiation, thermal activation and chemical reaction properties. Reddy et al. [46] used the

stream of hybrid (Al2O3-Cu/Ethylene glycol) Casson nanofluids over a moving tiny needle

to analyze MHD, thermal radiation, and Dufour and Soret effects.

Literature reviews indicate that there is currently no published study on the investigation

of Soret and Dufour effects in a mixed convection stream over a horizontal thin needle in

Casson fluid. The purpose of this study is to determine how the heat transfer characteristics

1Communicated to “Mathematics and Computers in Simulation”
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in a mixed convection are strongly explained by dimensionless parameters, specifically the

needle size and mixed convection parameter.

9.2 Formulation of the Problem

Consider the laminar, steady, and mixed convection flow of Casson fluid over a horizontally

moving thin needle. Assume that the uniform velocity of the fluid be Ū∞(x̄) and the moving

velocity of the needle be Ūw(x̄). Apart from the assumption of Chapter - 6, we assume the

presence of Soret and DuFour effects in the medium.

The governing equations for the fluid flow are:

∂(r̄ū)

∂x̄
+
∂(r̄v̄)

∂r̄
= 0 (9.1)

ū
∂ū

∂x̄
+ v̄

∂ū

∂r̄
= Ū

dŪ

dx̄
+ ν

(
1 +

1

β

)
1

r̄

∂

∂r̄

(
r̄
∂ū

∂r̄

)
+ gβT (T̄ − T∞) + gβC(C̄ − C∞) (9.2)

ū
∂T̄

∂x̄
+ v̄

∂T̄

∂r̄
= α

(
1

r̄

∂

∂r

(
r̄
∂T̄

∂r̄

))
+
DskT
cscp

1

r̄

∂

∂r̄

(
r̄
∂C̄

∂r̄

)
(9.3)

ū
∂C̄

∂x̄
+ v̄

∂C̄

∂r̄
= Dm

(
1

r̄

∂

∂r

(
r̄
∂C̄

∂r̄

))
+
DskT
Tm

1

r̄

∂

∂r̄

(
r̄
∂T̄

∂r̄

)
(9.4)

where the quantities used in the above equations are already defined in Chapter - 2 and

chapter - 6.

The boundary conditions are

ū = 0, v̄ = 0, T̄ = T̄w(x̄), C̄ = C̄w(x̄) at r̄ = R̄(x̄)

ū→ Ū(x̄), T̄ → T∞, C̄ → C∞ at r̄ → ∞
(9.5)

The non-dimensional similarity variables are given by

x =
x̄

L
, r = Re1/2

r̄

L
, R(x) = Re1/2

R̄(x̄)

L
, u =

ū

U∞
,

v = Re1/2
v̄

U∞
, U(x) =

Ū(x̄)

U∞
, T =

T̄ − T∞
∆T

, T =
C̄ − C∞

∆C

(9.6)

Substituting Eq.(9.5) into Eq.(9.1) to (9.4), we get
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∂(ru)

∂x
+
∂(rv)

∂r
= 0 (9.7)

u
∂u

∂x
+ v

∂u

∂r
= U

dU

dx
+

(
1 +

1

β

)
1

r

∂

∂r

(
r
∂u

∂r

)
+ λTT ++λCC (9.8)

u
∂T

∂x
+ v

∂T

∂r
=

1

Pr

1

r

∂

∂r

(
r
∂T

∂r

)
+Df

1

r

∂

∂r

(
r
∂C

∂r

)
(9.9)

u
∂C

∂x
+ v

∂C

∂r
=

1

Sc

1

r

∂

∂r

(
r
∂C

∂r

)
+ Sr

1

r

∂

∂r

(
r
∂T

∂r

)
(9.10)

where λ is mixed convection parameter, Pr =
ν

α
denotes the Prandtl number, Df =

DsKT (Cw − C∞)

CsCpν(Tw − T∞)
denotes the Dufour number, Sr =

DsKT (Tw − T∞)

Tmν(Cw − C∞)
denotes the Soret

number and Sc =
ν

Ds

denotes the Schmidt number.

The dimenaionless form of boundary conditions Eq.9.5 are

u = 0, v = 0, T = Tw(x), C = Cw(x) at r = R(x)

u→ U(x), T → 0, C → 0 as r → ∞
(9.11)

Similarity Transformations are defined as:

ψ = xf(η), T (x) = x2m−1θ(η), η = xm−1r2 (9.12)

Using Eq. (9.12) in the equation to the surface of the wall η = a, it can be written as

R = a1/2x(1−m)/2 which characterizes shape and size of the needle.

Making use of above similarity variables in Eq.(9.8) to (9.10), we obtain

8η[1 +
1

β
]f

′′′
+ 8[1 +

1

β
]f

′′
+ 4ff

′′ − 4m(f
′
)2 +m+ λT θ + λCϕ = 0 (9.13)

2η

Pr
θ
′′
+

2

Pr
θ
′
+Df2ηϕ

′′
+ 2Dfϕ

′
+ fθ′ − (2m− 1)f

′
θ = 0 (9.14)

2η

Sc
ϕ

′′
+

2

Sc
θ
′
+ Sr2ηθ

′′
+ 2Srθ

′
+ fϕ′ − (2m− 1)f

′
ϕ = 0 (9.15)
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The modified conditions on boundary becomes

f
′
(η) = 0, f(η) = 0, θ(η) = 1, ϕ(a) = 1 at η = a

f
′
(η) → 1

2
, θ(η) → 0, ϕ(η) → 0 as η → ∞

(9.16)

In additions to desired allotment for this model is Skin Friction Cf and the local Nusselt

number Nu which are represented as:

√
ReCf = 8

√
a

(
1 +

1

β

)
f

′′
(a),

Nu√
Re

= −2
√
aθ

′
(a),

Sh√
Re

= −2
√
aϕ

′
(a) (9.17)

9.3 Solution of the Problem

The combined Eqns. (9.13) to (9.15) and conditions on boundary (9.16) are linearized using

the successive linearization method (SLM) [78] and the resulting linearized equations are

solved by Chebyshev collocation method.

On applying the procedure explained in Chapter 2 to the equations Eqns. (9.13) to

(9.15), we get the following linearized equations.

a1f
′′′

i + a2f
′′

i + a3f
′

i + a4fi + a5θ
′

i + a6ϕi = r1 (9.18)

b1f
′

i + b2fi + b3θ
′′

i + b4θi
′ + b5θi + b6ϕ

′′

i + b7ϕ
′

i = r2 (9.19)

c1f
′

i + c2fi + c3θ
′′

i + c4θi
′ + c5ϕ

′′

i + c6ϕ
′

i + b7ϕi = r3 (9.20)

where

a1 = 8η

(
1 +

1

β

)
, a2 = 8

(
1 +

1

β

)
+ 4

∑
fm,

a3 = −8m
∑

f ′
m, a4 = 4

∑
f ′′
m,

a5 = λT , a6 = λC ,

r1 = −8η

(
1 +

1

β

)
(
∑

f ′′′
m)− 8

(
1 +

1

β

)
(
∑

f ′′
m) + 4m(

∑
f ′
m)

2

−4(
∑

fm)(
∑

f ′′
m)− λT (

∑
θm)−m− λC(

∑
ϕm)
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b1 = −(2m− 1)(
∑

θm), b2 =
∑

θ′m, b3 =
2η

Pr

b4 =
2

Pr
+
∑

fm, b5 = −(2m− 1)(
∑

f ′
m),

b6 = 2ηDf , b7 = 2Df ,

r2 =
2η

Pr
(
∑

θ′′m)−
2

Pr
(
∑

θ′m)− 2ηDf (
∑

ϕ′′
m)− 2Df (

∑
ϕ′
m)− (

∑
fm)(

∑
θ′m)

+(2m− 1)(
∑

f ′
m)(
∑

θm)

c1 = −(2m− 1)(
∑

ϕm), c2 =
∑

ϕ′
m, c3 = 2ηSr

c4 = 2Sr, c5 =
2η

Sc
, c6 =

2

Sc
+
∑

fm

c7 = −(2m− 1)(
∑

f ′
m),

r3 = −2η

Sc
(
∑

ϕ′′
m)−

2

Sc
(
∑

ϕ′
m)− 2ηSr(

∑
θ′′m)− 2Sr(θ′m)− (

∑
fm)(

∑
ϕ′
m)

+(2m− 1)(
∑

f ′
m)(
∑

ϕm)

As explained in Chapter - 2, using Chebyshev collocation method on the system of

linearized equations. (9.18) t0 (9.20), we obtain the following equation in matrix form

Aj−1Xj = Rj−1 (9.21)

where Aj−1 is a 3(N + 1) × 3(N + 1) order matrix and Xj and Rj−1 are 3(N + 1) × 1

column matrix given by

Aj−1 =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 , Xj =

 Fj

Θj

Φj

 , Rj−1 =

 r1,j−1

r2,j−2

r3,j−3

 (9.22)

where

Fj = [fi(ξ0), fi(ξ1), ...., fi(ξN−1), fi(ξN)]
T ,

Θj = [θi(ξ0), θi(ξ1), .., θi(ξN−1), θi(ξN)]
T ,

Φj = [ϕi(ξ0), ϕi(ξ1), .., ϕi(ξN−1), ϕi(ξN)]
T ,
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A11 = a1D
3 + a2D

2 + a3D + a4I, A12 = O,A13 = O

A21 = b1I, A22 = b2D
2 + b3D,A23 = b4D

2 + b5D

A31 = c1I, A32 = c2D
2 + c3D,A33 = c4D

2 + c5D

r1 = [r1(ξ0), r1(ξ1), ...., r1(ξN−1), r1(ξN)]
T ,

r2 = [r2(ξ0), r2(ξ1), ...., r2(ξN−1), r2(ξN)]
T ,

r3 = [r3(ξ0), r3(ξ1), ...., r3(ξN−1), r3(ξN)]
T

With the boundary conditions imposed in terms of the collocation points, the answer is

given by

Xj = A−1
j−1Rj−1

9.4 Results and Discussion

The seven dimensionless parameters: size of the needle (a), mixed convection parameter (λ1,

λ2), casson fluid parameter (β), power index (m), Dufour number (Df), Soret number (Sr)

on velocity and temperature profiles together with local Nusselt number Nu√
Re
, Sherwood

number Sh√
Re

and coefficient of local skin friction
√
ReCf are the focus of this study. A

detailed numerical parametric analysis is conducted to assure a greater comprehension of

the technical issue, and the findings are presented graphically (Figs. 9.1-9.12). Different

values of a, λ1, λ2, β, m, Df , and Sr have been taken to analyze the effects numerically.

Figure 9.1 illustrates how the needle’s size affects the velocity and temperature profiles.

As shown in Fig.9.1(a), reducing a elevates the velocity. As a rises, the temperature and

concentration are also increasing, as presented in Figs. 9.1(b) and 9.1(c).

The fluctuation of velocity, temperature, and concentration with the Casson fluid pa-

rameter β is shown in Fig.9.2. As the Casson fluid parameter increases, velocity increases,

as illustrated in Fig. 9.2(a). As depicted in Figs. 9.2(b) and 9.2(c), the impact β on

temperature and concentration profile is almost negligible.

The consequence of power index m on velocity, temperature, and concentration is given

in Fig. 9.3. It is represented in Fig. 9.3(a) that the velocity improves as the power index pa-

rameter rises. The temperature and concentration profiles are also enhanced with a decrease

in m, as depicted in Figs. 9.3(b) and 9.3(c).
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The fluctuation of profiles of velocity, temperature, and concentration with mixed con-

vection parameters λ1 and λ2 is given in the Figs. 9.4 and 9.5. As presented in Figs. 9.4(a)

and 9.5(a), intensifying λ1 and λ2, increase velocity. The effect of λ1 and λ2 on temperature

and concentration is negligible, as depicted in Figs. 9.4(b),9.4(c),9.5(b) and 9.5(c)

The impact of the Dufour number (Df) on velocity, temperature, and concentration is

given in Fig. 9.6. It is detected from Figs. 9.6(a) and 9.6(c) that the impact of Df on

velocity and concentration is almost negligible. As displayed in Fig. 9.6(b), the temperature

profile enhances with intensifying the Dufour number.

Figure 9.7 presents the effect of the Soret number on velocity, temperature, and concen-

tration. As displayed in Figs. 9.7(a) and 9.7(b), velocity and temperature profile relative to

Sr are constant. The concentration increases as Sr rises as depicted in Fig. 9.7(c)

The impact of the size of the needle on the coefficient of skin friction
√
ReCf , Nusselt

number Nu√
Re
, and Sherwood number Sh√

Re
are presented in Fig. 9.8. As depicted in Fig.9.8(a),

the skin friction coefficient is improved by lowering a. As a increases, Nu√
Re

and sh√
Re

are also

enhancing, as presented in Figs. 9.8(b) and 9.8(c)

The impact of m on the local rate of heat transfer Nu√
Re
, the Sherwood number Sh√

Re
, and

the coefficient of local skin friction
√
ReCf are given in Fig. 9.9. It is understood from Fig.

9.9(a) that the
√
ReCf enhances as m rises.Figs. 9.9(b) and 9.9(c) demonstrate that a rise

in m leads to an enhancement in Nu√
Re

and Sh√
Re
.

The fluctuation of Nu√
Re
,
√
ReCf , and

Sh√
Re

with mixed convection parameters λ1 and λ2 is

given in the Figs. 9.10, 9.11. As presented in Figs. 9.10(a) and 9.11(a), the values of λ1 and

λ2 increase the skin friction coefficient. Nusselt number and Sherwood number are enhanced

by increases in λ1 and λ2, as seen in Figs.9.10(b), 9.11(b), 9.10(c), and 9.11(c).

The effect of Dufour number Df on Nu√
Re
,
√
ReCf , and

Sh√
Re

is given in Fig. 9.12. It is

noticed from Fig. 9.12(b) that the Nu√
Re

enhances as Df increases. Figs. 9.12(a) and 9.12(c)

exhibit that the variation in the
√
ReCf independent of Df and Sh√

Re
is slightly increased.

Figure 9.13. presents variations of Soret number Sr on the Nu√
Re
,
√
ReCf , and

Sh√
Re
. The

variation in the
√
ReCf is independent of Sr, as depicted in Figs. 9.13(a). As Sr increases,

Nu√
Re

increases, as illustrated in Fig. 9.13(b). As Sr increases, Sh√
Re

decreases, as illustrated

in Fig. 9.13(c).
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9.5 Conclusion

This study examines the influence of Soret and Dufour on the mixed convection flow through

a horizontal needle in Casson fluid. The flow equations are converted into a set of non-

linear ordinary differential equations by appropriate transformations, and these equations

are subsequently linearized using successive linearizations. The solution to the resulting

equations is found via the Chebyshev spectral collocation technique.

• Temperature and concentration reduce, and skin friction coefficient, Nusselt number,

Sherwood number, and velocity increase with increasing power index.

• A rise in Df leads to a rise in temperature and concentration profiles.

• An upsurge in Sr produces a rise in temperature and concentration distribution.

• The implications of Df and Sr on the Nusselt and Sherwood numbers are in reverse.
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Figure 9.1: “Effect of a on the velocity,temperature and concentration profiles”
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Figure 9.13: “Effect of Sr on the coefficient of skin friction, Nusselt number and Sherwood
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Chapter 10

Summary and Conclusions

In this thesis, incompressible Casson fluid flow over a horizontal, thin needle is considered.

The equations governing the flow in Chapters 2 through 9 are transformed into a system

of nonlinear ordinary differential equations using suitable transformations. The non-linear

ordinary differential equations were linearized by using the successive linearization method.

The solution to the resulting equations is obtained by the Chebyshev collocation method.

The natural convection flow past a thin needle in a Casson fluid is studied in Part

II. The objective of this part is to study the effects of variable properties such as Soret

and Dufour, radiation, viscous dissipation, and chemical reactions on velocity, temperature,

concentration, skin friction coefficients, the Nusselt number, and the Sherwood number. The

important observations made in this study are listed below:

• As the needle size decreases, the velocity profile increases, and as the Casson fluid

parameter increases, it decreases.

• The velocity rises and the heat transfer rate reduces with an improvement in the

viscosity parameter.

• A rise in the thermal conductivity parameter leads to an increase in velocity, temper-

ature, and heat transfer rate.

• The velocity reduces and temperature, and concentration improve with the increase in

size of the needle.

• A rise in Df steers to a rise in temperature and concentration profiles.
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• An upsurge in Sr produces a rise in temperature and concentration distribution.

• Skin friction coefficient, local heat, and mass transfer coefficients reduce with enhanced

needle size.

• The implications of Df and Sr on the Nusselt and Sherwood numbers are in reverse.

• While the concentration, temperature, and velocity of the flow rise as the needle size

increases, the skin friction coefficient, heat transfer coefficient, and Sherwood number

decrease.

• With improved concentration distribution, the chemical reaction parameter decreases,

and with an increased chemical reaction parameter, the Sherwood number rises.

• The temperature rises as the radiation parameter is improved, whereas the Nusselt

number rises as the radiation parameter is reduced.

Part III deals with mixed convection flow past a thin needle in a Casson fluid. Examining

the effects of magnetic, heat source, chemical reaction, variable properties, Soret, and Dufour

on velocity, temperature, concentration profiles, skin friction coefficients, heat, and mass

transfer rates are the objectives of this section. The main observations of these studies are

• As the needle size decreases, the velocity, coefficient of skin friction, and Nusselt number

enhance in both cases, while the temperature drops.

• Increasing λ causes the velocity to increase in the aiding case and decrease in the

opposing case. While the influence of the mixed convection parameter on temperature

is insignificant,.

• For both assisting and opposing scenarios, when the power index grows, velocity in-

creases and temperature declines.

• As size of the needle reduces, velocity and the coefficient of skin friction improve,

whereas temperature, the Nusselt number, and the Sherwood number decrease.

• Intensifying the magnetic parameter decreases the velocity, whereas the effect of the

magnetic parameter on temperature and concentration is negligible.

• Temperature and velocity both improve as needle size grows, while the Nusselt number

and the coefficient of skin friction both drop.
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• Temperature rises and skin friction coefficient, Nusselt number, and velocity decrease

with increasing thermal conductivity parameter.

• Temperature reduces and skin friction coefficient, Nusselt number, and velocity increase

with increasing power index.

• Increasing the variable viscosity parameter and decreasing the Nusselt number leads

to improvements in velocity and the coefficient of skin friction.

• With increasing needle size, temperature, concentration, Nusselt number, and Sher-

wood number increase, while velocity and the coefficient of skin friction decrease.

• Temperature and concentration reduce, and skin friction coefficient, Nusselt number,

Sherwood number, and velocity increase with increasing power index.

• A rise in Df steers to a rise in temperature and concentration profiles.

• An upsurge in Sr produces a rise in temperature and concentration distribution.

• The implications of Df and Sr on the Nusselt and Sherwood numbers are in reverse.

The work presented in the thesis can be extended to analyze the various effects like

MHD, Hall effect, Hall and ion slip, binary chemical reaction, etc. Further, this work can

be extended by studying the analysis in various non-Newtonian fluids, like Jeffrey fluids and

Power-law fluids. This work can also be extended to porous media.

The transverse curvature introduces nonsimilarity into the flow and thermal fields. For

example, flow over a needle of very large diameter is similar to flat plate boundary layer

flow. As the curvature increases, or the diameter of the needle decreases, the work presented

in the thesis can be extended by taking nonsimilar effects into account.

In the recent past, the study of stability analysis has attracted the curiosity of many

researchers. Thus, the work presented in the thesis can be extended to study the stability

of boundary layer flows in Newtonian and/or non-Newtonian fluids.
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