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Abstract 

 

 

The thesis focuses on developing Innovative metaheuristic algorithms (HPSO, PSOHHO, 

PSOHHO-V, PSOMHHO, and Fuzzy BTO) inspired by nature. Despite the proliferation of 

metaheuristic algorithms, a significant void exists in conducting thorough theoretical and 

mathematical analyses. More studies are needed, particularly in the critical domain of 

convergence of metaheuristic algorithms. The proposed algorithm's theoretical analysis and 

mathematical foundation are established to tackle this challenge by introducing the concept of 

signature and convergence. The stability analysis of HPSO is also discussed to strengthen it 

mathematically even further.  

 

The thesis also emphasizes the applications of developed metaheuristic algorithms on 

different real-world problems in fuzzy and deterministic atmospheres. Job scheduling problems 

on computational grids commonly fall into NP-completeness or NP-hardness, making the quest 

for optimal solutions notably time-intensive. To address this challenge expediently and 

effectively, scholars have predominantly turned to the exploration of metaheuristic algorithms. 

Hence, the developed algorithm HPSO is applied to both single-objective and multi-objective 

Job Scheduling problems on the computational grid. 

 

Classification problems frequently involve a surplus of features, but not all contribute 

to the problem's essence. Redundant or irrelevant features may impede classification accuracy. 

Metaheuristic algorithms are favoured for feature selection due to their simplicity and practical 

applicability, offering advantages over deterministic optimization algorithms. For this purpose, 

the real-world application of developed algorithms PSOHHO, PSOHHO-V, PSOMHHO, and 

Fuzzy BTO are verified on feature selection problems. They are applied to the hybrid Feature 

Selection problem and compared with other metaheuristic algorithms on seven UCI machine 

learning repository datasets.  

 

Existing literature highlights the effectiveness of forecasting methods with more 

diverse set types. The idea of enhancing outcomes by incorporating additional inputs is closely 

observed. This theoretical basis advocates the efficiency of Picture Fuzzy Sets (PFYSs) in 

forecasting models. Notably, there needs to be more literature regarding the joint application 
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of PFYS and swarm intelligence for Fuzzy Time Series (FTS) forecasting. This chapter 

introduces the innovative EDSPSO-PFTS approach to address this gap. 

 

This thesis is structured into five sections, encompassing ten chapters. 

 

Part I consists of Chapter 1, an introduction, and motivation for the research work carried out. 

It features a comprehensive literature review emphasizing the importance of the thesis's focal 

issue. 

 

In Part II, the emphasis shifts to the real-world deployment of the newly created hybrid 

metaheuristic algorithms, specifically in the context of Job Scheduling on a computational grid. 

There are two chapters in this part, which are 2 and 3. 

 

Chapter 2 applies a proposed fuzzy particle swarm optimization to address single-objective 

job scheduling on computational grids. Focused on minimizing the makespan value, indicative 

of maximum task completion time across the grid, this chapter explores the impact of 

trapezoidal and pentagonal fuzzy numbers, presenting a detailed comparative analysis. 

 

Chapter 3 explores the application of fuzzy particle swarm optimization for multi-objective 

job scheduling on computational grids. The foundation established in the previous chapter is 

expanded upon in this chapter, which moves from single-objective to multi-objective 

optimization. This chapter aims to maintain a delicate balance between makespan and flowtime 

objectives, which are conflicting. 

 

The practical application of the proposed hybrid metaheuristic algorithms in the hybrid feature 

selection problem domain is the main emphasis of Part III of the thesis. There are five chapters 

in this section: Chapters 4, 5, 6, 7, and 8. 

 

In Chapter 4, a Hybrid Particle Swarm Optimization (HPSO) algorithm is introduced and 

applied to address a Hybrid Feature Selection problem. This chapter discusses the stability of 

the proposed HPSO algorithm through the Von Neumann stability criterion and Fourier series 

concepts. The convergence of HPSO is explained using the Markov chain concept. The chapter 

thoroughly compares results against other metaheuristic algorithms, employing statistical tests 

like the Friedman and Mann-Whitney U test to estimate the algorithm's statistical significance. 
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In Chapter 5, an improved version of the Particle Swarm Optimization algorithm, HPSO, is 

thoroughly explored for its application in multi-objective feature selection. This section 

represents a notable progression from single-objective to multi-objective optimization, 

leveraging the foundation in the previous chapter. The effectiveness of HPSO is meticulously 

evaluated across seven UCI datasets, with robust statistical analysis facilitated by the Wilcoxon 

rank sum test. 

 

In Chapter 6, two innovative hybrid optimization algorithms, PSOHHO and its variant 

PSOHHO-V, are introduced. These algorithms enhance their exploration capabilities by 

integrating a dual-swarm strategy and an exponential mutation operator. The evaluation of 

PSOHHO and PSOHHO-V involves rigorous analysis of statistical metrics and convergence 

rates, with extensive testing on benchmark functions. Furthermore, the algorithms are applied 

to feature selection problems, and their performance is benchmarked against alternative 

approaches using seven UCI datasets. 

 

In Chapter 7, a ground-breaking Hybrid Swarm Optimization algorithm, PSOMHHO, is 

introduced, seamlessly integrating Pentagonal and Trapezoidal Fuzzy Numbers. The chapter 

explores the mathematical foundations by proving the algorithm's convergence using the 

Markov Chain property and introducing the algorithm's signature. The effectiveness of 

PSOMHHO is meticulously evaluated through extensive benchmark function testing, 

establishing its superiority over established metaheuristic algorithms. Rigorous statistical tests, 

including the Mann-Whitney U test and the Friedman test, affirm the exceptional performance 

of PSOMHHO across various metaheuristic algorithms. 

 

Chapter 8 introduces innovative hybrid swarm optimization algorithms (Fuzzy BTO and its 

variants). Emphasizing the critical role of parameters in optimization, this chapter introduces 

fuzzy concepts for dynamic parameter adaptation. The efficiency of Fuzzy BTO and its variants 

are rigorously evaluated through extensive benchmark functions, followed by a comprehensive 

comparison with established metaheuristic algorithms. The robust statistical analysis, 

employing the Kruskal-Wallis Test (KWT), validates the superior performance of Fuzzy BTO 

across various metaheuristic algorithms. 
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In Part – IV of this thesis, the emphasis shifts to applying the proposed hybrid metaheuristic 

algorithms and Picture Fuzzy Set on Forecasting. This critical part is summarized in a singular 

chapter, namely Chapter 9. 

 

A novel picture fuzzy time series (PFTS) forecasting model built on the foundations of picture 

fuzzy sets (PFYSs) is presented in Chapter 9. This chapter develops a unique hybrid EDSPSO-

PFTS forecasting approach by integrating PFYS and EDSPSO. To illustrate the applicability 

and utility of the proposed forecasting method, it is applied to data sets from the Alabama 

University and the State Bank of India share price at the Bombay Stock Exchange, India. 

Average forecasting error (AFE) and mean square error (MSE) are used to evaluate the 

efficiency of the suggested approach. Thorough statistical validation and performance analysis 

are carried out to guarantee the validity and dependability of the proposed approach. 

 

The thesis summary for Part V is included in a single Chapter 10. It outlines the key findings 

from the study and points out the issues that still need to be addressed to further this field of 

study. 
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Chapter 1 

 

 

Introduction 

 

 

1.1 Motivation 

Metaheuristic algorithms represent a cornerstone in optimization, offering versatile and 

adaptive solutions to diverse complex problems. These algorithms, characterized by their 

ability to navigate vast solution spaces efficiently, have emerged as indispensable tools in 

various research and application domains. They draw inspiration from natural phenomena or 

utilize heuristic strategies to discover near-optimal or satisfactory solutions. In general, two 

types of metaheuristic algorithms are present: a single solution-based (i.e., Simulated 

Annealing (SA)) and population-based (i.e., GA). In a single solution-based optimization 

algorithm, only one solution is processed. In the Population-based metaheuristic (P-

metaheuristics) algorithms, a set of solutions is processed in each iteration of the optimization 

process. P-metaheuristics mostly take motivation from nature and mimic their behavior1. P-

metaheuristics can be categorized mainly into three groups, based on the motivation it takes2: 

Evolutionary Algorithms (EAs), Swarm Intelligence (SI), and Physics-based algorithms as 

presented in Fig. 1.1. EAs mimic biological evolutionary behaviors like mutation, cross-over, 

and selection. Some popular EAs are GA, Differential Evolution (DE)3, and Genetic 

Programming (GP). SI mimics the social behaviors of organisms living in swarms, flocks, or 

herds4. The bird flocking behavior is the main inspiration for the PSO proposed by Eberhart 

and Kennedy5. In PSO, each particle is a possible solution to a given optimization problem. 

Some popular SI are Cuckoo Search (CS)6, Ant Colony Optimization (ACO)7, and ABC. 

Physics-based algorithms are motivated by physical laws. Central force optimization and 

gravitational search algorithms (GSA)8 are some examples of physics-based algorithms.  
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The no-free-lunch (NFL) theorem9 states that no optimization algorithm can be the most 

efficient for every optimization problem. Some algorithms may perform better for specific 

situations than others. The trend of hybridizing metaheuristic algorithms is on the rise, as it can 

improve their performance in solving real-world optimization problems that are often non-

linear and high-dimensional. Metaheuristic algorithms are preferred over deterministic 

optimization algorithms due to their simplicity and ease of implementation in real-life 

scenarios. Various metaheuristic algorithms, such as the Genetic Algorithm (GA)10, social 

spider algorithm11, Bat algorithm (BA)12, Slime Mould algorithm (SMA)13, Whale 

Optimization algorithm (WOA), Firefly algorithm (FA)14, Salp swarm algorithm (SSA)15, Grey 

wolf optimizer16, Multi-verse optimization algorithm (MVO)17, Fruit Fly optimization 

algorithm (FOA), and others have been applied to various real-world problems. Many hybrid 

optimization techniques that combine Artificial Bee Colony (ABC) and Particle Swarm 

Optimization (PSO) have also been used for path optimization problems.  

 

1.2 Theoretical Analysis 

Proper theoretical and mathematical analysis of many metaheuristic algorithms has yet to be 

done. Very little work has yet to be done regarding studying the convergence of metaheuristic 

algorithms. Since many metaheuristic algorithms suffer from premature convergence or get 

stuck in local optima, proper mathematical analysis of any given metaheuristic algorithm is 

very important. Different algorithms have been proposed to prove the convergence 

of metaheuristic algorithms, such as multi-objective PSO18 and Markov Chain for Chicken 

Swarm Optimization19. Markov Chain is a random process with a strong capability for 

probabilistic analysis and convergence analysis of randomized algorithms. It has been 

successfully implemented on the ABC algorithm, the PSO, the ACO, and the SA. Stability 

analyses have been conducted on a range of algorithms, such as PSO and ABC, using Von 

Neumann stability analysis, Differential Evolution (DE) employing both Von Neumann and 

Lyapunov stability criteria, Gravitational Search Algorithm (GSA) concerning Lyapunov 

stability criterion, and Bacterial Foraging Optimization (BFO). 
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Fig 1.1. Classification of P-metaheuristic algorithm 

 

1.3 Preliminaries 

In this section, we lay out the fundamental concepts crucial for a thorough comprehension of 

the forthcoming chapters. Section 1.3.1 provides insights into the fundamental ideas related to 

Fuzzy Set (FYS). Subsequently, Sections 1.3.2, 1.3.3, and 1.3.4 elaborate on the concepts of 

Harris Hawk Optimization (HHO), Particle Swarm Optimization (PSO), and GA, respectively. 

 

1.3.1 Fuzzy Set (FYS) 

Zadeh's ground-breaking proposition of FYS in the literature marked a paradigm shift, 

employing human logic to tackle engineering challenges while algorithmically summarising 

human decision-making and evaluation processes20. FYS theory is used for transposing human 

logical and adaptable thought processes into the domain of computational intelligence. 

Consequently, it emerges as an indispensable tool for confronting complexities stemming from 

incompleteness, unreliability, vagueness, randomness, and imprecision within artificial 

intelligence applications. This fusion of FYS with artificial intelligence has catalyzed 

advancements across various products. An illustrative instance is in self-driving cars, where 

fuzzy logic-based artificial intelligence takes the lead. FYS furnishes us with mathematical 

constructs to emulate human reasoning, assuming a pivotal role in applications rooted in 
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human-like cognition, including humanoid robots and human decision-making. The literature 

review attests to the surging adoption of intelligent techniques integrated with FYSs, a trend 

that sees growing traction with each passing year. The landscape of FYSs has undergone a 

transformative phase through the introduction of extensions that offer complex details about 

membership functions. This has sparked notable research interest, particularly in areas like 

Picture Fuzzy Set (PFYS), Spherical FYS, Fermatean FYS, Circular Intuitionistic FYS, and 

Decomposed FYS. Fig 1.2 serves as an illustrative overview of these extensions, signifying a 

substantial expansion beyond the conventional FYS. 

 

Fuzzy Number 

A FYS is called a fuzzy number when the following properties are satisfied 

 A must be a normal FYS. 

 All α-cuts of A must be in a closed interval.  

 The support of A must be bounded. 

 

Trapezoidal Fuzzy Number (TFN) 

A fuzzy number is called a TFN if the following conditions are satisfied- 

 Let the TFN be denoted by (𝑎, 𝑏, 𝑐, 𝑢) with membership function (𝑥). 

 (𝑥) must be a continuous membership function whose interval is [0,1]. 

 (𝑥) must be a strictly non-decreasing function that is continuous on the intervals [𝑎, 𝑏]. 

 (𝑥) = 1, in the interval [𝑏, 𝑐]. 

 (𝑥) must be a strictly non-increasing function that is continuous on the intervals [𝑐, 𝑢]. 

 

Pentagonal Fuzzy Number (PFN) 

A fuzzy number is called a PFN if the following conditions are satisfied- 

 Let the PFN be denoted by (a, b, c, d, e) with membership function (𝑥). 

 (𝑥) must be a continuous membership function whose interval is [0,1]. 

 (𝑥) must be a strictly non-decreasing function that is continuous on the intervals [𝑎, 𝑏] 

and [𝑏, 𝑐]. 
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 (𝑥) must be a strictly non-increasing function that is continuous on the intervals [𝑐, 𝑑] 

and [𝑑, 𝑒]. 

 

 

Fig 1.2. Extension of FYSs 

 

1.3.2 Harris Hawk Optimization (HHO) 

HHO is an optimization technique based on swarm Intelligence. HHO consists of two phases: 

exploration and exploitation. The value of E_E  helps us to know whether to be in the 

exploration or exploitation phase. In the exploration stage, HHO is first randomly located. 

There are two cases in the Exploration stage. Each case has an equal chance of selection based 

on the random value, as in Table 1.1. Again, in the exploitation phase, there are four cases. 

The updating in the exploitation stage is based on the importance of E_E and a random value, 

as given in Table 1.1. The notations of HHO are shown in Table 1.1. 

  

Exploration 

In this phase, the particles move according to Eq. (1.1). Again, the value of 𝑐0 determines 

which equation should be used. Finally, the value of 𝑧𝑎𝑟𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡) is computed using Eq. (1.2). 

𝑧(𝑡 + 1) = {
𝑧𝑟(𝑡) − 𝑐1|𝑧𝑟(𝑡) − 2𝑐2𝑧(𝑡)|, 𝑐0 ≥ 0.5

(𝑧𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) − 𝑧𝑎𝑟𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡)) − 𝑐3 × (𝑐4(𝑢 − 𝑙) + 𝑙), 𝑐0 < 0.5
                     (1.1) 
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𝑧𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡) = ((
1

𝑁
) × (∑ 𝑧𝑖(𝑡))

𝑁
𝑖=1 )                                                            (1.2)                                                     

Phase change between exploitation and exploration 

It depends on the value of E_E. Whenever the value of |𝐸_𝐸| is greater than one, HHO performs 

exploration. Otherwise, it performs exploitation. The value of 𝐸_𝐸 is computed using Eq. (1.3). 

𝐸_𝐸 = 2𝐸0 (1 −
𝑡

𝑇
)                                                             (1.3) 

Here 𝐸0 = (2 × 𝑟𝑎𝑛𝑑) − 1 is the initial Energy updated in each iteration.  

 

Table 1.1. Notations of the HHO algorithm 

 

Exploitation 

Four cases are given to study the exploitation stage. Each case depends on the 𝐸_𝐸 and random  

number 𝑐. 

 

Notation Description 

𝐸_𝐸  Escaping Energy 

𝑧(𝑡), 𝑧𝑟(𝑡)  Current position, the position of a random individual  at  

iteration 𝑡, respectively 

𝑐0, 𝑐1, 𝑐2, 𝑟, 𝑣, 𝑐, 𝑐3, 𝑐4, 𝑐5  Random numbers in the range [0,1] 

𝑧𝑎𝑣𝑒𝑟𝑎𝑔𝑒(t) average position of the population set at iteration t  

𝑧𝑡𝑎𝑟𝑔𝑒𝑡(t) global best position 

𝑢, 𝑙  Upper and lower bound 

𝑇, 𝑡  Maximum iteration and current iteration 

𝐸0 Initial Energy 

𝐷  Dimension of the problem 
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Case A 

is When |𝐸_𝐸| ≥ 0.5 and 𝑐 ≥ 0.5. The following equation updates the current locations- 

𝑧(𝑡 + 1) = ∆𝑧(𝑡) − 𝐸_𝐸 × |(𝐽𝑢𝑚𝑝_𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ) × 𝑧𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) − 𝑧(𝑡)|                                 (1.4) 

Where,               

∆𝑧(𝑡) = 𝑧𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) − 𝑧(𝑡)                                                                          (1.5) 

𝐽𝑢𝑚𝑝_𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 2(1 − 𝑐5)                                                                     (1.6) 

 

Case B  

When |𝐸_𝐸| < 0.5 and 𝑐 ≥ 0.5. The following equation updates the current locations- 

𝑧(𝑡 + 1) = 𝑧𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) − 𝐸_𝐸 × |∆z(t) |                                          (1.7) 

 

Case C  

When | 𝐸_𝐸 | ≥ 0.5 and 𝑐 < 0.5. The search agents follow the next move according to the 

following rule 

𝑌 = 𝑧𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) − 𝐸_𝐸 × |(𝐽𝑢𝑚𝑝_𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ) × 𝑧𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) − 𝑧(𝑡)|                              (1.8) 

The Levy flight concept is used here. The rule is as follows- 

𝑎 = 𝑌 + (𝑟 × 𝑣 × 𝑙𝑒𝑣𝑦(𝐷))                                                                          (1.9) 

The levy flight distribution is as follows-                                                                        

𝑙𝑒𝑣𝑦(𝑥) = (
𝑢×𝜎

|𝑣|
1
𝛽

)                                                              (1.10) 

𝜎 =  [
𝛤(1+𝛽)𝑠𝑖𝑛𝑠𝑖𝑛 

(𝛱𝛽)

2
 

𝛤(
(1+𝛽)

2
)∗𝛽∗2

(𝛽−1)
2

]

1

𝛽

                                                       (1.11) 
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Hence, the mechanism for this case is as follows- 

               𝑧(𝑡) = {
𝑌,   𝑖𝑓 𝐹(𝑌) < 𝑧(𝑡)  

𝑎,   𝑖𝑓 𝐹(𝑎) > 𝑧(𝑡)    
                              (1.12) 

 

Case D 

When | E_E |< 0.5 and 𝑐 < 0.5, The search agents follow the next move according to the 

following rule 

𝑌` = 𝑧𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) − 𝐸_𝐸 × |(𝐽𝑢𝑚𝑝_𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ) × 𝑧𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) − 𝑧𝑎𝑟𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡)|                 (1.13) 

𝑎` = 𝑌` + (𝑟 ∗ 𝑣 ∗ 𝑙𝑒𝑣𝑦(𝐷))                                                       (1.14) 

𝑧(𝑡) = {
𝑌`,   𝑖𝑓 𝐹(𝑌`) < 𝑧(𝑡)  

𝑎`,   𝑖𝑓 𝐹(𝑎`) > 𝑧(𝑡)   
         (1.15) 

 

1.3.3 PSO 

Kennedy and Eberhart introduced the PSO technique, which is nature-inspired optimization5. 

It is a metaheuristic technique that works well for challenges encountered in daily life. The 

methodology is based on the swarming, and other variations have already been created. Each 

particle in PSO has its position and velocity initialized first. The position and velocity are then 

updated after each iteration using the mathematical Eq. (1.16) and Eq. (1.17). 

𝑠(𝑡 + 1) = ((ℎ1 × 𝑐6) × (𝑧𝑝(𝑡) − 𝑧(𝑡))) + (ℎ × 𝑠(𝑡)) + ((ℎ2 × 𝑐7) × (𝑧𝑔(𝑡) − 𝑧(𝑡))) 

                                     (1.16) 

𝑧(𝑡 + 1) = 𝑧(𝑡) + 𝑠(𝑡 + 1)                                                                                        (1.17) 

 

Table 1.2 contains all of the PSO notations. They are essential in this situation. While 

a small value of h aids in local exploitation, a big value of h aids in exploration. Moreover, it 

influences the PSO's convergence behaviour. The social experience of that particle, as well as 

the social experience of every particle, is very important in this strategy. For PSO to be 

implemented successfully, there must be a proper relationship between the problem solutions 

and swarm particles. This method converges more quickly than previous global optimization 
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techniques21. Several PSO variations have a wide range of uses22,23. A hybrid FTS forecasting 

algorithm is built using PSO24,25. 

 

Table 1.2. Notations of the PSO method 

Notation Description 

𝑠(𝑡), 𝑠(𝑡 + 1) The velocity of the particle at (t) and (t + 1) iteration 

respectively 

𝑐6, 𝑐7 Two random numbers in the range [0,1] 

𝑧(𝑡),𝑧𝑝(𝑡 + 1) and 

 𝑧𝑔(𝑡 + 1) 

Current position, personal best position, and global best 

position, respectively at (t) iteration 

                 ℎ1 and ℎ2 Two positive constants (acceleration coefficients) 

ℎ Inertia weight 

 

1.3.3 Genetic Algorithm 

Natural selection and genetics are the foundation for the GA search technique26. Genes are 

binary string representations of a solution (chromosomes) encoded by the GA. An allele is the 

value of a gene26. Genetic recombination (crossover), a low risk of mutation, and fitness 

proportionate selection are used in the GA to create good solutions27. The population is 

changed, and new generating solutions are assessed. Because of its competitive character, 

which permits the survival of solutions suited to favourable settings, GA is frequently used for 

complex and large-scale problems28,29. It shows promise for quickening convergence and 

improving the caliber of final solutions30. Because of GA's versatility, more study has been 

done to improve its performance by changing its processes, including initialization30,31, and 

genetic (crossover and mutation) operators32,33. In n-dimensional GA-based problems, each 

chromosome or individual is represented by an n-bit binary sting. Here, the concepts of 

Mutations, Crossover, and other reproduction operators are applied to the problem to obtain 

optimal solutions. 

 

1.4 Job Scheduling on Computational Grids  

A computational grid is a large-scale and heterogeneous collection of autonomous systems. 

The sharing of computational jobs among the grid is one of the significant applications of the 
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grids. Several metaheuristic algorithms are developed to minimize the average completion time 

of jobs on each grid node through optimal job allocation. The field of job scheduling is complex 

since it calls for overcoming several efficiencies, resource utilization, and workload 

management challenges, as well as considering various resources, task dependencies, and 

confidentiality difficulties. Most scheduling problems for jobs are either NP-complete or NP-

hard. As a result, compared to other options, it takes a very lengthy time to find an optimal 

solution34. To find a rapid yet efficient solution to this scheduling problem, most academics 

have been driven to explore an acceptable scheduling algorithm.  

 

1.4.1 Need of Proposed Algorithms for Job Scheduling Problems 

Heuristic and meta-heuristic algorithms are applied to obtain optimal or nearly optimal 

solutions to explain job scheduling because traditional algorithms frequently fall short of fully 

understanding conditions. Metaheuristic algorithms are the most effective means of escaping 

the local minima issue from which heuristic solutions typically suffer, as noted in35. To solve 

NP-complete problems, metaheuristic algorithms effectively search the search space for a sub- 

or near-optimal solution. The scheduling procedure assigns the tasks in the workflow to the 

appropriate resources based on predetermined scheduling criteria. Makespan is defined as the 

total amount of time needed to complete the workflow, considering both the time the tasks 

were completed and the time they were submitted. 

 

1.5 Feature Selection 

Classification problems often contain a large number of features (NF). Feature Selection 

involves selecting a subset of original features that can achieve high accuracy in a classification 

problem. However, only some of the features are helpful for classification-type problems. The 

features that are reductant and Irrelevant may reduce the classification accuracy. Assuming we 

choose every feature, the task becomes more complicated and time-consuming. The primary 

goals of the Feature Selection problems are to improve accuracy and reduce the NF. Several 

fields, including text mining, image processing, computer vision, industrial applications, 

bioinformatics, and others, use Feature Selection problems in various ways.  

 



12 
 

 A typical feature selection algorithm typically consists of five basic steps. The process 

begins with an initialization step based on all the unique properties in the issue domain. After 

that, candidate feature subsets are created using a discovery technique. This process, which 

functions like a search mechanism, might begin with none, all, or a random subset of features. 

The best subset of features is found using a variety of search strategies, including both 

traditional and evolutionary ones. An evaluation function then enters the picture to determine 

how valuable the feature subset is. This function is crucial in directing the algorithm to the best 

subset. The crucial next phase, guided by predetermined criteria, is deciding when to stop the 

procedure. These standards could be based on the evaluation function or the search process. 

They could include requirements like achieving a predetermined number of chosen features or 

a predetermined number of iterations. Until the halting requirement is satisfied, the loop 

continues. The validity of the chosen subset is then established by instituting a validation 

method. Although it isn't a direct step in the feature selection procedure, it is a crucial step that 

guarantees the effectiveness of the selected algorithm. The chosen feature subset is validated 

against a test set, and the results are compared to those from earlier studies or from 

benchmarking methodologies that have been predetermined.  

 

The three categories into which feature selection procedures are subdivided for 

evaluation purposes are wrapper approaches, embedding techniques, and filter approaches. In 

wrapper techniques, a learning mechanism is employed to evaluate the worth of selected 

feature subsets, most typically classification accuracy. Specifically, wrapper techniques 

repeatedly generate several candidate feature subsets by specified strategies, and then they use 

a classification algorithm to evaluate the corresponding classification accuracy. Embedded 

techniques always use a classification algorithm, even though the features are chosen during 

classifier training36. Filtering methods, in contrast, examine candidate subsets without using a 

classification system. The evaluation is primarily based on a dataset's inherent qualities. Since 

no learning is involved, the filter technique is the oldest and is thought to be the simplest of the 

three. On the other hand, because they take into account how the chosen features and the 

classification algorithm interact, the wrapper and embedding strategies typically provide higher 

classification results.  
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First and foremost, representation scalability is crucial. Real-world datasets frequently 

include various features, numbering thousands or even millions. Therefore, any suggested 

method must be scalable. This calls for including a reliable, scalable classifier in the algorithm's 

architecture to manage such big datasets effectively. 

 

Second, the classifier selection significantly influences the quality of outcomes in a 

wrapper feature selection approach. Metaheuristic algorithms have been used to address feature 

selection issues with a variety of classifier types, including but not limited to K-nearest 

neighbour (KNN), Support Vector Machine (SVM), Naive Bayesian (NB), Random Forest 

(RF), Artificial Neural Network (ANN), Fuzzy rule-based (FR), and Decision Tree (DT). 

 

Last but not least, the key step in a wrapper feature selection approach is choosing the 

best feature subset by maximizing a designated objective function. The particular 

categorization issue at hand will determine how this objective function behaves. Its function 

may include the elimination of unnecessary features or the improvement of classification 

precision. A multi-objective function is frequently developed to resolve competing objectives 

in the feature selection problem. This combines the two goals and streamlines the multi-

objective function into a single goal using a weighted learning approach. The most favourable 

feature subset has been determined using such multi-objective functions in research on a large 

scale37,38. 

 

1.5.1 Need of Proposed Algorithms for Feature Selection Problems 

Achieving the desired accuracy in time series forecasting has become a binding domain, and 

developing a forecasting framework with a high degree of accuracy is one of the most 

challenging tasks in this area. Combining different forecasting methods to construct efficient 

hybrid models regarding this challenge has been widely reported in the literature. Various 

hybrid models have been developed and successfully employed to improve forecasting 

accuracy. Despite the significant successes of hybrid models, efforts to access more accurate 

results face continued growth.  

 

 



14 
 

1.5.2 Benchmark Datasets  

The proposed approaches for FS problems are assessed throughout this thesis using a variety 

of benchmark classification tasks with differing degrees of complexity. Table 1.3 provides a 

summary of the datasets. The UCI Repository of Machine Learning Databases provided these 

carefully selected datasets39. Different quantities of features, classes, instances, and data types 

(continuous and categorical) are present in the chosen datasets. The datasets serve as illustrative 

examples of the types of issues that the suggested algorithms can handle. 

 

Table 1.3. Detailed information of all seven datasets. 

Sl. No. Datasets Features Instances 

1 Wine 13 178 

2 WDBC 30 569 

3 Ionosphere 34 351 

4 Sonar 60 208 

5 Libras Movement 90 360 

6 Hill Valley 100 606 

7 Musk 1 166 476 

 

1.6 Forecasting 

Forecasting challenges have been addressed through numerous approaches, with a notable 

portion employing FYS or FYS-related methodologies. FTS approaches, Mamdani-type Fuzzy 

Inference Systems (FIS), and Sugeno-type FIS have all been widely utilized forecasting 

techniques. Song and Chissom40 introduced the foundational definition of FTS. There have 

been more studies about FTS approaches in recent years. Kocak established an ARMA-style 

FTS forecasting technique. Güler Dincer and Akkuş concentrated on the fuzzification stage 

and proposed a robust clustering-based FTS approach. Based on fuzzy c-regression, Güler 

Dincer suggested an FTS approach. In the FTS approach, Bas et al. incorporated the pi-sigma 

neural network to identify fuzzy relations. A subtractive clustering technique and an algorithm 

for artificial bee colonies were employed in Zeng et al.'s41 proposal for a method of FTS 

forecasting. Jiang et al. introduced an innovative forecasting methodology for wind speed data 

using a hybrid approach that integrated Multi-Objective Optimization (MOO) and FTS 
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techniques. A multivariate FTS technique that uses long short-term memory to define fuzzy 

relations was proposed by Tran et al. A combination strategy using a convolutional neural 

network and an FTS was proposed by Sadaei et al.42. Statistical inferences, establishing 

confidence intervals, and obtaining forecast distributions have been the main goals of some 

investigations on FTS. Yolcu et al. suggested using a statistical fuzzy inference method to 

derive statistical findings from Time Series Data (TSD) within an FS. Various nature-inspired 

optimization algorithms have applications in other fields43,44 and can also be modified to obtain 

the optimal length of the intervals in FTS forecasting. 

 

1.6.1 Need of Proposed Approach for Forecasting Problems 

Intuitionistic Fuzzy Set (IFYS) can be regarded as an extended version of FYS, offering a more 

inclusive and flexible framework. The intuitionistic fuzzy c-means algorithm was utilized to 

introduce the modeling and implementation of intuitionistic FTS. Various Intuitionistic FTS 

approaches were proposed. Bisht and Kumar created hesitant FYSs using triangle membership 

functions with equal and unequal intervals. A high-order intuitionistic FTS technique was put 

out by Abhishekh45. Novel intuitionistic FTS definitions and a novel high-order intuitionistic 

FTS forecasting method were introduced by Egrioglu46.  

 

Picture Fuzzy Set (PFYS) is an upgraded version of IFYS that provides a more inclusive 

and flexible foundation. Thong and Son employed IFYS and picture fuzzy clustering (PFC) to 

make medical diagnoses. The concept of a PFYS set was incorporated into the clustering model 

by Thong and Son, who presented the idea of PFC.  Son et al. provided a control theory 

application with an idea for a picture FIS. An analysis of the literature demonstrates that 

approaches for forecasting have been found extremely useful with more general set types. 

According to the literature, adding more inputs to the model with latent variables has improved 

inference outcomes. Membership values can be viewed as latent variables that give extra inputs 

for the models. This theory suggests that employing PFYSs in a forecasting model can be 

helpful. 
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1.7 Scope of the Thesis 

The present thesis aims to propose different novel metaheuristic algorithms with critical 

applications in job scheduling, feature selection, and time series forecasting. Parameter 

adaptation of the proposed algorithms is another critical aspect addressed in the thesis. There 

is a considerable research gap as theoretical and mathematical analysis of most of the 

metaheuristic algorithms has yet to be proved or even discussed, so this issue has also been 

addressed in the form of stability, convergence, and signature. Multi-objective metaheuristic 

algorithms are developed to address the issue of job scheduling and feature selection. 

Integration of PFYS with an improved version of PSO is done to address the FTS forecasting 

problem. 

 

1.8 Organization of the Thesis 

 

This thesis comprises five parts, which consist of ten chapters. 

 

            Part- I has a single Chapter 1, which acts as an introductory section, motivating the 

research carried out. It includes an extensive literature review highlighting the significance of 

the issue addressed in the thesis.  

 

      Part – II of the thesis focuses on the practical implementation of the developed hybrid 

metaheuristic algorithms in the domain of Job Scheduling on a computational grid. This part 

consists of two chapters, namely Chapters 2 and 3. 

 

       Chapter 2 presents the application of fuzzy PSO with single-objective job scheduling 

on the computational grid. This chapter presents a specialized fuzzy PSO technique designed 

to tackle the job scheduling problem in computational grids. The central goal is to minimize 

the makespan value, indicating the maximum completion time of all tasks across the grid. The 

chapter systematically investigates the influence of trapezoidal and pentagonal fuzzy numbers 

on the optimization process and conducts a comparative analysis. 
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              Chapter 3 provides a detailed exploration of utilizing fuzzy PSO for multi-objective 

job scheduling on the computational grid. This chapter builds upon the groundwork laid in the 

previous chapter, advancing from single-objective to MOO. The conflicting nature of 

makespan and flowtime as objective functions is addressed, necessitating a delicate balance 

between the two.   

 

               Part III of the thesis focuses on practically implementing the developed hybrid 

metaheuristic algorithms in the hybrid Feature Selection problems domain. This part consists 

of five chapters, namely Chapters 4, 5, 6, 7, and 8. 

 

        Chapter 4 introduces and applies a hybrid PSO algorithm to solve a Hybrid Feature 

Selection problem. This chapter provides a detailed mathematical explanation of the stability 

of the proposed HPSO algorithm, employing Von Neumann stability criterion and Fourier 

series concepts substantiated by rigorous proof. Furthermore, the convergence of the proposed 

HPSO algorithm is elucidated using the Markov chain concept. This chapter concludes with a 

comprehensive graphical and statistical comparison of results with other meta-heuristic 

algorithms, employing Friedman and Mann-Whitney U tests to assess the statistical 

significance of the proposed algorithm. 

 

        Chapter 5 comprehensively explores an enhanced version of the PSO algorithm, 

HPSO, and its application in multi-objective feature selection. This chapter marks a significant 

advancement from single-objective to MOO, building upon the framework established in the 

prior chapter. The effectiveness of HPSO is rigorously assessed across seven UCI datasets, 

with the Wilcoxon rank sum test employed for robust statistical analysis. 

 

        Chapter 6 introduces two innovative nature-inspired Hybrid optimization algorithms: 

PSOHHO and its variant PSOHHO-V. These algorithms incorporate the concepts of dual-

swarm strategy and an exponential mutation operator (EMO) to amplify their exploration 

capabilities. PSOHHO and PSOHHO-V were evaluated based on statistical metrics and 

convergence rates, with extensive testing on ten benchmark functions. Additionally, the 

algorithms were applied to feature selection problems, and their effectiveness was 

benchmarked against other approaches using seven UCI datasets. 
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      Chapter 7 unveils a novel Hybrid Swarm Optimization algorithm that integrates 

Pentagonal Fuzzy Numbers (PFN) and Trapezoidal Fuzzy Numbers (TFN). This innovative 

approach integrates PSO and Harris Hawk Optimization (HHO) principles to increase 

exploration opportunities. The mathematical foundations signature is introduced to obtain an 

idea of the optimization algorithm's intrinsic bias, and convergence is proved using the Markov 

Chain (MC) property. To evaluate the efficiency of PSOMHHO, it undergoes rigorous testing 

on benchmark functions and is compared against other established metaheuristic algorithms. 

Statistical significance is assessed using the Mann-Whitney U test and the Friedman test, 

affirming the prowess of PSOMHHO against various metaheuristic algorithms. 

 

      Chapter 8 introduces a ground-breaking hybrid optimization strategy termed Fuzzy 

PSOHHO, including its different variants. By melding the principles of Fuzziness, Escape 

Energy from Harris Hawk Optimization (HHO), and PSO, this technique is engineered to 

amplify exploration capabilities while maintaining a delicate equilibrium between exploration 

and exploitation. Recognizing the pivotal role of parameters in optimization, this chapter 

introduces the fuzzy concept for dynamic parameter adaptation within the framework of Fuzzy 

PSOHHO. The effectiveness of Fuzzy PSOHHO is meticulously assessed through extensive 

testing on benchmark functions and subsequent comparison with well-established 

metaheuristic algorithms. Rigorous statistical analysis employing the Kruskal-Wallis Test 

(KWT) decisively validates the superior performance of PSOMHHO over a range of 

metaheuristic algorithms. 

 

                Part – IV of the thesis focuses on the practical implementation of the developed 

hybrid metaheuristic algorithms in the domain of Forecasting. This part consists of one chapter, 

namely Chapter 9. 

 

          Chapter 9 presents a ground-breaking picture fuzzy time series (PFTS) forecasting 

model constructed based on the principles of picture fuzzy sets (PFYSs). This article presents 

a novel variant of the PSO (EDSPSO) algorithm, enhancing the PSO algorithm with the EMO 

and a dual-swarm strategy. This article integrates PFYS and EDSPSO to develop a novel hybrid 

EDSPSO-PFTS forecasting method. The suggested forecasting method is used on data sets 

from the Enrolments of Alabama University (UAE) and the State Bank of India Share Price 
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(SBISP) at the Bombay Stock Exchange, India, to demonstrate its applicability and usefulness. 

Mean square error (MSE) and average forecasting error (AFE) are used to gauge the 

effectiveness of the proposed method. The significant reduction in both MSE and AFE is solid 

evidence of the superior performance of the proposed EDSPSO-PFTS method compared to 

various existing methods. Rigorous statistical validation and performance analysis are 

conducted to ensure the reliability and validity of the proposed method.  

 

               Part V consists of a single Chapter 10, serving as the thesis summary. It highlights 

the main conclusions drawn from the research work and identifies the remaining challenges 

that require attention in this particular area of research in the future. 
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Part – II 

 

 

Application of the Developed Hybrid Metaheuristic Algorithms in 

the domain of Job Scheduling on a Computational Grid. 

 

 

(Chapter 2 and Chapter 3) 
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Chapter 2  

 

 

Scheduling of Jobs on Computational Grids by Fuzzy Particle 

Swarm Optimization Algorithm using Trapezoidal and Pentagonal 

Fuzzy numbers 

 

 

2.1 Introduction 

A computational grid is a large-scale and heterogeneous collection of autonomous systems. 

The sharing of computational jobs among the grid is one of the significant applications of the 

grids. Its resources may be distributed among different owners, who may have some constraints 

and various access policies. Several metaheuristic methods are developed to minimize the 

average completion time of jobs on each Grid node through optimal job allocation47. A more 

complete analysis of the scheduling on the grid was provided by Dong and Akl, which is known 

as a N-P complete problem48. Every grid node has a processing speed and requirements of its 

own. So here we are using fuzzy PSO, a job scheduling problem on computational grids. Then, 

we will compare the TFN results with those obtained with PFN. This problem aims to minimize 

the time complexity and efficient use of grid nodes. The success of a PSO problem depends on 

the mapping between the PSO particle and the possible solution.  

 

The rest of the chapter is organized as follows. Section 2.2 explains some basic concepts 

required to understand this chapter properly. Section 2.3 explains the problem we have tackled 

in this chapter. In Sections 2.4 and 2.5, the proposed algorithm and Numerical experiment are 

given, respectively, which fulfills our objective in this chapter. In Section 2.6, the conclusion 

of the above approach is presented.  
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2.2 Background 

For a proper understanding of the work explained in this chapter, the concepts of fuzzy 

numbers, TFN, and PFN are required, which are explained in Section 1.3. Here, the particles 

are guided using the concepts of PSO, which are also described in Section 1.3. 

  

2.3 Problem Formulation  

Here, in this problem on computational grids, there is generally a framework focusing on the 

interaction between the grid information server, the grid's resource broker, and the domain 

resource manager. In this section, the problem of this chapter is explained. The scheduling of 

jobs on the grids using fuzzy PSO is explained in the computational grid environment. For our 

proper understanding, some important terms and concepts are defined. They are as follows- 

 

Scheduling Problem 

The schedule is a function from jobs to the specific intervals of time of the grid node. A 

scheduling problem is defined as the jobs allocated to the machines with optimal criteria. In 

this chapter, the scheduling problem is defined as the allocation of jobs to specific 

computational grids with optimal criteria. Here optimal criteria is the maximum number of 

iterations allowed. 

 

Grid Nodes 

A grid node is a computational resource whose capacity is limited. It can be a computer lab, 

workstation, personal computer, or a collection of computers at a specific location. The 

computational capacity of the grid node depends on the amount of memory, number of Central 

processing units, basic storage space, and other types of specifications. Every Grid node has a 

processing speed of its own which is expressed as the number of cycles per unit time. 

 

Makespan 

 In Job scheduling problems, makespan can be defined as the maximum of all the completion 

time. First jobs are assigned to grids, then we will compute the time taken by each grid to 

complete all the jobs that are assigned. Then we will take the maximum of all the completion 
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time of all the grids. Mathematically speaking if 𝑑(𝑖, 𝑗) is the completion time, In other words, 

𝑑(𝑖, 𝑗) is the time taken by the grid node 𝐺(𝑖) to finish the job 𝐽(𝑗). The time taken by the grid 

node to execute all the jobs allocated to that grid node only is represented by ∑𝑑(𝑖). Now max 

∑𝑑(𝑖) is called makespan.       

 

Jobs  

Job is a collection of operations or a single operation allocated to the computational grid. Now 

we are going to explain the concerned problem. Now 𝐽(𝑗) means Job on the machine 𝑗 and 

𝐺(𝑖)  means Grid at the node 𝑖 . Now let us consider jobs 𝐽(𝑗) , 𝑗 ∈  (1,2,⋯ , 𝑏)  that are 

independent on Grid nodes 𝐺(𝑖) , 𝑖 ∈  (1,2,⋯ , 𝑎). This problem aims to minimize the time 

complexity and efficient use of grid nodes. 

 

Now we define 𝑑(𝑖, 𝑗) as the completion time, In other words, the time taken by the 

grid node 𝐺(𝑖) to finish the job 𝐽(𝑗). The time taken by the grid node to execute all the jobs 

allocated to that grid node only is represented by ∑d(𝑖) . Now max {∑d(𝑖)}  is called 

makespan. ∑ (∑d(𝑖))a
i=1  is called the flowtime. These concepts are used while applying the 

fuzzy PSO algorithm. The objective of this chapter is to minimize the makespan value. We 

have to optimize a job scheduling that minimizes the makespan value. That is to minimize the 

maximum time all Grids take to complete all the assigned jobs. And then to see the effects of 

TFN and PFN on it. 

 

2.4 Proposed Algorithm (Fuzzy PSO) 

In this section, the fuzzy PSO algorithm is explained in detail. Here in the scheduling of jobs 

on the computational Grid environment using PSO, the position and velocities of particles are 

taken in the form of fuzzy matrices. In this section, it is explained how fuzzy PSO is used for 

solving problems in the scheduling of jobs on the computational grid nodes. Then their results 

are compared for fuzzy PSO with the TFN and PFN. To successfully apply PSO, one of the 

factors is to find the map between the problem solution and the PSO particle. The performance 

and feasibility are directly affected by it. 
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Suppose 𝐺 = {𝐺(1), 𝐺(2),⋯ , 𝐺(𝑎)}, 𝐽 = {𝐽(1), 𝐽(2),⋯ , 𝐽(𝑏)} are the grid nodes and 

jobs respectively. The number of Grids and Jobs are 𝑎 and 𝑏 respectively. Let the position of 

the particle be defined as 

𝑍 = [
𝑧(1,1) ⋯ 𝑧(1, 𝑏)

⋮ ⋱ ⋮
𝑧(𝑎, 1) ⋯ 𝑧(𝑎, 𝑏)

] 

 

The elements of 𝑍 must satisfy the following criteria- 

𝑧(𝑖, 𝑗) ∈  [0,1],               𝑖 ∈ {1,2, … , 𝑎} and 𝑗 ∈  {1,2, … , 𝑏} 

∑ 𝑧(𝑖, 𝑗)𝑎
𝑖=1 = 1          𝑖 ∈ {1,2, … , 𝑎} and 𝑗 ∈  {1,2, … , 𝑏}. 

Similarly, the velocity of the particle is defined as 

𝑆 = [
𝑠(1,1) ⋯ 𝑠(1, 𝑏)

⋮ ⋱ ⋮
𝑠(𝑎, 1) ⋯ 𝑠(𝑎, 𝑏)

] 

The normalization of the matrix 𝑍 is as follows- 

(∥ 𝑍 ∥) =

[
 
 
 
 
𝑧(1,1)

∑ 𝑧(𝑖, 1)𝑎
𝑖=1

⁄ ⋯ 𝑧(1, 𝑏)
∑ 𝑧(𝑖, 𝑏)𝑎

𝑖=1
⁄

⋮ ⋱ ⋮
𝑧(𝑎, 1)

∑ 𝑧(𝑖, 1)𝑎
𝑖=1

⁄ ⋯ 𝑧(𝑎, 𝑏)
∑ 𝑧(𝑖, 𝑏)𝑎

𝑖=1
⁄

]
 
 
 
 

 

 

Before going into detail about the fuzzy PSO algorithm, let us see some of the notations 

required on the way, they are as follows- 

𝛼₁ =Collection of all the jobs to be processed. 

𝛼₂ = Collection of all the jobs that are being scheduled  

𝛼₃ = Collection of all the jobs after job allocation is already completed. 

𝛼₄ = Collection of all the available grid nodes. 

𝛼₅ = Collection of all the grid nodes that have already been allocated to the jobs. 

𝛼₆ = Collection of all the grid nodes that are available or free. 
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Pseudocode: 

The Pseudocode of the fuzzy PSO algorithm is explained as follows: 

Step 1 

When the nodes are active and no new jobs are available, then we have to wait for the jobs that 

are new or update 𝛼₄ and 𝛼₁. 

Step 2 

At 𝑡 = 0, If 𝛼₄ = 0, wait for new grids to be available. If 𝛼₂ <  𝛼₄, then jobs are allocated on 

the principle called first come first serve basis. If  𝛼₁ >  𝛼₄, job allocation is given in Step 3. 

Step 3 

Now we have to initialize all the parameters of the particle swarm. The size of the particle 

swarm (N) depends on the experiment and its value is given before the start of the algorithm. 

The values of the parameters are initialized first.  

3.1 Now, we have to initialize the position for each particle. So we have taken random 

matrices which will be treated as the position of the particles. Then the matrices are 

normalized. 

3.2 𝑡 = 𝑡 + 1  (Here we will start the iteration process from 𝑡 = 1  to the maximum 

iteration)  

3.2.1 Then the makespan value is calculated for each particle. 

3.2.2 The latest best solution is calculated as follows- 

𝑦’’ = 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑓(𝑦’’(𝑡 − 1)), 𝑓(𝑦(1)(𝑡)), 𝑓(𝑦(2)(𝑡)), . . . , 𝑓(𝑦(𝑏)(𝑡))) 

3.2.3 For each particle, the personal best solution is computed as follows- 

𝑦’(𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑓(𝑦’(𝑡 − 1)), 𝑓(𝑦(𝑡))) 

3.2.4 Take random velocity as a trapezoidal matrix for the first Case. 

3.2.5 Take random velocity as a pentagonal matrix for the second Case. 

3.2.6 Now update each particle using Eqns. (1.16) and (1.17). 

3.2.7 Now for each particle, the position matrix is normalized.  

3.3 The iteration process is continued until the optimality criteria are normalized. 

Step 4 

 Repeat the process as long as the grid is active.  
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2.5 Experiments 

Now, we have taken some parameters required to solve the problem. They have an Inertia 

weight of 0.8. Acceleration coefficients are as follows: 2 and 1.3, respectively. The two random 

numbers are generated automatically. Here, ‘1’ represents the Job assigned to the Grid, and ‘0’ 

means no Job assigned to the Grid. Total number of particles (N)=20.  

 

2.5.1 Experiment 1 

Here we are taking two Grid Nodes and the Number of Jobs are three. The speeds of the two 

grid nodes are 4 and 4.1 respectively. The time required for each jobs are as follows 1119, 

1112, and 1811 respectively. 

 

For the first case, we have taken a velocity matrix with each element as a TFN.  Here 

we have observed that Job 1 is scheduled on Grid 2, Job 2 is scheduled on Grid 1, and Job 3 is 

scheduled on Grid 2. For the Second case, we have taken the velocity matrix with each element 

as a PFN.  Here we have observed that Job 1 is scheduled on Grid 2, Job 2 is scheduled on Grid 

2, and Job 3 is scheduled on Grid 1.  

 

2.5.2 Experiment 2 

Here we are taking three Grid Nodes and Number of Jobs are seven.  

Optimal Schedule with TFN 

Table 2.1. Optimal Schedule with TFN. 

 𝑱(𝟏) 𝑱(𝟐) 𝑱(𝟑) 𝑱(𝟒) 𝑱(𝟓) 𝑱(𝟔) 𝑱(𝟕) 

𝐺 (1) 0 0 0 0 0 1 1 

𝐺 (2) 0 0 1 0 0 0 0 

𝐺 (3) 1 1 0 1 1 0 0 

     

Here the Grid speeds are as follows – 17, 34, 13 and the time required for each job is as follows: 

45, 103, 80, 62, 91, 113, 88 respectively. Above Table 2.1 is the Optimal Schedule. Here Job 

1 is scheduled on Grid 3, Job 2 is scheduled on Grid 3, Job 3 is scheduled on Grid 2, Job 4 is 
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scheduled on Grid 3, Job 5 is scheduled on Grid 3, Job 6 is scheduled on Grid 1, Job 7 is 

scheduled on Grid 1.  

Optimal Schedule with PFN 

Table 2.2. Optimal Schedule with PFN. 

 𝑱(𝟏) 𝑱(𝟐) 𝑱(𝟑) 𝑱(𝟒) 𝑱(𝟓) 𝑱(𝟔) 𝑱(𝟕) 

𝐺 (1) 0 1 0 1 0 0 1 

𝐺 (2) 0 0 0 0 1 1 0 

𝐺 (3) 1 0 1 0 0 0 0 

 

Here the Grid speeds are as follows – 28, 9, 23 and the time required for each job is as 

following, 124, 71, 132, 99, 83, 78, 64 respectively. Above Table 2.2 is the Optimal Schedule. 

Here Job 1 is scheduled on Grid 3, Job 2 is scheduled on Grid 1, Job 3 is scheduled on Grid 3, 

Job 4 is scheduled on Grid 1, Job 5 is scheduled on Grid 2, Job 6 is scheduled on Grid 2, Job 

is scheduled on Grid 1.  

 

2.5.3 Experiment 3 

Here we are taking four Grid Nodes and Number of Jobs are twelve.  

Optimal Schedule with TFN 

Table 2.3. Optimal Schedule with TFN. 

 𝑱(𝟏) 𝑱(𝟐) 𝑱(𝟑) 𝑱(𝟒) 𝑱(𝟓) 𝑱(𝟔) 𝑱(𝟕) 𝑱(𝟖) 𝑱(𝟗) 𝑱(𝟏𝟎) 𝑱(𝟏𝟏) 𝑱(𝟏𝟐) 

𝐺 (1) 0 0 0 0 1 0 0 1 0 0 0 0 

𝐺 (2) 0 0 0 0 0 1 0 0 0 0 1 0 

𝐺 (3) 0 0 1 1 0 0 0 0 0 1 0 0 

𝐺 (4) 1 1 0 0 0 0 1 0 1 0 0 1 

 

Here the Grid speeds are as follows – 44, 3, 11, 23 and the time required for each Job is as 

follows: 144, 119, 68, 51, 9, 112, 77, 30, 65, 26, 113, 56 respectively. Above Table 2.3 is the 

Optimal Schedule. Here Job 1 is scheduled on Grid 4, Job 2 is scheduled on Grid 4, Job 3 is 

scheduled on Grid 3, Job 4 is scheduled on Grid 3, Job 5 is scheduled on Grid 1, Job 6 is 

scheduled on Grid 2, Job 7 is scheduled on Grid 4, Job 8 is scheduled on Grid 1, Job 9 is 
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scheduled on Grid 4, Job 10 is scheduled on Grid 3, Job 11 is scheduled on Grid 2, Job 12 is 

scheduled on Grid 4.  

Optimal Schedule with PFN 

Table 2.4. Optimal Schedule with PFN. 

 𝑱(𝟏) 𝑱(𝟐) 𝑱(𝟑) 𝑱(𝟒) 𝑱(𝟓) 𝑱(𝟔) 𝑱(𝟕) 𝑱(𝟖) 𝑱(𝟗) 𝑱(𝟏𝟎) 𝑱(𝟏𝟏) 𝑱(𝟏𝟐) 

𝐺 (1) 0 0 0 0 0 1 0 1 0 0 0 1 

𝐺 (2) 0 0 0 0 0 0 0 0 1 0 1 0 

𝐺 (3) 1 0 0 1 0 0 1 0 0 1 0 0 

𝐺 (4) 0 1 1 0 1 0 0 0 0 0 0 0 

 

Here the Grid speeds are as follows – 50, 21, 45, and 10. The time required for each job is as 

following-101, 74, 71, 58, 23, 123, 17, 123, 124, 41, 15, 84 respectively. Above Table 2.4 is 

the Optimal Schedule. Here Job 1 is scheduled on Grid 3, Job 2 is scheduled on Grid 4, Job 3 

is scheduled on Grid 4, Job 4 is scheduled on Grid 3, Job 5 is scheduled on Grid 4, Job 6 is 

scheduled on Grid 1, Job 7 is scheduled on Grid 3, Job 8 is scheduled on Grid 1, Job 9 is 

scheduled on Grid 2, Job 10 is scheduled on Grid 3, Job 11 is scheduled on Grid 2, Job 12 is 

scheduled on Grid 1.  

 

2.5.4 Experiment 4 

Here we are taking five Grid Nodes and Number of Jobs are twenty.  

Optimal Schedule with TFN 

Here the Grid Speed are as follows – 4, 34, 47, 24, 19 and the time required for each job is as 

following-13, 82, 140, 105, 124, 129, 17, 106, 83, 79, 48, 25, 48, 101, 79, 92, 115, 25, 75, 115 

respectively. Above Table 2.5 is the Optimal Schedule. Here Job 1, Job 2, Job 3, Job 4, Job 5, 

Job 6, Job 7, Job 8, Job 9, Job 10, Job 11, Job 12, Job 13, Job 14, Job 15, Job 16, Job 17, Job 

18, Job 19 and Job 20 are scheduled on Grid 4, Grid 3, Grid 5, Grid 1, Grid 4, Grid 3, Grid 4, 

Grid 2, Grid 2, Grid 1, Grid 3, Grid 5, Grid 1, Grid 3, Grid 5, Grid 5, Grid 1, Grid 3, Grid 4 

and Grid 1 respectively.  
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Table 2.5. Optimal Schedule with TFN. 

 𝑱(𝟏)   𝑱(𝟐) 𝑱(𝟑) 𝑱(𝟒) 𝑱(𝟓)  𝑱(𝟔) 𝑱(𝟕) 𝑱(𝟖) 𝑱(𝟗) 𝑱(𝟏𝟎) 𝑱(𝟏𝟏) 𝑱(𝟏𝟐) 𝑱(𝟏𝟑) 𝑱(𝟏𝟒) 𝑱(𝟏𝟓) 𝑱(𝟏𝟔) 𝑱(𝟏𝟕) 𝑱(𝟏𝟖)  𝑱(𝟏𝟗) 𝑱(𝟐𝟎) 

𝐺 (1) 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 

𝐺 (2) 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

𝐺 (3) 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 

𝐺 (4) 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 

𝐺 (5) 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 

 

Optimal Schedule with PFN 

Here the Grid Speed are as follows, 19, 12, 8, 36, 15 and the time required for each job is as 

following, 86, 16, 142, 55, 96, 145, 81, 5, 51, 13, 119, 61, 20, 107, 100, 42, 75, 112, 71, 134 

respectively. Above Table 2.6 is the Optimal Schedule. Here Job 1, Job 2, Job 3, Job 4, Job 5, 

Job 6, Job 7, Job 8, Job 9, Job 10, Job 11, Job 12, Job 13, Job 14, Job 15, Job 16, Job 17, Job 

18, Job 19 and Job 20 are scheduled on Grid 4, Grid 1, Grid 2, Grid 5, Grid 3, Grid 5, Grid 3, 

Grid 3, Grid 4, Grid 2, Grid 4, Grid 1, Grid 5, Grid 3, Grid 3, Grid 5, Grid 4, Grid 5, Grid 1 

and Grid 5 respectively.  

Table 2.6. Optimal Schedule with PFN. 

 𝑱(𝟏)   𝑱(𝟐) 𝑱(𝟑) 𝑱(𝟒) 𝑱(𝟓)  𝑱(𝟔) 𝑱(𝟕) 𝑱(𝟖) 𝑱(𝟗) 𝑱(𝟏𝟎) 𝑱(𝟏𝟏) 𝑱(𝟏𝟐) 𝑱(𝟏𝟑) 𝑱(𝟏𝟒) 𝑱(𝟏𝟓) 𝑱(𝟏𝟔) 𝑱(𝟏𝟕) 𝑱(𝟏𝟖)  𝑱(𝟏𝟗) 𝑱(𝟐𝟎) 

𝐺 (1)   0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 

𝐺 (2) 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

𝐺 (3) 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 

𝐺 (4)  1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 

𝐺 (5) 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 

 

Then we have taken more examples with more grid nodes and jobs, i.e., 10 Grid nodes 

and 50 Jobs, 40 Grid nodes and 100 Jobs. We are getting similar results. Here, we observe 

that with an increase in the number of iterations, the makespan value decreases, and after some 

iterations, it remains more or less constant. Here, the termination criteria are maximum 

iteration. Here, the optimal Criteria is the makespan value. We have to optimize a job 

scheduling that minimizes the makespan value. That is to minimize the maximum time all Grids 
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take to complete all the assigned jobs. Here, we can see the makespan value of fuzzy PSO using 

TFN and the makespan value of fuzzy PSO using PFN, which remains the same. We can also 

see that the global best position is the same for both approaches.  

2.6 Conclusion 

This chapter tackles the task of scheduling jobs on a computational grid through fuzzy PSO, 

utilizing both TFN and PFN. The algorithm's performance is analysed by first employing TFN 

and subsequently with PFN. The outcomes between the two approaches demonstrate a 

remarkable consistency. This opens opportunities for future exploration where diverse fuzzy 

numbers could be incorporated to recognize any impacts on results. 
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Chapter 3  

 

 

Job Scheduling On Computational Grids Using Multi-Objective 

Fuzzy Particle Swarm Optimization 

 

 

3.1 Introduction 

This chapter provides a detailed exploration of utilizing fuzzy PSO for multi-objective job 

scheduling on the computational grid. This chapter builds upon the groundwork laid in the 

previous chapter, advancing from single-objective to MOO. The conflicting nature of 

makespan and flowtime as objective functions is addressed, necessitating a delicate balance 

between the two. So here we are comparing the results obtained using TFN with those obtained 

using PFN. The objective of this problem is to use the grid nodes efficiently. Here, we are using 

MOO, an area of multiple criteria decision-making. It is useful when multiple objective 

functions must be simultaneously optimized. The mapping between a PSO particle and a 

potential solution determines the outcome of a PSO problem. This method is an innovative 

approach, and to my knowledge, there is no such existing method.  

  

The remaining portion of the chapter is structured as follows. Specific fundamental 

ideas necessary for understanding this chapter properly are explained in Section 3.2. The 

problem we have addressed in this chapter and our goal are described in Section 3.3. The 

proposed fuzzy PSO algorithm that was applied to solve the multi-objective job scheduling 

problem is described in Section 3.4. The proposed algorithm's numerical experiment is 

presented in Section 3.5. The proposed algorithm's conclusion is given in Section 3.6. 
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3.2 Background  

A comprehensive understanding of the content in this chapter necessitates familiarity with key 

concepts such as fuzzy number, TFN, and PFN, explained in Section 1.3. The guidance of 

particles through the grids is drawn from the principles of PSO, which is also explained in 

Section 1.3. Here the concept of MOO is also required which is explained below. 

 

MOO 

MOO is used when more than one objective function has to be optimized. This process 

becomes very important when the objective functions are conflicting in nature. That is 

minimizing some objective functions that maximize some other objective functions49,50.  

 

3.3 Problem Formulation 

This section illuminates the focal problem addressed in the chapter, specifically exploring the 

complexities of multi-objective job scheduling using fuzzy PSO within the computational grid 

environment. To facilitate a comprehensive grasp, essential terms and concepts are 

meticulously expounded.  

 

Flowtime 

In Job scheduling problems, flowtime can be defined as the sum of all the completion time. 

After jobs are assigned to grids, the time taken by each grid to complete all the jobs that are 

assigned is computed. Then we will take the sum of all the completion time of all the grids. 

Mathematically speaking if 𝑑(𝑖, 𝑗) is the completion time, In other words 𝑑(𝑖, 𝑗) is the time 

taken by the grid node 𝐺(𝑖) to finish the job (𝑗) . The time taken by the grid node to execute 

all the jobs allocated to that grid node only is represented by ∑𝑑(𝑖) . Now is 

∑ (∑𝑑(𝑖))𝑎
𝑖=1  called flowtime, where ‘a’ is the number of grids in the problem.   

 

Our formulated problem involves the simultaneous consideration of two conflicting 

objective functions: makespan and flowtime. Minimizing flowtime requires the swift 

completion of average jobs, compromising the duration of the longest job. On the contrary, 

minimizing makespan ensures that no job experiences excessive duration, although at the cost 
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of most jobs enduring extended periods. The maximization of makespan invariably leads to the 

minimization of flowtime, and vice versa. The objective of the proposed algorithm is to 

minimize the makespan value and flowtime. That is to minimize the maximum time taken by 

all Grids to complete all the jobs assigned to them according to the first objective function. 

And to minimize the sum of all time taken by all Grids to complete all the jobs assigned to 

them according to the second objective function. We have to optimize a job scheduling that 

minimizes the makespan value and flowtime. This inherent contradiction is effectively 

addressed through the application of the proposed fuzzy PSO algorithm. 

 

Now we are going to explain the concerned problem. The basic meaning of 𝐽(𝑗) and 

𝐺(𝑖) are already explained in the previous chapter in Section 2.3. Now let us consider jobs 

𝐽(𝑗) , 𝑗 ∈ (1,2,⋯ , 𝑏) that are independent on Grid nodes 𝐺(𝑖), 𝑖 ∈  (1,2,⋯ , 𝑎). The objective 

of this chapter is to efficiently use the grid nodes by minimizing the makespan value and total 

flowtime values. Now we define 𝑑(𝑖, 𝑗) as the completion time. In other words time taken by 

Grid node 𝐺(𝑖) to finish the Job 𝐽(𝑗). The time taken by the grid node to execute all the jobs 

allocated to that grid node only is represented by ∑𝑑(𝑖) . Now max {∑𝑑(𝑖)}  is called 

makespan. ∑ (Σd(𝑖)𝑎
𝑖=1 ) is called as the flowtime. These concepts are used while applying the 

fuzzy PSO algorithm. 

 

3.4 Proposed Algorithm 

In this section, the proposed multi-objective fuzzy PSO algorithm is explained. Here in the 

scheduling of jobs on the computational Grid environment using PSO, the position and 

velocities of particles are taken in the form of fuzzy matrices. In this section, it is explained 

how fuzzy PSO is used for solving multi-objective job scheduling on the computational grid 

nodes. Then their results are compared for fuzzy PSO with TFN and fuzzy PSO with PFN. To 

successfully apply PSO, one of the key factors is to find the map between the problem solution 

and the PSO particle. The performance and feasibility are directly affected by it. Suppose 𝐺 =

{𝐺(1), 𝐺(2),⋯ , 𝐺(𝑎)}, 𝐽 = {𝐽(1), 𝐽(2),⋯ , 𝐽(𝑏)} are the Grid nodes and Jobs respectively. 

The number of Grids and Jobs are 𝑎 and 𝑏 respectively. Let the position and the velocity of the 

particle be defined as 

𝑍 = [
𝑧(1,1) ⋯ 𝑧(1, 𝑏)

⋮ ⋱ ⋮
𝑧(𝑎, 1) ⋯ 𝑧(𝑎, 𝑏)

]and 𝑆 = [
𝑠(1,1) ⋯ 𝑠(1, 𝑏)

⋮ ⋱ ⋮
𝑠(𝑎, 1) ⋯ 𝑠(𝑎, 𝑏)

] respectively 
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The normalization of the matrix 𝑍 is as follows- 

(∥ 𝑌 ∥) =

[
 
 
 
 
𝑧(1,1)

∑ 𝑧(𝑖, 1)𝑎
𝑖=1

⁄ ⋯
𝑧(1, 𝑏)

∑ 𝑧(𝑖, 𝑏)𝑎
𝑖=1

⁄

⋮ ⋱ ⋮
𝑧(𝑎, 1)

∑ 𝑧(𝑖, 1)𝑎
𝑖=1

⁄ ⋯
𝑧(𝑎, 𝑏)

∑ 𝑧(𝑖, 𝑏)𝑎
𝑖=1

⁄
]
 
 
 
 

 

 

Before going into detail about the fuzzy PSO algorithm, The notational meaning of notation 

𝛼₁, 𝛼₂, 𝛼₃, 𝛼₄, 𝛼₅ and 𝛼₆ are already discussed in previous chapter in Section 2.4. 

 

Step 1 

When the nodes are active and no new jobs are available, then we have to wait for the jobs that 

are new or update 𝛼₄ and 𝛼₁ . 

Step 2 

At 𝑡 = 0, If 𝛼₄ = 0, wait for new grids to be available. If 𝛼₂ < 𝛼₄, then jobs are allocated on 

the principle called first come first serve basis. If 𝛼₁ > 𝛼₄, job allocation as given in Step 3. 

Step 3 

Now we have to initialize all the parameters of the particle swarm. The size of the particle 

swarm (N) depends on the experiment and its value is given before the start of the algorithm. 

The values of the parameters are initialized.  

3.1 Now we have to initialize the position for each particle. So from here a population Set has 

been initialized. So we have taken random matrices which will be treated as the position of 

the particles. Then the matrices are normalized. 

3.2 Take random velocity as a trapezoidal matrix, i.e., every matrix element is a TFN for the   

first Case. 

3.3 Take random velocity as a pentagonal matrix, i.e., every matrix element is a PFN for the 

second Case. 

3.4 𝑡 = 𝑡 + 1 (Here we will start the iteration process from t=1 to the maximum iteration, 

which can be changed in the programming code depending on the requirement of the coder) 

3.4.1 A leader set is selected from the population Set. 

3.4.2 Each particle’s velocity and position are updated using Eqns. (1.16) and (1.17). 
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3.4.3 The makespan value and flowtime value of each particle are calculated. 

3.4.4 Now update the personal best and Global Best of each particle, respectively. 

3.4.5 Add Non-Dominated Particles to Non-dominating Front. 

3.4.6 Determine Domination of New Non-dominating Front Members. 

3.4.7 Keep only Non-Dominated Members in the Non-dominating Front. 

3.4.8 For each particle, the position matrix is normalized. 

3.4.9 The iteration process is continued until the Maximum iteration is achieved. 

3.5 The iteration process is continued until the Maximum iteration is achieved. 

Step 4 

Repeat the process as long as the grid is active. 

 

3.5 Experiments 

Now, we have taken some parameters required to solve the problem. They are Inertia weight 

(ℎ) = 0.8. Acceleration coefficients ℎ1 and ℎ2 are as follows 2 and 1.3 respectively. The two 

random numbers are generated automatically. Here, the total number of particles we have taken 

is 20. We have taken a velocity matrix for the first case with each element as a TFN. For the 

Second case, we have taken the velocity matrix with each element as a PFN. In the optimal 

schedule Tables 3.2, 3.4, 3.6, and 3.8, we use a technique in which grids and jobs are 

represented row-wise and column-wise, respectively, and then ‘1’ represents the job assigned 

to the Grid, and ‘0’ represents no job assigned to the Grid51. In Figs 3.1, 3.2, 3.3 and 3.4 Red 

coloured points are DMs and joining all the dominant points will form a Pareto-optimal curve. 

Other points present in the graph are dominated points.  

 

3.5.1 Experiment 1 

Here, we are taking three Grid Nodes, and the Number of Jobs is seven.  

Optimal Schedule with TFN  

Here the Grid Speed that is taken in this problem is as follows, 19.09, 27.017, 29.45, and the 

time required for each job is as follows, 69.73, 115.73, 19.34, 89.86, 128.99, 99.90, 82.96 

respectively. In Table 3.1, all the DMs are shown with their makespan value and flowtime 

value. Here, in this experiment, there are 9 DMs out of which 8 DMs are shown in Fig 3.1. 
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Table 3.1 All DMs. 

DMs Makespan Flowtime Value 

1 10.638435 3.108031 

2 8.455468 3.190418 

3 4.774187 89.732866 

4 13.546865 2.933361 

5 19.043898 1.848561 

6 13.737084 2.741747 

7 38.040034 1.736883 

8 8.715420 3.128136 

9 6.932100 5.508100 

   

 

Fig. 3.1 Collection of all 8 DMs of Experiment 1 using TFN. 

 

Table 3.2. Optimal Schedule of DM 2. 

 𝑱(𝟏) 𝑱(𝟐) 𝑱(𝟑) 𝑱(𝟒) 𝑱(𝟓) 𝑱(𝟔) 𝑱(𝟕) 

𝐺 (1) 1 1 0 0 0 1 0 

𝐺 (2) 0 0 0 1 1 0 0 

𝐺 (3) 0 0 1 0 0 0 1 
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Optimal Schedule with PFN 

Here, the Grid Speed is as follows – 47.66, 8.08, 39.89, and the time required for each job is 

as follows- 28.13, 17.84, 64.98, 135.90, 92.86, 14.33, 24.04, respectively. Table 3.3 shows all 

the DMs with their makespan and flowtime values. Here, in this experiment, there are 7 DMs 

out of which 5 DMs are shown in Fig 3.2. 

 

Table 3.3 All DMs 

DMs Makespan Value Flowtime Value 

1 5.853997 138.489278987881 

2 8.581198 3.577729 

3 8.120252 3.845658 

4 10.182115 2.294112 

5 7.289982 11.857017 

6 22.652308 2.087883 

7 115.157452 1.435459 

 

 

Fig. 3.2 Collection of all 5 DMs of Experiment 1 using PFN. 

 

Table 3.4 Optimal Schedule of DM 4 

 𝑱(𝟏) 𝑱(𝟐) 𝑱(𝟑) 𝑱(𝟒) 𝑱(𝟓) 𝑱(𝟔) 𝑱(𝟕) 

𝐺 (1) 1 0 0 0 1 0 0 

𝐺 (2) 0 1 0 1 0 1 0 

𝐺 (3) 0 0 1 0 0 0 1 
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Above Table 3.4 is the Optimal Schedule. Here, Job 1 is assigned to Grid 1, Job 2 is 

assigned to Grid 2, Job 3 is assigned to Grid 3, Job 4 is assigned to Grid 2, Job 5 is assigned to 

Grid 1, Job 6 is assigned to Grid 2, Job 7 is assigned to Grid 3. With an increase in the number 

of iterations, we get particles whose makespan and flowtime values are minimized until we 

reach maximum iteration. 

 

3.5.2 Experiment 2 

Here, we are taking four Grid Nodes, and the Number of Jobs is nineteen.  

Optimal Schedule with TFN 

Here the Grid Speed are as follows – 23.82, 35.64, 28.83, 5.67, and the time required for each 

job is as follows, 119.61, 65.37, 81.28, 74.86, 36.39, 132.58, 141.25, 7.02, 108.82, 52.76, 

17.62, 147.10, 13.067, 22.19, 73.99, 30.33, 104.16, 31.83 respectively. In Table 3.5, all the 

DMs are shown with their makespan value and flowtime value. In this experiment, there are 

10 DMs which are shown in Fig 3.3. 

 

Table 3.5 All DMs 

DMs Makespan Value Flowtime Value 

1 6.946936 16.739297 

2 14.659486 2.563739 

3 6.969654 7.014856 

4 9.027537 5.088222 

5 9.526646 3.943752 

6 31.139973 2.008530 

7 7.816608 5.145798 

8 19.697327 2.253105 

9 44.616472 1.929807 

10 13.305884 3.293277 
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Fig. 3.3 Collection of all DMs of Experiment 2 using TFN. 

 

Table 3.6 DM 5 

 𝑱(𝟏)   𝑱(𝟐) 𝑱(𝟑) 𝑱(𝟒) 𝑱(𝟓)  𝑱(𝟔) 𝑱(𝟕) 𝑱(𝟖) 𝑱(𝟗) 𝑱(𝟏𝟎) 𝑱(𝟏𝟏) 𝑱(𝟏𝟐) 𝑱(𝟏𝟑) 𝑱(𝟏𝟒) 𝑱(𝟏𝟓) 𝑱(𝟏𝟔) 𝑱(𝟏𝟕) 𝑱(𝟏𝟖)  𝑱(𝟏𝟗) 𝑱(𝟐𝟎) 

𝐺 (1) 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 

𝐺 (2) 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 

𝐺 (3) 0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 

𝐺 (4) 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 

 

Above Table 3.6 is the Optimal Schedule. Here, Job 1 is assigned to Grid 4, Job 2 is 

assigned to Grid 3, Job 3 is scheduled to Grid 2, Job 4 is scheduled to Grid 4, Job 5 is scheduled 

to Grid 3, job 6 is assigned to Grid 1, job 7 is assigned to Grid 1, job 8 is assigned to Grid 4, 

job 9 is assigned to Grid 3, job 10 is assigned to Grid 3, job 11 is assigned to Grid 2, job 12 is 

assigned to Grid 2, job 13 is assigned to Grid 2, job 14 is assigned to Grid 1, job 15 is assigned 

to Grid 3, job 16 is assigned to Grid 1, job 17 is assigned to Grid 4, job 18 is assigned to Grid 

4, job 19 is assigned to Grid 2. With an increase in the number of iterations, we get particles 

whose makespan and flowtime values are minimized until we reach maximum iteration. 

Optimal Schedule with PFN 

Here the Grid Speed is as follows – 40.11, 35.88, 47.73, 47.88, and the time required for each 

job is as follows- 121.7649, 50.02, 19.94, 125.62, 55.22, 130.92, 54.20, 95.65, 57.75, 26.74, 
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32.62, 134.42, 74.42, 37.24, 42.13, 35.81, 11.42, 66.08 respectively. Table 3.7 shows all the 

DMs with their makespan and flowtime values. Here, in this experiment, there are 8 DMs which 

are shown in Fig 3.4.  

Table 3.7 All DMs 

DMs Makespan Value Flowtime Value 

1 16.261141 1.975759 

2 43.342028 1.613511 

3 57.514148 1.479592 

4 6.563975 10.077199 

5 7.711173 2.009736 

6 21.738393 1.736575 

7 25.865067 1.633693 

8 7.411354 4.348766 

 

 

Fig. 3.4 Collection of all DMs of Experiment 2 using PFN.  

 

Table 3.8 DM 5 

 𝑱(𝟏)   𝑱(𝟐) 𝑱(𝟑) 𝑱(𝟒) 𝑱(𝟓)  𝑱(𝟔) 𝑱(𝟕) 𝑱(𝟖) 𝑱(𝟗) 𝑱(𝟏𝟎) 𝑱(𝟏𝟏) 𝑱(𝟏𝟐) 𝑱(𝟏𝟑) 𝑱(𝟏𝟒) 𝑱(𝟏𝟓) 𝑱(𝟏𝟔) 𝑱(𝟏𝟕) 𝑱(𝟏𝟖)  𝑱(𝟏𝟗) 

𝐺 (1) 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 

𝐺 (2) 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 

𝐺 (3) 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1 

𝐺 (4) 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
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Above Table 3.8 is the Optimal Schedule. Here job 1 is assigned to Grid 4, job 2 is 

assigned to Grid 3, job 3 is assigned to Grid 2, job 4 is assigned to Grid 2, job 5 is assigned to 

Grid 1, job 6 is assigned to Grid 3, job 7 is assigned to Grid 1, job 8 is assigned to Grid 2, job 

9 is is scheduled on Grid 3, job 10 is assigned to Grid 1, job 11 is assigned to Grid 4, job 12 is 

assigned to Grid 3, job 13 is assigned to Grid 3, job 14 is assigned to Grid 1, job 15 is assigned 

to Grid 1, job 16 is assigned to Grid 2, job 17 is assigned to Grid 3, job 18 is assigned to Grid 

3, job 19 is assigned to Grid 3. With an increase in the number of iterations, we get particles 

whose makespan and flowtime values are minimized until we reach maximum iteration. Then 

we have taken more examples with more grid nodes and jobs, i.e., 10 Grid nodes and 50 jobs, 

40 Grid nodes and 100 jobs. We are getting similar results.  

 

3.6 Conclusion 

This chapter navigates the complicated multi-objective job scheduling on a computational grid 

by applying fuzzy PSO with trapezoidal and PFN. The optimal criteria for optimization are the 

makespan and flowtime values. Here, we have taken a particle among the set of DMs that 

simultaneously minimizes both makespan and flowtime values for both cases. The consistency 

in results is validated through experimentation, including 10 Grid Nodes and 50 Jobs and 40 

Grid Nodes with 100 Jobs. The work reveals that the objective values exhibit remarkable 

similarity despite distinct scheduling arrangements. Consequently, the objective values of 

fuzzy PSO utilizing trapezoidal and PFN are thoroughly calculated and compared, 

demonstrating the equivalence in results. We can take other fuzzy numbers in this process and 

compare the results for future work. 
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Part – III 

 

 

Application of the developed hybrid metaheuristic algorithms on 

Hybrid Feature Selection Problems. 

 

 

(Chapter 4, Chapter 5, Chapter 6, Chapter 7, and Chapter 8) 
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Chapter 4  

 

 

Hybrid Particle Swarm Optimization for a Feature Selection 

Problem with Stability Analysis 

 

 

4.1  Introduction  

Classification problems often contain a large NF. Feature selection (FS) is the process of 

choosing features that will be the subset of the relevant features, and it will increase the 

classification accuracy (CA) and decrease the NF. However, not all the features are helpful for 

classification-type problems. The features that are reductant and Irrelevant may reduce the CA. 

Selecting all the features increases the time complexity of the problem. Also, choosing all the 

features will increase the dimensionality of the problem. The selection of features plays a 

critical role in the classification type problems. So, the primary objective of FS problems is to 

decrease the NF and increase the problem's accuracy. It broadly has two categories: wrapper 

and filter. The wrapper method uses a classification algorithm on the features, while the filter 

is independent of any classification algorithm. Wrapper approaches have a better classification 

performance when compared with filter methods. However, the wrapper methods are 

computationally expensive compared to filter methods, as they are cheap. So, both methods 

have their advantages and disadvantages. Hence, if we combine both methods, we might get a 

better result. Much work has been done in this direction. Few works52 in this direction have 

been done by combining both filter and wrapper approaches, but their computational cost is 

higher. There are many applications of FS problems, such as Image processing and computer 

vision, Text mining, Industrial applications, Bioinformatics, etc. Many metaheuristic methods 

have been applied to various FS problems53. Many Evolutionary computational techniques like 

GP54, GA55, and PSO56 are used on the FS problems because of their global search ability and 

effectiveness. Many Hybrid meta-heuristic methods like57,58 are developed and applied on 

different engineering problems or benchmark optimization problems.   
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                The rest of the chapter is structured as follows. Section 4.2, explains some basic 

concepts required for a proper understanding of this chapter. Section 4.3, explains about the 

problem we have tackled in this chapter. In Section 4.4, the proposed HPSO approach has been 

explained. The convergence work and proof of stability analysis of the proposed HPSO 

algorithm have been explained in Section 4.5. In Section 4.6, the proposed HPSO algorithm is 

compared with other four metaheuristic algorithms using seven datasets. Then their statistical 

significance is checked. Also, the time completion of all the methods is computed in this 

section. Finally, in Section 4.7, the conclusion of the present work has been given.          

 

4.2 Background  

To fully grasp the content in this chapter, it is imperative to be familiar with fundamental 

concepts like PSO and GA, as explained in Section 1.3. Additionally, a basic understanding of 

FS problems, explained in Section 1.5, is essential. 

 

4.3 Problem Formulation  

In this section, the problem of this chapter is explained. For our proper understanding, some 

important terms and concepts are defined. They are as follows- 

 

Filter Evaluations (FE) 

The Filter approach technique is used to speed the fitness evaluation process. Hence 

computationally cheap measure, mutual information, is employed here to form the FE59. The 

FE is used to maximize and minimize the relevance and redundancy of the selected features 

respectively. Eq. (4.1) is the FE, where D and R are the relevancy and redundancy of the 

selected features respectively. 

 

 𝐹1(𝑋) =  𝐷 –  𝑅                      (4.1) 

Where, 𝐷 = ∑ 𝐼(𝑥; 𝑐) 𝑥𝜖𝑋  and 𝑅 = ∑ 𝐼(𝑥; 𝑦) 𝑥𝜖𝑋,𝑦𝜖𝑌  
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Wrapper Evaluations (WE) 

The WE is to maximise the CA of the selected feature subset, which is calculated by Eq. (4.2). 

For WE we need a classification method and there are many classification methods. Here, we 

have used KNN classification for classification method, with K=1 as it is widely used and 

simple. The number of correctly classified instances divided by the total number of instances 

gives the accuracy. 

𝐹2(𝑋) = accuracy            (4.2) 

Pseudo-code for finding the accuracy 

Model= fitness (x, y, 'NumNeighbors', k); 

prediction = predict (Model, xvalid); 

total NF = length(y_valid);  

correct   = 0; 

for i = 1:total NF 

  if isequal(yvalid(i), prediction(i)) 

    correct = correct + 1; 

  end 

end 

Accuracy   = correct / total NF; 

NF 

In all FS problems, many datasets are involved. Considering all the features and solving the 

problems is impossible, as it increases computational time complexity. So most FS problems 

prefer to take less NF. 

𝐹3(𝑋) = Number of Features                (4.3)  

 

Pseudo-code for finding the Number of features 

For Position=1:dimension 

S1= Position((particle>parameter)==1) 

Selected_feature=feat(:,S1) 

Number of Features =length(Selected_feature) 

end 
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              The objective is to increase the CA and to decrease the NF. For the FS problem, a 

combination of filter and wrapper method is taken and then the proposed HPSO algorithm is 

applied. Theoretical explanation of stability and convergence of the proposed HPSO algorithm 

has been explained with proof. Then the proposed algorithm is compared with other 

metaheuristic algorithms. Then Friedman's test and Mann Whitney U test (MWUT)60 are 

applied to check the statistical significance. In this chapter, every row of the position matrix is 

the position of the particle. Here 0 means that the feature has not been selected and 1 means 

that the feature has been selected. The quality of the representation plays a significant role for 

the effectiveness of the proposed method. 

 

4.4 Proposed HPSO Algorithm 

1 First, all the parameters of PSO are initialized. The particle swarm (𝑁) is given before 

the start of the experiment as it depends on the experiment 

2 The position for each particle is initialized. So random matrices have been taken, 

where each row represents the position of the particle. For the effectiveness of the 

method, proper one-to-one correspondence between the possible solution and position 

matrix is very critical. 

3 The velocity and position of the particles for the first iteration are taken as random 

matrices.  

4 For t= 1: Max_iteration, Here the main iteration loop starts.  

5 Compute the filter evaluation of each particle which will be treated as fitness value 

for filter evaluation (𝐹1). 

6 Compute the wrapper evaluation of each particle which will be treated as fitness value 

for wrapper evaluation (𝐹2). 

7 So, here the objective function is ((𝐹1 + 𝐹2) − 𝐹3). 

8 Initialize the personal best and compute the filter evaluation and wrapper evaluation 

for that position. 

9 Compute the filter evaluation. Then if we get a desirable result, then we will compute 

the wrapper evaluation. 

10 Update the personal best of each particle. Then we will update the filter and wrapper 

evaluations. 

11 Update the global best. 
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12 Update the velocity and position of each particle using the Eqns. (1.16) and (1.17).  

13 Apply the cross-over operator and mutation operator. Then one of them will be treated 

as a global best solution. If termination criteria are not achieved, then the process keeps 

repeating. So, steps 5 to 12 will be repeated. After achieving termination criteria, select 

the features using global best, and its CA is reported. 

 

4.5 Mathematical Analysis of Proposed Algorithm  

The stability analysis of the proposed HPSO algorithm has been discussed in Sections 4.5.1.  

 

4.5.1   Stability Analysis 

The stability of the proposed algorithm is explained using the von Neumann stability criterion 

for finite difference scheme (FDS) and the Fourier series concept.  

 

Theorem 

 The Proposed HPSO algorithm with the following two conditions  

a) Uses a random three-point crossover concept from GA. Here, the two parent solutions 

are the global best solution (𝑧𝑔) and a random personal best solution (𝑧𝑝) 

b) Uses mutation concept on global best solution (𝑧𝑔). 

 

   is stable iff  ℎ, ℎ1 and ℎ2 satisfies   0 ≤ (ℎ1  +  ℎ2) ≤ 2(1 + ℎ) 

Proof: Considering Eqns. (1.16) and (1.17) of the PSO method, we get 

𝑧(𝑖, 𝑡 + 1) = 𝑧(𝑖, 𝑡) + ℎ × 𝑠(𝑖, 𝑡) + (ℎ1 × 𝑐6) × (𝑧𝑝(𝑖, 𝑡) − 𝑧(𝑖, 𝑡)) + (ℎ2 × 𝑐7) ×

(𝑧𝑔(𝑖, 𝑡) − 𝑧(𝑖, 𝑡))                                                                                                           (4.4) 

Where 𝑧(𝑖, 𝑡) is the position of particle 𝑖 at iteration 𝑡. Now conditions (a) and (b) are applied 

to the global best solution (𝑧𝑔). If the value of (𝑧𝑔) is better than (𝑧). The value of (𝑧𝑔) will 

be assigned to (𝑧), otherwise not. For better understanding, we simply use  system by taking 

𝑧𝑝 and 𝑧𝑔 as constants. Let 𝑏1 = ℎ1 × 𝑐6,  𝑏2 = ℎ2 × 𝑐7,  𝑧𝑝(𝑖, 𝑡) = 𝑧′𝑝 and 𝑧𝑔(𝑖, 𝑡) = 𝑧′𝑔.  
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Now, 

𝑧(𝑖, 𝑡 + 1) =  𝑧(𝑖, 𝑡) + ℎ × 𝑠(𝑖, 𝑡) + (𝑏1) × (𝑧′𝑝 −  𝑧(𝑖, 𝑡)) + (𝑏2) × (𝑧′𝑔 −  𝑧(𝑖, 𝑡)) 

𝑧(𝑖, 𝑡 + 1) = 𝑧(𝑖, 𝑡) × (1 − 𝑏1 − 𝑏2) + (𝑏1 × 𝑧′𝑝) + (𝑏2 × 𝑧′𝑔) + (ℎ × 𝑠(𝑖, 𝑡)) 

𝑧(𝑖, 𝑡 + 1) = 𝑧(𝑖, 𝑡) × (1 − 𝑏1 − 𝑏2) + (𝑏1 × 𝑧′𝑝) + (𝑏2 × 𝑧′𝑝)

+ (ℎ × (𝑧(𝑖, 𝑡) − 𝑧(𝑖, 𝑡 − 1))) 

𝑧(𝑖, 𝑡 + 1) = (𝑧(𝑖, 𝑡) × (1 + ℎ − 𝑏1 − 𝑏2)) − (ℎ ×  𝑧(𝑖, 𝑡 − 1)) + (𝑏1 × 𝑧′𝑝) + (𝑏2 × 𝑧′𝑔) 

𝑧(𝑖, 𝑡 + 1) − (𝑧(𝑖, 𝑡) × (1 + ℎ − 𝑏1 − 𝑏2)) + (ℎ ×  𝑧(𝑖, 𝑡 − 1)) = (𝑏1 × 𝑧′𝑝) + (𝑏2 × 𝑧′𝑔) 

or 

 𝑧𝑖,𝑡+1 − (𝑧𝑖,𝑡 × (1 + ℎ − 𝑏1 − 𝑏2)) + (ℎ × 𝑧𝑖,𝑡−1) = (𝑏1 × 𝑧′𝑝) + (𝑏2 × 𝑧′𝑔)         (4.5) 

Let 𝑡 = 𝑡 + 1, for simplicity purpose 

𝑧𝑖,𝑡+2 − (𝑧𝑖,𝑡+1 × (1 + ℎ − 𝑏1 − 𝑏2)) + (ℎ × 𝑧𝑖,𝑡) = (𝑏1 × 𝑧′𝑝) + (𝑏2 × 𝑧′𝑔)             (4.6) 

Generalized FDS is given by – 

            ∑ 𝑍′𝑞
𝑧`𝑠
𝑞=−𝑧`𝑙

𝑋′𝑚,𝑗+𝑞 = ∑ 𝑐𝑞
𝑐𝑠
𝑞=−𝑐𝑙

𝑋′𝑚+1,𝑗+𝑞 + 𝐷                                                         (4.7) 

Here 𝑧′𝑙, 𝑧`𝑠, 𝑐𝑙and 𝑐𝑠 are non-negative integers. On Comparing Eqns. (4.6) and (4.7)  

               𝑍′−1 = 𝑞, 𝑍′0 = −(1 + ℎ − 𝑏1 − 𝑏2), 𝑍1 = 1, 𝑋′−1 = 𝑋′0 = 𝑋′1 = 0  

                                            and 𝐷 = (𝑏1 × 𝑧′𝑝) + (𝑏2 × 𝑧′𝑔) 

Since Eq. (4.6) is a non-homogeneous. We will consider an associated homogeneous 

differential scheme of Eq. (4.6) to analyze the stability condition. Now, 

𝑧𝑖,𝑡+2 − (𝑧𝑖,𝑡+1 × (1 + ℎ − 𝑏1 − 𝑏2)) + (ℎ × 𝑧𝑖,𝑡) = 0 

𝑧𝑖,𝑡+2 − (𝑧𝑖,𝑡+1 × Λ) + (ℎ × 𝑧𝑖,𝑡) =0                      (4.8) 

where Λ = 1 + ℎ − 𝑏1 − 𝑏2 

Let 𝑧 = 𝑥(𝑖, 𝑡) be the exact solution of the 𝑖 − 𝑡 computational domain. Then 𝑧(𝑖ℎ, 𝑡𝑗) is the 

approximate solution at the nodes of the grids. For stability analysis of HPSO, the FDS Eq. 

(4.8) is considered instead of Eq. (4.5). The von Neumann stability criteria for FDS are used 
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to analyze the stability of the HPSO method. Let the mth component of the Fourier series 

solution of the above equation be given by: 

𝑧(𝑖ℎ, 𝑡𝑗) = 𝐶𝑚𝑒𝑙(𝜎𝑚𝑖ℎ−𝛽𝑚𝑡𝑗) 

                                       𝑧𝑖ℎ,𝑡𝑗
= 𝐶𝑚𝑒𝑙(𝜎𝑚ℎ𝛥𝑖−𝛽𝑚𝑗𝛥𝑡)                                   (4.9) 

where 𝑙 = √−1 ,  𝑖ℎ = ℎ𝛥𝑖  𝑡𝑗 = 𝑗𝛥𝑑,  𝐶𝑚  represents the amplitude of the 𝑚𝑡ℎ  component, 

𝛽𝑚 is the angular frequency, 𝜎𝑚 is the wave number of 𝑚𝑡ℎ component. Now consider Eq. 

(4.8) in terms of the grid point (𝑖ℎ, 𝑡𝑗)  

              𝑧𝑖ℎ,𝑡𝑗+2 - 𝑧𝑖ℎ,𝑡𝑗+1 × (Λ) + ℎ × 𝑧𝑖ℎ,𝑡𝑗
= 0                                          (4.10) 

Now, putting the value of Eq. (4.9) to Eq. (4.10) 

   𝐶𝑚𝑒𝑙(𝜎𝑚ℎ𝛥𝑖−𝛽𝑚𝑗𝛥𝑡)(𝑒−𝑙𝛽𝑚2𝛥𝑡 − Λ𝑒−𝑙𝛽𝑚𝛥𝑡 + ℎ) = 0                          (4.11) 

Since 𝐶𝑚 ≠ 0, (𝑒−𝑙𝛽𝑚2𝛥𝑡 − Λ𝑒−𝑙𝛽𝑚𝛥𝑡 + ℎ) = 0 

                                                    𝑍′2 − 𝛬𝑍′ + ℎ = 0                                                       (4.12) 

where 𝑍′ = 𝑒−𝑙𝛽𝑚𝛥𝑡, 𝑍′ is the amplification factor. Here, a deterministic approach is used to 

solve the quadratic Eq. (4.12). Now,  

                                                       𝑍′ =
𝛬±√(𝛬2−4𝑞)

2
 

According to von Neumann's stability criteria, the FDS is stable iff 

|(amplification factor)| ≤ 1. FDS is given by Eq. (4.8) is considered, so the FDS given by 

(4.4) is considered. Hence HPSO is stable iff |𝑍`| ≤ 1 

                                                                         |
𝛬±√𝛬2−4ℎ

2
| ≤ 1 

Hence, −1 ≤
𝛬±√𝛬2−4ℎ

2
≤ 1. Now we have two cases. 

Case A: 
𝛬±√𝛬2−4ℎ

2
≤ 1. 

                                                        ±√𝛬2 − 4ℎ ≤ 2 −  𝛬 →  |√𝛬2 − 4ℎ| ≤ 2 −  𝛬 

Now, Squaring both sides of the above equation, we get 

(𝛬2 − 4ℎ) ≤ (2 −  𝛬)2 
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Now replace the value of 𝛬 by 1 + ℎ − 𝑏1 − 𝑏2 in the above inequality. Then, solving the 

inequality, we get  

                                                        0 ≤ ℎ1 + ℎ2                                            (4.13) 

Case B: −1 ≤ 
𝛬±√𝛬2−4ℎ

2
 

−(2 +  𝛬) ≤ ±√𝛬2 − 4ℎ 

                                                         → (2 +  𝛬) ≥ ∓√𝛬2 − 4ℎ 

                                                          →(2 +  𝛬) ≥ |√𝛬2 − 4ℎ| 

On squaring both sides of the above equation, we get (2 + 𝛬)2 ≥ (𝛬2 − 4ℎ) 

Now replacing the value of 𝛬 by 1 + ℎ − 𝑏1 − 𝑏2 in the above inequality. Then solving the 

inequality, we get  

                                                                 ℎ1 + ℎ2 ≤ 2(1 + ℎ)                        (4.14) 

From Eqns. (4.14) and (4.13). We get the stability condition- 

                                                             0 ≤ ℎ1 + ℎ2 ≤ 2(1 + ℎ)                                 (4.15) 

Hence the proposed HPSO is stable iff  0 ≤ ℎ1 + ℎ2 ≤ 2(1 + ℎ) 

 

4.6   Results and Discussions  

Then, the proposed HPSO method is compared to four different methods (Binary Harris 

Hawks Optimization (BHHO)61, GA, Salp Swarm Algorithm (SSA)15) on seven datasets39 

(Ionosphere, Wine, Breast Cancer Wisconsin, Sonar, Libras Movement, Hill Valley, Musk 1) 

using UCI Machine Learning respiratory as given in Table 1.3. On each dataset, we have 

conducted five experiments. In each experiment, we have run the Matlab code six times. 

Then, we recorded their CA, feature, and computational time for each experiment and each 

dataset. We have also checked whether the difference is statistically significant or not by 

applying Friedman's test and the MWUT. For more detailed information on the work, the 

result of the Musk 1 dataset has been explained in Section 4.6.1. In Section 4.6.2, we have 

discussed the effect of all the methods on all seven datasets.  
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4.6.1   Musk 139 

The graphs of experiments 1, 2, 3, 4, and 5 of all the methods are obtained. In Figs 4.1 and 

4.2, the first row gives the CA, where PSO, HPSO, GA, BHHO, and SSA are represented by 

green, red, yellow, blue, and black colours, respectively. In the second and third rows of the 

Figs 4.1 and 4.2, we are getting the NF and the time complexity of all the methods. Here, 

PSO, HPSO, GA, BHHO, and SSA are represented by bar 1, bar 2, bar 3, bar 4, and bar 5, 

respectively. The graphs of experiments 1 and 2 are in Figs 4.1 and 4.2. 

 

In Table 4.1, the CAs of the experiments 1, 2, 3, 4, and 5 are given in a detailed 

manner. Since we have taken six runs in each experiment, every run is represented by a 

column in Table 4.1. Hence, each column of Table 4.1 represents a run. 

  

Table 4.1. Results of PSO, HPSO, GA, BHHO, and SSA obtained in five Experiments concerning CA 

Experiment 1 RUN 1 RUN 2 RUN 3 RUN 4 RUN 5 RUN 6 

PSO 0.936842 0.957895 0.936842 0.947368 0.957895 0.968421 

HPSO 0.968421 0.957895 0.957895 0.978947 0.978947 0.978947 

GA 0.947368 0.936842 0.957895 0.926316 0.936842 0.957895 

BHHO 0.947368 0.936842 0.936842 0.947368 0.957895 0.926316 

SSA 0.947368 0.926316 0.957895 0.947368 0.926316 0.936842 

Experiment 2       

PSO 0.947368 0.926316 0.957895 0.926316 0.915789 0.978947 

HPSO 0.978947 0.968421 0.978947 0.947368 0.957895 0.978947 

GA 0.968421 0.915789 0.957895 0.968421 0.926316 0.957895 

BHHO 0.926316 0.915789 0.915789 0.936842 0.915789 0.947368 

SSA 0.915789 0.936842 0.926316 0.936842 0.936842 0.947368 

Experiment 3       

PSO 0.947368 0.957895 0.978947 0.957895 0.978947 0.947368 

HPSO 0.978947 0.978947 0.968421 0.968421 0.978947 0.968421 

GA 0.968421 0.947368 0.957895 0.915789 0.957895 0.926316 

BHHO 0.936842 0.947368 0.947368 0.947368 0.936842 0.905263 

SSA 0.947368 0.936842 0.936842 0.936842 0.947368 0.894737 

Experiment 4       

PSO 0.915789 0.926316 0.947368 0.915789 0.915789 0.957895 

HPSO 0.926316 0.947368 0.968421 0.978947 0.936842 0.968421 

GA 0.915789 0.905263 0.915789 0.936842 0.894737 0.978947 
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BHHO 0.905263 0.905263 0.894737 0.905263 0.894737 0.936842 

SSA 0.915789 0.894737 0.894737 0.947368 0.894737 0.947368 

Experiment 5       

PSO    0.957895 0.936842 0.947368 0.968421 0.968421 0.915789 

HPSO    0.968421 0.968421 0.989474 0.989474 0.989474 0.989474 

GA    0.978947 0.978947 0.947368 0.957895 0.905263 0.905263 

BHHO    0.936842 0.936842 0.936842 0.947368 0.936842 0.947368 

SSA    0.947368 0.926316 0.947368 0.936842 0.936842 0.957895 

Note: Bold values indicate the best value 

 

Experiment 1 

 Here, we observe from Fig 4.1 that 4 times, HPSO is giving optimal results, 2 times PSO is 

giving optimal results and 1 time GA and SSA are showing optimal results concerning CA. 

Again, 3 times, GA takes the least NF, 2 times, HPSO takes the least NF, and 1 time, SSA 

takes the least NF. The detailed results in Fig 4.1 are numerically written in Table 4.1. 

 

Experiment 2 

Here, we observe from Fig 4.2 that 5 times, HPSO is giving optimal results, and 1 time, GA is 

giving optimal results concerning CA. Again, 2 times BHHO is taking the least NF, and the 

rest are taking the least NF 1 time. The detailed results in Fig 4.2 are numerically written in 

Table 4.1. 

 

Experiments 3, 4, 5 

From Experiment 3, 5 times HPSO gives optimal results and 2 times PSO gives optimal results 

concerning CA. Again, 3 times, HPSO takes the least NF, 2 times, SSA takes the least NF, and 

GA takes the least NF 1 time. From Experiment 4, 6 times, HPSO gives optimal CA results. 

Again, 6 times, BHHO is taking the least NF. From Experiment 5, 4 times HPSO gives optimal 

results, and 2 times GA gives optimal results concerning CA. Again, 2 times HPSO is taking 

the least NF, and the rest are taking the least NF 1 time. 
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4.5.2   Discussions 

 The experiment was conducted five times for each dataset. We have recorded their accuracy, 

NF, and time complexity. Figs 4.3 to 4.9 are the convergence curve, which compares all five 

methods on the seven datasets of a particular run of experiment 1. In Tables 4.2 and 4.3, the 

observations of the experiment concerning CA and NF are given, respectively. Table 4.2 gives 

the mean CA by all five methods on all seven datasets and the Friedman average rank (FAR). 

Table 4.3 gives the mean number of features selected by all five methods on all seven datasets, 

along with the average Friedman ranking. Here, the values in bold are best, and those in italics 

are second best. 

Fig. 4.1. Graph of Experiment 1 

Fig. 4.2. Graph of Experiment 2 
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Table 4.2. Experimental results of Mean CA using PSO, HPSO, GA, BHHO, and SSA methods on the seven 

datasets along with Friedman ranking 

 Musk 1 

Hill 

Valley 

Libras 

Moment Sonar Ionosphere WDBC Wine 
FAR 

PSO 0.94702 0.610193 0.82361 0.92264 0.930476 0.943953 0.968571 3.43 

HPSO 0.969474 0.639669 0.843056 0.939453 0.93857 0.943363 0.977143 2.14 

GA 0.94105 0.62204 0.821759 0.922403 0.93619 0.943953 0.98 2.86 

BHHO 0.930526 0.590634 0.813426 0.92392 0.945912 0.957817 0.995238 2.57 

SSA 0.932982 0.590083 0.812963 0.916486 0.930952 0.94867 0.978095 4 

Note: Bold values indicate the best value, and italic values indicate the second best value 

 

Table 4.3. Experimental results of Mean of NF selected using PSO, HPSO, GA, BHHO, and SSA methods on 

the seven datasets along with Friedman ranking 

 

Musk 1 

Hill 

Valley 

Libras 

Moment Sonar Ionosphere WDBC Wine 

FAR 

PSO 75 47.2 44.23333 33.2667 14.8 16.5 5.43333      3 

HPSO 77.133 45.9667 42.03333 31.8333 14.5667 16.0333 6.06667 2.29 

GA 76.067 47.3666 43.83333 32.5333 15.4 15.3 6.36667 3.43 

BHHO 91.8 46.1 44.76667 32.6667 22.56667 13.033 2.36667 3.43 

SSA 83.4 47.8666 42.9333 31.1333 13.86667 14.866 6.83333 2.86 

Note: Bold values indicate the best value, and italic values indicate the second best value 

 

                  

Fig. 4.3. CA of all the methods on the Musk 1 dataset.                    Fig. 4.4. CA of all the methods on the Hill Valley dataset.      
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Fig. 4.5. CA of all the methods on the Libras Moment dataset.      Fig. 4.6. CA of all the methods on the Sonar dataset.      

 

                                 

Fig. 4.7. CA of all the methods on the Ionosphere dataset.      Fig. 4.8. CA of all the methods on the WDBC dataset.      

 

 

Fig.4.9. CA of all the methods on the Wine dataset.     
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4.7 Conclusion 

From Table 4.2 and the U values of HPSO against other methods, we observe that HPSO has 

the best solution, followed by BHHO, then again by GA, then by PSO, and then by SSA. 

Hence, we can conclude that HPSO has the best CA with a statistically significant difference. 

From Table 4.3 and the U values of HPSO against other methods, we observe that HPSO has 

the best solution, followed by SSA, then again followed by PSO, then by GA and BHHO. 

Hence, we can conclude that HPSO takes the least NF with a statistically significant 

difference. Thus, we get a statistically significant difference after applying the Friedman's test 

and MWUT.  

 

Hence, based on statistical measures and convergence rates, the proposed HPSO 

method gives better results on the high-dimensional and medium-dimensional datasets than the 

other meta-heuristic methods considered in this paper. However, on low-dimensional datasets, 

the results are satisfactory. Since the practical applications of FS problems involve large 

datasets, the proposed HPSO is more application-oriented and useful. This satisfies our 

objective to increase CA and decrease the NF. 
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Chapter 5 

 

 

Comparative study between Hybrid Particle Swarm Optimization 

and Particle Swarm Optimization on a Multi-Objective Feature 

Selection Problem 

 

 

5.1 Introduction 

Classification is a common application of machine learning, which finds the class for a given 

instance based on a set of similarities62. However, due to the abundance of noisy, pointless, and 

duplicated features on some datasets, CA declines significantly as the number of features rises 

and training time accelerates63. Three crucial dimensionality reduction technologies—feature 

extraction, feature building, and feature selection—are suggested to eliminate these 

characteristics64. The fundamental difficulty feature selection algorithms face as the number of 

features rises a broad search space65. Consequently, the search method is a crucial component 

of feature selection algorithms. Sequential forward selection (SFS) and sequential background 

selection (SBS) are examples of traditional search algorithms that can identify the best answers. 

Still, they need much computing time and are prone to local optimization, especially on high-

dimensional datasets66. PSO, Grey Wolf Optimization (GWO), teaching-learning-based 

optimization (TLBO), bacterial colony optimization (BCO), GA, ABC, and differential 

evolution (DE) are examples of metaheuristic algorithms that have a better global search 

capability than conventional search techniques. Hence, these algorithms are frequently used in 

feature selection algorithms. As a result, much research focuses on feature selection algorithms 

built using metaheuristic algorithms. 
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It is challenging for a single swarm on high-dimensional datasets to tackle the feature 

selection challenges67. As a result, variable-length PSO representation was proposed by 

decomposing the entire collection of features into feature subsets with various characteristics68. 

Combining classification performance and the number of features into a single fitness function 

using a single assessment criterion is technically challenging, even though many researchers 

delete some features using information theory or select feature subsets with good classification 

accuracy. As a result, feature selection methods based on metaheuristic algorithms have been 

given the MOO treatment69. Since maximizing classification performance and reducing the 

number of features are two competing goals, feature selection is a multi-objective issue56. 

Generally speaking, the Pareto dominance mechanism on the archive and diversity 

enhancement strategies is primarily used in feature selection algorithms based on multi-

objective metaheuristic algorithms. The TMABC-FS70 algorithm incorporates a multi-

objective ABC algorithm with a two-archive mechanism based on the Pareto mechanism to 

increase diversity. The two search algorithms must maintain a fair balance of convergence and 

diversity, and the upkeep of the two archives requires a significant amount of computation 

time71. To preserve population diversity, a multi-objective immune method using an elite 

selection strategy based on reference vectors was proposed72. Recently, MOFS-BDE73 

proposed a one-bit purifying search operator for the self-learning capability, non-dominated 

sorting with crowding distance on the archive, and a binary mutation operator based on 

possibility differences to identify viable solutions. 

 

                This is how the rest of the chapter is organised. Certain fundamental ideas necessary 

for comprehending this chapter properly are explained in Section 5.2. Section 5.3 describes the 

issue that we have addressed in this chapter. The suggested HPSO technique for the multi-

objective FS problem has been covered in Section 5.4 of the chapter. Section 5.5 explains the 

theoretical analysis of the suggested HPSO algorithm. Using seven datasets, the proposed 

HPSO algorithm is contrasted with four different metaheuristic algorithms in Section 5.6. They 

are next examined for statistical significance. This section also computes the time completion 

of all the techniques. Lastly, the conclusion of the present work is provided in Section 5.7. 
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5.2 Background 

A comprehensive understanding of this chapter requires familiarity with core concepts like 

PSO and GA, detailed in Section 1.3. It is equally critical to have a basic understanding of 

MOO for proper comprehension, as explained in Chapter 3, Section 3.2. Additionally, an 

awareness of FS problems, discussed in Section 1.5, is vital. 

 

5.3 Problem Formulation 

For our proper understanding, some important terms and concepts are defined. Most literature 

combines the two objectives, forming a single objective optimization problem. But in this 

chapter, we are dealing with them separately, forming a MOO problem. This gives rise to the 

set of Pareto-optimal solutions. Hence, a hybrid metaheuristic algorithm for the multi-objective 

FS problem is developed and explained in this chapter. 

 

 The objective functions of the MOO problem are explained here. We have two 

objective CA and the NF. The article aims to maximize the selected features CA and minimize 

the NF. If we increase the CA, the NF will decrease and vice versa. Since both objective 

functions are contradictory, we will get a set of Pareto-optimal solutions. 

 

 Here, we have used the concept of wrapper evaluation for computing CA, which is the 

first objective function 𝐹1(𝑋) of the FS problem. The wrapper fitness function maximizes the 

CA of the selected feature subset and is calculated using Eq. (4.2). Here, the number of 

correctly classified instances is divided by the total number of cases computed. Here, we have 

used the KNN classification, with K=1 for its simplicity. The pseudo-code and formula for 

finding the CA are given in the previous chapter in Section 4.3. The NF is calculated as given 

in Eq. (4.3) and its pseudo-code is given in the previous chapter in Section 4.3. Here , the first 

objective function is 𝐹1(𝑋) + 𝐹2(𝑋) and the second objective function is 𝐹3(𝑋). 

 

5.4 Proposed HPSO Algorithm 

The proposed algorithm uses the concept of a cross-over operator to develop a hybrid PSO. 

The pseudo-code of the proposed algorithm is given below: 
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INPUT: Initialization of the position of each particle and all the parameters are done. 

OUTPUT: Pareto-optimal solutions, with each solution giving accuracy and NF. 

(1) Each particle is initialized with the help of random matrices. Each row of the matrix 

represents the particle’s position. Therefore, proper one-to-one correspondence 

between the possible solution and position matrix is critical for the algorithm's 

effectiveness. 

(2) The velocity and position of the particles for the first iteration are taken as random 

matrices. 

(3) Compute the wrapper evaluation of each particle, which will be treated as accuracy for 

Wrapper evaluation 𝐹1(𝑋) + 𝐹2(𝑋) from Eqns. (4.1) and (4.2). 

(4) Compute the NF for each particle 𝐹3(𝑋) from Eq. (4.3). 

(5) t = t + 1; from here, the iteration process starts till maximum iteration is reached. (We 

have started from t=1). 

a. From the population, a leader set is selected. 

b. The position and velocity are updated using Eq. (1.16) and Eq. (1.17). 

c. Then the boundary conditions are applied. 

d. The accuracy of each particle and the NF taken by each particle are computed. 

e. The personal best for each particle is updated. 

f. Apply the crossover operator between the personal best solution and the global 

best solution. 

g. Chang the Non-Dominating Front by adding Non-Dominated Particles. 

h. The domination of all the new Non-Dominating Front Members is determined. 

(6) The iteration process continues until the Maximum iteration is achieved. 

(7) The algorithm will give Pareto-optimal solutions after achieving the termination 

criteria. Then, each solution will give us accuracy and the NF it takes. 

 

5.5 Mathematical Analysis of Proposed Algorithm  

The stability analysis of the proposed HPSO algorithm can be discussed with the help of the 

groundwork laid out in the previous chapter.  
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5.6   Results and Discussions  

Here, the results obtained using the Proposed HPSO algorithm are compared with the PSO 

algorithm on seven datasets39 to know which produces better results. The detailed information 

on all the datasets is explained in Table 1.3. Since we are dealing with the MOO problem, we 

will get a set of Pareto optimal solutions. Each Pareto optimal solution gives accuracy and NF. 

Five experiments on all seven datasets have been conducted. The results of three experiments 

obtained by using the Ionosphere dataset, the Musk 1 dataset, and two experiments on Hill 

Valley Datasets have been explained in detail in this section. Both HPSO and PSO algorithms 

are compared using Figs 5.1- 5.7 and Tables 5.1- 5.16, where DMs, accuracy, and NF are given. 

In Figs 5.1- 5.7, the PSO algorithm is indicated on the Left side, the HPSO algorithm is marked 

on the Right side, and the Red colour denotes the DMs. 

 

5.6.1 Ionosphere Dataset 

The experimental results on the Ionosphere Dataset have been explained in this section. Here, 

only three out of the five experiments are explained in detail. The DMs of Experiments 1, 2, 

and 3 using the Ionosphere dataset are given in Figs 5.1, 5.2, and 5.3. 

 

Fig. 5.1. Graph of Experiment 1 
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                                    Fig. 5.2. Graph of Experiment 2  

     

                               Fig. 5.3. Graph of Experiment 3

Result of Experiment 1  

In experiment 1, the DMs in PSO and HPSO algorithms are given in Tables 5.1 and 5.2, 

respectively, with their accuracy and NF. In this Experiment, the average accuracy of PSO and 

HPSO algorithms is 0.8714 and 0.8929, respectively. On the other hand, the NF taken by PSO 

and HPSO algorithms are 18 and 16, respectively. Here, we observe that the HPSO algorithm 

has higher accuracy and less average NF than the PSO algorithm. So, we are getting a better 

result when we apply the HPSO algorithm.  
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         Table 5.1. Results for PSO of Experiment 1 

DMs ACCURACY NF 

1 0.871428 17 

2 0.857142 16 

3 0.885714 20 

                                               

        Table 5.2. Results for HPSO of Experiment 1 

DMs ACCURACY NF 

1 0.900000 17 

2 0.885714 15 

 

Result of Experiment 2 

In experiment 2, the DMs in PSO and HPSO algorithms are given in Tables 5.3 and 5.4, 

respectively, with their accuracy and NF. In this Experiment, the average accuracy of PSO and 

HPSO algorithms is 0.8952 and 0.8905, respectively. On the other hand, the NF taken by PSO 

and HPSO algorithms are 19 and 17, respectively. Hence, we observe that the average accuracy 

is approximately the same in both PSO and HPSO algorithms. However, the proposed HPSO 

algorithm takes less average NF when compared with the PSO algorithm. So, we are getting a 

better result when we apply the HPSO algorithm. 

 

        Table 5.3. Results for PSO of Experiment 2 

DMs Accuracy NF 

1 0.8714285 15 

2 0.9142857 24 

3 0.9000000 18 

 

                                                   Table 5.4. Results for HPSO of Experiment 2 

DMs Accuracy NF 

1 0.9000000 15 

2 0.8571428 13 

3 0.9142857 23 

 

Result of Experiment 3  

In experiment 3, the DMs in PSO and HPSO algorithms are given in Tables 5.5 and 5.6, 

respectively, with their accuracy and NF. In this Experiment, the average accuracy of PSO and 
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HPSO algorithms is 0.8952 and 0.8905, respectively. On the other hand, the NF taken by PSO 

and HPSO algorithms are 19 and 17, respectively. Hence, we observe that the average accuracy 

is approximately the same in both PSO and HPSO algorithms. However, the proposed HPSO 

algorithm takes less average NF when compared with the PSO algorithm. So, we are getting a 

better result when applying the HPSO algorithm. 

                                                    Table 5.5. Results for PSO of Experiment 3 

DMs Accuracy NF 

1 0.828571 16 

2 0.842857 20 

            

         Table 5.6. Results for HPSO of Experiment 3 

DMs Accuracy NF 

1 0.828571 15 

2 0.842857 16 

3 0.857142 21 

 

 

5.6.2 Musk 1 Dataset 

The experimental results on the Musk 1 Dataset have been explained in this section. Here, only 

three out of the five experiments are explained in detail. The DMs of Experiments 1, 2, and 3 

are given in Figs 5.4, 5.5, and 5.6. 

 

Fig. 5.4. Graph of Experiment 1 
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                          Fig. 5.5. Graph of Experiment 2 

     

                               Fig. 5.6. Graph of Experiment 3 

 

Result of Experiment 1  

In experiment 1, the DMs in PSO and HPSO algorithms are given in Tables 5.7 and 5.8, 

respectively, with their accuracy and NF. In this Experiment, the average accuracy of PSO and 

HPSO algorithms is 0.8526 and 0.8719, respectively. On the other hand, the NF taken by PSO 

and HPSO algorithms is 96.7143 and 67.6667, respectively. Here, we observe that the HPSO 

algorithm has higher accuracy and less average NF than the PSO algorithm. So, we are getting 

a better result when we apply the HPSO algorithm. 
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        Table 5.7. Results for PSO of Experiment 1 

DMs Accuracy NF 

1 0.852631 97 

2 0.842105 89 

3 0.831578 83 

4 0.884210 110 

5 0.873684 109 

6 0.863157 107 

7 0.821052 82 

 

        Table 5.8. Results for HPSO of Experiment 1 

DMs Accuracy NF 

1 0.810526 50 

2 0.873684 53 

3 0.863157 51 

4 0.884210 81 

5 0.894736 84 

6 0.905263 87 

 

 

Result of Experiment 2  

In experiment 2, the DMs in PSO and HPSO algorithms are given in Tables 5.9 and 5.10, 

respectively, with their accuracy and NF. In this Experiment, the average accuracy of PSO and 

HPSO algorithms is 0.8842 and 0.8825, respectively. On the other hand, the NF taken by PSO 

and Hybrid HPSO algorithm is 109.4286 and 58.5, respectively. Here, we observe that the 

HPSO algorithm has higher accuracy and less average NF than the PSO algorithm. So, we are 

getting a better result when we apply the HPSO algorithm. 

Table 5.9. Results for PSO of Experiment 2 

DMs Accuracy NF 

1 0.852631 78 

2 0.863157 81 

3 0.873684 93 

4 0.884210 94 

5 0.894736 138 

6 0.905263 140 

7 0.915789 142 
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         Table 5.10. Results for HPSO of Experiment 2 

DMs Accuracy NF 

1 0.831578 39 

2 0.852631 40 

3 0.863157 41 

4 0.905263 42 

5 0.915789 86 

6 0.926315 103 

 

 

Result of Experiment 3  

In experiment 3, the DMs in PSO and HPSO algorithms are given in Tables 5.11 and 5.12, 

respectively, with their accuracy and NF. In this Experiment, the average accuracy of PSO and 

HPSO algorithms is 0.8553 and 0.8421, respectively. On the other hand, the NF taken by PSO 

and HPSO algorithms are 101.3750 and 28.3, respectively. Hence, we observe that the average 

accuracy of PSO is better than that of the HPSO algorithm. However, the proposed HPSO 

algorithm takes less average NF when compared with the PSO algorithm. So, we are getting a 

better result when we apply the HPSO algorithm. 

 

Table 5.11. Results for PSO of Experiment 3 

DMs Accuracy NF 

1 0.821052 84 

2 0.842105 85 

3 0.852631 87 

4 0.863157 89 

5 0.873684 111 

6 0.884210 135 

7 0.894736 137 

8 0.810526 83 

 

     Table 5.12. Results for HPSO of Experiment 3 

DMs Accuracy NF 

1 0.926315 60 

2 0.905263 45 

3 0.894736 28 

4 0.810526 21 

5 0.768421 20 
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6 0.747368 18 

7 0.873684 23 

8 0.757894 19 

9 0.852631 22 

10 0.884210 27 

 

 

5.6.3 Hill Valley Dataset 

The experimental results on the Hill Valley Dataset have been explained in this section. Here, 

only three out of the five experiments are explained in detail. The DMs of Experiment 1 are 

given in Fig 5.7. 

 

Fig. 5.7. Graph of Experiment 1 

 

Result of Experiment 1  

In experiment 1, the DMs in the PSO and HPSO algorithms are given in Tables 5.14 and 5.15, 

respectively, with their accuracy and NF. In this Experiment, the average accuracy of the PSO 

and HPSO algorithms attained is 0.4752 and 0.4773, respectively. On the other hand, the NF 

taken by the PSO and HPSO algorithms is 54.75 and 10.25, respectively. Here, we observe that 

the HPSO algorithm has higher accuracy and less average NF than the PSO algorithm. So, we 

are getting a better result when we apply the HPSO algorithm. 

Table 5.13. Results for PSO of Experiment 1 

DMs Accuracy NF 

1 0.495867 68 

2 0.471074 50 

3 0.479339 53 

4 0.454545 48 
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Table 5.14. Results for HPSO of Experiment 1 

DMs Accuracy NF 

1 0.454545 5 

2 0.471074 6 

3 0.487603 11 

4 0.495868 19 

 

 

Result of Experiment 2 

In experiment 2, the DMs in the PSO and HPSO algorithms are given in Tables 5.16 and 5.17, 

respectively, with their accuracy and NF. In this Experiment, the average accuracy of PSO and 

HPSO algorithms is 0.5240 and 0.5438, respectively. On the other hand, the NF taken by the 

PSO and HPSO algorithms is 52.6 and 5.2, respectively. Here, we observe that the HPSO 

algorithm has higher accuracy and less average NF than the PSO algorithm. So, we are getting 

a better result when we apply the HPSO algorithm. 

 

Table 5.15. Results for PSO of Experiment 2 

DMs Accuracy NF 

1 0.512396 51 

2 0.520661 52 

3 0.545454 56 

4 0.537190 55 

5 0.504132 49 

 

The mean accuracy and NF of both algorithms on all the datasets are given in Tables 

5.17 and 5.18, respectively. First, the WRST is applied to know their statistical significance. 

Then, the p-values of accuracy and NF are collected and given in Table 5.19. Whenever the p-

values are less than 0.05, the null hypothesis is rejected. Hence, there is a significant difference. 

On the other hand, whenever the p-values are more than 0.05, the null hypothesis cannot be 

rejected. Hence, there is no significant difference. 
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Table 5.16. Results for HPSO of Experiment 2 

DMs Accuracy NF 

1 0.487603 1 

2 0.545454 2 

3 0.553719 3 

4 0.561983 8 

5 0.570247 12 

 

Table 5.17. Mean Accuracy of both algorithms on all the seven datasets 

Datasets PSO Algorithm HPSO Algorithm 

Wine 0.863736 0.852718 

WDBC 0.932421 0.91642 

Ionosphere 0.871428 0.865934 

Sonar 0.786116 0.789268 

Libras Moment 0.749074 0.694951 

Hill Valley 0.506562 0.538429 

Musk 1 0.866947 0.868571 

 

Table 5.18. Mean NF of both the algorithms on all seven datasets 

Datasets PSO Algorithm HPSO Algorithm 

Wine 6.461538 2.444444 

WDBC 15.818181 2.777777 

Ionosphere 17.727272 15.384615 

Sonar 34 9.04 

Libras Moment 42.533333 9.137931 

Hill Valley 50.882353 10.2 

Musk 1 102.92 52.285714 

 

Table 5.19. P-values of WRST of accuracy and features on all the seven datasets 

Datasets P-Values of accuracy P-Values of NF 

Wine 0.459 0 

WDBC 0.178 0 

Ionosphere 0.62414 0.0455 

Sonar 0.34 0 

Libras Moment 0.414 0 

Hill Valley 0.018 0 

Musk 1 0.519 0 
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From Tables 5.17, 5.18, and 5.19, we get the following observations- 

(1) The accuracy of both algorithms on the wine dataset is comparable. But we are getting            

less NF with a statistical significance when compared with the PSO. 

(2) On the WDBC dataset, the accuracy of both algorithms is comparable. But we are 

getting less NF with a statistical significance when compared with the PSO. 

(3) On the Ionosphere dataset, the accuracy of both algorithms is comparable. But we are 

getting less NF with a statistical significance when compared with the PSO.  

(4) On the Sonar dataset, the accuracy of HPSO is higher when compared with PSO, but 

the difference is not statistically significant. We are getting less NF with a statistical 

significance when compared with the PSO. 

(5) The accuracy of both algorithms is comparable to the Libras Moment dataset. But we 

are getting less NF with a statistical significance when compared with the PSO. 

(6) On the Hill Valley dataset, the accuracy of HPSO is higher with statistical significance 

when compared with PSO. Also, we are getting less NF with a statistical significance when 

compared with the PSO. 

 

On the Musk 1 dataset, the accuracy of HPSO is higher with statistical significance 

when compared with PSO. Also, we are getting less NF with a statistical significance when 

compared with the PSO. 

 

5.7 Conclusion 

This work proposes a hybrid metaheuristic algorithm, HPSO, using a cross-over 

operator and PSO. Here, a pseudo-code for finding the accuracy and NF, which is used as an 

objective function, has been developed. The proposed HPSO algorithm was applied to MOFS 

problems, and the performance of HPSO was compared against PSO using seven UCI datasets. 

  

The experimental results demonstrate that the HPSO algorithm outperforms PSO on a 

MOFS problem. Hence, the proposed algorithm gives better accuracy on higher dimensional 

problems. But on low dimensional problems, the result is comparable. The proposed algorithm 

takes less NF on both higher and lower dimensional problems. Furthermore, statistical tests 

were conducted to support this conclusion. Therefore, the proposed HPSO algorithm has the 

potential to serve as an excellent MOO problem and to tackle FS problems.   
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In the future, we will expand its application to real-life problems such as machine 

learning, medical applications, financial fields, and engineering optimization tasks. 

Furthermore, we will also integrate the fuzzy concept and novel algorithms with other 

strategies to build a better optimizer. 
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Chapter 6 

 

 

Innovative Hybrid Metaheuristic Algorithms: Exponential 

Mutation and Dual-Swarm Strategy for Hybrid Feature Selection 

Problem 

 

 

6.1 Introduction 

Metaheuristic algorithms are preferred over deterministic optimization algorithms due to their 

simplicity and ease of implementation in real-life scenarios. Various metaheuristic algorithms, 

such as BA12, GA10, Quantized Salp Swarm Algorithm74 and others have been applied to 

various real-world problems35.  

 

The exploration and exploitation phases are common features in all metaheuristic 

algorithms75. During the exploration phase, the algorithm explores different regions of the 

solution space to avoid premature convergence or stagnation. The success of metaheuristic 

algorithms depends on maintaining a proper balance between exploration and exploitation, 

which is achieved by selecting appropriate parameters.  

 

FS involves selecting a subset of original features that can achieve high accuracy in a 

classification problem. The primary goals of the FS problems are to improve accuracy76 and 

reduce the NF. Several fields, including text mining, image processing, computer vision, 

industrial applications, bioinformatics, and others, use FS problems in various ways77. As per 

the NFL theorem9 exploring novel and innovative metaheuristic algorithm is very important.  
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The chapter is organised as follows for the remainder of it. Some fundamental ideas 

needed for a thorough understanding of this chapter are explained in Section 6.2. The problem 

we have addressed in this chapter is explained in Section 6.3. Section 6.4 discusses the 

proposed PSOHHO and PSOHHO-V algorithms for the FS problem. Section 6.5 provides an 

explanation of the proposed algorithm's theoretical analysis. Several datasets are used in 

Section 6.6 to evaluate the proposed PSOHHO and PSOHHO-V algorithms with additional 

metaheuristic algorithms. Next, the statistical significance of them is examined.  The 

conclusion of the current work has been provided in Section 6.7. 

 

6.2 Background 

To fully comprehend this chapter, it's essential to be familiar with fundamental concepts such 

as HHO, PSO, and GA, explained in Section 1.3. Moreover, a crucial awareness of FS 

problems, explained in Section 1.5, is critical. 

 

6.3 Problem Formulation 

This section provides a brief overview of the challenge addressed in this chapter. As per the 

NFL theorem, no optimization algorithm can be the most efficient for every optimization 

problem. There is a need for development of innovative and efficient metaheuristic algorithms 

that will provide researchers and experts with broader options for solving complex 

optimization problems.    

 

In this chapter, two novel hybrid variants of metaheuristic algorithms are developed 

and discussed. In the novel variants an innovative EMO is introduced, to enhance the 

exploration capability. It includes an exponential function that determines mutation 

probability per particle based on its history. Also, the concept of dual-swarm strategy is 

introduced into this algorithm to foster diversity throughout the optimization process. 

 

There is a considerable research gap as theoretical and mathematical analysis of most 

of the metaheuristic algorithms has yet to be proved or even discussed. To address this issue 

the Signature of the proposed algorithm has been developed, this helps in the theoretical 

analysis of the proposed algorithm. 
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             Initially, the efficacy of the developed algorithms PSOHHO and PSOHHO-V are 

assessed on Benchmark Functions (BF) to validate their applicability to real-world problems. 

Subsequently, their application to FS problems aims to enhance CA and reduce the NF. For the 

FS problem, a combination of FE, WE, and NF are considered, and the proposed algorithms, 

PSOHHO and PSOHHO-V, are employed. Comparative analyses with other metaheuristic 

algorithms are conducted, and statistical significance is verified using Friedman's test and 

Wilcoxon Rank Sum Test (WRST). In this chapter, each row of the position matrix corresponds 

to a particle's position, where '0' signifies a feature not selected and '1' indicates feature 

selection. The quality of representation critically influences the effectiveness of the proposed 

method. 

 

6.4 Proposed Hybrid Approaches (PSOHHO and PSOHHO-V) 

Exploration and exploitation stand out as the primary techniques employed in the search for 

solutions within the solution space. Achieving an optimal answer requires a careful equilibrium 

between these two approaches to thoroughly navigate the solution domain. Traditional PSO 

algorithms and their modifications encounter challenges in maintaining this balance, resulting 

in limitations in generating effective solutions. The proposed algorithms help to address these 

issues. This algorithm employs two strategies to produce effective search results: 1) A dual-

swarm technique is implemented and 2) PSO is subjected to an EMO. 

 

When particles get stuck in local minima, they experience the mutation operator, which 

consists of two crucial components. First, in order to improve performance, the algorithm's 

overall mutation probability, represented by the letter 𝑚𝑝1
𝑡 , gradually decreases over time. 

Secondly, particles whose 𝑧𝑝 has stayed stationary in recent iterations see an enhanced chance 

of mutation, and is accomplished by introducing 𝑚𝑝2
𝑡 . After that, Eq. (6.1) is utilized to 

determine 𝑚𝑢𝑗
𝑡. Throughout the iterations, the parameter 𝑚𝑝1

𝑡 decreases by a factor of 𝜆𝑑. It is 

determined by applying Eq. (6.2), which is explained in78 and Eq. (6.3) is used to compute 

𝑚𝑝2
𝑡 . 

 

                                                          𝑚𝑢𝑗
𝑡 = 𝑚𝑝1

𝑡 × 𝑚𝑝2
𝑡                                                              (6.1) 

                                                        𝑚𝑝1
𝑡 = 𝑚𝑝1

𝑡−1 × 𝜆𝑑                                                               (6.2) 
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                        𝑚𝑝2
𝑡 = 𝑒

(
(𝑁𝑆𝐼𝑗−𝑁𝐼)

𝜆𝑚
⁄ )

                                                           (6.3) 

 

Here the number of iterations of particle 𝑝𝑗, during which it’s 𝑧𝑝 remains unchanged, 

is represented as 𝑁𝑆𝐼𝑗. Parameter 𝑁𝐼 indicates how many times the particle has been iterated 

to take benefit of its neighbourhood.  

 

The quest for an optimal exploration-exploitation balance leads to the design of a dual-

swarm strategy, wherein the total population N is divided into two halves. The first half of the 

particles team (Say Team A), the particles are guided using HHO and in the second half (Say 

Team B), particles are guided using PSO, for every iteration. Then at each iteration, the best 

values of teams A and B are compared. Then at the end of the termination criteria, the best 

value is selected as the global best solution. The global best solution gives us features with 

higher accuracy and less NF. In the second algorithm, a variant of PSOHHO (PSOHHO-V) is 

introduced, where the concept of crossover is applied. The flowchart of PSOHHO is given in 

Fig. 6.1 and the detailed explanation of the proposed algorithms are given below - 

 

Algorithm 1: Pseudo-code of PSOHHO and PSOHHO-V (with step 22). 

INPUT: Initialization of the position of each particle and all the parameters are done. 

OUTPUT: Global best solution. 

Pseudo-code 

1) First, all the parameters of the PSO and HHO are initialized. The particle swarm (N) 

is given before the start of the experiment as it depends on experiment ℎ = 1, 

  ℎ1 = 2, and ℎ2 = 2 are the values of the parameter taken.  

2) The particle's velocity and position are initialized by assigning random matrices. 

3) In a corresponding solution matrix, the position of every particle is represented by the 

row of the corresponding position matrix. 

4) The main iterative loop starts in this step. 

5) Compute the FE (𝐹1), WE (𝐹2) and NF (𝐹3) of each particle using Eq. (4.1), Eq. (4.2) 

and Eq. (4.3) respectively 

6) The objective function ((𝐹1 + 𝐹2) − 𝐹3) is treated as the fitness function of each 

particle.  
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7) Now first Team A and then Team B will come into play respectively. 

8) For 𝑖 =  1: 𝑁/2 (Say Team A) 

9) Now, compute |𝐸_𝐸|  from Eq. (1.3) to check whether to stay in exploration or 

exploitation mode.  

10) If |𝐸_𝐸| > 1, update the particle according to Eq. (1.1). This is the exploration phase.  

11)   If |𝐸_𝐸| and 𝑐 are greater than or equal to 0.5. 

   then the particles are guided by Eq. (1.4) 

12)   Else if |𝐸_𝐸| is less than 0.5 and 𝑐 is greater than or equal to 0.5.  

then the particles are guided by Eq.  (1.7) 

13)   Else if |𝐸_𝐸| is greater than or equal to 0.5 and 𝑐 is less than 0.5.  

   then the particles are guided by Eq.  (1.12) 

14)  Else if |𝐸_𝐸| and 𝑐 are less than 0.5.  

        then the particles are guided by Eq. (1.15) 

  End 

15) End 

16) Eq. (6.1) is used to apply the EMO. 

17) End (steps 8 to 16) 

18) Then we take the best value from the above steps (steps 8 to 16). (Say (Fit H)). 

19) 𝐹𝑜𝑟 𝑖 =  𝑁/2:𝑁 (Say Team B) 

20) Update the velocity and position of each particle using Eq. (1.16) and Eq. (1.17)       

21) The personal best of each particle is updated and Eq. (6.1) is used to apply the EMO. 

Then the global best is updated. 

End 

22) Then the crossover operator is introduced (ONLY FOR SECOND ALGORITHM, 

KNOWN AS PSOHHO-V).  

23) End (steps 18 to 23) 

24) Then we take the best value from the above steps (steps 18 to 23). (Say (Fit P)). 

25) Now, Fit H and Fit P are compared. The higher fitness value will be treated as the 

global best.  

26) End (steps 4 to 25). Here the main iteration loop stops. 

27) If termination criteria is not achieved then the process keeps repeating. So steps 8 to 

17 and steps 19 to 23, will be repeated again and again till the criteria is not satisfied. 
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28) After termination criteria is achieved, select the features using global best and its CA 

is reported.  

 

Note: If Step 22 is included, then it is the PSOHHO-V algorithm, else it is the PSOHHO 

algorithm. 

 

 

Fig. 6.1.  Flowchart of PSOHHO 
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6.5 Theoretical Analysis of PSOHHO 

With the aid of the Signature stated in Section 6.5.1 and the convergence discussed in Section 

6.5.2, the theoretical analysis of the proposed algorithm is covered in this part. 

 

6.5.1 Signature of the PSOHHO 

An unbiased stochastic optimization technique generates a collection of positions that are 

statistically identical to those generated by an arbitrary search since every point in the search 

space has the same importance. Hence, it is ideal to identify the inherent bias of an 

optimization technique before calculating its efficiency. We must be vigilant for central bias, 

edge bias, none, or both. Let 𝑓(𝑥) = 1 to observe the bias of optimization. The underlying 

bias of the algorithms is shared by many optimization techniques. Many optimization 

algorithms like the Marine Predators Algorithm, WOA, and GWO can be rejected because of 

their biases79. Fig. 6.2 displays the HHO Signature. The HHO algorithm is disallowed due to 

its center bias. To assess the bias of the suggested optimization algorithm (PSOHHO), we 

used 𝑓(𝑥) = 1. We can see the PSOHHO signature in Fig. 6.3. The PSOHHO Signature is 

not skewed toward the center, axis, or region, as seen in Fig. 6.3. We can observe that the 

Signature of PSOHHO must be acknowledged and that it is far superior to the Signature of 

HHO.  

 

                   Fig. 6.2. Signature of HHO                                                Fig. 6.3. Signature of PSOHHO 

 

6.5.2 Convergence analysis of the PSOHHO 

Convergent analysis of standard PSO has been carried out using the MC18.  
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Convergent criteria 

The convergence of an algorithm depends on the framework of the theoretical analysis of the 

algorithm and certain criteria; here, we have used the conditions given by  Solis and Wets80. 

If a stochastic optimization 𝑇 iterates for t iterations, then we can obtain the new solution 

𝑧(𝑡 + 1) using the equation defined below- 

𝑧(𝑡 + 1) = 𝑇(𝑧(𝑡), έ) 

Where έ is the solution set. 

To obtain global optimality, two conditions are necessary to achieve during the iterative 

process: - 

 

Condition 1. 80: The sequence 𝑓(𝑧(𝑡)) should decrease when applying algorithm S. If I is a 

feasible solution space, there exists  

𝐶 = {𝑐 = (𝑎₁, 𝑎₂,… , 𝑎ₙ)| 𝑎𝑖ϵ A} 

έ 𝜖 𝐼 such that  

𝑓(𝑇(𝑧, έ)) ≤ 𝑓(έ) 

Condition 2. 80 For all subsets 𝐶 𝜖 I with 𝑣(𝐶) > 0, probability measure 𝑢ₜ(𝐶) for iteration 

'𝑡,' we have  

𝑃𝑟𝑜𝑑𝑢𝑐𝑡 ∏(1 − 𝑢ₜ(𝐶)) = 0

∞

𝑡=0

 

Criteria 1. If ‘𝑓’ is a measurable and ‘𝐼’ is a measurable subset, the algorithm will converge 

with probability one when ‘𝑡’ is sufficiently large if conditions 1 and 2 are satisfied. In other 

words, the algorithm can almost imply global convergence.  

 

We consider the parameters ℎ1 and ℎ2 as constant for simplicity.  

Now we will define the concepts required to prove the convergence of PSOHHO.  

 

Definition 1. Particle’s position 𝑧, Intensity 𝐸_𝐼, particle’s best position 𝑧𝑝and particle’s 

velocity 𝑠 forms a state, ad it is denoted as (𝑧, 𝑠, 𝐸_𝐼, 𝑧𝑝). All the possible states of all the 

individuals form state space and are denoted by𝐴 = {a =  (𝑧, 𝑠, 𝐸_𝐼, 𝑧𝑝)| 𝑧, 𝑧𝑝 ϵ 𝐼} 

 

Definition 2. Now we define the group status space as 

𝐶 = {𝑐 = (𝑎₁, 𝑎₂,… , 𝑎ₙ)| 𝑎𝑖ϵ A} 
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We can observe from the above definitions that the group status space also contains the best 

positions. For all 𝑎1 = (𝑧1, 𝑠1, 𝐸_𝐸1, 𝑧𝑝1 ) ∈ A and 𝑎2 = (𝑧2 𝑠2, 𝐸_𝐸2, 𝑧𝑝2 ) ∈ A, the state 

transition can be denoted by 𝐹𝑎(𝑎1) = 𝑎2. Here 𝐹𝑎 is the transition function from 𝑎1 𝑡𝑜 𝑎2. 

Similarly, for all 𝑐𝑖 =(𝑧𝑖,1, 𝑠𝑖,2,  𝐸_𝐸𝑖,3, 𝑧𝑖,4
𝑝 ) ∈ H, Fc(𝑐𝑖) = 𝑐𝑗. 

 

Theorem 1. In the proposed algorithm, state 𝑎1 is shifted to state 𝑎2 in one step, and the 

transition probability (TP) is  

P(FA(a1) = a2) = P(z1 → z2)P(s1 → s2)P(E_E1 → E_E2)P(zp1 → zp2) 

Proof. The state of the particle is transferred from 𝑎1 = (𝑧1, 𝑠1, 𝐸_𝐸1, 𝑧𝑝1) to 𝑎2 = (𝑧2 𝑠2, 

𝐸_𝐸2 , 𝑧𝑝2 ). Hence 𝑧1 → 𝑧2 , 𝑠1 → 𝑠2 , 𝐸_𝐸1𝐸_𝐸2, 𝑧
𝑝1 → 𝑧𝑝2  are transferred simultaneously. 

The probability of 𝑃(𝐹𝐴(𝑎1) = 𝑎2) is 

 𝑃(𝐹𝐴(𝑎1) = 𝑎2) = 𝑃(𝑧1 → 𝑧2)𝑃(𝑠1 → 𝑠2)𝑃(𝐸_𝐸1 → 𝐸_𝐸2)𝑃(𝑧𝑝1 → 𝑧𝑝2) 

 

Theorem 2. The PSOHHO's group state sequence is a finite homogeneous MC. 

Proof. The number of iterations is finite, the population size is finite, and the search space is 

finite. So, 𝑧, 𝑠, 𝐸_𝐸, 𝑧𝑝 is also finite, which implies that each state a =  (𝑧, 𝑠, 𝐸_𝐸, 𝑧𝑝) is also 

finite. Hence we can conclude that the state space is also finite. 

The particle's position updates in every iteration of the algorithm. So, it cannot be an MC. 

However, if we can group the position, Escaping Intensity, personal best history, and velocity 

as one state 𝐶(𝑡). Then the other state, 𝐶(𝑡 + 1), is only linked with the state 𝐶(𝑡). Then the 

sequence 𝐶(𝑡) has proper MC properties.  

The Transition Probability (TP) 𝑃 (Fc(𝐶(𝑡 − 1)) = 𝐶(𝑡)) from state 𝐶(𝑡 − 1) to 𝐶(𝑡)  is 

computed by the TP of all the individuals in the group. From theorem 1, the TP is calculated 

by the joint probability of 𝑃(𝑧(𝑡 − 1) → 𝑧(𝑡)) , 𝑃(𝑠(𝑡 − 1) → 𝑠(𝑡)) 𝑃(𝐸_𝐸(𝑡 − 1) →

𝐸_𝐸(𝑡))𝑃(𝑧𝑝(𝑡 − 1) → 𝑧𝑝(𝑡)) . Also,  (𝑧(𝑡 − 1) → 𝑧(𝑡)) , 𝑃(𝑠(𝑡 − 1) → 𝑠(𝑡)) 𝑃(𝐸_𝐸(𝑡 −

1) → 𝐸_𝐸(𝑡))𝑃(𝑧𝑝(𝑡 − 1) → 𝑧𝑝(𝑡)) are only related to z, s, E_E, 𝑧𝑝  at time t. Hence 

𝑃 (Fc(𝐶(𝑡 − 1)) = 𝐶(𝑡)) is linked only to the state 𝑎𝑖(𝑡 − 1), 1 ≤ 𝑖 ≤ 𝑁. Hence the MC is 

finite. Again 𝑃 (FA(𝑎(𝑡 − 1)) = 𝑎(𝑡)) is independent of time 𝑡 − 1 according to Theorem 1. 

Similarly, 𝑃 (Fc(𝐶(𝑡 − 1)) = 𝐶(𝑡)) is independent of time 𝑡 − 1.  Hence these finite MCs 

are homogeneous. 
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Global Convergence Analysis of PSOHHO Using MC 

Let us state the following three theorems: 

 

Theorem 3.81 If V ⊂ C, then there does not exist any closed set J other than C satisfying   

J ∩ V = ∅.  

 

Theorem 4.81 Suppose there is a non-empty set z of. an MC with no closed set E satisfying 

Y ∩ 𝐄 =∅, then  Lim
t→∞

P(zk = j) = πj  only if  j ∈ Y  and Lim
t→∞

P(xk = j) = 0 only if j 

does not belong to Y. 

 

Theorem 5.81 When the number of iterations increases and becomes sufficiently large, the 

group state sequence converges to the optimal state set. 

Using the above theorems, we will prove that PSOHHO converges globally. 

 

Theorem 6. PSOHHO, with the MC model defined above, converges to the global point. 

Proof. A stochastic optimization algorithm will converge to the global optimality if it meets 

both Conditions 1 and 2, according to Criteria 1. In essence, the first condition (Condition 1) 

can ensure that the stochastic optimization algorithm's fitness value is declining. Furthermore, 

the prior theorems also establish that the group state sequence will converge to the optimal set 

after sufficient repetitions, i.e., the probability of failing to find the globally optimal solution 

is asymptotically zero. By extension, this proves that the second convergence criterion is 

likewise met. Therefore, we can conclude that PSOHHO will converge to the optimal point 

with probability one. 

 

6.6 Results and Discussions  

The efficiency of the proposed algorithms is explained in Section 6.6.1, by comparing them 

with other four metaheuristic algorithms on ten BF. Then its application to the FS problem is 

explained in Section 6.6.2. The maximum number of iterations, swarm size, and dimension we 

have taken are 200, 10, and 30 respectively. The codes are run on Windows 10 (64 bit), RAM 

8 GB. 
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6.6.1 BF 

All six algorithms including the proposed algorithms (PSOHHO and PSOHHO-V) are 

converted into binary form after using a well-defined transformation function and then applied 

on ten BF2. The BF consists of unimodal (UP), multimodal (MP), and fixed dimensional 

multimodal problem (FDMP) and are given in Table 6.1. The mean fitness value of all the 

algorithms on the BF are given below in Table 6.2 along with Friedman ranking. Then to check 

the statistical significance of the proposed algorithms Friedman test and Wilcoxon Rank Sum 

Test (WRST) are applied. Then the P-values of WRST are given in brackets in Table 6.2, when 

PSOHHO-V is compared with other algorithms on all the BF. The efficiency of the algorithm 

is affected by the dimension of optimization problems. The scalability analysis is done to 

observe the efficiency of the proposed algorithms. So, we have tested the algorithms on the BF 

with dimensions 30, 100, 500, 1000. Here best fitness values of BF are written in bold in Table 

6.2 and we are getting the following observations- 

 

1. When PSOHHO-V is compared with PSOHHO, four times PSOHHO-V gives significantly 

better (i.e. on 𝐵𝐹1, 𝐵𝐹3, 𝐵𝐹6, 𝐵𝐹7) fitness value than PSOHHO. PSOHHO-V is giving better 

fitness value than PSOHHO twice but the difference is not significant (i.e. on 𝐵𝐹2 and 𝐵𝐹8), 

zero times significantly worse and remaining four times same (i.e. on 𝐵𝐹4, 𝐵𝐹5, 𝐵𝐹9, 𝐵𝐹10). 

2. When PSOHHO-V is compared with HHO, four times PSOHHO-V is giving significantly 

better (i.e. on 𝐵𝐹2, 𝐵𝐹3,𝐵𝐹6, 𝐵𝐹7) fitness value than HHO. PSOHHO-V is giving better 

fitness value than PSOHHO twice but the difference is not significance (i.e. on 𝐵𝐹1 and 

𝐵𝐹8), zero times significantly worse and remaining four times same (i.e. on 𝐵𝐹4, 𝐵𝐹5, 𝐵𝐹9, 

𝐵𝐹10). 

3. When PSOHHO-V is compared with GA, six times PSOHHO-V is giving significantly 

better (i.e. on 𝐵𝐹1, 𝐵𝐹2, 𝐵𝐹4, 𝐵𝐹6, 𝐵𝐹7, 𝐵𝐹8) fitness value than GA. Once better but the 

difference was not significance (i.e. on 𝐵𝐹3), zero times significantly worse, and remaining 

three times same (i.e. on 𝐵𝐹5, 𝐵𝐹9, 𝐵𝐹10). 

4. When PSOHHO-V is compared with PSO, seven times PSOHHO-V is giving significantly 

better (i.e. on 𝐵𝐹1 , 𝐵𝐹2 , 𝐵𝐹4 , 𝐵𝐹6 , 𝐵𝐹7 , 𝐵𝐹8 ) fitness value than PSO, zero times 

significantly worse and remaining three times same (i.e. on 𝐵𝐹5, 𝐵𝐹9, 𝐵𝐹10). 
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5. When PSOHHO-V is compared with SSA, seven times PSOHHO-V is giving significantly 

better (i.e. on 𝐵𝐹1 , 𝐵𝐹2 , 𝐵𝐹4 , 𝐵𝐹6 , 𝐵𝐹7 , 𝐵𝐹8 ) fitness value than SSA, zero times 

significantly worse and the remaining three times same (i.e. on 𝐵𝐹5, 𝐵𝐹9, 𝐵𝐹10).  

 

Table 6.1. Collection of BF 2 

                                                       BF Type 

𝐵𝐹1(𝑥) = ∑𝑥𝑖
2

𝑛

𝑖=1

 
UP 

𝐵𝐹2(𝑥) = ∑ |𝑥𝑖|

𝑛

𝑖=1

+ ∏ |𝑥𝑖|

𝑛

𝑖=1

 
UP 

𝐵𝐹3(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1

 

UP 

𝐵𝐹4(𝑥) = ∑(𝑥𝑖 + 0.5)2

𝑛

𝑖=1

 
UP 

𝐵𝐹5(𝑥) = 418.9829 ∗ 𝑛 − ∑(𝑥𝑖)(𝑠𝑖𝑛 𝑠𝑖𝑛 √|𝑥𝑖| )

𝑛

𝑖=1

 
MP 

𝐵𝐹6(𝑥) = ∑[𝑥𝑖
2 − 10 𝑐𝑜𝑠 𝑐𝑜𝑠 2𝜋𝑥𝑖  + 10]

𝑛

𝑖=1

 
MP 

𝐵𝐹7(𝑥) = −20𝑒
(−0.2√(

1
𝑛
)∑ 𝑥𝑖

2𝑛
𝑖=1 )

− 𝑒
((

1
𝑛
)∑ 𝑐𝑜𝑠𝑐𝑜𝑠 2𝜋𝑥𝑖 

𝑛
𝑖=1 )

+ 20 + 𝑒 

MP 

𝐵𝐹8(𝑥) = (
1

4000
)∑ 𝑥𝑖

2

𝑛

𝑖=1

− ∏(
𝑥𝑖

√𝑖
 )

𝑛

𝑖=1

+ 1 
MP 

𝐵𝐹9(𝑥) = ((
1

500
) + ∑

1

𝑗 + ∑ (𝑥𝑖 − 𝑎𝑖𝑗)
62

𝑖=1

25

𝑗=1

)

−1

 

FDMP 

𝐵𝐹10(𝑥) = (𝑥2 −
5.1

4𝜋2 𝑥1
2 +

5

𝜋
𝑥1 − 6)

2

 +10 (1 −
8

𝜋
) 𝑐𝑜𝑠 𝑥1 + 10 

FDMP 

 

 

Table 6.2: Mean fitness value of 50 runs on the BF when dimension is 30 along with P-values in bracket. 

BF PSOHHO PSOHHO-V HHO GA PSO SSA 

BF 1 29.1 (0.046) 29.36 29.2 (0.029) 27.24 (0) 23.46 (0) 20.39 (0) 

BF 2 29.68 (0.0356) 29.88 29.38 (0.025) 27.36 (0) 25.56 (0) 23.47 (0) 

BF 3 2360 (0) 2540 2370 (0) 2520 (0.26) 2070 (0) 1730 (0) 

BF 4 1040 (0.07) 1040 1040 (0.23) 1020 (0) 996 (0) 974 (0) 

BF 5 12600 (0) 12600 12600 (0) 12600 (0) 12600 (0) 12600 (0) 

BF 6 524 (0) 599 29.18 (0) 27.46 (0) 402 (0) 581 (0) 

BF 7 4.33 (0) 4.63 3.59 (0) 3.47 (0) 4.49 (0) 4.56 (0) 
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BF 8 0.89 (0.056) 0.89 0.89 (0.18) 0.88 (0) 0.84 (0) 0.83 (0) 

BF 9 14.56 (1) 14.56 14.56 (1) 14.56 (1) 14.56 (1) 14.56 (1) 

BF 10 55.60 (1) 55.60 55.60 (1) 55.60 (1) 55.60 (1) 55.60 (1) 

RANK       2     1     3     4     6     5 

Note: Bold values indicate the best value, and P-values are given in the corresponding bracket 

 

6.6.2 FS Application  

To implement the proposed algorithms, the given algorithms are converted into binary form 

using transformation. Then the proposed algorithms PSOHHO and PSOHHO-V are compared 

to four different algorithms (HHO, GA82, SSA15, PSO) on seven datasets39 (Ionosphere, Wine, 

Breast Cancer Wisconsin, Sonar, Libras Movement, Hill Valley, Musk 1) using UCI Machine 

Learning repository. On each dataset, we have run the MATLAB code fifty times. Then we 

have recorded their CA and NF. We have also checked whether the difference is statistically 

significant or not by applying Friedman’s test and WRST. Here Friedman test is used to express 

the FAR of all compared methods more clearly for further statistical evaluation. Here have 

chosen the common KNN classifier. Here the K-fold cv is 1. 

 

Here have chosen the common KNN Classifier. Here the K-fold cv is 1. The graphs of 

the CA of the algorithms on Musk 1, Hill Valley, Libras Movement, Sonar, and Ionosphere 

datasets are shown in Figs 6.4, 6.6, 6.8, 6.10, and 6.12. In these Figs, PSO, PSOHHO, 

PSOHHO-V, GA, HHO, and SSA are represented by green colour, red colour, cyanide colour, 

yellow colour, blue colour, and black colour respectively. The graphs of the NF of the 

algorithms on Musk 1, Hill Valley, Libras Movement, Sonar, and Ionosphere datasets are 

shown in Figs 6.5, 6.7, 6.9, 6.11, and 6.13. In the second row of these Figs, PSO, PSOHHO, 

GA, HHO, SSA, and PSOHHO-V are represented by bars (1, 2, 3, 4, 5, and 6) respectively.  

      

             Fig. 6.4. CA on MUSK 1 dataset.     Fig. 6.5. NF on MUSK 1 dataset. 
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                     Fig. 6.6. CA on Hill Valley dataset.             Fig. 6.7. NF on Hill Valley dataset. 

    

                   Fig. 6.8. CA on Libras Movement dataset.       Fig.6. 9. NF on Libras Movement dataset. 

     

                         Fig. 6.10. CA on Sonar dataset.                   Fig. 6.11. NF on Sonar dataset. 

       

                      Fig. 6.12. CA on Ionosphere dataset.               Fig. 6.13. NF on Ionosphere dataset. 
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All six algorithms are applied to the FS problem fifty times on all seven datasets. The 

mean CA and NF of all six algorithms on all the datasets are given in Tables 6.3 and 6.4 

respectively. Here best values are written in bold. The Friedman test and WRST are applied to 

test the statistical significance. Then the P-values of WRST when PSOHHO-V is compared 

with other algorithms on all the seven datasets with respect to CA and NF are given in brackets 

of Tables 6.3 and 6.4 respectively. 

 

Table 6.3: Mean CA of the all the six algorithms on all the seven datasets. 

Dataset PSOHHO PSOHHO-V HHO GA PSO SSA 

Wine 1 (1) 1 1 (1) 1 (0) 0.989 (0.01) 0.999 (0.863) 

Wdbc 0.962 (0) 0.984 0.962 (0) 0.966 (0) 0.953 (0) 0.958 (0) 

Ionosphere 0.94 (0.412) 0.982 0.941 (0.211) 0.949 (0.799) 0.943 (0) 0.933 (0.001) 

Sonar 0.942 (0) 0.967 0.944 (0) 0.968 (0.488) 0.929 (0) 0.93 (0) 

Libras 0.816 (0) 0.837 0.816 (0) 0.829(0.381) 0.818 (0) 0.816 (0) 

Hill Valley 0.581 (0) 0.94 0.584 (0) 0.595 (0) 0.589 (0) 0.582 (0) 

Musk 1 0.940 (0) 0.954 0.941 (0) 0.955 (0.359) 0.944 (0.002) 0.94 (0) 

FAR 4.214 1.5 3.786 1.786 4.286 5.429 

Rank 4 1 3 2 5 6 

Note: Bold values indicate the best value, and P-values are given in the corresponding bracket 

 

Table 6.4: Mean NF of the all the six algorithms on all the seven datasets. 

Dataset PSOHHO PSOHHO-V HHO GA PSO SSA 

Wine 4.14 (0.004) 5.24 4.12 (0.001) 5.98 (0.004) 6.36 (0) 5.76 (0.043) 

Wdbc 13 (0) 12.26 13.14 (0) 12.58 (0) 15.36 (0) 14.38 (0) 

Ionosphere 14.46 (0.168) 15.58 14.78 (0.608) 13.28 (0.001) 15.68 (0.82) 15.08 (0.354) 

Sonar 29.12 (0.743) 28.98 30.6 (0.36) 28.08 (0.211) 30.04 (0.193) 28.36 (0.469) 

Libras 43.32 (0.877) 43.42 45.58 (0.038) 42.8 (0.694) 43.92 (0.608) 43.96 (0.715) 

Hill Valley 46.2 (0.679) 47.12 43.54 (0.121) 46.64 (0.669) 47.4 (0.662) 47.26 (0.672) 

Musk 1 94.98(0.0001) 87.72 91.58 (0.012) 82.48 (0.001) 84.64 (0.005) 82.54 (0.001) 

FAR 3 3.286 3.714 2 5.143 3.857 

Rank 3 2 4 1 6 5 

Note: Bold values indicate the best value, and P-values are given in the corresponding bracket 

 

Here we are observing from Table 6.3, PSOHHO-V is giving best CA. Here we are 

observing from Table 6.4, PSOHHO and PSOHHO-V are not taking less NF. Whenever the 

p-values are less than 0.05, null hypothesis is rejected. Hence the difference is significant. 
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Whenever the p-values are more than 0.05, null hypothesis cannot be rejected. Hence the 

difference is not significant. 

From Table 6.3, we are getting the following observations with respect to the CA- 

(1) When PSOHHO-V is compared with PSOHHO, five times PSOHHO-V is significantly  

better (WDBC, Sonar, Libras Moment, Hill Valley, Musk 1) mean CA than PSOHHO, 

once better (Ionosphere) without any significance difference. And once same CA 

(WINE). 

(2) When PSOHHO-V is compared with HHO, five times PSOHHO-V is significantly  

better (WDBC, Sonar, Libras Moment, Hill Valley, Musk 1) mean CA than HHO, once 

better (Ionosphere) without any significance difference. And once same CA (WINE). 

(3) When PSOHHO-V is compared with GA, twice PSOHHO-V is significantly better  

(WDBC, Hill Valley) mean CA than GA, three times better (Ionosphere, Sonar, Libras 

Moment) without any significance difference. And once same CA (Wine). 

(4) When PSOHHO-V is compared with PSO, seven times PSOHHO-V is significantly  

better (Wine, WDBC, Ionosphere, Sonar, Libras Moment, Hill Valley, Musk 1) mean 

CA than PSO. 

(5) When PSOHHO-V is compared with SSA, six times PSOHHO-V is significantly better  

(Ionosphere, WDBC, Sonar, Libras Moment, Hill Valley, Musk 1) mean CA than SSA, 

once better (Wine) without any significance difference.  

 

From Table 6.4, we are getting the following observations with respect to the NF- 

(1) When PSOHHO-V is compared with PSOHHO, two times PSOHHO-V is significantly  

less (WDBC, Musk1) NF than PSOHHO, once less NF (Sonar) without any 

significance difference, once more NF (Wine) with significance difference and three 

times more NF (Ionosphere, Libras Moment, Hill Valley) without any significance 

difference. 

(2) When PSOHHO-V is compared with HHO, two times PSOHHO-V is significantly less  

(WDBC, Libras Moment) NF than PSOHHO, twice less NF (Sonar, Musk1) without 

any significance difference, once more NF (WINE) with significance difference and 

two times more NF (Ionosphere, Hill Valley) without any significance difference. 

(3) When PSOHHO-V is compared with GA, two times PSOHHO-V is significantly less  
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(Wine, WDBC) NF than PSOHHO, once more NF (Ionosphere) with significance 

difference and four times more NF (Sonar, Libras Moment, Hill Valley, Musk 1) 

without any significance difference. 

(4) When PSOHHO-V is compared with PSO, two times PSOHHO-V is significantly  

less (Wine, WDBC) NF than PSOHHO, four times less NF (Ionosphere, Sonar, 

Libras Moment, Hill Valley) without any significance difference and once more NF 

(MUSK 1) without any significance difference. 

(5) When PSOHHO-V is compared with SSA, two times PSOHHO-V is significantly 

less (Wine, WDBC) NF than PSOHHO, two times less NF (Libras Moment, Hill 

Valley) without any significant difference and three times more NF (Ionosphere, 

Sonar, Musk 1) without any significance difference. 

 

6.7 Conclusion 

The proposed algorithms PSOHHO and PSOHHO-V were evaluated based on statistical 

measures and convergence rate, and their performance was tested on ten BF. The complete 

experimental results indicate that the established algorithms outperform other optimizers 

regarding searchability and convergent speed when solving global optimization problems. 

Furthermore, statistical tests were conducted to support this conclusion. The proposed 

algorithms PSOHHO and PSOHHO-V were also applied to feature selection problems, and 

their performance was compared against other algorithms using seven UCI datasets. Again, 

the experimental results demonstrate that PSOHHO and PSOHHO-V are giving better results 

than the other metaheuristic algorithms on the high-dimensional and medium-dimensional 

datasets. But on low dimensional datasets, the results are not much useful. Since the proposed 

algorithms are giving better results on high and low-dimensional datasets and practical 

applications of FS problems involve large datasets, therefore, the proposed algorithms have 

the potential to tackle FS problems.  

 

We will investigate the use of this algorithm in MOO challenges in the future and 

extend its applicability to real-world issues like financial, medicinal, and engineering 

optimization challenges. To create a stronger optimization technique, we will also combine the 

innovative algorithm with other techniques. 
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Chapter 7  

 

 

A Hybrid Swarm Optimization with Trapezoidal Fuzzy Number 

and Pentagonal Fuzzy Number using Benchmark functions 

 

 

7.1 Introduction 

There is a growing trend of Hybridising two metaheuristic algorithms. Hybridization of 

metaheuristic algorithms is performed to increase the performance of metaheuristic algorithms 

on real-world problems as many real-world optimization problems are highly non-linear and 

highly dimensional. Metaheuristic algorithms are developed and applied to real-life problems 

in place of deterministic optimization methods, due to their simplicity and easy 

implementation. So, they are most helpful when we want to find the approximate results in a 

given time frame. It helps to eliminate the drawbacks of convergence and stagnation. Also, 

they are sensitive to parameter tuning. 

 

  Theoretical and mathematical examinations of numerous metaheuristic algorithms are 

notably lacking. There exists a notable gap in the investigation of the convergence patterns of 

these algorithms. Considering issues such as premature convergence and susceptibility to local 

optima in many metaheuristic algorithms, a thorough mathematical analysis is essential. For 

proving the convergence of metaheuristic algorithms83, different methods have been proposed, 

such as spectral radius for PSO84 and MC for GA85,86. MC is a random process with a strong 

capability for probabilistic analysis and convergence analysis of randomized algorithms. It has 

been successfully implemented on the ABC algorithm, the PSO87, the ACO, and the SA88. 

Hence, in our study, the convergence of the PSOMHHO using the MC property is proved.   
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Our work aims to develop a hybrid metaheuristic algorithm PSOMHHO with TFN and 

PFN as parameters. The concept of the Signature of an algorithm is also introduced to check 

the intrinsic bias of an algorithm. With so many varieties of heuristic and metaheuristic 

algorithms getting discovered yearly, the Signature of an algorithm plays a critical role. The 

Signature of an algorithm indicates whether every point in the search space is given equal 

importance. Here PSOMHHO is applied to nine standard BF. The significance of the statistical 

difference in their fitness value is checked using MWUT and Friedman’s test. 

 

The chapter is organised as follows for the remainder of it. Some fundamental ideas 

needed for a thorough understanding this chapter are explained in Section 7.2. The problem we 

have addressed in this chapter is explained in Section 7.3. Section 7.4 discusses the proposed 

PSOMHHO algorithm. Section 7.5 explains the proposed algorithm's theoretical analysis. 

Several BF are used in Section 7.6 to evaluate the proposed PSOMHHO algorithm with 

additional metaheuristic algorithms. Next, the statistical significance of them is examined.  The 

conclusion of the current work has been provided in Section 7.7. 

 

7.2 Background 

To fully comprehend this chapter, it's essential to be familiar with fundamental concepts such 

as HHO, PSO, and GA, explained in Section 1.3. Moreover, a proper understanding of fuzzy 

number, TFN and PFN is also critical which is explained in Section 1.3. 

 

7.3 Problem Formulation 

This section provides a brief overview of the challenge addressed in this chapter. As per the 

NFL theorem, no optimization algorithm can be the most efficient for every optimization 

problem. There is a need for development of innovative and efficient metaheuristic algorithms 

that will provide researchers and experts with broader options for solving complex 

optimization problems.    
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In this chapter innovative hybrid variant of metaheuristic algorithms is developed and 

discussed. In this variant, the concepts of TFN and PFN are introduced. There is a considerable 

research gap as theoretical and mathematical analysis of most of the metaheuristic algorithms 

has yet to be proved or even discussed. To address this issue the convergence and signature 

of the proposed algorithm have been proved, this helps in the theoretical analysis of the 

proposed algorithm. The effectiveness of the developed algorithms PSOMHHO is assessed 

on BF on Windows 10 (64 bit), RAM 8 GB to validate their applicability to real-world 

problems.  

 

The BF consisting of unimodal, fixed dimensional multimodal BF is taken from the 

literature89,90. The detailed mathematical description of the BF is explained in the previous 

chapter in Table 6.1. Unimodal problem (UP) is helpful for testing convergence and exploitive 

strength. In addition, testing the explorative strength and the ability to not fall into the trap of 

local optimal point, Multimodal problem (MP) is helpful. In every experiment applied on the 

BF, every algorithm is applied 50 times with different dimensions after converting into a 

binary form using a well-defined transformation function. The maximum number of iterations 

and the swarm size are 200 and 10, respectively. Then the statistical performance measure 

means is used to access the optimization ability of PSOMHHO. Then to check the statistical 

significance of the PSOMHHO Friedman test and MWUT are applied. The level of 

significance for the MWUT is set to 0.05. 

 

7.4.   Proposed Algorithm (PSOMHHO)  

In the proposed PSOMHHO algorithm, the parameters h1 and h2 of PSO are PFN, and the 

parameter h is TFN. The fuzzy parameters are then defuzzfied. When the termination criteria 

are achieved, the best value is selected as the global best solution. Pseudocode is given in 

Section 7.4.1. The flowchart of PSOMHHO is given in Fig. 7.1. 

 

7.4.1 Pseudo code 

1) Initialization of the position of each particle and all the parameters of HHO and PSO 

are done. 



93 
 

2) The parameter ℎ  is TFN, and the parameters ℎ1  and ℎ2  are PFN. Then the fuzzy 

parameters are defuzzfied. 

3) The particle's velocity and position are initialized by assigning random matrices. 

4) In a corresponding solution matrix, the position of every particle is represented by the 

row of the corresponding position matrix. 

5) The main iterative loop starts in this step.  

6) Each particle’s fitness value is calculated using the BF.  

7) Here nine BF are used, and each will be treated as the objective function.  

8) Now, compute |𝐸_𝐸|  from Eq. (1.3) to check whether to stay in exploration or 

exploitation mode. 

9) If |𝐸_𝐸| > 1, then update the particle according to Eq. (1.1). This is the exploration 

phase.  

10) If |𝐸_𝐸| and 𝑐 are greater than or equal to 0.5.  

Then the particles are guided by Eq. (1.4) 

11) If |𝐸_𝐸| is less than 0.5 and 𝑐 is greater than or equal to 0.5.  

Then the particles are guided by Eq. (1.7) 

12) If |𝐸_𝐸| is greater than or equal to 0.5 and 𝑐 is less than 0.5.  

Then the particles are guided by Eq. (1.12) 

13) If |𝐸_𝐸| and 𝑐 are less than 0.5.  

Then the particles are guided by Eq. (1.15) 

14) The particle's velocity and particle's position are updated using the Eqns. (1.16) and 

(1.17).  

15) Each particle’s personal best is updated.  

16) Then the mutation operators are introduced.  

17) Then the global best solution is updated. 

18) The highest fitness value will be the global best solution.  

19) End (steps 5 to 18). Here the main iteration loop stops. 

20) When the termination criteria are achieved, the iterative process stops, and the global 

best solution is reported. 
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                   Fig. 7.1. Flowchart of PSOMHHO 

 

7.5 Theoretical Analysis of PSOMHHO 

In this section, the theoretical analysis of the purposed algorithm is discussed with the help of 

Signature discussed in Section 7.5.1 and convergence in Section 7.5.2. 

 

7.5.1 Signature of the PSOMHHO 

For an unbiased stochastic optimization algorithm, the equivalent significance accorded to 

each point in the search space can result in positions similar to those formed by a arbitrary 

search. Hence, understanding the inherent bias of an optimization algorithm becomes 
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paramount before evaluating its performance. For a thorough exploration of the concepts, the 

preceding chapter provides a detailed discussion in Section 6.5.1.  

 

The Signature of HHO is given in Fig 6.2. The algorithm HHO is rejected because it 

is center-biased. We have taken 𝑓(𝑥) = 1 to check the bias of the proposed optimization 

algorithm (PSOMHHO). The Signature of PSOMHHO is given in Fig 7.2. We can observe 

from Fig 7.2 that PSOMHHO's Signature is not biased toward the center, axis, or region. We 

can observe that the Signature of PSOMHHO has to be accepted, and the Signature of 

PSOMHHO is significantly better than HHO. Here we have taken the values of h1 and h2 as 

1.5. 

 

Fig. 7.2. Signature of PSOMHHO 

 

7.5.2 Convergence of PSOMHHO 

The concepts and methods used to prove convergence of PSOHHO in the previous chapter in 

Section 6.5.2 can also be extended to prove convergence of PSOMHHO.   

 

7.6 Results and Discussions 

The efficiency of PSOMHHO is checked in this section by comparing it with four other 

metaheuristic algorithms. Here PSO, PSOMHHO, GA, HHO, and Salp Swarm Algorithm 



96 
 

(SSA) are represented by green colour, red colour, cyanide colour, yellow colour, blue colour, 

and black colour, respectively. Furthermore, the convergence curves of BF 

𝐵𝐹1, 𝐵𝐹2, 𝐵𝐹3, 𝐵𝐹4, 𝐵𝐹5, 𝐵𝐹6, 𝐵𝐹7, 𝐵𝐹8 and 𝐵𝐹9 are denoted by Figs 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 

7.9, 7.10, and 7.11 respectively. 

 

 

Fig. 7.3. Graph of 𝐵𝐹1  

 

 

Fig. 7.4. Graph of 𝐵𝐹2  

 

 

Fig. 7.5. Graph of 𝐵𝐹3 
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Fig. 7.6. Graph of 𝐵𝐹4 

 

 

Fig. 7.7. Graph of 𝐵𝐹5  

 

 

Fig. 7.8. Graph of 𝐵𝐹6  

 

 

Fig. 7.9. Graph of 𝐵𝐹7 
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Fig. 7.10. Graph of 𝐵𝐹8  

 

 

Fig. 7.11. Graph of 𝐵𝐹9 

 

Table 7.1. The mean fitness value of 50 runs when the dimension is 100. 

BF PSOMHHO HHO GA PSO SSA 

𝐵𝐹1 91.06 90.54 74.24 65.52 56.98 

𝐵𝐹2 91.36 89.96 74.06 71.46 66.00 

𝐵𝐹3 1 1 1 1 1 

𝐵𝐹4 7.00e+03 6.595e+03 6.976e+03 6.252e+03 5.154e+03 

𝐵𝐹5 3.468e+03 3.459e+03 3.28e+03 3.245e+03 3.183e+03 

𝐵𝐹6 4.1887e+04 4.188e+04 4.187e+04 4.187e+04 4.187e+04 

𝐵𝐹7 1.998e+03 89.94 74.18 1.167e+03 1.877e+03 

𝐵𝐹8 4.373 3.457 3.157 4.159 4.381 

𝐵𝐹9 55.60211 55.60211 55.60211 55.60211 55.60211 

Rank 1 2 3 4 5 

Note: Bold values indicate the best value and italic indicates second best value 
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We can make the following observations from Table 7.1- 

(1) PSOMHHO gives the best solution on eight BF and once the second best among the nine 

BF. 

(2) HHO is giving the best solution on three BF and three times second best among the nine 

BF.  

(3) GA gives the best solution on three BF and once second best among the nine BF. 

(4) PSO gives the best solution on three BF and no second best among the nine BF. 

(5) SSA gives the best solution on four BF and once the second best among the nine BF. 

 

From Table 7.1, Friedman test, and MWUT, we observe that PSOMHHO is giving the most 

superior result, followed by HHO, GA, PSO, and SSA. 

 

7.6.2 Scalability analysis of PSOMHHO 

The efficiency of the algorithm is affected by the dimension of optimization problems. So, we 

have tested the algorithms on the BF with dimensions 100, 500, and 1000. Hence scalability 

analysis is done to observe the efficiency of PSOMHHO. In every size we are observing, 

PSOMHHO is giving better results. 

 

7.7 Conclusion 

This experiment is tested with different dimensions. Here we can observe that the Signature of 

PSOMHHO is significantly better than HHO. Also, convergence proof helps establish the 

mathematical strength of PSOMHHO. 

 

We have taken BF with different properties like UP, MP, and Fixed-dimension 

multimodal BF. Here we are getting that the mean value of the fitness value of the PSOMHHO 

algorithm with dimensions 100, 500, and 1000 is more when compared with other algorithms 

like HHO, GA, PSO, and SSA. Then statistical significance tests like MWUT and Friedman test 

are applied. Then their results are recorded. Based on statistical measures, statistical significance 

tests like MWUT and Friedman test, and the convergence behaviour, we observe that 

PSOMHHO is giving better fitness value when compared with other algorithms like HHO, GA, 
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PSO, and SSA on the different types of BF. So, this algorithm can be applied to other real-world 

problems.  

 

In the future, we can take different varieties of fuzzy numbers and check the effect on 

our proposed algorithm PSOMHHO. We can also focus on the stability analysis of 

PSOMHHO. Other variants of PSOMHHO can be developed using different cross-over 

operators, and then compared with the original algorithm (PSOMHHO). Here the fuzzy 

parameters play a very critical role. Also, we can take other different varieties of fuzzy 

numbers. 
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Chapter 8 

 

 

Bluefin Trevally Optimizer (BTO): A Metaheuristic Algorithm 

Using Fuzzy Logic Controller for Feature Selection Problem  

 

 

8.1 Introduction  

The preference for metaheuristic algorithms over deterministic optimization algorithms for 

their uncomplicatedness and ease of execution in practical applications. Various metaheuristic 

algorithms, such as the GA, BA12, SMA13, WOA2, SSA15, and others have been applied to 

various real-world problems91,92. The most common feature of all the metaheuristic algorithms 

is exploration and exploitation75. The purpose of the exploration phase is to explore various 

regions of the solution space. So, the optimizer should have random nature in the exploration 

phase to randomly generate solutions to different areas of the problem topography during the 

early steps of the search process93. Hence proper use of randomized operators is advisable. 

Normally, the exploitation stage comes after the exploration stage and focuses on the 

neighbourhood of better quality solutions. It exploits the better solutions obtained in the 

exploration phase. Also, there is a possibility of the solutions getting trapped in local optima 

(premature convergence). Hence, the most important feature of all metaheuristic algorithms is 

maintaining a proper balance between exploration and exploitation. 

 

Fuzzy logic, rooted in the FYS theory introduced by Zadeh94, is a valuable tool for 

representing information using fuzzy if-then rules. It is particularly effective in handling 

linguistic information and improves numerical computation by employing linguistic labels 

assigned by membership functions20,95. FYSs have been widely used in various fields, 

including pattern recognition96–98.  
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The structure of the chapter for its remaining sections is outlined as follows. Section 

8.2 presents essential concepts crucial for a comprehensive grasp of this chapter. The problem 

under consideration is elucidated in Section 8.3, while Section 8.4 digs into the discussion of 

the proposed Fuzzy BTO algorithms. The theoretical underpinnings of the proposed algorithm 

are expounded upon in Section 8.5. To assess the performance of the proposed Fuzzy BTO 

algorithms against other metaheuristic algorithms, various BF are employed in Section 8.6. 

Subsequently, a meticulous examination of their statistical significance is conducted. Finally, 

Section 8.7 encapsulates the conclusions drawn from the present work. 

 

8.2 Background 

Understanding this chapter in its entirety requires a robust knowledge of fundamental concepts 

like fuzzy numbers, HHO, PSO, and GA, all of which are explained in Section 1.3. 

Additionally, an elementary understanding of FS problems, as explained in Section 1.5, is 

critical.  

 

8.3 Problem Formulation 

In this section, we get a brief introduction to the problem addressed in this chapter. The NFL 

theorem establishes that no single optimization algorithm can universally outperform others 

across all problems. Hence, there arises a necessity for the creation of innovative and effective 

metaheuristic algorithms. Such innovations would offer researchers and experts a diverse 

array of tools to tackle intricate optimization challenges.    

 

In this chapter four innovative hybrid variants of metaheuristic algorithms are 

developed and discussed. In the innovative variants, the parameters of metaheuristic 

algorithms are dynamically changed using Fuzzy Logic Controller (FLC). A notable research 

gap exists, with many metaheuristic algorithms lacking thorough theoretical and mathematical 

analysis. To bridge this gap, this chapter explores the convergence and signature aspects of 

the proposed algorithms, offering a foundation for the theoretical analysis of the newly 

introduced algorithmic variants. 
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             Initially, the effectiveness of the developed Fuzzy BTO algorithms and their 

variations are evaluated on BF to confirm their utility in addressing real-world challenges. 

Subsequently, their application to FS problems is pursued with the objective of improving CA 

and diminishing the NF. Considering a combination of FE, WE, and NF, the proposed 

algorithms are applied and subjected to comparative evaluations against other metaheuristic 

algorithms. Statistical significance is rigorously verified through Friedman's test and the 

Kruskal-Wallis Test (KWT). 

 

8.4   Proposed Approach (Fuzzy BTO)  

The suggested Fuzzy BTO algorithm uses a fuzzy approach to adapt the algorithmic 

parameters to changing population conditions. Since the parameters ℎ1and ℎ2 account for the 

movement of the particles, they are selected to be adjusted dynamically using FLC.  

 

Algorithm performance measures such as diversity of the swarm, iteration, and 

average error at one point in the execution of the algorithm need to be considered to evaluate 

the algorithm. In our work, all the above are considered for the fuzzy systems to modify the 

parameters dynamically at each iteration of the algorithm.  For measuring the iteration of the 

algorithm, it will be used as a percentage, and it can be represented as Eq. (8.1). The iteration 

will be considered “low” when the algorithm starts. It will be regarded as “high” when the 

algorithm is about to be completed.    

 

            Iteration = (
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
)                                              (8.1)

     

The diversity measures the degree of dispersion of the particle; when the particles are 

closer, there is less diversity, and when the particles are separated, the diversity is high. The 

diversity equation can be considered as the average Euclidean distance between each particle 

and the best particle as given below:  

  

Diversity =
∑ √∑ (𝑧ₖₗ(𝑡)−𝑧ₗ(𝑡))2𝑛ₓ

𝑙=1
𝑛ₛ
𝑘=1

𝑛ₛ
                                 (8.2)  
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While applying fuzzy BTO to the FS problem we will also take fitness and NF as 

inputs for the fuzzy system. The inputs (iteration, diversity, accuracy, and NF) are granulated 

into three triangular membership functions. Each output is granulated in five triangular 

membership functions of the output variables ℎ1 and ℎ2 respectively. 

 

Hence to design a fuzzy system that will dynamically adjust the parameters, we will 

construct two models for BF and four models for the FS problem. The four fuzzy models that 

follow Mamdani fuzzy system have two inputs and two outputs (ℎ1and ℎ2). The rules of each 

fuzzy system must be designed in such a way that the early iteration of the fuzzy BTO 

algorithms must be explored and then eventually exploited.  

  

The first fuzzy system for BTOF1 has iteration and diversity as inputs, whose 

membership functions are triangular fuzzy numbers. The second fuzzy system for BTOF2 has 

accuracy and iteration as inputs, but the membership functions are TFN. The rules of both the 

fuzzy systems (BTOF1 and BTOF2) are given below: 

  

1. If both iteration and diversity are low, then ℎ1 is high and ℎ2is low.  

2. If iteration and diversity are medium and low, then ℎ1is medium-high and ℎ2is medium-

low. 

3. If iteration and diversity are high and low, then ℎ1is medium and ℎ2is high. 

4. If iteration and diversity are low and medium, then ℎ1is medium-high and ℎ2is medium. 

5. If both iteration and diversity are medium then ℎ1is medium and ℎ2is medium. 

6. If iteration and diversity are high and medium, respectively, then ℎ1is medium-low and 

ℎ2 is medium-high. 

7. If iteration and diversity are low and high, respectively, then ℎ1is medium-high and ℎ2is 

medium-low. 

8. If iteration and diversity are medium and high, then ℎ1is medium-low and ℎ2is medium-

high. 

9. If both iteration and diversity are high then ℎ1is low and ℎ2is high. 

 

The third fuzzy system for BTOF3 has iteration and accuracy as inputs, whose membership 

functions are triangular fuzzy numbers. It applies only to the FS problem, and its rules are 

given below:  
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1. If accuracy and iteration are high and low, respectively, then ℎ1is low and ℎ2is medium. 

2. If accuracy and iteration are high and medium, respectively, then ℎ1is medium-low and 

ℎ2is medium-high. 

3. If both accuracy and iteration are high, then ℎ1is low ,and ℎ2is high. 

4. If accuracy and iteration are medium and low, respectively, then ℎ1is medium-low and 

ℎ2is medium-high. 

5. If both accuracy and iteration are medium, then ℎ1is medium and ℎ2is medium. 

6. If accuracy and iteration are medium and high, then ℎ1is medium and ℎ2is high. 

7. If both accuracy and iteration are low, then ℎ1is high , and ℎ2is medium-low. 

8. If accuracy and iteration are low and medium, respectively, then ℎ1is medium-high and 

ℎ2is medium. 

9. If accuracy and iteration are low and high, then ℎ1is high and ℎ2is low. 

 

The fourth fuzzy system for BTOF4 has iteration and NF as inputs, whose membership 

functions are triangular fuzzy numbers. It applies only to the FS problem, and its rules are 

given below: 

1. If both iteration and NF are low, then ℎ1 is high and ℎ2is low.  

2. If iteration and NF are medium and low, respectively, then ℎ1is medium-high and ℎ2is 

medium-low. 

3. If iteration and NF are high and low, then ℎ1is medium and ℎ2is high. 

4. If iteration and NF are low and medium, then ℎ1is medium-high and ℎ2is medium. 

5. If both iteration and NF are medium then ℎ1is medium and ℎ2is medium. 

6. If iteration and NF are high and medium, respectively, then ℎ1is medium-low and ℎ2is 

medium-high. 

7. If iteration and NF are low and high, then ℎ1is medium-high and ℎ2is medium-low. 

8. If iteration and NF are medium and high, respectively, then ℎ1is medium-low and ℎ2is 

medium-high. 

9. If both iteration and NF are high, then ℎ1is low and ℎ2is high. 
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Fig. 8.1 Input 1: Diversity                                           Fig. 8.2 Input 2: Iteration 

 

 

Fig. 8.3 Input 3: Accuracy                                                Fig. 8.4 Input 4: NF 

 

 

Fig. 8.5: Output 1: 𝐡𝟏                                  Fig. 8.6  Output 2: 𝐡𝟐 
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Pseudo-Code 

  In this section, the pseudo-code of the proposed fuzzy BTO is given: 

  

INPUT: Initialization of the position of each particle and all the parameters are done. 

OUTPUT: Global best solution 

1)  The particle's velocity and position are initialized by assigning random matrices. 

2) In a corresponding solution matrix, the position of every particle is represented by the 

row of the corresponding position matrix. 

3) The main iterative loop starts in this step. 

4) Each particle's fitness value is calculated using the BF. 

5) Here, nine BF are used, each treated as the objective function. 

6) Now, compute |𝐸_𝐸| from Eq. (1.3) to check whether to stay in exploration or 

exploitation mode. 

7) If |𝐸_𝐸| > 1, update the particle according to Eq. (1.1). This is the exploration phase. 

8)   If |𝐸_𝐸| and 𝑐 are greater than or equal to 0.5. 

Then the particles are guided by Eq. (1.4) 

9)   Else if |𝐸_𝐸| is less than 0.5 and 𝑐 is greater than or equal to 0.5.                                       

Then the particles are guided by Eq.  (1.7) 

10)   Else if |𝐸_𝐸| is greater than or equal to 0.5 and 𝑐 is less than 0.5.  

Then the particles are guided by Eq.  (1.12) 

11)  Else if |𝐸_𝐸| and 𝑐 are less than 0.5.  

Then the particles are guided by Eq. (1.15) 

  End 

End 

12) The particle's velocity and particle's position are updated using Eq. (1.16) and (1.17). 

13) The parameters ℎ1 and ℎ2 are dynamically adapted using FLC. The parameters 

follow the rules given in Section 3.2. Hence different fuzzy models are developed.  

14) Each particle's personal best is updated. 

15) Then, the mutation operators are introduced. 

16) Then, the global best solution is updated. 

17) The highest fitness value will be the best global solution.   

18) End (Steps 3 to 16). Here the main iteration loop stops. 
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19) When the termination criteria are achieved, the iterative process stops, and the global 

best solution is reported. 

First, the basic BTO algorithm has been applied. Then at step 15, the parameters ℎ1and ℎ2 are 

dynamically changed using FLC (as mentioned in Section 3.2). Finally, we develop fuzzy 

BTO algorithms (BTOF1, BTOF2, BTOF3, and BTOF4) depending on different inputs and 

rules. 

 

8.5 Mathematical Analysis of Fuzzy BTO 

The proposed algorithm can be analysed using the concept of signature. All the points in the 

search space are equally important, so an unbiased stochastic optimization algorithm 

generates a collection of statistically identical positions to a random search. So before 

evaluating the performance of an optimization algorithm, it is ideal to obtain an idea of the 

intrinsic bias of the optimization algorithm. The detailed concepts are discussed in Chapter 6 

in Section 6.5.1. 

 

Many optimization algorithms like MPA, WOA, SMO, and GWO can be rejected 

because of their biases 79. We have to check the bias of the proposed optimization algorithm 

Fuzzy BTO (BTOF1). The Signature of BTOF1 is given in Fig 8.7. We can observe from Fig 

8.7 that BTOF1's Signature is not biased toward the center, axis, or region. Therefore, we can 

observe that the Signature of BTOF1 has to be accepted. 

 

 

Fig. 8.7. Signature of BTOF1 
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8.6 Results and Discussions 

BTOF1 and BTOF2 were applied to a set of nine BF, including both unimodal and fixed 

dimensional multimodal BF taken from the literature90, as given in Chapter 6 in Table 6.1. 

The maximum number of iterations and swarm size were 200 and 10, respectively. The 

experiments were conducted on a Windows 10 (64-bit) system with 8GB of RAM. First, 

statistical performance measures were used to assess the optimization ability of BTOF1 and 

BTOF2, the KWT was applied to check the statistical significance.  

 

 To assess the practicality of Fuzzy BTO, we apply it to the feature selection problem. 

The proposed algorithms BTOF1, BTOF2, BTOF3, and BTOF4 are compared to three 

different algorithms (HHO, SSA, PSO) on seven datasets39 (Ionosphere, Wine, Breast Cancer 

Wisconsin, Sonar, Libras Movement, Hill Valley, Musk 1) using UCI Machine Learning 

repository. For classification, we used the commonly employed KNN classifier with K-fold 

CV set to 1. 

 

8.6.1 Results and Discussions on BF 

Each algorithm was evaluated 20 times on every BF with different dimensions after 

converting them into the binary form using a well-defined transformation function. The 

effectiveness of BTOF1 and BTOF2 is evaluated by comparing their performance with four 

other metaheuristic algorithms, namely PSO, GA, HHO, and Salp Swarm Algorithm (SSA), 

which are represented by green, yellow, blue, and black colours, respectively. The proposed 

algorithms BTOF1 and BTOF2 are represented by red and cyanide colours. The convergence 

curves of the BF are presented in Figs 8.8 to 8.16. 
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Fig. 8.8. Graph of 𝑩𝑭𝟏                                                                              Fig. 8.9. Graph of 𝑩𝑭𝟐 

     

Fig. 8.10. Graph of 𝑩𝑭𝟑                                                  Fig. 8.11. Graph of 𝑩𝑭𝟒 

                 

Fig. 8.12. Graph of 𝑩𝑭𝟓          Fig. 8.13. Graph of 𝑩𝑭𝟔 
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Fig. 8.14 Graph of 𝑩𝑭𝟕                                                  Fig. 8.15. Graph of 𝑩𝑭𝟖  

         

         Fig. 8.16. Graph of 𝑩𝑭𝟗 

 

Based on the graphs, it can be observed that BTOF2 generally provides better accuracy 

than BTOF1. However, these results were obtained from a single evaluation of the algorithms. 

To overcome this limitation, we evaluated the algorithms 20 times and calculated their mean 

accuracy (fitness values) presented in Table 8.1 for a dimension of 100. Then we constructed 

an average ranking of all the algorithms on all the BF. The average ranking is given in brackets 

in Table 8.1. 

 

Table 8.1. The mean fitness value of 20 runs and their ranking when the dimension is 100. 

BF PSO GA HHO SSA BTOF1 BTOF2 

𝐵𝐹1 67.2 (5) 74.18 (4) 89.68 (3) 56.18 (6) 91.28 (2) 91.3 (1) 

𝐵𝐹2 72.8 (5) 73.55 (4) 90.2 (3) 66.87 (6) 91.5 (2) 92.05 (1) 

𝐵𝐹3 1 (3.5) 1 (3.5) 1 (3.5) 1 (3.5) 1 (3.5) 1 (3.5) 

𝐵𝐹4 6269.7 (5) 6990.45 

(1) 

6587.9 (4) 5085.95 (6) 6970.34 (2) 6869.16 (3) 

𝐵𝐹5 3257.65 (4) 3289 (5) 3452.35 (3) 3183.36 (6) 3461.7 (2) 3473.25 (1) 
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𝐵𝐹6 41878.77 

(3) 

41876.67 

(5)  

41882.13 (1) 41874.83 

(6) 

41878.78 (2) 41878.13 (4) 

𝐵𝐹7 1168.55 (4) 74.1 (6) 90.1 (5) 1878.99 (3) 1981.12 (1) 1980.40 (2) 

𝐵𝐹8 4.17 (4) 3.17 (6) 3.45 (5) 4.38 (1) 4.36 (3) 4.37 (2) 

𝐵𝐹9 0.9 (5) 0.93 (4) 0.95 (3) 0.88 (6) 0.95 (1) 0.95 (2) 

Average 

Rank 

4.277778 4.277778 3.388889 4.833333 2.055556 2.166667 

Rank 4 5 3 6 1 2 

Note: Bold values indicate the best value, italic indicates second best value, and ranks are given in the 

corresponding bracket 

 

We can observe from Table 8.1 that BTOF1 gives the best result, followed by BTOF2, 

HHO, PSO, GA, and SSA, respectively. Then a KWT with a significance level of 0.05 is applied 

to compare the performance of BTOF1 against PSO, GA, HHO, and SSA. Then H-statistics and 

p-value are recorded. The difference is significant in all BF except BF3, as the p-value is less 

than 0.00001. However, since the p-value is 1, the difference is insignificant when BTOF1 is 

compared against other algorithms on 𝐵𝐹3.  

 

Now considering Table 8.2 and the KWT statistical results, we can conclude the 

following results – 

 

(1) BTOF1 gives the best solution three times and five times the second best among the 

nine BF, with a statistical significance difference. 

(2) BTOF2 gives the best solution four times and three times the second best among the 

nine BF, with a statistical significance difference. 

(3) PSO gives the best solution once with a statistical significance difference and no 

second best among the nine BF. 

(4) GA gives the best solution two times and no second best among the nine BF, with a 

statistical significance difference. 

(5) HHO gives the best solution two times and no time second best among the nine BF, 

with a statistically significant difference. 

(6) SSA gives the best solution two times and no second best among the nine BF, with a 

statistical significance difference.We are getting the following observations from the 

graphs of the BF.  
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Scalability analysis of BTO 

The dimension of optimization problems can affect algorithm efficiency. Therefore, we tested 

 the algorithms on the BF with dimensions 30, 500, and 1000 to conduct a scalability analysis  

and assess the efficiency of BTOF1 and BTOF2. The mean values of all the algorithms on all  

the BF with dimensions 30, 500, and 1000 are computed. Regardless of the dimension, BTOF1  

consistently outperformed BTOF2 and all other algorithms. 

 

8.6.2 Results and Discussions on FS 

We applied all seven algorithms ten times to the FS problem on each dataset and recorded 

their fitness values. Table 8.2 presents the mean fitness values of all seven algorithms on all 

the datasets, with the best values highlighted in bold and the second-best values in italics. A 

ranking system was employed to determine the best-performing algorithm. Additionally, we 

used KWT to test for statistical significance and recorded the H statistics values and p-values 

to conclude the statistical significance of the algorithms. 

Table 8.2. The mean fitness of all the seven algorithms and their ranking on all seven datasets. 

Dataset PSO HHO SSA BTOF1 BTOF2 BTOF3 BTOF4 

Wine 0.95 (7) 0.963077 (5) 

0.953846 

(6) 0.982692 (2) 0.98967 (1) 0.972363 (4) 

0.97467 

(3) 

WDBC 0.958407 0.94619 (6) 

0.937186 

(7) 0.962832 (4) 0.964602 (3) 0.967257 (1) 

0.966372 

(2) 

Ionosphere 

0.894912 

(6) 0.905315 (1) 

0.881487 

(7) 0.896244 (4) 0.902592 (2) 0.895458 (5) 

0.898155 

(3) 

Sonar 

0.868628 

(1) 0.854957 (3) 

0.836457 

(7) 0.862671 (2) 0.852695 (4) 0.836957 (6) 

0.842652 

(5) 

Libras 

0.840236 

(5) 0.840514 (4) 

0.835458 

(7) 

0.845833 

(1.5) 

0.845833 

(1.5) 0.841931 (3) 

0.838889 

(6) 

Hill Valley 

0.557826 

(2) 0.560452 (1) 

0.543817 

(7) 0.552184 (3) 0.550457 0.548891 (6) 

0.551134 

(4) 

Musk 1 

0.915789 

(2) 0.889629 (6) 

0.876484 

(7) 0.914737 (3) 0.912632 0.918947 (1) 

0.910526 

(5) 

Average 

Rank 4 3.714 6.8571 2.7857 2.928 3.71 4 

Rank 5.5 4 7 1 2 3 5.5 

Note: Bold values indicate the best value, italic indicates second best value, and ranks are given in the 

corresponding bracket 
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As we can observe from Table 8.2, BTOF1 gives the best result, followed by BTOF2, 

BTOF3, HHO, BTOF4, PSO, and SSA, respectively. When KWT is applied between 

BTOF1, PSO, HHO, and SSA, we get the following observations. 

a) In Musk 1 dataset, when BTOF1 is statistically compared with PSO, HHO, and SSA. The 

H-statistics is 31.8294. The p-value is less than 0.00001. Hence there is a significant 

difference. 

b) In the Hill Valley dataset, when BTOF1 is statistically compared with PSO, HHO, and 

SSA. The H-statistics is 10.8882. The p-value is 0.02785. Hence there is a significant 

difference.   

c) In the Libras Moment dataset, when BTOF1 is statistically compared with PSO, HHO, and 

SSA. The H-statistics is 4.6906. The p-value is 0.32054. Hence there is no significant 

difference.   

d) In the Sonar dataset, when BTOF1 is statistically compared with PSO, HHO, and SSA. The 

H-statistics is 16.0207. The p-value is 0.00299. Hence there is a significant difference.   

e) In the Ionosphere dataset, when BTOF1 is statistically compared with PSO, HHO, and 

SSA. The H-statistics is 21.0473. The p-value is 0.00031. Hence there is a significant 

difference.   

f) In the WBDC dataset, when BTOF1 is statistically compared with PSO, HHO, and SSA. 

The H-statistics is 36.2838. The p-value is less than 0.00001. Hence there is a significant 

difference.   

g) In the Wine dataset, when BTOF1 is statistically compared with PSO, HHO, and SSA. The 

H-statistics is 12.6478. The p-value is 0.01313. Hence there is a significant difference. 

 

Hence from the above discussions from (a) to (g) and Table 8.2, we conclude that the 

proposed algorithm BTOF1 gives the best result with statistical significance when compared 

with PSO, HHO, and SSA. The KWT is again applied between (BTOF2, PSO, HHO, and 

SSA) and (BTOF3, PSO, HHO, and SSA). From these results and Table 8.2, we conclude 

the following results  

(1) The variant of BTOF2 gives the second-best solution with statistical significance when 

            compared with PSO, HHO, and SSA.  

(2) The variant of BTOF3 gives the third-best solution with statistical significance when       

       compared with PSO, HHO, and SSA.  
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8.7. Conclusion 

This work proposes a novel population-based optimization algorithm called fuzzy BTO to tackle 

different optimization tasks. BTO is inspired by the cooperative behaviors and chasing styles of 

predatory fish, Bluefin Trevally, in nature. Several equations are designed to simulate the social 

intelligence of Bluefin Trevally to solve optimization problems. Here we have taken four 

variants of Fuzzy BTO in which the parameters are dynamically changed using FLC. This 

experiment is tested with different dimensions. As a result, we observed that the Signature of 

fuzzy BTO is significantly better than many other optimization algorithms. Also, convergence 

proof helps to establish the mathematical strength of fuzzy BTO. 

 

The proposed Fuzzy BTO algorithms were evaluated based on statistical measures and 

convergence rate, and their performance was tested on nine BF. The complete experimental 

results indicate that the established BTOF1 outperforms other optimizers regarding searchability 

and convergent speed when solving global optimization problems. Furthermore, statistical tests 

were conducted to support this conclusion. The proposed Fuzzy BTO algorithms were also 

applied to feature selection problems, and the performance of BTOF1 was compared against 

other algorithms using seven UCI datasets. Again, the experimental results demonstrate that the 

BTOF1 algorithm outperforms different investigated algorithms. Therefore, the proposed Fuzzy 

BTO algorithms have the potential to serve as an excellent global optimization algorithm and to 

tackle FS problems.  

 

      In the future, we will explore the application of this algorithm in MOO tasks and 

expand its application to real-life problems such as machine learning, medical applications, 

financial fields, and engineering optimization tasks. Furthermore, we will also integrate the 

novel algorithm with other strategies to build a better optimizer. 
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Part – IV 

 

 

Application of the proposed hybrid metaheuristic approach on 

Forecasting Problem. 

 

 

(Chapter 9) 
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Chapter 9  

 

 

Picture Fuzzy Time Series Forecasting with a novel variant of 

Particle Swarm Optimization 

 

 

9.1 Introduction 

 

The landscape of forecasting challenges has prompted a rich tapestry of approaches, with a 

significant portion gravitating towards FYS or FYS-related approaches. FTS techniques, 

encompassing Mamdani-type and Sugeno-type FIS, have emerged as pervasive tools in the 

forecasting realm. The seminal work of Song and Chissom40 in defining FTS has stimulated a 

surge in research activities. Kocak's contribution99 introduced an ARMA-style FTS forecasting 

technique, while Güler Dincer and Akkuş100 proposed a robust clustering-based FTS approach 

with a dedicated focus on fuzzification. Güler Dincer101 brought forth an FTS approach 

grounded in fuzzy c-regression, and Bas102 leveraged the neural network to classify fuzzy 

relations. Zeng et al.'s 41 methodology for FTS forecasting integrated subtractive clustering and 

an ABC algorithm. Jiang et al. 103 pioneered an advanced forecasting approach, employing a 

hybrid model that fused MOO and FTS approach. Tran104 presented a multivariate FTS 

approach, and Sadaei42 explored a synergistic strategy involving convolutional neural networks 

and FTS. Statistical aspects, including inferences, confidence intervals, and forecast 

distributions, have become central themes in some FTS investigations. Furthermore, various 

nature-inspired optimization algorithms, widely applicable in diverse domains, can be tailored 

to determine optimal interval lengths in FTS forecasting. 
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One way to think of IFYSs is as a more comprehensive and adaptable variant of FYSs. 

The modelling and application of intuitionistic FTS were introduced using the intuitionistic 

fuzzy c-means method. Various Intuitionistic FTS approaches were proposed105,106. There were 

several proposed intuitionistic FTS methods. In hesitant FYSs, The study conducted by Bisht 

and Kumar involved the application of triangle membership functions, showcasing their 

adaptability through equal and unequal intervals107. It was proposed to use this dual hesitant 

FYS in an intuitionistic FTS forecasting method. Abhishekh released a FTS technique that was 

high-order intuitionistic45.  

 

An improved form of IFYSs called PFYSs offer a more adaptable and inclusive base. 

Picture fuzzy clustering (PFC) and IFYSs were used by Thong and Son to diagnose medical 

conditions108. Thong and Son, who introduced the notion of PFC, integrated the PFYS set into 

the clustering approach109. Son offered a control theory application as well as a concept for an 

image FIS110.  

 

 A thorough review of the literature underscores the efficacy of various forecasting 

approaches, especially those with more broadly defined set types. As per the insights gathered 

from existing studies, the augmentation of models with latent variables, essentially additional 

inputs, has demonstrated a positive impact on inference outcomes. Within this conceptual 

framework, membership values are latent variables, providing supplementary inputs to the 

models. This theoretical foundation suggests that utilising PFYSs in forecasting models can be 

advantageous.  

 

The chapter is structured as follows for the remainder of it. Some fundamental ideas 

needed for a thorough understanding this chapter are explained in Section 9.2. An innovative 

metaheuristic variant (EDSPSO) is discussed in Section 9.3. Section 9.4 discusses the proposed 

PFTS forecasting method. Section 9.5 provides an explanation of the proposed algorithm with 

the help of TSD from UAE and SBISP. The experimental results are discussed in Section 9.6. 

The conclusion of the present work is given in Section 9.7. 
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9.2 Background 

To fully grasp the content in this chapter, it is imperative to be familiar with fundamental 

concepts that has been explained in Section 1.3. Additionally, a basic understanding of 

Forecasting, explained in Section 1.6, is essential. 

 

9.3 Innovative metaheuristic variant (EDSPSO) 

In this section a novel PSO variant is developed using dual swarm strategy and exponential 

function as mutation operator. Exploration and exploitation stand out as the primary techniques 

employed in the search for solutions within the solution space. Achieving an optimal answer 

requires a careful equilibrium between these two approaches to thoroughly navigate the 

solution domain. Traditional PSO algorithms and their modifications encounter challenges in 

maintaining this balance, resulting in limitations in generating effective solutions. The 

enhanced PSO variant (EMPSO) effectively addresses and resolves these challenges. The 

strategies given below are used to perform efficiently: 

1) PSO is subjected to an EMO. 

2) Modify the parameters to adapt.  

3) A two-swarm technique is implemented, the following Eq. (9.1) is used to update ℎ:- 

 

                                ℎ = ℎ𝑚𝑖𝑛 + (ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛) × (
max _𝑖𝑡𝑒𝑟−𝑡

max _𝑖𝑡𝑒𝑟
)                                             (9.1) 

 

When particles get stuck in local minima, they experience the mutation operator, which 

consists of two crucial components. First, in order to improve performance, the algorithm's 

overall mutation probability, represented by the letter 𝑚𝑝1
𝑡 , gradually decreases over time. 

Secondly, particles whose 𝑧𝑝 has stayed stationary in recent iterations see an enhanced chance 

of mutation, and is accomplished by introducing 𝑚𝑝2
𝑡 . After that, Eq. (9.2) is utilized to 

determine 𝑚𝑢𝑗
𝑡. 

                                                          𝑚𝑢𝑗
𝑡 = 𝑚𝑝1

𝑡 × 𝑚𝑝2
𝑡                                                              (9.2) 

 

Throughout the iterations, the parameter 𝑚𝑝1
𝑡  decreases by a factor of 𝜆𝑑 . It is 

determined by applying Eq. (9.3) ,which is explained in 78 ,and Eq. (9.4) is used to compute 

𝑚𝑝2
𝑡 . 
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                                                  𝑚𝑝1
𝑡 = 𝑚𝑝1

𝑡−1 × 𝜆𝑑                                                               (9.3) 

 

                  𝑚𝑝2
𝑡 = 𝑒

(
(𝑁𝑆𝐼𝑗−𝑁𝐼)

𝜆𝑚
⁄ )

                                                             (9.4) 

 

Here the number of iterations of particle 𝑝𝑗, during which it’s 𝑧𝑝 remains unchanged, 

is represented as 𝑁𝑆𝐼𝑗. Parameter 𝑁𝐼 indicates how many times the particle has been iterated 

to take benefit of its neighbourhood.  

 

The quest for an optimal exploration-exploitation balance leads to the design of a dual-

swarm strategy, wherein the total population 𝑁 is divided into two halves. The first half of the 

particles undergoes position and velocity updates through the classical PSO mechanism. In 

contrast, the second half of the particles exclusively adopts the global best position for position 

updates, as outlined in Eq. (9.5). Hence, the Eq. (1.17) is modified, and Eq. (9.5) is developed. 

The comprehensive description of the suggested EDSPSO is given below 

𝑑𝑢𝑎𝑙(𝑡) = 𝑒
−(

(2.5×𝑡)
max _𝑖𝑡𝑒𝑟⁄ )

2.5

 

 

𝑦(𝑡 + 1) = {
𝑧𝑔(𝑡) + (𝑑𝑢𝑎𝑙(𝑡) × 𝑑3 × |𝑧𝑔(𝑡)|𝑑𝑢𝑎𝑙(𝑡))  𝑑4 < 0.5

𝑧𝑔(𝑡) − (𝑑𝑢𝑎𝑙(𝑡) × 𝑑3 × |𝑧𝑔(𝑡)|𝑑𝑢𝑎𝑙(𝑡))  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (9.5) 

 

Algorithm 1: EDSPSO Pseudo-code. 

1. Randomised matrices are assigned to every particle to initialise its position and velocity. 

2. The main iteration loop starts from here. 

3. Every particle's fitness value is evaluated. 

4. The particle's position and velocity are updated using Equations (9.5) and (1.16), 

respectively. 

5. Eq. (9.1) is used to dynamically change the parameter ℎ. 

6. Eq. (9.2) is utilised to apply the EMO. 

7. The 𝑧𝑝 and 𝑧𝑔 of every particle are modified. 

8. The optimal global solution 𝑧𝑔 will have the greatest fitness value. 

9. End (Steps 2 to 8). The main iteration loop ends here. 

10. The iterative technique concludes when the stopping criteria are met, and the final 𝑧𝑔 

is determined. 



121 
 

9.4 Proposed PFTS forecasting method 

This work suggests a novel PFTS forecasting technique. In this case, the suggested EDSPSO-

PFTS forecasting technique makes use of PFYS to incorporate non-determinacy during the 

fuzzification of TSD and EDSPSO to optimize the size of the intervals required to define PFYS. 

The suggested EDSPSO-PFTS forecasting method is made in three steps. Section 9.4.1, 

involves building the Universe of Discourse (UOD), generating the FYSs, and converting the 

FYSs into PFYSs. Section 9.4.1, involves using the max-min operator, which creates a simple 

FTS forecasting method. In Section 9.4.3, EDSPSO is merged with the PFTS forecasting model 

to maximize the interval length with MSE as the goal function.  

 

9.4.1 Step 1: Utilizing PFYS for fuzzification 

 

Stage 1.1 The UOD is well-defined as 𝑉 = [𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥]. Here 𝑉𝑚𝑖𝑛 = 𝐸𝑚𝑖𝑛 − 𝑄1 and 𝑉𝑚𝑎𝑥 =

𝐸𝑚𝑎𝑥 − 𝑄2, where 𝐸𝑚𝑖𝑛 and 𝐸𝑚𝑎𝑥 are the min and max values of TSD. It is ensured that UOD 

can support any TSD by properly choosing 𝑄1 and 𝑄2. 

 

Stage 1.2 After dividing the UOD into intervals of equal length, construct triangle FYSs on 

each interval. 

 

Stage 1.3 PFC is used to generate PFYSs in this instance109. The cluster centres, degree of 

positive, neutral, and refusal membership are iterated multiple times until the stopping 

condition is met. Subsequently, final membership values are noted. Thong and son provide a 

thorough description of this process109. 

 

Stage 1.4 Apply the subsequent pseudo-algorithm to incorporate non-determinacy into TSD. 

for 𝑗 = 1 to num (end of TSD ) 

for 𝑘 = 1 to dim (end of no. of intervals ) 

𝜉𝐼𝑙 = 1 − 𝜇𝐼𝑙 − 𝜂𝐼𝑙  − 𝛾𝐼𝑙   

        Choose 𝜉𝐼𝑙 = 𝑚𝑖𝑛(𝜉𝐼1 , 𝜉𝐼2 , … 𝜉𝐼𝑘) 𝑓𝑜𝑟 1 ≤ 𝑙 ≤ 𝑑𝑖𝑚 

 

  If 𝑓𝑙  is a FYS associated to 𝑙𝑡ℎ PFYS  

  Allocate 𝑙𝑡ℎFYS to the corresponding TSD 
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End if  

 End for 

End for 

 

9.4.2 Step 2: FTS model Construction 

Stage 2.1 First-order fuzzy logical relations (FLRs) 𝐺(𝑡) → 𝐺(𝑡 + 1)  are established via 

fuzzified TSD. Here, 𝐺(𝑡) and 𝐺(𝑡 + 1) are existing and subsequent states, respectively. Once 

FLRs are generated, merge them to form FLRs (groups), as illustrated. 𝐺1 → 𝐺1, 𝐺1 → 𝐺2 and 

𝐺1 → 𝐺3 can be united as 𝐺1 → 𝐺1, 𝐺2, 𝐺3 and obtain first-order fuzzy time relation  𝑆 =∪ 𝑆𝑖. 

 

Stage 2.2 The fuzzy forecast is computed using the equation 𝐺𝑖 = 𝐺𝑖−1 ∙ 𝑆.  Here, the fuzzified 

values 𝐺𝑖−1, 𝐺𝑖  and ∙ correspond to the present state, the subsequent state, and the max-min 

operator, respectively. 

 

Stage 2.3 The predicted outcome is defuzzified using the formula below to determine its 

numerical value 

 

forecasted output=
∑ (𝑔𝑗×𝑚𝑖𝑑𝑗)

𝑛𝑢𝑚
𝑗=1

∑ (𝑔𝑗)
𝑛𝑢𝑚
𝑗=1

                                           (9.6) 

 

Here, 𝑔𝑗 and 𝑚𝑖𝑑𝑗 indicate the interval's intermediate point and fuzzy outcome, respectively. 

 

9.4.3 Step 3: Integration of EDSPSO with PFTS model 

This step involves combining a PFTS model with EDSPSO to determine the optimal interval 

duration. Initializations are made for all necessary EDSPSO parameters as well as the 

maximum number of iterations. TSD is divided into intervals, which are reflected in each 

particle in the suggested EDSPSO-PFTS forecasting technique. Each particle is a collection of 

𝑠 − 1  components. where 𝑞𝑗−1 < 𝑞𝑗  for 1 ≤ 𝑗 ≤ 𝑠 − 1  (𝑖𝑒.  𝑞1 < 𝑞1 ⋯ < 𝑞𝑗 < ⋯ < 𝑞𝑠−2 <

𝑞𝑠−1)  These 𝑠 − 1  components create 𝑠  interval as 𝑣1 = [𝑞0, 𝑞1] ,  𝑣2 = [𝑞1, 𝑞2],⋯ , 𝑣𝑗 =

[𝑞𝑗−1, 𝑞𝑗],⋯ , 𝑣𝑠−1 = [𝑞𝑠−2, 𝑞𝑠−1], 𝑣𝑠 = [𝑞𝑠−1, 𝑞𝑠] . When a particle improves its position, 

components of the connected new set are instantly modified so that each member 

𝑞𝑗(1 ≤ 𝑗 ≤ 𝑠 − 1) is arranged in an ascending sequence. A sample particle is shown below. 
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𝑞1 𝑞2   … 𝑞𝑗   … 𝑞𝑠−1 

 

𝑀𝑆𝐸 =
∑ (𝑂𝑅𝑗−𝐹𝑂𝑗)

2𝑛𝑢𝑚
𝑗=1

𝑛𝑢𝑚
                                                                  (9.7) 

 

MSE is used in every iteration to evaluate each particle’s effectiveness, and results are 

provided in Eq. (9.7). Here 𝑛𝑢𝑚, 𝐹𝑂𝑗, and 𝑂𝑅𝑗 stand for the number of forecasted data points, 

the predicted 𝑗𝑡ℎ, and actual 𝑗𝑡ℎ TSD. Each particle adjusts its position using Eqns. (1.16) and 

(9.5), and the process is carried out until the predefined stopping criterion is satisfied to 

evaluate each particle's forecasting outcomes. The outcomes are compared among all previous 

individual best positions for each particle, provided that the stopping requirements are satisfied. 

This step is fully explained in Algorithm 1. The suggested EDSPSO-PFTS forecasting method 

is described in Algorithm 2, and its flowchart is displayed in Fig 9.1. 

 

Algorithm 2: Proposed EDSPSO-PFTS Algorithm 

INPUT: A) The parameters are specified and every particle's position has been initialized. 

   B) UOD is established. 

OUTPUT: Forecasted output values 

1) for 𝑘 = 1 to 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟 (No.of iterations ) 

2)      for 𝑗 = 1 to NP (No. of particles ) 

3)           Phase in steps 1 and 2 are applied first. 

          (In this step PFYSs are constructed using the concept of PFC). 

4)            Now, Phase 3: Incorporation of EDSPSO with PFTS model starts from this step.  

5)            The MSE value is computed using Eq. (9.7). 

6)            The position and velocity are computed using Eq. (9.5) and Eq. (1.16)         

            respectively. 

7)            Then EMO is applied using Eq. (9.1). 

8)            The personal best of each particle and the global best particle are updated. 

9)      End for 

10)  End for      
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Fig. 9.1. Flowchart of EDSPSO-PFTS 
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9.4.4 Statistical analysis 

The effectiveness of the forecasting approach is also assessed using a variety of statistical 

criteria111, such as the correlation coefficient ( 𝑅 ), tracking signal ( 𝑇𝑆 ), coefficient of 

determination (𝑅2), and performance parameters 112. These criteria are in addition to the error 

measures (MSE and AFE). The RMSE, AFE, and other statistical metrics formulas that were 

used to evaluate the efficacy and statistical validity of the suggested EMPSO-PFTS forecasting 

approach are shown in Table 9.1. Table 9.1 shows the expected TSD, actual TSD, number of 

TSD, and standard deviation of the TSD, respectively, as well as 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑𝑗, 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑗, 

num, and 𝜎 are forecasted TSD, actual TSD, number of TSD and the standard deviation of the 

TSD respectively. The positive and negative values of 𝑀𝑎𝑑 represent the forecasting model's 

tendency towards under- and over-forecasting. Biased under-forecasting is indicated by 𝑇𝑆 >

4, while biassed over-forecasting is shown by 𝑇𝑆 < 4. 

 

Table 9.1 statistical parameters and error measures. 

Sl.No Term                                             Mathematical expression Acceptable 

Range 

1       

MSE 

∑ (𝑂𝑅𝑗 − 𝐹𝑂𝑗)
2𝑛𝑢𝑚

𝑗=1

𝑛𝑢𝑚
 

 

2   AFE 

(in 

%) 

∑ (
|𝐹𝑂𝑗 − 𝑂𝑅𝑗|

𝑂𝑅𝑗
∗ 100)𝑛𝑢𝑚

𝑗=1

𝑛𝑢𝑚
 

 

3 𝑅 𝑛𝑢𝑚 ∑𝑂𝑅𝑗 ∗ 𝐹𝑂𝑗 − (∑𝑂𝑅𝑗)(∑𝐹𝑂𝑗)

(√𝑛𝑢𝑚(∑𝑂𝑅𝑗
2) − (∑𝑂𝑅𝑗)

2
) − (√𝑛𝑢𝑚(∑𝐹𝑂𝑗

2) − (∑𝐹𝑂𝑗)
2
)

 
−1 < 𝑅 < 1 

5 𝑃𝑃 
1 −

(√𝑀𝑆𝐸)

𝜎
 

𝑃𝑃 > 0 

6 𝑀𝑎𝑑 ∑ |𝐹𝑂𝑗 − 𝑂𝑅𝑗|
𝑛𝑢𝑚
𝑗=1

𝑛𝑢𝑚
 

 

7 TS ∑ (𝐹𝑂𝑗 − 𝑂𝑅𝑗)
𝑛𝑢𝑚
𝑗=1

𝑀𝑎𝑑

 
−4 < 𝑇𝑆 < 4 

 

 

9.5 Application of EDSPSO-PFTS 

This section describes how the suggested EDSPSO-PFTS method is implemented and performs 

better than others. This technique is applied by using historical TSD from two sources: UAE 

in Section 9.5.1 and SBISP in Section 9.5.2.  
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9.5.1 Forecasting UAE  

The following steps describe how the proposed EDSPSO-PFTS method is used to forecast the 

UAE.  

 

Step 1: Here, the FYSs are constructed, and the PFYS are constructed for modelling UAE. 

 

Stage 1.1: 𝑉 = [13000, 20000] has been defined as UOD by using 𝑄1 = 55 and 𝑄2 = 663. 

𝐸𝑚𝑖𝑛 = 13055 and 𝐸𝑚𝑎𝑥 = 19337 are noted from TSD of UAE. This UAE is specified in 

Table 9.2.  

 

Stage 1.2: 𝑉 = [13000, 20000] has been separated into fourteen intervals 𝑣(𝑗) = [13000 +

(𝑗 − 1)ℎ, 13000 + 𝑗ℎ], ( 𝑗 = 1 𝑡𝑜14, ℎ = 500). The purpose of FYSs 𝐺𝑗  (j=1 to 14) are to 

fuzzify the UAE's TSD. The grade of membership is given in Table 9.3. 

𝐺𝑗 = [13000 + (𝑗 − 1)ℎ, 13000 + 𝑗ℎ, 13000 + 2𝑗ℎ], 𝑗 = 1 𝑡𝑜13, ℎ = 500 

𝐺𝑗 = [13000 + (𝑗 − 1)ℎ, 13000 + 𝑗ℎ, 13000 + 𝑗ℎ], 𝑗 = 14, ℎ = 500 

 

Stage 1.3: PFYSs are established from FYSs using the concept of PFC. 

 

Stage 1.4: The computation non-determinacy of the PFYSs of the UAE is described below- 

 The UAE of the year 1971 is related with the FYSs 𝐺1, 𝐺4 and 𝐺5 FYS. Hence PFYSs 

 𝐽1 = 〈0.333987,0.170279,0.000034〉, 𝐽4 = 〈0.56003,0.223867,0〉 

and 𝐽5 = 〈0.560229,0.22392,0〉  

are associated with this enrolment. The amount of non-determinacy of the above three 

PFYSs are 0.495699, 0.216103, 0.215851 respectively. Since the amount of non-

determinacy 0.215851 is minimum in 𝐽5and 𝐽5 is corresponding to a FYS 𝐺5, therefore 

fuzzified enrollment of the year 1971 is taken as 𝐺5. 

 

 Similarly, the UAE of the years (1972- 1992) that are related with the FYSs are 

computed. The amount of the non-determinacy values of the PFYSs are computed and 

are given in Table 9.4. After calculating each enrolment's minimum non-determinacy, 

the fuzzified enrolments are displayed in Table 9.5. 
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Step 2: Fuzzified TSDs are utilised to generate FLRs. 𝐺(𝑡) → 𝐺(𝑡 + 1). The detailed process 

is given in Section 9.4.1. Fuzzy forecasted UAE are defuzzified by utilizing Eq. (9.6). 

 

Step 3: EDSPSO integration with the PFTS gives the optimal interval length for FYSs and, by 

extension, PFYSs, by minimizing the MSE in UAE forecasting. Here we have taken N as 7. 

Tables 9.6 and 9.7 show the initial velocity and random positions. Each particle can be seen as 

a distinct collection of   

𝑣1 = [𝑞0, 𝑞1], 𝑣2 = [𝑞1, 𝑞2], 𝑣3 = [𝑞2, 𝑞3], 𝑣4 = [𝑞3, 𝑞4], 𝑣5 = [𝑞4, 𝑞5], 𝑣6 = [𝑞5, 𝑞6], 

𝑣7 = [𝑞6, 𝑞7],𝑣8 = [𝑞7, 𝑞8], 𝑣9 = [𝑞8, 𝑞9], 𝑣10 = [𝑞9, 𝑞10], 𝑣11 = [𝑞10, 𝑞11], 

 𝑣12 = [𝑞11, 𝑞12], 𝑣13 = [𝑞12, 𝑞13], 𝑣14 = [𝑞13, 𝑞14].  

For instance, particle 1 categorizes a single set of 14 intervals based on its initial location. 

𝑣1 = [13000,13500],𝑣2 = [13500,14000],𝑣3 = [14000,14500],𝑣4 = [14500,15000], 

𝑣5 = [15000,15500],𝑣6 = [15500,16000],𝑣7 = [16000,16500],𝑣8 = [16500,17000], 

𝑣9 = [17000,17500],𝑣10 = [17500,18000],𝑣11 = [18000,18500],𝑣12 = [18500,19000], 

𝑣13 = [19000,19500] and 𝑣14 = [19500,20000]. 

 

By applying the PFYSs at the intervals given by particle 1, the MSE value of 312915.4 

is produced, and this value is computed using Eq. (9.7). To forecast UAE, the same process is 

repeated by all the particles. The comprehensive ESDPSO procedures are provided in 

Algorithm 1. In this case, 𝑧𝑔 is computed using 𝑧𝑝 and the lowest MSE value. This process 

continues until the termination condition is met. 

 

Table 9.2 UAE from 1971 to 1992 

Year UAE Year UAE 

1971 13055 1982 15433 

1972 13563 1983 15497 

1973 13867 1984 15145 

1974 14696 1985 15163 

1975 15460 1986 15984 

1976 15311 1987 16859 

1977 15603 1988 18150 

1978 15861 1989 18970 
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1979 16807 1990 19328 

1980 16919 1991 19337 

1981 16388 1992 18876 

 

Table 9.3 Membership grades of UAE in different FYSs 

UAE 𝑮𝟏 𝑮𝟐 𝑮𝟑 𝑮𝟒 𝑮𝟓 𝑮𝟔 𝑮𝟕 𝑮𝟖 𝑮𝟗 𝑮𝟏𝟎 𝑮𝟏𝟏 𝑮𝟏𝟐 𝑮𝟏𝟑 𝑮𝟏𝟒 

13055 0.11 0 0 0 0 0 0 0 0 0 0 0 0 0 

13563 0.874 0.126 0 0 0 0 0 0 0 0 0 0 0 0 

13867 0 0.734 0 0 0 0 0 0 0 0 0 0 0 0 

14696 0 0 0.608 0.392 0 0 0 0 0 0 0 0 0 0 

15460 0 0 0 0.08 0.92 0 0 0 0 0 0 0 0 0 

15311 0 0 0 0.378 0.662 0.206 0 0 0 0 0 0 0 0 

15603 0 0 0 0 0.794 0.722 0 0 0 0 0 0 0 0 

15861 0 0 0 0 0.278 0 0 0 0 0 0 0 0 0 

16807 0 0 0 0 0 0 0.386 0.614 0 0 0 0 0 0 

16919 0 0 0 0 0 0.224 0.162 0.838 0 0 0 0 0 0 

16388 0 0 0 0 0 0 0.776 0 0 0 0 0 0 0 

15433 0 0 0 0.134 0.866 0 0 0 0 0 0 0 0 0 

15497 0 0 0 0.006 0.994 0 0 0 0 0 0 0 0 0 

15145 0 0 0 0.71 0.29 0 0 0 0 0 0 0 0 0 

15163 0 0 0 0.674 0.326 0.968 0 0 0 0 0 0 0 0 

15984 0 0 0 0 0.032 0 0 0 0 0 0 0 0 0 

16859 0 0 0 0 0 0 0.282 0.718 0 0 0 0 0 0 

18150 0 0 0 0 0 0 0 0 0 0.7 0.3 0 0 0 

18970 0 0 0 0 0 0 0 0 0 0 0.06 0.94 0 0 

19328 0 0 0 0 0 0 0 0 0 0 0 0.344 0.656 0 

19337 0 0 0 0 0 0 0 0 0 0 0 0.326 0.674 0 

18876 0 0 0 0 0 0 0 0 0 0 0.248 0.752 0 0 

 

Table 9.4 Non-determinacy values of PFYS for UAE 

UAE 𝑮𝟏 𝑮𝟐 𝑮𝟑 𝑮𝟒 𝑮𝟓 𝑮𝟔 𝑮𝟕 𝑮𝟖 𝑮𝟗 𝑮𝟏𝟎 𝑮𝟏𝟏 𝑮𝟏𝟐 𝑮𝟏𝟑 𝑮𝟏𝟒 

13055 0.496 1 1 0.217 0.216 1 1 1 1 1 1 1 1 1 

13563 1 0.283 0.878 0.217 0.216 1 1 1 1 0.905 1 1 1 1 

13867 1 0.597 1 0.217 0.216 1 1 1 1 1 1 1 1 1 

14696 0.216 1 1 1 0.217 1 1 1 1 1 1 1 1 1 

15460 0.216 1 0.861 0.252 1 1 1 1 1 0.874 1 1 1 1 

15311 0.216 1 1 1 1 1 1 1 1 0.884 1 1 1 1 

15603 0.217 0.911 1 0.216 1 1 1 1 1 0.839 1 1 1 1 

15861 0.217 1 0.839 0.216 1 0.262 1 1 1 0.818 1 1 1 1 

16807 0.217 1 1 0.217 0.216 1 0.27 1 1 0.823 1 1 1 1 
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16919 0.217 1 0.802 0.217 0.216 1 0.455 1 1 1 1 1 1 1 

16388 0.217 0.837 1 0.217 0.216 1 1 1 1 1 1 1 1 1 

15433 0.215 0.905 0.885 0.354 1 1 1 1 1 0.874 1 1 1 1 

15497 0.215 1 0.848 0.216 1 1 1 1 1 1 1 1 1 1 

15145 0.215 0.855 0.819 1 1 1 1 1 1 1 1 1 1 1 

15163 0.215 0.854 1 1 1 1 1 1 1 1 1 1 1 1 

15984 0.217 1 1 0.216 0.22 0.236 1 1 1 0.888 1 1 1 1 

16859 0.217 0.877 0.813 0.217 0.216 1 0.217 1 1 1 1 1 1 1 

18150 0.216 1 1 0.217 0.215 1 1 1 1 1 1 1 1 1 

18970 0.216 1 1 0.217 0.215 1 1 1 1 1 0.2182 0.232 1 1 

19328 0.216 0.824 1 0.217 0.217 1 1 1 1 0.215 1 1 0.879 1 

19337 0.216 0.857 1 0.217 0.217 1 1 1 1 0.215 1 1 1 1 

18876 0.216 1 0.828 0.217 0.217 1 1 1 1 1 1 0.215 1 1 

 

 

Table 9.5. Fuzzified UAE using PFTS 

Year E Fuzzified UAE Year E Fuzzified UAE 

1971 13055 𝐺5 1982 15433 𝐺1 

1972 13563 𝐺5 1983 15497 𝐺1 

1973 13867 𝐺5 1984 15145 𝐺1 

1974 14696 𝐺1 1985 15163 𝐺1 

1975 15460 𝐺1 1986 15984 𝐺4 

1976 15311 𝐺1 1987 16859 𝐺5 

1977 15603 𝐺4 1988 18150 𝐺5 

1978 15861 𝐺4 1989 18970 𝐺5 

1979 16807 𝐺5 1990 19328 𝐺10 

1980 16919 𝐺5 1991 19337 𝐺10 

1981 16388 𝐺5 1992 18876 𝐺12 
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Table 9.6 Randomized initial positions of particle 

 

 

Table 9.7 Randomized initial velocity of particles 

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔 𝒗𝟕 𝒗𝟖 𝒗𝟗 𝒗𝟏𝟎 𝒗𝟏𝟏 𝒗𝟏𝟐 𝒗𝟏𝟑 

78.44 -100 -89.7 92.52 100 95.71 100 -100 -100 100 100 -100 100 

7.43 66.05 -3.33 93.71 -57.84 -100 100 -100 -100 -88.34 100 -100 100 

-52.22 100 100 -100 100 -50.13 100 -37.96 -100 100 100 -100 -40.35 

100 -100 100 93.07 100 14.76 100 -100 -100 -93.78 100 -100 100 

100 16.73 100 -100 91.04 -100 100 -100 -100 100 100 -100 100 

57.83 -100 72.81 100 100 100 100 -56.79 -100 -100 100 -100 42.04 

-100 -19.48 100 100 100 -100 100 -100 -100 -100 59.2 -100 1.95 

 

 

9.5.2 Forecasting SBISP  

Investors must be able to forecast volatility in stock prices since it is an indication of high risk 

and affects their capacity to make well-informed decisions that maximize returns. We use the 

proposed EDSPSO-PFTS technique for the TSD of the SBISP. The SBISP dataset used in this 

study includes records from April 2008 to March 2010 (Table 9.8). The calculation to forecast 

the SBISP implementing the suggested EDSPSO-PFTS method is shown below. 

Step 1: 

Stage 1.1: By considering the max and min values from Table 9.8, the UOD is determined as 

𝑉 = [741, 2892] from the TSD of SBI share. 

𝒒𝟏 𝒒𝟐 𝒒𝟑 𝒒𝟒 𝒒𝟓 𝒒𝟔 𝒒𝟕 𝒒𝟖 𝒒𝟗 𝒒𝟏𝟎 𝒒𝟏𝟏 𝒒𝟏𝟐 𝒒𝟏𝟑  MSE 
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Stage 1.2: 𝑉 = [741, 2892]  has been divided into fourteen intervals 𝑣(𝑗) = [741 + (𝑗 −

1)ℎ, 741 + 𝑗ℎ], ( 𝑗 = 1 𝑡𝑜14, ℎ = 153.64). FYSs 𝐺𝑗  (j=1 to14) are created to fuzzify the TSD 

of the SBISP and its membership grade is given in Table 9.9. 

𝐺𝑗 = [741 + (𝑗 − 1)ℎ, 741 + 𝑗ℎ, 741 + 2𝑗ℎ], 𝑗 = 1 𝑡𝑜13, ℎ = 153.64 

𝐺𝑗 = [741 + (𝑗 − 1)ℎ, 741 + 𝑗ℎ, 741 + 𝑗ℎ], 𝑗 = 14, ℎ = 153.64 

 

Stage 1.3: Using the concept of PFC (Algorithm 1), membership values are computed and 

fourteen PFYSs are constructed from FYSs 𝐺𝑗. 

 

Stage 1.4: Non-determinacy is included in the fuzzification of TSD using the ideas given in 

phase 1.4 of Section 9.4.1. We can observe that the share price of the year 9-Mar (1132.25) is 

associated with the FYSs 𝐺3, 𝐺4,  and 𝐺6  FYSs. Hence, 𝐽3 = 〈0.5414,0.218942,0〉, 𝐽4 =

〈0.560387,0.22396,0〉, 𝐽6 = 〈0.560404,0.223965,0〉, are the three PFYSs that are associated 

with this enrolment. The amount of non-determinacy of the above three PFYSs are 0.239658, 

0.215652, and 0.21563 respectively. Since the amount of non-0.21563 is minimum in 𝐽6 and 

𝐽6 is corresponding to FYS 𝐺6, therefore fuzzified enrollment of the year 8-April is taken as 

𝐺6. 

 

Step 2: In Step 2, the FTS model is created. On FLRs and FLR (group), max-min composition 

operations are then applied. Using Eq. (9.6), fuzzy forecasted enrolments are defuzzified. 

 

Step 3: For constructing 𝑉 = [741, 2892] , 𝑞0 , and 𝑞𝑠  are assumed to be 741 and 2892, 

respectively. The number of particles is assumed to be 7, and the number of intervals is assumed 

to be 14, correspondingly. As an illustration, particle 1's initial position categorizes a specific 

set of fourteen intervals- 

𝑣1 = [741,894.64], 𝑣2 = [894.64,1048.28], 𝑣3 = [1048.28,1201.92], 

𝑣4 = [1201.92,1355.57], 𝑣5 = [1355.57,1509.21], 𝑣6 = [1509.21,1662.857], 

𝑣7 = [1662.857,1816.5], 𝑣8 = [1816.5,1970.14], 𝑣9 = [1970.14,2123.786], 

𝑣10 = [2123.786,2277.42], 𝑣11 = [2277.42,2431.07], 𝑣12 = [2431.07,2584.714], 

𝑣13 = [2584.714,2738.357] and 𝑣14 = [2738.357,2892]. 

.  

By applying the PFYSs at the intervals specified by particle 1, the MSE value of 

14848.5517 is generated, and this value is determined using Eq. (9.7). Every particle goes 
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through the same procedure to forecast UAE. In Algorithm 1, the detailed ESDPSO processes 

are given. Here, the lowest MSE value and 𝑧𝑝 are used to calculate 𝑧𝑔. Up until the termination 

condition is satisfied, this process keeps going. 

 

Table 9.8 Actual SBISP 

Months SBISP Months SBISP 

April-08 1819.95 April-09 1355 

May-08 1840 May-09 1891 

June-08 1496.7 June-09 1935 

July-08 1567.5 July-09 1840 

August-08 1638.9 August-09 1886.9 

September-08 1618 September-09 2235 

October-08 1569.9 October-09 2500 

November-08 1375 November-09 2394 

December-08 1325 December-09 2374.75 

January-09 1376.4 January-10 2315.25 

February-09 1205.9 February-10 2059.95 

March-09 1132.25 March-10 2120.05 

 

Table 9.9 Membership grades of the SBISP of different FYSs 

SBISP 𝑮𝟏 𝑮𝟐 𝑮𝟑 𝑮𝟒 𝑮𝟓 𝑮𝟔 𝑮𝟕 𝑮𝟖 𝑮𝟗 𝑮𝟏𝟎 𝑮𝟏𝟏 𝑮𝟏𝟐 𝑮𝟏𝟑 𝑮𝟏𝟒 

1819.95 0 0 0 0 0 0.712 0.288 0 0 0 0 0 0 0 

1840 0 0 0 0 0 0.659 0.341 0 0 0 0 0 0 0 

1496.7 0 0 0 0.419 0.582 0 0 0 0 0 0 0 0 0 

1567.5 0 0 0 0.156 0.844 0 0 0 0 0 0 0 0 0 

1638.9 0 0 0 0 0.711 0.289 0 0 0 0 0 0 0 0 

1618 0 0 0 0 0.917 0.083 0 0 0 0 0 0 0 0 

1569.9 0 0 0 0.147 0.853 0 0 0 0 0 0 0 0 0 

1375 0 0 0 0.869 0.131 0 0 0 0 0 0 0 0 0 

1325 0 0 0.407 0.593 0 0 0 0 0 0 0 0 0 0 

1376.4 0 0 0 0.864 0.136 0 0 0 0 0 0 0 0 0 

1205.9 0 0.351 0.649 0 0 0 0 0 0 0 0 0 0 0 

1132.25 0 0.616 0.384 0 0 0 0 0 0 0 0 0 0 0 

1355 0 0 0 0.943 0.057 0 0 0 0 0 0 0 0 0 

1891 0 0 0 0 0 0.524 0.476 0 0 0 0 0 0 0 

1935 0 0 0 0 0 0.408 0.592 0 0 0 0 0 0 0 

1840 0 0 0 0 0 0.659 0.341 0 0 0 0 0 0 0 

1886.9 0 0 0 0 0 0.535 0.465 0 0 0 0 0 0 0 

2235 0 0 0 0 0 0 0 0 0.551 0.449 0 0 0 0 

2500 0 0 0 0 0 0 0 0 0 0 0 0.791 0.209 0 

2394 0 0 0 0 0 0 0 0 0 0 0.809 0.191 0 0 

2374.75 0 0 0 0 0 0 0 0 0 0 0.993 0.007 0 0 

2315.25 0 0 0 0 0 0 0 0 0.124 0.876 0 0 0 0 

2059.95 0 0 0 0 0 0.077 0.923 0 0 0 0 0 0 0 

2120.05 0 0 0 0 0 0 0 0.562 0.438 0 0 0 0 0 
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9.6 Results and Discussions 

The UAE and SBISP are forecasted by performing the EDSPSO-PFTS approach 20 times. The 

best result from each run is used to decide the final output. Numerous parameters, including 

the N, 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟 , ℎ , ℎ1  and ℎ2  shape the dynamics of EDSPSO. The following are the 

EDSPSO parameters, which are taken from work56.           

 

Fig 9.2 shows that the MSE value of the 𝑧𝑔 drops as iterations increase. An evaluation 

of the suggested EDSPSO-PFTS method's capability for UAE is conducted by comparing it 

with techniques40,106,107,113–120. The suggested EDSPSO-PFTS method's performance is 

contrasted with Chen and Chung GA-based FTS approaches121. When analyzed alongside other 

algorithms, the suggested EDSPSO-PFTS has a better MSE impact (Tables 9.10 and 9.11).    

 

Error metrics and a variety of statistical factors are used for comparative studies to 

evaluate the effectiveness of EDSPSO-PFTS. In comparison to existing approaches 40,106,107,114–

119 the suggested technique EDSPSO-PFTS is evaluated using statistical parameters listed in 

Table 9.1. The comparison results are shown in Table 9.12. The statistical parameters are found 

to be within reasonable bounds by the evaluation. 

 

When analysed against several different FTS forecasting models, the effect of the 

suggested EDSPSO-PFTS approach for the TSD of SBISP shows better 

outcomes25,106,107,114,115,119,120,122. When analysed alongside other techniques, the suggested 

EDSPSO-PFTS method performs superior (Table 9.13). 

 

A comparison is shown between the proposed EDSPSO-PFTS method and other 

methods106,107,114,115,119,122 using statistical parameters listed in Table 9.14. The comparison 

results are shown in Table 9.15. The statistical parameters are found to be within reasonable 

ranges by the analysis. 
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Fig. 9.2.  Curve of MSE values  

Table 9.10 Forecasted UAE 

UAE 

 

Song and 

Chissom40 

Song and 

Chissom123 

Chen114  

 

Huarng115  Lee and 

Chou116  

Chen 

and 

Chung121  

Yolcu et 

al.117  

Qiu et 

al.118  

MSE 423020.16 775685.33 407503.49 227500.38 251281.638 209003 648290 261458 

RANK 13 15 12 8 11 7  12 

13055 - - - - - - - - 

13563 140 0 0 - 140 0 0 - 14025 - 14031.35 14195 

13867 14000 - 14000 - 14568 14146 14795.36 14424 

14696 14000 - 14000 14000 14568 14878 14795.36 14593 

15460 15500 14700 15500 15500 15654 14878 14795.36 15589 

15311 16000 14800 16000 15500 15654 15609 16406.57 15645 

15603 16000 15400 16000 16000 15654 15609 16406.57 15634 

15861 16000 15500 16000 16000 15654 16214 16406.57 16100 

16807 16000 15500 16000 16000 16917 16214 16406.57 16188 

16919 16813 16800 16833 17500 17823 16818 17315.29 17077 

16388 16813 16200 16833 16000 17283 16818 17315.29 17105 

15433 16789 16400 16833 16000 16197 15609 17315.29 16369 

15497 16000 16800 16000 16000 15654 15609 16406.57 15643 

15145 16000 16400 16000 15500 15654 14146 16406.57 15648 

15163 16000 15500 16000 16000 15654 14146 16406.57 15622 

15984 16000 15500 16000 16000 15654 16818 16406.57 15623 

16859 16000 15500 16000 16000 16197 16818 16406.57 16231 

18150 16813 16800 16833 17500 17283 17992 17315.29 17090 

18970 19000 19300 19000 19000 18369 19126 19132.79 18325 

19328 19000 17800 19000 19000 19454 19126 19132.79 19000 

19337 19000 19300 19000 19500 19454 19126 19132.79 19000 

18876 - 19600 19000 19000 - 19126 19132.79 19000 
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Table 9.11 Forecasted UAE 

UAE 

 

Joshi and 

Kumar119  

Kumar and 

Gangwar106  

Bisht and 

Kumar107  

Gupta and 

Kumar120  

Pattnayak 

et al.113  

 

Pant and 

Kumar25 

Proposed 

Algorithm 

(EDSPSO-

PFTS) 

MSE 1881474 243601 183723 186313 1800964 178665 172024.06 

RANK 6 10 4 5 3 2 1 

13055 - - - - - - - 

13563 14250 13693 13595.67 13680.75 13637 13682 14276.352 

13867 14246 13693 13817.75 13844.43 14120 13682 15025.843 

14696 14246 14867 14929.79 14951.36 14408 14722 15025.843 

15460 15491 15287 15541.27 15532.34 15195 15427 15068.448 

15311 15491 15376 15540.62 15533.19 15712 15544 15068.448 

15603 15491 15376 15540.62 15533.19 15635 15544 15068.448 

15861 16345 15376 15540.62 15533.19 15786 15544 15068.448 

16807 16345 16523 16254.5 16298.77 15918 16665 15068.448 

16919 15850 16606 17040.41 17113.79 16406 15994 15339.114 

16388 15850 17519 17040.41 17113.79 16406 17230 15776.959 

15433 15850 16606 16254.5 16298.77 16190 15994 15776.959 

15497 15450 15376 15540.62 15533.19 15698 15544 15776.959 

15145 15450 15376 15540.62 15533.19 15731 15544 16655.35 

15163 15491 15287 15541.27 15532.34 15550 15516 16655. 35 

15984 15491 15287 15541.27 15532.34 15559 15516 16655. 35 

16859 16345 16523 16254.5 16298.77 15982 16665 16655. 35 

18150 17950 17519 17040.41 17113.79 16433 17230 18506.346 

18970 18961 19500 18902.3 18741.35 17366 18820 18506.346 

19328 18961 19000 19357.3 19190.44 17967 19311 18506.346 

19337 18961 19500 19168.56 18972.15 18230 19311 19196.290 

18876 18961 19500 19168.56 18972.15 18236 19311 19196.290 

 

Table 9.12 Statistical performance analysis of EDSPSO-PFTS on UAE 

Model MSE AFE 𝑹 𝑹𝟐 𝑷𝑷 𝑴𝒂𝒅 TS 

Song and Chissom40 423020.16 3.22 0.9173 0.8418 0.6419 516.35 2.6861 

Song and Chissom123 775685.33 3.75 0.8317 0.6917 0.5151 729.05 -4514 

Chen114 407503.489 3.11 0.9262 0.8579 0.6485 498.80 3.2377 

Huarng115  227500.38 2.36 0.9467 0.8962 0.7374 383.45 0.5554 

Lee and Chou116  251281.638 2.67 0.9542 0.9105 0.7240 428.95 4.1240 

Yolcu et al.117  648298.728 4.29 0.9121 0.83 0.5567 643.41 13.44 

Qiu at al.118  261458.368 2.65 0.9599 0.9219 0.7185 430.76 2.0521 

Joshi and Kumar119  188147.737 2.24 0.9688 0.9387 0.7612 358.71 -4.853 

Kumar and Gangwar106  243601.473 2.33 0.9594 0.9254 0.7235 368.68 1.554 

Bisht and Kumar107  183723.676 1.94 0.9667 0.9346 0.7640 318.69 -0.214 

Proposed Method  

(EDSPSO-PFTS) 

165322.2209 1.8462 0.9708 0.9425 0.7762 288.3228 0.5145 
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Table 9.13 Forecasted SBISP. 

SBISP 

 

Chen114  Huarng115  Pathak 

and 

Singh122  

Joshi and 

Kumar119 

Kumar and 

Gangwar106 

Bisht and 

Kumar107 

Gupta 

and 

Kumar120  

Pant and 

Kumar25 

Proposed 

Algorithm 

(EDSPSO-

PFTS) 

MSE 35066 26909 42419 40068 17234.438 32051 34762 31483 9521.94 

RANK 7 3 9 8 2 5 6 4 1 

1819.95 - - - - - - - -  

1840 1900 1855 1770 1777.8 1725.98 1877.657 1860.08 1716 1878.92 

1496.7 1900 1855 1832.5 1865.71 1725.98 1877.657 1860.08 1776 1409.265 

1567.5 1500 1575 1470 1531.5 1512.39 1466.36 1452.59 1491 1409.265 

1638.9 1500 1505 1570 1531.5 1512.39 1466.36 1452.59 1491 1636.838 

1618 1600 1610 1670 1777.8 1574.35 1533.504 1544.29 1491 1620.118 

1569.9 1600 1610 1603.33 1531.5 1574.35 1533.504 1544.29 1491 1409.265 

1375 1500 1505 1670 1531.5 1512.39 1466.36 1452.59 1491 1335.415 

1325 1433 1482 1382.5 1504.23 1305.52 1520.652 1682.31 1542 1335.415 

1376.4 1433 1365 1332.5 1504.23 1665.9 1520.652 1682.31 1542 1335.415 

1205.9 1433 1482 1332.5 1504.23 1305.52 1520.652 1682.31 1542 1270.086 

1132.25 1433 1155 1195 1258.23 1294.27 1144.718 1264.98 1270 1409.265 

1355 1300 1365 1145 1258.23 1294.27 1322.446 1264.98 1270 1335.415 

1891 1433 1482 1357.5 1504.23 1665.9 1520.652 1682.31 1542 1859.46 

1935 1900 1890 1882.5 1865.71 2006.51 1877.657 2138.21 2041 2004.963 

1840 1900 1890 1970 1883.93 2006.51 1895.491 1853.54 2041 1878.92 

1886.9 1900 1855 1470 1865.71 1725.98 1877.657 1860.08 1776 1878.92 

2235 1900 1855 1970 1865.71 2006.51 1877.657 2138.21 2041 2247.028 

250 2300 2485 2245 2142.04 2520 2311.382 2466.99 2200 2752.743 

2394 2300 2415 2470 2245.65 2420 2374.204 2328.48 2422 2340.217 

2374.75 2300 2345 2395 2191.75 2365.99 2352.723 2321.66 2422 2340.217 

2315.25 2300 2205 2395 2191.75 2365.99 2352.723 2321.66 2422 2247.028 

 

Table 9.14 Statistical performance analysis of EDSPSO-PFTS on SBISP 

 

 

Model MSE AFE 𝑹 𝑹𝟐 𝑷𝑷 𝑴𝒂𝒅 TS 

Chen114 35066.3076 8.26 0.8839 0.7813 0.5313 136.32 0.825 

Huarng115 26909.12 6.29 0.911 0.8314 0.5894 105.3 0.698 

Pathak and Singh122 42419.52 8.95 0.868 0.7544 0.4845 155.1 -.3.604 

Joshi and Kumar119 40068.029 9.52 0.882 0.778 0.499 164.3 -4.221 

Kumar and Gangwar106 17234.438 6.3 0.9446 0.8924 0.6714 101.73 1.713 

Bisht and Kumar107 32051.741 7.86 0.9001 0.8101 0.5519 131.28 0.882 

Proposed Method  9521.94 4.109 0.971 0.943 0.756 66.62 1.848 
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9.7 Conclusion 

This study marks the pioneering introduction of the integration of PFYS and a metaheuristic 

approach in FTS forecasting within existing literature. The novel hybrid algorithm, named 

EDSPSO-PFTS, is unveiled as a powerful tool for FTS forecasting, combining the strengths of 

Exponentially Mutated PSO (EDSPSO) and PFYS. While PSO is widely acclaimed for its 

procedural advantages, it's susceptible to rash convergence at local optimal point. In response, 

this work enhances PSO by integrating an innovative EMO, enriching the exploration phase of 

optimization. Our suggested forecasting method combines EDSPSO and PFYS to add non-

determinacy into the fuzzification of TSD and optimise interval lengths.  

 

           To underscore the efficiency of the proposed innovative FTS forecasting method, it 

undergoes application to diverse TSD sets, including UAE and SBISP. The lower values of 

AFE and MSE stand as empirical proof that, in terms of error metrics, the proposed method 

surpasses the performance of the compared methods in predicting both UAE and SBISP. The 

values of 𝑅 and 𝑅2 affirm the strong correlation between actual and forecasted enrolments.  

 

Future research in FTS forecasting will likely continue to focus on improving 

prediction performance and lowering computing complexity. Additionally, investigating the 

integration of nature-based optimization algorithms into PFYS-based FTS is an interesting 

direction for further investigation. Furthermore, the goal of subsequent research will be to 

develop a multivariate PFTS model and propose a novel multivariate forecasting method 

based on this framework. 
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Chapter 10 

 

 

Conclusions and Scope for Future Work 

 

This thesis is dedicated to developing different hybrid metaheuristic algorithms, specifically 

tailored for job scheduling on computational grids, feature selection, and time series 

forecasting. The fundamental aim was to examine and elevate the performance capabilities of 

metaheuristic algorithms in diverse applications. Section 10.1 presents the conclusion of this 

thesis, and Section 10.2 presents potential research areas for future work. 

 

10.1 Conclusions 

In conclusion, this research unfolds to reveal not merely a compilation of findings but a 

narrative of discovery of innovative metaheuristic algorithms and their applications. The 

journey cast a brilliant light on the metaheuristic algorithms and their real-world applications 

under both Fuzzy and Deterministic environments. The primary conclusions from the eight 

contribution chapters—Chapters 2 through Chapter 9—are covered in this section. 

  

1. Addressing the job scheduling on the computational grid challenge, Chapter 2 

introduces a fuzzy Particle Swarm Optimization (PSO) approach employing both 

trapezoidal and pentagonal fuzzy numbers. The algorithm's efficacy is examined, 

initially with trapezoidal fuzzy numbers and subsequently with pentagonal fuzzy 

numbers. Comparative analysis reveals similar outcomes between fuzzy PSO 

employing pentagonal and trapezoidal fuzzy numbers.  

 



140 
 

2. The complicated challenge of multi-objective job scheduling on a computational grid 

is addressed in Chapter 3 through fuzzy PSO employing both trapezoidal and 

pentagonal fuzzy numbers. The makespan and flowtime values serve as optimal criteria, 

with the selection of a particle that minimizes both simultaneously. The calculated 

results of fuzzy PSO, employing trapezoidal and pentagonal fuzzy numbers, are 

systematically compared. Strikingly, despite differences in scheduling, the objective 

values remain consistent. 

 

3. Chapter 4 analyses statistical metrics and convergence rates of the proposed HPSO 

algorithm. It becomes evident that the proposed HPSO algorithm consistently 

outperforms other metaheuristic algorithms (PSO, GA, HHO, and SSA) considered in 

this work, particularly on high-dimensional and medium-dimensional datasets. 

However, it is worth noting that the results on low-dimensional datasets, while 

satisfactory, do not exhibit the same level of superiority. Since the practical applications 

of FS problems involve large datasets, the proposed HPSO is more application-oriented 

and useful. This satisfies our objective to increase CA and decrease the NF. 

 

4. Chapter 5 analyses the application of the proposed hybrid metaheuristic algorithm, 

HPSO, to MOFS problems, which involves a thorough comparison with PSO across 

seven UCI datasets. The experimental outcomes conclusively establish the 

outperformance of the HPSO algorithm over PSO for MOFS problems, validated 

through rigorous statistical tests. The algorithm exhibits superior accuracy in higher-

dimensional scenarios, while its performance remains comparable on low-dimensional 

problems. This positions the HPSO algorithm as a promising solution for MOO 

problems and feature selection challenges. 

 

 

5. PSOHHO and PSOHHO-V algorithms are developed in Chapter 6 which is based on 

Exponential Mutation and Dual-Swarm Strategy. Their performance is evaluated and 

comprehensively analysed based on statistical metrics and convergence rates. These 

algorithms were subjected to rigorous testing on ten BF, showcasing superior 

searchability and convergent speed compared to other optimizers in solving global 



141 
 

optimization problems. Statistical tests further substantiated these findings. 

Additionally, when applied to feature selection problems using seven UCI datasets, 

both PSOHHO and PSOHHO-V outperformed other metaheuristic algorithms, 

particularly in high-dimensional and medium-dimensional scenarios. But on low 

dimensional datasets, the results are not much useful. The algorithms' consistent 

success across varied dimensions positions them as potent solutions for practical feature 

selection challenges involving large datasets. 

 

6. In Chapter 7, PSOMHHO algorithm is developed with the help of Trapezoidal and 

Pentagonal Fuzzy Numbers. The distinctive advantage of PSOMHHO over HHO is 

prominently displayed in its Signature. The provision of a convergence proof serves to 

strengthen the mathematical foundation, affirming the strength and reliability of the 

PSOMHHO algorithm. Employing BF with distinct properties such as Unimodal Peak 

(UP), Multimodal Peak (MP), and Fixed-Dimension Multimodal BF, the PSOMHHO 

algorithm consistently outperforms HHO, GA, PSO, and SSA in terms of mean fitness 

values across dimensions of 100, 500, and 1000. Statistical measures, including MWUT 

and the Friedman test, affirm the statistical significance of these results. Notably, the 

observed superior fitness values across different BF types position PSOMHHO as a 

promising algorithm applicable to diverse real-world challenges. 

 

7. Fuzzy BTO algorithms are developed in Chapter 8 and their effectiveness, particularly 

BTOF1, was rigorously assessed through statistical metrics and convergence rates 

across nine BF. The comprehensive experimental outcomes affirm the superior 

searchability and convergent speed of BTOF1 compared to other optimizers in solving 

global optimization challenges. Statistical tests further validate this conclusion. 

Additionally, when applied to feature selection problems using seven UCI datasets, 

BTOF1 consistently outperformed alternative algorithms, establishing its potential as a 

robust global optimization solution adept at addressing feature selection challenges. 

 

8. Chapter 9 presents the concept of incorporating PFYS and a metaheuristic method in 

FTS forecasting. No significant work is available in the literature which uses the above 

concept. With the combined strength of EDSPSO and PFYS, a novel hybrid algorithm 

(EDSPSO-PFTS) for FTS forecasting is presented in this work. Because of its 
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procedural advantages, PSO is a well-liked optimization technique; yet, it is prone to 

premature convergence at local optima. In order to overcome this constraint, we 

improve PSO by presenting the idea of exponential mutation, which makes the 

exploration stage of the optimization procedure easier. The suggested forecasting 

technique incorporates non-determinacy into the fuzzification of TSD and optimizes 

interval durations by combining EDSPSO and PFYS. Our innovative hybrid approach 

finds the ideal length for discretization and addresses non-determinacy in the 

fuzzification process, in contrast to previous PSO-based FTS forecasting models that 

ignored non-determinacy without explanation. 

 

The suggested unique hybrid FTS forecasting method is applied to a variety of TSD, 

such as the UAE and the SBISP, to illustrate its effects. The suggested strategy performs better 

than the compared methods in terms of error measures when it comes to forecasting both the 

UAE and the SBISP, as shown by the lower values of AFE and MSE. Greater collaboration 

between anticipated and actual enrolments is ensured by both 𝑅 and 𝑅2 values. Additionally, 

the numerical values of 𝑇𝑆 and 𝑃𝑃 are within the predicted range, confirming the objectivity 

of the enrolment estimates generated with the suggested methodology. 

 

10.2 Future Work 

As we embark on the conclusion of this research journey, the horizon of possibilities for future 

work extends with promise. The groundwork laid in this thesis serves as a trigger for the 

exploration of several intriguing opportunities that could enhance and expand the territories of 

development and application of metaheuristic algorithms in fuzzy environment. In the chapters 

to come, we explore into the potential trajectories for further investigation for the continued 

evolution of knowledge in this dynamic domain. 

1. The intriguing results indicates exploring of alternative fuzzy numbers to recognize 

potential variations and analyse their impact on the algorithm's performance. 

 

2. The stability analysis of the proposed algorithms given in Chapters 6, 7 and 8 has not 

been discussed. Hence in future the stability analysis of the proposed algorithms can be 

discussed. 
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3. Single-Objective FS problems discussed in Chapters 6, 7 and 8 can be extended work 

into multi-objective FS problems. 

 

4. As discussed in Chapter 9, exploring the incorporation of alternative nature-based 

optimization algorithms within PFYS-based FTS represents a promising avenue for 

future research. Additionally, future studies will aim to establish a multivariate PFTS 

model and suggest a new multivariate forecasting algorithm centred on this framework. 

 

5. Improving forecast performance and reducing computational complexity continue to be 

important areas of focus for future researchers in FTS forecasting. 

 

6. In the future, the applications of the proposed algorithms can be expanded to real-life 

problems such as machine learning, medical applications, financial fields, and 

engineering optimization tasks. 
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