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A B S T R A C T

In recent years, the study of convective transport through porous media has emerged as an

intriguing and significant subject, owing to its relevance in various industrial and engineering

applications. Additionally, the exploration of convective instability in fluid-saturated porous

layers, heated from below, has long captivated the attention of researchers across different

physical conditions. This field finds extensive utility in geophysics, food processing, oil

reservoir modeling, thermal insulation construction, and nuclear reactors. Understanding

the mechanism of instability in incompressible nanofluid, Casson fluid, and dusty fluid flows

through porous media is of utmost importance due to its practical implications in engineering.

Nanofluids, which are created by uniformly dispersing and suspending metallic particles on

a nanometer scale in conventional heat transfer fluids like water, oil, or ethylene glycol, are

particularly relevant and Casson fluid refers to a type of non-Newtonian fluid that exhibits

a non-linear relationship between shear stress and shear rate. The primary objective of this

thesis is to conduct a linear stability analysis of incompressible nanofluid, Casson fluid and

dusty fluid flows in an inclined channel filled with a porous medium.

This thesis is organized into four parts and fourteen chapters. Part- I is composed of a

single chapter, Chapter 1. This chapter serves as an introduction and covers several concepts,

including nanofluid, Casson fluid, dusty Casson fluid, and porous medium. Additionally, it

includes a review of relevant literature related to these topics.

Part-II contains six chapters, namely Chapters 2, 3, 4, 5, 6 and 7. Chapter - 2 investi-

gates convective stability of nanofluid flow in inclined porous channel, considering Brownian

motion, thermophoresis, and Brinkman’s equation. In Chapter - 3, deals the impact of local

thermal non-equilibrium (LTNE) on nanofluid flow stability in an inclined channel filled with

a porous medium. Chapter - 4 considers the effects of double diffusion and a magnetic field

on the stability of nanofluid flow in an inclined porous channel. Chapter 5 investigates the

effect of variable viscosity on the stability of nanofluid flow in an inclined porous channel.

Chapter- 6 investigates numerically the local thermal non-equilibrium state of the fluid, par-

ticle, and solid-matrix phases for the stability of nanofluid flow in an inclined channel with

variable viscosity filled with a porous medium. In Chapter- 7, the effects of double diffu-

sion and variable viscosity on the stability of a nanofluid-saturated Darcy-Brinkman porous

medium in an inclined channel are investigated.

Part III comprises three chapters, namely Chapters 8, 9, and 10. Chapter 8 delves into

the examination of the stability of Casson fluid flow in an inclined channel with a highly

permeable porous medium. The analysis takes into account the presence of a heat source or

vi



sink. In Chapter 9, the investigation shifts towards exploring the stability of Casson fluid

flow in an inclined porous channel, considering the effects of chemical reaction and radiation.

Chapter 10 is dedicated to investigating the impact of variable viscosity on the stability of

Casson fluid flow in an inclined porous channel.

Part-IV contains three chapters, namely Chapters 11, 12, and 13. In Chapter 11, the

focus shifts to the investigation of the impact on the stability of two-phase dusty Casson

fluid flow in an inclined porous channel. In Chapter 12, the emphasis is placed on studying

the impact of variable viscosity on the stability of two-phase dusty Casson fluid flow in an

inclined porous channel. Chapter 13 discusses the impact of heat source/sink and radiation

on the stability of two-phase dusty Casson fluid flow in an inclined porous channel. In each

of the preceding chapters, the non-linear governing equations and their associated boundary

conditions are initially cast into dimensionless form through a suitable set of non-dimensional

transformations and then converted into a system of linear ordinary differential equations by

linear stability analysis and the normal mode technique. Chebyshev’s spectral collocation

method is used to solve the resultant system of ordinary differential equations. The impact

of relevant parameters on the onset of convection is depicted in graphs and tables. In addi-

tion, for some problems, the pattern of streamlines, isotherms, and isonanoconcentrations is

plotted at a critical level over a single period.

Part V is comprised of a solitary chapter, namely Chapter 14, which serves the purpose

of summarizing the research findings, presenting overall conclusions, and future work scope.
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N O M E N C L A T U R E

a overall wave number

B strength of the magnetic field

B0 uniform magnetic field

c wave speed

cp specific heat at constant pressure

Cs specific heat of particle at constant

pressure

C concentration

C1, C2 constant concentrations

D Mass diffusion coefficient

Da Darcy number

DB Brownian diffusion coefficient

DCT Soret type diffusivity

Df Dufour parameter

Dρ Mass concentration parameter

DS solutal diffusivity

DT thermophoretic diffusion coeffi-

cient

DTC Dufour type diffusivity

g gravitational acceleration

h interphase heat transfer coefficient

Ha Hartmann number

j current

k variable viscosity

K permeability

km Thermal conductivity of the

porous medium

L layer thickness

Le Lewis number

Ln thermo-solutal Lewis number

NA modified diffusivity ratio

NB modified particle density incre-

ment

NHP Nield number for the fluid/particle

interface

NHS Nield number for the fluid/solid-

matrix interface

p pressure

Pr Prandtl number

Q heat source/sink parameter

qr Radiative heat flux

R∗ Reaction rate of solute

Re Reynolds number

Ra Rayleigh number

Rd Radiation parameter

Rm basic density Rayleigh number
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Rc Chemical reaction parameter

Rn concentration Rayleigh number

Rs solutal Rayleigh number

Sr Soret parameter

Sc Schmidt number

t time

T temperature

T1, T2 constant temperatures

Ub, Upb basic velocities

va Vadasz number

V⃗ velocity of fluid

(x, y, z) Cartesian coordinates

Greek symbols

α streamwise wave number

αd momentum dust particle

αT thermal dust particle

αf thermal diffusivity for fluid phase

αnf thermal diffusivity for nanofluid

αm thermal diffusivity of the porous

medium

β spanwise wave number

βC solutal expansion coefficient

βT thermal expansion coefficient

γ Casson parameter

γm heat capacity ratio

γP, γS modified thermal capacity ratios

γ1 specific heat ratio

δ small disturbance parameter

ϵ porosity

εm thermal diffusivity ratio

εP, εS modified thermal diffusivity ratios

η growth rate

θ inclination angle

λ gravity variation parameter

Λ viscosity ratio

µ dynamic viscosity

µ̃ effective dynamic viscosity

µb dynamic plastic viscosity

µl viscosity at refrence temperature

Tl

ν kinematic viscosity

ρ density

ρf density for the fluid

ρp particle density

(ρc)f heat capacity of the fluid

(ρc)p heat capacity of the particle mate-

rial

(ρc)s heat capacity of the solid-matrix

material
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σ thermal capacity ratio

τm velocity relaxation time of the par-

ticles

τT thermal relaxation time of the par-

ticles

ϕ volume fraction

ϕ1, ϕ2 constant volume fractions

ψ stream function

Superscripts

∗ dimensionless variable

′ perturbation variable

tr transpose of a matrix

Subscripts

0, b basic solution

c critical

f fluid phase

p particle phase

s solid phase
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Chapter 1

Preliminaries and Review

1.1 Introduction

Convective transport in porous media has gained significant attention in recent years due to

its wide range of applications across mechanical, chemical, and civil engineering disciplines.

These applications encompass a broad spectrum of fields, including the movement of moisture

in fibrous insulation, the dispersion of chemical pollutants in saturated soil, the extraction

of geothermal energy, food processing and storage, geophysical systems, underground waste

disposal (both nuclear and non-nuclear), electrochemistry, thermal insulation in buildings,

metallurgy, the design of pebble-bed nuclear reactors, and cooling systems for electronic

devices. Different models, such as Darcy [1], Brinkman-extended Darcy [2], Forchheimer-

extended Darcy [3], and the generalized flow models, were proposed in the literature to

explain the mathematical and physical aspects associated with convective transport in porous

media.

The recent emergence of nanofluids, which are engineered suspensions of nanoparticles in

liquids, has captured the attention of numerous researchers. These nanofluids have generated

significant interest due to their potential to enhance heat transfer rates in engineering systems

while mitigating issues such as erosion, sedimentation, and clogging that plagued previous

mixtures containing larger particles. Nanofluids have a wide range of applications in various

technical fields, including the automotive industry, medicine, power plant cooling systems,
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and computer systems. One of the most crucial and compelling areas of study in heat and

mass transfer theory involves the convection resulting from heated or cooled objects with

different geometries and physical conditions in a porous medium saturated with nanofluids.

This particular scenario holds immense theoretical and practical importance.

The concept of stability plays a significant role in the mathematical investigation of

physical systems, influencing their development. As real-world examples show, stability con-

siderations frequently play a role in the practical application of various technical systems.

Engineering constructions like bridges, plates, and shell structures subjected to pressure load-

ing or unloading by flowing fluids, as well as high-speed vehicles, truck-trailer combinations,

railway trains, and hydrodynamic challenges, all require stability as a crucial factor. The

term “hydrodynamic stability” refers to the response of laminar flow to a small disturbance.

If a flow returns to its previous laminar state after a certain period of time and remains in

that state, it is deemed stable. However, it is considered unstable if it transitions to a dif-

ferent state. Researchers have employed linearized stability analysis to solve hydrodynamic

and hydromagnetic stability problems in various geometries using different fluid models in

recent decades.

1.2 Nanofluids

Nanofluids are advanced engineered fluids that consist of a base fluid, such as water or

oil, infused with tiny suspended particles called nanoparticles. These nanoparticles, typ-

ically ranging in size from 1 to 100 nanometers, are dispersed within the base fluid to

create nanoscale composite materials. The addition of nanoparticles to the base fluid results

in unique and improved properties compared to traditional fluids. Nanofluids exhibit en-

hanced thermal conductivity, meaning they can transfer heat more efficiently than regular

fluids. This property makes nanofluids extremely attractive for thermal management and

heat transfer applications [4]. The applications of nanofluids span across various fields and

industries, e.g., nanofluids offer improved cooling capabilities for electronic devices such as

computer chips and LEDs, which generate significant heat during operation [5]. They can

absorb solar radiation more effectively, thereby increasing the heat transfer and energy con-

version rates in solar collectors and thermal energy storage systems [6, 7]. They have the

potential to enhance the efficiency of cooling systems in automotive engines and aircraft.

And nanofluids are being explored in medical diagnostics and treatments. They have the

potential to enhance imaging techniques, such as magnetic resonance imaging (MRI), and
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improve targeted drug delivery systems [8, 9].

The Boungiorno and Tiwari-Das models are two popular approaches used to study the

convective flows of nanofluids. These models provide mathematical formulations to ana-

lyze the behavior of nanofluids. Tiwari and Das [10] developed a model to analyze the

behaviour of nanofluids by taking the volumetric fraction of nanoparticles into considera-

tion. Buongiorno [11] considered seven slip mechanisms, namely, inertia, Brownian diffusion,

thermophoresis, diffusiophoresis, magnus effect, fluid drainage, and gravity that can produce

a relative velocity between nanoparticles and the base fluid. In the absence of turbulent

effects, he concluded that only Brownian diffusion and thermophoresis are important slip

mechanisms in nanofluids. Based on this observation, Buongiorno proposed a mathemati-

cal model for the nanofluid based on these effects. Brownian motion refers to the random

movement of nanoparticles due to thermal fluctuations, while thermophoresis describes the

motion of particles induced by temperature gradients. The Buongiorno model considers the

combined effect of these phenomena to estimate the convective heat transfer coefficient and

temperature distribution in nanofluid flow.

The fundamental equations for the Buongiorno model consist of the continuity equation,

momentum equation, energy equation, and nanoparticle concentration equation given by:

∇ · V⃗ = 0, (1.1)

ρf

(
∂V⃗

∂t
+ V⃗ · ∇V⃗

)
= ρfg−∇p+ µ∇2V⃗ , (1.2)

(
∂T

∂t
+ V⃗ · ∇T

)
= αnf∇2T + σ

[
DB∇ϕ · ∇T +

DT

Tm
∇T · ∇T

]
, (1.3)(

∂ϕ

∂t
+ V⃗ · ∇ϕ

)
= DB∇2ϕ+

DT

Tm
∇2T. (1.4)

where V⃗ is the velocity vector, T is the temperature, ϕ is the nanoparticle volume fraction,

DB is the Brownian diffusion coefficient, DT is the thermophoretic diffusion coefficient, Tm is

the reference temperature, µ is the viscosity of the fluid, g is the gravitational acceleration,

αnf is the thermal diffusivity for nanofluid, and σ = (ρc)p/(ρc)f is the ratio between heat

capacity of nanofluid and nanoparticles.
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1.3 Casson Fluids

Casson fluid is a non-Newtonian fluid that describes the behavior of certain viscoelastic

materials, such as suspensions and pastes. Unlike Newtonian fluids, which exhibit a linear

relationship between shear stress and shear rate, Casson fluids display a non-linear behavior

characterized by yield stress and a non-zero viscosity at zero shear rates. It was first intro-

duced by Casson [12] as a mathematical model to describe the behavior of certain types of

semi-solid materials, such as mud, chocolate, and paint. The unique properties of Casson

fluids make them important in various industrial and biomedical applications. For example,

they are commonly used in the production of paints, cosmetics, and food products, where

their shear thinning behavior helps to improve the flow and consistency of the materials

[13]. In medicine, Casson fluids are used to model the behavior of blood and other biological

fluids, and to study the flow of fluids through blood vessels and other tissues [14].

The Casson model proposes that the fluid consists of a network of internal structures or

particles embedded in a continuous medium [15]. These structures interact and rearrange

under applied stress, giving rise to the unique rheological properties exhibited by Casson

fluids. The model introduces two fundamental parameters: yield stress and Casson viscosity.

The yield stress represents the minimum stress required to initiate flow, while the Casson

viscosity accounts for the resistance to flow once yielding has occurred [16].

The dynamical equations for a Casson fluid with an isotropic rheology are as follows:

τij =


2
(
µb +

py√
2πc

)
eij, π < πc

2
(
µb +

py√
2π

)
eij, π > πc

py is known as yield stress of the fluid, mathematically expressed as:

py =
µb

√
2π

γ
(1.5)

µb is known as plastic dynamic viscosity of the non-Newtonian fluid, π is the product of the

component of deformation rate with itself (i.e. π = eijeij), where eij is the (i, j)
th component

of the deformation rate and πc is the critical value based on the non-Newtonian model. In a

case of Casson fluid (Non Newtonian) flow, where π > πc, it is possible to say that

µ = µb +
py√
2π

(1.6)
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Substituting (1.5) into (1.6), the kinematics viscosity of Casson fluid is now depending on

plastic dynamic viscosity µb, density ρ and Casson parameter γ

ζ =
µb

ρ

(
1 +

1

γ

)
(1.7)

The Casson model’s fundamental equations consist of the continuity equation, momentum

equation, and energy equation given by:

∇ · V⃗ = 0, (1.8)

ρ

(
∂V⃗

∂t
+ V⃗ · ∇V⃗

)
= ρg−∇p+

(
1 +

1

γ

)
µ∇2V⃗ , (1.9)

(
∂T

∂t
+ V⃗ · ∇T

)
= αf∇2T (1.10)

where p is the pressure of Casson fluid phase, αf is the thermal diffusivity for Casson fluid,

γ is Casson parameter.

Based on mathematical study, the range of Casson fluid parameter (γ) suitable for this

model is 0 to ∞. When γ → 0, the yield stress is negligible compared to its plastic viscosity,

essentially behaving like a Newtonian fluid, where as at γ → ∞, it acts as non-Newtonian

fluid.

1.4 Two-phase Dusty Casson Fluids

The fluid flows along with dust particles have an extensive range of mechanical applications

like transport processes, cement and steel manufacturing industries, flying ash from ther-

mal plants, and chilling consequences of AC’s. Two-phase flow occurs when two distinct

aggregation states of the same material or two distinct substances exist concurrently. All

combinations are feasible, including gaseous and liquid, gaseous and solid, and liquid and

solid. Dusty fluid flow can yield a number of forms, including flows that transform from pure

liquid to vapor due to outside heat-separated flows and distributed two-phase flows in which

one of the phases exists as particles, bubbles, or droplets in a continuous phase (i.e., liquid

or gas). Furthermore, bubbles, rain, and sea waves are examples of two-phase flows. Two-

phase flows in microgravity are used in a wide variety of critical applications, including fluid

handling and storage, as well as thermal and power systems on spacecraft (e.g., condensers,

evaporators, and piping systems). The two-phase dusty fluid has numerous practical appli-
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cations in various industries, such as boiling and condensation, chemical processing, the oil

and gas industry, refrigeration and air conditioning, and biomedical applications [17]

The two-phase flows involving solid particles scattered in a Casson fluid have significant

applications in industries. In a two-phase dusty Casson fluid flow, the Casson fluid acts as

the continuous phase, providing the medium through which the solid particles move. The

dispersed solid particles can range in size, concentration, and properties depending on the

specific application. The interaction between the particles and the Casson fluid introduces

additional complexities to the flow, such as particle-particle and particle-fluid interactions,

particle settling, and the formation of particle clusters or agglomerates. Two-phase dusty

Casson fluid flow refers to the behavior and dynamics of a mixture consisting of Casson fluid

and dispersed solid particles. This system involves the simultaneous flow of the Casson fluid

and the suspended particles, which can have significant impacts on the overall flow behavior

and characteristics.

The two-phase dusty Casson fluid flow is governed by the following equations:

For the fluid phase:

∇ · V⃗ = 0 (1.11)

ρ

(
∂V⃗

∂t
+ V⃗ · ∇V⃗

)
= ρg−∇p+

(
1 +

1

γ

)
µ∇2V⃗ +

ρp
τm

(V⃗p − V⃗ ), (1.12)

ρCp

(
∂T

∂t
+ V⃗ · ∇T

)
= kf∇2T +

ρpCs

τT
(Tp − T ) (1.13)

For the particle phase:

∇ · V⃗p = 0 (1.14)

ρp
ϵ

(
∂V⃗p
∂t

+
1

ϵ
(V⃗p · ∇)V⃗p

)
= −∇pp −

ρp
τm

(V⃗p − V⃗ ) (1.15)

ρpCs

(
∂Tp
∂t

+ V⃗p · ∇Tp
)

= −ρpCs

τT
(Tp − T ) (1.16)

where T is the temperature Temperature of fluid phase, Tp is the temperature of particle

phase, p is the pressure of fluid phase, pp is the pressure of particle phase, ρ is the density

of fluid phase, ρp is the density of particle phase, Cp is the specific heat of fluid at constant

pressure, Cs is the specific heat of particle at constant pressure, τm is the velocity relaxation

time of the particles, τT is the thermal relaxation time of the particles,
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1.5 Porous Medium

Porous media refers to materials or substances that contain interconnected voids or pores,

which allow for the flow and storage of fluids within them. Examples of porous media

include soil, rock formations, filters, and sponges. The study of porous media is essential in

various fields, including geology, hydrology, petroleum engineering, environmental science,

and chemical engineering [18].

Porous media exhibit unique physical and flow properties due to the complex structure

of interconnected pores. The arrangement, size, and connectivity of the pores significantly

influence the behavior of fluid flow, heat transfer, and mass transport within the medium. To

understand and characterize porous media, several models have been proposed to describe

the mathematical and physical aspects of porous media. Among these, the Darcy model and

a series of its modifications attracted much acceptance.

Darcy Model

Darcy [1] introduced the fundamental equation that governs fluid motion in a vertical porous

column. This equation represents a delicate equilibrium between viscous force, gravitational

force, and pressure gradient. Mathematically, it can be expressed as follows:

V⃗ = −K
µ

(∇p− ρg) , (1.17)

where V⃗ is the space averaged velocity (or Darcian velocity), K is the (intrinsic) permeability

of the medium.

The aforementioned law appears to be in excellent agreement with experimental results

for one-dimensional flows and systems with low porosity. This model is only pertinent to

seepage flows, i.e., flows with a low Reynolds number (O(Re) < 1), because it does not

account for inertial effects.

Darcy-Forchheimer Model

Forchheimer [3] conducted experimental investigations and proposed an adjustment to the

momentum equation to incorporate the influence of inertial effects. He suggested including

a term proportional to the square of the velocity. The modified form of Darcy’s equation,
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taking into account Forchheimer’s modification, is as follows:[
1 +

ρ cF
√
K

µ
|V⃗ |

]
V⃗ = −K

µ
[∇p− ρg] , (1.18)

where cF is the dimensionless form drag coefficient and it varies with the nature of the

porous medium. The coefficients introduced by Darcy and Forchheimer incorporate the

characteristics of both the fluid properties and the microstructure of the porous medium.

Several experimental studies have confirmed the model’s validity.

Darcy-Brinkman Model

Brinkman [2] proposed a modification to Darcy’s equation by introducing the Laplace term.

This adjustment was based on the assumption that when flow occurs through a porous

medium with high permeability, it should reduce to viscous flow in the limit. Brinkman

recognized the significance of accounting for the viscous force exerted by a flowing fluid on a

densely packed arrangement of spherical particles within the porous material. To balance the

pressure gradient, he added the term µ̃∇2V⃗ to the equation. Here, µ̃ represents the effective

viscosity, which can be calculated as µ̃ = µ(1−2.5(1−ϵ)), where µ is the viscosity of the fluid

and ϵ is the porosity of the medium. The applicability of the Brinkman model is primarily

limited to porous media with high porosity, as supported by experimental observations. The

governing equation of the Brinkman model is given as:

− [∇p− ρg] =
µ

K
V⃗ − µ̃∇2V⃗ . (1.19)

1.6 Basic Terminology

Oberbeck-Boussinesq Approximation

The Oberbeck-Boussinesq approximation is a simplification used in fluid dynamics to model

certain types of flows, particularly those involving small density variations. It is commonly

employed in situations where the effects of buoyancy, such as natural convection, dominate

the flow behavior. This approximation allows for the decoupling of density variations from

other flow properties, simplifying the governing equations and enabling easier analysis and

computation [19].
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The density difference ρ − ρ∞ in the buoyancy portion of the momentum equation for

nanofluids can be conveniently and simply defined as

ρ = ϕρp + (1− ϕ)ρf1[1− βT(T − T1)], (1.20)

where ρp is the nanoparticle density, ϕ is the nanoparticle volume fraction, T1 is the refer-

ence temperature and ρf1 is the fluid density at reference temperature at some point in the

medium, βT is the coefficient of thermal expansion. If the density ρ varies linearly with T

over the range of values of the physical quantities encountered in the transport process, βT

in Eq. (1.20) are given by

βT = −1

ρ

(
∂ρ

∂T

)
p,C

.

Local Thermal Non-Equilibrium (LTNE)

Local thermal equilibrium (LTE) is achieved when the temperature and heat flux rate at the

interface between the solid and fluid phases are balanced, implying no heat transfer between

them. This assumption applies when one phase dominates or the porous medium has a small

characteristic length scale. However, this assumption is not valid when there are significant

temperature differences between the solid and fluid phases or when dealing with high-speed

flows. In such cases, the solid and fluid phases have notably different temperatures, leading

to a state called local thermal non-equilibrium (LTNE). In LTNE, the fluid temperature

rapidly varies with the location of a nanoscale particle, making the system more complex.

To accurately represent LTNE, separate temperature equations are required for the solid

particle and fluid phases. Nield and Bejan [20] provided the simplest form of the heat

transport equation as follows

(1− ϵ)(ρc)s
∂Ts
∂t

= (1− ϵ)∇ · ks∇Ts + h(Tf − Ts), (1.21)

ϵ(ρcp)f

[
∂Tf
∂t

+ V⃗ · ∇Tf
]
= ϵ∇ · kf∇Tf + h(Ts − Tf), (1.22)

where h is the inter-phase heat transfer coefficient, ∇T is the temperature gradient and ϵ is

the porosity of the porous medium. The subscripts s and f refer to the solid and fluid phases

respectively. The specific heat of the solid is denoted by c, cp is the specific heat at constant

pressure of the fluid and k is the thermal conductivity.
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Hydrodynamic Stability

A physical system is said to be stable when it returns to its original state after being per-

turbed in some way. To analyze a system’s stability, it is subjected to arbitrary small

perturbations, and the system’s response to these perturbations is evaluated. To be of the

permanent type, an equilibrium state or steady flow must not only satisfy the governing

equations but also be stable against arbitrary small perturbations.

Hydrodynamic stability concerns the stability and instability of fluid motions. Hydro-

dynamic stability theory determines the reaction of a steady motion of a fluid (base flow)

to small disturbances. The stability of fluid flow is determined by the growth rate of distur-

bances. If the disturbances grow over time, the flow is considered unstable. Conversely, the

flow is considered stable if all the possible disturbances that it can be subjected to decay over

time. The origins of this theory can be traced back to the nineteenth century, to Helmholtz,

Kelvin, Rayleigh, and Reynolds.

Method of Normal Mode

Normal mode analysis is a technique employed in linear stability analysis to assess the

stability of a system around a steady-state solution. It involves linearizing the system’s

differential equations around the equilibrium point, assuming perturbations in the form

of exponential growth or decay, and substituting this assumed solution into the linearized

equations to derive an eigenvalue problem.

1.7 Literature Review

The study of the onset of linear stability of convection in a channel is very important in the

fields of geothermal system engineering, aquifer hydrology, and pollutant transport in the

water-soil system. Horton and Rogers [21] and Lapwood [22] are the first to investigate the

onset of convection in a porous medium. Since then, many researchers have examined the

instability mechanism of viscous fluid flows in a horizontal and vertical porous layer under

a variety of physical conditions.

The study of double-diffusive convection in porous media is an active research topic due

to its various applications in the domains of chemical engineering, nuclear industries, food

processing, oceanography, geophysics, cancer treatment, biotechnology, and biological fluid
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movement [23]. Several researchers have investigated the linear stability of convection using

double diffusion in a porous medium saturated with Newtonian and non-Newtonian fluids.

Mahantesh [24] explored the impact of double diffusion and chemical reaction on the stability

of a porous layer saturated with a binary fluid mixture. Deepika [25] discussed the role of

Soret and double diffusion in the start of convection in a horizontal fluid filled porous layer.

Beaume et al. [26] analyzed the three-dimensional doubly diffusive convection in a binary

fluid. Attia et al. [27] studied the role of cross diffusion on thermo-solutal convection in a

horizontal layer with uniform heat and mass fluxes. Shivakumara et al. [28] considered the

consequences of the applied magnetic field on the stability of convection in the horizontal

fluid layer with double diffusion. Shankar et al. [29] studied the stability of buoyant flow

in a vertical layer of a Darcy porous medium with double diffusion. Noon and Haddad [30]

analyzed the influences of variable gravity, rotation, and chemical reaction on the linear and

nonlinear stability of a thermosolutal convection in a Darcy porous medium. Dhiman et al.

[31] analyzed mathematically the thermohaline convection in a viscoelastic fluid saturated

porous layer.

The variable viscosity of fluids has a significant impact on fluid flow behavior and is

an important consideration in various scientific and engineering applications. In industries

such as polymer processing, food processing, and chemical processing, the viscosity of the

fluid changes with the change in temperature, pressure, and composition. In environmental

science, the variable viscosity of fluids plays a crucial role in understanding the transport

and mixing of pollutants in the atmosphere and oceans. The viscosity of air changes with

altitude and temperature, while the viscosity of seawater varies with depth and salinity [32].

In biological systems, the viscosity of body fluids such as blood, saliva, and mucus changes

with the physiological condition of the body. The variable viscosity of these fluids affects

the flow behavior, transport of nutrients and drugs, and various other biological processes

[33]. In geophysical fluid dynamics, the variable viscosity of fluids plays an important role

in understanding the dynamics of the Earth’s atmosphere and oceans. The viscosity of air

and seawater changes with temperature, pressure, and composition, affecting the flow be-

havior and circulation patterns [34]. In heat transfer applications, the variable viscosity of

fluids plays a significant role in determining the convective heat transfer rate. The viscosity

of the fluid affects the fluid flow behavior and the boundary layer development, which in

turn influences the heat transfer process [35]. Many researchers investigated linear stability

analysis with changing viscosity. Goyal et al. [36] investigated the effect of viscosity fluctua-

tions on the density-induced instability of two miscible fluids in a Hele-Shaw cell in vertical

orientation. Yadav et al. [37] investigated the effect of viscosity variation, double-diffusive
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convection, and thermal conductivity on the onset of a nanofluid-saturated porous layer that

was heated and salted from below. Umavathi et al. [38] analyzed the linear and non-linear

stability of convection in a double diffussive Maxwell nanofluid saturated porous medium.

In a Rayleigh-Bénard situation with rotation, recently Aanam et al. [39] theoretically in-

vestigated the dynamics of a ferrofluid with temperature and viscosity that are dependent

on the magnetic field.

A renewed interest in studying convective heat and mass transport in porous media has

also arisen as a result of the influence of magnetic fields on the flow structure and effectiveness

of various systems utilizing electrically conducting fluids. Several researchers have studied

linear stability analysis in the presence of a transverse magnetic field. Zhang and Zikanov

[40] analyzed the consequence of magnetic field on the linear convective stability of a liquid

metal flow in a duct with bottom heating. Hudoba and Molokov [41] explored the influence

of heat source and magnetic field on the linear stability of buoyant convective flow in a

channel. Singh et al. [42] studied the importance of the transverse magnetic field on the

linear convective stability in a differently heated channel. Camobreco et al. [43] analyzed

the linear stability of periodic pulsatile flows in a duct with a transverse magnetic field.

Nanofluids are formed by dispersing nanometer-sized, small solid or metallic particles

in normal heat transfer fluids [4]. These fluids will have higher thermal conductivity than

conventional heat transfer fluids. Nanofluids are utilized in oil recovery, solar water heating,

hybrid-powered engines, interfacial tension reduction, profile modification, indoor ventila-

tion with radiators, and microelectronics. The method of employing both nanofluid and

porous medium has received significant attention, which has prompted much research in

this area. In-depth analysis is provided by Kasaeian et al. [44] on the utilization of porous

media and nanofluids together to enhance heat transfer in thermal systems characterized by

different geometrical configurations, flow patterns, and boundary conditions. Linear stabil-

ity analysis in a nanofluid saturated porous medium has been the subject of investigation

by various researchers. Rana and Chand [45] developed a linear stability analysis model to

investigate thermal convection in a rotating nanofluid-filled porous layer governed by the

Darcy-Brinkman model. Umavathi and Prathap [46] analyzed the stability, both linear and

nonlinear, of a porous layer saturated with viscoelastic nanofluid. Khalid et al. [47] inves-

tigated the impact of an internal heat source, feedback control, and double diffusion on

the initiation of convection in a rotating layer of nanofluid. Akbarzadeh and Mahian [48]

analyzed the beginning of natural convection in a nanofluid filled porous layer sandwiched

between two solid walls. Yadav [49] examined the consequences of rotation and changing

gravitational field on the beginning of convection in an inhomogeneous nanofluid porous
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layer. Srinivasacharya and Barman [50] researched convective instability in the vertical

porous layer comprising nanofluid. Ketchate et al. [51] explored the stability of the flow of

hybrid nanofluid between two stationary parallel plates containing porous medium. Ketchate

et al. [52] investigated the stability of Al2O3/water nanofluid mixed convection in a porous

medium-packed channel subjected to heating from the bottom and cooling from above. Kaur

and Sharma [53] analyzed the linear and nonlinear stability of thermal convection in porous

media saturated with Oldroyd-B nanofluids.

In all the above studies on convective transport in nanofluid saturated porous medium,

it is assumed that fluid and solid-matrix phases are in local thermal equilibrium (LTE).

This presumption of the fluid and porous medium being in an LTE condition may not hold

true if there is a significant temperature variation between the phases or if there is a quick

heat transfer for high-speed flow. The effects of local thermal non-equilibrium (LTNE)

must be taken into account since the temperatures of the fluid and solid-matrix phases are

no longer uniform. The behavior of nanofluid flow under local thermal non-equilibrium

conditions can help engineers and researchers to design more efficient heat transfer systems.

The impact of LTNE on thermal convective instability was first studied by Banu and Rees

[54], even though the study of flow in porous media was started in the late 1990s. Since

then, numerous studies on the effects of LTNE on convection in porous medium have been

published with various physical and geometrical effects. Ingham and Pop [55], Straughan

[56] and Nield and Bejan [18] presented the literature on the LTNE model for fluid phase and

solid-matrix in the temperature equation. The investigation of the LTNE state for nanofluids

has become a significant area of research due to their fascinating applications in microwave

heating, fast heat transfer, refrigeration, and the drying of food. Mahajan and Sharma [57]

investigated the consequence of LTNE on the start of convection in a magnetic nanofluid

layer. Rana et al. [58] explained the simultaneous impacts of a heat source, magnetic

field, and local thermal non-equilibrium (LTNE) on thermal instability led to the onset

of convection in an electrically conducting Al2O3-Cu/water hybrid nanoliquid flowing over

parallel plates with rough boundaries. Siddabasappa and Siddheshwar [59] studied the global

and linear stability analyses of Darcy-Brinkman-Bénard convection in a liquid-saturated

porous medium with a non-uniform gravity field using the LTNE model. Srinivasacharya

and Barman [60] examined the consequence of the LTNE state on the stability of nanofluid

flow in a vertical channel packed with a porous medium. Enagi et al. [61] investigated the

impact of LTNE, internal heat, and maximum density on the stability of a rotating porous

layer under varying temperatures for both the solid and fluid phases.

Casson fluid is a type of non-Newtonian fluid that exhibits yield stress and shear thinning
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behavior. Linear stability analysis can provide valuable insights into the behavior of Casson

fluid flow, including the onset of turbulence and the influence exerted by a number of different

parameters on the stability of the flow. Numerous investigations have been published in the

literature on the stability of the flows in a porous channel filled with Casson fluids. Yahaya

et al. [62] analyzed the stability of the magnetohydrodynamic flow of a Casson fluid across

a contracting sheet with heterogeneous-homogeneous reactions. The stability of the flow

and heat transport across a stretched sheet in a Casson fluid was examined by Hamid et al.

[63]. Lund et al. [64] looked at the thermal radiation’s effect and viscous dissipation effect

on the stagnation point flow of MHD Casson fluid over a contracting or expanding surface.

Parvin et al. [65] examined numerically the effects of the rate of extending and compressing

sheet on the mixed convection flow Casson fluid. Yashkun et al. [66] analyzed the stability

of stagnation-point flow of Casson fluid over a heated permeable stretching or contracting

sheet. Mahanta et al. [67] investigated the effects of slip velocity on the stability of stagnation

point flow of MHD Casson fluid flow across a stretching surface. Dey et al. [68] focused on

the stability analysis of MHD Casson fluid flow with heat and chemical reaction over an

elongating permeable sheet. In a rigid parallel channel with a homogeneous magnetic field,

Kundenatti and Misbah [69] investigated the temporal stability of linear two-dimensional

perturbations of the plane Poiseuille flow of Casson fluid.

Two-phase dusty fluid flow is a type of flow in which two different types of substances are

present and interact with each other. Specifically, it involves the flow of a fluid that contains

solid particles or dust, which are suspended within it. This type of flow is commonly found

in many industrial and natural systems, such as pneumatic transport systems, fluidized bed

reactors, and volcanic eruptions. takes into account both the viscous and the yield stress

properties of the fluid. Saffman [70] investigated the stability of dusty gas in laminar flow

and used a simple example to demonstrate some characteristics of dusty fluid. The effects of

thermal Marangoni convection in magneto-Casson liquid flow through a suspension of dust

particles were studied by Mahanthesh and Gireesha [71]. Ali et al. [72] studied the two-phase

flow of dust and viscoelastic fluids between two rigid parallel plates. Ali et al. [73] reported

the effect of MHD two-phase fluctuations of viscoelastic dusty particle flow in a horizontal

parallel plate. Reza-E-Rabbi et al. [74] investigated computationally the multiphase fluid

flow behavior over a stretching sheet in the presence of nanoparticles. The experimental

properties of heat transmission and multi-phase flow in a long gravity-assisted heat pipe

were discussed by Chen et al. [75]. Ali et al. [76] studied the effects of heat transfer and

magnetic field on the magnetohydrodynamic two-phase free convective flow of dusty Casson

fluid between parallel plates.
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The existence of a heat source or sink can significantly affect the flow of the Casson fluid,

leading to changes in the temperature, velocity, and shear stress distribution within the

fluid [77]. Mythili and Sivraj [78] examined the implications of a non-uniform heat source

on unsteady chemically reacted Casson fluid flow over a flat plate and vertical cone with

viscosity and thermal conductivity variations. Makinde and Rundora [79] explored the time

dependent convective flow of a chemically reactive Casson fluid in a vertical channel with

permeable walls containing the porous medium. Zia et al. [80] considered the consequences

of cross diffusion, radiation, and exponential heat sources on the three-dimensional mixed

convective flow of a Casson fluid over a heated surface. Goud et al. [81] examined the

implication of heat source on the motion of a Casson fluid through a fluctuating vertically

permeable plate. Awais et al. [82] analyzed the implications of a magnetic field on the flow of

Casson fluid in a porous medium caused by a shrinking surface subjected to heat absorption

or germination.

The radiation effects in fluids are crucial for the design and optimization of various

industrial and biomedical applications. In nuclear waste disposal, the ability to predict

changes in the rheological properties of drilling mud due to radiation exposure can help to

prevent well collapse and improve waste containment [83]. In medical imaging and radiation

therapy, the radiation effects on blood flow behavior can aid in the development of more

effective treatment strategies [84]. The primary mechanism of radiation-induced changes

in Casson fluids is the generation of free radicals, which can cause chain scission and cross

linking of the fluid molecules. This process can result in changes in the fluid’s viscosity,

yield stress, and other rheological properties. Bakar et al. [85] analyzed the stability of a

mixed convection flow through a vertical cylinder permeated by a nanofluid and subjected

to thermal radiation. Linear stability analysis of thermally-radiated micropolar fluids in an

MHD flow with convective boundary conditions was investigated by Lund et al. [86]. Lund et

al. [64] explored the stability of MHD stagnation point flow of Casson fluid over a contracting

or expanding surface due to the influence of thermal radiation and viscous dissipation. Wakif

et al. [87] examined the effects of surface roughness and thermal radiation on the thermo-

magneto-hydrodynamic stability of nanofluids composed of alumina and copper oxide.

Chemical reactions have a significant impact on the rheological properties of Casson

fluids, yield stress, and flow behavior. Chemical reactions also affect the thermal and me-

chanical stability of Casson fluids. The presence of reactive species in the fluid can lead

to degradation or decomposition, which can alter the fluid’s properties [88]. Additionally,

chemical reactions generate heat or consume heat, affecting the temperature of the Cas-

son fluid and its viscosity [78]. Steinberg and Brand [89] introduced chemical reactivity in
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porous mediums to analyze the convective instabilities of binary mixtures. Srivastava [90]

investigated the electro-thermal convective stability of a binary fluid in a horizontal channel

with a chemical reaction. Dey et al. [68] focused on stability analysis of MHD Casson fluid

flow over a long permeable sheet with chemical reactivity. The effect of magnetic cross-field,

thermal radiation, and a second order chemical reaction on the unsteady three dimensional

flow of electrically conducting Cu–Al2O3/water hybrid nanofluid flow past a bidirectionally

stretchable melting surface was investigated by Suganya et al. [91].

Convection along inclined surfaces has been receiving attention because of many indus-

trial applications in areas such as electroplating, chemical processing of heavy metals, ash or

scrubber waste treatment, etc. Barletta and Rees [92] analyzed the thermo-convective insta-

bility in an inclined porous layer from a local thermal non-equilibrium perspective. Barletta

and Celli [93] discussed the instability of mixed convection in an inclined porous channel.

Matta and Hill [94] investigated the thermosolutal instability of double-diffusive convection

in an inclined porous layer using a concentration-based internal heat source. Celli and Bar-

letta [95] studied the onset of buoyancy-driven convection in an inclined porous layer with

an isobaric boundary. Wen and Chini [96] examined the flow structure and dynamics of

moderate-Rayleigh-number thermal convection in a two-dimensional inclined porous layer.

Matta and Gajjela [97] used linear stability analysis to explore the Hadley flow in an inclined

porous body. Roy et al. [98] considered the onset of thermohaline convective instability in

an inclined porous layer with permeable boundaries.

1.8 Aim and Scope

It is not always physically realistic to consider the flow past a vertical or horizontal surface.

The inclinations are always possible, and hence, there is a need to frame a generalized

mathematical model involving the inclination of the surface to carry out the investigation.

With such a generalized model, it gets easier to switch to either of the two cases, a horizontal

surface or a vertical surface.

The aim of the present thesis is to study the linear stability analysis of nanofluid, Casson

fluid, and dusty Casson fluid flow in an inclined channel. Characteristics such as local

thermal non-equilibrium, magnetic effect, Soret and Dufour effects, variable viscosity effect,

heat source/sink effect, radiation, and chemical reaction effects are considered. In all these

problems, the inclined channel is assumed to be filled with porous medium.
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1.9 Outline of the Thesis

This thesis consists of FIVE parts and FOURTEEN chapters.

Part - I consists of a single chapter, Chapter 1. It deals with the introduction and

presents the motivation for the investigations carried out in the thesis. A survey of pertinent

literature is presented, explaining the significance of the problems considered. The basic

equations governing the nanofluid based on the Buongiorno model, Casson fluid, and two-

phase dusty Casson fluid have been given in this chapter.

Part - II deals with the linear stability of convection in an inclined porous channel filled

with nanofluid. This part consists of six chapters (Chapters 2, 3, 4, 5, 6, and 7). In each

of these chapters, the Brinkman extended Darcy model is accounted for in the momen-

tum equation of the governing flow through the porous layer. The governing equations and

their associated boundary conditions are initially cast into dimensionless form. Small per-

turbations are imposed on the basic velocity, temperature, and pressure. The generalized

eigenvalue problem for the perturbed state is obtained from a normal mode analysis. This

eigenvalue problem is solved using the Chenyshev spectral collocation method.

In Chapter - 2, the convective stability of nanofluid flow in an inclined porous channel is

numerically investigated. The nanofluid model accounts for the effects of Brownian motion

and thermophoresis. In addition, the flow in the porous region governs Brinkman’s equation.

The influence of inclination angle, porosity, Prandtl number vs. Darcy number, the critical

Rayleigh number, and associated wavenumber are graphically displayed. Moreover, distur-

bances of streamlines, isotherms, and isonanoconcentrations for different values of inclination

angle, Darcy number, and Lewis number are expressed.

Chapter - 3, which analyzes the stability of the flow of nanofluid saturated porous medium

in an inclined channel, is examined numerically when the fluid, particle, and solid-matrix

phases are not in local thermal equilibrium (LTE). The impact of the LTNE parameters,

namely, inter-phase heat transfer parameters, modified thermal capacity ratios, and modified

thermal diffusivity ratios between the fluid and particle phases and fluid and solid phases,

on the breakdown of convection has been disclosed. Further, patterns of the streamlines,

isotherms (fluid), isotherms (particle), isotherms (solid matrix), and isonanoconcentrations

have been presented for Nield numbers (inter-phase heat transfer parameters) and inclination

angle at the critical level.

In Chapter - 4, the effect of the transverse magnetic effect on the instability mechanism
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of double-diffusive convection in an inclined channel filled with nanofluid is considered. The

instability boundaries have been investigated for various values of the magnetic effect, in-

clination angle, Darcy number, thermo-solutal Lewis number, Dufour parameter, and Soret

parameter. Also, patterns of the streamlines, isotherms, isonanoconcentrations, and isoso-

lutes are shown graphically for various values of inclination angle under critical situations.

Chapter - 5, investigates the effect of variable viscosity on stability analysis in an inclined

porous channel saturated with nanofluid. The instability boundaries have been investigated

for various values of Darcy number, variable viscosity parameter, inclination angle, porosity,

and Prandtl number. Further, the patterns of streamlines, isotherms, and isonanoconcentra-

tions have been examined for the governing parameters related to nanofluid at the critical

level.

In Chapter - 6, the influence of local thermal non-equilibrium and changing viscosity on

the stability of nanofluid flow in an inclined porous channel is considered. The instability

boundaries have been discussed graphically for different values of Darcy number, variable

viscosity parameter, inclination angle, interphase heat transfer parameters, and modified

thermal capacity ratios.

Chapter - 7, investigates the influence of variable viscosity and double diffusive nanofluid

convective flow stability in an inclined porous channel. The influences of the inclination

angle, Darcy number, thermosolutal Lewis number, Dufour number, and Soret number on

the critical Rayleigh number and critical wavenumber are depicted graphically.

Part - III deals with the stability of convective flows in an inclined channel filled with

a Casson fluid. This part consists of three chapters (Chapters 8, 9, and 10). In all these

chapters, the eigenvalue problem for the perturbed state is obtained from a normal mode

analysis and solved using the Chebyshev spectral collocation technique.

Chapter - 8 analyzes the stability of Casson fluid flow in an inclined channel containing

a highly permeable porous medium in the presence of a heat source or sink. The onset of

convection has been discussed graphically for different values of Darcy number, inclination

angle, Casson parameter, heat source/sink parameter, Prandtl number, and porosity. Fur-

ther, the patterns of streamlines and isotherms have been examined for different values of

inclination angle at the critical level.

In Chapter - 9, the effects of radiation and chemical reaction in an inclined channel filled

with Casson fluid are considered. The critical Rayleigh number and critical wavenumber are

computed and graphically presented for various values of inclination angle, Darcy number,
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radiation parameter, chemical reaction parameter, Prandtl number, and porosity parameter.

The influence of these parameters on the flow instability is analyzed. Additionally, the

distribution of streamlines and isotherms has been studied for various inclination angle values

at the critical level.

In Chapter - 10, the stability of the flow of Casson fluid-saturated porous medium in an

inclined channel is examined numerically with variable viscosity. The influence of the govern-

ing parameters inclination angle, Casson parameter, variable viscosity parameter, Prandtl

number, and porosity parameter on flow instability is studied. Further, the patterns of

streamlines and isotherms have been examined for different values of inclination angle at the

critical level.

Part - IV deals with the stability of convective flows in an inclined channel filled with

a dusty fluid. This part consists of three chapters (Chapters 11, 12, and 13). In all these

chapters, the eigenvalue problem for the perturbed state is obtained from a normal mode

analysis and solved using the Chebyshev spectral collocation technique.

Chapter - 11 presents the impact on the stability of two-phase dusty Casson fluid flow

in an inclined porous channel. The stability region has been discussed for the occurrence of

physical parameters such as the inclination angle, mass concentration parameter, momentum

dust parameter, Prandtl number, and porosity parameter for the dusty Casson phase and

dusty phase.

Chapter - 12 deals with the impact of variable viscosity on the stability of two-phase dusty

Casson fluid flow in an inclined porous channel. The influence of the governing parameters

(inclination of the channel, variable viscosity parameter, mass concentration parameter,

momentum dust parameter, Prandtl number, and porosity parameter) on the flow instability

is studied for the dusty Casson phase and dusty phase.

In Chapter - 13, the onset of heat source/sink and radiation on the stability of the two-

phase dusty flow of Casson fluid in a porous channel with an inclination is investigated

numerically. The effects of the inclination of the channel, heat source/sink parameter, mass

concentration parameter, radiation parameter, momentum dust parameter, Prandtl number,

and porosity parameter are analyzed and presented graphically.

Part - V consists of a single chapter, Chapter - 14, which includes the principal conclusions

of the thesis and the directions in which further investigations may be carried out.

In all the above chapters, it is assumed the porous medium is homogeneous and hydro-

dynamically as well as thermally isotropic.
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Chapter 2

Linear Convective Stability in an

Inclined Channel Filled with a

Nanofluid Saturated Porous Medium 1

2.1 Introduction

The study of the linear stability of convection in an inclined porous channel is important in

geothermal systems, aquifer hydrology, and water-soil pollution transmission. The instability

processes of viscous fluid flow in horizontal and vertical porous layers have been widely

studied, but a comprehensive mathematical model that accounts for layer inclination is

needed. Several investigators, for example, Rana et al. [99, 100, 101], Barletta and Rees

[92], Barletta and Celli [93], Matta and Hill [94], Matta and Gajjela [97], Celli and Barletta

[95], Wen and Chini [96], and Roy et al. [98] have analyzed the stability of convection in

inclined porous layer filled with Newtonian and different non-Newtonian fluids in the presence

of various physical effects such as rotation, local thermal non-equilibrium, mixed convection,

electrohydrodynamics, double diffusion, thermohaline convection etc. These studies used

the Brinkman model and Oberbeck-Boussinesq approximation to investigate the initiation

of convection in inclined porous channels with permeable boundaries, revealing their complex

dynamics.

Nanofluids, introduced by Choi [4], are heat transfer fluids that contain nanometer-sized

solid/metallic particles. Brownian diffusion and thermophoresis are key nanoparticle/base-

1Published in “Journal of Porous Media” 26(8), pp:21-33, DOI:10.1615/JPorMedia.2023045044
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fluid slip processes [11]. Due to nanoparticle Brownian motion and thermophoresis, nanoflu-

ids have lower critical Rayleigh numbers than regular fluids [102]. Rayleigh-Benard convec-

tion beginning in a rotating nanofluid layer was studied by Khalid [47] using an internal

heat source, double diffusion, and feedback control. Turkyilmazoglu [103] used linear sta-

bility theory to study nanofluid hydrodynamic stability, while Singh and Khandelwal [104]

examined the mixed convection flow of several nanofluids in a vertical conduit with varied

heating.

This chapter examines the linear stability of the flow in an inclined channel filled with

a porous medium saturated with nanofluid. The current work uses the Brinkman model

[2] for flow in porous media and the Buongiorno model [11] for the nanofluid. By using

normal modes, a linear stability analysis is carried out. The resulting eigenvalue problem for

small disturbances is solved using the Chebyshev spectral collocation methods. A graphical

analysis is performed on the derived numerical solution for various values of the governing

parameters.

2.2 Mathematical Formulation

Consider the flow of a nanofluid in an inclined channel filled with a porous medium. The

flow configuration and coordinate system are depicted in Fig. 2.1. Assume that the angle

of inclination with the horizontal line is θ. The width of the channel is 2L, and the channel

plates are located at y = −L and y = L, respectively. It is assumed that the porous

medium is isotropic and homogenous. The temperatures of the channel walls y = −L and

y = L are T1 and T2(T1 > T2), and nanoparticle volume fractions are ϕ2 and ϕ1, respectively.

Using the above assumptions, the Oberbeck-Boussinesq approximation and Darcy-Brinkman

model, the governing equations for the flow are given by:

∇ · V⃗ = 0 (2.1)

ρf
ϵ

(
∂V⃗

∂t
+

1

ϵ
(V⃗ · ∇)V⃗

)
= −∇p− µ

K
V⃗ + µ̃∇2V⃗ − {ϕρp + (1− ϕ)ρf (1− βT (T − T1))}

g(sin(θ)êx + cos(θ)êy)

(2.2)

∂T

∂t
+

(ρC)f
(ρC)m

V⃗ · ∇T =
km

(ρC)m
∇2T + ϵ

(ρC)p
(ρC)m

(
DT

T1
∇T · ∇T +DB∇T · ∇ϕ

)
(2.3)
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Figure 2.1: “Schematic representation of the problem”

∂ϕ

∂t
+

1

ϵ
V⃗ · ∇ϕ = DB∇2ϕ+

DT

T1
∇2T (2.4)

where the Darcy velocity vector is denoted by V⃗ , the temperature is denoted by T , the volume

fraction of nanoparticles is denoted by ϕ, the pressure is denoted by p, and the densities of

the base fluid and the nanoparticles are denoted by ρf and ρp, respectively. The porous

medium’s viscosity is µ, its effective viscosity is µ̃, its porosity is ϵ, and its permeability is

K. The unit vectors in x and y-directions are denoted by êx and êy, respectively, and gravity

is denoted by g. The heat capacity of a fluid, a porous medium, and nanoparticle is given by

(ρC)f , (ρC)m, and (ρC)p, respectively. km is the porous medium’s thermal conductivity, DB

is the nanoparticles Brownian diffusion coefficient, and DT is the thermophoretic diffusion

coefficient.

The associated conditions on the boundaries are:

At y = −L : V⃗ = 0, T = T1, ϕ = ϕ2

and at y = L : V⃗ = 0, T = T2, ϕ = ϕ1

(2.5)
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The non-dimensional variables are:

(x∗, y∗, z∗) =
(x, y, z)

L
, V⃗ ∗ =

V⃗ L

αm

, p∗ =
kp

µαm

, t∗ =
αf t

L2
,

, T ∗ =
T − T1
T2 − T1

, ϕ∗ =
ϕ− ϕ1

ϕ2 − ϕ1

(2.6)

where αm = km
(ρC)f

, represents thermal diffusivity of porous medium.

on substituting Eq. (2.6) in Eqs. (2.1) -(2.5) and removing asterisk, the non-dimensional

form of the Eqs. (2.1) -(2.5) are:

∇ · V⃗ = 0 (2.7)

1

va

(
∂V⃗

∂t
+

1

ϵ
(V⃗ · ∇)V⃗

)
= −∇p+ ΛDa(∇2V⃗ )− V⃗ + {RaT −Rnϕ−Rm}

(sin(θ)êx + cos(θ)êy)

(2.8)

∂T

∂t
+ V⃗ · ∇T = ∇2T +

1

Le

(
NB∇ϕ · ∇T +NANB∇T · ∇T

)
(2.9)

∂ϕ

∂t
+

1

ϵ
V⃗ · ∇ϕ =

1

Le
∇2ϕ+

NA

Le
∇2T (2.10)

The corresponding boundary conditions become:

At y = −1 : V⃗ = 0, T = 0, ϕ = 1

and at y = 1 : V⃗ = 0, T = 1, ϕ = 0
(2.11)

where:

Pr = µ
ρfαm

is Prandtl number, va = ϵpr
Da

is Vadasz number, Da = K
l
is Darcy number,

Ra =
ρfgβTKL(T2−T1)

µαm
is Rayleigh number, Rn =

(ρp−ρf )(ϕ2−ϕ1)gKL

µαm
is concentration Rayleigh

number, Rm =
ρpϕ1+ρf (1−ϕ1)gKL

µαm
is the basic density Rayleigh number, Λ = µ̃

µ
the effective

viscosity-to-fluid viscosity ratio, NA = DT (T2−T1)
DBT1(ϕ2−ϕ1)

is the modified diffusivity ratio, NB =
ϵ(ρC)p(ϕ2−ϕ1)

(ρC)f
is the modified particle density, and Le = αm

DB
is the Lewis number.
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2.3 Basic solution

Here, the flow is supposed to be continuous, unidirectional (in x-direction), and completely

developed. With these assumptions, Eqs. (2.7)-(2.10) reduce to:

ΛDa
d2Ub

dy2
− Ub =

∂p0
∂x

− (RaT0 −Rnϕ0 −Rm) sin(θ) (2.12)

∂p0
∂y

= (RaT0 −Rnϕ0 −Rm) cos(θ) (2.13)

∂p0
dz

= 0 (2.14)

d2T0
dy2

+
NB

Le

dϕ0

dy
.
dT0
dy

+
NANB

Le

(
dT0
dy

)2

= 0 (2.15)

d2Φ0

dy2
+NA

d2T0
dy2

= 0 (2.16)

The following are the associated boundary conditions:

At y = −1 : Ub = 0, T0 = 0, ϕ0 = 1

and at y = 1 : Ub = 0, T0 = 1, ϕ0 = 0
(2.17)

where Ub(y), T0(y), ϕ0(y), and p0(x, y, z) are basic velocity in x- direction, basic temperature,

basic volume fraction and basic pressure, respectively.

The following approximations to T0 and ϕ0 are derived from Eqs. (2.15) and (2.16):

T0 =
1 + y

2
and ϕ0 =

1− y

2
(2.18)

On substituting Eq. (2.18) into Eqs. (2.12) - (2.14) we get:

ΛDa
d2Ub

dy2
− Ub =

∂p0
∂x

−
(
Ra+Rn

2

)
y sin(θ)−

(
Ra−Rn

2
−Rm

)
sin(θ) (2.19)

∂p0
∂y

=

(
Ra+Rn

2

)
y cos(θ) +

(
Ra−Rn

2
−Rm

)
cos(θ) (2.20)

∂p0
dz

= 0 (2.21)
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From Eqs. (2.20) and (2.21), we obtain

p0(x, y) =

(
Ra+Rn

4

)
y2 cos(θ) +

(
Ra−Rn

2
−Rm

)
y cos(θ) + p0(x) (2.22)

By substituting Eq. (2.22) in Eq. (2.19), we get:

ΛDa
d2Ub

dy2
− Ub =

d

dx

[
p0(x) +

(
Ra−Rn

2
−Rm

)
x sin(θ)

]
−
(
Ra+Rn

2

)
y sin(θ) (2.23)

Eq. (2.23) must be same in IR × [−1, 1] [105], hence there are real values σ (a pressure

gradient on the x) and p1 such that:

p0(x) =

[
σ −

(
Ra−Rn

2
−Rm

)
sin(θ)

]
x+ p1 (2.24)

Hence, Eq. (2.23) reduce to

ΛDa
d2Ub

dy2
− Ub = σ −

(
Ra+Rn

2

)
y sin(θ) (2.25)

The boundary conditions (2.17) are then used to solve Eq. (2.25), along with the global

mass conservation (
∫ 1

−1
Ub dy = 2) [106]. Hence, the basic velocity is calculated as follows:

Ub = σ

[
cosh(y/

√
ΛDa)

cosh(1/
√
ΛDa)

− 1

]
+

(
Ra+Rn

2

)[
y − sinh(y/

√
ΛDa)

sinh(1/
√
ΛDa)

]
sin(θ) (2.26)

where:

σ =
cosh(1/

√
ΛDa)√

ΛDasinh(1/
√
ΛDa)− cosh(1/

√
ΛDa)
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2.4 Linear Stability Analysis

Three-dimensional perturbations will be examined in the stability analysis, introducing mi-

nor perturbations to the basic flow as follows:

V⃗ (u, v, w) = Ub(y) + U⃗ ′(x, y, z, t)

T = T0(y) + T ′(x, y, z, t)

ϕ = ϕ0(y) + ϕ′(x, y, z, t)

p = p0(x) + p′(x, y, z, t)

(2.27)

where U⃗ ′, T ′, ϕ′ and p′ are very small perturbations in the velocity, temperature, nanoparticle

volume fraction and pressure. Introducing the Eq. (2.27) into Eqs. (2.7) - (2.10) and the

ignoring the nonlinear terms, we obtain:

∇ · U⃗ ′ = 0 (2.28)

1

va

(
∂U⃗ ′

∂t
+

1

ϵ
((U⃗ ′ · ∇)Ub + (Ub · ∇)U⃗ ′)

)
= −∇p′ + ΛDa(∇2U⃗ ′)− U⃗ ′ + {RaT ′−

Rnϕ′}(sin(θ)êx + cos(θ)êy)

(2.29)

∂T ′

∂t
+

(
Ub
∂T ′

∂x
+ U⃗

′dT0
dy

)
= ∇2T ′ +

NB

Le

(
dϕ0

dy

∂T ′

∂y
+
dT0
dy

∂ϕ′

∂y

)
+

2NANB

Le

dT0
dy

∂T ′

∂y
(2.30)

∂ϕ′

∂t
+

1

ϵ

(
U⃗

′dϕ0

dy
+ Ub

∂ϕ′

∂x

)
=

1

Le
∇2ϕ′ +

NA

Le
∇2T ′ (2.31)

Implementing normal mode analysis, the perturbations are given by:

(U⃗ ′, T ′, p′, ϕ′) = (û(y), T̂ (y), p̂(y), ϕ̂(y))ei(αx+βz−αct) (2.32)

The real numbers α and β describe the wave numbers in streamwise and spanwise orienta-

tions, respectively. c = cr+ici is the wave speed. If ci = 0, ci < 0 and ci > 0 the disturbances

are neutrally stable, stable and unstable, respectively.
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On utilizing the Eq. (2.32) in Eqs. (2.28)-(2.31) yields:

ΛDa

[
d4v̂

dy4
− 2

d2v̂

dy2
(α2 + β2) + (α2 + β2)2v̂

]
− iα

va

(
Ub

ϵ
− c

)[
d2v̂

dy2
− (α2 + β2)v̂

]
+

iα

ϵva

d2Ub

dy2
v̂ −

[
d2v̂

dy2
− (α2 + β2)v̂

]
−Ra

[
dT̂

dy
iα sin(θ) + (α2 + β2) cos(θ)T̂

]

+Rn

[
dϕ̂

dy
iα sin(θ) + (α2 + β2) cos(θ)ϕ̂

]
= 0

(2.33)

1

va
(−iαc)η̂ + 1

ϵva

[
βv̂
dUb

dy
+ Ubη̂iα

]
− ΛDa

[
d2η̂

dy2
− (α2 + β2)η̂

]
+ η̂ − βRaT̂ sin(θ)

+βRnϕ̂ sin(θ) = 0

(2.34)

v̂
dT0
dy

+ iα(Ub − c)T̂ −

[
d2T̂

dy2
− (α2 + β2)T̂

]
− NB

Le

[
dϕ0

dy
+ 2NA

dT0
dy

]
dT̂

dy
− NB

Le

dT0
dy

dϕ̂

dy
= 0

(2.35)

1

ϵ

dϕ0

dy
v̂ + iα

(
1

ϵ
Ub − c

)
ϕ̂− 1

Le

[
d2ϕ̂

dy2
− (α2 + β2)ϕ̂

]
− NA

Le

[
d2T̂

dy2
− (α2 + β2)T̂

]
= 0 (2.36)

where u,v,and w are the velocity components and η = βu = αv.

The following are the associated conditions on the boundary

v̂ =
dv̂

dy
= η̂ = T̂ = ϕ̂ = 0 at y = ±1 (2.37)

2.5 Numerical solution

A generalized eigenvalue problem with c as the complex eigenvalue is transformed by the set

of governing equations (2.33) to (2.36). “Chebyshev spectral collocation” was used to find a

solution to the problem in MATLAB [107]. Then the range [−1, 1] was discretized utilizing

the following (N + 1) Gauss-Lobatto collocation points.

yi = cos

(
πi

N

)
, i = 0, 1, 2, ..., N. (2.38)
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At the collocation points, the unidentified functions “v̂, η̂, T̂ , and ϕ̂” are approximated as

follows:

v̂(y) ≈
N∑
j=0

v̂(yj)Pj(yi), η̂(y) ≈
N∑
j=0

η̂(yj)Pj(yi),

T̂ (y) ≈
N∑
j=0

T̂ (yj)Pj(yi), ϕ̂(y) ≈
N∑
j=0

ϕ̂(yj)Pj(yi),

(2.39)

where i = 0, 1, ..., N , and Pj is j
th Chebyshev polynomial is defined as Pj(y) = cos(j cos−1 y).

The mth order of differentiation of unidentified functions at collocation points is denoted

as:
dmv̂

dym
=

N∑
j=0

Dm
ji v̂(ξj),

dmη̂

dym
=

N∑
j=0

Dm
ji η̂(ξj),

dmT̂

dym
=

N∑
j=0

Dm
ji T̂ (ξj),

dmϕ̂

dym
=

N∑
j=0

Dm
ji ϕ̂(ξj),

(2.40)

here, the components of the Chebyshev spectral differentiation matrix D are defined as

follows:

Dij =



2N2+1
6

, i = j = 0,

ci
cj

(−1)i+j

yi−yj
, i ̸= j; i, j = 0, 1, 2, ..., N,

− yj
2(1−y2j )

, i = j; i, j = 1, 2, 3, ..., N − 1,

−2N2+1
6

, i = j = N,

(2.41)

where

ci =

2, i = 0 or N,

1, Or else.

Substituting Eqs. (2.39)-(2.40) into Eqs. (2.33) to (2.36), we obtain the following (4N+4)×
(4N + 4) generalized eigenvalue problem:

AY = cBY (2.42)

with

A =


A11 0 A13 A14

A21 A22 A23 A24

A31 0 A33 A34

A41 0 A43 A44

 , B =


B11 0 0 0

0 B22 0 0

0 0 B33 0

0 0 0 B44

 and Y =


V
E
T
P

 .
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Here c is the complex eigenvalue, Y indicates (4N + 4) × 1 complex eigenfunction, and A

and B represent (4N + 4)× (4N + 4) complex matrices.

where

V = [v(y0), v(y1), ...., v(yN−1), v(yN)]
T ,

E = [η(y0), η(y1), ...., η(yN−1), η(yN)]
T ,

T = [T (y0), T (y1), ...., T (yN−1), T (yN)]
T ,

P = [ϕ(y0), ϕ(y1), ...., ϕ(yN−1), ϕ(yN)]
T ,

A11 = ΛDa
[
D4 + 2D2(α

2 + β2) + (α2 + β2)2I
]
− iα

va

Ub

ϵ

[
D2 − (α2 + β2)I

]
+

iα

ϵva

d2Ub

dy2
I−

[
D2 − (α2 + β2)I

]
,

A13 = −iαRa sin(θ)D− (α2 + β2)Ra cos(θ)I,

A14 = iαRn sin(θ)D+ (α2 + β2)Rn cos(θ)I,

A21 =
β

ϵva

dUb

dy
I, A22 =

1

vaϵ
UbiαI− ΛDa

[
D2 − (α2 + β2)I

]
+ I,

A23 = −βRasin(θ)I, A24 = βRnsin(θ)I,

A31 =
dT0
dy

I, A33 = iαUbI−
[
D2 − (α2 + β2)I

]
− NB

Le

[
dϕ0

dy
+ 2NA

dT0
dy

]
D,

A34 = −NB

Le

dT0
dy

D,

A41 =
1

ϵ

dϕ0

dy
I, A43 = −NA

Le

[
D2 − (α2 + β2)I

]
,

A44 = iα
Ub

ϵ
I− 1

Le

[
D2 − (α2 + β2)I

]

B11 = − iα
va

[
D2 − (α2 + β2)I

]
, B22 =

iα

va
I, B33 = iαI, B44 = iαI.
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Here D1 and D2 are acquired from the conventional first and second Chebyshev derivative

matrices. D and D2 = D × D subsequent to applying boundary conditions v̂(±1) = 0.

D4 is fourth derivative matrix that enforces the constrained boundary condition v̂(±1) =

v̂y(±1) = 0 and is provided by:

D4 =
[
diag(1− y2)D4 − 8diag(y)D3 − 12D2

]
diag(1/(1− y2)),

UB = diag[UB(yi)], ΘB = diag[ΘB(yi)], ΦB = diag[ΦB(yi)], 0 and I are (N +1)×(N +1) zeros

and identity matrices, respectively. Moreover, diag [ ] represents an (N +1)×(N +1) matrix

is constructed such that all entries, except those on the main diagonal, are equal to zero.

To examine the validity of the method, the eigenvalue problem code is executed with

a different grid point count (N), and the resulting least consistent eigenvalues are given in

Table 2.1 for a set of other parameters chosen at random. For N ≥ 50, the least consistent

eigenvalue meets a convergence threshold of 10−7. The results remain the same whenN ≥ 50.

A similar trend may be noticed for different parameter values. As a consequence, N = 50 is

used in the numerical calculation. The results of θ = π/2 were obtained, which is consistent

with the results of Srinivasacharya and Barman [50], as shown in Table 2.1.

2.6 Results and discussion

The linear stability of a flow in an inclined parallel channel with a porous medium saturated

with nanofluid is investigated. The influence of the governing parameters θ, ϵ, and Pr on the

critical Rayleigh number (Rac) and critical wavenumber (αc) is depicted in Figs. 2.2-2.4. On

the horizontal axis, the logarithm of the Darcy number is used to show all of the instability

boundaries.

The variation of the critical Rayleigh number Rac and the critical wavenumber αc for

different values of the inclination angle θ is shown in Fig. 2.2. As the channel varies from

horizontal to vertical, it is noticed that Rac decreases. However, as the Darcy number (Da)

rises, Rac rises as well, indicating that permeability has a stabilizing effect, but θ destabilizes

the flow as we move θ from horizontal to vertical. Also, the flow is constant until Da = 1,

and then there is a rapid spike in Rac as Da increases. The fluctuation of Rac is slow and

smooth for small values of the Darcy number (Da < 1). When (Da > 1), there is a quick

increase in Rac. The flow resistance in the porous medium becomes obvious at low Darcy

numbers. This flow resistance decreases as permeability increases, and flow in the porous
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medium improves, indicating that viscous forces play a role in the momentum equation. In

the case of critical wavelength, for an increase in Da, αc grows as well, but after Da = 1,

it becomes constant. As the value of θ increases, there is an increase in αc. For further

discussion, we will take the inclination angle θ = π/3.

Fig. 2.3 shows the boundary of the instability region is a function of the porosity param-

eter (ϵ) and the permeability parameter (Da). It is seen from Fig. 2.3 that increasing the

porosity parameter tends to increase the critical Rayleigh number (Rac). This is because

porosity is a ratio of void volume over total volume. In a porous medium, this is a measure-

ment of the empty spaces. When the porosity rises, the volume of voids rises as well. Hence,

porosity stabilizes the flow. Also, it is noted that there is a little variation in αc when the

value of the porosity parameter increases, but there is an increase in αc as the value of Da

grows.

The influence of the Prandtl number (Pr) on the boundaries of instability is seen in Fig.

2.4. The critical Rayleigh number rises as momentum diffusivity increases in terms of Pr. As

a result, the Prandtl number has a stabilizing effect on the system. There is substantial flow

resistance with small Darcy numbers in the porous medium. This flow resistance decreases as

the permeability increases and the porous medium’s flow increases, indicating the importance

of the momentum equation for viscous forces. Moreover, when permeability increases, the

wavenumber also increases. Also, when Pr rises, the wavenumber rises slowly.

Temperature and volume fraction behavior, as well as the dynamics of the flow field,

are presented through the streamlines, isotherms, and isonanoconcentration at the critical

stage in Figs. 2.5 -2.13 with fixed values of other parameters Pr=7, ϵ=0.6, Λ=1, Rn=15,

NA = 8, and NB = 0.2 with varying inclination angle (θ), Darcy number (Da) and Lewis

number (Le). It is to be noted that negative contours indicate clockwise rotation for stream-

line disturbances, while positive contours indicate anticlockwise rotation. In isotherms and

isonanoconcentrations, solid lines represent positive contours, and dashed lines represent

negative contours. The flow is primarily regulated by two asymmetric cells, one of which

(primary cell) rotates clockwise and the other (secondary cell) rotates counterclockwise.

streamlines, isotherms, and isonanoconcentration patterns exhibit symmetry for horizontal

inclination, i.e., for θ = 0, as seen in Fig. 2.5. However, the symmetry is no longer visible

when the value of θ is changed from horizontal to vertical. It is also obvious that as the

inclination angle is increased, the cell size grows as well. And for θ = π/2, the primary cell

pushes downward to the secondary cell. This is because temperature is transferred mostly

by diffusion, indicating the presence of disruptions in the flow configuration. Isonanocon-

centartion lines are in symmetry, and the center of the channel is for horizontal inclination.
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It moves to the left side of the channel for vertical inclination. It changed to the right side

of the channel for other inclinations, as shown in Figs. 2.5-2.7.

Figs. 2.8-2.10 show the effect of the Darcy number (Da) on the pattern of stream-

lines, isotherms, and isonanoconcentrations for θ = π/3 over time. The flow is governed

by bi-cellular patterns, namely primary and secondary cell patterns. According to our ob-

servations, positive streamline contours correspond to clockwise rotation, whereas negative

streamline contours correspond to anti-clockwise rotation. But for Da=1, negative stream-

line contours correspond to clockwise rotation, whereas positive streamline contours corre-

spond to anti-clockwise rotation. With a rise in the Darcy number, the geometry of the

inner cells of this bicellular structure changes. The isonanoconcentration lines for flow in an

inclined channel demonstrate that over time, a two-cell structure is growing towards the left

side of the channel for Da=0.1, towards the right side of the channel for Da=1. On the

other hand, Isonanoconcentration lines spread throughout the channel when Da=10.

Figs. 2.11-2.13 show the effect of the Lewis number (Le) on the pattern of stream-

lines, isotherms, and isonanoconcentrations for θ = π/3 over time. Bi-cellular patterns,

namely primary and secondary cell patterns, control the flow. Negative streamline contours

correspond to clockwise rotation, whereas positive streamline contours correspond to anti-

clockwise rotation, according to our findings. The inner cells of this bicellular arrangement

change shape as the Lewis number rises.

The primary cell drags the secondary cell downward as Le increases from 100 to 300.

In the case of isotherms, the size of the primary cells is increasing further. In the case of

isonanoconcentrations, however, when we raise Le, the isonanoconcentration lines shrink and

move to the right, as we can see in Fig. 2.13.

Table 2.1: Comparison between least stable eigenvalue of present result and Srinivasacharya

and Barman results: Here, “Da = 1, Pr = 7, Ra = 100, Rn = 15, ϵ = 0.6, NA = 8, NB =

0.2, Le = 500, θ=π/2, Λ=1, α= 1, and β = 0.”

N Present study Srinivasacharya and Barman [50]

30 7.254272433919 -0.116633842907i 7.254272433915 -0.116633842910i

35 7.254500877203 -0.117015950395i 7.254500877193-0.117015950398i

40 7.254526715378 -0.117063301294i 7.254526715361-0.117063301305i

50 7.254526952586 -0.117067639994i 7.254526952722-0.117067639985i

55 7.254526856872 -0.117067504054i 7.254526857357-0.117067503970i

60 7.254526835133 -0.117067533367i 7.254526835407-0.117067533337i
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Figure 2.2: “Instability boundaries in (log10Da, Rac)- plane and (log10Da, αc)-plane for

various values of θ with ϵ=0.6, Rn = 15, Le = 500, NA = 8, Pr=7, Λ=1, and NB = 0.2.”
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Figure 2.3: “Instability boundaries for (log10Da, Rac)-plane and (log10Da,αc)-plane for var-

ious values of ϵ with θ=π/3, Pr = 7, Rn = 15, Le = 500, NA = 8, Λ=1, and NB = 0.2.”
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(c) θ = π/2

Figure 2.5: “The disturbance of streamlines for different values of θ”.
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(b) θ = π/4
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(c) θ = π/2

Figure 2.6: “The disturbance of isotherms for different values of θ”.
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(c) θ = π/2

Figure 2.7: “The disturbance of isonanoconcentrations for different values of θ”.
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Figure 2.8: “The disturbance of streamlines for different values of Da”.
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Figure 2.9: “The disturbance of isotherms for different values of Da”
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Figure 2.10: “The disturbance of isonanoconcentrations for different values of Da”
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Figure 2.11: “The disturbance of streamlines for different values of Le”.
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Figure 2.12: “The disturbance of isotherms for different values of Le”
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Figure 2.13: “The disturbance of isonanoconcentrations for different values of Le”
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2.7 Conclusions

The Brinkman-extended Darcy model is employed to examine the linear stability of convec-

tion in an inclined porous channel filled with nanofluid. The critical Rayleigh number (Rac)

and critical wavenumber (αc) are computed and graphically presented for various values of

θ, Pr, and ϵ versus Da. Moreover, the streamlines, isotherms, and isonanoconcentrations

for different values of inclination angle (θ), Darcy number (Da), and Lewis number (Le) for

the perturbed state are also presented.

� The inclination of the channel destabilizes the flow.

� For small values of the (Da < 1) Darcy number, the variation of Rac is slow and

smooth. The value of Rac increases rapidly when (Da > 1).

� The flow in an inclined channel is stabilized by Prandtl number (Pr), and porosity (ϵ).

As a result, a rise in these factors delays the onset of convection.

� The least stable flow occurs when the channel is vertical.

� For horizontal inclination, i.e., for θ = 0, streamlines, isotherms, and isonanoconcen-

tration patterns are symmetric. The symmetry is lost when the value of θ is changed

from horizontal to vertical.
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Chapter 3

Influence of local thermal

non-equilibrium on the stability of

nanofluid flow in an inclined channel

filled with porous medium 1

3.1 Introduction

This chapter investigates the stability of the flow of nanofluid-saturated porous medium

in an inclined channel with a local thermal non-equilibrium (LTNE) effect. Rana et al.

[58] explained the simultaneous impacts of a heat source, magnetic field, and local ther-

mal non-equilibrium (LTNE) on thermal instability led to the beginning of convection in an

electrically conducting Al2O3-Cu/water hybrid nanoliquid flowing over parallel plates with

rough boundaries. Siddabasappa and Siddheshwar [59] studied the global and linear sta-

bility analyses of Darcy-Brinkman-Bénard convection in a liquid-saturated porous medium

with a non-uniform gravity field using the LTNE model. Srinivasacharya and Barman [60]

examined the consequence of the LTNE state on the stability of nanofluid flow in a vertical

channel packed with a porous medium. Enagi et al. [61] investigated the impact of LTNE,

internal heat, and maximum density on the stability of a rotating porous layer under varying

temperatures for both the solid and fluid phases.

1Published in “Computational Thermal Sciences: An International Journal” 15(6), pp: 41-59,
DOI: 10.1615/ComputThermalScien.2023046825‘
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The literature review reveals that the stability characteristics of a nanofluid in an inclined

channel under LTNE conditions between fluid and particle phases and fluid and solid-matrix

phases have not been investigated. As a result, the current research examines the impact of

LTNE on convection stability in a nanofluid flow for an inclined channel (with inclination θ)

filled with a porous medium.

3.2 Mathematical Formulation

Consider an unsteady, incompressible nanofluid flow in an inclined channel of width 2L

and inclination θ, with impermeable and completely thermally conducting walls as shown

in Fig. 2.1. The LTNE state is assumed to exist between the fluid, particle, and solid-

matrix phases. The three temperature models are taken into account. As a result, three

heat transfer equations, one for each of the three phases, are considered. Except for the

density changes in the buoyancy force term, the thermophysical characteristics of the fluid

are considered to be constant.

Using the above assumptions, the Oberbeck-Boussinesq approximation and Darcy-Brinkman

model [2], the governing equations for the flow are:

∇ · V⃗ = 0 (3.1)

ρf
ϵ

(
∂V⃗

∂t
+

1

ϵ
(V⃗ · ∇)V⃗

)
= −∇p+ µ̃∇2V⃗ − µ

K
V⃗ − [(1− ϕ)ρf + ϕρp (1− (Tf − T1)βT )]

g(sin(θ)êx + cos(θ)êy)

(3.2)

ϵ(1− ϕ1)(ρC)f

(
∂Tf
∂t

+
1

ϵ
V⃗ · ∇Tf

)
= ϵ(1− ϕ1)kf∇2Tf + (1− ϕ1)ϵ(ρC)p(

DB∇ϕ · ∇Tf +
DT

T1
∇Tf · ∇Tf

)
− hfp(Tf − Tp)− hfs(Tf − Ts)

(3.3)

ϵϕ1(ρC)p

(
∂Tp
∂t

+
1

ϵ
V⃗ · ∇Tp

)
= ϵϕ1kp∇2Tp + hfp(Tf − Tp) (3.4)

(1− ϵ)(ρC)s
∂Ts
∂t

= (1− ϵ)ks∇2Ts + hfs(Tf − Ts) (3.5)
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∂ϕ

∂t
+

1

ϵ
V⃗ · ∇ϕ = DB∇2ϕ+

DT

T1
∇2T (3.6)

where The phases fluid, particle, and solid are represented by the subscripts f , p, and s.

(ρC)f , (ρC)p and (ρC)s are the effective heat capacities, and kf , kp and ks are effective

thermal conductivities respectively. hfp and hfs are inter-phase heat transfer coefficients

for the fluid-particle, and fluid - solid phases respectively and the remaining quantities are

defined in Chapter - 2.

The corresponding boundary conditions are written as

At y = −L : V⃗ = 0, Tf = T1, Tp = T1, Ts = T1, ϕ = ϕ2

at y = L : V⃗ = 0, Tf = T2, Tp = T2, Ts = T2, ϕ = ϕ1

(3.7)

The non-dimensional form of the Eqs. (3.1) -(3.6) (on using Eq. (2.6) in Eqs. (3.1) -(3.6)

and removing asterisk) are:

∇ · V⃗ = 0 (3.8)

1

va

(
∂V⃗

∂t
+

1

va
(V⃗ · ∇)V⃗

)
= −∇p+ΛDa(∇2V⃗ )−V⃗ +{RaTf−Rnϕ−Rm}(sin(θ)êx+cos(θ)êy)

(3.9)
∂Tf
∂t

+
1

ϵ

(
V⃗ .∇Tf

)
= ∇2Tf +

NB

Le
∇ϕ ·∇Tf +

NANB

Le
∇Tf ·∇Tf −NHP (Tf −Tp)−NHS(Tf −Ts)

(3.10)
∂Tp
∂t

+
1

ϵ

(
V⃗ · ∇Tp

)
= ϵp∇2Tp + γpNHP (Tf − Tp) (3.11)

∂Ts
∂t

= ϵs∇2Ts + γsNHS(Tf − Ts) (3.12)

∂ϕ

∂t
+

1

ϵ

(
V⃗ · ∇ϕ

)
=

1

Le
∇2ϕ+

NA

Le
∇2Tf (3.13)

The corresponding boundary conditions become:

At y = −1 : V⃗ = 0, Tf = 0, Tp = 0, Ts = 0, ϕ = 1

at y = 1 : V⃗ = 0, Tf = 1, Tp = 1, Ts = 1, ϕ = 0
(3.14)

where NHP =
hfpL

2

ϵ(1−ϕ1)kf
and NHS =

hfsL
2

ϵ(1−ϕ1)kf
are Nield number refers to the interphase heat

transfer parameters. γp =
(1−ϕ1)(ρC)f

(ρC)pϕ1
and γs =

ϵ(1−ϕ1)(ρC)f
(1−ϵ)(ρC)s

are modified thermal capacity

ratios, ϵp =
kp(ρC)f
kf (ρC)p

and ϵs =
ks(ρC)f
kf (ρC)s

are modified thermal diffusivity ratios, respectively.
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3.3 Basic state solution

The flow is supposed to be continuous, unidirectional (x-direction), and completely developed

in the basic stage. Hence, Eqs. (3.8)-(3.14) can be reduced to a system of ordinary differential

equations :

(ΛDa)
d2Ub

dy2
− Ub =

∂p0
∂x

− (RaTf0 −Rnϕ0 −Rm) sin(θ) (3.15)

∂p0
∂y

= (RaTf0 −Rnϕ0 −Rm) cos(θ) (3.16)

∂p0
dz

= 0 (3.17)

d2Tf0
dy2

+
NB

Le

dϕ0

dy
.
dTf0
dy

+
NANB

Le

(
dTf0
dy

)2

+NHP (Tp0 − Tf0) +NHS(Ts0 − Tf0) = 0 (3.18)

ϵp
d2Tp0
dy2

+ γpNHP (Tf0 − Tp0) = 0 (3.19)

ϵs
d2Ts0
dy2

+ γsNHS(Tf0 − Ts0) = 0 (3.20)

d2Φ0

dy2
+NA

d2Tf0
dy2

= 0 (3.21)

The following are the associated boundary conditions:

At y = −1 : Ub = 0, Tf0 = 0, Tp0 = 0, Ts0 = 0, ϕ0 = 1

at y = 1 : Ub = 0, Tf0 = 1, Tp0 = 1, Ts0 = 1, ϕ0 = 0
(3.22)

Proceeding as in Chapter-2, we get basic solution as:

Ub = σ

[
cosh(y/

√
ΛDa)

cosh(1/
√
ΛDa)

− 1

]
+

(
Ra+Rn

2

)[
y − sinh(y/

√
ΛDa)

sinh(1/
√
ΛDa)

]
sin(θ) (3.23)

Tf0 = Tp0 = Ts0 =
1 + y

2
and ϕ0 =

1− y

2
(3.24)

where:

σ =
cosh(1/

√
ΛDa)√

ΛDasinh(1/
√
ΛDa)− cosh(1/

√
ΛDa)
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3.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (δ) on the basic state solutions,

ignoring δ2 and higher order terms, using the usual normal mode form [50] to express in-

finitesimal disturbances of corresponding field variables, and removing pressure terms from

the resulting equations, the linearized stability equations are obtained as:

ΛDa

[
d4v̂

dy4
− 2

d2v̂

dy2
(α2 + β2) + (α2 + β2)2v̂

]
− iα

va

(
Ub

ϵ
− c

)[d2v̂
dy2

− (α2 + β2)v̂
]

+
iα

ϵva

d2Ub

dy2
v̂ −

[
d2v̂

dy2
− (α2 + β2)v̂

]
−Ra

dT̂f
dy

iα sin(θ)−Ra(α2 + β2) cos(θ)T̂f

+Rn
dϕ̂

dy
iα sin(θ) +Rn(α2 + β2) cos(θ)ϕ̂ = 0

(3.25)

1

va
(−iαc)η̂ + 1

ϵva

[
βv̂
dUb

dy
+ Ubη̂iα

]
− ΛDa

[
d2η̂

dy2
− (α2 + β2)η̂

]
+ η̂ − βRaT̂f sin(θ)

+βRnϕ̂ sin(θ) = 0

(3.26)

1

ϵ

dTf0
dy

v̂ + iα

(
Ub

ϵ
− c

)
T̂f −

[
d2T̂f
dy2

− (α2 + β2)T̂f

]
− NB

Le

[dϕ0

dy
+ 2NA

dTf0
dy

]dT̂f
dy

−NB

Le

dTf0
dy

dϕ̂

dy
−NHP (T̂p − T̂f )−NHS(T̂s − T̂f ) = 0

(3.27)

1

ϵ

dTp0
dy

v̂ + iα

(
Ub

ϵ
− c

)
T̂p − ϵp

[
d2T̂p
dy2

− (α2 + β2)T̂p

]
− γpNHP (T̂f − T̂p) = 0 (3.28)

iαcT̂s + ϵs

[
d2T̂s
dy2

− (α2 + β2)T̂s

]
+ γsNHS(T̂f − T̂s) = 0 (3.29)

1

ϵ

dϕ0

dy
v̂ + iα

(
Ub

ϵ
− c

)
ϕ̂− 1

Le

[
d2ϕ̂

dy2
− (α2 + β2)ϕ̂

]
− NA

Le

[d2T̂f
dy2

− (α2 + β2)T̂f

]
= 0 (3.30)

where η̂ = βû− αŵ

The following are the associated conditions on the boundary

v̂ =
dv̂

dy
= η̂ = T̂f = T̂p = T̂s = ϕ̂ = 0 at y = ±1 (3.31)
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3.5 Results and discussion

The set of Eqs. (3.25) - (3.30) expresses a generalized eigenvalue problem with perturbed

eigenvalues in terms of wave speed. The solution to this eigenvalue problem is obtained using

the Chebyshev spectral collocation method [107].

To examine the validity of the method, the eigenvalue problem code is executed with a

different number of grid counts (N), and the resulting least consistent eigenvalues are given

in Table 3.1 for a set of other parameters chosen at random. For N ≥ 50, the least consistent

eigenvalue meets a convergence threshold of 10−7, as shown in Table 3.1. The results remain

the same when N is enhanced. A similar trend may be noticed for different parameter values.

As a consequence, N = 50 is used in the numerical calculation. The results of θ = π/2 were

obtained, which is consistent with the results of Srinivasacharya and Barman [60].

The impact of local thermal non-equilibrium on nanofluid flow stability in an inclined

porous channel is investigated in this paper. The flow is controlled by sixteen variables,

which are as follows: Da, Λ, Pr, Ra, Rn, ϵ, NA, NB and Le (related to the state of

LTE), inclination angle (θ), interphase heat transfer parameters NHS and NHP , modified

thermal capacity ratios γp and γs, and modified thermal diffusivity ratios ϵp and ϵs. Because

there are more parameters, the analysis is simplified to focus solely on the effect of LTNE

parameters. As a result, for the rest of the discussion, the LTE parameters will be set to

Pr = 7, Da = 0.5, Rn = 5, Λ = 1, NA = 8, NB = 0.02, ϵ = 0.6, and Le = 100.

For different LTNE parameters, the change of critical Rayleigh number (Rac) and critical

wavenumber (αc) are computed as functions of Nield numbers NHP and NHS and presented

in Figs. 3.1 and 3.2. According to Fig. 3.1(a), as NHP increases, the critical Rayleigh number

(Rac) increases, whereas as NHS increases, Rac decreases. Fig. 3.2(a) also depicts a similar

trend for variation of Rac with inter-phase heat transfer parameters. An enhancement in

the values of NHP or NHS enhances the heat release from fluid to solid and fluid to the

nanoparticle, respectively. Furthermore, all three phases have almost similar temperatures

and act as a single phase, resulting in a local thermal equilibrium state. This is because

NHP and NHS become large, and the temperature differences are inversely proportional to

inter-phase heat transfer parameters. In the case of critical wavenumber, when NHP rises,

αc increases, and when NHS increases, αc first drops up to certain values of NHS then

rapidly rises in the intermediate values, as shown in Fig. 3.1(b). This could be due to the

fluid/particle dominance of heat transfer in the fluid/solid matrix. Furthermore, as shown

in Fig. 3.2(b), when NHS rises, αc falls, and when NHP rises, αc rises.
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The plots for the variation of critical Rayleigh number (Rac) and critical wavenumber

(αc) as a function of Nield numbers NHP and NHS for the inclination angle (θ) are displayed

in Figs. 3.3 and 3.4. Fig. 3.3(a) shows that Rac decreases as θ changes from horizontal to

vertical, whereas Rac does not change as NHP increases. However, in the case of NHS, Rac

decreases as NHS and θ both increase, as shown in Fig. 3.4(a). As a result, changing θ from

horizontal to vertical destabilizes the flow. This is because when the channel is inclined, the

gravitational force acting on the fluid causes a component of the force to act in the direction

of the flow. This can lead to the development of instabilities in the nanofluid flow. In the case

of critical wavenumber, as θ and NHP increase, so does αc, as shown in Fig. 3.3(b). Also,

as θ moves from horizontal to vertical, αc rises, and as NHS increases, αc falls until certain

values of NHS and then rises, as shown in Fig. 3.4(b). This could be due to fluid/particle

heat transfer dominating fluid/solid matrix heat transfer.

Figs. 3.5 - 3.8 show the behavior of Rac and αc with inter-phase heat transfer parameters

NHP and NHS for different values of modified thermal capacity ratios γp and γs by fixing

the other parameter values. As shown in Fig. 3.5(a), Rac grows as γp increases from 0.01 to

0.1, and Rac grows uniformly as NHP increases. simillarly for NHS, as shown in 3.6(a), Rac

grows as γp increases, Rac decreases as NHS increases. As a result, γp stabilizes the flow for

all values of NHP and NHS. Furthermore, as γp rises, αc falls slightly, but as NHP rises, αc

rises, as shown in Fig. 3.5 (b). Also, as NHS rises, αc rises until a certain value of NHS and

then decreases, whereas as NHS rises, αc first falls for the intermediate values of NHS before

rising, as shown in Fig 3.6(b). This could happen as a result of fluid/particle heat transfer

dominating fluid/solid matrix heat transfer. As shown in Fig. 3.7(a), Rac rises as γs rises

from 0.01 to 0.03; additionally, Rac rises uniformly as NHP rises. In contrast, as shown in

Fig. 3.8(a), Rac decreases as NHS increases but increases when γs decreases. As a result, γs

stabilizes the flow for all values of NHP and NHS. Furthermore, as γs and NHP increase, so

does αc, as shown in Fig. 3.7(b). Also, as γs rises, αc decreases, whereas as NHS rises, αc

first falls in the intermediate values of NHS before rising, as shown in 3.8(b).

Figs. 3.9 - 3.12 show the variation of critical Rayleigh number (Rac) and critical wave

number (αc) with inter-phase heat transfer parameters NHP and NHS for different values of

the modified thermal diffusivity ratios ϵp and ϵs by fixing the other parameter values. As

displayed in Fig. 3.9(a), Rac decreases as ϵp rises from 0.1 to 1, and Rac increases uniformly

as NHP increases. In contrast, for NHS, as shown in Fig. 3.10(a), Rac falls as NHS increases,

whereas Rac decreases as ϵp grows. As a result, for all values of NHP and NHS both, ϵp

destabilizes the flow. As illustrated in Fig. 3.9(b), as ϵp increases, αc decreases, but as NHP

increases, αc increases. Moreover, when NHS rises, αc first falls in the intermediate values of
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NHS before rising, as shown in Fig. 3.10(b), whereas ϵp rises, αc slightly drops. This could

happen as a result of fluid/particle heat transfer taking precedence over fluid/solid matrix

heat transfer.

As seen in Fig. 3.11(a), Rac grows as ϵs rises from 0.1 to 0.4; additionally, Rac increases

gradually as NHP rises. In contrast, for NHS, as displayed in Fig. 3.12(a), Rac decreases

as NHS raises, but Rac increases as ϵs rises. As a result, ϵs stabilizes the flow for all values

of NHP and NHS both. This is because the modified thermal diffusivity ratio can enhance

the heat transfer between the fluid and the solid matrix, which can lead to a more stable

temperature distribution in the fluid. Additionally, as seen in Fig. 3.11(b), as ϵs and NHP

increase, αc rises. Although NHS rises, αc first falls in the intermediate values of NHS before

rising, as seen in Fig. 3.12(b), but with NHS, as ϵs rises, αc increases.

The dynamics of flow field, behavior of temperature, and volume fraction are presented

through streamlines, isotherms, and isonanoconcentration at the critical stage in Figs. 3.13

- 3.17 with fixed values of other parameters ϵp = 0.7, ϵs = 0.2, γp = 0.04, γs = 0.01,

NHS = 50 and NHP = 100 with varying values of inclination angle (θ) from horizontal to

vertical. It is to be noted that positive streamline contours correspond to clockwise rotation,

whereas negative streamline contours correspond to anti-clockwise rotation. In the case of

isotherms and isonanoconcentrations contours, solid lines represent positive contours, while

dashed lines represent negative contours. The flow is primarily regulated by two asymmetric

cells, one of which (primary cell) rotates clockwise and the other (secondary cell) rotates

counterclockwise. For θ = π/2, the secondary cell pulls the primary cell downward. This is

because temperature is transferred mostly by diffusion, indicating the presence of disruptions

in the flow configuration. The patterns of isotherms of fluid, particle, and solid are essentially

identical for varying values of θ. The isonanoconcentration lines expand across the channel,

but as the channel inclines from horizontal to vertical, they shift to the left portion of the

channel.

The effects of the fluid/nanoparticle interphase Nield number ( NHP ) on the pattern of

streamlines, isotherms, and isonanoconcentrations for NHS = 50 and θ = π/3 are presented

in Figs. 3.18 - 3.22. The flow is governed by bi-cellular patterns, namely primary and

secondary cell patterns. It is noticed that as the value of NHP is increased, the secondary

cell drags the primary cell downward, and the size of the cell also increases. It is interesting to

observe that the fluid, particle, and solid matrix phase isotherms do not alter substantially.

Further, it is investigated that the isonanoconcentration lines indicate that with time, a

two-cell structure expands towards the left portion of the channel for various values of NHP .
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The impact of the fluid/solid matrix interphase Nield number (NHS) on the pattern of

streamlines, isotherms, and isonanoconcentrations for NHP = 100 and θ = π/3 over time is

shown in Figs. 3.23 - 3.27. Positive streamline contours indicate clockwise rotation, while

negative streamline contours indicate anti-clockwise rotation, according to our observations.

Further, we observed that isotherms became increasingly dense as the value ofNHS increased.

When we increase NHS from 1 to 10, the primary cell pulls downwards to the secondary cell,

then bounces back to its original place for greater values. We also discovered that for various

values ofNHS, the isonanoconcentration lines show that a two-cell structure develops towards

the left section of the channel with time.

Table 3.1: “Least stable eigenvalue for different number of grid points with Da = 0.5, Pr =

7, Rn = 5, Ra = 10, ϵ = 0.6, NB = 0.02, NA = 8, Le = 100, NHS=200, NHP=100, γp=0.08,

γs=0.03, ϵp = 0.7, ϵs = 0.2, Λ=1, α= 1 and β = 0.”

N Least stable eigenvalue

40 3.000398659936 -0.194071517195i

45 3.000399060455 -0.194071530064i

50 3.000399080809 -0.194071416737i

55 3.000398661995 -0.194071518085i

60 3.000398538383 -0.194070880538i

(a) (b)

Figure 3.1: “Variation of (a) critical Rayleigh number and (b) critical wavenumber with NHS

for different values of NHP with γp = 0.04, γs = 0.01, ϵp = 0.7, ϵs = 0.2 and θ = π/3.”
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(a) (b)

Figure 3.2: “Variation of (a) critical Rayleigh number and (b) critical wavenumber with NHP

for different values of NHS with γp = 0.04, γs = 0.01, ϵp = 0.7, ϵs = 0.2 and θ = π/3.”

(a) (b)

Figure 3.3: “Variation of (a) critical Rayleigh number and (b) critical wavenumber with NHP

for different values of θ with NHS=50, γp = 0.04, γs = 0.01, ϵp = 0.7 and ϵs = 0.2.”
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(a) (b)

Figure 3.4: “Variation of (a) critical Rayleigh number and (b) critical wavenumber with NHS

for different values of θ with NHP=100, γp = 0.04, γs = 0.01, ϵp = 0.7 and ϵs = 0.2.”

(a) (b)

Figure 3.5: “Variation of (a) critical Rayleigh number and (b) critical wavenumber with NHP

for different values of γp with θ = π/3, NHS=50, γs = 0.01, ϵp = 0.7 and ϵs = 0.2.”
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(a) (b)

Figure 3.6: “Variation of (a) critical Rayleigh number and (b) critical wavenumber with NHS

for different values of γp with θ = π/3, NHP=100, γs = 0.01, ϵp = 0.7 and ϵs = 0.2.”

(a) (b)

Figure 3.7: “Variation of (a) critical Rayleigh number and (b) critical wavenumber with NHP

for different values of γs with θ = π/3, NHS=50, γp = 0.04 ϵp = 0.7 and ϵs = 0.2.”
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(a) (b)

Figure 3.8: “Variation of (a) critical Rayleigh number and (b) critical wavenumber with NHS

for different values of γs with θ = π/3, NHP=100, γp = 0.04 ϵp = 0.7 and ϵs = 0.2.”

(a) (b)

Figure 3.9: “Variation of (a) critical Rayleigh number and (b) critical wavenumber with NHP

for different values of ϵp with θ = π/3, NHS=50, γs = 0.01, γp = 0.04 and ϵs = 0.2.”
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(a) (b)

Figure 3.10: “Variation of (a) critical Rayleigh number and (b) critical wavenumber with

NHS for different values of ϵp with θ = π/3, NHP=100, γs = 0.01, γp = 0.04 and ϵs = 0.2.”

(a) (b)

Figure 3.11: “Variation of (a) critical Rayleigh number and (b) critical wavenumber with

NHP for different values of ϵs with θ = π/3, NHS=50, γp = 0.04 γs = 0.01, and ϵp = 0.7.”
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(a) (b)

Figure 3.12: “Variation of (a) critical Rayleigh number and (b) critical wavenumber with

NHS for different values of ϵs with θ = π/3, NHP=100, γp = 0.04 γs = 0.01, and ϵp = 0.7.”
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(b) θ = π/4
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(c) θ = π/2

Figure 3.13: “The disturbance of streamlines for different values of θ”.
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Figure 3.14: “The disturbance of isotherms (fluid) for different values of θ”.
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(c) θ = π/2

Figure 3.15: “The disturbance of isotherms (particle) for different values of θ”.
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(c) θ = π/2

Figure 3.16: “The disturbance of isotherms (solid) for different values of θ”.
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(c) θ = π/2

Figure 3.17: “The disturbance of isonanoconcentrations for different values of θ”.
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(c) NHP = 100

Figure 3.18: “The disturbance of streamlines for different values of NHP”.
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(c) NHP = 100

Figure 3.19: “The disturbance of isotherms (fluid) for different values of NHP”.
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(c) NHP = 100

Figure 3.20: “The disturbance of isotherms (particle) for different values of NHP”.
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(c) NHP = 100

Figure 3.21: “The disturbance of isotherms (solid) for different values of NHP”.
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(c) NHP = 100

Figure 3.22: “The disturbance of isonanoconcentrations for different values of NHP”.
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Figure 3.23: “The disturbance of streamlines for different values of NHS”.
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Figure 3.24: “The disturbance of isotherms (fluid) for different values of NHS”.
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(c) NHS = 100

Figure 3.25: “The disturbance of isotherms (particle) for different values of NHS”.
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Figure 3.26: “The disturbance of isotherms (solid) for different values of NHS”.
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Figure 3.27: “The disturbance of isonanoconcentrations for different values of NHS”.
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3.6 Conclusions

The effect of local thermal non-equilibrium (LTNE) on the onset of convection in an inclined

porous-medium channel filled with a nanofluid flow is studied. The Buongiorno model for

the nanofluid and the two-field model for the energy equation, each signifying the fluid and

particle phases independently, are used. The influence of LTNE parameters on the critical

Rayleigh number and critical wavenumber with inclination θ = π/3. Various values of

the LTNE parameters are shown graphically. Moreover, the contour plots for streamlines,

isotherms, and isonanoconcentration at critical level with variation in fluid/nanoparticle

interphase Nield number (NHP ) and fluid/solid matrix interphase Nield number (NHS) are

drawn and illustrated. The following are the observations:

� When NHP increases, the critical Rayleigh number (Rac) increases, and as NHS in-

creases, Rac falls. As a result, all values of NHP stabilize the flow, whereas all values

of NHS destabilize the flow field.

� When we raise NHP , there is no change in critical Rayleigh number (Rac) for all values

of inclination angle θ.

� γp, γs, ϵp, and ϵs stabilize the flow for all values of NHP .

� For all values of NHS, ϵp destabilize the flow, but γp, γs and ϵs stabilize the flow.

� When we raise NHS, critical wavenumber first decreases up to specific values of NHS

before quickly increasing in the intermediate levels. This may happen due to the

dominance of heat transfer from fluid/solid matrix to fluid/particle.

� For each angle, the patterns of isotherms of fluid, particle, and solid are essentially

identical.
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Chapter 4

The stability of double diffusive

convection in an inclined channel

filled with a porous medium saturated

with nanofluid and subjected to a

magnetic field 1

4.1 Introduction

Double-diffusive convection research in porous media has extensive applications in numerous

disciplines, including biotechnology, nuclear engineering, and chemical engineering. Several

researchers have investigated the effects of double diffusion on the stability of porous lay-

ers saturated with different Newtonian and non-Newtonina fluids. Shivakumara et al. [28]

considered the consequences of the applied magnetic field on the stability of convection in

horizontal fluid layer double diffusion. Shankar et al. [29] studied the stability of buoyant

flow in a vertical layer of a Darcy porous medium with double diffusion. Noon and Had-

dad [30] analyzed the influences of variable gravity, rotation, and reaction on the linear and

nonlinear stability in a thermosolutal convection in a Darcy porous medium. Dhiman et al.

[31] analyzed mathematically the thermohaline convection in a viscoelastic fluid-saturated

porous layer.

1Communicated in “Propulsion and Power Research”
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Several researchers have studied linear stability analysis in the presence of a transverse

magnetic field. Singh et al. [42] studied the importance of a transverse magnetic field on the

linear convective stability in a differently heated channel. Camobreco et al. [43] analyzed

the linear stability of periodic pulsatile flows in a duct with a transverse magnetic field.

The stability properties of a nanofluid in an inclined channel under double-diffusive con-

vection in the presence of a transverse magnetic field have not been reported in the litera-

ture. As a result, the current research examines the impact of a transverse magnetic field

and double-diffusive convection stability in a nanofluid flow for an inclined channel (with

inclination θ) filled with a porous medium.

4.2 Mathematical Formulation

Consider an unsteady, incompressible nanofluid flow in an inclined channel of width 2L with

impermeable and completely thermally conducting walls. Fig. 2.1 depicts a schematic

diagram of the problem. Assume that the angle of inclination with the horizontal line is

θ. The width of the channel is 2L, and the channel plates are located at y = −L and

y = L, respectively. The temperatures of the channel walls y = −L and y = L are T1 and

T2(T1 > T2), nanoparticle volume fractions are ϕ2 and ϕ1, and solute concentrations are

C1 and C2 respectively. A uniform magnetic field B0 = Bêy is subjected normally to the

channel, where B defines the magnetic field strength. The induced magnetic field, in contrast

to the magnetic field being applied, can be ignored as the magnetic Reynolds number is quite

small.

Using the above assumptions and the Oberbeck-Boussinesq approximation, the equations

governing the flow are:

∇ · V⃗ = 0 (4.1)

ρf
ϵ

(
∂V⃗

∂t
+

1

ϵ
(V⃗ · ∇)V⃗

)
= −∇p+ µ̃∇2V⃗ − µ

K
V⃗ − {(1− βT (T − T1)

− βC(C − C1)) (1− ϕ)ρf + ϕρp}g(sin(θ)êx + cos(θ)êy) + j×B0

(4.2)

σ
∂T

∂t
+ V⃗ · ∇T = αm∇2T +

ϵ(ρC)p
(ρC)f

(DT

T1
∇T · ∇T +DB∇ϕ · ∇T

)
+DTC∇2C (4.3)
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∂ϕ

∂t
+

1

ϵ
V⃗ · ∇ϕ =

DT

T1
∇2T +DB∇2ϕ (4.4)

∂C

∂t
+

1

ϵ
V⃗ · ∇C = DS∇2C +DCT∇2T (4.5)

where, C is the solute concentration, coefficient of thermophoretic diffusion isDT , The solutal

diffusivity for the porous medium is DS, the Dufour type diffusivity is DTC , and the Soret

diffusivity is DCT .

The relationship between magnetic induction field B0, and the current is j is defined as:

j×B0 = γ(V⃗ × Bêy)× Bêy.

The following are the conditions on the boundaries of the channel:

y = −L : V⃗ = 0, T = T1, C = C1, ϕ = ϕ2

y = L : V⃗ = 0, T = T2, C = C2, ϕ = ϕ1

(4.6)

The non-dimensional form of the Eqs. (4.1) -(4.6) (on using Eq. (2.6) in Eqs. (4.1) -(4.6)

and removing asterisk) are:

∇ · V⃗ = 0 (4.7)

1

va

(
1

σ

∂V⃗

∂t
+

1

ϵ
(V⃗ · ∇)V⃗

)
= −∇p− V⃗ + ΛDa(∇2V⃗ ) +

[
RaT +

Rs

Ln
−Rnϕ−Rm

]
(sin(θ)êx + cos(θ)êy) +DaHa2(V⃗ × êy)× êy

(4.8)

∂T

∂t
+ V⃗ · ∇T = ∇2T +Df∇2C +

NB

Le

(
∇ϕ · ∇T +NA∇T · ∇T

)
(4.9)

Le
( 1
σ

∂ϕ

∂t
+

1

ϵ

(
V⃗ · ∇ϕ

))
= NA∇2T +∇2ϕ (4.10)

1

σ

∂C

∂t
+

1

ϵ

(
V⃗ · ∇C

)
=

1

Ln
∇2C + Sr∇2T (4.11)
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The associated boundary conditions become:

y = −1 : V⃗ = 0, T = 0, C = 0, ϕ = 1

y = 1 : V⃗ = 0, T = 1, C = 1, ϕ = 0
(4.12)

here, Rs =
ρfgβCKL(C2−C1)

µDS
represents the solutal Rayleigh number, Df = DTC(C2−C1)

αm(T2−T1)
repre-

sents Dufour parameter, Sr = DCT (T2−T1)
αm(C2−C1)

represents Soret parameter, Ln = αm

DS
represents

the thermo-solutal Lewis number, and Ha = BL
√

γ
µ
represents the magnetic parameter.

4.3 Basic state solution

During the basic stage, the flow should be continuous, unidirectional (x- direction, and

completely developed. Hence, Eqs. (4.7)-(4.11) reduce to:

d2Ub

dy2
−
(

1

ΛDa
+ ΛHa2

)
Ub =

1

ΛDa

dp0
dx

− 1

ΛDa

(
RaT0 +

Rs

Ln
C0 −Rnϕ0 −Rm

)
sin(θ)(4.13)

dp0
dy

=
(
RaT0 +

Rs

Ln
C0 −Rnϕ0 −Rm

)
cos(θ) (4.14)

dp0
dz

= 0 (4.15)

d2T0
dy2

+
NB

Le

dϕ0

dy
.
dT0
dy

+
NANB

Le

(
dT0
dy

)2

+Df
d2C0

dy2
= 0 (4.16)

d2Φ0

dy2
+NA

d2T0
dy2

= 0 (4.17)

1

Ln

d2C0

dy2
+ Sr

d2T0
dy2

= 0 (4.18)

The following are the associated boundary conditions:

y = −1 : Ub = 0, T0 = 0, C0 = 0, ϕ0 = 1

y = 1 : Ub = 0, T0 = 1, C0 = 1, ϕ0 = 0
(4.19)

here, C0(y) is basic concentration, and remaining quantities are defined in Chapter-2. Pro-

ceeding as in Chapter-2, we get basic solution as:

Ub = σ

[
cosh(my)

cosh(m)
− 1

]
+

1

2Dam2

(
Ra+

Rs

Ln
+Rn

)[
y − sinh(my)

sinh(m)

]
sin(θ) (4.20)
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T0 =
1 + y

2
, ϕ0 =

1− y

2
, and C0 =

1 + y

2
(4.21)

where:

σ =
m cosh(m)

sinh(m)−m cosh(m)
and m =

√
1

ΛDa
+ ΛHa2

4.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (δ) on the basic state solutions,

ignoring δ2 and higher order terms, using the usual normal mode form [50] to express in-

finitesimal disturbances of corresponding field variables, and removing pressure terms from

the resulting equations, the linearized stability equations are obtained as:

ΛDa

[
d4v̂

dy4
− 2

d2v̂

dy2
(α2 + β2) + (α2 + β2)2v̂

]
− iα

va

(
Ub

ϵ
− c

σ

)[d2v̂
dy2

− (α2 + β2)v̂
]

+
iα

ϵva

d2Ub

dy2
v̂ −

[
d2v̂

dy2
− (α2 + β2)v̂

]
−Ra

dT̂

dy
iα sin(θ)−Ra(α2 + β2) cos(θ)T̂

−Rs
Ln

dĈ

dy
iα sin(θ)− Rs

Ln
(α2 + β2) cos(θ)Ĉ +Rn

dϕ̂

dy
iα sin(θ)

+Rn(α2 + β2) cos(θ)ϕ̂−DaHa2
d2v̂

dy2
= 0

(4.22)

1

σva
(−iαc)η̂ + 1

ϵva

[
βv̂
dUb

dy
+ Ubη̂iα

]
− ΛDa

[
d2η̂

dy2
− (α2 + β2)η̂

]
+ η̂ +DaHa2η̂

−βRaT̂ sin(θ)− β
Rs

Ln
Ĉ sin(θ) + βRnϕ̂ sin(θ) = 0

(4.23)

dT0
dy

v̂ + iα (Ub − c) T̂ −

[
d2T̂

dy2
− (α2 + β2)T̂

]
− NB

Le

[
dϕ0

dy
+ 2NA

dT0
dy

]
dT̂

dy
− NB

Le

dT0
dy

dϕ̂

dy

−Df

[
d2Ĉ

dy2
− (α2 + β2)Ĉ

]
= 0

(4.24)

1

ϵ

dϕ0

dy
v̂ + iα

(
1

ϵ
Ub −

c

σ

)
ϕ̂− 1

Le

[
d2ϕ̂

dy2
− (α2 + β2)ϕ̂

]
− NA

Le

[d2T̂
dy2

− (α2 + β2)T̂
]
= 0(4.25)
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1

ϵ

dC0

dy
v̂ + iα

(
1

ϵ
Ub −

c

σ

)
Ĉ − 1

Ln

[
d2Ĉ

dy2
− (α2 + β2)Ĉ

]
− Sr

[d2T̂
dy2

− (α2 + β2)T̂
]
= 0(4.26)

where û(y) = (û, v̂, ŵ), and η̂ = βû− αŵ

4.5 Results and discussion

The set of Eqs. (4.22) - (4.26) expresses a generalized eigenvalue problem with perturbed

eigenvalues in terms of wave speed. The spectral technique [107] is employed to find the

solution to this eigenvalue problem. To examine the validity of the method, the eigenvalue

problem code is executed in MATLAB with a different grid point count (N), and the resulting

least consistent eigenvalues are given in Table 4.1 for a set of other parameters chosen at

random. For N ≥ 50, the least consistent eigenvalue meets a convergence threshold of 10−7.

When N ≥ 50, the results do not change. A similar trend may be noticed for different

parameter values. As a consequence, N = 50 is used in the numerical calculation. The

results of θ = π/2 were obtained, which is consistent with the results of Srinivasacharya and

Barman [108].

The impact of double diffusion on convective stability in a nanofluid flow with a

transverse magnetic field in an inclined porous channel is investigated in this paper. The

influence of inclination angle (θ), Darcy number (Da), thermo-solutal Lewis number (Ln),

Dufour number (Df ), and Soret number (Sr) on the flow instability is studied in-depth

in this paper. The remaining values of parameters are set as ϵ = 0.6, NA = 8, NB = 0.2,

Rs=200, Rn=10, Pr=7, Le=1000, Λ = 1, and σ = 1.

The plots for the variation of critical Rayleigh number (Rac) and critical wavenumber

(αc) as a function of Harmann number (Ha) for the inclination angle (θ) are shown in Fig.

4.1. As θ changes from horizontal to vertical, Rac decreases. This demonstrates that θ

destabilizes the flow. It is worth noting that rising Ha rises Rac. The Lorentz force is

commonly produced by applying a magnetic field at right angles to the direction of flow. As

a result, the model dissipates a substantial amount of energy to minimize this resistance,

which delays convection and acts as a stabilizer. As a consequence, the magnetic field may

be employed to effectively manage convection in a nanofluid-saturated medium. When the

inclination angle is fixed, it is seen that αc decreases as Ha increases. However, as θ shifts

from horizontal to vertical, the critical wavenumber enhances.
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For the permeability parameter (Darcy number Da), the variation of critical Rayleigh

number (Rac) and critical wavenumber (αc) as a function of Hartmann number (Ha) is

displayed in Fig. 4.2. The critical Rayleigh number rises as the Da increases, indicating

that permeability stabilizes the system. At lower Darcy numbers, it is believed that the

porous layer has less fluid permeability, causing a pronouncedly high resistance when the

fluid passes through the porous medium. As a result, the flow improves in a porous medium,

illustrating how viscous forces contribute to the momentum equation. Critical wavenumber

rises with increasing permeability, although the growth is slower when Da rises from 1 to 10

than when it rises from 0.1 to 1.

For varying values of thermo-solutal Lewis number (Ln), Fig. 4.3 shows the variation of

critical Rayleigh number (Rac) and critical wavenumber (αc) versus the magnetic parameter

(Ha). With a rise in the values of Ln, the Rac increases slightly. As Ln grows, αc drops.

As a result, Ln stabilizes the flow.

Fig. 4.4 depicts the impact of the Soret number (Sr) on the critical Rayleigh number

(Rac) and critical wavenumber (αc). As the value of Sr rises, so does the value of Rac.

However, the rate of growth is extremely slow. In a nanofluid flow in an inclined channel,

the flow field is stabilized by the Soret parameter. This is because the Soret effect raises the

solute’s density gradient, which causes convective instability at constant temperature. As

Sr increases, αc drops.

The critical Rayleigh number (Rac) and critical wavenumber (αc) patterns against the

Ha for different effects of the Dufour parameter (Df ) are shown in Fig. 4.5. The critical

Rayleigh number (Rac) improves as the Dufour parameter value increases. Moreover, the αc

somewhat lowers as the Dufour value is raised. As a result, it can be concluded that the

Dufour parameter (Df ) slightly stabilizes the system.

Figs. 4.6 - 4.9 show streamlines, isotherms, isosolutes, and isonanoconcentrations, for

various θ values when Ha = 2 and Da = 10. Streamlines in a clockwise direction correlate

to negative contours, whereas those in an anti-clockwise direction correspond to positive

contours. When the channel is horizontal, i.e., θ = 0, Fig. 4.6 shows the development of

two vertical cell structures known as Rayleigh-Bernard convection cells. A counter-clockwise

vortex forms close to the upper wall, while a clockwise vortex forms near the lower wall.

The cells then stretch or elongate in the vertical direction as the inclination angle increases,

eventually forming a horizontal cell structure when the inclination angle reaches π/2, i.e.,

when the channel becomes vertical. Therefore, streamlines reorient the pattern from a

vertical structure to a horizontal structure as the channel inclination changes from horizontal
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to vertical. Solid lines represent positive contours in the case of isotherms, isosolutes, and

isonanoconcentrations contour, whereas dashed lines represent negative contours. A similar

pattern is observed in the case of isotherms, isosolutes, and isonanoconcentrations.

Table 4.1: “Convergence of the least stable eigenvalue for Da = 10, Ha=2, Pr = 7, Ra =

10, Rs=200, Rn = 10, Ln=40, ϵ = 0.6, NA = 8, NB = 0.2, Le = 1000, Sr = 0.5, Df = 0.04,

Λ = 1, θ=π/3, σ = 1, α= 1 and β = 0.”

N Least stable eigenvalue

40 2.337864911005 -0.034982366316i

45 2.337866380778 -0.034982283926i

50 2.337901597983 -0.034997045700i

55 2.337867143229 -0.034981336325i

60 2.337950853642 -0.035017117849i
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Figure 4.1: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

Ha for different values of θ with Da=0.1, Rs=200, Ln=40, Sr = 0.3 and Df = 0.04.”
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Figure 4.2: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

Ha for different values of Da with θ = π/3, Rs = 200, Ln = 40, Sr = 0.3 and Df = 0.04.”
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Figure 4.3: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

Ha for different values of Ln with θ = π/3, Rs=200, Da=0.1, Sr = 0.3 and Df = 0.04.”
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Figure 4.4: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

Ha for different values of Sr with θ = π/3, Ln=40, Da=0.1, Rs = 200 and Df = 0.04.”
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Figure 4.5: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

Ha for different values of Df with θ = π/3, Ln=40, Da=0.1, Rs = 200 and Sr = 0.3.”
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Figure 4.6: “The disturbance of streamlines for different values of θ.”
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Figure 4.7: “The disturbance of isotherms for different values of θ.”
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Figure 4.8: “The disturbance of isosolutes for different values of θ.”
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Figure 4.9: “The disturbance of isonanoconcentrations for different values of θ.”
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4.6 Conclusions

The Brinkman-extended Darcy model is employed to examine the linear stability of double-

diffusive convection in an inclined channel filled with a porous medium saturated with

nanofluid under the impact of a transverse magnetic field. The critical Rayleigh number

(Rac) and critical wavenumber (αc) are computed and graphically presented for various

values of θ, Da, Sr, Ln, and Df versus Ha.

� A rise in the magnetic parameter increases the critical Rayleigh number. As a result,

the Hartmann number (Ha) stabilizes the flow field.

� The flow in an inclined channel is stabilized by the thermo-solutal Lewis number (Ln),

the Soret parameter (Sr), and the Dufour parameter (Df ). As a result, a rise in these

factors delays the onset of convection.
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Chapter 5

The stability of the nanofluid flow in

an inclined porous channel with

variable viscosity 1

5.1 Introduction

The variable viscosity of fluids is an essential consideration in engineering and scientific

contexts, as it influences the behavior of fluid flow in various domains. Fluid viscosity

is a factor that effects product quality and processing conditions in sectors such as food,

chemical processing, and polymer manufacturing, where it is influenced by temperature,

pressure, and composition [109]. Umavathi et al. [38] investigated the linear and non-linear

stability analysis of convection in a Maxwell nanofluid-saturated porous medium with double

diffusing layers. In a Rayleigh-Bénard situation with rotation, recently Aanam et al. [39]

theoretically investigated the dynamics of a ferrofluid with temperature and viscosity that

are dependent on the magnetic field.

The literature review reveals that the stability properties of a nanofluid in an inclined

channel with variable viscosity have not been reported in the literature. As a result, the

current research examines the impact of variable viscosity in a nanofluid flow for an inclined

channel (with inclination θ) filled with a porous medium.

1Published in “Numerical Heat Transfer; Part A: Applications” pp:1-14, DOI:
https://doi.org/10.1080/10407782.2023.2252176
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5.2 Mathematical Formulation

Consider an unsteady, incompressible nanofluid flow in an inclined channel of width 2L and

inclination θ, with impermeable and completely thermally conducting walls. Let Oxyz be

the Cartesian coordinate system with x-axis in the flow direction and y-axis perpendicular to

the flow direction, as depicted in Fig. 2.1. It is assumed that the porous medium is isotropic

and homogenous. The walls y = −L and y = L are maintained at fixed temperatures T1

and T2, with nanoparticle volume fractions fixed at ϕ2 and ϕ1, respectively.

Also, we have assumed that the viscosity is an exponential function of temperature ac-

cording to the Nahme law Sukanek et al. [110]

µ(T ) = µle
−k T

here, k is variable viscosity parameter, µl is viscosity at refrence temperature Tl.

Considering the Brownian motion and thermophoresis effects in the nanofluid, Darcy-

Brinkman model for porous medium, and linear Oberbeck-Boussinesq approximation, the

equations governing the flow are [50, 111]:

∇ · V⃗ = 0 (5.1)

ρf
ϵ

(
∂V⃗

∂t
+

1

ϵ
(V⃗ · ∇)V⃗

)
= −∇p+

[
µ∆V⃗ +∇µ ·

(
∇V⃗ +∇V⃗ T

)]
− µ

K
V⃗

− [(1− ϕ)ρf (1− βT (T − T1)) + ϕρp]g(sin(θ)êx + cos(θ)êy)

(5.2)

(ρC)m
∂T

∂t
+ (ρC)f V⃗ · ∇T = km∇2T + ϵ(ρC)p

(
+
DT

T1
∇T · ∇T +DB∇ϕ · ∇T

)
(5.3)

∂ϕ

∂t
+

1

ϵ
V⃗ · ∇ϕ = DB∇2ϕ+

DT

T1
∇2T (5.4)

The boundary conditions are:

At y = −L : V⃗ = 0, T = T1, ϕ = ϕ2

at y = L : V⃗ = 0, T = T2, ϕ = ϕ1

(5.5)

According to Nikushchenko and Pavlovsky [111] here, ∆V⃗ = −∇×∇× V⃗ .
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The non-dimensional form of the Eqs. (5.1) -(5.4) (on using Eq. (2.6) in Eqs. (5.1) -(5.4)

and removing asterisk) are:

∇ · V⃗ = 0 (5.6)

1

va

(
∂V⃗

∂t
+

1

ϵ
(V⃗ · ∇)V⃗

)
= −∇p+Da

[
µ∆V⃗ +∇µ ·

(
∇V⃗ +∇V⃗ T

)]
− µV⃗

+{RaT −Rnϕ−Rm}(sin(θ)êx + cos(θ)êy)

(5.7)

∂T

∂t
+ V⃗ .∇T = ∇2T +

NANB

Le
∇T · ∇T +

NB

Le
∇ϕ · ∇T (5.8)

∂ϕ

∂t
+

1

ϵ

(
V⃗ · ∇ϕ

)
=

1

Le
∇2ϕ+

NA

Le
∇2T (5.9)

The corresponding boundary conditions become:

At y = −L : V⃗ = 0, T = 0, ϕ = 1

at y = L : V⃗ = 0, T = 1, ϕ = 0
(5.10)

5.3 Basic solution

The flow is supposed to be steady, parallel, continuous, unidirectional (x-direction), and

completely developed in the basic stage. Eqs. (5.6)-(5.9) can be reduced to a system of

ordinary differential equations using these three conditions:

Da

{
∂

∂y

(
µ(T0)

∂Ub

∂y

)}
− µ(T0)Ub =

dp0
dx

− (RaT0 −Rnϕ0 −Rm) sin(θ) (5.11)

dp0
dy

= (RaT0 −Rnϕ0 −Rm) cos(θ) (5.12)

dp0
dz

= 0 (5.13)

d2T0
dy2

+
NB

Le

dϕ0

dy

dT0
dy

+
NANB

Le

(
dT0
dy

)2

= 0 (5.14)

d2Φ0

dy2
+NA

d2T0
dy2

= 0 (5.15)
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The following are the associated boundary conditions:

At y = −1 : Ub = 0, T0 = 0, ϕ0 = 1

at y = 1 : Ub = 0, T0 = 1, ϕ0 = 0
(5.16)

Proceeding as in Chapter-2, and taking the approximation µ(T0) = e−kT0 [106], we get basic

solution as:

T0 =
1 + y

2
and ϕ0 =

1− y

2
(5.17)

Ub =
1

8
e

k
4
(y+1)

{
csch(m)sech(m)

(
sinh(m(1− y))(4σ − (Dak − 2)(Ra+Rn)) sin(θ)

+ek/2 sinh(m(1 + y))(4σ − (Dak + 2)(Ra+Rn)) sin(θ) + sin(θ)e
k
4
(y+1)

sinh(2m)(Ra+Rn)(Dak + 2y)
)
− 8σe

k
4
(y+1)

} (5.18)

where:

σ =
{
sinh2(m)

{
2ek/2 sin(θ)(Ra+Rn)

(
4Dak3mcsch2(m) + sinh

(k
2

)
(
coth(m)

(
16m2

(
Dak2 − 4

)
+ k2

(
Dak2 + 4

)
− 8k2m coth(m)

)
−8k2m

)
+ cosh

(k
2

)(
2k coth(m)

(
− 2Dak2m coth(m) + k2

+16m2
)
− 4Dak3m

))
+ 4k4 coth(m)− 64k2m2 coth(m)

}}/
{
2k
((
ek − 1

)(
k2 + 16m2

)
sinh(2m) + 16ek/2km− 8

(
ek + 1

)
km cosh(2m)

)}
and

m =

√
k2 + 16

Da

4

5.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (δ) on the basic state solutions,

ignoring δ2 and higher order terms, using the usual normal mode form [50] to express in-

finitesimal disturbances of corresponding field variables, and removing pressure terms from
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the resulting equations, the linearized stability equations are obtained as:

Da
[
µ0
d4v̂

dy4
+ 2

dµ0

dy

d3v̂

dy3
− d2v̂

dy2

(
2µ0(α

2 + β2)− d2µ0

dy2

)
− 4(α2 + β2)

dv̂

dy

dµ0

dy

+(α2 + β2)
(
µ0(α

2 + β2) +
d2µ0

dy2

)
v̂
]
− iα

va

(Ub

ϵ
− c
)[d2v̂
dy2

− (α2 + β2)v̂
]

+
iα

ϵva

d2Ub

dy2
v̂ − µ0

[d2v̂
dy2

− (α2 + β2)v̂
]
− dµ0

dy

dv̂

dy
−Dae−kT0k

[dUb

dy

d2T̂

dy2

+
(
2
d2Ub

dy2
− k

dub
dy

)dT̂
dy

+
(d3Ub

dy3
− k

d2Ub

dy2
+
dUb

dy

(k2
4

− iα(α2 + β2)
))
T̂
]

+ke−kT0
dUb

dy
T̂ + ke−kT0

dT̂

dy
Ub − Ub

k2

2
e−kT0T̂ −Ra

dT̂

dy
iα sin(θ)

−Ra(α2 + β2) cos(θ)T̂ +Rn
dϕ̂

dy
iα sin(θ)−Rn(α2 + β2) cos(θ)ϕ̂ = 0

(5.19)

1

va
(−iαc)η̂ + 1

ϵva

[
βv̂
dUb

dy
+ Ubη̂iα

]
−Da

[
µ0
d2η̂

dy2
+
dµ0

dy

dη̂

dy
− µ0(α

2 + β2)η̂
]

+Dake−kT0β
[dUb

dy

dT̂

dy
− k

2
T̂ +

d2Ub

dy2
T̂
]
+ µ0η̂ − βUbke

−kT0T̂

−βRaT̂ sin(θ) + βRnϕ̂sin(θ) = 0

(5.20)

v̂
dT0
dy

+ iα(Ub − c)T̂ −

[
d2T̂

dy2
− (α2 + β2)T̂

]
− NB

Le

[
dϕ0

dy
+ 2NA

dT0
dy

]
dT̂

dy

−NB

Le

dT0
dy

dϕ̂

dy
= 0

(5.21)

1

ϵ

dϕ0

dy
v̂ + iα

(
Ub

ϵ
− c

)
ϕ̂− 1

Le

[
d2ϕ̂

dy2
− (α2 + β2)ϕ̂

]
− NA

Le

[d2T̂
dy2

− (α2 + β2)T̂
]
= 0 (5.22)

According to Srivastava et al. [112] µ̂(T0) =
dµ0

dT0
T̂ represents the perturbation viscosity, and

k is variable viscosity parameter.
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5.5 Results and discussion

The set of Eqs. (5.19) - (5.22) expresses a generalized eigenvalue problem with perturbed

eigenvalues in terms of wave speed. The spectral technique [107] is employed to find the

solution to this eigenvalue problem.

To examine the validity of the method, the eigenvalue problem code is executed in MAT-

LAB with a different grid point count (N), and the resulting least consistent eigenvalues are

given in Table 5.1 for a set of other parameters chosen at random. For N ≥ 50, the least

consistent eigenvalue meets a convergence threshold of 10−7. When N ≥ 50, the results do

not change. A similar trend may be noticed for different parameter values. As a consequence,

N = 50 is used in the numerical calculation.

The present analysis’s outcomes are compared to those of a vertical channel filled with

a nanofluid-saturated porous medium. The critical Rayleigh number Rac and critical

wavenumber αc for the vertical channel are calculated from the current analysis when Da

= 10, k=0, Pr = 7, Ra = 100, Rn = 15, ϵ = 0.6, NA = 8, NB = 0.2, and θ = π/2, which

is consistent with the results of Srinivasacharya and Barman [50] as shown in Table 5.2.

The impact of variable viscosity on nanofluid flow stability in an inclined porous channel is

investigated in this paper. The influence of inclination angle (θ), variable viscosity parameter

(k), porosity parameter (ϵ), and Prandtl number (Pr) on critical Rayleigh number (Rac) and

critical wavenumber (αc) is depicted in Figs. 5.1-5.4. On the horizontal axis, the logarithm

of the Darcy number is used to show all of the instability boundaries.

The plots for the variation of critical Rayleigh number (Rac) and critical wavenumber (αc)

for the inclination angle (θ) are shown in Fig. 5.1. As θ changes from horizontal to vertical,

the logarithm of the critical Rayleigh number (log10Rac) decreases. This demonstrates that

θ destabilizes the flow. This is because when the channel is inclined, the gravitational force

acting on the fluid causes a component of the force to act in the direction of the flow. This

can lead to the development of instabilities in the nanofluid flow. It is worth noting that the

rising Darcy number (Da) rises Rac indicating a stabilizing impact of permeability. Also, the

flow is constant until Da = 1, and then there is a rapid spike in Rac as Da increases. The

fluctuation of Rac is slow and smooth for small values of the Darcy number (Da < 1). When

(Da > 1), there is a quick increase in Rac. The flow resistance decreases as permeability

increases, and flow in the porous medium improves, indicating that viscous forces play a role

in the momentum equation. When the inclination angle is fixed, it is seen that αc increases as

Da increases. Also, as θ shifts from horizontal to vertical, the critical wavenumber enhances.
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Fig. 5.2 shows the variation in critical Rayleigh number (Rac) and critical wavenumber

(αc) for the variable viscosity parameter (k). Rac drops as we increase k from -0.5 to 0.5.

However, as we raise Da, Rac increases slowly until Da = 1, and then there is a rapid spike in

Rac as Da increases. However, as we increase k from -0.5 to 0.5, αc is decreased. And when

we increase Da, αc increases until Da=1, then it becomes constant. Hence, k destabilizes

the flow because variable viscosity affects the distribution and migration of nanoparticles,

leading to the accumulation or segregation of nanoparticles in certain regions, disrupting

flow patterns. The significant contrast in viscosity between nanoparticles and the base fluid

introduces non-uniform shear stress distribution, causing flow instability.

Fig. 5.3 presents the boundaries of the instability region depending on the porosity pa-

rameter (ϵ) and the permeability parameter (Da). It is seen from Fig. 5.3 that increasing

the porosity parameter tends to increase the critical Rayleigh number( Rac). This is because

porosity is a ratio of void volume over total volume. In a porous medium, this is a measure-

ment of the empty spaces. When the porosity rises, the volume of voids rises as well. Hence,

porosity stabilizes the flow. Also, it is noted that there is a little variation in αc when the

value of the porosity parameter increases, but there is an increase in αc as the value of Da

grows.

The influence of the Prandtl number (Pr) on the boundaries of instability is seen in Fig.

5.4. The critical Rayleigh number rises as momentum diffusivity increases in terms of Pr. As

a result, the Prandtl number has a stabilizing effect on the system. There is substantial flow

resistance with small Darcy numbers in the porous medium. This flow resistance decreases as

the permeability increases and the porous medium’s flow increases, indicating the importance

of the momentum equation of viscous forces. Moreover, when permeability increases, the

wavenumber also increases. Also, when Pr rises, the wavenumber rises slowly.

Figs. 5.5-5.7 show streamlines, isotherms, and isonanoconcentrations for various θ values

when with fixed values of other parameters. Da = 1, Pr=7, ϵ=0.6, Rn=15, Ra=100,

Le=500, NA = 8, NB = 0.2, and k=0.5. Streamlines in a clockwise direction correlate

to negative contours, whereas those in an anti-clockwise direction correspond to positive

contours. When the channel is vertical, i.e., θ = π/2, Fig. 5.5 shows the development of

two vertical cell structures known as Rayleigh-Bernard convection cells. A counter-clockwise

vortex forms close to the upper wall, while a clockwise vortex forms near the lower wall.

The cells then stretch or elongate in the vertical direction as the inclination angle decreases,

eventually forming a horizontal cell structure when the inclination angle reaches θ = 0 i.e.,

when the channel becomes horizontal. Therefore, streamlines reorient the pattern from a

horizontal structure to a vertical structure as the channel inclination changes from vertical
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to horizontal. Solid lines represent positive contours in the case of isotherms, isosolutes, and

isonanoconcentrations contour, whereas dashed lines represent negative contours. A similar

pattern is observed in the cases of isotherms and isonanoconcentrations.

Table 5.1: “Convergence of the least stable eigenvalue for Da = 10, k=0.5, Pr = 7, Ra =

100,Rn = 15, ϵ = 0.6, NA = 8, NB = 0.2, Le = 500, α= 1, and β = 0.”

N Least stable eigenvalue

40 2.782696889086 -0.072169454812i

45 2.782696869479 -0.072169365646i

50 2.782697982103 -0.072165179703i

55 2.782697061391 -0.072156113180i

60 2.782694217221 -0.072164172382i

Table 5.2: “Critical values of αc and Rac for different values of Le and β at Da = 10, k = 0,
Pr = 7, Rn = 15, ϵ = 0.6, NA = 8, NB = 0.02, and θ = π/2”

Present Results Srinivasacharya
and Barman [50]

Da β Le αc Rac αc Rac
0.1 0 100 0.964500755 1418.197639 0.9645 1418.198

0 300 0.963249683 1428.58010 0.9632 1428.580
0 500 0.963040499 1430.804799 0.9631 1430.805
0.5 500 0.901980216 1649.284165 0.9020 1649.284
1 500 0.727248243 2915.056289 0.7273 2915.056

1 0 100 1.343032132 3030.342688 1.3430 3030.343
0 300 1.342459409 3035.799127 1.3425 3035.799
0 500 1.342402116 3037.208995 1.3424 3037.209
0.5 500 1.295094713 3263.853616 1.2951 3263.854
1 500 1.142297567 4203.373754 1.1423 4203.374

10 0 100 1.382342585 25247.08315 1.3824 25247.08
0 300 1.382274144 25252.11631 1.3823 25252.12
0 500 1.382280638 25253.49436 1.3819 25253.44
0.5 500 1.33625209 27021.49202 1.3361 27021.49
1 500 1.189422721 34195.04124 1.1894 34195.04
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Figure 5.1: “For k = 0.5, Le = 500, ϵ=0.6, Rn = 15, P r = 7, NA = 8, and NB = 0.2

instability boundaries for (log10Da, log10Rac)-plane and (log10Da, log10αc)-plane for various

values of θ”

Figure 5.2: “For θ = π/3, Le = 500, ϵ=0.6, Rn = 15, P r = 7, NA = 8, and NB = 0.2

instability boundaries for (log10Da, log10Rac)-plane and (log10Da, log10αc)-plane for various

values of k.”
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Figure 5.3: “For θ = π/3, k = 0.5, Le = 500, Rn = 15, P r = 7, NA = 8, and NB = 0.2

instability boundaries for (log10Da, log10Rac)-plane and (log10Da, log10αc)-plane for various

values of ϵ.”

Figure 5.4: “For θ = π/3, k = 0.5, ϵ=0.6, Rn = 15, Le = 500, NA = 8, and NB = 0.2

instability boundaries for (log10Da, log10Rac)-plane and (log10Da, log10αc)-plane for various

values of Pr.”
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(a) “θ = 0” (b) “θ = π/4” (c) “θ = π/2”

Figure 5.5: “The disturbance of streamlines for different values of θ.”

(a) “θ = 0” (b) “θ = π/4” (c) “θ = π/2”

Figure 5.6: “The disturbance of isotherms for different values of θ.”

(a) “θ = 0” (b) “θ = π/4” (c) “θ = π/2”

Figure 5.7: “The disturbance of isonanoconcentrations for different values of θ.”
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5.6 Conclusions

The Brinkman-extended Darcy model is employed to examine the linear stability of variable

viscosity in an inclined channel with a porous medium saturated with nanofluid. The critical

Rayleigh number (Rac) and critical wavenumber (αc) are computed and graphically presented

for various values of θ, k, Pr, and ϵ versus Da.

� The variable viscosity parameter destabilizes the flow as it affects the distribution and

migration of nanoparticles, leading to the accumulation or segregation of nanoparticles

in certain regions, disrupting flow patterns.

� The flow in an inclined channel is stabilized by the Prandtl number (Pr), and porosity

parameter (ϵ). As a result, a rise in these factors delays the onset of convection.
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Chapter 6

Influence of variable viscosity and

local thermal non-equilibrium on

nanofluid flow stability in an inclined

porous channel 1

6.1 Introduction

In this chapter, we examine the impact of LTNE with variable viscosity on convection sta-

bility in nanofluid flow for an inclined channel (with inclination θ) filled with a porous

medium. The application of the present study may include the design of heat exchangers

for improved thermal efficiency, enhanced cooling systems in various industries, optimiz-

ing enhanced oil recovery techniques, aiding in environmental engineering for wastewater

treatment and contaminant transport, benefiting microfluidics for medical diagnostics and

lab-on-a-chip systems, and contributing to geothermal energy extraction, aerospace, and

aviation cooling systems.

1Published in “Proceedings of the Institution of Mechanical Engineers, Part E: Journal of
Process Mechanical Engineering” pp:1-15, DOI: 10.1177/09544089241234406
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6.2 Mathematical Formulation

Consider an unsteady, incompressible flow of a nanofluid in an inclined channel with a width

of 2L and inclination θ, with impermeable and completely thermally conducting walls. Also,

we have assumed that viscosity varies exponentially with temperature. according to the

Nahme law Sukanek et al. [110]

µ(T ) = µle
−k T

where µl is the viscosity at the reference temperature Tl.

Fig. 2.1 depicts a a diagrammatic depiction of the problem. Assume that the angle

of inclination with the horizontal line is θ. The LTNE state is assumed to exist between

the fluid, particle, and solid-matrix phases. The three temperature models are taken into

account. As a result, three heat transfer equations, one for each of the three phases, are

considered. Except for the density changes in the buoyancy force term, the thermophysical

characteristics of the fluid are considered to be constant. Assume that the porous medium

is homogenous and isotropic. The temperatures of the left and right walls are T1 and T2

(T1 > T2), and nanoparticle volume fractions are ϕ2 and ϕ1, respectively.

Using the above assumptions, employing the Oberbeck- Boussinesq approximation and Darcy-

Brinkman model, the governing equations that describe the flow can be expressed as follows

[113, 50]:

Conservation of mass:

∇ · V⃗ = 0 (6.1)

Conservation of momentum:

ρf
ϵ

∂V⃗

∂t
+
ρf
ϵ2
(V⃗ · ∇)V⃗ = −∇p+

[
µ∆V⃗ +∇µ ·

(
∇V⃗ T +∇V⃗

) ]
− µ

K
V⃗ −

[
ϕρp + (1− ϕ)ρf

(1− βT (Tf − T1))
]
g(sin(θ)êx + cos(θ)êy)

(6.2)

Conservation of energy:

ϵ(ρC)f (1− ϕ1)

(
∂Tf
∂t

+
1

ϵ
V⃗ · ∇Tf

)
= kfϵ(1− ϕ1)∇2Tf + ϵ(1− ϕ1)(ρC)p

(
DB∇ϕ · ∇Tf

+
DT

T1
∇Tf · ∇Tf

)
− hfp(Tf − Tp)− hfs(Tf − Ts)

(6.3)
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ϵ(ρC)p

(
∂Tp
∂t

+
1

ϵ
V⃗ · ∇Tp

)
ϕ1 = ϵϕ1kp∇2Tp + hfp(Tf − Tp) (6.4)

(1− ϵ)(ρC)s
∂Ts
∂t

= (1− ϵ)ks∇2Ts + hfs(Tf − Ts) (6.5)

Conservation of nanoparticle:

∂ϕ

∂t
+

1

ϵ
V⃗ · ∇ϕ = DB∇2ϕ+

DT

T1
∇2T (6.6)

The following are the conditions on the boundaries of the channel:

At y = −L : V⃗ = 0, Tf = T1, Tp = T1, Ts = T1, ϕ = ϕ2

and at y = L : V⃗ = 0, Tf = T2, Tp = T2, Ts = T2, ϕ = ϕ1

(6.7)

The non-dimensional form of the Eqs. (6.1) -(6.6) (on substituting (2.6) in (6.1) -(6.6) and

removing asterisk) are:

∇ · V⃗ = 0 (6.8)

1

va

∂V⃗

∂t
+

1

vaϵ
(V⃗ · ∇)V⃗ = −∇p+Da

[
µ∆V⃗ +∇µ ·

(
∇V⃗ T +∇V⃗

) ]
− µV⃗ + {RaTf

−Rnϕ−Rm}(sin(θ)êx + cos(θ)êy)

(6.9)

∂Tf
∂t

+
1

ϵ

(
V⃗ .∇Tf

)
= ∇2Tf +

NB

Le
∇ϕ · ∇Tf +

NANB

Le
∇Tf · ∇Tf −NHP (Tf − Tp)

−NHS(Tf − Ts)
(6.10)

∂Tp
∂t

+
1

ϵ

(
V⃗ · ∇Tp

)
= ϵp∇2Tp + γpNHP (Tf − Tp) (6.11)

∂Ts
∂t

= ϵs∇2Ts + γsNHS(Tf − Ts) (6.12)

∂ϕ

∂t
+

1

ϵ

(
V⃗ · ∇ϕ

)
=

1

Le
∇2ϕ+

NA

Le
∇2Tf (6.13)

The corrosponding boundary conditions became:

At y = −1 : V⃗ = 0, Tf = 1, Tp = 1, Ts = 1, ϕ = 0

and at y = 1 : V⃗ = 0, Tf = 0, Tp = 0, Ts = 0, ϕ = 1
(6.14)

91



6.3 Basic solution

The flow is supposed to be steady, parallel, continuous, unidirectional (x-direction), and

completely developed in the basic stage. Eqs. (6.8)-(6.13) can be reduced to a system of

ordinary differential equations using these three conditions:

Da

{
∂

∂y

(
µ(T0)

∂Ub

∂y

)}
− µ(T0)Ub =

dp0
dx

− (RaTf0 −Rnϕ0 −Rm) sin(θ) (6.15)

dp0
dy

= (RaTf0 −Rnϕ0 −Rm) cos(θ) (6.16)

dp0
dz

= 0 (6.17)

d2Tf0
dy2

+
NB

Le

dϕ0

dy

dTf0
dy

+
NANB

Le

(
dTf0
dy

)2

+NHP (Tp0 − Ts0) +NHS(Ts0 − Tf0) = 0 (6.18)

ϵp
d2Tp0
dy2

+ γpNHP (Tf0 − Tp0) = 0 (6.19)

ϵs
d2Ts0
dy2

+ γsNHS(Tf0 − Ts0) = 0 (6.20)

d2Φ0

dy2
+NA

d2Tf0
dy2

= 0 (6.21)

The following are the associated boundary conditions:

At y = −1 : Ub = 0, Tf0 = 0, Tp0 = 0, Ts0 = 0, ϕ0 = 1

and at y = 1 : Ub = 0, Tf0 = 1, Tp0 = 1, Ts0 = 1, ϕ0 = 0
(6.22)

Proceeding as in Chapter-2, and taking the approximation µ(T0) = e−kT0 [106], we get basic

solution as:

Tf0 = Tp0 = Ts0 =
1 + y

2
and ϕ0 =

1− y

2
(6.23)

Ub =
1

8
e

k
4
(y+1)

{
csch(m)sech(m)

(
sinh(m(1− y))(4σ − (Dak − 2)(Ra+Rn)) sin(θ)

+ek/2 sinh(m(1 + y))(4σ − (Dak + 2)(Ra+Rn)) sin(θ) + sin(θ)e
k
4
(y+1)

sinh(2m)(Ra+Rn)(Dak + 2y)
)
− 8σe

k
4
(y+1)

} (6.24)
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where:

σ =
{
sinh2(m)

{
2ek/2 sin(θ)(Ra+Rn)

(
4Dak3mcsch2(m) + sinh

(k
2

)(
coth(m)(

16m2
(
Dak2 − 4

)
+ k2

(
Dak2 + 4

)
− 8k2m coth(m)

)
− 8k2m

)
+cosh

(k
2

)(
2k coth(m)

(
− 2Dak2m coth(m) + k2 + 16m2

)
− 4Dak3m

))
+4k4 coth(m)− 64k2m2 coth(m)

}}/{
2k
((
ek − 1

)
(
k2 + 16m2

)
sinh(2m) + 16ek/2km− 8

(
ek + 1

)
km cosh(2m)

)}
and

m =

√
k2 + 16

Da

4

6.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (δ) on the basic state solutions,

ignoring δ2 and higher order terms, using the usual normal mode form [50] to express in-

finitesimal disturbances of corresponding field variables, and removing pressure terms from

the resulting equations, the linearized stability equations are obtained as:

Da
[
µ0
d4v̂

dy4
+ 2

dµ0

dy

d3v̂

dy3
− d2v̂

dy2

(
2µ0(α

2 + β2)− d2µ0

dy2

)
− 4(α2 + β2)

dv̂

dy

dµ0

dy
+ (α2 + β2)(

µ0(α
2 + β2) +

d2µ0

dy2

)
v̂
]
− iα

va

(Ub

ϵ
− c
)[d2v̂
dy2

− (α2 + β2)v̂
]
+

iα

ϵva

d2Ub

dy2
v̂ − µ0

[d2v̂
dy2

−(α2 + β2)v̂
]
− dµ0

dy

dv̂

dy
−Ra

dT̂f
dy

iα sin(θ)−Ra(α2 + β2) cos(θ)T̂f +Rn
dϕ̂

dy
iα sin(θ)

−Rn(α2 + β2) cos(θ)ϕ̂ = 0

(6.25)

1

va
(−iαc)η̂ + 1

ϵva

[
βv̂
dUb

dy
+ Ubη̂iα

]
−Da

[
µ0
d2η̂

dy2
+
dµ0

dy

dη̂

dy
− µ0(α

2 + β2)η̂
]

+µ0η̂ − βRaT̂fsin(θ) + βRnϕ̂sin(θ) = 0

(6.26)
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1

ϵ

dTf0
dy

v̂ + iα
(Ub

ϵ
− c
)
T̂f −

[
d2T̂f
dy2

− (α2 + β2)T̂f

]
− NB

Le

[dϕ0

dy
+ 2NA

dTf0
dy

]dT̂f
dy

−NB

Le

dTf0
dy

dϕ̂

dy
−NHP (T̂p − T̂f )−NHS(T̂s − T̂f ) = 0

(6.27)

1

ϵ

dTp0
dy

v̂ + iα
(Ub

ϵ
− c
)
T̂p − ϵp

[
d2T̂p
dy2

− (α2 + β2)T̂p

]
− γpNHP (T̂f − T̂p) = 0 (6.28)

iαcT̂s + ϵs

[
d2T̂s
dy2

− (α2 + β2)T̂s

]
+ γsNHS(T̂f − T̂s) = 0 (6.29)

1

ϵ

dϕ0

dy
v̂ + iα

(
Ub

ϵ
− c

)
ϕ̂− 1

Le

[
d2ϕ̂

dy2
− (α2 + β2)ϕ̂

]
− NA

Le

[d2T̂f
dy2

− (α2 + β2)T̂f

]
= 0(6.30)

6.5 Results and discussion

The set of Eqs. (6.25) - (6.30) expresses a generalised eigenvalue problem with perturbed

eigenvalues in terms of wave speed. The spectral technique [107] is employed to find the

solution to this eigenvalue problem.

To examine the validity of the method, the eigenvalue problem code is executed in MAT-

LAB with a different grid point count (N), and the resulting least consistent eigenvalues are

given in Table 6.1 for a set of other parameters chosen at random. For N ≥ 50, the least

consistent eigenvalue meets a convergence threshold of 10−7. When N ≥ 50, the results do

not change. A similar trend may be noticed for different parameter values. As a consequence,

N = 50 is used in the numerical calculation.

To validate the exactness of the method, our code was verified by comparing it with

published results in a vertical channel filled with a nanofluid-saturated porous medium. The

critical Rayleigh number (Rac) and critical wavenumber (αc) for the vertical channel were

calculated from the current analysis when Pr = 7, Rn = 15, Rm = 0, ϵ = 0.6,NA = 8,

NB = 0.02, NHP = 0, NHS = 0, ϵp=0, ϵs = 0, γp=0, γs=0, k = 0 and θ = π/2, which is

consistent with the results of Srinivasacharya and Barman [50].

The impact of local thermal non-equilibrium on nanofluid flow stability with variable

94



viscosity in an inclined porous channel is investigated in this paper. The flow is controlled by

seventeen variables, which are as follows: Da, Pr, Ra, Rn, ϵ, NA, NB and Le (related to the

state of LTE), inclination angle (θ), variable viscosity parameter (k), interphase heat transfer

parameters NHS and NHP , modified thermal capacity ratios γp and γs, and modified thermal

diffusivity ratios ϵp and ϵs. Because there are more parameters, the analysis is simplified to

focus solely on the effect of LTNE parameters. As a result, for the rest of the discussion,

the LTE parameters will be set to Pr = 7, Da = 1, Rn = 5, k = 0.5, NA = 8, NB = 0.2,

ϵ = 0.6, and Le = 500.

From the present analysis, we can get the special cases for horizontal channel θ = 0,

vertical channel θ = 0 and constant viscosity k = 0. The critical values of Rac and αc for

these special cases are calculated and given below. The results of present study are compared

with the benchmark results obtained by Srinivasacharya and Barman [50].

Case - I (Horizontal Channel): The Critical values of for the case of horizontal channel

is calculated as Rac = 17356 and αc = 1.2204.

Case - II (Vertical Channel): The Critical values of for the case of vertical channel is

calculated as Rac = 1808.5 and αc = 1.3559.

Case - III(Constant Viscosity): The Critical values of for the case of constant viscosity

is calculated as Rac = 4240.4 and αc = 1.3165.

6.5.1 Effect of the interphase heat transfer parameter

For different LTNE parameters, the change of critical Rayleigh number (Rac) and critical

wavenumber (αc) are computed as functions of Nield numbers NHP and NHS and presented

in Fig. 6.1 and Fig. 6.2. According to Fig. 6.1(a), as NHP increases, the critical Rayleigh

number (Rac) increases, whereas as NHS increases, Rac decreases. Fig. 6.2(a) also depicts

a similar trend for variation of Rac with inter-phase heat transfer parameters. As a result,

for all values of NHP stabilizes the flow whereas for all values of NHS destabilizes it. An

enhancement in the values of NHP or NHS enhances the heat-release from fluid to solid

and fluid to the nanoparticle or vice versa, respectively. Furthermore, all three phases have

almost similar temperatures and act as a single phase, resulting in a local thermal equilibrium

state. This is because NHP and NHS becomes large, the temperature differences are inversely

proportional to inter-phase heat transfer parameters. In case of critical wavenumber when

NHP rises, αc increase, and when NHS increase, αc first drops upto certain values of NHS

then rapidly rises in the intermediate values as shown in Fig. 6.1(b). This could be due
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to fluid/particle dominance of heat transfer of fluid/solid-matrix. Furthermore, as shown in

Fig. 6.2(b), when NHS rises, αc falls, and when NHP rises, αc rises.

6.5.2 Effect on the angle of inclination:

The plots for the variation of critical Rayleigh number (Rac) and critical wavenumber (αc) as

a function of Nield numbers NHP and NHS for the inclination angle (θ) are displayed in Fig.

6.3 and Fig. 6.4. The Fig. 6.3(a) shows that Rac decreases as θ changes from horizontal to

vertical, whereas Rac does not change as NHP increases. However, in the case of NHS, Rac

decreases as NHS and θ both increase, as shown in Fig. 6.4(a). As a result, changing θ from

horizontal to vertical destabilises the flow. In the case of critical wavenumber, as θ and NHP

increase, so does αc, as shown in Fig. 6.3(b). Also, as θ moves from horizontal to vertical, αc

rises, and as NHS increases, αc falls until certain values of NHS and then rises, as shown in

Fig. 6.4(b). This could be due to fluid/particle heat transfer dominating fluid/solid matrix

heat transfer.

6.5.3 Effect on the variable viscosity parameter:

Fig. 6.5 and Fig. 6.6 shows the variation of critical Rayleigh number (Rac) and critical

wavenumber (αc) as a function of Nield numbers NHP and NHS for variable viscosity pa-

rameter (k). We observed that as k increases from −0.5 to 0.5, Rac decreases and as we

increase NHP there is no variation in Rac, as displayed in Fig 6.5(a). And we see in the Fig.

6.6(a), as k increases, Rac decreases and as we increase NHS, Rac drops from high values

when NHS is small to its minimum LTNE value. Hence, k destabilizes the flow. However,

there is no uniform pattern for αc as we increase k for NHP and NHS both as shown in Figs.

6.5(b) and 6.6(b). But as we increase NHP , critical wavenumber (αc) first increases then it

became constant as displayed in Fig. 6.5(b). And with increase of NHS, the value of criti-

cal wavenumber (αc) decreases from high values when NHS is small to its minimum LTNE

value for intermediate NHS, then bounces back to higher values for large NHS as shown in

Fig. 6.6(b). This might occur as a result of fluid/particle heat transfer dominating that of

fluid/solid matrix.
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6.5.4 Effect on the modified thermal capacity ratios:

Figs. 6.7- 6.10 shows the behaviour (Rac) and (αc) with inter-phase heat transfer parameters

NHP and NHS for different values of modified thermal capacity ratios γp and γs by fixing the

other parameters values. As shown in Fig. 6.7(a), Rac gradually decreases as γp increases

from 0.04 to 0.08, and Rac grows uniformly as NHP increases. Whereas for NHS, as shown in

6.8(a), Rac remains constant as γp increases, Rac decreases as NHS increases. As a result, γp

stabilizes the flow for all NHP values while destabilizing it for all NHS values. Furthermore,

as γp rises, αc falls slightly, but as NHP rises, αc rises, as shown in Fig. 6.7 (b). Also, as γp

rises, αc rises until a certain value of NHS and then decreases, whereas as NHS rises, αc first

falls for the intermediate values of NHS before rising, as shown in Fig 6.8(b). This could

happen as a result of fluid/particle heat transfer dominating fluid/solid matrix heat transfer.

As shown in Fig. 6.9(a), Rac rises as γs rises from 0.01 to 0.03; additionally, Rac rises

uniformly asNHP rises. In contrast, as shown in Fig. 6.10(a), Rac decreases asNHS increases,

but increases when γs decreases. As a result, γs stabilises the flow for all values of NHP and

NHS. Furthermore, as γs and NHP increase, so does αc, as shown in Fig. 6.9(b). Also, as

γs rises, αc decreases, whereas as NHS rises, αc first falls in the intermediate values of NHS

before rising, as shown in 6.10(b).

6.5.5 Effect on the modified thermal diffusivity ratios:

Figs. 6.11 - 6.14 shows the variation of critical Rayleigh number (Rac) and critical wave

number (αc) with inter-phase heat transfer parameters NHP and NHS for different values

of the modified thermal diffusivity ratios ϵp and ϵs by fixing the other parameters values.

As displayed in Fig. 6.11(a), Rac decreases as ϵp rises from 0.7 to 0.9, and Rac increases

uniformly as NHP increase. In contrast, as shown in Fig. 6.12(a), Rac falls as NHS increase,

whereas Rac does not change as ϵp grows. As a result, for all values of NHP and NHS, ϵp

destabilizes the flow. As illustrated in Fig. 6.11(b), as ϵp increases, αc does not change, but

as NHP increases, αc increases. Moreover, when NHS rises, αc first falls in the intermediate

values of NHS before rising, as shown in Fig. 6.12(b), whereas ϵp rises, αc effects is nearly

negligible. This could happen as a result of fluid/particle heat transfer taking precedence

over fluid/solid matrix heat transfer.

As seen in Fig. 6.13(a), Rac does not change as ϵs rises from 0.1 to 0.3; additionally,

Rac increases as NHP rises. In contrast, as displayed in Fig. 6.14(a), Rac decreases as NHS

raises, but Rac remains unchanged as ϵs rises. As a result, ϵs destabilizes the flow for all
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values of NHP and NHS both. Additionally, as seen in Fig. 6.13(b), as ϵs and NHP increases,

αc rises. Although NHS rises, αc first falls in the intermediate values of NHS before rising,

as seen in Fig. 6.14(b), but with NHS, as ϵs rises, αc decreases.

Table 6.1: “Least stable eigenvalue for different number of grid points with Da = 0.5, Pr =
7, Ra = 10, Rn = 5, ϵ = 0.6, NA = 8, NB = 0.02, Le = 100, NHS=200, NHP=100, γp=0.08,
γs=0.03, ϵp = 0.7, ϵs = 0.2, α= 1 and β = 0.”

N Least stable eigenvalue
40 3.435961960923 -0.224658384193i
45 3.435961961672 -0.224658362881i
50 3.435962593339 -0.224658392292i
55 3.435962132333 -0.224658589822i
60 3.435961982799 -0.224658381611i

(a) (b)

Figure 6.1: “Variation of (a) critical Rayleigh number (Rac) and (b) critical wavenumber

(αc) with NHS for different values of NHP with γp = 0.04, γs = 0.01, ϵp = 0.7, ϵs = 0.2 and

θ = π/3.”

98



(a) (b)

Figure 6.2: “Variation of (a) critical Rayleigh number (Rac) and (b) critical wavenumber

(αc) with NHP for different values of NHS with γp = 0.04, γs = 0.01, ϵp = 0.7, ϵs = 0.2 and

θ = π/3. ”

(a) (b)

Figure 6.3: “Variation of (a) critical Rayleigh number (Rac) and (b) critical wavenumber

(αc) with NHP for different values of θ with NHS=50, γp = 0.04, γs = 0.01, ϵp = 0.7 and

ϵs = 0.2.”
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(a) (b)

Figure 6.4: “Variation of (a) critical Rayleigh number (Rac) and (b) critical wavenumber

(αc) with NHS for different values of θ with NHP=100, γp = 0.04, γs = 0.01, ϵp = 0.7 and

ϵs = 0.2.”

(a) (b)

Figure 6.5: “Variation of (a) critical Rayleigh number (Rac) and (b) critical wavenumber

(αc) with NHP for different values of k with NHS=50, γp = 0.04, γs = 0.01, ϵp = 0.7 and

ϵs = 0.2.”
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(a) (b)

Figure 6.6: “Variation of (a) critical Rayleigh number (Rac) and (b) critical wavenumber

(αc) with NHS for different values of k with NHP=100, γp = 0.04, γs = 0.01, ϵp = 0.7 and

ϵs = 0.2.”

(a) (b)

Figure 6.7: “Variation of(a) critical Rayleigh number (Rac) and (b) critical wavenumber

(αc) with NHP for different values of γp with NHS=50, θ = π/3, γs = 0.01, ϵp = 0.7 and

ϵs = 0.2.”
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(a) (b)

Figure 6.8: “Variation of (a) critical Rayleigh number (Rac) and (b) critical wavenumber

(αc) with NHS for different values of γp with NHP=100, θ = π/3, γs = 0.01, ϵp = 0.7 and

ϵs = 0.2.”

(a) (b)

Figure 6.9: “Variation of (a) critical Rayleigh number (Rac) and (b) critical wavenumber

(αc) with NHP for different values of γs with NHS=50, θ = π/3, γp = 0.04 ϵp = 0.7 and

ϵs = 0.2.”
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(a) (b)

Figure 6.10: “Variation of (a) critical Rayleigh number (Rac) and (b) critical wavenumber

(αc) with NHS for different values of γs with NHP=100, θ = π/3, γp = 0.04 ϵp = 0.7 and

ϵs = 0.2.”

(a) (b)

Figure 6.11: “Variation of (a) critical Rayleigh number (Rac) and (b) critical wavenumber

(αc) with NHP for different values of ϵp with NHS=50, θ = π/3, γs = 0.01, γp = 0.04 and

ϵs = 0.2.”
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(a) (b)

Figure 6.12: “Variation of (a) critical Rayleigh number (Rac) and (b) critical wavenumber

(αc) with NHS for different values of ϵp with NHP=100, θ = π/3, γs = 0.01, γp = 0.04 and

ϵs = 0.2.”

(a) (b)

Figure 6.13: “Variation of (a) critical Rayleigh number (Rac) and (b) critical wavenumber

(αc) with NHP for different values of ϵs with NHS=50, θ = π/3, γp = 0.04 γs = 0.01, and

ϵp = 0.7.”
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(a) (b)

Figure 6.14: “Variation of (a) critical Rayleigh number (Rac) and (b) critical wavenumber

(αc) with NHS for different values of ϵs with NHP=100, θ = π/3, γp = 0.04 γs = 0.01, and

ϵp = 0.7.”
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6.6 Conclusions

The effect of local thermal non-equilibrium (LTNE) on nanofluid flow onset convection in an

inclined porous-medium channel with variable viscosity is studied. For the energy equation,

Darcy-Brinkman model was used for porous medium, and the three medium temperature

treatments have been used. The influence of LTNE parameters on the critical Rayleigh

number and critical wavenumber is the only focus of this research with inclination θ = π/3.

For different values of the LTNE parameters, the results are graphically shown.

� When the destabilizing and stabilizing characteristics of NHP and NHS converge to

zero and beyond sufficiently large values, the system acts as if it were in an LTE state.

� When NHP increases, critical Rayleigh number (Rac) increases, and as NHS increases,

Rac falls. As a result, for all values of NHP stabilizes the flow whereas for all values of

NHS destabilizes the flow field.

� When we raise NHP , there is no change in critical Rayleigh number (Rac) for all values

of inclination angle (θ), and variable viscosity parameter (k).

� γs stabilizes the flow for all values of NHP .

� For all values of NHS, γp, γs and ϵp and ϵs destabilize the flow.

� When we raise NHS, critical wavenumber first decreases up to specific values of NHS

before quickly increasing in the intermediate levels. This is may be happen due to the

domination of heat transfer of fluid/solid-matrix by fluid/particle.
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Chapter 7

Influence of variable viscosity and

double diffusion on the convective

stability of a nanofluid flow in an

inclined porous channel 1

7.1 Introduction

The combined influence of variable viscosity and double diffusion has seral applications in

science and engineering. Several researchers have considered the effects of variable viscosity

and double diffusion seperately on the stability of the flow in a porous channel. After

reviewing the relevant literature, it has been found that the stability analysis of a nanofluid

in an inclined porous channel with double diffusive convection and changing viscosity has

not been reported. This chapter investigates the simultaneous effects of variable viscosity

and double diffusion on the convective stability of nanofluid flow in a porous inclined channel

(at an angle of inclination θ).

1Published in “Applied Mathematics and Mechanics (English Edition) 45(3), pp:563-580, DOI:
https://doi.org/10.1007/s10483-024-3096-6”
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7.2 Mathematical Formulation

Consider an unsteady, incompressible flow of a nanofluid in an inclined channel with a width

of 2L and inclination θ, with impermeable and completely thermally conducting walls. Also,

we have assumed that viscosity varies exponentially with temperature [110].

µ(T ) = µle
−k T

where µl is the viscosity at the reference temperature Tl.

Fig. 2.1 represent a schematic illustration of the problem. The porous medium is assumed

to be homogenous and isotropic. The temperatures of the left and right walls are T1 and

T2, respectively, nanoparticle volume fractions are ϕ2 and ϕ1, respectively. and the solute

concentrations are C1 and C2 respectively.

Using the above assumptions and the Oberbeck-Boussinesq approximation, the following

set of equations describes the flow [113, 50]:

∇ · V⃗ = 0 (7.1)

ρf
ϵ

∂V⃗

∂t
+
ρf
ϵ2
(V⃗ · ∇)V⃗ = −∇p+

[
∇µ ·

(
∇V⃗ +∇V⃗ T

)
+ µ∆V⃗

]
− µ

K
V⃗

−{(1− βT (T − T1) − βC(C − C1)) (1− ϕ)ρf + ϕρp}g(sin(θ)êx + cos(θ)êy)

(7.2)

∂T

∂t
+ V⃗ · ∇T = αm∇2T +

ϵ(ρC)p
(ρC)f

(DT

T1
∇T · ∇T +DB∇ϕ · ∇T

)
+DTC∇2C

(7.3)

∂ϕ

∂t
+

1

ϵ
V⃗ · ∇ϕ =

DT

T1
∇2T +DB∇2ϕ (7.4)

∂C

∂t
+

1

ϵ
V⃗ · ∇C = DS∇2C +DCT∇2T (7.5)

The non-dimensional form of the Eqs. (7.1) -(7.5) (on using Eq. (2.6) in Eqs. (7.1) -(7.5)

and removing asterisk) are:

∇ · V⃗ = 0 (7.6)

108



1

va

∂V⃗

∂t
+

1

vaϵ
(V⃗ · ∇)V⃗ = −∇p+Da

[
∇µ ·

(
∇V⃗ +∇V⃗ T

)
+ µ∆V⃗

]
− µV⃗

+
[
RaT +

Rs

Ln
C −Rm−Rnϕ

]
(sin(θ)êx + cos(θ)êy)

(7.7)

∂T

∂t
+ V⃗ · ∇T = ∇2T +

1

Le

(
NB∇ϕ · ∇T +NANB∇T · ∇T

)
+Df∇2C (7.8)

∂ϕ

∂t
+

1

ϵ

(
V⃗ · ∇ϕ

)
=
NA

Le
∇2T +

1

Le
∇2ϕ (7.9)

∂C

∂t
+

1

ϵ

(
V⃗ · ∇C

)
=

1

Ln
∇2C + Sr∇2T (7.10)

The boundary conditions are:

y = −1 : V⃗ = 0, T = 0, C = 0, ϕ = 1

y = 1 : V⃗ = 0, T = 1, C = 1, ϕ = 0
(7.11)

7.3 Basic solution

In the basic stage, the flow is regarded as continuous, one-directional (in the x-direction),

and completely developed. Eqs. (7.6)-(7.10) may be reduced into set of ordinary differential

equations by applying these conditions:

Da

{
∂

∂y

(
µ0
∂Ub

∂y

)}
− µ0Ub =

dp0
dx

−
(
RaT0 +

Rs

Ln
C0 −Rnϕ0 −Rm

)
sin(θ) (7.12)

dp0
dy

=
(
RaT0 +

Rs

Ln
C0 −Rnϕ0 −Rm

)
cos(θ) (7.13)

dp0
dz

= 0 (7.14)

d2T0
dy2

+
NB

Le

dϕ0

dy

dT0
dy

+
NANB

Le

(
dT0
dy

)2

+Df
d2C0

dy2
= 0 (7.15)

d2ϕ0

dy2
+NA

d2T0
dy2

= 0 (7.16)
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1

Ln

d2C0

dy2
+ Sr

d2T0
dy2

= 0 (7.17)

The boundary conditions are:

y = −1 : Ub = 0, T0 = 0, C0 = 0, ϕ0 = 1

y = 1 : Ub = 0, T0 = 1, C0 = 1, ϕ0 = 0
(7.18)

Proceeding as in Chapter-2, and taking the approximation µ(T0) = e−kT0 [106], we get basic

solution as:

T0 =
1 + y

2
, ϕ0 =

1− y

2
, and C0 =

1 + y

2
. (7.19)

Ub =
1

8
e(y+1) k

4

{
sech(m)csch(m)

(
sinh((1− y)m)

(
4σ + (2−Dak)

(
Ra+

Rs

Ln
+Rn

))
sin(θ) + ek/2 sinh((1 + y)m)(4σ − (2 +Dak)

(
Ra+

Rs

Ln
+Rn

)
) sin(θ)

+ sin(θ)e
k
4
(y+1) sinh(2m)

(
Ra+

Rs

Ln
+Rn

)
(Dak + 2y)

)
− 8σe

k
4
(y+1)

} (7.20)

where:

σ =

{
sinh2(m)

{
2ek/2 sin(θ)

(
Ra+

Rs

Ln
+Rn

)(
4Dak3mcsch2(m) + sinh

(k
2

)
(
coth(m)

(
16m2

(
Dak2 − 4

)
+ k2

(
Dak2 + 4

)
− 8k2m coth(m)

)
− 8k2m

)
+cosh

(k
2

)(
2k coth(m)

(
− 2Dak2m coth(m) + k2 + 16m2

)
−4Dak3m

))
+ 4k4 coth(m)− 64k2m2 coth(m)

}}/
{
2k
((
ek − 1

)(
k2 + 16m2

)
sinh(2m) + 16ek/2km− 8

(
ek + 1

)
km cosh(2m)

)}

and

m =

√
k2 + 16

Da

4
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7.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (δ) on the basic state solutions,

ignoring δ2 and higher order terms, using the usual normal mode form [50] to express in-

finitesimal disturbances of corresponding field variables, and removing pressure terms from

the resulting equations, the linearized stability equations are obtained as:

Da
[
µ0
d4v̂

dy4
+ 2

dµ0

dy

d3v̂

dy3
− d2v̂

dy2

(
2µ0(α

2 + β2)− d2µ0

dy2

)
− 4(α2 + β2)

dv̂

dy

dµ0

dy
+ (α2 + β2)(

µ0(α
2 + β2) +

d2µ0

dy2

)
v̂
]
− iα

va

(Ub

ϵ
− c
)[d2v̂
dy2

− (α2 + β2)v̂
]
+

iα

ϵva

d2Ub

dy2
v̂

−µ0

[d2v̂
dy2

− (α2 + β2)v̂
]
− dµ0

dy

dv̂

dy
−Dae−kT0k

[dUb

dy

d2T̂

dy2
+
(
2
d2Ub

dy2
− k

dUb

dy

)dT̂
dy

+
(d3Ub

dy3
− k

d2Ub

dy2
+
dUb

dy

(k2
4

− iα(α2 + β2)
))
T̂
]
+ ke−kT0

dUb

dy
T̂ + ke−kT0

dT̂

dy
Ub

−Ub
k2

2
e−kT0T̂ − iαRa

dT̂

dy
sin(θ)− (α2 + β2)Ra cos(θ)T̂ − iα

Rs

Ln

dĈ

dy
sin(θ)

−(α2 + β2)
Rs

Ln
cos(θ)Ĉ + iαRn

dϕ̂

dy
sin(θ)− (α2 + β2)Rn cos(θ)ϕ̂ = 0

(7.21)

(−iαc) 1

va
η̂ +

1

ϵva

[
βv̂
dUb

dy
+ Ubη̂iα

]
−Da

[
µ0
d2η̂

dy2
+
dµ0

dy

dη̂

dy
− µ0(α

2 + β2)η̂
]
+Dake−kT0β[dUb

dy

dT̂

dy
− k

2
T̂ +

d2Ub

dy2
T̂
]
+ µ0η̂ − βUbke

−kT0T̂ − βRaT̂ sin(θ)

−βRs
Ln

Ĉsin(θ) + βRnϕ̂sin(θ) = 0

(7.22)

v̂
dT0
dy

+ iα(Ub − c)T̂ −

[
d2T̂

dy2
− (α2 + β2)T̂

]
− NB

Le

[
dϕ0

dy
+ 2NA

dT0
dy

]
dT̂

dy
− NB

Le

dT0
dy

dϕ̂

dy

−Df

[
d2Ĉ

dy2
− (α2 + β2)Ĉ

]
= 0

(7.23)

1

ϵ

dϕ0

dy
v̂ + iα

(
Ub

ϵ
− c

)
ϕ̂− 1

Le

[
d2ϕ̂

dy2
− (α2 + β2)ϕ̂

]
− NA

Le

[d2T̂
dy2

− (α2 + β2)T̂
]
= 0 (7.24)
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1

ϵ

dC0

dy
v̂ + iα

(
Ub

ϵ
− c

)
Ĉ − 1

Ln

[
d2Ĉ

dy2
− (α2 + β2)Ĉ

]
− Sr

[d2T̂
dy2

− (α2 + β2)T̂
]
= 0 (7.25)

According to Srivastava et al. [112] µ̂(T0) =
dµ0

dT0
T̂ represents the perturbation viscosity.

7.5 Results and discussion

A generalized eigenvalue problem with c as the complex eigenvalue is transformed by the

set of governing equations (7.21)-(7.25). Chebyshev spectral collocation was used to find a

solution to the problem in MATLAB, as described by Canuto et al. [107]. The investigation

of the convergent behavior of the Chebyshev spectral method was carried out by varying the

number of collocation points (N), and the most unstable eigenvalues were determined. These

eigenvalues are enumerated in Table 7.1 for data selected at random for various parameters.

The eigenvalue with the most instability was accurate to six decimal places when N ≥ 50.

It held for greater values of N . Furthermore, a comparable pattern has been observed for

other flow governing values for parameters. Consequently, N = 50 was used to execute the

numerical analysis.

To validate the accuracy of the procedure, our code was compared to results published on

nanofluid-saturated porous medium is contained in a vertical channel. The current analysis

determined the critical Rayleigh number and critical wavenumber for vertical channel when

Pr = 7, Rn = 15, Ln = 100, ϵ = 0.6,NA = 8, NB = 0.02, Sr = 0, Df = 0, k = 0 and

θ = π/2, which is in accordance with the findings of Srinivasacharya and Barman [50].

In this paper, we investigate the effects of double-diffusive convection with variable vis-

cosity on the flow stability of nanofluids in a porous inclined channel. The influences of

the inclination angle (θ), Darcy number (Da), thermo-solutal Lewis number (Ln), Dufour

number (Df ), and Soret number (Sr) on the critical Rayleigh number (Rac) and critical

wavenumber (αc) is shown in Figs. 7.1-7.5. All instability boundaries were depicted on the

horizontal axis using the variable viscosity parameter.

Fig. 7.1 depicts the graphs illustrating the critical Rayleigh number and the critical

wavenumber vary with variations in variable viscosity parameter (k) for various inclination

angles (θ). As θ shifts from horizontal to vertical, the logarithm of the critical Rayleigh

number (log10Rac) decreases. This shows that θ destabilises the flow. This is due to the fact

that the gravitational force operating on the fluid when the channel is inclined induces a

proportional force to act in the flow direction. This can result in the formation of nanofluid
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flow instabilities. Rac falls as k rises. However, As θ oriented vertically, critical wavenumber

increases, and as the variable viscosity parameter enhances, αc first decreases and then rises.

For the permeability parameter (Darcy number), the variation in the critical Rayleigh

number and critical wavenumber as a function of variable viscosity parameter is displayed in

Fig. 7.2. Rac rises as the Da increases, indicating that permeability stabilises the system.

It is figured that the porous layer has lower fluid permeability at lower Darcy numbers.

This results in a pronounced high resistance as the fluid flows through the porous medium.

Hence, the flow activity of the porous region was hindered. It is worth noting that raising

k decreases Rac. Consequently, the influence of k stabilizes the system. αc first drops and

then rises as k rises for fixed Darcy numbers. However, as the permeability increased, the

critical wavenumber increased, and the rate of growth was slower when Da increased from

1 to 10 than when Da increases from 0.1 to 1.

For varying values of the thermo-solutal Lewis number (Ln), Fig. 7.3 shows the variation

in critical Rayleigh number and critical wavenumber versus the variable viscosity parameter.

With a rise in the values of Ln, the Rac increased slightly. As a result, Ln stabilizes the

flow at high values of Ln. This is because, in an inclined channel, the buoyancy forces

due to the density gradient and gravitational forces due to the inclination act in different

directions. The thermo-solutal Lewis number affects the relative strength of these forces and

thus influences the stability of the flow. When the thermo-solutal Lewis number is high, the

thermal diffusivity is much larger than the solute diffusivity. This means that temperature

gradients have a stronger effect on flow than solute gradients. As a result, the buoyancy

forces owing to the density gradient dominate the gravitational forces due to the inclination,

and the flow becomes more stable. However, as the k increased, Rac gradually decreased

from a high to a low value. As Ln grows αc drops, and as k grows (αc) first drops until

k=0.5 and then increases.

Fig. 7.4 represents the influence of the Soret number (Sr) on the critical Rayleigh num-

ber and critical wavenumber. As the value of Sr rises, so does the value of Rac. However,

the rate of growth is extremely slow. Hence flow of nanofluid through an inclined channel,

the flow field is stabilised by the high values of Soret number. This happens because when

the Soret parameter is high, the more diffusive component will move towards the hot region,

while the less diffusive component will move towards the cold region. This creates a stabi-

lizing effect, as the less diffusive component will accumulate at the bottom of the channel

and the more diffusive component will accumulate at the top. As a result, the concentration

and temperature fields become more uniform, and the flow becomes more stable. And as
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the variable viscosity parameter increases, Rac drops. This is because the Soret effect raises

the solute’s density gradient, which causes a convective instability at constant temperature.

As Sr increases, αc drops, and the critical wavenumber first decreases until k=0.5, then

increases.

The critical Rayleigh number and critical wavenumber patterns against the k for different

values of the Dufour parameter (Df ) are shown in Fig. 7.5. The Dufour parameter is a

measure of the strength of the thermal diffusion effect. As shown in Fig. 7.5, Rac increases

with the Dufour parameter value at large values. It is concluded that the system is stabilized

for large values using the Dufour parameter (Df ). This is due to when the Dufour parameter

is large, the more thermally diffusive component will move towards the hot region, where

as the less thermally diffusive component will move towards the cold region. This leads to

a concentration gradient that is contrary to the temperature gradient created by gravity.

Consequently, the concentration and temperature fields become more uniform, and the flow

becomes more stable. With an increase in k, Rac decreased. In addition, as the Dufour

parameter is increased, the αc decreases. When the k is increased, αc first decreases for

small values of k and then increases.

Noting that clockwise-oriented streamlines correspond to positive contours and counter-

clockwise -oriented streamlines correspond to negative contours is essential when analyzing

flow patterns. When the channel is horizontal, as indicated by θ = 0 in Fig. 7.6, we observe

the formation of two Rayleigh-Bénard convection cells, which are vertical cell structures.

Near the upper wall, there is a counterclockwise vortex formation, and near the lower wall,

there is a clockwise vortex formation. These cells then extend vertically as the angle of

inclination increases, eventually transforming into structure of horizontal cells when channel

becomes completely vertical. In conclusion, as channel’s inclination varies from horizontal

to vertical, the streamlines reconfigure the flow pattern from a vertical structure to a hori-

zontal structure. On the isotherms, positive contour are denoted by solid lines and negative

contour are indicated by dashed lines. This pattern holds true for isotherms, isosolutes, and

isoconcentrations alike.
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Table 7.1: “Convergence of the least stable eigenvalue for Da = 1, k=0.5, Pr = 0.1, Rn =
10, Rs=200, ϵ = 0.2, NA = 8, NB = 0.02, Le = 500, Ln=40, Sr = 0.3, Df=0.04, θ = π/3,
and β = 0.”

N Rac αc

40 10.312514413924 0.857299560606
45 10.312541497271 0.857252942876
50 10.312536312725 0.857285309558
55 10.312534712527 0.857291388872
60 10.312533214115 0.857485534098
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Figure 7.1: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

k for different values of θ with Da=0.1, Rs=200, Ln=40, Sr=0.3 and Df = 0.04.”
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Figure 7.2: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

k for different values of Da with θ = π/3, Rs=200, Ln=40, Sr=0.3 and Df = 0.04.”
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Figure 7.6: “The disturbance of streamlines for different values of θ.”
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Figure 7.7: “The disturbance of isotherms for different values of θ.”
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Figure 7.8: “The disturbance of isosolutes for different values of θ.”
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Figure 7.9: “The disturbance of isonanoconcentrations for different values of θ.”
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7.6 Conclusions

The linear stability of nanofluid flow in a porous inclined channel while accounting for the

effect of double-diffusive convection with variable viscosity is examined. The critical Rayleigh

number and critical wavenumber for different parameters such as θ, Da, Sr, Ln, and Df are

computed and graphically shown with respect to k.

� A rise in the value of the variable viscosity parameter (k) emphasizes the stability of

the fluid, as a result, the k stabilizes the flow field.

� permeability (Da), thermo-solutal Lewis number (Ln), Soret parameter (Sr) and Du-

four parameter (Df ) help to stabilize flow within an inclined channel. As a result, an

increase in these variables acts as a stumbling block to the onset of convection.
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Chapter 8

The heat source/sink effect on the

stability of the Casson fluid flow in an

inclined porous channel 1

8.1 Introduction

In 1959, Casson [12] introduced Casson fluid, a non-Newtonian fluid characterized by shear-

thinning and yield stress. This fluid is utilized in numerous industries, including food pro-

cessing, cosmetics, and paint. It is utilized in medicine to simulate the behavior of biological

fluids, particularly blood flow [14]. Mahanta et al. [67] investigated the effects of slip veloc-

ity on the MHD Casson flow at the point of stagnation using stability analysis across the

stretching surface. Recently, in a rigid parallel channel with a homogeneous magnetic field,

Kundenatti and Misbah [69] investigated the temporal stability of linear two-dimensional

perturbations of plane Poiseuille flow of Casson fluid.

In industrial processes such as food and polymer processing, heat sources have a sub-

stantial effect on the Casson fluid dynamics by influencing temperature, velocity, and shear

stress. Goud et al. [81] examined the implication of heat source on the motion of a Casson

fluid through a fluctuating vertically permeable plate. Awais et al. [82] analysed the impli-

cations magnetic field on the flow of Casson fluid in a porous medium caused by a shrinking

surface subjected to heat absorption/germination.

1Communicated in “Fluid Dynamics”
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The stability properties of Casson fluid in an inclined porous channel with heat source or

sink have not been explored, according to the literature review. Consequently, this Chapter

investigates the effect of heat source or sink on convection stability in a Casson fluid flow in

an inclined channel filled with a porous medium (at an angle of inclination θ).

8.2 Mathematical Formulation

Consider an unsteady, incompressible flow of a Casson fluid in a tilted channel with a width

of 2L with two impermeable, completely thermally conducting walls and an inclination of

θ. A schematic illustration of the problem is shown in Fig. 8.1. The presumption is the

porous medium is homogenous and isotropic. Temperatures on both the lower and upper

walls are maintained at T1 and T2, respectively. The presence of a heat source/sink is taken

into account.

Figure 8.1: “Schematic representation of the problem.”
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The dynamical equations for a Casson fluid with an isotropic rheology are as follows:

τij =


2
(
µb +

py√
2π

)
eij, π < πc

2
(
µb +

py√
2π

)
eij, π > πc

where µb is the dynamic plastic viscosity and π is square of deformation rate (=eabeab).

Using the above assumptions and the Oberbeck-Boussinesq approximation, the following set

of equations describes the flow [113, 50]:

∇ · V⃗ = 0 (8.1)

ρ

ϵ

∂V⃗

∂t
+
ρ

ϵ2
(V⃗ · ∇)V⃗ = −∇p− µ

K
V⃗ +

(
1 +

1

γ

)
µ̃∇2V⃗ + ρgβT (T − T1)(sin(θ)êx + cos(θ)êy)(8.2)

(ρC)p

(
∂T

∂t
+ V⃗ · ∇T

)
= k∇2T +Q0(T − T1) (8.3)

The conditions on the walls of the channel are:

y = −L : V⃗ = 0, T = T1, y = L : V⃗ = 0, T = T2 (8.4)

where, γ is Casson parameter, and Q0 is heat source/sink.

The non-dimensional form of the Eqs. (8.1) -(8.3) (on substituting (2.6) in (8.1) -(8.3) and

removing asterisk) are:

∇ · V⃗ = 0 (8.5)

1

va

∂V⃗

∂t
+

1

ϵva
(V⃗ · ∇)V⃗ = −∇p− V⃗ + ΛDa

(
1 +

1

γ

)
(∇2V⃗ ) +RaT (sin(θ)êx + cos(θ)êy)

(8.6)
∂T

∂t
+ V⃗ · ∇T = ∇2T +QT (8.7)

The boundary conditions are:

y = −1 : V⃗ = 0, T = 0, y = 1 : V⃗ = 0, T = 1. (8.8)

where Q is the heat source/sink parameter (=Q0L2

k
).
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8.3 Basic solution

In the basic stage, the flow is regarded as continuous, one-directional (in the x-direction),

and completely developed. Eqs. (8.5)-(8.7) may be reduced into set of ordinary differential

equations by applying these conditions:

ΛDa
(
1 +

1

γ

)d2Ub

dy2
− Ub =

∂p0
∂x

−RaT0 sin(θ) (8.9)

∂p0
∂y

= RaT0 cos(θ) (8.10)

∂p0
dz

= 0 (8.11)

d2T0
dy2

+QT0 = 0 (8.12)

The boundary conditions are:

y = −1 : Ub = 0, T0 = 0, y = 1 : Ub = 0, T0 = 1 (8.13)

Proceeding as in Chapter-2, we get basic solution as:

T0 =
1

2

(
cos(

√
Qy)

cos(
√
Q)

+
sin(

√
Qy)

sin(
√
Q)

)
(8.14)

Ub = σ

[
cosh(my)

cosh(m)
− 1

]
+
( m2

Q+m2

)Ra
2

[
cosh(my)

cosh(m)
+

sinh(my)

sinh(m)
− cos(

√
Qy)

cos(
√
Q)

−sin(
√
Qy)

sin(
√
Q)

]
sin(θ)

(8.15)

where:

σ =
m cosh(m)

sinh(m)−m cosh(m)

[
1 +

( m2

Q+m2

)
× Ra

2

(
sinh(m)

m cosh(m)
− sin(

√
Q)√

Q cos(
√
Q)

)]
sin(θ)

And

m =
1√

ΛDa
(
1 + 1

γ

)
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8.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (δ) on the basic state solutions,

ignoring δ2 and higher order terms, using the usual normal mode form [50] to express in-

finitesimal disturbances of corresponding field variables, and removing pressure terms from

the resulting equations, the linearized stability equations are obtained as:

ΛDa
(
1 +

1

γ

)[d4v̂
dy4

− 2
d2v̂

dy2
(α2 + β2) + (α2 + β2)2v̂

]
− iα

va

(
Ub

ϵ
− c

)[d2v̂
dy2

−(α2 + β2)v̂
]
+

iα

ϵva

d2Ub

dy2
v̂ −

[
d2v̂

dy2
− (α2 + β2)v̂

]
− iαRa

dT̂

dy
sin(θ)

−(α2 + β2)Ra cos(θ)T̂ = 0

(8.16)

(−iαc) 1

va
η̂ +

1

ϵva

[
βv̂
dUb

dy
+ Ubη̂iα

]
− ΛDa

(
1 +

1

γ

)[d2η̂
dy2

− (α2 + β2)η̂

]
+ η̂

−βRaT̂ sin(θ) = 0

(8.17)

dT0
dy

v̂ + iα (Ub − c) T̂ −QT̂ −

[
d2T̂

dy2
− (α2 + β2)T̂

]
= 0 (8.18)

8.5 Results and discussion

The equations from Eqs. (8.16) - (8.18) represent a generalized eigenvalue problem in which

the eigenvalues are perturbed and expressed in terms of the wave speed. The spectral

technique [107] is employed to find the solution to this eigenvalue problem.

In order to validate the accuracy of this method, we ran the MATLAB code for calculating

eigenvalues with varying grid point numbers (N) and obtained least stable eigenvalues, which

are presented in Table 8.1 for an arbitrary combination of parameters. When N ≥ 50, the

least stable eigenvalue reached convergence criterion of 10−7, and these results remained

constant despite varying parameter values. In our numerical calculations, we chose to use

N = 50 as a result.

The results of θ = π/2, γ → ∞, Pr = 7, Q=0, and N = 51 in absence of Rn, Le, NA,

NB, and ϕ0 were obtained, which is in accordance with the findings of Srinivasacharya and

Barman [50].
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The influence of iinclination angle (θ), Casson parameter (γ), heat source/sink parameter

(Q), Prandtl number (Pr) , and porosity parameter (ϵ) on the flow instability is studied in-

depth in this paper. The remaining values of parameters are set as Ra = 100, Λ=1, α= 1

and β = 0.

Fig. 8.2 depicts the graphs illustrating critical Rayleigh number and critical wavenumber

vary with variations in the Darcy number (Da) for various inclination angles (θ). When

the angle θ varies from horizontal to vertical, critical Rayleigh number (Rac) demonstrates

a decreasing trend. This phenomenon indicates that a change in the angle of inclination θ

destabilizes the flow. This is due to the fact that gravitational force operating on the fluid

when the channel is inclined induces a proportional force to act in the flow direction. This

additional force component can contribute to the formation of instabilities in the Casson

fluid flow. However, there is no change in αc for an increase in Da, and only a small change

for θ = 0.

Fig. 8.3 depicts the fluctuation of the Rac and αc for various values of the Casson pa-

rameter ( γ). We observed that while Da rises, Rac rises as well, but as γ increases, Rac

decreases. Hence, γ destabilises the flow because it determines the yield stress of the fluid.

If the Casson parameter is too low, the yield stress of the fluid may not be high enough to

support the weight of the fluid in the inclined channel, which can lead to flow instability.

On the other hand, if the Casson parameter is too high, the yield stress of the fluid may be

too high, leading to laminar flow that is resistant to any instabilities. In the case of critical

wavenumbers, however, there is no change in αc as Da rises, but there is a slight change for

γ=0.5. While γ increases, αc decreases.

For different values of the heat source/sink parameter (Q), Fig. 8.4 displays the varia-

tion of Rac and αc. We noticed that as Da increases, so does Rac. However, as Q increases,

Rac falls significantly. Hence Q destabilizes the flow. This can occur when the temperature

gradient in the fluid is such that the viscosity decreases with increasing temperature. In this

situation, the fluid near the heat source or sink will have a lower viscosity and can flow more

easily than the surrounding fluid, which can cause the flow to become unstable. However,

as Da and Q both rise, αc increases.

Fig. 8.5 depicts the fluctuation of Rac and αc for Prandtl number (Pr). We found

that Rac rises when Pr rises. It demonstrates Pr stabilizes the flow field by promoting a
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more uniform temperature and viscosity profile, reducing thermal gradients, and promoting

the development of thermal boundary layers that can dampen out disturbances in the flow.

Moreover, αc does not change as Da grows, although it does slightly change for Pr=0.3.

Also, as Pr rises, αc falls.

Fig. 8.6 illustrates the boundaries of the instability region as a function of the permeabil-

ity parameter (Da) and porosity parameter (ϵ). It is noted from Fig. 8.6 that, the critical

Rayleigh number tends to rise as the porosity parameter is increased ( Rac). This is due to

porosity is proportion of the total amount of space occupied by voids throughout the volume,

It constitutes the measurement of the voids in a porous material. Hence ϵ stabilizes the flow.

The volume of voids increases as porosity increases. Observations indicate that αc decreases

as the porosity parameter value increases, whereas αc increases as Da increases.

Fig. 8.7 and Fig. 8.8 shows streamlines, and isotherms, for various θ values when “Da=1,

Q=2, Pr = 0.3, Ra = 100, ϵ = 0.6, Λ=1, α= 1 and β = 0.” Noting that clockwise-oriented

streamlines correspond to positive contours and counterclockwise-oriented streamlines cor-

respond to negative contours is essential when analyzing flow patterns. When the channel

is horizontal, as indicated by θ = 0 in Fig. 8.8, we observe the formation of two Rayleigh-

Bénard convection cells, which are vertical cell structures. Near the upper wall, there is

a counterclockwise vortex formation, and near the lower wall, there is a clockwise vortex

formation. These cells then extend vertically as the angle of inclination increases, eventually

transforming into structure of horizontal cells when channel becomes completely vertical. In

conclusion, as channel’s inclination varies from horizontal to vertical, the streamlines recon-

figure the flow pattern from a vertical structure to a horizontal structure. On the isotherms,

positive contour are denoted by solid lines and negative contour are indicated by dashed

lines. This pattern holds true for isotherms alike.

Table 8.1: “Convergence analysis of the least stable eigenvalue for Da = 10, Pr = 0.3, Q=2,

ϵ = 0.6, γ=0.5, θ = π/3, Λ=1, and β = 0.”

N Rac αc

40 4391.611472458690 1.388296360208

45 4391.611471169493 1.388296363276

50 4391.611473475915 1.388329869083

55 4391.611222675459 1.388296016235

60 4391.611516403603 1.388296246072
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Figure 8.2: “Critical Rayleigh number (Rac) and critical wavenumber (αc) variations with

log10Da for different values of θ with Pr = 0.3, Q=2, ϵ = 0.6, γ=0.5, Λ=1, α= 1 and β =

0.”

Figure 8.3: “Critical Rayleigh number (Rac) and critical wavenumber (αc) variations with

log10Da for different values of γ with Pr = 0.3, Q=2, ϵ = 0.6, θ=π/3, Λ=1, α= 1 and β =

0.”
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Figure 8.4: “Critical Rayleigh number (Rac) and critical wavenumber (αc) variations with

log10Da for different values of Q with Pr = 0.3, γ = 0.5, ϵ = 0.6, θ=π/3, Λ=1, α= 1 and β

= 0.”
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Figure 8.5: “Critical Rayleigh number (Rac) and critical wavenumber (αc) variations with

log10Da for different values of Pr with Q=2, ϵ = 0.6, γ = 0.5, θ=π/3, Λ=1, α= 1 and β =

0.”
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Figure 8.6: “Critical Rayleigh number (Rac) and critical wavenumber (αc) variations with

log10Da for different values of ϵ with Pr=0.3, Q=2, γ = 0.5, θ=π/3, Λ=1, α= 1 and β =

0.”

(a) “θ = 0” (b) “θ = π/4” (c) “θ = π/2”

Figure 8.7: “The disturbance of streamlines for different values of θ.”
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(a) “θ = 0” (b) “θ = π/4” (c) “θ = π/2”

Figure 8.8: “The disturbance of isotherms for different values of θ.”
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8.6 Conclusions

The linear stability of Casson fluid flow in a porous inclined channel while accounting for

the effect of heat source or sink is examined. The critical Rayleigh number and critical

wavenumber for different parameters such as θ, ϵ, Pr, Q, and γ are computed and graphically

shown with respect to Da.

� The channel’s inclination (θ), heat source/sink parameter (Q) and Casson parameter

(γ) destabilise the flow.

� The momentum equation is affected by viscous forces because flow resistance decreases

with increasing permeability and improved flow in a porous media.

� Porosity (ϵ) and Prandtl number (Pr) help to stabilize flow within an inclined channel.

As a result, an increase in these variables acts as a stumbling block to the onset of

convection.

� When the channel is oriented vertically, the flow has the least stability.
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Chapter 9

The impact of chemical reaction and

radiation on the stability of the

Casson fluid flow in an inclined

porous channel 1

9.1 Introduction

The behavior of Casson fluids is significantly impacted by radiation, which has biomedical

and industrial implications. Linear stability analysis of thermally-radiated micropolar fluids

in an MHD flow with convective boundary condition was investigated by Lund et al. [86].

Lund et al. [64] explored the stability of MHD stagnation point flow of Casson fluid over a

contracting /expanding surface due to the influence of thermal radiation and viscous dissipa-

tion. Using the generalised Buongiorno’s nanofluid model, Wakif et al. [87] examined effects

of surface roughness and thermal radiation influence the thermo-magneto-hydrodynamic sta-

bility of nanofluids composed of alumina and copper oxide.

Chemical reactions influence the rheology, yield stress, and flow behavior of Casson flu-

ids. Srivastava [90] investigated the electro-thermal convection stability of a binary fluid in a

horizontal channel with chemical reaction. The effects of magnetic cross-field, thermal radi-

ation, second order chemical reaction on the unsteady three dimensional flow of electrically

conducting Cu–Al2O3/water hybrid nanofluid flow past a bidirectionally stretchable melting

1Communicated in “Computational Mathematics and Mathematical Physics”

134



surface was investigated by Suganya et al. [91].

The stability properties of Casson fluid in an inclined channel with radiation and chemical

reactions have not been explored, according to the literature review. Consequently, this

chapters investigates the effects of radiation and chemical reactions on convection stability

in a Casson fluid flow in an inclined channel filled with a porous medium (at an angle of

inclination θ).

9.2 Mathematical Formulation

Consider an unsteady, incompressible flow of a Casson fluid in a tilted channel with a width

of 2L with two impermeable, completely thermally conducting walls and an inclination of

θ. A schematic illustration of the problem is shown in Fig. 8.1. The porous medium is

assumed to be homogenous and isotropic. The temperatures of the left and right walls are

T1 and T2, respectively, and the concentrations are C1 and C2, respectively . The presence

of a radiation and chemical reaction is taken into account.

By applying the Oberbeck-Boussinesq approximation and the aforementioned assump-

tions, the following set of equations describes the flow [113, 108]:

∇ · V⃗ = 0 (9.1)

ρ

ϵ

∂V⃗

∂t
+
ρ

ϵ2
(V⃗ · ∇)V⃗ = −∇p+

(
1 +

1

γ

)
µ̃∇2V⃗ − µ

K
V⃗ + ρg{βT (T − T1) + βC(C − C1)}

(sin(θ)êx + cos(θ)êy)

(9.2)

(ρC)p

(
∂T

∂t
+ V⃗ · ∇T

)
= k∇2T −∇qr (9.3)

∂C

∂t
+ V⃗ · ∇C = D∇2C −R∗(C − C1) (9.4)

The boundary conditions are:

At y = −L : V⃗ = 0, T = T1, C = C1,

and at y = L : V⃗ = 0, T = T2, C = C2

(9.5)

where:
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qr is radiative heat flux, R∗ is reaction rate of solute, D is mass diffusion coefficient.

The non-dimensional form of the Eqs. (9.1) -(9.4) (on substituting (2.6) in (9.1) -(9.4)

and removing asterisk) are:

∇ · V⃗ = 0 (9.6)

1

va

(
∂V⃗

∂t
+

1

ϵ
(V⃗ · ∇)V⃗

)
= −∇p+ ΛDa

(
1 +

1

γ

)
(∇2V⃗ )− V⃗ + {RaT +RsC}

(sin(θ)êx + cos(θ)êy)

(9.7)

∂T

∂t
+ V⃗ · ∇T = (1 +Rd)∇2T (9.8)

∂C

∂t
+

1

ϵ
V⃗ · ∇C =

Pr

Sc
∇2C −RcPrC (9.9)

The following are the boundary conditions:

y = −1 : V⃗ = 0, T = 0, C = 0

y = 1 : V⃗ = 0, T = 1, C = 1
(9.10)

where:

Rd=
−16η2σT 3

3βR
is radiation parameter, Sc = ν

D
is Schmidt number, Rc = R∗L2

ν
is chemical

reaction parameter.

9.3 Basic solution

In the basic stage, the flow is regarded as continuous, one-directional (in the x-direction),

and completely developed. Eqs. (9.6)-(9.9) may be reduced into set of ordinary differential

equations by applying these conditions:

ΛDa
(
1 +

1

γ

)d2Ub

dy2
− Ub =

∂p0
∂x

− {RaT0 +RsC0} sin(θ) (9.11)

∂p0
∂y

= {RaT0 +RsC0} cos(θ) (9.12)

∂p0
dz

= 0 (9.13)

(1 +Rd)
d2T0
dy2

= 0 (9.14)
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Pr

Sc

d2T0
dy2

−RcPrC0 = 0 (9.15)

The boundary conditions are:

y = −1 : Ub = 0, T0 = 0, C0 = 0

y = 1 : Ub = 0, T0 = 1, C0 = 1
(9.16)

Proceeding as in Chapter-2, we get basic solution as:

T0 =
1 + y

2
and C0 =

1

2

[cosh(√RcSc)y

cosh(
√
RcSc)

+
sinh(

√
RcSc)y

sinh(
√
RcSc)

]
(9.17)

Ub = σ

[
cosh(my)

cosh(m)
− 1

]
+

1

2

(
m2

RcSc−m2

)
Rs

[
cosh(my)

cosh(m)
+

sinh(my)

sinh(m)

−cosh(
√
RcScy)

cosh(
√
RcSc)

− sinh(
√
RcScy)

sinh(
√
RcSc)

]
sin(θ) +

Ra

2

(
y − sinh(my)

sinh(m)

)
sin(θ)

(9.18)

where:

σ =
m cosh(m)

sinh(m)−m cosh(m)

[
1− 1

2

(
m2

RcSc−m2

)
Rs

(
sinh(m)

m cosh(m)
− sinh(

√
RcSc)√

RcSc cosh(
√
RcSc)

)]
sin(θ)

And

m =
1√

ΛDa
(
1 + 1

γ

)

9.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (δ) on the basic state solutions,

ignoring δ2 and higher order terms, using the usual normal mode form [50] to express in-

finitesimal disturbances of corresponding field variables, and removing pressure terms from
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the resulting equations, the linearized stability equations are obtained as:

ΛDa
(
1 +

1

γ

)[d4v̂
dy4

− 2
d2v̂

dy2
(α2 + β2) + (α2 + β2)2v̂

]
− iα

va

(
Ub

ϵ
− c

)[d2v̂
dy2

−(α2 + β2)v̂
]
+

iα

ϵva

d2Ub

dy2
v̂ −

[d2v̂
dy2

− (α2 + β2)v̂
]
− iαRa

dT̂

dy
sin(θ)

−(α2 + β2)Ra cos(θ)T̂ − iαRs
dĈ

dy
sin(θ)− (α2 + β2)Rs cos(θ)Ĉ = 0

(9.19)

(−iαc) 1

va
η̂ +

1

ϵva

[
β
dUb

dy
v̂ + Ubη̂iα

]
− ΛDa

(
1 +

1

γ

)[d2η̂
dy2

− (α2 + β2)η̂

]
+ η̂

−βRaT̂ sin(θ)− βRsĈ sin(θ) = 0

(9.20)

dT0
dy

v̂ + iα (Ub − c) T̂ − (1 +Rd)

[
d2T̂

dy2
− (α2 + β2)T̂

]
= 0 (9.21)

1

ϵ

dC0

dy
v̂ + iα

(
Ub

ϵ
− c

)
T̂ − Pr

Sc

[
d2T̂

dy2
− (α2 + β2)T̂

]
+RcPrĈ = 0 (9.22)

9.5 Results and discussion

The equations from Eqs. (9.19) - (9.22) represent a generalized eigenvalue problem in which

the eigenvalues are perturbed and expressed in terms of the wave speed. The spectral

technique [107] is employed to find the solution to this eigenvalue problem.

In order to validate the accuracy of this method, we ran the MATLAB code for calculating

eigenvalues with varying grid point numbers (N) and obtained least stable eigenvalues, which

are presented in Table 9.1 for an arbitrary combination of parameters. When N ≥ 50, the

least stable eigenvalue reached convergence criterion of 10−7, and these results remained

constant despite varying parameter values. In our numerical calculations, we chose to use

N = 50 as a result.

The results of θ = π/2, γ → ∞, Rd = 0, Pr = 1, Sc = 1, N = 51, and Rc = 0 in absence

of Rn, Ha, Ln, NA, NB, Df , ϕ0, and Sr were obtained, which is in accordance with the

findings of Srinivasacharya and Barman [108].

In this paper, we investigate the effect of radiation and chemical reactions on the stability

of a Casson fluid flow in an inclined porous channel. The influence of the governing parame-

ters inclination angle (θ), Darcy number (Da), Radiation parameter (Rd), chemical reaction
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parameter (Rc), Prandtl number (Pr) , and porosity parameter (ϵ) on the flow instability is

studied.

Fig. 9.1 depicts the graphs illustrating the critical Rayleigh number (Rac) and the critical

wavenumber (αc) vary with variations in the Casson parameter (γ) for various inclination

angles (θ). When θ oriented vertically, critical Rayleigh number (Rac) demonstrates a de-

creasing trend. This phenomenon indicates that a change in the angle of inclination θ

destabilizes the flow. This behavior can be explained by the fact that, in inclined channels,

the gravitational force operating on fluid includes a component parallel to the flow direc-

tion. This additional force component can contribute to the formation of instabilities in the

Casson fluid flow. However, Rac drops as the Casson parameter (γ) increases, indicating

destabilizing impact of Casson parameter. In the case of αc, there is no change in αc for an

increase in γ, However, αc increases when θ oriented vertically.

Fig. 9.2 depicts the fluctuation of the critical Rayleigh number and critical wavenumber

for permeability parameter (Darcy number). As Da increases, Rac also increases, indicating

the stabilizing influence on stability. This is because when the Darcy number is high, the

viscous forces dominate over the inertial forces, resulting in a highly viscous flow. This can

stabilize the flow and reduce the flow instabilities. Rac, however, falls as γ increases. In case

of critical wavenumber (αc), as we increase Da, αc rises. The variation of αc is slow when

the Darcy number is greater than 1, but there is a rapid rise in αc when Da is less than 1.

As we increase γ, αc decreases.

The critical Rayleigh numberand critical wavenumber for radiation parameter (Rd) are

shown fluctuating in Fig. 9.3. It is noticed that there is a slight drop in Rac as Rd increases.

It demonstrates that Rd had a destabilizing effect on the flow field because it introduces

additional heat sources that can disrupt the flow pattern. Specifically, when the radiation

parameter is high, the fluid absorbs radiation from the channel walls, causing it to heat up

and become less viscous. This reduced viscosity may lead to formation of disturbances in

the flow. Also, as we increase γ, Rac decreases. On the other hand, in the case of αc, αc

grows as Rd increases. However, αc falls as γ rises.

The critical Rayleigh number and critical wavenumber for chemical reaction parameter

(Rc) are shown fluctuating in Fig. 9.4. We noticed that Rac stays the same while Rc

goes from 0.1 to 25. It demonstrates the flow field’s destabilising effect. Because chemical

reactions can alter the composition of the fluid and change its rheological properties, such

as viscosity and yield stress. These changes can affect the onset of flow, the development
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of shear layers, and the formation of instabilities in the flow. Rac, however, falls as γ rises.

similar trend we have noticed in case of critical wavenumber (αc).

Fig. 9.5 depicts the fluctuation of the critical Rayleigh number and critical wavenumber

for Prandtl number (Pr). We found that Rac rises when Pr rises. It demonstrates Pr

stabilizes the flow field by promoting a more uniform temperature and viscosity profile,

reducing thermal gradients, and promoting the development of thermal boundary layers

that can dampen out disturbances in the flow. Rac, however, falls as γ rises. As Pr rises,

αc lowers in the case of αc. αc, however, decreases then rises as γ grows.

Fig. 9.6 shows the boundaries of the region of instability as a function of the Casson

parameter (γ) and the porosity parameter (ϵ). Observing Fig. 9.6, it is evident that the crit-

ical Rayleigh number tends to increase as the porosity parameter increases, because porosity

introducing additional sources of dissipation, promoting a more uniform flow behavior, and

enhancing convective heat transfer. The parameter ϵ therefore has a stabilizing influence on

the flow. Notably, as the porosity parameter and γ values increase, the critical wavenumber

(αc) decreases.

Figs. 9.7 - 9.9 shows streamlines, isotherms, and isoconcentrations for various θ values

when Da=1, Sc=0.6, Ra=10, Rs=5, ϵ=0.2, Rd=1.5, Rc=2, Pr = 25, Λ=1, γ=0.5, α= 1

and β = 0. Noting that clockwise-oriented streamlines correspond to positive contours and

counterclockwise-oriented streamlines correspond to negative contours is essential when an-

alyzing flow patterns. When the channel is horizontal, as indicated by θ = 0 in Fig. 9.7,

we observe the formation of two Rayleigh-Bénard convection cells, which are vertical cell

structures. Near the upper wall, there is a counterclockwise vortex formation, and near the

lower wall, there is a clockwise vortex formation. These cells then extend vertically as the

angle of inclination increases, eventually transforming into structure of horizontal cells when

channel becomes completely vertical. In conclusion, as channel’s inclination varies from hor-

izontal to vertical, the streamlines reconfigure the flow pattern from a vertical structure to

a horizontal structure. On the isotherms, positive contour are denoted by solid lines and

negative contour are indicated by dashed lines. This pattern holds true for isotherms and

isoconcentrations alike.
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Table 9.1: “Convergence of the least stable eigenvalue for θ = π/3, Da = 10, Pr = 7, Rm=5,

ϵ = 0.2, Rd=1.5, Sc=10, Rc=2, γ=0.5, Λ=1, and β = 0.”

N Rac αc

40 26237.025775946910 0.973721784095

45 26237.025773685612 0.973788511858

50 26237.025775874259 0.973721550480

55 26237.025771606088 0.973721949615

60 26237.025771425291 0.973786567943
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Figure 9.1: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

γ for different values of θ with Da=1, Sc=0.6, Rs=5, Rd=1.5, Rc=2, Pr = 25, ϵ = 0.6, Λ=1,

and β = 0.”
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Figure 9.2: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

γ for different values of Da with θ=π/3, Sc=0.6, Rs=5, Rd=1.5, Rc=2, Pr = 25, ϵ = 0.6,

Λ=1, and β = 0.”
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Figure 9.3: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with
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Figure 9.4: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

γ for different values of Rc with θ=π/3, Da=1, Sc=0.6, Rs=5, Rd=1.5, Pr = 25, ϵ = 0.6,
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(a) “θ = 0” (b) “θ = π/4” (c) “θ = π/2”

Figure 9.7: “The disturbance of streamlines for different values of θ.”

(a) “θ = 0” (b) “θ = π/4” (c) “θ = π/2”

Figure 9.8: “The disturbance of isotherms for different values of θ.”

(a) “θ = 0” (b) “θ = π/4” (c) “θ = π/2”

Figure 9.9: “The disturbance of isoconcentrations for different values of θ.”
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9.6 Conclusions

The linear stability of Casson fluid flow in a porous inclined channel while accounting for the

effects of radiation and chemical reactions is examined. The critical Rayleigh number and

critical wavenumber for different parameters such as θ, Da, Rd, Rc, ϵ, and Pr are computed

and graphically shown with respect to γ.

� The channel’s inclination (θ), radiation parameter (Rd) and chemical reaction param-

eter (Rc) and Casson parameter (γ) destabilizes the flow.

� Porosity (ϵ) and Prandtl number (Pr) help to stabilize flow within an inclined channel.

As a result, an increase in these variables acts as a stumbling block to the onset of

convection.
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Chapter 10

The variable viscosity effect on the

stability of the Casson fluid flow in an

inclined Porous channel 1

10.1 Introduction

The stability properties of Casson fluid in an inclined porous channel with variable viscosity

has yet to be studied, according to the literature review. Consequently, this chapter inves-

tigates the effect of variable viscosity on convection stability in a Casson fluid flow in an

inclined channel filled with a porous medium (at an angle of inclination θ).

10.2 Mathematical Formulation

Consider an incompressible, unsteady flow of a Casson fluid in tilted channel with a width

of 2L with two impermeable, completely thermally conducting walls and an inclination of θ.

We’ve assumed that viscosity obeys the Nahme rule Sukanek et al. [110], which means that

viscosity is modeled as an exponential function of temperature:

µ(T ) = µle
−k T

1Communicated in “Reviews in Mathematical Physics”
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Fig. 8.1 depicts a schematic illustration of the problem. The porous medium is assumed to

be homogenous and isotropic. The temperatures of the left and right walls are T1 and T2,

respectively.

Using the above assumptions and the Oberbeck-Boussinesq approximation, the following

set of equations describes the flow [113, 50]:

∇ · V⃗ = 0 (10.1)

ρ

ϵ

∂V⃗

∂t
+
ρ

ϵ2
(V⃗ · ∇)V⃗ = −∇p+

(
1 +

1

γ

) [
∇µ ·

(
∇V⃗ T +∇V⃗

)
+ µ∆V⃗

]
− µ

K
V⃗

+ρgβT (T − T1)(sin(θ)êx + cos(θ)êy)

(10.2)

∂T

∂t
+ V⃗ · ∇T = αm∇2T (10.3)

The boundary conditions are:

y = −L : V⃗ = 0, T = T1, y = L : V⃗ = 0, T = T2 (10.4)

According to Nikushchenko and Pavlovsky [111] here, ∆V⃗ = −∇×∇× V⃗ .

The non-dimensional form of the Eqs. (10.1)-(10.3) (on substituting (2.6) in (10.1) -(10.3)

and removing asterisk) are:

∇ · V⃗ = 0 (10.5)

1

va

∂V⃗

∂t
+

1

ϵva
(V⃗ · ∇)V⃗ = −∇p+Da

(
1 +

1

γ

)[
∇µ ·

(
∇V⃗ T +∇V⃗

)
+ µ∆V⃗

]
− µV⃗

+RaT (sin(θ)êx + cos(θ)êy)

(10.6)

∂T

∂t
+ V⃗ · ∇T = ∇2T (10.7)

The following are the boundary conditions:

y = −1 : V⃗ = 0, T = 0, y = 1 : V⃗ = 0, T = 1 (10.8)
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10.3 Basic solution

In the basic stage, the flow is regarded as continuous, one-directional (in the x-direction),

and completely developed. Eqs. (10.5)-(10.7) may be reduced into set of ordinary differential

equations by applying these conditions:

Da
(
1 +

1

γ

){ ∂

∂y

(
µ0
∂Ub

∂y

)}
− µ0Ub =

∂p0
∂x

−RaT0 sin(θ) (10.9)

∂p0
∂y

= RaT0 cos(θ) (10.10)

∂p0
dz

= 0 (10.11)

d2T0
dy2

= 0 (10.12)

The boundary conditions are:

y = −1 : Ub = 0, T0 = 0, y = 1 : Ub = 0, T0 = 1 (10.13)

Proceeding as in Chapter-2, and taking the approximation µ(T0) = e−kT0 according to Wall

and Wilson [106], we get basic solution as:

T0 =
1 + y

2
(10.14)

Ub =
1

8
e

1
4
k(y+1)csch(m)sech(m)

(
− e

1
4
k(y+1) sinh(2m)

(
4σ −Ra sin(θ)

(
Da
(
1 +

1

γ

)
k

+2y
))

+ sinh(m(1− y))
(
Ra
(
2−Da

(
1 +

1

γ

)
k
)
sin(θ) + 4σ

)
+ek/2 sinh(m(y + 1))

(
4σ −Ra

(
Da
(
1 +

1

γ

)
k + 2

)
sin(θ)

)) (10.15)

149



where:

σ =

{
Ra sin(θ)

(
16
(
Da
(
1 +

1

γ

)
ek/2k3m− 8k2m

((
Da
(
1 +

1

γ

)
k + ek

((
Da
(
1 +

1

γ

)
k

+2
)
− 2
)
cosh(2m) + sinh(2m)

((
Da
(
1 +

1

γ

)(
ek − 1

)
k4 + 4

(
ek − 1

)
k2(

4
(
Da
(
1 +

1

γ

)
m2 + 1

)
+ 2
(
ek + 1

)
k3 + 32

(
ek + 1

)
km2

−64
(
ek − 1

)
m2
))

+ 4k2
(
k2 − 16m2

)
sinh(2m)

}/
{
4k
((
ek − 1

)(
k2 + 16m2

)
sinh(2m) + 16ek/2km− 8

(
ek + 1

)
km cosh(2m)

)}
and

m =

√
k2 + 16

/
Da
(
1 + 1

γ

)
4

10.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (δ) on the basic state solutions,

ignoring δ2 and higher order terms, using the usual normal mode form [50] to express in-

finitesimal disturbances of corresponding field variables, and removing pressure terms from

the resulting equations, the linearized stability equations are obtained as:

Da
(
1 +

1

γ

)[
µ0
d4v̂

dy4
+ 2

dµ0

dy

d3v̂

dy3
− d2v̂

dy2

(
2µ0(α

2 + β2)− d2µ0

dy2

)
− 4(α2 + β2)

dv̂

dy

dµ0

dy

+(α2 + β2)
(
µ0(α

2 + β2) +
d2µ0

dy2

)
v̂
]
− iα

va

(Ub

ϵ
− c
)[d2v̂
dy2

− (α2 + β2)v̂
]

+
iα

ϵva

d2Ub

dy2
v̂ − µ0

[d2v̂
dy2

− (α2 + β2)v̂
]
− dµ0

dy

dv̂

dy
−Da

(
1 +

1

γ

)
e−kT0k

[dUb

dy

d2T̂

dy2

+
(
2
d2Ub

dy2
− k

dUb

dy

)dT̂
dy

+
(d3Ub

dy3
− k

d2Ub

dy2
+
dUb

dy

(k2
4

− iα(α2 + β2)
))
T̂
]

+ke−kT0
dUb

dy
T̂ + ke−kT0

dT̂

dy
Ub − Ub

k2

2
e−kT0T̂ −Ra

dT̂

dy
iα sin(θ)

−Ra(α2 + β2) cos(θ)T̂ = 0

(10.16)
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1

va
(−iαc)η̂ + 1

ϵva

[
βv̂
dUb

dy
+ Ubη̂iα

]
−Da

(
1 +

1

γ

)[
µ0
d2η̂

dy2
+
dµ0

dy

dη̂

dy
− µ0(α

2 + β2)η̂
]

+Da
(
1 +

1

γ

)
ke−kT0β

[dUb

dy

dT̂

dy
− k

2
T̂ +

d2Ub

dy2
T̂
]
+ µ0η̂ − βUbke

−kT0T̂ − βRaT̂ sin(θ) = 0

(10.17)

v̂
dT0
dy

+ iα(Ub − c)T̂ −

[
d2T̂

dy2
− (α2 + β2)T̂

]
= 0 (10.18)

10.5 Results and discussion

The equations from Eqs. (10.16) - (10.18) represent a generalized eigenvalue problem in

which the eigenvalues are perturbed and expressed in terms of the wave speed. The spectral

technique [107] is employed to find the solution to this eigenvalue problem. In order to vali-

date the accuracy of this method, we ran the MATLAB code for calculating eigenvalues with

varying grid point numbers (N) and obtained least stable eigenvalues, which are presented

in Table 10.1 for an arbitrary combination of parameters. When N ≥ 50, the least stable

eigenvalue reached convergence criterion of 10−7, and these results remained constant despite

varying parameter values. In our numerical calculations, we chose to use N = 50 as a result.

The present analysis’s outcomes are compared with a vertically oriented channel contain-

ing nanofluid-saturated porous material. The results of θ = π/2, γ → ∞, Pr=7, k = 0 and

N = 51 in absence of Rn, Rm, NA, NB, and ϕ0 were obtained which is in accordance with

the findings of Srinivasacharya and Barman [50].

In this paper, we investigate the effect of variable viscosity on the stability of a Casson

fluid flow in a porous inclined channel. The influence of the governing parameters inclination

angle (θ), Casson parameter (γ), variable viscosity parameter (k), Prandtl number (Pr) ,

and porosity parameter (ϵ) on the flow instability is studied. Fig. 10.1 depicts the graphs

illustrating the critical Rayleigh number (Rac) and the critical wavenumber (αc) vary with

variations in the Darcy number (Da) for various inclination angles (θ). When the angle θ

varies from horizontal to vertical, Rac demonstrates a decreasing trend. This phenomenon

indicates that a change in the angle of inclination θ destabilizes the flow. This behavior can

be explained by the fact that, in inclined channels, the gravitational force operating on fluid

includes a component parallel to the flow direction. This additional force component can

contribute to the formation of instabilities in the Casson fluid flow. In the case of critical

wavenumber, αc rises as both θ and Da are increases.
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Fig. 10.2 depicts the fluctuation of the critical Rayleigh number and critical wavenumber

for various values of the Casson parameter (γ). We observed that while Da rises, Rac rises as

well, but as γ increases, Rac decreases. Hence, γ destabilizes the flow because it determines

the yield stress of the fluid. If the Casson parameter is too low, the yield stress of the fluid

may not be high enough to support the weight of the fluid in the inclined channel, which

can lead to flow instability. On the other hand, if the Casson parameter is too high, the

yield stress of the fluid may be too high, leading to laminar flow that is resistant to any

instabilities. In the case of critical wavenumbers, however, αc rises as Da rises, but as γ

increases, αc decreases.

For various values of the variable viscosity parameter (k), Fig. 10.3 displays the variation

of the critical Rayleigh number and critical wavenumber. We observed that Rac drops when

we increase k. This indicates k destabilizes the flow. This is because when the viscosity

of the Casson fluid decreases with increasing shear rate, it can cause the flow to become

unstable and exhibit turbulent behavior. As the fluid moves down the inclined channel,

it is subjected to increasing shear rates due to the effects of gravity, which can cause the

viscosity to decrease. This can lead to fluid instabilities. On the other hand, if the viscosity

of the Casson fluid increases with increasing shear rate, it can cause the flow to become

unstable and exhibit shear-thickening behavior. This can lead to the formation of highly

viscous regions in the flow, which can cause a buildup of stress and the formation of flow

instabilities. But as Da rises, Rac rises as well. In the case of a critical wavenumber, αc

decreases as k increases. However, as Da increases, αc also increases.

Fig. 10.4 depicts the fluctuation of the critical Rayleigh number and critical wavenumber

for Prandtl number (Pr). We found that Rac rises when Pr rises. It demonstrates Pr

stabilizes the flow field by promoting a more uniform temperature and viscosity profile,

reducing thermal gradients, and promoting the development of thermal boundary layers

that can dampen out disturbances in the flow. Moreover, αc increases as Da grows. Also,

as Pr rises, αc falls.

Fig. 10.5 illustrates the boundaries of the instability region as a function of the perme-

ability parameter (Da) and porosity parameter (ϵ). It is noted from Fig. 10.5 that, the

critical Rayleigh number tends to rise as the porosity parameter is increased. This is due to

porosity is proportion of the total amount of space occupied by voids throughout the volume,

It constitutes the measurement of the voids in a porous material. Hence ϵ stabilizes the flow.

The volume of voids increases as porosity increases. Observations indicate that αc increases

as the porosity parameter value increases, whereas αc increases as Da increases.
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Fig. 10.6 and Fig. 10.7 shows streamlines, and isotherms, for various θ values when “Da

= 1, Pr = 7, Ra = 100, ϵ = 0.6, k=0.5, γ=0.5, α= 1 and β = 0.” Noting that clockwise-

oriented streamlines correspond to positive contours and counterclockwise-oriented stream-

lines correspond to negative contours is essential when analyzing flow patterns. When the

channel is horizontal, as indicated by θ = 0 in Fig. 10.6, we observe the formation of two

Rayleigh-Bénard convection cells, which are vertical cell structures. Near the upper wall,

there is a counterclockwise vortex formation, and near the lower wall, there is a clockwise

vortex formation. These cells then extend vertically as the angle of inclination increases,

eventually transforming into structure of horizontal cells when channel becomes completely

vertical. In conclusion, as channel’s inclination varies from horizontal to vertical, the stream-

lines reconfigure the flow pattern from a vertical structure to a horizontal structure. Solid

lines represent positive contours on isotherms, while dashed lines represent negative con-

tours. This pattern holds true for isotherms alike.

Table 10.1: “Convergence of the least stable eigenvalue for Da = 1, Pr = 0.1, ϵ = 0.2, γ=0.5,

k=0.5, θ = π/3, and β = 0.”

N Rac αc

40 58.159398894469 1.156800614916

45 58.159398955057 1.156800432682

50 58.159391266456 1.156800693182

55 58.159398145969 1.156801042609

60 58.159401437386 1.156799879977
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Figure 10.1: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of θ with Pr = 7, ϵ = 0.6, γ=0.5, k=0.5, and β = 0.”
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Figure 10.2: “Variation of critical Rayleigh number Rac and critical wavenumber αc with

log10Da for different values of γ with Pr = 7, ϵ = 0.6, θ = π/3 , k=0.5, and β = 0.”
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Figure 10.3: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of k with Pr = 7, ϵ = 0.6, θ = π/3 , γ=0.5, and β = 0.”
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Figure 10.4: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of Pr with ϵ = 0.6, θ = π/3 , γ=0.5, k=0.5, and β = 0.”
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Figure 10.5: “Variation of critical Rayleigh number (Rac ) and critical wavenumber (αc)
with log10Da for different values of ϵ with Pr = 7, θ = π/3 , γ=0.5, k=0.5, and β = 0.”
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(a) “θ = 0” (b) “θ = π/4” (c) “θ = π/2”

Figure 10.6: “The disturbance of streamlines for different values of θ.”

(a) “θ = 0” (b) “θ = π/4” (c) “θ = π/2”

Figure 10.7: “The disturbance of isotherms for different values of θ.”
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10.6 Conclusions

The linear stability of Casson fluid flow in a porous inclined channel, taking into consideration

the influence of variable viscosity, is examined. The critical Rayleigh number and critical

wavenumber for different parameters such as θ, ϵ, Pr, k, and γ are computed and graphically

shown with respect to Da.

� The channel’s inclination (θ), the Casson parameter (γ), and the variable viscosity

parameter (k) destabilizes the flow.

� Porosity (ϵ) and Prandtl number (Pr) help to stabilize flow within an inclined channel.

As a result, an increase in these variables acts as a stumbling block to the onset of

convection.

� When the channel is oriented vertically and k=0.5, the flow has the least stability.
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Chapter 11

The stability of two-phase dusty

Casson fluid flow in an inclined

porous channel 1

11.1 Introduction

The interaction of a fluid with suspended solid particles in two-phase dusty fluid flow occurs

in applications such as pneumatic transfer, fluidized bed reactors, and volcanic eruptions.

This flow type takes into account both viscosity and yield stress. It has a wide range of

applications in industries such as chemical processing, oil and gas, and biomedical fields [17].

The experimental properties of heat transmission and multi-phase flow in a long gravity-

assisted heat pipe were discussed by Chen et al. [75]. Recently, Ali et al. [76] studied

the effects of heat transfer and magnetic field on the magnetohydrodynamic two-phase free

convective flow of dusty Casson fluid between parallel plates.

The stability properties of two-phase dusty Casson fluid in an inclined channel have not

been explored, according to the literature review. Consequently, this chapter investigates

the convection stability in two-phase dusty Casson fluid flow in an inclined channel filled

with a porous medium (at an angle of inclination θ).

1Communicated in “The ANZIAM Journal”
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11.2 Mathematical Formulation

Consider an unsteady, incompressible flow of two-phase dusty Casson fluid in a tilted channel

with a width of 2L with two impermeable, completely thermally conducting walls and an

inclination of θ. A schematic illustration of the problem is shown in Fig. 11.1. The porous

medium is assumed to be homogenous and isotropic. Temperatures on both the lower and

upper walls are kept at T1 and T2, respectively. Using the Oberbeck-Boussinesq approxima-

Figure 11.1: “Schematic representation of the problem.”

tion, the following set of equations describes the flow [113, 50, 114]:

For the fluid phase:

∇ · V⃗ = 0 (11.1)

ρ

ϵ

(
∂V⃗

∂t
+

1

ϵ
(V⃗ · ∇)V⃗

)
= −∇p+

(
1 +

1

γ

)
µ̃∇2V⃗ − µ

K
V⃗ + ρgβT (T − T1)

(sin(θ)êx + cos(θ)êy) +
ρp
τm

(V⃗p − V⃗ )

(11.2)
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ρCp

(
∂T

∂t
+ V⃗ · ∇T

)
= k∇2T +

ρpCs

τT
(Tp − T ) (11.3)

For the particle phase:

∇ · V⃗p = 0 (11.4)

ρp
ϵ

(
∂V⃗p
∂t

+
1

ϵ
(V⃗p · ∇)V⃗p

)
= −∇pp −

ρp
τm

(V⃗p − V⃗ ) (11.5)

ρpCs

(
∂Tp
∂t

+ V⃗p · ∇Tp
)

= −ρpCs

τT
(Tp − T ) (11.6)

The boundary conditions for the fluid phase:

y = −L : V⃗ = 0, T = T1, y = L : V⃗ = 0, T = T2 (11.7)

The boundary conditions for the particle phase:

y = −L : V⃗p = 0, Tp = T1, y = L : V⃗p = 0, Tp = T2 (11.8)

where V⃗ = (u, v, w) and V⃗p(up, vp, wp) represents Darcy velocity vector for fluid phase and

particle phase, respectively. T and Tp are temperature for fluid phase and particle phase, p

and pp are pressure, and ρ and ρp denotes density. Cp and Cs denotes specific heat of fluid

and particle phase at constant pressure, respectively. τm denotes Velocity relaxation time of

the particles, τT denotes Thermal relaxation time of the particles.

The non-dimensional variables are:

x∗, y∗, z∗ =
x, y, z

L
, (p∗, p∗p) =

k(p, pp)

µα
, (V⃗ ∗, V⃗ ∗

p ) =
(V⃗ , V⃗p)L

α
, t∗ =

αt

L2
,

(T ∗, T ∗
p ) =

(T, Tp)− T1
T2 − T1

.

(11.9)

By substituting (11.9) in (11.1) -(11.6) and removing the asterisks, the equations (11.1)

-(11.6) can be written as:
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For the fluid phase:

∇ · V⃗ = 0 (11.10)

1

va

∂V⃗

∂t
+

1

ϵva
(V⃗ · ∇)V⃗ = −∇p+ ΛDa

(
1 +

1

γ

)
(∇2V⃗ )− V⃗ +RaT (sin(θ)êx + cos(θ)êy)

+DραdDa(V⃗p − V⃗ )

(11.11)
∂T

∂t
+ V⃗ · ∇T = ∇2T +Dργ1αTPr(Tp − T ) (11.12)

For the particle phase:

∇ · V⃗p = 0 (11.13)

Dρ

va

∂V⃗p
∂t

+
Dρ

ϵva
(V⃗p · ∇)V⃗p = −∇pp −DραdDa(V⃗p − V⃗ ) (11.14)

∂Tp
∂t

+ V⃗p · ∇Tp = −PrαT (Tp − T ) (11.15)

The fluid phase’s boundary conditions are as follows:

V⃗ = 0, T = 0, at y = −1, and V⃗ = 0, T = 1 at y = 1 (11.16)

The particle phase’s boundary conditions are as follows:

V⃗p = 0, Tp = 0, at y = −1, and V⃗p = 0, Tp = 1 at y = 1 (11.17)

where, Dρ = ρp
ρ

represents mass concentration parameter, αd = L2

τmν
represents Momentum

dust particle, αT = L2

τT ν
represents Thermal dust particle, γ1 = Cs

Cp
denotes Specific heat

ratio.

11.3 Basic solution

In the basic stage, the flow is regarded as continuous, one-directional (in the x-direction), and

completely developed. Eqs. (11.10)-(11.15) may be reduced into set of ordinary differential

equations by applying these conditions:

ΛDa
(
1 +

1

γ

)d2Ub

dy2
− Ub =

∂p0
∂x

−RaT0 sin(θ)−DραdDa(Upb − Ub) (11.18)

∂p0
∂y

= RaT0 cos(θ) (11.19)
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∂p0
dz

= 0 (11.20)

d2T0
dy2

+Dργ1αTPr(Tp0 − T0) = 0 (11.21)

∂pp0
∂x

+DραdDa(Upb − Ub) = 0 (11.22)

∂pp0
∂y

= 0 (11.23)

∂pp0
dz

= 0 (11.24)

PrαT (Tp0 − T0) = 0 (11.25)

The boundary conditions are:

y = −1 : Ub = 0, Upb = 0, T0 = 0, Tp0 = 0,

y = 1 : Ub = 0, Upb = 0, T0 = 1 Tp0 = 1,
(11.26)

where Ub, p0(x, y, z), and T0(y) is basic velocity in x-direction, basic pressure, and basic

temperature in the fluid phase, and Upb, pp0(x, y, z), and Tp0(y) is basic velocity in x-direction,

basic pressure, and basic temperature in the particle phase.

Proceeding as in Chapter-2, we get basic solution as:

T0 = Tp0 =
1 + y

2
(11.27)

Ub = (σ + σ1)(sech(m) cosh(my)− 1) +
1

2
Ra sin(θ)(y − csch(m) sinh(my)) (11.28)

Upb = − σ1
DaDραd

+ (σ + σ1)(sech(m) cosh(my)− 1) +
1

2
Ra sin(θ)

(y − csch(m) sinh(my))

(11.29)

where:

σ =
m

tanh(m)−m
− σ1, σ1 = 0 and m =

1√
ΛDa

(
1 + 1

γ

)
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11.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (δ) on the basic state solutions,

ignoring δ2 and higher order terms, using the usual normal mode form [50] to express in-

finitesimal disturbances of corresponding field variables, and removing pressure terms from

the resulting equations, the linearized stability equations are obtained as:

ΛDa
(
1 +

1

γ

)[d4v̂
dy4

− 2
d2v̂

dy2
(α2 + β2) + (α2 + β2)2v̂

]
− iα

va

(
Ub

ϵ
− c

)[d2v̂
dy2

− (α2 + β2)v̂
]

+
iα

ϵva

d2Ub

dy2
v̂ −

[
d2v̂

dy2
− (α2 + β2)v̂

]
−Ra(α2 + β2) cos(θ)T̂

−RadT̂
dy
iα sin(θ) +DaDραd

[d2v̂p
dy2

− (α2 + β2)v̂p

]
−DaDραd

[d2v̂
dy2

− (α2 + β2)v̂
]
= 0

(11.30)

−iαDρ

va

(
Upb

ϵ
− c

)[d2v̂p
dy2

− (α2 + β2)v̂p

]
+
iαDρ

ϵva

d2Upb

dy2
v̂ −DaDραd

[d2v̂p
dy2

−(α2 + β2)v̂p

]
+DaDραd

[d2v̂
dy2

− (α2 + β2)v̂
]
= 0

(11.31)

1

va
(−iαc)η̂ + 1

ϵva

[
βv̂
dUb

dy
+ Ubη̂iα

]
+ η̂ − ΛDa

(
1 +

1

γ

)[d2η̂
dy2

− (α2 + β2)η̂

]
−βRaT̂ sin(θ)−DaDραd(η̂p − η̂) = 0

(11.32)

Dρ

va
(−iαc)η̂p +

Dρ

ϵva

[
βv̂p

dUpb

dy
+ Upbη̂piα

]
+DaDραd(η̂p − η̂) = 0 (11.33)

dT0
dy

v̂ + iα (Ub − c) T̂ −

[
d2T̂

dy2
− (α2 + β2)T̂

]
−DραTγ1Pr(T̂p − T̂ ) = 0 (11.34)

dTp0
dy

v̂p + iα (Upb − c) T̂p + PrαT (T̂p − T̂ ) = 0 (11.35)

Where û(y) = (û, v̂, ŵ), ûp(y) = (ûp, v̂p, ŵp), η̂ = βû− αŵ and η̂p = βûp − αŵp.

11.5 Results and discussion

The equations from Eqs. (11.30) - (11.35) represent a generalized eigenvalue problem in

which the eigenvalues are perturbed and expressed with respect to wave speed. The spectral

technique [107] is employed to find solution to this eigenvalue problem.
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Least stable eigenvalues, which are displayed in Table 11.1 for any given combination of

parameters, were produced by executing the MATLAB code for computing eigenvalues with

changing grid point numbers (N) to verify the method’s accuracy. When N ≥ 50, the least

stable eigenvalue reached convergence criterion of 10−7, and these results remained constant

despite varying parameter values. In our numerical calculations, we chose to use N = 50 as

a result.

The present analysis’s outcomes are compared with a vertically oriented channel con-

taining nanofluid-saturated porous material. The results of γ → ∞, Pr=7, θ = π/2, V⃗p=0,

Tp=0, pp=0, αT=0, αd=0, Dρ=0, in absence of NB, NA, ϕ, Le and Rm, were obtained which

is in accordance with the findings of Srinivasacharya and Barman [50].

The Critical values of αc and Rac for dusty Casson fluid and dusty fluid are presented

in Table 11.2 for different values of inclindation angle θ and Darcy number Da at Pr = 7, ϵ

= 0.3, γ1=0.1, Dρ=10, αT=1.2, αd=1.2, Λ=1, and β = 0. The presence of dust particle in

Casson fluid increases the critical Rayleigh number.

The convective stability in a two-phase dusty Casson fluid flow in a porous inclined

channel is studied in this paper. The impact of inclination angle (θ), mass concentration

parameter (Dρ), momentum dust parameter (αd), thermal dust parameter (αT ), Prandtl

number (Pr) , and porosity parameter (ϵ) on the flow instability is studied in-depth in this

paper. The problem demonstrates two distinct flow problems under the following conditions:

1. γ → ∞ represents the Newtonian dusty fluid flow problem,

2. Non-Newtonian, dusty Casson fluid flow problem with a finite value for γ.

In Figs. 11.2-11.7, we observe a similar flow instability pattern for both phases. However,

dusty fluids are always located below dusty Casson fluids.

Fig. 11.2 depicts the graphs illustrating the critical Rayleigh number (Rac) and the

critical wavenumber (αc) versus Darcy number (Da) for various inclination angles (θ). It

is notable that Rac declines for both phases as θ oriented vertically indicates that flow is

destabilized. This happens because when a channel is tilted, gravity acts perpendicular to the

flow direction, causing density gradients to form within the flow. These density gradients can

cause particles to descend to the bottom of the flow, while lighter fluid rises to the surface. In

contrast, as the Darcy number (Da) increases, so does Rac, indicating that permeability has

a stabilizing effect. In addition, once Da reaches 1, Rac increases rapidly as Da continues

to ascend. For lower Darcy numbers (Da < 1), Rac displays slow and smooth fluctuations,
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highlighting that there is visible flow resistance within the porous medium. This resistance

to flow reduces as permeability rises, resulting in enhanced flow within the porous medium

and highlighting the importance of viscous forces in the momentum equation. In terms of

the critical wavenumber (αc), it increases as both Da and θ increases.

For distinct values of the mass concentration parameter (Dρ), Fig. 11.3 displays the vari-

ation of Rac and αc. We noticed that as Da increases, so does Rac. Also, as Dρ increases,

Rac increases. Hence, Dρ stabilizes the flow. If the concentration of the dust particles is too

high, they can settle out of the fluid and accumulate at the bottom of the channel. This can

lead to a non-uniform distribution of dust particles, which can affect the fluid’s rheological

properties. On the other hand, if the concentration of the dust particles is too low, they

may not significantly affect the fluid’s flow properties. In this case, the fluid flow may still

be unstable and turbulent due to the effects of gravity. However, as Da rises, αc increases,

but as Dρ increases, αc decreases.

The critical Rayleigh number and the critical wavenumber variations for different thermal

dust parameter (αT ) values are shown in Fig.11.4. We’ve observed that as Da increases, so

does Rac. However, there is no variation in Rac as αT increases. Consequently, αT does

not significantly affect the stability of the two-phase dusty Casson fluid flow. This might

occur because in the two-phase dusty Casson fluid flow, the thermal dust parameter mainly

affects the thermal conductivity of the fluid by increasing it due to the presence of particles.

However, this increase in thermal conductivity does not typically have a significant effect on

flow stability. αc increases as Da increases, whereas αc does not alter as αT increases.

Fig. 11.5 depicts the variations in Rac and αc for distinct momentum dust parameter

(αd) values. We’ve observed that as Da and αd both rise, so does Rac. This means that

αd stabilizes fluid flow. This could happen because the momentum dust parameter can also

affect the rheological properties of the fluid, such as its viscosity and yield stress. The pres-

ence of solid particles can significantly alter the rheological properties of the fluid, leading to

complex flow behavior. A higher momentum dust parameter can result in a higher viscosity

and yield stress, which can stabilize the flow and prevent instabilities. Also, as Da increases,

so does αc, whereas as αd increases, αc decreases.

The impact of Prandtl number (Pr) on the instability boundaries is seen in Fig. 11.6.

As momentum diffusivity increases, defined by the Prandtl number (Pr), so does the critical
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Rayleigh number. As a consequence, It demonstrates Pr stabilizes the flow field by pro-

moting a more uniform temperature and viscosity profile, reducing thermal gradients, and

promoting the development of thermal boundary layers that can dampen out disturbances

in the flow. Moreover, αc increases as Da and Pr grows. Also, as Pr rises, αc falls.

Fig. 11.7 depicts the boundaries of the instability region and how they vary as the per-

meability parameter (Da) and porosity parameter (ϵ) change. As shown in Fig. 11.7, the

critical Rayleigh number (Rac) tends to increase as the porosity parameter increases. This

trend occurs because porosity represents the proportion of a material’s total volume that is

occupied by vacancies, essentially measuring the voids within a porous material. Therefore,

contributes to the stabilization of the flow. As porosity increases, so does the volume of

spaces within the material. In addition, it can be observed that αc, the critical wavenumber,

increases as porosity parameter value and the value of Da increase.

Table 11.1: “Convergence of the least stable eigenvalue for Da = 0.1, Pr = 1, ϵ = 0.1, γ=0.5,
γ1=0.1, Dρ=10, αT=1.2, αd=1.2, θ = π/3, Λ=1, and β = 0.”

N Rac αc

40 28.052287351685 1.152216157852
45 28.052576969270 1.152291455909
50 28.052499580168 1.152265881971
55 28.052886882916 1.152298501856
60 28.052510054723 1.152318752347
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Table 11.2: “Critical values of αc and Rac for different values of θ at Pr = 7, ϵ = 0.3, γ1=0.1,
Dρ=10, αT=1.2, αd=1.2, Λ=1, and β = 0.”

Dusty Casson fluid (γ = 0.5) Dusty fluid (γ → ∞)
Da θ αc Rac αc Rac
0.1 0 0.7015 8094.552 0.9765 4520.88

π/6 1.1336 4423.292 0.9669 1775.746
π/4 1.153 2649.027 0.9638 1104.42
π/3 1.1687 1941.241 0.963 828.649
π/2 1.1952 1424.023 0.9652 628.651

1 0 1.2542 66181.717 1.2474 10884.628
π/6 1.27 24475.475 1.231 4358.982
π/4 1.2859 14870.804 1.2315 2751.79
π/3 1.2970 11017.496 1.2341 2091.649
π/2 1.3140 8235.319 1.2406 1629.156

10 0 1.2686 618446.515 1.2809 90728.976
π/6 1.2846 229414.251 1.2651 36625.694
π/4 1.2997 139649.247 1.2652 23230.911
π/3 1.3101 103600.359 1.2671 17717.842
π/2 1.3259 77605.82 1.2723 13877.645
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Figure 11.2: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of θ with Pr = 7, ϵ = 0.3, γ1=0.1, Dρ=10, αT=1.2, αd=1.2,

Λ=1, and β = 0.”
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Figure 11.3: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of Dρ with Pr = 7, ϵ = 0.3, γ1=0.1, θ = π/3, αT=1.2, αd=1.2,

Λ=1, and β = 0.”
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Figure 11.4: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of αT with Pr = 7, ϵ = 0.3, γ1=0.1, Dρ=10, αd=1.2, θ = π/3,
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Figure 11.5: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of αd with Pr = 7, ϵ = 0.3, γ1=0.1, Dρ=10, αT=1.2, θ = π/3,

Λ=1, and β = 0.”
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Figure 11.6: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of Pr with ϵ = 0.3, γ1=0.1, Dρ=10, αT=1.2, αd=1.2, θ = π/3,

Λ=1, and β = 0.”
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Figure 11.7: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of ϵ with Pr = 7, γ1=0.1, Dρ=10, αT=1.2, αd=1.2, θ = π/3,

Λ=1, and β = 0.”
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11.6 Conclusions

The linear stability of two-phase dusty Casson fluid flow in a porous inclined channel is

examined. The critical Rayleigh number and critical wavenumber for different parameters

such as θ, Dρ, αT , αd, Pr and ϵ are computed and graphically shown with respect to Da.

� The channel’s inclination (θ) destabilizes the flow for both phases.

� The momentum equation is affected by viscous forces because flow resistance decreases

with increasing permeability and improved flow in a porous media.

� Mass concentration parameter (Dρ), momentum dust parameter (αd), Prandtl number

(Pr), and porosity parameter (ϵ) help to stabilize flow within an inclined channel.

As a result, an increase in these variables acts as a stumbling block to the onset of

convection.

� The flow stability was unaffected by the thermal dust parameter (αT ), as we raise αT ,

Rac remains unchanged.

� When the channel is oriented vertically, the flow has the least stability.

� The neutral stability graphs for dusty phases are always situated below graphs for

dusty Casson fluid.
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Chapter 12

The effect of variable viscosity on the

flow stability of two-phase dusty

Casson fluid in a porous inclined

channel 1

12.1 Introduction

This chapter investigates the effect of variable viscosity convection stability in two-phase

dusty Casson fluid flow in an inclined channel filled with a porous medium (at an angle of

inclination θ).

12.2 Mathematical Formulation

Consider an unsteady, incompressible flow of a two-phase dusty Casson fluid in tilted channel

with a width of 2L with two impermeable, completely thermally conducting walls and an

inclination of θ. We’ve assumed that viscosity obeys the Nahme rule Sukanek et al. [110],

which means that viscosity is modeled as an exponential function of temperature:

µ(T ) = µle
−k T

1Communicated in “ZAMM - Journal of Applied Mathematics and Mechanics ”
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A schematic illustration of the problem is shown in Fig. 11.1. The porous medium is assumed

to be homogenous and isotropic. Temperatures on both the upper and lower walls are kept

at T2 and T1, respectively. Using the above assumptions and the Oberbeck-Boussinesq

approximation, the following set of equations describes the flow [113, 50, 114]:

For the fluid phase:

∇ · V⃗ = 0 (12.1)

ρ

ϵ

∂V⃗

∂t
+
ρ

ϵ2
(V⃗ · ∇)V⃗ = −∇p+

(
1 +

1

γ

) [
∇µ ·

(
∇V⃗ T +∇V⃗

)
+ µ∆V⃗

]
− µ

K
V⃗

+ρgβT (T − T1)(sin(θ)êx + cos(θ)êy) +
ρp
τm

(V⃗p − V⃗ )

(12.2)

ρCp

(
∂T

∂t
+ V⃗ · ∇T

)
= k∇2T +

ρpCs

τT
(Tp − T ) (12.3)

For the particle phase:

∇ · V⃗p = 0 (12.4)

ρp
ϵ

(
∂V⃗p
∂t

+
1

ϵ
(V⃗p · ∇)V⃗p

)
= −∇pp −

ρp
τm

(V⃗p − V⃗ ) (12.5)

ρpCs

(
∂Tp
∂t

+ V⃗p · ∇Tp
)

= −ρpCs

τT
(Tp − T ) (12.6)

The boundary conditions for the fluid phase:

y = −L : V⃗ = 0, T = T1, y = L : V⃗ = 0, T = T2 (12.7)

The boundary conditions for the particle phase:

y = −L : V⃗p = 0, Tp = T1, y = L : V⃗p = 0, Tp = T2 (12.8)

The non-dimensional form of the Eqs. (12.1) -(12.6) (on substituting (11.9) in (12.1) -(12.6)

and removing asterisk) are: For the fluid phase:

∇ · V⃗ = 0 (12.9)

1

va

∂V⃗

∂t
+

1

vaϵ
(V⃗ · ∇)V⃗ = −∇p+Da

(
1 +

1

γ

)[
∇µ ·

(
∇V⃗ T +∇V⃗

)
+ µ∆V⃗

]
− µV⃗

+RaT (sin(θ)êx + cos(θ)êy) +DραdDa(V⃗p − V⃗ )

(12.10)
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∂T

∂t
+ V⃗ · ∇T = ∇2T +Dργ1αTPr(Tp − T ) (12.11)

For the particle phase:

∇ · V⃗p = 0 (12.12)

Dρ

va

∂V⃗p
∂t

+
Dρ

ϵva
(V⃗p · ∇)V⃗p = −∇pp −DραdDa(V⃗p − V⃗ ) (12.13)

∂Tp
∂t

+ V⃗p · ∇Tp = −PrαT (Tp − T ) (12.14)

The fluid phase’s boundary conditions are as follows:

V⃗ = 0, T = 0, at y = −1, and V⃗ = 0, T = 1 at y = 1 (12.15)

The particle phase’s boundary conditions are as follows:

V⃗p = 0, Tp = 0, at y = −1, and V⃗p = 0, Tp = 1 at y = 1 (12.16)

12.3 Basic solution

In the basic stage, the flow is regarded as continuous, one-directional (in the x-direction), and

completely developed. Eqs. (12.9)-(12.14) may be reduced into set of ordinary differential

equations by applying these conditions:

Da
(
1 +

1

γ

){ ∂

∂y

(
µb
∂Ub

∂y

)}
− µ0Ub =

∂p0
∂x

−RaT0 sin(θ)−DραdDa(Up0 − Ub) (12.17)

∂p0
∂y

= RaT0 cos(θ) (12.18)

∂p0
dz

= 0 (12.19)

d2T0
dy2

+Dργ1αTPr(Tp0 − T0) = 0 (12.20)

∂pp0
∂x

+DραdDa(Up0 − Ub) = 0 (12.21)

∂pp0
∂y

= 0 (12.22)

∂pp0
dz

= 0 (12.23)
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PrαT (Tp0 − T0) = 0 (12.24)

The boundary conditions are:

y = −1 : Ub = 0, Upb = 0, T0 = 0, Tp0 = 0,

y = 1 : Ub = 0, Upb = 0, T0 = 1 Tp0 = 1,
(12.25)

Proceeding as in Chapter-2, and taking the approximation µ(T0) = e−kT0 [106], we get basic

solution as:

T0 = Tp0 =
1 + y

2
(12.26)

Ub =
1

8
e

1
4
k(y+1)

(
sech(m)csch(m)

(
(4(σ + σ1) sinh(m(1− y)) + Ra(2− bk) sin(θ))

+ek/2 sinh(m(y + 1))(4(σ + σ1)− Ra(bk + 2) sin(θ))

+e
1
4
k(y+1)Ra sin(θ) sinh(2m)(bk + 2y)

)
− 8(σ + σ1)e

1
4
k(y+1)

) (12.27)

Upb = − σ1
DaDραd

+ Ub (12.28)

where:

σ =

{
16ek/2k2m(bkRa sin(θ)− 4σ1) + 8k2m cosh(2m)

(
4
(
ek + 1

)
σ1 − Ra(

bk + ek(bk + 2)− 2
)
sin(θ)

)
+ sinh(2m)

(
Ra sin(θ)

(
b
(
ek − 1

)
k4 + 4

(
ek − 1

)
k2(

4bm2 + 1
)
+ 2

(
ek + 1

)
k3 + 32

(
ek + 1

)
km2 − 64

(
ek − 1

)
m2
)
+ 4k

(
k3 −

(
ek − 1

)
k2σ1 − 16

(
ek − 1

)
m2σ1 − 16km2

))}/
{
4k
( (
ek − 1

) (
k2 + 16m2

)
sinh(2m) + 16ek/2km− 8

(
ek + 1

)
km cosh(2m)

)}

σ1 = 0, b = Da
(
1 +

1

γ

)
, And m =

1√
b

12.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (δ) on the basic state solutions,

ignoring δ2 and higher order terms, using the usual normal mode form [50] to express in-

finitesimal disturbances of corresponding field variables, and removing pressure terms from
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the resulting equations, the linearized stability equations are obtained as:

Da
(
1 +

1

γ

)[
µb
d4v̂

dy4
+ 2

dµb

dy

d3v̂

dy3
− d2v̂

dy2

(
2µb(α

2 + β2)− d2µb

dy2

)
− 4(α2 + β2)

dv̂

dy

dµb

dy
+ (α2 + β2)

(
µb(α

2 + β2) +
d2µb

dy2

)
v̂
]
− iα

va

(Ub

ϵ
− c
)[d2v̂
dy2

− (α2 + β2)v̂
]

+
iα

ϵva

d2Ub

dy2
v̂ − µb

[d2v̂
dy2

− (α2 + β2)v̂
]
− dµb

dy

dv̂

dy
−Da

(
1 +

1

γ

)
e−kT0k

[dUb

dy

d2T̂

dy2

+
(
2
d2Ub

dy2
− k

dUb

dy

)dT̂
dy

+
(d3Ub

dy3
− k

d2Ub

dy2
+
dUb

dy

(k2
4

− iα(α2 + β2)
))
T̂
]

+ke−kT0
dUb

dy
T̂ + ke−kT0

dT̂

dy
Ub − Ub

k2

2
e−kT0T̂ +DaDραd

[d2v̂p
dy2

− (α2 + β2)v̂p

]
−DaDραd

[d2v̂
dy2

− (α2 + β2)v̂
]
−Ra

dT̂

dy
iα sin(θ)−Ra(α2 + β2) cos(θ)T̂ = 0

(12.29)

−iαDρ

va

(
Upb

ϵ
− c

)[d2v̂p
dy2

− (α2 + β2)v̂p

]
+
iαDρ

ϵva

d2Upb

dy2
v̂p −DaDραd

[d2v̂p
dy2

−(α2 + β2)v̂p

]
+DaDραd

[d2v̂
dy2

− (α2 + β2)v̂
]
= 0

(12.30)

1

va
(−iαc)η̂ + 1

ϵva

[
βv̂
dUb

dy
+ Ubη̂iα

]
−Da

(
1 +

1

γ

)[
µb
d2η̂

dy2
+
dµb

dy

dη̂

dy
− µb(α

2 + β2)η̂
]

+Da
(
1 +

1

γ

)
ke−kT0β

[dUb

dy

dT̂

dy
− k

2
T̂ +

d2Ub

dy2
T̂
]
+ µbη̂ − βUbke

−kT0T̂ − βRaT̂ sin(θ)

−DaDραd(η̂p − η̂) = 0

(12.31)

Dρ

va
(−iαc)η̂p +

Dρ

ϵva

[
βv̂p

dUpb

dy
+ Upbη̂piα

]
+DaDραd(η̂p − η̂) = 0 (12.32)

dT0
dy

v̂ + iα (Ub − c) T̂ −

[
d2T̂

dy2
− (α2 + β2)T̂

]
−DραTγ1Pr(T̂p − T̂ ) = 0 (12.33)

dTp0
dy

v̂p + iα (Upb − c) T̂p + PrαT (T̂p − T̂ ) = 0 (12.34)

12.5 Results and discussion

The equations from Eqs. (12.29) - (12.34) represent a generalized eigenvalue problem in

which the eigenvalues are perturbed and expressed in terms of the wave speed. The spectral
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technique [107] is employed to find the solution to this eigenvalue problem. In order to vali-

date the accuracy of this method, we ran the MATLAB code for calculating eigenvalues with

varying grid point numbers (N) and obtained least stable eigenvalues, which are presented

in Table 12.1 for an arbitrary combination of parameters. When N ≥ 50, the least stable

eigenvalue reached convergence criterion of 10−7, and these results remained constant despite

varying parameter values. In our numerical calculations, we chose to use N = 50 as a result.

The present analysis’s outcomes are compared with a vertically oriented channel contain-

ing nanofluid-saturated porous material. The results of γ → ∞, Pr=7, θ = π/2, k=0, V⃗p=0,

Tp=0, pp=0, αT=0, αd=0, Dρ=0, in absence of NB, NA, ϕ, Le and Rm, were obtained which

is in accordance with the findings of Srinivasacharya and Barman [50].

This paper investigates, under two-phase conditions, the convective stability of a dusty

Casson fluid flow in a porous inclined channel with changing viscosity. The influence of

variable viscosity parameter (k), inclination angle (θ), mass concentration parameter (Dρ),

momentum dust parameter (αd), thermal dust parameter (αT ), Prandtl number (Pr), and

porosity parameter (ϵ) on the flow instability is studied in-depth in this paper. The problem

demonstrates two distinct flow problems under the following conditions:

1. γ → ∞ represents Newtonian dusty fluid flow problem,

2. Non-Newtonian dusty Casson fluid flow problem with a finite value for γ.

In Figs. 12.1-12.7, we observe a similar flow instability pattern for both phases. However,

dusty fluids are always located below dusty Casson fluids.

Fig. 12.1 depicts the graphs illustrating the critical Rayleigh number (Rac) and the crit-

ical wavenumber (αc) vary with variations in the Darcy number (Da) for various inclination

angles (θ). As θ changes from horizontal to vertical, Rac decreases for both phases, demon-

strating that destabilizes the fluid flow. This is due to when a channel is tilted, gravity acts

perpendicular to the flow direction, causing density gradients to form within the flow. These

density gradients can cause particles to descend to the bottom of the flow, while lighter fluid

rises to the surface. In contrast, as the Darcy number (Da) increases, so does Rac, indicat-

ing that permeability has a stabilizing effect. In addition, once Da reaches 1, Rac increases

rapidly as Da continues to ascend. For lower Darcy numbers (Da < 1), Rac displays slow

and smooth fluctuations, highlighting that there is visible flow resistance within the porous

medium. This resistance to flow falls as permeability rises, resulting in enhanced flow within

the porous medium and highlighting the importance of viscous forces in the momentum
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equation. In terms of the critical wavenumber (αc), it increases as both Da and θ increases.

For various values of the variable viscosity parameter (k), Fig. 12.2 displays the variation

of the critical Rayleigh number and the critical wavenumber. We observed that Rac drops

when we increase k. This indicates k destabilizes the fluid flow. Because of when the viscosity

of the two-phase dusty Casson fluid decreases with increasing shear rate, it can cause the flow

to become unstable and exhibit turbulent behavior. As the fluid moves down the inclined

channel, it is subjected to increasing shear rates due to the effects of gravity, which can

cause the viscosity to decrease. This can lead to fluid instabilities. On the other hand, if

the viscosity of the two-phase dusty Casson fluid increases with increasing shear rate, it can

cause the flow to become unstable and exhibit shear-thickening behavior. This can lead to

the formation of highly viscous regions in the flow, which can cause a buildup of stress and

the formation of flow instabilities. But as Da rises, Rac rises as well. In case of critical

wavenumber, αc decreases as k increases. However, as Da increases, αc also increases.

For different values of the mass concentration parameter (Dρ), Fig. 12.3 displays the

variation of the critical Rayleigh number and the critical wavenumber. We noticed that as

Da increases, so does Rac. Also, as Dρ increases, Rac increases. Hence, Dρ stabilizes the

flow. If the concentration of the dust particles is too high, they can settle out of the fluid

and accumulate at the bottom of the channel. This can lead to a non-uniform distribution

of dust particles, which can affect the fluid’s rheological properties. On the other hand,

if the concentration of the dust particles is too low, they may not significantly affect the

fluid’s flow properties. In this case, the fluid flow may still be unstable and turbulent due

to the effects of gravity. However, asDa rises, αc increases, but asDρ increases, αc decreases.

The critical Rayleigh number and the critical wavenumber variations for different thermal

dust parameter (αT ) values are shown in Fig.12.4. We’ve observed that as Da increases, so

does Rac. However, there is no variation in Rac as αT increases. Consequently, αT does

not significantly affect the stability of the two-phase dusty Casson fluid flow. This might

occur because in the two-phase dusty Casson fluid flow, the thermal dust parameter mainly

affects the thermal conductivity of the fluid by increasing it due to the presence of particles.

However, this increase in thermal conductivity does not typically have a significant effect on

flow stability. αc increases as Da increases, whereas αc does not alter as αT increases.

Fig. 12.5 depicts the variations in the critical Rayleigh number and critical wavenumber
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for distinct momentum dust parameter (αd) values. We’ve observed that as Da and αd both

rise, so does Rac. This means that αd stabilizes fluid flow. This could happen because the

momentum dust parameter can also affect the rheological properties of the fluid, such as its

viscosity and yield stress. The presence of solid particles can significantly alter the rheo-

logical properties of the fluid, leading to complex flow behavior. A higher momentum dust

parameter can result in a higher viscosity and yield stress, which can stabilize the flow and

prevent instabilities. Also, as Da increases, so does αc, whereas as αd increases, αc decreases.

The impact of Prandtl number (Pr) on the instability boundaries is seen in Fig. 12.6.

As momentum diffusivity increases, defined by the Prandtl number (Pr), so does the critical

Rayleigh number. As a consequence, It demonstrates Pr stabilizes the flow field by pro-

moting a more uniform temperature and viscosity profile, reducing thermal gradients, and

promoting the development of thermal boundary layers that can dampen out disturbances

in the flow. Moreover, αc increases as Da and Pr grows. Also, as Pr rises, αc falls.

Fig. 12.7 depicts the boundaries of the instability region and how they vary as the

permeability parameter (Da) and porosity parameter (ϵ) change. As shown in Fig. 12.7, the

critical Rayleigh number (Rac) tends to increase as the porosity parameter increases. This

trend occurs because porosity represents the proportion of a material’s total volume that is

occupied by vacancies, essentially measuring the voids within a porous material. Therefore,

contributes to the stabilization of the flow. As porosity increases, so does the volume of

spaces within the material. In addition, it can be observed that αc, the critical wavenumber,

increases as porosity parameter value and the value of Da increase.

Table 12.1: “Convergence of the least stable eigenvalue for Da = 0.1, Pr = 0.1, ϵ = 0.1,
γ=0.1, γ1=0.1, Dρ=10, αT=1.2, αd=1.2, θ = π/3, k=0.5, and β = 0.”

N Rac αc

40 24.139683655331 1.112686406858
45 24.139879110283 1.112610790954
50 24.139208852480 1.112691392299
55 24.139401259160 1.112658138375
60 24.139908862954 1.112608748722
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Figure 12.1: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of θ with Pr = 7, k=0.5, ϵ = 0.3, γ1=0.1, Dρ=10, αT=1.2,

αd=1.2, Λ=1, and β = 0.”
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Figure 12.2: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of k with θ = π/3, Pr = 7, ϵ = 0.3, γ1=0.1, Dρ=10, αT=1.2,

αd=1.2, Λ=1, and β = 0.”
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Figure 12.3: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of Dρ with Pr = 7, k=0.5, ϵ = 0.3, γ1=0.1, θ = π/3, αT=1.2,

αd=1.2, Λ=1, and β = 0.”
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Figure 12.4: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of αT with Pr = 7, k=0.5, ϵ = 0.3, γ1=0.1, Dρ=10, αd=1.2,

θ = π/3, Λ=1, and β = 0.”
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Figure 12.5: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of αd with Pr = 7, k=0.5, ϵ = 0.3, γ1=0.1, Dρ=10, αT=1.2,

θ = π/3, Λ=1, and β = 0.”
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Figure 12.6: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of Pr with ϵ = 0.3, k=0.5, γ1=0.1, Dρ=10, αT=1.2, αd=1.2,

θ = π/3, Λ=1, and β = 0.”
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Figure 12.7: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc)

with log10Da for different values of ϵ with Pr = 7, k=0.5, γ1=0.1, Dρ=10, αT=1.2, αd=1.2,

θ = π/3, Λ=1, and β = 0.”
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12.6 Conclusions

The linear stability of two-phase dusty Casson fluid flow in a porous inclined channel while

accounting for the effect of changing viscosity is examined. The critical Rayleigh number

and critical wavenumber for different parameters such as θ, k, Dρ, αT , αd, Pr and ϵ are

computed and graphically shown with respect to Da.

� The variable viscosity parameter (k), and channel’s inclination angle (θ) destabilizes

the flow for both phases.

� Mass concentration parameter (Dρ), momentum dust parameter (αd), Prandtl number

(Pr), and porosity parameter (ϵ) help to stabilize flow within an inclined channel.

As a result, an increase in these variables acts as a stumbling block to the onset of

convection.

� When the channel is oriented vertically, and k=0.5 the flow has the least stability.
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Chapter 13

The effects of heat source/sink and

radiation on the flow stability of

two-phase dusty Casson fluid in a

porous inclined channel 1

13.1 Introduction

The stability properties of two-phase dusty Casson fluid in an inclined porous channel with

heat source/sink and radiation effect has not been. Consequently, this chapter investigates

the heat source/sink and radiation effect convection stability in two-phase dusty Casson fluid

flow in an inclined porous channel (at an angle of inclination θ).

13.2 Mathematical Formulation

Consider an unsteady, incompressible flow of a two-phase dusty Casson fluid in tilted channel

with a width of 2L with two impermeable, completely thermally conducting walls and an

inclination of θ. A schematic illustration of the problem is shown in Fig. 11.1. The porous

medium is assumed to be homogenous and isotropic. Temperatures on both the upper

and lower walls are kept at T2 and T1, respectively. Using the above assumptions and

1Communicated in “Transport in Porous Media”
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the Oberbeck-Boussinesq approximation, the following set of equations describes the flow

[113, 50, 114]:

For the fluid phase:

∇ · V⃗ = 0 (13.1)

ρ

ϵ

(
∂V⃗

∂t
+

1

ϵ
(V⃗ · ∇)V⃗

)
= −∇p+

(
1 +

1

γ

)
µ̃∇2V⃗ − µ

K
V⃗ + ρgβT (T − T1)

(sin(θ)êx + cos(θ)êy) +
ρp
τm

(V⃗p − V⃗ )

(13.2)

ρCp

(
∂T

∂t
+ V⃗ · ∇T

)
= k∇2T +Q0(T − T1)−∇qr +

ρpCs

τT
(Tp − T ) (13.3)

For the particle phase:

∇ · V⃗p = 0 (13.4)

ρp
ϵ

(
∂V⃗p
∂t

+
1

ϵ
(V⃗p · ∇)V⃗p

)
= −∇pp −

ρp
τm

(V⃗p − V⃗ ) (13.5)

ρpCs

(
∂Tp
∂t

+ V⃗p · ∇Tp
)

= −ρpCs

τT
(Tp − T ) (13.6)

The boundary conditions for the fluid phase:

y = −L : V⃗ = 0, T = T1, y = L : V⃗ = 0, T = T2 (13.7)

The boundary conditions for the particle phase:

y = −L : V⃗p = 0, Tp = T1, y = L : V⃗p = 0, Tp = T2 (13.8)

where, Q0 is dimensional heat source/sink, and qr = −16η2σT 3∇T/3βR radiative heat flux.

The non-dimensional form of the Eqs. (13.1) -(13.6) (on substituting (11.9) in (13.1) -(13.6)

and removing asterisk) are: For the fluid phase:

∇ · V⃗ = 0 (13.9)

1

va

∂V⃗

∂t
+

1

ϵva
(V⃗ · ∇)V⃗ = −∇p+ ΛDa

(
1 +

1

γ

)
(∇2V⃗ )− V⃗ +RaT

(sin(θ)êx + cos(θ)êy) +DραdDa(V⃗p − V⃗ )

(13.10)
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∂T

∂t
+ V⃗ · ∇T = (1 +Rd)∇2T +QT +Dργ1αTPr(Tp − T ) (13.11)

For the particle phase:

∇ · V⃗p = 0 (13.12)

Dρ

va

∂V⃗p
∂t

+
Dρ

ϵva
(V⃗p · ∇)V⃗p = −∇pp −DραdDa(V⃗p − V⃗ ) (13.13)

∂Tp
∂t

+ V⃗p · ∇Tp = −PrαT (Tp − T ) (13.14)

The fluid phase’s boundary conditions are as follows:

V⃗ = 0, T = 0, at y = −1, and V⃗ = 0, T = 1 at y = 1 (13.15)

The particle phase’s boundary conditions are as follows:

V⃗p = 0, Tp = 0, at y = −1, and V⃗p = 0, Tp = 1 at y = 1 (13.16)

where Rd=
16η2σT 3

3βR
represents radiation parameter, and Q = Q0L2

k
represents heat source/sink

parameter.

13.3 Basic solution

In the basic stage, the flow is regarded as continuous, one-directional (in the x-direction), and

completely developed. Eqs. (13.9)-(13.14) may be reduced into set of ordinary differential

equations by applying these conditions:

ΛDa
(
1 +

1

γ

)d2Ub

dy2
− Ub =

∂p0
∂x

−RaT0 sin(θ)−DραdDa(Upb − Ub) (13.17)

∂p0
∂y

= RaT0 cos(θ) (13.18)

∂p0
dz

= 0 (13.19)

(1 +Rd)
d2T0
dy2

+QT0 +Dργ1αTPr(Tp0 − T0) = 0 (13.20)

∂pp0
∂x

+DραdDa(Upb − Ub) = 0 (13.21)
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∂pp0
∂y

= 0 (13.22)

∂pp0
dz

= 0 (13.23)

PrαT (Tp0 − T0) = 0 (13.24)

The boundary conditions are:

y = −1 : Ub = 0, Upb = 0, T0 = 0, Tp0 = 0,

y = 1 : Ub = 0, Upb = 0, T0 = 1 Tp0 = 1,
(13.25)

Proceeding as in Chapter-2, we get basic solution as:

T0 = Tp0 =
1

2

(
cos(

√
my)

cos(
√
m)

+
sin(

√
my)

sin(
√
m)

)
(13.26)

Ub =
1

2 (m+m2
1)

(
sech(m1) cosh(m1y)

(
2(σ + σ1)

(
m+m2

1

)
−m2

1Ra sin(θ)
)

−2(σ + σ1)
(
m+m2

1

)
+m2

1Ra sin(θ)
(
2 csc

(
2
√
m
)
sin
(√

m(y + 1)
)

−csch(m1) sinh(m1y)
)) (13.27)

Upb = − σ1
DaDραd

+
1

2 (m+m2
1)

(
sech(m1) cosh(m1y)

(
2(σ + σ1)

(
m+m2

1

)
−m2

1Ra sin(θ)
)

−2(σ + σ1)
(
m+m2

1

)
+m2

1Ra sin(θ)
(
2 csc

(
2
√
m
)
sin
(√

m(y + 1)
)

−csch(m1) sinh(m1y)
))

(13.28)

where:

σ =
tanh(m1)

(
m1Ra sin(θ)

m+m2
1

− 2σ1

m1

)
− m2

1Ra tan(
√
m) sin(θ)

√
m(m+m2

1)
+ 2σ1 + 2

2 tanh(m1)
m1

− 2
,

σ1 = 0, m1 =
1√

ΛDa
(
1 + 1

γ

) , And, m =
Q

1 +Rd
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13.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (δ) on the basic state solutions,

ignoring δ2 and higher order terms, using the usual normal mode form [50] to express in-

finitesimal disturbances of corresponding field variables, and removing pressure terms from

the resulting equations, the linearized stability equations are obtained as:

ΛDa
(
1 +

1

γ

)[d4v̂
dy4

− 2
d2v̂

dy2
(α2 + β2) + (α2 + β2)2v̂

]
− iα

va

(
Ub

ϵ
− c

)[d2v̂
dy2

− (α2 + β2)v̂
]

+
iα

ϵva

d2Ub

dy2
v̂ −

[
d2v̂

dy2
− (α2 + β2)v̂

]
−Raiα

dT̂

dy
sin(θ)−Ra(α2 + β2) cos(θ)T̂

+DaDραd

[d2v̂p
dy2

− (α2 + β2)v̂p

]
−DaDραd

[d2v̂
dy2

− (α2 + β2)v̂
]
= 0

(13.29)

−iαDρ

va

(
Upb

ϵ
− c

)[d2v̂p
dy2

− (α2 + β2)v̂p

]
+
iαDρ

ϵva

d2Upb

dy2
v̂ −DaDραd

[d2v̂p
dy2

− (α2 + β2)v̂p

]
+DaDραd

[d2v̂
dy2

− (α2 + β2)v̂
]
= 0

(13.30)

1

va
(−iαc)η̂ + 1

ϵva

[
βv̂
dUb

dy
+ Ubη̂iα

]
− ΛDa

(
1 +

1

γ

)[d2η̂
dy2

− (α2 + β2)η̂

]
+ η̂

−βRaT̂ sin(θ)−DaDραd(η̂p − η̂) = 0

(13.31)

Dρ

va
(−iαc)η̂p +

Dρ

ϵva

[
βv̂p

dUpb

dy
+ Upbη̂piα

]
+DaDραd(η̂p − η̂) = 0 (13.32)

dT0
dy

v̂ + iα (Ub − c) T̂ − (1 +Rd)

[
d2T̂

dy2
− (α2 + β2)T̂

]
−QT̂ −DραTγ1Pr(T̂p − T̂ ) = 0

(13.33)
dTp0
dy

v̂p + iα (Upb − c) T̂p + PrαT (T̂p − T̂ ) = 0 (13.34)

13.5 Results and discussion

The equations from Eqs. (13.29) - (13.34) represent a generalized eigenvalue problem in

which the eigenvalues are perturbed and expressed in terms of the wave speed. The spectral

technique [107] is employed to find the solution to this eigenvalue problem. In order to vali-

date the accuracy of this method, we ran the MATLAB code for calculating eigenvalues with

varying grid point numbers (N) and obtained least stable eigenvalues, which are presented
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in Table 13.1 for an arbitrary combination of parameters. When N ≥ 50, the least stable

eigenvalue reached convergence criterion of 10−7, and these results remained constant despite

varying parameter values. In our numerical calculations, we chose to use N = 50 as a result.

The present analysis’s outcomes are compared with a vertically oriented channel con-

taining nanofluid-saturated porous material. The results of γ → ∞, Pr=7, θ = π/2, V⃗p=0,

Tp=0, pp=0, αT=0, αd=0, Dρ=0, Q=0, and Rd=0 in absence of NB, NA, ϕ, Le and Rm,

were obtained which is in accordance with the findings of Srinivasacharya and Barman [50].

This paper investigates, under two-phase conditions, the convective stability of a dusty

Casson fluid flow in a porous inclined channel with changing viscosity. The influence of

heat source/sink parameter (Q), Radiation parameter (Rd), inclination angle (θ), mass con-

centration parameter (Dρ), momentum dust parameter (αd), thermal dust parameter (αT ),

Prandtl number (Pr) , and porosity parameter (ϵ) on the flow instability is studied in-depth

in this paper. The problem demonstrates two distinct flow problems under the following

conditions:

1. γ → ∞ represents the Newtonian dusty fluid flow problem,

2. Non-Newtonian, dusty Casson fluid flow problem with a finite value for γ.

In Figs. 13.1-13.8, we observe a similar flow instability pattern for both phases. However,

dusty fluids are always located below dusty Casson fluids.

Fig. 13.1 depicts the graphs illustrating the critical Rayleigh number (Rac) and the crit-

ical wavenumber (αc) vary with variations in the Darcy number (Da) for various inclination

angles (θ). As θ changes from horizontal to vertical, Rac decreases for both phases, demon-

strating that destabilizes the fluid flow. This is due to when a channel is tilted, gravity acts

perpendicular to the flow direction, causing density gradients to form within the flow. These

density gradients can cause particles to descend to the bottom of the flow, while lighter fluid

rises to the surface. In contrast, as the Darcy number (Da) increases, so does Rac, indicat-

ing that permeability has a stabilizing effect. In addition, once Da reaches 1, Rac increases

rapidly as Da continues to ascend. For lower Darcy numbers (Da < 1), Rac displays slow

and smooth fluctuations, highlighting that there is visible flow resistance within the porous

medium. This resistance to flow falls as permeability rises, resulting in enhanced flow within

the porous medium and highlighting the importance of viscous forces in the momentum

equation. In terms of the critical wavenumber, it increases as both Da and θ increases.

192



For different values of the mass concentration parameter (Dρ), Fig. 13.2 displays the

variation of the critical Rayleigh number and the critical wavenumber. We noticed that as

Da increases, so does Rac. Also, as Dρ increases, Rac increases. Hence, Dρ stabilizes the

flow. If the concentration of the dust particles is too high, they can settle out of the fluid

and accumulate at the bottom of the channel. This can lead to a non-uniform distribution

of dust particles, which can affect the fluid’s rheological properties. On the other hand,

if the concentration of the dust particles is too low, they may not significantly affect the

fluid’s flow properties. In this case, the fluid flow may still be unstable and turbulent due

to the effects of gravity. However, asDa rises, αc increases, but asDρ increases, αc decreases.

For different values of the heat source/sink parameter (Q), Fig. 13.3 displays the varia-

tion of the critical Rayleigh number (Rac) and critical wavenumber (αc). We noticed that

as Da increases, so does Rac. However, as Q increases, Rac falls significantly. Hence Q

destabilizes the flow due to the coupling between heat transfer and fluid flow. When a fluid

is subjected to a heat source or sink, it causes temperature variations, which in turn affect

the fluid’s properties, such as density and viscosity. In the case of a two-phase dusty Casson

fluid flow, the presence of particles further complicates the situation, as the particles can

interact with the fluid and alter its properties. However, as Da and Q both rise, αc increases.

The critical Rayleigh number and critical wavenumber for radiation parameter (Rd) are

shown fluctuating in Fig. 13.4. We have noticed that there is a slight increase in Rac

as Rd increases. It demonstrates that Rd had a stabilizing effect on the flow field. Because

Radiation parameter can promote thermal equilibrium by balancing the energy transfer in the

fluid. This can reduce the temperature gradients and promote a more uniform temperature

distribution in the fluid. As a result, the fluid’s properties, such as density and viscosity,

become more stable and predictable, leading to a more stable flow. Additionally, the presence

of particles in a two-phase dusty Casson fluid flow can also promote stability. The particles

can act as a stabilizing mechanism by damping the fluid’s motion and reducing turbulence.

Also, as we increase Da, Rac increases. However, when Rd rises, αc decreases. But as Da

rises, αc rises as well.

The critical Rayleigh number and critical wavenumber variations for different thermal

dust parameter (αT ) values are shown in Fig.13.5. We’ve observed that as Da increases, so

does Rac. However, there is no variation in Rac as αT increases. Consequently, αT does

not significantly affect the stability of the two-phase dusty Casson fluid flow. This might

occur because in the two-phase dusty Casson fluid flow, the thermal dust parameter mainly
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affects the thermal conductivity of the fluid by increasing it due to the presence of particles.

However, this increase in thermal conductivity does not typically have a significant effect on

the flow stability. αc increases as Da increases, whereas αc does not alter as αT increases.

Fig. 13.6 depicts the variations in the critical Rayleigh number and critical wavenumber

for different momentum dust parameter (αd) values. We’ve observed that as Da and αd both

rise, so does Rac. This means that αd stabilizes fluid flow. This could happen because the

momentum dust parameter can also affect the rheological properties of the fluid, such as its

viscosity and yield stress. The presence of solid particles can significantly alter the rheo-

logical properties of the fluid, leading to complex flow behavior. A higher momentum dust

parameter can result in a higher viscosity and yield stress, which can stabilize the flow and

prevent instabilities. Also, as Da increases, so does αc, whereas as αd increases, αc decreases.

The impact of Prandtl number (Pr) on the instability boundaries is seen in Fig. 13.7.

As momentum diffusivity increases, defined by the Prandtl number (Pr), so does the critical

Rayleigh number. As a consequence, It demonstrates Pr stabilizes the flow field by pro-

moting a more uniform temperature and viscosity profile, reducing thermal gradients, and

promoting the development of thermal boundary layers that can dampen out disturbances

in the flow. Moreover, αc increases as Da and Pr grows. Also, as Pr rises, αc falls.

Fig. 13.8 depicts the boundaries of the instability region and how they vary as the per-

meability parameter (Da) and porosity parameter (ϵ) change. As shown in Fig. 13.8, the

critical Rayleigh number (Rac) tends to increase as the porosity parameter increases. This

trend occurs because porosity represents the proportion of a material’s total volume that is

occupied by vacancies, essentially measuring the voids within a porous material. Therefore,

contributes to the stabilization of the flow. As porosity increases, so does the volume of

spaces within the material. In addition, it can be observed that αc, the critical wavenumber,

increases as porosity parameter value and the value of Da increase.
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Table 13.1: “Convergence of the least stable eigenvalue for Da = 0.1, Pr = 0.1, ϵ = 0.1,
γ=0.1, γ1=0.1, Dρ=10, αT=1.2, αd=1.2, Rd=0.5, Q=0.3, θ = π/3, Λ=1, and β = 0.”

N Rac αc

40 31.098136130712 1.221563612044
45 31.098160037968 1.221554606938
50 31.098167907749 1.221533438558
55 31.098184630907 1.221386254531
60 31.098144341013 1.221403510588

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0
2 . 5

3 . 0

3 . 5

4 . 0

4 . 5

5 . 0

5 . 5

6 . 0

log
10

Ra
c

l o g 1 0 D a

 D u s t y  C a s s o n  f l u i d  ( γ= 0 . 5 )
  D u s t y  f l u i d  ( γ= ∞)

θ=0, π/6, π/4, π/3, π/2

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0
0 . 9 5

1 . 0 0

1 . 0 5

1 . 1 0

1 . 1 5

1 . 2 0

1 . 2 5

1 . 3 0

1 . 3 5

α
c

l o g 1 0 D a

 D u s t y  C a s s o n  f l u i d  ( γ= 0 . 5 )
  D u s t y  f l u i d  ( γ= ∞)

θ=0, π/6, π/4, π/3, π/2

Figure 13.1: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of θ with Pr = 7, ϵ = 0.3, γ1=0.1, Dρ=10, αT=1.2, αd=1.2,

Rd=0.5, Q=0.3, Λ=1, and β = 0.”
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Figure 13.2: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of Dρ with Pr = 7, ϵ = 0.3, γ1=0.1, αT=1.2, αd=1.2, Rd=0.5,

Q=0.3, θ = π/3, Λ=1, and β = 0.”
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Figure 13.3: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of Q with Pr = 7, ϵ = 0.3, γ1=0.1, Dρ=10, αT=1.2, αd=1.2,

Rd=0.5, θ = π/3, Λ=1, and β = 0.”
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Figure 13.4: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of Rd with Pr = 7, ϵ = 0.3, γ1=0.1, Dρ=10, αT=1.2, αd=1.2,

Q=0.3, θ = π/3, Λ=1, and β = 0.”
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Figure 13.5: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of αT with Pr = 7, ϵ = 0.3, γ1=0.1, Dρ=10, αd=1.2, Rd=0.5,

Q=0.3, θ = π/3, Λ=1, and β = 0.”
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Figure 13.6: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of αd with Pr = 7, ϵ = 0.3, γ1=0.1, Dρ=10, αT=1.2, Rd=0.5,

Q=0.3, θ = π/3, Λ=1, and β = 0.”

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0
1 . 5

2 . 0

2 . 5

3 . 0

3 . 5

4 . 0

4 . 5

5 . 0

log
10

Ra
c

l o g 1 0 D a

 D u s t y  C a s s o n  f l u i d  ( γ= 0 . 5 )
  D u s t y  f l u i d  ( γ= ∞)

P r =0.7, 1, 7

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0
0 . 9 0

0 . 9 5

1 . 0 0

1 . 0 5

1 . 1 0

1 . 1 5

1 . 2 0

1 . 2 5

1 . 3 0

1 . 3 5

α
c

l o g 1 0 D a

 D u s t y  C a s s o n  f l u i d  ( γ= 0 . 5 )
  D u s t y  f l u i d  ( γ= ∞)

P r =0.7, 1, 7

Figure 13.7: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of Pr with ϵ = 0.3, γ1=0.1, Dρ=10, αT=1.2, αd=1.2, Rd=0.5,

Q=0.3, θ = π/3, Λ=1, and β = 0.”
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Figure 13.8: “Variation of critical Rayleigh number (Rac) and critical wavenumber (αc) with

log10Da for different values of ϵ with Pr = 7, γ1=0.1, Dρ=10, αT=1.2, αd=1.2, Rd=0.5,

Q=0.3, θ = π/3, Λ=1, and β = 0.”
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13.6 Conclusions

The linear stability of two-phase dusty Casson fluid flow in a porous inclined channel while

accounting for the effects of heat source or sink and radiation is examined. The critical

Rayleigh number and critical wavenumber for different parameters such as θ, γ, Dρ, Q, Rd,

αT , αd, Pr and ϵ are computed and graphically shown with respect to Da.

� The Casson parameter (γ), channel’s inclination angle (θ), heat source/sink parameter

(Q) and destabilizes the flow.

� Mass concentration parameter (Dρ), radiation parameter (Rd), momentum dust pa-

rameter (αd), Prandtl number (Pr), and porosity parameter (ϵ) help to stabilize flow

within an inclined channel. As a result, an increase in these variables acts as a stum-

bling block to the onset of convection.
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Part V

SUMMARY AND CONCLUSIONS

201



Chapter 14

Summary and Conclusions

Linear stability of convection in an inclined porous channel filled with nanofluid, Casson

fluid, and dusty fluid has been investigated in this thesis. The study examines the impact

of parameters such as double diffusion, magnetic field, interphase heat transfer parameter

(LTNE), variable viscosity, heat source/sink, thermal radiation, and chemical reaction on

the onset of convection.

The governing partial differential equations of the flow and their associated boundary

conditions in the Chapters - 2 through Chapters - 13 are initially cast into dimensionless

form using suitable transformations. Small perturbations are imposed on the basic velocity,

temperature, nanoparticle volume fraction and pressure. The generalized eigenvalue problem

for the perturbed state is obtained from a normal mode analysis. This eigenvalue problem is

solved using the Chenyshev spectral collocation method in MATLAB. The effects of various

geometrical and fluid parameters on the onset of convection is presented through graphs and

discussed. The important observations made from this study are listed below:

� The disturbances are least stable for dusty, Casson, and nanofluid fluids for vertical

inclination (θ = π/2), and the variable viscosity parameter (k) is 0.5.

� An increase in Hartmann number (Ha), porosity parameter (ϵ), and Prandtl number

(Pr) causes a delay in convection for θ = π/3.

� The increasing thermo-solutal Lewis number (Ln), Soet number (Sr), Darcy number

(Da), and Dufour number (Df ) for both variable and constant viscosity induce delays

in convection.
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� As NHP increases, the critical Rayleigh number (Rac) rises, and as NHS climbs, Rac

falls. As a result, in both circumstances where the flow is regulated by constant

and variable viscosity, for all values of NHP stabilize the flow, but for all values NHS

destabilize the flow field. When we increase NHP , however, there is no change in the

critical Rayleigh number Rac on inclination from horizontal to vertical.

� For all values of NHP , γp, γs, ϵp, and ϵs stabilize the flow with constant viscosity, while

γs stabilizes the flow with variable viscosity field.

� For all values of NHS, γp, and ϵp, destabilize the flow with constant viscosity, while γp,

γs, ϵp, and ϵs destabilizes the flow with variable viscosity field.

� For a nanofluid flow, streamlines form Rayleigh-Bernard convection cells when the

channel is vertical (θ = π/2). As the inclination angle decreases, the cells expand ver-

tically and create a horizontal cell structure at θ = 0. Changing the channel inclination

from vertical to horizontal reorients streamlines from horizontal to vertical.

� For a Casson fluid flow in an inclined channel, convection occurs sooner for increas-

ing values of the heat source/sink parameter (Q), Casson parameter (γ), radiation

parameter (Rd), and chemical reaction parameter (Rc).

� When the radiation parameter (Rd) of two-phase dusty fluids increases, convection

is delayed; conversely, when the heat source/sink parameter (Q) increases, it occurs

sooner. However, the increasing mass concentration parameter (Dρ) and momentum

dust parameter (αd) result in delay in convection when two-phase dusty fluid flow is

controlled by both constant and variable viscosity fields. However, there is no signifi-

cant effect on the increased thermal dust parameter (αT ).

� For both constant and variable viscosity fields, the neutral stability graphs for dusty

Casson fluid always situated below the neutral stability graphs for dusty phases.

The work presented in the thesis can be extended by studying the analysis in various

non-Newtonian fluids like Micropolar fluids, Couple stress fluids, Power-law fluids and the

geometry can be changed to pipe, through annulus and an inclined pipe. Further, this work

can be extended to study the analysis on nonlinear stability.
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