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Abstract

Predicting the characteristics of heat and mass transfer in natural or mixed
convection is crucial due to its practical engineering applications. Numerous studies
have been conducted on combined heat and mass transfer in Newtonian fluids. How-
ever, it is widely recognized that many fluids used in chemical and related processing
do not adhere to Newton’s classical law and are classified as non-Newtonian fluids.
Various mathematical models have been developed to describe the rheological be-
havior of these non-Newtonian fluids. No single fluid model accurately captures all
the properties of real fluids. As a result, over the past century, several fluid models
have been proposed to characterize the behavior of real fluids. Among these, Jeffrey
fluids introduced by George Barker Jeffrey which is capable of describing the stress
relaxation property of non-Newtonian fluids. The Jeffrey fluid displays an extrinsic
correlation between stress and strain rate. The Jeffrey fluid explains the concepts
of retardation and relaxation time. The aim of this thesis is to study about en-
tropy generation analysis in free and mixed convection heat and mass transfer in
Jeffrey fluid in the presence of inclined magnetic, radiation, chemical reaction, and
Soret effects. The problems considered deal with vertical parallel plates and inclined
parallel plates.

The thesis is divided into four parts and six chapters. Part-I includes a single
introductory chapter (chapter 1), which presents the basic equations for the flow,
heat, and mass transfers of Jeffrey fluids and a review of relevant literature. Part-
II contains two chapters (i.e. chapters 2 and 3) and deal with inclined magnetic,
chemical reaction, and radiation effects on entropy generation of Jeffrey fluid flow
between vertical parallel plates. Part-III contains two chapters (chapters 4 and 5)
investigates the impact of Soret number, chemical reaction, and angled magnetic
field on entropy generation of Jeffrey fluid flow between inclined parallel plates.

In all the above chapters, using similarity transformations, the nonlinear gov-
erning equations along with boundary conditions are first transformed into a non-
dimensional form. The spectral quasi-linearization approach is used to solve the
resulting system of equations. The impact of Jeffrey fluid parameter and some
other parameters on entropy, velocity of fluid, temperature, and concentration are
presented graphically.

Part-IV consists of a single chapter (chapter 6), which presents the summary
of the thesis with main conclusions and point out various problems which are yet to
be solved in this area of research.
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N O M E N C L A T U R E

A1 Dimensionless temperature
difference

B0 External magnetic field
B1 Dimensionless concentration

difference
Be Bejan number
Br Brinkman number
C Concentration.
Cf Dimensionless shear stress
cp Specific heat
D Mass diffusivity
Da Darcy number
g∗ gravitational acceleration.
Gr Grashof number
GrT , GrC Thermal, and Solutal Grashof

numbers respectively
Ha Magnetic parameter
k Permeability porous medium
k1 Rate of chemical reaction.
kf Thermal conductivity
KT Thermal diffusion ratio.
m Hall parameter
N Buoyancy ratio
Nu Nusselt number
Ns Dimensionless entropy genera-

tion
p Pressure
Pr Prandtl number

Q Chemical reaction parameter
qr Radiation heat flux
Rd Radiation parameter
Re Reynolds number
Sc Schmidt number
Sr Soret number
Sgen Volumetric entropy generation
Sh Sherwood number
T Temperature.
Tm Mean fluid temperature.
u, v, w Velocity components in the di-

rection of x, y and z.
α Inclination angle
βC Coefficient of Solutal expan-

sion
βT Coefficient of thermal expan-

sion
ϵ Dimensionless constant pa-

rameter
γ Channel angle of inclination
Γ̇ Shear rate
Γ̈ Derivative of shear rate with

respect to time.
λ1 Jeffrey fluid parameter
µ Coefficient of viscosity
ρ Density
σ Electrical conductivity
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Chapter 1

Introduction

Introduction

Fluid Dynamics is a scientific field that examines the motion of fluids and the

interaction between solid bodies and fluids. It has extensive implementation across

various disciplines, including Atmospheric science, Astrophysics, Geophysics, Bio-

physics, Oceanography, and Meteorology. Beyond it’s relevance to basic sciences,

Fluid Dynamics is also crucial in numerous engineering fields. In Mechanical and Nu-

clear engineering, it aids in the design of turbines, heat exchangers, pumps, cooling

systems, compressors, fluid couplings, and electro-chemical devices. In Aerospace

engineering, it is essential for designing airplanes with low resistance and high lift to

support their weight. In Civil engineering, it is used for designing dams, water sup-

ply systems, and irrigation canals. In Chemical and Petroleum engineering, it helps

in creating efficient devices for mixing and filtering industrial chemicals, petroleum,

and oils.

Newtonian fluids follow Newton’s law, which relates shear stress and shear rate

to a simple material property known as viscosity. This property is independent of

flow factors like shear rate and time, but it depends on fundamental thermodynamic

variables like temperature and pressure. However, most fluids used in engineering

2



CHAPTER 1. INTRODUCTION 3

and industrial applications do not meet the assumptions of a Newtonian fluid. These

fluids include industrial coatings, architectural paints, drilling muds, hydrogels, lu-

bricants, detergents, shampoos, food industry, and more. Because no fluid model

can exhibit all of the properties of these non-Newtonian fluids, several fluid models

(visco-elastic fluids, power-law fluids, dusty fluids, Micropolar fluids, Oldroyd flu-

ids, etc.) have been proposed. One of the models is the Jeffrey fluid, which was

introduced by George Barker Jeffery. This type of viscoelastic fluid model is used

to describe the behavior of certain non-Newtonian fluids. It extends the Newtonian

fluid model by incorporating both viscous and elastic effects, making it suitable for

modeling fluids that exhibit both solid-like and liquid-like behavior under different

conditions. The Jeffrey fluid displays an extrinsic correlation between stress and

strain rate and explains the concepts of retardation and relaxation time.

The study of fluid flows with the Jeffrey fluid has garnered significant interest due

to its extensive range in application of different fields. This includes fiber suspensions

and pulps, paints, paper pulp, toothpaste, simulate the flow of magma, and the act

of swallowing food through the esophagus and animal blood.

1.1 Jeffrey fluid

The Jeffrey fluid model is used to describe viscoelastic fluids that exhibit both

viscous (fluid-like) and elastic (solid-like) properties. It is particularly useful for

materials that have both relaxation (delayed return to original shape after defor-

mation) and retardation (delayed response to applied stress) characteristics. The

Jeffrey fluid displays an extrinsic correlation between stress and strain rate. The

Jeffrey fluid explains the concepts of retardation and relaxation time. It reduces to

the Newtonian fluid model, which has a linear relationship between stress and strain

rate.

This model is extensively utilized due to its considerable mathematical simplic-
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ity relative to other models. Recently, it has garnered significant interest from

researchers as it offers more accurate approximations for most physiological fluids.

For example, Ellahi et al. [1] investigated mathematical models of nanoparticles

with Jeffrey fluid model in arteries with a tapered shape. Other important fields

where this fluid have applications are Bio-fluid mechanics, blood flow, polymer pro-

cessing, paints, toothpaste, material design, paper pulp, and cosmetics. The field

equations of Jeffrey fluid dynamics [2] are:

T = −pI + S

S =
µ

1 + λ1

(Γ̇ + λ2Γ̈)

where T denotes Cauchy stress tensor, p represents pressure, S denotes extra stress

tensor, λ1 represents relaxation to retardation ratio, λ2 represents the retardation

time, Γ̇ denotes the shear rate, and Γ̈ represents the derivative of shear rate with

respect to time.

1.2 Magnetohydrodynamics (MHD)

Magnetohydrodynamics (MHD) is the study of the dynamics of electrically con-

ducting fluids, which combines principles from both magnetism and fluid dynamics.

This field examines how magnetic fields interact with and influence the behavior

of conducting fluids like plasmas, liquid metals, and saltwater. The foundational

idea of MHD is that the motion of the conducting fluid can induce electric currents,

which in turn generate magnetic fields. These magnetic fields can interact with the

fluid flow, leading to complex behaviors and phenomena.

The governing equations of MHD merge the Maxwell’s equations from electro-

magnetism and Navier-Stokes equations from fluid dynamics, adapted to account
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for the conductive properties of the fluid. One of the critical effects in MHD is the

Lorentz force, which is the force experienced by the conducting fluid due to the

magnetic field and the electric currents. This force can alter the motion of the fluid,

leading to phenomena such as magnetic damping or magnetic confinement.

Thus, the behavior of an incompressible, electrically conductive fluid influenced

by a magnetic field is described by the MHD equation.

The governing equation of MHD Jeffrey fluid will have the form

ρ

[
∂q⃗

∂t
+ (q⃗ · ∇)q⃗

]
= − µ

1 + λ1

(∇× (∇× q)) + J̄ × B̄ −∇P (1.1)

When an electric current flows through a conductor situated in a magnetic field,

the moving charge carriers encounter a transverse force, causing them to be pushed

to one side of the conductor. This leads to a charge buildup on the sides of the

conductor, which counteracts the magnetic influence. Consequently, a measurable

voltage is established between the two sides of the conductor, a phenomenon known

as the Hall effect, discovered by E. H. Hall in 1879. Understanding magnetohydro-

dynamic flows with Hall currents is important in engineering for applications like

magnetohydrodynamic generators, flight magnetohydrodynamics, as well as in Hall

accelerators.

If we assume that the frequency of electron-atom collisions is relatively high, then

we cannot ignore the Hall effect. In this scenario, Sutton’s [3] generalized Ohm’s

law describes the current density J̄ as

J̄ = σ{Ē + q⃗ × B̄ − η(J̄ × B̄)} (1.2)

where η denotes the Hall factor and Ē is the total electric field current which is

neglected due to the assumption that the induced magnetic field is very small.

There are many technical and scientific applications of MHD flow, such as in
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devices like tokamaks and stellarators, magnetic confinement of high-temperature

plasmas, understanding and controlling plasma behavior, devices that convert ther-

mal and kinetic energy from a conducting fluid into electrical power using magnetic

fields, measure the flow rate of blood and other conducting fluids in medical appli-

cations, lubricants, used in plasma-enhanced chemical vapor deposition and other

plasma processes for the manufacturing of semiconductors and thin films etc.

1.3 Heat and Mass Transfer

Heat and mass transfer are fundamental concepts in the study of thermodynam-

ics and fluid dynamics. Heat transfer occurs when thermal energy moves from one

area to another due to temperature differences. This process happens through three

primary mechanisms: convection, conduction, and radiation. Convection involves

the transfer of heat between a solid surface and a moving fluid (liquid or gas). Con-

vection can be natural (due to buoyancy effects) or forced (due to an external force).

Conduction is the process by which thermal energy is transferred through a mate-

rial because of microscopic collisions and interactions between molecules and atoms.

Radiation is a mode of heat transfer that occurs through the emission of electromag-

netic waves. Radiation does not required medium to transfer the heat. Convective

heat transfer is the process of transferring thermal energy between a moving fluid

and a solid surface. It combines the effects of conduction and convection. Convective

heat transfer is divided in 3 distinct scenario: Forced convection, Natural convection

and Mixed convection. Forced convection is a mechanism in which fluid motion is

generated by an external force. Natural convection, on the other hand, is driven

by buoyancy forces caused by density differnces in the fluid. In mixed convection,

the fluid motion is influenced by both external forces and buoyancy forces resulting

from temperature differences in the fluid.

In order to determine how heat is transferred within a medium, we must first
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establish its temperature distribution or temperature field by solving the heat equa-

tion, which is a statement of first law of thermodynamics. When dealing with Jeffrey

fluids, the local equilibrium model can be applied to derive the appropriate energy

equation, which yields the appropriate equation.

ρcp

[
∂T

∂t
+ (q⃗ · ∇)T

]
= kf∇2T +

µ

1 + λ1

[(∇q⃗) : (∇q⃗)T + (∇q⃗) : (∇q⃗)]

+4η[(∇ω̄) : (∇ω̄)T ] + 4η′[(∇ω̄) : (∇ω̄)]

(1.3)

where kf denotes the thermal conductivity, T is the temperature, and ω̄ represents

the angular velocity.

The process by which a component in a mixture travels from an area of higher

concentration to an area of lower concentration due to their random thermal motion

is called mass transfer. Mass transfer occurs via two different mechanisms: con-

vection and diffusion. Convection mass transfer happens between an exposed solid

surface and a moving mixture of fluid species. Mass transfer processes are often de-

scribed using differential equations that account for the conservation of mass. This

equation provides the mass conservation.

∂C

∂t
+ (q⃗ · ∇)C = ∇ · (D∇C) (1.4)

where C represents the concentration and D is the solutal diffusivity.

1.4 Soret Effect

The Soret effect, also known as thermal diffusion is a phenomenon in fluid mix-

tures where different species of particles migrate along a temperature gradient [4].

In the majority of studies involving heat and mass transfer processes, the Soret effect

is often overlooked because it is generally considered to be less significant compared
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to the effects described by Fourier’s and Fick’s laws. Fourier’s law. This effect have

significant application in microfluidic devices, where precise control over particle and

molecule movement is crucial, in separating and sorting biological molecules, such as

proteins and nucleic acids, in biomedical research and diagnostics, in isotope sepa-

ration processes and in enhancing oil recovery, etc. In these applications, controlling

species movement through temperature gradients enhances efficiency and precision,

highlighting the practical importance of the Soret effect in various scientific and

industrial fields.

With Soret effect (see Nield and Bejan [5]), the modified concentration equation

in steady state can be written as

q⃗ · ∇C = ∇ · (D∇C +DCT∇T ) (1.5)

where D represents the mass diffusivity and DCT/D is considered as Soret coefficient

(number) of the medium.

1.5 Chemical Reaction

Chemical reactions play a important role in heat and mass transfer processes.

In various materials processing systems, chemical reactions can play a crucial role,

such as production of elemental bromine electrochemically in porous electrode sys-

tems [6], glass melt flows with sodium oxide and silicon dioxide [7], and the process

of creating intumescent paints for use in fire safety [8]. Furthermore, investigating

combined heat and mass transfer alongside chemical reactions and thermophoresis

effects find critical applications in various fields such as combustion, chemical engi-

neering, industrial and environmental science. In combustion processes, the intricate

interplay between heat release from chemical reactions and mass transfer of reactants

and products determines efficiency and emission profiles. In chemical engineering,
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reactors often rely on precise control of heat and mass transfer to optimize reaction

rates and yield, with thermophoresis (the movement of particles due to temperature

gradients) playing a significant role in particle deposition and catalyst efficiency. In

the energy sector, they are crucial for processes like combustion in power plants

and internal combustion engines, where chemical energy from fuels is converted into

mechanical or electrical energy. Environmental applications include atmospheric

chemistry, where pollutants undergo complex chemical reactions influenced by heat

and mass transfer, while thermophoresis affects the distribution and deposition of

aerosols, impacting air quality and climate models.

Numerous researchers have explored the impact of chemical reactions on heat

and mass transfer in various scenarios, including channels, past vertical plates, and

within concentric cylinders.

The concentration equation in a steady state for chemical reaction can be ex-

pressed as

q⃗ · ∇C = ∇ · (D∇C)− k1(C − C0) (1.6)

where k1 represents the rate of chemical reaction.

1.6 Entropy Generation

Entropy generation is a concept from thermodynamics that refers to the in-

crease in entropy that occurs within a system during a process. In thermodynamics,

it quantifies the increase in entropy resulting from irreversible processes such as

friction, heat transfer across finite temperature differences, and fluid flow through

dissipative channels, that lead to an increase in entropy. This increase in entropy is

often unavoidable and is a fundamental aspect of the second law of thermodynamics,

which says that the entropy of the system tends to grow over time.

The importance of entropy generation lies in various engineering and scientific
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applications because it plays a role in the efficiency and performance of many sys-

tems. In heat-exchanger design, the goal is to maximize fluid flow and heat transfer

with minimal entropy generation in order to achieve high overall efficiency of the

system. In thermal power plants, improvement in efficiency of energy conversion pro-

cesses reduces fuel consumption and emission of greenhouse gases as a consequence

of reduced entropy generation. One of the goals in developing an understanding

of entropy generation is to optimize chemical and separation processes so they can

be performed with minimal energy expenditure and maximal product yield. For

refrigeration and air conditioning systems, a decrease in the entropy generation aids

in achieving enhanced cooling. Furthermore, in renewable energy production, min-

imization of entropy generation maximizes energy capture and efficiency in conver-

sion. Overall, controlling entropy generation is fundamental to designing sustainable

and high-performance systems across various industries.

1.7 Spectral Quasi-linearization Method

Non-linearity is a crucial aspect of applied mathematics, as most of the real-

world problems are non-linear in nature. Lately, much attention has been paid to

finding more efficient and effective solution methods for both analytical and numer-

ical approximations of non-linear models. Obtaining exact or approximate solutions

for these equations is important and interesting, but it’s also a challenging task. De-

spite the availability of high-performance supercomputers and quality computation

software such as Mathematica and Maple, it’s still difficult to obtain numerical ap-

proximations for solutions of non-linear ordinary differential equations. The spectral

quasi-linearization method (SQLM) is a commonly-used approach to obtain numer-

ical approximations of non-linear problems. Srinivasacharya et al. [9] applied a nu-

merical method for solving nonlinear problems using SQLM. This method provides

a computationally efficient and accurate solution by employing a rapidly convergent
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series. The SQLM is a versatile method that can solve various types of nonlin-

ear equations, including coupled, decoupled, homogeneous, and non-homogeneous.

Scientists have applied this method to solve engineering problems.

In contrast to all other known numerical techniques, including the Adomian’s

decomposition method, the Runge-Kutta method, and the Finite Difference Method,

the SQLM has the following advantages:

• By exploiting the spectral properties of the linearized system, SQLM can

achieve fast convergence, especially for stiff or highly nonlinear problems.

• The method can provide accurate solutions even for challenging ODEs where

traditional techniques may struggle.

• SQLM is relatively robust and can handle a wide range of nonlinearities and

stiffness properties.

• SQLM often exhibits good numerical stability properties, which are crucial for

maintaining accuracy and reliability during the solution process.

Later Kaladhar et al. [10], Reddy et al. [11], and Zare et al. [12] employed the spec-

tral quasi-linearization method (SQLM) to address nonlinear fluid-related problems

in fluid dynamics.

1.8 Literature Survey

The study of natural convection heat and mass transfer and fluid flows in vertical

channels has been extensively researched for many decades because of their broad

range of applications in heat exchange processes. This includes solar collectors,

passive solar heating, electronic cooling, room heating radiators, and heat removal

in nuclear technology. Elenbaas [13] conducted experimental and theoretical anal-

ysis on natural convection between isothermal parallel plates in 1942, proposing a
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optimisation of heat transfer. The study conducted by Cohen and Rohsenow [14]

examined the ideal thermal distance for natural convection flow between two vertical

parallel plates. Hajizadeh et al. [15] investigated the unforced convective flow of a

nanofluid between vertically aligned parallel plates. Tanveer et al. [16] explored the

free convection flows of nanofluids by taking the generalized fractional thermal flux

into account. Ali et al. [17] investigated the influence of magnetic field and heat

transfer on the phenomenon of free convection in MHD Casson fluid flow occurring

between parallel plates. Bako and Ajibade [18] explored the impacts of g-jitter on

free convection Couette flow within a vertical channel.

Heat and mass transfer in mixed convection flow in a vertical channel has at-

tracted attention over the years due to its diverse applications, such as in thermal

Comfort in buildings, spacecraft thermal control and in chemical reactors. Numer-

ous researchers have investigated the problem of heat transfer and fluid flow in mixed

convection between vertical parallel plates, using both analytical and primarily nu-

merical methods. The research by Cheng et al. [19] dealt with the phenomenon of

heat transmission and flow reversal in mixed convection through a vertical channel.

Azizi et al. [20] investigated the buoyancy impact on mixed convection laminar flow

in a vertical channel. The researchers looked at both uphill and downward motion.

Heat transport in a partially heated vertical duct under mixed convection was ex-

amined by Celik et al. [21]. Xu [22] examined the combined convective motion of

a hybrid nanofluid within an inclined channel. The top wall of the channel exhibits

slip behavior due to a patterned surface, while the heat flux remains constant along

the walls. Ullah and Alkinidri [23] investigated the influence of viscosity fluctuations

in mixed convective flow along a sloping heated plate is explored in the context of

reduced gravity conditions.

Porous media flow research is a multi-disciplinary scientific discipline that in-

cludes hydrogeology, fluid mechanics, environmental engineering, petroleum engi-
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neering, and many others. This science area describes the movement of fluids

through materials whose structure contains interconnecting voids. This illustrates

the relevance of porous media in the practical solutions of problems related to water

management, energy production, protection of the environment, and many other

engineering disciplines. Yang et al. [24] established a model to describe the flow

of water through a channel embedded with a polymer gel, which is considered an

elastic and deformable porous medium. Hayat and Abbas [25] studied second-grade

MHD fluid flow through a porous medium. Ellahi and Afzal [26] examined the third-

grade fluid flow through a pipe in porous medium. Fiza et al. [27] examined the

magnetohydrodynamic nanofluid flow with porous medium between parallel plates.

Abou et al. [28] researched the hall current effect on nanofluid flow between two par-

allel plates in a porous media. Sudarmozhi et al. [29] analyzed the MHD Maxwell

fluid flow over a flat, porous surface, considering the effect of radiation and heat

generation.

In recent years, various elementary flow problems related to classical hydrody-

namics have garnered renewed interest within the broader framework of magneto-

hydrodynamics (MHD). Following the groundbreaking research by Hartman and

Lazarus [30] on the effect of magnetic fields on the laminar flow of viscous fluids

between parallel plates, numerous researchers have expanded upon existing hydro-

dynamic solutions in various flow geometries to incorporate the impact of mag-

netic fields, particularly in cases where the fluid exhibits electrical conductivity.

Many researchers have studied the MHD flow and heat transfer of different types of

non-Newtonian fluids (Axford [31], Jahanshah and Vireshwar [32], Chamkha [33],

Kurtcebe and Erim [34]). In most MHD flow problems, the Hall term in Ohm’s law

is neglected. But in the event of a strong magnetic field, the effect of Hall current

becomes important and can’t be neglected. Elshehabey et al. [35] examined natu-

ral convection in a curved L-shaped enclosure containing copper/water nanofluids
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operating on a differentially heated wall under the influence of an angled magnetic

field. Bondareva et al. [36] examined the impact of an angled magnetic field and a

local heater on melting and natural convection heat transfer in a cubical chamber

filled with pure gallium. Convection study of radiative nanofluid flow with an an-

gled magnetic field through porous media over a stretching surface was studied by

Hussian and Sheremet [37].

The study of problems involving the Soret effect with various surface geometries

has garnered significant attention from researchers across different fields. These

studies are crucial for understanding heat and mass transfer phenomena in diverse

engineering applications. Dursunkaya and Worek [38] investigated thermal-diffusion

and diffusion-thermo impacts in steady and transient natural convection from a ver-

tical surface. The Soret effect was examined by Sheri and Raju [39] on an unsteady

MHD convective flow via a semi-infinite vertical plate, taking into account the vis-

cous dissipation. Mandal et al [40] conducted a study using an inclined stretching

plate with different surface conditions to explore the characteristics of the Soret ef-

fect and magnetohydrodynamics. Mishra and Panda [41] investigated the effect of

Soret on the hydromagnetically mixed convective flow passing through the center

of infinite vertical plates. Durojaye et al. [42] employed a numerical method called

method of lines to examine the impact of Dufour and Soret effects on heat and mass

transfer in a naturally convecting MHD Couette flow.

Heat transfer is a common occurrence in various biological processes, and it

usually happens through conduction, convection, or radiation. Unfortunately, such

processes can lead to energy losses, which may result in disorder. To prevent this

from happening, researchers have been using entropy generation analysis as a pow-

erful tool for reducing energy waste or maximizing energy utilization to improve

system performance. Recently, there is a growing interest in reducing energy waste

in thermal processes. Tasnim et al. [43] focused on how efficiently energy is used
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within a fluid flowing through a porous channel when a magnetic field is present.

They utilized the concept of generation of entropy to carry out the analysis. Odat

et al. [44] examined the impact of a magnetic field on the formation of entropy in

fluid flow across a horizontal plate. The method of entropy generation minimiza-

tion was used by Ibanez et al. [45] to optimize the MHD flow with finite electrical

conductivity between two endless parallel walls. Jery et al. [46] examined the in-

fluence of external magnetic field on entropy due to free convection. Abbas et al.

[47] examined the entropy production in MHD viscous fluid flow with radiation im-

mersed in a vertical permeable channel. Jayaprakash and Patil [48] demonstrated

the concept of irreversibility analysis for mixed convective Casson fluid flow in a

vertical microchannel with radiation effect. Iftikhar et al. [49] conferred the entropy

production to MHD mixed convection in a saturated fluid in a square cavity.

A number of studies have been reported in the literature focusing on the prob-

lem of combined heat and mass transfer with chemical reaction effect. Exothermic

reaction effect on fully developed mixed convection flow in a vertical channel was

studied by Pop et al. [50]. Dash et al. [51] explored the effect of chemical reaction

in MHD flow of micropolar fluid with heat source/sink between two parallel plates.

The study is aimed at understanding the influence of chemical reactions on micropo-

lar fluid behavior under the impact of magnetic fields in varying thermal conditions.

Mondal and Bharti [52] presented SQLM solution of boundary layer flow of MHD

nanofluid with chemical reaction. Awais and Salahuddin [54] investigated thermo-

physical properties of MHD fluid model with the influence of chemical reaction and

energy dissipation.

1.9 Aim and Scope

Motivated by previous research and recognizing the importance of the appli-

cations in this thesis, the authors aim to study the entropy generation linked to
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convective heat and mass transfer of Jeffrey fluid. This investigation includes con-

siderations such as the Hall effect, inclined magnetic effect, chemical reaction effect,

and Soret effect. The problems under consideration involve both vertical parallel

plates and inclined parallel plates. The problems were solved utilizing the spectral

quasi-linearization method. Subsequently, graphical solutions for these problems

were presented.

1.10 Outline of the Thesis

This thesis divided into four parts and ten chapters.

Part-I consists of a single Chapter-1 which gives an introduction, providing

the motivation for the investigations conducted in the thesis. A thorough review of

the relevant literature is provided to highlight the importance of the issues being

examined. Additionally, the fundamental equations that describe the fluid flow of

Jeffrey fluid are presented.

Part-II deals with the irreversibility analysis in natural/mixed convection flow

of Jeffrey fluid through a channel with chemical reaction, angled magnetic field,

radiation, and Hall effects. This consists of two chapters (chapter 2, and 3). In

each of these chapters, the similarity transformations are first introduced to con-

vert the nonlinear governing equations into dimensionless form. In the sequel, the

transformed equations are solved using the approach of Spectral Quasi-linearization

Method (SQLM).

In Chapter-2, we investigate the Hall and radiation effects on entropy gen-

eration of steady convective Jeffrey fluid flow in a vertical channel under angled

magnetic field in porous medium. The non-dimensional profiles of velocities, tem-

perature, concentration, and entropy are graphically presented for various values of

hall current, magnetic parameter, Jeffrey fluid parameter, radiation parameter, and

Soret parameter.
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In Chapter-3, we discuss the generation of entropy of steady convective Jef-

frey fluid flow between two vertical parallel plates under navier-slip condition. The

effects of Hall parameter, Jeffrey fluid parameter, and magnetic parameter on the

dimensionaless entropy, velocities, temperature, and concentration are discussed.

In the above chapters, two types (cases) of problems are considered. The first

type is of natural convection and the second type is of mixed convection flow.

Part-III deals with the entropy generation of steady, incompressible free/mixed

convection flow of Jeffrey fluid through an inclined channel with an angled magnetic

field, Hall current, radiation, Soret, and chemical reaction effects. This consists

of two chapters (chapters 4 and 5). In these two chapters, the similarity trans-

formations are first introduced to convert the nonlinear governing equations into

dimensionless form. In the sequel, the transformed equations are solved using the

approach of SQLM, as done earlier.

In Chapter-4, we investigate the generation of entropy in steady convective Jef-

frey fluid flow in porous medium between two inclined parallel plates. The graphical

display of the acquired results demonstrates the impact of the magnetic parameter,

Soret number, Jeffrey parameter, and radiation parameter on the dimensionless ve-

locity, temperature, concentration, and entropy.

In Chapter-5, we discuss the entropy generation of steady convective heat and

mass transfer between inclined parallel plates saturated with Jeffrey fluid under

navier-slip condition. The effect of magnetic parameter, Hall current, Soret num-

ber, and Jeffrey fluid parameters on the non-dimensional velocities, temperature,

concentration, and entropy are discussed.

In the above mentioned chapters 4 and 5 in part-III, two types (cases) of problems

are considered. The first type is of natural convection and the second type is of mixed

convection flow.

Part-IV has only one chapter (Chapter - 6), which sums up the important
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findings out of the earlier chapters and provides suggestions for future research

directions.



Part II

Entropy Generation in Jeffrey Fluid

Flow between vertical parallel plates.
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Chapter 2

Irreversibility Analysis of Jeffrey

fluid flow between two vertical plates

with porous medium under the effect

of angled magnetic field 1

2.1 Introduction

The study of natural and mixed convection flow between two parallel plates has

garnered significant theoretical and practical attention. Heat and mass transfer in

Jeffrey fluid plays a crucial role in various fields such as industrial manufacturing

processes, aerospace engineering, and chemical engineering. The study of mixed

and natural convection in vertical channel is relevant to many heat transfer applica-

tions. These include processes in polymer manufacturing like extrusion and injection

molding, as well as drug delivery systems, reactor design, and even nuclear reactors.
1Case(a):Published in “Special Topics and Reviews in Porous Media”, (2024). DOI:

10.1615/SpecialTopicsRevPorousMedia.2024048949
Case(b): Published in “Special Topics and Reviews in Porous Media”, (2024). DOI:
10.1615/SpecialTopicsRevPorousMedia.2024048872
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Several researchers have discussed the importance and advancements of heat and

mass transfer [55, 56]. Bakar et al. [57] studied the mixed convection effect in a

lid-driven cavity with an angled magnetic field. Kumar and Premachandran [58]

examined the transition phenomena occurring in a natural convection flow within a

tilted parallel plate channel. A vertical porous channel was used to study how hall

and ion slip affected mixed convection of Jeffrey nanofluid by Channappa et al. [59].

In this chapter, we examine the entropy generation in the flow of Jeffrey fluid

between two vertical parallel plates, influenced by Hall current, heat radiation, and

angled magnetic field. The resulting flow equations are solved using SQLM. The

impact of various relevant flow parameters on entropy, velocity, temperature, and

concentration is examined.

2.2 Mathematical formulation

The physical configuration of this chapter (figure 2.1) involves two infinitely extended

parallel plates. It exhibits that the plates are separated with a distance of 2d.

C1, T1, C2, T2 are the concentrations and temperatures at both plates respectively.

An external magnetic field B0 is acting on plates in an inclined direction, which

makes α angle with the base. Further, it is assumed that the considered Jeffrey fluid

flow is steady, incompressible, and laminar. Since the limits are infinitely extended

along the x− axis, the flow parameters are presumed to be solely dependent on y.

Except for density changes in the buoyancy force term, fluid parameters are assumed

to be constant. Therefore, these conventions are naturally genuine and practically

applicable.

For this version, the governing equations are derived as follows:

dv

dy
= 0 ⇒ v = v0 = constant (2.1)
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Figure 2.1: Diagrammatic representation of the fluid flow.

ρv0
du

dy
=

µ

1 + λ1

d2u

dy2
− σB2

0cosα

1 +m2cos2α

(
ucosα− v0sinα +mwcos2α

)
−dp

dx
+ ρg∗βT (T − T1) + ρg∗βC(C − C1)−

µu

(1 + λ1)k

(2.2)

ρv0
dw

dy
=

µ

1 + λ1

d2w

dy2
+

σB2
0cos

2α

1 +m2cos2α
(mucosα− w −mv0sinα)−

µw

(1 + λ1)k
(2.3)

ρcpv0
dT

dy
= kf

d2T

dy2
− dqr

dy
+

µ

1 + λ1

((
du

dy

)2

+

(
dw

dy

)2
)

(2.4)

v0
dC

dy
= D

d2C

dy2
− k1(C − C1) +

DKT

Tm

d2T

dy2
(2.5)

where cp represents specific heat, g∗ represents the gravitational acceleration, kf

denotes thermal conductivity, k is permeability parameter, ρ is the density, m = η σ

B0 is the Hall parameter, σ is the electric conductivity, k1 denotes chemical reaction,

µ represent the viscosity, βT and βC denote the thermal and solutal expansion, Tm

is the mean fluid temperature, D denote the diffusivity of mass, KT represent the

ratio of thermal diffusion and the radiation heat flow is denoted by qr.
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The boundary conditions for this problem are given by

u = w = T − T1 = C − C1 = 0, when y = −d

u = w = T − T2 = C − C2 = 0, when y = d.

(2.6)

In this chapter, two types (cases) of problems of (a) natural convection and (b)

mixed convection are considered.

2.2.1 Case (a): Natural convection

Natural convection flow is due to buoyancy forces, with the assumption that there

is no external pressure gradient ( ∂p
∂x

= 0).

similarity transformations for this given problem is given as

η =
y

d
, u =

γGr

d
f, w =

γGr

d
g, θ =

T − T1

T2 − T1

, ϕ =
C − C1

C2 − C1

(2.7)

In equations (2.2) - (2.5), Non-dimensional equations are obtained as

f ′′ −Re(1 + λ1)f
′ + (1 + λ1)(θ + ϕ)

− Ha2cosα(1 + λ1)

1 +m2cos2α

(
fcosα− λsinα +mgcos2α

)
− f

Da
= 0

(2.8)

g′′ −Re(1 + λ1)g
′ +

Ha2cos2α(1 + λ1)

1 +m2cos2α
(mfcosα− g −mλsinα)− f

Da
= 0 (2.9)(

1 +
4

3
Rd

)
θ′′ −RePrθ′ +

BrGr2

(1 + λ1)
f ′2 +

BrGr2

(1 + λ1)
g′2 = 0 (2.10)

ScSrθ′′ + ϕ′′ −ReScϕ′ −QScϕ = 0 (2.11)

with

f = g = θ = ϕ = 0, when η = −1

f = g = 0, θ = ϕ = 1, when η = 1

(2.12)
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where Da =
k

d2
represents the Darcy number, Re =

ρv0d

µ
represents Reynolds num-

ber, Sr =
DKT (T2 − T1)

νTm(C2 − C1)
is the parameter of thermo diffusion, Pr =

µcp
kf

is Prandtl

number, Gr=
gβ(T2 − T1)d

3

v2
is thermal Grashof number, Br =

µv2

kfd2(T2 − T1)
de-

notes Brinkman number, Ha = dB0

√
σ

µ
is the magnetic parameter, λ =

Re

Gr
, Sc =

ν

D

is the Schmidt number, Rd =
4σT 3

0

kfk∗ denote the Radiation parameter, and Q =
k1d

v0
is the chemical reaction parameter.

The shearing stress, as well as the heat and mass fluxes can be calculated from

τw = µ
du

dy
|y=±d; qw =

[
−kf

dT

dy
+ qr

]
|y=±d; qm = −D

dC

dy
|y=±d

The dimensionless shear stress Cf =
τw
ρu2

0

is given by ReCf1,2 = f ′(η) |η=−1,1.

The Sherwood number Sh = qmd/D(C2 − C1) and Nusselt number Nu = qwd/kf (T2 − T1)

for this problem are given by

Sh1,2 = − [ϕ′(η)] |η=−1,1; Nu1,2 = −
[
1 +

4

3
Rd

]
θ′(η) |η=−1,1 .

Solution of the problem using SQLM

The set of coupled non-linear equations (2.8) - (2.11) is numerically solved with

boundary conditions (2.12) using the Spectral Quasi-Linearization Method (SQLM)

[60]. This method uses Taylor series expansion to linearize the differential equation

and build the iteration scheme.

Next applying the SQLM to solve the equations (2.8) - (2.11) by assuming the

approximate solution as fr, gr, θrand ϕr. Then the improved solutions are fr+1,
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gr+1, θr+1and ϕr+1. The following describes an iterative model based on SQLM:

f ′′
k+1−Re(1+λ1)f

′
k+1+(1+λ1)(θr+1+ϕr+1)+a1fk+1+a2gk+1−

1

Da
fk+1 = a3 (2.13)

g′′k+1 −Re(1 + λ1)g
′
k+1 + a4fk+1 + a5gk+1 −

1

Da
gk+1 = a6 (2.14)

a7θ
′′
r+1 −RePrθ′r+1 + a8f

′
k+1 + a9g

′
k+1 = a10 (2.15)

ϕ′′
r+1 −ReScϕ′

r+1 −QScϕr+1 + ScSrθ′′r+1 = 0 (2.16)

where

a1 = −Ha2(1 + λ1)cos
2α

1 +m2cos2α
, a2 = −mHa2(1 + λ1)cos

3α

1 +m2cos2α
,

a3 = −λHa2(1 + λ1)cosαsinα

1 +m2cos2α
, a4 =

mHa2cos3(1 + λ1)

1 +m2cos2
,

a5 = −Ha2(1 + λ1)cos
2α

1 +m2cos2α
, a6 =

λmHa2cos2αsinα(1 + λ1)

1 +m2cos2α

a7 =

(
1 +

4

3

)
Rd, a8 =

2BrGr2

1 + λ1

f ′
k, a9 =

2BrGr2

1 + λ1

g′k, a10 =
BrGr2

(1 + λ1)

(
f ′2
k + g′2k

)
The preceding system (2.13) - (2.16) is an iterative system of linear differential

equations which solved for r = 1, 2, 3, ... The quasi-linearization scheme in this study

was solved using the Chebyshev pseudo-spectral method. The iteration procedures

((2.13) − (2.16)) can be solved step by step for Fr+1, Gr+1, Θr+1 and Φr+1 by taking

the values of r as 1, 2, ... with starting approximations f0, g0, θ0, ϕ0 respectively. To

solve equations (2.13) - (2.16), we discretize them and utilize the Chebyshev spectral

collocation method. This method employs a differential matrix, denoted as D,

by introducing the collocation points.

ηj = cos
jπ

Nx

, (j = 0, 1, 2, 3...Nx)
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Now SQLM makes the entire system in matrix form as

ArXr+1 = Br

where

Ar =



A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44


Xr+1 =

[
Fk+1 Gk+1 Θk+1 Φk+1

]T

Br =

[
M1 M2 M3 M4

]T
where

A11 = D2 −Re(1 + λ1)D + a1 −
1

Da
, A12 = a2, A13 = (1 + λ1) ∗ I, A14 = (1 + λ1) ∗ I,

A21 = a4, A22 = D2 −Re(1 + λ1)D + a5 −
1

Da
, A23 = O, A24 = O,

A31 = a8D, A32 = a9D, A33 = a7D
2 −RePrD, A34 = O,

A41 = O, A42 = O, A43 = ScSrD2, A44 = D2 −ReScD −QSc.

Fk+1 =



fr+1(ξ0)

fr+1(ξ1)

...

fr+1(ξNx)


,Gk+1 =



gr+1(ξ0)

gr+1(ξ1)

...

gr+1(ξNx)


,Θk+1 =



θr+1(ξ0)

θr+1(ξ1)

...

θr+1(ξNx)


,Φk+1 =



ϕr+1(ξ0)

ϕr+1(ξ1)

...

ϕr+1(ξNx)


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M1 =



a3(ξ0)

a3(ξ1)

...

a3(ξNx)


,M2 =



a6(ξ0)

a6(ξ1)

...

a6(ξNx)


,M3 =



a10(ξ0)

a10(ξ1)

...

a10(ξNx)


,M4 = O.

Here O and I are the zero and identity matrices of order (Nx + 1).

The numerical solutions using SQLM is obtained as

Xr+1 = A−1
r Br

Entropy generation

Entropy generation analysis is crucial for designing efficient thermal devices. Be-

cause entropy minimization helps to maximizing the efficiency of ongoing thermal

processes. Thermodynamics tells us that when heat transfer occurs in a system, the

effects are believed to be thermodynamic reversibility and entropy generation. Since

the transfer of heat in flowing fluids is not a purely reversible process, irreversibility

must be considered when such systems undergo an analysis in thermodynamics. The

2nd law of thermodynamics provides a framework for calculating the local rate of

entropy generation [61, 62], which is calculated as follows:

Sgen =
kf
T 2
0

[
1 +

16σT 3
0

3kfk∗

] [
dT

dy

]2
+

µ

T0(1 + λ1)

[(
du

dy

)2

+

(
dw

dy

)2
]
+

RD

C0

(
dC

dy

)2

+
RD

T0

(
dT

dy

)(
dC

dy

)
+

µ

kT0

(u2 + w2) +
σB2

0

T0

[
w2 + (ucosα− v0sinα)

2
]

(2.17)

The first term in the right hand side of equation (2.17) is due to heat transfer, the

second term because of energy dissipation due to fluid viscosity, the third and fourth

are because of mass transfer, the fifth one due to porosity, and the magnetic field
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is responsible for the sixth. The expression for rate of entropy generation (Sgen)0 is

determined by

(Sgen)0 =
kf (T2 − T1)

2

T 2
0 d

2
(2.18)

By using equations (2.17) and (2.18), the creation of non-dimensional entropy can

be expressed in the following manner:

Ns =
Sgen

(Sgen)0

Ns =

[
1 +

4

3
Rd

]
(θ′)2 +

BrGr2

(1 + λ1)A1

(f ′2 + g′2) +
εB2

1

A2
1

(ϕ′)2 +
εB1

A1

θ′ϕ′

+
BrGr2

DaA1

(f 2 + g2) +
BrGr2Ha2

A1

(
g2 + (fcosα− λsinα)2

)
where A1, Br, B1, Gr, Rd, ε, Ha and Da are dimensionless temperature difference,

Brinkman number, dimensionless concentration difference, Grashof number, thermal

radiation parameter, dimensionless constant parameter, magnetic parameter, Darcy

number, respectively, which are given by

Rd =
4σT 3

0

kfk∗ , Br =
µv2

kfd2(T2 − T1)
, Gr =

gβ(T2 − T1)d
3

v2
, ε =

RDC0

kf
,

A1 =
T2 − T1

T0

, B1 =
C2 − C1

C0

, Ha = dB0

√
σ

µ
, Da =

k

d2

Results and discussion

The analytical solutions for equations (2.8), (2.10), and (2.11), along with their

boundary conditions (2.12), were derived without considering the brinkman number

(Br), magnetic parameter (Ha), chemical reaction parameter (Q), and Jeffrey fluid

parameter (λ1), along with inclination angle at α = 60◦. A comparison was made

between these analytical solutions and the solutions obtained using SQLM, which are

presented in Table 2.1. The results of comparisons show a high level of agreement.
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As a result, the SQLM code can be utilized with assurance to investigate the topic

addressed in this research.

Figures 2.2 - 2.7 depict how these parameters affect the aforementioned variables,

with Q, Re, Pr, Sc, Gr, Da by fixing their value at 2, 2, 0.71, 0.22, 10, and 2,

respectively.

Figure 2.2 illustrates the impact of Ha on velocities, temperature, concentration,

and entropy generation when Sr = 10, α = π/3, m =2, Rd =0.2, λ1=0.5, Br =

0.5. It is seen from figures 2.2(a) and 2.2(b) that the velocities magnify as Ha

magnifies. The magnetic field is inclined at an angle α > 0, which implies that the

drag force cannot be produced in the flow and cross-flow directions. Figure 2.2(c)

illustrates that as Ha increases, the fluid temperature also rises. It is observed from

figures 2.2(d) and 2.2(e) that as Ha increases, the concentration of fluid and entropy

generation increase.

The influence of m on velocities, temperature, concentration, and entropy gen-

eration can be seen in figure 2.3 at Sr = 10, α=π/3, Ha =2, Rd =0.1, λ1=0.1 and

Br = 0.5. Figures 2.3(a), 2.3(b) and 2.3(d) reveals that the flow velocity, cross-flow

velocity, and concentration decreases as m increase. This is because the magnetic

field is inclined at an angle of α = π/3, which causes the hall effect to generate

charge in the direction of inclined plates, thereby making it unable to act as a drag

on the fluid. Figures 2.3(c) and 2.3(e) show that as m increases, the fluid tempera-

ture and entropy generation also increases. The hall current plays a crucial role in

magnetohydrodynamic flows, as it introduces additional complexity in fluid motion

and magnetic field distribution.

The influence of Rd on velocities, temperature, concentration, and entropy gen-

eration can be noticed in figure 2.4 at α=π/3, Sr = 3, Ha =2, m =2, λ1=0.5 and

Br = 1. It is noted from figures 2.4(a) and 2.4(b) reveals that as Rd increases, the

flow velocity rises while the cross-flow velocity falls. Figures 2.4(c) and 2.4(d) shows
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that the temperature of the fluid goes up and concentration goes down as the value

of Rd increases. Figure 2.4(e) reveals that entropy generation fall as the radiation

parameter increase.

The effect on α on velocities, temperature, concentration, and entropy generation

can be observed in figure 2.5 by fixing the other parameter at Sr=10, Ha=2, λ1=0.1,

m=2, Rd=0.5 and Br=1. Figures 2.5(a) and 2.5(b) reveals that as α increase, the

flow velocity increase while the cross-flow velocity decrease. Figures 2.5(c) and

2.5(d) shows that increasing in α leads to a fall in dimensionless temperature but

a rise in concentration. This behavior occurs because raising the inclination angle

of the applied magnetic field reduces the drag force, which enhances the net flow in

the fluid. Figure 2.5(e) shows that the entropy generation increase as α increase.

An inclined magnetic field is used in magneto-hydrodynamics generators to convert

the kinetic energy of hot, electrically conducting fluid into electrical energy.

The effect on λ1 on velocities, temperature, concentration, and entropy genera-

tion can be noted in figure 2.6 by fixing the other parameter at Rd=0.1, Sr = 10,

Ha =1, m =2, α= π/3 and Br = 0.5. Figures 2.6(a) and 2.6(b) indicates that as λ1

increases, the flow and cross-flow velocity both fall. Figures 2.6(c), 2.6(d) and 2.6(e)

shows that a rise in λ1 leads to a fall in fluid temperature but rise in concentration

and entropy generation.

Figure 2.7 demonstrates how the parameter Sr affects velocity, temperature,

concentration, and entropy generation when other parameters are fixed at α = π/3,

m = 2, Ha = 2, λ1 = 0.5, Rd=0.2 and Br = 2. Figures 2.7(a) and 2.7(b) demon-

strate that increasing m causes the flow and cross-flow velocity both decrease. Fig-

ures 2.7(c) and 2.7(d) reveal that the fluid temperature decrease while the concen-

tration increase as Sr increase. Figure 2.7(e) reveals that as Sr increase, entropy

generation increase but decrease near the plate y = d. The soret parameter plays a

role in mass transfer in multi-component fluid systems and can significantly impact
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flow behavior, particularly in situations involving heat and mass transfer.

Table 2.2 examines how the coefficient of skin friction, heat transfer rate, and

mass transfer rate change under the influence of various parameters. These pa-

rameters include the Hall current (m), inclination angle (α), magnetic parameter

(Ha), Soret effect (Sr), radiation parameter (Rd), and Jeffrey fluid parameter (λ1),

while keeping other values at Q=2, Re=2, Pr=0.71, Br=0.5, Sc=0.22, Gr=10 and

Da=2. As the values of the magnetic parameter, inclination angle, and Jeffrey fluid

parameter increase, the skin friction coefficient increases at first but lowers towards

the final plate. However, a reverse tendency is seen as m increases. The friction

factor decreases at both plates as Sr and Rd increases. The finding shows that

when Sr, α, m and λ1 increase, the heat transfer rate rises at y = −d plate and

falls at y = d plate, whereas the opposite tendency is seen as Ha increase. The rate

of heat transfer decrease at both plates as Rd increase. As for the mass transfer

rate, the table shows that it rises at both walls as Sr, α, and λ1 increase, whereas

the opposite tendency is observed as Rd increases. The rate of mass transfer rise at

the starting plate but fall at the terminal plate as m increase whereas the reverse

tendency is observed with a rise in magnetic parameter.
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Figure 2.2: Impact of magnetic parameter (Ha) on (a) f(η), (b) g(η), (c) θ(η) (d)
ϕ(η), and (e) Ns.
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Figure 2.3: Impact of hall current (m) on (a) f(η), (b) g(η), (c) θ(η) (d) ϕ(η), and
(e) Ns.
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Figure 2.4: Impact of radiation parameter (Rd) on (a) f(η), (b) g(η), (c) θ(η) (d)
ϕ(η), and (e) Ns.
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Figure 2.5: Impact of inclination angle (α) on (a) f(η), (b) g(η), (c) θ(η) (d) ϕ(η),
and (e) Ns.
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Figure 2.6: Impact of Jeffrey fluid parameter (λ1) on (a) f(η), (b) g(η), (c) θ(η) (d)
ϕ(η), and (e) Ns.



CHAPTER 2. 37

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0
- 0 . 0 8

- 0 . 0 6

- 0 . 0 4

- 0 . 0 2

0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

f

η

 S r = 1
 S r = 2
 S r = 3
 S r = 4

(a)

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0

- 0 . 0 0 6

- 0 . 0 0 5

- 0 . 0 0 4

- 0 . 0 0 3

- 0 . 0 0 2

- 0 . 0 0 1

0 . 0 0 0

0 . 0 0 1

g

η

 S r = 1
 S r = 2
 S r = 3
 S r = 4

(b)

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0

- 0 . 6

- 0 . 4

- 0 . 2

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

φ

η

 S r = 1
 S r = 2
 S r = 3
 S r = 4

(c)

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0
- 0 . 2

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

θ

η

 S r = 1
 S r = 2
 S r = 3
 S r = 4

(d)

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0
1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

N s

η

 S r = 1
 S r = 2
 S r = 3
 S r = 4

(e)

Figure 2.7: Impact of Soret number (Sr) on (a) f(η), (b) g(η), (c) θ(η) (d) ϕ(η),
and (e) Ns.
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Table 2.1: Comparison between exact solution and SQLM solution for the case when
λ1=0, Br=0, Sr=0, Q = 0, Da = 1 and Ha=0.

η
f θ ϕ

Exact SQLM Exact SQLM Exact SQLM
-1 0 −1.05× 10−15 0 0 0 −1.5× 10−15
-0.5 0.090302 0.090311 0.179046 0.179112 0.2188 0.2185
0 0.21928 0.21921 0.404374 0.404381 0.478833 0.478921
0.5 0.288324 0.288332 0.678804 0.678910 0.752541 0.752539
1 0 −4.4× 10−15 1 1 1 1

Table 2.2: Overview of the effect of different values of Ha, Sr, α, m, Rd and λ1 on
skin friction (Cf1,2), rate of heat transfer (Nu1,2) and mass transfer (Sh1,2).

Ha Sr α m Rd λ1 Cf1 Cf2 Nu1 Nu2 Sh1 Sh2

1 2 π/3 2 2 0.1 -0.07168 -0.58981 -0.94398 -3.64116 1.20990 -2.66705
2 2 π/3 2 2 0.1 -0.06525 -0.59959 -0.96546 -3.62203 1.20937 -2.66627
3 2 π/3 2 2 0.1 -0.05345 -0.61476 -0.99681 -3.59422 1.20843 -2.66496
2 1 π/3 2 2 0.1 -0.06449 -0.59713 -0.97008 -3.60976 1.19435 -2.70768
2 2 π/3 2 2 0.1 -0.06525 -0.59959 -0.96546 -3.62203 1.20937 -2.66627
2 3 π/3 2 2 0.1 -0.06602 -0.60209 -0.96070 -3.63462 1.22472 -2.62422
2 2 0 2 2 0.1 -0.07255 -0.56061 -0.97172 -3.53308 1.20696 -2.67382
2 2 π/4 2 2 0.1 -0.06687 -0.58792 -0.97060 -3.58747 1.20844 -2.66888
2 2 π/3 2 2 0.1 -0.06525 -0.59959 -0.96546 -3.62203 1.20937 -2.66627
2 2 π/3 1 2 0.1 -0.05952 -0.60763 -0.98161 -3.60942 1.20900 -2.66550
2 2 π/3 2 2 0.1 -0.06525 -0.5995 -0.96546 -3.62203 1.20937 -2.66627
2 2 π/3 3 2 0.1 -0.06872 -0.59454 -0.95439 -3.63157 1.20963 -2.66669
2 2 π/3 2 1 0.1 -0.05610 -0.59357 -0.38486 -3.02132 1.23559 -2.59998
2 2 π/3 2 2 0.1 -0.06525 -0.59959 -0.96546 -3.62203 1.20937 -2.66627
2 2 π/3 2 3 0.1 -0.06959 -0.60192 -1.59039 -4.25469 1.19907 -2.69249
2 2 π/3 2 2 0.1 -0.06525 -0.59959 -0.96546 -3.62203 1.20937 -2.66627
2 2 π/3 2 2 0.2 -0.06476 -0.65782 -0.95927 -3.68532 1.21077 -2.66082
2 2 π/3 2 2 0.3 -0.06386 -0.71619 -0.95468 -3.74393 1.21202 -2.65559
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2.2.2 Case (b): Mixed convection

Consider a mixed convection flow occurring under the influence of buoyancy forces

and external pressure gradient.

similarity transformations for this case is given as

η =
y

d
, u = u0f, w = u0g, θ =

T − T1

T2 − T1

, ϕ =
C − C1

C2 − C1

(2.19)

In equations (2.2) - (2.5), Non-dimensional equations are obtained as

f ′′ −Re(1 + λ1)f
′ + (1 + λ1)

GrT
Re

θ + (1 + λ1)
GrC
Re

ϕ− f

Da

−Ha2cosα(1 + λ1)

1 +m2cos2α

(
fcosα− λsinα +mgcos2α

)
− (1 + λ1)A = 0

(2.20)

g′′ −Re(1 + λ1)g
′ +

Ha2cos2α(1 + λ1)

1 +m2cos2α
(mfcosα− g −mλsinα)− g

Da
= 0 (2.21)(

1 +
4

3
Rd

)
θ′′ −RePrθ′ +

Br

(1 + λ1)
f ′2 +

Br

(1 + λ1)
g′2 = 0 (2.22)

ScSrθ′′ + ϕ′′ −ReScϕ′ −QScϕ = 0 (2.23)

with

f = g = θ = ϕ = 0, when η = −1

f = g = 0, θ = ϕ = 1, when η = 1

(2.24)

where Sc = ν/D is the Schmidt number, Re = ρv0d/µ represents Reynolds num-

ber, Pr = µcp/kf is Prandtl number, Ha = dB0

√
σ/µ is the magnetic parame-

ter, GrT = g∗βT (T2 − T1)d
3/v2 and GrC = g∗βC(T2 − T1)d

3/v2 represent thermal

and Solutal Grashof number, Br = µv2/kfd
2(T2 − T1) denotes Brinkman number,

Rd = 4σT 3
0 /kfk

∗ denotes the Radiation parameter, Q = k1d/v0 is the rate of chem-

ical reaction, λ = Re/Gr, Sr = DKT (T2 − T1)/νTm(C2 − C1) is the parameter of

thermo diffusion, and Da = k/d2 represents the Darcy number.
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The expressions for shear stress, heat flux, and mass flux are given by:

τw =

[
µ
du

dy

]
|y=±d; qw =

[
−kf

dT

dy
+ qr

]
|y=±d; qm = −D

dC

dy
|y=±d

The dimensionless shear stress Cf = τw/ρu
2
0 is given by ReCf1,2 = f ′(η) |η=−1,1.

The Sherwood number defined as Sh = qmd/D(C2 − C1) and Nusselt number de-

fined as Nu = qwd/kf (T2 − T1) for this problem are given by

Sh1,2 = − [ϕ′(η)] |η=−1,1; Nu1,2 = −
[
1 +

4

3
Rd

]
θ′(η) |η=−1,1 .

Entropy Generation

The expression for local volumetric rate of entropy generation (as explained in earlier

case) is given by

Sgen =
kf
T 2
0

[
1 +

16σT 3
0

3kfk∗

] [
dT

dy

]2
+

µ

T0(1 + λ1)

[(
du

dy

)2

+

(
dw

dy

)2
]
+

RD

C0

(
dC

dy

)2

+
RD

T0

(
dT

dy

)(
dC

dy

)
+

µ

kT0

(u2 + w2) +
σB2

0

T0

[
w2 + (ucosα− v0sinα)

2
]

(2.25)

The first term in the right-hand side of equation (2.25) is caused by heat transfer,

the second term because of energy dissipation by fluid viscosity, the third and fourth

by mass transfer, the fifth by porosity, and the sixth by the applied magnetic field.

The expression for rate of entropy production (Sgen)0 is given by

(Sgen)0 =
kf (T2 − T1)

2

T 2
0 d

2
(2.26)
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By using equations (2.25) - (2.26), the creation of non-dimensional entropy can be

expressed as follows:

Ns =
Sgen

(Sgen)0

Ns =

[
1 +

4

3
Rd

]
(θ′)2 +

BrGr2

(1 + λ1)A1

(f ′2 + g′2) +
εB2

1

A2
1

(ϕ′)2 +
εB1

A1

θ′ϕ′

+
BrGr2

DaA1

(f 2 + g2) +
BrGr2Ha2

A1

(
g2 + (fcosα− λsinα)2

)
where A1, Br, B1, Gr, Rd, ε, Ha and Da are dimensionless temperature differ-

ence, Brinkman number, dimensionless constant parameter, Grashof number, radia-

tion parameter, dimensionless concentration difference, magnetic parameter, Darcy

number, respectively, which are given by

Rd =
4σT 3

0

kfk∗ , Br =
µv2

kfd2(T2 − T1)
, Gr =

gβ(T2 − T1)d
3

v2
, ε =

RDC0

kf
,

A1 =
T2 − T1

T0

, B1 =
C2 − C1

C0

, Ha = dB0

√
σ

µ
, Da =

k

d2

Results and discussion

The analytical solutions for equations (2.20), (2.22), and (2.23), along with their

boundary conditions (2.24), were derived without considering the brinkman number

(Br), A = 0, magnetic parameter (Ha), chemical reaction parameter (Q), and

Jeffrey fluid parameter (λ1), along with inclination angle at α = 60◦. A comparison

was made between these analytical solutions and the solutions obtained using SQLM

(as explained in earlier case), which are presented in Table 2.3. The results of

comparisons show a high level of agreement. As a result, the SQLM code can be

utilized with assurance to investigate the topic addressed in this research.

Figures 2.8 - 2.13 illustrate the impact of parameters such as Ha, m, Rd, α, λ1,

and Sr on flow and cross flow velocities, temperature, concentration, and entropy.
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These effects are analyzed with a fixed value of Q, Re, Pr, Sc, at 2, 2, 0.71 and

0.22, respectively.

Figure 2.8 indicates the influence of magnetic parameter (Ha) on velocities,

temperature, concentration, and entropy whilst Br=0.5, α = π/3, Sr=10, m=2,

λ1=0.5, A=1, GrT=20, GrC=20, and Da=0.2. It is determined from Figs. 2.8(a)

- 2.8(b) that there’s a rise in flow velocity and fall in cross-flow velocity as Ha

enhances. Because, the inclined magnetic field, the drag cannot be generated. It

could be visible from Fig. 2.8(c) that temperature (θ) decreases as Hartman number

increases. As Ha grows, the fluid’s concentration (ϕ) increases as shown in Fig.

2.8(d). It is noted from Fig. 2.8(e) show that entropy generation increase near

η = −1 and decrease near η = 1.

Figure 2.9 demonstrates the effect of Rd on velocities, temperature, concentra-

tion, and entropy at α = π/3, Sr = 10, Ha = 2, m = 2, λ1 = 0.5, Br = 0.5, A = 1,

Da = 3, GrT = 20, and GrC = 20. As seen in Figures 2.9(a), 2.9(b) and 2.9(c),

velocities and fluid temperature magnifies with an rise in Rd. Concentration of the

fluid as shown in Fig. 2.9(d) fall as radiation parameter enhance. Figure 2.9(e)

shows that entropy generation decrease as Rd increase.

Figure 2.10 demonstrate how m affects velocities, temperature, concentration,

and entropy at α = π/3, Sr = 20, Ha = 3, Rd = 0.2, λ1 = 0.5, Br = 0.5, A = 1,

GrT = 10, GrC = 10, and Da = 0.2. As illustrated in Figures 2.10(a) and 2.10(b),

we can see that as the value of the parameter m increases, there’s also an increase

in both the flow velocity and the cross-flow velocity. The fluid temperature drops

as m rise, as shown in fig. 2.10(c). From fig. 2.10(d), the fluid concentration rise as

m increase. This phenomenon is attributed to the inclined magnetic field with an

angle of α = π/3, which results in the Hall effect producing charge in the direction

of inclined plates, thereby making it unable to act as a flagon velocity. As mentioned

earlier, the Hall current produces additional charge, which leads to a decrease in the
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temperature of the fluid. It is observed from 2.10(e) that the entropy generation

rise as m rise.

In Figure 2.11, the behavior of velocities, temperature, concentration, and en-

tropy is depicted as a function of α at fixed values of Rd=2, Sr=20, Ha=2, m=2,

λ1=0.5, Br=0.8, A=1, Da=0.2, GrT=20, and GrC=20. It can seen from figures

2.11(a) and 2.11(b) that the flow velocity magnifies and cross-flow velocity dimin-

ishes as α magnifies. Figure 2.11(c) show that the fluid temperature diminishes as α

magnifies. It can predict from Fig. 2.11(d) that the concentration gains with rising

values of α. The reason for this behavior is that an increase in the inclination angle

of the applied magnetic field leads to a reduction in the drag force, which enhances

the net flow in the fluid. Figure 2.11(e) show that entropy generation increase as α

increase.

The influence of λ1 on velocities, temperature, concentration, and entropy can

be seen in Fig. 2.12 while keeping other parameters fixed at Rd = 2, Sr = 20,

Ha = 1, m = 2, α = π/3, Br = 0.5, A = 1, Da = 0.2, GrT = 20, and GrC = 20.

Figures 2.12(a) and 2.12(b) show that the velocities (f, g) enhances as λ1 enhance.

Figure 2.12(c) shows that the fluid temperature drops as λ1 rise. It is found in figure

2.12(d) that the concentration enhance as λ1 enhances. Figure 2.12(e) demonstrate

that as λ1 magnify, entropy generation also magnify.

Figure 2.13 illustrates the behavior of velocities, temperature, concentration, and

entropy under varying values of Sr, with Rd=0.1, Ha=2, m=2, α=π/3, λ1=0.5,

Br=0.5, A=1, GrT=10, GrC=10, and Da=0.2 held constant. As shown in figures

2.13(a) and 2.13(b), the velocities (f, g) enhance as the value of Sr increase. Figure

2.13(c) reveals that the fluid temperature drop as Sr rise. The fluid concentration

increases as depicted in Fig. 2.13(d) when Sr increases. It is seen from Fig. 2.13(e)

that entropy generation magnify as Sr magnify.

Table 2.4 displays how different factors, including Hall number (m), Soret effect
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(Sr), magnetic parameter (Ha), radiation parameter (Rd), angle of inclination (α),

and Jeffrey fluid parameter (λ1), impact various aspects of the system while holding

other variables at Q=2, Re=2, Pr=0.71, Br=0.5, Sc=0.22, GrT=20, GrC=20, A=1

and Da=0.2. Table show that when Rd increase, the skin friction coefficient subside

at starting plate and rise at terminal plate, whereas the opposite tendency is seen

as λ1 rise. The friction factor decreases at both the walls as Sr, α, and m increase,

while the opposite trend is observed with an rise in Ha. Furthermore, the table

indicates that rate of heat transfer subside at the left plate and rise at right plate

with an rise in Sr, α, m, and λ1, while the opposite tendency is noted with an rise

in Ha. The heat transfer rate decreases at both the walls as Rd increases. As for

the mass transfer rate, the table shows that it rises at both walls as Sr, α, m, and

λ1 rise, while the opposite trend is observed as magnetic parameter rise. Rate of

mass transfer subside at one wall and rise at the other wall as Rd rise.

2.3 Conclusions

This chapter investigates the entropy generation in Jeffrey fluid flow between vertical

parallel plates with a porous medium, influenced by an angled magnetic field, chem-

ical reactions, and heat radiation. The original complex equations describing the

system are changed into dimensionless equations using similarity transformations.

SQLM is used to solve these dimensionless equations. The flow characteristics are

thoroughly analyzed and discussed through graphical representations.

From this study (both case(a) and case(b)), we can conclude that entropy gen-

eration increases with the inclination angle (α), Hall parameter (m), Jeffrey fluid

parameter (λ1), and Soret parameter (Sr). A rise in the radiation parameter, Jef-

frey fluid parameter, and Soret parameter also causes the flow direction’s velocity

to increase. Conversely, as the magnetic parameter, inclination angle, Jeffrey fluid

parameter, and Soret parameter increase, the cross-flow velocity decreases. Addi-
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tionally, an increase in Jeffrey fluid parameter and Soret number leads to a fall in

fluid temperature and a rise in concentration. In contrast, with increasing radiation

parameter, we observe the opposite trend.
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Figure 2.8: Influence of magnetic parameter (Ha) on (a) f(η), (b) g(η), (c) θ(η) (d)
ϕ(η), and (e) Ns.
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Figure 2.9: Influence of radiation parameter (Rd) on (a) f(η), (b) g(η), (c) θ(η) (d)
ϕ(η), and (e) Ns.
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Figure 2.10: Influence of hall current (m) on (a) f(η), (b) g(η), (c) θ(η) (d) ϕ(η),
and (e) Ns.
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Figure 2.11: Influence of inclination angle (α) on (a) f(η), (b) g(η), (c) θ(η) (d)
ϕ(η), and (e) Ns.
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Figure 2.12: Influence of Jeffrey fluid parameter (λ1) on (a) f(η), (b) g(η), (c) θ(η)
(d) ϕ(η), and (e) Ns.
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Figure 2.13: Influence of Soret number (Sr) on (a) f(η), (b) g(η), (c) θ(η) (d) ϕ(η),
and (e) Ns.
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Table 2.3: Comparison between exact solution and SQLM solution for the case when
λ1=0, Br=0, Sr=0, Q = 0, Da = 1, GrT=20, GrC=20, and Ha=0.

η
f θ ϕ

Exact SQLM Exact SQLM Exact SQLM
-1 0 −1× 10−14 0 0 0 −1.5× 10−15
-0.5 0.90302 0.90314 0.179046 0.179112 0.2188 0.2185
0 2.1928 2.1932 0.404374 0.404381 0.478833 0.478921
0.5 2.88324 2.88331 0.678804 0.678910 0.752541 0.752539
1 0 −4.4× 10−14 1 1 1 1

Table 2.4: Overview of the effect of different values of Ha, Sr, α, m, Rd and λ1 on
skin friction (Cf1,2), rate of heat transfer (Nu1,2) and mass transfer (Sh1,2).

Ha Sr α m Rd λ1 Cf1 Cf2 Nu1 Nu2 Sh1 Sh2

1 2 π/3 2 2 0.1 -5.79148 -0.74670 -3.62339 -0.94007 -2.66897 1.20942
2 2 π/3 2 2 0.1 -5.67373 -0.74586 -3.57079 -0.95550 -2.67204 1.20799
3 2 π/3 2 2 0.1 -5.47857 -0.74317 -3.48971 -0.97916 -2.67680 1.20580
2 1 π/3 2 2 0.1 -5.64872 -0.73873 -3.55898 -0.96007 -2.71055 1.19367
2 2 π/3 2 2 0.1 -5.67373 -0.74586 -3.57079 -0.95550 -2.67204 1.20799
2 3 π/3 2 2 0.1 -5.69921 -0.75312 -3.58291 -0.95078 -2.63292 1.22262
2 2 0 2 2 0.1 -5.53933 -0.74576 -3.52262 -0.96908 -2.67492 1.20668
2 2 π/4 2 2 0.1 -5.61163 -0.74565 -3.54633 -0.96251 -2.67348 1.20733
2 2 π/3 2 2 0.1 -5.67373 -0.74586 -3.57079 -0.95550 -2.67204 1.20799
2 2 π/3 1 2 0.1 -5.58941 -0.74463 -3.53285 -0.96668 -2.67425 1.20696
2 2 π/3 2 2 0.1 -5.67373 -0.74586 -3.57079 -0.95550 -2.67204 1.20799
2 2 π/3 3 2 0.1 -5.73157 -0.74641 -3.59682 -0.94784 -2.67052 1.20870
2 2 π/3 2 1 0.1 -5.70179 -0.62819 -2.98640 -0.37719 -2.60643 1.23420
2 2 π/3 2 2 0.1 -5.67373 -0.74586 -3.57079 -0.95550 -2.67204 1.20799
2 2 π/3 2 3 0.1 -5.65349 -0.80203 -4.19485 -1.57947 -2.69732 1.19787
2 2 π/3 2 2 0.1 -5.67373 -0.74586 -3.57079 -0.95550 -2.67204 1.20799
2 2 π/3 2 2 0.2 -6.21900 -0.74358 -3.62849 -0.94977 -2.66713 1.20932
2 2 π/3 2 2 0.3 -6.76376 -0.73727 -3.68146 -0.94565 -2.66244 1.21049



Chapter 3

Analysis of entropy generation in

Jeffrey fluid flow between two

parallel plates with Soret and angled

magnetic effect under Navier-slip

conditions 1

3.1 Introduction

Various technologies, including surface polishing and slip flow in liquids at both

micro and macro levels, play a significant role in fluid dynamics. In 1823, Navier

introduced a slip boundary condition, stating that the slip velocity has a linear re-

lation to shear stress. There is great evidence of the application and importance of

slip flow given by many researchers [63, 64, 65]. Gie and Whitehead [66] described
1Case(a): Published in “The European Physical Journal Plus”, 138, 1-14, (2023).

Case(b):Published in “Proc IMechE Part E: J Process Mechanical Engineering”, 1-12,
(2023). DOI:https://doi.org/10.1177/09544089231218977
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how Navier-slip Rayleigh-Benard convection behaves when an ultimate state is ab-

sent. Zhang and He [67] created a technique that employs the least-squares domain

method to simulate the interaction between particles and flow on the Navier slip

boundary condition. Recently, Badday and Harfash [68] studied thermosolutal con-

vection with a Navier-Stokes-Voigt fluid under the impact of Soret and slip boundary

conditions. Most Recently, Housiadas and Tsangaris [69] examined the impact of

navier slip for laminar flow with variable geometry using high-order lubrication the-

ory.

The impact of magnetic fields plays a crucial role in various engineering applica-

tions. These applications include MHD generators, dampers and clutches, biomedi-

cal devices, astrophysics and space applications, cooling systems, geothermal energy

extraction etc. Several researchers have been interested in magnetic fields having

non-zero inclinations. Dogonchi et al. [70] studied the nanofluid flow through a

porous channel with an angled magnetic field. Goswami et al. [71] investigated the

unsteady magnetohydrodynamic flow with an angled magnetic field between two

infinite parallel plates.

In this chapter, we examine the entropy generation on steady convective Jeffrey

fluid flow through a channel with navier-slip condition. The resulting flow equations

are solved using SQLM.

3.2 Mathematical Formulation

The flow under consideration is assumed to be a steady and incompressible Jeffrey

fluid flow. The physical setup (refer to figure 3.1) consists of two parallel plates.

The plates are positioned at a separation distance of 2d. The concentrations and

temperatures at the plates are denoted as C1, T1, C2, and T2 respectively are all

discussed in Fig. 3.1. An external magnetic field denoted as B0, positioned at an

angle α about the base, exerts an impact on the plates. With the assumption that
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the boundaries extend infinitely along the x-axis, the parameters governing the flow

are treated as functions solely dependent on the y coordinate. The properties of

fluid are taken as constant, except for the change in density that affects the term in

the buoyancy force. As such, these assumptions align with natural principles and

are relevant in practical applications.

The governing equations are derived as follows:

Figure 3.1: Diagrammatic representation of the fluid flow

dv

dy
= 0 ⇒ v = v0 = constant (3.1)

ρv0
du

dy
=

µ

1 + λ1

d2u

dy2
+ ρg∗ (βC(C − C1) + βT (T − T1))

−dp

dx
− σB2

0cosα

1 +m2cos2α

(
ucosα− v0sinα +mwcos2α

) (3.2)

ρv0
dw

dy
=

µ

1 + λ1

d2w

dy2
+

σB2
0cos

2α

1 +m2cos2α
(mucosα− w −mv0sinα) (3.3)

ρcpv0
dT

dy
= kf

d2T

dy2
+

µ

1 + λ1

(
(
du

dy
)2 + (

dw

dy
)2
)

(3.4)

v0
dC

dy
= D

d2C

dy2
+

DKT

Tm

d2T

dy2
(3.5)

where kf represents the thermal conductivity, cp denotes the specific heat, g∗
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represents gravitational acceleration, ρ is the density, m = η σB0 denotes the Hall

parameter, βT and βC denote the thermal and solutal expansion, σ represents the

electrical conductivity, µ is the viscosity, D denotes the diffusivity of mass, Tm rep-

resents the mean fluid temperature and KT represents the ratio of thermal diffusion.

Boundary conditions of given problem are given by

u = γ1
du

dy
, w = T − T1 = C − C1 = 0, when y = −d

u = γ2
du

dy
, w = T − T2 = C − C2 = 0, when y = d.

(3.6)

3.2.1 Case (a): Natural convection

Natural convection flow is driven by buoyant forces. There is no external pressure

gradient ( ∂p
∂x

= 0).

similarity transformations for this given problem is given as

η =
y

d
, u =

νGr

d
f, w =

νGr

d
g, ϕ =

C − C1

C2 − C1

, θ =
T − T1

T2 − T1

, (3.7)

In equations (3.2) - (3.5), Non-dimensional equations are obtained as

f ′′ −Re(1 + λ1)f
′ + (1 + λ1) (θ +Nϕ)

−Ha2cosα(1 + λ1)

1 +m2cos2α

(
fcosα− λsinα +mgcos2α

)
= 0

(3.8)

g′′ −Re(1 + λ1)g
′ +

Ha2cos2α(1 + λ1)

1 +m2cos2α
(mfcosα− g −mλsinα) = 0 (3.9)

θ′′ −RePrθ′ +
BrGr2

(1 + λ1)

(
f ′2 + g′2

)
= 0 (3.10)

ScSrθ′′ + ϕ′′ −ReScϕ′ = 0 (3.11)

where Re = ρv0d/µ represents Reynolds number, Sr = DKT (T2 − T1)/νTm(C2 − C1)

represents the thermal diffusion parameter, Br = µv2/kfd
2(T2 − T1) is Brinkman
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number, Gr = g∗βT (T2 − T1)d
3/v2 denotes the Grashof number, Pr = µcp/kf is

Prandtl number, λ = Re/Gr, Ha = dB0

√
σ/µ indicates the magnetic parameter,

Sc = ν/D is the Schmidt number, N = βC(C2 − C1)/βT (T2 − T1) indicates the buoy-

ancy parameter, β1 = γ1/d and β2 = γ2/d are the slip parameters.

Boundary conditions (3.6) become

f = β1f
′, g = θ = ϕ = 0, when η = −1

f = β2f
′, g = 0, θ = ϕ = 1, when η = 1

(3.12)

The shear stress, heat, and mass flows are given by

τw =

[
µ
du

dy

]
|y=±d; qw =

[
−kf

dT

dy

]
|y=±d; qm =

[
−D

dC

dy

]
|y=±d

The dimensionless shear stress Cf = τw/ρu
2
0 is given by ReCf1,2 = f ′(η) |η=−1,1.

The Sherwood number defined as Sh = qmd/D(C2 − C1) and the Nusselt number

defined as Nu = qwd/kf (T2 − T1) for this problem are given by

Sh1,2 = − [ϕ′(η)] |η=−1,1; Nu1,2 = − [θ′(η)] |η=−1,1 .

Entropy Generation

The expression for local volumetric entropy generation rate (as explained in eariler

chapter) is given by

Sgen =
kf
T 2
0

[
dT

dy

]2
+

µ

T0(1 + λ1)

[(
du

dy

)2

+

(
dw

dy

)2
]
+

RD

C0

(
dC

dy

)2

+
RD

T0

(
dT

dy

)(
dC

dy

)
+

σB2
0

T0

[
w2 + (ucosα− v0sinα)

2
] (3.13)

The first term in the right-hand side of equation (3.13) is caused by heat transfer,

the second term because of energy dissipation by fluid viscosity, the third and fourth
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by mass transfer, and the fifth term due to magnetic field. The expression for rate

of entropy production is given as

(Sgen)0 =
kf (T2 − T1)

2

T 2
0 d

2
(3.14)

By using equations (3.13) and (3.14), the creation of non-dimensional entropy can

be expressed as follows:

Ns =
Sgen

(Sgen)0

Ns = (θ′)2 +
BrGr2

(1 + λ1)A1

(f ′2 + g′2) +
εB2

1

A2
1

(ϕ′)2

+
εB1

A1

θ′ϕ′ +
BrGr2Ha2

A1

(
g2 + (fcosα− λsinα)2

)
where A1, Br, B1, Gr, Ha, and ε, are dimensionless temperature difference, Brinkman

number, dimensionless concentration difference, Grashof number, Magnetic param-

eter, dimensionless constant parameter, respectively, which are represented as

Br =
µv2

kfd2(T2 − T1)
, Gr =

gβ(T2 − T1)d
3

v2
, ε =

RDC0

kf
,

A1 =
T2 − T1

T0

, B1 =
C2 − C1

C0

, Ha = dB0

√
σ

µ

Results and discussion

The nonlinear and coupled flow eqns. (3.8) - (3.11) with respect to boundary con-

ditions (3.12) are numerically solved by SQLM (as explained in earlier chapter).

The velocities, temperature, concentration, and entropy generation are influenced

by several parameters, including Ha, Sr, m, α, λ1, β1, and β2. Figures 3.2 - 3.8 de-

pict how these parameters affect the aforementioned variables, with Re, Pr, Sc, N ,

β1, and β2 being held constant at values of 2, 0.71, 0.22, 2, 0.1, and 0.1, respectively.

Figure 3.2 illustrate the influence of Ha on velocities, temperature, concentra-
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tion, and entropy while keeping the other parameters fixed at α = π/4, Sr = 2,

m = 2, λ1 = 0.5, Br = 0.5, and Gr = 20. A rise in flow and cross-flow velocity

is observed as Ha increases, as shown in Figures 3.2(a) and 3.2(b). It is because

the observed inclination angle of the applied magnetic field is α > 0, meaning that

no drag force can be produced. From figures 3.2(c) and 3.2(d), it can be noted

that a rise in Ha causes the fluid’s temperature to decrease and its concentration

to increase. This is because a magnetic field produces resistive force, which causes

the temperature to drop. Figure 3.2(e) shows that the rate of entropy generation

in the system goes up with increasing values of Ha. The magnetic field can induce

Lorentz forces on the charged particles in the fluid. These forces cause additional

dissipation, which consequently leads to a higher rate of entropy generation.

Figure 3.3 show how the Soret number (Sr) affects velocity, temperature, concen-

tration, and entropy generation when other parameters are held constant at α = π/4,

Sr = 10, Ha = 1, m = 2, λ1 = 0.2, Br = 0.5, and Gr = 2. Figures 3.3(a) and 3.3(b)

demonstrate that an enhancement in Sr leads to an enhancement in flow velocity

and cross-flow velocity. Higher Soret parameter values cause a steeper temperature

gradient within the fluid. This, in turn, leads to increased velocities. It could be

visible from figure 3.3(c) that as Sr grows, the fluid’s temperature falls. It is noted

from figures 3.3(d) and 3.3(e) that as Sr increases, the concentration of fluid and

entropy in the system increases. A higher Soret number amplifies the energy transfer

driven by both the rate of mass diffusion and the concentration gradients, leading

to a radical enhancement in the concentration profile and entropy generation.

Figure 3.4 demonstrates how the hall parameter (m) affects the velocity, tem-

perature, concentration, and entropy generation when other parameters are fixed

at α = π/4, Sr = 5, Ha = 1, λ1 = 0.2, Br = 0.5, and Gr = 10. Figures 3.4(a)

and 3.4(b) show that the velocities decrease as hall parameter rise. This effect is

due to the tilted magnetic field. A magnetic field is angled at α = π
4

will produce
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a Hall current that is perpendicular to both the direction and will act as a drag on

velocities. As hall parameter enhance, the fluid temperature also enhance, and fluid

concentration subside as shown in figures 3.4(c) and 3.4(d). The fluid temperature

rises as a result of the extra charge produced by the hall current, as previously men-

tioned. There is a slight decrease in entropy generation as m increases as shown in

figure 3.4(e).

Figure 3.5 shows how an inclination angle (α) affects velocity, temperature, con-

centration, and entropy generation when other parameters are held constant at

Sr=5, Ha=2, m=2, λ1=0.1, Br=0.5 and Gr=2. Figures 3.5(a) and 3.5(b) demon-

strate that an increase in α results in a rise in flow velocity and a fall in cross-flow

velocity. Figures 3.5(c), 3.5(d) and 3.5(e) shows that an increase in α leads to subside

in dimensionless temperature but a rise in concentration and entropy generation.

The influence of Jeffrey fluid parameter (λ1) on velocities, temperature, concen-

tration, and entropy generation can be observed in figure 3.6 when other parameter

are held constant at Sr = 5, Ha = 2, m = 2, α = π/4, Br = 0.5, and Gr = 2.

As depicted in figures 3.6(a) and 3.6(b), when λ1 magnifies, the flow velocities also

magnify. Figure 3.6(c) illustrates that decrease in dimensionless temperature as λ1

increases. A higher Jeffrey fluid parameter (λ1) leads to a greater concentration, as

shown in Figure 3.6(d). Figure 3.6(e) shows that there is little increase in entropy

generation near η = 1 as λ1 increases. This is because the presence of viscoelasticity

in the Jeffrey fluid affects the drag force experienced by the fluid. Higher values of

λ1 can lead to an increase in drag force due to the elastic nature of the fluid.

In figure 3.7, the variations in velocities, temperature, concentration, and entropy

are displayed for different values of β1, while Ha=2, m=2, α=π/4, λ1=0.1, Br=0.5,

Gr=2, and β2=0.1 are held constant. It is noted from figures 3.7(a) and 3.7(b) that

the velocities enhances as β1 enhance. Figures 3.7(c) and 3.7(d) illustrate that as

β1 increases, both the temperature and concentration of the fluid decrease. Figure
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3.7(e) indicates that the entropy generation decreases near η = −1 and increases

near η = 1 as β1 increases. This is because the fluid velocity within the channel and

the fluid velocity close to the plates differ when the slip condition is present.

Figure 3.8 displays how velocity, temperature, concentration, and entropy gener-

ation behave for different values of β2; while keeping Ha=2, m=2, α=π/4, λ1=0.1,

Br=0.5, Gr=2, and β1=0.1 constant. As depicted in figures 3.8(a) and 3.8(b), as

β2 magnifies, the flow velocity and cross-flow velocity both fall. Figures 3.8(c) and

3.8(d) shows that a decrease in temperature and increase in concentration as β2

increases. It is noted from figure 3.8(e) that the entropy of the system increases

near η = 1 as β2 increases. This is because the fluid velocity within the channel and

the fluid velocity close to the plates differ when the slip condition is present.

Table 3.1 displays how different factors, including the angle of inclination (α),

Hall number (m), Magnetic parameter (Ha), Soret effect (Sr), and Jeffrey fluid

parameter (λ1) impact various aspects of the system while holding other variables

at M=2, Re=2, Pr=0.71, Br=0.5, Sc=0.22, Gr=2, β1=0.1, and β2=0.1. The

results indicate that the skin friction diminishes at η = −1 plate and amplifies at

η = 1 as Ha, Sr, and α enhance, while the opposite tendency is noticed with a

rise in m. Moreover, as the Jeffrey fluid parameter λ1 increases, the friction factor

decreases at both walls. Additionally, the table shows that the heat transfer rate

decreases at both walls as Ha, Sr, and α increase, while the reverse trend is noted

as m magnifies. Furthermore, as λ1 magnifies, the heat transfer rate fall at η = −1

plate and rises at η = 1 plate. From the table, it is observed that the mass transfer

rate magnifies at both plates as Sr, Ha, and α magnifies, and falls as m magnifies.

The table also shows that the mass transfer rate rises at η = −1 plate and falls at

η = 1 plate with a rise of λ1.
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Figure 3.2: Influence of magnetic parameter (Ha) on (a) f(η), (b) g(η), (c) θ(η)
(d) ϕ(η), and (e) Ns.
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Figure 3.3: Influence of Soret number (Sr) on (a) f(η), (b) g(η), (c) θ(η) (d) ϕ(η),
and (e) Ns.
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Figure 3.4: Influence of hall current (m) on (a) f(η), (b) g(η), (c) θ(η) (d) ϕ(η),
and (e) Ns.



CHAPTER 3. 65

-1.0 -0.5 0.0 0.5 1.0

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

f(h)

h

 a=p/7
 a=p/6
 a=p/5
 a=p/4

(a)

-1.0 -0.5 0.0 0.5 1.0
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

g(h)

h

 a=p/7
 a=p/6
 a=p/5
 a=p/4

(b)

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

q(h)

h

 a=p/7
 a=p/6
 a=p/5
 a=p/4

(c)

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

f(h)

h

 a=p/7
 a=p/6
 a=p/5
 a=p/4

(d)

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0
0

5 0

1 0 0

1 5 0

N s

η

 α=π/7
 α=π/6
 α=π/5
 α=π/4

(e)

Figure 3.5: Influence of inclination angle (α) on (a) f(η), (b) g(η), (c) θ(η) (d)
ϕ(η), and (e) Ns.
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Figure 3.6: Influence of Jeffrey fluid parameter (λ1) on (a) f(η), (b) g(η), (c) θ(η)
(d) ϕ(η), and (e) Ns.
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Figure 3.7: Influence of slip condition β1 on (a) f(η), (b) g(η), (c) θ(η) (d) ϕ(η),
and (e) Ns.
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Figure 3.8: Influence of slip condition β2 on (a)f(η), (b) g(η), (c) θ(η) (d) ϕ(η),
and (e) Ns.
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Table 3.1: Overview of the effect of various values of Ha, Sr, α, m, and λ1 on skin
friction (Cf1,2), rate of heat transfer (Nu1,2) and mass transfer (Sh1,2).

Ha Sr α m λ1 Cf1 Cf2 Nu1 Nu2 Sh1 Sh2

1 2 π/4 2 0.1 -3.70050 0.25323 -8.32613 -0.30603 2.74934 -0.33950
2 2 π/4 2 0.1 -4.09014 0.40460 -9.18599 -0.44047 3.13114 -0.27688
3 2 π/4 2 0.1 -4.54839 0.63393 -10.17744 -0.63682 3.57096 -0.18690
2 1 π/4 2 0.1 -3.87896 0.38031 -8.66233 -0.43409 1.07283 -0.29737
2 2 π/4 2 0.1 -4.09014 0.40460 -9.18599 -0.44047 3.13114 -0.27688
2 3 π/4 2 0.1 -4.32716 0.43156 -9.79034 -0.44444 5.47740 -0.25089
2 2 0 2 0.1 -3.06247 0.10509 -6.83102 -0.18312 2.08400 -0.40107
2 2 π/4 2 0.1 -4.09014 0.40460 -9.18599 -0.44047 3.13114 -0.27688
2 2 π/3 2 0.1 -4.50585 0.51287 -10.24809 -0.50843 3.60498 -0.24046
2 2 π/4 1 0.1 -4.47496 0.57739 -10.01889 -0.59156 3.50052 -0.20750
2 2 π/4 2 0.1 -4.09014 0.40460 -9.18599 -0.44047 3.13114 -0.27688
2 2 π/4 3 0.1 -3.87448 0.31701 -8.71268 -0.36256 2.92104 -0.31300
2 2 π/4 2 0.1 -4.09014 0.40460 -9.18599 -0.44047 3.13114 -0.27688
2 2 π/4 2 0.2 -4.46768 0.40345 -9.21909 -0.39841 3.14609 -0.29501
2 2 π/4 2 0.3 -4.84567 0.40090 -9.24625 -0.36222 3.15831 -0.31066
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3.2.2 Case (b): Mixed Convection

Consider a mixed convection flow occurring under the influence of buoyancy forces

and external pressure gradient.

similarity transformations for this given problem is given as

η =
y

d
, u = u0f, w = u0g, ϕ =

C − C1

C2 − C1

, θ =
T − T1

T2 − T1

(3.15)

In equations (3.2) – (3.5), Non-dimensional equations are obtained as

f ′′ −Re(1 + λ1)f
′ +

GrT
Re

(1 + λ1)θ +
GrC
Re

(1 + λ1)ϕ

− Ha2cosα(1 + λ1)

1 +m2cos2α

(
fcosα− λsinα +mgcos2α

)
− A(1 + λ1) = 0

(3.16)

g′′ −Re(1 + λ1)g
′ +

Ha2cos2α(1 + λ1)

1 +m2cos2α
(mfcosα− g −mλsinα) = 0 (3.17)

Br

(1 + λ1)

(
f ′2 + g′2

)
+ θ′′ −RePrθ′ = 0 (3.18)

ScSrθ′′ + ϕ′′ −ReScϕ′ = 0 (3.19)

with

f = β1f
′, g = θ = ϕ = 0, when η = −1

f = β2f
′, g = 0, θ = ϕ = 1, when η = 1

(3.20)

where f , g, θ, and ϕ are the dimensionless forms of flow velocity, cross–flow veloc-

ity, temperature, and concentration; Re = ρv0d/µ represents the Reynolds number,

Pr = µcp/kf is a Prandtl number, Sc = ν/D is the Schmidt number, Ha = dB0

√
σ/µ

indicates the magnetic parameter, Br = µv2/kfd
2(T2 − T1) represents the brinkman

number, Sr = DKT (T2 − T1)/νTm(C2 − C1) represents the thermal diffusion param-

eter, GrT = g∗βT (T2 − T1)d
3/v2 and GrC = g∗βC(C2 − C1)d

3/v2 denotes the ther-

mal and Solutal Grashof numbers, λ = Re/Gr, β1 = γ1/d and β2 = γ2/d represent
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the slip parameters.

The shear stress, heat, and mass flows can obtained by

τw =

[
µ
du

dy

]
|y=±d; qw =

[
−kf

dT

dy

]
|y=±d; qm =

[
−D

dC

dy

]
|y=±d

The dimensionless shear stress Cf = τw/ρu
2
0 is given by ReCf1,2 = f ′(η) |η=−1,1.

The Sherwood number defined as Sh = qmd/D(C2 − C1) and the Nusselt number

defined as Nu = qwd/kf (T2 − T1) for this problem are given by

Sh1,2 = [−ϕ′(η)] |η=−1,1; Nu1,2 = [−θ′(η)] |η=−1,1 .

Entropy Generation

The volumetric rate of entropy production (as explained in earlier chapter) is given

as

Sgen =
kf
T 2
0

[
dT

dy

]2
+

µ

T0(1 + λ1)

[(
du

dy

)2

+

(
dw

dy

)2
]
+

RD

C0

(
dC

dy

)2

+
RD

T0

(
dT

dy

)(
dC

dy

)
+

σB2
0

T0

[
w2 + (ucosα− v0sinα)

2
] (3.21)

The first term of the right-hand side of equation (3.21) is associated with heat

transfer; the second term due to energy dissipation by fluid viscosity; the third and

fourth are caused by mass transfer; and the fifth term is because of magnetic field.

The expression for rate of entropy generation (Sgen)0 [72] is determined by

(Sgen)0 =
kf (T2 − T1)

2

T 2
0 d

2
(3.22)

Bejan [73] defines the dimensionless entropy generation (Ns) as the capacity ra-

tio between the local volumetric entropy generation and the characteristic rate of
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entropy generation. Hence, the creation of dimensionless entropy is provided by

Ns =
Sgen

(Sgen)0

Ns = (θ′)2 +
Br

(1 + λ1)A1

(f ′2 + g′2) +
εB2

1

A2
1

(ϕ′)2

+
εB1

A1

θ′ϕ′ +
BrHa2

A1

(
g2 + (fcosα− λsinα)2

)
where A1, Br, B1, Ha, ε, are dimensionless temperature difference, brinkman num-

ber, dimensionless concentration difference, magnetic parameter, dimensionless con-

stant parameter, and respectively, which are represented as

Br =
µv2

kfd2(T2 − T1)
, ε =

RDC0

kf
, Ha = dB0

√
σ

µ

A1 =
T2 − T1

T0

, B1 =
C2 − C1

C0

,

Results and discussion

The nonlinear and coupled flow eqns. (3.16) - (3.19) with respect to boundary con-

ditions (3.20) are numerically solved by SQLM (as explained in earlier chapter). The

velocities (f , g) of fluid, temperature (θ), concentration (ϕ), and entropy generation

(Ns) of the system are influenced by several parameters, including Ha, Sr, m, α,

λ1, β1, and β2.

Figures 3.9 – 3.14 depict how these parameters affect the aforementioned vari-

ables, with Re, Br, Pr, Sc, β1, β2, GrT , GrC , Gr, and A being held constant at

values of 2, 0.5, 0.71, 0.22, 0.1, 0.1, 2, 2, 2, and 1, respectively.

Figure 3.9 demonstrates the influence of Ha on velocities, temperature, con-

centration, and entropy generation when other parameters are fixed at α = π/3,

Sr = 2, m = 2, λ1 = 0.5, and Br = 0.5. As depicted in figure 3.9(a), the fluid

velocity magnifies as Ha magnifies. Figure 3.9(b) indicates that the cross-flow ve-

locity also rises with a rise in Ha. The magnetic field is inclined at an angle α > 0,
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which implies that the drag force cannot be produced in the flow and cross–flow

directions. Furthermore, figures 3.9(c) and 3.9(d) show that the fluid temperature

decreases and concentration increases as Ha increases. Figure 3.9(e) reveals that

entropy generation increases as Ha increases. This is because a magnetic field gen-

erates a resistive force perpendicular to the applied magnetic field direction, and the

generated electric charges are not in the flow direction, which leads to a decrease in

temperature.

Figure 3.10 shows how the soret number (Sr) affects velocity, temperature, con-

centration, and entropy generation when other parameters are held constant at

α = π/4, Ha = 3, m = 2, λ1 = 0.1, and Br = 0.5. Figures 3.10(a) and 3.10(b)

illustrate that as the parameter Sr increases, the flow and cross–flow velocity both

exhibit an upward trend. A stronger Soret effect (higher Soret parameter) creates

a larger temperature difference within the fluid, which in turn makes the fluid flow

faster. The soret effect, in turn, leads to changes in the concentration distribution.

Since buoyancy forces are linked to temperature variations, alterations in the tem-

perature profile can modify the buoyancy–driven component of the flow. As shown

in figures 3.10(c) and 3.10(d), the fluid gets colder (temperature falls) and increase in

concentration when the Soret parameter is increased. Figure 3.10(e) shows that en-

tropy generation increases on the left of η = −1 and decreases on the right of η = 1.

The soret parameter plays a role in mass transfer in multicomponent fluid systems

and can significantly impact flow behavior, particularly in situations involving heat

and mass transfer.

Figure 3.11 demonstrates how the hall parameter (m) affects velocity, temper-

ature, concentration, and entropy generation when other parameters are fixed at

α = π/3, Sr = 10, Ha = 2, λ1 = 0.5, and Br = 0.5. Figures 3.11(a) and 3.11(b)

show that the flow and cross–flow velocity both drop as m increases. On the other

hand, figures 3.11(c) and 3.11(d) indicate that the fluid temperature increases and
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the fluid concentration decreases as m increases. This is because the magnetic field

is inclined at an angle of α = π/3, which causes the hall effect to generate charge

in the direction of inclined plates, thereby making it unable to act as a drag on the

fluid. As mentioned earlier, the fluid’s temperature drops as a result of the extra

charge that the hall current generates. Entropy generation rises but falls at the end

when η approaches 1 as m rises, as shown in figure 3.11(e). The hall current plays a

crucial role in magnetohydrodynamic flows, as it introduces additional complexity

in fluid motion and magnetic field distribution. Magnetohydrodynamics is relevant

in plasma physics, astrophysics, and engineering applications like magnetohydrody-

namics power generation and magnetohydrodynamics propulsion systems.

Figure 3.12 demonstrates the behavior of velocities, temperature, concentra-

tion, and entropy generation as a function of α while keeping Sr=10, Ha=2, m=2,

λ1=0.1, and Br=0.5 constant. Figures 3.12(a) and 3.12(b) show that increasing

α leads to a rise in the main flow velocity, while the cross–flow velocity decreases.

Figures 3.12(c) and 3.12(d) show that increasing α leads to a decrease in dimen-

sionless temperature but an increase in concentration. This behavior is caused by

an increase in the inclination angle of the applied magnetic field, which reduces

drag force and hence increases net flow in the fluid. Figure 3.12(e) shows that as

α increases, entropy of the system increases. An inclined magnetic field is used in

magnetohydrodynamics generators to convert the kinetic energy of hot, electrically

conducting fluid into electrical energy.

In figure 3.13, the variations in velocities, temperature, concentration, and en-

tropy generation are displayed for different values of β1, while Ha=2, m=2, α=π/4,

λ1=0.1, Br=0.5, and β2=0.1 are held constant. Figures 3.13(a) and 3.13(b) show

that with the increase in β1, the main flow velocity and cross–flow velocity also in-

crease. Figure 3.13(c) indicates that the fluid temperature decreases as β1 increases.

Additionally, figure 3.13(d) shows a rise in the concentration as β1 rises. Figure
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3.13(e) indicates that a rise in β1 leads to a fall in entropy generation.

Figure 3.14 displays the behavior of velocities, temperature, concentration, and

entropy generation for different values of β2 while keeping Ha=2, m=2, α=π/4,

λ1=0.1, Br=0.5, Sr=2, and β1=0.1 constant. As depicted in figures 3.14(a) and

3.14(b), a decrease in flow velocity and cross–flow velocity is observed as β2 increases.

Figures 3.14(c), 3.14(d), and 3.14(e) demonstrate that as β2 increases, there is a

subside in temperature and a rise in concentration and entropy generation. Slip

conditions are commonly used when modeling fluid flow over surfaces with high slip

characteristics, such as superhydrophobic surfaces.

Table 3.2 displays how different factors, including hall number (m), angle of

inclination, soret effect (Sr), magnetic parameter (Ha), and Jeffrey fluid parameter

(λ1), impact various aspects of the system while holding other variables constant.

According to table 3.2, when α, Ha, and Sr rise, the skin friction coefficient falls

at the starting plate and rises at the terminal plate, whereas the opposite tendency

is seen as m increases. Moreover, the friction factor decreases at both walls as λ1

increases. Additionally, the table shows that the heat transfer rate decreases at

both walls as α, Ha, and Sr increase, but the opposite tendency is seen as m and λ1

increase. The table also shows that the mass transfer rate magnifies at both plates

as Ha and α magnifies, while the opposite tendency is seen as m and λ1 increases.

A rising Soret effect (Sr) causes the mass transfer rate to increase at the initial plate

but decrease at the terminal plate.

3.3 Conclusions

In this chapter, we explore the irreversibility of the system in fully developed flow

of electrically conducting Jeffrey fluid. A fluid is considered to flow between two

vertical parallel plates under Navier-slip condition. In order to reduce the governing

equations to dimensionless form of equations, similarity transformation has been
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used. In the current investigation, solutions are obtained using the SQLM tech-

nique. From our study, the analysis reveals that the entropy of the system goes

up with higher values of the inclination angle (α), magnetic parameter (Ha), and

β2, while the reverse trend is notes for β1. The fluid velocities increase as the slip

parameters β1 increase. Additionally, with an increase in the inclination angle (α),

the temperature of the fluid decreases. Moreover, the presence of Jeffrey fluid leads

to an increase in velocity and temperature but a decrease in concentration.
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Figure 3.9: Influence of magnetic parameter (Ha) on (a) f(η), (b) g(η), (c) θ(η),
(d) ϕ(η), and (e) Ns.
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Figure 3.10: Influence of Soret number (Sr) on (a) f(η), (b) g(η), (c) θ(η), (d)
ϕ(η), and (e) Ns.
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Figure 3.11: Influence of hall current (m) on (a) f(η), (b) g(η), (c) θ(η), (d) ϕ(η),
and (e) Ns.
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Figure 3.12: Influence of inclination angle (α) on (a) f(η), (b) g(η), (c) θ(η), (d)
ϕ(η), and (e) Ns.
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Figure 3.13: Influence of slip parameter β1 on (a) f(η), (b) g(η), (c) θ(η), (d) ϕ(η),
and (e) Ns.
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Figure 3.14: Influence of slip parameter β2 on (a) f(η), (b) g(η), (c) θ(η), (d) ϕ(η),
and (e) Ns.
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Table 3.2: Overview of the effect of different values of α, Sr, Ha, m, and λ1 on skin
friction (Cf1,2), rate of heat transfer (Nu1,2) and mass transfer (Sh1,2).

Ha Sr α m λ1 Cf1 Cf2 Nu1 Nu2 Sh1 Sh2

1 2 π/3 2 0.1 -1.19075 -0.26466 -1.97449 -0.00354 -0.06325 -0.49047
2 2 π/3 2 0.1 -2.14802 0.00219 -2.39746 -0.08714 0.12318 -0.45335
3 2 π/3 2 0.1 -3.36617 0.39214 -3.01416 -0.18505 0.39636 -0.40843
2 1 π/3 2 0.1 -2.07307 -0.00861 -2.36041 -0.08409 -0.32253 -0.38333
2 2 π/3 2 0.1 -2.14802 0.00219 -2.39746 -0.08714 0.12318 -0.45335
2 3 π/3 2 0.1 -2.22336 0.01300 -2.43522 -0.09010 0.58578 -0.52199
2 2 0 2 0.1 -0.86804 -0.39545 -1.84351 0.04152 -0.12067 -0.51009
2 2 π/4 2 0.1 -1.82503 -0.09705 -2.24536 -0.05804 0.05600 -0.46642
2 2 π/3 2 0.1 -2.14802 0.00219 -2.39746 -0.08714 0.12318 -0.45335
2 2 π/3 1 0.1 -2.76699 0.19341 -2.70019 -0.13829 0.25713 -0.43010
2 2 π/3 2 0.1 -2.14802 0.00219 -2.39746 -0.08714 0.12318 -0.45335
2 2 π/3 3 0.1 -1.69543 -0.12912 -2.19090 -0.04794 0.03201 -0.47089
2 2 π/3 2 0.1 -2.14802 0.00219 -2.39746 -0.08714 0.12318 -0.45335
2 2 π/3 2 0.2 -2.33794 -0.00226 -2.39292 -0.08574 0.12114 -0.45400
2 2 π/3 2 0.3 -2.52795 -0.00704 -2.38879 -0.08445 0.11930 -0.45460



Part III

Entropy Generation in Jeffrey Fluid

Flow through inclined channel
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Chapter 4

Entropy-Based Investigation of

Jeffrey Fluid Flow in a Sloping

Channel with Hall Current, Thermal

Radiation, and Inclined Magnetic

Field Effects 1

4.1 Introduction

Heat and mass transfer with chemical reactions is a science that involves under-

standing the simultaneous transfer of both heat and mass in processes where chem-

ical reactions are taking place. This area is important for modeling many industrial

and natural processes, including reactors, biological systems, combustion, and engi-

neering for the environment. An important example is the creation of smog, which

involves first-order chemical reactions. For example, when nitrogen dioxide (NO2)
1Case(a): Accepted for publication in “Journal of Thermal Analysis and Calorimetry”

Case(b): Accepted for publication in “Thermophysics and Aeromechanics”
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is released from vehicles and other sources, it chemically reacts and make formation

of a layer of pollution known as photochemical smog. Biswas et al. [74] studied

the impact of chemical reaction on the flow MHD micropolar fluid through a ver-

tical plate. Iranian et al. [75] studied the influence of chemical reaction and heat

generation on the flow of MHD Powell-Eyring fluid along a vertical surface.

The Soret effect, which involves a mass flux induced by a temperature difference,

holds significant importance in numerous physical processes, including applications

in geoscience and chemical engineering, among others. Rauf et al. [76] studied the

impact of Dufour and Soret on Maxwell hybrid nanofluid flow. Das and Majumdar

[77] explored the impact of Soret number and magnetic field on MHD flow of fluids

on a vertical channel.

In this chapter, we inspect the entropy generation on steady natural/mixed con-

vection Jeffrey fluid flow between two inclined parallel plates, considering the effect

of soret number, chemical reaction, and heat radiation. The resulting flow equations

of given problem are solved using SQLM. The impact of various parameters on en-

tropy in the system, velocity, temperature, and concentration is analyzed through

graphs.

4.2 Mathematical formulation

In this chapter, the physical setup (refer to figure 4.1) consists of two inclined parallel

plates, forming an angle γ with the base. The plates are positioned at a separation

distance of 2d. The concentrations and temperatures at the plates are denoted as

C1, T1, C2, T2 respectively. An external magnetic field B0 acts on the plates at an

inclined angle α with the base. The flow under consideration is assumed to be

a steady and incompressible Jeffrey fluid flow. Since the flow extends infinitely

along the x-axis, the flow parameters are assumed to be dependent solely on the

y direction. The properties of fluid are taken as constant, except for the change
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Figure 4.1: Physical Interpretation.

in density that affects the term in the buoyancy force. As such, these assumptions

align with natural principles and are relevant in practical applications.

In this version, we can drive the governing equations as follows:

∂v

∂y
= 0 ⇒ v = v0 = constant (4.1)

v0ρ
∂u

∂y
= −dp

dx
+

µ

(1 + λ1)

∂2u

∂y2
+ ρg∗sinγ(βC(C − C1) + βT (T − T1))

− σB2
0 cosα

1 +m2 cos2 α

(
mw cos2 α + u cosα− v0 sinα

)
− µu

(1 + λ1)k

(4.2)

v0ρ
∂w

∂y
=

µ

(1 + λ1)

∂2w

∂y2
− ρg∗cosγ(βC(C − C1) + βT (T − T1))

+
σB2

0 cos
2 α

1 +m2 cos2 α
(mu cosα−mv0 sinα− w)− µw

(1 + λ1)k

(4.3)

ρcpv0
∂T

∂y
=

µ

(1 + λ1)

[(
∂u

∂y

)2

+

(
∂w

∂y

)2
]
+ kf

∂2T

∂y2
− ∂qr

∂y
(4.4)

v0
∂C

∂y
= D

∂2C

∂y2
− k1(C − C1) +

DKT

Tm

∂2T

∂y2
(4.5)

where kf represents the thermal conductivity, g∗ denotes the gravitational acceler-
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ation, cp represents specific heat, m = η1 σB0 denotes the Hall parameter, k is the

permeability porous medium, thermal and solutal expansion are represent by βT and

βC , k1 is rate of chemical reaction, σ represent the electrical conduction, µ represent

viscosity, D signifies the mass diffusivity, thermal diffusion ratio is represents by KT ,

Tm designates the mean temperature, and the radiation heat flux is denoted by qr.

The boundary conditions of given problem are given by

u = w = T − T1 = C − C1 = 0, when y = −d

u = w = T − T2 = C − C2 = 0, when y = d

(4.6)

4.2.1 Case (a): Natural Convection

Natural convection flow is driven by buoyant forces. There is no external pressure

gradient ( ∂p
∂x

= 0).

similarity transformations for this given problem is given as

η =
y

d
, u =

νGrf

d
, w =

νGrg

d
, ϕ =

C − C1

C2 − C1

, θ =
T − T1

T2 − T1

(4.7)

From equations (4.2) - (4.5), we get the governing eqns. as

f ′′ −Re(1 + λ1)f
′ + (1 + λ1)(θ +Nϕ)sinγ − f

Da

− Ha2cosα(1 + λ1)

1 +m2cos2α

(
fcosα− λsinα +mgcos2α

)
= 0

(4.8)

g′′ −Re(1 + λ1)g
′ + (1 + λ1)(θ +Nϕ)cosγ − g

Da

+
Ha2cos2α(1 + λ1)

1 +m2cos2α
(mfcosα− g −mλsinα) = 0

(4.9)

BrGr2

(1 + λ1)

(
f ′2 + g′2

)
+

(
1 +

4Rd

3

)
θ′′ −RePrθ′ = 0 (4.10)

ScSrθ′′ + ϕ′′ −ReScϕ′ −QScϕ = 0 (4.11)
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where Ha = dB0

√
σ/µ indicates the magnetic parameter, Re = ρv0d/µ represents

Reynolds number, N = βC(C2 − C1)/βT (T2 − T1) indicates the buoyancy parame-

ter, Br = µv2/kfd
2(T2 − T1) is Brinkman number, Pr = µcp/kf is Prandtl number,

Gr = g∗βT (T2 − T1)d
3/v2 is grashof number, λ = Re/Gr, Sc = ν/D is the Schmidt

number, Rd = 4σT 3
0 /kfk

∗ denotes the Radiation parameter, Da = k/d2 represents

the Darcy number, Q = k1d/ν represents the chemical reaction parameter, and

Sr = DKT (T2 − T1)/νTm(C2 − C1) represent the thermal diffusion parameter.

Boundary conditions (4.6) become

f = g = θ = ϕ = 0, when η = −1

f = g = 0, θ = ϕ = 1, when η = 1

(4.12)

The shear stress, heat flow, and mass flow can be deduced from.

τw =

[
µ
du

dy

]
|y=±d; qw =

[
−kf

dT

dy
+ qr

]
|y=±d; qm =

[
−D

dC

dy

]
|y=±d

The dimensionless shear stress Cf = τw/ρu
2
0 is given by ReCf1,2 = f ′(η) |η=−1,1.

The Sherwood number defined as Sh = qmd/D(C2 − C1) and Nusselt number de-

fined as Nu = qwd/kf (T2 − T1) for this problem are given by

Sh1,2 = − [ϕ′(η)] |η=−1,1; Nu1,2 = −
[
1 +

4

3
Rd

]
θ′(η) |η=−1,1 .
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Entropy Generation

The entropy production denoted as Sgen is given by:

Sgen =
kf
T 2
0

[
1 +

16σT 3
0

3kfk∗

] [
dT

dy

]2
+

µ

T0(1 + λ1)

[(
du

dy

)2

+

(
dw

dy

)2
]
+

RD

C0

(
dC

dy

)2

+
RD

T0

(
dT

dy

)(
dC

dy

)
+

µ

kT0

(u2 + w2) +
σB2

0

T0

[
w2 + (ucosα− v0sinα)

2
]

(4.13)

The initial term in the right-hand side of equation (4.13) pertains to heat transfer,

the second term because of viscous dissipation, the third and fourth terms account

for mass transfer, the fifth term represents porosity effects, and the sixth term

because of magnetic field. The definition of the characteristic entropy generation

rate denoted by (Sgen)0 is given by

(Sgen)0 =
kf (T2 − T1)

2

T 2
0 d

2
(4.14)

By using equations (4.13) and (4.14), the creation of non-dimensional entropy can

be expressed in the following manner:

Ns =
Sgen

(Sgen)0

Ns =

[
1 +

4

3
Rd

]
(θ′)2 +

BrGr2

(1 + λ1)A1

(f ′2 + g′2) +
εB2

1

A2
1

(ϕ′)2 +
εB1

A1

θ′ϕ′

+
BrGr2

DaA1

(f 2 + g2) +
BrGr2Ha2

A1

(
g2 + (fcosα− λsinα)2

)
where A1, Rd, Br, B1, Ha, Gr, Da, and ε are dimensionless temperature differ-

ence, radiation parameter, Brinkman number, dimensionless concentration differ-

ence, magnetic parameter, Grashof number, Darcy number, dimensionless constant
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parameter, respectively, which are represented as

Br =
µv2

kfd2(T2 − T1)
, Gr =

g∗βT (T2 − T1)d
3

v2
, Rd =

4σT 3
0

kfk∗ , ε =
RDC0

kf
,

Da =
k

d2
, A1 =

T2 − T1

T0

, B1 =
C2 − C1

C0

, Ha = dB0

√
σ

µ

Result and Discussion

The nonlinear and coupled flow equations (4.8)–(4.11) are numerically solved with

boundary conditions (4.12) using SQLM as explained in chapter-2.

Figures 4.2 to 4.8 show the behavior of f(η), g(η), θ(η), ϕ(η), and Ns for distinct

values of Ha, α, m, Rd, Sr, λ1, and γ. These figures were generated with fixed values

for the following parameters: Pr = 0.71, N = 2, Da = 2, K = 2, Br = 0.5, Re = 2,

Gr = 10, and Sc = 0.22.

In figures 4.2, the variations in f , g, θ, ϕ, and Ns for different values of the

magnetic parameter (Ha), while Rd = 2, Sr = 12, α = π/4, m = 2, λ1 = 0.5, and

γ = π/4 are held constant. According to figures 4.2(a) and 4.2(b), there is an oppo-

site effect on fluid velocities when the magnetic parameter (Ha) is increased. The

main flow velocity decreases, while the cross-flow velocity increases. It’s important

to highlight that the magnetic field is inclined at an angle α > 0. This configura-

tion implies that the drag force typically associated with a magnetic field cannot

be generated in this context. Concurrently, as depicted in figures 4.2(c) and 4.2(d),

the fluid temperature tends to rise, whereas the concentration decreases with an

increase in the Ha. It is seen in figure 4.2(e) that entropy magnifies as Ha magnify.

This phenomenon arises because the magnetic field generates a resistive force that

acts perpendicular to the direction of the applied magnetic field. Consequently, the

resulting electric charges do not align with the flow direction, ultimately causing a

increase in temperature.

Figures 4.3 displays the behavior of f , g, θ, ϕ, and Ns for different values of Soret
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parameter (Sr), while keeping Ha = 2, Rd = 2, m = 1, λ1 = 0.1, α = π/4, and

γ = π/4 constant. Flow velocity and cross-flow velocity magnify with a rise in Sr

as shown in figures 4.3(a) and 4.3(b). Figure 4.3(c) shows that the temperature fall

with a rise in Sr. This occurs because an increase in the Soret parameter results in a

heightened temperature gradient, subsequently leading to increased velocities. The

Soret effect, in turn, induces alterations in the concentration distribution. Given

that buoyancy forces are directly related to temperature variations, changes in the

temperature profile can thereby modify the buoyancy-driven component of the flow.

Figures 4.3(d) and 4.3(e) clearly indicate that as the soret number (Sr) increases,

both the concentration and entropy generation exhibit an increase. The Soret ef-

fect plays a pivotal role in mass transfer within multicomponent fluid systems and

can exert a substantial influence on flow behavior, especially in scenarios involving

concurrent heat and mass transfer.

Figure 4.4 presents an analysis of how the parameter m influences the functions

f , g, θ, ϕ, and Ns, while keeping α = π/4, Sr = 12, Ha = 2, λ1 = 0.5, γ = π/4, and

Br = 0.5 constant. Figures 4.4(a) and 4.4(b) show that the main flow velocity rise

and cross-flow velocity drop as m rise. This is because the magnetic field is inclined

at an angle of α = π/4, which causes the Hall effect to generate charge in the

direction of inclined plates, thereby making it unable to act as a drag on the fluid.

Figures 4.4(c) and 4.4(d) show that fluid temperature decreases and concentration

increases with increasing m. As mentioned earlier, the fluid’s temperature drops

as a result of the extra charge that the Hall current generates. Entropy generation

increases as the parameter m rises, as illustrated in Figure 4.4(e).

Figures 4.5 shows the behavior of f , g, θ, ϕ, and Ns for distinct value of α when

Rd = 2, Sr = 10, Ha = 3, m = 2, λ1 = 0.5, and γ = π/4. Figure 4.5(a) reveals

a rise in velocity, while figures 4.5(b) and 4.5(c) demonstrate a contrasting trend,

where both cross-flow velocity and temperature decrease with an increase in α. This
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behavior arises due to an increase in the inclination angle of magnetic field, which

diminishes the drag force and consequently results in an augmentation of the net

fluid flow. Figure 4.5(d) and 4.5(e) reveal that the concentration and entropy both

rise with a rise in α.

Figure 4.6 provides an overview of how the parameter λ1 impact the functions

f , g, θ, ϕ, and Ns, while maintaining other parameters at Sr = 10, Ha = 2, m = 2,

α = π/4, Rd = 2, and γ = π/4. As evident in figures 4.6(a) and 4.6(b), an increase

in λ1 corresponds to an elevation in both the flow velocity and cross-flow velocity.

Figure 4.6(c) depicts the reduction in temperature with an increasing value of λ1.

As shown in figures 4.6(d) and 4.6(e), increasing the parameter λ1 leads to a rise in

both concentration and entropy generation.

In Figure 4.7, we observe the variations in the functions f , g, θ, ϕ, and Ns for

different values of the parameter Rd at Ha = 2, m = 2, α = π/4, λ1 = 0.5, Sr = 10,

and γ = π/4. Figures 4.7(a) and 4.7(b) illustrates that as Rd increases, both the

flow and cross-flow velocity decrease. The results in figure 4.7(c) indicate that the

fluid temperature increase as Rd increase. Figures 4.7(d) and 4.7(e) indicate that

a rise in Rd leads to a fall in concentration and entropy generation. Radiation

parameter used in greenhouse gas analysis, aerospace engineering, medical imaging,

nuclear engineering etc.

Figures 4.8 displays the behavior of f , g, θ, ϕ, and Ns for different values of

γ, while keeping Ha=2, m=1, α=π/4, λ1=0.1, Sr=10, and Rd=2 constant. As

depicted in figure 4.8(a) and 4.8(b), an increase in flow and decrease in cross-flow

velocity is observed as γ increases. Figure 4.8(c) reveals that the temperature of

fluid rise with a rise in γ. Figures 4.8(d) and 4.8(e) demonstrate that as γ increases,

there is subside in concentration and entropy generation.

Table 4.1 presents the variations in the magnetic parameter (Ha), radiation pa-

rameter (Rd), Hall current (m), Soret number (Sr), inclination angle (α), Jeffrey
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fluid parameter (λ1), and channel angle of inclination (γ) while keeping other pa-

rameters at Q = 2, Re=2, Gr=10, Pr=0.71, Br=0.5, Sc=0.22, M = 2, and Da=2.

The table shows that the skin friction increases at the plate located at η = −1 with

enhancements in the parameters Ha, α, and λ1. Conversely, it decreases at the

plate positioned at η = 1 under the same conditions. However, the opposite trend

is observed for the Hall current (m) and the channel inclination angle (γ). Skin

friction falls with higher values of Sr and Rd. Additionally, Table 4.1 shows that

the heat transfer rate magnifies at the left plate and subside at the right plate as

the parameters m, Sr, α, and λ1 increases, while the opposite tendency is seen for

the magnetic parameter (Ha) and inclination angle (γ). The higher the value of

radiation parameter (Rd), there is fall in temperature for both plates. Moreover,

the mass transfer rate rises with increasing values of Sr, α, and λ1 as indicated in

Table 4.1, while it exhibits a reverse trend with Rd and γ. The rate of mass transfer

amplifies at the left plate and diminishes at the right plate with an amplification in

the hall parameter (m). Conversely, the magnetic parameter (Ha) has the opposite

effect.
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Figure 4.2: Impact of magnetic parameter (Ha) on (a) f(η), (b) g(η), (c) θ(η), (d)
ϕ(η), and (e) Ns.
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Figure 4.3: Impact of Soret number (Sr) on (a) f(η), (b) g(η), (c) θ(η), (d) ϕ(η),
and (e) Ns.
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Figure 4.4: Impact of hall current (m) on (a) f(η), (b) g(η), (c) θ(η), (d) ϕ(η), and
(e) Ns.
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Figure 4.5: Impact of inclination angle (α) on (a) f(η), (b) g(η), (c) θ(η), (d) ϕ(η),
and (e) Ns.
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Figure 4.6: Impact of Jeffrey fluid parameter (λ1) on (a) f(η), (b) g(η), (c) θ(η),
(d) ϕ(η), and (e) Ns.
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Figure 4.7: Impact of radiation parameter (Rd) on (a) f(η), (b) g(η), (c) θ(η), (d)
ϕ(η), and (e) Ns.
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Figure 4.8: Impact of channel angle of inclination (γ) on (a) f(η), (b) g(η), (c)
θ(η), (d) ϕ(η), and (e) Ns.
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Table 4.1: Overview of the impact of different values of α, Sr, Ha, m, Rd, γ and
λ1 on skin friction (Cf1,2), rate of heat transfer (Nu1,2) and mass transfer (Sh1,2).

Ha Sr m α Rd λ1 γ Cf1 Cf2 Nu1 Nu2 Sh1 Sh2

1 2 2 π/3 2 0.2 π/3 -0.0549 -0.5938 -0.7214 -4.4908 1.2307 -2.6120
2 2 2 π/3 2 0.2 π/3 -0.0482 -0.5955 -0.7393 -4.4699 1.2301 -2.6117
3 2 2 π/3 2 0.2 π/3 -0.0356 -0.5978 -0.7627 -4.4485 1.2292 -2.6106
2 1 2 π/3 2 0.2 π/3 -0.0472 -0.5912 -0.7548 -4.4273 1.2043 -2.6812
2 2 2 π/3 2 0.2 π/3 -0.0482 -0.5955 -0.7393 -4.4699 1.2301 -2.6117
2 3 2 π/3 2 0.2 π/3 -0.0493 -0.6000 -0.7227 -4.5149 1.2571 -2.5399
2 2 1 π/3 2 0.2 π/3 -0.0426 -0.6085 -0.7563 -4.4695 1.2300 -2.6096
2 2 2 π/3 2 0.2 π/3 -0.0482 -0.5955 -0.7393 -4.4699 1.2301 -2.6117
2 2 3 π/3 2 0.2 π/3 -0.0517 -0.5902 -0.7281 -4.4721 1.2302 -2.6129
2 2 2 0 2 0.2 π/3 -0.0549 -0.5217 -0.7500 -4.4086 1.2285 -2.6162
2 2 2 π/4 2 0.2 π/3 -0.0496 -0.5703 -0.7436 -4.4418 1.2293 -2.6138
2 2 2 π/3 2 0.2 π/3 -0.0482 -0.5955 -0.7393 -4.4699 1.2301 -2.6117
2 2 2 π/3 1 0.2 π/3 -0.0372 -0.5872 -0.1899 -3.8916 1.2706 -2.5068
2 2 2 π/3 2 0.2 π/3 -0.0482 -0.5955 -0.7393 -4.4699 1.2301 -2.6117
2 2 2 π/3 3 0.2 π/3 -0.0535 -0.5989 -1.3482 -5.0895 1.2136 -2.6542
2 2 2 π/3 2 0.1 π/3 -0.0494 -0.5442 -0.7508 -4.3616 1.2276 -2.6208
2 2 2 π/3 2 0.2 π/3 -0.0482 -0.5955 -0.7393 -4.4699 1.2301 -2.6117
2 2 2 π/3 2 0.3 π/3 -0.0468 -0.6467 -0.7308 -4.5695 1.2323 -2.6030
2 2 2 π/3 2 0.2 π/4 -0.0334 -0.6695 -0.5420 -5.1401 1.2479 -2.5723
2 2 2 π/3 2 0.2 π/3 -0.0482 -0.5955 -0.7393 -4.4699 1.2301 -2.6117
2 2 2 π/3 2 0.2 π/2 -0.0702 -0.3527 -1.0321 -3.2162 1.1976 -2.6952
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4.2.2 Case (b): Mixed Convection

Consider a mixed convection flow occurring with both natural (buoyancy-driven)

and forced (externally-driven) convection mechanisms.

similarity transformations for this given problem is given as

η =
y

d
, u = u0f, w = u0g, ϕ =

C − C1

C2 − C1

, θ =
T − T1

T2 − T1

(4.15)

In equations (4.2) – (4.5), Non-dimensional equations are obtained as

f ′′ −Re(1 + λ1)f
′ − Ha2(1 + λ1) cosα

1 +m2 cos2 α

[
mg cos2 α + f cosα− λ sinα

]
+
Gr

Re
(1 + λ1)(θ +Nϕ)sinγ − f

Da
− A(1 + λ1) = 0

(4.16)

g′′ −Re(1 + λ1)g
′ − g

Da
− Gr

Re
(1 + λ1)(θ +Nϕ)cosγ

+
Ha2(1 + λ1) cos

2 α

1 +m2 cos2 α
[mf cosα−mλ sinα− g] = 0

(4.17)

Br

(1 + λ1)
((f ′)2 + (g′)2) + (1 +

4Rd

3
)θ′′ −RePrθ′ = 0 (4.18)

ScSrθ′′ + ϕ′′ −ReScϕ′ −QScϕ = 0 (4.19)

where Re = ρv0d/µ represents Reynolds number, Da = k/d2 represents the Darcy

number, Rd = 4σT 3
0 /kfk

∗ denotes the Radiation parameter, Pr = µcp/kf is Prandtl

number, λ = Re/Gr, Br = µv2/kfd
2(T2 − T1) is Brinkman number, Ha = dB0

√
σ/µ

represents the magnetic parameter, Sc = ν/D stands for Schmidt number, Q = k1d/ν

represents the chemical reaction parameter, Gr = g∗βT (T2 − T1)d
3/v2 indicates the

Grashof number, N = βC(C2 − C1)/βT (T2 − T1) indicates the buoyancy parameter,

and Sr = DKT (T2 − T1)/νTm(C2 − C1) represents soret parameter.
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Boundary conditions (4.6) become

f = g = θ = ϕ = 0, when η = −1

f = g = 0, θ = ϕ = 1, when η = 1

(4.20)

The shear stress, heat transfer, and mass flows can be obtained from.

τw =

[
µ
du

dy

]
|y=±d; qw =

[
−kf

dT

dy
+ qr

]
|y=±d; qm = −D

dC

dy
|y=±d

The dimensionless shear stress Cf =
τw
ρu2

0

is given by ReCf1,2 = f ′(η) |η=−1,1.

The Sherwood number defined as Sh = qmd/D(C2 − C1) and Nusselt number de-

fined as Nu = qwd/kf (T2 − T1) for this problem are given by

Sh1,2 = − [ϕ′(η)] |η=−1,1; Nu1,2 = −
[
1 +

4

3
Rd

]
θ′(η) |η=−1,1 .

Entropy Generation

The expression for the volumetric entropy generation rate is expressed as:

Sgen =
kf
T 2
0

[
1 +

16σT 3
0

3kfk∗

] [
dT

dy

]2
+

µ

T0(1 + λ1)

[(
du

dy

)2

+

(
dw

dy

)2
]
+

RD

C0

(
dC

dy

)2

+
RD

T0

(
dT

dy

)(
dC

dy

)
+

µ

kT0

(u2 + w2) +
σB2

0

T0

[
w2 + (ucosα− v0sinα)

2
]
(4.21)

The initial term of the right hand side of equation (4.21) is because of heat transfer,

the subsequent term is due to energy dissipation by fluid viscosity, the third and

fourth terms represent mass transfer, the fifth term is connected to porosity effects,

and the sixth term is due to applied magnetic field. The definition of entropy
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generation rate is formally defined as:

(Sgen)0 =
kf (T2 − T1)

2

T 2
0 d

2
(4.22)

By using equations (4.21) and (4.22), the formation of dimensionless entropy is given

as:

Ns =
Sgen

(Sgen)0

Ns =

[
1 +

4

3
Rd

]
(θ′)2 +

Br

(1 + λ1)A1

(f ′2 + g′2) +
εB2

1

A2
1

(ϕ′)2 +
εB1

A1

θ′ϕ′

+
Br

DaA1

(f 2 + g2) +
BrHa2

A1

(
g2 + (fcosα− λsinα)2

)
where A1, Br, B1, Ha, Rd, Da, and ε are dimensionless temperature difference,

brinkman number, dimensionless concentration difference, magnetic parameter, ther-

mal radiation, darcy number, and dimensionless constant parameter, which are given

as

Br =
µv2

kfd2(T2 − T1)
, Ha = dB0

√
σ

µ
, Rd =

4σT 3
0

kfk∗ , Da =
k

d2
,

A1 =
T2 − T1

T0

, B1 =
C2 − C1

C0

, ε =
RDC0

kf
,

In engineering applications and entropy minimization studies, it’s important to

consider the contribution of various factors including heat transfer, mass transfer,

porous medium, viscous dissipation, and magnetic force to the overall entropy gen-

eration rate. This helps us to gain insight into thermal optimization. To calculate

the distribution of irreversibility, we use the Bejan number, which is the ratio of

irreversibility due to heat transfer (Nh) to the total irreversibility (Ns).

Be =
Nh

Ns
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The table labeled as 4.2 presents the values for irreversibility caused by heat

transfer (Nh), total irreversibility in the system (Ns), and the Bejan number across

different angles of inclination in the channel (γ).

Results and discussion

The nonlinear and coupled flow eqns. (4.16) - (4.19) with respect to boundary

conditions (4.20) are numerically solved by SQLM (as explained in chapter-2).

Figures 4.9 to 4.15 show the behavior of f(η), g(η), θ(η), ϕ(η), Ns, and Be for

distinct values of Ha, α, m, Rd, Sr, λ1, and γ with fixed values of Pr, K, Re, Br,

N , Da Sc at 21, 2, 2, 0.5, 2, 2, 0.22, respectively.

In Figure 4.9, we show how the variables f , g, θ, ϕ, Ns, and Be change with

varying magnetic parameter (Ha). As seen in Figure 4.9(a), the flow velocity goes

up as the value of Ha increases. The detected inclination angle of the applied

magnetic field is α > 0, meaning that no drag force can be produced. Figure 4.9(b)

shows that the cross-flow velocity goes down as Ha increases. The fluid temperature

rise and concentration fall with a rise in Ha as shown in figures 4.9(c) and 4.9(d).

It is seen in figures 4.9(e) and 4.9(f) that entropy generation and bejan number

magnifies as Ha magnify. This is happen due to a magnetic field creates a resistive

force perpendicular to the direction of the magnetic field. This generates electric

charges, leading to an increase in temperature.

Figure 4.10 displays the behavior of f , g, θ, ϕ, Ns, and Be for different values

of Soret parameter (Sr). As seen in figures 4.10(a) and 4.10(b), flow velocity and

cross-flow velocity magnify as Sr rise. This is due to the fact that increasing the

Soret parameter raises the temperature gradient, which in turn causes greater ve-

locities. Figures 4.10(c) and 4.10(d) illustrate that there is a fall in temperature

and a rise in concentration as the Soret parameter increases. A higher Sr indi-

cates a stronger thermophoretic effect, causes a redistribution of temperature and
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concentration within the fluid. This leads to a fall in temperature and a rise in

concentration. The Soret effect plays a crucial role in understanding heat and mass

transfer phenomena in complex fluid flows. It is noted in figure 4.10(e) that the

entropy increases and decreases as η approaches 1 as Sr increases. Figure 4.10(f)

shows that increasing the Soret number leads to a decrease in the Bejan number.

The Soret parameter plays a role in mass transfer in multicomponent fluid systems

and can significantly impact flow behavior, particularly in situations involving heat

and mass transfer.

Figure 4.11 demonstrates the impact of m on the variables f , g, θ, ϕ, Ns, and

Be. Figures 4.11(a) and 4.11(b) demonstrate that as the parameter m increases, the

flow velocity decreases while the cross-flow velocity increases. This is caused by the

inclined magnetic field’s influence. When a magnetic field is applied at an angle of

α = π/4, the Hall current is generated perpendicular to the x direction. This current

acts as a drag on the flow velocity. Meanwhile, Figures 4.11(c) and 4.11(d) indicate

a decrease in fluid temperature and an increase in fluid concentration as m is raised.

Additionally, Figures 4.11(e) and 4.11(f) show that increasing m leads to higher

entropy generation and lower Bejan number. The hall current plays a crucial role

in magnetohydrodynamic flows, as it introduces additional complexity in fluid mo-

tion and magnetic field distribution. Magnetohydrodynamics is relevant in plasma

physics, astrophysics, and engineering applications such as magnetohydrodynamics

power generation and magnetohydrodynamics propulsion systems.

Figure 4.12 shows the behavior of f , g, θ, ϕ, Ns, and Be for distinct value of α.

Figure 4.12(a) reveals that velocity rises with a rise in α. This is because the decrease

in drag force will improve the net flow as the applied magnetic field’s inclination angle

changes (angle of inclination increases). Figures 4.12(b) and 4.12(c) illustrate the

rise in cross-flow velocity and fall in temperature with increasing α. Figure 4.12(d)

and 4.12(e) reveal that the concentration and entropy both rise with a rise in α.
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As α increases, the Bejan number decreases, but it increases near η = 1, as shown

in Figure 4.12(f). An inclined magnetic field is used in magnetohydrodynamics

generators to convert the kinetic energy of hot, electrically conducting fluid into

electrical energy.

Figure 4.13 showcases the influence of λ1 on the variables f , g, θ, ϕ, Ns, and Be.

As shown in 4.13(a) and 4.13(b), increasing λ1 causes an increase in flow and cross-

flow velocity. An increased Jeffrey fluid parameter enhances the fluid’s elasticity,

resistance to deformation, and quicker recovery from shearing forces. This results

in higher flow and cross-flow velocities. Figure 4.13(c) shows that temperature de-

creases as λ1 increases. As λ1 increases, less heat is generated or absorbed during

flow due to the increased elasticity of the Jeffrey fluid, resulting in a lower tempera-

ture profile. Figures 4.13(d) and 4.13(e) suggest that an increase in λ1 corresponds

to an increase in concentration and entropy generation. Higher Jeffrey fluid param-

eter means more elastic effects, viscous dissipation, shear-thinning behavior, and

complex flow patterns, which lead to increased entropy generation. Figure 4.13(f)

shows that the Bejan number decreases with an increasing value of the Jeffrey fluid

parameter.

In Figure 4.14, we present the changes in the variables f , g, θ, ϕ, Ns, and Be

for various values of Rd. Figures 4.14(a) and 4.14(b) reveal that as the parameter

Rd increases, both the flow velocity and cross-flow velocity decrease. An increase

in the radiation parameter lead to changes in temperature distribution, influencing

the viscosity of the Jeffrey fluid. Higher viscosity results in reduced flow velocities.

The results in figures 4.14(c) and 4.14(d) show that the fluid temperature rises and

the concentration decreases as the radiation parameter increases. Higher radiation

parameter leads to increased thermal radiation impact on fluid, elevating its tem-

perature via associated heat transfer processes. This results in the fluid’s energy

being amplified by the radiation. Figures 4.14(e) and 4.14(f) indicate that a rise in
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Rd leads to a rise in entropy generation and bejan number. This is due to thermal

radiation, which adds sources of irreversibility and heat dissipation in the system.

Figure 4.15 displays the behavior of f , g, θ, ϕ, Ns, and Be for varying values

of γ. As depicted in figure 4.15(a) and 4.15(b), an increase in flow and decrease

in cross-flow velocity is observed as γ increases. When inclined plates are present,

gravity can assist in the flow of fluid in a channel. This additional driving force

results in an increase in flow velocity and a decrease in cross-flow velocity. Figure

4.15(c) reveals that the temperature of fluid rise with a rise in γ. Increasing channel

angle leads to higher fluid shear rates and greater energy dissipation, resulting in a

temperature rise due to viscous heating. Figures 4.15(d), and 4.15(e) demonstrate

that as γ increases, there is subside in concentration and entropy generation. Figure

4.15(f) illustrates the variation of the Bejan number with respect to η. It increases

to the left of η = 0 and decreases to the right. This is because the plates become

vertical as gamma increases to 90circ, which causes the drag force to be generated

along the y-axis by the applied magnetic field.

Table 4.3 presents the variations in the magnetic parameter (Ha), radiation pa-

rameter (Rd), Hall number (m), Soret number (Sr), inclination angle (α), Jeffrey

fluid parameter (λ1), and channel angle of inclination (γ) while keeping other pa-

rameters at Q = 2, Re = 2, Gr = 10, Pr = 21, N = 2, Br = 0.5, Sc = 0.22, and

Da = 2. According to the table, an increase in both γ and λ1 results in an increase

in skin friction at the plate located at η = −1, while there is a reduction in skin

friction at the plate located at η = 1. Skin friction falls with higher values of Sr,

m, and Rd, while the opposite effect is noted for the Ha and α. Additionally, Table

4.3 demonstrates that when m, Sr, α, and λ1 rise, the heat transfer rate magnifies

at the left plate and subside at the right plate, while the opposite tendency is seen

for the magnetic parameter (Ha) and channel inclination angle (γ). The higher

the value of the radiation parameter (Rd), there is fall in the heat transfer rate for
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both plates. Moreover, According to Table 4.3, the mass transfer rate increases with

higher values of Sr, m, α, and λ1, while it exhibits a reverse trend with Ha, Rd and

γ.

4.3 Conclusions

In this chapter, the effects of the Soret number and chemical reactions on entropy of

the system in the steady natural/mixed convection of Jeffrey fluid flow between in-

clined parallel plates are investigated. The original complex equations describing the

system are changed into dimensionless equations using similarity transformations.

SQLM is used to solve these dimensionless equations. According to the findings

of this study, the velocity of fluid flow and its cross-flow velocity increase with an

increase in the Soret number and Jeffrey fluid parameter. Conversely, the opposite

effect is observed with an increase in the radiation parameter and channel angle of

inclination. The temperature of the fluid decreases while the concentration rises with

an increase in the Soret parameter, Hall parameter, inclination angle, and Jeffrey

fluid parameter. However, the reverse tendency is noted in magnetic parameter, Ra-

diation parameter, and channel inclination angle. Entropy generation in the system

increases as the Soret parameter, Hall parameter, inclination angle, and Jeffrey fluid

parameter increase, while it decreases as the channel angle of inclination increases.
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Figure 4.9: Impact of magnetic parameter (Ha) on (a) f(η), (b) g(η), (c) θ(η), (d)
ϕ(η), (e) Ns, and (f) Be.
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Figure 4.10: Impact of Soret number (Sr) on (a) f(η), (b) g(η), (c) θ(η), (d) ϕ(η),
(e) Ns, and (f) Be.
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Figure 4.11: Impact of hall current (m) on (a) f(η), (b) g(η), (c) θ(η), (d) ϕ(η),
(e) Ns, and (f) Be.
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Figure 4.12: Impact of inclination angle (α) on (a) f(η), (b) g(η), (c) θ(η), (d)
ϕ(η), (e) Ns, and (f) Be.
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Figure 4.13: Impact of Jeffrey fluid parameter (λ1) on (a) f(η), (b) g(η), (c) θ(η),
(d) ϕ(η), (e) Ns, and (f) Be.
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Figure 4.14: Impact of radiation parameter (Rd) on (a) f(η), (b) g(η), (c) θ(η), (d)
ϕ(η), (e) Ns, and (f) Be.
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Figure 4.15: Impact of channel angle of inclination (γ) on (a) f(η), (b) g(η), (c)
θ(η), (d) ϕ(η), (e) Ns, and (f) Be.
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Table 4.2: Bejan Number variations for different values of η and γ.

η γ Nh Ns Be = Nh

Ns

-1 π/4 9.19e−6 5.5792 1.648e−6

-0.5 π/4 0.0284 2.1110 0.0135
0 π/4 0.0958 4.4841 0.0214

0.5 π/4 2.0497 12.2062 0.1679
1 π/4 8.7595 53.2090 0.1646
-1 π/3 0.0016 5.1928 0.0003

-0.5 π/3 0.0423 1.8857 0.0224
0 π/3 0.1233 4.0291 0.0306

0.5 π/3 1.9075 11.5990 0.1645
1 π/3 7.8556 49.9653 0.1572

Table 4.3: Overview of the impact of various values of α, Ha, Sr, m, Rd, γ, and λ1

on skin friction (Cf1,2), rate of heat transfer (Nu1,2) and mass transfer (Sh1,2).

Ha Sr m α Rd λ1 γ Cf1 Cf2 Nu1 Nu2 Sh1 Sh2

1 2 2 π/3 2 0.2 π/3 -0.3227 -4.2297 -1.0495 -3.2551 1.1339 -2.6021
2 2 2 π/3 2 0.2 π/3 -0.3196 -4.2196 -1.0608 -3.2231 1.1331 -2.6039
3 2 2 π/3 2 0.2 π/3 -0.3136 -4.1777 -1.0789 -3.1662 1.1317 -2.6072
2 1 2 π/3 2 0.2 π/3 -0.3132 -4.2014 -1.0632 -3.2165 1.1249 -2.6343
2 2 2 π/3 2 0.2 π/3 -0.3196 -4.2196 -1.0608 -3.2231 1.1331 -2.6039
2 3 2 π/3 2 0.2 π/3 -0.3260 -4.2381 -1.0583 -3.2299 1.1416 -2.5731
2 2 1 π/3 2 0.2 π/3 -0.3095 -4.1176 -1.0729 -3.1872 1.1323 -2.6059
2 2 2 π/3 2 0.2 π/3 -0.3196 -4.2196 -1.0608 -3.2231 1.1331 -2.6039
2 2 3 π/3 2 0.2 π/3 -0.3225 -4.2528 -1.0544 -3.2419 1.1336 -2.6028
2 2 2 0 2 0.2 π/3 -0.3287 -4.2226 -1.0638 -3.2065 1.1327 -2.6051
2 2 2 π/4 2 0.2 π/3 -0.3196 -4.2196 -1.0608 -3.2231 1.1331 -2.6039
2 2 2 π/3 2 0.2 π/3 -0.3162 -4.2167 -1.0572 -3.2365 1.1335 -2.6030
2 2 2 π/3 1 0.2 π/3 -0.2886 -4.2112 -0.4615 -2.6315 1.1515 -2.5517
2 2 2 π/3 2 0.2 π/3 -0.3196 -4.2196 -1.0608 -3.2231 1.1331 -2.6039
2 2 2 π/3 3 0.2 π/3 -0.3342 -4.2231 -1.6950 -3.8536 1.1266 -2.6238
2 2 2 π/3 2 0.1 π/3 -0.3301 -3.8547 -1.0647 -3.1895 1.1324 -2.6067
2 2 2 π/3 2 0.2 π/3 -0.3196 -4.2196 -1.0608 -3.2231 1.1331 -2.6039
2 2 2 π/3 2 0.3 π/3 -0.3068 -4.5834 -1.0578 -3.2540 1.1338 -2.6012
2 2 2 π/3 2 0.2 π/4 -0.2566 -3.5300 -1.0570 -3.2380 1.1335 -2.6029
2 2 2 π/3 2 0.2 π/3 -0.3196 -4.2196 -1.0608 -3.2231 1.1331 -2.6039
2 2 2 π/3 2 0.2 π/2 -0.3709 -4.7310 -1.0640 -3.2096 1.1328 -2.6048



Chapter 5

Analysis of irreversibility in Jeffrey

fluid flow through an inclined channel

under Navier-slip condition with the

effects of Hall current, Soret number,

and Inclined magnetic field. 1

5.1 Introduction

The Soret phenomenon, a thermal gradient-induced mass flow, holds a significant

position in diverse domains, including geosciences and chemical engineering. Sardar

et al. [78] studied the combined convective motion of Carreau nanofluid along a

wedge in the existence of Soret and Dufour phenomena. Deepika et al. [79] examined

the influence of the Soret and Dufour phenomena on the magnetohydrodynamic
1Case(a): Published in “East Asian Journal of Applied Mathematics”, (2024).

DOI:https://10.4208/eajam.2023-227.221023
Case(b):Published in “Journal of Applied Mathematics and Mechanics (ZAMM)”, 104,
e202300700 (1-15), (2024).
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mixed convective motion of a Casson hybrid nanofluid over a stretching surface.

Hayat et al. [80] explored how Dufour and Soret phenomena affect the entropy

production in a mixed convective flow system.

Fluid flows with slip at boundaries indeed have significant implications in various

micro and macroscopic devices. As early as 1823, A slip boundary condition was

first presented by Navier [81], wherein the slip velocity at the solid-fluid interface is

influenced by the shear stress linearly. Building upon Navier’s work, Das et al. [82]

presented the findings of their research, which focused on slip flow through sloping

porous channels, accounting for joule heating and energy dissipation due to viscosity

effects. Asghar et al. [83] examined magnetized mixed convection involving a hybrid

nanofluid, accounting for heat generation effect and velocity slip conditions effect on

fluid flow. Zainodin et al. [84] investigated the combined impact of slip boundary

condition and chemical reaction on forced convection flow of a hybrid ferrofluid

within a porous medium modeled by Darcy’s law.

In this chapter, we study the Soret number, Hall current, and angled magnetic

field effects on entropy of the system of steady convective flow between inclined

parallel plates in Jeffrey fluid fluid with navier-slip condition. SQLM is used to solve

the dimensionless flow equations. The impact of various relevant flow parameters

on entropy, velocity, temperature, and concentration is examined.

5.2 Mathematical formulation

The physical configuration illustrated in Figure 5.1 of this research involves a con-

figuration of inclined parallel plates. These plates are inclined at an angle γ relative

to the reference base and are separated by a distance of 2d. The occurrence of slip

phenomena is acknowledged on both of these plates. The concentrations and tem-

peratures at the plates are denoted as C1, T1, C2, and T2 respectively. An external

magnetic field denoted as B0, positioned at an angle α about the base, exerts an
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Figure 5.1: Physical interpretation.

impact on the plates. The present inquiry focuses on investigating the behavior of a

Jeffrey fluid, which exhibits steady and incompressible. With the assumption that

the boundaries extend infinitely along the x-axis, the parameters governing the flow

are treated as functions solely dependent on the y coordinate. The properties of

fluid are taken as constant, except for the change in density that affects the term in

the buoyancy force. As such, these assumptions align with natural principles and

are relevant in practical applications.

The governing equations are derived as follows:

∂v

∂y
= 0 (5.1)

ρv0
∂u

∂y
=

µ

1 + λ1

∂2u

∂y2
+ ρg∗sinγ (βC(C − C1) + βT (T − T1))

− σB2
0cosα

1 +m2cos2α

(
ucosα− v0sinα +mwcos2α

)
− ∂p

∂x

(5.2)

ρv0
∂w

∂y
=

µ

1 + λ1

∂2w

∂y2
− ρg∗cosγ (βC(C − C1) + βT (T − T1))

+
σB2

0cos
2α

1 +m2cos2α
(mucosα− w −mv0sinα))

(5.3)

ρcpv0
∂T

dy
= kf

∂2T

∂y2
+

µ

1 + λ1

(
(
∂u

∂y
)2 + (

∂w

∂y
)2
)

(5.4)
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v0
∂C

∂y
= D

∂2C

∂y2
+

DKT

Tm

∂2T

∂y2
(5.5)

in which λ1 is the Jeffrey fluid parameter, KT denotes the thermal diffusion ratio,

cp stands for the specific heat, kf signifies thermal conductivity, µ embodies the

viscosity coefficient, m = η1σB0 embodies the Hall parameter, ρ embodies the den-

sity, σ represents the electrical conductivity, βT , and βC are the thermal and solutal

expansion respectively, D signifies the mass dissipation, Tm represents the mean

temperature, gravitational acceleration is denoted by the symbol g∗, and γ1 and γ2

are coefficients associated with slip conditions.

From equation (5.1), we get v = v0 = constant.

Boundary conditions are provided by

u = γ1
∂u

∂y
, w = 0, C = C1, T = T1, when y = −d.

u = γ2
∂u

∂y
, w = 0, C = C2, T = T2, when y = d.

(5.6)

5.2.1 Case (a): Natural Convection

Natural convection flow is due to buoyancy forces, with the assumption that there

is no external pressure gradient ( ∂p
∂x

= 0).

similarity transformations for this given problem is given as

η =
y

d
, u =

νGrf

d
, w =

νGrg

d
, ϕ =

C − C1

C2 − C1

, θ =
T − T1

T2 − T1

(5.7)

By applying the similarity transformations to the equations (5.2) through (5.5), we

yield the resulting transformed equations as follows:

f ′′ −Re(1 + λ1)f
′ + (1 + λ1)(θ +Nϕ)sinγ

−Ha2cosα(1 + λ1)

1 +m2cos2α

(
fcosα− λsinα +mgcos2α

)
= 0

(5.8)
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g′′ −Re(1 + λ1)g
′ + (1 + λ1)(θ +Nϕ)cosγ

+
Ha2cos2α(1 + λ1)

1 +m2cos2α
(mfcosα− g −mλsinα) = 0

(5.9)

BrGr2

(1 + λ1)

(
f ′2 + g′2

)
+ θ′′ −RePrθ′ = 0 (5.10)

ScSrθ′′ + ϕ′′ −ReScϕ′ = 0 (5.11)

Where Br= µν2/kfd
2(T2 − T1) pertains to the Brinkman number, Re = ρu0d/µ

indicates the Reynolds number, Sr = DKT (T2 − T1)/νTm(C2 − C1) represents the

Soret number, Sc = ν/D signifies the Schmidth number, Gr = g∗βT (T2 − T1)d
3/ν2

corresponds to the Grashof number, N = βC(C2 − C1)/βT (T2 − T1) indicate the

buoyancy parameter, Pr = µcp/kf pertains to Prandtl number, Ha = dB0

√
σ/µ

stands for magnetic parameter, λ = Re/Gr, β1 = γ1/d and β2 = γ2d are defined as

the slip parameters.

Boundary conditions (5.6) become

f = β1f
′, g = ϕ = θ = 0, when η = −1

f = β2f
′, g = 0, ϕ = θ = 1, when η = 1

(5.12)

The shear stress, heat and mass transfer flows are given by

τw =

[
µ
du

dy

]
|y=±d; qw =

[
−kf

dT

dy

]
|y=±d; qm =

[
−D

dC

dy

]
|y=±d

The dimensionless shear stress Cf = τw/ρu
2
0 is given by ReCf1,2 = f ′(η) |η=−1,1.

The Sherwood number defined as Sh = qmd/D(C2 − C1) and the Nusselt number

defined as Nu = qwd/kf (T2 − T1) for this problem are given by

Sh1,2 = [−ϕ′(η)] |η=−1,1; Nu1,2 = [−θ′(η)] |η=−1,1 .
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Entropy Generation

The expression for the volumetric entropy generation rate is given as

Sgen =
kf
T 2
0

[
dT

dy

]2
+

µ

T0(1 + λ1)

[(
du

dy

)2

+

(
dw

dy

)2
]
+

RD

C0

(
dC

dy

)2

+
RD

T0

(
dT

dy

)(
dC

dy

)
+

σB2
0

T0

[
w2 + (ucosα− v0sinα)

2
] (5.13)

The initial expression on the right-hand side of equation (5.13) is linked to heat

transfer; the subsequent term is indicative of viscous dissipation; the third and

fourth terms represent mass transfer; the fifth term is because of magnetic field.

(Sgen)0 =
kf (T2 − T1)

2

T 2
0 d

2
(5.14)

By using equations (5.13) and (5.14), the formation of dimensionless entropy can be

expressed as:

Ns =
Sgen

(Sgen)0

Ns = (θ′)2 +
BrGr2

(1 + λ1)A1

(f ′2 + g′2) +
εB2

1

A2
1

(ϕ′)2 +
εB1

A1

θ′ϕ′

+
BrGr2Ha2

A1

(
g2 + (fcosα− λsinα)2

)
Here, Br, ε, B1, Gr, Ha, and A1 correspond to the brinkman number, dimensionless

constant parameter, dimensionless concentration difference, grashof number, mag-

netic parameter, and dimensionless temperature difference, respectively, which are

represented as

Br =
µv2

kfd2(T2 − T1)
, Gr =

g∗βT (T2 − T1)d
3

v2
, ε =

RDC0

kf
,

A1 =
T2 − T1

T0

, B1 =
C2 − C1

C0

, Ha = dB0

√
σ

µ
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Result and Disscussion

The nonlinear and coupled flow eqns. (5.8) - (5.11) with respect to boundary con-

ditions (5.12) are numerically solved by SQLM (as explained in chapter-2).

Figures 5.2 to 5.9 show the behaviour of f(η), g(η), θ(η), ϕ(η), and Ns for

distinct values of Ha, α, m, Sr, λ1, γ, β1, and β2 by taking Gr, N , Sc, Pr, Br, Re,

A1, B1, ε, β1, β2 at 2, 2, 0.22, 0.71, 0.5, 2, 1, 1, 2, 0.1, 0.1, respectively.

In figure 5.2, the variations in f , g, θ, ϕ, and Ns are depicted across different

values of magnetic parameter (Ha), while Sr = 2, α = π/4, m = 2, λ1 = 0.5, and

γ = π/3 are held constant. Figures 5.2(a) and 5.2(b) exhibit the discernible augmen-

tation of both flow velocity and cross-flow velocity with the progressive elevation of

the magnetic parameter (Ha). It’s noteworthy to highlight that the magnetic field

is inclined at an angle α > 0, leading to the absence of drag force generation. Fig-

ures 5.2(c) and 5.2(d) demonstrate the concurrent behavior of subsidence in fluid

temperature and magnifies in concentration with elevated values of Ha. It is seen in

figure 5.2(e) that entropy magnifies near the plates as Ha magnifies. Fluid dynamics

can be influenced by a magnetic field owing to the magneto-hydrodynamic (MHD)

phenomenon, which holds particular importance in the context of fluids that exhibit

electrical conductivity. Magnetic parameters play a crucial role in power generation

systems where a conducting fluid interacts with a magnetic field to generate elec-

tric power, high-speed trains, magnetic resonance imaging, paleomagnetism, metal

sorting, etc.

In figure 5.3, the depictions illustrate the response of parameters f , g, θ, ϕ,

and Ns regarding discrete orientations of the inclination angle (α), while keeping

Ha = 2, m = 2, λ1 = 0.1, Sr = 2, and γ = π/3 constant. Figures 5.3(a) and

5.3(b) elucidate a discernible decrease in both flow velocity and cross-flow velocity

as the angle of inclination (α) experiences elevation. The behavior of temperature

is depicted in Figure 5.3(c). Here, an observable reduction in fluid temperature is
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noted with a rise in inclination angle (α). It is noted in figures 5.3(d) and 5.3(e) that

as α rises, both fluid concentration and entropy generation exhibit augmentation.

This is because, when the applied magnetic field’s inclination angle decreases, the

reduction in drag force on the net flow will also decrease. An inclined magnetic

field is used in MHD generators to convert the kinetic energy of hot, electrically

conducting fluid into electrical energy.

In figure 5.4, the graphical representation elucidates the effect of the parameter

γ on the variables f , g, θ, ϕ, and Ns, while maintaining constant values for other

parameters: α = π/4, Sr = 2, Ha = 2, λ1 = 0.5, and m = 2. Figures 5.4(a) and

5.4(b) exhibit contrasting trends. Specifically, the flow velocity demonstrates an

ascending pattern, whereas the cross-flow velocity exhibits a descending trend as the

parameter γ increases. This is because when the channel is inclined, a component

of gravity acts along the channel direction. This component induces flow in an

inclined direction due to the buoyancy force. The velocity increases as the inclined

angle increases, leading to a higher flow rate in the direction of inclination. It is

discerned that an elevation in the parameter γ leads to a fall in temperature and

a simultaneous increase in fluid concentration, as depicted in figures 5.4(c) and

5.4(d). Entropy generation rises near η = 1 as γ rises, as shown in figure 5.4(e).

This phenomenon arises from the observation that as the angle γ increases towards

90◦, the plates transition to a vertical orientation. Consequently, the magnetic field

applied in this scenario induces a drag force in alignment with the y-axis direction.

Figure 5.5 exemplifies the response of parameters f , g, θ, ϕ, and Ns to varying

values of the Hall parameter (m), while maintaining constants for other parame-

ters: Sr = 2, Ha = 2, λ1 = 0.5, α = π/4, and γ = π/3. As depicted in figure

5.5(a), a discernible reduction in flow velocity is observed with an escalation in m.

It is seen from figures 5.5(b) and 5.5(c) that the cross-flow velocity and temperature

both rise as m rises. A drag on flow velocity results from the generation of Hall
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current perpendicular to both directions when a magnetic field acting at an angle

α = π/4. The fluid’s temperature rises as a result of the extra charge produced

by Hall current. The behaviors of fluid concentration and entropy generation near

η = 1 are illustrated in figures 5.5(d) and 5.5(e), respectively. The concentration of

fluid exhibits a rising trend, whereas entropy generation decreases with an increase

in the Hall parameter (m). Hall current induces mixing in the fluid flow. Mixing

can lead to better dispersion of solute particles, influencing concentration gradi-

ents. Enhanced mixing due to the Hall parameter effect results in more uniform

concentration profiles in the flow. The hall current plays a crucial role in MHD

flows, introducing supplementary intricacy to both fluid dynamics and magnetic

field dispersion. The realm of magneto-hydrodynamics (MHD) holds significance

within plasma physics, astrophysics, and engineering domains, such as MHD power

generation and propulsion systems, where the interplay of magnetic fields and fluid

behavior is paramount.

The influence of λ1 on f , g, θ, ϕ, and Ns is displayed in figure 5.6, while keep-

ing other parameters at Sr = 5, m = 2, α = π/4, Ha = 2, and γ = π/3. As

delineated in figures 5.6(a) and 5.6(b), as the parameter λ1 increases, both velocity

in the main flow direction and cross-flow velocity experience elevation. Higher val-

ues of the Jeffrey fluid parameter indicate more significant shear-thinning behavior.

The shear-thinning behavior affects the flow profiles. As the fluid moves near the

solid boundaries, where the shear rate is higher, a higher Jeffrey fluid parameter

results in lower viscosity, allowing for faster flow. Figure 5.6(c) shows that as the

parameter λ1 increases, the dimensionless temperature decreases. The behaviors

of fluid concentration and entropy generation are portrayed in figures 5.6(d) and

5.6(e), respectively. Both parameters exhibit a positive trend with increasing λ1.

This implies that higher values of λ1 contribute to elevated fluid concentration and

a slight increase in entropy generation near η = 1. This is because the shear thinning
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behavior due to the Jeffrey fluid parameter affects the thickness of the concentra-

tion boundary layer. A thinner boundary layer facilitates faster diffusion of solute

particles, leading to an increase in the concentration profile.

In figure 5.7, the graphical depictions showcase the fluctuations in parameters

f , g, θ, ϕ, and Ns in response to varying values of the Soret number (Sr), while

Ha=2, m=2, α=π/4, λ1=0.5, and γ = π/3 are held constant. Figures 5.7(a) and

5.7(b) illustrate that as the Soret number (Sr) escalates, both the flow velocity and

cross-flow velocity exhibit an increase. The result in figure 5.7(c) indicates that

the higher Soret numbers lead to lower fluid temperatures within the system. This

phenomenon is attributed to the fact that an augmentation in the Soret param-

eter induces an escalation in the temperature gradient, consequently resulting in

heightened velocities. Figures 5.7(d) and 5.7(e) indicate that higher values of Sr

contribute to elevated fluid concentration and entropy generation within the system.

This happens because as the Soret parameter increases, the thermophoretic effect

strengthens. Consequently, there is a greater mass flux of particles in response to a

given temperature gradient. This effect can enhance mass transfer rates, leading to

more rapid changes in concentration. This increased mass transfer results in higher

entropy generation due to additional irreversibilities in the system.

In figure 5.8, the visualizations portray the responses of parameters f , g, θ, ϕ,

and Ns to varying values of the parameter β1, while keeping Ha=2, m=2, α=π/4,

λ1=0.5, Sr=2, and γ = π/3 constant. Figures 5.8(a) and 5.8(b) demonstrate a

noticeable pattern. Increasing the parameter β1 is associated with higher values of

both flow velocity and cross-flow velocity. This is because the fluid particles at the

solid boundary are not anchored, allowing for easier movement and, consequently,

higher velocity. Figure 5.8(c) reveals that the temperature of the fluid rises with a

rise in β1. A higher slip leads to increased dissipation, affecting the overall temper-

ature distribution in the flow. Figures 5.8(d), and 5.8(e) demonstrate that higher
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values of β1 contribute to reduced fluid concentration and entropy production within

the system.

In figure 5.9, the graphical depictions present the variations in parameters f , g,

θ, ϕ, and Ns corresponding to different values of the parameter β2, while keeping

Ha=2, m=2, α=π/3, λ1=0.5, Sr=2, and γ = π/3 constant. Figure 5.9(a) illustrates

that an augmentation in the parameter β2 is correlated with a decrease in the flow

velocity. Figure 5.9(b) shows that the cross-flow velocity increases as the value of

the parameter β2 rises. Figure 5.9(c) reveals that the fluid temperature decreases

as the parameter β2 rises. An elevated slip results in greater dissipation, impacting

the overall temperature distribution within the flow. The elevated value of the

parameter β2 corresponds to an increase in fluid concentration and a slight elevation

in entropy production near η = 1, as depicted in figures 5.9(d) and 5.9(e). This

occurs because when the fluid slips along the solid boundaries at η = 1, it can lead

to heightened friction and shear within the boundary layer. These added dissipative

effects result in increased entropy generation near η = 1.

Table 5.1 comprehensively depicts the fluctuations in various parameters such

as the Jeffrey fluid parameter (λ1), magnetic parameter (Ha), Soret number (Sr),

Hall number (m), inclination angle (α), and channel angle of inclination (γ), while

keeping other variables at Re=2, Gr=2, Pr=0.71, Br=0.5, Sc=0.22, N = 2, β1 =

0.1, and β2=0.1. The data in the table reveals that skin friction increases on the

η = −1 plate and decreases on the η = 1 plate in sync with higher values of Ha, Sr,

α, and channel inclination angle (γ), but decreases with increasing values of the Hall

number (m). Conversely, skin friction reduces with higher values of the Jeffrey fluid

parameter (λ1). Table 5.1 also shows that as Ha, Sr, α, and γ increase, the heat

transfer rate decreases for both plates. However, the Hall parameter (m) exhibits

an opposite trend. Moreover, the rate of heat transfer increases on the left plate

and decreases on the right plate with higher values of the Jeffrey fluid parameter
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(λ1). Additionally, mass transfer rate increases with higher values of Ha, Sr, α, and

γ, while exhibiting the opposite trend for m. The mass transfer rate decreases on

the left plate and increases on the right plate with an increase in the Jeffrey fluid

parameter (λ1), as shown in Table 5.1.
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Figure 5.2: Influence of magnetic parameter (Ha) on (a) f(η), (b) g(η), (c) θ(η),
(d) ϕ(η), and (e) Ns.
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Figure 5.3: Influence of inclination angle (α) on (a) f(η), (b) g(η), (c) θ(η), (d)
ϕ(η), and (e) Ns.
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Figure 5.4: Influence of channel angle of inclination (γ) on (a) f(η), (b) g(η), (c)
θ(η), (d) ϕ(η), and (e) Ns.
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Figure 5.5: Influence of hall current (m) on (a) f(η), (b) g(η), (c) θ(η), (d) ϕ(η),
and (e) Ns.
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Figure 5.6: Influence of Jeffrey fluid parameter (λ1) on (a) f(η), (b) g(η), (c) θ(η),
(d) ϕ(η), and (e) Ns.
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Figure 5.7: Influence of Soret number (Sr) on (a) f(η), (b) g(η), (c) θ(η), (d) ϕ(η),
and (e) Ns.
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Figure 5.8: Influence of slip condition (β1) on (a) f(η), (b) g(η), (c) θ(η), (d) ϕ(η),
and (e) Ns.
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Figure 5.9: Influence of slip condition (β2) on (a) f(η), (b) g(η), (c) θ(η), (d) ϕ(η),
and (e) Ns.
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Table 5.1: Overview of the impact of various values of α, Sr, Ha, m, γ and λ1 on
skin friction (Cf1,2), rate of heat transfer (Nu1,2) and mass transfer (Sh1,2).

Ha Sr m α λ1 γ Cf1 Cf2 Nu1 Nu2 Sh1 Sh2

1 2 2 π/3 0.2 π/3 0.22678 -3.38201 -0.29039 -7.67815 -0.34881 2.46179
2 2 2 π/3 0.2 π/3 0.37472 -3.81323 -0.42761 -8.58568 -0.28540 2.86414
3 2 2 π/3 0.2 π/3 0.59747 -4.32660 -0.62654 -9.67099 -0.19451 3.34504
2 1 2 π/3 0.2 π/3 0.35478 -3.63391 -0.42096 -8.15135 -0.30135 0.95933
2 2 2 π/3 0.2 π/3 0.37472 -3.81323 -0.42761 -8.58568 -0.28540 2.86414
2 3 2 π/3 0.2 π/3 0.39636 -4.01036 -0.43264 -9.07484 -0.26435 4.99950
2 2 1 π/3 0.2 π/3 0.55038 -4.22350 -0.58366 -9.45923 -0.21377 3.25147
2 2 2 π/3 0.2 π/3 0.37472 -3.81323 -0.42761 -8.58568 -0.28540 2.86414
2 2 3 π/3 0.2 π/3 0.28778 -3.58438 -0.34749 -8.10287 -0.32229 2.65006
2 2 2 0 0.2 π/3 0.06925 -2.80344 -0.14782 -6.33032 -0.41812 1.86217
2 2 2 π/4 0.2 π/3 0.37472 -3.81323 -0.42761 -8.58568 -0.28540 2.86414
2 2 2 π/3 0.2 π/3 0.48631 -4.21221 -0.50397 -9.58565 -0.24584 3.31009
2 2 2 π/3 0.2 π/3 0.48683 -4.61141 -0.45622 -9.64363 -0.26638 3.33607
2 2 2 π/3 0.3 π/3 0.48553 -5.01154 -0.41514 -9.69241 -0.28413 3.35786
2 2 2 π/3 0.4 π/3 0.48307 -5.41226 -0.37985 -9.73289 -0.29947 3.37586
2 2 2 π/3 0.2 π/4 0.43757 -3.91268 -0.44750 -8.23809 -0.27666 2.7111
2 2 2 π/3 0.2 π/3 0.45864 -4.21439 -0.45248 -8.83504 -0.27186 2.97646
2 2 2 π/3 0.2 π/2 0.48683 -4.61141 -0.45622 -9.64363 -0.26638 3.33607
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5.2.2 Case (b): Mixed Convection

Consider a mixed convection flow occurring with both natural (buoyancy-driven)

and forced (externally-driven) convection mechanisms.

similarity transformations for this given problem is given as

η =
y

d
, u = u0f, w = u0g, ϕ =

C − C1

C2 − C1

, θ =
T − T1

T2 − T1

(5.15)

Upon employing dimensionless transformations to equations (5.2) to (5.5), the re-

sulting transformed equations are obtained as follows:

f ′′ −Re(1 + λ1)f
′ +

Gr

Re
(1 + λ1)(θ +Nϕ)sinγ

−Ha2cosα(1 + λ1)

1 +m2cos2α

(
fcosα− λsinα +mgcos2α

)
− A(1 + λ1) = 0

(5.16)

g′′ −Re(1 + λ1)g
′ − Gr

Re
(1 + λ1)(θ +Nϕ)cosγ

+
Ha2cos2α(1 + λ1)

1 +m2cos2α
(mfcosα− g −mλsinα) = 0

(5.17)

Br

(1 + λ1)

(
f ′2 + g′2

)
+ θ′′ −RePrθ′ = 0 (5.18)

ScSrθ′′ + ϕ′′ −ReScϕ′ = 0 (5.19)

Where Br= µν2/kfd
2(T2 − T1) pertains the Brinkman number, Re = ρu0d/µ indi-

cates Reynolds number, Sr = DKT (T2 − T1)/νTm(C2 − C1) represents the Soret

number, A = d2∂p/∂xu0µ, Sc = ν/D signifies the Schmidth number, β1 = γ1/d,

β2 = γ2/d are defined as the slip parameters, Gr = g∗βT (T2 − T1)d
3/ν2 corresponds

to the Grashof number, Pr = µcp/kf pertains to Prandtl number, Ha = dB0

√
σ/µ

stands for magnetic parameter, λ = Re/Gr, and N = βC(C2 − C1)/βT (T2 − T1) in-

dicates the buoyancy parameter.
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Boundary conditions (5.6) become

η = −1 : f = β1f
′, g = ϕ = θ = 0

η = −1 : f = β2f
′, g = 0, ϕ = θ = 1

(5.20)

The shear stress, heat and mass transfer flows for this problem are given by

τw =

[
µ
du

dy

]
|y=±d; qw =

[
−kf

dT

dy

]
|y=±d; qm =

[
−D

dC

dy

]
|y=±d

The dimensionless shear stress Cf = τw/ρu
2
0 is given by ReCf1,2 = f ′(η) |η=−1,1.

The Sherwood number defined as Sh = qmd/D(C2 − C1) and the Nusselt number

defined as Nu = qwd/kf (T2 − T1) for this problem are given by

Sh1,2 = [−ϕ′(η)] |η=−1,1; Nu1,2 = [−θ′(η)] |η=−1,1 .

Entropy Generation

The expression for the volumetric entropy generation rate is given as

Sgen =
kf
T 2
0

[
dT

dy

]2
+

µ

T0(1 + λ1)

[(
du

dy

)2

+

(
dw

dy

)2
]
+

RD

C0

(
dC

dy

)2

+
RD

T0

(
dT

dy

)(
dC

dy

)
+

σB2
0

T0

[
w2 + (ucosα− v0sinα)

2
] (5.21)

The initial expression on the right-hand side of equation (5.21) is linked to heat

transfer, the subsequent term is because of energy dissipation due to fluid viscosity,

the third and fourth terms represent mass transfer, and the fifth term is because of

magnetic field.

The definition of characteristic rate of entropy generation denoted by (Sgen)0 is

defined as

(Sgen)0 =
kf (T2 − T1)

2

T 2
0 d

2
(5.22)
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By using equations (5.21) and (5.22), the formation of dimensionless entropy can be

expressed as:

Ns =
Sgen

(Sgen)0

Ns = (θ′)2+
Br

(1 + λ1)A1

(f ′2+g′2)+
εB2

1

A2
1

(ϕ′)2+
εB1

A1

θ′ϕ′+
BrHa2

A1

(
g2 + (fcosα− λsinα)2

)
Here A1, Br, B1, Ha, and ε correspond to dimensionless temperature difference,

Brinkman number, dimensionless concentration difference, magnetic parameter, and

dimensionless constant parameter, respectively, which are represented as

Br =
µv2

kfd2(T2 − T1)
, ε =

RDC0

kf
, A1 =

T2 − T1

T0

, B1 =
C2 − C1

C0

, Ha = dB0

√
σ

µ

Results and discussion

The nonlinear and coupled flow Eqs. (5.16)-(5.19) with boundary conditions (5.20)

are numerically solved using SQLM (as explained in chapter-2).

Figures 5.10 to 5.17 show the behavior of f(η), g(η), θ(η), ϕ(η), and Ns for

distinct values of Ha, α, m, Sr, λ1, γ, β1, and β2 by taking A, Pr, Br, Re, Gr, N ,

Sc, A1, B1, ε, β1, β2 at 1, 0.71, 0.5, 2, 0.5, 2, 0.22, 1, 1, 2, 0.1, 0.1 respectively.

In figure 5.10, the variations in f , g, θ, ϕ, and Ns are displayed for different values

of Ha, while Sr = 2, α = π/4, m = 2, λ1 = 0.5, and γ = π/3 are held constant.

Figures 5.10(a) and 5.10(b) demonstrate a clear trend of increasing flow velocity and

cross-flow velocity with rising Hartmann number (Ha). It’s noteworthy to highlight

that the magnetic field is inclined at an angle α > 0, leading to the absence of drag

force generation. Figures 5.10(c) and 5.10(d) demonstrate the concurrent behavior

of subside in fluid temperature and magnifies in concentration with elevated values

of Ha. It is seen in figure 5.10(e) that entropy magnifies as Ha magnifies. The fluid

dynamics can be influenced by a magnetic field owing to the magneto-hydrodynamic
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phenomenon, which holds particular importance in the context of fluids that exhibit

electrical conductivity.

In figure 5.11, the depictions illustrate the response of parameters f , g, θ, ϕ, and

Ns concerning distinct values of the angle of inclination (α), while keeping Ha = 2,

m = 2, λ1 = 0.5, Sr = 2, and γ = π/3 constant. Figures 5.11(a) and 5.11(b)

show that the flow velocity increase and cross-flow velocity decrease as the angle of

inclination (α) experiences elevation. The behavior of temperature is depicted in

figure 5.11(c). Here, an observable reduction in fluid temperature is noted with a

rise in inclination angle (α). This behavior is caused by an increase in the inclination

angle of the applied magnetic field, which reduces drag force and hence increases net

flow in the fluid. It is noted in figures 5.11(d) and 5.11(e) that as α rises, both fluid

concentration and entropy generation exhibit augmentation. An inclined magnetic

field is used in MHD generators to convert the kinetic energy of hot, electrically

conducting fluid into electrical energy.

In figure 5.12, the graphical representation elucidates the effect of the parameter

γ on the variables f , g, θ, ϕ, and Ns, while maintaining constant values for other

parameters: α = π/4, Sr = 10, Ha = 2, λ1 = 0.5, and m = 2. The two figures,

5.12(a) and 5.12(b), the flow velocity and cross-flow velocity shows an upward trend

with increasing value of γ. This change in trend occurs as the value of the parameter

γ increases. It is discerned that an elevation in the parameter γ leads to a fall in

temperature and a simultaneous increase in fluid concentration, as depicted in figures

5.12(c) and 5.12(d). Entropy generation slightly rises near η = 1 as γ rises as shown

in figure 5.12(e). This phenomenon arises from the observation that as the angle γ

increases towards 90◦, the plates transition to a vertical orientation. Consequently,

the magnetic field applied in this scenario induces a drag force in alignment with

the y-axis direction.

Figure 5.13 exemplifies the response of parameters f , g, θ, ϕ, and Ns to varying
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values of the Hall parameter (m), while maintaining constants for other parameters:

Sr = 2, Ha = 2, λ1 = 0.1, α = π/4, and γ = π/3. As depicted in figure 5.13(a),

a discernible reduction in flow velocity is observed with an escalation in m. It is

seen from figures 5.13(b) and 5.13(c) that the cross-flow velocity and temperature

both rise as m rises. This is because the magnetic field is inclined at an angle of

α = π/4, which causes the hall effect to generate charge in the direction of inclined

plates, thereby making it unable to act as a drag on the fluid. As mentioned earlier,

the fluid’s temperature rises as a result of the extra charge that the hall current

generates. The behaviors of fluid concentration and entropy generation are illus-

trated in figures 5.13(d) and 5.13(e), respectively. Both parameters exhibit a rising

trend with an increase in the Hall parameter (m). The Hall current plays a cru-

cial role in MHD flows, introducing supplementary intricacy to both fluid dynamics

and magnetic field dispersion. The realm of magneto-hydrodynamics (MHD) holds

significance within plasma physics, astrophysics, and engineering domains, such as

MHD power generation and propulsion systems, where the interplay of magnetic

fields and fluid behavior is paramount.

The influence of Jeffrey fluid parameter (λ1) on f , g, θ, ϕ, and Ns are displayed

in figure 5.14, while keeping other parameters at Sr = 2, Ha = 4, m = 2, α = π/4,

and γ = π/3. As shown in figures 5.14(a) and 5.14(b), an increase in parameter λ1

leads to a rise in both the flow velocity and cross-flow velocity. The dimensionless

temperature is observed to increase as the parameter λ1 increases as shown in figure

5.14(c). This is because higher values of the Jeffrey fluid parameter indicate a more

elastic and less viscous fluid. Therefore, increasing the Jeffrey fluid parameter tends

to enhance the fluid’s elasticity, which increases the fluid’s net flow and temperature

profile. The behaviors of fluid concentration and entropy generation are portrayed

in figures 5.14(d) and 5.14(e), respectively. Both parameters show that higher values

of λ1 contribute to a decrease in fluid concentration and entropy generation.
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In figure 5.15, the graphical depictions showcase the fluctuations in parameters

f , g, θ, ϕ, and Ns in response to varying values of the Soret number (Sr), while

Ha=2, m=2, α=π/4, λ1=0.5, and γ = π/3 are held constant. Figures 5.15(a) and

5.15(b) illustrate that as the Soret number (Sr) escalates, both the flow velocity

and cross-flow velocity exhibit an increase. The result in figure 5.15(c) indicates

that the higher Soret numbers lead to lower fluid temperatures within the system.

This phenomenon is attributed to the fact that an augmentation in the Soret pa-

rameter induces an escalation in the temperature gradient, consequently resulting in

heightened velocities. Figures 5.15(d) and 5.15(e) indicate that higher values of Sr

contribute to elevated fluid concentration and entropy generation within the system.

The Soret parameter plays a role in mass transfer in multi-component fluid systems

and can significantly impact flow behavior, particularly in situations involving heat

and mass transfer.

In figure 5.16, the visualizations portray the responses of parameters f , g, θ, ϕ,

and Ns to varying values of the parameter β1, while keeping Ha=2, m=2, α=π/4,

λ1=0.5, Sr=2, and γ = π/3 constant. Figures 5.16(a) and 5.16(b) show that in-

creasing the parameter β1 is associated with an increase in flow velocity and a

decrease in cross-flow velocity. Figure 5.16(c) reveals that the temperature of fluid

rises with a rise in β1. Figures 5.16(d) and 5.16(e) demonstrate that higher values

of β1 contribute to reduced fluid concentration and entropy production within the

system.

In figure 5.17, the graphical depictions present the variations in parameters f ,

g, θ, ϕ, and Ns corresponding to different values of the parameter β2, while keeping

Ha=2, m=2, α=π/4, λ1=0.5, Sr=2, and γ = π/3 constant. Figures 5.17(a) and

5.17(b) illustrate that an augmentation in the parameter β2 is correlated with a

decrease in both flow velocity and cross-flow velocity. Figure 5.17(c) reveals that

the fluid temperature decreases as the parameter β2 rises. The elevated value of the
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parameter β2 corresponds to an increase in fluid concentration and a slight elevation

in entropy production near η = 1, as depicted in figures 5.17(d) and 5.17(e). Slip

conditions are commonly used when modeling fluid flow over surfaces with high slip

characteristics, such as superhydrophobic surfaces.

Table 5.2 presents the variations in magnetic parameter (Ha), Hall number (m),

Soret number (Sr), inclination angle (α), Jeffrey fluid parameter (λ1), and channel

angle of inclination (γ) while keeping other parameters at Re=2, Gr=0.5, Pr=0.71,

Br=0.5, Sc=0.22, N = 2, A = 1, β1 = 0.1, and β2=0.1. The table indicates that

the skin friction increases at the η = −1 plate and decreases at the η = 1 plate with

an enhancement in Ha, Sr, α, γ, and λ1. Conversely, the Hall parameter (m) has

the opposite effect. Additionally, Table 5.2 demonstrates that as m, Sr, α, λ1, and γ

increase, the heat transfer rate increases at the left plate and decreases at the right

plate, while the opposite tendency is seen for the Hall parameter (m). Moreover,

the rate of mass transfer diminishes at the left plate and amplifies at the right plate

with an amplification in the hall parameter Ha, Sr, α, λ1, and γ, While the Hall

parameter shows the opposite tendency.

5.3 Conclusions

The present investigation aims to analyze the entropy generation of a steady inclined

magnetohydrodynamic Jeffrey flow occurring between inclined parallel plates. This

investigation considers the influence of both the Soret number and Hall current. The

original complex equations describing the system are transformed into dimension-

less equations through the use of similarity transformations. The non-dimensional

equations are solved with SQLM. Based on the findings of our study, we have ob-

served that the flow velocity and cross-flow velocity increase as the Soret parameter,

magnetic parameter, and Jeffrey fluid parameter increase. Conversely, both veloc-

ities decrease with an increase in the Hall parameter. Additionally, we have found
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that fluid temperature decreases while concentration rises with a rise in the Soret

parameter, magnetic parameter, inclination angle, and channel angle of inclination.

Moreover, we have discovered that the entropy of the system increases with the aug-

mentation of the magnetic parameter and inclination angle. However, it diminishes

as the β1 parameter increases.
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Figure 5.10: Impact of magnetic parameter (Ha) on (a) f(η), (b) g(η), (c) θ(η), (d)
ϕ(η), and (e) Ns.
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Figure 5.11: Impact of inclination angle (α) on (a) f(η), (b) g(η), (c) θ(η), (d)
ϕ(η), and (e) Ns.
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Figure 5.12: Impact of channel angle of inclination (γ) on (a) f(η), (b) g(η), (c)
θ(η), (d) ϕ(η), and (e) Ns.
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Figure 5.13: Impact of hall current (m) on (a) f(η), (b) g(η), (c) θ(η), (d) ϕ(η),
and (e) Ns.
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Figure 5.14: Impact of Jeffrey fluid parameter (λ1) on (a) f(η), (b) g(η), (c) θ(η),
(d) ϕ(η), and (e) Ns.



CHAPTER 5. 153

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

f

h

 Sr=2
 Sr=4
 Sr=6
 Sr=8

(a)

-1.0 -0.5 0.0 0.5 1.0

-0.08

-0.06

-0.04

-0.02

0.00

g

h

 Sr=2
 Sr=4
 Sr=6
 Sr=8

(b)

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

q

h

 Sr=2
 Sr=4
 Sr=6
 Sr=8

(c)

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

f

h

 Sr=2
 Sr=4
 Sr=6
 Sr=8

(d)

-1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80

100

Ns

h

 Sr=2
 Sr=4
 Sr=6
 Sr=8

(e)

Figure 5.15: Impact of Soret number (Sr) on (a) f(η), (b) g(η), (c) θ(η), (d) ϕ(η),
and (e) Ns.
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Figure 5.16: Impact of slip condition (β1) on (a) f(η), (b) g(η), (c) θ(η), (d) ϕ(η),
and (e) Ns.
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Figure 5.17: Impact of slip condition (β2) on (a) f(η), (b) g(η), (c) θ(η), (d) ϕ(η),
and (e) Ns.
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Table 5.2: Overview of the impact of various values of α, Sr, Ha, m, γ and λ1 on
skin friction (Cf1,2), rate of heat transfer (Nu1,2) and mass transfer (Sh1,2).

Ha Sr m α λ1 γ Cf1 Cf2 Nu1 Nu2 Sh1 Sh2

1 2 2 π/3 0.2 π/3 0.90447 -5.04259 -0.24585 -3.88913 -0.37556 0.78747
2 2 2 π/3 0.2 π/3 1.98903 -8.88627 -0.24218 -6.67250 -0.38363 2.03570
3 2 2 π/3 0.2 π/3 3.60053 -13.70138 0.02524 -11.21032 -0.42436 4.07928
2 1 2 π/3 0.2 π/3 1.98141 -8.82120 -0.24608 -6.61423 -0.33220 0.62879
2 2 2 π/3 0.2 π/3 1.98903 -8.88627 -0.24218 -6.67250 -0.35363 2.03570
2 3 2 π/3 0.2 π/3 1.99678 -8.95250 -0.23815 -6.73213 -0.37621 3.46980
2 2 1 π/3 0.2 π/3 2.77267 -11.34876 -0.14888 -8.85188 -0.37304 3.01627
2 2 2 π/3 0.2 π/3 1.98903 -8.88627 -0.24218 -6.67250 -0.35363 2.03570
2 2 3 π/3 0.2 π/3 1.45354 -7.07590 -0.26307 -5.26972 -0.35211 1.40581
2 2 2 π/5 0.2 π/3 1.33392 -6.31130 -0.28670 -4.66617 -0.35250 1.13446
2 2 2 π/4 0.2 π/3 1.59240 -7.28590 -0.28339 -5.37036 -0.35301 1.45025
2 2 2 π/3 0.2 π/3 1.98903 -8.88627 -0.24218 -6.67250 -0.35363 2.03570
2 2 2 π/3 0.2 π/3 1.98903 -8.88627 -0.24218 -6.67250 -0.35363 2.03570
2 2 2 π/3 0.3 π/3 2.01486 -9.69870 -0.21425 -6.75141 -0.36566 2.07068
2 2 2 π/3 0.4 π/3 2.03504 -10.51405 -0.19128 -6.81910 -0.37569 2.10054
2 2 2 π/3 0.2 π/4 1.98186 -8.78563 -0.24659 -6.59584 -0.35238 2.00128
2 2 2 π/3 0.2 π/3 1.98903 -8.88627 -0.24218 -6.67250 -0.35363 2.03570
2 2 2 π/3 0.2 π/2 1.99570 -8.96843 -0.23814 -6.73484 -0.35482 2.06372



Part IV

Conclusions and Scope for Future

Work

157



Chapter 6

Conclusions and Scope for Future

Work

The study of entropy generation in Jeffrey fluid is valuable both theoretically

and practically. Exploring the complex dynamics of non-Newtonian fluids provides

deeper insights into thermodynamic processes, leading to practical advancements

in various engineering and industrial applications. It gives an idea of power con-

sumption by the thermodynamic losses. Entropy generation helps in determine the

irreversibility of system by various factors. The primary contributors to entropy

generation and energy loss in a thermodynamic system are fluid viscosity, diffusion

processes, frictional forces, and chemical reactions between solid surfaces.

In this thesis, We analyzed the entropy generation of Jeffrey fluid flow model

with different physical parameters. According to the references already in existence,

the current investigation covers a adequate results.

The main results indicate the following findings

Conclusions from Part-II

The steady, convective incompressible electrically conducting Jeffrey fluid flow

under the influence of angled magnetic field, thermal radiation, chemical reaction,
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through vertical parallel plates is studied in part II. This part explores how factors

like hall current, angled magnetic field, thermal radiation, Jeffrey fluid parameter,

and chemical reaction influence the generation of entropy, velocity, temperature,

and concentration components. The original complex equations of the system are

changed into dimensionless equations using similarity transformations. These di-

mensionless governing equations are solved with the help of SQLM.

The following are some of the important observations.

• The increase in magnetic parameter, radiation parameter, and inclination an-

gle results in the increase of flow velocity. The Hall parameter, on the other

hand, is showing the opposite trend. Cross-flow velocity is brought down by

an increase in Soret number and the Hall parameter.

• The temperature of the fluid rises while the concentration decreases with an

increasing value of inclination angle, Soret number, thermal radiation, and

Jeffrey fluid parameter.

• Increasing the magnetic parameter, Hall parameter, inclination angle, and

Soret number all lead to a rise in entropy generation within the system.

Conclusions from Part-III

In part III, we will examine the behavior of a steady, convective, incompressible,

electrically conducting Jeffrey fluid that flows through inclined parallel plates. We

will investigate the impact of various parameters, including inclined magnetic field,

Hall effect, thermal radiation, chemical reaction, and Jeffrey fluid characteristics,

on the generation of entropy, as well as on the flow velocity, temperature, and

concentration components of the fluid.

The following are some of the important observations.

• Entropy generation within the system increases with an increase in the mag-

netic parameter, Soret number, inclination angle, and Hall parameter.
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• The flow velocity increases with the increasing value of the magnetic parame-

ter, radiation parameter, inclination angle, and Soret number. With the Hall

parameter, however, a contrary tendency is noted. In contrast, the cross-flow

velocity falls as the Soret number, inclination angle, and Hall parameter in-

crease.

• The fluid temperature seems to decrease and concentration exhibits an in-

crease as the inclination angle, Soret number, slip parameter, and Jeffrey fluid

parameter increase.

Future Scope:

The thesis work can be further extended to study the influence of various factors such

as viscosity variation, wall channeling, joule effects, stratification, double diffusion,

conjugate convection, etc. These factors can be studied independently and then

their combined effects can be examined over the complex structure. Although this

study can be challenging and time-consuming, it can be a rewarding experience. The

SQLM has been successfully applied in various fields, including biomedical functions,

biotechnology, power transformers, and cooling processes. Spectral methods have

also been successfully used in numerical simulations in many areas, such as heat

conduction, fluid dynamics, and quantum mechanics.
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