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ABSTRACT

This thesis introduces the local thermal non-equilibrium (LTNE) model as a framework
for analyzing the forced convection heat transfer in the context of laminar flow within
a thermally developing region within a parallel plate channel filled with porous media.
Additionally, a transverse application of the magnetic field is imposed along the channel
walls. Specific well-known parameters define the system, these being the Darcy number
(Da), thermal conductivity ratio (x), Forchheimer number (£), Hartmann number (M),
Biot number (Bi), Peclet number (Pe), and Brinkman number (Br»). Numerical solutions

have been obtained by applying a successive accelerated replacement (SAR) scheme.

The numerical solutions have been obtained for the following values of the
parameters characterizing the different problems studied. Darcy number: 0.001 < Da <
1.0. Forchheimer number: 1< F < 100. Hartmann number: 0.5 < M < 65. Biot number:
10 < Bi < 100. When axial conduction is considered, Peclet number: 5 < Pe < 100.
When axial conduction is neglected, designated by 4. = 0, Pe is absorbed in &" and does
not appear explicitly. When viscous dissipation is included, the Brinkman number: is

0.8 <Br<100.

The effect of Darcy number, Hartmann number, Biot number, and thermal
conductivity ratio is discussed for the thermally developing region. The study presents
outcomes concerning dimensionless temperature profiles in both the fluid and porous
phases, the wall temperature and the local Nusselt number within the parallel plate
channel. Notably, the local Nusselt number is influenced by a magnetic field and
variations in the thermal conductivity ratio. A fully developed condition is validated
when LTNE is used. It serves the purpose of the downstream boundary condition when

axial conduction is used (elliptic PDE).

The influence of axial conduction on the forced convective heat transfer
characteristics in a duct filled with porous material at a thermally developing zone under
LTNE is discussed. The axial conduction effect is more at the low Peclet number, Pe,

for all the Biot numbers, Bi. For large Pe, the axial conduction effect is negligible. The

Vi



validation of fully developed conditions for the local thermal non-equilibrium (LTNE)

model is conducted.

The effect of two viscous dissipation models, the form drag (FD) model and the
clear fluid compatible (CFC) model, is employed at the thermal entrance. The results
include the effects of viscous dissipation on temperature profiles and local Nusselt
numbers. The increment in the Brinkman number, Biot number, and thermal
conductivity ratio improves the temperature distribution. The parametric structure of
this study permitted mapping LTNE and local thermal equilibrium (LTE) areas across
a wide range of these dimensionless parameters. Enhancement in the local Nusselt

number is obtained in the CFC model compared to the value in the FD model.

Synergistic impact of axial conduction and viscous dissipation combined in the
thermal-developing zone under LTNE framework in a duct packed with saturated
porous medium. It explores the thermal characteristics of fluid flow through a porous
medium confined within a channel defined by parallel plates. The channel walls are
subject to a boundary condition with a constant wall heat flux. Enhancements in the
Peclet number, Brinkman number, Biot number, and thermal conductivity ratio lead to
improved temperature distribution. The parametric approach in this study enables the
mapping of LTNE and local thermal equilibrium (LTE) regions across a broad spectrum

of these dimensionless parameters.
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NOMENCLATURE

A Axial conduction K Permeability, m?
A Constants are given in the | ki The ratio between the fluid
appendix. thermal conductivity to
fluid thermal conductivity
B Magnetic  induction  vector, | k2 The ratio between fluid
‘E‘ =B,, Kgs?A" thermal conductivity to
porous thermal
conductivity
Bi ' _ ash, H 2 ky Thermal conductivity in the
Biot number, Bi = ——"—— fluid region, W/(m. K)
Br Brinkman number, | &k, Effective thermal
u’ HH conductivity in the fluid
Br=—"—
g K phase, W/(m. K)
C, Specific heat, J / g °C k, Thermal conductivity of the
porous, W/(m. K)
c, Skin friction coefficient k,. Effective thermal
conductivity in  porous
phase, W/(m. K)
Da Darcy number, Da =K/ H? M Hartmanp number
(Magnetic field parameter),
27172
M oB,’H
Hy
F Forchheimer number, NI Number of iterations
4
F=Fr iz (_ d_p}
\/E y7, dx
Fr Lorentz forces, F, =J x B NI Number of iterations
h, Local heat transfer coefficient, | Nu¢s Local Nusselt number
at the porous wall, W/m?*K
H Width of the channel, m Nug cre | Nusselt number due to clear
fluid-compatible model
J Electric current density, A/m? Nug rp | Nusselt number due to form

drag model

viii




( Nu ) Fully developed Nusselt number | 7, Bulk mean temperature, K
Mpsr | for Darcy Brinkman number
P Dimensionless pressure T, Inlet temperature, K
p Pressure, kg m''s? T, Interfacial temperature, K
PD Number of divisions in the axial | 7', The temperature in the fluid
(&) direction phase, K
Pe Peclet number, Pe=u, H/a, | T, The temperature in the
porous phase, K
qw Constant wall heat flux, W/m? | T Fluid phase temperature at
the upper wall (at
y =H/2),K
q;,p Internal heat generation term in | 7, Porous phase temperature
fluid and porous region, W/m? at the upper wall (at
Yy =H/2),K
0 Number of grids in the normal | U Dimensionless velocity
(n) direction
OD Number of divisions in the Y Axial distance, m
normal (7) direction
Re Reynolds number, y* Normal distance, m
Re=pu, H/pu,
S Constant less than unity
Greek symbols
& The ratio of the viscosity to the | £ The normalized
effective viscosity dimensionless axial distance
g, Error tolerance limit AE Uniform cell width
n Dimensionless normal distance, | ¢, The dimensionless
m temperature in the fluid
phase
K The ratio of the effective porous | ¢, The dimensionless
thermal conductivity to the temperature in the porous
effective fluid thermal phase
conductivity
H Fluid viscosity, kg m™'s™! Py Wall temperatures in the
fluid phase
U, Effective viscosity in Brinkman | ¢, Wall temperatures in the
term, kg.m™!s™! porous phase
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Dimensionless axial distance, m

Abbreviations

CFC Clear fluid-compatible model LTE Local thermal equilibrium

model

DB Darcy Brinkman LTNE Local thermal non-
equilibrium

FD Form Drag model

model

Subscript

e Effective p Porous

f Fluid w Wall
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Chapter 1
INTRODUCTION

1.1 Introduction

Multiple applications for porous media are found in science, technology, and
engineering. In recent years, scientists and engineers have been more interested in
studying fluid flow and heat transfer in porous materials due to their relevance to many
relevant physical processes. As of right now, there are a number of topics being actively
researched and considered, including methods for carbon storage, enhancing heat
transfer, solid matrix or microporous heat exchangers, subsurface water resources, fuel

cells, solar absorbers, compact heat exchangers in general, and geological research.

Heat transfer is exchanging thermal energy between various parts of a system
or distinct systems. A number of methods, including conduction, convection, and
radiation, can cause this exchange. One of the three primary forms of heat transport,
along with conduction and radiation, is convection. It deals with the transmission of
heat from a moving fluid (gas or liquid) to a solid surface. Fluid movement, which
transfers thermal energy from one location to another, propels convection. The
fundamentals of heat transmission have been thoroughly examined by Shah and

London [1], Kays and Crawford [2], and Whitaker [3] in their respective works.

In porous media, convection heat transfer is the term used to describe the
transport of heat inside a material that has interconnected spaces or pores. Soils, rocks,
ceramics, foams, and biological tissues are examples of materials that can be
considered porous media. Via the voids in the material, fluids (gas or liquid) can pass
through, and convection in the fluid-filled pores and conduction in the porous matrix
both affect heat transmission in these media (ref., Nield and Bejan [4], Bejan [5], and

Kaviany [6]).



Assuming that the porous matrix and fluid phase are in thermal equilibrium or
thermal non-equilibrium, it is possible to describe the transport processes via porous
media. Therefore, the local thermal equilibrium (LTE) model and the local thermal
non-equilibrium (LTNE) model have been used as two distinct modelling approaches.
When the fluid and porous phases temperature differences are disregarded, the LTE
model based on the one-equation model is valid. This model has been utilized in several
investigations of heat transport in porous materials, including high-temperature thermal
energy systems, catalytic reactors, solar absorbers, enhanced recovery of oil by thermal
methods, anomalous heat diffusion, microchannel heat sinks, plasma spectroscopy,
energy storage systems, risk assessment of nuclear waste disposal systems, cooling of

electronic components, and proton exchange membrane (PEM) fuel cells [7-16].

Usually, a porous material is involved in convective flow problems. In these
problems, the porous skeleton temperature (7,) may be distinct from the fluid
temperature (7y), and this framework is popularly named LTNE. These problems have
been a keen interest for researchers due to the endless and exciting possibilities for
implementing such equations in real-time applications. So, curiosity increases about
the LTNE flows in porous media. For instance, LTNE is used in tube refrigerators
employed in space, in flows that assume nanofluid order, in fuel cells, in flows
involving resin, which is indispensable while processing composite materials, in the
upkeep of reactors generating nuclear power, in exchangers where heat flow is typical,
in flows where microchannels operate, in flows in metallic foams that are porous, and
in the transport of textile materials, including solar energy storage systems, cooling

rods, and nuclear reactors [17-29].

1.2 Brief Review on Flow and Heat Transfer in Parallel
Plate Channels Filled with Porous Media under the LTNE

model

In recent years, the cooling of electronic equipment employing materials including
hyperporous media or microchannels has brought up the classic problem of forced

convection in a channel created by two parallel plates. The overview discusses the



parallel plates under the LTE and the LTNE, along with typical advancements and
contemporary investigations. Nield and Bejan [4] and Vafai [30] discussed convection
in porous media. Pati et al. [31] recently highlighted the applicability of LTE and LTNE

techniques in a critical review of LTE and LTNE.

Amiri and Vafai [32] addressed the impact of varying porosity and thermal
dispersion, which were also analyzed under LTNE for various types of constant heat
flux boundary conditions. In a channel filled with a fluid-saturated porous medium
under LTNE with a constant wall heat flux condition, Bai and Nakayama [33]
constructed an integral solution to describe the complete evolution of the thermal
boundary layer. For the first time, an entire region map illustrating the points at which
one area transitions to another is revealed by this analytical approach. These locations

depend intricately on the thermal conductivity ratio and the Biot number.

Nield et al. [34] discussed how LTNE affected the thermal growth of forced
convection in a saturated porous medium. LTNE involves the thermal expansion of
forced convection in a saturated porous medium in a channel between parallel plates at
a constant temperature. Further, Khashan et al. [35] demonstrated the LTNE effect for
a tube geometry with constant wall temperature conditions. The findings showed that
the LTE validity was expanded over the LTNE region as a result of the Peclet number

declining and the Biot number rising.

Dehghan et al. [36] solved the coupled system equation of LTNE model using
perturbation analysis for the parallel plate channel with constant heat flux boundary
conditions and established a relation for the intensity of LTNE condition that is
straightforward and essential for determining the significance of LTNE condition and

validating numerical simulation results.

The Darcy number significantly affects the heat transfer rate in the developing
area, according to Yi et al. [37], which discussed constant heat flux boundaries and a
numerical and analytical investigation on thermally developing forced convective flow

in a channel filled with a fluid-saturated porous medium under LTNE.



1.3 Porous Medium

The topic of porous media is well-known to everybody. These materials are all around
us and impact our daily lives. There are many kinds of porous media and practically
endless applications. The characteristics of the many different types of porous media
that are accessible and the ability to use them effectively are the driving forces behind

porous media theory.

A solid with holes connected in continuous channels across several directions is
called a porous material. A solid matrix joined to create a network resembling a web
comprised of porous media. The solids are placed in the medium's network to make
pores between them. These pores are responsible for the flow through porous media.
An essential characteristic of the porous medium's physical makeup is the size of its
pores. Porous materials include fibrous aggregates, porous or fissured rocks, glass wool,
human body organs, limestone, and fibreglass. The study of the flow of fluids through
porous media has lately attracted much attention due to the recovery of crude oil from
the pores of reservoir rocks. Other disciplines interested in the flow through porous
media include biophysics, chemical engineering, solid physics, hydrology, and
geophysics. Porous media must be studied because of all the applications, including
heat exchangers, solar energy collectors, combustion processes, building insulation,
nuclear waste disposal, sound absorption, alloy solidification, energy storage, chemical

reactors, and petroleum recovery processes.

Fig. 1.1: Natural aggregate. Photograph taken on Seaham beach, March 2014



Fig. 1.2: Natural honeycomb

Effective porosity, ¢, and permeability, K, are two characteristics that define the
porous matrix in general. The effective porosity, or a portion of the medium that is
occupied by the fluid, is made up of pores. An extra characteristic word, permeability,
is required to distinguish between two porous mediums with the same porosity.
Concerning Darcy's law, permeability is essentially the hydraulic conductance of the
medium. The porosity of the medium and the corresponding particle diameter

determine permeability.

1.3.1 Characterization and Governing Equations for Momentum

Darcy’s Law

Darcy's law states that the volumetric flow rate () in a porous medium has an inverse
connection with the length (L) of the porous column and a direct association with the

cross-sectional area (A4) and hydraulic head differential (/). Darcy's law can be

expressed as:

Qoc 4~ (1.1)

The hydraulic head difference, #,, can be obtained from the equation below:

4
h =z+— (1.2)
© 7 pg



In Eq. (1.2), z denotes elevation, p, pressure, p, density of the fluid, and g

acceleration due to gravity. The Darcian velocity, v, is related to the volumetric flow

rate by,
0
y = = 1.3
y (1.3)
The Darcy law can be expressed in a differential form as:
K| dp
- K(d_y
u\ dx

In Eq. (1.4), K is the medium's permeability, and # is the fluid's viscosity.

For a three-dimensional flow, Eq. (1.4), as given in Stanek and Szekely [38],

takes the following form,

—

V:—g(Vp— pg) (15)

In Eq. (1.5), V is the Darcian velocity vector and § is the gravity vector. From

Eq. (1.5), it may be noted that the Darcy flow does not satisfy the no-slip condition at
solid boundaries. In general, modifications to the Darcy description become necessary

when the flow Reynolds number, based on the local velocity and pore diameter, is high.

Non-Darcy Extensions

Extensions of the Darcy law, including classical convective terms, non-linear inertia
terms, and viscous factors, have been proposed to account for the flow inertia effects
and boundary effects. The vector version of Catton's [39] governing equation for

momentum conservation is as follows:

2 |
. — K= — .
ﬁV+p[&] VNV +p=—|V|V =-Vp+B + V¥ (1.6)
K U K



In Eq. (1.6), K ' is the Forchheimer coefficient, and f, is an effective viscosity

that considers the difference in the resistance offered for the fluid flow, though
permeability may remain the same. For high-permeability foam, the effective viscosity

can differ from the fluid viscosity by a factor of ten, as demonstrated by Givler and

Altobellis [40]. B is the body force vector. In addition, the dimensionless of Eq. (1.6)
leads to the parameters Da, the Darcy number and F, the Forchheimer number, defined

by the equation below:

(1.7)

KV
F=— 1.8
I (1.8)

The modified convective component, the second term on the left side of Eq.
(1.6), includes the medium's permeability and porosity. The kinetic energy associated
with turbulent motion is accounted for by the third component, also known as the
Forchheimer non-linear inertial term. The second term on the right-hand side accounts
for the boundary effects attributed to Brinkman. Brinkman friction terms are necessary
to satisty the no-slip velocity boundary condition. Generally, the literature dealing with
the flow in porous media uses Eq. (1.6) or simplified forms. A brief literature survey of
fluid flow in porous media and its applications is discussed in many kinds of literature

[41-49].

1.4 Forced Convection in Ducts Filled with Porous Material

The subject of forced convection heat transfer in porous media is intriguing and has
practical implications in several engineering domains; for example, refer to Bejan et
al.'s work [7]. Both analytical and numerical treatment of various configurations of fluid
flow and heat transfer has been done; see Nield and Bejan [4], Bejan [5], Kaviany [6],
and Vafai [30]. Applications for forced convection include heat sink modelling, thermal
optimization, heat sensitivity investigations, heat removal simulation of an electric fan,

cooling of computer cases, fan-cooled central possessing units, water-cooled central



possessing units, cooling system design, heating system design, simulating printed
circuit boards, etc. Heaters for automobiles, ceiling fans, convection ovens, pumps,

suction devices, and hot air balloons are examples of forced convection.

1.4.1 Governing Equations for Thermal Energy Equation

In the majority of cases examined in the literature, it is commonly assumed that the
porous matrix and the fluid flowing through it are in a state of LTE, implying that 7y =
T, = T, where Tr and T, represent the temperatures of the fluid and porous phases,
respectively. The LTE assumption suggests that the disparity between the volume-
averaged temperatures of the fluid and porous phases is negligible. However, at the
microscopic level, it is crucial to acknowledge that the temperature and heat flux rate
at the interface between porous and fluid phases must be identical. Nevertheless, when
considering the average value over a representative elementary volume, locally equal

temperatures for the two phases may not be obtained.

In this instance, both phases are in the condition of LTNE. Investigations
conducted by Vafai and Sozen [50], Vadasz [51], Stoner and Maris [52], and Intravaia
et al. [53] demonstrated that a significant portion of applications fail to meet the LTE
assumption. One such failure region associated with a rapidly fluctuating surface heat
flow has been identified by Minkowycz et al. [54]. Moreover, Al-Sumaily et al. [55]
have conducted an extensive review, summarizing the viability of the LTE theory. It
leads to the conclusion that, in an LTNE scenario, there are always a variety of drives.

As a result, the LTE thermal equilibrium approximation is no longer valid.

Following Nield and Bejan [4], the simplest way to model the LTNE is to use
two thermal balance equations, one for the fluid and the other for porous phases. Taking
the average over an elementary volume of the medium, the energy equation for fluid

and porous phases is:



Energy equation in fluid phase:

or,
#(pC,), —L - +(pC, )V VT, ¢v(k VT)-I—hpf pf( Tf)+(1—¢)q~} (1.9)

Energy equation in porous phase:

(1-9)(00), 52

S
=(1-9)V.(k, VT, )+ h,a, (T,-T,)+(1-4)q; (1.10)
In Egs. (1.9) and (1.10), Trand 7, are the temperatures in the fluid and porous phases.
Here, f'and p are the subscripts that refer to the fluid and porous phases, respectively. ¢
is the porosity, Cp is the specific heat at constant fluid pressure, C is the specific heat
of the porous, and £ is the thermal conductivity. The last term in both equations is the

internal heating source term (q ;’p). Aditionally, a,ris the interfacial area per unit volume

of the porous media and /4, is the porous-to-fluid heat transfer coefficient.

1.4.2 Porous Material Filled Duct under LTE

Numerous theoretical and experimental investigations into convective heat transport
within porous media have been carried out, as documented by Hwang and Chao [56]
and Jiang et al. [57]. These studies employed two distinct approaches, LTNE and LTE,
considering the temperature at the interface between the porous and fluid zones. These

approaches were utilized to estimate thermal transport phenomena in porous media.

The model of LTE posits that the temperature disparity between the fluid and
porous phases in a porous system is negligible at any point within the bulk porous
medium or that both phases maintain identical temperatures at all locations. This model
has found widespread application in examining fundamental transport phenomena in
porous media and has been extensively explored in literature dedicated to convection
in such environments. The premise of the porous-matrix and fluid phases being in a
state of LTE has fueled significant research on convective transport within porous

media.



The LTE model has been utilized in several investigations of heat transport in
porous materials (Mahjoob and Vafai [58] and Hooman and Merrikh [59]). Although
the LTE model simplifies heat transfer computations, this is only sometimes the case
when there is a significant temperature difference between the two phases. In these
conditions, it is challenging to discount the effects of several behaviours that enhance
internal heat exchange between the two phases. Because of this, the interstitial heat
transfer coefficient and the interfacial surface, linked to the internal heat exchange
between the porous and fluid phases, are crucial factors affecting heat transfer
amplification in porous media (Marafie and Vafai [60]). Also, radiation and convection

play essential roles in transferring heat in high-temperature thermal energy systems.

Table 1.1: An overview of related literature on flow and heat transfer in ducts filled
with porous material under LTE

SI. | Geometry, Flow Field, Thermal | Boundary Reference
No. | Field and other Features in Brief Conditions

1 | Two parallel porous plates, fully | Constant  wall | Poulikakos and
developed thermal and flow field, | heat flux and | Kazmierczak

Brinkman-extended Darcy model. constant wall | [61]
temperature
2 | Channels with parallel plates partially | Constant ~ wall | Jang and Chen
filled with porous medium, fully | temperature [62]

developed flow, and thermal field
supposed to be fully developed.
Darcy-Brinkman-Forchheimer  flow

model.
3 | Channel with parallel plate partially | Constant ~ wall | Vafai and
filled with porous medium, fully | temperature Thiyagaraja [63]

developed thermal and flow field.
Darcy-Brinkman-Forchheimer  flow
model.

4 | Channel or pipe partially filled with |Constant wall | Mohamad [64]
porous medium, developing and fully | temperature
developed flow conditions, Darcy-
Brinkman-Forchheimer flow model.

Contd. on the next page
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Table 1.1 - Contd.

SI.
No.

Geometry, Flow Field, Thermal
Field and other Features in Brief

Boundary
Conditions

Reference

External flow past a plate with
alternate ~ porous cavity-block
obstacles was studied with a two-
dimensional developing flow with a
developing thermal field-Darcy-
Brinkman-Forchheimer flow model
and Navier-Stokes equations in
porous and fluid  regions,
respectively. Axial conduction was
included. Numerical solutions.

Constant wall

temperature

Huang and Vafai
[65]

Flow over intermittently emplaced
porous cavities, flow, and a thermal
field were developing. Darcy-
Brinkman-Forchheimer model and
Navier-Stokes equations in porous
and fluid regions, respectively. Axial
conduction was included. Stream-
function  vorticity = formulation
Numerical solutions.

Constant wall

temperature

Vafai and Huang
[66]

A porous layer was connected to the
bottom wall of a parallel plate
channel. A field was undergoing both
hydrodynamic and thermal
development. The Darcy-Brinkman-
Forchheimer flow model. The flow
and heat fields had boundary-layer
approximations.

Constant wall

temperature

Alkam et al. [67]

Porous substrates affixed to both
walls of a wvertical parallel plate
channel, hydrodynamically
developing two-dimensional mixed
convection flow. Employing Navier-
Stokes equations and the Darcy-
Brinkman-Forchheimer flow model.
In developing a thermal field, axial
conduction was included. Numerical
solution.

Constant wall
temperature

Chang and
Chang [68]

11
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SI.

No.

Geometry, Flow Field, Thermal
Field and other Features in Brief

Boundary
Conditions

Reference

Circular pipe with a porous layer
attached to the inside of the pipe.
Fully developed thermal and flow
field. Darcy Brinkman-Forchheimer
model. Numerical solution.

Constant wall
heat flux

Sayehvand and
Shokouhmand
[69]

10

Two parallel plates filled with porous
material. Developing thermal field
and fully developed flow field.
Thermal asymmetry. Darcy model
was  applied.  Analytical and
numerical study.

Constant but
unequal wall
temperatures

Mitrovic and
Maletic [70]

11

Two-dimensional flow in a
horizontal pipe partially or fully
filled with  porous  material.
Developing thermal field and fully
developed flow field. Darcy-
Brinkman-Forchheimer model.
Numerical Study.

Constant wall
temperature

Teamah et al.
[71]

12

A channel with a parallel plate
partially filled with porous medium.
A porous insert at the centre of the
channel. Darcy-Brinkman-
Forchheimer equation. Thermal and
hydrodynamic fields dealt with fully
developed. Analytical and numerical
solutions.

Constant wall
heat flux

Cekmer et al.
[72]

13

Parallel plate channel geometry with
an asymmetrically heated channel.
Developing thermal field and fully
developed flow field. Numerical
Study.

Unequal wall
temperatures

Repaka and
Satyamurty [73]

14

A channel with a parallel plate
partially filled with porous medium.
Brinkman extended the non-Darcy
model. Developing thermal field and
fully  developed flow  field.
Numerical Study.

Constant wall
temperature

Satyamurty and
Bhargavi [74]

12
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No.

Geometry, Flow Field, Thermal
Field and other Features in Brief

Boundary
Conditions

Reference

15

A channel with a parallel plate
partially filled with porous medium.
Darcy-Brinkman model. Developing
thermal field and fully developed flow
field. Numerical Study.

Constant wall

heat flux

Bhargavi  and

Reddy [75]

16

A channel with a parallel plate
partially filled with porous medium.
The  Brinkman-extended  Darcy
equation. Fully developed flow field.
Analytical Study.

Stress
boundary
condition

jump

Kuznetsov [76]

17

Channel partially filled with a porous
medium. The effects of axial
conduction are included. The Darcy-
Brinkman model. Developing thermal
field and fully developed flow field.
Numerical Study.

Constant wall

heat flux

Reddy and
Bhargavi [77]

18

Pulsating flows through a circular pipe
with a porous layer attached to the
inside of the pipe. Navier-Stokes
equation and  Darcy-Brinkman-
Forchheimer flow model,
respectively.

Constant wall
heat flux

Guo, Kim and
Sung [78]

19

Circular duct with a porous substrate
attached at the wall. Thermal and
hydrodynamic fields were supposed to
be fully developed. Darcy-Brinkman-
Forchheimer flow model.

wall
flux,
wall

Constant
heat
constant
temperature

Kuznetsov and
Xiong [79]

20

A uniformly moving impermeable
plate above and a porous layer of
limited thickness below define the
boundaries of a parallel plate channel.
Hydrodynamics of fully developed
flow. Poiseuille-Couette flow. Darcy
Brinkman. It was analytically studied.

There was no slip
condition at one

wall, and the
other moved with
constant
velocity.

Rudraiah [80]
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1.4.3 Porous Material Filled Duct under LTNE

Many researchers have disputed the accuracy and assessment of LTE assumptions. The
convective and radiative modes of heat transfer between different phases in the porous
media, which are anticipated to represent a significant obstacle to the transmission of
heat in the system, are sometimes ignored by LTE assumption in engineering problems.
Indeed, the phase temperatures may differ depending on the type of transient process
and the thermo-physical characteristics of the various phases. The performance of the
device is dependent on the degree of non-equilibrium between the two phases in several
thermal applications, including the cooling of nuclear fuel rods in coolant fluid baths
and the storage of thermal energy in underground reservoirs. The temperature difference
between the local fluid and porous phases is crucial in these thermal applications. Thus,
instead of the LTE model, Nield and Bejan [4] discussed the LTNE model for the porous
matrix and fluid phase in the temperature equation, which allows the separation in
temperature between the porous and fluid phases with interphase temperature

difference.

The LTNE model provides a more precise prediction of temperature fields in
porous media, and therefore, researchers have paid significant attention to these issues.
Many investigators (Phanikumar and Mahajan [81] and Jiang et al. [82]) have studied
forced convection in ducts partially and fully filled with porous material in various
conditions under the LTNE model. Because of its increased precision, the LTNE
approach has been extensively utilised to examine heat transfer characteristics in a
channel filled with porous media. Both models (LTNE and LTE) were employed by
Phanikumar and Mahajan [81], who concluded that the LTNE model is more precise
than the LTE model in projecting heat transport in metal foams by numerical
simulation. Recently several authors (Alsabery et al. [83], Alhadhrami et al. [84],
Barman and Rao [85], Prasannakumara [86], Xu et al. [87], Mansour et al. [88], Tayebi
and Chamkha [89], Alsedais et al. [90]) employed a creatively presented paper with a
variety of physical geometries that looks at a variety of causes and applications where

LTNE is used.
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In a series of inquiries, Rees [91] delved into the impact of LTNE on free
convective fluxes within porous media. Baytas and Pop [92], utilizing an LTNE model,
explored free convection within a porous square cavity. Additionally, Baytas [93]
contributed a discussion on LTNE, free convection within a cavity filled with non-
Darcy porous media. Saeid [94] investigated the same issue in a vertical porous layer,
employing the LTNE model to study steady mixed convection in a two-dimensional
computational setting. Furthermore, Malashetty et al. [95] scrutinized the influence of
LTNE on the onset of convection in a porous layer, incorporating thermal diffusivity in
a densely packed porous medium and anisotropy in permeability, along with the
Lapwood-Brinkman model. Since these problems have been a subject of keen interest
for researchers, it may be due to endless and exciting possibilities for implementing
such equations in real-time applications. So, curiosity about LTNE flows in porous

media has always attracted researches.

1.4.4 Thermal Boundary Condition under the LTNE Model

Under conditions of LTNE in porous media, a suitable set of boundary conditions
involves a parallel plate channel geometry subjected to a constant heat flux boundary
condition. Specifically, for the conditions at the heated wall with constant heat flux, two
models introduced by Amiri and Vafai [96] were considered. These models were

formulated based on distinct assumptions.

Model A: According to this model, the heat flux (gw) is apportioned between two phases

based on their effective thermal conductivities and the respective temperature gradients

they exhibit.
Upper wall: &, aika o, =q
e gyt T Hre g T
(1.11)
aT/" T, p
Lower wall: -k, g —k, > =q,
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Model B: This model suggests that each phase receives an equal share of the heat flux,

G-

U 1l k o1, d k o,
pper wall: e =¢q, an =4y
oy oy

(1.12)

Je * pe

Lower wall: —kf—f:qw and —k a_f:qw

In the above Egs. (1.11) and (1.12), T, is the fluid phase temperature, T, is the porous

phase temperature, k,, is the effective fluid thermal conductivity, &, is the effective

porous thermal conductivity.

A comprehensive review of literature pertaining to flow and heat transfer in
ducts filled with porous material under LTNE conditions reveals several key studies
and findings. Researchers have extensively explored the complex interactions between
fluid flow and heat transfer within porous media, considering the impact of LTNE
phenomena. The noteworthy contributions of the LTNE model are summarized in the
works authored by Kaviany [6], Straughan [28], and Nield and Bejan [4]. A survey of
pertinent literature concerning the phenomena of flow and heat transfer in ducts
containing porous material under the influence of the LTNE condition is given in Table

1.2.

Table 1.2: An overview of related literature on flow and heat transfer in ducts filled
with porous material under LTNE

SL. Geometry, Flow Field, Thermal Boundary Reference
No. Field and other Features in Brief Conditions
1 A fully filled channel was created via | Constant wall | Yang and Vafai

porous material with internal heat | heat flux with | [97]
generation. Darcian flow model. | models A and B
Thermal and flow fields were
supposed to be fully developed. Exact
solutions and numerical study.

Contd. on the next page
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Table 1.2 - Contd.

Sl Geometry, Flow Field, Thermal Boundary Reference

No. | Field and other Features in Brief Conditions

2 A channel was filled with a porous | Constant wall | Lee and Vafai
medium. Thermal and flow fields | heat flux with | [98]
dealt with fully developed conditions. | model A
The Darcy flow model. Analytical
study.

3 Metal foam-filled channel. Modified | Constant  wall | Sellar et al. [99]
Brinkman-Forchheimer extended | temperature
Darcy model. Developing flow and
thermal fields, respectively.

Numerical study.

4 Fully filled channel via porous | At the wall, | Haddad et al
material. Hydrodynamically fully | temperature [100]
developed Newtonian gas flow and | jumps and
developing thermal field. Darcy- | velocity slip
Brinkman-Forchheimer model.

Numerical study.

5 Parallel plates were porous micro- | At the wall, | Buonomo et al
channels filled with porous material. | temperature [101]
Brinkman-Darcy model. Thermal and | jump and
flow fields were fully developed. | velocity slip at
Entropy  generation analysis is | the wall,
performed. Analytical study. temperature

jump and
velocity slip

6 Parallel plates were porous micro- | At the wall, | Buonomo et al.
channels occupied with porous | temperature [102]
material. The Brinkman-Darcy model. | jumps and
Thermal and flow fields took up fully | velocity slip
developed. Numerical study.

7 The channel was partially occupied | Constant wall | Mahmoudi and
with a porous medium. Fully | heat flux with | Maerefat [103]
developed flow and thermal field. The | models A and B

Darcy-Brinkman  equation  flow
model. Entropy generation analysis
was performed. Analytical study.

17
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SL. Geometry, Flow Field, Thermal | Boundary Reference

No. | Field and other Features in Brief Conditions

8 A porous medium partially occupies | Constant wall | Karimi et al.
the channel, serving as the middle of | heat flux with | [104]
the channel. Fully developed Thermal | models A and B
and flow fields. The Darcy-Brinkman-

Forchheimer flow model. Analytical
study. The exact solution had been
determined.

9 A filled channel is created via porous | Constant ~ wall | Parhizi et al.
material with internal heat generation. | heat flux with | [105]

Fully developed thermal and flow | models A and B
fields. Biot number varies across the
channel. Darcy model. Analytical
study.

10 Partially filled channel via porous | Constant wall | Krishnan et al

material with internal heat generation. | heat flux with | [106]
Thermal and flow fields were fully | models A, B and
developed. The Biot number was | C

varied across the channel. Darcy flow
model. Analytical study.

11 A channel with porous material with | Constant  wall | Fathi-Kelestani et
internal  heat generation. Fully | heat flux with | al. [107]
developed flow and thermal fields. | model A
Unsteady, pulsating fluid flows in the
channel.  Darcy-Brinkman  flow
model. Analytical study.

12 Partially filled channel via porous | Constant wall | Lietal. [108]
material with internal heat generation. | heat flux with
Fully developed flow and thermal | models A, B and
fields. Brinkman-extended Darcy | C
flow model. Analytical study.

13 Partially filled channel via porous | Constant wall | Hu and Li [109]
material with internal heat generation. | heat flux with
Fully developed flow and thermal | model A
fields. Brinkman-extended Darcy
flow model. Analytical study.

14 Partially filled channel via porous | Constant wall | Ouyang et al
material. Thermal and flow fields | heat flux with | [110]
were fully developed. Darcy flow | models A, B,
model. Analytical study. and C

18
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SL. Geometry, Flow Field, Thermal | Boundary Reference

No. Field and other Features in Brief Conditions

15 Partially filled channel via porous | Constant wall | Liand Hu [111]
material. Fully developed flow and | heat flux with
thermal fields. Brinkman-extended | model A and
Darcy model. Analytical study. stress jump

interface
conditions

16 Partially filled channel via porous | Constant wall | Dehghan [112]
material with internal heat generation. | heat flux with
Fully developed flow and thermal | models A and B
fields. = Darcy-Brinkman = model.

Analytical study.

17 Partially =~ porous  medium-filled | Constant wall | Dehghan et al.
channel with internal heat generation. | heat flux with | [113]
Thermal and flow fields were fully | model B
developed. Darcy flow model.

Analytical study.

18 The channel contains a highly porous | Constant  heat | Xu et al. [114]

medium of open-celled metallic foam, | flux at a wall
with symmetrical sintered foam layers | with model A
on the upper and lower plates.
Thermal and flow fields were fully
developed. The porous region was
governed by the Brinkman-Darcy
model. Analytical study.

19 The channel was occupied by a highly | Constant  heat | Yietal. [115]
porous medium with high porosity. | flux at a wall
Thermal and flow fields were fully | with model A
developed. Brinkman—Forchheimer-
extended model employed. Analytical
study.

20 A channel was occupied by a porous | Constant  heat | Mahmoudi [116]
medium experiencing thermal | flux with
radiation. Developing thermal field | models A and B

and fully developed flow field. Darcy-
Brinkman-Forchheimer flow model.
Numerical study.

19
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Geometry, Flow Field, Thermal
Field and other Features in Brief

Boundary
Conditions

Reference

21

The channel-filled, partially filled,
open-celled porous layer was
symmetrically sintered on the upper
and bottom plates. Thermal and flow
fields were assumed to be fully
developed. The Brinkman-Darcy
equation flow model. Entropy
generations in endothermic and
exothermic channels were discussed.
Analytical study.

Constant  heat
flux at a wall
with model A

Torabi et al.
[117]

22

Partially filled cylinder via porous
material. Thermal and flow fields
were fully developed. The Brinkman-
extended Darcy flow  model.
Analytical study.

Constant  heat
flux at the wall
with model A

Dukhan, and
Hooman [118]

23

The channel was occupied by porous
material, featuring thick walls with
internal heat generation. Thermal and
flow fields were fully developed.
Darcy-Brinkman flow model. Two
variations of asymmetric boundary
conditions  were  taken  into
consideration. Analytical study.

Casel: Constant
but unequal wall
temperature.
Case2: Constant
wall heat flux
with models A
and convective
boundary
conditions at
walls

Elliott et al. [119]

24

Study of a two-dimensional channel
partially occupied by a porous insert;
this scenario incorporates
consumption (endothermicity) and
internal heat generation
(exothermicity). Thermal and flow
fields were fully developed. Darcy
Brinkman model flow model.
Numerical study.

Constant  heat
flux at a wall
with models A
and C

Karimi et al.
[120]

25

In the slip-flow regime, a micro-
channel was filled with porous
material with internal heat generation.
Thermal and flow fields were fully
developed. Darcy flow model.
Analytical and numerical study.

Constant  wall
heat flux with
models A and B

Dehghan et al.
[121]

20
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Field and other Features in Brief

Boundary
Conditions

Reference

26

The channel was partially filled with
an asymmetric porous material.
Thermal and flow fields were fully
developed. The Darcy-Brinkman flow
model. Analytical study.

The upper wall
was at constant
wall heat flux
with model A,
and the lower
wall was
isolated.

Tajik Jamal-
Abad [122]

27

A highly porous medium composed of
open-celled metallic foam featuring
symmetrically sintered foam layers on
the upper and bottom plates occupied
a portion of the channel. The flow was
steady and pulsatile. Thermal and
flow fields were fully developed.
Brinkman-Forchheimer flow model.
Numerical study.

Constant  wall
heat flux with
model B

Forooghi et al.

[123]

28

A portion of the channel was occupied
by a highly porous medium
comprising open-celled metallic foam
featuring symmetrically sintered foam
layers on both the upper and bottom
plates. Developing thermal field and
fully developed flow field. The
Brinkman-Forchheimer flow model.
Numerical study.

Constant  wall

temperature

Abkar et al. [124]

29

Fully partially filled channel via
porous material. Developing thermal
field and fully developed flow field.
Darcy-Brinkman flow model.
Numerical study

Constant  wall
heat flux with
model B

Baig et al. [125]

30

Fully filled channel via porous
material. Thermal and flow fields
were fully developed. Brinkman-
Forchheimer-extended Darcy flow
model. Perturbation Analysis.

Constant  wall

temperature

Dehghan et al.
[126]

31

Tube filled with metal foam. The
Darcian average was considered for
the flow in porous media. Thermal and
flow fields were fully developed.
Analytical study.

Constant  wall
heat flux with
model A

Yang et al. [127]

21
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SL. Geometry, Flow Field, Thermal | Boundary Reference
No. Field and other Features in Brief Conditions
32 Two-dimensional simulations of heat | Constant  wall | Abdedou and
transfer through porous material | temperature Bouhadef [128]
partially filled in a parallel channel
were considered. Developing thermal
field and developed flow field.
Brinkman-Forchheimer extended
Darcy flow model. Numerical study.
33 A saturated porous medium occupies | Constant  wall | Dehghan et al.
a tube. Thermal and flow fields were | temperature [129]
fully developed. Brinkman-
Forchheimer-extended Darcy
equation. The study encompasses both
analytical and numerical analyses.
34 Saturated  porous  medium-filled | Variable  wall | Seetharamu et al.
micro-channel. Internal heat | heat flux and | [130]
generation. Darcy-Brinkman  flow | wall
model. Thermal and flow fields were | temperature.
fully developed. Numerical study. Temperature
jump condition
35 The pipe was partially filled with a | Constant wall | Mahmoudi and
porous medium with a centred porous | heat flux with | Karimi [131]
layer in the channel. Thermal and flow | models A and B
fields were fully developed. Darcy—
Brinkman—Forchheimer-Darcy flow
model. Numerical study.
36 Annulus filled with porous. Darcian | Constant  heat | Yang et al. [132]
velocity over the cross-section. | flux at an inner
Thermal and flow fields were fully | wall with model
developed. Approximation solutions | A and the outer
and analytical study. wall was
adiabatic.
37 The tubes contain a partial filling of | Constant  heat | Xu et al. [133]
metallic foam. The interface between | flux at a wall
the foam and foam-free regions within | with model A

the tube was concentric. Thermal and
flow fields were fully developed.
Brinkman-extended  Darcy  flow
model. Analytical study.

22
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38

Tubes were partially filled with
gradient metal foams (GMFs). The
interface between the foam and foam-

Constant heat
flux at the wall
with model A

Xu et al. [134]

free regions within the tube was
concentric. Thermal and flow fields
were fully developed. Brinkman-
extended Darcy flow  model.
Numerical study.

39 Microfoams were sandwiched between | Velocity  slip | Xu et al. [135]
two parallel plates with asymmetric | and  thermal
heating. Thermal and flow fields were | slip with model
fully developed. Brinkman— | A

Forchheimer- Darcy flow model.

Constant wall
heat flux with
model A

40 Investigating heat transfer and entropy Yang et al. [136]
generation in a tube filled with double-
layer porous media. Analytical study.
Darcy-Brinkman's flow model.

Analytical study.

1.5 Viscous Dissipation in Flows Through Porous Media

The generation of thermal energy due to viscous stresses occurs in the viscous flow of
clear fluids and the fluid flow within porous media. The impact of heat released through
viscous dissipation becomes noteworthy when a dimensionless parameter, known as
the Brinkman number (Br), attains higher values. Considering that the effective
viscosity can be significantly higher {see Givler and Altobellis [40]} than fluid
viscosity when flows through the porous medium are encountered, the Brinkman
number shall be considerably higher than that for clear fluid flows. Current applications
that involve fluid flow through porous media necessitate the consideration of viscous
dissipation effects in the energy conservation equation. The phenomenon of viscous
dissipation holds relevance in various applications. For instance, noticeable
temperature increases occur in polymer processing flows, such as injection moulding

or high-rate extrusion.
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Additionally, acrodynamic heating in the thin boundary layer around high-speed
aircraft elevates the skin temperature. These applications may generally involve internal
flows, such as the flow through porous materials, fully or partially filled channels, and
ducts. When the effective fluid viscosity is high, temperature differences are slight, or
kinetic energy is substantial, viscous dissipation is expected to play a significant role.

A detailed exploration of the importance of dissipation can be found in Vafai [30].

1.5.1 Dissipation Modeling

The form of the dissipation function, y , for flows through porous media is not unique.
In deriving the conservation of {as in, say, Shah and London [1], Schlichting and
Gersten [137] and Al-Hadhrami et al. [138 and 139], or for more generality} thermal
energy equation for clear fluid flows, mechanical energy equation is subtracted from
the overall conservation of energy equation. Different models proposed by other authors
for the dissipation function for porous media have not always been compatible with the

momentum equation used in those investigations.

The forms of the dissipation function, y/, available in the literature for flow through

porous media for unidirectional flow, are as follows.

. . u d*u
Nield [140]: w = (EjuZ — pu (F] (1.13)
2
. H o du
Al-Hadhrami et al. [138 and 139]: W:(Eju +'Ue[d *] (1.14)
Y

1.5.2 Forced Convection in Channels Filled with Porous Material with

Viscous Dissipation

A general review of the dissipation models in porous media was developed, and the
background is available in Nield and Bejan [4]. When the thermal energy equation

includes a viscous dissipation term involving Brinkman number, Nield [140] termed it
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the Brinkman-Brinkman problem. The different dissipation functions that have been

proposed are given by Eqgs. (1.13) to (1.14).

In porous media, the impact of viscous dissipation on internal forced convection
has received much attention over the past ten years due to its numerous applications in
heat pipes, electronics cooling, catalytic reactors, and other devices. Vafai [30]
describes the utility of dissipation. Nield and Bejan [4] provided a basic overview of
the dissipation models in porous media. Viscous dissipation was initially considered by
adding a velocity square term to the energy equation for the porous media (Bejan [5]
and Nield [140]). Later, a new paradigm for viscous dissipation was proposed by Al-
Hadhrami et al. [139]. Extensive research has been done for various geometries to
examine the impact of viscous dissipation on internal forced flow problems. The
majority of these studies assume LTE between the porous and fluid phases. Fully
developed issues with various boundary conditions and viscous dissipation functions
were addressed by several authors (Nield et al. [141], Tso et al. [142], and Nakayama
and Shenoy [143]).

The adoption of the LTNE model considering viscous dissipation is relatively
limited in existing studies. This investigation specifically compared the differences
between LTE and LTNE models, revealing a pronounced influence of viscous
dissipation on the Nusselt number. The study delved into the effects of various relevant
parameters, including Biot number, Darcy number, Brinkmann number, and thermal
conductivity ratio, and discussed the significance of thermal asymmetries in heat
transfer. In a related context, Baig et al. [144] scrutinized the impact of viscous
dissipation within the LTNE model under constant heat flux boundary conditions.
Under the LTNE model, Buonomo et al. [145] explained that temperature gradients in
the fluid and porous along the sections decrease as temperature and velocity increase.

An increase in bulk heat transfer improves the heat transmission at channel walls.

Tables 1.3 and 1.4 provide an overview of the literature concerning convective
heat transfer through porous media, encompassing dissipation and detailing the utilized

LTE and LTNE models.
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Table 1.3: An overview of the literature on flow and heat transfer in various

geometries filled with porous material, including dissipation under LTE

SL

Geometry, Flow Field, Thermal
Field and other Features in Brief

Boundary
Conditions

Reference

The channel Filled via porous material
fully developed flow with Darcy model
and developed thermal field.

Constant wall
temperature

Hooman and
Gurgenci [146]

Porous material was bounded by
parallel plate channel and fully
developed thermal and flow fields,
with the Darcy- Brinkman model.
Different dissipation models yielded
almost the same results for small Darcy
numbers.

Constant wall
temperature
and constant
wall heat flux

Nield et al. [147]

Filled channel via porous material
under the LTE model. Viscous
dissipation was applied. Thermal and
flow fields were fully developed. The
Brinkman-Darcy equation flow model.
Analytical and numerical solutions
were obtained.

Unequal,
constant wall
temperature

Mahmud
Fraser [148]

and

Filled channel via porous material
under the LTE model. Viscous
dissipation was applied. Thermal and
flow fields were fully developed. The
Brinkman-Darcy flow model. An
analytical solution has been obtained.

Constant wall

heat flux

Hung and Tso
[149]

Partially filled channel via porous
material. Three viscous dissipation
models were applied. The conduction
limit was considered. The Brinkman-
Darcy flow model. An analytical
solution has been obtained.

Constant wall

heat flux

Bhargavi and

Reddy [150]

Two-dimensional  laminar  forced
convection. Developing thermal field
and fully developed flow field. The
flow between asymmetrically heated
parallel plates was studied. Numerical

study.

Isothermal
with  unequal
temperature

Repaka and
Satyamurty [151]

26
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Sl Geometry, Flow Field, Thermal | Boundary Reference
No. | Field and other Features in Brief Conditions
7 Vertical  plate.  Steady  mixed | Isothermal wall | Murthy [152]
convection flow employing the Darcy- | temperature
Forchheimer model. Boundary layer
approximation was made in the energy
equation. Effects of thermal dispersion
and viscous dissipation were studied.
8 Vertical plate. Analytical solution for | Constant wall | Rees et al. [153]
steady free convection employing | temperature
Darcy model. Boundary layer
approximation was made in the energy
equation.
9 Vertical plate channel. Numerical | Equal and | Ingham et al.
solution for fully developed free and | unequal  wall | [154]
forced convection flow employing | temperatures
Darcy model. Axial conduction was
considered.
10 Vertical Plate. Analytical solution for | Isothermal wall | Tashtoush [155]
two-dimensional mixed convection | temperature
employing the Darcy-Forchheimer
model. Boundary layer approximation
was made in the energy equation.
11 Partially filled vertical channel via | Stress jumped | Abiodun et al.
porous material. Thermal dissipation | and  constant | [156]
and Darcy dissipation were considered. | but ~ unequal
Brinkman-extended  Darcy.  They | wall
mixed convection flow. Thermal and | temperature
flow fields were fully developed.
Homotopy perturbation method.
12 Partially filled vertical channel via | Stress jumped | Abiodun et al.
porous material. Thermal dissipation | and  constant | [157]
and Darcy dissipation were considered. | but  unequal
Brinkman-extended Darcy. Natural | wall
convection flow. Thermal and | temperature
hydrodynamic fields were fully

developed. Homotopy perturbation
method.

27

Contd. on next page



Table 1.3 - Contd.

SI.

Geometry, Flow Field, Thermal
Field and other Features in Brief

Boundary
Conditions

Reference

13

The channel was filled via porous
material, and the flow was fully
developed with the Darcy Brinkman
model. Developing thermal field,
including axial conduction. A modified
Graetz methodology. Three models
were evaluated.

Constant wall
temperature

Nield et al. [158]

14

Circular duct filled with porous
material, Darcy Brinkman model. The
development of a thermal field
included viscous dissipation and axial
conduction. Numerical solution.

Constant wall
heat flux

Hooman et al.
[159]

15

Vertical channel with symmetric and
asymmetric heating. Steady mixed
convection flow employing the Darcy
model. Thermal and flow fields were
fully developed. Effects of thermal
dispersion and viscous dissipation were
studied. Perturbation method.

Isothermal
with equal or
unequal
temperatures

Barletta [160]

16

An inclined channel with asymmetric
heating. Steady mixed convection flow
employing the Darcy model. Thermal
and flow fields were fully developed.
Effects of thermal dispersion and
viscous dissipation were studied.
Perturbation method.

Isothermal
with  unequal
temperatures

Barletta and
Zanchini [161]

17

Couette-Poiseuille  flow  between
parallel plates with viscous dissipation
was studied. Thermal and flow fields
were fully developed. Analytical study.

One wall was
at constant heat
flux, and the
other was at
adiabatic

Aydim and Avic
[162]

18

Couette-Poiseuille  flow  between
parallel plates with viscous dissipation
occurs. Thermal and flow fields were
fully developed. Analytical study.

and
wall

Unequal
constant
heat flux

Chen et al. [163]

19

Partially filled channel via porous
material with viscous dissipation and
axial conduction was studied. Thermal
and flow fields were fully developed.
The Brinkman-Darcy equation flow
model. An analytical solution was
obtained.

Constant  wall

heat flux

Bhargavi and

Reddy [164]
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Table 1.4: An overview of the literature on flow and heat transfer in various

geometries filled with porous material, including dissipation under LTNE

SL. Geometry, Flow Field, Thermal | Boundary Reference
No. | Field and other Features in Brief Conditions
1 A channel with porous material with | Constant wall | Chen and Tso
viscous dissipation. Thermal and flow | heat flux with | [165]
Brinkman-Darcy flow model. | model A
Analytical study.
2 The channel was filled via porous | Constant wall | Chen and Tso
material with viscous dissipation. They | heat flux with | [166]
were developing a thermal field and a | model A
fully developed flow field. The
Brinkman-Darcy equation flow model.
Analytical study.
3 Parallel plates were porous micro- | At the wall, | Buonomo et al.
channels filled with porous material | temperature [167]
with viscous dissipation. The Darcy- | jumps and
extended Brinkman flow model. | velocity slip
Developing thermal field and fully
developed flow field. Numerical
studies.
4 Partially filled channel via porous | The upper wall | Torabi et al
material with viscous dissipation under | was adiabatic, | [168]
the LTNE model. Developing thermal | and the lower
field and fully developed flow field. | wall was at
The Darcy- Brinkman model equation | constant heat
flow model. Entropy generation | flux with
analyses were discussed. An analytical | model A
solution was obtained.
5 Fully filled channel via porous | Constant wall | Yang and Liu
material. Developing thermal field and | temperature [169]
fully developed flow field. Viscous
dissipation was considered. Darcy flow
model. Analytical study.
6 Fully filled channel via porous | Constant but | Chee et al. [170]
material. Thermal and flow fields were | unequal  wall
fully developed. Viscous dissipation | heat flux with
was considered. Darcy Brinkman flow | model A

model. Entropy generation
calculated. Analytical study.

was
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Table 1.4 - Contd.

SL. Geometry, Flow Field, Thermal | Boundary Reference
No. Field and other Features in Brief Conditions
7 A horizontal microchannel with thick | Case 1: | Torabi and
walls that was filled with porous | Constant but | Peterson [171]
material. Fields were completely | unequal wall
developed in terms of heat and | temperature.
hydrodynamics. Considerations
. . . Case 2:
include magnetic field and viscous .
dissipation. To depict the fluid flow in Convective
the porous media, utilised the Darc boundary
p > y o
. . . conditions for
equation. Investigated analytically.
the upper wall
and  constant
heat flux at the
lower wall
8 A porous media was inserted into a | Constant wall | Ting et al. [172]
microchannel. Within a microchannel | heat flux with
embedded in a porous medium, a | model A
water-alumina  nanofluid  flows.
Thermal and flow fields were fully
developed. Viscous dissipation was
considered. Darcy Brinkman flow
model. Entropy generation was
calculated. Analytical study.
9 Single microchannels that were filled | Unequal wall | Hunt et al. [173]
with porous materials make up a | heat flux

microreactor. There  were two
substantial barriers in the
microstructure of the system. A

catalytic coating was present on the
inside surface of the microchannel.
Thermal and flow fields were fully
developed. Viscous dissipation was
considered. Darcy Brinkman flow
model. The advective-diffusive model
governed mass transfer. Entropy
generation was calculated. Analytical
study.
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Table 1.4 - Contd.

SL. Geometry, Flow Field, Thermal | Boundary Reference

No. Field and other Features in Brief Conditions

10 A microreactor consists of a single | The upper plate | Chen and Tso
microchannel filled with porous | was insulated, | [174]
materials. CuO-Water nanofluid was | and the lower
considered. Thermal and flow fields | plate was at
are fully developed. Viscous | constant heat
dissipation was considered. Darcy | flux with
Brinkman flow model. Temperature | model A
field in a microchannel heat sink.

Analytical study.

11 A microreactor consists of a single | The upper plate | Loh et al. [175]
microchannel filled with porous | was adiabatic,
materials. Alumina water nanofluids | and the lower
were considered. Thermal and flow | plate was at
fields were fully developed. Viscous | constant heat
dissipation was considered. Darcy | flux with
Brinkman  flow  model.  New | model A
temperature field in a microchannel
heat sink. Numerical study.

12 Mixed convective heat transfer in a | Asymmetric Leela et al. [176]
vertical micro-porous channel. Viscous | constant  wall
dissipation ~ and  internal = heat | temperature
generation. Darcy Brinkman flow | and constant
model. A numerical solution was | wall heat flux
obtained by applying the finite element
method.

13 Horizontal channel filled with a porous | Casel: Torabi and
medium. Thermal and flow fields were | asymmetric Zhang [177]
fully developed. The energy equation | constant wall
includes two viscous dissipation terms. | temperature
The temperature distribution was local,
and total entropy generation was Case2: .
discussed. Analytical-numerical Convective

. : boundary
solution technique. o
condition
14 Plate channels are filled with metallic | The upper plate | Jiang et al. [178]

or packed beds. The Brinkman-Darcy-

Forchheimer model had variable
properties: porosity, thermal
dispersion, and viscous dissipation.
Flow and thermal fields were

developing. Numerical study.

was at constant
wall heat flux
with model B,
and the lower
plate was
adiabatic.
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1.6 Magnetohydrodynamics (MHD)

Numerous technical and industrial fields, such as the petroleum industry, plasma
research, geothermal energy extraction, and others, have found significant applications
for studying magnetohydrodynamic (MHD) flow and heat transfer for a viscous
incompressible fluid across a plate. An area of continuum mechanics called
magnetohydrodynamics focuses on how magnetic fields affect the motion of
electrically conducting fluids. Moving magnetic lines of force cause potential
differences that lead to the creation of electric currents in working materials. These
currents alter the magnetic field in turn. The Lorentz force, the passage of an electric

current through a magnetic field, also affects fluid flow.

In their study, Raju et al. [179] explored the magnetohydrodynamic (MHD) of
forced convective flow of a viscous fluid with finite depth in a saturated porous medium
over a stationary horizontal channel. The investigation considered a thermally insulated
and impermeable bottom wall, incorporating Joule heating and viscous dissipation
considerations. Sharmila and Saranya [180] delved into the impact of a magnetic field
on fully developed forced convection through a porous medium confined by a parallel
plate channel, taking into account boundary and inertial effects. Numerous researchers,
including Kurzweg [181], Gulab Ram and Mishra [182], Raptis and Kafousias [183],
Raptis and Perdikis [184], Manju et al. [185], and Vineet and Amit [186] have examined
the influence of magnetic fields on fluid flow across various geometries and under

diverse conditions.

Baoku et al. [187] investigated the influence of magnetic field, thermal
radiation, and thermal conductivity on the Couette flow of a highly viscous fluid with
temperature-dependent viscosity through a porous channel. The researchers obtained a
numerical solution employing finite difference methods. Several researchers, including
Ashish et al. [188], Ghofrani et al. [189], Sheikholeslami et al. [190], Takhar and Beg
[191], Barletta et al. [192], Guven et al. [193], Sahar [194], Srivastava and Satya [195],
and Jhankal et al. [196], have investigated the interaction between forced convection

and porous medium/magnetic field due to its relevance in engineering applications.
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1.7 Numerical Method

The intended studies involve pursuing numerical solutions for two-dimensional
conservation of energy equations in fluid and porous phases, incorporating viscous
dissipation and axial conduction. These computations are highly demanding, even
within the established velocity field framework. When accounting for axial conduction,
the conservation of the thermal energy equation exhibits an elliptic nature. In the
context of the considered internal flows, applying a downstream boundary condition at
an unknown axial distance necessitates an iterative approach to reach a solution. Several
numerical techniques have been extensively employed for this class of flows. One such
method involved using an implicit finite-difference scheme to solve the energy
conservation equation with a boundary layer approximation, as demonstrated by Habchi
and Acharya [197]. Naito and Nagano [198] successfully obtained numerical solutions
for the full Navier-Stokes and energy equations using the Successive Over-Relaxation
(SOR) method. Nguyen [199] employed the Alternating Direction Implicit (ADI) [200,
201] and Quadratic Upwind Interpolation for Convective Kinematics (QUICK) [202]
methods to solve the Navier-Stokes and energy equations in finite difference form. Jeng
et al. [203] utilized the SIMPLER (Semi-Implicit Method for Pressure Linked
Equations-Revised) algorithm with a staggered grid system. Krishnan and Sastri [204]
adopted the Crank-Nicholson semi-implicit scheme to solve the energy equation. Min
et al. [205] solved the discretized momentum and energy equations using a line-by-line
approach with the TDMA (Tri-Diagonal Matrix Algorithm), while the pressure equation

was solved using a line SOR method.

The Successive Acceleration Replacement (SAR) scheme is a non-linear over-
relaxation method introduced by Lew [206], Lieberstein [207], and Dellinger [208].
Lew [206] and Dellinger [208] employed the SAR scheme to solve non-linear ordinary
differential equations, with Dellinger's approach differing primarily in the choice of the
relaxation factor. Satyamurty [209] demonstrated the applicability of the SAR scheme
in solving a system of partial differential equations for studying two-dimensional
natural convection heat transfer in porous media. This scheme has been extensively
applied by researchers such as Satyamurty and Marpu [210], Marpu and Satyamurty
[211], Satyamurty and Marpu [212], Marpu and Satyamurty [213], Marpu [214],
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Sharma [215], and Prakash Chandra [216]. More recently, the SAR scheme has been
employed for forced convection studied by Bhargavi and Reddy [75], Satyamurty and
Bhargavi [217], and Jagadeesh and Satyamurty [218]. The present thesis has chosen

the SAR scheme to obtain numerical solutions for the problems under investigation.

Philosophy of Successive Accelerated Replacement (SAR)

The core principle underlying the SAR scheme is to suggest a profile for each variable
that satisfies the specified boundary conditions. Consider the partial differential

equation that governs a variable, ¢ (X,Y), expressed in finite difference form as

éP,Q =0. This equation represents the nodal point (P, Q), when the non-dimensional

height and length of the channel are divided into a finite number of intervals, denoted

as PD and OD, respectively. The presumed profile for the variable ¢ at any mesh point

typically does not fulfil the equation. Define the error in the equation at coordinates (P,
—k

0) and the k" iteration as @ r.o - The following sources yield the (k+1)™ approximation

to the variable ¢ :

—k
+ @
CD;E,QIZ(D;,Q—CU % (1.15)

(a(DP,Q /a(DP,Q)

The acceleration factor w in Eq. (1.15) ranges from 0 < <2. A value of w > 1 indicates

over-relaxation, while @ < 1 implies under-relaxation.

Until a convergence requirement is met, the variable ¢ is corrected at every

mesh point over an entire region of interest. The requirement is that, at any mesh point
between the &A™ and (k+1)™ approximations, the normalized change in the variable must

satisfy the condition given below:

1— { §011;,Q J
k+1
Pp o

<e (1.16)
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where the error tolerance limit, &;, is a tiny, positive value that is prescribed. It is
necessary to associate each dependent variable with an equation to correct the first
estimated profiles. It is common practice to link the equation containing that variable's

highest-order derivative.

1.8 Lacune in the Past Study on Forced Convection Heat

Transfer in the Channels Under LTNE Model

Motivated by the relevance to several modern applications, including fuel cells, solar
absorbers, and catalytic converters, the present studies seek to investigate forced
convection within channels filled with a porous material. As was previously said,
porous channels can be the primary geometry of interest in a device, or they can add a
porous insert to enhance heat transmission. By forming a convoluted channel and
manipulating effective thermal conductivity, forced convection in ducts packed with
porous material presents an opportunity to improve heat transmission. Extending the
findings of earlier studies by Shah and London [1], Vafai [30], Mahjoob and Vafai [58],
Hooman and Merrikh [59], Poulikakos and Kazmierczak [61], Bhargavi and Reddy
[75], and Barletta [160], it is predicted that porous material-filled channels will show a
higher increase in Nusselt number than when compared to clear fluid flow
configurations under local thermal equilibrium (LTE) model. When considering
variables like viscous dissipation, it is vital to assess the influence on heat transport

cautiously.

The transport processes through porous media, consisting of a fluid phase and a
porous matrix, can be modelled by considering both to be in local thermal equilibrium
(LTE) or local thermal non-equilibrium (LTNE). The LTE model based on the one-
equation model is valid when the temperature difference between the fluid and porous
phases is neglected. The LTNE conditions refer to a situation where different
components or regions within a system are not in thermal equilibrium with each other.
Research by Vadasz [51], Intravaia et al. [53], Stoner and Maris [52], Vafai and Sozen
[50], and Vadasz [51] demonstrated that a significant percentage of applications did not

adhere to the LTE assumption. Minkowycz et al. [54] discovered a separate failure
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region linked to a rapidly shifting surface heat flow. Recently, Al-Sumaily et al. [55]
conducted an extensive review, summarizing the legitimacy of the LTE theory. His
studies concluded that, in an LTNE scenario, there are always a variety of drives for

giving more physical realism for accurate modelling of any practical problem.

Existing literature on forced convection in channels filled with porous material
is reasonably comprehensive, focusing primarily on two-dimensional flow and
temperature fields under LTNE conditions. However, studies incorporating magnetic
fields, axial conduction, and dissipation in flows through porous-filled channels have
yet to be widely reported, especially concerning heat transfer enhancement under

LTNE, as far as the author's knowledge extends.

Current research endeavours have been initiated to address certain gaps in the
literature. The specific aspects under investigation in this thesis are outlined in § 1.9,

detailing the scope and objectives of the study.

1.9 Scope and Objective of the Study

The objective of the present study is to make available hydrodynamic and thermal
characteristics for the laminar incompressible flow of a Newtonian fluid in channels
filled with porous material in thermally developing region under the LTNE model.
Effects of axial conduction and viscous dissipation form part of the investigation.
Enhancement in the heat transfer under LTNE and its dependence on axial location and
other non-dimensional parameters such as Darcy number, Biot number, Hatmann

number, Brinkman number and the thermal conductivity ratio have been established.

The numerical solutions have been obtained for the following values of the
parameters characterizing different problems studied. Darcy number: 0.001 < Da < 1.0.
Forchheimer number: 1< F < 100. Hartmann number: 0.1 <M < 10. Biot number: 10 <
Bi < 100. When considering axial conduction, the Peclet number, Pe, lies in 5 < Pe <
100. When axial conduction is disregarded, indicated by A. = 0, Pe is absorbed in &

and does not appear explicitly. The Brinkman number is 0.8 < Br < 100 when viscous
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dissipation is included. The thesis comprises six chapters, with Chapter 1 providing a
comprehensive introduction to the research and a thorough literature review. It provides
an overview of fluid flow and heat transfer within ducts containing porous materials,
considering LTE model and LTNE model. It also concisely examines heat transfer
phenomena under the LTNE model and offers a comprehensive survey of dissipation
models applicable to porous media. Furthermore, the numerical approach employed in
this thesis is detailed. An overview of appropriate dissipation models for porous media
is presented, and the numerical scheme utilized throughout the thesis is explained. The
sixth Chapter is the conclusion of the thesis. The flow field is assumed to be fully
developed, and the thermal field is developing and is subjected to constant wall heat

flux in Chapters 2 to 4.

The schematic model and coordinate system of the parallel plate channel filled
with porous medium. The distance between the parallel plates is denoted by H, and T,
fluid enters the channel at a uniform temperature. Constant wall heat flux (qw) is
imposed on the channel walls, and the fluid flow through the porous region is governed
by the Darcy-Brinkman-Forchheimer model. A magnetic field (B,) is applied
perpendicular to the channel walls, and the flow is characterized by laminar,
incompressible, steady, unidirectional flow and a developing thermal field. Porous and
fluid regions are in LTNE. The porous medium is uniform and exhibits isotropic
properties. The factors include axial conduction and viscous dissipation. Furthermore,

the thermophysical properties remain constant.

The following topics, which form the subject matter of chapters 2 to 5 of the present

thesis, have been studied.

» Non-linear Flow and Heat Transfer of the Porous Filled Channel.

» Forced Convection Heat Transfer at the Entry Region of the Porous Filled
Channel with Axial Conduction Effect.

» Forced Convection Heat Transfer at the Entry Region of the Porous Channel
with Viscous Dissipation.

» Forced Convection Heat Transfer at the Entry Region of the Porous Channel

with Axial Conduction and Viscous Dissipation.
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The forced convection heat transfer in the context of laminar flow within a
thermally developing region focusing on the influence of LTNE has been studied in
Chapter 2. This investigation pertains to parallel plate channels fully submerged within
a porous material. The channel walls are subjected to constant heat flux boundary
conditions. The flow equation in the nonlinear flow model governs the Darcy-
Brinkman-Forchheimer field, assuming unidirectional flow. Additionally, a transverse
application of the magnetic field is imposed along the channel walls. The effect of
Darcy number, Forchheimer number, Hartmann number, Biot number, and thermal

conductivity ratio is discussed for the thermally developing region.

The intended research involves pursuing numerical solutions in Chapter 2 and
the complete thesis for the two-model conservation of energy equations (LTNE model).
These computations pose significant demands, even within the established velocity
field framework. Researchers have effectively employed the Successive Accelerated
Replacement (SAR) [29] scheme to address various problems. This methodology has
seen widespread utilization by Satyamurty and Bhargavi [30] and Bhargavi and Sharath
Kumar Reddy [31]. The present thesis has chosen the SAR scheme to obtain numerical
solutions for investigated problems. Extensive numerical trials have been conducted,
and the following values for the parameters involved have been found to be satisfactory.
(a) The acceleration factor, 0.6 < e < 1.1; (b) Error tolerance limit, & = 107, 10, and
107%; (¢) non-uniform divisions in the axial direction, 2000 < PD < 9000; and d) Number
of divisions in the normal direction, 60 < QD < 100 (uniform) were considered in the

study. The non-uniform grids have been generated in geometric progression (GP).

The numerical solutions presented are based on implementing the following
parameter values, as determined through conducted numerical trials. a) @ < 1; b) & =

1073; ¢) &, =0.4;d) PD=1000 with A&, generated in geometric progression with s =

1/8; and ) OD = 90 with An =1/ 90 (ref., Chapter 2 §, 2.6.1).

In Chapter 2, the study presents outcomes concerning dimensionless

temperature profiles in both fluid and porous phases for the wall temperature and the
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local Nusselt number within the parallel plate channel. As normalized dimensionless
axial distance increases, the local Nusselt number decreases and reaches the fully
developed value. Notably, the local Nusselt number is influenced by a magnetic field
and variations in thermal conductivity ratio. As the Biot number and thermal
conductivity ratio grows, the local Nusselt number decreases. The effect of the
Forchheimer number on the local Nusselt number is less effective. Hence, Darcy
Brinkman's model for the flow model is considered in the subsequent chapters. A fully

developed condition is also shown even when LTNE is used. Wall temperature

. . . . * . . .
increases as normalized axial distance, ¢ increases for all Biot numbers, from being

initially nonlinear to subsequently becoming linear for £ > 0.005, which is the onset of

a fully developed condition. It serves the purpose of the downstream boundary

condition at the exit when axial conduction is used (elliptic PDE).

Chapter 3 delves into the impact of axial conduction on the forced convective
heat transfer characteristics within a duct filled with porous material undergoing
thermal development under LTNE. The influence of axial conduction is particularly
pronounced at low Peclet numbers (Pe) across various Biot numbers (Bi). The axial
conduction effect is negligible, i.e., Ac = 0, for a significant value of Peclet number, Pe
(= 100) in the LTNE except very near the entry. Additionally, for high Biot numbers,
LTNE tends to LTE. The dimensionless temperature based on the bulk mean
temperature in the fluid and porous phases is invariant for axial distance. Local Nusselt
number variation depends on the parameters, Darcy number, Biot number, Peclet
number, and thermal conductivity ratio. Local Nusselt number decreases as thermal
conductivities and Biot numbers increase. As the Darcy number increases, the local
Nusselt number decreases. It reaches the clear fluid fully developed Nusselt number for

a large Darcy number.

This Chapter (Chapter 4) employs the effect of two viscous dissipation models,
the form drag model (FD model) and the clear fluid compatible (CFC model), at the
thermal entrance. The thermal characteristics of fluid flow through a porous material
immersed in a parallel plate channel have been studied. It was investigated numerically

under LTNE. Flow is considered unidirectional and governed by the Darcy Brinkman
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model porous area. Numerical solutions have been obtained for the thermal field. The
increase in the Brinkman number, Biot number, and thermal conductivity ratio
improves the temperature distribution. In contrast to the result in the form drag model,
a significant value of the local Nusselt number is obtained in the CFC model. As a

result, the clear fluid compatible model has better convectional heat transmission.

Axial conduction and viscous dissipation have an integrated impact on the
thermally growing domain under the LTNE framework in a duct filled with saturated
porous media. It explores the thermal characteristics of fluid flow through a porous
medium confined within a channel defined by parallel plates. In this chapter, the clear
fluid compatible (CFC) model is used since it has significantly increased heat transfer.
The effect of Peclet number, Brinkman number, Biot number, and thermal conductivity
ratio on temperature distribution and local Nusselt number are discussed. Due to
decreased thermal diffusion via the fluid phase in the porous media, the local Nusselt
number tends to drop under the LTNE in the presence of the Peclet number as the
Brinkman number rises. It shortens the thermal entry length. In the presence of axial
conduction and viscous dissipation, the local Nusselt number drops as the thermal

conductivity ratio rises.

The summary and significant conclusions drawn from the present studies are

presented in Chapter 6 of the thesis.
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Chapter 2

Non-linear Flow and Heat Transfer of the Porous

Filled Channel

2.1 Introduction

In the majority of cases explored in the literature, an underlying assumption has been
made that the porous matrix and the fluid coursing through it exist in a state of LTE,

T, =T,=T,signifying that T, and T, represent the temperatures of the fluid and porous

phases, respectively. Under the LTE condition, it is presupposed that the disparity
between the temperature averages across the fluid and porous phases is negligible. On
a microscopic scale, it is imperative that the temperature and the heat flux rate at the
interface between the fluid and porous phases remain equivalent. However, considering
the average values over a representative elementary volume may not produce locally
uniform temperatures for both phases. In such instances, the two phases are said to be

in a state of LTNE.

This chapter aims to examine forced convection heat transfer in the context of
laminar flow within a thermally developing region, focusing on the influence of LTNE.
The investigation pertains to a parallel plate channel fully submerged within a porous
material. The channel walls are subjected to constant heat flux boundary conditions.
Within the nonlinear flow model, the flow field in the porous region is governed by the
Darcy-Brinkman-Forchheimer equation, assuming unidirectional flow. Additionally, a
transverse application of the magnetic field is imposed along the channel walls. Specific
well-known parameters define the system, these being the Hartmann number (M),
Darcy number (Da), Forchheimer number (F), thermal conductivity ratio ( x ) and Biot
number (Bi). SAR schemes have been applied to obtain numerical solutions. Plots are
given for the dimensionless temperature profiles in the fluid and porous phases, wall

temperature, and the local Nusselt number at the parallel plate channel, which has been
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displayed. The magnetic field and the thermal conductivity ratio significantly affect the

local Nusselt number.

2.2 Mathematical Model

The schematic model and coordinate system of the parallel plate channel filled with
porous medium are shown in Fig. 2.1. The distance between the parallel plates is

denoted by H, and the fluid enters the channel at a uniform temperature 7, (Fig. 2.1).
Constant wall heat flux (g, ) is imposed on the channel walls. The fluid flow through

the porous region is governed by the Darcy-Brinkman-Forchheimer model. A magnetic
field (B,) is applied perpendicular to the channel walls, and the flow is characterized by
laminar, incompressible, steady, and unidirectional behavior. The flow field is assumed
to be fully developed; hence, dp/dx” is a constant and growing thermal field. Porous and
fluid regions are in LTNE. The porous medium is uniform and exhibits isotropic
properties. Negligible factors include heat generation, axial conduction, and thermal

dispersion. Furthermore, the thermophysical properties remain constant.

R

L4l Ll

(a) Dimensional (b) Dimensionless

Fig. 2.1: Schematic model and the parallel plate channel coordinate system

Governing Equations

The momentum equation for the fluid flow across a porous medium by employing the
Darcy Brinkman Forchheimer model is given by:

2
du_ K, Pryp G- @.1)

He " K JK dx

42



In Eq. (2.1), u denotes the velocity in the porous medium, and y,, u, p, and K are

effective viscosity, fluid viscosity, the density of the fluid, permeability in the porous

region, and ¢; is the Forchheimer coefficient, respectively. B is the magnetic induction

vector of the applied uniform magnetic field and J is the electric current density.

Assuming that there is no external electric field and that no internal factors, such as
charge separation or polarization, are causing an induced electric field., J= G(L? X E),
where o is electric conductivity, Lorentz force F, = J x B and velocity vector i are
opposite in direction and collinear. Hence F, = J x B = —oB,*u , where B, = ‘E‘ . Thus,

the governing equations given in Eq. (2.1) are reduced to:

%F_Eu JK

d’ d
u Hu PCr e _6B02u = d_p* (2.2)
X

The steady-state conservation of thermal energy equations of the fluid and

porous phases are given by:

Fluid phase
oT, o°’T,
(pcp)(up axj; j =k, éy*zf +a,h, (Tp _Tf) (2.3)
Porous phase
o°T,
ke y —a,h, (Tp -T; ) =0 2.4)

In Egs. (2.3) and (2.4), p is density, C, is the specific heat, 7, is the fluid phase
temperature, 7, is the porous phase temperature, k, is the effective fluid thermal

conductivity, k

pe

is the effective porous thermal conductivity, respectively. a,, is the
interfacial area per unit volume of the porous media and /,, is the porous-to-fluid heat

transfer coefficient in the literature.
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Boundary Conditions

Hydrodynamics boundary conditions are given by:

u=0, aty = %,—% (No-slip condition) (2.5)

Thermal boundary conditions are as follows:

dT, dT . H
kfed_{k:qwa kped—f=qw at y =5
4 4 (Heat flux condition ) (2.6)
ar, ar, . H
_kfe_*=qw’ -k, —%=q, aty =——
dy P dy 2
T,, (O,y*) =T, - % <y < % (Inlet condition) 2.7)
T,=T,=T,... (Porous-fluid interface) (2.8)

In Eq. (2.8), the temperature at the porous-fluid interface is denoted by

Ti'merface *
At the porous-fluid contact, the temperatures of the two phases need to be locally equal.
It differs from the LTE assumption, which assumes that the temperatures of the two

phases are equal everywhere.

Dimensionless Variables

The following dimensionless variables are utilised to construct the governing equations,

boundary condition, and porous-fluid interface condition {Egs. (2.2) to (2.8)}

dimensionless.

Xy u Uy 1
‘}::__’ 77:_’ Uz—’ Uav =75~

H H (_d;iJHz g (—dp*jW

dx dx
(2.9)
0 :(T/'_Te) :(Tp_Te)
kf kf
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In Eq. (2.9), & and 7 are the dimensionless coordinates along the x" and y" directions.
The dimensionless temperature and velocity are denoted by ¢ and U, respectively. The
fluid and porous phases are designated by subscripts f and p, respectively. The

average velocity across the channel is denoted by u,,,, . The normalized axial distance,

& can be defined as follows:
P (2.10)
In Eq. (2.10), Pe is the Peclet number ( Pe =u, H/a, a is thermal diffusivity).

The governing equations (Egs. (2.2) to (2.4)) in dimensional form become

dimensionless form after applying the dimensionless variables are given by Eq. (2.9).

2
ldl{—(lJer)U—FU%rl:o (2.11)
e dn Da
op, 1090, Bix
0 ) = S B g, ) @)

o8k ont K

e, .
877; ~Bi(p,-¢,)=0 (2.13)

The equation (2.11) is the dimensionless form of conservation of momentum
and Egs. (2.12) and (2.13) are the dimensionless form of thermal energy equations in

fluid and porous phases, respectively (LTNE model).

In Eq. (2.12), U"(n) is normalized velocity and can be calculated as follows:
U
UN(U)_ (77) (2.14)

In Eq. (2.14), U__, the average velocity is calculated by the following formula:

avg ?
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1/2

Uye= | U(n)dn 2.15)

—-1/2

In Egs. (2.11) to (2.13), Da, M, F, Bi, and « denote the Darcy number, Hartmann
number, Forchheimer number, Biot number, and effective thermal conductivity ratio,
respectively; however, ¢ and & represent the ratio between the viscosity of the fluid to
the effective viscosity of the porous medium, and fluid thermal conductivity to effective

fluid thermal conductivity, respectively and it can be defined as follows:

Mo T8l @2.17)
Hy
H'( d
F=Fr —2(——{) (2.18)
\/E Y7, dx
2
Bi = Lo (2.19)
k
pe
k e
k=2 (2.20)
kfe
e=£ 2.21)
H,
k, = K (2.22)
1= k .

In Eq. (2.22), k, is the thermal conductivity in the fluid region.
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Dimensionless Boundary Conditions

Hydrodynamics boundary conditions are given by:

U=0, at nn=

N | —

1
2’

Thermal boundary conditions are as follows:

¢, 9,

=k, =k
on 1 on ?
9 g, Py
on Y on ?

Pr.p (0977):0, for —%<77<l

¢)f = ¢p = ¢inte;j‘ace

In Eq. (2.24), the ratio, k, is defined by:

k

k. =—L
2 kpe

2.3 Skin Friction Coefficient

at ——l
d 2

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

At the wall location, y" = H /2, the skin friction coefficient (C},) can be defined as:

du
ll’le dy*

Y'=H/2

¢ 2
Pl

ﬁ) =

where u,, is defined by:

¢

&)
dx

U

U =~
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Using dimensionless variables from Eq. (2.9), Eq. (2.28) becomes,

Rec, =L14Y (2.30)
A & dﬂ n=1/2
where Re, the Reynolds number is given by:
u H
Re= Pt 2.31)
Y7,

2.4 Local Nusselt Number

The local heat transfer coefficient (4, ) is determined at the wall y'=H /2 adjacent to

the porous medium.

oT,
—kp
oy |-

y =

=h, (T,-T,) (2.32)

o

In Eq. (2.32), the bulk mean temperature (7, ) is denoted as follows:

H/2
I ul'dy
T,==42 — (2.33)
_[ udy”

-H/2

Employing dimensionless variables {using Eq. (2.9)}, at n=1/2, the local

Nusselt number ( MVu, ) is expressed by:

Nu, = = o2 (2.34)
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In Eq. (2.34), @, and ¢~ are defined by:

(7,-T.)
g, = L) (2.35)
q,.H/k,
: :M (2.36)
q,H 'k,
where ¢~ is evaluated by,
1/2
[ U" (), ~9,)dn
0 —p,(&)="2— (2.37)

j U™ (n)dn

-1/2

The dimensionless temperature based on the bulk mean temperature, @, is

defined by
T-T, ¢
= <= 2.38
?, T-T o (2.38)

2.5 Limiting Cases

Analytical expressions for dimensionless temperature and the Nusselt number for Case
1: Hartmann number, M # 0.0, Forchheimer number, /= 0.0, and Case 2: Hartmann
number, M = 0.0, Forchheimer number, F = 0.0, for the fully developed thermal field
are given for Darcy Brinkman Model. The procedure by Kays and Crawford [2] has

been adopted to derive analytical solutions.

Case 1: F=0.0,M#0.0

Substituting F = 0.0 in Eq. (2.11), the dimensionless form Darcy Brinkman model is
given by:
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14°U (1
Lay _(_+M2]U+1=o (239)
e dn Da

Let the temperatures at the upper wall (y'=H/2) be T, w and 7. . The
corresponding dimensionless wall temperatures in fluid and porous phases, ¢, and

®,,, are defined by:

_(n,-1) (7,,-T.)

‘ P g HTk)

Dy = ) (2.40)

Since the boundary conditions are of Neumann type, Eq. (2.24), constants
cannot be evaluated using both Neumann type conditions. Hence, Eq. (2.12) and Eq.
(2.13) are solved using the following Dirichlet boundary conditions discussed in Kays

and Crawford [2].

1 1

The set of equations {Eqs. (2.12), (2.13), and (2.39)} are solved based on
boundary conditions {Egs. (2.23) and (2.41)}. The temperature profiles in the fluid and

porous phases are expressed relative to ¢, and @, , , respectively.

Since it is assumed that the thermal field is fully developed and constant flux

boundary conditions are applied at the wall, (6(p,./6§*)=(d(p*/d§*) becomes a

constant, say 4.

The dimensionless temperatures in the fluid and porous phases and the fully developed

Nusselt number expression for the Darcy Brinkman model, respectively, are given by:
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The dimensionless temperature in fluid and porous phases:

«xBi(1-277) JxBi(1+27)
2479 ye P e

A +1cBid] A, | kBi(1-4n" )(1- 47) +8]

+8xBid, | 4,4, cosh[n4,]-xBi]

i i 2.42

P h[ A2j| 44,> +8«Bi

1 cosn| —

7| 4 cosl{ /’(23’} ! 2 ||+xBi(4n’ -1)4)
Ake' ?

1 —16K°Bi* cosh[n4, |

+44," cosh [\/ﬁ?]}

_ - 243
P =, (1) 8xBi(2xBi— 4, ) A, A, A, (243
Fully developed Nusselt number:
126 BiDa’ 4, '_8/11 . {4\/1(31 (gAID— KBzDa) Ao Am}
a
(Nt ), = _ (2.44)
—6x/§(€m — 1)(8141 )
12k BiDa™ [2 4,4,y A5 + A, A |
—4, 1 A, cosh[A4,] 45 + 4,
+
ANKBI |+ €4, A, 1 -4k BiDa (1 8+ KBi) &°A4?
+(6+ KBi)€3A13

Case2: F#£0.0,M=0.0

In the absence of the Hartmann number, M (M = 0), the velocity profiles match with
the work done by Reddy and Bhargavi [217] for all the values of the Forchheimer

number (F) for the channel filled with porous material.
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The variation of (Nuj,) =~ with Bi is shown in Figs. 2.2(a) to 2.2(c) for various

values of Hartmann number, M at given values of effective thermal conductivity ratios

(x = 0.1, 1.0, and 10.0). Each value of x and M, (Nu/d )DBM increases and attains a

maximum at a small value of Bi and then decreases. For each Bi, as M increases,

(Nu»,d )DBM increases for every value of x . The constants, 4;, i = 1,2,3, ..., 18, appearing

in Egs. (2.42) to (2.44) are given in the Appendix.

10.6
10.5
10.4
= S 103
: :
&} S 102
= S
S S
10.1
10.0
9.9
og L 111y
0 200 400 600 800 1000
Bi Bi
(a) (b)
10.6 L] I L] I L] i
10.5 —M=1 -
- =M=3 ] A
10.4 M=5 |
103 - M=8| |
- = M=10 ]

(Vi “_f‘d)DBM
=
N

100 - — =
9.9 co ]
05 — T
600 800 1000
Bi
(c)

Fig. 2.2: Variation of fully developed Nusselt number, (Nuﬁ, )DBM with Biot number, Bi, for various

values of Hartmann number, M for (a) k¥ = 0.1, (b) k¥ = 1.0, and (¢) k¥ = 10.0 at Darcy number, Da
=0.005
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2.6 Numerical Methodology: Successive Accelerated

Replacement (SAR)

The employment of the SAR scheme is discussed in Satyamurty and Bhargavi [74],
Marpu and Satyamurty [211], and Reddy and Bhargavi [217]}:

Let PD and QD represent the number of divisions in & and 7 directions, respectively,
while A&" and An represent the width in & and 7 directions. The errors U and ¢, in

the fluid phase and ¢, in the porous phase are provided in finite difference form.

Following discretization of the governing equations Egs. (2.11) to (2.13) with

uniform mesh in 7 -direction and non-uniform mesh in ¢ -direction, the following

equations are obtained:

_1U(0-1)-20(Q)+U(0+1)

7(9) o

3o o[ F1 eas

™

?,(P.0)=U(Q) [0,(P.0)-0,(P.0)]

%(PsQ)—%-(P—LQ)}_BiK

E(P)-&(P-1) k,
(2.46)
_i[%(P,Q+1)—2¢f(P,Q)+¢f(PaQ—l)]
i (An)’
P,O0-1)-2¢ (P, P, 1
@p(P,Q):[%( 0-1)-2¢,(P.0)+9,(P.O+ )]
(An) (2.47)
~Bil9,(P.0)-9,(P.0)]
where A¢” is the ¢ -direction uniform grid size specified by, &(P)—&(P-1).
_Su
A =2 (2.48)
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where &, denotes the fully developed normalized length,

oD

The following derivatives are required to correct the profile for U, ¢, and ¢,

Discretized boundary conditions

2k, An+4¢,(P,0D)-p,(P,0D-1)

¢, (P,OD+1)=
2% An+do (P 3D P.OD-1 (Upper wall)
o (P.OD+1)= 2217 2, ( QS )-¢,(P,OD-1)

_ 2k, An+4p,(P,2)-¢,(P,3)

ok Apado (P2 3 (Lower wall)
(A B AR A AL

Inlet boundary condition is as follows:

0,,(1,0)=0 for 1+(QTDJ<Q<(1+QD)
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The discretized form of the product of Reynolds number (Re) and the skin

friction coefficient (C, ) can be obtained using three-point backward finite different

formulas and given by:

ReC, - 3U(Q+1)—42UA(77Q)+U(Q—1) (2.56)

2.6.1 Numerical Trials
Numerical trials have been done for the following equations under the local thermal

equilibrium (LTE) model.

Darcy Brinkman model (substituting F'=0 and M =0 in Eq. (2.11)):

1d’ 1
& dn a

Energy equation:

dp, 1%
U(n) f f

L —— 2.58
o0&k on’ (2:38)
Boundary conditions are given by:
ul =0, 99 —o (2.59)
=3 d?] =0
91 g, 9 (2.60)
on 77:% on =0

Appropriate values for the parameters that provide convergent solutions must

be identified to generate reasonable numerical solutions. The error tolerance limit,

acceleration factor, and the number of grids in &°, and 7 directions are PD and QOD,
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respectively the parameters. Numerical trials are performed with 107 <g <107,

0.6<w<1.1, 2000 < PD <9000, and 60<QD<100 for Da = 0.005.

Number of Grids, Uniform Spacing

Table 2.1 shows Nu, values for OD = 60, 70, 80, 90, and 100 with PD = 2000, 4000,

6000, 8000, and 9000. From Table 2.1, the value of Nu, =9.816 with OD = 90 found

in the numerical trials at &° = 0.4, coincides with the equivalent fully developed value

of 9.8156, which is obtained analytically. It shows that QD = 90 grids is appropriate.
When uniform grids OD = 90 and PD = 8000 are used, the values of local Nusselt

numbers do not change appreciably.

Acceleration factor, »

To determine suitable values for the acceleration factor, @, sufficiently large PD =
8000, OD =90, and uniform mesh have been chosen. The error tolerance limit has been
fixed at 10~* values at different locations, from the inlet to the fully developed region.

It has been selected as the criterion for arriving at a suitable value for the acceleration

factor w. Values of Nu, at different & and o are given in Table 2.2.

The acceleration factor is obtained from:

—k

& op,

0= {#]@ﬁg . (2:61)
Pro Pro

The number of iterations, N/, decreased from 14592 to 2726 as w increased from
0.6 to 1.1. The computational time, directly proportional to the number of iterations,
decreases as o increases. As expected, the converged values are independent of the

acceleration factor.

Error tolerance limit

Similar to the numerical trials described above, numerical solutions have been obtained

for values of error tolerance limit, ¢, = 1073, 107%, and 10~° with PD = 8000, OD = 90,
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choosing o as per Eq. (2.61). Values of different ¢, at different values are given in Table
2.3. As noted, concerning the acceleration factor, the thermal field is fully developed
for £ > 0.4. The fully developed values obtained with ¢, = 10~* are very close to the

analytically obtained values of Nu, = 9.8156 (see Fig. 10, Satyamurty and Bhargavi
[74]) for Da=0.005and 6, = 1.0, ¢, = 10~ is an acceptable value for the error tolerance
limit.

Non-uniform grids generation (Bhargavi and Reddy [75])-

The following formula is used to construct uniform grids:
E(@)=(-nAg (2.62)

The axial distance is increased in a geometric progression to produce non-

uniform grids. Let A&, be the rise in geometric progression with (1+d) as a common

ratio, and in geometric progression, the first term A& is given by,

AE, =(1+d)"" AL, (2.63)
Let the first non-uniform grid width of A& be defined by:

AE =5 AE (2.64)

where A& is uniform cell width and s is a constant less than unity.

A common ratio of (1+d), can be determined as follows:

(1+d) —IJ (2.65)

‘f*_/d :Ag*l( d
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Table 2.1:

Uniform mesh and grid independence test: Nu, at various ¢ for Da=0.005, ¢ =
10* and o = 0.8 (NI = Number of Iterations)

0D

PD

*

3

NI

0.0016

0.0050

0.0100

0.0300

0.0500

0.1000

0.150

0.2000

0.4000

60

2000

28.5561

19.0660

15.2571

11.3921

10.4248

9.8939

9.8343

9.8243

9.8044

3343

4000

28.3332

19.0178

15.2371

11.3864

10.4218

9.8933

9.8342

9.8243

9.8046

3845

6000

28.2595

19.0018

15.2304

11.3845

10.4208

9.8931

9.8341

9.8243

9.8047

4349

8000

28.2595

19.0018

15.2304

11.3845

10.4208

9.8931

9.8341

9.8243

9.8047

4349

9000

28.2105

18.9632

15.2260

11.3832

10.4201

9.8929

9.8340

9.8243

9.7788

5106

70

2000

28.2976

18.9745

15.2090

11.3753

10.4151

9.8895

9.8315

9.8227

9.8165

4299

4000

28.0791

18.9269

15.1892

11.3697

10.4121

9.8889

9.8314

9.8227

9.8165

4800

6000

28.0069

18.9111

15.1826

11.3678

104111

9.8887

9.8314

9.8226

9.8165

5303

8000

28.0069

18.9111

15.1826

11.3678

104111

9.8887

9.8314

9.8226

9.8165

5303

9000

27.9590

18.9283

15.1782

11.3665

10.4104

9.8885

9.8313

9.8226

9.8165

6059

80

2000

28.1172

18.9120

15.1764

11.3640

10.4085

9.8865

9.8296

9.8214

9.8166

5387

4000

27.9023

18.8649

15.1567

11.3584

10.4056

9.8859

9.8295

9.8214

9.8166

5886

6000

27.8313

18.8493

15.1502

11.3566

10.4046

9.8857

9.8295

9.8214

9.8166

6389

8000

27.7958

18.8414

15.1469

11.3556

10.4040

9.8855

9.8294

9.8214

9.8165

6893

9000

27.7841

18.8115

15.1458

11.3553

10.4039

9.8855

9.8294

9.8214

9.8165

7145

90

2000

27.9871

18.8676

15.1533

11.3561

10.4039

9.8843

9.8282

9.8205

9.8165

6604

4000

27.7748

18.8209

15.1337

11.3505

10.4009

9.8837

9.8281

9.8205

9.8165

7101

6000

27.7047

18.8053

15.1272

11.3486

10.3999

9.8835

9.8281

9.8205

9.8165

7605

8000

27.6581

18.7678

15.1228

11.3473

10.3992

9.8834

9.8280

9.8205

9.8165

8109

9000

27.6488

18.7929

15.1220

11.3471

10.3991

9.8833

9.8280

9.8205

9.8165

8360

100

2000

27.8903

18.8348

15.1363

11.3502

10.4005

9.8827

9.8271

9.8198

9.8164

7946

4000

27.6802

18.7884

15.1168

11.3446

10.3975

9.8821

9.8270

9.8198

9.8164

8442

6000

27.6108

18.7729

15.1103

11.3427

10.3965

9.8819

9.8270

9.8198

9.8164

8946

8000

27.6547

18.7657

15.1220

11.3475

10.3998

9.8838

9.8280

9.8208

9.8165

9450

9000

27.5555

18.7906

15.1225

11.3463

10.3987

9.8838

9.8270

9.8108

9.8164

9702

Table 2.2: Nu . at different ¢ for different values of the acceleration factor, o, for PD = 8000,
OD =90 and ¢, = 107 for Da = 0.005

Nu, at different &
® ° NI
0.0006 | 0.0010 | 0.0050 | 0.0100 | 0.0300 | 0.1000 | 0.1500 | 0.2000 | 0.4000

0.6| 39.3998 | 32.6986 | 18.7975 | 15.1239 | 11.3476 | 9.8834 | 9.8280 | 9.8205 | 9.8165 | 14592
0.8] 39.3998 | 32.6986 | 18.7975 | 151239 | 113476 | 9.8834 | 9.8280 | 9.8205 | 9-8165 | 8108
1.0| 39.3998 | 32.6986 | 18.7975 | 15.1239 | 11.3476 | 9.8834 | 9.8280 | 9.8205 | 9.8165 | 4177
1.1] 39.3998 | 32.6986 | 18.7975 | 15.1239 | 11.3476 | 9.8834 | 9.8280 | 9.8205 | 9.8164 | 2726
1.2 Did not converge
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Table 2.3: Nu, at different ¢* for different values of the error tolerance limit, ¢,, for PD =
8000, OD =90, for Da =0.005, » = 0.8

Nu, at different &
g, ) NI
0.0006 0.0010 0.0050 0.0100 0.0300 | 0.1000 | 0.1500 | 0.2000 0.4000
1073 | 39.7049 | 32.8921 | 18.8414 | 15.1469 | 11.3556 | 9.8853 | 8.7034 | 10.7295 10.7296 | 2426
1074| 39.7049 | 32.8921 | 18.8414 | 15.1469 | 11.3556 | 9.8855 | 9.8294 | 9.8214 9.2586 | 6313
1075 | 39.7049 | 32.8921 | 18.8414 | 15.1469 | 11.3556 | 9.8855 | 9.8294 | 9.8214 9.7615 | 6893
Table 2.4: The constant values of d and s for PD = 500, 1000, and 2000
values of d for PD
S
500 1000 2000
1/4 0.00469119 0.00234112 0.00116945
1/8 0.00666086 0.00332264 0.00165938
1/16 0.00850544 0.00424098 0.00211757

Table 2.5: Using GP, comparison of Nu, at various ¢ values for uniform and non-uniform

grids with OD =90, Da = 0.005, ® = 0.8, and &, =107

PD

Nu, at different & values

CPU Time

0.0016

0.0050

0.0100

0.0300

0.050 |0.1000

0.150

0.2000|0.4000

NI

1000 non-uni

1m24.682s

27.9594

18.8852

15.1732

11.3649

10.4083

9.8868

9.8297

9.8215]9.8166

5191

2000 non-uni

3m1.092s

27.8946

18.8667

15.1444

11.3607

10.4056

9.8860

9.8296

9.8215]9.8166

5422

3000 non-uni

12m47.181s

27.6293

18.8177

15.1532

11.3558

10.4055

9.8863

9.8296

9.821419.8165

15754

8000 Uniform

16m9.204s

27.8313

18.8493

15.1502

11.3566

10.4046

9.8857

9.8295

9.821419.8166

99436

Eq. (2.65) determines d for a specific value of s, &, = 0.4, and PD. PD = 2000,

5; = 0.4, and a uniform grid size of A" = 0.0002 generated a suitable solution. For

& =04, if AE =0.0002 is chosen as the first non-uniform grid, Table 2.4 shows the

constant d and s values for PD = 1000 and 2000. The value of s is selected from Table

2.4 as 1/8. The formula given in Eq. (2.64) is used in the generation of non-uniform

grids. The grids in geometric progression have been created as detailed above for A&,
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Table 2.5 shows the Nu, values for Da = 0.005 at various &" values. Table 2.5 also

shows the results achieved with 8000 uniform grids.

The Nu, values obtained with non-uniform grids formed in geometric

progression with PD = 2000 are close to those obtained with 8000 uniform grids at

various & . The reduction in computational time is substantial.

The following values for the parameters involved have been established to be
satisfactory based on numerical experiments. (a) The acceleration factor: 0.6 < » < 1.1.

However, under-relaxation has been preferred and @ < 1 has been employed, (b) ¢, =

10, (¢c) OD =90 with Ap = 1/90, and (d) PD = 2000.

2.7 Numerical Results and Discussions

The SAR methodology has been widely used in the literature (Bhargavi and Reddy [75],
Marpu and Satyamurty, [211], and Marpu [214]) to generate numerical solutions to Egs.
(2.11) to (2.13) using finite difference expressions to Egs. (2.45) to (2.47) and the
derivatives, to Egs. (2.50) to (2.52) and the boundary conditions and to Egs. (2.53) to
(2.55). It is taken that k =k, /k, =1, k,=k,/k,=1 and e=pu/p, =1.0.001 < Da <
0.1, 1 <F<100,0.5<M=<65,and 10 < Bi <100, while 0.1 < k¥ < 10 are the ranges
used for the remaining parameters. These ranges of parameters are also used in the

literature (ref., [29], [37], and [82]).

2.7.1 Hydrodynamics Field

The velocity profiles and skin friction coefficient for flow through a porous material-

filled channel have been examined in this section.

Velocity

Figures 2.3(a, b) and 2.4(a, b) showcase the dimensionless velocity profiles for various
Hartmann number (M) values at Da =0.01 and Da = 0.1, respectively. The Forchheimer

numbers (F) are set to 1 and 100, respectively, as indicated in the figures. These velocity
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profiles visually present the velocity distribution within the channel, highlighting the

effects of the Hartmann and Forchheimer numbers on the flow characteristics.
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Fig. 2.3: Effect of velocity profiles for various Hartmann numbers, M values for (a) F =1, and (b) F’
=100 at Da =0.01
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Fig. 2.4: Effect of velocity profiles for various Hartmann numbers, M values for (a) =1, and (b)
=100 at Da=0.1

From the figures, dimensionless velocity U attains a maximum at the center of
the channel (77 = 0). From Fig. 2.3, it can be observed that as the magnetic field
becomes more significant in regulating fluid motion, the value of dimensionless
velocity, U, falls with an increase in Hartmann number, M. The high Hartmann number,

which denotes the dominance of magnetic forces over viscous forces, explains this.
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Fluid mobility is often suppressed when magnetic forces are dominant. For any
Forchheimer number, this holds. However, the rise in the parameter, F, signifies that
the resistive forces are generated within the system. It leads to a decrease in the fluid's
motion; consequently, the velocity decreases with an increase of F' for each value of M,
as shown in Figs. 2.3 and 2.4. By comparing Figs. 2.3 and 2.4, it is clear that as the
Darcy number, Da, increases, U increases. For a significant value of Da, the increase
in the velocity is more significant because, for a prominent Da, the porous region begins
to behave like a clear fluid region. These velocity profiles match those reported in
Reddy and Bhargavi [217] for channel-filled porous regions without Hartmann
numbers (M = 0).

Skin friction coefficient

Figures 2.5 and 2.6 illustrate the variation of the product of skin friction coefficient and
Reynolds number profiles (ReCy,) with Da at distinct Forchheimer numbers (F =1, 5,
10, 50, and 100) and Hartmann numbers (M = 0.5, 1.0, 2.0, 3.0, and 4.0). It may be
observed from Figs. 2.5 and 2.6 that Da grows, drops, and approaches 6 (the value in
the clear fluid channel). However, as Da value increases, the value of ReCy, diminishes,
and it tends to 6. The value ReCy, = 6 is obtained in a clear fluid channel. However, this
fact has been discussed in Bejan [5]. Additionally, at a given Da, the value of ReCy,

increases with the Forchheimer number (F) and the Hartmann number (M).
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Fig. 2.5: Effect of Darcy number, Da for various Fig. 2.6: Effect of Darcy number, Da for various
values of Forchheimer numbers, F at M= 0.5 values of Hartmann numbers, M at F =5
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2.7.2 Thermal Field

The dimensionless temperature profiles in both phases, fluid and porous, dimensionless
temperature based on bulk mean temperature, wall temperature, and the local Nusselt

numbers for flow through the porous-filled channel, are examined in the present

section.

Dimensionless temperature profiles for the fluid phase, ¢, and porous phase,
®, for Biot number, Bi = 10, Forchheimer number, F' = 1, Darcy number, Da = 0.001,

and thermal conductivity ratio, ¥ = 0.1 for different values of &” are shown in Figs.
2.7(a, b) and 2.8(a, b) at Hartmann number, M = 0.5 and 65, respectively. A similar type
of plot is given for large values of Forchheimer number (/' = 100), Biot number (Bi =
100), and thermal conductivity ratio (k¥ = 10.0) given in Figs. 2.9, 2.10, and 2.11,

respectively. From Figs. 2.7 to 2.11, ¢,, and ¢, increase with an increase of &7, This

fact is true in the LTE model as discussed in the literature (ref., [37], [115], and [116]).
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Fig. 2.7: Impact of (a) ¢, and (b) ¢, for distinct f* values at Bi =10, k = 0.1, F =1, Da =0.001,

and M=0.5
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Fig. 2.8: Impact of (a) ¢, and (b) ¢, for distinct f* values at Bi = 10, ¥ = 0.1, F =1, Da =0.001,
and M = 65

From Figs. 2.7(a, b) and 2.8(a, b), as Hartmann number (M) increases, ¢, , and

@, decrease numerically for all the values of &”. Upon comparison of Figs. 2.7(a, b)

and 2.9(a, b), it is evident that as Forchheimer number (F) increases, temperature

decreases, but has a minimal effect on the temperature profiles of ¢,, and ¢, .
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Fig. 2.9: Impact of (a) ¢, and (b) ¢, for distinct 5* values at Bi = 10, k¥ =0.1, F =100, Da = 0.001,
and M=0.5
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By comparing Figs. 2.7(a, b) and 2.10(a, b), a clear pattern emerges. As the Biot

number (Bi) increases from 10 to 100, the fluid phase temperature, ¢, increment
becomes less pronounced. In contrast, porous phase temperature, ¢, shows a

decreasing trend for each value of &, eventually approaching the temperature in the

fluid region under LTE. It implies that when the Biot number is large, the system
transitions from LTNE to LTE. The observed behaviour of approaching LTE as the Biot
number increases holds for all values of Hartmann number, Forchheimer number, and
Darcy number. Regardless of the specific values of these parameters, the trend of
moving towards LTE with higher Biot numbers remains consistent throughout the

analysis.

To see the effect of the thermal conductivity ratio, « (= k, / kfe) , plots are given

for a significant value of x (x = 10). Fig. 2.11 indicates a more substantial temperature

increment in the temperature profiles of ¢,, and ¢, for larger values of «. As «
increases, the temperature variations become more pronounced in both ¢,, and ¢, .

Furthermore, upon comparing Figs. 2.7(a, b) with 2.11(a, b), it can be observed that as

the thermal conductivity ratio, «, increases, both @5 and ®, show an increment. This
increase in ¢, and @, is attributed to the rise in the effective thermal conductivity of

the porous medium as x increases. The higher thermal conductivity ratio enhances the
overall heat transfer within the system, resulting in elevated temperature profiles for

@, and @, . From Figs. 2.7 to 2.11, it can also be observed that the temperature in a

porous phase, ¢, is larger than in a fluid phase ¢,. This is due to the LTNE condition.
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Fig. 2.10: Impact of (a) ¢, and (b) ¢, for distinct g* values at Bi =100, k =0.1, F=1, Da=0.001,
and M=0.5

To see the effect of the thermal conductivity ratio, x (: k,. !k f-e) , plots are given

for a significant value of x (x = 10). Fig. 2.11 indicates a more substantial temperature

increment in the temperature profiles of ¢,, and ¢, for larger values of «. As «
increases, the temperature variations become more pronounced in both ¢, and ¢, .

Furthermore, upon comparing Figs. 2.7(a, b) with 2.11(a, b), it can be observed that as

the thermal conductivity ratio, x, increases, both @5 and ®, show an increment. This
increase in ¢,, and @, is attributed to the rise in the effective thermal conductivity of

the porous medium as « increases. The higher thermal conductivity ratio enhances the
overall heat transfer within the system, resulting in elevated temperature profiles for

@, and @, . From Figs. 2.7 to 2.11, it can also be observed that the temperature in a
porous phase, ¢, is more significant than in a fluid phase ¢,. This is due to the LTNE

condition.
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Fig. 2.11: Impact of (a) ¢, and (b) ¢, for distinct g* values at Bi =10, k¥ =10.0, F=1, Da=0.001,
and M=0.5

Dimensionless temperature based on bulk mean temperature in the fluid phase and

porous phase:

To validate the fully developed condition for a channel filled with porous region under

LTNE, dimensionless temperature based on bulk mean temperature, ¢, is given in Fig.
2.12 for Da=0.001, x =0.1, F=1, and Bi = 10 for (a) M =0.5, and (b) M = 10. From
Fig. 2.12, it is clear that it tends to zero for large & > 0.35 for any F, M, Bi, x and Da.
It means that ¢, is invariant with respect to & for large &, which is a fully developed

condition. This type of validation is available in Repaka and Satyamurty [73] for LTE

model.
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Fig. 2.13: 0¢, / 0&" profiles for different 77 values for Da = 0.001, F =1, Bi = 10, and x« = 0.1 for
(a) M=0.5and, (b) M= 10

To validate the fully developed condition, a plot of d¢, /0&  with & for M =
0.5and M=50at 5, = —0.3,-0.2,-0.1, 0.0, 0.1, 0.2, and 0.3 is shown in Fig. 2.13 for

Da=0.001, F=1,Bi= 10, and x = 0.1. It can be seen that d¢, /0 —0 for ¢'>0.3
in Fig. 2.13. For —1/2<n<1/2, when d¢, / 0 —0, the thermal field is characterized
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as being fully developed. Even Fig. 2.12 is compatible with this observation. Thus, for
LTNE, the fully matured condition is validated. Furthermore, as Satyamurty and

Bhargavi [74] demonstrated, this phenomenon is true for LTE.

Wall temperature:

Since the constant heat flux conditions at the walls are applied, wall temperatures are

unknown. Hence, wall temperature profiles are given to measure the effect of relevant
parameters. The variations of wall temperatures in fluid phase (¢,, ) and porous phase
(9,,) with & for F=10, Bi=10, and x = 1.0 for M =0.5, and 10 are demonstrated in

Fig. 2.14(a, b) for (a) Bi = 10 and (b) Bi = 100.
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Fig. 2.14: Impact of ¢,, and ¢,, with 5" for M=0.5, and 10 at F =10, Da = 0.005, and x = 1.0, for
(a) Bi=10 and (b) Bi =100

As & increases, wall temperatures in the fluid phase (®,s) and porous phase (
®,,,) also increase for all Hartmann numbers. ¢,, and, ¢,, increase as £" increases,

initially non-linearly and then linearly for £ > 0.03, say. It is the condition for the onset
of a fully developed temperature field, where constant heat flux is employed at the

channel walls. From Fig. 2.14, it can be observed that ¢,, > ¢, because of the heat

transmission from the fluid to the porous, there is more heat for the porous wall

temperature than the fluid wall temperature.
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Local Nusselt numbers

The effect of the local Nusselt number, Nu f with & for F=10,M =1, and « =0.1, is

shown in Figs. 2.15(a) and 2.15(b) for Bi = 10 and 100, respectively, for Da = 0.001,
0.005, 0.01, 0.05, and 0.1. Similar plots are designed for various values of Hartmann
number, M, (M =1, 10, 25, 50, and 65) and thermal conductivity ratio, ¥ (x =0.1, 1.0,
5.0, and 10.0) in Fig. 2.16 and Figs. 2.17 and 2.18, respectively.
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Fig. 2.15: Variation of Nu, with gg* for various Darcy numbers, Da at ¥ =0.1, M =1, and F =10
for (a) Bi = 10 and (b) Bi = 100

From Figs. 2.15 to 2.18, as & increases, Nu, decreases. The variation trends

of Nu, with & " for the channel under a porous medium are similar to the well-reported

trend for the channel with clear fluid flow under LTE. As Darcy number is large (say at

Da = 0.1), values of Nu,, the channel with porous material are the same as those of

Nu, for the clear fluid channel. From Fig. 2.15, it decreases with increasing & and

reaches the fully developed value for a given Da. As the Darcy number increases, it

decreases and reaches the local Nusselt number in the fluid region. Nu, decreases as
Biot number increases. The effect of Hartmann number on MNu, is discussed in Fig.

2.16. As the Hartmann number increases, it also increases for every Biot number, Bi.

70



The impact of the ratio between effective thermal conductivities of the porous
and fluid (i.e., thermal conductivity ratio, k¥ = 0.1, 1.0, and 10.0) on the variations of

Nu, 1s analyzed and illustrated in Figs. 2.17(a) and 2.17(b) for Hartmann number, M =

£
1 and 50, respectively at Da = 0.005, F = 10, and Bi = 10. Similar types of plots are
given in Fig. 2.18 for a large Biot number, Bi = 100. The key findings observed from

Figs. 2.17 and 2.18 are: (i) there is a significant change with respect to « (= k,/ kﬂ) .
As k increases, Nu, decreases for all Da, F, M, and Bi, (ii) as Hartmann number
increases, Nu, increases for each value of the ratio, x (iii) by comparing Figs. 2.17
and 2.18, as Bi increases, Nu s decreases for each value of ratio, x. This feature was

also observed for the constant wall temperature boundary condition given by Nield et
al. [34]. A porous material with a higher effective thermal conductivity of the porous
phase than a fluid phase is obtained by increasing the ratio x . Since the Nusselt number
correlates to the fluid phase's convective heat transmission, the values of the Nusselt

number for the porous material-filled channel fall.
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Fig. 2.16: Variation of Nu, with cf* for various Hartmann numbers, M at x = 0.1, Da = 0.005 and
F =10 for (a) Bi =10 and (b) Bi = 100
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Fig. 2.17: Variation of Nu, with 3 " for various thermal conductivity ratios, x at Da = 0.005, Bi =
10, and F =10 for (a) M =1 and (b) M = 50
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Fig. 2.18: Variation of Nu, with 3 " for various thermal conductivity ratios, x at Da = 0.005, Bi =
100, and 7' =10 for (a) M =1 and (b) M =50

The variation of Forchheimer number, F, is given in Table 2.6 at various &

values at Darcy number Da = 0.001, Bi = 50, ¥ = 0.1, and for two different values of
M, M =5 and M = 65. From Table 2.6, it is clear that the effect of F is much less on

Nus,.
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Table 2.6: Variation of Nu P for different Forchheimer numbers, F

M=5,Bi=50 M= 65, Bi=50

£ F=1 F=10 | F=100 F=1 F=10 | F=100
0.00005 130.977 | 130.977 | 130979 | 158.864 | 158.864 | 158.864
0.00010 98.670 98.670 98.672 122599 | 122.599 | 122.599
0.00100 39.285 39.285 39.286 47222 47222 47222
0.00500 21.744 21.744 21.744 24.806 24.806 24.806
0.05000 11.447 11.448 11.448 12.244 12.244 12.244

At the fully developed length, say & > 0.38, local Nusselt numbers (Nu,)
approach fully developed Nusselt numbers (Nu, ), which are obtained analytically.
Local Nusselt numbers, ( Nu, ) at &" =0.38 and the fully developed Nusselt numbers

values (Eq. (2.44)) are given in Table 2.7 for different Hartmann numbers, M =1, 5,
and 10 for Da = 0.005, F =0, Bi =10, and « = 0.1. At the fully developed length, say

£'> 0.38, local Nusselt numbers (Nu,) approach fully developed Nusselt numbers,

Nu ,, which are obtained analytically, as seen in Table 2.7.

Table 2.7: Local Nusselt numbers ( M, ) and the fully developed Nusselt numbers ( Vi, )

values with various Hartmann numbers, M at £ = 0.38

M Nu§ Nuﬁi
1 9.753 9.894

9.832 9.971

10 10.143 9.165

Comparison with the work done by Bhargavi and Reddy [75] using LTE for F = 0.0
and M = 0.0

A comparison has been made for large Bi and « = 1.0, the same as the LTE condition
given in Bhargavi and Reddy [75]. Hence, the present work has been compared with

that of Bhargavi and Reddy [75] for Darcy numbers Da = 0.005 and 0.1 at /=0 and M

= 0. Variation of Nu, with ¢ is given in Fig. 2.19. From Fig. 2.19, the present results

for large Bi and x = 1.0 match Bhargavi and Reddy’s [75] results.
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Similarly, for the LTE model (immense value of Bi), and in the absence of
Hartmann number and Forchheimer number, the values of M, have been compared
with those obtained from the experimental study by Jiang et al. [219] with appropriate
scaling. Nu, values have been calculated in an empty plate channel (i.e., in case of large

Da values) given in Fig. 2.20. The experiment results are taken for water at two different

Reynolds numbers Re =300 and Re = 550. The agreement is good.
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Fig. 2.20: Comparison of Nu : for different f in an empty plate channel
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2.8 Conclusion

The current work involves the numerical study of forced convection heat transfer at the
thermal entry of parallel plate channels filled with porous medium under LTNE using
a successive acceleration replacement (SAR) scheme. The parallel plates were exposed
to a constant wall heat flux. The flow field is unidirectional and obeys Darcy Brinkman
Forchheimer equation. The problem is defined by Darcy number (Da), Forchheimer

number (), Hartmann number (M), Biot number (Bi), and thermal conductivity ratio (

K).

The numerical solution has been obtained for velocity, skin friction coefficient,
temperatures in both phases porous and fluid, and dimensionless temperature based on
bulk mean temperature, wall temperature, and local Nusselt number at the entrance for

LTNE condition. The key findings on the behaviour of the investigated system are:

1. Velocity decreases slightly as the Forchheimer number increases. However,
velocity falls with an increase in Hartmann's number. Additionally, velocity
increases as the Darcy number rises, and at a significant value of Da, the
velocity attains the velocity in the fluid region. As the Forchheimer number
increases, ReCy, increases at a given Da. Da (> 1.0) is prominent ReCj, tends to
6.0 (value in the clear fluid region). Similarly, at a given Da, ReC}, increases as
the Hartmann number increases, and for prominent Da (> 1.0), ReCy, tends to
6.0.

ii.  For the Darcy Brinkman Model, analytical equations for dimensionless
temperature and the fully developed Nusselt number are found for the fully
developed thermal field, both in the presence of the Hartmann number and
without the Forchheimer term (F = 0).

iii.  For all Darcy numbers (Da) and Forchheimer numbers (F), as Biot number (B7)
increases, the temperatures of the porous and fluid phases decrease, and hence,

LTE is approached. That means LTNE tends to LTE. When x = 1.0, ¢, profile
is the same for the local thermal equilibrium (LTE) ¢, profile when Bi is huge.
In the presence of Forchheimer numbers, the Hartmann number increases, ¢,

and ¢, decrease. Also, values of ¢, are larger than ¢, .
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1v.

Vi.

Vii.

For large Da > 0.1, high x (say x= 10.0), and small Bi, there is a large
temperature difference between the two phases. So, the LTNE model can be

used.

Wall temperature (¢, and, ¢, ,) increases as & " increases for all Biot numbers,

from being initially nonlinear to subsequently becoming linear for & > 0.005,
which is the onset of a fully developed condition. A fully developed condition
is shown even when LTNE is used. It serves the purpose of the downstream
boundary condition when axial conduction is used (elliptic PDE). Moreover,

®,,> ¢,, because heat transmission from fluid to porous is greater at porous

wall temperature than at fluid wall temperature.
As the thermal conductivity ratio and Biot number grow, the local Nusselt
number decreases. However, it increases with an increase in Hartmann's

number. There is a low effect on Nu, due to Forchheimer number (F).

Hence, as a result of the current research work, it is possible to deduce that small
x can improve heat transmission in the entry of porous-filled channels. It is

better to use LTNE conditions at the channel entrance.
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Chapter 3

Forced Convection Heat Transfer at the Entry Region
of the Porous Filled Channel with Axial Conduction
Effect

3.1 Introduction

This study explores the impact of axial conduction on forced convective heat transfer
characteristics within a channel filled with porous material undergoing thermal
development under LTNE. The channel's walls experience a constant heat flux, and the
flow within the porous region follows the Darcy Brinkman model. The investigation
quantifies the influence of the Biot and Peclet numbers on heat transfer enhancement.
A transverse magnetic field is applied along the channel walls, and the system is
characterized by well-known parameters such as Darcy number (Da), Hartmann
number (M), Biot number (Bi), Peclet number (Pe), and thermal conductivity ratio.
Numerical solutions are obtained using a successive accelerated replacement (SAR)
scheme and presented dimensionless temperature profiles in the fluid and porous phases
and plots of the local Nusselt number. At low Pe, the axial conduction effect is more
pronounced for all Bi, whereas at large Pe, the axial conduction effect becomes
negligible. The local Nusselt number decreases with an increase in the ratio of thermal

conductivity and the Biot number. For a large Biot number, LTNE is equivalent to LTE.

3.2 Mathematical Model

The schematic model and coordinate system is discussed in Chapter 2§, 3.2. The Darcy
Brinkman model for the fluid flow through the porous region. The field includes axial
conduction. Heat generation and thermal dispersion are negligible. The thermophysical

properties are constant.
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Fig. 3.1: Schematic model and the parallel plate channel coordinate system

Governing Equations

The momentum equation for the fluid flow across a porous medium by employing the

Darcy Brinkman model is given by:

) o (3.1)
Py B B
dy° K dx

In Eq. (3.1), u denotes the velocity in the porous medium, and x,, x, and K are
effective viscosity, fluid viscosity, and permeability in the porous region, respectively.

J is the electric current density and, B is the magnetic induction vector of the applied
uniform magnetic field. The formulation of the Lorentz force is discussed in Chapter

2§, Eq. (2.1). Thus, the governing equations given in Eq. (3.1) are reduced to:

dp

d'u u
x 3.2
y (3.2)

~—~u-oB u=
lLle dy2 K 0

The steady-state conservation of thermal energy equations of the fluid and

porous phases are given by:

Fluid phase

oT, T, 0T,
(pCp) u? :kfe 6x*i + ay*z +apfhpf (Tp_Tf) (3'3)
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Porous phase

o’T.  o°T
kpe ( ﬁx*g + ay*g J_apfhpf (Tp —T/.)z 0 (3-4)

In Egs. (3.3) and (3.4), p is density, C, is the specific heat, T, is the fluid phase

P

temperature, 7, is the porous phase temperature, k, is the effective fluid thermal

conductivity, k

pe

is the effective porous thermal conductivity, respectively. a,, is the
interfacial area per unit volume of the porous media, and %, is the porous-to-fluid heat

transfer coefficient in the literature.

Boundary Conditions

Hydrodynamics boundary conditions are as follows:

u=0, at B A
5 y 29 2

(No-slip condition) (3.5)

Thermal boundary conditions are given by:

dT dT « H
kfe 7{: = qw’ pe dyi = qw at y = ?
(Heat flux condition) (3.6)
L 4T, ar, .
~k,—L+=q,, -k,—L=gq, aty =——
vl ngyt Sl ALY
. H . H .
T,, (O,y ) =T, R (Inlet condition) (3.7)
T. -T, H . H . .\
6* Lp_¥ 1 =0 at ——<y <— (Exit condition) (3.8)
ox \ T,-T, 2 2
T,=T,=T,.4. (Porous-fluid interface) (3.9

In Eq. (3.9), the temperature at the porous-fluid interface is denoted by Tinerface-
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Dimensionless Variables

The following dimensionless variables are utilised to construct the governing equations,

boundary conditions, and porous-fluid interface condition {Egs. (3.2) to (3.9)}

dimensionless.

X y* up Upg M
5__7 77__’ U:—’ av, =77 N

H H (_dp*sz € (—d[ZJHZ

dx dx
(3.10)

_(r.-1) _(7,-T)

(pf > (pp
(q‘VH} [ WH}
kf kf

In Eq. (3.10), ¢ and 7 are the dimensionless coordinates along the x* and y°
directions. The dimensionless temperature and velocity are denoted by ¢ and U,
respectively. The fluid and porous phases are designated by subscripts f and p,

respectively. The average velocity across the channel is denoted by u,,. The

normalized ¢ can be defined as,

E== (3.11)

The governing equations (Egs. (3.2) to (3.4)) in dimensional form become

dimensionless form after applying the dimensionless variables are given in Eq. (3.10).

v
e dn’

(L+M2JU+1:0 (3.12)
Da

+Bi x(p, -0, ) (3.13)

J— - +
‘P’ 057 on’

op, 1|, 1 0, o,
UM () 5= [A
1

—Bi(gop—qof)zo (3.14)
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In Egs. (3.13) and (3.14), the presence or absence of the axial conduction term
depends on the value of A.. Specifically, when 4. = 0, the axial conduction term is
omitted, whereas when A. = 1, the axial conduction term is included. Furthermore,

where A. = 0, the solutions to Egs. (3.13) and (3.14) with respect to the thermal field

are independent of Pe in terms of their dependence on &”.

Eq. (3.13) and (3.14) are the dimensionless form of thermal energy equations in
fluid and porous phase, respectively (LTNE model) and Da, M, Pe, Bi, and x denote
Darcy number, Hartmann number, Peclet number, Biot number, and thermal
conductivity ratio, respectively; ¢ and k1 represent the ratio between the viscosity of the
fluid to the effective viscosity of the porous, and fluid thermal conductivity to effective

fluid thermal conductivity, respectively and it is defined as:

K
Ao |oBH (3.16)
Hy
H
Pe = L™ (3.17)
o
2
pi= S (3.18)
k,
pe
k e
o= ope (3.19)
kf?
=4 (3.20)
H,
k—@ (3.21)
1~ k *
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In Eq. 3.17), « is the thermal diffusivity and &, in Eq. (3.21), is the thermal

conductivity in the fluid region.

In Eq. (3.13), U"(n) is normalized velocity and can be calculated by,
UY (n)=—" (3.22)

In Eq. (3.22), U, , the average velocity is calculated by the following formula:

Vg?

1/2

U, = | U(n)dn (3.23)

avg
-1/2

Dimensionless Boundary Conditions

Hydrodynamics boundary conditions are as follows:

1 1
U=0, at n==,—— 3.24
=777 (3.24)
Thermal boundary conditions are given by:
op, 0
a(Df =k, a(ppzkz at UZ%
; " 8’7 (3.25)
ﬂ:_kl’ ﬂ:_kz at 77:_1
on on 2
1 1
P, (0,77)=0, for —E<77<§ (3.26)
09, _¢; 09"
a * * a * . .
8(pi:0: < 9 5* at§ =&, for —l<77<l (3.27)
o5 00, 9,0 272
0" ¢ o0&
wf = ¢p = winterﬁzce (328)
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In Eq. (3.25), the ratio, k, is defined by

k,
k, =—— (3.29)
k,,
In Eq. (3.27), ¢, is the normalized fully developed length. Dimensionless bulk

mean temperature, ¢ (5) and the dimensionless temperature based on the bulk mean

temperature, ¢, (") are defined by

o (&)= C (3.30)
n_(T-T) ¢
o, (& )_(Tb—fl,)_co* (3.31)

In Egs. (3.30) and (3.31), 7, is the bulk mean temperature.

3.2.1 Velocity Expression

The expression of normalized velocity (Eq. (3.22)) is given by

3.3 Numerical Methodology

Numerical solutions for Egs. (3.13) and (3.14), with the boundary conditions on ¢, as
specified in Egs. (3.25) to (3.27) have been computed using the successive accelerated
replacement (SAR) scheme using the velocity expression given in Eq. (3.32). This

numerical method is described in Satyamurty and Bhargavi [74] and Bhargavi and
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Reddy [75]. By employing the SAR scheme, the study obtained approximate solutions
that satisfy the given equations and boundary conditions, facilitating the analysis and
understanding of the system's behaviour. The iterative scheme, initially developed by
Lieberstein [207], was designed to solve systems of nonlinear algebraic equations,
particularly those characterized as mildly nonlinear elliptic partial differential
equations. Over the years, this scheme has found extensive application in solving
nonlinear ordinary differential equations that arise in compressible flows, as evidenced
in the works of Lew [206] and Dellinger [208]. Dellinger [208] coined the term SAR

to refer to this specific iterative approach.

3.3.1 Application of the SAR Method

Non-uniform:
Non-uniform grids described in Chapter 2, § 2.6.1 have been employed in the axial
direction. Let PD and QD represent the number of divisions in & and 7 directions,

respectively, while A" and Az represent the width in & and 7 directions, respectively.

When the terms in energy Egs. (3.13) and (3.14) are expressed in finite difference form,

the errors ¢, in the fluid phase and ¢, in the porous phase are given by:

> N f(P’Q)_ f(P_LQ) Bi k
o,(P,Q)=U [Q’ §(P)—§(P—1) }_ E I:gpp(P,Q)—q)f(P,Q)]
_L{%-(PaQH)—%(P,Q)w,-(P,Q—l)}
ki (An)

[£(P-1)-£(P)]p,(P+1.0)
+ &(P)-&(P+1) |, (P-1,0)
1 -[£(P-1)-¢£(P+1)]p,(P.0)
kpe |[£(P=1)-¢(P+1) | £(P)-&(P+1) [ £(P-1)-£(P)]

(3.33)
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¢,(P.0+1)-2¢,(P.0)+9,(P.0-1)
(An)
[£(P=1)=¢(P)]e,(P+1.0)
+[£(P)=&(P+1)]p,(P-1.0)
I -[£(P-1)-¢(P+1)]p,(P.0)

?,(P.0)=

~Bil ¢,(P.0)~¢,(P.0)]

P |[E(P-1)-¢(P+1)][E(P)-&(P+1)[(P-1)-&(P)]

The following derivatives are required to correct the profile for ¢, and ¢, :

07, (P,0) uY +l{ I
0, (P.0) [&(P)=6(P-1)] k| Pe[&(P)-¢(P+1)][¢(P-1)-¢(P)]
— 2 +Bi
k[ (An)
a(ﬁp(P’Q):_{ 1 + 2 +Bz}
0p,(P.Q) | Pe[E(P)-¢(P+1)][E(P-1)-E(P)] (an)’

Discretized boundary conditions are as follows:

Wall boundary conditions

2k, An+4¢,(P,0D)-¢,(P,0D-1)

¢, (P,OD+1)= 3
2k, An+4¢p, (P,0D P,OD~1 (Upperwall
0, (P.oD+1)- AT 40 2 S-e, (.0
2k, An+4p, (P,2)-9,(P,3
¢7f(P,1): 1 817 (Df (3 ) ¢f( )
ok Antdo (P2 3 (Lower wall)
0, (P1)= == (0"(3° )
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(3.35)

(3.36)

(3.37)
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Inlet boundary condition

0, ,(1,0)=0 for 1+(Q7DJ<Q<(1+QD) (3.39)

Exit boundary condition

¢ (PD+ 1)“1 + (i?f”ﬂz ¢,(PD,Q)-o,(PD- I,Q)}

PD-1

¢, (PD+1,0)= =
A * *
{{1 {A?n ﬂ o' (PD)-¢ (le)}
o' (PD+ 1){1 + [i?[)z ﬂ ¢,(PD,Q)-¢,(PD- I,Q)} (3.40)
0, (PD+1,0)= -

{{H@ZZTH ¢ (PD)-¢ (PDI)}

at& =&, for1<Q<1+0D

Further, in Eq. (3.40)

A&, =& (P+1)-& (P) (3.41)

3.4 Local Nusselt Number

The local heat transfer coefficient ( 4, ) is determined at the wall y" = H /2 adjacent to

the porous medium.

o1,
o' |

2

—k

o (7,-T7,) (3.42)
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In Eq. (3.42), the bulk mean temperature ( 7;,) is denoted as follows:

H/2
I ul,dy
T, = zH2 (3.43)

H/2

.[ udy

-H/2

*

In terms of dimensionless variables {using Eq. (3.10)}, the local Nusselt

number at 7 =1/2, Nu, is given by:

A2

on )|, 1

Nu, = i)k _ 2 (3.44)
ky (0.-¢") (¢ -0,

In Eq. (3.44), @, and ¢" are defined in Chapter 2, § Eqs. (2.33) and (2.34) and ¢" is
evaluated by Eq. (2.35) in Chapter 2.

3.5 Numerical Results and Discussions

Numerical solutions have been obtained using the thermal energy two-equation model
(Egs. (3.13) and (3.14)) in a channel filled with a porous medium. The fully developed
velocity profile (Eq. (3.32)) has been employed in the numerical analysis to simulate
and investigate the system's heat transfer and thermal behaviour. It is assumed that

k=k, lk, =1,k =k /k,=1,and e=u/p,; =1.0.001 <Da<0.1,0.5< M<65,5<Pe

<100, 10<Bi <100, and 0.1 < x <10 are the ranges used for parameters.

3.5.1 Thermal Field

This section examines dimensionless temperature profiles, dimensionless temperature
based on the bulk mean temperature in both fluid and porous phases, and local Nusselt

number for flow through the porous-filled channel.
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The dimensionless temperature in the fluid phase and porous phase:

To investigate the effects of axial conduction, Hartmann number (#/), Biot number (Bi),
and thermal conductivity ratio ( « ) in a thermally developing region, plots are presented

for different values of Pe, M, Bi, and x at various values of normalized dimensionless
axial distances, &°. These plots allow for a comprehensive analysis of how the above
parameters impact thermal development and heat transfer characteristics within the

system at different positions along the channel.
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Fig. 3.2: Impact of (a) ¢, and (b) ¢, for distinct f* values for Bi =10, Pe=5, M= 1,and k¥ =0.1
at Da =0.001

Dimensionless temperature profiles, ¢, in the fluid phase and ¢, the porous

phase are given in Fig. 3.2 at Da=0.001, Bi=10, Pe=5,M =1, and Kk =0.1. A similar
type of plot is given for large values of Pe (Pe = 100), M (M = 65), Bi (Bi = 100), and
k (x =10)1n Figs. 3.3 to 3.6, respectively. The temperature behaviour of the fluid and
porous phases will depend on the system's specific heat transfer mechanisms and
boundary conditions. From Figs. 3.2 to 3.6, both the fluid and porous phases

temperatures (¢,, and ¢, ) might experience temperature increases with normalized

axial distance, &” for all the values of parameters Pe, M, Bi, and « . It could occur when
there is significant heat exchange between the phases, which absorb heat from the

surroundings.
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at Da=0.001

From Figs. 3.2 and 3.3, as Peclet number, Pe increases (from Pe = 5 to 100),

¢, and @, increase for every value of £". According to this, convection becomes

more significant than diffusion when the Peclet number, Pe rises. As a result, mixing
and heat exchange within the system are more effectively facilitated. In such situations,

convective heat transfer becomes more prevalent. Hence, under the LTNE model,
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increasing Pe may enhance fluid-porous interaction, promoting better heat exchange
between the phases. The Hartmann number, M, impacts the system's thermal behaviour

in the context of heat transfer under LTNE. From Figs. 3.2(a, b) and 3.4(a, b), as M

increases, ¢, decreases numerically for all values of & B

The effect of the Biot number, Bi, on the temperature profile is shown in a plot
for Bi value (Bi = 100) in Fig. 3.5(a, b) for ¢, and, ¢, . By comparing Figs. 3.2(a, b)
and 3.5(a, b), as Bi increases from Bi =10 to 100, ¢, decreases and tends to ¢, (LTE

model). It means for the immense value of Bi, LTNE tends to LTE. A large Biot number
indicates that the internal thermal resistance is dominant, meaning that heat transfer
within the porous is less efficient than heat transfer across the porous-fluid interface.
Furthermore, the heat transfer within the porous medium approaches thermal
equilibrium, and the porous temperature becomes nearly uniform. As a result, the
temperature difference between the fluid and porous phases at the interface decreases,
and local thermal non-equilibrium effects become less pronounced. In such cases, the
system behaviour becomes more like LTE, where the fluid and porous phases are nearly

at the same temperature at the interface. This fact is also reported in the literature (Yi

etal. [37]; Torabi et al. [117]).
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Fig. 3.5: Impact of (a) ¢, and (b) @, for distinct gt* values for Bi =100, Pe=5,M=1,and x =0.1
at Da =0.001
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To assess the effect of thermal conductivity ratio, « (= k, / kfe), the plot for

the temperature profile is given in Fig. 3.6 for ¥ = 10. By comparing Figs. 3.2(a, b)

and 3.6(a, b), as « increases from x = 0.1 to 10.0, @, as well as 9, increase. Heat

may be transferred more effectively inside porous materials if the porous phase has
more effective thermal conductivity. As a result, the porous phase may experience a
greater temperature increase because it can absorb and transport heat more efficiently.

From the temperature profiles, it can be observed that ¢, > ¢, for a low value of Bi.

This fact is also true in the absence of axial conduction (i.e., Ac = 0) and is also discussed

in Chapter 2, § 2.7.2.
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Fig. 3.6: Impact of (a) ¢, and (b) ¢, for distinct cf* values for Bi =10, Pe=5, M= 1, and x =10
at Da =0.001

Dimensionless temperature based on bulk mean temperature in the fluid phase and

porous phase:

Dimensionless temperature based on bulk mean temperature in the fluid phase, ¢, ,
and in the porous phase, ¢, , are given in Fig. 3.8 for Da = 0.005, M =1, Pe =5, Bi =
10, and x =0.1. From Fig. 3.8, it is clear that ¢, , and, ¢, , tend to zero for large £

>0.35 for any Da, M, Pe, M, Bi, and « . It means that ¢, . and ¢, , are invariant with
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respect to & for large &°, which is a fully developed condition. This type of validation

is available in Repaka and Satyamurty [151] for LTE.
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Fig. 3.7: Effect of (a) ¢, , and (b) ¢, , for various values of Da =0.005, x = 0.1, Pe =5, and Bi =
10atM=1

Local Nusselt number

Under conditions of the LTNE model, the local Nusselt number, Nu. number
significantly affects the heat transfer behaviour at the porous-fluid interface. In this

section, plots with respect to normalized axial distance, & are given in Figs. 3.8 and

3.9 for various values of Darcy number (Da = 0.001, 0.005, 0.01, 0.05, and 0.1) and
Hartmann number (M = 1, 10, 25, 50, and 65). Similar types of plots are given in Figs.

3.10(a, b) and 3.11(a, b) for Nu, vs. & and for Nu ¢ vs. axial distance, ¢ for different

values of Pe, Pe =5, 10, 25, 50, 100, and 4. = 0, respectively for Da = 0.005, M = 1,
and xk =0.1 at Bi = 10 and 100, respectively.
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with & for various Darcy numbers (Da) at Pe = with & for various Hartmann numbers (M) at Pe
5,M=1,Bi=10,and k¥ =0.1 =5,Da=0.005,M=1,Bi=10,and k¥ =0.1

The pattern in the change of Nu, with &" for the channel passing through a
porous material is comparable to the trend for the channel with clear fluid flow under
the LTE, which has been extensively described (ref. [75]). From Figs. 3.8 to 3.13, it is
observed to decrease with increasing & and tends to the fully developed value for a
given Da, M, Bi, Pe, and «. It can be seen from Figs. 3.10(b) and 3.11(b), that as &
increases, Nu P also decreases for a given Da, Bi, Pe, and x . Since the portion of the
energy conveyed from the wall manifests as a local enthalpy increase of the fluid in the
case of fluid heating, where fluid axial heat conduction is present, the remaining energy
is carried upstream via the fluid to the inflow header. Even though thermal energy
would warm up the incoming flow, the initial state prevents preheating; hence, the
analysis does not include it. As a result, any fluid cross-section has a lower bulk mean

temperature, a higher temperature difference between the wall and bulk mean

temperatures, and higher wall gradients than the local case with no axial conduction but
with the same T = T, at & = 0. The local Nusselt number rises for a given & as Pe
decreases for finite fluid axial heat conduction. It implies that as Pe lowers, the thermal

entrance length & also grows.

The effect of Da and M is given in Figs. 3.8 and 3.9. According to this, as Da

increases, Nu, decreases and tends to the Nusselt number value in the fluid region. It
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occurs because the porous medium acts like a clear fluid as its permeability rises. It has

been found that Nu, — 8.233 for Da > 0.2. It is a value of a fully developed Nusselt

number for a clear fluid channel subject to constant wall heat flux. This fact is given in
Shah and London [1]. However, the magnetic forces become more dominant at higher
Hartmann numbers (M > 1), influencing the heat transfer behaviour seen in Fig. 3.9
and, increases with an increase of M. It is because, the presence of a magnetic field can
chage the thermal boundary layer at the porous-fluid interface. As a result, the thermal
resistance at the contact may rise, increasing the convective heat transfer coefficient (

h.) and the value of MNu, .
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Fig. 3.10: Effect of local Nusselt number ( Nu,) with (a) & (normalized dimensionless axial

distance), and with (b) ¢ (dimensionless axial distance) for various values of Pe for k¥ =0.1, Bi = 10,
M =1, and Da = 0.005

From Fig. 3.10(a), as Pe increases from 5 to 100, MNu, decreases with each
values of & (for Da = 0.005, M =1, Bi =10, and x = 0.1) while in Fig. 3.10(b) Nu,
increases with each value of £, which indicates that convection is more dominant than
diffusion. In this regime, MNu. (with &) increases as the convective heat transfer

becomes more efficient. It happens for all values of parameters Da, M, Bi, and « . The

axial conduction effect is negligible, i.e., Ac = 0, for large Pe (> 100). This observation

is also seen in Fig. 3.11(a, b). Nu, tends to different constant values for large £

Further, it can be expected that for a large value of Bi, the fully developed values of
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Nu, depend on Darcy's number. By comparing Figs. 3.10(a, b) and 3.11(a, b), Nu,

decreases as the Biot number, Bi, increases. It is due to the dominant behaviour of
internal thermal resistance, and the system exhibits substantial LTNE effects. Hence,

Nu, decreases as the heat transfer at the interface becomes less efficient due to the

temperature difference between the porous and fluid phases.
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Fig. 3.11: Effect of local Nusselt number ( Nu,) with (a) & (normalized dimensionless axial

distance), and with (b) ¢ (dimensionless axial distance) for various values of Pe for k¥ = 0.1, Bi =
100, M =1, and Da = 0.005
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Fig. 3.12: Effect of local Nusselt number ( Nu, ) with & for Da = 0.005, M = 1, and Bi = 10 for
various values of x for (a) Pe =5, and (b) Pe =100
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Fig. 3.13: Effect of local Nusselt number ( Nu, ) with & for Da = 0.005, M = 1, and Bi = 100 for

various values of x for (a) Pe =5, and (b) Pe =100

The effect of thermal conductivity ratio, x on Nu, with & is also analyzed and

illustrated in Fig. 3.12(a) and Fig. 3.12 (b) at Da = 0.005, M = 1, Bi = 10 and for Pe =
5 and 100, respectively, and, for large Bi, Bi = 100, plots with similar pattern are given

in Fig. 3.13(a, b). The significant findings are seen in Figs. 3.12 and 3.13 as (i) at a
given Pe, the value of Nu P is less affected by Bi and, (ii) regarding x (= kpe [k 1 ), a
significant change has occurred. For all Pe and Bi, Nu, diminishes as « rises, and (iii)
by comparing (a) and (b) of Figs. 3.12 and 3.13, Nu, decreases for all the values of x
as Pe increases at a given Bi. (iv) As Bi increases, Nu, decreases, and this effect is

more at a significant value of Pe, and x. The observed behaviour is consistent with
Nield et al. [34]'s boundary condition of a constant wall temperature. A higher ratio, x
allows for the formation of a porous medium in which the porous phase's effective

thermal conductivity is greater than that of the fluid phases. As a result, Nu, for the

porous material-filled channel falls since it is directly related to the fluid phase's

convective heat transmission properties.

96



3.6 Conclusion

Forced convection in the entry region of a porous material-filled channel under LTNE

with axial conduction has been studied numerically. When axial conduction is included,

it becomes evident that the dimensionless temperature and other derived values are

highly dependent on the Peclet number. This dependence continues when normalised

dimensionless axial distance is introduced. The following are the main findings of the

present investigation:

1l

iii.

1v.

V1.

vil.

Viii.

In the presence of axial conduction, as the Hartmann number increases, ¢ ’ and
¢, decrease. However, LTNE tends to be LTE for high Biot numbers.

As the thermal conductivity ratio, x increases, ¢, and 9, increase for each value
of ¢ and for a given Da, Pe, M, and Bi. Also, values of ¢, are larger than @,

Under LTNE, ¢, , and ¢, , are invariant with respect to &~ for large £, which

makes the onset of a fully developed condition.

Local Nusselt number, Nu P depends on the values of Pe, Bi, x, and Da.

Axial conduction effect is negligible for a large value of Peclet number, Pe (>
100) in the LTNE also, except very near the entry.

Local Nusselt number, Nu, decreases as thermal conductivities and Biot

numbers increase. It increases with an increase in Hartmann's number.

Nu, decreases as & increases for all Da, Bi, and x and reaches as the fully

developed values for & > 0.35. However, it decreases as Pe decreases at a given
E.
For a considerable value of Da, Da > 0.2, Nu ;— 82331t is the value of a fully

developed Nusselt number in a clear fluid channel.

Chapter 4
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Forced Convection Heat Transfer at the Entry Region

of the Porous Channel with Viscous Dissipation

4.1 Introduction

Viscous dissipation is essential to forced convective heat transfer, mainly when dealing
with fluid flow in channels or pipes with significant velocity gradients. When a fluid
flows through a channel, it experiences frictional forces due to interaction with the
channel walls, resulting in energy loss in the form of heat. This article employs the
effect of two viscous dissipation models, the clear fluid compatible (CFC) model and
the form drag (FD) model at the thermal entrance. The thermal characteristics of fluid
flowing through a porous material immersed in a parallel plate channel have been
studied. It is investigated numerically under the local thermal non-equilibrium model
(LTNE). The channel walls are subjected to constant heat flux boundary conditions.
Numerical solutions have been obtained for the thermal field. The increase in Brinkman
number and thermal conductivity ratio improves the temperature distribution. The
parametric structure of this study permitted mapping LTNE and local thermal
equilibrium (LTE) areas across a wide range of these dimensionless parameters.
Enhancement in the local Nusselt number is obtained in CFC model compared to the
value in FD model. The effect of the magnetic field and Forchheimer number are
neglected in the present study. The definitions of velocities, dimensionless

temperatures, and other notations remain the same as those employed in Chapter 2.

4.2 Mathematical Model

The parallel plate channel's schematic model and coordinate system are shown (Chapter
3, § Fig. 3.1). The thermal field includes viscous dissipation. Porous and fluid regions
are in LTNE. The porous medium is isotropic and homogeneous. Heat generation and
axial conduction are negligible. The thermophysical properties are constant.

Governing Equations
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The steady-state conservation of thermal energy equations of the fluid and porous

phases are given by:

Fluid phase
oT, o°'T,
(,OCI,)(ua—x{kj:kfe —ay*; +a12f.hpf.(Tp _T/’)"'Wi (4.1)
Porous phase
o°T,
e P (T, =1;) =0 (42)

In Egs. (4.1) and (4.2), p is density, C, is the specific heat, 7, is the fluid phase

P

temperature, 7, is the porous phase temperature, k, is the effective fluid thermal

conductivity, k , is the effective porous thermal conductivity, respectively. a , is the

pe pe

interfacial area per unit volume of the porous media and 4, is the porous-to-fluid heat

transfer coefficient in the literature.

In Eq. (4.1), v, is the dissipation function, (1) the clear fluid compatible (CFC)

model due to Al-Hadhrami et al. [139], and (i1) the form drag (FD) model due to Nield
[140].

CFC model is given below:

fpp (Y
Wl_[K” +lue[dy*J ] (4.3)

FD model is as follows:

d2
v, = {%uz — pu Wﬂ “4.4)

The boundary conditions for the governing equations and the dimensionless

variables are the same as in Chapter 2, § Egs. (2.6) and (2.7), and Eq. (2.9).
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The governing equations (Egs. (4.1) and (4.2)) in dimensionless form after

applying the dimensionless variables (Chapter 2, § Eq. (2.9)) are given by

op, 0'¢,
: (n)ag* ot i (e, -0, )+ 7 (4.5)
o e,
677; ~Bi(p,-¢,)=0 (4.6)

In Eq. (4.5), %, is the dimensionless form of viscous dissipation models and is given

by

CFC model is given below:

v\2 Da(dU" ’
;(lzB{(U ) +?[ o ” 4.7

FD model is as follows:

2 D du”
;cz:B{(UN) -=uY o } (48)

The normalized axial distance, & can be defined as:
ot (4.9)
In Eq. (4.9), Pe is the Peclet number defined in Chapter 3 §, Eq. (3.17).

In Egs. (4.5) to (4.8) , Da, Br, Bi, and K denote the Darcy number, Brinkman
number, Biot number, and thermal conductivity ratio, respectively; however, ¢ and ki
represent the ratio between the viscosity of the fluid to effective viscosity of the porous
medium, and fluid thermal conductivity to effective fluid thermal conductivity,

respectively, and it can be defined as follows:
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2
H
Br =L @.11)
q,K
2
gi = Gl (4.12)
k.
k e
ko (4.13)
k,
e=t (4.14)
#,
k.
k, = -1 (4.15)
k

In Eq. (4.15), kris the thermal conductivity in the fluid region. U" (7) is normalized

velocity given in Chapter 3, § Eqgs. (3.32) is used to solve the coupled system of
equations (Eq. (4.5) and (4.6)) by taking the Hartmann number (M = 0).

Dimensionless Boundary Conditions

0 0

q)f = k , §0p = k at 77 = l

on Yoon 7 2
5 5 . (4.16)
ﬂ=—kl, i =—k, atn=——

on on 2

1 1

9,,(0,7)=0, for ERLAT (4.17)
(of = ¢p = goinfer/ac‘e (418)

In Eq. (4.16), the ratio, k> is defined by
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k

S/
A (4.19)
k,,

k, =

4.3 Local Nusselt Number

The local heat transfer coefficient (4, ) is determined at the wall y = H /2 adjacent to

the porous medium.

4

* o =h (T, -T,) (4.20)

w

V=
In Eq. (4.20), the bulk mean temperature (7, ) is denoted as follows:

H/2

,[ uT,dy
T,=-42 (4.21)
J. udy

-H/2

*

Upon dimensionless variables, the local Nusselt number at 7=1/2, Nu, is

given by:

L *%: * (4.22)
/ (0.-¢") (¢ -0,

In Eq. (4.22), ¢, and ¢ are defined in Chapter 2, § Eqs. (2.33) and (2.34) and ¢ is
evaluated by Eq. (2.35) (Chapter 2).

4.4 Numerical Methodology
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The successive accelerated replacement (SAR) scheme is used to solve the coupled
thermal energy equations (Egs. (4.5) and (4.6)), along with the thermal boundary
conditions on ¢, as specified in Egs. (4.16) and (4.17). This scheme is briefly discussed

in Chapter 2, § 2.6, and utilized in Chapters 2 and 3.

4.5 Numerical Results and Discussions

Numerical solutions have been obtained for the thermal energy two-equation model
(LTNE model) in a channel filled with a porous medium. It is assumed that

ki=k k,=1,k =k, /k,=1,and e=pu/p, =1.0.001 <Da<0.1,10 < Bi < 100,

0.8 <Br<100, and 0.1 < x <10 are the ranges used for parameters.

4.5.1 Thermal Field

In this section, we analyze the dimensionless temperature profiles for both phases (fluid
and porous), wall temperature, and the local Nusselt number for the flow through the
channel filled with porous material for the two dissipation models. For the CFC model,
the temperature in the fluid and porous phases and the local Nusselt number is denoted

as ¢ crcr Opcrc> and Nuy . While for FD model, it is denoted as ¢, ,,, ¢,,,, and
Nu, ;. The notation for wall temperature for the CFC model is given by ¢,, ., and
9,,.cic - Plots are given for various values of normalized axial distance, £", to examine

the effects of the Brinkman number, Br, Biot number, Bi, and thermal conductivity

ratio, x in thermally developing regions for both models.

The CFC viscous dissipation model.:

In the case of the CFC model, plots are given for temperature in both the fluid and
porous phases in Figs. 4.1(a ,b) and 4.2(a, b) for Brinkman number, Br = 0.8 and 20,
respectively, at a given value of parameters involving Darcy number (Da), Biot number

(Bi), and thermal conductivity ratio (« ) (Bi= 10, Da=0.001, and k¥ =0.1). From these
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plots, as & increases, ¢, and ¢, . increase for each value of the given parameters.
Ata large value of &', ¢, and ¢, . do not tend to zero without dissipation. Since, at

large &7, the conduction term is balanced by the viscous dissipation term.

As Brinkman number Br increases from Br = 0.8 to 20, ¢, . and ¢, . grow.

This is because the two-phase interaction behaves as a heat source in the porous
medium. At a significant value of Br, the temperature rise will be higher, and the heat

conduction will be slower. In this model, it is observed that ¢ ... >, ., which

indicates the presence of LTNE model, when channel walls are subjected to constant

wall heat flux.
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Fig. 4.1: Impact of (a) ¢, ., and (b) ¢, ., for distinct & values for Bi = 10, Br=0.8, and x = 0.1 at
Da =0.001
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Fig. 4.2: Impact of (a) ¢, ;. and (b) ¢, ., for distinct & values for Bi = 10, Br=20.0, and & =0.1
at Da = 0.001

The FD viscous dissipation model:
In Fig. 4.3(a, b), dimensionless temperature plots are given for the form drag model

(FD model) for distinct values of & at Bi = 10, Da = 0.001, ¥ = 0.1, and Br = 0.8.

From the Figure, temperatures ¢, ,, and ¢, ., increase with an increase in &', The

pattern of the temperature of this model (FD model) is similar to the plots of CFC
model. Quantitatively, there is a slight decrease in the dimensionless temperature. As

a result, the FD model's temperatures are lower than those in the CFC model under

LTNE.

In both the dissipation models, it is observed that the wall temperatures

=0, = ' r he channel'
Purl, 1 and ¢, pestis = Pop which demonstrate the channel's

Py n=+1/2 n=-1/2"
symmetry. For both the dissipation models (CFC and FD models), symmetric profiles

of ¢, and ¢, canbe seen at 7 =0. Temperatures, ¢, and ¢, have a minimum value at

the centre of the channel (at 7 =0) and attain maximum value at the walls.
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Fig. 4.3: Impact of (a) ¢, ;, and (b) ¢, ;, for distinct &" values for Bi = 10, Br=0.8, and x = 0.1 at
Da=0.001

The behaviour of the thermal field under LTNE at the entry:

Under LTNE, the behaviour of the thermal field at the entry is discussed for both
viscous dissipation models in this section. At an entry point & = 0.005, plots are given
at distinct values of Brinkman number, Br for k¥ = 0.1 and Bi = 50, for Da = 0.001 and
0.05. For the CFC model, temperature plots (¢, .. and ¢, .) are given in Fig. 4.4(a,

b); for the FD model, temperature plots (¢, ;, and ¢, ;) are shown in Fig. 4.5(a, b). In
the case of CFC model, it is clear that as Br increases, ¢, . and ¢, . increase for each
value of Da. Similarly, in the case of the FD model, ¢, ;, and ¢, ;, grow with an increase

in Br. By comparing Figs 4.4 and 4.5, in both the phases, temperatures in the FD model

are less than temperatures in CFC model (ie., ¢, , ., <@, , o). Hence, more

temperature plots are given for CFC model.
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Effect of Biot number (Bi) and thermal conductivity ratio (k) on temperature:

To analyze the effect of Bi, plots are given in Fig. 4.6(a, b) for a considerable value of
Bi, Bi=100 at Da =0.001, Br=0.8, and k¥ =0.1. Comparing Figs. 4.1(a, b) and Figs.
4.6(a, b), It can be said that Bi affects the temperature profiles. As Bi increases, ¢,
decreases for all values of ¢, Da, and « . Additionally, it is apparent that when Bi rises,

¢, crc decreases and tends to ¢, . It means that for a significant value of Bi, LTNE

tends to LTE. The literature reports this fact (Dehghan et al. [126]). Also, in the absence

of dissipation models, this fact is true and discussed in previous Chapters (Chapters 2
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and 3). The increased Biot number, Bi, indicates a more intense internal heat exchange
between the porous and fluid phases of the porous material, which reduces the
temperature difference between the two phases (i.e., the LTE condition).

Mathematically, as Bi — 00, @, oz = @, e (i-€., LTNE tends to LTE) from Egs. (4.5)

and (4.6). In the absence of the dissipation term (B7) in the fluid phase energy equation,
this phenomenon also holds in tubes with constant wall temperature boundary

conditions, as stated in Khashan et al. [35].
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Fig. 4.6: Impact of (a) ¢, and (b) ¢, . for distinct & values for Bi = 100, Br= 0.8, and x = 0.1
at Da =0.001

To access the effect of thermal conductivity ratio, x, on ¢, and ¢, ., the
plots are given for distinct values of «, (x =0.1, 1.0, 5.0, and 10.0) for Da = 0.001, Bi
=10, and Br = 0.8 for different values of & in Fig. 4.7(a, b). Comparing Fig. 4.1(a, b)

with Fig. 4.7(a, b), It can be said that the thermal conductivity ratio, x affects the

temperature profiles. From this comparison, it is clear that ¢, . and ¢, . increases

with an increase in the ratio, x. Additionally, one can see from Fig. 4.1 to 4.6 that

@, > ¢, in both models (CFC and FD models). This finding is stated in the previous

chapters when the viscous dissipation is eliminated from the energy equation in the

fluid phase.
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Wall temperature for the CFC model

Wall temperature profiles are provided so that the impact of the pertinent factors may

be seen since wall temperatures are not known because of the constant heat flux at the

walls. With &, wall temperature variations in fluid (¢, .. ) and porous phases (9, )

for Bi = 10, and x= 0.1 for Br = 0.8, and 10 are demonstrated in Fig. 4.8. For all Br

values, ¢, .c and ¢, . riseas & rises. When & >0.03, ¢, and ¢, ., raise initially

nonlinearly and later linearly. When a constant heat flow is applied to the channel walls,
this is the prerequisite for the onset of a fully developed temperature field. From Fig.

4.8, it can be seen that ¢, .. > ¢, because the heat transfer from the fluid to the

porous increases the temperature of the porous wall more than the fluid wall.
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Fig. 4.8: Effect of Py cre and P, crc with & at Da=0.01, x =0.1, and Bi = 10 for Br= 0.8, and
10

Local Nusselt number

In this section, the discussion is given for the local Nusselt number for the CFC model

(Nu, ) and the local Nusselt number for the FD model ( Nu, ,) with respect to

normalized axial distance ( 5*) for distinct values of various parameters, Da, Br, Bi, and
x. According to the plots and tables, increasing & causes a decrease in Nu ¢ cre and
Nu, 4. This is because the local Nusselt number falls as the fluid traverses downstream

in the channel until it achieves a constant value.

Analyzing the effect of Brinkman number, Br and Darcy number, Da on Nu, ..

, the plots are given in Fig. 4.9(a, b) at ¥ = 0.1 and Bi = 10 for (a) Da = 0.005, and (b)
Da = 0.05, respectively, for distinct values of Br. From Fig. 4.9(a, b), as Br increases,
it decreases. This result is also accurate under the LTE model and discussed by Arici

and Aydin [162]. Moreover, from these figures, as Da rises, Nu, ., decreases. The
effect of the Biot number, Bi, on Nu, ... is given in Table 4.1. It shows that Nu, ..

decreases with an increase in Bi for each value of Brand & .
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£, CFC

Table 4.1: Effect of Bi on Nu, . for various values of Brand &

N”g, CcFC
Bi=10 Bi=100
g* Br=1 Br=20 Br=1 Br=20
0.001 30.3878 28.9232 30.0173 28.5970
0.005 17.2612 16.3520 17.0521 16.1775
0.050 9.7385 9.2675 9.7318 9.2307

Table 4.2: Effect of parameters Da, Br, and Bi, on Nu, ., for various values of g

N”g,m
Da=0.01 Da =0.05
Bi=10 Bi=100 Bi=10 Bi=100
5* Br=1 Br=20 Br=1 Br=20 Br=1 Br=20 Br=1 Br=20
0.001 30.4690 30.4687 30.0959 30.0957 26.4088 26.4086 26.0872 26.0870
0.005 17.3118 17.3113 17.1007 17.1002 15.2643 15.2640 15.0991 15.0988
0.050 9.7645 9.7630 9.7620 9.7605 8.8689 8.8679 8.8907 8.8896

In the case of the FD model, for each value of &, the effect of parameters, Da,

Bi, and Br, on the local Nusselt number for the FD model, Nu, ., is given in Table 4.2.
From Table 4.2, Nu, ,, decreases with an increase of Da. However, there is
significantly smaller decrease in the values of Nu, ., with an increase in the Brinkman

number, Br and Biot number, Bi.

111



90 [ L] |||||||I L] |||||||I L] ||||||: 90 i L] |||||||I L] |||||||I L] ||||||:
80 — x=0.1 - 80 — k=0.1 —
- —x=10 i [\ - —x=1.0 7
70 I R cx=50 | ]
60 |- — - =x=10.0 - 60 = — - =x=10.0 -1
- i a . i
50 P - S50 ] -
- - . B :0.8 - = — -
a0 N N “ w0k r=0.8 7
N i i i
0 O - 30 -
20 - — 20 - —
0 TeL T —— 10 |- O i i
0 [ L IIIIIIII L IIIIIIII L IIIIII: O [ L IIIIIIII L IIIIIIII L IIIIII:
0.0001 0.0010 0.0100 0.1000 0.0001 0.0010 0.0100 0.1000
¢ ¢
(a) (a)
90 [ L] |||||||I L] |||||||I L] |||||||- 90 i T L] ||||||I L] L] ||||||I T T |||||:
80 |- —x=0.1 - 80 — x=0.1 -
- =x=10 ] [\ - — k=10 ]
nor k=50 ] R k=50 ]
60 | —-k=100] o L0 F, - -x=100] -
S | i
S50 b - 50 - -
SH Br=50 1 -\ 1
= 40 F 4 - =40 b -
30 - 30 F -
20 f - 20 F -
10 = ~ . T 10 '\,;.'.§,.‘.:”.__L ——
O [ 1l |~||.|:|' -.I'._:_I.I'Ii'nr' —'l"'l':';'l'l'h- 0 [ ra el el 1l |||||:
0.0001 0.0010 0.0100 0.1000 0.0001 0.0010 0.0100 0.1000
¢ ¢
(b) (b)
Fig. 4.10: Variation in Nu, ... with & for Fig. 4.11: Variation in Nu, ... with & for

distinct values of x at Bi =10 and Da = 0.005 for
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distinct values of x at Bi = 10 and Da = 0.005
for (a) Br=0.8, and (b) Br =50

The effect of ratio, x (for the CFC model) on Nu, .. is shown in Fig. 4.10(a

,b) for distinct values of x at Da = 0.005, and Bi = 10 for (a) B» = 0.8, and (b) Br =50.
A similar type of plot is given for the FD model in Fig. 4.11(a, b). From the plots with

respect to k (= k, ! kfg) , it has been a significant variation in the local Nusselt number.
It is clear that as the ratio x increases (from x = 0.1 to 10), Nu, . and Nu, .,

decrease for each value of Da, Br, and Bi. Reducing the thermal conductivity ratio
improves convective heat transmission, governed by the fluid phase. Without a viscous

dissipation model, this variation (x variation) can be seen in Nield et al. [34] for
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constant wall temperature boundary conditions. The Nusselt number for the porous-
filled duct decreases because it is correlated with the convective heat transfer of the

fluid phase. It is noted that at low values of the ratio x, Nu, . > Nu, .,. Hence, the

local Nusselt number in the CFC model is substantial, in contrast to the outcome in the
FD model. Consequently, the enhanced convectional heat transfer of the CFC model is

superior.

Comparison and validation

For the CFC model, a comparison of values of Nu, ... with the literature (Bhargavi

and Reddy [75]) is given in Table 4.3 for the LTE model when Br = 0 for large Bi. The
agreement is good. It is observed that for large Bi (> 335), LTNE tend to LTE. Hence,

a comparison is made with the LTE model.

Table 4.3: Comparison of the present work with Bhargavi and Reddy’s literature [75] under
LTE with Br =0 and large Bi at k¥ =1

Nu

&, CFC
Da Bhargavi and | Present study

Reddy [75] (At large Bi)
0.001 168.7189 168.7015
0.005 139.0343 139.0308
0.010 127.6779 127.6610
0.050 109.2753 109.2075
0.100 105.2097 105.2033

4.6 Conclusions

Forced convection at the entry region of a porous material-filled channel under LTNE
has been numerically examined, including viscous dissipation. The fundamental goal
of this study is to determine which of the two viscous dissipation models, the CFC
model or the FD model, is appropriate, as well as the validity of the LTNE assumption.
The primary findings of the study are as follows:
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iil.

1v.

Vi.

The effect of the Brinkman number, B7, can be seen in the temperature profiles

for both dissipation models (CFC and FD models).
For each value of Da, Bi, Br and, x the temperature in both phases rises as &

rises. The increase in Br and ratio x, enhances the temperature distribution. For

a large Bi, LTNE tends to LTE for each value of Br in both dissipation models.
However, it is observed that ¢, > ¢;, which validates LTNE effect. It is valid for
both models (FD and CFC models).

In CFC and FD models, temperatures in the CFC model are more than the

temperatures in the FD model for each value of ¢ and variable parameters.
Whenever ‘(pp —(pf‘ >0.13 at any computing grid in the channel domain,

including the developing region, the LTNE condition is claimed.
The local Nusselt number strongly depends on the values of parameters Da, Br,

Bi,and x. Nu, .. and Nu, ., decrease with an increase of parameters Br, Da,

Bi, and ratio x. The effect of these parameters is much less in the FD model
than in the CFC model.

In contrast to the result in the FD model, a significant value of the local Nusselt
number is obtained in the CFC model. As a result, the CFC model has excellent

increased convectional heat transmission.
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Chapter 5

Forced Convection Heat Transfer at the Entry Region
of the Porous Channel under LTNE with Axial

Conduction and Viscous Dissipation

5.1 Introduction

When analyzing forced convection heat transfer in a fluid, it's essential to consider the
combined effects of axial conduction and viscous dissipation, especially in situations
where these effects are significant. Axial conduction refers to heat transfer along the
direction of fluid flow, while viscous dissipation occurs due to the conversion of kinetic
energy into thermal energy within the fluid. This paper examines the combined impact
of axial conduction and the clear fluid compatible (CFC) viscous dissipation model
used at the thermal entry. The thermal properties of fluid flowing through a porous
substance submerged in a channel formed by parallel plates have been examined. LTNE
is used to examine it numerically. The boundary condition with constant wall heat flux
is applied to channel walls. The Darcy Brinkman model porous area is said to control
flow, which is seen as unidirectional. Numerical solutions have been obtained for the

thermal field.

5.2 Mathematical Model

The parallel plate channel's schematic model and coordinate system are shown (Chapter
3, § Fig. 3.1). The thermal field includes axial conduction and viscous dissipation.
Porous and fluid regions are in LTNE. The porous medium is isotropic and
homogeneous. Heat generation is negligible. The thermophysical properties are
constant. The normalized velocity expression is taken from Chapter 3, § Eq. (3.32) for

M =0, to solve the coupled thermal energy equations.
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Governing Equations

The steady-state conservation of thermal energy equations of the fluid and porous

phases are given by:

Fluid phase
oT, o’T, 0T, i du V' 5
(pcp) u ﬁx‘* = kfe 8x*é +—ay*‘2 +apfhpf (Tp —Tf)+ Eu + 4, o (5.1
Porous phase
o’T, o°T
kpe(ax*g + Gy*gJ_apfhpf (Tp _Tf):o (52)

In Eq. (5.1), the dissipation function is considered for a clear fluid compatible

(CFC model) with the study by Al-Hadhrami et al. [139].

The boundary conditions for the governing equations and the dimensionless

variables are the same as in Chapter 3, § Egs. (3.5) to (3.8) and Eq. (3.10).

The governing equations (Egs. (5.1) and (5.2)) in dimensionless form become

after applying the dimensionless variables (Chapter 3, § Eq. (3.10)).

o, | O, %, > Da(dU"Y
N o r / : N
klU (77) ag* = AL, Pez 85*2 + 8772 + Bi K‘(gDp —(Df)+Bl” (U ) +? d—n (53)

1 0o, Pp,
24 —Bilo —.)=0 54
4 Pez 85 2 8772 (¢P (Df) ( )
In Egs. (5.3) and (5.4), the presence or absence of the axial conduction term depends
on the value of A.. Specifically, when A. = 0, the axial conduction term is omitted,
whereas when 4. = 1, the axial conduction term is included. Furthermore, in the case

where A. = 0, the solutions to Egs. (5.3) and (5.4) with respect to the thermal field are
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independent of Pe in terms of the dependence on &. U"(n) is normalized velocity

given in Chapter 3, § Egs. (3.32) is used to solve the coupled system of equations (Egs.
(5.3) and (5.4)) by taking the Hartmann number (M = 0).

In Egs. (5.3) and (5.4), the definitions of the parameters, Da, Pe, Br, Bi, k, &,

and ki are given in Chapter 4, § Egs. (4.10) to (4.15).

5.3 Local Nusselt Number

The local heat transfer coefficient (4¢) is determined at the wall y = H /2 adjacent to

the porous medium as follows:

=h.(T,-T,) (5.5)

w

In Eq. (5.5) , the bulk mean temperature (7}) is denoted as follows:

H/2
I ul'dy
T,=-r (5.6)

H/2
'[ udy

-H/2

*

Using dimensionless variables, the local Nusselt number at 7=1/2, nu, is given by:

e, L,

1
Nu, == = 2 = (5.7)

In Eq. (5.7), @, and ¢  are defined in Chapter 2, § Egs. (2.33) and (2.34) and ¢" is
evaluated by Eq. (2.35) (Chapter 2).
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5.4 Numerical Methodology

Numerical solutions to Eqs. (5.3) and (5.4) with the boundary conditions on ¢, as

specified in Chapter 3, § Egs. (3.25) to (3.27), have been computed using the successive

accelerated replacement (SAR) scheme.

5.5 Numerical Results and Discussions

Numerical solutions have been obtained for the conservation of the thermal energy two-
equation model (LTNE model) in a channel filled with a porous medium. It is assumed

that k, =k, /k, =1, k, =k, /k,, =1, and e=p/u, =1.0.001 < Da < 0.1, 10 < Bi <

100, 0.8 <Br<100,5<Pe<100,and 0.1 < k¥ <10 are the ranges used for parameters.

5.5.1 Thermal Field

In this section, we explore the influence of axial conduction and viscous dissipation
within the thermally developing region. The dimensionless temperature profiles,
dimensionless temperature based on the bulk mean temperature and the local Nusselt

number for flow through the porous-filled channel are examined in the present section.

The dimensionless temperature in the fluid phase and porous phase:

To analyze how the Peclet number (Pe), Brinkman number (Br), Biot number (Bi), and
thermal conductivity ratio (« ) affect thermal development in different regions, we
present graphical representations of dimensionless temperature profiles in both the

porous and fluid phases. These plots cover various values of normalized dimensionless

axial distance, & (= x'[(Pe)H ) From these plots, it is observed that the wall

temperatures, ¢, and ¢, =0, , which demonstrate the

n=-1/2

n=+1/2 =P n=-1/2 n=+1/2
channel's symmetry and symmetric profiles of dimensionless temperature in the fluid

phase, ¢, and in the porous phase, ¢, can be seen about 77=0. Additionally, ¢, and ¢,
have a minimum value at the centre of the channel (at 7=0) and attains maximum

value at the walls.
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From Figs. 5.1 to 5.5, plots are given for Da = 0.001 and at various values of &’

at small and large values of parameters Pe, Bi, Br, and x (Pe =15, 100, Bi =10, 100, Br
=0.8, 20, and x = 0.1, 10). Under the LTNE model, the normalized axial distance, &’

affects the temperature profile. As & increases (moving downstream), the fluid
temperature ¢, gradually increases due to heat absorption from the porous phase ¢, and
approaches thermal equilibrium. Furthermore, even though ¢, is still lower than ¢, (

¢, >, ), it is increasing as it reaches equilibrium with the surface. The comparison of

Figs. 5.1(a) and 5.1(b) demonstrates this.
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Fig. 5.1: Impact of (a) ¢, and (b) ¢, for distinct &" values for Bi = 10, Br=0.8, Pe=5,and k =0.1

at Da =0.001

Under the LTNE model, axial conduction significantly affects temperature

distribution. In Fig. 5.1(a, b), plots are given for a low value of Peclet number, Pe =5

at a given value of parameters, Bi = 10, Br = 0.8, x = 0.1, and Da = 0.001. A similar

type of plot is given for a large value of Pe, Pe = 100 in Fig. 5.2(a, b). Axial conduction

refers to heat transfer occurring along the direction of fluid flow within the porous phase

itself. Hence, this phenomenon becomes particularly important when Pe is relatively

high, indicating that convective heat transfer dominates, and the fluid temperature

evolves separately from the porous temperature due to finite thermal resistance between

119



them. Mathematically, from Egs. (5.3) and (5.4), at Br = 0 and for large Pe, Pe —>

(i.e. 4c = 0, axial conduction is absent).
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A plot is given in Fig. 5.3(a, b) for an immense value of Br (Br = 20) at a given

value of various parameters to analyse the effect of the Brinkman number, Br,. By
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comparing Fig. 5.1(a, b) and Fig. 5.3(a, b), for each & value, as Br increases from Br
= 0.8 to 20, ¢, and 9, increase, this is because the two-phase interaction behaves as a

heat source in the porous medium. At a significant value of Br, the temperature rise will

be higher, and the heat conduction will be slower.

A large value of Br implies that viscous dissipation in the fluid dominates heat
conduction within the porous matrix. The fluid phase may exhibit a significant
temperature gradient due to viscous heating effects. Hence, it can also be seen from the

figures that the porous phase, influenced by heat conduction, might have a more

uniform temperature distribution than the fluid. In this model, it is observed that ¢, > ¢,

which indicates the presence of LTNE model effect when channel walls are subjected

to constant wall heat flux.
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Fig. 5.4: Impact of (a) ¢, and (b) ¢, for distinct &" values for Bi = 100, Br = 0.8, Pe =5, and kK =
0.1 at Da =0.001

The Biot number, Bi, influences the temperature distribution in the fluid and
porous phases under the LTNE model. For the large value of Bi, Bi = 100, the plot is

given in Fig. 5.4. By comparing Fig. 5.1 with Fig. 5.4, as Bi increases, ¢, decreases for

all values of &7, Da, and « . It is because a higher Biot number implies a larger external
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thermal resistance, hindering heat transfer from the fluid to the porous phase. As a

result, the porous phase temperature decreases.

A significant value of Bi implies that the heat transfer rate inside the porous
medium is much faster than the heat transfer rate between the porous and the
surrounding fluid. In this situation, the porous phase will approach thermal equilibrium
relatively quickly, and its temperature distribution will be nearly uniform. It means that
for the significant value of Bi, LTNE tends to LTE. This fact is also discussed in
Chapters 2, 3, and 4. The increased Biot number indicates a more intense internal heat
exchange between the porous and fluid phases of the porous material, which reduces
the temperature difference between the two phases (i.e., the LTE condition).

Mathematically as Bi —o0, ¢, — ¢, (i.c., LTNE tends to LTE), from Egs. (5.3) and

(5.4). For a large value of Pe (4. = 0) and in the absence of the dissipation term (Br) in
the fluid phase energy equation, this phenomenon also holds in tubes with constant wall

temperature boundary conditions, as stated in Khashan et al. [35].
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To access the effect of ratio, «, on ¢, and ¢, the plot is given for a large value

of x, (x =10.0) for Da = 0.001, Bi = 10, Pe = 5, and Br = 0.8 for various & values
in Fig. 5.5(a, b). By comparing Fig. 5.5 with Fig. 5.1 (low value of « ), as x increases,

¢, and ¢, increase for all values of &', At a given value of Bi and Pe, x>1 indicates

that the porous phase has a much higher thermal conductivity than the fluid phase

(kpe >kfe), which can lead to an increase in both ¢, and ¢,. In this scenario, heat

conduction within the porous dominates the heat transfer process, and the porous phase
tends to have a relatively uniform temperature distribution with higher temperatures.
However, the fluid phase, influenced by convective heat transfer (Pe) and heat transfer

from the porous, can also have higher temperatures near the porous-fluid interface.

Dimensionless temperature based on bulk mean temperature in the fluid phase and

porous phase:

To confirm the attainment of fully developed conditions in a porous-filled channel
under LTNE, Fig. 5.6 illustrates the dimensionless temperature, which is based on the
bulk mean temperature ( ¢, ), for the case with Da = 0.001, Bi = 10, and «= 0.1 for (a)
Pe =5, and (b) Pe =50 at Br = 0.2. A similar type of plot is given for Br =10 at Pe=5
in Fig. 5.7. Form the Figs. 5.6 and 5.7, it is clear that ¢, tends to zero for large & >

0.35 for any Pe, Br, Bi, k, and Da. It implies that ¢, remains constant with respect to

& when & is sufficiently large, signifying a state of fully developed conditions. It is

also true under LTNE circumstances without viscous dissipation and axial conduction.
A similar validation (particularly for LTE) is shown in the work of Repaka and
Satyamurty [73]. This result is also discussed in Chapters 2 and 3.
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Fig. 5.6: @, effect for distinct & values for (a) Pe = 5, and (b) Pe = 10 at Br = 0.2, Bi = 10, Da =
0.001, k¥ =0.1
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Fig. 5.7: ¢, effect for distinct & values at Pe = 5, Br = 10, Bi = 10, Da = 0.001, k¥ =0.1

Local Nusselt number

In the context of local Nusselt number ( Nu,) profiles under the LTNE model, the

dimensionless axial distance and dimensionless normalized axial distance, often

denoted as & and &, represent the spatial coordinate along the porous medium in a
dimensionless form. In this section, the discussion is given for Nu, with respect to &

for distinct values of various parameters, Pe, Br, Bi, Da, and x . The plots which are
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given in Figs. 5.8(a), 5.9(a) and Figs 5.10(a, b) and 5.11(a, b) show that raising &
results in a drop in Nu, . This is because as the fluid moves downstream in the channel,
Nu, decreases until it reaches a constant value. The same pattern can be seen with

respect to & (Figs. 5.8(b) and 5.9(b)).

Effects of axial conduction on Nu, profiles with respect to & (normalized

dimensionless axial distance), and ¢ (dimensionless axial distance) are given in Figs.

5.8(a, b) and Fig. 5.9(a, b) for various values of Peclet number, Pe (Pe =5, 10, 25, 50,
and 100) at B»=0.8, k =0.1, Bi = 10 for Da = 0.005 and Da = 0.05, respectively. From

Figs. 5.8(a, b) and 5.9(a, b), Nu, increases as Pe decreases at fixed &, whereas, Nu,
increases as Pe decreases at a fixed & (f* xPe). This feature is also true for the LTE

model for ducts, fully and partially filled with porous material and for clear fluid
channels. Additionally, by comparing Figs. 5.8 and 5.9, one can see the effect of Da.

As Da increases (Da = 0.005 to 0.05), Nu, decreases for each value of & and £.
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Fig. 5.8: Effect of local Nusselt numbers ( Nu,) with (a) &' (normalized dimensionless axial

distance), and with (b) & (dimensionless axial distance) for various values of Pe for k¥ = 0.1, Bi =
10, and Da = 0.005
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Fig. 5.9: Effect of local Nusselt numbers ( Nu,) with (a) &" (normalized dimensionless axial

distance), and with (b) & (dimensionless axial distance) for various values of Pe for k¥ = 0.1, Bi =
10, and Da = 0.05
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Fig. 5.10: Change in Nu, with £" for distinct values of Br at k¥ = 0.1, Da = 0.005, and Bi = 10 for
(a) Pe =5, and (b) Pe =100

The effect of the Brinkman number, Br, on Nu, profiles is given in Fig. 5.10

for (a) Pe =5 and (b) Pe = 100. From the plot, as Br increases, it decreases and tends
to shorten the thermal entry length due to low thermal diffusion via the fluid phase in
the porous media. This observation holds for channels containing a partial porous

medium filling, as established in the LTNE model by Baig et al. [144]. Similarly, this
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finding remains consistent within the LTE model, as discussed by Arici and Aydin

[162]. It's worth noting that this phenomenon is initially identified under conditions of

constant wall temperature, as stated independently by Nield et al. [34].
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Fig.5.11: Change in Nu, with &" for distinct values of x at Pe =5, Da = 0.005, and Bi = 10 for (a)
Br=10.8, and (b) Br=50

The effect of the thermal conductivity ratio, & on Nu, is shown in Figs. 5.11

for (a) Br = 0.8, and (b) Br = 50 at distinct values of x (x =0.1, 1.0, 5.0, 10.0) at Pe
=5, Da=0.005, and Bi = 10. A similar type of plot is given for a large value of Pe, Pe

=100, in Fig. 5.12. From the plots, it can be seen that with respect to « (=k,, /&),
there has been a significant variation in Nu, . It is clear that as the ratio «, increases
(from « = 0.1 to 10), Nu, decreases for each value of Da, Pe, Br, and Bi. This

observation remains consistent in the context of channels partially filled with porous
media, as modelled by Baig et al. [144]. The fluid phase plays a significant role in heat
transmission. In other words, reducing the thermal conductivity ratio improves
convective heat transmission, which is governed by the fluid phase. Without an axial
conduction and viscous dissipation model, this variation ( x variation) can also be seen
in Nield et al. [35] for constant wall temperature boundary conditions. The Nusselt
number decreases in the case of the porous-filled duct since it is associated with

convective heat transfer of the fluid phase. By comparing Figs. 5.11(a, b) and 5.12(a,
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b), one can see the effect of Pe on Nu . for various values of ratio, x . As Pe increases,

Nu, decreases with respect to & " (normalized dimensionless axial distance). It can also

be represented in Figs. 5.8(a) and 5.9(a).
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Fig. 5.12: Change in Nu, with &" for distinct values of k& at Pe = 100, Da = 0.005, and Bi = 10 for
(a) Br=10.8, and (b) Br=50

Table 5.1: Effect of Bion Nu, at Br=0.8, Da=0.005, and x = 0.1

Nu:
Pe=5 Pe=100
6* Bi=10 Bi=100 Bi=10 Bi=100
0.0001 214.0329 214.0315 90.1557 89.8964
0.0010 92.5458 92.5446 34.0230 33.6872
0.0100 22.4736 22.4710 14.9736 14.7966
0.1000 10.1321 10.1141 9.7941 9.6267

5.6 Conclusions

Axial conduction and viscous dissipation have been quantitatively investigated in
forced convection at the entrance area of a porous material-filled channel under LTNE.
Numerical solutions for the thermal field have been devised. The LTNE area was

mapped over a wide range of dimensionless characteristics due to the study's parametric
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methodology. Examining the combined impact of axial conduction and viscous
dissipation under LTNE is the main objective of this study. This model takes into

account the CFC model for viscous dissipation.

The primary findings of the study are as follows:
The temperature rises with increasing values of the Peclet number (Pe), Brinkman
number (Br), and thermal conductivity ratio (« ).
In the presence of axial conduction and viscous dissipation, for large Biot number

(Bi), LTNE tends to the LTE model. However, it is observed that ¢, > ¢;, which

validates the LTNE effect.
Validation of fully developed conditions for the thermal filed is done with Peclet
number, Pe and Brinkman number, Br.

Local Nusselt number, Nu, depends on the values of the parameters, Da, Pe, Br,

Bi, and «. In the presence of Brinkman number (B7), the impact of axial conduction
becomes negligible, i.e., Ac = 0, when the Peclet number (Pe) is sufficiently large

(> 100) in the LTNE framework.

The local Nusselt number, Nu, with &" (normalized dimensionless axial distance),

decreases as the Peclet number, Brinkman number, and thermal conductivities

increase. However, as Pe increases, Nu, increases with & (dimensionless axial

distance, and this is because of the increase in the convective heat transfer rate.
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Chapter 6

Summary, Conclusions and Scope for Future Work

Heat transfer is the mechanism for exchanging thermal energy between distinct
zones within or among different systems. In heat transport through porous media,
including a fluid phase and a porous matrix, modelling approaches can be based on
either thermal equilibrium or thermal non-equilibrium assumptions. Consequently, two
distinct modelling strategies have been employed: the LTE and the LTNE models in

porous medium.

The LTNE model analyses heat transfer in systems where various components
or regions undergo diverse thermal conditions. Unlike the assumption of thermal
equilibrium, which implies a uniform temperature throughout a system, the LTNE
model acknowledges that different parts may possess distinct temperatures and thermal
states. This modelling approach finds applications in various fields where an accurate
representation of heat transfer processes is crucial, particularly in scenarios where
components or regions experience different thermal conditions. Examples include
geological studies, thermal energy storage systems, electronics cooling, tissue heating

and cooling, casting and solidification, microfluidics, and more.

These studies aim to provide hydrodynamic and thermal data for the laminar
incompressible flow of a Newtonian fluid in channels containing porous material within
the thermally developing region under the LTNE model. The research involves
exploring the effects of axial conduction and viscous dissipation. The analysis
establishes an improvement in heat transfer under LTNE, highlighting its correlation
with axial position and various non-dimensional parameters such as the Darcy number,
the Hatman number, the Biot number, the Peclet number, the Brinkman number, and

the thermal conductivity ratio.

130



The illustration depicts the model and coordinate system of a parallel plate
channel filled with a porous medium. The separation between the parallel plates is
represented by H, and the fluid enters the channel at a uniform temperature. The channel
walls are subject to a constant wall heat flux (g.w), and the fluid flow through the porous
region is governed by the Darcy-Brinkman-Forchheimer model. A magnetic field (B,)
is applied perpendicular to the channel walls, and the flow is characterized by laminar,
incompressible, steady, unidirectional flow and a developing thermal field. Both the
porous and fluid regions are under the LTNE. The porous medium is uniform and
possesses isotropic properties. The considerations encompass axial conduction and
viscous dissipation, while the thermophysical properties remain constant throughout

the system.

The subsequent summary outlines the findings and conclusions from the studies
in Chapters 2 to 5. Specific essential points from Chapters 2 to 5 have been reiterated

here for completeness.

Throughout this thesis, numerical solutions have been derived for the governing
equations in Chapters 2 to 5 using the successive accelerated replacement (SAR)
method, considering the following parameter values that characterize the various
problems investigated. The ranges of the parameters Darcy number (Da), Forchheimer
number (F), Hartmann number (M), Peclet number (Pe), Brinkman number (Br), Biot
number (Bi), and thermal conductivity ratio () are: 0.001 <Da <0.1, 1 <F <100, 0.5
<SM<65,5<Pe<100,0.8<Br<100,10<Bi<100,and 0.1 < ¥ <10. Additionally,
it is taken that k =k /k, =1, k, =k, /k, =1 and, e=pu/ p, =1 for simplicity of the

problem.

In Chapter 2, numerical investigations have been conducted for fluid flow and
heat transfer within the thermally developing region of parallel plate channels filled
with a porous material under the LTNE model. The parallel plates in this study are
exposed to a constant wall heat flux. The conservation of the thermal energy equation

excludes considerations of axial conduction and viscous dissipation effects. When
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considered, the Biot number and thermal conductivity ratio offer a valuable framework

for analyzing and comprehending the heat transfer within systems undergoing LTNE.

In the hydrodynamics case, the velocity profiles and skin friction coefficient for
flow through a porous material-filled channel have been examined and are discussed in
Chapter 2. The Forchheimer number exhibits a slight reduction in velocity as it
increases, whereas an elevation in Hartmann's number corresponds to a decrease in
velocity. Furthermore, an increase in the Darcy number (Da) results in a rise in velocity,
reaching a notable magnitude where the velocity matches that in the fluid region. With
an increase in the Forchheimer number (F), the product of skin friction coefficient and
Reynolds number profiles (ReCy) experiences a rise at a constant Darcy number (Da).
In the notable range of the Darcy number (significant value, Da > 1.0), ReCjy
approaches 6.0, a value characteristic of the fluid region. Similarly, at a given Darcy
number, Da, ReCy, increases as the Hartmann number, M, increases, and for the
prominent Da (> 1.0), ReCy, tends to 6.0. Apart from this, the effect of the Forchheimer
number (F) on the temperature profiles is minimal in the thermal field. Also, as the

Hartmann number increases, the temperature in the fluid phase (¢,) and the porous
phase (¢, ) decreases. However, as the Biot number (Bi) rises, the temperatures of the

porous and fluid phases fall, approaching LTE for all Darcy numbers (Da) and
Forchheimer numbers (F). It indicates that for large values of Biot number, LTNE leads
to LTE. In the temperature profiles, the temperature in the porous phase is higher than
in the fluid phase, which is evidence of the LTNE effect. A fully developed condition
for the thermal field is validated for the LTNE model. Due to the imposition of
consistent heat flux conditions on the walls, the temperatures of the walls will remain

undisclosed. As the normalized axial distance, & rises, the wall temperature of the

fluid and porous phases (¢,, and ¢,,) progresses across all Biot numbers. Initially

nonlinear, it transitions to a linear trend for & > 0.005, marking the initiation of a fully

developed condition. A fully developed condition is evident even when applying the
LTNE. It is the downstream boundary condition in axial conduction cases, particularly

in elliptic partial differential equations. Moreover, ¢,,> ¢, because heat transmission

from fluid to porous is greater at porous wall temperature than at fluid wall temperature.

As the thermal conductivity ratio, x and Bi grow, the local Nusselt number (Nu, )
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decreases. However, it increases with the increase of Hartmann's number. There is a

low effect on Nu, due to the Forchheimer number (F). Hence, as a result of the current

research work, it is possible to deduce that small x can improve heat transmission in
the entry of the porous-filled channel. It is better to use LTNE conditions at the channel

entrance.

In Chapter 3, the study examines the effect of axial conduction on the forced
convective heat transfer characteristics in a channel filled with porous material that is
thermally developing under LTNE. This Chapter aims to study the axial conduction
effect under LTNE. The Darcy Brinkman model for the flow in porous media is
employed since the Forchheimer number (F) minimally impacts the heat transfer

coefficient.

Key findings of Chapter 3 are that an increase in the Hartmann number leads to
a reduction in temperature for both the fluid and porous phases in the presence of axial
conduction. Peclet number characterises the effect of axial conduction. The LTNE tends
to converge towards LTE, mainly when dealing with high Biot numbers. Also, as the

thermal conductivity ratio increases, temperature for both the fluid and porous phases
increases for each value of normalised axial distance (£) and for a given value of Peclet

number, Pe, Darcy number, Da, Hartmann number, M, and Biot number, Bi. Under

LTNE, dimensionless temperature based on the bulk mean temperature in the fluid

phase, ¢, ; and for the porous phase ¢, , are invariant with respect to ¢~ for large £,
which is an onset of the fully developed condition. Local Nusselt number Nu. depends

on the values of Pe, Bi, x, and Da. The axial conduction effect is negligible, except
near the entry, for a significant value of Peclet number, Pe (> 100) in the LTNE. Local

Nusselt number, Nu, decreases as thermal conductivities and Biot numbers increase.
In contrast, it increases with the increase of Hartmann's number. Nu, decreases as £

increases for all Da, Bi and x and reaches the fully developed values for & > 0.35.

However, a given &, Nu, decreases as Peclet number, Pe decreases.
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Chapter 4 discusses the impact of viscous dissipation on forced convective heat
transfer properties within a porous material-filled channel undergoing thermal
development under LTNE. The analysis utilizes the Darcy-Brinkman model to describe
flow in porous media. The thermal energy conservation equation considers the viscous
dissipation term, excluding the axial conduction term. The energy equation considers
two viscous dissipation models: the clear fluid compatible (CFC) model and the form
drag (FD) model. The investigation focuses on the effect of viscous dissipation on heat
transfer enhancement. Brinkman number (Br) characterizes the viscous dissipation

effect.

The critical findings of Chapter 4 are the effect of the Brinkman number, Bz, on
the temperatures and local Nusselt number for both the dissipation models, CFC and
FD models. For each value of Darcy number (Da), Biot number (B7), Brinkman number
(Br) and thermal conductivity ratio («), the temperatures in both phases rise as
normalized axial distance, & increases. The increase in Br and ratio, x, enhances the
temperature distribution for both models. For the large Bi, LTNE tends to LTE for each

value of Br in both dissipation models. In CFC and FD models, temperatures are more
than in the FD model for each value of & and for other parameters. The local Nusselt

number strongly depends on the importance of parameters Da, Br, Bi, and x for both

models. The local Nusselt numbers of the CFC model and FD model ( Nu, . and
Nu, .,) decrease with the increase of parameters Br, Da, Bi, and ratio, x . The effect

of these parameters is less in the FD model than in the CFC model. The CFC model has

more increased convectional heat transmission than the FD model.

Chapter 5 discusses the effects of axial conduction and viscous dissipation on
the forced convective heat transfer in a porous material-filled channel undergoing
thermal development under LTNE. The study uses the Darcy-Brinkman model to
represent flow in porous media. It has been shown in Chapter 4 that, as compared to the
FD model, the CFC model has improved convectional heat transfer. As a result, the
clear fluid compatible (CFC) model is employed as a viscous dissipation model in the

energy equation.
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The temperature increases by rising values of the Brinkman number (Br),

thermal conductivity ratio (« ), and Peclet number (Pe). For a large Biot number (Bi),

LTNE moves towards the LTE model in axial conduction and viscous dissipation terms.

Local Nusselt number Nu, depends on the values of the parameters, Pe, Br, Bi, x , and

Da. In the presence of Brinkman number (Br), the impact of axial conduction becomes

negligible, i.e., A. = 0, when the Peclet number (Pe) is sufficiently large (> 100) in the

LTNE framework. The local Nusselt number decreases with normalized dimensionless

axial distance as the Peclet number, Brinkman number, thermal conductivity ratio, and

Biot number increase. On the other hand, the rise in the convective heat transfer rate

increases with dimensionless axial distance as Pe increases.

Scope for Future Work

Future research endeavours aimed at expanding upon the current study may include the

following inquiries:

1.

11.

1il.

1v.

When a process involving constant temperature, such as condensation or
boiling, occurs, it is called the condition of constant wall temperature. Thus,
under the LTNE model with a constant wall temperature boundary condition,
research on laminar forced convection may be carried out inside the thermally
growing area of parallel plate channels saturated with a porous material.

Since there are many industrial applications of the LTNE model, with the
constant wall temperature and constant heat flux boundary conditions, the same
investigation may be undertaken with different geometries like cylinder
channels, wavy-wall channels, lid-driven cavities, etc.

For some of the more recent uses, research on flow and heat transfer via ducts
partially filled with porous material is necessary, considering anisotropic and
heterogeneous porous media.

A bidisperse porous medium is a porous substance with two different particle
sizes or components inside its structure. Permeability, porosity, and other
transport characteristics of the porous medium can be impacted by its dispersity.
Investigating the issue with the bidisperse porous medium is, therefore,

necessary.
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