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Abstract

Predicting the characteristics of heat and mass transfer in natural or mixed
convection is crucial due to its practical engineering applications. Numerous studies
have been conducted on combined heat and mass transfer in Newtonian fluids. How-
ever, it is widely recognized that many fluids used in chemical and related processing
do not adhere to Newton’s classical law and are classified as non-Newtonian fluids.
Various mathematical models have been developed to describe the rheological be-
havior of these non-Newtonian fluids. No single fluid model accurately captures all
the properties of real fluids. As a result, over the past century, several fluid models
have been proposed to characterize the behavior of real fluids. Among these, Jeffrey
fluids introduced by George Barker Jeffrey which is capable of describing the stress
relaxation property of non-Newtonian fluids. The Jeffrey fluid displays an extrinsic
correlation between stress and strain rate. The Jeffrey fluid explains the concepts
of retardation and relaxation time. The aim of this thesis is to study about en-
tropy generation analysis in free and mixed convection heat and mass transfer in
Jeffrey fluid in the presence of inclined magnetic, radiation, chemical reaction, and
Soret effects. The problems considered deal with vertical parallel plates and inclined
parallel plates.

The thesis is divided into four parts and six chapters. Part-I includes a single
introductory chapter (chapter 1), which presents the basic equations for the flow,
heat, and mass transfers of Jeffrey fluids and a review of relevant literature. Part-
IT contains two chapters (i.e. chapters 2 and 3) and deal with inclined magnetic,
chemical reaction, and radiation effects on entropy generation of Jeffrey fluid flow
between vertical parallel plates. Part-III contains two chapters (chapters 4 and 5)
investigates the impact of Soret number, chemical reaction, and angled magnetic
field on entropy generation of Jeffrey fluid flow between inclined parallel plates.

In all the above chapters, using similarity transformations, the nonlinear gov-
erning equations along with boundary conditions are first transformed into a non-
dimensional form. The spectral quasi-linearization approach is used to solve the
resulting system of equations. The impact of Jeffrey fluid parameter and some
other parameters on entropy, velocity of fluid, temperature, and concentration are
presented graphically.

Part-IV consists of a single chapter (chapter 6), which presents the summary
of the thesis with main conclusions and point out various problems which are yet to

be solved in this area of research.
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NOMENCLATURE

Dimensionless  temperature
difference

External magnetic field
Dimensionless concentration
difference

Bejan number

Brinkman number
Concentration.
Dimensionless shear stress
Specific heat

Mass diffusivity

Darcy number

gravitational acceleration.
Grashof number

Thermal, and Solutal Grashof
numbers respectively
Magnetic parameter
Permeability porous medium
Rate of chemical reaction.
Thermal conductivity
Thermal diffusion ratio.

Hall parameter

Buoyancy ratio

Nusselt number
Dimensionless entropy genera-
tion

Pressure

Prandtl number

2

Chemical reaction parameter
Radiation heat flux
Radiation parameter
Reynolds number

Schmidt number

Soret number

Volumetric entropy generation
Sherwood number
Temperature.

Mean fluid temperature.
Velocity components in the di-
rection of x,y and z.
Inclination angle

Coefficient of Solutal expan-
sion

Coefficient of thermal expan-
sion
Dimensionless constant pa-
rameter

Channel angle of inclination
Shear rate

Derivative of shear rate with
respect to time.

Jeffrey fluid parameter
Coeflicient of viscosity
Density

Electrical conductivity
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Chapter 1

Introduction

Introduction

Fluid Dynamics is a scientific field that examines the motion of fluids and the
interaction between solid bodies and fluids. It has extensive implementation across
various disciplines, including Atmospheric science, Astrophysics, Geophysics, Bio-
physics, Oceanography, and Meteorology. Beyond it’s relevance to basic sciences,
Fluid Dynamics is also crucial in numerous engineering fields. In Mechanical and Nu-
clear engineering, it aids in the design of turbines, heat exchangers, pumps, cooling
systems, compressors, fluid couplings, and electro-chemical devices. In Aerospace
engineering, it is essential for designing airplanes with low resistance and high lift to
support their weight. In Civil engineering, it is used for designing dams, water sup-
ply systems, and irrigation canals. In Chemical and Petroleum engineering, it helps
in creating efficient devices for mixing and filtering industrial chemicals, petroleum,
and oils.

Newtonian fluids follow Newton’s law, which relates shear stress and shear rate
to a simple material property known as viscosity. This property is independent of
flow factors like shear rate and time, but it depends on fundamental thermodynamic

variables like temperature and pressure. However, most fluids used in engineering
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and industrial applications do not meet the assumptions of a Newtonian fluid. These
fluids include industrial coatings, architectural paints, drilling muds, hydrogels, lu-
bricants, detergents, shampoos, food industry, and more. Because no fluid model
can exhibit all of the properties of these non-Newtonian fluids, several fluid models
(visco-elastic fluids, power-law fluids, dusty fluids, Micropolar fluids, Oldroyd flu-
ids, etc.) have been proposed. One of the models is the Jeffrey fluid, which was
introduced by George Barker Jeffery. This type of viscoelastic fluid model is used
to describe the behavior of certain non-Newtonian fluids. It extends the Newtonian
fluid model by incorporating both viscous and elastic effects, making it suitable for
modeling fluids that exhibit both solid-like and liquid-like behavior under different
conditions. The Jeffrey fluid displays an extrinsic correlation between stress and
strain rate and explains the concepts of retardation and relaxation time.

The study of fluid flows with the Jeffrey fluid has garnered significant interest due
to its extensive range in application of different fields. This includes fiber suspensions
and pulps, paints, paper pulp, toothpaste, simulate the flow of magma, and the act

of swallowing food through the esophagus and animal blood.

1.1  Jeffrey fluid

The Jeffrey fluid model is used to describe viscoelastic fluids that exhibit both
viscous (fluid-like) and elastic (solid-like) properties. It is particularly useful for
materials that have both relaxation (delayed return to original shape after defor-
mation) and retardation (delayed response to applied stress) characteristics. The
Jeffrey fluid displays an extrinsic correlation between stress and strain rate. The
Jeffrey fluid explains the concepts of retardation and relaxation time. It reduces to
the Newtonian fluid model, which has a linear relationship between stress and strain
rate.

This model is extensively utilized due to its considerable mathematical simplic-
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ity relative to other models. Recently, it has garnered significant interest from
researchers as it offers more accurate approximations for most physiological fluids.
For example, Ellahi et al. [1] investigated mathematical models of nanoparticles
with Jeffrey fluid model in arteries with a tapered shape. Other important fields
where this fluid have applications are Bio-fluid mechanics, blood flow, polymer pro-
cessing, paints, toothpaste, material design, paper pulp, and cosmetics. The field

equations of Jeffrey fluid dynamics [2] are:

T=-pl+S

M .
= I+ Ao’
5 1+A1( Al

where T' denotes Cauchy stress tensor, p represents pressure, S denotes extra stress
tensor, A\; represents relaxation to retardation ratio, Ay represents the retardation
time, I' denotes the shear rate, and T’ represents the derivative of shear rate with

respect to time.

1.2 Magnetohydrodynamics (MHD)

Magnetohydrodynamics (MHD) is the study of the dynamics of electrically con-
ducting fluids, which combines principles from both magnetism and fluid dynamics.
This field examines how magnetic fields interact with and influence the behavior
of conducting fluids like plasmas, liquid metals, and saltwater. The foundational
idea of MHD is that the motion of the conducting fluid can induce electric currents,
which in turn generate magnetic fields. These magnetic fields can interact with the
fluid flow, leading to complex behaviors and phenomena.

The governing equations of MHD merge the Maxwell’s equations from electro-

magnetism and Navier-Stokes equations from fluid dynamics, adapted to account
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for the conductive properties of the fluid. One of the critical effects in MHD is the
Lorentz force, which is the force experienced by the conducting fluid due to the
magnetic field and the electric currents. This force can alter the motion of the fluid,
leading to phenomena such as magnetic damping or magnetic confinement.

Thus, the behavior of an incompressible, electrically conductive fluid influenced
by a magnetic field is described by the MHD equation.

The governing equation of MHD Jeffrey fluid will have the form

o7 . 1 T B
o\ @ V] =T T xap e xBov )

When an electric current flows through a conductor situated in a magnetic field,
the moving charge carriers encounter a transverse force, causing them to be pushed
to one side of the conductor. This leads to a charge buildup on the sides of the
conductor, which counteracts the magnetic influence. Consequently, a measurable
voltage is established between the two sides of the conductor, a phenomenon known
as the Hall effect, discovered by E. H. Hall in 1879. Understanding magnetohydro-
dynamic flows with Hall currents is important in engineering for applications like
magnetohydrodynamic generators, flight magnetohydrodynamics, as well as in Hall
accelerators.

If we assume that the frequency of electron-atom collisions is relatively high, then
we cannot ignore the Hall effect. In this scenario, Sutton’s [3] generalized Ohm’s

law describes the current density J as

J=o{E+qx B—n(JxB)} (1.2)

where 7 denotes the Hall factor and F is the total electric field current which is
neglected due to the assumption that the induced magnetic field is very small.

There are many technical and scientific applications of MHD flow, such as in
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devices like tokamaks and stellarators, magnetic confinement of high-temperature
plasmas, understanding and controlling plasma behavior, devices that convert ther-
mal and kinetic energy from a conducting fluid into electrical power using magnetic
fields, measure the flow rate of blood and other conducting fluids in medical appli-
cations, lubricants, used in plasma-enhanced chemical vapor deposition and other

plasma processes for the manufacturing of semiconductors and thin films etc.

1.3 Heat and Mass Transfer

Heat and mass transfer are fundamental concepts in the study of thermodynam-
ics and fluid dynamics. Heat transfer occurs when thermal energy moves from one
area to another due to temperature differences. This process happens through three
primary mechanisms: convection, conduction, and radiation. Convection involves
the transfer of heat between a solid surface and a moving fluid (liquid or gas). Con-
vection can be natural (due to buoyancy effects) or forced (due to an external force).
Conduction is the process by which thermal energy is transferred through a mate-
rial because of microscopic collisions and interactions between molecules and atoms.
Radiation is a mode of heat transfer that occurs through the emission of electromag-
netic waves. Radiation does not required medium to transfer the heat. Convective
heat transfer is the process of transferring thermal energy between a moving fluid
and a solid surface. It combines the effects of conduction and convection. Convective
heat transfer is divided in 3 distinct scenario: Forced convection, Natural convection
and Mixed convection. Forced convection is a mechanism in which fluid motion is
generated by an external force. Natural convection, on the other hand, is driven
by buoyancy forces caused by density differnces in the fluid. In mixed convection,
the fluid motion is influenced by both external forces and buoyancy forces resulting
from temperature differences in the fluid.

In order to determine how heat is transferred within a medium, we must first
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establish its temperature distribution or temperature field by solving the heat equa-
tion, which is a statement of first law of thermodynamics. When dealing with Jeffrey
fluids, the local equilibrium model can be applied to derive the appropriate energy
equation, which yields the appropriate equation.

poy | 5 + @] =K VT 4 (V) 5 (90 4 (90 (94

ot 14+ X (1.3)

+4n[(V@) : (V)T + 4 [(V@) : (VO)]

where k¢ denotes the thermal conductivity, 7" is the temperature, and @ represents
the angular velocity.

The process by which a component in a mixture travels from an area of higher
concentration to an area of lower concentration due to their random thermal motion
is called mass transfer. Mass transfer occurs via two different mechanisms: con-
vection and diffusion. Convection mass transfer happens between an exposed solid
surface and a moving mixture of fluid species. Mass transfer processes are often de-
scribed using differential equations that account for the conservation of mass. This

equation provides the mass conservation.

%—f 4 (§-V)C =V - (DVC) (1.4)

where C' represents the concentration and D is the solutal diffusivity.

1.4 Soret Effect

The Soret effect, also known as thermal diffusion is a phenomenon in fluid mix-
tures where different species of particles migrate along a temperature gradient [4].
In the majority of studies involving heat and mass transfer processes, the Soret effect

is often overlooked because it is generally considered to be less significant compared
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to the effects described by Fourier’s and Fick’s laws. Fourier’s law. This effect have
significant application in microfluidic devices, where precise control over particle and
molecule movement is crucial, in separating and sorting biological molecules, such as
proteins and nucleic acids, in biomedical research and diagnostics, in isotope sepa-
ration processes and in enhancing oil recovery, etc. In these applications, controlling
species movement through temperature gradients enhances efficiency and precision,
highlighting the practical importance of the Soret effect in various scientific and
industrial fields.

With Soret effect (see Nield and Bejan [5]), the modified concentration equation

in steady state can be written as

§-VC =V - (DVC + DorVT) (1.5)

where D represents the mass diffusivity and Der/ D is considered as Soret coefficient

(number) of the medium.

1.5 Chemical Reaction

Chemical reactions play a important role in heat and mass transfer processes.
In various materials processing systems, chemical reactions can play a crucial role,
such as production of elemental bromine electrochemically in porous electrode sys-
tems [6], glass melt flows with sodium oxide and silicon dioxide [7], and the process
of creating intumescent paints for use in fire safety [8]. Furthermore, investigating
combined heat and mass transfer alongside chemical reactions and thermophoresis
effects find critical applications in various fields such as combustion, chemical engi-
neering, industrial and environmental science. In combustion processes, the intricate
interplay between heat release from chemical reactions and mass transfer of reactants

and products determines efficiency and emission profiles. In chemical engineering,
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reactors often rely on precise control of heat and mass transfer to optimize reaction
rates and yield, with thermophoresis (the movement of particles due to temperature
gradients) playing a significant role in particle deposition and catalyst efficiency. In
the energy sector, they are crucial for processes like combustion in power plants
and internal combustion engines, where chemical energy from fuels is converted into
mechanical or electrical energy. Environmental applications include atmospheric
chemistry, where pollutants undergo complex chemical reactions influenced by heat
and mass transfer, while thermophoresis affects the distribution and deposition of
aerosols, impacting air quality and climate models.

Numerous researchers have explored the impact of chemical reactions on heat
and mass transfer in various scenarios, including channels, past vertical plates, and
within concentric cylinders.

The concentration equation in a steady state for chemical reaction can be ex-

pressed as

§-VC =V -(DVC) — ki (C — Cp) (1.6)

where k; represents the rate of chemical reaction.

1.6 Entropy Generation

Entropy generation is a concept from thermodynamics that refers to the in-
crease in entropy that occurs within a system during a process. In thermodynamics,
it quantifies the increase in entropy resulting from irreversible processes such as
friction, heat transfer across finite temperature differences, and fluid flow through
dissipative channels, that lead to an increase in entropy. This increase in entropy is
often unavoidable and is a fundamental aspect of the second law of thermodynamics,
which says that the entropy of the system tends to grow over time.

The importance of entropy generation lies in various engineering and scientific
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applications because it plays a role in the efficiency and performance of many sys-
tems. In heat-exchanger design, the goal is to maximize fluid flow and heat transfer
with minimal entropy generation in order to achieve high overall efficiency of the
system. In thermal power plants, improvement in efficiency of energy conversion pro-
cesses reduces fuel consumption and emission of greenhouse gases as a consequence
of reduced entropy generation. One of the goals in developing an understanding
of entropy generation is to optimize chemical and separation processes so they can
be performed with minimal energy expenditure and maximal product yield. For
refrigeration and air conditioning systems, a decrease in the entropy generation aids
in achieving enhanced cooling. Furthermore, in renewable energy production, min-
imization of entropy generation maximizes energy capture and efficiency in conver-
sion. Overall, controlling entropy generation is fundamental to designing sustainable

and high-performance systems across various industries.

1.7 Spectral Quasi-linearization Method

Non-linearity is a crucial aspect of applied mathematics, as most of the real-
world problems are non-linear in nature. Lately, much attention has been paid to
finding more efficient and effective solution methods for both analytical and numer-
ical approximations of non-linear models. Obtaining exact or approximate solutions
for these equations is important and interesting, but it’s also a challenging task. De-
spite the availability of high-performance supercomputers and quality computation
software such as Mathematica and Maple, it’s still difficult to obtain numerical ap-
proximations for solutions of non-linear ordinary differential equations. The spectral
quasi-linearization method (SQLM) is a commonly-used approach to obtain numer-
ical approximations of non-linear problems. Srinivasacharya et al. [9] applied a nu-
merical method for solving nonlinear problems using SQLM. This method provides

a computationally efficient and accurate solution by employing a rapidly convergent
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series. The SQLM is a versatile method that can solve various types of nonlin-
ear equations, including coupled, decoupled, homogeneous, and non-homogeneous.
Scientists have applied this method to solve engineering problems.

In contrast to all other known numerical techniques, including the Adomian’s
decomposition method, the Runge-Kutta method, and the Finite Difference Method,

the SQLM has the following advantages:

e By exploiting the spectral properties of the linearized system, SQLM can

achieve fast convergence, especially for stiff or highly nonlinear problems.

e The method can provide accurate solutions even for challenging ODEs where

traditional techniques may struggle.

e SQLM is relatively robust and can handle a wide range of nonlinearities and

stiffness properties.

e SQLM often exhibits good numerical stability properties, which are crucial for

maintaining accuracy and reliability during the solution process.

Later Kaladhar et al. [10], Reddy et al. [11], and Zare et al. [12] employed the spec-
tral quasi-linearization method (SQLM) to address nonlinear fluid-related problems

in fluid dynamics.

1.8 Literature Survey

The study of natural convection heat and mass transfer and fluid flows in vertical
channels has been extensively researched for many decades because of their broad
range of applications in heat exchange processes. This includes solar collectors,
passive solar heating, electronic cooling, room heating radiators, and heat removal
in nuclear technology. Elenbaas [13] conducted experimental and theoretical anal-

ysis on natural convection between isothermal parallel plates in 1942, proposing a
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optimisation of heat transfer. The study conducted by Cohen and Rohsenow [14]
examined the ideal thermal distance for natural convection flow between two vertical
parallel plates. Hajizadeh et al. [15] investigated the unforced convective flow of a
nanofluid between vertically aligned parallel plates. Tanveer et al. [16] explored the
free convection flows of nanofluids by taking the generalized fractional thermal flux
into account. Ali et al. [17] investigated the influence of magnetic field and heat
transfer on the phenomenon of free convection in MHD Casson fluid flow occurring
between parallel plates. Bako and Ajibade [18] explored the impacts of g-jitter on
free convection Couette flow within a vertical channel.

Heat and mass transfer in mixed convection flow in a vertical channel has at-
tracted attention over the years due to its diverse applications, such as in thermal
Comfort in buildings, spacecraft thermal control and in chemical reactors. Numer-
ous researchers have investigated the problem of heat transfer and fluid flow in mixed
convection between vertical parallel plates, using both analytical and primarily nu-
merical methods. The research by Cheng et al. [19] dealt with the phenomenon of
heat transmission and flow reversal in mixed convection through a vertical channel.
Azizi et al. [20] investigated the buoyancy impact on mixed convection laminar flow
in a vertical channel. The researchers looked at both uphill and downward motion.
Heat transport in a partially heated vertical duct under mixed convection was ex-
amined by Celik et al. [21]. Xu [22| examined the combined convective motion of
a hybrid nanofluid within an inclined channel. The top wall of the channel exhibits
slip behavior due to a patterned surface, while the heat flux remains constant along
the walls. Ullah and Alkinidri 23] investigated the influence of viscosity fluctuations
in mixed convective flow along a sloping heated plate is explored in the context of
reduced gravity conditions.

Porous media flow research is a multi-disciplinary scientific discipline that in-

cludes hydrogeology, fluid mechanics, environmental engineering, petroleum engi-
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neering, and many others. This science area describes the movement of fluids
through materials whose structure contains interconnecting voids. This illustrates
the relevance of porous media in the practical solutions of problems related to water
management, energy production, protection of the environment, and many other
engineering disciplines. Yang et al. [24] established a model to describe the flow
of water through a channel embedded with a polymer gel, which is considered an
elastic and deformable porous medium. Hayat and Abbas [25] studied second-grade
MHD fluid flow through a porous medium. Ellahi and Afzal [26] examined the third-
grade fluid flow through a pipe in porous medium. Fiza et al. [27] examined the
magnetohydrodynamic nanofluid flow with porous medium between parallel plates.
Abou et al. [28] researched the hall current effect on nanofluid flow between two par-
allel plates in a porous media. Sudarmozhi et al. [29] analyzed the MHD Maxwell
fluid flow over a flat, porous surface, considering the effect of radiation and heat
generation.

In recent years, various elementary flow problems related to classical hydrody-
namics have garnered renewed interest within the broader framework of magneto-
hydrodynamics (MHD). Following the groundbreaking research by Hartman and
Lazarus [30] on the effect of magnetic fields on the laminar flow of viscous fluids
between parallel plates, numerous researchers have expanded upon existing hydro-
dynamic solutions in various flow geometries to incorporate the impact of mag-
netic fields, particularly in cases where the fluid exhibits electrical conductivity.
Many researchers have studied the MHD flow and heat transfer of different types of
non-Newtonian fluids (Axford [31], Jahanshah and Vireshwar [32], Chamkha [33],
Kurtcebe and Erim [34]). In most MHD flow problems, the Hall term in Ohm’s law
is neglected. But in the event of a strong magnetic field, the effect of Hall current
becomes important and can’t be neglected. Elshehabey et al. [35] examined natu-

ral convection in a curved L-shaped enclosure containing copper/water nanofluids
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operating on a differentially heated wall under the influence of an angled magnetic
field. Bondareva et al. [36] examined the impact of an angled magnetic field and a
local heater on melting and natural convection heat transfer in a cubical chamber
filled with pure gallium. Convection study of radiative nanofluid flow with an an-
gled magnetic field through porous media over a stretching surface was studied by
Hussian and Sheremet [37].

The study of problems involving the Soret effect with various surface geometries
has garnered significant attention from researchers across different fields. These
studies are crucial for understanding heat and mass transfer phenomena in diverse
engineering applications. Dursunkaya and Worek [38] investigated thermal-diffusion
and diffusion-thermo impacts in steady and transient natural convection from a ver-
tical surface. The Soret effect was examined by Sheri and Raju [39] on an unsteady
MHD convective flow via a semi-infinite vertical plate, taking into account the vis-
cous dissipation. Mandal et al [40] conducted a study using an inclined stretching
plate with different surface conditions to explore the characteristics of the Soret ef-
fect and magnetohydrodynamics. Mishra and Panda [41] investigated the effect of
Soret on the hydromagnetically mixed convective flow passing through the center
of infinite vertical plates. Durojaye et al. [42] employed a numerical method called
method of lines to examine the impact of Dufour and Soret effects on heat and mass
transfer in a naturally convecting MHD Couette flow.

Heat transfer is a common occurrence in various biological processes, and it
usually happens through conduction, convection, or radiation. Unfortunately, such
processes can lead to energy losses, which may result in disorder. To prevent this
from happening, researchers have been using entropy generation analysis as a pow-
erful tool for reducing energy waste or maximizing energy utilization to improve
system performance. Recently, there is a growing interest in reducing energy waste

in thermal processes. Tasnim et al. [43] focused on how efficiently energy is used
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within a fluid flowing through a porous channel when a magnetic field is present.
They utilized the concept of generation of entropy to carry out the analysis. Odat
et al. [44] examined the impact of a magnetic field on the formation of entropy in
fluid flow across a horizontal plate. The method of entropy generation minimiza-
tion was used by Ibanez et al. [45] to optimize the MHD flow with finite electrical
conductivity between two endless parallel walls. Jery et al. [46] examined the in-
fluence of external magnetic field on entropy due to free convection. Abbas et al.
[47] examined the entropy production in MHD viscous fluid flow with radiation im-
mersed in a vertical permeable channel. Jayaprakash and Patil [48] demonstrated
the concept of irreversibility analysis for mixed convective Casson fluid flow in a
vertical microchannel with radiation effect. Iftikhar et al. [49] conferred the entropy
production to MHD mixed convection in a saturated fluid in a square cavity.

A number of studies have been reported in the literature focusing on the prob-
lem of combined heat and mass transfer with chemical reaction effect. Exothermic
reaction effect on fully developed mixed convection flow in a vertical channel was
studied by Pop et al. [50]. Dash et al. [51] explored the effect of chemical reaction
in MHD flow of micropolar fluid with heat source/sink between two parallel plates.
The study is aimed at understanding the influence of chemical reactions on micropo-
lar fluid behavior under the impact of magnetic fields in varying thermal conditions.
Mondal and Bharti [52| presented SQLM solution of boundary layer flow of MHD
nanofluid with chemical reaction. Awais and Salahuddin [54] investigated thermo-
physical properties of MHD fluid model with the influence of chemical reaction and

energy dissipation.

1.9 Aim and Scope

Motivated by previous research and recognizing the importance of the appli-

cations in this thesis, the authors aim to study the entropy generation linked to
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convective heat and mass transfer of Jeffrey fluid. This investigation includes con-
siderations such as the Hall effect, inclined magnetic effect, chemical reaction effect,
and Soret effect. The problems under consideration involve both vertical parallel
plates and inclined parallel plates. The problems were solved utilizing the spectral
quasi-linearization method. Subsequently, graphical solutions for these problems

were presented.

1.10 Outline of the Thesis

This thesis divided into four parts and ten chapters.

Part-I consists of a single Chapter-1 which gives an introduction, providing
the motivation for the investigations conducted in the thesis. A thorough review of
the relevant literature is provided to highlight the importance of the issues being
examined. Additionally, the fundamental equations that describe the fluid flow of
Jeffrey fluid are presented.

Part-II deals with the irreversibility analysis in natural/mixed convection flow
of Jeffrey fluid through a channel with chemical reaction, angled magnetic field,
radiation, and Hall effects. This consists of two chapters (chapter 2, and 3). In
each of these chapters, the similarity transformations are first introduced to con-
vert the nonlinear governing equations into dimensionless form. In the sequel, the
transformed equations are solved using the approach of Spectral Quasi-linearization
Method (SQLM).

In Chapter-2, we investigate the Hall and radiation effects on entropy gen-
eration of steady convective Jeffrey fluid flow in a vertical channel under angled
magnetic field in porous medium. The non-dimensional profiles of velocities, tem-
perature, concentration, and entropy are graphically presented for various values of
hall current, magnetic parameter, Jeffrey fluid parameter, radiation parameter, and

Soret parameter.
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In Chapter-3, we discuss the generation of entropy of steady convective Jef-
frey fluid flow between two vertical parallel plates under navier-slip condition. The
effects of Hall parameter, Jeffrey fluid parameter, and magnetic parameter on the
dimensionaless entropy, velocities, temperature, and concentration are discussed.

In the above chapters, two types (cases) of problems are considered. The first
type is of natural convection and the second type is of mixed convection flow.

Part-III deals with the entropy generation of steady, incompressible free/mixed
convection flow of Jeffrey fluid through an inclined channel with an angled magnetic
field, Hall current, radiation, Soret, and chemical reaction effects. This consists
of two chapters (chapters 4 and 5). In these two chapters, the similarity trans-
formations are first introduced to convert the nonlinear governing equations into
dimensionless form. In the sequel, the transformed equations are solved using the
approach of SQLM, as done earlier.

In Chapter-4, we investigate the generation of entropy in steady convective Jef-
frey fluid flow in porous medium between two inclined parallel plates. The graphical
display of the acquired results demonstrates the impact of the magnetic parameter,
Soret number, Jeffrey parameter, and radiation parameter on the dimensionless ve-
locity, temperature, concentration, and entropy.

In Chapter-5, we discuss the entropy generation of steady convective heat and
mass transfer between inclined parallel plates saturated with Jeffrey fluid under
navier-slip condition. The effect of magnetic parameter, Hall current, Soret num-
ber, and Jeffrey fluid parameters on the non-dimensional velocities, temperature,
concentration, and entropy are discussed.

In the above mentioned chapters 4 and 5 in part-I11, two types (cases) of problems
are considered. The first type is of natural convection and the second type is of mixed
convection flow.

Part-IV has only one chapter (Chapter - 6), which sums up the important
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findings out of the earlier chapters and provides suggestions for future research

directions.



Part 11

Entropy Generation in Jeffrey Fluid

Flow between vertical parallel plates.
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Chapter 2

Irreversibility Analysis of Jeffrey
fluid low between two vertical plates
with porous medium under the effect

of angled magnetic field !

2.1 Introduction

The study of natural and mixed convection flow between two parallel plates has
garnered significant theoretical and practical attention. Heat and mass transfer in
Jeffrey fluid plays a crucial role in various fields such as industrial manufacturing
processes, aerospace engineering, and chemical engineering. The study of mixed
and natural convection in vertical channel is relevant to many heat transfer applica-
tions. These include processes in polymer manufacturing like extrusion and injection

molding, as well as drug delivery systems, reactor design, and even nuclear reactors.

!Case(a):Published in “Special Topics and Reviews in Porous Media”, (2024). DOL:
10.1615/Special TopicsRevPorousMedia.2024048949
Case(b): Published in “Special Topics and Reviews in Porous Media”, (2024). DOLI:
10.1615/Special TopicsRevPorousMedia.2024048872
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Several researchers have discussed the importance and advancements of heat and
mass transfer [55, 56]. Bakar et al. [57] studied the mixed convection effect in a
lid-driven cavity with an angled magnetic field. Kumar and Premachandran [5§]
examined the transition phenomena occurring in a natural convection flow within a
tilted parallel plate channel. A vertical porous channel was used to study how hall
and ion slip affected mixed convection of Jeffrey nanofluid by Channappa et al. [59].

In this chapter, we examine the entropy generation in the flow of Jeffrey fluid
between two vertical parallel plates, influenced by Hall current, heat radiation, and
angled magnetic field. The resulting flow equations are solved using SQLM. The
impact of various relevant flow parameters on entropy, velocity, temperature, and

concentration is examined.

2.2 Mathematical formulation

The physical configuration of this chapter (figure 2.1) involves two infinitely extended
parallel plates. It exhibits that the plates are separated with a distance of 2d.
C1,T1,Cs, Ty are the concentrations and temperatures at both plates respectively.
An external magnetic field By is acting on plates in an inclined direction, which
makes o angle with the base. Further, it is assumed that the considered Jeffrey fluid
flow is steady, incompressible, and laminar. Since the limits are infinitely extended
along the xr— axis, the flow parameters are presumed to be solely dependent on y.
Except for density changes in the buoyancy force term, fluid parameters are assumed
to be constant. Therefore, these conventions are naturally genuine and practically
applicable.

For this version, the governing equations are derived as follows:

dv

d_y =0 = v = vg = constant (2.1)
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Figure 2.1: Diagrammatic representation of the fluid flow.

du po d*u oB2cosa
vo— = — -
P Ody 14+ A dy? 14+ mPcos’a

(ucosa — YpStna + mwws?a)

dp ; ; pu 22)
—gp T P9 Pr(T =T) + pg"Be(C = C1) — (SO
pvoc(lj—l; =7 f)q CZ;) + 1135;0;1(50[ (mucosa — w — mugsina) — ﬁ (2.3)
pcpvo(fl—z = kf% - Cfiqyr s fAl ((Z—Z)Z + (2—3)3 (2.4)
UO% = D‘CZ;TC; — ki (C = Cy) + DT[;T% (2.5)

where ¢, represents specific heat, g* represents the gravitational acceleration, k;
denotes thermal conductivity, k is permeability parameter, p is the density, m =n o
By is the Hall parameter, o is the electric conductivity, k1 denotes chemical reaction,
1 represent the viscosity, fr and ¢ denote the thermal and solutal expansion, T},
is the mean fluid temperature, D denote the diffusivity of mass, K1 represent the

ratio of thermal diffusion and the radiation heat flow is denoted by g,.
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The boundary conditions for this problem are given by

u=w=T-T1=C—-C; =0, wheny=—d
(2.6)
u=w=T-T,=C—-Cy=0, when y=d.

In this chapter, two types (cases) of problems of (a) natural convection and (b)

mixed convection are considered.

2.2.1 Case (a): Natural convection

Natural convection flow is due to buoyancy forces, with the assumption that there

is no external pressure gradient (g—p =0).

x_

similarity transformations for this given problem is given as

T O T e SCL)

In equations (2.2) - (2.5), Non-dimensional equations are obtained as
f"=Re(L+A)f +(1+ )0+ ¢) »
_ H‘I2j_0:rlo;<010;$1) (feosa — Asina 4+ mgcos*ar) — o = 0 =

Ha*cos*a(1 + ;)

g" — Re(14+ M\)g' + (mfecosa — g — mAsina) — Di =0 (2.9)

1 4+ m2cos?a a
4 BrGr? BrGr?
1+ -Rd ) 0" — RePrd + 7?4 2= 2.10
(*3 ) R R LR E W (2.10)
SeSrd” + ¢" — ReScd’ — QScp =0 (2.11)

with

f=9g=0=¢=0, whenn= -1
(2.12)

f=9g=0, 0=¢p=1, whenn=1
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k d
where Da = P represents the Darcy number, Re = represents Reynolds num-

DKr(Ty — T,
ber, Sr = (T ) is the parameter of thermo diffusion, Pr = Hp is Prandtl
VTm(CZ - Cl) kg
Ty —Ty)d? 2
number, GT:M is thermal Grashof number, Br = BT e
U2 kfdQ(TQ — Tl)
: o . , Re v
notes Brinkman number, Ha = dBy, /| — is the magnetic parameter, A = o Sc = D
14 r
40T3 kid
is the Schmidt number, Rd = ka k:g denote the Radiation parameter, and () = =
! Vo

is the chemical reaction parameter.

The shearing stress, as well as the heat and mass fluxes can be calculated from

du dT’ dC
Tw = Md—y ly=td; Guw = _kfd_y + @ | ly=tds Gm = _Dd_y |y=za

Tw . .
The dimensionless shear stress Cy = — is given by ReCl, , = f'(1) [4=-1,1-
Py ’

The Sherwood number Sh = ¢,,d/D(Cy — C) and Nusselt number Nu = ¢, d/k¢(T> — T1)

for this problem are given by

/ 4 /
Shiz = =[] lp=—1,1; Nurz=— [1 + ng} 0'(1) lye—11 -

Solution of the problem using SQLM

The set of coupled non-linear equations (2.8) - (2.11) is numerically solved with
boundary conditions (2.12) using the Spectral Quasi-Linearization Method (SQLM)
[60]. This method uses Taylor series expansion to linearize the differential equation
and build the iteration scheme.

Next applying the SQLM to solve the equations (2.8) - (2.11) by assuming the

approximate solution as f,., g., 6,and ¢,. Then the improved solutions are f,,1,
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9ri1, O-11and ¢,.,1. The following describes an iterative model based on SQLM:

1
fip1— R6<1+)‘1)fl;+1+(1+/\1>(QT+1+¢T+1)+a1fk+1+a29k+1_mfk—i-l =az (2.13)

1

Gerr — Re(1+ M)gpyy + aafegr + asgrer — Egkﬂ = ag (2.14)
a79;/+1 — RePT8;+1 + Cbgf]éJrl + agg;€+1 = aq9 (215)
¢y — ReSce, | — QScdpiq + SeSro ;=0 (2.16)
where
Ha*(1 + \j)cos*a mHa*(1+ A\)cos’
a; = — ag = — )
1+ m2cos’a 1 4+ m2cos?a
AHa?(1 + A\)cosasina mHa?*cos®(1 + A1)
a3 = — 22 B 2 a2
1+ m?cos?a 1+ m?cos
" Ha*(1 4 \)cos’a AmHa*cos*asina(1l + A\p)
= — g =
b 14 m2cos?a '’ 0 1 4+ m2cos?a
4 2BrGr? 2BrGr? BrGr?
=|14+=)Rd, ag= L Gg= g = 2 2
( ) 8 1+ Ay fk 9 1+)\19k 10 (1+)\1)(k gk)

The preceding system (2.13) - (2.16) is an iterative system of linear differential
equations which solved for r = 1, 2, 3, ... The quasi-linearization scheme in this study
was solved using the Chebyshev pseudo-spectral method. The iteration procedures
((2.13) — (2.16)) can be solved step by step for F, 1, G,11, ©,41 and ®,,; by taking
the values of r as 1, 2, ... with starting approximations fy, go, 0o, ¢o respectively. To
solve equations (2.13) - (2.16), we discretize them and utilize the Chebyshev spectral
collocation method. This method employs a differential matrix, denoted as D,

by introducing the collocation points.

n; = cos]jvl, (j=0,1,2,3..N,)
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Now SQLM makes the entire system in matrix form as

A-TXT+1 = Br
where ) )
All A12 A13 A14
AT _ A21 A22 A23 A24
A31 A32 A33 A34
_A41 A42 A43 A44_
T
Xry1 = |:Fk+1 Gri1 Opp (I'k+1:|
T
B, = [Ml M, M; M4}
where
1
A11:D2—R€<1—|—)\1)D+CL1—E, Am:ag, A13:(1—|—)\1)*I, A14:(1+)\1)*[,

Agl = Ay, A22 = D2 - RG(]_ + /\1)D + a5 — A23 = O, A24 = O,

1
Da’
Asi = asD, Asy =agD, Aszz=a;D*— RePrD, Az =0,

A =0, Ap =0, Ay =ScSrD?* Ay = D?— ReScD — QSe.

_ fr+1(&o) _ 9r+1(60) 0r41(%0) _ bry1(60) _
fr+1(§1) gr+1(51) 97~+1(§1) ¢r+1(fl)

Fr = , Gy = , Ok = , Py =

| fra(€,) | 9r+1(8,) | | Or1(En,) | | Or41(En,) |
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az($o) ag(&o) a10(&o)
M, — a3(51) M, — GG(fl) M, — alﬂ(gl) M, =0
_as(sz)_ _CL6(§N1)_ _alo(sz)_

Here O and I are the zero and identity matrices of order (N, + 1).

The numerical solutions using SQLM is obtained as

XT+1 = Ar_lBr

Entropy generation

Entropy generation analysis is crucial for designing efficient thermal devices. Be-
cause entropy minimization helps to maximizing the efficiency of ongoing thermal
processes. Thermodynamics tells us that when heat transfer occurs in a system, the
effects are believed to be thermodynamic reversibility and entropy generation. Since
the transfer of heat in flowing fluids is not a purely reversible process, irreversibility
must be considered when such systems undergo an analysis in thermodynamics. The

2" law of thermodynamics provides a framework for calculating the local rate of

Sgen =

entropy generation [61, 62|, which is calculated as follows:
k¢ {1 160T§’] [dT v

2 du\ dw\?| RD [dC\*?
T2 sk | lar | T \ay) T\a ) | T e Vay
5 f y o(1+X) | \dy dy Co \ dy

D [/dT B2
+ F;_O ((cil_y) (%) + kL%(UQ +w?) + JTOO [w2 + (ucosa — Uosina)g}

(2.17)

The first term in the right hand side of equation (2.17) is due to heat transfer, the
second term because of energy dissipation due to fluid viscosity, the third and fourth

are because of mass transfer, the fifth one due to porosity, and the magnetic field
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is responsible for the sixth. The expression for rate of entropy generation (Sge,)o is

determined by
ki(Ty — T1)?

2.1
TP (2.18)

(Sgen)o =

By using equations (2.17) and (2.18), the creation of non-dimensional entropy can

be expressed in the following manner:

S
Ns: gen
(Sgen)O
4 BrGr? eB? eB
Ns: 1 “Rd 9/2 2 2 e WPV _19//
L G| 0 4 4 )+ S+ S
BrGr? BrGr?Ha?

2, 2 2 C Neina)2
DaA, (f*+9°)+ T (9 + (feosa — Asina)?)

where Ay, Br, By, Gr, Rd, ¢, Ha and Da are dimensionless temperature difference,
Brinkman number, dimensionless concentration difference, Grashof number, thermal
radiation parameter, dimensionless constant parameter, magnetic parameter, Darcy

number, respectively, which are given by

Rd — 40’T§7 - /M}2 ’ Gr — gﬂ(TQ_Tl)dg’ - RDCO’
kfk’* kfd2(T2 —Tl) v2 kf
T2 - Tl Cg — 01 (2 k
A = By =2 Ha=dBy,|-, Da=—
1 To ) 1 C() ) a 0\/;7 a 2

Results and discussion

The analytical solutions for equations (2.8), (2.10), and (2.11), along with their
boundary conditions (2.12), were derived without considering the brinkman number
(Br), magnetic parameter (Ha), chemical reaction parameter (@), and Jeffrey fluid
parameter (A1), along with inclination angle at & = 60°. A comparison was made
between these analytical solutions and the solutions obtained using SQLM, which are

presented in Table 2.1. The results of comparisons show a high level of agreement.
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As a result, the SQLM code can be utilized with assurance to investigate the topic
addressed in this research.

Figures 2.2 - 2.7 depict how these parameters affect the aforementioned variables,
with @), Re, Pr, Sc, Gr, Da by fixing their value at 2, 2, 0.71, 0.22, 10, and 2,
respectively.

Figure 2.2 illustrates the impact of Ha on velocities, temperature, concentration,
and entropy generation when Sr = 10, a = n/3, m =2, Rd =0.2, \;=0.5, Br =
0.5. It is seen from figures 2.2(a) and 2.2(b) that the velocities magnify as Ha
magnifies. The magnetic field is inclined at an angle o > 0, which implies that the
drag force cannot be produced in the flow and cross-flow directions. Figure 2.2(c)
illustrates that as Ha increases, the fluid temperature also rises. It is observed from
figures 2.2(d) and 2.2(e) that as Ha increases, the concentration of fluid and entropy
generation increase.

The influence of m on velocities, temperature, concentration, and entropy gen-
eration can be seen in figure 2.3 at Sr = 10, a=n/3, Ha =2, Rd =0.1, A\;=0.1 and
Br = 0.5. Figures 2.3(a), 2.3(b) and 2.3(d) reveals that the flow velocity, cross-flow
velocity, and concentration decreases as m increase. This is because the magnetic
field is inclined at an angle of @ = 7/3, which causes the hall effect to generate
charge in the direction of inclined plates, thereby making it unable to act as a drag
on the fluid. Figures 2.3(c) and 2.3(e) show that as m increases, the fluid tempera-
ture and entropy generation also increases. The hall current plays a crucial role in
magnetohydrodynamic flows, as it introduces additional complexity in fluid motion
and magnetic field distribution.

The influence of Rd on velocities, temperature, concentration, and entropy gen-
eration can be noticed in figure 2.4 at a=n/3, Sr = 3, Ha =2, m =2, \;=0.5 and
Br = 1. It is noted from figures 2.4(a) and 2.4(b) reveals that as Rd increases, the

flow velocity rises while the cross-flow velocity falls. Figures 2.4(c) and 2.4(d) shows
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that the temperature of the fluid goes up and concentration goes down as the value
of Rd increases. Figure 2.4(e) reveals that entropy generation fall as the radiation
parameter increase.

The effect on « on velocities, temperature, concentration, and entropy generation
can be observed in figure 2.5 by fixing the other parameter at Sr=10, Ha=2, A;=0.1,
m=2, Rd=0.5 and Br=1. Figures 2.5(a) and 2.5(b) reveals that as « increase, the
flow velocity increase while the cross-flow velocity decrease. Figures 2.5(c) and
2.5(d) shows that increasing in « leads to a fall in dimensionless temperature but
a rise in concentration. This behavior occurs because raising the inclination angle
of the applied magnetic field reduces the drag force, which enhances the net flow in
the fluid. Figure 2.5(e) shows that the entropy generation increase as « increase.
An inclined magnetic field is used in magneto-hydrodynamics generators to convert
the kinetic energy of hot, electrically conducting fluid into electrical energy.

The effect on A\; on velocities, temperature, concentration, and entropy genera-
tion can be noted in figure 2.6 by fixing the other parameter at Rd=0.1, Sr = 10,
Ha =1, m =2, a= 7w/3 and Br = 0.5. Figures 2.6(a) and 2.6(b) indicates that as A\
increases, the flow and cross-flow velocity both fall. Figures 2.6(c), 2.6(d) and 2.6(e)
shows that a rise in \; leads to a fall in fluid temperature but rise in concentration
and entropy generation.

Figure 2.7 demonstrates how the parameter Sr affects velocity, temperature,
concentration, and entropy generation when other parameters are fixed at a = /3,
m =2, Ha = 2, \; = 0.5, Rd=0.2 and Br = 2. Figures 2.7(a) and 2.7(b) demon-
strate that increasing m causes the flow and cross-flow velocity both decrease. Fig-
ures 2.7(c) and 2.7(d) reveal that the fluid temperature decrease while the concen-
tration increase as St increase. Figure 2.7(e) reveals that as Sr increase, entropy
generation increase but decrease near the plate y = d. The soret parameter plays a

role in mass transfer in multi-component fluid systems and can significantly impact
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flow behavior, particularly in situations involving heat and mass transfer.

Table 2.2 examines how the coefficient of skin friction, heat transfer rate, and
mass transfer rate change under the influence of various parameters. These pa-
rameters include the Hall current (m), inclination angle («), magnetic parameter
(Ha), Soret effect (Sr), radiation parameter (Rd), and Jeffrey fluid parameter (),
while keeping other values at Q=2, Re=2, Pr=0.71, Br=0.5, S¢=0.22, Gr=10 and
Da=2. As the values of the magnetic parameter, inclination angle, and Jeffrey fluid
parameter increase, the skin friction coefficient increases at first but lowers towards
the final plate. However, a reverse tendency is seen as m increases. The friction
factor decreases at both plates as Sr and Rd increases. The finding shows that
when Sr, a, m and \; increase, the heat transfer rate rises at y = —d plate and
falls at y = d plate, whereas the opposite tendency is seen as Ha increase. The rate
of heat transfer decrease at both plates as Rd increase. As for the mass transfer
rate, the table shows that it rises at both walls as Sr, a, and \; increase, whereas
the opposite tendency is observed as Rd increases. The rate of mass transfer rise at
the starting plate but fall at the terminal plate as m increase whereas the reverse

tendency is observed with a rise in magnetic parameter.
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Table 2.1: Comparison between exact solution and SQLM solution for the case when
A=0, Br=0, Sr=0, ) =0, Da =1 and Ha=0.

/ 0 ¢
T | Exact | SQLM Exact |SQLM | Exact | SQLM
1 |0 —1.05x 1015 | 0 0 0 —15x 1015
205 | 0.090302 | 0.090311 0.179046 | 0.179112 | 0.2188 | 0.2185
0 |0.21928 |0.21921 0.404374 | 0.404381 | 0.478833 | 0.478921
0.5 | 0.288324 | 0.288332 0.678804 | 0.678910 | 0.752541 | 0.752539
1 |0 —44x10°15 |1 1 1 1

Table 2.2: Overview of the effect of different values of Ha, Sr, a, m, Rd and A\, on
skin friction (C'f12), rate of heat transfer (Nu;5) and mass transfer (Shy o).

Ha Sr « m Rd )\1 Cfl Cf2 Nu1 N’LLQ Sh1 Shg
1 2 7/3 2 2 0.1 -0.07168 -0.58981 -0.94398 -3.64116 1.20990 -2.66705
2 2 7/3 2 2 01 -0.06525 -0.59959 -0.96546 -3.62203 1.20937 -2.66627
3 2 w/3 2 2 0.1 -0.05345 -0.61476 -0.99681 -3.59422 1.20843 -2.66496
2 1 #/3 2 2 01 -0.06449 -0.59713 -0.97008 -3.60976 1.19435 -2.70768
2 2 7/3 2 2 0.1 -0.06525 -0.59959 -0.96546 -3.62203 1.20937 -2.66627
2 3 7/3 2 2 0.1 -0.06602 -0.60209 -0.96070 -3.63462 1.22472 -2.62422
2 2 0 2 2 0.1 -0.07255 -0.56061 -0.97172 -3.53308 1.20696 -2.67382
2 2 w/4 2 2 0.1 -0.06687 -0.58792 -0.97060 -3.58747 1.20844 -2.66888
2 2 7/3 2 2 01 -0.06525 -0.59959 -0.96546 -3.62203 1.20937 -2.66627
2 2 7/3 1 2 0.1 -0.08952 -0.60763 -0.98161 -3.60942 1.20900 -2.66550
2 2 7/3 2 2 0.1 -0.06525 -0.5995 -0.96546 -3.62203 1.20937 -2.66627
2 2 7/3 3 2 01 -0.06872 -0.59454 -0.95439 -3.63157 1.20963 -2.66669
2 2 7/3 2 1 0.1 -0.05610 -0.59357 -0.38486 -3.02132 1.23559 -2.59998
2 2 7/3 2 2 0.1 -0.06525 -0.59959 -0.96546 -3.62203 1.20937 -2.66627
2 2 7/3 2 3 01 -0.06959 -0.60192 -1.59039 -4.25469 1.19907 -2.69249
2 2 w/3 2 2 0.1 -0.06525 -0.59959 -0.96546 -3.62203 1.20937 -2.66627
2 2 7/3 2 2 0.2 -0.06476 -0.65782 -0.95927 -3.68532 1.21077 -2.66082
2 2 7/3 2 2 03 -0.06386 -0.71619 -0.95468 -3.74393 1.21202 -2.65559
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2.2.2 Case (b): Mixed convection

Consider a mixed convection flow occurring under the influence of buoyancy forces
and external pressure gradient.

similarity transformations for this case is given as

Yy T T C—-C
n d’ u Uof, w Uo9, T2_T17 ¢ 02_01 ( 9)
In equations (2.2) - (2.5), Non-dimensional equations are obtained as
G G
P = Re(L+ M) + (1 4+ 2) 2T+ (142 Srey - L
Re Re Da (2.20)

_ Ha’cosa(l+ M)
1 4+ m2cosa

(fcosa — \sina + mgcos2oz) —(14+X)A=0

Ha*cos*a(1 + ;)

g" — Re(1+ \)g + 5

(mfeosa — g — mAsina) — Di =0 (2.21)

1 4+ m2cos?a a
4 Br Br
1+ -Rd) 8" — RePr¢f/ + ———— " 2= 2.22
( T3 > it oo Tasa? (2.22)
ScSre" + ¢" — ReSce’ — QScep =0 (2.23)

with

(2.24)

where Sc¢ = v/D is the Schmidt number, Re = pvod/u represents Reynolds num-
ber, Pr = uc,/ks is Prandtl number, Ha = dBO\/a/_,u is the magnetic parame-
ter, Grp = g*fr(Ty —T1)d* /Jv* and Gre = g*Be(Ty — T1)d” /v* represent thermal
and Solutal Grashof number, Br = uv?/k;d*(Ty — T;) denotes Brinkman number,
Rd = 40Tg’ /kk™ denotes the Radiation parameter, ) = k;1d /vy is the rate of chem-
ical reaction, A = Re/Gr, Sr = DKr(Ty — T1)/vT,,(Cy — C1) is the parameter of

thermo diffusion, and Da = k/d* represents the Darcy number.
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The expressions for shear stress, heat flux, and mass flux are given by:

du dC

dT
Tw = [ud—y} ly=tdi Qv = {_kfd_y + qr} ly=ta; Gm = —Dd—y ly=sa

The dimensionless shear stress Cy = 7,,/pug is given by ReCy, , = f'(n) |4=—1.1.
The Sherwood number defined as Sh = ¢,,d/D(Cy — Cy) and Nusselt number de-

fined as Nu = ¢, d/ks(T> — T1) for this problem are given by

/ 4 /
Shia = =00 l11i Nugo = — {1 T ng] ) Iyrs

Entropy Generation

The expression for local volumetric rate of entropy generation (as explained in earlier

case) is given by

k 160737 [dT]? [ du\? [dw\’| RD [dC\*
Syen = =2 |1+ Sl +==——— |l ) +|(—) |+ +—
15 3kek* | | dy To(1+ X\p) | \dy dy Co \ dy

2
+ D (dT) (£> + L(tﬂ + w?) + 75 [w? + (ucosa — vosina)?|

Ty \dy) \ dy KTy Ty
(2.25)

The first term in the right-hand side of equation (2.25) is caused by heat transfer,
the second term because of energy dissipation by fluid viscosity, the third and fourth
by mass transfer, the fifth by porosity, and the sixth by the applied magnetic field.
The expression for rate of entropy production (Sge,)o is given by

ki(To — T1)?

(Sgen)o = T2 2 (226)
0



CHAPTER 2. 41

By using equations (2.25) - (2.26), the creation of non-dimensional entropy can be

expressed as follows:

S
N, = =
(Sgen)O

4 BrGr? eB?
N. = |1 - /2 2 2 1/.\2
= L gm0 P )+ SR

BrGr?, ., 5 BrGr*Hd?
* Do, (f+yg )Jr—A1

SBl

4,7

(9% + (feosa — Asina)?)

where Ay, Br, By, Gr, Rd, ¢, Ha and Da are dimensionless temperature differ-
ence, Brinkman number, dimensionless constant parameter, Grashof number, radia-
tion parameter, dimensionless concentration difference, magnetic parameter, Darcy

number, respectively, which are given by

40T3 pv? gB(Ty — Th)d? RDC

d = -0 = — e . — =
k=3 P nam-ny O 2 ST Ty
T2 — T1 CQ - Cl o k
A= By = ——, Ha=dBy,/—, Da=—

Results and discussion

The analytical solutions for equations (2.20), (2.22), and (2.23), along with their
boundary conditions (2.24), were derived without considering the brinkman number
(Br), A = 0, magnetic parameter (Ha), chemical reaction parameter (), and
Jeffrey fluid parameter (\;), along with inclination angle at &« = 60°. A comparison
was made between these analytical solutions and the solutions obtained using SQLM
(as explained in earlier case), which are presented in Table 2.3. The results of
comparisons show a high level of agreement. As a result, the SQLM code can be
utilized with assurance to investigate the topic addressed in this research.

Figures 2.8 - 2.13 illustrate the impact of parameters such as Ha, m, Rd, a, A\,

and St on flow and cross flow velocities, temperature, concentration, and entropy.
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These effects are analyzed with a fixed value of ), Re, Pr, Sc, at 2, 2, 0.71 and
0.22, respectively.

Figure 2.8 indicates the influence of magnetic parameter (Ha) on velocities,
temperature, concentration, and entropy whilst Br=0.5, « = 7/3, Sr=10, m=2,
A1=0.5, A=1, Grr=20, Grc=20, and Da=0.2. It is determined from Figs. 2.8(a)
- 2.8(b) that there’s a rise in flow velocity and fall in cross-flow velocity as Ha
enhances. Because, the inclined magnetic field, the drag cannot be generated. It
could be visible from Fig. 2.8(c) that temperature (#) decreases as Hartman number
increases. As Ha grows, the fluid’s concentration (¢) increases as shown in Fig.
2.8(d). It is noted from Fig. 2.8(e) show that entropy generation increase near
1n = —1 and decrease near n = 1.

Figure 2.9 demonstrates the effect of Rd on velocities, temperature, concentra-
tion, and entropy at a = 7 /3, Sr =10, Ha =2, m =2, A\ = 0.5, Br = 0.5, A =1,
Da = 3, Grr = 20, and Gre = 20. As seen in Figures 2.9(a), 2.9(b) and 2.9(c),
velocities and fluid temperature magnifies with an rise in Rd. Concentration of the
fluid as shown in Fig. 2.9(d) fall as radiation parameter enhance. Figure 2.9(e)
shows that entropy generation decrease as Rd increase.

Figure 2.10 demonstrate how m affects velocities, temperature, concentration,
and entropy at « = 7/3, Sr = 20, Ha = 3, Rd = 0.2, A\; = 0.5, Br = 0.5, A =1,
Grr = 10, Gre = 10, and Da = 0.2. As illustrated in Figures 2.10(a) and 2.10(b),
we can see that as the value of the parameter m increases, there’s also an increase
in both the flow velocity and the cross-flow velocity. The fluid temperature drops
as m rise, as shown in fig. 2.10(c). From fig. 2.10(d), the fluid concentration rise as
m increase. This phenomenon is attributed to the inclined magnetic field with an
angle of & = 7/3, which results in the Hall effect producing charge in the direction
of inclined plates, thereby making it unable to act as a flagon velocity. As mentioned

earlier, the Hall current produces additional charge, which leads to a decrease in the
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temperature of the fluid. It is observed from 2.10(e) that the entropy generation
rise as m rise.

In Figure 2.11, the behavior of velocities, temperature, concentration, and en-
tropy is depicted as a function of «a at fixed values of Rd=2, Sr=20, Ha=2, m=2,
A=0.5, Br=0.8, A=1, Da=0.2, Gry=20, and Gr=20. It can seen from figures
2.11(a) and 2.11(b) that the flow velocity magnifies and cross-flow velocity dimin-
ishes as o magnifies. Figure 2.11(c) show that the fluid temperature diminishes as «
magnifies. It can predict from Fig. 2.11(d) that the concentration gains with rising
values of a. The reason for this behavior is that an increase in the inclination angle
of the applied magnetic field leads to a reduction in the drag force, which enhances
the net flow in the fluid. Figure 2.11(e) show that entropy generation increase as «
increase.

The influence of A\; on velocities, temperature, concentration, and entropy can
be seen in Fig. 2.12 while keeping other parameters fixed at Rd = 2, Sr = 20,
Ha=1m=2 a=mn/3, Br=05, A=1, Da = 0.2, Gry = 20, and Gr¢ = 20.
Figures 2.12(a) and 2.12(b) show that the velocities (f, g) enhances as A\; enhance.
Figure 2.12(c) shows that the fluid temperature drops as A; rise. It is found in figure
2.12(d) that the concentration enhance as A; enhances. Figure 2.12(e) demonstrate
that as Ay magnify, entropy generation also magnify.

Figure 2.13 illustrates the behavior of velocities, temperature, concentration, and
entropy under varying values of Sr, with Rd=0.1, Ha=2, m=2, a=n/3, A\;=0.5,
Br=0.5, A=1, Gr7=10, Grc=10, and Da=0.2 held constant. As shown in figures
2.13(a) and 2.13(b), the velocities (f, g) enhance as the value of St increase. Figure
2.13(c) reveals that the fluid temperature drop as Sr rise. The fluid concentration
increases as depicted in Fig. 2.13(d) when Sr increases. It is seen from Fig. 2.13(e)
that entropy generation magnify as Sr magnify.

Table 2.4 displays how different factors, including Hall number (m), Soret effect
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(ST), magnetic parameter (Ha), radiation parameter (Rd), angle of inclination («),
and Jeffrey fluid parameter (), impact various aspects of the system while holding
other variables at Q=2, Re=2, Pr=0.71, Br=0.5, Sc=0.22, Gry=20, Grc=20, A=1
and Da=0.2. Table show that when Rd increase, the skin friction coefficient subside
at starting plate and rise at terminal plate, whereas the opposite tendency is seen
as A; rise. The friction factor decreases at both the walls as Sr, a, and m increase,
while the opposite trend is observed with an rise in Ha. Furthermore, the table
indicates that rate of heat transfer subside at the left plate and rise at right plate
with an rise in Sr, o, m, and Ay, while the opposite tendency is noted with an rise
in Ha. The heat transfer rate decreases at both the walls as Rd increases. As for
the mass transfer rate, the table shows that it rises at both walls as Sr, o, m, and
A1 rise, while the opposite trend is observed as magnetic parameter rise. Rate of

mass transfer subside at one wall and rise at the other wall as Rd rise.

2.3 Conclusions

This chapter investigates the entropy generation in Jeffrey fluid flow between vertical
parallel plates with a porous medium, influenced by an angled magnetic field, chem-
ical reactions, and heat radiation. The original complex equations describing the
system are changed into dimensionless equations using similarity transformations.
SQLM is used to solve these dimensionless equations. The flow characteristics are
thoroughly analyzed and discussed through graphical representations.

From this study (both case(a) and case(b)), we can conclude that entropy gen-
eration increases with the inclination angle («), Hall parameter (m), Jeffrey fluid
parameter (A1), and Soret parameter (S7). A rise in the radiation parameter, Jef-
frey fluid parameter, and Soret parameter also causes the flow direction’s velocity
to increase. Conversely, as the magnetic parameter, inclination angle, Jeffrey fluid

parameter, and Soret parameter increase, the cross-flow velocity decreases. Addi-
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tionally, an increase in Jeffrey fluid parameter and Soret number leads to a fall in
fluid temperature and a rise in concentration. In contrast, with increasing radiation

parameter, we observe the opposite trend.
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Table 2.3: Comparison between exact solution and SQLM solution for the case when
A =0, Br=0, Sr=0, Q =0, Da =1, Gry=20, Grc=20, and Ha=0.

/ 0 ¢
T | Exact | SQLM Exact | SQLM | Exact | SQLM
1 10 “1x1014 |0 0 0 15 x10°15
20.5 | 0.90302 | 0.90314 0.179046 | 0.179112 | 0.2188 | 0.2185
0 21928 | 2.1932 0.404374 | 0.404381 | 0.478833 | 0.478921
0.5 | 2.88324 | 2.88331 0.678804 | 0.678910 | 0.752541 | 0.752539
1 |0 44 x 1014 1 1 1 1

Table 2.4: Overview of the effect of different values of Ha, Sr, a, m, Rd and \; on
skin friction (C'f12), rate of heat transfer (Nu;2) and mass transfer (Shy ).

Ha ST’ « m Rd )\1 Cfl Cf2 N’Uq NUQ Shl Shg
1 2 w/3 2 2 0.1 -5.79148 -0.74670 -3.62339 -0.94007 -2.66897 1.20942
2 2 7/3 2 2 0.1 -5.67373 -0.74586 -3.57079 -0.95550 -2.67204 1.20799
3 2 7/3 2 2 0.1 -547857 -0.74317 -3.48971 -0.97916 -2.67680 1.20580
2 1 #/3 2 2 0.1 -5.64872 -0.73873 -3.55898 -0.96007 -2.71055 1.19367
2 2 7/3 2 2 0.1 -5.67373 -0.74586 -3.57079 -0.95550 -2.67204 1.20799
2 3 7/3 2 2 0.1 -5.69921 -0.75312 -3.58291 -0.95078 -2.63292 1.22262
2 2 0 2 2 0.1 -5.53933 -0.74576 -3.52262 -0.96908 -2.67492 1.20668
2 2 w/4 2 2 0.1 -5.61163 -0.74565 -3.54633 -0.96251 -2.67348 1.20733
2 2 7/3 2 2 0.1 -5.67373 -0.74586 -3.57079 -0.95550 -2.67204 1.20799
2 2 7/3 1 2 0.1 -5.58941 -0.74463 -3.53285 -0.96668 -2.67425 1.20696
2 2 7/3 2 2 0.1 -5.67373 -0.74586 -3.57079 -0.95550 -2.67204 1.20799
2 2 7/3 3 2 0.1 -5.73157 -0.74641 -3.59682 -0.94784 -2.67052 1.20870
2 2 7/3 2 1 01 -5.70179 -0.62819 -2.98640 -0.37719 -2.60643 1.23420
2 2 7/3 2 2 0.1 -5.67373 -0.74586 -3.57079 -0.95550 -2.67204 1.20799
2 2 w/3 2 3 0.1 -5.65349 -0.80203 -4.19485 -1.57947 -2.69732 1.19787
2 2 7/3 2 2 0.1 -5.67373 -0.74586 -3.57079 -0.95550 -2.67204 1.20799
2 2 7/3 2 2 02 -6.21900 -0.74358 -3.62849 -0.94977 -2.66713 1.20932
2 2 7/3 2 2 0.3 -6.76376 -0.73727 -3.68146 -0.94565 -2.66244 1.21049




Chapter 3

Analysis of entropy generation in
Jeflrey fluid flow between two
parallel plates with Soret and angled

magnetic effect under Navier-slip

conditions !

3.1 Introduction

Various technologies, including surface polishing and slip flow in liquids at both
micro and macro levels, play a significant role in fluid dynamics. In 1823, Navier
introduced a slip boundary condition, stating that the slip velocity has a linear re-
lation to shear stress. There is great evidence of the application and importance of

slip flow given by many researchers [63, 64, 65|. Gie and Whitehead [66] described

!Case(a): Published in “The European Physical Journal Plus”, 138, 1-14, (2023).
Case(b):Published in “Proc IMechE Part E: J Process Mechanical Engineering”, 1-12,
(2023). DOIL:https://doi.org/10.1177/09544089231218977
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how Navier-slip Rayleigh-Benard convection behaves when an ultimate state is ab-
sent. Zhang and He [67] created a technique that employs the least-squares domain
method to simulate the interaction between particles and flow on the Navier slip
boundary condition. Recently, Badday and Harfash [68] studied thermosolutal con-
vection with a Navier-Stokes-Voigt fluid under the impact of Soret and slip boundary
conditions. Most Recently, Housiadas and Tsangaris [69] examined the impact of
navier slip for laminar flow with variable geometry using high-order lubrication the-
ory.

The impact of magnetic fields plays a crucial role in various engineering applica-
tions. These applications include MHD generators, dampers and clutches, biomedi-
cal devices, astrophysics and space applications, cooling systems, geothermal energy
extraction etc. Several researchers have been interested in magnetic fields having
non-zero inclinations. Dogonchi et al. [70]| studied the nanofluid flow through a
porous channel with an angled magnetic field. Goswami et al. [71] investigated the
unsteady magnetohydrodynamic flow with an angled magnetic field between two
infinite parallel plates.

In this chapter, we examine the entropy generation on steady convective Jeffrey
fluid flow through a channel with navier-slip condition. The resulting flow equations

are solved using SQLM.

3.2 Mathematical Formulation

The flow under consideration is assumed to be a steady and incompressible Jeffrey
fluid flow. The physical setup (refer to figure 3.1) consists of two parallel plates.
The plates are positioned at a separation distance of 2d. The concentrations and
temperatures at the plates are denoted as C4,T7,Cs, and T; respectively are all
discussed in Fig. 3.1. An external magnetic field denoted as By, positioned at an

angle o about the base, exerts an impact on the plates. With the assumption that
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the boundaries extend infinitely along the z-axis, the parameters governing the flow
are treated as functions solely dependent on the y coordinate. The properties of
fluid are taken as constant, except for the change in density that affects the term in
the buoyancy force. As such, these assumptions align with natural principles and
are relevant in practical applications.

The governing equations are derived as follows:

Figure 3.1: Diagrammatic representation of the fluid flow

d
d_z =0 = v = vy = constant (3~1)
du po d’u

ond—y =1y N d_y2 +pg" (Bc(C — Ch) + Br(T —1T1))

3.2
dp oB2cosa ( - %) 32)
—— — ————— (ucosa — vysina + mwcos
dr 14 m2cos’a
dw p  d*w  oBicos’a .

pvod_y =N R 7(7)12008204 (mucosa — w — mugsina) (3.3)

dT d*T L du., dw,
ot —_— — 3.4

dc d*’C DKy d*T

Vo—sr = T (3.5)

dy dy? * T dy?

where k; represents the thermal conductivity, ¢, denotes the specific heat, g*
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represents gravitational acceleration, p is the density, m = n 0By denotes the Hall
parameter, fr and (o denote the thermal and solutal expansion, o represents the
electrical conductivity, p is the viscosity, D denotes the diffusivity of mass, T, rep-
resents the mean fluid temperature and K represents the ratio of thermal diffusion.

Boundary conditions of given problem are given by

d
U:%d—za w=T-T1=C—-Cy =0, wheny=—d

d
u:’de—Z, w=T-T,=C—-Cy=0, when y=d.

(3.6)

3.2.1 Case (a): Natural convection

Natural convection flow is driven by buoyant forces. There is no external pressure
gradient (2 = 0).

similarity transformations for this given problem is given as

Y vGr vGr C - C T—-T
7 -7 = = = — 3.7
" d’ Y f7 v d 9> ¢ 02—01’ TQ—Tl’ ( )

In equations (3.2) - (3.5), Non-dimensional equations are obtained as

f"—=Re(1+X)f +(1+X1)(0+ Ng)

Ha*cosa(l + ;)
- 2

(3.8)

(fcosa — Asina + mgcosQOz) =0

1 4+ m2cos?a

Ha?cos?a(l + \;)
1+ m2cos?a

g"— Re(1+\)g + (mfcosa — g — mAsina) =0 (3.9)

BrGr?
0" — RePro' + ﬁ (f"+4¢%) =0 (3.10)
ScSre" + ¢ — ReScg' =0 (3.11)

where Re = puvgd/p represents Reynolds number, St = DKr(Ty — 1Y) /vT,,(Cy — C)

represents the thermal diffusion parameter, Br = puv*/kyd*(Ty — Ty) is Brinkman
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number, Gr = g*fr(Ty — T1)d*/v* denotes the Grashof number, Pr = pc,/k; is
Prandtl number, A = Re/Gr, Ha = dBom indicates the magnetic parameter,
Sc = v/D is the Schmidt number, N = fo(Cy — Cy)/fr(Ty — T1) indicates the buoy-
ancy parameter, 51 = 7, /d and 5 = 75/d are the slip parameters.

Boundary conditions (3.6) become

f=8f, g=0=¢=0, whenn= -1

[=0f, g=0, 0=¢p=1, whenn=1

(3.12)

The shear stress, heat, and mass flows are given by

du dT’ dC
Tw = 'ud_y |y::td; qQuw = _kfd_y |y:id; 4m = _Dd_y |y:id

The dimensionless shear stress Cy = 7,,/pug is given by ReCy, , = f'(n) |4=—1.1.
The Sherwood number defined as Sh = ¢,,d/D(Cy — C7) and the Nusselt number

defined as Nu = q,,d/ks(T5 — T7) for this problem are given by
Shl,? - W(U)] |n:—1,1; Nuyp = — [9/(77)] ’77=—171 :

Entropy Generation

The expression for local volumetric entropy generation rate (as explained in eariler

chapter) is given by

e (80 + (5] 25
15 | dy To(1+ X)) |\ dy dy Co \ dy

+ @ g Q + U_Bg [w2 + (ucosar — v Sina)Q]
To \ dy dy Ty ’

T
Sy = 5 [T

(3.13)

The first term in the right-hand side of equation (3.13) is caused by heat transfer,

the second term because of energy dissipation by fluid viscosity, the third and fourth
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by mass transfer, and the fifth term due to magnetic field. The expression for rate
of entropy production is given as

ke(Ty = Th)?

(Sgen)o = T2 (3.14)

By using equations (3.13) and (3.14), the creation of non-dimensional entropy can

be expressed as follows:

S
NS — gen
(Sgen)o
No= O + (2 gy 4 gy
7 1+ M)A IT g
eB,,, , BrGr*Had* , , . \2
+ A—le o + a4 (g + (feosa — Asina) )

where Ay, Br, By, Gr, Ha, and ¢, are dimensionless temperature difference, Brinkman
number, dimensionless concentration difference, Grashof number, Magnetic param-
eter, dimensionless constant parameter, respectively, which are represented as

98Ty —Ty)d? RDC,

2
Y Gr , €= ,
kg

B ]Cfdz(TQ — T1)7 B U2

TQ—Tl 02—01 o
A= By=——, Ha=dBy,/—
1 T() 3 1 C(] ) a 0\/;

Br

Results and discussion

The nonlinear and coupled flow eqns. (3.8) - (3.11) with respect to boundary con-
ditions (3.12) are numerically solved by SQLM (as explained in earlier chapter).
The velocities, temperature, concentration, and entropy generation are influenced
by several parameters, including Ha, Sr, m, a, A\, £y, and [5. Figures 3.2 - 3.8 de-
pict how these parameters affect the aforementioned variables, with Re, Pr, Sc, N,
B1, and [y being held constant at values of 2, 0.71, 0.22, 2, 0.1, and 0.1, respectively.

Figure 3.2 illustrate the influence of Ha on velocities, temperature, concentra-
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tion, and entropy while keeping the other parameters fixed at o = /4, Sr = 2,
m =2, Ay = 0.5, Br = 0.5, and Gr = 20. A rise in flow and cross-flow velocity
is observed as Ha increases, as shown in Figures 3.2(a) and 3.2(b). It is because
the observed inclination angle of the applied magnetic field is a > 0, meaning that
no drag force can be produced. From figures 3.2(c) and 3.2(d), it can be noted
that a rise in Ha causes the fluid’s temperature to decrease and its concentration
to increase. This is because a magnetic field produces resistive force, which causes
the temperature to drop. Figure 3.2(e) shows that the rate of entropy generation
in the system goes up with increasing values of Ha. The magnetic field can induce
Lorentz forces on the charged particles in the fluid. These forces cause additional
dissipation, which consequently leads to a higher rate of entropy generation.
Figure 3.3 show how the Soret number (S7) affects velocity, temperature, concen-
tration, and entropy generation when other parameters are held constant at o = 7/4,
Sr =10, Hao=1,m =2, \; = 0.2, Br = 0.5, and Gr = 2. Figures 3.3(a) and 3.3(b)
demonstrate that an enhancement in Sr leads to an enhancement in flow velocity
and cross-flow velocity. Higher Soret parameter values cause a steeper temperature
gradient within the fluid. This, in turn, leads to increased velocities. It could be
visible from figure 3.3(c) that as Sr grows, the fluid’s temperature falls. It is noted
from figures 3.3(d) and 3.3(e) that as Sr increases, the concentration of fluid and
entropy in the system increases. A higher Soret number amplifies the energy transfer
driven by both the rate of mass diffusion and the concentration gradients, leading
to a radical enhancement in the concentration profile and entropy generation.
Figure 3.4 demonstrates how the hall parameter (m) affects the velocity, tem-
perature, concentration, and entropy generation when other parameters are fixed
at « = w/4, Sr =5, Ha = 1, Ay = 0.2, Br = 0.5, and Gr = 10. Figures 3.4(a)
and 3.4(b) show that the velocities decrease as hall parameter rise. This effect is

due to the tilted magnetic field. A magnetic field is angled at o = 7 will produce
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a Hall current that is perpendicular to both the direction and will act as a drag on
velocities. As hall parameter enhance, the fluid temperature also enhance, and fluid
concentration subside as shown in figures 3.4(c) and 3.4(d). The fluid temperature
rises as a result of the extra charge produced by the hall current, as previously men-
tioned. There is a slight decrease in entropy generation as m increases as shown in
figure 3.4(e).

Figure 3.5 shows how an inclination angle («) affects velocity, temperature, con-
centration, and entropy generation when other parameters are held constant at
Sr=5, Ha=2, m=2, \;=0.1, Br=0.5 and Gr=2. Figures 3.5(a) and 3.5(b) demon-
strate that an increase in « results in a rise in flow velocity and a fall in cross-flow
velocity. Figures 3.5(c), 3.5(d) and 3.5(e) shows that an increase in « leads to subside
in dimensionless temperature but a rise in concentration and entropy generation.

The influence of Jeffrey fluid parameter (A1) on velocities, temperature, concen-
tration, and entropy generation can be observed in figure 3.6 when other parameter
are held constant at Sr = 5, Ha = 2, m = 2, o« = 7/4, Br = 0.5, and Gr = 2.
As depicted in figures 3.6(a) and 3.6(b), when \; magnifies, the flow velocities also
magnify. Figure 3.6(c) illustrates that decrease in dimensionless temperature as A\
increases. A higher Jeffrey fluid parameter (\;) leads to a greater concentration, as
shown in Figure 3.6(d). Figure 3.6(e) shows that there is little increase in entropy
generation near = 1 as Ay increases. This is because the presence of viscoelasticity
in the Jeffrey fluid affects the drag force experienced by the fluid. Higher values of
A1 can lead to an increase in drag force due to the elastic nature of the fluid.

In figure 3.7, the variations in velocities, temperature, concentration, and entropy
are displayed for different values of 3y, while Ha=2, m=2, a=n/4, \;=0.1, Br=0.5,
Gr=2, and (,=0.1 are held constant. It is noted from figures 3.7(a) and 3.7(b) that
the velocities enhances as ; enhance. Figures 3.7(c) and 3.7(d) illustrate that as

B increases, both the temperature and concentration of the fluid decrease. Figure
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3.7(e) indicates that the entropy generation decreases near n = —1 and increases
near 17 = 1 as (3 increases. This is because the fluid velocity within the channel and
the fluid velocity close to the plates differ when the slip condition is present.

Figure 3.8 displays how velocity, temperature, concentration, and entropy gener-
ation behave for different values of f,; while keeping Ha=2, m=2, a=n/4, A\;=0.1,
Br=0.5, Gr=2, and $;=0.1 constant. As depicted in figures 3.8(a) and 3.8(b), as
f2 magnifies, the flow velocity and cross-flow velocity both fall. Figures 3.8(c) and
3.8(d) shows that a decrease in temperature and increase in concentration as [
increases. It is noted from figure 3.8(e) that the entropy of the system increases
near 17 = 1 as (3, increases. This is because the fluid velocity within the channel and
the fluid velocity close to the plates differ when the slip condition is present.

Table 3.1 displays how different factors, including the angle of inclination (),
Hall number (m), Magnetic parameter (Ha), Soret effect (Sr), and Jeffrey fluid
parameter (\;) impact various aspects of the system while holding other variables
at M=2, Re=2, Pr=0.71, Br=0.5, S¢=0.22, Gr=2, $,=0.1, and (,=0.1. The
results indicate that the skin friction diminishes at n = —1 plate and amplifies at
n = 1 as Ha, Sr, and a enhance, while the opposite tendency is noticed with a
rise in m. Moreover, as the Jeffrey fluid parameter A\; increases, the friction factor
decreases at both walls. Additionally, the table shows that the heat transfer rate
decreases at both walls as Ha, Sr, and « increase, while the reverse trend is noted
as m magnifies. Furthermore, as A\; magnifies, the heat transfer rate fall at n = —1
plate and rises at n = 1 plate. From the table, it is observed that the mass transfer
rate magnifies at both plates as Sr, Ha, and « magnifies, and falls as m magnifies.
The table also shows that the mass transfer rate rises at n = —1 plate and falls at

n = 1 plate with a rise of A;.
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Table 3.1: Overview of the effect of various values of Ha, Sr, o, m, and A; on skin

friction (C'f;2), rate of heat transfer (Nu, o) and mass transfer (Shy ).

Ha Sr « m )\1 Cfl Cf2 Nu1 NUQ Shl Sh2
1 2 w/4 2 0.1 -3.70050 0.25323 -8.32613 -0.30603 2.74934 -0.33950
2 2 w/4 2 0.1 -4.09014 0.40460 -9.18599 -0.44047 3.13114 -0.27688
3 2 w/4 2 0.1 -4.54839 0.63393 -10.17744 -0.63682 3.57096 -0.18690
2 1 =w/4 2 0.1 -3.87896 0.38031 -8.66233 -0.43409 1.07283 -0.29737
2 2 w/4 2 0.1 -4.09014 0.40460 -9.18599 -0.44047 3.13114 -0.27688
2 3 w/4 2 01 -432716 0.43156 -9.79034 -0.44444 5.47740 -0.25089
2 2 0 2 0.1 -3.06247 0.10509 -6.83102 -0.18312 2.08400 -0.40107
2 2 w/4 2 01 -4.09014 0.40460 -9.18599 -0.44047 3.13114 -0.27688
2 2 w/3 2 0.1 -4.50585 0.51287 -10.24809 -0.50843 3.60498 -0.24046
2 2 w/4 1 0.1 -4.47496 0.57739 -10.01889 -0.59156 3.50052 -0.20750
2 2 w/4 2 01 -4.09014 0.40460 -9.18599 -0.44047 3.13114 -0.27688
2 2 w/4 3 0.1 -3.87448 0.31701 -8.71268 -0.36256 2.92104 -0.31300
2 2 w/4 2 0.1 -4.09014 0.40460 -9.18599 -0.44047 3.13114 -0.27688
2 2 w/4 2 02 -446768 0.40345 -9.21909 -0.39841 3.14609 -0.29501
2 2 7w/4 2 03 -4.84567 0.40090 -9.24625 -0.36222 3.15831 -0.31066
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3.2.2 Case (b): Mixed Convection

Consider a mixed convection flow occurring under the influence of buoyancy forces
and external pressure gradient.

similarity transformations for this given problem is given as

Yy ¢ -0 T-T
In equations (3.2) — (3.5), Non-dimensional equations are obtained as
G G
fHJ%u+Aﬁf+7$XL+MW+~é9u+Aﬂ¢
€ € (3.16)

Ha?cosa(l + ;)
- 2

(feosa — Asina 4+ mgcosa) — A(1+ M) =0

1 4+ m2cos?a

Ha?cos*a(1+ )
1 + m2cos?a

g — Re(1+\)g + (mfcosa — g — mAsina) =0 (3.17)

Br
(I+ X\p)

(f*+9%) +0"— RePro =0 (3.18)
ScSrd” + ¢" — ReScd’ =0 (3.19)

with

f=8f,9g=0=¢=0, whenn=—1

f=p8f, g=0, 0=¢p=1, whenn=1

(3.20)

where f, g, 0, and ¢ are the dimensionless forms of flow velocity, cross—flow veloc-
ity, temperature, and concentration; Re = pvod/p represents the Reynolds number,
Pr = pc,/ky is a Prandtl number, S¢ = v/D is the Schmidt number, Ha = dBy\/o /11
indicates the magnetic parameter, Br = uv?/kyd*(Ty — Ty) represents the brinkman
number, Sr = DKr(Ty, — T) /vT,,(Cy — C}) represents the thermal diffusion param-
eter, Grr = g*Br(Ty — Th)d? Jv* and Gre = g*Bc(Cy — C1)d? /v* denotes the ther-
mal and Solutal Grashof numbers, A = Re/Gr, 1 = v1/d and B = 72/d represent



CHAPTER 3. 71

the slip parameters.

The shear stress, heat, and mass flows can obtained by

du drl dc
Ty = Md_y ly=+d; Guw = _kfd_y ly=td; Gm = _Dd_y |y=za

The dimensionless shear stress Cy = 7,,/pug is given by ReCy, , = f'(n) [4=—1.1.
The Sherwood number defined as Sh = ¢,,d/D(Cy — C}) and the Nusselt number

defined as Nu = ¢,,d/ks(T5 — T1) for this problem are given by
Shiz =[] lp=—11; Nuro = [=0'(n)] [p=—1.1 -

Entropy Generation

as

The volumetric rate of entropy production (as explained in earlier chapter) is given
k f dT 12
gen — T_O2 5

e () ()] 22 2
dy To(L+ M) | \dy dy Co \ dy

2
+ RD (dT) (d0> + UBO [w2 + (ucosa - ”U()Sina)2i|

(3.21)
Ty \dy)\dy) "~ Ty

The first term of the right-hand side of equation (3.21) is associated with heat

transfer; the second term due to energy dissipation by fluid viscosity; the third and

fourth are caused by mass transfer; and the fifth term is because of magnetic field.

The expression for rate of entropy generation (Sge,)o [72] is determined by

ki(Ty —Th)?

(Sgen)o = T2 2 (3.22)
0

Bejan [73] defines the dimensionless entropy generation (Nj) as the capacity ra-

tio between the local volumetric entropy generation and the characteristic rate of
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entropy generation. Hence, the creation of dimensionless entropy is provided by

S
Ns _ gen
(Sgen)o

B B?
m(f/2 +9") + 6—1@5’)2

A
eB, BrHa?
_0/ /
et

N, = (0')* +

(9% + (feosa — Asina)?)

where Ay, Br, By, Ha, ¢, are dimensionless temperature difference, brinkman num-
ber, dimensionless concentration difference, magnetic parameter, dimensionless con-

stant parameter, and respectively, which are represented as

2
% RDC) o
Br=——————¥ = Ha = dB, —
TR -T) T k" 0\/;
T, — T Cy—C4
A = B =—
1 TO ) 1 C(] )

Results and discussion

The nonlinear and coupled flow eqns. (3.16) - (3.19) with respect to boundary con-
ditions (3.20) are numerically solved by SQLM (as explained in earlier chapter). The
velocities (f, g) of fluid, temperature (), concentration (¢), and entropy generation
(Ns) of the system are influenced by several parameters, including Ha, Sr, m, «,
A1, B1, and [s.

Figures 3.9 — 3.14 depict how these parameters affect the aforementioned vari-
ables, with Re, Br, Pr, Sc, (1, (B2, Grr, Gre, Gr, and A being held constant at
values of 2, 0.5, 0.71, 0.22, 0.1, 0.1, 2, 2, 2, and 1, respectively.

Figure 3.9 demonstrates the influence of Ha on velocities, temperature, con-
centration, and entropy generation when other parameters are fixed at o = 7/3,
Sr =2, m =2, A\ = 0.5, and Br = 0.5. As depicted in figure 3.9(a), the fluid
velocity magnifies as Ha magnifies. Figure 3.9(b) indicates that the cross-flow ve-

locity also rises with a rise in Ha. The magnetic field is inclined at an angle a > 0,
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which implies that the drag force cannot be produced in the flow and cross—flow
directions. Furthermore, figures 3.9(c) and 3.9(d) show that the fluid temperature
decreases and concentration increases as Ha increases. Figure 3.9(e) reveals that
entropy generation increases as Ha increases. This is because a magnetic field gen-
erates a resistive force perpendicular to the applied magnetic field direction, and the
generated electric charges are not in the flow direction, which leads to a decrease in
temperature.

Figure 3.10 shows how the soret number (Sr) affects velocity, temperature, con-
centration, and entropy generation when other parameters are held constant at
a=7/4, Ho =3, m = 2, Ay = 0.1, and Br = 0.5. Figures 3.10(a) and 3.10(b)
illustrate that as the parameter Sr increases, the flow and cross—flow velocity both
exhibit an upward trend. A stronger Soret effect (higher Soret parameter) creates
a larger temperature difference within the fluid, which in turn makes the fluid flow
faster. The soret effect, in turn, leads to changes in the concentration distribution.
Since buoyancy forces are linked to temperature variations, alterations in the tem-
perature profile can modify the buoyancy—driven component of the flow. As shown
in figures 3.10(c) and 3.10(d), the fluid gets colder (temperature falls) and increase in
concentration when the Soret parameter is increased. Figure 3.10(e) shows that en-
tropy generation increases on the left of = —1 and decreases on the right of n = 1.
The soret parameter plays a role in mass transfer in multicomponent fluid systems
and can significantly impact flow behavior, particularly in situations involving heat
and mass transfer.

Figure 3.11 demonstrates how the hall parameter (m) affects velocity, temper-
ature, concentration, and entropy generation when other parameters are fixed at
a=m7/3, Sr =10, Ha = 2, \; = 0.5, and Br = 0.5. Figures 3.11(a) and 3.11(b)
show that the flow and cross—flow velocity both drop as m increases. On the other

hand, figures 3.11(c) and 3.11(d) indicate that the fluid temperature increases and
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the fluid concentration decreases as m increases. This is because the magnetic field
is inclined at an angle of & = /3, which causes the hall effect to generate charge
in the direction of inclined plates, thereby making it unable to act as a drag on the
fluid. As mentioned earlier, the fluid’s temperature drops as a result of the extra
charge that the hall current generates. Entropy generation rises but falls at the end
when 7 approaches 1 as m rises, as shown in figure 3.11(e). The hall current plays a
crucial role in magnetohydrodynamic flows, as it introduces additional complexity
in fluid motion and magnetic field distribution. Magnetohydrodynamics is relevant
in plasma physics, astrophysics, and engineering applications like magnetohydrody-
namics power generation and magnetohydrodynamics propulsion systems.

Figure 3.12 demonstrates the behavior of velocities, temperature, concentra-
tion, and entropy generation as a function of o while keeping Sr=10, Ha=2, m=2,
A1=0.1, and Br=0.5 constant. Figures 3.12(a) and 3.12(b) show that increasing
« leads to a rise in the main flow velocity, while the cross—flow velocity decreases.
Figures 3.12(c) and 3.12(d) show that increasing « leads to a decrease in dimen-
sionless temperature but an increase in concentration. This behavior is caused by
an increase in the inclination angle of the applied magnetic field, which reduces
drag force and hence increases net flow in the fluid. Figure 3.12(e) shows that as
« increases, entropy of the system increases. An inclined magnetic field is used in
magnetohydrodynamics generators to convert the kinetic energy of hot, electrically
conducting fluid into electrical energy.

In figure 3.13, the variations in velocities, temperature, concentration, and en-
tropy generation are displayed for different values of 81, while Ha=2, m=2, a=mn/4,
A1=0.1, Br=0.5, and 2=0.1 are held constant. Figures 3.13(a) and 3.13(b) show
that with the increase in (31, the main flow velocity and cross—flow velocity also in-
crease. Figure 3.13(c) indicates that the fluid temperature decreases as f3; increases.

Additionally, figure 3.13(d) shows a rise in the concentration as f; rises. Figure
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3.13(e) indicates that a rise in f; leads to a fall in entropy generation.

Figure 3.14 displays the behavior of velocities, temperature, concentration, and
entropy generation for different values of 5, while keeping Ha=2, m=2, a=mn/4,
A=0.1, Br=0.5, Sr=2, and ;=0.1 constant. As depicted in figures 3.14(a) and
3.14(b), a decrease in flow velocity and cross—flow velocity is observed as (5 increases.
Figures 3.14(c), 3.14(d), and 3.14(e) demonstrate that as [ increases, there is a
subside in temperature and a rise in concentration and entropy generation. Slip
conditions are commonly used when modeling fluid flow over surfaces with high slip
characteristics, such as superhydrophobic surfaces.

Table 3.2 displays how different factors, including hall number (m), angle of
inclination, soret effect (Sr), magnetic parameter (Ha), and Jeffrey fluid parameter
(A1), impact various aspects of the system while holding other variables constant.
According to table 3.2, when «, Ha, and Sr rise, the skin friction coefficient falls
at the starting plate and rises at the terminal plate, whereas the opposite tendency
is seen as m increases. Moreover, the friction factor decreases at both walls as \;
increases. Additionally, the table shows that the heat transfer rate decreases at
both walls as «, Ha, and St increase, but the opposite tendency is seen as m and Ay
increase. The table also shows that the mass transfer rate magnifies at both plates
as Ha and « magnifies, while the opposite tendency is seen as m and \; increases.
A rising Soret effect (S7) causes the mass transfer rate to increase at the initial plate

but decrease at the terminal plate.

3.3 Conclusions

In this chapter, we explore the irreversibility of the system in fully developed flow
of electrically conducting Jeffrey fluid. A fluid is considered to flow between two
vertical parallel plates under Navier-slip condition. In order to reduce the governing

equations to dimensionless form of equations, similarity transformation has been
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used. In the current investigation, solutions are obtained using the SQLM tech-
nique. From our study, the analysis reveals that the entropy of the system goes
up with higher values of the inclination angle («), magnetic parameter (Ha), and
[a, while the reverse trend is notes for 8;. The fluid velocities increase as the slip
parameters (1 increase. Additionally, with an increase in the inclination angle («),
the temperature of the fluid decreases. Moreover, the presence of Jeffrey fluid leads

to an increase in velocity and temperature but a decrease in concentration.
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Table 3.2: Overview of the effect of different values of o, Sr, Ha, m, and \; on skin

friction (C'f,2), rate of heat transfer (Nu,2) and mass transfer (Shy o).

Ha Sr o m A\ Cfi Cfs Nuy Nuo Shi Sho
1 2 «w/3 2 0.1 -1.19075 -0.26466 -1.97449 -0.00354 -0.06325 -0.49047
2 2 7w/3 2 0.1 -2.14802 0.00219 -2.39746 -0.08714 0.12318 -0.45335
3 2 w/3 2 0.1 -3.36617 0.39214 -3.01416 -0.18505 0.39636 -0.40843
2 1 =#/3 2 0.1 -2.07307 -0.00861 -2.36041 -0.08409 -0.32253 -0.38333
2 2 «/3 2 0.1 -2.14802 0.00219 -2.39746 -0.08714 0.12318 -0.45335
2 3 @«/3 2 01 -222336 0.01300 -2.43522 -0.09010 0.58578 -0.52199
2 2 0 2 0.1 -0.86804 -0.39545 -1.84351 0.04152 -0.12067 -0.51009
2 2 w/4 2 01 -1.82503 -0.09705 -2.24536 -0.05804 0.05600 -0.46642
2 2 w/3 2 0.1 -214802 0.00219 -2.39746 -0.08714 0.12318 -0.45335
2 2 «/3 1 01 -2.76699 0.19341 -2.70019 -0.13829 0.25713 -0.43010
2 2 w/3 2 0.1 -2.14802 0.00219 -2.39746 -0.08714 0.12318 -0.45335
2 2 7/3 3 01 -1.69543 -0.12912 -2.19090 -0.04794 0.03201 -0.47089
2 2 7w/3 2 0.1 -2.14802 0.00219 -2.39746 -0.08714 0.12318 -0.45335
2 2 w/3 2 02 -233794 -0.00226 -2.39292 -0.08574 0.12114 -0.45400
2 2 /3 2 03 -2.52795 -0.00704 -2.38879 -0.08445 0.11930 -0.45460
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Chapter 4

Entropy-Based Investigation of
Jefirey Fluid Flow in a Sloping
Channel with Hall Current, Thermal

Radiation, and Inclined Magnetic

Field Effects !

4.1 Introduction

Heat and mass transfer with chemical reactions is a science that involves under-
standing the simultaneous transfer of both heat and mass in processes where chem-
ical reactions are taking place. This area is important for modeling many industrial
and natural processes, including reactors, biological systems, combustion, and engi-
neering for the environment. An important example is the creation of smog, which

involves first-order chemical reactions. For example, when nitrogen dioxide (NOs)

LCase(a): Accepted for publication in “Journal of Thermal Analysis and Calorimetry”
Case(b): Accepted for publication in “Thermophysics and Aeromechanics”
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is released from vehicles and other sources, it chemically reacts and make formation
of a layer of pollution known as photochemical smog. Biswas et al. [74] studied
the impact of chemical reaction on the flow MHD micropolar fluid through a ver-
tical plate. Iranian et al. [75] studied the influence of chemical reaction and heat
generation on the flow of MHD Powell-Eyring fluid along a vertical surface.

The Soret effect, which involves a mass flux induced by a temperature difference,
holds significant importance in numerous physical processes, including applications
in geoscience and chemical engineering, among others. Rauf et al. [76] studied the
impact of Dufour and Soret on Maxwell hybrid nanofluid flow. Das and Majumdar
[77] explored the impact of Soret number and magnetic field on MHD flow of fluids
on a vertical channel.

In this chapter, we inspect the entropy generation on steady natural /mixed con-
vection Jeffrey fluid flow between two inclined parallel plates, considering the effect
of soret number, chemical reaction, and heat radiation. The resulting flow equations
of given problem are solved using SQLM. The impact of various parameters on en-
tropy in the system, velocity, temperature, and concentration is analyzed through

graphs.

4.2 Mathematical formulation

In this chapter, the physical setup (refer to figure 4.1) consists of two inclined parallel
plates, forming an angle v with the base. The plates are positioned at a separation
distance of 2d. The concentrations and temperatures at the plates are denoted as
C1, Ty, Cy, Ty respectively. An external magnetic field By acts on the plates at an
inclined angle o with the base. The flow under consideration is assumed to be
a steady and incompressible Jeffrey fluid flow. Since the flow extends infinitely
along the z-axis, the flow parameters are assumed to be dependent solely on the

y direction. The properties of fluid are taken as constant, except for the change
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Figure 4.1: Physical Interpretation.

in density that affects the term in the buoyancy force. As such, these assumptions

align with natural principles and are relevant in practical applications.

In this version, we can drive the governing equations as follows:

v
8_y =0 = v =1y = constant
Ou  dp po O%u .
03y = s " kA g+ 0 e PelC = GO+ el = T1)
B2
ow a2w *

WGy = T ag o P9 e 8e(C = G+ BT - T2)
M(mucosa—mv sina — w) — Y
1—{—m200526Y 0 (1+)\1)k’
oT i du 2+ ow\” +k62T 9qr

o= 7~ || 7 a9 2
PCpV0 ay (1 + /\1) ay ay ! 3y2 ay
oC 92C DKy 0°T
v = Da—y2 — ki (C—Cy)+ T, 9

(4.3)

~—~

4.4)

(4.5)

where k; represents the thermal conductivity, g* denotes the gravitational acceler-
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ation, c, represents specific heat, m = 7, 0By denotes the Hall parameter, k is the

permeability porous medium, thermal and solutal expansion are represent by (S and

Be, ky is rate of chemical reaction, o represent the electrical conduction, p represent

viscosity, D signifies the mass diffusivity, thermal diffusion ratio is represents by Kr,

T, designates the mean temperature, and the radiation heat flux is denoted by g,.
The boundary conditions of given problem are given by

u=w=T-Ty=C—-Cy =0, wheny=—d
(4.6)

u=w=T-T,=C—-Cy=0, wheny=d

4.2.1 Case (a): Natural Convection

Natural convection flow is driven by buoyant forces. There is no external pressure

gradient (2 = 0).

T

similarity transformations for this given problem is given as

Y vGrf vGrg C -y T—-1T
77 d? U d Y w d ? gb 02_017 T2_T1 ( 7)
From equations (4.2) - (4.5), we get the governing eqns. as
f" = Re(1+X)f + (14 M\)(0+ Nog)siny — %
_ Hacosa(1+ Ay) (feosa — Asina 4+ mgcos*a) =0 -
1 + m2cos?a g B
g"— Re(14+X\1)g" + (1 + X\)(0 + No)cosy — %
N Ha?cos*a(l + ) (mf _ g — mAsina) =0 (4.9)
[T micoszy  (feosa — g —mAsina) =
BrGr* | ., 4Rd
—_— 1+—)0"—RePrf =0 4.10
(1 + /\1) (f + g ) + + 3 err ( )

SeSrd” + ¢" — ReScd’ — QScp =0 (4.11)
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where Ha = dBO\/m indicates the magnetic parameter, Re = pvyd/u represents
Reynolds number, N = pc(Cy — C1)/Br(To — T1) indicates the buoyancy parame-
ter, Br = uv?/k;d*(Ty — T) is Brinkman number, Pr = pc,/k; is Prandtl number,
Gr = g*Br(Ty, — Ty)d? /v* is grashof number, A\ = Re/Gr, Sc = v/D is the Schmidt
number, Rd = 40T/ k¢k™ denotes the Radiation parameter, Da = k/ d? represents
the Darcy number, ) = kid/v represents the chemical reaction parameter, and
Sr = DKr(Ty — T1) /vT,,(Cy — Ch) represent the thermal diffusion parameter.

Boundary conditions (4.6) become

f=9g=0=¢=0, whenn= -1
(4.12)
f=9g=0, 0=¢p=1, whenn=1

The shear stress, heat flow, and mass flow can be deduced from.

du ar ac
Tw = M@ ly=td; Gu = _kfd_ijqr ly=sd; G = _Dd_y ly=sa

The dimensionless shear stress Cy = 7,,/pug is given by ReCy, , = f'(n) |4=—1.1.
The Sherwood number defined as Sh = ¢,,d/D(Cy — Cy) and Nusselt number de-

fined as Nu = ¢, d/k¢(T> — T1) for this problem are given by

/ 4 /
Shiz = =[] lp=—1,1; Nurz=— [1 + ng} 0'(1) lye—11 -
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Entropy Generation
The entropy production denoted as S, is given by:
k 160737 [dT7? du\®  (dw\?| RD [dC\®
Spen = 75 |14 O | A () (S0 (5
T; 3kek* | | dy To(1+ M) |\ dy dy Co \ dy

RD (dT dC B?
w50 (5 ) (G )+ 2+ )+ TR [+ (neosa = wysina?]

(4.13)

The initial term in the right-hand side of equation (4.13) pertains to heat transfer,
the second term because of viscous dissipation, the third and fourth terms account
for mass transfer, the fifth term represents porosity effects, and the sixth term
because of magnetic field. The definition of the characteristic entropy generation

rate denoted by (Sgen)o is given by

ki(To — T1)?

(Sgen)o = == 23 (4.14)
0

By using equations (4.13) and (4.14), the creation of non-dimensional entropy can

be expressed in the following manner:

S gen

N, = =%
(Sgen)O

4

BrGr? eB?
NSZ 1 _Rd 0/2 12 12 1 /\2
L R @74 G g 6

A2
1

BrGr?, ., 5  BrGr*Hd?
t paa, O

By

4,7

(9% + (feosa — Asina)?)

where Ay, Rd, Br, By, Ha, Gr, Da, and ¢ are dimensionless temperature differ-
ence, radiation parameter, Brinkman number, dimensionless concentration differ-

ence, magnetic parameter, Grashof number, Darcy number, dimensionless constant
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parameter, respectively, which are represented as

2 * 3 3

v g Br(Ty — Ty)d 40T} RDCy

"T e -T) e ’ Kk STk
k T2 — Tl CQ - Cl g
a 32’ 1 T, 1 Co | a 0\/;

Result and Discussion

The nonlinear and coupled flow equations (4.8)—(4.11) are numerically solved with
boundary conditions (4.12) using SQLM as explained in chapter-2.

Figures 4.2 to 4.8 show the behavior of f(n), g(n), 8(n), ¢(n), and Ns for distinct
values of Ha, o, m, Rd, Sr, A1, and . These figures were generated with fixed values
for the following parameters: Pr =0.71, N =2, Da =2, K =2, Br = 0.5, Re = 2,
Gr =10, and Sc = 0.22.

In figures 4.2, the variations in f, g, 6, ¢, and Ns for different values of the
magnetic parameter (Ha), while Rd = 2, Sr =12, a = w/4, m = 2, \; = 0.5, and
v = m/4 are held constant. According to figures 4.2(a) and 4.2(b), there is an oppo-
site effect on fluid velocities when the magnetic parameter (Ha) is increased. The
main flow velocity decreases, while the cross-flow velocity increases. It’s important
to highlight that the magnetic field is inclined at an angle o« > 0. This configura-
tion implies that the drag force typically associated with a magnetic field cannot
be generated in this context. Concurrently, as depicted in figures 4.2(c) and 4.2(d),
the fluid temperature tends to rise, whereas the concentration decreases with an
increase in the Ha. It is seen in figure 4.2(e) that entropy magnifies as Ha magnify.
This phenomenon arises because the magnetic field generates a resistive force that
acts perpendicular to the direction of the applied magnetic field. Consequently, the
resulting electric charges do not align with the flow direction, ultimately causing a
increase in temperature.

Figures 4.3 displays the behavior of f, g, 6, ¢, and Ns for different values of Soret
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parameter (Sr), while keeping Ha = 2, Rd =2, m = 1, \y = 0.1, a = 7/4, and
v = /4 constant. Flow velocity and cross-flow velocity magnify with a rise in Sr
as shown in figures 4.3(a) and 4.3(b). Figure 4.3(c) shows that the temperature fall
with a rise in Sr. This occurs because an increase in the Soret parameter results in a
heightened temperature gradient, subsequently leading to increased velocities. The
Soret effect, in turn, induces alterations in the concentration distribution. Given
that buoyancy forces are directly related to temperature variations, changes in the
temperature profile can thereby modify the buoyancy-driven component of the flow.
Figures 4.3(d) and 4.3(e) clearly indicate that as the soret number (S7) increases,
both the concentration and entropy generation exhibit an increase. The Soret ef-
fect plays a pivotal role in mass transfer within multicomponent fluid systems and
can exert a substantial influence on flow behavior, especially in scenarios involving
concurrent heat and mass transfer.

Figure 4.4 presents an analysis of how the parameter m influences the functions
f, 9,0, ¢, and Ns, while keeping a = /4, Sr =12, Ha = 2, \y = 0.5, v = 7 /4, and
Br = 0.5 constant. Figures 4.4(a) and 4.4(b) show that the main flow velocity rise
and cross-flow velocity drop as m rise. This is because the magnetic field is inclined
at an angle of a = 7/4, which causes the Hall effect to generate charge in the
direction of inclined plates, thereby making it unable to act as a drag on the fluid.
Figures 4.4(c) and 4.4(d) show that fluid temperature decreases and concentration
increases with increasing m. As mentioned earlier, the fluid’s temperature drops
as a result of the extra charge that the Hall current generates. Entropy generation
increases as the parameter m rises, as illustrated in Figure 4.4(e).

Figures 4.5 shows the behavior of f, g, 6, ¢, and Ns for distinct value of o when
Rd =2, Sr =10, Ha = 3, m = 2, \; = 0.5, and 7 = w/4. Figure 4.5(a) reveals
a rise in velocity, while figures 4.5(b) and 4.5(c) demonstrate a contrasting trend,

where both cross-flow velocity and temperature decrease with an increase in o. This
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behavior arises due to an increase in the inclination angle of magnetic field, which
diminishes the drag force and consequently results in an augmentation of the net
fluid flow. Figure 4.5(d) and 4.5(e) reveal that the concentration and entropy both
rise with a rise in «.

Figure 4.6 provides an overview of how the parameter \; impact the functions
f, 9,0, ¢, and Ns, while maintaining other parameters at Sr = 10, Ha = 2, m = 2,
a=7/4, Rd =2, and v = /4. As evident in figures 4.6(a) and 4.6(b), an increase
in \; corresponds to an elevation in both the flow velocity and cross-flow velocity.
Figure 4.6(c) depicts the reduction in temperature with an increasing value of ;.
As shown in figures 4.6(d) and 4.6(e), increasing the parameter \; leads to a rise in
both concentration and entropy generation.

In Figure 4.7, we observe the variations in the functions f, g, 6, ¢, and Ns for
different values of the parameter Rd at Ha =2, m = 2, « = /4, Ay = 0.5, Sr = 10,
and v = w/4. Figures 4.7(a) and 4.7(b) illustrates that as Rd increases, both the
flow and cross-flow velocity decrease. The results in figure 4.7(c) indicate that the
fluid temperature increase as Rd increase. Figures 4.7(d) and 4.7(e) indicate that
a rise in Rd leads to a fall in concentration and entropy generation. Radiation
parameter used in greenhouse gas analysis, acrospace engineering, medical imaging,
nuclear engineering etc.

Figures 4.8 displays the behavior of f, g, #, ¢, and Ns for different values of
v, while keeping Ha=2, m=1, a=n/4, \;=0.1, Sr=10, and Rd=2 constant. As
depicted in figure 4.8(a) and 4.8(b), an increase in flow and decrease in cross-flow
velocity is observed as v increases. Figure 4.8(c) reveals that the temperature of
fluid rise with a rise in 7. Figures 4.8(d) and 4.8(e) demonstrate that as 7 increases,
there is subside in concentration and entropy generation.

Table 4.1 presents the variations in the magnetic parameter (Ha), radiation pa-

rameter (Rd), Hall current (m), Soret number (S7), inclination angle (), Jeffrey
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fluid parameter (A1), and channel angle of inclination () while keeping other pa-
rameters at QQ = 2, Re=2, Gr=10, Pr=0.71, Br=0.5, Sc=0.22, M = 2, and Da=2.
The table shows that the skin friction increases at the plate located at n = —1 with
enhancements in the parameters Ha, a, and \;. Conversely, it decreases at the
plate positioned at n = 1 under the same conditions. However, the opposite trend
is observed for the Hall current (m) and the channel inclination angle (7). Skin
friction falls with higher values of Sr and Rd. Additionally, Table 4.1 shows that
the heat transfer rate magnifies at the left plate and subside at the right plate as
the parameters m, Sr, «, and \; increases, while the opposite tendency is seen for
the magnetic parameter (Ha) and inclination angle (). The higher the value of
radiation parameter (Rd), there is fall in temperature for both plates. Moreover,
the mass transfer rate rises with increasing values of Sr, «, and \; as indicated in
Table 4.1, while it exhibits a reverse trend with Rd and . The rate of mass transfer
amplifies at the left plate and diminishes at the right plate with an amplification in
the hall parameter (m). Conversely, the magnetic parameter (Ha) has the opposite

effect.
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Table 4.1: Overview of the impact of different values of o, Sr, Ha, m, Rd, v and
mass transfer (Shq o).

A1 on skin friction (C'f12), rate of heat transfer (Nu; ) and

Ha Sr m (6 Rd )\1 Yy Cfl Cfg NU1 NUQ Sh1 Shg
1 2 2 7w/3 2 02 w/3 -0.0549 -0.5938 -0.7214 -4.4908 1.2307 -2.6120
2 2 2 7w/3 2 02 w/3 -0.0482 -0.5955 -0.7393 -4.4699 1.2301 -2.6117
3 2 2 7/3 2 02 w/3 -0.0356 -0.5978 -0.7627 -4.4485 1.2292 -2.6106
2 1 2 w/3 2 02 w/3 -0.0472 -0.5912 -0.7548 -4.4273 1.2043 -2.6812
2 2 2 7w/3 2 02 w/3 -0.0482 -0.5955 -0.7393 -4.4699 1.2301 -2.6117
2 3 2 7/3 2 02 w/3 -0.0493 -0.6000 -0.7227 -4.5149 1.2571 -2.5399
2 2 1 7/3 2 02 =«/3 -0.0426 -0.6085 -0.7563 -4.4695 1.2300 -2.6096
2 2 2 7w/3 2 02 w/3 -0.0482 -0.5955 -0.7393 -4.4699 1.2301 -2.6117
2 2 3 @«/3 2 02 w/3 -0.0517 -0.5902 -0.7281 -4.4721 1.2302 -2.6129
2 2 2 0 2 02 w/3 -0.0549 -0.5217 -0.7500 -4.4086 1.2285 -2.6162
2 2 2 w/4 2 02 w/3 -0.0496 -0.5703 -0.7436 -4.4418 1.2293 -2.6138
2 2 2 7w/3 2 02 w/3 -0.0482 -0.5955 -0.7393 -4.4699 1.2301 -2.6117
2 2 2 7«/3 1 02 =/3 -0.0372 -0.5872 -0.1899 -3.8916 1.2706 -2.5068
2 2 2 7/3 2 0.2 «/3 -0.0482 -0.5955 -0.7393 -4.4699 1.2301 -2.6117
2 2 2 7w/3 3 02 =w/3 -0.0535 -0.5989 -1.3482 -5.0895 1.2136 -2.6542
2 2 2 w/3 2 01 w/3 -0.0494 -0.5442 -0.7508 -4.3616 1.2276 -2.6208
2 2 2 /3 2 02 «/3 -0.0482 -0.5955 -0.7393 -4.4699 1.2301 -2.6117
2 2 2 7/3 2 03 7/3 -0.0468 -0.6467 -0.7308 -4.5695 1.2323 -2.6030
2 2 2 w/3 2 02 w/4 -0.0334 -0.6695 -0.5420 -5.1401 1.2479 -2.5723
2 2 2 7/3 2 02 «/3 -0.0482 -0.5955 -0.7393 -4.4699 1.2301 -2.6117
2 2 2 #/3 2 02 x/2 -0.0702 -0.3527 -1.0321 -3.2162 1.1976 -2.6952
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4.2.2 Case (b): Mixed Convection

Consider a mixed convection flow occurring with both natural (buoyancy-driven)
and forced (externally-driven) convection mechanisms.

similarity transformations for this given problem is given as

Yy C—-C T-T
=2 u= = =— —— /= 4.1
In equations (4.2) — (4.5), Non-dimensional equations are obtained as
Ha*(1
"— Re(1+ M) f — a( +2)\1> ;OS@ [mgcos® a+ fcosa — Asina]
Gl—l—m Cos® «v ; (4.16)
r .
+E(1 + M) (0 + No)siny — Da A1+ M) =0
G
g’ = Re(1+ X)) = £- = Z-(1+X)(0 + No)cosy
Ha?*(1+ A\p) cos® a _ (4.17)
+ T p—, [mfcosa —mAsina — g] =0
Br 1\2 2 4Rd " /
14+ ——)0" — RePro' = 4.1
T P @)+ (o e Reprt =0 (4.18)
ScSre" + ¢" — ReSce’ — QScep =0 (4.19)

where Re = pvgd/p represents Reynolds number, Da = k/d* represents the Darcy
number, Rd = 40T} /k;k* denotes the Radiation parameter, Pr = jc,/k; is Prandtl
number, A = Re/Gr, Br = uv? /k;d*(Ty — T}) is Brinkman number, Ha = dBo+/o /1
represents the magnetic parameter, Sc = v/ D stands for Schmidt number, @ = kyd/v
represents the chemical reaction parameter, Gr = ¢*fr(Ty — T1)d* /v indicates the
Grashof number, N = 5c(Cy — C1)/Br(Ts — T) indicates the buoyancy parameter,

and Sr = DKy (T, — T1) /vT,,(Cy — C1) represents soret parameter.
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Boundary conditions (4.6) become

(4.20)
f=9g=0, 6=¢=1, whenn=1

The shear stress, heat transfer, and mass flows can be obtained from.

du T dC
T = i, i G = kg T ly=td; Gm = Do |y=za

Tw . .
The dimensionless shear stress C'y = — is given by ReCy, , = f'(n) |p=—1,1.
pug ’

The Sherwood number defined as Sh = ¢,,d/D(Cy — Cy) and Nusselt number de-

fined as Nu = g, d/k;(T> — T}) for this problem are given by
/ 4 /
Shia = — [00)] e 13 Nura = — [1 s ng] D) byt

Entropy Generation

Sgen =

The expression for the volumetric entropy generation rate is expressed as:
k¢ ] 160137 [dT 0
T3 3k k*

et (5)] 25
dy To(1+X) | \dy dy Co \ dy

RD (dT dC B2
() () + A o)+ 8 [0+ weosa — wsina

(4.21)

The initial term of the right hand side of equation (4.21) is because of heat transfer,
the subsequent term is due to energy dissipation by fluid viscosity, the third and
fourth terms represent mass transfer, the fifth term is connected to porosity effects,

and the sixth term is due to applied magnetic field. The definition of entropy
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generation rate is formally defined as:

ki(Ty —Th)?

4.22
T2 (4:22)

(Sgen)o =

By using equations (4.21) and (4.22), the formation of dimensionless entropy is given

as:

S
Ns = gen
(Sgen>0
4 Br €32 cB
Ns= |14+ — ne , P e 2 eby o | €D,
5 {+3Rd](9)+<1+)\1>141(f +9)+A%<¢)+A19¢
Br 2 2 B’/’HCL2 9 - )
+DaA1(f +9°) + T (9% + (feosa — Asina)?)

where Ay, Br, By, Ha, Rd, Da, and ¢ are dimensionless temperature difference,
brinkman number, dimensionless concentration difference, magnetic parameter, ther-

mal radiation, darcy number, and dimensionless constant parameter, which are given

as
Br — “—”2 Hadeo\/E, Rd = 40—T°3, Da = ﬁ,
kpd?(Ty — 1) p ke a
A — Tz;oTl7 B, = 020_0017 .- le)be?

In engineering applications and entropy minimization studies, it’s important to
consider the contribution of various factors including heat transfer, mass transfer,
porous medium, viscous dissipation, and magnetic force to the overall entropy gen-
eration rate. This helps us to gain insight into thermal optimization. To calculate
the distribution of irreversibility, we use the Bejan number, which is the ratio of
irreversibility due to heat transfer (IV},) to the total irreversibility (Ns).

Be = 1
¢ Ns
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The table labeled as 4.2 presents the values for irreversibility caused by heat
transfer (Ny,), total irreversibility in the system (Ns), and the Bejan number across

different angles of inclination in the channel (7).

Results and discussion

The nonlinear and coupled flow eqns. (4.16) - (4.19) with respect to boundary
conditions (4.20) are numerically solved by SQLM (as explained in chapter-2).

Figures 4.9 to 4.15 show the behavior of f(n), g(n), 6(n), ¢(n), Ns, and Be for
distinct values of Ha, o, m, Rd, Sr, A\, and v with fixed values of Pr, K, Re, Br,
N, Da Sc at 21, 2, 2, 0.5, 2, 2, 0.22, respectively.

In Figure 4.9, we show how the variables f, g, 6, ¢, Ns, and Be change with
varying magnetic parameter (Ha). As seen in Figure 4.9(a), the flow velocity goes
up as the value of Ha increases. The detected inclination angle of the applied
magnetic field is a > 0, meaning that no drag force can be produced. Figure 4.9(b)
shows that the cross-flow velocity goes down as Ha increases. The fluid temperature
rise and concentration fall with a rise in Ha as shown in figures 4.9(c) and 4.9(d).
It is seen in figures 4.9(e) and 4.9(f) that entropy generation and bejan number
magnifies as Ha magnify. This is happen due to a magnetic field creates a resistive
force perpendicular to the direction of the magnetic field. This generates electric
charges, leading to an increase in temperature.

Figure 4.10 displays the behavior of f, g, 6, ¢, Ns, and Be for different values
of Soret parameter (Sr). As seen in figures 4.10(a) and 4.10(b), flow velocity and
cross-flow velocity magnify as Sr rise. This is due to the fact that increasing the
Soret parameter raises the temperature gradient, which in turn causes greater ve-
locities. Figures 4.10(c) and 4.10(d) illustrate that there is a fall in temperature
and a rise in concentration as the Soret parameter increases. A higher Sr indi-

cates a stronger thermophoretic effect, causes a redistribution of temperature and
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concentration within the fluid. This leads to a fall in temperature and a rise in
concentration. The Soret effect plays a crucial role in understanding heat and mass
transfer phenomena in complex fluid flows. It is noted in figure 4.10(e) that the
entropy increases and decreases as 1 approaches 1 as Sr increases. Figure 4.10(f)
shows that increasing the Soret number leads to a decrease in the Bejan number.
The Soret parameter plays a role in mass transfer in multicomponent fluid systems
and can significantly impact flow behavior, particularly in situations involving heat
and mass transfer.

Figure 4.11 demonstrates the impact of m on the variables f, g, 8, ¢, Ns, and
Be. Figures 4.11(a) and 4.11(b) demonstrate that as the parameter m increases, the
flow velocity decreases while the cross-flow velocity increases. This is caused by the
inclined magnetic field’s influence. When a magnetic field is applied at an angle of
a = m/4, the Hall current is generated perpendicular to the x direction. This current
acts as a drag on the flow velocity. Meanwhile, Figures 4.11(c) and 4.11(d) indicate
a decrease in fluid temperature and an increase in fluid concentration as m is raised.
Additionally, Figures 4.11(e) and 4.11(f) show that increasing m leads to higher
entropy generation and lower Bejan number. The hall current plays a crucial role
in magnetohydrodynamic flows, as it introduces additional complexity in fluid mo-
tion and magnetic field distribution. Magnetohydrodynamics is relevant in plasma
physics, astrophysics, and engineering applications such as magnetohydrodynamics
power generation and magnetohydrodynamics propulsion systems.

Figure 4.12 shows the behavior of f, g, 6, ¢, Ns, and Be for distinct value of «.
Figure 4.12(a) reveals that velocity rises with a rise in o. This is because the decrease
in drag force will improve the net flow as the applied magnetic field’s inclination angle
changes (angle of inclination increases). Figures 4.12(b) and 4.12(c) illustrate the
rise in cross-flow velocity and fall in temperature with increasing «. Figure 4.12(d)

and 4.12(e) reveal that the concentration and entropy both rise with a rise in a.
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As « increases, the Bejan number decreases, but it increases near n = 1, as shown
in Figure 4.12(f). An inclined magnetic field is used in magnetohydrodynamics
generators to convert the kinetic energy of hot, electrically conducting fluid into
electrical energy.

Figure 4.13 showcases the influence of A\; on the variables f, g, 6, ¢, Ns, and Be.
As shown in 4.13(a) and 4.13(b), increasing A; causes an increase in flow and cross-
flow velocity. An increased Jeffrey fluid parameter enhances the fluid’s elasticity,
resistance to deformation, and quicker recovery from shearing forces. This results
in higher flow and cross-flow velocities. Figure 4.13(c) shows that temperature de-
creases as A\; increases. As \; increases, less heat is generated or absorbed during
flow due to the increased elasticity of the Jeffrey fluid, resulting in a lower tempera-
ture profile. Figures 4.13(d) and 4.13(e) suggest that an increase in \; corresponds
to an increase in concentration and entropy generation. Higher Jeffrey fluid param-
eter means more elastic effects, viscous dissipation, shear-thinning behavior, and
complex flow patterns, which lead to increased entropy generation. Figure 4.13(f)
shows that the Bejan number decreases with an increasing value of the Jeffrey fluid
parameter.

In Figure 4.14, we present the changes in the variables f, g, 6, ¢, Ns, and Be
for various values of Rd. Figures 4.14(a) and 4.14(b) reveal that as the parameter
Rd increases, both the flow velocity and cross-flow velocity decrease. An increase
in the radiation parameter lead to changes in temperature distribution, influencing
the viscosity of the Jeffrey fluid. Higher viscosity results in reduced flow velocities.
The results in figures 4.14(c) and 4.14(d) show that the fluid temperature rises and
the concentration decreases as the radiation parameter increases. Higher radiation
parameter leads to increased thermal radiation impact on fluid, elevating its tem-
perature via associated heat transfer processes. This results in the fluid’s energy

being amplified by the radiation. Figures 4.14(e) and 4.14(f) indicate that a rise in
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Rd leads to a rise in entropy generation and bejan number. This is due to thermal
radiation, which adds sources of irreversibility and heat dissipation in the system.

Figure 4.15 displays the behavior of f, g, 8, ¢, Ns, and Be for varying values
of 7. As depicted in figure 4.15(a) and 4.15(b), an increase in flow and decrease
in cross-flow velocity is observed as 7 increases. When inclined plates are present,
gravity can assist in the flow of fluid in a channel. This additional driving force
results in an increase in flow velocity and a decrease in cross-flow velocity. Figure
4.15(c) reveals that the temperature of fluid rise with a rise in 7. Increasing channel
angle leads to higher fluid shear rates and greater energy dissipation, resulting in a
temperature rise due to viscous heating. Figures 4.15(d), and 4.15(e) demonstrate
that as v increases, there is subside in concentration and entropy generation. Figure
4.15(f) illustrates the variation of the Bejan number with respect to 7. It increases
to the left of n = 0 and decreases to the right. This is because the plates become
vertical as gamma increases to 90circ, which causes the drag force to be generated
along the y-axis by the applied magnetic field.

Table 4.3 presents the variations in the magnetic parameter (Ha), radiation pa-
rameter (Rd), Hall number (m), Soret number (Sr), inclination angle («), Jeffrey
fluid parameter (A1), and channel angle of inclination () while keeping other pa-
rameters at ) = 2, Re =2, Gr =10, Pr =21, N =2, Br = 0.5, S¢ = 0.22, and
Da = 2. According to the table, an increase in both v and \; results in an increase
in skin friction at the plate located at n = —1, while there is a reduction in skin
friction at the plate located at n = 1. Skin friction falls with higher values of Sr,
m, and Rd, while the opposite effect is noted for the Ha and «. Additionally, Table
4.3 demonstrates that when m, Sr, «, and Ay rise, the heat transfer rate magnifies
at the left plate and subside at the right plate, while the opposite tendency is seen
for the magnetic parameter (Ha) and channel inclination angle (7). The higher

the value of the radiation parameter (Rd), there is fall in the heat transfer rate for
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both plates. Moreover, According to Table 4.3, the mass transfer rate increases with

higher values of Sr, m, a;, and \{, while it exhibits a reverse trend with Ha, Rd and

.

4.3 Conclusions

In this chapter, the effects of the Soret number and chemical reactions on entropy of
the system in the steady natural/mixed convection of Jeffrey fluid flow between in-
clined parallel plates are investigated. The original complex equations describing the
system are changed into dimensionless equations using similarity transformations.
SQLM is used to solve these dimensionless equations. According to the findings
of this study, the velocity of fluid flow and its cross-flow velocity increase with an
increase in the Soret number and Jeffrey fluid parameter. Conversely, the opposite
effect is observed with an increase in the radiation parameter and channel angle of
inclination. The temperature of the fluid decreases while the concentration rises with
an increase in the Soret parameter, Hall parameter, inclination angle, and Jeffrey
fluid parameter. However, the reverse tendency is noted in magnetic parameter, Ra-
diation parameter, and channel inclination angle. Entropy generation in the system
increases as the Soret parameter, Hall parameter, inclination angle, and Jeffrey fluid

parameter increase, while it decreases as the channel angle of inclination increases.
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Table 4.2: Bejan Number variations for different values of n and ~.

n Ny, Ns Be = %
-1 7w/4 9.19e7® 55792  1.648¢7°
-0.5 w/4 0.0284 2.1110  0.0135
0 w/4 0.0958 4.4841  0.0214
0.5 w/4 2.0497 12.2062 0.1679
1 w/4 87595 53.2090 0.1646
-1 7/3 0.0016 5.1928  0.0003
-0.5 /3 0.0423 1.8857  0.0224
0 «/3 0.1233 4.0291  0.0306
0.5 w/3 19075 11.5990 0.1645
1 «/3 7.8556 49.9653 0.1572

Table 4.3: Overview of the impact of various values of o, Ha, Sr, m, Rd, v, and \;
on skin friction (C'f12), rate of heat transfer (Nu;5) and mass transfer (Shy o).

Ha Sr m « Rd )\1 Yy Cfl Cfg N’LL1 NUQ Sh1 Shg
1 2 2 w/3 2 02 w/3 -0.3227 -4.2297 -1.0495 -3.2551 1.1339 -2.6021
2 2 2 #/3 2 02 w/3 -03196 -4.2196 -1.0608 -3.2231 1.1331 -2.6039
3 2 2 /3 2 02 «/3 -03136 -4.1777 -1.0789 -3.1662 1.1317 -2.6072
2 1 2 w/3 2 02 w/3 -03132 -4.2014 -1.0632 -3.2165 1.1249 -2.6343
2 2 2 #/3 2 02 w/3 -03196 -4.2196 -1.0608 -3.2231 1.1331 -2.6039
2 3 2 #x/3 2 02 «/3 -03260 -4.2381 -1.0583 -3.2299 1.1416 -2.5731
2 2 1 #«/3 2 02 =«/3 -0.3095 -4.1176 -1.0729 -3.1872 1.1323 -2.6059
2 2 2 #/3 2 02 w/3 -03196 -4.2196 -1.0608 -3.2231 1.1331 -2.6039
2 2 3 #/3 2 02 w/3 -03225 -4.2528 -1.0544 -3.2419 1.1336 -2.6028
2 2 2 0 2 02 w/3 -0.3287 -4.2226 -1.0638 -3.2065 1.1327 -2.6051
2 2 2 w/4 2 02 w/3 -03196 -4.2196 -1.0608 -3.2231 1.1331 -2.6039
2 2 2 7/3 2 02 «/3 -0.3162 -4.2167 -1.0572 -3.2365 1.1335 -2.6030
2 2 2 w/3 1 02 «/3 -0.288 -4.2112 -0.4615 -2.6315 1.1515 -2.5517
2 2 2 x/3 2 02 w/3 -03196 -4.2196 -1.0608 -3.2231 1.1331 -2.6039
2 2 2 w/3 3 02 w/3 -03342 -4.2231 -1.6950 -3.8536 1.1266 -2.6238
2 2 2 7w/3 2 01 x/3 -0.3301 -3.8547 -1.0647 -3.1895 1.1324 -2.6067
2 2 2 7/3 2 02 w/3 -03196 -4.2196 -1.0608 -3.2231 1.1331 -2.6039
2 2 2 7/3 2 03 7/3 -0.3068 -4.5834 -1.0578 -3.2540 1.1338 -2.6012
2 2 2 7w/3 2 02 w/4 -0.2566 -3.5300 -1.0570 -3.2380 1.1335 -2.6029
2 2 2 7/3 2 02 w/3 -03196 -4.2196 -1.0608 -3.2231 1.1331 -2.6039
2 2 2 7/3 2 02 w/2 -0.3709 -4.7310 -1.0640 -3.2096 1.1328 -2.6048




Chapter 5

Analysis of irreversibility in Jeffrey

fluid flow through an inclined channel
under Navier-slip condition with the
effects of Hall current, Soret number,

and Inclined magnetic field. !

5.1 Introduction

The Soret phenomenon, a thermal gradient-induced mass flow, holds a significant
position in diverse domains, including geosciences and chemical engineering. Sardar
et al. [78] studied the combined convective motion of Carreau nanofluid along a
wedge in the existence of Soret and Dufour phenomena. Deepika et al. [79] examined

the influence of the Soret and Dufour phenomena on the magnetohydrodynamic

!Case(a): Published in “East Asian Journal of Applied Mathematics’, (2024).
DOLhttps://10.4208 /eajam.2023-227.221023
Case(b):Published in “Journal of Applied Mathematics and Mechanics (ZAMM)”, 104,
202300700 (1-15), (2024).
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mixed convective motion of a Casson hybrid nanofluid over a stretching surface.
Hayat et al. [80] explored how Dufour and Soret phenomena affect the entropy
production in a mixed convective flow system.

Fluid flows with slip at boundaries indeed have significant implications in various
micro and macroscopic devices. As early as 1823, A slip boundary condition was
first presented by Navier [81], wherein the slip velocity at the solid-fluid interface is
influenced by the shear stress linearly. Building upon Navier’s work, Das et al. [82]
presented the findings of their research, which focused on slip flow through sloping
porous channels, accounting for joule heating and energy dissipation due to viscosity
effects. Asghar et al. [83] examined magnetized mixed convection involving a hybrid
nanofluid, accounting for heat generation effect and velocity slip conditions effect on
fluid flow. Zainodin et al. [84] investigated the combined impact of slip boundary
condition and chemical reaction on forced convection flow of a hybrid ferrofluid
within a porous medium modeled by Darcy’s law.

In this chapter, we study the Soret number, Hall current, and angled magnetic
field effects on entropy of the system of steady convective flow between inclined
parallel plates in Jeffrey fluid fluid with navier-slip condition. SQLM is used to solve
the dimensionless flow equations. The impact of various relevant flow parameters

on entropy, velocity, temperature, and concentration is examined.

5.2 Mathematical formulation

The physical configuration illustrated in Figure 5.1 of this research involves a con-
figuration of inclined parallel plates. These plates are inclined at an angle v relative
to the reference base and are separated by a distance of 2d. The occurrence of slip
phenomena is acknowledged on both of these plates. The concentrations and tem-
peratures at the plates are denoted as C7, T, Cs, and T5 respectively. An external

magnetic field denoted as By, positioned at an angle o about the base, exerts an
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Figure 5.1: Physical interpretation.

impact on the plates. The present inquiry focuses on investigating the behavior of a
Jeffrey fluid, which exhibits steady and incompressible. With the assumption that
the boundaries extend infinitely along the z-axis, the parameters governing the flow
are treated as functions solely dependent on the y coordinate. The properties of
fluid are taken as constant, except for the change in density that affects the term in
the buoyancy force. As such, these assumptions align with natural principles and
are relevant in practical applications.

The governing equations are derived as follows:
v
— =0 5.1
o (5.1)

ou uo 0*u

ona—y = T)\la_yg + pg*siny (Bo(C — C1) + Br(T — T1))

5.2
B oBicosa ( _ vnsine + 2 ) _op >

T meosto (UCOSQ — tosina +mweos™a) — =

Ow 0w .

ona—y = ﬁa—?ﬂ — pg*cosy (Be(C — Cr) + Br(T —Th))
5.3
o B2cos’a ) (5:3)

15 micos’a (mucosa — w — muysina))

oT 0*T w ou,, Ow.,

Sy Tyz L (CW 4
pamngy = by + s (G2 + (o) (5.0
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Vo= = +
oy 0y? T, O0y?

(5.5)

in which A; is the Jeffrey fluid parameter, K1 denotes the thermal diffusion ratio,
¢, stands for the specific heat, k; signifies thermal conductivity, © embodies the
viscosity coefficient, m = n,0 By embodies the Hall parameter, p embodies the den-
sity, o represents the electrical conductivity, S, and B¢ are the thermal and solutal
expansion respectively, D signifies the mass dissipation, 7}, represents the mean
temperature, gravitational acceleration is denoted by the symbol g*, and ~; and v,
are coefficients associated with slip conditions.
From equation (5.1), we get v = vy = constant.

Boundary conditions are provided by

u:’yla—u, w=0, C=C;, T="1T,, wheny= —d.
% (5.6)
u:fyga—y, w=0, C =0y, T="T;, wheny=d.

5.2.1 Case (a): Natural Convection

Natural convection flow is due to buoyancy forces, with the assumption that there
is no external pressure gradient (22 = 0).

similarity transformations for this given problem is given as

Y vGrf vGrg C -0 T 1T,
77:37 u = y W= a¢:—9

d C,—C, -7 (5.7)

By applying the similarity transformations to the equations (5.2) through (5.5), we

yield the resulting transformed equations as follows:

f = Re(1+X)f + (14 X\1)(0+ No)siny

Ha*cosa(l + ;)
- 2

(5.8)

(fcosa — Asina + mgcosQOz) =0

1 4+ m2cos?a
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g" — Re(14+X\1)g" + (14 \)(0 + No)cosy

Ha*cos*a(1 + ;) ; >
+ 1 + m2cos2a (mfeosa — g —mAsina) =0
B 2
(1 :GAT ) (f*+¢%) +0" — RePrt/ =0 (5.10)
1
ScSrf” +¢" — ReScd’ =0 (5.11)

Where Br= uv?/k;d*(Ty — Ty) pertains to the Brinkman number, Re = puod/u
indicates the Reynolds number, Sr = DKy(Ty — T1)/vT,,(Cy — C4) represents the
Soret number, Sc = v/D signifies the Schmidth number, Gr = ¢g*B¢(Ty — T1)d* /v?
corresponds to the Grashof number, N = fo(Cy — C1)/pr(Ty — T1) indicate the
buoyancy parameter, Pr = uc,/k; pertains to Prandtl number, Ha = dBo\/m
stands for magnetic parameter, A = Re/Gr, 1 = 71 /d and Py = vod are defined as
the slip parameters.

Boundary conditions (5.6) become

fzﬁlfla g:¢:9:()7 wh/enn:_l

f=0f,9=0 ¢6=0=1, whenn=1

(5.12)

The shear stress, heat and mass transfer flows are given by

du dT dC
Ty = Md—y ly=td; GQu = —kf@ ly=td; Gm = _Dd_y |y=za

The dimensionless shear stress Cy = 7,,/pug is given by ReCy, , = f'(n) |4=—1.1.
The Sherwood number defined as Sh = ¢,,d/D(Cy — C}) and the Nusselt number

defined as Nu = g, d/ks(T5 — T7) for this problem are given by

Shyg = [—¢'(n)] ln=—1,1; Nuip = [—0'(n)] |n:—171 .
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Entropy Generation

The expression for the volumetric entropy generation rate is given as
I

|t (&) + (5) |+ @ (%)
dy To(14+ X)) | \dy dy Co \ dy

+@ g E + U_Bg [w2 + (ucosaw — v Sina)ﬂ
Ty \ dy dy To ’

Sgen = 72

ky [dT
T3

(5.13)

The initial expression on the right-hand side of equation (5.13) is linked to heat
transfer; the subsequent term is indicative of viscous dissipation; the third and
fourth terms represent mass transfer; the fifth term is because of magnetic field.

ke(Ty = Th)?

(Sgen)o = == 3 (5.14)
0

By using equations (5.13) and (5.14), the formation of dimensionless entropy can be

expressed as:

S
Ns _ gen
(Sgen)o
, BrGr? , eB? | eBy , ,
No= 07+ a7 H 90 + g @) + b
1

B 2Ha?

—l—% (92 + (feosa — Asina)?)
1

Here, Br, ¢, By, Gr, Ha, and A; correspond to the brinkman number, dimensionless
constant parameter, dimensionless concentration difference, grashof number, mag-
netic parameter, and dimensionless temperature difference, respectively, which are

represented as

pv? o :g*/BT(TQ_Tl)d3 . RDC,

T k(-1 e ’ kp
T —T Cy—C
A1: 2 ! B1: 2 1, ]{a:dBo\/§
i

Br

Ty Co
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Result and Disscussion

The nonlinear and coupled flow eqns. (5.8) - (5.11) with respect to boundary con-
ditions (5.12) are numerically solved by SQLM (as explained in chapter-2).

Figures 5.2 to 5.9 show the behaviour of f(n), g(n), 6(n), ¢(n), and Ns for
distinct values of Ha, o, m, Sr, Ay, v, B1, and 5 by taking Gr, N, Sc, Pr, Br, Re,
Ay, By, g, By, B2 at 2,2, 0.22, 0.71, 0.5, 2, 1, 1, 2, 0.1, 0.1, respectively.

In figure 5.2, the variations in f, g, 6, ¢, and Ns are depicted across different
values of magnetic parameter (Ha), while St =2, a = 7/4, m = 2, A\; = 0.5, and
v = 7/3 are held constant. Figures 5.2(a) and 5.2(b) exhibit the discernible augmen-
tation of both flow velocity and cross-flow velocity with the progressive elevation of
the magnetic parameter (Ha). It’s noteworthy to highlight that the magnetic field
is inclined at an angle a > 0, leading to the absence of drag force generation. Fig-
ures 5.2(c) and 5.2(d) demonstrate the concurrent behavior of subsidence in fluid
temperature and magnifies in concentration with elevated values of Ha. It is seen in
figure 5.2(e) that entropy magnifies near the plates as Ha magnifies. Fluid dynamics
can be influenced by a magnetic field owing to the magneto-hydrodynamic (MHD)
phenomenon, which holds particular importance in the context of fluids that exhibit
electrical conductivity. Magnetic parameters play a crucial role in power generation
systems where a conducting fluid interacts with a magnetic field to generate elec-
tric power, high-speed trains, magnetic resonance imaging, paleomagnetism, metal
sorting, etc.

In figure 5.3, the depictions illustrate the response of parameters f, g, 60, ¢,
and N's regarding discrete orientations of the inclination angle («), while keeping
Ha =2, m =2, A\ = 0.1, Sr = 2, and v = 7/3 constant. Figures 5.3(a) and
5.3(b) elucidate a discernible decrease in both flow velocity and cross-flow velocity
as the angle of inclination (a) experiences elevation. The behavior of temperature

is depicted in Figure 5.3(c). Here, an observable reduction in fluid temperature is



CHAPTER 5. 126

noted with a rise in inclination angle («). It is noted in figures 5.3(d) and 5.3(e) that
as « rises, both fluid concentration and entropy generation exhibit augmentation.
This is because, when the applied magnetic field’s inclination angle decreases, the
reduction in drag force on the net flow will also decrease. An inclined magnetic
field is used in MHD generators to convert the kinetic energy of hot, electrically
conducting fluid into electrical energy.

In figure 5.4, the graphical representation elucidates the effect of the parameter
~ on the variables f, g, 0, ¢, and Ns, while maintaining constant values for other
parameters: o = 7/4, Sr =2, Ha = 2, A\; = 0.5, and m = 2. Figures 5.4(a) and
5.4(b) exhibit contrasting trends. Specifically, the flow velocity demonstrates an
ascending pattern, whereas the cross-flow velocity exhibits a descending trend as the
parameter v increases. This is because when the channel is inclined, a component
of gravity acts along the channel direction. This component induces flow in an
inclined direction due to the buoyancy force. The velocity increases as the inclined
angle increases, leading to a higher flow rate in the direction of inclination. It is
discerned that an elevation in the parameter v leads to a fall in temperature and
a simultanecous increase in fluid concentration, as depicted in figures 5.4(c) and
5.4(d). Entropy generation rises near n = 1 as -y rises, as shown in figure 5.4(e).
This phenomenon arises from the observation that as the angle v increases towards
90°, the plates transition to a vertical orientation. Consequently, the magnetic field
applied in this scenario induces a drag force in alignment with the y-axis direction.

Figure 5.5 exemplifies the response of parameters f, g, 0, ¢, and Ns to varying
values of the Hall parameter (m), while maintaining constants for other parame-
ters: Sr =2, Ha = 2, \y = 0.5, « = 7/4, and v = 7/3. As depicted in figure
5.5(a), a discernible reduction in flow velocity is observed with an escalation in m.
It is seen from figures 5.5(b) and 5.5(c) that the cross-flow velocity and temperature

both rise as m rises. A drag on flow velocity results from the generation of Hall
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current perpendicular to both directions when a magnetic field acting at an angle
a = m/4. The fluid’s temperature rises as a result of the extra charge produced
by Hall current. The behaviors of fluid concentration and entropy generation near
n =1 are illustrated in figures 5.5(d) and 5.5(e), respectively. The concentration of
fluid exhibits a rising trend, whereas entropy generation decreases with an increase
in the Hall parameter (m). Hall current induces mixing in the fluid flow. Mixing
can lead to better dispersion of solute particles, influencing concentration gradi-
ents. Enhanced mixing due to the Hall parameter effect results in more uniform
concentration profiles in the flow. The hall current plays a crucial role in MHD
flows, introducing supplementary intricacy to both fluid dynamics and magnetic
field dispersion. The realm of magneto-hydrodynamics (MHD) holds significance
within plasma physics, astrophysics, and engineering domains, such as MHD power
generation and propulsion systems, where the interplay of magnetic fields and fluid
behavior is paramount.

The influence of A\; on f, g, 0, ¢, and Ns is displayed in figure 5.6, while keep-
ing other parameters at Sr = 5, m = 2, a« = /4, Ha = 2, and v = 7/3. As
delineated in figures 5.6(a) and 5.6(b), as the parameter \; increases, both velocity
in the main flow direction and cross-flow velocity experience elevation. Higher val-
ues of the Jeffrey fluid parameter indicate more significant shear-thinning behavior.
The shear-thinning behavior affects the flow profiles. As the fluid moves near the
solid boundaries, where the shear rate is higher, a higher Jeffrey fluid parameter
results in lower viscosity, allowing for faster flow. Figure 5.6(c) shows that as the
parameter \; increases, the dimensionless temperature decreases. The behaviors
of fluid concentration and entropy generation are portrayed in figures 5.6(d) and
5.6(e), respectively. Both parameters exhibit a positive trend with increasing ;.
This implies that higher values of A\; contribute to elevated fluid concentration and

a slight increase in entropy generation near = 1. This is because the shear thinning
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behavior due to the Jeffrey fluid parameter affects the thickness of the concentra-
tion boundary layer. A thinner boundary layer facilitates faster diffusion of solute
particles, leading to an increase in the concentration profile.

In figure 5.7, the graphical depictions showcase the fluctuations in parameters
f, g, 0, ¢, and Ns in response to varying values of the Soret number (Sr), while
Ha=2, m=2, a=n/4, \;=0.5, and v = 7/3 are held constant. Figures 5.7(a) and
5.7(b) illustrate that as the Soret number (S7) escalates, both the flow velocity and
cross-flow velocity exhibit an increase. The result in figure 5.7(c) indicates that
the higher Soret numbers lead to lower fluid temperatures within the system. This
phenomenon is attributed to the fact that an augmentation in the Soret param-
eter induces an escalation in the temperature gradient, consequently resulting in
heightened velocities. Figures 5.7(d) and 5.7(e) indicate that higher values of Sr
contribute to elevated fluid concentration and entropy generation within the system.
This happens because as the Soret parameter increases, the thermophoretic effect
strengthens. Consequently, there is a greater mass flux of particles in response to a
given temperature gradient. This effect can enhance mass transfer rates, leading to
more rapid changes in concentration. This increased mass transfer results in higher
entropy generation due to additional irreversibilities in the system.

In figure 5.8, the visualizations portray the responses of parameters f, g, 0, ¢,
and N's to varying values of the parameter (1, while keeping Ha=2, m=2, a=mn /4,
A=0.5, Sr=2, and v = 7/3 constant. Figures 5.8(a) and 5.8(b) demonstrate a
noticeable pattern. Increasing the parameter [, is associated with higher values of
both flow velocity and cross-flow velocity. This is because the fluid particles at the
solid boundary are not anchored, allowing for easier movement and, consequently,
higher velocity. Figure 5.8(c) reveals that the temperature of the fluid rises with a
rise in ;. A higher slip leads to increased dissipation, affecting the overall temper-

ature distribution in the flow. Figures 5.8(d), and 5.8(e) demonstrate that higher
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values of 1 contribute to reduced fluid concentration and entropy production within
the system.

In figure 5.9, the graphical depictions present the variations in parameters f, g,
0, ¢, and Ns corresponding to different values of the parameter (5, while keeping
Ha=2, m=2, a=n/3, \;=0.5, Sr=2, and v = 7/3 constant. Figure 5.9(a) illustrates
that an augmentation in the parameter (s is correlated with a decrease in the flow
velocity. Figure 5.9(b) shows that the cross-flow velocity increases as the value of
the parameter [ rises. Figure 5.9(c) reveals that the fluid temperature decreases
as the parameter (5 rises. An elevated slip results in greater dissipation, impacting
the overall temperature distribution within the flow. The elevated value of the
parameter 35 corresponds to an increase in fluid concentration and a slight elevation
in entropy production near n = 1, as depicted in figures 5.9(d) and 5.9(e). This
occurs because when the fluid slips along the solid boundaries at n = 1, it can lead
to heightened friction and shear within the boundary layer. These added dissipative
effects result in increased entropy generation near n = 1.

Table 5.1 comprehensively depicts the fluctuations in various parameters such
as the Jeffrey fluid parameter ()\;), magnetic parameter (Ha), Soret number (S7),
Hall number (m), inclination angle («), and channel angle of inclination (vy), while
keeping other variables at Re=2, Gr=2, Pr=0.71, Br=0.5, S¢=0.22, N = 2, #; =
0.1, and $5=0.1. The data in the table reveals that skin friction increases on the
1n = —1 plate and decreases on the n = 1 plate in sync with higher values of Ha, S'r,
a, and channel inclination angle (7), but decreases with increasing values of the Hall
number (m). Conversely, skin friction reduces with higher values of the Jeffrey fluid
parameter (A;). Table 5.1 also shows that as Ha, Sr, a, and ~ increase, the heat
transfer rate decreases for both plates. However, the Hall parameter (m) exhibits
an opposite trend. Moreover, the rate of heat transfer increases on the left plate

and decreases on the right plate with higher values of the Jeffrey fluid parameter
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(A1). Additionally, mass transfer rate increases with higher values of Ha, Sr, «, and
v, while exhibiting the opposite trend for m. The mass transfer rate decreases on
the left plate and increases on the right plate with an increase in the Jeffrey fluid

parameter (A1), as shown in Table 5.1.



CHAPTER 5. 131

1.0

-0.12 T T .
1.0 05 0.0 05 10
n
(b)
1o [ Ha=1 =
|- - Ha=2 i
~~~~~~ Ha=3 7
T
0.6
¢
0.4 -
0.2-
T T T 00 T T T
1.0 05 0.0 05 10 1.0 05 0.0 05 1.0
n n
(c) (d)
120
— Ha=1
---- Ha=2
100} - Ha=3
- - Ha=4
80 i
1
i
i
60 I
N
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Figure 5.3: Influence of inclination angle () on (a) f(n), (b) g(n), (c) 0(n), (d)
o(n), and (e) Ns.
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Figure 5.8: Influence of slip condition (B1) on (a) f(n), (b) g(n), (¢) 6(n), (d) ¢(n),
and (e) Ns.
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Table 5.1: Overview of the impact of various values of o, Sr, Ha, m, v and A\; on

skin friction (C'f12), rate of heat transfer (Nu;5) and mass transfer (Shy o).

Ha Sr m « )\1 Yy Cfl Cfg Nu1 NUQ Shl Shg

1 2 2 7/3 02 w/3 0.22678 -3.38201 -0.29039 -7.67815 -0.34881 2.46179
2 2 2 7/3 02 x/3 037472 -3.81323 -0.42761 -8.58568 -0.28540 2.86414
3 2 2 7/3 02 x/3 059747 -4.32660 -0.62654 -9.67099 -0.19451 3.34504
2 1 2 «/3 02 =w/3 0.35478 -3.63391 -0.42096 -8.15135 -0.30135 0.95933
2 2 2 7/3 02 x/3 037472 -3.81323 -0.42761 -8.58568 -0.28540 2.86414
2 3 2 7/3 02 x/3 0.39636 -4.01036 -0.43264 -9.07484 -0.26435 4.99950
2 2 1 7«/3 02 x/3 0.55038 -4.22350 -0.58366 -9.45923 -0.21377 3.25147
2 2 2 7/3 02 x/3 037472 -3.81323 -0.42761 -8.58568 -0.28540 2.86414
2 2 3 @/3 02 x/3 0.28778 -3.58438 -0.34749 -8.10287 -0.32229 2.65006
2 2 2 0 0.2 =/3 0.06925 -2.80344 -0.14782 -6.33032 -0.41812 1.86217
2 2 2 7/4 02 x/3 037472 -3.81323 -0.42761 -8.58568 -0.28540 2.86414
2 2 2 7/3 02 x/3 048631 -4.21221 -0.50397 -9.58565 -0.24584 3.31009
2 2 2 7w/3 0.2 w/3 048683 -4.61141 -0.45622 -9.64363 -0.26638 3.33607
2 2 2 w/3 03 7w/3 0.48553 -5.01154 -0.41514 -9.69241 -0.28413 3.35786
2 2 2 7/3 04 w/3 048307 -541226 -0.37985 -9.73289 -0.29947 3.37586
2 2 2 7w/3 0.2 w/4 043757 -3.91268 -0.44750 -8.23809 -0.27666 2.7111

2 2 2 7/3 0.2 w/3 045864 -4.21439 -0.45248 -8.83504 -0.27186 2.97646
2 2 2 w/3 02 7/2 048683 -4.61141 -0.45622 -9.64363 -0.26638 3.33607
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5.2.2 Case (b): Mixed Convection

Consider a mixed convection flow occurring with both natural (buoyancy-driven)
and forced (externally-driven) convection mechanisms.
similarity transformations for this given problem is given as

C -0y T—-T

n:gau:u0f7w:uogv¢:—7 =
d Cy — C4 T, =T

(5.15)

Upon employing dimensionless transformations to equations (5.2) to (5.5), the re-

sulting transformed equations are obtained as follows:

1 R+ S+ L A0 + No)siny

_Hazcosoz(l + A1) (5.16)

1 4+ m2cos?a

(feosa — Asina 4+ mgcosa) — A(1+ A\y) =0

G
g — Re(1+\)g' — Rr(l + A1) (0 + No¢)cosy

Re
5.17)
Ha?cos?o(1 + A (

n a“cos Of( ‘2+‘ 1) (mfcosa_g_m)\sina)zo

1+ m2cos?a
BT‘ 12 2 1 /
T (f?+ g% +6"— RePro =0 (5.18)
ScSre" 4+ ¢ — ReScg' =0 (5.19)

Where Br= pv?/kyd*(Ty — Ty) pertains the Brinkman number, Re = puyd/u indi-
cates Reynolds number, Sr = DKy (T, — T1)/vT,,(Cy — C}) represents the Soret
number, A = d?0p/dzuop, Sc = v/D signifies the Schmidth number, £, = v,/d,
B2 = v2/d are defined as the slip parameters, Gr = g*37(Ty — T)d* /v* corresponds
to the Grashof number, Pr = pc,/k; pertains to Prandtl number, Ha = dBy+/o /1t
stands for magnetic parameter, A\ = Re/Gr, and N = Bc(Cy — Cy)/Br(Ty — Ty) in-

dicates the buoyancy parameter.
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Boundary conditions (5.6) become

n=—1: f=pf, g=d=0=0

n=-1: f=PHf, g=0 ¢6=0=1

(5.20)

The shear stress, heat and mass transfer flows for this problem are given by

du dT dcC
Tw = Md_y ly=td; G = _kfd_y ly=td; Gm = _Dd_y ly=-+a

The dimensionless shear stress Cy = 7,,/pug is given by ReCy, , = f'(n) |4=—11.
The Sherwood number defined as Sh = ¢,,d/D(Cy — C}) and the Nusselt number

defined as Nu = ¢,,d/ks(T5 — T1) for this problem are given by

Shig = [—¢/(77)] |n:—1,1; Nuyg = [—9/(77)] |n=—1,1 .

Entropy Generation

Sgen =

The expression for the volumetric entropy generation rate is given as
k f dTl 12
T3

e () ()] 22 2
dy To(L+X\) |\ dy dy Co \ dy

+ BD (dT (dC + U—Bg [w? + (ucosa — vosina)?]
To \ dy dy Tp ’

(5.21)

The initial expression on the right-hand side of equation (5.21) is linked to heat
transfer, the subsequent term is because of energy dissipation due to fluid viscosity,
the third and fourth terms represent mass transfer, and the fifth term is because of
magnetic field.

The definition of characteristic rate of entropy generation denoted by (Sgen)o is

defined as
k(Ty — Th)?

22
T (5:22)

(Sgen)o =
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By using equations (5.21) and (5.22), the formation of dimensionless entropy can be

expressed as:

S
NS _ gen
(Sgen)O
) Br o . €BY, ., €By,, BrHa? ,
N, = (0 )2+m(f 21y 2)+A_%1(¢ )2+A—119 o —|—A—1 (¢ + (feosa — Asina)?)

Here Ay, Br, By, Ha, and ¢ correspond to dimensionless temperature difference,
Brinkman number, dimensionless concentration difference, magnetic parameter, and
dimensionless constant parameter, respectively, which are represented as

2
uv RDCO TQ - T1 02 - Cl o
T RET-T) " kT T TN T TG, T

Results and discussion

The nonlinear and coupled flow Egs. (5.16)-(5.19) with boundary conditions (5.20)
are numerically solved using SQLM (as explained in chapter-2).

Figures 5.10 to 5.17 show the behavior of f(n), g(n), 0(n), #(n), and Ns for
distinct values of Ha, a, m, Sr, A1, 7, (1, and (s by taking A, Pr, Br, Re, Gr, N,
Sc, Ay, By, &, 01, B2 at 1, 0.71, 0.5, 2, 0.5, 2, 0.22, 1, 1, 2, 0.1, 0.1 respectively.

In figure 5.10, the variations in f, g, 0, ¢, and N s are displayed for different values
of Ha, while St = 2, a = w/4, m = 2, \; = 0.5, and v = 7/3 are held constant.
Figures 5.10(a) and 5.10(b) demonstrate a clear trend of increasing flow velocity and
cross-flow velocity with rising Hartmann number (Ha). It’s noteworthy to highlight
that the magnetic field is inclined at an angle o > 0, leading to the absence of drag
force generation. Figures 5.10(c) and 5.10(d) demonstrate the concurrent behavior
of subside in fluid temperature and magnifies in concentration with elevated values
of Ha. It is seen in figure 5.10(e) that entropy magnifies as Ha magnifies. The fluid

dynamics can be influenced by a magnetic field owing to the magneto-hydrodynamic



CHAPTER 5. 143

phenomenon, which holds particular importance in the context of fluids that exhibit
electrical conductivity.

In figure 5.11, the depictions illustrate the response of parameters f, g, 6, ¢, and
Ns concerning distinct values of the angle of inclination («), while keeping Ha = 2,
m = 2, \y = 0.5, Sr = 2, and v = 7/3 constant. Figures 5.11(a) and 5.11(b)
show that the flow velocity increase and cross-flow velocity decrease as the angle of
inclination («) experiences elevation. The behavior of temperature is depicted in
figure 5.11(c). Here, an observable reduction in fluid temperature is noted with a
rise in inclination angle («). This behavior is caused by an increase in the inclination
angle of the applied magnetic field, which reduces drag force and hence increases net
flow in the fluid. It is noted in figures 5.11(d) and 5.11(e) that as « rises, both fluid
concentration and entropy generation exhibit augmentation. An inclined magnetic
field is used in MHD generators to convert the kinetic energy of hot, electrically
conducting fluid into electrical energy.

In figure 5.12, the graphical representation elucidates the effect of the parameter
~ on the variables f, g, 8, ¢, and Ns, while maintaining constant values for other
parameters: o = /4, Sr = 10, Ha = 2, \; = 0.5, and m = 2. The two figures,
5.12(a) and 5.12(b), the flow velocity and cross-flow velocity shows an upward trend
with increasing value of «v. This change in trend occurs as the value of the parameter
v increases. It is discerned that an elevation in the parameter v leads to a fall in
temperature and a simultaneous increase in fluid concentration, as depicted in figures
5.12(c) and 5.12(d). Entropy generation slightly rises near n = 1 as «y rises as shown
in figure 5.12(e). This phenomenon arises from the observation that as the angle v
increases towards 90°, the plates transition to a vertical orientation. Consequently,
the magnetic field applied in this scenario induces a drag force in alignment with
the y-axis direction.

Figure 5.13 exemplifies the response of parameters f, g, 6, ¢, and Ns to varying
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values of the Hall parameter (m), while maintaining constants for other parameters:
Sr =2, Ho =2, A\ =0.1, « = w/4, and v = 7/3. As depicted in figure 5.13(a),
a discernible reduction in flow velocity is observed with an escalation in m. It is
seen from figures 5.13(b) and 5.13(c) that the cross-flow velocity and temperature
both rise as m rises. This is because the magnetic field is inclined at an angle of
a = /4, which causes the hall effect to generate charge in the direction of inclined
plates, thereby making it unable to act as a drag on the fluid. As mentioned earlier,
the fluid’s temperature rises as a result of the extra charge that the hall current
generates. The behaviors of fluid concentration and entropy generation are illus-
trated in figures 5.13(d) and 5.13(e), respectively. Both parameters exhibit a rising
trend with an increase in the Hall parameter (m). The Hall current plays a cru-
cial role in MHD flows, introducing supplementary intricacy to both fluid dynamics
and magnetic field dispersion. The realm of magneto-hydrodynamics (MHD) holds
significance within plasma physics, astrophysics, and engineering domains, such as
MHD power generation and propulsion systems, where the interplay of magnetic
fields and fluid behavior is paramount.

The influence of Jeffrey fluid parameter (A1) on f, g, 6, ¢, and Ns are displayed
in figure 5.14, while keeping other parameters at Sr = 2, Ha =4, m =2, a = w /4,
and v = m/3. As shown in figures 5.14(a) and 5.14(b), an increase in parameter \
leads to a rise in both the flow velocity and cross-flow velocity. The dimensionless
temperature is observed to increase as the parameter \; increases as shown in figure
5.14(c). This is because higher values of the Jeffrey fluid parameter indicate a more
elastic and less viscous fluid. Therefore, increasing the Jeffrey fluid parameter tends
to enhance the fluid’s elasticity, which increases the fluid’s net flow and temperature
profile. The behaviors of fluid concentration and entropy generation are portrayed
in figures 5.14(d) and 5.14(e), respectively. Both parameters show that higher values

of A1 contribute to a decrease in fluid concentration and entropy generation.
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In figure 5.15, the graphical depictions showcase the fluctuations in parameters
f, g, 0, ¢, and Ns in response to varying values of the Soret number (Sr), while
Ha=2, m=2, a=n/4, \;=0.5, and 7 = 7/3 are held constant. Figures 5.15(a) and
5.15(b) illustrate that as the Soret number (Sr) escalates, both the flow velocity
and cross-flow velocity exhibit an increase. The result in figure 5.15(c) indicates
that the higher Soret numbers lead to lower fluid temperatures within the system.
This phenomenon is attributed to the fact that an augmentation in the Soret pa-
rameter induces an escalation in the temperature gradient, consequently resulting in
heightened velocities. Figures 5.15(d) and 5.15(e) indicate that higher values of Sr
contribute to elevated fluid concentration and entropy generation within the system.
The Soret parameter plays a role in mass transfer in multi-component fluid systems
and can significantly impact flow behavior, particularly in situations involving heat
and mass transfer.

In figure 5.16, the visualizations portray the responses of parameters f, g, 6, ¢,
and Ns to varying values of the parameter (1, while keeping Ha=2, m=2, a=mu /4,
A1=0.5, Sr=2, and v = 7/3 constant. Figures 5.16(a) and 5.16(b) show that in-
creasing the parameter (3, is associated with an increase in flow velocity and a
decrease in cross-flow velocity. Figure 5.16(c) reveals that the temperature of fluid
rises with a rise in ;. Figures 5.16(d) and 5.16(e) demonstrate that higher values
of B contribute to reduced fluid concentration and entropy production within the
system.

In figure 5.17, the graphical depictions present the variations in parameters f,
g, 0, ¢, and Ns corresponding to different values of the parameter (5, while keeping
Ha=2, m=2, a=n/4, \;=0.5, Sr=2, and 7 = 7/3 constant. Figures 5.17(a) and
5.17(b) illustrate that an augmentation in the parameter [, is correlated with a
decrease in both flow velocity and cross-flow velocity. Figure 5.17(c) reveals that

the fluid temperature decreases as the parameter [, rises. The elevated value of the
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parameter (3, corresponds to an increase in fluid concentration and a slight elevation
in entropy production near n = 1, as depicted in figures 5.17(d) and 5.17(e). Slip
conditions are commonly used when modeling fluid flow over surfaces with high slip
characteristics, such as superhydrophobic surfaces.

Table 5.2 presents the variations in magnetic parameter (Ha), Hall number (m),
Soret number (Sr), inclination angle («), Jeffrey fluid parameter (A;), and channel
angle of inclination () while keeping other parameters at Re=2, Gr=0.5, Pr=0.71,
Br=0.5, Sc=0.22, N =2, A=1, f; = 0.1, and 5,=0.1. The table indicates that
the skin friction increases at the n = —1 plate and decreases at the n = 1 plate with
an enhancement in Ha, Sr, a, 7, and A;. Conversely, the Hall parameter (m) has
the opposite effect. Additionally, Table 5.2 demonstrates that as m, Sr, a, A{, and
increase, the heat transfer rate increases at the left plate and decreases at the right
plate, while the opposite tendency is seen for the Hall parameter (m). Moreover,
the rate of mass transfer diminishes at the left plate and amplifies at the right plate
with an amplification in the hall parameter Ha, Sr, o, A;, and v, While the Hall

parameter shows the opposite tendency.

5.3 Conclusions

The present investigation aims to analyze the entropy generation of a steady inclined
magnetohydrodynamic Jeffrey flow occurring between inclined parallel plates. This
investigation considers the influence of both the Soret number and Hall current. The
original complex equations describing the system are transformed into dimension-
less equations through the use of similarity transformations. The non-dimensional
equations are solved with SQLM. Based on the findings of our study, we have ob-
served that the flow velocity and cross-flow velocity increase as the Soret parameter,
magnetic parameter, and Jeffrey fluid parameter increase. Conversely, both veloc-

ities decrease with an increase in the Hall parameter. Additionally, we have found
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that fluid temperature decreases while concentration rises with a rise in the Soret
parameter, magnetic parameter, inclination angle, and channel angle of inclination.
Moreover, we have discovered that the entropy of the system increases with the aug-
mentation of the magnetic parameter and inclination angle. However, it diminishes

as the ; parameter increases.



CHAPTER 5.

148

—— Ha=1
391~ Ha=2
~~~~~~ Ha=3
257 Ha=4

-0.3 +

05 0.0 05 10

-1.0 05

Figure 5.10: Impact of magnetic parameter (Ha) on (a) f(n), (b) g(n), (c) 0(n), (d)

é(n), and (e) Ns.



149

1.0

CHAPTER 5.
I (’-:TE/S ‘//’/'
----a=n/6 0.00 1
-0.02
g
-0.04
i -0.06
A
0.0 \
-0.08
T T T T T
-1.0 -0.5 0.0 05 1.0 -1.0 -0.5 0.0 0.5 1.0
n n
(a) (b)
1.0
o=n/8 104 o=n/8
---- o=n/6 i ---- o=n/6
0841 ... sl a=n/5
08 |- o=n/4
064
0 0.6
0.4 1 ¢
044
0.2 /:/‘
0.2+
0.0+
T T T OO T T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 05
n n
(c) (d)
i
50 - i
i
1
i
40 1 i
i
i
i
i
30 1 i
:I
ol
O
o
ol

Figure 5.11: Impact of inclination angle (o) on (a) f(n), (b) g(n), (¢) 0(n), (d)

o(n), and (e) Ns.




CHAPTER 5. 150

20 0.00
y=n/6
----y=m/4 v
...... - 0.024 )
154 y=n/3 \
------ y=n/2
-0.04 4
1.0 1 g
f -0.06
0.5
-0.08 \ J
'\.\ ‘//’ ~~~~~~ y=n/3
\\ .// ------ y=n/2
0.0 T T T -0.10 T T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
n n
(a) (b)
1.0 1.8
y=n/6 16 y=m/6
08 ----y=n/4 Sy
Rl SRR y=n/3 1adf y=n/3
------ y=n/2 - y=n/2
1.24
0.6
0 104
0 )
0.4 1 Va ¢ 0.8 /
0.6
0.2
0.4
0.0 . 024
T T T 00 T T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
n n
(c) (d)
150
y=n/6
----y=n/4
~~~~~~ y=n/3
------ y=n/2
100
Ns
50
0 T T T
-1.0 -0.5 0.0 0.5 1.0
n
()

Figure 5.12: Impact of channel angle of inclination (v) on (a) f(n), (b) g(n), (¢
0(n), (d) ¢(n), and (e) Ns.



CHAPTER 5. 151

-0.02 4

-0.04 4

-0.06 4

-0.08 4

-0.10 4

-0.12 4

-0.14 4

T T T -0.16 T T T
-1.0 -0.5 0.0 05 1.0 -1.0 -0.5 0.0 0.5 1.0

Figure 5.13: Impact of hall current (m) on (a) f(n), (b) g(n), (c) 6(n), (d) ¢(n),
and (e) Ns.



CHAPTER 5. 159

0.4

0.2+

0.0
9
0.2 -
0.4 -
T T T
10 05 0.0 05 10
n
(b)

0.6 4

[0} 2

0.4 4

0.2 4

T T T 00 T T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
n n
(c) (d)

150

Ns

100

50 4

10 05 0.0 05 10

Figure 5.14: Impact of Jeffrey fluid parameter (A1) on (a) f(n), (b) g(n), (c) 0(n),
(d) ¢(n), and (e) Ns.



CHAPTER 5. 153
20 0.00
154 -0.02
-0.04 1
1.0
f 9 /
-0.06
0.5 \ £ —Sr=2
\ ----Sr=4
N A Sr=6
-0.08 < - Sr=8
0.0 T T T
- 1.0 -05 0.0 05 1.0
n
(b)
16
—Sr=2
144|----Sr=4
~~~~~~ Sr=6
1.2 |- Sr=8
0.6
0
044
0.2
0.0+ .
T
1.0 -05 10

Figure 5.15: Impact of Soret number (Sr) on (a) f(n), (b) g(n), (c) 0(n), (d) ¢(n),

and (e) Ns.



CHAPTER 5.

154

0.00
-0.02 -
-0.04
g
-0.06 -
-0.08 -
T T
1.0 05 0.0 05 1.0
n
(b)
1.0
1.0
0.8
0.8
0.6
0 0.6
04 )
0.4
0.2
0.2
0.0
T T T 00 T T T
1.0 05 0.0 05 1.0 1.0 0.5 0.0 05 10
n n
(c) (d)
70
60 -
50 -
40
Ns
301
20
10
T T T

Figure 5.16: Impact of slip condition (B1) on (a) f(n), (b) g(n), (¢) 0(n), (d) ¢(n),

and (e) Ns.



CHAPTER 5. 155

0.00

-0.02 +

-0.04 4 . Ve

0,06 - W P

05 e B,=03 i

-1.0 -0.5 0.0 05 1.0 -1.0 0.5 0.0 05 1.0

08 T P04

0.6

0.4 1

0.2 1

0.0 T T T

100

Figure 5.17: Impact of slip condition (B2) on (a) f(n), (b) g(n), (¢) 0(n), (d) ¢(n),
and (e) Ns.



CHAPTER 5.

156

Table 5.2: Overview of the impact of various values of o, Sr, Ha, m, v and A\; on
skin friction (C'f12), rate of heat transfer (Nu;5) and mass transfer (Shy o).

Ha Sr m « )\1 Yy Cfl Cfg N’Lbl N’LL2 Shl Shz
1 2 2 7w/3 02 w/3 090447 -5.04259 -0.24585 -3.88913 -0.37556 0.78747
2 2 2 7/3 02 «/3 198903 -8.88627 -0.24218 -6.67250 -0.38363 2.03570
3 2 2 w/3 02 7w/3 3.60053 -13.70138 0.02524 -11.21032 -0.42436 4.07928
2 1 2 x/3 02 =w/3 1.98141 -8.82120 -0.24608 -6.61423 -0.33220 0.62879
2 2 2 7/3 02 «/3 198903 -8.88627 -0.24218 -6.67250 -0.35363 2.03570
2 3 2 7w/3 02 «/3 199678 -8.95250 -0.23815 -6.73213 -0.37621 3.46980
2 2 1 #«/3 02 x/3 277267 -11.34876 -0.14888 -8.85188 -0.37304 3.01627
2 2 2 7w/3 02 w/3 1.98903 -8.88627 -0.24218 -6.67250 -0.35363 2.03570
2 2 3 @/3 02 x/3 145354 -7.07590 -0.26307 -5.26972 -0.35211 1.40581
2 2 2 7/5 0.2 w/3 133392 -6.31130 -0.28670 -4.66617 -0.35250 1.13446
2 2 2 7w/4 02 w/3 159240 -7.28590 -0.28339 -5.37036 -0.35301 1.45025
2 2 2 7/3 02 x/3 198903 -8.88627 -0.24218 -6.67250 -0.35363 2.03570
2 2 2 7w/3 0.2 w/3 1.98903 -8.88627 -0.24218 -6.67250 -0.35363 2.03570
2 2 2 w/3 03 7w/3 201486 -9.69870 -0.21425 -6.75141 -0.36566 2.07068
2 2 2 7/3 04 w/3 203504 -10.51405 -0.19128 -6.81910 -0.37569 2.10054
2 2 2 7w/3 0.2 w/4 198186 -8.78563 -0.24659 -6.59584  -0.35238 2.00128
2 2 2 7w/3 0.2 w/3 198903 -8.88627 -0.24218 -6.67250 -0.35363 2.03570
2 2 2 7/3 02 w/2 199570 -8.96843 -0.23814 -6.73484 -0.35482 2.06372
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Chapter 6

Conclusions and Scope for Future

Work

The study of entropy generation in Jeffrey fluid is valuable both theoretically
and practically. Exploring the complex dynamics of non-Newtonian fluids provides
deeper insights into thermodynamic processes, leading to practical advancements
in various engineering and industrial applications. It gives an idea of power con-
sumption by the thermodynamic losses. Entropy generation helps in determine the
irreversibility of system by various factors. The primary contributors to entropy
generation and energy loss in a thermodynamic system are fluid viscosity, diffusion
processes, frictional forces, and chemical reactions between solid surfaces.

In this thesis, We analyzed the entropy generation of Jeffrey fluid flow model
with different physical parameters. According to the references already in existence,
the current investigation covers a adequate results.

The main results indicate the following findings

Conclusions from Part-11

The steady, convective incompressible electrically conducting Jeffrey fluid flow

under the influence of angled magnetic field, thermal radiation, chemical reaction,
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through vertical parallel plates is studied in part II. This part explores how factors
like hall current, angled magnetic field, thermal radiation, Jeffrey fluid parameter,
and chemical reaction influence the generation of entropy, velocity, temperature,
and concentration components. The original complex equations of the system are
changed into dimensionless equations using similarity transformations. These di-
mensionless governing equations are solved with the help of SQLM.

The following are some of the important observations.

e The increase in magnetic parameter, radiation parameter, and inclination an-
gle results in the increase of flow velocity. The Hall parameter, on the other
hand, is showing the opposite trend. Cross-flow velocity is brought down by

an increase in Soret number and the Hall parameter.

e The temperature of the fluid rises while the concentration decreases with an
increasing value of inclination angle, Soret number, thermal radiation, and

Jeffrey fluid parameter.

e Increasing the magnetic parameter, Hall parameter, inclination angle, and

Soret number all lead to a rise in entropy generation within the system.

Conclusions from Part-II1

In part III, we will examine the behavior of a steady, convective, incompressible,
electrically conducting Jeffrey fluid that flows through inclined parallel plates. We
will investigate the impact of various parameters, including inclined magnetic field,
Hall effect, thermal radiation, chemical reaction, and Jeffrey fluid characteristics,
on the generation of entropy, as well as on the flow velocity, temperature, and
concentration components of the fluid.

The following are some of the important observations.

e Entropy generation within the system increases with an increase in the mag-

netic parameter, Soret number, inclination angle, and Hall parameter.
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e The flow velocity increases with the increasing value of the magnetic parame-
ter, radiation parameter, inclination angle, and Soret number. With the Hall
parameter, however, a contrary tendency is noted. In contrast, the cross-flow
velocity falls as the Soret number, inclination angle, and Hall parameter in-

crease.

e The fluid temperature seems to decrease and concentration exhibits an in-
crease as the inclination angle, Soret number, slip parameter, and Jeffrey fluid

parameter increase.

Future Scope:
The thesis work can be further extended to study the influence of various factors such
as viscosity variation, wall channeling, joule effects, stratification, double diffusion,
conjugate convection, etc. These factors can be studied independently and then
their combined effects can be examined over the complex structure. Although this
study can be challenging and time-consuming, it can be a rewarding experience. The
SQLM has been successfully applied in various fields, including biomedical functions,
biotechnology, power transformers, and cooling processes. Spectral methods have
also been successfully used in numerical simulations in many areas, such as heat

conduction, fluid dynamics, and quantum mechanics.
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