
STABILITY ANALYSIS OF PREY-PREDATOR SYSTEM
USING TAKAGI-SUGENO APPROACH

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE AWARD OF THE DEGREE OF

DOCTOR OF PHILOSOPHY
IN

MATHEMATICS

BY

KHUSHBU SINGH
(ROLL NO: 701964)

UNDER THE SUPERVISION OF

Prof. K. KALADHAR

DEPARTMENT OF MATHEMATICS

NATIONAL INSTITUTE OF TECHNOLOGY

WARANGAL - 506004 (TELANGANA)

JUNE 2024



CERTIFICATE

This is to certify that the thesis entitled �STABILITY ANALYSIS OF

PREY-PREDATOR SYSTEMUSING TAKAGI-SUGENOAPPROACH� ,

submitted to the Department of Mathematics, National Institute of Technology,

Warangal, is a record of bona�de research work carried out by Ms. KHUSHBU

SINGH, Roll No. 701964, for the award of Degree of Doctor of Philosophy in Math-

ematics under my supervision. The contents of the thesis have not been submitted

elsewhere for the award of any degree or diploma.

Date: Dr. K. Kaladhar

(Supervisor)

Assistant Professor

Department of Mathematics

National Institute of Technology, Warangal

Telangana State - 506004

India.



DECLARATION

This is to certify that the work presented in the thesis entitled �STABIL-

ITY ANALYSIS OF PREY-PREDATOR SYSTEM USING TAKAGI-

SUGENO APPROACH� , is a bona�de work done by me under the supervision

of Prof. K. Kaladhar, Assistant Professor, Department of Mathematics, National

Institute of Technology, Warangal and has not been submitted elsewhere for the

award of any degree or diploma.

I declare that this written submission represents my ideas in my own words

and where others' ideas or words have been included, I have adequately cited and

referenced the original sources. I also declare that I have adhered to all principles of

academic honesty and integrity and have not misrepresented or fabricated or falsi�ed

any idea / data / fact /source in my submission. I understand that any violation of

the above will be a cause for disciplinary action by the Institute and can also evoke

penal action from the sources which have thus not been properly cited or from whom

proper permission has not been taken when needed.

Khushbu Singh

Roll No. 701964

Date:



Dedicated

to

Lord Shiva

and

My beloved parents

Shri. Lal Bahadur and Smt. Savitri

&

My Teachers

Who made me what I am today



Acknowledgements

I express my sincere thanks to the National Institute of Technology, Warangal

(NITW) in particular Department of Mathematics, for giving me an opportunity to

pursue my Ph.D and supporting me during my research tenure in the Institute.

I would like to take this opportunity to express my utmost gratitude to my

beloved supervisor Prof. K. Kaladhar, who has always been a source of inspiration

for me. Words are inadequate to express my thankfulness for his regular support,

guidance and encouragement throughout my research work. His thought provoking

comments, suggestions and friendly guidance enabled me in enhancing my research

skills. Without his generous help and support it would not be possible for me to

complete this work. I shall ever remain indebted to him.

I express my sincere thanks to Prof. Bidyadhar Subudhi, Director, National In-

stitute of Technology, Warangal for his kind support and encouragement at every

stage of this endeavor.

I am grateful to Prof. A. Benerji Babu, Head, Department of Mathematics for his

support. I am greatly indebted to the dynamic personality Prof. D. Srinivasacharya

for his a�ectionate support, encouragement and for sparing his valuable time as a

DSC member.

I thank the chairman of the Doctoral Scrutiny Committee Prof. K. N. S. K.

Viswanadham, the members of the Doctoral Scrutiny Committee Prof Prof. Ch.

RamReddy, Department of Mathematics, for their inspiring lectures and Prof. S.

Ravichandra, Department of computer science and engineering for their valuable

suggestions, moral support and encouragement while my work was in progress.

I am grateful to Prof. J. V. Ramana Murthy, Prof. Debashis Dutta, Prof. P.

Muthu, Prof. D. Bhargavi, Prof. Deepika Neela, Prof. Hari Ponnamma Rani, Prof.

Jagannath Roy, Prof. Pranitha J, Prof. R. S. Selvaraj, Prof. Satyanarayan Egnu,

Prof. Sreenivasa Rao Y, Prof. Srinivas Jangili, Prof. Triveni Prasad Shukla, De-

partment of Mathematics for their help and support throughout my research period.

Also, I thank the o�ce sta�.



v

I would like to express my gratitude to my seniors scholars (Dr. Harlal Saran,

Dr. Bikas Modak), my best friend Dr. Nidhi Humnekar, Mr. Pankaj Barman, my

juniors (Mr. Ravi Mahla, Mr. Shubham Jangid), Mr. K. Harikrishna (Department

of Mechanical Engineering), Mis. Kajal Sandhu (Department of Biotechnology) and

all my fellow research scholars for their friendship and companionship.

I owe special thanks to my parents, my sisters (Smita Singh, Pallavi Singh,

Priyanka Singh), my brothers (Kanishka Singh, Kunal Singh) and family members

for their constant source of encouragement and tremendous care.

I would also like to thank my college friends (Shweta Sharma, Anchal Gupta,

Meenakshi Tripathi, Varsha Rai, Shikha Rai, Chandan Kumar Sah) and Prof. In-

dresen sir for their motivation and support.

I wish to thank all people who helped me in one way or the other towards my

success in research endeavors.

- Khushbu Singh



Abstract

Predator-Prey model is a relationship between two species living in the same

space. It gives the e�ect on population between the two species. When two species

are living in same habitat they share some resources such as food resource and eco-

logical niche. A predator-prey interaction has been described �rstly by two pioneers

Lotka and Volterra in two independent works. After them, more realistic prey-

predator models were introduced by Holling suggesting three kinds of functional

responses for di�erent species to model the phenomena of predation.

Almost all of the physical dynamical systems in real life cannot be represented

by linear di�erential equations. The non-linear model is analyzed with the help of

Takagi-Sugeno Fuzzy model. The fuzzy model proposed by Takagi and Sugeno is

described by fuzzy IF-THEN rules which represents local input-output relations of

a nonlinear system. This has motivated the work in this thesis, where an attempt

has been made to study the stability of Lotka-Volterra predator-prey system with

fuzzy impulsive control.

The thesis has four parts, which consists of ten chapters. Part-I consists of a

single chapter (chapter 1) which gives an introduction to the problems discussed in

this thesis and it provides motivation to the study carried out. A survey of pertinent

literature is presented to show the signi�cance of the problems considered. Part-II

contains three chapters, 2, 3 and 4, which deals with the stability of interaction dy-

namics of two and three species prey - predator system without infection. Part-III

deals with the the stability of prey and predator system with infection. It consists

of �ve chapters, namely 5, 6, 7, 8, and 9.

In all the above chapters, mathematical models are considered to study the re-

lationship among preys and predators. We have two, three species Lotka-Volterra

predator-prey models with imprecise biological parameters. To improve the model's

reality we analyze the global and asymptotic stability of this model with the help

of the Takagi-Sugeno (T-S) model. The T-S impulsive control model and the fuzzy

impulsive control models were used to explore the stability of the Lotka-Volterra

predator-prey system. The impulsive control technique, which is analyzed in the

framework of the fuzzy systems based on T-S model, is found appropriate for very

complex and non-linear system with impulsive e�ects.
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Part-IV consists of a single chapter 10, which presents the summary of the

thesis with main conclusions and point out various problems which are yet to be

solved in this area of research.
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Nomenclature

Notations Physical Signi�cance S.I.unit

a′is half-saturation constants kg.m−3

B predator's birth rate t−1

C,C ′
is conversion rate kgt−1

D predator's natural death rate t−1

e intra-speci�c competition not speci�c (depends on frequency,

intensity, or magnitude of interaction.)

h1, h2 help between the preys not speci�c

m,m′
is death rate of predators t−1

P, P ′
is predation rate of predators x.t−1

r, r′is growth rate of prey t−1

r12 the interaction of predator with prey not speci�c

r21 prey interaction with predator not speci�c

t time t

x(t) population of preys x.m−2

y(t) population of predators y.m−2

α ratio between capture rate of the second prey dimensionless

and the �rst prey

β, β′
is infection transmission t−1

λ ratio between handling time of the predator dimensionless

per second prey item and �rst prey item

ω diagonal matrix n.n

δj impulsive distance m

ϵ constant scalar dimensionless

λ(α) maximum eigen value dimensionless

µ no. of fuzzy rules dimensionless
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Chapter 1

Introduction

1.1 Preliminary

All living things require energy. However living things get their energy in di�erent

methods. Sometimes one individual consumes another individual. No species of

animals lives in complete isolation. Since all animals must eat to live, all must

interact, if not with other animals then with plants. No two species can exist in the

same niche without ending up in the competition i.e. if two species share the same

niche then they would end up in the competition, so the result of competition will

be either win/loss or partition. In the case of partition both the species are living

in the same habitat but limiting their resources. In the case of win/loss, one will

win and one will lose. So the species which win will exist and one which lose will

extinct. The one which wins is called PREDATOR and one which lose is called

PREY.

1.2 Prey - Predator Model

The Prey - Predator model is a relationship between two species living in the

same space. It gives the e�ect on the population between the two species. It provides

2
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information about competition between two species living in the same ecosystem.

� PREDATOR is an animal that hunts, kills and eats other animals for food.

Predator species need to be adapted for e�cient hunting if they are to catch

enough food to survive.

� PREY is a term used to describe organisms that predator kill for food. Prey

species must be well adapted to escape predators for their species to continue.

1.3 Lotka - Volterra Prey - Predator Model

The idea to predict the outcome of competition based on the impact of one

species on another is given by Lotka-Volterra model. A predator�prey interaction

has been described �rstly by two pioneers Lotka and Volterra in two independent

works [1, 2]. After them, more realistic prey�predator models were introduced by

Holling suggesting three kinds of functional responses for di�erent species to model

the phenomena of predation. It shows the relationship between predator and prey.

The Lotka-Volterra equations are a pair of �rst order non-linear di�erential equa-

tions used to describe the dynamics of biological system in which two species interact

one as predator and the other as prey. There has always been an unique interest in

the study of population evolution, beginning with populations of a single species and

progressing to more realistic models where various species coexist and communicate

with one another in the same ecosystem. Between these, we can �nd models those

look at predator-prey relationships, symbiosis, or competitive connections. Since

the well-known Lotka-Volterra model was developed and resolved the major issues

with ecological processes [3]. Lotka and Volterra made the �rst breakthrough in con-

temporary mathematical ecology for a predator-prey competing species. Following

Lotka and Volterra's pioneering work on the predator-prey model, the latest math-

ematical ecology has attained an essential position in analytical biology. Hence, the
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mathematical models are frequently used by applied mathematicians to analyze the

intricate interactions between predators and prey. Therefore, the classical ecological

models of interacting populations typically focused on two species.

1.3.1 Assumptions

� Let x(t) and y(t) be the population of prey and predator species at time t.

� In the absence of predators, the prey population will grow naturally.

Mathematical model for population change of prey is:

dx

dt
= ax, a > 0 (1.1)

� In the absence of prey, the predator population will decrease at the natural

rate. Mathematical model for population change of predator is:

dy

dt
= −Py, P > 0 (1.2)

� The presence of both predators and prey is bene�cial to the growth of predator

species and is harmful to the growth of prey species, i.e. the predator species

increases and the prey species decreases at a rate proportional to the product

of the two populations.

1.3.2 Basic equations

With the above assumptions, the system of non-linear �rst-order O.D.E are

dx

dt
= ax− bxy (1.3)
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dy

dt
= qxy − Py (1.4)

where a, b, P, q are positive constants, dx
dt
, dy

dt
represent the instantaneous growth

rate of the two populations, ax represents the exponential growth of the prey when

the prey is assumed to have an unlimited food supply and reproduce exponentially

unless subject to predation, bxy represents the rate of the predation upon the prey,

qxy represents the growth of predator populations, Py represents the loss rate of

the predators due to either natural death or emigration.

� A predator prey model is an essential tool in ecology and speci�cally for our

understanding of interacting populations in the natural environment.

� Predator- prey models are arguably the building blocks of the bio and eco-

systems, as bio-masses are grown out of their resource masses. Species com-

pete, evolve, and disperse simply for the purpose of seeking resources to sustain

their struggle for their existence.

� Models of competitive interaction of the predator - prey are widely used for the

analysis of economic processes and phenomena. Like enterprizes, industries,

brands, products, and technologies can compete with each other in time.

1.4 Epidemiology

The study of disease transmission in animals is known as epidemiology. Disease's

impact on eco-systems is a signi�cant topic from both a mathematical and an ecolog-

ical point of view. As a result, ecologists and academicians have been focusing more

and more on the creation of key tools, as well as experimental ecology, to characterize

how ecological species are infected. The consequence of infection in predator-prey

model with disease in prey and predator has been investigated enormously in last

few years by many researchers.
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In the study of infectious disease transmission and control, mathematical models

have become indispensable tools. Most infectious disease transmission models are

based on Kermack and Mckendrick's initial SIR model [4]. When exposed to con-

tagious individuals, sensitive becomes infectious. Scientists have recently focused

a lot of emphasis on epidemiological models. Numerous scientists, Anderson [5],

Hethcote [6] exclusively addressed single-species models in classical epidemiological

frameworks. This is because sick species are less active and so more easily caught

as shown in [7, 8, 9, 10].

1.5 Takagi - Sugeno Model

Almost all of the physical dynamical systems in real life cannot be represented

by linear di�erential equations. Apart from the traditional methods like Direct

approach for solving the non-linear system of equations recent Fuzzy method ap-

proaches have been developed. The solution of non-linear systems by classical meth-

ods is not easy due to its non-linearity, analytical complexity, chaotic behavior, etc.

Hence, the T-S method is very much e�ective to analyze the non-linear models. The

fuzzy model proposed by Takagi and Sugeno is described by fuzzy IF-THEN rules

which represents local input-output relations of a nonlinear system. The main fea-

ture of a Takagi-Sugeno fuzzy model is to express the local dynamics of each fuzzy

implication (rule) by a linear system model. It develops a systematic approach to

generate fuzzy rules from a given input-output data set. Until recently, less work

has been done on the stability of Lotka-Volterra predator-prey system with fuzzy

impulsive control. T-S method is very much useful as it is less time consuming and

easy to solve complex systems. We can easily analyze the stability of the complex

systems using T-S method as given in [11, 12, 13].

The Takagi-Sugeno (T-S) approach is a method used in fuzzy logic modeling

to approximate complex nonlinear systems using a set of fuzzy if-then rules. This
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approach is particularly advantageous when dealing with systems that are di�cult

to model using traditional mathematical techniques, such as predator-prey models,

which often involve nonlinear interactions and uncertainties. The Takagi-Sugeno

approach o�ers several advantages for improving the realism of predator-prey models

by e�ectively handling nonlinear relationships, incorporating uncertainty, providing

linguistic interpretability, adapting to data, and handling multiple input variables.

These features make it a valuable tool for modeling and understanding complex

ecological systems.

The Takagi-Sugeno (T-S) fuzzy impulsive control model is a framework that

combines fuzzy logic with impulsive control techniques to address complex, nonlin-

ear control systems.

1.6 Fuzzy Impulsive Control

Most plants in engineering, science, and industries have inherent non-linearity

and are di�cult to design and control using general nonlinear systems. In order to

overcome this kind of di�culties, many researchers have developed various schemes,

among which a successful approach is fuzzy impulsive control combined with the

linguistic knowledge representation. For instance, one can see temperature control

in rapid thermal processing [14], the control of a �exible robot system [15], an auto-

mated highway system [16]. In parallel with these practical applications, theoretical

researches with respect to fuzzy control have been performed to include many control

issues. Stability analysis is certainly one of the most important issues that theoretic

e�orts have focused on.



CHAPTER 1. INTRODUCTION 8

Table 1.1: Various impacts of the Lotka-Volterra Prey-Predator and Takagi�Sugeno
Models

Lotka-Volterra Prey-Predator Model Takagi-Sugeno Model

Population Dynamics: The model Control Systems: The TS model is
provides a mathematical framework for extensively used in designing controllers
understanding how predator and prey for nonlinear systems, providing a

populations interact over time. �exible approach to handle systems
where linear control methods

are insu�cient.
Stability Analysis: By analyzing the Engineering Applications: In robotics,

model, ecologists can study the the TS model helps in path planning,
conditions under which predator-prey navigation, and control, allowing robots

systems are stable or unstable, to handle uncertain and dynamic
leading to insights into environments e�ectively.

ecosystem stability and resilience.
Mathematical Ecology: The model has Signal Processing: TS models are used in

spurred the development of signal processing for noise reduction
mathematical ecology, a �eld that and �ltering, enhancing the quality
uses mathematical approaches to of signals in various applications like

study ecological systems. audio processing and telecommunications.
Epidemiology: Analogous models are Environmental Systems: TS models are used
used to study the spread of infectious to model and predict climate systems,

diseases. which are inherently nonlinear
and complex.

Agriculture: The model helps in Industrial Applications: In industries
understanding the dynamics of such as chemical manufacturing, the

agricultural pests and their natural TS model is used for process control,
predators, guiding the development of optimizing production processes, and
sustainable pest management practices. maintaining product quality.
Lotka-Volterra predator-prey model Until recently, less work has been done
highlight the need for more realistic, on the stability of Lotka-Volterra
adaptable, and integrative approaches. predator-prey system with TS fuzzy

impulsive control.

Addressing these gaps will not only advance theoretical understanding but also enhance the
practical applicability of these models across various �elds.

1.7 Literature Survey

Lotka-Volterra was the pioneer in the subject of bio-mathematics. Volterra pro-

posed the di�erential equation in 1925 to answer the problem of rapid changes in

prey and predator populations. The predator-prey system has been used in a variety

of �elds and has played a signi�cant role in bio-mathematics. Further, the stability

of the predator-prey system is being given more attention [17]. The Lotka-Volterra
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model is a type of interference competition in which two species' per capita growth

rates are projected to be reduced by each other. Li and his team [18] investigated

the Lotka-Volterra predator-prey system's impulsive control and discovered the nec-

essary conditions for asymptotic stability using Lyapunov functions [19, 20, 21].

Following Lotka and Volterra pioneering work, the prey-predator concept has

become a prominent and signi�cant research subject in applied sciences. Later Ker-

mack and McKendrick [4] extended their contribution to the mathematical theory of

epidemics. Over the last few decades, there has been an increasing interest in study-

ing the e�ects of illnesses in prey-predator systems (Haque and Venturino [22]). To

represent the complicated interaction between interacting prey and predators, good

number of prey-predator models have been proposed and thoroughly investigated in

the real-world environment species. In view of signi�cance, Mahapatra and Santra

[23] studied the prey-predator model for optimal harvesting with prey refuge. Liu

and Liu [24] explained the behavior of a stochastic model of predation including

three species of prey and predators intraguild. Recently, Hu et al. [25], outlined the

behavior of a predator-prey model with a constant yield of prey.

Traditional models for ecology of inter-connected populations have mainly con-

centrated on two species. According to Price et al. [26], social behavior should

depend on at least three trophic levels. The literature has looked into continuous

time models of two interacting species in great detail [27]. These models can only

display on two basic patterns mathematically, such as an approach to a limit cycle or

a steady state [28]. However, it has been found that ecological groups in nature have

extremely complicated dynamical tendencies. There are reports of more intricate

patterns in three species continuous time models [29, 30, 31, 32].

In 1986, Anderson and May [33] introduced infectious disease transmission into

a predator-prey model, assuming that the infection is only transmitted inside the

prey species. The traditional Lotka-Volterra predator-prey model, in which infection
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spreads among either the prey or the predator, was explored by Venturino [34]. How-

ever, a very less study have been done with infection in predator [35, 36]. Venturino

examined the local properties of eco-epidemic models in predator-prey systems with

disease only in the predator population. Haque and Venturino [37] investigated

the importance of infectious disease in the Holling Tanner predator-prey model and

found a number of interesting results. They came to the conclusion that disease in

any species can be used as a biological control. Haque and Venturino [38] looked

at the function of transmissible disease in predator species using ratio-dependent

functional responses. Pada [39] recently examined predator-prey changing in pres-

ence of infection in the predator and demonstrated local stability analysis at the

equilibrium point using basic reproduction numbers [40].

In recent times many authors such as Haque [41] investigated and developed

di�erent predator-prey models in existence of disease. Recently, Nandadulal et al

[42] performed a qualitative investigation of a �shery's bio-economic management

in presence of some infection.

Venturino [43], Hethcote et al. [44], Yongzhen et al. [45] examined the standard

Lotka-Volterra prey-predator model in which illness spreads among either the prey

or the predator. Recently, Sou�ane Bentout and Salih Djilali [46] suggested an age-

structured predator-prey model in which infection evolves in the prey population.

Nazmul and Samares Pal [47] proposed a predator-prey model that includes infection

of the prey population and components such as fear, protection, and prey.

During recent years, mathematical modeling in ecology and epidemiology has

grown to be one of the most essential tools available, since it is so helpful for inter-

preting and studying the systems' vital behavior. An important area of discussion

in theoretical ecology has been the dynamic interaction between predators and their

preys. The main element in models of predator-prey interaction is the predator's

functional reaction on the population of prey, it explains how many preys are con-
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sumed by a predator per unit time for speci�c prey-predator concentrations. Even

there are other types of functional responses, the Lotka-Volterra functional response

are the most signi�cant and bene�cial functional responses [48, 49].

One of the most intriguing areas in mathematical biology is the interaction be-

tween predators and prey. The well-known Lotka-Volterra predator-prey model is

the �rst mathematical representation of the interaction between predators and prey

[50], which is a two-species model. Some scholars have noted that population mod-

els with two species can't accurately capture the real world [51, 52], and models

with three or more species can only depict a signi�cant number of crucial behaviors.

The advancement of mathematics also demonstrated that three-species food chain

models have signi�cantly more detailed features than two-species models [53, 54].

Since the impact of infectious diseases on the ecological system regulates popu-

lation size, researchers have recently become more interested in the fusion of ecology

and epidemiology. There are a lot of prey-predator models that have infectious in-

fections. The dynamics of the prey-predator system with disease in the prey and

predator populations were hypothesized and examined by Venturino [55, 56], Hsieh

and Hsiao [57], Haque and Venturino [58], Haque et al. [59, 60], Xiao and Chen

[61], Zhou et al. [62], Tewa [63], Hudson [64], recently, Deng [65] etc. Additionally,

numerous research studies have explored the dynamic behavior of the predator-prey

system with infection in the predator population. There are also several scholars who

have studied eco-epidemic models where predator populations are infected through

consuming prey (Anderson and May [33], Hadeler and Freedman [66] etc). Addi-

tionally, some researchers have developed eco-epidemic models with optimal control

[67].

In recent years, fuzzy impulsive theory has been applied to the stability analysis

of the non-linear di�erential equations [68, 69, 70]. However, it should be admitted

that the stability of fuzzy logic controller (FLC) is still an open problem. It is
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well-known that the parallel distributed compensation technique has been the most

popular controller design approach and belongs to a continuous input control way.

It is important to point out that there exist many systems, like the predator-prey

system, which cannot commonly endure continuous control inputs, or they have

impulsive dynamical behavior due to abrupt jumps at certain instants during the

evolving processes. In this sense, it is the same with communication networks,

biological population management, chemical control, and so forth [71, 72, 73, 74, 75].

Hence, it is necessary to extend FLC and re�ect these impulsive jump phenomena

in the predator prey system. Until recently, few papers talk about the stability of

Lotka-Volterra predator prey system with fuzzy impulsive control.

1.8 Thesis Summary

In view of the above discussion, it can be noted that until recently, a few re-

searchers presented the stability of two-dimensional Lotka-Volterra predator-prey

system with fuzzy impulsive control. So we have considered the Lotka-Volterra

prey-predator population's model with and without disease. To improve the model's

reality, we analyzed the global and asymptotic stability of this model with the help

of the T-S approach [36]. Initially, using the T-S mathematical model and fuzzy

impulsive control, the stability of the predator-prey system is examined with the

help of theorems. Finally, the graphical solutions for the problems were presented.

The thesis has four parts and consists of ten chapters.

Part-I consists of a single Chapter 1 which gives an introduction to the prob-

lems discussed in this thesis and it provides motivation to the study carried out. A

survey of pertinent literature is presented to show the signi�cance of the problems

considered. The basic equations governing the Lotka-Volterra predator-prey model,

which is relevant for the investigation presented in the thesis.

Part-II deals with the stability of prey and predator systems without infection.
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This consists of three Chapters 2, 3 and 4. In each of these chapters, the Lotka-

Volterra predator-prey model with imprecise biological parameters are considered.

To improve the model's reality, we analyze the global and asymptotic stability with

the help of the T-S model.

Chapter 2, presents a mathematical model to study the relationship between

prey and predator. In this we have two species Lotka-Volterra predator-prey model

with imprecise biological parameters. The asymptotic stability of the impulsive

fuzzy system is shown by various stability theorems. Numerical example with prey

and predator system with impulsive e�ects is given to illustrate the application

of impulsive fuzzy control, and simulation results shows the e�ectiveness of the

proposed method.

In Chapter 3, the three-dimensional Lotka-Volterra predator-prey system's sta-

bility has been examined using the Takagi-Sugeno (T-S) and the Fuzzy impulsive

control model. The main focus of this chapter is to examine the stability of predator-

prey model with one predator and two preys and to examine the interaction between

the considered preys and the predator.

In Chapter 4, we investigate the interaction dynamics of one prey and two

predators. The three-dimensional Lotka-Volterra prey-predator system's stability

has been investigated by applying the Takagi-Sugeno (T-S) impulse control model

and the Fuzzy impulse control.

Part-III deals with the stability of prey and predator system with infection.

This part consists of �ve chapters, namely 5, 6, 7, 8, and 9. In all these chapters, the

species are divided into two categories such as the susceptible species and the infected

species. Then the stability analysis of the predator-prey model is analyzed using the

Takagi-Sugeno (T-S) based fuzzy impulsive control. After creation of the design, the

global stability as well as the fuzzy solutions are discussed via numerical recreations

and graphical representations with suitable discussion to prove the applicability of
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the considered system.

In Chapter 5, the study is based on a predator-prey model with an infection

that a�ects only predator species. Predators are divided into two categories such

as the susceptible predator and the infected predator, which are feeding on prey

species. Numerical simulation provides global stability and the fuzzy solution.

Chapter 6, presents a mathematical model based on the predator-prey model

with disease infection on the prey. Prey species are divided into two categories -

susceptible and infected prey species. Here we present a disease that a�ects only

prey species.

In Chapter 7, an emphasis is given to study the dynamical behavior of a prey-

predator system in which disease infection is in both the prey and predator popula-

tions. Prey and Predators are divided into two categories - the susceptible and the

infected. A system of four di�erential equations has been proposed and analyzed.

In Chapter 8, we took into account an eco-epidemic model with two preys and

one predator, with the infectious disease infecting only the �rst prey population.

The relationship connecting the second prey-predator is supposed to be represented

by Lotka-Volterra's functional response.

In Chapter 9, we develop a set of ordinary di�erential equations that represents

the dynamics of an ecosystem with two predators and one prey, but only the �rst

predator is a�ected by an infectious disease. The global stability and the Fuzzy

solution are carried out through numerical simulations and graphical representa-

tions with appropriate discussion for a better understanding of the dynamics of this

proposed model.

The main conclusions of the earlier chapters and the directions in which further

investigations may be carried out are indicated in Part-IV, Chapter - 10.
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Chapter 2

Stability Analysis of a T-S based

intra-speci�c predator-prey

competition model with Fuzzy

Impulsive Control 1

2.1 Introduction

For biologists concerned with the results of competitive interactions between species,

the Lotka-Volterra model of intra-speci�c competition is a good place to start. The

model's assumptions (for both species, such as carrying capacity and competition

coe�cients) may be unrealistic, but they require explanations. By changing the

dynamics of one or both populations, several factors can in�uence the outcomes of

competitive interactions. Many researchers have built models based on the premise

that biological parameters are exactly identi�ed, but the values of all the parame-

ters are not always known exactly due to various factors such as a lack of knowl-

1Published in Journal of Applied non-linear Dynamics, 13(2) (2024) 269-277, 269-277.
DOI:10.5890/JAND.2024.06.007
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edge, data limitations, variability in natural systems, environmental factors such

as climate, habitat quality, and resource availability. The impact of above factors

on predator and prey populations can be signi�cant and can manifest in various

ways: Lack of knowledge and data limitations can lead to uncertainty in parame-

ter estimation, �uctuations in climate or habitat quality can a�ect prey abundance

and distribution, impacting predator foraging behavior and population dynamics,

environmental factors such as climate change and habitat degradation can alter

ecosystem resilience, making predator and prey populations more vulnerable to dis-

turbances and �uctuations. For dealing with these challenges, fuzzy set theory is a

useful tool [76, 77].

In recent times, fuzzy impulsive concept has been used to analyze nonlinear

di�erential equations as well [78, 68]. Many systems, such as predator-prey systems

exhibit impulsive dynamical behavior, as a result of rapid changes at speci�c points

during developing processes. As a result, the predator-prey system's fuzzy logic

controller (FLC) must be increased, and these impulsive changes in the predator-

prey system must be observed [79, 80, 81].

In this chapter, we have two species Lotka-Volterra predator-prey model with

imprecise biological parameters. To improve the model's reality we analyze the

global and asymptotic stability of this model with the help of T-S model [82, 83, 84]

then presented the graphical solutions of the problem.

2.2 Model Formation

Inspired by the predator-prey relationship in Paul and Bhattarcharya [85], the two

species model considered as:
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dx

dt
= x(r − r12y − ex− q1E1)

dy

dt
= y(r21x−m− q2E1)

(2.1)

where x be the total population density of the prey, y be the predator total

population density, t be the number of years, x = x0 >0, y = y0 >0 denote the

density of prey and predator at time t respectively. The coe�cients r >0, m >0

signi�es the prey birth rate and predator death rates respectively. The coe�cients

r12 >0, r21 >0 gives the interaction between the species. Here q1, q2, E1 are positive

constants, and e be the intra-speci�c competition.

A matrix di�erential equation is stated as follows to analyze the system's stabil-

ity:

ẋ = Ax+ ϕ(x) (2.2)

where

ẋ=

ẋ(t)

ẏ(t)

 , A =

r − q1E1 0

0 −m− q2E1

, ϕ(x) =
−r12xy − ex2

r21xy


2.3 T-S Fuzzy model with Impulsive e�ects

2.3.1 lemma

Let ẋ = f(x(t)), here the state variable is x(t) ∈ Rn, and f ∈ C[Rn, Rn] ful�lls

the condition f(0) = 0, is a compact vector �eld de�ned in W ⊆ Rn. Using the

techniques proposed by Tanaka and Wang [86]. We can build a fuzzy model for

system (2.1) as shown below:

Control Rule i (i = 1, 2, ...µ): IF z1(t) is Mi1 , z2(t) is Mi2 ... and zp(t) is Mip
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THEN ẋ(t) = Aix(t), where µ is no. of T-S fuzzy rules, z1(t), z2, ..., zp(t) are the

premise variables, each Mij is a fuzzy set and Ai ⊆ Rn∗n is a constant matrix.

Thus, the non-linear equations can be transformed into the following linear equa-

tions. If x(t) is Mi then,

ẋ(t) = Aix(t), t ̸= τj

∆(x) = kijx(t), t = τj

i = 1, 2, 3...µ; j = 1, 2, ...

(2.3)

where Ai =

r − q1E1 − z1 0

z2 −m− q2E1

, i=1 to 4, where the matrices A′
is are

generated using maximum and minimum values of z′ks; k = 1 to 2 and z1, z2 are

related to the values of x(t)∈[0,d1], y(t)∈[0,d2] (here z1 = ex+ r12y, z2 = r21y). Mi,

x(t) and Ai ∈ R2∗2, µ is the number of the IF-THEN rules, Ki,j denotes the control

of the jth impulsive instant, ∆xt=τj = x(τj - τj−1).

With centre-average de�uzi�er , the T-S fuzzy impulsive system as a whole may

be written as:

ẋ(t) =
r∑

i=1

hi(z(t))(Aix(t)); t ̸= τj

∆(x) =
r∑

i=1

hi(z(t))Kij; t = τj

(2.4)

where, hi(z(t)) = ωi(z(t))/
∑r

i=1 ωi(z(t)), and ωi(z(t)) =
∏p

j=1Mij(z(t)).

Evidently, hi(z(t)) ≥ 0,
∑r

i=1 hi(z(t)) = 1, i = 1, 2, ..., r
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2.4 Stability Analysis

Now we'll look at the impulsive fuzzy system's numerous stability (2.4) by consid-

ering the following theorems [83].

2.4.1 Theorem

Assume that λi is maximum eigen value of [AT
i +Ai], (i = 1, 2, 3...r) . Let λ(α) =

maxi{λi}, 0< δj = τj − τj−1 < ∞ is impulsive distance [81]. If λ(α) ≥ 0 and there

exists a constant scalar ϵ > 1 and a semi-positive matrix P , such that

ln(ϵωj) + λ(α)δj ≤ 0 (2.5)

where

P = CTC, ωj = max
i

||C(I +Ki,j)|| (2.6)

then the system (2.4) is stable globally and asymptotically.

2.4.2 Theorem

Assume that λi is maximum eigen value of [AT
i +Ai], (i = 1, 2, 3...r) . Let λ(α) =

maxi{λi}, 0<δj = τj − τj−1 < ∞ is impulsive distance. If λ(α) < 0 and a constant

scalar 0≤ ϵ < −λ(α)

such that

ln(ω)− ϵδj ≤ 0 (2.7)

where

P = CTC, ωj = max
i

||C(I +Ki,j)|| (2.8)

then the system (2.4) is stable globally and exponentially.
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2.5 Numerical Simulation

By using fuzzy impulsive T-S design model on (2.2), the membership functions [86]

obtained as:

L1 =
z1

(ed1 + r12d2)
, L2 =

(ed1 + r12d2)− z1
(ed1 + r12d2)

, L3 =
z2

r21d2
, L4 =

d2r21 − z2
r21d2

and the

matrices A1, A2, A3, A4 are:

A1 =

r − q1E1 − ed1 − d2r12 0

r21d2 −m− q2E1

 ,

A2 =

r − q1E1 − ed1 − d2r12 0

0 −m− q2E1

 ,

A3 =

r − q1E1 0

r21d2 −m− q2E1

 ,

A4 =

r − q1E1 0

0 −m− q2E1


and the Defuzzi�cation can be represented as:

ẋ(t) =
r∑

i=1

Wi(z(t))(Aix(t)) (2.9)

where -

W1(z(t)) = L1(z1(t)) ∗ L3(z2(t)),W2(z(t)) = L1(z1(t)) ∗ L4(z2(t)),

W3(z(t)) = L2(z1(t)) ∗ L3(z2(t)),W4(z(t)) = L2(z1(t)) ∗ L4(z2(t))

This Fuzzy model exactly represents the non-linear system (2.2) in the region

[0,0.5]x[0,0.5].
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2.6 Results and discussion

In this section, the global stability of the considered intra-speci�c competition

predator-prey model (2.1) is discussed. Because of biological systems are com-

plicated, nonlinear, and unpredictable, fuzzy logical methods with linguistic de-

scriptions should be used to represent them. We have studied the system (2.1)

numerically using MATHEMATICA software to get better insight of the proposed

model.

Calculations were carried by taking the values of the parameters [85] at r=2.5,

m=3, r12=0.3, r21=0.1, E1=15, e=0.2, d1=0.5, d2=0.5, q1=0.2, q2=0.5 in (2.3) to get

the eigen values of [AT
i +Ai](i = 1, 2, 3...r) as explained in the theorems (2.4.1,2.4.2).

It is found that max(λi) = λ(α) = −0.50, then we have chosen diag[−0.84,−0.84]

as impulsive control matrix, such that ω = ||I + K|| = 0.16. It is noted that the

system (2.3) is stable globally (2.4.2) when ϵ=0.4, δ=0.5 (at those above values,

ln(ω)− ϵδj = −2.032 < 0). Further, it is noted that the predator-prey model is

unstable (2.4.1) when r=3, m=3, E1=1, e=0.005, r12=0.3, q1=0.2, q2=0.5 r21=0.1,

q1=0.01, q2=0.02, d1=0.5, d2=0.5, since max(λi) = λ(α) = 5.9, =⇒ ln(ϵω) +

λ(α)δj = 0.20 > 0.

The impact of the various parameters on prey-predator system (2.1) with T-S

fuzzy impulsive control model is presented in �gs. 2.1 - 2.8.

The dynamical behavior of the two species population (x, y) under the in�uence

of intra-speci�c competition parameter (e) with impulsive control can be seen in �g.

2.1 at r=2.5, m=3, r12=0.3, r21=0.1, E1=15, d1=0.5, d2=0.5, q1=0.2, and q2=0.5

[87]. This �gure clearly exhibits that the population of prey decreases with an

increase in (e) whereas the predator population reduces to zero.

The dynamical pattern of prey- predator population (x, y) by varying prey max

time (d1) parameter under fuzzy impulsive control can be noted in �g. 2.2 at r=2.5,

m=3, r12=0.3, r21=0.1, E1=15, e=0.2, d2=0.5, q1=0.2, and q2=0.5. It is observed
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from this �gure that, the prey population increases and predator population becomes

stable (zero) as (d1) decreases.

The trend of two species (x, y) population with respect to predator max time

(d2) is presented in �g. 2.3 by taking r=2.5, m=3, r12=0.3, r21=0.1, E1=15, d1=0.5,

e=0.2, q1=0.2, q2=0.5. It is clear from this �gure that, the prey population increases

with an increase in predator max time (d2).

The impact of interaction parameter (r12) on prey-predator system is shown in

�g. 2.4 at r=2.5, m=3, r12=0.3, r21=0.1, E1=15, e=0.2, d1=0.5, d2=0.5, q1=0.2,

q2=0.5. This �gure clearly displays that decrease in the interaction of predator with

prey leads to increase in the prey population.

The e�ectiveness of interaction parameter (r21) on prey-predator population

(x, y) is presented in �g. 2.5 by �xing the other parameters at r=2.5, m=3, r12=0.3,

E1=15, e=0.2, d1=0.5, d2=0.5, q1=0.2, and q2=0.5. This �gure shows that, in-

crease in the prey interaction with predator population doesn't have any in�uence

on predator-prey system. This is due to the fact that, interaction level of preys over

predators is negligible.

The dynamical behavior of the prey-predator population (x, y) with prey birth

rate (r) is explained in �g. 2.6 by taking the other parameters at m=3, r12=0.3,

r21=0.1, E1=15, e=0.2, d1=0.5, d2=0.5, q1=0.2, and q2=0.5. It is found from this

�gure that, increase in prey birth rate leads to increase in prey population.

The nature of prey-predator (x, y) population with the e�ect of predator's death

rate (m) is shown in �g. 2.7 by considering the values of the other parameters at

r=2.5, r12=0.3, r21=0.1, E1=15, e=0.2, d1=0.5, d2=0.5, q1=0.2, and q2=0.5. It is

clear from this �gure that, increase in the death rate of predator population leads

to increase in the prey population and decrease in the predator population.

Finally, the nature of two species (x, y) population (without impulsive control) is

presented in �g. 2.8 by �xing all the parameters obtained from T-S fuzzy model at
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r=2.5, m=3, r12=0.3, r21=0.1, E1=15, e=0.2, d1=0.5, d2=0.5, q1=0.2, q2=0.5 and

initial conditions x(0) = 5, y(0) = 5, t = 10. The �gure clearly shows how the prey

and predator populations reaches to stability.

2.7 Conclusions

In this chapter we analyzed the stability of a two species competition model with

fuzzy impulsive control by T-S fuzzi�cation. The main results of this study are as

follows:

� The population of prey increases with an increase in intra-speci�c competition

(e), whereas the predator population reduces to zero.

� The prey population increases and predator population becomes stable (zero)

as prey max time (d1) decreases.

� The prey population is directly proportional to predator max time (d2).

� Increase in the prey interaction with predator population doesn't have any

impact on predator-prey system. This is due to the fact that, interaction level

of preys over predators is negligible.

� E�ect of prey birth rate is to increase prey population.

� It has been observed that the death rate of predator population leads to in-

crease in the prey population and decrease in the predator population.
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predator system under impulsive control
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Chapter 3

Stability Analysis of Prey-Predator

model with two preys and one

predator using Fuzzy Impulsive

Control 1

3.1 Introduction

For a very long period, theoretical ecology was completely ignored the astounding

dynamical behaviors of three-species models. Of course, both theorists and exper-

imenters faced a signi�cant number of new challenges as a result of the growing

number of di�erential equations and dimensions. Additionally, this concept has to

be examined because certain three-species communities have recently drawn a lot

of interest. Three-species systems, such as two prey, one predator [88, 89, 90, 91],

plant, herbivore, parasite, and plant, pest, and predator, are therefore becoming

more prevalent in several disciplines of ecology [92, 93, 94].

1Published in �International Journal of Dynamics and Control�, (2024) 12:1116�1129,
DOI:https://doi.org/10.1007/s40435-023-01189-3
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The main focus of this chapter is to examine interaction between one predator

and two preys. To improve the model's reality we analyze the global and asymptotic

stability [82, 95] of this model with the help of the T-S approach, then presented

the graphical solutions of the problem.

3.2 Model Formation

Our mathematical model is based on the following assumptions-

� The overall population density of the �rst and second preys are represented

by x1 and x2.

� y is the predator's overall population density.

� In the second population of prey, there is no intra-speci�c interaction.

� Since the second prey's growth is exponential, there is a huge supply of it when

there is no predator around.

� Holling type - II functional response regulates the �rst prey and predator

interaction.

� First prey population grows logistically in the absence of any predator.

Based on the aforementioned hypotheses, the following model is proposed, which

includes a set of non-linear di�erential equations.

dx1

dt
= r1x1 − ex2

1 −
P1x1z

a+ λαx2 + x1

+ h1x1x2y

dx2

dt
= r2x2 − P2x2y + h2x1x2y

dy

dt
=

C1P1x1y

a+ λαx2 + x1

+ C2P2x2y −my

(3.1)
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where all the parameters are positive with the initial conditions x1 = x10 > 0,

x2 = x20 > 0, y = y0 > 0, x10, x20, y0 are the initial value of the populations. Here

r1 is intrinsic growth rate of �rst prey, e is intra-speci�c competition parameter, r2

is the intrinsic growth rate of second prey, P1 is the predation rate of �rst prey, m is

the natural death rate of predator, P2 is the predation rate of second prey, C1 is the

conversion rate of �rst prey to predator, C2 is the conversion rate of second prey to

predator, a is the half-saturation constant, λ is the ratio between handling time of

the predator per second prey item and handling time of the predator per �rst prey

item, α is the ratio between capture rate of the second prey and capture rate of the

�rst prey, h1, h2 are the coe�cients of help between two preys.

A matrix di�erential equation is stated as follows to analyze the system's stabil-

ity:

ẋ = Ax+ ϕ(x) (3.2)

where

ẋ=


ẋ1(t)

ẋ2(t)

ẏ(t)

 , A =


r1 0 0

0 r2 0

0 0 −m

, ϕ(x) =

−ex2

1 −
P1x1y

a+λαx2+x1
+ h1x1x2y

−P2x2y + h2x1x2y

C1P1x1y
a+λαx2+x1

+ C2P2x2y


3.3 T-S Fuzzy model with Impulsive e�ects

3.3.1 lemma

Let ẋ = f(x(t)), here the state variable is x(t) ∈ Rn, and f ∈ C[Rn, Rn] ful�lls

the condition f(0) = 0, is a compact vector �eld de�ned in W ⊆ Rn. Using the

techniques proposed by Tanaka and Wang [86]. We can build a fuzzy model for

system (2.1) as shown below:

Control Rule i (i = 1, 2, ...µ): IF z1(t) is Mi1 , z2(t) is Mi2 ... and zp(t) is Mip
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THEN ẋ(t) = Aix(t), where µ is no. of T-S fuzzy rules, z1(t), z2, ..., zp(t) are the

premise variables, each Mij is a fuzzy set and Ai ⊆ Rn∗n is a constant matrix.

The non-linear equations can be transformed into the following linear equations.

If x(t) is Mi then

ẋ(t) = Aix(t), t ̸= τj

∆(x) = Kijx(t), t = τj

i = 1, 2, 3...r; j = 1, 2, ...

(3.3)

where Ai =


r1 − z1 − P1z2 + h1z3 0 0

h2z3 r2 − z4 0

C1P1z2 C2z4 −m

, i=1 to 4, where the matrices

A′
is are generated using maximum and minimum values of z′ks; k = 1 to 4 and z1,

z2, z3, z4 are related to the values of x1(t)∈[0,d1], x2(t)∈[0,d2], y(t)∈[0,d3], (here

z1 = ex1, z2 =
y

a+ λαx2 + x1

, z3 = x2y, z4 =P2y). Mi, x(t), Ai ∈ R3∗3, r is the

number of the IF-THEN rules, Ki,j denotes the control of the j
th impulsive instant,

∆(x)|t=τj = x(τj - τj−1)

3.4 Numerical Simulation

By using fuzzy impulsive T-S design model on (3.1), the membership functions as

given in [96], obtained as

M1 =
z1
ed1

, M2 =
ed1 − z1

ed1
, N1 =

z2
d3

a+λαd2+d1

, N2 =

d3
(a+λαd2+d1)

− z2
d3

(a+λαd2+d1)

, K1 =
z3
d2d3

,

K2 =
d2d3 − z3

d2d3
, L1 =

z4
P2d3

, L2 =
P2d3 − z4

d3
, and the matrices A′

is are calculated

using Ai =


r1 − z1 − P1z2 + h1z3 0 0

h2z3 r2 − z4 0

C1P1z2 C2z4 −m

, i = 1 to 16, where the matrices
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A′
is are generated using maximum and minimum values of z′ks; k = 1 to 4 and, the

Defuzzi�cation can be represented as:

ẋ(t) =
r∑

i=1

hi(z(t))(Aix(t)) (3.4)

here h′
is are given as, hi(z(t))= ωi(z(t))/

∑r
i=1 ωi(z(t)), and ωi(z(t))=

∏p
j=1 Mij(z(t)),

i=1 to 16, j=1 to 4,

This Fuzzy model exactly represents the non-linear system in the region [0,5]x[0,10]x[0,10].

dx1

dt
= r1x1 − ex2

1 −
P1x1z

a+ λαx2 + x1

+ h1x1x2y

dx2

dt
= r2x2 − P2x2y + h2x1x2y

dy

dt
=

C1P1x1y

a+ λαx2 + x1

+ C2P2x2y −my

(3.5)

3.5 Results and discussion

In this section, the global stability of the considered intra-speci�c competition

predator-prey model (3.1) is discussed. We have studied the system (3.1) numerically

using MATHEMATICA software to get better insight of the proposed model. Cal-

culations were carried by taking the values of the parameters at r1 = 0.5, e = 2.5,

r2 = 0.5, C1 = 0.4, C2 = 0.1, m = 1, h1 = 0.2, h2 = 0.05, λ = 0.1, α = 0.15,

P1 = 1.5, P2 = 1, d1 = 10, d2 = 10, d3 = 10, in (3.3) to get the eigen values of

[AT
i +Ai](i = 1, 2, 3...r) as explained in the theorems ([83]). It is found that max(λi)

= λ(α) = 41.6, then we have chosen diag[−0.84,−0.84] as impulsive control ma-

trix, such that ω = ||I + K|| = 0.01. It is noted that the system (3.3) is stable

globally when ϵ=1.5, δj=0.1 (at those above values, ln(ϵω) + λ(α)δj = −0.039 < 0).

Further, it is observed that the prey-predator model is unstable when r1 = 2.5,

e = 1, r2 = 1, C1 = 0.8, C2 = 0.1, m = 1, h1 = 0.4, h2 = 0.1, λ = 0.2,

α = 0.3, P1 = 3.5,P2 = 2, d1 = 5, d2 = 10, d3 = 10, since max(λi) =λ(α) = 86.18,
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=⇒ ln(ϵω) + λ(α)δj = 4.419 > 0 for ω = 0.99, ϵ=1.5, δj=0.1.

e r1 r2 P1 P2 C1 C2 m a h1 h2 α λ d1 d2 d3 max(λi)=λ(α) ln(ϵω) + λ(α)δj conclusion
2.5 0.5 0.5 1.5 1.0 0.4 0.1 1.0 1.0 0.2 0.05 0.15 0.1 10 10 10 41.6 -0.039 stable
2.0 0.5 0.5 1.5 1.0 0.5 0.1 1.0 1.0 0.05 0.05 0.1 0.1 10 10 10 13.07 -2.89 stable
1.5 0.1 0.1 2.5 1.0 1.0 0.5 1.0 1.0 0.1 0.2 0.15 0.1 10 10 10 32.56 -0.943 stable
1.0 2.5 1.0 3.5 2.0 0.8 0.1 1.0 1.0 0.4 0.1 0.3 0.2 10 10 10 86.18 4.419 unstable

Table 3.1: Stability of the system at various parameters

Table 3.1 presents the stability of the system at various values of the present

study.

The impact of the various parameters on prey-predator system (3.1) with T-S

fuzzy impulsive control model is presented in �gs. 3.1 - 3.9.

The impact of predation coe�cient of second prey (P2) parameter on prey-

predator population (x1, x2, y) under fuzzy impulsive control can be noted in �g.

3.1 at r1 = 0.5, e = 2.5, r2 = 0.5, C1 = 0.4, C2 = 0.1, m = 1, h1 = 0.2, h2 = 0.05,

λ = 0.1, α = 0.15, P1 = 1.5, d1 = 10, d2 = 10, d3 = 10. This �gure shows

that increase in predation coe�cient of second prey leads to increase in �rst prey

population and predator population whereas decrease in second prey population.

The change on prey-predator populations (x1, x2, y) by varying �rst prey max

time (d1) is shown in �g. 3.2 at r1 = 0.5, e = 2.5, r2 = 0.5, C1 = 0.4, C2 = 0.1,

m = 1, h1 = 0.2, h2 = 0.05, λ = 0.1, α = 0.15, P1 = 1.5, P2 = 1, d2 = 10,

d3 = 10. This �gure clearly displays that, the second prey population increases as

d1 decreases.

The dynamical change on prey-predator populations (x1, x2, y) by varying second

prey max time (d2) on prey-predator system is shown in �g. 3.3 at r1 = 0.5, e = 2.5,

r2 = 0.5, C1 = 0.4, C2 = 0.1, m = 1, h1 = 0.2, h2 = 0.05, λ = 0.1, α = 0.15,

P1 = 1.5,P2 = 1, d1 = 10, d3 = 10. This �gure shows that, the second prey and

predator population decreases as d2 increases.
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The nature on prey-predator populations (x1, x2, y) by varying predator max

time (d3) is shown in �g. 3.4 at r1 = 0.5, e = 2.5, r2 = 0.5, C1 = 0.4, C2 = 0.1,

m = 1, h1 = 0.2, h2 = 0.05, λ = 0.1, α = 0.15, P1 = 1.5,P2 = 1, d1 = 10,

d2 = 10. It is observed from this �gure that, as d3 decreases, the �rst and second

prey population decreases whereas predator population increases.

The e�ect of coe�cient of help between prey (h1) on prey-predator system is

shown in �g. 3.5 at r1 = 0.5, e = 2.5, r2 = 0.5, C1 = 0.4, C2 = 0.1, m = 1,

h2 = 0.05, λ = 0.1, α = 0.15, P1 = 1.5,P2 = 1, d1 = 10, d2 = 10, d3 = 10. This

�gure clearly displays that decrease in h1 leads to decrease in �rst prey population.

The e�ectiveness by varying predation coe�cient of �rst prey (P1) parameter

on prey- predator population (x1, x2, y) under fuzzy impulsive control can be noted

in �g. 3.6 at r1 = 0.5, e = 2.5, r2 = 0.5, C1 = 0.4, C2 = 0.1, m = 1, h1 = 0.2,

h2 = 0.05, λ = 0.1, α = 0.15, P2 = 1, d1 = 10, d2 = 10, d3 = 10. This �gure clearly

displays that increase in predation coe�cient of �rst prey leads to increase in �rst

prey population.

The e�ect of intra-speci�c competition (e) on prey-predator system is shown in

�g. 3.7 at r1 = 0.5, r2 = 0.5, C1 = 0.4, C2 = 0.1, m = 1, h1 = 0.2, h2 = 0.05,

λ = 0.1, α = 0.15, P1 = 1.5, P2 = 1, d1 = 10, d2 = 10, d3 = 10. This �gure clearly

displays that decrease in intra-speci�c competition between prey-predator leads to

increase in second prey population.

The e�ect of intrinsic growth rate of second prey (r2) on prey-predator system

is shown in �g. 3.8 at r1 = 0.5, e = 2.5, C1 = 0.4, C2 = 0.1, m = 1, h1 = 0.2,

h2 = 0.05, λ = 0.1, α = 0.15, P1 = 1.5,P2 = 1, d1 = 10, d2 = 10, d3 = 10. This

�gure shows that an increase in r2 leads to increase in the second prey population.

Finally, the nature of three species (x1, x2, y) population (without impulsive con-

trol) is presented in �g. 3.9 by �xing all the parameters obtained from T-S fuzzy

model at r1 = 0.5, e = 2.5, r2 = 0.5, C1 = 0.4, C2 = 0.1, m = 1, h1 = 0.2, h2 = 0.05,
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λ = 0.1, α = 0.15, P1 = 1.5,P2 = 1, d1 = 10, d2 = 10, d3 = 10, and initial conditions

x1(0) = 5, x2(0) = 10, y(0) = 10, and t = 10. The �gure clearly shows how the prey

and predator populations reaches to stability.

3.6 Conclusions

In this chapter, we have constructed a mathematical model of two prey one predator

population. The main results of this study are as follows:

� The e�ect of intra-species competition is to decrease the rate of population

growth as population density increases.

� An increase in the prey growth rate causes a rise in the prey population.

� Predator population grows as predator maximum time decreases, but preys

population decreases.

� The second prey max time (d2) is inversely proportional to the second prey

and predator population.

� Growth in the predation of second prey, leads to growth in the population of

�rst prey and reduction in the population of second prey.

� As predator max time (d3) rises, the �rst prey population rises and the predator

population declines.

� Enhance in the help between two preys leads to increase in the population of

�rst prey.

� Rise in the predation of �rst prey, leads to rise in the population of �rst prey.
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Chapter 4

Population Dynamic study of

interaction between two Predators

and one Prey 1

4.1 Introduction

In recent years, the interest in fuzzy control has grown signi�cantly. This has been

largely stimulated by the fuzzy control has had in its many applications. It has

been made known that numerous fundamental concerns still need to be resolved

despite the apparent achievement. The validity and application of any control design

approach depend on a number of factors, including stability analysis, systematic

design, and performance comparison [97, 98].

In the previous chapter, we have with two preys and one predator model. In

this chapter, we take into Lotka-Volterra predator-prey model with one prey and

two predators. We examine the global and asymptotic stability to strengthen the

reality of the model as given in [82, 95] by means of the T-S model, then provided

the graphical representations for the problem by examination. The stability of the

1Published in �Physica Scripta�, 99 (2024) 025023, DOI:10.1088/1402-4896/ad1dd2
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Lotka-Volterra predator-prey system with fuzzy impulse control has not yet been

extensively studied in any literature. Therefore, with the help of fuzzy impulse

control and the T-S mathematical model, the stability of the prey-predator system

is studied [99, 100, 101].

4.2 Model Formulation

These presumptions serve as the foundation for our mathematical model.

� The total population density of the prey is indicated by x.

� Let the �rst predator overall population density is denoted by y1.

� The second predator overall population density is denoted by y2.

Based on the above considerations, we propose the following model using the system

of non-linear di�erential equations.

dx

dt
= rx− ex2 − P1y1x

a0 + x
− P2y2x

a0 + x
dy1
dt

=
C1P1y1x

a0 + x
− C1P1y1y2

a1 + x
−m1y1

dy2
dt

=
C2P2y2x

a0 + x
− C2P2y1y2

a2 + x
−m2y2

(4.1)

where all the variables (r, e, P1, P2, C1, C2, m1, m2, a0, a1, a2) > 0 and x0,

y10, y20 are initial populations with x = x0 > 0, y1 = y10 > 0, y2 = y20 > 0.

Here, r is the internal production growth rate of prey, e represents the intra-species

competition, �rst predator's predation rate is P1, second predator's predation rate

is P2, C1 is the �rst predator conversion rate after eating prey, C2 is the second

predator conversion rate after eating prey, �rst predator's mortality rate is m1,

second predator's mortality rate is m2, and a0, a1, and a2 are the half-saturation

constants.
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The following describes a matrix di�erential equation, to analyze the system's

stability:

ẋ = Ax+ ϕ(x) (4.2)

where

ẋ=


ẋ(t)

ẏ1(t)

ẏ2(t)

 , A =


r 0 0

0 −m1 0

0 0 −m2

, ϕ(x) =

−ex2 − P1y1x

a0+x
− P2y2x

a0+x

C1P1y1x
a0+x

− C1P1y1y2
a1+x

C2P2y2x
a0+x

− C2P2y1y2
a2+x


4.3 Fuzzy Takagi-Sugeno approach with impacts of

impulse

The non-linear equations can be transformed into the following linear equation as

explained in the earlier (chapter-2).

If x(t) is Mi then

ẋ(t) = Aix(t), t ̸= τj (4.3)

∆(x) = Kijx(t), t = τj (4.4)

i = 1, 2, 3...r; j = 1, 2, ... (4.5)

where Ai =


r − z1 − z2 − z3 0 0

C1z2 −C1z4 −m1 0

C2z3 −C2z5 −m2

, i = 1 to 31, where the ma-

trices A′
is are generated using maximum and minimum values of z′ks; k = 1 to 5

and z1, z2, z3, z4, z5 are related to the values of x(t)∈[0,d1], y1(t)∈[0,d2], y2(t)∈[0,d3]

(here z1 = ex, z2 =
P1y1
a0 + x

, z3 =
P2y2
a0 + x

, z4 =
P1y2
a1 + x

, z5 =
P2y2
a2 + x

) . Mi, x(t), Ai
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∈ R3∗3, r is the number of the IF-THEN rules, Ki,j denotes the control of the jth

impulse instant, ∆(x) |t=τj = x(τj - τj−1)

4.4 Numerical Simulations

The membership functions for the fuzzy impulse (4.2) Takagi-Sugeno design model

were produced as follows [96]:

M1 =
z1
ed1

, M2 =
ed1 − z1

ed1
, N1 =

z2
P1d2
a0+d1

, N2 =

P1d2
(a0+d1)

− z2
P1d2

(a0+d1)

, K1 =
z3
P2d3
a0+d1

,

K2 =
P2d3
a0+d1

− z3
P2d3
a0+d1

, L1 =
z4
P1d3
a1+d1

, L2 =
P1d3
a1+d1

− z4
P1d3
a1+d1

, O1 =
z5
P2d3
a2+d1

, O2 =
P2d3
a2+d1

− z5
P2d3
a2+d1

and the matrices A′
ks are calculated using

Ai =


r − z1 − z2 − z3 0 0

C1z2 −C1z4 −m1 0

C2z3 −C2z5 −m2

, i = 1 to 31,

where the matrices A′
is are generated using maximum and minimum values of

z′ks; k = 1 to 5 and, the Defuzzi�cation is characterized by:

ẋ(t) =
r∑

k=1

hk(z(t))(Akx(t)) (4.6)

here h′
is are given as, hi(z(t))= ωi(z(t))/

∑r
i=1 ωi(z(t)), and ωi(z(t))=

∏p
j=1Mij(z(t)),

i=1 to 31, j=1 to 5

This Fuzzy model is a suitable representation of the non-linear system in the

region [0,5]x[0,10]x[0,10].
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dx

dt
= rx− ex2 − P1y1x

a0 + x
− P2y2x

a0 + x
dy1
dt

=
C1P1y1x

a0 + x
− C1P1y1y2

a1 + x
−m1y1

dy2
dt

=
C2P2y2x

a0 + x
− C2P2y1y2

a2 + x
−m2y2

(4.7)

4.5 Results and discussion

This section describes the global stability of the considered intra-species preda-

tor�prey competition model (4.2). Given that they are complex, nonlinear, and

unpredictable, natural systems should be characterized using a fuzzy logical tech-

nique combined with communication description. We have studied the system (4.1)

numerically using MATHEMATICA software to get better insight of the proposed

model.

The calculations were performed by taking the parameter values, at r = 2.0, e =

0.05, P1 = 1.0, C1 = 2.0, m1 = 1.0, m2 = 0.7, a0 = 10, P2 = 2.0, d2 = 10, a1 = 10,

a2 = 20, d1 = 10, d3 = 10, C2 = 1.5, in (4.3) to �nd the eigen values of [AT
i +Ai](i =

1, 2, 3...r) as stated in the theorems ([83]). We discover that max(λi)=λ(α) = 4.0,

then we decided that diag[−0.84,−0.84] as impulse control matrix, such that ω =

||I+K|| = 0.16. The system is acknowledged that (4.3) is stable globally when ϵ=2.8,

δj=0.12 (at those above values, ln(ϵω) + λ(α)δj = −0.3229 < 0). Additionally, it is

noted that the prey-predator model is unstable when r = 7.0, e = 3.0, P1 = 2.0,

P2 = 3.0, C1 = 6.0, C2 = 1.0,m1 = 1.0,m2 = 1.5, a0 = 15 a1 = 10,a2 = 5.0, d1 = 10,

d2 = 10, d3 = 10, since max(λk) =λ(α) = 14.0, ln(ϵω) + λ(α)δj = 0.877 > 0 for

ω = 0.16, ϵ=2.8, δj=0.12.

The stability of the system for various study-related parameters is shown in Table

4.1

Figures 4.1 - 4.10 show how di�erent factors a�ect prey-predator system 4.1 with
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r e P1 P2 C1 C2 m1 m2 a0 a1 a2 d1 d2 d3 max(λk)=λ(α) ln(ϵω) + λ(α)δl conclusion
2.0 0.05 1.0 2.0 2.0 1.5 1.0 0.7 10.0 10.0 20.0 10.0 10.0 10.0 4.0 -0.3229 stable
3.3 1 0.05 1.0 2.0 2.0 1.5 1.0 0.7 10.0 10.0 20.0 10.0 10.0 10.0 6.6 -0.0109 stable
3.0 0.5 1.0 1.0 2.0 1.5 1.5 0.5 8.0 10.0 5.0 10.0 10.0 10.0 6.0 -0.0829 stable
7.0 3.0 2.0 3.0 6.0 1.0 1.0 1.5 15.0 10.0 5.0 10.0 10.0 10.0 14.0 0.877 unstable

Table 4.1: System stability under diverse conditions

T-S Fuzzy impulse Control Model.

Fig 4.1 depicts how intra-species competition (e) a�ects the prey-predator pop-

ulation at r = 2.0, P1 = 1.0, P2 = 2.0, d2 = 10, C1 = 2.0, C2 = 1.5, m1 = 1.0,

m2 = 0.7, a0 = 10, a1 = 10, a2 = 20, d1 = 10, d3 = 10. The e�ect of intra-species

competition is to decrease the rate of population growth as population density in-

creases.

The e�ect of changing the prey maximum time (d1) on the prey-predator pop-

ulation is depicted in �g. 4.2 at r = 2.0, e = 0.05, P1 = 1.0, d2 = 10, P2 = 2.0,

C1 = 2.0, C2 = 1.5, m1 = 1.0, m2 = 0.7, a0 = 10, a1 = 10, a2 = 20, d3 = 10. This

�gure clearly shows that, �rst predator population increases as d1 increases because

there is more food for predators.

Fig 4.3 illustrates the dynamic shift on the prey-predator population caused by

adjusting the �rst predator maximum time (d2) in the prey-predator system r = 2.0,

e = 0.05, P1 = 1.0, P2 = 2.0, d3 = 10, C1 = 2.0, C2 = 1.5, m1 = 1.0, m2 = 0.7,

a0 = 10, a1 = 10, a2 = 20, d1 = 10. This graph demonstrates how the predator

population rises when d2 falls.

The performance of prey-predator population (x, y1, y2) by varying second preda-

tor max time (d3) is shown in �g. 4.4 at r = 2.0, e = 0.05, P1 = 1.0, d2 = 10,

P2 = 2.0, C1 = 2.0, C2 = 1.5, m1 = 1.0, m2 = 0.7, a0 = 10, a1 = 10, a2 = 20,

d1 = 10. This graph shows that the predator population increases as d3 declines.

The changes on prey-predator system with varying half saturation constant (a0)

is given in �g. 4.5 at r = 2.0, e = 0.05, P1 = 1.0, d2 = 10, d3 = 10, P2 = 2.0,
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C1 = 2.0, C2 = 1.5, m1 = 1.0, m2 = 0.7, a1 = 10, a2 = 20, d1 = 10. This �gure

clearly displays that decrease in half saturation constant (a0) indicate that predators

can achieve half of their maximum consumption rate at a lower prey density, which

means they are more e�cient in utilizing the preys and hence predator population

rises.

The consequence of half saturation constant (a1) on prey-predator population is

shown in �g. 4.6 at r = 2.0, e = 0.05, P1 = 1.0, P2 = 2.0, C1 = 2.0, C2 = 1.5,

m1 = 1.0, m2 = 0.7, a0 = 10, a2 = 20, d1 = 10, d2 = 10, d3 = 10. This �gure clearly

displays that the drop in half saturation constant (a1) leads to increase in predator

population.

The impact of half saturation constant (a2) on prey-predator population is given

in �g. 4.7 at r = 2.0, e = 0.05, P1 = 1.0, d2 = 10, P2 = 2.0, C1 = 2.0, C2 = 1.5,

m1 = 1.0, m2 = 0.7, a0 = 10, a1 = 10, d1 = 10, d3 = 10. This �gure clearly

exhibit that decrease in half saturation constant (a2) leads to increase in predator

population.

The impact of mortality rate of �rst predator (m1) on prey-predator population

is shown in �g. 4.8 at r = 2.0, e = 0.05, P1 = 1.0, d2 = 10, d3 = 10, P2 = 2.0,

C2 = 1.5, m2 = 0.7, a0 = 10, C1 = 2.0, a1 = 10, a2 = 20, d1 = 10. This �gure

clearly displays that decrease in mortality rate of �rst predator causes rise in �rst

predator population.

The impact of mortality rate of second predator (m2) on prey-predator popula-

tion is shown in �g. 4.9 at r = 2.0, e = 0.05, P1 = 1.0, d2 = 10, P2 = 2.0, C1 = 2.0,

C2 = 1.5, m1 = 1.0, a0 = 10, a1 = 10, a2 = 20, d1 = 10, d3 = 10. This �gure clearly

displays that decrease in mortality rate of second predator causes an increase in

predator population.

Fig 4.10 illustrates how changing the �rst predator's (P1) predation coe�cient

a�ected the population of prey and predators in the fuzzy impulse control at r = 2.0,
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e = 0.05, P2 = 2.0, C1 = 2.0, C2 = 1.5, m1 = 1.0, m2 = 0.7, a0 = 10 a1 = 10,

a2 = 20, d1 = 10, d2 = 10, d3 = 10. This graph clearly displays that rise in predation

coe�cient of �rst predator causes to increase in �rst predator population.

By setting all of the variables from the Takagi-Sugeno fuzzy model, the nature

of three species' populations (without impulse control) is �nally depicted in �g 4.11

at r = 2.0, e = 0.05, P1 = 1.0, C2 = 1.5, P2 = 2.0, C1 = 2.0, m1 = 1.0, m2 = 0.7,

a0 = 10, a2 = 20, d1 = 10, a1 = 10, d2 = 10, d3 = 10 when x(0) = 5, y1(0) =

10, y2(0) = 10, and t = 10. This graph clearly exhibit how populations of prey and

predators achieve to their stability.

4.6 Conclusions

In this study, a prey-predator population model is developed with two predator and

one prey population. The main �ndings of this study are as follows:

� The population of predators increases as intra-speci�c competition declines.

� Predators become less in number as prey �rst predator max time (d2) and

second predator max time (d3) increase.

� The half-saturation constants are inversely proportional to predators popula-

tion.

� Decrease in mortality rate causes an increase in predator population.
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Figure 4.1: Figure depicting intra-species competition (e) e�ects on the prey-
predator population while impulse control is present
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Figure 4.8: Figure depicting the impact of mortality rate of �rst predator (m1) on
prey-predator population while impulse control is present
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Figure 4.9: Figure depicting the impact of mortality rate of second predator (m2)
on prey-predator population while impulse control is present
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Chapter 5

Stability Analysis of a Predator-Prey

model with infection in Predator

Population 1

5.1 Introduction

In this chapter, we considered the predator-prey model with eco-epidemiological

implications among three species: prey, susceptible predator, and infected predator,

in which disease solely a�ects the predator population [39, 59].

5.2 Model Formation

Our mathematical model is based on the following assumptions:

� When there is no predator, the prey population expands operational with a

per capita constant growth rate r and a carrying capacity of the environment

c = r/e, where e represents the prey's intra-speci�c competition. Thus

1Published in �Network Biology�, 14(3): 215-227, (2024)
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dx

dt
= rx(1− x

c
) (5.1)

where x(t) denotes the prey population at time.

� In presence of injurious infection, the whole predator population y(t) is divided

into two classes, among them one is the susceptible predator ys(t) and the other

is the infected predator yi(t). As a result, the overall predator population

density at time t is -

y(t) = ys(t) + yi(t) (5.2)

� We believe that the disease is solely a�ecting the predator species, and that

the prey population is unaltered. The population of diseased predators does

not recover or develop immune.

� For the susceptible predator and the infected predator, the predation rate or

searching e�ciency constants are P1 and P2, respectively, because the sus-

ceptible predator is more e�ective than the infected predator; therefore, we

assume that the prey is eaten by the susceptible predator based on the basic

mass action occurrence. According to the Holling type - II functional response,

the diseased predator eats the prey. We assume that the susceptible preda-

tor has no handling time and the infected predator has a non-zero handling

time, which obviously depicts a better ecological situation than assuming both

predators have the same predation rate.

� We presume that the disease spreading is governed by the basic rule of mass

action. It states that the rate of infection is proportional to both the number

of susceptible individuals (S) and the number of infected individuals (I) in the

population. i.e. Rate of infection (β) ∝ S·I

� Let D is the predator's natural death rate, B is the predator's birth rate, and
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m is the predator's disease-related mortality rate.

We propose the following model utilizing a set of nonlinear di�erential equations

based on the above assumptions:

dx

dt
= rx− ex2 − P1xys −

P2xyi
a+ x

dys
dt

= f1P1xys − βyiys + (B −D)ys

dyi
dt

= βyiys +
f2P2xyi
a+ x

−myi

(5.3)

where x0, ys0, yi0 are the initial populations and all the parameters r, e, P1, P2,

m, β, are positive and (B − D) can be either sign with x = x0 > 0, ys = ys0 > 0,

yi = yi0 > 0, a is the half saturation constant, f1, f2 are the food conversion rates

such that 0 < f1, f2 < 1, β is the rate of transmission of a force of infection.

A matrix di�erential equation is stated as follows to analyze the system's stabil-

ity:

ẋ = Ax+ ϕ(x) (5.4)

where

ẋ=


ẋ(t)

ẏs(t)

ẏi(t)

 , A =


r 0 0

0 (B −D) 0

0 0 −m

, ϕ(x) =

−ex2 − P1xys − P2xyi

a+x

f1P1xys − βyiys

βyiys +
f2P2xyi
a+x


5.3 T-S Fuzzy model with Impulsive e�ects

The non-linear equations can be transformed into the following linear equation as

explained in earlier (chapter-2).

If x(t) is Mi then,
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ẋ(t) = Aix(t), t ̸= τj

∆(x) = Kijx(t), t = τj,

i = 1, 2, 3...r; j = 1, 2, ...

(5.5)

where

Ai =


r − z1 − z2 − z3 0 0

f1z2 −z4 + (B −D) 0

f2z3 z4 −m

, i = 1 to 16, where

the matrices A′
is are generated using maximum and minimum values of z′ks; k=1 to

4 and z1, z2, z3, z4 are related to the values of x(t)∈[0,d1], ys(t)∈[0,d2], yi(t)∈[0,d3]

(here z1 = ex, z2 = P1ys, z3 =
P2yi
a+ x

, z4=βyi). Mi, x(t), Ai ∈ R3∗3, r is the num-

ber of the IF-THEN rules, Kij denotes the control of the jth impulsive instant,

∆(x)|t=τj=x(τj-τj−1)

5.4 Numerical Simulation

By using fuzzy impulsive T-S design model on (5.4), the membership functions

obtained as

M1 =
z1
ed1

, M2 =
ed1 − z1

ed1
, N1 =

z2
P1d2

, N2 =
P1d2 − z2

P1d2
, K1 =

z3
P2d3
a+d1

,

K2 =
P2d3
a+d1

− z3
P2d3
a+d1

, P1 =
z4
βd3

, P2 =
βd3 − z4

βd3
and the matrices A′

is are calculated using

Ai =


r − z1 − z2 − z3 0 0

f1z2 −z4 + (B −D) 0

f2z3 z4 −m

 i = 1 to 16, where the matrices

A′
is are generated using maximum and minimum values of z′ks; k=1 to 4 and, the

Defuzzi�cation can be represented as:
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ẋ(t) =
r∑

i=1

hi(z(t))(Aix(t)) (5.6)

here h′
is are given as, hi(z(t))= ωi(z(t))/

∑r
i=1 ωi(z(t)), and ωi(z(t))=

∏p
j=1 Mij(z(t)),

i=1 to 16, j=1 to 4,

This Fuzzy model is a suitable representation of the non-linear system (5.4) in

the region [0,10]x[0,10]x[0,10]

5.5 Results and discussion

In this section, the global stability of the the considered intra-speci�c competition

predator-prey model (5.4) is discussed. Because of biological systems are compli-

cated, nonlinear, and unpredictable, fuzzy logical methods with linguistic descrip-

tions should be used to represent them. We have studied the system (5.3) numeri-

cally using MATHEMATICA software to get better insight of the proposed model.

Calculations were carried by taking the values of the parameters at r=0.5,

P1=0.3125, P2=0.25, a=0.5, f1=0.3125, f2=0.1875, (B−D)=0.3125, β=0.25,m=0.125,

e=0.0005, d1=10, d2=10, d3=10 in (5.5) to get the eigen values of [AT
i + Ai](i =

1, 2, 3...r) as explained in the theorems ([83]). It is found thatmax(λi) = λ(α) = 0.87

then we have chosen diag[−0.84,−0.84] as impulsive control matrix, such that

ω = ||I + K|| = 0.16. It is noted that the system (5.5) is stable globally when

ϵ=1.5, δj=0.02 (at those above values, ln(ϵω) + λ(α)δj = −1.41 < 0). Further, it

is noted that the predator-prey model is unstable when r=2.5, P1=0.25, P2=0.25,

a=0.25, f1=1.75, f2=2.27, (B−D)=6, β=0.5, m=0.3, e=15, d1=25, d2=25, d3=25,

since max(λi)=λ(α) = 73.74, =⇒ ln(ϵω) + λ(α)δj = 0.0478 > 0.

Table 5.1 presents the stability of the system at various values of the present

study.

The impact of the various parameters on prey-predator system (5.3) with T-S
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r P1 P2 a f1 f2 β (B −D) m e d1 d2 d3 max(λi) ln(ϵω) conclusion
=λ(α) +λ(α)δj

0.5 0.3125 0.25 0.5 0.3125 0.1875 0.25 0.3125 0.125 0.0005 10 10 10 0.87 -1.41 stable
0.1 0.5 0.5 0.5 0.2 0.2 0.5 0.45 0.2 25 30 30 30 0.95 -1.408 stable
3.8 0.5 2 0.3 1.25 1.5 0.15 2 0.3 3 20 20 20 50.34 -0.4202 stable
2.5 0.25 0.25 0.25 1.75 2.27 0.5 6 0.3 15 25 25 25 73.74 0.0478 unstable

Table 5.1: Stability of the system at various parameters

fuzzy impulsive control model is presented in �gs. 5.1 - 5.10.

The e�ect of infection parameter (β) on prey-predator system is shown in �g.

5.1 at r=0.5, P1=0.3125, P2=0.25, a=0.5, f1=0.3125, f2=0.1875, (B −D)=0.3125,

m=0.125, e=0.0005, d1=10, d2=10, d3=10. This graph makes it abundantly evident

that as infection rates rise, the population of susceptible predator's decrease.

The in�uence of disease mortality (m) on prey-predator system is shown in �g.

5.2 at r=0.5, P1=0.3125, P2=0.25, a=0.5, f1=0.3125, f2=0.1875, β = 0.25, (B −

D)=0.3125, e=0.0005, d1=10, d2=10, d3=10. This �gure clearly exhibits that an

increase in disease mortality leads to decrease in susceptible predator population

(which decreases slowly) whereas the infected predator population decreases faster.

The consequences of intra-speci�c competition (e) on prey-predator system is

shown in �g. 5.3 at r=0.5, P1=0.3125, P2=0.25, a=0.5, f1=0.3125, f2=0.1875, β =

0.25, (B − D)=0.3125, m=0.125, d1=10, d2=10, d3=10. This graph demonstrates

how less intra-speci�c competition between prey and predator results in a rise in the

population of prey.

The change on prey-predator system with growth rate of prey (r) is shown in �g.

5.4 at P1=0.3125, P2=0.25, a=0.5, f1=0.3125, f2=0.1875, β = 0.25, (B−D)=0.3125,

m=0.125, e=0.0005, d1=10, d2=10, d3=10. This �gure clearly exhibits that increase

in growth rate of prey leads to increase in the prey population and the population

of the predator becomes stable.

The outcome with varying predation rate of susceptible predator (P1) on prey-

predator system is shown in �g. 5.5 at r=0.5, P2=0.25, a=0.5, f1=0.3125, f2=0.1875,
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β = 0.25, (B −D)=0.3125, m=0.125, e=0.0005, d1=10, d2=10, d3=10. This graph

demonstrates unambiguously how an increase in a predator's predation rate causes

a drop in the prey's population.

The impact of predation rate of infected predator (P2) on prey-predator system

is shown in �g. 5.6 at r=0.5, P1=0.3125, a=0.5, f1=0.3125, f2=0.1875, β = 0.25,

(B −D)=0.3125, m=0.125, e=0.0005, d1=10, d2=10, d3=10. This graph illustrates

clearly how an infected predator's increased predation rate causes a drop in the

number of preys.

The dynamical change on prey- predator population (x, ys, yi) by varying prey

max time (d1) parameter under fuzzy impulsive control can be noted in �g. 5.7

at r=0.5, P1=0.3125, P2=0.25, a=0.5, f1=0.3125, f2=0.1875, β = 0.25, (B −

D)=0.3125, m=0.125, e = 0.0005, d2=10, d3=10. It is noticed from this �gure

that, the prey population decreases as d1 decreases.

The e�ectiveness by varying susceptible predator max time (d2) parameter of

prey- predator population (x, ys, yi) under fuzzy impulsive control can be noted in

�g. 5.8 at r=0.5, P1=0.3125, P2=0.25, a=0.5, f1=0.3125, f2=0.1875, β = 0.25,

(B − D)=0.3125, m=0.125, e=0.0005, d1=10, d3=10. It is noted from this �gure

that, the prey population increases as d2 decreases.

The vital pattern of prey- predator population (x, ys, yi) by varying infected

predator max time (d3) parameter under fuzzy impulsive control can be noted in

�g. 5.9 at r=0.5, P1=0.3125, P2=0.25, a=0.5, f1=0.3125, f2=0.1875, β = 0.25, (B−

D)=0.3125, m=0.125, e=0.0005, d1=10, d2=10. It is observed from this �gure that,

the prey population increases and predator population decreases with an increase

in d3.

Finally, the nature of two species (x, ys, yi) population (without impulsive con-

trol) is presented in �g. 5.10 by �xing all the parameters obtained from T-S fuzzy

model at r=0.5, P1=0.3125, P2=0.25, a=0.5, f1=0.3125, f2 =0.1875, β = 0.25,
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(B − D)=0.3125, m=0.125, e=0.0005, d1=10, d2=10, d3=10 and initial conditions

x(0) = 10, ys(0) = 5, yi(0) = 5, t = 5. The �gure clearly shows how the prey- preda-

tor populations reaches to stability whereas infected predator becomes unstable.

5.6 Conclusions

In this chapter we present stability analysis of a three species competition model

with fuzzy impulsive control by T-S model, in which disease infection is in predator.

The main results of this study are as follows:

� We establish a predator-prey model in which predator population is infected.

� Less intra-speci�c competition between prey and predator results in a rise in

the population of prey because of the infection in predators.

� A rise in the prey population results from an increase in the prey growth rate.

� The population of healthy predators decreases as the rate of disease transmis-

sion from diseased to susceptible predators rises because more predators will

contract the disease.

� As the maximum period for prey diminishes, the prey population decreases.

� Because predators will have less time for predation as the maximum period

for susceptible predators gets shorter, the number of prey rises.

� While the population of prey increases as the maximum time for an infected

predator increases, the population of susceptible predators decreases because

more predators will contract the infection.



CHAPTER 5. 74

0 5 1 0 1 5 2 0 2 5
0

1

2

3

4

5
x(

t)

t

 β=0.15
 β=0.20
 β=0.25
 β=0.30
 β=0.35

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
0

1

2

3

4

5

y s
(t)

t

 β=0.15
 β=0.20
 β=0.25
 β=0.30
 β=0.35

0 1 0 2 0 3 0 4 0 5 0
0

1

2

3

4

5

y i(
t)

t

 β=0.15
 β=0.20
 β=0.25
 β=0.30
 β=0.35

Figure 5.1: E�ect of infection transmission rate (β) on prey-predator system under
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Chapter 6

A Takagi-Sugeno based study of

population dynamics with infected

prey 1

6.1 Introduction

In this study, we describe the prey-predator model proposed by Venturino [102] to

investigate the species' existence. Consider the simple example where the predator

mostly consumes the ill prey for this purpose. We used an eco-epidemiological

system with three species, susceptible prey, diseased prey and predator. We explore

the scenario in which the predator primarily feeds ill prey [103]. Because of the

illness, the prey becomes weaker and more vulnerable to predators. The T-S model

and stability theorems [83, 77] are used to describe the local stability analysis.

6.2 Model Construction

The following assumptions guide our mathematical model:

1Communicated in �Journal of Applied Mathematics and Computing�

84
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� x represents the total population density of the prey.

� y represents the total population density of predators.

� In the absence of illness, the prey population develops logistically with a car-

rying capacity of c = r
e
(c>0) and an intrinsic growth rate of r(> 0). Thus we

have -

dx

dt
= rx(1− x

c
)

� When an infection occurs, we assume that all preys have two classes of x; one

is the susceptible (xs), and the other is the infected prey (xi). Therefore, the

total population density of prey at any given time (t) is x(t) = xs(t) + xi(t).

� We believe that the disease only a�ects prey. Many prey species do not recover

or develop immunity. Suppose the condition is simply as large as βxsxi, where

β > 0 is called the coe�cient of transmission.

� The costs of predation or continued pursuit of the injured and infected are

P1 and P2, respectively. Predators catch prey and get prey disease because

victims are more vulnerable than prey, making it easier for them to hunt, i.e.

P2 > P1.

� We hypothesized that prey animals preyed on vulnerable animals based on the

simple nature of group work and injured animals based on Holling's type - II

response task.

Based on the above considerations, we propose the following model using the

system of non-linear di�erential equations.
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dxs

dt
= rxs − ex2

s − βxsxi −
P1xsy

a+ xs

dxi

dt
= βxsxi −

P2xiy

a+ xi

−m1xi

dy

dt
=

C1xsy

a+ xs

+
C2xiy

a+ xi

−m2y

(6.1)

where xs0, xi0, y0 are the initial populations and all parameters (r, β, e, C1, C2,

a, P1, P2, m1, m2) ≥ 0 with xs = xs0 > 0, xi = xi0 > 0, y = y0 > 0.

Here r is the internal production growth rate of prey, β is the rate at which the

disease spreads from an infected person to a susceptible person, e is the intra-species

competition, P1 is the predation rate of vulnerable prey, P2 is the Predation level

of infected prey, m1 is the mortality rate of infected victims, m2 is the predator

mortality, C1 is the predator conversion rate after eating vulnerable prey, C2 is

the predator conversion rate after eating infected prey, and a is the half-saturation

constant.

To analyze the system's stability, the matrix di�erential equation is written as

ẋ = Ax+ ϕ(x) (6.2)

here

ẋ=


ẋs(t)

ẋi(t)

ẏ(t)

, A =


r 0 0

0 −m1 0

0 0 −m2

, ϕ(x) =

−ex2

s − βxsxi − P1xsy
a+xs

βxsxi − P2xiy
a+xi

C1xsy
a+xs

+ C2xiy
a+xi


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6.3 Fuzzy Takagi-Sugeno approach with impacts of

impulse

The non-linear equations can be transformed into the following linear equation as

explained in the earlier (chapter-2).

If x(t) is Mi then

ẋ(t) = Aix(t), t ̸= τj (6.3)

∆(x) = kijx(t), t = τj, i = 1, 2, 3...r; j = 1, 2, ... (6.4)

where, Ai =


r − z1 − z2 − P1z3 0 0

z2 −m1 − P2z4 0

C1z3 C2z4 −m2

, i = 1 to 16, where the

matrices A′
is are generated using maximum and minimum values of z′ks; k = 1 to

4 and z1, z2, z3, z4 are related to the values of xs(t)∈[0,d1], xi(t)∈[0,d2], y(t)∈[0,d3]

(here z1=exs, z2=rxi, z3 =
y

B + xs

, z4 =
y

B + xi

). Mi, x(t), Ai ∈ R3∗3, and r is the

number of the IF-THEN rules, ki,j denotes the control of the jth impulsive instant,

∆(x) |t=τj = x(τj − τj−1)).

6.4 Numerical Simulation

Because most biological systems are complicated, they should be expressed by ap-

plying a fuzzy logical framework that includes expressive reports. The suggested

impulsive Takagi-Sugeno system looks at predator - prey system with functional

reactions and impulsive impacts. By applying fuzzy impulsive Takagi-Sugeno model

on (6.2), the membership functions [85] M ′
ijs and the matrices A′

is, are calculated

using
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Ai =


r − z1 − z2 − P1z3 0 0

z2 −m1 − P2z4 0

C1z3 C2z4 −m2

, i = 1 to 16, where the matrices

A′
is are generated using maximum and minimum values of z′ks; k = 1 to 4. Therefore,

De�uzi�cation is given as

ẋ(t) =
r∑

Ai=1

hi(z(t))(Aix(t)) (6.5)

here h′
is are given as, hi(z(t))= ωi(z(t))/

∑r
i=1 ωi(z(t)), and ωi(z(t))=

∏p
j=1Mij(z(t)),

i = 1 to 16, j = 1 to 4, where M ′
ijs are membership functions.

This Fuzzy model is a perfect representation of the non-linear system in [0,10]x[0,10]x[0,10]

dxs

dt
= rxs − ex2

s − βxsxi −
P1xsy

a+ xs

dxi

dt
= βxsxi −m1xi −

P2xiy

a+ xi

dy

dt
= −m2y +

C1xsy

a+ xs

+
C2xiy

a+ xi

(6.6)

6.5 Results and discussion

This section describes the global stability of the considered intra-species preda-

tor�prey competition model (6.2). We have studied the system (6.1) numerically

using MATHEMATICA software to get better insight of the proposed model.

It is calculated by taking parameter values at r=0.8, β=0.12, C1=50, C2=40,

m1=0.91, m2=2, P1=0.03, P2=0.5, e=0.0005, a=2, d1=10, d2=10, d3=10 in (6.3)

to obtain the eigen values of [AT
i + Ai], (i = 1, 2, 3...r) as discussed in ([83]). It

is evident that max(λl)=λ(α) = 51.4252, then we have chosen diag[−0.84,−0.84]

as the matrix of impulsive control in such a way that ω = ||I + K|| = 0.16. It is

marked that the system (6.3) is globally-stable at ϵ = 1.5, δ = 0.02 (at those above

values, ln(ϵω) + λ(α)δj = −0.407 < 0). Further, it is noted that the prey-predator
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model is unstable when r=1.5, β=0.5, C1=60, C2=65, m1=0.5, m2=2, P1=0.03,

P2=0.5, e=0.015, a=2, d1=10, d2=10, d3=10. Since max(λi)=λ(α) = 72.18, =⇒

ln(ϵω) + λ(α)δj = 0.0166 > 0.

r β C1 C2 m1 m2 P1 P2 e a d1 d2 d3 max(λi) ln(ϵω) conclusion
=λ(α) +λ(α)δj

0.8 0.12 50 40 0.91 2 0.03 0.5 0.0005 2 10 10 10 51.4252 -0.407 stable
1 0.1 10 20 1.5 1 0.01 0.2 0.05 2 10 10 10 16.8 -1.091 stable
1.2 0.8 30 30 1 1.5 0.1 0.1 0.15 2 10 10 10 34.3 -0.74 stable
1.5 0.5 60 65 0.5 2 0.03 0.5 0.015 2 10 10 10 72.18 0.166 unstable

Table 6.1: Stability of the system at various parameters

Table 6.1 shows the stability of the system at di�erent rates in this study.

The e�ects of various parameters of the system 6.1 using the T-S fuzzy impulsive

control model are shown in �gs. 6.1 - 6.11.

The in�uence of (r) on prey - predator system is presented in �g. 6.1 at β=0.12,

C1=50, C2=40, m1=0.91, m2=2, P1=0.03, P2=0.5, e=0.0005, a=2, d1=10, d2=10,

d3=10. This �gure exhibited that an enhance in the growth rate of prey leads to

enhance in the population of prey because more preys will grow.

The consequences of transmission rate of disease from infected to susceptible (β)

on prey - predator system is presented in �g. 6.2 at r=0.8, C1=50, C2=40, m1=0.91,

m2=2, P1=0.03, P2=0.5, e=0.0005, a=2, d1=10, d2=10, d3=10. It is observed from

this �gure that healthy prey population decreases with an increase in (β) because

more preys will get infected.

The change in prey-predator population (xs, xi, y) as a function of maximum

time change of vulnerable prey (d1) is shown in the �g. 6.3 at r=0.8, β=0.12,

C1=50, C2=40, m1=0.91, m2=2, P1=0.03, P2=0.5, e=0.0005, a=2, d2=10, d3=10.

This �gure clearly exhibits that, the population of prey enhances as d1 drops.

The dynamic change of the prey-predator population (xs, xi, y) according to the

change of the maximum time (d2) of the infected prey in the prey-predator system

is shown in �g. 6.4 at r=0.8, β=0.12, C1=50, C2=40, m1=0.91, m2=2, P1=0.03,
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P2=0.5, e=0.0005, a=2, d1=10, d3=10. This �gure shows that, the susceptible

prey population decreases as d2 increases whereas infected prey population increases

because more preys will get infected.

The impact on prey - predator population (xs, xi, y) by ranging predator max

time (d3) on prey - predator system is demonstrated in �g. 6.5 at r=0.8, β=0.12,

C1=50, C2=40, m1=0.91, m2=2, P1=0.03, P2=0.5, e=0.0005, a=2, d1=10, d2=10.

From this �gure, it can be shown that, the prey population increases as d3 decreases

because predators get less time to eat prey.

Figure 6.6 depicts how intra-speci�c competition (e) a�ects the prey-predator

system at r=0.8, β=0.12, C1=50, C2=40, m1=0.91, m2=2, P1=0.03, P2=0.5, a=2,

d1=10, d2=10, d3=10. The e�ect of intra-species competition is to decrease the rate

of population growth as population density increases.

The changes with mortality rate of infected prey (m1) on prey - predator system

is presented in �g. 6.7 at r=0.8, β=0.12, C1=50, C2=40, m2=2, P1=0.03, P2=0.5,

e=0.0005, a=2, d1=10, d2=10, d3=10. This graph unequivocally demonstrates that

a rise in m1 causes a fall in the population of prey.

The e�ect of (m2) on prey - predator system is presented in �g. 6.8 at r=0.8,

β=0.12, C1=50, C2=40, m1=0.91, P1=0.03, P2=0.5, e=0.0005, a=2, d1=10, d2=10,

d3=10. This �gure demonstrates that, susceptible prey population enhances with

increase in (m2) whereas infected prey and predator population decreases with an

increase in (m2).

The performance of the prey-predator population by varying (P1) under fuzzy

impulse control can be seen in �gure. 6.9 at g=0.8, r=0.12, C1=50, C2=40,m1=0.91,

m2=2, P2=0.5, e=0.0005, a=2, d1=10, d2=10, d3=10. This �gure clearly displays

that enhance in predation rate of susceptible prey indicate more preys are predated

by predators which results to diminish in prey population.

The change with predation rate of infected prey (P2) on prey- predator popu-
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lation under fuzzy impulsive control can be found in �g. 6.10 at r=0.8, β=0.12,

C1=50, C2=40, m1=0.91, m2=2, P1=0.03, e=0.0005, a=2, d1=10, d2=10, d3=10.

From this �gure, it can be shown that, enhance in predation rate of infected prey

decreases prey population because more preys will be eaten by predator.

Finally, the characteristics of the population (xs, xi, y) of the three species (with-

out impulsive control) are shown in �g. 6.11 by considering all the parameters ob-

tained with the T-S fuzzy model at r=0.8, β=0.12, C1=50, C2=40, m1=0.91, m2=2,

P1=0.03, P2=0.5, e=0.0005, a=2, d1=10, d2=10, d3=10, and xs(0) = 3, xi(0) =

5, y(0) = 5, t = 10. The graph makes it very clear how predator and prey popula-

tions stabilize.

6.6 Conclusions

In this chapter we present stability analysis of a three species competition model

with fuzzy impulsive control by T-S model. In which disease infection is in prey.

The main results of this study are as follows:

� Prey populations more susceptible to predators are found where there is less

intra-speci�c competition.

� An increase in prey growth rate results in an increase in the prey population.

� As the rate of disease transmission from diseased to vulnerable prey increases,

the population of healthy prey drops.

� As the maximum time (d2) of the infected prey rises, the number of susceptible

prey declines while the number of infected prey increases.

� Prey population increases as predator max time (d3) declines.

� Prey populations decline when sensitive predators prey more frequently.
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Figure 6.7: In�uence of m1 on Prey - Predator System under impulsive Control.



CHAPTER 6. 99

0 4 8 1 2 1 6 2 0
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

3 . 5

x s
(t)

t

 m 2 = 0 . 1
 m 2 = 0 . 5
 m 2 = 1 . 0
 m 2 = 1 . 5
 m 2 = 2 . 0

0 2 4 6 8 1 0
0

1

2

3

4

5

x i(
t)

t

 m 2 = 0 . 1
 m 2 = 0 . 5
 m 2 = 1 . 0
 m 2 = 1 . 5
 m 2 = 2 . 0

0 1 0 2 0 3 0 4 0 5 0
0

1

2

3

4

5

y(
t)

t

 m 2 = 0 . 1
 m 2 = 0 . 5
 m 2 = 1 . 0
 m 2 = 1 . 5
 m 2 = 2 . 0

Figure 6.8: In�uence of m2 on Prey - Predator System under impulsive Control.



CHAPTER 6. 100

0 5 1 0 1 5 2 0
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

3 . 5

x s
(t)

t

 P 1 = 0 . 0 1
 P 1 = 0 . 1 0
 P 1 = 0 . 2 0
 P 1 = 0 . 3 0
 P 1 = 0 . 4 0

0 1 2 3 4 5
0

1

2

3

4

5

x i(
t)

t

 P 1 = 0 . 0 1
 P 1 = 0 . 1 0
 P 1 = 0 . 2 0
 P 1 = 0 . 3 0
 P 1 = 0 . 4 0

0 1 2 3 4 5
0

1

2

3

4

5

y(
t)

t

 P 1 = 0 . 0 1
 P 1 = 0 . 1 0
 P 1 = 0 . 2 0
 P 1 = 0 . 3 0
 P 1 = 0 . 4 0
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Chapter 7

Stability Analysis of a T-S

Prey-Predator model with disease in

both species 1

7.1 Introduction

We have witnessed rapidly growing interest in fuzzy control in recent years. This

is largely sparked by the numerous successful applications in fuzzy control. De-

spite the visible success, it has been made aware that many basic issues remain to

be addressed. Among them, stability analysis, systematic design, and performance

analysis are crucial to the validity and applicability of any control design method-

ology as shown by Huang [98]. However, it should be admitted that the stability

of fuzzy logic controller (FLC) is still an open problem. It is important to point

out that there exist many systems, like the predator-prey system, which cannot

commonly endure continuous control inputs, or they have impulsive dynamical be-

havior due to abrupt jumps at certain instants during the evolving processes. Hence,

1Published in �Journal of Environmental Accounting and Management�, 12(3), (2024),
231-244. DOI:10.5890/JEAM.2024.09.002
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it is necessary to extend FLC and re�ect these impulsive jump phenomena in the

predator-prey system.

Until recently, we discussed about the stability of two and three dimensional

Lotka-Volterra predator-prey system with fuzzy impulsive control. In this chapter

we studied the Lotka-Volterra prey-predator model with the disease in both prey

and predator populations. To improve the model's reality we analyze the global and

asymptotic stability of this model with the help of the T-S model as explained in

earlier chapters. Then presented the graphical solutions for the problem.

7.2 Model Formation

At time t, the densities of susceptible prey, infected prey, susceptible predator, and

the infected predators are denoted by xs(t), xi(t), ys(t), and yi(t) respectively.

� The prey population increases logistically with an intrinsic growth rate (r)

and environmental carrying capacity C = r/e (C > 0) in absence of predator

population and in absence of disease as in Bera et al. [104].

� Only the susceptible prey propagates.

� When a susceptible prey gets into contact with an infected one, the infection

is transmitted among the susceptible ones. If infected, the prey never recovers.

Either it will die or be eaten away by a predator. Disease related deaths are

more common in the population of diseased prey.

� Our presumption is that diseased predators are incapable of catching a healthy

prey. Therefore, only a healthy predator can catch a healthy prey. However,

because they are weaker and more vulnerable, infected prey can be eaten by

both susceptible and infected predators.



CHAPTER 7. 105

� Direct contact with an infected predator enables the disease to spread across

the predator population. An infected predator either stays diseased or becomes

extinct; it never recovers or develops immunity.

� We suppose that there are natural deaths among the predators, whereas the

infected population has a disease induced excess death rate also.

On the basis of above assumptions the following model is proposed by using set

of non-linear di�erential equations.

dxs

dt
= rxs − ex2

s − exsxi − β1xsxi − P1xsys

dxi

dt
= β1xsxi −m1xi − P2ysxi − P3xiyi

dys
dt

= C1xsys + C2xiys − β2yiys −Dys

dyi
dt

= β2ysyi − (D +m2)yi + C3xiyi

(7.1)

where xs0, xi0, ys0, yi0 are the initial populations and all the parameters are positive

with initial conditions are xs = xs0 > 0, xi = xi0 > 0, ys = ys0 > 0, yi = yi0 > 0.

Here r is the intrinsic growth rate of prey, e is the intra-speci�c competition, β1

is the infection coe�cient of healthy prey, P1 is the predation rate of healthy prey

by healthy predator, m1 is the disease induced death rate of infected prey, P2 is

the predation rate of infected prey by healthy predator, P3 is the predation rate

of infected prey by infected predator, C1 is the conversion rate of healthy prey to

healthy predator, C2 is the conversion rate of infected prey to healthy predator, β2

is the infection rate for predator population, D is the death rate for the predator

population, m2 is the disease induced death rate of infected predator, C3 is the

conversion rate of infected prey to infected predator.

A matrix di�erential equation is stated as follows to analyze the system's stabil-

ity:
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ẋ = Ax+ ϕ(x), (7.2)

where

ẋ=



ẋs(t)

ẋi(t)

ẏs(t)

ẏi(t)


, A=



r 0 0 0

0 −m1 0 0

0 0 −D 0

0 0 0 −(D +m2)


, ϕ(x)=



−ex2
s − exsxi − β1xsxi − P1xsys

−β1xsxi − P2ysxi − P3xiyi

C1xsys + C2xiys − β2ysxi

β2yiys + C3xiyi


;

7.3 T-S Fuzzy model with Impulsive e�ects

The non-linear equations can be transformed into the following linear equation as

explained in earlier (chapter-2).

If x(t) is Mi then

ẋ(t) = Aix(t), t ̸= τj;

∆(x) = Kijx(t), t = τj;

i = 1, 2, 3...r; j = 1, 2, ...

(7.3)

where, Ai =



r − z1 − z2 − z3 − z4 0 0 0

z3 −z5 − z6 −m1 0 0

z7 z8 −z9 −D 0

0 z10 z9 −(D +m2)


, i = 1

to 1024, where the matrices A′
is are generated using maximum and minimum values

of z′ks; k = 1 to 10, here z′ks are related to the values of xs(t)∈[0,d1], ys(t)∈[0,d2],

xi(t)∈[0,d3], yi(t)∈[0,d4] (here z1 = exs, z2 = exi, z3 = β1xi, z4 = P1ys, z5 = P2ys,

z6 = P3yi, z7 = C1ys, z8 = C2ys, z9 = β2yi, z10 = C3yi).Mi, x(t), Ai ∈ R4∗4, r is the

number of the IF-THEN rules, Ki,j denotes the control of the jth impulsive instant

, ∆(x)|t=τj = x(τj - τj−1)
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7.4 Numerical Simulation

Since most of the biological systems are complex, they should be expressed by ap-

plying a fuzzy logical framework that includes expressive reports. The suggested

impulsive T-S design model examines predator-prey system with functional response

and impulsive impact.

By using fuzzy impulsive T-S design model on (7.2), the membership functions

M ′
ijs and the matrices A′

is, are calculated using

Ai =



r − z1 − z2 − z3 − z4 0 0 0

z3 −z5 − z6 −m1 0 0

z7 z8 −z9 −D 0

0 z10 z9 −(D +m2)


,

i = 1 to 1024, where the matrices A′
is are generated using maximum and minimum

values of z′ks; k = 1 to 10 and, the Defuzzi�cation can be represented as:

ẋ(t) =
r∑

i=1

hi(z(t))(Aix(t)), (7.4)

here h′
is are given as, hi(z(t)) = ωi(z(t))/

r∑
i=1

ωi(z(t)), and ωi(z(t)) =

p∏
j=1

Mij(z(t))�

i=1 to 1024, j=1 to 10

This Fuzzy model exactly represents the non-linear system (7.2) in the region

[0,10]x[0,10]x[0,10]x[0,10]

7.5 Results and discussion

In this section, the global stability of the considered intra-speci�c competition prey-

predator model (7.1) is discussed as explained in earlier chapters. We have studied

the system (7.1) numerically using MATHEMATICA software to get better insight of

the proposed model. Calculations were carried by taking the values of the parameters
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at r = 0.8, e = 0.05, β1 = 0.4, P1 = 1, P2 = 0.1, m1 = 0.5, C1 = 0.1, P3 = 1.5,

D = 0.2, m2 = 0.5, C3 = 1.4, d1 = 10, C2 = 0.15, β2 = 0.2, d2 = 10, d3 = 10,

d4 = 10 in 7.3 to get the eigen values of [AT
i + Ai] (i = 1, 2, 3...r) as explained in

the theorems ([83]). It is found that max(λi) = λ(α) = 14.8, then we have chosen

diag[−0.84,−0.84] as impulsive control matrix, such that ω = ||I + K|| = 0.16.

It is noted that the system 7.3 is stable globally when ϵ=1.5, δj=0.02 (at those

above values, ln(ϵω) + λ(α)δj = −1.142 < 0). Further, it is observed that the prey-

predator model is unstable when r = 0.1, e = 0.5, β1 = 0.2, P1 = 4, P2 = 0.5,

m1 = 0.5, C1 = 0.1, P3 = 1, D = 0.5, m2 = 0.5, C3 = 8, d1 = 10, C2 = 0.5, β2 = 0.4,

d2 = 10, d3 = 10, d4 = 10, since max(λi) = λ(α) = 79.5, =⇒ ln(ϵω) + λ(α)δj =

0.17 > 0 for ω = 0.16, ϵ=1.5, δj=0.02.

The stability of the system at various values of this study is presented in 7.1.

r e β1 P1 P2 m1 C1 P3 D m2 C3 d1 C2 β2 d2 d3 d4 max(λi) ln(ϵω) conclusion
=λ(α) +λ(α)δj

0.8 0.05 0.4 1 0.1 0.5 0.1 1.5 0.2 0.5 1.4 10 0.15 0.2 10 10 10 14.8 -1.142 stable
0.5 0.25 0.1 2 0.2 1 0.5 0.5 0.1 0.2 1 10 0.2 0.1 10 10 10 10.5 -1.21 stable
1.0 0.4 0.1 0.5 1.0 0.1 0.2 2.0 1.5 0.5 0.1 10 1.5 0.5 10 10 10 13.5 -1.15 stable
0.1 0.5 0.2 4 0.5 0.5 0.1 1 0.5 0.5 8 10 0.5 0.4 10 10 10 79.5 0.17 unstable

Table 7.1: Stability of the system at various parameters

The impact of various emerging parameters on prey-predator system (7.1) with

T-S fuzzy impulsive control model is presented in �gs. 7.1 - 7.12.

The e�ect of intrinsic growth rate of prey (r) on prey-predator system is shown

in �g. 7.1 at e = 0.05, β1 = 0.4, P1 = 1, P2 = 0.1, m1 = 0.5, C1 = 0.1, P3 = 1.5,

D = 0.2, m2 = 0.5, C3 = 1.4, d1 = 10, C2 = 0.15, β2 = 0.2, d2 = 10, d3 = 10,

d4 = 10. This �gure clearly displays that the growth of healthy prey increases with

increase in r and it has no impact on infected prey, and predators.

The dynamical behavior of the two species population (xs, xi, ys, yi) under the in-

�uence of intra-speci�c competition parameter (e) on prey-predator system is shown

in �g. 7.2 at r = 0.8, β1 = 0.4, P1 = 1, P2 = 0.1, m1 = 0.5, C1 = 0.1, P3 = 1.5,
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D = 0.2, m2 = 0.5, C3 = 1.4, d1 = 10, C2 = 0.15, β2 = 0.2, d2 = 10, d3 = 10,

d4 = 10. This �gure clearly exhibits that the population of healthy prey decreases

with an increase in e whereas the infected prey, healthy predator, infected predator

population were not a�ected.

The e�ect of infection coe�cient of healthy prey (β1) on prey-predator system

is shown in �g. 7.3 at r = 0.8, e = 0.05, P1 = 1, P2 = 0.1, m1 = 0.5, C1 = 0.1,

P3 = 1.5, D = 0.2, m2 = 0.5, C3 = 1.4, d1 = 10, C2 = 0.15, β2 = 0.2, d2 = 10,

d3 = 10, d4 = 10. This �gure clearly displays that an increase in the infection rate

decreases healthy prey population.

The nature of prey-predator (xs, xi, ys, yi) population with the e�ect of (P1) on

prey-predator system is shown in �g. 7.4 at r = 0.8, e = 0.05, β1 = 0.4, P2 = 0.1,

m1 = 0.5, C1 = 0.1, P3 = 1.5, D = 0.2, m2 = 0.5, C3 = 1.4, d1 = 10, C2 = 0.15,

β2 = 0.2, d2 = 10, d3 = 10, d4 = 10. It is observed from this �gure that healthy

prey population decreases with an increase in P1.

The in�uence of predation rate of infected prey by healthy predator (P2) on prey-

predator system is shown in �g. 7.5 at r = 0.8, e = 0.05, β1 = 0.4, P1 = 1, m1 = 0.5,

C1 = 0.1, P3 = 1.5, D = 0.2, m2 = 0.5, C3 = 1.4, d1 = 10, C2 = 0.15, β2 = 0.2,

d2 = 10, d3 = 10, d4 = 10. From this �gure it is clear that the population of healthy

and infected prey decreases with an increase in P2 and predator population remains

una�ected.

The e�ectiveness of infection of predator population (β2) on prey-predator system

is shown in �g. 7.6 at r = 0.8, e = 0.05, β1 = 0.4, P1 = 1, P2 = 0.1, m1 = 0.5,

C1 = 0.1, P3 = 1.5, D = 0.2, m2 = 0.5, C3 = 1.4, d1 = 10, C2 = 0.15, d2 = 10, d3 =

10, d4 = 10. It shows that healthy predator population decreases with increasing

infection in predator. Healthy prey and infected prey populations decreases slightly

with an increase in β2.

The in�uence of predation rate of infected prey by infected predator (P3) on



CHAPTER 7. 110

prey-predator system is shown in �g. 7.7 at r = 0.8, e = 0.05, β1 = 0.4, P1 = 1,

P2 = 0.1, m1 = 0.5, C1 = 0.1, D = 0.2, m2 = 0.5, C3 = 1.4, d1 = 10, C2 = 0.15,

β2 = 0.2, d2 = 10, d3 = 10, d4 = 10. This �gure displays that prey population

(healthy and infected both) decreases with an increase in P3.

The e�ect of conversion of infected prey to infected predator (C3) is shown in �g.

7.8 at r = 0.8, e = 0.05, β1 = 0.4, P1 = 1, P2 = 0.1, m1 = 0.5, C1 = 0.1, P3 = 1.5,

D = 0.2, m2 = 0.5, d1 = 10, C2 = 0.15, β2 = 0.2, d2 = 10, d3 = 10, d4 = 10. In this

�gure clearly exhibits that the population of both prey and predators (healthy and

infected) decreases with an increase in C3.

The dynamical pattern of prey - predator population (xs, xi, ys, yi) by varying

prey max time (d1) is shown in �g. 7.9 at r = 0.8, e = 0.05, β1 = 0.4, P1 = 1,

P2 = 0.1, m1 = 0.5, C1 = 0.1, P3 = 1.5, D = 0.2, m2 = 0.5, C3 = 1.4, C2 = 0.15,

β2 = 0.2, d2 = 10, d3 = 10, d4 = 10. This �gure clearly shows that as we increase

prey's (healthy prey) max time d1, the population of all species (i.e healthy prey

and predator, infected prey and predator) decreases.

The trend of four species (xs, xi, ys, yi) population with respect to infected prey

max time (d2) is shown in �g. 7.10 at r = 0.8, e = 0.05, β1 = 0.4, P1 = 1, P2 = 0.1,

m1 = 0.5, C1 = 0.1, P3 = 1.5, D = 0.2, m2 = 0.5, C3 = 1.4, d1 = 10, C2 = 0.15,

β2 = 0.2, d3 = 10, d4 = 10. It can be seen from this �gure that as increase in

infected prey's max time d2, the population of all the species (i.e healthy prey and

predator, infected prey and predator) decreases.

The change on prey- predator population (xs, xi, ys, yi) by varying susceptible

predator max time (d3) is shown in �g. 7.11 at r = 0.8, e = 0.05, β1 = 0.4, P1 = 1,

P2 = 0.1, m1 = 0.5, C1 = 0.1, P3 = 1.5, D = 0.2, m2 = 0.5, C3 = 1.4, d1 = 10,

C2 = 0.15, β2 = 0.2, d2 = 10, d4 = 10. This �gure clearly shows that as an increase

in predator's (healthy predator) max time d3, the population of all the species (i.e.

healthy prey and predator, infected prey and predator) decreases.
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The impact of max time (d4) on prey-predator system is shown in �g. 7.12 at

r = 0.8, e = 0.05, β1 = 0.4, P1 = 1, P2 = 0.1, m1 = 0.5, C1 = 0.1, P3 = 1.5,

D = 0.2, m2 = 0.5, C3 = 1.4, d1 = 10, C2 = 0.15, β2 = 0.2, d2 = 10, d3 = 10. It

can noted from this �gure that, increase in predator's (infected predator) max time

d4 leads to decrease in the population for all species (i.e healthy prey and predator,

infected prey and predator).

Finally, the nature of four species (xs, xi, ys, yi) population (without impulsive

control) is presented in �g. 7.13 by �xing all the parameters obtained from T-S

fuzzy model at r = 0.8, e = 0.05, β1 = 0.4, P1 = 1, P2 = 0.1, m1 = 0.5, C1 = 0.1,

P3 = 1.5, D = 0.2, m2 = 0.5, C3 = 1.4, d1 = 10, C2 = 0.15, β2 = 0.2, d2 = 10,

d3 = 10, d4 = 10, t = 10. The �gure clearly shows how the prey and predator

populations reaches to stability.

7.6 Conclusions

In this chapter, we studied the stability analysis of a prey-predator system with

fuzzy impulsive control by T-S fuzzi�cation. In which disease infection is on both

prey and predators. The main results of this study are as follows:

� The increase in intra-speci�c competition leads to a decrease in the susceptible

prey population.

� The prey population rises in response to an increase in the prey growth rate.

� A higher infection transmission of prey results in a smaller prey population

and a higher infection transmission of predator results in a smaller predator

population.

� E�ect of susceptible prey max time is to decrease all the four populations.
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Figure 7.1: E�ect of intrinsic growth rate of prey (r) on prey-predator system under
impulsive control.
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impulsive control
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system under impulsive control
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Figure 7.5: E�ect of Predation rate of infected prey by healthy predator (P2) on
prey-predator system under impulsive control
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Figure 7.6: E�ect of Infection for predator population (β2) on prey-predator system
under impulsive control
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Figure 7.7: E�ect of Predation rate of infected prey by infected predator (P3) on
prey-predator system under impulsive control
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Figure 7.8: E�ect of Conversion of infected prey to infected predator (C3) on prey-
predator system under impulsive control
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Figure 7.9: E�ect of max time (d1) on prey-predator system under impulsive control
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Chapter 8

Population Dynamic Study of two

prey one predator system with

disease in �rst prey 1

8.1 Introduction

Many scholars have focused signi�cantly on epidemiological models. The incidence

rate, a function that describes how a disease spreads from an infected person to a

susceptible person, plays a crucial role in epidemiological models. Many scholars

have carefully explored a number of epidemic models with such a wide range of

incidence rates [105, 106, 107]. To make epidemic simulations more realistic, some

researchers added with time delays [108].

Ecological literature has extensively investigated models of two and three-species

populations having such functional responses. There are numerous studies on two-

species systems, such as those involving predators and prey and on three-species

systems, such as two prey and one predator [109, 110, 111] have long been important

1Published in �Epidemiological Methods�,2024; 13(1):20230019,DOI:https://doi.org/10.1515/em-
2023-0037
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in theoretical ecology.

Researchers have developed a greater interest in the merging of ecology and epi-

demiology because the e�ects of infectious diseases on the ecological system regulate

population size. There are numerous prey-predator models that include infectious

diseases. In eco-epidemic model, the predator populations become infected by eat-

ing prey was investigated by Anderson and Robert [33]. The changing of the prey-

predator system in relation to disease in the prey and the predator population have

been hypothesized and studied by some researchers, including Hudson [64], Haque

and Venturino [112], Amar and Joydev [40] etc.

In this work, we considered the Lotka-Volterra predator-prey model with two

preys and one predator. We also take into account the fact that only the �rst prey,

who are a�ected by an infectious disease, consists of two sub-classes: susceptible and

infected. We examine the global and asymptotic stability to strengthen the reality

of the model as explained in earlier chapter [82, 77].

8.2 Development of the model

These presumptions serve as the foundation for our mathematical model-

� Let x be the �rst prey's overall population density.

� The �rst group of prey is the only one to develop a transmissible disease.

� When a disease is present, the whole population of �rst prey are divided into

two categories: (i) the susceptible prey population (xs) and (ii) the infected

prey population (xi).

� The disease in the �rst prey population is disseminated horizontally from the

susceptible to the infected in �rst prey population at a constant rate of infec-

tion β, in accordance with the rule of mass action.
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� Diseased members of the �rst prey population do not recover. Disease does

not spread from the ill �rst victim to the predator by feeding or any other

means.

� There is an abundant supply of second prey in the population in the absence

of a predator, and there is no need to search for the second prey population

because it has no intra-speci�c interactions and is expanding exponentially.

� Let x2 be the second prey's overall population density.

� y stands for the total population density of predators.

Based on the above considerations, we propose the following model using the system

of non-linear di�erential equations.

dxs

dt
= r1xs − ex2

s − (e+ β)xsxi + h1xsx2y −
P1xsy

a+ λαx2 + xs

dxi

dt
= βxsxi −m1xi −

P2xiy

a+ λαx2 + xi

dx2

dt
= r2x2 − P3x2y + h2xix2y

dy

dt
=

C1xsy

a+ λαx2 + xs

+
C2xiy

a+ λαx2 + xi

+ C3x2y −m2y

(8.1)

where xs0, xi0, x20, y0 are the initial populations and all parameters (r1, r2, e,

C1, C2, a, P1, P2, m1, m2) ≥ 0 with xs = xs0 > 0, xi = xi0 > 0, x2 = x20 > 0,

y = y0 > 0.

Here r1 is the internal production growth rate of �rst prey, r2 is the internal pro-

duction growth rate of second prey, e is intra-species competition, P1 is Predation

level of susceptible �rst prey, P2 is Predation level of diseased �rst prey, P3 is Pre-

dation level of second prey, C1 is rate at which susceptible prey become predators,

C2 is the rate at which diseased prey become predators, β is transmission rate on

�rst prey vulnerable to diseased population, a is half-saturation constant, λ is ratio
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of the predator's handling time to that of its �rst prey item and to its second prey

item, α is ratio between the second prey's and the �rst prey's capture rates, m1 is

mortality rate of the infected �rst prey, m2 is rate of the predator's death, h1, h2

are coe�cients of help between the preys.

To analyze the system's stability, the matrix di�erential equation is written as

ẋ = Ax+ ϕ(x) (8.2)

where

ẋ=



ẋs(t)

ẋi(t)

ẋ2(t)

ẏ(t)


,A=



r1 0 0 0

0 −m1 0 0

0 0 r2 0

0 0 0 −m2


, ϕ(x)=



−ex2
s − (e+ β)xsxi + h1xsx2y − P1xsy

a+λαx2+xs

βxsxi − P2xiy
a+λαx2+xi

−P3x2y + h2xix2y

C1xsy
a+λαx2+xs

+ C2xiy
a+λαx2+xi

+ C3x2y;


8.3 Takagi-Sugeno model

The non-linear equations can be transformed into the following linear equation as

explained in earlier (chapter-2).

If x(t) is Mi then

ẋ(t) = Aix(t), t ̸= τj (8.3)

∆(x) = kijx(t), t = τj, i = 1, 2, 3...r; j = 1, 2, ... (8.4)

where, Ai =



r1 − z1 − z2 − z3 + h1z4 − P1z7 0 0 0

z3 −P2z5 −m1 0 0

0 h2z4 r2 − z6 0

C1z7 C2z5 z8 −m2


,

i = 1 to 255, where the matrices A′
is are generated using maximum and mini-
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mum values of z′ks; k = 1 to 8, here z′ks are related to the values of xs(t)∈[0,d1],

xi(t)∈[0,d2], x2(t)∈[0,d3], y(t)∈[0,d4] (here z1 = exi, z2 = exs, z3 = βxi, z4 = x2y,

z5 =
y

a+ λαx2 + xi

, z6 = P3y, z7 =
y

a+ λαx2 + xs

, z8 = C3y) Mi, x(t), Ai ∈ R4∗4,

r is the number of the IF-THEN rules, Ki,j denotes the control of the j
th impulsive

instant, ∆(x)|t=τj = x(τj - τj−1)

8.4 Numerical Simulation

Analytical investigations can never be �nished without the results numerical valida-

tion. Computer simulations of the system's solutions are presented in this section

(8.2). These numerical solutions are crucial from a practical standpoint in addition

to serving as con�rmation of our analytical conclusions. Because most biological

systems are intricate, they ought to be modeled using a descriptive, fuzzy logical

approach. In order to analyze predator-prey systems with functional responses and

impulsive e�ects, the recommended impulsive Takagi-Sugeno design model is used.

In this part, intra-species competition predator-prey model (8.2) is analyzed. Due

to the complexity, non-linearity, and uncertainty of biological systems, they should

be express using a fuzzy logical approach and language description.

The membership functions [96] were produced as follows using the fuzzy impul-

sive Takagi-Sugeno design model on the (8.2):

M1 =
z1
ed2

,M2 =
ed2 − z1

ed2
, N1 =

z2
ed1

, N2 =
ed1 − z2

ed1
,K1 =

z3
βd2

,K2 =
βd2 − z3

βd2
,

L1 =
z4
d3d4

, L2 =
d3d4 − z4

d3d4
, O1 =

z5
d4

a+λαy+d2

, O2 =

d4
a+λαy+d2

− z5
d4

a+λαy+d2

, R1 =
z6

P3d4
,

R2 =
P3d4 − z6

P3d4
, S1 =

z7
d4

a+λαy+d1

, S2 =

d4
a+λαy+d1

− z7
d4

a+λαy+d1

, T1 =
z8

C3d4
, T2 =

C3d4 − z8
C3d4

and the matrices A′
is are calculated using
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Ai =



r1 − z1 − z2 − z3 + h1z4 − P1z7 0 0 0

z3 −P2z5 −m1 0 0

0 h2z4 r2 − z6 0

C1z7 C2z5 z8 −m2


,

i = 1 to 255, where the matrices A′
is are generated using maximum and minimum

values of z′ks; k = 1 to 8 and, the Defuzzi�cation can be shown as:

ẋ(t) =
r∑

i=1

hi(z(t))(Aix(t)) (8.5)

here h′
is are given as, hi(z(t))= ωi(z(t))/

∑r
i=1 ωi(z(t)), and ωi(z(t))=

∏p
j=1Mij(z(t)),

i=1 to 255, j=1 to 8.

This Fuzzy model exactly represents the non-linear system (8.2) in the region

[0,10]x[0,10]x[0,10]x[0,10]

dxs

dt
= r1xs − ex2

s − (e+ β)xsxi + h1xsx2y −
P1xsy

a+ λαx2 + xs

dxi

dt
= βxsxi −m1xi −

P2xiy

a+ λαx2 + xi

dx2

dt
= r2x2 − P3x2y + h2xix2y

dy

dt
=

C1xsy

a+ λαx2 + xs

+
C2xiy

a+ λαx2 + xi

+ C3x2y −m2y

(8.6)

8.5 Results and discussion

This section describes the global stability of the considered intra-species predator -

prey competition model (8.2). We have studied the system (8.1) numerically using

MATHEMATICA software to get better insight of the proposed model.

It is calculated by taking parameter values at r1 = 1.5, r2 = 0.07, e = 0.2,

P1 = 0.7, C1 = 0.5, P2 = 0.06, C2 = 0.43, C3 = 0.36, d4 = 10, h1 = 0.4, h2 = 0.1,
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m1 = 0.001, m2 = 0.5, d1 = 10, d2 = 10, d3 = 10, P3 = 0.8, a = 1, β = 0.7, λ = 10,

α = 2, in 8.3 to obtain the eigen-values of [AT
i + Ai](i = 1, 2, 3...r) described in

([83]). It is evident that max(λi)=λ(α) = 83 then, we've decided diagonal matrix

diag[−0.99,−0.99] as impulsive control matrix in such a way that ω = ||I +K|| =

0.01. The 8.3 system's existence is noted that it is globally-stable at ϵ=1.5, δj=0.02

(at the aforementioned values, ln(ϵω) + λ(α)δj = −2.539 < 0). Let's assume that

the system's parameters are r1 = 1.5, r2 = 0.7, e = 0.5, P1 = 0.2, P2 = 13,

P3 = 0.1, C1 = 1.5, C2 = 1.5, C3 = 0.5, h1 = 1.5, h2 = 0.3, m1 = 0.4, m2 = 0.2,

d1 = 10, d2 = 10, d3 = 10, d4 = 10, a = 1, β = 0.7, λ = 10, α = 2, since max(λi)

=λ(α) = 303, =⇒ ln(ϵω) + λ(α)δj = 1.861 > 0 for ω = 0.01, ϵ=1.5, δj=0.02. The

prey-predator model is seen to be unstable for the aforementioned parameter values.

Table. 8.1 shows the stability of the system at di�erent rates in this study.

r1 r2 e P1 P2 P3 C1 C2 C3 h1 h2 m1 m2 d1 d2 d3 d4 a β λ αmax(λi) ln(ϵω) conclusion
=λ(α) +λ(α)δj

1.5 0.07 0.2 0.7 0.6 0.8 0.5 0.4 0.36 0.4 0.1 0.001 0.5 10 10 10 10 1 0.7 10 2 83 -2.539 stable
1.0 0.07 0.2 0.7 0.6 0.8 1.0 0.5 1.3 0.4 0.1 0.001 0.5 10 10 10 10 1 0.7 10 2 82 -2.559 stable
1.2 0.7 0.1 0.2 0.3 0.1 1.5 0.5 1.0 0.5 0.01 0.01 0.5 10 10 10 10 1 0.7 10 2 102.4 -2.159 stable
1.5 0.7 0.5 0.2 1.3 0.1 1.5 1.5 0.5 1.5 0.3 0.4 0.2 10 10 10 10 1 0.7 10 2 303 1.861 unstable

Table 8.1: Stability of the system at various parameters

The e�ects of various parameters of the system 8.1 with Takagi-Sugeno fuzzy

impulsive control model is presented in �gs. 8.1 - 8.12 by �xing few parameters

P1 = 0.7, P2 = 0.06, P3 = 0.8, C1 = 0.5, C2 = 0.43, C3 = 0.36, h2 = 0.1, a = 1,

λ = 10.

The consequence of transmission coe�cient (β) on prey-predator interaction is

given in �gure. 8.1 at r1 = 1.5, r2 = 0.07, d1 = 10, e = 0.2, h1 = 0.4, d2 = 10,

d3 = 10, d4 = 10, m1 = 0.001, m2 = 0.5. This graph illustrates how an increase

in β increases the population of susceptible and diseased �rst prey but decreases

population of second prey and predator as more preys will become diseased.

Figure 8.2 depicts the impact that changing the maximum time for susceptible
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�rst prey (d1) on the prey-predator population at r1 = 1.5, r2 = 0.07, e = 0.2,

h1 = 0.4, m1 = 0.001, m2 = 0.5, d2 = 10, d3 = 10, d4 = 10, a = 1, β = 0.7, α = 2.

This �gure clearly shows that, as d1 increases the population of �rst prey increases

but second prey and predator population decreases as prey will get more time to

live.

Figure 8.3 illustrates that the dynamic shift in the prey-predator population

caused by adjusting the infected �rst prey max time (d2) in the prey-predator system

at r1 = 1.5, r2 = 0.07, e = 0.2, h1 = 0.4, m1 = 0.001, d1 = 10, m2 = 0.5, d3 = 10,

d4 = 10, β = 0.7, α = 2. This graph shows that when d2 rises, �rst prey (susceptible

and diseased) population rises while second prey and predator population decreases

because more preys and predators will become diseased.

The change on prey - predator population (xs, xi, x2, y) by varying second prey

max time (d3) is shown in �g. 8.4 at r1 = 1.5, r2 = 0.07, e = 0.2, h1 = 0.4,

m1 = 0.001, d1 = 10, m2 = 0.5, d2 = 10, d4 = 10, β = 0.7, α = 2. This �gure clearly

shows how decrease in second prey max time increases �rst (diseased and susceptible

both) prey population but second prey and predator population decreases.

The impact of max time of predator (d4) on prey-predator system is expressed

in �g. 8.5 at r1 = 1.5, r2 = 0.07, e = 0.2, h1 = 0.4, m1 = 0.001, d1 = 10, m2 = 0.5,

d2 = 10, d3 = 10, β = 0.7, α = 2. It is noticed from this �gure that, decrease in

predator max time increases �rst (diseased and susceptible both) prey population

but second prey and predator population decreases.

The dynamical change on prey - predator interaction by changing ratio between

capture rate of �rst and second prey (α) can be seen in �g. 8.6 at r1 = 1.5, r2 = 0.07,

e = 0.2, d1 = 10, h1 = 0.4, d2 = 10, d3 = 10, d4 = 10,m1 = 0.001,m2 = 0.5, β = 0.7.

This graph shows that the number of diseased �rst prey increases as α increases.

The changes with mortality rate of diseased �rst prey (m1) parameter of prey-

predator interaction under fuzzy impulsive control exhibited in �g. 8.7 at r1 = 1.5,
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r2 = 0.07, e = 0.2, h1 = 0.4, d1 = 10, d2 = 10, d3 = 10, d4 = 10, m2 = 0.5, β = 0.7,

α = 2. This graph unequivocally demonstrates how a rise in m1 reduces the number

of infected �rst prey since more diseased prey will pass away.

The performance of prey - predator interaction by varying death rate of predator

(m2) parameter exhibited in �g. 8.8 at r1 = 1.5, r2 = 0.07, e = 0.2, d1 = 10,

h1 = 0.4, D1 = 0.001, d2 = 10, d3 = 10, d4 = 10, β = 0.7 α = 2. This image

demonstrates how the population of diseased �rst prey, second prey, and predator

reduces as m2 grows.

The intra-species competition (e) consequence on prey-predator system is shown

in �g. 8.9 at r1 = 1.5, r2 = 0.07, h1 = 0.4, d1 = 10, m1 = 0.001, d3 = 10, m2 = 0.5,

d2 = 10, d4 = 10, β = 0.7, α = 2. It is clear from this �gure that as the intra-species

competition raises, the population of �rst prey increases whereas second prey and

predators diminishes.

The in�uence of susceptible prey's intrinsic growth rate (r1) on prey-predator

system is presented in �g. 8.10 at r2 = 0.07, d1 = 10, e = 0.2, h1 = 0.4, m1 = 0.001,

d3 = 10, m2 = 0.5, d2 = 10, d4 = 10, β = 0.7, α = 2. This graph demonstrates

unambiguously how a decrease in intrinsic growth rate of susceptible prey causes a

rise in the population of diseased �rst prey whereas there is a drop in second prey

and predator population.

The impact of a second prey's intrinsic growth rate (r2) on prey-predator system

can be seen in �g. 8.11 at r1 = 1.5, d3 = 10, e = 0.2, h1 = 0.4, d1 = 10, m1 = 0.001,

m2 = 0.5, d2 = 10, d4 = 10, β = 0.7, α = 2. It is evident from this �gure that an

increase in the second prey's intrinsic growth rate decreases its population.

The change with coe�cient of help between preys (h1) on prey-predator system

is presented in �g. 8.12 at r1 = 1.5, r2 = 0.07, d1 = 10, e = 0.2, m1 = 0.001,

d3 = 10, m2 = 0.5, d2 = 10, d4 = 10, β = 0.7, α = 2. It is noticed from this �gure

that, the �rst prey population (diseased and susceptible) increases as h1 decreases
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and second prey and predator population increases as h1 increases.

The physiology of the populations of four-species (xs, xi, x2, y) without impulse

control is �nally shown in �gure. 8.13 by maintaining each of the Takagi-Sugeno

fuzzy model's output parameters at r1 = 1.5, r2 = 0.07, e = 0.2, P1 = 0.7, P2 = 0.06,

P3 = 0.8, C1 = 0.5, C2 = 0.43, C3 = 0.36, h1 = 0.4, h2 = 0.1, d1 = 10, m1 = 0.001,

m2 = 0.5, d2 = 10, d4 = 10, a = 1, d3 = 10, β = 0.7, λ = 10, α = 2, with xs(0) > 0,

xi(0) > 0, x2(0) > 0, y(0) > 0, t = 10. The graph makes it obvious how predator

and prey populations are stabilizes.

8.6 Conclusions

In this study, we created a two prey, one predator eco-epidemiological model in

which an infectious disease exclusively a�ects the �rst prey group. The �rst prey

population has been split into two sub-classes: susceptible and diseased. The study

is further extend to the concept to four dimensional system of the Lotka-volterra

predator-prey model where fuzzy impulsive control technique was employed to eval-

uate the stability of the relationship connecting the species. In addition, the stability

analysis of the system was also observed by a numerical example of predator-prey

system with impulsive e�ects. The main results of this study are as follows:

� The number of diseased prey grows with increased infection transmission.

� The number of infected prey increases when the capture rate ratio between

�rst and second prey rises.

� Intra-species competition e�ects all the four populations. As population den-

sity rises, the e�ect of intra-species competition is a reduction in population

growth rates.
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� The population of diseased �rst prey is reduced by an increase in their death

rate.
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Figure 8.1: Impact of (β) on prey-predator system
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Figure 8.2: Impact of (d1) on prey-predator system
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Figure 8.3: Impact of (d2) on prey-predator system
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Figure 8.4: Impact of (d3) on prey-predator system
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Figure 8.5: Impact of (d4) on prey-predator system
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Figure 8.6: Impact of (α) on prey-predator system
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Figure 8.7: Impact of (m1) on prey-predator system
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Figure 8.8: Impact of (m2) on prey-predator system
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Figure 8.9: Impact of (e) on prey-predator system
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Figure 8.10: Impact of (r1) on prey-predator system
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Figure 8.11: Impact of (r2) on prey-predator system
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Figure 8.12: Impact of (h1) on prey-predator system
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Figure 8.13: Di�erent scenarios for predator-prey system without impulse control



Chapter 9

A Mathematical Study for the

Stability of Two Predator and One

Prey with Infection in First Predator

1

9.1 Introduction

In this chapter, we have considered Lotka-Volterra predator-prey model with one

prey and two predators. Also, considered that the only �rst predator population got

infected by an infectious disease, i.e., the �rst predator population is divided into

two sub-classes: susceptible and infected. The global and asymptotic stability of

this model was studied as explained in the earlier chapters [77]. Finally, presented

the graphical solutions for the considered problem.

1Published in �Ann. Appl. Math�, Vol. 39, No. 1, pp. 29-48, February 2023, DOI: doi:
10.4208/aam.OA-2023-0003
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9.2 Model Formation

Our mathematical model is based on the following assumptions

� Let x be the total population density of the prey.

� The initial group of predators is the only one to have an infectious disease.

� The overall population of �rst predators is divided into two sub classes when

a disease is present: (i) the susceptible �rst predator population (ys) and (ii)

the infected �rst predator population (yi).

� According to the rule of mass action, the disease in the �rst predator popula-

tion is spread horizontally from the susceptible to the infected �rst predator

population at a constant rate of infection β.

� Let the second predator total population density is denoted by y2.

� Let t be the number of years.

The following model is proposed utilizing a set of non-linear ordinary di�erential

equations based on the aforementioned presumptions.

dx

dt
= rx− ex2 − P1ysx

a0 + x
− P2yix

a0 + x
− P3y2x

a0 + x
dys
dt

=
C1P1ysx

a0 + x
− C1P1ysy2

a1 + x
− βysyi −m1ys

dyi
dt

= βysyi +
C2P2yix

a0 + x
− C2P2yiy2

a2 + x
−m2yi

dy2
dt

=
C3P3xy2
a0 + x

− C3P3ysy2
a1 + x

+
C3P3yiy2
a2 + x

−m3y2

(9.1)

where x0, ys0, yi0, y20 are the initial populations and all of the parameters are pos-

itive with initial conditions as x = x0 > 0, ys = ys0 > 0, yi = yi0 > 0, y2 = y20 > 0.

Here r is the intrinsic growth rate of prey, e is the intra-speci�c competition, β is

the infection transmission, P1 is the predation rate of susceptible �rst predator, P2
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is the predation rate of infected �rst predator, P3 is the predation rate of second

predator, C1 is the e�ciency of �rst susceptible predator, C2 is the conversion e�-

ciency of �rst infected predator, C3 is the conversion e�ciency of second predator,

m1 the mortality rate of �rst susceptible predator, m2 the mortality rate of �rst

infected predator, m3 is the mortality rate of second predator, a0, a1, a2 are the

half-saturation constants.

A matrix di�erential equation is stated as follows to analyze the system's stabil-

ity:

ẋ = Ax+ ϕ(x) (9.2)

where

ẋ=



ẋ(t)

ẏs(t)

ẏi(t)

ẏ2(t)


, A=



r 0 0 0

0 −m1 0 0

0 0 −m2 0

0 0 0 −m3


, ϕ(x)=



−ex2 − P1ysx
a0+x

− P2yix
a0+x

− P3y2x
a0+x

C1P1ysx
a0+x

− C1P1ysy2
a1+x

− βysyi

βysyi +
C2P2yix
a0+x

− C2P2yiy2
a2+x

C3P3y2x
a0+x

− C3P3ysy2
a1+x

+ C3P3yiy2
a2+x


9.3 T-S Fuzzy model with Impulsive e�ects

The non-linear equations can be transformed into the following linear equation as

explained in earlier chapter(s).

If x(t) is Mi then

ẋ(t) = Aix(t), t ̸= τj

∆(x) = Kijx(t), t = τj

i = 1, 2, 3...r; j = 1, 2, ...

(9.3)
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where, Ai =



r − ex− P1ys
a0+x

− P2yi
a0+x

− P3y2
a0+x

0 0 0

C1P1ys
a0+x

−C1P1y2
a1+x

− βyi −m1 0 0

C2P2yi
a0+x

βyi −C2P2y2
a2+x

−m2 0

C3P3y2
a0+x

−C3P3y2
a1+x

C3P3y2
a2+x

−m3


,

i = 1 to 511, where the matrices A′
is are generated using maximum and min-

imum values of z′ks; k = 1 to 9 and z1, z2, z3, z4, z5, z6, z7, z8, z9 are re-

lated to the values of x(t)∈[0,d1], ys(t)∈[0,d2], yi(t)∈[0,d3], y2(t)∈[0,d4], here z1

= ex, z2 =
P1ys
a0 + x

, z3 =
P2yi
a0 + x

, z4 =
P3y2
a0 + x

, z5 =
P1y2
a1 + x

, z6 = βyi, z7 =
P2y2
a2 + x

,

z8 =
P3y2
a1 + x

, z9 =
P3y2
a2 + x

. Mi, x(t), Ai ∈ R4∗4, r is the number of the IF-THEN

rules, Ki,j denotes the control of the jth impulsive instant, ∆(x)|t=τj = x(τj - τj−1)

9.4 Numerical Simulation

By using fuzzy impulsive T-S design model on (9.2), the membership functions [96]

obtained as

M1 =
z1
ed1

, M2 =
ed1 − z1

ed1
, N1 =

z2
P1d2
a0+d1

, N2 =

P1d2
(a0+d1)

− z2
P1d2

(a0+d1)

, K1 =
z3
P2d3
a0+d1

,

K2 =
P2d3
a0+d1

− z3
P2d3
a0+d1

, L1 =
z4
P3d4
a0+d1

, L2 =
P3d4
a0+d1

− z4
P3d4
a+d1

, O1 =
z5
P1d4
a1+d1

, O2 =
P1d4
a1+d1

− z5
P1d4
a1+d1

,

R1 =
z6
βd3

, R2 =
βd3 − z6

βd3
, S1 =

z7
P2d4
a2+d1

, S2 =
P2d4
a2+d1

− z7
P2d4
a2+d1

, T1 =
z8
P3d4
a1+d1

, T2 =
P3d4
a1+d1

− z8
P3d4
a1+d1

,

P1 =
z9
P3d4
a2+d1

, P2 =
P3d4
a2+d1

− z9
P3d4
a2+d1

and the matrices A′
is are calculated using

Ai =



r − ex− P1ys
a0+x

− P2yi
a0+x

− P3y2
a0+x

0 0 0

C1P1ys
a0+x

−C1P1y2
a1+x

− βyi −m1 0 0

C2P2yi
a0+x

βyi −C2P2y2
a2+x

−m2 0

C3P3y2
a0+x

−C3P3y2
a1+x

C3P3y2
a2+x

−m3


,

i = 1 to 511, where the matrices A′
is are generated using maximum and minimum
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values of z′ks; k = 1 to 9 and, the Defuzzi�cation can be represented as:

ẋ(t) =
r∑

i=1

hi(z(t))(Aix(t)) (9.4)

here h′
is are given as hi(z(t)) = ωi(z(t))/

r∑
i=1

ωi(z(t)), and ωi(z(t)) =

p∏
j=1

Mij(z(t)),

i = 1 to 511, j = 1 to 9

This Fuzzy model exactly represents the non-linear system 9.1 in the region

[0,5]x[0,10]x[0,10]x[0,10].

dx

dt
= rx− ex2 − P1ysx

a0 + x
− P2yix

a0 + x
− P3y2x

a0 + x
dys
dt

=
C1P1ysx

a0 + x
− C1P1ysy2

a1 + x
− βysyi −m1ys

dyi
dt

= βysyi +
C2P2yix

a0 + x
− C2P2yiy2

a2 + x
−m2yi

dy2
dt

=
C3P3xy2
a0 + x

− C3P3ysy2
a1 + x

+
C3P3yiy2
a2 + x

−m3y2

(9.5)

9.5 Results and discussion

In this section, the global stability of the considered intra-speci�c competition

predator-prey model (9.2) is discussed as discussed in earlier chapters. We have

studied the system (9.1) numerically using MATHEMATICA software to get better

insight of the proposed model.

Calculations were carried by taking the values of the parameters at r = 1.5,

e = 0.2, β = 0.4, P1 = 0.7, P2 = 0.06, P3 = 0.8, C1 = 0.5, C2 = 0.4, C3 = 0.36,

m1 = 0.1, m2 = 0.5, m3 = 0.4, a0 = 1.0, a1 = 1.0, a2 = 1.0, d1 = 10, d2 = 10,

d3 = 10, d4 = 10 in 9.3 to get the eigen values of [AT
i +Ai](i = 1, 2, 3...r) as explained

in the theorems ([83]). It is found that max(λi)=λ(α) = 3 then we have chosen

diag[−0.99,−0.99] as impulsive control matrix, such that ω = ||I + K|| = 0.01.
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It is noted that the system 9.3 is stable globally when ϵ=1.5, δj=0.1 (at those

above values, ln(ϵω) + λ(α)δj = −3.899 < 0). Further, it is observed that the prey-

predator model is unstable when r = 21.2, e = 5.5, β = 5.5, P1 = 2.8, P2 = 2.8,

P3 = 2.0, C1 = 1.8, C2 = 2.2, C3 = 5.6, m1 = 5.2, m2 = 5.4, m3 = 0.5, a0 = 1.0,

a1 = 1.0, a2 = 1.0, d1 = 10, d2 = 10, d3 = 10, d4 = 10, since max(λi) =λ(α) = 42.4,

=⇒ ln(ϵω) + λ(α)δj = 0.041 > 0 for ω = 0.01, ϵ = 1.5, δj = 0.1.

Table. 9.1 presents the stability of the system at various values of the present

study.

r e β P1 P2 P3 C1 C2 C3 m1 m2 m3 a0 a1 a2 d1 d2 d3 d4 max(λi)= ln(ϵω) conclusion
λ(α) +λ(α)δj

1.5 0.2 0.4 0.7 0.06 0.8 0.5 0.4 0.36 0.1 0.5 0.4 1.0 1.0 1.0 10 10 10 10 3 -3.899 stable
2.0 0.5 0.5 0.8 0.6 1.0 0.5 0.4 0.6 0.5 0.2 0.5 1.0 1.0 1.0 10 10 10 10 4.0 -3.799 stable
2.5 1.5 0.2 1.8 1.6 2.0 0.8 0.2 0.6 0.2 0.4 0.5 1.0 1.0 1.0 10 10 10 10 5 -3.699 stable
21.2 5.5 5.5 2.8 2.8 2.0 1.8 2.2 5.6 5.2 5.4 0.5 1.0 1.0 1.0 10 10 10 10 42.4 0.041 unstable

Table 9.1: Stability Analysis by taking di�erent values of the parameters

The impact of the emerging parameters on prey-predator system 9.1 with T-

S fuzzy impulsive control model is presented in �gs. 9.1 - 9.10 by �xing other

parameters at P1 = 0.7, P2 = 0.06, P3 = 0.8, C1 = 0.5, C2 = 0.4286, C3 = 0.36,

a0 = 1.0, a1 = 1.0, a2 = 1.0, m1 = 0.1.

The dynamical change on prey-predator population system (x, ys, yi, y2) by vary-

ing intrinsic growth rate of prey (r) parameter under fuzzy impulsive control can be

noted in �g. 9.1 at e = 0.2, β = 0.7, m2 = 0.5, m3 = 0.4, d1 = 10, d2 = 10, d3 = 10,

d4 = 10. It is observed from this �gure that, increase in r increases population of

prey.

The e�ectiveness by varying intra-speci�c competition (e) parameter of prey-

predator population system (x, ys, yi, y2) under fuzzy impulsive control can be noted

in �g. 9.2 at r = 1.5, β = 0.7, m2 = 0.5, m3 = 0.4, d1 = 10, d2 = 10, d3 = 10,

d4 = 10. This �gure clearly shows that an increase in e leads to the decreases in the

population of prey, but increases the infected �rst predator and the second predator
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population.

The in�uence of prey max time (d1) on prey-predator system is shown in �g.

9.3 at r = 1.5, e = 0.2, β = 0.7, m2 = 0.5, m3 = 0.4, d2 = 10, d3 = 10, d4 = 10.

This graph makes it abundantly evident that as d1 increases, population increases

for prey and �rst predator but decreases for second predator.

The in�uence of susceptible �rst predator max time (d2) on prey-predator system

is shown in �g. 9.4 at r = 1.5, e = 0.2, β = 0.7, m2 = 0.5, m3 = 0.4, d1 = 10,

d3 = 10, d4 = 10. This graph shows that as d2 increases, prey population decreases

but predators population increases.

The change on prey-predator system with max time of infected �rst predator

(d3) is shown in �g. 9.5 at r = 1.5, e = 0.2, β = 0.7, m2 = 0.5, m3 = 0.4,

d1 = 10, d2 = 10, d4 = 10. This �gure clearly exhibits that as d3 increases, prey and

susceptible �rst predator population decreases.

The outcome with varying max time of second predator (d4) on prey-predator

system is shown in �g. 9.6 at r = 1.5, e = 0.2, β = 0.7, m2 = 0.5, m3 = 0.4, d1 = 10,

d2 = 10, d3 = 10. This graph illustrates clearly how an increase in second predator

max time decreases the prey population and �rst predator population and increases

the second predator population.

The e�ect of transmission coe�cient parameter (β) from susceptible �rst preda-

tor to infected �rst predator on prey-predator system is shown in �g. 9.7 at r = 1.5,

e = 0.2, m2 = 0.5, m3 = 0.4, d1 = 10, d2 = 10, d3 = 10, d4 = 10. This graph

shows that as transmission coe�cient from susceptible �rst predator to infected

�rst predator rise, the population of susceptible �rst predator decreases.

The vital pattern of prey- predator population (x, ys, yi, y2) by varying mortality

rate of infected �rst predator (m2) parameter under fuzzy impulsive control can be

noted in �g. 9.8 at r = 1.5, e = 0.2, β = 0.7, m3 = 0.4, d1 = 10, d2 = 10, d3 = 10,

d4 = 10. This �gure clearly exhibits that as m2 increases, population of susceptible
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and infected �rst predator decreases.

The change on prey-predator system (x, ys, yi, y2) by varying mortality rate of

second predator (m3) parameter under fuzzy impulsive control can be noted in �g.

9.9 at r = 1.5, e = 0.2, β = 0.7, m2 = 0.5, d1 = 10, d2 = 10, d3 = 10, d4 = 10. This

�gure clearly exhibits that as m3 increases, population of prey and second predator

decreases but population of infected �rst predator increases.

Finally, the nature of prey-predator system without impulsive control is pre-

sented in �g. 9.10 by �xing all the parameters obtained from T-S fuzzy model at

r = 1.5, e = 0.2, β = 0.7, P1 = 0.7, P2 = 0.06, P3 = 0.8, C1 = 0.5, C2 = 0.4,

C3 = 0.36, m1 = 0.1, m2 = 0.5, m3 = 0.4, a0 = 1.0, a1 = 1.0, a2 = 1.0, d1 = 10,

d2 = 10, d3 = 10, d4 = 10, and initial conditions x(0) > 0, ys(0) > 0, yi(0) > 0,

y2(0) > 0, t = 10. The �gure clearly shows how the prey and predator populations

reaches to stability.

9.6 Conclusions

In this work, a predator-prey model with two predator populations and one prey

population is built, but only the �rst predator population is infected.

� Intrinsic growth rate of prey e�ects all the four populations. Increase in intrin-

sic growth rate of prey increases population of prey, and decreases population

of susceptible �rst predator, infected �rst predator and second predator.

� The population of �rst and second predators that are infected increases while

the population of prey falls due to increased intra-speci�c competition.

� The population of susceptible �rst predators and infected �rst predators de-

clines as the mortality rate of infected �rst predators rises.

� E�ect of infected �rst predator max time is to decrease all the four populations.
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� The population of predator decreases due to increase in infection transmission.
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Conclusions and Scope for Future

Work

The Takagi-Sugeno method has diverse applications in modeling, control, pattern

recognition, and decision-making in systems where uncertainty and non-linearity

play a signi�cant role. Its ability to combine fuzzy logic with traditional mathemat-

ical models provides a powerful tool for addressing complex real-world problems.

Many �elds are based on mathematical models, including ecology, epidemiology,

physics, algorithms, and infectious diseases. In this thesis, we analyzed the stability

of a predator-prey competition model with fuzzy impulsive control by T-S fuzzi�-

cation. According to the references already in existence, the current investigation

covers a variety of ecological consequences and got adequate results.

Signi�cance of Research Findings:

� Stability analysis of prey-predator helps in predicting how populations of

predators and prey will change over time.

� It provides insights into how ecosystems respond to perturbations, such as

environmental changes or species introduction.

169
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� For conservation biology and wildlife management, stability analysis can guide

strategies to maintain or restore balanced populations.

� Stability analysis can predict the outcomes of introducing natural predators

to control pest populations and avoid unintended consequences.

� This method contributes to the development of mathematical techniques and

theories applicable to various complex systems.

� It aids in understanding the spread and control of diseases, guiding public

health interventions.

Practical implications of this model:

� Enhanced Control for Nonlinear Systems: The T-S fuzzy impulsive control

model excels in managing nonlinear systems where traditional control methods

may fail.

� Robustness to Disturbances and Uncertainties: The model's ability to manage

impulses (sudden changes or disturbances) makes it robust against uncertain-

ties. This is particularly useful in environments where external disturbances

are frequent and unpredictable, such as in robotic systems or aerospace appli-

cations.

� Improved Stability and Performance: T-S fuzzy impulsive control can improve

the stability and performance of dynamic systems. By applying impulsive

control actions at speci�c instances, the system can quickly adjust to changes,

maintaining desired performance levels.

� Applications in Engineering Systems: The model is widely applicable in en-

gineering �elds such as automotive systems, power systems, and mechanical

systems.
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In [113], Wang et.al. discusses the application of impulsive control in stabilizing

T-S fuzzy systems with time delays, highlighting its practical implications in real-

world systems. In [114], Zhang et.al. o�ers a comprehensive overview of fuzzy

modeling and control, including the T-S fuzzy model with impulsive control, and

discusses various applications in engineering and technology.

The main results indicate the following �ndings.

Conclusions from Part-II

For the investigation of global and asymptotic stability of two and three species

Lotka-Volterra predator-prey model, we have used the T-S method, and then pre-

sented the graphical solutions of the problems.

The following are some of the important observations.

� The e�ect of intra-species competition is to decrease the rate of population

growth as population density increases.

� It has been observed that intrinsic growth rate of prey increases with an in-

crease in prey's population.

� The half-saturation constants are inversely proportional to predators popula-

tion. Decrease in half saturation constant indicate that predators can achieve

half of their maximum consumption rate at a lower prey density, which means

they are more e�cient in utilizing the preys and hence predator population

rises.

Conclusions from Part-III

We have analyzed the e�ect of disease in prey and predator populations. The dis-

eased population has been split into two sub-classes: susceptible and infected.

The following are some of the important observations.
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� There are less healthy people in the population when the rate of disease transfer

from susceptible to sick people rises.

� A higher death rate results in a smaller population.

Future Scope:

The work presented in the thesis can be extended to analyze the Allee e�ect and

Time-delay in four species predator-prey models and to study about their stability

using Takagi-Sugeno method. Further, we can use T-S method in several engineering

�elds, including near space vehicles, sewage treatment processes and nonlinear active

suspension systems and for analyzing the share market.
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