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Abstract

Predator-Prey model is a relationship between two species living in the same
space. It gives the effect on population between the two species. When two species
are living in same habitat they share some resources such as food resource and eco-
logical niche. A predator-prey interaction has been described firstly by two pioneers
Lotka and Volterra in two independent works. After them, more realistic prey-
predator models were introduced by Holling suggesting three kinds of functional

responses for different species to model the phenomena of predation.

Almost all of the physical dynamical systems in real life cannot be represented
by linear differential equations. The non-linear model is analyzed with the help of
Takagi-Sugeno Fuzzy model. The fuzzy model proposed by Takagi and Sugeno is
described by fuzzy IF-THEN rules which represents local input-output relations of
a nonlinear system. This has motivated the work in this thesis, where an attempt
has been made to study the stability of Lotka-Volterra predator-prey system with

fuzzy impulsive control.

The thesis has four parts, which consists of ten chapters. Part-I consists of a
single chapter (chapter 1) which gives an introduction to the problems discussed in
this thesis and it provides motivation to the study carried out. A survey of pertinent
literature is presented to show the significance of the problems considered. Part-11
contains three chapters, 2, 3 and 4, which deals with the stability of interaction dy-
namics of two and three species prey - predator system without infection. Part-I11
deals with the the stability of prey and predator system with infection. It consists
of five chapters, namely 5, 6, 7, 8, and 9.

In all the above chapters, mathematical models are considered to study the re-
lationship among preys and predators. We have two, three species Lotka-Volterra
predator-prey models with imprecise biological parameters. To improve the model’s
reality we analyze the global and asymptotic stability of this model with the help
of the Takagi-Sugeno (T-S) model. The T-S impulsive control model and the fuzzy
impulsive control models were used to explore the stability of the Lotka-Volterra
predator-prey system. The impulsive control technique, which is analyzed in the
framework of the fuzzy systems based on T-S model, is found appropriate for very

complex and non-linear system with impulsive effects.



Vil

Part-IV consists of a single chapter 10, which presents the summary of the
thesis with main conclusions and point out various problems which are yet to be

solved in this area of research.
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Chapter 1

Introduction

1.1 Preliminary

All living things require energy. However living things get their energy in different
methods. Sometimes one individual consumes another individual. No species of
animals lives in complete isolation. Since all animals must eat to live, all must
interact, if not with other animals then with plants. No two species can exist in the
same niche without ending up in the competition i.e. if two species share the same
niche then they would end up in the competition, so the result of competition will
be either win/loss or partition. In the case of partition both the species are living
in the same habitat but limiting their resources. In the case of win/loss, one will
win and one will lose. So the species which win will exist and one which lose will
extinct. The one which wins is called PREDATOR and one which lose is called
PREY.

1.2 Prey - Predator Model

The Prey - Predator model is a relationship between two species living in the

same space. It gives the effect on the population between the two species. It provides
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information about competition between two species living in the same ecosystem.

e PREDATOR is an animal that hunts, kills and eats other animals for food.
Predator species need to be adapted for efficient hunting if they are to catch

enough food to survive.

e PREY is a term used to describe organisms that predator kill for food. Prey

species must be well adapted to escape predators for their species to continue.

1.3 Lotka - Volterra Prey - Predator Model

The idea to predict the outcome of competition based on the impact of one
species on another is given by Lotka-Volterra model. A predator—prey interaction
has been described firstly by two pioneers Lotka and Volterra in two independent
works [1, 2|. After them, more realistic prey—predator models were introduced by
Holling suggesting three kinds of functional responses for different species to model
the phenomena of predation. It shows the relationship between predator and prey.
The Lotka-Volterra equations are a pair of first order non-linear differential equa-
tions used to describe the dynamics of biological system in which two species interact
one as predator and the other as prey. There has always been an unique interest in
the study of population evolution, beginning with populations of a single species and
progressing to more realistic models where various species coexist and communicate
with one another in the same ecosystem. Between these, we can find models those
look at predator-prey relationships, symbiosis, or competitive connections. Since
the well-known Lotka-Volterra model was developed and resolved the major issues
with ecological processes [3]. Lotka and Volterra made the first breakthrough in con-
temporary mathematical ecology for a predator-prey competing species. Following
Lotka and Volterra’s pioneering work on the predator-prey model, the latest math-

ematical ecology has attained an essential position in analytical biology. Hence, the
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mathematical models are frequently used by applied mathematicians to analyze the
intricate interactions between predators and prey. Therefore, the classical ecological

models of interacting populations typically focused on two species.

1.3.1 Assumptions

e Let z(t) and y(t) be the population of prey and predator species at time t.

e In the absence of predators, the prey population will grow naturally.

Mathematical model for population change of prey is:

" (1.1)
o = az,a .

e In the absence of prey, the predator population will decrease at the natural

rate. Mathematical model for population change of predator is:

dy

—=—Py,P>0 1.2

= Y (1.2)

e The presence of both predators and prey is beneficial to the growth of predator
species and is harmful to the growth of prey species, i.e. the predator species

increases and the prey species decreases at a rate proportional to the product

of the two populations.

1.3.2 Basic equations

With the above assumptions, the system of non-linear first-order O.D.E are

dx

i bxy (1.3)
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dy

— =qxy— P 1.4
o = 4wy — Py (1.4)
where a, b, P, q are positive constants, fl—f, ‘2—3; represent the instantaneous growth

rate of the two populations, ax represents the exponential growth of the prey when
the prey is assumed to have an unlimited food supply and reproduce exponentially
unless subject to predation, bxy represents the rate of the predation upon the prey,
qry represents the growth of predator populations, Py represents the loss rate of

the predators due to either natural death or emigration.

e A predator prey model is an essential tool in ecology and specifically for our

understanding of interacting populations in the natural environment.

e Predator- prey models are arguably the building blocks of the bio and eco-
systems, as bio-masses are grown out of their resource masses. Species com-
pete, evolve, and disperse simply for the purpose of seeking resources to sustain

their struggle for their existence.

e Models of competitive interaction of the predator - prey are widely used for the
analysis of economic processes and phenomena. Like enterprizes, industries,

brands, products, and technologies can compete with each other in time.

1.4 Epidemiology

The study of disease transmission in animals is known as epidemiology. Disease’s
impact on eco-systems is a significant topic from both a mathematical and an ecolog-
ical point of view. As a result, ecologists and academicians have been focusing more
and more on the creation of key tools, as well as experimental ecology, to characterize
how ecological species are infected. The consequence of infection in predator-prey
model with disease in prey and predator has been investigated enormously in last

few years by many researchers.
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In the study of infectious disease transmission and control, mathematical models
have become indispensable tools. Most infectious disease transmission models are
based on Kermack and Mckendrick’s initial SIR model [4]. When exposed to con-
tagious individuals, sensitive becomes infectious. Scientists have recently focused
a lot of emphasis on epidemiological models. Numerous scientists, Anderson |5|,
Hethcote [6] exclusively addressed single-species models in classical epidemiological
frameworks. This is because sick species are less active and so more easily caught

as shown in |7, 8, 9, 10].

1.5 Takagi - Sugeno Model

Almost all of the physical dynamical systems in real life cannot be represented
by linear differential equations. Apart from the traditional methods like Direct
approach for solving the non-linear system of equations recent Fuzzy method ap-
proaches have been developed. The solution of non-linear systems by classical meth-
ods is not easy due to its non-linearity, analytical complexity, chaotic behavior, etc.
Hence, the T-S method is very much effective to analyze the non-linear models. The
fuzzy model proposed by Takagi and Sugeno is described by fuzzy IF-THEN rules
which represents local input-output relations of a nonlinear system. The main fea-
ture of a Takagi-Sugeno fuzzy model is to express the local dynamics of each fuzzy
implication (rule) by a linear system model. It develops a systematic approach to
generate fuzzy rules from a given input-output data set. Until recently, less work
has been done on the stability of Lotka-Volterra predator-prey system with fuzzy
impulsive control. T-S method is very much useful as it is less time consuming and
easy to solve complex systems. We can easily analyze the stability of the complex
systems using T-S method as given in [11, 12, 13].

The Takagi-Sugeno (T-S) approach is a method used in fuzzy logic modeling

to approximate complex nonlinear systems using a set of fuzzy if-then rules. This
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approach is particularly advantageous when dealing with systems that are difficult
to model using traditional mathematical techniques, such as predator-prey models,
which often involve nonlinear interactions and uncertainties. The Takagi-Sugeno
approach offers several advantages for improving the realism of predator-prey models
by effectively handling nonlinear relationships, incorporating uncertainty, providing
linguistic interpretability, adapting to data, and handling multiple input variables.
These features make it a valuable tool for modeling and understanding complex
ecological systems.

The Takagi-Sugeno (T-S) fuzzy impulsive control model is a framework that
combines fuzzy logic with impulsive control techniques to address complex, nonlin-

ear control systems.

1.6 Fuzzy Impulsive Control

Most plants in engineering, science, and industries have inherent non-linearity
and are difficult to design and control using general nonlinear systems. In order to
overcome this kind of difficulties, many researchers have developed various schemes,
among which a successful approach is fuzzy impulsive control combined with the
linguistic knowledge representation. For instance, one can see temperature control
in rapid thermal processing [14], the control of a flexible robot system [15], an auto-
mated highway system [16]. In parallel with these practical applications, theoretical
researches with respect to fuzzy control have been performed to include many control
issues. Stability analysis is certainly one of the most important issues that theoretic

efforts have focused on.
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Table 1.1: Various impacts of the Lotka-Volterra Prey-Predator and Takagi-Sugeno

Models

Lotka-Volterra Prey-Predator Model

Takagi-Sugeno Model

Population Dynamics: The model
provides a mathematical framework for
understanding how predator and prey
populations interact over time.

Control Systems: The TS model is
extensively used in designing controllers
for nonlinear systems, providing a
flexible approach to handle systems
where linear control methods
are insufficient.

Stability Analysis: By analyzing the
model, ecologists can study the
conditions under which predator-prey
systems are stable or unstable,
leading to insights into
ecosystem stability and resilience.

Engineering Applications: In robotics,
the TS model helps in path planning,
navigation, and control, allowing robots
to handle uncertain and dynamic
environments effectively.

Mathematical Ecology: The model has
spurred the development of
mathematical ecology, a field that
uses mathematical approaches to
study ecological systems.

Signal Processing: TS models are used in
signal processing for noise reduction
and filtering, enhancing the quality
of signals in various applications like

audio processing and telecommunications.

Epidemiology: Analogous models are
used to study the spread of infectious
diseases.

Environmental Systems: TS models are used
to model and predict climate systems,
which are inherently nonlinear
and complex.

Agriculture: The model helps in
understanding the dynamics of
agricultural pests and their natural
predators, guiding the development of
sustainable pest management practices.

Industrial Applications: In industries
such as chemical manufacturing, the
TS model is used for process control,
optimizing production processes, and
maintaining product quality.

Lotka-Volterra predator-prey model
highlight the need for more realistic,
adaptable, and integrative approaches.

Until recently, less work has been done
on the stability of Lotka-Volterra
predator-prey system with TS fuzzy
impulsive control.

Addressing these gaps will not only advance theoretical understanding but also enhance the

practical applicability of these models across various fields.

1.7 Literature Survey

Lotka-Volterra was the pioneer in the subject of bio-mathematics. Volterra pro-

posed the differential equation in 1925 to answer the problem of rapid changes in

prey and predator populations. The predator-prey system has been used in a variety

of fields and has played a significant role in bio-mathematics. Further, the stability

of the predator-prey system is being given more attention [17|. The Lotka-Volterra
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model is a type of interference competition in which two species’ per capita growth
rates are projected to be reduced by each other. Li and his team [18| investigated
the Lotka-Volterra predator-prey system’s impulsive control and discovered the nec-
essary conditions for asymptotic stability using Lyapunov functions [19, 20, 21].

Following Lotka and Volterra pioneering work, the prey-predator concept has
become a prominent and significant research subject in applied sciences. Later Ker-
mack and McKendrick [4] extended their contribution to the mathematical theory of
epidemics. Over the last few decades, there has been an increasing interest in study-
ing the effects of illnesses in prey-predator systems (Haque and Venturino [22]). To
represent the complicated interaction between interacting prey and predators, good
number of prey-predator models have been proposed and thoroughly investigated in
the real-world environment species. In view of significance, Mahapatra and Santra
[23] studied the prey-predator model for optimal harvesting with prey refuge. Liu
and Liu [24] explained the behavior of a stochastic model of predation including
three species of prey and predators intraguild. Recently, Hu et al. [25], outlined the
behavior of a predator-prey model with a constant yield of prey.

Traditional models for ecology of inter-connected populations have mainly con-
centrated on two species. According to Price et al. |26], social behavior should
depend on at least three trophic levels. The literature has looked into continuous
time models of two interacting species in great detail [27]. These models can only
display on two basic patterns mathematically, such as an approach to a limit cycle or
a steady state [28]. However, it has been found that ecological groups in nature have
extremely complicated dynamical tendencies. There are reports of more intricate
patterns in three species continuous time models [29, 30, 31, 32].

In 1986, Anderson and May [33] introduced infectious disease transmission into
a predator-prey model, assuming that the infection is only transmitted inside the

prey species. The traditional Lotka-Volterra predator-prey model, in which infection
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spreads among either the prey or the predator, was explored by Venturino [34]. How-
ever, a very less study have been done with infection in predator |35, 36]. Venturino
examined the local properties of eco-epidemic models in predator-prey systems with
disease only in the predator population. Haque and Venturino [37]| investigated
the importance of infectious disease in the Holling Tanner predator-prey model and
found a number of interesting results. They came to the conclusion that disease in
any species can be used as a biological control. Haque and Venturino [38] looked
at the function of transmissible disease in predator species using ratio-dependent
functional responses. Pada [39] recently examined predator-prey changing in pres-
ence of infection in the predator and demonstrated local stability analysis at the
equilibrium point using basic reproduction numbers [40].

In recent times many authors such as Haque [41] investigated and developed
different predator-prey models in existence of disease. Recently, Nandadulal et al
[42] performed a qualitative investigation of a fishery’s bio-economic management
in presence of some infection.

Venturino [43], Hethcote et al. [44], Yongzhen et al. [45] examined the standard
Lotka-Volterra prey-predator model in which illness spreads among either the prey
or the predator. Recently, Soufiane Bentout and Salih Djilali [46] suggested an age-
structured predator-prey model in which infection evolves in the prey population.
Nazmul and Samares Pal [47]| proposed a predator-prey model that includes infection
of the prey population and components such as fear, protection, and prey.

During recent years, mathematical modeling in ecology and epidemiology has
grown to be one of the most essential tools available, since it is so helpful for inter-
preting and studying the systems’ vital behavior. An important area of discussion
in theoretical ecology has been the dynamic interaction between predators and their
preys. The main element in models of predator-prey interaction is the predator’s

functional reaction on the population of prey, it explains how many preys are con-
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sumed by a predator per unit time for specific prey-predator concentrations. Even
there are other types of functional responses, the Lotka-Volterra functional response
are the most significant and beneficial functional responses [48, 49].

One of the most intriguing areas in mathematical biology is the interaction be-
tween predators and prey. The well-known Lotka-Volterra predator-prey model is
the first mathematical representation of the interaction between predators and prey
[50], which is a two-species model. Some scholars have noted that population mod-
els with two species can’t accurately capture the real world [51, 52|, and models
with three or more species can only depict a significant number of crucial behaviors.
The advancement of mathematics also demonstrated that three-species food chain
models have significantly more detailed features than two-species models [53, 54].

Since the impact of infectious diseases on the ecological system regulates popu-
lation size, researchers have recently become more interested in the fusion of ecology
and epidemiology. There are a lot of prey-predator models that have infectious in-
fections. The dynamics of the prey-predator system with disease in the prey and
predator populations were hypothesized and examined by Venturino [55, 56|, Hsieh
and Hsiao [57]|, Haque and Venturino [58|, Haque et al. [59, 60], Xiao and Chen
[61], Zhou et al. |62], Tewa |63|, Hudson [64], recently, Deng [65] etc. Additionally,
numerous research studies have explored the dynamic behavior of the predator-prey
system with infection in the predator population. There are also several scholars who
have studied eco-epidemic models where predator populations are infected through
consuming prey (Anderson and May [33|, Hadeler and Freedman [66] etc). Addi-
tionally, some researchers have developed eco-epidemic models with optimal control
[67].

In recent years, fuzzy impulsive theory has been applied to the stability analysis
of the non-linear differential equations |68, 69, 70|. However, it should be admitted

that the stability of fuzzy logic controller (FLC) is still an open problem. It is
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well-known that the parallel distributed compensation technique has been the most
popular controller design approach and belongs to a continuous input control way.
It is important to point out that there exist many systems, like the predator-prey
system, which cannot commonly endure continuous control inputs, or they have
impulsive dynamical behavior due to abrupt jumps at certain instants during the
evolving processes. In this sense, it is the same with communication networks,
biological population management, chemical control, and so forth |71, 72, 73, 74, 75].
Hence, it is necessary to extend FLC and reflect these impulsive jump phenomena
in the predator prey system. Until recently, few papers talk about the stability of

Lotka-Volterra predator prey system with fuzzy impulsive control.

1.8 Thesis Summary

In view of the above discussion, it can be noted that until recently, a few re-
searchers presented the stability of two-dimensional Lotka-Volterra predator-prey
system with fuzzy impulsive control. So we have considered the Lotka-Volterra
prey-predator population’s model with and without disease. To improve the model’s
reality, we analyzed the global and asymptotic stability of this model with the help
of the T-S approach [36]. Initially, using the T-S mathematical model and fuzzy
impulsive control, the stability of the predator-prey system is examined with the
help of theorems. Finally, the graphical solutions for the problems were presented.

The thesis has four parts and consists of ten chapters.

Part-I consists of a single Chapter 1 which gives an introduction to the prob-
lems discussed in this thesis and it provides motivation to the study carried out. A
survey of pertinent literature is presented to show the significance of the problems
considered. The basic equations governing the Lotka-Volterra predator-prey model,
which is relevant for the investigation presented in the thesis.

Part-II deals with the stability of prey and predator systems without infection.
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This consists of three Chapters 2, 3 and 4. In each of these chapters, the Lotka-
Volterra predator-prey model with imprecise biological parameters are considered.
To improve the model’s reality, we analyze the global and asymptotic stability with
the help of the T-S model.

Chapter 2, presents a mathematical model to study the relationship between
prey and predator. In this we have two species Lotka-Volterra predator-prey model
with imprecise biological parameters. The asymptotic stability of the impulsive
fuzzy system is shown by various stability theorems. Numerical example with prey
and predator system with impulsive effects is given to illustrate the application
of impulsive fuzzy control, and simulation results shows the effectiveness of the
proposed method.

In Chapter 3, the three-dimensional Lotka-Volterra predator-prey system’s sta-
bility has been examined using the Takagi-Sugeno (T-S) and the Fuzzy impulsive
control model. The main focus of this chapter is to examine the stability of predator-
prey model with one predator and two preys and to examine the interaction between
the considered preys and the predator.

In Chapter 4, we investigate the interaction dynamics of one prey and two
predators. The three-dimensional Lotka-Volterra prey-predator system’s stability
has been investigated by applying the Takagi-Sugeno (T-S) impulse control model
and the Fuzzy impulse control.

Part-III deals with the stability of prey and predator system with infection.
This part consists of five chapters, namely 5, 6, 7, 8, and 9. In all these chapters, the
species are divided into two categories such as the susceptible species and the infected
species. Then the stability analysis of the predator-prey model is analyzed using the
Takagi-Sugeno (T-S) based fuzzy impulsive control. After creation of the design, the
global stability as well as the fuzzy solutions are discussed via numerical recreations

and graphical representations with suitable discussion to prove the applicability of
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the considered system.

In Chapter 5, the study is based on a predator-prey model with an infection
that affects only predator species. Predators are divided into two categories such
as the susceptible predator and the infected predator, which are feeding on prey
species. Numerical simulation provides global stability and the fuzzy solution.

Chapter 6, presents a mathematical model based on the predator-prey model
with disease infection on the prey. Prey species are divided into two categories -
susceptible and infected prey species. Here we present a disease that affects only
prey species.

In Chapter 7, an emphasis is given to study the dynamical behavior of a prey-
predator system in which disease infection is in both the prey and predator popula-
tions. Prey and Predators are divided into two categories - the susceptible and the
infected. A system of four differential equations has been proposed and analyzed.

In Chapter 8, we took into account an eco-epidemic model with two preys and
one predator, with the infectious disease infecting only the first prey population.
The relationship connecting the second prey-predator is supposed to be represented
by Lotka-Volterra’s functional response.

In Chapter 9, we develop a set of ordinary differential equations that represents
the dynamics of an ecosystem with two predators and one prey, but only the first
predator is affected by an infectious disease. The global stability and the Fuzzy
solution are carried out through numerical simulations and graphical representa-
tions with appropriate discussion for a better understanding of the dynamics of this
proposed model.

The main conclusions of the earlier chapters and the directions in which further

investigations may be carried out are indicated in Part-IV, Chapter - 10.
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Chapter 2

Stability Analysis of a T-S based
intra-specific predator-prey
competition model with Fuzzy

Impulsive Control !

2.1 Introduction

For biologists concerned with the results of competitive interactions between species,
the Lotka-Volterra model of intra-specific competition is a good place to start. The
model’s assumptions (for both species, such as carrying capacity and competition
coefficients) may be unrealistic, but they require explanations. By changing the
dynamics of one or both populations, several factors can influence the outcomes of
competitive interactions. Many researchers have built models based on the premise
that biological parameters are exactly identified, but the values of all the parame-

ters are not always known exactly due to various factors such as a lack of knowl-

!Published in Journal of Applied non-linear Dynamics, 13(2) (2024) 269-277, 269-277.
DOI:10.5890/JAND.2024.06.007
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edge, data limitations, variability in natural systems, environmental factors such
as climate, habitat quality, and resource availability. The impact of above factors
on predator and prey populations can be significant and can manifest in various
ways: Lack of knowledge and data limitations can lead to uncertainty in parame-
ter estimation, fluctuations in climate or habitat quality can affect prey abundance
and distribution, impacting predator foraging behavior and population dynamics,
environmental factors such as climate change and habitat degradation can alter
ecosystem resilience, making predator and prey populations more vulnerable to dis-
turbances and fluctuations. For dealing with these challenges, fuzzy set theory is a
useful tool |76, 77|.

In recent times, fuzzy impulsive concept has been used to analyze nonlinear
differential equations as well |78, 68|. Many systems, such as predator-prey systems
exhibit impulsive dynamical behavior, as a result of rapid changes at specific points
during developing processes. As a result, the predator-prey system’s fuzzy logic
controller (FLC) must be increased, and these impulsive changes in the predator-
prey system must be observed [79, 80, 81].

In this chapter, we have two species Lotka-Volterra predator-prey model with
imprecise biological parameters. To improve the model’s reality we analyze the
global and asymptotic stability of this model with the help of T-S model [82, 83, 84|

then presented the graphical solutions of the problem.

2.2  Model Formation

Inspired by the predator-prey relationship in Paul and Bhattarcharya [85], the two

species model considered as:
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dx
pri x(r —rigy —ex — q1 By)
(2.1)
& _ (rojx —m — qoFy)
dt—y 21 g2l

where x be the total population density of the prey, y be the predator total
population density, ¢ be the number of years, x = ¢y >0, y = yo >0 denote the
density of prey and predator at time ¢ respectively. The coefficients » >0, m >0
signifies the prey birth rate and predator death rates respectively. The coefficients
r19 >0, 197 >0 gives the interaction between the species. Here ¢y, ¢, F1 are positive
constants, and e be the intra-specific competition.

A matrix differential equation is stated as follows to analyze the system’s stabil-

ity:

&= Az + ¢(x) (2.2)

where

x(t r—qF 0 —Tr19TY — ex?
i [TO) A | o) = |
Z/(t> 0 —m — g2 Fy T21TY

2.3 T-S Fuzzy model with Impulsive effects

2.3.1 lemma

Let & = f(z(t)), here the state variable is z(t) € R", and f € C[R", R"] fulfills
the condition f(0) = 0, is a compact vector field defined in W C Rn. Using the
techniques proposed by Tanaka and Wang [86]. We can build a fuzzy model for

system (2.1) as shown below:

Control Rule i (i =1,2,...p): IF 21(t) is My , 29(t) is My ... and z,(t) is M;,
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THEN #(t) = A;x(t), where p is no. of T-S fuzzy rules, z(t), 22, ..., 2,(t) are the
premise variables, each M;; is a fuzzy set and A; C R™" is a constant matrix.
Thus, the non-linear equations can be transformed into the following linear equa-

tions. If x(t) is M; then,

1=1,2,3...u55=1,2, ...

r—qb— = 0 ) .
where A; = , i=1 to 4, where the matrices Als are

22 —m — g

generated using maximum and minimum values of z;.s; kK = 1 to 2 and z;, 2 are
related to the values of z(t)€[0,d;], y(t)€[0,da] (here z; = ex + 112y, 20 = ro1y). M,,
z(t) and A; € R**? v is the number of the IF-THEN rules, K; ; denotes the control
of the j* impulsive instant, Az, = z(7; - 75-1).

With centre-average deffuzifier , the T-S fuzzy impulsive system as a whole may

be written as:

B(t) = Y hGO) Aav); 4T,

Alz) = Z hi(z(t)Ky; t=1

where, h;(z(t)) = wi(2(t)) /305, wi2(1)), and wi(z(t)) = TTj—; Mi;(2(1).
Evidently, h;(2(t)) > 0, >0 hi(2(t)) =1,i=1,2,...,r
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2.4 Stability Analysis

Now we’ll look at the impulsive fuzzy system’s numerous stability (2.4) by consid-

ering the following theorems [83].

2.4.1 Theorem

Assume that ); is maximum eigen value of [AT+A;], (i = 1,2,3...r) . Let Ma) =
maz;{\;}, 0< §; = 7; — 71 < oo is impulsive distance [81]. If A(«) > 0 and there

exists a constant scalar ¢ > 1 and a semi-positive matrix P, such that
In(ew;) + AMa)d; <0 (2.5)
where
P =C"C w; = max ||C(I + K, ;|| (2.6)

then the system (2.4) is stable globally and asymptotically.

2.4.2 Theorem

Assume that ); is maximum eigen value of [AT+A4;], (i = 1,2,3..r) . Let Aa) =
max;{\;}, 0<0; = 7; — Tj_1 < 0o is impulsive distance. If A(a) < 0 and a constant
scalar 0< € < —\(a)

such that

In(w) —ed; <0 (2.7)

where

P=C"C,w; = max |C(I + K; ;)| (2.8)

then the system (2.4) is stable globally and exponentially.



CHAPTER 2. 21

2.5 Numerical Simulation

By using fuzzy impulsive T-S design model on (2.2), the membership functions [86]

obtained as:

z1 (Gdl + Tlgdg) — 21 Z9 dg’l“gl — 29
Li=——""——— Lo= , Ly =——, Ly = ———— and the
! (edy + r12ds) ? (edy + 712d2) ’ T91d2 ! ro1ds
matrices Ay, Ay, Az, Ay are:
T—qlEl —€d1 —dg’l"lg 0
Al = )
T91d2 —m — @B,
r—q ) —edy —doryo 0
A2 - )
0 —m — qaFy
AS _ T — Q1E1 0 ’
ro1d2 —m — q2E)
A4 _ T — Q1E1 0
0 —m — qaFy

and the Defuzzification can be represented as:

(t) = 30 Wil=(0) (A1) (29

where -

Wi(2(t)) = Li(z1(t)) * La(22(t)), Wa(2(t)) = L1(21(1)) * La(22(t)),
W3 (2(t)) = La(21(t)) * La(22(t)), Wa(2(t)) = La(21(t)) * La(22(t))
This Fuzzy model exactly represents the non-linear system (2.2) in the region

[0,0.5]x0,0.5].
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2.6 Results and discussion

In this section, the global stability of the considered intra-specific competition
predator-prey model (2.1) is discussed. Because of biological systems are com-
plicated, nonlinear, and unpredictable, fuzzy logical methods with linguistic de-
scriptions should be used to represent them. We have studied the system (2.1)
numerically using MATHEMATICA software to get better insight of the proposed
model.

Calculations were carried by taking the values of the parameters [85] at r=2.5,
m=3, r12=0.3, r9;=0.1, E1=15, e=0.2, d1=0.5, do=0.5, ¢1=0.2, ¢2=0.5 in (2.3) to get
the eigen values of [AT + A;](i = 1,2, 3...r) as explained in the theorems (2.4.1,2.4.2).
It is found that max()\;) = AM«a) = —0.50, then we have chosen diag|—0.84, —0.84]
as impulsive control matrix, such that w = || + K|| = 0.16. It is noted that the
system (2.3) is stable globally (2.4.2) when €=0.4, 6=0.5 (at those above values,
In(w) — €d; = —2.032 < 0). Further, it is noted that the predator-prey model is
unstable (2.4.1) when r=3, m=3, F1—1, e=0.005, r12=0.3, ¢:=0.2, ¢o—0.5 r9;=0.1,
¢1=0.01, ¢2=0.02, d1=0.5, d=0.5, since max(\;) = A«a) = 5.9, = In(ew) +
Aa)d; = 0.20 > 0.

The impact of the various parameters on prey-predator system (2.1) with T-S
fuzzy impulsive control model is presented in figs. 2.1 - 2.8.

The dynamical behavior of the two species population (z,y) under the influence
of intra~specific competition parameter (e) with impulsive control can be seen in fig.
2.1 at r=2.5, m=3, r19=0.3, ro;=0.1, E1=15, d;=0.5, d2=0.5, ¢;=0.2, and ¢»=0.5
[87]. This figure clearly exhibits that the population of prey decreases with an
increase in (e) whereas the predator population reduces to zero.

The dynamical pattern of prey- predator population (z,y) by varying prey max
time (d;) parameter under fuzzy impulsive control can be noted in fig. 2.2 at r=2.5,

m=3, r12=0.3, 19:=0.1, F1=15, e=0.2, dy=0.5, ¢;=0.2, and ¢2=0.5. It is observed
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from this figure that, the prey population increases and predator population becomes
stable (zero) as (d;) decreases.

The trend of two species (z,y) population with respect to predator max time
(dy) is presented in fig. 2.3 by taking r=2.5, m=3, r15=0.3, r91=0.1, F1=15, d;=0.5,
e=0.2, ¢;=0.2, ¢o=0.5. It is clear from this figure that, the prey population increases
with an increase in predator max time (ds).

The impact of interaction parameter (r12) on prey-predator system is shown in
fig. 2.4 at r=2.5, m=3, r1o=0.3, ro1=0.1, E1=15, e=0.2, d1=0.5, dx=0.5, ¢;=0.2,
q2—0.5. This figure clearly displays that decrease in the interaction of predator with
prey leads to increase in the prey population.

The effectiveness of interaction parameter (rs;) on prey-predator population
(x,y) is presented in fig. 2.5 by fixing the other parameters at r=2.5, m=3, r12=0.3,
E,=15, e=0.2, d;=0.5, d>=0.5, ¢;:=0.2, and ¢»=0.5. This figure shows that, in-
crease in the prey interaction with predator population doesn’t have any influence
on predator-prey system. This is due to the fact that, interaction level of preys over
predators is negligible.

The dynamical behavior of the prey-predator population (z,y) with prey birth
rate (r) is explained in fig. 2.6 by taking the other parameters at m=3, r1,=0.3,
ro1=0.1, F1=15, e=0.2, d;=0.5, d3=0.5, ¢;=0.2, and ¢»=0.5. It is found from this
figure that, increase in prey birth rate leads to increase in prey population.

The nature of prey-predator (x,y) population with the effect of predator’s death
rate (m) is shown in fig. 2.7 by considering the values of the other parameters at
r=2.5, r1o=0.3, r9;1=0.1, E1=15, e=0.2, d1=0.5, d2=0.5, ¢;:=0.2, and ¢,=0.5. It is
clear from this figure that, increase in the death rate of predator population leads
to increase in the prey population and decrease in the predator population.

Finally, the nature of two species (z,y) population (without impulsive control) is

presented in fig. 2.8 by fixing all the parameters obtained from T-S fuzzy model at
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T:2.5, m:3, 7’12:0.37 T21:0.1, E1:157 6:0.27 d1:0.5, d210.5, Q1:0.2, QQ:05 and
initial conditions z(0) = 5,y(0) = 5,¢ = 10. The figure clearly shows how the prey

and predator populations reaches to stability.

2.7 Conclusions

In this chapter we analyzed the stability of a two species competition model with
fuzzy impulsive control by T-S fuzzification. The main results of this study are as

follows:

e The population of prey increases with an increase in intra-specific competition

(e), whereas the predator population reduces to zero.

e The prey population increases and predator population becomes stable (zero)

as prey max time (d;) decreases.
e The prey population is directly proportional to predator max time (ds).

e Increase in the prey interaction with predator population doesn’t have any
impact on predator-prey system. This is due to the fact that, interaction level

of preys over predators is negligible.
e Effect of prey birth rate is to increase prey population.

e It has been observed that the death rate of predator population leads to in-

crease in the prey population and decrease in the predator population.
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Figure 2.1: Influence of intra-specific competition parameter (e) on prey-
predator system under impulsive control
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Figure 2.2: Influence of prey max time (d;) on prey-predator system under
impulsive control
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Figure 2.3: Influence of predator max time (dz) on prey-predator system
under impulsive control
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Figure 2.4: Influence of 15 on prey-predator system under impulsive con-
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Figure 2.5: Influence of r9; on prey-predator system under impulsive con-
trol
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Figure 2.6: Influence of birth rate of prey (r) on prey-predator system
under impulsive control
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Figure 2.7: Influence of death rate of predator (m) on prey-predator sys-
tem under impulsive control
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Figure 2.8: Plot of predator-prey system without impulsive control



Chapter 3

Stability Analysis of Prey-Predator
model with two preys and one

predator using Fuzzy Impulsive

Control !

3.1 Introduction

For a very long period, theoretical ecology was completely ignored the astounding
dynamical behaviors of three-species models. Of course, both theorists and exper-
imenters faced a significant number of new challenges as a result of the growing
number of differential equations and dimensions. Additionally, this concept has to
be examined because certain three-species communities have recently drawn a lot
of interest. Three-species systems, such as two prey, one predator [88, 89, 90, 91|,
plant, herbivore, parasite, and plant, pest, and predator, are therefore becoming

more prevalent in several disciplines of ecology (92, 93, 94].

!Published in “International Journal of Dynamics and Control”, (2024) 12:1116-1129,
DOTI:https://doi.org/10.1007/s40435-023-01189-3

29



CHAPTER 3. 30

The main focus of this chapter is to examine interaction between one predator
and two preys. To improve the model’s reality we analyze the global and asymptotic
stability [82, 95| of this model with the help of the T-S approach, then presented

the graphical solutions of the problem.

3.2 Model Formation

Our mathematical model is based on the following assumptions-

e The overall population density of the first and second preys are represented

by z; and z,.

y is the predator’s overall population density.

In the second population of prey, there is no intra-specific interaction.

Since the second prey’s growth is exponential, there is a huge supply of it when

there is no predator around.

Holling type - II functional response regulates the first prey and predator

Iinteraction.

e Iirst prey population grows logistically in the absence of any predator.

Based on the aforementioned hypotheses, the following model is proposed, which

includes a set of non-linear differential equations.

dJ]l P1[E12

2
& _ — h

dt T e a+ Aazs + 11 + 1Ty

dl’g
I ToTy — Pomoy + haxi10y (3.1)
@ . CyPrxyy

= + CoPoxay — m
dt a4+ \axs + x4 25202y 4
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where all the parameters are positive with the initial conditions xy = x5 > 0,
To = X9 >0,y =1y >0, 219, T2, Yo are the initial value of the populations. Here
r1 is intrinsic growth rate of first prey, e is intra-specific competition parameter, o
is the intrinsic growth rate of second prey, P; is the predation rate of first prey, m is
the natural death rate of predator, P, is the predation rate of second prey, C is the
conversion rate of first prey to predator, Cs is the conversion rate of second prey to
predator, a is the half-saturation constant, A is the ratio between handling time of
the predator per second prey item and handling time of the predator per first prey
item, « is the ratio between capture rate of the second prey and capture rate of the
first prey, hi, hy are the coefficients of help between two preys.

A matrix differential equation is stated as follows to analyze the system’s stabil-

ity:
&= Az + ¢(x) (3.2)
where
1:1 (t) T 0 0 —61’% - C&% + hll’ll'gy
i= | ayt) | A= 10 ry 0 |, 0(x) = —Pyxoy + hoxiway
y(t) 0 0 -m —OBEY 4 ) Pyxgy

3.3 T-S Fuzzy model with Impulsive effects

3.3.1 lemma

Let © = f(z(t)), here the state variable is z(t) € R", and f € C[R™, R"] fulfills
the condition f(0) = 0, is a compact vector field defined in W C Rn. Using the
techniques proposed by Tanaka and Wang [86]. We can build a fuzzy model for
system (2.1) as shown below:

Control Rule i (1 =1,2,...p): IF 21(t) is My , 22(t) is M;s ... and z,(t) is M;,
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THEN i(t) = A;z(t), where p is no. of T-S fuzzy rules, z(t), 22, ..., 2,(t) are the
premise variables, each M;; is a fuzzy set and A; C R™" is a constant matrix.

The non-linear equations can be transformed into the following linear equations.

If 2(t) is M; then

o(t) = Ax(t),t # 75
A(z) = Kijz(t),t =75 (3.3)

i=1,23..1r7=12.

™ — 21 —P122+h123 0 0
where A; — hozs ro —z; 0 |,i=1to4, where the matrices
C1 P2 Cozy —m

Als are generated using maximum and minimum values of z;s; k = 1 to 4 and 2,

Zo, 23, 24 are related to the values of xy(t)€|0,d1], z2(t)€]0,ds], y(t)€|0,ds], (here

Y
a+ axy + 11’
number of the IF-THEN rules, K, ; denotes the control of the j impulsive instant,

21 — exq, 29 = 23 = Tay, 24 =DPyy). M;, x(t), A; € R¥*3 ris the

A 1=, = (7 - 7j-1)

3.4 Numerical Simulation

By using fuzzy impulsive T-S design model on (3.1), the membership functions as

given in [96], obtained as
ds

21 ed; — 2 Z2 atradatd) — *2 z3
Ml —= 77 M2 —= T’ Nl — d—37 N2 — (a Q 2d3 1) ) K1 — ﬁ’
et et atradzt+dy (atrada+d7) 253

dods — 2 z Pyds — 2
K, = M7 L= —4, Ly = M, and the matrices Als are calculated
dads Pods ds
ry— 21 — Pizo + hiz3 0 0
using A; = hozs ro —zs 0 |,% = 1to 16, where the matrices
C’lPlzg 0224 —m
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Als are generated using maximum and minimum values of z;s; k = 1 to 4 and, the

Defuzzification can be represented as:
() =Y hi(2(1) (A (t)) (3.4)
i=1

here hjs are given as, h;(z(t)) = wi(2(t))/> i, wi(2(1)), and wi(z(t)) = [T}—, Mi;(2(t)),
i—1 to 16, j—1 to 4,

This Fuzzy model exactly represents the non-linear system in the region |0,5]x[0,10]x[0,10].

dl’l 9 P1$12

i — — hixx

dt T T e a+ Aaxs + 14 + T2y

dx

d_t2 = 19Xy — Paxoy + hox122y (3.5)
dy — CiPy

= + CoPyxoy — m
dt a4+ \axy + x4 25282y 4

3.5 Results and discussion

In this section, the global stability of the considered intra-specific competition
predator-prey model (3.1) is discussed. We have studied the system (3.1) numerically
using MATHEMATICA software to get better insight of the proposed model. Cal-
culations were carried by taking the values of the parameters at r; = 0.5, e = 2.5,
ro =05, C; =04, Cy, =01, m =1, hy = 0.2, hy = 0.05, A = 0.1, a = 0.15,
P =15, P, =1,d, =10, dy = 10, d3 = 10, in (3.3) to get the eigen values of
[AT+ Aj](i = 1,2,3...7) as explained in the theorems ([83]). It is found that max();)
= Ma) = 41.6, then we have chosen diag|—0.84, —0.84] as impulsive control ma-
trix, such that w = ||I + K|| = 0.01. It is noted that the system (3.3) is stable
globally when e=1.5, §;=0.1 (at those above values, (n(ew) + A(«)d; = —0.039 < 0).
Further, it is observed that the prey-predator model is unstable when r; = 2.5,
e =119 =10 =08 Cy =01, m =1, hy = 04, hy = 0.1, A = 0.2,
a=0.3, P =35P, =2 d =5, dy, =10, d3 = 10, since mazx();) =A(a) = 86.18,
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= In(ew) + AM(a)d; = 4.419 > 0 for w = 0.99, e=1.5, §,=0.1.

e |ri|ro|Pi|P2|C1|Calm| a | hi | ha | a | A|di|da|dsjmax(\;)=A(a)|ln(ew) + A(a)d;|conclusion
2.5|0.5]0.5]1.5(1.0/0.4]0.1|1.0{1.0] 0.2 {0.05]0.15(0.1|10{10{10 41.6 -0.039 stable
2.0/0.5]0.5/1.5]1.0]0.5|0.1{1.0{1.0{0.05/0.05| 0.1 |0.1{10(10|10 13.07 -2.89 stable
1.5/0.1|0.1]2.5|1.0]1.0]0.5]1.0{1.0{ 0.1 | 0.2 |0.15|0.1{10{10|10 32.56 -0.943 stable
1.0{2.5(1.0(3.5|2.0/0.8]0.1{1.0{1.0{ 0.4 | 0.1 | 0.3 |0.2|10(10|10 86.18 4.419 unstable

Table 3.1: Stability of the system at various parameters

Table 3.1 presents the stability of the system at various values of the present
study.

The impact of the various parameters on prey-predator system (3.1) with T-S
fuzzy impulsive control model is presented in figs. 3.1 - 3.9.

The impact of predation coefficient of second prey (P,) parameter on prey-
predator population (x,zs,y) under fuzzy impulsive control can be noted in fig.
3latr, =05,e=251,=05C, =04, Cy =01, m=1, hy = 0.2, hy = 0.05,
A=01 a =015 P, = 1.5, di = 10, dy = 10, d3 = 10. This figure shows
that increase in predation coefficient of second prey leads to increase in first prey
population and predator population whereas decrease in second prey population.

The change on prey-predator populations (z1,xs,y) by varying first prey max
time (d;) is shown in fig. 3.2 at r; = 0.5, e = 2.5, ro = 0.5, C; = 04, Cy = 0.1,
m =1, hy = 0.2, hy = 0.05, A = 0.1, « = 0.15, P, = 1.5, P, = 1, dy = 10,
dz = 10. This figure clearly displays that, the second prey population increases as
dy decreases.

The dynamical change on prey-predator populations (z1, z2,y) by varying second
prey max time (dy) on prey-predator system is shown in fig. 3.3 at 1 = 0.5, e = 2.5,
ry = 0.5, C; =04, Cy =01, m =1, hy = 0.2, hy = 0.05, A = 0.1, a = 0.15,
P, =15PFP =1, d, = 10, d3 = 10. This figure shows that, the second prey and

predator population decreases as dy increases.
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The nature on prey-predator populations (xi,z3,y) by varying predator max
time (d3) is shown in fig. 3.4 at r = 0.5, e = 2.5, ro = 0.5, C} = 0.4, Cy = 0.1,
m =1, hy = 0.2, hy = 0.05, A = 0.1, a = 0.15, P, = 1.5, = 1, d; = 10,
dy = 10. Tt is observed from this figure that, as ds decreases, the first and second
prey population decreases whereas predator population increases.

The effect of coefficient of help between prey (hi) on prey-predator system is
shown in fig. 3.5 at ry = 0.5, e = 2.5, 1, = 05, C; =04, C; = 0.1, m = 1,
hy =0.05, A =0.1, « = 0.15, P, = 1.5, = 1, dy = 10, dy = 10, d3 = 10. This
figure clearly displays that decrease in h; leads to decrease in first prey population.

The effectiveness by varying predation coefficient of first prey (P;) parameter
on prey- predator population (x1, z2,y) under fuzzy impulsive control can be noted
in fig. 3.6 at r; = 0.5, e =25, r, =05, C; =04, Cy =01, m =1, hy = 0.2,
hy =0.05, A=0.1, « =0.15, P, =1, dy = 10, dy = 10, d3 = 10. This figure clearly
displays that increase in predation coefficient of first prey leads to increase in first
prey population.

The effect of intra-specific competition (e) on prey-predator system is shown in
fig. 3.7at ry =05, 7o = 0.5, C; =04, Cy =01, m =1, hy = 0.2, hy = 0.05,
A=0.1, a=015 P =15, =1, dy = 10, dy = 10, d3 = 10. This figure clearly
displays that decrease in intra-specific competition between prey-predator leads to
increase in second prey population.

The effect of intrinsic growth rate of second prey (ry) on prey-predator system
is shown in fig. 3.8 at r; = 0.5, e = 2.5, C; =04, Cy, =0.1, m =1, hy = 0.2,
he = 0.05, A = 0.1, « = 0.15, P, = 1.5,P, = 1, d; = 10, dy = 10, d3 = 10. This
figure shows that an increase in ro leads to increase in the second prey population.

Finally, the nature of three species (21, 2, y) population (without impulsive con-
trol) is presented in fig. 3.9 by fixing all the parameters obtained from T-S fuzzy
model at 1y = 0.5, e =257 =05,C; =04, Cy=0.1,m =1, hy = 0.2, ho = 0.05,
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A=0.1,a=0.15, P, =15, =1, dy, = 10, ds = 10, d3 = 10, and initial conditions
x1(0) = 5,29(0) = 10,y(0) = 10, and t = 10. The figure clearly shows how the prey

and predator populations reaches to stability.

3.6 Conclusions

In this chapter, we have constructed a mathematical model of two prey one predator

population. The main results of this study are as follows:

e The effect of intra-species competition is to decrease the rate of population

growth as population density increases.
e An increase in the prey growth rate causes a rise in the prey population.

e Predator population grows as predator maximum time decreases, but preys

population decreases.

e The second prey max time (dy) is inversely proportional to the second prey

and predator population.

e Growth in the predation of second prey, leads to growth in the population of

first prey and reduction in the population of second prey.

e Aspredator max time (d3) rises, the first prey population rises and the predator

population declines.

e Enhance in the help between two preys leads to increase in the population of

first prey.

e Rise in the predation of first prey, leads to rise in the population of first prey.
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Chapter 4

Population Dynamic study of
interaction between two Predators

and one Prey 1

4.1 Introduction

In recent years, the interest in fuzzy control has grown significantly. This has been
largely stimulated by the fuzzy control has had in its many applications. It has
been made known that numerous fundamental concerns still need to be resolved
despite the apparent achievement. The validity and application of any control design
approach depend on a number of factors, including stability analysis, systematic
design, and performance comparison [97, 98|.

In the previous chapter, we have with two preys and one predator model. In
this chapter, we take into Lotka-Volterra predator-prey model with one prey and
two predators. We examine the global and asymptotic stability to strengthen the
reality of the model as given in [82, 95| by means of the T-S model, then provided

the graphical representations for the problem by examination. The stability of the

'Published in “Physica Scripta”, 99 (2024) 025023, DOI:10.1088/1402-4896 /ad1dd2

46
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Lotka-Volterra predator-prey system with fuzzy impulse control has not yet been
extensively studied in any literature. Therefore, with the help of fuzzy impulse
control and the T-S mathematical model, the stability of the prey-predator system
is studied [99, 100, 101].

4.2 Model Formulation

These presumptions serve as the foundation for our mathematical model.
e The total population density of the prey is indicated by .
e Let the first predator overall population density is denoted by ;.
e The second predator overall population density is denoted by y».

Based on the above considerations, we propose the following model using the system

of non-linear differential equations.

dov o Pz Py

— =rr —exr” — —

dt ap+x ag+x
dy, . CiPuyiz CrPuyjye
— = - —miy (4.1)
dt ag+x a1 +x
@ _ Cy Py _ CoPyy1ys
dt ag+x as +x

— aY2

where all the variables (r, e, Pi, P», C1, Cy, my, ma, ag, a1, az) > 0 and x,
Y19, Y20 are initial populations with * = xzo > 0, y1 = y19 > 0, Y2 = Yoo > 0.
Here, r is the internal production growth rate of prey, e represents the intra-species
competition, first predator’s predation rate is P;, second predator’s predation rate
is P», (' is the first predator conversion rate after eating prey, Cs is the second
predator conversion rate after eating prey, first predator’s mortality rate is my,
second predator’s mortality rate is mso, and ag, a;, and ay are the half-saturation

constants.
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The following describes a matrix differential equation, to analyze the system’s

stability:
& = Az + ¢(2) (4.2)
where
" S —ext - B - B
i~ )| A= [0 =m0 |, e@) = | Glwmr_ Gl
o oo e — G

4.3 Fuzzy Takagi-Sugeno approach with impacts of
impulse

The non-linear equations can be transformed into the following linear equation as
explained in the earlier (chapter-2).

If x(t) is M; then

(t) = Aix(t), t # 75 (4.3)
A(z) = Kjjx(t), t =75 (4.4)
i=1,2,3.77=1,2,.. (4.5)
r—21 — 29— 23 0 0
where A; = C2o —Cizg—my; 0 |,7=1to 31, where the ma-
Cozs —Cyzs —Mma

trices Als are generated using maximum and minimum values of z;s; Kk = 1 to 5

and 2y, 29, 23, 24, 25 are related to the values of z(t)€(0,d;], y1(t)€[0,ds], y2(t)€[0,ds]

. - Py, o Py o Prys o Pays
(here z; = ex, 29 = , 23 = y 24 = y 25 = )
ag+x agp+x a; +x as +x
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€ R*3, r is the number of the IF-THEN rules, K;; denotes the control of the ;"

impulse instant, A(IB) ]t:Tj - x(Tj - ijl)

4.4 Numerical Simulations

The membership functions for the fuzzy impulse (4.2) Takagi-Sugeno design model

were produced as follows [96]:

d Pidy 29
21 €ay — 21 Z2 (ap+d1) Z3
M1_6d17M2_ ed1 7N1_ Pids 7N2_ Pids 7K1_ Pads
ao-+dy (ao+d1) ao+dy
Pods Pids Pods
Ko — ao+dy 3 A _ ai1+di “4 O, — Z5 0, — az+dy 5
2= Pyds » M1 Tpdg v M2 T Pids » Y1 Thdg 0 2 T DPyds
aop+d1 a1+dp ai1+d; as+dy as+d
and the matrices A} s are calculated using
rT— 21 — 29— 23 0 0
Ai — 0122 _0124 — ml 0 9 1= 1 tO 315
0223 —0225 —T19

where the matrices Als are generated using maximum and minimum values of

2.5, k = 1 to 5 and, the Defuzzification is characterized by:
B(t) =D hi(z(0)(Aga(t) (4.6)
k=1

here s are given as, h;(2(t)) = w;(2(t))/> -, wi(2(t)), and w;(2(t)) = [T}=, Mi;(2(1)),
i=1to 31, j=1to 5
This Fuzzy model is a suitable representation of the non-linear system in the

region [0,5]x|0,10]x([0,10].
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dr o Pupx Paypx

— =rrx—ex’ — —

dt ap+x ag+x
dyr CiPiyiz CrPiyys
—_— = — — M1y (47)
dt ap + a +x
dys - CoPoyypr CaPoyiyn
o - — M2y

dt  ap+z Qs + T

4.5 Results and discussion

This section describes the global stability of the considered intra-species preda-
tor-prey competition model (4.2). Given that they are complex, nonlinear, and
unpredictable, natural systems should be characterized using a fuzzy logical tech-
nique combined with communication description. We have studied the system (4.1)
numerically using MATHEMATICA software to get better insight of the proposed
model.

The calculations were performed by taking the parameter values, at r = 2.0, e =
0.05, P, =1.0, C; = 2.0, my = 1.0, my = 0.7, a9 = 10, P, = 2.0, dy = 10, a; = 10,
as = 20, dy = 10, d3 = 10, Cy = 1.5, in (4.3) to find the eigen values of [AT + A;](i =
1,2,3...r) as stated in the theorems ([83]). We discover that max(\;)=\(a) = 4.0,
then we decided that diag[—0.84, —0.84] as impulse control matrix, such that w =
||I+K]|| = 0.16. The system is acknowledged that (4.3) is stable globally when e=2.8,
9;=0.12 (at those above values, In(ew) + A\(a)d; = —0.3229 < 0). Additionally, it is
noted that the prey-predator model is unstable when r = 7.0, e = 3.0, P, = 2.0,
P, =3.0,C1 =6.0,Cy =1.0,m; = 1.0, my = 1.5, a9 = 15 a; = 10,a2 = 5.0, d; = 10,
dy = 10, d3 = 10, since maz () =A(a) = 14.0, In(ew) + A(«)d; = 0.877 > 0 for
w=0.16, e=2.8, 6;=—0.12.

The stability of the system for various study-related parameters is shown in Table
4.1

Figures 4.1 - 4.10 show how different factors affect prey-predator system 4.1 with
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r| e |P|P2|C1|Colmiima| ag | a1 | az | dy | da | d3 jmax(Ag)=A(a)|ln(ew) + A(a)d;|conclusion
2.0/ 0.05 [1.0]|2.0{2.0/1.5]1.0]0.7]|10.0{10.0{20.0{10.0{10.0/10.0 4.0 -0.3229 stable
3.3/1 0.05(1.0(2.0{2.0{1.5{1.0(0.7|10.0|10.0|20.0{10.0{10.0{10.0 6.6 -0.0109 stable
3.0/ 0.5 |[1.0{1.0{2.0/1.5]1.5(0.5/8.0|10.0| 5.0 {10.0{10.0{10.0 6.0 -0.0829 stable
7.0l 3.0 |2.0/3.0/6.0{1.0{1.0|1.5|15.0{10.0{ 5.0 {10.0{10.0{10.0 14.0 0.877 unstable

Table 4.1: System stability under diverse conditions

T-S Fuzzy impulse Control Model.

Fig 4.1 depicts how intra-species competition (e) affects the prey-predator pop-
ulation at r = 2.0, P, = 1.0, P, = 2.0, dy = 10, ¢} = 2.0, C5 = 1.5, m; = 1.0,
me = 0.7, ag = 10, a; = 10, ay = 20, d; = 10, d3 = 10. The effect of intra-species
competition is to decrease the rate of population growth as population density in-
creases.

The effect of changing the prey maximum time (d;) on the prey-predator pop-
ulation is depicted in fig. 4.2 at » = 2.0, e = 0.05, P, = 1.0, dy = 10, P, = 2.0,
Cy =20, Cy =15, m =1.0, my =0.7, ag = 10, a; = 10, ay = 20, d3 = 10. This
figure clearly shows that, first predator population increases as d; increases because
there is more food for predators.

Fig 4.3 illustrates the dynamic shift on the prey-predator population caused by
adjusting the first predator maximum time (ds) in the prey-predator system r = 2.0,
e =0.05 P =10, P, =20, d; =10, C; = 2.0, Cy = 1.5, m;y = 1.0, mg = 0.7,
ag = 10, a; = 10, ay = 20, d; = 10. This graph demonstrates how the predator
population rises when ds falls.

The performance of prey-predator population (x,y, y2) by varying second preda-
tor max time (d3) is shown in fig. 4.4 at r = 2.0, e = 0.05, P, = 1.0, dy = 10,
P, =20,C, =20, Cy, =15 my = 1.0, mg = 0.7, ag = 10, a; = 10, ay = 20,
dy; = 10. This graph shows that the predator population increases as d3 declines.

The changes on prey-predator system with varying half saturation constant (ao)

is given in fig. 4.5 at r = 2.0, e = 0.05, P, = 1.0, dy = 10, d3 = 10, P, = 2.0,
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Cy =20,Cy =15 m; =10, mg = 0.7, a; = 10, as = 20, d; = 10. This figure
clearly displays that decrease in half saturation constant (ag) indicate that predators
can achieve half of their maximum consumption rate at a lower prey density, which
means they are more efficient in utilizing the preys and hence predator population
rises.

The consequence of half saturation constant (a;) on prey-predator population is
shown in fig. 4.6 at r = 2.0, e = 0.05, P, = 1.0, P, = 2.0, C}; = 2.0, C5y = 1.5,
my = 1.0, mo = 0.7, ag = 10, ay = 20, d; = 10, dy = 10, d3 = 10. This figure clearly
displays that the drop in half saturation constant (a1) leads to increase in predator
population.

The impact of half saturation constant (a2) on prey-predator population is given
in fig. 4.7 at r = 2.0, e = 0.05, P, = 1.0, dy = 10, P, = 2.0, C} = 2.0, Cy = 1.5,
my = 1.0, mg = 0.7, ag = 10, a; = 10, d; = 10, d3 = 10. This figure clearly
exhibit that decrease in half saturation constant (az) leads to increase in predator
population.

The impact of mortality rate of first predator (m;) on prey-predator population
is shown in fig. 4.8 at r = 2.0, e = 0.05, P, = 1.0, dy = 10, d3 = 10, P, = 2.0,
Cy = 1.5, my = 0.7, ap = 10, C} = 2.0, a; = 10, as = 20, d; = 10. This figure
clearly displays that decrease in mortality rate of first predator causes rise in first
predator population.

The impact of mortality rate of second predator (msy) on prey-predator popula-
tion is shown in fig. 4.9 at r = 2.0, e = 0.05, P, = 1.0, dy = 10, P, = 2.0, C; = 2.0,
Cy =1.5, my = 1.0, ag = 10, a; = 10, a; = 20, d; = 10, d3 = 10. This figure clearly
displays that decrease in mortality rate of second predator causes an increase in
predator population.

Fig 4.10 illustrates how changing the first predator’s (P;) predation coefficient

affected the population of prey and predators in the fuzzy impulse control at r = 2.0,
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e =0.05, P, =20, C; =20, Cy =15 my =10, mg = 0.7, ag = 10 a; = 10,
as = 20, d; = 10, dy = 10, d3 = 10. This graph clearly displays that rise in predation
coefficient of first predator causes to increase in first predator population.

By setting all of the variables from the Takagi-Sugeno fuzzy model, the nature
of three species’ populations (without impulse control) is finally depicted in fig 4.11
at r =20,e=0.05 P, =10,Cy, =15, P, =20, C; =20, m =1.0, mg = 0.7,
ap = 10, ag = 20, d; = 10, ay = 10, dy = 10, d3 = 10 when z(0) = 5,y,(0) =
10,y2(0) = 10, and ¢ = 10. This graph clearly exhibit how populations of prey and

predators achieve to their stability.

4.6 Conclusions

In this study, a prey-predator population model is developed with two predator and

one prey population. The main findings of this study are as follows:
e The population of predators increases as intra-specific competition declines.

e Predators become less in number as prey first predator max time (dy) and

second predator max time (d3) increase.

e The half-saturation constants are inversely proportional to predators popula-

tion.

e Decrease in mortality rate causes an increase in predator population.
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Chapter 5

Stability Analysis of a Predator-Prey

model with infection in Predator

Population !

5.1 Introduction

In this chapter, we considered the predator-prey model with eco-epidemiological
implications among three species: prey, susceptible predator, and infected predator,

in which disease solely affects the predator population [39, 59].

5.2 Model Formation
Our mathematical model is based on the following assumptions:

e When there is no predator, the prey population expands operational with a
per capita constant growth rate r and a carrying capacity of the environment

¢ = r/e, where e represents the prey’s intra-specific competition. Thus

!Published in “Network Biology”, 14(3): 215-227, (2024)
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d
I—m*(l—g
c

== ) (5.1)

where z(t) denotes the prey population at time.

e In presence of injurious infection, the whole predator population y(t) is divided
into two classes, among them one is the susceptible predator y,(t) and the other
is the infected predator y;(¢). As a result, the overall predator population

density at time ¢ is -

y(t) = ys(t) + vi(t) (5.2)

e We believe that the disease is solely affecting the predator species, and that
the prey population is unaltered. The population of diseased predators does

not recover or develop immune.

e For the susceptible predator and the infected predator, the predation rate or
searching efficiency constants are P; and P,, respectively, because the sus-
ceptible predator is more effective than the infected predator; therefore, we
assume that the prey is eaten by the susceptible predator based on the basic
mass action occurrence. According to the Holling type - II functional response,
the diseased predator eats the prey. We assume that the susceptible preda-
tor has no handling time and the infected predator has a non-zero handling
time, which obviously depicts a better ecological situation than assuming both

predators have the same predation rate.

e We presume that the disease spreading is governed by the basic rule of mass
action. It states that the rate of infection is proportional to both the number
of susceptible individuals (S) and the number of infected individuals (I) in the

population. i.e. Rate of infection (3) o< S-1

e Let D is the predator’s natural death rate, B is the predator’s birth rate, and
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m is the predator’s disease-related mortality rate.

We propose the following model utilizing a set of nonlinear differential equations

based on the above assumptions:

dx Pyxy;

kG ex? — Piwy, — aii

dys

o = NPiys = Byiys + (B —D)ys (5.3)
dy; JaPoy;

i BYiys + e

where g, ysg, ¥io are the initial populations and all the parameters r, e, Py, P,
m, [3, are positive and (B — D) can be either sign with © = xg > 0, ys = yso > 0,
Yi = Yip > 0, a is the half saturation constant, fi, fo are the food conversion rates
such that 0 < f1, fo < 1, [ is the rate of transmission of a force of infection.

A matrix differential equation is stated as follows to analyze the system’s stabil-

ity:
T :AZL’+§Z5(23) (5'4)
where
:(t) 0 0 -m Byiy, + LDz

5.3 T-S Fuzzy model with Impulsive effects

The non-linear equations can be transformed into the following linear equation as
explained in earlier (chapter-2).

If x(t) is M; then,
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A(z) = Kijjx(t), t =5, (5.5)

i=1,2,3..rj=12,..

where
T— 2 — 29 — 23 0 0
A, = f129 —z+(B—-D) 0 |,i=1¢%o16, where
faz3 24 —m

the matrices Als are generated using maximum and minimum values of z;.s; k=1 to

4 and zy, 29, 23, 24 are related to the values of x(t)€|0,d;], ys(t)€[0,dz|, y;i(t)€[0,ds]
Py
a+x
ber of the IF-THEN rules, K;; denotes the control of the j™ impulsive instant,

(here z; = ex, 20 = Piys, 23 = , 24=Py;). M, x(t), A; € R**3, r is the num-

A(2) |t=r;=x(T5-Tj-1)

5.4 Numerical Simulation

By using fuzzy impulsive T-S design model on (5.4), the membership functions

obtained as

21 Gdl — 21 Z9 PldQ — 29 z3
My =—"— My=—"""- N, = — S e S N O
1 6d17 2 €d1 ) 1 P1d2> 2 P1d2 ) 1 f_iili? j
Pyds
i T R3 z ds — z
Ky = L, P = —4, P, = M and the matrices Als are calculated using
Loty Bds Bds ‘
a+dy
T— 2] — 29 — 23 0 0
A = f122 —2+(B—-D) 0 i = 1 to 16, where the matrices
f2Z3 Z4 —m

Als are generated using maximum and minimum values of z;s; k=1 to 4 and, the

Defuzzification can be represented as:
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r

() = Y h(z(0)(Aix(t)) (5.6)

i=1
here hjs are given as, h;(z(t)) = wi(2(t))/ > i, wi(2(1)), and wi(z(t)) = [T}—, My (2(1)),
i=1 to 16, j=1 to 4,

This Fuzzy model is a suitable representation of the non-linear system (5.4) in

the region [0,10]x]0,10]x[0,10]

5.5 Results and discussion

In this section, the global stability of the the considered intra-specific competition
predator-prey model (5.4) is discussed. Because of biological systems are compli-
cated, nonlinear, and unpredictable, fuzzy logical methods with linguistic descrip-
tions should be used to represent them. We have studied the system (5.3) numeri-
cally using MATHEMATICA software to get better insight of the proposed model.

Calculations were carried by taking the values of the parameters at r=0.5,
P=0.3125, P,=0.25, a=0.5, f1=0.3125, f,=0.1875, (B—D)=0.3125, 5=0.25, m=0.125,
e=0.0005, d;=10, dy=10, d3=10 in (5.5) to get the eigen values of [AT + A;](i =
1,2,3...r) as explained in the theorems (|83]). It is found that max(\;) = A(a) = 0.87
then we have chosen diag[—0.84,—0.84] as impulsive control matrix, such that
w = ||I + K|| = 0.16. Tt is noted that the system (5.5) is stable globally when
e=1.5, §;=0.02 (at those above values, In(ew) 4+ A(a)d; = —1.41 < 0). Further, it
is noted that the predator-prey model is unstable when r—=2.5, P,=0.25, P,—0.25,
a=0.25, f1=1.75, f»=2.27, (B — D)=6, $=0.5, m=0.3, e=15, d1=25, dy=25, d3=25,
since max(X\;)=\a) = 73.74, = In(ew) + A(a)d; = 0.0478 > 0.

Table 5.1 presents the stability of the system at various values of the present
study.

The impact of the various parameters on prey-predator system (5.3) with T-S
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r| PL | Pl a| fi fa | B|(B=D) m e |di|da|ds|max(\;)| In(ew) |conclusion
=Aa) [+A(a)d;
0.5]0.3125(0.25| 0.5 |0.3125(0.1875|0.25| 0.3125 [0.125|0.0005({10{10{10[ 0.87 -1.41 stable
0.1] 0.5 [0.5]0.5] 0.2 0.2 (0.5 0.45 0.2 25 |30130{30| 0.95 -1.408 stable
3.8 0.5 2 103|125 | 1.5 |0.15 2 0.3 3 120]20[20] 50.34 |-0.4202| stable
2.5 0.25 |0.25/0.25| 1.75 | 2.27 | 0.5 6 0.3 15 |2525|25| 73.74 | 0.0478 | unstable

Table 5.1: Stability of the system at various parameters

fuzzy impulsive control model is presented in figs. 5.1 - 5.10.

The effect of infection parameter () on prey-predator system is shown in fig.
5.1 at r=0.5, P,=0.3125, P,=0.25, a=0.5, f;=0.3125, f»=0.1875, (B — D)=0.3125,
m=0.125, e=0.0005, d1=10, d,=10, d3=10. This graph makes it abundantly evident
that as infection rates rise, the population of susceptible predator’s decrease.

The influence of disease mortality (m) on prey-predator system is shown in fig.
5.2 at r=0.5, P,=0.3125, P,=0.25, a=0.5, f,=0.3125, f,=0.1875, § = 0.25, (B —
D)=0.3125, e=0.0005, d;=10, ds=10, d3=10. This figure clearly exhibits that an
increase in disease mortality leads to decrease in susceptible predator population
(which decreases slowly) whereas the infected predator population decreases faster.

The consequences of intra-specific competition (e) on prey-predator system is
shown in fig. 5.3 at r=0.5, P,=0.3125, P,=0.25, a=0.5, f1=0.3125, f,=0.1875, g =
0.25, (B — D)=0.3125, m=0.125, d;=10, ds=10, d3=10. This graph demonstrates
how less intra-specific competition between prey and predator results in a rise in the
population of prey.

The change on prey-predator system with growth rate of prey (r) is shown in fig.
5.4 at P;=0.3125, P,=0.25, a=0.5, f1=0.3125, f,=0.1875, 5 = 0.25, (B—D)=0.3125,
m=0.125, e=0.0005, d;=10, ds=10, d3=10. This figure clearly exhibits that increase
in growth rate of prey leads to increase in the prey population and the population
of the predator becomes stable.

The outcome with varying predation rate of susceptible predator (P;) on prey-

predator system is shown in fig. 5.5 at r=0.5, P,=0.25, a=0.5, f1=0.3125, fo=0.1875,
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g = 0.25, (B — D)=0.3125, m=0.125, e=0.0005, d;=10, d2=10, d3=10. This graph
demonstrates unambiguously how an increase in a predator’s predation rate causes
a drop in the prey’s population.

The impact of predation rate of infected predator (P,) on prey-predator system
is shown in fig. 5.6 at r=0.5, P;=0.3125, a=0.5, f1=0.3125, f,=0.1875, = 0.25,
(B — D)=0.3125, m=0.125, e=0.0005, d;=10, ds=10, d3=10. This graph illustrates
clearly how an infected predator’s increased predation rate causes a drop in the
number of preys.

The dynamical change on prey- predator population (z,ys,y;) by varying prey
max time (d;) parameter under fuzzy impulsive control can be noted in fig. 5.7
at r=0.5, P;=0.3125, P,=0.25, a=0.5, f;=0.3125, f,=0.1875, 3 = 0.25, (B —
D)=0.3125, m=0.125, e = 0.0005, dy=10, d3=10. It is noticed from this figure
that, the prey population decreases as d; decreases.

The effectiveness by varying susceptible predator max time (dz) parameter of
prey- predator population (z,ys,y;) under fuzzy impulsive control can be noted in
fig. 5.8 at r=0.5, P,=0.3125, P,=0.25, a=0.5, f1=0.3125, f,=0.1875, § = 0.25,
(B — D)=0.3125, m=0.125, ¢=0.0005, d;=10, d3=10. It is noted from this figure
that, the prey population increases as dy decreases.

The vital pattern of prey- predator population (z,vys,y;) by varying infected
predator max time (d3) parameter under fuzzy impulsive control can be noted in
fig. 5.9 at r=0.5, P;=0.3125, P,=0.25, a=0.5, f1=0.3125, f,=0.1875, § = 0.25, (B—
D)=0.3125, m=0.125, e=0.0005, d;—=10, do—=10. It is observed from this figure that,
the prey population increases and predator population decreases with an increase
in ds.

Finally, the nature of two species (z,ys,y;) population (without impulsive con-
trol) is presented in fig. 5.10 by fixing all the parameters obtained from T-S fuzzy
model at r=0.5, P;=0.3125, P,=0.25, a=0.5, f1=0.3125, f, =0.1875, § = 0.25,
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(B — D)=0.3125, m=0.125, e=0.0005, d;—10, dy—10, d5—10 and initial conditions
x(0) = 10,y5(0) = 5,4;(0) = 5,t = 5. The figure clearly shows how the prey- preda-

tor populations reaches to stability whereas infected predator becomes unstable.

5.6 Conclusions

In this chapter we present stability analysis of a three species competition model
with fuzzy impulsive control by T-S model, in which disease infection is in predator.

The main results of this study are as follows:

e We establish a predator-prey model in which predator population is infected.

e Less intra-specific competition between prey and predator results in a rise in

the population of prey because of the infection in predators.
e A rise in the prey population results from an increase in the prey growth rate.

e The population of healthy predators decreases as the rate of disease transmis-
sion from diseased to susceptible predators rises because more predators will

contract the disease.
e As the maximum period for prey diminishes, the prey population decreases.

e Because predators will have less time for predation as the maximum period

for susceptible predators gets shorter, the number of prey rises.

e While the population of prey increases as the maximum time for an infected
predator increases, the population of susceptible predators decreases because

more predators will contract the infection.
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Figure 5.1: Effect of infection transmission rate (/3) on prey-predator system under

impulsive control
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Figure 5.2: Effect of disease mortality (m) on prey-predator system under impulsive
control.
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Chapter 6

A Takagi-Sugeno based study of

population dynamics with infected

prey :

6.1 Introduction

In this study, we describe the prey-predator model proposed by Venturino [102] to
investigate the species’ existence. Consider the simple example where the predator
mostly consumes the ill prey for this purpose. We used an eco-epidemiological
system with three species, susceptible prey, diseased prey and predator. We explore
the scenario in which the predator primarily feeds ill prey [103]. Because of the
illness, the prey becomes weaker and more vulnerable to predators. The T-S model

and stability theorems [83, 77| are used to describe the local stability analysis.

6.2 Model Construction

The following assumptions guide our mathematical model:

!Communicated in “Journal of Applied Mathematics and Computing”
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e 1 represents the total population density of the prey.
e y represents the total population density of predators.

e In the absence of illness, the prey population develops logistically with a car-
rying capacity of ¢ =~ (¢>0) and an intrinsic growth rate of (> 0). Thus we
have -

dx x
— =rz(l — -
dt ( c)

e When an infection occurs, we assume that all preys have two classes of x; one

is the susceptible (z;), and the other is the infected prey (z;). Therefore, the

total population density of prey at any given time (t) is x(t) = xs(t) + x;(t).

e We believe that the disease only affects prey. Many prey species do not recover
or develop immunity. Suppose the condition is simply as large as Sz x;, where

B > 0 is called the coefficient of transmission.

e The costs of predation or continued pursuit of the injured and infected are
P, and P, respectively. Predators catch prey and get prey disease because

victims are more vulnerable than prey, making it easier for them to hunt, i.e.

P, > P.

e We hypothesized that prey animals preyed on vulnerable animals based on the
simple nature of group work and injured animals based on Holling’s type - II

response task.

Based on the above considerations, we propose the following model using the

system of non-linear differential equations.
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4, =rz, — ex? — Bryr; — Ay
dt B s a4 x
d; Pyryy
= Bx,x; — —myx; 6.1
dt 5 a—+ x; ! ( )

dy Crxsy | Comyy
d_t - a+ + a—+ x; B
where x5, 0, Yo are the initial populations and all parameters (r, g, e, Cy, Cs,
a, Pi, Py, my, my) >0 with x5 =250 >0, 2; = 20 > 0, y = 30 > 0.

Here r is the internal production growth rate of prey, [ is the rate at which the
disease spreads from an infected person to a susceptible person, e is the intra-species
competition, P, is the predation rate of vulnerable prey, P, is the Predation level
of infected prey, m; is the mortality rate of infected victims, my is the predator
mortality, C is the predator conversion rate after eating vulnerable prey, C5 is
the predator conversion rate after eating infected prey, and a is the half-saturation
constant.

To analyze the system’s stability, the matrix differential equation is written as

& = Az + ¢(z) (6.2)
here
“{t) ro0 o —ea? — Py — Bz
= @) [ A= |0 =m0 |, 02) = Brsx; — if;y
w0 G+ G
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6.3 Fuzzy Takagi-Sugeno approach with impacts of
impulse

The non-linear equations can be transformed into the following linear equation as
explained in the earlier (chapter-2).

If z(t) is M; then

i(t) = Ax(t),t # 7 (6.3)
A(x) = k,'jx(t),t =Tj,1= 1,2,3..r;5=1,2, ... (6.4)
T’—Zl—ZQ—Plzg 0 0
where, A; = 29 —my— Pyzy 0 |, 7 =1to 16, where the
Cizs Chzy —ma

matrices As are generated using maximum and minimum values of z.s; k = 1 to

4 and zy, 29, 23, 24 are related to the values of x,(t)€(0,dy], z;(t)€[0,ds], y(t)€[0,ds]

oy
B+az,, " B+u
number of the [F-THEN rules, k; ; denotes the control of the j impulsive instant,

A(z) i=r; = 215 — Tj-1)).

). My, x(t), A; € R*?, and r is the

(here zy=exy, zo=rx;, 23 = 24

6.4 Numerical Simulation

Because most biological systems are complicated, they should be expressed by ap-
plying a fuzzy logical framework that includes expressive reports. The suggested
impulsive Takagi-Sugeno system looks at predator - prey system with functional
reactions and impulsive impacts. By applying fuzzy impulsive Takagi-Sugeno model
on (6.2), the membership functions [85] Mj;s and the matrices Ajs, are calculated

using
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T’—Zl—Zg—Pl,Zg 0 0
A; = 2 —my — Pyzy 0 |,%=1to 16, where the matrices
Clz3 Corzy —my

Als are generated using maximum and minimum values of 2, s; k = 1 to 4. Therefore,

Deffuzification is given as

B(t) =) hal=()) (A (1)) (6.5)

Ai=1
here hjs are given as, hi(z(t)) = wi(2(t))/> i, wi(2(1)), and wi(z(t)) = [[}=, Mi;(2(2)),
i =1to0 16, j = 1 to 4, where M;;s are membership functions.

This Fuzzy model is a perfect representation of the non-linear system in |0,10]x|0,10]x]0,10]

d.’]js 2 ﬁ Plxsy
=TTy — eT; — PTsx; —
dt a+ x4
dl’i Pszy
g Pt = 2 + 2 (6.6)
dy Ciasy Cozy
dt m2y+a+xs+a+xi

6.5 Results and discussion

This section describes the global stability of the considered intra-species preda-
tor—prey competition model (6.2). We have studied the system (6.1) numerically
using MATHEMATICA software to get better insight of the proposed model.

It is calculated by taking parameter values at r=0.8, 5=0.12, C1=50, C3,=40,
mi=0.91, me=2, P,=0.03, Po=0.5, e=0.0005, a=2, dy=10, dy=10, d3=10 in (6.3)
to obtain the eigen values of [AT + A;],(i = 1,2,3...r) as discussed in ([83]). It
is evident that maxz(\)=A(a) = 51.4252, then we have chosen diag[—0.84, —0.84]
as the matrix of impulsive control in such a way that w = ||/ + K|| = 0.16. It is
marked that the system (6.3) is globally-stable at e = 1.5, 6 = 0.02 (at those above

values, In(ew) + A(a)d; = —0.407 < 0). Further, it is noted that the prey-predator
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model is unstable when r=1.5, 5=0.5, C1=60, Co=65, m;=0.5, mo—2, P;—0.03,
P,=0.5, e=0.015, a=2, d,=10, dy=10, d3=10. Since maz(\;)=A(a) = 72.18, =
In(ew) + A(a)d; = 0.0166 > 0.

r| B |C1|Ca|my |ma| Py |P2| e |a|dy|daldsimax();)| In(ew) |conclusion
=Xa) [+A(a)d;
0.8]0.12{50(40|0.91| 2 |0.03]0.5/0.0005|2{10{10{10{51.4252| -0.407 stable
1/0.1(10|20(1.5| 1 |0.01|0.2| 0.05 |2|10{10/10] 16.8 -1.091 stable
1.2/0.8130|30] 1 (1.5/0.1|0.1 0.15 |2|10|10{10] 34.3 -0.74 stable
1.5{0.5|60(65]| 0.5 | 2 {0.03|0.5| 0.015 |2|10{10{10{ 72.18 | 0.166 | unstable

Table 6.1: Stability of the system at various parameters

Table 6.1 shows the stability of the system at different rates in this study.

The effects of various parameters of the system 6.1 using the T-S fuzzy impulsive
control model are shown in figs. 6.1 - 6.11.

The influence of () on prey - predator system is presented in fig. 6.1 at 5=0.12,
C1=50, Cy=40, m;=0.91, my=2, P,=0.03, P,=0.5, e=0.0005, a=2, d1=10, dy=10,
d3=10. This figure exhibited that an enhance in the growth rate of prey leads to
enhance in the population of prey because more preys will grow.

The consequences of transmission rate of disease from infected to susceptible ()
on prey - predator system is presented in fig. 6.2 at r=0.8, C1=>50, C5=40, m;=0.91,

=2, P,=0.03, P,=0.5, e=0.0005, a=2, d1=10, d>=10, d3=10. It is observed from
this figure that healthy prey population decreases with an increase in (/3) because
more preys will get infected.

The change in prey-predator population (x,,x;,y) as a function of maximum
time change of vulnerable prey (d;) is shown in the fig. 6.3 at r=0.8, =0.12,
C1=50, Cy=40, m;=0.91, my=2, P;=0.03, P,=0.5, e=0.0005, a=2, dy=10, d3=10.
This figure clearly exhibits that, the population of prey enhances as d; drops.

The dynamic change of the prey-predator population (z, x;,y) according to the
change of the maximum time (ds) of the infected prey in the prey-predator system

is shown in fig. 6.4 at r=0.8, 3=0.12, C1=50, Co=40, m;=0.91, my=2, P,—0.03,
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P,=0.5, e=0.0005, a=2, d;=10, d3=10. This figure shows that, the susceptible
prey population decreases as ds increases whereas infected prey population increases
because more preys will get infected.

The impact on prey - predator population (zs,z;,y) by ranging predator max
time (d3) on prey - predator system is demonstrated in fig. 6.5 at r=0.8, 5=0.12,
C1=50, Cy=40, m;=0.91, my=2, P;=0.03, P,=0.5, e=0.0005, a=2, d1=10, dy=10.
From this figure, it can be shown that, the prey population increases as ds decreases
because predators get less time to eat prey.

Figure 6.6 depicts how intra-specific competition (e) affects the prey-predator
system at r=0.8, 5=0.12, C1=50, Cy=40, m;=0.91, my=2, P,=0.03, P,=0.5, a=2,
d1=10, ds=10, d3=10. The effect of intra-species competition is to decrease the rate
of population growth as population density increases.

The changes with mortality rate of infected prey (m;) on prey - predator system
is presented in fig. 6.7 at r=0.8, 5=0.12, C1=50, Cy=40, ms=2, P;=0.03, P,=0.5,
e=0.0005, a=2, d1=10, ds=10, d3=10. This graph unequivocally demonstrates that
a rise in my causes a fall in the population of prey.

The effect of (mg) on prey - predator system is presented in fig. 6.8 at r=0.8,
£=0.12, C1=50, C5=40, m1=0.91, P,=0.03, P,=0.5, e=0.0005, a=2, d1=10, dy=10,
d3=10. This figure demonstrates that, susceptible prey population enhances with
increase in (mgy) whereas infected prey and predator population decreases with an
increase in (ms).

The performance of the prey-predator population by varying (P;) under fuzzy
impulse control can be seen in figure. 6.9 at g=0.8, r=0.12, C;=50, C5=40, m;=0.91,
me=2, P,=0.5, e=0.0005, a=2, d1=10, dy=10, d3=10. This figure clearly displays
that enhance in predation rate of susceptible prey indicate more preys are predated
by predators which results to diminish in prey population.

The change with predation rate of infected prey (P,) on prey- predator popu-
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lation under fuzzy impulsive control can be found in fig. 6.10 at r—=0.8, 5=0.12,
C1=50, Cy=40, m;=0.91, my=2, P;=0.03, e=0.0005, a=2, d;=10, d2=10, d3=10.
From this figure, it can be shown that, enhance in predation rate of infected prey
decreases prey population because more preys will be eaten by predator.

Finally, the characteristics of the population (zs, z;,y) of the three species (with-
out impulsive control) are shown in fig. 6.11 by considering all the parameters ob-
tained with the T-S fuzzy model at r=0.8, 5=0.12, C1=50, C5=40, m;=0.91, my=2,
P=0.03, P,=0.5, e=0.0005, a=2, d;=10, dy=10, d3=10, and z4(0) = 3,2;(0) =
5,y(0) = 5,¢ = 10. The graph makes it very clear how predator and prey popula-

tions stabilize.

6.6 Conclusions

In this chapter we present stability analysis of a three species competition model
with fuzzy impulsive control by T-S model. In which disease infection is in prey.

The main results of this study are as follows:

e Prey populations more susceptible to predators are found where there is less

intra-specific competition.
e An increase in prey growth rate results in an increase in the prey population.

e As the rate of disease transmission from diseased to vulnerable prey increases,

the population of healthy prey drops.

e As the maximum time (dy) of the infected prey rises, the number of susceptible

prey declines while the number of infected prey increases.
e Prey population increases as predator max time (d3) declines.

e Prey populations decline when sensitive predators prey more frequently.
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Chapter 7

Stability Analysis of a T-S

Prey-Predator model with disease in

both species 1

7.1 Introduction

We have witnessed rapidly growing interest in fuzzy control in recent years. This
is largely sparked by the numerous successful applications in fuzzy control. De-
spite the visible success, it has been made aware that many basic issues remain to
be addressed. Among them, stability analysis, systematic design, and performance
analysis are crucial to the validity and applicability of any control design method-
ology as shown by Huang [98]. However, it should be admitted that the stability
of fuzzy logic controller (FLC) is still an open problem. It is important to point
out that there exist many systems, like the predator-prey system, which cannot
commonly endure continuous control inputs, or they have impulsive dynamical be-

havior due to abrupt jumps at certain instants during the evolving processes. Hence,

!Published in “Journal of Environmental Accounting and Management”, 12(3), (2024),
231-244. DOI:10.5890/TEAM.2024.09.002
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it is necessary to extend FLC and reflect these impulsive jump phenomena in the
predator-prey system.

Until recently, we discussed about the stability of two and three dimensional
Lotka-Volterra predator-prey system with fuzzy impulsive control. In this chapter
we studied the Lotka-Volterra prey-predator model with the disease in both prey
and predator populations. To improve the model’s reality we analyze the global and
asymptotic stability of this model with the help of the T-S model as explained in

earlier chapters. Then presented the graphical solutions for the problem.

7.2 Model Formation

At time ¢, the densities of susceptible prey, infected prey, susceptible predator, and

the infected predators are denoted by x4(t), x;(t), ys(t), and y;(t) respectively.

The prey population increases logistically with an intrinsic growth rate (r)
and environmental carrying capacity C' = r/e (C' > 0) in absence of predator

population and in absence of disease as in Bera et al. [104].
e Only the susceptible prey propagates.

e When a susceptible prey gets into contact with an infected one, the infection
is transmitted among the susceptible ones. If infected, the prey never recovers.
Either it will die or be eaten away by a predator. Disease related deaths are

more common in the population of diseased prey.

e Our presumption is that diseased predators are incapable of catching a healthy
prey. Therefore, only a healthy predator can catch a healthy prey. However,
because they are weaker and more vulnerable, infected prey can be eaten by

both susceptible and infected predators.
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e Direct contact with an infected predator enables the disease to spread across
the predator population. An infected predator either stays diseased or becomes

extinct; it never recovers or develops immunity.

e We suppose that there are natural deaths among the predators, whereas the

infected population has a disease induced excess death rate also.

On the basis of above assumptions the following model is proposed by using set

of non-linear differential equations.

dx,
CZ =TTrs — exg — ETsT; — lesxi - lesys
dxi
= fizsr; — maux; — Pysr; — Py,
dCZ (7.1)
dts = Chzys + Coxiys — Boviys — Dy
dy;
o Baysyi — (D + ma)y; + Cszy;

where x40, Tig, Yso, Yio are the initial populations and all the parameters are positive
with initial conditions are 3 = x5 > 0, ; = ;0 > 0, ys = ysg > 0, ¥; = yip > 0.
Here r is the intrinsic growth rate of prey, e is the intra-specific competition, (5;
is the infection coefficient of healthy prey, P, is the predation rate of healthy prey
by healthy predator, m; is the disease induced death rate of infected prey, P, is
the predation rate of infected prey by healthy predator, P3 is the predation rate
of infected prey by infected predator, C' is the conversion rate of healthy prey to
healthy predator, C5 is the conversion rate of infected prey to healthy predator,
is the infection rate for predator population, D is the death rate for the predator
population, ms is the disease induced death rate of infected predator, Cj is the
conversion rate of infected prey to infected predator.

A matrix differential equation is stated as follows to analyze the system’s stabil-

ity:
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&= Az + ¢(x), (7.2)
where
Z(t) r 0 0 0 —ex? — exgx; — Biwow; — Piagys
e ( ) , A— 1 7 gb(x) _ 1 2Y 3L;Y
ys(t) O 0 _D O Clxsys + CZ-Tiys - ﬁZysxi
vi(t) 00 0 —(D+mg) I Bayiys + Caxy;

7.3 T-S Fuzzy model with Impulsive effects

The non-linear equations can be transformed into the following linear equation as

explained in earlier (chapter-2).

If (t) is M; then

Ar) = Kya(t),t = 7

1=1,2,3..m7=1,2,...

r—21 — 29— 23— 24 0
zZ3 —Zk5 — Zg — M1
where, A; =
27 <8
0 210

0
0
—Zg—D

Z9

(7.3)
0
0
i =1
0
—(D + mg)

w . : . d . v
to 1024, where the matrices A}s are generated using maximum and minimum values

of z.s; k = 1 to 10, here z.s are related to the values of z,(t)€[0,d;], ys(t)€[0,da],

x;(t)€]0,ds], yi(t)€[0,dy] (here z1 = exy, 20 = ex;, 23 = [r1xy, 24 = Piys, 25 = Pays,

26 = Payi, 27 = Chys, 28 = Coys, 29 = Bayi, 210 = Csyi).M;, z(t), Ai € R*™* r is the

number of the [F-THEN rules, K, ; denotes the control of the j impulsive instant

 A(@)]i=r; = (75 - Tj-1)
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7.4 Numerical Simulation

Since most of the biological systems are complex, they should be expressed by ap-
plying a fuzzy logical framework that includes expressive reports. The suggested
impulsive T-S design model examines predator-prey system with functional response
and impulsive impact.

By using fuzzy impulsive T-S design model on (7.2), the membership functions

M;;s and the matrices Ajs, are calculated using

rT— 21— 29— 23— 24 0 0 0
z —Z25 — 2 — M 0 0

A — 3 5 6 1 7
Z7 z8 —Zg—D O

0 210 29 —(D+m2)_

1 —=1to 1(_)24, where the matrices Als are generated using maximum and minimum

values of z;s; k = 1 to 10 and, the Defuzzification can be represented as:

#(t) = Z hi(2(1)) (As (1)), (7.4)

here his are given as, h;(2(t)) = w;(2(t))/ Zwi(z(t)), and w;(z(t)) = H M;;(=(t)),
=1 j=1
i—1 to 1024, j—1 to 10
This Fuzzy model exactly represents the non-linear system (7.2) in the region

[0,10]x[0,10]x[0,10]x[0,10]

7.5 Results and discussion

In this section, the global stability of the considered intra-specific competition prey-
predator model (7.1) is discussed as explained in earlier chapters. We have studied
the system (7.1) numerically using MATHEMATICA software to get better insight of

the proposed model. Calculations were carried by taking the values of the parameters



CHAPTER 7. 108

at 7 = 0.8, ¢ = 0.05, B, =04, P, =1, P, = 0.1, my = 0.5, C, = 0.1, P; = 1.5,
D =02 my =05 Cy =14, d = 10, Cy = 0.15, By = 0.2, dy = 10, ds = 10,
dy = 10 in 7.3 to get the eigen values of [AT + A;] (i = 1,2,3...r) as explained in
the theorems ([83]). It is found that max()\;) = A(«) = 14.8, then we have chosen
diag[—0.84,—0.84] as impulsive control matrix, such that w = ||I + K|| = 0.16.
It is noted that the system 7.3 is stable globally when e=1.5, §;=0.02 (at those
above values, In(ew) + A(«)d; = —1.142 < 0). Further, it is observed that the prey-
predator model is unstable when » = 0.1, e = 0.5, 1 = 0.2, P, = 4, P, = 0.5,
my =0.5,C =01, P =1 D=0.5,my=0.5,C5 =8, d, =10, Cy = 0.5, 5y = 0.4,
dy = 10, d3 = 10, dy = 10, since mazx(\;) = Aa) = 79.5, = In(ew) + N(a)d; =
0.17 > 0 for w = 0.16, e=1.5, 5,~0.02.

The stability of the system at various values of this study is presented in 7.1.

r| e |B1|P1|Pa|m1|C1|Ps| D jma|Cs|di| Cs | B2 |da|ds|ds|max();)| In(ew) |conclusion
=Xa) [+ (a)d;
0.8/0.05]0.4| 1 |0.1|0.5|0.1{1.5|0.2|0.5/1.4/10]0.15|0.2{10{10{10| 14.8 -1.142 stable
0.5]0.25]0.1] 2 0.2[ 1 |0.5]|0.5]|0.1]|0.2| 1 (10| 0.2 ]0.1|10{10|10] 10.5 -1.21 stable
1.0/ 0.4 10.1|0.5/1.0(0.1|0.2|2.0(1.5]0.5/0.1|10| 1.5 |0.5|10|10|10| 13.5 -1.15 stable
0.1/ 0.510.2| 4 |0.5|0.5]0.1| 1 |0.5|0.5| 8 {10| 0.5 |0.4/10/10[{10] 79.5 0.17 | unstable

Table 7.1: Stability of the system at various parameters

The impact of various emerging parameters on prey-predator system (7.1) with
T-S fuzzy impulsive control model is presented in figs. 7.1 - 7.12.

The effect of intrinsic growth rate of prey (r) on prey-predator system is shown
in fig. 7.1 at e =0.05, 5, =04, P, =1, P, =0.1, m;y =05, C; =0.1, P; = 1.5,
D =02 my =05 C3 =14, d =10, Cy = 0.15, B3 = 0.2, do = 10, d3 = 10,
dy = 10. This figure clearly displays that the growth of healthy prey increases with
increase in r and it has no impact on infected prey, and predators.

The dynamical behavior of the two species population (zs, x;, ys, y;) under the in-
fluence of intra-specific competition parameter (e) on prey-predator system is shown

infig. 7.2 atr =08, 8 =04, P, =1, P, =0.1, my = 05, C; = 0.1, P, = 1.5,
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D =02 my =05, C3 =14, d, =10, Cy = 0.15, B3 = 0.2, do = 10, d3 = 10,
dy = 10. This figure clearly exhibits that the population of healthy prey decreases
with an increase in e whereas the infected prey, healthy predator, infected predator
population were not affected.

The effect of infection coefficient of healthy prey (f1) on prey-predator system
is shown in fig. 7.3 at r = 0.8, e = 0.05, P, =1, P, = 0.1, m; = 0.5, C; = 0.1,
Py =15 D =02, my =0.5, C3 =14, d, =10, Cy = 0.15, B = 0.2, dy = 10,
ds = 10, dy = 10. This figure clearly displays that an increase in the infection rate
decreases healthy prey population.

The nature of prey-predator (zs, z;, ys, y;) population with the effect of (P;) on
prey-predator system is shown in fig. 7.4 at » = 0.8, e = 0.05, 5; = 0.4, P, = 0.1,
my = 0.5, Cy =01, Py=15 D = 0.2, my = 0.5, C3 = 1.4, dy = 10, Cy = 0.15,
By = 0.2, dy = 10, d3 = 10, dy = 10. It is observed from this figure that healthy
prey population decreases with an increase in P;.

The influence of predation rate of infected prey by healthy predator (P,) on prey-
predator system is shown in fig. 7.5 atr =0.8, e =0.05, 5y =04, P, =1, m; = 0.5,
Ci, =01, Ps=15 D =02, my = 0.5, Cy =14, dy =10, Cy = 0.15, 5, = 0.2,
dy = 10, d3 = 10, d4 = 10. From this figure it is clear that the population of healthy
and infected prey decreases with an increase in P, and predator population remains
unaffected.

The effectiveness of infection of predator population (;) on prey-predator system
is shown in fig. 7.6 at r = 0.8, e = 0.05, 5, =04, P, =1, P, = 0.1, my = 0.5,
Cy =01, P3s=15 D=0.2 my=0.5,C5=14,d; =10, Cy =0.15, dy = 10, d3 =
10, dy = 10. It shows that healthy predator population decreases with increasing
infection in predator. Healthy prey and infected prey populations decreases slightly
with an increase in [,.

The influence of predation rate of infected prey by infected predator (P3) on
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prey-predator system is shown in fig. 7.7 at » = 0.8, e = 0.05, p; = 04, P, = 1,
P, =0.1,m =05 C; =01, D=0.2 mg =05, Cy =14, dg =10, Cy = 0.15,
By = 0.2, dy = 10, d3 = 10, dy = 10. This figure displays that prey population
(healthy and infected both) decreases with an increase in P;.

The effect of conversion of infected prey to infected predator (Cs) is shown in fig.
78atr=20.8,e=0.05 066 =04, =1, P =01 m; =05, C; =0.1, P3 = 1.5,
D =0.2, my =0.5, dy =10, Cy = 0.15, B = 0.2, ds = 10, d3 = 10, dy = 10. In this
figure clearly exhibits that the population of both prey and predators (healthy and
infected) decreases with an increase in Cj.

The dynamical pattern of prey - predator population (zs,x;,ys,y;) by varying
prey max time (d;) is shown in fig. 7.9 at r = 0.8, e = 0.05, 8, = 04, P, = 1,
P, =01 m; =05 C;, =01, Ps=15, D =0.2, my = 0.5, C3 = 1.4, Cy = 0.15,
By = 0.2, dy = 10, d3 = 10, dy = 10. This figure clearly shows that as we increase
prey’s (healthy prey) max time d;, the population of all species (i.e healthy prey
and predator, infected prey and predator) decreases.

The trend of four species (x4, x;, ys, y;) population with respect to infected prey
max time (dg) is shown in fig. 7.10 at r = 0.8, e = 0.05, f; =04, P, =1, P, = 0.1,
my = 0.5, C;y =01, Py=15,D = 0.2, my = 0.5, C5 = 14, dy = 10, Cy = 0.15,
By = 0.2, d3 = 10, dy = 10. It can be seen from this figure that as increase in
infected prey’s max time dy, the population of all the species (i.e healthy prey and
predator, infected prey and predator) decreases.

The change on prey- predator population (xg,x;,ys,y;) by varying susceptible
predator max time (d3) is shown in fig. 7.11 at r = 0.8, e = 0.05, 51 = 0.4, P, = 1,
P,=0.1 m; =05 C; =01, =15 D = 0.2, my =05, C3 =14, d = 10,
Cy =0.15, B = 0.2, do = 10, dy = 10. This figure clearly shows that as an increase
in predator’s (healthy predator) max time ds, the population of all the species (i.e.

healthy prey and predator, infected prey and predator) decreases.
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The impact of max time (dy) on prey-predator system is shown in fig. 7.12 at
r =08 e=005 0% =04 P =1, P, =01 m = 0.5, C; = 0.1, P; = 1.5,
D =02 my =05 C5=14,d;, =10, Cy = 0.15, B = 0.2, dy = 10, d3 = 10. It
can noted from this figure that, increase in predator’s (infected predator) max time
d4 leads to decrease in the population for all species (i.e healthy prey and predator,
infected prey and predator).

Finally, the nature of four species (s, x;, ys, y;) population (without impulsive
control) is presented in fig. 7.13 by fixing all the parameters obtained from T-S
fuzzy model at r = 0.8, e = 0.05, §; =04, P, =1, P, = 0.1, my = 0.5, C} = 0.1,
P; =15 D =02 my =05, Cy =14, dy =10, Cy = 0.15, B = 0.2, dy = 10,
ds = 10, dy = 10, t = 10. The figure clearly shows how the prey and predator

populations reaches to stability.

7.6 Conclusions

In this chapter, we studied the stability analysis of a prey-predator system with
fuzzy impulsive control by T-S fuzzification. In which disease infection is on both

prey and predators. The main results of this study are as follows:

The increase in intra-specific competition leads to a decrease in the susceptible

prey population.

The prey population rises in response to an increase in the prey growth rate.

A higher infection transmission of prey results in a smaller prey population
and a higher infection transmission of predator results in a smaller predator

population.

Effect of susceptible prey max time is to decrease all the four populations.



CHAPTER 7. 112

0T 10
—1=05
---1=10
8] ¢4\ 1=1.5
----- r=2.0
o N - 1=25
7 <
47 o
2
2.
0
T T T 0 T T |l
00 05 : 10 15 20 00 05 10 15 20
t
10 10
—1=05 —r=05
---r=L0 ----1=1.0
e T N =15 84\ =15
————— r=2.0 -==1=20
- - I =25
o6 1=2.5 6
4 4
2 2
0 T T T T 0 T T T |l
0 1 2 3 4 5 0 2 4 6 8 10

Figure 7.1: Effect of intrinsic growth rate of prey (r) on prey-predator system under
impulsive control.



CHAPTER 7. 113

10 10
............... e=0.01 E————Y
A e=0.05 6005
"""" e=0.10 8 .- e=0.10
----e=015( [\ L e=0.15
N —e=0.20 N -----e20.20
4 .
24
2-
0_
T T T 0 T T 1
0.0 0.5 t 10 15 2.0 0.0 05 i 1.0 15 2.0
10 10
——0=0.01 —e=0.01
- - --e=0.05 ----e=0.05
84\ e=0.10 sy e=0.10
_____ e=0.15 -—-e=0.15
----£20.20 ---e=0.20
o 6 " 6
4 4
2 2
0 T T T T 0 T T T |l
0 1 2 t 3 4 5 0 2 4 6 8 10

Figure 7.2: Effect of intra-specific competition (e) on prey-predator system under
impulsive control



CHAPTER 7. 114

0t 10
S F— B1:0' 1 _ B1:0 1
S P B,=05 N ----B,=05
....... [31:1.0 Brl 0
6 ----B=15 Y N B=15
N —B=20 2 - B=2.0
41 .
24
2
04
T T T 0 T T 1
00 05 L 15 20 00 05 10 15 20
t
10 10
—B=0.1 —B=01
; ----B,=05 ; ----B=05
VVVVV B1:1-0 [51:10
_____ = I :1 5
e B=15 ol Bl_
:,, P B1:2 0 ; e eemee Bl_z 0
4 4
2 2
0 T T T T 0 T T T 1
0 1 2, 3 4 5 0 2 4 6 8 10

Figure 7.3: Effect of Infection coefficient of healthy prey () on prey-predator
system under impulsive control



CHAPTER 7.

115

0.0 0.5 10 15 20
10
—p,=0.1
----P,=05
o 1
...... P10
~~~~~ P15
g 61 ----P=2.0
>
4
24
0 T T
0 1 4 5

10
—p0.1
----P=05
8
...... P1:l.0
----- P15
6 e P1:2.0
;./_
4
24
0 T T T
0.0 0.5 1.0 15 2.0
10
—P,=0.1
----P;=0.5
8 1
...... Pl:]_.o
----- P15
) 61 e Pl:2'0
¥
4
24
0 T
0 8 10

Figure 7.4: Effect of Predation rate of healthy prey by healthy predator (P;) on

prey-predator system under impulsive control



CHAPTER 7. 116

10 10
............... P2—0.1 p2=0 1
JN p2_0.5 S P2:0 5
------- P10 P10
----PFL5 1 ----P15
o6 —P,220 . —P,22.0
X %
4 %, ‘
f.é;: .
24
. o
0 T T I T T T
0.0 0.5 10 15 20 0.0 0.5 f 1.0 15 2.0
t
10 10
— P01 — P01
8 ----PF05 3 --- P05
...... p2_1_0 P2_10
————— P15 ~==P,15
6 I p2_2_0 _ 6 I p2_2 0
] =
4 4
2 2
0 T T T I 0 T T T 1
0 1 2 t 3 4 5 0 2 4

Figure 7.5: Effect of Predation rate of infected prey by healthy predator (P,) on
prey-predator system under impulsive control



CHAPTER 7.

117

10
............... BZZO.l
¢4 \ T BZ:O~5
------- BFLO
----B,715
ol B,
B — 20
4
24
0 . : :
0.0 05 10 15 20
t
10
S BfO.l
8 S B B2:0'5
------- B~10
----BFL5
6 Bz
g —(,72.0
>
4
24
04
0 2 “oy 8 10

10
............... BZ:O,]_
N BZ:O.S
....... B710
----BF15
6.
A —B,=2.0
;ﬁ
4 4
2 %
0 ' ' I
00 05 10 15 20
10
—B,70.1
. ----B,705
...... [32:1,0
) U B,~15
{;’: - BZ:Z.O
4 4
2.
0 T I
0 ; 8 10

Figure 7.6: Effect of Infection for predator population (/) on prey-predator system

under impulsive control



CHAPTER 7. 118

10
............... p3:0| 1 p3:0.1
N 3 | A P05
------- P10 e PELO
----Ps15 ----Pz15
9 — P20 R — P20
3 X
44
2
0. T
0.0 075 170 175 20 0 I1 é i é :1 5
t
10 10
— P01 — P01
. ----P=05 8 ----P=05
»»»»»» P10 - PELO
————— P15 ---PzL5
6 — p3:2.0 6 N p3_2 0
4 4
2 2
0 T T T T 0 T T T |l
0 1 2 3 4 5 0 2 4 6 8 10

Figure 7.7: Effect of Predation rate of infected prey by infected predator (P;) on
prey-predator system under impulsive control



CHAPTER 7.

119

10
............... C02
...... C3:0.8
B T CL5
- C220
s’ ——C25
3
N
]
0 T T T
0.0 05 10 15 20
10
............... C,=02
------ C, 08
S I T C10
- A5
~ —C,720
K
o
.
0 T
0 4 5

10
............... c3=0.2
...... C,=038
T CL0
- C715
-7 —C,=20
%
N
)
0 . e :
0.0 05 1.0 15 20
10
............... C3:02
...... C,=038
L D CL0
- CgL5
s’ — 20
K
N
)]
0 T T
0 6 8 10

Figure 7.8: Effect of Conversion of infected prey to infected predator (C3) on prey-

predator system under impulsive control



CHAPTER 7.

120

0
8_
6_
2
4 4
2 4
0_
0.0 05 1.0 15 20
10
" e d1:01
»»»»»» 4,205
s \v e 4,10
- 4,215
——d.=20
64 1
*
4 N
2_
0 . .
0 1 4 5

2.0

10
............. d,=01
""" d1:05
N d1:10
. d1:15
6- o
\:{
N
N
N
-1 | | I
1 - 1.0 15
t
10
............. 6,701
...... 0,05
N d1:10
. d1:15
—d=0
| 1
i:
o
.
0 4 | | |
t

Figure 7.9: Effect of max time (d;) on prey-predator system under impulsive control



CHAPTER 7.

121

Xs(t)

0.0 0.5 1.0 15 20
t
10
............. d2:04
..... d2:06
sf v e 4,708
---d=10
—dF12
6 4
*
4
2 4
0 T - T
0 1 4 5
t

10
............. d2:04
...... d2:06
o L 6,708
=
--- 4,710
6 — d2:12
%
4
24
1
0.0 0!5 110 1!5 2.0
10
............. d2:04
..... d2:06
L d,=08
--- 4710
— 012
6
=
44
2
0 T 1
0 6 8 10

Figure 7.10: Effect of max time (dz) on prey-predator system under impulsive control



CHAPTER 7. 122

20 10
............. d3=07 d3—07
vvvvv 4,408 o dg708
------ d,=09 81 - 0,09
1 -~ - 710 -~ - 4710
s —d;=11 6 — ;=11
X ~
;:
4 4
24
0 4
0.0 0!5 110 1!5 2.0
t
10 10
------------- d3_07 d3=07
~~~~~ d3=08 d3=08
84 %+ e d,=09 4y d,=09
---d=10 ---d=10
— d3—11 — d3:]_]_
~ 6 6
44 41
2 24
0 T T T T 0 T T T |l
0 1 2 3 4 5 0 2 4 6 8 10
t t

Figure 7.11: Effect of max time (d3) on prey-predator system under impulsive control



CHAPTER 7. o

d T d4=08
..... d4=09
------ 4,710
---d1
— 12
7 o
0.0 0.5 1.0 15 20
t t
10
............. d4=08
..... d4=09
i | S 4,710
--- 41
— 12
6
‘;:
44
2
T T T T 0 : I : I
0 1 2 3 4 5 0 2 4 [ 6 8 I
t

Figure 7.12: Effect of max time (d4) on prey-predator system under impulsive control



CHAPTER 7.

124

15

124

Xs(H)

10

Ys(O

0.0 0.5

Figure 7.13: Plot of predator-prey system without impulsive control

10

15

20

xi(®)

Yi(t)

10

10

0.0

0.5

1.0

15

2.0

20

154

10



Chapter 8

Population Dynamic Study of two
prey one predator system with

disease in first prey !

8.1 Introduction

Many scholars have focused significantly on epidemiological models. The incidence
rate, a function that describes how a disease spreads from an infected person to a
susceptible person, plays a crucial role in epidemiological models. Many scholars
have carefully explored a number of epidemic models with such a wide range of
incidence rates [105, 106, 107]. To make epidemic simulations more realistic, some
researchers added with time delays [108].

Ecological literature has extensively investigated models of two and three-species
populations having such functional responses. There are numerous studies on two-
species systems, such as those involving predators and prey and on three-species

systems, such as two prey and one predator [109, 110, 111] have long been important

'Published in “Epidemiological Methods”,2024; 13(1):20230019,DOT:https://doi.org/10.1515 /em-
2023-0037
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in theoretical ecology.

Researchers have developed a greater interest in the merging of ecology and epi-
demiology because the effects of infectious diseases on the ecological system regulate
population size. There are numerous prey-predator models that include infectious
diseases. In eco-epidemic model, the predator populations become infected by eat-
ing prey was investigated by Anderson and Robert [33]. The changing of the prey-
predator system in relation to disease in the prey and the predator population have
been hypothesized and studied by some researchers, including Hudson [64], Haque
and Venturino [112], Amar and Joydev [40] etc.

In this work, we considered the Lotka-Volterra predator-prey model with two
preys and one predator. We also take into account the fact that only the first prey,
who are affected by an infectious disease, consists of two sub-classes: susceptible and
infected. We examine the global and asymptotic stability to strengthen the reality

of the model as explained in earlier chapter [82, 77].

8.2 Development of the model

These presumptions serve as the foundation for our mathematical model-

e Let x be the first prey’s overall population density.
e The first group of prey is the only one to develop a transmissible disease.

e When a disease is present, the whole population of first prey are divided into
two categories: (i) the susceptible prey population (z,) and (ii) the infected

prey population (z;).

e The disease in the first prey population is disseminated horizontally from the
susceptible to the infected in first prey population at a constant rate of infec-

tion [, in accordance with the rule of mass action.
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Diseased members of the first prey population do not recover. Disease does
not spread from the ill first victim to the predator by feeding or any other

means.

e There is an abundant supply of second prey in the population in the absence
of a predator, and there is no need to search for the second prey population

because it has no intra-specific interactions and is expanding exponentially.

e Let x5 be the second prey’s overall population density.

y stands for the total population density of predators.

Based on the above considerations, we propose the following model using the system

of non-linear differential equations.

dzg 2 Py
= s - sy h s -
o = s — ez, (e + B)xsw; + hixsxoy T s -2
dx; Pyxy
= Bryr; —miz; — ———
dt a -+ \oxrs + x; (8.1)
diCQ '
T Psxoy + hoxizoy
dy _ Cirgy Coryy

- +C. -
dt a4+ axs+zx,  a+ Aaxry + x; 3T2y — M2y

where g, T;9, T20, Yo are the initial populations and all parameters (ry, 7o, €,
Cy, Cy, a, Py, Py, my, mg) > 0 with z, = x50 > 0, x; = 259 > 0, 29 = x99 > 0,
y=1yo>0.

Here rq is the internal production growth rate of first prey, 75 is the internal pro-
duction growth rate of second prey, e is intra-species competition, P; is Predation
level of susceptible first prey, P, is Predation level of diseased first prey, Ps is Pre-
dation level of second prey, C] is rate at which susceptible prey become predators,
(s is the rate at which diseased prey become predators, 3 is transmission rate on

first prey vulnerable to diseased population, a is half-saturation constant, A is ratio
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of the predator’s handling time to that of its first prey item and to its second prey

item, « is ratio between the second prey’s and the first prey’s

capture rates, my is

mortality rate of the infected first prey, ms is rate of the predator’s death, hy, ho

are coefficients of help between the preys.

To analyze the system’s stability, the matrix differential equation is written as

&= Azr + ¢(x) (8.2)
where
Z(t) rn 0 0 0 —ex? — (e + B)zsz; + hiwomay — wf&%
4 (t 0 —m;y 0 0 Brow; — —2tiy__
G ( ) 714: 1 ,¢(l‘): at+Aazrs+x;
.1:2 (t) 0 0 T 0 —P31’2@/ + thiny
y(t) _0 0 0 _m2_ L a+§(;f:;ﬁ-xs + a—i—fo%i;?j—xi + C3$2y;

8.3 Takagi-Sugeno model

The non-linear equations can be transformed into the following linear equation as

explained in earlier (chapter-2).

If (t) is M; then

(t) = Aix(t),t # 75

A(.Z') = k:”x(t)j = Tj,i = 172737“7j — 1’2’
r— 21— 2 — 23+ hizy — Py 0
Z —Poze —m
where, A; — ’ 275 1
0 hozy
Crzr Cyzs

(8.3)
(8.4)
0 0
0 0
Ty — Z¢ 0
z8 —Ma

i = 1 to 255, where the matrices As are generated using maximum and mini-
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mum values of z;s; k — 1 to 8, here z;s are related to the values of z4(t)€[0,d,],

z;(t)€[0,da], z2(t)€[0,ds], y(t)€[0,ds] (here 21 = ex;, 22 = ews, 23 = Pxi, 24 = T2y,
Y )

a+ Aaxy + x; a + Aaxs + x4

r is the number of the IF-THEN rules, K, ; denotes the control of the j impulsive

) 28 = 039) Mi7 I(t>7 AZ € R4*47

25 = ;ZGZPS%Z?:

instant, A(x)}—,, = x(7; - 7j-1)

8.4 Numerical Simulation

Analytical investigations can never be finished without the results numerical valida-
tion. Computer simulations of the system’s solutions are presented in this section
(8.2). These numerical solutions are crucial from a practical standpoint in addition
to serving as confirmation of our analytical conclusions. Because most biological
systems are intricate, they ought to be modeled using a descriptive, fuzzy logical
approach. In order to analyze predator-prey systems with functional responses and
impulsive effects, the recommended impulsive Takagi-Sugeno design model is used.
In this part, intra-species competition predator-prey model (8.2) is analyzed. Due
to the complexity, non-linearity, and uncertainty of biological systems, they should
be express using a fuzzy logical approach and language description.

The membership functions [96] were produced as follows using the fuzzy impul-

sive Takagi-Sugeno design model on the (8.2):

1 €d2 — 21 Z9 Gdl — 29 z3 /BdQ — Z3
M1: 7M2: 7N1: 7N2: 7K1: 7K2: 3
6d2 €d2 €d1 €d1 ﬁdg Bdg
_ds
Z4 dsdy — 2y Z5 at+ay+dz 5 Z6
LIZ 7L2: 701: d 702: d 7R1: y
dsdy dady o o Psdy
a+Aay+da at+Aay+da
dy o
R, — P3dy — 2 S — 27 G, — afdaytd ~1 T — <8 o Csdy — 28
2 — T 5 7 1 — g, 2 — g, 1 — ~ 5 2 — T~ 7
P3d4 ’ da ’ ds ’ C3d4, 03d4

a+Aay+dy a+Aay+dy

and the matrices Als are calculated using
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T1—21—22—23+h124—P127 0 0 0
A 23 —Pyzs —my 0 0
0 h224 Ty — Zg 0
0127 0225 Z8 —T1M9

i =1 to 255, where the matrices A}s are generated using maximum and minimum

values of z;.s; k = 1 to 8 and, the Defuzzification can be shown as:
() = Y h(z(0)(Aix(t)) (8.5)
i=1

here h;s are given as, hi(z(t)) = wi(2(t))/> i, wi(2(?)), and wi(2(?)) = [[[=, Mi;(2(2)),
i—1 to 255, j—1 to 8.
This Fuzzy model exactly represents the non-linear system (8.2) in the region

[0,10]x[0,10]x[0,10]x[0,10]

dms 2 Pl'rsy
=nrizs —ex; — (e + B)rsx; + hirsroy —
dt ! s—(e+h) 18512l a+ Aaxs + x4
dx; Prxy
= Bryr; —mir; — ————
dt a -+ \axrs + x; (8.6)
dﬂfg '
o = %2 Pszoy + haxizay
dy Cizsy Coxyy L C
> _ Toly — M
dt  a+Xaxg+xs  a+ Naxy + x; 342 2y

8.5 Results and discussion

This section describes the global stability of the considered intra-species predator -
prey competition model (8.2). We have studied the system (8.1) numerically using
MATHEMATICA software to get better insight of the proposed model.

It is calculated by taking parameter values at r, = 1.5, 7o = 0.07, e = 0.2,

P, =07, C, =05, P, =0.006, Cy =043, C5 = 0.36, dy = 10, hy = 0.4, hy = 0.1,
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my = 0.001, my = 0.5, dy = 10, dy = 10, ds = 10, Py = 0.8, a = 1, 8 = 0.7, A = 10,
a = 2, in 8.3 to obtain the eigen-values of [A] + A;](i = 1,2,3...r) described in
(I83]). It is evident that max()\;)=A(a) = 83 then, we’ve decided diagonal matrix
diag[—0.99, —0.99] as impulsive control matrix in such a way that w = ||/ + K|| =
0.01. The 8.3 system’s existence is noted that it is globally-stable at e=1.5, ;=0.02
(at the aforementioned values, In(ew)+ A(a)d; = —2.539 < 0). Let’s assume that
the system’s parameters are 1y = 1.5, 1o, = 0.7, e = 0.5, P, = 0.2, P, = 13,
Py=01,C =15 Cy =15, Cs = 0.5, hy = 1.5, hy = 0.3, my = 0.4, my = 0.2,
diy =10, dy = 10, d3 = 10, dy = 10, a = 1, § = 0.7, A = 10, a = 2, since max(\;)
=Aa) = 303, = In(ew) + AM(a)d; = 1.861 > 0 for w = 0.01, e=1.5, §;=0.02. The
prey-predator model is seen to be unstable for the aforementioned parameter values.

Table. 8.1 shows the stability of the system at different rates in this study.

r1| ro | e |P1|Pa|P3|C1|Co| Cs |hi| ha | m1 |maldi|da|ds|ds|al B | A |a|max();)| In(ew) |conclusion
=Aa) [+A(a)d;

1.5]0.07]0.2(0.7|0.6|0.8|0.5|0.4/0.36/0.4| 0.1 |0.001(0.5|10/10|10{10{1|0.7|10 &3 -2.539 | stable

1.2/ 0.7]0.1/0.2/0.3]0.1{1.5]0.5] 1.0 |0.5|0.01| 0.01 |0.5|10/10{10{10{1|0.7|10 102.4 | -2.159 | stable

1 2
1.0/0.07]0.2(0.7|0.6/0.8(1.0|0.5| 1.3 |0.4| 0.1 |0.001(0.510{10{10{10{1|0.7|10{2| 82 -2.559 | stable

1 2

1 2

1.5/ 0.7 ]0.5/0.2]1.3|0.1{1.5]1.5] 0.5 |1.5{ 0.3 | 0.4 |0.2|10/10/10{10{1]0.7|10 303 1.861 | unstable

Table 8.1: Stability of the system at various parameters

The effects of various parameters of the system 8.1 with Takagi-Sugeno fuzzy
impulsive control model is presented in figs. 8.1 - 8.12 by fixing few parameters
P, =07 P, =006, Ps =08, C; =05, Cy, =043, C3 = 0.36, ho = 0.1, a = 1,
A =10.

The consequence of transmission coefficient () on prey-predator interaction is
given in figure. 8.1 at r; = 1.5, 7 = 0.07, d; = 10, e = 0.2, hy = 0.4, dy = 10,
ds = 10, dy = 10, my; = 0.001, ms = 0.5. This graph illustrates how an increase
in 3 increases the population of susceptible and diseased first prey but decreases
population of second prey and predator as more preys will become diseased.

Figure 8.2 depicts the impact that changing the maximum time for susceptible
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first prey (d;) on the prey-predator population at r; = 1.5, ro = 0.07, e = 0.2,
hi = 0.4, m; = 0.001, my = 0.5, do = 10, d3 =10, dy =10, a =1, § = 0.7, o = 2.
This figure clearly shows that, as d; increases the population of first prey increases
but second prey and predator population decreases as prey will get more time to
live.

Figure 8.3 illustrates that the dynamic shift in the prey-predator population
caused by adjusting the infected first prey max time (dy) in the prey-predator system
at rp = 1.5, o = 0.07, e = 0.2, hy = 0.4, my; = 0.001, d; = 10, my = 0.5, d3 = 10,
dy =10, 5 = 0.7, a = 2. This graph shows that when d, rises, first prey (susceptible
and diseased) population rises while second prey and predator population decreases
because more preys and predators will become diseased.

The change on prey - predator population (zg, z;, 2, y) by varying second prey
max time (d3) is shown in fig. 84 at r; = 1.5, 1y = 0.07, e = 0.2, hy = 0.4,
my = 0.001, d; = 10, mo = 0.5, dy = 10, dy = 10, B = 0.7, a = 2. This figure clearly
shows how decrease in second prey max time increases first (diseased and susceptible
both) prey population but second prey and predator population decreases.

The impact of max time of predator (dy) on prey-predator system is expressed
in fig. 8.5 at ry = 1.5, r, = 0.07, e = 0.2, hy = 0.4, m; = 0.001, d; = 10, my = 0.5,
dy = 10, d3 = 10, 8 = 0.7, a = 2. It is noticed from this figure that, decrease in
predator max time increases first (diseased and susceptible both) prey population
but second prey and predator population decreases.

The dynamical change on prey - predator interaction by changing ratio between
capture rate of first and second prey («) can be seen in fig. 8.6 at 1 = 1.5, ro = 0.07,
e=0.2,d; =10, hy =04, dy = 10, d3 = 10, dy = 10, m; = 0.001, my = 0.5, 5 = 0.7.
This graph shows that the number of diseased first prey increases as « increases.

The changes with mortality rate of diseased first prey (m;) parameter of prey-

predator interaction under fuzzy impulsive control exhibited in fig. 8.7 at r; = 1.5,
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ro =0.07, e = 0.2, hy =04, dy = 10, dy = 10, d3 = 10, dy = 10, my = 0.5, f = 0.7,
a = 2. This graph unequivocally demonstrates how a rise in m; reduces the number
of infected first prey since more diseased prey will pass away.

The performance of prey - predator interaction by varying death rate of predator
(mg) parameter exhibited in fig. 8.8 at r; = 1.5, ro = 0.07, e = 0.2, d; = 10,
hy = 04, D; = 0.001, do = 10, d3 = 10, dy = 10, = 0.7 « = 2. This image
demonstrates how the population of diseased first prey, second prey, and predator
reduces as mo grows.

The intra-species competition (e) consequence on prey-predator system is shown
in fig. 8.9 at r = 1.5, r,, = 0.07, hy = 0.4, d; = 10, my = 0.001, d3 = 10, my = 0.5,
dy = 10, dy = 10, B = 0.7, a = 2. It is clear from this figure that as the intra-species
competition raises, the population of first prey increases whereas second prey and
predators diminishes.

The influence of susceptible prey’s intrinsic growth rate (r;) on prey-predator
system is presented in fig. 8.10 at ro = 0.07, d; = 10, e = 0.2, hy = 0.4, m; = 0.001,
ds = 10, mg = 0.5, dy = 10, dy = 10, 8 = 0.7, a« = 2. This graph demonstrates
unambiguously how a decrease in intrinsic growth rate of susceptible prey causes a
rise in the population of diseased first prey whereas there is a drop in second prey
and predator population.

The impact of a second prey’s intrinsic growth rate (r9) on prey-predator system
can be seen in fig. 8.11 at r; = 1.5, d3 = 10, e = 0.2, hy = 0.4, d; = 10, m; = 0.001,
mo = 0.5, dy = 10, dy = 10, § = 0.7, a = 2. Tt is evident from this figure that an
increase in the second prey’s intrinsic growth rate decreases its population.

The change with coefficient of help between preys (h1) on prey-predator system
is presented in fig. 8.12 at ry = 1.5, ro = 0.07, d; = 10, e = 0.2, my; = 0.001,
ds = 10, mg = 0.5, dy = 10, dy = 10, B = 0.7, a = 2. It is noticed from this figure

that, the first prey population (diseased and susceptible) increases as hy decreases
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and second prey and predator population increases as h; increases.

The physiology of the populations of four-species (zs, x;, x2,y) without impulse
control is finally shown in figure. 8.13 by maintaining each of the Takagi-Sugeno
fuzzy model’s output parameters at r, = 1.5, 7 = 0.07, e = 0.2, P, = 0.7, P, = 0.06,
P; =038, C; =0.5, Cy =043, C3 =0.36, hy = 0.4, hy = 0.1, d; = 10, m; = 0.001,
moe = 0.5, dp =10, dy =10, a =1, d3 = 10, 5 = 0.7, A = 10, a = 2, with z4(0) > 0,
x;(0) > 0, 22(0) > 0, y(0) > 0, t = 10. The graph makes it obvious how predator

and prey populations are stabilizes.

8.6 Conclusions

In this study, we created a two prey, one predator eco-epidemiological model in
which an infectious disease exclusively affects the first prey group. The first prey
population has been split into two sub-classes: susceptible and diseased. The study
is further extend to the concept to four dimensional system of the Lotka-volterra
predator-prey model where fuzzy impulsive control technique was employed to eval-
uate the stability of the relationship connecting the species. In addition, the stability
analysis of the system was also observed by a numerical example of predator-prey

system with impulsive effects. The main results of this study are as follows:

e The number of diseased prey grows with increased infection transmission.

e The number of infected prey increases when the capture rate ratio between

first and second prey rises.

e Intra-species competition effects all the four populations. As population den-
sity rises, the effect of intra-species competition is a reduction in population

growth rates.
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e The population of diseased first prey is reduced by an increase in their death

rate.



CHAPTER 8. 136

12
0.00105 -
10 (O e PP PP PP PP PP PPPPPPS
-} T
s | L - -p=05 ‘
R v B=L0 .
e 15 o 000037 _Eg;
) N =20 =z H [ 7PV
X 6 3 B X 2 B10
0.00102 p=15
N ‘( AAAAAAAAA B=2.0
0.00101 1
000100
T T T T T T
0 5 10 15 2 0 5 10 15 2
t t
102 101
w4 L B=L0 1.00-
- - -pe15
— =20
0981
0991
% 0% | s
! 0981
il
b
094 {
\ 097
0921
0.96
0.90 T T T T T T
0 5 10 15 2 0 5 10 15 2
t t

Figure 8.1: Impact of () on prey-predator system



CHAPTER 8. 137

000116
000114
000124
000110
< % 0001081
0.00106 -
000104
000102
0 , : : 000100 . . .
0 5 10 15 2 0 5 10 15 2
t t
102 102
.......... d1=01
d,205
o~ d,10 1.00 A
-~ -dg15
— 420
0981 098
X 0.96 X 096
oaed b -
0924 |ttt mmmmmmmeeees 0921
090 : : : 090 . . .
0 5 10 15 2 0 5 10 15 2
t t

Figure 8.2: Impact of (d;) on prey-predator system



138

CHAPTER 8.

0.00114

0.90

0.90

20

15

10

20

15

10

Figure 8.3: Impact of (dy) on prey-predator system



CHAPTER 8. 139

12
0001354 [ d3=04
----- d;=08
0.00130 1
------ de12
ooorzs{ [ %18
,,,,,,,,,,,, d,=04 —d,=20
O A d;=08 . 000120
S N S S S d=12 <
N X
- - - 0,716 0.00115 4
—d;=20
0.00110 1
0.00105 -
0.00100 -
T T T : ¥ I
5 10 15 2 0 5 10 15 2
( t
110 105
1.05
095
g e
>
* 0901
0851
0801
0751
T T T : ¥ I
0 5 1 5 2 0 5 10 B =

Figure 8.4: Impact of (d3) on prey-predator system



CHAPTER 8. 140

12
wooed [ d4=04
Ieul R A dA=08
----- d712
,,,,,,,,, d4=04 . d4=16
d,708 I
_____ 41 0.0013 d,=20
- - d16
e —d;=20 )
X X
0.0012 -
0.00114
. : : 00010 4= . . .
5 10 15 20 0 5 10 15 2
t t

X5(t)
y(®

0.904

Figure 8.5: Impact of (d4) on prey-predator system



CHAPTER 8. »
N 0.00110
e e e oo
[
101 :
0.00108 {
—0=01 E
81 - - -a=05 ;
0710 :
.~ =15 0.00106 f
c ~ E
3 F=0=20 e ]
X 61 S
—0=01
0.00104 - s
2 0=10
a=15
000024 £ =20
24
' ' T 000100 : . .
0 10 15 2 0 : T I !
t t
101 -
] 1.00 - — 0=01]
---0a=05
] wd \ =10
_A_A.u:15
- 098+ e =20
£ 0974 -
X 3 0.97
0.96
0.96
0.954
0.95 1
0.94 4
0.94 -
0934
0.93 4
0.92 , : | | I
0 10 15 20 0 5 0 ; .
t t

Figure 8.6: Impact of («) on prey-predator system



CHAPTER 8. 142

00013
AAAAAAAAAAA m=0.1
104 m,=05
—m=01 | e =1,
m=0 00012 m=10
- - -m,=05 - --mz15
81 - L0 —m=20
——mz15
R - -mz20 00011
S 6 e
n -
X X
00010
4 4
) 00009
0 : : . 00008 . . .
0 5 10 15 20 0 5 10 15 2
t t
101
—m;=0.1 ——m,=0.1
1.00 4 - - -mz=05 1.00 == m=05
..... m=10 oo m=10
-= mz=15 0997 . mf;-z
- my=2
098 o m=20 096 4 :
3 g o7
096
096
095
094
094
093
092 T T T T T T
0 5 10 15 20 0 5 10 15 2
t t

Figure 8.7: Impact of (m;) on prey-predator system



CHAPTER 8. 143

10 0.00110 1
——m,=0.1
== my=05
8 e mLo 0.00108
== my=15
== m,=2.0
g 69 £ 0.00106
X X
44 0.00104 1
24 0.00102
0 T r r 0.00100 . . T
0 5 10 15 20 0 5 10 15 2
t t
115
........... m2=0.1
S S m,=05 1104
------ m,=1.0
- -mA5 1051
——m,=2.0
0.98 z 1.00
3 $ 0851
0.96 1
0.90
0.85
0.94
0.80
0.75
092 T T T T T T
0 5 10 15 2 0 5 10 15 2
t t

Figure 8.8: Impact of (msy) on prey-predator system



CHAPTER 8. 144

0.00125

0.00120 A

0.00115 A

xs(H)
x;(t)

0.00110 1

0.00105 A

, : 0.00100 . : .
10 15 2 0 5 10 15 2

0.96 1
0.95 1
g S 092+
X =
090 \
\
E S | 1
0.8
0851
084
080 T T T 0.80 T : :
0 5 10 15 2 0 5 10 15 2
t t

Figure 8.9: Impact of (e) on prey-predator system



CHAPTER 8. 145

000112
10
““““““ =01 0000 S T T
S e =05
""" r=10 0.00108 -
- -1715
S 6 —1,=2.0 2
X X 0.00106
“ 000104
21 000102
0 : : : 000100 42 : : :
0 5 10 15 2 0 5 10 15 2
t t
1001 n=01 1,00
---1,=05
------ =10
084 N\ b =15 0981
............ =20
£ 096 S 091
< S
0.94 094
R N
0921 0921
0.90 : : : 090 . ; .
0 5 10 15 2 0 5 10 15 2
t t

Figure 8.10: Impact of (1) on prey-predator system



CHAPTER 8. 146

10 0.00110 1
—1,=0.1
---1,505 -
- . rz—1 0 0.00108 1701
e - - -1,705
T rZ:]"S AAAAA |’2=1.0
% 64 e r2:2 0 a 0.00106 4 S f2=l.5
X X = 1,720
4 0.00104 1
24 0.00102 1
0 T T T 0.00100 T T :
0 5 10 15 20 0 5 10 15 20
t t
......... =01 — 1
124 08 100 £
= 1710 == -1,=05
~-nzts 1\ | 1,=1.0
—1,72.0 0984 [ |'2:1.5
e 1,720
g S 096+
X >
0.94
_______________________ 0.92 1
00 T T T 0.90 T T :
0 5 10 15 20 0 5 10 15 20
t t

Figure 8.11: Impact of (r3) on prey-predator system



CHAPTER 8.

147

X5(t)

20

1004,

0.96 4

0.924

0.881

0.84

Figure 8.12: Impact of (hy) on prey-predator system

20

x;(t)

0.00125 A

0.00120 A

0.00115 A

0.00110 A

0.00105 A

0.00100

y(®

20

1004,

0.96 1

0.92

0.88

0.84

20



CHAPTER 8. 148

10
6
54 84
4
6
2 3 %
44
24
14 24
0-
T T T T T T T T 0 T T T T T T
0 2 4 6 8 10 12 14 16 4 6 8 10 12 14 16
t t
1.0 12
104
0.8+ 0
0.8
0.64
X X 06
044
0.4
0.24
0.24
0.0 T T T T T T T
0 5 10 15 20 0 10 20 30 40 50
t t

Figure 8.13: Different scenarios for predator-prey system without impulse control



Chapter 9

A Mathematical Study for the
Stability of Two Predator and One

Prey with Infection in First Predator

|

9.1 Introduction

In this chapter, we have considered Lotka-Volterra predator-prey model with one
prey and two predators. Also, considered that the only first predator population got
infected by an infectious disease, i.e., the first predator population is divided into
two sub-classes: susceptible and infected. The global and asymptotic stability of
this model was studied as explained in the earlier chapters |[77|. Finally, presented

the graphical solutions for the considered problem.

!Published in “Ann. Appl. Math”, Vol. 39, No. 1, pp. 29-48, February 2023, DOI: doi:
10.4208 /aam.0OA-2023-0003
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9.2 Model Formation

Our mathematical model is based on the following assumptions

e Let o be the total population density of the prey.

The initial group of predators is the only one to have an infectious disease.

The overall population of first predators is divided into two sub classes when

a disease is present: (i) the susceptible first predator population (y,) and (ii)

the infected first predator population (y;).

According to the rule of mass action, the disease in the first predator popula-
tion is spread horizontally from the susceptible to the infected first predator

population at a constant rate of infection /.

Let the second predator total population density is denoted by 5.

Let ¢ be the number of years.

The following model is proposed utilizing a set of non-linear ordinary differential

equations based on the aforementioned presumptions.

dux s Pyst Pyy;x Psysx
— =rx —exr” — — —

dt a+x ag+x ag+x
dys _ CriPyse CiPysys
dt ag+x a1 +x

— Bysyi — mays

dy; — By + CoPyiz  CoPyiys _—

dt YslYi ag + ag + 2Yi

dys  C3P3xy,  C3P3ysys  C3Psyiyo

T - + — M3Y2
dt ag+ a1+ ag +

where xg, Yso, Yig» Y20 are the initial populations and all of the parameters are pos-
itive with initial conditions as x = 29 > 0, ys = yso > 0, i = ¥ig > 0, y2 = Yoo > 0.
Here r is the intrinsic growth rate of prey, e is the intra-specific competition, [ is

the infection transmission, P; is the predation rate of susceptible first predator, P,
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is the predation rate of infected first predator, P; is the predation rate of second

predator, (' is the efficiency of first susceptible predator, C5 is the conversion effi-

ciency of first infected predator, C'5 is the conversion efficiency of second predator,

my the mortality rate of first susceptible predator, ms the mortality rate of first

infected predator, ms is the mortality rate of second predator, ag, a;, as are the

half-saturation constants.

A matrix differential equation is stated as follows to analyze the system’s stabil-

ity:
T = Ax + ¢(x)
where
x(t) r 0 0 0
i (t 0 —m 0 0
i | P A 1 o)
i (t) 0 0 —-my O
Yo (1) 0 0 0 —ms

9.2)

—ex2 — Bwsz _ Pz Psysx
aog+x ap+x apg+x

CiPiysz — CiPiysy2 )

ap+z a1+z Bysyl

) CoPyiz _ CaPayiyo

/BySyZ + a0+ac a2+a:

CsPsyox  C3P3ysyo C3P3y;y2

apg+x ai1+x az+x

9.3 T-S Fuzzy model with Impulsive effects

The non-linear equations can be transformed into the following linear equation as

explained in earlier chapter(s).

If x(t) is M; then

() = A(t),t £ 7
A(SE) = KIJSZ,’(t),t =Tj

1=1,2,3..r7=1,2,...

(9.3)
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. _ Piys Py Py

r ex ap+x ap+x ap+x 0 0 0
C1P1ys _CiPiys L
ap+z a1+z Byi —m 0 0

where, A; —

CoPoy; ) _CoPoys
ap+z Pyi az+z ma 0
CsPsys _ C3P3y» CsPsy2 —-m

L ao+x a1+ a2+ 3_

i = 1 to 511, where the matrices Als are generated using maximum and min-
imum values of z;s; kK = 1 to 9 and 2y, 2o, 23, 24, 25, 26, 27, 28, 29 are re-

lated to the values of x(t)€[0,d], ys(t)€[0,da|, vi(t)€[0,ds], y2(t)€[0,d4], here z
= eX, 29 = —Plys Za = —P2yz 2 = —ngg 2y = —P1y2 e = ﬁ T —ngg
" g+ P a+r Y aetr a2 " Yir =1 as +x’

P. P
25 = 3_y27 29 = i o M;, z(t), A; € R*, r is the number of the IF-THEN
a; +x as +x

rules, K; ; denotes the control of the j impulsive instant, A(z)|—,, = z(7; - 7j-1)

9.4 Numerical Simulation

By using fuzzy impulsive T-S design model on (9.2), the membership functions [96]

obtained as

d Pdy
M, — 21 et — 2z N, — 29 N, — (ao+d1) 2 K — Z3
1_€d7 2 — €d y 1 — Pids 2 — Pids 9 1 — Pods ?
1 1 ao+dy (ao+d1) ap+dy
Pod3 3 P Pady 4 p Pidy 25
__ ap+dy _ 4 __ aop+dy _ 5 _ ai+dy
Ky = Pads , L= Pady 7’ Ly = Pady , Or= Pidy ? 0; = Pidy ’
ag+dy aop+d1 aydy a1+dy a1+dy
Pody Pidy
Ro_ % po_ Bds — z6 g — P g aykd T o % _ aitds ™8
L= ﬁdg’ 2= Bds PP Thydy P2 T Pady PPl T Thydy 072 T Pady !
az+dy az+dy a1+di a1+dy
2 Lo o
o 9 _ax+dy
Py = Psdy 7’ Py = Psdy
as+d1 az+dy
and the matrices A’s are calculated using
_ _ Py Py Py
r ex apg+x ap+x ap+x 0 0 0
C1Prys _CiPiys o
A — ap+z a1+ By —mq 0 0
1T ?
C2Poy; ) _CaPys
ao+a Byi aztx ma 0
C3Psys _ C3P3yo CsPs3ys —-m
L ap+x ar1+x a2+ 3_

i =1 to 511, where the matrices A}s are generated using maximum and minimum
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values of z;.s; k = 1 to 9 and, the Defuzzification can be represented as:

(1) = Z hi(2(t)) (A (t)) (9.4)

here hs are given as h;(z(t)) = wi(z(t))/Zwi(z(t)), and w;(z(t)) = HMij(z(t)),

7j=1
i=1to511,j=11t09

This Fuzzy model exactly represents the non-linear system 9.1 in the region

[0,5]x[0,10]x[0,10]x[0,10].

dx s  Pysw Py;x Psysx
dt a+x ag+x ag+x

— = — — BYsyi — M1Ys

dy; — By + CoPyix  CobPyiys _—

dt Ysls ag + x as + x 2

dys  C3P3xy,  C3P3ysys  C3Psyiyo

DT - + — Mm3Ya
ag + a +x as +x

9.5 Results and discussion

In this section, the global stability of the considered intra-specific competition
predator-prey model (9.2) is discussed as discussed in earlier chapters. We have
studied the system (9.1) numerically using MATHEMATICA software to get better
insight of the proposed model.

Calculations were carried by taking the values of the parameters at » = 1.5,
e=02 =04 P =07 P =0.06, P, =08, C; = 0.5, Cy, =04, C5 = 0.36,
my = 0.1, mg = 0.5, mg = 04, a9 = 1.0, a; = 1.0, as = 1.0, d; = 10, dy = 10,
ds = 10, dy = 10 in 9.3 to get the eigen values of [AT + A;](i = 1,2, 3...r) as explained
in the theorems (|83]). It is found that max(\;)=A(«) = 3 then we have chosen

diag[—0.99,—0.99] as impulsive control matrix, such that w = ||I + K|| = 0.01.
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It is noted that the system 9.3 is stable globally when e=1.5, §,=0.1 (at those
above values, In(ew) + A(a)d; = —3.899 < 0). Further, it is observed that the prey-
predator model is unstable when r = 21.2, e = 5.5, 8 = 5.5, P, = 2.8, P, = 2.8,
P; =20, C, =18, Cy =22, C3 =56, m =52 mg =54 mg=0.5, ap = 1.0,
a; = 1.0, ap = 1.0, d; = 10, dy = 10, d3 = 10, dy = 10, since maz(\;) =A(a) = 42.4,
= In(ew) + A(a)d; = 0.041 > 0 for w = 0.01, e = 1.5, §; = 0.1.

Table. 9.1 presents the stability of the system at various values of the present

study.

r e B P1 P2 Pg Cl Cg 03 mi|meo|ms|ao |Gy | Az d1 d2 d3 d4 max(/\i): ln(ew) conclusion
AMa) [+ (@)d;

1.5(0.2]0.4/0.7|0.06|0.8|0.5|0.4/0.36/0.1]0.5|0.4|1.0{1.0|1.0/10{10{10|10 3 -3.899 | stable
2.010.5(0.5/0.8| 0.6 {1.0|0.5/0.4| 0.6 |0.5]0.2|0.5/1.0|1.0/1.0/10{10/10{10| 4.0 -3.799 | stable
2.5 (1.5/0.2(1.8| 1.6 |2.0{0.8]0.2| 0.6 |0.2]0.4/0.5|1.0{1.0{1.0{10{10/10{10 ) -3.699 | stable

21.2|5.5|5.5|2.8| 2.8 |2.0(1.8|2.2| 5.6 [5.2|5.4|0.5/1.0(1.0/1.0/10/10{10(10|  42.4 0.041 | unstable

Table 9.1: Stability Analysis by taking different values of the parameters

The impact of the emerging parameters on prey-predator system 9.1 with T-
S fuzzy impulsive control model is presented in figs. 9.1 - 9.10 by fixing other
parameters at P, = 0.7, P, = 0.06, P; = 0.8, C; = 0.5, Cy = 0.4286, C3 = 0.36,
ag=1.0,a; = 1.0, ay = 1.0, my = 0.1.

The dynamical change on prey-predator population system (z, ys, y;, y2) by vary-
ing intrinsic growth rate of prey (r) parameter under fuzzy impulsive control can be
noted in fig. 9.1 at e = 0.2, 5 = 0.7, my = 0.5, m3 = 0.4, d; = 10, dy = 10, d3 = 10,
dy = 10. It is observed from this figure that, increase in r increases population of
prey.

The effectiveness by varying intra-specific competition (e) parameter of prey-
predator population system (x, ys, ¥;, y2) under fuzzy impulsive control can be noted
in fig. 9.2 atr =15, 8 = 0.7, mg = 0.5, mg = 0.4, d; = 10, dy = 10, d3 = 10,
dy = 10. This figure clearly shows that an increase in e leads to the decreases in the

population of prey, but increases the infected first predator and the second predator
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population.

The influence of prey max time (d;) on prey-predator system is shown in fig.
93atr=15e=02,08=0.7 ms =05 mg =04, d =10, d3 = 10, dy = 10.
This graph makes it abundantly evident that as d; increases, population increases
for prey and first predator but decreases for second predator.

The influence of susceptible first predator max time (ds) on prey-predator system
is shown in fig. 94 at r = 1.5, e = 0.2, § = 0.7, my = 0.5, m3 = 0.4, d; = 10,
ds = 10, dy = 10. This graph shows that as ds increases, prey population decreases
but predators population increases.

The change on prey-predator system with max time of infected first predator
(d3) is shown in fig. 9.5 at r = 1.5, e = 0.2, 5 = 0.7, my = 0.5, m3 = 0.4,
dy = 10, dy = 10, d4 = 10. This figure clearly exhibits that as ds increases, prey and
susceptible first predator population decreases.

The outcome with varying max time of second predator (d,) on prey-predator
system is shown in fig. 9.6 at r = 1.5, e = 0.2, 5 = 0.7, my = 0.5, mg = 0.4, d; = 10,
dy = 10, d3 = 10. This graph illustrates clearly how an increase in second predator
max time decreases the prey population and first predator population and increases
the second predator population.

The effect of transmission coefficient parameter () from susceptible first preda-
tor to infected first predator on prey-predator system is shown in fig. 9.7 at r = 1.5,
e =02, my =05 mg =04, d =10, do = 10, d3 = 10, dy = 10. This graph
shows that as transmission coefficient from susceptible first predator to infected
first predator rise, the population of susceptible first predator decreases.

The vital pattern of prey- predator population (z,ys, y;, y2) by varying mortality
rate of infected first predator (mgy) parameter under fuzzy impulsive control can be
noted in fig. 9.8 at r = 1.5, e = 0.2, § = 0.7, mg = 0.4, d; = 10, dy = 10, d3 = 10,

dy = 10. This figure clearly exhibits that as ms increases, population of susceptible
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and infected first predator decreases.

The change on prey-predator system (z,ys,y;, y2) by varying mortality rate of
second predator (ms) parameter under fuzzy impulsive control can be noted in fig.
99atr=1.5,e=0.2, 6=0.7, my = 0.5, d; = 10, dy = 10, d3 = 10, dy = 10. This
figure clearly exhibits that as mj increases, population of prey and second predator
decreases but population of infected first predator increases.

Finally, the nature of prey-predator system without impulsive control is pre-
sented in fig. 9.10 by fixing all the parameters obtained from T-S fuzzy model at
r=15e=02 =07 P =07 P =0.06 P =038, C; =05, C; =04,
C3 = 0.36, m; = 0.1, my = 0.5, mg = 0.4, ap = 1.0, a1 = 1.0, as = 1.0, d; = 10,
dy = 10, d3 = 10, dy = 10, and initial conditions z(0) > 0, ys(0) > 0, y;(0) > 0,
y2(0) > 0, t = 10. The figure clearly shows how the prey and predator populations

reaches to stability.

9.6 Conclusions

In this work, a predator-prey model with two predator populations and one prey

population is built, but only the first predator population is infected.

e Intrinsic growth rate of prey effects all the four populations. Increase in intrin-
sic growth rate of prey increases population of prey, and decreases population

of susceptible first predator, infected first predator and second predator.

e The population of first and second predators that are infected increases while

the population of prey falls due to increased intra-specific competition.

e The population of susceptible first predators and infected first predators de-

clines as the mortality rate of infected first predators rises.

e Effect of infected first predator max time is to decrease all the four populations.
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e The population of predator decreases due to increase in infection transmission.
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Chapter 10

Conclusions and Scope for Future

Work

The Takagi-Sugeno method has diverse applications in modeling, control, pattern
recognition, and decision-making in systems where uncertainty and non-linearity
play a significant role. Tts ability to combine fuzzy logic with traditional mathemat-
ical models provides a powerful tool for addressing complex real-world problems.

Many fields are based on mathematical models, including ecology, epidemiology,
physics, algorithms, and infectious diseases. In this thesis, we analyzed the stability
of a predator-prey competition model with fuzzy impulsive control by T-S fuzzifi-
cation. According to the references already in existence, the current investigation

covers a variety of ecological consequences and got adequate results.

Significance of Research Findings:

e Stability analysis of prey-predator helps in predicting how populations of

predators and prey will change over time.

e [t provides insights into how ecosystems respond to perturbations, such as

environmental changes or species introduction.

169
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e For conservation biology and wildlife management, stability analysis can guide

strategies to maintain or restore balanced populations.

e Stability analysis can predict the outcomes of introducing natural predators

to control pest populations and avoid unintended consequences.

e This method contributes to the development of mathematical techniques and

theories applicable to various complex systems.

e [t aids in understanding the spread and control of diseases, guiding public

health interventions.
Practical implications of this model:

e Enhanced Control for Nonlinear Systems: The T-S fuzzy impulsive control
model excels in managing nonlinear systems where traditional control methods

may fail.

e Robustness to Disturbances and Uncertainties: The model’s ability to manage
impulses (sudden changes or disturbances) makes it robust against uncertain-
ties. This is particularly useful in environments where external disturbances
are frequent and unpredictable, such as in robotic systems or aerospace appli-

cations.

e Improved Stability and Performance: T-S fuzzy impulsive control can improve
the stability and performance of dynamic systems. By applying impulsive
control actions at specific instances, the system can quickly adjust to changes,

maintaining desired performance levels.

e Applications in Engineering Systems: The model is widely applicable in en-
gineering fields such as automotive systems, power systems, and mechanical

systems.
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In [113]|, Wang et.al. discusses the application of impulsive control in stabilizing
T-S fuzzy systems with time delays, highlighting its practical implications in real-
world systems. In [114], Zhang et.al. offers a comprehensive overview of fuzzy
modeling and control, including the T-S fuzzy model with impulsive control, and
discusses various applications in engineering and technology.

The main results indicate the following findings.
Conclusions from Part-II

For the investigation of global and asymptotic stability of two and three species
Lotka-Volterra predator-prey model, we have used the T-S method, and then pre-

sented the graphical solutions of the problems.
The following are some of the important observations.

e The effect of intra-species competition is to decrease the rate of population

growth as population density increases.

e It has been observed that intrinsic growth rate of prey increases with an in-

crease in prey’s population.

e The half-saturation constants are inversely proportional to predators popula-
tion. Decrease in half saturation constant indicate that predators can achieve
half of their maximum consumption rate at a lower prey density, which means
they are more efficient in utilizing the preys and hence predator population

rises.

Conclusions from Part-111

We have analyzed the effect of disease in prey and predator populations. The dis-

eased population has been split into two sub-classes: susceptible and infected.

The following are some of the important observations.
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e There are less healthy people in the population when the rate of disease transfer

from susceptible to sick people rises.
e A higher death rate results in a smaller population.

Future Scope:

The work presented in the thesis can be extended to analyze the Allee effect and
Time-delay in four species predator-prey models and to study about their stability
using Takagi-Sugeno method. Further, we can use T-S method in several engineering
fields, including near space vehicles, sewage treatment processes and nonlinear active

suspension systems and for analyzing the share market.
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