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ABSTRACT

In recent years, the study of convective transport through porous media has emerged as an
intriguing and significant subject, owing to its relevance in various industrial and engineering
applications. Additionally, the exploration of convective instability in fluid-saturated porous
layers, heated from below, has long captivated the attention of researchers across different
physical conditions. This field finds extensive utility in geophysics, food processing, oil
reservoir modeling, thermal insulation construction, and nuclear reactors. Understanding
the mechanism of instability in incompressible nanofluid, Casson fluid, and dusty fluid flows
through porous media is of utmost importance due to its practical implications in engineering.
Nanofluids, which are created by uniformly dispersing and suspending metallic particles on
a nanometer scale in conventional heat transfer fluids like water, oil, or ethylene glycol, are
particularly relevant and Casson fluid refers to a type of non-Newtonian fluid that exhibits
a non-linear relationship between shear stress and shear rate. The primary objective of this
thesis is to conduct a linear stability analysis of incompressible nanofluid, Casson fluid and

dusty fluid flows in an inclined channel filled with a porous medium.

This thesis is organized into four parts and fourteen chapters. Part- I is composed of a
single chapter, Chapter 1. This chapter serves as an introduction and covers several concepts,
including nanofluid, Casson fluid, dusty Casson fluid, and porous medium. Additionally, it

includes a review of relevant literature related to these topics.

Part-IT contains six chapters, namely Chapters 2, 3, 4, 5, 6 and 7. Chapter - 2 investi-
gates convective stability of nanofluid flow in inclined porous channel, considering Brownian
motion, thermophoresis, and Brinkman’s equation. In Chapter - 3, deals the impact of local
thermal non-equilibrium (LTNE) on nanofluid flow stability in an inclined channel filled with
a porous medium. Chapter - 4 considers the effects of double diffusion and a magnetic field
on the stability of nanofluid flow in an inclined porous channel. Chapter 5 investigates the
effect of variable viscosity on the stability of nanofluid flow in an inclined porous channel.
Chapter- 6 investigates numerically the local thermal non-equilibrium state of the fluid, par-
ticle, and solid-matrix phases for the stability of nanofluid flow in an inclined channel with
variable viscosity filled with a porous medium. In Chapter- 7, the effects of double diffu-
sion and variable viscosity on the stability of a nanofluid-saturated Darcy-Brinkman porous

medium in an inclined channel are investigated.

Part III comprises three chapters, namely Chapters 8, 9, and 10. Chapter 8 delves into
the examination of the stability of Casson fluid flow in an inclined channel with a highly

permeable porous medium. The analysis takes into account the presence of a heat source or

vi



sink. In Chapter 9, the investigation shifts towards exploring the stability of Casson fluid
flow in an inclined porous channel, considering the effects of chemical reaction and radiation.
Chapter 10 is dedicated to investigating the impact of variable viscosity on the stability of

Casson fluid flow in an inclined porous channel.

Part-IV contains three chapters, namely Chapters 11, 12, and 13. In Chapter 11, the
focus shifts to the investigation of the impact on the stability of two-phase dusty Casson
fluid flow in an inclined porous channel. In Chapter 12, the emphasis is placed on studying
the impact of variable viscosity on the stability of two-phase dusty Casson fluid flow in an
inclined porous channel. Chapter 13 discusses the impact of heat source/sink and radiation
on the stability of two-phase dusty Casson fluid flow in an inclined porous channel. In each
of the preceding chapters, the non-linear governing equations and their associated boundary
conditions are initially cast into dimensionless form through a suitable set of non-dimensional
transformations and then converted into a system of linear ordinary differential equations by
linear stability analysis and the normal mode technique. Chebyshev’s spectral collocation
method is used to solve the resultant system of ordinary differential equations. The impact
of relevant parameters on the onset of convection is depicted in graphs and tables. In addi-
tion, for some problems, the pattern of streamlines, isotherms, and isonanoconcentrations is

plotted at a critical level over a single period.

Part V is comprised of a solitary chapter, namely Chapter 14, which serves the purpose

of summarizing the research findings, presenting overall conclusions, and future work scope.
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o thermal capacity ratio
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INTRODUCTION



Chapter 1

Preliminaries and Review

1.1 Introduction

Convective transport in porous media has gained significant attention in recent years due to
its wide range of applications across mechanical, chemical, and civil engineering disciplines.
These applications encompass a broad spectrum of fields, including the movement of moisture
in fibrous insulation, the dispersion of chemical pollutants in saturated soil, the extraction
of geothermal energy, food processing and storage, geophysical systems, underground waste
disposal (both nuclear and non-nuclear), electrochemistry, thermal insulation in buildings,
metallurgy, the design of pebble-bed nuclear reactors, and cooling systems for electronic
devices. Different models, such as Darcy [1], Brinkman-extended Darcy [2], Forchheimer-
extended Darcy [3]|, and the generalized flow models, were proposed in the literature to
explain the mathematical and physical aspects associated with convective transport in porous

media.

The recent emergence of nanofluids, which are engineered suspensions of nanoparticles in
liquids, has captured the attention of numerous researchers. These nanofluids have generated
significant interest due to their potential to enhance heat transfer rates in engineering systems
while mitigating issues such as erosion, sedimentation, and clogging that plagued previous
mixtures containing larger particles. Nanofluids have a wide range of applications in various

technical fields, including the automotive industry, medicine, power plant cooling systems,



and computer systems. One of the most crucial and compelling areas of study in heat and
mass transfer theory involves the convection resulting from heated or cooled objects with
different geometries and physical conditions in a porous medium saturated with nanofluids.

This particular scenario holds immense theoretical and practical importance.

The concept of stability plays a significant role in the mathematical investigation of
physical systems, influencing their development. As real-world examples show, stability con-
siderations frequently play a role in the practical application of various technical systems.
Engineering constructions like bridges, plates, and shell structures subjected to pressure load-
ing or unloading by flowing fluids, as well as high-speed vehicles, truck-trailer combinations,
railway trains, and hydrodynamic challenges, all require stability as a crucial factor. The
term “hydrodynamic stability” refers to the response of laminar flow to a small disturbance.
If a flow returns to its previous laminar state after a certain period of time and remains in
that state, it is deemed stable. However, it is considered unstable if it transitions to a dif-
ferent state. Researchers have employed linearized stability analysis to solve hydrodynamic
and hydromagnetic stability problems in various geometries using different fluid models in

recent decades.

1.2 Nanofluids

Nanofluids are advanced engineered fluids that consist of a base fluid, such as water or
oil, infused with tiny suspended particles called nanoparticles. These nanoparticles, typ-
ically ranging in size from 1 to 100 nanometers, are dispersed within the base fluid to
create nanoscale composite materials. The addition of nanoparticles to the base fluid results
in unique and improved properties compared to traditional fluids. Nanofluids exhibit en-
hanced thermal conductivity, meaning they can transfer heat more efficiently than regular
fluids. This property makes nanofluids extremely attractive for thermal management and
heat transfer applications [4]. The applications of nanofluids span across various fields and
industries, e.g., nanofluids offer improved cooling capabilities for electronic devices such as
computer chips and LEDs, which generate significant heat during operation [5]. They can
absorb solar radiation more effectively, thereby increasing the heat transfer and energy con-
version rates in solar collectors and thermal energy storage systems [6, 7]. They have the
potential to enhance the efficiency of cooling systems in automotive engines and aircraft.
And nanofluids are being explored in medical diagnostics and treatments. They have the

potential to enhance imaging techniques, such as magnetic resonance imaging (MRI), and



improve targeted drug delivery systems [8, 9].

The Boungiorno and Tiwari-Das models are two popular approaches used to study the
convective flows of nanofluids. These models provide mathematical formulations to ana-
lyze the behavior of nanofluids. Tiwari and Das [10] developed a model to analyze the
behaviour of nanofluids by taking the volumetric fraction of nanoparticles into considera-
tion. Buongiorno [11] considered seven slip mechanisms, namely, inertia, Brownian diffusion,
thermophoresis, diffusiophoresis, magnus effect, fluid drainage, and gravity that can produce
a relative velocity between nanoparticles and the base fluid. In the absence of turbulent
effects, he concluded that only Brownian diffusion and thermophoresis are important slip
mechanisms in nanofluids. Based on this observation, Buongiorno proposed a mathemati-
cal model for the nanofluid based on these effects. Brownian motion refers to the random
movement of nanoparticles due to thermal fluctuations, while thermophoresis describes the
motion of particles induced by temperature gradients. The Buongiorno model considers the
combined effect of these phenomena to estimate the convective heat transfer coefficient and

temperature distribution in nanofluid flow.

The fundamental equations for the Buongiorno model consist of the continuity equation,

momentum equation, energy equation, and nanoparticle concentration equation given by:

V-V =0, (1.1)

Ps (aﬁ_‘t? +V- VV) = pig — Vp+ pu V3V, (1.2)
(%—f”w) :anfv2T+a[DBv¢-VT+?—jVT-VT : (1.3)
(% +V- v¢) = Dg V¢ + ZT)—I: VT. (1.4)

where V is the velocity vector, T is the temperature, ¢ is the nanoparticle volume fraction,
Dy is the Brownian diffusion coefficient, D is the thermophoretic diffusion coefficient, T}, is
the reference temperature, p is the viscosity of the fluid, g is the gravitational acceleration,
ay¢ is the thermal diffusivity for nanofluid, and o = (pc),/(pc)s is the ratio between heat

capacity of nanofluid and nanoparticles.



1.3 Casson Fluids

Casson fluid is a non-Newtonian fluid that describes the behavior of certain viscoelastic
materials, such as suspensions and pastes. Unlike Newtonian fluids, which exhibit a linear
relationship between shear stress and shear rate, Casson fluids display a non-linear behavior
characterized by yield stress and a non-zero viscosity at zero shear rates. It was first intro-
duced by Casson [12] as a mathematical model to describe the behavior of certain types of
semi-solid materials, such as mud, chocolate, and paint. The unique properties of Casson
fluids make them important in various industrial and biomedical applications. For example,
they are commonly used in the production of paints, cosmetics, and food products, where
their shear thinning behavior helps to improve the flow and consistency of the materials
[13]. In medicine, Casson fluids are used to model the behavior of blood and other biological

fluids, and to study the flow of fluids through blood vessels and other tissues [14].

The Casson model proposes that the fluid consists of a network of internal structures or
particles embedded in a continuous medium [15]. These structures interact and rearrange
under applied stress, giving rise to the unique rheological properties exhibited by Casson
fluids. The model introduces two fundamental parameters: yield stress and Casson viscosity.
The yield stress represents the minimum stress required to initiate flow, while the Casson

viscosity accounts for the resistance to flow once yielding has occurred [16].
The dynamical equations for a Casson fluid with an isotropic rheology are as follows:
2<,Ub + \/p2—y76>€ij, T < T
Tz’j =
Q(Mb—i‘j—;—w)eij, ™ > T,

py is known as yield stress of the fluid, mathematically expressed as:

HpV 2T
Dy = bfy (15)

1y is known as plastic dynamic viscosity of the non-Newtonian fluid, 7 is the product of the
component of deformation rate with itself (i.e. ™ = e;;e;;), where e;; is the (i, j)™ component
of the deformation rate and =, is the critical value based on the non-Newtonian model. In a

case of Casson fluid (Non Newtonian) flow, where m > 7, it is possible to say that

Py

= Uy +
m= o

(1.6)



Substituting (1.5) into (1.6), the kinematics viscosity of Casson fluid is now depending on

plastic dynamic viscosity pus, density p and Casson parameter ~y

¢= %(H%) (1.7)

The Casson model’s fundamental equations consist of the continuity equation, momentum

equation, and energy equation given by:

V.-V =0, (1.8)
p @—I—V vV —pg—Vp—ir(l—kl),uVQV (1.9)
ot 0% ’ '
T -
(%—t + V- VT) = ayV?T (1.10)

where p is the pressure of Casson fluid phase, oy is the thermal diffusivity for Casson fluid,
v is Casson parameter.

Based on mathematical study, the range of Casson fluid parameter () suitable for this
model is 0 to co. When v — 0, the yield stress is negligible compared to its plastic viscosity,
essentially behaving like a Newtonian fluid, where as at v — o0, it acts as non-Newtonian
fluid.

1.4 Two-phase Dusty Casson Fluids

The fluid flows along with dust particles have an extensive range of mechanical applications
like transport processes, cement and steel manufacturing industries, flying ash from ther-
mal plants, and chilling consequences of AC’s. Two-phase flow occurs when two distinct
aggregation states of the same material or two distinct substances exist concurrently. All
combinations are feasible, including gaseous and liquid, gaseous and solid, and liquid and
solid. Dusty fluid flow can yield a number of forms, including flows that transform from pure
liquid to vapor due to outside heat-separated flows and distributed two-phase flows in which
one of the phases exists as particles, bubbles, or droplets in a continuous phase (i.e., liquid
or gas). Furthermore, bubbles, rain, and sea waves are examples of two-phase flows. Two-
phase flows in microgravity are used in a wide variety of critical applications, including fluid
handling and storage, as well as thermal and power systems on spacecraft (e.g., condensers,

evaporators, and piping systems). The two-phase dusty fluid has numerous practical appli-



cations in various industries, such as boiling and condensation, chemical processing, the oil

and gas industry, refrigeration and air conditioning, and biomedical applications [17]

The two-phase flows involving solid particles scattered in a Casson fluid have significant
applications in industries. In a two-phase dusty Casson fluid flow, the Casson fluid acts as
the continuous phase, providing the medium through which the solid particles move. The
dispersed solid particles can range in size, concentration, and properties depending on the
specific application. The interaction between the particles and the Casson fluid introduces
additional complexities to the flow, such as particle-particle and particle-fluid interactions,
particle settling, and the formation of particle clusters or agglomerates. Two-phase dusty
Casson fluid flow refers to the behavior and dynamics of a mixture consisting of Casson fluid
and dispersed solid particles. This system involves the simultaneous flow of the Casson fluid
and the suspended particles, which can have significant impacts on the overall flow behavior

and characteristics.

The two-phase dusty Casson fluid flow is governed by the following equations:
For the fluid phase:

V-V=0 (1.11)
8‘7 — — 1 — p — —
— - = pg — 1+ = 2V 4+ 2y — 1.12
f’(at” W> pg— Vp+ +7)MVV+Tm(Vp V), (1.12)
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For the particle phase:
V-V,=0 (1.14)
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. (G2 4+ V1, ) = =251, - 1) (1.16)
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where T' is the temperature Temperature of fluid phase, T}, is the temperature of particle
phase, p is the pressure of fluid phase, p, is the pressure of particle phase, p is the density
of fluid phase, p, is the density of particle phase, C), is the specific heat of fluid at constant
pressure, C is the specific heat of particle at constant pressure, 7, is the velocity relaxation

time of the particles, 77 is the thermal relaxation time of the particles,



1.5 Porous Medium

Porous media refers to materials or substances that contain interconnected voids or pores,
which allow for the flow and storage of fluids within them. Examples of porous media
include soil, rock formations, filters, and sponges. The study of porous media is essential in
various fields, including geology, hydrology, petroleum engineering, environmental science,

and chemical engineering [18].

Porous media exhibit unique physical and flow properties due to the complex structure
of interconnected pores. The arrangement, size, and connectivity of the pores significantly
influence the behavior of fluid flow, heat transfer, and mass transport within the medium. To
understand and characterize porous media, several models have been proposed to describe
the mathematical and physical aspects of porous media. Among these, the Darcy model and

a series of its modifications attracted much acceptance.

Darcy Model

Darcy [1] introduced the fundamental equation that governs fluid motion in a vertical porous
column. This equation represents a delicate equilibrium between viscous force, gravitational

force, and pressure gradient. Mathematically, it can be expressed as follows:
- K
VZ—E(Vp—pg), (1.17)

where V is the space averaged velocity (or Darcian velocity), K is the (intrinsic) permeability

of the medium.

The aforementioned law appears to be in excellent agreement with experimental results
for one-dimensional flows and systems with low porosity. This model is only pertinent to
seepage flows, i.e., flows with a low Reynolds number (O(Re) < 1), because it does not

account for inertial effects.

Darcy-Forchheimer Model

Forchheimer [3] conducted experimental investigations and proposed an adjustment to the
momentum equation to incorporate the influence of inertial effects. He suggested including

a term proportional to the square of the velocity. The modified form of Darcy’s equation,



taking into account Forchheimer’s modification, is as follows:

K

K - | -
1+#rvr V=~V rel (1.18)

where cp is the dimensionless form drag coefficient and it varies with the nature of the
porous medium. The coefficients introduced by Darcy and Forchheimer incorporate the
characteristics of both the fluid properties and the microstructure of the porous medium.

Several experimental studies have confirmed the model’s validity.

Darcy-Brinkman Model

Brinkman [2] proposed a modification to Darcy’s equation by introducing the Laplace term.
This adjustment was based on the assumption that when flow occurs through a porous
medium with high permeability, it should reduce to viscous flow in the limit. Brinkman
recognized the significance of accounting for the viscous force exerted by a flowing fluid on a
densely packed arrangement of spherical particles within the porous material. To balance the
pressure gradient, he added the term ﬂV2‘7 to the equation. Here, i represents the effective
viscosity, which can be calculated as ft = p(1—2.5(1—¢)), where p is the viscosity of the fluid
and e is the porosity of the medium. The applicability of the Brinkman model is primarily
limited to porous media with high porosity, as supported by experimental observations. The

governing equation of the Brinkman model is given as:

—[Vp - pg] = %V — AV2V. (1.19)

1.6 Basic Terminology

Oberbeck-Boussinesq Approximation

The Oberbeck-Boussinesq approximation is a simplification used in fluid dynamics to model
certain types of flows, particularly those involving small density variations. It is commonly
employed in situations where the effects of buoyancy, such as natural convection, dominate
the flow behavior. This approximation allows for the decoupling of density variations from
other flow properties, simplifying the governing equations and enabling easier analysis and

computation [19].



The density difference p — p, in the buoyancy portion of the momentum equation for

nanofluids can be conveniently and simply defined as

p=¢pp + (1 —¢)pnl — Br(T —T1)], (1.20)

where p,, is the nanoparticle density, ¢ is the nanoparticle volume fraction, 7} is the refer-
ence temperature and pg is the fluid density at reference temperature at some point in the
medium, St is the coefficient of thermal expansion. If the density p varies linearly with T’

over the range of values of the physical quantities encountered in the transport process, St

1 (0p
Pr = ;<ﬁ)pp'

Local Thermal Non-Equilibrium (LTNE)

in Eq. (1.20) are given by

Local thermal equilibrium (LTE) is achieved when the temperature and heat flux rate at the
interface between the solid and fluid phases are balanced, implying no heat transfer between
them. This assumption applies when one phase dominates or the porous medium has a small
characteristic length scale. However, this assumption is not valid when there are significant
temperature differences between the solid and fluid phases or when dealing with high-speed
flows. In such cases, the solid and fluid phases have notably different temperatures, leading
to a state called local thermal non-equilibrium (LTNE). In LTNE, the fluid temperature
rapidly varies with the location of a nanoscale particle, making the system more complex.
To accurately represent LTNE, separate temperature equations are required for the solid
particle and fluid phases. Nield and Bejan [20] provided the simplest form of the heat

transport equation as follows

T

(1-— 6)(p0)s% =(1—-¢)V - kVT,+ h(T; —T), (1.21)
oy =

E(pCp)f E + V. VTf =€V - kaTf + h(TS — Tf), (122)

where h is the inter-phase heat transfer coefficient, V7T is the temperature gradient and e is
the porosity of the porous medium. The subscripts s and f refer to the solid and fluid phases
respectively. The specific heat of the solid is denoted by ¢, ¢, is the specific heat at constant

pressure of the fluid and k is the thermal conductivity.
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Hydrodynamic Stability

A physical system is said to be stable when it returns to its original state after being per-
turbed in some way. To analyze a system’s stability, it is subjected to arbitrary small
perturbations, and the system’s response to these perturbations is evaluated. To be of the
permanent type, an equilibrium state or steady flow must not only satisfy the governing

equations but also be stable against arbitrary small perturbations.

Hydrodynamic stability concerns the stability and instability of fluid motions. Hydro-
dynamic stability theory determines the reaction of a steady motion of a fluid (base flow)
to small disturbances. The stability of fluid flow is determined by the growth rate of distur-
bances. If the disturbances grow over time, the flow is considered unstable. Conversely, the
flow is considered stable if all the possible disturbances that it can be subjected to decay over
time. The origins of this theory can be traced back to the nineteenth century, to Helmholtz,

Kelvin, Rayleigh, and Reynolds.

Method of Normal Mode

Normal mode analysis is a technique employed in linear stability analysis to assess the
stability of a system around a steady-state solution. It involves linearizing the system’s
differential equations around the equilibrium point, assuming perturbations in the form
of exponential growth or decay, and substituting this assumed solution into the linearized

equations to derive an eigenvalue problem.

1.7 Literature Review

The study of the onset of linear stability of convection in a channel is very important in the
fields of geothermal system engineering, aquifer hydrology, and pollutant transport in the
water-soil system. Horton and Rogers [21] and Lapwood [22] are the first to investigate the
onset of convection in a porous medium. Since then, many researchers have examined the
instability mechanism of viscous fluid flows in a horizontal and vertical porous layer under

a variety of physical conditions.

The study of double-diffusive convection in porous media is an active research topic due
to its various applications in the domains of chemical engineering, nuclear industries, food

processing, oceanography, geophysics, cancer treatment, biotechnology, and biological fluid
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movement [23]. Several researchers have investigated the linear stability of convection using
double diffusion in a porous medium saturated with Newtonian and non-Newtonian fluids.
Mahantesh [24] explored the impact of double diffusion and chemical reaction on the stability
of a porous layer saturated with a binary fluid mixture. Deepika [25] discussed the role of
Soret and double diffusion in the start of convection in a horizontal fluid filled porous layer.
Beaume et al. [26] analyzed the three-dimensional doubly diffusive convection in a binary
fluid. Attia et al. [27] studied the role of cross diffusion on thermo-solutal convection in a
horizontal layer with uniform heat and mass fluxes. Shivakumara et al. [28] considered the
consequences of the applied magnetic field on the stability of convection in the horizontal
fluid layer with double diffusion. Shankar et al. [29] studied the stability of buoyant flow
in a vertical layer of a Darcy porous medium with double diffusion. Noon and Haddad [30]
analyzed the influences of variable gravity, rotation, and chemical reaction on the linear and
nonlinear stability of a thermosolutal convection in a Darcy porous medium. Dhiman et al.
[31] analyzed mathematically the thermohaline convection in a viscoelastic fluid saturated

porous layer.

The variable viscosity of fluids has a significant impact on fluid flow behavior and is
an important consideration in various scientific and engineering applications. In industries
such as polymer processing, food processing, and chemical processing, the viscosity of the
fluid changes with the change in temperature, pressure, and composition. In environmental
science, the variable viscosity of fluids plays a crucial role in understanding the transport
and mixing of pollutants in the atmosphere and oceans. The viscosity of air changes with
altitude and temperature, while the viscosity of seawater varies with depth and salinity [32].
In biological systems, the viscosity of body fluids such as blood, saliva, and mucus changes
with the physiological condition of the body. The variable viscosity of these fluids affects
the flow behavior, transport of nutrients and drugs, and various other biological processes
[33]. In geophysical fluid dynamics, the variable viscosity of fluids plays an important role
in understanding the dynamics of the Earth’s atmosphere and oceans. The viscosity of air
and seawater changes with temperature, pressure, and composition, affecting the flow be-
havior and circulation patterns [34]. In heat transfer applications, the variable viscosity of
fluids plays a significant role in determining the convective heat transfer rate. The viscosity
of the fluid affects the fluid flow behavior and the boundary layer development, which in
turn influences the heat transfer process [35]. Many researchers investigated linear stability
analysis with changing viscosity. Goyal et al. [36] investigated the effect of viscosity fluctua-
tions on the density-induced instability of two miscible fluids in a Hele-Shaw cell in vertical

orientation. Yadav et al. [37] investigated the effect of viscosity variation, double-diffusive
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convection, and thermal conductivity on the onset of a nanofluid-saturated porous layer that
was heated and salted from below. Umavathi et al. [38] analyzed the linear and non-linear
stability of convection in a double diffussive Maxwell nanofluid saturated porous medium.
In a Rayleigh-Bénard situation with rotation, recently Aanam et al. [39] theoretically in-
vestigated the dynamics of a ferrofluid with temperature and viscosity that are dependent

on the magnetic field.

A renewed interest in studying convective heat and mass transport in porous media has
also arisen as a result of the influence of magnetic fields on the flow structure and effectiveness
of various systems utilizing electrically conducting fluids. Several researchers have studied
linear stability analysis in the presence of a transverse magnetic field. Zhang and Zikanov
[40] analyzed the consequence of magnetic field on the linear convective stability of a liquid
metal flow in a duct with bottom heating. Hudoba and Molokov [41] explored the influence
of heat source and magnetic field on the linear stability of buoyant convective flow in a
channel. Singh et al. [42] studied the importance of the transverse magnetic field on the
linear convective stability in a differently heated channel. Camobreco et al. [43] analyzed

the linear stability of periodic pulsatile flows in a duct with a transverse magnetic field.

Nanofluids are formed by dispersing nanometer-sized, small solid or metallic particles
in normal heat transfer fluids [4]. These fluids will have higher thermal conductivity than
conventional heat transfer fluids. Nanofluids are utilized in oil recovery, solar water heating,
hybrid-powered engines, interfacial tension reduction, profile modification, indoor ventila-
tion with radiators, and microelectronics. The method of employing both nanofluid and
porous medium has received significant attention, which has prompted much research in
this area. In-depth analysis is provided by Kasaeian et al. [44] on the utilization of porous
media and nanofluids together to enhance heat transfer in thermal systems characterized by
different geometrical configurations, flow patterns, and boundary conditions. Linear stabil-
ity analysis in a nanofluid saturated porous medium has been the subject of investigation
by various researchers. Rana and Chand [45] developed a linear stability analysis model to
investigate thermal convection in a rotating nanofluid-filled porous layer governed by the
Darcy-Brinkman model. Umavathi and Prathap [46] analyzed the stability, both linear and
nonlinear, of a porous layer saturated with viscoelastic nanofluid. Khalid et al. [47] inves-
tigated the impact of an internal heat source, feedback control, and double diffusion on
the initiation of convection in a rotating layer of nanofluid. Akbarzadeh and Mahian [48]
analyzed the beginning of natural convection in a nanofluid filled porous layer sandwiched
between two solid walls. Yadav [49] examined the consequences of rotation and changing

gravitational field on the beginning of convection in an inhomogeneous nanofluid porous
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layer. Srinivasacharya and Barman [50] researched convective instability in the vertical
porous layer comprising nanofluid. Ketchate et al. [51] explored the stability of the flow of
hybrid nanofluid between two stationary parallel plates containing porous medium. Ketchate
et al. [52] investigated the stability of Al;O3/water nanofluid mixed convection in a porous
medium-packed channel subjected to heating from the bottom and cooling from above. Kaur
and Sharma [53] analyzed the linear and nonlinear stability of thermal convection in porous

media saturated with Oldroyd-B nanofluids.

In all the above studies on convective transport in nanofluid saturated porous medium,
it is assumed that fluid and solid-matrix phases are in local thermal equilibrium (LTE).
This presumption of the fluid and porous medium being in an LTE condition may not hold
true if there is a significant temperature variation between the phases or if there is a quick
heat transfer for high-speed flow. The effects of local thermal non-equilibrium (LTNE)
must be taken into account since the temperatures of the fluid and solid-matrix phases are
no longer uniform. The behavior of nanofluid flow under local thermal non-equilibrium
conditions can help engineers and researchers to design more efficient heat transfer systems.
The impact of LTNE on thermal convective instability was first studied by Banu and Rees
[54], even though the study of flow in porous media was started in the late 1990s. Since
then, numerous studies on the effects of LTNE on convection in porous medium have been
published with various physical and geometrical effects. Ingham and Pop [55], Straughan
[56] and Nield and Bejan [18] presented the literature on the LTNE model for fluid phase and
solid-matrix in the temperature equation. The investigation of the LTNE state for nanofluids
has become a significant area of research due to their fascinating applications in microwave
heating, fast heat transfer, refrigeration, and the drying of food. Mahajan and Sharma [57]
investigated the consequence of LTNE on the start of convection in a magnetic nanofluid
layer. Rana et al. [58] explained the simultaneous impacts of a heat source, magnetic
field, and local thermal non-equilibrium (LTNE) on thermal instability led to the onset
of convection in an electrically conducting Al,O3-Cu/water hybrid nanoliquid flowing over
parallel plates with rough boundaries. Siddabasappa and Siddheshwar [59] studied the global
and linear stability analyses of Darcy-Brinkman-Bénard convection in a liquid-saturated
porous medium with a non-uniform gravity field using the LTNE model. Srinivasacharya
and Barman [60] examined the consequence of the LTNE state on the stability of nanofluid
flow in a vertical channel packed with a porous medium. Enagi et al. [61] investigated the
impact of LTNE, internal heat, and maximum density on the stability of a rotating porous

layer under varying temperatures for both the solid and fluid phases.

Casson fluid is a type of non-Newtonian fluid that exhibits yield stress and shear thinning
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behavior. Linear stability analysis can provide valuable insights into the behavior of Casson
fluid flow, including the onset of turbulence and the influence exerted by a number of different
parameters on the stability of the flow. Numerous investigations have been published in the
literature on the stability of the flows in a porous channel filled with Casson fluids. Yahaya
et al. [62] analyzed the stability of the magnetohydrodynamic flow of a Casson fluid across
a contracting sheet with heterogeneous-homogeneous reactions. The stability of the flow
and heat transport across a stretched sheet in a Casson fluid was examined by Hamid et al.
[63]. Lund et al. [64] looked at the thermal radiation’s effect and viscous dissipation effect
on the stagnation point flow of MHD Casson fluid over a contracting or expanding surface.
Parvin et al. [65] examined numerically the effects of the rate of extending and compressing
sheet on the mixed convection flow Casson fluid. Yashkun et al. [66] analyzed the stability
of stagnation-point flow of Casson fluid over a heated permeable stretching or contracting
sheet. Mahanta et al. [67] investigated the effects of slip velocity on the stability of stagnation
point flow of MHD Casson fluid flow across a stretching surface. Dey et al. [68] focused on
the stability analysis of MHD Casson fluid flow with heat and chemical reaction over an
elongating permeable sheet. In a rigid parallel channel with a homogeneous magnetic field,
Kundenatti and Misbah [69] investigated the temporal stability of linear two-dimensional

perturbations of the plane Poiseuille flow of Casson fluid.

Two-phase dusty fluid flow is a type of flow in which two different types of substances are
present and interact with each other. Specifically, it involves the flow of a fluid that contains
solid particles or dust, which are suspended within it. This type of flow is commonly found
in many industrial and natural systems, such as pneumatic transport systems, fluidized bed
reactors, and volcanic eruptions. takes into account both the viscous and the yield stress
properties of the fluid. Saffman [70] investigated the stability of dusty gas in laminar flow
and used a simple example to demonstrate some characteristics of dusty fluid. The effects of
thermal Marangoni convection in magneto-Casson liquid flow through a suspension of dust
particles were studied by Mahanthesh and Gireesha [71]. Ali et al. [72] studied the two-phase
flow of dust and viscoelastic fluids between two rigid parallel plates. Ali et al. [73] reported
the effect of MHD two-phase fluctuations of viscoelastic dusty particle flow in a horizontal
parallel plate. Reza-E-Rabbi et al. [74] investigated computationally the multiphase fluid
flow behavior over a stretching sheet in the presence of nanoparticles. The experimental
properties of heat transmission and multi-phase flow in a long gravity-assisted heat pipe
were discussed by Chen et al. [75]. Ali et al. [76] studied the effects of heat transfer and
magnetic field on the magnetohydrodynamic two-phase free convective flow of dusty Casson

fluid between parallel plates.
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The existence of a heat source or sink can significantly affect the flow of the Casson fluid,
leading to changes in the temperature, velocity, and shear stress distribution within the
fluid [77]. Mythili and Sivraj [78] examined the implications of a non-uniform heat source
on unsteady chemically reacted Casson fluid flow over a flat plate and vertical cone with
viscosity and thermal conductivity variations. Makinde and Rundora [79] explored the time
dependent convective flow of a chemically reactive Casson fluid in a vertical channel with
permeable walls containing the porous medium. Zia et al. [80] considered the consequences
of cross diffusion, radiation, and exponential heat sources on the three-dimensional mixed
convective flow of a Casson fluid over a heated surface. Goud et al. [81] examined the
implication of heat source on the motion of a Casson fluid through a fluctuating vertically
permeable plate. Awais et al. [82] analyzed the implications of a magnetic field on the flow of
Casson fluid in a porous medium caused by a shrinking surface subjected to heat absorption

or germination.

The radiation effects in fluids are crucial for the design and optimization of various
industrial and biomedical applications. In nuclear waste disposal, the ability to predict
changes in the rheological properties of drilling mud due to radiation exposure can help to
prevent well collapse and improve waste containment [83]. In medical imaging and radiation
therapy, the radiation effects on blood flow behavior can aid in the development of more
effective treatment strategies [84]. The primary mechanism of radiation-induced changes
in Casson fluids is the generation of free radicals, which can cause chain scission and cross
linking of the fluid molecules. This process can result in changes in the fluid’s viscosity,
yield stress, and other rheological properties. Bakar et al. [85] analyzed the stability of a
mixed convection flow through a vertical cylinder permeated by a nanofluid and subjected
to thermal radiation. Linear stability analysis of thermally-radiated micropolar fluids in an
MHD flow with convective boundary conditions was investigated by Lund et al. [86]. Lund et
al. [64] explored the stability of MHD stagnation point flow of Casson fluid over a contracting
or expanding surface due to the influence of thermal radiation and viscous dissipation. Wakif
et al. [87] examined the effects of surface roughness and thermal radiation on the thermo-

magneto-hydrodynamic stability of nanofluids composed of alumina and copper oxide.

Chemical reactions have a significant impact on the rheological properties of Casson
fluids, yield stress, and flow behavior. Chemical reactions also affect the thermal and me-
chanical stability of Casson fluids. The presence of reactive species in the fluid can lead
to degradation or decomposition, which can alter the fluid’s properties [88]. Additionally,
chemical reactions generate heat or consume heat, affecting the temperature of the Cas-

son fluid and its viscosity [78]. Steinberg and Brand [89] introduced chemical reactivity in
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porous mediums to analyze the convective instabilities of binary mixtures. Srivastava [90]
investigated the electro-thermal convective stability of a binary fluid in a horizontal channel
with a chemical reaction. Dey et al. [68] focused on stability analysis of MHD Casson fluid
flow over a long permeable sheet with chemical reactivity. The effect of magnetic cross-field,
thermal radiation, and a second order chemical reaction on the unsteady three dimensional
flow of electrically conducting Cu—Al,O3/water hybrid nanofluid flow past a bidirectionally

stretchable melting surface was investigated by Suganya et al. [91].

Convection along inclined surfaces has been receiving attention because of many indus-
trial applications in areas such as electroplating, chemical processing of heavy metals, ash or
scrubber waste treatment, etc. Barletta and Rees [92] analyzed the thermo-convective insta-
bility in an inclined porous layer from a local thermal non-equilibrium perspective. Barletta
and Celli [93] discussed the instability of mixed convection in an inclined porous channel.
Matta and Hill [94] investigated the thermosolutal instability of double-diffusive convection
in an inclined porous layer using a concentration-based internal heat source. Celli and Bar-
letta [95] studied the onset of buoyancy-driven convection in an inclined porous layer with
an isobaric boundary. Wen and Chini [96] examined the flow structure and dynamics of
moderate-Rayleigh-number thermal convection in a two-dimensional inclined porous layer.
Matta and Gajjela [97] used linear stability analysis to explore the Hadley flow in an inclined
porous body. Roy et al. [98] considered the onset of thermohaline convective instability in

an inclined porous layer with permeable boundaries.

1.8 Aim and Scope

It is not always physically realistic to consider the flow past a vertical or horizontal surface.
The inclinations are always possible, and hence, there is a need to frame a generalized
mathematical model involving the inclination of the surface to carry out the investigation.
With such a generalized model, it gets easier to switch to either of the two cases, a horizontal

surface or a vertical surface.

The aim of the present thesis is to study the linear stability analysis of nanofluid, Casson
fluid, and dusty Casson fluid flow in an inclined channel. Characteristics such as local
thermal non-equilibrium, magnetic effect, Soret and Dufour effects, variable viscosity effect,
heat source/sink effect, radiation, and chemical reaction effects are considered. In all these

problems, the inclined channel is assumed to be filled with porous medium.
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1.9 Outline of the Thesis

This thesis consists of FIVE parts and FOURTEEN chapters.

Part - I consists of a single chapter, Chapter 1. It deals with the introduction and
presents the motivation for the investigations carried out in the thesis. A survey of pertinent
literature is presented, explaining the significance of the problems considered. The basic
equations governing the nanofluid based on the Buongiorno model, Casson fluid, and two-

phase dusty Casson fluid have been given in this chapter.

Part - II deals with the linear stability of convection in an inclined porous channel filled
with nanofluid. This part consists of six chapters (Chapters 2, 3, 4, 5, 6, and 7). In each
of these chapters, the Brinkman extended Darcy model is accounted for in the momen-
tum equation of the governing flow through the porous layer. The governing equations and
their associated boundary conditions are initially cast into dimensionless form. Small per-
turbations are imposed on the basic velocity, temperature, and pressure. The generalized
eigenvalue problem for the perturbed state is obtained from a normal mode analysis. This

eigenvalue problem is solved using the Chenyshev spectral collocation method.

In Chapter - 2, the convective stability of nanofluid flow in an inclined porous channel is
numerically investigated. The nanofluid model accounts for the effects of Brownian motion
and thermophoresis. In addition, the flow in the porous region governs Brinkman’s equation.
The influence of inclination angle, porosity, Prandtl number vs. Darcy number, the critical
Rayleigh number, and associated wavenumber are graphically displayed. Moreover, distur-
bances of streamlines, isotherms, and isonanoconcentrations for different values of inclination

angle, Darcy number, and Lewis number are expressed.

Chapter - 3, which analyzes the stability of the flow of nanofluid saturated porous medium
in an inclined channel, is examined numerically when the fluid, particle, and solid-matrix
phases are not in local thermal equilibrium (LTE). The impact of the LTNE parameters,
namely, inter-phase heat transfer parameters, modified thermal capacity ratios, and modified
thermal diffusivity ratios between the fluid and particle phases and fluid and solid phases,
on the breakdown of convection has been disclosed. Further, patterns of the streamlines,
isotherms (fluid), isotherms (particle), isotherms (solid matrix), and isonanoconcentrations
have been presented for Nield numbers (inter-phase heat transfer parameters) and inclination

angle at the critical level.

In Chapter - 4, the effect of the transverse magnetic effect on the instability mechanism
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of double-diffusive convection in an inclined channel filled with nanofluid is considered. The
instability boundaries have been investigated for various values of the magnetic effect, in-
clination angle, Darcy number, thermo-solutal Lewis number, Dufour parameter, and Soret
parameter. Also, patterns of the streamlines, isotherms, isonanoconcentrations, and isoso-

lutes are shown graphically for various values of inclination angle under critical situations.

Chapter - 5, investigates the effect of variable viscosity on stability analysis in an inclined
porous channel saturated with nanofluid. The instability boundaries have been investigated
for various values of Darcy number, variable viscosity parameter, inclination angle, porosity,
and Prandtl number. Further, the patterns of streamlines, isotherms, and isonanoconcentra-
tions have been examined for the governing parameters related to nanofluid at the critical

level.

In Chapter - 6, the influence of local thermal non-equilibrium and changing viscosity on
the stability of nanofluid flow in an inclined porous channel is considered. The instability
boundaries have been discussed graphically for different values of Darcy number, variable
viscosity parameter, inclination angle, interphase heat transfer parameters, and modified

thermal capacity ratios.

Chapter - 7, investigates the influence of variable viscosity and double diffusive nanofluid
convective flow stability in an inclined porous channel. The influences of the inclination
angle, Darcy number, thermosolutal Lewis number, Dufour number, and Soret number on

the critical Rayleigh number and critical wavenumber are depicted graphically.

Part - III deals with the stability of convective flows in an inclined channel filled with
a Casson fluid. This part consists of three chapters (Chapters 8, 9, and 10). In all these
chapters, the eigenvalue problem for the perturbed state is obtained from a normal mode

analysis and solved using the Chebyshev spectral collocation technique.

Chapter - 8 analyzes the stability of Casson fluid flow in an inclined channel containing
a highly permeable porous medium in the presence of a heat source or sink. The onset of
convection has been discussed graphically for different values of Darcy number, inclination
angle, Casson parameter, heat source/sink parameter, Prandtl number, and porosity. Fur-
ther, the patterns of streamlines and isotherms have been examined for different values of

inclination angle at the critical level.

In Chapter - 9, the effects of radiation and chemical reaction in an inclined channel filled
with Casson fluid are considered. The critical Rayleigh number and critical wavenumber are

computed and graphically presented for various values of inclination angle, Darcy number,
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radiation parameter, chemical reaction parameter, Prandtl number, and porosity parameter.
The influence of these parameters on the flow instability is analyzed. Additionally, the
distribution of streamlines and isotherms has been studied for various inclination angle values

at the critical level.

In Chapter - 10, the stability of the flow of Casson fluid-saturated porous medium in an
inclined channel is examined numerically with variable viscosity. The influence of the govern-
ing parameters inclination angle, Casson parameter, variable viscosity parameter, Prandtl
number, and porosity parameter on flow instability is studied. Further, the patterns of
streamlines and isotherms have been examined for different values of inclination angle at the

critical level.

Part - IV deals with the stability of convective flows in an inclined channel filled with
a dusty fluid. This part consists of three chapters (Chapters 11, 12, and 13). In all these
chapters, the eigenvalue problem for the perturbed state is obtained from a normal mode

analysis and solved using the Chebyshev spectral collocation technique.

Chapter - 11 presents the impact on the stability of two-phase dusty Casson fluid flow
in an inclined porous channel. The stability region has been discussed for the occurrence of
physical parameters such as the inclination angle, mass concentration parameter, momentum
dust parameter, Prandtl number, and porosity parameter for the dusty Casson phase and

dusty phase.

Chapter - 12 deals with the impact of variable viscosity on the stability of two-phase dusty
Casson fluid flow in an inclined porous channel. The influence of the governing parameters
(inclination of the channel, variable viscosity parameter, mass concentration parameter,
momentum dust parameter, Prandtl number, and porosity parameter) on the flow instability

is studied for the dusty Casson phase and dusty phase.

In Chapter - 13, the onset of heat source/sink and radiation on the stability of the two-
phase dusty flow of Casson fluid in a porous channel with an inclination is investigated
numerically. The effects of the inclination of the channel, heat source/sink parameter, mass
concentration parameter, radiation parameter, momentum dust parameter, Prandtl number,

and porosity parameter are analyzed and presented graphically.

Part - V consists of a single chapter, Chapter - 14, which includes the principal conclusions

of the thesis and the directions in which further investigations may be carried out.

In all the above chapters, it is assumed the porous medium is homogeneous and hydro-

dynamically as well as thermally isotropic.
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FLOW IN AN INCLINED POROUS
CHANNEL
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Chapter 2

Linear Convective Stability in an
Inclined Channel Filled with a

Nanofluid Saturated Porous Medium !

2.1 Introduction

The study of the linear stability of convection in an inclined porous channel is important in
geothermal systems, aquifer hydrology, and water-soil pollution transmission. The instability
processes of viscous fluid flow in horizontal and vertical porous layers have been widely
studied, but a comprehensive mathematical model that accounts for layer inclination is
needed. Several investigators, for example, Rana et al. [99, 100, 101], Barletta and Rees
[92], Barletta and Celli [93], Matta and Hill [94], Matta and Gajjela [97], Celli and Barletta
[95], Wen and Chini [96], and Roy et al. [98] have analyzed the stability of convection in
inclined porous layer filled with Newtonian and different non-Newtonian fluids in the presence
of various physical effects such as rotation, local thermal non-equilibrium, mixed convection,
electrohydrodynamics, double diffusion, thermohaline convection etc. These studies used
the Brinkman model and Oberbeck-Boussinesq approximation to investigate the initiation
of convection in inclined porous channels with permeable boundaries, revealing their complex

dynamics.

Nanofluids, introduced by Choi [4], are heat transfer fluids that contain nanometer-sized

solid/metallic particles. Brownian diffusion and thermophoresis are key nanoparticle/base-

'Published in “Journal of Porous Media” 26(8), pp:21-33, DOI:10.1615/JPorMedia.2023045044
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fluid slip processes [11]. Due to nanoparticle Brownian motion and thermophoresis, nanoflu-
ids have lower critical Rayleigh numbers than regular fluids [102]. Rayleigh-Benard convec-
tion beginning in a rotating nanofluid layer was studied by Khalid [47] using an internal
heat source, double diffusion, and feedback control. Turkyilmazoglu [103] used linear sta-
bility theory to study nanofluid hydrodynamic stability, while Singh and Khandelwal [104]
examined the mixed convection flow of several nanofluids in a vertical conduit with varied

heating.

This chapter examines the linear stability of the flow in an inclined channel filled with
a porous medium saturated with nanofluid. The current work uses the Brinkman model
[2] for flow in porous media and the Buongiorno model [11] for the nanofluid. By using
normal modes, a linear stability analysis is carried out. The resulting eigenvalue problem for
small disturbances is solved using the Chebyshev spectral collocation methods. A graphical
analysis is performed on the derived numerical solution for various values of the governing

parameters.

2.2 Mathematical Formulation

Consider the flow of a nanofluid in an inclined channel filled with a porous medium. The
flow configuration and coordinate system are depicted in Fig. 2.1. Assume that the angle
of inclination with the horizontal line is #. The width of the channel is 2L, and the channel
plates are located at y = —L and y = L, respectively. It is assumed that the porous
medium is isotropic and homogenous. The temperatures of the channel walls y = —L and
y = L are Ty and T3(17 > T5), and nanoparticle volume fractions are ¢ and ¢y, respectively.
Using the above assumptions, the Oberbeck-Boussinesq approximation and Darcy-Brinkman

model, the governing equations for the flow are given by:

<
I
o

V- (2.1)

vV + IQV2‘7 —{pp+ (1 —@)ps(1 = pr(T —T1))}

pr(OV 1o o 0
P L 2.y ) = —vp— &
6< ( )> K (2.2)

g(sin(0)ex + cos(P)éy)

My km 2 (:00>p <& ' . )
ot " (pO) oY T, \ T VI VI DoV Ve ) (23)
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Figure 2.1: “Schematic representation of the problem”

9¢

2
T Ly ve=ppv ¢+T v°T (2.4)

where the Darcy velocity vector is denoted by ‘7, the temperature is denoted by 7', the volume
fraction of nanoparticles is denoted by ¢, the pressure is denoted by p, and the densities of
the base fluid and the nanoparticles are denoted by p; and p,, respectively. The porous
medium’s viscosity is p, its effective viscosity is i, its porosity is €, and its permeability is
K. The unit vectors in x and y-directions are denoted by €, and €, respectively, and gravity
is denoted by g. The heat capacity of a fluid, a porous medium, and nanoparticle is given by
(pC) ¢, (pC)m, and (pC),, respectively. k, is the porous medium’s thermal conductivity, Dp
is the nanoparticles Brownian diffusion coefficient, and Dy is the thermophoretic diffusion
coefficient.

The associated conditions on the boundaries are:

At y=—-L: 1%
and at y=1L:

0 T:Tb ¢:¢2 (25)
0, T'=1T, ¢=¢

<u
Il
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The non-dimensional variables are:

.. VL k t
(:E*,y*,z*) = (x7y’z)7 V*:_7 p*: P ) t*:a_f7
7 .
’ T* Qb — ¢ ¢1
Ty — G2 — 91
where a,,, = (me)f’ represents thermal diffusivity of porous medium.

on substituting Eq. (2.6) in Egs. (2.1) -(2.5) and removing asterisk, the non-dimensional
form of the Egs. (2.1) -(2.5) are:
V-V=0 (2.7)

1 <(9_V + 1({7 . V)V) =-Vp+ ADa(VZV) —V+ {RaT — Rn¢ — Rm}

va \ Ot € (2.8)
(sin(0)éx + cos(8)éy)
oT 9 1
SV VT = VT 4 — (NBV(;S VT + NoANpVT - VT) (2.9)
0 N
a—‘f+ V.V = —v2¢+ Av2r (2.10)
The corresponding boundary conditions become:
At y=—-1: V=0 T=0, ¢=1
Y g ¢ (2.11)
and at y=1: V=0, T=1 ¢=0
where
Pr = pf’;m is Prandtl number, va = 2= is Vadasz number, Da = % is Darcy number,
Ra = %ﬁb—ﬂ) is Rayleigh number, Rn = (er=py )Ejij;m)gKL is concentration Rayleigh
number, Rm = 222172 ’; (;:Sl)gKL is the basic density Rayleigh number, A = £ the effective
viscosity-to-fluid viscosity ratio, Ny = % is the modified d1ffus1v1ty ratio, Ngp =
% is the modified particle density, and Le = ¢2 is the Lewis number.
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2.3 Basic solution

Here, the flow is supposed to be continuous, unidirectional (in a-direction), and completely
developed. With these assumptions, Egs. (2.7)-(2.10) reduce to:

d2Ub 8p0 .
A Da T Uy = v (RaTy — Rngo — Rm) sin(6) (2.12)
Ipo -
o (RaTy — Rngo — Rm) cos(6) (2.13)
Ipo
— = 2.14
- =0 (2.14)
Ty =~ Npddy dTy ~NaNg (dTp\>
_—— — =0 2.15
dy? + Le dy dy Le dy ( )
d*®, d*Ty
=0 2.16
T N (216)
The following are the associated boundary conditions:
At =—1: U,=0, Ty=0, =1
Yy b 0 %o (2.17)
and at y=1: U,=0, To=1 ¢9g=

where Uy (y), To(y), ¢o(y), and po(x,y, z) are basic velocity in z- direction, basic temperature,

basic volume fraction and basic pressure, respectively.

The following approximations to 7 and ¢ are derived from Eqs. (2.15) and (2.16):

1
T, = % and gy =~ (2.18)

On substituting Eq. (2.18) into Egs. (2.12) - (2.14) we get:

, _
apaUs o _om (Ra + Rn) ysin(9) — (M _ Rm) sin(0)  (2.19)

dy? ox 2 2
dpo ([ Ra+ Rn Ra — Rn
o ( 5 ) ycos(f) + ( 5 — Rm) cos(0) (2.20)
Ipo
il 21
dz 0 (2.21)
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From Egs. (2.20) and (2.21), we obtain

i) = (T ) cos(0) 4 (PG < B yeos(8) 4 i) (222

By substituting Eq. (2.22) in Eq. (2.19), we get:

Apa ey 2 [po(m) + (M - Rm) xsin(@)] _ (M) ysin(0) (2.23)

dy? dx 2 2

Eq. (2.23) must be same in R x [—1,1] [105], hence there are real values ¢ (a pressure

gradient on the x) and p; such that:

i) = |7 = (F5 = ) sin)| 4. (2.24)

Hence, Eq. (2.23) reduce to

A Da

dQUb Ra + Rn .
T Uy=0— <T) ysin(6) (2.25)

The boundary conditions (2.17) are then used to solve Eq. (2.25), along with the global

mass conservation ( f_ll Uy dy = 2) [106]. Hence, the basic velocity is calculated as follows:

| cosh(y/vADa) Ra+ Rn _ sinh(y/VADa) | .
V=0 Losh(l/\/ADa) M ( 2 ) sinh(1/vADa) sin(f) (2.26)
where:
cosh(1/v/ADa)

g =

V' ADa sinh(1/v/ADa) — cosh(1/vADa)
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2.4 Linear Stability Analysis

Three-dimensional perturbations will be examined in the stability analysis, introducing mi-

nor perturbations to the basic flow as follows:

—

V(U?U ’LU) = Ub(y) + (7 (:U,y, Zat)
T=Tyy)+ T (z,y,2,1) (2.27)

(b = (bO(y) + ¢/<I,y, Z7t)

b= po(I) —i—p/(x,y,z,t)

where U’, T', ¢/ and p’ are very small perturbations in the velocity, temperature, nanoparticle
volume fraction and pressure. Introducing the Eq. (2.27) into Egs. (2.7) - (2.10) and the

ignoring the nonlinear terms, we obtain:

V.U =0 (2.28)

1 7o . L -
— (aU + =((U" - V) Uy + (Uy - V)U)> = —Vp' + ADa(V2U') — U' + {RaT'—

ot € (2.29)

Rng'}(sin(6)éx + cos(0)éy)

T () < B (0 ) T
a;;/ += (ﬁ’%] +Ubgi,) =V + ]ZAWT’ (2.31)
Implementing normal mode analysis, the perturbations are given by:
(U T, ') = (a(y), T(y), py), d(y))e' 5ot (2.32)

The real numbers o and [ describe the wave numbers in streamwise and spanwise orienta-
tions, respectively. ¢ = ¢, +1ic; is the wave speed. If ¢; = 0, ¢; < 0 and ¢; > 0 the disturbances

are neutrally stable, stable and unstable, respectively.
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On utilizing the Eq. (2.32) in Egs. (2.28)-(2.31) yields:

d*d d*o 1w (U d*o {16
ADa |22 — 922 " (2 2 2 22| _ YL ev 2 2\ 4 Rl
a a1 dyz(a + 67) + (« +5)v] Va(e c e (a® + 5%)0 +eva
U d*0 dT .
Cily; 0 — {d_yz — (a® + ,82)17} — Ra d—yz’a sin(0) + (a® + 5% COS(Q)T}ZBS)
do. 2, g :
+Rn d—yza sin(f) + (a” + %) cos(0)p| =0
T, . 1 . dU, .. d*) 9 o A . o
%(—zac)n + a {ﬁvd—y + mea} — ADa {d_y? — (o + )0 | + 1 — BRaT sin(0) (2.3

+BRnpsin(h) =0

_dT, N Ng [deyg ATy dT  NpdT,do
—_— Uy—c)T - |— — T|l——|—4+2Np—| — — ——— =
Udy +ia(ly —c) dy? (0™ +57) Le dy+ Ady dy Le dy dy
(2.35)
ldgy. (1 oL@ | Na|dPT o
-— -U, — - |—= - el T =0 (2.36
Ed’yv—i_la(EUb C)¢ Le [dyz (Oé +ﬁ)¢ Le yz (Oé +/3) ( )
where u,v,and w are the velocity components and n = fu = awv.
The following are the associated conditions on the boundary
.odo s
v:d—:n:T:gb:O at y==1 (2.37)
Y

2.5 Numerical solution

A generalized eigenvalue problem with ¢ as the complex eigenvalue is transformed by the set
of governing equations (2.33) to (2.36). “Chebyshev spectral collocation” was used to find a
solution to the problem in MATLAB [107]. Then the range [—1, 1] was discretized utilizing
the following (N + 1) Gauss-Lobatto collocation points.

i = CoS (%) . i=0,1,2,.. N. (2.38)
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At the collocation points, the unidentified functions “0, n, T, and gg” are approximated as
follows:
N
> o) Piw), i) ~
Jj=0 J
N A

Jj=0 Jj=

1(y;) P (y2),

'MZ

g1

(2.39)

1

where i =0, 1,..., N, and P; is j'* Chebyshev polynomial is defined as P;(y) = cos(j cos™' y).

The m®™ order of differentiation of unidentified functions at collocation points is denoted

as:

I i
dy_m:ZDjivgj ZDJln

A | dm¢>
dy—m:ZD-.T i), ZD

(2.40)

here, the components of the Chebyshev spectral differentiation matrix D are defined as

follows:
(2N2—|—1’ Z:j:()’
c; (—1)tI . Lo e
jT? Z#]v 27.7_071727"'7]\[7
Dy=q{~"" (2.41)
—Q(TJyQ_), 1=7;1,7=12,3,.... N — 1,
J
\_2N2+17 Z:j:Na
where

2, © = 0 or N,
1, Or else.

C; =

Substituting Eqgs. (2.39)-(2.40) into Eqs. (2.33) to (2.36), we obtain the following (4N +4)x
(4N + 4) generalized eigenvalue problem:

AY = ¢BY (2.42)
with
A 0 Az An B;; O 0 0 Y
A A A A B 0 E
Ao [An An Ax Au . B- 0 2 0 and Y —
A31 0 A33 A34 0 0 Bs3 0 T
Ay 0 Aiz Ay 0 0 0 By P
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Here ¢ is the complex eigenvalue, Y indicates (4N + 4) x 1 complex eigenfunction, and A
and B represent (4N + 4) x (4N + 4) complex matrices.

where
V= [v(y0)70<y1)7 7U(yN71)7v(yN>]T7
E = [U(Z/O)a 77(3/1); 777(ZJN—1>7 U(yN)]T )
T = [T(y0)7T<y1)7 - aT(yN—l)aT(yN)]T7
P= [¢(y0)7 ¢<y1)a ceeey ¢(yN—1>7 gb(yN)]T )
Ay = ADa [D4 4 2Dy(a? + 52) + (a® + 52)21} _ %% [D2 ~ (o + B
1 dQUb
—_— I-|D,— (a? N1
* eva dy? [ 2~ (o +B)]’
Az = —iaRasin(0)D — (o + ) Ra cos(0)1,
Ay = iaRnsin(0)D + (a? + %) Rn cos(9)],
A21 = ﬁﬁl, A22 = LUvaOtI — ADa DQ — (052 + 62)]:] -+ I,
eva dy vae
Ass = —PRasin(0)I, Ay = SRnsin(0)1,
_ dTy _ 2 2 Np [dgo dTy
Az = dy L As =ialyl = [Da = (o + SO = 77 [ ay 2Na dy D
_ NpdT
As = Le dy
~ ldgo Ny 5 5
Apn = ¢ dy I, Ap= e [DZ (a®+p )I},

.Uy 1
A44 = ZOé?I — E [DQ — (Oé2 + ,82)]:]

By = — = [Dy — (® + BAI] , Byy = —1, Byy = ial, By = ial.
va va
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Here D; and D, are acquired from the conventional first and second Chebyshev derivative
matrices. D and D? = D x D subsequent to applying boundary conditions 9(41) = 0.
D, is fourth derivative matrix that enforces the constrained boundary condition v(£1) =
U, (£1) = 0 and is provided by:

D, = [diag(1 — y*)D* — 8diag(y)D* — 12D?] diag(1/(1 — y*)),

Up = diag[Us(y;)], O = diag[Ogp(y;)], @5 = diag[®Pp(y;)], 0 and I are (N +1)x (N +1) zeros
and identity matrices, respectively. Moreover, diag [ | represents an (N +1)x (N + 1) matrix

is constructed such that all entries, except those on the main diagonal, are equal to zero.

To examine the validity of the method, the eigenvalue problem code is executed with
a different grid point count (N), and the resulting least consistent eigenvalues are given in
Table 2.1 for a set of other parameters chosen at random. For N > 50, the least consistent
eigenvalue meets a convergence threshold of 1077, The results remain the same when N > 50.
A similar trend may be noticed for different parameter values. As a consequence, N = 50 is
used in the numerical calculation. The results of § = 7/2 were obtained, which is consistent

with the results of Srinivasacharya and Barman [50], as shown in Table 2.1.

2.6 Results and discussion

The linear stability of a flow in an inclined parallel channel with a porous medium saturated
with nanofluid is investigated. The influence of the governing parameters 6, €, and Pr on the
critical Rayleigh number (Ra.) and critical wavenumber (a.) is depicted in Figs. 2.2-2.4. On
the horizontal axis, the logarithm of the Darcy number is used to show all of the instability

boundaries.

The variation of the critical Rayleigh number Ra. and the critical wavenumber «. for
different values of the inclination angle 6 is shown in Fig. 2.2. As the channel varies from
horizontal to vertical, it is noticed that Ra. decreases. However, as the Darcy number (Da)
rises, Ra, rises as well, indicating that permeability has a stabilizing effect, but 6 destabilizes
the flow as we move # from horizontal to vertical. Also, the flow is constant until Da = 1,
and then there is a rapid spike in Ra. as Da increases. The fluctuation of Ra, is slow and
smooth for small values of the Darcy number (Da < 1). When (Da > 1), there is a quick
increase in Ra.. The flow resistance in the porous medium becomes obvious at low Darcy

numbers. This flow resistance decreases as permeability increases, and flow in the porous
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medium improves, indicating that viscous forces play a role in the momentum equation. In
the case of critical wavelength, for an increase in Da, a. grows as well, but after Da = 1,
it becomes constant. As the value of 6 increases, there is an increase in «.. For further

discussion, we will take the inclination angle 6 = /3.

Fig. 2.3 shows the boundary of the instability region is a function of the porosity param-
eter (¢) and the permeability parameter (Da). It is seen from Fig. 2.3 that increasing the
porosity parameter tends to increase the critical Rayleigh number (Ra.). This is because
porosity is a ratio of void volume over total volume. In a porous medium, this is a measure-
ment of the empty spaces. When the porosity rises, the volume of voids rises as well. Hence,
porosity stabilizes the flow. Also, it is noted that there is a little variation in «. when the
value of the porosity parameter increases, but there is an increase in a. as the value of Da

grows.

The influence of the Prandtl number (Pr) on the boundaries of instability is seen in Fig.
2.4. The critical Rayleigh number rises as momentum diffusivity increases in terms of Pr. As
a result, the Prandtl number has a stabilizing effect on the system. There is substantial flow
resistance with small Darcy numbers in the porous medium. This flow resistance decreases as
the permeability increases and the porous medium’s flow increases, indicating the importance
of the momentum equation for viscous forces. Moreover, when permeability increases, the

wavenumber also increases. Also, when Pr rises, the wavenumber rises slowly.

Temperature and volume fraction behavior, as well as the dynamics of the flow field,
are presented through the streamlines, isotherms, and isonanoconcentration at the critical
stage in Figs. 2.5 -2.13 with fixed values of other parameters Pr=7, ¢=0.6, A=1, Rn=15,
N, = 8, and Np = 0.2 with varying inclination angle (#), Darcy number (Da) and Lewis
number (Le). It is to be noted that negative contours indicate clockwise rotation for stream-
line disturbances, while positive contours indicate anticlockwise rotation. In isotherms and
isonanoconcentrations, solid lines represent positive contours, and dashed lines represent
negative contours. The flow is primarily regulated by two asymmetric cells, one of which
(primary cell) rotates clockwise and the other (secondary cell) rotates counterclockwise.
streamlines, isotherms, and isonanoconcentration patterns exhibit symmetry for horizontal
inclination, i.e., for 8 = 0, as seen in Fig. 2.5. However, the symmetry is no longer visible
when the value of # is changed from horizontal to vertical. It is also obvious that as the
inclination angle is increased, the cell size grows as well. And for § = 7/2, the primary cell
pushes downward to the secondary cell. This is because temperature is transferred mostly
by diffusion, indicating the presence of disruptions in the flow configuration. Isonanocon-

centartion lines are in symmetry, and the center of the channel is for horizontal inclination.
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It moves to the left side of the channel for vertical inclination. It changed to the right side

of the channel for other inclinations, as shown in Figs. 2.5-2.7.

Figs. 2.8-2.10 show the effect of the Darcy number (Da) on the pattern of stream-
lines, isotherms, and isonanoconcentrations for § = /3 over time. The flow is governed
by bi-cellular patterns, namely primary and secondary cell patterns. According to our ob-
servations, positive streamline contours correspond to clockwise rotation, whereas negative
streamline contours correspond to anti-clockwise rotation. But for Da=1, negative stream-
line contours correspond to clockwise rotation, whereas positive streamline contours corre-
spond to anti-clockwise rotation. With a rise in the Darcy number, the geometry of the
inner cells of this bicellular structure changes. The isonanoconcentration lines for flow in an
inclined channel demonstrate that over time, a two-cell structure is growing towards the left
side of the channel for Da=0.1, towards the right side of the channel for Da=1. On the

other hand, Isonanoconcentration lines spread throughout the channel when Da=10.

Figs. 2.11-2.13 show the effect of the Lewis number (Le) on the pattern of stream-
lines, isotherms, and isonanoconcentrations for 6 = 7/3 over time. Bi-cellular patterns,
namely primary and secondary cell patterns, control the flow. Negative streamline contours
correspond to clockwise rotation, whereas positive streamline contours correspond to anti-
clockwise rotation, according to our findings. The inner cells of this bicellular arrangement

change shape as the Lewis number rises.

The primary cell drags the secondary cell downward as Le increases from 100 to 300.
In the case of isotherms, the size of the primary cells is increasing further. In the case of
isonanoconcentrations, however, when we raise Le, the isonanoconcentration lines shrink and

move to the right, as we can see in Fig. 2.13.

Table 2.1: Comparison between least stable eigenvalue of present result and Srinivasacharya
and Barman results: Here, “Da = 1, Pr = 7, Ra = 100, Rn = 15, ¢ = 0.6, N4 = 8, N =
0.2, Le = 500, 0=r/2, A=1, a= 1, and 8 = 0.”

N Present study Srinivasacharya and Barman [50]
30 | 7.254272433919 -0.1166338429071 7.254272433915 -0.116633842910i

35 | 7.254500877203 -0.1170159503951 7.254500877193-0.1170159503981

40 | 7.254526715378 -0.1170633012941 7.254526715361-0.1170633013051

50 | 7.254526952586 -0.117067639994i 7.254526952722-0.1170676399851

55 | 7.254526856872 -0.1170675040541 7.254526857357-0.117067503970i

60 | 7.254526835133 -0.1170675333671 7.254526835407-0.117067533337i
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Figure 2.2: “Instability boundaries in (logigDa, Ra.)- plane and (logioDa, a.)-plane for
various values of 6 with e=0.6, Rn = 15, Le = 500, Ny = 8, Pr=7, A=1, and Ng = 0.2.”
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Figure 2.3: “Instability boundaries for (logioDa, Ra.)-plane and (logipDa,a.)-plane for var-
ious values of € with §=n/3, Pr = 7, Rn = 15, Le = 500, Ny = 8, A=1, and Ng = 0.2.”
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Figure 2.5: “The disturbance of streamlines for different values of 6”.
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Figure 2.6: “The disturbance of isotherms for different values of 6”.
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Figure 2.7: “The disturbance of isonanoconcentrations for different values of 6”.
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Figure 2.8: “The disturbance of streamlines for different values of Da”.

(a) Da=0.1 (b) Da=1 (¢) Da=10

Figure 2.9: “The disturbance of isotherms for different values of Da”

(a) Da=0.1 (b) Da=1 (¢) Da=10

Figure 2.10: “The disturbance of isonanoconcentrations for different values of Da”
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Figure 2.11: “The disturbance of streamlines for different values of Le”.

(a) Le=100 (b) Le=300 (¢) Le=500

Figure 2.12: “The disturbance of isotherms for different values of Le”
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Figure 2.13: “The disturbance of isonanoconcentrations for different values of Le”
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2.7 Conclusions

The Brinkman-extended Darcy model is employed to examine the linear stability of convec-
tion in an inclined porous channel filled with nanofluid. The critical Rayleigh number (Ra..)
and critical wavenumber (a,) are computed and graphically presented for various values of
0, Pr, and e versus Da. Moreover, the streamlines, isotherms, and isonanoconcentrations
for different values of inclination angle (¢), Darcy number (Da), and Lewis number (Le) for

the perturbed state are also presented.

e The inclination of the channel destabilizes the flow.

e For small values of the (Da < 1) Darcy number, the variation of Ra. is slow and

smooth. The value of Ra,. increases rapidly when (Da > 1).

e The flow in an inclined channel is stabilized by Prandtl number (Pr), and porosity (e).

As a result, a rise in these factors delays the onset of convection.
e The least stable flow occurs when the channel is vertical.

e For horizontal inclination, i.e., for # = 0, streamlines, isotherms, and isonanoconcen-
tration patterns are symmetric. The symmetry is lost when the value of 8 is changed

from horizontal to vertical.
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Chapter 3

Influence of local thermal
non-equilibrium on the stability of

nanofluid flow in an inclined channel

filled with porous medium !

3.1 Introduction

This chapter investigates the stability of the flow of nanofluid-saturated porous medium
in an inclined channel with a local thermal non-equilibrium (LTNE) effect. Rana et al.
[58] explained the simultaneous impacts of a heat source, magnetic field, and local ther-
mal non-equilibrium (LTNE) on thermal instability led to the beginning of convection in an
electrically conducting AlsO3-Cu/water hybrid nanoliquid flowing over parallel plates with
rough boundaries. Siddabasappa and Siddheshwar [59] studied the global and linear sta-
bility analyses of Darcy-Brinkman-Bénard convection in a liquid-saturated porous medium
with a non-uniform gravity field using the LTNE model. Srinivasacharya and Barman [60]
examined the consequence of the LTNE state on the stability of nanofluid flow in a vertical
channel packed with a porous medium. Enagi et al. [61] investigated the impact of LTNE,
internal heat, and maximum density on the stability of a rotating porous layer under varying

temperatures for both the solid and fluid phases.

!Published in “Computational Thermal Sciences: An International Journal” 15(6), pp: 41-59,
DOLI: 10.1615/ComputThermalScien.2023046825°
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The literature review reveals that the stability characteristics of a nanofluid in an inclined
channel under LTNE conditions between fluid and particle phases and fluid and solid-matrix
phases have not been investigated. As a result, the current research examines the impact of
LTNE on convection stability in a nanofluid flow for an inclined channel (with inclination 6)

filled with a porous medium.

3.2 Mathematical Formulation

Consider an unsteady, incompressible nanofluid flow in an inclined channel of width 2L
and inclination #, with impermeable and completely thermally conducting walls as shown
in Fig. 2.1. The LTNE state is assumed to exist between the fluid, particle, and solid-
matrix phases. The three temperature models are taken into account. As a result, three
heat transfer equations, one for each of the three phases, are considered. Except for the
density changes in the buoyancy force term, the thermophysical characteristics of the fluid

are considered to be constant.

Using the above assumptions, the Oberbeck-Boussinesq approximation and Darcy-Brinkman

model [2], the governing equations for the flow are:

<d
|
o

V- (3.1)

V= [(L=6)ps + dpp (1= (Ty = T1)Br)]

v o1, _ .
P L 2. | = —Vp+ av2V — £
; K (3.2)

g(sin(f)eyx + cos(0)ey)

(1= on)pC)s (G + 17 VI ) = el1 = 60k TTy 4 (1 = 01)elsC),
(3.3)
D
(DBng VT + ?TVTf : W}) — hy(Ty —T,) — hyo(Ty — To)
or, 1. ,
€1 (pC)p ot + EV VT, | = eprky VT, + hyy(Ty — 1) (3.4)
oT, ,
(1- 6)(/)0)8@ = (1 =k VT, + hyo(Ty —Ty) (3.5)
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09 1y 2
Bt + Z Vo =DV gb+ T1 V2T (3.6)

where The phases fluid, particle, and solid are represented by the subscripts f, p, and s.
(pC) ¢, (pC), and (pC), are the effective heat capacities, and ky, k, and ks are effective
thermal conductivities respectively. hy, and hy, are inter-phase heat transfer coefficients

for the fluid-particle, and fluid - solid phases respectively and the remaining quantities are
defined in Chapter - 2.

The corresponding boundary conditions are written as

<:l

At y=-L:
at y=17L: 1%

O Tf:Tla Tp:Tla TS:T17 ¢:¢2 (3 7)
0, Tf =1, Tp:T27 Ts=Ty, ¢=¢

The non-dimensional form of the Eqgs. (3.1) -(3.6) (on using Eq. (2.6) in Egs. (3.1) -(3.6)
and removing asterisk) are:

V-V=0 (3.8)

L (a—v + i(x? : V)V) — —Vp+ADa(V*V) =V +{RaT;—Rng— Rm} (sin(h)éx+cos(0)é,
va \ Ot  va
(3.

v)
oTy 1 N NAN K
Ly 2 (VVT}) = VT, + =2V - VT + —"LVT; - VT — Nyp(T; —T,) — Nys(Ty — T,
ot c f f Le f f f f =
(3.10)
or, 1.
G2+~ (V-VT,) = VT, + 3 Nup(Ty — ) (3.11)
ot €
T
a@ts = e,V + ¥ Nus(Tr — Ty) (3.12)
a(b _ 2 2
e (v ws) - —v ¢+ AV (3.13)

The corresponding boundary conditions become:

<u
I

At y=-1:

Ty =0 (3.14)
Ty =1, '

S5

0, To=0, ¢o=1
1, T,=1

0
0, ¢=0

<
I

at y=1:

2 2
where Ngp = % and Ngg = % are Nield number refers to the interphase heat

1— C e(1— C . .
transfer parameters. v, = % and v, = % are modified thermal capacity
ratios, €, = zi((’p’—g))i and €, = ¢ ((p g))f are modified thermal diffusivity ratios, respectively.
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3.3 Basic state solution

The flow is supposed to be continuous, unidirectional (z-direction), and completely developed

in the basic stage. Hence, Egs. (3.8)-(3.14) can be reduced to a system of ordinary differential

equations :
d*U 0
(ADa) 0 U, = % — (RaTyo — Rngy — Rm)sin(0)

0

% = (RaTyo — Rngo — Rm) cos(6)
Ipo
220 _
dz

BTy | Npdoo dljy | NaNg (dTyg
dy? Le dy = dy Le dy

d? T,
“ay — 22 + 3 Nup(Tro — Tyo) = 0
dQTSO
e + Vs Nus(Tro — Tso) =0
Py Ty
N =0
dy? + N4 dy?

The following are the associated boundary conditions:

At Yy = —1: Ub = 0, TfO = 07 TPO = 07 TSO = 07 ¢0 =1
at y:1 UbZO; Tf0:17 Tpozla TSO:L (bO:O

Proceeding as in Chapter-2, we get basic solution as:

_ | cosh(y/vVADa) Ra + Rn _ sinh(y/vADa) sin
Ue=0 Losh(l/ ADa) M ( 2 ) sinh(1/vADa) v

1+ 1-—
Tfo :TpO :TSO = Ty and ¢0 = Ty

where:

B cosh(1/vVADa)
~ V/ADa sinh(1/v/ADa) — cosh(1/v/ADa)
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) + Nup(Tpo — Tro) + Nus(Tso — Tho) =0

(3.15)
(3.16)
(3.17)
(3.18)
(3.19)
(3.20)

(3.21)

(3.22)

(3.23)

(3.24)



3.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (J) on the basic state solutions,
ignoring 4 and higher order terms, using the usual normal mode form [50] to express in-
finitesimal disturbances of corresponding field variables, and removing pressure terms from

the resulting equations, the linearized stability equations are obtained as:

d'o d*o 2 2 2 212 i (U d*o 2 2) 5
DGt~ 250t o ] - (8 =) [ -t
o d? % T ;
% dygb 0 — {d_yg — (a® + BZ)@] - R d—yfz'a sin(f) — Ra(a® + %) cos(0)T;  (3.25)
do )
+Rnd—(§ia sin(f) + Rn(a® + 8%) cos(0)¢ =0
T, 1 AU, N d*n T L
%(—mc)n + a {&Jd_y + meal — ADa {d—yz — (a* 4+ B°)n| + 1 — BRaTsin(0) (3.26)
+BRnpsin(h) =0
1dTy, . Uy LTy, s | Nprdeo dTyo1dTy
- h - - 7| — 22120 4o nd |
edyv a(e C) J dy? (0" +57) Le[dy+ Ady]dy
) (3.27)
Np dT's d¢ - S,
_BENCC Ny (T, — T5) — Nys(Ts — Tr) =
Le dy dy HP( p f) HS( S f) 0
1dT,. . (U, - T, . .
. d;’ 0+ i (? - c) T, — ¢ [ dy;’ —(a*+ )T, | =% Nup(Ty—1T,) =0  (3.28)
s Ty g .
iocTs + € - (a* 4+ B)Ts| +vsNus(Ty —T5) =0 (3.29)
Ldgo. . (U L@, | Nafd®Ty o, s
] R S _ 4 - Trl =0 (3.30
edyU—Ha(e c>¢ Le[dgﬂ (@ + 7)o Le[dyQ (a® + B°)Ty ( )

where 1) = fu — aw
The following are the associated conditions on the boundary

do
dy

~

—h=T;=T,=Ty=¢=0 at y==+1 (3.31)

U=



3.5 Results and discussion

The set of Egs. (3.25) - (3.30) expresses a generalized eigenvalue problem with perturbed
eigenvalues in terms of wave speed. The solution to this eigenvalue problem is obtained using
the Chebyshev spectral collocation method [107].

To examine the validity of the method, the eigenvalue problem code is executed with a
different number of grid counts (IV), and the resulting least consistent eigenvalues are given
in Table 3.1 for a set of other parameters chosen at random. For NV > 50, the least consistent
eigenvalue meets a convergence threshold of 1077, as shown in Table 3.1. The results remain
the same when NN is enhanced. A similar trend may be noticed for different parameter values.
As a consequence, N = 50 is used in the numerical calculation. The results of 6 = 7/2 were

obtained, which is consistent with the results of Srinivasacharya and Barman [60].

The impact of local thermal non-equilibrium on nanofluid flow stability in an inclined
porous channel is investigated in this paper. The flow is controlled by sixteen variables,
which are as follows: Da, A, Pr, Ra, Rn, ¢, Na, Np and Le (related to the state of
LTE), inclination angle (@), interphase heat transfer parameters Ngg and Nyp, modified
thermal capacity ratios v, and ~,, and modified thermal diffusivity ratios €, and €. Because
there are more parameters, the analysis is simplified to focus solely on the effect of LTNE
parameters. As a result, for the rest of the discussion, the LTE parameters will be set to
Pr=7 Da=05 Rn=5 A=1, Ny=8, Ng=0.02, e = 0.6, and Le = 100.

For different LTNE parameters, the change of critical Rayleigh number (Ra.) and critical
wavenumber («.) are computed as functions of Nield numbers Ngp and Nyg and presented
in Figs. 3.1 and 3.2. According to Fig. 3.1(a), as Nyp increases, the critical Rayleigh number
(Ra.) increases, whereas as Npg increases, Ra. decreases. Fig. 3.2(a) also depicts a similar
trend for variation of Ra. with inter-phase heat transfer parameters. An enhancement in
the values of Nyp or Ngg enhances the heat release from fluid to solid and fluid to the
nanoparticle, respectively. Furthermore, all three phases have almost similar temperatures
and act as a single phase, resulting in a local thermal equilibrium state. This is because
Ngp and Nyg become large, and the temperature differences are inversely proportional to
inter-phase heat transfer parameters. In the case of critical wavenumber, when Ngp rises,
a. increases, and when Npgg increases, . first drops up to certain values of Ngg then
rapidly rises in the intermediate values, as shown in Fig. 3.1(b). This could be due to the
fluid/particle dominance of heat transfer in the fluid/solid matrix. Furthermore, as shown

in Fig. 3.2(b), when Nyg rises, a. falls, and when Npyp rises, o, rises.
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The plots for the variation of critical Rayleigh number (Ra.) and critical wavenumber
(cve) as a function of Nield numbers Nyp and Ngg for the inclination angle (6) are displayed
in Figs. 3.3 and 3.4. Fig. 3.3(a) shows that Ra. decreases as 6 changes from horizontal to
vertical, whereas Ra. does not change as Ngp increases. However, in the case of Nyg, Ra,
decreases as Ngg and 6 both increase, as shown in Fig. 3.4(a). As a result, changing 6 from
horizontal to vertical destabilizes the flow. This is because when the channel is inclined, the
gravitational force acting on the fluid causes a component of the force to act in the direction
of the flow. This can lead to the development of instabilities in the nanofluid flow. In the case
of critical wavenumber, as § and Ngp increase, so does ., as shown in Fig. 3.3(b). Also,
as # moves from horizontal to vertical, «, rises, and as Nyg increases, o, falls until certain
values of Nyg and then rises, as shown in Fig. 3.4(b). This could be due to fluid/particle

heat transfer dominating fluid/solid matrix heat transfer.

Figs. 3.5 - 3.8 show the behavior of Ra. and a. with inter-phase heat transfer parameters
Npp and Ngg for different values of modified thermal capacity ratios 7, and v, by fixing
the other parameter values. As shown in Fig. 3.5(a), Ra. grows as 7, increases from 0.01 to
0.1, and Ra, grows uniformly as Ngp increases. simillarly for Nyg, as shown in 3.6(a), Ra.
grows as 7, increases, IRa. decreases as Nyg increases. As a result, v, stabilizes the flow for
all values of Ngp and Ngg. Furthermore, as v, rises, o, falls slightly, but as Ngp rises, o,
rises, as shown in Fig. 3.5 (b). Also, as Nyg rises, a, rises until a certain value of Nyg and
then decreases, whereas as Nyg rises, «. first falls for the intermediate values of Nyg before
rising, as shown in Fig 3.6(b). This could happen as a result of fluid/particle heat transfer
dominating fluid/solid matrix heat transfer. As shown in Fig. 3.7(a), Ra. rises as s rises
from 0.01 to 0.03; additionally, Ra. rises uniformly as Ngyp rises. In contrast, as shown in
Fig. 3.8(a), Ra. decreases as Nyg increases but increases when 75 decreases. As a result, ~,
stabilizes the flow for all values of Nyp and Ngg. Furthermore, as v, and Ngp increase, so
does «a., as shown in Fig. 3.7(b). Also, as 7 rises, . decreases, whereas as Nyg rises, o,

first falls in the intermediate values of Nyg before rising, as shown in 3.8(b).

Figs. 3.9 - 3.12 show the variation of critical Rayleigh number (Ra.) and critical wave
number (o) with inter-phase heat transfer parameters Nyp and Nyg for different values of
the modified thermal diffusivity ratios €, and €, by fixing the other parameter values. As
displayed in Fig. 3.9(a), Ra. decreases as €, rises from 0.1 to 1, and Ra, increases uniformly
as Nyp increases. In contrast, for Ngg, as shown in Fig. 3.10(a), Ra, falls as Nyg increases,
whereas Ra. decreases as €, grows. As a result, for all values of Nyp and Npg both, ¢,
destabilizes the flow. As illustrated in Fig. 3.9(b), as €, increases, «,. decreases, but as Nyp

increases, «. increases. Moreover, when Npyg rises, a. first falls in the intermediate values of
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Npg before rising, as shown in Fig. 3.10(b), whereas €, rises, a. slightly drops. This could
happen as a result of fluid/particle heat transfer taking precedence over fluid/solid matrix

heat transfer.

As seen in Fig. 3.11(a), Ra. grows as € rises from 0.1 to 0.4; additionally, Ra. increases
gradually as Ngp rises. In contrast, for Ngg, as displayed in Fig. 3.12(a), Ra. decreases
as Npg raises, but Ra,. increases as €, rises. As a result, €, stabilizes the flow for all values
of Ngp and Nyg both. This is because the modified thermal diffusivity ratio can enhance
the heat transfer between the fluid and the solid matrix, which can lead to a more stable
temperature distribution in the fluid. Additionally, as seen in Fig. 3.11(b), as ¢, and Ngp
increase, a, rises. Although Nyg rises, a, first falls in the intermediate values of Ngg before

rising, as seen in Fig. 3.12(b), but with Nyg, as €, rises, «, increases.

The dynamics of flow field, behavior of temperature, and volume fraction are presented
through streamlines, isotherms, and isonanoconcentration at the critical stage in Figs. 3.13
- 3.17  with fixed values of other parameters ¢, = 0.7,¢, = 0.2,7, = 0.04, v, = 0.01,
Nys = 50 and Ngp = 100 with varying values of inclination angle (#) from horizontal to
vertical. It is to be noted that positive streamline contours correspond to clockwise rotation,
whereas negative streamline contours correspond to anti-clockwise rotation. In the case of
isotherms and isonanoconcentrations contours, solid lines represent positive contours, while
dashed lines represent negative contours. The flow is primarily regulated by two asymmetric
cells, one of which (primary cell) rotates clockwise and the other (secondary cell) rotates
counterclockwise. For § = 7/2, the secondary cell pulls the primary cell downward. This is
because temperature is transferred mostly by diffusion, indicating the presence of disruptions
in the flow configuration. The patterns of isotherms of fluid, particle, and solid are essentially
identical for varying values of #. The isonanoconcentration lines expand across the channel,
but as the channel inclines from horizontal to vertical, they shift to the left portion of the

channel.

The effects of the fluid/nanoparticle interphase Nield number ( Ngyp) on the pattern of
streamlines, isotherms, and isonanoconcentrations for Nyg = 50 and 6 = /3 are presented
in Figs. 3.18 - 3.22. The flow is governed by bi-cellular patterns, namely primary and
secondary cell patterns. It is noticed that as the value of Nyp is increased, the secondary
cell drags the primary cell downward, and the size of the cell also increases. It is interesting to
observe that the fluid, particle, and solid matrix phase isotherms do not alter substantially.
Further, it is investigated that the isonanoconcentration lines indicate that with time, a

two-cell structure expands towards the left portion of the channel for various values of Nyp.
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The impact of the fluid/solid matrix interphase Nield number (Ngg) on the pattern of
streamlines, isotherms, and isonanoconcentrations for Nyp = 100 and 6 = 7/3 over time is
shown in Figs. 3.23 - 3.27. Positive streamline contours indicate clockwise rotation, while
negative streamline contours indicate anti-clockwise rotation, according to our observations.
Further, we observed that isotherms became increasingly dense as the value of Nyg increased.
When we increase Nyg from 1 to 10, the primary cell pulls downwards to the secondary cell,
then bounces back to its original place for greater values. We also discovered that for various
values of Ny, the isonanoconcentration lines show that a two-cell structure develops towards

the left section of the channel with time.

Table 3.1: “Least stable eigenvalue for different number of grid points with Da = 0.5, Pr =
7, Rn =5, Ra =10, e = 0.6, Ng = 0.02, Ny =8, Le = 100, Ngs=200, Nyp=100, ,=0.08,
7s=0.03, ¢, = 0.7, ¢, = 0.2, A=1, =1 and 8 = 0.”

N Least stable eigenvalue
40 3.000398659936 -0.194071517195i
45 3.000399060455 -0.1940715300641
50 3.000399080809 -0.194071416737i
55 3.000398661995 -0.194071518085i
60 3.000398538383 -0.1940708805381
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Figure 3.1: “Variation of (a) critical Rayleigh number and (b) critical wavenumber with Ngg
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Figure 3.8: “Variation of (a) critical Rayleigh number and (b) critical wavenumber with Ny
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Figure 3.9: “Variation of (a) critical Rayleigh number and (b) critical wavenumber with Ny p
for different values of €, with 6 = 7/3, Nys=50, v, = 0.01, v, = 0.04 and €, = 0.2.”
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Figure 3.13: “The disturbance of streamlines for different values of 6”.
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Figure 3.14: “The disturbance of isotherms (fluid) for different values of 6”.
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Figure 3.15: “The disturbance of isotherms (particle) for different values of 6.
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Figure 3.16: “The disturbance of isotherms (solid) for different values of 6.
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Figure 3.18: “The disturbance of streamlines for different values of Ngp”.
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Figure 3.19: “The disturbance of isotherms (fluid) for different values of Nyp”.
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Figure 3.20: “The disturbance of isotherms (particle) for different values of Nyp”.
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Figure 3.21: “The disturbance of isotherms (solid) for different values of Ngyp”.
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Figure 3.22: “The disturbance of isonanoconcentrations for different values of Ngp”.
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Figure 3.24: “The disturbance of isotherms (fluid) for different values of Nyg”.
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Figure 3.25: “The disturbance of isotherms (particle) for different values of Nyg”.
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Figure 3.26: “The disturbance of isotherms (solid) for different values of Nyg”.
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Figure 3.27: “The disturbance of isonanoconcentrations for different values of Nyg”.
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3.6 Conclusions

The effect of local thermal non-equilibrium (LTNE) on the onset of convection in an inclined
porous-medium channel filled with a nanofluid flow is studied. The Buongiorno model for
the nanofluid and the two-field model for the energy equation, each signifying the fluid and
particle phases independently, are used. The influence of LTNE parameters on the critical
Rayleigh number and critical wavenumber with inclination # = 7/3. Various values of
the LTNE parameters are shown graphically. Moreover, the contour plots for streamlines,
isotherms, and isonanoconcentration at critical level with variation in fluid/nanoparticle
interphase Nield number (Nyp) and fluid/solid matrix interphase Nield number (Nyg) are

drawn and illustrated. The following are the observations:

e When Npyp increases, the critical Rayleigh number (Ra,.) increases, and as Nyg in-
creases, Ra, falls. As a result, all values of Nyp stabilize the flow, whereas all values
of Npg destabilize the flow field.

e When we raise Ny p, there is no change in critical Rayleigh number (Ra,) for all values

of inclination angle 6.
® 7, s, €, and €, stabilize the flow for all values of Nyp.
e For all values of Npg, €, destabilize the flow, but v,, 75 and €, stabilize the flow.

e When we raise Nyg, critical wavenumber first decreases up to specific values of Ngg
before quickly increasing in the intermediate levels. This may happen due to the

dominance of heat transfer from fluid/solid matrix to fluid/particle.

e For each angle, the patterns of isotherms of fluid, particle, and solid are essentially

identical.
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Chapter 4

The stability of double diffusive
convection in an inclined channel
filled with a porous medium saturated
with nanofluid and subjected to a

magnetic field !

4.1 Introduction

Double-diffusive convection research in porous media has extensive applications in numerous
disciplines, including biotechnology, nuclear engineering, and chemical engineering. Several
researchers have investigated the effects of double diffusion on the stability of porous lay-
ers saturated with different Newtonian and non-Newtonina fluids. Shivakumara et al. [28]
considered the consequences of the applied magnetic field on the stability of convection in
horizontal fluid layer double diffusion. Shankar et al. [29] studied the stability of buoyant
flow in a vertical layer of a Darcy porous medium with double diffusion. Noon and Had-
dad [30] analyzed the influences of variable gravity, rotation, and reaction on the linear and
nonlinear stability in a thermosolutal convection in a Darcy porous medium. Dhiman et al.
[31] analyzed mathematically the thermohaline convection in a viscoelastic fluid-saturated

porous layer.

!Communicated in “Propulsion and Power Research”
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Several researchers have studied linear stability analysis in the presence of a transverse
magnetic field. Singh et al. [42] studied the importance of a transverse magnetic field on the
linear convective stability in a differently heated channel. Camobreco et al. [43] analyzed

the linear stability of periodic pulsatile flows in a duct with a transverse magnetic field.

The stability properties of a nanofluid in an inclined channel under double-diffusive con-
vection in the presence of a transverse magnetic field have not been reported in the litera-
ture. As a result, the current research examines the impact of a transverse magnetic field
and double-diffusive convection stability in a nanofluid flow for an inclined channel (with

inclination ) filled with a porous medium.

4.2 Mathematical Formulation

Consider an unsteady, incompressible nanofluid flow in an inclined channel of width 2L with
impermeable and completely thermally conducting walls. Fig. 2.1 depicts a schematic
diagram of the problem. Assume that the angle of inclination with the horizontal line is
0. The width of the channel is 2L, and the channel plates are located at y = —L and
y = L, respectively. The temperatures of the channel walls y = —L and y = L are T; and
T5(Ty > T3), nanoparticle volume fractions are ¢» and ¢;, and solute concentrations are
C; and () respectively. A uniform magnetic field By = Bé, is subjected normally to the
channel, where B defines the magnetic field strength. The induced magnetic field, in contrast
to the magnetic field being applied, can be ignored as the magnetic Reynolds number is quite

small.

Using the above assumptions and the Oberbeck-Boussinesq approximation, the equations

governing the flow are:
V-V=0 (4.1)

L S SRR
; <8t+6(v V)V>— Vp+pVov KV {(1—-8r(T -T1) (4.2)

= Be(C =) (1= @)ps + ¢pp} g(sin(B)éx + cos(0)éy) +j x Bo
orT

I 09T = 0,27 + L (Prgr o1 1 ppve. VT) + Drev?C (4
oS +V VT =V +(,OC)f<T1v VT + Bv¢v)+ Y (4.3)
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oo 1 D
99 + 2V Vo = ZLVT + DpV3¢ (4.4)
ot € Tl
]_ —
aaf +-V- VC = DsV*C + DerV*T (4.5)

where, C'is the solute concentration, coefficient of thermophoretic diffusion is D, The solutal
diffusivity for the porous medium is Dg, the Dufour type diffusivity is D¢, and the Soret
diffusivity is Der.

The relationship between magnetic induction field By, and the current is j is defined as:
jx Bo=7(V x Bé,) x Bé,.

The following are the conditions on the boundaries of the channel:

yi—L: ‘7:0, T:Tl, 0201, ¢:¢2 (46)
y=L: V=0 T=Ty, C=Cy ¢=¢ .

The non-dimensional form of the Egs. (4.1) -(4.6) (on using Eq. (2.6) in Eqgs. (4.1) -(4.6)
and removing asterisk) are:

V-V=0 (4.7)

1 [10V 1 - . . .
- (_a_v + —(V-V)V) = —Vp—V +ADa(V*V) + [RaT+ f—fl — Rn¢ — Rm}
€

va \o ot (4.8)
(sin(0)éx + cos(0)éy) + DaHa?(V x é,) x é,

%—7; +V VT = VT + D;V2C + N— (qu VT + NuVT - VT) (4.9)

Leeg—f % (v w) ) = NAV2T + V2 (4.10)

%% % (17 : vc) - Linv% + SrVET (4.11)
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The associated boundary conditions become:

y=-1: V=0, T=0, C=0, ¢=1
. (4.12)

y=1 V=0 T=1, C=1 ¢=0
here, Rs = %ﬁ@ represents the solutal Rayleigh number, Dy = %{}%) repre-
sents Dufour parameter, Sr = % represents Soret parameter, Ln = ¢ represents

Dg
the thermo-solutal Lewis number, and Ha = BL\/g represents the magnetic parameter.

4.3 Basic state solution

During the basic stage, the flow should be continuous, unidirectional (z- direction, and

completely developed. Hence, Egs. (4.7)-(4.11) reduce to:

d*U, 1 1 dpo 1 Rs
- AHa? ) Uy = 5= "% = <5 (Raly + 1—Co — Rngy — Rm ) sin(64.13
dy? (ADa+ “> "= ADadr ~ ADaq\F0To+ 7, Co— Fingo — Fim ) sin(9)4.13)
d Rs
cro (RaTo + —C’o — Rnoo — Rm) cos(0) (4.14)
dy
dpo
e 4.1
. (4.15)
Ty N To  NaNp (dTp\° 2
d“Ty _Bd¢0.d 0, NaNg dTy Dfd Co _0 (4.16)
dy? Le dy dy Le dy dy?
d*®, d*Ty
N =0 4.17
dy? + Ady2 ( )
1 d*Cy d*Ty
— -9 4.1
Ln dy? 57 dy? 0 (4.18)
The following are the associated boundary conditions:
=—1 U,=0, To=0, Cy=0, =1
Y b 0 0 Po (4.19)

here, Cy(y) is basic concentration, and remaining quantities are defined in Chapter-2. Pro-

ceeding as in Chapter-2, we get basic solution as:

S T O Ty A PR ) A
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1+ 1- 1+
T = —" Y 4= — Y and Cp= — i (4.21)
where:
m cosh(m)
7 sinh(m) — m cosh(m) anc m ADa T AHa

4.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (0) on the basic state solutions,
ignoring 62 and higher order terms, using the usual normal mode form [50] to express in-
finitesimal disturbances of corresponding field variables, and removing pressure terms from
the resulting equations, the linearized stability equations are obtained as:
d'o o, 2 2 2221 o (U d*d 2 2\4
ADa {dy Qﬁ( + 87) + (o 4+ B%)%0 el G [d 5 — (@ + B7)0

€

ia d?U, . B {d%

dT A
i (® + ﬁ2)1}] — Rad—ia sin(6) — Ra(a® + °) cos(0)T

eva dy?

A y ) (4.22)
R o i+ et
2/\
+Rn(a’ + %) cos(0)¢ — DaHa® 2 7 =0

1 1 du, d*n
—(—iac)n + — {ﬁv—b + meal — ADa {_77 — (a® + 52)77} + 7 + DaHa*h
ova eva dy (4.23)

—BRaT sin(0) — B%C’sm( ) + BRnésin(0) = 0

dTy . T Y dTy1 dT'  NgdT,d¢

—0 Uy —c)T — |—= — T - 22 |22 4 oN, 0| == B0

dyv+za(b c) 4 (a” + %) Le dy+ Ady dy Le dy dy
. (4.24)
d-C 2 2

Ldgo. (1. e\ 1 [d o | Nagd&®T -

1 d%o bl A S e At T| =0(4.25

€ dy —Ha(E ’ 0>¢ Le L@Q (o +5%)¢ Le[ y? @+ F) } (42
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-
T A
d 24 BOT| = 0(4.26)

4.5 Results and discussion

The set of Eqs. (4.22) - (4.26) expresses a generalized eigenvalue problem with perturbed
eigenvalues in terms of wave speed. The spectral technique [107] is employed to find the
solution to this eigenvalue problem. To examine the validity of the method, the eigenvalue
problem code is executed in MATLAB with a different grid point count (), and the resulting
least consistent eigenvalues are given in Table 4.1 for a set of other parameters chosen at
random. For N > 50, the least consistent eigenvalue meets a convergence threshold of 1077,
When N > 50, the results do not change. A similar trend may be noticed for different
parameter values. As a consequence, N = 50 is used in the numerical calculation. The
results of @ = 7/2 were obtained, which is consistent with the results of Srinivasacharya and
Barman [108].

The impact of double diffusion on convective stability in a nanofluid flow with a
transverse magnetic field in an inclined porous channel is investigated in this paper. The
influence of inclination angle (), Darcy number (Da), thermo-solutal Lewis number (Ln),
Dufour number (D), and Soret number (Sr) on the flow instability is studied in-depth
in this paper. The remaining values of parameters are set as e = 0.6, Ny = 8, Ng = 0.2,
Rs=200, Rn=10, Pr=7, Le=1000, A =1, and 0 = 1.

The plots for the variation of critical Rayleigh number (Ra.) and critical wavenumber
(ce) as a function of Harmann number (Ha) for the inclination angle (6) are shown in Fig.
4.1. As 60 changes from horizontal to vertical, Ra. decreases. This demonstrates that 6
destabilizes the flow. It is worth noting that rising Ha rises Ra.. The Lorentz force is
commonly produced by applying a magnetic field at right angles to the direction of flow. As
a result, the model dissipates a substantial amount of energy to minimize this resistance,
which delays convection and acts as a stabilizer. As a consequence, the magnetic field may
be employed to effectively manage convection in a nanofluid-saturated medium. When the
inclination angle is fixed, it is seen that a. decreases as Ha increases. However, as 6 shifts

from horizontal to vertical, the critical wavenumber enhances.
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For the permeability parameter (Darcy number Da), the variation of critical Rayleigh
number (Ra.) and critical wavenumber (a.) as a function of Hartmann number (Ha) is
displayed in Fig. 4.2. The critical Rayleigh number rises as the Da increases, indicating
that permeability stabilizes the system. At lower Darcy numbers, it is believed that the
porous layer has less fluid permeability, causing a pronouncedly high resistance when the
fluid passes through the porous medium. As a result, the flow improves in a porous medium,
illustrating how viscous forces contribute to the momentum equation. Critical wavenumber
rises with increasing permeability, although the growth is slower when Da rises from 1 to 10

than when it rises from 0.1 to 1.

For varying values of thermo-solutal Lewis number (Ln), Fig. 4.3 shows the variation of
critical Rayleigh number (Ra,.) and critical wavenumber (a.) versus the magnetic parameter
(Ha). With a rise in the values of Ln, the Ra, increases slightly. As Ln grows, a. drops.

As a result, Ln stabilizes the flow.

Fig. 4.4 depicts the impact of the Soret number (S7) on the critical Rayleigh number
(Ra.) and critical wavenumber («.). As the value of Sr rises, so does the value of Ra,.
However, the rate of growth is extremely slow. In a nanofluid flow in an inclined channel,
the flow field is stabilized by the Soret parameter. This is because the Soret effect raises the
solute’s density gradient, which causes convective instability at constant temperature. As

Sr increases, a. drops.

The critical Rayleigh number (Ra.) and critical wavenumber (a.) patterns against the
Ha for different effects of the Dufour parameter (Dy) are shown in Fig. 4.5. The critical
Rayleigh number (Ra.) improves as the Dufour parameter value increases. Moreover, the .
somewhat lowers as the Dufour value is raised. As a result, it can be concluded that the

Dufour parameter (D) slightly stabilizes the system.

Figs. 4.6 - 4.9 show streamlines, isotherms, isosolutes, and isonanoconcentrations, for
various # values when Ha = 2 and Da = 10. Streamlines in a clockwise direction correlate
to negative contours, whereas those in an anti-clockwise direction correspond to positive
contours. When the channel is horizontal, i.e., § = 0, Fig. 4.6 shows the development of
two vertical cell structures known as Rayleigh-Bernard convection cells. A counter-clockwise
vortex forms close to the upper wall, while a clockwise vortex forms near the lower wall.
The cells then stretch or elongate in the vertical direction as the inclination angle increases,
eventually forming a horizontal cell structure when the inclination angle reaches 7/2, i.e.,
when the channel becomes vertical. Therefore, streamlines reorient the pattern from a

vertical structure to a horizontal structure as the channel inclination changes from horizontal
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to vertical. Solid lines represent positive contours in the case of isotherms, isosolutes, and
isonanoconcentrations contour, whereas dashed lines represent negative contours. A similar

pattern is observed in the case of isotherms, isosolutes, and isonanoconcentrations.

Table 4.1: “Convergence of the least stable eigenvalue for Da = 10, Ha=2, Pr = 7, Ra =
10, Rs=200, Rn = 10, Ln=40, ¢ = 0.6, Ny = 8, Ng = 0.2, Le = 1000, Sr = 0.5, Dy = 0.04,
A=1,0=n/3,0=1,a=1and =07

N Least stable eigenvalue
40 2.337864911005 -0.034982366316i
45 2.337866380778 -0.034982283926i1
50 2.337901597983 -0.034997045700i
55 2.337867143229 -0.034981336325i1
60 2.337950853642 -0.035017117849i
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Figure 4.1: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (o) with
Ha for different values of 0 with Da=0.1, Rs=200, Ln=40, Sr = 0.3 and Dy = 0.04.”
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Figure 4.2: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (c,) with

Ha for different values of Da with § = /3, Rs = 200, Ln = 40, Sr = 0.3 and Dy = 0.04.”
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Figure 4.3: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (o) with
Ha for different values of Ln with § = 7/3, Rs=200, Da=0.1, Sr = 0.3 and Dy = 0.04.”
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Figure 4.4: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (c,) with

Ha for different values of Sr with § = /3, Ln=40, Da=0.1, Rs = 200 and Dy = 0.04.”
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Figure 4.5: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (o) with
Ha for different values of Dy with § = 7/3, Ln=40, Da=0.1, Rs = 200 and Sr = 0.3.”
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Figure 4.6: “The disturbance of streamlines for different values of 6.”
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Figure 4.7: “The disturbance of isotherms for different values of 6.”
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Figure 4.8: “The disturbance of isosolutes for different values of 6.”
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4.6 Conclusions

The Brinkman-extended Darcy model is employed to examine the linear stability of double-
diffusive convection in an inclined channel filled with a porous medium saturated with
nanofluid under the impact of a transverse magnetic field. The critical Rayleigh number
(Ra.) and critical wavenumber (a.) are computed and graphically presented for various

values of 0, Da, Sr, Ln, and D; versus Ha.

e A rise in the magnetic parameter increases the critical Rayleigh number. As a result,
the Hartmann number (Ha) stabilizes the flow field.

e The flow in an inclined channel is stabilized by the thermo-solutal Lewis number (Ln),
the Soret parameter (Sr), and the Dufour parameter (D). As a result, a rise in these

factors delays the onset of convection.

76



Chapter 5

The stability of the nanofluid flow in
an inclined porous channel with

variable viscosity !

5.1 Introduction

The variable viscosity of fluids is an essential consideration in engineering and scientific
contexts, as it influences the behavior of fluid flow in various domains. Fluid viscosity
is a factor that effects product quality and processing conditions in sectors such as food,
chemical processing, and polymer manufacturing, where it is influenced by temperature,
pressure, and composition [109]. Umavathi et al. [38] investigated the linear and non-linear
stability analysis of convection in a Maxwell nanofluid-saturated porous medium with double
diffusing layers. In a Rayleigh-Bénard situation with rotation, recently Aanam et al. [39]
theoretically investigated the dynamics of a ferrofluid with temperature and viscosity that

are dependent on the magnetic field.

The literature review reveals that the stability properties of a nanofluid in an inclined
channel with variable viscosity have not been reported in the literature. As a result, the
current research examines the impact of variable viscosity in a nanofluid flow for an inclined

channel (with inclination ) filled with a porous medium.

'Published in “Numerical Heat Transfer; Part A: Applications” pp:1-14, DOL
https://doi.org/10.1080/10407782.2023.2252176
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5.2 Mathematical Formulation

Consider an unsteady, incompressible nanofluid flow in an inclined channel of width 2L and
inclination #, with impermeable and completely thermally conducting walls. Let Oxyz be
the Cartesian coordinate system with xz-axis in the flow direction and y-axis perpendicular to
the flow direction, as depicted in Fig. 2.1. It is assumed that the porous medium is isotropic
and homogenous. The walls y = —L and y = L are maintained at fixed temperatures T}

and Ty, with nanoparticle volume fractions fixed at ¢, and ¢, respectively.

Also, we have assumed that the viscosity is an exponential function of temperature ac-
cording to the Nahme law Sukanek et al. [110]

w(T) = e ™"
here, k is variable viscosity parameter, y; is viscosity at refrence temperature 7;.

Considering the Brownian motion and thermophoresis effects in the nanofluid, Darcy-
Brinkman model for porous medium, and linear Oberbeck-Boussinesq approximation, the

equations governing the flow are [50, 111]:

V-V=0 (5.1)
o (OV Y] = —vp+ WAV + V- (V7 +WVT)] - 27
e \ Ot ¢ K (5.2)
— [ =9¢)ps (1 = Br(T —T1)) + ¢p,] g(sin(0)éx + cos(d)éy)

(O L 4+ (o0) VT = 5 V2T + ¢(pC), <+%VT VT + DpVé- VT) (5.3)
1

ot

0 1~ D

9% 1y, Vo = DpV3¢ + —=V°T (5.4)
875 € T1

The boundary conditions are:
At y=—L: V=0, T=T, ¢=
Y g 1, =2 (5.5)
at y=L: V=0, T=1T o¢=¢

According to Nikushchenko and Pavlovsky [111] here, AV = —V x V x V.
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The non-dimensional form of the Egs. (5.1) -(5.4) (on using Eq. (2.6) in Egs. (5.1) -(5.4)
and removing asterisk) are:

V-V=0 (5.6)

% (% + %(V-V)V) =—Vp+ Da [MAV‘I—VM' (VVJrVVT)] —puV

(5.7)
+{RaT — Rn¢ — Rm}(sin(f)é + cos(h)éy)
or NaN.
5t V.VT = V2T + —4 BVT VT + —w VT (5.8)
8¢ 1, Ny,
A URO RS ARES = (59)
The corresponding boundary conditions become:
At y=—-L: V=0 T=0 ¢=1
Y 3 ? (5.10)
at y=L: V=0 T=1 ¢=0

5.3 Basic solution

The flow is supposed to be steady, parallel, continuous, unidirectional (x-direction), and
completely developed in the basic stage. Eqs. (5.6)-(5.9) can be reduced to a system of

ordinary differential equations using these three conditions:

0 o, d .
Da {8_y ( (Ty) 8yb) } — w(T))U, = % — (RaTy — Rn¢y — Rm) sin(6) (5.11)
dpo
o = (RaTy — Rnoy — Rm) cos(6) (5.12)
dpo
po _ 1
=0 (5.13)
d*Ty  Ngddydly NaNg [(dTp\°
0 B ¢0 0 ALVB _0 —0 (514)
d Le dy dy Le dy
429, &*T,
_ 5.15
dy? LR dy? 0 (5.15)
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The following are the associated boundary conditions:

At y:—l Ub:O, TOIO, ¢0:1

(5.16)
at y=1: Ub:O, T():l, (b(]:O

Proceeding as in Chapter-2, and taking the approximation u(7p) = e~*1° [106], we get basic

solution as:

1 —
Lh=-—%2  and = Ty (5.17)

Uy = e%wH){csch(m)sech(m) ( sinh(m(1 — y))(40 — (Dak — 2)(Ra + Rn))sin(6)

0|

+ef/2 sinh(m(1 + y)) (40 — (Dak + 2)(Ra + Rn)) sin(f) + Sjn(g)eﬁ(yﬂ) (5.18)
sinh(2m)(Ra + Rn)(Dak + 2y)> — 806§(y+1)}

where:

o= { silrth(Tn){Qel‘”/2 sin(0)(Ra + Rn)(4Dak*mcsch?(m) + sinh <§>
(coth(m)(16m*(Dak® — 4) + k*(Dak® + 4) — 8k*m coth(m))

—8k*m) + cosh (g) (2k coth(m) ( — 2Dak*m coth(m) + k*
+16m*) — 4Dak’m)) + 4k* coth(m) — 64k*m” coth(m)}}/
{20 ((e" = 1) (K + 16m) sinh(2m) + 16¢"2km — 8(c* + 1)km cosh(2m)) |

and

VR

4

m =

5.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (d) on the basic state solutions,
ignoring 62 and higher order terms, using the usual normal mode form [50] to express in-

finitesimal disturbances of corresponding field variables, and removing pressure terms from
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the resulting equations, the linearized stability equations are obtained as:

dv duo

N N N 2
Dl + 25055 — 0 (2uola? + ) = L20) — a4 )T %

dy* dy dy?  dy? dy?

d? o\ . wa d*0
et )+ )] ([
o d? UbA d?o 9 dpip do Crn o [dUy 2T

— = ——— — Dae "%k
eva dy? MO[dQ (o +B)} dy dy ac [dy dy?
d2Ub dub dT ngb dzUb dUb k’2 . 2 2 ~
dy? _kd_y>d_y (dy3 _kd2 * dy (——Za(a +ﬂ)>)T}
dT k2

4
. T
CZ;’T + ke ko a0 —U, — Ub?e_kTOT - Rad—yia sin(0)

(5.19)

n (2
t ke kT

—Ra(a? + %) cos(0)T + Rni—jia sin(f) — Rn(a® + 8%) cos(0)¢ =

1 1 dU,
—(—iac)n + — [ﬁv—b + mea] Da [Mo
va eva dy

d* | duo di 2, A2ys
0 + = dy dy — po(a” + B7)n

AU, dT k. —d2U,
+Dake _kToﬁ[ 1 b@ — §T+ dbe

—BRaTsin(8) + BRnpsin(f) = 0

(5.20)

T} + i) — BUke DT

_ Ng %JFQN dTy) T
dy dy | dy

Np dTydo _

(5.21)

a2 - c)é—i[dib—muﬂ%
€ dy €

According to Srivastava et al. [112] i(T) = d“OT represents the perturbation viscosity, and

k is variable viscosity parameter.
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5.5 Results and discussion

The set of Egs. (5.19) - (5.22) expresses a generalized eigenvalue problem with perturbed
eigenvalues in terms of wave speed. The spectral technique [107] is employed to find the

solution to this eigenvalue problem.

To examine the validity of the method, the eigenvalue problem code is executed in MAT-
LAB with a different grid point count (/V), and the resulting least consistent eigenvalues are
given in Table 5.1 for a set of other parameters chosen at random. For N > 50, the least
consistent eigenvalue meets a convergence threshold of 1077. When N > 50, the results do
not change. A similar trend may be noticed for different parameter values. As a consequence,

N = 50 is used in the numerical calculation.

The present analysis’s outcomes are compared to those of a vertical channel filled with
a nanofluid-saturated porous medium. The critical Rayleigh number Ra. and critical
wavenumber o, for the vertical channel are calculated from the current analysis when Da
= 10, k=0, Pr =17, Ra = 100, Rn =15, ¢ = 0.6, Ny = 8, Ng = 0.2, and § = 7/2, which

is consistent with the results of Srinivasacharya and Barman [50] as shown in Table 5.2.

The impact of variable viscosity on nanofluid flow stability in an inclined porous channel is
investigated in this paper. The influence of inclination angle (6), variable viscosity parameter
(k), porosity parameter (€), and Prandtl number (Pr) on critical Rayleigh number (Ra.) and
critical wavenumber () is depicted in Figs. 5.1-5.4. On the horizontal axis, the logarithm

of the Darcy number is used to show all of the instability boundaries.

The plots for the variation of critical Rayleigh number (Ra,.) and critical wavenumber (o)
for the inclination angle (#) are shown in Fig. 5.1. As 6 changes from horizontal to vertical,
the logarithm of the critical Rayleigh number (logigRa.) decreases. This demonstrates that
0 destabilizes the flow. This is because when the channel is inclined, the gravitational force
acting on the fluid causes a component of the force to act in the direction of the flow. This
can lead to the development of instabilities in the nanofluid flow. It is worth noting that the
rising Darcy number (Da) rises Ra,. indicating a stabilizing impact of permeability. Also, the
flow is constant until Da = 1, and then there is a rapid spike in Ra, as Da increases. The
fluctuation of Ra, is slow and smooth for small values of the Darcy number (Da < 1). When
(Da > 1), there is a quick increase in Ra.. The flow resistance decreases as permeability
increases, and flow in the porous medium improves, indicating that viscous forces play a role
in the momentum equation. When the inclination angle is fixed, it is seen that . increases as

Da increases. Also, as 6 shifts from horizontal to vertical, the critical wavenumber enhances.
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Fig. 5.2 shows the variation in critical Rayleigh number (Ra.) and critical wavenumber
(ce) for the variable viscosity parameter (k). Ra. drops as we increase k from -0.5 to 0.5.
However, as we raise Da, Ra. increases slowly until Da = 1, and then there is a rapid spike in
Ra. as Da increases. However, as we increase k from -0.5 to 0.5, .. is decreased. And when
we increase Da, a. increases until Da=1, then it becomes constant. Hence, k destabilizes
the flow because variable viscosity affects the distribution and migration of nanoparticles,
leading to the accumulation or segregation of nanoparticles in certain regions, disrupting
flow patterns. The significant contrast in viscosity between nanoparticles and the base fluid

introduces non-uniform shear stress distribution, causing flow instability.

Fig. 5.3 presents the boundaries of the instability region depending on the porosity pa-
rameter (€) and the permeability parameter (Da). It is seen from Fig. 5.3 that increasing
the porosity parameter tends to increase the critical Rayleigh number( Ra.). This is because
porosity is a ratio of void volume over total volume. In a porous medium, this is a measure-
ment of the empty spaces. When the porosity rises, the volume of voids rises as well. Hence,
porosity stabilizes the flow. Also, it is noted that there is a little variation in «, when the
value of the porosity parameter increases, but there is an increase in «. as the value of Da

grows.

The influence of the Prandtl number (Pr) on the boundaries of instability is seen in Fig.
5.4. The critical Rayleigh number rises as momentum diffusivity increases in terms of Pr. As
a result, the Prandtl number has a stabilizing effect on the system. There is substantial flow
resistance with small Darcy numbers in the porous medium. This flow resistance decreases as
the permeability increases and the porous medium’s flow increases, indicating the importance
of the momentum equation of viscous forces. Moreover, when permeability increases, the

wavenumber also increases. Also, when Pr rises, the wavenumber rises slowly.

Figs. 5.5-5.7 show streamlines, isotherms, and isonanoconcentrations for various 6 values
when with fixed values of other parameters. Da = 1, Pr=7, ¢=0.6, Rn=15, Ra=100,
Le=500, Ny = 8, Ng = 0.2, and k=0.5. Streamlines in a clockwise direction correlate
to negative contours, whereas those in an anti-clockwise direction correspond to positive
contours. When the channel is vertical, i.e., § = 7/2, Fig. 5.5 shows the development of
two vertical cell structures known as Rayleigh-Bernard convection cells. A counter-clockwise
vortex forms close to the upper wall, while a clockwise vortex forms near the lower wall.
The cells then stretch or elongate in the vertical direction as the inclination angle decreases,
eventually forming a horizontal cell structure when the inclination angle reaches 6 = 0 i.e.,
when the channel becomes horizontal. Therefore, streamlines reorient the pattern from a

horizontal structure to a vertical structure as the channel inclination changes from vertical
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to horizontal. Solid lines represent positive contours in the case of isotherms, isosolutes, and
isonanoconcentrations contour, whereas dashed lines represent negative contours. A similar

pattern is observed in the cases of isotherms and isonanoconcentrations.

Table 5.1: “Convergence of the least stable eigenvalue for Da = 10, k=0.5, Pr = 7, Ra =
100,Rn =15, e = 0.6, Ny =8, Ng = 0.2, Le =500, a= 1, and = 0.”

N Least stable eigenvalue
40 2.782696889086 -0.072169454812i
45 2.782696869479 -0.072169365646i1
50 2.782697982103 -0.072165179703i
55 2.782697061391 -0.072156113180i
60 2.782694217221 -0.072164172382i

Table 5.2: “Critical values of a. and Ra, for different values of Le and 8 at Da = 10, k = 0,
Pr=7 Rn=15¢=0.6, Ny =8, Ng =0.02, and 0 = 7/2”

Present Results Srinivasacharya
and Barman [50]
Da | B | Le o, Ra, o, Ra,
0.1 | 0 | 100 | 0.964500755 | 1418.197639 | 0.9645 | 1418.198
0 | 300 | 0.963249683 | 1428.58010 | 0.9632 | 1428.580
0 | 500 | 0.963040499 | 1430.804799 | 0.9631 | 1430.805
0.5 | 500 | 0.901980216 | 1649.284165 | 0.9020 | 1649.284
1 {500 | 0.727248243 | 2915.056289 | 0.7273 | 2915.056
1 0 | 100 | 1.343032132 | 3030.342688 | 1.3430 | 3030.343
0 | 300 | 1.342459409 | 3035.799127 | 1.3425 | 3035.799
0 | 500 | 1.342402116 | 3037.208995 | 1.3424 | 3037.209
0.5 | 500 | 1.295094713 | 3263.853616 | 1.2951 | 3263.854
1 | 500 | 1.142297567 | 4203.373754 | 1.1423 | 4203.374
10 0 | 100 | 1.382342585 | 25247.08315 | 1.3824 | 25247.08
0 | 300 | 1.382274144 | 25252.11631 | 1.3823 | 25252.12
0 | 500 | 1.382280638 | 25253.49436 | 1.3819 | 25253.44
0.5 | 500 | 1.33625209 | 27021.49202 | 1.3361 | 27021.49
1 | 500 | 1.189422721 | 34195.04124 | 1.1894 | 34195.04
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Figure 5.1: “For k£ = 0.5, Le = 500, ¢e=0.6, Rn = 15,Pr = 7, Ny = 8, and Ng = 0.2
instability boundaries for (logi9Da, logigRa.)-plane and (logigDa, logigc.)-plane for various

values of 6”

015

T
A0 05 0.0 05 10 15 20 A0 05 0.0 05 1.0 15 20
log,,Da

Figure 5.2: “For § = 7/3, Le = 500, e=0.6, Rn = 15,Pr = 7, Ny = 8, and N = 0.2

instability boundaries for (log19Da, logigRa.)-plane and (logigDa, logigc.)-plane for various

values of k.”
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Figure 5.4: “For 8 = 7/3, k = 0.5, e=0.6, Rn = 15, Le = 500, N4y = 8, and N = 0.2
instability boundaries for (logi9Da, logigRa.)-plane and (logigDa, logigc.)-plane for various
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Figure 5.7: “The disturbance of isonanoconcentrations for different values of .”
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5.6 Conclusions

The Brinkman-extended Darcy model is employed to examine the linear stability of variable
viscosity in an inclined channel with a porous medium saturated with nanofluid. The critical
Rayleigh number (Ra,.) and critical wavenumber («..) are computed and graphically presented

for various values of 0, k, Pr, and € versus Da.

e The variable viscosity parameter destabilizes the flow as it affects the distribution and
migration of nanoparticles, leading to the accumulation or segregation of nanoparticles

in certain regions, disrupting flow patterns.

e The flow in an inclined channel is stabilized by the Prandtl number (Pr), and porosity

parameter (€). As a result, a rise in these factors delays the onset of convection.
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Chapter 6

Influence of variable viscosity and
local thermal non-equilibrium on
nanofluid flow stability in an inclined

porous channel !

6.1 Introduction

In this chapter, we examine the impact of LTNE with variable viscosity on convection sta-
bility in nanofluid flow for an inclined channel (with inclination 6) filled with a porous
medium. The application of the present study may include the design of heat exchangers
for improved thermal efficiency, enhanced cooling systems in various industries, optimiz-
ing enhanced oil recovery techniques, aiding in environmental engineering for wastewater
treatment and contaminant transport, benefiting microfluidics for medical diagnostics and
lab-on-a-chip systems, and contributing to geothermal energy extraction, aerospace, and

aviation cooling systems.

'Published in “Proceedings of the Institution of Mechanical Engineers, Part E: Journal of
Process Mechanical Engineering” pp:1-15, DOI: 10.1177/09544089241234406
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6.2 Mathematical Formulation

Consider an unsteady, incompressible flow of a nanofluid in an inclined channel with a width
of 2L and inclination @, with impermeable and completely thermally conducting walls. Also,
we have assumed that viscosity varies exponentially with temperature. according to the
Nahme law Sukanek et al. [110]

u(T) = e ™"

where f; is the viscosity at the reference temperature 7;.

Fig. 2.1 depicts a a diagrammatic depiction of the problem. Assume that the angle
of inclination with the horizontal line is §. The LTNE state is assumed to exist between
the fluid, particle, and solid-matrix phases. The three temperature models are taken into
account. As a result, three heat transfer equations, one for each of the three phases, are
considered. Except for the density changes in the buoyancy force term, the thermophysical
characteristics of the fluid are considered to be constant. Assume that the porous medium
is homogenous and isotropic. The temperatures of the left and right walls are 77 and 75
(T} > Ty), and nanoparticle volume fractions are ¢o and ¢1, respectively.

Using the above assumptions, employing the Oberbeck- Boussinesq approximation and Darcy-
Brinkman model, the governing equations that describe the flow can be expressed as follows
[113, 50]:

Conservation of mass:

V-V=0 (6.1)
Conservation of momentum:

ov
IA;

e Ot €2 K

(1 = Br(Ty — T1))] g(sin(0)éx + cos(0)éy)

(V-V)V = —Vp+ [uAV + V- (VV'T + VV) | = £V~ [gp,+ (1 - Df6.2)

Conservation of energy:

e(pC)s(1 —¢n) (% + %‘7 : VTf) = ke(1 = 1) V2T + e(1 = ¢1)(pC), (DY - VT
(6.3)
D
+TTVTJ‘ VTy) = hyyp(Ty = T,) — hys(Tr = T2)
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e(pC)p (W + EV ’ VTp) o1 = €¢1kpv2Tp + hyp(Ty = T}) (6.4)
0T,
(1 —¢e)(pC)s ¥ = (1 - )k, VT, + hys(Ty — T) (6.5)
Conservation of nanoparticle:
6¢) 1~ . 2 DT 2
E—FEV V(b—DBngS—F?lVT (6.6)

At y:_L ‘7 0 Tf:T17 Tp:T17T$:T17 ¢:¢2

B (6.7)
and at y=L: V=0, Ty=T, T,=T"T,="T, ¢=q¢

The non-dimensional form of the Eqgs. (6.1) -(6.6) (on substituting (2.6) in (6.1) -(6.6) and

removing asterisk) are:

V-V=0 (6.8)
1oV 1 o _. - B ; . .
——+ — (V- =— Da|pA . T — T
—Cr+ (V- V)V = ~Vp+ Da[uAV + Vi (vv +vv>} WV 4 {RaTy oo
—Rn¢ — Rm}(sin(0)éx + cos(0)éy)
ory 1 /4 Np NANB
—L L 2 (V.VTy) = VT + =—=V¢-VT Ty -NTy — Nyp(Ty — T,
8t+6< Vf) \Y% f+L€v¢Vf+ VTy - VTy up(Ty ») (6.10)
—Npus(Ty —1Ty)
oTr, 1 /-
S+ (V- 9T,) = VT, + 9 Nup(Ty ~ T,) (6.11)
0T
el €. V2T, + v Nys(Ty — T) (6.12)
8<b 9 Nao
V. = — —VT 6.13
815 ( V(b) ev¢+Lev / ( )
The corrosponding boundary conditions became:
At y=—-1: V=0, Tr=1, T,=1, T,=1, ¢=0
Y . 5 ¢ (6.14)
and at y=1: V=0, Ty=0, T,=0, T;,=0, ¢=1



6.3 Basic solution

The flow is supposed to be steady, parallel, continuous, unidirectional (x-direction), and
completely developed in the basic stage. Eqgs. (6.8)-(6.13) can be reduced to a system of

ordinary differential equations using these three conditions:

Da {% (MT@%—?) } — w(To)Uy = % — (RaTso — Rngy — Rm) sin(0) (6.15)
Do _ (RaTyo - R R 0
m = (RaTyy — Rngo — Rm) cos(0) (6.16)
dpo N
- = 0 (6.17)

d®Ts0  NpdbgdTry NiNg [dTs)\>
f0 B ¢0 f0—|— A B( fO) +NHP(Tp0—T30)+NHS<TsO_Tfo):O (618)

dy? Le dy dy Le dy

d*Tpo
€p dy2 + prNHP(TfO — Tp0> =0 (619)

d*T,
SW; +veNps(Tro — Tyo) = 0 (6.20)

d*®, d*Tyo

N =0 6.21
dy? + N dy? ( )

The following are the associated boundary conditions:

At y:_l . Ub:07 TfOZOa Tp0:07 T80:O7 QSO:]‘

(6.22)
and at Yy = 1: Ub = 0, Tfo = 1, TpO = 1, TsO = 1, ¢0 =0

Proceeding as in Chapter-2, and taking the approximation u(7Ty) = e~*70 [106], we get basic
solution as:
1+ 1—-y

Tho="Tpo =150 = Ty and ¢ = 9 (6.23)

Up = éei(y“){csch(m)sech(m) ( sinh(m(1 —y))(40 — (Dak — 2)(Ra + Rn)) sin(0)
+e"2sinh(m(1 + y)) (40 — (Dak + 2)(Ra + Rn))sin(f) + Sin(Q)eg(y“) (6.24)

sinh(2m)(Ra + Rn)(Dak + 2y)> - &,e%(wn}
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where:

o= { sinh?(m){2¢"?sin(0)(Ra + Rn)(4Dak*mcsch?®(m) + sinh (k) (coth(m)
16m?(Dak?® — 4) + k*(Dak?® 4 4) — 8k*m coth(m)) — 8k*m
(
+ cosh (g) (2k coth(m) ( — 2Dak*m coth(m) + k* + 16m*) — 4Dak’m))
+4k* coth(m) — 64k*m? coth(m)}}/{ k((e"—1)
(k* + 16m?) sinh(2m) + 16€*/2km — 8(e* + 1) km cosh(2m)) }

and

6.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (0) on the basic state solutions,
ignoring 62 and higher order terms, using the usual normal mode form [50] to express in-
finitesimal disturbances of corresponding field variables, and removing pressure terms from
the resulting equations, the linearized stability equations are obtained as:

d*o dpo d3  d*0

g do dpug
- bl 2 2y _ Yy 2 2\ Y 2 2
Da[uody4+2dy i dy2<2“0(a + %) dy2> 4"+ B )dy i + (a” + %)

(uo(a2+52)+d:0)@} —@@b >[22§ (o + 5%)0 } Zfa%@f““[%m@

dlf 9 9 N dp . .
_ b _ bl
dy dy a—= a0 iasin(0) — Ra(a” + )cos(G)Zf + Rndyza sin(0)

~

—Rn(a* + %) cos(0)¢p =

1 1 dU, d’n  dug dn
—(—iac)n + — [ﬁ'&—b + Ubﬁia] — Da [u il + o T _ po(a® + B%)h
va eva dy ]

+uof — BRaTysin(f) + SRndsin(h) = 0

93



1dT . 27 N Tro1dT
Carria( =T - |G - @ ety | - [ ean )
€ € e
Y Yy Yy y 1 dy (6.27)
Np dTyo do L
BT rT T, —T:) — Nys(T, — Ts) =0

— % Nup(Ty —T,) =0  (6.28)

+ v Nys(Ty —T,) =0 (6.29)

%ma(%_c)(;_i[dﬁtmwm
€ dy €

6.5 Results and discussion

The set of Egs. (6.25) - (6.30) expresses a generalised eigenvalue problem with perturbed
eigenvalues in terms of wave speed. The spectral technique [107] is employed to find the

solution to this eigenvalue problem.

To examine the validity of the method, the eigenvalue problem code is executed in MAT-
LAB with a different grid point count (IV), and the resulting least consistent eigenvalues are
given in Table 6.1 for a set of other parameters chosen at random. For N > 50, the least
consistent eigenvalue meets a convergence threshold of 1077. When N > 50, the results do
not change. A similar trend may be noticed for different parameter values. As a consequence,

N = 50 is used in the numerical calculation.

To validate the exactness of the method, our code was verified by comparing it with
published results in a vertical channel filled with a nanofluid-saturated porous medium. The
critical Rayleigh number (Ra.) and critical wavenumber (a.) for the vertical channel were
calculated from the current analysis when Pr = 7, Rn = 15, Rm = 0, ¢ = 0.6,N4 = 8§,
Np = 0.02, Ngp =0, Nys = 0, €,=0, ¢, = 0, 7,=0, v,=0, k = 0 and 6§ = 7/2, which is

consistent with the results of Srinivasacharya and Barman [50].

The impact of local thermal non-equilibrium on nanofluid flow stability with variable
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viscosity in an inclined porous channel is investigated in this paper. The flow is controlled by
seventeen variables, which are as follows: Da, Pr, Ra, Rn, ¢, Na, Ng and Le (related to the
state of LTE), inclination angle (), variable viscosity parameter (k), interphase heat transfer
parameters Ngg and Ny p, modified thermal capacity ratios v, and 7,, and modified thermal
diffusivity ratios €, and €,. Because there are more parameters, the analysis is simplified to
focus solely on the effect of LTNE parameters. As a result, for the rest of the discussion,
the LTE parameters will be set to Pr =7, Da =1, Rn =5, k = 0.5, Ny =8, Ng = 0.2,
e = 0.6, and Le = 500.

From the present analysis, we can get the special cases for horizontal channel 8 = 0,
vertical channel § = 0 and constant viscosity £ = 0. The critical values of Ra. and «, for
these special cases are calculated and given below. The results of present study are compared
with the benchmark results obtained by Srinivasacharya and Barman [50].

Case - I (Horizontal Channel): The Critical values of for the case of horizontal channel
is calculated as Ra. = 17356 and a, = 1.2204.

Case - II (Vertical Channel): The Critical values of for the case of vertical channel is
calculated as Ra, = 1808.5 and a, = 1.3559.

Case - III(Constant Viscosity): The Critical values of for the case of constant viscosity
is calculated as Ra. = 4240.4 and o, = 1.3165.

6.5.1 Effect of the interphase heat transfer parameter

For different LTNE parameters, the change of critical Rayleigh number (Ra.) and critical
wavenumber (a,) are computed as functions of Nield numbers Nyp and Nyg and presented
in Fig. 6.1 and Fig. 6.2. According to Fig. 6.1(a), as Nyp increases, the critical Rayleigh
number (Ra.) increases, whereas as Npyg increases, Ra. decreases. Fig. 6.2(a) also depicts
a similar trend for variation of Ra. with inter-phase heat transfer parameters. As a result,
for all values of Ngp stabilizes the flow whereas for all values of Nyg destabilizes it. An
enhancement in the values of Nyp or Nyg enhances the heat-release from fluid to solid
and fluid to the nanoparticle or vice versa, respectively. Furthermore, all three phases have
almost similar temperatures and act as a single phase, resulting in a local thermal equilibrium
state. This is because Ngp and Ny becomes large, the temperature differences are inversely
proportional to inter-phase heat transfer parameters. In case of critical wavenumber when
Npyp rises, a, increase, and when Ngg increase, a. first drops upto certain values of Ngg

then rapidly rises in the intermediate values as shown in Fig. 6.1(b). This could be due
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to fluid /particle dominance of heat transfer of fluid/solid-matrix. Furthermore, as shown in

Fig. 6.2(b), when Npyg rises, a, falls, and when Ngp rises, a. rises.

6.5.2 Effect on the angle of inclination:

The plots for the variation of critical Rayleigh number (Ra.) and critical wavenumber (a..) as
a function of Nield numbers Nyp and Ny for the inclination angle () are displayed in Fig.
6.3 and Fig. 6.4. The Fig. 6.3(a) shows that Ra. decreases as 6 changes from horizontal to
vertical, whereas Ra. does not change as Nyp increases. However, in the case of Nyg, Ra,
decreases as Ngg and 6 both increase, as shown in Fig. 6.4(a). As a result, changing 6 from
horizontal to vertical destabilises the flow. In the case of critical wavenumber, as 6 and Nyp
increase, so does a., as shown in Fig. 6.3(b). Also, as § moves from horizontal to vertical, a,
rises, and as Nyg increases, «. falls until certain values of Nyg and then rises, as shown in
Fig. 6.4(b). This could be due to fluid/particle heat transfer dominating fluid/solid matrix

heat transfer.

6.5.3 Effect on the variable viscosity parameter:

Fig. 6.5 and Fig. 6.6 shows the variation of critical Rayleigh number (Ra.) and critical
wavenumber (a.) as a function of Nield numbers Nyp and Nyg for variable viscosity pa-
rameter (k). We observed that as k increases from —0.5 to 0.5, Ra. decreases and as we
increase Ngp there is no variation in Ra,, as displayed in Fig 6.5(a). And we see in the Fig.
6.6(a), as k increases, Ra. decreases and as we increase Nyg, Ra. drops from high values
when Npg is small to its minimum LTNE value. Hence, k destabilizes the flow. However,
there is no uniform pattern for a,. as we increase k for Ngp and Ngg both as shown in Figs.
6.5(b) and 6.6(b). But as we increase Ngp, critical wavenumber (a.) first increases then it
became constant as displayed in Fig. 6.5(b). And with increase of Npg, the value of criti-
cal wavenumber (a.) decreases from high values when Npyg is small to its minimum LTNE
value for intermediate Ngg, then bounces back to higher values for large Nyg as shown in
Fig. 6.6(b). This might occur as a result of fluid/particle heat transfer dominating that of

fluid /solid matrix.
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6.5.4 Effect on the modified thermal capacity ratios:

Figs. 6.7- 6.10 shows the behaviour (Ra.) and (a.) with inter-phase heat transfer parameters
Npup and Nyg for different values of modified thermal capacity ratios v, and v, by fixing the
other parameters values. As shown in Fig. 6.7(a), Ra. gradually decreases as -, increases
from 0.04 to 0.08, and Ra. grows uniformly as Ngp increases. Whereas for Ngg, as shown in
6.8(a), Ra. remains constant as 7, increases, Ra. decreases as Nyg increases. As a result, 7,
stabilizes the flow for all Nyp values while destabilizing it for all Ngg values. Furthermore,
as 7, rises, a. falls slightly, but as Ngp rises, a. rises, as shown in Fig. 6.7 (b). Also, as 7,
rises, a, rises until a certain value of Ngg and then decreases, whereas as Ngg rises, «. first
falls for the intermediate values of Nyg before rising, as shown in Fig 6.8(b). This could

happen as a result of fluid /particle heat transfer dominating fluid /solid matrix heat transfer.

As shown in Fig. 6.9(a), Ra, rises as s rises from 0.01 to 0.03; additionally, Ra, rises
uniformly as Ny p rises. In contrast, as shown in Fig. 6.10(a), Ra. decreases as Nyg increases,
but increases when 7y, decreases. As a result, v, stabilises the flow for all values of Nyp and
Npyg. Furthermore, as 75 and Npyp increase, so does a., as shown in Fig. 6.9(b). Also, as
v Tises, a,. decreases, whereas as Ngg rises, «. first falls in the intermediate values of Ngg

before rising, as shown in 6.10(b).

6.5.5 Effect on the modified thermal diffusivity ratios:

Figs. 6.11 - 6.14 shows the variation of critical Rayleigh number (Ra.) and critical wave
number (o) with inter-phase heat transfer parameters Nyp and Npyg for different values
of the modified thermal diffusivity ratios €, and €, by fixing the other parameters values.
As displayed in Fig. 6.11(a), Ra. decreases as €, rises from 0.7 to 0.9, and Ra. increases
uniformly as Nyp increase. In contrast, as shown in Fig. 6.12(a), Ra, falls as Nyg increase,
whereas Ra. does not change as €, grows. As a result, for all values of Nyp and Nyg, ¢,
destabilizes the flow. As illustrated in Fig. 6.11(b), as ¢, increases, a,. does not change, but
as Nyp increases, «, increases. Moreover, when Nyg rises, «. first falls in the intermediate
values of Nyg before rising, as shown in Fig. 6.12(b), whereas ¢, rises, o, effects is nearly
negligible. This could happen as a result of fluid/particle heat transfer taking precedence

over fluid/solid matrix heat transfer.

As seen in Fig. 6.13(a), Ra. does not change as €, rises from 0.1 to 0.3; additionally,
Ra, increases as Nyp rises. In contrast, as displayed in Fig. 6.14(a), Ra. decreases as Nyg

raises, but Ra. remains unchanged as ¢, rises. As a result, ¢, destabilizes the flow for all
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values of Nyp and Nyg both. Additionally, as seen in Fig. 6.13(b), as €, and Ny p increases,
a. rises. Although Npyg rises, . first falls in the intermediate values of Ngg before rising,

as seen in Fig. 6.14(b), but with Nyg, as €, rises, . decreases.

Table 6.1: “Least stable eigenvalue for different number of grid points with Da = 0.5, Pr =
7, Ra =10, Rn =5, € = 0.6, Ny =8, Ng = 0.02, Le = 100, Ngs=200, Nyp=100, ,=0.08,
7s=0.03, ¢, = 0.7, ¢, = 0.2, a= 1 and 8 = 0.”

N Least stable eigenvalue
40 3.435961960923 -0.224658384193i
45 3.435961961672 -0.2246583628811
50 3.435962593339 -0.224658392292i
55 3.435962132333 -0.224658589822i
60 3.435961982799 -0.2246583816111i
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6.6 Conclusions

The effect of local thermal non-equilibrium (LTNE) on nanofluid flow onset convection in an
inclined porous-medium channel with variable viscosity is studied. For the energy equation,
Darcy-Brinkman model was used for porous medium, and the three medium temperature
treatments have been used. The influence of LTNE parameters on the critical Rayleigh
number and critical wavenumber is the only focus of this research with inclination 6 = /3.

For different values of the LTNE parameters, the results are graphically shown.
e When the destabilizing and stabilizing characteristics of Ngp and Nyg converge to
zero and beyond sufficiently large values, the system acts as if it were in an LTE state.

e When Nyp increases, critical Rayleigh number (Ra.) increases, and as Nyg increases,
Ra, falls. As a result, for all values of Nyp stabilizes the flow whereas for all values of
Nps destabilizes the flow field.

e When we raise Nyp, there is no change in critical Rayleigh number (Ra,) for all values

of inclination angle (), and variable viscosity parameter (k).
e 7, stabilizes the flow for all values of Ngp.
e For all values of Nyg, vp, 7s and €, and €, destabilize the flow.

e When we raise Nyg, critical wavenumber first decreases up to specific values of Nyg
before quickly increasing in the intermediate levels. This is may be happen due to the

domination of heat transfer of fluid/solid-matrix by fluid/particle.
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Chapter 7

Influence of variable viscosity and
double diffusion on the convective
stability of a nanofluid flow in an

inclined porous channel !

7.1 Introduction

The combined influence of variable viscosity and double diffusion has seral applications in
science and engineering. Several researchers have considered the effects of variable viscosity
and double diffusion seperately on the stability of the flow in a porous channel. After
reviewing the relevant literature, it has been found that the stability analysis of a nanofluid
in an inclined porous channel with double diffusive convection and changing viscosity has
not been reported. This chapter investigates the simultaneous effects of variable viscosity
and double diffusion on the convective stability of nanofluid flow in a porous inclined channel

(at an angle of inclination 0).

!Published in “Applied Mathematics and Mechanics (English Edition) 45(3), pp:563-580, DOI:
https://doi.org,/10.1007/s10483-024-3096-6"
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7.2 Mathematical Formulation

Consider an unsteady, incompressible flow of a nanofluid in an inclined channel with a width
of 2L and inclination @, with impermeable and completely thermally conducting walls. Also,

we have assumed that viscosity varies exponentially with temperature [110].

w(T) = e

where ; is the viscosity at the reference temperature 7;.

Fig. 2.1 represent a schematic illustration of the problem. The porous medium is assumed
to be homogenous and isotropic. The temperatures of the left and right walls are T} and
T, respectively, nanoparticle volume fractions are ¢, and ¢;, respectively. and the solute

concentrations are C'; and Cy respectively.
Using the above assumptions and the Oberbeck-Boussinesq approximation, the following

set of equations describes the flow [113, 50]:

V-V=0 (7.1)

2V P v - (V7 4+ T Ly
L+ vV = Vp+ Vi (V7 + VVT) 4 uaV| = 2V 72)

—{(1=5r(T =T) = Pc(C = Ch)) (1 = &)ps + dpp} g(sin(0)éx + cos(0)éy)

or — ~ e(pC), ¢ Dr
— 4+ V.-VT =0, V*T + P —=VT -VT + DgVe¢-VT
ot (pC)y (Tl PV ) (7.3)
—|—DT0V2C
o 1- D
99 + =V Vo = —LV2T + DpV26 (7.4)
t € Tl
1=
%—f + EV -VC = DgV*C + Doy VT (7.5)

The non-dimensional form of the Eqgs. (7.1) -(7.5) (on using Eq. (2.6) in Egs. (7.1) -(7.5)
and removing asterisk) are:

V-V=0 (7.6)
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1 oV L(V . V)V =—-Vp+ Da [V,u . (VV + VVT> + MAV] - HV

va Ot ' vae (7.7)
+ [RCLT + %C — Rm — Rngf)} (sin(@)éx + cos(f)éy)
or 9 1 )
S Vv =V T+L—€<NBV¢-VT+NANBVT-VT) + D,V2C (7.8)
925 1 Na oo L oo
v,z T+ — 7.9
ot ( ng) Le TV T Lev ¢ (7.9)
(90 1 1 _, )
7.10
o< (VVC) = -viC+ srviT (7.10)
The boundary conditions are:
=-1: V=0, T=0, C=0, ¢=1
Y ) ? (7.11)
y=1: V=0, T=1, C=1, ¢=0

7.3 Basic solution

In the basic stage, the flow is regarded as continuous, one-directional (in the z-direction),
and completely developed. Eqs. (7.6)-(7.10) may be reduced into set of ordinary differential

equations by applying these conditions:

Da {3 (Mo%) } polUs = o (RGTO + R—Co — Rngo — Rm) sin(6) (7.12)
Y

oy dr Ln
d Rs
cro (RaTo + —CO — Rndo — Rm) cos(6) (7.13)
dy
dpo
4o _ 14
g, =0 (7.14)
2 N To NaNgp [dTp)\> 2
@Ty | Nodoodly | NalNp (dTo)" p £Co _, (7.15)
Le dy dy Le dy dy?
2o 42T,
N =0 7.16
dy? +Na dy? ( )
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1 d*Cy d*Ty
— - = 1
In dif? + Sr 0 0 (7.17)
The boundary conditions are:
=—1 U,=0, To=0, Cy=0, =1
Y b 0 0 Po (7.18)
y=1: Uy=0, To=1, Co=1, ¢9=0

Proceeding as in Chapter-2, and taking the approximation u(7p) = e~*7 [106], we get basic
solution as:
I+y

1 1—
- Y = Ty, and CO = T (719)

Uy = %e(y“)ﬁ {sech(m)csch(m) (Sinh((l —y)m) (40 + (2 — Dak)(Ra + f—; + Rn))

sin() + e*?sinh((1 + y)m)(40 — (2 + Dak) (Ra + % + Rn))sin(6) (7.20)

+ sin(@)eg(yﬂ) sinh(2m) (Ra + f—; + Rn)(Dak + 2y)) — 806§(y+1)}

where:
12 k/2 Rs 3 2 : k
o= { sinh (m){?e sin(f) (Ra + Tn + Rn> <4Dak mesch”(m) + sinh <§>
<Coth(m) <l6m2 (Dak:2 - 4) + k? (Dak2 + 4) — 8k*m coth(m ) — 8/{:2m>
+ cosh (g) (2k coth(m)( — 2Dak*m coth(m) + k* + 16m2>
—4Dak3m)) + 4k* coth(m) — 64k*m? coth(m /
{2k((ek — 1) (K* + 16m?) sinh(2m) + 16¢*/2km — 8(e* + 1) km cosh(2m) ) }
and
IRLaRE
"
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7.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (J) on the basic state solutions,
ignoring 4 and higher order terms, using the usual normal mode form [50] to express in-
finitesimal disturbances of corresponding field variables, and removing pressure terms from

the resulting equations, the linearized stability equations are obtained as:

d4@ d,uO dgﬁ dz@ 2 2 d Ho 2 dv d:u() 2 2
Da[/ﬁod—y4+2d—yd—y3—d—y2(2uo(& +B) d2)_ ( ﬁ) +(Oé +5)
d? g Uy d*o i d*U,

2 2 a4~ flo s 5

<#0(04 +ﬁ)+dy2)v} Va<€ )[dQ (a +ﬁ)} eva dy2v

dU, T ( U, kdUb)@

dy? d d
Y YO 91

DBop e "“TOZ—TU

N o] — WY poekoy,
“O[dyz (0" +57)3] dy dy % [dy dy?
d3Ub d2Ub dUb k’2 —kTo
+<dy3 _kdy2+dy (——za(a —1—5))) }%—k i

4
k2 X dT . RsdC
—UbEe_kTOT — z'aRad—y sin(6) — (a* + B*)Racos(0)T — mL_;d_y sin(6)

~

~

—(a?+ ) Tn COS(O)C’ + iaRn% sin(f) — (o + B*) Rncos(0)¢ =

1 1 r,.dUy d*n  dpodp KTy
(—zac) n+%[ﬁv—y+mea} Da[,uody + — a0y dy po(a® + BH)n ]—}—Dake 6]
dv,df k. U, o 2)
[d_yd_y - §T 07 T] + pof) — BUke " T — BRaT sin( éi
—BL—ZC’SM(Q) + BRngsin(d) =0
T, T A deo dTy] dT  NpdTydg
il Up— T — |25 — (2 + )T | - 22 |20 oy, 20| &0 B 0000
! dy iUy =) dy? (o™ + 57 Le [dy * dy dy  Le dy dy
(7.23)
d’ 2 | 2
—Dy d_yg_(a +69)C| =0
ldgo. . (U 1|, , .| Nard®T ., -
- 4% NP I S ALY 7| =0 (7.24
edyU—Ha(e c)gzﬁ Le[dyQ (o + B%)¢ Le[dyQ (a +5)} 0 (7.24)
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1dCy U L LB, CT 5 s

-—— — - —— == - C —S[—— T =0(725

Edyv—l—zoz<6 c) o | (o + B7) r a0 (a* + %) ( )
According to Srivastava et al. [112] i(Ty) = —%STA represents the perturbation viscosity.

7.5 Results and discussion

A generalized eigenvalue problem with ¢ as the complex eigenvalue is transformed by the
set of governing equations (7.21)-(7.25). Chebyshev spectral collocation was used to find a
solution to the problem in MATLAB, as described by Canuto et al. [107]. The investigation
of the convergent behavior of the Chebyshev spectral method was carried out by varying the
number of collocation points (N), and the most unstable eigenvalues were determined. These
eigenvalues are enumerated in Table 7.1 for data selected at random for various parameters.
The eigenvalue with the most instability was accurate to six decimal places when N > 50.
It held for greater values of N. Furthermore, a comparable pattern has been observed for
other flow governing values for parameters. Consequently, N = 50 was used to execute the

numerical analysis.

To validate the accuracy of the procedure, our code was compared to results published on
nanofluid-saturated porous medium is contained in a vertical channel. The current analysis
determined the critical Rayleigh number and critical wavenumber for vertical channel when
Pr =7, Rn =15, Ln = 100, € = 0.6,N4 = 8, N = 0.02, Sr =0, Dy = 0, k = 0 and

6 = 7/2, which is in accordance with the findings of Srinivasacharya and Barman [50].

In this paper, we investigate the effects of double-diffusive convection with variable vis-
cosity on the flow stability of nanofluids in a porous inclined channel. The influences of
the inclination angle (), Darcy number (Da), thermo-solutal Lewis number (Ln), Dufour
number (Dy), and Soret number (Sr) on the critical Rayleigh number (Ra.) and critical
wavenumber () is shown in Figs. 7.1-7.5. All instability boundaries were depicted on the

horizontal axis using the variable viscosity parameter.

Fig. 7.1 depicts the graphs illustrating the critical Rayleigh number and the critical
wavenumber vary with variations in variable viscosity parameter (k) for various inclination
angles (). As 0 shifts from horizontal to vertical, the logarithm of the critical Rayleigh
number (logigRa.) decreases. This shows that 6 destabilises the flow. This is due to the fact
that the gravitational force operating on the fluid when the channel is inclined induces a

proportional force to act in the flow direction. This can result in the formation of nanofluid
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flow instabilities. Ra, falls as k rises. However, As 6 oriented vertically, critical wavenumber

increases, and as the variable viscosity parameter enhances, «.. first decreases and then rises.

For the permeability parameter (Darcy number), the variation in the critical Rayleigh
number and critical wavenumber as a function of variable viscosity parameter is displayed in
Fig. 7.2. Ra. rises as the Da increases, indicating that permeability stabilises the system.
It is figured that the porous layer has lower fluid permeability at lower Darcy numbers.
This results in a pronounced high resistance as the fluid flows through the porous medium.
Hence, the flow activity of the porous region was hindered. It is worth noting that raising
k decreases Ra.. Consequently, the influence of k£ stabilizes the system. a. first drops and
then rises as k rises for fixed Darcy numbers. However, as the permeability increased, the
critical wavenumber increased, and the rate of growth was slower when Da increased from

1 to 10 than when Da increases from 0.1 to 1.

For varying values of the thermo-solutal Lewis number (Ln), Fig. 7.3 shows the variation
in critical Rayleigh number and critical wavenumber versus the variable viscosity parameter.
With a rise in the values of Ln, the Ra, increased slightly. As a result, Ln stabilizes the
flow at high values of Ln. This is because, in an inclined channel, the buoyancy forces
due to the density gradient and gravitational forces due to the inclination act in different
directions. The thermo-solutal Lewis number affects the relative strength of these forces and
thus influences the stability of the flow. When the thermo-solutal Lewis number is high, the
thermal diffusivity is much larger than the solute diffusivity. This means that temperature
gradients have a stronger effect on flow than solute gradients. As a result, the buoyancy
forces owing to the density gradient dominate the gravitational forces due to the inclination,
and the flow becomes more stable. However, as the k increased, Ra. gradually decreased
from a high to a low value. As Ln grows «. drops, and as k grows («.) first drops until

k=0.5 and then increases.

Fig. 7.4 represents the influence of the Soret number (S7) on the critical Rayleigh num-
ber and critical wavenumber. As the value of Sr rises, so does the value of Ra.. However,
the rate of growth is extremely slow. Hence flow of nanofluid through an inclined channel,
the flow field is stabilised by the high values of Soret number. This happens because when
the Soret parameter is high, the more diffusive component will move towards the hot region,
while the less diffusive component will move towards the cold region. This creates a stabi-
lizing effect, as the less diffusive component will accumulate at the bottom of the channel
and the more diffusive component will accumulate at the top. As a result, the concentration

and temperature fields become more uniform, and the flow becomes more stable. And as
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the variable viscosity parameter increases, Ra. drops. This is because the Soret effect raises
the solute’s density gradient, which causes a convective instability at constant temperature.
As Sr increases, a,. drops, and the critical wavenumber first decreases until k=0.5, then

increases.

The critical Rayleigh number and critical wavenumber patterns against the & for different
values of the Dufour parameter (Dy) are shown in Fig. 7.5. The Dufour parameter is a
measure of the strength of the thermal diffusion effect. As shown in Fig. 7.5, Ra. increases
with the Dufour parameter value at large values. It is concluded that the system is stabilized
for large values using the Dufour parameter (D). This is due to when the Dufour parameter
is large, the more thermally diffusive component will move towards the hot region, where
as the less thermally diffusive component will move towards the cold region. This leads to
a concentration gradient that is contrary to the temperature gradient created by gravity.
Consequently, the concentration and temperature fields become more uniform, and the flow
becomes more stable. With an increase in k, Ra. decreased. In addition, as the Dufour
parameter is increased, the a. decreases. When the k is increased, a. first decreases for

small values of k£ and then increases.

Noting that clockwise-oriented streamlines correspond to positive contours and counter-
clockwise -oriented streamlines correspond to negative contours is essential when analyzing
flow patterns. When the channel is horizontal, as indicated by § = 0 in Fig. 7.6, we observe
the formation of two Rayleigh-Bénard convection cells, which are vertical cell structures.
Near the upper wall, there is a counterclockwise vortex formation, and near the lower wall,
there is a clockwise vortex formation. These cells then extend vertically as the angle of
inclination increases, eventually transforming into structure of horizontal cells when channel
becomes completely vertical. In conclusion, as channel’s inclination varies from horizontal
to vertical, the streamlines reconfigure the flow pattern from a vertical structure to a hori-
zontal structure. On the isotherms, positive contour are denoted by solid lines and negative
contour are indicated by dashed lines. This pattern holds true for isotherms, isosolutes, and

isoconcentrations alike.
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Table 7.1: “Convergence of the least stable eigenvalue for Da = 1, k=0.5, Pr = 0.1, Rn =
10, Rs=200, € = 0.2, Ny = 8, Ng = 0.02, Le = 500, Ln=40, Sr = 0.3, D;=0.04, § = 7/3,

and = 0.7
N Ra, Q.
40 10.312514413924 0.857299560606
45 10.312541497271 0.857252942876
50 10.312536312725 0.857285309558
55 10.312534712527 0.857291388872
60 10.312533214115 0.857485534098

—6=0

Figure 7.1: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (o) with

k for different values of 6 with Da=0.1, Rs=200, Ln=40, Sr=0.3 and D; = 0.04.”
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Figure 7.2: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (c,) with

k for different values of Da with § = 7/3, Rs=200, Ln=40, Sr=0.3 and Dy = 0.04.”
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Figure 7.3: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (o) with
k for different values of Ln with § = 7/3, Rs=200,Da=0.1, Sr = 0.3 and Dy = 0.04.”
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Figure 7.4: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (c.) with
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Figure 7.5: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (o) with
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Figure 7.7: “The disturbance of isotherms for different values of 6.”
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7.6 Conclusions

The linear stability of nanofluid flow in a porous inclined channel while accounting for the
effect of double-diffusive convection with variable viscosity is examined. The critical Rayleigh
number and critical wavenumber for different parameters such as 6, Da, Sr, Ln, and Dy are

computed and graphically shown with respect to k.

e A rise in the value of the variable viscosity parameter (k) emphasizes the stability of
the fluid, as a result, the k stabilizes the flow field.

e permeability (Da), thermo-solutal Lewis number (Ln), Soret parameter (Sr) and Du-
four parameter (Dy) help to stabilize flow within an inclined channel. As a result, an

increase in these variables acts as a stumbling block to the onset of convection.
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Chapter 8

The heat source/sink effect on the
stability of the Casson fluid flow in an

inclined porous channel !

8.1 Introduction

In 1959, Casson [12] introduced Casson fluid, a non-Newtonian fluid characterized by shear-
thinning and yield stress. This fluid is utilized in numerous industries, including food pro-
cessing, cosmetics, and paint. It is utilized in medicine to simulate the behavior of biological
fluids, particularly blood flow [14]. Mahanta et al. [67] investigated the effects of slip veloc-
ity on the MHD Casson flow at the point of stagnation using stability analysis across the
stretching surface. Recently, in a rigid parallel channel with a homogeneous magnetic field,
Kundenatti and Misbah [69] investigated the temporal stability of linear two-dimensional

perturbations of plane Poiseuille flow of Casson fluid.

In industrial processes such as food and polymer processing, heat sources have a sub-
stantial effect on the Casson fluid dynamics by influencing temperature, velocity, and shear
stress. Goud et al. [81] examined the implication of heat source on the motion of a Casson
fluid through a fluctuating vertically permeable plate. Awais et al. [82] analysed the impli-
cations magnetic field on the flow of Casson fluid in a porous medium caused by a shrinking

surface subjected to heat absorption/germination.

!Communicated in “Fluid Dynamics”

122



The stability properties of Casson fluid in an inclined porous channel with heat source or
sink have not been explored, according to the literature review. Consequently, this Chapter
investigates the effect of heat source or sink on convection stability in a Casson fluid flow in

an inclined channel filled with a porous medium (at an angle of inclination ).

8.2 Mathematical Formulation

Consider an unsteady, incompressible flow of a Casson fluid in a tilted channel with a width
of 2L with two impermeable, completely thermally conducting walls and an inclination of
6. A schematic illustration of the problem is shown in Fig. 8.1. The presumption is the
porous medium is homogenous and isotropic. Temperatures on both the lower and upper
walls are maintained at T; and Ty, respectively. The presence of a heat source/sink is taken

into account.

Figure 8.1: “Schematic representation of the problem.”
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The dynamical equations for a Casson fluid with an isotropic rheology are as follows:

2(/1},"‘\5—;7)61']', < T
Tij =
2(/“%—'_\5_;7)61']'7 ™ > T,

where 1y, is the dynamic plastic viscosity and 7 is square of deformation rate (=egpeqp).
Using the above assumptions and the Oberbeck-Boussinesq approximation, the following set
of equations describes the flow [113, 50]:

V-V=0 (8.1)
8@ + E(V V)W = —Vp— nyy (1 + l)ﬂV2X7 + pgBr(T — T1)(sin(0)éy + cos()é,(8.2)
e Ot € K y * Y
or - )
(pC), W+V-VT = kVT + Qo(T —T) (8.3)

The conditions on the walls of the channel are:
y=—L: V=0, T=T, y=L: V=0 T=T (8.4)

where, 7 is Casson parameter, and @ is heat source/sink.
The non-dimensional form of the Egs. (8.1) -(8.3) (on substituting (2.6) in (8.1) -(8.3) and

removing asterisk) are:

V-V=0 (8.5)
1oV 1 o _ - . 1 .
— 4~ (V-V)W==-Vp—V+ADa(1+ =) (V? T(sin(0)é 2
ot — (V- V)V =—Vp—V + o +7)(v V) + RaT(sin(6)é; + cos(9)é,)
(8.6)
or - )
= HV VT =VT+QT (8.7)
The boundary conditions are:
y=-1: V=0, T=0  y=1: V=0 T=1. (8.8)

QoL? )

where @) is the heat source/sink parameter (==
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8.3 Basic solution

In the basic stage, the flow is regarded as continuous, one-directional (in the z-direction),

and completely developed. Eqgs. (8.5)-(8.7) may be reduced into set of ordinary differential

equations by applying these conditions:

1 dQUb B 8p0 .
ADCL<1 + ;)d—yQ - Ub = % - RCLTO sm(@) (89)
Ipo .
T RaTy cos(0) (8.10)
dpo o
— = 0 (8.11)
d*Ty
07 +QTy, =0 (8.12)
The boundary conditions are:
y=-1: Uy=0, Tp=0, y=1: Uy=0, Tp=1 (8.13)
Proceeding as in Chapter-2, we get basic solution as:
1 (cos(vQy) | sin(vQy)
Ty = = 14
G (814)
U, — o cosh(my) s ( m? >@ cosh(my) N si'nh(my) ~ cos(vQy)
cosh(m) Q+m?/ 2 | cosh(m) sinh(m) cos(v/Q)
(8.15)
_sin(v/Qy) sin(6)
sin(v/Q)
where:
2 . .
_ m cosh(m) N < m ) y Ra [ sinh(m)  sin(v/Q) sin(6)
sinh(m) — m cosh(m) Q +m? 2 \ mcosh(m) /Qcos(v/Q)
And
1
m =
ADa(1+1)
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8.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (J) on the basic state solutions,
ignoring 4 and higher order terms, using the usual normal mode form [50] to express in-
finitesimal disturbances of corresponding field variables, and removing pressure terms from

the resulting equations, the linearized stability equations are obtained as:

N [d%  _d*0, , 5 oaa| o (U d*o
ADCL(l—i—;) |:d—y4—2d—y2(@ +ﬁ)+(0[ +5)U:|—%(?—C> |:d_y2
(2 2\ A Z._OédQUbA . @ . 9 DAl d_T . (816)
(a*+p )v] + va dy? Llyz (o + B7)0| —iaRa a0 sin(6)
—(a® + B*)Racos(9)T = 0
11 [ dU, N 1\ | d°7) 2, aval L os
—iac)—n+ — | fo— + U, —ADa(14 =) |— —
(—iac) VcL77 + eva [51} dy " bma] a< - ’Y> dy? @+ 500 +1 (8.17)
—BRaT sin(h) = 0
dT, N A .
d—;ﬁ+z’a(Ub—c)T—QT— d—y2—(a2+ﬁ2)T =0 (8.18)

8.5 Results and discussion

The equations from Egs. (8.16) - (8.18) represent a generalized eigenvalue problem in which
the eigenvalues are perturbed and expressed in terms of the wave speed. The spectral

technique [107] is employed to find the solution to this eigenvalue problem.

In order to validate the accuracy of this method, we ran the MATLAB code for calculating
eigenvalues with varying grid point numbers (V) and obtained least stable eigenvalues, which
are presented in Table 8.1 for an arbitrary combination of parameters. When N > 50, the
least stable eigenvalue reached convergence criterion of 10~7, and these results remained
constant despite varying parameter values. In our numerical calculations, we chose to use
N =50 as a result.

The results of § = 7/2, v — oo, Pr =7, Q=0, and N = 51 in absence of Rn, Le, N,
Ng, and ¢y were obtained, which is in accordance with the findings of Srinivasacharya and
Barman [50].
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The influence of iinclination angle (6), Casson parameter (vy), heat source/sink parameter
(@), Prandtl number (Pr) , and porosity parameter (¢) on the flow instability is studied in-
depth in this paper. The remaining values of parameters are set as Ra = 100, A=1, a= 1

and 8 = 0.

Fig. 8.2 depicts the graphs illustrating critical Rayleigh number and critical wavenumber
vary with variations in the Darcy number (Da) for various inclination angles (#). When
the angle # varies from horizontal to vertical, critical Rayleigh number (Ra.) demonstrates
a decreasing trend. This phenomenon indicates that a change in the angle of inclination
destabilizes the flow. This is due to the fact that gravitational force operating on the fluid
when the channel is inclined induces a proportional force to act in the flow direction. This
additional force component can contribute to the formation of instabilities in the Casson
fluid flow. However, there is no change in «, for an increase in Da, and only a small change
for 6 = 0.

Fig. 8.3 depicts the fluctuation of the Ra. and «. for various values of the Casson pa-
rameter (7). We observed that while Da rises, Ra, rises as well, but as v increases, Ra.
decreases. Hence, v destabilises the flow because it determines the yield stress of the fluid.
If the Casson parameter is too low, the yield stress of the fluid may not be high enough to
support the weight of the fluid in the inclined channel, which can lead to flow instability.
On the other hand, if the Casson parameter is too high, the yield stress of the fluid may be
too high, leading to laminar flow that is resistant to any instabilities. In the case of critical
wavenumbers, however, there is no change in a, as Da rises, but there is a slight change for

v=0.5. While 7 increases, a, decreases.

For different values of the heat source/sink parameter (@), Fig. 8.4 displays the varia-
tion of Ra. and a,.. We noticed that as Da increases, so does Ra.. However, as () increases,
Ra,. falls significantly. Hence () destabilizes the flow. This can occur when the temperature
gradient in the fluid is such that the viscosity decreases with increasing temperature. In this
situation, the fluid near the heat source or sink will have a lower viscosity and can flow more
easily than the surrounding fluid, which can cause the flow to become unstable. However,

as Da and @) both rise, a, increases.

Fig. 8.5 depicts the fluctuation of Ra. and . for Prandtl number (Pr). We found

that Ra,. rises when Pr rises. It demonstrates Pr stabilizes the flow field by promoting a
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more uniform temperature and viscosity profile, reducing thermal gradients, and promoting
the development of thermal boundary layers that can dampen out disturbances in the flow.
Moreover, a,. does not change as Da grows, although it does slightly change for Pr=0.3.

Also, as Pr rises, «, falls.

Fig. 8.6 illustrates the boundaries of the instability region as a function of the permeabil-
ity parameter (Da) and porosity parameter (¢). It is noted from Fig. 8.6 that, the critical
Rayleigh number tends to rise as the porosity parameter is increased ( Ra.). This is due to
porosity is proportion of the total amount of space occupied by voids throughout the volume,
It constitutes the measurement of the voids in a porous material. Hence € stabilizes the flow.
The volume of voids increases as porosity increases. Observations indicate that o, decreases

as the porosity parameter value increases, whereas o, increases as Da increases.

Fig. 8.7 and Fig. 8.8 shows streamlines, and isotherms, for various € values when “Da=1,
=2, Pr=0.3, Ra=100, e=0.6, A=1,a=1and 8 =0.” Noting that clockwise-oriented
streamlines correspond to positive contours and counterclockwise-oriented streamlines cor-
respond to negative contours is essential when analyzing flow patterns. When the channel
is horizontal, as indicated by # = 0 in Fig. 8.8, we observe the formation of two Rayleigh-
Bénard convection cells, which are vertical cell structures. Near the upper wall, there is
a counterclockwise vortex formation, and near the lower wall, there is a clockwise vortex
formation. These cells then extend vertically as the angle of inclination increases, eventually
transforming into structure of horizontal cells when channel becomes completely vertical. In
conclusion, as channel’s inclination varies from horizontal to vertical, the streamlines recon-
figure the flow pattern from a vertical structure to a horizontal structure. On the isotherms,
positive contour are denoted by solid lines and negative contour are indicated by dashed

lines. This pattern holds true for isotherms alike.

Table 8.1: “Convergence analysis of the least stable eigenvalue for Da = 10, Pr = 0.3, Q=2,
e =0.6,v=0.5,0 =n/3, A=1, and § = 0.”

N Ra, Q.

40 4391.611472458690 1.388296360208
45 4391.611471169493 1.388296363276
50 4391.611473475915 1.388329869083
55 4391.611222675459 1.388296016235
60 4391.611516403603 1.388296246072

128



2.6

12000
2.4 —0=0
10000 - - - b=
224 e 0=14
. --- =3
8000 2.0 e 0=112
o ©
o]
X 6000 1.8
4000 L e
14 e e ]
20004 L.
B R EIatE
0 AT  ETEEET oo
T T T 10 T T T
-1.0 05 0.0 05 1.0 -1.0 05 0.0 05 1.0
log,,Da log,,Da
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8.6 Conclusions

The linear stability of Casson fluid flow in a porous inclined channel while accounting for
the effect of heat source or sink is examined. The critical Rayleigh number and critical
wavenumber for different parameters such as 0, ¢, Pr, (), and vy are computed and graphically

shown with respect to Da.
e The channel’s inclination (@), heat source/sink parameter (¢)) and Casson parameter
() destabilise the flow.

e The momentum equation is affected by viscous forces because flow resistance decreases

with increasing permeability and improved flow in a porous media.

e Porosity (¢) and Prandt]l number (Pr) help to stabilize flow within an inclined channel.
As a result, an increase in these variables acts as a stumbling block to the onset of

convection.

e When the channel is oriented vertically, the flow has the least stability.
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Chapter 9

The impact of chemical reaction and
radiation on the stability of the
Casson fluid flow in an inclined

porous channel !

9.1 Introduction

The behavior of Casson fluids is significantly impacted by radiation, which has biomedical
and industrial implications. Linear stability analysis of thermally-radiated micropolar fluids
in an MHD flow with convective boundary condition was investigated by Lund et al. [86].
Lund et al. [64] explored the stability of MHD stagnation point flow of Casson fluid over a
contracting /expanding surface due to the influence of thermal radiation and viscous dissipa-
tion. Using the generalised Buongiorno’s nanofluid model, Wakif et al. [87] examined effects
of surface roughness and thermal radiation influence the thermo-magneto-hydrodynamic sta-

bility of nanofluids composed of alumina and copper oxide.

Chemical reactions influence the rheology, yield stress, and flow behavior of Casson flu-
ids. Srivastava [90] investigated the electro-thermal convection stability of a binary fluid in a
horizontal channel with chemical reaction. The effects of magnetic cross-field, thermal radi-
ation, second order chemical reaction on the unsteady three dimensional flow of electrically

conducting Cu—Al,O3/water hybrid nanofluid flow past a bidirectionally stretchable melting

!Communicated in “Computational Mathematics and Mathematical Physics”
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surface was investigated by Suganya et al. [91].

The stability properties of Casson fluid in an inclined channel with radiation and chemical
reactions have not been explored, according to the literature review. Consequently, this
chapters investigates the effects of radiation and chemical reactions on convection stability
in a Casson fluid flow in an inclined channel filled with a porous medium (at an angle of

inclination 6).

9.2 Mathematical Formulation

Consider an unsteady, incompressible flow of a Casson fluid in a tilted channel with a width
of 2L with two impermeable, completely thermally conducting walls and an inclination of
0. A schematic illustration of the problem is shown in Fig. 8.1. The porous medium is
assumed to be homogenous and isotropic. The temperatures of the left and right walls are
T1 and T, respectively, and the concentrations are C and (5, respectively . The presence

of a radiation and chemical reaction is taken into account.

By applying the Oberbeck-Boussinesq approximation and the aforementioned assump-

tions, the following set of equations describes the flow [113, 108]:

V-V =0 (9.1)

—

U
?V + pg{Br(T —T1) + Bc(C — Ch)} (9.2)

(sin(@)€x + cos(f)ey)

poV  po o 1\ - o
P2 L Py - _ 14+ = _
o+ 57 Vp+< +7)wv

(pC), (%—f +V. VT> = kV?T — Vg, (9.3)
ac ) .
o TV VO =DVC - R(C - () (9.4)

The boundary conditions are:

and at y=1L: V:O, T=1T, C=C0
where:
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q- is radiative heat flux, R* is reaction rate of solute, D is mass diffusion coefficient.

The non-dimensional form of the Egs. (9.1) -(9.4) (on substituting (2.6) in (9.1) -(9.4)

and removing asterisk) are:

V-V=0 (9.6)
1oV 1 — 1 - -
V-V)V | ==Vp+ADa(1+ =) (V?V) =V + {RaT + RsC
(at ~(V-9) ) (14 5)77) =V | b
(sin(@)€x + cos(f)ey)
orT
T V-VT = (1+ Ry)V?T (9.8)
oC 14 9
- = P .
at—l— “V.VC = SVC’ R.PrC (9.9)
The following are the boundary conditions:
y=-1: V=0, T=0 C=0
B (9.10)
y=1 V=0 T=1 (=1
where:
R —% is radiation parameter, Sc = Z is Schmidt number, R. = %LQ is chemical

reaction parameter.

9.3 Basic solution

In the basic stage, the flow is regarded as continuous, one-directional (in the z-direction),
and completely developed. Egs. (9.6)-(9.9) may be reduced into set of ordinary differential

equations by applying these conditions:

1\ d?U, Ipo
ADa(l + ;) dy; —Uy= Dz  — {RaTy + RsCqy} sin(6) (9.11)
%Z“ — {RaTy + R,Cy} cos(6) (9.12)
Ipo .
20 —0 (9.13)
d*T,
(1+ Ry) dyo =0 (9.14)
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—R.P = d
Se i R.PrCy =0 (9.15)
The boundary conditions are:
=—1 Uy=0, To=0, Cy=
Y b 0 0 (9.16)
Y= 1 Ub - 07 TO =4, CO =

Proceeding as in Chapter-2, we get basic solution as:

14y _ lycosh(vVR.Sc)y  sinh(v/R:Sc)y
To= 2 and - Co = 2 [ cosh(v/R.Sc) * sinh(v/R.Sc) ] (9.17)
., cosh(my) 1 m? cosh(my)  sinh(my)
o= { cosh(m) 1] 2 (RCSC - m2) [ cosh(m) sinh(m) 918)

_cosh(v/R.Scy)  sinh(vR:Scy)
cosh(v/R.Sc) sinh(y/R.Sc¢)

sin(0) + % (y - %) sin(6)

where:

m cosh(m) 11 me e Snh(m) sinh(vR.5¢) sin (0
) o )JEC

"~ sinh(m) —mcosh(m) |* 2\ R.Sc—m? a

mcosh(m)  +/R.Sccosh(v/R.Sc

And
1

ADa(l n %)

9.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (J) on the basic state solutions,
ignoring 62 and higher order terms, using the usual normal mode form [50] to express in-

finitesimal disturbances of corresponding field variables, and removing pressure terms from
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the resulting equations, the linearized stability equations are obtained as:

ADa(l—kl) |:d41§ 2d2@(a2+ﬁ2)+(a2+62)2@} B E (% _c> [dij

v/ Ldyt dy? va \ ¢ dy?
2 2\ A (e d2UbA dQﬁ 2 2\ A . dT .
—(a"+ B )v} + gl [d_yQ —(a*+p )v] —zaRad—y sin(6) (9.19)
2 | 2 foo dO 2 | a2 A
—(a + p*)Racos(0)T — zade— sin(d) — (a” + %) Rs cos(6)C =0
Y
, 1. 1 duy . .. 1\ | d?*9 9 o .
—iac)—i+ — | 8% + Uyiia| — ADa(1+ =) |21
( zac)van + o {6 a0 0+ bma] a( + 7) e (& + 65| +1 (9.20)
—BRaT sin(f) — BRsC'sin(f) = 0
Ty . . T .
d—y‘)v +io(Uy— )T — (1 + Ry) Fri (a*+BH)T| =0 (9.21)
1dCy . (U, . Pr|dT ., o .
o RN AN T Pré = 22
edyv+m(e C) Sc | dy? (@7 + BT + RPro=0 6-22)

9.5 Results and discussion

The equations from Eqgs. (9.19) - (9.22) represent a generalized eigenvalue problem in which
the eigenvalues are perturbed and expressed in terms of the wave speed. The spectral

technique [107] is employed to find the solution to this eigenvalue problem.

In order to validate the accuracy of this method, we ran the MATLAB code for calculating
eigenvalues with varying grid point numbers (N') and obtained least stable eigenvalues, which
are presented in Table 9.1 for an arbitrary combination of parameters. When N > 50, the
least stable eigenvalue reached convergence criterion of 1077, and these results remained
constant despite varying parameter values. In our numerical calculations, we chose to use
N =50 as a result.

The results of § = /2, v — 00, Ry =0, Pr=1, Se =1, N =51, and R. = 0 in absence
of Rn, Ha, Ln, Na, N, D¢, ¢o, and Sr were obtained, which is in accordance with the

findings of Srinivasacharya and Barman [108].

In this paper, we investigate the effect of radiation and chemical reactions on the stability
of a Casson fluid flow in an inclined porous channel. The influence of the governing parame-

ters inclination angle (), Darcy number (Da), Radiation parameter (Ry), chemical reaction
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parameter (R,.), Prandtl number (Pr) , and porosity parameter (¢) on the flow instability is
studied.

Fig. 9.1 depicts the graphs illustrating the critical Rayleigh number (Ra.) and the critical
wavenumber («.) vary with variations in the Casson parameter (7) for various inclination
angles (). When 6 oriented vertically, critical Rayleigh number (Ra.) demonstrates a de-
creasing trend. This phenomenon indicates that a change in the angle of inclination 6
destabilizes the flow. This behavior can be explained by the fact that, in inclined channels,
the gravitational force operating on fluid includes a component parallel to the flow direc-
tion. This additional force component can contribute to the formation of instabilities in the
Casson fluid flow. However, Ra. drops as the Casson parameter () increases, indicating
destabilizing impact of Casson parameter. In the case of a., there is no change in a. for an

increase in v, However, «. increases when 6 oriented vertically.

Fig. 9.2 depicts the fluctuation of the critical Rayleigh number and critical wavenumber
for permeability parameter (Darcy number). As Da increases, Ra. also increases, indicating
the stabilizing influence on stability. This is because when the Darcy number is high, the
viscous forces dominate over the inertial forces, resulting in a highly viscous flow. This can
stabilize the flow and reduce the flow instabilities. Ra., however, falls as v increases. In case
of critical wavenumber (o), as we increase Da, . rises. The variation of «, is slow when
the Darcy number is greater than 1, but there is a rapid rise in o, when Da is less than 1.

As we increase v, a,. decreases.

The critical Rayleigh numberand critical wavenumber for radiation parameter (Ry) are
shown fluctuating in Fig. 9.3. It is noticed that there is a slight drop in Ra. as R, increases.
It demonstrates that R; had a destabilizing effect on the flow field because it introduces
additional heat sources that can disrupt the flow pattern. Specifically, when the radiation
parameter is high, the fluid absorbs radiation from the channel walls, causing it to heat up
and become less viscous. This reduced viscosity may lead to formation of disturbances in
the flow. Also, as we increase v, Ra. decreases. On the other hand, in the case of a., a,

grows as Ry increases. However, o, falls as 7 rises.

The critical Rayleigh number and critical wavenumber for chemical reaction parameter
(R.) are shown fluctuating in Fig. 9.4. We noticed that Ra. stays the same while R.
goes from 0.1 to 25. It demonstrates the flow field’s destabilising effect. Because chemical
reactions can alter the composition of the fluid and change its rheological properties, such

as viscosity and yield stress. These changes can affect the onset of flow, the development
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of shear layers, and the formation of instabilities in the flow. Ra., however, falls as 7 rises.

similar trend we have noticed in case of critical wavenumber (a..).

Fig. 9.5 depicts the fluctuation of the critical Rayleigh number and critical wavenumber
for Prandtl number (Pr). We found that Ra. rises when Pr rises. It demonstrates Pr
stabilizes the flow field by promoting a more uniform temperature and viscosity profile,
reducing thermal gradients, and promoting the development of thermal boundary layers
that can dampen out disturbances in the flow. Ra., however, falls as « rises. As Pr rises,

a. lowers in the case of .. «a., however, decreases then rises as v grows.

Fig. 9.6 shows the boundaries of the region of instability as a function of the Casson
parameter () and the porosity parameter (¢). Observing Fig. 9.6, it is evident that the crit-
ical Rayleigh number tends to increase as the porosity parameter increases, because porosity
introducing additional sources of dissipation, promoting a more uniform flow behavior, and
enhancing convective heat transfer. The parameter € therefore has a stabilizing influence on
the flow. Notably, as the porosity parameter and 7 values increase, the critical wavenumber

(cre) decreases.

Figs. 9.7 - 9.9 shows streamlines, isotherms, and isoconcentrations for various # values
when Da=1, Sc¢=0.6, Ra=10, Rs=5, ¢e=0.2, R;=1.5, R.=2, Pr = 25, A=1, v=0.5, a= 1
and § = 0. Noting that clockwise-oriented streamlines correspond to positive contours and
counterclockwise-oriented streamlines correspond to negative contours is essential when an-
alyzing flow patterns. When the channel is horizontal, as indicated by ¢ = 0 in Fig. 9.7,
we observe the formation of two Rayleigh-Bénard convection cells, which are vertical cell
structures. Near the upper wall, there is a counterclockwise vortex formation, and near the
lower wall, there is a clockwise vortex formation. These cells then extend vertically as the
angle of inclination increases, eventually transforming into structure of horizontal cells when
channel becomes completely vertical. In conclusion, as channel’s inclination varies from hor-
izontal to vertical, the streamlines reconfigure the flow pattern from a vertical structure to
a horizontal structure. On the isotherms, positive contour are denoted by solid lines and
negative contour are indicated by dashed lines. This pattern holds true for isotherms and

isoconcentrations alike.
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Table 9.1: “Convergence of the least stable eigenvalue for § = 7/3, Da = 10, Pr =7, Rm=5,
e =0.2, Ry=1.5, Sc=10, R.=2, v=0.5, A=1, and 5 = 0.”

N Ra, Q.

40 26237.025775946910 0.973721784095
45 26237.025773685612 0.973788511858
50 26237.025775874259 0.973721550480
55 26237.025771606088 0.973721949615
60 26237.025771425291 0.973786567943
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9.6 Conclusions

The linear stability of Casson fluid flow in a porous inclined channel while accounting for the
effects of radiation and chemical reactions is examined. The critical Rayleigh number and
critical wavenumber for different parameters such as 6, Da, Ry, R., €, and Pr are computed

and graphically shown with respect to ~.

e The channel’s inclination (@), radiation parameter (R,;) and chemical reaction param-

eter (R.) and Casson parameter () destabilizes the flow.

e Porosity (¢) and Prandtl number (Pr) help to stabilize flow within an inclined channel.
As a result, an increase in these variables acts as a stumbling block to the onset of

convection.
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Chapter 10

The variable viscosity effect on the
stability of the Casson fluid flow in an

inclined Porous channel !

10.1 Introduction

The stability properties of Casson fluid in an inclined porous channel with variable viscosity
has yet to be studied, according to the literature review. Consequently, this chapter inves-
tigates the effect of variable viscosity on convection stability in a Casson fluid flow in an

inclined channel filled with a porous medium (at an angle of inclination ).

10.2 Mathematical Formulation

Consider an incompressible, unsteady flow of a Casson fluid in tilted channel with a width
of 2L with two impermeable, completely thermally conducting walls and an inclination of 6.
We've assumed that viscosity obeys the Nahme rule Sukanek et al. [110], which means that

viscosity is modeled as an exponential function of temperature:

w(T) = e T

!Communicated in “Reviews in Mathematical Physics”
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Fig. 8.1 depicts a schematic illustration of the problem. The porous medium is assumed to
be homogenous and isotropic. The temperatures of the left and right walls are T} and T5,

respectively.

Using the above assumptions and the Oberbeck-Boussinesq approximation, the following

set of equations describes the flow [113, 50]:

V-V=0 (10.1)

PV p LV V)V = —Vp+ (1 n 1) [w- (VVT + VV) +MAV} _ Ky
T ~ K (10.2)

+pgfr (T — T1)(sin(0)éx + cos(h)éy)

T
%—t +V VT = 0, VT (10.3)
The boundary conditions are:

y=—L: V=0, T=T, y=L: V=0, T="T (10.4)

According to Nikushchenko and Pavlovsky [111] here, AV = —V x V x V.
The non-dimensional form of the Eqgs. (10.1)-(10.3) (on substituting (2.6) in (10.1) -(10.3)

and removing asterisk) are:

V-V=0 (10.5)
1oV 1 o _ - . . . ,
— 4 —(V-V)V =— D VT AV —
— e+ — (V) Vp+ Da(1+ 7) Vi (VVT 4+ 9V) + paV| = i/ 100
+RaT (sin(f)éx + cos(0)éy)
oT
YT V.VT = VT (10.7)
The following are the boundary conditions:
y=-1: V=0 T=0, y=1: V=0 T=1 (10.8)
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10.3 Basic solution

In the basic stage, the flow is regarded as continuous, one-directional (in the z-direction),
and completely developed. Egs. (10.5)-(10.7) may be reduced into set of ordinary differential
equations by applying these conditions:

1 0 8Ub B 8]70 .
Da<1 + ;) {a—y (Moa—y) } — ,u()Ub = % — RGT() Sln(@) (109)
I _ RaTy cos(0) (10.10)
dy

Ipo
— =0 10.11
e (10.11)

d*Ty
=0 10.12
o (10.12)

The boundary conditions are:

y=—1: U,=0, Ty=0, y=1: U,=0, Ty=1 (10.13)

Proceeding as in Chapter-2, and taking the approximation u(Tp) = e % according to Wall

and Wilson [106], we get basic solution as:

Ty = HTy (10.14)

Uy = %e}lk(yﬂ)csch(m)sech(m)( — "W+ ginh(2m) (40 — Rasin(0) (Da(l + %) k
+2y>> +sinh(m(1 — y)) (Ra (2 - Da(l + %)k) sin(6) + 40—) (10.15)

+ef/2 sinh(m(y + 1)) (40 — Ra <Da(1 + %) k+ 2) sin(&)))
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where:

R e O R e (G (R R (CA (R
—{—2) —2) cosh(2m) + sinh(2m) << a(1~|— )( >k’4—l—4< 1>k2
<4<Da<1—|— > )+2<e +1)k3+32(e + )km2

—64 (ek — 1) m2>> + 4k* (k2 — 16m2) sinh(2m)}/

{41{:((«9”C - 1) <k2 + 16m2> sinh(2m) 4 16e*2km — 8<6k + 1) km cosh(2m)> }

and

\/k;2 +16/Da(1+1)

4

m =

10.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (0) on the basic state solutions,
ignoring 62 and higher order terms, using the usual normal mode form [50] to express in-
finitesimal disturbances of corresponding field variables, and removing pressure terms from

the resulting equations, the linearized stability equations are obtained as:

Da(1 + %) [u ? + 262‘;0 Z; 322 <2u0(a +52) — CS”;) —4(a? + 62)3—2%
o )] 8]
. 24 2
+%Ciiyz% E - ((f Ho } - %% b <1 i %) _kTok[iZb flyT (10.16)
(57 )5+ (ap g g (5 et o))
+ke ko C;ZbT—i-k kTOCCZiTUb Ubk;e Ko _ Raé—izasm(e)

—Ra(a® + %) cos(0)T = 0
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— (—ice)h + L [ﬁ@% + Ubﬁz‘a} - Da(l - l) [uo% + dio ) _ o(a® + 62)77}

dy d
dU, dT° & d2U, ! Y (10.17)
, . s ) e .
et} T T] _ ' — BRaT _

a dy 2 + 0 + pon) — BUpke BRaT'sin(0) =0

—0 (10.18)

10.5 Results and discussion

The equations from Eqgs. (10.16) - (10.18) represent a generalized eigenvalue problem in
which the eigenvalues are perturbed and expressed in terms of the wave speed. The spectral
technique [107] is employed to find the solution to this eigenvalue problem. In order to vali-
date the accuracy of this method, we ran the MATLAB code for calculating eigenvalues with
varying grid point numbers (N) and obtained least stable eigenvalues, which are presented
in Table 10.1 for an arbitrary combination of parameters. When N > 50, the least stable
eigenvalue reached convergence criterion of 1077, and these results remained constant despite

varying parameter values. In our numerical calculations, we chose to use N = 50 as a result.

The present analysis’s outcomes are compared with a vertically oriented channel contain-
ing nanofluid-saturated porous material. The results of § = 7/2, v — oo, Pr=7, k = 0 and
N = 51 in absence of Rn, Rm, N4, N, and ¢y were obtained which is in accordance with

the findings of Srinivasacharya and Barman [50].

In this paper, we investigate the effect of variable viscosity on the stability of a Casson
fluid flow in a porous inclined channel. The influence of the governing parameters inclination
angle (6), Casson parameter (), variable viscosity parameter (k), Prandtl number (Pr) ,
and porosity parameter (¢) on the flow instability is studied. Fig. 10.1 depicts the graphs
illustrating the critical Rayleigh number (Ra,.) and the critical wavenumber (a.) vary with
variations in the Darcy number (Da) for various inclination angles (). When the angle 6
varies from horizontal to vertical, Ra. demonstrates a decreasing trend. This phenomenon
indicates that a change in the angle of inclination 6 destabilizes the flow. This behavior can
be explained by the fact that, in inclined channels, the gravitational force operating on fluid
includes a component parallel to the flow direction. This additional force component can
contribute to the formation of instabilities in the Casson fluid flow. In the case of critical

wavenumber, a, rises as both 6 and Da are increases.
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Fig. 10.2 depicts the fluctuation of the critical Rayleigh number and critical wavenumber
for various values of the Casson parameter (7). We observed that while Da rises, Ra, rises as
well, but as v increases, Ra,. decreases. Hence, v destabilizes the flow because it determines
the yield stress of the fluid. If the Casson parameter is too low, the yield stress of the fluid
may not be high enough to support the weight of the fluid in the inclined channel, which
can lead to flow instability. On the other hand, if the Casson parameter is too high, the
yield stress of the fluid may be too high, leading to laminar flow that is resistant to any
instabilities. In the case of critical wavenumbers, however, a, rises as Da rises, but as ~

increases, a, decreases.

For various values of the variable viscosity parameter (k), Fig. 10.3 displays the variation
of the critical Rayleigh number and critical wavenumber. We observed that Ra. drops when
we increase k. This indicates k& destabilizes the flow. This is because when the viscosity
of the Casson fluid decreases with increasing shear rate, it can cause the flow to become
unstable and exhibit turbulent behavior. As the fluid moves down the inclined channel,
it is subjected to increasing shear rates due to the effects of gravity, which can cause the
viscosity to decrease. This can lead to fluid instabilities. On the other hand, if the viscosity
of the Casson fluid increases with increasing shear rate, it can cause the flow to become
unstable and exhibit shear-thickening behavior. This can lead to the formation of highly
viscous regions in the flow, which can cause a buildup of stress and the formation of flow
instabilities. But as Da rises, Ra. rises as well. In the case of a critical wavenumber, «,

decreases as k increases. However, as Da increases, . also increases.

Fig. 10.4 depicts the fluctuation of the critical Rayleigh number and critical wavenumber
for Prandtl number (Pr). We found that Ra. rises when Pr rises. It demonstrates Pr
stabilizes the flow field by promoting a more uniform temperature and viscosity profile,
reducing thermal gradients, and promoting the development of thermal boundary layers
that can dampen out disturbances in the flow. Moreover, a, increases as Da grows. Also,

as Pr rises, « falls.

Fig. 10.5 illustrates the boundaries of the instability region as a function of the perme-
ability parameter (Da) and porosity parameter (€). It is noted from Fig. 10.5 that, the
critical Rayleigh number tends to rise as the porosity parameter is increased. This is due to
porosity is proportion of the total amount of space occupied by voids throughout the volume,
It constitutes the measurement of the voids in a porous material. Hence € stabilizes the flow.
The volume of voids increases as porosity increases. Observations indicate that . increases

as the porosity parameter value increases, whereas a, increases as Da increases.
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Fig. 10.6 and Fig. 10.7 shows streamlines, and isotherms, for various 6 values when “Da
=1, Pr =7, Ra = 100, ¢ = 0.6, k=0.5, v=0.5, a= 1 and 8 = 0.” Noting that clockwise-
oriented streamlines correspond to positive contours and counterclockwise-oriented stream-
lines correspond to negative contours is essential when analyzing flow patterns. When the
channel is horizontal, as indicated by § = 0 in Fig. 10.6, we observe the formation of two
Rayleigh-Bénard convection cells, which are vertical cell structures. Near the upper wall,
there is a counterclockwise vortex formation, and near the lower wall, there is a clockwise
vortex formation. These cells then extend vertically as the angle of inclination increases,
eventually transforming into structure of horizontal cells when channel becomes completely
vertical. In conclusion, as channel’s inclination varies from horizontal to vertical, the stream-
lines reconfigure the flow pattern from a vertical structure to a horizontal structure. Solid
lines represent positive contours on isotherms, while dashed lines represent negative con-

tours. This pattern holds true for isotherms alike.

Table 10.1: “Convergence of the least stable eigenvalue for Da =1, Pr = 0.1, e = 0.2, v=0.5,
k=0.5,0 =7/3, and § = 0.7

N Ra, Qc

40 58.159398894469 1.156800614916
45 58.159398955057 1.156800432682
50 58.159391266456 1.156800693182
55 58.159398145969 1.156801042609
60 58.159401437386 1.156799879977
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10.6 Conclusions

The linear stability of Casson fluid flow in a porous inclined channel, taking into consideration
the influence of variable viscosity, is examined. The critical Rayleigh number and critical
wavenumber for different parameters such as 0, €, Pr, k, and v are computed and graphically

shown with respect to Da.
e The channel’s inclination (), the Casson parameter (), and the variable viscosity
parameter (k) destabilizes the flow.

e Porosity (¢) and Prandtl number (Pr) help to stabilize flow within an inclined channel.
As a result, an increase in these variables acts as a stumbling block to the onset of

convection.

e When the channel is oriented vertically and k=0.5, the flow has the least stability.
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Part 1V

STABILITY OF DUSTY FLUID
FLOW IN AN INCLINED POROUS
CHANNEL
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Chapter 11

The stability of two-phase dusty
Casson fluid flow in an inclined

porous channel !

11.1 Introduction

The interaction of a fluid with suspended solid particles in two-phase dusty fluid flow occurs
in applications such as pneumatic transfer, fluidized bed reactors, and volcanic eruptions.
This flow type takes into account both viscosity and yield stress. It has a wide range of
applications in industries such as chemical processing, oil and gas, and biomedical fields [17].
The experimental properties of heat transmission and multi-phase flow in a long gravity-
assisted heat pipe were discussed by Chen et al. [75]. Recently, Ali et al. [76] studied
the effects of heat transfer and magnetic field on the magnetohydrodynamic two-phase free

convective flow of dusty Casson fluid between parallel plates.

The stability properties of two-phase dusty Casson fluid in an inclined channel have not
been explored, according to the literature review. Consequently, this chapter investigates
the convection stability in two-phase dusty Casson fluid flow in an inclined channel filled

with a porous medium (at an angle of inclination 0).

LCommunicated in “The ANZIAM Journal”
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11.2 Mathematical Formulation

Consider an unsteady, incompressible flow of two-phase dusty Casson fluid in a tilted channel
with a width of 2L with two impermeable, completely thermally conducting walls and an
inclination of #. A schematic illustration of the problem is shown in Fig. 11.1. The porous
medium is assumed to be homogenous and isotropic. Temperatures on both the lower and

upper walls are kept at T} and T;, respectively. Using the Oberbeck-Boussinesq approxima-

Y

Figure 11.1: “Schematic representation of the problem.’

tion, the following set of equations describes the flow [113, 50, 114]:

For the fluid phase:

V.V =0 11.1
vl 1 > %
L A7 vAY Vs =-Vp+ 1+—[N2V—ﬂV+pgﬁTT—T1
e\at e gl K 11.2
sin(0)éx + cos(0)éy + L /, -V
Tm
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T —
;ﬂg(g—+v-vf>:kV%ﬂ%%C%n,—T) (11.3)
ot TT

For the particle phase:

V.V, =0 (11.4)
p ov, 1 - - Pp ~
2 (W A v>vp> — V- 2(7,-7) (119
8T = Cs
nC. (G2 + %491, ) = -, - 1) (11.6)
TT

The boundary conditions for the fluid phase:

y=—L: V=0, T=T, y=L: V=0 T=T (11.7)

The boundary conditions for the particle phase:

— —

y=—-L: V,=0, T,=T1T, y=L: V,=0, T,=1T, (11.8)

where V = (u,v,w) and %(up,vp, w,) represents Darcy velocity vector for fluid phase and
particle phase, respectively. T" and 7, are temperature for fluid phase and particle phase, p
and p, are pressure, and p and p, denotes density. C, and Cs denotes specific heat of fluid
and particle phase at constant pressure, respectively. 7, denotes Velocity relaxation time of

the particles, 7 denotes Thermal relaxation time of the particles.

The non-dimensional variables are:

* ok _% T, Y,z * % k:<p’p> Tk Y% (‘7,‘7)11 * at
T,y ,2 = L 7(p7pp):—ap7 <V7‘/p>:Tp7t:ﬁa
H (1) T (11.9)
T TF) =~
( Y p) TQ—T]_

By substituting (11.9) in (11.1) -(11.6) and removing the asterisks, the equations (11.1)
-(11.6) can be written as:
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For the fluid phase:

—

V-V=0 (11.10)
1oV 1 o _ - 1\ o o o .
AN S 728 VA1 74NN A ADa(l + —) (V2V) — V + RaT(sin(8)é, + cos(0)é,)
va Ot  eva vy
+DpadDa(‘_/;3 -V)
(11.11)
aor -~ 9
N +V VT =V*T + DyyiarPr(T, —T) (11.12)
For the particle phase:
V-V,=0 (11.13)
D,dV, D, - o 5 5
v_;a_f + 2 (Vo V)V, = =V, = DyaaDa(V, = V) (11.14)
o, -~
E+%VTPZ —P’I"OZT(TP—T) (1115)
The fluid phase’s boundary conditions are as follows:
V=0 T=0, at y=-1, and V=0, T=1 at y=1 (11.16)
The particle phase’s boundary conditions are as follows:
V,=0, T,=0, at y=-1, and V,=0, T,=1 at y=1 (11.17)
where, D, = %p represents mass concentration parameter, oy = Tfn—zy represents Momentum
dust particle, ar = % represents Thermal dust particle, v; = g—: denotes Specific heat

ratio.

11.3 Basic solution

In the basic stage, the flow is regarded as continuous, one-directional (in the z-direction), and
completely developed. Egs. (11.10)-(11.15) may be reduced into set of ordinary differential

equations by applying these conditions:

1 d2Ub 8p0 .
ADa(l + ;) e Uy = e RaTysin(0) — D,oqDa(Uy, — Up) (11.18)
88—1;0 = RaT, cos() (11.19)
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9po

—0 11.20
e (11.20)
A>T,
dy;) + DyyiapPr(Tyy — Tp) = 0 (11.21)
)
gg’;” + DyagDa(Uy, — Uy) = 0 (11.22)
appO
9P _ 11.23
dy (11.23)
ap}oO
9Pp0 _ 11.24
7, =0 (11.24)
PT’O[T(TPO - T()) =0 (1125)

The boundary conditions are:

y:—]_: szo, Upb:O, T[):07 TpOZOa

(11.26)
y:]_ szo’ UprO, TO:]_ TPOZ]"

where Uy, po(z,y,2), and Ty(y) is basic velocity in z-direction, basic pressure, and basic
temperature in the fluid phase, and Uy, ppo(, y, 2), and T, (y) is basic velocity in z-direction,
basic pressure, and basic temperature in the particle phase.

Proceeding as in Chapter-2, we get basic solution as:

_1+y

TO :TpO — 2 (1127)

Uy = (0 + o1)(sech(m) cosh(my) — 1) + %Ra sin(6)(y — csch(m) sinh(my)) (11.28)

g1 1 .
Uy=————+ (0 + o;1)(sech(m) cosh(my) — 1) + =Rasin(0
W=D * (7 o) (sech(m) coshimy) ~ 1) + 3Rasin(t) 130
(y — esch(m) sinh(my))
where:
m 1

o tanh(m) —m o1, o and m )
ADa(l n ;)
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11.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (J) on the basic state solutions,

ignoring 4 and higher order terms, using the usual normal mode form [50] to express in-

finitesimal disturbances of corresponding field variables, and removing pressure terms from

the resulting equations, the linearized stability equations are obtained as:

40a(1+ ) [20 80 gy ] 12 (B ) [ ]

dy*  dy

€

~(a®+ #%)0] =0

(11.30)

(11.31)

(11.32)

(11.33)

(11.34)

i d*Uy d=v 9 9 . 9 ~
%dyQU ldQ (a® —|—ﬁ)}—Ra(a + 3%) cos(6)T
T >, 4?0
—Rad—yz’a sin(6) + DaDpad[ a0 UZ (a® + 52)1)4 DaD oy [d_yg
weD, (Upy [d%p 9 ] D dQUpb ; d*v
B (2 — DaD [ p
va ( € C) dy? (o + 5°)1, eva  dy? 45 pcd dy?
9 d*o 5 o
—(a® + )5, }—i—DaDozd[dy — (« —i—ﬁ)v]:O
1 1 1\ | d?1)
—(—iae)n + {ﬂv— + meal +1— /1Da<1 + > —Z — (o + %))
va €v dy v/ | dy
—BRaT sin(f) — DaD,ay(i, — i) = 0
D D, AUy,
V—;( i), + % {va 0 + Upbnp@a} + DaD,a4(n, — 1) =0
dy . i ) o
Oy " +ia(Uy— )T — W7 —(&®+ BT | — Doy Pr(T, —T) =0

dT, . L
d;’%p +ia(Upy — ¢) T, + Prap(T, —T) =0

A

Where u(y) = (4,9, w), uy(y) = (dp, Op, Wp), ) = B — aw and 7, = B, — oy,

11.5 Results and discussion

(11.35)

The equations from Egs. (11.30) - (11.35) represent a generalized eigenvalue problem in

which the eigenvalues are perturbed and expressed with respect to wave speed. The spectral

technique [107] is employed to find solution to this eigenvalue problem.
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Least stable eigenvalues, which are displayed in Table 11.1 for any given combination of
parameters, were produced by executing the MATLAB code for computing eigenvalues with
changing grid point numbers (V) to verify the method’s accuracy. When N > 50, the least
stable eigenvalue reached convergence criterion of 1077, and these results remained constant
despite varying parameter values. In our numerical calculations, we chose to use N = 50 as

a result.

The present analysis’s outcomes are compared with a vertically oriented channel con-
taining nanofluid-saturated porous material. The results of v — oo, Pr=7, 0 = 7/2, ‘7p:0,
T,=0, p,=0, ar=0, ag=0, D,=0, in absence of Ng, N4, ¢, Le and Rm, were obtained which

is in accordance with the findings of Srinivasacharya and Barman [50].

The Critical values of . and Ra,. for dusty Casson fluid and dusty fluid are presented
in Table 11.2 for different values of inclindation angle ¢ and Darcy number Da at Pr =17, €
= 0.3, 1=0.1, D,=10, ar=1.2, oy=1.2, A=1, and B = 0. The presence of dust particle in

Casson fluid increases the critical Rayleigh number.

The convective stability in a two-phase dusty Casson fluid flow in a porous inclined
channel is studied in this paper. The impact of inclination angle (#), mass concentration
parameter (D,), momentum dust parameter (cy), thermal dust parameter (o), Prandtl
number (Pr) , and porosity parameter (¢) on the flow instability is studied in-depth in this

paper. The problem demonstrates two distinct flow problems under the following conditions:

1. v — oo represents the Newtonian dusty fluid flow problem,

2. Non-Newtonian, dusty Casson fluid flow problem with a finite value for 7.

In Figs. 11.2-11.7, we observe a similar flow instability pattern for both phases. However,

dusty fluids are always located below dusty Casson fluids.

Fig. 11.2 depicts the graphs illustrating the critical Rayleigh number (Ra.) and the
critical wavenumber (a,) versus Darcy number (Da) for various inclination angles (). Tt
is notable that Ra,. declines for both phases as 6 oriented vertically indicates that flow is
destabilized. This happens because when a channel is tilted, gravity acts perpendicular to the
flow direction, causing density gradients to form within the flow. These density gradients can
cause particles to descend to the bottom of the flow, while lighter fluid rises to the surface. In
contrast, as the Darcy number (Da) increases, so does Ra,, indicating that permeability has
a stabilizing effect. In addition, once Da reaches 1, Ra, increases rapidly as Da continues

to ascend. For lower Darcy numbers (Da < 1), Ra,. displays slow and smooth fluctuations,
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highlighting that there is visible flow resistance within the porous medium. This resistance
to flow reduces as permeability rises, resulting in enhanced flow within the porous medium
and highlighting the importance of viscous forces in the momentum equation. In terms of

the critical wavenumber (a), it increases as both Da and 6 increases.

For distinct values of the mass concentration parameter (D,), Fig. 11.3 displays the vari-
ation of Ra. and a.. We noticed that as Da increases, so does Ra.. Also, as D, increases,
Ra, increases. Hence, D, stabilizes the flow. If the concentration of the dust particles is too
high, they can settle out of the fluid and accumulate at the bottom of the channel. This can
lead to a non-uniform distribution of dust particles, which can affect the fluid’s rheological
properties. On the other hand, if the concentration of the dust particles is too low, they
may not significantly affect the fluid’s flow properties. In this case, the fluid flow may still
be unstable and turbulent due to the effects of gravity. However, as Da rises, a, increases,

but as D, increases, «. decreases.

The critical Rayleigh number and the critical wavenumber variations for different thermal
dust parameter (ar) values are shown in Fig.11.4. We've observed that as Da increases, so
does Ra.. However, there is no variation in Ra. as ar increases. Consequently, ar does
not significantly affect the stability of the two-phase dusty Casson fluid flow. This might
occur because in the two-phase dusty Casson fluid flow, the thermal dust parameter mainly
affects the thermal conductivity of the fluid by increasing it due to the presence of particles.
However, this increase in thermal conductivity does not typically have a significant effect on

flow stability. a. increases as Da increases, whereas «. does not alter as ap increases.

Fig. 11.5 depicts the variations in Ra. and «. for distinct momentum dust parameter
(crg) values. We've observed that as Da and a4 both rise, so does Ra.. This means that
ag stabilizes fluid flow. This could happen because the momentum dust parameter can also
affect the rheological properties of the fluid, such as its viscosity and yield stress. The pres-
ence of solid particles can significantly alter the rheological properties of the fluid, leading to
complex flow behavior. A higher momentum dust parameter can result in a higher viscosity
and yield stress, which can stabilize the flow and prevent instabilities. Also, as Da increases,

so does a., whereas as oy increases, o, decreases.

The impact of Prandtl number (Pr) on the instability boundaries is seen in Fig. 11.6.

As momentum diffusivity increases, defined by the Prandtl number (Pr), so does the critical
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Rayleigh number. As a consequence, It demonstrates Pr stabilizes the flow field by pro-
moting a more uniform temperature and viscosity profile, reducing thermal gradients, and
promoting the development of thermal boundary layers that can dampen out disturbances

in the flow. Moreover, a, increases as Da and Pr grows. Also, as Pr rises, «, falls.

Fig. 11.7 depicts the boundaries of the instability region and how they vary as the per-
meability parameter (Da) and porosity parameter (¢) change. As shown in Fig. 11.7, the
critical Rayleigh number (Ra,.) tends to increase as the porosity parameter increases. This
trend occurs because porosity represents the proportion of a material’s total volume that is
occupied by vacancies, essentially measuring the voids within a porous material. Therefore,
contributes to the stabilization of the flow. As porosity increases, so does the volume of
spaces within the material. In addition, it can be observed that «., the critical wavenumber,

increases as porosity parameter value and the value of Da increase.

Table 11.1: “Convergence of the least stable eigenvalue for Da = 0.1, Pr =1, ¢ = 0.1, v=0.5,
1=0.1, D,=10, ar=1.2, ay=1.2, § = /3, A=1, and § = 0.”

N Ra, Q.

40 28.052287351685 1.152216157852
45 28.052576969270 1.152291455909
50 28.052499580168 1.152265881971
55 28.052886882916 1.152298501856
60 28.052510054723 1.152318752347
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Table 11.2: “Critical values of a,. and Ra, for different values of 8 at Pr =7, ¢ = 0.3, y,=0.1,
D,=10, ar=1.2, aq=1.2, A=1, and § = 0.7

Dusty Casson fluid (v = 0.5) | Dusty fluid (7 — o0)
Da 0 Q. Ra, o Ra,
0.1 0 |0.7015 8094.552 0.9765 4520.88
/6 | 1.1336 4423.292 0.9669 1775.746
w/4 | 1.153 2649.027 0.9638 1104.42
/3 | 1.1687 1941.241 0.963 828.649
/2 | 1.1952 1424.023 0.9652 628.651
1 0 | 1.2542 66181.717 1.2474 10884.628
/6| 1.27 24475.475 1.231 4358.982
/4 | 1.2859 14870.804 1.2315 2751.79
/3 | 1.2970 11017.496 1.2341 2091.649
/2| 1.3140 8235.319 1.2406 1629.156
10 0 | 1.2686 618446.515 1.2809 90728.976
/6 | 1.2846 229414.251 1.2651 36625.694
/4 | 1.2997 139649.247 1.2652 23230.911
/3 | 1.3101 103600.359 1.2671 17717.842
/2 | 1.3259 77605.82 1.2723 13877.645
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Figure 11.2: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (a..) with
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11.6 Conclusions

The linear stability of two-phase dusty Casson fluid flow in a porous inclined channel is
examined. The critical Rayleigh number and critical wavenumber for different parameters

such as 0, D,, ar, aq, Pr and € are computed and graphically shown with respect to Da.

e The channel’s inclination (6) destabilizes the flow for both phases.

e The momentum equation is affected by viscous forces because flow resistance decreases

with increasing permeability and improved flow in a porous media.

e Mass concentration parameter (D,), momentum dust parameter (o), Prandtl number
(Pr), and porosity parameter (€) help to stabilize flow within an inclined channel.
As a result, an increase in these variables acts as a stumbling block to the onset of

convection.

e The flow stability was unaffected by the thermal dust parameter (ar), as we raise ar,

Ra. remains unchanged.
e When the channel is oriented vertically, the flow has the least stability.

e The neutral stability graphs for dusty phases are always situated below graphs for
dusty Casson fluid.
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Chapter 12

The effect of variable viscosity on the
flow stability of two-phase dusty
Casson fluid in a porous inclined

channel !

12.1 Introduction

This chapter investigates the effect of variable viscosity convection stability in two-phase
dusty Casson fluid flow in an inclined channel filled with a porous medium (at an angle of

inclination 6).

12.2 Mathematical Formulation

Consider an unsteady, incompressible flow of a two-phase dusty Casson fluid in tilted channel
with a width of 2L with two impermeable, completely thermally conducting walls and an
inclination of . We’ve assumed that viscosity obeys the Nahme rule Sukanek et al. [110],

which means that viscosity is modeled as an exponential function of temperature:

u(T) = e

!Communicated in “ZAMM - Journal of Applied Mathematics and Mechanics ”
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A schematic illustration of the problem is shown in Fig. 11.1. The porous medium is assumed
to be homogenous and isotropic. Temperatures on both the upper and lower walls are kept
at Ty and T, respectively. Using the above assumptions and the Oberbeck-Boussinesq
approximation, the following set of equations describes the flow [113, 50, 114]:

For the fluid phase:

V-V=0 (12.1)
v - - - - -
pPor P L7V = —Vp+ (1 n ) [w (va n vv) n MAV} _ Py
€ 8t Y K (12.2)
+pgfr(T = T1)(sin(0)éx + cos(0)é,) + L2(V, = V)
oT Cs
pC, (— +V. VT) = k2T 4 2 (T, —T) (12.3)
ot TT
For the particle phase:
V-V,=0 (12.4)
ov, 1 - . L
P (-p +-(Vp- V)Vp> = —Vp, - 2V, - V) (12.5)
€ ot € -
or, = Cs
ppCs (—” +V,- VTp) = s (12.6)
ot T
The boundary conditions for the fluid phase:
y=—L: V=0 T=T, y=L: V=0, T=T (12.7)
The boundary conditions for the particle phase
y=—L: V,=0, T,=T,, y=L: V,=0, T,=T, (12.8)

The non-dimensional form of the Egs. (12.1) -(12.6) (on substituting (11.9) in (12.1) -(12.6)

and removing asterisk) are: For the fluid phase:

—

V-V=0 (12.9)

1 1oL 1 a4
ov —(V.V)V:—Vp—l—Da( ;[ A(VVT £ YV 4 AV | — uV

va Ot | vae

(12.10)
+RaT (sin(0)é, + cos(0)é,) + DyagDa(V, — V)
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or
YT V -VT =V°T + DyarPr(T, —T)

For the particle phase:

V-V, =0

]

Dpavp Dp 7 7 ¥ ¥
va Ot + %(Vb V)V, = =Vp, = DyaaDa(V, = V)

T, -
% +V, - VT, = —Prap(T, — T)

The fluid phase’s boundary conditions are as follows:

‘7:0, T=0, at y=-1, and ‘7:0, T=1 at y=1

The particle phase’s boundary conditions are as follows:

12.3 Basic solution

V,=0, T,=0, at y=-1, and \7;):0, T,=1 at y=1

(12.11)

(12.12)

(12.13)

(12.14)

(12.15)

(12.16)

In the basic stage, the flow is regarded as continuous, one-directional (in the z-direction), and

completely developed. Egs. (12.9)-(12.14) may be reduced into set of ordinary differential

equations by applying these conditions:

1 9] ou, 0
Da(l + 5) {— (Mb—b> } — Uy = o _ RaTysin(0) — DyagDa(Upo — Us)

y oy ox
0
6%0 = RaTj cos()
Ipo
— =0
dz
d*T
WZO + Dp%ozTPr(Tpo — To) = 0
W, aqDa(Uyy —U,) =0
8I P p
appO
—— =0
dy
appO o
dz 0
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(12.17)

(12.18)
(12.19)
(12.20)

(12.21)

(12.22)

(12.23)



Prarp(Ty —1Tp) =0 (12.24)
The boundary conditions are:

y=-1: Uy=0, Uyp=0, T5=0, T,=0,

(12.25)

Proceeding as in Chapter-2, and taking the approximation u(7p) = e~*70 [106], we get basic

solution as:

1
To =Th = % (12.26)
11

Uy = gelk(y“) (sech(m)csch(m) ((4(c + o1) sinh(m(1 — y)) + Ra(2 — bk) sin(h))
+e"2 sinh(m(y + 1)) (4(0 + 1) — Ra(bk + 2)sin(9))  (12.27)

+e* U Rasin(6) sinh(2m) (bk + 2y)) — 8(c + al)eikw“))

_ 9
U =~ Dabyag T (12.28)
where:

o= {16ek/2k2m(kaa sin(f) — 4o1) + 8k*m cosh(2m) (4 (¢ + 1) o1 — Ra

(bk + €*(bk + 2) — 2) sin(6)) + sinh(2m) (Rasin(0) (b (e — 1) k* + 4 (e — 1) &
(4bm® +1) + 2 (" + 1) k> + 32 (¢" + 1) km® — 64 (" — 1) m?) + 4k (k* — (e — 1)

Koy — 16 (¢¥ — 1) m®oy — 16km?)) }/
{4k( (eF — 1) (K* + 16m?) sinh(2m) + 16¢*/2km — 8 (¥ + 1) km cosh(Zm))}

oy =0, b:Da<1+%>, And m =

Sl-

12.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (J) on the basic state solutions,
ignoring 6% and higher order terms, using the usual normal mode form [50] to express in-

finitesimal disturbances of corresponding field variables, and removing pressure terms from
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the resulting equations, the linearized stability equations are obtained as:

1 dv dpy 30 d?0 . dz,U«b 2 . 2

d
) (5[]

av afiy 2 2 2
B @ +ﬁ)(ub(a + 8 +
zoz dQUbA

eva dy?

va \ €

g o] = P+ D)

*U,  dUNdT | (PU, | RU, | dU, (K )

+(2dy2 _kd_y>d_y+<dy3 T (7 —ata*+5))7]
LSS B ars a3,
o T ke Uy = Uy e T 4 DaD ad[d !

2/\

d=v
—DaDpOéd|:d 5

(12.29)

ke o — (@ + ), }

— (o + 52)@} — R“%m sin(f) — Ra(a? + %) cos(9)T = 0

D, (Up [d%}, 9 . 2 A] iaD, d? Upb g d?v,
- = - - — DaD [—
- ( . c) i (o + B7)v, o dy aD oy 0

o (12.30)
~(a® + B35, | + DaD ad[d s — (a2 + 8%0] =0

L i s 50 i) - a1+ 4) [

d* | dpy di

2 2\ ~
a0 + — 0y dy — wp(a +5)n}

1 AU, dT k.~ d2U,
+DCL<1 + ;) k’e_kTOﬁ |:d_bd_y - §T + dy b ;12'31)

T] + i) — BUke ™ T — BRaT sin(0

—DaDyaq(ip — 1) = 0

D D, AUy )
V—C’;( i), + % {va a0 + Upbnpza} + DaD,aq(n, — 1) =0 (12.32)
dlp . r T 2 2\ ~ -
=0T i (Uy — )T — i (a®+ )T | — Dyary Pr(T,—T) =0 (12.33)
Y
dTy0 .. . .
a Uy + i (Upp — ¢) T, + Prap(1, —T) =0 (12.34)

12.5 Results and discussion

The equations from Eqs. (12.29) - (12.34) represent a generalized eigenvalue problem in

which the eigenvalues are perturbed and expressed in terms of the wave speed. The spectral
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technique [107] is employed to find the solution to this eigenvalue problem. In order to vali-
date the accuracy of this method, we ran the MATLAB code for calculating eigenvalues with
varying grid point numbers (N) and obtained least stable eigenvalues, which are presented
in Table 12.1 for an arbitrary combination of parameters. When N > 50, the least stable
eigenvalue reached convergence criterion of 1077, and these results remained constant despite

varying parameter values. In our numerical calculations, we chose to use N = 50 as a result.

The present analysis’s outcomes are compared with a vertically oriented channel contain-
ing nanofluid-saturated porous material. The results of v — oo, Pr=7, 0 = 7 /2, k=0, ‘7p:0,
T,=0, p,=0, ar=0, ag=0, D,=0, in absence of Ng, N4, ¢, Le and Rm, were obtained which

is in accordance with the findings of Srinivasacharya and Barman [50].

This paper investigates, under two-phase conditions, the convective stability of a dusty
Casson fluid flow in a porous inclined channel with changing viscosity. The influence of
variable viscosity parameter (k), inclination angle (¢), mass concentration parameter (D,),
momentum dust parameter (o), thermal dust parameter («r), Prandtl number (Pr), and
porosity parameter (¢) on the flow instability is studied in-depth in this paper. The problem

demonstrates two distinct flow problems under the following conditions:

1. v — oo represents Newtonian dusty fluid flow problem,

2. Non-Newtonian dusty Casson fluid flow problem with a finite value for ~.

In Figs. 12.1-12.7, we observe a similar flow instability pattern for both phases. However,

dusty fluids are always located below dusty Casson fluids.

Fig. 12.1 depicts the graphs illustrating the critical Rayleigh number (Ra.) and the crit-
ical wavenumber («.) vary with variations in the Darcy number (Da) for various inclination
angles (0). As 6 changes from horizontal to vertical, Ra. decreases for both phases, demon-
strating that destabilizes the fluid flow. This is due to when a channel is tilted, gravity acts
perpendicular to the flow direction, causing density gradients to form within the flow. These
density gradients can cause particles to descend to the bottom of the flow, while lighter fluid
rises to the surface. In contrast, as the Darcy number (Da) increases, so does Ra,, indicat-
ing that permeability has a stabilizing effect. In addition, once Da reaches 1, Ra. increases
rapidly as Da continues to ascend. For lower Darcy numbers (Da < 1), Ra,. displays slow
and smooth fluctuations, highlighting that there is visible flow resistance within the porous
medium. This resistance to flow falls as permeability rises, resulting in enhanced flow within

the porous medium and highlighting the importance of viscous forces in the momentum
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equation. In terms of the critical wavenumber («v.), it increases as both Da and € increases.

For various values of the variable viscosity parameter (k), Fig. 12.2 displays the variation
of the critical Rayleigh number and the critical wavenumber. We observed that Ra. drops
when we increase k. This indicates k destabilizes the fluid flow. Because of when the viscosity
of the two-phase dusty Casson fluid decreases with increasing shear rate, it can cause the flow
to become unstable and exhibit turbulent behavior. As the fluid moves down the inclined
channel, it is subjected to increasing shear rates due to the effects of gravity, which can
cause the viscosity to decrease. This can lead to fluid instabilities. On the other hand, if
the viscosity of the two-phase dusty Casson fluid increases with increasing shear rate, it can
cause the flow to become unstable and exhibit shear-thickening behavior. This can lead to
the formation of highly viscous regions in the flow, which can cause a buildup of stress and
the formation of flow instabilities. But as Da rises, Ra. rises as well. In case of critical

wavenumber, «,. decreases as k increases. However, as Da increases, . also increases.

For different values of the mass concentration parameter (D,), Fig. 12.3 displays the
variation of the critical Rayleigh number and the critical wavenumber. We noticed that as
Da increases, so does Ra.. Also, as D, increases, Ra. increases. Hence, D, stabilizes the
flow. If the concentration of the dust particles is too high, they can settle out of the fluid
and accumulate at the bottom of the channel. This can lead to a non-uniform distribution
of dust particles, which can affect the fluid’s rheological properties. On the other hand,
if the concentration of the dust particles is too low, they may not significantly affect the
fluid’s flow properties. In this case, the fluid flow may still be unstable and turbulent due

to the effects of gravity. However, as Da rises, o, increases, but as D, increases, a, decreases.

The critical Rayleigh number and the critical wavenumber variations for different thermal
dust parameter (ar) values are shown in Fig.12.4. We've observed that as Da increases, so
does Ra.. However, there is no variation in Ra. as ar increases. Consequently, ar does
not significantly affect the stability of the two-phase dusty Casson fluid flow. This might
occur because in the two-phase dusty Casson fluid flow, the thermal dust parameter mainly
affects the thermal conductivity of the fluid by increasing it due to the presence of particles.
However, this increase in thermal conductivity does not typically have a significant effect on

flow stability. a. increases as Da increases, whereas «. does not alter as ap increases.

Fig. 12.5 depicts the variations in the critical Rayleigh number and critical wavenumber
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for distinct momentum dust parameter (ay) values. We've observed that as Da and «4 both
rise, so does Ra.. This means that a4 stabilizes fluid flow. This could happen because the
momentum dust parameter can also affect the rheological properties of the fluid, such as its
viscosity and yield stress. The presence of solid particles can significantly alter the rheo-
logical properties of the fluid, leading to complex flow behavior. A higher momentum dust
parameter can result in a higher viscosity and yield stress, which can stabilize the flow and

prevent instabilities. Also, as Da increases, so does «., whereas as a4 increases, o, decreases.

The impact of Prandtl number (Pr) on the instability boundaries is seen in Fig. 12.6.
As momentum diffusivity increases, defined by the Prandtl number (Pr), so does the critical
Rayleigh number. As a consequence, It demonstrates Pr stabilizes the flow field by pro-
moting a more uniform temperature and viscosity profile, reducing thermal gradients, and
promoting the development of thermal boundary layers that can dampen out disturbances

in the flow. Moreover, a, increases as Da and Pr grows. Also, as Pr rises, «, falls.

Fig. 12.7 depicts the boundaries of the instability region and how they vary as the
permeability parameter (Da) and porosity parameter (€) change. As shown in Fig. 12.7, the
critical Rayleigh number (Ra,.) tends to increase as the porosity parameter increases. This
trend occurs because porosity represents the proportion of a material’s total volume that is
occupied by vacancies, essentially measuring the voids within a porous material. Therefore,
contributes to the stabilization of the flow. As porosity increases, so does the volume of
spaces within the material. In addition, it can be observed that «., the critical wavenumber,

increases as porosity parameter value and the value of Da increase.

Table 12.1: “Convergence of the least stable eigenvalue for Da = 0.1, Pr = 0.1, ¢ = 0.1,
v=0.1, v=0.1, D,=10, ar=1.2, ay=1.2, § = w/3, k=0.5, and 8 = 0.”

N Ra, Q.

40 24.139683655331 1.112686406858
45 24.139879110283 1.112610790954
50 24.139208852480 1.112691392299
55 24.139401259160 1.112658138375
60 24.139908862954 1.112608748722
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Figure 12.1: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (a..) with
logipDa for different values of 6 with Pr = 7, k=0.5, ¢ = 0.3, 11=0.1, D,=10, ar=1.2,
ag=1.2, A=1,and § = 0.7
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Figure 12.2: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (a..) with
logigDa for different values of k with § = 7/3, Pr =7, ¢ = 0.3, 2=0.1, D,=10, ap=1.2,
ag=1.2, A=1, and 5 = 0.7
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Figure 12.3: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (a..) with
logigDa for different values of D, with Pr = 7, k=0.5, ¢ = 0.3, 2=0.1, = 7/3, ar=1.2,
ag=1.2, A=1,and § = 0.7
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Figure 12.5: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (a..) with
logipDa for different values of ag with Pr = 7, k=0.5, ¢ = 0.3, 1,=0.1, D,=10, ar=1.2,
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Figure 12.7: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (o)
with logipDa for different values of € with Pr = 7, k=0.5, v,=0.1, D,=10, ar=1.2, 0g=1.2,
0=m/3, A=1,and 5 =0."

185



12.6 Conclusions

The linear stability of two-phase dusty Casson fluid flow in a porous inclined channel while
accounting for the effect of changing viscosity is examined. The critical Rayleigh number
and critical wavenumber for different parameters such as 6, k, D,, ar, ag, Pr and € are

computed and graphically shown with respect to Da.
e The variable viscosity parameter (k), and channel’s inclination angle () destabilizes
the flow for both phases.

e Mass concentration parameter (D,), momentum dust parameter (o), Prandtl number
(Pr), and porosity parameter (€) help to stabilize flow within an inclined channel.
As a result, an increase in these variables acts as a stumbling block to the onset of

convection.

e When the channel is oriented vertically, and £=0.5 the flow has the least stability.
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Chapter 13

The effects of heat source/sink and
radiation on the flow stability of
two-phase dusty Casson fluid in a

porous inclined channel !

13.1 Introduction

The stability properties of two-phase dusty Casson fluid in an inclined porous channel with
heat source/sink and radiation effect has not been. Consequently, this chapter investigates
the heat source/sink and radiation effect convection stability in two-phase dusty Casson fluid

flow in an inclined porous channel (at an angle of inclination #).

13.2 Mathematical Formulation

Consider an unsteady, incompressible flow of a two-phase dusty Casson fluid in tilted channel
with a width of 2L with two impermeable, completely thermally conducting walls and an
inclination of #. A schematic illustration of the problem is shown in Fig. 11.1. The porous
medium is assumed to be homogenous and isotropic. Temperatures on both the upper

and lower walls are kept at 75 and T, respectively. Using the above assumptions and

!Communicated in “Transport in Porous Media”

187



the Oberbeck-Boussinesq approximation, the following set of equations describes the flow
113, 50, 114]:
For the fluid phase:

V-V=0 (13.1)
v o1 . . B
P\Se+ (V-9 | = =Vp+ (14 2 )av2V — LV + pghr(T - 1)
e\ dt € K
(13.2)
(sin(8)éx + cos(8)¢éy) + £2(V, = V)
or - Cs
pC, (W +V. VT) =kV2T + Qo(T — Ty) — Vg, + 'OZ; (T, —T) (13.3)
T
For the particle phase:
V-V,=0 (13.4)
v, 1, . .
o (—p +-(Vp- V)Vp> = —Vp, — 22(V, - V) (13.5)
€ ot € -
or, - Cs
nCo (G2 + 7 VT, = =251, 1) (13.6)
ot T
The boundary conditions for the fluid phase:
y=—-L: V=0, T=T, y=L: V=0 T=T (13.7)
The boundary conditions for the particle phase:
y=—L: V,=0, T,=T, y=L: V,=0, T,=T, (13.8)

where, @ is dimensional heat source/sink, and ¢, = —16n20T3*VT /385 radiative heat flux.
The non-dimensional form of the Egs. (13.1) -(13.6) (on substituting (11.9) in (13.1) -(13.6)

and removing asterisk) are: For the fluid phase:
V-V=0 (13.9)

1oV 1 - .
—8V+—(V-V)V:—Vp+ADa(1+

1
va Ot eva

gl
(sin(f)éx + cos(f)éy) + DpadDa(‘_/;g —V)

)(V2V) —V + RaT 1)
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oT
o+ V-VT = (1+ R)V?T + QT + D,y1apPr(T, — T) (13.11)

For the particle phase:

V.V, =0 (13.12)
D, 8‘7;9 D, = 7 ¥ ¥%
2oy a(% V)V, = ~Vp, - D,agDa(V, — V) (13.13)
oT,

The fluid phase’s boundary conditions are as follows:
V=0 T=0, at y=-1, and V=0, T=1 at y=1 (13.15)
The particle phase’s boundary conditions are as follows:

V,=0, T,=0, at y=-1, and V,=0, T,=1 at y=1 (13.16)

_ QOL

where R;= M represents radiation parameter, and () = represents heat source/sink

parameter.

13.3 Basic solution

In the basic stage, the flow is regarded as continuous, one-directional (in the z-direction), and
completely developed. Egs. (13.9)-(13.14) may be reduced into set of ordinary differential
equations by applying these conditions:

1\ U, 0
ADa(l n ;) W; — U, = % — RaTysin(0) — D,agDa(Uy — Uy) (13.17)
%};0 = RaTj cos(6) (13.18)
0
% =0 (13.19)
2T,
(]_ -+ Rd) d 5 + QTO + Dp’)/lOéTP’I“(Tpo — To) = O (1320)
)
g”‘) + DyagDa(Uy, — Uy) = 0 (13.21)
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8pp0

=0
dy
appO -
dz 0

PT’O[T(TPO - T()) =0

The boundary conditions are:

y:—]_: szo, Upb:(), T()ZO, TpO:Oa
yzll UbZO, Upb:O, T0:1 Tp0:1a

Proceeding as in Chapter-2, we get basic solution as:

1 cos(ymy)  sin(my)
To=Tp= 2 ( cos(y/m) * sin(y/m) )

0))
)
—csch(myq) sinh(m,y) >
28)

(13.22)

(13.23)

(13.24)

(13.25)

(13.26)

(13.27)

(13.

Uy = m <sech(m1) cosh(myy) (2(o + o1) (m + m7) — miRasin(6))
—2(c + o1) (m +m7) + miRasin(0) (2 csc (2¢/m) sin (vm(y + 1))
—csch(my) sinh(mly)))
01 1
Up = — DaD,oy +3 (1 ) <S€Ch(m1) cosh(mqy) (2(o + 1) (m + m?) — miRasin(
—2(c + 01) (m +m7) + miRasin(0) (2 csc (2¢/m) sin (v/m
where:

i m2Ratan(/m ) sin
tanh(m,) (TR0 20} VIO o

— m+my mi \/ﬁ(m—&-m%)
o 2 tanh(m1) ’
2tanh(m) _ o
1
op=0, m = ., And, m= @
14+ Ry
ADa(1+1)
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13.4 Linear stability analysis

As in Chapter - 2, by imposing infinitesimal disturbances (J) on the basic state solutions,
ignoring 4 and higher order terms, using the usual normal mode form [50] to express in-
finitesimal disturbances of corresponding field variables, and removing pressure terms from
the resulting equations, the linearized stability equations are obtained as:

ADCL(l + l) {@ - 2%@(042 +8%) + (a® + ﬁz)%] - % (% > [% — (o + 52)@}

€

2 4% T A
% d;b@ - {d_yz —(a? + ﬁz)@] — Raiad—y sin(f) — Ra(a? + B%) cos(0)T
d*u, d*o .
+DaD 0y [d_gﬂ — (a* + 52)1)4 DaD,ay [d—yz — (a® + 52)1)} =0
(13.29)
weD, (Upy [d215p 9 . 2 A] iaD, d? UpbA d?u, 9
(e ) £ o |
- < ; c) e (o + )0, | + —+ va dy? aD,ay 0 — (® + 8%,
d*d 2 52y~
—l—DaDozd[d2 (a —i—ﬁ)v]:O
(13.30)
1 1 au, 1\ | d?)
—(—iac)n + [ﬁv— +meoz} ADa(l + ) Z (4 87| +1
va eva | dy dy (13.31)
—BRaT sin(f) — DaD 47, — i) = 0
D, . .. D, AUy,
V—;(—zac)np oa {va dp + Upbnpza} + DaD,aq(n, —n) =0 (13.32)
dlp . . - A>T 9 9 . . .
d—yU—i-ZOé(Ub—C)T—(l—l—Rd) d—yQ—(a —Fﬁ ) —QT—DpaT’ylPr(Tp—T) =0
(13.33)
dTy .. . A
y Uy + it (Upp — ¢) T, + Prap(T,—T) =0 (13.34)

13.5 Results and discussion

The equations from Eqs. (13.29) - (13.34) represent a generalized eigenvalue problem in
which the eigenvalues are perturbed and expressed in terms of the wave speed. The spectral
technique [107] is employed to find the solution to this eigenvalue problem. In order to vali-
date the accuracy of this method, we ran the MATLAB code for calculating eigenvalues with

varying grid point numbers (N) and obtained least stable eigenvalues, which are presented
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in Table 13.1 for an arbitrary combination of parameters. When N > 50, the least stable
eigenvalue reached convergence criterion of 1077, and these results remained constant despite

varying parameter values. In our numerical calculations, we chose to use N = 50 as a result.

The present analysis’s outcomes are compared with a vertically oriented channel con-
taining nanofluid-saturated porous material. The results of v — oo, Pr=7, 0 = n/2, ‘7p:0,
T,=0, p,=0, ar=0, ay=0, D,=0, Q=0, and R;=0 in absence of Ng, Na, ¢, Le and Rm,

were obtained which is in accordance with the findings of Srinivasacharya and Barman [50].

This paper investigates, under two-phase conditions, the convective stability of a dusty
Casson fluid flow in a porous inclined channel with changing viscosity. The influence of
heat source/sink parameter (@), Radiation parameter (R4), inclination angle (¢), mass con-
centration parameter (D,), momentum dust parameter (cy), thermal dust parameter (o),
Prandtl number (Pr) , and porosity parameter (¢) on the flow instability is studied in-depth
in this paper. The problem demonstrates two distinct flow problems under the following

conditions:

1. v — oo represents the Newtonian dusty fluid flow problem,

2. Non-Newtonian, dusty Casson fluid flow problem with a finite value for ~.

In Figs. 13.1-13.8, we observe a similar flow instability pattern for both phases. However,

dusty fluids are always located below dusty Casson fluids.

Fig. 13.1 depicts the graphs illustrating the critical Rayleigh number (Ra.) and the crit-
ical wavenumber (o) vary with variations in the Darcy number (Da) for various inclination
angles (6). As 0 changes from horizontal to vertical, Ra,. decreases for both phases, demon-
strating that destabilizes the fluid flow. This is due to when a channel is tilted, gravity acts
perpendicular to the flow direction, causing density gradients to form within the flow. These
density gradients can cause particles to descend to the bottom of the flow, while lighter fluid
rises to the surface. In contrast, as the Darcy number (Da) increases, so does Ra,., indicat-
ing that permeability has a stabilizing effect. In addition, once Da reaches 1, Ra. increases
rapidly as Da continues to ascend. For lower Darcy numbers (Da < 1), Ra,. displays slow
and smooth fluctuations, highlighting that there is visible flow resistance within the porous
medium. This resistance to flow falls as permeability rises, resulting in enhanced flow within
the porous medium and highlighting the importance of viscous forces in the momentum

equation. In terms of the critical wavenumber, it increases as both Da and 6 increases.
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For different values of the mass concentration parameter (D,), Fig. 13.2 displays the
variation of the critical Rayleigh number and the critical wavenumber. We noticed that as
Da increases, so does Ra.. Also, as D, increases, Ra. increases. Hence, D, stabilizes the
flow. If the concentration of the dust particles is too high, they can settle out of the fluid
and accumulate at the bottom of the channel. This can lead to a non-uniform distribution
of dust particles, which can affect the fluid’s rheological properties. On the other hand,
if the concentration of the dust particles is too low, they may not significantly affect the
fluid’s flow properties. In this case, the fluid flow may still be unstable and turbulent due

to the effects of gravity. However, as Da rises, o, increases, but as D, increases, a, decreases.

For different values of the heat source/sink parameter (@), Fig. 13.3 displays the varia-
tion of the critical Rayleigh number (Ra.) and critical wavenumber (c.). We noticed that
as Da increases, so does Ra.. However, as () increases, Ra,. falls significantly. Hence @
destabilizes the flow due to the coupling between heat transfer and fluid low. When a fluid
is subjected to a heat source or sink, it causes temperature variations, which in turn affect
the fluid’s properties, such as density and viscosity. In the case of a two-phase dusty Casson
fluid flow, the presence of particles further complicates the situation, as the particles can

interact with the fluid and alter its properties. However, as Da and () both rise, «. increases.

The critical Rayleigh number and critical wavenumber for radiation parameter (R,) are
shown fluctuating in Fig. 13.4. We have noticed that there is a slight increase in Ra,
as Ry increases. It demonstrates that Ry had a stabilizing effect on the flow field. Because
Radiation parameter can promote thermal equilibrium by balancing the energy transfer in the
fluid. This can reduce the temperature gradients and promote a more uniform temperature
distribution in the fluid. As a result, the fluid’s properties, such as density and viscosity,
become more stable and predictable, leading to a more stable flow. Additionally, the presence
of particles in a two-phase dusty Casson fluid flow can also promote stability. The particles
can act as a stabilizing mechanism by damping the fluid’s motion and reducing turbulence.
Also, as we increase Da, Ra,. increases. However, when R, rises, a. decreases. But as Da

rises, a, rises as well.

The critical Rayleigh number and critical wavenumber variations for different thermal
dust parameter (ar) values are shown in Fig.13.5. We’ve observed that as Da increases, so
does Ra.. However, there is no variation in Ra. as ap increases. Consequently, ar does
not significantly affect the stability of the two-phase dusty Casson fluid flow. This might

occur because in the two-phase dusty Casson fluid flow, the thermal dust parameter mainly
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affects the thermal conductivity of the fluid by increasing it due to the presence of particles.
However, this increase in thermal conductivity does not typically have a significant effect on

the flow stability. a. increases as Da increases, whereas a. does not alter as ap increases.

Fig. 13.6 depicts the variations in the critical Rayleigh number and critical wavenumber
for different momentum dust parameter (o) values. We've observed that as Da and o4 both
rise, so does Ra.. This means that a4 stabilizes fluid flow. This could happen because the
momentum dust parameter can also affect the rheological properties of the fluid, such as its
viscosity and yield stress. The presence of solid particles can significantly alter the rheo-
logical properties of the fluid, leading to complex flow behavior. A higher momentum dust
parameter can result in a higher viscosity and yield stress, which can stabilize the flow and

prevent instabilities. Also, as Da increases, so does a., whereas as oy increases, «, decreases.

The impact of Prandtl number (Pr) on the instability boundaries is seen in Fig. 13.7.
As momentum diffusivity increases, defined by the Prandtl number (Pr), so does the critical
Rayleigh number. As a consequence, It demonstrates Pr stabilizes the flow field by pro-
moting a more uniform temperature and viscosity profile, reducing thermal gradients, and
promoting the development of thermal boundary layers that can dampen out disturbances

in the flow. Moreover, a, increases as Da and Pr grows. Also, as Pr rises, «, falls.

Fig. 13.8 depicts the boundaries of the instability region and how they vary as the per-
meability parameter (Da) and porosity parameter (¢) change. As shown in Fig. 13.8, the
critical Rayleigh number (Ra,.) tends to increase as the porosity parameter increases. This
trend occurs because porosity represents the proportion of a material’s total volume that is
occupied by vacancies, essentially measuring the voids within a porous material. Therefore,
contributes to the stabilization of the flow. As porosity increases, so does the volume of
spaces within the material. In addition, it can be observed that a., the critical wavenumber,

increases as porosity parameter value and the value of Da increase.
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Table 13.1: “Convergence of the least stable eigenvalue for Da = 0.1, Pr = 0.1, ¢ = 0.1,

v=0.1, n=0.1, D,=10, ar=1.2, ay=1.2, R4=0.5, @=0.3, 0 = 7/3, A=1, and § = 0.”

N Ra, Q.

40 31.098136130712 1.221563612044
45 31.098160037968 1.221554606938
50 31.098167907749 1.221533438558
55 31.098184630907 1.221386254531
60 31.098144341013 1.221403510588
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Figure 13.1: “Variation of critical Rayleigh number (Ra.) and critical wavenumber («..) with

logipDa for different values of 6 with Pr = 7, ¢ = 0.3, v1=0.1, D,=10, ar=1.2, az=1.2,

T
0.0
log,,Da

T
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Ry=0.5, Q=0.3, A=1, and 8 = 0.”
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Figure 13.2: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (a..) with
logipDa for different values of D, with Pr =7, € = 0.3, 11=0.1, ar=1.2, ay=1.2, R;=0.5,
Q=0.3,0 =r/3, A=1,and 5 = 0.”
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Figure 13.3: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (a..) with
logipDa for different values of Q with Pr =7, ¢ = 0.3, 1,=0.1, D,=10, ar=1.2, ag=1.2,
R4=0.5,0 =7/3, A=1, and § = 0.”
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Figure 13.4: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (a..) with
logipDa for different values of R; with Pr = 7, ¢ = 0.3, v1=0.1, D,=10, ar=1.2, ag=1.2,
Q=0.3,0 =r/3, A=1,and 5 = 0.”

135

—— Dusty Casson fluid (y=0.5)
5.0 9- - - Dusty fluid (y=c0) 130 4

1.25 1
1.20
o 1154
1.10 1

1.05

1.004,

—— Dusty Casson fluid (y=0.5)
- -~ Dusty fluid (y=c0)

: : 0.95 . . -
-10 05 0.0 05 10 -10 05 0.0 05 10

log,,Da log,,Da

Figure 13.5: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (a..) with
logipDa for different values of ar with Pr =7, € = 0.3, 1=0.1, D,=10, aq=1.2, R;=0.5,
Q=0.3, 0 = 1/3, A=1, and 8 = 0.”
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Figure 13.6: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (a..) with
logipDa for different values of ay with Pr = 7, € = 0.3, v=0.1, D,=10, ap=1.2, R;=0.5,
Q=0.3,0 =r/3, A=1,and 5 = 0.”
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Figure 13.7: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (a..) with
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Figure 13.8: “Variation of critical Rayleigh number (Ra.) and critical wavenumber (a..) with
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13.6 Conclusions

The linear stability of two-phase dusty Casson fluid flow in a porous inclined channel while
accounting for the effects of heat source or sink and radiation is examined. The critical
Rayleigh number and critical wavenumber for different parameters such as 0, v, D,, Q, Rq,

ar, ag, Pr and € are computed and graphically shown with respect to Da.

e The Casson parameter (), channel’s inclination angle (#), heat source/sink parameter
(@) and destabilizes the flow.

e Mass concentration parameter (D,), radiation parameter (R;), momentum dust pa-
rameter (o), Prandtl number (Pr), and porosity parameter (€) help to stabilize flow
within an inclined channel. As a result, an increase in these variables acts as a stum-

bling block to the onset of convection.
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Part V

SUMMARY AND CONCLUSIONS
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Chapter 14
Summary and Conclusions

Linear stability of convection in an inclined porous channel filled with nanofluid, Casson
fluid, and dusty fluid has been investigated in this thesis. The study examines the impact
of parameters such as double diffusion, magnetic field, interphase heat transfer parameter
(LTNE), variable viscosity, heat source/sink, thermal radiation, and chemical reaction on

the onset of convection.

The governing partial differential equations of the flow and their associated boundary
conditions in the Chapters - 2 through Chapters - 13 are initially cast into dimensionless
form using suitable transformations. Small perturbations are imposed on the basic velocity,
temperature, nanoparticle volume fraction and pressure. The generalized eigenvalue problem
for the perturbed state is obtained from a normal mode analysis. This eigenvalue problem is
solved using the Chenyshev spectral collocation method in MATLAB. The effects of various
geometrical and fluid parameters on the onset of convection is presented through graphs and

discussed. The important observations made from this study are listed below:

e The disturbances are least stable for dusty, Casson, and nanofluid fluids for vertical

inclination (6 = 7/2), and the variable viscosity parameter (k) is 0.5.

e An increase in Hartmann number (Ha), porosity parameter (¢), and Prandtl number

(Pr) causes a delay in convection for § = 7/3.

e The increasing thermo-solutal Lewis number (Ln), Soet number (S7), Darcy number
(Da), and Dufour number (Dy) for both variable and constant viscosity induce delays

in convection.
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e As Nyp increases, the critical Rayleigh number (Ra.) rises, and as Nyg climbs, Ra,
falls. As a result, in both circumstances where the flow is regulated by constant
and variable viscosity, for all values of Ngyp stabilize the flow, but for all values Nyg
destabilize the flow field. When we increase Ny p, however, there is no change in the

critical Rayleigh number Ra. on inclination from horizontal to vertical.

e For all values of Ngp, vy, 7s, €, and € stabilize the flow with constant viscosity, while

v, stabilizes the flow with variable viscosity field.

e For all values of Nyg, 7,, and €,, destabilize the flow with constant viscosity, while ~,,

Vss €p, and €5 destabilizes the flow with variable viscosity field.

e For a nanofluid flow, streamlines form Rayleigh-Bernard convection cells when the
channel is vertical (0 = 7/2). As the inclination angle decreases, the cells expand ver-
tically and create a horizontal cell structure at § = 0. Changing the channel inclination

from vertical to horizontal reorients streamlines from horizontal to vertical.

e For a Casson fluid flow in an inclined channel, convection occurs sooner for increas-
ing values of the heat source/sink parameter (), Casson parameter (), radiation

parameter (R,), and chemical reaction parameter (R.).

e When the radiation parameter (R;) of two-phase dusty fluids increases, convection
is delayed; conversely, when the heat source/sink parameter (Q)) increases, it occurs
sooner. However, the increasing mass concentration parameter (D,) and momentum
dust parameter (ay) result in delay in convection when two-phase dusty fluid flow is
controlled by both constant and variable viscosity fields. However, there is no signifi-

cant effect on the increased thermal dust parameter (ar).

e For both constant and variable viscosity fields, the neutral stability graphs for dusty
Casson fluid always situated below the neutral stability graphs for dusty phases.

The work presented in the thesis can be extended by studying the analysis in various
non-Newtonian fluids like Micropolar fluids, Couple stress fluids, Power-law fluids and the
geometry can be changed to pipe, through annulus and an inclined pipe. Further, this work

can be extended to study the analysis on nonlinear stability.
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