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Abstract

Cloud computing technology is a novel storage and computing paradigm that en-

ables individuals and organizations to store data, share data with the intended

group of users, and retrieve data when required. It greatly improves peoples’ data

storage and sharing, and data retrieval capabilities by providing flexible, less expen-

sive, and quality services. For data security and privacy concerns, fine-grained data

access control, authenticated and secure data storage, authorized data searching,

and self-verifiability of the corrrectness of search results are of critical importance.

Attribute-based cryptographic framework is a promising solution for applications

requiring fine-grained access control. However, a significant computation cost that

rises in complexity with access policy complexity affects the majority of attribute-

based cryptosystems. Because of this, their usefulness in resource-constrained en-

vironments may be compromised. Hence, this thesis aims at designing secure and

efficient attribute-based cryptographic schemes with data storage, data sharing, and

data retrieval in cloud computing environments.

The contributions of the thesis are threefold. We, first, propose a lightweight

online-offline attribute-based data storage and retrieval scheme with Boolean key-

word search mechanism. The computationally intensive tasks are either offloaded

to the cloud or offline phase and the lightweight operations are carried out by the

data user, which makes the scheme lightweight.

Next, we design a verifiable and Boolean keyword searchable attribute-based

signcryption scheme in a cloud-based Electronic Medical Record (EMR) manage-

ment system. The scheme allows EMR owners to store and share their personal

EMRs with specific healthcare professionals. It uses disjunctive normal form en-

cryption policy to make the scheme communicationally efficient. Both the afore-

mentioned schemes achieve data owner (DO) privacy, data and DO authenticity,

non-interactive verifiability, fine-grained access control over encrypted data, Boolean

keyword search, keyword privacy, outsourced decryption, and provable security.

Further, to achieve efficient data sharing functionality along with data searching,

we propose an attribute-based proxy re-encryption scheme with Boolean keyword

search mechanism. We prove that the scheme is adaptive chosen ciphertext attack

secure at both the original and re-encrypted ciphertext, and chosen keyword attack

secure on both ciphertext and token.

Keywords: Attribute-based encryption, attribute-based signature and signcryp-

tion, bilinear pairing, constant decryption cost, linear-secret sharing scheme, data
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storage and retrieval, data sharing, attribute-based searchable encryption, attribute-

based proxy re-encryption, Boolean keyword search, search results verification.
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Chapter 1

Introduction

1.1 General Introduction

In our day to day life, data plays an indispensable role in decision making for both

private and public domains. Due to this fact, the voluminous personal data is main-

tained by both individuals and organizations, and the necessary data is being shared

with various kinds of users more often. Data management becomes a critical con-

cern in such scenarios. The emergence of cloud computing paradigm greatly reduces

the cost of personal data management and maintenance. Data storing and sharing,

and data retrieval are the two key components in cloud computing technology. To

facilitate data sharing and ensure secure data transmission to the designated data

users (DUs) in public networking settings, the data owners (DOs) outsource their

data to the cloud server. The cloud stores the data at storage servers. Next, the

cloud performs a search operation and transmits the outcome of the search to the

user through a wireless channel subsequent to obtaining a data retrieval request

from a DU. In bringing various benefits, cloud computing technology creates new

challenges including data security and data access control. The sensitive outsourced

data should only be accessed by authorized users.

To realize data confidentiality and fine-grained data access control over encrypted

data, Attribute-Based Encryption (ABE) schemes [75, 4, 85] are acknowledged as

being extremely prevalent. Each user in the ABE framework has a unique collection

of attributes that act as their public key. Attributes can be elements like a users

designation, affiliation, or other typical abstract credentials. Based on whether the

secret key or the ciphertext is linked to an access policy, ABE is categorized into

Key-Policy ABE (KP-ABE) [75, 28] and Ciphertext-Policy ABE (CP-ABE) [4, 85].

A set of attributes are appended to the ciphertext and an access policy is associated

1



CHAPTER 1. 2

Figure 1.1: KP-ABE

Figure 1.2: CP-ABE

to the secret key in the KP-ABE framework (as shown in Figure 1.1). The CP-

ABE framework (as shown in Figure 1.2) associates the secret key with a set of
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Figure 1.3: Cloud-Based PHR Management System

attributes and uses an access policy to create the ciphertext. An access policy over

an attribute universe U is represented by a Boolean formula, in which attributes

are connected together with the assistance of the logical operators AND(∧),OR(∨).
A DU receives a secret key for his attribute set and an access policy is involved

in ciphertext generation. And, the DU is able to access the encrypted data if the

attribute set satisfies the access policy.

Consider, as a motivating example, a cloud-based Personal Health Record (PHR)

management system (displayed in Figure 1.3), where the DOs (such as patients)

upload their PHRs to the public cloud for storing and sharing with the specified

DUs, such as physicians, medical insurance agent, etc. Since the PHR contains

sensitive data, such as disease information, the DO’s privacy/anonymity must be

ensured while sharing PHRs with DUs; else, the DO will be identified on social

platform [70]. Apart from allowing DOs to anonymously impose fine-grained PHR

access control, permitting the DUs to retrieve encrypted PHRs of their interest from

a cloud is also an important problem.

A DU may search for his patient’s medical history related to a particular disease,

say Covid-19 or heart disease, but does not want to know about other diseases.

Hence, how to enable DUs to efficiently filter out required PHRs by specifying

suitable keywords is another crucial problem. Aiming to achieve fine-grained access

control and keyword-based data retrieval from the cloud, Attribute-Based Searchable

Encryption (ABSE) primitives [92, 81, 88, 13, 12] have been proposed. However,

these schemes cannot provide the data and DO authenticity, and DO anonymity,

which are crucial for PHR management systems. But Attribute-Based Signcryption
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(ABSC) [15, 72, 70], a logical integration of ABE [76, 29, 85] and Attribute-Based

Signature (ABS) [57, 72], provides the data and DO authenticity, and DO anonymity

in addition to the fine-grained access control over encrypted data.

To access the required patients’ PHRs stored at the cloud, a DU creates a data

retrieval request using appropriate keywords and delegates the same to the cloud.

Next, the cloud locates suitable PHRs and partially decrypts them. Given these

transformed PHRs, the DU (e.g., a doctor) treats the patients accordingly. Some-

times a patients inaccurate treatment may result from an untrusted cloud occasion-

ally returning a transformed PHR in the correct format but containing incorrect

PHR information [40]. This could be serious threat for the patient’s life. So, the

difficulty of allowing a data user (DU) to independently check the precision of search

outcomes acquired from the cloud becomes a topic of considerable interest. Realiz-

ing such verification mechanism in the context of ABSC is quite challenging if we

integrate the ABSC with keyword search functionality.

In a medical data sharing system, a covid-19 patient Harry wants to test whether

he is covid-positive or not in a clinic. The clinic should be located within 4 km from

London, the doctors should be senior doctor and appointed as a covid-specialist.

Harry encrypts his medical record using an access policy Γ = {covid specialist ∧
senior doctor ∧ Location : within 4 km from London} and a keyword set. The clin-

ics satisfying Γ can decrypt the encrypted medical record. However, they couldn’t

get to the exact record by typing the keywords. Instead, the clinic needs to de-

crypt all the medical records satisfying Γ and then satisfy the keyword set to get

the intended medical record. Also, in case, the clinic wants to share the medi-

cal record with some other junior doctors of the hospital located within 10 km

from Nottigham, it needs to decrypt the encrypted record sent by Harry and there-

after encodes the medical record using an access policy Γ′ = {covid specialist ∧
junior doctor ∧ Location : within 10 km from Nottigham} and a keyword set. This

method is not suitable since the clinic has to perform n pairs of encryption and de-

cryption processes for n number of patients. Consequently, this system is extremely

inefficient regarding data searching and sharing.

The majority of attribute-based cryptosystems are significantly affected by a

computation cost that increases in complexity with access policy complexity. As

a result, their effectiveness in resource-constrained environments may be impeded.

Hence, it is highly desirable to construct attribute-based cryptosystems which fea-

ture low computation cost for the environments equipped with computational capa-

bility constrained devices.
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An insecure design [26] may result from a straightforward combination of attribute-

based keyword policy search primitives, ABE with verifiable outsourced decryption

(ABVOD), and ABS. Specifically, the design may be vulnerable to Keyword value

Guessing attacks (KGAs) and chosen ciphertext attacks. Moreover, it is much more

difficult to realize the verifiability mechanism in such designs.

Functionalities. The issues discussed so far motivate us to achieve the following

functionalities in the attribute-based cryptographic schemes.

(i) Fine-grained data access control over encrypted data: Only authorized DUs

with valid trapdoors can access the data stored in cloud. A ciphertext and the

associated data retrieval token will not reveal anything regarding the actual

plaintext to even the cloud sever.

(ii) Data and DO authenticity : The cloud server accepts a ciphertext for storage

only when the DOs signature is valid. An authorized DO who has obtained a

valid signing key from key generation authority (KGA) can create a verifiable

correct signature, thereby unauthorized DOs cannot store their data in the

cloud server.

(iii) DO anonymity : The ciphertext leaks no information about the DOs attributes

involved in the corresponding signing policy. The cloud server can just check

that whether the signature satisfies the signing policy, but cannot determine

the set of signing attributes originally used to create the signature components.

(iv) Keyword policy search over encrypted data: Our approach enables an expres-

sive and versatile keyword search over encoded data, where a data user sends

a Boolean query to the cloud and gets back the required search results in a

single search request.

(v) Keyword privacy : To protect the privacy of the keywords, our scheme assigns

a generic name to each keyword value; furthermore, solely the generic keyword

names are encoded in both the ciphertext and the search token. The actual

value of a keyword can not be deduced from merely the ciphertext and its

token in the absence of the cloud secret key.

(vi) Constant decryption cost for DUs : Our scheme supports the outsourced de-

cryption mechanism. Most of the decryption calculations are outsourced to

the cloud, so DUs can recover a message with a constant number of lightweight

operations.
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(vii) Non-interactive search results verification: Our schemes enable a DU to check

the correctness of search, transform and signature verification operations exe-

cuted by the cloud without interacting with any authority. We use verify-then-

decrypt framework, wherein the DU first verifies the correctness of the results

obtained from the cloud and next recovers the plaintext accordingly.

(viii) Data sharing : Along with data searching, our scheme enables a data sharing

mechanism, where a DU can share the encrypted data sent by a DO with

another DU without decrypting it.

(ix) Keyword set updating : Prior to sharing a ciphertext with others, our method

facilitates the update of the keyword set, hence allowing for future modification

of the keyword set. The ability to easily modify the ciphertext keyword set

depending on the data-sharingrecord makes this characteristic convenient for

DOs.

1.2 Objectives of the Thesis

The main objectives of the thesis are to design the following attribute-based cryp-

tographic schemes.

1. Designing a computationally efficient attribute-based verifiable data storage

and retrieval scheme in the cloud computing environment supporting (i) data

and DO authenticity (ii) DO anonymity, (iii) fine-grained data access con-

trol, (iv) keyword policy search over encrypted data, (v) keyword privacy,

(vi) constant decryption cost for DUs, and (vii) non-interactive search results

verification.

2. Constructing a communicationally efficient attribute-based searchable sign-

cryption scheme for electronic medical record (EMR) storage and retrieval

that supports simultaneously the aforementioned functionalities.

3. Designing a ciphertext-policy searchable attribute-based proxy re-encryption

scheme achieving (i) keyword policy search over encrypted data, (ii) data shar-

ing, (iii) constant decryption cost for DUs, (iv) keyword privacy, (v) keyword

set updating, and (vi) search results verification.
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1.3 Thesis Summary

The thesis is organized into six chapters, with Chapter 1 providing a general

introduction to attribute-based cryptographic primitives and their applications to

cloud-based data storage and retrieval system, and Chapter 6 as the conclusion.

Chapter 2 presents the cryptographic preliminary notions to make the thesis self-

contained. Additionally, this chapter discusses the previous works that are most

relevant to the main theme of the thesis. In Chapters 3 to 5, we present our contri-

butions. Each presented attribute-based cryptosystem includes the description of a

system model along with the security proof. Chapters 3 to 5 are summarized below.

In Chapter 3, we first propose a computationally efficient attribute-based ver-

ifiable data storage and retrieval scheme in the cloud computing environment. Our

scheme supports data and DO authenticity, DO anonymity, keyword privacy, key-

word policy search over encrypted data, non-interactive verifiability, and outsourced

unsigncryption. To make our scheme lightweight, we make use of the online-offline

framework. The heavy computation tasks are offloaded either to the cloud or to the

offline phase, while only the lightweight operations are executed at the DU’s device

or the online phase, which makes the scheme computationally efficient. In order to

preserve keyword privacy, we divide each keyword into a generic keyword name and

a keyword value, and attach only the generic keyword names with the ciphertext and

trapdoor. The cloud server is assigned with a cloud public key and cloud secret key

pair. We make use of the cloud public key in trapdoor generation so that only the

cloud server can perform test operation with its cloud secret key. In order to vali-

date the cloud’s test, transform and signature verification, the DU re-randomizes the

trapdoor and the decryption key using a few random numbers. We have compared

the achieved functionalities, and theoretical computation and communication costs

with the existing schemes [1, 62]. Also, we compare the experimental outcomes with

[1] regarding storage expenses and execution durations. The experimental results

and theoretical analysis show that our scheme is computationally efficient compared

to the existing ABSE schemes [1, 62].

In Chapter 4, we propose a communicationally efficient Boolean searchable

attribute-based signcryption scheme for EMR storage and retrieval in the cloud

computing environment. Along with achieving data and DO authenticity, DO

anonymity, keyword privacy, and non-interactive search results verifiability, the pro-

posed scheme reduces the size of the ciphertext significantly compared to the existing

searchable signcryption schemes. We utilize a disjunctive normal form (DNF) en-
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cryption policy which makes the scheme communicationally efficient. It enables the

number of pairing computations in the transform algorithm to be independent of the

number of encryption attributes in the encryption policy. To prevent KGAs on ci-

phertexts, we adopt the linear-splitting technique, which splits each keyword cipher-

text component into two complementary randomized components and re-randomizes

every keyword trapdoor component to match the split components in the cipher-

text. To prevent KGAs on trapdoors, the cloud is allocated with a pair of public

and secret keys. In order to validate the accuracy of the search results returned by

the cloud, the DU makes use of the re-randomization technique on the trapdoor and

decryption key components. The attained functionalities, as well as the theoretical

computation and communication costs, were assessed in comparison to those of the

relevant existing schemes [53, 66]. We found our scheme to be rich in functionality.

Furthermore, an analysis of execution times and storage expenses is conducted to

compare the experimental outcomes with those in [53, 66]. The theoretical anal-

ysis and experimental findings demonstrate that our scheme is communicationally

efficient.

In Chapter 5, we have addressed the open problem presented by Ge et al. [25],

which was to provide a new attribute-based proxy re-encryption with keyword search

scheme (ABPRE-KS) for enabling more expressive keyword search. The schemes in

Chapter 3 and Chapter 4 do not provide a data sharing mechanism along with a

data storage and retrieval framework, where a DU can share the encrypted data

sent by the DO with another user without decrypting it. Here, we have proposed a

searchable attribute-based proxy re-encryption scheme that simultaneously provides

data storage, data sharing, and data searching framework. Our scheme supports a

keyword set updating mechanism, where a DU can modify the keyword set attached

to the ciphertext prior to sharing it with another DU. To delegate the re-encryption

task to the cloud server, the DU creates and assigns a re-encryption key to the

server. After checking the validity of the re-encryption key and the original cipher-

text, the cloud server re-encrypts and stores the re-encrypted ciphertext in it. To

increase the search efficiency in the attribute-based proxy re-encryption (ABPRE)

framework, the DU generates Boolean formula-based search query. Finally, we have

compared the achieved functionalities, and theoretical computation and communi-

cation costs with the existing relevant schemes [25, 48]. The theoretical analysis

along with achieved rich functionalities demonstrates the efficiency of our scheme.
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Cryptographic Preliminaries and

Literature Survey

The objective of this chapter is twofold. First, we discuss the preliminary concepts

that are necessary to understand the cryptographic primitives and their security

proofs described in the forthcoming chapters. Second, the presentation of literature

review, which covers the previous works that are most relevant to the main theme

of this thesis.

2.1 Introduction

The cryptographic preliminaries commence with a description of key notations and

terminologies necessary for the thesis to be presented in a clear and concise manner.

Since all cryptosystems included in this thesis rely on bilinear maps (or pairings), we

briefly review pairings, without giving the details of computation of such pairings

on elliptic curve groups. Note that a pairing-based cryptosystem can be fully under-

stood without any knowledge of elliptic curves. One can find an excellent exposition

on elliptic curves and pairings in [61],[56]. A scheme is provably secure if breaking

the scheme leads to a solution for a mathematical problem that is believed to be

hard (no one can solve the problem in polynomial time). We discuss several prob-

lems that are assumed to be hard to solve in polynomial time. Security of various

schemes presented in later chapters are based on the hardness of these problems. A

few useful building blocks used in our proposed constructions will also be described

briefly.

In literature review, we discuss the major functionality of some existing attribute-

based cryptosystems (in Section 2.7) such as ABE schemes, attribute-based sig-

9
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nature and signcryption schemes, attribute-based searchable encryption schemes,

searchable attribute-based signcryption schemes, attribute-based proxy re-encryption

schemes, proxy re-encryption with keyword search schemes. This survey is not ex-

haustive and covers only the schemes that are more relevant to the schemes we

address to design in the subsequent chapters.

2.2 Bilinear Pairing

We provide a brief introduction to (cryptographic) bilinear pairing that would be

useful for designing different kinds of secure cryptographic protocols, including the

schemes proposed in this thesis. Bilinear pairing is originally used in cryptology to

reduce the discrete logarithm problem on a certain class of elliptic curves over a

finite field to the discrete logarithm problem on a finite field [17],[60].

Definition 1. Let G and GT be two multiplicative cyclic groups of prime order p.

Also, let g be a generator of G. The bilinear pairing tuple is defined as

Σ := ⟨p, g,G,GT , e⟩, where e : G × G → GT is a bilinear map satisfying three

properties:

1. e(h1 · h2, k) = e(h1, k) · e(h2, k) and
e(h, k1 · k2) = e(h, k1) · e(h, k2), for all h, h1, h2, k, k1, k2 ∈ G.

2. e(g, g) ̸= 1, where 1 denotes the identity element of GT .

3. e is efficiently computable in polynomial time.

Remark 1. e is symmetric as e(ga, gb) = e(g, g)ab = e(gb, ga), for all a, b ∈ Zp
(using property 1).

Example 2.1. Modified Weil pairing ([7]) and Tate pairing ([17], [19]) functions on

elliptic curves over finite fields give typical implementations of bilinear pairings.

2.3 Hardness Assumptions

This section presents five important hard problems: (i) Decisional Bilinear Diffie-

Hellman (DBDH) problem [28], (ii) q-Diffie-Hellman Exponent (q-DHE) Problem

[10], (iii) q-1 problem [35], (iv) q-2 problem [35], (v) Decisional Linear (DLin) Prob-

lem [13]. The security of our proposed constructions relies on the hardness of these

problems.
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2.3.1 DBDH Problem

Given a bilinear pairing tuple Σ = (p, g,G,GT , e) and the DBDH problem instance

Y =
〈
Σ, G1 := gϕ1 , G2 := gϕ2 , G3 := gϕ3 , Z

〉
, where ϕ1, ϕ2, ϕ3 chosen secretly from

Z∗
p, the task for an adversary A is to ascertain if Z is equal to e(g, g)ϕ1ϕ2ϕ3 or Z

has been selected randomly from GT . The advantage for any PPT adversary A is

described as AdvDBDH
A

def
=
∣∣Pr[A (Σ, G1, G2, G3, Z=e(g, g)

ϕ1ϕ2ϕ3)=0]−Pr[A (Σ, G1, G2, G3, Z=random)=0]
∣∣

The DBDH assumption says AdvDBDH
A is negligible for all PPT adversary A.

2.3.2 q-DHE Problem

Given a bilinear pairing tuple Σ = (p, g,G,GT , e) and the q-DHE problem instance

Y =
〈
Σ, g, {gϕi}i∈[2q],i ̸=q+1

〉
, where ϕ chosen secretly from Z∗

p, the task for an adver-

sary A is to compute gϕ
q+1
. The advantage for any PPT adversary A is described

as Advq−DHE
A

def
= Pr[gϕ

q+1 ← A (Y)].

2.3.3 q-1 Problem

Given a bilinear pairing tuple Σ = (p, g,G,GT , e) and the q-1 problem instance

Y =
〈
Σ, g, gβ, {gϕi , gψj , gβψj , gϕiψj , gϕi/ψ2

j }(i,j)∈[q,q], {gϕ
i/ψj}(i,j)∈[2q,q],i ̸=q+1,

{gϕ
iψj/ψ

2
j′}(i,j,j′)∈[2q,q,q],j ̸=j′ , {gβϕ

iψj/ψj′ , g
βϕiψj/ψ

2
j′}(i,j,j′)∈[q,q,q],j ̸=j′ , Z

〉
,

where β, ϕ, ψ1, . . . , ψq chosen secretly from Z∗
p, the task for an adversary A is to

ascertain if Z is equal to e(g, g)βϕ
q+1

or Z has been randomly selected from GT . The

advantage for any PPT adversary A is described as

Advq-1A
def
=
∣∣Pr[1← A (Y)|Z = e(g, g)βϕ

q+1
]− Pr[1← A (Y)|Z = random]

∣∣.
2.3.4 q-2 Problem

Given a bilinear pairing tuple Σ = (p, g,G,GT , e) and the q-2 problem instance

Y :=
〈
Σ, g, gϕ1 , gϕ2 , gϕ3 , g(ϕ1ϕ3)

2

, {gψi , gϕ1ϕ3ψi , gϕ1ϕ3/ψi , gϕ21ϕ3ψi , gϕ2/ψ2
i , gϕ

2
2/ψ

2
i }i∈[q],

{gϕ1ϕ3ψi/ψj , gϕ2ψi/ψ2
j , gϕ1ϕ2ϕ3ψi/ψ

2
j , g(ϕ1ϕ3)

2ψi/ψj}(i,j)∈[q,q],i ̸=j, Z
〉
,

where ϕ1, ϕ2, ϕ3, ψ1, . . . , ψq chosen secretly from Z∗
p, the task for an adversary A is

to ascertain if Z is equal to e(g, g)ϕ1ϕ2ϕ3 or Z has been randomly selected from GT .
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The advantage for any PPT adversary A is described as

Advq-2A
def
=
∣∣Pr[1← A (Y)|Z = e(g, g)ϕ1ϕ2ϕ3 ]− Pr[1← A (Y)|Z = random]

∣∣.
2.3.5 DLin Problem

Given a bilinear pairing tuple Σ = (p, g,G,GT , e) and the DLin problem instance

Y :=
〈
Σ, g, gϕ1 , gϕ2 , gϕ1ϕ3 , gϕ2ϕ4 , Z

〉
, where g is a random generator of G, (unknown)

ϕ1, ϕ2, ϕ3, ϕ4 chosen secretly from Z∗
p, the task for an adversary A is to ascertain if

Z is equal to gϕ3+ϕ4 or Z has been selected randomly from G. The advantage for

any PPT adversary A is described as

AdvDLin
A

def
=
∣∣Pr[1← A (Y)|Z = gϕ3+ϕ4 ]− Pr[1← A (Y)|Z = random]

∣∣.
2.4 Building Blocks

2.4.1 Access Policy

An access policy over the attribute universe U is represented by a Boolean formula,

in which attributes are linked together with the assistance of the logical operators

AND (∧), OR (∨), and NOT (¬). However, in our scheme, we use Boolean formula

consisting of AND (∧), OR (∨) gates.
Let Γ = {(att1 ∨ att2 ∨ att3) ∧ (att4 ∨ att5) ∧ att6} be an access policy, where

atti’s are attributes for all i = 1, 2, 3, 4, 5,

6. A set A ⊂ U is authorized with respect to Γ if A satisfies Γ (in this case we

write A |= Γ). Otherwise, A is said to be unauthorized with respect to Γ (in this

case we write A ̸|= Γ). Here the set {att1, att4, att6} is an authorized set and the set

{att1, att2, att6} is an unauthorized set with respect to Γ.

If A |= Γ implies A1 |= Γ for all A1 ⊃ A, then Γ is said to be monotone

access policy. From now on, unless stated otherwise, by an access policy we mean a

monotone access policy.

The ordered tuple (K, ψ) is said to be a monotonic span program (MSP), where K is

a matrix of dimension ℓ×n with entries from a field F and ψ : [ℓ]→ U is a function

that labels rows of K. If a MSP (K, ψ) represents a monotone access policy Γ, we

denote it as Γ = (K, ψ). In this case, A |= Γ (or Γ(A) = true) implies that there

exists ω⃗ := (ω1, ω2, . . . , ωℓ) ∈ Fℓ such that ω⃗ · K = 1⃗n with ωi = 0, for all i satisfying

ψ(i) /∈ A. A ̸|= Γ (or Γ(A) = false) implies that there exists b⃗ := (b1, b2, . . . , bn) ∈ Fn

such that b⃗ · K(i) = 0, for all i satisfying ψ(i) ∈ A, for any matrix K, the ith row is

denoted as K(i).
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Disjunctive Normal Form (DNF). Our methodology employs the disjunctive

normal form (DNF), a particular type of the Boolean formula. If Bi ⊂ U for all

i ∈ [m] and the attributes in U are represented by u, then a DNF Boolean formula

can be expressed as

Γ =
(
∧u∈B1 u

)
∨
(
∧u∈B2 u

)
∨ · · · ∨

(
∧u∈Bm u

)
,where m ∈ N

In short, Γ = B1 ∨B2 ∨ · · · ∨Bm. Let A ⊂ U be an arbitrary set. Then

A |= Γ⇔ A ⊇ Bi, for some i ∈ [m]

If y be an attribute in U , then Γ ∧ y = (B1 ∧ {y}) ∨ (B2 ∧ {y}) ∨ · · · ∨ (Bm ∧ {y}).
Therefore, if y /∈ A, A ̸|= Γ ∧ y.

2.4.2 Linear Secret-Sharing Scheme

Let K be a share-generating matrix of size ℓ×n and ψ be a row labeling function that

maps rows of K to attributes in access policy Γ. A Linear Secret-Sharing Scheme

(LSSS) for the MSP Γ := (Kℓ×n, ψ) is comprised of the subsequent two polynomial

time procedures.

1. Share(K, ψ, α). To distribute shares of a secret α ∈ Z∗
p, it chooses

w2, w3, . . . , wn
u←− Z∗

p and sets λi := K⃗(i) · w⃗, where w⃗ := (α,w2, w3, . . . , wn).

Finally, it assigns the ith share λi to the ith row.

2. Reconstruct(K, ψ, A). To rebuild the shared secret α, it takes (K, ψ) and a set

A of attributes as input. If A |= Γ, it generates a secret reconstruction vector

z⃗ := (z1, z2, . . . , zℓ) ∈ Zℓp satisfying
∑

i∈[ℓ] zi · K⃗(i) = 1⃗n and zi = 0, whenever

ψ(i) /∈ A. Let I := {i|ψ(i) ∈ A}, then
∑

i∈I ziλi = α if A |= Γ. If A ̸|= Γ, it

outputs ⊥.

Remark 2. Using the Gaussian elimination method, the constants zi can be calcu-

lated in polynomial time in the size of the matrix K.

Given a valid set {λi : i ∈ I} of secret shares and computed reconstruction vector a⃗,

the secret α can be recovered as follows.

Since A |= Γ, we get z⃗ · K = 1⃗n. Consider I = {i ∈ [ℓ] : zi ̸= 0}. Then

∑
i∈I

ziλi=
∑
i∈I

ziK⃗(i) · w⃗ = w⃗ ·

(∑
i∈I

ziK⃗(i)

)
= w⃗ · (z⃗ · K) = (α,w2, w3, . . . , wn) · 1⃗n = α
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Convertion of Access policy into LSSS Matrix

The following section outlines a useful approach for transforming Access policy into

an LSSS Matrix. A binary access tree can be used to represent it, with the leaf nodes

representing the characteristics and the inside nodes representing the operator name

AND (∧) or OR (∨) gates.

� Let a binary access tree T represents an access policy.

� Start by assigning the root node r of the access tree T with the vector v⃗r = (1),

which is a vector of length 1.

� Make the global variable C’s initial value 1 to count. Next, we denote as uy

to every node y with a vector uy by moving down the levels of T as follows:

– If y = ∨, then

1. u⃗left (y) = u⃗right(y) = u⃗y, where left (y) and right (y) are left and right

childs of the node y, respectively.

2. x = x+ 0.

– If y = ∧, then

1. u⃗left (y) =
(
u⃗′y, 1

)
, where

−→
u′ y =

(
u⃗y,
−→
0
)
,
−→
0 being a vector of length

zero, x− |u⃗y|. Here, |u⃗y| is the length of the vector u⃗y. Note that if

x = |u⃗y|, then
−→
u′ y = u⃗y.

2. uright (y) = (
−→
0 ,−1), where −→0 is the zero vector of length x.

3. x = x+ 1.

Example 2.2. Let a, b, c, d, e, f be attributes and consider the access policy((
a∨b∨c

)
∧(d∨e)

)
∧f . The equivalent access tree is given in Figure 2.1. Converting

the above boolean formula we got the following matrix

K =



1 1 1

1 1 1

1 1 1

0 0 −1
0 0 −1
0 −1 0


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Figure 2.1: Access Tree for the Access Policy
((
a ∨ b ∨ c

)
∧ (d ∨ e)

)
∧ f

Let p = 13 and α, z2, z3 ∈ Z13

and ρ : {1, 2, 3, 4, 5, 6} → {a, b, c, d, e, f} be the row labeling function defined by

ρ(1) = a, ρ(2) = b, ρ(3) = c, ρ(4) = d, ρ(5) = e, ρ(6) = f .

Consider the secret α = 11 and v⃗ = (α, z2, z3 ) = (11, 9, 2)

Secret share of a : K⃗(1) · v⃗ = (1, 1, 1) · (11, 9, 2) = 22 mod 13 = 9

Secret share of b : K⃗(2) · v⃗ = (1, 1, 1) · (11, 9, 2) = 22 mod 13 = 9

Secret share of c : K⃗(3) · v⃗ = (1, 1, 1) · (11, 9, 2) = 22 mod 13 = 9

Secret share of d : K⃗(4) · v⃗ = (0, 0,−1) · (11, 9, 2) = −2 mod 13 = 11

Secret share of e : K⃗(5) · v⃗ = (0, 0,−1) · (11, 9, 2) = −2 mod 13 = 11

Secret share of f : K⃗(6) · v⃗ = (0,−1, 0) · (7, 9, 2) = −9 mod 13 = 4

Let L = {c, e, f} be a set of valid users satisfying the access policy:
(
((a ∨ b) ∨ c) ∧

(d∨ e)
)
∧ f . So I = {i ∈ [6] | ρ(i) ∈ L} = {3, 5, 6}. To construct the secret α for L,

set a⃗ = (0, 0, a3, 0, a5, a6) such that a⃗ · K = (1, 0, 0), i.e.,
∑

i∈[ℓ] ai · K⃗(i) = 1⃗ and get

the following system of equations.

a3 = 1

a3 − a6 = 0

a3 − a5 = 0

We get a3 = a5 = a6 = 1, solving the above equations.
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Finally, we get the secret by the equation
∑
i∈I
aiλi = α.

Hence, α = 0× 9 + 0× 9 + 1× 9 + 0× 11 + 1× 11 + 1× 4 = 9 + 11 + 4 = 11.

2.5 Key Derivation Function

If a function that outputs a cryptographically secure secret key, given an initial

keying material as input, then the function is called a key derivation function [38].

Upon receiving an initial secret key (SKI) as input, the key derivation function

KDF : SKI → {0, 1}κ produces a secret key string with κ bits of length.

Definition 2. The key derivation function KDF with the output length κ, is secure if

for any PPT adversary A,
∣∣Pr[A(KDF(I)) = 1]−Pr[A(R) = 1]

∣∣ is negligible, where
I is an initial secret key recieved from keying source and R is chosen uniformly at

random from {0, 1}κ.

2.6 Hash Function

In general, a hash function is a (deterministic) mapping that takes bit strings of any

length and compress them into bit strings of a fixed length. For practical applica-

tions, hash functions should be easy to compute, i.e., given a string x, computing

the hash of x should be feasible in time polynomial in the size of x.

Let H : X → Y be a hash function. The domain X of H could be infinite

or finite, but the range Y is always a finite set. If X is finite, it is assumed that

|X| ≥ |Y | (or |X| ≥ 2|Y | which is stronger condition). In case X is infinite, by the

pigeon-hole principal, there must exist distinct x1, x2 ∈ X with H(x1) = H(x2). The

pair (x1, x2) is called a collision for the hash function H. For cryptographic uses,

the essential requirement is that it is “hard” to find such collisions. The following

is a desirable property of hash functions utilized in cryptography.

Collision resistant: a hash function H is collision resistant if it is infeasible for

any PPT algorithm to find x1, x2 ∈ X with x1 ̸= x2 such that H(x1) = H(x2).

2.7 Literature Survey

2.7.1 Attribute-Based Encryption

Attribute-based cryptography, a branch of public-key cryptography, has been an

active area of research in recent years. The concept of ABE was introduced by Sahai
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and Waters [76]. Every user in this system has their own unique set of attributes

that act as their public key. The user secret key is created by incorporating an access

policy over user’s attributes and the ciphertext is generated based on a set of data

receivers’ attributes. This kind of encryption is called the KP-ABE [76, 29, 73]. The

dual mechanism is called CP-ABE [4, 85] wherein the user receives a secret key for his

attribute set and an access policy is involved in ciphertext generation. With either

architecture, decryption will work as long as the list of attributes matches the access

policy. In this thesis, we consider CP-ABE mechanism since it is more flexible to

realize fine-grained access control over encrypted data. With the goal of enhancing

the security and efficiency, diverse ABE frameworks have been constructed in [43,

33, 32, 74, 36].

2.7.2 ABE with Outsourced Decryption

The standard ABE designs suffer from huge computation cost in both encryption

and decryption algorithms, that usually grows with the number of attributes used in

the process. To make the encryption process lightweight, Hohenberger and Waters

[36] split the process into offline encryption and online encryption. In the former,

expensive operations (e.g., exponentiation, pairing) are performed while the latter

utilizes only light computations such as hashing, XORing, modular addition, mod-

ular multiplication etc. In an attempt to reduce the decryption cost at DU’s end,

Green et al. [30] framed a mechanism in which one can delegate the decryption

process to third-party decryption service providers (e.g., cloud service provider).

And, the cloud server converts the original ciphertext into another form so that

the DU needs to perform quite a few operations to obtain the plaintext, resulting

in the DU is able to recover the plaintext very efficiently. Later, Lai et al. [40]

identified that the method suggested in [30] is not feasible to verify the correct-

ness of the transformed ciphertext returned by the cloud, and designed an ABVOD.

A formal security model for verifiability is also formulated in [40]. The technique

used in [40] introduces significant computation and communication overhead in en-

cryption process. Following, several ABVOD primitives with different features (like

low computation cost, short ciphertext size, outsourced key-issuing, correctness of

partially decrypted ciphertexts for the unauthorized users) have been proposed in

[45, 44, 51, 68, 59], some of them are generic.
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2.7.3 Attribute-Based Signature

Maji et al. [57] established the concept of ABS alongside the advancement of

ABE. ABS has been utilized in several contexts such as attribute-based messag-

ing, attribute-based authentication and trust-negotiation, the disclosure of secret

[57], and the implementation of an attribute-based anonymous credential system

[78], etc. In general, ABS schemes are classified as

(i) Signature-Policy ABS: In the Signature-Policy ABS [57, 10] design, a set of

attributes is used to construct the signing key, and a signing policy that is met

by the signer’s attribute set is used to sign a message.

(ii) Key-Policy ABS: In Key-Policy ABS [71] design, the signing key is computed

according to an signing policy over signers attributes and a message is signed

with an attribute set satisfying the signing policy associated with the signing

key.

In Signature-Policy ABS, the specific set of signing attributes used to form the

signature cannot be determined. One can only have the knowledge that a signer with

a set of attributes that meet the signing policy has signed the message. This feature

is called signer anonymity. In Key-Policy ABS, the signer privacy guarantees that

the signature of a message for the attribute set A does not disclose any information

about the signing policy P of the signer except the fact that P is satisfied by A.

2.7.4 Attribute-Based Signcryption

Combining the ABE and ABS, ABSC scheme realizes data and DO authenticity

and, fine-grained data access control simultaneously. Various ABSC constructions

have been suggested to improve efficiency, security, and expressiveness since Gagné

et al. [18] introduced the study of signcryption in an attribute-based architechture

[15, 10, 67, 70, 69]. To facilitate the sharing of PHRs in the cloud, Rao subsequently

developed a Ciphertext-Policy ABSC (CP-ABSC) in [70] that, in comparison to the

CP-ABSC schemes [10, 15, 67], displays a small ciphertext-size. The CP-ABSC [67]

achieves non-selective security in composite-order bilinear group setting wherein the

group order is a product of three primes. Composite-order group constructions are

not very practical in the sense that they impose high computation burden on the

system. Recently, Rao [69] has proposed the concept of an online-offline architec-

ture within ABSC for the purpose of implementing a lightweight signcryption. In

order to reduce the computation overhead of unsigncryption algorithm, outsourced
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ABSC schemes [14, 2] have been suggested, building upon the outsourcing decryp-

tion technique developed by Green et al. [30]. With the help of certain ciphertext

components, the DU may confirm the accuracy of the converted ciphertext using

the technique suggested in [14], which is an adaptation of the ABSC [70]. Belguith

et al. ABSC [2] allows for access policy updates without the need to re-issue users’

secret keys or re-signcryption of cipherext. In order to verify that the converted ci-

phertext acquired in [2] is accurate, the DU must communicate with a semi-trusted

edge server.

2.7.5 Attribute-Based Searchable Encryption

To efficiently search over encrypted data, Boneh et al. [6] introduced public key

encryption with keyword search, wherein a storage server, not aware of the under-

lying plaintext or the keyword, verifies if a keyword selected by the DU is same

as the keyword linked to the ciphertext. The combination of ABE and searchable

encryption, called ABSE, provides data confidentiality, fine-grained access control,

and data retrieval mechanism simultaneously. In [92, 81], for the first time the

search functionality is incorporated in ABE framework. The DU queries the cloud

by sending a trapdoor corresponding to a keyword and obtains back partially de-

crypted matching ciphertexts. ABSE can be broadly classified into three groups

(i) ABSE supporting single keyword search [49, 26, 88, 54, 64, 63, 62], (ii) ABSE

supporting multi-keyword search [83, 91, 1, 77, 87, 62] and (iii) ABSE supporting

keyword policy search [12]. In [49, 26], the authors constructed ABSE with keyword

update and ciphertext re-encryption in key-policy and ciphertext-policy setting, re-

spectively. Although the ABSE [88] supports user revocation and traitor tracing

functionalities, it fails to resist KGAs. The scheme [83] focuses on outsourcing key

generation, encryption and decryption tasks whereas the verification of the partially

decrypted ciphertext returned by the cloud server is ignored. Less expressive AND

gate access policy is used in [91] to encrypt a data document and a conjunctive key-

word search policy is employed to generate a trapdoor. In [12], Cui et al. suggested

a generic construction of ABSE that simultaneously supports fine-grained data ac-

cess control, keyword privacy and expressive data searching. But it may not resist

KGAs.



CHAPTER 2. 20

2.7.6 Searchable Attribute-Based Signcryption

By integrating the key-policy ABS from [72], the CP-ABE from [70], and the key-

word search scheme from [92], a searchable ABSC with single keyword search is

presented in [53]. Combining the KP-ABSC [72] with the single keyword search

framework [92], another ABSC with single keyword search is provided in [52]. Based

on the threshold-policy CP-ABE [21] and ABS [20], and B+tree-based data retrieval

framework, Obiri et al. [66] designed a single keyword searchable ABSC scheme to

share EMRs with intended DUs. The massive computational overhead of unsign-

cryption in [66] is left to DUs. Varri et al. [82] suggested a multi-keyword searchable

ABSC in cloud storage employing a multi-dimensional B+-tree framework, in which

DUs obtain search trapdoors from DOs. The workload of DUs is heavy and the

scheme cannot offer signer anonymity and search results verification functionalities.

Recently, Bera et al. [3] devised a novel secure, lightweight online-offline keyword

policy searchable ABSC for cloud environments.

2.7.7 Attribute-Based Proxy Re-Encryption

In order to effectively communicate the encrypted data with other DUs, Mambo

and Okamoto [58] proposed proxy re-encryption (PRE), where a proxy with a re-

encryption key can transform original ciphertext to another ciphertext of the same

message without knowing the original message. Later, Liang et al. [50] proposed a

PRE in attribute-based setting, known as ABPRE. In [55], Luo et al. suggested a

ciphertext-policy ABPRE (CP-ABPRE) scheme supporting a less expressive AND

gate access policy with positive and negative attributes. Later, Liang et al. [46, 47]

introduced different types of CP-ABPRE schemes with improved security. Later,

two key policy ABPRE (KP-ABPRE) schemes were proposed by Ge et al. [23, 27],

which are selective and adaptive model secure, respectively. In 2021, Ge et al. [22]

introduced verifiability and fairness in CP-ABPRE scheme. Recently, the direct

user revocation mechanism is introduced in ABPRE framework by Ge et al. [24].

2.7.8 Proxy Re-Encryption with Keyword Search

Shao et al. [79] initiated proxy re-encryption with keyword search (PREKS), which

enables a sender to transfer keyword search capacity to new users. Later, various

PREKS schemes were introduced in [89, 16]. However, all of the schemes [79, 89, 16]

support single keyword search. Later, Wang et al. [84] introduced conjunctive
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keyword search function to increase the search efficiency. Shi et al. [80] introduced

PREKS scheme in attribute-based setting. In order to facilitate keyword updates

and ensure chosen ciphertext attack (CCA) security in the random oracle model,

a KP-ABPRE with keyword search scheme was developed in [48]. However, the

scheme [48] does not support independent token generation framework. Later, a

searchable CP-ABPRE scheme was proposed by Ge et al. [25], which supports

independent token generation framework. Prior to this work, a searchable KP-

ABPRE scheme [37] was introduced, which is IND-CPA secure, but it does not

support search result verfication mechanism. However, all the schemes [80, 48, 25,

37] support less efficient single keyword search framework.

2.8 Chapter Summary

This chapter can be viewed as an integration of two parts: (i) cryptographic pre-

liminaries (Sections 2.2 to 2.6) and (ii) study of literature (Section 2.7). First part

provides the necessary tools for understanding of the topics given in the next chap-

ters, including pairings, hard problems, access structures, LSSS, hash functions and

KDF. In the second part, we concentrate on providing appropriate related work

pertaining to the primitives presented in the later chapters.
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Chapter 3

Attribute-Based Verifiable Data

Storage and Retrieval Scheme in

Cloud Computing Environment

In this chapter, we propose a secure lightweight Attribute-Based verifiable Data

Storage and data Retrieval Scheme (ABDSRS) for cloud environments that attains

the following features: (i) lightweight design, (ii) provably secure, (iii) fine-grained

data access control, (iv) DO anonymity, (v) data and DO authenticity, (vi) keyword

policy search over encrypted data, (vii) keyword privacy, and (viii) search results

verification. ABDSRS employs attribute-based online-offline mechanism in which

only authorized DOs can anonymously upload data to the cloud. And, a DU can

search over encrypted data using keyword policy. ABDSRS enables a DU to inde-

pendently check the precision of search outcomes acquired from the cloud. ABDSRS

is lightweight in the sense that the heavy computations are offloaded either to the

cloud or to offline phase, while only lightweight operations are executed at the DU

device. We formalize more general security definitions of ABDSRS by considering

various possible adversarial capabilities and present rigorous security analysis. We

also conduct experiments to evaluate ABDSRS’s performance.

The work presented in this chapter is based on our published research article given below.
Sourav Bera, Suryakant Prasad, Y Sreenivasa Rao, Ashok Kumar Das, and Youngho Park.
Designing attribute-based verifiable data storage and retrieval scheme in cloud computing environ-
ment. Journal of Information Security and Applications, vol. 75, pp. 103482, Elsevier, 2023.
https://doi.org/10.1016/j.jisa.2023.103482

23
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3.1 Introduction

Cloud computing is a new paradigm for computing and storage that allows people

and organizations to store data, share it with specific users, and retrieve it when

needed. By offering adaptable, affordable, and high-quality services, it significantly

enhances peoples’ capacities for data sharing, storage, and retrieval. To effectively

deal with issues with data security and privacy, it is essential to establish verified

storage for data, implement fine grained data access control, provide efficient data

searching mechanism, and verify the accuracy of search outcomes. However, simul-

taneously accomplishing the aforementioned functionalities is quite difficult.

An insecure framework [26] may arise from a straightforward combination of

attribute-based keyword policy search mechanism, ABVOD, and ABS. Specifically,

the framework may be vulnerable to KGAs and CCA. Moreover, it is much more

difficult to realize the verifiability mechanism within such architechtures. This re-

quirement arises from the fact that the DU needs to confirm that three cloud-based

operations-search, transform, and verifying the signature-are performed correctly.

Within ABVOD, the DU only validates the transform algorithm executed by the

cloud. It is far from simple to combine ABE and ABS into one basic. Several ABSC

mechanisms have been shown to be vulnerable in [72, 70].

In order to address the technical challenges being identified, we propose a se-

cure lightweight ABDSRS for cloud environments by adapting the techniques of

[8, 13, 42, 69, 90] and introducing some new technical ideas. Our ABDSRS is a

novel secure lightweight online-offline attribute-based policy searchable signcryp-

tion cryptosystem equipped with the entities: DO, the Trapdoor Generation Center

(TGC), DU, the cloud, and the Key Generation Center (KGC), that supports si-

multaneously outsourcing unsigncryption, correctness verification of search results

and keyword privacy.

Briefly, in ABDSRS, a signature key and a decryption key are assigned to the

DO and the DU respectively, by KGC. The DO uses signcryption to secure the

confidential data by using an encryption policy, signature policy, and a collection

of keywords. The resulting ciphertext is then sent to the cloud for storage. The

cloud accepts the ciphertext if the DO is authorized. In order to access necessary

data from the cloud, a DU first obtains a trapdoor from TGC for a keyword policy.

Subsequently, the cloud receives a data retrieval request generated by the DU. The

test algorithm is carried out by the cloud, which finds matching ciphertexts after

getting the data retrieval request. After that, the cloud creates the “transformed
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Figure 3.1: Architecture of ABDSRS

ciphertexts”, which are matching ciphertexts that have been partially decrypted.

Afterwards, the DU receives the transformed ciphertexts from the cloud. Finally,

the DU validates the accuracy of the tasks executed by the cloud and restores

the original data using lightweight calculations (the detailed model of ABDSRS is

presented in Section 3.2.1).

Chapter Organization. The rest of the chapter is organized as follows. In Sec-

tion 3.2, we formally define proposed ABDSRS and its security notions. Section 3.3

presents the ABDSRS’s comprehensive construction. The security analysis of ABD-

SRS is provided in Section 3.4. Section 3.5 then addresses ABDSRS’s performance.

The chapter is concluded in Section 3.6.

3.2 Security of ABDSRS

3.2.1 System Model

The five entities of ABDSRS’s architecture are shown in Figure 3.1: DO, KGC,

TGC, DU and cloud.

(i) KGC. It is a completely trusted entity that is responsible for assigning a

signing key and a decryption key to DO and DU, respectively.

(ii) DO. It signcrypts its personal message using an encryption policy, a signing

policy and a keyword set and generates the ciphertext.

(iii) TGC. The creation of a trapdoor for the keyword policy obtained from the

DU is the responsibility of this trustworthy entity. Next, the produced trapdoor is
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sent to the relevant DU using a secure connection.

(iv) Cloud. It offers data storage and retrieval services. After receiving the

ciphertext outsourced by DO, it checks the integrity of the ciphertext and stores

it. Also, when receiving a data retrieval request from DU, it first locates all the

matching ciphertexts (if the keyword set in ciphertext satisfies the keyword policy

attached to the data retrieval request, then those ciphertexts are called matching

ciphertexts) by performing the test operation. Then, it executes the transform

operation to create partially unsigncrypted matching ciphertexts called transformed

ciphertexts and sends them to DU.

(v) DU. It can obtain the stored ciphertext in the cloud based on its require-

ments. First, it generates a data retrieval request using the trapdoor, sends it to

the cloud, and finally obtains the corresponding transformed ciphertext from the

cloud. Next, it validates the accuracy of the transformed ciphertext returned by

the cloud and finally gets back the original data by unsigncrypting the transformed

ciphertext.

3.2.2 Security Models

In this section, we formally define the security of ABDSRS in terms of data confi-

dentiality, data unforgeability, DO privacy, verifiability and keyword privacy. Based

on the system model presented above, our proposed ABDSRS (for the ease of un-

derstanding, we present in Table 4.1 the notations used in ABDSRS) with signing

attribute1 universe Us, encryption attribute2 universe Ue and keyword universe Ut

(let U be the attribute universe such that U = Us ∪ Ue ∪ Ut) that supports signing
policy Ps over Us, encryption policy Pe over Ue and keyword policy Pt over Ut with
the message spaceM involves five entities: KGC, DOs, cloud, TGC and DUs, and

consists of the following seven phases.

(1) System Initialization. First, KGC generates the system public parameters PP
and the system master secret key MK by running KGC-Setup algorithm with

the input security parameter 1℘, and initializes the system by announcing PP .
MK is kept secret by KGC. Next, by taking PP as input, TGC and cloud create

their public and secret key pair respectively [T PK, T SK] and [CPK, CSK] by
executing TGC-Setup and Cloud-Setup algorithms. They make T PK and CPK
public for every entity in the system while T SK (resp. CSK) is known only to

TGC (resp. the cloud).

1We will use signing attribute and DOs attribute interchangeably.
2We will use encryption attribute, decryption attribute and DUs attribute interchangeably.
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Table 3.1: Notations used in our ABDSRS

KGC (resp. TGC) : key (resp. trapdoor) generation center
PP (resp. MK) : system public parameters(resp. system master secret key)
T PK (resp. T SK) : TGC public key (resp. secret key)
CPK (resp. CSK) : cloud public key (resp. secret key)
SKAs : signing key for signing attribute set As
DKAd : decryption key for the decryption attribute set Ad
DRR : data retrieval request
T DK : secret transformation decryption key
IC (resp. IT , IDR) : intermediate ciphertext (resp. trapdoor, data retrieval request)
msg : data file or plaintext
Pe (resp. Ps, Pt) : encryption (resp. signing, keyword) policy
CT : ciphertext for Ps,Pe, keyword set W
CT out : transformed ciphertext
T KAd : transform key for the decryption attribute set Ad derived from DKAd
T̃ DPt : trapdoor for Pt returned by TGC

T DP◦
t

: transform trapdoor for Pt derived by DU from T̃ DPt

• KGC-Setup(1℘)→ [PP ,MK].

• TGC-Setup(PP)→ [T PK, T SK].

• Cloud-Setup(PP)→ [CPK, CSK].

(2) DO and DU Key Generation. In this phase, KGC generates and issues sign-

ing key to DO and decryption key to DU, by running sKeyGen and dKeyGen

algorithms, respectively.

• sKeyGen(PP ,MK, As) → SKAs . Taking PP , MK and a signing attribute

set As ⊂ Us, this algorithm produces a signing key SKAs .

• dKeyGen(PP ,MK, CPK, Ad) → DKAd . Given PP ,MK, a decryption at-

tribute set Ad ⊂ Ue and CPK, this algorithm returns a decryption key DKAd .

(3) Signcryption. The DO executes this algorithm. In the offline phase offSigncrypt,

DO prepares the intermediate ciphertext IC, which will be used in the online

phase. Then, once IC and the plaintext msg becomes accessible, the online

phase onSigncrypt produces the final ciphertext CT .

• offSigncrypt(PP ,SKAs , T PK, CPK,Ps)→ IC. On input PP ,SKAs , T PK,
CPK, and a signing policy Ps such that Ps(As) = true, this algorithm creates

the intermediate ciphertext IC.

• onSigncrypt(PP , IC,msg,Pe,W ) → CT . Taking PP , IC, a set W of key-

words, a plaintext msg ∈ M and an encryption policy Pe, this algorithm
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produces a ciphertext CT . The set W ◦ (of keywords that includes only

generic names) and the policies Pe,Ps will be incorporated in CT . Let

W := {[W1 : w1], . . . , [Wς : wς ]}, where Wi represents the generic key-

word name and wi represents the associated keyword value. In this case,

W ◦ := {W1, . . . ,Wς}.

(4) Keyword Policy Trapdoor Generation. This algorithm is executed by the TGC.

In the offline phase offTrapGen, TGC precomputes the intermediate trapdoor

IT , which will be utilized in the online phase. Next, once IT is ready to be

used and the keyword policy Pt is received, the online phase onTrapGen creates

and sends the final trapdoor T̃ DPt to the DU.

• offTrapGen(PP , CPK, T SK) → IT . Taking PP , CPK and T SK as input,

this algorithm outputs IT .

• onTrapGen(PP , IT , T SK,Pt) → T̃ DPt . On input PP , IT , T SK, a keyword

policy Pt, this algorithm produces the trapdoor T̃ DPt for Pt.

(5) Data Retrieval Request Generation. When sending the keyword policy Pt to
TGC, the DU runs offline data retrieval request generation algorithm

offDataRetReq to precompute the intermediate data retrieval request IDR. Af-
ter getting back the trapdoor T̃ DPt , the DU performs the online data retrieval

request generation algorithm onDataRetReq to generate the actual data retrieval

request DRR, and sends DRR to the cloud.

• offDataRetReq(PP ,DKAd ,Pt) → IDR. Taking PP ,DKAd ,Pt as input, this

algorithm generates IDR.

• onDataRetReq(PP , IDR, T̃ DPt) → [DRR, T DK]. Taking PP , IDR, T̃ DPt ,

it creates the data retrieval request DRR and the secret transformation de-

cryption key T DK. Note that DRR contains two components T DP◦
t
and

T KAd , where the former is transform trapdoor (which is derived from T̃ DPt)

for Pt and the latter is transform key (which is derived from DKAd) for the
decryption attribute set Ad. That is, DRR := ⟨T DP◦

t
, T KAd⟩. Only P◦

t will

be included in T DP◦
t
, and hence in DRR, where P◦

t is the policy Pt with only

generic names of the keywords.

(6) Data Retrieval. Upon receiving the data retrieval requestDRR := ⟨T DP◦
t
, T KAd⟩

from DU, the cloud server responds the request as follows. The cloud server first
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performs the Test algorithm on the stored ciphertexts and identifies the match-

ing ciphertexts obeying the property that the (blinded) keyword set W ◦ in the

ciphertext satisfies the (blinded) keyword policy P◦
t embedded in the trapdoor

(i.e., P◦
t (W

◦) = true and hence Pt(W ) = true). After that, it sends the DU

the converted ciphertexts CT out after running the Transform algorithm upon the

matching ciphertexts.

• Test(PP , CT , CSK,DRR) → CT or ⊥. Taking PP , CT , CSK and DRR as

input, the test algorithm returns the ciphertext CT if Pt(W ) = true; other-

wise, returns ⊥.

• Transform(PP , CT , CSK,DRR). → CT out or ⊥. Taking PP , CT , CSK and

DRR as input, it returns the transformed ciphertext CT out if CT is the output

of Test; and returns ⊥ if Test outputs ⊥.

(7) Unsigncryption and Verify. Once the transformed ciphertext CT out is received
by a DU from the cloud, it is unsigncrypted using the user’s secret transforma-

tion decryption key T DK. Additionally, the user verifies the accuracy of the

Test and Transform operations carried out by the cloud through the execution

of the subsequent algorithm.

• Unsigncrypt-Verify(PP , CT out, T DK)→ msg or ⊥. Taking PP , a transformed

ciphertext CT out and the transformation decryption key T DK as input, it

outputs the message msg if the search results are correct and the signature

verification is done correctly by the cloud; otherwise, outputs ⊥ indicating

that search results are incorrect.

Data Confidentiality

Unauthorized entities should not decrypt a ciphertext stored in the cloud, which

is ensured by the security property called data confidentiality. In ABDSRS, only

the cloud can provide the ciphertext storage service that any authorized DU can

use. So, a DU with a valid trapdoor can’t perform search operation and decrypt the

ciphertext if it doesn’t know the cloud secret key (CSK). Therefore, an adversary

can manifest as either a Type-1 adversary, which refers to an unauthorized entity

possessing CSK, or a Type-2 adversary, which refers to an authorized entity that

is ignorant of CSK. The following defines this ABDSRS security concept using the

IND-CCA2 security game, wherein the ciphertexts are indistinguishable under an

adaptive chosen ciphertext attack.
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IND-CCA2 Security for Type-1 Adversary

The scenario is depicted in the following security game GameIND-CCA2Type-1 , which poses

a challenger C against a Type-1 adversary A .

Experiment GameIND-CCA2Type-1 (1℘)

1. P⋆e ← A (1℘);

2. [PP,MK]← KGC-Setup(1℘), [T PK, T SK]← TGC-Setup(PP),
[CPK, CSK]← Cloud-Setup(PP);

3. [msg⋆0,msg⋆1,P⋆s ,W ⋆, st]← A O1(PP, T PK, CPK, CSK), where |msg⋆0| = |msg⋆1|;
4. CT ⋆ ← onSigncrypt

(
PP, offSigncrypt(PP,SKAs , T PK, CPK,P⋆s ),msg⋆i ,P⋆e ,W ⋆

)
,

where i
u←− {0, 1}, As

u←− 2Us ∋ P⋆s (As) = true,SKAs ← sKeyGen(PP,MK, As);
5. i′ ← A O2(P⋆e ,PP, T PK, CPK, CSK,msg⋆0,msg⋆1,P⋆s ,W ⋆, st, CT ⋆).

where O1 := {OSKG,ODRR,OSC,ODR-UV} and O2 := {OSKG,ODRR,OSC,O′
DR-UV}

are two sets of oracles (defined below), 2Us is the set of all non-empty subsets of the

signing attribute universe Us, and st is state information maintained by A .

� Signing key generation oracle OSKG(As) : on input a signing attribute set As,

it returns the signing key SKAs to A .

� Data retrieval request generation oracle ODRR(Ad,Pt) : on input a decryption

attribute set Ad and a keyword policy Pt, it performs as follows.

(i) In case P⋆e (Ad) = true, it computes [DKAd , T̃ DPt , T KAd , T DP◦
t
, T DK] and

returns the data retrieval request DRR := ⟨T DP◦
t
, T KAd⟩ to A .

(ii) In case P⋆e (Ad) = false, it computes [DKAd , T̃ DPt ] and returns the same

to A . Note that, in this case, A can generate DRR := ⟨T DP◦
t
, T KAd⟩ and

T DK.

� Signcryption oracle OSC(msg,Ps,Pe,W ) : on input a message msg, a signing

policy Ps, an encryption policy Pe and a keyword set W, it returns to A the

corresponding ciphertext CT .

� Data retrieval cum unsigncrypt-verify oracle ODR-UV(CT , Ad,Pt) : on input

a ciphertext CT , a decryption attribute set Ad and a keyword policy Pt, it
returns either msg or ⊥ to A .

� O′
DR-UV is same as ODR-UV , except that A is not permitted to query O′

DR-UV

using the input [CT ⋆, Ad,Pt] satisfying P⋆e (Ad) = true ∧ Pt(W ⋆) = true, here

W ⋆ is the keyword set of CT ⋆.
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If i′ = i, A wins the game. The advantage of A in winning the above game is

described as AdvIND-CCA2Type-1 (1℘)
def
=
∣∣Pr[i′ = i]− 1/2

∣∣.
IND-CCA2 Security for Type-2 Adversary

The scenario is depicted in the following security game GameIND-CCA2Type-2 , which poses

a challenger C against a Type-2 adversary A .

Experiment GameIND-CCA2Type-2 (1℘)

1. [PP,MK]← KGC-Setup(1℘), [T PK, T SK]← TGC-Setup(PP),
[CPK, CSK]← Cloud-Setup(PP);

2. [msg⋆0,msg⋆1,P⋆e ,P⋆s ,W ⋆, st]← A O3(PP, T PK, CPK), where |msg⋆0| = |msg⋆1|;
3. CT ⋆ ← onSigncrypt

(
PP, offSigncrypt(PP,SKAs , T PK, CPK,P⋆s ),msg⋆i ,P⋆e ,W ⋆

)
;

where i
u←− {0, 1}, As

u←− 2Us ∋ P⋆s (As) = true,SKAs ← sKeyGen(PP,MK, As);
4. i′ ← A O4(PP, T PK, CPK,msg⋆0,msg⋆1,P⋆e ,P⋆s ,W ⋆, st, CT ⋆).

where O3 := {OSKG,O′
DRR,OSC,ODR-UV} and O4 := {OSKG,O′

DRR,OSC,O′
DR-UV}

are two sets of oracles which are defined below.

� Data retrieval request generation oracle O′
DRR(Ad,Pt) : on input a decryption

attribute set Ad and a keyword policy Pt, it returns [DKAd , T̃ DPt ] to A . Note

that A can generate DRR := ⟨T DP◦
t
, T KAd⟩ and T DK by using the received

DKAd and T̃ DPt .

The other oracles are essentially the same as that of GameIND-CCA2Type-1 (1℘).

If i′ = i, A wins the game. The advantage of A in winning the above game is

described as AdvIND-CCA2Type-2 (1℘)
def
=
∣∣Pr[i′ = i]− 1/2

∣∣.
Definition 3. The ABDSRS is said to be IND-CCA2 secure if AdvIND-CCA2Type-1 (1℘) and

AdvIND-CCA2
Type-2 (1℘) are negligible, for all PPT Type-1 and Type-2 adversaries, respec-

tively.

Unforgeability of the Data

It detects the inability of an external malicious entity or an unauthorized DO to

generate a valid signature, thereby ensuring the signature verification mechanism is

successful. And, even if unauthorized DOs collude and pool their signing attributes

such that the collection of attributes satisfies a signing policy whereas none of the

single DOs would satisfy the policy on its own, they cannot create a ciphertext with

valid signature for that signing policy. Existential unforgeability against Chosen

Message Attack (EUF-CMA) model defines this ABDSRS security concept.
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EUF-CMA Security

The security game GameEUF-CMA
A involves a model that consists of a challenger

C and an adversary A . The game works as follows.

Experiment GameEUF-CMA
A (1℘)

1. P⋆s ← A (1℘);

2. [PP,MK]← KGC-Setup(1℘), [T PK, T SK]← TGC-Setup(PP),
[CPK, CSK]← Cloud-Setup(PP);

3. CT ⋆ ← A O(PP, T PK, CPK, CSK).

where CT ⋆ = CT ⋆(P⋆s ,P⋆e ,W ⋆), O := {O′
SKG,O′

DRR,OSC,ODR-UV} is a set of oracles

and

� Signing key generation oracle O′
SKG(As) : on input a signing attribute set As

with the restriction that P⋆s (As) = false, it outputs and transmits the signing

key SKAs to A .

Note that the other oracles are similar to that of GameIND-CCA2Type-2 (1℘).

The adversary A wins this game if there exist Ad,Pt satisfying the following

simultaneously: P⋆e (Ad) = true,Pt(W ⋆) = true,ODR-UV(CT ⋆, Ad,Pt) = msg⋆ ̸= ⊥,
and A did not query for OSC using the input (msg⋆,P⋆s ,P⋆e ,W ⋆). The advantage

of A in this game is defined as AdvEUF-CMA
A (1℘)

def
= Prob[A wins the game].

Definition 4. The ABDSRS is said to be EUF-CMA secure if AdvEUF-CMA
A (1℘) is

negligible, for any A .

DO Privacy

This guarantees that the ciphertext does not reveal the set of attributes used in

signing process. No one, including the cloud server, a DU, or any other adversary,

can deduce the set of DO’s attributes used to generate a signature from a certain

ciphertext. The scenario is depicted in the following security game GameDO-Privacy
A ,

which poses a challenger C against an adversary A . The game works as descried

below.
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Experiment GameDO-Privacy
A (1℘)

1. [PP,MK]← KGC-Setup(1℘), [T PK, T SK]← TGC-Setup(PP),
[CPK, CSK]← Cloud-Setup(PP);

2. [A
(0)
s , A

(1)
s ,msg,Ps,Pe,W, st]← A (PP,MK, T PK, T SK, CPK, CSK),

where Ps(A(0)
s ) = true = Ps(A(1)

s );

3. CT ⋆ ← onSigncrypt
(
PP, offSigncrypt(PP,SK

A
(i)
s
, T PK, CPK,Ps),msg,Pe,W

)
,

where i
u←− {0, 1},SK

A
(i)
s
← sKeyGen(PP,MK, A(i)

s );

4. i′ ← A (PP,MK, T PK, T SK, CPK, CSK, A(0)
s , A

(1)
s ,msg,Ps,Pe,W, st, CT ⋆).

In this game, A need not to query any oracle and it can compute required

components by itself because A is given access to system master secret key, cloud

secret key and trapdoor secret key.

If i′ = i, A wins the game. The advantage of A in winning the above game is

AdvDO-Privacy
A (1℘)

def
= Prob[i′ = i].

Definition 5. The ABDSRS is said to provide DO privacy if AdvDO-Privacy
A (1℘) = 1

2
,

for any A .

Verifiability

The verifiability ensures that DU can check whether the transformed ciphertext

made by the cloud is correct. That is, an authorized DU can verify the correct-

ness of the test, transform and signature verification operations done by the cloud.

Specifically, given a challenge ciphertext for the message msg⋆, the malicious cloud

cannot create a transformed ciphertext that gives a message not in the set {msg⋆,⊥}
and passes the verification mechanism. The model is formulated by a security game

GameverifiabilityA , presented below, between an authorized DU C and the malicious

cloud A . where Õ := {OSKG,O′′
DRR,OSC,ODR-UV} and

� Data retrieval request generation oracle O′′
DRR(Ad,Pt) : on input a keyword

policy Pt and a decryption attribute set Ad, it outputs [DKAd , T̃ DPt , T KAd ,
T DP◦

t
, T DK] and sends the data retrieval request DRR := ⟨T DP◦

t
, T KAd⟩

to the adversary A . Next, it stores the tuple JAd,Pt, T KAd , T DP◦
t
, T DKK in

table Tab′′DRR.
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Experiment GameverifiabilityA (1℘)

1. [PP,MK]← KGC-Setup(1℘), [T PK, T SK]← TGC-Setup(PP),
[CPK, CSK]← Cloud-Setup(PP);

2. [msg⋆,P⋆e ,P⋆s ,W ⋆, st]← A Õ(PP, T PK, CPK, CSK);
3. CT ⋆ ← onSigncrypt

(
PP, offSigncrypt(PP,SKAs , T PK, CPK,P⋆s ),msg⋆,P⋆e ,W ⋆

)
;

where As
u←− 2Us ∋ P⋆s (As) = true,SKAs ← sKeyGen(PP,MK, As);

4. [Ad,Pt, CT out]← A Õ(PP, T PK, CPK, CSK,msg⋆,P⋆e ,P⋆s ,W ⋆, st, CT ⋆),
where P⋆e (Ad) = true ∧ Pt(W ⋆) = true.

Suppose that the tuple JAd,Pt, T KAd , T DP◦
t
, T DKK is in table Tab′′DRR. If not, it

can be generated by querying the oracle O′′
DRR with the input (Ad,Pt).

The adversary A can win the game

if Unsigncrypt-Verify(PP , CT out, T DK) /∈ {msg⋆,⊥}.

Definition 6. The ABDSRS is verifiable if the advantage of A in the game

GameverifiabilityA , defined as AdvverifiabilityA (1℘)
def
= Prob[A wins], is negligible, for all PPT

adversaries A .

Keyword Privacy

This guarantees that the ciphertext reveals nothing about the keyword values it

contains. The cloud server (referred to as Type-1 adversary) cannot determine which

ciphertext uses which set of keyword values without knowledge of the corresponding

“valid” trapdoor. A trapdoor is considered valid if it contains a keyword policy

that accepts the set of keywords linked to the ciphertext. The Type-2 adversary,

which refers to an authorized entity that is ignorant of CSK, is unable to identify

which ciphertext utilizes which set of keyword values, even though the adversary

knows the corresponding valid trapdoors. Security in terms of keyword privacy is

defined subsequently as indistinguishability against chosen keyword set attack (in

short, IND-CKA).

IND-CKA Security for Type-1 Adversary

The scenario is depicted in the following security game GameIND-CKAType-1 , which poses

a challenger C against a Type-1 adversary A .
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Experiment GameIND-CKAType-1 (1℘)

1. W ⋆
0 ,W

⋆
1 ← A (1℘), where |W ⋆

0 | = |W ⋆
1 | and W ⋆◦

0 = W ⋆◦
1 ;

2. [PP,MK]← KGC-Setup(1℘), [T PK, T SK]← TGC-Setup(PP),
[CPK, CSK]← Cloud-Setup(PP);

3. [msg⋆,P⋆e ,P⋆s , st]← A Ô(PP, T PK, CPK, CSK);
4. CT ⋆ ← onSigncrypt

(
PP, offSigncrypt(PP,SKAs , T PK, CPK,P⋆s ),msg⋆,P⋆e ,W ⋆

i

)
,

where i
u←− {0, 1}, As

u←− 2Us ∋ P⋆s (As) = true,SKAs ← sKeyGen(PP,MK, As);
5. i′ ← A Ô(PP, T PK, CPK, CSK,msg⋆,P⋆e ,P⋆s ,W ⋆

0 ,W
⋆
1 , st, CT ⋆).

where Ô := {OSKG,O′′′
DRR,Otest} and

� Data retrieval request generation oracle O′′′
DRR(Ad,Pt) : on input a decryption

attribute set Ad and a keyword policy Pt with the condition that

Pt(W ⋆
0 ) = false ∧ Pt(W ⋆

1 ) = false, it computes the data retrieval request

DRR := ⟨T DP◦
t
, T KAd⟩ and sends the same to A .

� Test oracle Otest(CT ,Pt) : Taking a ciphertext CT and a keyword policy Pt
obeying the condition Pt(W ⋆

0 ) = false∧Pt(W ⋆
1 ) = false, it returns the output

of Test algorithm.

IND-CKA Security for Type-2 Adversary

The security game GameIND-CKAType-2 involves a model that consists of a challenger C

and an adversary A . The game works as follows.

Experiment GameIND-CKAType-2 (1℘)

1. [PP,MK]← KGC-Setup(1℘), [T PK, T SK]← TGC-Setup(PP),
[CPK, CSK]← Cloud-Setup(PP);

2. [msg⋆,P⋆e ,P⋆s ,W ⋆
0 ,W

⋆
1 , st]← A O5(PP, T PK, CPK), where |W ⋆

0 | = |W ⋆
1 | and

W ⋆◦
0 = W ⋆◦

1 ;

3. CT ⋆ ← onSigncrypt
(
PP, offSigncrypt(PP,SKAs , T PK, CPK,P⋆s ),msg⋆,P⋆e ,W ⋆

i

)
,

where i
u←− {0, 1}, As

u←− 2Us ∋ P⋆s (As) = true,SKAs ← sKeyGen(PP,MK, As);
4. i′ ← A O6(PP, T PK, CPK,msg⋆,P⋆e ,P⋆s ,W ⋆

0 ,W
⋆
1 , st, CT ⋆).

where O5 := {OSKG,O′
DRR,O′

test} and O6 := {OSKG,O′
DRR,O′′

test},

� Test oracle O′
test(CT ,Pt) : Given a ciphertext CT and a keyword policy Pt, it

returns the output of Test algorithm.



CHAPTER 3. 36

� O′′
test(CT ,Pt) : This is same as O′

test(CT ,Pt), except that A is not permitted

to query O′′
test using the input (CT ⋆,Pt) such that Pt(W ⋆

i ) = true.

For k ∈ {1, 2}, the adversary wins the game GameIND-CKAType-k if i′ = i. The adversary’s

advantage in GameIND-CKAType-k is defined as AdvIND-CKAType-k (1℘)
def
=
∣∣Prob[i′ = i]− 1/2

∣∣.
Definition 7. The ABDSRS is said to be IND-CKA secure if AdvIND-CKAType-1 (1℘) and

AdvIND-CKA
Type-2 (1℘) are negligible, for all PPT Type-1 and Type-2 adversaries, respec-

tively.

3.3 ABDSRS Construction

Prior to presenting our ABDSRS, we first describe our techniques that are used to

achieve the key characteristics of ABDSRS.

Let p be a prime, and G and GT be cyclic groups of order p. We employ a bilinear

pairing e : G × G → GT and eight collision-resistant hash functions {Hi}8i=1, the

description of these functions is given in KGC-Setup algorithm presented below. To

reduce the number of hash functions, we use the hash function H5 : {0, 1}∗ → Z∗
p

to map either a binary string or a GT element to an element of Z∗
p. In the latter

case, we first convert the GT element into a binary string, then we use H5. The

attribute universe U = {0, 1}∗. Using a hash function H1 : {0, 1}∗ → G, the signing

attributes are converted to random elements of G. Using another hash function

Ht : {0, 1}∗ → Z∗
p, one can map each encryption attribute/keyword string to an

element of Z∗
p. Hence, for brevity, we treat both encryption attributes as well as

keywords are elements of Z∗
p. All the access policies we consider in this system

use MSP representation (described in Section 2.4.1). We assume that the signing

attributes involved in signing policy are all distinct. However, this is acceptable

from a practical view point due to the following fact. To sign a data file, the DO

formulates a signing policy that accepts its signing attribute set. This can be done

in many ways. For instance, if As is a signing attribute set, then DO can always

create a policy of the form Ps := P̆s ∨ Ăs satisfying Ps(As) = true, where P̆s is any
signing policy with distinct attributes which are also different from those in As and

Ăs ⊂ As.

We employ suitably and significantly modified version of the attribute-based

online-offline signcryption scheme (ABOOSC) proposed in [69] as the building block

due to the following fact. ABOOSC supports a large attribute universe and ex-

pressive monotone boolean function access policies, and realizes constant size public



CHAPTER 3. 37

parameters, DO authentication, lightweight signcryption and DO anonymity, simul-

taneously.

• Lightweight Design. We implement an online-offline framework in signcryption,

trapdoor generation and data retrieval request generation algorithms. The offline

phase carries out majority of the required computations including all the heavy

computations such as pairing, exponentiation etc. whereas during online phase

comparatively quite a few light computations (e.g., hashing, modular addition

and modular multiplication etc.) are performed. Using the idea suggested in [90],

we make the number of required pairing computations constant (precisely, 14)

during the process of identifying matching ciphertexts. The number of pairings

used in transform operation is independent of the number of keywords and signing

attributes, and depends only on the number of encryption attributes associated

with the ciphertext. Precisely, this number is 2ℓe+7, where ℓe is the number of en-

cryption attributes. To make unsigncryption lightweight, we employ outsourcing

mechanism. The cloud partially unsigncrypts the ciphertext using the trapdoor

received from a DU and sends the transformed ciphertext to the DU. Then, in

order to retrieve the plaintext and ensure that the cloud operations were valid,

the DU just has to run two GT multiplications, two GT exponentiations, two hash

function calculations, and one key derivation function KDF computation.

• Keyword Privacy. In order to ensure the keyword privacy, the technique used in

[42, 13] is adopted. Namely, each keyword is split into generic keyword name and

a keyword value. Precisely, the structure of each keyword is [generic keyword name

: keyword value]. In the ciphertext, we include only the set W ◦ of keywords that

includes only generic names. And, a trapdoor is attached with the keyword pol-

icy with generic names of the keywords only. For instance, if the keyword pol-

icy is Pt := [university : ABC] ∧ ([faculty : asst-prof] ∨ [student : research-scholar]),

then the policy P◦
t := university ∧ (faculty ∨ student) will be attached to a trap-

door. Therefore, both the cloud and users are not familiar to the precise keyword

values ABC, asst-prof, research-scholar. Many pairing-based searchable encryption

schemes are not secure against KGAs [9]. More specifically, the actual value of the

keyword concealed within a ciphertext (resp. a keyword trapdoor) can be deduced

by an adversary through the appropriate pairing of the ciphertext’s components

with the public parameters.

(i) To prevent KGAs on ciphertexts, we adopt the linear-splitting technique

suggested in [8, 13] in combination with the technique proposed in [90]. The
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former splits each keyword ciphertext component into two complementary

randomized components and re-randomizes every keyword trapdoor compo-

nent to match the splitted components in the ciphertext. The latter makes

the number of required pairing computations constant.

(ii) To prevent KGAs on trapdoors, a pair of public and secret keys are associ-

ated with the cloud. Additionally, the generation of trapdoors utilises the

public key of the cloud in a manner that mandates knowledge of the cloud

secret key for the search operation. Therefore, information regarding the

keyword values will not be disclosed from a trapdoor to an adversary other

than the cloud. Only the cloud server with its secret key can perform search

operations and can identify the matching ciphertexts, the cloud can acquire

knowledge of the keyword values encoded in the trapdoor by performing

offline KGAs.

• Verifiability. Verifying the accuracy of the cloud’s test, transform, and signature

verification procedures independently is the most challenging task. The follow-

ing novel technical concepts are used to accomplish this. The ciphertext CT
consists of ⟨Ωs,Ωe,Ωk, tag2, E2, ε2, η⟩, where Ωs (resp. Ωe,Ωk) consists of signa-

ture (resp. encryption, keyword) components. The message msg is encrypted

as ct := msg ⊕ KDF
(
g
β+ 1

θ
T

)
, where gT is a public parameter and β, θ are ran-

dom exponents. Note that tag2 := H3

(
H2(g

β+ 1
θ

T )||ct
)
. To recover the message,

one needs compute g
β+ 1

θ
T = gβT · g

1
θ
T . The DU re-randomizes the trapdoor T̃ DPt ,

received from TGC, with the random number τ̆ /tr and produces the actual trap-

door T DPt . Also, the DU suitably re-randomizes the decryption key with two

random numbers τ̆ , γ. Hence, in the generation of transformed ciphertext CT out,
the term gβT = e(g, g)αβ is masked as e(g, g)(αβ)/γ · e(g14, g)(βτ̆)/γ which is de-

noted by ∆2. To cancel the term e(g14, g)
(βτ̆)/γ, cloud computes X̆1 (given in

Equation (4.4)), X2 (given in Equation (4.3) and the product X̆1X2 correctly

yields ∆1 := e(g14, g)
(βτ̆)/tr if CT is a matching ciphertext. This verifies the

correctness of test operation done by the cloud. Next, the cloud runs the sig-

nature verification algorithm of [69] with random exponent φ, and recovers the

term g
φ/θ
T if the ciphertext contains a legitimate signature. Next, the cloud com-

putes ∆3 :=
(
g
φ/θ
T

)1/φ
= g

1/θ
T . Finally, the DU receives the transformed ciphertext

CT out := ⟨∆1,∆2,∆3, ct, tag2⟩ from the cloud. Since the cloud does not know

⟨tdk1 := tr, tdk2 := γ⟩ set by DU, it cannot decrypt any original ciphertext. Upon

receiving CT out, DU computes Λ := (∆1)
−tdk1 · (∆2)

tdk2 ·∆3 and checks whether
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H3

(
H2(Λ)||ct

) ?
= tag2. If all the operations done by the cloud are correct, Λ cor-

rectly gives g
β+ 1

θ
T and hence H3

(
H2(Λ)||ct

)
= tag2. In this case, the DU recovers

the message msg as msg = ct⊕ KDF(Λ).

• DO authentication. An authorized DO who has obtained a valid signing key from

KGC can create a verifiable correct signature. The DO includes the components

σ′ := gδ
′
, σ′′ := gδ

′′
4 ,Γ := H7(g

1/θ
T ) ⊕ H8

(
e(σ′, Yc)

δ′′
)
in Ωs, where Yc := gCSK4

is the cloud public key. Upon receiving the data storage request from DO, the

cloud executes the signature verification algorithm of [69] with random exponent

ω and computes the term ∆0 as given in Fig. 3.2. Next, it verifies the identity

Γ
?
= H7(∆

1/ω
0 )⊕H8

(
e(σ′, σ′′)CSK

)
. If the DO has a valid signing key, ∆0 correctly

produces g
ω/θ
T and hence the identity is true. In this case, the cloud accepts the

ciphertext for storage; otherwise it rejects the DO’s request. Note here that only

the cloud can verify the authenticity of a DO using its secret key CSK.

The description of our ABDSRS is as follows.

1. System Initialization

This phase is specified by the following three setup algorithms.

KGC-Setup(1℘). Taking input the security parameter 1℘, this algorithm pro-

duces the system public parameters PP and the system master secret

keyMK in the following way.

� Select a pairing tuple Σ := ⟨p,G,GT , e⟩ (the details are given in

Section 2.2).

� Sample g, g1, g2, . . . , g15
u←− G.

� Choose α
u←− Z∗

p and compute gT := e(g, g)α.

� Select the message space M := {0, 1}ℓmsg . Choose a key derivation

function KDF : GT → {0, 1}ℓmsg .

� Pick eight collision-resistant hash functions H1 : {0, 1}∗ → G,
H2 : GT → {0, 1}ℓH2 , H3 : {0, 1}∗ → {0, 1}ℓH3 , H4 : {0, 1}∗ → Z∗

p,

H5 : {0, 1}∗ → Z∗
p, H6 : {0, 1}∗ → G, H7 : GT → {0, 1}ℓH ,

H8 : GT → {0, 1}ℓH where H1 and H6 are two independent hash

functions, H4 and H5 are two independent hash functions, and H7

and H8 are again two independent hash functions.

� The system public parameters

PP := ⟨Σ, gT , g, {gi}15i=1,M, {Hi}8i=1,KDF⟩.
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� The system master secret keyMK := gα.

⋄ TGC-Setup(PP). Taking PP as input, this algorithm (run by TGC) gen-

erates TGC’s public and secret keys T PK and T SK, respectively, as

described below.

� Pick ϖ1, ϖ2, ϖ3, ϖ4, τ
u←− Z∗

p and compute g16 := gϖ1 , g17 := gϖ2 ,

g18 := gϖ3 , g19 := gϖ4 and hT := e(g, g15)
τ .

� Output T PK := ⟨g16, g17, g18, g19, hT ⟩ and T SK := ⟨ϖ1, ϖ2, ϖ3, ϖ4, τ⟩.

⋄ Cloud-Setup(PP). On input PP , this algorithm (run by cloud) produces

cloud’s public and secret keys CPK and CSK, respectively, in the follow-

ing way.

� Choose rc
u←− Z∗

p and calculate Yc := grc4 .

� Output CPK := Yc and CSK := rc.

2. DO and DU Key Generation

This phase contains the following two key generation algorithms (run by KGC).

KGC issues signing key to DO and decryption key to DU.

⋄ sKeyGen(PP ,MK, As). Given input PP , MK and a signing attribute set

As ⊂ {0, 1}∗, this algorithm returns the signing key SKAs for As as

described below.

� Choose r′
u←− Z∗

p and compute

S1 := gαgr
′

4 , S2 := gr
′
, S3,y := (H1(y))

r′ ,∀y ∈ As.

� The signing key SKAs := ⟨As, S1, S2, {S3,y}y∈As⟩.

⋄ dKeyGen(PP ,MK, CPK, Ad). Taking input PP ,MK, CPK and a decryp-

tion attribute set Ad ⊂ Z∗
p, this algorithm generates the decryption key

DKAd for Ad as follows.

� Pick r
u←− Z∗

p and compute D1 := gαY r
c , D2 := gr.

� For each x ∈ Ad, pick rx
u←− Z∗

p, and calculate

D3,x := grx , D4,x := (gx2g1)
rxg−r3 .

� The decryption key DKAd := ⟨Ad, D1, D2, {D3,x, D4,x}x∈Ad⟩.

3. Signcryption

To signcrypt a plaintext, the DO carries out this phase using two sub-algorithms:

offline signcryption and online signcryption.
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⋄ offSigncrypt(PP ,SKAs , T PK, CPK,Ps).Given input PP ,SKAs , T PK, CPK
and a signing policy Ps := (Ms, ρs) (where Ms represents a matrix with

dimension ℓs×ns) satisfying Ps(As) = true, it generates the intermediate

ciphertext IC by carrying out the steps given below.

� As Ps(As) = true, we can calculate

a⃗ := (a1, a2, . . . , aℓs)← Reconstruct(Ms, ρs, As), satisfying

a⃗ ·Ms = 1⃗ns , i.e.,
∑

i∈[ℓs] ai · M⃗
(i)
s = 1⃗ns and ai = 0 ∀i satisfying

ρs(i) /∈ As. For the matrix Ms, the ith row is denoted as M⃗
(i)
s .

� Sample

(b1, b2, . . . , bℓs)
u←−
{
(b1, b2, . . . , bℓs) ∈ Zℓsp |

∑
i∈[ℓs] biM⃗

(i)
s = 0⃗ns

}
.

� Re-randomize the signing key SKAs as follows: pick r′′
u←− Z∗

p and

set

SKAs := ⟨As, S1 := S1g
r′′

4 , S2 := S2g
r′′ , {S3,y := S3,y(H1(y))

r′′}y∈As⟩

= ⟨As, S1 := gαgr̆4, S2 := gr̆, {S3,y := (H1(y))
r̆}y∈As⟩,

where r̆ := r′ + r′′

� Select β, θ, o1, o2, δ
′, δ′′

u←− Z∗
p and set

Ω′
s :=


Ps, θ, o1, σ′ := gδ

′
, σ′′ := gδ

′′
4 ,Γ := H7(g

1/θ
T )⊕H8

(
e(σ′, Yc)

δ′′
)
,

σ := S
1
θ
1

(
go15 g6

)β ∏
i∈[ℓs]

(
S
ai
θ

3,ρs(i)
·H1(ρs(i))

o2bi
)
,{

σi := S
ai
θ
2 go2bi

}
i∈[ℓs]


� Pick ξ′, η, δ′′′

u←− Z∗
p and for each j ∈ [me], select λ

′
j, tj, ζj

u←− Z∗
p,

where me ∈ N; and set

Ω′
e :=


β, ξ′, η, {λ′j, tj, ζj}j∈[me], ∂ := H5

(
e(σ′, Yc)

δ′′′
)
,

E ′ := gδ
′′′

4 , E1 := gβ, E2 := (gξ
′

7 g
η
8g9)

β,{
E⃗j :=

(
g
λ′j
4 g

tj
3 , (g

ζj
2 g1)

tj , gtj
)}

j∈[me]
,

tag1 := H2

(
g
β+ 1

θ
T

)
, key := KDF

(
g
β+ 1

θ
T

)


� Choose f1, f2, f3, f4

u←− Z∗
p and for each j ∈ [mk],
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pick t̆j, w
′
j, πj1, πj2

u←− Z∗
p, where mk ∈ N; and set

Ω′
k :=


kT := hβT , , L⃗ :=

(
gf116, g

f2
17, g

f3
18, g

f4
19

)
,

{K⃗j, k⃗j, t̆j, w
′
j}j∈[mk], where

K⃗j :=
(
(g
w′
j

11 g12)
t̆jg−β10 , (g

w′
j

11 g12)
t̆jg−β13

)
,

k⃗j := (t̆j − πj1 − f1, πj1 − f2, t̆j − πj2 − f3, πj2 − f4)


� The intermediate ciphertext IC := ⟨Ω′

s,Ω
′
e,Ω

′
k⟩.

⋄ onSigncrypt(PP , IC,msg,Pe,W ). Given input PP , an encryption policy

Pe := (Me, ρe) (where Me represents a matrix of dimension ℓe × ne),

IC, a plaintext msg ∈ M, and a set W := {[W1 : w1], . . . , [Wς : wς ]}
of keywords (where Wi represents generic keyword name and wi repre-

sents corresponding keyword value), it generates the final ciphertext CT
as follows.

� Compute ct := msg ⊕ key, tag2 := H3(tag1||ct)
and (λ1, . . . , λℓe)← Share(Me, ρe, β · ∂).

� Set ε⃗i :=
(
λi − λ′i, ti(ρe(i)− ζi)

)
,∀i ∈ [ℓe] and

Ωe := ⟨Pe, ct, E ′, E1, {E⃗i, ε⃗i}i∈[ℓe]⟩.

� Compute ŏ1 := H4(ct||Γ||E ′||Pe||Ps||W ◦), χ := β(ŏ1 − o1) and set

Ωs := ⟨Ps, σ′, σ′′,Γ, σ, {σi}i∈[ℓs], χ⟩.

.
� Calculate ui := t̆i(wi − w′

i), for all i ∈ [ς] and set

Ωk := ⟨W ◦, kT , L⃗, {K⃗i, k⃗i, ui}i∈[ς]⟩.

.
� Compute ξ := H5(Ωs||Ωe||Ωk||tag2) and ε2 := β(ξ − ξ′).

� The final ciphertext CT := ⟨Ωs,Ωe,Ωk, tag2, E2, ε2, η⟩.

Remark 3. Now, DO outsources the ciphertext CT to the cloud. Then, cloud

accepts CT for storage if the DO is legitimate. Figure 3.2 illustrates the data

storage phase, which is given at the end of the construction.
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Remark 4. The distribution of the ciphertext

CT :=


Ωs := ⟨Ps, σ′, σ′′,Γ, σ, {σi}i∈[ℓs], χ⟩,
Ωe := ⟨Pe, ct, E ′, E1, {E⃗i := (Ei1, Ei2, Ei3), ε⃗i := (εi1, εi2)}i∈[ℓe]⟩,
Ωk := ⟨W ◦, kT , L⃗ := (L1, L2, L3, L4), {K⃗j := (Kj1, Kj2),

k⃗j := (kj1, kj2, kj3, kj4), uj}j∈[ς]⟩,
tag2, E2, ε2, η


of a data file msg for the signing policy Ps := (Ms, ρs), encryption policy

Pe := (Me, ρe), where Ms (resp. Me) represents a matrix of dimension ℓs×ns
(resp. ℓe × ne), and keyword set W := {[W1 : w1], . . . , [Wς : wς ]} is of the

form {σ′, σ′′, σ, σi, E
′, E1, E2, Ei1, Ei2, Ei3, L1, L2, L3, L4, Kj1, Kj2} ⊂ G, Γ ∈

{0, 1}ℓH , ct ∈ {0, 1}ℓmsg , kT ∈ GT , tag2 ∈ {0, 1}ℓH3 ,

{χ, εi1, εi2, kj1, kj2, kj3, kj4, uj, ε2, η} ⊂ Z∗
p and

E1 := gβ,Γ := H7(g
1/θ
T )⊕H8

(
e(g, g4)

δ′·δ′′·CSK), ct := msg ⊕ KDF
(
g
β+ 1

θ
T

)
,

tag2 := H3

(
H2(g

β+ 1
θ

T )||ct
)
, σ′ := gδ

′
, σ′′ := gδ

′′
4 ,

σ := g
α
θ g

r̆
θ
4

(
gŏ15 g6

)β(∏
i∈[ℓs]H1

(
ρs(i)

) r̆ai
θ

+o2bi)g−χ5 , σi := g
r̆ai
θ

+o2bi , E ′ := gδ
′′′

4 ,

Ei1 := gλi4 g
ti
3 · g

−εi1
4 , Ei2 := (g

ρe(i)
2 g1)

ti · g−εi22 , Ei3 := gti ,

L1 := gf116, L2 := gf217, L3 := gf318, L4 := gf419,

Kj1 := (g
wj
11 g12)

t̆jg−β10 · g
−uj
11 , Kj2 := (g

wj
11 g12)

t̆jg−β13 · g
−uj
11 ,

kj1 := t̆j − πj1 − f1, kj2 := πj1 − f2, kj3 := t̆j − πj2 − f3, kj4 := πj2 − f4,
kT := e(g, g15)

τβ, E2 := (gξ7g
η
8g9)

β · g−ε27


(3.1)

where θ, β, δ′, δ′′, δ′′′, r̆, o2, η, ti, f1, f2, f3, f4, t̆j, πj1, πj2, χ, ε2, εi1, εi2, uj are ran-

dom exponents, λi is the ith share of β · H5

(
e(g, g4)

δ′δ′′′·CSK) with respect to

(Me, ρe), ŏ1 := H4(ct||Γ||E ′||Pe||Ps||W ◦), ξ := H5(Ωs||Ωe||Ωk||tag2),
(a1, a2, . . . , aℓs) and (b1, b2, . . . , bℓs) are vectors satisfying respectively∑

i∈[ℓs] ai · M⃗
(i)
s = 1⃗ns and

∑
i∈[ℓs] bi · M⃗

(i)
s = 0⃗ns , α is the system master key, τ

is TGC secret key, CSK is cloud secret key, and others are public parameters

of the system.

We use this distribution of CT in correctness and security analysis of the

proposed system.

4. Keyword Policy Trapdoor Generation To generate a trapdoor for a key-

word policy, the TGC performs this phase in two sub-algorithms: offline trap-

door generation and online trapdoor generation.
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⋄ offTrapGen(PP , CPK, T SK). Given input PP , CPK and T SK, it produces
the intermediate trapdoor IT .

� Pick f, f̆ , f ′ u←− Z∗
p, and for each i ∈ [mt], choose r̆i, r̆

′
i, κi, ϑ

′
i

u←− Z∗
p,

here mt ∈ N.

� Set IT :=



T0 := gf , T1 := gf̆ , T2 := gf
′

4 , ot := e(T1, Yc)
f ′ ,

{r̆i, r̆′i, κi, ϑ′
i, ϱi,

⃗̆
T1i, T⃗2i}i∈[mt], where

ϱi := ϖ1ϖ2r̆i +ϖ3ϖ4r̆
′
i − f,

⃗̆
T1i :=

(
g
ϑ′i
15 · g

ϖ1ϖ2r̆i+ϖ3ϖ4r̆′i
10 , g

ϖ1ϖ2r̆i+ϖ3ϖ4r̆′i
13

)
,

T⃗2i :=
(
(gκi11 · g12)−r̆iϖ1 , (gκi11 · g12)−r̆iϖ2 , (gκi11 · g12)−r̆

′
iϖ3 ,

(gκi11 · g12)−r̆
′
iϖ4
)


⋄ onTrapGen(PP , IT , T SK,Pt). On input PP , IT , T SK and a keyword pol-

icy Pt := (Mt, ρ
◦
t , {wρ◦t (i)}i∈[ℓt]) (where Mt represents a matrix of dimen-

sion ℓt×nt, the rows of Mt are mapped to generic keyword names via the

function ρ◦t and the associated keyword value is denoted as {wρ◦t (i)}i∈[ℓt]),
it generates the trapdoor T̃ DPt .

� Compute (ϑ1, . . . , ϑℓt)← Share(Mt, ρ
◦
t , τ ·H5(ot))

� For each i ∈ [ℓt], calculate B1i := ϑi − ϑ′
i and

B⃗2i :=
(
r̆i(−wρ◦t (i) + κi)ϖ1, r̆i(−wρ◦t (i) + κi)ϖ2, r̆

′
i(−wρ◦t (i) + κi)ϖ3,

r̆′i(−wρ◦t (i) + κi)ϖ4

)
.

� Set
⃗̃
T 1i := (T̆1i1, H6(ot||P◦

t ||M
(i)
t ) · T̆1i2) for i ∈ [ℓt].

� The trapdoor T̃ DPt := ⟨Pt, T0, T1, T2, {ϱi,
⃗̃
T 1i, T⃗2i, B1i, B⃗2i}i∈[ℓt]⟩.

5. Data Retrieval Request Generation

Once the DU receives the trapdoor T̃ DPt from TGC, it proceeds to execute

two algorithms described below in order to create a data retrieval request

(DRR).

⋄ offDataRetReq(PP ,DKAd ,Pt). On input PP ,DKAd ,Pt, this offline data re-

trieval request generation algorithm produces the intermediate data re-

trieval request IDR. Here DKAd := ⟨Ad, D1, D2, {D3,x, D4,x}x∈Ad⟩.

� Choose γ, τ̆ , tr
u←− Z∗

p, calculate trk := τ̆ /tr,

(ϑ̆1, . . . , ϑ̆ℓt)← Share(Mt, ρ
◦
t , trk) and {g

ϑ̆i
14}i∈[ℓt].

Note that P◦
t := (Mt, ρ

◦
t ).
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� Set IDR :=


{gϑ̆i14}i∈[ℓt],
T KAd := ⟨Ad, T ′

1, T
′
2, {T ′

3,x, T
′
4,x}x∈Ad⟩, where

T ′
1 := (D1 · gτ̆14)1/γ, T ′

2 := D
1/γ
2 , T ′

3,x := D
1/γ
3,x ,

T ′
4,x := D

1/γ
4,x , T DK := ⟨tdk1, tdk2⟩,

where tdk1 := tr, tdk2 := γ


⋄ onDataRetReq(PP , IDR, T̃ DPt). Taking PP , IDR, T̃ DPt , it generates a se-

cret transformation decryption key T DK := ⟨tdk1, tdk2⟩ and the data

retrieval request DRR. Note that T DK will be used to decrypt the

transformed ciphertexts received from the cloud.

� Compute T1i2 := gϑ̆i14 · T̃1i2 and set T1i1 := T̃1i1,

and hence T⃗1i := (T̃1i1, T1i2).

� Set DRR := ⟨T DP◦
t
, T KAd⟩,

where T DP◦
t

:= ⟨P◦
t , T0, T1, T2, {ϱi, T⃗1i, T⃗2i, B1i, B⃗2i}i∈[ℓt]⟩ is trans-

form trapdoor for Pt and T KAd is transform key for the decryption

attribute set Ad.

Remark 5. The distribution of the data retrieval request

DRR :=


T DP◦

t
:=

〈 P◦
t , T0, T1, T2, {ϱi, T⃗1i := (T1i1, T1i2),

T⃗2i := (T2i1, T2i2, T2i3, T2i4)}i∈[ℓt],
{B1i, B⃗2i := (B2i1, B2i2, B2i3, B2i4)}i∈[ℓt]

〉
,

T KAd :=
〈
Ad, T

′
1, T

′
2, {T ′

3,x, T
′
4,x}x∈Ad

〉


of a keyword policy Pt := (Mt, ρ
◦
t , {wρ◦t (i)}i∈[ℓt]) is of the form

{T0, T1, T2, T1i1, T1i2, T2i1, T2i2, T2i3, T2i4, T ′
1, T

′
2, T

′
3,x, T

′
4,x} ⊂ G,

{ϱi, B1i, B2i1, B2i2, B2i3, B2i4} ⊂ Z∗
p and

T0 := gf , T1 := gf̆ , T2 := gf
′

4 , ϱi := ϖ1ϖ2r̆i +ϖ3ϖ4r̆
′
i − f,

T1i1 := gϑi15 · g
ϖ1ϖ2r̆i+ϖ3ϖ4r̆′i
10 · g−B1i

15 ,

T1i2 := gϑ̆i14 ·H6

(
e(g, g4)

f̆f ′·CSK||P◦
t ||M

(i)
t

)
· gϖ1ϖ2r̆i+ϖ3ϖ4r̆′i

13 ,

T2i1 :=
(
g
wρ◦t (i)
11 · g12

)−r̆iϖ1 · g−B2i1
11 , T2i2 :=

(
g
wρ◦t (i)
11 · g12

)−r̆iϖ2 · g−B2i2
11 ,

T2i3 :=
(
g
wρ◦t (i)
11 · g12

)−r̆′iϖ3 · g−B2i3
11 , T2i4 :=

(
g
wρ◦t (i)
11 · g12

)−r̆′iϖ4 · g−B2i4
11 ,

T ′
1 := gα/γg

(CSK·r̂)
4 g

τ̆/γ
14 , T

′
2 := gr̂, T ′

3,x := gr̂x , T ′
4,x := (gx2g1)

r̂xg−r̂3 ,


(3.2)

where f, f̆ , f ′, r̆i, r̆
′
i, r̂, γ, τ̆ , r̂x, tr, B1i, B2i1, B2i2, B2i3, B2i4 are random exponents

(elements in Z∗
p), ϑi (resp. ϑ̆i) is the ith share of τ ·H5(e(g, g4)

f̆f ′·CSK) (resp.

trk := τ̆ /tr) with respect to the policy (Mt, ρ
◦
t ), ⟨τ,ϖ1, ϖ2, ϖ3, ϖ4⟩ is TGC’s
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secret key, α is system’s master secret key, CSK is cloud secret key, and others

are system public parameters.

We use this distribution of DRR in correctness and security analysis of ABD-

SRS.

6. Data Retrieval

The cloud uses two steps, test and transform, to finish this phase after receiving

DRR from a DU.

⋄ Test(PP , CT ,DRR, CSK). Taking PP , CT ,DRR := ⟨T DP◦
t
, T KAd⟩, CSK

as input, the cloud server outputs either CT or ⊥ by carrying out the

following steps. T DP◦
t
is parsed as

T DP◦
t
:= ⟨P◦

t , T0, T1, T2, {ϱi, T⃗1i, T⃗2i, B1i, B⃗2i}i∈[ℓt]⟩.

� Compute ξ := H5(Ωs||Ωe||Ωk||tag2) and check

e
(
E2 · gε27 , g

) ?
= e
(
gξ7g

η
8g9, E1

)
If above equation do not hold, output ⊥. Otherwise, proceed further.

� Set a⃗′ := (a′1, a
′
2, . . . , a

′
ℓt
)← Reconstruct(Mt, ρ

◦
t ,W

◦) and calculate

ot := e(T1, T2)
CSK

X1 := e
(
E1,

∏
i∈[ℓt]

(
T1i1 · gB1i

15

)a′i) · e(g, ∏
i∈[ℓt]

(
Kρ◦t (i)1

· g
uρ◦t (i)
11

)a′iϱi)
·e
(
T0,

∏
i∈[ℓt]

(
Kρ◦t (i)1

· g
uρ◦t (i)
11

)a′i) (3.3)

X2 := e
(
g16,

∏
i∈[ℓt]

(
T2i2 · gB2i2

11

)a′ikρ◦t (i)1) · e(L1,
∏
i∈[ℓt]

(
T2i2 · gB2i2

11

)a′i)
·e
(
g17,

∏
i∈[ℓt]

(
T2i1 · gB2i1

11

)a′ikρ◦t (i)2) · e(L2,
∏
i∈[ℓt]

(
T2i1 · gB2i1

11

)a′i)
·e
(
g18,

∏
i∈[ℓt]

(
T2i4 · gB2i4

11

)a′ikρ◦t (i)3) · e(L3,
∏
i∈[ℓt]

(
T2i4 · gB2i4

11

)a′i)
·e
(
g19,

∏
i∈[ℓt]

(
T2i3 · gB2i3

11

)a′ikρ◦t (i)4) · e(L4,
∏
i∈[ℓt]

(
T2i3 · gB2i3

11

)a′i)
(3.4)

� Verify thatX1X2
?
= k

H5(ot)
T . If it does not hold, the algorithm outputs
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⊥. Otherwise, the trapdoor T DP◦
t
is matched by the ciphertext CT ,

i.e., P◦
t (W

◦) = true (Pt(W ) = true, implicitly). As a result, the

matching ciphertext CT is generated.

Note. Even though we mentioned DRR in the input of Test algorithm,

actually Test uses only the trapdoor T DP◦
t
(in fact, T̃ DPt). We use this

fact to answer test queries in IND-CKA security.

Correctness. By Remark 5, one can see that if Pt(W ) = true, then

X1 = e
(
g, g15

)βτH5(ot) · e
(
g,
∏
i∈[ℓt]

(
g
wρ◦t (i)
11 · g12

)t̆ρ◦t (i)·a′i·(ϖ1ϖ2r̆i+ϖ3ϖ4r̆′i)
)

X2 = e
(
g,
∏
i∈[ℓt]

(
g
wρ◦t (i)
11 · g12

)−t̆ρ◦t (i)·a′i·(ϖ1ϖ2r̆i+ϖ3ϖ4r̆′i)
)

X1X2 = e
(
g, g15

)βτH5(ot) = k
H5(ot)
T

⋄ Transform(PP , CT ,DRR, CSK). Taking PP , CT ,DRR := ⟨T DP◦
t
, T KAd⟩,

CSK as input, the cloud server outputs either transformed ciphertext

CT out or ⊥ by executing the following steps. T KAd is parsed as

T KAd := ⟨Ad, T ′
1, T

′
2, {T ′

3,x, T
′
4,x}x∈Ad⟩.

� If Test(PP , CT ,DRR, CSK) → ⊥ or Pe(Ad) = false, output ⊥.
Otherwise, proceed further.

� Consider X2 from previous algorithm and compute

X̆1 := e
(
E1,

∏
i∈[ℓt]

(
T1i2 ·H6(ot||P◦

t ||M
(i)
t )−1

)a′i)
×e
(
g,
∏
i∈[ℓt]

(
Kρ◦t (i)2

· g
uρ◦t (i)
11

)a′iϱi)
×e
(
T0,

∏
i∈[ℓt]

(
Kρ◦t (i)2

· g
uρ◦t (i)
11

)a′i) (3.5)

∆1 := X̆1X2

� Since Pe(Ad) = true, calculate

a⃗′′ := (a′′1, a
′′
2, . . . , a

′′
ℓe
)← Reconstruct(Me, ρe, Ad),

∂ := H5

(
e(σ′, E ′)CSK

)
X3 := e(T ′

1, E1)
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X4 := e
(
T ′
2,
∏
i∈[ℓe]

(
Ei1 · gεi14

)a′′i )
×
∏
i∈[ℓe]

(
e
(
T ′
3,ρe(i), Ei2 · g

εi2
2

)−1 · e
(
T ′
4,ρe(i), Ei3

))a′′i
∆2 := X3 · (X4)

−CSK/∂

� Choose φ
u←− Z∗

p and obtain (λ′′1, . . . , λ
′′
ℓs
)← Share(Ms, ρs, φ)

� Calculate ŏ := H4(ct||Γ||E ′||Pe||Ps||W ◦),

∆3 :=

 e(σ · gχ5 , gφ)
e
(
gŏ5g6, E

φ
1

)
·
∏

i∈[ℓs] e
(
g
λ′′i
4 H1(ρs(i))φ, σi

)
1/φ

(3.6)

� The transformed ciphertext CT out := ⟨∆1,∆2,∆3, ct, tag2⟩.
Correctness. By Remark 4 and Remark 5, we can see that

if Test(PP , CT ,DRR, CSK)→ CT and Pe(Ad) = true, then

X̆1 = e
(
g, g14

)β·trk · e(g, ∏
i∈[ℓt]

(
g
wρ◦t (i)
11 · g12

)t̆ρ◦t (i)·a′i(ϖ1ϖ2r̆i+ϖ3ϖ4r̆′i)
)

X2 = e
(
g,
∏
i∈[ℓt]

(
g
wρ◦t (i)
11 · g12

)−t̆ρ◦t (i)·a′i(ϖ1ϖ2r̆i+ϖ3ϖ4r̆′i)
)

∆1 = X̆1X2 = e
(
g, g14

)β·trk
= e(g, g14)

(β·τ̆)/tr

X3 = e(g, g)(αβ)/γ · e(Yc, g)r̂β · e(g14, g)(βτ̆)/γ, where Yc = gCSK4

X4 = e(g, g4)
r̂β∂

∆2 = X3 · (X4)
−CSK/∂ = e(g, g)(αβ)/γ · e(g14, g)(βτ̆)/γ

∆3 = e(g, g)
α
θ = g

1/θ
T

Remark 6. The cloud can avoid the computation of Equation (3.6) as follows.

On receiving the ciphertext CT , the cloud computes ∆0 (given in Figure 3.2)

and verifies the identity Γ
?
= H7(∆

1/ω
0 ) ⊕ H8

(
e(σ′, σ′′)CSK

)
. If it is true, the

cloud can store the ciphertext as [CT ,∆1/ω
0 ]. Before sending to DU, the cloud

verifies the integrity of the term ∆
1/ω
0 using the same identity Γ

?
= H7(∆

1/ω
0 )⊕

H8

(
e(σ′, σ′′)CSK

)
and sets ∆3 := ∆

1/ω
0 . In this case, the transform algorithm

requires only 2ℓe + 7 pairing evaluations instead of 2ℓe + ℓs + 8.

7. Unsigncryption and Verify
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The DU runs the following algorithm to recover the original plaintext.

⋄ Unsigncrypt-Verify(PP , CT out, T DK). On input PP , CT out and the secret

transformation decryption key T DK := ⟨tdk1, tdk2⟩, this algorithm out-

puts the data file msg or ⊥.

� Compute Λ := (∆1)
−tdk1 · (∆2)

tdk2 ·∆3.

� Check whether H3

(
H2(Λ)||ct

) ?
= tag2.

If this condition is not met, the error value ⊥ is returned to confirm

that the cloud deceptively returns a false search result.

� Else, Output msg = ct⊕ KDF(Λ).

Correctness. Note that tdk1 := tr, tdk2 := γ. If the cloud honestly

returns a valid transformed ciphertext CT out, then

Λ =
(
e(g, g14)

βτ̆/tr
)−tr(

e(g, g)(αβ)/γ · e(g14, g)(βτ̆)/γ
)γ
g
1/θ
T

= g
β+ 1

θ
T

H3

(
H2(Λ)||ct

)
= H3

(
tag1||ct

)
= tag2

ct⊕ KDF(Λ) = msg ⊕ KDF
(
g
β+ 1

θ
T

)
⊕ KDF

(
g
β+ 1

θ
T

)
= msg

Remark 7. As shown in Figure 3.2, a DU can retrieve the required data from the

cloud.

3.4 Security Proof of ABDSRS

In this section, we provide the security analysis of our ABDSRS under the assump-

tion that KDF is secure.

Lemma 1. Suppose the number of rows and the number of columns in the challenge

encryption policy are at most q. Then, ABDSRS demonstrates IND-CCA2 security

against a Type-1 adversary in the random oracle model, assuming the hardness of

the q-1 problem (presented in Section 2.3.3).

Proof. Let a PPT Type-1 adversary A breaks IND-CCA2 security (modeled as a

game GameIND-CCA2Type-1 in Section 3.2.2) of our ABDSRS with non-negligible advan-

tage, then a challenger C can solve q-1 problem by communicating with A as in

GameIND-CCA2Type-1 . C is given the q-1 problem instance
〈
Σ, g, gβ, {gϕi , gψj , gβψj ,

gϕ
iψj , gϕ

i/ψ2
j }(i,j)∈[q,q], {gϕ

i/ψj}(i,j)∈[2q,q],i ̸=q+1, {gϕ
iψj/ψ

2
j′}(i,j,j′)∈[2q,q,q],j ̸=j′ ,
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Data Storage Phase

DO KGC

SKAs←−−−−−−−− SKAs ← sKeyGen(PP,MK, As)

Cloud

IC ← offSigncrypt(PP,SKAs , T PK, CPK,Ps)
CT ← onSigncrypt(PP, IC,msg,Pe,W )

where CT := ⟨Ωs,Ωe,Ωk, tag2, E2, ε2, η⟩
CT−−−−−−−→

Compute ξ := H5(Ωs||Ωe||Ωk||tag2)
Check e

(
E2 · gε27 , g

) ?
= e
(
gξ7g

η
8g9, E1

)
⊥←−−−−−−− If this is not true, return ⊥

Otherwise, select ω
u←− Z∗

p and compute

(λ′′
1, . . . , λ

′′
ℓs
)← Share(Ms, ρs, ω)

ŏ := H4(ct||Γ||E′||Pe||Ps||W ◦)

∆0 :=
e(σ·gχ5 ,gω)

e
(
gŏ5g6,E

ω
1

)
·
∏
i∈[ℓs]

e
(
g
λ′′
i

4 H1(ρs(i))ω ,σi

)
Check Γ

?
= H7(∆

1/ω
0 )⊕H8

(
e(σ′, σ′′)CSK

)
⊥←−−−−−−− If this is not true, return ⊥

Else, cloud accepts CT for storage.

Data Retrieval Phase

DU KGC

DKAd←−−−−−−− DKAd ← dKeyGen(PP,MK, CPK, Ad)

TGC

Formulate keyword policy Pt
Pt−−−−−−−→

IDR ← offDataRetReq(PP,DKAd ,Pt) IT ← offTrapGen(PP, CPK, T SK)
T̃ DPt←−−−−−−− T̃ DPt ← onTrapGen(PP, IT , T SK,Pt)

Cloud

[DRR, T DK]← onDataRetReq(PP, IDR, T̃ DPt)

where DRR := ⟨T DP◦
t
, T KAd⟩

DRR−−−−−−−→
CT or ⊥ ← Test(PP, CT ,DRR, CSK)

CT out or ⊥←−−−−−−− CT out or ⊥ ← Transform(PP, CT ,DRR, CSK)
msg or ⊥ ← Unsigncrypt-Verify(PP, CT out, T DK)

Figure 3.2: Data storage and data retrieval phases.

{gβϕiψj/ψj′ , gβϕ
iψj/ψ

2
j′}(i,j,j′)∈[q,q,q],j ̸=j′ , Z

〉
. In order to ascertain if Z is equal to

e(g, g)βϕ
q+1

or Z has been randomly selected from GT , C interacts with A as de-

scribed below.

(1) A sends the challenge encryption policy P⋆e := (M⋆
e, ρ

⋆
e) to C , where M⋆

e is an

ℓ⋆e × n⋆e matrix with ℓ⋆e, n
⋆
e ≤ q. Let M⃗

⋆(i)
e := (M

⋆(i)
e1 ,M

⋆(i)
e2 , . . . ,M

⋆(i)
en⋆e

) be the ith
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row of M⋆
e.

(2) C samples α′ u←− Z∗
p and sets gT := e(g, g)α

′ · e(gϕ, gϕq) (i.e., the system master

secret keyMK is defined implicitly as gα where α := α′ + ϕq+1). Next, C picks

z, z1, z2, . . . , z15
u←− Z∗

p and defines

g := g g5 := gz5 g10 := gz10

g1 := gz1 ·
∏

(j,ι)∈[ℓ⋆e ,n⋆e ]
(
gϕ

ι/ψ2
j
)−ρ⋆e(j)M⋆(j)

eι g6 := gz6 g11 := gz11

g2 := gz2 ·
∏

(j,ι)∈[ℓ⋆e ,n⋆e ]
(
gϕ

ι/ψ2
j
)M⋆(j)

eι g7 := gϕ · gz7 g12 := gz12

g3 := gz3 ·
∏

(j,ι)∈[ℓ⋆e ,n⋆e ]
(
gϕ

ι/ψj
)M⋆(j)

eι g8 := (gϕ)z · gz8 g13 := gz13

g4 := gϕ g9 := (gϕ)z4 · gz9 g14 := gz14

g15 := gz15

C chooses eight anti-collision hash functions H1 : {0, 1}∗ → G,
H2 : GT → {0, 1}ℓH2 , H3 : {0, 1}∗ → {0, 1}ℓH3 , H4 : {0, 1}∗ → Z∗

p,

H5 : {0, 1}∗ → Z∗
p, H6 : {0, 1}∗ → G, H7 : GT → {0, 1}ℓH , H8 : GT → {0, 1}ℓH ,

in which C simulates H1 as follows.

To answer H1 hash queries, C maintains a table TabH1 . If one submits a signing

attribute y, C answers in the following way. If the tuple Jy,H1(y) := gυyK exists
in TabH1 , returns g

υy . Otherwise, C picks υy
u←− Z∗

p, returns g
υy and inserts the

new tuple Jy,H1(y) := gυyK into TabH1 .

C sets PP := ⟨Σ, gT , g, {gi}15i=1,M,KDF, {Hi}8i=1⟩, where the message space is

M := {0, 1}ℓmsg and a key derivation function is denoted as KDF : GT →
{0, 1}ℓmsg . Lastly, C selects τ,ϖ1, ϖ2, ϖ3, ϖ4, rc

u←− Z∗
p, computes g16 :=

gϖ1 , g17 := gϖ2 , g18 := gϖ3 , g19 := gϖ4 , hT := e(g, g15)
τ , Yc := grc4 and sets

T PK := ⟨hT , g16, g17, g18, g19⟩, T SK := ⟨τ,ϖ1, ϖ2, ϖ3, ϖ4⟩,
CPK := Yc, CSK := rc. A obtains the tuple [PP , T PK, CPK, CSK].

(3) A queries signing key generation oracle OSKG(As), data retrieval request gen-

eration oracle ODRR(Ad,Pt), signcryption oracle OSC(msg,Ps,Pe,W ) and data

retrieval cum unsigncrypt-verify oracle ODR-UV(CT , Ad,Pt), with the respective

inputs. Then C answers these queries as described below.

� OSKG(As) : C chooses r̃
u←− Z∗

p, implicitly defines r′ := r̃− ϕq and returns

the signing key

SKAs :=
〈
As, S1 := gα

′
gr̃4, S2 := gr̃

(
gϕ

q)−1
, {S3,y := gr̃υy

(
gϕ

q)−υy}y∈As〉 to

A .

� ODRR(Ad,Pt) : C ’s response is one of the following two types.
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(i) If P⋆e (Ad) = true, then C selects

f, f̆ , f ′, r̆i, r̆
′
i, r̂, r̂x, B1i, B2i1, B2i2, B2i3, B2i4, d, d

′, d′′
u←− Z∗

p, and implic-

itly sets γ := α/d, τ̆ := (αd′′)/d, tr := (αd′′)/(dd′). Next, C computes

the data retrieval request

DRR :=


T DP◦

t
:=

〈 P◦
t , T0, T1, T2, {ϱi, T⃗1i := (T1i1, T1i2)}i∈[ℓt],
{T⃗2i := (T2i1, T2i2, T2i3, T2i4)}i∈[ℓt],
{B1i, B⃗2i := (B2i1, B2i2, B2i3, B2i4)}i∈[ℓt]

〉
,

T KAd :=
〈
Ad, T

′
1, T

′
2, {T ′

3,x, T
′
4,x}x∈Ad

〉


of the keyword policy Pt := (Mt, ρ
◦
t , {wρ◦t (i)}i∈[ℓt]) and the decryption

attribute set Ad as follows: Compute T ′
1 := gdgrc·r̂4 gd

′′
14 and ϑi (resp.

ϑ̆i) is the ith share of τ · H5(e(T1, T2)
rc) (resp. trk := τ̆ /tr = d′)

with respect to the policy (Mt, ρ
◦
t ), and calculate the other compo-

nents of DRR as in Equation (3.2). Note that, in this case, C does

not know T DK := ⟨tr, γ⟩. However, since C knows TGC’s secret key

⟨τ,ϖ1, ϖ2, ϖ3, ϖ4⟩, the above DRR is properly distributed according

to Remark 5.

(ii) Suppose P⋆e (Ad) = false. Then, C computes

δ⃗ := (δ1, δ2, . . . , δn⋆e) ∈ Zn
⋆
e
p such that δ1 = −1 and δ⃗ · M⃗⋆(i)

e = 0,

∀i ∈ {i|ρ⋆e(i) ∈ Ad}. Now, C picks ř
u←− Z∗

p, implicitly defines

r := r−1
c (ř +

∑
i∈[n⋆e ]

δi · ϕq+1−i) and calculates the decryption key

DKAd := ⟨Ad, D1, D2, {D3,x, D4,x}x∈Ad⟩ as given below.

D1 := gα
′
gř4

n⋆e∏
i=2

(
gϕ

q+2−i)δi , D2 := gřr
−1
c

∏
i∈[n⋆e ]

(
gϕ

q+1−i)δir−1
c .

For each attribute x ∈ Ad, C chooses řx
u←− Z∗

p and implicitly defines

rx := řx + r
∑

i′∈[ℓ⋆e ]
ρ⋆e(i

′)/∈Ad

ψi′

x− ρ⋆e(i′)
, and computes

D3,x := gřx
∏
i′∈[ℓ⋆e ]

ρ⋆e(i
′)/∈Ad

(
gψi′
)(řr−1

c )/(x−ρ⋆e(i′))

×
∏

(i,i′)∈[n⋆e ,ℓ⋆e ]
ρ⋆e(i

′)/∈Ad

(
gψi′ϕ

q+1−i
)(δir−1

c )/(x−ρ⋆e(i′))
,
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D4,x := (gx2g1)
řx · (D3,x/g

řx)xz2+z1

×
∏

(i′,j,ι)∈[ℓ⋆e ,ℓ⋆e ,n⋆e ]
ρ⋆e(i

′)/∈Ad

(
gϕ

ιψi′/ψ
2
j

)řr−1
c (x−ρ⋆e(j))M

⋆(j)
eι /(x−ρ⋆e(i′))

·
∏

(i,i′,j,ι)∈[n⋆e ,ℓ⋆e ,ℓ⋆e ,n⋆e ]
ρ⋆e(i

′)/∈Ad,(j ̸=i′∨i ̸=ι)

(
gψi′ϕ

q+1−i+ι/ψ2
j

)r−1
c δi(x−ρ⋆e(j))M

⋆(j)
eι /(x−ρ⋆e(i′))

×g−řr
−1
c

3

∏
i∈[n⋆e ]

(
gϕ

q+1−i
)−z3δir−1

c ∏
(i,j,ι)∈[n⋆e ,ℓ⋆e ,n⋆e ]

i ̸=ι

(
gϕ

q+1−i+ι/ψj
)−r−1

c δiM
⋆(j)
eι

Since C knows TGC’s secret key T SK := ⟨τ,ϖ1, ϖ2, ϖ3, ϖ4⟩, it com-

putes the trapdoor as T̃ DPt ← onTrapGen(PP , IT , T SK,Pt), where
IT ← offTrapGen(PP , CPK, T SK). Finally, C sends [DKAd , T̃ DPt ] to

A . In this case, both A and C can generate DRR := ⟨T DP◦
t
, T KAd⟩

and T DK by using [DKAd , T̃ DPt ].

� OSC(msg,Ps,Pe,W ) : C selects a set As satisfying Ps(As) = true, gener-

ates SKAs ← OSKG(As) and outputs the ciphertext

CT ← onSigncrypt(PP , IC,msg,Pe,W ), where

IC ← offSigncrypt(PP ,SKAs , T PK, CPK,Ps).

� ODR-UV(CT , Ad,Pt) : Firstly, C calculates DRR ← ODRR(Ad,Pt). If

Test(PP , CT ,DRR, CSK) → ⊥ or Pe(Ad) = false, it returns ⊥. Oth-

erwise, C ’s response can be one of two types given subsequently. The

ciphertext is parsed as CT := ⟨Ωs,Ωe,Ωk, tag2, E2, ε2, η⟩, where
Ωe := ⟨Pe, ct, E ′, E1, {E⃗i, ε⃗i}i∈[ℓe]⟩, Ωs := ⟨Ps, σ′, σ′′,Γ, σ, {σi}i∈[ℓs], χ⟩ and
Ωk := ⟨W ◦, kT , L⃗, {K⃗i, k⃗i, ui}i∈[ς]⟩.

(i) In case P⋆e (Ad) = true, C does not have the knowledge of the se-

cret transformation decryption key T DK according to the simula-

tion of ODRR(Ad,Pt) and hence it proceeds in the following way.

If ξ + zη + z4 = 0 (this happens with prob. at most 1/p), where

ξ := H5(Ωs||Ωe||Ωk||tag2), then C aborts. Else it calculates

Y1 := e(E1, g
α′
) · e
(
E2 · gε27 /E

ξz7+ηz8+z9
1 , (gϕ

q
)(ξ+zη+z4)

−1)
= gβT ,

∆3 = g
1/θ
T (using Equation (3.6)) and Λ := Y1∆3 = g

β+ 1
θ

T .

Next, C checks whether H3

(
H2(Λ)||ct

) ?
= tag2. If this is not true, it

returns ⊥. Otherwise, it returns msg = ct⊕ KDF(Λ) to A .

(ii) In case P⋆e (Ad) = false, C knows T DK. Hence, it computes the

transformed ciphertext CT out ← Transform(PP , CT ,DRR, CSK) and



CHAPTER 3. 54

returns to A the output of Unsigncrypt-Verify(PP , CT out, T DK).

Once this query phase is done, A outputs a signing policy P⋆s , two messages

msg⋆0,msg
⋆
1 ∈M, and a set W ⋆ of keywords.

(4) Let P⋆s := (M⋆
s, ρ

⋆
s), where M

⋆
s represents a matrix of dimension ℓ⋆s×n⋆s. C picks

i
u←− {0, 1}, picks a set As satisfying P⋆s (As) = true, calculates

a⃗ := (a1, a2, . . . , aℓ⋆s)← Reconstruct(M⋆
s, ρ

⋆
s, As) satisfying

∑
i∈[ℓ⋆s ]

ai ·M⃗⋆(i)
s = 1⃗n⋆s

and ai = 0 for all i ∈ {i|ρ⋆s(i) /∈ As}, samples

(b1, b2, . . . , bℓ⋆s)
u←−
{
(b1, b2, . . . , bℓ⋆s) ∈ Zℓ

⋆
s
p |
∑

i∈[ℓ⋆s ]
bi · M⃗⋆(i)

s = 0⃗n⋆s
}
. To compute

the challenge ciphertext

CT ⋆ :=


Ω⋆
s := ⟨P⋆s , σ′⋆, σ′′⋆,Γ⋆, σ⋆, {σ⋆i }i∈[ℓ⋆s ], χ

⋆⟩,
Ω⋆
e := ⟨P⋆e , ct⋆, E ′⋆, E⋆

1 , {E⃗⋆
i := (E⋆

i1, E
⋆
i2, E

⋆
i3), ε⃗

⋆
i := (ε⋆i1, ε

⋆
i2)}i∈[ℓ⋆e ]⟩,

Ω⋆
k :=

〈
W ⋆◦, k⋆T , L⃗

⋆ := (L⋆1, L
⋆
2, L

⋆
3, L

⋆
4),

{K⃗⋆
j := (K⋆

j1, K
⋆
j2), k⃗

⋆
j := (k⋆j1, k

⋆
j2, k

⋆
j3, k

⋆
j4), u

⋆
j}j∈[ς]

〉
,

tag2⋆, E⋆
2 , ε

⋆
2, η

⋆


of the message msg⋆i for the signing policy P⋆s := (M⋆

s, ρ
⋆
s), encryption policy

P⋆e := (M⋆
e, ρ

⋆
e) and keyword set W ⋆ := {[W1 : w1], . . . , [Wς : wς ]}, C chooses

θ, δ′, δ′′, δ′′′, r̆1, o2, f1, f2, f3, f4, t̆j, πj1, πj2, χ
⋆, ε⋆2, ε

⋆
i1, ε

⋆
i2, u

⋆
j

u←− Z∗
p, implicitly sets

r̆ := r̆1 − ϕq, ti := −β∂ψi,

λi := M⃗⋆(i)
e · (β∂, β∂ϕ+ õ2, β∂ϕ

2 + õ3, . . . , β∂ϕ
n⋆e−1 + õn⋆e)

=
∑
j∈[n⋆e ]

M
⋆(i)
ej β∂ϕj−1 +

n⋆e∑
j=2

õjM
⋆(i)
ej ,

where ∂ := H5

(
e(g, g4)

δ′δ′′′rc
)
, and computes the components of CT ⋆ in the

following way.

E⋆
1 := gβ,Γ⋆ := H7(g

1/θ
T )⊕H8

(
e(g, g4)

δ′·δ′′·rc
)
,

ct⋆ := msg⋆i ⊕KDF
(
Z ·e(gβ, g)α′ ·g1/θT

)
, tag2⋆ := H3

(
H2(Z ·e(gβ, g)α

′ ·g1/θT )||ct⋆
)
,

E ′⋆ := gδ
′′′

4 , σ′⋆ := gδ
′
, σ′′⋆ := gδ

′′
4 ,

σ⋆ := g
α′
θ g

r̆1
θ
4 (gβ)z5ŏ1+z6g−χ

⋆

5

∏
i∈[ℓ∗s ]

(
gυρ⋆s(i)(

r̆1ai
θ

+o2bi)(gϕ
q
)−υρ⋆s(i)·

ai
θ

)
,

σ⋆i := g
r̆1ai
θ

+o2bi(gϕ
q
)−

ai
θ ,

E⋆
i1 := g

∑n⋆e
j=2 õjM

⋆(i)
ej

4 · (gβψi)−z3∂ · g−ε
⋆
i1

4 ·
∏

(j,ι)∈[ℓ⋆e ,n⋆e ]
j ̸=i

(
gβϕ

ιψi/ψj
)−∂M⋆(j)

eι ,

E⋆
i2 := (gβψi)−∂(z2ρ

⋆
e(i)+z1) · g−ε

⋆
i2

2 ·
∏

(j,ι)∈[ℓ⋆e ,n⋆e ]
j ̸=i

(
gβϕ

ιψi/ψ
2
j
)(ρ⋆e(j)−ρ⋆e(i))∂M⋆(j)

eι ,
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E⋆
i3 := (gβψi)−∂,

L⋆1 := gf116, L
⋆
2 := gf217, L

⋆
3 := gf318, L

⋆
4 := gf419,

K⋆
j1 := (g

wj
11 g12)

t̆j(gβ)−z10 · g−u
⋆
j

11 , K⋆
j2 := (g

wj
11 g12)

t̆j(gβ)−z13 · g−u
⋆
j

11 ,

k⋆j1 := t̆j − πj1 − f1, k⋆j2 := πj1 − f2, k⋆j3 := t̆j − πj2 − f3, k⋆j4 := πj2 − f4,
k⋆T := e(gβ, g15)

τ , E⋆
2 := (gβ)z7ξ+z8η

⋆+z9 · g−ε
⋆
2

7

where ŏ1 := H4(ct
⋆||Γ⋆||E ′⋆||P⋆e ||P⋆s ||W ◦⋆), ξ := H5(Ω

⋆
s||Ω⋆

e||Ω⋆
k||tag2⋆),

η⋆ := (−ξ− z4)/z and W ◦⋆ := {W1,W2, . . . ,Wς}. Lastly, C sends the challenge

ciphertext CT ⋆ to A .

(5) Now, A queries for the oracles like step (3), with the obvious restriction that

it cannot query data retrieval cum unsigncrypt-verify oracle with the input

[CT ⋆, Ad,Pt] satisfying P⋆e (Ad) = true ∧ Pt(W ⋆) = true. Once this query phase

is over, A outputs a guess i′ of i.

A wins the game if i′ = i. Therefore, if A wins, C will claim that Z = e(g, g)βϕ
q+1

;

otherwise, C claims that Z is a random element of GT .

When Z = e(g, g)βϕ
q+1

, according to Remark 4, the challenge ciphertext CT ⋆ is
an accurately derived ciphertext as in original construction. Note that if Z has been

randomly selected from GT , then CT ⋆ is independent of i in A ’s view. In this case,

A ’s guess is random and its advantage is 0. Thus, if A has non-negligible advantage

in winning the game, C can solve q-1 problem with non-negligible advantage.

Lemma 2. ABDSRS demonstrates IND-CCA2 security against PPT Type-2 adver-

sary assuming the hardness of the DBDH problem (described in Section 2.3.1).

Proof. Let a PPT Type-2 adversary A that breaks the IND-CCA2 security (mod-

eled as a game GameIND-CCA2Type-2 in Section 3.2.2) of our ABDSRS with non-negligible

advantage, then a challenger C can solve DBDH problem by communicating with

A as in GameIND-CCA2Type-2 . C is given the DBDH problem instance
〈
Σ, g, G1, G2, G3, Z

〉
,

where G1 := gϕ1 ,

G2 := gϕ2 , G3 := gϕ3 (note that ϕ1, ϕ2, ϕ3 are unknown to C ). In order to ascertain

if Z is equal to e(g, g)βϕ
q+1

or Z has been randomly selected from GT , C interacts

with A as described below.

(1) C picks α, z4
u←− Z∗

p and sets gT := e(g, g)α, g4 := gz4 . Next, it chooses

g1, g2, g3, g5, . . . , g15
u←− G, and eight collision-resistant hash functions {Hi}8i=1

(as described in the construction). Now, C sets PP := ⟨Σ, gT , g, {gi}15i=1,M,KDF,

{Hi}8i=1⟩, where the message space isM := {0, 1}ℓmsg and a key derivation func-

tion is denoted as KDF : GT → {0, 1}ℓmsg , and MK := gα. Lastly, C selects
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τ,ϖ1, ϖ2, ϖ3, ϖ4
u←− Z∗

p, computes g16 := gϖ1 , g17 := gϖ2 , g18 := gϖ3 , g19 :=

gϖ4 , hT := e(g, g15)
τ , Yc := Gz4

1 and sets T PK := ⟨hT , g16, g17, g18, g19⟩, T SK :=

⟨τ,ϖ1, ϖ2, ϖ3, ϖ4⟩, CPK := Yc, and implicitly sets CSK := ϕ1. C sends the

tuple [PP , T PK, CPK] to A .

(2) A queries signing key generation oracle OSKG(As), data retrieval request gen-

eration oracle O′
DRR(Ad,Pt), signcryption oracle OSC(msg,Ps,Pe,W ) and data

retrieval cum unsigncrypt-verify oracle ODR-UV(CT , Ad,Pt). Since C knows the

system master secret keyMK and TGC secret key T SK, it can answer the A ’s

queries by running suitable algorithms of ABDSRS. Once this query phase is

over, A sends to C two messages msg⋆0,msg
⋆
1 ∈M, an encryption policy P⋆e , a

signing policy P⋆s and a keyword set W ⋆.

(3) Let P⋆s := (M⋆
s, ρ

⋆
s) and P⋆e := (M⋆

e, ρ
⋆
e), where M⋆

s (resp. M⋆
e) is an ℓ⋆s × n⋆s

(resp. ℓ⋆e × n⋆e) matrix. C samples i
u←− {0, 1}, formulates a signing attribute

set As such that P⋆s (As) = true, calculates

a⃗ := (a1, a2, . . . , aℓ⋆s)← Reconstruct(M⋆
s, ρ

⋆
s, As) satisfying

∑
i∈[ℓ⋆s ]

ai ·M⃗⋆(i)
s = 1⃗n⋆s

and ai = 0 for all i ∈ {i|ρ⋆s(i) /∈ As}, picks
(b1, b2, . . . , bℓ⋆s)

u←−
{
(b1, b2, . . . , bℓ⋆s) ∈ Zℓ

⋆
s
p |
∑

i∈[ℓ⋆s ]
bi · M⃗⋆(i)

s = 0⃗n⋆s
}
.

To compute the challenge ciphertext

CT ⋆ :=


Ω⋆
s := ⟨P⋆s , σ′⋆, σ′′⋆,Γ⋆, σ⋆, {σ⋆i }i∈[ℓ⋆s ], χ

⋆⟩,
Ω⋆
e := ⟨P⋆e , ct⋆, E ′⋆, E⋆

1 , {E⃗⋆
i := (E⋆

i1, E
⋆
i2, E

⋆
i3), ε⃗

⋆
i := (ε⋆i1, ε

⋆
i2)}i∈[ℓ⋆e ]⟩,

Ω⋆
k :=

〈
W ⋆◦, k⋆T , L⃗

⋆ := (L⋆1, L
⋆
2, L

⋆
3, L

⋆
4),

{K⃗⋆
j := (K⋆

j1, K
⋆
j2), k⃗

⋆
j := (k⋆j1, k

⋆
j2, k

⋆
j3, k

⋆
j4), u

⋆
j}j∈[ς]

〉
,

tag2⋆, E⋆
2 , ε

⋆
2, η

⋆


of the message msg⋆i for the signing policy P⋆s := (M⋆

s, ρ
⋆
s), encryption policy

P⋆e := (M⋆
e, ρ

⋆
e) and keyword set W ⋆ := {[W1 : w1], . . . , [Wς : wς ]}, C chooses

θ, β, δ′′, r̆, o2, η, ti, f1, f2, f3, f4, t̆j, πj1, πj2, χ
⋆, ε⋆2, ε

⋆
i1, ε

⋆
i2, u

⋆
j , v2, . . . , vn⋆e

u←− Z∗
p and

computes the components of CT ⋆ as follows. Set σ′⋆ := G2, E
′⋆ := Gz4

3 ,

Γ⋆ := H7(g
1/θ
T )⊕H8

(
e(G1, G2)

δ′′z4
)
, E⋆

i1 := g
M⃗
⋆(i)
e ·(βH5(Zz4 ),v2,...,vn⋆e )

4 gti3 · g
−ε⋆i1
4 , and

compute the other components of CT ⋆ as in Equation (3.1), where

λi := M⃗
⋆(i)
e · (βH5(Z

z4), v2, . . . , vn⋆e) is the ith share of βH5(Z
z4) with respect to

(M⋆
e, ρ

⋆
e). Lastly, C sends CT ⋆ to A .

(4) Now, A queries similar to step (2), except that A is not permitted to query data

retrieval cum unsigncrypt-verify oracle with the input [CT ⋆, Ad,Pt] satisfying
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P⋆e (Ad) = true ∧ Pt(W ⋆) = true. When this query phase is over, A announces

a guess i′ of i.

A wins the game if i′ = i. Therefore, if A wins, C will claim that Z = e(g, g)ϕ1ϕ2ϕ3 ;

otherwise, C claims that Z is a random element of GT .

From Remark 4, if Z is equal to e(g, g)ϕ1ϕ2ϕ3 , the challenge ciphertext CT ⋆ is

an accurately derived ciphertext similar to the ciphertext of original ABDSRS con-

struction. If Z is randomly chosen from GT , then CT ⋆ is not dependent on i in

A ’s view; resulting in A ’s guess is random and its advantage is 0. Thus, if A has

a non-negligible advantage in winning the game, C can solve DBDH problem with

non-negligible advantage.

We derive the subsequent theorem by combining Lemma 1 with Lemma 2.

Theorem 1 (Data Confidentiality). Suppose the number of rows and the number of

columns in the challenge encryption policy are at most q. Then, ABDSRS is IND-

CCA2 secure in the random oracle model, under the assumption that q-1 and DBDH

problems are hard.

Theorem 2 (Data Unforgeability). ABDSRS demonstrates EUF-CMA security in

the random oracle model assuming the hardness of the q-DHE problem (given in

Section 2.3.2), if the challenge signing policy has a maximum of q columns. .

Proof. Let a PPT adversary A breaks EUF-CMA security (modeled as a game

GameEUF-CMA
A in Section 3.2.2) of our ABDSRS with non-negligible advantage, then

a challenger C can solve q-DHE problem by communicating with A . Given the

q-DHE problem instance
〈
Σ, g, {gϕi}i∈[2q],i ̸=q+1

〉
, the task of C is to compute gϕ

q+1
.

We show below how this can be done.

(1) A sends the challenge signing policy P⋆s := (M⋆
s, ρ

⋆
s) to C , where M⋆

s is an

ℓ⋆s×n⋆s matrix with n⋆s ≤ q. Let M⃗
⋆(i)
s := (M

⋆(i)
s1 ,M

⋆(i)
s2 , . . . ,M

⋆(i)
sn⋆s

) be the ith row

of M⋆
s.

(2) C chooses α′, θ
u←− Z∗

p and sets gT := e(g, g)θα
′
e(gϕ, gϕ

q
)θ by implicitly defining

α := θα′ + θϕq+1. Next, C picks z1, z2, z3, z5, . . . , z9
u←− Z∗

p and

g10, . . . , g15
u←− G, and defines g := g, g4 := gϕ, gi := gzi for i = 1, 2, 3, 5, . . . , 9.

C selects eight collision-resistant hash functions {Hi}8i=1 (as mentioned in the

construction), and simulates H1 and H4 as explained below.

H1 Hash Queries : To answer H1 hash queries, C maintains a table TabH1 . If

one submits a signing attribute y, C answers in the following way. If the tuple
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Jy, υy, H1(y)K exists in TabH1 , C returns H1(y). Otherwise, C picks υy
u←− Z∗

p,

returns

H1(y) :=

{
gυy
∏

j∈[n⋆s ]
(
gϕ

j)−M⋆(i)
sj , if y is the attribute of some ith row of M⋆

s ,

gυy , otherwise,

and inserts the new tuple Jy, υy, H1(y)K into TabH1 .

H4 Hash Queries : To answer H4 hash queries, C maintains a table TabH4 .

These queries are of two types. (i) Queries being submitted by A . When A

submits the input (ct,Γ, E ′,Pe,Ps,W ◦), C responds as follows. If the tuple

J(ct,Γ, E ′,Pe,Ps,W ◦), õK exists in TabH4 , C returns õ as

H4(ct||Γ||E ′||Pe||Ps||W ◦) := õ. Else, C selects õ
u←− Z∗

p, returns õ and inserts

the new tuple J(ct,Γ, E ′,Pe,Ps,W ◦), õK into TabH4 . (ii) Queries being conducted

by C during signcryption oracle simulation (which will be discussed in signcryp-

tion oracle execution given below).

Next, C sets PP := ⟨Σ, gT , g, {gi}15i=1,M,KDF, {Hi}8i=1⟩, whereM := {0, 1}ℓmsg

is the space of all messages, and KDF is the key derivation function. Lastly, C

selects τ,ϖ1, ϖ2, ϖ3, ϖ4, rc
u←− Z∗

p, computes g16 := gϖ1 , g17 := gϖ2 , g18 := gϖ3 ,

g19 := gϖ4 , hT := e(g, g15)
τ , Yc := grc4 and sets T PK := ⟨hT , g16, g17, g18, g19⟩,

T SK := ⟨τ,ϖ1, ϖ2, ϖ3, ϖ4⟩, CPK := Yc, CSK := rc.

C sends [PP , T PK, CPK, CSK] to A .

(3) Now, A queries signing key generation oracle O′
SKG(As), data retrieval request

generation oracle O′
DRR(Ad,Pt), signcryption oracle OSC(msg,Ps,Pe,W ) and

data retrieval cum unsigncrypt-verify oracle ODR-UV(CT , Ad,Pt). Then C re-

sponds to these queries as explained below.

• O′
SKG(As) : A submits a signing attribute set As such that P⋆s (As) = false.

Then, C calculates δ⃗ := (δ1, δ2, . . . , δn⋆s) ∈ Zn
⋆
s
p such that δ1 = −1 and

δ⃗ · M⃗⋆(i)
s = 0, ∀i ∈ {i|ρ⋆s(i) ∈ As}. Now, C picks r′0

u←− Z∗
p, implicitly

defines r′ := r′0 +
∑

ι∈[n⋆s ]
θδιϕ

q−ι+1 and returns the signing key

SKAs := ⟨As, S1, S2, {S3,y}y∈As⟩ to A , where

S1 := gθα
′
g
r′0
4

n⋆s∏
ι=2

(
gϕ

q−ι+2)θδι
, S2 := gr

′
0

∏
ι∈[n⋆s ]

(
gϕ

q−ι+1)θδι
,
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S3,y :=


S
υy
2

∏
j∈[n⋆s ]

(
gϕ

j)−r′0M⋆(i)
sj
∏

(ι,j)∈[n⋆s ,n⋆s ],ι ̸=j
(
gϕ

q−ι+1+j)−θδιM⋆(i)
sj ,

if ρ⋆s(i) = y

S
υy
2 , otherwise.

• O′
DRR(Ad,Pt) : A submits a decryption attribute set Ad and a keyword

policy Pt. C picks r0, rx
u←− Z∗

p, implicitly sets r := r0 − θr−1
c ϕq and cal-

culates the decryption key DKAd := ⟨Ad, D1, D2, {D3,x, D4,x}x∈Ad⟩, where

D1 := gθα
′
gr0rc4 , D2 := gr0

(
gϕ

q)−θr−1
c , D3,x := grx , D4,x := (gx2g1)

rxD−z3
2 .

Since C knows TGC’s secret key T SK := ⟨τ,ϖ1, ϖ2, ϖ3, ϖ4⟩, it computes

the trapdoor as T̃ DPt ← onTrapGen(PP , IT , T SK,Pt), where
IT ← offTrapGen(PP , CPK, T SK). Lastly, C sends [DKAd , T̃ DPt ] to A .

� OSC(msg,Ps,Pe,W ) : LetW := {[W1 : w1], . . . , [Wς : wς ]}, Ps := (Ms, ρs),

and Pe := (Me, ρe), where Ms (resp. Me) is a matrix of size ℓs × ns (resp.
ℓe × ne). C chooses a signing attribute set As such that Ps(As) = true,

calculates a⃗ := (a1, a2, . . . , aℓs)← Reconstruct(Ms, ρs, As) satisfying∑
i∈[ℓs] ai · M⃗

(i)
s = 1⃗ns and ai = 0 for all i ∈ {i|ρs(i) /∈ As}, samples

(b1, b2, . . . , bℓs)
u←−
{
(b1, b2, . . . , bℓs) ∈ Zℓsp |

∑
i∈[ℓs] bi · M⃗

(i)
s = 0⃗ns

}
. To gen-

erate a ciphertext

CT :=


Ωs := ⟨Ps, σ′, σ′′,Γ, σ, {σi}i∈[ℓs], χ⟩,
Ωe := ⟨Pe, ct, E ′, E1, {E⃗i := (Ei1, Ei2, Ei3), ε⃗i := (εi1, εi2)}i∈[ℓe]⟩,

Ωk :=

〈
W ◦, kT , L⃗ := (L1, L2, L3, L4),

{K⃗j := (Kj1, Kj2), k⃗j := (kj1, kj2, kj3, kj4), uj}j∈[ς],

〉
,

tag2, E2, ε2, η


of the message msg, C picks

õ, β, δ′, δ′′, δ′′′, r̆, o2, η, ti, f1, f2, f3, f4, t̆j, πj1, πj2, χ, ε2, εi1, εi2, uj
u←− Z∗

p, im-

plicitly sets ŏ1 = H4(ct||Γ||E ′||Pe||Ps||W ◦) := õ − (βz5)
−1ϕq+1 (this is of

type (ii) query mentioned above), and computes the components of CT in

the following manner.

Set σ := gα
′
g
r̆
θ
4 g

βõ
5 g

β
6

(∏
i∈[ℓs]H1

(
ρs(i)

) r̆ai
θ

+o2bi)g−χ5 and calculate the other

components of CT as in Equation (3.1). Finally, C sends this CT to A .

� ODR-UV(CT , Ad,Pt) : First, C obtains [DKAd , T̃ DPt ] ← O′
DRR(Ad,Pt).

Next, it computes IDR ← offDataRetReq(PP ,DKAd ,Pt),
[DRR, T DK]← onDataRetReq(PP , IDR, T̃ DPt). Next, it executes
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Test(PP , CT ,DRR, CSK),Transform(PP , CT ,DRR, CSK) and
Unsigncrypt-Verify(PP , CT out, T DK) algorithms, in that order. C sends

the final output to A .

When this query phase is over, A outputs a forgery ciphertext CT ⋆ of the

message msg⋆ for the encryption policy P⋆e , keyword set W ⋆, and the signing

policy P⋆s .

A wins the game if all the following conditions are true.

(i) ∃Ad,Pt ∋ P⋆e (Ad) = true ∧ Pt(W ⋆) = true,

(ii) Test(PP , CT ⋆,DRR := ⟨T DP◦
t
, T KAd⟩, CSK) = CT

⋆,

(iii) Transform(PP , CT ⋆,DRR, CSK) = CT ⋆out,
(iv) Unsigncrypt-Verify(PP , CT ⋆out, T DK) = msg⋆ ̸= ⊥ and

(v) A did not query for OSC using the input (msg⋆,P⋆s ,P⋆e ,W ⋆).

The ciphertext CT ⋆ is parsed as CT ⋆ :=
〈
Ω⋆
s := ⟨P⋆s , σ′⋆, σ′′⋆,Γ⋆, σ⋆, {σ⋆i }i∈[ℓ⋆s ], χ

⋆⟩,
Ω⋆
e := ⟨P⋆e , ct⋆, E ′⋆, E⋆

1 , {E⃗⋆
i , ε⃗

⋆
i }i∈[ℓ⋆e ]⟩,Ω

⋆
k, tag2

⋆, E⋆
2 , ε

⋆
2, η

⋆
〉
.

From Remark 4, conditions (i)-(iv) imply that

σ⋆ := g
α
θ g

r̆
θ
4

(
gŏ15 g6

)β(∏
i∈[ℓ⋆s ]

H1

(
ρ⋆s(i)

) r̆ai
θ

+o2bi)g−χ⋆5 , σ⋆i := g
r̆ai
θ

+o2bi , E⋆
1 := gβ, where

r̆, β, o2, χ
⋆ are random exponents, ŏ1 := H4(ct

⋆||Γ⋆||E ′⋆||P⋆e ||P⋆s ||W ⋆◦), (a1, a2, . . . , aℓ⋆s)

and (b1, b2, . . . , bℓ⋆s) are vectors satisfying respectively
∑

i∈[ℓ⋆s ]
ai · M⃗⋆(i)

s = 1⃗n⋆s and∑
i∈[ℓ⋆s ]

bi · M⃗⋆(i)
s = 0⃗n⋆s . Condition (v) implies that

ŏ1 := H4(ct
⋆||Γ⋆||E ′⋆||P⋆e ||P⋆s ||W ⋆◦) = õ (this is of type (i) query, C can obtain this

value from TabH4). Now, C can calculate the unknown value gϕ
q+1

as

gϕ
q+1

=
σ⋆ · gχ

⋆

5

gα′(E⋆
1

)õz5+z6∏
i∈[ℓ⋆s ]

(
σ⋆i
)υρ⋆s(i)

Therefore, if the advantage of A in the game GameEUF-CMA
A is non-negligible, then

C can solve the q-DHE problem with non-negligible advantage.

Theorem 3 (DO Privacy). ABDSRS preserves DO privacy.

Proof. The challenger C interacts with an adversary A as in GameDO-Privacy
A (formu-

lated in Section 3.2.2).

(1) C computes [PP ,MK]← KGC-Setup(1℘), [T PK, T SK]← TGC-Setup(PP),
[CPK, CSK]← Cloud-Setup(PP); and sends [PP ,MK, T PK, T SK, CPK, CSK]
to A .
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(2) In this step, A need not to query any oracle and it can compute required

components by itself because A has the knowledge of system master secret key,

cloud secret key and trapdoor secret key. A sends to C an encryption policy Pe,
a message msg, a signing policy Ps, a keyword set W and two signing attribute

sets A
(0)
s , A

(1)
s obeying the condition Ps(A(0)

s ) = true = Ps(A(1)
s ).

(3) C samples i
u←− {0, 1}, computes the signing key

SK
A

(i)
s
← sKeyGen(PP ,MK, A(i)

s ), the challenge ciphertext

CT ⋆ ← onSigncrypt
(
PP , offSigncrypt(PP ,SK

A
(i)
s
, T PK, CPK,Ps),msg,Pe,W

)
,

and sends CT ⋆ to A .

(4) A outputs its guess i′ of i.

From Remark 4, the signature Ωs := ⟨Ps, σ′, σ′′,Γ, σ, {σi}i∈[ℓs], χ⟩ of a data file

msg for the signing policy Ps := (Ms, ρs) is of the form

Γ := H7(g
1/θ
T )⊕H8

(
e(g, g4)

δ′·δ′′·CSK), σ′ := gδ
′
, σ′′ := gδ

′′

4 ,

σ := g
α
θ g

r̆
θ
4

(
gŏ15 g6

)β( ∏
i∈[ℓs]

H1

(
ρs(i)

) r̆ai
θ

+o2bi)g−χ5 , σi := g
r̆ai
θ

+o2bi ,

where θ, β, δ′, δ′′, r̆, o2, are random elements of Z∗
p, ŏ1 := H4(ct||Γ||E ′||Pe||Ps||W ◦),

ct := msg ⊕ KDF
(
g
β+ 1

θ
T

)
, (a1, a2, . . . , aℓs) and (b1, b2, . . . , bℓs) are vectors satisfying

respectively
∑

i∈[ℓs] ai · M⃗
(i)
s = 1⃗ns and

∑
i∈[ℓs] bi · M⃗

(i)
s = 0⃗ns , α is the system master

key, CSK is cloud secret key, and others are public parameters.

Since o2 is random, each r̆ai
θ

+ o2bi is random, and hence all the components

σ′, σ′′,Γ, σ, σi of the signature are random elements from adversary’s point of view.

That is, the signature is independent of the signing key being used to generate it.

Therefore, the challenge ciphertext gives no information about i in GameDO-Privacy
A to

the adversary A , resulting in A has to output just random guess i′. In this case,

Prob[i′ = i] = 1/2. Hence, A ’s advantage AdvDO-Privacy
A (1℘)

def
= Prob[i′ = i] = 1/2.

Thus, ABDSRS provides DO privacy.

Theorem 4 (Verifiability). ABDSRS is verifiable under the assumption that H3 is

a collision-resistant hash function.

Proof. If there exists an adversary A that wins the verifiability game GameverifiabilityA

(presented in Section 3.2.2) of ABDSRS, then an authorized DU C identifies a

collision for the hash function H3 by communicating with A in the following way.
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(1) C computes [PP ,MK]← KGC-Setup(1℘), [T PK, T SK]← TGC-Setup(PP),
[CPK, CSK]← Cloud-Setup(PP); and sends [PP , T PK, CPK, CSK] to A . The

secret keysMK and T SK are kept secret by C .

(2) A adaptively queries signing key generation oracle OSKG(As), data retrieval re-

quest generation oracle O′′
DRR(Ad,Pt), signcryption oracle OSC(msg,Ps,Pe,W )

and data retrieval cum unsigncrypt-verify oracle ODR-UV(CT , Ad,Pt). As C has

the system master secret keyMK and TGC secret key T SK, it simulates A ’s

queries properly. At the end of this phase, A announces an encryption pol-

icy P⋆e , a message msg⋆, a signing policy P⋆s , a keyword set W ⋆, and sends

[msg⋆,P⋆e ,P⋆s ,W ⋆] to C .

(3) C selects a set As satisfying P⋆s (As) = true and obtains a signing key

SKAs ← sKeyGen(PP ,MK, As). Next, it computes

CT ⋆ ← onSigncrypt
(
PP , IC,msg⋆,P⋆e ,W ⋆

)
, where

IC ← offSigncrypt(PP ,SKAs , T PK, CPK,P⋆s ).
Then, the ciphertext CT ⋆ will be given to A .

Here CT ⋆ := ⟨Ω⋆
s,Ω

⋆
e,Ω

⋆
k, tag2

⋆, E⋆
2 , ε

⋆
2, η

⋆⟩.

(4) Again A queries the oracles OSKG,O′′
DRR,OSC,ODR-UV and obtains the respec-

tive responses as in step (2). At the end of this phase, A outputs a de-

cryption attribute set Ad, a keyword policy Pt and a transformed ciphertext

CT out := ⟨∆1,∆2,∆3, ct, tag2
⋆⟩ such that P⋆e (Ad) = true ∧ Pt(W ⋆) = true.

Suppose that the tuple JAd,Pt, T KAd , T DP◦
t
, T DKK is in table Tab′′DRR, where

T DK := ⟨tdk1, tdk2⟩. If not, it can be generated by querying the oracle O′′
DRR with

the input (Ad,Pt). Since A can break the verifiability of ABDSRS, C recovers a

message msg ← Unsigncrypt-Verify(PP , CT out, T DK) with the property that msg /∈
{msg⋆,⊥} as follows. C (i) computes Λ := (∆1)

−tdk1 · (∆2)
tdk2 · ∆3 (ii) observes

H3

(
H2(Λ)||ct

)
= tag2⋆ and (iii) obtains msg = ct⊕ KDF(Λ).

If Λ⋆ and ct⋆ are the respective components of Λ and ct being used in the gen-

eration of CT ⋆, then there are two possibilities Λ ̸= Λ⋆ or Λ = Λ⋆. Note that the

condition (ii) implies that H3

(
H2(Λ)||ct

)
= H3

(
H2(Λ

⋆)||ct⋆
)
.

In case Λ ̸= Λ⋆, H2(Λ)||ct ̸= H2(Λ
⋆)||ct⋆ and hence the pair(

H2(Λ)||ct,H2(Λ
⋆)||ct⋆

)
forms a collision for the hash function H3.

In case Λ = Λ⋆, since ct⊕KDF(Λ) = msg ̸= msg⋆ = ct⋆⊕KDF(Λ⋆), we have that

ct ̸= ct⋆. So, H2(Λ)||ct ̸= H2(Λ
⋆)||ct⋆ and hence the pair

(
H2(Λ)||ct,H2(Λ

⋆)||ct⋆
)

causes H3 to collide.
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C detects a collision for H3 in each scenario. Due to the collision-resistance

nature of H3, it is impossible for A to gain a non-negligible advantage and win

GameverifiabilityA . Therefore, we prove ABDSRS to be verifiable.

Remark 8. Note that the components X1 and X2 (computed in Equations (3.3) and

(3.4)) can also be computed as

X1 := e
(
E1,

∏
i∈[ℓt]

(
T1i1 · gB1i

15

)a′i) · ∏
i∈[ℓt]

e
(
gϱi · T0︸ ︷︷ ︸
:=ϱ×i

,
(
Kρ◦t (i)1

· g
uρ◦t (i)
11

)a′i) (3.7)

X2 :=
∏
i∈[ℓt]

{
e
(
g
kρ◦t (i)1
16 · L1︸ ︷︷ ︸
:=k×

ρ◦t (i)1

,
(
T2i2 · gB2i2

11

)a′i) · e( gkρ◦t (i)217 · L2︸ ︷︷ ︸
:=k×

ρ◦t (i)2

,
(
T2i1 · gB2i1

11

)a′i)

×e
(
g
kρ◦t (i)3
18 · L3︸ ︷︷ ︸
:=k×

ρ◦t (i)3

,
(
T2i4 · gB2i4

11

)a′i) · e( gkρ◦t (i)419 · L4︸ ︷︷ ︸
:=k×

ρ◦t (i)4

,
(
T2i3 · gB2i3

11

)a′i)} (3.8)

Hence, one can run Test algorithm using Equations (3.7) and (3.8) instead of

Equations (3.3) and (3.4), respectively. Due to this fact, we can modify the distri-

bution of DRR (presented in Remark 5) and CT (given in Remark 4) as follows.

• mDRR (modified distribution of DRR): It is the same as DRR, except

where the components
(
T0, {ϱi}i∈[ℓt]

)
are replaced by {ϱ×i }i∈[ℓt], here

ϱ×i := gϱi · T0 = gϖ1ϖ2r̆i+ϖ3ϖ4r̆′i (from Equation (3.2)). More specifically,

mDRR :=


T DP◦

t
:=

〈 P◦
t , T1, T2,

{ϱ×i , T⃗1i := (T1i1, T1i2), T⃗2i := (T2i1, T2i2, T2i3, T2i4)}i∈[ℓt],
{B1i, B⃗2i := (B2i1, B2i2, B2i3, B2i4)}i∈[ℓt]

〉
,

T KAd :=
〈
Ad, T

′
1, T

′
2, {T ′

3,x, T
′
4,x}x∈Ad

〉


(3.9)

where ϱ×i := gϖ1ϖ2r̆i+ϖ3ϖ4r̆′i and the other components are identical to that of

Equation (3.2).

• mCT (modified distribution of CT ): This is the same as CT except that the

components
(
L⃗, {k⃗j}j∈[ς]

)
are replaced by the components {k⃗×j }j∈[ς], where

k⃗×j := (k×j1, k
×
j2, k

×
j3, k

×
j4) and k

×
j1 := g

kj1
16 · L1 = g

t̆j−πj1
16 , k×j2 := g

kj2
17 · L2 = g

πj1
17 ,

k×j3 := g
kj3
18 · L3 = g

t̆j−πj2
18 , k×j4 := g

kj4
19 · L4 = g

πj2
19 (from Equation (3.1)).

We use these modified distributions to answer adversary’s queries in IND-CKA

security proof (for Type-1 adversary) presented in Lemma 3.
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Table 3.2: The sequence of 2ς + 2 games Greal,G0,G1, . . . ,G2ς .

Game The Challenge Ciphertext CT ⋆

Greal Ωk :=

〈
W ◦, kT , {K⃗j := (Kj1,Kj2), uj}j∈[ς],
k⃗×1 := (k×11, k

×
12, k

×
13, k

×
14), k⃗

×
2 := (k×21, k

×
22, k

×
23, k

×
24), . . . , k⃗

×
ς := (k×ς1, k

×
ς2, k

×
ς3, k

×
ς4),

〉

G0 Ωk :=

〈
W ◦, rT , {K⃗j := (Kj1,Kj2), uj}j∈[ς],
k⃗×1 := (k×11, k

×
12, k

×
13, k

×
14), k⃗

×
2 := (k×21, k

×
22, k

×
23, k

×
24), . . . , k⃗

×
ς := (k×ς1, k

×
ς2, k

×
ς3, k

×
ς4),

〉

G1 Ωk :=

〈
W ◦, rT , {K⃗j := (Kj1,Kj2), uj}j∈[ς],
k⃗×1 := ( R11 , k×12, k

×
13, k

×
14), k⃗

×
2 := (k×21, k

×
22, k

×
23, k

×
24), . . . , k⃗

×
ς := (k×ς1, k

×
ς2, k

×
ς3, k

×
ς4),

〉

G2 Ωk :=

〈
W ◦, rT , {K⃗j := (Kj1,Kj2), uj}j∈[ς],
k⃗×1 := ( R11 , k×12, k

×
13, k

×
14), k⃗

×
2 := ( R21 , k×22, k

×
23, k

×
24), . . . , k⃗

×
ς := (k×ς1, k

×
ς2, k

×
ς3, k

×
ς4),

〉
...

Gς Ωk :=

〈
W ◦, rT , {K⃗j := (Kj1,Kj2), uj}j∈[ς],
k⃗×1 := ( R11 , k×12, k

×
13, k

×
14), k⃗

×
2 := ( R21 , k×22, k

×
23, k

×
24), . . . , k⃗

×
ς := ( Rς1 , k×ς2, k

×
ς3, k

×
ς4),

〉

Gς+1 Ωk :=

〈
W ◦, rT , {K⃗j := (Kj1,Kj2), uj}j∈[ς],
k⃗×1 := ( R11 , k×12, R13 , k×14), k⃗

×
2 := ( R21 , k×22, k

×
23, k

×
24), . . . , k⃗

×
ς := ( Rς1 , k×ς2, k

×
ς3, k

×
ς4),

〉

Gς+2 Ωk :=

〈
W ◦, rT , {K⃗j := (Kj1,Kj2), uj}j∈[ς],
k⃗×1 := ( R11 , k×12, R13 , k×14), k⃗

×
2 := ( R21 , k×22, R23 , k×24), . . . , k⃗

×
ς := ( Rς1 , k×ς2, k

×
ς3, k

×
ς4),

〉
...

G2ς Ωk :=

〈
W ◦, rT , {K⃗j := (Kj1,Kj2), uj}j∈[ς],
k⃗×1 := ( R11 , k×12, R13 , k×14), k⃗

×
2 := ( R21 , k×22, R23 , k×24), . . . , k⃗

×
ς := ( Rς1 , k×ς2, Rς3 , k×ς4),

〉

Lemma 3. If the challenge keyword set has at most q keywords, then ABDSRS

provides IND-CKA security against PPT Type-1 adversary, under the assumption

that q-2 and DLin problems (given in Sections 2.3.4 and 2.3.5, respectively) are hard.

Proof. We prove this security notion (modeled as GameIND-CKAType-1 in Section 3.2.2) em-

ploying a hybrid experiment which consisting of a sequence of games between a

challenger C and a Type-1 adversary A . The individual games differ in how C con-

structs the challenge ciphertext given to A . Let CT ⋆ := ⟨Ωs,Ωe,Ωk, tag2, E2, ε2, η⟩
be the challenge ciphertext given to A during IND-CKA game. Let ς be the size

of the keyword set used in computation of CT ⋆ such that ς ≤ q. The sequence of

2ς + 2 games Greal,G0,G1, . . . ,G2ς is defined in Table 3.2. In these games, only the

components in Ωk are modified (precisely, some components are replaced by random

elements) and all other elements of CT ⋆ remain unchanged. For brevity, we omit the

components Ωs,Ωe, tag2, E2, ε2, η from CT ⋆ and present only the components of Ωk

in Table 3.2. Let rT be the random element of GT and R11, R13, R21, R23, . . . , Rς1, Rς3

be random elements of G. Note that all the components of Ωk in the challenge ci-

phertext (computed in G2ς) are random elements and hence the challenge ciphertext

is independent of the two keyword sets submitted by A . But, the challenge cipher-

text of Greal is well formed. The challenge ciphertext in G2ς reveals nothing about

its keyword set. To complete the proof, we show that the transitions from Greal to
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G0 to G1 to . . . to G2ς are all computationally indistinguishable (in Claims 1, 2 and

3).

Claim 1. Under the hardness assumption of q-2 problem, no PPT Type-1 adversary

can distinguish between the games Greal and G0 with non-negligible advantage.

Proof. Assume there is a Type-1 adversary A that distinguishes between the games

Greal and G0 with non-negligible advantage. Next, we introduce a challenger C which

solves q-2 problem with non-negligible advantage by interacting with A as follows.

Given the q-2 problem instance
〈
Σ, g, gϕ1 , gϕ2 , gϕ3 , g(ϕ1ϕ3)

2
, {gψi , gϕ1ϕ3ψi , gϕ1ϕ3/ψi ,

gϕ
2
1ϕ3ψi , gϕ2/ψ

2
i , gϕ

2
2/ψ

2
i }i∈[q], {gϕ1ϕ3ψi/ψj , gϕ2ψi/ψ

2
j , gϕ1ϕ2ϕ3ψi/ψ

2
j , g(ϕ1ϕ3)

2ψi/ψj}(i,j)∈[q,q],i ̸=j,
Z
〉
, the task for C is to ascertain if Z is equal to e(g, g)ϕ1ϕ2ϕ3 or Z has been randomly

selected from GT .

(1) A announces two challenge keyword sets W ⋆
0 := {[W1 : w

(0)
1 ], . . . , [Wς : w

(0)
ς ]}

and W ⋆
1 := {[W1 : w

(1)
1 ], . . . , [Wς : w

(1)
ς ]}. Note that these two sets satisfy the

conditions |W ⋆
0 | = |W ⋆

1 | = ς and W ⋆◦
0 = W ⋆◦

1 = {W1, . . . ,Wς} of GameIND-CKAType-1 .

(2) Firstly, C samples µ
u←− {0, 1} and sets W ⋆

µ := {[W1 : w
(µ)
1 ], . . . , [Wς : w

(µ)
ς ]}.

Then, C selects α′, zi
u←− Z∗

p, i ∈ {1, . . . , 9, 11, . . . , 15}, implicitly defines

α := α′ϕ2 and sets gT := e(g, gϕ2)α
′
, gi := gzi for i ∈ {1, 2, . . . , 9, 14, 15},

g10 := gϕ1 , g11 := gz11
∏

j∈[ς] g
ϕ2/ψ2

j , g12 := gz12
∏

j∈[ς](g
ϕ1ϕ3/ψj)

(
gϕ2/ψ

2
j
)−w(µ)

j ,

g13 := gϕ1gz13 . Next, it chooses eight collision-resistant hash functions {Hi}8i=1

(as mentioned in construction) and sets PP := ⟨Σ, gT , g, {gi}15i=1,M,KDF,

{Hi}8i=1⟩, whereM := {0, 1}ℓmsg is the message space and KDF is the key deriva-

tion function, andMK := (gϕ2)α
′
. Lastly, C picks τ0, ϖ1, ϖ2, ϖ3, ϖ4, rc

u←− Z∗
p,

calculates g16 := gϖ1 , g17 := gϖ2 , g18 := gϖ3 , g19 := gϖ4 ,

hT := e(g, g15)
τ0 · e(gϕ1 , gϕ2)z15 , Yc := grc4 , and sets T PK := ⟨hT , g16, g17, g18, g19⟩,

T SK := ⟨τ := τ0 + ϕ1ϕ2, ϖ1, ϖ2, ϖ3, ϖ4⟩, CPK := Yc, CSK := rc. Note that

τ := τ0 + ϕ1ϕ2 is implicitly defined. C sends [PP , T PK, CPK, CSK] to A .

(3) A queries signing key generation oracle OSKG(As), data retrieval request gen-

eration oracle O′′′
DRR(Ad,Pt) and test oracle Otest(CT ,Pt). Then C responds as

follows.

� OSKG(As) : C chooses r′
u←− Z∗

p, sets S1 := (gϕ2)α
′
gr

′
4 , S2 := gr

′
,

S3,y := (H1(y))
r′ , ∀y ∈ As, and returns SKAs := ⟨As, S1, S2, {S3,y}y∈As⟩.

� O′′′
DRR(Ad,Pt) : A submits a decryption attribute set Ad and a keyword

policy Pt with the condition that Pt(W ⋆
0 ) = false∧Pt(W ⋆

1 ) = false. Hence
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Pt(W ⋆
µ) = false. Let Pt := (Mt, ρ

◦
t , {wρ◦t (i)}i∈[ℓt]), where Mt is a matrix of

size ℓt × nt. Since Pt(W ⋆
µ) = false, C can compute a vector

δ⃗ := (δ1, δ2, . . . , δnt) ∈ Zntp such that δ1 = −1 and M⃗
(i)
t · δ⃗ = 0,

∀i ∈ {i|ρ◦t (i) ∈ W ⋆◦
µ }. It selects o2, . . . , ont , f̆ , f ′ u←− Z∗

p, sets T1 := gf̆ ,

T2 := gf
′

4 , ∂̆ := H5(e(T1, T2)
rc), and implicitly sets

ϑ⃗ := (0, o2, . . . , ont)− (τ0 + ϕ1ϕ2)∂̆δ⃗. For each row i ∈ [ℓt], its share is

ϑi = M⃗
(i)
t · ϑ⃗ = M⃗

(i)
t · (0, o2, . . . , ont)− τ0∂̆M⃗

(i)
t · δ⃗ − ϕ1ϕ2∂̆M⃗

(i)
t · δ⃗

It samples γ0, τ̆0, o
′
2, . . . , o

′
nt

u←− Z∗
p, implicitly defines τ̆ := τ̆0∂̆ϕ1ϕ2z15/z14,

trk := ϕ1ϕ2∂̆z15/z14, tdk1 := τ̆0, tdk2 := γ = γ0ϕ2,
⃗̆
ϑ := (0, o′2, . . . , o

′
nt)− (ϕ1ϕ2∂̆z15/z14)δ⃗.

In this case, the share of the row i ∈ [ℓt] is

ϑ̆i := M⃗
(i)
t ·

⃗̆
ϑ = M⃗

(i)
t · (0, o′2, . . . , o′nt)− (ϕ1ϕ2∂̆z15/z14)M⃗

(i)
t · δ⃗

C calculates the trapdoor T DP◦
t
:= ⟨P◦

t , T1, T2, {ϱ×i , T⃗1i, T⃗2i, B1i, B⃗2i}i∈[ℓt]⟩
(mentioned in Equation (3.9)) in the following way.

Case-1: For the row i ∈ [ℓt] where ρ
◦
t (i) ∈ W ⋆◦

µ . In this case, M⃗
(i)
t · δ⃗ = 0

and therefore ϑi = M⃗
(i)
t · (0, o2, . . . , ont)

let
= vti

and ϑ̆i = M⃗
(i)
t · (0, o′2, . . . , o′nt)

let
= uti.

Choose r̆i, r̆
′
i, B1i, B2i1, B2i2, B2i3, B2i4

u←− Z∗
p, set

ϱ×i := gϖ1ϖ2r̆i+ϖ3ϖ4r̆′i ,

T1i1 := gvti15 · g
ϖ1ϖ2r̆i+ϖ3ϖ4r̆′i
10 · g−B1i

15 ,

T1i2 := guti14 ·H6

(
e(g, g4)

f̆f ′·rc ||P◦
t ||M

(i)
t

)
· gϖ1ϖ2r̆i+ϖ3ϖ4r̆′i

13 ,

and compute the other components of T DP◦
t
as in Equation (3.2).

Case-2: For the row i ∈ [ℓt] where ρ
◦
t (i) /∈ W ⋆◦

µ (i.e., wρ◦t (i) ̸= w
(µ)
j ,∀j ∈ [ς]).

In this case, M⃗
(i)
t · δ⃗ ̸= 0, and C cannot compute ϕ1ϕ2∂̆M⃗

(i)
t · δ⃗ and

(ϕ1ϕ2∂̆z15/z14)M⃗
(i)
t · δ⃗. However, by properly defining r̆i, r̆

′
i, C is able to

calculate ϱ×i , T1i1, T1i2, T2i1, T2i2, T2i3, T2i4.

Choose ri, r
′
i, B1i, B2i1, B2i2, B2i3, B2i4

u←− Z∗
p, implicitly define

r̆i := ri +
∂̆ϕ2z15(M⃗

(i)
t · δ⃗)

2ϖ1ϖ2

−
∑
j∈[ς]

ϕ1ϕ3ψj ∂̆z15(M⃗
(i)
t · δ⃗)

2ϖ1ϖ2(wρ◦t (i) − w
(µ)
j )
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r̆′i := r′i +
∂̆ϕ2z15(M⃗

(i)
t · δ⃗)

2ϖ3ϖ4

−
∑
j∈[ς]

ϕ1ϕ3ψj ∂̆z15(M⃗
(i)
t · δ⃗)

2ϖ3ϖ4(wρ◦t (i) − w
(µ)
j )

and compute

ϱ×i := gϖ1ϖ2ri+ϖ3ϖ4r′i · (gϕ2)∂̆z15M⃗
(i)
t ·δ⃗ ·

∏
j∈[ς]

(gϕ1ϕ3ψj)

−∂̆z15(M⃗
(i)
t ·δ⃗)

wρ◦t (i)
−w(µ)

j

T1i1 := g
vti−∂̆τ0M⃗

(i)
t ·δ⃗

15 · gϖ1ϖ2ri+ϖ3ϖ4r′i
10 · g−B1i

15 ·
∏
j∈[ς]

(gϕ
2
1ϕ3ψj)

−∂̆z15(M⃗
(i)
t ·δ⃗)

wρ◦t (i)
−w(µ)

j

T1i2 := guti14 ·H6

(
e(g, g4)

f̆f ′·rc ||P◦
t ||M

(i)
t

)
· (ϱ×i )z13 · (gϕ1)ϖ1ϖ2ri+ϖ3ϖ4r′i

×
∏
j∈[ς]

(gϕ
2
1ϕ3ψj)

−∂̆z15(M⃗
(i)
t ·δ⃗)

wρ◦t (i)
−w(µ)

j

T2i1 :=
(
g
wρ◦t (i)
11 · g12

)−riϖ1 · g−B2i1
11 · (gϕ2)

−(z11wρ◦t (i)
+z12)∂̆z15(M⃗

(i)
t ·δ⃗)

2ϖ2

∏
j∈[ς]

(
gϕ1ϕ3ψj

) (z11wρ◦t (i)
+z12)∂̆z15(M⃗

(i)
t ·δ⃗)

2ϖ2(wρ◦t (i)
−w(µ)

j
)

∏
(j,ι)∈[ς,ς]

(
g(ϕ1ϕ3)

2ψι/ψj
) ∂̆z15(M⃗

(i)
t ·δ⃗)

2ϖ2(wρ◦t (i)
−w(µ)

j
)

×
∏
j∈[ς]

(
gϕ

2
2/ψ

2
j
)−∂̆z15(M⃗

(i)
t ·δ⃗)(wρ◦t (i)

−w(µ)
j

)

2ϖ2

×
∏

(j,ι)∈[ς,ς],j ̸=ι

(
gϕ1ϕ2ϕ3ψι/ψ

2
j
) ∂̆z15(M⃗(i)

t ·δ⃗)(wρ◦t (i)
−w(µ)

j
)

2ϖ2(wρ◦t (i)
−w(µ)

ι )

The components T2i2, T2i3, T2i4 can be computed as T2i1 since these com-

ponents have the term (g
wρ◦t (i)
11 · g12) in common and r̆i, r̆

′
i have the same

structure. Now, C generates the transform key

T KAd := ⟨Ad, T ′
1, T

′
2, {T ′

3,x, T
′
4,x}x∈Ad⟩, where r̂, r̂x

u←− Z∗
p and

T ′
1 := gα

′/γ0grc·r̂4 (gϕ1)τ̆0∂̆z15/γ0 , T ′
2 := gr̂, T ′

3,x := gr̂x , T ′
4,x := (gx2g1)

r̂xg−r̂3

Lastly, C hands overmDRR := [T DP◦
t
, T KAd ] to A .According to Remark

8, the generated data retrieval request for (Ad,Pt) is accuarately derived.
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� Otest(CT ,Pt) : A submits a ciphertext CT and a keyword policy Pt with
the condition that Pt(W ⋆

0 ) = false ∧ Pt(W ⋆
1 ) = false. Hence

Pt(W ⋆
µ) = false. Then, C chooses a decryption attribute set Ad, obtains

mDRR := [T DP◦
t
, T KAd ]← O′′′

DRR(Ad,Pt), and sends the outcome of

Test(PP , CT ,mDRR, CSK) to A . Note that the choice of Ad doest not

affect the output of Test algorithm because it uses only T DP◦
t
frommDRR.

When this query phase is over, A submits an encryption policy P⋆e , a message

msg⋆, and a signing policy P⋆s .

(4) To generate the challenge ciphertext

mCT ⋆ :=


Ωs := ⟨P⋆s , σ′, σ′′,Γ, σ, {σi}i∈[ℓs], χ⟩,
Ωe := ⟨P⋆e , ct, E ′, E1, {E⃗i := (Ei1, Ei2, Ei3), ε⃗i := (εi1, εi2)}i∈[ℓe]⟩,
Ωk := ⟨W ⋆◦

µ , kT , {K⃗j := (Kj1, Kj2), k⃗
×
j := (k×j1, k

×
j2, k

×
j3, kj4)

×, uj}j∈[ς]⟩,
tag2, E2, ε2, η


of the message msg⋆ for P⋆s := (Ms, ρs), P⋆e := (Me, ρe), where Ms (resp. Me)

is a matrix of size ℓs × ns (resp. ℓe × ne), and the keyword set

W ⋆
µ := {[W1 : w

(µ)
1 ], . . . , [Wς : w

(µ)
ς ]}, C samples

θ, δ′, δ′′, δ′′′, r̆, o2, η, ti, , πj1, πj2, χ, ε2, εi1, εi2, uj, õ2, . . . , õℓe
u←− Z∗

p, implicitly de-

fines β := ϕ3, t̆j := ψj and sets

E1 := gϕ3 ,Γ := H7(g
1/θ
T )⊕H8

(
e(g, g4)

δ′·δ′′·rc
)
,

ct := msg⋆ ⊕ KDF
(
e(gϕ2 , E1)

α′ · g1/θT

)
,

tag2 := H3

(
H2(e(g

ϕ2 , E1)
α′ · g1/θT )||ct

)
, σ′ := gδ

′
, σ′′ := gδ

′′
4 ,

σ := (gϕ2)
α′
θ g

r̆
θ
4 E

ŏ1z5+z6
1

(∏
i∈[ℓs]H1

(
ρs(i)

) r̆ai
θ

+o2bi)g−χ5 , σi := g
r̆ai
θ

+o2bi , E ′ := gδ
′′′

4 ,

Ei1 := E
z4∂M

(i)
e1

1 g
∑ℓe
j=2 õjM

(i)
ej

4 gti3 · g
−εi1
4 , Ei2 := (g

ρe(i)
2 g1)

ti · g−εi22 , Ei3 := gti ,

Kj1 := (gψj)z11w
(µ)
j +z12 · g−uj11 ·

∏
ι∈[ς]

(
gϕ2ψj/ψ

2
ι
)(w(µ)

j −w(µ)
ι ) ·

∏
ι∈[ς],ι̸=j g

ϕ1ϕ3ψj/ψι ,

Kj2 := Kj1 · E−z13
1 ,

k×j1 := (gψj)ϖ1g−πj1ϖ1 , k×j2 := gπj1ϖ2 , k×j3 := (gψj)ϖ3g−πj2ϖ3 , k×j4 := gπj2ϖ4 ,

kT := e(E1, g15)
τ0 · Zz15 , E2 := Ez7ξ+z8η+z9

1 · g−ε27

where ∂ := H5

(
e(g, g4)

δ′δ′′′·rc
)
,

λi := (ϕ3∂, õ2, . . . , õℓe) · M⃗
(i)
e = ϕ3∂M

(i)
e1 +

∑ℓe
j=2 õjM

(i)
ej is the ith share of

β∂ := ϕ3∂ with respect to (Me, ρe), ŏ1 := H4(ct||Γ||E ′||P⋆e ||P⋆s ||W ⋆◦
µ ),

ξ := H5(Ωs||Ωe||Ωk||tag2), (a1, a2, . . . , aℓs) and (b1, b2, . . . , bℓs) are vectors satis-
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fying respectively
∑

i∈[ℓs] ai · M⃗
(i)
s = 1⃗ns and

∑
i∈[ℓs] bi · M⃗

(i)
s = 0⃗ns . Lastly, C

hands over the challenge ciphertext to A .

(5) In this step, A queries the oracles similar to step (3). Once this query phase is

over, A makes a guess µ′.

If µ′ = µ, A wins, and in this case, Z = e(g, g)ϕ1ϕ2ϕ3 ; otherwise, C claims that Z is

a random element of GT .

If Z = e(g, g)ϕ1ϕ2ϕ3 , then kT := e(E1, g15)
τ0 · Zz15 = e(g, g15)

τβ and hence A ’s

view is identical to the original game Greal. On the other hand, if Z is a random

element then kT is a random element as well and hence A ’s view is identical to the

game G0. Therefore, if A can distinguish between Greal and G0 with non-negligible

advantage, C has a non-negligible advantage in solving q-2 problem. (of Claim 1)

Claim 2. Under the hardness assumption of DLin problem, no PPT Type-1 adver-

sary can distinguish between the games Gl and Gl+1 with non-negligible advantage,

l ∈ {0, 1, . . . , ς − 1}.

Proof. Let a Type-1 adversary A distinguishes between the games Gl and Gl+1

with non-negligible advantage, then we construct a challenger C that solves DLin

problem with non-negligible advantage by interacting with A as follows. Given the

DLin problem instance
〈
Σ, g, gϕ1 , gϕ2 , gϕ1ϕ3 , gϕ2ϕ4 , Z

〉
, the task for C is to determine

whether Z = gϕ3+ϕ4 or Z is a random element of G. As in [8], we write DLin

problem as
〈
Σ, g, gϕ1 , gϕ2 , gϕ1ϕ3 ,D, gψ

〉
for ψ such that gψ = Z, and consider the

task of deciding whether D = gϕ2(ψ−ϕ3).

(1) A submits two challenge keyword sets W ⋆
0 := {[W1 : w

(0)
1 ], . . . , [Wς : w

(0)
ς ]}

and W ⋆
1 := {[W1 : w

(1)
1 ], . . . , [Wς : w

(1)
ς ]}. Note that these two sets satisfy the

conditions |W ⋆
0 | = |W ⋆

1 | = ς and W ⋆◦
0 = W ⋆◦

1 = {W1, . . . ,Wς} of GameIND-CKAType-1 .

(2) Firstly, C samples µ
u←− {0, 1} and sets W ⋆

µ := {[W1 : w
(µ)
1 ], . . . , [Wς : w

(µ)
ς ]}.

Then, C selects α, τ,ϖ3, ϖ4, rc, zi
u←− Z∗

p, i ∈ {1, . . . , 10, 12, . . . , 15}, sets
gT := e(g, g)α, gi := gzi for i ∈ {1, . . . , 10, 13, 14, 15}, g11 := (gϕ2)τ ,

g12 := gz12(gϕ2)−τw
(µ)
l , g16 := gϕ2 , g17 := gϕ1 , g18 := gϖ3 , g19 := gϖ4 ,

hT := e(g, g15)
τ , Yc := grc4 . Next, it chooses eight collision-resistant hash func-

tions {Hi}8i=1 (as described in the construction) and sets

PP := ⟨Σ, gT , g, {gi}15i=1,M,KDF, {Hi}8i=1⟩,MK := gα,

T PK := ⟨hT , g16, g17, g18, g19⟩, T SK := ⟨τ, ϕ2, ϕ1, ϖ3, ϖ4⟩, CPK := Yc,

CSK := rc. Note that ϖ1 := ϕ2, ϖ2 := ϕ1 are implicitly defined. C sends

[PP , T PK, CPK, CSK] to A .
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(3) C simulates A ’s queries as follows.

� OSKG(As) : C returns SKAs ← sKeyGen(PP ,MK, As) since C knowsMK.

� O′′′
DRR(Ad,Pt) : A submits a decryption attribute set Ad and a keyword

policy Pt with the condition that Pt(W ⋆
0 ) = false∧Pt(W ⋆

1 ) = false. Hence

Pt(W ⋆
µ) = false. Let Pt := (Mt, ρ

◦
t , {wρ◦t (i)}i∈[ℓt]), where Mt represents a

matrix of dimesion ℓt × nt. C calculates

T DP◦
t

:= ⟨P◦
t , T1, T2, {ϱ×i , T⃗1i, T⃗2i, B1i, B⃗2i}i∈[ℓt]⟩ (mentioned in Equation

(3.9)) as described below. Choose

f̆ , f ′, τ̆ , tr, ri, r
′
i, B1i, B2i1, B2i2, B2i3, B2i4, ŏ2, . . . , ŏnt , ŏ

′
2, . . . , ŏ

′
nt

u←− Z∗
p,

i ∈ [ℓt], implicitly define

r̆i :=
riτ(wρ◦t (i) − w

(µ)
l )

ϕ2τ(wρ◦t (i) − w
(µ)
l ) + z12

and r̆′i := r′i+
z12ϕ1ri

ϖ3ϖ4

(
ϕ2τ(wρ◦t (i) − w

(µ)
l ) + z12

) ,
and set ∂̆ := H5

(
e(g, g4)

f̆f ′·rc
)
, ϑi := M⃗

(i)
t · (τ ∂̆, ŏ2, . . . , ŏnt), ϑ̆i := M⃗

(i)
t ·

(τ̆ /tr, ŏ
′
2, . . . , ŏ

′
nt), T1 := gf̆ , T2 := gf

′

4 ,

ϱ×i := (gϕ1)rigϖ3ϖ4r′i ,

T1i1 := gϑi15 · (gϕ1)riz10gϖ3ϖ4r′iz10 · g−B1i
15 ,

T1i2 := gϑ̆i14 ·H6

(
e(g, g4)

f̆f ′·rc||P◦
t ||M

(i)
t

)
· (gϕ1)riz13gϖ3ϖ4r′iz13 ,

T2i1 := (gϕ2)
−riτ(wρ◦t (i)−w

(µ)
l ) · g−B2i1

11 ,

T2i2 := (gϕ1)
−riτ(wρ◦t (i)−w

(µ)
l ) · g−B2i2

11 ,

T2i3 :=
(
g
wρ◦t (i)
11 · g12

)−r′iϖ3(gϕ1)−z12ri/ϖ4 · g−B2i3
11 ,

T2i4 :=
(
g
wρ◦t (i)
11 · g12

)−r′iϖ4(gϕ1)−z12ri/ϖ3 · g−B2i4
11 .

Next, C generates the transform key T KAd := ⟨Ad, T ′
1, T

′
2, {T ′

3,x, T
′
4,x}x∈Ad⟩,

where γ, r̂, r̂x
u←− Z∗

p and T
′
1 := gα/γg

(rc·r̂)
4 g

τ̆/γ
14 , T

′
2 := gr̂, T ′

3,x := gr̂x ,

T ′
4,x := (gx2g1)

r̂xg−r̂3 . Finally, C sends mDRR := [T DP◦
t
, T KAd ] to A .

According to Remark 8, the generated data retrieval request for (Ad,Pt) is
accurately derived.

� Otest(CT ,Pt) : The simulation is similar to that of Claim 1.

Once the query phase is complete, A outputs an encryption policy P⋆e , a message

msg⋆, and a signing policy P⋆s .
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(4) To compute the challenge ciphertext

mCT ⋆ :=


Ωs := ⟨P⋆s , σ′, σ′′,Γ, σ, {σi}i∈[ℓs], χ⟩,
Ωe := ⟨P⋆e , ct, E ′, E1, {E⃗i := (Ei1, Ei2, Ei3), ε⃗i := (εi1, εi2)}i∈[ℓe]⟩,
Ωk := ⟨W ⋆◦

µ , kT , {K⃗j := (Kj1, Kj2), k⃗
×
j := (k×j1, k

×
j2, k

×
j3, kj4)

×, uj}j∈[ς]⟩,
tag2, E2, ε2, η


of the message msg⋆ for P⋆s := (Ms, ρs), P⋆e := (Me, ρe), where Ms (resp. Me)

is a matrix of size ℓs × ns (resp. ℓe × ne), and the keyword set

W ⋆
µ := {[W1 : w

(µ)
1 ], . . . , [Wς : w

(µ)
ς ]}, C calculates the components of Ωk in the

following manner.

For j ∈ [ς] and j ̸= l, C picks β, t̆j, uj, πj1, πj2
u←− Z∗

p, and sets

kT := hβT , Kj1 := (g
w

(µ)
j

11 g12)
t̆jg−β10 · g

−uj
11 , Kj2 := (g

w
(µ)
j

11 g12)
t̆jg−β13 · g

−uj
11 ,

k×j1 := g
t̆j−πj1
16 , k×j2 := g

πj1
17 , k

×
j3 := g

t̆j−πj2
18 , k×j4 := g

πj2
19 .

For j = l, C implicitly defines t̆l := ψ, πl1 := ϕ3, chooses ul, πl2
u←− Z∗

p, and sets

Kl1 := (gψ)z12g−β10 · g
−ul
11 , Kl2 := (gψ)z12g−β13 · g

−ul
11 , k×l1 := D, k

×
l2 := gϕ1ϕ3 ,

k×l3 := (gψ)ϖ3g−πl218 , k×l4 := gπl219 . C computes the other components of mCT ⋆ as in
Equation (3.1). A receives this mCT ⋆.

(5) Again, A queries similar to described in step (3). Once this query phase is over,

A makes a guess µ′.

If µ′ = µ, A wins and C will claim that D = gϕ2(ψ−ϕ3); otherwise, C claims that D
is a random element of G.

If D = gϕ2(ψ−ϕ3), then k×l1 := gt̆l−πl116 , k×l2 := gπl117 and hence A ’s view is identical

to Gl. On the other hand, if D is a random element of G, then A ’s view is identical

to Gl+1. Therefore, if A can distinguish between Gl and Gl+1 with non-negligible

advantage, C has a non-negligible advantage in solving DLin problem. (of Claim 2)

Claim 3. There is no PPT Type-1 adversary that can distinguish between the games

Gl and Gl+1, l ∈ {ς, ς + 1, . . . , 2ς − 1}, with non-negligible advantage, under the

assumption that DLin problem is hard.

Proof. The proof is almost identically to that of Claim 2, except where the simulation

is done over g18 and g19 instead of g16 and g17. (of Claim 3)

This completes the proof of Lemma 3.

Lemma 4. ABDSRS demonstrates IND-CKA security against PPT Type-2 adver-

sary assuming the hardness of the DBDH problem.
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Proof. Assume, a PPT Type-2 adversary A breaks IND-CKA security (modeled as

a game GameIND-CKAType-2 in Section 3.2.2) of our ABDSRS with non-negligible advantage,

then, a challenger C can solve DBDH problem by communicating with A . Given the

DBDH problem instance
〈
Σ, g, G1, G2, G3, Z

〉
, where G1 := gϕ1 , G2 := gϕ2 , G3 := gϕ3

(note that ϕ1, ϕ2, ϕ3 are unknown to C ), the task for C is to ascertain if Z is equal

to e(g, g)ϕ1ϕ2ϕ3 or Z has been randomly selected from GT .

(1) This step is identical to the step (1) of Lemma 2.

(2) In this step, firstly A queries signing key generation oracle OSKG(As), data

retrieval request generation oracle O′
DRR(Ad,Pt) and test oracle O′

test(CT ,Pt).
C answers as described subsequently.

� OSKG(As) : C returns SKAs ← sKeyGen(PP ,MK, As) since C knowsMK.

� O′
DRR(Ad,Pt) : C generates the trapdoor

T̃ DPt := ⟨Pt, T0, T1, T2, {ϱi,
⃗̃
T 1i := (T̃1i1, T̃1i2), T⃗2i := (T2i1, T2i2, T2i3, T2i4),

B1i, B⃗2i := (B2i1, B2i2, B2i3, B2i4)}i∈[ℓt]⟩ as follows. Choose
f, r̆i, r̆

′
i, B1i, B2i1, B2i2, B2i3, B2i4, v2, . . . , vnt

u←− Z∗
p and compute

T0 := gf , T1 := G2, T2 := Gz4
3 , ϱi := ϖ1ϖ2r̆i +ϖ3ϖ4r̆

′
i − f,

T̃1i1 := g
M⃗

(i)
t ·(τH5(Zz4 ),v2,...,vnt )

15 · gϖ1ϖ2r̆i+ϖ3ϖ4r̆′i
10 · g−B1i

15 ,

T̃1i2 := H6

(
Zz4||P◦

t ||M
(i)
t

)
· gϖ1ϖ2r̆i+ϖ3ϖ4r̆′i

13 ,

T2i1 :=
(
g
wρ◦t (i)
11 · g12

)−r̆iϖ1 · g−B2i1
11 , T2i2 :=

(
g
wρ◦t (i)
11 · g12

)−r̆iϖ2 · g−B2i2
11 ,

T2i3 :=
(
g
wρ◦t (i)
11 · g12

)−r̆′iϖ3 · g−B2i3
11 , T2i4 :=

(
g
wρ◦t (i)
11 · g12

)−r̆′iϖ4 · g−B2i4
11 ,

where Pt := (Mt, ρ
◦
t , {wρ◦t (i)}i∈[ℓt]) and ϑi := M⃗

(i)
t · (τH5(Z

z4), v2, . . . , vnt)

is the ith share of τH5(Z
z4). Since C knows MK, it computes the de-

cryption key DKAd ← dKeyGen(PP ,MK, CPK, Ad) and sends the tuple

[DKAd , T̃ DPt ] to A .

� O′
test(CT ,Pt) : C computes the trapdoor T̃ DPt as in the simulation of

O′
DRR, and sends the outcome of Test(PP , CT , T̃ DPt , CSK) to A .

When this query phase is over, A sends to C a message msg⋆, an encryption

policy P⋆e , a signing policy P⋆s and two keyword sets

W ⋆
0 := {[W1 : w

(0)
1 ], . . . , [Wς : w

(0)
ς ]} and W ⋆

1 := {[W1 : w
(1)
1 ], . . . , [Wς : w

(1)
ς ]}.

(3) C selects µ
u←− {0, 1}, and a singing attribute set As such that

P⋆s (As) = true. Next, it obtains CT ⋆ ← onSigncrypt(PP , IC,msg⋆,P⋆e ,W ⋆
µ),
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where IC ← offSigncrypt(PP ,SKAs , T PK, CPK,P⋆s ),
SKAs ← sKeyGen(PP ,MK, As), and sends the challenge ciphertext CT ⋆ to A .

This is possible because C is having the system master secret key MK and

TGC’s secret key T SK.

(4) A queries like step (2), except that A is not permitted to query test oracle

using the input (CT ⋆,Pt) such that Pt(W ⋆
µ) = true. C responds as in step (2).

When this query phase is over, A makes a guess µ′.

If µ′ = µ, A wins the game and C will claim that Z is equal to e(g, g)ϕ1ϕ2ϕ3 ;

otherwise, C claims that Z is a random element of GT .

If Z = e(g, g)ϕ1ϕ2ϕ3 , the challenge ciphertext CT ⋆ is properly simulated. If Z

is randomly chosen from GT , then CT ⋆ does not depend on µ in A ’s perspective;

resulting in A ’s advantage is 0. As a result, if A has a non-negligible advantage in

winning the game, C has a non-negligible advantage in solving DBDH problem.

We derive the subsequent theorem by combining Lemma 3 with Lemma 4.

Theorem 5 (Chosen Keyword set Attack Security). Suppose the challenge key-

word set has at most q keywords. Then, ABDSRS is IND-CKA secure, under the

assumption that q-2, DLin and DBDH problems are hard.

3.5 Performance

This section, along with all of the tables and figures, makes use of the notations

described below.
ℓe (resp. ℓs) : total number of attributes in an encryption

(resp. signing) policy

|W | or ς : size of a keyword set ascribed to a ciphertext

MG (resp. EG) : one multiplication (resp. exponentiation) execution time

in G
|Ad| : number of DU’s attributes

MT (resp. ET ) : one multiplication (resp. exponentiation) execution time

on GT element

IT : one inversion execution time on GT element

n : number of attributes in encryption attribute universe

P : one pairing computation execution time

ℓt : total number of keywords within a trapdoor/trapdoor

keyword policy
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H : one hash function calculation execution time

|As| : number of DO’s attributes

L (resp. LT , Lp) : size of an element of G (resp, GT , Zp)
nm : maximum number of possible values for each encryption

attribute

|sig| : size of an identity-based signature

Tveri : one signature verification time

|cs| : size of a commitment

LH : hash function’s output length

Sp (resp. Mp, Ip) : one subtraction/addition (resp. multiplication, inversion)

execution time in Zp
Tkdf : execution time of KDF

Topen : one commitment verification time

As already mentioned, the appealing features−(i) provably secure, (ii) lightweight

design, (iii) fine-grained data access control, (iv) data and DO authenticity, (v) DO

anonymity, (vi) keyword policy search over encrypted data, (vii) keyword privacy,

and (viii) search results verification− provided by ABDSRS have not been taken into

account concurrently in previous literature studies. Next, we conduct a comparison

between ABDSRS and the following attribute-based cryptosystems:

1) Attribute-based online-offline signcryption scheme (ABOOSC) [69]

2) ABSC with outsourced unsigncryption [14, 2]

3) ABSE supporting single keyword search mechanism [88, 64, 63]

4) ABSE supporting multi-keyword search framework [1, 62]

5) ABSE supporting keyword policy search [12]

Table 3.3: Functionality features comparison

[69] [14] [2] [88] [12] [64] [63] [62] [1] ABDSRS

Fine-grained data access control ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Data and DO authenticity ✓ ✓ ✓ ✓
Do anonymity ✓ ✓ ✓ ✓
Online-offline signcryption/encryption ✓ ✓ ✓ ✓
Outsourced unsigncryption/decryption ✓ ✓ ✓ ✓ ✓ ✓ ✓
Verification of transformed ciphertext ✓ ✓ ✓ ✓ ✓ ✓
Boolean formula search over encrypted data ✓ ✓
Keyword privacy ✓ ✓ ✓ ✓ ✓
Secure against KGAs ✓
Non-interactive search results verification ✓ ✓ ✓

Table 3.3 summarizes the functionality comparison. We theoretically compare

our ABDSRS with the ABSE sechemes [88, 64, 63, 1, 62] regarding the computation
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Table 3.4: Computation costs comparison

Scheme Ciphertext Generation DRR/Token Search Results Decryption
Generation Verification

[88] 4EG + 3ET +O(ℓe)Mp +O(ℓe)Ip 8Mp + 5Ip +H - 2MT + 2IT + ET +H
[64] O(nm · n)EG + 3ET O(n)EG - O(1)EG +O(1)ET + 3P +H
[63] O(ℓe · ς)EG +O(ℓe)Sp +O(ℓe)Mp O(|Ad|)EG +O(|Ad|)MG - MT + IT + ET
[62] O(v + ς)EG + 2ET + P +H 3EG +O(ℓt)Sp + ℓtH O(1)EG +O(1)MG+ 2MT + IT + P

2P + 2H
[1] O(ℓe)MG +O(ℓe)EG |Ad|MG + 5EG ET + IT +MT+ ET + IT +MT + 2H

ℓtET + ℓtH Tveri + Topen +H
ABDSRS O(ℓe + ς)Sp +O(ℓe + ς)Mp + 2H ℓtMG 2MT + 2ET + 2H Tkdf

Table 3.5: Communication and storage costs comparison

Scheme Public Params. Signing Decryption Ciphertext (CT) DRR/Token Transformed
Size Key Size Key Size Size Size CT Size

[88] 5L+ 2LT - O(|Ad|)L+ 4L+ 2LT + 2ℓeLp |Ad|L+ LT + 7Lp 3LT
LT + 4Lp

[64] O(nm · n)L+ LT - O(n)L+ LT O(nm · n)L+ 3LT O(n)L+ Lp 2L+ LT

[63] O(n)L+ LT - O(|Ad)L+ 3Lp O(n)L+ 2LT +O(n)Lp 2L 2LT
[62] O(n)L+ LT - (|Ad|+ 6)L+ 4Lp O(v + ς)L+ 2LT 2L+ Lp L+ 2LT
[1] O(n)L+ 2LT - |Ad|L (2ς + 2ℓe)L+ 2LT (|Ad|+ 4)L+ |sig|+ LT + |cs|

ℓtLH + Lp
ABDSRS 21L+ 2LT (|As|+ 2)L (2|Ad|+ 2)L O(ℓe + ℓs + ς)L+ O(ℓt + |Ad|)L+ 3LT + LH

Lt + Lp + 2LH O(ℓt)Lp

cost and communication cost in Tables 3.4 and 3.5, respectively. The comparison of

experimental results with [1] (the construction in [1] is called as VMKS) is presented

in Figures 3.3 and 3.4. In Figure 3.3, we compare computational efficiency of ABD-

SRS with VMKS. The DU executes the Signcrypt,TokenGen, Search Result Verify and

Decrypt algorithms. Hence, the computing expenses of these algorithms are of ut-

most importance in scenarios with low processing power gadgets and the comparisons

are made in terms of these algorithms only, in Table 3.4 and Figure 3.3. The com-

munication overhead of ABDSRS and VMKS is illustrated in Figure 3.4. Note that

in Table 3.5, the size of the ciphertext component corresponding to the plaintext

message is not considered while calculating the ciphertext size and the transformed

ciphertext size. But, this is included in experimental results.

The proposed ABDSRS is built on the top of ABOOSC [69]. One cannot imple-

ment online-offline mechanism in ABSC schemes [14, 2] due to the fact that for each

attribute string, one or two random group elements are included in system public

parameters. This increases the number of required (expensive) modular exponen-

tiations during signcryption process as well. Hence, the schemes [14, 2] may not

be a wise choice to employ as a building block in designing lightweight ABDSRS.

Although supporting policy search framework, one drawback of the generic (pol-

icy search) ABSE [12] is that the data encryption phase performs two encryptions
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 VMKS

(a) Ciphertext generation

 VMKS

(b) DRR/Token generation

 VMKS

(c) Search results verification

 VMKS

(d) Decryption

Figure 3.3: Execution time (in ms) of ABDSRS and VMKS [1]

of ABE along with keyword set encryption, and the decryption phase performs

encryption in addition to the decryption process. Besides, it suffers from KGAs

like [88]. Hence, the ABSE [12] cannot further be extended to design lightweight

ABDSRS. The single keyword search ABSE [88, 64, 63] and multi-keyword ABSE

[1, 62] execute expensive exponentiation and modular division operations during

data encryption and trapdoor generation phases. But, ABDSRS utilizes lightweight

modular difference and multiplication operations only. According to Tables 3.4 and

3.5, the ABSE [64] computation and communication costs increase linearly with the

number of attributes inattribute universe, with the exception of the time of decryp-

tion t and the size of the modified ciphertext. In [1], the online-offline framework is

implemented only at sensor nodes because of their low computing power. However,

the mobile terminal performs expensive exponentiation operations in the generation

of the final ciphertext which is being sent to the cloud. To alleviate both DO and
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 VMKS

(a) Public parameters size

 ABDSRS

(b) Signing key size

 VMKS

(c) Decryption key size

 VMKS

(d) Ciphertext size

 VMKS

(e) DRR/Token size

 VMKS

(f) Transformed ciphertext size

Figure 3.4: Communication cost and storage cost (in bytes) of ABDSRS and VMKS
[1]

DU computation burden in ABDSRS, the heavy computation is migrated either to

offline phase or to the cloud server. In sum, ABDSRS is computationally efficient

compared to the existing ABSE schemes [88, 64, 63, 1, 62, 12].
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From Table 3.5, only ABDSRS and [88] achieve constant size system public pa-

rameters. The size of the decryption key in ABDSRS is asymptotically comparable

to that of the existing ABSE schemes [88, 64, 63, 1, 62, 12], whereas the size of the

transformed ciphertext is comparable to that of [88, 64, 63, 1, 62, 12]. To achieve re-

markable features such as DO authenticity, DO anonymity, keyword privacy, Boolean

formula search and KGAs secure concurrently, ABDSRS sacrifices small size of the

ciphertext and token when compared to the ABSE schemes [88, 64, 63, 1, 62, 12].

In [62], DU depends on a trusted public verifier to verify the accuracy of the search

results. The fact that the public verifier must always be online in order to validate

the search results might make it less useful in practice. ABDSRS, [12] and [1] are

the only schemes supporting non-interactive search results verification. But [12] is

a generic construction. In subsequent section, we present the experimental analysis

of ABDSRS and [1].

The execution of the implementation is conducted on a laptop equipped with an

Intel(R) Core(TM) i5-10300H CPU working at a frequency of 2.50 GHz and utilizing

8-GB of RAM. The laptop has 64-bit Ubuntu 20.04 LTS installed on Oracle VM

VirtualBox - 6.1.22 memory of 2GB. PBC Library is explored, and a type-A elliptic

curve with a prime number group order of 160 bits is selected for experimentation.

The curve is y2 = x3 + x over a 512-bit finite field.

The running time in milliseconds (ms) of various algorithms of the proposed

ABDSRS and VMKS [1] is presented in Figure 3.3. The communication and storage

costs (in bytes) of ABDSRS and VMKS are analyzed in Figure 3.4. We use AND-

gate encryption policy of the form a1 ∧ a2 ∧ · · · ∧ aℓe , where ℓe = 5, 10, 15, 20. With

each encryption policy, we construct the corresponding DU’s decryption key that

contains exactly ℓe(= |Ad|) attributes. We fix the total number of keywords within

a keyword policy, ℓt = 4, 6, 8, 10, according to [39]. And, we formulate the keyword

policy in the form of an AND-gate b1∧b2∧· · ·∧bℓt , where ℓt = 4, 6, 8, 10. In such case,

the size of the keyword set ascribed to a ciphertext is |W | = 4, 6, 8, 10, respectively.

Note that AND-gate policies require the maximum execution time to complete the

respective tasks. Total 10 trials are conducted for each experiment, and bar graphs

are used to show the average results.

It is observed from Figure 3.4 that the size of the system public parameters is

constant in ABDSRS while that for VMKS is linear in the size of the attribute uni-

verse. But, the sizes of the decryption key, ciphertext and token in ABDSRS are

more than that in VMKS. This is due to the fact that the ciphertext includes a DO

signature unlike VMKS, and both the token and the ciphertext include some addi-
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tional components to realize remarkable functionalities like keyword privacy, KGAs

secure, and keyword policy search simultaneously. However, ABDSRS’s transformed

ciphertext size is less than that in VMKS.

From Figure 3.3(a), one can observe that when ℓe = ℓs = |As| = 20, |W | = 10,

VMKS requires 50.64 ms to generate a ciphertext, while that for our ABDSRS is

only 0.75 ms. This is due to the fact that the onSigncrypt algorithm in ABDSRS

performs only subtraction and multiplication operations in Zp, and the time taken

by onSigncrypt algorithm is independent of the complexity of the signing policy.

As shown in Figure 3.3(b), to create a DRR/token for ℓt = 10 and |Ad| = 20,

VMKS consumes 29.25 ms, but ABDSRS can create the same DRR with in 11.77

ms. For search results verification, VMKS consumes 5.89 ms on average, whereas

ABDSRS consumes 0.21 ms. This can be noticed from Figure 3.3(c). From Figure

3.3(d), VMKS takes 0.1306 ms and ABDSRS takes 0.0058 ms on average to recover

the original plaintext. Note that the time taken by verification and decryption

processes does not depend on the number of required attributes and keywords in

both the schemes. In sum, the experimental results presented in Figure 3.3 exhibit

that ABDSRS is computationally efficient when compared to VMKS.

3.6 Chapter Summary

In this chapter, a new notion of an attribute-based cryptosystem (termed as ABD-

SRS) is presented to support fine-grained data access control, authenticated and

secure data storage, efficient data searching, DO anonymity, self-verification of

search results and keyword privacy. To deploy in a network equipped with resource-

constrained devices, the operations performed in DOs’ and DUs’ devices in ABDSRS

are kept lightweight. In terms of data unforgeability,data confidentiality, keyword

privacy, verifiability, and DO privacy, we explicitly defined and demonstrated the

security of ABDSRS. The performance as well as property comparison illustrate the

efficiency and practicality of the designed ABDSRS.
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Chapter 4

Verifiable and Boolean Keyword

Searchable Attribute-Based

Signcryption for Electronic

Medical Record Storage and

Retrieval in Cloud Computing

Environment

In the preceding chapter, we introduced an online-offline attribute-based searchable

signcryption scheme supporting data and DO authenticity, fine-grained data access

control, DO anonymity, outsourced unsigncryption, non-interactive search results

verification, keyword policy search, and keyword privacy. Along with achieving

all the aforementioned functionalities, the proposed searchable signcryption scheme

in this chapter, called MediCare, supports an authorized search mechanism where

only authorized users can perform the search operation. Additionally, the sizes of

the ciphertext, token, decryption key, and transformed ciphertext are reduced.

In this chapter, we propose a searchable attribute-based signcryption for EMR

storage and retrieval in cloud computing environment, termed as MediCare, that

supports simultaneously the functionalities: EMR owner authenticity and anonymity,

The work presented in this chapter is based on our published research article given below.
Sourav Bera, Suryakant Prasad, and Y Sreenivasa Rao. Verifiable and boolean keyword search-
able attribute-based signcryption for electronic medical record storage and retrieval in cloud com-
puting environment. The Journal of Supercomputing, vol. 79, pp. 1-59, Springer, 2023.
https://doi.org/10.1007/s11227-023-05416-8
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fine-grained EMR access control, keyword privacy, encrypted EMRs searching based

on Boolean formula, constant decryption cost for EMR users, provably secure and

independent search results verifiablity. We employ attribute-based framework in de-

signing MediCare. Only authorized EMR owners can anonymously upload EMRs

to the cloud, and an EMR user can search over encrypted EMRs using Boolean

formula keyword policy. MediCare enables an EMR user to independently check the

precision of search outcomes acquired from the cloud. We establish broader security

models for MediCare followed by comprehensive security analysis. We also conduct

experiments to evaluate MediCare’s performance.

4.1 Introduction

Consider a cloud-based EMRmanagement system, where patients, who are the EMR

Owners (EOs) upload their EMRs to a public cloud for storing and sharing with the

specified EMR Users (EUs), such as physicians, health insurance providers, nurses,

etc. In bringing various benefits, the cloud-based EMR management system creates

new challenges including data (i.e., EMRs, in this scenario) security and data access

control. The sensitive outsourced data should only be accessed by authorized users.

Due to the inclusion of sensitive information such as disease names, it is crucial to

provide anonymity for the EO when sharing EMRs with EUs. Failure to do so might

result in the EO being easily identified within a social network [70].

In addition to these two problems, enabling the EUs to retrieve EMRs of their

interest from a cloud is also an important problem. Precisely, an EU may search for

his patient’s medical history related to a particular disease, say diabetes or heart

disease, but does not want to know about other diseases. Hence, how to enable EUs

to efficiently filter out required EMRs by specifying suitable keywords is a crucial

problem. To access the required patients’ EMRs stored at the cloud, an EU creates

a data retrieval request using appropriate keywords and delegates the same to the

cloud. Next, the cloud locates suitable EMRs and sends them to the EU. Sometimes

a patients inaccurate treatment may result from an untrusted cloud occasionally

returning a transformed EMR in the correct format but containing incorrect EMR

information [40]. This could be serious threat for the patient’s life. Overall, the

difficulty of allowing an EU to independently check the precision of search outcomes

acquired from the cloud becomes another challenging problem.

The issues discussed so far motivate us to construct an EMR management sys-

tem that supports simultaneously the following functionalities: (i) fine-grained data
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Figure 4.1: Architecture of MediCare

access control, (ii) data and EO authenticity, (iii) Boolean formula based keyword

search, (iv) EO anonymity, (v) keyword privacy, (vi) non-interactive search results

verification, and (vii) provably secure. With this end in view, we employ attribute-

based cryptographic techniques. Such EMR management system, to the best of our

knowledge, has not been proposed so far.

Chapter Organization. The rest of the chapter is organized as follows. In Section

4.2, we formally define proposed MediCare and its corresponding security models.

The detailed construction of MediCare is presented in Section 4.3. Section 4.4 elab-

orates the security proofs of MediCare. Following this, the evaluation of MediCare’s

performance is presented in Section 4.5. Lastly, Section 4.6 concludes the chapter.

4.2 Security of MediCare

4.2.1 System Model

The five components that make up MediCare’s architecture are shown in Figure 4.1:
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1. KGA. It is a completely trusted entity that is responsible for assigning a

signing key for a signing attribute1 set and a decryption key for a decryption

attribute2 set to EO and EU, respectively.

2. EO. It possesses EMRs and desires to preserve them in HCS to facilitate shar-

ing and ensure reliable distribution to the specified EUs. The EO signcrypts

its own EMR using a signing policy (which accepts the attribute set associated

with EO’s signing key), an encryption policy (which decides the group of EUs

who have the right to view the EMR), and a set of suitable keywords about

the EMR. It sends the signcrypted EMR or ciphertext to HCS.

3. TGA. The creation of a trapdoor for the keyword policy obtained from the

EU is the responsibility of this trustworthy entity. The generated trapdoor is

then transmitted via a secure connection to the appropriate EU.

4. HCS. It offers services for storing and retrieving EMRs. It stores the cipher-

texts outsourced by EOs. The HCS conducts search and transform operations

in response to an EU’s EMR retrieval request, and then sends the EU the

resulting “partially decrypted matching ciphertexts” (also known as “trans-

formed ciphertexts”). Note that a ciphertext is called matching ciphertext if

its keyword set satisfies the keyword policy associated with the trapdoor.

5. EU. This is an entity who wants to access the ciphertexts stored at HCS. The

EU queries the HCS by sending a token and obtains back the corresponding

transformed ciphertexts. Then, the EU verifies the accuracy of the search,

transform and signature verification processes performed by HCS, and retrieves

the original EMRs.

4.2.2 Security Models

This section provides a formal definition of the security measures implemented in

MediCare, which includes DO privacy, data unforgeability, data confidentiality, key-

word privacy, and verifiability. To enhance comprehension, we have included the

notations used in MediCare in Table 4.1. Our proposed MediCare (shown in Figure

4.1), consists of the following five phases, supports signing policy Γs over signing

attribute universe Us, encryption policy Γe over encryption attribute universe Ue

1We will use signing attribute and EO attribute interchangeably.
2We will use encryption attribute, decryption attribute and EU attribute interchangeably.
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Table 4.1: Notations used in MediCare

KGA (resp. TGA) : key (resp. trapdoor) generation authority
EO (resp. EU) : EMR owner (resp. EMR user)
HCS : Healthcare Cloud Service
KPK : KGA public parameters
MK : system master secret
PP : system global public parameters
SKAs : signing key for the signing attribute set As
T PK (resp. T SK) : TGA public key (resp. TGA secret key)
CPK (resp. CSK) : HCS public key (resp. HCS secret key)
DKAd : decryption key for the decryption attribute set Ad
emr : EMR file or plaintext
Γe (resp. Γs, Γt) : encryption (resp. signing, keyword) policy
T DK : secret transformation decryption key
CT : ciphertext for Γs,Γe and keyword set W
CT u : stored ciphertext of CT
CT tr : transformed ciphertext
T KAd : transform key for Ad derived from DKAd
T̃ DΓt : trapdoor for Γt returned by TGA

T DΓ◦
t

: transform trapdoor for Γt derived by EU from T̃ DΓt

and keyword policy Γt over keyword universe Ut. Define the attribute universe

U := Us ∪ Ue ∪ Ut andM := plaintext space.

1. System Setup

First, KGA generates the system public parameters KPK and the system mas-

ter secretMK by running KGA-Setup algorithm with the security parameter

1κ as input. MK is kept secret by KGA.

Next, by taking KPK as input, TGA and HCS create their public and secret

key pair respectively [T PK, T SK] and [CPK, CSK] by executing TGA-Setup

and HCS-Setup algorithms. They make T PK and CPK public, while T SK
and CSK are kept secret by TGA and HCS, respectively.

(a) KGA-Setup(1κ)→ [KPK,MK]

(b) TGA-Setup(KPK)→ [T PK, T SK]

(c) HCS-Setup(KPK)→ [CPK, CSK]

Set the system global public parameters PP := ⟨KPK, CPK, T PK⟩.

2. Registration
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In this phase, KGA issues signing key SKAs to EO and decryption key DKAd
to EU, by running sKeyGen and dKeyGen algorithms, respectively.

(a) sKeyGen(PP ,MK, As) → SKAs . Taking PP , MK and a signing at-

tribute set As ⊂ Us, this algorithm produces a signing key SKAs .

(b) dKeyGen(PP ,MK, Ad) → DKAd . On input PP ,MK and a decryption

attribute set Ad ⊂ Ue, this algorithm returns a decryption key DKAd .

3. Ciphertexts Uploading

When an EO wants to outsource its EMR emr to HCS for storing and sharing,

it signcrypts emr by executing Signcrypt algorithm and creates the correspond-

ing ciphertext CT .
Next, EO delivers the ciphertext CT to the HCS.

(a) Signcrypt(PP ,SKAs ,Γs,Γe,W, emr)→ CT . It takes as input PP ,SKAs ,
a signing policy Γs such that Γs(As) = 1, an encryption policy Γe, a

keyword set W and an EMR emr ∈M, and outputs a ciphertext CT . It
should be noted that Γs, Γe and the set W ◦ (of keywords that includes

only generic names) are being incorporated in CT .
Let W := {[W1 : w1], . . . , [Wς : wς ]}, where Wi represents the generic

keyword name and wi represents the associated keyword value. In this

case, W ◦ := {W1, . . . ,Wς}.

After verifying the authenticity of the EMR and EO, HCS uploads the cipher-

text.

4. EMR Retrieval Token Generation

EU sends a keyword policy Γt to TGA, requesting a trapdoor. After executing

the TrapGen algorithm, TGA provides the EU with the corresponding trapdoor

T̃ DΓt .

Next, the EU performs TokenGen algorithm and creates an EMR retrieval

request token token and a secret transformation decryption key T DK.
Lastly, the EU sends token to the HCS.

(a) TrapGen(PP , T SK,Γt) → T̃ DΓt . On input PP , T SK, a keyword policy

Γt, this algorithm produces the trapdoor T̃ DΓt for the policy Γt.

(b) TokenGen(PP , T̃ DΓt ,DKAd)→ [token, T DK]. It takes as input PP ,
T̃ DΓt ,DKAd , and outputs the EMR retrieval request token and the se-

cret transformation decryption key T DK. Note that token contains two
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components T DΓ◦
t
and T KAd , where the former is transform trapdoor

(which is derived from T̃ DΓt) for Γt and the latter is transform key

(which is derived fromDKAd) for the decryption attribute set Ad. That is,

token := ⟨T DΓ◦
t
, T KAd⟩. Only Γ◦

t will be included in T DΓ◦
t
, and hence in

token, where Γ◦
t is the policy Γt with only generic names of the keywords.

5. EMR Retrieval

Upon receiving the EMR retrieval request token from EU, the HCS first per-

forms the Search operation to identify the matching ciphertexts.

After, it generates the transformed ciphertexts CT tr by applying Transform

operation to the matching ciphertexts.

Next, EU receives CT tr from HCS and verifies the accuracy of Search and

Transform algorithms performed by HCS with its secret transformation de-

cryption key T DK, then accordingly EU recovers the emr, by executing

Verify-Retrieve algorithm.

(a) Search(PP , CT u, token, CSK)→ CT u or ⊥. On input PP , CT u, token,
CSK, the search algorithm outputs the ciphertext CT u if Γt(W ) = 1;

otherwise, outputs ⊥.

(b) Transform(PP , CT u, token, CSK)→ CT tr or ⊥. Taking PP , CT u, token,
CSK as input, this transform algorithm outputs the transformed cipher-

text CT tr if Search outputs CT u and Γe(Ad) = 1; and outputs⊥ otherwise.

(c) Verify-Retrieve(PP , CT tr, T DK) → emr or ⊥. Taking PP , CT tr and

T DK, it outputs emr if the search result CT u sent by HCS is correct

(i.e., the keyword set associated with CT u satisfies the keyword policy

included in token and the decryption attribute set annotated to token

satisfies the encryption policy associated with CT u) as well as CT in-

cludes a legitimate signature that adheres to the signing policy specified

within CT . Otherwise, it outputs ⊥.

Data Confidentiality

Unauthorized entities should not decrypt a ciphertext stored in the cloud, which

is ensured by the security property called data confidentiality. In MediCare, only

the cloud can provide the ciphertext storage service that any authorized EU can

use. So, a EU with a valid token can’t perform search operation and decrypt the
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Experiment GameIND-CCA2Type-1 (1κ)

1. y⋆ ← A (1κ)//where y⋆ ∈ Ue//
2. [KPK,MK]← KGA-Setup(1κ), [T PK, T SK]← TGA-Setup(KPK),

[CPK, CSK]← HCS-Setup(KPK)
3. [emr⋆0, emr

⋆
1,Γ

⋆
s,Γ

⋆
e,W

⋆, st]← A O1(PP , CSK) //where |emr⋆0| = |emr⋆1|,
O1 := {OSKG,OT G,OCG,OER}//

4. CT ⋆ ← Signcrypt(PP ,SKAs ,Γ⋆s,Γ⋆e ∧ y⋆,W ⋆, emr⋆i )//where i
u←− {0, 1},

As
u←− 2Us ∋ Γ⋆s(As) = 1,SKAs ← sKeyGen(PP ,MK, As)//

5. i′ ← A O2(y⋆,PP , CSK, emr⋆0, emr⋆1,Γ⋆s,Γ⋆e,W ⋆, st, CT ⋆)
//where O2 := {OSKG,OT G,OCG,O′

ER}//

Experiment GameIND-CCA2Type-2 (1κ)

1. [KPK,MK]← KGA-Setup(1κ), [T PK, T SK]← TGA-Setup(KPK),
[CPK, CSK]← HCS-Setup(KPK)

2. [emr⋆0, emr
⋆
1,Γ

⋆
e,Γ

⋆
s,W

⋆, st]← A O3(PP) //where |emr⋆0| = |emr⋆1|,
O3 := {OSKG,O′

T G,OCG,OER}//
3. CT ⋆ ← Signcrypt(PP ,SKAs ,Γ⋆s,Γ⋆e,W ⋆, emr⋆i )//where i

u←− {0, 1},
As

u←− 2Us ∋ Γ⋆s(As) = 1,SKAs ← sKeyGen(PP ,MK, As)//
4. i′ ← A O4(PP , emr⋆0, emr⋆1,Γ⋆s,Γ⋆e,W ⋆, st, CT ⋆)

//where O4 := {OSKG,O′
T G,OCG,O′

ER}//
Experiment GameEUF-CMA

A (1κ)
1. Γ⋆s ← A (1κ)
2. [KPK,MK]← KGA-Setup(1κ), [T PK, T SK]← TGA-Setup(KPK),

[CPK, CSK]← HCS-Setup(KPK)
3. CT ⋆ ← A O(PP , CSK) //where O := {O′

SKG,O′
T G,OCG,OER}//

Experiment GameEO-Anonymity
A (1κ)

1. [KPK,MK]← KGA-Setup(1κ), [T PK, T SK]← TGA-Setup(KPK),
[CPK, CSK]← HCS-Setup(KPK)

2. [A
(0)
s , A

(1)
s , emr,Γe,Γs,W, st]← A (PP ,MK, T SK, CSK)

//where Γs(A
(0)
s ) = 1 = Γs(A

(1)
s )//

3. CT ⋆ ← Signcrypt(PP ,SK
A

(i)
s
,Γs,Γe,W, emr)

//where i
u←− {0, 1},SK

A
(i)
s
← sKeyGen(PP ,MK, A(i)

s )//

4. i′ ← A (PP ,MK, T SK, CSK, A(0)
s , A

(1)
s , emr,Γe,Γs,W, st, CT ⋆)

Experiment GameverifiabilityA (1κ)
1. [KPK,MK]← KGA-Setup(1κ), [T PK, T SK]← TGA-Setup(KPK),

[CPK, CSK]← HCS-Setup(KPK)
2. [emr⋆,Γ⋆e,Γ

⋆
s,W

⋆, st]← A Õ(PP , CSK)
//where Õ := {OSKG,O′′

T G,OCG,OER}//
3. CT ⋆ ← Signcrypt(PP ,SKAs ,Γ⋆s,Γ⋆e,W ⋆, emr⋆)

//where As
u←− 2Us ∋ Γ⋆s(As) = 1,SKAs ← sKeyGen(PP ,MK, As)//

4. [Ad,Γt, CT tr]← A Õ(PP , CSK, emr⋆,Γ⋆e,Γ⋆s,W ⋆, st, CT ⋆)
//where Γ⋆e(Ad) = 1 ∧ Γt(W

⋆) = 1

Figure 4.2: Security games.
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Experiment GameIND-CKAType-1 (1κ)

1. W ⋆
0 ,W

⋆
1 ← A (1κ) //where |W ⋆

0 | = |W ⋆
1 | and W ⋆◦

0 = W ⋆◦
1 //

2. [KPK,MK]← KGA-Setup(1κ), [T PK, T SK]← TGA-Setup(KPK),
[CPK, CSK]← HCS-Setup(KPK)

3. [emr⋆,Γ⋆e,Γ
⋆
s, st]← A Ô(PP , CSK)

//where Ô := {OSKG,O′′′
T G,Osearch}//

4. CT ⋆ ← Signcrypt(PP ,SKAs ,Γ⋆s,Γ⋆e,W ⋆
i , emr

⋆) //where i
u←− {0, 1},

As
u←− 2Us ∋ Γ⋆s(As) = 1,SKAs ← sKeyGen(PP ,MK, As)//

5. i′ ← A Ô(PP , CSK, emr⋆,Γ⋆e,Γ⋆s,W ⋆
0 ,W

⋆
1 , st, CT ⋆).

Experiment GameIND-CKAType-2 (1κ)

1. [KPK,MK]← KGA-Setup(1κ), [T PK, T SK]← TGA-Setup(KPK),
[CPK, CSK]← HCS-Setup(KPK)

2. [emr⋆,Γ⋆e,Γ
⋆
s,W

⋆
0 ,W

⋆
1 , st]← A O5(PP)

//where |W ⋆
0 | = |W ⋆

1 |, W ⋆◦
0 = W ⋆◦

1 ,O5 := {OSKG,O′
T G,O′

search}//
3. CT ⋆ ← Signcrypt(PP ,SKAs ,Γ⋆s,Γ⋆e,W ⋆

i , emr
⋆) //where i

u←− {0, 1},
As

u←− 2Us ∋ Γ⋆s(As) = 1,SKAs ← sKeyGen(PP ,MK, As)//
4. i′ ← A O6(PP , emr⋆,Γ⋆e,Γ⋆s,W ⋆

0 ,W
⋆
1 , st, CT ⋆)

//where O6 := {OSKG,O′
T G,O′′

search}//

Figure 4.3: Security games.

ciphertext if it doesn’t know the cloud secret key (CSK). Therefore, an adversary

can manifest as either a Type-1 adversary, which refers to an unauthorized entity

possessing CSK, or a Type-2 adversary, which refers to an authorized entity that is

ignorant of CSK. The following defines this MediCare security concept using the

IND-CCA2 security game, wherein the ciphertexts are indistinguishable under an

adaptive chosen ciphertext attack.

IND-CCA2 Security for Type-1 Adversary

The scenario is depicted in the security game GameIND-CCA2Type-1 (given in Figure 4.2),

which poses a challenger C against a Type-1 adversary A .

In this game, O1 := {OSKG,OT G,OCG,OER} and O2 := {OSKG,OT G,OCG,O′
ER}

are two sets of oracles (defined below), 2Us is the set of all non-empty subsets of the

signing attribute universe Us, and st is the state information maintained by A .

� Signing key generation oracle OSKG(As) : on input a signing attribute set As,

it returns the signing key SKAs to A .

� Token generation oracle OT G(Ad,Γt) : on input a decryption attribute set Ad
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and a keyword policy Γt, it performs as follows.

(i) In case y⋆ ∈ Ad, it computes the EMR retrieval request token token and

the secret transformation decryption key T DK, and returns token to A .

(ii) In case y⋆ ̸∈ Ad, it computes [DKAd , T̃ DΓt ] and returns the same to A .

Note that, in this case, A can generate token and T DK from DKAd and T̃ DΓt .

� Ciphertext generation oracle OCG(emr,Γs,Γe,W ) : on input an encryption

policy Γe, a plaintext file emr, a signing policy Γs, and a set W of keywords,

it generates and forwards the ciphertext CT to A .

� EMR retrieval oracle OER(CT , Ad,Γt) : on input a ciphertext CT , a decryption
attribute set Ad and a keyword policy Γt, it returns to A either emr or ⊥.

� O′
ER is same as OER, except that A is not permitted to query O′

ER using the

input (CT ⋆, Ad,Γt) satisfying y⋆ ∈ Ad and Γt(W
⋆) = 1, hereW ⋆ is the keyword

set of CT ⋆.

IND-CCA2 Security for Type-2 Adversary

The scenario is depicted in the security game GameIND-CCA2Type-2 (described in Figure

4.2), which poses a challenger C against a Type-2 adversary A .

In the game, O3 := {OSKG,O′
T G,OCG,OER} and O4 := {OSKG,O′

T G,OCG,O′
ER}

are two sets of oracles which are defined below.

� Token generation oracle O′
T G(Ad,Γt) : on input a decryption attribute set Ad

and a keyword policy Γt, it returns [DKAd , T̃ DΓt ] to A . Note that A can

generate token and T DK from DKAd and T̃ DΓt .

The other oracles are essentially the same as that of GameIND-CCA2Type-1 (1κ).

If i′ = i, A wins GameIND-CCA2Type-k (1κ), where k ∈ {1, 2}. The adversary’s advantage
in GameIND-CCA2

Type-k (1κ) is described as AdvIND-CCA2Type-k (1κ)
def
=
∣∣Pr[i′ = i]− 1/2

∣∣.
Definition 8. The MediCare is said to be IND-CCA2 secure if AdvIND-CCA2Type-1 (1κ) and

AdvIND-CCA2
Type-2 (1κ) are negligible, for all PPT Type-1 and Type-2 adversaries, respec-

tively.

Unforgeability of the Data

It identifies the inability of an external malicious entity or an unauthorized EO to

generate a valid signature, thereby ensuring the signature verification mechanism is

successful. And, even if unauthorized EOs collude and pool their signing attributes
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such that the collection of attributes satisfies a signing policy whereas none of the

single EOs would satisfy the policy on its own, they cannot create a ciphertext with

valid signature for that signing policy. Existential unforgeability against Chosen

Message Attack (EUF-CMA) model defines this MediCare security concept.

EUF-CMA Security

The security game GameEUF-CMA
A (presented in Figure 4.2) involves a model that

consists of a challenger C and an adversary A . In this game, CT ⋆ = CT ⋆(Γ⋆s ,Γ⋆e ,W ⋆),

O := {O′
SKG,O′

T G,OCG,OER} is a set of oracles and

� Signing key generation oracle O′
SKG(As) : on input a signing attribute set As

with the condition that Γ⋆s(As) = 0, it returns the signing key SKAs to A .

Note that the other oracles are similar to that of GameIND-CCA2Type-2 (1κ).

The adversary A wins this game if there exist Ad,Γt satisfying the follow-

ing simultaneously: Γ⋆e(Ad) = 1,Γt(W
⋆) = 1, OER(CT ⋆, Ad,Γt) = emr⋆ ̸= ⊥,

and A was never queried to the ciphertext generation oracle OCG with the input

(emr⋆,Γ⋆s,Γ
⋆
e,W

⋆).

The advantage of A in this game is defined as

AdvEUF-CMA
A (1κ)

def
= Pr[A wins the game].

Definition 9. The MediCare demonstrates EUF-CMA security if AdvEUF-CMA
A (1κ)

becomes negligible, for any PPT adversaries A .

EO Anonymity

This guarantees that the ciphertext does not reveal the set of attributes used in sign-

ing process. No one, including the HCS, an EU, or any other adversary, can deduce

the set of EO’s attributes used to generate a signature from a certain ciphertext.

The scenario is depicted in the following security game GameEO-Anonymity
A (detailed in

Figure 4.2), which poses a challenger C against an adversary A .

In this game, A does not need to query any oracle, however, it can compute

required components by itself because A has the knowledge of system master secret,

HCS secret key and TGA secret key.

If i′ = i, A wins the game. Therefore, A ’s advantage in winning the game is

AdvEO-Anonymity
A (1κ)

def
= Pr[i′ = i].

Definition 10. The MediCare is said to provide EO anonymity if

AdvEO-Anonymity
A (1κ) = 1

2
, for all PPT adversaries A .
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Verifiability

The verifiability ensures that EU can check whether the transformed ciphertext made

by HCS is correct. That is, an authorized EU can check the accuracy of the search,

transform and signature verification algorithms done by HCS. Specifically, given

a challenge ciphertext for the EMR file emr⋆, the malicious HCS cannot create a

transformed ciphertext that gives a plaintext not in the set {emr⋆,⊥} and passes the

verification mechanism. The model is formulated by a security game GameverifiabilityA ,

presented in Figure 4.2, between an authorized EU C and the malicious HCS A .

In this game, Õ := {OSKG,O′′
T G,OCG,OER} and

� Token generation oracle O′′
T G(Ad,Γt) : on input a decryption attribute set Ad

and a keyword policy Γt, it computes [DKAd , T̃ DΓt , T KAd , T DΓ◦
t
, T DK] and

sends token := ⟨T DΓ◦
t
, T KAd⟩ to the adversary A . Next, it stores the tuple

JAd,Γt, token, T DKK in table Tab′′ER.

The adversary A wins the game If Verify-Retrieve(PP , CT tr, T DK) /∈ {emr⋆,⊥},
where T DK is taken from the tuple JAd,Γt, token, T DKK which is in table Tab′′ER.

Note that if the tuple is not in Tab′′ER, it can be generated by querying the oracle

O′′
T G with the input (Ad,Γt).

Definition 11. The MediCare is verifiable if the advantage of A in the game

GameverifiabilityA , defined as AdvverifiabilityA (1κ)
def
= Pr[A wins], is negligible, for all PPT

adversaries A .

Keyword Privacy

This guarantees that the ciphertext reveals nothing about the keyword values it

contains. The HCS (referred to as Type-1 adversary) cannot determine which ci-

phertext uses which set of keyword values without knowledge of the corresponding

“valid” trapdoor. A trapdoor is considered valid if it contains a keyword policy

that accepts the set of keywords linked to the ciphertext. The Type-2 adversary,

which refers to an authorized entity that is ignorant of CSK, is unable to identify

which ciphertext utilizes which set of keyword values, even though the adversary

knows the corresponding valid trapdoors. Security in terms of keyword privacy is

defined subsequently as indistinguishability against chosen keyword set attack (in

short, IND-CKA).

IND-CKA Security for Type-1 Adversary
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The scenario is depicted in the following security game GameIND-CKAType-1 (described

in Figure 4.3), which poses a challenger against a Type-1 adversary A . Here,

Ô := {OSKG,O′′′
T G,Osearch} and

� Token generation oracle O′′′
T G(Ad,Γt) : on input a decryption attribute set Ad

and a keyword policy Γt with the condition that Γt(W
⋆
0 ) = 0 ∧ Γt(W

⋆
1 ) = 0,

it computes the EMR retrieval request token := ⟨T DΓ◦
t
, T KAd⟩ and sends the

same to A .

� Search oracle Osearch(CT ,Γt) : Taking a ciphertext CT and a keyword policy

Γt obeying the condition Γt(W
⋆
0 ) = 0 ∧ Γt(W

⋆
1 ) = 0, it returns the output of

Search algorithm.

IND-CKA Security for Type-2 Adversary

The security game GameIND-CKAType-2 (given in Figure 4.3) involves a model that con-

sists of a challenger C and a Type-2 adversary A .

Here, O5 := {OSKG,O′
T G,O′

search} and O6 := {OSKG,O′
T G,O′′

search},

� Search oracle O′
search(CT ,Γt) : Taking a ciphertext CT and a keyword policy

Γt, it returns the output of Search algorithm.

� O′′
search(CT ,Γt) : This is same as O′

search(CT ,Γt), except that A is not permit-

ted to query O′′
search using the input (CT ⋆,Γt) satisfying Γt(W

⋆
i ) = 1.

For k ∈ {1, 2}, the adversary wins the game GameIND-CKAType-k if i′ = i. The adversary’s

advantage in GameIND-CKAType-k is defined as AdvIND-CKAType-k (1κ)
def
=
∣∣Pr[i′ = i]− 1/2

∣∣.
Definition 12. The MediCare demonstrates IND-CKA security if AdvIND-CKAType-1 (1κ)

and AdvIND-CKAType-2 (1κ) are negligible, for all PPT Type-1 and Type-2 adversaries, re-

spectively.

4.3 MediCare Construction

Let p be a prime, and G and GT be cyclic groups of order p. We utilize a bilinear

pairing e : G × G → GT and seven collision-resistant hash functions {Hi}7i=1, de-

scribed as H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → G, H3 : GT → Z∗
p, H4 : GT → {0, 1}ℓH4 ,

H5 : {0, 1}∗ → {0, 1}ℓH5 , H6 : {0, 1}∗ → Z∗
p, H7 : {0, 1}∗ → Z∗

p, where H1, H2 are two

independent hash functions, and H6 and H7 are two independent hash functions.

Assume Ue = {0, 1}∗ = Us. Both EO and EU may hold the same attribute

string, for instance hospitalABC. In this case, EO||hospitalABC is treated as EO
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attribute whereas EU||hospitalABC is considered as EU attribute. Hence, we as-

sume that signing and encryption attributes are all different. Using a hash function

H1 : {0, 1}∗ → G, the signing and encryption attributes are converted to random

elements of G. Let Ut = Z∗
p. Each keyword string can be mapped to a Z∗

p element via

a hash function of the type Ht : {0, 1}∗ → Z∗
p. Hence, for brevity, we treat keywords

are elements of Z∗
p. Our encryption policy is represented by a DNF Boolean formula,

which means that the computation of the transformed ciphertext component X3 re-

quires only 2 pairings which is independent of the number of encryption attributes.

System Setup

� KGA-Setup(1κ). Let Σ := ⟨p,G,GT , e⟩ be a bilinear pairing tuple. Choose the

plaintext space asM := {0, 1}ℓpt and a key derivation function

KDF : GT → {0, 1}ℓpt . The KGA public key KPK and system master secret

MK are generated in the following way.

Choose α
u←− Z∗

p and compute gT := e(g, g)α,

Select g, h, g1, g2, . . . , g10
u←− G, and

Set KPK := ⟨Σ, gT , g, h, {gi}10i=1,M,KDF, {Hi}7i=1⟩,MK := gα.

� HCS-Setup(KPK). The HCS’s public and secret keys CPK and CSK, respec-
tively, are computed in the following way.

Choose β
u←− Z∗

p, calculate Y := hβ, and define CPK := Y, CSK := β.

� TGA-Setup(KPK). The TGA public key T PK and TGA secret key T SK are

computed as follows.

Choose γ,ϖ1, ϖ2, ϖ3, ϖ4
u←− Z∗

p,

Calculate hT := e(g, g10)
γ, h1 := gϖ1 , h2 := gϖ2 , h3 := gϖ3 , h4 := gϖ4 ,

Set T PK := ⟨hT , h1, h2, h3, h4⟩, T SK := ⟨γ,ϖ1, ϖ2, ϖ3, ϖ4⟩.

Set PP := ⟨KPK, CPK, T PK⟩.

Registration

� sKeyGen(PP ,MK, As). This algorithm produces a signing key

SKAs := ⟨As, S, S0, {Sx}x∈As⟩ where
r′

u←− Z∗
p, S := gαhr

′
, S0 := gr

′
, Sx = H1(x)

r′ .

� dKeyGen(PP ,MK, Ad). This algorithm creates a decryption key

DKAd := ⟨Ad, D,D0, {Dy}y∈Ad⟩ where
r

u←− Z∗
p, D := gαY r, D0 := gr, Dy := H1(y)

r.
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Ciphertexts Uploading

� Signcrypt(PP ,SKAs ,Γs,Γe,W, emr). Select a signing policy Γs := (Ms, ρs)

satisfying Γs(As) = 1. Here, Ms represents a matrix of dimension ℓs × ns.
Next, choose an encryption policy Γe := B1 ∨ B2 ∨ · · · ∨ Bm and a keyword

set W := {[W : w]}(where the set W ◦ := {W} represents generic keywords

names).

Since Γs(As) = 1, calculate a⃗ := (a1, a2, . . . , aℓs) ← Reconstruct(Ms, ρs, As)

satisfying a⃗ ·Ms = 1⃗ns , i.e.,
∑

i∈[ℓs] ai · M⃗
(i)
s = 1⃗ns and ai = 0 ∀i satisfying

ρs(i) /∈ As. For the matrix Ms, the ith row is denoted as M⃗
(i)
s . Sample

(b1, b2, . . . , bℓs)
u←−
{
(b1, b2, . . . , bℓs) ∈ Zℓsp |

∑
i∈[ℓs] bi · M⃗

(i)
s = 0⃗ns

}
. The cipher-

text CT := ⟨∆s,∆e,∆k, tag2, E0, η⟩ is computed as follows.

– Pick θ
u←− Z∗

p, and encode the EMR emr in the following way.

δ := H3(g
θ
T ), key := KDF(gθT ), kT := hθT , ct := emr⊕ key, tag2 := H5(δ||ct)

– Choose δ′, δ′′, o2
u←− Z∗

p, and generate the signature components as

σ′ := gδ
′
, σ′′ := hδ

′′
, tag1 := H4(g

1/δ
T · e(σ

′, Y )δ
′′
),

σ := S1/δ
(
go11 g2

)θ ∏
i∈[ℓs]

(
S
ai/δ
ρs(i)
·H1(ρs(i))

o2bi
)
, σi := S

ai/δ
0 go2bi ,∀i ∈ [ℓs],

where o1 := H6(ct||tag1||Γe||Γs||W ◦)

The signature components ∆s := ⟨Γs, σ′, σ′′, tag1, σ, {σi}i∈[ℓs]⟩.

– Select θ1, θ2, . . . , θm
u←− Z∗

p. Then, create the encryption components as

E := gθ·H3(e(σ′,Y )δ
′′
), Ei1 := gθi , Ei2 := hθ

( ∏
y∈Bi

H1(y)
)θi

The encryption components ∆e := ⟨Γe, ct, E, {Ei1, Ei2}i∈[m]⟩.

– Pick tW , πW1, πW2
u←− Z∗

p, for all W ∈ W . Then, calculate the compo-

nents of keyword index

∆k := ⟨W ◦, kT , {KW1, KW2, KW3, KW4, LW1, LW2}W∈W ◦⟩ as

KW1 := htW−πW1
1 , KW2 := hπW1

2 , KW3 := htW−πW2
3 , KW4 := hπW2

4 ,

LW1 := (gw6 g7)
tWg−θ8 , LW2 := (gw6 g7)

tWg−θ9
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EO HCS

CT ← Signcrypt(PP ,SKAs ,Γs,Γe,W, emr)
where CT := ⟨∆s,∆e,∆k, tag2, E0, η⟩

CT−−−→ Compute ξ := H7(∆s||∆e||∆k||tag2),
Ĕ := E1/H3(e(σ′,σ′′)CSK),

verify e
(
E0, g

) ?
= e
(
gξ3g

η
4g5, Ĕ

)
this verifies the integrity of the ciphertext.

⊥←−− If this is not true, return ⊥
Otherwise, obtain

φ
u←− Z∗

p,
(λ′′1, . . . , λ

′′
ℓs
)← Share(Ms, ρs, φ),

o1 := H6(ct||tag1||Γe||Γs||W ◦),

Y3 :=

(
e(σ, gφ)

e
(
go11 g2, (Ĕ)

φ
)
·
∏

i∈[ℓs] e
(
hλ

′′
iH1(ρs(i))φ, σi

))1/φ

verify tag1
?
= H4(Y3 · e(σ′, σ′′)CSK)

this checks the validity of the EO’s signature.
⊥←−− If this is not true, return ⊥

Else, HCS accepts CT for storage and

stores CT u := ⟨∆e,∆k, tag2, E0, η, Ĕ, tag⟩, where tag := H4(Y3)

Figure 4.4: EMR storage phase

– Choose η
u←− Z∗

p, compute E0 := (gξ3g
η
4g5)

θ,

where ξ := H7(∆s||∆e||∆k||tag2),
Set the ciphertext CT := ⟨∆s,∆e,∆k, tag2, E0, η⟩.

Now, EO outsources the ciphertext CT to HCS. Then, HCS accepts CT for storage

if the EO is legitimate. That is, the EO has a signing key for the signing attribute

set which satisfies the signing policy associated with CT . Figure 4.4 depicts the

EMR storage phase.

EMR Retrieval Token Generation

� TrapGen(PP , T SK,Γt). The keyword policy is defined as

Γt := (Mt, ρ
◦
t , {wρ◦t (i)}i∈[ℓt]) (where Mt represents a matrix of dimension ℓt×nt,

the rows of Mt are mapped to generic keyword names via the function ρ◦t and

the associated keyword value is denoted as {wρ◦t (i)}i∈[ℓt]). The trapdoor T̃ DΓt

is generated as follows.

– Pick f, f ′ u←− Z∗
p, and compute T1 := gf , T2 := hf

′
, tt := e(T1, Y )f

′
,

– Obtain (ϑ1, . . . , ϑℓt)← Share(Mt, ρ
◦
t , γ ·H3(tt)),

– Pick r̆i, r̆
′
i

u←− Z∗
p, for all i ∈ [ℓt], and generate

Ti1 := gϑi10 · g
ϖ1ϖ2r̆i+ϖ3ϖ4r̆′i
8 , T ′

i2 := H2(tt||Γ◦
t ||M⃗

(i)
t ) · gϖ1ϖ2r̆i+ϖ3ϖ4r̆′i

9 ,

Ti3 := gϖ1ϖ2r̆i+ϖ3ϖ4r̆′i ,

Vi1 := (g
wρ◦t (i)
6 g7)

−r̆iϖ1 , Vi2 := (g
wρ◦t (i)
6 g7)

−r̆iϖ2 ,

Vi3 := (g
wρ◦t (i)
6 g7)

−r̆′iϖ3 , Vi4 := (g
wρ◦t (i)
6 g7)

−r̆′iϖ4 ,
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EU TGA

Formulate keyword policy Γt
Γt−−−−−−→

T̃ DΓt←−−−−−− T̃ DΓt ← TrapGen(PP , T SK,Γt)

HCS

[token, T DK]← TokenGen(PP , T̃ DΓt ,DKAd)
token−−−−−−→

CT u/⊥ ← Search(PP , CT u, token, CSK)
CT tr or ⊥←−−−−−− CT tr/⊥ ← Transform(PP , CT u, token, CSK)

emr/⊥ ← Verify-Retrieve(PP , CT tr, T DK)

Figure 4.5: EMR retrieval phase

– Set T̃ DΓt := ⟨Γt, T1, T2, {Ti1, T ′
i2, Ti3, Vi1, Vi2, Vi3, Vi4}i∈[ℓt]⟩.

� TokenGen(PP , T̃ DΓt ,DKAd). HereDKAd := ⟨Ad, D,D0, {Dy}y∈Ad⟩. The EMR

retrieval request token and the secret transformation decryption key T DK are

generated as follows.

– Select τ1, τ2, τ3
u←− Z∗

p, obtain (ϑ̆1, . . . , ϑ̆ℓt) ← Share(Mt, ρ
◦
t , τ3/τ1), and

compute

Ti2 := hϑ̆i · T ′
i2

Set T DΓ◦
t
:= ⟨Γ◦

t , T1, T2, {Ti1, Ti2, Ti3, Vi1, Vi2, Vi3, Vi4}i∈[ℓt]⟩.

– Randomize the decryption key DKAd as

D′ := (D · hτ3)1/τ2 , D′
0 := D

1/τ2
0 , D′

y := D1/τ2
y

Set T KAd := ⟨Ad, D′, D′
0, {D′

y}y∈Ad⟩.

– Set token := ⟨T DΓ◦
t
, T KAd⟩, T DK := ⟨τ1, τ2⟩.

Remark 9. The distribution of the EMR retrieval request token

token :=

 T DΓ◦
t
:=
〈

Γ◦
t , T1, T2, {Ti1, Ti2, Ti3, Vi1, Vi2, Vi3, Vi4}i∈[ℓt]

〉
,

T KAd :=
〈
Ad, D

′, D′
0, {D′

y}y∈Ad
〉 

of a keyword policy Γt := (Mt, ρ
◦
t , {wρ◦t (i)}i∈[ℓt]) and a decryption attribute set Ad is

of the form
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

T1 := gf , T2 := hf
′
,

Ti1 := gϑi10 · g
ϖ1ϖ2r̆i+ϖ3ϖ4r̆′i
8 ,

Ti2 := hϑ̆i ·H2(e(T1, Y )f
′ ||Γ◦

t ||M⃗
(i)
t ) · gϖ1ϖ2r̆i+ϖ3ϖ4r̆′i

9 ,

Ti3 := gϖ1ϖ2r̆i+ϖ3ϖ4r̆′i ,

Vi1 := (g
wρ◦t (i)
6 g7)

−r̆iϖ1 , Vi2 := (g
wρ◦t (i)
6 g7)

−r̆iϖ2 ,

Vi3 := (g
wρ◦t (i)
6 g7)

−r̆′iϖ3 , Vi4 := (g
wρ◦t (i)
6 g7)

−r̆′iϖ4 ,

D′ := gα/τ2Y ¯̄rhτ3/τ2 , D′
0 := g ¯̄r, D′

y := (H1(y))
¯̄r


(4.1)

where f, f ′, r̆i, r̆
′
i, ¯̄r, τ1, τ2, τ3 are random exponents (elements in Z∗

p), ϑi (resp. ϑ̆i) is

the ith share of γ · H3(e(T1, Y )f
′
) (resp. τ3/τ1) with respect to the policy (Mt, ρ

◦
t ),

⟨γ,ϖ1, ϖ2, ϖ3, ϖ4⟩ is TGA’s secret key, α is system’s master secret, and others are

system public parameters.

We use this distribution of token in correctness and security analysis of Medi-

Care.

EMR Retrieval

� Search(PP , CT u, token, CSK). The stored ciphertext is parsed as

CT u := ⟨∆e,∆k, tag2, E0, η, Ĕ, tag⟩. The matching ciphertexts are identified

by performing the steps given below.

– Generate a⃗′ := (a′1, a
′
2, . . . , a

′
ℓt
)← Reconstruct(Mt, ρ

◦
t ,W

◦) and compute

X1 := e(Ĕ,
∏
i∈[ℓt]

T
a′i
i1 )·

∏
i∈[ℓt]

e(Ti3, Lρ◦t (i)1)
a′i (4.2)

X2 :=
∏
i∈[ℓt]

{
e(Kρ◦t (i)1

, Vi2) · e(Kρ◦t (i)2
, Vi1) · e(Kρ◦t (i)3

, Vi4) · e(Kρ◦t (i)4
, Vi3)

}a′i
(4.3)

– Verify that X1X2
?
= k

H3

(
e(T1,T2)CSK

)
T . If it does not hold, the algorithm

outputs ⊥. Otherwise, the ciphertext CT u matches T DΓ◦
t
, i.e., Γ◦

t (W
◦) =

1 (implicitly Γt(W ) = 1). In this case, it outputs the stored ciphertext

CT u.

� Transform(PP , CT u, token, CSK). Here CT u := ⟨∆e,∆k, tag2, E0, η, Ĕ, tag⟩.
It creates the transformed ciphertexts CT tr as described below.

– If Search(PP , CT u, token, CSK) → ⊥ or Γe(Ad) = 0, output ⊥. Other-

wise, proceed further.
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– Consider X2 from search algorithm and compute

X̆1 := e
(
Ĕ,
∏
i∈[ℓt]

(
Ti2·H2(e(T1, T2)

CSK||Γ◦
t ||M⃗

(i)
t )−1

)a′i)·∏
i∈[ℓt]

e
(
Ti3, Lρ◦t (i)2

)a′i
(4.4)

Y1 := X̆1X2

– As Γe(Ad) = 1, there exists a j ∈ [m] such that Bj ⊆ Ad. Calculate

X3 =
e(Ej2, D

′
0)

e(Ej1,
∏

y∈Bj D
′
y)

X4 = e(Ĕ,D′)

Y2 := (X3)
−CSK · X4

– CT tr := ⟨Y1,Y2, ct, tag2, tag⟩.

Correctness of Search. One can see that if Γt(W ) = 1, then

X1 = e
(
g, g10

)θ·γ·H3(tt) ·
∏
i∈[ℓt]

{
e
(
g, g

wρ◦t (i)
6 g7

)tρ◦t (i)·(ϖ1ϖ2r̆i+ϖ3ϖ4r̆′i)a
′
i

}
X2 =

∏
i∈[ℓt]

{
e(g, g

wρ◦t (i)
6 g7

)−tρ◦t (i)(ϖ1ϖ2r̆i+ϖ3ϖ4r̆′i)a
′
i

}
X1X2 = e

(
g, g10

)θ·γ·H3(tt) = k
H3

(
e(T1,T2)CSK

)
T

Correctness of Transform. We can see that if Γt(W ) = 1, then

X̆1 = e
(
g, h
)θ·τ3/τ1 · ∏

i∈[ℓt]

{
e
(
g, g

wρ◦t (i)
6 g7

)tρ◦t (i)(ϖ1ϖ2r̆i+ϖ3ϖ4r̆′i)a
′
i

}
X2 =

∏
i∈[ℓt]

{
e(g, g

wρ◦t (i)
6 g7

)−tρ◦t (i)(ϖ1ϖ2r̆i+ϖ3ϖ4r̆′i)a
′
i

}
Y1 = X̆1X2 = e

(
g, h
)θ·τ3/τ1

If Γe(Ad) = 1, then

X3 = e
(
g, h
)θ·r/τ2

X4 = e
(
g, g
)α·θ/τ2e(g, h)βrθ/τ2e(g, h)θτ3/τ2

Y2 = X−CSK
3 · X4 = e

(
g, g
)αθ/τ2e(g, h)θτ3/τ2
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� Verify-Retrieve(PP , CT tr, T DK). The secret transformation decryption key is

parsed as T DK := ⟨τ1, τ2⟩. It checks the accuracy of CT tr and gets back the

EMR emr if CT tr is valid.

– Compute Λ := Y−τ1
1 · Yτ22 , δ⋆ := H3(Λ).

– Check whether H5(δ
⋆||ct) ?

= tag2.

If this does not hold, the error value ⊥ is returned to confirm that the

cloud deceptively returns a false search result. Else, it executes the fol-

lowing step.

– Check whether H4(g
1/δ⋆

T )
?
= tag.

If this does not hold, the error value ⊥ is returned to confirm that the

signature is not valid. Otherwise, it executes the subsequent step.

– Output ct⊕ KDF(Λ) = emr.

As shown in Figure 4.5, an EU can retrieve the required EMRs from HCS.

Correctness of Verify-Retrieve. If Γt(W ) = 1 and Γe(Ad) = 1, then

Λ = Y−τ1
1 Yτ22 =

(
e
(
g, h
)θτ3/τ1)−τ1(e(g, g)θα/τ2)τ2(e(g, h)θτ3/τ2)τ2 = gθT

δ⋆ = H3(Λ) = H3(g
θ
T ) = δ

H5(δ
⋆||ct) = H5(δ||ct) = tag2

If Γs(As) = 1, then we can see that Y3 = g
1/δ
T and hence

H4(g
1/δ⋆

T ) = H4(g
1/δ
T ) = H4(Y3) = tag

ct⊕ KDF(Λ) = emr ⊕ KDF(gθT )⊕ KDF(Λ) = emr

4.4 Security Proof

We provide the subsequent theorems to demonstrate MediCare’s security. For better

readability, the proofs are deferred to Appendix A. The following theorems assume

that KDF is secure.

Lemma 5. MediCare demonstrates IND-CCA2 security against PPT Type-1 adver-

sary in the random oracle model, assuming the hardness of the DBDH problem.
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Lemma 6. MediCare demonstrates IND-CCA2 security against PPT Type-2 adver-

sary, assuming the hardness of the DBDH problem.

The subsequent theorem is obtained by combining Lemma 5 and Lemma 6.

Theorem 6 (Data Confidentiality). MediCare provides IND-CCA2 security in the

random oracle model, assuming the hardness of the DBDH problem.

Theorem 7 (Data Unforgeability). MediCare demonstrates EUF-CMA security in

the random oracle model assuming the hardness of the q-DHE problem, if the chal-

lenge signing policy has a maximum of q columns.

Theorem 8 (EO Anonymity). MediCare preserves EO anonymity.

Theorem 9 (Verifiability). MediCare is verifiable under the assumption that H5 is

a collision-resistant hash function.

Lemma 7. If the challenge keyword set has at most q keywords, then MediCare

demonstrates IND-CKA security against PPT Type-1 adversary, assuming that q-2

and DLin problems are hard.

Lemma 8. MediCare provides IND-CKA security against PPT Type-2 adversary,

assuming the hardness of the DBDH problem.

The subsequent theorem is obtained by combining Lemma 7 and Lemma 8.

Theorem 10 (Chosen Keyword Set Attack Security). Suppose the challenge key-

word set has at most q keywords. Then, MediCare is IND-CKA secure, under the

assumption that q-2, DLin and DBDH problems are hard.

4.5 Performance

The remainder of this section, as well as all the tables and figures, utilize the nota-

tions described below.
ℓe (resp. ℓs) : total number of attributes in an encryption

(resp. signing) policy

|W | or ς : size of a keyword set ascribed to a ciphertext

MG (resp. EG) : one multiplication (resp. exponentiation) execution time

in G
|Ad| : number of DU’s attributes

MT (resp. ET ) : one multiplication (resp. exponentiation) execution time

on GT element



CHAPTER 4. 102

IT : one inversion execution time on GT element

|Ue| (resp. |Us|) : number of attributes in encryption (resp. signing)

attribute universe

P : one pairing computation execution time

ℓt : total number of keywords within a

trapdoor/trapdoor keyword policy

H : one hash function calculation execution time

|As| : number of DO’s attributes

|De| (resp. |Ds|) : cardinality of dummy encryption

(resp. dummy signing) attribute set

L (resp. LT , Lp) : size of an element of G (resp, GT , Zp)
LAES.CT : bit-length of one AES-ciphertext of a query

keyword

m : total number of clauses in DNF encryption policy

|msg| : size of a plaintext/message

TAES.Eec (resp. TAES.Dec) : one AES encryption (resp. AES decryption)

execution time

Sp (resp. Mp, Ip) : one subtraction/addition

(resp. multiplication, inversion) execution time in Zp
Tkdf : execution time of KDF

LH : hash function’s output length

TR.Digest : one root digest execution time

Table 4.2: Functionality Comparison

Scheme Encryption Signature Search Keyword EO (Signer) Search Constant Encryption Signing Security
type type mechanism privacy anonymity results decrypt policy/ policy/

verification cost dKeyGen sKeyGen
policy policy

[52] KP KP single × ✓ × × Boolean Boolean IND-CCA2,
keyword formula formula EUF-CMA,

IND-CKA
[53] CP KP single × ✓ × × Boolean Boolean IND-CCA2,

keyword formula formula EUF-CMA,
IND-CKA

[66] CP SP single ✓ × ✓ × Threshold Threshold IND-CCA2,
keyword policy policy EUF-CMA

[82] CP × multi- ✓ × × × Boolean × IND-CPA,
keyword formula EUF-CMA

[3] CP SP Boolean ✓ ✓ ✓ ✓ Boolean Boolean IND-CCA2,
formula formula formula EUF-CMA,

EO-anonymity,
IND-CKA,
Verifiability

MediCare CP SP Boolean ✓ ✓ ✓ ✓ DNF Boolean IND-CCA2,
formula formula EUF-CMA,

EO-anonymity,
IND-CKA,
Verifiability
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Table 4.3: Comparison of computation cost

Scheme sKeyGen dKeyGen Signcrypt TokenGen Search Results Decrypt
Verify

[52] O(|Us| · ℓs)EG O(|Ue| · ℓe)EG O(ℓs + |Ad|+ 13)EG (2ℓe + 3)EG − O(ℓe)EG

+ET + 5H +H +6P + 4H
[53] O(|Us| · ℓs)EG (|Ad|+ 4)EG O(ℓe)EG + ET O(|Ad|)EG − O(|As|+ ℓe)MG

+O(ℓs · |As|)MG +O(|Ad|)MG +4MT + 6P
+4H +IT + 4H

[66] O(|As| · |Us|)EG O(|Ad| · |Ue|)EG O(|As|+ |Ds|+ 7)EG TAES.Dec TR.Digest O(|Ad|+ |De|)EG

+ET + 2H +TAES.Eec +7P + 3IT + 2H
[3] (|As|+ 3)EG (3|Ad|+ 4)EG O(ℓe + ς)Sp ℓtMG 2ET + 2MT Tkdf

+O(ℓe + ς)Mp + 2H +2H
MediCare (|As|+ 3)EG (|Ad|+ 3)EG O(m+ ℓs + ς)EG (ℓt + |Ad|+ 3)EG 3ET + IT Tkdf

+4ET +O(m+ ς)MG +3H
+P + 6H + Tkdf

Table 4.4: Comparison of communication cost

Scheme Signing Decryption Ciphertext Token Transformed
Key Size Key Size Size Size Ciphertext Size

[52] O(ℓs · |Us|)L O(ℓe · |Ue|)L (|Ad|+ 9)L+ |msg| (2ℓe + 2)L 6L+ |msg|
[53] O(ℓs · |Us|)L (|Ad|+ 3)L (3ℓe + 8)L+ |msg| (|Ad|+ 4)L (ℓe + 5)L+ |msg|
[66] O(|As| · |Us|)L O(|Ad| · |Ue|)L 5L+ LT LAES.CT 5L+ LT

[3] (|As|+ 2)L (2|Ad|+ 2)L O(ℓe + ℓs + ς)L+ LT + 2LH + |msg| O(ℓt + |Ad|)L 3LT + LH + |msg|
MediCare (|As|+ 2)L (|Ad|+ 2)L O(ℓs +m+ ς)L+ |msg| O(ℓt + |Ad|)L 2LT + 2LH + |msg|

In this section, our MediCare and the schemes [53, 52, 66, 3] are compared both

theoretically and empirically. The schemes [53, 52, 66] support only small attribute

universe setting. In contrast, MediCare and [3] achieve a largeattribute universe

structure, which means that KGA can introduce new attributes and keywords as

needed rather than fixing all of them at system setup. We implement MediCare and

[3] as small universe constructions for a fair comparison.

In Figure 4.6, we compare the computational efficiency of MediCare with [53, 52,

66, 3]. The EU executes the Signcrypt,TokenGen, Search Result Verify and Decrypt

algorithms. Hence, the computing expenses of these algorithms are of utmost impor-

tance in scenarios with low processing power gadgets and the comparisons are made

in terms of these algorithms only, in Table 4.3 and Figure 4.6. The communication

overhead of MediCare and [53, 52, 66, 3] is illustrated in Table 4.4 and Figure 4.7.

� Functionality Comparison. Table 4.2 summarizes the functionality com-

parison of MediCare and [53, 52, 66, 82, 3]. The schemes [66, 3] and our

MediCare employ the ciphertext-policy framework, whereas [52] makes use of

the key-policy setting for both encryption and signing. The scheme in [53]

combines CP-ABE and key-policy ABS (KP-ABS) mechanisms. In contrast,

the signature component in [82] is not actually an ABS framework, because the

unsigncryption process does not contain any signature verification mechanism.

Besides, the major limitation of [82] is that the DU has to obtain the token

from the corresponding DOs. To issue k different search queries, the DU has to
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53

52

66

3

(a) sKeyGen

53

52

66

3

(b) dKeyGen

53

52

66

(c) Signcrypt

53

52

66

(d) TokenGen

3

(e) Verify and Decrypt

Figure 4.6: Execution time (in ms) of MediCare and [53, 52, 66, 3]

communicate k times with the respective DOs, which adds significant commu-

nication overhead on the user side. This type of framework is not suitable for

EMR management systems. Because, for instance, to check Electrocardiogram

(ECG) reports of all the patients from hospital X, the duty Cardiologist has

to obtain tokens from all the heart patients in hospital X. This may not be a

wise solution for data retrieval. Furthermore, the scheme [82] is secure against

only IND-CPA, but a signcryption scheme should realize IND-CCA2 security.

And, the computation cost of DUs is high and the scheme cannot offer search

results verification functionality. These limitations make the scheme [82] less
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53

52

66

(a) Signing key size

53

52

66

(b) Decryption key size

53

52

66

3

(c) Ciphertext size

53

52

66

(d) Token size

52

53

66

3

(e) Transformed ciphertext size

Figure 4.7: Communication cost (in KB) of MediCare and [53, 52, 66, 3]

practical for applications. Due to these reasons, [82] is not considered for

experimental comparison. Regarding the data retrieval mode, MediCare and

[3] support Boolean formula keyword search, which has great flexibility over

those designs that provide single keyword search [53, 52, 66] or multi-keyword

search [82]. The schemes [53, 52] (resp. [66, 82]) fail to achieve keyword privacy

(resp. signer anonymity). While MediCare and [3] provide stronger signer pri-

vacy protections, the KP-ABS architecture makes the anonymity of signers in

[53, 52] a less robust version. Observe that only [66, 3] and our Medicare enable
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DUs to check the accrucy of search outcomes. Precisely, unlike [66], Medicare

and [3] enable DUs verifying the precision of search, transform and signature

verification algorithms executed by HCS without interacting with any author-

ity. The access policies of all the schemes except [66] are Boolean formulas.

In particular, the scheme in [66] uses less expressive threshold policies, and

our MediCare employs expressive DNF policies to reduce the ciphertext size.

The time consumed to decrypt a ciphertext is constant in our MediCare and

[3], unlike [53, 52, 66, 82]. Since the data stored at HCS is retrieved by the

EU, such as a doctor, using a lightweight end-device, like a smartphone, it is

crucial for EMR applications to have lightweight constant decryption cost.

� Experimental Setup. The execution of the implementation is conducted

on a laptop equipped with an Intel(R) Core(TM) i5-10300H CPU working

at a frequency of 2.50 GHz and utilizing 8-GB of RAM. The laptop has 64-

bit Ubuntu 20.04 LTS installed on Oracle VM VirtualBox - 6.1.22 memory

of 2GB. PBC Library is explored, and a type-A elliptic curve with a prime

number group order of 160 bits is selected for experimentation. The curve is

y2 = x3+x over a 512-bit finite field. The running time in milliseconds (ms) of

various algorithms of the proposed MediCare and [53, 52, 66, 3] is presented in

Figure 4.6. The various communication costs, in kilobytes (KB), of MediCare

and [53, 52, 66, 3] are analyzed in Figure 4.7. The design and development of

an access policy have an impact on the amount of time required for execution

as well as the cost of communication for attribute-based cryptosystems. To

facilitate a comparison of the worst-case complexity, as proposed in reference

[65], we employ AND-gate policies characterizedby the structure c1∧c2∧· · ·∧cj,
where c1, c2, . . . , cj represent keywords or attributes. The schemes [53, 52, 66]

support only single keyword search and hence we implement MediCare and

[3] as single keyword searchable constructions for fair comparison. That is,

ℓt = |W | = 1 for all the schemes. Total 20 trials are conducted for each

experiment, and bar graphs are used to show the average results.

� Performance Analysis. Below, we present performance of our MediCare

compared to that of [53, 52, 66, 3].

– In comparison to the methods described in [53, 52, 66], our MediCare im-

plementation takes less time to generate the signing key and uses a smaller

signing key size (as shown in Figures 4.6(a) and 4.7(a)). As demonstrated
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in Tables 5.3 and 5.4, the significance is that in [53, 52, 66], the afore-

mentioned measures increase as the cardinality of the signing attribute

universe |Us| increases, whereas in MediCare, they are just affected by

|As|.

– The time needed to generate the decryption key and the size of the de-

cryption key in MediCare are approximately equal to that of [53] and

slightly lower than those in [3]. But, it can be observed (from Figures

4.6(b) and 4.7(b)) that these measures in [52, 66] are extensive compared

to our MediCare, since they increases as |Ue| increases.

– Figure 4.6(c) depicts the duration of the signcryption process, whereas

Figure 4.7(c) displays the size of the ciphertext for various keywords and

attributes. As a result of using an online-offline framework, the sign-

cryption time in [3] is much reduced. Precisely, it splits the process into

offline signcryption and online signcryption. In the former, expensive

operations (e.g., exponentiation, pairing) are executed while the latter

utilizes only light computations such as hashing, XORing, modular mul-

tiplication, modular addition etc. However, the ciphertext size in [3] is

larger compared to other schemes including MediCare. The ciphertext

generation time in [53, 52, 66] is lower than our MediCare. And, the

schemes [52, 66] achieve short ciphertext compared to Medicare. The fol-

lowing are the causes for this: (i) in order to maintain the scheme KGAs

secure, we add certain extra calculations and group components, (ii) the

ciphertext in [53, 52] contains only encryption and signature components,

whereas our ciphertext contains keyword components in addition to the

encryption and signature components, and (iii) the scheme [66] supports

only less expressive threshold access policies, whereas MediCare works

for expressive DNF policies.

– The structure of the token in [66] is totally different from [53, 52, 3]

and MediCare. More specifically, first DU obtains AES key from the

cloud and then encrypts the keyword using the key. The corresponding

AES ciphertext of the keyword will be given to the cloud as a token.

Hence, the duration of generating token and the size of token in [66]

is significantly low (this can be seen from Figures 4.6(d) and 4.7(d)).

However, the scheme [66] supports only single keyword search, whereas

our MediCare realizes expressive keyword policy search. The single key-

word search framework suggested in [66] cannot be extended to support
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Boolean formula keyword search. The token generation time (resp. to-

ken size) in MediCare is lesser compared to that in [52] (resp. [3]) and

longer compared to that in [53, 3] (resp. [53, 52]). This is because (i) we

re-randomize some token components to counteract the KGAs on token,

(ii) to facilitate outsourced unsigncryption and non-interactive search re-

sults verification, the decryption components included inside the token

undergo appropriate re-randomization using two random exponents, and

(iii) the scheme [3] makes use of online-offline mechanism to generate to-

kens, however, the token size is larger in [3] compared to MediCare. Table

4.2 shows that the schemes [53, 52, 66] cannot offer the keyword privacy,

search results verifiability and outsourced unsigncryption functionalities

simultaneously.

– According to Table 4.3, the process of decrypting MediCare only needs

one KDF computation, similar to [3]. This is much lower than the de-

cryption expense in [53, 52, 66], which grows as the number of signing

and encryption attributes increases. Regardless of the policy’s size, Medi-

Care’s search results verification time remains constant. Irrespective of

the number of attributes and keywords, EU retrieves the plaintext with

only one GT inversion, three GT exponentiations, one KDF calculation,

and three hash function calculations. This is what EMR managing sys-

tems should strive for. As shown in Figure 4.6(e), our Verify-Retrieve

procedure requires a mere 0.4 milliseconds; this is significantly less than

the time required in [53, 52, 66] and is comparable to that of [3].

– Table 4.4 and Figure 4.7(e) exhibit that MediCare and [3] possess con-

stant size transformed ciphertext, whereas it grows with the number of

attributes in [53, 52, 66]. Precisely, HCS sends a transformed ciphertext

of size 0.3 KB to EU in MediCare that is smaller when compared to that

of the other schemes [53, 52, 66, 3].

4.6 Chapter Summary

In this chapter, we propose MediCare, a new attribute-based EMR storage and

retrieval scheme that supports simultaneously (i) data and EO authenticity (ii)

fine-grained data access control, (iii) EO anonymity, (iv) Boolean formula keyword

search, (v) constant decryption cost for EUs, (vi) keyword privacy, and (vii) non-

interactive search results verification. In order to demonstrate the security assur-
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ance, we explicitly define and validate MediCare’s security with respect to data

confidentiality, data unforgeability, verifiability, EO anonymity, and keyword pri-

vacy. The efficiency and practicality of the proposed MediCare are shown via the

comparison of its features and performance.
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Chapter 5

Searchable Attribute-Based Proxy

Re-encryption: Keyword Privacy,

Verifiable Expressive Search and

Outsourced Decryption

Data storage and data searching mechanisms were considered in the earlier chap-

ters. This chapter presents the data sharing method along with data storage and

searching, which was not accomplished by the schemes discussed in the preceding

chapters. The data sharing mechanism enables a recipient to share the encrypted

data received from the data owner with another recipient without decryption. Fur-

thermore, the schemes in the previous chapters do not allow for the updating of the

keyword set, but the design proposed in this chapter does.

In this chapter, we address the open problem posed by Ge et al. in 2020,

which was to design a new ABPRE-KS scheme for enabling more expressive key-

word search. ABPRE-KS exhibits promising potential in facilitating data searching

and sharing through the implementation of one-to-many access control mechanism.

However, existing ABPRE-KS schemes support single keyword search framework

resulting in low search efficiency and poor user search experience. Also, maintaining

keyword privacy, and protecting the outsourced ciphertexts and tokens from KGAs

quite challenging in ABPRE-KS framework. To overcome these issues, we pro-

The work presented in this chapter is based on our published research article given below.
Sourav Bera, and Y Sreenivasa Rao. Searchable Attribute-Based Proxy re-encryption : Keyword
Privacy, Verifiable Expressive Search and Outsourced Decryption. SN Computer Science, vol. 5,
pp. 1-24, Springer, 2024. https://doi.org/10.1007/s42979-024-02646-2
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pose an attribute-based proxy re-encryption scheme with Boolean keyword search

(ABPRE-BKS) in the large attribute universe framework. Our scheme not only

offers an efficient Boolean keyword search framework but also it enables constant

decryption cost on the DU’s side. The DU needs to perform only constant number of

computations to recover both the original and the re-encrypted ciphertext. We de-

fine ABPRE-BKS and its security models. And, we prove that our scheme achieves

ciphertext indistinguishability against adaptive chosen ciphertext attack, ciphertext

and token indistinguishability against chosen keyword attack, and non-interactive

verifiability. The efficiency of our proposed construction is demonstrated through a

comparison of its functionalities and performance with the existing such schemes.

5.1 Introduction

Cloud services have emerged as a significant development in offering widespread

and readily available access to a shared and adaptable collection of storage and

computing resources. As a result, organizations and individuals are outsourcing

their personal records (such as PHRs, identifying information etc.) to cloud servers.

However, the task of ensuring the security and privacy of the personal documents

that have been outsourced to cloud storage presents significant challenges.

ABE [75, 28, 34] is a promising technology which provides one-to-many access

control and data confidentiality for outsourced documents. Each user in the ABE

framework has a collection of attributes that acts as their public key. Attributes can

be elements like a user’s designation, affiliation, or other typical abstract credentials.

Based on whether the secret key or the ciphertext is linked to an access policy, ABE

is categorizedinto KP-ABE [75], [28] and CP-ABE [86], [5], [11]. A set of attributes

are appended to the ciphertext and an access policy is associated to the secret key in

the KP-ABE framework. The CP-ABE framework associates the secret key with a

set of attributes and uses an access policy to create the ciphertext. The decryption

process is successful in both architectures if the attribute set satisfies the access

policy. In order to minimize the burden of decryption on the user’s end, outsourced

decryption privileges in ABE schemes [31, 41] have been proposed. Two crucial

procedures are usually necessary for the DO after encrypted data is stored in the

cloud: (i) searching for the stored data and (ii) sharing the stored data.

For instance, in a medical data sharing system, a covid-19 patient Harry wants

to test whether he is covid-positive or not in a clinic. The clinic should be lo-

cated within 4 km from London, the doctors should be senior doctor and ap-
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pointed as a covid-specialist. Harry encrypts his medical record using an access

policy Γ = {covid specialist ∧ senior doctor ∧ Location : within 4 km from London}
and a keyword set. The clinics satisfying Γ can decrypt the encrypted medical

record. However, they couldn’t get to the exact record by typing the keywords.

Instead, the clinic needs to decrypt all the medical records satisfying Γ and then

satisfy the keyword set to get the intended medical record. Also, in case, the clinic

wants to share the medical record with some other junior doctors of the hospital

located within 10 km from Nottigham, it needs to decrypt the encrypted record

sent by Harry and thereafter encodes the medical record using an access policy

Γ′ = {covid specialist ∧ junior doctor ∧ Location : within 10 km from Nottigham}
and a keyword set. This method is not suitable since the clinic has to perform n

pairs of encryption and decryption processes for n number of patients. Consequently,

this system is extremely inefficient regarding data searching and sharing.

Suppose, in the above example, Harry attached the keyword set

W = {covid-negative, senior doctor} to his encrypted medical record. Now, the

clinic founds Harry to be covid-negative after testing and wants to update the key-

word set W to W ′ = {covid-positive, junior doctor} without decrypting the medical

record. As traditional ABE does not support keyword set updating mechanism, the

clinic has to decrypt the record everytime before encrypting with new keyword set,

which makes the system unfeasible.

To solve the above mentioned issues, ABPRE with keyword search schemes [48,

25, 37] are extremely prevalent, where the data searching, re-encryption and keyword

set updating tasks are assigned to the cloud server (acts as proxy). Sometimes

the semi-trusted cloud server may return incorrect search results that may lead

to a wrong treatment to the patient. So, the difficulty of allowing a DU (DU)

to independently check the correctness of search outcomes acquired from the cloud

becomes a topic of considerable interest in ABPRE framework. Also, how to protect

the keywords from KGAs on a ciphertext or token while performing data searching

and sharing is another important aspect of security. Existing ABPRE schemes

[48, 25, 37] support inefficient single keyword search framework which produces a

large number of irrelavant douments, resulting in low search efficiency and poor

user search experience. To improve the search efficiency in ABPRE framework, we

propose an attribute-based proxy re-encryption scheme providing verifiable Boolean

formula-based expressive search, keyword privacy and outsourced decryption.

Chapter Organization. The remainder of the chapter is organized as follows. Our

scheme along with its security models is discussed in Section 5.2. In section 5.3, we
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Figure 5.1: System Model of ABPRE-BKS

present the construction of our scheme and its correctness. Section 5.4 provides our

ABPRE-BKS security proof. The performance evaluation of ABPRE-BKS is shown

in Section 5.5. And, Section 5.6 provides the concluding remarks of the chapter.

5.2 Security of ABPRE-BKS

5.2.1 System Model

We provide the notations utilized in our ABPRE-BKS in Table 5.1. Our ABPRE-

BKS mainly consists of six system entities: Private Key Generator (PKG), DO, Pub-

lic Cloud Server (PCS), Trapdoor Generation Center (TGC), Delegator (recipient

of the original ciphertext) and Delegatee (recipient of the re-encrypted ciphertext).

It includes the following phases as shown in Figure 5.1.

System Initialization. In this phase, PKG, TGC and PCS create their

own public key and secret key pairs, make the public parameters available to other

entities in the system and keep the respective secret keys with themselves.

Registration. This phase is executed by PKG. After getting the registration

requests from a DU (a delegator or a delegatee), PKG creates and sends the corre-

sponding decryption keys to them.
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Table 5.1: Notations used in ABPRE-BKS

PKG : Private Key Generator
PCS : Public Cloud Server
PP : system public parameters
mpk : master public key
cpk : PCS public key
msk : system master secret key
skS : decryption key corresponding to an attribute set S
rk : re-encryption key
csk : PCS secret key
sk tr : transformed secret key
m : message
tpk : TGC public key
Γe : encryption policy
tsk : TGC secret key
Γt : keyword policy
CT : ciphertext
tok : token for Γt and skS

CTm : matching ciphertext
CT tr : transformed ciphertext
U : encryption attribute universe
Ut : keyword universe
U (= U ∪ Ut) : attribute universe

Ciphertext Upload. DO executes this phase in order to encrypt his confidential

data and upload the encrypted data (original ciphertext) to PCS.

Proxy Re-encryption. First, the delegator creates a re-encryption key and

sends it to PCS. Then, PCS encrypts the original ciphertext using the re-encryption

key and a new access policy, and creates the corresponding re-encrypted ciphertext,

which cannot further be encrypted.

Ciphertext Retrieval. At first, by sending a Boolean query formula to TGC,

a DU generates a search token and a transformed secret key with the help of his

own secret key, and sends the search token to PCS. Next, PCS initiates the search

process to retrieve all the matching original or re-encrypted ciphertexts and sends

the corresponding partially decrypted ciphertexts to the DU.

Verification and Decryption. First, the DU verifies the accuracy of the search

outcomes acquired from PCS using his transformed secret key, then decrypts the

matching original or re-encrypted ciphertext and gets the original data.
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5.2.2 Security Models

Our security model considers the security of the original and re-encrypted ciphertext,

keyword privacy, and verifiability. An adversary may appear as a Type-1 adversary,

denoting an unauthorized entity in possession of csk , or a Type-2 adversary, indi-

cating an authorized entity unaware of csk . Our ABPRE-BKS is defined in the

following algorithms.

� PKG.Setup(1κ,U ) → (mpk ,msk) : Given input a security parameter 1κ and

an attribute universe U , PKG outputs a master public key mpk and a master

secret key msk .

� TGC.Setup(mpk)→ (tpk , tsk) : Takingmpk as input, TGC generates its public

and secret keys, tpk and tsk , respectively.

� PCS.Setup(mpk)→ (cpk , csk) : Taking mpk as input, PCS produces its public

and secret keys, cpk and csk , respectively.

The attribute universe U is defined as U = U ∪Ut, where U and Ut are the universes
of encryption attributes and keywords, respectively. The tuple (mpk , tpk , cpk) is

denoted as the system public parameters PP . Let W be defined as a set containing

keywords of the form [W : w], whereW represents the generic keyword name and w

represents the associated keyword value. Note that the entire keyword universe is

divided into several categories and each category is identified with a suitable generic

name. If W = {[W : w]} is a set of keywords, then we define W ◦ as W ◦ = {W},
i.e, W ◦ is the set of generic keyword names corresponding to W .

� KeyGen(PP ,msk , S ) → skS : Given PP , msk and an attribute set S ⊂ U as

input, it outputs a user decryption key skS for S .

� Encrypt(PP ,m,Γe,W )→ CT : Taking PP , an encryption policy Γe, a message

m ∈ {0, 1}λ and a keyword setW as input, DO generates an original ciphertext

CT . The set W ◦ and the policy Γe will be incorporated in CT .

� Re-KeyGen(PP , skS ,Γ
′
e,W

′) → rk : Taking PP , a user’s decryption key skS ,

a keyword set W ′ and an encryption policy Γ ′
e as input, a delegator produces

a re-encryption key rk . The key rk can be used to transform a ciphertext

under Γe and W to another ciphertext under Γ ′
e and W ′, where S |= Γe and

Γe ⊙ Γ ′
e = ϕ. Note that W ′ may not equal to W . If W ′ ̸= W , it means that

the keyword set W in original ciphertext is updated to W ′ in re-encryption

phase.
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� Re-Encrypt(PP , csk ,CT , rk) → CT : Taking PP , csk , an original ciphertext

CT and a re-encryption key rk as input, PCS produces a re-encrypted cipher-

text CT .

� TokenGen(PP ,Γt, tsk , skS ) → (tok , sk tr) : Taking PP , tsk and a Boolean for-

mula Γt over Ut as input, the TGC generates and sends a trapdoor to a DU.

Next, taking PP , the trapdoor obtained from TGC and the user’s decryption

key skS as input, the DU generates a token tok and transformed secret key

sk tr .

� Search(PP ,CT , csk , tok) → 1/0 : Taking PP , an original or re-encrypted

ciphertext CT , a token tok and the cloud secret key csk as input, PCS returns

1 ifW |= Γt; otherwise, returns 0. If PCS returns 1, it generates the associated

matching ciphertext CTm.

� Transform(PP ,CTm, tok) → CT tr / ⊥ : Given PP , a matching original or

re-encrypted ciphertext CTm and a token tok , it generates the corresponding

transformed original (resp. re-encrypted) ciphertext CT tr if S |= Γe (resp.

S |= Γ ′
e) ; otherwise, outputs ⊥.

� Verify-and-Decrypt(PP ,CT tr, sk tr) → m/⊥ : Taking PP , a transformed origi-

nal or re-encrypted ciphertext CT tr and a transformed secret key sk tr as input,

it outputs the message m if the search results returned by PCS are correct;

otherwise, outputs ⊥ indicating that search results are incorrect.

Consistency. Our scheme is correct if

Pr

Verify-and-Decrypt(PP ,CT tr, sk tr )→ m

∣∣∣∣∣∣∣∣∣∣

PKG.Setup(1κ,U )→(mpk ,msk)
TGC.Setup(mpk)→(tpk ,tsk)
PCS.Setup(mpk)→(cpk ,csk)
KeyGen(PP,msk ,S)→skS

Encrypt(PP,m,Γe,W )→CT
TokenGen(PP,Γt,tsk ,skS )→(tok ,sk tr )
Search(PP,CT ,csk ,tok)→1
Transform(PP,CTm,tok)→CT tr

 = 1

and

Pr

Verify-and-Decrypt(PP ,CT tr, sk
′
tr )→ m

∣∣∣∣∣∣∣∣∣∣∣∣

PKG.Setup(1κ,U )→(mpk ,msk)
TGC.Setup(mpk)→(tpk ,tsk)
PCS.Setup(mpk)→(cpk ,csk)
KeyGen(PP,msk ,S)→skS

Re-KeyGen(PP,skS ,Γ
′
e,W

′)→rk
Re-Encrypt(PP,csk ,Encrypt(PP,m,Γe,W ),rk)→CT
TokenGen(PP,Γt,tsk ,skS )→(tok ′,sk ′

tr )

Search(PP,CT ,csk ,tok ′)→1
Transform(PP,CTm,tok ′)→CT tr

 = 1

Definition 13. (IND-CCA2-Or-Type-1). Our scheme is indistinguishable adaptive

chosen ciphertext attack secure at original ciphertext against a Type-1 adversary
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A if there is no PPT A that can win the subsequent game with a non-negligible

advantage against a challenger B.

Init. A challenge attribute y⋆ ∈ U is output by A.
Setup. B executes all the Setup algorithms and sends PP = (mpk , tpk , cpk) and

csk to A.
Phase I. The oracles listed below are accessible to A.

� Osk(S ) : Taking an attribute set S with y⋆ /∈ S , it creates and sends a decryp-

tion key skS to A.

� Ork(S ,W
′,Γ ′

e) : On input an attribute set S , a keyword setW ′ and an encryp-

tion policy Γ ′
e such that S ̸|= Γ ′

e, it returns a re-key rk . Note that the input

(S ,Γ ′
e) should not satisfy the condition y⋆ ∈ S and Osk(S

′) for any S ′ |= Γ ′
e.

� Ore(CT , S ,W
′,Γ ′

e) : On input an original ciphertext CT under Γe and W , an

attribute set S such that S |= Γe, a keyword set W ′ and an encryption policy

Γ ′
e, it returns a re-encrypted ciphertext CT or ⊥ to A.

� Otoken(Γt, S ) : It takes input a Boolean keyword formula Γt and an attribute

set S . If y⋆ ∈ S , it returns a token tok to A. And, if y⋆ ̸∈ S , it returns both

token tok and transformed secret key sk tr to A .

� Osearch(Γt, S ,CT ) : Taking input CT , Γt, and S , it returns either 0 or 1 to A.

� Odecrypt(Γt, S ,CT ) : On input CT ,Γt and S , it outputs a message m or ⊥.

Challenge. After Phase I is over, A selects two equal length messages m⋆
0 and m⋆

1 ,

a challenge keyword set W ⋆ and a challenge encryption policy Γ ⋆
e , and forwards

them to B. Now, B selects a bit i
u←− {0, 1} and sends to A a challenge ciphertext

CT ⋆ of m⋆
i under the encryption policy Γ ⋆

e ∧ y⋆ and the keyword set W ⋆.

Phase II. After challenge phase is over, A queries as in Phase I except the following:

− Ore(CT
⋆, S ,W ′,Γ ′

e). and Osk(S
′), if S |= Γ ⋆

e ∧ y⋆ and S ′ |= Γ ′
e,

− Odecrypt(Γt, S ,CT ) if CT is a derivative 1 of CT ⋆, S |= Γ ⋆
e ∧ y⋆ and W ⋆ |= Γt.

Guess. A outputs a bit i′ and wins if i′ = i.

The advantage of A is defined as AdvIND-CCA2-Or-Type-1
A (1κ) =

∣∣Pr[i′ = i]− 1/2
∣∣.

1The definition is available in [47]
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Definition 14. (IND-CCA2-Or-Type-2). Our scheme is indistinguishable adaptive

chosen ciphertext attack secure at original ciphertext against a Type-2 adversary A
if there is no PPT A that can win the following game with a non-negligible advantage

against a challenger B.

Setup. B executes all the Setup algorithms to generate (mpk ,msk), (tpk , tsk) and

(cpk , csk), and sends PP = (mpk , tpk , cpk) to A.
Phase I. A queries for the oracles Osk ,Ork ,Ore ,O′

token ,O′
search and Odecrypt . The

oracles Osk ,Ork ,Ore and Odecrypt are similar to IND-CCA2-Or-Type-1 game and the

oracle O′
token and O′

search are described as follows.

� O′
token(Γt, S ) : On input a Boolean keyword formula Γt and an attribute set

S , B returns a token tok and transformed secret key sk tr to A.

� O′
search(Γt, S ,CT ) : Taking input CT , Γt, and S , it returns either 0 or 1 to A.

Challenge. A selects two messages m⋆
0 and m⋆

1 of equal length, a challenge keyword

set W ⋆ and a challenge encryption policy Γ ⋆
e , and forwards them to B. Now, B

selects a bit i
u←− {0, 1} and returns a challenge ciphertext

CT ⋆ ← Encrypt(PP ,m⋆
i ,Γ

⋆
e ,W

⋆) to A.
Phase II. A queries as in Phase I except the following:

− Ore(CT
⋆, S ,W ′,Γ ′

e) and Osk(S
′), if S |= Γ ⋆

e and S ′ |= Γ ′
e,

− Odecrypt(Γt, S ,CT ) if CT is a derivative of CT ⋆, S |= Γ ⋆
e , and W ⋆ |= Γt.

Guess. A produces its guess i′ and wins if i′ = i.

The advantage of A is AdvIND-CCA2-Or-Type-2
A (1κ) =

∣∣Pr[i′ = i]− 1/2
∣∣.

Definition 15. (IND-CCA2-Re-Type-1). Our scheme is indistinguishable adaptive

chosen ciphertext attack secure at re-encrypted ciphertext against a Type-1 adversary

A if there is no PPT A that can win the game described below with a non-negligible

advantage against a challenger B.

Init. A challenge attribute y⋆ ∈ U is output by A.
Setup. B performs all the Setup algorithms to generate (mpk ,msk), (tpk , tsk) and

(cpk , csk) and sends PP = (mpk , tpk , cpk) and csk to A.
Phase I. A queries for the set {Osk ,O′

rk ,Otoken ,Osearch ,Odecrypt} of oracles, where

� O′
rk(S ,W

′,Γ ′
e) : On input a keyword set W ′, an attribute set S and an

encryption policy Γ ′
e, where S ̸|= Γ ′

e, it returns a re-key rk to A.
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The other oracles are similar to IND-CCA2-Or-Type-1 game.

Challenge. A selects two equal length messagesm⋆
0 andm⋆

1 , a challenge keyword set

W ⋆ and a challenge encryption policy Γ ⋆
e , and forwards them to B. Now, B selects

i
u←− {0, 1}, generates CT ⋆ ← Re-Encrypt

(
PP , csk ,Encrypt(PP ,m⋆

i ,Γe,W ), rk ⋆
)
,

where rk ⋆ ← Re-KeyGen(PP , skS ,Γ
⋆
e ∧ y⋆,W ⋆), S |= Γe, and forwards CT ⋆ to A.

Phase II. Similar to Phase I, A queries with the exception of the following:

− Odecrypt(Γt, S ,CT
⋆) if S |= Γ ⋆

e ∧ y⋆ and W ⋆ |= Γt.

Guess. A announces its guess i′ and if i′ = i, A wins.

The advantage of A is AdvIND-CCA2-Re-Type-1A (1κ) =
∣∣Pr[i′ = i]− 1/2

∣∣.
Definition 16. (IND-CCA2-Re-Type-2). Our scheme is indistinguishable adaptive

chosen ciphertext attack secure at re-encrypted ciphertext against a Type-2 adversary

A if there is no PPT A that can win the game described below with a non-negligible

advantage against a challenger B.

Setup. B runs all Setup algorithms and generate (mpk ,msk), (tpk , tsk), and (cpk , csk).

It sends PP = (mpk , tpk , cpk) to A.
Phase I. A can query the oracles Osk ,O′

rk ,O′
token ,O′

search and Odecrypt . The oracles

Osk ,O′
rk and Odecrypt are same as described in the game IND-CCA2-Re-Type-1, and

O′
token and O′

search are similar to IND-CCA2-Or-Type-2 game.

Challenge. A chooses two messages m⋆
0 and m⋆

1 of equal length, a challenge encryp-

tion policy Γ ⋆
e and a challenge keyword setW ⋆ and sends them to B. Now, B selects a

bit i
u←− {0, 1}, outputs CT ⋆ ← Re-Encrypt

(
PP , csk ,Encrypt(PP ,m⋆

i ,Γe,W ), rk ⋆
)
,

where rk ⋆ ← Re-KeyGen(PP , skS ,Γ
⋆
e ,W

⋆), S |= Γe, and forwards CT ⋆ to A.
Phase II. Similar to Phase I, A queries with the exception of the following:

− Odecrypt(Γt, S ,CT
⋆) if S |= Γ ⋆

e and W ⋆ |= Γt.

Guess. A announces its guess i′ and if i′ = i, A wins.

The advantage A is AdvIND-CCA2-Re-Type-2A (1κ) =
∣∣Pr[i′ = i]− 1/2

∣∣.
Definition 17. (IND-CKAct). Our scheme is indistinguishable chosen keyword attack

secure on ciphertext if there is no PPT adversary A without having the cloud secret

key that can win the subsequent game with a non-negligible advantage against a

challenger B.

Setup. B executes all the Setup algorithms and generates (mpk ,msk),

(tpk , tsk) and (cpk , csk). Next, it sends PP = (mpk , tpk , cpk) to A.
Phase I. The oracles listed below are accessible to A.
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� O′
sk(S ) : Taking an attribute set S , it produces skS .

� O′
rk(S ,W

′,Γ ′
e) : Taking an encryption policy Γ ′

e, an attribute set S , and a

keyword set W ′, where S ̸|= Γ ′
e, it returns a re-key to A.

� O′′
token(Γt, S ) : Taking a boolean keyword formula Γt and an attribute set S ,

B sends a token tok and transformed secret key sk tr to A.

� O′
search(Γt, S ,CT ) : On input CT , Γt, and S , it outputs the search result 0 or

1 to A.

� Odecrypt(Γt, S ,CT ) : On input CT ,Γt and S , it outputs a message m or ⊥.

Challenge. A sends to B two equal size keyword sets W ⋆
0 and W ⋆

1

(
where ei-

ther (W ⋆
0 |= Γt ∧ W ⋆

1 |= Γt) or (W ⋆
0 ̸|= Γt ∧ W ⋆

1 ̸|= Γt) for all Γt submitted to

O′′
token ,O′

search ,Odecrypt in Phase I
)
, a challenge message m⋆ and a challenge en-

cryption policy Γ ⋆
e . Next, B selects i

u←− {0, 1}, sends to A either the challenge

ciphertext or the re-encrypted ciphertext CT ⋆.

Phase II. Queries made byA are similar to those in Phase I along with the following

conditions:

− O′′
token(Γt, S ) with either (W ⋆

0 |= Γt ∧W ⋆
1 |= Γt) or (W

⋆
0 ̸|= Γt ∧W ⋆

1 ̸|= Γt),

− O′
search(Γt, S ,CT

⋆) with either (W ⋆
0 |= Γt ∧W ⋆

1 |= Γt)

or (W ⋆
0 ̸|= Γt ∧W ⋆

1 ̸|= Γt),

− Odecrypt(Γt, S ,CT
⋆) with either (W ⋆

0 |= Γt ∧W ⋆
1 |= Γt)

or (W ⋆
0 ̸|= Γt ∧W ⋆

1 ̸|= Γt).

Guess. A announces its guess i′ and if i′ = i, A wins.

The advantage of A is AdvIND-CKAct
A (1κ) =

∣∣Pr[i′ = i]− 1/2
∣∣.

Definition 18. (IND-CKAtok). Our scheme is indistinguishable chosen keyword at-

tack secure on token if there is no PPT adversary A without having the cloud secret

key that can win the subsequent game with a non-negligible advantage against a

challenger B.

Setup. B executes all the Setup algorithms and generate (mpk ,msk), (tpk , tsk),

and (cpk , csk). Then, it sends PP = (mpk , tpk , cpk) to A.
Phase I. A has access to the oracles O′

sk ,O′
rk ,O′′

token ,O′
search , and Odecrypt , which

are identical to those in the IND-CKAct game.
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Challenge. A forwards to B two equal size Boolean keyword formulas Γ ⋆
t(0) and

Γ ⋆
t(1)

(
where either W |= Γ ⋆

t(0) ∧W |= Γ ⋆
t(1) or W ̸|= Γ ⋆

t(0) ∧W ̸|= Γ ⋆
t(1) for all W

submitted to O′
rk , and for all W attached to CT which is input to O′

search and

Odecrypt in Phase I
)
, a challenge attribute set S ⋆. Now, B selects a bit i

u←− {0, 1},
computes (tok ⋆, sk ⋆tr)← TokenGen(PP ,Γ ⋆

t(i), tsk , skS⋆), and sends (tok ⋆, sk ⋆tr) to A.
Phase II. A queries as in Phase I along with the following conditions:

− O′′
token(Γt, S ) with Γ ◦

t /∈ {Γ ⋆◦
t(0),Γ

⋆◦
t(1)},

− O′
search(Γt, S

⋆,CT ) with either (W |= Γ ⋆
t(0) ∧W |= Γ ⋆

t(1))

or (W ̸|= Γ ⋆
t(0) ∧W ̸|= Γ ⋆

t(1)), where W is involved in CT .

− Odecrypt(Γt, S
⋆,CT ) with either (W |= Γ ⋆

t(0) ∧W |= Γ ⋆
t(1))

or (W ̸|= Γ ⋆
t(0) ∧W ̸|= Γ ⋆

t(1)), where W is from CT .

Guess. A makes a guess i′ and if i′ = i, A wins.

The advantage of A is AdvIND-CKAtok
A (1κ) =

∣∣Pr[i′ = i]− 1/2
∣∣.

Definition 19. (Verifiability). Our scheme is verifiable if there is no PPT adversary

A having the cloud secret key that can win the subsequent game with a non-negligible

advantage against a challenger B.

Setup. B runs all the Setup algorithms and generates (mpk ,msk), (tpk , tsk), and

(cpk , csk). It sends PP = (mpk , tpk , cpk) and csk to A.
Phase I. The oracles listed below are accessible to A.

� O′
sk(S ) : Taking an attribute set S , it creates and sends the user’s decryption

key skS to A.

� O′′
rk(S ,W ,Γ ′

e) : Given an attribute set S , a keyword setW and an encryption

policy Γ ′
e, where S ̸|= Γ ′

e, it returns a re-key to A.

� O′′′
token(Γt, S ) : On input a Boolean keyword formula Γt and an attribute set

S , B sends a token tok to A.

� O′′
search(CT ,Γt, S ) : Taking an attribute set S , a Boolean keyword formula Γt,

and a ciphertext CT , it sends the search result either 0 or 1 to A.

� Otransform(Γt, S ,CT ) : Given a ciphertext CT ,Γt and S , B returns a trans-

formed ciphertext CT tr or ⊥.

� Odecrypt(Γt, S ,CT ) : On input CT ,Γt and S , it outputs a message m or ⊥.
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Challenge. A sends to B a message m⋆, a keyword set W ⋆ and an encryption

policy Γ ⋆
e . Now, B outputs CT ⋆ ← Encrypt(PP ,m⋆,Γ ⋆

e ,W
⋆) or

CT ⋆ ← Re-Encrypt
(
PP , csk ,Encrypt(PP ,m⋆,Γe,W ), rk ⋆

)
, where

rk ⋆ ← Re-KeyGen(PP , skS ,Γ
⋆
e ,W

⋆), S |= Γe, and sends CT ⋆ to A.
Phase II. A queries as in Phase I except the following:

− Otransform(CT
⋆,Γt, S ) if S |= Γ ⋆

e and W ⋆ |= Γt.

Output. A outputs CT ⋆
tr,Γ

⋆
t and S ⋆.

If Verify-and-Decrypt(PP ,CT ⋆
tr, sk

⋆
tr) /∈ {m⋆,⊥}, A wins. Here, sk ⋆tr can be produced

through a query on O′′′
token(Γ

⋆
t , S

⋆).

The advantage of A is defined as AdvverifiabilityA (1κ) = Pr[A wins].

5.3 ABPRE-BKS Construction

We define a Boolean keyword policy as Γt = (Kt, ψ◦
t , {wψ◦

t (i)
}i∈[ℓt]). Here Kt repre-

sents a matrix with dimension ℓt×nt. The rows of Kt are mapped to generic keyword

namesW via the function ψ◦
t and each row in Kt is associated witha keyword value,

denoted by wψ◦
t (i)

. Let W = {[W : w]} is a keyword set, where W ◦ = {W}. If

W |= Γt then there exists a vector a⃗ = (a1, a2, . . . , aℓt) which satisfies the following

(i) a⃗ · Kt = 1⃗nt

(ii) ai = 0, for all i ∈ [ℓt] such that ψ◦
t (i) /∈W ◦

along with wψ◦
t (i)

= w, for all i ∈ [ℓt] satisfying ψ
◦
t (i) =W ∈ W ◦

PKG.Setup(1κ, U). Given the security parameter 1κ and an attribute universe U , it

executes the following steps.

� Choose a pairing tuple ∆ = (p, g,G,GT , e).

� Pick α, β
u←− Z∗

p and set X = gβ, Y = e(g, g)α.

� Choose g1, g2, g3, g4, g5, g6, g7, g8, g9
u←− G.

� Set M = {0, 1}λ as the space of all the messages.

� Choose ten collision-resistant hash functions: H1 : {0, 1}2λ → Z∗
p,

H2 : GT → {0, 1}2λ, H3 : {0, 1}∗ → G, H4 : GT → Z∗
p,

H5 : {0, 1}∗ → {0, 1}ℓH5 , H6 : GT → Z∗
p, H7 : {0, 1}∗ → Z∗

p,

H8 : {0, 1}∗ → G, H9 : {0, 1}λ → Z∗
p, H10 : GT → Z∗

p. Here, H3 and

H8 are independent hash functions, and H4,H6, and H10 are independent

hash functions.
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� Finally, output the master public keympk = (∆, X, Y, {gi}9i=1,M , {Hi}10i=1)

and the master secret key msk = gα.

TGC.Setup(mpk). Given input mpk , it

� chooses γ′, b1, b2, b3, b4
u←− Z∗

p, and computes

h1 = gb1 , h2 = gb2 , h3 = gb3 , h4 = gb4 and hT = e(g, g6)
γ′ ,

� outputs TGC public key tpk = (hT , h1, h2, h3, h4) and TGC secret key

tsk = (γ′, b1, b2, b3, b4).

PCS.Setup(mpk). Taking mpk as input, it

� picks β′ u←− Z∗
p and sets X̂ = Xβ′

,

� outputs PCS public key cpk = X̂ and PCS secret key csk = β′.

Set PP = (mpk , tpk , cpk).

KeyGen(PP ,msk , S ). Given input PP ,msk and an attribute set S ,

� select r
u←− Z∗

p and set K1 = gα+βr, K2 = gr, Kx = H3(x)
r, ∀x ∈ S .

� Output decryption key skS = (S,K1, K2, {Kx}x∈S).

Encrypt(PP ,m,Γe,W ). Given input PP , a message m ∈ {0, 1}λ, a DNF encryption

policy Γe = B1 ∨ B2 ∨ · · · ∨ Bn, and a set W = {[W : w]} of keywords

(where W ◦ = {W} represents the set of generic keyword names and the set

{w} the corresponding keyword values), it generates an original ciphertext CT

according to the following computations.

� Select δ′, δ′′
u←− Z∗

p, γ
u←− {0, 1}λ, and set

σ′ = gδ
′
, σ′′ = Xδ′′ , s = H1(m||γ).

� Choose si
u←− Z∗

p, ∀i ∈ [n] and compute

C0 = (m||γ)⊕H2(Y
s), C1 = gsH6(e(σ′,X̂)δ

′′
), C2 = gs1,

C1,i = Xs
( ∏
y∈Bi

H3(y)
)si , C2,i = gsi , ∀i ∈ [n]

δ = H4(Y
s), tag = H5(δ||C0)

Set cte = (Γe, σ
′, σ′′, C0, C1, C2, {C1,i, C2,i}i∈[n]).
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� Choose µW , τW1, τW2
u←− Z∗

p, ∀W ∈W ◦ and compute

IW1 = hµW−τW1
1 , IW2 = hτW1

2 , IW3 = hµW−τW2
3 , IW4 = hτW2

4 ,

IW5 = (gw2 g3)
µWg−s4 , IW6 = (gw2 g3)

µWg−s5 , kT = hsT ,

Set ctk = (W ◦, kT , {IW1, IW2, IW3, IW4, IW5, IW6}W∈W ◦).

� Choose ε
u←− Z∗

p and compute C̄ = (gϱ7g
ε
8g9)

s, where ϱ = H7(cte||ctk||tag).
Finally, output the original ciphertext CT = (cte, ctk, tag, C̄, ε).

Re-KeyGen(PP , skS ,Γ
′
e,W

′). Given input PP , a decryption key skS , a DNF encryp-

tion policy Γ ′
e = B′

1 ∨ B′
2 ∨ · · · ∨ B′

t, and a set W ′ = {[W ′ : w′]} of keywords
(where the set W ′◦ = {W ′} represents the set of generic keywords names and

the set {w′} is the corresponding keyword values), it generates a re-encryption

key rk by performing the following calculations.

� Select δ1, δ2
u←− Z∗

p, ϕ, γ1
u←− {0, 1}λ, and set

σ1 = gδ1 , σ2 = Xδ2 , s′ = H1(ϕ||γ1)

� Choose s′i
u←− Z∗

p, ∀i ∈ [t], and compute

C ′
0 = (ϕ||γ1)⊕H2(Y

s′), C ′
1 = gs

′H6(e(σ1,X̂)δ2 ), C ′
1,i = Xs′

( ∏
y∈B′

i

H3(y)
)s′i ,

C ′
2,i = gs

′
i , δ′ = H4(Y

s′), tag1 = H5(δ
′||C ′

0)

Set ct ′e = (Γ ′
e, σ1, σ2, C

′
0, C

′
1, {C ′

1,i, C
′
2,i}i∈[t]).

� Choose µ′
W ′ , π′

W ′1, π
′
W ′2

u←− Z∗
p, ∀W ′ ∈W ′◦ and calculate

I ′W ′1 = h
µ′W′−π′

W′1
1 , I ′W ′2 = h

π′
W′1

2 , I ′W ′3 = h
µ′W′−π′

W′2
3 , I ′W ′4 = h

π′
W′2

4 ,

I ′W ′5 = (gw
′

2 g3)
µ′W′g−s

′

4 , I ′W ′6 = (gw
′

2 g3)
µ′W′g−s

′

5 , k′T = hs
′

T

Set ct ′k = (W ′◦, k′T , {I ′W ′1, I
′
W ′2, I

′
W ′3, I

′
W ′4, I

′
W ′5, I

′
W ′6}W ′∈W ′◦).

� Choose ε′
u←− Z∗

p, compute ϱ′ = H7(ct
′
e||ct ′k||tag1||S ) and set

C̄ ′ = (gϱ
′

7 g
ε′
8 g9)

s′ .

� Set ctΓ′
e
= (ct ′e, ct

′
k, tag1, C̄

′, ε′).
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� Choose η
u←− Z∗

p, and set

rk0 = K
H9(ϕ)
1 gη1 , rk1 = gη, rk2 = K

H9(ϕ)
2 ,

rkx = KH9(ϕ)
x , ∀x ∈ S, rk3 = ctΓ′

e

� Finally, output the re-encryption key rk = (S , rk0, rk1, rk2, {rkx}x∈S, rk3).

Re-Encrypt(PP , csk ,CT , rk). Taking PP , csk , an original ciphertext CT and a re-

encryption key rk as input, it performs the subsequent computations.

� Check whether the re-encryption key contains valid S ,Γ ′
e,W

′ or not by

verifying the following equation

e
(
C ′

1, g
ϱ′

7 g
ε′

8 g9
) ?
= e(gH6(e(σ1,σ2)csk ), C̄ ′)

where ϱ′ = H7(ct
′
e||ct ′k||tag1||S ).

� Next, compute ϱ = H7(cte||ctk||tag) and check validity of the original

ciphertext using the subsequent equations,

e(C1, g1)
?
= e(gH6(e(σ′,σ′′)csk ), C2) (5.1)

e
(
C2, g

ϱ
7g

ε
8g9
) ?

= e(g1, C̄) (5.2)

∀i ∈ [n], e(C1,i, g)
?
= e(C

1/H6(e(σ′,σ′′)csk )
1 , X) · e

(
C2,i,

∏
y∈Bi

H3(y)
)
(5.3)

If the three equations (5.1), (5.2) and (5.3) do not hold simultaneously,

output ⊥. Otherwise, execute the following.

� If S ̸|= Γe, output ⊥. Otherwise, S ⊃ Bi for some i ∈ [n], then compute

T =
e(C

1/H6(e(σ′,σ′′)csk )
1 , rk0)

e(C2, rk1) · e(C1,i, rk2) · e
(
C−1

2,i ,
∏
x∈Bi

rkx
)

� Finally, output the re-encrypted ciphertext CT = (S , C0, C1, C2, T, rk3).

TokenGen(PP ,Γt, tsk , skS ). It takes the input PP , a decryption key skS , the trap-

door secret key tsk and a Boolean keyword formula Γt = (Kt, ψ◦
t , {wψ◦

t (i)
}i∈[ℓt]),

where Kt represents a matrix with dimension ℓt×nt, the rows of Kt are mapped

to generic keyword names W via the function ψ◦
t and each row in Kt is asso-

ciated witha keyword value, denoted by wψ◦
t (i)

. Then, it outputs a token and
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the corresponding transformed secret key pair (tok , sk tr) in the following way.

Note that Γ ◦
t = (Kt, ψ◦

t ), which is a keyword policy with only keyword generic

names.

� TGC picks ξ, ξ′
u←− Z∗

p and q̆i, q̆
′
i

u←− Z∗
p, for each i ∈ [ℓt] and sets

Π1 = gξ.

� It sets η⃗ =
(
γ′H10(pp), y2, y3, . . . , yℓt

)
, where pp = e(Π1, X̂)ξ

′

and y2, y3, . . . , yℓt
u←− Zp. Next, it computes ζi = K(i)

t · η⃗, for all i ∈ [ℓt],

where K(i)
t is the i-th row of Kt. Next, TGC computes and sends the

trapdoor

Trp = (Γt,Π1,Π2, {Πi1,Π
′
i2,Πi3, Ui1, Ui2, Ui3, Ui4}i∈[ℓt]) to the DU, where

Π2 = Xξ′ ,Πi1 = gζi6 · g
b1b2q̆i+b3b4q̆

′
i

4 ,

Π′
i2 = g

b1b2q̆i+b3b4q̆
′
i

5 ,Πi3 = H8(pp||Γ◦
t ||K

(i)
t ) · gb1b2q̆i+b3b4q̆′i ,

Ui1 = (g
wψ◦

t (i)

2 g3)
−q̆ib1 , Ui2 = (g

wψ◦
t (i)

2 g3)
−q̆ib2 ,

Ui3 = (g
wψ◦

t (i)

2 g3)
−q̆′ib3 , Ui4 = (g

wψ◦
t (i)

2 g3)
−q̆′ib4

� Then, the DU chooses ϕ1, ϕ2, ϕ3
u←− Z∗

p and sets

η⃗′ =
(
ϕ3/ϕ1, y

′
2, y

′
3, . . . , y

′
ℓt

)
, where y′2, y

′
3, . . . , y

′
ℓt

u←− Zp. Next, it com-

putes

νi = K(i)
t · η⃗′, for all i ∈ [ℓt], sets sk tr = (ϕ1, ϕ2) and

tok = (Γ ◦
t ,Π1,Π2, {Πi1,Πi2,Πi3, Ui1, Ui2, Ui3, Ui4}i∈[ℓt], D1, D2, {Dy}y∈S ),

where

Πi2 = XνiΠ′
i2, D1 = (K1·Xϕ3)1/ϕ2 , D2 = (K2)

1/ϕ2 , Dy = (Ky)
1/ϕ2 , ∀y ∈ S .

Remark 10. The distribution of the token

tok = (Γ ◦
t ,Π1,Π2, {Πi1,Πi2,Πi3, Ui1, Ui2, Ui3, Ui4}i∈[ℓt], D1, D2, {Dy}y∈S ) of a

keyword policy Γt = (Kt, ψ◦
t , {wψ◦

t (i)
}i∈[ℓt]) and an attribute set S is of the

form 

Π1 = gξ,Π2 = Xξ′ ,

Πi1 = gζi6 · g
b1b2q̆i+b3b4q̆

′
i

4 ,

Πi2 = Xνig
b1b2q̆i+b3b4q̆

′
i

5 ,

Πi3 = H8(pp||Γ◦
t ||K

(i)
t ) · gb1b2q̆i+b3b4q̆

′
i ,

Ui1 = (g
wψ◦

t (i)

2 g3)
−q̆ib1 , Ui2 = (g

wψ◦
t (i)

2 g3)
−q̆ib2 ,

Ui3 = (g
wψ◦

t (i)

2 g3)
−q̆′ib3 , Ui4 = (g

wψ◦
t (i)

2 g3)
−q̆′ib4

D1 = gα/ϕ2X r̈Xϕ3/ϕ2 , D2 = gr̈, Dy = (H3(y))
r̈


(5.4)
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where ξ, ξ′, q̆i, q̆
′
i, r̈, ϕ1, ϕ2, ϕ3 are random exponents (elements in Z∗

p), ζi (resp.

νi) is the ith share of γ′ ·H10(e(Π1, X̂)ξ
′
) (resp. ϕ3/ϕ1) with respect to the policy

(Kt, ψ◦
t ), (γ

′, b1, b2, b3, b4) is trapdoor secret key, g
α is system master secret key.

This distribution is used in our ABPRE-BKS security study.

Search(PP ,CT , csk , tok). Given input PP ,CT (an original or re-encrypted cipher-

text), csk , and tok , PCS outputs 1 or 0 as follows.

Case 1. If CT = (cte, ctk, tag, C̄, ε) is an original ciphertext, then compute

ϱ = H7(cte||ctk||tag) and check validity of CT by the equations (5.1), (5.2)

and (5.3). If any of the above equations is not true, return ⊥.
Otherwise, set B̆ = C1

1/H6(e(σ′,σ′′)csk ) and obtain a⃗ = (a1, a2, . . . , aℓt) satisfying∑
i∈[ℓt] aiζi = γ′H10(e(Π1,Π2)

csk), by performing the secret recovery phase of

LSSS.

Let εi = H8(e(Π1,Π2)
csk ||Γ ◦

t ||K
(i)
t ) and calculate

J1 = e
(
B̆,
∏
i∈[ℓt]

Πai
i1

)
×
∏
i∈[ℓt]

e
(
Πi3 · εi−1, Iψ◦

t (i)5

)ai
J2 =

∏
i∈[ℓt]

{
e
(
Iψ◦

t (i)1
, Ui2

)
e
(
Iψ◦

t (i)2
, Ui1

)
e
(
Iψ◦

t (i)3
, Ui4

)
e
(
Iψ◦

t (i)4
, Ui3

)}ai

and check whether J1J2
?
= kT

H10(e(Π1,Π2)csk ). If this is true, output 1 and set

the corresponding matching ciphertext as CTm = (cte, ctk, tag); otherwise,

output 0.

Case 2. If CT = (S , C0, C1, C2, T, rk3) is a re-encrypted ciphertext, then

compute ϱ′ = H7(ct
′
e||ct ′k||tag1||S ) and check validity of CT by the following

equations,

e
(
C ′

1, g
ϱ′

7 g
ε′

8 g9
) ?

= e(gH6(e(σ1,σ2)csk ), C̄ ′) (5.5)

∀i ∈ [t], e(C ′
1,i, g)

?
= e(C

′1/H6(e(σ1,σ2)csk )
1 , X) · e

(
C ′

2,i,
∏
y∈B′

i

H3(y)
)

(5.6)

If anyone of the equations (5.5) and (5.6) is not valid, return ⊥.
Else, set B̆ = C1

1/H6(e(σ′,σ′′)csk ), D̆ = C ′
1
1/H6(e(σ1,σ2)csk ) and obtain

a⃗ = (a1, a2, . . . , aℓt) satisfying
∑

i∈[ℓt] aiζi = γ′H10(e(Π1,Π2)
csk), by performing

the secret recovery phase of LSSS.
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Let εi = H8(e(Π1,Π2)
csk ||Γ ◦

t ||K
(i)
t ) and calculate

Q1 = e
(
D̆,
∏
i∈[ℓt]

Πai
i1

)
×
∏
i∈[ℓt]

e
(
Πi3 · ε−1

i , I ′ψ◦
t (i)5

)ai
Q2 =

∏
i∈[ℓt]

{
e
(
I ′ψ◦

t (i)1
, Ui2

)
e
(
I ′ψ◦

t (i)2
, Ui1

)
e
(
I ′ψ◦

t (i)3
, Ui4

)
e
(
I ′ψ◦

t (i)4
, Ui3

)}ai

Check whether Q1Q2
?
= k′T

H10(e(Π1,Π2)csk ). If this is true, output 1 and set the

corresponding matching ciphertext as CTm = (S , C0, B̆, C2, T, rk3); otherwise,

output 0.

Transform(PP ,CTm, tok). Given input PP ,CTm and tok , PCS outputs CT tr or ⊥
as described below.

Case 1. Suppose CTm = (cte, ctk, tag) is a matching original ciphertext.

If S ̸|= Γe, output ⊥. Otherwise, proceed further. Compute

J̆1 = e
(
B̆,
∏
i∈[ℓt]

Πai
i2

) ∏
i∈[ℓt]

e
(
Πi3 · ε−1

i , Iψ◦
t (i)6

)ai
R1 = J̆1J2

Since S |= Γe, Bj ⊆ S for some j ∈ [n],

J3 =
e(C1,j, D2)

e(C2,j,
∏

y∈Bj Dy)

J4 = e(B̆,D1)

R2 = J−1
3 · J4

The transformed ciphertext CT tr = (R1,R2, C0, C2, B̆, tag).

Case 2. Suppose CTm = (S , C0, B̆, C2, T, rk3) is a matching re-encrypted

ciphertext. If S ′ ̸|= Γ ′
e, output ⊥. Otherwise, proceed further. Compute

Q̆1 = e
(
D̆,
∏
i∈[ℓt]

Πai
i2

) ∏
i∈[ℓt]

e
(
Πi3 · ε−1

i , I ′ψ◦
t (i)6

)ai
Y1 = Q̆1Q2
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Since S ′ |= Γ ′
e, B

′
j ⊆ S ′ for some j ∈ [t],

Q3 =
e(C ′

1,j, D2)

e(C ′
2,j,
∏

y∈B′
j
Dy)

Q4 = e(D̆,D1)

Y2 = Q−1
3 ·Q4

The transformed ciphertext CT tr = (Y1,Y2, C0, C
′
0, B̆, D̆, C2, T, tag1).

Verify-and-Decrypt(PP ,CT tr, sk tr). Given PP ,CT tr, and sk tr , it validates the accu-

racy of the search outcomes provided by PCS and then outputs the message

m or an error symbol ⊥.

Case 1. If CT tr is a transformed original ciphertext, then compute

Ω = R−ϕ1
1 · Rϕ2

2 and δ = H4(Ω). Check whether

H5(δ||C0)
?
= tag

If this condition is false, the error symbol ⊥ is returned to confirm that the

PCS deceptively returns a false search result. Else, the delegator computes

C0 ⊕H2(Ω) = m||γ

and outputs m if B̆ = gH1(m||γ) and C2 = g
H1(m||γ)
1 . Otherwise, return ⊥.

Case 2. If CT tr is a transformed re-encrypted ciphertext, then compute

Ω′ = Y −ϕ1
1 · Y ϕ2

2 and δ′ = H4(Ω
′). Check whether

H5(δ
′||C ′

0)
?
= tag1

If this condition is false, the error symbol ⊥ is returned to indicate that the

PCS deceptively returns a false search result. Else, the delegatee computes

C ′
0 ⊕H2(Ω

′) = ϕ||γ1

and returns ϕ if D̆ = gH1(ϕ||γ1). Next, it computes

C0 ⊕H2(T
1/H9(ϕ)) = m||γ
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and outputs m if B̆ = gH1(m||γ) and C2 = g
H1(m||γ)
1 .

Otherwise, it outputs ⊥.

Correctness of ABPRE-BKS

Theorem 11. If S |= Γe and W |= Γt, then the delegator can verify the accuracy of

search results and recover the original message m from the original ciphertext CT.

Proof. Let φi = b1b2q̆i + b3b4q̆
′
i. Since W |= Γt, we have Σ

i∈[ℓt]
aiζi = γ′H10(pp). Then

J1 = e
(
B̆,
∏
i∈[ℓt]

Πai
i1

)
×
∏
i∈[ℓt]

e
(
Πi3 · εi−1, Iψ◦

t (i)5

)ai
= e

(
C

1/H6(e(σ′,σ′′)csk )
1 ,

∏
i∈[ℓt]

gζi6 · g
φi
4

)ai
·
∏
i∈[ℓt]

e
(
gφi ,

(
g
wψ◦

t (i)

2 g3
)µψ◦

t (i)g−s4

)ai
=

∏
i∈[ℓt]

{
e
(
g
sH6(e(σ

′,X̂)δ
′′
)

H6(e(σ
′,σ′′)csk ) , gζi6 g

φi
4

)ai
· e
(
g, g4

)−sφiai · e(g, gwψ◦
t (i)

2 g3
)µψ◦

t (i)
φiai
}

=
∏
i∈[ℓt]

{
e
(
g, g4

)sφiai · e(g, g6)aiζis · e(g, g4)−sφiaie(g, gwψ◦
t (i)

2 g3
)µψ◦

t (i)
φiai
}

= e
(
g, g6

)s Σ
i∈[ℓt]

aiζi
·
∏
i∈[ℓt]

e
(
g, g

wψ◦
t (i)

2 g3
)µψ◦

t (i)
·φiai

= e
(
g, g6

)s·γ′·H10(pp) ·
∏
i∈[ℓt]

e
(
g, g

wψ◦
t (i)

2 g3
)µψ◦

t (i)
·φiai

J2 =
∏
i∈[ℓt]

{
e
(
Iψ◦

t (i)1
, Ui2

)
· e
(
Iψ◦

t (i)2
, Ui1

)
· e
(
Iψ◦

t (i)3
, Ui4

)
· e
(
Iψ◦

t (i)4
, Ui3

)}ai
=

∏
i∈[ℓt]

{
e
(
h
µψ◦

t (i)
−τψ◦

t (i)1

1 ,
(
g
wψ◦

t (i)

2 g3
)−q̆ib2) · e(hτψ◦

t (i)1

2 ,
(
g
wψ◦

t (i)

2 g3
)−q̆ib1)

× e
(
h
µψ◦

t (i)
−τψ◦

t (i)2

3 ,
(
g
wψ◦

t (i)

2 g3
)−q̆′ib4) · e(hτψ◦

t (i)2

4 ,
(
g
wψ◦

t (i)

2 g3
)−q̆′ib3)}ai

=
∏
i∈[ℓt]

{
e
(
g, g

wψ◦
t (i)

2 g3
)−q̆ib1b2(µψ◦

t (i)
−τψ◦

t (i)1
) · e
(
g, g

wψ◦
t (i)

2 g3
)−q̆ib1b2τψ◦

t (i)1

× e
(
g, g

wψ◦
t (i)

2 g3
)−q̆′ib3b4(µψ◦

t (i)
−τψ◦

t (i)2
) · e
(
g, g

wψ◦
t (i)

2 g3
)−q̆ib3b4τψ◦

t (i)1

}ai
=

∏
i∈[ℓt]

e(g, g
wψ◦

t (i)

2 g3
)−µψ◦

t (i)
(b1b2q̆i+b3b4q̆

′
i)ai =

∏
i∈[ℓt]

e(g, g
wψ◦

t (i)

2 g3
)−µψ◦

t (i)
φiai
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Hence,

J1J2 = e
(
g, g6

)s·γ′·H10(pp) = h
s·H10

(
e(Π1,Π2)csk

)
T = kT

H10

(
e(Π1,Π2)csk

)
Now,

J̆1 = e
(
B̆,
∏
i∈[ℓt]

Πai
i2

) ∏
i∈[ℓt]

e
(
Πi3 · ε−1

i , Iψ◦
t (i)6

)ai
=

∏
i∈[ℓt]

{
e
(
gs, gβνigφi5

)ai
e
(
gφi ,

(
g
wψ◦

t (i)

2 g3
)µψ◦

t (i)g−s5

)ai}
=

∏
i∈[ℓt]

{
e
(
gs, gβνi

)aie(gs, gφi5 )aie(g, gwψ◦
t (i)

2 g3
)µψ◦

t (i)
φiai · e

(
g, g5

)−sφiai}
=

∏
i∈[ℓt]

{
e
(
g, g
)sβaiνi · e(g, gwψ◦

t (i)

2 g3
)µψ◦

t (i)
φiai
}

= e
(
g, g
)βs Σ

i∈[ℓt]
aiνi
·
∏
i∈[ℓt]

{
e
(
g, g

wψ◦
t (i)

2 g3
)µψ◦

t (i)
φiai
}

= e
(
g, g
)βs·ϕ3/ϕ1 · ∏

i∈[ℓt]

{
e
(
g, g

wψ◦
t (i)

2 g3
)µψ◦

t (i)
φiai
}

R1 = J̆1J2 = e
(
g, g
)βs·ϕ3/ϕ1

Since S |= Γe, we get

J3 =
e
(
C1,j, D2

)
e
(
C2,j,

∏
y∈Bj

Dy

)

=

e
(
gβs

∏
y∈Bj

H3(y)
sj , gr/ϕ2

)
e
(
gsj ,

∏
y∈Bj

H3(y)
r/ϕ2
)

= e
(
g, g
)βs·r/ϕ2

J4 = e
(
B̆,D1

)
= e

(
gs, gα+βrgβϕ3

)1/ϕ2
= e

(
g, g
)α·s/ϕ2e(g, g)βrs/ϕ2e(g, g)βsϕ3/ϕ2

R2 = J−1
3 · J4

= e
(
g, g
)−βrs/ϕ2e(g, g)α·s/ϕ2e(g, g)βrs/ϕ2e(g, g)βsϕ3/ϕ2

= e
(
g, g
)αs/ϕ2e(g, g)βsϕ3/ϕ2
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Now,

Ω = R−ϕ1
1 · Rϕ2

2

=
(
e
(
g, g
)βsϕ3/ϕ1)−ϕ1(e(g, g)sα/ϕ2)ϕ2(e(g, g)βsϕ3/ϕ2)ϕ2

= e
(
g, g
)αs

= Y s

δ = H4(Ω) = H4(Y
s)

Hence, H5

(
δ||C0

)
= tag

C0 ⊕H2(Ω) = (m||γ)⊕H2(Y
s)⊕H2(Ω) = m||γ

Now, gH1(m||γ) = gs = B̆ and g
H1(m||γ)
1 = gs1 = C2

Therefore, the delegator accepts m as valid message.

Theorem 12. If S |= Γe, S
′ |= Γ ′

e and W ′ |= Γ ′
t . then the delegatee can verify the

accuracy of search results and recover the original message m from the re-encrypted

ciphertext CT.

Proof. Since S |= Γe, we have

T =
e(C

1/H6(e(σ′,σ′′)csk )
1 , rk0)

e(C2, rk1) · e(C1i, rk2) · e
(
C−1

2i ,
∏
x∈Bi

rkx
)

=
e(gs, g(α+βr)H9(ϕ)gη1)

e
(
gs1, g

η) · e
(
gβs

∏
x∈Bi

H3(x)si , grH9(ϕ)
)
· e
(
g−si ,

∏
x∈Bi

H3(x)
rH9(ϕ)

)
=

e(g, g)αsH9(ϕ) · e(g, g)βrsH9(ϕ)

e(g, g)βrsH9(ϕ)

= e(g, g)αsH9(ϕ)

In a similar way, as shown in proof of Theorem 11, Q1 and Q2 can be computed,

and it can be shown that Q1Q2=k
′
T
H10

(
e(Π1,Π2)csk

)
.

In this case, we get

Y1 = e
(
g, g
)βs′ϕ3/ϕ1 ,Y2 = e

(
g, g
)αs′/ϕ2 · e(g, g)βs′ϕ3/ϕ2



CHAPTER 5. 134

Now, the delegatee can recover the message m as shown below.

Ω′ = Y −ϕ1
1 · Y ϕ2

2

=
(
e
(
g, g
)βs′ϕ3/ϕ1)−ϕ1(e(g, g)s′α/ϕ2)ϕ2 · (e(g, g)βs′ϕ3/ϕ2)ϕ2

= e
(
g, g
)αs′

δ′ = H4(Ω
′) = H4

(
e
(
g, g
)αs′)

= H4(Y
s′)

Hence, H5

(
δ′||C ′

0

)
= tag1.

Now,

C ′
0 ⊕H2(Ω

′) = (ϕ||γ1)⊕H2

(
e
(
g, g
)αs′)⊕H2(Ω

′) = ϕ||γ1.

C0 ⊕H2(T
1/H9(ϕ)) = (m||γ)⊕H2

(
e
(
g, g
)αs)⊕H2

(
e
(
g, g
)αs)

= m||γ.

5.4 Security Proof

In the following theorems, we demonstrate the security of our scheme.

Theorem 13. Our ABPRE-BKS scheme demonstrates IND-CCA2-Or security against

a Type-1 adversary, with the DBDH problem assumed to be hard.

Proof. Let a PPT Type-1 adversary A breaks IND-CCA2-Or security with non-

negligible advantage, then a challenger B can solve the DBDH problem by inter-

acting with A as given in IND-CCA2-Or-Type-1 game. Given the DBDH problem

instance (∆, A = ga, B = gb, C = gc, Z), B has to ascertain if Z is equal to e(g, g)abc

or Z has been randomly selected from GT .

� sklist: It stores tuples of the form (S , skS ).

� rklist: It stores tuples of the form (S ,Γ ′
e,W

′, rk, f lag) where flag ∈ {1, 0}.
Here, flag = 1 indicates rk is a valid re-encryption key, and flag = 0 indicates

rk is randomly chosen.

Init. A sends a challenge attribute y⋆ ∈ U to B.
Setup. B generates the system public parameters as follows. It picks α′ u←− Z∗

p

and implicitly sets α = α′ + ab. It calculates

Y = e(g, g)α
′ · e(A,B)
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It also chooses β̆
u←− Z∗

p and implicitly sets β = β̆ + b. It computes X = gβ̆ · B.

Next B samples z1, z2, z3, z4, z5, z6, z7, z8, z9, z
′
8, z

′
9

u←− Z∗
p, sets gi = gzi for all

i = 1, 2, 3, 4, 5, 6, and computes

g7 = gz7A, g8 = gz8Az
′
8 , g9 = gz9Az

′
9

It chooses ten collision-resistant hash functions H1 : {0, 1}2λ → Z∗
p,

H2 : GT → {0, 1}2λ, H3 : {0, 1}∗ → G, H4 : GT → Z∗
p, H5 : {0, 1}∗ → {0, 1}ℓH5 ,

H6 : GT → Z∗
p, H7 : {0, 1}∗ → Z∗

p, H8 : {0, 1}∗ → G, H9 : {0, 1}λ → Z∗
p,

H10 : GT → Z∗
p, in which H3 is calculated as follows.

H list
3 : Let y ∈ U be an attribute with y ̸= y⋆. A queries H3 for H3(y), if

(y, vy, g
vy) exists in H list

3 , returns gvy . Otherwise, choose vy
u←− Z∗

p and returns

gvy . Adds (y, vy, g
vy) to H list

3 . If y = y⋆, choose vy⋆
u←− Z∗

p and returns gvy⋆C. Adds

(y⋆, vy⋆ , g
vy⋆C) to H list

3 .

B sets mpk = (∆, X, Y, {gi}9i=1,M , {Hi}10i=1).

Next B chooses γ′, β′, b1, b2, b3, b4
u←− Z∗

p, computes h1 = gb1 , h2 = gb2 ,

h3 = gb3 , h4 = gb4 , hT = e(g, g6)
γ′ , X̂ = Xβ′

and sets tpk = (hT , h1, h2, h3, h4),

tsk = (γ′, {bi}4i=1), cpk = X̂ and csk = β′.

B sends PP = (mpk , tpk , cpk) and csk to A.
Phase I. The following set of queries is posed by A.

� Osk(S ) : Here y⋆ ̸∈ S . B searches sklist. If (S , skS ) already present, output

skS . Else, it picks r̆
u←− Z∗

p and implicitly define r = r̆ − a. Compute

K1 = gα
′
gβ̆r̆A−β̆B r̆, K2 = gr̆A−1, Ky = gvy r̆A−vy , ∀y ∈ S

B adds (S , skS ) to sklist.

� Ork(S ,W
′,Γ ′

e) : B searches rklist. If (S ,Γ ′
e,W

′, rk, ∗) exists, it returns rk.

Otherwise it does the following.

– If y⋆ ∈ S but sklist does not contain any pair (S ′, skS ′), where S ′ |= Γ′
e,

B chooses each components of rk randomly. Adds (S ,Γ ′
e,W

′, rk, 0) to

rklist.

– Otherwise, if y⋆ ̸∈ S , B queries Osk(S ) and generates rk using the ob-

tained skS . Adds (S , skS ) and (S ,Γ ′
e,W

′, rk, 1) to sklist and rklist, re-

spectively.
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� Ore(CT , S ,W
′,Γ ′

e) : If equations (5.1),(5.2) and (5.3) do not hold simulta-

neously or y⋆ ∈ S and (S ′, skS ′) in sklist with S ′ |= Γ ′
e, output ⊥. Else, if

there exists a tuple (S ,Γ ′
e,W

′, rk, ∗) in rklist, then CT will be re-encrypted

using rk. Else, B issues Ork(S ,W
′,Γ ′

e) to get rk, where S ̸|= Γ ′
e. Next, CT is

re-encrypted by B using rk. The final result will be given to A.

� Otoken(Γt, S ) : B performs the following cases.

– If y⋆ ∈ S , B chooses ξ, ξ′, d, d′, d′′, r̈, q̆i, q̆
′
i

u←− Z∗
p, and implicitly sets

ϕ1 = αd′′/(dd′), ϕ2 = α/d, ϕ3 = αd′′/d. After this, B computes the token

tok = (Γ ◦
t ,Π1,Π2, {Πi1,Πi2,Πi3, Ui1, Ui2, Ui3, Ui4}i∈[ℓt], D1, D2, {Dy}y∈S )

corresponding to the keyword policy Γt = (Kt, ψ◦
t , {wψ◦

t (i)
}i∈[ℓt]) as follows.

Set r̈ = r/ϕ2,

D1 = gdX r̈+d′′ , D2 = gr̈, Dy =

gvy r̈, if y ̸= y⋆

(gvy⋆C)r̈, if y = y⋆

Π1 = gξ, pp = e(Π1, X̂)ξ
′
, η⃗ =

(
γ′H10(pp), y2, y3, . . . , yℓt

)
, where

y2, y3, . . . , yℓt
u←− Z∗

p, and ζi = K
(i)
t · η⃗, for all i ∈ [ℓt].

Also, set η⃗′ =
(
ϕ3/ϕ1 = d′, y′2, y

′
3, . . . , y

′
ℓt

)
, where y′2, y

′
3, . . . , y

′
ℓt

u←− Z∗
p,

and νi = K(i)
t · η⃗′, for all i ∈ [ℓt].

Now, B calculates the rest of the token components as shown in con-

struction and sends the token tok to A. Note that, in this case, B does

not know sk tr = (ϕ1, ϕ2); however, the simulation of tok is similar to the

original construction. It can be seen from Remark 10.

– If y⋆ ̸∈ S , it computes skS ← Osk(S ). Then, it returns

(tok , sk tr)← TokenGen(PP ,Γt, tsk , skS ) to A.

� Osearch(Γt, S ,CT ) : Taking a ciphertext CT , a Boolean keyword formula Γt,

and an attribute set S , it outputs the search result

1/0← Search(PP ,CT , csk , tok), where tok ← Otoken(Γt, S ).

� Odecrypt(Γt, S ,CT ) : B responds as follows,

(i) Suppose CT is an original ciphertext. If equations (5.1),(5.2) and (5.3)

do not hold simultaneously or S ̸|= Γe or Osearch(Γt, S ,CT ) → 0, return

⊥. Else, B does the following.
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− If y⋆ ∈ S , B does not have the transformed secret key sk tr accord-

ing to Otoken(Γt, S ) and hence it proceeds in the following way. It

calculates

Ω = e(B̆, gα
′
) · e
(
C̄(B̆)−(ρz7+ϵz8+z9), B(ρ+z′8ϵ+z

′
9)

−1
)
= Y s

and δ = H4(Ω). Note that ρ+ z′8ϵ+ z′9 = 0 happens with probability

at most 1/p and hence ρ + z′8ϵ + z′9 ̸= 0 since p is very large prime

number. Next, B checks whether H5(δ||C0)
?
= tag. If this is not true,

it returns ⊥. Otherwise, it computesm||γ = C0⊕H2(Ω), and returns

m to A if B̆ = gH1(m||γ) and C2 = g
H1(m||γ)
1 .

− If y⋆ /∈ S , B knows sk tr . Hence, it computes the transformed cipher-

text CT tr ← Transform(PP ,CTm, tok) and returns to A the output

of the algorithm Verify-and-Decrypt(PP ,CT tr, sk tr).

(ii) Suppose CT is a re-encrypted ciphertext. If equations (5.5) and (5.6) do

not hold simultaneously or S ̸|= Γ ′
e or Osearch(Γt, S ,CT ) → 0, return ⊥.

Otherwise, B does the following.

− If y⋆ ∈ S , B does not have the transformed secret key sk tr according

to Otoken(Γt, S ) and hence it calculates

Ω′ = e(D̆, gα
′
) · e
(
C̄ ′(D̆)−(ρ′z7+ϵ′z8+z9), B(ρ′+z′8ϵ

′+z′9)
−1
)
= Y s′

and δ′ = H4(Ω
′). Note that ρ′+z′8ϵ

′+z′9 = 0 happens with probability

at most 1/p and hence ρ′ + z′8ϵ
′ + z′9 ̸= 0 since p is very large prime

number. Next, B checks whether H5(δ
′||C ′

0)
?
= tag1. If this is not

true, it returns ⊥. Otherwise, it computes ϕ||γ1 = C ′
0 ⊕H2(Ω

′) and

obtains ϕ if D̆ = gH1(ϕ||γ1).

Next, B computes m||γ = C0 ⊕ H2(T
1/H9(ϕ)) and returns m to A if

B̆ = gH1(m||γ) and C2 = g
H1(m||γ)
1 .

− If y⋆ /∈ S , B knows sk tr . Hence, it computes the transformed cipher-

text CT tr ← Transform(PP ,CTm, tok) and returns to A the output

of the algorithm Verify-and-Decrypt(PP ,CT tr, sk tr).

Challenge. A selects two equal length messages m⋆
0 and m⋆

1 , a challenge encryption

policy Γ ⋆
e = B⋆

1 ∨ B⋆
2 ∨ . . . ∨ B⋆

n, and a challenge keyword set W ⋆, and sends to B.
Now, B selects a bit i

u←− {0, 1}, outputs CT ⋆ ← Encrypt(PP ,m⋆
i ,Γ

⋆
e ∧ y⋆,W ⋆),

where Γ ⋆
e ∧ y⋆ = (B⋆

1 ∪ {y⋆})∨ (B⋆
2 ∪ {y⋆})∨ · · · ∨ (B⋆

n ∪ {y⋆}), in the following way.
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− Pick γ⋆ ∈ {0, 1}λ and implicitly define H1(m
⋆
i ||γ⋆) = c.

− Select δ′, δ′′
u←− Z∗

p, and set σ′ = gδ
′
, σ′′ = Xδ′′ .

− Implicitly define si = s̆i − b, for all i ∈ [n] and compute

C⋆
0 = (m⋆

i ||γ⋆)⊕H2

(
Z · e(gα′

, C)
)
, C⋆

1 = CH6(e(σ′,X̂)δ
′′
), C⋆

2 = Cz1 ,

C⋆
1,i = C β̆gvy⋆ s̆iB−vy⋆C s̆i

∏
y∈B⋆i
y ̸=y⋆

(
gvy s̆iB−vy

)
, C⋆

2,i = gs̆iB−1,

δ⋆ = H4

(
Z · e(gα′

, C)
)
, tag⋆ = H5(δ

⋆||C⋆
0).

Note that C⋆
1,i is corresponding to B⋆

i ∪ {y⋆} in the encryption policy Γ ⋆
e ∧ y⋆.

Set ct⋆e = (Γ ⋆
e ∧ y⋆, σ′, σ′′, C⋆

0 , C
⋆
1 , C

⋆
2 , {C⋆

1,i, C
⋆
2,i}i∈[n]).

− Choose µW , τW1, τW2
u←− Z∗

p, for all [W : w⋆] ∈W ⋆,

where W ⋆◦ = {W} and compute

I⋆W1 = hµW−τW1
1 , I⋆W2 = hτW1

2 , I⋆W3 = hµW−τW2
3 , I⋆W4 = hτW2

4 ,

I⋆W5 = (gw
⋆

2 g3)
µWC−z4 , I⋆W6 = (gw

⋆

2 g3)
µWC−z5 , k⋆T = e(C, g6)

γ′

Set ct⋆k = (W ⋆◦, k⋆T , {I⋆W1, I
⋆
W2, I

⋆
W3, I

⋆
W4, I

⋆
W5, I

⋆
W6}W∈W ⋆◦)

− Choose ε⋆ =
−ϱ⋆−z′9
z′8

and compute C̄⋆ = C(z7ϱ⋆+z8ε⋆+z9), where

ϱ⋆ = H7(ct
⋆
e||ct⋆k||tag⋆). Finally, output the challenge original ciphertext

CT ⋆ = (ct⋆e, ct
⋆
k, tag

⋆, C̄⋆, ε⋆).

Phase II. A continues to query similar to Phase I, with the exception of the

limitations imposed by the IND-CCA2-Or-Type-1 game.

Guess. A outputs a bit i′ ∈ {0, 1}. If i′ = i, A wins.

If Z = e(g, g)abc, the challenge ciphertext CT ⋆ is valid. But, if Z
u←− GT , the

challenge ciphertext CT ⋆ is independent of the bit i in the view of A. Hence, if A
has a non-negligible advantage in winning the game, B can solve DBDH problem

with non-negligible advantage.

Theorem 14. Our ABPRE-BKS scheme demonstrates IND-CCA2-Or security

against a Type-2 adversary, with the DBDH problem assumed to be hard.

Proof. Let a PPT Type-2 adversary A breaks IND-CCA2-Or security with non-

negligible advantage, then a challenger B can solve the DBDH problem by inter-

acting with A as given in IND-CCA2-Or-Type-2 game. Given the DBDH problem
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instance (∆, A = ga, B = gb, C = gc, Z), B has to ascertain if Z is equal to e(g, g)abc

or Z has been randomly selected from GT .

Setup. B generates the system public parameters as follows. It picks α, β
u←− Z∗

p

and sets Y = e(g, g)α, X = gβ. Next, B samples {gi}9i=1
u←− G, and chooses ten

collision resistant hash functions {Hi}10i=1 same as given in construction, in which

H6 is calculated as follows.

H list
6 : A queries H6 with gs. If

(
C1 = gsH6(e(σ′,X̂)δ

′′
), gs, H6(e(σ

′, X̂)δ
′′
)
)
exists in

H list
6 , returns C1. Otherwise, it picks δ′, δ′′

u←− Z∗
p, computes σ′ = gδ

′
,

C1 = gsH6(e(σ′,X̂)δ
′′
) and returns C1. Next, it adds the tuple

(
gs, H6(e(σ

′, X̂)δ
′′
), C1

)
to H list

6 .

B sets mpk = (∆, X, Y, {gi}9i=1,M , {Hi}10i=1) and msk = gα.

Next B chooses γ′, b1, b2, b3, b4
u←− Z∗

p, computes h1 = gb1 , h2 = gb2 , h3 = gb3 ,

h4 = gb4 , hT = e(g, g6)
γ′ , and sets tpk = (hT , h1, h2, h3, h4), tsk = (γ′, {bi}4i=1). It

implicitly sets csk = a and cpk = Aβ.

B sends PP = (mpk , tpk , cpk) to A.
Phase I.A queries for the oraclesOsk ,Ork ,Ore ,O′

token ,O′
search andOdecrypt . Since B

knowsmsk and tsk , it runs suitable algorithms to answerA’s queries toOsk ,Ork ,Ore ,

O′
token and Odecrypt .

� O′
search(Γt, S ,CT ) : Suppose CT is an original (resp. re-encrypted) ciphertext.

If the entry corresponding to C1 (resp. C
′
1) is not found in H6 list, B returns ⊥.

Else, it obtains tok ← O′
token(Γt, S ) and returns 1/0← Search(PP ,CT , ⋆, tok)

to A.

Challenge. A selects two equal length messages m⋆
0 and m⋆

1 , a challenge keyword

set W ⋆ and a challenge encryption policy Γ ⋆
e = B⋆

1 ∨B⋆
2 ∨ . . .∨B⋆

n, and sends them

to B. Now, B selects a bit i
u←− {0, 1}, returns CT ⋆ in the following way.

Pick γ⋆ ∈ {0, 1}λ and compute H1(m
⋆
i ||γ⋆) = s. Choose si

u←− Z∗
p, for all i ∈ [n]

and also pick ε, µW , τW1, τW2
u←− Z∗

p, for all W ∈W ◦. Compute

σ′⋆ = B, σ′′⋆ = Cβ, C⋆
1 = gsH6(Zβ)

The remaining elements of CT ⋆ will be calculated in a similar manner as the con-

struction. Finally, A receives the challenge ciphertext CT ⋆ from B.
Phase II. A continues to query similar to Phase I, with the exception of the lim-

itations imposed by the IND-CCA2-Or-Type-2 game.

Guess. A outputs a bit i′ ∈ {0, 1}. If i′ = i, A wins.



CHAPTER 5. 140

If Z is equal to e(g, g)abc, the challenge ciphertext CT ⋆ is accuratately derived.

However, if Z is randomly chosen from GT , the CT ⋆ is not dependent on i in the

view of A. Hence, if A has a non-negligible advantage in winning the game, B can

solve DBDH problem with non-negligible advantage.

Theorem 15. Our ABPRE-BKS scheme demonstrates IND-CCA2-Re security

against a Type-1 adversary, with the DBDH problem assumed to be hard.

Proof. Let a PPT Type-1 adversary A breaks IND-CCA2-Re security with non-

negligible advantage, then a challenger B can solve the DBDH problem by inter-

acting with A as given in IND-CCA2-Re-Type-1 game. Given the DBDH problem

tuple (∆, A = ga, B = gb, C = gc, Z), B has to ascertain if Z is equal to e(g, g)abc or

Z has been randomly selected from GT .

Init, Setup, and Phase I are similar to that of Theorem 13.

Challenge. A sends to B two equal length messages m⋆
0 and m⋆

1 , a challenge en-

cryption policy Γ ⋆
e and a challenge keyword set W ⋆. Now, B selects i

u←− {0, 1},
computes a re-encrypted challenge ciphertext

CT ⋆ ← Re-Encrypt
(
PP , csk ,Encrypt(PP ,m⋆

i ,Γe,W ), rk ⋆
)
, where

rk ⋆ ← Re-KeyGen(PP , skS ,Γ
⋆
e ∧ y⋆,W ⋆), S |= Γe,

Γ ⋆
e ∧ y⋆ = (B⋆

1 ∪ {y⋆}) ∨ (B⋆
2 ∪ {y⋆}) ∨ · · · ∨ (B⋆

n ∪ {y⋆}), in the following way.

− Pick γ⋆, ϕ⋆, γ⋆1 ∈ {0, 1}λ and set H1(m
⋆
i ||γ⋆) = s.

− Select δ′⋆, δ′′⋆
u←− Z∗

p and set σ′⋆ = gδ
′⋆
, σ′′⋆ = Xδ′′⋆ .

− Compute

C⋆
0 = (m⋆

i ||γ⋆)⊕H2

(
e(g, g)α

′se(A,B)s
)
, C⋆

1 = gsH6(e(σ′⋆,X̂)δ
′′⋆

),

C⋆
2 = gs1, T

⋆ = e(g, g)α
′sH9(ϕ⋆)e(A,B)sH9(ϕ⋆)

− Implicitly define H1(ϕ
⋆||γ⋆1) = c.

− Select δ⋆1, δ
⋆
2

u←− Z∗
p, and set σ⋆1 = gδ

⋆
1 , σ⋆2 = Xδ⋆2 .

− Implicitly define s′i = s̆′i − b, for all i ∈ [n] and compute

C ′
0
⋆
= (ϕ⋆||γ⋆1)⊕H2

(
Z · e(gα′

, C)
)
, C ′

1
⋆
= CH6

(
e(σ⋆1 ,X̂)δ

⋆
2

)
,
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C ′⋆
1,i = C β̆gvy⋆ s̆

′
iB−vy⋆C s̆′i

∏
y∈B⋆i
y ̸=y⋆

(
gvy s̆

′
iB−vy

)
, C ′⋆

2,i = gs̆
′
iB−1,

δ′
⋆
= H4

(
Z · e(gα′

, C)
)
, tag⋆1 = H5

(
δ′
⋆||C ′

0
⋆)
.

Note that C ′⋆
1,i is corresponding to B⋆

i ∪ {y⋆} in the encryption policy Γ ⋆
e ∧ y⋆.

Set ct ′e
⋆ = (Γ ⋆

e ∧ y⋆, σ⋆1, σ⋆2, C ′
0
⋆, C ′

1
⋆, {C ′⋆

1,i, C
′⋆
2,i}i∈[n]).

− Choose µ′
W , τ

′
W1, τ

′
W2

u←− Z∗
p, for all [W : w⋆] ∈W ⋆,

where W ⋆◦ = {W} and compute

I ′⋆W1 = h
µ′W−τ ′W1
1 , I ′⋆W2 = h

τ ′W1
2 , I ′⋆W3 = h

µ′W−τ ′W2
3 , I ′⋆W4 = h

τ ′W2
4 ,

I ′⋆W5 = (gw
⋆

2 g3)
µ′WC−z4 , I ′⋆W6 = (gw

⋆

2 g3)
µ′WC−z5 , k′⋆T = e(C, g6)

γ′

Set ct ′⋆k = (W ⋆◦, k′⋆T , {I ′⋆W1, I
′⋆
W2, I

′⋆
W3, I

′⋆
W4, I

′⋆
W5, I

′⋆
W6}W∈W ⋆◦)

− Choose ε′⋆ =
−ϱ′⋆−z′9

z′8
and compute C̄ ′⋆ = C(z7ϱ′⋆+z8ε′⋆+z9), where

ϱ′⋆ = H7(ct
′⋆
e ||ct ′⋆k ||tag⋆1||S ). Define rk⋆3 = (ct ′⋆e , ct

′⋆
k , tag

⋆
1, C̄

′⋆, ε′⋆).

Finally, generate the challenge re-encrypted ciphertext

CT ⋆ = (S , C⋆
0 , C

⋆
1 , C

⋆
2 , T

⋆, rk⋆3).

Phase II. A continues to query similar to Phase I, with the exception of the

limitations imposed by the IND-CCA2-Re-Type-1 game.

Guess. A outputs a bit i′ ∈ {0, 1}. If i′ = i, A wins.

If Z is equal to e(g, g)abc, the challenge ciphertext CT ⋆ is accuratately derived.

However, if Z is randomly chosen from GT , the CT ⋆ is not dependent on i in the

view of A. Hence, if A has a non-negligible advantage in winning the game, B can

solve DBDH problem with non-negligible advantage.

Theorem 16. Our ABPRE-BKS scheme demonstrates IND-CCA2-Re security

against a Type-2 adversary, with the DBDH problem assumed to be hard.

Proof. Consider, a PPT Type-2 adversary A breaks IND-CCA2-Re security with

non-negligible advantage, and a challenger B solves the DBDH problem by commu-

nicating with A as given in IND-CCA2-Re-Type-2 game. Given the DBDH problem

tuple (∆, A = ga, B = gb, C = gc, Z), B has to ascertain if Z is equal to e(g, g)abc or

Z has been randomly selected from GT .

Setup. This phase’s simulation follows the same pattern as Theorem 14.

Phase I. The following are B’s responses to A’s queries.
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� O′
search(Γt, S ,CT ) : Here, CT is a re-encrypted ciphertext. If the entry

corresponding to C ′
1 is not available in H list

6 , output ⊥. Otherwise, B gets

tok ← O′
token(Γt, S ) and returns 1/0← Search(PP ,CT , ⋆, tok) to A.

The simulation of other oracles is same as that of Theorem 16.

Challenge. After Phase I is over, A selects two equal length messages m⋆
0 and m⋆

1 ,

a challenge keyword set W ⋆ and a challenge encryption policy Γ ⋆
e , and sends them

to B. Now, B picks i
u←− {0, 1} and produces the challenge ciphertext CT ⋆ in the

following way.

Pick ϕ⋆, γ⋆1 ∈ {0, 1}λ and compute H1(ϕ
⋆||γ⋆1) = s′. Choose s′i

u←− Z∗
p, for all

i ∈ [n] and also pick ε′, µ′
W , τ

′
W1, τ

′
W2

u←− Z∗
p, for all W ∈ W ⋆◦. Compute the

components of rk⋆3 as given below.

σ⋆1 = B, σ⋆2 = Cβ, C ′⋆
1 = gs

′H6(Zβ)

The other components of the challenge re-encrypted ciphertext CT ⋆ can be com-

puted as given in the construction.

Phase II. A continues to query similar to Phase I, with the exception of the lim-

itations imposed by the IND-CCA2-Re-Type-2 game.

Guess. A outputs a guess i′ ∈ {0, 1}. If i′ = i, A wins.

If Z is equal to e(g, g)abc, the challenge ciphertext CT ⋆ is accuratately derived.

However, if Z is randomly chosen from GT , the CT ⋆ is not dependent on i in the

view of A. Hence, if A has a non-negligible advantage in winning the game, B can

solve DBDH problem with non-negligible advantage.

Theorem 17. Our ABPRE-BKS ensures IND-CKAct security, assuming the hard-

ness of the DBDH problem.

Proof. Let a PPT adversary A without having the cloud secret key csk breaks the

IND-CKAct security with non-negligible advantage, then a challenger B can solve

the DBDH problem by interacting with A as given in IND-CKAct game. Given the

DBDH problem instance (∆, A = ga, B = gb, C = gc, Z), B has to ascertain if Z is

equal to e(g, g)abc or Z has been randomly selected from GT .

Setup. Same as described in Theorem 14.

Phase I. A queries for the oracles O′
sk ,O′

rk ,O′′
token ,O′

search and Odecrypt . Since B has

msk and tsk , it runs suitable algorithms to answer A’s queries.
Challenge. A sends to B two equal size keyword sets W ⋆

0 and W ⋆
1

(
where ei-

ther W ⋆
0 |= Γt ∧ W ⋆

1 |= Γt or W ⋆
0 ̸|= Γt ∧ W ⋆

1 ̸|= Γt for all Γt submitted to
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O′′
token ,O′

search ,Odecrypt in Phase I
)
, a challenge message m⋆ and a challenge en-

cryption policy Γ ⋆
e . Now B selects a bit i

u←− {0, 1}, outputs an original ciphertext

CT ⋆ ← Encrypt(PP ,m⋆,Γ ⋆
e ,W

⋆
i ), or a re-encrypted ciphertext

CT ⋆ ← Re-Encrypt
(
PP , csk ,Encrypt(PP ,m⋆,Γe,W ), rk ⋆

)
, where

rk ⋆ ← Re-KeyGen(PP , skS ,Γ
⋆
e ,W

⋆
i ), S |= Γe, in the following way.

� If CT ⋆ is an original ciphertext, pick γ⋆ ∈ {0, 1}λ and computeH1(m
⋆||γ⋆) = s.

Choose si
u←− Z∗

p, for all i ∈ [n] and also pick ε, µW , τW1, τW2
u←− Z∗

p for all

W ∈W ◦. Compute

σ′⋆ = B, σ′′⋆ = Cβ, C⋆
1 = gsH6(Zβ)

The other components of the challenge original ciphertext CT ⋆ can be com-

puted as given in the construction.

� If CT ⋆ is a re-encrypted ciphertext, pick ϕ⋆, γ⋆1 ∈ {0, 1}λ and calculate

H1(ϕ
⋆||γ⋆1) = s′. Choose s′i

u←− Z∗
p, for all i ∈ [n] and also pick

ε′, µ′
W , τ

′
W1, τ

′
W2

u←− Z∗
p, for all W ∈ W ⋆◦

i . Compute the components of rk⋆3

as given below.

σ⋆1 = B, σ⋆2 = Cβ, C ′⋆
1 = gs

′H6(Zβ)

The other components of the challenge re-encrypted ciphertext

CT ⋆ = (S , C0, C1, C2, T, rk
⋆
3) can be computed as given in the construction.

Finally, A receives the challenge ciphertext CT ⋆ from B.
Phase II. A continues to query similar to Phase I, with the exception of the

limitations imposed by the IND-CKAct game.

Guess. A outputs a guess i′ ∈ {0, 1}. If i′ = i, A wins.

If Z is equal to e(g, g)abc, the challenge ciphertext CT ⋆ is accuratately derived.

However, if Z is randomly chosen from GT , the CT ⋆ is not dependent on i in the

view of A. Hence, if A has a non-negligible advantage in winning the game, B can

solve DBDH problem with non-negligible advantage.

Theorem 18. The proposed ABPRE-BKS scheme ensures IND-CKAtok security,

assuming the hardness of the DBDH problem.

Proof. Suppose a PPT adversary A without having the cloud secret key csk breaks

IND-CKAtok security with non-negligible advantage, then a challenger B can solve

the DBDH problem by interacting with A as given in IND-CKAtok game. Given the

DBDH problem instance (∆, A = ga, B = gb, C = gc, Z), B has to ascertain if Z is
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equal to e(g, g)abc or Z has been randomly selected from GT .

Setup. Same as explained in Theorem 14.

Phase I. A queries for the oracles O′
sk ,O′

rk ,O′′
token ,O′

search and Odecrypt . Since B has

the access of msk and tsk , it runs suitable algorithms to answer A’s queries.
Challenge. A selects two equal size Boolean keyword formulas Γ ⋆

t(0) and Γ ⋆
t(1)(

where either W |= Γ ⋆
t(0)∧W |= Γ ⋆

t(1) or W ̸|= Γ ⋆
t(0)∧W ̸|= Γ ⋆

t(1) for all W submitted

to O′
rk and for all W attached in CT , which is input to O′

search and Odecrypt in

Phase I
)
, a challenge attribute set S ⋆, and sends them to B. Now, B selects a bit

i
u←− {0, 1}, outputs (tok ⋆, sk ⋆tr) ← TokenGen(PP ,Γ ⋆

t(i), tsk , skS⋆) in the following

way.

Let Γ ⋆
t(i) = (Kt(i), ρ◦t(i), {wρ◦t(i)}i∈ℓt). Choose η⃗ =

(
γ′H10(pp), y2, y3, . . . , yℓt

)
, where

pp is computed below and y2, y3, . . . , yℓt ∈ Z∗
p. Compute ζj = K(j)

t(i) · η⃗, for all

j ∈ [ℓt]. Also, choose ϕ1, ϕ2, ϕ3, q̆j, q̆
′
j

u←− Z∗
p, set η⃗

′ =
(
ϕ3/ϕ1, y

′
2, y

′
3, . . . , y

′
ℓt

)
, where

y′2, y
′
3, . . . , y

′
ℓt
∈ Z∗

p and compute νj = K(j)
t(i) · η⃗′, for all j ∈ [ℓt]. Compute the following

token components.

Π1 = B,Π2 = Cβ, pp = Zβ,Πj1 = g
ζj
6 · g

b1b2q̆j+b3b4q̆
′
j

4 ,

Πj2 = Xνj · gb1b2q̆j+b3b4q̆
′
j

5 ,Πj3 = H8(pp||Γ ⋆◦
t(i)||K

(j)
t(i)) · g

b1b2q̆j+b3b4q̆
′
j ,

Uj1 = (g
wρ◦

t(i)
(j)

2 g3)
−q̆jb1 , Uj2 = (g

wρ◦
t(i)

(j)

2 g3)
−q̆jb2 ,

Uj3 = (g
wρ◦

t(i)
(j)

2 g3)
−q̆′jb3 , Uj4 = (g

wρ◦
t(i)

(j)

2 g3)
−q̆′jb4

Set sk ⋆tr = (ϕ1, ϕ2). The other components of token

tok ⋆ = (Γ ⋆◦
t(i),Π1,Π2, {Πj1,Πj2,Πj3, Uj1, Uj2, Uj3, Uj4}j∈[ℓt], D1, D2, {Dy}y∈S⋆) can be

computed as given in the construction. Finally, tok ⋆ and sk ⋆tr are sent to A.
Phase II. A continues to query similar to Phase I, with the exception of the

limitations imposed by the IND-CKAtok game.

Guess. A outputs a guess i′ ∈ {0, 1}. If i′ = i, A wins.

If Z = e(g, g)abc, the token tok ⋆ is valid. However, if Z
u←− GT , the challenge token

tok ⋆ is independent of the bit i in the view of A. Hence, if A has a non-negligible

advantage in winning the game, B can solve DBDH problem with non-negligible

advantage.

Theorem 19. Our ABPRE-BKS scheme is verifiable if the collision-resistance as-

sumption of H4 and H5 holds.

Proof. Suppose a PPT adversary A having the cloud secret key csk breaks the
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Verifiability security with non-negligible advantage, then, by communicating with

A, a challenger B may identify a collision for hash functions H4 or H5 as given in

Verifiability game.

Setup. B computes (mpk ,msk)← PKG.Setup(1λ,U ), (tpk , tsk)← TGC.Setup(1λ,U ),

(cpk , csk)← PCS.Setup(1λ,U ), and sends (PP , csk) toA, where PP = (mkp, cpk , tpk).

Phase I. A queries the oracles O′
sk ,O′′

rk ,O′′′
token ,O′′

search ,Otransfom and Odecrypt . Since

B has msk , csk and tsk , it runs appropriate algorithms to answer A’s queries.
Challenge. A selects a message m⋆, a keyword set W ⋆ and an encryption policy

Γ ⋆
e , and forwards them to B. Now, B outputs an original ciphertext

CT ⋆ ← Encrypt(PP ,m⋆,Γ ⋆
e ,W

⋆), or a re-encrypted ciphertext

CT ⋆ ← Re-Encrypt
(
PP , csk ,Encrypt(PP ,m⋆,Γe,W ), rk ⋆

)
, where

rk ⋆ ← Re-KeyGen(PP , skS ,Γ
⋆
e ,W

⋆), S |= Γe, and sends CT ⋆ to A.
Here CT ⋆ = (ct⋆e, ct

⋆
k, tag

⋆, C̄⋆, ε⋆) or CT ⋆ = (S , C⋆
0 , C

⋆
1 , C

⋆
2 , T

⋆, rk⋆3)

Phase II. A continues to query similar to Phase I, with the exception of the lim-

itations imposed by the Verifiability game.

Output. A outputs a keyword policy Γ ⋆
t , an attribute set S ⋆ and a transformed

original ciphertext CT ⋆
tr = (R1,R2, C0, B̆, C2, tag

⋆) or a transformed re-encrypted

ciphertext CT ⋆
tr = (Y1,Y2, C0, C

′
0, B̆, D̆, C2, T, tag1

⋆).

If CT ⋆
tr is a transformed original ciphertext, as described in the Verifiability game,

B possesses the tuple (Γ⋆t , S
⋆, tok ⋆, sk ⋆tr), where sk

⋆
tr = (ϕ⋆1, ϕ

⋆
2). If A is able to break

the security game, B can get back a messagem← Verify-and-Decrypt(PP,CT ⋆
tr, sk

⋆
tr),

where m /∈ {m⋆,⊥}, as follows.
(i) Compute Ω = R

−ϕ⋆1
1 · Rϕ⋆2

2 , (ii) observe H5(H4(Ω)||C0) = tag⋆, and (iii) obtain

m||γ = C0 ⊕H2(Ω).

If Ω⋆ corresponds to Ω utilized in creation of CT ⋆, then there are two possibilities

Ω ̸= Ω⋆ or Ω = Ω⋆.

From (ii), we have that H5(H4(Ω)||C0) = tag⋆ = H5(H4(Ω
⋆)||C⋆

0).

If Ω ̸= Ω⋆, then H4(Ω) ̸= H4(Ω
⋆); otherwise, the pair (Ω,Ω⋆) forms a collision

for H4. Hence, H4(Ω)||C0 ̸= H4(Ω
⋆)||C⋆

0 . This shows that the pair

(H4(Ω)||C0, H4(Ω
⋆)||C⋆

0) forms a collision for H5.

Suppose Ω = Ω⋆. Then, C0 ⊕ H2(Ω) = (m||γ) ̸= (m⋆||γ⋆) = C⋆
0 ⊕ H2(Ω

⋆) and

hence C0 ̸= C⋆
0 . So, the pair (H4(Ω)||C0, H4(Ω)||C⋆

0) causes H5 to collide.

B detects a collision forH5 in each scenario. Due to the collision-resistance nature

of hash function H5 , it is impossible for A to gain a non-negligible advantage and

win the verifiability game. Therefore, we prove our scheme to be verifiable.

It should be noted that if CT ⋆
tr represents a transformed re-encrypted ciphertext,
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we can demonstrate the verifiability of our scheme in a similar manner.

5.5 Performance

The following symbols and notations have been utilized within this chapter.

n : total number of clauses in DNF encryption policy

ς : size of a keyword set ascribed to a ciphertext

mG (resp. xG) : one multiplication (resp. exponentiation) execution

time in G
|S | : number of DUs attributes

xT : one exponentiation execution time on GT element

IG : one inversion execution time on G element

ℓ : total number of attributes in an encryption policy

IT : one inversion execution time on GT element

|U| : number of attributes in encryption attribute universe

tP : one pairing computation execution time

ℓt : total number of keywords within a Boolean query

formula Γt

tH : one hash function calculation execution time

|G| : size of an element of G
|GT | : size of an element of GT

ℓH : hash function’s output length

|msg| : message size

Dec(Or) : an original ciphertext decryption

Dec(Re) : a re-encrypted ciphertext decryption

Transformed (Or)

ciphertext size : size of a transformed original ciphertext

Transformed (Re)

ciphertext size : size of a transformed re-encrypted ciphertext

O : big-O

Table 5.2 presents a comparison of the functionality between the proposed method

and the works that are most closely comparable, as referenced by [48], [37], and [25].

Table 5.2 shows that our suggested method, along with [25], is based on CP-ABE,

whereas [48] and [37] are KP-ABE. Note that CP-ABE encryption is preferred over

KP-ABE [48, 37] for data sharing in cloud environments due to the ability for DOs
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Table 5.2: Functionality Comparison

Scheme Enc. KeyGen/ Attribute Search Security Secure against Non- Constant
type Encryption universe query KGAs on interactive decryption

policy expressivity Token CT verifiability cost
[48] KP BF small single IND-CCA2 ✓ ✓ ✓ ×

keyword IND-CKA
[37] KP BF small single IND-CPA × ✓ × ×

keyword IND-CKA
[25] CP BF small single IND-CCA2 × ✓ ✓ ×

keyword IND-CKA
ABPRE- CP DNF large BF IND-CCA2 ✓ ✓ ✓ ✓
BKS policy IND-CKA

Verifiability

✓ (resp. ×): the functionality is attained (resp. not attained) by the scheme; BF: Boolean

formula

Table 5.3: Comparison of computation cost

Scheme KeyGen Encrypt TokenGen Re-Encrypt Search Dec(Or) Dec(Re)
Results
Verify

[48] O(ℓ · |U|)xG O(|S |)xG +O(1)xT O(ℓ2)xG + tH 9tP + 5tH 2tP + tH 2tP + 3tH 2tP + 6tH
+O(ℓ)mG +3tH +mG +O(|S |)xG +O(|S |)xG + xT

[37] O(ℓ)xG +O(ℓ)tH O(|S |)xG + xT O(ℓ)xG + tH O(ℓ)P +O(ℓ)IT − − O(ℓ)tP + xT

+O(ℓ)mG +O(|S |)tH +O(ℓ)IT + tH
[25] (2|S |+ 6)xG O(ℓ)xG + xT (|S |+ 6)xG O(ℓ)xG +O(ℓ)tP O(ℓ)xG +O(ℓ)tP O(ℓ)xG +O(ℓ)tP O(ℓ)xG +O(ℓ)tP

+IG +O(ℓ)tH +O(ℓ)IT +IT + 3tH +2IT + 4tH
ABPRE- (|S |+ 2)xG O(n+ ς)xG + 2xT O(ℓt + |S |)xG O(n)tP + 4xG 2xT + IT + 2tH 2xG + 2tH 3xG + xT + 4tH
BKS +O(n+ ς)mG +xT + ℓttH

+tP + 5tH

to define their own access controls. Our scheme utilises a large attribute universe

framework, whereas the other schemes [25, 48, 37] employ a small attribute uni-

verse. The KP-ABE schemes [48, 37] and the CP-ABE scheme [25] use Boolean

formula-based access policy for key generation and encryption, respectively. Our

scheme, on the other hand, uses an explicit DNF policy for encryption. Unlike the

schemes [25, 48, 37], which rely on an inefficient and less expressive single keyword-

based search mechanism, our approach achievesan efficient and expressive Boolean

keyword search framework. In contrast to the schemes [25, 37], our ABPRE-BKS

and the scheme [48] can resist KGAs on both the ciphertext and token. Other

than the scheme [48], the schemes [25, 37] including our suggested scheme offer

non-interactiveverifiability. However, the approaches employed in [25, 48, 37] fail to

offer constant decryption cost on the DU side. By outsourcing decryption rights to

the cloud server, our scheme, in contrast, offers constant decryption cost on the DU

side.

Table 5.3 presents a comparison of computation costs of our proposed scheme

ABPRE-BKS with S-ABPRE-KU [48], ABDR-PRE [37], and CPAB-KSDS [25].

Our technique is most efficient in KeyGen, Dec(Or), and Dec(Re), as demonstrated

in Table 5.3. Specially, our scheme requires only two exponentiations in G and
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Table 5.4: Comparison of communication cost

Scheme Key size Ciphertext Token Transformed (Or) Transformed(Re)
Size (Or) Size Ciphertext Size Ciphertext Size

[48] O(ℓ2)|G| O(|S |)|G|+ |GT |+O(1)|msg| O(ℓ2)|G| O(|S |)|G|+ |GT |+O(1)|msg| O(|S |)|G|+ 2|GT |+O(1)|msg|
[37] O(ℓ)|G| O(|S |)|G|+ 2|GT | O(ℓ)|G| − O(|S |)|G|+ 3|GT |
[25] (2|S |+ 5)|G| O(ℓ)|G|+ |GT |+ |msg| O(|S |)|G| O(ℓ)|G|+ |GT |+ |msg| O(ℓ)|G|+ |GT |+ |msg|

ABPRE-BKS (|S |+ 2)|G| O(n+ ς)|G|+O(1)|msg| O(ℓt + |S |)|G| 2|G|+ 2|GT |+ ℓH +O(1)|msg| 3|G|+ 3|GT |+ ℓH +O(1)|msg|

two hash value computations to execute Dec(Or) algoritm, while S-ABPRE-KU [48]

and CPAB-KSDS [25] incur linearly increasing cost, i.e., 2tP +O(|S|)xG + 3tH and

O(ℓ)tP + O(ℓ)xG + O(ℓ)IT , respectively. Also, in Dec(Re) algorithm, our scheme

enjoys constant decryption cost whereas the other schemes [25, 48, 37] suffer from

linear decryption cost. As n < ℓ, compared with [25, 37], our scheme requires less

pairing cost in Re-Encrypt algorithm. In our schme, the search result verification

cost on DU side is constant whereas this cost depends on the number of attributes

in encryption policy in CPAB-KSDS [25]. In our proposed scheme, the encryption

process exhibits a longer duration when compared to the other schemes [25, 48, 37].

This is due to the fact that while other schemes [25, 48, 37] rely on less effective

single keyword search framework, our scheme offers efficient Boolean keyword search

mechanism. Although our scheme takes longer than the schemes [37] and [25] to

generate a token, it exhibits enhanced efficiencyin key generation, re-encryption,

search results verification, and decryption processes.

Table 5.4 compares the communication costs of our proposed scheme with [48, 37,

25]. Table 5.4 shows that our scheme provides smaller size of decryption key, trans-

formed original ciphertext and transformed re-encrypted ciphertext compared to

those of [25, 48, 37]. In particular, the size of the transformed original/re-encrypted

ciphertext is constant in our scheme whereas these sizes increase with the num-

ber of attributes in the encryption policy or the cardinality of the attribute set in

[25, 48, 37]. Even though our scheme produces larger size of token and ciphertext,

it supports expressive and efficient Boolean search framework whereas [25, 48, 37]

provide less efficient single keyword search framework.

5.6 Chapter Summary

In this chapter, we present a ciphertext-policy attribute-based mechanism support-

ing Boolean keyword search and data sharing. We provide a concrete construction

of our searchable ABPRE scheme with keyword set update mechanism. Our scheme

enables an outsourced decryption mechanism, resulting in a constant decryption

cost on the DU side. This characteristic makes our scheme more practical. In addi-
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tion, our scheme empowers a DU to independently validate the accuracy of search

outcomes provided by a cloud server. We prove that our scheme is verifiable, IND-

CCA2 secure at both original and re-encrypted ciphertext, IND-CKA secure on both

ciphertext and token . The performance and functionality comparison demonstrate

that our suggested scheme is both efficient and practical. The proposed design

outperforms the existing schemes in terms of decryption cost while supporting ex-

pressive access policies. To be specific, only 2 exponentiations in G and 2 hash

functions computations are required to complete our original ciphertext decryption

process, and 3 exponentiation in G, one exponentiations in GT and 4 hash functions

calculations are required to complete our re-encrypted ciphertext decryption process

irrespective of the number of required attributes.
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Chapter 6

Conclusions and Scope for Future

Work

Cloud computing has emerged as a solution to the issue of managing and maintaining

personal data with the rise in popularity of personal electronic devices. Data storage,

data sharing, and data retrieval are the three main features of cloud computing.

Cloud computing technology offers many advantages, but it also raises new problems,

such as data privacy and data access control.

Attribute-based framework has recently emerged as a powerful cryptographic

platform to achieve fine-grained access control and data confidentiality for out-

sourced encrypted data. There is a rich variety of cryptographic primitives build

on ABE. Starting from the seminal work of Sahai and Waters [75], attribute-based

mechanism has been used to construct KP-ABE [76, 29], CP-ABE [4, 85], ABS [57],

ABSE [92, 81], ABSC [18], searchable ABSC [53], ABPRE [50], searchable ABPRE

[80] etc. The enhanced functionality and flexibility provided by attribute-based

cryptosystems are appealing for many different practical applications such as cloud-

based PHR management system. Since the PHR includes the sensitive information

like disease, it is important to ensure DO anonymity and keyword privacy while ex-

changing PHRs with DUs. How to check the precision of the search results acquired

from the cloud is another challenge in ABSE framework. Providing DUs a better

search experience by getting the search results in a single query using Boolean key-

word serach is also very much desirable. Along with Boolean keyword-based data

searching, how to allow a DU to share the encrypted data with another DU without

decrypting it? Making constant decryption cost on DU side is another important

aspect. All these issues motivate us to design the schemes contained in Chapter 3,

Chapter 4 and Chapter 5.

151
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The contributions of the thesis are briefly summarized below.

� In Chapter 3, we introduce an online-offline attribute-based searchable sign-

cryption scheme with verifiable data storage and retrieval. The scheme simul-

taneously provides data and DO authenticity, fine-grained data access control,

DO anonymity, outsourced unsigncryption, non-interactive search results ver-

ification, keyword policy search, keyword privacy, and KGAs security on both

ciphertext and token. The scheme is proven to be IND-CCA2 secure in the

random oracle model under the hardness assumption of q-1 and DBDH prob-

lems. Its EUF-CMA security is provided in the random oracle model assuming

the hardness of q-DHE problem. Assuming q-2, DLin and DBDH problems

are hard, the scheme is proven to be IND-CKA secure. Also, it is proven that

the scheme is non-interactive verifiable and it maintains DO privacy.

� The main contribution of Chapter 4 is the construction of an attribute-based

searchable signcryption scheme for cloud-based EMR management system,

which allows EMR owners to securely store and distribute their EMRs to

specific groups of healthcare professionals. Using DNF policy in signcryption

algorithm, the scheme reduces the ciphertext size compared to the scheme

presented in Chapter 3. Also, it offers EMR confidentiality, EO anonymity,

EMR and EO authenticity, keyword policy search over encrypted EMR, search

results verification by EUs, constant decryption cost on EU side, keyword

privacy. In the random oracle model, the scheme’s IND-CCA2 security is

demonstrated under the hardness of DBDH assumption. Assuming the q-

DHE problem’s hardness, its EUF-CMA security is implemented in a random

oracle model. The scheme’s search results verifiability and preservation of EO

privacy have been demonstrated. And, the IND-CKA security of the scheme

has been proven under q-2, DLin and DBDH hardness assumptions.

� In Chapter 5, we propose the first Boolean searchable attribute-based proxy

re-encryption scheme with data storage, data sharing, and data retrieval mech-

anisms simultaneously. Our scheme facilitates expressive Boolean keyword

search, keyword privacy, keyword set updating, data sharing, outsourced de-

cryption, security against KGAs on both token and ciphertext, and non-

interactive verifiability. The scheme makes use of a large attribute universe

framework, and as a result, the public parameter size becomes constant. We

ensure IND-CCA2 security at both the original and re-encrypted ciphertexts

in the random oracle model under the DBDH hardness assumption. The
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IND-CKAct and IND-CKAtok securities of the scheme have been proven under

the hardness assumption of DBDH. Also, our scheme is proven to be verifiable.

Future Directions

We would like to extend our work in the following directions.

� One limitation of the proposed schemes in all the chapters is that the schemes

do not consider user revocation. A DU shouldn’t be allowed to access original

data stored on the cloud server if it exits the system. Moreover, data storage on

the cloud server should be precluded for a revoked DO. Hence, one promising

future work direction is extending our schemes to support user revocation

functionality.

� Another necessary functionality is traitor tracing. Some DUs may sell their

secret keys for financial gain. Therefore, it is critical that EMR management

systems enable the tracing of the identity of any user who sells its secret key

fraudulently. Therefore, another future research approach is to design a search-

able signcryption and searchable proxy re-encryption with traitor tracing.

� Our schemes in all the chapters also motivate us to solve a interesting open

problem, which is to reduce the search token size. The smaller size tokens

reduces communication cost on DUs’ side.

� Independent token generation is an another essential feature in ABSE frame-

work. How to enable a DU to create search token independently in Boolean

searchable ABPRE framework, we left as open problem in Chapter 5.

� Furthermore, integrating blockchain technology into our schemes across all

chapters to secure personal data would be an appealing addition.
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Appendix A

Appendix

Proof of Lemma 5

Proof. Suppose there is a PPT Type-1 adversary A that breaks the IND-CCA2

security (modeled as a game GameIND-CCA2Type-1 in Section 4.2.2) of our MediCare with

non-negligible advantage in the random oracle model. Then we can build a chal-

lenger C that is able to solve DBDH problem with non-negligible advantage, by

interacting with A as in GameIND-CCA2Type-1 .

C is given the DBDH problem instance
〈
Σ, g, G1, G2, G3, Z

〉
, where g is a random

generator of G, G1 := gϕ1 , G2 := gϕ2 , G3 := gϕ3 ,

(unknown) ϕ1, ϕ2, ϕ3
u←− {2, 3, . . . , p − 1}, and Z ∈ GT . To determine whether

Z = e(g, g)ϕ1ϕ2ϕ3 or Z is a random element of GT , C interacts with A as described

below.

(1) A sends the challenge attribute y⋆ ∈ Ue to C .

(2) C samples α′ u←− Z∗
p and sets gT := e(g, g)α

′ · e(G1, G2) (i.e., the system master

secretMK is defined implicitly as gα where α := α′ + ϕ1ϕ2). Next C samples

z, z′4, z
′
5, z1, z2, . . . , z10

u←− Z∗
p and defines

h := gzG2, g3 := gz3G1, g4 := gz4G
z′4
1 , g5 := gz5G

z′5
1 , gi := gzi , i = 1, 2, 6, 7, 8, 9, 10.

C chooses seven collision-resistant hash functions H1 : {0, 1}∗ → G,
H2 : {0, 1}∗ → G, H3 : GT → Z∗

p, H4 : GT → {0, 1}ℓH4 , H5 : {0, 1}∗ → {0, 1}ℓH5 ,

H6 : {0, 1}∗ → Z∗
p, H7 : {0, 1}∗ → Z∗

p, in which C simulates H1 as follows.

To answer H1 hash queries, C maintains a table TabH1 . If one submits an at-

tribute at ∈ Us ∪ Ue and at ̸= y⋆, C answers in the following way. If the

167
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tuple Jat, υat, H1(at) := gυatK exists in TabH1 , it returns g
υat . Otherwise, C picks

υat
u←− Z∗

p, returns g
υat and inserts the new tuple Jat, υat, H1(at) := gυatK into

TabH1 . For y
⋆ ∈ Ue, it selects υy⋆

u←− Z∗
p, returns g

υy⋆G3 and inserts the tuple

Jy⋆, υy⋆ , H1(y
⋆) := gυy⋆G3K into TabH1 .

C sets KPK := ⟨Σ, gT , g, h, {gi}10i=1,M,KDF, {Hi}7i=1⟩, where M := {0, 1}ℓpt

is the plaintext space, and KDF is the key derivation function with output

length ℓpt and keying source GT . Lastly, C selects β, γ,ϖ1, ϖ2, ϖ3, ϖ4
u←− Z∗

p,

computes h1 := gϖ1 , h2 := gϖ2 , h3 := gϖ3 , h4 := gϖ4 , hT := e(g, g10)
γ, Y := hβ

and sets T PK := ⟨hT , h1, h2, h3, h4⟩,T SK := ⟨γ,ϖ1, ϖ2, ϖ3, ϖ4⟩,
CPK := Y, CSK := β. C sends the tuple [PP , CSK] to A ,

where PP := ⟨KPK, CPK, T PK⟩.

(3) A queries signing key generation oracle OSKG(As), token generation oracle

OT G(Ad,Γt), ciphertext generation oracle OCG(emr,Γs,Γe,W ) and EMR re-

trieval oracle OER(CT , Ad,Γt), with the respective inputs. Then C answers

these queries as described below.

� OSKG(As) : C chooses r̃
u←− Z∗

p, implicitly defines r′ := r̃− ϕ1 and returns

the signing key

SKAs :=
〈
As, S := gα

′
Gr̃

2G
−z
1 gzr̃, S0 := gr̃G−1

1 , {Sx := G−υx
1 gr̃υx}x∈As

〉
to

A .

� OT G(Ad,Γt) : C ’s response is one of the following two types.

(i) If y⋆ ∈ Ad, then C selects f, f ′, r̆i, r̆
′
i, ¯̄r, d, d

′, d′′
u←− Z∗

p, and implicitly

sets τ1 := αd′′/(dd′), τ2 := α/d, τ3 := αd′′/d. Next, C computes the

EMR retrieval request token

token :=

(
T DΓ◦

t
:= ⟨Γ◦

t , T1, T2, {Ti1, Ti2, Ti3, Vi1, Vi2, Vi3, Vi4}i∈[ℓt]⟩

T KAd := ⟨Ad, D′, D′
0, {D′

y}y∈Ad⟩

)

of the keyword policy Γt := (Mt, ρ
◦
t , {wρ◦t (i)}i∈[ℓt]) and the decryption

attribute set Ad as follows. D
′ := gdY ¯̄rhd

′′
, D′

0 := g ¯̄r

D′
y :=

{
g ¯̄rυy , if y ∈ Ad \ {y⋆};
G¯̄r

3 · g
¯̄rυy⋆ , if y = y⋆.

ϑi (resp. ϑ̆i) is the ith share of γ · H3(e(T1, Y )f
′
) (resp. τ3/τ1 = d′)

with respect to the policy (Mt, ρ
◦
t ), and calculate the other components
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of token as in Equation (5.4). Note that, in this case, C does not

know T DK := ⟨τ1, τ2⟩. However, since C knows TGA’s secret key

⟨γ,ϖ1, ϖ2, ϖ3, ϖ4⟩, the above token is properly distributed according

to Remark 10.

(ii) If y⋆ /∈ Ad, then C selects ř
u←− Z∗

p, implicitly defines r := ř − β−1ϕ1

and calculates the decryption key DKAd := ⟨Ad, D,D0, {Dy}y∈Ad⟩ as
given below.

D := gα
′
G−z

1 Gβř
2 g

βzř, D0 := G−β−1

1 gř, Dy := G
−β−1υy
1 gřυy

Since C knows TGA’s secret key T SK := ⟨γ,ϖ1, ϖ2, ϖ3, ϖ4⟩, it com-

putes the trapdoor T̃ DΓt ← TrapGen(PP , T SK,Γt). Finally, C sends

[DKAd , T̃ DΓt ] to A . In this case, both A and C can generate

token := ⟨T DΓ◦
t
, T KAd⟩ and T DK by using [DKAd , T̃ DΓt ].

� OCG(emr,Γs,Γe,W ) : C selects a signing attribute set As such that

Γs(As) = 1, computes SKAs ← OSKG(As) and returns the ciphertext

CT ← Signcrypt(PP ,SKAs ,Γs,Γe,W, emr).

� OER(CT , Ad,Γt) : Firstly, C performs the EMR storage phase (given in

Figure 4.4). If the output is ⊥, then C ’s response is ⊥ as well. If the

output is CT u := ⟨∆e,∆k, tag2, E0, η, Ĕ, tag⟩, then it carries out the fol-

lowing steps. Note that ∆e := ⟨Γe, ct, E, {Ei1, Ei2}i∈[m]⟩. First, it cal-

culates token ← OT G(Ad,Γt). If Search(PP , CT u, token, CSK) → ⊥ or

Γe(Ad) = 0, it returns ⊥. Otherwise, C ’s response can be one of the two

types given subsequently.

(i) In case y⋆ ∈ Ad, C does not have the knowledge of the secret transfor-

mation decryption key T DK according to the simulation ofOT G(Ad,Γt)

and hence it proceeds in the following way. It calculates

Λ := e(Ĕ, gα
′
) · e
(
E0(Ĕ)

−(ξz3+ηz4+z5), G
(ξ+z′4η+z

′
5)

−1

2

)
and δ := H3(Λ). Note that ξ + z′4η + z′5 = 0 happens with probability

at most 1/p and hence ξ + z′4η + z′5 ̸= 0 since p is very large prime

number. Next, C checks whether H4(g
1/δ
T )

?
= tag and H5(δ||ct)

?
= tag2.

If any one of these is not true, it returns ⊥. Otherwise, it returns

emr = ct⊕ KDF(Λ) to A .

(ii) In case y⋆ /∈ Ad, C knows T DK. Hence, it computes the transformed



APPENDIX A. 170

ciphertext CT tr ← Transform(PP , CT u, token, CSK) and returns to A

the output of the algorithm Verify-Retrieve(PP , CT tr, T DK).

When A decides that this query phase is completed, it outputs two messages

emr⋆0, emr
⋆
1 ∈ M, an encryption policy Γ⋆e, a signing policy Γ⋆s and a keyword

set W ⋆.

(4) Let Γ⋆s := (M⋆
s, ρ

⋆
s), where M⋆

s is an ℓ⋆s × n⋆s matrix. First C selects a signing

attribute set As such that Γ⋆s(As) = 1, calculates

a⃗ := (a1, a2, . . . , aℓ⋆s)← Reconstruct(M⋆
s, ρ

⋆
s, As) satisfying

∑
i∈[ℓ⋆s ]

ai ·M⃗⋆(i)
s = 1⃗n⋆s

and ai = 0 for all i ∈ {i|ρ⋆s(i) /∈ As}, samples

(b1, b2, . . . , bℓ⋆s)
u←−
{
(b1, b2, . . . , bℓ⋆s) ∈ Zℓ

⋆
s
p |
∑

i∈[ℓ⋆s ]
bi ·M⃗⋆(i)

s = 0⃗n⋆s
}
. Next, it picks

i
u←− {0, 1} and computes the challenge ciphertext CT ⋆ of the message emr⋆i for

encryption policy Γ⋆e∧y⋆ := (B⋆
1∪{y⋆})∨(B⋆

2∪{y⋆})∨· · ·∨(B⋆
m∪{y⋆}), signing

policy Γ⋆s := (M⋆
s, ρ

⋆
s), and keyword set W ⋆ := {[W : w⋆]}, in the following way.

(a) Implicitly define θ := ϕ3,

compute δ := H3(Z·e(g,G3)
α′
), key := KDF(Z·e(g,G3)

α′
), kT := e(G3, g10)

γ,

ct := emr⋆i ⊕ key, tag2⋆ := H5(δ||ct),

(b) pick δ′, δ′′, o2
u←− Z∗

p,

σ′ := gδ
′
, σ′′ := hδ

′′
, tag1 := H4(g

1/δ
T · e(σ′, Y )δ

′′
),

SKAs :=
〈
As, S, S0, {Sx}x∈As

〉
← OSKG(As),

σ := S1/δGo1z1+z2
3

∏
i∈[ℓ⋆s ]

(
S
ai/δ
ρ⋆s(i)
·H1(ρ

⋆
s(i))

o2bi
)
,

where o1 := H6(ct||tag1||Γ⋆e ∧ y⋆||Γ⋆s||W ⋆◦),

σi := S
ai/δ
0 go2bi , for each i ∈ [ℓ⋆s],

The signature components ∆⋆
s := ⟨Γ⋆s, σ′, σ′′, tag1, σ, {σi}i∈[ℓ⋆s ]⟩.

(c) calculate E := G
H3

(
e(σ′,Y )δ

′′
)

3 ,

pick θ̌i
u←− Z∗

p and implicitly define θi := −ϕ2 + θ̌i, for each i ∈ [m],

compute Ei1 := G−1
2 gθ̌i , Ei2 := Gz

3G
θ̌i
3 G

−υy⋆
2 gυy⋆ θ̌i

∏
y∈B⋆i

(
G

−υy
2 gυy θ̌i

)
,

note that Ei2 is corresponding to B⋆
i ∪{y⋆} in the encryption policy Γ⋆e∧y⋆,

The encryption components ∆⋆
e := ⟨Γ⋆e ∧ y⋆, ct, E, {Ei1, Ei2}i∈[m]⟩.

(d) tW , πW1, πW2
u←− Z∗

p, for each [W : w⋆] ∈ W ⋆, where W ⋆◦ := {W},
KW1 := htW−πW1

1 , KW2 := hπW1
2 , KW3 := htW−πW2

3 , KW4 := hπW2
4 ,

LW1 := (gw
⋆

6 g7)
tWG−z8

3 , LW2 := (gw
⋆

6 g7)
tWG−z9

3 ,

The keyword components,

∆⋆
k := ⟨W ⋆◦, kT , {KW1, KW2, KW3, KW4, LW1, LW2}W∈W ⋆◦⟩.
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(e) choose η⋆ = (−ξ − z′5)/z′4, where ξ := H7(∆
⋆
s||∆⋆

e||∆⋆
k||tag2⋆),

calculate E⋆
0 := Gz3ξ+z4η⋆+z5

3 ,

The challenge ciphertext is CT ⋆ := ⟨∆⋆
s,∆

⋆
e,∆

⋆
k, tag2

⋆, E⋆
0 , η

⋆⟩.

Lastly, C sends the challenge ciphertext CT ⋆ to A .

(5) Now, A issues a second series of additional queries like step (3), with the obvious

restriction that it cannot query EMR retrieval oracle with the input (CT ⋆, Ad,Γt)
satisfying y⋆ ∈ Ad and Γt(W

⋆) = 1, here W ⋆ is the keyword set of CT ⋆. Once

this query phase is over, A outputs a guess i′ of i.

A wins the game if i′ = i. Therefore, if A wins, C will claim that

Z = e(g, g)ϕ1ϕ2ϕ3 ; otherwise, C claims that Z is a random element of GT .

When Z = e(g, g)ϕ1ϕ2ϕ3 , it can be seen that the challenge ciphertext CT ⋆ is a

properly simulated ciphertext as in original construction. Hence, C simulates the

game correctly. Note that if Z is randomly chosen from GT , then CT ⋆ is independent
of i in A ’s view. In this case, A ’s guess is random and its advantage is 0. Thus,

if the advantage of A in the game GameIND-CCA2Type-1 is non-negligible, then C can solve

the DBDH problem with non-negligible advantage.

Proof of Lemma 6

Proof. Suppose there is a PPT Type-2 adversary A that breaks the IND-CCA2 se-

curity (modeled as a game GameIND-CCA2Type-2 in Section 4.2.2) of our MediCare with non-

negligible advantage. Then we can build a challenger C that is able to solve DBDH

problem with non-negligible advantage, by interacting with A as in GameIND-CCA2Type-2 .

C is given the DBDH problem instance
〈
Σ, g, G1, G2, G3, Z

〉
, where G1 := gϕ1 ,

G2 := gϕ2 , G3 := gϕ3 (note that ϕ1, ϕ2, ϕ3 are unknown to C ). To determine whether

Z = e(g, g)ϕ1ϕ2ϕ3 or Z is a random element of GT , C interacts with A as described

below.

(1) C picks α, z
u←− Z∗

p and sets gT := e(g, g)α, h := gz. Next, it chooses

g1, g2, . . . , g10
u←− G, and seven collision-resistant hash functions {Hi}7i=1 (as de-

scribed in the construction). Now, C sets KPK := ⟨Σ, gT , g, h, {gi}10i=1,M,KDF,

{Hi}7i=1⟩, whereM := {0, 1}ℓpt is the message space and KDF is the key deriva-

tion function, and MK := gα. Next, C selects γ,ϖ1, ϖ2, ϖ3, ϖ4
u←− Z∗

p, com-

putes h1 := gϖ1 , h2 := gϖ2 , h3 := gϖ3 , h4 := gϖ4 , hT := e(g, g10)
γ, Y := Gz

1 and

sets T PK := ⟨hT , h1, h2, h3, h4⟩, T SK := ⟨γ,ϖ1, ϖ2, ϖ3, ϖ4⟩, CPK := Y, and

implicitly sets CSK := ϕ1. C sends the tuple PP := ⟨KPK, CPK, T PK⟩ to A .
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(2) A queries signing key generation oracle OSKG(As), token generation oracle

O′
T G(Ad,Γt), ciphertext generation oracle OCG(emr,Γs,Γe,W ), EMR retrieval

oracle OER(CT , Ad,Γt). Since C knows the system master secretMK and TGA

secret key T SK, it can answer the A ’s queries by running suitable algorithms

of MediCare. Once this query phase is over, A sends to C two messages

emr⋆0, emr
⋆
1 ∈ M, an encryption policy Γ⋆e, a signing policy Γ⋆s and a keyword

set W ⋆.

(3) Let Γ⋆s := (M⋆
s, ρ

⋆
s) and Γ⋆e := B1 ∨ B2 ∨ · · · ∨ Bm, where M⋆

s is an ℓ⋆s × n⋆s

matrix. C formulates a signing attribute set As such that Γ⋆s(As) = 1, calculates

a⃗ := (a1, a2, . . . , aℓ⋆s)← Reconstruct(M⋆
s, ρ

⋆
s, As) satisfying

∑
i∈[ℓ⋆s ]

ai ·M⃗⋆(i)
s = 1⃗n⋆s

and ai = 0 for all i ∈ {i|ρ⋆s(i) /∈ As}, picks
(b1, b2, . . . , bℓ⋆s)

u←−
{
(b1, b2, . . . , bℓ⋆s) ∈ Zℓ

⋆
s
p |
∑

i∈[ℓ⋆s ]
bi · M⃗⋆(i)

s = 0⃗n⋆s
}
. Next, C

samples i
u←− {0, 1} and computes the challenge ciphertext CT ⋆ of the message

emr⋆i for the signing policy Γ⋆s, encryption policy Γ⋆e and keyword set

W ⋆ := {[W : w]}, in the following way.

Choose θ, o2, θi, tW , πW1, πW2, η
u←− Z∗

p, for each i ∈ [m] and [W : w] ∈ W,
set σ′ := G2, σ

′′ := Gz
3, E := gθH3(Z

z), and the other components of CT ⋆ can

be computed as in the construction of MediCare. Lastly, C sends CT ⋆ to A .

(4) Now, A issues a second series of additional queries as in step (2), with the

restriction that it cannot query EMR retrieval oracle with the input (CT ⋆, Ad,Γt)
satisfying Γ⋆e(Ad) = 1∧Γt(W ⋆) = 1.When this query phase is over, A announces

a guess i′ of i.

A wins the game if i′ = i. Therefore, if A wins, C will claim that Z = e(g, g)ϕ1ϕ2ϕ3 ;

otherwise, C claims that Z is a random element of GT .

When Z = e(g, g)ϕ1ϕ2ϕ3 , it can be seen that the challenge ciphertext CT ⋆ is

a properly simulated ciphertext as in original construction of MediCare. Hence,

C simulates the game GameIND-CCA2Type-2 correctly. If Z is randomly chosen from GT ,

then CT ⋆ is independent of i in A ’s view; resulting in A ’s guess is random and its

advantage is 0. Thus, if the advantage of A in GameIND-CCA2Type-2 is non-negligible, then

C can solve the DBDH problem with non-negligible advantage.

Proof of Theorem 7

Proof. Suppose there exists a PPT adversary A that can break the EUF-CMA

security (modeled as a game GameEUF-CMA
A in Section 4.2.2) of our MediCare with
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non-negligible advantage in the random oracle model. Then we can build a chal-

lenger C that is able to solve q-DHE problem with non-negligible advantage, by

interacting with A . Given the q-DHE problem instance
〈
Σ, g, {gϕi}i∈[2q],i ̸=q+1

〉
, the

task of C is to compute gϕ
q+1
. We show below how this can be done.

(1) A sends the challenge signing policy Γ⋆s := (M⋆
s, ρ

⋆
s) to C , whereM⋆

s is an ℓ
⋆
s×n⋆s

matrix with n⋆s ≤ q. Let M⃗
⋆(i)
s := (M

⋆(i)
s1 ,M

⋆(i)
s2 , . . . ,M

⋆(i)
sn⋆s

) be the ith row of M⋆
s.

(2) C chooses α′ u←− Z∗
p, and sets gT := e(g, g)α

′
e(gϕ, gϕ

q
) by implicitly defining

α := α′ + ϕq+1 and h := gϕ. Next, C picks z1, z2, . . . , z10
u←− Z∗

p and defines

gi := gzi for i = 1, 2, . . . , 10. C selects seven collision-resistant hash functions

{Hi}7i=1 (as mentioned in the construction), and simulates H1 and H6 as ex-

plained below.

H1 Hash Queries : To answer H1 hash queries, C maintains a table TabH1 . If

one submits an attribute at ∈ Ue ∪ Us, C answers in the following way. If the

tuple Jat, υat, H1(at)K exists in TabH1 , C returns H1(at). Otherwise, C picks

υat
u←− Z∗

p, returns

H1(at) :=

{
gυat

∏
j∈[n⋆s ]

(
gϕ

j)−M⋆(i)
sj , if ρ⋆s(i) = at for some row i of M⋆

s ,

gυat , otherwise

and inserts the new tuple Jat, υat, H1(at)K into TabH1 .

H6 Hash Queries : To answer H6 hash queries, C maintains a table TabH6 .

These queries are of two types. (i) Queries being submitted by A . When

A submits the input (ct, tag1,Γe,Γs,W
◦), C responds as follows. If the tuple

J(ct, tag1,Γe,Γs,W ◦), ǒ1K exists in TabH6 , C returns ǒ1 as

H6(ct||tag1||Γe||Γs||W ◦) := ǒ1. Else, C selects ǒ1
u←− Z∗

p, returns ǒ1 and inserts

the new tuple J(ct, tag1,Γe,Γs,W ◦), ǒ1K into TabH6 . (ii) Queries being conducted

by C during ciphertext generation oracle simulation (which will be discussed in

ciphertext generation oracle execution given below).

Next, C sets KPK := ⟨Σ, gT , g, h, {gi}10i=1,M,KDF, {Hi}7i=1⟩, where
M := {0, 1}ℓpt is the plaintext space, and KDF is the key derivation function

with output length ℓpt and keying source GT . Lastly, C selects

β, γ,ϖ1, ϖ2, ϖ3, ϖ4
u←− Z∗

p, computes h1 := gϖ1 , h2 := gϖ2 , h3 := gϖ3 ,

h4 := gϖ4 , hT := e(g, g10)
γ, Y := hβ and sets T PK := ⟨hT , h1, h2, h3, h4⟩,

T SK := ⟨γ,ϖ1, ϖ2, ϖ3, ϖ4⟩, CPK := Y, CSK := β. C sends the tuple [PP , CSK]
to A , where PP := ⟨KPK, CPK, T PK⟩.
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(3) Now, A queries signing key generation oracle O′
SKG(As), token generation or-

acle O′
T G(Ad,Γt), ciphertext generation oracle OCG(emr,Γs,Γe,W ) and EMR

retrieval oracle OER(CT , Ad,Γt). Then C responds to these queries as explained

below.

� O′
SKG(As) : A submits a signing attribute set As such that Γ⋆s(As) = 0.

Then, C calculates ε⃗ := (ε1, ε2, . . . , εn⋆s) ∈ Zn
⋆
s
p such that ε1 = −1 and

ε⃗ · M⃗⋆(i)
s = 0, ∀i ∈ {i|ρ⋆s(i) ∈ As}. Now, C picks r′0

u←− Z∗
p, implicitly

defines r′ := r′0 +
∑

ι∈[n⋆s ]
ειϕ

q−ι+1 and returns the signing key

SKAs := ⟨As, S, S0, {Sx}x∈As⟩, where

S := gα
′
hr

′
0

n⋆s∏
ι=2

(
gϕ

q−ι+2)ει
, S0 := gr

′
0

∏
ι∈[n⋆s ]

(
gϕ

q−ι+1)ει
,

Sx :=


Sυx0

∏
j∈[n⋆s ]

(
gϕ

j)−r′0M⋆(i)
sj
∏

(ι,j)∈[n⋆s ,n⋆s ],ι ̸=j
(
gϕ

q−ι+1+j)−ειM⋆(i)
sj ,

if ρ⋆s(i) = x,

Sυx0 , otherwise.

� O′
T G(Ad,Γt) : A submits a decryption attribute set Ad and a keyword

policy Γt. C picks r0
u←− Z∗

p, implicitly sets r := r0− β−1ϕq and calculates

the decryption key DKAd := ⟨Ad, D,D0, {Dy}y∈Ad⟩, where

D := gα
′
hβr0 , D0 := gr0

(
gϕ

q)−β−1

, Dy := gυyr0
(
gϕ

q)−β−1υy

Since C knows TGA’s secret key T SK := ⟨γ,ϖ1, ϖ2, ϖ3, ϖ4⟩, it com-

putes the trapdoor T̃ DΓt ← TrapGen(PP , T SK,Γt). Finally, C sends

[DKAd , T̃ DΓt ] to A .

� OCG(emr,Γs,Γe,W ) : Let Γs := (Ms, ρs), Γe := B1 ∨B2 ∨ · · · ∨Bm, where

Ms is a matrix of size ℓs × ns, and W := {[W : w]}. C chooses a signing

attribute set As such that Γs(As) = 1, calculates

a⃗ := (a1, a2, . . . , aℓs)← Reconstruct(Ms, ρs, As) satisfying∑
i∈[ℓs] ai · M⃗

(i)
s = 1⃗ns and ai = 0 for all i ∈ {i|ρs(i) /∈ As}, samples

(b1, b2, . . . , bℓs)
u←−
{
(b1, b2, . . . , bℓs) ∈ Zℓsp |

∑
i∈[ℓs] bi ·M⃗

(i)
s = 0⃗ns

}
. To gener-

ate a ciphertext CT of the message emr for the signing policy Γs, encryption

policy Γe and keyword set W , C picks

θ, δ′, δ′′, o2, r
′, ǒ1, θi, tW , πW1, πW2, η

u←− Z∗
p, for each i ∈ [m] and

[W : w] ∈ W, and computes δ := H3(g
θ
T ), key := KDF(gθT ),
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ct := emr ⊕ key, σ′ := gδ
′
, tag1 := H4(g

1/δ
T · e(σ′, Y )δ

′′
). Next, it implicitly

defines H6(ct||tag1||Γe||Γs||W ◦) := ǒ1 − (θz1)
−1ϕq+1δ−1 (this is of type (ii)

query mentioned above) and sets

σ := gα
′/δhr

′/δgz1θǒ1gz2θ
∏
i∈[ℓs]

H1(ρs(i))
r′ai
δ

+o2bi , σi := (gr
′
)ai/δgo2bi

The other components of CT are computes as in the construction of Medi-

Care. Lastly, C sends this CT to A .

� OER(CT , Ad,Γt) : First, C performs the EMR storage phase (given in

Figure 4.4), and if its output is ⊥, then C returns ⊥ as the response

of OER oracle. Otherwise, it computes CT u := ⟨∆e,∆k, tag2, E0, η, Ĕ, tag⟩,
and carries out the steps given below.

Obtain [DKAd , T̃ DΓt ]← O′
T G(Ad,Γt) and

[token, T DK]← TokenGen(PP , T̃ DΓt ,DKAd).
Execute the algorithms Search(PP , CT u, token, CSK),
Transform(PP , CT u, token, CSK), Verify-Retrieve(PP , CT tr, T DK), in the

order. The final output will be sent to A .

When this query phase is over, A outputs a forgery ciphertext CT ⋆ of the

message emr⋆ for the signing policy Γ⋆s, encryption policy Γ⋆e and keyword set

W ⋆.

A wins the game if all the following conditions are true. (i) There exist Ad,Γt

such that Γ⋆e(Ad) = 1,Γt(W
⋆) = 1, OER(CT ⋆, Ad,Γt) = emr⋆ ̸= ⊥, and (ii) A was

never queried toOCG with the input (emr⋆,Γ⋆s,Γ
⋆
e,W

⋆). The ciphertext CT ⋆ is parsed
as CT ⋆ := ⟨∆⋆

s,∆
⋆
e,∆

⋆
k, tag2

⋆, E⋆
0 , η

⋆⟩, where ∆⋆
s := ⟨Γ⋆s, σ′⋆, σ′′⋆, tag1⋆, σ⋆, {σ⋆i }i∈[ℓs]⟩,

∆⋆
e := ⟨Γ⋆e, ct⋆, E⋆, {E⋆

i1, E
⋆
i2}i∈[m]⟩.

The condition (i) implies that σ⋆ = gα/δhr
′/δ
(
go11 g2

)θ∏
i∈[ℓ⋆s ]

H1

(
ρ⋆s(i)

) r′ai
δ

+o2bi ,

σ⋆i = g
r′ai
δ

+o2bi , E⋆ = gθH3

(
e(σ′⋆,σ′′⋆)β

)
, where r′, θ, o2 are random exponents,

β = CSK, δ = H3(g
θ
T ), o1 = H6(ct

⋆||tag1⋆||Γ⋆e||Γ⋆s||W ⋆◦),

(a1, a2, . . . , aℓ⋆s) and (b1, b2, . . . , bℓ⋆s) are vectors satisfying respectively∑
i∈[ℓ⋆s ]

ai · M⃗⋆(i)
s = 1⃗n⋆s and

∑
i∈[ℓ⋆s ]

bi · M⃗⋆(i)
s = 0⃗n⋆s .

Condition (ii) implies that o1 = H6(ct
⋆||tag1⋆||Γ⋆e||Γ⋆s||W ⋆◦) = ǒ1 (this is of type

(i) query, C can obtain this value from TabH6). Now, C computes

[token, T DK] ← O′
T G(Ad,Γt) and then obtains δ⋆ = H3(Λ) by executing the algo-

rithms Search(PP , CT ⋆u, token, CSK),Transform(PP , CT ⋆u, token, CSK) and
Verify-Retrieve(PP , CT ⋆tr, T DK). Condition (i) implies that δ⋆ = δ.



APPENDIX A. 176

Since σ⋆ = gα/δhr
′/δ
(
go11 g2

)θ∏
i∈[ℓ⋆s ]

H1

(
ρ⋆s(i)

) r′ai
δ

+o2bi , from the simulation of H1

hash function, one can see that σ⋆ = gα/δ
(
go11 g2

)θ∏
i∈[ℓ⋆s ]

(
gυρ⋆s(i)

) r′ai
δ

+o2bi . This is due

to the fact that

σ⋆ = gα/δhr
′/δ
(
go11 g2

)θ ∏
i∈[ℓ⋆s ]

H1

(
ρ⋆s(i)

) r′ai
δ

+o2bi

= gα/δhr
′/δ
(
go11 g2

)θ ∏
i∈[ℓ⋆s ]

(
gυρ⋆s(i)

∏
j∈[n⋆s ]

(
gϕ

j)−M⋆(i)
sj
) r′ai

δ
+o2bi

= gα/δhr
′/δ
(
go11 g2

)θ ∏
i∈[ℓ⋆s ]

(
gυρ⋆s(i)

) r′ai
δ

+o2bi( ∏
i∈[ℓ⋆s ]

∏
j∈[n⋆s ]

(
gϕ

j)−M⋆(i)
sj
) r′ai

δ
+o2bi

= gα/δhr
′/δ
(
go11 g2

)θ ∏
i∈[ℓ⋆s ]

(
gυρ⋆s(i)

) r′ai
δ

+o2bi
(
g−

∑
i∈[ℓ⋆s ]

∑
j∈[n⋆s ]

ϕjM
⋆(i)
sj (

r′ai
δ

+o2bi)
)

Since
∑

i∈[ℓ⋆s ]
ai · M⃗⋆(i)

s = 1⃗n⋆s and
∑

i∈[ℓ⋆s ]
bi · M⃗⋆(i)

s = 0⃗n⋆s , we can see that

−
∑
i∈[ℓ⋆s ]

∑
j∈[n⋆s ]

ϕjM
⋆(i)
sj

(r′ai
δ

+ o2bi
)
= −ϕr

′

δ

and hence

g−
∑
i∈[ℓ⋆s ]

∑
j∈[n⋆s ]

ϕjM
⋆(i)
sj (

r′ai
δ

+o2bi) = h−r
′/δ

Now, C calculates Ĕ⋆ := (E⋆)1/H3

(
e(σ′⋆,σ′′⋆)β

)
= gθ and then computes the un-

known value gϕ
q+1

as

gϕ
q+1

=

(
σ⋆

gα′/δ⋆
(
Ĕ⋆
)z1ǒ1+z2∏

i∈[ℓ⋆s ]
(σ⋆i )

υρ⋆s(i)

)δ⋆

Therefore, if the advantage of A in the game GameEUF-CMA
A is non-negligible,

then C can solve the q-DHE problem with non-negligible advantage.

Proof of Theorem 8

Proof. The challenger C interacts with an adversary A as in GameEO-Anonymity
A (for-

mulated in Section 4.2.2).

(1) C computes [KPK,MK]← KGA-Setup(1κ), [T PK, T SK]← TGA-Setup(KPK),
[CPK, CSK]← HCS-Setup(KPK) and sends [PP ,MK, T SK, CSK] to A , where

PP := ⟨KPK, CPK, T PK⟩.
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(2) In this step, A does not need to query any oracle and it can compute required

components by itself because A has the knowledge of system master secret,

cloud secret key and trapdoor secret key. A sends to C a message emr, a

signing policy Γs, an encryption policy Γe, a keyword set W and two signing

attribute sets A
(0)
s , A

(1)
s obeying the condition Γs(A

(0)
s ) = 1 = Γs(A

(1)
s ).

(3) C samples i
u←− {0, 1}, computes the signing key

SK
A

(i)
s
← sKeyGen(PP ,MK, A(i)

s ), the challenge ciphertext

CT ⋆ ← Signcrypt(PP , A(i)
s ,Γs,Γe,W, emr), and sends CT ⋆ to A .

(4) A outputs its guess i′ of i.

From the challenge ciphertext CT ⋆, the signature of the message emr for the

signing policy Γs := (Ms, ρs) is ∆s := ⟨Γs, σ′, σ′′, tag1, σ, {σi}i∈[ℓs]⟩. Note that σ and

σi are the only signing attribute components, and the distribution of the signature

is as follows.

σ′ := gδ
′
, σ′′ := hδ

′′
, tag1 := H4(g

1/δ
T · e(σ

′, Y )δ
′′
),

σ = gα/δhr
′/δ
(
go11 g2

)θ ∏
i∈[ℓs]

H1

(
ρs(i)

) r′ai
δ

+o2bi and σi = g
r′ai
δ

+o2bi

where δ′, δ′′, θ, o2, bi are random elements of Z∗
p selected during signing. Hence, all

the components of the signature are random elements from adversary’s point of

view. That is, the signature is independent of the signing key (and hence of the

signing attribute set) being used to generate it. Therefore, the challenge ciphertext

gives no information about i in GameEO-Anonymity
A to the adversary A . Due to this,

A can output just random guess i′. In this case, Prob[i′ = i] = 1/2. Hence, A ’s

advantage AdvEO-Anonymity
A (1κ)

def
= Prob[i′ = i] = 1/2. Thus, MediCare provides EO

anonymity.

Proof of Theorem 9

Proof. If there exists an adversary A that wins the verifiability game GameverifiabilityA

(presented in Section 4.2.2) of MediCare, then an authorized EU C can find a

collision for the hash function H4 or H5 by interacting with A as described below.

(1) C computes [KPK,MK]← KGA-Setup(1κ), [T PK, T SK]← TGA-Setup(KPK),
[CPK, CSK]← HCS-Setup(KPK), and sends [PP , CSK] to A , where

PP := ⟨KPK, CPK, T PK⟩. The secret keysMK and T SK are kept secret by

C .
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(2) A adaptively queries signing key generation oracle OSKG(As), token generation

oracle O′′
T G(Ad,Γt), ciphertext generation oracle OCG(emr,Γs,Γe,W ) and EMR

retrieval oracle OER(CT , Ad,Γt). Since C knows the system master secretMK
and TGA’s secret key T SK, it can simulate A ’s queries properly. At the end

of this phase, A announces a message emr⋆, an encryption policy Γ⋆e, a signing

policy Γ⋆s, a keyword set W ⋆, and sends [emr⋆,Γ⋆e,Γ
⋆
s,W

⋆] to C .

(3) C selects a signing attribute set As such that Γ⋆s(As) = 1 and obtains the signing

key SKAs ← sKeyGen(PP ,MK, As). Next, it computes

CT ⋆ ← Signcrypt(PP ,SKAs ,Γ⋆s,Γ⋆e,W ⋆, emr⋆). Then, the ciphertext CT ⋆ will

be given to A . Here CT ⋆ := ⟨∆⋆
s,∆

⋆
e,∆

⋆
k, tag2

⋆, E⋆
0 , η

⋆⟩ and
∆⋆
e := ⟨Γ⋆e, ct⋆, E⋆, {E⋆

i1, E
⋆
i2}i∈[m]⟩.

(4) Again A queries the oracles OSKG,O′′
T G,OCG,OER and obtains the respective

responses as in step (2). At the end of this phase, A outputs a decryption

attribute set Ad, a keyword policy Γt and a transformed ciphertext

CT tr := ⟨Y1,Y2, ct, tag2
⋆, tag⟩ such that Γ⋆e(Ad) = 1 ∧ Γt(W

⋆) = 1.

Suppose that the tuple JAd,Γt, token, T DKK is in table Tab′′ER, where

T DK := ⟨τ1, τ2⟩. If not, it can be generated by querying the oracle O′′
T G with the

input (Ad,Γt). If A breaks the verifiability of MediCare, C will recover a plaintext

emr ← Verify-Retrieve(PP , CT tr, T DK), where emr /∈ {emr⋆,⊥}, as follows. C (i)

computes Λ := Y−τ1
1 · Yτ22 , δ := H3(Λ), (ii) observes H4(g

1/δ
T ) = tag, (iii) observes

H5(δ||ct) = tag2⋆ and (iv) obtains emr = ct⊕ KDF(Λ).

If Λ⋆ and ct⋆ are the respective components of Λ and ct being used in the gen-

eration of CT ⋆, then there are two possibilities Λ ̸= Λ⋆ or Λ = Λ⋆. Note that (iii)

implies that H5

(
H3(Λ)||ct

)
= tag2⋆ = H5

(
H3(Λ

⋆)||ct⋆
)
.

If Λ ̸= Λ⋆, H3(Λ)||ct ̸= H3(Λ
⋆)||ct⋆ and hence the pair

(
H3(Λ)||ct,H3(Λ

⋆)||ct⋆
)

forms a collision for the hash function H5.

Suppose Λ = Λ⋆. Then, ct ⊕ KDF(Λ) = emr ̸= emr⋆ = ct⋆ ⊕ KDF(Λ⋆) implies

ct ̸= ct⋆. So, H3(Λ)||ct ̸= H3(Λ)||ct⋆ and hence the pair
(
H3(Λ)||ct,H3(Λ)||ct⋆

)
forms a collision for H5.

In both the cases, C finds a collision for H5. Since H5 is a collision-resistant

hash function, A cannot win the verifiability game GameverifiabilityA with non-negligible

advantage and hence MediCare is verifiable.
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Table A.1: The sequence of 2ς + 2 games Greal,G0,G1, . . . ,G2ς .

Game The ∆k of the Challenge Ciphertext CT ⋆

Greal
W ◦, kT , {LWj1, LWj2}j∈[ς],
{KW11,KW12,KW13,KW14}, {KW21,KW22,KW23,KW24}, . . . , {KWς1,KWς2,KWς3,KWς4}

G0
W ◦, rT , {LWj1, LWj2}j∈[ς],
{KW11,KW12,KW13,KW14}, {KW21,KW22,KW23,KW24}, . . . , {KWς1,KWς2,KWς3,KWς4}

G1

W ◦, rT , {LWj1, LWj2}j∈[ς],
{ RW11 ,KW12,KW13,KW14}, {KW21,KW22,KW23,KW24}, . . . , {KWς1,KWς2,KWς3,KWς4}

G2

W ◦, rT , {LWj1, LWj2}j∈[ς],
{ RW11 ,KW12,KW13,KW14}, { RW21 ,KW22,KW23,KW24}, . . . , {KWς1,KWς2,KWς3,KWς4}

...

Gς
W ◦, rT , {LWj1, LWj2}j∈[ς],
{ RW11 ,KW12,KW13,KW14}, { RW21 ,KW22,KW23,KW24}, . . . , { RWς1 ,KWς2,KWς3,KWς4}

Gς+1

W ◦, rT , {LWj1, LWj2}j∈[ς],
{ RW11 ,KW12, RW13 ,KW14}, { RW21 ,KW22,KW23,KW24}, . . . , { RWς1 ,KWς2,KWς3,KWς4}

Gς+2

W ◦, rT , {LWj1, LWj2}j∈[ς],
{ RW11 ,KW12, RW13 ,KW14}, { RW21 ,KW22, RW23 ,KW24}, . . . , { RWς1 ,KWς2,KWς3,KWς4}

...

G2ς

W ◦, rT , {LWj1, LWj2}j∈[ς],
{ RW11 ,KW12, RW13 ,KW14}, { RW21 ,KW22, RW23 ,KW24}, . . . , { RWς1 ,KWς2, RWς3 ,KWς4}

Proof of Lemma 7

Proof. We prove this security notion (modeled as GameIND-CKAType-1 in Section 4.2.2)

employing a hybrid experiment which consisting of a sequence of games between

a challenger C and a Type-1 adversary A . The individual games differ in how C

constructs the challenge ciphertext given to A . Let CT ⋆ := ⟨∆s,∆e,∆k, tag2, E0, η⟩
be the challenge ciphertext given to A during IND-CKA game. Let ς be the size

of the keyword set used in computation of CT ⋆ such that ς ≤ q. The sequence of

2ς + 2 games Greal,G0,G1, . . . ,G2ς is defined in Table A.1. In these games, only the

components in ∆k are modified (precisely, some components are replaced by random

elements) and all other elements of CT ⋆ remain unchanged. For brevity, we omit

the components ∆s,∆e, tag2, E0, η from CT ⋆ and present only the components of

∆k := ⟨W ◦, kT , {KW1, KW2, KW3, KW4, LW1, LW2}W∈W ◦⟩ in Table A.1. Let rT be

the random element of GT and RW11, RW13, RW21, RW23, . . . , RWς1, RWς3 be random

elements of G.
Note that all the components of ∆k in the challenge ciphertext computed in G2ς

are random elements and hence the challenge ciphertext is independent of the two

keyword sets submitted by A . But, the challenge ciphertext of Greal is well formed.

The challenge ciphertext in G2ς reveals nothing about its keyword set. To complete
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the proof, we show that the transitions from Greal to G0 to G1 to . . . to G2ς are all

computationally indistinguishable (in Claims 4, 5 and 6).

Claim 4. Under the assumption that q-2 problem is hard, there is no PPT Type-

1 adversary that distinguishes between the games Greal and G0 with non-negligible

advantage.

Proof. Assume there is a Type-1 adversary A that distinguishes between the games

Greal and G0 with non-negligible advantage. Then, we construct a challenger C that

solves q-2 problem with non-negligible advantage by interacting with A as follows.

Given the q-2 problem instance
〈
Σ, g, gϕ1 , gϕ2 , gϕ3 , g(ϕ1ϕ3)

2
, {gψi , gϕ1ϕ3ψi , gϕ1ϕ3/ψi ,

gϕ
2
1ϕ3ψi , gϕ2/ψ

2
i , gϕ

2
2/ψ

2
i }i∈[q], {gϕ1ϕ3ψi/ψj , gϕ2ψi/ψ

2
j , gϕ1ϕ2ϕ3ψi/ψ

2
j , g(ϕ1ϕ3)

2ψi/ψj}(i,j)∈[q,q],i ̸=j,
Z
〉
, the task for C is to determine whether Z = e(g, g)ϕ1ϕ2ϕ3 or Z is a random

element of GT .

(1) A announces two challenge keyword sets W ⋆
0 := {[W1 : w

(0)
1 ], . . . , [Wς : w

(0)
ς ]}

and W ⋆
1 := {[W1 : w

(1)
1 ], . . . , [Wς : w

(1)
ς ]}. Note that these two sets satisfy the

conditions |W ⋆
0 | = |W ⋆

1 | = ς and W ⋆◦
0 = W ⋆◦

1 = {W1, . . . ,Wς} of GameIND-CKAType-1 .

(2) Firstly, C samples µ
u←− {0, 1} and sets W ⋆

µ := {[W1 : w
(µ)
1 ], . . . , [Wς : w

(µ)
ς ]}.

Then, C selects α′, z, zi
u←− Z∗

p, i ∈ {1, 2, . . . , 7, 9, 10}, implicitly defines

α := α′ϕ2 and sets

gT := e(g, gϕ2)α
′
, h := gz, gi := gzi for i ∈ {1, 2, 3, 4, 5, 10},

g6 := gz6
∏
j∈[ς]

gϕ2/ψ
2
j , g7 := gz7

∏
j∈[ς]

(gϕ1ϕ3/ψj)
(
gϕ2/ψ

2
j
)−w(µ)

j ,

g8 := gϕ1 , g9 := gϕ1gz9

Next, it selects seven collision-resistant hash functions {Hi}7i=1 (as mentioned

in the construction) and sets KPK := ⟨Σ, gT , g, h, {gi}10i=1,M,KDF, {Hi}7i=1⟩,
whereM := {0, 1}ℓpt is the plaintext space, and KDF is the key derivation func-

tion with output length ℓpt and keying source GT . HereMK := (gϕ2)α
′
. Finally,

C selects β, γ0, ϖ1, ϖ2, ϖ3, ϖ4
u←− Z∗

p, computes h1 := gϖ1 , h2 := gϖ2 ,

h3 := gϖ3 , h4 := gϖ4 , hT := e(g, g10)
γ0 · e(gϕ1 , gϕ2)z10 , Y := hβ and sets

T PK := ⟨hT , h1, h2, h3, h4⟩, T SK := ⟨γ := γ0 + ϕ1ϕ2, ϖ1, ϖ2, ϖ3, ϖ4⟩,
CPK := Y, CSK := β. Note that γ := γ0 + ϕ1ϕ2 is implicitly defined. Lastly, C

sends the tuple [PP , CSK] to A , where PP := ⟨KPK, CPK, T PK⟩.
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(3) A queries signing key generation oracle OSKG(As), token generation oracle

O′′′
T G(Ad,Γt) and search oracle Osearch(CT ,Γt). Then C responds as follows.

� OSKG(As) : C chooses r′
u←− Z∗

p, sets S := (gϕ2)α
′
hr

′
, S0 := gr

′
,

Sx := (H1(x))
r′ ,∀x ∈ As, and returns SKAs := ⟨As, S, S0, {Sx}x∈As⟩.

� O′′′
T G(Ad,Γt) : A submits a decryption attribute set Ad and a keyword

policy Γt with the condition that Γt(W
⋆
0 ) = 0 ∧ Γt(W

⋆
1 ) = 0. Hence

Γt(W
⋆
µ) = 0. Let Γt := (Mt, ρ

◦
t , {wρ◦t (i)}i∈[ℓt]), where Mt is a matrix of size

ℓt × nt. Since Γt(W
⋆
µ) = 0, C can compute a vector

ε⃗ := (ε1, ε2, . . . , εnt) ∈ Zntp such that ε1 = −1 and M⃗
(i)
t · ε⃗ = 0,

∀i ∈ {i|ρ◦t (i) ∈ W ⋆◦
µ }. It selects ε̆2, . . . , ε̆nt , f, f ′ u←− Z∗

p, sets T1 := gf ,

T2 := hf
′
, ∂ := H3(e(T1, Y )f

′
), and implicitly sets

ϑ⃗ := (0, ε̆2, . . . , ε̆nt)− ∂(γ0 + ϕ1ϕ2)ε⃗. For each row i ∈ [ℓt], its share is

ϑi = M⃗
(i)
t · ϑ⃗ = M⃗

(i)
t · (0, ε̆2, . . . , ε̆nt)− ∂γ0M⃗

(i)
t · ε⃗− ∂ϕ1ϕ2M⃗

(i)
t · ε⃗

It samples τ ′2, τ
′
3, ε

′
2, . . . , ε

′
nt

u←− Z∗
p, implicitly defines τ3 := τ ′3∂ϕ1ϕ2z10/z,

τ1 := τ ′3, τ2 := τ ′2ϕ2,
⃗̆
ϑ := (0, ε′2, . . . , ε

′
nt) − (∂ϕ1ϕ2z10/z)ε⃗. In this case, the

share of the row i ∈ [ℓt] is

ϑ̆i := M⃗
(i)
t ·

⃗̆
ϑ = M⃗

(i)
t · (0, ε′2, . . . , ε′nt)− (∂ϕ1ϕ2z10/z)M⃗

(i)
t · ε⃗

C calculates the transform trapdoor

T DΓ◦
t
:= ⟨Γ◦

t , T1, T2, {Ti1, Ti2, Ti3, Vi1, Vi2, Vi3, Vi4}i∈[ℓt]⟩ (mentioned in Equa-

tion (5.4)) in the following way. Let vti := M⃗
(i)
t · (0, ε̆2, . . . , ε̆nt) and

uti := M⃗
(i)
t · (0, ε′2, . . . , ε′nt).

Case-1: For the row i ∈ [ℓt] where ρ
◦
t (i) ∈ W ⋆◦

µ . In this case, M⃗
(i)
t · ε⃗ = 0

and therefore ϑi = M⃗
(i)
t · (0, ε̆2, . . . , ε̆nt) = vti

and ϑ̆i = M⃗
(i)
t · (0, ε′2, . . . , ε′nt) = uti. Choose r̆i, r̆

′
i

u←− Z∗
p, set

Ti1 := gvti10 · g
ϖ1ϖ2r̆i+ϖ3ϖ4r̆′i
8 ,

Ti2 := huti ·H2(e(T1, Y )f
′ ||Γ◦

t ||M⃗
(i)
t ) · gϖ1ϖ2r̆i+ϖ3ϖ4r̆′i

9 ,

Ti3 := gϖ1ϖ2r̆i+ϖ3ϖ4r̆′i ,

and compute Vi1, Vi2, Vi3, Vi4 as in Equation (4.1).

Case-2: For the row i ∈ [ℓt] where ρ
◦
t (i) /∈ W ⋆◦

µ

(i.e., wρ◦t (i) ̸= w
(µ)
j ,∀j ∈ [ς]). In this case, M⃗

(i)
t · ε⃗ ̸= 0, and C can-
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not compute ∂ϕ1ϕ2M⃗
(i)
t · ε⃗ and (∂ϕ1ϕ2z10/z)M⃗

(i)
t · ε⃗. However, by properly

defining r̆i and r̆
′
i, C is able to calculate Ti1, Ti2, Ti3, Vi1, Vi2, Vi3, Vi4. Choose

ri, r
′
i

u←− Z∗
p, implicitly define

r̆i := ri +
∂ϕ2z10(M⃗

(i)
t · ε⃗)

2ϖ1ϖ2

−
∑
j∈[ς]

∂ϕ1ϕ3ψjz10(M⃗
(i)
t · ε⃗)

2ϖ1ϖ2(wρ◦t (i) − w
(µ)
j )

r̆′i := r′i +
∂ϕ2z10(M⃗

(i)
t · ε⃗)

2ϖ3ϖ4

−
∑
j∈[ς]

∂ϕ1ϕ3ψjz10(M⃗
(i)
t · ε⃗)

2ϖ3ϖ4(wρ◦t (i) − w
(µ)
j )

and compute

Ti3 := gϖ1ϖ2ri+ϖ3ϖ4r′i · (gϕ2)∂z10(M⃗
(i)
t ·ε⃗) ·

∏
j∈[ς]

(gϕ1ϕ3ψj)

−∂z10(M⃗
(i)
t ·ε⃗)

wρ◦t (i)
−w(µ)

j

Ti1 := g
vti−∂γ0(M⃗

(i)
t ·ε⃗)

10 · gϖ1ϖ2ri+ϖ3ϖ4r′i
8 ·

∏
j∈[ς]

(gϕ
2
1ϕ3ψj)

−∂z10(M⃗
(i)
t ·ε⃗)

wρ◦t (i)
−w(µ)

j

Ti2 := huti ·H2

(
e(T1, Y )f

′||Γ◦
t ||M⃗

(i)
t

)
· T z9i3 · (gϕ1)ϖ1ϖ2ri+ϖ3ϖ4r′i

×
∏

j∈[ς](g
ϕ21ϕ3ψj)

−∂z10(M⃗
(i)
t ·ε⃗)

wρ◦t (i)
−w(µ)

j

Vi1 :=
(
g
wρ◦t (i)
6 · g7

)−riϖ1 · (gϕ2)
−(z6wρ◦t (i)

+z7)∂z10(M⃗
(i)
t ·ε⃗)

2ϖ2

×
∏

j∈[ς]
(
gϕ1ϕ3ψj

) (z6wρ◦t (i)
+z7)∂z10(M⃗

(i)
t ·ε⃗)

2ϖ2(wρ◦t (i)
−w(µ)

j
)

×
∏

(j,ι)∈[ς,ς]
(
g(ϕ1ϕ3)

2ψι/ψj
) ∂z10(M⃗

(i)
t ·ε⃗)

2ϖ2(wρ◦t (i)
−w(µ)

j
)

×
∏

j∈[ς]
(
gϕ

2
2/ψ

2
j
)−∂z10(M⃗

(i)
t ·ε⃗)(wρ◦t (i)

−w(µ)
j

)

2ϖ2

×
∏

(j,ι)∈[ς,ς],j ̸=ι
(
gϕ1ϕ2ϕ3ψι/ψ

2
j
) ∂z10(M⃗(i)

t ·ε⃗)(wρ◦t (i)
−w(µ)

j
)

2ϖ2(wρ◦t (i)
−w(µ)

ι )

The components Vi2, Vi3, Vi4 can be computed as Vi1 since these compo-

nents have the term (g
wρ◦t (i)
6 · g7) in common and r̆i, r̆

′
i have the same struc-

ture. Now, C generates the transform key T KAd := ⟨Ad, D′, D′
0, {D′

y}y∈Ad⟩,
where ¯̄r

u←− Z∗
p and

D′ := gα
′/τ ′2 · Y ¯̄r · (gϕ1)(τ ′3z10∂)/τ ′2 , D′

0 := g
¯̄r, D′

y := (H1(y))
¯̄r
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Lastly, C hands over token := ⟨T DΓ◦
t
, T KAd⟩ to A . Note that from Re-

mark 10, it can be seen that it is a properly simulated EMR retrieval

request token for (Ad,Γt).

� Osearch(CT ,Γt) : A submits a ciphertext CT and a keyword policy Γt

obeying the condition Γt(W
⋆
0 ) = 0 ∧ Γt(W

⋆
1 ) = 0. First, C performs the

EMR storage phase presented in Figure 4.4, and if its output is ⊥, then
C returns ⊥ as the response of Osearch oracle. Otherwise, it computes

CT u := ⟨∆e,∆k, tag2, E0, η, Ĕ, tag⟩, and carries out the steps: (i) C chooses

a decryption attribute set Ad, (ii) obtains token := ⟨T DΓ◦
t
, T KAd⟩ ←

O′′′
T G(Ad,Γt), (iii) returns the output of Search(PP , CT u, token, CSK) to

A . Note that the output of the Search algorithm is independent the choice

of Ad because it uses only T DΓ◦
t
from token.

When this query phase is over, A submits a message emr⋆, an encryption policy

Γ⋆e and a signing policy Γ⋆s.

(4) Let Γ⋆s := (M⋆
s, ρ

⋆
s), where M

⋆
s is an ℓ

⋆
s×n⋆s matrix, and Γ⋆e := B⋆

1∨B⋆
2∨· · ·∨B⋆

m.

First C selects a signing attribute set As such that Γ⋆s(As) = 1, calculates

a⃗ := (a1, a2, . . . , aℓ⋆s)← Reconstruct(M⋆
s, ρ

⋆
s, As) satisfying∑

i∈[ℓ⋆s ]
ai · M⃗⋆(i)

s = 1⃗n⋆s and ai = 0 for all i ∈ {i|ρ⋆s(i) /∈ As}, and samples

(b1, b2, . . . , bℓ⋆s)
u←−
{
(b1, b2, . . . , bℓ⋆s) ∈ Zℓ

⋆
s
p |
∑

i∈[ℓ⋆s ]
bi · M⃗⋆(i)

s = 0⃗n⋆s
}
. The keyword

set is W ⋆
µ := {[W1 : w

(µ)
1 ], . . . , [Wς : w

(µ)
ς ]}. Now, the challenge ciphertext CT ⋆

is computed in the following way.

(a) Implicitly define θ := ϕ3,

compute δ := H3

(
e(gϕ3 , gϕ2)α

′)
, key := KDF

(
e(gϕ3 , gϕ2)α

′)
,

kT := Zz10 · e(gϕ3 , gz10)γ0 ,
ct := emr⋆ ⊕ key, tag2⋆ := H5(δ||ct),

(b) pick δ′, δ′′, o2
u←− Z∗

p,

σ′ := gδ
′
, σ′′ := hδ

′′
, tag1 := H4(g

1/δ
T · e(σ′, Y )δ

′′
),

SKAs :=
〈
As, S, S0, {Sx}x∈As

〉
← OSKG(As),

σ := S1/δ(gϕ3)o1z1+z2
∏

i∈[ℓ⋆s ]
(
S
ai/δ
ρ⋆s(i)
·H1(ρ

⋆
s(i))

o2bi
)
,

where o1 := H6(ct||tag1||Γ⋆e||Γ⋆s||W ⋆◦
µ ),

σi := S
ai/δ
0 go2bi , for each i ∈ [ℓ⋆s],

The signature components ∆⋆
s := ⟨Γ⋆s, σ′, σ′′, tag1, σ, {σi}i∈[ℓ⋆s ]⟩.

(c) pick θi
u←− Z∗

p, for each i ∈ [m],

calculate E := (gϕ3)H3(e(σ′,Y )δ
′′
), Ei1 := gθi ,
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Ei2 := (gϕ3)z
(∏

y∈B⋆i
H1(y)

)θi ,
The encryption components ∆⋆

e := ⟨Γ⋆e, ct, E, {Ei1, Ei2}i∈[m]⟩.

(d) choose πWj1, πWj2
u←− Z∗

p, implicitly define tWj
:= ψj, for each j ∈ [ς], and

compute

KWj1 := (gψj)ϖ1h
−πWj1

1 , KWj2 := h
πWj1

2 ,

KWj3 := (gψj)ϖ3h
−πWj2

3 , KWj4 := h
πWj2

4 ,

LWj1 := (gψj)z6w
(µ)
j +z7 ·

∏
ι∈[ς]

(
gϕ2ψj/ψ

2
ι
)(w(µ)

j −w(µ)
ι ) ·

∏
ι∈[ς],ι̸=j g

ϕ1ϕ3ψj/ψι ,

LWj2 := LWj1 · (gϕ3)−z9 ,
The keyword components,

∆⋆
k := ⟨W ⋆◦

µ , kT , {KWj1, KWj2, KWj3, KWj4, LWj1, LWj2}j∈[ς]⟩.

(e) pick η
u←− Z∗

p,

set E⋆
0 := (gϕ3)ξz3+ηz4+z5 , where ξ := H7(∆

⋆
s||∆⋆

e||∆⋆
k||tag2⋆),

The challenge ciphertext is CT ⋆ := ⟨∆⋆
s,∆

⋆
e,∆

⋆
k, tag2

⋆, E⋆
0 , η⟩.

Then, C hands over the challenge ciphertext to A .

(5) In this step, A issues a second series of additional queries as in step (3). Once

this query phase is over, A outputs a guess µ′ of µ.

A wins if µ′ = µ. Therefore, if A wins, C will claim that Z = e(g, g)ϕ1ϕ2ϕ3 ; other-

wise, C claims that Z is a random element of GT .

If Z = e(g, g)ϕ1ϕ2ϕ3 , then kT := Zz10 · e(gϕ3 , gz10)γ0 = hθT and hence A ’s view is

identical to the original game Greal. On the other hand, if Z is a random element

then kT is a random element as well and hence A ’s view is identical to the game G0.

Therefore, if A can distinguish between Greal and G0 with non-negligible advantage,

C has a non-negligible advantage in solving q-2 problem. (of Claim 4)

Claim 5. Under the assumption that DLin problem is hard, there is no PPT Type-1

adversary that can distinguish between the games Gl and Gl+1 with non-negligible

advantage, l ∈ {0, 1, . . . , ς − 1}.

Proof. Suppose there is a Type-1 adversary A that distinguishes between the games

Gl and Gl+1 with non-negligible advantage. Then, we construct a challenger C that

solves DLin problem with non-negligible advantage by interacting with A as follows.

Given the DLin problem instance
〈
Σ, g, gϕ1 , gϕ2 , gϕ1ϕ3 , gϕ2ϕ4 , Z

〉
, the task for C is to

determine whether Z = gϕ3+ϕ4 or Z is a random element of G. As in [8], we write

DLin problem as
〈
Σ, g, gϕ1 , gϕ2 , gϕ1ϕ3 ,D, gψ

〉
for ψ such that gψ = Z, and consider

the task of deciding whether D = gϕ2(ψ−ϕ3).
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(1) A submits two challenge keyword sets W ⋆
0 := {[W1 : w

(0)
1 ], . . . , [Wς : w

(0)
ς ]}

and W ⋆
1 := {[W1 : w

(1)
1 ], . . . , [Wς : w

(1)
ς ]}. These two sets satisfy the conditions

|W ⋆
0 | = |W ⋆

1 | = ς and W ⋆◦
0 = W ⋆◦

1 = {W1, . . . ,Wς} of GameIND-CKAType-1 .

(2) C samples µ
u←− {0, 1} and sets W ⋆

µ := {[W1 : w
(µ)
1 ], . . . , [Wς : w

(µ)
ς ]}. Then, it

selects α, β, γ,ϖ3, ϖ4, z, zi
u←− Z∗

p, i ∈ {1, 2, . . . , 10} \ {6}, sets gT := e(g, g)α,

h := gz, gi := gzi for i ∈ {1, 2, . . . , 10} \ {6, 7}, g6 := (gϕ2)γ, g7 := gz7(gϕ2)−γw
(µ)
l ,

h1 := gϕ2 , h2 := gϕ1 , h3 := gϖ3 , h4 := gϖ4 , hT := e(g, g10)
γ, Y := hβ. Next,

it chooses seven collision-resistant hash functions {Hi}7i=1 as mentioned in the

construction and sets KPK := ⟨Σ, gT , g, h, {gi}10i=1,M,KDF, {Hi}7i=1⟩,
MK := gα, T PK := ⟨hT , h1, h2, h3, h4⟩, T SK := ⟨γ,ϖ1 := ϕ2, ϖ2 := ϕ1, ϖ3, ϖ4⟩,
CPK := Y, CSK := β. Note that ϖ1 := ϕ2, ϖ2 := ϕ1 are implicitly defined. C

sends the tuple [PP , CSK] to A , where PP := ⟨KPK, CPK, T PK⟩.

(3) C simulates A ’s queries as follows.

� OSKG(As) : C returns SKAs ← sKeyGen(PP ,MK, As) since C knowsMK.

� O′′′
T G(Ad,Γt) : A submits a decryption attribute set Ad and a keyword

policy Γt with the condition that Γt(W
⋆
0 ) = 0 ∧ Γt(W

⋆
1 ) = 0. Hence

Γt(W
⋆
µ) = 0. Let Γt := (Mt, ρ

◦
t , {wρ◦t (i)}i∈[ℓt]), where Mt is a matrix of

size ℓt × nt. firstly, C calculates

T DΓ◦
t
:=
〈
Γ◦
t , T1, T2, {Ti1, Ti2, Ti3, Vi1, Vi2, Vi3, Vi4}i∈[ℓt]

〉
as described below.

Choose f, f ′, τ1, τ3, ri, r
′
i, ε2, . . . , εnt , ε

′
2, . . . , ε

′
nt

u←− Z∗
p, i ∈ [ℓt], implicitly

define

r̆i :=
riγ(wρ◦t (i) − w

(µ)
l )

ϕ2γ(wρ◦t (i) − w
(µ)
l ) + z7

, r̆′i := r′i +
z7ϕ1ri

ϖ3ϖ4

(
ϕ2γ(wρ◦t (i) − w

(µ)
l ) + z7

) ,
and set tt := e(T1, Y )f

′
, ϑi := M⃗

(i)
t · (γ ·H3(tt), ε2, . . . , εnt), and

ϑ̆i := M⃗
(i)
t · (τ3/τ1, ε′2, . . . , ε′nt),

T1 := gf , T2 := hf
′
, Ti3 := (gϕ1)rigϖ3ϖ4r′i , Ti1 := gϑi10 · T z8i3 ,

Ti2 := hϑ̆i ·H2(e(T1, Y )f
′||Γ◦

t ||M⃗
(i)
t ) · T z9i3 ,

Vi1 := (gϕ2)
−riγ(wρ◦t (i)−w

(µ)
l )
, Vi2 := (gϕ1)

−riγ(wρ◦t (i)−w
(µ)
l )
,
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Vi3 :=
(
g
wρ◦t (i)
6 · g7

)−r′iϖ3(gϕ1)−z7ri/ϖ4 ,

Vi4 :=
(
g
wρ◦t (i)
6 · g7

)−r′iϖ4(gϕ1)−z7ri/ϖ3 ,

Next, C generates the transform key T KAd :=
〈
Ad, D

′, D′
0, {D′

y}y∈Ad
〉
,

where ¯̄r, τ2
u←− Z∗

p and D′ := gα/τ2Y ¯̄rhτ3/τ2 , D′
0 := g ¯̄r, D′

y := (H1(y))
¯̄r.

Finally, C sends token := ⟨T DΓ◦
t
, T KAd⟩ to A . Note that from Remark

10, it can be seen that it is a properly simulated EMR retrieval request

token for (Ad,Γt).

� Osearch(CT ,Γt) : The simulation is similar to that of Claim 4.

When A decides that this query phase is completed, it outputs a message emr⋆,

an encryption policy Γ⋆e and a signing policy Γ⋆s.

(4) To compute the challenge ciphertext CT ⋆ of the message emr⋆ for Γ⋆s := (M⋆
s, ρ

⋆
s),

where M⋆
s is an ℓ⋆s × n⋆s matrix, Γ⋆e := B⋆

1 ∨ B⋆
2 ∨ · · · ∨ B⋆

m, and the key-

word set W ⋆
µ := {[W1 : w

(µ)
1 ], . . . , [Wς : w

(µ)
ς ]}, C calculates the components

of ∆k := ⟨W ⋆◦
µ , kT , {KWj1, KWj2, KWj3, KWj4, LWj1, LWj2}j∈[ς]⟩ in the following

manner.

For j ∈ [ς] and j ̸= l, C picks θ, tWj
, πWj1, πWj2

u←− Z∗
p, and sets kT := hθT ,

KWj1 := h
tWj

−πWj1

1 , KWj2 := h
πWj1

2 , KWj3 := h
tWj

−πWj2

3 , KWj4 := h
πWj2

4 ,

LWj1 := (g
w

(µ)
j

6 g7)
tWj g−θ8 , LWj2 := (g

w
(µ)
j

6 g7)
tWj g−θ9 .

For j = l, C implicitly defines tWl
:= ψ, πWl1 := ϕ3, chooses πWl2

u←− Z∗
p, and

sets

KWl1 := D, KWl2 := gϕ1ϕ3 , KWl3 := (gψ)ϖ3h
−πWl2

3 , KWl4 := h
πWl2

4 ,

LWl1 := (gψ)z7g−θ8 , LWl2 := (gψ)z7g−θ9 .

C computes the other components of CT ⋆ as in the construction of MediCare.

A receives this challenge ciphertext CT ⋆.

(5) Again, A issues a second series of additional queries as in step (3). Once this

query phase is over, A outputs a guess µ′ of µ.

A wins if µ′ = µ. Hence, if A wins, C will claim that D = gϕ2(ψ−ϕ3); otherwise, C

claims that D is a random element of G.
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If D = gϕ2(ψ−ϕ3), then KWl1 = D = gϕ2(ψ−ϕ3) = h
tWl

−πWl1

1 , KWl2 = gϕ1ϕ3 = h
πWl1

2

and hence A ’s view is identical to Gl. On the other hand, if D is a random element

of G, then A ’s view is identical to Gl+1. Therefore, if A can distinguish between Gl

and Gl+1 with non-negligible advantage, C has a non-negligible advantage in solving

DLin problem. (of Claim 5)

Claim 6. There is no PPT Type-1 adversary that can distinguish between the games

Gl and Gl+1, l ∈ {ς, ς + 1, . . . , 2ς − 1}, with non-negligible advantage, under the

assumption that DLin problem is hard.

Proof. The proof is almost identically to that of Claim 5, except where the simulation

is done over h3 and h4 instead of h1 and h2. (of Claim 6)

This completes the proof of Lemma 7.

Proof of Lemma 8

Proof. Assume there is a PPT Type-2 adversary A that breaks the IND-CKA se-

curity (modeled as a game GameIND-CKAType-2 in Section 4.2.2) of our MediCare with

non-negligible advantage. Then we build a challenger C that can solve DBDH

problem with non-negligible advantage, by interacting with A . Given the DBDH

problem instance
〈
Σ, g, G1, G2, G3, Z

〉
, where G1 := gϕ1 , G2 := gϕ2 , G3 := gϕ3

(note that ϕ1, ϕ2, ϕ3 are unknown to C ), the task for C is to determine whether

Z = e(g, g)ϕ1ϕ2ϕ3 or Z is a random element of GT .

(1) C picks α, z
u←− Z∗

p and sets gT := e(g, g)α, h := gz. Next, it chooses

g1, g2, . . . , g10
u←− G, and seven collision-resistant hash functions {Hi}7i=1 (as de-

scribed in the construction). Now, C sets KPK := ⟨Σ, gT , g, h, {gi}10i=1,M,KDF,

{Hi}7i=1⟩, whereM := {0, 1}ℓpt is the message space and KDF is the key deriva-

tion function, and MK := gα. Next, C selects γ,ϖ1, ϖ2, ϖ3, ϖ4
u←− Z∗

p, com-

putes h1 := gϖ1 , h2 := gϖ2 , h3 := gϖ3 , h4 := gϖ4 , hT := e(g, g10)
γ, Y := Gz

1 and

sets T PK := ⟨hT , h1, h2, h3, h4⟩, T SK := ⟨γ,ϖ1, ϖ2, ϖ3, ϖ4⟩, CPK := Y, and

implicitly sets CSK := ϕ1. C sends the tuple PP := ⟨KPK, CPK, T PK⟩ to A .

(2) In this phase, firstly A queries signing key generation oracle OSKG(As), token

generation oracle O′
T G(Ad,Γt), and search oracle O′

search(CT ,Γt). C answers as

described subsequently.

� OSKG(As) : C returns SKAs ← sKeyGen(PP ,MK, As) since C knowsMK.
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� O′
T G(Ad,Γt) : C generates the trapdoor

T̃ DΓt := ⟨Γt, T1, T2, {Ti1, T ′
i2, Ti3, Vi1, Vi2, Vi3, Vi4}i∈[ℓt]⟩ as follows.

Here Γt := (Mt, ρ
◦
t , {wρ◦t (i)}i∈[ℓt]). Choose r̆i, r̆

′
i, ε2, . . . , εnt

u←− Z∗
p and com-

pute T1 := G2, T2 := Gz
3, tt := Zz, ϑi := M⃗

(i)
t · (γH3(tt), ε2, . . . , εnt),

Ti1 := gϑi10 · g
ϖ1ϖ2r̆i+ϖ3ϖ4r̆′i
8 , T ′

i2 := H2(tt||Γ◦
t ||M⃗

(i)
t ) · gϖ1ϖ2r̆i+ϖ3ϖ4r̆′i

9 ,

Ti3 := gϖ1ϖ2r̆i+ϖ3ϖ4r̆′i , Vi1 := (g
wρ◦t (i)
6 g7)

−r̆iϖ1 ,

Vi2 := (g
wρ◦t (i)
6 g7)

−r̆iϖ2 , Vi3 := (g
wρ◦t (i)
6 g7)

−r̆′iϖ3 , Vi4 := (g
wρ◦t (i)
6 g7)

−r̆′iϖ4 ,

Since C knowsMK, it computes the decryption key

DKAd ← dKeyGen(PP ,MK,Ad) and sends the tuple [DKAd , T̃ DΓt ] to A .

� O′
search(CT ,Γt) : C performs the EMR storage phase (given in Figure 4.4),

and if its output is ⊥, then C returns ⊥ as the response of O′
search oracle.

Otherwise, it computes CT u := ⟨∆e,∆k, tag2, E0, η, Ĕ, tag⟩. Next, C ob-

tains the trapdoor T̃ DΓt as in the simulation of O′
T G and then computes

T DΓ◦
t
, and finally returns the output of Search algorithm to A .

When this query phase is over, A sends to C a message emr⋆, an encryption

policy Γ⋆e, a signing policy Γ⋆s and two keyword sets

W ⋆
0 := {[W1 : w

(0)
1 ], . . . , [Wς : w

(0)
ς ]} and W ⋆

1 := {[W1 : w
(1)
1 ], . . . , [Wς : w

(1)
ς ]}.

(3) C selects µ
u←− {0, 1}, and a singing attribute set As such that Γ⋆s(As) = 1.

Next, it obtains CT ⋆ ← Signcrypt(PP ,SKAs ,Γ⋆s,Γ⋆e,W ⋆
µ , emr

⋆), where

SKAs ← sKeyGen(PP ,MK, As), and sends the challenge ciphertext CT ⋆ to A .

This is possible because C has the knowledge of the system master secretMK
and TGA’s secret key T SK.

(4) A now issues additional queries like step (2) with the obvious restriction that

A cannot query search oracle with the input (CT ⋆,Γt) such that Γt(W
⋆
µ) = 1.

C responds as in step (2). When this query phase is over, A outputs a guess

µ′ of µ.

A wins the game if µ′ = µ. Hence, if A wins, C will claim that Z = e(g, g)ϕ1ϕ2ϕ3 ;

otherwise, C claims that Z is a random element of GT .

If Z = e(g, g)ϕ1ϕ2ϕ3 , the challenge ciphertext CT ⋆ is properly simulated. If Z is

randomly chosen from GT , then CT ⋆ is independent of µ in A ’s view; resulting in

A ’s advantage is 0. As a result, if A has a non-negligible advantage in winning the

game, C has a non-negligible advantage in solving DBDH problem.


