INNOVATIVE HYBRID METAHEURISTIC ALGORITHMS
AND THEIR APPLICATIONS UNDER FUZZY OR
DETERMINISTIC ENVIRONMENT

Submitted in partial fulfilment of the requirements of the degree of

Doctor of Philosophy

By

Subhabrata Rath
(719098)

Supervisor
Prof. Debashis Dutta

WARANGAL

Department of Mathematics
NATIONAL INSTITUTE OF TECHNOLOGY
WARANGAL - 506 004, (T.S.) INDIA
JANUARY 2024



Dedicated To

My beloved Parents

Satyanarayan Rath and Sunita Mishra



Approval Sheet

This Dissertation Work entitled Innovative Hybrid Metaheuristic Algorithms
and their Applications under Fuzzy or Deterministic Environment by

Subhabrata Rath is approved for
the degree of Doctor of Philosophy

Examiners

Supervisor

Prof. Debashis Dutta

Chairman (Program Coordinator)

Date Place:



Declaration

This is to certify that the work presented in the thesis entitled “INNOVATIVE
HYBRID METAHEURISTIC ALGORITHMS AND THEIR
APPLICATIONS UNDER FUZZY OR DETERMINISTIC
ENVIRONMENT” is a bonafide work done by me under the supervision of Dr.
D. Dutta, Professor, Department of Mathematics, National Institute of
Technology, Warangal and has not been submitted elsewhere for the award of

any degree or diploma.

| declare that this written submission represents my ideas in my own words.
Where others’ ideas or words have been included, I have adequately cited and
referenced the original sources. | also declare that | have adhered to all academic
honesty and integrity principles and have not misrepresented, fabricated, or
falsified any idea/data/fact/source in my submission. | understand that any
violation of the above will cause disciplinary action by the Institute. | can also
evoke penal action from the sources that have thus not been properly cited or from

whom proper permission has not been taken when needed.

Subhabrata Rath
Roll No. 719098

Date:



List of Abbreviation

ACO Ant Colony Optimization
ABC Artificial Bee Colony

BA Bat Algorithm

BF Benchmark Functions

CA Classification Accuracy

DM Dominant Member

FS Feature Selection

FE Filter Evaluation

FDS Finite Difference Scheme
FA Firefly Algorithm

FAR Friedmann Average Ranking
FOA Fruit Fly Optimization Algorithm
FIS Fuzzy Inference Systems
FLC Fuzzy Logic Controller

FLR Fuzzy Logical Relation

FN Fuzzy Number

FYS Fuzzy Set

FTS Fuzzy Time Series

GA Genetic Algorithm

GP Genetic Programming

GWO Grey Wolf Optimization
HHO Harris Hawk Optimization
KNN K-Nearest Neighbour

MOFS Multi-Objective Feature Selection
MWUT Mann Whitney U Test

MSE Mean Square Error



MP
MOO
MVO
NF
PSO
PFN
PFC
PFYS
SSA
SBISP
SMA
TSD
TFEN
UP
uoD
UAE
WRST
WOA
WE

Vi

Multimodal Problem
Multi-Objective Optimization
Multi-Verse Optimization
Number of Features

Particle Swarm Optimization
Pentagonal Fuzzy Number
Picture Fuzzy Clustering
Picture Fuzzy Set

Salp Swarm Algorithm

State Bank of India Share price
Slime Mould Algorithm

Time Series Data

Trapezoidal Fuzzy Number
Unimodal Problem

Universe of Discourse
Enrolments of Alabama University
Wilcoxon Rank Sum Test
Whale Optimization Algorithm

Wrapper Evaluation



Abstract

The thesis focuses on developing Innovative metaheuristic algorithms (HPSO, PSOHHO,
PSOHHO-V, PSOMHHO, and Fuzzy BTO) inspired by nature. Despite the proliferation of
metaheuristic algorithms, a significant void exists in conducting thorough theoretical and
mathematical analyses. More studies are needed, particularly in the critical domain of
convergence of metaheuristic algorithms. The proposed algorithm's theoretical analysis and
mathematical foundation are established to tackle this challenge by introducing the concept of
signature and convergence. The stability analysis of HPSO is also discussed to strengthen it

mathematically even further.

The thesis also emphasizes the applications of developed metaheuristic algorithms on
different real-world problems in fuzzy and deterministic atmospheres. Job scheduling problems
on computational grids commonly fall into NP-completeness or NP-hardness, making the quest
for optimal solutions notably time-intensive. To address this challenge expediently and
effectively, scholars have predominantly turned to the exploration of metaheuristic algorithms.
Hence, the developed algorithm HPSO is applied to both single-objective and multi-objective

Job Scheduling problems on the computational grid.

Classification problems frequently involve a surplus of features, but not all contribute
to the problem'’s essence. Redundant or irrelevant features may impede classification accuracy.
Metaheuristic algorithms are favoured for feature selection due to their simplicity and practical
applicability, offering advantages over deterministic optimization algorithms. For this purpose,
the real-world application of developed algorithms PSOHHO, PSOHHO-V, PSOMHHO, and
Fuzzy BTO are verified on feature selection problems. They are applied to the hybrid Feature
Selection problem and compared with other metaheuristic algorithms on seven UCI machine

learning repository datasets.

Existing literature highlights the effectiveness of forecasting methods with more
diverse set types. The idea of enhancing outcomes by incorporating additional inputs is closely
observed. This theoretical basis advocates the efficiency of Picture Fuzzy Sets (PFYSs) in

forecasting models. Notably, there needs to be more literature regarding the joint application
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of PFYS and swarm intelligence for Fuzzy Time Series (FTS) forecasting. This chapter

introduces the innovative EDSPSO-PFTS approach to address this gap.

This thesis is structured into five sections, encompassing ten chapters.

Part I consists of Chapter 1, an introduction, and motivation for the research work carried out.
It features a comprehensive literature review emphasizing the importance of the thesis's focal

issue.

In Part Il, the emphasis shifts to the real-world deployment of the newly created hybrid
metaheuristic algorithms, specifically in the context of Job Scheduling on a computational grid.
There are two chapters in this part, which are 2 and 3.

Chapter 2 applies a proposed fuzzy particle swarm optimization to address single-objective
job scheduling on computational grids. Focused on minimizing the makespan value, indicative
of maximum task completion time across the grid, this chapter explores the impact of

trapezoidal and pentagonal fuzzy numbers, presenting a detailed comparative analysis.

Chapter 3 explores the application of fuzzy particle swarm optimization for multi-objective
job scheduling on computational grids. The foundation established in the previous chapter is
expanded upon in this chapter, which moves from single-objective to multi-objective
optimization. This chapter aims to maintain a delicate balance between makespan and flowtime

objectives, which are conflicting.

The practical application of the proposed hybrid metaheuristic algorithms in the hybrid feature
selection problem domain is the main emphasis of Part 111 of the thesis. There are five chapters
in this section: Chapters 4, 5, 6, 7, and 8.

In Chapter 4, a Hybrid Particle Swarm Optimization (HPSO) algorithm is introduced and
applied to address a Hybrid Feature Selection problem. This chapter discusses the stability of
the proposed HPSO algorithm through the VVon Neumann stability criterion and Fourier series
concepts. The convergence of HPSO is explained using the Markov chain concept. The chapter
thoroughly compares results against other metaheuristic algorithms, employing statistical tests

like the Friedman and Mann-Whitney U test to estimate the algorithm's statistical significance.
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In Chapter 5, an improved version of the Particle Swarm Optimization algorithm, HPSO, is
thoroughly explored for its application in multi-objective feature selection. This section
represents a notable progression from single-objective to multi-objective optimization,
leveraging the foundation in the previous chapter. The effectiveness of HPSO is meticulously
evaluated across seven UCI datasets, with robust statistical analysis facilitated by the Wilcoxon

rank sum test.

In Chapter 6, two innovative hybrid optimization algorithms, PSOHHO and its variant
PSOHHO-V, are introduced. These algorithms enhance their exploration capabilities by
integrating a dual-swarm strategy and an exponential mutation operator. The evaluation of
PSOHHO and PSOHHO-V involves rigorous analysis of statistical metrics and convergence
rates, with extensive testing on benchmark functions. Furthermore, the algorithms are applied
to feature selection problems, and their performance is benchmarked against alternative

approaches using seven UCI datasets.

In Chapter 7, a ground-breaking Hybrid Swarm Optimization algorithm, PSOMHHO, is
introduced, seamlessly integrating Pentagonal and Trapezoidal Fuzzy Numbers. The chapter
explores the mathematical foundations by proving the algorithm's convergence using the
Markov Chain property and introducing the algorithm's signature. The effectiveness of
PSOMHHO is meticulously evaluated through extensive benchmark function testing,
establishing its superiority over established metaheuristic algorithms. Rigorous statistical tests,
including the Mann-Whitney U test and the Friedman test, affirm the exceptional performance

of PSOMHHO across various metaheuristic algorithms.

Chapter 8 introduces innovative hybrid swarm optimization algorithms (Fuzzy BTO and its
variants). Emphasizing the critical role of parameters in optimization, this chapter introduces
fuzzy concepts for dynamic parameter adaptation. The efficiency of Fuzzy BTO and its variants
are rigorously evaluated through extensive benchmark functions, followed by a comprehensive
comparison with established metaheuristic algorithms. The robust statistical analysis,
employing the Kruskal-Wallis Test (KWT), validates the superior performance of Fuzzy BTO

across various metaheuristic algorithms.



In Part — 1V of this thesis, the emphasis shifts to applying the proposed hybrid metaheuristic
algorithms and Picture Fuzzy Set on Forecasting. This critical part is summarized in a singular

chapter, namely Chapter 9.

A novel picture fuzzy time series (PFTS) forecasting model built on the foundations of picture
fuzzy sets (PFYSs) is presented in Chapter 9. This chapter develops a unique hybrid EDSPSO-
PFTS forecasting approach by integrating PFYS and EDSPSO. To illustrate the applicability
and utility of the proposed forecasting method, it is applied to data sets from the Alabama
University and the State Bank of India share price at the Bombay Stock Exchange, India.
Average forecasting error (AFE) and mean square error (MSE) are used to evaluate the
efficiency of the suggested approach. Thorough statistical validation and performance analysis
are carried out to guarantee the validity and dependability of the proposed approach.

The thesis summary for Part V is included in a single Chapter 10. It outlines the key findings
from the study and points out the issues that still need to be addressed to further this field of

study.
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PART 1

INTRODUCTION



Chapter 1

Introduction

1.1 Motivation

Metaheuristic algorithms represent a cornerstone in optimization, offering versatile and
adaptive solutions to diverse complex problems. These algorithms, characterized by their
ability to navigate vast solution spaces efficiently, have emerged as indispensable tools in
various research and application domains. They draw inspiration from natural phenomena or
utilize heuristic strategies to discover near-optimal or satisfactory solutions. In general, two
types of metaheuristic algorithms are present. a single solution-based (i.e., Simulated
Annealing (SA)) and population-based (i.e., GA). In a single solution-based optimization
algorithm, only one solution is processed. In the Population-based metaheuristic (P-
metaheuristics) algorithms, a set of solutions is processed in each iteration of the optimization
process. P-metaheuristics mostly take motivation from nature and mimic their behavior!. P-
metaheuristics can be categorized mainly into three groups, based on the motivation it takes?:
Evolutionary Algorithms (EAs), Swarm Intelligence (SI), and Physics-based algorithms as
presented in Fig. 1.1. EAs mimic biological evolutionary behaviors like mutation, cross-over,
and selection. Some popular EAs are GA, Differential Evolution (DE)®, and Genetic
Programming (GP). SI mimics the social behaviors of organisms living in swarms, flocks, or
herds*. The bird flocking behavior is the main inspiration for the PSO proposed by Eberhart
and Kennedy®. In PSO, each particle is a possible solution to a given optimization problem.
Some popular SI are Cuckoo Search (CS)®, Ant Colony Optimization (ACO)’, and ABC.
Physics-based algorithms are motivated by physical laws. Central force optimization and

gravitational search algorithms (GSA)® are some examples of physics-based algorithms.



The no-free-lunch (NFL) theorem® states that no optimization algorithm can be the most
efficient for every optimization problem. Some algorithms may perform better for specific
situations than others. The trend of hybridizing metaheuristic algorithms is on the rise, as it can
improve their performance in solving real-world optimization problems that are often non-
linear and high-dimensional. Metaheuristic algorithms are preferred over deterministic
optimization algorithms due to their simplicity and ease of implementation in real-life
scenarios. Various metaheuristic algorithms, such as the Genetic Algorithm (GA)°, social
spider algorithm?!, Bat algorithm (BA)*, Slime Mould algorithm (SMA)Y, Whale
Optimization algorithm (WOA\), Firefly algorithm (FA)**, Salp swarm algorithm (SSA)*, Grey
wolf optimizer!®, Multi-verse optimization algorithm (MVO)Y, Fruit Fly optimization
algorithm (FOA), and others have been applied to various real-world problems. Many hybrid
optimization techniques that combine Artificial Bee Colony (ABC) and Particle Swarm

Optimization (PSO) have also been used for path optimization problems.

1.2  Theoretical Analysis

Proper theoretical and mathematical analysis of many metaheuristic algorithms has yet to be
done. Very little work has yet to be done regarding studying the convergence of metaheuristic
algorithms. Since many metaheuristic algorithms suffer from premature convergence or get
stuck in local optima, proper mathematical analysis of any given metaheuristic algorithm is
very important. Different algorithms have been proposed to prove the convergence
of metaheuristic algorithms, such as multi-objective PSO*® and Markov Chain for Chicken
Swarm Optimization®®. Markov Chain is a random process with a strong capability for
probabilistic analysis and convergence analysis of randomized algorithms. It has been
successfully implemented on the ABC algorithm, the PSO, the ACO, and the SA. Stability
analyses have been conducted on a range of algorithms, such as PSO and ABC, using Von
Neumann stability analysis, Differential Evolution (DE) employing both Von Neumann and
Lyapunov stability criteria, Gravitational Search Algorithm (GSA) concerning Lyapunov

stability criterion, and Bacterial Foraging Optimization (BFO).
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Fig 1.1. Classification of P-metaheuristic algorithm

1.3 Preliminaries

In this section, we lay out the fundamental concepts crucial for a thorough comprehension of
the forthcoming chapters. Section 1.3.1 provides insights into the fundamental ideas related to
Fuzzy Set (FYS). Subsequently, Sections 1.3.2, 1.3.3, and 1.3.4 elaborate on the concepts of
Harris Hawk Optimization (HHO), Particle Swarm Optimization (PSO), and GA, respectively.

1.3.1 Fuzzy Set (FYS)

Zadeh's ground-breaking proposition of FYS in the literature marked a paradigm shift,
employing human logic to tackle engineering challenges while algorithmically summarising
human decision-making and evaluation processes®°. FYS theory is used for transposing human
logical and adaptable thought processes into the domain of computational intelligence.
Consequently, it emerges as an indispensable tool for confronting complexities stemming from
incompleteness, unreliability, vagueness, randomness, and imprecision within artificial
intelligence applications. This fusion of FYS with artificial intelligence has catalyzed
advancements across various products. An illustrative instance is in self-driving cars, where
fuzzy logic-based artificial intelligence takes the lead. FYS furnishes us with mathematical

constructs to emulate human reasoning, assuming a pivotal role in applications rooted in
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human-like cognition, including humanoid robots and human decision-making. The literature
review attests to the surging adoption of intelligent techniques integrated with FYSs, a trend
that sees growing traction with each passing year. The landscape of FYSs has undergone a
transformative phase through the introduction of extensions that offer complex details about
membership functions. This has sparked notable research interest, particularly in areas like
Picture Fuzzy Set (PFYS), Spherical FYS, Fermatean FYS, Circular Intuitionistic FYS, and
Decomposed FYS. Fig 1.2 serves as an illustrative overview of these extensions, signifying a
substantial expansion beyond the conventional FYS.

Fuzzy Number
A FYS is called a fuzzy number when the following properties are satisfied

e A must be a normal FYS.
e All a-cuts of A must be in a closed interval.

e The support of A must be bounded.

Trapezoidal Fuzzy Number (TFN)

A fuzzy number is called a TEN if the following conditions are satisfied-

Let the TFN be denoted by (a, b, ¢, u) with membership function (x).

(x) must be a continuous membership function whose interval is [0,1].

(x) must be a strictly non-decreasing function that is continuous on the intervals [a, b].

(x) =1, inthe interval [b, c].

(x) must be a strictly non-increasing function that is continuous on the intervals [c, u].

Pentagonal Fuzzy Number (PFN)
A fuzzy number is called a PFN if the following conditions are satisfied-

e Letthe PFN be denoted by (a, b, ¢, d, e) with membership function (x).

e (x) must be a continuous membership function whose interval is [0,1].

e (x) must be a strictly non-decreasing function that is continuous on the intervals [a, b]
and [b, c].



® (x) must be a strictly non-increasing function that is continuous on the intervals [c, d]

and [d, e].
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Fig 1.2. Extension of FYSs

1.3.2 Harris Hawk Optimization (HHO)

HHO is an optimization technique based on swarm Intelligence. HHO consists of two phases:
exploration and exploitation. The value of E_E helps us to know whether to be in the
exploration or exploitation phase. In the exploration stage, HHO is first randomly located.
There are two cases in the Exploration stage. Each case has an equal chance of selection based
on the random value, as in Table 1.1. Again, in the exploitation phase, there are four cases.
The updating in the exploitation stage is based on the importance of E_E and a random value,

as given in Table 1.1. The notations of HHO are shown in Table 1.1.

Exploration

In this phase, the particles move according to Eq. (1.1). Again, the value of ¢, determines

which equation should be used. Finally, the value of z,,qyerqge (t) is cOmputed using Eq. (1.2).

z.(t) — c1|z,.(t) — 2¢c,z(t)], ¢y = 0.5

1.1
(Ztarget(t) — Zaraverage (t)) —C3 X (C4(u - l) + l); Co < 0.5 ( )

z(t+1)={



Zaverage(t) = ((%) X (Zliv=1zi (t))) 1.2)

Phase change between exploitation and exploration

It depends on the value of E_E. Whenever the value of |E_E| is greater than one, HHO performs

exploration. Otherwise, it performs exploitation. The value of E_E is computed using Eq. (1.3).
t
EE =2E(1-1) (1.3)

Here E, = (2 X rand) — 1 is the initial Energy updated in each iteration.

Table 1.1. Notations of the HHO algorithm

Notation Description
EE Escaping Energy
z(t), z,(t) Current position, the position of a random individual at

iteration t, respectively

Co» C1,C2, 1)V, C,C3,Cy, Cs Random numbers in the range [0,1]
Zaverage(t) average position of the population set at iteration t
Ztarget (1) global best position
u,l Upper and lower bound
T, t Maximum iteration and current iteration
E, Initial Energy
D Dimension of the problem
Exploitation

Four cases are given to study the exploitation stage. Each case depends on the E_E and random

number c.



Case A

is When |E_E| = 0.5 and ¢ > 0.5. The following equation updates the current locations-

z(t +1) = Az(t) — E_E x |(Jump_strength) X Zig,ge (t) — z(t)| (1.4)
Where,
Az(t) = Ztarget(t) —z(t) (1.5)
Jump_strength = 2(1 — c5) (1.6)
Case B

When |E_E| < 0.5 and ¢ = 0.5. The following equation updates the current locations-

zZ(t + 1) = Zegrgee(t) — E_LE X |Az(D) | 1.7

Case C

When | E_LE | = 0.5 and ¢ < 0.5. The search agents follow the next move according to the

following rule
Y = Ztarget(t) = E_E X |(Jump_strength) X Zyargec(t) — z(2)| (18)
The Levy flight concept is used here. The rule is as follows-
a=Y+ (r X v X levy(D)) (1.9)

The levy flight distribution is as follows-

levy(x) = (ux—f> (1.10)

[v|B

2 (1.12)
(050

1
[F(1+[>’)sinsin g r



Hence, the mechanism for this case is as follows-

Y, if F(Y) < z(t)

a, if F(a) > z(t) (1.12)

2(t) = {

Case D

When | E_E |< 0.5 and ¢ < 0.5, The search agents follow the next move according to the

following rule
Y‘ = Ztarget(t) —E_EX |(]ump_strength) X Ztarget(t) - Zaraverage(t)l (1-13)

a =Y +(rxv=xlevy(D)) (1.14)

26) = {Y‘, if F(Y') < z(t) (1.15)

a, if F(a\) > z(t)

1.3.3 PSO

Kennedy and Eberhart introduced the PSO technique, which is nature-inspired optimization®.
It is a metaheuristic technique that works well for challenges encountered in daily life. The
methodology is based on the swarming, and other variations have already been created. Each
particle in PSO has its position and velocity initialized first. The position and velocity are then

updated after each iteration using the mathematical Eq. (1.16) and Eq. (1.17).

s(t+1) = ((hy x c6) x (27 (6) = z()) ) + (A x s(©)) + ((h X c7) x (29(8) — (1)) )
(1.16)

zt+1) =z(@t)+s(t+1) (1.17)

Table 1.2 contains all of the PSO notations. They are essential in this situation. While
a small value of h aids in local exploitation, a big value of h aids in exploration. Moreover, it
influences the PSO's convergence behaviour. The social experience of that particle, as well as
the social experience of every particle, is very important in this strategy. For PSO to be
implemented successfully, there must be a proper relationship between the problem solutions

and swarm particles. This method converges more quickly than previous global optimization



techniques?!. Several PSO variations have a wide range of uses?>?3, A hybrid FTS forecasting

algorithm is built using PSO%*%,

Table 1.2. Notations of the PSO method

Notation Description

s(t), s(t+1) The velocity of the particle at (t) and (t + 1) iteration

respectively

Cos C7 Two random numbers in the range [0,1]
z(t),zP(t + 1) and Current position, personal best position, and global best
z9(t+1) position, respectively at (t) iteration
h, and h, Two positive constants (acceleration coefficients)
h Inertia weight

1.3.3 Genetic Algorithm

Natural selection and genetics are the foundation for the GA search technique?. Genes are
binary string representations of a solution (chromosomes) encoded by the GA. An allele is the
value of a gene?®. Genetic recombination (crossover), a low risk of mutation, and fitness
proportionate selection are used in the GA to create good solutions?’. The population is
changed, and new generating solutions are assessed. Because of its competitive character,
which permits the survival of solutions suited to favourable settings, GA is frequently used for
complex and large-scale problems?2°, It shows promise for quickening convergence and
improving the caliber of final solutions®. Because of GA's versatility, more study has been
done to improve its performance by changing its processes, including initialization®%3!, and
genetic (crossover and mutation) operators®>%, In n-dimensional GA-based problems, each
chromosome or individual is represented by an n-bit binary sting. Here, the concepts of
Mutations, Crossover, and other reproduction operators are applied to the problem to obtain

optimal solutions.

1.4 Job Scheduling on Computational Grids

A computational grid is a large-scale and heterogeneous collection of autonomous systems.
The sharing of computational jobs among the grid is one of the significant applications of the
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grids. Several metaheuristic algorithms are developed to minimize the average completion time
of jobs on each grid node through optimal job allocation. The field of job scheduling is complex
since it calls for overcoming several efficiencies, resource utilization, and workload
management challenges, as well as considering various resources, task dependencies, and
confidentiality difficulties. Most scheduling problems for jobs are either NP-complete or NP-
hard. As a result, compared to other options, it takes a very lengthy time to find an optimal
solution®. To find a rapid yet efficient solution to this scheduling problem, most academics
have been driven to explore an acceptable scheduling algorithm.

1.4.1 Need of Proposed Algorithms for Job Scheduling Problems

Heuristic and meta-heuristic algorithms are applied to obtain optimal or nearly optimal
solutions to explain job scheduling because traditional algorithms frequently fall short of fully
understanding conditions. Metaheuristic algorithms are the most effective means of escaping
the local minima issue from which heuristic solutions typically suffer, as noted in®. To solve
NP-complete problems, metaheuristic algorithms effectively search the search space for a sub-
or near-optimal solution. The scheduling procedure assigns the tasks in the workflow to the
appropriate resources based on predetermined scheduling criteria. Makespan is defined as the
total amount of time needed to complete the workflow, considering both the time the tasks

were completed and the time they were submitted.

1.5 Feature Selection

Classification problems often contain a large number of features (NF). Feature Selection
involves selecting a subset of original features that can achieve high accuracy in a classification
problem. However, only some of the features are helpful for classification-type problems. The
features that are reductant and Irrelevant may reduce the classification accuracy. Assuming we
choose every feature, the task becomes more complicated and time-consuming. The primary
goals of the Feature Selection problems are to improve accuracy and reduce the NF. Several
fields, including text mining, image processing, computer vision, industrial applications,

bioinformatics, and others, use Feature Selection problems in various ways.
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A typical feature selection algorithm typically consists of five basic steps. The process
begins with an initialization step based on all the unique properties in the issue domain. After
that, candidate feature subsets are created using a discovery technique. This process, which
functions like a search mechanism, might begin with none, all, or a random subset of features.
The best subset of features is found using a variety of search strategies, including both
traditional and evolutionary ones. An evaluation function then enters the picture to determine
how valuable the feature subset is. This function is crucial in directing the algorithm to the best
subset. The crucial next phase, guided by predetermined criteria, is deciding when to stop the
procedure. These standards could be based on the evaluation function or the search process.
They could include requirements like achieving a predetermined number of chosen features or
a predetermined number of iterations. Until the halting requirement is satisfied, the loop
continues. The validity of the chosen subset is then established by instituting a validation
method. Although it isn't a direct step in the feature selection procedure, it is a crucial step that
guarantees the effectiveness of the selected algorithm. The chosen feature subset is validated
against a test set, and the results are compared to those from earlier studies or from
benchmarking methodologies that have been predetermined.

The three categories into which feature selection procedures are subdivided for
evaluation purposes are wrapper approaches, embedding techniques, and filter approaches. In
wrapper techniques, a learning mechanism is employed to evaluate the worth of selected
feature subsets, most typically classification accuracy. Specifically, wrapper techniques
repeatedly generate several candidate feature subsets by specified strategies, and then they use
a classification algorithm to evaluate the corresponding classification accuracy. Embedded
techniques always use a classification algorithm, even though the features are chosen during
classifier training®®. Filtering methods, in contrast, examine candidate subsets without using a
classification system. The evaluation is primarily based on a dataset's inherent qualities. Since
no learning is involved, the filter technique is the oldest and is thought to be the simplest of the
three. On the other hand, because they take into account how the chosen features and the
classification algorithm interact, the wrapper and embedding strategies typically provide higher

classification results.
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First and foremost, representation scalability is crucial. Real-world datasets frequently
include various features, numbering thousands or even millions. Therefore, any suggested
method must be scalable. This calls for including a reliable, scalable classifier in the algorithm's
architecture to manage such big datasets effectively.

Second, the classifier selection significantly influences the quality of outcomes in a
wrapper feature selection approach. Metaheuristic algorithms have been used to address feature
selection issues with a variety of classifier types, including but not limited to K-nearest
neighbour (KNN), Support Vector Machine (SVM), Naive Bayesian (NB), Random Forest
(RF), Artificial Neural Network (ANN), Fuzzy rule-based (FR), and Decision Tree (DT).

Last but not least, the key step in a wrapper feature selection approach is choosing the
best feature subset by maximizing a designated objective function. The particular
categorization issue at hand will determine how this objective function behaves. Its function
may include the elimination of unnecessary features or the improvement of classification
precision. A multi-objective function is frequently developed to resolve competing objectives
in the feature selection problem. This combines the two goals and streamlines the multi-
objective function into a single goal using a weighted learning approach. The most favourable
feature subset has been determined using such multi-objective functions in research on a large

scale3":38,

1.5.1 Need of Proposed Algorithms for Feature Selection Problems

Achieving the desired accuracy in time series forecasting has become a binding domain, and
developing a forecasting framework with a high degree of accuracy is one of the most
challenging tasks in this area. Combining different forecasting methods to construct efficient
hybrid models regarding this challenge has been widely reported in the literature. Various
hybrid models have been developed and successfully employed to improve forecasting
accuracy. Despite the significant successes of hybrid models, efforts to access more accurate

results face continued growth.

13



1.5.2 Benchmark Datasets

The proposed approaches for FS problems are assessed throughout this thesis using a variety
of benchmark classification tasks with differing degrees of complexity. Table 1.3 provides a
summary of the datasets. The UCI Repository of Machine Learning Databases provided these
carefully selected datasets®. Different quantities of features, classes, instances, and data types
(continuous and categorical) are present in the chosen datasets. The datasets serve as illustrative

examples of the types of issues that the suggested algorithms can handle.

Table 1.3. Detailed information of all seven datasets.

SI. No. Datasets Features Instances
1 Wine 13 178
2 WDBC 30 569
3 lonosphere 34 351
4 Sonar 60 208
5 Libras Movement 90 360
6 Hill Valley 100 606
7 Musk 1 166 476

1.6 Forecasting

Forecasting challenges have been addressed through numerous approaches, with a notable
portion employing FY'S or FYS-related methodologies. FTS approaches, Mamdani-type Fuzzy
Inference Systems (FIS), and Sugeno-type FIS have all been widely utilized forecasting
techniques. Song and Chissom® introduced the foundational definition of FTS. There have
been more studies about FTS approaches in recent years. Kocak established an ARMA-style
FTS forecasting technique. Giiler Dincer and Akkus concentrated on the fuzzification stage
and proposed a robust clustering-based FTS approach. Based on fuzzy c-regression, Giler
Dincer suggested an FTS approach. In the FTS approach, Bas et al. incorporated the pi-sigma
neural network to identify fuzzy relations. A subtractive clustering technique and an algorithm
for artificial bee colonies were employed in Zeng et al.'s** proposal for a method of FTS
forecasting. Jiang et al. introduced an innovative forecasting methodology for wind speed data
using a hybrid approach that integrated Multi-Objective Optimization (MOO) and FTS
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techniques. A multivariate FTS technique that uses long short-term memory to define fuzzy
relations was proposed by Tran et al. A combination strategy using a convolutional neural
network and an FTS was proposed by Sadaei et al.*2. Statistical inferences, establishing
confidence intervals, and obtaining forecast distributions have been the main goals of some
investigations on FTS. Yolcu et al. suggested using a statistical fuzzy inference method to
derive statistical findings from Time Series Data (TSD) within an FS. Various nature-inspired
optimization algorithms have applications in other fields**** and can also be modified to obtain
the optimal length of the intervals in FTS forecasting.

1.6.1 Need of Proposed Approach for Forecasting Problems

Intuitionistic Fuzzy Set (IFY'S) can be regarded as an extended version of FYS, offering a more
inclusive and flexible framework. The intuitionistic fuzzy c-means algorithm was utilized to
introduce the modeling and implementation of intuitionistic FTS. Various Intuitionistic FTS
approaches were proposed. Bisht and Kumar created hesitant FY'Ss using triangle membership
functions with equal and unequal intervals. A high-order intuitionistic FTS technique was put
out by Abhishekh*. Novel intuitionistic FTS definitions and a novel high-order intuitionistic

FTS forecasting method were introduced by Egrioglu®.

Picture Fuzzy Set (PFYYS) is an upgraded version of IFYS that provides a more inclusive
and flexible foundation. Thong and Son employed IFYS and picture fuzzy clustering (PFC) to
make medical diagnoses. The concept of a PFY'S set was incorporated into the clustering model
by Thong and Son, who presented the idea of PFC. Son et al. provided a control theory
application with an idea for a picture FIS. An analysis of the literature demonstrates that
approaches for forecasting have been found extremely useful with more general set types.
According to the literature, adding more inputs to the model with latent variables has improved
inference outcomes. Membership values can be viewed as latent variables that give extra inputs
for the models. This theory suggests that employing PFYSs in a forecasting model can be
helpful.
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1.7 Scope of the Thesis

The present thesis aims to propose different novel metaheuristic algorithms with critical
applications in job scheduling, feature selection, and time series forecasting. Parameter
adaptation of the proposed algorithms is another critical aspect addressed in the thesis. There
is a considerable research gap as theoretical and mathematical analysis of most of the
metaheuristic algorithms has yet to be proved or even discussed, so this issue has also been
addressed in the form of stability, convergence, and signature. Multi-objective metaheuristic
algorithms are developed to address the issue of job scheduling and feature selection.
Integration of PFYS with an improved version of PSO is done to address the FTS forecasting

problem.

1.8  Organization of the Thesis

This thesis comprises five parts, which consist of ten chapters.

Part- | has a single Chapter 1, which acts as an introductory section, motivating the
research carried out. It includes an extensive literature review highlighting the significance of

the issue addressed in the thesis.

Part — 11 of the thesis focuses on the practical implementation of the developed hybrid
metaheuristic algorithms in the domain of Job Scheduling on a computational grid. This part

consists of two chapters, namely Chapters 2 and 3.

Chapter 2 presents the application of fuzzy PSO with single-objective job scheduling
on the computational grid. This chapter presents a specialized fuzzy PSO technique designed
to tackle the job scheduling problem in computational grids. The central goal is to minimize
the makespan value, indicating the maximum completion time of all tasks across the grid. The
chapter systematically investigates the influence of trapezoidal and pentagonal fuzzy numbers

on the optimization process and conducts a comparative analysis.
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Chapter 3 provides a detailed exploration of utilizing fuzzy PSO for multi-objective
job scheduling on the computational grid. This chapter builds upon the groundwork laid in the
previous chapter, advancing from single-objective to MOO. The conflicting nature of
makespan and flowtime as objective functions is addressed, necessitating a delicate balance

between the two.

Part 111 of the thesis focuses on practically implementing the developed hybrid
metaheuristic algorithms in the hybrid Feature Selection problems domain. This part consists

of five chapters, namely Chapters 4, 5, 6, 7, and 8.

Chapter 4 introduces and applies a hybrid PSO algorithm to solve a Hybrid Feature
Selection problem. This chapter provides a detailed mathematical explanation of the stability
of the proposed HPSO algorithm, employing Von Neumann stability criterion and Fourier
series concepts substantiated by rigorous proof. Furthermore, the convergence of the proposed
HPSO algorithm is elucidated using the Markov chain concept. This chapter concludes with a
comprehensive graphical and statistical comparison of results with other meta-heuristic
algorithms, employing Friedman and Mann-Whitney U tests to assess the statistical

significance of the proposed algorithm.

Chapter 5 comprehensively explores an enhanced version of the PSO algorithm,
HPSO, and its application in multi-objective feature selection. This chapter marks a significant
advancement from single-objective to MOO, building upon the framework established in the
prior chapter. The effectiveness of HPSO is rigorously assessed across seven UCI datasets,
with the Wilcoxon rank sum test employed for robust statistical analysis.

Chapter 6 introduces two innovative nature-inspired Hybrid optimization algorithms:
PSOHHO and its variant PSOHHO-V. These algorithms incorporate the concepts of dual-
swarm strategy and an exponential mutation operator (EMO) to amplify their exploration
capabilities. PSOHHO and PSOHHO-V were evaluated based on statistical metrics and
convergence rates, with extensive testing on ten benchmark functions. Additionally, the
algorithms were applied to feature selection problems, and their effectiveness was
benchmarked against other approaches using seven UCI datasets.
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Chapter 7 unveils a novel Hybrid Swarm Optimization algorithm that integrates
Pentagonal Fuzzy Numbers (PFN) and Trapezoidal Fuzzy Numbers (TFN). This innovative
approach integrates PSO and Harris Hawk Optimization (HHO) principles to increase
exploration opportunities. The mathematical foundations signature is introduced to obtain an
idea of the optimization algorithm's intrinsic bias, and convergence is proved using the Markov
Chain (MC) property. To evaluate the efficiency of PSOMHHO, it undergoes rigorous testing
on benchmark functions and is compared against other established metaheuristic algorithms.
Statistical significance is assessed using the Mann-Whitney U test and the Friedman test,

affirming the prowess of PSOMHHO against various metaheuristic algorithms.

Chapter 8 introduces a ground-breaking hybrid optimization strategy termed Fuzzy
PSOHHO, including its different variants. By melding the principles of Fuzziness, Escape
Energy from Harris Hawk Optimization (HHO), and PSO, this technique is engineered to
amplify exploration capabilities while maintaining a delicate equilibrium between exploration
and exploitation. Recognizing the pivotal role of parameters in optimization, this chapter
introduces the fuzzy concept for dynamic parameter adaptation within the framework of Fuzzy
PSOHHO. The effectiveness of Fuzzy PSOHHO is meticulously assessed through extensive
testing on benchmark functions and subsequent comparison with well-established
metaheuristic algorithms. Rigorous statistical analysis employing the Kruskal-Wallis Test
(KWT) decisively validates the superior performance of PSOMHHO over a range of

metaheuristic algorithms.

Part — 1V of the thesis focuses on the practical implementation of the developed
hybrid metaheuristic algorithms in the domain of Forecasting. This part consists of one chapter,

namely Chapter 9.

Chapter 9 presents a ground-breaking picture fuzzy time series (PFTS) forecasting
model constructed based on the principles of picture fuzzy sets (PFYSs). This article presents
a novel variant of the PSO (EDSPSO) algorithm, enhancing the PSO algorithm with the EMO
and a dual-swarm strategy. This article integrates PFYS and EDSPSO to develop a novel hybrid
EDSPSO-PFTS forecasting method. The suggested forecasting method is used on data sets
from the Enrolments of Alabama University (UAE) and the State Bank of India Share Price
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(SBISP) at the Bombay Stock Exchange, India, to demonstrate its applicability and usefulness.
Mean square error (MSE) and average forecasting error (AFE) are used to gauge the
effectiveness of the proposed method. The significant reduction in both MSE and AFE is solid
evidence of the superior performance of the proposed EDSPSO-PFTS method compared to
various existing methods. Rigorous statistical validation and performance analysis are

conducted to ensure the reliability and validity of the proposed method.

Part V consists of a single Chapter 10, serving as the thesis summary. It highlights
the main conclusions drawn from the research work and identifies the remaining challenges

that require attention in this particular area of research in the future.
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Part — 11

Application of the Developed Hybrid Metaheuristic Algorithms in

the domain of Job Scheduling on a Computational Grid.

(Chapter 2 and Chapter 3)
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Chapter 2

Scheduling of Jobs on Computational Grids by Fuzzy Particle
Swarm Optimization Algorithm using Trapezoidal and Pentagonal

Fuzzy numbers

2.1 Introduction

A computational grid is a large-scale and heterogeneous collection of autonomous systems.
The sharing of computational jobs among the grid is one of the significant applications of the
grids. Its resources may be distributed among different owners, who may have some constraints
and various access policies. Several metaheuristic methods are developed to minimize the
average completion time of jobs on each Grid node through optimal job allocation*’. A more
complete analysis of the scheduling on the grid was provided by Dong and Akl, which is known
as a N-P complete problem*®, Every grid node has a processing speed and requirements of its
own. So here we are using fuzzy PSO, a job scheduling problem on computational grids. Then,
we will compare the TFN results with those obtained with PFN. This problem aims to minimize
the time complexity and efficient use of grid nodes. The success of a PSO problem depends on

the mapping between the PSO particle and the possible solution.

The rest of the chapter is organized as follows. Section 2.2 explains some basic concepts
required to understand this chapter properly. Section 2.3 explains the problem we have tackled
in this chapter. In Sections 2.4 and 2.5, the proposed algorithm and Numerical experiment are
given, respectively, which fulfills our objective in this chapter. In Section 2.6, the conclusion

of the above approach is presented.
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2.2 Background

For a proper understanding of the work explained in this chapter, the concepts of fuzzy
numbers, TFN, and PFN are required, which are explained in Section 1.3. Here, the particles

are guided using the concepts of PSO, which are also described in Section 1.3.

2.3  Problem Formulation

Here, in this problem on computational grids, there is generally a framework focusing on the
interaction between the grid information server, the grid's resource broker, and the domain
resource manager. In this section, the problem of this chapter is explained. The scheduling of
jobs on the grids using fuzzy PSO is explained in the computational grid environment. For our

proper understanding, some important terms and concepts are defined. They are as follows-

Scheduling Problem

The schedule is a function from jobs to the specific intervals of time of the grid node. A
scheduling problem is defined as the jobs allocated to the machines with optimal criteria. In
this chapter, the scheduling problem is defined as the allocation of jobs to specific
computational grids with optimal criteria. Here optimal criteria is the maximum number of

iterations allowed.

Grid Nodes

A grid node is a computational resource whose capacity is limited. It can be a computer lab,
workstation, personal computer, or a collection of computers at a specific location. The
computational capacity of the grid node depends on the amount of memory, number of Central
processing units, basic storage space, and other types of specifications. Every Grid node has a

processing speed of its own which is expressed as the number of cycles per unit time.

Makespan

In Job scheduling problems, makespan can be defined as the maximum of all the completion
time. First jobs are assigned to grids, then we will compute the time taken by each grid to

complete all the jobs that are assigned. Then we will take the maximum of all the completion

22



time of all the grids. Mathematically speaking if d (i, j) is the completion time, In other words,
d (i, j) is the time taken by the grid node G (i) to finish the job J(j). The time taken by the grid
node to execute all the jobs allocated to that grid node only is represented by Y. d(i). Now max

Y. d (i) is called makespan.

Jobs

Job is a collection of operations or a single operation allocated to the computational grid. Now
we are going to explain the concerned problem. Now J(j) means Job on the machine j and
G (i) means Grid at the node i. Now let us consider jobs J(j),j € (1,2,---,b) that are
independent on Grid nodes G(i),i € (1,2,:--,a). This problem aims to minimize the time

complexity and efficient use of grid nodes.

Now we define d(i, j) as the completion time, In other words, the time taken by the
grid node G (i) to finish the job J(j). The time taken by the grid node to execute all the jobs
allocated to that grid node only is represented by > d(i). Now max {} d(i)} is called
makespan. Y3, (3 d(i)) is called the flowtime. These concepts are used while applying the
fuzzy PSO algorithm. The objective of this chapter is to minimize the makespan value. We
have to optimize a job scheduling that minimizes the makespan value. That is to minimize the
maximum time all Grids take to complete all the assigned jobs. And then to see the effects of
TFN and PFN on it.

2.4  Proposed Algorithm (Fuzzy PSO)

In this section, the fuzzy PSO algorithm is explained in detail. Here in the scheduling of jobs
on the computational Grid environment using PSO, the position and velocities of particles are
taken in the form of fuzzy matrices. In this section, it is explained how fuzzy PSO is used for
solving problems in the scheduling of jobs on the computational grid nodes. Then their results
are compared for fuzzy PSO with the TFN and PFN. To successfully apply PSO, one of the
factors is to find the map between the problem solution and the PSO particle. The performance
and feasibility are directly affected by it.
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Suppose G = {G(1),G(2),---,G(a)}, ] = {J(1),](2),:--,](b)} are the grid nodes and
jobs respectively. The number of Grids and Jobs are a and b respectively. Let the position of
the particle be defined as

z(1,1) - z(1,b)
7 = : . : ]

2@1) - z(a,b)

The elements of Z must satisfy the following criteria-
z(i,j) € [0,1], i €{1,2,..,a}andj € {1,2,...,b}
Yz, ) =1 i €{1,2,..,a}andj € {1,2,...,b}.

Similarly, the velocity of the particle is defined as

s(1,1) - s(1,b)
s—[ T ]

s(a,1) - s(a,b)
The normalization of the matrix Z is as follows-

z(1,1) . z(1,b)
I[ Xie1z(0, 1) /Z?=1 z(i, b)]l
azm=| ‘ ' = |

[Z(a' 1)/ 2.5;1 2,1 #e b)/ z.;;l 2@, b)J

Before going into detail about the fuzzy PSO algorithm, let us see some of the notations

required on the way, they are as follows-

a;, =Collection of all the jobs to be processed.

a, = Collection of all the jobs that are being scheduled

as = Collection of all the jobs after job allocation is already completed.

a4, = Collection of all the available grid nodes.

as = Collection of all the grid nodes that have already been allocated to the jobs.

ae = Collection of all the grid nodes that are available or free.
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Pseudocode:
The Pseudocode of the fuzzy PSO algorithm is explained as follows:
Step 1

When the nodes are active and no new jobs are available, then we have to wait for the jobs that

are new or update a, and a;.
Step 2

Att =0, If o, = 0, wait for new grids to be available. If @, < a4, then jobs are allocated on

the principle called first come first serve basis. If a; > a4, job allocation is given in Step 3.
Step 3

Now we have to initialize all the parameters of the particle swarm. The size of the particle
swarm (N) depends on the experiment and its value is given before the start of the algorithm.

The values of the parameters are initialized first.

3.1 Now, we have to initialize the position for each particle. So we have taken random
matrices which will be treated as the position of the particles. Then the matrices are
normalized.

3.2t =t+ 1 (Here we will start the iteration process from t =1 to the maximum

iteration)
3.2.1 Then the makespan value is calculated for each particle.
3.2.2 The latest best solution is calculated as follows-
y' =argmin (f(y"(t — 1)), f (1)), f(2) (@), ..., f (D) (L))
3.2.3 For each particle, the personal best solution is computed as follows-
y'(t) = argmin (f(y'(t — 1)), f(y(1)))
3.2.4 Take random velocity as a trapezoidal matrix for the first Case.
3.25 Take random velocity as a pentagonal matrix for the second Case.

3.2.6 Now update each particle using Eqns. (1.16) and (1.17).
3.2.7 Now for each particle, the position matrix is normalized.

3.3 The iteration process is continued until the optimality criteria are normalized.
Step 4

Repeat the process as long as the grid is active.
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2.5 EXxperiments

Now, we have taken some parameters required to solve the problem. They have an Inertia
weight of 0.8. Acceleration coefficients are as follows: 2 and 1.3, respectively. The two random
numbers are generated automatically. Here, ‘1’ represents the Job assigned to the Grid, and ‘0’

means no Job assigned to the Grid. Total number of particles (N)=20.

2.5.1 Experiment 1

Here we are taking two Grid Nodes and the Number of Jobs are three. The speeds of the two
grid nodes are 4 and 4.1 respectively. The time required for each jobs are as follows 1119,
1112, and 1811 respectively.

For the first case, we have taken a velocity matrix with each element as a TFN. Here
we have observed that Job 1 is scheduled on Grid 2, Job 2 is scheduled on Grid 1, and Job 3 is
scheduled on Grid 2. For the Second case, we have taken the velocity matrix with each element
as a PFN. Here we have observed that Job 1 is scheduled on Grid 2, Job 2 is scheduled on Grid
2, and Job 3 is scheduled on Grid 1.

2.5.2 Experiment 2

Here we are taking three Grid Nodes and Number of Jobs are seven.

Optimal Schedule with TEN

Table 2.1. Optimal Schedule with TFN.

JAO J@2) I3 J@ JG) J6) J()

GO 0 0 0 o o 1 1
G2) 0 0 1 o 0 0 0
6B 1 1 0 1 1 0 0

Here the Grid speeds are as follows — 17, 34, 13 and the time required for each job is as follows:
45, 103, 80, 62, 91, 113, 88 respectively. Above Table 2.1 is the Optimal Schedule. Here Job
1 is scheduled on Grid 3, Job 2 is scheduled on Grid 3, Job 3 is scheduled on Grid 2, Job 4 is
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scheduled on Grid 3, Job 5 is scheduled on Grid 3, Job 6 is scheduled on Grid 1, Job 7 is
scheduled on Grid 1.

Optimal Schedule with PFEN

Table 2.2. Optimal Schedule with PFN.

JA J2) J3 J@® JG) J®6) J()

G 0 1 0 I 0 o0 1
G2 0 0 0 o 1 1 0
63 1 0 1 o 0 0 0

Here the Grid speeds are as follows — 28, 9, 23 and the time required for each job is as
following, 124, 71, 132, 99, 83, 78, 64 respectively. Above Table 2.2 is the Optimal Schedule.
Here Job 1 is scheduled on Grid 3, Job 2 is scheduled on Grid 1, Job 3 is scheduled on Grid 3,
Job 4 is scheduled on Grid 1, Job 5 is scheduled on Grid 2, Job 6 is scheduled on Grid 2, Job

is scheduled on Grid 1.

2.5.3 Experiment 3

Here we are taking four Grid Nodes and Number of Jobs are twelve.
Optimal Schedule with TEN

Table 2.3. Optimal Schedule with TFN.

Jo Jj@ Jj3 J@ JG Je Jj@ Jj® Jjo Jjao jaiy jaz

G() 0 0 0 0 1 0 0 1 0 0 0 0
G2 0 0 0 0 0 1 0 0 0 0 1 0
G@3) 0 0 1 1 0 0 0 0 0 1 0 0
G@ 1 1 0 0 0 0 1 0 1 0 0 1

Here the Grid speeds are as follows — 44, 3, 11, 23 and the time required for each Job is as
follows: 144, 119, 68, 51, 9, 112, 77, 30, 65, 26, 113, 56 respectively. Above Table 2.3 is the
Optimal Schedule. Here Job 1 is scheduled on Grid 4, Job 2 is scheduled on Grid 4, Job 3 is
scheduled on Grid 3, Job 4 is scheduled on Grid 3, Job 5 is scheduled on Grid 1, Job 6 is
scheduled on Grid 2, Job 7 is scheduled on Grid 4, Job 8 is scheduled on Grid 1, Job 9 is
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scheduled on Grid 4, Job 10 is scheduled on Grid 3, Job 11 is scheduled on Grid 2, Job 12 is
scheduled on Grid 4.

Optimal Schedule with PFN

Table 2.4. Optimal Schedule with PFN.

JO J2 J3 J@ JG Je Jj@ Jj® JjO Jjao) jain jaz)

G(1) O 0 0 0 0 1 0 1 0 0 0 1
G2 O 0 0 0 0 0 0 0 1 0 1 0
¢(3) 1 0 0 1 0 0 1 0 0 1 0 0
G@4) 0 1 1 0 1 0 0 0 0 0 0 0

Here the Grid speeds are as follows — 50, 21, 45, and 10. The time required for each job is as
following-101, 74, 71, 58, 23, 123, 17, 123, 124, 41, 15, 84 respectively. Above Table 2.4 is
the Optimal Schedule. Here Job 1 is scheduled on Grid 3, Job 2 is scheduled on Grid 4, Job 3
is scheduled on Grid 4, Job 4 is scheduled on Grid 3, Job 5 is scheduled on Grid 4, Job 6 is
scheduled on Grid 1, Job 7 is scheduled on Grid 3, Job 8 is scheduled on Grid 1, Job 9 is
scheduled on Grid 2, Job 10 is scheduled on Grid 3, Job 11 is scheduled on Grid 2, Job 12 is
scheduled on Grid 1.

2.5.4 Experiment 4
Here we are taking five Grid Nodes and Number of Jobs are twenty.
Optimal Schedule with TEN

Here the Grid Speed are as follows — 4, 34, 47, 24, 19 and the time required for each job is as
following-13, 82, 140, 105, 124, 129, 17, 106, 83, 79, 48, 25, 48, 101, 79, 92, 115, 25, 75, 115
respectively. Above Table 2.5 is the Optimal Schedule. Here Job 1, Job 2, Job 3, Job 4, Job 5,
Job 6, Job 7, Job 8, Job 9, Job 10, Job 11, Job 12, Job 13, Job 14, Job 15, Job 16, Job 17, Job
18, Job 19 and Job 20 are scheduled on Grid 4, Grid 3, Grid 5, Grid 1, Grid 4, Grid 3, Grid 4,
Grid 2, Grid 2, Grid 1, Grid 3, Grid 5, Grid 1, Grid 3, Grid 5, Grid 5, Grid 1, Grid 3, Grid 4
and Grid 1 respectively.
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Table 2.5. Optimal Schedule with TFN.

J) J@) J3) J@ JG) Jj6) Jj7 J@ JO) Jao) jan jaz) jas) ja4 jas) jae) ja7z) jas) j(9) j(20)

G(1) 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1
G2) 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
G@3) 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0
G4 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
G»B) 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0

Optimal Schedule with PFEN

Here the Grid Speed are as follows, 19, 12, 8, 36, 15 and the time required for each job is as
following, 86, 16, 142, 55, 96, 145, 81, 5, 51, 13, 119, 61, 20, 107, 100, 42, 75, 112, 71, 134
respectively. Above Table 2.6 is the Optimal Schedule. Here Job 1, Job 2, Job 3, Job 4, Job 5,
Job 6, Job 7, Job 8, Job 9, Job 10, Job 11, Job 12, Job 13, Job 14, Job 15, Job 16, Job 17, Job
18, Job 19 and Job 20 are scheduled on Grid 4, Grid 1, Grid 2, Grid 5, Grid 3, Grid 5, Grid 3,
Grid 3, Grid 4, Grid 2, Grid 4, Grid 1, Grid 5, Grid 3, Grid 3, Grid 5, Grid 4, Grid 5, Grid 1
and Grid 5 respectively.

Table 2.6. Optimal Schedule with PFN.

J J@ J3 J@ JG) J© J7 J@ JO Jjao) ja1) jaz) ja3) ja4) jas) jae) ja7) jas) j19) j(20)

G() 0 1 0 0 0 0 0 0 0 o0 0 1 0 0 0 0 0 0 1 0
6o o 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
60 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0
G4 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0
GG&)0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1

Then we have taken more examples with more grid nodes and jobs, i.e., 10 Grid nodes
and 50 Jobs, 40 Grid nodes and 100 Jobs. We are getting similar results. Here, we observe
that with an increase in the number of iterations, the makespan value decreases, and after some
iterations, it remains more or less constant. Here, the termination criteria are maximum
iteration. Here, the optimal Criteria is the makespan value. We have to optimize a job

scheduling that minimizes the makespan value. That is to minimize the maximum time all Grids
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take to complete all the assigned jobs. Here, we can see the makespan value of fuzzy PSO using
TFN and the makespan value of fuzzy PSO using PFN, which remains the same. We can also

see that the global best position is the same for both approaches.

2.6 Conclusion

This chapter tackles the task of scheduling jobs on a computational grid through fuzzy PSO,
utilizing both TFN and PFN. The algorithm's performance is analysed by first employing TFN
and subsequently with PFN. The outcomes between the two approaches demonstrate a
remarkable consistency. This opens opportunities for future exploration where diverse fuzzy

numbers could be incorporated to recognize any impacts on results.
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Chapter 3

Job Scheduling On Computational Grids Using Multi-Objective

Fuzzy Particle Swarm Optimization

3.1 Introduction

This chapter provides a detailed exploration of utilizing fuzzy PSO for multi-objective job
scheduling on the computational grid. This chapter builds upon the groundwork laid in the
previous chapter, advancing from single-objective to MOO. The conflicting nature of
makespan and flowtime as objective functions is addressed, necessitating a delicate balance
between the two. So here we are comparing the results obtained using TFN with those obtained
using PFN. The objective of this problem is to use the grid nodes efficiently. Here, we are using
MOO, an area of multiple criteria decision-making. It is useful when multiple objective
functions must be simultaneously optimized. The mapping between a PSO particle and a
potential solution determines the outcome of a PSO problem. This method is an innovative

approach, and to my knowledge, there is no such existing method.

The remaining portion of the chapter is structured as follows. Specific fundamental
ideas necessary for understanding this chapter properly are explained in Section 3.2. The
problem we have addressed in this chapter and our goal are described in Section 3.3. The
proposed fuzzy PSO algorithm that was applied to solve the multi-objective job scheduling
problem is described in Section 3.4. The proposed algorithm's numerical experiment is
presented in Section 3.5. The proposed algorithm's conclusion is given in Section 3.6.
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3.2 Background

A comprehensive understanding of the content in this chapter necessitates familiarity with key
concepts such as fuzzy number, TFN, and PFN, explained in Section 1.3. The guidance of
particles through the grids is drawn from the principles of PSO, which is also explained in

Section 1.3. Here the concept of MOO is also required which is explained below.

MOO

MOO is used when more than one objective function has to be optimized. This process
becomes very important when the objective functions are conflicting in nature. That is

minimizing some objective functions that maximize some other objective functions*>*°,

3.3  Problem Formulation

This section illuminates the focal problem addressed in the chapter, specifically exploring the
complexities of multi-objective job scheduling using fuzzy PSO within the computational grid
environment. To facilitate a comprehensive grasp, essential terms and concepts are

meticulously expounded.

Flowtime

In Job scheduling problems, flowtime can be defined as the sum of all the completion time.
After jobs are assigned to grids, the time taken by each grid to complete all the jobs that are
assigned is computed. Then we will take the sum of all the completion time of all the grids.
Mathematically speaking if d(i,j) is the completion time, In other words d(i, j) is the time
taken by the grid node G (i) to finish the job (j) . The time taken by the grid node to execute
all the jobs allocated to that grid node only is represented by Y d(i) . Now is

~ (> d(1)) called flowtime, where ‘@’ is the number of grids in the problem.

Our formulated problem involves the simultaneous consideration of two conflicting
objective functions: makespan and flowtime. Minimizing flowtime requires the swift
completion of average jobs, compromising the duration of the longest job. On the contrary,

minimizing makespan ensures that no job experiences excessive duration, although at the cost
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of most jobs enduring extended periods. The maximization of makespan invariably leads to the
minimization of flowtime, and vice versa. The objective of the proposed algorithm is to
minimize the makespan value and flowtime. That is to minimize the maximum time taken by
all Grids to complete all the jobs assigned to them according to the first objective function.
And to minimize the sum of all time taken by all Grids to complete all the jobs assigned to
them according to the second objective function. We have to optimize a job scheduling that
minimizes the makespan value and flowtime. This inherent contradiction is effectively

addressed through the application of the proposed fuzzy PSO algorithm.

Now we are going to explain the concerned problem. The basic meaning of /(j) and
G (i) are already explained in the previous chapter in Section 2.3. Now let us consider jobs
J(G),j € (1,2,-++, b) that are independent on Grid nodes G(i),i € (1,2,-:+,a). The objective
of this chapter is to efficiently use the grid nodes by minimizing the makespan value and total
flowtime values. Now we define d (i, j) as the completion time. In other words time taken by
Grid node G (i) to finish the Job J(j). The time taken by the grid node to execute all the jobs
allocated to that grid node only is represented by ) d(i). Now max {) d(i)} is called
makespan. Y;i~,(Zd(?)) is called as the flowtime. These concepts are used while applying the

fuzzy PSO algorithm.

3.4 Proposed Algorithm

In this section, the proposed multi-objective fuzzy PSO algorithm is explained. Here in the
scheduling of jobs on the computational Grid environment using PSO, the position and
velocities of particles are taken in the form of fuzzy matrices. In this section, it is explained
how fuzzy PSO is used for solving multi-objective job scheduling on the computational grid
nodes. Then their results are compared for fuzzy PSO with TFN and fuzzy PSO with PFN. To
successfully apply PSO, one of the key factors is to find the map between the problem solution
and the PSO particle. The performance and feasibility are directly affected by it. Suppose G =
{G(1),6(2),--,6(a)}, ] ={J1),J(2),---,]J(b)} are the Grid nodes and Jobs respectively.
The number of Grids and Jobs are a and b respectively. Let the position and the velocity of the

particle be defined as

z(1,1) - z(1,b) s(1,1) - s(1,b)
Z= : K : ]and5=[ : “ :

] respectively

2@1) - z(ab) s@1) - s(ab)
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The normalization of the matrix Z is as follows-

2(11) .. 21.b)
[ /5,21 fs. 26 b)]

(IIYII)=|( 5 : . @) : |
z(a, z(a,
| /Z%le(i.l) /Z?=1Z(i,b)J

Before going into detail about the fuzzy PSO algorithm, The notational meaning of notation

a1, a2, A3, A4, s and ag are already discussed in previous chapter in Section 2.4.

Step 1

When the nodes are active and no new jobs are available, then we have to wait for the jobs that

are new or update a4 and a; .
Step 2

Att =0, If a, = 0, wait for new grids to be available. If a, < a,, then jobs are allocated on

the principle called first come first serve basis. If a; > a4, job allocation as given in Step 3.
Step 3

Now we have to initialize all the parameters of the particle swarm. The size of the particle
swarm (N) depends on the experiment and its value is given before the start of the algorithm.

The values of the parameters are initialized.

3.1 Now we have to initialize the position for each particle. So from here a population Set has
been initialized. So we have taken random matrices which will be treated as the position of
the particles. Then the matrices are normalized.

3.2 Take random velocity as a trapezoidal matrix, i.e., every matrix element is a TFN for the
first Case.

3.3 Take random velocity as a pentagonal matrix, i.e., every matrix element is a PFN for the
second Case.

3.4t =t+1 (Here we will start the iteration process from t=1 to the maximum iteration,
which can be changed in the programming code depending on the requirement of the coder)

3.4.1 A leader set is selected from the population Set.

3.4.2 Each particle’s velocity and position are updated using Eqns. (1.16) and (1.17).
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343
34.4
345
3.4.6
3.4.7
3.4.8
3.4.9

The makespan value and flowtime value of each particle are calculated.
Now update the personal best and Global Best of each particle, respectively.
Add Non-Dominated Particles to Non-dominating Front.

Determine Domination of New Non-dominating Front Members.

Keep only Non-Dominated Members in the Non-dominating Front.

For each particle, the position matrix is normalized.

The iteration process is continued until the Maximum iteration is achieved.

3.5 The iteration process is continued until the Maximum iteration is achieved.

Step 4

Repeat the process as long as the grid is active.

3.5 Experiments

Now, we have taken some parameters required to solve the problem. They are Inertia weight

(h) = 0.8. Acceleration coefficients h; and h, are as follows 2 and 1.3 respectively. The two

random numbers are generated automatically. Here, the total number of particles we have taken

is 20. We have taken a velocity matrix for the first case with each element as a TFN. For the

Second case, we have taken the velocity matrix with each element as a PFN. In the optimal

schedule Tables 3.2, 3.4, 3.6, and 3.8, we use a technique in which grids and jobs are

represented row-wise and column-wise, respectively, and then ‘1’ represents the job assigned
to the Grid, and ‘0’ represents no job assigned to the Grid®*. In Figs 3.1, 3.2, 3.3 and 3.4 Red

coloured points are DMs and joining all the dominant points will form a Pareto-optimal curve.

Other points present in the graph are dominated points.

3.5.1 Experiment 1

Here, we are taking three Grid Nodes, and the Number of Jobs is seven.

Optimal Schedule with TFN

Here the Grid Speed that is taken in this problem is as follows, 19.09, 27.017, 29.45, and the
time required for each job is as follows, 69.73, 115.73, 19.34, 89.86, 128.99, 99.90, 82.96

respectively. In Table 3.1, all the DMs are shown with their makespan value and flowtime

value. Here, in this experiment, there are 9 DMs out of which 8 DMs are shown in Fig 3.1.
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Table 3.1 All DMs.

DMs Makespan Flowtime Value
1 10.638435 3.108031
2 8.455468 3.190418
3 4.774187 89.732866
4 13.546865 2.933361
5 19.043898 1.848561
6 13.737084 2.741747
7 38.040034 1.736883
8 8.715420 3.128136
9 6.932100 5.508100
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Fig. 3.1 Collection of all 8 DMs of Experiment 1 using TFN.

Table 3.2. Optimal Schedule of DM 2.

JA) J@2) J3) J@ JGB) J6) J(7)
G(H) 1 1 0 0 0 1 0
G2 0 0 0 1 1 0 0
¢GB) 0 0 1 o o o0 1
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Optimal Schedule with PFN

Here, the Grid Speed is as follows — 47.66, 8.08, 39.89, and the time required for each job is
as follows- 28.13, 17.84, 64.98, 135.90, 92.86, 14.33, 24.04, respectively. Table 3.3 shows all
the DMs with their makespan and flowtime values. Here, in this experiment, there are 7 DMs

out of which 5 DMs are shown in Fig 3.2.

Table 3.3 All DMs

DMs Makespan Value Flowtime Value
1 5.853997 138.489278987881
2 8.581198 3.577729
3 8.120252 3.845658
4 10.182115 2.294112
5 7.289982 11.857017
6 22.652308 2.087883
7 115.157452 1.435459
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Fig. 3.2 Collection of all 5 DMs of Experiment 1 using PFN.

Table 3.4 Optimal Schedule of DM 4

JA) Jj@) J3) J@® JG) J6) J(7)
G 1 0 0 0 1 0 0
G2) 0 1 0 1 0 1 0
GB3) 0 0 1 o 0o 0 1
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Above Table 3.4 is the Optimal Schedule. Here, Job 1 is assigned to Grid 1, Job 2 is
assigned to Grid 2, Job 3 is assigned to Grid 3, Job 4 is assigned to Grid 2, Job 5 is assigned to
Grid 1, Job 6 is assigned to Grid 2, Job 7 is assigned to Grid 3. With an increase in the number
of iterations, we get particles whose makespan and flowtime values are minimized until we

reach maximum iteration.

3.5.2 Experiment 2
Here, we are taking four Grid Nodes, and the Number of Jobs is nineteen.
Optimal Schedule with TFN

Here the Grid Speed are as follows — 23.82, 35.64, 28.83, 5.67, and the time required for each
job is as follows, 119.61, 65.37, 81.28, 74.86, 36.39, 132.58, 141.25, 7.02, 108.82, 52.76,
17.62, 147.10, 13.067, 22.19, 73.99, 30.33, 104.16, 31.83 respectively. In Table 3.5, all the
DMs are shown with their makespan value and flowtime value. In this experiment, there are
10 DMs which are shown in Fig 3.3.

Table 3.5 All DMs

DMs Makespan Value Flowtime Value
1 6.946936 16.739297
2 14.659486 2.563739
3 6.969654 7.014856
4 9.027537 5.088222
5 9.526646 3.943752
6 31.139973 2.008530
7 7.816608 5.145798
8 19.697327 2.253105
9 44.616472 1.929807

10 13.305884 3.293277
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Fig. 3.3 Collection of all DMs of Experiment 2 using TFN.

Table 3.6 DM 5

JA J@2) J@) J@ JG) J6) J(7) J®) JO) J0) ja1) j2) jA3) J(14) J(A5) j(16) J(17) J(18) J(19) J(20)

G() 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0
G2) 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0
G@3) 0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
G4 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1

Above Table 3.6 is the Optimal Schedule. Here, Job 1 is assigned to Grid 4, Job 2 is
assigned to Grid 3, Job 3 is scheduled to Grid 2, Job 4 is scheduled to Grid 4, Job 5 is scheduled
to Grid 3, job 6 is assigned to Grid 1, job 7 is assigned to Grid 1, job 8 is assigned to Grid 4,

job 9 is assigned to Grid 3, job 10 is assigned to Grid 3, job 11 is assigned to Grid 2, job 12 is

assigned to Grid 2, job 13 is assigned to Grid 2, job 14 is assigned to Grid 1, job 15 is assigned

to Grid 3, job 16 is assigned to Grid 1, job 17 is assigned to Grid 4, job 18 is assigned to Grid

4, job 19 is assigned to Grid 2. With an increase in the number of iterations, we get particles

whose makespan and flowtime values are minimized until we reach maximum iteration.

Optimal Schedule with PFN

Here the Grid Speed is as follows — 40.11, 35.88, 47.73, 47.88, and the time required for each
job is as follows- 121.7649, 50.02, 19.94, 125.62, 55.22, 130.92, 54.20, 95.65, 57.75, 26.74,
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32.62, 134.42, 74.42, 37.24, 42.13, 35.81, 11.42, 66.08 respectively. Table 3.7 shows all the

DMs with their makespan and flowtime values. Here, in this experiment, there are 8 DMs which

are shown in Fig 3.4.

Table 3.7 All DMs

DMs Makespan Value Flowtime Value
1 16.261141 1.975759
2 43.342028 1.613511
3 57.514148 1.479592
4 6.563975 10.077199
5 7.711173 2.009736
6 21.738393 1.736575
7 25.865067 1.633693
8 7.411354 4.348766
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Fig. 3.4 Collection of all DMs of Experiment 2 using PFN.
Table 3.8 DM 5
J J2) J@ J@ J6G) Je Jj@ Jj® Jjo jao jait jaz) jas) ja4) jas) jae) jaz j(as) Jj19)
G(1) 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0
G@) 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
G(3) 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1
G@ 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
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Above Table 3.8 is the Optimal Schedule. Here job 1 is assigned to Grid 4, job 2 is
assigned to Grid 3, job 3 is assigned to Grid 2, job 4 is assigned to Grid 2, job 5 is assigned to
Grid 1, job 6 is assigned to Grid 3, job 7 is assigned to Grid 1, job 8 is assigned to Grid 2, job
9isis scheduled on Grid 3, job 10 is assigned to Grid 1, job 11 is assigned to Grid 4, job 12 is
assigned to Grid 3, job 13 is assigned to Grid 3, job 14 is assigned to Grid 1, job 15 is assigned
to Grid 1, job 16 is assigned to Grid 2, job 17 is assigned to Grid 3, job 18 is assigned to Grid
3, job 19 is assigned to Grid 3. With an increase in the number of iterations, we get particles
whose makespan and flowtime values are minimized until we reach maximum iteration. Then
we have taken more examples with more grid nodes and jobs, i.e., 10 Grid nodes and 50 jobs,

40 Grid nodes and 100 jobs. We are getting similar results.

3.6 Conclusion

This chapter navigates the complicated multi-objective job scheduling on a computational grid
by applying fuzzy PSO with trapezoidal and PFN. The optimal criteria for optimization are the
makespan and flowtime values. Here, we have taken a particle among the set of DMs that
simultaneously minimizes both makespan and flowtime values for both cases. The consistency
in results is validated through experimentation, including 10 Grid Nodes and 50 Jobs and 40
Grid Nodes with 100 Jobs. The work reveals that the objective values exhibit remarkable
similarity despite distinct scheduling arrangements. Consequently, the objective values of
fuzzy PSO utilizing trapezoidal and PFN are thoroughly calculated and compared,
demonstrating the equivalence in results. We can take other fuzzy numbers in this process and

compare the results for future work.
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Part — 111

Application of the developed hybrid metaheuristic algorithms on

Hybrid Feature Selection Problems.

(Chapter 4, Chapter 5, Chapter 6, Chapter 7, and Chapter 8)
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Chapter 4

Hybrid Particle Swarm Optimization for a Feature Selection

Problem with Stability Analysis

4.1 Introduction

Classification problems often contain a large NF. Feature selection (FS) is the process of
choosing features that will be the subset of the relevant features, and it will increase the
classification accuracy (CA) and decrease the NF. However, not all the features are helpful for
classification-type problems. The features that are reductant and Irrelevant may reduce the CA.
Selecting all the features increases the time complexity of the problem. Also, choosing all the
features will increase the dimensionality of the problem. The selection of features plays a
critical role in the classification type problems. So, the primary objective of FS problems is to
decrease the NF and increase the problem's accuracy. It broadly has two categories: wrapper
and filter. The wrapper method uses a classification algorithm on the features, while the filter
is independent of any classification algorithm. Wrapper approaches have a better classification
performance when compared with filter methods. However, the wrapper methods are
computationally expensive compared to filter methods, as they are cheap. So, both methods
have their advantages and disadvantages. Hence, if we combine both methods, we might get a
better result. Much work has been done in this direction. Few works®? in this direction have
been done by combining both filter and wrapper approaches, but their computational cost is
higher. There are many applications of FS problems, such as Image processing and computer
vision, Text mining, Industrial applications, Bioinformatics, etc. Many metaheuristic methods
have been applied to various FS problems®3. Many Evolutionary computational techniques like
GP54, GA®, and PSO®® are used on the FS problems because of their global search ability and
effectiveness. Many Hybrid meta-heuristic methods like>® are developed and applied on

different engineering problems or benchmark optimization problems.
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The rest of the chapter is structured as follows. Section 4.2, explains some basic
concepts required for a proper understanding of this chapter. Section 4.3, explains about the
problem we have tackled in this chapter. In Section 4.4, the proposed HPSO approach has been
explained. The convergence work and proof of stability analysis of the proposed HPSO
algorithm have been explained in Section 4.5. In Section 4.6, the proposed HPSO algorithm is
compared with other four metaheuristic algorithms using seven datasets. Then their statistical
significance is checked. Also, the time completion of all the methods is computed in this

section. Finally, in Section 4.7, the conclusion of the present work has been given.

4.2 Background

To fully grasp the content in this chapter, it is imperative to be familiar with fundamental
concepts like PSO and GA, as explained in Section 1.3. Additionally, a basic understanding of

FS problems, explained in Section 1.5, is essential.

4.3 Problem Formulation

In this section, the problem of this chapter is explained. For our proper understanding, some

important terms and concepts are defined. They are as follows-

Filter Evaluations (FE)

The Filter approach technique is used to speed the fitness evaluation process. Hence
computationally cheap measure, mutual information, is employed here to form the FE>®. The
FE is used to maximize and minimize the relevance and redundancy of the selected features
respectively. Eqg. (4.1) is the FE, where D and R are the relevancy and redundancy of the

selected features respectively.

F,(X)=D-R (4.1)

Where, D = Y, ex I(x;¢) and R = Yyexyer [(X;Y)
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Wrapper Evaluations (WE)

The WE is to maximise the CA of the selected feature subset, which is calculated by Eq. (4.2).
For WE we need a classification method and there are many classification methods. Here, we
have used KNN classification for classification method, with K=1 as it is widely used and
simple. The number of correctly classified instances divided by the total number of instances

gives the accuracy.

F,(X) = accuracy (4.2)

Pseudo-code for finding the accuracy
Model= fitness (X, y, ‘NumNeighbors', k);
prediction = predict (Model, xvalid);
total NF = length(y_valid);
correct =0;
for i = 1:total NF

if isequal(yvalid(i), prediction(i))

correct = correct + 1;

end

end

Accuracy = correct/ total NF;

NF

In all FS problems, many datasets are involved. Considering all the features and solving the
problems is impossible, as it increases computational time complexity. So most FS problems

prefer to take less NF.

F;(X) = Number of Features (4.3)

Pseudo-code for finding the Number of features

For Position=1:dimension

S1= Position((particle>parameter)==1)
Selected_feature=feat(:,S1)

Number of Features =length(Selected_feature)

end
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The objective is to increase the CA and to decrease the NF. For the FS problem, a

combination of filter and wrapper method is taken and then the proposed HPSO algorithm is

applied. Theoretical explanation of stability and convergence of the proposed HPSO algorithm

has been explained with proof. Then the proposed algorithm is compared with other

metaheuristic algorithms. Then Friedman's test and Mann Whitney U test (MWUT)® are

applied to check the statistical significance. In this chapter, every row of the position matrix is

the position of the particle. Here 0 means that the feature has not been selected and 1 means

that the feature has been selected. The quality of the representation plays a significant role for

the effectiveness of the proposed method.

4.4

10

11

Proposed HPSO Algorithm

First, all the parameters of PSO are initialized. The particle swarm (N) is given before
the start of the experiment as it depends on the experiment

The position for each particle is initialized. So random matrices have been taken,
where each row represents the position of the particle. For the effectiveness of the
method, proper one-to-one correspondence between the possible solution and position
matrix is very critical.

The velocity and position of the particles for the first iteration are taken as random
matrices.

For t= 1: Max_iteration, Here the main iteration loop starts.

Compute the filter evaluation of each particle which will be treated as fitness value
for filter evaluation (F,).

Compute the wrapper evaluation of each particle which will be treated as fitness value
for wrapper evaluation (F,).

So, here the objective function is ((F, + F,) — Fs).

Initialize the personal best and compute the filter evaluation and wrapper evaluation
for that position.

Compute the filter evaluation. Then if we get a desirable result, then we will compute
the wrapper evaluation.

Update the personal best of each particle. Then we will update the filter and wrapper
evaluations.

Update the global best.
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12 Update the velocity and position of each particle using the Eqns. (1.16) and (1.17).

13 Apply the cross-over operator and mutation operator. Then one of them will be treated
as a global best solution. If termination criteria are not achieved, then the process keeps
repeating. So, steps 5 to 12 will be repeated. After achieving termination criteria, select

the features using global best, and its CA is reported.

45  Mathematical Analysis of Proposed Algorithm

The stability analysis of the proposed HPSO algorithm has been discussed in Sections 4.5.1.

45.1 Stability Analysis

The stability of the proposed algorithm is explained using the von Neumann stability criterion

for finite difference scheme (FDS) and the Fourier series concept.

Theorem

The Proposed HPSO algorithm with the following two conditions

a) Uses a random three-point crossover concept from GA. Here, the two parent solutions
are the global best solution (z9) and a random personal best solution (z?)

b) Uses mutation concept on global best solution (z9).

is stable iff h, hy and h, satisfies 0 < (hy + hy) <2(1+h)
Proof: Considering Egns. (1.16) and (1.17) of the PSO method, we get

z(i,t+1) = z(i,t) + h x s(i,t) + (hy X ¢cg) X (Zp(i, t) —z(i, t)) + (hy X ¢;) X

(zg(i, t) —z(i, t)) (4.4)
Where z(i, t) is the position of particle i at iteration t. Now conditions (a) and (b) are applied
to the global best solution (z9). If the value of (z9) is better than (z). The value of (z9) will

be assigned to (z), otherwise not. For better understanding, we simply use system by taking

zP and z9 as constants. Let b; = hy X ¢, by = hy X ¢c7, zP(i,t) = z'P and z,(i, t) = Z'9.
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Now,

z(i,t +1) = z(i,t) + h x s(i,t) + (by) X (Z’p — z(i, t)) + (by) X (Z’g — z(i, t))
z(i,t+1)=2z(,t) X (1 — by — by) + (by X z'P) + (b, X 2'9) + (h x s(i, t))
z(i,t+1) =2z(i,t) X (1 — by — by) + (by X 2'P) + (b, X 2'P)

+(hx (2G,6) - z(i,t — 1))
z(,t+1) = (z(, ) X (1 +h—by — b)) — (hx z(i,t — 1)) + (by X 2'P) + (b, X 2'9)
z(i,t+1) — (z(i, t)X(A+h—by — bz)) + (h x z(i,t — 1)) = (by X 2'P) + (b, X Z2'9)
or
Zieer = (Zoe X L+ h = by = by) )+ (A X Zye—y) = (by X 2P) + (by X 2'9) (4.5)
Let t =t + 1, for simplicity purpose
Zierr = (Zieer X L+ h—by = by) ) + (R X 2,) = (by X 2P) + (b X 2'9) (4.6)
Generalized FDS is given by —
50 Z o X mjsq = Beiec Cq X mivjrq + D 4.7)
Here z';, z', c;and ¢, are non-negative integers. On Comparing Eqns. (4.6) and (4.7)
7 1=q,Zg=—Q+h—b—b),Z,=1X_1=Xy=X, =
and D = (by X z'P) + (b, x 2'9)

Since Eq. (4.6) is a non-homogeneous. We will consider an associated homogeneous

differential scheme of Eq. (4.6) to analyze the stability condition. Now,
Zity2 — (Zi,t+1 X(1+h—=by - bz)) + (h X Zi,t) =0
Zitrz — (Ziger X A) + (A X z;,) =0 (4.8)
where A=1+4+h—b; — b,

Let z = x(i, t) be the exact solution of the { — t computational domain. Then z(iy, ¢;) is the

approximate solution at the nodes of the grids. For stability analysis of HPSO, the FDS Eq.
(4.8) is considered instead of Eq. (4.5). The von Neumann stability criteria for FDS are used
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to analyze the stability of the HPSO method. Let the mth component of the Fourier series

solution of the above equation be given by:
z(in, tj) = C,, e (Tmin=Pmt;)
Zipe, = Cmez(amhm—ﬁmjm) (4.9)
where [ = v/—1, i,, = hdi tj = jAd, Cy, represents the amplitude of the mt" component,

B, is the angular frequency, o,, is the wave number of mt"* component. Now consider Eq.

(4.8) in terms of the grid point (i, t;)
Zipt 42 = Zipt 41 X (A) + h X Zip ;= 0 (4.10)
Now, putting the value of Eq. (4.9) to Eq. (4.10)
C,y, e (OmhAi=Fmjat) (o=lBm24t _ pp=lBmAt 4 p) = 0 (4.11)
Since C,,, # 0, (e™'Am24t — pe~tBmAt 4 p) =0
7% —AZ'+h=0 (4.12)

where Z' = e~ !#mAt 7' is the amplification factor. Here, a deterministic approach is used to
solve the quadratic Eq. (4.12). Now,
ZI _ Aiv (A2_4q)

2

According to von Neumann's stability criteria, the FDS is stable iff
| (Camplification factor)| < 1. FDS is given by Eq. (4.8) is considered, so the FDS given by
(4.4) is considered. Hence HPSO is stable iff |Z°] < 1

2_
A+VA%—4h < 1
2
A+VA%2—-4h
Hence, —1 < ‘f < 1. Now we have two cases.
A+VAZ—4h
Case A: _T <1

+VAZ —4h<2— A— |[VAZ—4h|<2- 4
Now, Squaring both sides of the above equation, we get
(A%2 —4h) < (2 — A)?
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Now replace the value of Aby 1+ h — b; — b, in the above inequality. Then, solving the

inequality, we get
0<hy+h, (4.13)

. A+VAZ—4h
CaseB: -1 < —

~2+ A) < +/A2—4n
— @2+ A)=>FVAZ—4h
—(2+ A) > |VAZ - 4h|
On squaring both sides of the above equation, we get (2 + A)? > (A? — 4h)

Now replacing the value of Aby 1 + h — b; — b, in the above inequality. Then solving the
inequality, we get

hi+h, <2(1+h) (4.14)
From Eqgns. (4.14) and (4.13). We get the stability condition-
0 <h +h,<2(1+h) (4.15)

Hence the proposed HPSO is stable iff 0 < hy + h, < 2(1 + h)

4.6 Results and Discussions

Then, the proposed HPSO method is compared to four different methods (Binary Harris
Hawks Optimization (BHHO)®!, GA, Salp Swarm Algorithm (SSA)'®) on seven datasets®
(lonosphere, Wine, Breast Cancer Wisconsin, Sonar, Libras Movement, Hill Valley, Musk 1)
using UCI Machine Learning respiratory as given in Table 1.3. On each dataset, we have
conducted five experiments. In each experiment, we have run the Matlab code six times.
Then, we recorded their CA, feature, and computational time for each experiment and each
dataset. We have also checked whether the difference is statistically significant or not by
applying Friedman's test and the MWUT. For more detailed information on the work, the
result of the Musk 1 dataset has been explained in Section 4.6.1. In Section 4.6.2, we have

discussed the effect of all the methods on all seven datasets.
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4.6.1 Musk 1%

The graphs of experiments 1, 2, 3, 4, and 5 of all the methods are obtained. In Figs 4.1 and
4.2, the first row gives the CA, where PSO, HPSO, GA, BHHO, and SSA are represented by
green, red, yellow, blue, and black colours, respectively. In the second and third rows of the
Figs 4.1 and 4.2, we are getting the NF and the time complexity of all the methods. Here,
PSO, HPSO, GA, BHHO, and SSA are represented by bar 1, bar 2, bar 3, bar 4, and bar 5,
respectively. The graphs of experiments 1 and 2 are in Figs 4.1 and 4.2.

In Table 4.1, the CAs of the experiments 1, 2, 3, 4, and 5 are given in a detailed
manner. Since we have taken six runs in each experiment, every run is represented by a

column in Table 4.1. Hence, each column of Table 4.1 represents a run.

Table 4.1. Results of PSO, HPSO, GA, BHHO, and SSA obtained in five Experiments concerning CA

Experiment 1 RUN 1 RUN 2 RUN 3 RUN 4 RUN 5 RUN 6
PSO 0.936842 0.957895  0.936842  0.947368  0.957895  0.968421
HPSO 0.968421 0.957895  0.957895  0.978947  0.978947  0.978947
GA 0.947368 0.936842  0.957895  0.926316  0.936842  0.957895
BHHO 0.947368 0.936842  0.936842  0.947368  0.957895  0.926316
SSA 0.947368 0.926316  0.957895  0.947368  0.926316  0.936842
Experiment 2

PSO 0.947368 0.926316  0.957895  0.926316  0.915789  0.978947
HPSO 0.978947 0.968421  0.978947  0.947368  0.957895  0.978947
GA 0.968421 0.915789  0.957895  0.968421  0.926316  0.957895
BHHO 0.926316 0.915789  0.915789  0.936842  0.915789  0.947368
SSA 0.915789 0.936842  0.926316  0.936842  0.936842  0.947368
Experiment 3

PSO 0.947368 0.957895  0.978947  0.957895  0.978947  0.947368
HPSO 0.978947 0.978947  0.968421  0.968421  0.978947  0.968421
GA 0.968421 0.947368  0.957895  0.915789  0.957895  0.926316
BHHO 0.936842 0.947368  0.947368  0.947368  0.936842  0.905263
SSA 0.947368 0.936842  0.936842  0.936842  0.947368  0.894737
Experiment 4

PSO 0.915789 0.926316  0.947368  0.915789  0.915789  0.957895
HPSO 0.926316 0.947368  0.968421  0.978947  0.936842  0.968421
GA 0.915789 0.905263  0.915789  0.936842  0.894737  0.978947
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BHHO 0.905263 0.905263 0.894737 0.905263 0.894737 0.936842

SSA 0.915789 0.894737 0.894737 0.947368 0.894737 0.947368
Experiment 5

PSO 0.957895  0.936842  0.947368  0.968421  0.968421  0.915789
HPSO 0.968421 0.968421 0.989474 0.989474 0.989474 0.989474
GA 0.978947 0.978947 0.947368 0.957895 0.905263 0.905263
BHHO 0.936842 0.936842 0.936842 0.947368 0.936842 0.947368
SSA 0.947368 0.926316 0.947368 0.936842 0.936842 0.957895

Note: Bold values indicate the best value

Experiment 1

Here, we observe from Fig 4.1 that 4 times, HPSO is giving optimal results, 2 times PSO is
giving optimal results and 1 time GA and SSA are showing optimal results concerning CA.
Again, 3 times, GA takes the least NF, 2 times, HPSO takes the least NF, and 1 time, SSA

takes the least NF. The detailed results in Fig 4.1 are numerically written in Table 4.1.

Experiment 2

Here, we observe from Fig 4.2 that 5 times, HPSO is giving optimal results, and 1 time, GA is
giving optimal results concerning CA. Again, 2 times BHHO is taking the least NF, and the
rest are taking the least NF 1 time. The detailed results in Fig 4.2 are numerically written in
Table 4.1.

Experiments 3, 4, 5

From Experiment 3, 5 times HPSO gives optimal results and 2 times PSO gives optimal results
concerning CA. Again, 3 times, HPSO takes the least NF, 2 times, SSA takes the least NF, and
GA takes the least NF 1 time. From Experiment 4, 6 times, HPSO gives optimal CA results.
Again, 6 times, BHHO is taking the least NF. From Experiment 5, 4 times HPSO gives optimal
results, and 2 times GA gives optimal results concerning CA. Again, 2 times HPSO is taking
the least NF, and the rest are taking the least NF 1 time.
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45.2 Discussions

The experiment was conducted five times for each dataset. We have recorded their accuracy,
NF, and time complexity. Figs 4.3 to 4.9 are the convergence curve, which compares all five
methods on the seven datasets of a particular run of experiment 1. In Tables 4.2 and 4.3, the
observations of the experiment concerning CA and NF are given, respectively. Table 4.2 gives
the mean CA by all five methods on all seven datasets and the Friedman average rank (FAR).
Table 4.3 gives the mean number of features selected by all five methods on all seven datasets,
along with the average Friedman ranking. Here, the values in bold are best, and those in italics

are second best.
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Fig. 4.2. Graph of Experiment 2
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Table 4.2. Experimental results of Mean CA using PSO, HPSO, GA, BHHO, and SSA methods on the seven

datasets along with Friedman ranking

Hill Libras
Musk 1 Valley Moment Sonar lonosphere WDBC Wine FAR
PSO 0.94702 0.610193 0.82361 0.92264 0.930476 0.943953 0.968571 3.43
HPSO 0.969474  0.639669  0.843056 0.939453 0.93857 0.943363  0.977143  2.14
GA 0.94105 0.62204 0.821759 0.922403 0.93619 0.943953  0.98 2.86
BHHO 0.930526 0.590634 0.813426 0.92392 0.945912 0.957817 0.995238 2.57
SSA 0.932982  0.590083  0.812963 0.916486 0.930952 0.94867 0.978095 4

Note: Bold values indicate the best value, and italic values indicate the second best value

Table 4.3. Experimental results of Mean of NF selected using PSO, HPSO, GA, BHHO, and SSA methods on

the seven datasets along with Friedman ranking

Hill Libras FAR

Musk 1 Valley Moment Sonar lonosphere WDBC Wine
PSO 75 47.2 44.23333 33.2667 14.8 16.5 5.43333 3
HPSO  77.133 45.9667 4203333 31.8333 14.5667 16.0333  6.06667  2.29
GA 76.067 47.3666 43.83333 32,5333 154 15.3 6.36667  3.43
BHHO 91.8 46.1 44.76667 32.6667 22.56667 13.033 2.36667  3.43
SSA 83.4 47.8666 42.9333 31.1333 13.86667 14.866 6.83333  2.86

Note: Bold values indicate the best value, and italic values indicate the second best value
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Fig. 4.3. CA of all the methods on the Musk 1 dataset. Fig. 4.4. CA of all the methods on the Hill Valley dataset.
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4.7 Conclusion

From Table 4.2 and the U values of HPSO against other methods, we observe that HPSO has
the best solution, followed by BHHO, then again by GA, then by PSO, and then by SSA.
Hence, we can conclude that HPSO has the best CA with a statistically significant difference.
From Table 4.3 and the U values of HPSO against other methods, we observe that HPSO has
the best solution, followed by SSA, then again followed by PSO, then by GA and BHHO.
Hence, we can conclude that HPSO takes the least NF with a statistically significant
difference. Thus, we get a statistically significant difference after applying the Friedman's test
and MWUT.

Hence, based on statistical measures and convergence rates, the proposed HPSO
method gives better results on the high-dimensional and medium-dimensional datasets than the
other meta-heuristic methods considered in this paper. However, on low-dimensional datasets,
the results are satisfactory. Since the practical applications of FS problems involve large
datasets, the proposed HPSO is more application-oriented and useful. This satisfies our

objective to increase CA and decrease the NF.
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Chapter 5

Comparative study between Hybrid Particle Swarm Optimization
and Particle Swarm Optimization on a Multi-Objective Feature

Selection Problem

5.1 Introduction

Classification is a common application of machine learning, which finds the class for a given
instance based on a set of similarities®?. However, due to the abundance of noisy, pointless, and
duplicated features on some datasets, CA declines significantly as the number of features rises
and training time accelerates®®. Three crucial dimensionality reduction technologies—feature
extraction, feature building, and feature selection—are suggested to eliminate these
characteristics®. The fundamental difficulty feature selection algorithms face as the number of
features rises a broad search space®®. Consequently, the search method is a crucial component
of feature selection algorithms. Sequential forward selection (SFS) and sequential background
selection (SBS) are examples of traditional search algorithms that can identify the best answers.
Still, they need much computing time and are prone to local optimization, especially on high-
dimensional datasets®®. PSO, Grey Wolf Optimization (GWO), teaching-learning-based
optimization (TLBO), bacterial colony optimization (BCO), GA, ABC, and differential
evolution (DE) are examples of metaheuristic algorithms that have a better global search
capability than conventional search techniques. Hence, these algorithms are frequently used in
feature selection algorithms. As a result, much research focuses on feature selection algorithms

built using metaheuristic algorithms.
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It is challenging for a single swarm on high-dimensional datasets to tackle the feature
selection challenges®’. As a result, variable-length PSO representation was proposed by
decomposing the entire collection of features into feature subsets with various characteristics®®.
Combining classification performance and the number of features into a single fitness function
using a single assessment criterion is technically challenging, even though many researchers
delete some features using information theory or select feature subsets with good classification
accuracy. As a result, feature selection methods based on metaheuristic algorithms have been
given the MOO treatment®®. Since maximizing classification performance and reducing the
number of features are two competing goals, feature selection is a multi-objective issue®®.
Generally speaking, the Pareto dominance mechanism on the archive and diversity
enhancement strategies is primarily used in feature selection algorithms based on multi-
objective metaheuristic algorithms. The TMABC-FS™ algorithm incorporates a multi-
objective ABC algorithm with a two-archive mechanism based on the Pareto mechanism to
increase diversity. The two search algorithms must maintain a fair balance of convergence and
diversity, and the upkeep of the two archives requires a significant amount of computation
time™. To preserve population diversity, a multi-objective immune method using an elite
selection strategy based on reference vectors was proposed’?. Recently, MOFS-BDE"
proposed a one-bit purifying search operator for the self-learning capability, non-dominated
sorting with crowding distance on the archive, and a binary mutation operator based on
possibility differences to identify viable solutions.

This is how the rest of the chapter is organised. Certain fundamental ideas necessary
for comprehending this chapter properly are explained in Section 5.2. Section 5.3 describes the
issue that we have addressed in this chapter. The suggested HPSO technique for the multi-
objective FS problem has been covered in Section 5.4 of the chapter. Section 5.5 explains the
theoretical analysis of the suggested HPSO algorithm. Using seven datasets, the proposed
HPSO algorithm is contrasted with four different metaheuristic algorithms in Section 5.6. They
are next examined for statistical significance. This section also computes the time completion

of all the techniques. Lastly, the conclusion of the present work is provided in Section 5.7.
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5.2 Background

A comprehensive understanding of this chapter requires familiarity with core concepts like
PSO and GA, detailed in Section 1.3. It is equally critical to have a basic understanding of
MOO for proper comprehension, as explained in Chapter 3, Section 3.2. Additionally, an

awareness of FS problems, discussed in Section 1.5, is vital.

5.3 Problem Formulation

For our proper understanding, some important terms and concepts are defined. Most literature
combines the two objectives, forming a single objective optimization problem. But in this
chapter, we are dealing with them separately, forming a MOO problem. This gives rise to the
set of Pareto-optimal solutions. Hence, a hybrid metaheuristic algorithm for the multi-objective

FS problem is developed and explained in this chapter.

The objective functions of the MOO problem are explained here. We have two
objective CA and the NF. The article aims to maximize the selected features CA and minimize
the NF. If we increase the CA, the NF will decrease and vice versa. Since both objective

functions are contradictory, we will get a set of Pareto-optimal solutions.

Here, we have used the concept of wrapper evaluation for computing CA, which is the
first objective function F; (X) of the FS problem. The wrapper fitness function maximizes the
CA of the selected feature subset and is calculated using Eq. (4.2). Here, the number of
correctly classified instances is divided by the total number of cases computed. Here, we have
used the KNN classification, with K=1 for its simplicity. The pseudo-code and formula for
finding the CA are given in the previous chapter in Section 4.3. The NF is calculated as given
in Eq. (4.3) and its pseudo-code is given in the previous chapter in Section 4.3. Here , the first

objective function is F; (X) + F,(X) and the second objective function is F;(X).

5.4 Proposed HPSO Algorithm

The proposed algorithm uses the concept of a cross-over operator to develop a hybrid PSO.
The pseudo-code of the proposed algorithm is given below:
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INPUT: Initialization of the position of each particle and all the parameters are done.
OUTPUT: Pareto-optimal solutions, with each solution giving accuracy and NF.

(1) Each particle is initialized with the help of random matrices. Each row of the matrix
represents the particle’s position. Therefore, proper one-to-one correspondence
between the possible solution and position matrix is critical for the algorithm's
effectiveness.

(2) The velocity and position of the particles for the first iteration are taken as random
matrices.

(3) Compute the wrapper evaluation of each particle, which will be treated as accuracy for
Worapper evaluation F; (X) + F,(X) from Egns. (4.1) and (4.2).

(4) Compute the NF for each particle F;(X) from Eq. (4.3).

(5) t=t+ 1; from here, the iteration process starts till maximum iteration is reached. (We
have started from t=1).

a. From the population, a leader set is selected.
b. The position and velocity are updated using Eq. (1.16) and Eq. (1.17).
Then the boundary conditions are applied.

C
d. The accuracy of each particle and the NF taken by each particle are computed.

@

The personal best for each particle is updated.

=h

Apply the crossover operator between the personal best solution and the global
best solution.

Chang the Non-Dominating Front by adding Non-Dominated Particles.

h. The domination of all the new Non-Dominating Front Members is determined.

(6) The iteration process continues until the Maximum iteration is achieved.

(7) The algorithm will give Pareto-optimal solutions after achieving the termination

criteria. Then, each solution will give us accuracy and the NF it takes.

5.5 Mathematical Analysis of Proposed Algorithm

The stability analysis of the proposed HPSO algorithm can be discussed with the help of the
groundwork laid out in the previous chapter.
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5.6 Results and Discussions

Here, the results obtained using the Proposed HPSO algorithm are compared with the PSO
algorithm on seven datasets® to know which produces better results. The detailed information
on all the datasets is explained in Table 1.3. Since we are dealing with the MOO problem, we
will get a set of Pareto optimal solutions. Each Pareto optimal solution gives accuracy and NF.
Five experiments on all seven datasets have been conducted. The results of three experiments
obtained by using the lonosphere dataset, the Musk 1 dataset, and two experiments on Hill
Valley Datasets have been explained in detail in this section. Both HPSO and PSO algorithms
are compared using Figs 5.1- 5.7 and Tables 5.1- 5.16, where DMs, accuracy, and NF are given.
In Figs 5.1- 5.7, the PSO algorithm is indicated on the Left side, the HPSO algorithm is marked

on the Right side, and the Red colour denotes the DMs.

5.6.1 lonosphere Dataset

The experimental results on the lonosphere Dataset have been explained in this section. Here,

only three out of the five experiments are explained in detail. The DMs of Experiments 1, 2,

and 3 using the lonosphere dataset are given in Figs 5.1, 5.2, and 5.3.
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Fig. 5.3. Graph of Experiment 3

Result of Experiment 1

In experiment 1, the DMs in PSO and HPSO algorithms are given in Tables 5.1 and 5.2,
respectively, with their accuracy and NF. In this Experiment, the average accuracy of PSO and
HPSO algorithms is 0.8714 and 0.8929, respectively. On the other hand, the NF taken by PSO
and HPSO algorithms are 18 and 16, respectively. Here, we observe that the HPSO algorithm
has higher accuracy and less average NF than the PSO algorithm. So, we are getting a better

result when we apply the HPSO algorithm.
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Table 5.1. Results for PSO of Experiment 1

DMs ACCURACY NF
1 0.871428 17
2 0.857142 16
3 0.885714 20

Table 5.2. Results for HPSO of Experiment 1

DMs ACCURACY NF
1 0.900000 17
2 0.885714 15

Result of Experiment 2

In experiment 2, the DMs in PSO and HPSO algorithms are given in Tables 5.3 and 5.4,
respectively, with their accuracy and NF. In this Experiment, the average accuracy of PSO and
HPSO algorithms is 0.8952 and 0.8905, respectively. On the other hand, the NF taken by PSO
and HPSO algorithms are 19 and 17, respectively. Hence, we observe that the average accuracy
is approximately the same in both PSO and HPSO algorithms. However, the proposed HPSO
algorithm takes less average NF when compared with the PSO algorithm. So, we are getting a

better result when we apply the HPSO algorithm.

Table 5.3. Results for PSO of Experiment 2

DMs Accuracy NF
1 0.8714285 15
2 0.9142857 24
3 0.9000000 18

Table 5.4. Results for HPSO of Experiment 2

DMs Accuracy NF
1 0.9000000 15
2 0.8571428 13
3 0.9142857 23

Result of Experiment 3
In experiment 3, the DMs in PSO and HPSO algorithms are given in Tables 5.5 and 5.6,

respectively, with their accuracy and NF. In this Experiment, the average accuracy of PSO and
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HPSO algorithms is 0.8952 and 0.8905, respectively. On the other hand, the NF taken by PSO
and HPSO algorithms are 19 and 17, respectively. Hence, we observe that the average accuracy
is approximately the same in both PSO and HPSO algorithms. However, the proposed HPSO
algorithm takes less average NF when compared with the PSO algorithm. So, we are getting a

better result when applying the HPSO algorithm.

Table 5.5. Results for PSO of Experiment 3

DMs Accuracy NF
1 0.828571 16
2 0.842857 20

Table 5.6. Results for HPSO of Experiment 3

DMs Accuracy NF
1 0.828571 15
2 0.842857 16
3 0.857142 21

5.6.2 Musk 1 Dataset

The experimental results on the Musk 1 Dataset have been explained in this section. Here, only
three out of the five experiments are explained in detail. The DMs of Experiments 1, 2, and 3

are given in Figs 5.4, 5.5, and 5.6.
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Fig. 5.4. Graph of Experiment 1
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Fig. 5.6. Graph of Experiment 3

Result of Experiment 1

In experiment 1, the DMs in PSO and HPSO algorithms are given in Tables 5.7 and 5.8,
respectively, with their accuracy and NF. In this Experiment, the average accuracy of PSO and
HPSO algorithms is 0.8526 and 0.8719, respectively. On the other hand, the NF taken by PSO
and HPSO algorithms is 96.7143 and 67.6667, respectively. Here, we observe that the HPSO
algorithm has higher accuracy and less average NF than the PSO algorithm. So, we are getting

a better result when we apply the HPSO algorithm.
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Table 5.7. Results for PSO of Experiment 1

DMs Accuracy NF
1 0.852631 97
2 0.842105 89
3 0.831578 83
4 0.884210 110
5 0.873684 109
6 0.863157 107
7 0.821052 82

Table 5.8. Results for HPSO of Experiment 1

DMs Accuracy NF
1 0.810526 50
2 0.873684 53
3 0.863157 51
4 0.884210 81
5 0.894736 84
6 0.905263 87

Result of Experiment 2

In experiment 2, the DMs in PSO and HPSO algorithms are given in Tables 5.9 and 5.10,
respectively, with their accuracy and NF. In this Experiment, the average accuracy of PSO and
HPSO algorithms is 0.8842 and 0.8825, respectively. On the other hand, the NF taken by PSO
and Hybrid HPSO algorithm is 109.4286 and 58.5, respectively. Here, we observe that the
HPSO algorithm has higher accuracy and less average NF than the PSO algorithm. So, we are

getting a better result when we apply the HPSO algorithm.

Table 5.9. Results for PSO of Experiment 2

DMs Accuracy NF
1 0.852631 78
2 0.863157 81
3 0.873684 93
4 0.884210 94
5 0.894736 138
6 0.905263 140
7 0.915789 142
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Table 5.10. Results for HPSO of Experiment 2

DMs Accuracy NF
1 0.831578 39
2 0.852631 40
3 0.863157 41
4 0.905263 42
5 0.915789 86
6 0.926315 103

Result of Experiment 3

In experiment 3, the DMs in PSO and HPSO algorithms are given in Tables 5.11 and 5.12,
respectively, with their accuracy and NF. In this Experiment, the average accuracy of PSO and
HPSO algorithms is 0.8553 and 0.8421, respectively. On the other hand, the NF taken by PSO
and HPSO algorithms are 101.3750 and 28.3, respectively. Hence, we observe that the average
accuracy of PSO is better than that of the HPSO algorithm. However, the proposed HPSO
algorithm takes less average NF when compared with the PSO algorithm. So, we are getting a

better result when we apply the HPSO algorithm.

Table 5.11. Results for PSO of Experiment 3

DMs Accuracy NF
1 0.821052 84
2 0.842105 85
3 0.852631 87
4 0.863157 89
5 0.873684 111
6 0.884210 135
7 0.894736 137
8 0.810526 83

Table 5.12. Results for HPSO of Experiment 3

DMs Accuracy NF
1 0.926315 60
2 0.905263 45
3 0.894736 28
4 0.810526 21
5 0.768421 20
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6 0.747368 18
7 0.873684 23
8 0.757894 19
9 0.852631 22
10 0.884210 27

5.6.3 Hill Valley Dataset
The experimental results on the Hill Valley Dataset have been explained in this section. Here,
only three out of the five experiments are explained in detail. The DMs of Experiment 1 are

given in Fig 5.7.

Number of featt
Number of features

Fig. 5.7. Graph of Experiment 1

Result of Experiment 1

In experiment 1, the DMs in the PSO and HPSO algorithms are given in Tables 5.14 and 5.15,
respectively, with their accuracy and NF. In this Experiment, the average accuracy of the PSO
and HPSO algorithms attained is 0.4752 and 0.4773, respectively. On the other hand, the NF
taken by the PSO and HPSO algorithms is 54.75 and 10.25, respectively. Here, we observe that
the HPSO algorithm has higher accuracy and less average NF than the PSO algorithm. So, we

are getting a better result when we apply the HPSO algorithm.
Table 5.13. Results for PSO of Experiment 1

DMs Accuracy NF
1 0.495867 68
2 0.471074 50
3 0.479339 53
4 0.454545 48
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Table 5.14. Results for HPSO of Experiment 1

DMs Accuracy NF
1 0.454545 5
2 0.471074 6
3 0.487603 11
4 0.495868 19

Result of Experiment 2

In experiment 2, the DMs in the PSO and HPSO algorithms are given in Tables 5.16 and 5.17,
respectively, with their accuracy and NF. In this Experiment, the average accuracy of PSO and
HPSO algorithms is 0.5240 and 0.5438, respectively. On the other hand, the NF taken by the
PSO and HPSO algorithms is 52.6 and 5.2, respectively. Here, we observe that the HPSO
algorithm has higher accuracy and less average NF than the PSO algorithm. So, we are getting

a better result when we apply the HPSO algorithm.

Table 5.15. Results for PSO of Experiment 2

DMs Accuracy NF
1 0.512396 51
2 0.520661 52
3 0.545454 56
4 0.537190 55
5 0.504132 49

The mean accuracy and NF of both algorithms on all the datasets are given in Tables
5.17 and 5.18, respectively. First, the WRST is applied to know their statistical significance.
Then, the p-values of accuracy and NF are collected and given in Table 5.19. Whenever the p-
values are less than 0.05, the null hypothesis is rejected. Hence, there is a significant difference.
On the other hand, whenever the p-values are more than 0.05, the null hypothesis cannot be

rejected. Hence, there is no significant difference.
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Table 5.16. Results for HPSO of Experiment 2

DMs Accuracy NF
1 0.487603 1
2 0.545454 2
3 0.553719 3
4 0.561983 8
5 0.570247 12

Table 5.17. Mean Accuracy of both algorithms on all the seven datasets

Datasets PSO Algorithm HPSO Algorithm
Wine 0.863736 0.852718
WDBC 0.932421 0.91642
lonosphere 0.871428 0.865934
Sonar 0.786116 0.789268
Libras Moment 0.749074 0.694951
Hill Valley 0.506562 0.538429
Musk 1 0.866947 0.868571

Table 5.18. Mean NF of both the algorithms on all seven datasets

Datasets PSO Algorithm HPSO Algorithm
Wine 6.461538 2.444444
WDBC 15.818181 2777777
lonosphere 17.727272 15.384615
Sonar 34 9.04
Libras Moment 42.533333 9.137931
Hill Valley 50.882353 10.2
Musk 1 102.92 52.285714

Table 5.19. P-values of WRST of accuracy and features on all the seven datasets

Datasets P-Values of accuracy P-Values of NF
Wine 0.459 0
WDBC 0.178 0

lonosphere 0.62414 0.0455

Sonar 0.34 0
Libras Moment 0.414 0
Hill Valley 0.018 0
Musk 1 0.519 0
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From Tables 5.17, 5.18, and 5.19, we get the following observations-

(0 The accuracy of both algorithms on the wine dataset is comparable. But we are getting
less NF with a statistical significance when compared with the PSO.

(2) On the WDBC dataset, the accuracy of both algorithms is comparable. But we are
getting less NF with a statistical significance when compared with the PSO.

(3) On the lonosphere dataset, the accuracy of both algorithms is comparable. But we are
getting less NF with a statistical significance when compared with the PSO.

4) On the Sonar dataset, the accuracy of HPSO is higher when compared with PSO, but
the difference is not statistically significant. We are getting less NF with a statistical
significance when compared with the PSO.

(5) The accuracy of both algorithms is comparable to the Libras Moment dataset. But we
are getting less NF with a statistical significance when compared with the PSO.

(6) On the Hill Valley dataset, the accuracy of HPSO is higher with statistical significance
when compared with PSO. Also, we are getting less NF with a statistical significance when

compared with the PSO.

On the Musk 1 dataset, the accuracy of HPSO is higher with statistical significance
when compared with PSO. Also, we are getting less NF with a statistical significance when
compared with the PSO.

5.7 Conclusion

This work proposes a hybrid metaheuristic algorithm, HPSO, using a cross-over
operator and PSO. Here, a pseudo-code for finding the accuracy and NF, which is used as an
objective function, has been developed. The proposed HPSO algorithm was applied to MOFS

problems, and the performance of HPSO was compared against PSO using seven UCI datasets.

The experimental results demonstrate that the HPSO algorithm outperforms PSO on a
MOFS problem. Hence, the proposed algorithm gives better accuracy on higher dimensional
problems. But on low dimensional problems, the result is comparable. The proposed algorithm
takes less NF on both higher and lower dimensional problems. Furthermore, statistical tests
were conducted to support this conclusion. Therefore, the proposed HPSO algorithm has the
potential to serve as an excellent MOO problem and to tackle FS problems.
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In the future, we will expand its application to real-life problems such as machine
learning, medical applications, financial fields, and engineering optimization tasks.
Furthermore, we will also integrate the fuzzy concept and novel algorithms with other

strategies to build a better optimizer.
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Chapter 6

Innovative Hybrid Metaheuristic Algorithms: Exponential
Mutation and Dual-Swarm Strategy for Hybrid Feature Selection

Problem

6.1 Introduction

Metaheuristic algorithms are preferred over deterministic optimization algorithms due to their
simplicity and ease of implementation in real-life scenarios. Various metaheuristic algorithms,
such as BA'?, GA, Quantized Salp Swarm Algorithm™ and others have been applied to

various real-world problems®.

The exploration and exploitation phases are common features in all metaheuristic
algorithms. During the exploration phase, the algorithm explores different regions of the
solution space to avoid premature convergence or stagnation. The success of metaheuristic
algorithms depends on maintaining a proper balance between exploration and exploitation,
which is achieved by selecting appropriate parameters.

FS involves selecting a subset of original features that can achieve high accuracy in a
classification problem. The primary goals of the FS problems are to improve accuracy’® and
reduce the NF. Several fields, including text mining, image processing, computer vision,
industrial applications, bioinformatics, and others, use FS problems in various ways’’. As per

the NFL theorem® exploring novel and innovative metaheuristic algorithm is very important.
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The chapter is organised as follows for the remainder of it. Some fundamental ideas
needed for a thorough understanding of this chapter are explained in Section 6.2. The problem
we have addressed in this chapter is explained in Section 6.3. Section 6.4 discusses the
proposed PSOHHO and PSOHHO-V algorithms for the FS problem. Section 6.5 provides an
explanation of the proposed algorithm's theoretical analysis. Several datasets are used in
Section 6.6 to evaluate the proposed PSOHHO and PSOHHO-V algorithms with additional
metaheuristic algorithms. Next, the statistical significance of them is examined. The

conclusion of the current work has been provided in Section 6.7.

6.2 Background

To fully comprehend this chapter, it's essential to be familiar with fundamental concepts such
as HHO, PSO, and GA, explained in Section 1.3. Moreover, a crucial awareness of FS

problems, explained in Section 1.5, is critical.

6.3 Problem Formulation

This section provides a brief overview of the challenge addressed in this chapter. As per the
NFL theorem, no optimization algorithm can be the most efficient for every optimization
problem. There is a need for development of innovative and efficient metaheuristic algorithms
that will provide researchers and experts with broader options for solving complex

optimization problems.

In this chapter, two novel hybrid variants of metaheuristic algorithms are developed
and discussed. In the novel variants an innovative EMO is introduced, to enhance the
exploration capability. It includes an exponential function that determines mutation
probability per particle based on its history. Also, the concept of dual-swarm strategy is

introduced into this algorithm to foster diversity throughout the optimization process.

There is a considerable research gap as theoretical and mathematical analysis of most
of the metaheuristic algorithms has yet to be proved or even discussed. To address this issue
the Signature of the proposed algorithm has been developed, this helps in the theoretical

analysis of the proposed algorithm.
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Initially, the efficacy of the developed algorithms PSOHHO and PSOHHO-V are
assessed on Benchmark Functions (BF) to validate their applicability to real-world problems.
Subsequently, their application to FS problems aims to enhance CA and reduce the NF. For the
FS problem, a combination of FE, WE, and NF are considered, and the proposed algorithms,
PSOHHO and PSOHHO-V, are employed. Comparative analyses with other metaheuristic
algorithms are conducted, and statistical significance is verified using Friedman's test and
Wilcoxon Rank Sum Test (WRST). In this chapter, each row of the position matrix corresponds
to a particle's position, where '0' signifies a feature not selected and '1' indicates feature
selection. The quality of representation critically influences the effectiveness of the proposed

method.

6.4 Proposed Hybrid Approaches (PSOHHO and PSOHHO-V)

Exploration and exploitation stand out as the primary techniques employed in the search for
solutions within the solution space. Achieving an optimal answer requires a careful equilibrium
between these two approaches to thoroughly navigate the solution domain. Traditional PSO
algorithms and their modifications encounter challenges in maintaining this balance, resulting
in limitations in generating effective solutions. The proposed algorithms help to address these
issues. This algorithm employs two strategies to produce effective search results: 1) A dual-
swarm technique is implemented and 2) PSO is subjected to an EMO.

When particles get stuck in local minima, they experience the mutation operator, which
consists of two crucial components. First, in order to improve performance, the algorithm's
overall mutation probability, represented by the letter mpt, gradually decreases over time.
Secondly, particles whose zP has stayed stationary in recent iterations see an enhanced chance
of mutation, and is accomplished by introducing mp5. After that, Eq. (6.1) is utilized to
determine mu}. Throughout the iterations, the parameter mp! decreases by a factor of A,. It is
determined by applying Eq. (6.2), which is explained in”® and Eq. (6.3) is used to compute

t
mps;.

mut = mpt x mp} (6.1)

]
mpf = mp;~' X Aq (6.2)
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mp; = (6.3)
Here the number of iterations of particle p;, during which it’s zP remains unchanged,
is represented as NSI;. Parameter NI indicates how many times the particle has been iterated

to take benefit of its neighbourhood.

The quest for an optimal exploration-exploitation balance leads to the design of a dual-
swarm strategy, wherein the total population N is divided into two halves. The first half of the
particles team (Say Team A), the particles are guided using HHO and in the second half (Say
Team B), particles are guided using PSO, for every iteration. Then at each iteration, the best
values of teams A and B are compared. Then at the end of the termination criteria, the best
value is selected as the global best solution. The global best solution gives us features with
higher accuracy and less NF. In the second algorithm, a variant of PSOHHO (PSOHHO-V) is
introduced, where the concept of crossover is applied. The flowchart of PSOHHO is given in

Fig. 6.1 and the detailed explanation of the proposed algorithms are given below -

Algorithm 1: Pseudo-code of PSOHHO and PSOHHO-V (with step 22).

INPUT: Initialization of the position of each particle and all the parameters are done.
OUTPUT: Global best solution.

Pseudo-code

1) First, all the parameters of the PSO and HHO are initialized. The particle swarm (N)

is given before the start of the experiment as it depends on experiment h = 1,
h, = 2, and h, = 2 are the values of the parameter taken.

2) The particle's velocity and position are initialized by assigning random matrices.

3) In a corresponding solution matrix, the position of every particle is represented by the
row of the corresponding position matrix.

4) The main iterative loop starts in this step.

5) Compute the FE (F;), WE (F,) and NF (F;) of each particle using Eq. (4.1), Eq. (4.2)
and Eq. (4.3) respectively

6) The objective function ((F1 +F,)— F3) is treated as the fitness function of each

particle.
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7) Now first Team A and then Team B will come into play respectively.
8) Fori= 1:N/2 (Say Team A)
9) Now, compute |E_E| from Eq. (1.3) to check whether to stay in exploration or
exploitation mode.
10) If |E_E| > 1, update the particle according to Eq. (1.1). This is the exploration phase.
11) If [E_E| and c are greater than or equal to 0.5.
then the particles are guided by Eq. (1.4)
12) Else if |E_E]| is less than 0.5 and c is greater than or equal to 0.5.
then the particles are guided by Eq. (1.7)
13) Else if |E_E| is greater than or equal to 0.5 and c is less than 0.5.
then the particles are guided by Eq. (1.12)
14) Else if |[E_E| and c are less than 0.5.
then the particles are guided by Eq. (1.15)
End
15) End
16) Eq. (6.1) is used to apply the EMO.
17) End (steps 8 to 16)
18) Then we take the best value from the above steps (steps 8 to 16). (Say (Fit H)).
19) Fori = N/2:N (Say Team B)
20) Update the velocity and position of each particle using Eq. (1.16) and Eq. (1.17)
21) The personal best of each particle is updated and Eq. (6.1) is used to apply the EMO.
Then the global best is updated.
End
22) Then the crossover operator is introduced (ONLY FOR SECOND ALGORITHM,
KNOWN AS PSOHHO-V).
23) End (steps 18 to 23)
24) Then we take the best value from the above steps (steps 18 to 23). (Say (Fit P)).
25) Now, Fit H and Fit P are compared. The higher fitness value will be treated as the
global best.
26) End (steps 4 to 25). Here the main iteration loop stops.
27) If termination criteria is not achieved then the process keeps repeating. So steps 8 to

17 and steps 19 to 23, will be repeated again and again till the criteria is not satisfied.
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28) After termination criteria is achieved, select the features using global best and its CA
is reported.

Note: If Step 22 is included, then it is the PSOHHO-V algorithm, else it is the PSOHHO
algorithm.
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Fig. 6.1. Flowchart of PSOHHO
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6.5 Theoretical Analysis of PSOHHO

With the aid of the Signature stated in Section 6.5.1 and the convergence discussed in Section

6.5.2, the theoretical analysis of the proposed algorithm is covered in this part.

6.5.1 Signature of the PSOHHO

An unbiased stochastic optimization technique generates a collection of positions that are
statistically identical to those generated by an arbitrary search since every point in the search
space has the same importance. Hence, it is ideal to identify the inherent bias of an
optimization technique before calculating its efficiency. We must be vigilant for central bias,
edge bias, none, or both. Let f(x) = 1 to observe the bias of optimization. The underlying
bias of the algorithms is shared by many optimization techniques. Many optimization
algorithms like the Marine Predators Algorithm, WOA, and GWO can be rejected because of
their biases’®. Fig. 6.2 displays the HHO Signature. The HHO algorithm is disallowed due to
its center bias. To assess the bias of the suggested optimization algorithm (PSOHHO), we
used f(x) = 1. We can see the PSOHHO signature in Fig. 6.3. The PSOHHO Signature is
not skewed toward the center, axis, or region, as seen in Fig. 6.3. We can observe that the
Signature of PSOHHO must be acknowledged and that it is far superior to the Signature of
HHO.

Fig. 6.2. Signature of HHO Fig. 6.3. Signature of PSOHHO

6.5.2 Convergence analysis of the PSOHHO

Convergent analysis of standard PSO has been carried out using the MC?8,
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Convergent criteria
The convergence of an algorithm depends on the framework of the theoretical analysis of the
algorithm and certain criteria; here, we have used the conditions given by Solis and Wets®.
If a stochastic optimization T iterates for t iterations, then we can obtain the new solution
z(t + 1) using the equation defined below-

z(t+1) =T(z(t),£)
Where ¢ is the solution set.
To obtain global optimality, two conditions are necessary to achieve during the iterative
process: -

Condition 1. 8: The sequence f(z(t)) should decrease when applying algorithm S. If I is a
feasible solution space, there exists
C ={c =(ay,ay..,a,)| a;e A}
€ € I such that
f(T(z9) < (&
Condition 2. & For all subsets C e | with v(C) > 0, probability measure u.(C) for iteration

't," we have

Product 1_[(1 — ut(C)) =0
t=0

Criteria 1. If ‘f’ is a measurable and ‘I’ is a measurable subset, the algorithm will converge
with probability one when ‘t’ is sufficiently large if conditions 1 and 2 are satisfied. In other

words, the algorithm can almost imply global convergence.

We consider the parameters h, and h, as constant for simplicity.

Now we will define the concepts required to prove the convergence of PSOHHO.
Definition 1. Particle’s position z, Intensity E_I, particle’s best position zPand particle’s
velocity s forms a state, ad it is denoted as (z, s, E_I, zP). All the possible states of all the

individuals form state space and are denoted byA = {a = (z,s,E_I, zP)| z,zP e I}

Definition 2. Now we define the group status space as
C ={c = (ay,ay..,ay)| a;e A}
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We can observe from the above definitions that the group status space also contains the best
positions. For all a; = (24, s1, E_E;, zP1) € A and a, = (z, s,, E_E,, zP2) € A, the state
transition can be denoted by F,(a;) = a,. Here E,is the transition function from a; to a,.

- - — p —
Similarly, for all ¢; =(z;1, ;2. E_E;3,2,) € H, Fo(c:) = ¢;.

Theorem 1. In the proposed algorithm, state a, is shifted to state a, in one step, and the
transition probability (TP) is

P(Fa(ay) = ay) = P(z; = 2,)P(s; = s,)P(E_E; —» E_E;)P(zP* — zP?)
Proof. The state of the particle is transferred from a; = (z,, s;, E_E;, zP1) t0 a, = (z, s,
E_E,, zP2). Hence z; - z,,s; = s,, E_E,E_E,, zP1 — zP2 are transferred simultaneously.
The probability of P(F,(a,) = a,) is

P(Fy(a,) = ay) = P(2; > z3)P(sy = s;)P(E_E; — E_E;)P(zP* — zP?)

Theorem 2. The PSOHHO's group state sequence is a finite homogeneous MC.

Proof. The number of iterations is finite, the population size is finite, and the search space is
finite. So, z, s, E_E, zP is also finite, which implies that each state a = (z,s,E_E, zP) is also
finite. Hence we can conclude that the state space is also finite.

The particle's position updates in every iteration of the algorithm. So, it cannot be an MC.
However, if we can group the position, Escaping Intensity, personal best history, and velocity
as one state C(t). Then the other state, C(t + 1), is only linked with the state C(t). Then the
sequence C(t) has proper MC properties.

The Transition Probability (TP) P (F.(C(t— 1)) = C(t))from state C(t — 1) to C(t) is
computed by the TP of all the individuals in the group. From theorem 1, the TP is calculated
by the joint probability of P(z(t—1) - z(t)), P(s(t—1) » s(t)) P(E_E(t — 1) -
EE®))P(zP(t—1) - zP(t)). Also, (z(t — 1) - z(1)), P(s(t — 1) - s(t)) P(E_E(t —
1) > E_E(D))P(2P(t — 1) - zP(t)) are only related to z, s, E_E, zP at time t. Hence
P (FC(C(t -1) = C(t)) is linked only to the state a;(t — 1), 1 < i < N. Hence the MC is
finite. Again P (FA(a(t — 1)) = a(t)) is independent of time t — 1 according to Theorem 1.

Similarly, P (FC(C(t -1) = C(t)) is independent of time t — 1. Hence these finite MCs

are homogeneous.
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Global Convergence Analysis of PSOHHO Using MC

Let us state the following three theorems:

Theorem 3.8 If V c C, then there does not exist any closed set ] other than C satisfying
] NV =0.

Theorem 4.8 Suppose there is a non-empty set z of. an MC with no closed set E satisfying
Y NE =0, then LimP(z* =j) = m only if j€Y and LimP(x* = j) =0 only if j

does not belong to Y.

Theorem 5.8 When the number of iterations increases and becomes sufficiently large, the
group state sequence converges to the optimal state set.

Using the above theorems, we will prove that PSOHHO converges globally.

Theorem 6. PSOHHO, with the MC model defined above, converges to the global point.

Proof. A stochastic optimization algorithm will converge to the global optimality if it meets
both Conditions 1 and 2, according to Criteria 1. In essence, the first condition (Condition 1)
can ensure that the stochastic optimization algorithm's fitness value is declining. Furthermore,
the prior theorems also establish that the group state sequence will converge to the optimal set
after sufficient repetitions, i.e., the probability of failing to find the globally optimal solution
is asymptotically zero. By extension, this proves that the second convergence criterion is
likewise met. Therefore, we can conclude that PSOHHO will converge to the optimal point
with probability one.

6.6 Results and Discussions

The efficiency of the proposed algorithms is explained in Section 6.6.1, by comparing them
with other four metaheuristic algorithms on ten BF. Then its application to the FS problem is
explained in Section 6.6.2. The maximum number of iterations, swarm size, and dimension we
have taken are 200, 10, and 30 respectively. The codes are run on Windows 10 (64 bit), RAM
8 GB.
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6.6.1 BF

All six algorithms including the proposed algorithms (PSOHHO and PSOHHO-V) are
converted into binary form after using a well-defined transformation function and then applied
on ten BF% The BF consists of unimodal (UP), multimodal (MP), and fixed dimensional
multimodal problem (FDMP) and are given in Table 6.1. The mean fitness value of all the
algorithms on the BF are given below in Table 6.2 along with Friedman ranking. Then to check
the statistical significance of the proposed algorithms Friedman test and Wilcoxon Rank Sum
Test (WRST) are applied. Then the P-values of WRST are given in brackets in Table 6.2, when
PSOHHO-V is compared with other algorithms on all the BF. The efficiency of the algorithm
is affected by the dimension of optimization problems. The scalability analysis is done to
observe the efficiency of the proposed algorithms. So, we have tested the algorithms on the BF
with dimensions 30, 100, 500, 1000. Here best fitness values of BF are written in bold in Table

6.2 and we are getting the following observations-

1. When PSOHHO-V is compared with PSOHHO, four times PSOHHO-V gives significantly
better (i.e. on BF;, BF;, BF,, BF) fitness value than PSOHHO. PSOHHO-V is giving better
fitness value than PSOHHO twice but the difference is not significant (i.e. on BF, and BFy),
zero times significantly worse and remaining four times same (i.e. on BF,, BFs, BF4, BF ;).

2. When PSOHHO-V is compared with HHO, four times PSOHHO-V is giving significantly
better (i.e. on BF, BF;,BF, BF,) fitness value than HHO. PSOHHO-V s giving better
fitness value than PSOHHO twice but the difference is not significance (i.e. on BF, and
BF ), zero times significantly worse and remaining four times same (i.e. on BF,, BF 5, BF,,
BF ).

3. When PSOHHO-V is compared with GA, six times PSOHHO-V is giving significantly
better (i.e. on BF, BF, BF,, BF¢, BF, BFy) fitness value than GA. Once better but the
difference was not significance (i.e. on BF;), zero times significantly worse, and remaining
three times same (i.e. on BF 5, BFy, BF ;).

4. When PSOHHO-V is compared with PSO, seven times PSOHHO-V is giving significantly
better (i.e. on BF, BF,, BF,, BF,, BF,, BFg) fitness value than PSO, zero times

significantly worse and remaining three times same (i.e. on BFs, BF,, BF ;).
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5. When PSOHHO-V is compared with SSA, seven times PSOHHO-V is giving significantly
better (i.e. on BF, BF,, BF,, BF,, BF,, BFg) fitness value than SSA, zero times

significantly worse and the remaining three times same (i.e. on BF s, BFy, BF ).

Table 6.1. Collection of BF 2

BF Type
™ uP
BF,(x) = ) x}
2
i n uP
BF,() =) pxl+ | |1
i=1 i=1
n-1 UP

BF,(x) = ) 1001, —xP)? + (v — 7]
n up
BF,(x) = Z(xi +0.5)?

i=1

" MP
BF.(x) = 418.9829 xn — Z(xi)(sin sin+/|x;])
i=1
n MP
BF(x) = Z[xiz — 10 cos cos 2mx; + 10]
i=1
C02 |(B)yn 42 Lygn . MP
SRR o BNt J

BFy(x) = (ﬁ)ixz - 1_[(7> +1 "
. -1 FDMP
BF(0 = | (55) * ]z i+ 2%=1(ici —ay)°
FDMP

2
BF,,(x) = (xz —j?llez +%x1 - 6) +10 (1 —S) cos x; + 10

Table 6.2: Mean fitness value of 50 runs on the BF when dimension is 30 along with P-values in bracket.

BF PSOHHO PSOHHO-V HHO GA PSO SSA
BF:  29.1(0.046) 29.36 29.2 (0.029) 27.24 (0) 23.46 (0) 20.39 (0)
BF,  29.68(0.0356)  29.88 29.38 (0.025) 27.36 (0) 25.56 (0) 23.47 (0)
BFs 2360 (0) 2540 2370 (0) 2520 (0.26) 2070 (0) 1730 (0)
BFs 1040 (0.07) 1040 1040 (0.23) 1020 (0) 996 (0) 974 (0)
BFs 12600 (0) 12600 12600 (0) 12600 (0) 12600 (0) 12600 (0)
BFs 524 (0) 599 29.18 (0) 27.46 (0) 402 (0) 581 (0)
BF,  4.33(0) 4.63 3.59 (0) 3.47 (0) 4.49 (0) 4.56 (0)
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BFs  0.89 (0.056) 0.89 0.89 (0.18) 0.88 (0) 0.84 (0) 0.83(0)

BFy 1456 (1) 14.56 14.56 (1) 14.56 (1) 14.56 (1) 14.56 (1)
BFw  55.60 (1) 55.60 55.60 (1) 55.60 (1) 55.60 (1) 55.60 (1)
RANK 2 1 3 4 6 5

Note: Bold values indicate the best value, and P-values are given in the corresponding bracket

6.6.2 FS Application

To implement the proposed algorithms, the given algorithms are converted into binary form
using transformation. Then the proposed algorithms PSOHHO and PSOHHO-V are compared
to four different algorithms (HHO, GA®2, SSA®, PSO) on seven datasets®® (lonosphere, Wine,
Breast Cancer Wisconsin, Sonar, Libras Movement, Hill Valley, Musk 1) using UCI Machine
Learning repository. On each dataset, we have run the MATLAB code fifty times. Then we
have recorded their CA and NF. We have also checked whether the difference is statistically
significant or not by applying Friedman’s test and WRST. Here Friedman test is used to express
the FAR of all compared methods more clearly for further statistical evaluation. Here have

chosen the common KNN classifier. Here the K-fold cv is 1.

Here have chosen the common KNN Classifier. Here the K-fold cv is 1. The graphs of
the CA of the algorithms on Musk 1, Hill Valley, Libras Movement, Sonar, and lonosphere
datasets are shown in Figs 6.4, 6.6, 6.8, 6.10, and 6.12. In these Figs, PSO, PSOHHO,
PSOHHO-V, GA, HHO, and SSA are represented by green colour, red colour, cyanide colour,
yellow colour, blue colour, and black colour respectively. The graphs of the NF of the
algorithms on Musk 1, Hill Valley, Libras Movement, Sonar, and lonosphere datasets are
shown in Figs 6.5, 6.7, 6.9, 6.11, and 6.13. In the second row of these Figs, PSO, PSOHHO,
GA, HHO, SSA, and PSOHHO-V are represented by bars (1, 2, 3, 4, 5, and 6) respectively.
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Fig. 6.4. CA on MUSK 1 dataset. Fig. 6.5. NF on MUSK 1 dataset.
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All six algorithms are applied to the FS problem fifty times on all seven datasets. The
mean CA and NF of all six algorithms on all the datasets are given in Tables 6.3 and 6.4
respectively. Here best values are written in bold. The Friedman test and WRST are applied to
test the statistical significance. Then the P-values of WRST when PSOHHO-V is compared
with other algorithms on all the seven datasets with respect to CA and NF are given in brackets

of Tables 6.3 and 6.4 respectively.

Table 6.3: Mean CA of the all the six algorithms on all the seven datasets.

Dataset PSOHHO PSOHHO-V HHO GA PSO SSA
Wine 1(1) 1 1(1) 1(0) 0.989 (0.01) 0.999 (0.863)
Wdbc 0.962 (0) 0.984 0.962 (0) 0.966 (0) 0.953 (0) 0.958 (0)

lonosphere 0.94 (0.412) 0.982 0.941(0.211)  0.949 (0.799) 0.943 (0) 0.933 (0.001)
Sonar 0.942 (0) 0.967 0.944 (0) 0.968 (0.488) 0.929 (0) 0.93 (0)
Libras 0.816 (0) 0.837 0.816 (0) 0.829(0.381) 0.818 (0) 0.816 (0)

Hill Valley 0.581 (0) 0.94 0.584 (0) 0.595 (0) 0.589 (0) 0.582 (0)

Musk 1 0.940 (0) 0.954 0.941 (0) 0.955(0.359)  0.944 (0.002) 0.94 (0)
FAR 4214 15 3.786 1.786 4.286 5.429
Rank 4 1 3 2 5 6

Note: Bold values indicate the best value, and P-values are given in the corresponding bracket

Table 6.4: Mean NF of the all the six algorithms on all the seven datasets.

Dataset PSOHHO PSOHHO-V HHO GA PSO SSA
Wine 4.14 (0.004) 5.24 4.12 (0.001) 5.98 (0.004) 6.36 (0) 5.76 (0.043)
Wdbc 13 (0) 12.26 13.14 (0) 12.58 (0) 15.36 (0) 14.38 (0)

lonosphere 14.46 (0.168) 15.58 14.78 (0.608) 13.28 (0.001) 15.68 (0.82) 15.08 (0.354)
Sonar 29.12 (0.743) 28.98 30.6 (0.36) 28.08 (0.211) 30.04 (0.193) 28.36 (0.469)
Libras 43.32 (0.877) 43.42 45.58 (0.038) 42.8 (0.694) 43.92 (0.608) 43.96 (0.715)

Hill Valley 46.2 (0.679) 47.12 43.54 (0.121) 46.64 (0.669) 47.4 (0.662) 47.26 (0.672)
Musk 1 94.98(0.0001) 87.72 91.58 (0.012) 82.48 (0.001) 84.64 (0.005) 82.54 (0.001)
FAR 3 3.286 3.714 2 5.143 3.857
Rank 3 2 4 1 6 5

Note: Bold values indicate the best value, and P-values are given in the corresponding bracket

Here we are observing from Table 6.3, PSOHHO-V is giving best CA. Here we are

observing from Table 6.4, PSOHHO and PSOHHO-V are not taking less NF. Whenever the
p-values are less than 0.05, null hypothesis is rejected. Hence the difference is significant.
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Whenever the p-values are more than 0.05, null hypothesis cannot be rejected. Hence the

difference is not significant.

From Table 6.3, we are getting the following observations with respect to the CA-

1)

)

(3)

(4)

(5)

When PSOHHO-V is compared with PSOHHO, five times PSOHHO-V is significantly
better (WDBC, Sonar, Libras Moment, Hill Valley, Musk 1) mean CA than PSOHHO,
once better (lonosphere) without any significance difference. And once same CA
(WINE).

When PSOHHO-V is compared with HHO, five times PSOHHO-V is significantly
better (WDBC, Sonar, Libras Moment, Hill Valley, Musk 1) mean CA than HHO, once
better (lonosphere) without any significance difference. And once same CA (WINE).
When PSOHHO-V is compared with GA, twice PSOHHO-V is significantly better
(WDBC, Hill Valley) mean CA than GA, three times better (lonosphere, Sonar, Libras
Moment) without any significance difference. And once same CA (Wine).

When PSOHHO-V is compared with PSO, seven times PSOHHO-V is significantly
better (Wine, WDBC, lonosphere, Sonar, Libras Moment, Hill VValley, Musk 1) mean
CA than PSO.

When PSOHHO-V is compared with SSA, six times PSOHHO-V is significantly better
(lonosphere, WDBC, Sonar, Libras Moment, Hill Valley, Musk 1) mean CA than SSA,

once better (Wine) without any significance difference.

From Table 6.4, we are getting the following observations with respect to the NF-

1)

)

©)

When PSOHHO-V is compared with PSOHHO, two times PSOHHO-V is significantly
less (WDBC, Muskl) NF than PSOHHO, once less NF (Sonar) without any
significance difference, once more NF (Wine) with significance difference and three
times more NF (lonosphere, Libras Moment, Hill Valley) without any significance
difference.

When PSOHHO-V is compared with HHO, two times PSOHHO-V is significantly less
(WDBC, Libras Moment) NF than PSOHHO, twice less NF (Sonar, Musk1) without
any significance difference, once more NF (WINE) with significance difference and
two times more NF (lonosphere, Hill VValley) without any significance difference.
When PSOHHO-V is compared with GA, two times PSOHHO-V is significantly less
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(Wine, WDBC) NF than PSOHHO, once more NF (lonosphere) with significance
difference and four times more NF (Sonar, Libras Moment, Hill Valley, Musk 1)
without any significance difference.

4 When PSOHHO-V is compared with PSO, two times PSOHHO-V is significantly
less (Wine, WDBC) NF than PSOHHO, four times less NF (lonosphere, Sonar,
Libras Moment, Hill Valley) without any significance difference and once more NF
(MUSK 1) without any significance difference.

(5) When PSOHHO-V is compared with SSA, two times PSOHHO-V is significantly
less (Wine, WDBC) NF than PSOHHO, two times less NF (Libras Moment, Hill
Valley) without any significant difference and three times more NF (lonosphere,

Sonar, Musk 1) without any significance difference.

6.7 Conclusion

The proposed algorithms PSOHHO and PSOHHO-V were evaluated based on statistical
measures and convergence rate, and their performance was tested on ten BF. The complete
experimental results indicate that the established algorithms outperform other optimizers
regarding searchability and convergent speed when solving global optimization problems.
Furthermore, statistical tests were conducted to support this conclusion. The proposed
algorithms PSOHHO and PSOHHO-V were also applied to feature selection problems, and
their performance was compared against other algorithms using seven UCI datasets. Again,
the experimental results demonstrate that PSOHHO and PSOHHO-V are giving better results
than the other metaheuristic algorithms on the high-dimensional and medium-dimensional
datasets. But on low dimensional datasets, the results are not much useful. Since the proposed
algorithms are giving better results on high and low-dimensional datasets and practical
applications of FS problems involve large datasets, therefore, the proposed algorithms have

the potential to tackle FS problems.

We will investigate the use of this algorithm in MOO challenges in the future and
extend its applicability to real-world issues like financial, medicinal, and engineering
optimization challenges. To create a stronger optimization technique, we will also combine the

innovative algorithm with other techniques.
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Chapter 7

A Hybrid Swarm Optimization with Trapezoidal Fuzzy Number

and Pentagonal Fuzzy Number using Benchmark functions

7.1 Introduction

There is a growing trend of Hybridising two metaheuristic algorithms. Hybridization of
metaheuristic algorithms is performed to increase the performance of metaheuristic algorithms
on real-world problems as many real-world optimization problems are highly non-linear and
highly dimensional. Metaheuristic algorithms are developed and applied to real-life problems
in place of deterministic optimization methods, due to their simplicity and easy
implementation. So, they are most helpful when we want to find the approximate results in a
given time frame. It helps to eliminate the drawbacks of convergence and stagnation. Also,

they are sensitive to parameter tuning.

Theoretical and mathematical examinations of numerous metaheuristic algorithms are
notably lacking. There exists a notable gap in the investigation of the convergence patterns of
these algorithms. Considering issues such as premature convergence and susceptibility to local
optima in many metaheuristic algorithms, a thorough mathematical analysis is essential. For
proving the convergence of metaheuristic algorithms®, different methods have been proposed,
such as spectral radius for PSO® and MC for GA®®. MC is a random process with a strong
capability for probabilistic analysis and convergence analysis of randomized algorithms. It has
been successfully implemented on the ABC algorithm, the PSO®, the ACO, and the SA%.
Hence, in our study, the convergence of the PSOMHHO using the MC property is proved.
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Our work aims to develop a hybrid metaheuristic algorithm PSOMHHO with TFN and
PFN as parameters. The concept of the Signature of an algorithm is also introduced to check
the intrinsic bias of an algorithm. With so many varieties of heuristic and metaheuristic
algorithms getting discovered yearly, the Signature of an algorithm plays a critical role. The
Signature of an algorithm indicates whether every point in the search space is given equal
importance. Here PSOMHHO is applied to nine standard BF. The significance of the statistical
difference in their fitness value is checked using MWUT and Friedman’s test.

The chapter is organised as follows for the remainder of it. Some fundamental ideas
needed for a thorough understanding this chapter are explained in Section 7.2. The problem we
have addressed in this chapter is explained in Section 7.3. Section 7.4 discusses the proposed
PSOMHHO algorithm. Section 7.5 explains the proposed algorithm's theoretical analysis.
Several BF are used in Section 7.6 to evaluate the proposed PSOMHHO algorithm with
additional metaheuristic algorithms. Next, the statistical significance of them is examined. The

conclusion of the current work has been provided in Section 7.7.

7.2 Background

To fully comprehend this chapter, it's essential to be familiar with fundamental concepts such
as HHO, PSO, and GA, explained in Section 1.3. Moreover, a proper understanding of fuzzy

number, TFN and PFN is also critical which is explained in Section 1.3.

7.3 Problem Formulation

This section provides a brief overview of the challenge addressed in this chapter. As per the
NFL theorem, no optimization algorithm can be the most efficient for every optimization
problem. There is a need for development of innovative and efficient metaheuristic algorithms
that will provide researchers and experts with broader options for solving complex

optimization problems.
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In this chapter innovative hybrid variant of metaheuristic algorithms is developed and
discussed. In this variant, the concepts of TFN and PFN are introduced. There is a considerable
research gap as theoretical and mathematical analysis of most of the metaheuristic algorithms
has yet to be proved or even discussed. To address this issue the convergence and signature
of the proposed algorithm have been proved, this helps in the theoretical analysis of the
proposed algorithm. The effectiveness of the developed algorithms PSOMHHO is assessed
on BF on Windows 10 (64 bit), RAM 8 GB to validate their applicability to real-world
problems.

The BF consisting of unimodal, fixed dimensional multimodal BF is taken from the
literature®® . The detailed mathematical description of the BF is explained in the previous
chapter in Table 6.1. Unimodal problem (UP) is helpful for testing convergence and exploitive
strength. In addition, testing the explorative strength and the ability to not fall into the trap of
local optimal point, Multimodal problem (MP) is helpful. In every experiment applied on the
BF, every algorithm is applied 50 times with different dimensions after converting into a
binary form using a well-defined transformation function. The maximum number of iterations
and the swarm size are 200 and 10, respectively. Then the statistical performance measure
means is used to access the optimization ability of PSOMHHO. Then to check the statistical
significance of the PSOMHHO Friedman test and MWUT are applied. The level of
significance for the MWUT is set to 0.05.

7.4. Proposed Algorithm (PSOMHHO)

In the proposed PSOMHHO algorithm, the parameters h1 and h2 of PSO are PFN, and the
parameter h is TFN. The fuzzy parameters are then defuzzfied. When the termination criteria
are achieved, the best value is selected as the global best solution. Pseudocode is given in
Section 7.4.1. The flowchart of PSOMHHO is given in Fig. 7.1.

7.4.1 Pseudo code

1) Initialization of the position of each particle and all the parameters of HHO and PSO

are done.
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2) The parameter h is TFN, and the parameters h; and h, are PFN. Then the fuzzy
parameters are defuzzfied.
3) The particle's velocity and position are initialized by assigning random matrices.
4) In a corresponding solution matrix, the position of every particle is represented by the
row of the corresponding position matrix.
5) The main iterative loop starts in this step.
6) Each particle’s fitness value is calculated using the BF.
7) Here nine BF are used, and each will be treated as the objective function.
8) Now, compute |E_E| from Eq. (1.3) to check whether to stay in exploration or
exploitation mode.
9) If |[E_E| > 1, then update the particle according to Eq. (1.1). This is the exploration
phase.
10) If |[E_E| and c are greater than or equal to 0.5.
Then the particles are guided by Eq. (1.4)
11) If |[E_E| is less than 0.5 and c is greater than or equal to 0.5.
Then the particles are guided by Eq. (1.7)
12) If |E_E| is greater than or equal to 0.5 and c is less than 0.5.
Then the particles are guided by Eq. (1.12)
13) If |E_E| and c are less than 0.5.
Then the particles are guided by Eq. (1.15)
14) The particle's velocity and particle's position are updated using the Eqgns. (1.16) and
(1.17).
15) Each particle’s personal best is updated.
16) Then the mutation operators are introduced.
17) Then the global best solution is updated.
18) The highest fitness value will be the global best solution.
19) End (steps 5 to 18). Here the main iteration loop stops.
20) When the termination criteria are achieved, the iterative process stops, and the global

best solution is reported.
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Fig. 7.1. Flowchart of PSOMHHO

7.5 Theoretical Analysis of PSOMHHO

In this section, the theoretical analysis of the purposed algorithm is discussed with the help of

Signature discussed in Section 7.5.1 and convergence in Section 7.5.2.

7.5.1 Signature of the PSOMHHO

For an unbiased stochastic optimization algorithm, the equivalent significance accorded to

each point in the search space can result in positions similar to those formed by a arbitrary

search. Hence, understanding the inherent bias of an optimization algorithm becomes
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paramount before evaluating its performance. For a thorough exploration of the concepts, the

preceding chapter provides a detailed discussion in Section 6.5.1.

The Signature of HHO is given in Fig 6.2. The algorithm HHO is rejected because it
is center-biased. We have taken f(x) = 1 to check the bias of the proposed optimization
algorithm (PSOMHHO). The Signature of PSOMHHO is given in Fig 7.2. We can observe
from Fig 7.2 that PSOMHHO's Signature is not biased toward the center, axis, or region. We
can observe that the Signature of PSOMHHO has to be accepted, and the Signature of
PSOMHHO is significantly better than HHO. Here we have taken the values of h; and h» as
1.5.

Y- Rds

X~ Aads

Fig. 7.2. Signature of PSOMHHO

7.5.2 Convergence of PSOMHHO

The concepts and methods used to prove convergence of PSOHHO in the previous chapter in
Section 6.5.2 can also be extended to prove convergence of PSOMHHO.

7.6  Results and Discussions

The efficiency of PSOMHHO is checked in this section by comparing it with four other
metaheuristic algorithms. Here PSO, PSOMHHO, GA, HHO, and Salp Swarm Algorithm
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Table 7.1. The mean fitness value of 50 runs when the dimension is 100.
BF PSOMHHO HHO GA PSO SSA
BF, 91.06 90.54 74.24 65.52 56.98
BF, 91.36 89.96 74.06 71.46 66.00
BF, 1 1 1 1 1
BF, 7.00e+03 6.595e+03 6.976e+03 6.252e+03 5.154e+03
BF; 3.468e+03 3.459¢+03 3.28e+03 3.245e+03 3.183e+03
BFg 4.1887e+04 4.188e+04 4.187e+04 4.187e+04 4.187e+04
BF, 1.998e+03 89.94 74.18 1.167e+03 1.877e+03
BFg 4.373 3.457 3.157 4.159 4,381
BF, 55.60211 55.60211 55.60211 55.60211 55.60211
Rank 1 2 3 4 5
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We can make the following observations from Table 7.1-
(1) PSOMHHO gives the best solution on eight BF and once the second best among the nine
BF.
(2) HHO is giving the best solution on three BF and three times second best among the nine
BF.
(3) GA gives the best solution on three BF and once second best among the nine BF.
(4) PSO gives the best solution on three BF and no second best among the nine BF.

(5) SSA gives the best solution on four BF and once the second best among the nine BF.

From Table 7.1, Friedman test, and MWUT, we observe that PSOMHHO is giving the most
superior result, followed by HHO, GA, PSO, and SSA.

7.6.2 Scalability analysis of PSOMHHO

The efficiency of the algorithm is affected by the dimension of optimization problems. So, we
have tested the algorithms on the BF with dimensions 100, 500, and 1000. Hence scalability
analysis is done to observe the efficiency of PSOMHHO. In every size we are observing,
PSOMHHO is giving better results.

1.7 Conclusion

This experiment is tested with different dimensions. Here we can observe that the Signature of
PSOMHHO is significantly better than HHO. Also, convergence proof helps establish the
mathematical strength of PSOMHHO.

We have taken BF with different properties like UP, MP, and Fixed-dimension
multimodal BF. Here we are getting that the mean value of the fitness value of the PSOMHHO
algorithm with dimensions 100, 500, and 1000 is more when compared with other algorithms
like HHO, GA, PSO, and SSA. Then statistical significance tests like MWUT and Friedman test
are applied. Then their results are recorded. Based on statistical measures, statistical significance
tests like MWUT and Friedman test, and the convergence behaviour, we observe that
PSOMHHO is giving better fitness value when compared with other algorithms like HHO, GA,
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PSO, and SSA on the different types of BF. So, this algorithm can be applied to other real-world
problems.

In the future, we can take different varieties of fuzzy numbers and check the effect on
our proposed algorithm PSOMHHO. We can also focus on the stability analysis of
PSOMHHO. Other variants of PSOMHHO can be developed using different cross-over
operators, and then compared with the original algorithm (PSOMHHO). Here the fuzzy

parameters play a very critical role. Also, we can take other different varieties of fuzzy
numbers.
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Chapter 8

Bluefin Trevally Optimizer (BTO): A Metaheuristic Algorithm

Using Fuzzy Logic Controller for Feature Selection Problem

8.1 Introduction

The preference for metaheuristic algorithms over deterministic optimization algorithms for
their uncomplicatedness and ease of execution in practical applications. Various metaheuristic
algorithms, such as the GA, BA?, SMA®, WOA?, SSA, and others have been applied to
various real-world problems®-92, The most common feature of all the metaheuristic algorithms
is exploration and exploitation”. The purpose of the exploration phase is to explore various
regions of the solution space. So, the optimizer should have random nature in the exploration
phase to randomly generate solutions to different areas of the problem topography during the
early steps of the search process®®. Hence proper use of randomized operators is advisable.
Normally, the exploitation stage comes after the exploration stage and focuses on the
neighbourhood of better quality solutions. It exploits the better solutions obtained in the
exploration phase. Also, there is a possibility of the solutions getting trapped in local optima
(premature convergence). Hence, the most important feature of all metaheuristic algorithms is

maintaining a proper balance between exploration and exploitation.

Fuzzy logic, rooted in the FYS theory introduced by Zadeh®, is a valuable tool for
representing information using fuzzy if-then rules. It is particularly effective in handling
linguistic information and improves numerical computation by employing linguistic labels
assigned by membership functions?®%. FYSs have been widely used in various fields,

including pattern recognition®-%,
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The structure of the chapter for its remaining sections is outlined as follows. Section
8.2 presents essential concepts crucial for a comprehensive grasp of this chapter. The problem
under consideration is elucidated in Section 8.3, while Section 8.4 digs into the discussion of
the proposed Fuzzy BTO algorithms. The theoretical underpinnings of the proposed algorithm
are expounded upon in Section 8.5. To assess the performance of the proposed Fuzzy BTO
algorithms against other metaheuristic algorithms, various BF are employed in Section 8.6.
Subsequently, a meticulous examination of their statistical significance is conducted. Finally,

Section 8.7 encapsulates the conclusions drawn from the present work.

8.2 Background

Understanding this chapter in its entirety requires a robust knowledge of fundamental concepts
like fuzzy numbers, HHO, PSO, and GA, all of which are explained in Section 1.3.
Additionally, an elementary understanding of FS problems, as explained in Section 1.5, is

critical.

8.3 Problem Formulation

In this section, we get a brief introduction to the problem addressed in this chapter. The NFL
theorem establishes that no single optimization algorithm can universally outperform others
across all problems. Hence, there arises a necessity for the creation of innovative and effective
metaheuristic algorithms. Such innovations would offer researchers and experts a diverse

array of tools to tackle intricate optimization challenges.

In this chapter four innovative hybrid variants of metaheuristic algorithms are
developed and discussed. In the innovative variants, the parameters of metaheuristic
algorithms are dynamically changed using Fuzzy Logic Controller (FLC). A notable research
gap exists, with many metaheuristic algorithms lacking thorough theoretical and mathematical
analysis. To bridge this gap, this chapter explores the convergence and signature aspects of
the proposed algorithms, offering a foundation for the theoretical analysis of the newly

introduced algorithmic variants.
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Initially, the effectiveness of the developed Fuzzy BTO algorithms and their
variations are evaluated on BF to confirm their utility in addressing real-world challenges.
Subsequently, their application to FS problems is pursued with the objective of improving CA
and diminishing the NF. Considering a combination of FE, WE, and NF, the proposed
algorithms are applied and subjected to comparative evaluations against other metaheuristic
algorithms. Statistical significance is rigorously verified through Friedman's test and the
Kruskal-Wallis Test (KWT).

8.4 Proposed Approach (Fuzzy BTO)

The suggested Fuzzy BTO algorithm uses a fuzzy approach to adapt the algorithmic
parameters to changing population conditions. Since the parameters h,and h, account for the

movement of the particles, they are selected to be adjusted dynamically using FLC.

Algorithm performance measures such as diversity of the swarm, iteration, and
average error at one point in the execution of the algorithm need to be considered to evaluate
the algorithm. In our work, all the above are considered for the fuzzy systems to modify the
parameters dynamically at each iteration of the algorithm. For measuring the iteration of the
algorithm, it will be used as a percentage, and it can be represented as Eq. (8.1). The iteration
will be considered “low” when the algorithm starts. It will be regarded as “high” when the

algorithm is about to be completed.

current iteration
) (8.1)

[teration = (—— . ,
maximum number of iteration

The diversity measures the degree of dispersion of the particle; when the particles are
closer, there is less diversity, and when the particles are separated, the diversity is high. The
diversity equation can be considered as the average Euclidean distance between each particle
and the best particle as given below:

Bhy JEi (-0

ns

Diversity = (8.2)
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While applying fuzzy BTO to the FS problem we will also take fitness and NF as
inputs for the fuzzy system. The inputs (iteration, diversity, accuracy, and NF) are granulated
into three triangular membership functions. Each output is granulated in five triangular

membership functions of the output variables h; and h, respectively.

Hence to design a fuzzy system that will dynamically adjust the parameters, we will
construct two models for BF and four models for the FS problem. The four fuzzy models that
follow Mamdani fuzzy system have two inputs and two outputs (h;and h,). The rules of each
fuzzy system must be designed in such a way that the early iteration of the fuzzy BTO

algorithms must be explored and then eventually exploited.

The first fuzzy system for BTOF1 has iteration and diversity as inputs, whose
membership functions are triangular fuzzy numbers. The second fuzzy system for BTOF2 has
accuracy and iteration as inputs, but the membership functions are TFN. The rules of both the

fuzzy systems (BTOF1 and BTOF2) are given below:

1. If both iteration and diversity are low, then h, is high and h,is low.

2. If iteration and diversity are medium and low, then h;is medium-high and h,is medium-
low.

If iteration and diversity are high and low, then h;is medium and h,is high.

If iteration and diversity are low and medium, then h,is medium-high and h,is medium.

If both iteration and diversity are medium then h;is medium and h,is medium.

o g ~ w

If iteration and diversity are high and medium, respectively, then h;is medium-low and

h, is medium-high.

7. If iteration and diversity are low and high, respectively, then h;is medium-high and h,is
medium-low.

8. If iteration and diversity are medium and high, then h;is medium-low and h,is medium-
high.

9. If both iteration and diversity are high then h;is low and h,is high.

The third fuzzy system for BTOF3 has iteration and accuracy as inputs, whose membership
functions are triangular fuzzy numbers. It applies only to the FS problem, and its rules are

given below:
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If accuracy and iteration are high and low, respectively, then h,is low and h,is medium.
If accuracy and iteration are high and medium, respectively, then h;is medium-low and
h,is medium-high.

If both accuracy and iteration are high, then h;is low ,and h,is high.

If accuracy and iteration are medium and low, respectively, then h,is medium-low and
h,is medium-high.

If both accuracy and iteration are medium, then h,is medium and h,is medium.

If accuracy and iteration are medium and high, then h;is medium and h,is high.

If both accuracy and iteration are low, then h;is high , and h,is medium-low.

If accuracy and iteration are low and medium, respectively, then h;is medium-high and
h,is medium.

If accuracy and iteration are low and high, then h,is high and h,is low.

The fourth fuzzy system for BTOF4 has iteration and NF as inputs, whose membership

functions are triangular fuzzy numbers. It applies only to the FS problem, and its rules are

given below:

1. If both iteration and NF are low, then h, is high and h,is low.

2. If iteration and NF are medium and low, respectively, then h,is medium-high and h,is
medium-low.

3. [Ifiteration and NF are high and low, then his medium and h,is high.

4. If iteration and NF are low and medium, then h,is medium-high and h,is medium.

5. If both iteration and NF are medium then h;is medium and h,is medium.

6. If iteration and NF are high and medium, respectively, then h,is medium-low and h,is
medium-high.

7. If iteration and NF are low and high, then h;is medium-high and h,is medium-low.

8. |If iteration and NF are medium and high, respectively, then h,is medium-low and h,is
medium-high.

9. If both iteration and NF are high, then h;is low and h,is high.
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Pseudo-Code

In this section, the pseudo-code of the proposed fuzzy BTO is given:

INPUT: Initialization of the position of each particle and all the parameters are done.

OUTPUT: Global best solution

1)
2)

3)
4)
5)
6)

7)
8)

9)

10)

11)

12)
13)

14)
15)
16)
17)
18)

The particle's velocity and position are initialized by assigning random matrices.
In a corresponding solution matrix, the position of every particle is represented by the
row of the corresponding position matrix.
The main iterative loop starts in this step.
Each particle's fitness value is calculated using the BF.
Here, nine BF are used, each treated as the objective function.
Now, compute |E_E| from Eq. (1.3) to check whether to stay in exploration or
exploitation mode.
If |[E_E| > 1, update the particle according to Eq. (1.1). This is the exploration phase.
If |[E_E| and c are greater than or equal to 0.5.
Then the particles are guided by Eq. (1.4)
Else if |E_E] is less than 0.5 and c is greater than or equal to 0.5.
Then the particles are guided by Eq. (1.7)
Else if |E_E| is greater than or equal to 0.5 and c is less than 0.5.
Then the particles are guided by Eq. (1.12)
Else if |E_E| and c are less than 0.5.
Then the particles are guided by Eq. (1.15)
End
End
The particle's velocity and particle's position are updated using Eq. (1.16) and (1.17).
The parameters h; and h, are dynamically adapted using FLC. The parameters
follow the rules given in Section 3.2. Hence different fuzzy models are developed.
Each particle's personal best is updated.
Then, the mutation operators are introduced.
Then, the global best solution is updated.
The highest fitness value will be the best global solution.

End (Steps 3 to 16). Here the main iteration loop stops.
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19) When the termination criteria are achieved, the iterative process stops, and the global

best solution is reported.

First, the basic BTO algorithm has been applied. Then at step 15, the parameters h;and h, are
dynamically changed using FLC (as mentioned in Section 3.2). Finally, we develop fuzzy
BTO algorithms (BTOF1, BTOF2, BTOF3, and BTOF4) depending on different inputs and

rules.

8.5 Mathematical Analysis of Fuzzy BTO

The proposed algorithm can be analysed using the concept of signature. All the points in the
search space are equally important, so an unbiased stochastic optimization algorithm
generates a collection of statistically identical positions to a random search. So before
evaluating the performance of an optimization algorithm, it is ideal to obtain an idea of the
intrinsic bias of the optimization algorithm. The detailed concepts are discussed in Chapter 6
in Section 6.5.1.

Many optimization algorithms like MPA, WOA, SMO, and GWO can be rejected
because of their biases "°. We have to check the bias of the proposed optimization algorithm
Fuzzy BTO (BTOF1). The Signature of BTOF1 is given in Fig 8.7. We can observe from Fig
8.7 that BTOF1's Signature is not biased toward the center, axis, or region. Therefore, we can
observe that the Signature of BTOF1 has to be accepted.

Fig. 8.7. Signature of BTOF1
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8.6 Results and Discussions

BTOF1 and BTOF2 were applied to a set of nine BF, including both unimodal and fixed
dimensional multimodal BF taken from the literature®, as given in Chapter 6 in Table 6.1.
The maximum number of iterations and swarm size were 200 and 10, respectively. The
experiments were conducted on a Windows 10 (64-bit) system with 8GB of RAM. First,
statistical performance measures were used to assess the optimization ability of BTOF1 and
BTOF2, the KWT was applied to check the statistical significance.

To assess the practicality of Fuzzy BTO, we apply it to the feature selection problem.
The proposed algorithms BTOF1, BTOF2, BTOF3, and BTOF4 are compared to three
different algorithms (HHO, SSA, PSO) on seven datasets® (lonosphere, Wine, Breast Cancer
Wisconsin, Sonar, Libras Movement, Hill Valley, Musk 1) using UCI Machine Learning
repository. For classification, we used the commonly employed KNN classifier with K-fold
CV setto 1.

8.6.1 Results and Discussions on BF

Each algorithm was evaluated 20 times on every BF with different dimensions after
converting them into the binary form using a well-defined transformation function. The
effectiveness of BTOF1 and BTOF2 is evaluated by comparing their performance with four
other metaheuristic algorithms, namely PSO, GA, HHO, and Salp Swarm Algorithm (SSA),
which are represented by green, yellow, blue, and black colours, respectively. The proposed
algorithms BTOF1 and BTOF2 are represented by red and cyanide colours. The convergence
curves of the BF are presented in Figs 8.8 to 8.16.
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Based on the graphs, it can be observed that BTOF2 generally provides better accuracy

than BTOF1. However, these results were obtained from a single evaluation of the algorithms.

To overcome this limitation, we evaluated the algorithms 20 times and calculated their mean

accuracy (fitness values) presented in Table 8.1 for a dimension of 100. Then we constructed

an average ranking of all the algorithms on all the BF. The average ranking is given in brackets

in Table 8.1.

Table 8.1. The mean fitness value of 20 runs and their ranking when the dimension is 100.

BF PSO GA HHO SSA BTOF1 BTOF2

BF, 672(5)  7418(4)  89.68(3)  56.18(6) 91.28 (2) 91.3 (1)

BF, 728(5)  7355(4)  90.2(3) 66.87 (6) 91.5 (2) 92.05 (1)

BF, 1(3.5) 1(3.5) 1(3.5) 1(35) 1(3.5) 1(35)

BF, 6269.7(5)  6990.45  6587.9(4) 5085.95(6) 6970.34(2)  6869.16 (3)
@

BF, 3257.65(4) 3289 (5)  3452.35(3) 3183.36(6) 34617 (2) 3473.25 (1)

111



BF 41878.77 41876.67 41882.13 (1) 41874.83  41878.78 (2) 41878.13 (4)

@) ©) (6)
BF, 1168.55(4) 74.1(6) 90.1 (5) 1878.99 (3)  1981.12 (1) 1980.40 (2)
BFg 4.17 (4) 3.17 (6) 3.45 (5) 4.38 (1) 4.36 (3) 4.37 (2)
BF, 0.9 (5) 0.93 (4) 0.95 (3) 0.88 (6) 0.95 (1) 0.95 (2)
Average 4277778 4.277778 3.388889 4.833333 2.055556 2.166667
Rank
Rank 4 5 3 6 1 2

Note: Bold values indicate the best value, italic indicates second best value, and ranks are given in the

corresponding bracket

We can observe from Table 8.1 that BTOFL1 gives the best result, followed by BTOF2,
HHO, PSO, GA, and SSA, respectively. Then a KWT with a significance level of 0.05 is applied
to compare the performance of BTOF1 against PSO, GA, HHO, and SSA. Then H-statistics and
p-value are recorded. The difference is significant in all BF except BF3, as the p-value is less
than 0.00001. However, since the p-value is 1, the difference is insignificant when BTOF1 is

compared against other algorithms on BF;.

Now considering Table 8.2 and the KWT statistical results, we can conclude the

following results —

1) BTOF1 gives the best solution three times and five times the second best among the
nine BF, with a statistical significance difference.

2 BTOF2 gives the best solution four times and three times the second best among the
nine BF, with a statistical significance difference.

3) PSO gives the best solution once with a statistical significance difference and no
second best among the nine BF.

4) GA gives the best solution two times and no second best among the nine BF, with a
statistical significance difference.

(5) HHO gives the best solution two times and no time second best among the nine BF,
with a statistically significant difference.

(6) SSA gives the best solution two times and no second best among the nine BF, with a
statistical significance difference.We are getting the following observations from the
graphs of the BF.
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Scalability analysis of BTO

The dimension of optimization problems can affect algorithm efficiency. Therefore, we tested
the algorithms on the BF with dimensions 30, 500, and 1000 to conduct a scalability analysis
and assess the efficiency of BTOF1 and BTOF2. The mean values of all the algorithms on all
the BF with dimensions 30, 500, and 1000 are computed. Regardless of the dimension, BTOF1

consistently outperformed BTOF2 and all other algorithms.

8.6.2 Results and Discussions on FS

We applied all seven algorithms ten times to the FS problem on each dataset and recorded
their fitness values. Table 8.2 presents the mean fitness values of all seven algorithms on all
the datasets, with the best values highlighted in bold and the second-best values in italics. A
ranking system was employed to determine the best-performing algorithm. Additionally, we
used KWT to test for statistical significance and recorded the H statistics values and p-values

to conclude the statistical significance of the algorithms.

Table 8.2. The mean fitness of all the seven algorithms and their ranking on all seven datasets.

Dataset PSO HHO SSA BTOF1 BTOF2 BTOF3 BTOF4
0.953846 0.97467
Wine 0.95(7)  0.963077 (5) (6) 0.982692 (2)  0.98967 (1)  0.972363 (4) ©)
0.937186 0.966372
WDBC 0.958407 0.94619 (6) (7) 0.962832 (4) 0.964602 (3) 0.967257 (1) (2)
0.894912 0.881487 0.898155
lonosphere (6) 0.905315 (1) @) 0.896244 (4) 0.902592 (2) 0.895458 (5) (3)
0.868628 0.836457 0.842652
Sonar (1) 0.854957 (3) @) 0.862671 (2) 0.852695 (4) 0.836957 (6) (5)
0.840236 0.835458 0.845833 0.845833 0.838889
Libras (5) 0.840514 (4) (7) (1.5) 1.5) 0.841931 (3) (6)
0.557826 0.543817 0.551134
Hill Valley (2) 0.560452 (1) @) 0.552184 (3) 0.550457 0.548891 (6) 4)
0.915789 0.876484 0.910526
Musk 1 (2) 0.889629 (6) @) 0.914737 (3) 0.912632 0.918947 (1) (5)
Average
Rank 4 3.714 6.8571 2.7857 2.928 3.71 4
Rank 5.5 4 7 1 2 3 5.5

Note: Bold values indicate the best value, italic indicates second best value, and ranks are given in the

corresponding bracket
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As we can observe from Table 8.2, BTOF1 gives the best result, followed by BTOF2,

BTOF3, HHO, BTOF4, PSO, and SSA, respectively. When KWT is applied between
BTOF1, PSO, HHO, and SSA, we get the following observations.

a)

b)

9)

In Musk 1 dataset, when BTOF1 is statistically compared with PSO, HHO, and SSA. The
H-statistics is 31.8294. The p-value is less than 0.00001. Hence there is a significant
difference.

In the Hill Valley dataset, when BTOFL1 is statistically compared with PSO, HHO, and
SSA. The H-statistics is 10.8882. The p-value is 0.02785. Hence there is a significant
difference.

In the Libras Moment dataset, when BTOFL1 is statistically compared with PSO, HHO, and
SSA. The H-statistics is 4.6906. The p-value is 0.32054. Hence there is no significant
difference.

In the Sonar dataset, when BTOFL1 is statistically compared with PSO, HHO, and SSA. The
H-statistics is 16.0207. The p-value is 0.00299. Hence there is a significant difference.

In the lonosphere dataset, when BTOFL1 is statistically compared with PSO, HHO, and
SSA. The H-statistics is 21.0473. The p-value is 0.00031. Hence there is a significant
difference.

In the WBDC dataset, when BTOFL1 is statistically compared with PSO, HHO, and SSA.
The H-statistics is 36.2838. The p-value is less than 0.00001. Hence there is a significant
difference.

In the Wine dataset, when BTOFL1 is statistically compared with PSO, HHO, and SSA. The
H-statistics is 12.6478. The p-value is 0.01313. Hence there is a significant difference.

Hence from the above discussions from (a) to (g) and Table 8.2, we conclude that the

proposed algorithm BTOFL1 gives the best result with statistical significance when compared

with PSO, HHO, and SSA. The KWT is again applied between (BTOF2, PSO, HHO, and

SSA) and (BTOF3, PSO, HHO, and SSA). From these results and Table 8.2, we conclude

the following results

(1)  The variant of BTOF2 gives the second-best solution with statistical significance when
compared with PSO, HHO, and SSA.

2 The variant of BTOF3 gives the third-best solution with statistical significance when
compared with PSO, HHO, and SSA.
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8.7. Conclusion

This work proposes a novel population-based optimization algorithm called fuzzy BTO to tackle
different optimization tasks. BTO is inspired by the cooperative behaviors and chasing styles of
predatory fish, Bluefin Trevally, in nature. Several equations are designed to simulate the social
intelligence of Bluefin Trevally to solve optimization problems. Here we have taken four
variants of Fuzzy BTO in which the parameters are dynamically changed using FLC. This
experiment is tested with different dimensions. As a result, we observed that the Signature of
fuzzy BTO is significantly better than many other optimization algorithms. Also, convergence

proof helps to establish the mathematical strength of fuzzy BTO.

The proposed Fuzzy BTO algorithms were evaluated based on statistical measures and
convergence rate, and their performance was tested on nine BF. The complete experimental
results indicate that the established BTOF1 outperforms other optimizers regarding searchability
and convergent speed when solving global optimization problems. Furthermore, statistical tests
were conducted to support this conclusion. The proposed Fuzzy BTO algorithms were also
applied to feature selection problems, and the performance of BTOF1 was compared against
other algorithms using seven UCI datasets. Again, the experimental results demonstrate that the
BTOF1 algorithm outperforms different investigated algorithms. Therefore, the proposed Fuzzy
BTO algorithms have the potential to serve as an excellent global optimization algorithm and to
tackle FS problems.

In the future, we will explore the application of this algorithm in MOO tasks and
expand its application to real-life problems such as machine learning, medical applications,
financial fields, and engineering optimization tasks. Furthermore, we will also integrate the

novel algorithm with other strategies to build a better optimizer.
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Part -1V

Application of the proposed hybrid metaheuristic approach on

Forecasting Problem.

(Chapter 9)
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Chapter 9

Picture Fuzzy Time Series Forecasting with a novel variant of

Particle Swarm Optimization

9.1 Introduction

The landscape of forecasting challenges has prompted a rich tapestry of approaches, with a
significant portion gravitating towards FYS or FYS-related approaches. FTS techniques,
encompassing Mamdani-type and Sugeno-type FIS, have emerged as pervasive tools in the
forecasting realm. The seminal work of Song and Chissom?*° in defining FTS has stimulated a
surge in research activities. Kocak's contribution®® introduced an ARMA-style FTS forecasting
technique, while Giiler Dincer and Akkus'® proposed a robust clustering-based FTS approach
with a dedicated focus on fuzzification. Giiler Dincer®* brought forth an FTS approach
grounded in fuzzy c-regression, and Bas'% leveraged the neural network to classify fuzzy
relations. Zeng et al.'s ** methodology for FTS forecasting integrated subtractive clustering and
an ABC algorithm. Jiang et al. 1% pioneered an advanced forecasting approach, employing a
hybrid model that fused MOO and FTS approach. Tran'® presented a multivariate FTS
approach, and Sadaei*? explored a synergistic strategy involving convolutional neural networks
and FTS. Statistical aspects, including inferences, confidence intervals, and forecast
distributions, have become central themes in some FTS investigations. Furthermore, various
nature-inspired optimization algorithms, widely applicable in diverse domains, can be tailored

to determine optimal interval lengths in FTS forecasting.
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One way to think of IFYSs is as a more comprehensive and adaptable variant of FY'Ss.
The modelling and application of intuitionistic FTS were introduced using the intuitionistic
fuzzy c-means method. Various Intuitionistic FTS approaches were proposed®%, There were
several proposed intuitionistic FTS methods. In hesitant FYSs, The study conducted by Bisht
and Kumar involved the application of triangle membership functions, showcasing their

adaptability through equal and unequal intervals'®’

. It was proposed to use this dual hesitant
FYS in an intuitionistic FTS forecasting method. Abhishekh released a FTS technique that was

high-order intuitionistic*.

An improved form of IFYSs called PFYSs offer a more adaptable and inclusive base.
Picture fuzzy clustering (PFC) and IFYSs were used by Thong and Son to diagnose medical
conditions?®®, Thong and Son, who introduced the notion of PFC, integrated the PFYS set into
the clustering approach®. Son offered a control theory application as well as a concept for an

image FISO

A thorough review of the literature underscores the efficacy of various forecasting
approaches, especially those with more broadly defined set types. As per the insights gathered
from existing studies, the augmentation of models with latent variables, essentially additional
inputs, has demonstrated a positive impact on inference outcomes. Within this conceptual
framework, membership values are latent variables, providing supplementary inputs to the
models. This theoretical foundation suggests that utilising PFYSs in forecasting models can be

advantageous.

The chapter is structured as follows for the remainder of it. Some fundamental ideas
needed for a thorough understanding this chapter are explained in Section 9.2. An innovative
metaheuristic variant (EDSPSO) is discussed in Section 9.3. Section 9.4 discusses the proposed
PFTS forecasting method. Section 9.5 provides an explanation of the proposed algorithm with
the help of TSD from UAE and SBISP. The experimental results are discussed in Section 9.6.

The conclusion of the present work is given in Section 9.7.
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9.2 Background

To fully grasp the content in this chapter, it is imperative to be familiar with fundamental
concepts that has been explained in Section 1.3. Additionally, a basic understanding of

Forecasting, explained in Section 1.6, is essential.

9.3 Innovative metaheuristic variant (EDSPSO)

In this section a novel PSO variant is developed using dual swarm strategy and exponential
function as mutation operator. Exploration and exploitation stand out as the primary techniques
employed in the search for solutions within the solution space. Achieving an optimal answer
requires a careful equilibrium between these two approaches to thoroughly navigate the
solution domain. Traditional PSO algorithms and their modifications encounter challenges in
maintaining this balance, resulting in limitations in generating effective solutions. The
enhanced PSO variant (EMPSO) effectively addresses and resolves these challenges. The

strategies given below are used to perform efficiently:

1) PSO is subjected to an EMO.
2) Modify the parameters to adapt.

3) A two-swarm technique is implemented, the following Eq. (9.1) is used to update h:-

max _iter—t)

R = onin + (tmax = honin) X (T (9.1)

When particles get stuck in local minima, they experience the mutation operator, which
consists of two crucial components. First, in order to improve performance, the algorithm's
overall mutation probability, represented by the letter mpt, gradually decreases over time.
Secondly, particles whose zP has stayed stationary in recent iterations see an enhanced chance
of mutation, and is accomplished by introducing mp%. After that, Eq. (9.2) is utilized to

determine mujt.

mul = mpt x mp} (9.2)

]

Throughout the iterations, the parameter mp! decreases by a factor of A,. It is
determined by applying Eq. (9.3) ,which is explained in ® ,and Eq. (9.4) is used to compute

t
mp,.
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mp; = mp;~ X Aq (9.3)

) ((NSI j=NI) /lm>

mp; =e (9.4)

Here the number of iterations of particle p;, during which it’s zP remains unchanged,
is represented as NSI;. Parameter NI indicates how many times the particle has been iterated

to take benefit of its neighbourhood.

The quest for an optimal exploration-exploitation balance leads to the design of a dual-
swarm strategy, wherein the total population N is divided into two halves. The first half of the
particles undergoes position and velocity updates through the classical PSO mechanism. In
contrast, the second half of the particles exclusively adopts the global best position for position
updates, as outlined in Eq. (9.5). Hence, the Eq. (1.17) is modified, and Eqg. (9.5) is developed.
The comprehensive description of the suggested EDSPSO is given below
25

_((2.5Xt)/

max _iter)

dual(t) = e

29(t) + (dual(t) x dy x |z9(£)|44®) d, < 0.5

9.5
z9(t) — (dual(t) x d3 x |29()| % ®) otherwise (9:9)

y(t+1)={

Algorithm 1: EDSPSO Pseudo-code.
1. Randomised matrices are assigned to every particle to initialise its position and velocity.
2. The main iteration loop starts from here.
3. Every particle's fitness value is evaluated.
4. The particle's position and velocity are updated using Equations (9.5) and (1.16),
respectively.
Eq. (9.1) is used to dynamically change the parameter h.
Eq. (9.2) is utilised to apply the EMO.
The zP and z9 of every particle are modified.

The optimal global solution z9 will have the greatest fitness value.

© © N o O

End (Steps 2 to 8). The main iteration loop ends here.
10. The iterative technique concludes when the stopping criteria are met, and the final z9

is determined.
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9.4 Proposed PFTS forecasting method

This work suggests a novel PFTS forecasting technique. In this case, the suggested EDSPSO-
PFTS forecasting technique makes use of PFYS to incorporate non-determinacy during the
fuzzification of TSD and EDSPSO to optimize the size of the intervals required to define PFYS.
The suggested EDSPSO-PFTS forecasting method is made in three steps. Section 9.4.1,
involves building the Universe of Discourse (UOD), generating the FYSs, and converting the
FYSs into PFYSs. Section 9.4.1, involves using the max-min operator, which creates a simple
FTS forecasting method. In Section 9.4.3, EDSPSO is merged with the PFTS forecasting model
to maximize the interval length with MSE as the goal function.

9.4.1 Step 1: Utilizing PFY'S for fuzzification

Stage 1.1 The UOD is well-defined as V = [Vinin, Vinaxl- Here Vipin = Emin — Q1 and Viox =
Emax — Q2, Where E,,;,, and E,,,,, are the min and max values of TSD. It is ensured that UOD

can support any TSD by properly choosing Q; and Q.

Stage 1.2 After dividing the UOD into intervals of equal length, construct triangle FYSs on

each interval.

Stage 1.3 PFC is used to generate PFYSs in this instance'®. The cluster centres, degree of
positive, neutral, and refusal membership are iterated multiple times until the stopping
condition is met. Subsequently, final membership values are noted. Thong and son provide a

thorough description of this process!®.

Stage 1.4 Apply the subsequent pseudo-algorithm to incorporate non-determinacy into TSD.
for j = 1 tonum (end of TSD )
for k = 1 to dim (end of no. of intervals )
fll =1—w,—ny =y
Choose &, = min(f,l,flz, ...E,k) for1 <l <dim

If £; is a FYS associated to [t* PFYS
Allocate I**FYS to the corresponding TSD
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End if
End for
End for

9.4.2 Step 2: FTS model Construction

Stage 2.1 First-order fuzzy logical relations (FLRs) G(t) —» G(t + 1) are established via
fuzzified TSD. Here, G(t) and G (t + 1) are existing and subsequent states, respectively. Once
FLRs are generated, merge them to form FLRs (groups), as illustrated. G; = G;,G; = G, and

G, = G3 can be united as G, = G4, G, G3 and obtain first-order fuzzy time relation S =U S;.

Stage 2.2 The fuzzy forecast is computed using the equation G; = G;_, - S. Here, the fuzzified
values G;_1, G; and - correspond to the present state, the subsequent state, and the max-min

operator, respectively.

Stage 2.3 The predicted outcome is defuzzified using the formula below to determine its

numerical value

721" (gjxmid;)

X
forecasted output= 9.6
UPUL= =Sy ) (96)

Here, g; and mid; indicate the interval's intermediate point and fuzzy outcome, respectively.

9.4.3 Step 3: Integration of EDSPSO with PFTS model

This step involves combining a PFTS model with EDSPSO to determine the optimal interval
duration. Initializations are made for all necessary EDSPSO parameters as well as the
maximum number of iterations. TSD is divided into intervals, which are reflected in each
particle in the suggested EDSPSO-PFTS forecasting technique. Each particle is a collection of
s — 1 components. where q;_; <q;for1<j<s-—1 (ie. 41 <q1<qj < <(Qs_, <
qs-1) These s —1 components create s interval as vy = [qo,q1], v2 = [q1, qzl, -, v =
[9j-1.9;]~+ vs—1 = [qs-2,qs-1), vs = [gs-1,q5] . When a particle improves its position,
components of the connected new set are instantly modified so that each member

q;(1 <j <s—1)isarranged in an ascending sequence. A sample particle is shown below.
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q1 q2 q;j qs-1

2
_ Z?EI"(ORj—FOj)

num

MSE (9.7)

MSE is used in every iteration to evaluate each particle’s effectiveness, and results are

provided in Eq. (9.7). Here num, FO;, and OR; stand for the number of forecasted data points,

the predicted j*, and actual j* TSD. Each particle adjusts its position using Eqns. (1.16) and
(9.5), and the process is carried out until the predefined stopping criterion is satisfied to
evaluate each particle's forecasting outcomes. The outcomes are compared among all previous
individual best positions for each particle, provided that the stopping requirements are satisfied.
This step is fully explained in Algorithm 1. The suggested EDSPSO-PFTS forecasting method
is described in Algorithm 2, and its flowchart is displayed in Fig 9.1.

Algorithm 2: Proposed EDSPSO-PFTS Algorithm
INPUT: A) The parameters are specified and every particle's position has been initialized.
B) UOD is established.
OUTPUT: Forecasted output values
1) for k = 1 to max _iter (No.of iterations )
2) for j = 1 to NP (No. of particles )

3) Phase in steps 1 and 2 are applied first.
(In this step PFYSs are constructed using the concept of PFC).
4) Now, Phase 3: Incorporation of EDSPSO with PFTS model starts from this step.
5) The MSE value is computed using Eq. (9.7).
6) The position and velocity are computed using Eq. (9.5) and Eq. (1.16)
respectively.
7) Then EMO is applied using Eq. (9.1).
8) The personal best of each particle and the global best particle are updated.
9) End for
10) End for
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Fig. 9.1. Flowchart of EDSPSO-PFTS
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9.4.4 Statistical analysis

The effectiveness of the forecasting approach is also assessed using a variety of statistical

criterial!

, such as the correlation coefficient (R), tracking signal (TS), coefficient of
determination (R?), and performance parameters 12, These criteria are in addition to the error
measures (MSE and AFE). The RMSE, AFE, and other statistical metrics formulas that were
used to evaluate the efficacy and statistical validity of the suggested EMPSO-PFTS forecasting
approach are shown in Table 9.1. Table 9.1 shows the expected TSD, actual TSD, number of
TSD, and standard deviation of the TSD, respectively, as well as forecasted;, Original;,
num, and o are forecasted TSD, actual TSD, number of TSD and the standard deviation of the
TSD respectively. The positive and negative values of M, represent the forecasting model's
tendency towards under- and over-forecasting. Biased under-forecasting is indicated by TS >

4, while biassed over-forecasting is shown by TS < 4.

Table 9.1 statistical parameters and error measures.

SLNo Term Mathematical expression Acceptable
Range
2
1 274 (OR; — FO))
MSE num
2 -AFE num (|F0j0;z gRj| . 100)
(in J
num
%)
3 R numY, OR; x FO; — (X OR;)(X FO;) -1<R<1
2 2
( Jmum(zor?) - (£ or,) ) - < Jmum(zF07) - (2F0) )
5 PP ) (VMSE) PP >0
-
6 Mgy jo1 |FO; — OR;|
num
7 TS Yr(Fo; — OR;) -4<TS<4
Mad

9.5 Application of EDSPSO-PFTS

This section describes how the suggested EDSPSO-PFTS method is implemented and performs
better than others. This technique is applied by using historical TSD from two sources: UAE
in Section 9.5.1 and SBISP in Section 9.5.2.
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9.5.1 Forecasting UAE

The following steps describe how the proposed EDSPSO-PFTS method is used to forecast the
UAE.

Step 1: Here, the FYSs are constructed, and the PFYS are constructed for modelling UAE.

Stage 1.1: V = [13000,20000] has been defined as UOD by using Q; = 55 and Q, = 663.
Epin = 13055 and E,,,,,, = 19337 are noted from TSD of UAE. This UAE is specified in
Table 9.2.

Stage 1.2: V = [13000,20000] has been separated into fourteen intervals v(j) = [13000 +
(j —1h,13000 + jh],(j = 1tol4,h = 500). The purpose of FYSs G; (j=1 to 14) are to
fuzzify the UAE's TSD. The grade of membership is given in Table 9.3.
G; = [13000 + (j — 1)h, 13000 + jh, 13000 + 2jk],j = 1 to13,h = 500
G; = [13000 + (j — 1)h, 13000 + jh, 13000 + jh],j = 14, h = 500

Stage 1.3: PFYSs are established from FY'Ss using the concept of PFC.

Stage 1.4: The computation non-determinacy of the PFYSs of the UAE is described below-
e The UAE of the year 1971 is related with the FYSs G,, G, and G5 FYS. Hence PFYSs
J; =(0.333987,0.170279,0.000034), J, = (0.56003,0.223867,0)
and Js = (0.560229,0.22392,0)
are associated with this enrolment. The amount of non-determinacy of the above three
PFYSs are 0.495699, 0.216103, 0.215851 respectively. Since the amount of non-
determinacy 0.215851 is minimum in Jsand J5 is corresponding to a FY'S Gs, therefore

fuzzified enrollment of the year 1971 is taken as Gs.

e Similarly, the UAE of the years (1972- 1992) that are related with the FYSs are
computed. The amount of the non-determinacy values of the PFYSs are computed and
are given in Table 9.4. After calculating each enrolment's minimum non-determinacy,

the fuzzified enrolments are displayed in Table 9.5.
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Step 2: Fuzzified TSDs are utilised to generate FLRs. G(t) = G(t + 1). The detailed process
is given in Section 9.4.1. Fuzzy forecasted UAE are defuzzified by utilizing Eq. (9.6).

Step 3: EDSPSO integration with the PFTS gives the optimal interval length for FYSs and, by
extension, PFYSs, by minimizing the MSE in UAE forecasting. Here we have taken N as 7.
Tables 9.6 and 9.7 show the initial velocity and random positions. Each particle can be seen as
a distinct collection of

v1 = [qo, q1], v2 = (91, 921, 3 = [92, @3], va = (43, q4), vs = [q4, 45], v6 = (a5, 961,

v7 = [q6, 971,08 = [q7, 48], vo = [qs, q0], V10 = [q9, G10], V11 = [q10, q11],

V12 = [q11,912], V13 = [q12, Q13)s Via = [q13, Qral.

For instance, particle 1 categorizes a single set of 14 intervals based on its initial location.
v, = [13000,13500],v, = [13500,14000],v5 = [14000,14500],v, = [14500,15000],
vs = [15000,15500],v4 = [15500,16000],v, = [16000,16500],v = [16500,17000],
vy = [17000,17500],v,, = [17500,18000],v,, = [18000,18500],v,, = [18500,19000],
vy3 = [19000,19500] and v;, = [19500,20000].

By applying the PFYSs at the intervals given by particle 1, the MSE value of 312915.4
is produced, and this value is computed using Eq. (9.7). To forecast UAE, the same process is
repeated by all the particles. The comprehensive ESDPSO procedures are provided in
Algorithm 1. In this case, z9 is computed using zP and the lowest MSE value. This process

continues until the termination condition is met.

Table 9.2 UAE from 1971 to 1992

Year UAE Year UAE
1971 13055 1982 15433
1972 13563 1983 15497
1973 13867 1984 15145
1974 14696 1985 15163
1975 15460 1986 15984
1976 15311 1987 16859
1977 15603 1988 18150
1978 15861 1989 18970
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1979 16807 1990 19328
1980 16919 1991 19337
1981 16388 1992 18876
Table 9.3 Membership grades of UAE in different FYSs
UAE Gy G, G3 Gy Gs Ge Gy Gg Gy Gy Gy Gz Gis Gy
13055 0.11 0 0 0 0 0 0 0 0 0 0 0 0 0
13563  0.874 0.126 0 0 0 0 0 0 0 0 0 0 0 0
13867 0 0.734 0 0 0 0 0 0 0 0 0 0 0 0
14696 0 0 0.608  0.392 0 0 0 0 0 0 0 0 0 0
15460 0 0 0 0.08 092 0 0 0 0 0 0 0 0 0
15311 0 0 0 0.378 0662 0.206 0 0 0 0 0 0 0 0
15603 0 0 0 0 0794 0.722 0 0 0 o0 0 0 0 0
15861 0 0 0 0 0.278 0 0 0 0 o0 0 0 0 0
16807 0 0 0 0 0 0 038 0614 0 0 0 0 0 0
16919 0 0 0 0 0 0224 0162 0838 0 0 0 0 0 0
16388 0 0 0 0 0 0 0.776 0 0 o0 0 0 0 0
15433 0 0 0 0.134 0.866 0 0 0 0 0 0 0 0 0
15497 0 0 0 0.006  0.994 0 0 0 0 o0 0 0 0 0
15145 0 0 0 071 029 0 0 0 0 0 0 0 0 0
15163 0 0 0 0.674 0326 0.968 0 0 0 0 0 0 0 0
15984 0 0 0 0 0.032 0 0 0 0 o0 0 0 0 0
16859 0 0 0 0 0 0 0282 0718 0 0 0 0 0 0
18150 0 0 0 0 0 0 0 0 0 07 03 0 0 0
18970 0 0 0 0 0 0 0 0 0 0 006 094 0 0
19328 0 0 0 0 0 0 0 0 0 0 0 0344 0656 0
19337 0 0 0 0 0 0 0 0 0 o0 0 0326 0674 0
18876 0 0 0 0 0 0 0 0 0 0 0248 0752 0 0
Table 9.4 Non-determinacy values of PFYS for UAE
UAE Gl GZ 63 64 GS G6 G7 GS 69 GlO Gll G12 613 614
13055  0.496 1 1 0217 0216 1 1 1 1 1 1 1 1 1
13563 1 0.283 0878 0217 0.216 1 1 1 1 0905 1 1 1 1
13867 1 0.597 1 0.217  0.216 1 1 1 1 1 1 1 1 1
14696  0.216 1 1 1 0.217 1 1 1 1 1 1 1 1 1
15460  0.216 1 0.861  0.252 1 1 1 1 1 0874 1 1 1 1
15311  0.216 1 1 1 1 1 1 1 1 0884 1 1 1 1
15603  0.217 0911 1 0.216 1 1 1 1 1 0839 1 1 1 1
15861  0.217 1 0.839 0.216 1 0.262 1 1 1 0818 1 1 1 1
16807  0.217 1 1 0.217  0.216 1 027 1 1 0823 1 1 1 1

128



16919  0.217 1 0.802 0.217 0.216 1 0.455 1 1 1 1
16388  0.217  0.837 1 0217 0.216 1 1 1 1 1 1
15433 0215 0.905 0.885 0.354 1 1 1 0.874 1 1 1
15497  0.215 1 0.848 0.216 1 1 1 1 1 1 1
15145 0215 0.855 0.819 1 1 1 1 1 1 1 1
15163 0.215 0.854 1 1 1 1 1 1 1 1 1
15984  0.217 1 1 0216 022 0.236 1 0.888 1 1 1
16859 0.217 0877 0.813 0217 0.216 1 0.217 1 1 1 1
18150 0.216 1 1 0217 0215 1 1 1 1 1 1
18970  0.216 1 1 0217 0.215 1 1 1 02182  0.232 1
19328 0.216  0.824 1 0217  0.217 1 1 0.215 1 1 0.879
19337 0.216  0.857 1 0217  0.217 1 1 0.215 1 1 1
18876  0.216 1 0828 0217 0.217 1 1 1 1 0.215 1
Table 9.5. Fuzzified UAE using PFTS
Year Fuzzified UAE Year E Fuzzified UAE
1971 13055 Gs 1982 15433 G,
1972 13563 Gs 1983 15497 G,
1973 13867 Gs 1984 15145 G,
1974 14696 G, 1985 15163 G,
1975 15460 G, 1986 15984 G,
1976 15311 G, 1987 16859 Gs
1977 15603 G, 1988 18150 Gs
1978 15861 G, 1989 18970 Gs
1979 16807 Gs 1990 19328 G1o
1980 16919 Gs 1991 19337 Gy
1981 16388 Gs 1992 18876 Gy
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Table 9.6 Randomized initial positions of particle

q1 q2 q3 qa qs 96 q7 qs qs 910 911 q12 q13 MSE
13500 14000 1450 15000 1550 1600 1650 17000 1750 18000 1850 1900 1950 3129154
0 0 0 0 0 0 0 0
13398. 13767. 1450  14861. 1550 1600 1640 16816 1724 18000 1850 1889 1950 380051.2
44 05 0 72 0 0 5 4 0 8 0 68
13500 13741 1450 15000 1550 1600 1650 17000 1745 17827 1822 1869 1950 381760.5
0 0 0 0 9 7 3 0 9
13191 14000 1418 15000 1536 1600 1639 17000 1750 17944, 1850 1863 1950  403090.6
6 2 0 1 0 22 0 2 0 5
13301 13710. 1450 15000 1550 1600 1649 17000 1738 17800 1850 1868 1924  343400.6
73 0 0 0 5 7 0 3 4 6
13500 14000 1450 14600 1550 1583 1625 16798. 1750 18000 1824 1900 1950 489981.9
0 0 7 0 21 0 6 0 0 2
13500 13785. 1450 14955 1527 1600 1650 17000 1722 18000 1850 1900 1950 371665.1
51 0 5 0 0 7 0 0 0 97

Table 9.7 Randomized initial velocity of particles

51 V2 V3 Vs Vs Ve VU7 Vg Vg V1o V11 V12 V13
78.44  -100 -89.7 92,52 100 9571 100  -100 -100 100 100 -100 100
7.43 66.05 -3.33 93.71 -57.84 -100 100  -100 -100 -88.34 100  -100 100
-52.22 100 100 -100 100 -50.13 100  -37.96 -100 100 100  -100 -40.35
100 -100 100 93.07 100 1476 100  -100 -100  -93.78 100 -100 100
100 16.73 100 -100  91.04  -100 100  -100 -100 100 100  -100 100
57.83  -100 72.81 100 100 100 100 -56.79 -100 -100 100 -100 42.04
-100 -19.48 100 100 100 -100 100  -100 -100  -100 59.2 -100 1.95

9.5.2 Forecasting SBISP

Investors must be able to forecast volatility in stock prices since it is an indication of high risk
and affects their capacity to make well-informed decisions that maximize returns. We use the
proposed EDSPSO-PFTS technique for the TSD of the SBISP. The SBISP dataset used in this
study includes records from April 2008 to March 2010 (Table 9.8). The calculation to forecast
the SBISP implementing the suggested EDSPSO-PFTS method is shown below.

Step 1:
Stage 1.1: By considering the max and min values from Table 9.8, the UOD is determined as
V = [741,2892] from the TSD of SBI share.
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Stage 1.2: V = [741,2892] has been divided into fourteen intervals v(j) = [741 + (j —
1)h,741 + jh], (j = 1tol4,h = 153.64). FYSs G; (j=1 to14) are created to fuzzify the TSD
of the SBISP and its membership grade is given in Table 9.9.
G = [741+ (j — Dh, 741 + jh, 741 + 2jh],j = 1 to13,h = 153.64
G = [741 + (j — Dh, 741 + jh, 741 + jh],j = 14,h = 153.64

Stage 1.3: Using the concept of PFC (Algorithm 1), membership values are computed and

fourteen PFY'Ss are constructed from FYSs G;.

Stage 1.4: Non-determinacy is included in the fuzzification of TSD using the ideas given in
phase 1.4 of Section 9.4.1. We can observe that the share price of the year 9-Mar (1132.25) is
associated with the FYSs Gs,G,, and G FYSs. Hence, J; = (0.5414,0.218942,0),], =
(0.560387,0.22396,0), J, = (0.560404,0.223965,0), are the three PFYSs that are associated
with this enrolment. The amount of non-determinacy of the above three PFYSs are 0.239658,
0.215652, and 0.21563 respectively. Since the amount of non-0.21563 is minimum in J, and
Je 1s corresponding to FYS Gg, therefore fuzzified enrollment of the year 8-April is taken as
Ge.

Step 2: In Step 2, the FTS model is created. On FLRs and FLR (group), max-min composition

operations are then applied. Using Eq. (9.6), fuzzy forecasted enrolments are defuzzified.

Step 3: For constructing V = [741,2892], q,, and g, are assumed to be 741 and 2892,
respectively. The number of particles is assumed to be 7, and the number of intervals is assumed
to be 14, correspondingly. As an illustration, particle 1's initial position categorizes a specific
set of fourteen intervals-

v, = [741,894.64], v, = [894.64,1048.28], v; = [1048.28,1201.92],

v, = [1201.92,1355.57], vs = [1355.57,1509.21], v = [1509.21,1662.857],

v, = [1662.857,1816.5], vg = [1816.5,1970.14], v = [1970.14,2123.786],

V10 = [2123.786,2277.42], vy, = [2277.42,2431.07], v, = [2431.07,2584.714],

V13 = [2584.714,2738.357] and v,, = [2738.357,2892].

By applying the PFYSs at the intervals specified by particle 1, the MSE value of
14848.5517 is generated, and this value is determined using Eq. (9.7). Every particle goes
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through the same procedure to forecast UAE. In Algorithm 1, the detailed ESDPSO processes
are given. Here, the lowest MSE value and zP are used to calculate z9. Up until the termination

condition is satisfied, this process keeps going.

Table 9.8 Actual SBISP

Months SBISP Months SBISP
April-08 1819.95 April-09 1355
May-08 1840 May-09 1891
June-08 1496.7 June-09 1935
July-08 1567.5 July-09 1840
August-08 1638.9 August-09 1886.9
September-08 1618 September-09 2235
October-08 1569.9 October-09 2500
November-08 1375 November-09 2394
December-08 1325 December-09 2374.75
January-09 1376.4 January-10 2315.25
February-09 1205.9 February-10 2059.95
March-09 1132.25 March-10 2120.05

Table 9.9 Membership grades of the SBISP of different FYSs

SBISP Gy G, Gs G, Gs Ge G, Gg Gy Gio G Gz Gis Gy
1819.95 0 0 0 0 0 0712 028 0 0 0 0 0 0 0
1840 0 0 0 0 0 0659 0341 0 0 0 0 0 0 0
1496.7 0 0 0 0419 0582 0 0 0 0 0 0 0 0 0
1567.5 0 0 0 0.156 0844 0 0 0 0 0 0 0 0 0
1638.9 0 0 0 0 0711 0289 O 0 0 0 0 0 0 0
1618 0 0 0 0 0917 0083 0 0 0 0 0 0 0 0
1569.9 0 0 0 0.147 0853 O 0 0 0 0 0 0 0 0
1375 0 0 0 0869 0131 0 0 0 0 0 0 0 0 0
1325 0 0 0.407 0593 O 0 0 0 0 0 0 0 0 0
1376.4 0 0 0 0864 0136 0 0 0 0 0 0 0 0 0
1205.9 0 0351 0649 O 0 0 0 0 0 0 0 0 0 0
113225 0 0.616 0384 O 0 0 0 0 0 0 0 0 0 0
1355 0 0 0 0943 0057 O 0 0 0 0 0 0 0 0
1891 0 0 0 0 0 0524 0476 O 0 0 0 0 0 0
1935 0 0 0 0 0 0408 0592 0 0 0 0 0 0 0
1840 0 0 0 0 0 0659 0341 0 0 0 0 0 0 0
1886.9 0 0 0 0 0 0535 0465 O 0 0 0 0 0 0
2235 0 0 0 0 0 0 0 0 0551 0449 0 0 0 0
2500 0 0 0 0 0 0 0 0 0 0 0 0791 0209 O
2394 0 0 0 0 0 0 0 0 0 0 0809 0191 O 0
237475 0 0 0 0 0 0 0 0 0 0 0.993 0.007 O 0
231525 0 0 0 0 0 0 0 0 0124 0876 O 0 0 0
205995 0 0 0 0 0 0077 0923 0 0 0 0 0 0 0
212005 O 0 0 0 0 0 0 0562 0438 0 0 0 0 0
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9.6 Results and Discussions

The UAE and SBISP are forecasted by performing the EDSPSO-PFTS approach 20 times. The
best result from each run is used to decide the final output. Numerous parameters, including
the N, max _iter, h, h; and h, shape the dynamics of EDSPSO. The following are the

EDSPSO parameters, which are taken from work®®.

Fig 9.2 shows that the MSE value of the z9 drops as iterations increase. An evaluation
of the suggested EDSPSO-PFTS method's capability for UAE is conducted by comparing it
with techniques??106:107113-120 = The suggested EDSPSO-PFTS method's performance is
contrasted with Chen and Chung GA-based FTS approaches*?!. When analyzed alongside other
algorithms, the suggested EDSPSO-PFTS has a better MSE impact (Tables 9.10 and 9.11).

Error metrics and a variety of statistical factors are used for comparative studies to
evaluate the effectiveness of EDSPSO-PFTS. In comparison to existing approaches 40:106.107.114-
119 the suggested technique EDSPSO-PFTS is evaluated using statistical parameters listed in
Table 9.1. The comparison results are shown in Table 9.12. The statistical parameters are found
to be within reasonable bounds by the evaluation.

When analysed against several different FTS forecasting models, the effect of the
suggested EDSPSO-PFTS approach for the TSD of SBISP shows better
outcomes?>106:107.114,115119.120122 “\when analysed alongside other techniques, the suggested
EDSPSO-PFTS method performs superior (Table 9.13).

A comparison is shown between the proposed EDSPSO-PFTS method and other
methods!08107.114.115.119,122 ;sing statistical parameters listed in Table 9.14. The comparison
results are shown in Table 9.15. The statistical parameters are found to be within reasonable

ranges by the analysis.
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Fig. 9.2. Curve of MSE values
Table 9.10 Forecasted UAE
UAE Song and Song and Chent Huarng'®  Leeand Chen Yolcuet  Qiuet
Chissom*  Chissom!? Choutté and al.t? al.18
Chung*®
MSE 423020.16 775685.33  407503.49 227500.38 251281.638 209003 648290 261458
RANK 13 15 12 8 11 7 12
13055 - - - - - - - -
13563 14000 - 14000 - 14025 - 14031.35 14195
13867 14000 - 14000 - 14568 14146 14795.36 14424
14696 14000 - 14000 14000 14568 14878 14795.36 14593
15460 15500 14700 15500 15500 15654 14878 14795.36 15589
15311 16000 14800 16000 15500 15654 15609 16406.57 15645
15603 16000 15400 16000 16000 15654 15609 16406.57 15634
15861 16000 15500 16000 16000 15654 16214 16406.57 16100
16807 16000 15500 16000 16000 16917 16214 16406.57 16188
16919 16813 16800 16833 17500 17823 16818 17315.29 17077
16388 16813 16200 16833 16000 17283 16818 17315.29 17105
15433 16789 16400 16833 16000 16197 15609 17315.29 16369
15497 16000 16800 16000 16000 15654 15609 16406.57 15643
15145 16000 16400 16000 15500 15654 14146 16406.57 15648
15163 16000 15500 16000 16000 15654 14146 16406.57 15622
15984 16000 15500 16000 16000 15654 16818 16406.57 15623
16859 16000 15500 16000 16000 16197 16818 16406.57 16231
18150 16813 16800 16833 17500 17283 17992 17315.29 17090
18970 19000 19300 19000 19000 18369 19126 19132.79 18325
19328 19000 17800 19000 19000 19454 19126 19132.79 19000
19337 19000 19300 19000 19500 19454 19126 19132.79 19000
18876 - 19600 19000 19000 - 19126 19132.79 19000
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Table 9.11 Forecasted UAE

UAE Joshi and Kumar and Bisht and Gupta and Pattnayak Pant and Proposed
Kumar®® Gangwar'®  Kumar!®’ Kumar? et al.13 Kumar? Algorithm
(EDSPSO-
PFTS)
MSE 1881474 243601 183723 186313 1800964 178665 172024.06
RANK 6 10 4 5 3 2 1
13055 - - - - - - -
13563 14250 13693 13595.67 13680.75 13637 13682 14276.352
13867 14246 13693 13817.75 13844.43 14120 13682 15025.843
14696 14246 14867 14929.79 14951.36 14408 14722 15025.843
15460 15491 15287 15541.27 15532.34 15195 15427 15068.448
15311 15491 15376 15540.62 15533.19 15712 15544 15068.448
15603 15491 15376 15540.62 15533.19 15635 15544 15068.448
15861 16345 15376 15540.62 15533.19 15786 15544 15068.448
16807 16345 16523 16254.5 16298.77 15918 16665 15068.448
16919 15850 16606 17040.41 17113.79 16406 15994 15339.114
16388 15850 17519 17040.41 17113.79 16406 17230 15776.959
15433 15850 16606 16254.5 16298.77 16190 15994 15776.959
15497 15450 15376 15540.62 15533.19 15698 15544 15776.959
15145 15450 15376 15540.62 15533.19 15731 15544 16655.35
15163 15491 15287 15541.27 15532.34 15550 15516 16655. 35
15984 15491 15287 15541.27 15532.34 15559 15516 16655. 35
16859 16345 16523 16254.5 16298.77 15982 16665 16655. 35
18150 17950 17519 17040.41 17113.79 16433 17230 18506.346
18970 18961 19500 18902.3 18741.35 17366 18820 18506.346
19328 18961 19000 19357.3 19190.44 17967 19311 18506.346
19337 18961 19500 19168.56 18972.15 18230 19311 19196.290
18876 18961 19500 19168.56 18972.15 18236 19311 19196.290
Table 9.12 Statistical performance analysis of EDSPSO-PFTS on UAE
Model MSE AFE R R? PP Mgy TS
Song and Chissom* 423020.16 3.22 0.9173 0.8418 0.6419 516.35 2.6861
Song and Chissom*? 775685.33 3.75 0.8317 0.6917 0.5151 729.05 -4514
Chen* 407503.489 3.11 0.9262 0.8579 0.6485 498.80 3.2377
Huarng!®® 227500.38 2.36 0.9467 0.8962 0.7374 383.45 0.5554
Lee and Chou'® 251281.638 2.67 0.9542 0.9105 0.7240 428.95 4.1240
Yolcu et al.1*’ 648298.728 4.29 0.9121 0.83 0.5567 643.41 13.44
Qiu atal. 261458.368 2.65 0.9599 0.9219 0.7185 430.76 2.0521
Joshi and Kumar*® 188147.737 2.24 0.9688 0.9387 0.7612 358.71 -4.853
Kumar and Gangwar'® 243601.473 2.33 0.9594 0.9254 0.7235 368.68 1.554
Bisht and Kumar% 183723.676 194 0.9667 0.9346 0.7640 318.69 -0.214
Proposed Method 165322.2209 1.8462 0.9708 0.9425 0.7762 288.3228 0.5145

(EDSPSO-PFTS)
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Table 9.13 Forecasted SBISP.

SBISP Chen'*  Huarng'® Pathak Joshiand Kumarand Bishtand  Gupta Pantand  Proposed
and Kumar®®  Gangwar'® Kumar®  and Kumar®  Algorithm
Singh'? Kumar'? (EDSPSO-
PFTS)
MSE 35066 26909 42419 40068 17234.438 32051 34762 31483 9521.94
RANK 7 3 9 8 2 5 6 4 1
1819.95 - - - - - - - -
1840 1900 1855 1770 1777.8 1725.98 1877.657 1860.08 1716 1878.92
1496.7 1900 1855 1832.5 1865.71 1725.98 1877.657 1860.08 1776 1409.265
1567.5 1500 1575 1470 1531.5 1512.39 1466.36 1452.59 1491 1409.265
1638.9 1500 1505 1570 1531.5 1512.39 1466.36 1452.59 1491 1636.838
1618 1600 1610 1670 1777.8 1574.35 1533.504 1544.29 1491 1620.118
1569.9 1600 1610 1603.33 1531.5 1574.35 1533.504 1544.29 1491 1409.265
1375 1500 1505 1670 1531.5 1512.39 1466.36 1452.59 1491 1335.415
1325 1433 1482 1382.5 1504.23 1305.52 1520.652 1682.31 1542 1335.415
1376.4 1433 1365 1332.5 1504.23 1665.9 1520.652 1682.31 1542 1335.415
1205.9 1433 1482 1332.5 1504.23 1305.52 1520.652 1682.31 1542 1270.086
1132.25 1433 1155 1195 1258.23 1294.27 1144.718 1264.98 1270 1409.265
1355 1300 1365 1145 1258.23 1294.27 1322.446 1264.98 1270 1335.415
1891 1433 1482 1357.5 1504.23 1665.9 1520.652 1682.31 1542 1859.46
1935 1900 1890 1882.5 1865.71 2006.51 1877.657 2138.21 2041 2004.963
1840 1900 1890 1970 1883.93 2006.51 1895.491 1853.54 2041 1878.92
1886.9 1900 1855 1470 1865.71 1725.98 1877.657 1860.08 1776 1878.92
2235 1900 1855 1970 1865.71 2006.51 1877.657 2138.21 2041 2247.028
250 2300 2485 2245 2142.04 2520 2311.382 2466.99 2200 2752.743
2394 2300 2415 2470 2245.65 2420 2374.204 2328.48 2422 2340.217
2374.75 2300 2345 2395 2191.75 2365.99 2352.723 2321.66 2422 2340.217
2315.25 2300 2205 2395 2191.75 2365.99 2352.723 2321.66 2422 2247.028
Table 9.14 Statistical performance analysis of EDSPSO-PFTS on SBISP
Model MSE AFE R R? PP M, TS
Chen! 35066.3076 8.26 0.8839  0.7813 0.5313 136.32 0.825
Huarng'® 26909.12 6.29 0.911 0.8314 0.5894 105.3 0.698
Pathak and Singh'?2 42419.52 8.95 0.868 0.7544 0.4845 155.1 -.3.604
Joshi and Kumar!!® 40068.029  9.52 0.882 0.778 0.499 164.3 -4.221
Kumar and Gangwar' 17234.438 6.3 0.9446  0.8924 0.6714 101.73 1713
Bisht and Kumar®’ 32051.741 7.86 0.9001 0.8101 0.5519 131.28 0.882
Proposed Method 9521.94 4.109 0.971 0.943 0.756 66.62 1.848
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9.7 Conclusion

This study marks the pioneering introduction of the integration of PFYS and a metaheuristic
approach in FTS forecasting within existing literature. The novel hybrid algorithm, named
EDSPSO-PFTS, is unveiled as a powerful tool for FTS forecasting, combining the strengths of
Exponentially Mutated PSO (EDSPSO) and PFYS. While PSO is widely acclaimed for its
procedural advantages, it's susceptible to rash convergence at local optimal point. In response,
this work enhances PSO by integrating an innovative EMO, enriching the exploration phase of
optimization. Our suggested forecasting method combines EDSPSO and PFYS to add non-
determinacy into the fuzzification of TSD and optimise interval lengths.

To underscore the efficiency of the proposed innovative FTS forecasting method, it
undergoes application to diverse TSD sets, including UAE and SBISP. The lower values of
AFE and MSE stand as empirical proof that, in terms of error metrics, the proposed method
surpasses the performance of the compared methods in predicting both UAE and SBISP. The

values of R and R? affirm the strong correlation between actual and forecasted enrolments.

Future research in FTS forecasting will likely continue to focus on improving
prediction performance and lowering computing complexity. Additionally, investigating the
integration of nature-based optimization algorithms into PFYS-based FTS is an interesting
direction for further investigation. Furthermore, the goal of subsequent research will be to
develop a multivariate PFTS model and propose a novel multivariate forecasting method
based on this framework.
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Chapter 10

Conclusions and Scope for Future Work

This thesis is dedicated to developing different hybrid metaheuristic algorithms, specifically
tailored for job scheduling on computational grids, feature selection, and time series
forecasting. The fundamental aim was to examine and elevate the performance capabilities of
metaheuristic algorithms in diverse applications. Section 10.1 presents the conclusion of this

thesis, and Section 10.2 presents potential research areas for future work.

10.1 Conclusions

In conclusion, this research unfolds to reveal not merely a compilation of findings but a
narrative of discovery of innovative metaheuristic algorithms and their applications. The
journey cast a brilliant light on the metaheuristic algorithms and their real-world applications
under both Fuzzy and Deterministic environments. The primary conclusions from the eight

contribution chapters—Chapters 2 through Chapter 9—are covered in this section.

1. Addressing the job scheduling on the computational grid challenge, Chapter 2
introduces a fuzzy Particle Swarm Optimization (PSO) approach employing both
trapezoidal and pentagonal fuzzy numbers. The algorithm's efficacy is examined,
initially with trapezoidal fuzzy numbers and subsequently with pentagonal fuzzy
numbers. Comparative analysis reveals similar outcomes between fuzzy PSO

employing pentagonal and trapezoidal fuzzy numbers.
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2. The complicated challenge of multi-objective job scheduling on a computational grid
is addressed in Chapter 3 through fuzzy PSO employing both trapezoidal and
pentagonal fuzzy numbers. The makespan and flowtime values serve as optimal criteria,
with the selection of a particle that minimizes both simultaneously. The calculated
results of fuzzy PSO, employing trapezoidal and pentagonal fuzzy numbers, are
systematically compared. Strikingly, despite differences in scheduling, the objective

values remain consistent.

3. Chapter 4 analyses statistical metrics and convergence rates of the proposed HPSO
algorithm. It becomes evident that the proposed HPSO algorithm consistently
outperforms other metaheuristic algorithms (PSO, GA, HHO, and SSA) considered in
this work, particularly on high-dimensional and medium-dimensional datasets.
However, it is worth noting that the results on low-dimensional datasets, while
satisfactory, do not exhibit the same level of superiority. Since the practical applications
of FS problems involve large datasets, the proposed HPSO is more application-oriented
and useful. This satisfies our objective to increase CA and decrease the NF.

4. Chapter 5 analyses the application of the proposed hybrid metaheuristic algorithm,
HPSO, to MOFS problems, which involves a thorough comparison with PSO across
seven UCI datasets. The experimental outcomes conclusively establish the
outperformance of the HPSO algorithm over PSO for MOFS problems, validated
through rigorous statistical tests. The algorithm exhibits superior accuracy in higher-
dimensional scenarios, while its performance remains comparable on low-dimensional
problems. This positions the HPSO algorithm as a promising solution for MOO

problems and feature selection challenges.

5. PSOHHO and PSOHHO-V algorithms are developed in Chapter 6 which is based on
Exponential Mutation and Dual-Swarm Strategy. Their performance is evaluated and
comprehensively analysed based on statistical metrics and convergence rates. These
algorithms were subjected to rigorous testing on ten BF, showcasing superior

searchability and convergent speed compared to other optimizers in solving global
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optimization problems. Statistical tests further substantiated these findings.
Additionally, when applied to feature selection problems using seven UCI datasets,
both PSOHHO and PSOHHO-V outperformed other metaheuristic algorithms,
particularly in high-dimensional and medium-dimensional scenarios. But on low
dimensional datasets, the results are not much useful. The algorithms' consistent
success across varied dimensions positions them as potent solutions for practical feature

selection challenges involving large datasets.

In Chapter 7, PSOMHHO algorithm is developed with the help of Trapezoidal and
Pentagonal Fuzzy Numbers. The distinctive advantage of PSOMHHO over HHO is
prominently displayed in its Signature. The provision of a convergence proof serves to
strengthen the mathematical foundation, affirming the strength and reliability of the
PSOMHHO algorithm. Employing BF with distinct properties such as Unimodal Peak
(UP), Multimodal Peak (MP), and Fixed-Dimension Multimodal BF, the PSOMHHO
algorithm consistently outperforms HHO, GA, PSO, and SSA in terms of mean fitness
values across dimensions of 100, 500, and 1000. Statistical measures, including MWUT
and the Friedman test, affirm the statistical significance of these results. Notably, the
observed superior fitness values across different BF types position PSOMHHO as a

promising algorithm applicable to diverse real-world challenges.

Fuzzy BTO algorithms are developed in Chapter 8 and their effectiveness, particularly
BTOF1, was rigorously assessed through statistical metrics and convergence rates
across nine BF. The comprehensive experimental outcomes affirm the superior
searchability and convergent speed of BTOF1 compared to other optimizers in solving
global optimization challenges. Statistical tests further validate this conclusion.
Additionally, when applied to feature selection problems using seven UCI datasets,
BTOF1 consistently outperformed alternative algorithms, establishing its potential as a
robust global optimization solution adept at addressing feature selection challenges.

Chapter 9 presents the concept of incorporating PFYS and a metaheuristic method in
FTS forecasting. No significant work is available in the literature which uses the above
concept. With the combined strength of EDSPSO and PFYS, a novel hybrid algorithm
(EDSPSO-PFTS) for FTS forecasting is presented in this work. Because of its
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procedural advantages, PSO is a well-liked optimization technique; yet, it is prone to
premature convergence at local optima. In order to overcome this constraint, we
improve PSO by presenting the idea of exponential mutation, which makes the
exploration stage of the optimization procedure easier. The suggested forecasting
technique incorporates non-determinacy into the fuzzification of TSD and optimizes
interval durations by combining EDSPSO and PFYS. Our innovative hybrid approach
finds the ideal length for discretization and addresses non-determinacy in the
fuzzification process, in contrast to previous PSO-based FTS forecasting models that

ignored non-determinacy without explanation.

The suggested unique hybrid FTS forecasting method is applied to a variety of TSD,
such as the UAE and the SBISP, to illustrate its effects. The suggested strategy performs better
than the compared methods in terms of error measures when it comes to forecasting both the
UAE and the SBISP, as shown by the lower values of AFE and MSE. Greater collaboration
between anticipated and actual enrolments is ensured by both R and R? values. Additionally,
the numerical values of TS and PP are within the predicted range, confirming the objectivity

of the enrolment estimates generated with the suggested methodology.

10.2 Future Work

As we embark on the conclusion of this research journey, the horizon of possibilities for future
work extends with promise. The groundwork laid in this thesis serves as a trigger for the
exploration of several intriguing opportunities that could enhance and expand the territories of
development and application of metaheuristic algorithms in fuzzy environment. In the chapters
to come, we explore into the potential trajectories for further investigation for the continued

evolution of knowledge in this dynamic domain.

1. The intriguing results indicates exploring of alternative fuzzy numbers to recognize

potential variations and analyse their impact on the algorithm's performance.
2. The stability analysis of the proposed algorithms given in Chapters 6, 7 and 8 has not

been discussed. Hence in future the stability analysis of the proposed algorithms can be

discussed.
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Single-Objective FS problems discussed in Chapters 6, 7 and 8 can be extended work

into multi-objective FS problems.

. As discussed in Chapter 9, exploring the incorporation of alternative nature-based
optimization algorithms within PFYS-based FTS represents a promising avenue for
future research. Additionally, future studies will aim to establish a multivariate PFTS

model and suggest a new multivariate forecasting algorithm centred on this framework.

Improving forecast performance and reducing computational complexity continue to be

important areas of focus for future researchers in FTS forecasting.
In the future, the applications of the proposed algorithms can be expanded to real-life

problems such as machine learning, medical applications, financial fields, and

engineering optimization tasks.
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