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ABSTRACT 

 

This thesis introduces the local thermal non-equilibrium (LTNE) model as a framework 

for analyzing the forced convection heat transfer in the context of laminar flow within 

a thermally developing region within a parallel plate channel filled with porous media. 

Additionally, a transverse application of the magnetic field is imposed along the channel 

walls. Specific well-known parameters define the system, these being the Darcy number 

(Da), thermal conductivity ratio (κ), Forchheimer number (F), Hartmann number (M), 

Biot number (Bi), Peclet number (Pe), and Brinkman number (Br). Numerical solutions 

have been obtained by applying a successive accelerated replacement (SAR) scheme. 

 

The numerical solutions have been obtained for the following values of the 

parameters characterizing the different problems studied. Darcy number: 0.001 ≤ Da ≤ 

1.0. Forchheimer number: 1≤ F ≤ 100. Hartmann number: 0.5 ≤ M ≤ 65. Biot number: 

10 ≤ Bi ≤ 100. When axial conduction is considered, Peclet number: 5 ≤ Pe ≤ 100. 

When axial conduction is neglected, designated by Ac = 0, Pe is absorbed in ξ* and does 

not appear explicitly. When viscous dissipation is included, the Brinkman number: is 

0.8 ≤ Br ≤ 100. 

 

 The effect of Darcy number, Hartmann number, Biot number, and thermal 

conductivity ratio is discussed for the thermally developing region. The study presents 

outcomes concerning dimensionless temperature profiles in both the fluid and porous 

phases, the wall temperature and the local Nusselt number within the parallel plate 

channel. Notably, the local Nusselt number is influenced by a magnetic field and 

variations in the thermal conductivity ratio. A fully developed condition is validated 

when LTNE is used. It serves the purpose of the downstream boundary condition when 

axial conduction is used (elliptic PDE). 

 

The influence of axial conduction on the forced convective heat transfer 

characteristics in a duct filled with porous material at a thermally developing zone under 

LTNE is discussed. The axial conduction effect is more at the low Peclet number, Pe, 

for all the Biot numbers, Bi. For large Pe, the axial conduction effect is negligible. The 
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validation of fully developed conditions for the local thermal non-equilibrium (LTNE) 

model is conducted. 

 

The effect of two viscous dissipation models, the form drag (FD) model and the 

clear fluid compatible (CFC) model, is employed at the thermal entrance. The results 

include the effects of viscous dissipation on temperature profiles and local Nusselt 

numbers. The increment in the Brinkman number, Biot number, and thermal 

conductivity ratio improves the temperature distribution. The parametric structure of 

this study permitted mapping LTNE and local thermal equilibrium (LTE) areas across 

a wide range of these dimensionless parameters. Enhancement in the local Nusselt 

number is obtained in the CFC model compared to the value in the FD model. 

 

Synergistic impact of axial conduction and viscous dissipation combined in the 

thermal-developing zone under LTNE framework in a duct packed with saturated 

porous medium. It explores the thermal characteristics of fluid flow through a porous 

medium confined within a channel defined by parallel plates. The channel walls are 

subject to a boundary condition with a constant wall heat flux. Enhancements in the 

Peclet number, Brinkman number, Biot number, and thermal conductivity ratio lead to 

improved temperature distribution. The parametric approach in this study enables the 

mapping of LTNE and local thermal equilibrium (LTE) regions across a broad spectrum 

of these dimensionless parameters. 
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N O M E N C L A T U R E 

 
Ac Axial conduction  K Permeability, m2 

iA  Constants are given in the 

appendix. 

k1 The ratio between the fluid 

thermal conductivity to 

fluid thermal conductivity 

B  Magnetic induction vector, 

0B B= , Kgs-2A-1

 

k2 The ratio between fluid 

thermal conductivity to 

porous thermal 

conductivity 

Bi 
Biot number, 

2

sf sf

se

a h H
Bi

k
=  

kf Thermal conductivity in the 

fluid region, W/(m. K) 

Br         Brinkman number,

 2

ref

w

u H
Br

q K


=  

 

fek  Effective thermal 

conductivity in the fluid 

phase, W/(m. K) 

pC
 

Specific heat, J / g °C 
pk  Thermal conductivity of the 

porous, W/(m. K) 

fpC
 

Skin friction coefficient  
pek  Effective thermal 

conductivity in porous 

phase, W/(m. K) 

Da Darcy number, 
2/Da K H=  M Hartmann number 

(Magnetic field parameter), 

2 2

0

f

B H
M




=  

F Forchheimer number, 

4

2 *

Fc H dp
F

dxK





 
= − 

 
  

NI Number of iterations 

FL Lorentz forces, 
LF J B=   NI Number of iterations 

h  Local heat transfer coefficient, 

at the porous wall, W/m2K 

Nuξ Local Nusselt number 

H  Width of the channel, m Nuξ, CFC Nusselt number due to clear 

fluid-compatible model 

J  Electric current density, A/m2 Nuξ, FD Nusselt number due to form 

drag model 
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( )fd DBM
Nu  Fully developed Nusselt number 

for Darcy Brinkman number 
bT
 

Bulk mean temperature, K 

P Dimensionless pressure 
eT
 

Inlet temperature, K 

p Pressure, kg m-1s-2 
iT
 

Interfacial temperature, K 

PD Number of divisions in the axial 

(ξ) direction 
fT

 
The temperature in the fluid 

phase, K 

Pe Peclet number, /ref fPe u H =  
pT  The temperature in the 

porous phase, K 

qw Constant wall heat flux, W/m2 Twf Fluid phase temperature at 

the upper wall (at 
* / 2y H= ), K 

𝑞𝑓,𝑝
𝑆  

 

Internal heat generation term in 

fluid and porous region, W/m3 

Twp Porous phase temperature 

at the upper wall (at 
* / 2y H= ), K 

Q Number of grids in the normal 

(η) direction 

U Dimensionless velocity 

QD Number of divisions in the 

normal (η) direction 

*x  Axial distance, m 

Re Reynolds number, 
/ref fRe u H =  

*y  Normal distance, m 

s Constant less than unity   

 

Greek symbols 

 

  The ratio of the viscosity to the 

effective viscosity 

*
 

The normalized 

dimensionless axial distance 

t  
Error tolerance limit *  Uniform cell width 

  Dimensionless normal distance, 

m 
f
 

The dimensionless 

temperature in the fluid 

phase 

  The ratio of the effective porous 

thermal conductivity to the 

effective fluid thermal 

conductivity 

p  The dimensionless 

temperature in the porous 

phase 

  Fluid viscosity, kg m-1s-1 wf  Wall temperatures in the 

fluid phase 

e  Effective viscosity in Brinkman 

term, kg.m-1s-1 
wp  Wall temperatures in the 

porous phase 
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  Dimensionless axial distance, m   

Abbreviations 

 

CFC 

model 

Clear fluid-compatible model LTE Local thermal equilibrium 

DB Darcy Brinkman LTNE Local thermal non-

equilibrium 

FD 

model 

Form Drag model   

 

Subscript 
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f Fluid w Wall 
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Chapter 1 

INTRODUCTION 

 

 

1.1 Introduction 

 
Multiple applications for porous media are found in science, technology, and 

engineering. In recent years, scientists and engineers have been more interested in 

studying fluid flow and heat transfer in porous materials due to their relevance to many 

relevant physical processes. As of right now, there are a number of topics being actively 

researched and considered, including methods for carbon storage, enhancing heat 

transfer, solid matrix or microporous heat exchangers, subsurface water resources, fuel 

cells, solar absorbers, compact heat exchangers in general, and geological research. 

 

Heat transfer is exchanging thermal energy between various parts of a system 

or distinct systems. A number of methods, including conduction, convection, and 

radiation, can cause this exchange. One of the three primary forms of heat transport, 

along with conduction and radiation, is convection. It deals with the transmission of 

heat from a moving fluid (gas or liquid) to a solid surface. Fluid movement, which 

transfers thermal energy from one location to another, propels convection. The 

fundamentals of heat transmission have been thoroughly examined by Shah and 

London [1], Kays and Crawford [2], and Whitaker [3] in their respective works. 

 

In porous media, convection heat transfer is the term used to describe the 

transport of heat inside a material that has interconnected spaces or pores. Soils, rocks, 

ceramics, foams, and biological tissues are examples of materials that can be 

considered porous media. Via the voids in the material, fluids (gas or liquid) can pass 

through, and convection in the fluid-filled pores and conduction in the porous matrix 

both affect heat transmission in these media (ref., Nield and Bejan [4], Bejan [5], and 

Kaviany [6]). 
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Assuming that the porous matrix and fluid phase are in thermal equilibrium or 

thermal non-equilibrium, it is possible to describe the transport processes via porous 

media. Therefore, the local thermal equilibrium (LTE) model and the local thermal 

non-equilibrium (LTNE) model have been used as two distinct modelling approaches. 

When the fluid and porous phases temperature differences are disregarded, the LTE 

model based on the one-equation model is valid. This model has been utilized in several 

investigations of heat transport in porous materials, including high-temperature thermal 

energy systems, catalytic reactors, solar absorbers, enhanced recovery of oil by thermal 

methods, anomalous heat diffusion, microchannel heat sinks, plasma spectroscopy, 

energy storage systems, risk assessment of nuclear waste disposal systems, cooling of 

electronic components, and proton exchange membrane (PEM) fuel cells [7–16]. 

 

Usually, a porous material is involved in convective flow problems. In these 

problems, the porous skeleton temperature (Tp) may be distinct from the fluid 

temperature (Tf), and this framework is popularly named LTNE. These problems have 

been a keen interest for researchers due to the endless and exciting possibilities for 

implementing such equations in real-time applications. So, curiosity increases about 

the LTNE flows in porous media. For instance, LTNE is used in tube refrigerators 

employed in space, in flows that assume nanofluid order, in fuel cells, in flows 

involving resin, which is indispensable while processing composite materials, in the 

upkeep of reactors generating nuclear power, in exchangers where heat flow is typical, 

in flows where microchannels operate, in flows in metallic foams that are porous, and 

in the transport of textile materials, including solar energy storage systems, cooling 

rods, and nuclear reactors [17-29]. 

 

1.2 Brief Review on Flow and Heat Transfer in Parallel 

Plate Channels Filled with Porous Media under the LTNE 

model  

 
In recent years, the cooling of electronic equipment employing materials including 

hyperporous media or microchannels has brought up the classic problem of forced 

convection in a channel created by two parallel plates. The overview discusses the 
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parallel plates under the LTE and the LTNE, along with typical advancements and 

contemporary investigations. Nield and Bejan [4] and Vafai [30] discussed convection 

in porous media. Pati et al. [31] recently highlighted the applicability of LTE and LTNE 

techniques in a critical review of LTE and LTNE. 

 

Amiri and Vafai [32] addressed the impact of varying porosity and thermal 

dispersion, which were also analyzed under LTNE for various types of constant heat 

flux boundary conditions. In a channel filled with a fluid-saturated porous medium 

under LTNE with a constant wall heat flux condition, Bai and Nakayama [33] 

constructed an integral solution to describe the complete evolution of the thermal 

boundary layer. For the first time, an entire region map illustrating the points at which 

one area transitions to another is revealed by this analytical approach. These locations 

depend intricately on the thermal conductivity ratio and the Biot number. 

 

Nield et al. [34] discussed how LTNE affected the thermal growth of forced 

convection in a saturated porous medium. LTNE involves the thermal expansion of 

forced convection in a saturated porous medium in a channel between parallel plates at 

a constant temperature. Further, Khashan et al. [35] demonstrated the LTNE effect for 

a tube geometry with constant wall temperature conditions. The findings showed that 

the LTE validity was expanded over the LTNE region as a result of the Peclet number 

declining and the Biot number rising. 

 

Dehghan et al. [36] solved the coupled system equation of LTNE model using 

perturbation analysis for the parallel plate channel with constant heat flux boundary 

conditions and established a relation for the intensity of LTNE condition that is 

straightforward and essential for determining the significance of LTNE condition and 

validating numerical simulation results. 

 

The Darcy number significantly affects the heat transfer rate in the developing 

area, according to Yi et al. [37], which discussed constant heat flux boundaries and a 

numerical and analytical investigation on thermally developing forced convective flow 

in a channel filled with a fluid-saturated porous medium under LTNE. 
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1.3 Porous Medium 

 
The topic of porous media is well-known to everybody. These materials are all around 

us and impact our daily lives. There are many kinds of porous media and practically 

endless applications. The characteristics of the many different types of porous media 

that are accessible and the ability to use them effectively are the driving forces behind 

porous media theory. 

 

  A solid with holes connected in continuous channels across several directions is 

called a porous material. A solid matrix joined to create a network resembling a web 

comprised of porous media. The solids are placed in the medium's network to make 

pores between them. These pores are responsible for the flow through porous media. 

An essential characteristic of the porous medium's physical makeup is the size of its 

pores. Porous materials include fibrous aggregates, porous or fissured rocks, glass wool, 

human body organs, limestone, and fibreglass. The study of the flow of fluids through 

porous media has lately attracted much attention due to the recovery of crude oil from 

the pores of reservoir rocks. Other disciplines interested in the flow through porous 

media include biophysics, chemical engineering, solid physics, hydrology, and 

geophysics. Porous media must be studied because of all the applications, including 

heat exchangers, solar energy collectors, combustion processes, building insulation, 

nuclear waste disposal, sound absorption, alloy solidification, energy storage, chemical 

reactors, and petroleum recovery processes. 

 

 

Fig. 1.1: Natural aggregate. Photograph taken on Seaham beach, March 2014 
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Fig. 1.2: Natural honeycomb 

 

 

 Effective porosity, ϕ, and permeability, K, are two characteristics that define the 

porous matrix in general. The effective porosity, or a portion of the medium that is 

occupied by the fluid, is made up of pores. An extra characteristic word, permeability, 

is required to distinguish between two porous mediums with the same porosity. 

Concerning Darcy's law, permeability is essentially the hydraulic conductance of the 

medium. The porosity of the medium and the corresponding particle diameter 

determine permeability. 

 

1.3.1 Characterization and Governing Equations for Momentum 

 
Darcy’s Law 

Darcy's law states that the volumetric flow rate ( Q ) in a porous medium has an inverse 

connection with the length (L) of the porous column and a direct association with the 

cross-sectional area (A) and hydraulic head differential ( dh ). Darcy's law can be 

expressed as: 

 

dh A
Q

L
                                                                                                    (1.1) 

 

The hydraulic head difference, dh , can be obtained from the equation below: 

 

 d

p
h z

g
= +                                                                                                (1.2) 
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In Eq. (1.2), z  denotes elevation, p , pressure,  , density of the fluid, and g  

acceleration due to gravity. The Darcian velocity,  , is related to the volumetric flow 

rate by, 

 

  
Q

v
A

=                                                                                                         (1.3) 

 

The Darcy law can be expressed in a differential form as: 

 

*
  

K dp
v g

dx




 
= − − 

 
                                                                                    (1.4) 

 

In Eq. (1.4), K  is the medium's permeability, and   is the fluid's viscosity. 

 

For a three-dimensional flow, Eq. (1.4), as given in Stanek and Szekely [38], 

takes the following form, 

 

( )
K

V p g


= −  −                                                                                             (1.5) 

 

In Eq. (1.5), V  is the Darcian velocity vector and g  is the gravity vector. From 

Eq. (1.5), it may be noted that the Darcy flow does not satisfy the no-slip condition at 

solid boundaries. In general, modifications to the Darcy description become necessary 

when the flow Reynolds number, based on the local velocity and pore diameter, is high. 

 

Non-Darcy Extensions  

Extensions of the Darcy law, including classical convective terms, non-linear inertia 

terms, and viscous factors, have been proposed to account for the flow inertia effects 

and boundary effects. The vector version of Catton's [39] governing equation for 

momentum conservation is as follows: 

 
2 '

2[ . ]  e
e

K
V V V V V p B V

K K


  



 
+  + = − + +  

 
                              (1.6) 
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In Eq. (1.6), 
'K  is the Forchheimer coefficient, and e  is an effective viscosity 

that considers the difference in the resistance offered for the fluid flow, though 

permeability may remain the same. For high-permeability foam, the effective viscosity 

can differ from the fluid viscosity by a factor of ten, as demonstrated by Givler and 

Altobellis [40]. B  is the body force vector. In addition, the dimensionless of Eq. (1.6) 

leads to the parameters Da, the Darcy number and F, the Forchheimer number, defined 

by the equation below: 

 

2

K
Da

H
=                                                                                                           (1.7) 

 
'K

F
H

=                                                                                                                 (1.8) 

 

The modified convective component, the second term on the left side of Eq. 

(1.6), includes the medium's permeability and porosity. The kinetic energy associated 

with turbulent motion is accounted for by the third component, also known as the 

Forchheimer non-linear inertial term. The second term on the right-hand side accounts 

for the boundary effects attributed to Brinkman. Brinkman friction terms are necessary 

to satisfy the no-slip velocity boundary condition. Generally, the literature dealing with 

the flow in porous media uses Eq. (1.6) or simplified forms. A brief literature survey of 

fluid flow in porous media and its applications is discussed in many kinds of literature 

[41–49]. 

 

1.4 Forced Convection in Ducts Filled with Porous Material 

 
The subject of forced convection heat transfer in porous media is intriguing and has 

practical implications in several engineering domains; for example, refer to Bejan et 

al.'s work [7]. Both analytical and numerical treatment of various configurations of fluid 

flow and heat transfer has been done; see Nield and Bejan [4], Bejan [5], Kaviany [6], 

and Vafai [30].  Applications for forced convection include heat sink modelling, thermal 

optimization, heat sensitivity investigations, heat removal simulation of an electric fan, 

cooling of computer cases, fan-cooled central possessing units, water-cooled central 
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possessing units, cooling system design, heating system design, simulating printed 

circuit boards, etc. Heaters for automobiles, ceiling fans, convection ovens, pumps, 

suction devices, and hot air balloons are examples of forced convection. 

 

1.4.1   Governing Equations for Thermal Energy Equation 

In the majority of cases examined in the literature, it is commonly assumed that the 

porous matrix and the fluid flowing through it are in a state of LTE, implying that Tf = 

Tp = T, where Tf and Tp represent the temperatures of the fluid and porous phases, 

respectively. The LTE assumption suggests that the disparity between the volume-

averaged temperatures of the fluid and porous phases is negligible. However, at the 

microscopic level, it is crucial to acknowledge that the temperature and heat flux rate 

at the interface between porous and fluid phases must be identical. Nevertheless, when 

considering the average value over a representative elementary volume, locally equal 

temperatures for the two phases may not be obtained. 

 

In this instance, both phases are in the condition of LTNE. Investigations 

conducted by Vafai and Sozen [50], Vadasz [51], Stoner and Maris [52], and Intravaia 

et al. [53] demonstrated that a significant portion of applications fail to meet the LTE 

assumption. One such failure region associated with a rapidly fluctuating surface heat 

flow has been identified by Minkowycz et al. [54]. Moreover, Al-Sumaily et al. [55] 

have conducted an extensive review, summarizing the viability of the LTE theory. It 

leads to the conclusion that, in an LTNE scenario, there are always a variety of drives. 

As a result, the LTE thermal equilibrium approximation is no longer valid. 

 

 

Following Nield and Bejan [4], the simplest way to model the LTNE is to use 

two thermal balance equations, one for the fluid and the other for porous phases. Taking 

the average over an elementary volume of the medium, the energy equation for fluid 

and porous phases is: 

 

 

 

 



9 
 

Energy equation in fluid phase: 

 

( ) ( ) ( ) ( ) ( )1
f S

P P f f f pf pf p f ff

T
C C V . T  k  T h a T T q

t
    


+  =   + − + −


             (1.9) 

 

Energy equation in porous phase: 

 

( )( ) ( ) ( ) ( ) ( )1 1 1
p S

p p pf pf p f pp

T
C . k  T h a T T q

t
   


− = −   + − + −


                    (1.10) 

 

In Eqs. (1.9) and (1.10), Tf and Tp are the temperatures in the fluid and porous phases. 

Here, f and p are the subscripts that refer to the fluid and porous phases, respectively. ϕ 

is the porosity, CP is the specific heat at constant fluid pressure, C is the specific heat 

of the porous, and k is the thermal conductivity. The last term in both equations is the 

internal heating source term (𝑞𝑓,𝑝
𝑆 ). Aditionally, apf is the interfacial area per unit volume 

of the porous media and hpf is the porous-to-fluid heat transfer coefficient. 

 

 

1.4.2 Porous Material Filled Duct under LTE 

 

Numerous theoretical and experimental investigations into convective heat transport 

within porous media have been carried out, as documented by Hwang and Chao [56] 

and Jiang et al. [57]. These studies employed two distinct approaches, LTNE and LTE, 

considering the temperature at the interface between the porous and fluid zones. These 

approaches were utilized to estimate thermal transport phenomena in porous media. 

   

The model of LTE posits that the temperature disparity between the fluid and 

porous phases in a porous system is negligible at any point within the bulk porous 

medium or that both phases maintain identical temperatures at all locations. This model 

has found widespread application in examining fundamental transport phenomena in 

porous media and has been extensively explored in literature dedicated to convection 

in such environments. The premise of the porous-matrix and fluid phases being in a 

state of LTE has fueled significant research on convective transport within porous 

media. 
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The LTE model has been utilized in several investigations of heat transport in 

porous materials (Mahjoob and Vafai [58] and Hooman and Merrikh [59]). Although 

the LTE model simplifies heat transfer computations, this is only sometimes the case 

when there is a significant temperature difference between the two phases. In these 

conditions, it is challenging to discount the effects of several behaviours that enhance 

internal heat exchange between the two phases. Because of this, the interstitial heat 

transfer coefficient and the interfacial surface, linked to the internal heat exchange 

between the porous and fluid phases, are crucial factors affecting heat transfer 

amplification in porous media (Marafie and Vafai [60]). Also, radiation and convection 

play essential roles in transferring heat in high-temperature thermal energy systems. 

 

Table 1.1:  An overview of related literature on flow and heat transfer in ducts filled 

with porous material under LTE 

 

Sl. 

No. 

Geometry, Flow Field, Thermal 

Field and other Features in Brief 

Boundary 

Conditions 

Reference 

1 Two parallel porous plates, fully 

developed thermal and flow field, 

Brinkman-extended Darcy model. 

Constant wall 

heat flux and 

constant wall 

temperature  

Poulikakos and 

Kazmierczak 

[61] 

2 Channels with parallel plates partially 

filled with porous medium, fully 

developed flow, and thermal field 

supposed to be fully developed. 

Darcy-Brinkman-Forchheimer flow 

model. 

Constant wall 

temperature 

Jang and Chen 

[62] 

3 Channel with parallel plate partially 

filled with porous medium, fully 

developed thermal and flow field. 

Darcy-Brinkman-Forchheimer flow 

model. 

Constant wall 

temperature 

Vafai and 

Thiyagaraja [63] 

4 Channel or pipe partially filled with 

porous medium, developing and fully 

developed flow conditions, Darcy-

Brinkman-Forchheimer flow model. 

Constant wall 

temperature 

 

Mohamad [64] 

 

              Contd. on the next page 
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Table 1.1 - Contd. 

 

Sl. 

No. 

Geometry, Flow Field, Thermal 

Field and other Features in Brief 

Boundary 

Conditions 

Reference 

5 External flow past a plate with 

alternate porous cavity-block 

obstacles was studied with a two-

dimensional developing flow with a 

developing thermal field-Darcy-

Brinkman-Forchheimer flow model 

and Navier-Stokes equations in 

porous and fluid regions, 

respectively. Axial conduction was 

included. Numerical solutions. 

Constant wall 

temperature 

Huang and Vafai 

[65] 

6 Flow over intermittently emplaced 

porous cavities, flow, and a thermal 

field were developing. Darcy-

Brinkman-Forchheimer model and 

Navier-Stokes equations in porous 

and fluid regions, respectively. Axial 

conduction was included. Stream-

function vorticity formulation 

Numerical solutions. 

Constant wall 

temperature 

Vafai and Huang 

[66] 

7 A porous layer was connected to the 

bottom wall of a parallel plate 

channel. A field was undergoing both 

hydrodynamic and thermal 

development. The Darcy-Brinkman-

Forchheimer flow model. The flow 

and heat fields had boundary-layer 

approximations. 

Constant wall 

temperature 

Alkam et al. [67] 

8 Porous substrates affixed to both 

walls of a vertical parallel plate 

channel, hydrodynamically 

developing two-dimensional mixed 

convection flow. Employing Navier-

Stokes equations and the Darcy-

Brinkman-Forchheimer flow model. 

In developing a thermal field, axial 

conduction was included. Numerical 

solution. 

Constant wall 

temperature 

Chang and 

Chang [68] 

 

    Contd. on the next page 
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Table 1.1 - Contd. 

 

Sl. 

No. 

Geometry, Flow Field, Thermal 

Field and other Features in Brief 

Boundary 

Conditions 

Reference 

9 Circular pipe with a porous layer 

attached to the inside of the pipe. 

Fully developed thermal and flow 

field. Darcy Brinkman-Forchheimer 

model. Numerical solution. 

Constant wall 

heat flux 

Sayehvand and 

Shokouhmand 

[69] 

10 Two parallel plates filled with porous 

material. Developing thermal field 

and fully developed flow field. 

Thermal asymmetry. Darcy model 

was applied. Analytical and 

numerical study. 

Constant but 

unequal wall 

temperatures 

Mitrovic and 

Maletic [70] 

11 Two-dimensional flow in a 

horizontal pipe partially or fully 

filled with porous material. 

Developing thermal field and fully 

developed flow field. Darcy-

Brinkman-Forchheimer model. 

Numerical Study. 

Constant wall 

temperature 

Teamah et al. 

[71] 

12 A channel with a parallel plate 

partially filled with porous medium. 

A porous insert at the centre of the 

channel. Darcy-Brinkman-

Forchheimer equation. Thermal and 

hydrodynamic fields dealt with fully 

developed. Analytical and numerical 

solutions. 

Constant wall 

heat flux 

Cekmer et al. 

[72] 

13 Parallel plate channel geometry with 

an asymmetrically heated channel. 

Developing thermal field and fully 

developed flow field. Numerical 

Study. 

Unequal wall 

temperatures 

Repaka and 

Satyamurty [73] 

14 A channel with a parallel plate 

partially filled with porous medium. 

Brinkman extended the non-Darcy 

model. Developing thermal field and 

fully developed flow field. 

Numerical Study. 

Constant wall 

temperature 

Satyamurty and 

Bhargavi [74] 

 

 Contd. On the next page 
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Table 1.1 - Contd. 

 

Sl. 

No. 

Geometry, Flow Field, Thermal 

Field and other Features in Brief 

Boundary 

Conditions 

Reference 

15 

 

A channel with a parallel plate 

partially filled with porous medium. 

Darcy-Brinkman model. Developing 

thermal field and fully developed flow 

field. Numerical Study. 

Constant wall 

heat flux 

 

Bhargavi and 

Reddy [75] 

 

16 

 

A channel with a parallel plate 

partially filled with porous medium. 

The Brinkman-extended Darcy 

equation. Fully developed flow field. 

Analytical Study. 

Stress jump 

boundary 

condition 

 

Kuznetsov [76] 

 

17 Channel partially filled with a porous 

medium. The effects of axial 

conduction are included. The Darcy-

Brinkman model. Developing thermal 

field and fully developed flow field. 

Numerical Study. 

Constant wall 

heat flux 

Reddy and 

Bhargavi [77] 

18 

 

Pulsating flows through a circular pipe 

with a porous layer attached to the 

inside of the pipe. Navier-Stokes 

equation and Darcy-Brinkman-

Forchheimer flow model, 

respectively. 

Constant wall 

heat flux 

Guo, Kim and 

Sung [78] 

19 Circular duct with a porous substrate 

attached at the wall. Thermal and 

hydrodynamic fields were supposed to 

be fully developed. Darcy-Brinkman-

Forchheimer flow model. 

Constant wall 

heat flux, 

constant wall 

temperature 

Kuznetsov and 

Xiong [79] 

20 A uniformly moving impermeable 

plate above and a porous layer of 

limited thickness below define the 

boundaries of a parallel plate channel. 

Hydrodynamics of fully developed 

flow. Poiseuille-Couette flow. Darcy 

Brinkman. It was analytically studied. 

There was no slip 

condition at one 

wall, and the 

other moved with 

constant 

velocity. 

Rudraiah [80] 
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1.4.3   Porous Material Filled Duct under LTNE 

 
Many researchers have disputed the accuracy and assessment of LTE assumptions. The 

convective and radiative modes of heat transfer between different phases in the porous 

media, which are anticipated to represent a significant obstacle to the transmission of 

heat in the system, are sometimes ignored by LTE assumption in engineering problems. 

Indeed, the phase temperatures may differ depending on the type of transient process 

and the thermo-physical characteristics of the various phases. The performance of the 

device is dependent on the degree of non-equilibrium between the two phases in several 

thermal applications, including the cooling of nuclear fuel rods in coolant fluid baths 

and the storage of thermal energy in underground reservoirs. The temperature difference 

between the local fluid and porous phases is crucial in these thermal applications. Thus, 

instead of the LTE model, Nield and Bejan [4] discussed the LTNE model for the porous 

matrix and fluid phase in the temperature equation, which allows the separation in 

temperature between the porous and fluid phases with interphase temperature 

difference. 

 

The LTNE model provides a more precise prediction of temperature fields in 

porous media, and therefore, researchers have paid significant attention to these issues. 

Many investigators (Phanikumar and Mahajan [81] and Jiang et al. [82]) have studied 

forced convection in ducts partially and fully filled with porous material in various 

conditions under the LTNE model. Because of its increased precision, the LTNE 

approach has been extensively utilised to examine heat transfer characteristics in a 

channel filled with porous media. Both models (LTNE and LTE) were employed by 

Phanikumar and Mahajan [81], who concluded that the LTNE model is more precise 

than the LTE model in projecting heat transport in metal foams by numerical 

simulation. Recently several authors (Alsabery et al. [83], Alhadhrami et al. [84], 

Barman and Rao [85], Prasannakumara [86], Xu et al. [87], Mansour et al. [88], Tayebi 

and Chamkha [89], Alsedais et al. [90]) employed a creatively presented paper with a 

variety of physical geometries that looks at a variety of causes and applications where 

LTNE is used. 

 



15 
 

In a series of inquiries, Rees [91] delved into the impact of LTNE on free 

convective fluxes within porous media. Baytas and Pop [92], utilizing an LTNE model, 

explored free convection within a porous square cavity. Additionally, Baytas [93] 

contributed a discussion on LTNE, free convection within a cavity filled with non-

Darcy porous media. Saeid [94] investigated the same issue in a vertical porous layer, 

employing the LTNE model to study steady mixed convection in a two-dimensional 

computational setting. Furthermore, Malashetty et al. [95] scrutinized the influence of 

LTNE on the onset of convection in a porous layer, incorporating thermal diffusivity in 

a densely packed porous medium and anisotropy in permeability, along with the 

Lapwood-Brinkman model. Since these problems have been a subject of keen interest 

for researchers, it may be due to endless and exciting possibilities for implementing 

such equations in real-time applications. So, curiosity about LTNE flows in porous 

media has always attracted researches. 

 

1.4.4   Thermal Boundary Condition under the LTNE Model 

 

Under conditions of LTNE in porous media, a suitable set of boundary conditions 

involves a parallel plate channel geometry subjected to a constant heat flux boundary 

condition. Specifically, for the conditions at the heated wall with constant heat flux, two 

models introduced by Amiri and Vafai [96] were considered. These models were 

formulated based on distinct assumptions. 

 

Model A: According to this model, the heat flux (qw) is apportioned between two phases 

based on their effective thermal conductivities and the respective temperature gradients 

they exhibit. 

 

* *

* *

Upper wall:     

Lower wall: 

f p

fe pe w

f p

fe pe w

T T
k k q

y y

T T
k k q

y y

  
+ = 

 


 
− − =

  

                                                           (1.11) 
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Model B: This model suggests that each phase receives an equal share of the heat flux, 

qw. 

 

* *

* *

Upper wall:           and  

Lower wall:   and  

f p

fe w pe w

f p

fe w pe w

T T
k q k q

y y

T T
k q k q

y y

  
= = 

 


 
− = − =

  

                                  (1.12) 

 

In the above Eqs. (1.11) and (1.12), fT  is the fluid phase temperature, pT  is the porous 

phase temperature, fek  is the effective fluid thermal conductivity, pek  is the effective 

porous thermal conductivity. 

 

A comprehensive review of literature pertaining to flow and heat transfer in 

ducts filled with porous material under LTNE conditions reveals several key studies 

and findings. Researchers have extensively explored the complex interactions between 

fluid flow and heat transfer within porous media, considering the impact of LTNE 

phenomena. The noteworthy contributions of the LTNE model are summarized in the 

works authored by Kaviany [6], Straughan [28], and Nield and Bejan [4]. A survey of 

pertinent literature concerning the phenomena of flow and heat transfer in ducts 

containing porous material under the influence of the LTNE condition is given in Table 

1.2. 

 

Table 1.2:  An overview of related literature on flow and heat transfer in ducts filled 

with porous material under LTNE 

 

Sl. 

No. 

Geometry, Flow Field, Thermal 

Field and other Features in Brief 

Boundary 

Conditions 

Reference 

1 A fully filled channel was created via 

porous material with internal heat 

generation. Darcian flow model. 

Thermal and flow fields were 

supposed to be fully developed. Exact 

solutions and numerical study. 

Constant wall 

heat flux with 

models A and B 

Yang and Vafai 

[97] 

 

    Contd. on the next page 

 



17 
 

Table 1.2 - Contd. 

 

Sl. 

No. 

Geometry, Flow Field, Thermal 

Field and other Features in Brief 

Boundary 

Conditions 

Reference 

2 A channel was filled with a porous 

medium. Thermal and flow fields 

dealt with fully developed conditions. 

The Darcy flow model. Analytical 

study. 

Constant wall 

heat flux with 

model A 

Lee and Vafai 

[98] 

3 Metal foam-filled channel. Modified 

Brinkman-Forchheimer extended 

Darcy model. Developing flow and 

thermal fields, respectively. 

Numerical study. 

Constant wall 

temperature 

Sellar et al. [99] 

4 Fully filled channel via porous 

material. Hydrodynamically fully 

developed Newtonian gas flow and 

developing thermal field. Darcy-

Brinkman-Forchheimer model. 

Numerical study. 

At the wall, 

temperature 

jumps and 

velocity slip 

Haddad et al. 

[100] 

5 Parallel plates were porous micro-

channels filled with porous material. 

Brinkman-Darcy model. Thermal and 

flow fields were fully developed. 

Entropy generation analysis is 

performed. Analytical study. 

At the wall, 

temperature 

jump and 

velocity slip at 

the wall, 

temperature 

jump and 

velocity slip 

Buonomo et al. 

[101] 

6 Parallel plates were porous micro-

channels occupied with porous 

material. The Brinkman-Darcy model. 

Thermal and flow fields took up fully 

developed. Numerical study. 

At the wall, 

temperature 

jumps and 

velocity slip 

Buonomo et al. 

[102] 

7 The channel was partially occupied 

with a porous medium. Fully 

developed flow and thermal field. The 

Darcy-Brinkman equation flow 

model. Entropy generation analysis 

was performed. Analytical study. 

Constant wall 

heat flux with 

models A and B 

Mahmoudi and 

Maerefat [103] 

 

                                                                                                    Contd. on the next page 
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Table 1.2 - Contd. 
 

Sl. 

No. 

Geometry, Flow Field, Thermal 

Field and other Features in Brief 

Boundary 

Conditions 

Reference 

8 A porous medium partially occupies 

the channel, serving as the middle of 

the channel. Fully developed Thermal 

and flow fields. The Darcy-Brinkman-

Forchheimer flow model. Analytical 

study. The exact solution had been 

determined. 

Constant wall 

heat flux with 

models A and B 

Karimi et al. 

[104] 

9 A filled channel is created via porous 

material with internal heat generation. 

Fully developed thermal and flow 

fields. Biot number varies across the 

channel. Darcy model. Analytical 

study. 

Constant wall 

heat flux with 

models A and B 

Parhizi et al. 

[105] 

10 Partially filled channel via porous 

material with internal heat generation. 

Thermal and flow fields were fully 

developed. The Biot number was 

varied across the channel. Darcy flow 

model. Analytical study. 

Constant wall 

heat flux with 

models A, B and 

C 

Krishnan et al. 

[106] 

11 A channel with porous material with 

internal heat generation. Fully 

developed flow and thermal fields. 

Unsteady, pulsating fluid flows in the 

channel. Darcy-Brinkman flow 

model. Analytical study. 

Constant wall 

heat flux with 

model A 

Fathi-Kelestani et 

al. [107] 

12 Partially filled channel via porous 

material with internal heat generation. 

Fully developed flow and thermal 

fields. Brinkman-extended Darcy 

flow model. Analytical study. 

Constant wall 

heat flux with 

models A, B and 

C 

Li et al. [108] 

13 Partially filled channel via porous 

material with internal heat generation. 

Fully developed flow and thermal 

fields. Brinkman-extended Darcy 

flow model. Analytical study. 

Constant wall 

heat flux with 

model A 

Hu and Li [109] 

14 Partially filled channel via porous 

material. Thermal and flow fields 

were fully developed. Darcy flow 

model. Analytical study. 

Constant wall 

heat flux with 

models A, B, 

and C 

Ouyang et al. 

[110] 

                                                                                                   Contd. on the next page 
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Table 1.2 - Contd. 

 

Sl. 

No. 

Geometry, Flow Field, Thermal 

Field and other Features in Brief 

Boundary 

Conditions 

Reference 

15 Partially filled channel via porous 

material. Fully developed flow and 

thermal fields. Brinkman-extended 

Darcy model. Analytical study. 

Constant wall 

heat flux with 

model A and 

stress jump 

interface 

conditions 

Li and Hu [111] 

16 Partially filled channel via porous 

material with internal heat generation. 

Fully developed flow and thermal 

fields. Darcy-Brinkman model. 

Analytical study. 

Constant wall 

heat flux with 

models A and B 

Dehghan [112] 

17 Partially porous medium-filled 

channel with internal heat generation. 

Thermal and flow fields were fully 

developed. Darcy flow model. 

Analytical study. 

Constant wall 

heat flux with 

model B 

Dehghan et al. 

[113] 

18 The channel contains a highly porous 

medium of open-celled metallic foam, 

with symmetrical sintered foam layers 

on the upper and lower plates. 

Thermal and flow fields were fully 

developed. The porous region was 

governed by the Brinkman-Darcy 

model. Analytical study. 

Constant heat 

flux at a wall 

with model A 

Xu et al. [114] 

19 The channel was occupied by a highly 

porous medium with high porosity. 

Thermal and flow fields were fully 

developed. Brinkman–Forchheimer-

extended model employed. Analytical 

study. 

Constant heat 

flux at a wall 

with model A 

Yi et al. [115] 

20 A channel was occupied by a porous 

medium experiencing thermal 

radiation. Developing thermal field 

and fully developed flow field. Darcy-

Brinkman-Forchheimer flow model. 

Numerical study. 

Constant heat 

flux with 

models A and B 

Mahmoudi [116] 

 

   Contd. on the next page 
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Table 1.2 - Contd. 

 

Sl. 

No. 

Geometry, Flow Field, Thermal 

Field and other Features in Brief 

Boundary 

Conditions 

Reference 

21 The channel-filled, partially filled, 

open-celled porous layer was 

symmetrically sintered on the upper 

and bottom plates. Thermal and flow 

fields were assumed to be fully 

developed. The Brinkman-Darcy 

equation flow model. Entropy 

generations in endothermic and 

exothermic channels were discussed. 

Analytical study. 

Constant heat 

flux at a wall 

with model A 

Torabi et al. 

[117] 

22 Partially filled cylinder via porous 

material. Thermal and flow fields 

were fully developed. The Brinkman-

extended Darcy flow model. 

Analytical study. 

Constant heat 

flux at the wall 

with model A 

Dukhan, and 

Hooman [118] 

23 The channel was occupied by porous 

material, featuring thick walls with 

internal heat generation. Thermal and 

flow fields were fully developed. 

Darcy-Brinkman flow model. Two 

variations of asymmetric boundary 

conditions were taken into 

consideration. Analytical study. 

Case1: Constant 

but unequal wall 

temperature. 

Case2: Constant 

wall heat flux 

with models A 

and convective 

boundary 

conditions at 

walls 

Elliott et al. [119] 

24 Study of a two-dimensional channel 

partially occupied by a porous insert; 

this scenario incorporates 

consumption (endothermicity) and 

internal heat generation 

(exothermicity). Thermal and flow 

fields were fully developed. Darcy 

Brinkman model flow model. 

Numerical study. 

Constant heat 

flux at a wall 

with models A 

and C 

Karimi et al. 

[120] 

25 In the slip-flow regime, a micro-

channel was filled with porous 

material with internal heat generation. 

Thermal and flow fields were fully 

developed. Darcy flow model. 

Analytical and numerical study. 

Constant wall 

heat flux with 

models A and B 

Dehghan et al. 

[121] 

 

    Contd. on the next page 
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Table 1.2 - Contd. 

 

Sl. 

No. 

Geometry, Flow Field, Thermal 

Field and other Features in Brief 

Boundary 

Conditions 

Reference 

26 The channel was partially filled with 

an asymmetric porous material. 

Thermal and flow fields were fully 

developed. The Darcy-Brinkman flow 

model. Analytical study. 

The upper wall 

was at constant 

wall heat flux 

with model A, 

and the lower 

wall was 

isolated. 

Tajik Jamal-

Abad [122] 

27 A highly porous medium composed of 

open-celled metallic foam featuring 

symmetrically sintered foam layers on 

the upper and bottom plates occupied 

a portion of the channel. The flow was 

steady and pulsatile. Thermal and 

flow fields were fully developed. 

Brinkman-Forchheimer flow model. 

Numerical study. 

Constant wall 

heat flux with 

model B 

Forooghi et al. 

[123] 

28 A portion of the channel was occupied 

by a highly porous medium 

comprising open-celled metallic foam 

featuring symmetrically sintered foam 

layers on both the upper and bottom 

plates. Developing thermal field and 

fully developed flow field. The 

Brinkman-Forchheimer flow model. 

Numerical study. 

Constant wall 

temperature 

Abkar et al. [124] 

29 Fully partially filled channel via 

porous material. Developing thermal 

field and fully developed flow field. 

Darcy-Brinkman flow model. 

Numerical study 

Constant wall 

heat flux with 

model B 

Baig et al. [125] 

30 Fully filled channel via porous 

material. Thermal and flow fields 

were fully developed. Brinkman-

Forchheimer-extended Darcy flow 

model. Perturbation Analysis. 

Constant wall 

temperature 

Dehghan et al. 

[126] 

31 Tube filled with metal foam. The 

Darcian average was considered for 

the flow in porous media. Thermal and 

flow fields were fully developed. 

Analytical study. 

Constant wall 

heat flux with 

model A 

Yang et al. [127] 

 

   Contd. on the next page 
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Table 1.2 - Contd. 

 

Sl. 

No. 

Geometry, Flow Field, Thermal 

Field and other Features in Brief 

Boundary 

Conditions 

Reference 

32 Two-dimensional simulations of heat 

transfer through porous material 

partially filled in a parallel channel 

were considered. Developing thermal 

field and developed flow field. 

Brinkman-Forchheimer extended 

Darcy flow model. Numerical study. 

Constant wall 

temperature 

Abdedou and 

Bouhadef [128] 

33 A saturated porous medium occupies 

a tube. Thermal and flow fields were 

fully developed. Brinkman-

Forchheimer-extended Darcy 

equation. The study encompasses both 

analytical and numerical analyses. 

Constant wall 

temperature 

Dehghan et al. 

[129] 

34 Saturated porous medium-filled 

micro-channel. Internal heat 

generation. Darcy-Brinkman flow 

model. Thermal and flow fields were 

fully developed. Numerical study. 

Variable wall 

heat flux and 

wall 

temperature. 

Temperature 

jump condition 

Seetharamu et al. 

[130] 

35 The pipe was partially filled with a 

porous medium with a centred porous 

layer in the channel. Thermal and flow 

fields were fully developed. Darcy–

Brinkman–Forchheimer-Darcy flow 

model. Numerical study. 

Constant wall 

heat flux with 

models A and B 

Mahmoudi and 

Karimi [131] 

36 Annulus filled with porous. Darcian 

velocity over the cross-section. 

Thermal and flow fields were fully 

developed. Approximation solutions 

and analytical study. 

Constant heat 

flux at an inner 

wall with model 

A and the outer 

wall was 

adiabatic. 

Yang et al. [132] 

37 The tubes contain a partial filling of 

metallic foam. The interface between 

the foam and foam-free regions within 

the tube was concentric. Thermal and 

flow fields were fully developed. 

Brinkman-extended Darcy flow 

model. Analytical study. 

Constant heat 

flux at a wall 

with model A 

Xu et al. [133] 

 

Contd. on the next page 
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Table 1.2 - Contd. 

 

Sl. 

No. 

Geometry, Flow Field, Thermal 

Field and other Features in Brief 

Boundary 

Conditions 

Reference 

38 Tubes were partially filled with 

gradient metal foams (GMFs). The 

interface between the foam and foam-

free regions within the tube was 

concentric. Thermal and flow fields 

were fully developed. Brinkman-

extended Darcy flow model. 

Numerical study. 

Constant heat 

flux at the wall 

with model A 

Xu et al. [134] 

39 Microfoams were sandwiched between 

two parallel plates with asymmetric 

heating. Thermal and flow fields were 

fully developed. Brinkman–

Forchheimer- Darcy flow model. 

Velocity slip 

and thermal 

slip with model 

A 

Xu et al. [135] 

40 Investigating heat transfer and entropy 

generation in a tube filled with double-

layer porous media. Analytical study. 

Darcy-Brinkman's flow model. 

Analytical study. 

Constant wall 

heat flux with 

model A 

Yang et al. [136] 

 

 

1.5 Viscous Dissipation in Flows Through Porous Media 

 

The generation of thermal energy due to viscous stresses occurs in the viscous flow of 

clear fluids and the fluid flow within porous media. The impact of heat released through 

viscous dissipation becomes noteworthy when a dimensionless parameter, known as 

the Brinkman number (Br), attains higher values. Considering that the effective 

viscosity can be significantly higher {see Givler and Altobellis [40]} than fluid 

viscosity when flows through the porous medium are encountered, the Brinkman 

number shall be considerably higher than that for clear fluid flows. Current applications 

that involve fluid flow through porous media necessitate the consideration of viscous 

dissipation effects in the energy conservation equation. The phenomenon of viscous 

dissipation holds relevance in various applications. For instance, noticeable 

temperature increases occur in polymer processing flows, such as injection moulding 

or high-rate extrusion. 
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Additionally, aerodynamic heating in the thin boundary layer around high-speed 

aircraft elevates the skin temperature. These applications may generally involve internal 

flows, such as the flow through porous materials, fully or partially filled channels, and 

ducts. When the effective fluid viscosity is high, temperature differences are slight, or 

kinetic energy is substantial, viscous dissipation is expected to play a significant role. 

A detailed exploration of the importance of dissipation can be found in Vafai [30]. 

 

1.5.1 Dissipation Modeling 

The form of the dissipation function,  , for flows through porous media is not unique. 

In deriving the conservation of {as in, say, Shah and London [1], Schlichting and 

Gersten [137] and Al-Hadhrami et al. [138 and 139], or for more generality} thermal 

energy equation for clear fluid flows, mechanical energy equation is subtracted from 

the overall conservation of energy equation. Different models proposed by other authors 

for the dissipation function for porous media have not always been compatible with the 

momentum equation used in those investigations. 

 

The forms of the dissipation function,  , available in the literature for flow through 

porous media for unidirectional flow, are as follows. 

 

Nield [140]:  
2

2

*2e

d u
u u

K dy


 

  
= −   
   

                                  (1.13)  

 

Al-Hadhrami et al. [138 and 139]: 

2

2

*
+ e

du
u

K dy


 

  
=   
   

                        (1.14) 

 

1.5.2   Forced Convection in Channels Filled with Porous Material with 

Viscous Dissipation 

 
A general review of the dissipation models in porous media was developed, and the 

background is available in Nield and Bejan [4]. When the thermal energy equation 

includes a viscous dissipation term involving Brinkman number, Nield [140] termed it 
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the Brinkman-Brinkman problem. The different dissipation functions that have been 

proposed are given by Eqs. (1.13) to (1.14). 

 

In porous media, the impact of viscous dissipation on internal forced convection 

has received much attention over the past ten years due to its numerous applications in 

heat pipes, electronics cooling, catalytic reactors, and other devices. Vafai [30] 

describes the utility of dissipation. Nield and Bejan [4] provided a basic overview of 

the dissipation models in porous media. Viscous dissipation was initially considered by 

adding a velocity square term to the energy equation for the porous media (Bejan [5] 

and Nield [140]). Later, a new paradigm for viscous dissipation was proposed by Al-

Hadhrami et al. [139]. Extensive research has been done for various geometries to 

examine the impact of viscous dissipation on internal forced flow problems. The 

majority of these studies assume LTE between the porous and fluid phases. Fully 

developed issues with various boundary conditions and viscous dissipation functions 

were addressed by several authors (Nield et al. [141], Tso et al. [142], and Nakayama 

and Shenoy [143]). 

 

The adoption of the LTNE model considering viscous dissipation is relatively 

limited in existing studies. This investigation specifically compared the differences 

between LTE and LTNE models, revealing a pronounced influence of viscous 

dissipation on the Nusselt number. The study delved into the effects of various relevant 

parameters, including Biot number, Darcy number, Brinkmann number, and thermal 

conductivity ratio, and discussed the significance of thermal asymmetries in heat 

transfer. In a related context, Baig et al. [144] scrutinized the impact of viscous 

dissipation within the LTNE model under constant heat flux boundary conditions. 

Under the LTNE model, Buonomo et al. [145] explained that temperature gradients in 

the fluid and porous along the sections decrease as temperature and velocity increase. 

An increase in bulk heat transfer improves the heat transmission at channel walls. 

 

 Tables 1.3 and 1.4 provide an overview of the literature concerning convective 

heat transfer through porous media, encompassing dissipation and detailing the utilized 

LTE and LTNE models. 
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Table 1.3:  An overview of the literature on flow and heat transfer in various 

geometries filled with porous material, including dissipation under LTE 

 

Sl. 

No. 

Geometry, Flow Field, Thermal 

Field and other Features in Brief 

Boundary 

Conditions 

Reference 

1 The channel Filled via porous material 

fully developed flow with Darcy model 

and developed thermal field. 

Constant wall 

temperature 

Hooman and 

Gurgenci [146] 

2 Porous material was bounded by 

parallel plate channel and fully 

developed thermal and flow fields, 

with the Darcy- Brinkman model. 

Different dissipation models yielded 

almost the same results for small Darcy 

numbers. 

Constant wall 

temperature 

and constant 

wall heat flux 

Nield et al. [147] 

3 Filled channel via porous material 

under the LTE model. Viscous 

dissipation was applied. Thermal and 

flow fields were fully developed. The 

Brinkman-Darcy equation flow model. 

Analytical and numerical solutions 

were obtained. 

Unequal, 

constant wall 

temperature 

Mahmud and 

Fraser [148] 

4 Filled channel via porous material 

under the LTE model. Viscous 

dissipation was applied. Thermal and 

flow fields were fully developed. The 

Brinkman-Darcy flow model. An 

analytical solution has been obtained. 

Constant wall 

heat flux 

Hung and Tso 

[149] 

5 Partially filled channel via porous 

material. Three viscous dissipation 

models were applied. The conduction 

limit was considered. The Brinkman-

Darcy flow model. An analytical 

solution has been obtained. 

Constant wall 

heat flux 

Bhargavi and 

Reddy [150] 

6 Two-dimensional laminar forced 

convection. Developing thermal field 

and fully developed flow field. The 

flow between asymmetrically heated 

parallel plates was studied. Numerical 

study. 

Isothermal 

with unequal 

temperature 

Repaka and 

Satyamurty [151] 

 

Contd. On the next page 
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Table 1.3 - Contd. 

 

Sl. 

No. 

Geometry, Flow Field, Thermal 

Field and other Features in Brief 

Boundary 

Conditions 

Reference 

7 Vertical plate. Steady mixed 

convection flow employing the Darcy-

Forchheimer model. Boundary layer 

approximation was made in the energy 

equation. Effects of thermal dispersion 

and viscous dissipation were studied. 

Isothermal wall 

temperature 

Murthy [152] 

8 Vertical plate. Analytical solution for 

steady free convection employing 

Darcy model. Boundary layer 

approximation was made in the energy 

equation. 

Constant wall 

temperature 

Rees et al. [153] 

9 Vertical plate channel. Numerical 

solution for fully developed free and 

forced convection flow employing 

Darcy model. Axial conduction was 

considered. 

Equal and 

unequal wall 

temperatures 

Ingham et al.  

[154] 

10 Vertical Plate. Analytical solution for 

two-dimensional mixed convection 

employing the Darcy-Forchheimer 

model. Boundary layer approximation 

was made in the energy equation. 

Isothermal wall 

temperature 

Tashtoush [155] 

11 Partially filled vertical channel via 

porous material. Thermal dissipation 

and Darcy dissipation were considered. 

Brinkman-extended Darcy. They 

mixed convection flow. Thermal and 

flow fields were fully developed. 

Homotopy perturbation method. 

Stress jumped 

and constant 

but unequal 

wall 

temperature 

Abiodun et al. 

[156] 

 

12 Partially filled vertical channel via 

porous material. Thermal dissipation 

and Darcy dissipation were considered. 

Brinkman-extended Darcy. Natural 

convection flow. Thermal and 

hydrodynamic fields were fully 

developed. Homotopy perturbation 

method. 

Stress jumped 

and constant 

but unequal 

wall 

temperature 

Abiodun et al. 

[157] 

 

 

          Contd. on next page 
 

 

 

 

 



28 
 

Table 1.3 - Contd. 

 

Sl. 

No. 

Geometry, Flow Field, Thermal 

Field and other Features in Brief 

Boundary 

Conditions 

Reference 

13 The channel was filled via porous 

material, and the flow was fully 

developed with the Darcy Brinkman 

model. Developing thermal field, 

including axial conduction. A modified 

Graetz methodology. Three models 

were evaluated. 

Constant wall 

temperature 

Nield et al. [158] 

14 Circular duct filled with porous 

material, Darcy Brinkman model. The 

development of a thermal field 

included viscous dissipation and axial 

conduction. Numerical solution. 

Constant wall 

heat flux 

Hooman et al. 

[159] 

15 Vertical channel with symmetric and 

asymmetric heating. Steady mixed 

convection flow employing the Darcy 

model. Thermal and flow fields were 

fully developed. Effects of thermal 

dispersion and viscous dissipation were 

studied. Perturbation method. 

Isothermal 

with equal or 

unequal 

temperatures 

Barletta [160] 

16 An inclined channel with asymmetric 

heating. Steady mixed convection flow 

employing the Darcy model. Thermal 

and flow fields were fully developed. 

Effects of thermal dispersion and 

viscous dissipation were studied. 

Perturbation method. 

Isothermal 

with unequal 

temperatures 

Barletta and 

Zanchini [161] 

17 Couette-Poiseuille flow between 

parallel plates with viscous dissipation 

was studied. Thermal and flow fields 

were fully developed. Analytical study. 

One wall was 

at constant heat 

flux, and the 

other was at 

adiabatic 

Aydim and Avic 

[162] 

18 Couette-Poiseuille flow between 

parallel plates with viscous dissipation 

occurs. Thermal and flow fields were 

fully developed. Analytical study. 

Unequal and 

constant wall 

heat flux 

Chen et al. [163] 

19 Partially filled channel via porous 

material with viscous dissipation and 

axial conduction was studied. Thermal 

and flow fields were fully developed. 

The Brinkman-Darcy equation flow 

model. An analytical solution was 

obtained. 

Constant wall 

heat flux 

Bhargavi and 

Reddy [164] 
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Table 1.4:  An overview of the literature on flow and heat transfer in various 

geometries filled with porous material, including dissipation under LTNE 

 

Sl. 

No. 

Geometry, Flow Field, Thermal 

Field and other Features in Brief 

Boundary 

Conditions 

Reference 

1 A channel with porous material with 

viscous dissipation. Thermal and flow 

Brinkman-Darcy flow model. 

Analytical study. 

Constant wall 

heat flux with 

model A 

Chen and Tso 

[165] 

2 The channel was filled via porous 

material with viscous dissipation. They 

were developing a thermal field and a 

fully developed flow field. The 

Brinkman-Darcy equation flow model. 

Analytical study. 

Constant wall 

heat flux with 

model A 

Chen and Tso 

[166] 

3 Parallel plates were porous micro-

channels filled with porous material 

with viscous dissipation. The Darcy-

extended Brinkman flow model. 

Developing thermal field and fully 

developed flow field. Numerical 

studies. 

At the wall, 

temperature 

jumps and 

velocity slip 

Buonomo et al. 

[167] 

4 Partially filled channel via porous 

material with viscous dissipation under 

the LTNE model. Developing thermal 

field and fully developed flow field.  

The Darcy- Brinkman model equation 

flow model. Entropy generation 

analyses were discussed. An analytical 

solution was obtained. 

The upper wall 

was adiabatic, 

and the lower 

wall was at 

constant heat 

flux with 

model A 

Torabi et al. 

[168]  

5 Fully filled channel via porous 

material. Developing thermal field and 

fully developed flow field. Viscous 

dissipation was considered. Darcy flow 

model. Analytical study. 

Constant wall 

temperature 

Yang and Liu 

[169]  

6 Fully filled channel via porous 

material. Thermal and flow fields were 

fully developed. Viscous dissipation 

was considered. Darcy Brinkman flow 

model. Entropy generation was 

calculated. Analytical study. 

Constant but 

unequal wall 

heat flux with 

model A 

Chee et al. [170]  

 

Contd. on the next page 
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Table 1.4 - Contd. 

 

Sl. 

No. 

Geometry, Flow Field, Thermal 

Field and other Features in Brief 

Boundary 

Conditions 

Reference 

7 A horizontal microchannel with thick 

walls that was filled with porous 

material. Fields were completely 

developed in terms of heat and 

hydrodynamics. Considerations 

include magnetic field and viscous 

dissipation. To depict the fluid flow in 

the porous media, utilised the Darcy 

equation. Investigated analytically. 

Case 1: 

Constant but 

unequal wall 

temperature. 

Case 2: 

Convective 

boundary 

conditions for 

the upper wall 

and constant 

heat flux at the 

lower wall  

Torabi and 

Peterson [171] 

8 A porous media was inserted into a 

microchannel. Within a microchannel 

embedded in a porous medium, a 

water-alumina nanofluid flows. 

Thermal and flow fields were fully 

developed. Viscous dissipation was 

considered. Darcy Brinkman flow 

model. Entropy generation was 

calculated. Analytical study. 

Constant wall 

heat flux with 

model A 

Ting et al. [172] 

9 Single microchannels that were filled 

with porous materials make up a 

microreactor. There were two 

substantial barriers in the 

microstructure of the system. A 

catalytic coating was present on the 

inside surface of the microchannel. 

Thermal and flow fields were fully 

developed. Viscous dissipation was 

considered. Darcy Brinkman flow 

model. The advective-diffusive model 

governed mass transfer. Entropy 

generation was calculated. Analytical 

study. 

Unequal wall 

heat flux 

Hunt et al. [173] 

 

Contd. on the next page 
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Table 1.4 - Contd. 

 

Sl. 

No. 

Geometry, Flow Field, Thermal 

Field and other Features in Brief 

Boundary 

Conditions 

Reference 

10 A microreactor consists of a single 

microchannel filled with porous 

materials. CuO-Water nanofluid was 

considered. Thermal and flow fields 

are fully developed. Viscous 

dissipation was considered. Darcy 

Brinkman flow model. Temperature 

field in a microchannel heat sink.  

Analytical study. 

The upper plate 

was insulated, 

and the lower 

plate was at 

constant heat 

flux with 

model A 

Chen and Tso 

[174] 

11 A microreactor consists of a single 

microchannel filled with porous 

materials. Alumina water nanofluids 

were considered. Thermal and flow 

fields were fully developed. Viscous 

dissipation was considered. Darcy 

Brinkman flow model. New 

temperature field in a microchannel 

heat sink.  Numerical study. 

The upper plate 

was adiabatic, 

and the lower 

plate was at 

constant heat 

flux with 

model A 

Loh et al. [175] 

12 Mixed convective heat transfer in a 

vertical micro-porous channel. Viscous 

dissipation and internal heat 

generation. Darcy Brinkman flow 

model. A numerical solution was 

obtained by applying the finite element 

method. 

Asymmetric 

constant wall 

temperature 

and constant 

wall heat flux 

Leela et al. [176] 

13 Horizontal channel filled with a porous 

medium. Thermal and flow fields were 

fully developed. The energy equation 

includes two viscous dissipation terms. 

The temperature distribution was local, 

and total entropy generation was 

discussed. Analytical-numerical 

solution technique. 

Case1: 

asymmetric 

constant wall 

temperature 

Case2: 

Convective 

boundary 

condition 

Torabi and 

Zhang [177] 

14 Plate channels are filled with metallic 

or packed beds. The Brinkman-Darcy-

Forchheimer model had variable 

properties: porosity, thermal 

dispersion, and viscous dissipation. 

Flow and thermal fields were 

developing. Numerical study. 

The upper plate 

was at constant 

wall heat flux 

with model B, 

and the lower 

plate was 

adiabatic. 

Jiang et al. [178]  
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1.6 Magnetohydrodynamics (MHD) 

 
Numerous technical and industrial fields, such as the petroleum industry, plasma 

research, geothermal energy extraction, and others, have found significant applications 

for studying magnetohydrodynamic (MHD) flow and heat transfer for a viscous 

incompressible fluid across a plate. An area of continuum mechanics called 

magnetohydrodynamics focuses on how magnetic fields affect the motion of 

electrically conducting fluids. Moving magnetic lines of force cause potential 

differences that lead to the creation of electric currents in working materials. These 

currents alter the magnetic field in turn. The Lorentz force, the passage of an electric 

current through a magnetic field, also affects fluid flow. 

 

In their study, Raju et al. [179] explored the magnetohydrodynamic (MHD) of 

forced convective flow of a viscous fluid with finite depth in a saturated porous medium 

over a stationary horizontal channel. The investigation considered a thermally insulated 

and impermeable bottom wall, incorporating Joule heating and viscous dissipation 

considerations. Sharmila and Saranya [180] delved into the impact of a magnetic field 

on fully developed forced convection through a porous medium confined by a parallel 

plate channel, taking into account boundary and inertial effects. Numerous researchers, 

including Kurzweg [181], Gulab Ram and Mishra [182], Raptis and Kafousias [183], 

Raptis and Perdikis [184], Manju et al. [185], and Vineet and Amit [186] have examined 

the influence of magnetic fields on fluid flow across various geometries and under 

diverse conditions. 

 

Baoku et al. [187] investigated the influence of magnetic field, thermal 

radiation, and thermal conductivity on the Couette flow of a highly viscous fluid with 

temperature-dependent viscosity through a porous channel. The researchers obtained a 

numerical solution employing finite difference methods. Several researchers, including 

Ashish et al. [188], Ghofrani et al. [189], Sheikholeslami et al. [190], Takhar and Beg 

[191], Barletta et al. [192], Guven et al. [193], Sahar [194], Srivastava and Satya [195], 

and Jhankal et al. [196], have investigated the interaction between forced convection 

and porous medium/magnetic field due to its relevance in engineering applications. 
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1.7 Numerical Method 

 
The intended studies involve pursuing numerical solutions for two-dimensional 

conservation of energy equations in fluid and porous phases, incorporating viscous 

dissipation and axial conduction. These computations are highly demanding, even 

within the established velocity field framework. When accounting for axial conduction, 

the conservation of the thermal energy equation exhibits an elliptic nature. In the 

context of the considered internal flows, applying a downstream boundary condition at 

an unknown axial distance necessitates an iterative approach to reach a solution. Several 

numerical techniques have been extensively employed for this class of flows. One such 

method involved using an implicit finite-difference scheme to solve the energy 

conservation equation with a boundary layer approximation, as demonstrated by Habchi 

and Acharya [197]. Naito and Nagano [198] successfully obtained numerical solutions 

for the full Navier-Stokes and energy equations using the Successive Over-Relaxation 

(SOR) method. Nguyen [199] employed the Alternating Direction Implicit (ADI) [200, 

201] and Quadratic Upwind Interpolation for Convective Kinematics (QUICK) [202] 

methods to solve the Navier-Stokes and energy equations in finite difference form. Jeng 

et al. [203] utilized the SIMPLER (Semi-Implicit Method for Pressure Linked 

Equations-Revised) algorithm with a staggered grid system. Krishnan and Sastri [204] 

adopted the Crank-Nicholson semi-implicit scheme to solve the energy equation. Min 

et al. [205] solved the discretized momentum and energy equations using a line-by-line 

approach with the TDMA (Tri-Diagonal Matrix Algorithm), while the pressure equation 

was solved using a line SOR method. 

 

  The Successive Acceleration Replacement (SAR) scheme is a non-linear over-

relaxation method introduced by Lew [206], Lieberstein [207], and Dellinger [208]. 

Lew [206] and Dellinger [208] employed the SAR scheme to solve non-linear ordinary 

differential equations, with Dellinger's approach differing primarily in the choice of the 

relaxation factor. Satyamurty [209] demonstrated the applicability of the SAR scheme 

in solving a system of partial differential equations for studying two-dimensional 

natural convection heat transfer in porous media. This scheme has been extensively 

applied by researchers such as Satyamurty and Marpu [210], Marpu and Satyamurty 

[211], Satyamurty and Marpu [212], Marpu and Satyamurty [213], Marpu [214], 
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Sharma [215], and Prakash Chandra [216]. More recently, the SAR scheme has been 

employed for forced convection studied by Bhargavi and Reddy [75], Satyamurty and 

Bhargavi [217], and Jagadeesh and Satyamurty [218]. The present thesis has chosen 

the SAR scheme to obtain numerical solutions for the problems under investigation. 

 

Philosophy of Successive Accelerated Replacement (SAR) 

 

The core principle underlying the SAR scheme is to suggest a profile for each variable 

that satisfies the specified boundary conditions. Consider the partial differential 

equation that governs a variable, ( ),X Y , expressed in finite difference form as 

, 0P Q = . This equation represents the nodal point (P, Q), when the non-dimensional 

height and length of the channel are divided into a finite number of intervals, denoted 

as PD and QD, respectively. The presumed profile for the variable   at any mesh point 

typically does not fulfil the equation. Define the error in the equation at coordinates (P, 

Q) and the kth iteration as 
k

,P Q . The following sources yield the (k+1)th approximation 

to the variable  : 
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         (1.15) 

 

The acceleration factor ω in Eq. (1.15) ranges from 0 < ω < 2. A value of ω > 1 indicates 

over-relaxation, while ω < 1 implies under-relaxation. 

 

 Until a convergence requirement is met, the variable   is corrected at every 

mesh point over an entire region of interest. The requirement is that, at any mesh point 

between the kth and (k+1)th approximations, the normalized change in the variable must 

satisfy the condition given below: 
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where the error tolerance limit, εt, is a tiny, positive value that is prescribed. It is 

necessary to associate each dependent variable with an equation to correct the first 

estimated profiles. It is common practice to link the equation containing that variable's 

highest-order derivative. 

 

 

1.8 Lacune in the Past Study on Forced Convection Heat 

Transfer in the Channels Under LTNE Model 

 

Motivated by the relevance to several modern applications, including fuel cells, solar 

absorbers, and catalytic converters, the present studies seek to investigate forced 

convection within channels filled with a porous material. As was previously said, 

porous channels can be the primary geometry of interest in a device, or they can add a 

porous insert to enhance heat transmission. By forming a convoluted channel and 

manipulating effective thermal conductivity, forced convection in ducts packed with 

porous material presents an opportunity to improve heat transmission. Extending the 

findings of earlier studies by Shah and London [1], Vafai [30], Mahjoob and Vafai [58], 

Hooman and Merrikh [59], Poulikakos and Kazmierczak [61], Bhargavi and Reddy 

[75], and Barletta [160], it is predicted that porous material-filled channels will show a 

higher increase in Nusselt number than when compared to clear fluid flow 

configurations under local thermal equilibrium (LTE) model. When considering 

variables like viscous dissipation, it is vital to assess the influence on heat transport 

cautiously. 

 

The transport processes through porous media, consisting of a fluid phase and a 

porous matrix, can be modelled by considering both to be in local thermal equilibrium 

(LTE) or local thermal non-equilibrium (LTNE). The LTE model based on the one-

equation model is valid when the temperature difference between the fluid and porous 

phases is neglected. The LTNE conditions refer to a situation where different 

components or regions within a system are not in thermal equilibrium with each other. 

Research by Vadasz [51], Intravaia et al. [53], Stoner and Maris [52], Vafai and Sozen 

[50], and Vadasz [51] demonstrated that a significant percentage of applications did not 

adhere to the LTE assumption. Minkowycz et al. [54] discovered a separate failure 
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region linked to a rapidly shifting surface heat flow. Recently, Al-Sumaily et al. [55] 

conducted an extensive review, summarizing the legitimacy of the LTE theory. His 

studies concluded that, in an LTNE scenario, there are always a variety of drives for 

giving more physical realism for accurate modelling of any practical problem. 

 

Existing literature on forced convection in channels filled with porous material 

is reasonably comprehensive, focusing primarily on two-dimensional flow and 

temperature fields under LTNE conditions. However, studies incorporating magnetic 

fields, axial conduction, and dissipation in flows through porous-filled channels have 

yet to be widely reported, especially concerning heat transfer enhancement under 

LTNE, as far as the author's knowledge extends. 

 

Current research endeavours have been initiated to address certain gaps in the 

literature. The specific aspects under investigation in this thesis are outlined in § 1.9, 

detailing the scope and objectives of the study. 

 

 

1.9 Scope and Objective of the Study 

 
The objective of the present study is to make available hydrodynamic and thermal 

characteristics for the laminar incompressible flow of a Newtonian fluid in channels 

filled with porous material in thermally developing region under the LTNE model. 

Effects of axial conduction and viscous dissipation form part of the investigation. 

Enhancement in the heat transfer under LTNE and its dependence on axial location and 

other non-dimensional parameters such as Darcy number, Biot number, Hatmann 

number, Brinkman number and the thermal conductivity ratio have been established. 

 

The numerical solutions have been obtained for the following values of the 

parameters characterizing different problems studied. Darcy number: 0.001 ≤ Da ≤ 1.0. 

Forchheimer number: 1≤ F ≤ 100. Hartmann number: 0.1 ≤ M ≤ 10. Biot number: 10 ≤ 

Bi ≤ 100. When considering axial conduction, the Peclet number, Pe, lies in 5 ≤ Pe ≤ 

100. When axial conduction is disregarded, indicated by Ac = 0, Pe is absorbed in ξ* 

and does not appear explicitly. The Brinkman number is 0.8 ≤ Br ≤ 100 when viscous 
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dissipation is included. The thesis comprises six chapters, with Chapter 1 providing a 

comprehensive introduction to the research and a thorough literature review. It provides 

an overview of fluid flow and heat transfer within ducts containing porous materials, 

considering LTE model and LTNE model. It also concisely examines heat transfer 

phenomena under the LTNE model and offers a comprehensive survey of dissipation 

models applicable to porous media. Furthermore, the numerical approach employed in 

this thesis is detailed. An overview of appropriate dissipation models for porous media 

is presented, and the numerical scheme utilized throughout the thesis is explained. The 

sixth Chapter is the conclusion of the thesis. The flow field is assumed to be fully 

developed, and the thermal field is developing and is subjected to constant wall heat 

flux in Chapters 2 to 4. 

 

The schematic model and coordinate system of the parallel plate channel filled 

with porous medium. The distance between the parallel plates is denoted by H, and Te 

fluid enters the channel at a uniform temperature. Constant wall heat flux (qw) is 

imposed on the channel walls, and the fluid flow through the porous region is governed 

by the Darcy-Brinkman-Forchheimer model. A magnetic field (Bo) is applied 

perpendicular to the channel walls, and the flow is characterized by laminar, 

incompressible, steady, unidirectional flow and a developing thermal field. Porous and 

fluid regions are in LTNE. The porous medium is uniform and exhibits isotropic 

properties. The factors include axial conduction and viscous dissipation. Furthermore, 

the thermophysical properties remain constant. 

 

The following topics, which form the subject matter of chapters 2 to 5 of the present 

thesis, have been studied. 

 

➢ Non-linear Flow and Heat Transfer of the Porous Filled Channel. 

➢ Forced Convection Heat Transfer at the Entry Region of the Porous Filled 

Channel with Axial Conduction Effect. 

➢ Forced Convection Heat Transfer at the Entry Region of the Porous Channel 

with Viscous Dissipation. 

➢ Forced Convection Heat Transfer at the Entry Region of the Porous Channel 

with Axial Conduction and Viscous Dissipation. 
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The forced convection heat transfer in the context of laminar flow within a 

thermally developing region focusing on the influence of LTNE has been studied in 

Chapter 2. This investigation pertains to parallel plate channels fully submerged within 

a porous material. The channel walls are subjected to constant heat flux boundary 

conditions. The flow equation in the nonlinear flow model governs the Darcy-

Brinkman-Forchheimer field, assuming unidirectional flow. Additionally, a transverse 

application of the magnetic field is imposed along the channel walls. The effect of 

Darcy number, Forchheimer number, Hartmann number, Biot number, and thermal 

conductivity ratio is discussed for the thermally developing region. 

 

The intended research involves pursuing numerical solutions in Chapter 2 and 

the complete thesis for the two-model conservation of energy equations (LTNE model). 

These computations pose significant demands, even within the established velocity 

field framework. Researchers have effectively employed the Successive Accelerated 

Replacement (SAR) [29] scheme to address various problems. This methodology has 

seen widespread utilization by Satyamurty and Bhargavi [30] and Bhargavi and Sharath 

Kumar Reddy [31]. The present thesis has chosen the SAR scheme to obtain numerical 

solutions for investigated problems. Extensive numerical trials have been conducted, 

and the following values for the parameters involved have been found to be satisfactory. 

(a) The acceleration factor, 0.6 ≤ ω ≤ 1.1; (b) Error tolerance limit, εt = 10-3, 10-4, and 

10-5; (c) non-uniform divisions in the axial direction, 2000 ≤ PD ≤ 9000; and d) Number 

of divisions in the normal direction, 60 ≤ QD ≤ 100 (uniform) were considered in the 

study. The non-uniform grids have been generated in geometric progression (GP). 

 

The numerical solutions presented are based on implementing the following 

parameter values, as determined through conducted numerical trials. a) ω ≤ 1; b) εt = 

10−5; c) *

fd = 0.4; d) PD = 1000 with *

P  generated in geometric progression with s = 

1/8; and e) QD = 90 with Δη =1/ 90 (ref., Chapter 2 §, 2.6.1). 

 

In Chapter 2, the study presents outcomes concerning dimensionless 

temperature profiles in both fluid and porous phases for the wall temperature and the 
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local Nusselt number within the parallel plate channel. As normalized dimensionless 

axial distance increases, the local Nusselt number decreases and reaches the fully 

developed value. Notably, the local Nusselt number is influenced by a magnetic field 

and variations in thermal conductivity ratio. As the Biot number and thermal 

conductivity ratio grows, the local Nusselt number decreases. The effect of the 

Forchheimer number on the local Nusselt number is less effective. Hence, Darcy 

Brinkman's model for the flow model is considered in the subsequent chapters. A fully 

developed condition is also shown even when LTNE is used. Wall temperature 

increases as normalized axial distance, 
*  increases for all Biot numbers, from being 

initially nonlinear to subsequently becoming linear for 
* > 0.005, which is the onset of 

a fully developed condition. It serves the purpose of the downstream boundary 

condition at the exit when axial conduction is used (elliptic PDE). 

 

Chapter 3 delves into the impact of axial conduction on the forced convective 

heat transfer characteristics within a duct filled with porous material undergoing 

thermal development under LTNE. The influence of axial conduction is particularly 

pronounced at low Peclet numbers (Pe) across various Biot numbers (Bi). The axial 

conduction effect is negligible, i.e., Ac = 0, for a significant value of Peclet number, Pe 

(≥ 100) in the LTNE except very near the entry. Additionally, for high Biot numbers, 

LTNE tends to LTE. The dimensionless temperature based on the bulk mean 

temperature in the fluid and porous phases is invariant for axial distance. Local Nusselt 

number variation depends on the parameters, Darcy number, Biot number, Peclet 

number, and thermal conductivity ratio. Local Nusselt number decreases as thermal 

conductivities and Biot numbers increase. As the Darcy number increases, the local 

Nusselt number decreases. It reaches the clear fluid fully developed Nusselt number for 

a large Darcy number. 

 

This Chapter (Chapter 4) employs the effect of two viscous dissipation models, 

the form drag model (FD model) and the clear fluid compatible (CFC model), at the 

thermal entrance. The thermal characteristics of fluid flow through a porous material 

immersed in a parallel plate channel have been studied. It was investigated numerically 

under LTNE. Flow is considered unidirectional and governed by the Darcy Brinkman 
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model porous area. Numerical solutions have been obtained for the thermal field. The 

increase in the Brinkman number, Biot number, and thermal conductivity ratio 

improves the temperature distribution. In contrast to the result in the form drag model, 

a significant value of the local Nusselt number is obtained in the CFC model. As a 

result, the clear fluid compatible model has better convectional heat transmission. 

 

Axial conduction and viscous dissipation have an integrated impact on the 

thermally growing domain under the LTNE framework in a duct filled with saturated 

porous media. It explores the thermal characteristics of fluid flow through a porous 

medium confined within a channel defined by parallel plates. In this chapter, the clear 

fluid compatible (CFC) model is used since it has significantly increased heat transfer. 

The effect of Peclet number, Brinkman number, Biot number, and thermal conductivity 

ratio on temperature distribution and local Nusselt number are discussed. Due to 

decreased thermal diffusion via the fluid phase in the porous media, the local Nusselt 

number tends to drop under the LTNE in the presence of the Peclet number as the 

Brinkman number rises. It shortens the thermal entry length. In the presence of axial 

conduction and viscous dissipation, the local Nusselt number drops as the thermal 

conductivity ratio rises. 

 

The summary and significant conclusions drawn from the present studies are 

presented in Chapter 6 of the thesis. 
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Chapter 2 

Non-linear Flow and Heat Transfer of the Porous 

Filled Channel 

 

2.1    Introduction 

In the majority of cases explored in the literature, an underlying assumption has been 

made that the porous matrix and the fluid coursing through it exist in a state of LTE, 

f pT T T= = , signifying that fT  and pT  represent the temperatures of the fluid and porous 

phases, respectively. Under the LTE condition, it is presupposed that the disparity 

between the temperature averages across the fluid and porous phases is negligible. On 

a microscopic scale, it is imperative that the temperature and the heat flux rate at the 

interface between the fluid and porous phases remain equivalent. However, considering 

the average values over a representative elementary volume may not produce locally 

uniform temperatures for both phases. In such instances, the two phases are said to be 

in a state of LTNE. 

 

This chapter aims to examine forced convection heat transfer in the context of 

laminar flow within a thermally developing region, focusing on the influence of LTNE. 

The investigation pertains to a parallel plate channel fully submerged within a porous 

material. The channel walls are subjected to constant heat flux boundary conditions. 

Within the nonlinear flow model, the flow field in the porous region is governed by the 

Darcy-Brinkman-Forchheimer equation, assuming unidirectional flow. Additionally, a 

transverse application of the magnetic field is imposed along the channel walls. Specific 

well-known parameters define the system, these being the Hartmann number (M), 

Darcy number (Da), Forchheimer number (F), thermal conductivity ratio ( ) and Biot 

number (Bi). SAR schemes have been applied to obtain numerical solutions. Plots are 

given for the dimensionless temperature profiles in the fluid and porous phases, wall 

temperature, and the local Nusselt number at the parallel plate channel, which has been 
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displayed. The magnetic field and the thermal conductivity ratio significantly affect the 

local Nusselt number. 

 

 

2.2     Mathematical Model 

The schematic model and coordinate system of the parallel plate channel filled with 

porous medium are shown in Fig. 2.1. The distance between the parallel plates is 

denoted by H, and the fluid enters the channel at a uniform temperature eT  (Fig. 2.1). 

Constant wall heat flux ( wq ) is imposed on the channel walls. The fluid flow through 

the porous region is governed by the Darcy-Brinkman-Forchheimer model. A magnetic 

field (Bo) is applied perpendicular to the channel walls, and the flow is characterized by 

laminar, incompressible, steady, and unidirectional behavior. The flow field is assumed 

to be fully developed; hence, dp/dx* is a constant and growing thermal field. Porous and 

fluid regions are in LTNE. The porous medium is uniform and exhibits isotropic 

properties. Negligible factors include heat generation, axial conduction, and thermal 

dispersion. Furthermore, the thermophysical properties remain constant. 

 

  

(a) Dimensional (b) Dimensionless 

Fig. 2.1: Schematic model and the parallel plate channel coordinate system 

 

Governing Equations 

 

The momentum equation for the fluid flow across a porous medium by employing the 

Darcy Brinkman Forchheimer model is given by: 

 
2

2

*2 *

F
e

cd u dp
u u J B

dy K dxK


 − − +  =                                                                          (2.1) 
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In Eq. (2.1), u denotes the velocity in the porous medium, and e ,  ,  , and K  are 

effective viscosity, fluid viscosity, the density of the fluid, permeability in the porous 

region, and Fc  is the Forchheimer coefficient, respectively. B  is the magnetic induction 

vector of the applied uniform magnetic field and J  is the electric current density. 

Assuming that there is no external electric field and that no internal factors, such as 

charge separation or polarization, are causing an induced electric field., ( )J u B=  , 

where   is electric conductivity, Lorentz force 
LF J B=   and velocity vector u  are 

opposite in direction and collinear. Hence 2

0LF J B B u=  = − , where 0B B= . Thus, 

the governing equations given in Eq. (2.1) are reduced to: 

 

2
2 2

0*2 *

F
e

cd u dp
u u B u

dy K dxK


 − − − =                             (2.2) 

 

The steady-state conservation of thermal energy equations of the fluid and 

porous phases are given by: 

 

Fluid phase  

 

( ) ( )
2

* *2

f f

p p fe pf pf p f

T T
C u k a h T T

x y


  
= + − 

  
                (2.3) 

 

Porous phase 

 

( )
2

*2
0

p

pe pf pf p f

T
k a h T T

y


− − =


                                           (2.4) 

 

In Eqs. (2.3) and (2.4),   is density, pC  is the specific heat, fT  is the fluid phase 

temperature, pT  is the porous phase temperature, fek  is the effective fluid thermal 

conductivity, pek  is the effective porous thermal conductivity, respectively. pea  is the 

interfacial area per unit volume of the porous media and pfh  is the porous-to-fluid heat 

transfer coefficient in the literature. 
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Boundary Conditions 

 

Hydrodynamics boundary conditions are given by: 

 

( )*0,     at  ,     No-slip condition
2 2

H H
u y= = −                (2.5) 

 

Thermal boundary conditions are as follows: 

 

( )

*

* *

*

* *

,     at  
2

     Heat flux condition

,     at  
2

f p

fe w pe w

f p

fe w pe w

dT dT H
k q k q y

dy dy

dT dT H
k q k q y

dy dy


= = = 



− = − = = −


            (2.6) 

 

( ) ( )* *

, 0, ,        Inlet condition
2 2

f p e

H H
T y T y= −                             (2.7) 

 

( )     Porous-fluid interfacep f interfaceT T T= =                      (2.8) 

 

In Eq. (2.8), the temperature at the porous-fluid interface is denoted by 
interfaceT . 

At the porous-fluid contact, the temperatures of the two phases need to be locally equal. 

It differs from the LTE assumption, which assumes that the temperatures of the two 

phases are equal everywhere. 

 

Dimensionless Variables 

 

The following dimensionless variables are utilised to construct the governing equations, 

boundary condition, and porous-fluid interface condition {Eqs. (2.2) to (2.8)} 

dimensionless. 

( ) ( )

* *

2 2

* *

,  ,  ,  

,  

avg

avg

f e p e

f p

w w

f f

ux y u
U U

dp dpH H
H H

dx dx

T T T T

q H q H

k k


 

 




= = = =
   

− −    
    





− − = =
   
           

              (2.9) 
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In Eq. (2.9),   and   are the dimensionless coordinates along the *x  and 
*y  directions. 

The dimensionless temperature and velocity are denoted by   and U, respectively. The 

fluid and porous phases are designated by subscripts f  and p , respectively. The 

average velocity across the channel is denoted by avgu . The normalized axial distance, 

*  can be defined as follows: 

 

*

Pe


 =                                                                     (2.10) 

 

In Eq. (2.10), Pe is the Peclet number ( /avgPe u H = ,   is thermal diffusivity). 

 

The governing equations (Eqs. (2.2) to (2.4)) in dimensional form become 

dimensionless form after applying the dimensionless variables are given by Eq. (2.9). 

 

2
2 2

2

1 1
 1 0

d U
M U F U

d Da 

 
− + − + = 
 

                        (2.11) 

 

( ) ( )
2

* 2

1 1

1  f fN

p f

Bi
U

k k

  
  

 

 
= + −

 
                       (2.12) 

 

( )
2

2
0

p

p fBi


 



− − =


                                                (2.13) 

 

The equation (2.11) is the dimensionless form of conservation of momentum 

and Eqs. (2.12) and (2.13) are the dimensionless form of thermal energy equations in 

fluid and porous phases, respectively (LTNE model). 

 

In Eq. (2.12), ( )NU   is normalized velocity and can be calculated as follows: 

 

( )
( )N

avg

U
U

U


 =                                                                      (2.14) 

 

In Eq. (2.14), 
avgU , the average velocity is calculated by the following formula: 
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( )
1/2

1/2

avgU U d 
−

=                  (2.15) 

 

In Eqs. (2.11) to (2.13), Da, M, F, Bi, and   denote the Darcy number, Hartmann 

number, Forchheimer number, Biot number, and effective thermal conductivity ratio, 

respectively; however, ε and k1 represent the ratio between the viscosity of the fluid to 

the effective viscosity of the porous medium, and fluid thermal conductivity to effective 

fluid thermal conductivity, respectively and it can be defined as follows: 

 

2

K
Da

H
=                                                                                                              (2.16) 

 

2 2

0

f

B H
M




=                 (2.17) 

 

4

2 *

Fc H dp
F

dxK





 
= − 

 
                                                 (2.18) 

 

2

pf pf

pe

a h H
Bi

k
=                                                                (2.19) 

 

pe

fe

k

k
 =                                                                                                               (2.20) 

 

e





=                                                                         (2.21) 

 

1

f

fe

k
k

k
=                                                                        (2.22) 

 

In Eq. (2.22), fk  is the thermal conductivity in the fluid region. 
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Dimensionless Boundary Conditions 

 

Hydrodynamics boundary conditions are given by: 

 

1 1
0,    at  ,

2 2
U = = −                                                 (2.23) 

 

Thermal boundary conditions are as follows: 

 

1 2

1 2

1
,            at  

2
 

1
,       at  

2

f p

f p

k k

k k

 


 

 


 

  
= = = 

  


  = − = − = −
  

                     (2.24) 

 

( ),

1 1
0, 0,    for 

2 2
f p  = −                                     (2.25) 

 

f p interface  = =                                                          (2.26) 

 

In Eq. (2.24), the ratio, 2k  is defined by: 

 

2

f

pe

k
k

k
=                                                                        (2.27) 

 

2.3     Skin Friction Coefficient 

At the wall location, * / 2y H= , the skin friction coefficient ( fpC ) can be defined as: 

 

*

*

/2

2

e

y H

fp

ref

du

dy
C

u





=

 
 
 

=                                   (2.28) 

 

where 
refu  is defined by: 

 

2

*

ref

dp
H

dx
u



 
 
 = −                                             (2.29) 
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Using dimensionless variables from Eq. (2.9),  Eq. (2.28) becomes, 

 

1 2

1
fp

/

dU
ReC

d


 
=

=                                                        (2.30) 

 

where Re, the Reynolds number is given by: 

 

refu H
Re




=                                                            (2.31) 

 

2.4     Local Nusselt Number 

The local heat transfer coefficient ( h ) is determined at the wall * / 2y H=  adjacent to 

the porous medium. 

 

( )
*

*

2

f

fe w b
H

y

T
k h T T

y


=


− = −


                                         (2.32) 

 

In Eq. (2.32), the bulk mean temperature ( bT ) is denoted as follows: 

 

/2

*

/2

/2

*

/2

H

f

H
b H

H

uT dy

T

udy

−

−

=




                                                            (2.33) 

 

Employing dimensionless variables {using Eq. (2.9)}, at 1/ 2 = , the local 

Nusselt number ( Nu ) is expressed by: 

 

( )

( ) ( )
1 21

* *

2
2 2

f

f w w

h H k
Nu

k









   

=

 
−  

 
= = =

− −
               (2.34) 
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In Eq. (2.34), w  and *  are defined by: 

 

( )
/

w e

w

w f

T T

q H k


−
=                                                                                                  (2.35) 

 

( )*

/

b e

w f

T T

q H k


−
=                                                              (2.36) 

 

where *  is evaluated by, 

 

( )
( )( )

( )

1/2

* * 1/2

1/2

1/2

N

f w

w

N

U d

U d

   

  

 

−

−

−

− =




                                 (2.37) 

 

The dimensionless temperature based on the bulk mean temperature, b  is 

defined by 

  

*

e
b

b e

T T

T T






−
= =

−
                (2.38) 

 

 

2.5     Limiting Cases 

Analytical expressions for dimensionless temperature and the Nusselt number for Case 

1: Hartmann number, M ≠ 0.0, Forchheimer number, F = 0.0, and Case 2: Hartmann 

number, M = 0.0, Forchheimer number, F = 0.0, for the fully developed thermal field 

are given for Darcy Brinkman Model. The procedure by Kays and Crawford [2] has 

been adopted to derive analytical solutions. 

 

Case 1: F = 0.0, M ≠ 0.0 

 

Substituting F = 0.0 in Eq. (2.11), the dimensionless form Darcy Brinkman model is 

given by: 
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2
2

2

1 1
1 0

d U
M U

d Da 

 
− + + = 
 

                                   (2.39) 

 

Let the temperatures at the upper wall ( * / 2y H= ) be wfT  and wpT . The 

corresponding dimensionless wall temperatures in fluid and porous phases, wf  and 

wp  are defined by: 

 

( )
( )

( )
( )

,     
/ /

wf e wp e

wf wp

w f w f

T T T T

q H k q H k
 

− −
= =                        (2.40) 

 

Since the boundary conditions are of Neumann type, Eq. (2.24), constants 

cannot be evaluated using both Neumann type conditions. Hence, Eq. (2.12) and Eq. 

(2.13) are solved using the following Dirichlet boundary conditions discussed in Kays 

and Crawford [2]. 

 

1 1
,    

2 2
f wf p wp   
   
 =  =   
   

                                (2.41) 

 

  The set of equations {Eqs. (2.12), (2.13), and (2.39)} are solved based on 

boundary conditions {Eqs. (2.23) and (2.41)}. The temperature profiles in the fluid and 

porous phases are expressed relative to wf  and wp , respectively. 

 

Since it is assumed that the thermal field is fully developed and constant flux 

boundary conditions are applied at the wall, ( ) ( )* * */ /f d d     =  becomes a 

constant, say λ. 

 

The dimensionless temperatures in the fluid and porous phases and the fully developed 

Nusselt number expression for the Darcy Brinkman model, respectively, are given by: 
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The dimensionless temperature in fluid and porous phases: 
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 (2.43) 

 

Fully developed Nusselt number: 
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Case 2: F ≠ 0.0, M = 0.0 

 

In the absence of the Hartmann number, M (M = 0), the velocity profiles match with 

the work done by Reddy and Bhargavi [217] for all the values of the Forchheimer 

number (F) for the channel filled with porous material. 
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The variation of ( )fd DBM
Nu  with Bi is shown in Figs. 2.2(a) to 2.2(c) for various 

values of Hartmann number, M at given values of effective thermal conductivity ratios 

(  = 0.1, 1.0, and 10.0). Each value of   and M, ( )fd DBM
Nu  increases and attains a 

maximum at a small value of Bi and then decreases. For each Bi, as M increases, 

( )fd DBM
Nu  increases for every value of  . The constants, Ai, i = 1,2,3, …, 18, appearing 

in Eqs. (2.42) to (2.44) are given in the Appendix. 

 

0 200 400 600 800 1000

9.8

9.9

10.0

10.1

10.2

10.3

10.4

10.5

10.6

(N
u

fd
) D

B
M

Bi

 M = 1

 M = 3

 M = 5

 M = 8

 M = 10

 = 0.1

 

0 200 400 600 800 1000

9.8

9.9

10.0

10.1

10.2

10.3

10.4

10.5

10.6

(N
u

fd
) D

B
M

Bi

 M = 1

 M = 3

 M = 5

 M = 8

 M = 10

 = 1.0

 

          (a)            (b) 

0 200 400 600 800 1000

9.8

9.9

10.0

10.1

10.2

10.3

10.4

10.5

10.6

(N
u

fd
) D

B
M

Bi

 M = 1

 M = 3

 M = 5

 M = 8

 M = 10

 = 10.0

 

          (c) 

Fig. 2.2: Variation of fully developed Nusselt number, ( )fd DBM
Nu  with Biot number, Bi, for various 

values of Hartmann number, M for (a)   = 0.1, (b)   = 1.0, and (c)   = 10.0 at Darcy number, Da 

= 0.005 

 



53 
 

2.6      Numerical Methodology: Successive Accelerated 

Replacement (SAR) 

The employment of the SAR scheme is discussed in Satyamurty and Bhargavi [74], 

Marpu and Satyamurty [211], and Reddy and Bhargavi [217]}: 

 

Let PD and QD represent the number of divisions in   and   directions, respectively, 

while *  and   represent the width in   and   directions. The errors U  and f  in 

the fluid phase and p  in the porous phase are provided in finite difference form. 

 

Following discretization of the governing equations Eqs. (2.11) to (2.13) with 

uniform mesh in  -direction and non-uniform mesh in  -direction, the following 

equations are obtained: 
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where *  is the   -direction uniform grid size specified by, ( ) ( )1P P − − . 

 
*

* fd

PD


 =                                                                      (2.48) 
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where *

fd  denotes the fully developed normalized length, 

 

1

QD
 =                                                                          (2.49) 

 

The following derivatives are required to correct the profile for U , f  and p  
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Discretized boundary conditions 
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Inlet boundary condition is as follows: 
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The discretized form of the product of Reynolds number (Re) and the skin 

friction coefficient (
fpC ) can be obtained using three-point backward finite different 

formulas and given by: 

 

( ) ( ) ( )3 1 4 1

2
fp

U Q U Q U Q
ReC



+ − + −
=


             (2.56) 

 

 

2.6.1 Numerical Trials 

Numerical trials have been done for the following equations under the local thermal 

equilibrium (LTE) model. 

 

Darcy Brinkman model (substituting F = 0 and M = 0 in Eq. (2.11)): 
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Energy equation: 
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Boundary conditions are given by: 
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Appropriate values for the parameters that provide convergent solutions must 

be identified to generate reasonable numerical solutions. The error tolerance limit, 

acceleration factor, and the number of grids in * , and   directions are PD and QD, 
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respectively the parameters. Numerical trials are performed with 
3 510 10t

− −  , 

0.6 1.1  , 2000 9000PD  , and 60 100QD   for Da = 0.005. 

 

Number of Grids, Uniform Spacing 

 

Table 2.1 shows Nu  values for QD = 60, 70, 80, 90, and 100 with PD = 2000, 4000, 

6000, 8000, and 9000. From Table 2.1, the value of Nu  = 9.816 with QD = 90 found 

in the numerical trials at *  = 0.4, coincides with the equivalent fully developed value 

of 9.8156, which is obtained analytically. It shows that QD = 90 grids is appropriate. 

When uniform grids QD = 90 and PD = 8000 are used, the values of local Nusselt 

numbers do not change appreciably. 

 

Acceleration factor, ω 

 

To determine suitable values for the acceleration factor,  , sufficiently large PD = 

8000, QD = 90, and uniform mesh have been chosen. The error tolerance limit has been 

fixed at 10−4 values at different locations, from the inlet to the fully developed region. 

It has been selected as the criterion for arriving at a suitable value for the acceleration 

factor  . Values of Nu  at different *  and   are given in Table 2.2. 

 

The acceleration factor is obtained from: 
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                                           (2.61) 

 

The number of iterations, NI, decreased from 14592 to 2726 as ω increased from 

0.6 to 1.1. The computational time, directly proportional to the number of iterations, 

decreases as   increases. As expected, the converged values are independent of the 

acceleration factor. 

 

Error tolerance limit 

 

Similar to the numerical trials described above, numerical solutions have been obtained 

for values of error tolerance limit, t  = 10−3, 10−4, and 10−5 with PD = 8000, QD = 90, 
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choosing   as per Eq. (2.61). Values of different t  at different values are given in Table 

2.3. As noted, concerning the acceleration factor, the thermal field is fully developed 

for *  ≥ 0.4. The fully developed values obtained with t  = 10−4 are very close to the 

analytically obtained values of Nu  = 9.8156 (see Fig. 10, Satyamurty and Bhargavi 

[74]) for Da = 0.005 and p  = 1.0, t  = 10−4 is an acceptable value for the error tolerance 

limit. 

 

Non-uniform grids generation (Bhargavi and Reddy [75]): 

 

The following formula is used to construct uniform grids: 

 
*( ) ( 1)i i = −                                                            (2.62) 

 

The axial distance is increased in a geometric progression to produce non-

uniform grids. Let *

P  be the rise in geometric progression with (1+d) as a common 

ratio, and in geometric progression, the first term *

1  is given by, 
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11
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−

 = +                                                   (2.63) 

 

Let the first non-uniform grid width of *

1  be defined by: 

 
* *

1 s  =                      (2.64) 

 

where *  is uniform cell width and s is a constant less than unity. 

 

A common ratio of (1+d), can be determined as follows: 
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Table 2.1:  Uniform mesh and grid independence test: Nu  at various *  for Da = 0.005, 
t  = 

10−4  and   = 0.8 (NI = Number of Iterations) 

 
QD PD     *      NI 

  0.0016 0.0050 0.0100 0.0300 0.0500 0.1000 0.150 0.2000 0.4000  

60 2000 28.5561 19.0660 15.2571 11.3921 10.4248 9.8939 9.8343 9.8243 9.8044 3343 

4000 28.3332 19.0178 15.2371 11.3864 10.4218 9.8933 9.8342 9.8243 9.8046 3845 

6000 28.2595 19.0018 15.2304 11.3845 10.4208 9.8931 9.8341 9.8243 9.8047 4349 

8000 28.2595 19.0018 15.2304 11.3845 10.4208 9.8931 9.8341 9.8243 9.8047 4349 

9000 28.2105 18.9632 15.2260 11.3832 10.4201 9.8929 9.8340 9.8243 9.7788 5106 

 2000 28.2976 18.9745 15.2090 11.3753 10.4151 9.8895 9.8315 9.8227 9.8165 4299 

 4000 28.0791 18.9269 15.1892 11.3697 10.4121 9.8889 9.8314 9.8227 9.8165 4800 

70 6000 28.0069 18.9111 15.1826 11.3678 10.4111 9.8887 9.8314 9.8226 9.8165 5303 

 8000 28.0069 18.9111 15.1826 11.3678 10.4111 9.8887 9.8314 9.8226 9.8165 5303 

 9000 27.9590 18.9283 15.1782 11.3665 10.4104 9.8885 9.8313 9.8226 9.8165 6059 

 2000 28.1172 18.9120 15.1764 11.3640 10.4085 9.8865 9.8296 9.8214 9.8166 5387 

 4000 27.9023 18.8649 15.1567 11.3584 10.4056 9.8859 9.8295 9.8214 9.8166 5886 

80 6000 27.8313 18.8493 15.1502 11.3566 10.4046 9.8857 9.8295 9.8214 9.8166 6389 

 8000 27.7958 18.8414 15.1469 11.3556 10.4040 9.8855 9.8294 9.8214 9.8165 6893 

 9000 27.7841 18.8115 15.1458 11.3553 10.4039 9.8855 9.8294 9.8214 9.8165 7145 

 2000 27.9871 18.8676 15.1533 11.3561 10.4039 9.8843 9.8282 9.8205 9.8165 6604 

 4000 27.7748 18.8209 15.1337 11.3505 10.4009 9.8837 9.8281 9.8205 9.8165 7101 

90 6000 27.7047 18.8053 15.1272 11.3486 10.3999 9.8835 9.8281 9.8205 9.8165 7605 

 8000 27.6581 18.7678 15.1228 11.3473 10.3992 9.8834 9.8280 9.8205 9.8165 8109 

 9000 27.6488 18.7929 15.1220 11.3471 10.3991 9.8833 9.8280 9.8205 9.8165 8360 

 2000 27.8903 18.8348 15.1363 11.3502 10.4005 9.8827 9.8271 9.8198 9.8164 7946 

 4000 27.6802 18.7884 15.1168 11.3446 10.3975 9.8821 9.8270 9.8198 9.8164 8442 

100 6000 27.6108 18.7729 15.1103 11.3427 10.3965 9.8819 9.8270 9.8198 9.8164 8946 

 8000 27.6547 18.7657 15.1220 11.3475 10.3998 9.8838 9.8280 9.8208 9.8165 9450 

 9000 27.5555 18.7906 15.1225 11.3463 10.3987 9.8838 9.8270 9.8108 9.8164 9702 

 

Table 2.2: Nu  at different *  for different values of the acceleration factor,  , for PD = 8000, 

QD = 90 and 
t  = 10−4 for Da = 0.005 

 

  
Nu  at different 

*  
NI 

0.0006 0.0010 0.0050 0.0100 0.0300 0.1000 0.1500 0.2000  0.4000 

0.6 39.3998 32.6986 18.7975 15.1239 11.3476 9.8834 9.8280 9.8205  9.8165 14592 

0.8 39.3998 32.6986 18.7975 15.1239 11.3476 9.8834 9.8280 9.8205  9.8165 8108 

1.0 39.3998 32.6986 18.7975 15.1239 11.3476 9.8834 9.8280 9.8205  9.8165 4177 

1.1 39.3998 32.6986 18.7975 15.1239 11.3476 9.8834 9.8280 9.8205  9.8164 2726 

1.2 Did not converge  
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Table 2.3: Nu  at different *  for different values of the error tolerance limit, 
t , for PD = 

8000, QD = 90, for Da = 0.005,   = 0.8 

 

t  

Nu  at different 
*  

NI 

0.0006 0.0010 0.0050 0.0100 0.0300 0.1000 0.1500 0.2000  0.4000 

10−3 39.7049 32.8921 18.8414 15.1469 11.3556 9.8853 8.7034 10.7295  10.7296 2426 

10−4 39.7049 32.8921 18.8414 15.1469 11.3556 9.8855 9.8294 9.8214  9.2586 6313 

10−5 39.7049 32.8921 18.8414 15.1469 11.3556 9.8855 9.8294 9.8214  9.7615 6893 

 

Table 2.4: The constant values of d and s for PD = 500, 1000, and 2000 
 

s 
values of d for PD 

500 1000 2000 

1/4 0.00469119 0.00234112 0.00116945 

1/8 0.00666086 0.00332264 0.00165938 

1/16 0.00850544 0.00424098 0.00211757 

 

Table 2.5: Using GP, comparison of Nu  at various *  values for uniform and non-uniform 

grids with QD = 90, Da = 0.005, ω = 0.8, and t  = 10-5 

 

PD 

 Nu  at different 
*  values NI 

CPU Time 0.0016 0.0050 0.0100 0.0300 0.050 0.1000 0.150 0.2000 0.4000  

1000 non-uni 1m24.682s 27.9594 18.8852 15.1732 11.3649 10.4083 9.8868 9.8297 9.8215 9.8166 5191 

2000 non-uni 3m1.092s 27.8946 18.8667 15.1444 11.3607 10.4056 9.8860 9.8296 9.8215 9.8166 5422 

3000 non-uni 12m47.181s 27.6293 18.8177 15.1532 11.3558 10.4055 9.8863 9.8296 9.8214 9.8165 15754 

8000 Uniform 16m9.204s 27.8313 18.8493 15.1502 11.3566 10.4046 9.8857 9.8295 9.8214 9.8166 99436 

 

Eq. (2.65) determines d for a specific value of s, *

fd  = 0.4, and PD. PD = 2000, 

*

fd  = 0.4, and a uniform grid size of *  = 0.0002 generated a suitable solution. For 

*  = 0.4, if *

1  = 0.0002 is chosen as the first non-uniform grid, Table 2.4 shows the 

constant d and s values for PD = 1000 and 2000. The value of s is selected from Table 

2.4 as 1/8. The formula given in Eq. (2.64) is used in the generation of non-uniform 

grids. The grids in geometric progression have been created as detailed above for * .P
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Table 2.5 shows the Nu  values for Da = 0.005 at various *  values. Table 2.5 also 

shows the results achieved with 8000 uniform grids. 

 

The Nu  values obtained with non-uniform grids formed in geometric 

progression with PD = 2000 are close to those obtained with 8000 uniform grids at 

various * . The reduction in computational time is substantial. 

 

The following values for the parameters involved have been established to be 

satisfactory based on numerical experiments. (a) The acceleration factor: 0.6 ≤   ≤ 1.1. 

However, under-relaxation has been preferred and   < 1 has been employed, (b) t  = 

10̶ 4, (c) QD = 90 with   = 1/90, and (d) PD = 2000. 

 

 

2.7      Numerical Results and Discussions 

The SAR methodology has been widely used in the literature (Bhargavi and Reddy [75], 

Marpu and Satyamurty, [211], and Marpu [214]) to generate numerical solutions to Eqs. 

(2.11) to (2.13) using finite difference expressions to Eqs. (2.45) to (2.47) and the 

derivatives, to Eqs. (2.50) to (2.52) and the boundary conditions and to Eqs. (2.53) to 

(2.55). It is taken that 1 / 1f fek k k= = , 2 / 1f pek k k= =  and / 1eff  = = . 0.001 ≤ Da ≤ 

0.1, 1 ≤ F ≤ 100, 0.5 ≤ M ≤ 65, and 10 ≤ Bi ≤ 100, while 0.1 ≤   ≤ 10 are the ranges 

used for the remaining parameters. These ranges of parameters are also used in the 

literature (ref., [29], [37], and [82]). 

 

2.7.1 Hydrodynamics Field 

The velocity profiles and skin friction coefficient for flow through a porous material-

filled channel have been examined in this section. 

 

Velocity 

 

Figures 2.3(a, b) and 2.4(a, b) showcase the dimensionless velocity profiles for various 

Hartmann number (M) values at Da = 0.01 and Da = 0.1, respectively. The Forchheimer 

numbers (F) are set to 1 and 100, respectively, as indicated in the figures. These velocity 



61 
 

profiles visually present the velocity distribution within the channel, highlighting the 

effects of the Hartmann and Forchheimer numbers on the flow characteristics.  
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Fig. 2.3: Effect of velocity profiles for various Hartmann numbers, M values for (a) F = 1, and (b) F 

= 100 at Da = 0.01 
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Fig. 2.4: Effect of velocity profiles for various Hartmann numbers, M values for (a) F = 1, and (b) F 

= 100 at Da = 0.1 

 

From the figures, dimensionless velocity U attains a maximum at the center of 

the channel (  = 0). From Fig. 2.3, it can be observed that as the magnetic field 

becomes more significant in regulating fluid motion, the value of dimensionless 

velocity, U, falls with an increase in Hartmann number, M. The high Hartmann number, 

which denotes the dominance of magnetic forces over viscous forces, explains this. 
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Fluid mobility is often suppressed when magnetic forces are dominant. For any 

Forchheimer number, this holds. However, the rise in the parameter, F, signifies that 

the resistive forces are generated within the system. It leads to a decrease in the fluid's 

motion; consequently, the velocity decreases with an increase of F for each value of M, 

as shown in Figs. 2.3 and 2.4. By comparing Figs. 2.3 and 2.4, it is clear that as the 

Darcy number, Da, increases, U increases. For a significant value of Da, the increase 

in the velocity is more significant because, for a prominent Da, the porous region begins 

to behave like a clear fluid region. These velocity profiles match those reported in 

Reddy and Bhargavi [217] for channel-filled porous regions without Hartmann 

numbers (M = 0). 

 

Skin friction coefficient 

 

Figures 2.5 and 2.6 illustrate the variation of the product of skin friction coefficient and 

Reynolds number profiles (ReCfp) with Da at distinct Forchheimer numbers (F = 1, 5, 

10, 50, and 100) and Hartmann numbers (M = 0.5, 1.0, 2.0, 3.0, and 4.0). It may be 

observed from Figs. 2.5 and 2.6 that Da grows, drops, and approaches 6 (the value in 

the clear fluid channel). However, as Da value increases, the value of ReCfp diminishes, 

and it tends to 6. The value ReCfp = 6 is obtained in a clear fluid channel. However, this 

fact has been discussed in Bejan [5]. Additionally, at a given Da, the value of ReCfp 

increases with the Forchheimer number (F) and the Hartmann number (M). 
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Fig. 2.5: Effect of Darcy number, Da for various 

values of Forchheimer numbers, F at M = 0.5 

Fig. 2.6: Effect of Darcy number, Da for various 

values of Hartmann numbers, M at F = 5 
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2.7.2 Thermal Field 

The dimensionless temperature profiles in both phases, fluid and porous, dimensionless 

temperature based on bulk mean temperature, wall temperature, and the local Nusselt 

numbers for flow through the porous-filled channel, are examined in the present 

section. 

 

Dimensionless temperature profiles for the fluid phase, f  and porous phase, 

p  for Biot number, Bi = 10, Forchheimer number, F = 1, Darcy number, Da = 0.001, 

and thermal conductivity ratio,   = 0.1 for different values of *  are shown in Figs. 

2.7(a, b) and 2.8(a, b) at Hartmann number, M = 0.5 and 65, respectively. A similar type 

of plot is given for large values of Forchheimer number (F = 100), Biot number (Bi = 

100), and thermal conductivity ratio (  = 10.0) given in Figs. 2.9, 2.10, and 2.11, 

respectively. From Figs. 2.7 to 2.11, f , and p  increase with an increase of * . This 

fact is true in the LTE model as discussed in the literature (ref., [37], [115], and [116]). 

 

−0.50

−0.25

0.00

0.25

0.50

0.0 0.2 0.4 0.6 0.8 1.0 1.2

f



 * = 0.0005     * = 0.0500     * = 0.1000   * = 0.3000

 * = 0.0050     * = 0.0800     * = 0.2000   * = 0.4000

−0.50

−0.25

0.00

0.25

0.50

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

p



(a) (b)

 

Fig. 2.7: Impact of (a) f  and (b) p  for distinct 
*
 values at Bi = 10,   = 0.1, F = 1, Da = 0.001, 

and M = 0.5 
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Fig. 2.8: Impact of (a) f  and (b) p  for distinct 
*
 values at Bi = 10,   = 0.1, F = 1, Da = 0.001, 

and M = 65 

 

From Figs. 2.7(a, b) and 2.8(a, b), as Hartmann number (M) increases, f , and 

p  decrease numerically for all the values of * . Upon comparison of Figs. 2.7(a, b) 

and 2.9(a, b), it is evident that as Forchheimer number (F) increases, temperature 

decreases, but has a minimal effect on the temperature profiles of  f , and p . 
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Fig. 2.9: Impact of (a) f  and (b) p  for distinct 
*
 values at Bi = 10,   = 0.1, F = 100, Da = 0.001, 

and M = 0.5 
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By comparing Figs. 2.7(a, b) and 2.10(a, b), a clear pattern emerges. As the Biot 

number (Bi) increases from 10 to 100, the fluid phase temperature, f  increment 

becomes less pronounced. In contrast, porous phase temperature, p  shows a 

decreasing trend for each value of * , eventually approaching the temperature in the 

fluid region under LTE. It implies that when the Biot number is large, the system 

transitions from LTNE to LTE. The observed behaviour of approaching LTE as the Biot 

number increases holds for all values of Hartmann number, Forchheimer number, and 

Darcy number. Regardless of the specific values of these parameters, the trend of 

moving towards LTE with higher Biot numbers remains consistent throughout the 

analysis. 

 

To see the effect of the thermal conductivity ratio,  ( )/pe fek k= , plots are given 

for a significant value of   (  = 10). Fig. 2.11 indicates a more substantial temperature 

increment in the temperature profiles of f , and p  for larger values of  . As   

increases, the temperature variations become more pronounced in both f , and p . 

Furthermore, upon comparing Figs. 2.7(a, b) with 2.11(a, b), it can be observed that as 

the thermal conductivity ratio,  , increases, both f , and p  show an increment. This 

increase in ,f  and p  is attributed to the rise in the effective thermal conductivity of 

the porous medium as   increases. The higher thermal conductivity ratio enhances the 

overall heat transfer within the system, resulting in elevated temperature profiles for 

,f  and p . From Figs. 2.7 to 2.11, it can also be observed that the temperature in a 

porous phase, p  is larger than in a fluid phase . f  This is due to the LTNE condition. 
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Fig. 2.10: Impact of (a) f  and (b) p  for distinct 
*
 values at Bi = 100,   = 0.1, F = 1, Da = 0.001, 

and M = 0.5 

 

 

To see the effect of the thermal conductivity ratio,  ( )/pe fek k= , plots are given 

for a significant value of   (  = 10). Fig. 2.11 indicates a more substantial temperature 

increment in the temperature profiles of f , and p  for larger values of  . As   

increases, the temperature variations become more pronounced in both f , and p . 

Furthermore, upon comparing Figs. 2.7(a, b) with 2.11(a, b), it can be observed that as 

the thermal conductivity ratio,  , increases, both f , and p  show an increment. This 

increase in ,f  and p  is attributed to the rise in the effective thermal conductivity of 

the porous medium as   increases. The higher thermal conductivity ratio enhances the 

overall heat transfer within the system, resulting in elevated temperature profiles for 

,f  and p . From Figs. 2.7 to 2.11, it can also be observed that the temperature in a 

porous phase, p  is more significant than in a fluid phase . f  This is due to the LTNE 

condition. 
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Fig. 2.11: Impact of (a) f  and (b) p  for distinct 
*
 values at Bi = 10,   = 10.0, F = 1, Da = 0.001, 

and M = 0.5 

 

 

Dimensionless temperature based on bulk mean temperature in the fluid phase and 

porous phase: 

 

To validate the fully developed condition for a channel filled with porous region under 

LTNE, dimensionless temperature based on bulk mean temperature, b  is given in Fig. 

2.12 for Da = 0.001,   = 0.1, F = 1, and Bi = 10 for (a) M = 0.5, and (b) M = 10.  From 

Fig. 2.12, it is clear that it tends to zero for large *  ≥ 0.35 for any F, M, Bi,   and Da. 

It means that b  is invariant with respect to *  for large * , which is a fully developed 

condition. This type of validation is available in Repaka and Satyamurty [73] for LTE 

model. 
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Fig. 2.12: b  profiles for different 
*
 values at Bi = 10,   = 0.1, F = 1, Da = 0.001, for (a) M = 0.5, 

and (b) M = 10 

 

Fully developed condition for thermal field 
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Fig. 2.13: */b    profiles for different   values for Da = 0.001, F = 1, Bi = 10, and   = 0.1 for 

(a) M = 0.5 and, (b) M = 10 

 

To validate the fully developed condition, a plot of 
*/b    with *  for M = 

0.5 and M = 50 at   =  –0.3, –0.2, –0.1, 0.0, 0.1, 0.2, and 0.3 is shown in Fig. 2.13 for 

Da = 0.001, F = 1, Bi = 10, and   = 0.1. It can be seen that 
*/ 0b   →  for 

* ≥ 0.3 

in Fig. 2.13. For 1/ 2 1/ 2−   , when 
*/ 0b   → , the thermal field is characterized 
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as being fully developed. Even Fig. 2.12 is compatible with this observation. Thus, for 

LTNE, the fully matured condition is validated. Furthermore, as Satyamurty and 

Bhargavi [74] demonstrated, this phenomenon is true for LTE. 

 

Wall temperature: 

 

Since the constant heat flux conditions at the walls are applied, wall temperatures are 

unknown. Hence, wall temperature profiles are given to measure the effect of relevant 

parameters. The variations of wall temperatures in fluid phase ( wf ) and porous phase 

( wp ) with *  for F = 10, Bi = 10, and   = 1.0 for M = 0.5, and 10 are demonstrated in 

Fig. 2.14(a, b) for (a) Bi = 10 and (b) Bi = 100. 
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Fig. 2.14: Impact of wf  and wp  with 
*
 for M = 0.5, and 10 at F = 10, Da = 0.005, and   = 1.0, for 

(a) Bi = 10 and (b) Bi = 100 

 

As *  increases, wall temperatures in the fluid phase ( wf ) and porous phase (

wp ) also increase for all Hartmann numbers. wf  and, wp  increase as *  increases, 

initially non-linearly and then linearly for 
* > 0.03, say. It is the condition for the onset 

of a fully developed temperature field, where constant heat flux is employed at the 

channel walls. From Fig. 2.14, it can be observed that wp  > wf  because of the heat 

transmission from the fluid to the porous, there is more heat for the porous wall 

temperature than the fluid wall temperature. 
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Local Nusselt numbers 

 

The effect of the local Nusselt number, Nu  with *  for F = 10, M = 1, and   = 0.1, is 

shown in Figs. 2.15(a) and 2.15(b) for Bi = 10 and 100, respectively, for Da = 0.001, 

0.005, 0.01, 0.05, and 0.1. Similar plots are designed for various values of Hartmann 

number, M, (M = 1, 10, 25, 50, and 65) and thermal conductivity ratio,   (  = 0.1, 1.0, 

5.0, and 10.0) in Fig. 2.16 and Figs. 2.17 and 2.18, respectively. 
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Fig. 2.15: Variation of Nu  with 
*
 for various Darcy numbers, Da at   = 0.1, M = 1, and F = 10 

for (a) Bi = 10 and (b) Bi = 100 

 

From Figs. 2.15 to 2.18, as *  increases, Nu  decreases. The variation trends 

of Nu  with *  for the channel under a porous medium are similar to the well-reported 

trend for the channel with clear fluid flow under LTE. As Darcy number is large (say at 

Da = 0.1), values of Nu , the channel with porous material are the same as those of 

Nu  for the clear fluid channel. From Fig. 2.15, it decreases with increasing *  and 

reaches the fully developed value for a given Da.  As the Darcy number increases, it 

decreases and reaches the local Nusselt number in the fluid region. Nu  decreases as 

Biot number increases. The effect of Hartmann number on Nu  is discussed in Fig. 

2.16. As the Hartmann number increases, it also increases for every Biot number, Bi. 
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The impact of the ratio between effective thermal conductivities of the porous 

and fluid (i.e., thermal conductivity ratio,   = 0.1, 1.0, and 10.0) on the variations of 

Nu  is analyzed and illustrated in Figs. 2.17(a) and 2.17(b) for Hartmann number, M = 

1 and 50, respectively at Da = 0.005, F = 10, and Bi = 10. Similar types of plots are 

given in Fig. 2.18 for a large Biot number, Bi = 100. The key findings observed from 

Figs. 2.17 and 2.18 are: (i) there is a significant change with respect to   ( )/pe fek k= . 

As   increases, Nu  decreases for all Da, F, M, and Bi, (ii) as Hartmann number 

increases, Nu  increases for each value of the ratio,   (iii) by comparing Figs. 2.17 

and 2.18, as Bi increases, Nu  decreases for each value of ratio,  . This feature was 

also observed for the constant wall temperature boundary condition given by Nield et 

al. [34]. A porous material with a higher effective thermal conductivity of the porous 

phase than a fluid phase is obtained by increasing the ratio  . Since the Nusselt number 

correlates to the fluid phase's convective heat transmission, the values of the Nusselt 

number for the porous material-filled channel fall. 
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Fig. 2.16: Variation of Nu   with 
*
 for various Hartmann numbers, M at   = 0.1, Da = 0.005 and 

F = 10 for (a) Bi = 10 and (b) Bi = 100 
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Fig. 2.17: Variation of Nu  with 
*
 for various thermal conductivity ratios,   at Da = 0.005, Bi = 

10, and F = 10 for (a) M = 1 and (b) M = 50 
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Fig. 2.18: Variation of Nu  with 
*
 for various thermal conductivity ratios,   at Da = 0.005, Bi = 

100, and F = 10 for (a) M = 1 and (b) M = 50 

 

The variation of Forchheimer number, F, is given in Table 2.6 at various *  

values at Darcy number Da = 0.001, Bi = 50,   = 0.1, and for two different values of 

M, M = 5 and M = 65. From Table 2.6, it is clear that the effect of F is much less on 

Nu . 
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Table 2.6: Variation of Nu  for different Forchheimer numbers, F 

 
 M = 5, Bi = 50 M = 65, Bi = 50 

 *
 

F = 1 F = 10 F = 100 F = 1 F = 10 F = 100 

0.00005 130.977 130.977 130.979 158.864 158.864 158.864 

0.00010 98.670 98.670 98.672 122.599 122.599 122.599 

0.00100 39.285 39.285 39.286 47.222 47.222 47.222 

0.00500 21.744 21.744 21.744 24.806 24.806 24.806 

0.05000 11.447 11.448 11.448 12.244 12.244 12.244 

 

At the fully developed length, say * ≥ 0.38, local Nusselt numbers ( Nu ) 

approach fully developed Nusselt numbers ( fdNu ), which are obtained analytically. 

Local Nusselt numbers, ( Nu ) at *  = 0.38 and the fully developed Nusselt numbers 

values (Eq. (2.44)) are given in Table 2.7 for different Hartmann numbers, M  = 1, 5, 

and 10 for Da = 0.005, F = 0, Bi = 10, and   = 0.1. At the fully developed length, say 

* > 0.38, local Nusselt numbers ( Nu ) approach fully developed Nusselt numbers, 

,fdNu  which are obtained analytically, as seen in Table 2.7. 

 

Table 2.7: Local Nusselt numbers ( Nu ) and the fully developed Nusselt numbers ( fdNu ) 

values with various Hartmann numbers, M at 
*
= 0.38 

 
M Nu   

fdNu  

 1 9.753 9.894 

 5 9.832 9.971 

10 10.143 9.165 

 

Comparison with the work done by Bhargavi and Reddy [75] using LTE for F = 0.0 

and M = 0.0  

 

A comparison has been made for large Bi and   = 1.0, the same as the LTE condition 

given in Bhargavi and Reddy [75]. Hence, the present work has been compared with 

that of Bhargavi and Reddy [75] for Darcy numbers Da = 0.005 and 0.1 at F = 0 and M 

= 0. Variation of Nu  with 
*  is given in Fig. 2.19. From Fig. 2.19, the present results 

for large Bi and   = 1.0 match Bhargavi and Reddy’s [75] results. 
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Fig. 2.19: Comparison of Nu  with the literature Bhargavi and Reddy [75] for F = 0 

   

Similarly, for the LTE model (immense value of Bi), and in the absence of 

Hartmann number and Forchheimer number, the values of Nu  have been compared 

with those obtained from the experimental study by Jiang et al. [219] with appropriate 

scaling. Nu  values have been calculated in an empty plate channel (i.e., in case of large 

Da values) given in Fig. 2.20. The experiment results are taken for water at two different 

Reynolds numbers Re  = 300 and Re  = 550. The agreement is good. 
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Fig. 2.20: Comparison of Nu  for different 

*
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2.8     Conclusion 

The current work involves the numerical study of forced convection heat transfer at the 

thermal entry of parallel plate channels filled with porous medium under LTNE using 

a successive acceleration replacement (SAR) scheme. The parallel plates were exposed 

to a constant wall heat flux. The flow field is unidirectional and obeys Darcy Brinkman 

Forchheimer equation. The problem is defined by Darcy number (Da), Forchheimer 

number (F), Hartmann number (M), Biot number (Bi), and thermal conductivity ratio (

 ). 

 

The numerical solution has been obtained for velocity, skin friction coefficient, 

temperatures in both phases porous and fluid, and dimensionless temperature based on 

bulk mean temperature, wall temperature, and local Nusselt number at the entrance for 

LTNE condition. The key findings on the behaviour of the investigated system are: 

 

i. Velocity decreases slightly as the Forchheimer number increases. However, 

velocity falls with an increase in Hartmann's number. Additionally, velocity 

increases as the Darcy number rises, and at a significant value of Da, the 

velocity attains the velocity in the fluid region. As the Forchheimer number 

increases, ReCfp increases at a given Da. Da (> 1.0) is prominent ReCfp tends to 

6.0 (value in the clear fluid region). Similarly, at a given Da, ReCfp increases as 

the Hartmann number increases, and for prominent Da (> 1.0), ReCfp tends to 

6.0. 

ii. For the Darcy Brinkman Model, analytical equations for dimensionless 

temperature and the fully developed Nusselt number are found for the fully 

developed thermal field, both in the presence of the Hartmann number and 

without the Forchheimer term (F = 0). 

iii. For all Darcy numbers (Da) and Forchheimer numbers (F), as Biot number (Bi) 

increases, the temperatures of the porous and fluid phases decrease, and hence, 

LTE is approached. That means LTNE tends to LTE. When   = 1.0, f  profile 

is the same for the local thermal equilibrium (LTE) f  profile when Bi is huge. 

In the presence of Forchheimer numbers, the Hartmann number increases, f  

and p  decrease. Also, values of p  are larger than f . 
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iv. For large Da > 0.1, high   (say  = 10.0), and small Bi, there is a large 

temperature difference between the two phases. So, the LTNE model can be 

used. 

v. Wall temperature ( wf  and, wp ) increases as *  increases for all Biot numbers, 

from being initially nonlinear to subsequently becoming linear for *  > 0.005, 

which is the onset of a fully developed condition. A fully developed condition 

is shown even when LTNE is used. It serves the purpose of the downstream 

boundary condition when axial conduction is used (elliptic PDE). Moreover, 

wp > wf  because heat transmission from fluid to porous is greater at porous 

wall temperature than at fluid wall temperature. 

vi. As the thermal conductivity ratio and Biot number grow, the local Nusselt 

number decreases. However, it increases with an increase in Hartmann's 

number. There is a low effect on Nu  due to Forchheimer number (F). 

vii. Hence, as a result of the current research work, it is possible to deduce that small 

  can improve heat transmission in the entry of porous-filled channels. It is 

better to use LTNE conditions at the channel entrance. 
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Chapter 3 

Forced Convection Heat Transfer at the Entry Region 

of the Porous Filled Channel with Axial Conduction 

Effect 

 

3.1 Introduction 

This study explores the impact of axial conduction on forced convective heat transfer 

characteristics within a channel filled with porous material undergoing thermal 

development under LTNE. The channel's walls experience a constant heat flux, and the 

flow within the porous region follows the Darcy Brinkman model. The investigation 

quantifies the influence of the Biot and Peclet numbers on heat transfer enhancement. 

A transverse magnetic field is applied along the channel walls, and the system is 

characterized by well-known parameters such as Darcy number (Da), Hartmann 

number (M), Biot number (Bi), Peclet number (Pe), and thermal conductivity ratio. 

Numerical solutions are obtained using a successive accelerated replacement (SAR) 

scheme and presented dimensionless temperature profiles in the fluid and porous phases 

and plots of the local Nusselt number. At low Pe, the axial conduction effect is more 

pronounced for all Bi, whereas at large Pe, the axial conduction effect becomes 

negligible. The local Nusselt number decreases with an increase in the ratio of thermal 

conductivity and the Biot number. For a large Biot number, LTNE is equivalent to LTE. 

 

3.2 Mathematical Model 

The schematic model and coordinate system is discussed in Chapter 2§, 3.2. The Darcy 

Brinkman model for the fluid flow through the porous region. The field includes axial 

conduction. Heat generation and thermal dispersion are negligible. The thermophysical 

properties are constant. 
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(a) Dimensional (b) Dimensionless 

Fig. 3.1: Schematic model and the parallel plate channel coordinate system 

 

Governing Equations 

 

The momentum equation for the fluid flow across a porous medium by employing the 

Darcy Brinkman model is given by: 

 

2

*2 *e

d u dp
u J B

dy K dx


 − +  =   

(3.1) 

 

In Eq. (3.1), u denotes the velocity in the porous medium, and 
e ,  , and K  are 

effective viscosity, fluid viscosity, and permeability in the porous region, respectively. 

J  is the electric current density and, B  is the magnetic induction vector of the applied 

uniform magnetic field. The formulation of the Lorentz force is discussed in Chapter 

2§, Eq. (2.1). Thus, the governing equations given in Eq. (3.1) are reduced to: 

 

2
2

0*2 *e

d u dp
u B u

dy K dx


 − − =                                              (3.2) 

 

The steady-state conservation of thermal energy equations of the fluid and 

porous phases are given by: 

 

Fluid phase  

 

( ) ( )
2 2

* *2 *2

f f f

p fe pf pf p f

T T T
C u k a h T T

x x y


    
= + + −         

              (3.3) 
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Porous phase 

 

( )
2 2

*2 *2
0

p p

pe pf pf p f

T T
k a h T T

x y

  
+ − − =    

                              (3.4) 

 

In Eqs. (3.3) and (3.4),   is density, pC  is the specific heat, fT  is the fluid phase 

temperature, pT  is the porous phase temperature, fek  is the effective fluid thermal 

conductivity, pek  is the effective porous thermal conductivity, respectively. pea  is the 

interfacial area per unit volume of the porous media, and pfh  is the porous-to-fluid heat 

transfer coefficient in the literature. 

 

Boundary Conditions 

Hydrodynamics boundary conditions are as follows: 

 

( )*0,     at  ,     No-slip condition
2 2

H H
u y= = −               (3.5) 

 

Thermal boundary conditions are given by: 

 

( )

*

* *

*

* *

,     at  
2

     Heat flux condition

,     at  
2

f p

fe w pe w

f p

fe w pe w

dT dT H
k q k q y

dy dy

dT dT H
k q k q y

dy dy


= = = 



− = − = = −


           (3.6) 

 

( ) ( )* *

, 0, ,        Inlet condition
2 2

f p e

H H
T y T y= −                 (3.7) 

 

, *

*
  = 0   at   (Exit condition)

2 2

f p w

b w

T T H H
y

x T T

− 
−   

 − 
             (3.8) 

 

( )     Porous-fluid interfacep f interfaceT T T= =                       (3.9) 

 

In Eq. (3.9), the temperature at the porous-fluid interface is denoted by Tinterface. 
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Dimensionless Variables 

 

The following dimensionless variables are utilised to construct the governing equations, 

boundary conditions, and porous-fluid interface condition {Eqs. (3.2) to (3.9)} 

dimensionless. 

 

( ) ( )

* *

2 2

* *

,  ,  ,  

,  

avg

avg

f e p e

f p

w w

f f

ux y u
U U

dp dpH H
H H

dx dx

T T T T

q H q H

k k


 

 




= = = =
   

− −    
    





− − = =
   
           

           (3.10) 

 

In Eq. (3.10),   and   are the dimensionless coordinates along the *x  and *y  

directions. The dimensionless temperature and velocity are denoted by   and U, 

respectively. The fluid and porous phases are designated by subscripts f  and p , 

respectively. The average velocity across the channel is denoted by avgu . The 

normalized 
*  can be defined as, 

 

*

Pe


 =                                                                              (3.11) 

 

The governing equations (Eqs. (3.2) to (3.4)) in dimensional form become 

dimensionless form after applying the dimensionless variables are given in Eq. (3.10). 

 

2
2

2

1 1
1 0

d U
M U

d Da 

 
− + + = 
 

                                        (3.12) 

 

( ) ( )
2 2

* 2 *2 2

1

1 1
 

f f fN

c p fU A Bi
k Pe

  
   

  

   
= + + − 

    
           (3.13) 

 

( )
2 2

2 *2 2

1
0

p p

c p fA Bi
Pe

 
 

 

 
+ − − =

 
                            (3.14) 
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In Eqs. (3.13) and (3.14), the presence or absence of the axial conduction term 

depends on the value of Ac. Specifically, when Ac = 0, the axial conduction term is 

omitted, whereas when Ac = 1, the axial conduction term is included. Furthermore, 

where Ac = 0, the solutions to Eqs. (3.13) and (3.14) with respect to the thermal field 

are independent of Pe in terms of their dependence on * . 

 

Eq. (3.13) and (3.14) are the dimensionless form of thermal energy equations in 

fluid and porous phase, respectively (LTNE model) and Da, M, Pe, Bi, and   denote 

Darcy number, Hartmann number, Peclet number, Biot number, and thermal 

conductivity ratio, respectively; ε and k1 represent the ratio between the viscosity of the 

fluid to the effective viscosity of the porous, and fluid thermal conductivity to effective 

fluid thermal conductivity, respectively and it is defined as: 

 

2

K
Da

H
=                                                                                (3.15) 

 

2 2

0

f

B H
M




=                 (3.16) 

 

avgu H
Pe


=                                                                                  (3.17) 

 

2

pf pf

pe

a h H
Bi

k
=                                                                        (3.18) 

 

pe

fe

k

k
 =                                                                                     (3.19) 

 

e





=                                                                                     (3.20) 

 

1

f

fe

k
k

k
=                                                                                     (3.21) 
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In Eq. (3.17),   is the thermal diffusivity and fk  in Eq. (3.21), is the thermal 

conductivity in the fluid region. 

 

In Eq. (3.13), ( )NU   is normalized velocity and can be calculated by, 

 

( )
( )N

avg

U
U

U


 =                                                                      (3.22) 

 

In Eq. (3.22), avgU , the average velocity is calculated by the following formula: 

 

( )
1/2

1/2

avgU U d 
−

=                  (3.23) 

 

Dimensionless Boundary Conditions 

 

Hydrodynamics boundary conditions are as follows: 

 

1 1
0,    at  ,

2 2
U = = −                                                         (3.24) 

 

Thermal boundary conditions are given by: 

 

1 2

1 2

1
,            at  

2
 

1
,       at  

2

f p

f p

k k

k k

 


 

 


 

  
= = = 

  


  = − = − = −
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                        (3.25) 

 

( ),

1 1
0, 0,    for 

2 2
f p  = −                                        (3.26) 

 

*

* * *

* *

* *

* * *

1 1
0   at   for 

2 2

f f

b
fd

p p

  

  
  

  

  

 
= 

  
=   −  

  =
  

           (3.27) 

 

f p interface  = =                                                                    (3.28) 

 



83 
 

In Eq. (3.25), the ratio, 
2k  is defined by 

 

2

f

pe

k
k

k
=                                                                                   (3.29) 

 

In Eq. (3.27), *

fd  is the normalized fully developed length. Dimensionless bulk 

mean temperature, ( )* *   and the dimensionless temperature based on the bulk mean 

temperature, ( )*

b   are defined by 

 

( )
( )* *

/

b e

f

T T

qH k
 

−
=                                                                     (3.30) 

 

( )
( )

( )
*

*

e

b

b e

T T

T T


 



−
= =

−
                                                           (3.31) 

 

In Eqs. (3.30) and (3.31), 
bT  is the bulk mean temperature. 

 

3.2.1 Velocity Expression 

 

The expression of normalized velocity (Eq. (3.22)) is given by 

 

( )

2 2 2 2

2 2

1 1 1 1 1
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2
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−    
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 
−  

 

       
+ + + +       

       

   
+ +   

    

        (3.32) 

 

 

3.3 Numerical Methodology 

 
Numerical solutions for Eqs. (3.13) and (3.14), with the boundary conditions on φ, as 

specified in Eqs. (3.25) to (3.27) have been computed using the successive accelerated 

replacement (SAR) scheme using the velocity expression given in Eq. (3.32). This 

numerical method is described in Satyamurty and Bhargavi [74] and Bhargavi and 
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Reddy [75]. By employing the SAR scheme, the study obtained approximate solutions 

that satisfy the given equations and boundary conditions, facilitating the analysis and 

understanding of the system's behaviour. The iterative scheme, initially developed by 

Lieberstein [207], was designed to solve systems of nonlinear algebraic equations, 

particularly those characterized as mildly nonlinear elliptic partial differential 

equations. Over the years, this scheme has found extensive application in solving 

nonlinear ordinary differential equations that arise in compressible flows, as evidenced 

in the works of Lew [206] and Dellinger [208]. Dellinger [208] coined the term SAR 

to refer to this specific iterative approach. 

 

 

3.3.1 Application of the SAR Method 

 

Non-uniform: 

 

Non-uniform grids described in Chapter 2, § 2.6.1 have been employed in the axial 

direction. Let PD and QD represent the number of divisions in   and   directions, 

respectively, while *  and   represent the width in   and   directions, respectively. 

When the terms in energy Eqs. (3.13) and (3.14) are expressed in finite difference form, 

the errors f  in the fluid phase and p  in the porous phase are given by: 
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  (3.34) 

 

The following derivatives are required to correct the profile for f  and p : 
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Discretized boundary conditions are as follows: 

 

Wall boundary conditions 
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Inlet boundary condition 

 

( ) ( ), 1, 0  for  1 1
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Exit boundary condition 
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Further, in Eq. (3.40) 

 

( ) ( )* * *1P P P   = + −                                                                                                          (3.41) 

 

 

3.4 Local Nusselt Number 

The local heat transfer coefficient ( h ) is determined at the wall 
* / 2y H=  adjacent to 

the porous medium. 
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*

*

2

f

fe w b
H

y

T
k h T T

y
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− = −


                                              (3.42) 
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In Eq. (3.42), the bulk mean temperature (
bT ) is denoted as follows: 
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uT dy
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−
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

                                                                     (3.43) 

  

In terms of dimensionless variables {using Eq. (3.10)}, the local Nusselt 

number at 1/ 2 = , Nu  is given by: 
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 
= = =

− −
               (3.44) 

 

In Eq. (3.44), w  and *  are defined in Chapter 2, § Eqs. (2.33) and (2.34) and *  is 

evaluated by Eq. (2.35) in Chapter 2. 

 

 

3.5 Numerical Results and Discussions 

Numerical solutions have been obtained using the thermal energy two-equation model 

(Eqs. (3.13) and (3.14)) in a channel filled with a porous medium. The fully developed 

velocity profile (Eq. (3.32)) has been employed in the numerical analysis to simulate 

and investigate the system's heat transfer and thermal behaviour. It is assumed that 

1 / 1f fek k k= = , 2 / 1f sek k k= = , and / 1eff  = = . 0.001 ≤ Da ≤ 0.1, 0.5 ≤ M ≤ 65, 5 ≤ Pe 

≤ 100, 10 ≤ Bi ≤ 100, and 0.1 ≤   ≤ 10 are the ranges used for parameters. 

 

3.5.1 Thermal Field 

 

This section examines dimensionless temperature profiles, dimensionless temperature 

based on the bulk mean temperature in both fluid and porous phases, and local Nusselt 

number for flow through the porous-filled channel. 
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The dimensionless temperature in the fluid phase and porous phase: 

 

To investigate the effects of axial conduction, Hartmann number (M), Biot number (Bi), 

and thermal conductivity ratio ( ) in a thermally developing region, plots are presented 

for different values of Pe, M, Bi, and   at various values of normalized dimensionless 

axial distances, * . These plots allow for a comprehensive analysis of how the above 

parameters impact thermal development and heat transfer characteristics within the 

system at different positions along the channel. 
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Fig. 3.2: Impact of (a) f  and (b) p  for distinct 
*
 values for Bi = 10, Pe = 5, M = 1, and   = 0.1 

at Da = 0.001 

 

Dimensionless temperature profiles, f  in the fluid phase and p  the porous 

phase are given in Fig. 3.2 at Da = 0.001, Bi = 10, Pe = 5, M = 1, and   = 0.1. A similar 

type of plot is given for large values of Pe (Pe = 100), M (M = 65), Bi (Bi = 100), and 

  (  = 10) in Figs. 3.3 to 3.6, respectively. The temperature behaviour of the fluid and 

porous phases will depend on the system's specific heat transfer mechanisms and 

boundary conditions. From Figs. 3.2 to 3.6, both the fluid and porous phases 

temperatures ( ,f  and p ) might experience temperature increases with normalized 

axial distance, *  for all the values of parameters Pe, M, Bi, and  . It could occur when 

there is significant heat exchange between the phases, which absorb heat from the 

surroundings. 
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Fig. 3.3: Impact of (a) f  and (b) p  for distinct 
*
 values for Bi = 10, Pe = 100, M = 1, and   = 

0.1 at Da = 0.001 
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Fig. 3.4: Impact of (a) f  and (b) p  for distinct 
*
 values for Bi = 10, Pe = 5, M = 65, and   = 0.1 

at Da = 0.001 

 

From Figs. 3.2 and 3.3, as Peclet number, Pe increases (from Pe = 5 to 100), 

f  and p  increase for every value of * . According to this, convection becomes 

more significant than diffusion when the Peclet number, Pe rises. As a result, mixing 

and heat exchange within the system are more effectively facilitated. In such situations, 

convective heat transfer becomes more prevalent. Hence, under the LTNE model, 
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increasing Pe may enhance fluid-porous interaction, promoting better heat exchange 

between the phases. The Hartmann number, M, impacts the system's thermal behaviour 

in the context of heat transfer under LTNE. From Figs. 3.2(a, b) and 3.4(a, b), as M 

increases, f  decreases numerically for all values of * . 

 

The effect of the Biot number, Bi, on the temperature profile is shown in a plot 

for Bi value (Bi = 100) in Fig. 3.5(a, b) for f  and, p . By comparing Figs. 3.2(a, b) 

and 3.5(a, b), as Bi increases from Bi = 10 to 100, p  decreases and tends to f  (LTE 

model). It means for the immense value of Bi, LTNE tends to LTE. A large Biot number 

indicates that the internal thermal resistance is dominant, meaning that heat transfer 

within the porous is less efficient than heat transfer across the porous-fluid interface. 

Furthermore, the heat transfer within the porous medium approaches thermal 

equilibrium, and the porous temperature becomes nearly uniform. As a result, the 

temperature difference between the fluid and porous phases at the interface decreases, 

and local thermal non-equilibrium effects become less pronounced. In such cases, the 

system behaviour becomes more like LTE, where the fluid and porous phases are nearly 

at the same temperature at the interface. This fact is also reported in the literature (Yi 

et al. [37]; Torabi et al. [117]).  
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Fig. 3.5: Impact of (a) f  and (b) p  for distinct 
*
 values for Bi = 100, Pe = 5, M = 1, and   = 0.1 

at Da = 0.001 
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To assess the effect of thermal conductivity ratio,   ( )/pe fek k= , the plot for 

the temperature profile is given in Fig. 3.6 for   = 10.  By comparing Figs. 3.2(a, b) 

and 3.6(a, b), as   increases from   = 0.1 to 10.0, f  as well as p  increase. Heat 

may be transferred more effectively inside porous materials if the porous phase has 

more effective thermal conductivity. As a result, the porous phase may experience a 

greater temperature increase because it can absorb and transport heat more efficiently. 

From the temperature profiles, it can be observed that p f   for a low value of Bi. 

This fact is also true in the absence of axial conduction (i.e., Ac = 0) and is also discussed 

in Chapter 2, § 2.7.2. 
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Fig. 3.6: Impact of (a) f  and (b) p  for distinct 
*
 values for Bi = 10, Pe = 5, M = 1, and   = 10 

at Da = 0.001 

 

Dimensionless temperature based on bulk mean temperature in the fluid phase and 

porous phase: 

 

Dimensionless temperature based on bulk mean temperature in the fluid phase, ,b f  

and in the porous phase, ,b p  are given in Fig. 3.8 for Da = 0.005, M = 1, Pe = 5, Bi = 

10, and   = 0.1.  From Fig. 3.8, it is clear that ,b f  and, ,b p  tend to zero for large *  

≥ 0.35 for any Da, M, Pe, M, Bi, and  . It means that ,b f  and ,b p  are invariant with 
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respect to *  for large * , which is a fully developed condition. This type of validation 

is available in Repaka and Satyamurty [151] for LTE. 
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Fig. 3.7: Effect of (a) 
,b f  and (b) 

,b p  for various values of Da = 0.005,   = 0.1, Pe = 5, and Bi = 

10 at M = 1 

 

 

Local Nusselt number 

 

Under conditions of the LTNE model, the local Nusselt number, Nu  number 

significantly affects the heat transfer behaviour at the porous-fluid interface. In this 

section, plots with respect to normalized axial distance, *  are given in Figs. 3.8 and 

3.9 for various values of Darcy number (Da = 0.001, 0.005, 0.01, 0.05, and 0.1) and 

Hartmann number (M = 1, 10, 25, 50, and 65). Similar types of plots are given in Figs. 

3.10(a, b) and 3.11(a, b) for Nu  vs. *  and for Nu  vs. axial distance,   for different 

values of Pe, Pe = 5, 10, 25, 50, 100, and Ac = 0, respectively for Da = 0.005, M = 1, 

and   = 0.1 at Bi = 10 and 100, respectively. 
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Fig. 3.8: Effect of local Nusselt number, Nu  

with *  for various Darcy numbers (Da) at Pe = 

5, M = 1, Bi = 10, and   = 0.1 

Fig. 3.9: Effect of local Nusselt number, Nu  

with *  for various Hartmann numbers (M) at Pe 

= 5, Da = 0.005, M = 1, Bi = 10, and   = 0.1 

 

The pattern in the change of Nu  with *  for the channel passing through a 

porous material is comparable to the trend for the channel with clear fluid flow under 

the LTE, which has been extensively described (ref. [75]). From Figs. 3.8 to 3.13, it is 

observed to decrease with increasing *  and tends to the fully developed value for a 

given Da, M, Bi, Pe, and  . It can be seen from Figs. 3.10(b) and 3.11(b), that as   

increases, Nu  also decreases for a given Da, Bi, Pe, and  . Since the portion of the 

energy conveyed from the wall manifests as a local enthalpy increase of the fluid in the 

case of fluid heating, where fluid axial heat conduction is present, the remaining energy 

is carried upstream via the fluid to the inflow header. Even though thermal energy 

would warm up the incoming flow, the initial state prevents preheating; hence, the 

analysis does not include it. As a result, any fluid cross-section has a lower bulk mean 

temperature, a higher temperature difference between the wall and bulk mean 

temperatures, and higher wall gradients than the local case with no axial conduction but 

with the same T = Te at * = 0. The local Nusselt number rises for a given *  as Pe 

decreases for finite fluid axial heat conduction. It implies that as Pe lowers, the thermal 

entrance length *  also grows. 

 

The effect of Da and M is given in Figs. 3.8 and 3.9. According to this, as Da 

increases, Nu  decreases and tends to the Nusselt number value in the fluid region. It 



94 
 

occurs because the porous medium acts like a clear fluid as its permeability rises. It has 

been found that Nu → 8.233 for Da ≥ 0.2. It is a value of a fully developed Nusselt 

number for a clear fluid channel subject to constant wall heat flux. This fact is given in 

Shah and London [1]. However, the magnetic forces become more dominant at higher 

Hartmann numbers (M > 1), influencing the heat transfer behaviour seen in Fig. 3.9 

and,  increases with an increase of M. It is because, the presence of a magnetic field can 

chage the thermal boundary layer at the porous-fluid interface. As a result, the thermal 

resistance at the contact may rise, increasing the convective heat transfer coefficient (

h ) and the value of Nu . 
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Fig. 3.10: Effect of local Nusselt number ( Nu ) with (a) *  (normalized dimensionless axial 

distance), and with (b)   (dimensionless axial distance) for various values of Pe for   = 0.1, Bi = 10, 

M = 1, and Da = 0.005 

 

From Fig. 3.10(a), as Pe increases from 5 to 100, Nu  decreases with each 

values of *  (for Da = 0.005, M = 1, Bi =10, and   = 0.1) while in Fig. 3.10(b) Nu  

increases with each value of  , which indicates that convection is more dominant than 

diffusion. In this regime, Nu  (with  ) increases as the convective heat transfer 

becomes more efficient. It happens for all values of parameters Da, M, Bi, and  . The 

axial conduction effect is negligible, i.e., Ac = 0, for large Pe (≥ 100). This observation 

is also seen in Fig. 3.11(a, b). Nu  tends to different constant values for large * . 

Further, it can be expected that for a large value of Bi, the fully developed values of 
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Nu  depend on Darcy's number. By comparing Figs. 3.10(a, b) and 3.11(a, b), Nu
 

decreases as the Biot number, Bi, increases. It is due to the dominant behaviour of 

internal thermal resistance, and the system exhibits substantial LTNE effects. Hence, 

Nu
 decreases as the heat transfer at the interface becomes less efficient due to the 

temperature difference between the porous and fluid phases. 
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Fig. 3.11: Effect of local Nusselt number ( Nu ) with (a) *  (normalized dimensionless axial 

distance), and with (b)   (dimensionless axial distance) for various values of Pe for   = 0.1, Bi = 

100, M = 1, and Da = 0.005 

 

0.0001 0.0010 0.0100 0.1000

0

20

40

60

80

100

120

140

160

180

200

220

240

260

N
u


*

  = 0.1

  = 1.0

  = 5.0

  = 10.0

 

0.0001 0.0010 0.0100 0.1000

0

20

40

60

80

100

120

140

160

180

200

220

240

260

N
u


*

  = 0.1

  = 1.0

  = 5.0

  = 10.0

 

           (a)            (b) 

Fig. 3.12: Effect of local Nusselt number ( Nu ) with *  for Da = 0.005, M = 1, and Bi = 10 for 

various values of   for (a) Pe = 5, and (b) Pe = 100 
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Fig. 3.13: Effect of local Nusselt number ( Nu ) with *  for Da = 0.005, M = 1, and Bi = 100 for 

various values of   for (a) Pe = 5, and (b) Pe = 100 

 

The effect of thermal conductivity ratio,   on Nu  with *  is also analyzed and 

illustrated in Fig. 3.12(a) and Fig. 3.12 (b) at Da = 0.005, M = 1, Bi = 10 and for Pe = 

5 and 100, respectively, and, for large Bi, Bi = 100, plots with similar pattern are given 

in Fig. 3.13(a, b). The significant findings are seen in Figs. 3.12 and 3.13 as (i) at a 

given Pe, the value of Nu  is less affected by Bi and, (ii) regarding   ( )/pe fek k= , a 

significant change has occurred. For all Pe and Bi, Nu  diminishes as   rises, and (iii) 

by comparing (a) and (b) of Figs. 3.12 and 3.13, Nu  decreases for all the values of   

as Pe increases at a given Bi. (iv) As Bi increases, Nu  decreases, and this effect is 

more at a significant value of Pe, and  . The observed behaviour is consistent with 

Nield et al. [34]'s boundary condition of a constant wall temperature. A higher ratio,   

allows for the formation of a porous medium in which the porous phase's effective 

thermal conductivity is greater than that of the fluid phases. As a result, Nu  for the 

porous material-filled channel falls since it is directly related to the fluid phase's 

convective heat transmission properties. 
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3.6 Conclusion 

 
Forced convection in the entry region of a porous material-filled channel under LTNE 

with axial conduction has been studied numerically. When axial conduction is included, 

it becomes evident that the dimensionless temperature and other derived values are 

highly dependent on the Peclet number. This dependence continues when normalised 

dimensionless axial distance is introduced. The following are the main findings of the 

present investigation: 

 

i. In the presence of axial conduction, as the Hartmann number increases, 
f  and 

p  decrease. However, LTNE tends to be LTE for high Biot numbers. 

ii. As the thermal conductivity ratio,   increases, f  and p  increase for each value 

of *  and for a given Da, Pe, M, and Bi. Also, values of p  are larger than .f  

iii. Under LTNE, ,b f  and ,b p  are invariant with respect to *  for large * , which 

makes the onset of a fully developed condition. 

iv. Local Nusselt number, Nu  depends on the values of Pe, Bi,  , and Da. 

v. Axial conduction effect is negligible for a large value of Peclet number, Pe (≥ 

100) in the LTNE also, except very near the entry. 

vi. Local Nusselt number, Nu  decreases as thermal conductivities and Biot 

numbers increase. It increases with an increase in Hartmann's number. 

vii. Nu  decreases as *  increases for all Da, Bi, and   and reaches as the fully 

developed values for 
*  > 0.35. However, it decreases as Pe decreases at a given 

 . 

viii. For a considerable value of Da, Da ≥ 0.2, Nu → 8.233. It is the value of a fully 

developed Nusselt number in a clear fluid channel. 

 

 

 

Chapter 4 
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Forced Convection Heat Transfer at the Entry Region 

of the Porous Channel with Viscous Dissipation 

 

4.1 Introduction 

Viscous dissipation is essential to forced convective heat transfer, mainly when dealing 

with fluid flow in channels or pipes with significant velocity gradients. When a fluid 

flows through a channel, it experiences frictional forces due to interaction with the 

channel walls, resulting in energy loss in the form of heat. This article employs the 

effect of two viscous dissipation models, the clear fluid compatible (CFC) model and 

the form drag (FD) model at the thermal entrance. The thermal characteristics of fluid 

flowing through a porous material immersed in a parallel plate channel have been 

studied. It is investigated numerically under the local thermal non-equilibrium model 

(LTNE). The channel walls are subjected to constant heat flux boundary conditions. 

Numerical solutions have been obtained for the thermal field. The increase in Brinkman 

number and thermal conductivity ratio improves the temperature distribution. The 

parametric structure of this study permitted mapping LTNE and local thermal 

equilibrium (LTE) areas across a wide range of these dimensionless parameters. 

Enhancement in the local Nusselt number is obtained in CFC model compared to the 

value in FD model. The effect of the magnetic field and Forchheimer number are 

neglected in the present study. The definitions of velocities, dimensionless 

temperatures, and other notations remain the same as those employed in Chapter 2. 

 

 

4.2 Mathematical Model 

The parallel plate channel's schematic model and coordinate system are shown (Chapter 

3, § Fig. 3.1).  The thermal field includes viscous dissipation. Porous and fluid regions 

are in LTNE. The porous medium is isotropic and homogeneous. Heat generation and 

axial conduction are negligible. The thermophysical properties are constant. 

Governing Equations 
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The steady-state conservation of thermal energy equations of the fluid and porous 

phases are given by: 

 

Fluid phase  

 

( ) ( )
2

* *2

f f

p fe pf pf p f i

T T
C u k a h T T

x y
 
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                                           (4.1) 

 

Porous phase 

 

( )
2
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0

p

pe pf pf p f

T
k a h T T

y


− − =


                                          (4.2) 

 

In Eqs. (4.1) and (4.2),   is density, pC  is the specific heat, fT  is the fluid phase 

temperature, pT  is the porous phase temperature, fek  is the effective fluid thermal 

conductivity, pek  is the effective porous thermal conductivity, respectively. pea  is the 

interfacial area per unit volume of the porous media and pfh  is the porous-to-fluid heat 

transfer coefficient in the literature. 

 

In Eq. (4.1), i  is the dissipation function, (i) the clear fluid compatible (CFC) 

model due to Al-Hadhrami et al. [139], and (ii) the form drag (FD) model due to Nield 

[140]. 

 

CFC model is given below: 

 

2

2

1 *e

du
u

K dy


 

  
= +  
   

                                                  (4.3) 

 

FD model is as follows: 

 

2
2

2 *2e

d u
u u

K dy


 

 
= − 
 

                                                        (4.4) 

The boundary conditions for the governing equations and the dimensionless 

variables are the same as in Chapter 2, § Eqs. (2.6) and (2.7), and Eq. (2.9). 
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The governing equations (Eqs. (4.1) and (4.2)) in dimensionless form after 

applying the dimensionless variables (Chapter 2, § Eq. (2.9)) are given by 

 

( ) ( )
2

1 i* 2
 

f fN

p fk U Bi
 

    
 

 
= + − +

 
                      (4.5) 

 

( )
2

2
0

p

p fBi


 



− − =


                                                 (4.6) 

 

In Eq. (4.5), i  is the dimensionless form of viscous dissipation models and is given 

by 

 

CFC model is given below: 

 

( )
2

2

1

N
N Da dU

Br U
d


 

  
= +  

   

                                       (4.7) 

 

FD model is as follows: 

 

( )
2

2

2 2

N
N NDa d U

Br U U
d


 

 
= − 

 
                                           (4.8) 

 

The normalized axial distance, 
*  can be defined as: 

 

*

Pe


 =                                                                                (4.9) 

 

In Eq. (4.9), Pe is the Peclet number defined in Chapter 3 §, Eq. (3.17). 

 

In Eqs. (4.5) to (4.8) , Da, Br, Bi, and   denote the Darcy number, Brinkman 

number, Biot number, and thermal conductivity ratio, respectively; however, ε and k1 

represent the ratio between the viscosity of the fluid to effective viscosity of the porous 

medium, and fluid thermal conductivity to effective fluid thermal conductivity, 

respectively, and it can be defined as follows: 
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2

K
Da

H
=                                                                                (4.10) 

 

2

ref

w

u H
Br

q K


=                                                                                  (4.11) 

 

2

pf pf

pe

a h H
Bi
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=                                                                        (4.12) 

 

pe

fe

k

k
 =                                                                                     (4.13) 

 

e





=                                                                                     (4.14) 

 

1

f

fe

k
k

k
=                                                                                     (4.15) 

 

In Eq. (4.15), kf is the thermal conductivity in the fluid region. ( )NU   is normalized 

velocity given in Chapter 3, § Eqs. (3.32) is used to solve the coupled system of 

equations (Eq. (4.5) and (4.6)) by taking the Hartmann number (M = 0). 

 

Dimensionless Boundary Conditions 

 

1 2

1 2

1
,            at  

2

1
,       at  

2

f p

f p

k k

k k

 


 

 


 

  
= = = 

  


  = − = − = −
  

                        (4.16) 

 

( ),

1 1
0, 0,    for 

2 2
f p  = −                                        (4.17) 

 

f p interface  = =                                                                    (4.18) 

In Eq. (4.16), the ratio, k2 is defined by 
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2

f

pe

k
k

k
=                                                                                   (4.19) 

 

4.3 Local Nusselt Number 

The local heat transfer coefficient ( h ) is determined at the wall * / 2y H=  adjacent to 

the porous medium. 

 

( )
*

*

2

f

fe w b
H

y

T
k h T T

y


=


− = −


                                              (4.20) 

 

In Eq. (4.20), the bulk mean temperature ( bT ) is denoted as follows: 

 

/2

*

/2

/2
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/2

H

f

H
b H

H

uT dy

T

udy

−

−

=




                                                                     (4.21) 

  
 

Upon dimensionless variables, the local Nusselt number at 1/ 2 = , Nu  is 

given by: 

 

( )

( ) ( )

1

1 2

* *

2

2 2

f

f w w

h H k
Nu

k










   

=

 
−  

 
= = =

− −
               (4.22) 

 

In Eq. (4.22), 
w  and *  are defined in Chapter 2, § Eqs. (2.33) and (2.34) and *  is 

evaluated by Eq. (2.35) (Chapter 2). 

 

 

 

4.4 Numerical Methodology 
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The successive accelerated replacement (SAR) scheme is used to solve the coupled 

thermal energy equations (Eqs. (4.5) and (4.6)), along with the thermal boundary 

conditions on  , as specified in Eqs. (4.16) and (4.17). This scheme is briefly discussed 

in Chapter 2, § 2.6, and utilized in Chapters 2 and 3. 

 

4.5 Numerical Results and Discussions 

Numerical solutions have been obtained for the thermal energy two-equation model 

(LTNE model) in a channel filled with a porous medium. It is assumed that 

1 / 1f fek k k= = , 2 / 1f sek k k= = , and / 1eff  = = . 0.001 ≤ Da ≤ 0.1, 10 ≤ Bi ≤ 100, 

0.8 ≤ Br ≤ 100, and 0.1 ≤   ≤ 10 are the ranges used for parameters. 

 

4.5.1 Thermal Field 

 

In this section, we analyze the dimensionless temperature profiles for both phases (fluid 

and porous), wall temperature, and the local Nusselt number for the flow through the 

channel filled with porous material for the two dissipation models. For the CFC model, 

the temperature in the fluid and porous phases and the local Nusselt number is denoted 

as ,f CFC , 
,p CFC , and , CFCNu . While for FD model, it is denoted as ,f FD , 

,p FD , and 

, FDNu . The notation for wall temperature for the CFC model is given by ,wf CFC , and 

,wp CFC . Plots are given for various values of normalized axial distance, * , to examine 

the effects of the Brinkman number, Br, Biot number, Bi, and thermal conductivity 

ratio,   in thermally developing regions for both models.  

 

The CFC viscous dissipation model: 

 

In the case of the CFC model, plots are given for temperature in both the fluid and 

porous phases in Figs. 4.1(a ,b) and 4.2(a, b) for Brinkman number, Br = 0.8 and 20, 

respectively, at a given value of parameters involving Darcy number (Da), Biot number 

(Bi), and thermal conductivity ratio ( ) (Bi = 10, Da = 0.001, and   = 0.1). From these 
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plots, as *  increases, ,f CFC  and 
,p CFC  increase for each value of the given parameters. 

At a large value of * , ,f CFC  and 
,p CFC  do not tend to zero without dissipation. Since, at 

large * , the conduction term is balanced by the viscous dissipation term. 

 

As Brinkman number Br increases from Br = 0.8 to 20, ,f CFC  and 
,p CFC  grow. 

This is because the two-phase interaction behaves as a heat source in the porous 

medium. At a significant value of Br, the temperature rise will be higher, and the heat 

conduction will be slower. In this model, it is observed that   p, CFC f, CFC  , which 

indicates the presence of LTNE model, when channel walls are subjected to constant 

wall heat flux. 
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Fig. 4.1: Impact of (a) 
,f CFC  and (b) 

,p CFC  for distinct *  values for Bi = 10, Br = 0.8, and   = 0.1 at 

Da = 0.001 
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Fig. 4.2: Impact of (a) 
,f CFC  and (b) 

,p CFC  for distinct *  values for Bi = 10, Br = 20.0, and   = 0.1 

at Da = 0.001 

 

 

The FD viscous dissipation model: 

 

In Fig. 4.3(a, b), dimensionless temperature plots are given for the form drag model 

(FD model) for distinct values of *  at Bi = 10, Da = 0.001,   = 0.1, and Br = 0.8. 

From the Figure, temperatures ,f FD  and 
,p FD  increase with an increase in * . The 

pattern of the temperature of this model (FD model) is similar to the plots of CFC 

model. Quantitatively, there is a slight decrease in the dimensionless temperature.  As 

a result, the FD model's temperatures are lower than those in the CFC model under 

LTNE. 

 

In both the dissipation models, it is observed that the wall temperatures 

1/2 1/2wf wf 
 

=+ =−
=  and 

1/2 1/2wp wp 
 

=+ =−
= , which demonstrate the channel's 

symmetry. For both the dissipation models (CFC and FD models), symmetric profiles 

of f  and p  can be seen at 0 = . Temperatures, f  and p  have a minimum value at 

the centre of the channel (at 0 = ) and attain maximum value at the walls. 
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Fig. 4.3: Impact of (a) 
,f FD  and (b) 

,p FD  for distinct *  values for Bi = 10, Br = 0.8, and   = 0.1 at 

Da = 0.001 

 

 

The behaviour of the thermal field under LTNE at the entry: 

 

Under LTNE, the behaviour of the thermal field at the entry is discussed for both 

viscous dissipation models in this section. At an entry point *  = 0.005, plots are given 

at distinct values of Brinkman number, Br for   = 0.1 and Bi = 50, for Da = 0.001 and 

0.05. For the CFC model, temperature plots ( ,f CFC  and 
,p CFC ) are given in Fig. 4.4(a, 

b); for the FD model, temperature plots ( ,f FD  and 
,p FD ) are shown in Fig. 4.5(a, b). In 

the case of CFC model, it is clear that as Br increases, ,f CFC  and 
,p CFC  increase for each 

value of Da. Similarly, in the case of the FD model, ,f FD  and 
,p FD  grow with an increase 

in Br. By comparing Figs 4.4 and 4.5, in both the phases, temperatures in the FD model 

are less than temperatures in CFC model (i.e., , , , , f p FD f p CFC  ). Hence, more 

temperature plots are given for CFC model. 
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Fig. 4.4: Impact of (a) 
,f CFC  and (b) 

,p CFC  for 

various values of Br at *  = 0.005 at Da = 0.001 

and 0.05 for Bi = 50 and   = 0.1 

Fig. 4.5: Impact of (a) 
,f FD  and (b) 

,p FD  for 

various values of Br at  *  = 0.005 at Da = 0.001 

and 0.05 for Bi = 50 and   = 0.1 

 

 

Effect of Biot number (Bi) and thermal conductivity ratio ( ) on temperature: 

 

To analyze the effect of Bi, plots are given in Fig. 4.6(a, b) for a considerable value of 

Bi, Bi = 100 at Da = 0.001, Br = 0.8, and   = 0.1. Comparing Figs. 4.1(a, b) and Figs. 

4.6(a, b), It can be said that Bi affects the temperature profiles. As Bi increases, ,f CFC , 

decreases for all values of * , Da, and  . Additionally, it is apparent that when Bi rises, 

,p CFC  decreases and tends to ,f CFC . It means that for a significant value of Bi, LTNE 

tends to LTE. The literature reports this fact (Dehghan et al. [126]). Also, in the absence 

of dissipation models, this fact is true and discussed in previous Chapters (Chapters 2 
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and 3). The increased Biot number, Bi, indicates a more intense internal heat exchange 

between the porous and fluid phases of the porous material, which reduces the 

temperature difference between the two phases (i.e., the LTE condition). 

Mathematically, as Bi → , , ,p CFC f CFC →  (i.e., LTNE tends to LTE) from Eqs. (4.5) 

and (4.6). In the absence of the dissipation term (Br) in the fluid phase energy equation, 

this phenomenon also holds in tubes with constant wall temperature boundary 

conditions, as stated in Khashan et al. [35]. 
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Fig. 4.6: Impact of (a) 
,f CFC  and (b) 

,p CFC  for distinct *  values for Bi = 100, Br = 0.8, and   = 0.1 

at Da = 0.001 

 

To access the effect of thermal conductivity ratio,  , on ,f CFC  and 
,p CFC , the 

plots are given for distinct values of  , (  = 0.1, 1.0, 5.0, and 10.0) for Da = 0.001, Bi 

= 10, and Br = 0.8 for different values of *  in Fig. 4.7(a, b). Comparing Fig. 4.1(a, b) 

with Fig. 4.7(a, b), It can be said that the thermal conductivity ratio,   affects the 

temperature profiles. From this comparison, it is clear that ,f CFC  and 
,p CFC  increases 

with an increase in the ratio,  . Additionally, one can see from Fig. 4.1 to 4.6 that 

p f   in both models (CFC and FD models). This finding is stated in the previous 

chapters when the viscous dissipation is eliminated from the energy equation in the 

fluid phase. 
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Fig. 4.7: Impact of (a) 
,f CFC  and (b) 

,p CFC  for distinct *  values for Bi = 100, Br = 0.8, and   = 10.0 

at Da = 0.001 

 

 

Wall temperature for the CFC model 

 

Wall temperature profiles are provided so that the impact of the pertinent factors may 

be seen since wall temperatures are not known because of the constant heat flux at the 

walls. With * , wall temperature variations in fluid ( ,wf CFC ) and porous phases ( ,wp CFC ) 

for Bi = 10, and  = 0.1 for Br = 0.8, and 10 are demonstrated in Fig. 4.8. For all Br 

values, ,wf CFC  and ,wp CFC  rise as *  rises. When *  > 0.03, ,wf CFC  and ,wp CFC  raise initially 

nonlinearly and later linearly. When a constant heat flow is applied to the channel walls, 

this is the prerequisite for the onset of a fully developed temperature field. From Fig. 

4.8, it can be seen that ,wp CFC  > ,wf CFC  because the heat transfer from the fluid to the 

porous increases the temperature of the porous wall more than the fluid wall. 
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Fig. 4.8: Effect of 

 wf, CFC  and 
 wp, CFC  with *  at Da = 0.01,   = 0.1, and Bi = 10 for Br = 0.8, and 

10 

 

 

Local Nusselt number 

 

In this section, the discussion is given for the local Nusselt number for the CFC model 

( , CFCNu ) and the local Nusselt number for the FD model ( , FDNu ) with respect to 

normalized axial distance (
* ) for distinct values of various parameters, Da, Br, Bi, and 

. According to the plots and tables, increasing *  causes a decrease in , CFCNu  and 

, FDNu . This is because the local Nusselt number falls as the fluid traverses downstream 

in the channel until it achieves a constant value. 

 

Analyzing the effect of Brinkman number, Br and Darcy number, Da on , CFCNu

, the plots are given in Fig. 4.9(a, b) at   = 0.1 and Bi = 10 for (a) Da = 0.005, and (b) 

Da = 0.05, respectively, for distinct values of Br. From Fig. 4.9(a, b), as Br increases, 

it decreases. This result is also accurate under the LTE model and discussed by Arici 

and Aydin [162]. Moreover, from these figures, as Da rises, , CFCNu  decreases. The 

effect of the Biot number, Bi, on , CFCNu  is given in Table 4.1. It shows that , CFCNu  

decreases with an increase in Bi for each value of Br and * . 
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Fig. 4.9: Variation in 
, CFCNu  with *  for distinct values of Br at   = 0.1 and Bi = 10 for (a) Da = 

0.005, and (b) Da = 0.05 

 

Table 4.1: Effect of Bi on ,  CFCNu  for various values of Br and *  

 

, CFCNu  

 Bi = 10 Bi = 100 

*  Br = 1 Br = 20 Br = 1 Br = 20 

0.001 30.3878 28.9232 30.0173 28.5970 

0.005 17.2612 16.3520 17.0521 16.1775 

0.050 9.7385 9.2675 9.7318 9.2307 

 

Table 4.2: Effect of parameters Da, Br, and Bi, on ,  FDNu  for various values of *  

 
 

, FDNu  

 Da = 0.01 Da = 0.05 

 Bi = 10 Bi = 100 Bi = 10 Bi = 100 

*  Br = 1 Br = 20 Br = 1 Br = 20 Br = 1 Br = 20 Br = 1 Br = 20 

0.001 30.4690 30.4687 30.0959 30.0957 26.4088 26.4086 26.0872 26.0870 

0.005 17.3118 17.3113 17.1007 17.1002 15.2643 15.2640 15.0991 15.0988 

0.050 9.7645 9.7630 9.7620 9.7605 8.8689 8.8679 8.8907 8.8896 

 

In the case of the FD model, for each value of * , the effect of parameters, Da, 

Bi, and Br, on the local Nusselt number for the FD model, , FDNu  is given in Table 4.2. 

From Table 4.2, , FDNu  decreases with an increase of Da. However, there is 

significantly smaller decrease in the values of , FDNu  with an increase in the Brinkman 

number, Br and Biot number, Bi. 
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Fig. 4.10: Variation in 
, CFCNu  with *  for 

distinct values of   at Bi = 10 and Da = 0.005 for 

(a) Br = 0.8, and (b) Br = 50 

Fig. 4.11: Variation in 
, CFCNu  with *  for 

distinct values of   at Bi = 10 and Da = 0.005 

for (a) Br = 0.8, and (b) Br = 50 

 

 

The effect of ratio,   (for the CFC model) on , CFCNu  is shown in Fig. 4.10(a 

,b) for distinct values of   at Da = 0.005, and Bi = 10 for (a) Br = 0.8, and (b) Br = 50. 

A similar type of plot is given for the FD model in Fig. 4.11(a, b). From the plots with 

respect to   ( )/pe fek k= , it has been a significant variation in the local Nusselt number. 

It is clear that as the ratio   increases (from   = 0.1 to 10), , CFCNu  and , FDNu  

decrease for each value of Da, Br, and Bi. Reducing the thermal conductivity ratio 

improves convective heat transmission, governed by the fluid phase. Without a viscous 

dissipation model, this variation (  variation) can be seen in Nield et al. [34] for 
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constant wall temperature boundary conditions. The Nusselt number for the porous-

filled duct decreases because it is correlated with the convective heat transfer of the 

fluid phase. It is noted that at low values of the ratio  , , , CFC FDNu Nu  . Hence, the 

local Nusselt number in the CFC model is substantial, in contrast to the outcome in the 

FD model. Consequently, the enhanced convectional heat transfer of the CFC model is 

superior. 

 

Comparison and validation 

For the CFC model, a comparison of values of , CFCNu  with the literature (Bhargavi 

and Reddy [75]) is given in Table 4.3 for the LTE model when Br = 0 for large Bi. The 

agreement is good. It is observed that for large Bi (> 335), LTNE tend to LTE. Hence, 

a comparison is made with the LTE model. 

 

Table 4.3: Comparison of the present work with Bhargavi and Reddy’s literature [75] under 

LTE with Br = 0 and large Bi at   = 1 

 

Da 

, CFCNu  

Bhargavi and 

Reddy [75] 

Present study 

(At large Bi) 

0.001 168.7189 168.7015 

0.005 139.0343 139.0308 

0.010 127.6779 127.6610 

0.050 109.2753 109.2075 

0.100 105.2097 105.2033 

 

4.6 Conclusions 

Forced convection at the entry region of a porous material-filled channel under LTNE 

has been numerically examined, including viscous dissipation. The fundamental goal 

of this study is to determine which of the two viscous dissipation models, the CFC 

model or the FD model, is appropriate, as well as the validity of the LTNE assumption. 

The primary findings of the study are as follows: 
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i. The effect of the Brinkman number, Br, can be seen in the temperature profiles 

for both dissipation models (CFC and FD models). 

ii. For each value of Da, Bi, Br and,   the temperature in both phases rises as *  

rises. The increase in Br and ratio  , enhances the temperature distribution. For 

a large Bi, LTNE tends to LTE for each value of Br in both dissipation models. 

However, it is observed that p  > f , which validates LTNE effect. It is valid for 

both models (FD and CFC models). 

iii. In CFC and FD models, temperatures in the CFC model are more than the 

temperatures in the FD model for each value of *  and variable parameters.  

iv. Whenever 0.13p f −   at any computing grid in the channel domain, 

including the developing region, the LTNE condition is claimed. 

v. The local Nusselt number strongly depends on the values of parameters Da, Br, 

Bi, and  . , CFCNu  and , FDNu  decrease with an increase of parameters Br, Da, 

Bi, and ratio  . The effect of these parameters is much less in the FD model 

than in the CFC model. 

vi. In contrast to the result in the FD model, a significant value of the local Nusselt 

number is obtained in the CFC model. As a result, the CFC model has excellent 

increased convectional heat transmission. 
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Chapter 5 

Forced Convection Heat Transfer at the Entry Region 

of the Porous Channel under LTNE with Axial 

Conduction and Viscous Dissipation 

 

5.1 Introduction 

When analyzing forced convection heat transfer in a fluid, it's essential to consider the 

combined effects of axial conduction and viscous dissipation, especially in situations 

where these effects are significant. Axial conduction refers to heat transfer along the 

direction of fluid flow, while viscous dissipation occurs due to the conversion of kinetic 

energy into thermal energy within the fluid. This paper examines the combined impact 

of axial conduction and the clear fluid compatible (CFC) viscous dissipation model 

used at the thermal entry. The thermal properties of fluid flowing through a porous 

substance submerged in a channel formed by parallel plates have been examined. LTNE 

is used to examine it numerically. The boundary condition with constant wall heat flux 

is applied to channel walls. The Darcy Brinkman model porous area is said to control 

flow, which is seen as unidirectional. Numerical solutions have been obtained for the 

thermal field. 

 

 

5.2 Mathematical Model 

The parallel plate channel's schematic model and coordinate system are shown (Chapter 

3, § Fig. 3.1). The thermal field includes axial conduction and viscous dissipation. 

Porous and fluid regions are in LTNE. The porous medium is isotropic and 

homogeneous. Heat generation is negligible. The thermophysical properties are 

constant. The normalized velocity expression is taken from Chapter 3, § Eq. (3.32) for 

M = 0, to solve the coupled thermal energy equations. 
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Governing Equations 
 

The steady-state conservation of thermal energy equations of the fluid and porous 

phases are given by: 

 

Fluid phase 

 

( ) ( )
22 2

2

* *2 *2 *

f f f

p fe pf pf p f e

T T T du
C u k a h T T u

x x y K dy


 

       
= + + − + +                

               (5.1) 

 

Porous phase 

 

( )
2 2

*2 *2
0

p p

pe pf pf p f

T T
k a h T T

x y

  
+ − − =    

                              (5.2) 

 

In Eq. (5.1), the dissipation function is considered for a clear fluid compatible 

(CFC model) with the study by Al-Hadhrami et al. [139]. 

 

The boundary conditions for the governing equations and the dimensionless 

variables are the same as in Chapter 3, § Eqs. (3.5) to (3.8) and Eq. (3.10). 

 

The governing equations (Eqs. (5.1) and (5.2)) in dimensionless form become 

after applying the dimensionless variables (Chapter 3, § Eq. (3.10)). 

 

( ) ( ) ( )
22 2

2

1 * 2 *2 2

1
 

N
f f fN N

c p f

Da dU
k U A Bi Br U

Pe d

  
   

    

     
= + + − + +  

      

(5.3) 

 

( )
2 2

2 *2 2

1
0

p p

c p fA Bi
Pe

 
 

 

 
+ − − =

 
                                                (5.4) 

   

In Eqs. (5.3) and (5.4), the presence or absence of the axial conduction term depends 

on the value of Ac. Specifically, when Ac = 0, the axial conduction term is omitted, 

whereas when Ac = 1, the axial conduction term is included. Furthermore, in the case 

where Ac = 0, the solutions to Eqs. (5.3) and (5.4)  with respect to the thermal field are 
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independent of Pe in terms of the dependence on * . ( )NU   is normalized velocity 

given in Chapter 3, § Eqs. (3.32) is used to solve the coupled system of equations (Eqs. 

(5.3) and (5.4)) by taking the Hartmann number (M = 0). 

 

In Eqs. (5.3) and (5.4), the definitions of the parameters, Da, Pe, Br, Bi,  , ε, 

and k1 are given in Chapter 4, § Eqs. (4.10) to (4.15). 

 

5.3 Local Nusselt Number 

The local heat transfer coefficient (hξ) is determined at the wall * / 2y H=  adjacent to 

the porous medium as follows: 

 

( )
*

*

2

f

fe w b
H

y

T
k h T T

y


=


− = −


                                                (5.5) 

 

In Eq. (5.5) , the bulk mean temperature (Tb) is denoted as follows: 

 

/2

*

/2

/2

*

/2

H

f

H
b H

H

uT dy

T

udy

−

−

=




                                                                                (5.6) 

  

Using dimensionless variables, the local Nusselt number at 1/ 2 = , Nu  is given by: 

 

( )

( ) ( )

1

1 2

* *

2

2 2

f

f w w

h H k
Nu

k










   

=

 
−  

 
= = =

− −
                 (5.7) 

 

In Eq. (5.7), 
w  and *  are defined in Chapter 2, § Eqs. (2.33) and (2.34) and *  is 

evaluated by Eq. (2.35) (Chapter 2). 
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5.4 Numerical Methodology 

Numerical solutions to Eqs. (5.3) and (5.4) with the boundary conditions on ,  as 

specified in Chapter 3, § Eqs. (3.25) to (3.27), have been computed using the successive 

accelerated replacement (SAR) scheme. 

 

 

5.5 Numerical Results and Discussions 

Numerical solutions have been obtained for the conservation of the thermal energy two-

equation model (LTNE model) in a channel filled with a porous medium. It is assumed 

that 1 / 1f fek k k= = , 2 / 1f pek k k= = , and / 1eff  = = . 0.001 ≤ Da ≤ 0.1, 10 ≤ Bi ≤ 

100, 0.8 ≤ Br ≤ 100, 5 ≤ Pe ≤ 100, and 0.1 ≤   ≤ 10 are the ranges used for parameters. 

 

5.5.1 Thermal Field 

 

In this section, we explore the influence of axial conduction and viscous dissipation 

within the thermally developing region. The dimensionless temperature profiles, 

dimensionless temperature based on the bulk mean temperature and the local Nusselt 

number for flow through the porous-filled channel are examined in the present section. 

 

The dimensionless temperature in the fluid phase and porous phase: 

 

To analyze how the Peclet number (Pe), Brinkman number (Br), Biot number (Bi), and 

thermal conductivity ratio ( ) affect thermal development in different regions, we 

present graphical representations of dimensionless temperature profiles in both the 

porous and fluid phases. These plots cover various values of normalized dimensionless 

axial distance, * ( )( )*x Pe H= . From these plots, it is observed that the wall 

temperatures, 
1/2 1/2wf wf 

 
=+ =−

=  and 
1/2 1/2wp wp 

 
=+ =−

= , which demonstrate the 

channel's symmetry and symmetric profiles of dimensionless temperature in the fluid 

phase, f  and in the porous phase, p  can be seen about 0 = . Additionally, f  and p  

have a minimum value at the centre of the channel (at 0 = ) and attains maximum 

value at the walls. 
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From Figs. 5.1 to 5.5, plots are given for Da = 0.001 and at various values of *  

at small and large values of parameters Pe, Bi, Br, and   (Pe = 5, 100, Bi = 10, 100, Br 

= 0.8, 20, and   = 0.1, 10). Under the LTNE model, the normalized axial distance, *  

affects the temperature profile. As *  increases (moving downstream), the fluid 

temperature f  gradually increases due to heat absorption from the porous phase p  and 

approaches thermal equilibrium. Furthermore, even though f  is still lower than p  (

p f  ), it is increasing as it reaches equilibrium with the surface. The comparison of 

Figs. 5.1(a) and 5.1(b) demonstrates this. 
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Fig. 5.1: Impact of (a) 
f  and (b) 

p  for distinct *  values for Bi = 10, Br = 0.8, Pe = 5, and   = 0.1 

at Da = 0.001 

 

 

Under the LTNE model, axial conduction significantly affects temperature 

distribution. In Fig. 5.1(a, b), plots are given for a low value of Peclet number, Pe = 5 

at a given value of parameters, Bi = 10, Br = 0.8,   = 0.1, and Da = 0.001. A similar 

type of plot is given for a large value of Pe, Pe = 100 in Fig. 5.2(a, b). Axial conduction 

refers to heat transfer occurring along the direction of fluid flow within the porous phase 

itself. Hence, this phenomenon becomes particularly important when Pe is relatively 

high, indicating that convective heat transfer dominates, and the fluid temperature 

evolves separately from the porous temperature due to finite thermal resistance between 
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them. Mathematically, from Eqs. (5.3) and (5.4), at Br = 0 and for large Pe, Pe→

(i.e. Ac = 0, axial conduction is absent). 
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Fig. 5.2: Impact of (a) 
f  and (b) 

p  for distinct *  values for Bi = 10, Br = 0.8, Pe = 100, and   = 

0.1 at Da = 0.001 
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Fig. 5.3: Impact of (a) 
f  and (b) 

p  for distinct *  values for Bi = 10, Br = 20, Pe = 5, and   = 0.1 

at Da = 0.001 
 

 

 

A plot is given in Fig. 5.3(a, b) for an immense value of Br (Br = 20) at a given 

value of various parameters to analyse the effect of the Brinkman number, Br,. By 
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comparing Fig. 5.1(a, b) and Fig. 5.3(a, b), for each *  value, as Br increases from Br 

= 0.8 to 20, f  and p  increase, this is because the two-phase interaction behaves as a 

heat source in the porous medium. At a significant value of Br, the temperature rise will 

be higher, and the heat conduction will be slower. 

 

A large value of Br implies that viscous dissipation in the fluid dominates heat 

conduction within the porous matrix. The fluid phase may exhibit a significant 

temperature gradient due to viscous heating effects. Hence, it can also be seen from the 

figures that the porous phase, influenced by heat conduction, might have a more 

uniform temperature distribution than the fluid. In this model, it is observed that p f   

which indicates the presence of LTNE model effect when channel walls are subjected 

to constant wall heat flux. 
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Fig. 5.4: Impact of (a) 
f  and (b) 

p  for distinct *  values for Bi = 100, Br = 0.8, Pe = 5, and   = 

0.1 at Da = 0.001 

 

The Biot number, Bi, influences the temperature distribution in the fluid and 

porous phases under the LTNE model. For the large value of Bi, Bi = 100, the plot is 

given in Fig. 5.4. By comparing Fig. 5.1 with Fig. 5.4, as Bi increases, p  decreases for 

all values of * , Da, and  . It is because a higher Biot number implies a larger external 
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thermal resistance, hindering heat transfer from the fluid to the porous phase. As a 

result, the porous phase temperature decreases. 

 

A significant value of Bi implies that the heat transfer rate inside the porous 

medium is much faster than the heat transfer rate between the porous and the 

surrounding fluid. In this situation, the porous phase will approach thermal equilibrium 

relatively quickly, and its temperature distribution will be nearly uniform. It means that 

for the significant value of Bi, LTNE tends to LTE. This fact is also discussed in 

Chapters 2, 3, and 4. The increased Biot number indicates a more intense internal heat 

exchange between the porous and fluid phases of the porous material, which reduces 

the temperature difference between the two phases (i.e., the LTE condition). 

Mathematically as Bi → , p f →  (i.e., LTNE tends to LTE), from Eqs. (5.3) and 

(5.4). For a large value of Pe (Ac = 0) and in the absence of the dissipation term (Br) in 

the fluid phase energy equation, this phenomenon also holds in tubes with constant wall 

temperature boundary conditions, as stated in Khashan et al. [35]. 
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Fig. 5.5: Impact of (a) 
f  and (b) 

p  for distinct *  values for Bi = 10, Br = 0.8, Pe = 5, and   = 10 

at Da = 0.001 
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To access the effect of ratio,  , on f  and p , the plot is given for a large value 

of  , (  = 10.0) for Da = 0.001, Bi = 10, Pe = 5, and Br = 0.8  for various *  values 

in Fig. 5.5(a, b). By comparing Fig. 5.5 with Fig. 5.1 (low value of  ), as   increases, 

f  and p  increase for all values of * . At a given value of Bi and Pe,  >1 indicates 

that the porous phase has a much higher thermal conductivity than the fluid phase 

( )pe fek k , which can lead to an increase in both f  and p . In this scenario, heat 

conduction within the porous dominates the heat transfer process, and the porous phase 

tends to have a relatively uniform temperature distribution with higher temperatures. 

However, the fluid phase, influenced by convective heat transfer (Pe) and heat transfer 

from the porous, can also have higher temperatures near the porous-fluid interface. 

 

Dimensionless temperature based on bulk mean temperature in the fluid phase and 

porous phase: 

 

To confirm the attainment of fully developed conditions in a porous-filled channel 

under LTNE, Fig. 5.6 illustrates the dimensionless temperature, which is based on the 

bulk mean temperature ( b ), for the case with Da = 0.001, Bi = 10, and  = 0.1 for (a) 

Pe = 5, and (b) Pe = 50 at Br = 0.2. A similar type of plot is given for Br = 10 at Pe = 5 

in Fig. 5.7. Form the Figs. 5.6 and 5.7, it is clear that b  tends to zero for large *  ≥ 

0.35 for any Pe, Br, Bi,  , and Da. It implies that b  remains constant with respect to 

*  when *  is sufficiently large, signifying a state of fully developed conditions. It is 

also true under LTNE circumstances without viscous dissipation and axial conduction. 

A similar validation (particularly for LTE) is shown in the work of Repaka and 

Satyamurty [73]. This result is also discussed in Chapters 2 and 3. 
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        (a)         (b) 

Fig. 5.6: b  effect for distinct *  values for (a) Pe = 5, and (b) Pe = 10 at Br = 0.2, Bi = 10, Da = 

0.001,   = 0.1 
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Fig. 5.7: b  effect for distinct *  values at Pe = 5, Br = 10, Bi = 10, Da = 0.001,   = 0.1 

 

 

 

Local Nusselt number 

 

In the context of local Nusselt number ( Nu ) profiles under the LTNE model, the 

dimensionless axial distance and dimensionless normalized axial distance, often 

denoted as *  and  , represent the spatial coordinate along the porous medium in a 

dimensionless form. In this section, the discussion is given for Nu  with respect to *  

for distinct values of various parameters, Pe, Br, Bi, Da, and  . The plots which are 
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given in Figs. 5.8(a), 5.9(a) and Figs 5.10(a, b) and 5.11(a, b) show that raising *  

results in a drop in Nu . This is because as the fluid moves downstream in the channel, 

Nu  decreases until it reaches a constant value. The same pattern can be seen with 

respect to   (Figs. 5.8(b) and 5.9(b)). 

 

Effects of axial conduction on Nu  profiles with respect to *  (normalized 

dimensionless axial distance), and   (dimensionless axial distance) are given in Figs. 

5.8(a, b) and Fig. 5.9(a, b) for various values of Peclet number, Pe (Pe = 5, 10, 25, 50, 

and 100) at Br = 0.8,   = 0.1, Bi = 10 for Da = 0.005 and Da = 0.05, respectively. From 

Figs. 5.8(a, b) and 5.9(a, b), Nu  increases as Pe decreases at fixed * , whereas, Nu  

increases as Pe decreases at a fixed  ( )* Pe  . This feature is also true for the LTE 

model for ducts, fully and partially filled with porous material and for clear fluid 

channels. Additionally, by comparing Figs. 5.8 and 5.9, one can see the effect of Da. 

As Da increases (Da = 0.005 to 0.05), Nu  decreases for each value of *  and  .  
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           (a)            (b) 

Fig. 5.8: Effect of local Nusselt numbers ( Nu ) with (a) *  (normalized dimensionless axial 

distance), and with (b)   (dimensionless axial distance) for various values of Pe for   = 0.1, Bi = 

10, and Da = 0.005 
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          (a)           (b) 

Fig. 5.9: Effect of local Nusselt numbers ( Nu ) with (a) *  (normalized dimensionless axial 

distance), and with (b)   (dimensionless axial distance) for various values of Pe for   = 0.1, Bi = 

10, and Da = 0.05 
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Fig. 5.10: Change in Nu  with *  for distinct values of Br at   = 0.1, Da = 0.005, and Bi = 10 for 

(a) Pe = 5, and (b) Pe = 100 

 

 

The effect of the Brinkman number, Br, on Nu  profiles is given in Fig. 5.10 

for (a) Pe = 5 and (b) Pe = 100. From the plot, as Br increases, it decreases and tends 

to shorten the thermal entry length due to low thermal diffusion via the fluid phase in 

the porous media. This observation holds for channels containing a partial porous 

medium filling, as established in the LTNE model by Baig et al. [144]. Similarly, this 
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finding remains consistent within the LTE model, as discussed by Arici and Aydin 

[162]. It's worth noting that this phenomenon is initially identified under conditions of 

constant wall temperature, as stated independently by Nield et al. [34]. 
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        (a)           (b) 

Fig. 5.11: Change in Nu  with *  for distinct values of   at Pe = 5, Da = 0.005, and Bi = 10 for (a) 

Br = 0.8, and (b) Br = 50 

 

 

The effect of the thermal conductivity ratio,   on Nu  is shown in Figs. 5.11 

for (a) Br = 0.8, and (b) Br = 50 at distinct values of   (  = 0.1, 1.0, 5.0, 10.0) at  Pe 

= 5, Da = 0.005, and Bi = 10. A similar type of plot is given for a large value of Pe, Pe 

= 100, in Fig. 5.12. From the plots, it can be seen that with respect to   (= /pe fek k ), 

there has been a significant variation in Nu . It is clear that as the ratio  , increases 

(from   = 0.1 to 10), Nu  decreases for each value of Da, Pe, Br, and Bi. This 

observation remains consistent in the context of channels partially filled with porous 

media, as modelled by Baig et al. [144]. The fluid phase plays a significant role in heat 

transmission. In other words, reducing the thermal conductivity ratio improves 

convective heat transmission, which is governed by the fluid phase. Without an axial 

conduction and viscous dissipation model, this variation (  variation) can also be seen 

in Nield et al. [35] for constant wall temperature boundary conditions. The Nusselt 

number decreases in the case of the porous-filled duct since it is associated with 

convective heat transfer of the fluid phase. By comparing Figs. 5.11(a, b) and 5.12(a, 
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b), one can see the effect of Pe on Nu  for various values of ratio,  . As Pe increases, 

Nu  decreases with respect to *  (normalized dimensionless axial distance). It can also 

be represented in Figs. 5.8(a) and 5.9(a). 
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Fig. 5.12: Change in Nu  with *  for distinct values of   at Pe = 100, Da = 0.005, and Bi = 10 for 

(a) Br = 0.8, and (b) Br = 50 

 

 
Table 5.1: Effect of Bi on Nu  at Br = 0.8, Da = 0.005, and κ = 0.1 

 
Nu  

 Pe = 5 Pe = 100 

*  
Bi = 10 Bi = 100 Bi = 10 Bi = 100 

0.0001 214.0329 214.0315 90.1557 89.8964 

0.0010 92.5458 92.5446 34.0230 33.6872 

0.0100 22.4736 22.4710 14.9736 14.7966 

0.1000 10.1321 10.1141 9.7941 9.6267 

 

 

5.6 Conclusions 

 

Axial conduction and viscous dissipation have been quantitatively investigated in 

forced convection at the entrance area of a porous material-filled channel under LTNE. 

Numerical solutions for the thermal field have been devised. The LTNE area was 

mapped over a wide range of dimensionless characteristics due to the study's parametric 
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methodology. Examining the combined impact of axial conduction and viscous 

dissipation under LTNE is the main objective of this study. This model takes into 

account the CFC model for viscous dissipation. 

 

The primary findings of the study are as follows: 

i. The temperature rises with increasing values of the Peclet number (Pe), Brinkman 

number (Br), and thermal conductivity ratio ( ). 

ii. In the presence of axial conduction and viscous dissipation, for large Biot number 

(Bi), LTNE tends to the LTE model. However, it is observed that p  > f , which 

validates the LTNE effect. 

iii. Validation of fully developed conditions for the thermal filed is done with Peclet 

number, Pe and Brinkman number, Br. 

iv. Local Nusselt number, Nu  depends on the values of the parameters, Da, Pe, Br, 

Bi, and  . In the presence of Brinkman number (Br), the impact of axial conduction 

becomes negligible, i.e., Ac = 0, when the Peclet number (Pe) is sufficiently large 

(≥ 100) in the LTNE framework. 

v. The local Nusselt number, Nu  with *  (normalized dimensionless axial distance), 

decreases as the Peclet number, Brinkman number, and thermal conductivities 

increase. However, as Pe increases, Nu  increases with   (dimensionless axial 

distance, and this is because of the increase in the convective heat transfer rate. 
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Chapter 6 

Summary, Conclusions and Scope for Future Work 

 

 

 

Heat transfer is the mechanism for exchanging thermal energy between distinct 

zones within or among different systems. In heat transport through porous media, 

including a fluid phase and a porous matrix, modelling approaches can be based on 

either thermal equilibrium or thermal non-equilibrium assumptions. Consequently, two 

distinct modelling strategies have been employed: the LTE and the LTNE models in 

porous medium. 

 

The LTNE model analyses heat transfer in systems where various components 

or regions undergo diverse thermal conditions. Unlike the assumption of thermal 

equilibrium, which implies a uniform temperature throughout a system, the LTNE 

model acknowledges that different parts may possess distinct temperatures and thermal 

states. This modelling approach finds applications in various fields where an accurate 

representation of heat transfer processes is crucial, particularly in scenarios where 

components or regions experience different thermal conditions. Examples include 

geological studies, thermal energy storage systems, electronics cooling, tissue heating 

and cooling, casting and solidification, microfluidics, and more. 

 

These studies aim to provide hydrodynamic and thermal data for the laminar 

incompressible flow of a Newtonian fluid in channels containing porous material within 

the thermally developing region under the LTNE model. The research involves 

exploring the effects of axial conduction and viscous dissipation. The analysis 

establishes an improvement in heat transfer under LTNE, highlighting its correlation 

with axial position and various non-dimensional parameters such as the Darcy number, 

the Hatman number, the Biot number, the Peclet number, the Brinkman number, and 

the thermal conductivity ratio. 
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The illustration depicts the model and coordinate system of a parallel plate 

channel filled with a porous medium. The separation between the parallel plates is 

represented by H, and the fluid enters the channel at a uniform temperature. The channel 

walls are subject to a constant wall heat flux (qw), and the fluid flow through the porous 

region is governed by the Darcy-Brinkman-Forchheimer model. A magnetic field (Bo) 

is applied perpendicular to the channel walls, and the flow is characterized by laminar, 

incompressible, steady, unidirectional flow and a developing thermal field. Both the 

porous and fluid regions are under the LTNE. The porous medium is uniform and 

possesses isotropic properties. The considerations encompass axial conduction and 

viscous dissipation, while the thermophysical properties remain constant throughout 

the system. 

 

The subsequent summary outlines the findings and conclusions from the studies 

in Chapters 2 to 5. Specific essential points from Chapters 2 to 5 have been reiterated 

here for completeness. 

 

Throughout this thesis, numerical solutions have been derived for the governing 

equations in Chapters 2 to 5 using the successive accelerated replacement (SAR) 

method, considering the following parameter values that characterize the various 

problems investigated. The ranges of the parameters Darcy number (Da), Forchheimer 

number (F), Hartmann number (M), Peclet number (Pe), Brinkman number (Br), Biot 

number (Bi), and thermal conductivity ratio ( ) are: 0.001 ≤ Da ≤ 0.1, 1 ≤ F ≤ 100, 0.5 

≤ M ≤ 65, 5 ≤ Pe ≤ 100, 0.8 ≤ Br ≤ 100, 10 ≤ Bi ≤ 100, and 0.1 ≤   ≤ 10. Additionally, 

it is taken that 1 / 1f fek k k= = , 2 / 1f sek k k= =  and, / 1eff  = =  for simplicity of the 

problem. 

 

In Chapter 2, numerical investigations have been conducted for fluid flow and 

heat transfer within the thermally developing region of parallel plate channels filled 

with a porous material under the LTNE model. The parallel plates in this study are 

exposed to a constant wall heat flux. The conservation of the thermal energy equation 

excludes considerations of axial conduction and viscous dissipation effects. When 
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considered, the Biot number and thermal conductivity ratio offer a valuable framework 

for analyzing and comprehending the heat transfer within systems undergoing LTNE. 

 

In the hydrodynamics case, the velocity profiles and skin friction coefficient for 

flow through a porous material-filled channel have been examined and are discussed in 

Chapter 2. The Forchheimer number exhibits a slight reduction in velocity as it 

increases, whereas an elevation in Hartmann's number corresponds to a decrease in 

velocity. Furthermore, an increase in the Darcy number (Da) results in a rise in velocity, 

reaching a notable magnitude where the velocity matches that in the fluid region. With 

an increase in the Forchheimer number (F), the product of skin friction coefficient and 

Reynolds number profiles (ReCfp) experiences a rise at a constant Darcy number (Da). 

In the notable range of the Darcy number (significant value, Da > 1.0), ReCfp 

approaches 6.0, a value characteristic of the fluid region. Similarly, at a given Darcy 

number, Da, ReCfp increases as the Hartmann number, M, increases, and for the 

prominent Da (> 1.0), ReCfp tends to 6.0. Apart from this, the effect of the Forchheimer 

number (F) on the temperature profiles is minimal in the thermal field. Also, as the 

Hartmann number increases, the temperature in the fluid phase ( f ) and the porous 

phase ( p ) decreases. However, as the Biot number (Bi) rises, the temperatures of the 

porous and fluid phases fall, approaching LTE for all Darcy numbers (Da) and 

Forchheimer numbers (F). It indicates that for large values of Biot number, LTNE leads 

to LTE. In the temperature profiles, the temperature in the porous phase is higher than 

in the fluid phase, which is evidence of the LTNE effect. A fully developed condition 

for the thermal field is validated for the LTNE model. Due to the imposition of 

consistent heat flux conditions on the walls, the temperatures of the walls will remain 

undisclosed.  As the normalized axial distance, *  rises, the wall temperature of the 

fluid and porous phases ( wf  and wp ) progresses across all Biot numbers. Initially 

nonlinear, it transitions to a linear trend for *  > 0.005, marking the initiation of a fully 

developed condition. A fully developed condition is evident even when applying the 

LTNE. It is the downstream boundary condition in axial conduction cases, particularly 

in elliptic partial differential equations. Moreover, wp > wf  because heat transmission 

from fluid to porous is greater at porous wall temperature than at fluid wall temperature. 

As the thermal conductivity ratio,   and Bi grow, the local Nusselt number ( Nu ) 
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decreases. However, it increases with the increase of Hartmann's number. There is a 

low effect on Nu  due to the Forchheimer number (F). Hence, as a result of the current 

research work, it is possible to deduce that small   can improve heat transmission in 

the entry of the porous-filled channel. It is better to use LTNE conditions at the channel 

entrance. 

 

In Chapter 3, the study examines the effect of axial conduction on the forced 

convective heat transfer characteristics in a channel filled with porous material that is 

thermally developing under LTNE. This Chapter aims to study the axial conduction 

effect under LTNE. The Darcy Brinkman model for the flow in porous media is 

employed since the Forchheimer number (F) minimally impacts the heat transfer 

coefficient.  

 

 

Key findings of Chapter 3 are that an increase in the Hartmann number leads to 

a reduction in temperature for both the fluid and porous phases in the presence of axial 

conduction. Peclet number characterises the effect of axial conduction. The LTNE tends 

to converge towards LTE, mainly when dealing with high Biot numbers. Also, as the 

thermal conductivity ratio increases, temperature for both the fluid and porous phases 

increases for each value of normalised axial distance ( * ) and for a given value of Peclet 

number, Pe, Darcy number, Da, Hartmann number, M, and Biot number, Bi. Under 

LTNE, dimensionless temperature based on the bulk mean temperature in the fluid 

phase, ,b f  and for the porous phase ,b p  are invariant with respect to *  for large * , 

which is an onset of the fully developed condition. Local Nusselt number Nu  depends 

on the values of Pe, Bi,  , and Da. The axial conduction effect is negligible, except 

near the entry, for a significant value of Peclet number, Pe (≥ 100) in the LTNE. Local 

Nusselt number, Nu  decreases as thermal conductivities and Biot numbers increase. 

In contrast, it increases with the increase of Hartmann's number. Nu  decreases as *  

increases for all Da, Bi and   and reaches the fully developed values for *  > 0.35. 

However, a given  , Nu  decreases as Peclet number, Pe decreases. 
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Chapter 4 discusses the impact of viscous dissipation on forced convective heat 

transfer properties within a porous material-filled channel undergoing thermal 

development under LTNE. The analysis utilizes the Darcy-Brinkman model to describe 

flow in porous media. The thermal energy conservation equation considers the viscous 

dissipation term, excluding the axial conduction term. The energy equation considers 

two viscous dissipation models: the clear fluid compatible (CFC) model and the form 

drag (FD) model. The investigation focuses on the effect of viscous dissipation on heat 

transfer enhancement. Brinkman number (Br) characterizes the viscous dissipation 

effect. 

 

The critical findings of Chapter 4 are the effect of the Brinkman number, Br, on 

the temperatures and local Nusselt number for both the dissipation models, CFC and 

FD models. For each value of Darcy number (Da), Biot number (Bi), Brinkman number 

(Br) and thermal conductivity ratio ( ), the temperatures in both phases rise as 

normalized axial distance, *  increases. The increase in Br and ratio,  ,  enhances the 

temperature distribution for both models. For the large Bi, LTNE tends to LTE for each 

value of Br in both dissipation models. In CFC and FD models, temperatures are more 

than in the FD model for each value of *  and for other parameters. The local Nusselt 

number strongly depends on the importance of parameters Da, Br, Bi, and   for both 

models. The local Nusselt numbers of the CFC model and FD model ( , CFCNu  and 

, FDNu ) decrease with the increase of parameters Br, Da, Bi, and ratio,  . The effect 

of these parameters is less in the FD model than in the CFC model. The CFC model has 

more increased convectional heat transmission than the FD model. 

 

Chapter 5 discusses the effects of axial conduction and viscous dissipation on 

the forced convective heat transfer in a porous material-filled channel undergoing 

thermal development under LTNE. The study uses the Darcy-Brinkman model to 

represent flow in porous media. It has been shown in Chapter 4 that, as compared to the 

FD model, the CFC model has improved convectional heat transfer. As a result, the 

clear fluid compatible (CFC) model is employed as a viscous dissipation model in the 

energy equation. 
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The temperature increases by rising values of the Brinkman number (Br), 

thermal conductivity ratio ( ), and Peclet number (Pe). For a large Biot number (Bi), 

LTNE moves towards the LTE model in axial conduction and viscous dissipation terms. 

Local Nusselt number Nu  depends on the values of the parameters, Pe, Br, Bi,  , and 

Da. In the presence of Brinkman number (Br), the impact of axial conduction becomes 

negligible, i.e., Ac = 0, when the Peclet number (Pe) is sufficiently large (≥ 100) in the 

LTNE framework. The local Nusselt number decreases with normalized dimensionless 

axial distance as the Peclet number, Brinkman number, thermal conductivity ratio, and 

Biot number increase. On the other hand, the rise in the convective heat transfer rate 

increases with dimensionless axial distance as Pe increases. 

Scope for Future Work 

 
Future research endeavours aimed at expanding upon the current study may include the 

following inquiries: 

i. When a process involving constant temperature, such as condensation or 

boiling, occurs, it is called the condition of constant wall temperature. Thus, 

under the LTNE model with a constant wall temperature boundary condition, 

research on laminar forced convection may be carried out inside the thermally 

growing area of parallel plate channels saturated with a porous material. 

ii. Since there are many industrial applications of the LTNE model, with the 

constant wall temperature and constant heat flux boundary conditions, the same 

investigation may be undertaken with different geometries like cylinder 

channels, wavy-wall channels, lid-driven cavities, etc. 

iii. For some of the more recent uses, research on flow and heat transfer via ducts 

partially filled with porous material is necessary, considering anisotropic and 

heterogeneous porous media. 

iv. A bidisperse porous medium is a porous substance with two different particle 

sizes or components inside its structure. Permeability, porosity, and other 

transport characteristics of the porous medium can be impacted by its dispersity. 

Investigating the issue with the bidisperse porous medium is, therefore, 

necessary. 
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