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Abstract

Advances in communication technology and availability of high bandwidth enables

billions of devices communicate confidential information over the Internet. Hence, it is

required to introduce some data security technique while transmitting the information

which can be addressed using various cryptographic algorithms.

Cryptography is one of the profound technique used to secure the data by employ-

ing encryption and decryption algorithms. Over the last few years, technological ad-

vances in the implementation of smart sensors, processing elements and communication

services in resource-constrained devices have enabled the rapid growth and emergence

of evolving technologies like Wireless sensor-networks (WSNs) and Internet-of-Things

(IoT). These technologies elevated the need for efficient and high-performance crypto-

graphic algorithms. The hardware realization of these algorithms involve the selection

of an appropriate architecture with constraints on area, speed and power. The conven-

tional approaches such as Elgamal, and RSA are found to be impractical to implement

on resource constrained devices. The Elliptic Curve-Cryptography (ECC) suggested by

Koblitz and Miller has captivated considerable attention when compared to similar cryp-

tosystems available in the literature owing to its high security per bit ratio and small key

size.

The performance of ECC relies on point multiplication operation and its underly-

ing finite field operations. Each point multiplication operation is realized by a series of

finite-field addition, finite-field inversion and finite-field multiplication operations. FF-

multiplication and FF-inversion are the two area and time critical operations in point

multiplication. Hence, the efficiency of point multiplication relies on efficiency of these

two finite field operations. In addition, the type of irreducible polynomial used also im-

pacts the performance of point multiplication architecture. Many high performance point

multiplication architectures for various classes of irreducible polynomials using polynomial



Abstract

basis are proposed in the literature to achieve reduction in area and time complexities.

In this thesis, we focus on the design of area-time efficient hardware architectures for

point multiplication targeting the implementation of security in ECC applications. Ac-

cordingly, some GF(2m) point multiplication algorithms and formulations are proposed

based on the available algorithms in the literature and subsequently efficient point mul-

tiplication architectures are realized for these proposed algorithms. We first studied the

efficient implementation of FF-inversion and FF-multiplication operations. We proposed

a FF-inversion architecture over GF(2m) for general irreducible polynomials based on the

Itoh-Tsujii algorithm. We then proposed an area-time efficient point multiplication ar-

chitecture employing the proposed FF-inversion architecture. In addition, a digit-serial

FF-multiplier and parallel Itoh-Tsujii algorithm for inversion are proposed to reduce the

computation time. An area-time efficient and high speed point multiplication architec-

tures are proposed by employing the proposed FF-multiplier and FF-inversion modules.

A detailed analysis of the possible parallelization and scheduling schemes employed to re-

duce the latency of proposed point multiplication architectures is presented. The area and

time complexities of all the proposed architectures are computed analytically for various

m values and compared with similar architectures in the literature. It is observed from

the comparison of the results that the proposed architectures outperform the existing ar-

chitectures in terms of area-time complexities. These proposed area-time efficient GF(2m)

point multiplication architectures can be preferred in the implementation of security in

ECC applications.
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Chapter 1

Introduction

In today’s era, wireless networks facilitate communication over billions of devices.

The mass exchange of information over the open-ended Internet architecture sometimes

leads to eavesdropping of confidential, private, and sensitive information. Hence, it is

required to introduce some data security techniques while transmitting the information.

Cryptography is one of the profound technique used to secure the data by employing

encryption and decryption algorithms. Encryption is performed on the original message

at the sender side using a secret key to obtain an unreadable cipher message that can be

sent over a communication channel.The receiver employs the secret key to decrypt the

received cipher message and retrieve the original plain-text message. Based on the key

sharing strategy, the techniques in modern cryptography can be divided into symmetric-

key-cryptography and asymmetric-key-cryptography. In symmetric-key cryptography, the

same secret key is used for both encryption and decryption.The major challenge with this

approach is the exchange of common key securely. This problem is addressed by the Diffie

and Hellman in 1976, resulting in the development of public key cryptography algorithm

known as RSA.

The development of small, always-connected devices in recent years, including wire-

less sensor nodes (WSNs), smart cards, mobile-hand-held devices, near-field communica-

tion (NFC) devices, and RFID-tags has necessitated the development of efficient, high-

performance cryptographic computation schemes.The conventional schemes such as RSA

is found to be impractical to implement in resource constrained devices.This led to the

adoption of a new technology based on elliptic curves for implementing public key cryp-
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tography, known as elliptic curve cryptography (ECC), proposed by Neil Koblitz [2] and

Victor Miller, and it received significant attention in the most recent research works pub-

lished in the literature. IEEE and NIST standards propose using ECC as an effective

way to implement public key cryptography in resource-constrained and embedded envi-

ronments. It is observed from the analysis of ECC that it requires less key size while

providing the same level of security as that offered by RSA technique. The reduced key

size necessitates less hardware, making it particularly suitable for devices with limited

resources, like storage, silicon-area, and bandwidth. The inherent difficulty of solving

the elliptic curve discrete logarithm problem further enhances the security provided by

ECC [2].

Elliptic curve cryptography utilizes elliptic curves defined over prime-fields (GF(p))

or binary-fields (GF(2m)). When developing applications on general-purpose processors,

the software implementation of security using ECC over prime-fields GF(p) is often pre-

ferred. However, the resource-constrained applications always target to reduce hardware

and power while consuming less resources to perform any task. Hence, even for implement-

ing security in these devices also, resources can be reduced by realizing ECC algorithm

over binary-fields.

ECC over GF(2m) heavily uses GF(2m) arithmetic in its low-level operations to

realize the other high-level operations such as point multiplication, point doubling, and

point addition. The hierarchy of the arithmetic operations involved in ECC-based schemes

is shown in Fig. 1.1. The efficiency of these schemes relies heavily on the implementation

of the low-level arithmetic operations, especially GF(2m) multiplication [3] and GF(2m)

inversion. Thus, the performance of applications implementing security using ECC can

be improved by realizing finite field multiplication and inversion over GF(2m) employing

efficient architectures.

A few efficient architectures have been proposed in the literature to implement

GF(2m) multiplication and GF(2m) inversion operations in hardware, aiming to reduce

both area and computation time.
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Figure 1.1 Implementation of ECC Hierarchy

1.1 Motivation

In recent times, technological advancements have facilitated extensive utilization

of resource-constrained devices and high-performance web servers across various applica-

tions. Securing these resource-constrained devices, including RFID-tags, hand-held de-

vices, smart-cards, and high-performance servers involved in secure online banking, and

e-commerce transactions demands efficient implementation of Elliptic Curve Cryptogra-

phy (ECC). The former applications face challenges due to limited silicon area availability,

while the latter ones encounter issues related to the relatively slow speed of existing secu-

rity protocols. Additionally, the rise in the number of always-connect and limited resource

devices to the servers, necessitates efficient cryptographic computation protocols.

Prime fields and binary extension fields can be used to model elliptic curves over

finite fields and the literature has numerous ECC implementations using both the fields.

However, the usage of particular field is chosen based on the application and resource

availability. Binary fields and prime fields are understood to outperform over each other

in hardware and software implementations, respectively [4]. It is observed that the re-

cently presented methods in the literature did not take into consideration a systematic

implementation of ECC over binary fields. For example, they used finite field multipli-

ers with large digit sizes without evaluating their suitability for the implementation of

proposed crypto-processors [5, 6]. The hierarchy of ECC implementation necessitates an
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efficient implementation of lower level finite field arithmetic, followed by curve level and

protocol level operations. Hence, it becomes one crucial task to explore a bottom-up

approach when designing an ECC crypto-processor for specific applications. In addition,

parallelism is found to be only method to improve the performance of point multiplica-

tion at curve level hierarchy. However, one should note that there is a data dependency

between curve level operations and these data dependencies vary with the type of ECC

curve being used for point multiplication. Hence, parallelism is not applicable to all the

ECC curves and this limits the performance of the ECC designs according to the number

of parallel processors. In this research, various architectures proposed in the literature

to realize point multiplication are analyzed to propose area-time efficient architectures

by attempting to reduce area-time complexities of the primitive building blocks such as

FF-inversion and FF parallel multiplication. In this work, we have also attempted to

exploit the data dependency between curve level operations to improve the computation

time of point multiplication.

1.2 Research Objectives

The objective of this research is to design and implement efficient polynomial basis

finite field GF(2m) point multiplication architectures to enhance the performance of ECC

algorithms.

• Due to the wide range of application of ECC algorithms in resource constrained

devices, it is required to design area-efficient finite-field inversion and finite-field

multiplication architectures using general irreducible polynomials. It is also required

to verify the performance of these finite field inversion architectures using analytical

and FPGA implementation comparisons.

• Many ECC applications communicating over open ended Internet architecture are

prone to various types of attacks, namely, power and time analysis attacks. Hence,

it is required to develop efficient point multiplication algorithms.

• In addition, many ECC applications need optimization in terms of both hardware

and speed. Scalable architectures such as digit-serial architectures are suitable for
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implementing ECC applications. Hence, it is required to design efficient digit-serial

multipliers and point multiplication architectures employing digit-serial multipliers.

It is also required to verify the performance of these multipliers through analytical

and FPGA implementation comparisons.

1.3 Thesis Contributions

The contributions of the thesis are summarized as follows:

• Area-Efficient Finite Field GF(2m) Inversion Architecture for General Ir-

reducible Polynomials A finite field inversion architecture using polynomial basis

that performs inversion of any finite field element for any irreducible polynomial is

proposed. The performance of this proposed architecture is evaluated through the-

oretical analysis and FPGA implementations. The key contributions of this study

are briefly described as follows:

– Proposed Area-Efficient Architecture for Finite Field Inversion over

GF(2m) using Polynomial Basis In this work, a modified Itoh-Tsujii algo-

rithm over general irreducible polynomials is proposed and the corresponding

architecture to realize the finite filed inversion algorithm is presented. The high

speed and area efficient 4k exponentiation modules are employed to achieve

reduction in hardware complexities. The proposed architecture achieves re-

duction in area around 15% to 70% and reduction in ATP (area-time-product)

around 5% to 15% compared to the existing architectures for the field orders

m = 193 and m = 409, respectively.

• Low area-time complexity point multiplication architecture for ECC over

GF(2m) using polynomial basis A point multiplication architecture employing

a digit-serial multiplier is proposed over GF(2m) using polynomial basis. The per-

formance of the proposed architecture is evaluated through theoretical analysis and

FPGA implementations. The key contributions of this study are briefly described

as follows:
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– Proposed Low Area-time complexity Point Multiplication Architec-

ture using Polynomial Basis In this work, a modified Montgomery algo-

rithm over general irreducible polynomials is presented and the correspond-

ing architecture to realize the point multiplication algorithm is presented.

A digit-serial multiplier is used to realize FF-multiplication operation and a

modified Itoh-Tsujii algorithm is employed to realize FF-inversion. The pro-

posed point multiplication architecture achieves reduction in ATP(area-time-

product) around 4% to 85% and 35% to 80% compared to the existing archi-

tectures for the field of orders m = 163 and m = 233, respectively.

• High Speed and Area-Time Efficient Point Multiplication Architectures

over GF(2m) using Polynomial Basis In this work we present two point mul-

tiplication architectures over GF(2m) using general irreducible polynomials and ir-

reducible trinomials. The performance of these proposed architectures is evaluated

through theoretical analysis and FPGA implementations. The key contributions of

this study are briefly described as follows:

– Proposed Area-Time Efficient Point Multiplication Architecture for

ECC over GF(2m) using Polynomial Basis In this work, a modified Mont-

gomery ladder algorithm for point multiplication is proposed and the corre-

sponding architecture to realize point multiplication is presented. A modified

Itoh-Tsujii algorithm is employed to achieve reduction in hardware complexi-

ties for the realization of FF-inversion. The proposed point multiplication ar-

chitecture achieves reduction in ATP(area-time-product) around 15% to 80%

and 40% to 95% compared to the existing architectures for the field of orders

m = 163 and m = 233, respectively.

– Proposed High Speed Point Multiplication Architecture over GF(2m)

for the case of Irreducible Trinomials In this work, a modified Mont-

gomery ladder algorithm for point multiplication is proposed to reduce the

computation time of point multiplication and the corresponding architecture

to realize point multiplication is presented. A parallel Itoh-Tsujii algorithm is

developed to achieve reduction in the computation time for the realization of

FF-inversion. The proposed point multiplication architecture achieves reduc-
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tion in computation time around 10% to 95% and 3% to 90% compared to the

existing works for the field orders m = 233and m = 409, respectively.

1.4 Thesis Organization

The rest of the thesis is structured as follows:

Chapter 2 presents an overview of the mathematical concepts of GF(2m) finite fields and

point multiplication operation.

Chapter 3 presents the review of the architectures proposed in the literature for ECC

point multiplication. It presents the available finite field inversion architectures for gen-

eral irreducible polynomials followed by the available finite field multiplier architectures

for general irreducible polynomials. This chapter also presents the review of available

point multiplication architectures. The review also includes detailed discussions on the

performance of these architectures in terms of area complexity, latency, and critical path

delay.

Chapter 4 presents a modified finite filed inversion algorithm and its corresponding finite

field inversion architecture over GF(2m) for general irreducible polynomials. This chapter

also presents the formulations derived for 4k exponentiation over irreducible trinomials.

Analysis and FPGA implementations results followed by a comparison of results with

existing works are presented.

Chapter 5 presents the design of digit-serial multiplier and point multiplication architec-

tures over GF(2m) using two specific classes of trinomials and pentanomials. Analysis and

FPGA implementations results followed by a comparison of results with existing works is

also presented.

Chapter 6 presents the design of two point multiplication architectures over GF(2m)

using polynomial basis. Analysis and FPGA implementations results followed by a com-

parison of results with existing works is also presented.

Chapter 7 draws conclusions from the earlier chapters and concludes the thesis.
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1.5 Conclusions

In this chapter, a brief overview of the entire research work along with the motivation

behind this research and its objectives are presented. The next chapter presents an

overview of the mathematical concepts of GF(2m) finite fields and point multiplication

operation along with a few available point multiplication algorithms.



Chapter 2

Mathematical Background

This chapter presents a brief summary of some mathematical theory of finite fields.

First, we present the definitions and properties of Groups, Rings, and Fields. Following

this, we present the definitions of finite field, binary finite-field GF(2m), and GF(2m)

arithmetic operations. Finally, elliptic curve cryptography and its underlying operations

are presented along with a few point multiplication algorithms available in the literature.

2.1 Finite Field Arithmetic

2.1.1 Groups

Definition 1. A Group is defined as a set G combined with a binary operator ∗,

where for any elements a and b in G, the result of the group operation between a and b

must be in G i.e. a ∗ b ∈ G, and it fulfills the subsequent properties:

(1) Identity - In the set G, there exists an element e ∈ G, such that the operation

a ∗ e = e ∗ a = a holds true for every a ∈ G.

(2) Inverse - For each element a in G, there exists an element a′ in G such that

a ∗ a′ = a′ ∗ a = e, where e represents the identity element.

(3) Associativity - For every a, b, c ∈ G, the following identity holds: a ∗ (b ∗ c) =

(a ∗ b) ∗ c.

Examples:
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(1) The set of integers mod n, Zn, under addition is a group (Zn, +), where the

group operator + describes the addition modulo n operation. This group satisfies the

axioms as explained below,

(a) Closure: For any given two integers mod n, their sum, defined as addition modulo

n, is also an integer mod n.

(b) Identity: 0 mod n is the identity of the group, since for any a ∈ (Zn,+), it

follows that 0+a = (0+a) mod n = a mod n as well as a+0 = (a+0) mod n = a mod n.

(c) Inverse: For any given a mod n, we can find an inverse a′ in the group such that

a+ a′ = e , i.e. a+ a′ ≡ 0 mod n. The inverse of a (a′) in this case is n− a.

(d) Associativity: From the basic rules of addition associativity of the integers hold

true, hence, the integers modn are also associative. That is, since a+(b+c) = (a+b)+c,

it is also true that a+ (b+ c) ≡ (a+ b) + c mod n.

A group (G, ∗) is considered ”abelian” if for every element a and b in G, it satisfies

a ∗ b = b ∗ a.

2.1.2 Rings

A Ring, denoted as (R, +, ×), is a set of elements equipped with two operations, +

and ×, and it fulfills the subsequent properties:

(1) The group (R, +) must be an abelian group.

(2) The operation × adheres to the associative law, i.e., (a × b) × c = a × (b × c),

for every a, b, c ∈ R.

(3) The operation × follows the distributive law over the + operation, i.e., for

every a, b, c ∈ R, the ensuing equations are valid: a × (b + c) = (a × b) + (a × c) and

(b+ c)× a = b× a+ c× a.

Examples:

(1) The set of integers modulo n, denoted as Zn, with the multiplication and addition

modulo n operations forms a ring (Zn,+,×).
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(2) Another example is the set of integers Z with the usual multiplication and

addition operations, forming a ring (Z,+,×).

A ring is termed a ”commutative ring” if the operation × follows the commutative

law, i.e., a× b = b× a. The above two examples are commutative rings.

2.1.3 Fields

Definition 3. A field denoted as (F, +,×) is a set F which is closed under two

operations × and +, such that

(1) (F, +) is an abelian group and

(2) F-{0} is an abelian group under ×.

Examples of fields include the set of all real numbers R, the set of all complex

numbers C, and the set of all rational numbers. Q.

2.1.4 Finite Fields

Finite-fields are named as Galois-fields honoring Evariste Galois a French mathe-

matician. A Galois field is a field that consists of a finite number of elements and can be

of two types: a prime-field GF(p) and a binary-field GF(2m).

1. Prime Fields, GF(p): The order of this field is ’p’, which must be a prime

number.

Ex: GF(2), GF(5), and GF(29).

The GF(2) field is the smallest finite field containing two elements. It can be written

as GF(2) = {0, 1}. In this field, 1 is the multiplicative identity and 0 is the additive

identity. Arithmetic operations in this field follow modulo 2 arithmetic:

GF(2) addition: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0, and

GF(2) multiplication: 0× 0 = 0, 0× 1 = 0, 1× 0 = 0, 1× 1 = 1.

It can be observed that GF(2) addition is the same as logical XOR operation, and GF(2)

multiplication is the same as logical AND operation. Hence, these operations can be
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implemented using XOR and AND gates.

2. Extension Fields, GF(pm): The order of this field is ’pm’, where ’p’ must be

a prime number and m is any positive integer greater than 1.

Ex: GF(2409), GF(57), and GF(294).

2.1.5 Binary Finite Fields, GF(2m)

Binary finite fields are the fields of the form GF(2m). These fields can be obtained

from the extension fields GF(pm) by selecting p = 2. In other words, these are the extension

fields of the prime field GF(2).

Ex: GF(28), GF(2169), GF(2233), and GF(2409).

Hence, GF(2m) represents a binary extension finite field, generated over the base

field GF(2), where GF(2) is a finite field comprising the elements 0 and 1. The elements

within the binary finite field GF(2m) can be expressed using polynomials of degree less

than m over GF(2), implying that the coefficients of these polynomials originate from the

base field GF(2). Consider A(x) as an arbitrary element of the field GF(2m) that can be

represented as a polynomial of degree (m− 1) as follows:

A(x) =
m−1∑
j=0

ajx
j = am−1x

m−1 + am−2x
m−2 + ........+ a1x+ a0 (2.1)

where all aj ∈ GF(2). This element can also be represented using the coordinate notation

as (am−1, am−2, ......., .a1, a0).

Furthermore, each GF(2m) possesses a distinguishing mth degree polynomial known

as an irreducible polynomial. An irreducible polynomial in the finite field GF(2m) is a

monic polynomial of degree m that cannot be factored into two non-trivial polynomial

elements over the same field. The general form of the irreducible polynomial R(x) for

GF(2m) takes the shape of a monic polynomial given by R(x) = xm +
∑m−1

j=1 rjx
j + 1,

where at least one of the coefficients rj is non-zero, and all rj belong to GF(2).

Therefore, the finite field GF(2m) can be represented as a set of all its 2m polynomial

elements, denoted by:
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GF(2m) = A(x)|A(x) = am−1x
m−1 + am−2x

m−2 + am−3x
m−3 + . . .+ a1x+ a0; where ai ∈ GF(2), for i = m− 1 to 0,

(2.2)

Here, x represents a root of the irreducible polynomial R(x).

The field irreducible polynomials R(x) fall into different categories, including gen-

eral irreducible polynomials, equally spaced polynomials, all-one polynomials, pentanomi-

als,and trinomials. General irreducible polynomials have no specific constraints on their

structure and are represented in the following form:

R(x) = xm + rm−1x
m−1 + rm−2x

m−2 + rm−3x
m−3 + ......+ r1x+ 1;

∀ ri ∈ GF(2), i = m− 1 to 1 (2.3)

moreover, since x is the root of R(x), one can also have

xm = rm−1x
m−1 + rm−2x

m−2 + ......+ r1x+ 1

All one polynomials (AOP) are the class of irreducible polynomials that have all of its

polynomial coefficients equal to 1, i.e. all ri = 1, and are of the form

R(x) = xm + xm−1 + xm−2 + ......+ x+ 1 (2.4)

further, since x is the root of R(x), one can also have

xm = xm−1 + xm−2 + xm−3 + ......+ x+ 1

Equally spaced polynomials (ESP) are the class of irreducible polynomials that have equal

spacing with respect to degree of the polynomial terms. Clearly, AOPs are are ESPs with

spacing of 1. The general form of ESPs is given by

R(x) =
l∑

j=0

xjs, for j = 0, 1, 2, ..., l (2.5)

= xsl + xs(l−1) + ....+ xs + 1

also, since x is the root of R(x), one can also have xsl = xs(l−1) + ....+ xs + 1.

Pentanomials are the class of irreducible polynomials that have only five terms and are

of the form,

R(x) = xm + xm3 + xm2 + xm1 + 1,where, 1 ≤ m1 < m2 < m3 ≤ (m− 1) (2.6)
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moreover, since x is the root of R(x), one can also have xm = xm3 + xm2 + xm1 + 1.

Trinomials are the class of irreducible polynomials that have only three terms and are of

the form,

R(x) = xm + xk + 1,where, 1 ≤ k ≤ (m− 1) (2.7)

Further, since x is the root of R(x), one can also have xm = xk+1. Examples for trinomials

include the trinomials R(x) = x193 + x15 + 1 and R(x) = x409 + x87 + 1 recommended by

National Institute of Standards and Technology (NIST) for ECC.

Finite fields GF(2m) can also be viewed as vector spaces of dimension, ’m’. Hence,

a finite field GF(2m), which consists 2m elements, can also be represented using a specific

set of any of its m linearly independent elements called basis. Thus, every element in

the field GF(2m) can be expressed as a linear combination of its m basis elements. It’s

important to note that a finite field may possess multiple bases. Consequently, elements

within the finite field GF(2m) are typically represented using either polynomial basis or

normal basis.

Polynomial Basis: The polynomial basis is constructed from the set (1, x, x2, x3, ..., xm−2, xm−1),

where x is a root of the irreducible polynomial R(x) in the field GF(2m). When using the

polynomial basis to represent an element A(x) ∈ GF(2m), it takes the following form:

A(x) = am−1x
m−1 + am−2x

m−2 + . . .+ a0, ai ∈ GF(2)

Normal Basis: The normal basis is constructed from the set (x, x2, x2
2
, x2

3
, ..., x2

m−2
, x2

m−1
),

where x is a root of the irreducible polynomial R(x) in the field GF(2m). When using the

normal basis to represent an element A(x) ∈ GF(2m), it takes the following form:

A(x) = am−1x
2m−1

+ am−2x
2m−2

+ . . .+ a0x, ai ∈ GF(2)

2.2 Finite Field GF(2m) Arithmetic

Various arithmetic operations are carried out in binary fields namely, addition, sub-

traction, multiplication, inversion, and squaring. Addition and subtraction are two simple
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operations and are realized by using logical XOR circuits. However, multiplication and

squaring operations are realized in two steps: first, the usual arithmetic operation is

carried out, and then it is followed by a modulo reduction.

Considering two elements A(x) = x7 + x5 + x4 + x3 + x + 1 and B(x) = x7 + x6 +

x4 + x3 + x2 + x+ 1 from the GF(28) field, the addition can be realized as

A(x) +B(x) = x6 + x5 + x2

2.3 Finite Field GF(2m) Multiplication

Multiplication is one complex operation determining the efficiency of point multi-

plication. Multiplication in polynomial basis is simpler and also gives more regular and

compact realizations compared to other bases. Hence, we have selected polynomial basis

for realizing GF(2m) multiplication and the same basis is adopted throughout the thesis.

Consider two arbitrary elements in GF(2m), denoted as A(x) and B(x), which can

be expressed as follows:

A(x) =
m−1∑
l=0

alx
l = a0 + a1xa2x

+ . . .+ am−2x
m−2 + am−1x

m−1 (2.8)

B(x) =
m−1∑
l=0

blx
l = b0 + b1x+ . . .+ bm−2x

m−2 + bm−1x
m−1 (2.9)

where al and bl belong to the field GF(2) for 0 ≤ l ≤ m− 1.

The product of these field elements, A(x) and B(x), over GF(2m) is given by:

C(x) = A(x) ·B(x) mod R(x) (2.10)

Here, R(x) represents a general irreducible polynomial.

2.4 Elliptic Curve Cryptography

Elliptic curve cryptography was introduced by Victor Miller and Neil Koblitz [3] and

it gained significant attention in the recent research works available in the literature. IEEE
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and NIST standards recommended ECC as an effective approach for implementing public

key cryptography within resource-constrained and embedded environments. It is observed

from the analysis of ECC that it requires less key size while providing the same level of

security as that offered by RSA technique. The reduced key size necessitates less hardware,

making it particularly suitable for devices with limited resources, like storage, silicon-area,

and bandwidth. The challenge posed by solving the discrete logarithm problem in elliptic

curves contributes to enhancing the security provided by ECC [3].

2.4.1 Elliptic Curve Point-Multiplication

An elliptic curve E over GF(2m) is represented by the following expression [2]

E : y2 + x · y = x3 + a · x2 + b (2.11)

where a and b ∈ GF (2m) , b 6= 0. A pair of elements x, y ∈ GF (2m) represent a point

on the elliptic-curve E and the point P = (x, y) ∈ E (GF (2m)), satisfies the tangent and

chord laws. There are various coordinate systems used to represent the point P=(x, y)

on the elliptic curve. Considering the computational complexity, the most commonly

used coordinate systems are affine-coordinate system and projective-coordinate system.

Within the affine-coordinate system, a point P is denoted by its two coordinates (x, y),

whereas the projective-coordinate system employs three coordinates (X, Y, Z) to represent

a point P.

Let P and Q be two points on the curve E, and K a positive integer. The computa-

tion of Q such that it is a multiple of point P is referred to as point-multiplication. The

point Q can be obtained through the following equation:

Q = kP = P + P + P + . . .+ P (2.12)

Here, k takes values within the range [0,m − 1]. Point-multiplication is achieved by a

series of point-addition (PA) and point-doubling (PD) operations.

Given two points P1(x1, y1) and P2(x2, y2) on the elliptic curve E, combining these

points results in another point P3 on the same curve. This operation, known as point-

addition, is expressed as P3 = (x3, y3) = P1 + P2. When the point-addition involves the
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same point P1 = P2, it is termed a point-doubling operation, represented as P3 = 2P1 =

2P2. The expressions for PA and PD in the affine-coordinate systems are provided in [7].

x3 =


(
y1+y2
x1+x2

)2
+ y1+y2

x1+x2
+ x1 + x2 + a, P1 6= P2

x21 + b
x21
, P1 = P2

(2.13)

y3 =


(
y1+y2
x1+x2

)
(x1 + x3) + x3 + y1, P1 6= P2

x21 +
(
x1 + y1

x1

)
(x3) + x3, P1 = P2

(2.14)

It can be observed from the Eq.(2.13) and Eq.(2.14) that each PA and PD opera-

tion involves an FF-inversion, which is computationally intensive FF-operation requiring

more area and time. If m is the order of the field then it involves around 2m number

of FF-inversion operations for point-multiplication using affine-coordinate systems. In

order to avoid the FF-inversion operations, it is suggested to use projective-coordinate

systems. Lopez-Dahab, standard, and Jacobian are the most preferred projective coordi-

nate systems. For any affine point P(x,y), the projective coordinate point P is given as(
X/Zc, Y/Zd) where, Z 6= 0. The values of c, d for Lopez-Dahab, standard, and Jacobian

are given as c=1 & d=2, c=1 & d=1 and c=2 & d=3, respectively [8].

In the proposed work we have used Lopez-Dahab projective-coordinates and the

expressions for PA and PD operations using Lopez-Dahab projective-coordinates are given

as respectively [9],

X3 = x · Z3 + (X1 · Z2) · (X2 · Z1)

Z3 = (X1 · Z2 + X2 · Z1)
2

(2.15)

X3 = X4
1 + b.Z4

1 or X3 = X4
2 + b.Z4

2

Z3 = Z2
1 · X2

1 or Z3 = Z2
2 · X2

2

(2.16)

2.4.2 Point-Multiplication Algorithms

There are several algorithms presented in the literature to achieve point multi-

plication namely, double-and-add algorithm(DAA), Non-adjacent-form(NAF) algorithm,

window-NAF (width-w NAF) algorithm, Left-to-right algorithm, Right-to-left algorithm,
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Montgomery-ladder algorithm,Sliding-window-algorithm, and τ -adic-NAF (τ -NAF) algo-

rithm. The review of these algorithms is presented in [10].

Algorithm 2.1 and Algorithm 2.2 illustrate the point multiplication algorithms for

right-to-left and left-to-right approaches, respectively. Algorithm 2.1 operates by process-

ing the bits of scalar k from right to left, while Algorithm 2.2 processes the bits from

left to right. In both algorithms, every bit of the scalar k is examined, and depending

on whether the bit value is ’0’ or ’1’, either a point-doubling (PD) operation or a combi-

nation of PD and point-addition (PA) operations is executed. Notably, the right-to-left

algorithm enables parallel execution of PD and PA operations.

The computational cost of each point multiplication algorithm depends on the Ham-

ming weight H(k) of secret key k. The double and add approach requires around l − 1

number of point doubling operations and H(k)− 1 number of point addition operations.

One efficient approach to reduce Hamming weight is to use Non-Adjacent Form (NAF),

wherein consecutive bits are never simultaneously nonzero. Through the NAF method,

the Hamming weight is reduced to approximately H(k) ≈ l/3.

Algorithm 2.1 Right-to-left Algorithm [10]
Input: k = (kl−1, kl−2, . . . , k2, k1, k0) , P ∈

Output: kP

1. Q← O

2. for i from 0 downto l − 1 do

3. if ki = 1 then Q← P +Q

4. P ← 2P

5. end if

6. end for

7. Return Q

Algorithm 2.2 Left-to-right Algorithm [10]
Input: k = (kl−1, kl−2, . . . , k2, k1, k0) , P ∈

Output: kP

1. Q← O

2. for i from l − 1 downto 0 do

3. Q← 2Q

4. if ki = 1 then Q← P +Q

5. end if

6. end for

7. Return Q
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Algorithm 2.3 Binary NAF Algorithm [10]
Input: k = (kl−1, kl−2, . . . , k2, k1, k0) , P ∈ Fq

Output: kP

1. Compute NAF(k) =
∑l−1

i=0 ki2
i

2. Q← O

3. for i from l − 1 downto 0 do

4. Q← 2Q

5. if ki = 1 then Q← Q+ P

6. end if

7. if ki = −1 then Q← Q− P

8. end if

9. end for

10. Return Q

Algorithm 2.4 Window NAF Algorithm [10]
Input: k = (kl−1, kl−2, . . . , k2, k1, k0) , P ∈ Fϕ

Output: kP

1. Compute NAFw(k) =
∑l−1

i=0 ki2
i

2. Compute Pi = iP for i ∈
{
1, 3, 5, . . . , 2w−1 − 1

}
3. Q← O

4. for i from l − 1 downto 0 do

5. Q← 2Q

6. if ki 6= 0 then

7. if ki > 0 then Q← Q+ Pki

8. else Q← Q− P−ki

9. end if

10. end if

11. end for

12. Return Q

Algorithm 2.5 τ NAF Algorithm [10]
Input: k = (kl−1, kl−2, . . . , k2, k1, k0) , P ∈ Fq

Output: kP

1. Compute τNAF(k) =
∑l−1

i=0 uiτ
i

2. if ul−1 = 1 then Q← P else Q← −P

3. end if

4. for i from l − 2 downto 0 do

5. Q← ϕ(Q)

6. if ui = 1 then Q← Q+ P

7. end if

8. if ui = −1 then Q← Q− P

9. end if

10. end for

11. Return Q
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Algorithm 2.6 Montgomery ladder Algorithm [10]
Input: k = (kl−1, kl−2, . . . , k2, k1, k0), with kl−1 = 1, P ∈ Fq

Output: kP

1. Q1 ← P,Q2 ← 2P

2. for i from l − 2 downto 0 do

3. if ki = 1 then

4. Q1 ← Q1 +Q2, Q2 ← 2Q2

5. else

6. Q2 ← Q1 +Q2, Q1 ← 2Q1

7. end if

8. end for

9. Return Q1

The operational cost of these algorithms for different levels of optimization is pre-

sented in Table 2.1.

Table 2.1 Comparison of various point multiplication algorithms

Algorithm Operational cost

(best optimization) (least Optimization)

Double and ADD m/2 PA’s and m PD’s m PA’s and m PD’s

(left to right, Right to left and Montgomery)

Addition-Subtraction m/3 PA’s and m PD’s m/2 PA’s and m PD’s

(NAF,Window-NAF and τ -NAF )

where, PA point addition, PD point doubling, and m field size

The implementations of these algorithms are susceptible to various forms of attacks,

with side-channel attacks being the most prevalent among the existing vulnerabilities in

point-multiplication algorithms [2].In these attacks, adversary tries to encrypt the secret

key either by analyzing the timing or power behavior of the set of finite-field operations

involved in the algorithm. The mathematical modeling for PA and PD operations are quiet

different and therefore their power traces and timing traces can be easily distinguished.

In timing-attacks, the adversary tries to encrypt the secret key by analyzing timing of

each Finite-field operation, whereas the power of each FF-operation is traced in power

analysis attack. The Power analysis attacks are of two types: the simple power analysis

(SPA) attack and the differential power analysis (DPA) attack. In an SPA attack, the

power trace of an individual key operation is analyzed to uncover the secret key. In
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contrast, a DPA attack involves an adversary collecting a series of power traces and

subsequently analyzing the secret key by grouping these collected traces. Considering

the timing and power-analysis attacks, Montgomery [11] has derived an algorithm, which

performs same set of operations in every iteration of the main-loop irrespective of the

secret key value, avoiding timing and power analysis attacks. In addition, Montgomery-

ladder algorithm reduces the computational complexity by using only affine x coordinates

during initialization, and projective X and Z coordinates in the main loop of point-

multiplication algorithm. The y coordinate is recovered at the end of main-loop using X

and Z coordinates.

2.5 Conclusions

This chapter presents a brief summary of finite field arithmetic. First, we present

the definitions and properties of Groups, Rings, and Fields. Followed by the definitions

of finite field, binary finite field GF(2m), and finite field GF(2m) arithmetic operations.

Finally, elliptic curve cryptography and its underlying operations are presented along

with a few point multiplication algorithms available in the literature. The next chapter

presents the review of finite field GF(2m) point multiplication architectures available in

the literature.



Chapter 3

Polynomial Basis GF(2m) Point Multiplication

Architectures

The hardware realization of ECC applications require a low complexity and high

performance point multiplication architecture. The performance of point multiplication

architecture depends on the underlying finite field arithmetic. Finite field inversion and

finite field multiplication are two important arithmetic operations that dominate the per-

formance of point multiplication operation. In this chapter, a brief review of the different

FF-inversion architectures and FF-multiplication architectures proposed in the literature

are presented. In addition, a review of different point multiplication architectures avail-

able in the literature are presented.

3.1 Review of Finite Field Inversion Architectures

In this section, different FF-inversion architectures proposed in the literature over

GF(2m) for general irreducible polynomials based on the Itoh-Tsujii algorithm (ITA) and

Extended Euclidean algorithm (EEA) are presented. The EEA computes FF-inversion

using the greatest common divisor approach, while the ITA uses Fermat’s little theorem

[8].
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3.1.1 EEA based Finite Field Inversion Architectures

Several architectures are presented in the literature for computing FF-inversion

based on EEA. The implementation of traditional EEA requires repeated sequential di-

vision and multiplication operations which increases the hardware and time complexi-

ties [12]. These problems are addressed by proposing reformulations to EEA and imple-

menting FF-inversion using parallelism techniques [13–20].

In 2006, a reformulated EEA for FF-inversion using a digit-serial systolic archi-

tecture is presented by Yan [13]. This architecture is developed employing unfolding

techniques to realize FF-inversion in a systematic approach to achieve throughput of L/m

and area-time complexity of O(Lm), where L is the digit size. It is observed that the ar-

chitecture achieves reduction of about 50% in critical path delay while achieving the same

latency and throughput L/m compared to architectures available in the literature [21].

A low area and low power scalable systolic architecture for FF-inversion, suitable

for fixed size processors is introduced by Ibrahim et al. [15] in 2016. This architecture is

modular and has a latency of (2m− 1)(m/T + 1) with critical path delay of 2Tmux, where

T is number of processing elements. The design achieves reduction in area of about 88%

compared to available FF-inversion architectures and profound to be suitable for resource

constrained cryptographic implementations [13].

In 2017, Ibrahim et al. [16] presented a bit-serial systolic array architecture with low

area complexity and moderate speed. This systolic architecture has simple structure and

the local processing elements can communication with each other. The latency of this

architecture is (2m− 1) and the critical path delay is 2Tmux.

Ibrahim et al. [17] in 2017 proposed a unified and scalable architecture for FF-

inversion based on modified EEA. In this unified design, the FF-multiplier and FF-inverter

share the data-path to save area and power resources. Furthermore, the architectures

scalability makes it suitable for fixed size processor without varying the field size m. The

latency of the design is (m)(m/N + 1) and the critical path delay is TA + TX + 2TMUX .

Hazmi et al. [19] proposed in 2019 a modified EEA based FF-inverter to explain

the possibilities of parallelism and concurrency to minimize the design space. Polynomial

multiplication and division are analyzed to enable concurrent execution of EEA, resulting
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in enhanced area and time complexities. The latency of this design is (2m− 2)) and the

critical path delay is TA + 2TX .

In 2019, Rashidi et al. [20] proposed a modified EEA algorithm for FF-inversion over

GF(2m) using polynomial basis. The design is able to perform FF-operations correspond-

ing to two iterations in just one iteration compared to the other EEA-based inversion

algorithms reported in the literature. The latency of this design is m and the critical path

delay is TA + TX + TO + T4MUX .

3.1.2 ITA based Finite Field Inversion Architectures

The computation of FF-inversion using ITA requires a sequence of FF-Multiplications

and FF-Squaring operations. The ITA was initially presented using the normal basis (NB),

since FF-squaring with NB is just a cyclic shift [22,23]. However, the polynomial basis is

preferred for the realization of FF-inversion algorithm as the normal basis increases the

computational complexity. In the recent past, several Itoh-Tsujiis algorithm (ITA) based

architectures are proposed for the realization of Finite-field inversion [8, 22–36].

In 2005, Rodriguez et al. [24] presented an FF-inversion architecture in GF(2m)

based on Itoh-Tsujii algorithm. The design is able reduce the number of clock-cycles

required to implement ITA by cascading 21 exponential blocks, and the number of cascade

blocks required to realize the FF-inversion depends on the addition-chain. The main

building blocks of this design are FF-multiplier and FF-squarer. The design is able to

achieve FF-inversion using (m− 1) FF-squarings and | log2(m− 1)| + H(m− 1)− 1 FF-

multiplications, where m, is field order and H is hamming weight.

Rodriguez et al. [26] in 2007 proposed an FF-inversion architecture based on a

novel parallel Itoh-Tsujii algorithm. The formulations of the proposed parallel Itoh-Tsujii

algorithm involves parallel implementation of the square and square-root operations. The

simultaneous implementation of these FF-operations resulted in the reduction of clock

cycles required to realize FF-inversion. This design is able to achieve FF-inversion using

(m − 1) FF-squaroots and | log2(m − 1)| + H(m − 1) − 1 FF-multiplications, where m is

field order and H is hamming weight.

In 2011, Rebeiro et al. [25] presented a FF-inversion architecture based on Quad-
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ITA. This architecture accelerates the FF-inversion operation by using quad circuits (22)

in place of traditional square circuits (22). The area-time complexities of an FF-inversion

architecture are influenced by the use addition chain. This architecture is able to reduce

the length of addition chain from (m−1) to (m−1)/2) and is able to realize FF-inversion

using (m− 1)/2)-1 FF-quads and | log2(m− 1)|+ H(m− 1) FF-multiplications, where m

is field order and H is hamming weight.

Roy et al. [27] presented the analysis of ITA algorithm to determine the effect of

various design methodologies on the delay, area, and clock cycle requirements for FPGA

implementation in 2011. This developed model is able to estimate the ideal number of

cascade blocks and the best optimal exponential circuit to be used to obtain maximum

performance in realizing FF-inversion.

A generalized model was developed by Roy et al. [28] in 2012 to compute FF-

inversion using two sets of exponentiation 2k blocks in parallel to enhance the clock

frequency. This design uses either 2k or 2−k cascade blocks in parallel with a large ex-

ponentiation block to realize FF-inversion. This work involves study and analysis to

determine the best combination of 2k or 2−k cascade block and large exponentiation block

to be used for any NIST recommended field order.

Rashidi et al. [30] presented in 2016, high-performance implementation of polynomial

basis ItohTsujii inversion algorithm (ITA) over GF(2m) using irreducible trinomials and

pentanomials. This implementation uses k-times squarer blocks and high-speed GF(2m)

digit-serial multiplier to realize FF-inversion. The critical path of the design is decreased

by placing registers at appropriate k-times squarer blocks output.

In 2017, Li et al. [29] proposed an FF-inversion architecture based on modified Itoh-

Tsujii algorithm. This modified ITA along with optimal addition chains enables parallel

FF-multiplication and FF-squaring operations resulting in reduction of number of clock

cycles required to realize FF-inversion without incurring any additional hardware.

Two novel architectures, namely, High-speed(HS) and Least-clock-cycle(LCC)-ITA

were presented by Li et al. [31] to improve the computation time using 2k blocks. Several

high exponential 2k blocks are precomputed and used to realize FF-inversion and this

resulted in achieving any exponentiation of 2 in a single clock cycle at the cost of a
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substantial increase in area.

It is observed in the above-mentioned methodologies that the parallel-ITA architec-

tures and higher exponentiation circuits may achieve reduction in the number of clock

cycles at the cost of a significant increase in hardware LUTs. An FF-inversion architecture

with balanced time complexity and hardware complexity, can be achieved by exploring

strategies to find the optimal exponential circuit.

3.2 Review of Digit-Serial Multiplier Architectures

In general, GF(2m) multipliers can be realized using digit-serial, bit-parallel and

bit-serial multiplier architectures [26]. The bit-serial multiplier processes a single-bit of m

input data for each clock cycle and achieves multiplication over m iterations. The digit-

serial multiplier, on the other hand, processes a group of D bits in a single clock cycle

and accomplishes multiplication within m/D iterations. Lastly, the bit-parallel multiplier

simultaneously processes m bits during a single clock cycle, completing the multiplication

in a single iteration.

Bit-serial architectures achieve reduced hardware complexity by employing the same

hardware across multiple iterations, but exhibit high latency. Conversely, bit-parallel

architectures attain high throughput by replicating arithmetic blocks, at the expense of

increased implementation hardware. The digit-serial architectures are versatile and they

facilitate in area-delay tradeoff. However, it is observed with the increment of D value

the area and time complexities increase.

Several GF(2m) digit-serial multipliers are presented in the literature for general

irreducible polynomials using polynomial-basis [21, 37–45]. The performance of these

digit- serial architectures in terms of area and time is presented in Table 3.2.

In 1998, two digit-serial multipliers namely MSD-first and LSD-first multipliers are

presented by Song et al. [41]. These designs introduced a new approach of realizing FF-

multiplication by combining array-type algorithm and parallel algorithm. The array-type

approach reduces the latency while the parallel structure inside each digit-cell reduces the

critical path delay of the multiplier. The latency of the both the architectures is same
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and is equal to (m/D) + 2, while critical path delay of LSD-First multiplier is given as

(dlog2(D)e + 1)TX + TA + TD + TM and MSD-first multiplier is given as (dlog2(D)e +

2)TX + TA + TD + TM .

Tang et al. [42] proposed in 2005 a MSD-first bit-parallel word-serial multiplier

for GF(2233). In this design, an 8 × 233 parallel multiplier is used to generate the FF-

multiplication partial products. The latency and critical path delay of this design are

given as (m/D) − 1 and (dlog2(D)e + 2)TX + TA + TD, respectively. This multiplier

achieves considerable reduction in area and time complexities compared to the MSD-first

multiplier [41].

An efficient digit-serial systolic array multiplier over GF(2m) using standard ba-

sis is presented by Kim et al. [38] in 2005. In this design a new dependence graph is

obtained to design an efficient digit-serial systolic multiplier based on LSD-first multi-

plication algorithm. It is observed for a continuous input of data the design is able to

produce multiplication results at a rate of one per every m/D clock cycles. The latency

and critical path delay of the design are given as 3(m/D) and D(TX + TA + TM) + TM ,

respectively.

In 2006, Kumar et al. [37] proposed two architectures based on the least significant

digit first(LSD-first) algorithm namely, N-accumulator multiplier and double accumulator

multiplier. These designs achieved considerable throughput by utilizing registers to retain

partial products at the expense of high area and power complexities. The latency and

critical path delay of these designs are given as (m/D) + 2 and (dlog2(D/2)e + 1)TX +

TA + TD + TM , respectively.

3.3 Review of Point Multiplication Architectures

In 1980s, ECC a asymmetric-key algorithm proposed by Neal Koblitz [3] and Victor

Miller [46]. The small key size, less computation time, and low-area complexity preserving

the same level of security attracts ECC in comparison to other asymmetric-key cryptosys-

tems. The performance of ECC in resource-constrained devices relies on the performance

of the point multiplication operation. Many architectures are proposed in the literature
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to design high-speed and low complexity ECC [5,6,47–58]. Most of these works aimed to

reduce computation time by minimizing the latency for computation of point multiplica-

tion. The performance comparison of these point multiplication architectures in terms of

critical path delay and latency are presented in Table 3.2.

Table 3.2 Time-complexities of the available Point Multiplication Architectures

Design latency(clock cycles) critical-path delay

[51] 2mL+
[
L(l + 1) +

∑l
i=2

⌈
ui−ui−1

us

⌉]
+ [7 + 9L] logd (2 + log2 2)+logd (4 + log2 4)+3

[47] m · 7 + m
3
· 15 +

[
L(l + 1) +

∑l
i=2

⌈
ui−ui−1

us

⌉]
+ 7 2logd (4 + log4 2)+2

[59] 5 + (6) (m− 1) + (m− 1)/2 + 3(H(m− 1) log2(n+ 2r)+logd (2 + log2 2)+1

+| log2(m− 1)|-1) + 31

[54] 3(w − 1)d+ 5 (2w − (w + 1)) + 7d logd(m
τ

))+ logd2τ)

[55] 3m +
∑l

i=2

⌈
ui
5

⌉
+ –

+2(H(m− 1)|+ | log2(m− 1)| − 1)
L is number of pipeline stages, l is length of addition chain, us is maximum cascade size, H is hamming

weight of m-1,ui is element in the addition chain, d is digit size, w is window size,n is number of

segments in a multiplier, r is r-nomial irreducible polynomial, τ is threshold multiplier size

Sakiyama et al. [48] presented in 2006 a super scalar ECC co-processor over GF(2m)

using polynomial basis. This architecture is able to accelerate the point multiplication

operation by employing instruction level parallelism. However, the processor is profound

to be impractical in cases of slow I/O communication channels.

In 2008, Chelton et al. [6], developed a pipelined architecture for point-multiplication

over GF(2m) using polynomial basis. The architecture is investigated with different levels

of pipelining for optimal data path. A new combined algorithm is developed to achieve

point-addition and point-doubling in nine instructions. The computation time of this

point multiplication when implemented on Xilinx XC4VLX200 over GF(2163) is 19.55 us.

However, because of more pipelined stages as high as seven, the latency becomes very

high.

A high throughput point multiplication architecture was proposed by Kim et al. [49]

in 2008 based on Lopez-Dahab algorithm for point multiplication. This design employs
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Gaussian normal basis multipliers and parallelized point-doubling and point-addition units

developed with uniform addressing to realize point multiplication. The computation time

of this point multiplication over GF(2163) on Xilinx XC4VLX80 is 10 us.

A high speed point multiplication architecture based on Montgomery algorithm is

proposed by Hasan et al. [5] in 2008. A Pseudo-pipelined word-serial GF(2m) multiplier is

developed to perform underlying FF-multiplication operations and a scheduling scheme is

adopted to carry out FF-operations with no idle clock cycles. The presented architecture

is able to achieve point multiplication in 25(m − 1) clock cycles and is found to be 1.6

times faster than previous works reported in the literature. This point multiplication

architecture over GF(2163) requires 4050 clock cycles with computation time of 41 us

when implemented on Xilinx XC2V2000.

Azarderakhsh et al. [50] proposed in 2011 an efficient point multiplication architec-

ture on Generalized Hessian and Binary Edwards curves. A digit level Gaussian normal

basis GF(2m) multiplier is presented and the area-time trade-off has been studied for

various digit sizes. The architecture is able to reduce the computation time of GF(2m)

point multiplication by using two pipelined Gaussian normal basis multipliers operated in

parallel. The computation time for this point multiplication architecture over GF(2163)

is 12.9 us, when implemented on Virtex-5 FPGA.

In 2012, Rebeiro et al. [51] presented a low clock cycle model for point multiplication

by employing a bit-parallel Karatsuba multiplier. The architecture presented is mathe-

matically analyzed to explore the best optimal pipelined path.The lower level arithmetic

operations are scheduled appropriately to support data forwarding. The design uses only

single GF(2m) multiplier to preform point multiplication and hence, it is able to achieve

considerable reduction in area compared to similar point multiplication architectures avail-

able in the literature. The computation times of this point multiplication are 8.6 us, and

12.3 us, when implemented on Xilinx XC5VLX85t over the fields GF(2163), and GF(2233),

respectively. However, the architecture have longer critical path delay due to additional

finite field arithmetic primitives in the critical path other than FF-multiplier.

In 2013, Roy et al. [47] proposed a pipelined point multiplication architecture em-

ploying bit-parallel Karatsuba multiplier. A theoretical model is developed to analyze the

critical path and estimate the optimal pipelined stages to achieve point multiplication.
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The design is able to accelerate the FF-inversion operation using a series of power blocks.

It is reported that the computation time of this point multiplication architecture over

GF(2233) is 9.5 us, when implemented on Xilinx XC5VSX240. However, the architecture

have low clock frequency due to additional finite field arithmetic primitives in the critical

path other than FF-multiplier.

Sutter et al. [52] in 2013 presented a point multiplication architecture using a digit-

serial FF-multiplier. The architecture is investigated with different digit sizes to perform

GF(2m) multiplication and division operations over each of the five NIST recommend

elliptic curves. The architecture is able to speed up the point multiplication operation

by using three digit-serial multipliers operated in parallel. The computation times of this

point multiplication are 5.5 us and 17.8 us, over GF(2163), and GF(2233), respectively,

when implemented on Xilinx XC5VLX110-3. However, there is considerable increase in

area because of three parallel multipliers employed to realize GF(2m) multiplication.

An area-time efficient architecture for point multiplication employing bit serial

GF(2m) multiplier was proposed by Nguyen et al. [53] in 2016. The architecture de-

veloped is based on the left-to-right and Lopez-Dahab point multiplication algorithms.

To improve the latency of point multiplication a series of bit serial GF(2m) multipliers

are used to operate in parallel for realizing GF(2m) multiplication. The computation time

of this point multiplication architecture over GF(2163) is 94.6 us, when implemented on

Xilinx Virtex-5 FPGA.

Khan et al. [59] in 2017 presented two point multiplication architectures based on

Montgomery ladder algorithm. A segment pipelined GF(2m) multiplier is used to reduce

the point multiplication computation time and a scheduling scheme alongside cascaded

blocks of FF-squarer, FF-adder and FF-multiplier blocks are employed to achieve point

multiplication with least clock cycles. The high-speed and low latency architectures are

able to achieve point multiplication in six clock-cycles and two clock-cycles, respectively.

The computation time of this point multiplication over GF(2163) is 4.91 us when imple-

mented targeting Xilinx XC5VLX50.

In 2018, Salarifard et al. [54] proposed two low complexity and low latency ar-

chitectures based on fixed comb point multiplication algorithm. The fixed comb point

multiplication algorithm has a precomputation phase which reduces the number of point
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addition operations and hence, reduces the latency of the point multiplication. The com-

putation time of this point multiplication architecture over GF(2163), and GF(2233), are

2.22 us, and 5.79 us, respectively, when implemented on Xilinx Virtex-5 FPGA.

Li et al. [55] in 2019, proposed a high performance point multiplication architec-

ture and an FF-inversion architecture using two parallel balanced precision multipliers to

reduce the latency. The computation time of this point multiplication architecture over

GF(2163) is 2.6 us when implemented on Xilinx Virtex-5 FPGA.

3.4 Conclusions

In this chapter, a survey of different architectures of finite field inversion, finite field

multiplication and point multiplication available in the literature and the performance

analysis of these architectures in terms area and time complexities are presented. The

next chapter presents the design of the proposed finite-field inversion architecture for

general irreducible polynomials.



Chapter 4

An Area-Efficient Architecture for Finite Field

Inversion over GF(2m) using Polynomial Basis

This chapter presents the design of Finite-field inversion architecture for general

irreducible polynomials targeting ECC applications. The FF-inversion architecture is

developed based on the modified ItohTsujii algorithm. The classic ItohTsujii algorithm is

modified to realize ff-inversion using 4k exponentiation modules in place of traditional 2k

exponentiation modules. The formulations for area and time complexities are made and

evaluated for the field orders m = 193, 233, 409. The proposed architecture is modeled

using verilog HDL and simulated to verify the functionality using Xilinx Vivado tools. The

HDL netlist is synthesized targeting Xilinx Virtex-5 FPGA and implemented to compare

with the similar FF-inversion architectures available in the literature.

4.1 Introduction

Finite fields are widely used in various cryptographic schemes such as asymmetric

and symmetric key cryptosystems. ECC is one of the reliable and high-speed asymmet-

ric key cryptosystems. The complexity of hardware realization of ECC depends on the

arithmetic operations in finite field. The arithmetic operations used in ECC are namely,

FF-addition, FF-subtraction, FF-multiplication, and FF-inversion. Since FF-inversion is

the most time-critical and resource-consuming operation, it is required to develop an area

efficient and high speed architecture for the realization of FF-inversion algorithm. In ad-
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dition, the performance of FF-inversion architectures depends on the type of irreducible

polynomial employed for realizing the architecture. The trinomials and pentanomials

with less computations involved are more suitable for fast ECC applications. Hence, it

is suggestable to design high performance FF-inversion architectures using irreducible

trinomials and irreducible pentanomials.

Several architectures are presented in the literature for computing FF-inversion

based on EEA [13–20] and ITA [22–36]. These architectures explored the possibilities

of reducing the area and computation time required to realize FF-inversion. In this work

we derived a modified ITA based on the ITA [22] presented in the literature. Subse-

quently, the architecture for the proposed modified Itoh-Tsujii algorithm is developed to

realize FF-inversion of any arbitrary element a ∈ GF (2m). Finally, the area and delay

formulations of the proposed architecture are estimated and the performance is compared

with the existing FF-inversion architectures in the literature.

4.2 Area-Efficient Finite-field Inversion over GF(2m)

In this section, the design and performance analysis of the proposed finite field

inversion architecture are presented. First, we present the mathematical formulations for

the proposed modified Itoh-Tsujii algorithm and its realization using two-stage pipelined

architecture. Followed by, formulations to derive the area and time complexities of the

proposed architecture are presented. Finally, the comparison of implementation results

of the proposed architecture with the similar finite field inversion architectures available

in the literature are presented.

4.2.1 Mathematical Formulations

Fermat’s Little Theorem [8] states that for any integer a and prime number p,

ap−1 ≡ 1(modp) (4.1)

where a is not divisible by p. We can rewrite Eq.(4.1) as

a.ap−2 ≡ 1(modp), (4.2)
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and

a−1 ≡ ap−2(modp) (4.3)

The multiplicative inverse of a nonzero element a ∈ GF (2m) is derived by using Eq.(4.3),

and is given by

a−1 ≡ a2
m−2 (4.4)

Using binary exponentiation, Eq.(4.4) can be realized using the Eq.(4.5), and it requires

(m-2) FF-multiplications and (m-1) FF-squarers [22]. The main drawback of this method

is that it requires (m− 2) multiplications for each inversion.

a2
m−2 = a2

1 × a22 × · · · a2m−1

(4.5)

Itoh-Tsujii [22] suggested a more efficient approach to compute each inversion using (m-1)

FF-squares and (|log2(m− 1)|+H(m−1)−1) FF-multiplications, with H being Hamming-

weight of the binary m. This approach achieves the reduction in the number of FF-

multiplications using addition-chains [60].

Addition-chain

For a positive integer (m-1), an addition-chain is a finite set of positive integers

represented as U = (u1.....ue), where u1 = 1, ue = m − 1, and ui = uj + ul for 1 ≤ j ≤

l ≤ i ≤ e. To further simplify, Brauer formulated that for binary sequence (m − 1) =

〈mb−1 . . .m0〉2 with mb−1 = 1, the addition-chain grows as ui = 2ui−1 for each mi and

ui+1 = ui + u1 for each mi= 1. For example, the binary sequence 192 = 〈11000000〉2, can

utilize the Brauer-chain {1,2,3,6,12,24,48,96,192} for inversion over GF (2193).

4.2.2 FF-Inversion Algorithm over GF(2m)

To explain how ITA functions, the Eq.(4.5) can be modified as

a−1 = [γm−1(a)]2 (4.6)

and

γq(a) = a2
q−1 (4.7)
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with γq(a) ∈ GF (2m) and q ∈ N, where N is a set of natural numbers.

For simplicity, we shall denote γq(a) by γq.

For any two integers q, r ≥ 0, Eq.(4.7) can be written as

γq+r(a) = γq(a)2
r

γr(a) (4.8)

with

γq+r(a) = a2
q+r−1 =

a2
q+r

a
=

(
a2

q)2r
a

=

(
a2

q

a

)2r
a2

r

a
=
(
a2

q−1)2r a2r−1
= γq(a)2

r

γr(a)

Eq.(4.8) can be reformulated in terms of index pairs ui1 and ui2 as

γui2+ui1 (a) =
[
γui1 (a)

]2ui2
γui2 (a) = γui(a) = a2

ui−1 (4.9)

where, γu1(a) = a2
1−1 = a. The FF-inverse of a such that a−1 ∈ GF (2m) can be computed

by recursively applying Eq.(4.9) for each ui and applying squaring at the final step ue. It

is given by,

[γue(a)]2 =
(
a2

m−1−1
)2

=
(
a2

m−2) = a−1 (4.10)

The FF-inverse of a ∈ GF (2193) defined over the irreducible trinomial R(X) =

X193 +X15 + 1 computed by recursively applying Eq.(4.9) and is presented in Table 4.1.

It can be observed from Table 4.1 that each intermediate result requires a series of 2k

exponentiation blocks and an FF-multiplication operation. The number of FF-squaring

operations required to generate the final result are as high as m, with each intermediate

step requiring ui/2 number of FF-squaring operations. Several architectures are proposed

in the literature [24–27, 29, 30] to reduce the computational delay by employing cascade

blocks of 2k with exponentiation k value in and around the value of a certain element (ui)

in the addition-chain. The computational delay of FF-inversion block is further reduced

by selecting 2k blocks with k value equivalent to the required exponentiation in that

particular step to complete the execution of this step in one clock cycle [31,32]. However,

this technique increases the hardware. The objective of reducing the computational delay

and hardware of FF-inversion block is addressed by using 4k exponentiation modules

instead of 2k modules [25]. It is observed that 4k exponentiation modules offer the best

LUT utilization compared to the 2k circuits with the same delay as that of 2k modules.
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Table 4.1 FF-Inverse realization of a such that a−1 ∈ GF
(
2193

)
using classical ITA

γui
(a) γuj+ul

(a) Exponentiation

1 γ1(a) a

2 γ2(a) γ1+1(a) (γ1)
21 γ1 = a2

2−1

3 γ3(a) γ2+1(a) (γ2)
21 γ1 = a2

3−1

4 γ6(a) γ3+3(a) (γ3)
23 γ3 = a2

6−1

5 γ12(a) γ6+6(a) (γ6)
26 γ6 = a2

12−1

6 γ24(a) γ12+12(a) (γ12)
212 γ12 = a2

24−1

7 γ48(a) γ24+24(a) (γ24)
224 γ24 = a2

48−1

8 γ96(a) γ48+48(a) (γ48)
248 γ48 = a2

96 − 1

9 γ192(a) γ96+96(a) (γ96)
296 γ96 = a2

192−1

For any arbitrary element a, the procedure to obtain a−1 ∈ GF (2m) using 4k expo-

nentiation is presented in Algorithm 4.1. In the proposed algorithm, we use γui
(a) = a4

ui−1

instead of γui
(a) = a2

ui−1 used in classical-ITA. FF-inversion computation starts with pre-

computation a3. Steps 3 to 13 compute the required exponentiation in each intermediate

step with maximum exponentiation of uC per clock cycle. The area overhead of using

higher exponentiation is avoided by selecting the value of uC such that it doesn’t alter

the critical path delay. If the value of variable k(power of exponentiation 4k ) is greater

than uC , the exponentiation 4k operation can be computed in multiple clock cycles, which

is performed using steps 6 to 8. However, the 4k operation can be completed in single

clock-cycle using step 12, if the value of k is less than uC . The steps 14 to 18 perform the

FF-multiplication operation, in which either step 15 or 17 is implemented based on the k

value. Steps 4 to 17 are repeated for all the elements of addition chain until uf . Finally,

the step 20 gives the final result with the FF-squaring operation on last updated value of

αm.
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Algorithm 4.1 Modified Itoh-Tsujii Algorithm using exponentiation 4k

Input:The element a ∈ GF (2m), addition chain length f , cascade size uC and the addi-

tion chain U =
{

1, 2, . . . , m−1
2

}
Output: Multiplicative inverse a−1 ∈ GF (2m);

begin

1: P0 = a2; αs = P0;

2: M0 = αs ∗ a; α1 = M0;αm = M0;

3: for each ui ∈ U (2 ≤ i ≤ f) do

4: k = ui − ui−1 ;

5: if(k >uC ) then

6: P0 = α4uC
m , αs = P0; k = k - uC

7: While(k>uC )do

8: P0 = α4uC
s , αs = P0; k = k - uC

9: end while

10: P0 = α4k

s , αs = P0

11: else

12: P0 = α4k

m , αs = P0

13: end if

14: if(k 6= 1 ) then

15: M0 = αs ∗ αm;αm = M0;

16: else

17: M0 = αs ∗ α1;αm = M0;

18: end if

19: end for

20: P0 = α2
m; αs = P0; a

−1 = αs;

end

where, f = | log2(m− 1)|+ H(m− 1)− 2

The inverse of a ∈ GF (2193) over the irreducible trinomial R(X) = X193 +X15 + 1

computed based on the modified-ITA is presented in Table 4.2.
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Table 4.2 FF-Inverse realization of a such that a−1 ∈ GF
(
2193

)
using Modified-ITA

γui
(a) γuj+ul

(a) Exponentiation

1 γ1(a) a3

2 γ2(a) γ1+1(a) (γ1)
41 γ1 = a4

2−1

3 γ3(a) γ2+1(a) (γ2)
41 γ1 = a4

3−1

4 γ6(a) γ3+3(a) (γ3)
43 γ3 = a4

6−1

5 γ12(a) γ6+6(a) (γ6)
46 γ6 = a4

12−1

6 γ24(a) γ12+12(a) (γ12)
412 γ12 = a4

24−1

7 γ48(a) γ24+24(a) (γ24)
424 γ24 = a4

48−1

8 γ96(a) γ48+48(a) (γ48)
448 γ48 = a4

96−1

4.2.3 Proposed FF-inversion Architecture

The architecture developed for the computation of FF-Inversion over GF(2m) using

the Algorithm 4.1 is shown in Fig. 4.1. It is a two-stage pipelined architecture which com-

putes the exponentiation using power-block followed by multiplication with FF-multiplier.

The inputs to the Power-block and FF-multiplier are applied through 4:1 multiplexers M1

and M2. During every clock-cycle, a set of control signals are issued by the control unit

to the registers and multiplexers. The input data is received by FF-multiplier and power-

block either from external source or from the registers based on the control signals. The

results are stored in registers at the end of each clock cycle and this process is repeated for

f number of iterations, where f = | log2(m− 1)|+ H(m− 1)− 2 . The functionality of the

building blocks of the proposed architecture are explained in the subsequent sub-sections.

FF-Multiplier

The FF-multiplication required in the hardware realization of the proposed modified-

ITA algorithm is performed by employing the bit-parallel hybrid-Karatsuba multiplier

[61]. This FF-multiplier receives two inputs from the multiplexers M1 and M2 and re-

cursively divides the operands size by half to reduce the computational complexity. The
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Figure 4.1 Proposed Architecture of FF-Inversion

operands are divided until a threshold (τ) is achieved [51, 62] and these are multiplied

using classical-multiplication(CM) followed by performing modular-reduction operation

as shown in Fig. 4.2. This Karatsuba multiplier is employed in the proposed architecture

as it reduces the computational complexity to O(m1.58) compared to that of conventional

multiplier (O(m2)).
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Figure 4.2 Architecture of the FF-Multiplier.
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Let A(x) and B(x) be any arbitrary elements in GF(2m) and can be represented as

A(x) =
m−1∑
l=0

alx
l = a0 + a1x+ . . .+ am−2x

m−2 + am−1x
m−1 (4.11)

B(x) =
m−1∑
l=0

blx
l = b0 + b1x+ . . .+ bm−2x

m−2 + bm−1x
m−1 (4.12)

al, bl ∈ GF (2) for 0 ≤ l ≤ m−1. The field element product of A(x) and B(x) over GF(2m)

is given by

A ·B = (a1x
n + a0) (b1x

n + b0)

= a1b1x
2n + (a0b1 + a1b0)x

n + a0b0

= a1b1x
2n + [(a1 + a0) (b1 + b0) + a1b1 + a0b0]x

n + a0b0

where, n = bm/2c, A = a1x
n + a0, and B = b1x

n + b0

(4.13)

where, m is operand size.

Power block

The power-block consists of a 21 module and a set of cascaded 4k modules as shown

in Fig. 4.1. The output of the multiplexer M2 is fed as input to the power-block. The

multiplexer within the power-block generates the output depending on the control signal

C3. Here, the number of cascade blocks of 4k are chosen such that the combinational

delay of the cascade blocks together is equivalent to the combinational delay of the FF-

multiplier to maintain optimal frequency in all the critical paths. The functionality of 21

and 4k modules are explained below:

21 and 4k : Let R(x) be an m degree irreducible polynomial and A(x) be any field element

defined over the field GF(2m). The polynomial representation of A and A2 are given by

the following expressions

A(x) =
(
am−1x

m−1 + am−2x
m−2 + . . .+ a2x+ a1x+ a0

)
mod R (4.14)

A2(x) =
(
am−1x

2m−2 + am−2x
2m−4 + . . .+ a2x

4 + a1x
2 + a0

)
mod R (4.15)

Here, each binary coefficient of the 21(FF-squaring) module is realized by a set of log-

ical XOR circuits. For the faster accomplishment of 21 exponentiation the reduction

polynomial R(x) is chosen to be National Institute of Standard and Technology (NIST)
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trinomial or pentanomial. For example, the 21 exponentiation module in GF(2193) with

NIST irreducible trinomial R(x)=x193 + x15 + 1 is shown in the Fig. 4.3. This 21 module

is realized based on the following assumptions [8] with R(x)=xm + xg + 1 where, m , g

are odd numbers and g < m+1
2

.

si =



a i
2

i even, i < g

a i
2

+ a i
2
+m−g

2
+ a i

2
+(m−g) i even, g < i < 2g

a i
2

+ a i
2
+m−g

2
i even, i ≥ 2g

am+i
2

+ am+i
2

+ m−g
2

i odd , i < g

am+i
2

i odd , i ≥ g

(4.16)

For the field element A, the 41 exponentiation can be computed by the following equation

A4(x) =
(
am−1x

4m−4 + am−2x
4m−8 + . . .+ a2x

8 + a1x
4 + a0

)
mod R (4.17)

The logical diagrams are realized for 41 and 42 modules by recursively applying the as-

sumptions in Eq.4.16, and are shown in the Fig. 4.4 and Fig. 4.5, respectively. It may

be noted that 42 module can be generated directly using a series of logical XOR circuits

instead of cascading two 41 modules, which results in reduction in combinational delay.

Since the delay of 41 module is equal to delay of two XOR gates(2Dxor), and the delay of

42 is equal to the delay of three XOR gates(3Dxor), we can achieve 25% reduction in the

delay by employing a single 42 module instead of two cascaded 41 modules.
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Figure 4.3 Architecture of the 21 module over GF(2193)

It is to be noted that the assumptions in Eq.(4.17), vary with m and g values.

For example, realizing 21 in GF(2233) with irreducible trinomial R(x)=x233 + x74 + 1 is
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computed by the following expression

si =



a i
2

+ a i
2
+m− g

2
i even, i < g,

a i
2

+ a i
2
+m−g i even, g ≤ i < 2g

a i
2

i even, i ≥ 2g,

am+i
2

i odd, i < g

am+i
2

+ am+i
2
− g

2
i odd, i > g

(4.18)

where, m is odd, g is even and g < m+1
2

.

Registers

The registers αm, and αs store the intermediate results of FF-multiplier and power-

block, respectively. Whereas, α1 stores the precomputation value that is generated by

steps 1 and 2 of Algorithm 4.1, which is to be used in the later steps of the algorithm. The

value to be stored in each register for a particular clock-cycle is controlled by the control

signal C4. The register values are applied as inputs to the FF-multiplier and power-block

via multiplexers M1 and M2 using the control signals C1 and C2, respectively.
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4.2.4 Analytical Formulations

Hardware Complexity Analysis

The hardware complexity of the proposed architecture to compute FF-inversion is

estimated in terms of d-input LUTs, where d represents the number of inputs to the LUT

which depends on the technology of the target FPGA device. For a single variable logic

function, zero LUTs are required. If the number of input variables of the logic function

are less than or equal to d then a single LUT can configure the logic function. The number

of LUTs required to realize a logic function with number of input variables greater than

d can be computed using the following expression [27,61]

lut(x) =


⌊
x−d
d−1

⌋
+ 2 if x > d and (d− 1) - (x− d)

x−d
d−1 + 1 if x > d and (d− 1) | (x− d)

(4.19)

As explained in Section 4.2.3, the Hybrid Karatsuba multiplier splits the m-bit operand

into multiple m/2-bit operands recursively, until it reaches a threshold τ value. The

experimental results for selecting the τ value for a particular d-input LUT FPGA are

presented in [27,62]. It may be noted that an m-bit hybrid Karatsuba multiplier requires

three m
2

multipliers if m value is even. If m value is odd one m−1
2

multiplier and two m+1
2

bit multipliers are required. A zero bit is to be added in the MSB bit position of the m bit

operand, if m value is odd.The total LUT estimate of the FF-Multiplier can be computed

by recursively applying the following expressions depending on the value of m

#LUThkmul(m) =2× LUThkmul
(⌈m

2

⌉)
+

LUThkmul

(⌊m
2

⌋)
+ 2m− 1

(4.20)

#LUThkmul(m) =2× LUThkmul
(⌈

m+ 1

2

⌉)
+

LUThkmul

(⌊
m− 1

2

⌋)
+ 2m− 1

(4.21)

The expression to compute the LUT estimate for the second iteration can be derived by

taking m/2 as the field order in Eq.4.20 when m is even and is given by,

#LUThkmul(m) =2× (2× LUThkmul
(⌈m

4

⌉)
+ LUThkmul

(⌊m
4

⌋)
+m− 1)+

(2× LUThkmul
(⌈m

4

⌉)
+ LUThkmul

(⌊m
4

⌋)
+m− 1) + 2m− 1

(4.22)
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The LUT estimate of the FF-multiplier in the remaining iterations can be computed in

a similar manner by evaluating Eq.4.20, with the field order value as half of that value

taken for the previous iteration. This procedure is to be repeated in every iteration of the

remaining iterations. The number of iterations depends upon the time required for the

field order, which is divided in every iteration to reach the threshold value τ . A classical

multiplier is invoked once the operand size is less than or equal to τ value. The LUT

estimate of classical multiplier can be computed as

Lcm(τ) =
τ−1∑
y=0

⌈
2y + 1

d− 1

⌉
+

2τ−2∑
y=τ

⌈
4τ − 2y − 3

d− 1

⌉
(4.23)

In the proposed architecture, M1 & M2 multiplexers are used to apply the operands

to the FF-multiplier and M3 multiplexer is used in the power block to select the ap-

propriate exponentiation term. The generalized expression for the LUT estimate of the

Multiplexers with x inputs is

#LUTMUX = m× lut (x+ log2 x) (4.24)

where, log2 x gives the number of selection lines.

The LUT estimate of the power block depends upon the 2k or 4k modules. The hardware

complexity of 2k or 4k modules depends upon the binary sequence which is the outcome

of logical XOR network given by Eq.(4.16). The LUT estimate of 2k or4k modules can be

computed as

#LUT2kor4k =
m−1∑
i=0

lut (bi) (4.25)

The total area complexity of the proposed FF-inversion architecture shown in the Fig. 4.1

can be computed by the summation of area complexity of each building block as

ITAArea =2m× lut (4 + log2 4) +m× lut (8 + log2 8) +
(m− 1)

2
+ 3m× lut(4)

+ 2m× lut(8) +
2τ∑
i=m

2× LUThkmul
(⌈m

2

⌉)
+

2τ∑
i=m

LUThkmul

(⌊m
2

⌋)
+ 2m− 1

(4.26)

where, LUThkmul(
m
2

) = 2× LUThkmul(m4 ) + LUThkmul(
m
4

) +m− 1
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Delay Complexity Analysis

The delay of the proposed two-stage pipelined FF-inversion architecture (see Fig.4.1)

can be computed by estimating the stage delay and number of clock-cycles required to

compute the FF-inversion for a given input. The stage delay of the pipelined architecture

is the delay of the critical-path. It may be noted from the Fig. 4.1 that one stage(stage-

1) of pipelined data-path contains FF-multiplier and the second stage(stage-2) contains

power-block. The critical path of this pipelined architecture can be computed by de-

termining the stage with maximum delay. The delays of multiplexer, FF-multiplier and

Power-block are estimated in terms of the delay of a d-input LUT [27, 61] to compare

the performance of this proposed FF-inversion architecture with that of architectures

available in the literature [25, 27–31,33,34,63].

FF-multiplier: The hybrid Karatsuba multiplier employed in the proposed archi-

tecture to compute FF-inversion consists of four stages namely splitting stage(dividing the

operands until τ), classical-multiplier stage(multiplication of operands with τ as operand

size), alignment stage(combine the outputs of classical-multiplier stage) and modular re-

duction stage ( (2m − 1)-bit output reduced to m-bit output). The delays of all these

four stages of FF-multiplier are estimated in terms of d-input LUT as Dsp = logd(m
τ

),

DTh = logd2τ , Dcm = log2(
m
τ

), and Dmod = logdt respectively. The delay of FF-multiplier

is the sum of the delays of four stages and is given by

DFFmul = Dsp +DTh +Dcm +Dmod (4.27)

Multiplexer: The delay of an x:1 multiplexer with log2 x selection lines is given by

Dmux = logd (x+ log2 x).

Power-block: The delay across power-block of the proposed FF-inversion architec-

ture is the sum of the delays across cascaded 4k exponentiation modules and x:1 multi-

plexer and is given by

#DPowblk = Dpb +DMUXP

=
∑

D41 +
∑

D42 + dlogd (x+ log2 x)e
(4.28)

where, x is the number of inputs applied to the multiplexer within power-block. Here,

Dpb denotes the delay of the 4k circuits comprising the total delay across D41 and D42

modules and DMUXP
denotes delay of the Multiplexer within the power-block.
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The stage delay of the Proposed pipelined FF-inversion architecture will be the

maximum value of the delays of stage-1 and stage-2. The expressions for the delay of

stage1 and stage2 are given as

Dstage1 = DFFmul +DMUX(M1) (4.29)

Dstage2 = DMUX(M2) +Dpb +DMUXP
(4.30)

Using Eq.(4.29) and Eq.(4.30) the stage delay of the Proposed FF-inversion architecture

can be computed as

ITAdelay = Max(Dstage1, Dstage2) (4.31)

where, ITAdelay varies with the order of the field.

It may be noted that K value in 4k is chosen such that the total delay of stage-2

is less than or equal to the delay of stage-1. Therefore the delay of proposed inversion

architecture is equal to delay of stage 1 and is given as

ITAdelay = logd

(m

τ

)
+ logd 2τ + log2

(m

τ

)
+ logd t + logd (x + log2 x) (4.32)

where, x is the number of inputs to the multiplexer, τ is threshold multiplier size.

The delay of the proposed architecture can be computed with respect to Virtex-

4 and Virtex-5 FPGAs, by simply substituting the value of d (using Eq.(4.32)) as 4

and 6, respectively. For example, the delay computation of the proposed FF-inversion

architecture for an irreducible trinomial (GF(2193)) is explained with the help of the

Fig. 4.6 and is equal to 10 LUT’s (10 × the d-input LUT delay of the target FPGA ).

The computation time of the proposed FF-inversion architecture is

TINV = CINV × TP (4.33)

where,

• CINV denotes the number of clock-cycles required to compute FF-Inversion

• TP represents the time period of the clock
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Figure 4.6 The critical-path of the proposed Architecture (GF(2193)).

As shown in the Algorithm 4.1, the computation of FF-inversion requires f number of

iterations with each iteration computed in c number of clock-cycles. The value of c

varies with each iteration depending on the exponentiation required in that particular

iteration. Each iteration consists of a 4k exponentiation and FF-multiplication. Therefore,

total number of clock-cycles required for the computation of FF-inversion is given by the

following expression

CINV = CQuad +MInv (4.34)

and MInv is computed as

MInv = (|log2(m− 1)|+ H(m− 1)− 2) (4.35)

where,

• CQuad denotes total clock-cycles required for exponentiation

• MInv represents clock-cycles required for multiplications

The latency of the proposed architecture can be computed by using Eqs.(4.34 and

4.35) and is given as

ITAlatency =

f∑
i=2

[
ui
uC

]
+ (H(m− 1) + |log2( m− 1)| − 2) + 2 (4.36)
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where,
∑f

i=2

⌈
ui
uC

⌉
is the number of clock cycles required for generating required

exponentiation, (H(m−1)+| log2(m−1)|−2) is the clock cycles required for multiplication,

2 represents the number of clock cycles required for precomputation, f is length of addition

chain, H is hamming weight of m-1, ui is the element in the addition chain, uC is the

maximum cascade size as explained in the Algorithm 1.

It is to be observed from the Eq.(4.34) that the clock-cycles required for FF-inversion

is directly proportional to number of clock cycles required for total exponentiation. Hence,

we need to design power-block with suitable value of k in 4k module such that it completes

FF-inversion in minimum clock-cycles. It may also be noted that the area complexity

increases with increase in the k value of 4k module. Hence, the power-block must be

designed with optimal area and time complexity by choosing suitable value of k. The area

Table 4.3 Area-time estimates of the Proposed FF-inversion Architectures for different 4k

exponentiation modules over GF(2193)

Exponentiation FPGA Area clock Time ATP

(LUT’s) cycles (ns) (× 10−6)

46 virtex-4 12794 28 308 3940

47 virtex-4 12939 26 286 3700

48 virtex-4 13084 25 302 3951

49 virtex-4 13229 25 330 4365

410 virtex-4 13374 24 343 4589

46 virtex-5 8915 28 252 2246

47 virtex-5 9060 26 234 2120

48 virtex-5 9205 25 247 2273

49 virtex-5 9350 25 270 2524

410 virtex-5 9495 24 280 2658

and time complexity values of the proposed FF-inversion architecture over the irreducible

trinomial GF(2193) is estimated for various 4k exponentiation modules by varying the

cascade size(uC) in the Algorithm 4.1 and are presented in Table 4.3. It may be observed

from the Table 4.3 that the increase in value of k in 4k module from 6 to 10 results in
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decreasing the clock-cycles from 28 to 24 and increasing the area complexity from 12794

to 13374. It may be concluded that this architecture for GF(2193) must be designed with

k = 7 as 47 exponentiation provides minimum area-time product.

4.2.5 Implementation Results

In this section, we present the performance comparison of the proposed FF-inversion

architecture and the FF-inversion architectures available in the literature [25, 27–31, 33,

34, 63]. The performance of the proposed architecture can be estimated theoretically by

using the Eqs.(4.26, (4.32) and (4.36).

When targeted device is Virtex-4 FPGA, the total area and delay complexities of

the proposed FF-inversion architecture can be computed using the following expressions,

ITAArea =
(31m− 1)

2
+

2τ∑
i=m

2×LUThkmul
(⌈m

2

⌉)
+

2τ∑
i=m

LUThkmul

(⌊m
2

⌋)
+2m−1 (4.37)

where, LUThkmul(
m
2

) = 2× LUThkmul(m4 ) + LUThkmul(
m
4

) +m− 1

ITAdelay = log4

(m

τ

)
+ log4 2τ + log2

(m

τ

)
+ log4 t + log4 (4 + log2 4) (4.38)

When targeted device is Virtex-5 FPGA, the total area and delay complexities of

the proposed FF-inversion architecture can be computed using the following expressions

ITAArea =
(23m− 1)

2
+

2τ∑
i=m

2×LUThkmul
(⌈m

2

⌉)
+

2τ∑
i=m

LUThkmul

(⌊m
2

⌋)
+2m−1 (4.39)

ITAdelay = log6

(m

τ

)
+ log6 2τ + log2

(m

τ

)
+ log6 t + log6 (4 + log2 4) (4.40)

Table 4.4 presents the performance comparison of the proposed FF-inversion ar-

chitecture over GF(2193) with that of others architectures available in the literature

[27, 28, 30, 31, 63]. It is evident from these results that the proposed FF-inversion ar-

chitecture achieves area efficiency of around 14%, 39%, 15%, and 37% compared with
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Table 4.4 Performance comparison of the Proposed FF-inversion Architecture with the existing

FF-inversion Architectures over GF(2193).

Design Field FPGA Area Fmax clock Time ATP % Reduction % Reduction

(LUTs) (MHz) cycles (ns) (× 10−6) in Area in ATP

[27] 193 virtex-4 77.52 26 15043 335 5039 14 26.57

[28] 193 virtex-4 89.28 18 21105 201 4242 39 12.77

[30] 193 virtex-4 255.44 49 15179 192 2914 15 -21.2

[63] 193 virtex-4 - 18 20843 190 3960 37.9 6.6

Proposed 193 virtex-4 90.9 26 12939 286 3700 - –

[27] 193 virtex-5 112.2 22 11254 196 2206 19 3.89

[28] 193 virtex-5 124.1 18 15137 145 2194 40 3.37

[31] 193 virtex-5 124.7 9 31050 64 1987 70 -6.2

[63] 193 virtex-5 - 18 14993 131 1964 39.5 -7.3

Proposed 193 virtex-5 111.1 26 9060 234 2120 – –

FF-inversion architectures [27, 28, 30, 63], respectively, when targeted on virtex-4 FPGA.

It may be be noted that the proposed architecture achieves reduction in area-time product

of around 26%, 12%, and 6% when compared with [27,28,63], respectively. However, the

proposed FF-inversion architecture achieves area efficiency of around 15% compared to

the FF-inversion architecture [30] at the expense of more computation time.

Table 4.4 also presents the performance comparison of the proposed FF-inversion

architecture over GF(2193) with that of others architectures available in the literature

[27, 28, 31, 63] when targeted device is virtex-5 FPGA. It can be observed from these re-

sults that the proposed FF-inversion architecture achieves area efficiency of around 19%,

40%, 70%, and 39% compared with FF-inversion architectures [27,28,31,63], respectively.

It is also be noted that the proposed architecture achieves reduction in area-time product

of around 3.8%, and 3.3% when compared with [27, 28], respectively. Since the proposed

FF-inversion architecture requires more area-time product of about 6%- 8% than the ar-

chitectures proposed in [31,63], this may be preferred for the area constrained applications

at the expense of speed.

Table 4.5 presents the performance comparison of the proposed FF-inversion archi-

tecture over GF(2233) with that of the architectures available in the literature [25, 27–
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Table 4.5 Performance comparison of the Proposed FF-inversion Architecture with the existing

FF-inversion Architectures over GF(2233).

Design Field FPGA Area Fmax clock Time ATP % Reduction % Reduction

(LUTs) (MHz) cycles (ns) (× 10−6) in Area in ATP

[25]*QITA 233 virtex-4 26122 97.08 30 309 8071 32.9 23.62

[25]*SITA 233 virtex-4 27897 98.09 36 367 10238 37.2 39.79

[27] 233 virtex-4 21464 73.71 30 407 8737 18.4 29.44

[28] 233 virtex-4 23734 71.87 23 320 7594 26.2 18.83

[29] 233 virtex-4 19414 - 26 287.3 5577 10 -9

[30] 233 virtex-4 20988 213.84 58 271 5687 16.5 -7.7

[33] 233 virtex-4 24713 100 29 290 7166 29.1 13.98

[34]*ITA 233 virtex-4 14982 - 91 896.8 13435 -14 54.1

[34]*TITA 233 virtex-4 34947 - 82 677.9 23690 49.8 73.9

[34]*PITA 233 virtex-4 27620 - 64 642.2 17737 36.5 65.2

[63] 233 virtex-4 22917 - 23 273 6256 23.5 2

Proposed 233 virtex-4 17512 90.90 32 352 6164 - –

[25]*QITA 233 virtex-5 20950 128.75 30 233 4881 45.5 32.7

[25]*SITA 233 virtex-5 21379 141.02 33 234 5002 46.6 34.38

[27] 233 virtex-5 13962 109.31 27 247 3453 18.3 4.95

[28] 233 virtex-5 16256 109 23 211 3430 29.8 4.31

[63] 233 virtex-5 15956 - 23 186 2967 28.5 -9.5

[20]*EEA 233 virtex-5 10990 - 47 312 3428 -3.5 4.25

Proposed 233 virtex-5 11399 111.1 32 288 3282 –

30, 33, 34, 63] when targeted device is Virtex-4 FPGA. It can be observed from these re-

sults that the proposed architecture achieves area efficiency of around 32%, 37%, 18%,

26%, 37%, 10%, 16%, 29%, 49% and 36% when compared with the FF-inversion architec-

tures [25]*QITA, [25]*SITA, [27–30,33,34], [34]*TITA, [34]*PITA, respectively. It is to be

noted that the proposed architecture achieves reduction in area-time product of around

23%,39%,29%,18%,13%,54%,73% and 65% when compared with the FF-inversion archi-

tectures [25]*QITA, [25]*SITA, [27,28,33], [34]*ITA, [34]*TITA, [34]*PITA, respectively.

It may be observed that the proposed FF-inversion architecture requires less area-time

product than FF-inversion architecture [34]*ITA while consuming more hardware than

that of the architecture [34]*ITA. However, the proposed architecture requires less area

of around 10%-16% and more area-time product of around 7%-9% when compared with
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Table 4.6 Performance comparison of the Proposed FF-inversion Architecture with the existing

FF-inversion Architectures over GF(2409).

Design Field FPGA Area Fmax clock Time ATP % Reduction % Reduction

(LUTs) (MHz) cycles (ns) (× 10−6) in Area in ATP

[25]*SITA 409 virtex-4 64970 77.51 40 516 33524 34.5 30.90

[25]*QITA 409 virtex-4 60644 63.29 32 505.6 30661 29.9 24.44

[34]*ITA 409 virtex-4 19934 - 221 2254 44931 -53.1 48

[34]*TITA 409 virtex-4 54114 - 141 1765 95511 21 75.7

[34]*PITA 409 virtex-4 36462 - 161 1706 62204 -14.2 62.7

Proposed 409 virtex-4 42545 82.64 45 544.5 23165 –

[25]*SITA 409 virtex-5 47785 116.8 40 342.2 16258 36.9 17.42

[25]*QITA 409 virtex-5 44948 108.69 35 322 14473 32.9 5.16

Proposed 409 virtex-5 30136 101.01 45 445.5 13425 –

the architectures [29, 30].

Table 4.5 also presents the performance comparison of the proposed FF-inversion

architecture over GF(2233) with that of the architectures available in the literature [20,

25, 27, 28, 63] when targeted device is Virtex-5 FPGA. It can be observed from these

results that the proposed architecture achieves area efficiency of around 45%, 46%, 18%,

29%, and 28% when compared with the FF-inversion architectures[ [25]*QITA, [25]*SITA,

[27,28,63], respectively. It is to be noted that the proposed architecture achieves reduction

in area-time product of around 32%,34%,4%, 4% and 4% when compared with the FF-

inversion architectures [25]*QITA, [25]*SITA, [25, 28], [20]*EEA, respectively. It may be

observed that the proposed FF-inversion architecture achieves area efficiency of around

28% than FF-inversion architecture [63] at the expense of more area-time product of

around 9%.

Table 4.6 presents the performance comparison of the proposed FF-inversion archi-

tecture over the GF(2409) with that of the architectures available in the literature [25,34]

when targeted device is Virtex-4 FPGA. It can be observed from these results that the

proposed architecture achieves area efficiency of around 29.9%,34.5% and 21% when com-

pared with the FF-inversion architectures [25]*QITA, [25]*SITA, [34]*TITA, respectively.

It is to be noted that the proposed architecture achieves reduction in area-time product
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of around 24.44%,30.9%,48%, 75.7 and 62.7% when compared with the FF-inversion ar-

chitectures [25]*QITA, [25]*SITA, [34]*ITA, [34]*TITA, [34]*PITA, respectively. It may

also be noted that the proposed FF-inversion architecture achieves around 62% reduction

in area-time product than [25]*PITA at the expense of increase in the area around 14%.

When compared with [34]*ITA, the proposed architecture achieves reduction in area-time

product of around 48% at the expense of around 53% increase in area.

Table 4.6 also presents the performance comparison of the proposed FF-inversion

architecture over the GF(2409) with that of the architecture [25] when targeted device

is Virtex-5 FPGA. It can be observed from these results that the proposed architecture

achieves area efficiency of around 36.9%, and 32.9% when compared with the FF-inversion

architectures [25]*QITA, [25]*SITA, respectively. It is also to be noted that the proposed

architecture achieves reduction in area-time product of around 17.42%, and 5.16% when

compared with the FF-inversion architectures [25]*QITA, [25]*SITA, respectively.

4.3 Conclusions

In this chapter, the conventional Itoh-Tsujii algorithm is modified to reduce com-

putation time by employing 4k exponentiation modules rather than 2k exponentiation

modules. A two-stage FF-inversion architecture is developed for this modified Itoh-Tsujii

algorithm. Further, the formulations for area and delay are presented and evaluated for

the field orders m=193, 233, 409. The implementation results show that the proposed FF-

inversion architecture is area and area-time efficient compared to the similar FF-inversion

architectures in the literature. Hence, the proposed FF-inversion architecture is profound

to be suitable for area-time efficient ECC applications. However, the performance of the

ECC design is dominated by the performance of the point-multiplication operation. Hence

it is desirable to design area-time efficient point multiplication architecture suitable for

ECC applications. The next chapter presents the design of efficient point multiplication

architecture suitable for ECC applications.



Chapter 5

Low Area-time Complexity Point Multiplication

Architecture over GF(2m) using Polynomial Basis

In this chapter, we present a point-multiplication architecture developed for the

proposed modified Montgomery ladder algorithm targeting ECC applications. A digit-

serial multiplier is used to implement FF-multiplication in the realization of proposed

point multiplication algorithm. The area and time complexities of the proposed point

multiplication (PM) architecture are computed for irreducible trinomial GF(2233) and

irreducible pentanomial GF(2163). The proposed architecture is modeled using verilog

HDL and simulated to verify the functionality using Xilinx Vivado tools. The HDL

netlist is synthesized targeting Xilinx Virtex-5 FPGA and implemented to compare with

the similar point multiplication architectures available in the literature.

5.1 Introduction

Over the last few years, technological advances in the implementation of smart sen-

sors, processing elements, and communication services in resource-constrained devices

have enabled the rapid growth and emergence of evolving technologies like Internet-of-

Things (IoT) and Wireless-sensor-networks ( WSNs) [64]. These technologies elevated

the need for data security services like data confidentiality, non-repudiation, digital sig-

nature, and data integrity, considering the number of devices and the secure information

they carry. Public-Key-Cryptography is proven to suffice the need of data security and
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is based on a presumed hard problem, such as elliptic-curve-discrete-logarithm(ECDL),

integer-factorization, and discrete-logarithm. The Elliptic-Curve-Cryptography (ECC)

suggested by Koblitz [3] and Miller [46], has captivated considerable attention in recent

years owing to its high security per bit ratio and small key size. The performance of ECC

in these resource-constrained devices relies on the performance of the point multiplication

operation. The efficiency of point multiplication relies on the point multiplication algo-

rithm and underlying finite field operations namely, FF-multiplication, and FF-inversion.

A modified Itoh-Tsujii algorithm is presented in the previous chapter to improve the

computation time of FF-inversion. So it is required to develop an area efficient and high

speed FF-multiplier architecture for the realization of point multiplication algorithm. The

performance of point multiplication is also dominated by type of irreducible polynomial

employed for the realizing the architecture. The NIST trinomials and pentanomials offer

less area-time complexities and are suitable for fast ECC applications. Hence, it is recom-

mended to design high performance point multiplication architectures using irreducible

trinomials and pentanomials.

Many architectures are proposed in the literature to design high-speed and low

complexity ECC [5,6, 47–58]. Most of these works aimed to reduce computation time by

minimizing the latency for computation of point multiplication.

In this work, firstly, we have presented a digit-serial multiplier and its corresponding

area and delay formulations. Secondly, we have derived modified Montgomery point mul-

tiplication algorithm based on the classic Montgomery point multiplication algorithms [10]

available in the literature. Subsequently, the architecture for the proposed modified Mont-

gomery point multiplication algorithm is developed. Finally, the area and delay formula-

tions of the proposed architecture are estimated and the performance is compared with

the existing point multiplication architectures in the literature.

5.2 Digit-serial Multiplier over GF(2m)

The hardware realization of the point multiplication algorithm requires FF-multiplier.

The performance of point multiplication architecture depends on the efficiency of FF-

multiplication architecture. In general, GF(2m) multipliers can be realized using digit-
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serial, bit-serial, and bit-parallel multiplier architectures [65]. The bit-serial multiplier

processes a single-bit of m input data for each clock-cycle and completes multiplication

in m iterations. The digit-serial multiplier processes a set of D bits per iteration reducing

the latency from m to m/D cycles. However, it is observed with the increment of D value

the area and time complexities increase.

In this section, we present the design and performance analysis of the proposed

digit- serial multiplier developed for a MSD-first digit-serial multiplication algorithm [66].

First, the design and preliminaries of the proposed digit-serial multiplier are presented.

Followed by, the architecture developed for the realization of FF-multiplication is dis-

cussed. Subsequently, the area and delay formulations are derived to compare with the

similar digit-serial architectures available in the literature.

5.2.1 Mathematical Formulations

An irreducible polynomial R(x) of degree m defines the binary field GF(2m) and is

given by the following expression [2],

R(x) = xm + rm−1x
m−1 + rm−2x

m−2 + . . .+ r1x+ 1 (5.1)

where, ri ∈ GF (2) for 1 ≤ i ≤ m. If β ∈ GF (2m) is assumed to be the root of irreducible

polynomialR(x) over GF(2), then it followsR(β) = 0, and the vector (1, β, β2, β3, . . . . . . . . . βm−1)

constitutes the polynomial basis [2].

Let A(x) and B(x) be any two arbitrary elements in GF(2m) and can be represented

in polynomial basis as

A(x) =
m−1∑
l=0

alx
l = a0 + a1x+ . . .+ am−2x

m−2 + am−1x
m−1 (5.2)

B(x) =
m−1∑
l=0

blx
l = b0 + b1x+ . . .+ bm−2x

m−2 + bm−1x
m−1 (5.3)

al, bl ∈ GF (2) for 1 ≤ l ≤ m− 1

Then the product of polynomials A(x) and B(x) over GF(2m) is given by

P (x) = A(x)B(x) mod R(x) (5.4)

The binary set of R, A and B over GF(2m) may be defined as, R=(1, r1, . . . rm−2, rm−1),

A=(a0, a1, . . . , am−2, am−1), and B=(b0, b1, . . . , bm−2, bm−1) respectively.
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5.2.2 MSD-first Digit-serial Multiplication Algorithm

Let A and B be any two elements of order m defined over GF(2m). Let R(x) be the

irreducible polynomial of order m and P(x) be the accumulator for partial products. The

Algorithm 5.1 presents MSD first digit-serial multiplication algorithm [66] to be performed

on the operands A and B. It may be noted from this algorithm that each iteration involves

the multiplication of operand A(x) multiplied by D bits of operand B(x) followed by

modulo reduction by R(x). The generated partial product is accumulated in the register

P (x). For each iteration the partial product P (x) is multiplied by the constant xD followed

by XOR operation with new partial product. This process is repeated for m/D iterations

and the final product is accumulated into the register P (x) after m/D iterations.

Algorithm 5.1 MSD-first digit-serial multiplication Algorithm [66]

Input: A and B are arbitrary elements in GF (2m)

Output: P = AB mod R(x)

1. P = 0

2. B = B0 +B1x
D + · · ·+Bs−1x

D(s−1), where Bl =
∑D−1

j=0 blD+jx
j

3. For l = s− 1 to 0

4. P = PxD mod R(x)

5. P = P + ABl mod R(x)

6. end for

5.2.3 Proposed Digit-serial Multiplier

The digit-serial multiplier designed to perform FF-multiplication operation on A

and B operands of m-bit size is shown in the Fig. 5.1. The functionality of each building

block of digit-serial multiplier(see Fig. 5.1) are explained in the following sub sections.

Proposed Bit-Parallel Multiplier

The performance of digit-serial multiplier can be improved by improving the perfor-

mance of bit parallel multiplier. Hence, we present the bit parallel multiplier architecture

developed by modifying the architecture [67] to improve the area-time efficiency (see
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Figure 5.1 Digit-serial Multiplier

Fig. 5.2). The bit-parallel multiplication of a m− 1 degree polynomial A(x) and a (D-1)

degree polynomial K(x) is given by the following expression

K(x)A(x) mod R(x) =xD−1kD−1A(x) mod R(x)

+ xD−2kD−2A(x) mod R(x)

+ · · ·+ xk1A(x) mod R(x) + A(x)k0 mod R(x)

(5.5)

Each element of the multiplication product (xlklA(x) mod R(x) ) is realized in three

steps. First, a shift left operation of l times is performed on A(x), followed by the reduction

over R(x). In the second step, logical NAND operation is performed on the resultant SAR

module with the respective kl bit in parallel. Finally, the summation is performed on the

partial products generated in step 2 by logical XOR operation. Since the area, and time

complexities of NAND gate are less than that of AND gate, we have employed NAND

gates to realize the partial products. Shift and reduction(SAR) block is used to realize

the xA(x) mod R(x) operation and is explained in detail in the following subsection.
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Figure 5.2 Proposed Bit-Parallel Multiplier

Shift and Reduction Module

The hardware realization of SAR module varies based on the form of irreducible

polynomial. For example, consider an m degree general irreducible polynomial R(x)

R(x) = xm + rm−1x
m−1 + . . .+ r1x+ 1 (5.6)

and field element A(x), the SAR block can be realized by the following expression

Al+1(x) = (Al(x)× x) mod R(x)

= (a0x+ a1x
2 + . . .+ am−1x

m) mod (1 + r1x+ . . . rm−1x
m−1 + xm)

(5.7)

If we assume x is the root of the Eq.(5.6) then we have R(x)=0, and it follows xm =

rm−1x
m−1 + . . .+ r1x+ 1. Modulo reduction is performed by substituting xm in Eq.(5.7)

Al+1(x) = (a0x+ a1x
2 + . . .+ am−1(rm−1x

m−1 + . . .+ r1x+ 1)) (5.8)

Finally rearranging the coefficients in the increasing degree of x we have

Al+1(x) = am−1+(am−1r1 + a0)x+(am−1r2 + a1)x
2+. . .+(am−1rm−1 + am−2)x

m−1 (5.9)
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It can be noted that each logical AND, and logical XOR gates can be replaced by logical

NAND, and logical XNOR gates respectively keeping the final outcome intact.

Al+1(x) = am−1 + (am−1r1 � a0)x+ (am−1r2 � a1)x2 + . . .+ (am−1rm−1 � am−2)xm−1

(5.10)

where, � is logical XNOR operation. For example, let am−1 = 1, r1 = 0, and a0 = 1, then

AND operation over am−1 and r1 will be 0. When this result is XORed with 1, we get

1 as final outcome. Similarly, NAND operation over am−1 and r1 will be 1, and XNOR

operation of the result with 1 will be 1.

Fig. 5.3 shows the hardware realization of SAR module for general irreducible poly-

nomial.

q2qm-1 qm-2 q1

am-2 am-3 a1 a0am-1

am-1

1

m

A(x) x mod R(x)

Figure 5.3 Shift and Reduction Module for general irreducible polynomials

am-2am-4a1a0am-1

am-1

m

a2 a3 au-1
au-2 am-3

m

A(x)

A(x)xmodR(x)

au

Figure 5.4 Shift and Reduction Module for Trinomials
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am-2a1a0am-1

am-1

m

au3-1

am-3

m

A(x)

A(x)xmodR(x)

au2-2 au1

am-1 am-1

au1-1au2-1

au1-2au2au3au3 -2

Figure 5.5 Shift and Reduction Module for Pentanomials

The hardware realization of SAR module for an irreducible trinomial and pen-

tanomial are shown in Fig. 5.4 and Fig 5.5, respectively. The computations carried out

by each SAR block for an irreducible trinomial R(x) = xm+ xu + 1, (0 < u < m) is given

by

Al+1(x) = xAl(x) = x
m−1∑
j=0

a(l)u x
j

= a
(l)
m−1 +

m−1∑
j=1
j 6=u

a
(l)
j−1x

j +
(
a
(l)
u−1 + a

(l)
m−1

)
xu

(5.11)

where, Al+1 and Al represent the input and its corresponding output of each SAR module,

respectively. Each SAR module is realized by a single XOR gate as shown in Fig. 5.4.

Similarly, the computations performed by SAR block for an irreducible pentanomial

R(x) = xm+xu1 + xu2 + xu3 + 1, (0 < u3 < u2 < u1 < m) is given by

Al+1(x) = xAl(x) = x

m−1∑
j=0

a
(l)
j x

j

= a
(l)
m−1 +

m−1∑
j=1

j 6=u1,u2,u3

a
(i)
j−1x

j +
(
a
(l)
u1−1 + a

(l)
m−1

)
xu1 +

(
a
(l)
u2−1 + a

(l)
m−1

)
xu2

+
(
a
(l)
u3−1 + a

(l)
m−1

)
xu3

(5.12)

The hardware realization each SAR module requires three XOR gates as shown in Fig. 5.5.

For example: Design of bit parallel multiplier in GF(25) based on the irreducible

trinomial R(x) = x5 + x2 + 1. Let A(x) and K(x) are two arbitrary elements in GF(25)

and are given as

A(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 (5.13)
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K(x) = k0 + k1x+ k2x
2 + k3x

3 + k4x
4 (5.14)

al, kl ∈ GF (2) for 1 ≤ l ≤ 4

The field product of the elements A(x), and K(x) over GF(25) is given as

K(x)A(x) mod R(x) =k4x
4A(x) mod R(x)

+ k3x
3A(x) mod R(x) + k2x

2A(x) mod R(x)

+ k1xA(x) mod R(x) + A(x)k0 mod R(x)

(5.15)

The hardware realization of each element in Eq.(5.15) requires shift and reduction module

5

k0
k1

A(x)

55 5 5

5 A(x) K mod R(x)

k3

5

a4 a0

5

A(x)xmodR(x)

a4a1

a2 a4a3

5

A(x)x
2
modR(x)

a3a0 a1
a4

a2

5

a3a0 a1

a3

a2
a4

A(x)x
3
modR(x)

5

a3

a2

a2

a4

a4

A(x)x
4
modR(x)

k2
k4

a3 a2 a4

a1

a0

a3

Figure 5.6 An example : Bit parallel multiplier over GF(25) based on the irreducible trinomial

R(x) = x5 + x2 + 1.

followed by multiplier. Since the reduction polynomial is trinomial, the SAR modules are
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realized based on the Eq.(5.11) and are given by the following expressions,

xA(x) mod R(x) =x(a0 + a1x+ a2x
2 + a3x

3 + a4x
4) mod (x5 + x2 + 1)

= (a0x+ a1x
2 + a2x

3 + a3x
4 + a4x

5) mod (x5 + x2 + 1)

= (a0x+ a1x
2 + a2x

3 + a3x
4 + a4(x

2 + 1))

= a4 + a0x+ (a1 + a4)x
2 + a2x

3 + a3x
4

(5.16)

x2A(x) mod R(x) = a3 + a4x+ (a0 + a3)x
2(+a1 + a4x

3) + a2x
4 (5.17)

x3A(x) mod R(x) = a2 + a3x+ (a2 + a4)x
2(+a0 + a3x

3) + (a1 + a4)x
4 (5.18)

x4A(x) mod R(x) = (a1 +a4) +a2x+ ((a1 +a4) +a3)x
2(+a2 +a4x

3) + (a0 +a3)x
4 (5.19)

Fig. 5.6 shows the architecture of bit parallel multiplier (GF(25)) developed by realizing

Eq.(5.16), Eq.(5.17), Eq.(5.18) and Eq.(5.19). It is observed from these equations that

each reduction operation costs a series of logical XOR gates and it is equal to number

of shift operations for the case of irreducible trinomials. In this case, a total of 10 XOR

gates are used to realize the SAR modules. If D is the operand size, it will costs a total

of D(D-1)/2 XOR gates to realize SAR modules in GF(2D) over the irreducible trinomial

R(x) = xD + xg + 1.

The output of each SAR module is multiplied with respective bit of operand K

in parallel satisfying the Eq.(5.15), followed by XOR operation on the resultant partial

products. If m and D are the operand sizes of elements A(x) and K(x), then it takes mD

number of NAND gates to realize all the partial products and m(D-1) number of XOR

gates to realize the final outcome(K(x)A(x) mod R(x)). The hardware complexity of this

example (see Fig. 5.6) requires 25 NAND gates for realization of partial products and 20

XOR gates for XOR tree.

xD Multiplier

xD multiplier is used to multiply the partial product generated at each iteration

with the constant xD. This operation is realized by using SAR module which performs

left shift operations on the partial product by D number of bits followed by mod R(x)
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operation. The hardware realization of xD multiplier for the case of irreducible trinomials

is shown in the Fig. 5.7. It may be noted that the xD Multiplier requires only D number

of XOR gates.

am-D-1
am-D am-D

m

au-D

au-D-1

m

A(x)

A(x)x
D
modR(x)

am-D+1 am-1 a0 a1 am-D+1

au-D+1

am-1

au-1 au
am-D-3 am-D-2

Figure 5.7 xD Multiplier

5.2.4 Analytical Results

This section presents the analysis of area and time complexities of the digit-serial

multiplier. The area complexity of the digit-serial multiplier (see Fig. 5.1) is computed

as the sum of area complexities of bit-parallel multiplier, m-bit adder, xD multiplier, and

m-bit register. The area complexity of this digit-serial multiplier is computed in terms

of the area of 2-i/p NAND gates, 2-i/p XOR gates, 2-i/p XNOR gates, and D-flipflops

where, i/p: input. The time complexity is analyzed by assuming TNA, TX , TNX , and TD,

as the delays of a 2-i/p NAND gate, a 2-i/p XOR gate, a 2-i/p XNOR gate, and a D FF

respectively.

The bit-parallel multiplier requires a total of (D − 1) SAR modules, a network of

NAND gates and XOR gates. Each SAR module consists of a series of NAND gates

and XOR/XNOR gates. The number of NAND and XOR/XNOR gates varies based on

the type of irreducible polynomial used, as explained in the sec 4.2.1. The bit parallel

multiplier for a general irreducible polynomial(see Fig. 5.2) requires (m− 1) NAND gates

and (m − 1) XNOR gates to implement the SAR modules. In addition, it requires a

total of (mD) NAND gates and (m(D − 1)) XOR gates for implementing NAND and
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XOR networks, respectively. Similarly, the area complexities of bit parallel multiplier are

computed for an irreducible trinomials and pentanomials and presented in Table 5.1.

The other building blocks of digit-serial multiplier (see Fig. 5.1), m-bit adder, xD

multiplier, and m-bit register for an irreducible polynomial, requires m XOR gates, D

XOR gates, and m D-FFs, respectively. The area complexity of the digit-serial multiplier

for general irreducible polynomial is presented in Table 5.2. The area complexities of digit-

serial multiplier for irreducible trinomials and pentanomials are computed by employing

the SAR modules (see Fig. 5.4 & Fig. 5.5) and xD modules (see Fig. 5.7) and presented

in the Table 5.2.

Table 5.1 Area and time complexities of Proposed Bit-Parallel Multiplier

F(x) NAND XNOR/XOR∗ Latency CriticalpathDelay

General (m-1)(D-1)+mD (m-1)(D-1)+m(D-1) 1 (dlog2(D)e)TX + TNX + 2TNA

Trinomial mD D(D-1)/2+m(D-1) 1 (dlog2(D)e+ 1)TX + TNA

Pentanomial mD 3D(D-1)/2+m(D-1) 1 (dlog2(D)e+ 1)TX + TNA
∗ XNOR/XOR have same area & time complexities

Since the area and time complexities of the digit-serial multiplier depends on the

digit size D, these complexities are computed for various values of D (Virtex-5 XC5VLX110)

and presented in Table 5.3 for a specific field GF(2163). It may be noted from the Table 5.3

that the increase of digit size from 6 to 82 results increase in the area complexity from

4280 LUTs to 68546 LUTs. It may also be noted that the computation time decreases

from 7.84 us to 0.86 us with the increase in digit size from 6 to 82. Hence, the appropriate

value of D must be selected based on the target area and time complexities of a specific

application.

Table 5.4 presents the area and time complexities comparison of the proposed digit-

serial multiplier with the similar digit-serial multipliers available in the literature for the

case of irreducible trinomials. The area complexities for the architectures considered for

comparison in the Table 5.4 are computed for m=233 and presented in Table 5.5. The

total area column of the Table 5.5 indicates that the area complexity of the proposed

architecture is less than that of other architectures considered for comparison.
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Table 5.3 Digit-serial Multiplication over GF(2163).

Digit size clock cycles Area Critical-path Delay

(LUTs) (ns) (ns)

6 28 4280 0.28 7.84

8 21 5438 0.3 6.3

11 15 7111 0.31 6.3

15 11 9054 0.33 3.63

24 7 15742 0.36 2.12

33 5 22230 0.38 1.9

55 3 40754 0.41 1.23

82 2 68546 0.43 0.86

5.3 Low Area-time complexity Point Multiplication Architec-

ture over GF(2m)

In this section, the design and performance analysis of the proposed point multi-

plication architecture developed for the realization of modified Montgomery algorithm is

presented. First, the mathematical preliminaries for the proposed modified Montgomery

point algorithm are presented. Followed by, the design of architecture to realize the pro-

posed algorithm and its corresponding area and time complexities are presented. Finally,

the comparison of implementation results with the similar point multiplication architec-

tures available in the literature are presented.

5.3.1 Mathematical Formulations

An elliptic curve E over GF(2m) is defined by the following expression [2]

E : y2 + x · y = x3 + a · x2 + b (5.20)

where a and b ∈ GF (2m) , b 6= 0. A point on the elliptic curve is represented by

pair of elements x, y ∈ GF (2m) and the point P = (x, y) fulfills the chord and tangent
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Table 5.5 Area and time complexities comparison of Digit-serial Multipliers over GF(2233)

Design AND XOR/XNOR NAND MUX Register Total area % Reduction

(# transistors) in area

Song [41] 54522 110424 - 2796 22110 189852 14

Song [41] 54522 110448 - - 15150 180120 10

Kim [38] 110442 218088 - 5592 70079 293759 44

Tang [42] 54522 118404 - - 6990 179916 10

Kumar [37] 54522 113208 - 2796 29070 199596 18

Proposed - 118404 36348 - 6990 161742 -

laws. Projective-coordinate system (P (X, Y, Z)), and affine-coordinate system( P(x, y))

are the two widely used coordinate systems to represent the point P on the elliptic curve.

Let P be a base point on the curve E and k is a positive integer, then the product

kP is another point and is called as point-multiplication.

Q = kP = P + P + P + ....+ P (5.21)

where, k ∈ [0,m− 1].

Point-addition(PA) and point-doubling(PD) are the two curve operations used to

achieve point-multiplication. If P1(x1, y1), P2(x2, y2), and P3 = (x3, y3) are three points

on the curve E, with P3 = (x3, y3) = P1 + P2. Then P3 is called point-addition of the

points P1, and P2. When P1 = P2, the curve operation is called point-doubling and

it is given by P3 = 2P1 = 2P2. The hardware realization of PA and PD operations in

affine-coordinate are given by the following expressions [68]

x3 =


(
y1+y2
x1+x2

)2
+ y1+y2

x1+x2
+ x1 + x2 + a, P1 6= P2

x21 + b
x21
, P1 = P2

(5.22)

y3 =


(
y1+y2
x1+x2

)
(x1 + x3) + x3 + y1, P1 6= P2

x21 +
(
x1 + y1

x1

)
(x3) + x3, P1 = P2

(5.23)

It can be noted from the Eq.(5.22) and Eq.(5.23) that each Point-addition and Point-

doubling operation requires computationally complex finite-field inversion operation and



Point Multiplication over GF(2m) using Polynomial Basis 71

it involves around 2m number of FF-inversion operations when using affine-coordinate sys-

tems. It is recommended to use projective-coordinate systems to avoid the FF-inversion,

and Lopez-Dahab(X/Z1, Y/Z2) , standard(X/Z1, Y/Z1) , and Jacobian(X/Z2, Y/Z3) are

the most chosen projective coordinate systems [2]. Table 5.6 presents the comparison of

the field operations in various projective systems, and it can be observed that the hard-

ware realization of curve operations using Lopez Dahab projective coordinate systems is

lesser complex compared to other projective coordinate systems.

Table 5.6 Comparison of Field operations in various Projective coordinate systems

Coordinate System PA PD

Lopez Dahab 9M + 4S 4M + 5S

Jacobian 10M + 4S 5M + 5S

Standard 12M + 1S 7M +5S
M is number of FF-multiplications,and S is number of FF-squaring Operations

Considering the computational complexity and hardware complexity of various pro-

jective systems we have employed the PA and PD expressions derived using Lopez-Dahab

projective-coordinates and are given as [9],

X3 = x · Z3 + (X1 · Z2) · (X2 · Z1)

Z3 = (X1 · Z2 + X2 · Z1)
2

(5.24)

X3 = X4
1 + b.Z4

1 or X3 = X4
2 + b.Z4

2

Z3 = Z2
1 · X2

1 or Z3 = Z2
2 · X2

2

(5.25)

5.3.2 Point Multiplication Algorithm

There are several algorithms presented in the literature to achieve point multi-

plication namely, double-and-add algorithm(DAA), Non-adjacent-form(NAF) algorithm,

window-NAF (width-w NAF) algorithm, Right-to-left algorithm, Left-to-right algorithm,

Montgomery-ladder algorithm,Sliding-window-algorithm, and τ -adic-NAF (τ -NAF) algo-

rithm. The review of these algorithms is presented in [10]. Implementations of these
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algorithms are prone to different types of attacks and side-channel attacks are the most

dominant of the available attacks on the point-multiplication algorithms [2]. Each curve

operation is performed by a set of field operations, and each field operation has different

timing and power behavior. In SAA the timing(Timing-attack), and power(Power-attack)

variations of the curve operations are observed to encrypt the secret key. Power analysis

attack can be done by tracing power of a single key operation (simple power analysis at-

tack) or multiple traces of power (differential power analysis attack). In order to overcome

the timing and power-analysis attacks, Montgomery [11] developed an efficient algorithm

for point-multiplication to perform same set of curve operations independent of the key

value.

A projective-coordinate Montgomery point multiplication algorithm is presented in

Algorithm 5.2 [11], with point multiplication carried out in three stages. The first stage is

initialization stage, where affine coordinates are converted to projective coordinates. The

second stage is Main-loop, with set of PA and PD operations performed for m iterations.

The final stage is post process used to recover affine coordinates. It can be observed from

the algorithm that only projective X and Z coordinates along with affine x coordinate

are used to realize the curve operations(main-loop) to reduce computational complexity of

the algorithm. A modified Montgomery point multiplication algorithm is presented with

uniform addressing [5] by merging the execution paths of k=0 and k=1 using swapping

(X1 with X2 and Z1 with Z2). In [4] the initialization stage is merged with the main loop

to execute both stages with a single data-path.

The proposed modified Montgomery algorithm for point multiplication is presented

in Algorithm 5.3. This algorithm involves performing the finite field multiplication and

finite field squaring operations in parallel to each other without data-dependency. The

curve operations, PA and PD performed at each iteration remain to be same independent

of the key value, with each individual curve operation realized in multiple clock-cycles

to defend the side channel attacks. The field operations used to carry out curve opera-

tions(PA, PD) are scheduled appropriately to avoid data-dependency with no idle-cycles.
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Algorithm 5.2 Montgomery point-multiplication over GF (2m) in projective coordinates

[11]

Input: k = (ki−1, ..., k1, k0) with ki−1 = 1, P = (xP , yP ) ∈ E/GF (2m) . Output: Q =

kP = (x3, y3) .

Initialization : Affine to projective

1: X1 ← xP , Z1 ← 1, X2 ← x4P + b, Z2 ← x2P .

Main loop : Projective point addition and doubling

2: for t from i− 2 downto 0 do

3: if kt = 1 then

4: R← Z1, Z1 ← (X1Z2 +X2Z1)
2, X1 ← xPZ1+ X1X2RZ2.

R← X2, X2 ← X4
2 + bZ4

2 , Z2 ← R2Z2
2 .

5: else

6: R← Z2, Z2 ← (X1Z2 + X2Z1)
2, X2 ← xPZ2+ X1X2RZ1.

R← X1, X1 ← X4
1 + bZ4

1 , Z1 ← R2Z2
1 .

7: end if

8: end for

Post-process : Recover y and projective to affine

9: x3 ← X1/Z1.

10:y3 ← (xP +X1/Z1)[(X1 + xPZ1)(X2 + xPZ2) + (x2P+ yP )(Z1Z2)](xPZ1Z2)
−1 + yP

11: return (x3, y3) .

Algorithm 5.4 presents the post process stage of projective to affine conversion. It

is realized in twelve steps and each step involves an FF-multiplication operation. It is

also to be noted that step 9 of the Algorithm 5.4 involves an FF-inversion operation.

In general, FF-inversion is computed using Itoh-Tsujii’s algorithm [22] which employs

Fermat’s little theorem [8] or extended Euclidean algorithm (EEA) which employs greatest

common division algorithm. Since the hardware realization of EEA is complex compared

to that of ITA, the latter is preferred to compute FF-inversion, which requires a series

of FF-Squaring, and FF-Multiplications operations. In this paper, we have considered

the modified Itoh-Tsujii algorithm to compute FF-inversion improving the computation
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delay by using 4k exponentiation [1]. The data-path to accomplish FF-inversion is bound

to use same data-path of main-loop without additional hardware.

Algorithm 5.3 Modified Montgomery point-multiplication over GF (2m) in Lopez-Dahab

projective coordinates

Input: k = (ki−1, ..., k1, k0) with ki−1 = 1, P = (xP , yP ) ∈ E/GF (2m) and c, b ∈

GF (2m) , where c =
√
b.

Output: Q = kP = (x3, y3) .

Initial Values: X1 ← 1, Z1 ← 0, X2 ← xP , Z2 ← 1.

Affine to projective conversion and PA and PD FF-operations

for t from i− 1 downto 0 do

Finite-field multiplication Finite-field squaring

1: Z1 ← X2Z1 1: T2 ← X2
2

2: X1 ← X1Z2, X2 ← c 2: T1 ← Z2
2 , Z2 ← (X1 + Z1)

2

3: X2 ← X2T1 + T2 3: X2 ← X2
2

4: X1 ← X1Z1 4: No operation

5: T2 ← T1T2, Z1 ← Z2 5: No operation

6: X1 ← xpZ1 +X1, Z2 ← T2 6: No operation

if (t 6= 0 and ki 6= ki−1) or (t = 0 and ki = 0) then

Swap (X1, X2) , Swap (Z1, Z2)

end if

end for

Post process: Recovering affine coordinates

x3 ← X1/Z1.

y3 ← (xP +X1/Z1)[(X1 + xPZ1)(X2 + xPZ2) + (x2P+ yP )(Z1Z2)](xPZ1Z2)
−1 + yP

return (x3, y3)
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Algorithm 5.4 Recovering affine coordinates

1: X2 ← X2Z1 7: T2 ← X2Z1 + T2

2: T2 ← X1X2 8: Z2 ← T1Z1

3: Z2 ← X1Z2 +X2 9: X2 ← X1inv(Z2) + xp, T1 ←

T2

4: Z1 ← Z1Z2, T1 ← xp 10: Z1 ← T1inv(Z2), T2 ← Z1

5: X1 ← T1X2 11: X1 ← X1inv(Z2), Z1 ← yp

6: T2 ← T1Z2 + T2, X2 ← yp 12: X2 ← X2T2 + Z1

5.3.3 Proposed Point Multiplication Architecture

The proposed point multiplication architecture developed for the modified Mont-

gomery Algorithm 5.3 is shown in Fig. 5.8. This architecture requires digit-serial multi-

plier, power-block, Registers, Multiplexers and a control unit to perform point multipli-

cation. Point multiplication is realized by performing PA and PD operations on the point

P(xP , yP ) for each bit of m-bit key K. During every clock-cycle a set of inputs are applied

to the digit-serial multiplier and power-block via multiplexers (M1,M2,&M3) and the

outputs are stored into the registers T1, T2, X1, X2, X3 and X4. The inputs to be applied

to any FF-operation unit and outputs to be stored into the particular register at each

clock cycle is controlled by the control unit. As explained in the algorithm 5.3, each main

loop iteration involves FF-multiplication, FF-addition, and FF-squaring operations.

FF-multiplication is realized by the digit-serial multiplier presented in Sec 5.2, which

processes D bits of data at each clock cycle. If A, B are two m-bit operands then m bits

of operand A are multiplied with D bits of operand B and this process is repeated for

m/D iterations. The core multiplication of m-bits of A and D-bits of B is performed by

the proposed bit-parallel multiplier.

The post process step in Algorithm 5.3 involves FF-inversion operation realized

by using FF-squaring and 41 operations based on the analysis presented in [8, 69]. The

hardware realization of FF-squaring and 41 operations for order m=163 are shown in the

Figs. 5.9 and 5.10, respectively. It is to be observed that 41 is realized as a direct structure

instead of cascading two FF-squaring modules to reduce the computational delay. It may
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be noted that each iteration of main loop in algorithm 5.2 involves FF-addition operation

and this FF-addition operation is implemented by bit-wise XOR operation on the given

two operands.

c

Z1

X1

Z2

X2 Digit 
serial

Multiplier

Z1

Z2

T1

T2

X1

O1

T2

X2

M1T1

X2

X2

Z1

X1

Z2

Z1

Arithmetic unit

   

xp

T1

X1

SQR

O3

M2

M3

M4

M7

M6

M10

M9

M8

T2

O2

O1

O2

O1

O1

O1

O2

O3

O3

O3

T2

xp

Z1

X1

M5

yp

Register 

file

Critical path

M8

O1

m

m

m

M

U

X

2
1

4
1

4
1

4
1

m

m

O3

Power Block

m

X2

m

m

m

m

clk
     Controller blk

Reset

C0

C1

C2

C3

Z2

T2

A

B
m

m

m

m

m

m

Figure 5.8 Proposed Architecture of Point Multiplication.

a0
a161a83a1

a160
a162a82

a160 a160
a161

S0 S1 S2
S3 S6 S8 S159

S161
S162S160

a162a161
a84

a82

a3

a83

a160

a161 a4
a160 a161

a158 a80
a158

a160 a161a159a81
a159

Figure 5.9 Architecture of the 21 module over GF(2163).



Point Multiplication over GF(2m) using Polynomial Basis 77

a0 a160

a158
a81a158a41

a119
a158

a80
a121

a160 a159

a119

a122

a158

a161

a159

a162

Q0
Q1 Q10 Q161 Q162

a161

a161

a121 a124

a123a84

a120 a81a161a159
a81

a160

Q160

a40
a158

a80
a120

a118 a159
a79

a157

Figure 5.10 Architecture of the 41 module over GF(2163).

Analytical Results

Critical Path Delay

The critical path of proposed point multiplication architecture consists of 2:1 mul-

tiplexer, FF-adder, FF-multiplier, and two 4:1 multiplexers. The critical path delay of

the digit-serial multiplier for general irreducible polynomial is derived in sec 5.2.4 and is

given by

Tmul = (dlog2(D)e+ 1)TX + TNX + 2TNA + TD (5.26)

where, D is digit size,TNA, TNX , TX , and TD are delays of two-input NAND gate, two-

input XNOR gate, two-input XOR gate, and D-flipflop respectively. The delay of m-bit

FF-adder realized using m XOR gates is equal to the delay of two-input XOR gate.

If Tmul, TX , Tmux denote delays of FF-multiplier, FF-adder, and two-input multiplexer,

respectively, then critical path delay is given by the following expression

TCP = Tmul + TX + 5Tmux (5.27)

Substituting the Tmul value(Eq.(5.26)) in the Eq.(5.27) we have

TCP = (dlog2(D)e+ 1)TX + TNX + 2TNA + TD + TX + 5Tmux (5.28)

Similarly, the critical path delay of the proposed point multiplication architecture for irre-

ducible trinomials and irreducible pentanomials are computed and presented in Table 5.7.

It is to be noted that the critical-path delay of the point multiplication architecture

depends on the critical-path delay of the FF-multiplier. In addition, the performance
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Table 5.7 Critical-path delay of Proposed Point Multiplication Architecture

F(x) Critical path delay

General (dlog2(D)e+ 1)TX + TNX + 2TNA + TD + TX + 5Tmux

Trinomial (dlog2(D)e+ 2)TX + TNA + TD + TX + 5Tmux

Pentanomial (dlog2(D)e+ 2)TX + TNA + TD + TX + 5Tmux

of point multiplication architecture depends on the number of clock cycles required for

point-multiplication. The number of clock cycles needed to perform point-multiplication

is equal to the sum of the clock cycles required for main loop and for the post process

stage. Since the main loop involves m iterations and each iteration takes six clock cycles,

the total number clock cycles required for the main loop are equal to 6 × m. The clock

cycles required for post process stage is equal to the clock-cycles required to recover affine

coordinates (clock cycles for FF-inversion and others). The total number of clock cycles

required to compute point multiplication are

CPM = CML + CQuad +MInv + Cothers (5.29)

where, CML denotes the clock cycles required for main loop, CQuad denotes total clock

cycles required to achieve 4((m−1)/2)exponentiation in FF-inversion, MInv represents clock

cycles required for multiplications in FF-inversion and Cothers denotes clock-cycles required

for post process stage excluding FF-inversion.

Table 5.8 presents the clock cycles required for each FF-operation in the main loop

and the post process stage of point multiplication algorithm. The number clock cycles

required to complete point multiplication using the proposed architecture for GF(2163)

and GF(2233) (m=163, 233 in Eq.(5.29) are 1020 and 1450 respectively.

5.3.4 Implementation Results

This section presents the implementation results (place and route) of the proposed

point multiplication architecture over GF(2163) and GF(2233) on Virtex-5 (XC5VLX110)

using Xilinx ISE tool. The performance analysis of the proposed point multiplication

architecture for different digit sizes over GF(2163) is presented in Table 5.9. It may be

noted that as the digit sizes varies from 6 to 82 the computation time decreases from 8.19
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Table 5.8 Clock cycles for Point Multiplication

Stage FF-operation clock-cylces

main loop m iterations CML = m× Cm
Post process FF-inversion CQuad =

∑l
i=2

ui
us

, MInv = (|log2(m− 1)|+ H(m− 1)− 1)

others Cothers = 12

where, m denotes field order, ui addition chain element, us represents maximum cascade size of 4k

exponentiation, H is hamming weight of m-1, l is length of addition chain, and Cm denotes clock cycles

for one iteration(main loop)

us to 1.07 us. It may also be noted that the area-time product decreases from 63.1 to 49

as the digit size is varied from 6 to 15 and increases from 49 to 77.6 as the digit size is

varied from 15 to 82. Hence, the digit size of D=15 gives best area-time efficiency for the

proposed point multiplication architecture over over GF(2163).

Table 5.9 Performance comparison of the Proposed Point Multiplication Architecture for dif-

ferent digit size multiplication over GF(2163).

Digit size Fmax Area critical-path Time ATP

(MHz) (LUTs) (ns) (us) (× 10−6)

6 124 7792 8.03 8.19 63.1

8 154 8950 6.49 6.62 59

11 206 10623 4.84 4.94 52

15 261 12566 3.82 3.9 49

24 369 19254 2.71 2.76 51.9

33 478 25742 2.09 2.13 54

55 704 44266 1.42 1.44 61.9

82 952 72058 1.05 1.07 77.6

The performance analysis of the proposed point multiplication architecture for dif-

ferent digit sizes over GF(2233) is presented in Table 5.10. It may be noted that as the

digit sizes varies from 16 to 59 the computation time decreases from 7.67 us to 2.65 us.

It may also be noted that the area-time product decreases from 140 to 135 as the digit

size is varied from 16 to 39 and increases from 139 to 143 as the digit size is varied from
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47 to 59. Hence, the digit size of D=39 gives best area-time efficiency for the proposed

point multiplication architecture over GF(2233).

Table 5.10 Performance comparison of the Proposed Point Multiplication Architecture for

different digit size multiplication over GF(2233).

Digit size Fmax Area critical-path Time ATP

(MHz) (LUTs) (ns) (us) (× 10−6)

16 189 18314 5.29 7.67 140

39 395 37008 2.53 3.66 135

47 454 43808 2.2 3.19 139

59 546 54296 1.83 2.65 143

Table 5.11 presents the performance comparison of the proposed point multiplication

architecture over GF(2163) with that of other point multiplication architectures reported

in the literature [47,51–55]. It may be concluded that the proposed architecture achieves

reduction in computation time of around 58%, 54%, 28%, 95%, and 20% when compared

to the architectures [47, 51–53]. It may also be concluded that the architectures [54, 55]

achieve better computational time compared to the proposed architecture at the cost of

more area. However, the proposed architecture achieves area-time efficiency of around

48%, 43%, 60%, 89%, 4%, 35%, and 37% when compared to the architectures reported in

the literature [47, 51–55], respectively.

Table 5.12 presents the performance comparison of the proposed point multiplication

architecture over GF(2233) with that of other point multiplication architectures reported

in the literature [51, 52, 56–58, 70]. It can be concluded that the proposed architecture

achieves reduction in computation time of around 70%, 81%, 85%, 96%, 94%, and 46%

when compared to the architectures [51,52,56–58,70]. It may also be concluded that the

proposed architecture achieves area-time efficiency of around 40%, 69%, 83%, 85%, 80%

and 53% when compared to the architectures reported in the literature [51,52,56–58,70],

respectively.
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Table 5.11 Area and time complexities comparison for GF(2163).

Design Field FPGA Fmax clock Area Time ATP % Reduction

(MHz) cycles (LUTs) (us) (× 10−3) in ATP

[47] 163 virtex-5 147 - 10195 9.5 96 48

[51] 163 virtex-5 167 1429 10176 8.6 87 43

[52] 163 virtex-5 250 1371 22936 5.48 125 60

[53] 163 virtex-5 550 52012 4807 94.6 454 89

[54] 163 virtex-5 145 - 23135 2.22 51 4

[55] 163 virtex-5 211 547 29309 2.6 76 35

[59] 163 virtex-5 228 1119 16090 4.91 79 37

Proposed 163 virtex-5 261 1021 12566 3.9 49 –

Table 5.12 Area and time complexities comparison for GF(2233).

Design Field FPGA Fmax clock Area Time ATP % Reduction

(MHz) cycles (LUTs) (us) (× 10−3) in ATP

[51] 233 virtex-5 156 - 18097 12.3 225 40

[52] 233 virtex-5 192 3825 22340 19.9 444 69

[56] 233 virtex-5 132 3277 32874 25 821 83

[57] 233 virtex-5 50 5613 8612 112 964 85

[58] 233 virtex-5 264 18900 9576 71.5 684 80

[70] 233 virtex-5 360 - 42404 6.84 288 53

Proposed 233 virtex-5 395 1450 37008 3.66 135 –

5.4 Conclusions

In this chapter, a modified Montgomery-ladder algorithm is presented to reduce

the number of clock cycles required for point-multiplication. An area-time efficient ar-

chitecture is developed for the implementation of the proposed point-multiplication al-

gorithm over irreducible pentanomial GF(2163) and irreducible trinomial GF(2233). The

FF-inversion and FF-multiplication are two resource consuming and time critical opera-



Point Multiplication over GF(2m) using Polynomial Basis 82

tions in point-multiplication. Hence, area-time efficient digit-serial multiplier is designed

by operating shift and reduction operations(SARs) in parallel (for every bit of the digit)

and employing NAND gates in the computation of partial products. The reduction in

the computation time is achieved by realizing modified Itoh-Tsujii algorithm using 4K

exponentiation modules to implement FF-inversion. The implementation results of the

proposed architecture on Virtex-5 FPGA over the fields GF(2163) and GF(2233) show that

the proposed design has less computation time and less area-time product compared to the

similar architectures reported in the literature. Hence, the proposed point multiplication

architecture may be recommended for ECC applications targeting less area-time product.

However, some ECC applications demand high speed architectural design and is achieved

by pipelining and parallelism techniques. Consequently, the next chapter focuses on the

design of high-speed and low area-time complexity architectures for point multiplication

suitable for ECC applications.



Chapter 6

High Speed and Area-Time Efficient Point

Multiplication Architectures over GF(2m) using

Polynomial Basis

This chapter presents the design of high speed and area-time efficient point multipli-

cation architectures targeting ECC applications. These architectures are developed based

on modified Montgomery algorithm over GF(2m) using polynomial basis. The proposed

architectures are modeled using verilog HDL and simulated to verify the functionality us-

ing Xilinx Vivado tools. The HDL netlist is synthesized targeting Xilinx Virtex-5 FPGA

and implemented to compare with the similar point multiplication architectures available

in the literature.

6.1 Introduction

Advances in communication technology and availability high bandwidth enables mil-

lions of devices communicate confidential information over the Internet. Securing these

technological devices has become an absolute necessity in this emerging digital world.

The Elliptic Curve-Cryptography (ECC) suggested by Koblitz and Miller has captivated

considerable attention when compared to similar cryptosystems available in the literature

owing to its high security per bit ratio and small key size. The high performance of ECC

relies on the finite-field arithmetic operations. In the previous chapter, we have presented
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a low area-time complexity point multiplication architecture based on the modified Mont-

gomery algorithm. This architecture is found to achieve best area-time product compared

to the similar architectures at the cost of more area. However, some ECC applications

demand both high speed and low area-time which can be achieved by exploring strategies

like pipelining and Parallelism. In addition, NIST recommended irreducible trinomials

and irreducible pentanomials require less hardware and computational complexity com-

pared to the case of general irreducible polynomials. Hence, it is attempted in this work

to design a high speed and a low area-time complexity point multiplication architectures

employing the pipelining and parallelism strategies for the case of NIST irreducible tri-

nomials and Pentanomials.

Some architectures are proposed to minimize the clock cycles required for point-

multiplication by introducing parallelism at instruction level and architecture level [6,47–

49,51].

In this chapter, we have presented a two stage point multiplication architecture

and its corresponding area and delay formulations. The proposed point multiplication

is developed based on the modified Montgomery point multiplication algorithm. The

classic Montgomery algorithm for point multiplication is modified to perform parallel FF-

multiplication and FF-squaring operations. The area and delay formulations are derived

and the performance is compared with the existing point multiplication architectures in

the literature. In addition, a three stage point multiplication architecture proposed for

the case of irreducible trinomials is also presented. This architecture is developed by

realizing the FF-inversion operation required for point multiplication using the proposed

parallel Itoh-Tsujii algorithm.

6.2 Area-time Efficient point multiplication architecture over

GF(2m)

In this section, the design and performance analysis of the proposed two stage point

multiplication architecture are presented. First, mathematical preliminaries for the pro-

posed modified Montgomery algorithm are presented. Followed by, hardware realization
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of the proposed point multiplication algorithm and the corresponding area and time com-

plexity formulations are presented. Finally, the comparison of implementation results with

the similar point multiplication architectures available in the literature are presented.

6.2.1 Point Multiplication Algorithm over GF(2m)

Algorithm 6.1 presents the proposed modified Montgomery algorithm for point mul-

tiplication. In this Algorithm 6.1, the finite field multiplication and finite field squaring

operations are subjected to perform in parallel to each other without data-dependency.

The FF-operations performed at each iteration remain to be same irrespective of k value

so as to defend the timing and power analysis attack. In the proposed scheme, the point

addition (PA) and point doubling (PD) operations are performed in multiple steps mak-

ing it difficult to trace particular FF-operation in a particular step of the algorithm.

Each main loop iteration is executed in six clock cycles with each FF-operation timed

appropriately to avoid data-dependency with no idle-cycles. The post process stage is

realized using Algorithm 6.2 and it involves an FF-inversion operation. The Itoh-Tsujii’s

algorithm [22], and extended euclidean algorithm (EEA), are the most used algorithms

for computing FF-inversion. The ITA uses Fermat’s little theorem [8], while the EEA

computes FF-inversion using the greatest common divisor approach. ITA is the most

commonly used FF-inversion algorithm, which requires a sequence of FF-Squaring and

FF-Multiplications operations to compute FF-inversion.

In this work, the modified Itoh-Tsujii algorithm [1] is used to compute FF-inversion

for reducing the computational delay by employing 4k exponentiation. The data-path

to accomplish FF-inversion is bound to use the same data-path of main-loop costing no

extra hardware.
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Algorithm 6.1 Modified Montgomery-ladder point-multiplication algorithm over GF

(2m) in projective-coordinates

Input: k = (ki−1, ..., k1, k0) with ki−1 = 1, P = (xP , yP ) ∈ E/GF (2m) and c, b ∈

GF (2m) , where c =
√
b.

Output: Q = kP = (x3, y3) .

Initial Values: X1 ← 1, Z1 ← 0, X2 ← xP , Z2 ← 1.

Main-loop: PA and PD operations

for t from i− 1 downto 0 do

FF-multiplication FF-squarer

cc1: Z1 ← X2Z1 cc1: T1 ← Z2
2

cc2: X2 ← cT1 + T2 cc2: T2 ← X2
2

cc3: X1 ← X1Z2, cc3: X2 ← X2
2

cc4: Z2 ← T1T2 cc4: No operation

cc5: T2 ← X1Z1 T1 ← xp cc5: Z1 ← (X1 + Z1)
2

cc6: X1 ← T1Z1 + T2 cc6: No operation

if (t 6= 0 and ki 6= ki−1) or (t = 0 and ki = 0) then

Swap (X1, X2) , Swap (Z1, Z2)

end if

end for

projective to affine conversion

x3 ← X1/Z1.

y3 ← (xP +X1/Z1)[(X1 + xPZ1)(X2 + xPZ2) + (x2P+ yP )(Z1Z2)](xPZ1Z2)
−1 + yP

return (x3, y3)
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Algorithm 6.2 Projective to affine conversion

cc1: X2 ← X2Z1 cc7: T2 ← X2Z1 + T2

cc2: T2 ← X1X2 cc8: Z2 ← T1Z1

cc3: Z2 ← X1Z2 +X2 cc9: X2 ← X1inv(Z2) + xp,

T1 ← T2

cc4: Z1 ← Z1Z2, T1 ← xp cc10: Z1 ← T1inv(Z2), T2 ←

Z1

cc5: X1 ← T1X2 cc11: X1 ← X1inv(Z2), Z1 ←

yp

cc6: T2 ← T1Z2 + T2, X2 ← yp cc12: X2 ← X2T2 + Z1

Table 6.1 Operation-wise comparison of the Point-multiplication Algorithm

Design Algorithm # FF # FF # FF #PAs #PDs

Squarings Multiplications Additions

[47,51–53,55,59] Montgomery 5(m-1) 6(m-1) 3(m-1) m-1 m-1

Ladder

Proposed Modified 4m 6m 3m m m

Montgomery

Ladder

In Table 6.1, the comparison of main-loop FF-operations and curve operations of the

proposed point-multiplication algorithm with the existing point-multiplication algorithms

are presented.

It can be observed from the Table 6.1 that the proposed modified Montgomery

point multiplication algorithm requires around m number of FF-squarings operations less

when compared to the existing Montgomery point multiplication algorithms presented in

the literature [47, 51–53, 55, 59]. It may also be noted that the number of PA and PD

operations are increased by one when compared to [47, 51–53, 55, 59]. The increased PA

and PD operations are due to the merging of initialization stage with the main loop so

as to avoid the separate hardware for initialization.
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Table 6.2 presents the hardware and latency comparison of FF-inversion realized

using the proposed modified Itoh-Tsujii algorithm [1] with that of the FF-inversion op-

eration used by the point-multiplication architectures [47, 51–53, 55, 59] considered for

comparison.

Table 6.2 Hardware and Latency comparison of modified Itoh-Tsujii Algorithm

Design # FF # FF #FF latency

Squarings Multiplications Quad (clock cycles)

[51] (m-1) l + 1 - L(l+1)+[
L(l + 1) +

∑l
i=2

⌈
ui−ui−1

us

⌉]

[47] - l+1 (m-1)/2 L(l+1)+[
(l + 1) +

∑l
i=2

⌈
ui−ui−1

us

⌉]
[52] - - - 2m/d

[59] (m-1) | log2(m− 1)|+ H(m− 1)− 1 - (m-1)/2 + 3(H(m− 1)

+| log2(m− 1)|-1) + 3

[54] (m-1) | log2(m− 1)|+ H(m− 1)− 1 - (m-1)/2 + 2(H(m− 1)

+| log2(m− 1)|-1)

[55] (m-1) | log2(m− 1)|+ H(m− 1)− 1 -
∑l

i=2

⌈
ui
5

⌉
++2(H(m− 1)

+| log2(m− 1)| − 1)

Proposed - | log2(m− 1)|+ H(m− 1)− 1 (m-1)/2
∑l

i=2

⌈
ui
us

⌉
+2(H(m− 1)

MITA [1] +| log2(m− 1)| − 1)

6.2.2 Proposed Point Multiplication Architecture

In this work, we have developed the architecture shown in the Fig. 6.1 for the

hardware realization of the point multiplication over GF(2m) using Algorithm 6.1. This

architecture is designed using FF-multiplier, multiplexers, and power-block employing

two-stage pipelining. The functionality of FF-multiplier and power block are explained

in Chapter 4 (Sec 4.2.3). The multiplexers M1, M2,and M3 are used to provide inputs to

the FF-multiplier and power-block. During every clock-cycle, the control unit issues a set
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of control signals to the multiplexers and registers. The input data to the FF-multiplier

and power-block is received either from the registers (X1, X2, Z1, Z1, T1, and T2) or from

the external source(xp, yp) through M5 multiplexer and it depends on the status of control

signals. At the end of each clock-cycle, the results are stored in the registers (X1, X2, Z1,

Z1, T1, and T2) and this procedure is repeated for m iterations, where m is the order of

the field.
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Figure 6.1 Proposed Architecture of Point Multiplication.

The functionals blocks required to realize the point multiplication architecture are

presented below.
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Registers

The registers X1, X2, Z1, Z1, T1, and T2, store the intermediate results of power-

block and FF-multiplier. The value to be stored in registers X2, Z1, Z1, T1, and T2, for a

particular clock-cycle is applied via multiplexers M6, M7, M8, M9 and M10,respectively,

and is controlled by the control signals C4 and C5. The register X1 is applied with output

O1 based on the control signal C5. The values stored in the registers are applied as inputs

to the power-block and FF-multiplier through multiplexers M1 ,M2 and M3 based on the

control signals C1, C2 and C3 respectively.

FF-adder

The FF-adder is placed at the output of FF-multiplier to perform add on fly FF-

addition avoiding an extra clock cycle for FF- addition. The FF-addition is performed by

applying logical XOR operation on m bits of the two operands in parallel.

Data flow diagram

Fig. 6.2 demonstrates the data flow diagram for the proposed Modified Montgomery-

ladder point-multiplication algorithm. It explains the organization of hardware blocks

employed in the proposed architecture to accomplish the main loop iteration in six clock

cycles (except the first iteration). It is to be observed that, at each clock cycle FF-

squaring and FF-multiplication are executed in parallel. It is also to be observed that

FF-multiplication accomplished in two clock cycles(two stage pipelining) and FF-squaring

is accomplished in one clock cycle. It may be noted that, one clock cycle is saved per each

iteration by overlapping the FF-addition and FF-multiplication operations of the current

iteration with the FF-operations of next iteration without any data discrepancy.
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Figure 6.2 Data flow diagram for the Proposed Modified Montgomery Point Multiplication

Algorithm

6.2.3 Hardware and Delay Complexity Analysis

Hardware Complexity Analysis

This section presents the estimation of hardware complexity of the proposed point

multiplication architecture. The hardware complexity is expressed in terms of d input

LUTs, and the d value varies with target FPGA device. The complexities are computed

based on the analysis presented in [1].

The total area complexity of the proposed point multiplication architecture shown

in Fig. 6.1 can be computed by the summation of area complexity of each building block

as
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PMAArea =3m× lut (2 + log2 2) + 9m× lut (4 + log2 4) +
2(m− 1)

2

+ 2m× lut(x) + (
2τ∑
i=m

2× LUThkmul
(⌈m

2

⌉)
+

2τ∑
i=m

LUThkmul

(⌊m
2

⌋)
+ 2m− 1)

(6.1)

where, LUThkmul(
m
2

) = 2× LUThkmul(m4 ) + LUThkmul(
m
4

) +m− 1 and x is the size of bit

element in the binary sequence with maximum number of inputs in a 41 exponentiation

block(x varies with field order).

For example, the size of x will be equal to 9 for an irreducible pentanomial GF(2163)

and the total area complexity is given as

PMAArea =17m− 1 + (
2τ∑
i=m

2× LUThkmul
(⌈m

2

⌉)
+

2τ∑
i=m

LUThkmul

(⌊m
2

⌋)
+ 2m− 1)

(6.2)

Similarly for an irreducible trinomial GF(2233), the size of x will be equal to 4 and the

total area complexity is given as

PMAArea =15m− 1 + (
2τ∑
i=m

2× LUThkmul
(⌈m

2

⌉)
+

2τ∑
i=m

LUThkmul

(⌊m
2

⌋)
+ 2m− 1)

(6.3)

Delay Complexity Analysis

The architecture developed for point multiplication is a two-stage pipelined structure

(see Fig. 6.1 ) and the delay can be estimated by computing the maximum stage delay

and the clock cycles needed to perform ECC point-multiplication operation. The critical

path delay of the pipelined architecture is equal to the maximum stage delay. It may be

observed from the Fig. 6.1 that the proposed Point multiplication architecture consists

of two critical paths, one through the power-block and the other via FF-multiplier. The

delays of each building block of the proposed architecture are computed in terms of d-input

LUT delay [1] and are estimated as follows,

FF-multiplier: The hybrid Karatsuba multiplier employed consists of four stages

and the delay of FF-multiplier is equal to the summation of delays of splitting stage (Dsp =
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logd(m
τ

)), classical-multiplier stage (DTh = logd2τ), alignment stage (Dcm = log2(
m
τ

)) [62]

and modular reduction stage (Dmod = logdt). The FF-multiplier delay is given by the

following expression

DFFmul = Dsp +DTh +Dcm +Dmod (6.4)

Multiplexer: The multiplexer delay with x inputs and log2 x selection lines can be

computed by Dmux = logd (x+ log2 x).

FF-adder: Since the FF-addition involves logical XOR operation on two bits, the

delay of FF-adder is equal to delay of a single XOR gate(one LUT delay).

Power-block: The power-block delay is the summation of the delays across x:1

multiplexer and the cascaded 41 modules as shown in the Fig. 6.1. It can be computed

by the following expression,

#DPowblk = Dpb +DMUXP

=
∑

D41 + dlogd (x+ log2 x)e .
(6.5)

where, Dpb is the cascaded delay of 41 modules and DMUXP
is the Multiplexer delay. The

delay of single 41 is equal to longest of delay taken to generate output bit sequence of 41.

The critical-path delay(DPM) of the Proposed pipelined point-multiplication archi-

tecture is the maximum of delays across the critical-path1(CP-1) and critical-path2(CP-2).

The delay expressions of critical-path1 and critical-path2 are given as

DCP−1 = DFFmul +DMUX(M4) +DMUX(M6) +DMUX(M11) +DADD (6.6)

DCP−2 = DMUX(M3) +Dpb +DMUXP
(6.7)

Using Eq.(6.6) and Eq.(6.7), the critical path delay of the Proposed multiplication archi-

tecture can be computed as

DPM = Max(DCP−1, DCP−2) (6.8)

where, DPM varies with the order of the field.
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The performance of the point-multiplication architecture depends on the critical-

path delay of the proposed architecture. The higher the critical-path delay, the lower

the operating frequency of the architecture. To improve the operating frequency, the

point-multiplication architecture should be pipelined at the appropriate stages of the

critical path. Considering a L staged pipelined architecture, the critical path delay DPM

reduces to DPM/L. But, increasing the number of pipelined stages will increase the

clock cycles required for multiplication. So the number of pipelined stages required for

the point-multiplication architecture are chosen in such a way that it maintains optimal

frequency in all the critical paths with minimal number of clock-cycles required for point-

multiplication.

The critical path delay of the proposed two-staged point multiplication architecture

is given as

PMAdelay =DMUX(M11) +DMUX(M1) +Dsp +DTh

(or)Dcm +Dmod +DMUX(M4) +DMUX(M6) +DADD

PMAdelay = logd (2 + log2 2) + logd (4 + log2 4) + logd

(m

τ

)
+ logd 2τ

(or) log2

(m

τ

)
+ logd t + logd (2 + log2 2) + logd (4 + log2 4) + 1

(6.9)

where, τ is threshold multiplier size. For example, the critical path delay for GF(2163)) is

shown in the Fig. 6.3 and it is to be noted that the delay is equal to 7 LUT’s(7 × target

FPGA LUT delay ).

Estimation of computation time

The computation time of the proposed point multiplication architecture is

TPM = CPM × TP (6.10)

where, CPM denotes clock cycles required to perform point-multiplication and TP repre-

sents the time period of the clock

It may be noted from Algorithm 6.1 that the number of clock cycles required for

point-multiplication is equal to the summation of clock cycles required for m main-loop

iterations and the clock cycles required for post process stage and is given by
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Figure 6.3 The critical-path of the proposed architecture (GF(2163)).

CPM = CML + CPA (6.11)

where, CML denotes total clock-cycles required for main loop and CPA represents clock-

cycles required for post process stage.

CML = m× Cm (6.12)

where, m denotes field order and Cm denotes number of clock cycles required for one

iteration of main loop

CPA = CINV + CAdditional (6.13)

where, CINV represents clock cycles required to compute FF-inversion and CAdditional

denotes clock-cycles required for post process stage excluding CINV

CINV = CQuad + LMInv (6.14)

where, CQuad denotes total clock-cycles required for exponentiation and MInv represents

clock-cycles required for multiplications in FF-inversion

CQuad and MInv are computed as

CQuad =
l∑

i=2

⌈
ui
us

⌉
(6.15)
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where, ui element in the addition chain and us maximum cascade size of 4k exponentiation

MInv = (|log2(m− 1)|+ H(m− 1)− 1) (6.16)

CPM = m× Cm + CQuad + LMInv + CAdditional (6.17)

where, L denotes number of pipelined stages

For example, the clock cycles required for the proposed two stage point multiplica-

tion architecture to perform one point multiplication over GF(2163) is given as 6× 163 +

33 + 18 + 13 = 1042

6.2.4 Implementation Results

The performance of the proposed point-multiplication architecture is compared with

the point-multiplication architectures reported in the literature [47,51–55,59]. The archi-

tectures proposed for hardware realization of Point multiplication over Galois field with

field orders m=163, and m=233 are modeled using verilog and implemented on Virtex-5

FPGA technology to enable fair comparison with the relevant reported architectures im-

plemented using the same FPGA technology. The comparison of time-complexity of the

proposed two stage point-multiplication architecture is presented in Table 6.3 to compare

with that of other architectures reported in the literature.

The performance of the proposed point-multiplication architecture over GF(2163)

is presented in Table 6.4 to compare with that of others architectures reported in the

literature [47, 51–53, 55, 58, 59, 71]. It may be observed from the results that the archi-

tectures [47, 51, 52, 55, 59] require 4%, 4%, 60%, 66%,and 40%, respectively, more area

compared with the proposed architecture when implemented using Virtex-5 FPGA tech-

nology. It may also be noted that the architectures [47,51–53,55,58,59,71]reported in the

literature require more area-time complexity of around 34%, 27%, 49%, 86%, 17%, 79%,

20%, and 76%, respectively, when compared with the proposed architecture.

Table 6.5 presents the performance of the proposed architecture over GF(2233) and

other architectures reported in the literature [51,52,56–58,70,72]. It may be noted from the

results that the architectures [51,52,56,70] require 21%, 37%, 56%, and 66%, respectively,
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Table 6.3 Time-complexity comparison of the Proposed Point Multiplication architecture over

GF(2m)

Design latency(clock cycles) critical-path delay

[51] 2mL+
[
L(l + 1) +

∑l
i=2

⌈
ui−ui−1

us

⌉]
+ [7 + 9L] logd (2 + log2 2)+logd (4 + log2 4)+3

[47] m · 7 + m
3
· 15 +

[
L(l + 1) +

∑l
i=2

⌈
ui−ui−1

us

⌉]
+ 7 2logd (4 + log4 2)+2

[59] 5 + (6) (m− 1) + (m− 1)/2 + 3(H(m− 1) log2(n+ 2r)+logd (2 + log2 2)+1

+| log2(m− 1)|-1) + 31

[54] 3(w − 1)d+ 5 (2w − (w + 1)) + 7d logd(m
τ

))+ logd2τ)

[55] 3m +
∑l

i=2

⌈
ui
5

⌉
+ –

+2(H(m− 1)|+ | log2(m− 1)| − 1)

proposed 6m+
∑l

i=2

⌈
ui
us

⌉
+ 2(H(m− 1) log2(

m
τ

)+ logdt + logd (4 + log2 4)

work +| log2(m− 1)| − 1) + 13 +logd (2 + log2 2) + 1

L is number of pipeline stages, l is length of addition chain, us is maximum cascade size, H is hamming

weight of m-1,ui is element in the addition chain, d is digit size, w is window size,n is number of

segments in a multiplier, r is r-nomial irreducible polynomial, τ is threshold multiplier size

Table 6.4 Performance comparison of the proposed Point Multiplication Architecture with the

existing Point Multiplication Architectures over GF(2163)

Design Field FPGA Fmax clock Area Time ATP % Reduction

(MHz) cycles (LUTs) (us) (× 10−3) in ATP

[47] 163 virtex-5 147 - 10195 9.5 96 34

[51] 163 virtex-5 167 1429 10176 8.6 87 27

[52] 163 virtex-5 250 1371 22936 5.48 125 49

[53] 163 virtex-5 550 52012 4807 94.6 454 86

[55] 163 virtex-5 211 547 29309 2.6 76 17

[58] 163 virtex-5 290 13000 6959 44.69 310 79

[59] 163 virtex-5 228 1119 16090 4.91 79 20

[71] 163 virtex-5 106 3426 8457 32.3 270 76

Proposed 163 virtex-5 158 1042 9760 6.5 63 –
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Table 6.5 Performance comparison of the proposed Point Multiplication Architecture with the

existing Point Multiplication Architectures over GF(2233).

Design Field FPGA Fmax clock Area Time ATP % Reduction

(MHz) cycles (LUTs) (us) (× 10−3) in ATP

[51] 233 virtex-5 156 - 18097 12.3 225 42

[52] 233 virtex-5 192 3825 22340 19.9 444 70

[56] 233 virtex-5 132 3277 32874 25 821 84

[57] 233 virtex-5 50 5613 8612 112 964 86

[58] 233 virtex-5 264 18900 9576 71.5 684 80

[70] 233 virtex-5 360 - 42404 6.84 288 54

[72] 233 virtex-5 119 174047 6912 1462 10105 98

Proposed 233 virtex-5 158 1476 14137 9.2 130 –

more area than the proposed point-multiplication architecture when targeted on Virtex-5

FPGA technology. It may be also observed that the architectures [ [51, 52, 56–58, 70, 72]

require more area-time complexity of around 42%, 70%, 84%, 86%, 80%, 54%, and 98%,

respectively, than the proposed architecture.

6.3 High speed Point Multiplication Architecture over GF(2m)

for the case of irreducible Trinomials

In this section, the design and performance analysis of the proposed three stage point

multiplication architecture are presented. A parallel Itoh-Tsujii algorithm is derived to

realize the FF-inversion operation and a modified Montgomery algorithm is developed

to realize the point multiplication for the case of irreducible trinomials. The area and

time complexity formulations are derived and implemented for the case of irreducible

trinomials. A verilog model is developed to verify the functionality and the modeled

designed is implemented on Virtex-5 FPGA to compare with the similar architectures

available in the literature.
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6.3.1 Point multiplication Algorithm over GF(2m)

In the literature, several algorithms are presented to perform point-multiplication,

namely NAF algorithm, τ -NAF algorithm, Window-NAF algorithm, Montgomery algo-

rithm, double-add algorithm [10]. Each algorithm has its unique advantages and are used

based on the application requirement and the type of binary elliptic curve employed. For

example, NAF, and Window-NAF algorithms are used for applications with less hard-

ware complexity(Hamming weight is at most m/3, and the number of PA operations are

reduced) and τ -NAF algorithm is used in cases of Koblitz curves.

Realization of these point-multiplication algorithms are subjected to various kinds

of attacks and side channel attack is the predominant attack on point multiplication

algorithm [2]. In side channel attacks, the adversary studies the timing and power behavior

of each curve operation for multiple iterations of point multiplication algorithm to encrypt

the secret key. These side-channel attacks are of two sub-types namely timing attacks

and Power analysis attacks and the description of these attacks is presented in [73].

In order to overcome the timing and power-analysis attacks, Montgomery [11] has

presented a point multiplication algorithm with each iteration involving both PA and PD

curve operations. It will be difficult to trace a particular curve operation as timing and

power behavior remain to be same for each iteration of point multiplication algorithm.

Algorithm 6.3 presents the proposed modified Montgomery-algorithm for point-

multip-lication. It is to be observed that Algorithm 6.3 is realized in two steps, step

one performs initialization and curve operations, and step two performs projective to

affine conversion. It is also to be observed that the PA and PD curve operations at each

iteration remained to be same and the set of finite field operations required to realize

each of these curve operations are rearranged and regrouped to perform in parallel. The

regrouping of finite field operations makes it difficult to trace the type of curve operation.
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Algorithm 6.3 Modified Montgomery algorithm for point multiplication over GF (2m)

Input: k = (ki−1, ..., k1, k0) with ki−1 = 1, P = (xP , yP ) ∈ E/GF (2m) and c, b ∈

GF (2m) , where c =
√
b.

Output: Q = kP = (x3, y3) .

Initial Values: X1 ← 1, Z1 ← 0, X2 ← xP , Z2 ← 1.

Main-loop: Point Addition and Point Doubling operations

for t from i− 1 downto 0 do

FF-multiplication FF-squarer

cc1: Z1 ← X2Z1 cc1: T1 ← Z2
2

cc2: X1 ← X1Z2 cc2: T2 ← X2
2

cc3: X2 ← cT1 + T2 cc3: No operation

cc4: T2 ← X1Z1 cc4: Z1 ← (X1 + Z1)
2

cc5: Z2 ← T1T2 cc5: X2 ← X2
2

cc6: X1 ← Z1xp + T2 cc6: No operation

if (t 6= 0 and ki 6= ki−1) or (t = 0 and ki = 0) then

Swap (X1, X2) , Swap (Z1, Z2)

end if

end for

Recovering Affine Coordinates

x3 ← X1/Z1.

y3 ← (xP +X1/Z1)[(X1 + xPZ1)(X2 + xPZ2) + (x2P+ yP )(Z1Z2)](xPZ1Z2)
−1 + yP

return (x3, y3)

The second step of recovering the affine coordinates from the projective coordinates

is presented in Algorithm 6.4 and it involves computationally complex finite-field inversion

operation. The Itoh-Tsujii algorithm [22] based on Fermat’s little theorem and extended

euclidean algorithm (EEA) based on greatest common divisor approach, are two predom-

inantly used algorithms for the realization of finite field inversion. The performance of the
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point multiplication architecture depends on the performance of finite-field multiplication

and finite field inversion.

In this work, we present the parallel Itoh-Tsujii algorithm(see Algorithm 6.5) for the

realization of FF-inversion and a cascade block of 4k exponentiation modules are employed

to reduce number of clock cycles required to realize FF-inversion.

Algorithm 6.4 Recovering Affine Coordinates

cc1: X2 ← X2Z1 cc7: T2 ← X2Z1 + T2

cc2: T2 ← X1X2 cc8: Z2 ← T1Z1

cc3: Z2 ← X1Z2 +X2 cc9: X2 ← X1inv(Z2) + xp,

T1 ← T2

cc4: Z1 ← Z1Z2, T1 ← xp cc10: Z1 ← T1inv(Z2), T2 ←

Z1

cc5: X1 ← T1X2 cc11: X1 ← X1inv(Z2)

cc6: T2 ← T1Z2 + T2, X2 ← yp cc12: X2 ← X2T2 + yp

FF-Inversion Algorithm over GF(2m)

For any nonzero element a ∈ GF (2m), the FF-inversion is given by the following

expression

a−1 ≡ a2
m−2 (6.18)

Eq.(6.7) can also be expressed as

a−1 = [γm−1(a)]2 , (6.19)

where,

γq(a) = a2
q−1 (6.20)

with γq(a) ∈ GF (2m) and q ∈ N, with N being a set of natural-numbers.

The notation γq(a) is denoted as γq for further formulations.

The Eq.(6.20) can be generalized in-terms of two integers q, r ≥ 0, and is given as

γq+r(a) = γq(a)2
r

γr(a) = γr(a)2
q

γq(a) (6.21)
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The Eq.(6.21) can be expressed in terms of addition-chain index pair elements ui1

and ui2 as

γui2+ui1 (a) =
[
γui1 (a)

]2ui2
γui2 (a) = γui(a) = a2

ui−1 (6.22)

where, γu1(a) = a2
1−1 = a. The FF-inverse of an element a such that a−1 ∈ GF (2m) can

be derived by successively applying Eq.(6.12) for each addition chain index element ui

and performing FF-squaring operation at the final step uf . It is expressed as,

[
γuf (a)

]2
=
(
a2

m−1−1
)2

=
(
a2

m−2) = a−1 (6.23)

Table 6.6 presents the realization of FF-inverse of a such that a−1 ∈ GF (2233)

defined over a irreducible trinomial R(x) = x233+x74+1 based on the assumption γui(a) =

a4
ui−1

. It can be observed from the table that each step consists of 4k exponentiation

followed by FF-multiplication. It is also to be observed that the 4k exponentiation is

performed on the FF-multiplication outcome of the previous step.

Table 6.6 FF-Inverse of a such that a−1 ∈ GF
(
2233

)
[1]

γui
(a) γuj+ul

(a) Exponentiation

1 γ1(a) a3

2 γ2(a) γ1+1(a) (γ1)
41 γ1 = a4

2−1

3 γ3(a) γ2+1(a) (γ2)
41 γ1 = a4

3−1

4 γ6(a) γ3+3(a) (γ3)
43 γ3 = a4

6−1

5 γ7(a) γ6+1(a) (γ6)
41 γ1 = a4

7−1

6 γ14(a) γ7+7(a) (γ7)
47 γ7 = a4

14−1

7 γ28(a) γ14+14(a) (γ14)
414 γ14 = a4

28−1

8 γ29(a) γ28+1(a) (γ28)
41 γ1 = a4

29−1

8 γ58(a) γ29+29(a) (γ29)
429 γ29 = a4

58−1

9 γ116(a) γ58+58(a) (γ58)
458 γ58 = a4

116−1

It may be noted from the Table 6.6 that steps 2, 3, 5 and 8 involves FF-multiplication

of γuj
(a) exponentiation with γ1 and these steps can be alternatively realized by the
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following expressions using Eq.(6.21).

(γ2)
41 γ1 = (γ1)

42 γ2

(γ6)
41 γ1 = (γ1)

46 γ6

(γ28)
41 γ1 = (γ1)

428 γ28

(6.24)

γ1 is a precomputed value and is stored in a register. The exponentiation involving γ1

in each subsequent step can be computed in parallel with FF-multiplication operation of

the current step to reduce the computation time of FF-inversion. Based on the idea of

parallel exponentiation, and FF-multiplication, a parallel Itoh-Tsujii algorithm developed

for FF-inversion is presented in Algorithm 6.5. The algorithm starts with precomputation

of the element Z3
2 . The steps 4 to 23 generate the required exponentiation, while steps

24 to 27 perform the FF-multiplication. For each iteration, the difference between two

consecutive addition chain elements is performed. Based on the difference value, required

exponentiation is performed with a maximum of 4uc exponentiation per clock cycle. If the

required exponentiation is greater than 4uc then it is achieved in multiple clock cycles(steps

6 to 10). If the difference value is equal to 1, the required exponentiation is generated using

steps 13 to 21. The parallel execution of exponentiation and FF-multiplication is done

at steps 25 and 27. The register T1 stores the initial value Z3
2(see step 2). Depending on

exponentiation value that is to be achieved in the most recent subsequent step involving

T1, the required exponentiation is performed on T1 in parallel with current step FF-

multiplication. Step 25 performs an exponentiation equal to 4uc , while step 27 performs

an exponentiation less than 4uc and execution of these steps is based on the values of t,

uc, and ui−1. The steps 4 to 28 are repeated for each element of addition-chain and a

Finite-field squaring operation is performed on X2 at the final step to complete inversion

(Z−12 ).
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Algorithm 6.5 Parallel Itoh-Tsujii Algorithm using exponentiation 4k

Input:The element Z2 ∈ GF (2m), cascade size uC, addition chain length l, and the addition chain U =
{
1, 2, . . . , m−1

2

}
Output: Multiplicative inverse Z−1

2 ∈ GF (2m);

begin

1: Z1 = Z2
2 ; t=0; s=0;

2: X2 = Z1 ∗ Z2; T1 = X2;

3: for each ui ∈ U (2 ≤ i ≤ f) do

4: s = ui − ui−1 ;

5: if(s 6= 1 and s >uC ) then

6: Z1 = X4uC
2 , Z2 = Z1; s = s - uC

7: While(s>uC )do

8: Z1 = Z4uC
2 , Z2 = Z1; s = s - uC

9: end while

10: Z1 = Z4s

2

11: else if (s 6= 1 and s <uC ) then

12: Z1 = X4s

2

13: else if (s = 1 and ui−1 =2 ) then

14: Z1 = T1

15:: else

16: Z1 = T 4uC
1 , Z2 = Z1; s = s− t− uC

17: While(s>uC )do

18: Z1 = Z4uC
2 , Z2 = Z1; s = s - uC

19: end while

20: Z1 = Z4s

2

21: end if

22: end if

23: end if

24: if( t+ uC <ui−1 ) then

25: X2 = Z1 ∗X2; T1 = T 4uC
1 t= t+uC /* parallel*/

26: else

27: X2 = Z1 ∗X2; T1 = T 4
t+uC−ui−1

1 t= t+uC-ui−1 /* parallel*/

28: end if

26: end for

23: Z2 = X2
2 ; Z

−1
2 = Z2;

end

where, f = dlog2(m− 1)e+ H(m− 1)− 2

Table 6.7 presents the realization of FF-inverse of a such that a−1 ∈ GF (2233)

defined over an irreducible trinomial R(x) = x233 +x74 + 1 based on the proposed parallel

Itoh-Tsujii algorithm. It can be observed from this table that the exponentiation over γ1

required at subsequent steps is realized in parallel along with FF-multiplication operation

at steps 2, 3, 5, 6, and 7.
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Table 6.7 FF-Inverse of a such that a−1 ∈ GF
(
2233

)
using Parallel-ITA

γui
(a) γuj+ul

(a) Exponentiation Parallel (γ1)
4k

1 γ1(a) a3 –

2 γ2(a) γ1+1(a) (γ1)
41 γ1 = a4

2−1 (γ1)
42

3 γ3(a) γ2+1(a) (γ1)
42 γ2 = a4

3−1 (γ1)
45 , (γ1)

46

4 γ6(a) γ3+3(a) (γ3)
43 γ3 = a4

6−1 –

5 γ7(a) γ6+1(a) (γ1)
46 γ6 = a4

7−1 (γ1)
49 , (γ1)

412 , (γ1)
415

6 γ14(a) γ7+7(a) (γ7)
47 γ7 = a4

14−1 (γ1)
418 , (γ1)

421 , (γ1)
424

7 γ28(a) γ14+14(a) (γ14)
414 γ14 = a4

28−1 (γ1)
427 , (γ1)

428

8 γ29(a) γ28+1(a) (γ1)
428 γ28 = a4

29−1 –

9 γ58(a) γ29+29(a) (γ29)
429 γ29 = a4

58−1 –

10 γ116(a) γ58+58(a) (γ58)
458 γ58 = a4

116−1 –

The hardware and latency comparison of the proposed Parallel-ITA with the FF-

inversion algorithms [47,51–53,55,59] reported in the literature is presented in Table 6.8.

6.3.2 Proposed Point Multiplication Architecture for the case of Irreducible Tri-

nomials

This section presents the proposed point multiplication architecture for the realiza-

tion of modified Montgomery algorithm(see Fig. 6.4) employing the proposed parallel-ITA

for FF-inversion. The architecture consists of power-block, FF-adder, FF-multiplier, and

a Register file. The control unit is the major building block of the architecture and it is

enabled or disabled based on the status signals, start and reset. For each clock signal, a

series of control signals are generated to the arithmetic unit and the register file. At the

first clock cycle, the base point (xp,yp) and curve constant are initialized into the register

file. In the subsequent clock cycles, a set of FF-operations are performed according to

the Algorithm 6.5. Fig. 6.5 shows the detailed data path of the proposed architecture. It

can be observed from the Fig. 6.5 that the Finite-field multiplier and power-block receive
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Table 6.8 Hardware and Latency comparison of FF-inversion Algorithms

Design latency # FF # FF #FF

(clock cycles) Multiplications Squarings Quad

[51] L(l+1)+ l + 1 (m-1) -[
L(l + 1) +

∑l
i=2

⌈
ui−ui−1

us

⌉]
[47] L(l+1)+ l+1 - (m-1)/2[

(l + 1) +
∑l

i=2

⌈
ui−ui−1

us

⌉]
[52] 2m/d - - -

[59] (m-1)/2 + 3(H(m− 1) dlog2(m− 1)e+H(m− 1)− 1 (m-1) -

+dlog2(m− 1)e-1) + 3

[54] (m-1)/2 + 2(H(m− 1) dlog2(m− 1)e+ H(m− 1)− 1 (m-1) -

+dlog2(m− 1)e-1)

[55]
∑l

i=2

⌈
ui
5

⌉
++2(H(m− 1) dlog2(m− 1)e+ H(m− 1)− 1 (m-1) -

+dlog2(m− 1)e − 1)

Proposed
∑l

i=2

⌈
ui
us

⌉
+3(H(m− 1) dlog2(m− 1)e+ H(m− 1)− 1 - (m-1)/2

PITA +dlog2(m− 1)e − 2)

a set of m-bit data via the multiplexers M1, M2,and M3, for each clock cycle and the

processed data is written into the registers (X1, X2, Z1, Z1, T1, and T2) at the end of

each clock-cycle. This is a continuous process and is repeated m times, where m is the

field order. The functionality of FF-multiplier and power-blocks of the proposed point

multiplication architecture are explained in Chapter 4 (Sec 4.2.3).

Data flow diagram

The Algorithm 6.3 can be better understood by using a data flow diagram and is

shown in the Fig. 6.6. It explains the realization of each step of Algorithm 6.3 in hardware,

with a clear picture of execution time of each FF-operation. It may be observed from the

Fig. 6.6 that it takes seven clock cycles to complete one main loop iteration. It may also

be observed that the execution time of each FF-squaring and FF-multiplication operation

are one and three clock cycles, respectively. The grouping of FF-operations without data
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dependency saves a total of m clock cycles with one clock cycle saved per iteration.
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6.3.3 Analysis of the Proposed Architecture

Area Complexity Analysis

The total area complexity is computed by the summation of each individual block

hardware (see Fig. 6.5) and is given as

PMAArea =5m× lut (2 + log2 2) + 9m× lut (4 + log2 4) +
2(m− 1)

2

+
3(m− 1)

4
+ (

2τ∑
m=m

2× LUThkmul
(⌈m

2

⌉)
+

2τ∑
m=m

LUThkmul

(⌊m
2

⌋)
+ 4m− 2)

(6.25)

where, LUThkmul(
m
2

) = 2× LUThkmul(m4 ) + LUThkmul(
m
4

) +m− 1
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The total area complexity (Eq.(6.23) can be reformulated as,

PMAArea =
79m− 13

4
+ (

2τ∑
i=m

2× LUThkmul
(⌈

i

2

⌉)
+

2τ∑
i=m

LUThkmul

(⌊
i

2

⌋)
) (6.26)

Time Complexity Analysis

The total time complexity of the proposed point multiplication architecture is com-

puted by estimating the individual block delays (see Fig. 6.5). The proposed architecture

is three staged pipelined architecture and the critical path delay is calculated by estimat-

ing maximum path delay through FF-multiplier and Power block. The delays of individual

blocks are estimated based on the analysis presented in [1].

The critical path delay of the proposed architecture is given as

PMAdelay =DMUX(M1) +DMUX(M11) +Dsp +DTh

(or)Dcm +Dmod(or)Dpb +DMUXP

PMAdelay = logd (2 + log2 2) + logd (4 + log2 4) + logd

(m

τ

)
+ logd 2τ

(or) log2

(m

τ

)
+ logd t(or)

∑
D41 + dlogd (x+ log2 x)e

(6.27)

The critical path delay estimated for the irreducible trinomial R(x)=x233 + x74 + 1 in

GF(2233)) is equal to 7 LUT’s(7 × target FPGA LUT delay ). The total computation

time to perform one point multiplication is derived based on the analysis presented in

section and is given as

CPM = m× Cm + CQuad + LMInv + CAdditional (6.28)

with, L being number of pipelined stages. For example, to perform one point multiplica-

tion in GF(2233) takes about 7× 233 + 72 + 14 = 1717 clock cycles.

6.3.4 Implementation Results

This section presents the implementation results of the proposed point multiplication

algorithm for the class of irreducible trinomials. The NIST trinomials x193 + x15 + 1,

x233 + x74 + 1 and x409 + x87 + 1 are considered for experimentation to compare with

the similar architectures reported in the literature. The verilog model of the proposed
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architecture is implemented on the target platform Xilinx (XC5VLX110) Virtex-5 using

Xilinx ISE tools to have a fair comparison with the similar architectures reported in the

literature, which are implemented using the same FPGA technology.

The results of proposed architecture implemented on Virtex-5 target platform (Xil-

inx XC5VLX110) over GF(2233) are presented in Table 6.9. The area-time complexity

comparison shows that the proposed architecture achieves less area time product of about

30%, 64%, 80%, 83%, 77% and 98%, respectively, when compared to the available ar-

chitectures [51, 52, 56–58, 72]. In addition, these existing architectures [51, 52, 56–58, 72]

require more computation time of about 12%, 45%, 56%, 90%, 84%, and 99%, respectively.

The results of proposed architecture implemented on Virtex-5 target platform (Xil-

inx XC5VLX110) over GF(2409) are presented in Table 6.10. The area-time complex-

ity comparison shows that the architectures[ [52]a, [52]b, [52]c, [4]d, [4]e, [4]f] require

more area-time product of around 84%, 80%, 78%, 10%, 7%, and 11%, respectively,

when compared to the proposed architecture. In addition, these existing architectures

[ [52]a, [52]b, [52]c, [4]d, [4]e, [4]f] require more computation time of about 92%, 86%,

81%, 7%, 3%,and 10%, respectively

Table 6.9 Performance comparison of Point Multiplication over GF(2233)

Design Field FPGA Fmax clock Area Time ATP % Reduction % Reduction

(MHz) cycles (LUTs) (us) (× 10−3) in Time in ATP

[51] 233 virtex-5 156 - 18097 12.3 225 12 30

[52] 233 virtex-5 192 3825 22340 19.9 444 45 64

[56] 233 virtex-5 132 3277 32874 25 821 56 80

[57] 233 virtex-5 50 5613 8612 112 964 90 83

[58] 233 virtex-5 264 18900 9576 71.5 684 84 77

[72] 233 virtex-5 119 174047 6912 1462 10105 99 98

Proposed 233 virtex-5 158 1717 14603 10.8 157 –
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Table 6.10 Performance comparison of Point Multiplication over GF(2409).

Design Field FPGA Fmax clock Area Time ATP % Reduction % Reduction

(MHz) cycles (LUTs) (us) (× 10−3) in Time in ATP

[52]a 409 virtex-5 181 4551 16169 250.3 4047 92 84

[52]b 409 virtex-5 163 23373 22315 142.6 3182 86 80

[52]c 409 virtex-5 161 16541 28503 102.6 2924 81 78

[4]d 409 virtex-5 143 2906 34778 20.3 705 7 10

[4]e 409 virtex-5 172 3337 35313 19.4 685 3 7

[4]f 409 virtex-5 200 4177 34389 20.9 718 10 11

Proposed 409 virtex-5 158 2983 33950 18.7 634 –

6.4 Conclusions

In this chapter, the design of area-time efficient point multiplication architecture

for irreducible polynomials and high speed point multiplication architecture for NIST

recommended irreducible trinomials are presented. These proposed point multiplication

architectures are designed employing pipelining and parallelism strategies to improve the

computation time. In addition, modified-ITA and parallel Itoh-Tsujii algorithm are also

employed in point multiplication architectures for irreducible polynomials and NIST rec-

ommended irreducible trinomials, respectively, to further reduce the computation time.

Further, the formulations for area and delay complexities for the proposed architectures

are presented.The implementation results for the proposed point multiplication archi-

tecture over an irreducible polynomial requires less area-time product compared to the

available architectures considered for comparison. It is also observed from the implemen-

tation results of the proposed point multiplication architecture for the NIST recommended

trinomials that it achieves less computation time compared to the existing architectures

in the literature. Hence, the proposed point multiplication architectures are suitable for

high speed and low area-time ECC applications.



Chapter 7

Conclusions and Future Scope

This chapter concludes the thesis by underlining the main contributions. It also

presents the possible directions of future work.

7.1 Conclusions

In this thesis we have investigated various finite field arithmetic operations used for

the construction of point multiplication architecture. The most hardware critical finite

field operations contributing for the development of point multiplication architecture are

finite-field inversion and finite-field multiplication operations. Various design methodolo-

gies are explored to optimize the area-time product at the different hierarchical levels of

ECC point multiplication. The following summarizes the contributions of this work.

• In Chapter 4, we have presented a finite field inversion architecture over GF(2m)

using polynomial basis, since finite field inversion is one of the resource consum-

ing and time critical operation in realizing point multiplication. In this regard, we

have presented an area-efficient finite filed inversion architecture using the proposed

modified Itoh-Tsujii algorithm. The performance of finite field inversion architec-

ture depends on the exponentiation module employed and the number of cascaded

exponentiation modules. It is observed that the 4k exponentiation modules outper-

form the traditional 2k exponentiation modules by 30% and 50% in terms of area

and time, respectively. Hence, a series of cascade blocks of 4k exponentiation mod-
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ules have been employed to realize the exponentiation required at each intermediate

step of finite field inversion. Through the comparisons of analytical and FPGA

implementation results obtained for the field orders m = 193, and m = 409, we

have shown that the proposed finite field inversion architecture achieves reduction

in area around 15% to 70% and reduction in ATP (area-time-product) around 5% to

15% compared to the existing architectures for the field orders m=193 and m=409,

respectively

• In Chapter 5, we have presented the design of digit serial multiplier over a spe-

cific classes of trinomials and pentanomials to achieve the reduction in area-time

product of the proposed point multiplication architecture. It is observed that the

logical NAND gates consume less hardware compared to the traditional AND gates

to generate the partial products. Hence, traditional AND gates are replaced by log-

ical NAND gates to generate the partial products in realizing the FF-multiplication.

Through the comparisons of analytical and FPGA implementation results obtained,

we have shown that the proposed point multiplication architecture achieves reduc-

tion in ATP(area-time-product) around 4% to 85% and 35% to 80% compared to

the existing architectures for the field of orders m = 163 and m = 233, respectively.

• In Chapter 6, we have presented the development of proposed point multiplication

architectures over GF(2m) using polynomial basis, since these point multiplication

architectures determine the performance of ECC applications. An area-time ef-

ficient point multiplication architecture is developed using the proposed modified

Montgomery point multiplication algorithm. The lower level finite field operations

like FF-multiplication and FF-squaring are designed to perform in parallel while

realizing the proposed Montgomery point multiplication algorithm. Through the

comparisons of analytical and FPGA implementation results obtained, we have

shown that the proposed point multiplication architecture achieves reduction in

ATP(area-time-product) around 15% to 80% and 40% to 95% compared to the ex-

isting architectures for the field of orders m = 163 and m = 233, respectively. In

addition, we have also proposed an high speed point multiplication architecture for a

class of trinomials, since the point multiplication architectures developed for a class

of trinomials found to consume less hardware and time. Through the comparisons
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of analytical and FPGA implementation results obtained, we have shown that the

proposed point multiplication architecture achieves reduction in computation time

around 10% to 95% and 3% to 90% compared to the existing works for the field

orders m=233 and m=409, respectively.

7.2 Future Scope

The work proposed in this thesis can be extended for future research. Some of the

possible directions in which the problems can be further pursued are:

• The finite-field inversion and finite-field multiplication are two resource consuming

and time critical operations in point multiplication. The proposed architectures can

be investigated with the available FF-multipliers for better area-time product. In

addition k-chains can be explored for realizing FF-inversion, instead of traditional

addition chains (2-chain).

• The most works available in the literature used Binary Weierstrass curves for FPGA

implementation of point multiplication. There are other binary elliptic curves which

can be investigated for the FPGA implementation of point multiplication, namely

Koblitz curves, Generalized Hessian curves, Binary Huff curves and Binary Edward

curves. Each of these curves have its unique advantages. Point multiplication using

Koblitz curves can be implemented without point doubling curve operation. Gen-

eralized Hessian curves defend side-channel attacks with unified addition formulas.

Binary Huff curves exhibit resistance against power attacks with unified point dou-

bling and point addition formula.

• The proposed architectures have been developed based on the Modified Montgomery

algorithm in Lopez-Dahab projective coordinates. There are several other algo-

rithms to implement point multiplication: Left-to-right, right-to-left, Non-adjacent-

form (NAF) method, τ -adic NAF (NAF) method, window NAF method (width-w

NAF), and Sliding window method. For example in NAF method implementation

of point multiplication, the hamming weight of the secret key is reduced by 3 times

of that of the original key and it results in the reduction of curve level operations
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ultimately reducing the area-time complexity of point multiplication. Hence, these

algorithms can be investigated for better Area and time complexity trade-off.
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Santos, and A. Garćıa, “Elliptic curve cryptography hardware accelerator for high-

performance secure servers,” The Journal of Supercomputing, vol. 75, no. 3, pp.

1107–1122, 2019.

[58] S. Harb and M. Jarrah, “Fpga implementation of the ecc over gf (2m) for small em-

bedded applications,” ACM Transactions on Embedded Computing Systems (TECS),

vol. 18, no. 2, pp. 1–19, 2019.

[59] Z. U. Khan and M. Benaissa, “High-speed and low-latency ecc processor implementa-

tion over gf(2m) on fpga,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 25, no. 1, pp. 165–176, 2016.

[60] E. G. Thurber, “Efficient generation of minimal length addition chains,” SIAM Jour-

nal on Computing, vol. 28, no. 4, pp. 1247–1263, 1999.

[61] C. Rebeiro and D. Mukhopadhyay, “Power attack resistant efficient fpga architecture

for karatsuba multiplier,” in 21st International Conference on VLSI Design (VLSID

2008). IEEE, 2008, pp. 706–711.

[62] G. Zhou, H. Michalik, and L. Hinsenkamp, “Complexity analysis and efficient im-

plementations of bit parallel finite field multipliers based on karatsuba-ofman algo-

rithm on fpgas,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 18, no. 7, pp. 1057–1066, 2009.

[63] M. Kalaiarasi, V. Venkatasubramani, and S. Rajaram, “A parallel quad itoh-tsujii

multiplicative inversion algorithm for fpga platforms,” in 2020 Third ISEA Confer-

ence on Security and Privacy (ISEA-ISAP). IEEE, 2020, pp. 31–35.

[64] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, “A survey on security and privacy issues

in internet-of-things,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1250–1258,

2017.

[65] A. Zakerolhosseini and M. Nikooghadam, “Low-power and high-speed design of a

versatile bit-serial multiplier in finite fields gf (2m),” Integration, vol. 46, no. 2, pp.

211–217, 2013.



Bibliography 124

[66] P. K. Meher, “Systolic and non-systolic scalable modular designs of finite field mul-

tipliers for reed–solomon codec,” IEEE transactions on very large scale integration

(VLSI) systems, vol. 17, no. 6, pp. 747–757, 2009.

[67] B. Rashidi, R. R. Farashahi, and S. M. Sayedi, “High-speed and pipelined finite field

bit-parallel multiplier over gf (2 m) for elliptic curve cryptosystems,” in 2014 11th

International ISC Conference on Information Security and Cryptology. IEEE, 2014,

pp. 15–20.
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