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ABSTRACT 

Protection and control are crucial to maintain the stable operation of the power 

systems. Growth in global electricity consumption due to urbanization and industrialization, 

demands enhanced generation and transmission capacities with higher order network 

configurations. Power transmission network plays a vital role in transmitting power to distant 

areas or load centres. Often, renewable energy integration into power systems is encouraged 

due to low carbon emissions. There is a steady growth in the amount of renewable energy 

generation every year. The geographically dispersed nature and intermittent generation of 

renewables require increased transmission capabilities to move excess energy to distant load 

centres. Rising power demand and renewable integration are a challenge to the power system's 

protection and control. In order to have improved system stability, reduced service 

disruptions, and enhanced power delivery efficiency, the protection of transmission lines and 

frequency control of the system are vital. This work focuses on artificial intelligent protection 

schemes for various transmission line configurations (double circuit three-phase, single 

circuit six-phase, and single circuit three-phase), to ensure reliable and secure power 

transmission and control strategy for frequency control of microgrid. The main aim of the 

transmission line protection scheme is to identify and isolate the fault as quickly as possible 

to maintain the stability of the system. The quick detection and classification of faults help 

the repairmen or maintenance crew to improve the service restoration time.  

An intelligent protection scheme is proposed based on a single fuzzy inference system 

and discrete Fourier transform towards the faulty phase detection and classification on the 

mutually coupled double circuit lines. This proposed protection technique uses the magnitude 

of the pre-processed current information measured at the sending end bus only. This is 

implemented in the MATLAB/Simulink environment on a 400 kV, 50 Hz, and 300 km double 

circuit transmission line model. The efficacy of the proposed scheme has been tested by 

performing a wide range of simulation studies concerning different types of faults viz. 

common short circuit faults, cross-country and evolving faults, and high impedance faults. 

Typical fault scenarios viz. current transformer saturation, noisy environment, and faults 

occurring during power swing scenarios with variations in different fault parameters and 

operating conditions were also studied. The results presented confirm that the proposed 

method detects/classifies all types of faults within one cycle time and is reliable with a 

detection/classification accuracy of 99.75%. It is found immune to the variations in fault 
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parameters and for varying operating conditions. Also, it is not affected by the zero-sequence 

mutual impedance of the line and does not require any training and communication link. 

Furthermore, the performance is also appraised with other training-based protection schemes.  

The enhanced power transfer capability is possible with the six-phase transmission 

system but it did not gain popularity due to the lack of a proper protection scheme to secure 

the line for 120 types of different possible short circuit faults. This work presents a 

comprehensive protection scheme utilizing discrete wavelet transform (db4 mother wavelet) 

and artificial neural networks (ANNs). Levenberg-Marquardt algorithm is used for training 

the ANNs. This protection scheme requires only pre-processed current information of the 

sending end bus. For fault detection and classification of all 120 types of faults, a single ANN 

module is implemented with six inputs and six outputs. For the estimation of fault location in 

each phase, 11 ANN modules with six outputs are used viz. one for each of the 11 types of 

combination of faults. The proposed protection scheme is implemented on a six-phase 

Allegheny power transmission system using MATLAB/Simulink platform. The simulation 

results prove its efficiency and effectiveness in detecting and classifying all types of faults 

with varying parameters. All fault types are detected/classified within one cycle time and the 

detection/classification accuracy is found to be 99.76%. It is found that the performance of 

the fault location estimation modules is better with the training data and moderate with the 

testing data. 

The integration of renewable energy sources (RES), such as solar and wind power, 

into power systems presents unique challenges for transmission line protection. Traditional 

distance protection schemes may not be adequately sensitive or adaptable to the dynamic 

characteristics of RES-connected lines. To address these challenges, this work proposes an 

intelligent novel protection scheme that combines the fuzzy logic system for fault 

detection/classification with regression-based bagged ensemble learning for fault location 

estimation. The proposed scheme utilizes voltage signals of the bus connected to renewable 

energy sources processed with discrete Fourier transform (DFT) to extract relevant features 

for fault diagnosis. A Mamdani based fuzzy inference system is implemented to analyze the 

DFT-extracted features and make decisions regarding fault occurrence and type. A bagged 

ensemble learning approach, incorporating multiple regression trees, is employed to 

accurately estimate the fault location along the transmission line. The performance and 

efficacy of the proposed protection scheme are verified through extensive 
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MATLAB/Simulink simulations on the transmission line model integrated with renewable 

energy sources (solar and wind). The simulations were carried out considering the variations 

in fault parameters with different solar irradiations and wind speeds. The results demonstrate 

that the scheme effectively detects and classifies various fault types in one cycle time, even 

under dynamic RES generation conditions. The proposed scheme achieved 99.56% accuracy 

in fault detection/classification confirming its reliable operation. Further, the proposed fault 

location estimation approach approximates the fault location within ±5% error band and the 

Chi-square test is performed to assess its reliability. 

However, apart from the protection of transmission lines, there is another equally 

concerned issue as much as protection i.e., frequency control of microgrid. Microgrid (MG) 

is a combination of diesel engine generators, renewable energy sources, loads and various 

energy storage systems. The low inertia of the microgrid system, stochastic loads and 

intermittent/discontinuous generation of renewables create complications in the frequency 

control of microgrid. Massive frequency deviations will cause stability and reliability 

problems and sometimes may lead to microgrid blackouts. 

A more rugged and efficient control action is needed to ameliorate the frequency 

stability of the microgrid. Therefore, a multi-stage PID controller whose parameters are 

optimized by the moth flame optimization (MFO) algorithm is proposed to control the 

frequency of an islanded Bella Coola microgrid. This microgrid has renewable energy sources 

and coordinated control of plug-in hybrid electric vehicles with diesel engine generators. 

Some popular meta-heuristic based PID control techniques viz. PSO-PID, TLBO-PID, and 

GOA-PID are also applied to assess the superior performance of the MFO algorithm. The 

effectiveness of the proposed control method is evaluated on the Bella Coola microgrid to 

obtain its dynamic response considering the simultaneous changes in renewable energy 

sources, load, and parametric uncertainties. The dynamic response of the microgrid is 

enhanced significantly which is confirmed through MATLAB/Simulink simulation results. 

Moreover, the proposed multi-stage PID controller is robust towards parametric uncertainties 

of microgrid and plug-in hybrid electric vehicles as compared to other PID controllers. The 

stability and comparison analysis prove that the proposed method works efficiently. 

 

***** 
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1.1 Introduction 

Protection and control of power systems are the thrust of research areas in the present era. 

In recent times, due to urbanization, industrialization and population growth, the world has 

witnessed a drastic rise in electrical energy/power consumption. The electrical energy 

consumption has reached approximately 23643 Terra Watt hour globally in the year 2022 [1]. 

To meet the growing demands, the generation and transmission capacities must be increased. 

The power transmission network plays a vital role in meeting the growing electrical demand. 

Transmission lines are the backbone of the electrical grid, carrying electricity from power 

plants to consumers over long distances. They facilitate electricity trading between different 

regions and countries. Also, facilitates the integration of renewable energy sources. To have 

enhanced power transmission capabilities with better efficiencies, higher order power 

transmission network configurations are preferred. Furthermore, nations across the world 

have aimed towards reducing the carbon emissions by encouraging renewable energy sources 

to generate clean energy. Despite the global economic crisis in 2020, there is a considerable 

rise in global renewable energy generation with capacity reaching 260 GW during COVID 

2019 pandemic. Solar (127 GW) and wind (111 GW) dominated this capacity expansion by 

91% [2]. Higher levels of renewable energy penetration have been witnessed in the 

distribution levels and installation of renewable energy sources has also creeped into the sub-

transmission levels. In the next few years, it is presumed that the penetration of renewables 

may also take place at the transmission levels. This penetration of renewable energy sources 

in the transmission and distribution sectors poses challenges to protection and control, 

especially towards the load frequency control of the microgrid. However, due to the terrestrial 

and environmental conditions, renewable energy generation is not possible at all the locations. 

The excess renewable energy generated is to be transmitted to the load centres wherever it is 

required. The resulting intermittent generation and centralized demand require increased 

transmission capabilities. 

In view of the above, to handle the power, the most viable configurations of the 

transmission networks are required. The transmission lines spread over long distances are 

exposed to different weather conditions and are easily prone to fault conditions as insulation 

is not provided.  Faults on transmission lines are inevitable. A reliable protection scheme 

ensures the safe and secure operation of the transmission network with minimal interruption 

and early restoration of the quality power supply. The main aim of the transmission line 
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protection scheme is to identify and isolate the fault as quickly as possible to maintain the 

stability of the system. The quick detection and classification of faults help the 

repairs/maintenance crew to improve the service restoration time. However, apart from the 

protection of transmission lines which transfer the generated electrical power, there is another 

equally concerned issue as much as protection i.e., frequency control of the microgrid. 

Microgrid (MG) is a combination of diesel engine generators (DEG), renewable energy 

sources (RES), loads and various energy storage systems (ESS). The frequency control task 

is quite simple in conventional power systems because the disturbances arise only due to the 

stochastic loads. However, the frequency control problem in an islanded microgrid is always 

a concerning challenge for the operators.  The low inertia of the system, stochastic loads and 

intermittent/discontinuous generation of renewables create complications in the frequency 

control of the microgrid. Massive frequency deviations will cause stability and reliability 

problems and sometimes may lead to microgrid blackouts. In this regard, this thesis presents 

the protection of double circuit three-phase transmission lines, single circuit six-phase 

transmission lines, and single circuit three-phase transmission lines connected to renewable 

energy sources. Also, the frequency control of an islanded microgrid having renewable energy 

sources and plug-in hybrid electric vehicles (PHEV) is presented. 

1.1.1 Types of Short Circuit Faults in Three-phase and Six-phase 

Transmission Lines 

The primary job of transmission lines is to transfer the electrical power from the 

generation units to the distribution units or the load centres. The vast existence of transmission 

lines over several kilometres exposed to different terrestrial weather conditions makes them 

vulnerable to inevitable fault situations. The transmission line faults are broadly classified 

into two categories: open circuit faults (series faults, where one or more conductors are open-

circuited) and short circuit faults (shunt faults, where one or more conductors are short-

circuited).  The short circuit faults are characterized by an increase in current and a decrease 

in voltage. The short circuit faults are further classified as symmetrical (LLL/LLLG: triple 

line/triple line to ground faults) and unsymmetrical (LG/LLG/LL: single line to 

ground/double line to ground/double line faults) faults in case of three-phase transmission 

system [3]. Broadly, there are about 11 types of short circuit fault combinations that can 

possibly occur in a three-phase transmission system. However, there are about 120 types of 

short circuit fault combinations that can possibly occur in a six-phase transmission system. 
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These 120 fault combinations are grouped into 11 categories of faults. Table 1.1 gives the 11 

categories of faults and Fig. 1.1 presents the flowchart of the segregation of 120 fault types 

of a six-phase transmission system [4, 5]. 

 

Table 1.1 Types and no. of short circuit faults on six-phase transmission line 

Fault type 1-LG 2-L 2-LG 3-L 3-LG 4-L 4-LG 5-L 5-LG 6-L 6-LG 

No. of faults 6 15 15 20 20 15 15 6 6 1 1 

Total 120 

 

 

Fig. 1.1 Flowchart of segregation of 120 types of short circuit faults 
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The number of non-simultaneous short circuit faults (Nsf) for the ‘k’ phase transmission 

system is given in Eq. (1.1) [6]. For ex., k = 3, Nsf = 3+2(3)+2(1) = 11 and for k = 6, Nsf = 

6+2(15)+2(20)+2(15)+2(6)+2(1)=120. 

𝑁௦௙ = ቀ
𝑘
1

ቁ + 2 ෍ ቀ
𝑘
𝑖

ቁ                                                                                        (1.1) 

௞

௜ୀଶ

 

Protection of transmission of lines is crucial because: 

 Maintaining a safe, reliable, and stable power supply. 

 Faults on these lines can disrupt service, causing outages and economic losses. Also 

affects the homes, businesses, and critical infrastructure. 

 Transmission lines carry high-voltage electricity, which can be dangerous if not properly 

protected. Faults can lead to arcing, fires, and even electrocution. Protecting transmission 

lines helps to prevent these accidents and keep people safe. 

 Transmission lines are expensive to build and maintain. Faults can damage equipment, 

such as transformers, switchgear, and other expensive equipment, requiring costly repairs 

and replacements. Protecting transmission lines helps to extend the life of equipment and 

reduce maintenance costs and equipment damage. 

Effective protection systems quickly isolate the fault, minimizing damage and preventing the 

hazardous situation from escalating. 

1.2 Brief Overview of Artificial Intelligent Techniques 

The rise of artificial intelligence (AI) has revolutionized its application to solve power 

system problems. Fuzzy logic, artificial neural networks, decision trees, and evolutionary 

optimization techniques are now employed in developing sophisticated power system 

protection and control schemes. The advancements in AI techniques opened doors to 

extensive research in power system protection and control, paving the way for more robust 

and intelligent solutions. The main computational AI philosophies include fuzzy logic, neural 

networks, evolutionary computation, machine learning, and probabilistic reasoning. These 

computational methods are encouraged due to their ability to solve complex problems 

(achieve solutions) at a lower cost than conventional computing methods. 
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1.2.1 Fuzzy Logic Systems 

In 1965, Lotfi Zadeh, the “father of fuzzy logic,” introduced this revolutionary concept. 

Fuzzy logic, unlike traditional binary logic with its strict true/false (1/0) values, embraces the 

notion of vagueness and uncertainty. Fuzzy logic that is based on fuzzy set theory allows for 

degrees of truthfulness between these extremes. This makes it ideal for handling uncertainty 

and imprecision, i.e. common in real-world situations. Fuzzy logic can be defined as a form 

of knowledge representation suitable to define imprecise/uncertain data using linguistic 

variables and fuzzy sets instead of just numbers. This enables the computing devices to mimic 

and reason like humans. Fuzzy logic's simplicity and flexibility make it well-suited for 

problems with incomplete or imprecise data. It uses simple "IF-THEN" rules, making its 

knowledge representation easy to understand and modify accordingly to build systems that 

adapt to changing environments and incomplete information. The core concept of fuzzy logic 

is the membership function, which assigns a numerical value between 0 and 1 to represent 

how much an element belongs to a fuzzy set [7, 8]. 

1.2.1.1 Membership function 

Membership function can be defined as a function where each element of a fuzzy set is 

mapped to a membership value ranging from 0 to 1. In simple terms, a membership function 

is a curve that defines the characteristics of a fuzzy set with a membership value for each 

member in the set. The membership function defines the fuzziness in a fuzzy set. The degree 

of membership is essentially a score indicating how well that element fits the characteristics 

of the fuzzy set. Graphical representations are generally used to represent a membership 

function. In graphical representations, the x-axis represents the elements of the fuzzy set and 

the y-axis represents the membership value. The commonly used different membership 

functions are listed in Table 1.2. 
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Table 1.2 Types of membership functions 

S. 

No. 

Membership Function  Expression  

1. Triangular (x1, x2, and x3 are vertices of 

triangle) 
𝑦 = 𝑓(𝑥) =

⎩
⎪
⎨

⎪
⎧

   

𝑥 − 𝑥ଵ

𝑥ଶ − 𝑥ଵ

, 𝑥ଵ ≤ 𝑥 ≤ 𝑥ଶ

𝑥 − 𝑥ଶ

𝑥ଷ − 𝑥ଶ

, 𝑥ଶ ≤ 𝑥 ≤ 𝑥ଷ

0        , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    

2. Trapezoidal (x1, x2, x3, and x4 are vertices 

of trapezoid) 
𝑦 = 𝑓(𝑥) =

⎩
⎪
⎨

⎪
⎧

   

𝑥 − 𝑥ଵ

𝑥ଶ − 𝑥ଵ

, 𝑥ଵ ≤ 𝑥 ≤ 𝑥ଶ

1            ,        𝑥ଶ ≤ 𝑥 ≤ 𝑥ଷ
𝑥 − 𝑥ଷ

𝑥ସ − 𝑥ଷ

, 𝑥ଷ ≤ 𝑥 ≤ 𝑥ସ

 0        , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

3. Gaussian (c and w are the centre and 

width of membership function) 
𝑦 = 𝑓(𝑥) = 𝑒ି଴.ହቀ

௫ି௖
௪

ቁ
మ

 

4. Generalized Bell (c, w, and s are the 

centre, width, and slope of membership 

function curve) 

𝑓(𝑥) =
1

1 + ቀቚ
𝑥 − 𝑐

𝑤
ቚቁ

ଶ௦   

5. Sigmoid (c and w are the centre and width 

of membership function) 
𝑓(𝑥) =

1

1 + 𝑒[ି௪(௫ି௖)]
   

 

1.2.1.2 Fuzzy inference system (FIS) 

FIS is also known by other terms viz., fuzzy-rule-based system, fuzzy logic controller, 

fuzzy model, fuzzy associative memory, fuzzy expert system or simply fuzzy system due to 

its wide applications in different domains of discipline. Basically, the whole process of 

reaching an optimal solution from inputs through a process of fuzzy logic reasoning 

mimicking human-like decision-making is referred to as an FIS. The main task of FIS is to 

make decisions based on fuzzy logical reasoning. The decisions are made by using simple 

“IF-THEN” rules and “OR”/“AND” logical relations. The basic architecture of an FIS 

consists of a rule base and database combinedly known as a knowledge base, a decision-

making block, a fuzzification block and a defuzzification block. The basic block schematic of 

FIS is shown in Fig. 1.2. Mamdani FIS and Takagi-Sugeno FIS are the main types of FIS. 

The difference between these two is their approach to output representation and 

defuzzification. While the Mamdani FIS uses membership functions and a defuzzification 

process the other depends on linear or constant functions without a defuzzification process to 
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provide outputs. Compared to the Sugeno FIS, the Mamdani FIS is simpler to implement. 

There are four stages in the fuzzy inference processing: 

Fuzzification: This process involves the conversion of crisp sets of inputs and outputs into 

fuzzy quantities using the linguistic variables and membership functions to define the 

fuzziness in the crisp sets. 

Fuzzy Inference: In this process, the knowledge base is used to take decisions based on the 

fuzzy rules devised for specific applications of the system. In simple words, it is a process 

where the input variables are mapped onto the output variables using the fuzzy logic concept 

with “IF-THEN” rules. 

Aggregation: In this process, all the fuzzy outputs that are obtained after the execution of 

fuzzy rules are aggregated/combined to form an aggregated fuzzy set. 

Defuzzification: The defuzzification process converts the aggregated output fuzzy sets back 

to crisp quantities. Centroid, max-membership, weighted average, mean-max membership, 

centre of sums, centre of largest area, and first of maxima and last of maxima are the different 

types of defuzzification methods. 

 

Fig. 1.2 Basic block schematic of FIS 

1.2.2 Artificial Neural Networks 

The concept of an artificial neuron is an inspiration drawn from the biological neuron. 

The human brain neuron system design and working mechanism is the base for the artificial 

neural network (ANN).  An ANN acts as a data processing system that mimics the information 

processing capabilities of the biological nervous system. Brains have billions of 

interconnected neurons for the exchange, communication, and processing of information. 

Likewise, an ANN also consists of interconnected artificial neurons. Each typical biological 
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neuron has three main parts: i) cell body (soma): which contains the nucleus and acts as the 

central processing unit of the neuron, ii) dendrites: these branch-like structures receive 

electrical signals from other neurons through junctions called synapses, and iii) axon: this 

single long fibre transmits the processed electrical signal to other neurons. Fig. 1.3 illustrates 

the structure of a biological neuron. 

 

Fig. 1.3 Structure of biological neuron 

An artificial neural network (ANN) is essentially a smart computer program (or even 

specialized hardware) designed to mimic the human brain and tackle specific tasks. It works 

like a massively parallel processor, distributing information across many interconnected units. 

ANNs can store and acquire knowledge through a learning process by adjusting their internal 

connections, allowing them to adapt to new information and excel at tasks like pattern 

recognition and data classification. A typical artificial neuron has simple components: inputs, 

summation, an activation function that processes the information, and finally, an output. Fig. 

1.4 depicts the structure of an artificial neuron. The working of the neuron can be explained 

as follows: the net product WX and the input bias are summed up at the summer location, 

where the net product (WX) is obtained by the multiplication of different inputs (x1, x2, 

x3,….,xn) with the corresponding weight values (w1, w2, w3,…, wn) respectively. The weights 

can modify the actual inputs. The activation function ( f ) processes the net input (WX+b) to 

deliver the output [9]. The output (y) of the neuron is given in Eq. (1.1) and Eq. (1.2) (matrix 

form), where W = [w1, w2, w3,…, wn] and X = [x1, x2, x3,….,xn]. 
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𝑦 = 𝑓(𝑛𝑒𝑡 𝑖𝑛𝑝𝑢𝑡) = 𝑓 ൭෍ 𝑤௜𝑥௜ + 𝑏

௡

௜ୀଵ

൱                                      (1.1) 

  𝑦 = 𝑓(𝑊்𝑋 + 𝑏)                                                                               (1.2) 

 

Fig. 1.4 Structure of artificial neuron 

The architecture of ANN generally comprises of three layers: input layer, hidden layer, 

and output layer. The number of neurons in all three layers depends on the application of 

ANN for a task. The ANNs can be broadly categorized into feedforward neural networks and 

recurrent neural networks. A feed-forward network is a network which does not have any 

feedback paths. In this type of network, all three layers are connected in the forward direction 

by providing the flow of information only in one direction (forward). The input layer sends 

the information to the hidden layer and the hidden layer transmits the information to the output 

layer [9, 10]. The recurrent neural network is a network which contains feedback paths from 

output to input. Recurrent networks are feedback networks with closed-loop paths. Further, 

feedforward neural networks can be classified as supervised (single-layered/multi-layered) 

and unsupervised feedforward neural networks.  

Activation functions, also known as transfer functions, play a crucial role in extracting 

meaningful information within artificial neural networks. They filter the net input (a 

combination of weighted inputs and a bias) and transform it into an output. The choice of 

activation function depends heavily on the specific task. These functions can be either linear 

or non-linear, offering different capabilities for processing the information. Some common 

activation functions used in ANNs are listed in Table 1.3. 
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Table 1.3 Commonly used activation functions in ANNs 

 

 

1.2.3 Decision Trees 

Decision trees stand as a powerful paradigm of data mining that is the most versatile 

and effective method in AI. These supervised learning algorithms excel at predicting the 

relationship between a feature and its target value, making them ideal for various tasks like 

classification, regression, clustering, and even feature selection. They can handle various data 

types, including numeric, nominal, and even text, and they can even work with missing or 

erroneous data. Their ability to analyze large imperfect datasets to deliver accurate predictions 

with minimal computational effort led to the successful application to solve power system 

related issues [11]. 

Decision trees are powerful predictive models used for either classification or regression 

tasks. They are termed as classification trees when they tackle the classification problem that 

aims to categorize the data points into specific classes to predict discrete outcomes. They are 

called as regression trees when used for regression problem that predicts continuous values. 

While the underlying structure and core working functionality are similar for both trees, the 

convergence criteria for reaching a terminal node differ based on the specific task. Decision 

S.No. Name of Activation 

Function 

Relation between input-output  

 1. Hard Limit  𝑦 = 𝑓(𝑥) = ቄ
0, 𝑥 < 0
1, 𝑥 ≥ 0

 

2. Symmetrical Hard Limit  𝑦 = 𝑓(𝑥) = ቄ
−1, 𝑥 < 0
+1, 𝑥 ≥ 0

 

3.  Linear   𝑦 = 𝑓(𝑥) = 𝑥 

4. Positive Linear  𝑦 = 𝑓(𝑥) = ቄ
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

 

4. Saturating Linear 
 𝑦 = 𝑓(𝑥) =  ൝

0,         𝑥 < 0
  𝑥,    0 ≤ 𝑥 ≤ 1
1,           𝑥 > 1

 

5. Symmetric Saturating 

Linear 
 𝑦 = 𝑓(𝑥) =  ൝

−1,           𝑥 < 0
  𝑥,    0 ≤ 𝑥 ≤ 1
+1,           𝑥 > 1

 

6. Log-Sigmoid 
 𝑦 = 𝑓(𝑥) =

1

1 + 𝑒ି௫
 

7. Hyperbolic Tangent 

Sigmoid 
𝑦 = 𝑓(𝑥) =

𝑒௫ − 𝑒ି௫

𝑒௫ + 𝑒ି௫
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tree algorithms offer impressive efficiency despite the fact of simplicity. They follow a 

strategy called “divide and conquer” to grow/construct the trees by recursively splitting the 

training data until desired patterns emerge within each group, signifying a single class. A 

decision tree structure comprises three types of nodes: i) root or parent node: the starting 

point, with only outgoing branches leading to further decision points, ii) test/child/internal 

node: nodes with both incoming and outgoing branches, representing a specific decision, and 

iii) leaf/terminal/decision nodes:  end points with no outgoing branches, indicating the final 

predicted class or target value. Fig. 1.5 depicts an illustration of a simple decision tree 

structure using yes/no questions. Square boxes represent root or test nodes, while circles 

represent leaf nodes. The features are denoted by f1, f2, and f3, with si (i = 1, 2, 3, 4, and 5) 

representing optimal split points and Ci (i = 1 to 6) signifying the predicted classes or target 

values. 

 

Fig. 1.5 Structure of simple decision tree 

There are various kinds of decision tree inducer algorithms viz., CHAID (CHi-squared 

Automatic Interaction Detector), ID3 (Iterative Dichotomiser 3), CART (Classification and 

Regression Trees), C 4.5 etc., [11–13]. They automate the process of building optimal 

predictive models from the given training data by minimizing errors. A decision tree is trained 

in two stages: (i) the growing stage, which splits the data or grows the tree until a set of 



13 
 

stopping criteria is met; and (ii) the pruning stage, where redundant branches are removed to 

optimize the tree's depth and prevent overfitting. This creates a more generalizable model 

with the right level of complexity. The different stopping criteria are listed below:  

(i) all the instances in the training set belong to a single class. 

(ii) when the maximum depth of the tree has been reached. 

(iii) when the number of cases in the terminal nodes is less than the minimum number 

of cases for parent nodes. 

(iv) if the node were split, the number of cases in one or more child nodes would be 

less than the minimum number of cases for the child nodes. 

(v) the best splitting criteria is not greater than a certain threshold. 

The decision trees are grown by following optimal splitting criteria that optimize the split to 

choose the best feature and value for splitting the data based on the impurity measurement of 

the split. The impurity metrics namely, gain ratio, information gain, Gini index/Gini diversity 

index, twoing rule, and binary criteria are commonly used for classification purposes while 

the mean square error reduction of prediction or variance reduction is used for regression 

purposes. However, a fully grown tree can be complex and prone to overfitting. It is necessary 

to prune the tree optimally to reduce the unwanted tree size to get a tree with the best minimum 

size and minimum generalization error striking a balance between complexity and accuracy. 

The different pruning methods are cost complexity pruning (balancing tree size and prediction 

error), reduced error pruning (focusing on reducing generalization error), minimum error 

pruning (selecting the sub-tree with the lowest error), pessimistic error pruning, and critical 

value pruning [11, 12]. 

One of the most widely used decision tree algorithms is CART. The CART algorithm uses 

the Gini index or minimum mean square error of prediction as the splitting criterion and cost 

complexity pruning method for constructing the tree. The working principle of classification 

and regression trees is similar, but classification trees predict a class and regression trees 

predict a real number. A node is pure, if all the instances under it belong to a single class in 

the classification tree and if the prediction of the mean square error of all instances under the 

node is minimum in a regression tree [11–14]. For validation of a decision tree, the K-fold 

cross-validation method is used to choose the tree that gives the least prediction or 

misclassification error. A flowchart of growing regression trees is shown in Fig. 1.6, where 

D is the input training dataset with d features {f1, f2, f3, …, fd}and N no. of instances, Y is the 
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target data, and S is the set of potential splits obtained from D through the exhaustive search 

method. The best tree is validated using the minimum mean square error of the prediction. 

 

Fig. 1.6 Flowchart of growing regression trees 
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1.3 Literature Survey 

 This thesis aims to develop intelligent protection and control schemes for the power 

system. Several authors have proposed different fault detection and classification (FDC) 

protection schemes either for three-phase single/double circuit transmission lines, six-phase 

transmission lines and transmission lines connected to renewable energy sources using 

threshold-based methods, artificial intelligent methods (fuzzy logic, artificial neural networks 

(ANNs), support vector machines (SVMs), extreme learning machines (ELMs), decision 

trees), and hybrid schemes. Similarly, for the frequency control of microgrid, different nature-

inspired or evolutionary algorithms are employed to optimize the PI/PID controller 

parameters. The following subsections describe a brief literature review on transmission line 

protection schemes and microgrid frequency control strategies implemented by different 

authors. 

1.3.1 Protection Schemes for Three-phase Single/Double Circuit 

Transmission Lines 

Several authors have proposed different fault detection and classification (FDC) 

protection schemes either for the single circuit or double circuit transmission lines using 

threshold-based methods [15–19] and artificial intelligent methods [20–27], namely, fuzzy 

logic, artificial neural networks (ANNs), support vector machines (SVMs), extreme learning 

machines (ELMs), decision trees, and hybrid schemes [28–31]. The threshold-based methods 

in [15–19] depend on the voltage and/or current signals transformation. The protection of 

parallel transmission lines with wavelet transform using two-terminal voltage and current data 

is proposed in [15]. The FDC protection scheme for the shunt compensated double circuit 

transmission lines (DCTL) with fast discrete S-transform in [16] and discrete wavelet 

transform in [17] using the energy of the transformed current signals is proposed. Likewise, 

the FDC protection scheme for the double circuit transmission lines in [18,19] is proposed 

with the maximal overlap discrete wavelet transform and three-dimensional triangular fault 

plane that uses the energy and standard deviation of the wavelets of the current signals. An 

artificial intelligent FDC protection scheme based on the fuzzy inference system (FIS) is 

proposed in [20] for the protection of a single-circuit transmission line only. The FDC 

protection schemes utilizing ANN and discrete Fourier transform (DFT) or discrete wavelet 

transform (DWT) viz., DFT-ANN in [21], protects the double circuit transmission lines from 
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the common short circuit faults, and DWT-ANN in [22], protects from cross-country and 

transforming faults. The DFT-ANN method uses the magnitude of the fundamental 

component of voltage and current (MFCV and MFCC). The DWT-ANN method uses the 

standard deviation of the sixth-level detailed coefficients of current signals. The Kalman 

filtering approach based on the modular SVM using the voltage harmonics for the FDC of 

faults on the DCTL with non-linear loads has been proposed in [23]. The Kalman filtering 

technique is computationally expensive and may diverge if the initial estimate or the modelled 

process is incorrect. In [24], an FDC scheme for a series compensated transmission line based 

on the modular DWT-ELM has been proposed. Although the ELMs are robust with good 

generalization ability, their performance is degraded when dealing with huge amounts of 

training data. The data mining techniques, random forests in [25], decision trees in [26] and 

[27], protect the FACTS compensated transmission lines, DCTL, and series compensated 

DCTL, respectively. These methods [25–27] use the instantaneous voltage and current signals 

(for fault detection only), DFT processed voltage and current data (for identifying the faults 

during power swing situations), and the two-terminal voltage and current data for deriving the 

input phase angle of the differential impedance of the lines, respectively. Hybrid protection 

schemes, namely, a linear discriminant analyzer for the feature extraction in conjunction with 

the random forest approach tuned by the cuttlefish optimization in [28] and particle swarm 

optimization (PSO) optimized SVM in [29] or ANN in [30], are proposed for the protection 

of single-circuit transmission lines only. The accurate performance of the PSO-based 

protection schemes depends on the optimal values of the algorithm-specific parameters 

(namely, W, C1, and C2: controls the movement, personal performance, and social 

performance of the swarms, respectively). A fault classifier based on the supervised relevance 

vector machine is proposed in [31] for the protection of series compensated transmission lines. 

 Research Gap: Most of the aforementioned research works reported earlier, 

particularly for the protection of DCTL are training based artificial intelligent techniques. 

They require huge sets of training data and proper selection/tuning of training parameters 

for acquiring accurate FDC. Only a few papers have addressed different fault situations 

and operating conditions for the performance evaluation of the protection scheme. No work 

was reported earlier without training the protection module based on artificial intelligence 

for the protection of DCTL. 
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1.3.2 Protection Schemes for Six-phase Transmission Line 

The acceptance of the six-phase transmission is vaguely encouraged due to the lack of 

proper protection schemes to tackle the 120 different types of short circuit faults. The existing 

protection schemes available for single/double circuit three-phase transmission systems are 

not apt for the six-phase transmission system. The protection schemes developed for the 

conventional three-phase transmission system either with distance relays or other artificial 

intelligence-based techniques [32–34] can only utilize the voltage and current information of 

three phases to detect/classify the fault. But, when these protection schemes are applied to the 

six-phase line, the relay may or may not operate for all 120 fault combinations. It is reported 

that a total of twenty-one conventional distance relays (six for phase-ground fault detection 

and fifteen for phase-phase fault detection) are required for the complete protection of the six-

phase line [35]. Only a few works were reported for the protection of six-phase transmission 

lines. The fault analysis of the six-phase system with sequence components and phase 

coordinate method is presented in [36, 37] and fault detection based on negative sequence 

currents is proposed in [38]. A fault detection and classification technique with discrete 

Fourier transform (DFT) based ANN is proposed in [39, 40] for only six-phases to ground 

faults and single-phase to ground faults respectively. A fault classification scheme for phase 

to phase faults (2 – L faults) is implemented using voltage and current signals in [41] with a 

DWT (Haar wavelet) based ANN approach. The protection for one conductor’s open faults 

in a six-phase transmission system is proposed using ANN in [42]. A complete protection 

scheme with 22 modular DFT based ANNs (11 – ANNs for FDC and 11 – ANNs for fault 

location estimation) is presented in [43] which uses voltage and current signals for the 

protection task. Fault zone identification and fault location estimation with modular ANNs 

using DWT (db3 wavelet) pre-processed voltage and current signals are proposed [44]. In 

[45], a hybrid protection scheme is implemented using the harmonic information of voltage 

signals for FDC with 11 decision tree modules and 11 TLBO tuned ANN modules for fault 

location estimation. The fuzzy logic-based FDC schemes are presented in [46, 47] using DFT 

with voltage and current signals. 

 Research Gap: The ANN-based protection schemes reported above have either 

considered only one type of fault viz. single phase to ground, six-phase to ground, and 

phase to phase faults or modular ANN methods for fault detection and classification. 

Only a few works have reported the fault location estimation. 
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1.3.3 Protection Schemes for Three-phase Transmission Lines Connected 

to Renewable Energy Sources 

Several authors have proposed different protection schemes to identify the faults on 

transmission lines connected to renewable energy sources which include modified distance 

protection, differential protection, pilot protection, and training based artificial intelligent 

schemes. The pilot protection scheme utilizing currents at both ends of the line with a dynamic 

time-warping algorithm reported in [48] is only for balanced faults and the pilot protection 

scheme implemented in [49] requires synchronized voltage and current data for fault 

impedance calculation using short line and distributed line models for wind power integrated 

transmission lines. Similarly, a modified fast distance relaying scheme utilizing the short line 

(R-L model) and Bergeron model of transmission line [50] and a modified polygonal distance 

protection for improved zone-1 performance [51] are proposed for the wind farm connected 

transmission line. Also, a modified distance protection in [52] utilizing local voltage and 

current information for calculating line impedance and phase angle of fault impedance, 

differential protection in [53] utilizing signed correlation and fault index comparison to detect 

faults with the help of phase currents at both ends of the line, directional protection based on 

high frequency in [54] with the help of two independent relays processing voltage and current 

information available at ends of the line locally, and distance protection schemes employing 

least squares estimation [55] and multiple signal classification algorithm [56] to extract 

frequency components of voltage and current near to fundamental frequency are proposed by 

different authors to detect faults on the transmission lines connected to wind farms. Distance 

protection schemes for transmission lines connected to solar photovoltaic (PV) systems were 

also reported viz., distance protection based on positive sequence network [57, 58] utilizing 

either PV side or grid side voltage and current information, and improved/modified distance 

protection based on fault impedance calculation in [59, 60] either utilizing 

synchronized/unsynchronized voltage and current data. Artificial intelligence-based 

protection schemes were also reported for the transmission lines connected to renewable 

energy sources. An enhanced distance protection with the help of support vector machine-

based regression [61] for PV connected lines, ANFIS based fault detection only for wind farm 

connected lines [62], fault detection/classification technique for wind farm connected lines 

using transient monitoring index with support vector machine in [63] and in [64] maximal 

overlap discrete wavelet transform with ANN for symmetrical fault detection only, and the 
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intelligent protection methods [65, 66] for FACTS compensated line connected to wind farm 

with deep convolution neural network using variational mode decomposition and random 

forest classifier using intrinsic time scale decomposition are reported in the literature.  Further, 

PSO optimized thresholds for adaptive differential protection of transmission lines connected 

to wind power systems are presented in [67, 68]. 

 Research Gap: The protection schemes reported in most of the above-mentioned 

literature are hectic mathematical analysis-based distance/pilot/differential protection 

schemes which either require single/double end synchronized/unsynchronized current 

and/or voltage data for the protection task. On the other hand, the AI based protection 

methods are reported which require massive datasets towards training the AI protection 

modules for fault detection/classification considering different operating scenarios of the 

system. Further, some protection schemes are implemented for the detection of 

symmetrical or balanced faults only. 

 

1.3.4 Frequency Control of Microgrid 

The load frequency control (LFC) problem of an islanded microgrid (MG) is addressed 

using various artificial intelligent-based PI/PID controllers that are proposed by different 

authors. The parameters of the PID controller were optimized either by using a single artificial 

intelligent technique or hybrid techniques. The genetic algorithm in [69], particle swarm 

optimization (PSO) in [70], social spider optimization in [71], grey wolf optimization (GWO) 

in [72], firefly algorithm in [73], harmony search optimization in [74], teaching learning based 

optimization in [75], grasshopper optimization in [76], and cuckoo search optimization in [77] 

are employed to tune the parameters of PID controller to control the frequency of an islanded 

microgrid having various renewable energy sources and energy storage devices. Similarly, an 

artificial neural network based PID controller in [78], an adaptive fuzzy PI controller in [79], 

PSO optimized adaptive fuzzy PI controller in [80], a combination of GWO and PSO 

optimized adaptive fuzzy PI controller in [81], and a hybrid of firefly and PSO algorithm 

based PID controller in [82] are designed for the frequency control of an islanded microgrid. 

In the control studies, the AI-optimized PID controllers are well suited for MG frequency 

control applications. However, for certain operating scenarios, it has been observed that these 

PID controllers have underperformed due to the difficulty in finding an optimal operating 

state. This underperformance is mostly caused by an improper offset between the derivative 
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and integral gain components. A PI controller can minimize the system’s error during the 

steady state. If the operator has increased the integral gain component the steady state error is 

minimized. However, the system exhibits undesirable behaviour during the transient state. 

The system's stability and speed are reduced by the dominant integral component. Similarly, 

the dominant PD component improves the system's transient response. But, the system's 

steady-state response is disturbed. 

Recently, the concept of multi-stage controllers has been implemented by several authors 

due to their robust performance in regulating the frequency of an islanded MG or multi-MG 

with renewable energy sources and energy storage systems. The multi-stage PID (MPID) 

control structures were proposed by different authors to tackle the frequency control problem. 

A hybrid of whale and pattern search algorithms in [83], fuzzy tuned multi-stage PID and 

fractional order multi-stage PID controllers optimized with grasshopper optimization [84] and 

future search algorithms [85], chaotic crow search algorithm for fuzzy PD-TID controller in 

[86], and salp swarm optimization for PI-PD controller in [87] are proposed by different 

authors to control the frequency of microgrid. 

 Research Gap: From the above literature, it is understood that the regulation of 

frequency of MG either having RES or ESS (energy storage systems) in islanded mode 

is achieved with different controller structures whose parameters are optimized with a 

variety of swarm intelligent techniques. The performance of these techniques mainly 

depends on the choice of specific parameters of the algorithm and the improper choice 

may roll the solution towards local optimum values. Although the controller’s approach 

based on fuzzy logic or fractional order calculus is exhibiting better performance but at 

the cost of optimizing the structure of the fuzzy inference system or the fractional order 

system parameters along with controller gain constants. Also, from the literature, it was 

observed that controlling the frequency of an islanded MG having RES and PHEVs with 

an MPID controller is rarely investigated. 
 

1.4 Research Gaps and Motivation 

1.4.1 Research Gaps 

The research gaps mentioned at the end of each subsection are summarized below: 

 From the literature of Section 1.3.1, it is observed that, protection schemes reported 

for the three-phase single or double circuit transmission lines have implemented the 
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training based artificial intelligent techniques that require extensive training datasets 

with at least two protection modules for the complete protection of the line. Also, 

proper tuning and selection of algorithm specific training parameters play a vital role 

in achieving accurate performance of the protection jobs.  

 From the literature of Section 1.3.2, it is observed that, ANNs were successfully 

implemented for the protection of six-phase transmission lines. But either the 

protection schemes developed were only for one type of fault (6-LG or 1-LG or 2-L 

faults) or the modular ANN concept was implemented for FDC of all types of faults. 

 From the literature of Section 1.3.3, it is observed that, the training based artificial 

intelligent protection schemes or modified distance protection schemes involving 

hectic mathematical analysis are majorly reported for the fault detection on the 

transmission line connected with the renewable energy sources. 

 From the literature of Section 1.3.4, it is observed that, for controlling the frequency 

of an islanded microgrid having RES and PHEVs with a multi-stage PID controller 

is rarely investigated. Further, the selection of appropriate optimal techniques for 

modifying the control parameters is crucial to improvise the MG’s dynamic response. 

  

1.4.2 Motivation 

Following the research gaps, the motivations for this thesis are listed below: 

 To develop an artificial intelligent protection scheme i.e. free from training of the module 

for the protection of three phase double circuit transmission lines and also suitable for 

single circuit operation. 

 To develop an artificial intelligent protection scheme of a single module for six phase 

transmission line that can detect and classify all 120 types of short circuit faults. Also, a 

fault location estimation approach for the six phase lines. 

  To develop an artificial intelligent protection scheme i.e. free from the training of the 

module for the protection of three phase transmission lines connected to renewable 

energy resources viz. wind and solar power plants. To propose a fault location estimation 

approach for such transmission lines. 

 To control the frequency of an islanded microgrid having renewable energy resources 

and plug-in hybrid electric vehicles (PHEVs) using a multi-stage PID controller whose 

parameters are optimized with the help of nature inspired optimization algorithm. The 
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NFL (No Free Lunch) theorem states that no single metaheuristic approach can solve all 

engineering optimization issues and that there is always an opportunity for improvement. 

 

1.5 Contributions of the Thesis 

Following the motivations of the thesis to develop artificial intelligent protection and 

control schemes/strategies towards the fine operation of the power system, four contributions 

are presented in this thesis under the titles given below: 

Contribution-1: Single Fuzzy Inference Based Fault Detection and Classification Protection 

Scheme for Different Types of Short Circuit Faults on Double Circuit Transmission Lines. 

Contribution-2: Mono ANN Module Protection Scheme and Multi ANN Modules for Fault 

Location Estimation for a Six Phase Transmission Line Using Discrete Wavelet Transform. 

Contribution-3: A Novel Protection Scheme for Transmission Lines Connected to Solar 

Photovoltaic and Wind Turbine Farms Using Fuzzy Logic Systems and Bagged Ensemble 

Learning. 

Contribution-4: Frequency Control of an Islanded Microgrid with Multi-stage PID Control 

Approach Using Moth Flame Optimization Algorithm. 

1.6 Organization of the Thesis 

The thesis is organized into six chapters. A brief discussion of each chapter is given below to 

provide an overview of the thesis: 

Chapter 1 outlines the growing demand for electrical energy globally and the crucial role of 

transmission lines. It emphasizes the importance of protecting these lines and maintaining 

grid frequency, especially in microgrids. This chapter introduces a brief about AI techniques 

like fuzzy logic, neural networks, and decision trees and reviews their application in 

transmission line protection for various line configurations and renewable energy integration. 

It also covers AI-optimized PI/PID controllers for microgrid frequency control. Following the 

discussion on research gaps and motivations, an overview of the thesis structure is presented 

at the end of this chapter. 
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Chapter 2 proposes an AI-based fault detection and classification system for double circuit 

transmission lines using a single fuzzy inference module. It addresses the limitations of 

conventional relays in protecting double circuit transmission lines, then details: i) feature 

extraction using discrete Fourier transform, ii) proposed scheme methodology, iii) 

performance evaluation under various fault types, operating scenarios, and varying 

parameters, and iv) comparison with other AI techniques and summary of the chapter. 

Chapter 3 proposes an AI-based fault detection and classification scheme for six-phase 

transmission lines using a single ANN module. It also proposes multiple ANN modules for 

estimating the fault location in each phase. This chapter highlights the advantages of six-phase 

lines and the complexity of their protection compared to three-phase systems. It considers a 

six-phase line i.e. between the buses Springdale and McCalmont of Allegheny power system 

and discusses the proposed method using discrete wavelet transform and neural networks. 

The performance for various fault scenarios for 120 types of faults with varying fault 

parameters is evaluated. The comparison results and summary are presented at the end. 

Chapter 4 proposes a hybrid AI scheme (fuzzy system and bagged ensemble learner) for 

protecting transmission lines connected to renewable energy sources (50 MW solar power 

and 50 MW wind power). It addresses the limitations of traditional transmission line distance 

protection methods and describes the simulated power system. The proposed scheme 

combines: i) feature extraction with discrete Fourier transform, ii) a fuzzy logic system for 

fault detection and classification, and bagged ensemble decision trees for fault location 

estimation. The proposed scheme’s performance is evaluated for various fault types under 

different solar irradiations and wind speeds. The reliability of fault detection/classification 

and location estimation modules is validated through the simulations with the help of the 

confusion matrix and Chi-square statistical analysis test. Finally, this chapter presents 

comparison results and concludes with a summary of the method. 

Chapter 5 proposes a multi-stage PID (MPID) controller optimized by a moth flame 

optimization (MFO) algorithm for frequency control in an islanded microgrid (Bella Coola 

microgrid) with renewables and plug-in hybrid electric vehicles. It addresses the limitations 

of conventional PID controller structure and discusses the mathematical models for microgrid 

and MFO algorithm. The performance of the MFO algorithm is appraised with other meta-

heuristic techniques (PSO, GOA, and TLBO) in optimizing PID parameters. Later, the 
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performance MFO-PID and MFO-MPID controllers is evaluated and compared under 

different operating conditions of the microgrid. The impact of electric vehicles on frequency 

control and microgrid stability through eigenvalue and root locus analysis is assessed. This 

chapter concludes with a comparison and summary of the proposed controller. 

Chapter 6 presents the overall conclusions of the proposed methods towards the protection 

and control of power systems from the preceding chapters. This chapter also includes the 

future scope of the research in the direction of protection of transmission lines and frequency 

control of a microgrid or multi microgrids using further sophisticated artificial intelligent 

techniques. 

 

***** 
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2.1 Introduction 
 

The vast extent of non-insulated transmission lines experience different weather 

conditions that make them easily prone to stochastic fault conditions. The protection of double 

circuit transmission lines (DCTL) with conventional distance relays is difficult due to the 

mutual inductive coupling between the phases of the two circuits. Whenever a fault occurs on 

one of the circuits, the fault current is also induced into the healthy phase(s) of the other circuit 

of DCTL besides the faulty phase(s). So, the distance relay operation i.e., based on the voltage 

and current measurements, may issue a false trip to the healthy phase(s) of the line(s). The 

zero-sequence mutual impedance of the lines, fault path resistance, various faults, pre-fault 

system conditions, and the effects due to infeed currents and shunt capacitances pose 

problems to the distance relaying schemes [88–90]. The main aim of the transmission line 

protection scheme is to identify and isolate the fault as quickly as possible to maintain the 

stability of the system. The quick detection and classification of faults help the 

repairs/maintenance crew to improve the service restoration time.  A reliable protection 

scheme ensures the safe and secure operation of the transmission network with minimal 

interruption and early restoration of the quality power supply. 

The present chapter proposes an artificial intelligence-based protection scheme with a 

single FIS module for the FDC of faults on the DCTL. The proposed FIS based FDC 

protection scheme is based on the simple fuzzy logic concept. It uses only the magnitude of 

the fundamental frequency component of three-phase currents and zero sequence currents of 

both the lines of the sending end bus that are pre-processed with DFT. The proposed FDC 

protection scheme is implemented in the MATLAB/Simulink environment on 400 kV, 50 Hz, 

300 km DCTL; it correctly detects and identifies the different fault types within one cycle 

time (20 ms). The key advantages of the proposed protection scheme are: 

 Require no training of the FIS module. 

 No communication link (hence no communication delay as single-end data is used). 

 Single FIS module suitable for single and double circuit operation. 

 Reduced complexity of protection task as the simple fuzzy logic concept is involved. 

2.2 Details of Double Circuit Power System Model 

Fig. 2.1 shows the one-line diagram of the considered power system model. The 

considered power system network is modelled and simulated in the MATLAB/Simulink 
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environment. It consists of a three-phase double circuit transmission line of 400 kV, 50 Hz, 

300 km long line that is fed from the three phase sources at both ends of the line [21]. The 

transmission line is divided into three sections (section-1, section-2, and section-3) each 100 

km in length. The two three-phase sources of 400 kV, 50 Hz having a short circuit capacity 

of 1.25 GVA and X/R ratio of 10 are connected at the bus B1 (sending end bus) and bus B4 

(receiving end bus). The three-phase source connected at the bus B4 represents Thevenin’s 

equivalent source of the interconnected grid. A load of 100 kW and 100 kVar is connected at 

bus B1. At bus B4, a load of 250 kW is connected. The distributed parameter model block 

from MATLAB is used to implement the double circuit transmission line to address the effect 

of the distributed shunt capacitance and mutual coupling of impedance between the lines of 

the two circuits. The three-phase fault breakers are used to simulate the different types of 

short circuit faults (symmetrical and unsymmetrical faults) with a particular fault inception 

time and fault resistance. The system parameters and operating conditions are detailed in 

Appendix – I. 

 

Fig. 2.1 One-line diagram of the considered double circuit power system model 

 

2.3 Development of Proposed Protection Scheme with FIS for 

FDC 

In general, any protection scheme has broadly two stages: i) feature extraction and ii) 

the actual method of the protection scheme. In the present work, the DFT is used for the 

feature extraction process and the fuzzy inference system is used for the protection scheme. 
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2.3.1 Feature Extraction Process with DFT 

The raw fault data of instantaneous voltage/current signals available at the relaying point 

cannot better represent the fault signatures useful for the protection task as it is highly 

oscillatory and transient in nature. Therefore, they should be discretized and pre-processed 

for digital protection applications. The time-domain raw signal has to be transformed into a 

frequency-domain signal to extract the useful features for relaying purposes using the signal 

processing technique (DFT).  

The three-phase instantaneous current signals of line-1 and line-2 available at the relaying 

point (Bus B1 in Fig. 2.1) are used for the proposed protection scheme. To filter out the 

higher-order harmonics in the recorded instantaneous current signals of line-1 and line-2, the 

second-order low-pass Butterworth filter with a cut-off frequency of 480 Hz is used. The 

filtered current signals are sampled at a 1 kHz sampling frequency according to the Nyquist 

sampling theorem. The full cycle DFT is applied to the discrete current samples of line-1 and 

line-2 to extract the magnitude of the fundamental frequency component of current signals. 

The DFT X(k) of a discrete-time signal x(n) is given in Eq. (2.1)[91].  

                  𝑋[𝑘] =
1

𝑁
෍ 𝑥(𝑛)𝑒

ି௝ଶగ௡௞
ேൗ                                                                                  (2.1)

ேିଵ

௡ୀ଴

 

where x(n) is the discrete-time signal, k = 0, 1, 2, 3, …, N-1, n = 0, 1, 2, 3, …, N-1, and N is 

the no. of samples per cycle. 

The zero-sequence currents (ZSCs) are available only when the ground is involved in the fault 

loop. So, the zero-sequence analyser from MATLAB is used to extract the ZSCs of both the 

lines at bus B1 for ground faults detection/classification purpose.  Therefore, the required 

seven input features for the proposed FIS based FDC scheme are the magnitudes of 

fundamental frequency components of the six phase currents (|Ia1|, |Ib1|, |Ic1| of line-1 and 

|Ia2|, |Ib2|, |Ic2| of line-2) and the sum of ZSCs of line-1 and line-2 (|I0| = |I01|+|I02|). 

 

2.3.2 Proposed FIS Based FDC Protection Scheme 

The proposed protection scheme uses the fuzzy logic concept [8]. The fuzzy logic systems 

are simple in structure, flexible, and easy to implement. The fuzzy logic system accepts any 

type of data (vague or imprecise) and provides a precise solution with human-like reasoning. 

They are independent of the mathematical model of the system and can solve non-linear 
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models/problems without rigorous computational effort. The fuzzy logic concept is based on 

the fuzzy set theory. It introduces the idea of partial true or partial false values. The operation 

of the fuzzy logic system is based on the fuzzy rules framed using the simple “IF-THEN” 

conditional arguments that maps the input and output fuzzy sets using the fuzzy linguistic 

variables (i.e., represented with the membership functions). The functional operation of a 

fuzzy inference system consists of three stages: i) fuzzification, ii) fuzzy inference processing, 

and iii) defuzzification. 

In the present work, a single fuzzy inference system module is implemented using the 

Fuzzy Logic Toolbox of MATLAB for the FDC of short circuit faults to protect the three-

phase DCTL. Fig. 2.2 and Fig. 2.3 depict the schematic diagram and the flowchart of the 

proposed FIS based FDC protection scheme. It has seven inputs (+Y|Ia1|, +Y|Ib1|, +Y|Ic1|, -

Y|Ia2|, -Y|Ib2|, -Y|Ic2|, and |I0|) and seven outputs (‘A1’, ‘B1’, ‘C1’, ‘A2’, ‘B2’, ‘C2’ and 

‘G’). The input features required for the protection task are obtained from the feature 

extraction process i.e., detailed in Section 2.3.1. The FIS based FDC module outputs ‘A1’, 

‘B1’, ‘C1’ for line-1 and ‘A2’, ‘B2’, ‘C2’ for line-2 are used to represent the healthy/faulty 

phase(s) for the FDC task. The output ‘G’ is used to detect the ground faults. The output labels 

“0” (to indicate the healthy condition) and “1” (to indicate the faulty condition) are used for 

all the outputs (Ai, Bi, Ci, and G; i=1, 2).  

 

Fig. 2.2 Block diagram of the proposed FIS based FDC protection scheme 
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Fig. 2.3 Flowchart of the proposed FIS based FDC protection scheme 

The input features obtained after the feature extraction process have been modified by 

using the signal selector output to have a better understandability of the input features. Eq. 

(2.2) specifies the signal selector output (Y) based on the threshold condition. A wide range 

of simulation studies have been performed on the power system network shown in Fig. 2.1 by 

simulating different types of faults with varying fault resistances and fault inception angles at 

different fault locations for determining the threshold. 

𝑌 = ቐ

−1;            |𝐼𝑝1| − |𝐼𝑝2| < −3 𝐴

0; −3 𝐴 ≤ |𝐼𝑝1| − |𝐼𝑝2| ≤ 3 𝐴

1;             |𝐼𝑝1| − |𝐼𝑝2| > 3 𝐴;

ቑ 𝑤ℎ𝑒𝑟𝑒 𝑝 = 𝑎, 𝑏, 𝑐 𝑝ℎ𝑎𝑠𝑒𝑠                            (2.2) 
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The signal selector output is “1” or “-1” if the fault is in line-1 or line-2. The signal selector 

output is “0” if the system is healthy. The input features of line-1 are multiplied with the 

signal selector output and the input features of line-2 are multiplied with the negative value 

of the signal selector output. Thus, the product of signal selector output and input features 

yields a positive magnitude for the actual faulty phases and a negative magnitude for the 

healthy phases. The modified vector of input features in Eq. (2.3) is given as input to the FIS 

based FDC protection module. 

 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠  

[+𝑌|𝐼𝑎1|     + 𝑌|𝐼𝑏1|     + 𝑌|𝐼𝑐1|     − 𝑌|𝐼𝑎2|     − 𝑌|𝐼𝑏2|     − 𝑌|𝐼𝑐2|      |𝐼0|]்         (2.3) 

where |𝐼0| = |𝐼01| + |𝐼02|. 

The inputs and outputs of the proposed FIS based FDC protection module are fuzzified 

using triangular membership functions. It is generally represented by the three vertices of the 

triangle. Although the triangular membership functions are chosen based on the trial-and-

error basis method by conducting a series of simulations with varying extreme fault 

conditions, it can easily detect even the smallest changes in the input and output. Table 2.1 

presents the information on input and output membership functions. Each of the input and 

output variable space is grouped under two fuzzy linguistic variables (two membership 

functions) using the triangular membership functions. The input linguistic variables ‘Fault 

(F)’ and ‘No-Fault (NF)’ are used for the input variable ±Y|Ipi|. The ‘+’ sign is for line-1 

input features and the ‘-’ sign is for line-2 input features. The input linguistic variable ‘Absent 

(A)’ and ‘Present (P)’ are used for the input variable |I0|. Similarly, the output linguistic 

variables ‘LOW (L)’ and ‘HIGH (H)’ are used for the output variables Ai, Bi, Ci, and G (i = 

1, 2). 

Table 2.1 Input and output membership functions 

Input 
Variable 

Input Linguistic Variable 
[Triangular Membership 

Function] 

Output 
Variable 

Output Linguistic Variable 
[Triangular Membership 

Function] 

 
±Y|Ipi| 

 No-Fault (NF)  
Pi 

LOW (L) 

 Fault (F) HIGH (H) 

 
|I0| 

Absent (A)  
G 

 LOW (L) 

Present (P) HIGH (H) 

where p=a, b, c and i=1, 2 where P=A, B, C and i=1, 2 
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Table 2.2 presents the rule base or framed rules for the proposed FIS based FDC 

protection scheme. A total of 22 fuzzy rules are framed for the proposed protection scheme. 

The first row and column in Table 2.2 represent the input linguistic variables and all other 

rows and columns represent the output linguistic variables. For example, the rule 

corresponding to the second row and column with i = 1 is “If Y|Ia1| is ‘No-Fault’ and Y|Ib1| 

is ‘Fault’ and Y|Ic1| is ‘No-Fault’ and |I0| is ‘Present’ then A1 is ‘LOW’ B1 is ‘HIGH’ C1 is 

‘LOW’ G is ‘HIGH’”. Similarly, all other rules are framed. Depending on the fault current 

the input is directly mapped to the output based on the fired fuzzy rules. The FIS provides the 

degree of fault severity as a crisp value after the defuzzification process. The centroid method 

of defuzzification is used. The seven outputs of the FIS based FDC module are given to the 

comparator block to have the binary outputs in each phase (“0” and “1”). The trip signal to 

the circuit breakers of line-1/line-2 is generated by the “OR” operation of the FIS based FDC 

module binary outputs of line-1/line-2. When any short circuit fault occurs on the line, the 

outputs of FIS based FDC protection module shows “HIGH” with “1” for faulty phase(s) and 

the healthy phases shows “LOW” with “0”, indicating the FDC. 

 

Table 2.2 Rule base for the FIS based FDC 

Input Linguistic 
Variables  

 
 

[NF, A] 

 
 

[NF, P] 

 
 

[F, A] 

 
 

[F, P] (±Y|Ici|, |I0|) → 
(±Y|Iai|, ±Y|Ibi|), i=1,2 

↓ 

[NF, NF] [L, L, L, L] - - [L, L, H, H] 

[NF, F] - [L, H, L, H] [L, H, H, L] [H, L, H, H] 

[F, NF] - [H, L, L, H] [H, L, H, L] [H, L, H, H] 

[F, F] [H, H, L, L] [H, H, L, H] [H, H, H, L] - 

where NF = No-Fault, F = Fault, A = Absent, P = Present, L = LOW, H = HIGH 

 

2.4 Results and Discussion 

The performance/response of the proposed FIS based FDC protection scheme is tested for 

all the ten types of short circuit faults on the transmission lines and different operating 

conditions of the system shown in Fig. 2.1 with varying fault parameters viz., fault location 

(Lf) (1 km to 299 km), fault inception angle (Φ) (0º to 360º), and fault resistance (Rf) (0 Ω to 
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200 Ω). The proposed FDC scheme response is also evaluated for cross-country faults, 

evolving faults, and high impedance faults (HIF). Further, the performance has been evaluated 

under current transformer (CT) saturation, noisy environment, and fault during power swing 

conditions. The following subsections discuss the simulation test results and comparison 

results of the proposed FDC protection scheme. 

2.4.1 Test Results for Variation in the Fault Parameters 

The faults on the transmission lines are random in nature, i.e., they can occur at any 

point on the transmission lines at any instant with any fault resistance. The performance of 

the proposed FDC scheme is evaluated for the fault parameter variations. Fig. 2.4 (a) and (b) 

represents the three phase instantaneous currents of line-1 and line-2 of the sending end bus 

(Bus B1) for a single line to ground (LG) fault in line-1 (AG-1) simulated at a fault location 

(Lf) of 250 km from the bus B1 with fault resistance (Rf) of 50 Ω and fault inception angle 

(Φ) of 0º (fault inception time, Tf = 60 ms). Fig. 2.4 (c) depicts the input features (magnitude 

of fundamental component and zero sequence currents) extracted using the feature extraction 

process. From Fig. 2.4 (c), it can be observed that there is also a rise in the current magnitude 

of the healthy phase along with the faulty one due to the zero sequence mutual impedance of 

the lines. Fig. 2.4 (d) and (e) depicts the response of the proposed FIS based FDC protection 

scheme that correctly detects and classifies the fault, and issues a trip signal in 4 ms after the 

occurrence of the fault. 

Fig. 2.4 (a) and (b) Current waveforms of line-1 and line-2 during the LG fault in line-1 (AG-

1), (c) MFCCs and ZSCs of line-1 and line-2, (d) FIS based FDC outputs, and (e) Trip signal 

to circuit breakers 
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Table 2.3 gives the test results of the proposed FIS based FDC protection scheme with 

variations in the fault parameters. 

Table 2.3 Test results for variations in the fault parameters 

S. 
No 

Fault Parameters Fuzzy Inference System Based 
Fault Detection and Classification 

Outputs 

Instant of Fault Detection and 
Classification Time (ms) 

Fault Type-Line no., Fault 
Location (km), Fault Resistance 
(Ω), Fault Inception Angle (Time 
of fault (ms)) 

A
1 

B
1 

C
1 

A
2 

B
2 

C
2 

G A
1 

B
1 

C
1 

A
2 

B
2 

C
2 

G 

1 AG-1, 80, 50, 0º (60) 1 0 0 0 0 0 1 63 - - - - - 63 

2 BCG-1, 30, 120, 90º (65) 0 1 1 0 0 0 1 - 68 70 - - - 68 

3 AC-1, 170, 10, 45º (62.5) 1 0 1 0 0 0 0 67 - 67 - - - - 

4 ABC-1, 280, 20, 180º (70) 1 1 1 0 0 0 0 75 75 82 - - - - 

5 BG-2, 210, 200, 150º (68.33) 0 0 0 0 1 0 1 - - - - 73 - 73 

6 ABG-2, 299, 200, 0º (60) 0 0 0 1 1 0 1 - - - 77 77 - 79 

7 BCG-2, 165, 150, 300º (76.67) 0 0 0 0 1 1 1 - - - - 80 82 80 

 

2.4.2 Test Results for Remote End Fault with High Fault Resistance and 

Close-in Faults 

Unlike the conventional distance relay which depends on the voltage and current 

measurements at the relay point, the proposed protection scheme is dependent only on the 

current signals at the relaying point. Fig. 2.5 (f) depicts the response of the proposed FIS based 

FDC protection scheme for the remote end fault (LLG fault in the line-2 (ABG-2)) simulated 

at Lf = 299 km from the bus B1 with Rf = 200 Ω and Φ = 0º (Tf = 60 ms). The proposed FDC 

protection scheme can detect and classify the fault within one cycle time of fundamental 

frequency. 

The performance of the proposed protection scheme is evaluated for remote end and 

close-in faults and the test results are depicted in Table 2.4. In Table 2.4, the fault parameter 

column gives the details of the simulated fault type in line-1/line-2 with different fault 

locations, fault resistances, and fault inception angles. The proposed protection scheme 

detects remote end faults and close-in faults effectively. 
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Fig. 2.5 (a) and (b) Current waveforms of line-1 and line-2 respectively for the remote end 

fault, ABG-2 fault (Lf = 299 km, Rf = 200 Ω and Φ = 0º (Tf = 60 ms)), (c), (d), and (e) MFCCs 

for phase-A and phase-B, and ZSCs respectively for line-1 and line-2, and (f) FIS based FDC 

outputs 

 

Table 2.4 Test results for remote end and close-in faults 

S.N
o 

Fault Parameter Fuzzy Inference System Based Fault 
Detection and Classification Outputs 

Instant of Fault 
Detection and 

Classification Time (ms) 

 

Fault Type-Line no., Fault Location 
(km), Fault Resistance (Ω), Fault 
Inception Angle (Time of fault (ms)) 

A1 B1 C1 A2 B2 C2 G A1 B1 C1 G  

1 AG-1, 1, 5, 0º (60) 1 0 0 0 0 0 1 62 - - 62 Close-
in 

Faults 
2 ABG-1, 5, 15, 45º (62.5) 1 1 0 0 0 0 1 64 66 - 64 

3 ABC-1, 15, 20, 90º (65) 1 1 1 0 0 0 0 66 67 66 - 

4 AC-1, 20, 10, 270º (75) 1 0 1 0 0 0 0 77 - 77 - 

5 AG-1, 299, 180, 0º (60) 1 0 0 0 0 0 1 75 - - 75 Remote 
End 

Faults 
6 ABG-1, 295, 190, 45º (62.5) 1 1 0 0 0 0 1 74 82 - 74 

7 AB-1, 298, 25, 90º (65) 1 1 0 0 0 0 0 79 79 - - 

8 ABC-1, 293, 20, 270º (75) 1 1 1 0 0 0 0 87 82 82 - 

 

2.4.3 Test Results for Cross-country and Evolving Faults 

The cross-country fault (CCF) is defined as the earth faults occurring on different phases 

at different locations of the same circuit or different circuits at different instants or the same 

instant of time. The fault which incepts in one phase and spreads/creeps to the other phases 

of the same circuit after a few cycles at the same location is called an evolving fault (EF) [18]. 

The proposed FDC protection scheme can detect and classify the cross-country and evolving 

faults as LG, LLG, LL, and LLL faults. As per the proposed FDC scheme, if the difference in 
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the FDC time of any two phases is greater than the half-cycle time (10 ms), then the detected 

fault is an evolving fault. Otherwise, it is a common short circuit fault. Fig. 2.6 (b) depicts the 

test result for a cross-country fault with fault-1 (AG-1 in line-1) and fault-2 (CG-2 in line-2) 

simulated at Lf = 30 km from bus B1, with Rf = 100 Ω, and Φ = 0º (Tf = 60 ms). The FDC time 

for the cross-country fault is within half-cycle time (10 ms), as depicted in Fig. 2.6 (b). Fig. 

2.7 (b) depicts the test result for the evolving fault with fault-1: LG fault in the line-1 (AG-1) 

at Lf = 150 km with Rf = 50 Ω and Φ = 0º (Tf = 60 ms) and fault-2: LG in the line-1 (BG-1) at 

Lf = 150 km with Rf = 50 Ω and Φ = 0º (Tf = 80 ms). The FDC time for the evolving fault is 

within 5 ms time after the fault inceptions and the difference in FDC time of the faulty phases 

is greater than 10 ms time, as shown in Fig. 2.7 (b). 

 

Fig. 2.6 (a) MFCCs and ZSCs of line-1 and line-2 for the cross-country fault and (b) FIS 

based FDC outputs 

 

Fig. 2.7 (a) MFCCs and ZSCs of line-1 and line-2 for the evolving fault and (b) FIS based 

FDC outputs 
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The performance of the proposed protection scheme is evaluated for the cross-country and 

evolving faults. The test results are depicted in Table 2.5 and Table 2.6 with fault parameters 

of fault-1 and fault-2 in the first two columns and the FIS based FDC outputs along with the 

instant of the FDC time in the third column. 

Table 2.5 Test results of the proposed protection scheme for cross-country faults 

S. 
No. 

Cross-Country Faults Fuzzy Inference System Based Fault Detection and 
Classification Outputs  

(Instant of Fault Detection and Classification Time 
(ms)) 

  Fault-1 Fault-2 

Fault Type-Line no., Fault 
Location (km), Fault 
Resistance (Ω), Fault 
Inception Angle (Time of 
fault (ms)) 

Fault Type-Line no., Fault 
Location (km), Fault 
Resistance (Ω), Fault 
Inception Angle (Time of 
fault (ms)) 

A1 B1 C1 A2 B2 C2 G 

1 AG-1, 7, 50, 0° (60) BG-1, 55, 50, 0º (60) 1 
(63) 

1 
(62) 

0 
 (-) 

0  
(-) 

0 
 (-) 

0  
(-) 

1  
(62) 

2 BCG-1, 50, 150, 0º (60) AG-1, 250, 10, 0º (60) 1 
(66) 

1 
(63) 

1 
(69) 

0 
 (-) 

0 
 (-) 

0 
 (-) 

1 
(64) 

3 AG-1, 98, 90, 45º (62.5) CG-1, 205, 60, 45º (62.5) 1 
(65) 

0 
 (-) 

1 
(70) 

0 
 (-) 

0 
 (-) 

0 
 (-) 

1 
(65) 

4 CG-1, 170, 75, 45º (62.5) AG-1, 258, 200, 45º (62.5) 1 
(76) 

0 
 (-) 

1 
(68) 

0  
(-) 

0 
 (-) 

0 
 (-) 

1 
(67) 

5 AG-1, 1, 200, 90º (65) CG-1, 299, 5, 90º (65) 1 
(75) 

0 
 (-) 

1 
(70) 

0 
 (-) 

0 
 (-) 

0 
 (-) 

1 
(70) 

6 AG-1, 1, 200, 90º (65) CG-1, 299, 200, 90º (65) 1 
(74) 

0 
 (-) 

1 
(81) 

0  
(-) 

0 
 (-) 

0 
 (-) 

1 
(73) 

7 CG-1, 65, 15, 180º (70) BG-1, 165, 15, 180º (70) 0 
 (-) 

1 
(73) 

1 
(79) 

0 
 (-) 

0 
 (-) 

0 
 (-) 

1 
(74) 

8 AG-1, 190, 40, 270º (75) CG-1, 260, 50, 270º (75) 1 
(81) 

0 
 (-) 

1 
(79) 

0 
 (-) 

0 
 (-) 

0 
(-) 

1 
(79) 

9 AG-1, 80, 30, 0º (60) BG-2, 110, 30, 0º (60) 1 
(63) 

0 
 (-) 

0 
 (-) 

0 
 (-) 

1 
(63) 

0 
 (-) 

1 
(63) 

10 BG-1, 10, 100, 0º (60) CG-2, 290, 100, 0º (60) 0 
 (-) 

1 
(63) 

0 
 (-) 

0 
 (-) 

0 
 (-) 

1 
(71) 

1 
(63) 
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Table 2.6 Test results of the proposed protection scheme for evolving faults 

S. 
No. 

Evolving Faults Fuzzy Inference System Based Fault Detection and 
Classification Outputs  

(Instant of Fault Detection and Classification Time (ms)) 
Fault-1 Fault-2 

Fault Type-Line no., Fault 
Location (km), Fault 
Resistance (Ω), Fault 
Inception Angle (Time of 
fault (ms)) 

Fault Type-Line no., Fault 
Location (km), Fault 
Resistance (Ω), Fault 
Inception Angle (Time of 
fault (ms)) 

A1 B1 C1 A2 B2 C2 G 

1 AG-1, 20, 50, 0º (60) CG-1, 20, 50, 0º (80) 1 
(63) 

0 
 (-) 

1 
(88) 

0 
 (-) 

0 
 (-) 

0 
 (-) 

1 
(64) 

2 BG-1, 90, 100, 0º (60) CG-1, 90, 100, 0º (80) 0 
 (-) 

1 
(63) 

1 
(89) 

0 
 (-) 

0 
 (-) 

0 
 (-) 

1 
(63) 

3 ABG-1, 150, 40, 90º (65) CG-1, 150, 40, 90º (85) 1 
(75) 

1 
(71) 

1 
(89) 

0 
 (-) 

0 
 (-) 

0 
 (-) 

1 
(71) 

4 AC-1, 190, 10, 90º (65) BG-1, 190, 10, 90º (85) 1 
(70) 

1 
(91) 

1 
(70) 

0 
 (-) 

0 
 (-) 

0 
 (-) 

1 
(90) 

5 BG-1, 245, 150, 180º (70) AG-1, 245, 150, 180º (90) 1 
(94) 

1 
(82) 

0 
 (-) 

0 
 (-) 

0 
 (-) 

0 
 (-) 

1 
(82) 

6 CG-1, 280, 200, 270º (75) BG-1, 280, 200, 270º (95) 0 
( -) 

1 
(102) 

1 
(88) 

0 
 (-) 

0 
 (-) 

0 
 (-) 

1 
(88) 

7 AG-1, 110, 200, 300º (76.67) BG-1, 110, 200, 300º (96.67) 1 
(85) 

1 
(102) 

0 
 (-) 

0 
 (-) 

0 
 (-) 

0 
 (-) 

1 
(85) 

8 BC-1, 135, 15, 0º (60) AG-1, 135, 15, 0º (80) 1 
(85) 

1 
(70) 

1 
(70) 

0 
 (-) 

0 
 (-) 

0 
 (-) 

1 
(82) 

9 AG-1, 50, 25, 0º (60) BC-1, 50, 25, 0º (80) 1 
(63) 

1 
(83) 

1 
(88) 

0 
 (-) 

0 
 (-) 

0 
 (-) 

1 
(63) 

 

2.4.4 Test Results for Power Swing (PS) Conditions and Fault During Power 

Swing (FPS) Conditions 

One of the reasons for the stressed conditions of the power system is the power swing. 

The variations or oscillations in the power flow angle is called power swing. The power 

swings are due to the sudden switching on/off of heavy loads, loss of lines or generators, loss 

of frequency synchronism, and the clearance of short circuit faults. The power swing blocking 

(PSB) unit provided with the distance relays avoids unnecessary tripping of the lines and 

blocks the conventional distance relay operation during the power swings [19, 92, 93]. When 

a fault occurs during the power swing, the relay may not detect the fault. A protection scheme 

should be good enough to block the trip signal during a power swing condition and issue the 

trip signal for a fault during the power swing condition. The proposed protection scheme 
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performance has been evaluated for the power swing condition and fault during a power swing 

condition. For this case, the generator model from MATLAB is used along with the 

transformer with the parameters available in [92]. Fig. 2.8 (a) depicts the current waveform 

during power swing conditions due to the switching of heavy load (500 MW) at bus B4 at 0.6 

s. Fig. 2.8 (b) presents the FIS based FDC outputs with ‘LOW’ or ‘0’ status for the power 

swing condition. 

 

Fig. 2.8 (a) Current waveforms of line-1 during power swing condition due to the switching 

of heavy load at 0.6 s and (b) FIS based FDC outputs 

 

The proposed FDC protection scheme performance is also evaluated for the fault during 

the power swing condition. The current waveform for fault during power swing condition is 

depicted in Fig. 2.9 (a). The power swing is because of the loss of line-2 at an instant of 0.7 s 

due to the clearance of ABG-2 fault (Lf = 150 km, Rf = 50 Ω, and Tf = 0.6 s) and the fault is 

LG fault in the line-1 (AG-1) at Lf = 50 km, Rf = 0.01 Ω, and Tf = 2 s. During the single circuit 

operation, line-1 carries the total power of the system due to the loss of line-2. So, the line-1 

inputs applied to the FIS based FDC module are reduced to half to avoid tripping during 

power swing conditions. Fig. 2.9 (b) presents the FIS based FDC outputs for fault during 

power swing conditions. It is clear from Fig. 2.9 (b) that the proposed FDC protection scheme 

can detect/classify the fault correctly for fault during power swing conditions. All the FIS 

based FDC outputs are “LOW” with “0” during power swing mode and “HIGH” with “1” 

for the fault during the power swing mode for faulty phases. 
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Fig. 2.9 (a) Current waveforms of line-1 for a fault during the power swing case at 2 s and 

(b) FIS based FDC outputs 

 

2.4.5 Test Results in the Presence of Noisy Environment 

The recorded current signals at the relaying point may be contaminated with noise due to 

the integrated circuits in the data acquisition devices and other data pre-processing devices in 

the power system network. To evaluate the performance of the proposed FDC protection 

scheme in a noisy environment, the white Gaussian noise with different signal to noise ratios 

(SNR in dB) 20, 30, 40, 50, and 60 dB is added in current signals. Fig. 2.10 depicts the 

proposed protection scheme response for the LLG fault in the line-1 (ABG-1, Lf = 50 km, Rf 

= 100 Ω, and Φ = 0º (at 60 ms)) with the SNR of 30 dB. 

 

Fig. 2.10 (a) and (b) Current waveforms of line-1 and line-2 respectively during the LLG 

fault in the line-1 (ABG-1) with the SNR of 30 dB, and (c) FIS based FDC outputs 
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Table 2.7 depicts the tabulated test results of the proposed protection scheme response for 

different fault types in line-1 at Lf = 50 km from the bus B1 with Rf = 100 Ω and Φ = 0º (at 

60 ms) in the presence of a noisy environment. As seen in Table 2.7, the proposed FIS based 

FDC protection scheme can detect and classify the faults within a half-cycle time of 

fundamental frequency. 

Table 2.7 Test results of the proposed FDC protection scheme in the presence of noise 
 

S. 
No. 

Signal to Noise 
Ratio 

(SNR in dB) 

Fault 
Type 

Fuzzy Inference System Based Fault 
Detection and Classification Outputs  

 

Instant of Fault Detection and 
Classification Time (ms) 

A1 B1 C1 A2 B2 C2 G A1 B1 C1 A2 B2 C2 G 

1 20 AG-1 1 0 0 0 0 0 1 63 - - - - - 63 

2 ABC-1 1 1 1 0 0 0 0 63 63 68 - - - - 

3 30 ABG-1 1 1 0 0 0 0 1 63 62 - - - - 62 

4 AB-1 1 1 0 0 0 0 0 63 63 - - - - - 

5 40 AG-1 1 0 0 0 0 0 1 63 - - - - - 63 

6 ABG-1 1 1 0 0 0 0 1 63 63 - - - - 63 

7 50 BG-1 0 1 0 0 0 0 1 - 63 - - - - 63 

8 ABC-1 1 1 1 0 0 0 0 63 63 68 - - - - 

9 60 BCG-1 0 1 1 0 0 0 1 - 63 69 - - - 63 

10 CG-1 0 0 1 0 0 0 1 - - 68 - - - 68 

 

2.4.6 Test Results for High Impedance Faults (HIF) 

The high impedance faults are concerned with the problems like arcing, fire, and 

electrocution. The HIF occurs when the live power conductor touches the tree branches or 

comes in contact with surfaces like asphalt, rocks, sandy soils, and concrete structures like 

buildings. A simplified Emanuel’s HIF model [94–96] shown in Fig. 2.11 (c) is implemented 

to simulate the HIF. It consists of two anti-parallel diodes (Dp – positive half cycle diode and 

Dn – negative half cycle diode) with fault resistances Rp, Rn and the DC voltage sources Vp, 

Vn to represent the inception of the arcing voltages of air in the soil and/or between trees and 

the line. During the HIF simulation, the unequal values of Rp, Rn and Vp, Vn are varied 

randomly in the range of 200 Ω to 1000 Ω and 100 kV to 200 kV respectively [97]. Fig. 2.11 

(d) depicts the test result of the proposed FDC protection scheme for the high impedance fault 

on the phase-A1 of the line-1 (HIF-A1) at Lf = 90 km from the bus B1 (Tf = 60 ms). The FDC 
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time by the proposed FDC protection scheme is 13 ms for the HIF-A1 as depicted in Fig. 2.11 

(d).  

 

Fig. 2.11 (a) and (b) Currents waveforms of line-1 and line-2 for HIF-A1 respectively, (c) 

Simplified Emanuel’s HIF model, and (d) FIS based FDC outputs 

Table 2.8 presents the test results of the proposed FDC protection scheme for the HIF at 

different locations. 

Table 2.8 Test results of the proposed protection scheme against high impedance faults 

S. 
No 

High 
Impedance 

Fault 
at 

Tf = 60 ms 

 Fault 
Location 

(km) 

Fuzzy Inference System Based Fault Detection 
and Classification Outputs 

Instant of Fault Detection and Classification 
Time (ms) 

A1 B1 C1 A2 B2 C2 G A1 B1 C1 A2 B2 C2 G 

1 HIF-A1 1 1 0 0 0 0 0 1 64 - - - - - 64 

2 HIF-A1 10 1 0 0 0 0 0 1 64 - - - - - 64 

3 HIF-C1 70 0 0 1 0 0 0 1 - - 76 - - - 76 

4 HIF-A1 90 1 0 0 0 0 0 1 73 - - - - - 73 

5 HIF-B1 150 0 1 0 0 0 0 1 - 72 - - - - 72 

6 HIF-A1 250 1 0 0 0 0 0 1 74 - - - - - 74 

7 HIF-B1 275 0 1 0 0 0 0 1 - 77 - - - - 77 

8 HIF-A1 290 1 0 0 0 0 0 1 76 - - - - - 76 

9 HIF-C1 295 0 0 1 0 0 0 1 - - 80 - - - 80 

10 HIF-A1 298 1 0 0 0 0 0 1 79 - - - - - 79 
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2.4.7 Test Results Under the Effect of Current Transformer Saturation 

The high amount of dc offset current in the fault current is responsible for the CT 

saturation. The contribution of dc offset current is maximum in the fault current when the 

fault occurs at the zero fault inception angle. The reduced amount of the measured CT 

secondary current is due to the CT saturation. It is erroneous because it is not the facsimile of 

all the primary current. The distance relays may underreach/overreach due to the blinding of 

the relay caused by the CT saturation [21, 98, 99]. To consider the CT saturation effect on the 

proposed protection scheme performance, the saturated current transformers from MATLAB 

are used for the three-phase current measurements with the ratings of 25 VA and a CT ratio 

of 2000 A/5 A which are assumed to saturate at 2 pu. Fig. 2.12 (a) depicts the three-phase 

instantaneous currents of line-1 under CT saturation for the LG fault in the line-1 (AG-1) (Lf 

= 1 km, Rf = 5 Ω, and Φ = 0º (Tf = 60 ms)). Fig. 2.12 (b) depicts the FIS based FDC outputs 

detecting the fault in 2 ms time after the fault inception. It is evident from Fig. 2.12 (b) that 

CT saturation does not affect the proposed FDC protection scheme. 

  

Fig. 2.12 (a) Currents waveforms of lines-1 for the LG fault in the line-1 (AG-1) under CT 

saturation and (b) FIS based FDC outputs under CT saturation 

The FIS based FDC scheme response for different faults with CT saturation is tabulated in 

Table 2.9. 
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Table 2.9 Test results of the proposed protection scheme under current transformer saturation 

S.
No
. 

  Fault Parameter Fuzzy Inference System Based Fault 
Detection and Classification Outputs 

Instant of Fault Detection and 
Classification Time (ms) 

Fault Type-Line no., Fault 
Location (km), Fault Resistance 
(Ω) and [Fault Inception Angle 
= 0º (Time of fault = 60 ms)] 

A1 B1 C1 A2 B2 C2 G A1 B1 C1 A2 B2 C2 G 

1 AG-1, 1, 5 1 0 0 0 0 0 1 62 - - - - - 62 

2 CG-1, 5, 100 0 0 1 0 0 0 1 - - 68 - - - 68 

3 BC-1, 10, 10 0 1 1 0 0 0 0 - 65 65 - - - - 

4 BG-1, 15, 15 0 1 0 0 0 0 1 - 62 - - - - 62 

5 AG-2, 150, 0.01 0 0 0 1 0 0 1 - - - 63 - - 63 

6 BCG-2, 150, 0.01 0 0 0 0 1 1 1 - - - - 63 71 63 

7 AB-2, 150, 0.01 0 0 0 1 1 0 0 - - - 63 63 - - 

8 ABG-1, 297, 0.01 1 1 0 0 0 0 1 64 67 - - - - 67 

9 BG-1, 299, 0.01 0 1 0 0 0 0 1 - 73 - - - - 73 

10 ABC-1, 299, 0.01 1 1 1 0 0 0 0 66 66 71 - - - - 

 

2.4.8 Test Results for the Overall Performance 

The overall efficacy of the performance of the proposed FIS based FDC protection 

scheme for all the ten types of short circuit faults is evaluated. The fault parameters tabulated 

in Table 2.10 are considered for the common short circuit fault simulation studies. 

Table 2.10 Variation in the fault parameters considered 

S. 
No. 

Fault Parameter Variation of Fault Parameter 

1 Fault location (km) 1-299 km with an increment of 4 km (1, 4, 8, …, 99, 101, 104, 108, …, 
199, 201, 204, 208, …, 299 km, a total of 156 locations with 78 locations 
in each line) 

2 Fault resistance (Ω) 0.01, 50, 100, 150, and 200 Ω (5-Fault resistances) 

3 Fault inception angle (Φ) 0º, 45º, and 270º (3-Fault inception angles) 

4 Fault type All ten common short circuit faults (10-Fault types) 
Line to ground: AG, BG, and CG 
Line to line: AB, BC, and CA 
Line to line to ground: ABG, BCG, and CAG 
Line to line to line: ABC 

Therefore, a total of 23,400 different fault cases are simulated and tested (156 * 5 * 3* 10 = 23, 400) 
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The FDC accuracy is defined as the ratio of the total number of correct fault detections 

to the total number of correct and false detections. The average accuracy for FDC of the short 

circuit faults by the proposed FDC protection scheme is 99.7535%. The individual FDC 

accuracies for the LG, LL, LLG and LLL are 99.9145%, 95.7264%, 99.4586%, and 99.9145% 

respectively. 

Fig. 2.13 (a), (b), and (c) depicts the individual response times of the FDC outputs 'A1', 'B1', 

and 'C1' for triple line fault cases shown in Table 2.10 for the section-1, section-2, and section-

3 of the line-1. Fig. 2.13 (d), (e), and (f) represent the difference in the response time of any 

two FDC outputs and the ‘AND’ operation response time of the FDC outputs.  It is observed 

from Fig. 2.13 that the FDC response time is less than 12 ms for most of the faults and the 

difference in the response time of any two FDC outputs is less than half-cycle time (10 ms). 

For all the simulated fault cases shown in Table 2.10, the FDC response time results are 

similar to those shown in Fig. 2.13. However, the difference in response time of any two FDC 

outputs is zero for the line to line faults. The FDC response time for all the common short 

circuit fault types is less than one cycle time by the proposed protection scheme. 

 

Fig. 2.13 (a), (b), and (c) Individual response times of the FDC outputs for triple line fault 

cases in the section-1, section-2, and section-3 of the line-1, (d), (e), and (f) Difference in the 

response time of any two FDC outputs and also the AND operation of the responses for the 

triple line faults cases of the line-1 

 

2.4.9 Test Results Under Various Operating Conditions of the System 

The operating conditions of a real power system network are not ideal all the time because 

of its complex structure and nature. The operating voltage, frequency, power flow angles, and 



46 
 

transmission line parameters (resistance, inductance, and capacitance) are not constant all the 

time. They vary depending on the system conditions or other external factors. The reasons for 

the variations in the ideal operating conditions of the power system are: i) the switching of 

the generators or loads causes the variations in the ideal operating voltage, ii) to match the 

load demand and power generation the power flow angles are varied, and iii) the variations 

of the transmission line parameters are due to the ageing effect, corrosion, and degradation of 

the conductor because of the weather and environmental conditions. The performance of the 

proposed FDC protection scheme has been evaluated for various operating conditions and the 

results are depicted in Table 2.11. The operating voltage and frequency are varied in the range 

of ±5% of the nominal values, the power flow angle (Δδ) is varied between 5º and 40º, the 

short circuit capacity (SCC) and X/R ratio of the sending end source are varied ±250 MVA 

and 10 to 60 respectively, and the transmission line parameters are varied in the range of 

±10% of the actual values. 

 

Fig. 2.14 (a) and (d) Current waveforms of line-2 for the LLG fault in the line-2 (ABG-2) 

without and with frequency variation of -2.5%, (b) and (e) Current waveforms of line-1 for a 

triple line fault in the line-1 (ABC-1) without and with power angle variation (Δδ) of 40º, (c) 

and (f) Current waveforms of line-1 for the LLG fault in the line-1 (BCG-1) without and with 
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transmission line parameters variation of -10%, (g), (h), and (i) FIS based FDC outputs for 

the cases in (d), (e), and (f) respectively 

 

Table 2.11 Test results of the proposed FDC protection scheme under various operating 

conditions 

S. 
No. 

Variation in 
Operating 
Conditions 

Fault Type-Line no., Fault 
Location (km), Fault Resistance 
(Ω), Fault Inception Angle (Time 
of fault (ms)) 

Fuzzy Inference System Based Fault Detection and Classification 
Outputs (Instant of Fault Detection and Classification Time (ms)) 

A1 B1 C1 A2 B2 C2 G 

 Voltage Variation 
(%ΔV) 

        

1 +5 % AG-1, 50, 100, 0º (60) 1 (63) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 1 (63) 
2 +2.5 % BCG-1, 50, 100, 90º (65) 0 (-) 1 (70) 1 (67) 0 (-) 0 (-) 0 (-) 1 (67) 

3 -2.5 % AC-1, 50, 30, 270º (75) 1 (77) 0 (-) 1 (77) 0 (-) 0 (-) 0 (-) 0 (-) 
4 -5 % ABC-1, 50, 20, 180º (70) 1 (72) 1 (72) 1 (78) 0 (-) 0 (-) 0 (-) 0 (-) 

 Frequency 
Variation (%Δf) 

        

5 +5% CG-2, 90, 150, 0º (60) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 1 (65) 1 (65) 

6 +2.5% BC-2, 90, 25, 45º (62.5) 0 (-) 0 (-) 0 (-) 0 (-) 1 (66) 1 (66) 0 (-) 
7 -2.5% ABG-2, 90, 100, 150º (68.33) 0 (-) 0 (-) 0 (-) 1 (79) 1 (74) 0 (-) 1 (74) 
8 -5% ABC-2, 90, 25, 270º (75) 0 (-) 0 (-) 0 (-) 1 (85) 1 (88) 1 (85) 0 (-) 

 Power Flow 
Angle Variation 

(Δδ) 

        

9 5º BG-1, 50, 60, 0º (60) 0 (-) 1 (63) 0 (-) 0 (-) 0 (-) 0 (-) 1 (63) 
10 10º ABC-1, 60, 15, 90º (65) 1 (68) 1 (71) 1 (68) 0 (-) 0 (-) 0 (-) 0 (-) 
11 15º AC-1, 70, 10, 270º (75) 1 (77) 0 (-) 1 (77) 0 (-) 0 (-) 0 (-) 0 (-) 

12 20º ACG-1, 80, 60, 180º (70) 1 (73) 0 (-) 1 (78) 0 (-) 0 (-) 0 (-) 1 (73) 
13 25º ABG-2, 90, 80, 180º (70) 0 (-) 0 (-) 0 (-) 1 (72) 1 (72) 0 (-) 1 (72) 
14 30º AB-2, 95, 5, 0º (60) 0 (-) 0 (-) 0 (-) 1 (61) 1 (61) 0 (-) 0 (-) 
15 35º BG-2, 105, 100, 90º (65) 0 (-) 0 (-) 0 (-) 0 (-) 1 (69) 0 (-) 1 (69) 

16 40º ABC-2, 120, 10, 270º (75) 0 (-) 0 (-) 0 (-) 1 (760 1 (77) 1 (76) 0 (-) 

 SCC Variation 
(MVA) 

        

17 +250 AG-2, 150, 50, 0º (60) 0 (-) 0 (-) 0 (-) 1 (63) 0 (-) 0 (-) 1 (63) 
18 +250 BCG-1, 150, 50, 90º (65) 0 (-) 1 (70) 1 (67) 0 (-) 0 (-) 0 (-) 1 (67) 

19 -250 AC-1, 150, 15, 0º (60) 1 (67) 0 (-) 1 (67) 0 (-) 0 (-) 0 (-) 0 (-) 
20 -250 ABC-1, 150, 15, 90º (65) 1 (70) 1 (71) 1 (70) 0 (-) 0 (-) 0 (-) 0 (-) 

 Variation of X/R 
Ratio 

        

21 10 ABG-1, 225, 200, 0º (60) 1 (65) 1 (720 0 (-) 0 (-) 0 (-) 0 (-) 1 (65) 
22 20 CG-1, 240, 50, 90º (65) 0 (-) 0 (-) 1 (69) 0 (-) 0 (-) 0 (-) 1 (69) 

23 30 BC-1, 250, 30, 180º (70) 0 (-) 1 (83) 1 (83) 0 (-) 0 (-) 0 (-) 0 (-) 
24 40 AG-2, 260, 150, 180º (70) 0 (-) 0 (-) 0 (-) 1 (75) 0 (-) 0 (-) 1 (75) 
25 50 ABC-2, 270, 30, 270º (75) 0 (-) 0 (-) 0 (-) 1 (87) 1 (81) 1 (81) 0 (-) 

26 60 BCG-2, 280, 170, 0º (60) 0 (-0 0 (-) 0 (-) 0 (-) 1 (71) 1 (78) 1 (71) 

 Variation of 
Transmission 

Line Parameters 
(%ΔZ) 

        

27 + 10% AG-1, 125, 100, 0º (60) 1 (63) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 1 (63) 
28 + 5% ACG-1, 125, 50, 90º (65) 1 (68) 0 (-) 1 (68) 0 (-) 0 (-) 0 (-) 1 (70) 

29 - 5% AC-2, 125, 20, 180º (70) 0 (-) 0 (-) 0 (-) 1 (76) 0 (-) 1 (76) 0 (-) 
30 - 10% ABC-2, 125, 25, 270º (75) 0 (-) 0 (-) 0 (-) 1 (79) 1 (81) 1 (79) 0 (-) 
31 - 10 % BCG-1, 125, 100, 0º (60) 0 (-) 1 (63) 1 (69) 0 (-) 0 (-) 0 (-) 1 (63) 
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Fig. 2.14 (a) and (d) depict the three-phase instantaneous currents of line-2 for the LLG 

fault in the line-2 (ABG-2) (Lf = 90 km, Rf = 100 Ω, and Φ = 150º (Tf = 68.33 ms)) without 

and with frequency variation of -2.5% respectively. Fig. 2.14 (b) and (e) depict the three-

phase instantaneous currents of line-1 for the triple line fault in the line-1 (ABC-1) (Lf = 120 

km, Rf = 25 Ω, and Φ = 270º (Tf = 75 ms)) without and with the variation of the power flow 

angle (Δδ) of 40º respectively. Fig. 2.14 (c) and (f) represent the three-phase instantaneous 

currents of line-1 for the LLG fault in the line-1 (BCG-1) (Lf = 125 km, Rf = 100 Ω, and Φ = 

0º (Tf = 60 ms)) without and with -10% variation in the transmission line parameters 

respectively. Fig. 2.14 (g), (h), and (i) shows the FIS based FDC outputs for the fault with 

frequency variation, power flow angle variation, and transmission line parameters' variations 

respectively. The proposed scheme is able to detect the faults even with different operating 

conditions. 

2.4.10 Comparison of the Proposed Protection Scheme with Other 

Protection Techniques 

A comparison of the proposed FDC protection scheme with the other earlier reported 

artificial intelligent protection techniques is shown in Table 2.12 concerning the method 

employed, performance, fault parameter considerations, and other operating conditions. In 

Table 2.12, all the protection schemes were employed on the 400 kV, 50 Hz transmission 

system. In Table 2.12, all the intelligent protection schemes for single or double circuit 

transmission lines require the training of the modules for protection purposes except the FIS 

based protection schemes. The FIS based protection scheme implemented in column-1 is only 

for the single circuit lines. However, the proposed FDC protection scheme is for the double 

circuit lines with a single FIS module and works for the single circuit operation also. The 

comparison results shows the equal performance and effectiveness of the proposed non-

training-based FDC protection scheme even with the fault parameters variations and for 

different fault scenarios that are not considered by the training-based protection schemes 

reported in Table 2.12. 
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Table 2.12 Comparison of the proposed FDC scheme with other artificial intelligent 

protection schemes 

S. 
No. 

Comparison 
Parameter 

Reference 

[22]  [23] [100] [101] [102] [103] Proposed 

1 Transmission 
line length 

198 km, 
double circuit 

200 km, 
double 
circuit 

200 km, 
double circuit 

150 km, 
single circuit 

100 km, 
single circuit 

300 km, 
single circuit 

300 km, 
double circuit 

2 Method and 
feature 
extraction 
technique 
(sampling 
frequency) 

ANN and 
DWT  
(1 kHz, 1.2 
kHz, 10 kHz) 

SVM and 
Kalman 
filtering 
technique 
(1 kHz) 

Ensemble of 
decision trees 
and least 
square & 
Adaline 
algorithms (1 
kHz) 

Decision tree 
and 
mathematical 
morphology 
(1.2 kHz) 

Deep learning 
and DWT (20 
kHz) 

Chebyshev 
neural 
network and 
DWT (5 kHz) 

FIS and DFT 
(1 kHz) 

3 Input type 
(no. of inputs) 

The standard 
deviation of 
6th level 
detailed 
coefficients of 
line currents; 
neutral 
current (7) 

Fundament
al, 3rd, 5th, 
and 7th 
harmonic 
components 
of voltage 
signal (3) 

DC offset and 
fundamental 
component of 
currents (7) 

Sequence 
components 
of voltage and 
current (8) 

The energy of 
5th level 
detailed 
coefficients of 
voltage and 
current (6)  

The energy of 
4th level 
detailed 
coefficients of 
current (6) 

MFCC, ZSC 
(7) 

4 No. of 
modules 

2 5 11 1 1 4 1 

5 Protected line 
length 

1-197 km 99.5% of 
the line 
(200 km) 

1-200 km 1-150 km 1-99 km 30-270 km 1-299 km 

6 Relay 
operation 
time (ms) 

< 10 ms  < 10 ms  < 20 ms < 5 ms < 20 ms < 10 ms < 12 ms 
(section-1 & 
2)  
< 20 ms 
(section-3) 

7 Lf (km) 1-197 km (54 
locations) 

1-200 km - 1-150 km in 
steps of 20 km 

1-99 km 30-270 km in 
steps of 30 km 
(10 locations) 

1-299 km 
with an 
increment of 4 
km (156 
locations) 

8 Rf (Ω) 0-100 Ω 0-100 Ω - 0-20 Ω 0.1-100 Ω 0-150 Ω 0.01-200 Ω 

9 Φ 0º-270º 0º-360º - 0º-90º 0º-180º 0º-115º 0º-360º 

10 No. of fault 
cases 

500 - - 77000 10400 23400 23400 

11 FDC accuracy 99.70%  - 99.64 % 99.98% 99.55% 98.33% 99.754% 

12 CCF & EF  Yes No No No No No Yes 

13 PS & FPS Yes Yes Yes No No No Yes 

14 CT saturation Yes No No No No No Yes 

15 HIF No No No No Yes No Yes 

16 Noisy context Yes No Yes No Yes No Yes 
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2.5 Summary 

In this chapter, an artificial intelligence-based protection scheme with a single FIS for 

FDC of the short circuit faults on the DCTL has been proposed. The proposed FIS based FDC 

scheme uses the MFCCs extracted by DFT and the ZSCs of the sending end bus only for the 

protection task. It can detect and classify all ten types of short circuit faults within one cycle 

time and with an average FDC accuracy of 99.7535%. Also, it correctly detects and classifies 

the different fault types with varying fault parameters for HIF, cross-country faults, evolving 

faults, CT saturation, noisy conditions, PS and FPS conditions, and variations in operating 

conditions. Furthermore, the proposed FDC scheme is passive to the variations in the fault 

parameters and varying operating conditions. It can work for the single circuit operation also. 

The comparison results justify the aptness and effectiveness of the proposed protection 

scheme rather than the training-based protection schemes. The main advantage of the 

proposed protection scheme is the non-requirement of module training and communication 

link. It is simple and efficient with reduced complexity. 

 

 

***** 
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Chapter 3 

 

 

 

 

Mono ANN Module Protection Scheme 
and Multi ANN Modules for Fault 

Location Estimation for a Six Phase 
Transmission Line Using Discrete 

Wavelet Transform 
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3.1 Introduction 

Nations across the world have aimed to reduce carbon emissions by encouraging 

renewable energy sources to generate clean energy. Despite the global economic crisis in 

2020, there is a record rise in the global renewable energy generation capacity i.e., 260 GW 

during COVID 2019 pandemic.   Solar (127 GW) and wind (111 GW) dominated this capacity 

expansion by 91% [2]. The resulting intermittent generation and centralized demand require 

increased transmission capacities. In many countries, obtaining a new right of way to build 

an overhead line is very difficult. Building new transmission line corridors is quite an 

expensive and time-consuming process. Also encounters the land availability problem and 

opposition from the environmentalists for ecological reasons. In the pursuit of meeting the 

increasing power demands, the generation or power transfer capabilities of the transmission 

network have to be increased. The environmental, economic, and land availability concerns 

for building the new transmission infrastructure to have enhanced power transfer capabilities, 

led the power system engineers to search for alternate methods. The extra high voltage (EHV) 

transmission lines can serve the purpose but the EHV lines produce strong electric fields at 

the ground surface, possible biological effects, visual pollution, and audible noise. HVDC 

transmission is another alternative but the demerit is, it requires huge capital for installation 

and operation. In 1972, H. C. Barnes and L.D. Barthold had proposed the high phase order 

transmission systems for maximizing the power density by employing the existing 

transmission corridors efficiently. The high phase order transmission is a viable solution. The 

six-phase transmission with the existing three-phase double circuit transmission line without 

major alterations paved the way with 73% more power transfer capability. The other benefits 

of six-phase transmission over three-phase transmission are i) reduced phase to phase 

voltages, ii) current imbalances are minimum – so single-pole switching is possible, iii) 

reduced radio and audible noise and corona losses are minimum, iv) high compatibility and 

stability, v) reduced conductor surface gradients, and vi) improved thermal loading capability, 

surge impedance loading, voltage regulation and better efficiency of lines [4, 5, 104, 105]. 

Now, the countries viz. China and the United Kingdom have again started research 

investigations on upgrading the three-phase double circuit transmission lines to six-phase 

lines for future needs [106, 107]. The acceptance of the six-phase transmission is vaguely 

encouraged due to the lack of proper protection schemes to tackle the 120 different types of 

short circuit faults. The segregation of 120 types of faults is detailed in Fig. 1.1 of Chapter 1. 
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The maximum number of phases of a transmission line apart from six-phase can be nine, 

twelve or even twenty-four phases i.e., multiples of the conventional three-phase system to 

provide interfacing with the existing three-phase system through transformers. Different 

tower structures are analysed to have simple and compact spacing of lines with minimum 

insulation cost. The fact that the adjacent phase to phase voltages are less in high-phase order 

systems compared to the conventional three-phase system made it possible for the compaction 

of the lines [108]. For six and twelve phase configurations, the hexagonal placement is 

preferred. Generally, the phase conductors are placed sequentially on the vertices and/or on 

the edges of the hexagon. Fig. 3.1 (a) and 3.1 (d) shows an example of the schematic of the 

phases on the tower of a six-phase and twelve-phase transmission line. However, due to the 

transposition of phases, each position is occupied by every phase in the order of phase 

sequence. 

 

Fig. 3.1 Schematic of tower structures (a) and (b) Six-phase line, (c) and (d) Twelve-phase 

line 

In the present chapter, a complete protection scheme (fault detection/classification and 

fault location estimation (FLE)) is proposed using only the phase current information of the 

sending end bus with discrete wavelet transform (DWT) and artificial neural networks. Unlike 

the earlier works, the proposed scheme implemented only a single module of ANN for fault 

detection and classification. For fault location estimation, the modular ANN method is 

implemented where each ANN module gives the fault location estimation in all six phases. 
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3.2 Details of Six-phase Transmission System 

The six-phase Allegheny’s power transmission system is considered for the present work 

referring to the line between the buses Springdale and McCalmont [4]. It consists of a 138 

kV, 60 Hz single circuit six-phase transmission line of 68 km length fed from the sources at 

both the ends (sending and receiving ends) of the line. The sending end (source-1) and 

receiving end (source-2) source impedances are 2.03 + j9.04 Ω and 4 + j17.94 Ω with short 

circuit capacities of 1.25 GVA respectively. Two loads (load-1, 80 MW and load-2, 60 MVar) 

are connected at the receiving end bus, B2. Fig. 3.2 shows the one-line diagram of the 

considered six-phase power system network along with a block diagram of the proposed 

protection scheme. The DWT-ANN based relay is installed at the sending end bus, B1. The 

six-phase transmission line parameters are given in Appendix – II. 

 

 

Fig. 3.2 One-line diagram of the considered six-phase transmission system along with a block diagram 

of the proposed protection scheme 
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Tables 3.1 and 3.2 depict the basic system description and the line configuration data of 

the six-phase system considered in the present work. The model used in the work takes into 

account the distributive nature of the transmission line by considering the uniform distribution 

of resistance, inductance, and capacitance along the line length. The six-phase transmission 

line model is implemented and simulation studies are carried out using the software 

MATLAB®/Simulink platform. 

Table 3.1 Basic system description data 

System Voltage 138 kV 

No. of phases 6 

No. of circuits 1 

No. of sub-conductors per phase 1 

Total no. of ground wires 2 

Earth resistivity 100 Ω-m 

Frequency 60 Hz 

Base voltage 138 kV 

Base power 100 MVA 

Line length 68 km 

  

Table 3.2 Line configuration data 

Phase no. Conductor 

designation 

Horizontal spacing X 

(ft) 

Height at tower Y 

(ft) 

Mid-span 

clearance (ft) 

1 a -11 68 56 

2 b -14 55 43 

3 c -11 42 30 

4 d 11 42 30 

5 e 14 55 43 

6 f 11 68 56 

0 GR1 -6 77.5 67.1 

0 GR2 6 77.5 67.1 

  

3.3 Development of Proposed Protection Scheme with DWT & 

ANN 

 From the protection point of view, any short circuit fault has to be detected and isolated 

as early as possible to mitigate the effect of the fault on the system and to estimate the fault 
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location accurately to send the repairmen’s crew. In the present work, a protection scheme is 

proposed for the six-phase transmission system shown in Fig. 3.2 using the discrete wavelet 

transform and artificial neural network. With the proposed protection scheme, two protection 

tasks are accomplished. The first task is to identify and classify the fault and the second task 

is to estimate the fault location. There are two stages in the proposed protection scheme, i) 

feature extraction process and ii) actual protection scheme implemented using the ANNs. 

3.3.1 Feature Extraction Process with DWT 

To implement any digital protection scheme, a proper feature of the system (either 

voltage/current) has to be used to accomplish the protection task. The recorded time-domain 

raw data of instantaneous voltage/current signals available at the relaying point may not be 

used as such, so to extract the useful features from the raw data, a transform has to be used 

to convert the signal to the frequency domain or time-frequency domain. Discrete wavelet 

transform (DWT) is one of the most widely used signal processing techniques in engineering 

domains which analyses the signal both in time and frequency domains. This transform has 

gained a lot of popularity in power system protection because it efficiently analyses the non-

stationary signals and localizes the signal in time and frequency domains. In DWT, the signal 

is decomposed into a number of levels and each level corresponds to a particular frequency 

band. This transform provides the degree of similarity between the signal to be analysed and 

the analysing signal in terms of detail coefficients (higher frequency components) and 

approximate coefficients (lower frequency components). The proper selection of the mother 

wavelet plays an important role in analysing the signal [44, 109–111]. A schematic diagram 

of the signal decomposition by DWT is shown in Fig. 3.3. In the present work, the 

instantaneous current signals in each phase of the sending end bus (B1) are employed for the 

protection task. The instantaneous current signals of bus B1 are pre-processed with the 

second-order low-pass Butterworth filter (anti-aliasing filter) with a cut-off frequency of 480 

Hz to eliminate the higher-order harmonics in the signal. Butterworth filters are used because 

they provide maximum flat characteristics in the passband region. Eq. (3.1) gives the general 

expression for the nth order low-pass Butterworth filter. These filtered signals are sampled at 

a 1.2 kHz sampling frequency (20 samples per one cycle data of 60 Hz frequency) according 

to the Nyquist sampling criteria. The expression for the second-order low-pass Butterworth 

filter with a cut-off frequency of 480 Hz and Nyquist sampling frequency of 1.2 kHz is given 

in Eq. (3.2). The DWT is implemented on the sampled current signals with the Daubechies 
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wavelet, db4 is used as the mother wavelet. The standard deviation (std) of the second level 

approximate coefficients of current signals in each phase are used as the features for the 

protection scheme. The basic expression for the DWT of a signal S(t) is given in Eq. (3.3), 

where S(k) is the sampled signal, 𝑏଴
௠ is the scaling parameter, 𝑘𝑏଴

௠ is the translation 

parameter, and Ѱ is the mother wavelet [112]. 

 

Fig. 3.3 Signal pre-processing and DWT decomposition 

𝐻(𝑠) =
𝑦(1)𝑠௡ + 𝑦(2)𝑠௡ିଵ + ⋯ + 𝑦(𝑛 + 1)

𝑥(1)𝑠௡ + 𝑥(2)𝑠௡ିଵ + ⋯ + 𝑥(𝑛 + 1)
                                      (3.1) 

                      𝐻(𝑠) =
0.6389𝑠ଶ + 1.2779𝑠 + 0.6389

𝑠ଶ + 1.143𝑠 + 0.4128
                                                  (3.2) 

                 𝐷𝑊𝑇(𝑆, 𝑚, 𝑛) =
1

ඥ𝑏଴
௠

෍ 𝑆(𝑘)Ѱ∗

௞

ቆ
𝑛 − 𝑘𝑏଴

௠

𝑏଴
௠ ቇ                                                     (3.3) 

If 𝑑௝
௠ and 𝑎௝

௠ represent the detail and approximate coefficients of mth level of decomposition, 

then the standard deviation of approximate coefficients is given by Eq. (3.4). 

   𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑠𝑡𝑑) = ඩ
1

𝑁 − 1
෍ ቌ𝑎௝

௠ −
1

𝑁
෍ 𝑎௝

௠

ே

௝ୀଵ

ቍ

ଶ
ே

௝ୀଵ

                                     (3.4) 
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Where N is the no. of coefficients. The process of calculating the standard deviation of 

second-level approximate coefficients of current signals is carried out consecutively for each 

cycle window of 20 instantaneous current samples, viz. window-1 of 1-20 samples, window-

2 of 2-21 samples, and so on. Therefore, the required features obtained after the feature 

extraction process are 𝑠𝑡𝑑௔, 𝑠𝑡𝑑௕, 𝑠𝑡𝑑௖, 𝑠𝑡𝑑ௗ, 𝑠𝑡𝑑௘, and 𝑠𝑡𝑑௙ for each of the six phases. 

3.3.2 Proposed ANN Based Protection Scheme for FDC and FLE 

ANNs have gained a lot of importance in the engineering domains, especially for the 

protection of three-phase single-circuit and double circuit transmission lines for their ability 

of self-adaptability to varying operating conditions, non-linear function approximation, 

pattern recognition, and learning capabilities. The main advantage of ANN is the high-speed 

online computation. The feedforward neural networks with the Levenberg-Marquardt training 

algorithm are implemented using MATLAB for fault detection/classification (FDC) and fault 

location estimation (FLE). The flowchart for the Levenberg-Marquardt algorithm (LMA) is 

given the Fig. 3.4. The Levenberg-Marquardt algorithm is the fastest algorithm and takes less 

execution time to train the ANN [113]. This optimization algorithm is an iterative method used 

to solve the non-linear least square problems. It is a combination of the Gauss-Newton 

method and the gradient descent method [114, 115]. For training the ANN, LMA is used to 

learn the weights and biases of the neural network. The advantage of the Levenberg-

Marquardt algorithm is, that it attains second-order training speed without the requirement 

to calculate the Hessian matrix.  

There is no hard and proven rule to achieve the optimal architecture (no. of hidden 

layers and no. of neurons) of the artificial neural network (ANN). A series of pilot runs based 

on the hit-and-trail basis method is the general process for selecting the architecture of ANN. 

The features that should be taken care of while training the ANN are architecture, neural 

network parameters (weights and biases), type of activation function, and training/learning 

algorithm. 

Unlike the modular ANNs reported earlier for fault detection and classification of 120 

types of faults, the present work proposed a single ANN_FDC module with the standard 

deviation of second-level approximate coefficients of six-phase currents of sending end bus 

as inputs and six outputs (A, B, C, D, E, and F) one for each phase for faulty phase detection 

and classification of faults. The most important tasks in training the ANN are the generation 
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of training samples, preparation of input training and target data sets, selection of the 

optimum no. of hidden layers, and choosing the activation functions for the proper pattern 

recognition. The training and the testing data samples are generated by simulating the 

different types of faults with varying fault locations, fault inception angles, and fault 

resistances on the six-phase transmission system shown in Fig. 3.2 on the MATLAB®/ 

Simulink platform. 

 

Fig. 3.4 Flow chart of Levenberg-Marquardt algorithm 



60 
 

Table 3.3 presents the different fault parameter variations considered for generating the 

training and testing data samples. Ten post-fault data samples of the standard deviation of 

second-level approximate coefficients of sending end bus phase currents are collected for each 

of the simulated faults and hence the training data set is created. Table 3.4 presents the number 

of samples collected for each type of fault for the training and testing data sets. For the fault 

detection in each phase and classification purpose, the ANN_FDC module outputs are 

labelled as ‘+1’ and ‘-1’. The output ‘+1’ is used to indicate the fault condition and ‘-1’ is 

used to indicate the healthy/no-fault (NF) condition in the particular phase. 

Table 3.3 Fault parameter variations considered in the training and testing data samples 

S. 

No. 

Fault Parameter Variations considered 

In the training data In the testing data 

1. Fault resistance (Ω) 0.01 Ω, 50 Ω, and 100 Ω 30 Ω and 70 Ω 

2. Fault inception angle (º) 0º and 90º 0º and 45º 

3. Fault location (km) 1 km, 4 km, 8 km, …, 64 km, and 

67 km (18-locations) 

1 km, 6 km, 12 km, …, 60 km, 

and 66 km (12 - locations) 

4. No. of fault types 120 120 

5. Total no. of fault cases 

considered 

3*2*18*120=12960;  

1-no fault case 

2*2*12*120=5760;  

1-no fault case 

 

Table 3.4 Number of training and testing data samples collected for each type of fault 

S. 

No. 

 

Fault type 

Training Testing 

No. of cases No. of samples No. of cases No. of samples 

1. 1-LG and 

No fault 

(6*3*2*18)+1 = 649 649*10 = 6490 (6*2*2*12)+1 = 289 289*20 = 5780 

2. 2-LG and 

2-L 

2*(15*3*2*18) = 3240 3240*10 = 32400 2*(15*2*2*12) = 1440 1440*20 = 28800 

3. 3-LG and 

3-L 

2*(20*3*2*18) = 4320 4320*10 = 43200 2*(20*2*2*12) = 1920 1920*20 = 38400 

4. 4-LG and 

4-L 

2*(15*3*2*18) = 3240 3240*10 = 32400 2*(15*2*2*12) = 1440 1440*20 = 28800 

5. 5-LG and 

5-L 

2*(6*3*2*18) = 1296 1296*10 = 12960 2*(6*2*2*12) = 576 576*20 = 11520 

6. 6-LG and 

6-L 

2*(1*3*2*18) = 216 216*10 = 2160 2*(1*2*2*12) = 96 96*20 = 1920 

7. Total 12961 129610 5761 115220 
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In order to select the optimal architecture of the ANN for fault detection and 

classification, a no. of pilot runs were carried out with the generated training data with 

different no. of hidden layers and neurons, and with different activation functions on a trial-

and-error basis method. The optimal architecture of ANN_FDC, type of activation functions, 

training input and output data sizes, and mean square error achieved during training are 

presented in Table 3.5 for the fault detection and classification module. Fig. 3.5 presents the 

architecture 6-18-18-6 of the ANN_FDC module with 6 – input neurons, 18 – neurons each 

in the two hidden layers, and 6 – output layer neurons with tansig activation function in all 

the layers.  Fig. 3.6 presents the mean squared error (mse) achieved during the training process 

of the ANN_FDC module. 

  

Fig. 3.5 Architecture of ANN_FDC module 

 

Fig. 3.6 Mean squared error achieved during the training of the ANN_FDC module 

For identifying the involvement of ground in the grounded faults, in 1998, M. Akke and 

J. T. Thorp [116] proposed a current index that separates the faults with zero-sequence 
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currents from the faults without zero-sequence currents for a three-phase system. The fault 

index expression that is used to identify the grounded faults is given in Eq. (3.5) for an ‘n’ 

phase system. 

  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑛𝑑𝑒𝑥 𝑜𝑟 𝐹𝑎𝑢𝑙𝑡 𝑖𝑛𝑑𝑒𝑥 (𝐹𝐼) =
∑ห𝐼௣ห

𝑚𝑒𝑑𝑖𝑎𝑛൫|𝐼ଵ|, |𝐼ଶ|, … , ห𝐼௣ห൯

𝑤ℎ𝑒𝑟𝑒 𝑝 = 1, 2, … , 𝑛 𝑝ℎ𝑎𝑠𝑒𝑠                                                                   
                                  (3.5) 

𝐼𝑓 𝐹𝐼 > 0.05, 𝑡ℎ𝑒𝑛 𝑔𝑟𝑜𝑢𝑛𝑑 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡. 

𝐼𝑓 𝐹𝐼 ≤ 0.05, 𝑡ℎ𝑒𝑛 𝑔𝑟𝑜𝑢𝑛𝑑 𝑖𝑠 𝑎𝑏𝑠𝑒𝑛𝑡. 

In the present study, the above current index has been extended up to the six-phase system (n 

= 6 phases i.e., p = a, b, c, d, e, and f phases) and instead of fault index, the standard deviation 

of fault index is used to detect the ground involvement in the fault given in Eq. (3.6) and Eq. 

(3.7). 

       𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑠𝑡𝑑ிூ) = ඩ
1

𝑀 − 1
෍ ቌ𝐹𝐼௝ −

1

𝑀
෍ 𝐹𝐼௝

ெ

௝ୀଵ

ቍ

ଶ
ெ

௝ୀଵ

                             (3.6) 

𝑤ℎ𝑒𝑟𝑒 𝑀 = 𝑛𝑜. 𝑜𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑝𝑒𝑟 60 𝐻𝑧 𝑐𝑦𝑐𝑙𝑒.                                                

             𝐺𝑟𝑜𝑢𝑛𝑑 (𝐺) = ൜
+1, 𝑖𝑓 𝑠𝑡𝑑ிூ > 0.05, 𝑡ℎ𝑒𝑛 𝑔𝑟𝑜𝑢𝑛𝑑 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡                          
−1, 𝑖𝑓 𝑠𝑡𝑑ிூ ≤ 0.05, 𝑡ℎ𝑒𝑛 𝑔𝑟𝑜𝑢𝑛𝑑 𝑖𝑠 𝑎𝑏𝑠𝑒𝑛𝑡                              

(3.7) 

Where stdFI is the standard deviation of fault index, Ia, Ib, Ic, Id, Ie, and If are the six-phase 

instantaneous currents of the bus B1. The involvement of ground is detected with ‘+1’ when 

the stdFI is greater than the threshold and ‘-1’ is used to identify that no involvement of ground 

in the fault. In the present work, there are eleven ANN modules for fault location estimation 

(FLE), one for each type of fault. In all the ANN fault location estimation modules, there are 

six inputs and six outputs one for each phase. The input training data set to the ANN_FLE 

modules is the standard deviation of second-level approximate coefficients of the currents of 

bus B1 with the fault parameters shown in Table 3.3. For training the ANN_FLE modules, 

the target data set is created with the actual fault locations for the faulty phases and healthy 

phases are labelled with 140 km. A series of trials are run with the training data to select the 

best ANN_FLE modules. The architecture, type of activation function, input and output data 

size, and mean square error (mse) achieved during training of the best ANN_FLE modules 
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are shown in Table 3.5. The tansig activation function is used for the hidden layers and the 

purelin activation function is used for the output layers of ANN fault location estimation 

modules. 

Table 3.5 Details of ANN architecture for FDC and fault location estimation 

S. 

No. 

ANN for Architecture Activation function Input & output 

data size 

MSE achieved 

during training 

1. ANN_FDC 6-18-18-6 Tansig 6 x 129610 1.336e-06 

2. ANN_FLE_1-LG 6-25-25-6 Tansig & purelin 6 x 6490 9.97e-07 

3. ANN_FLE_2-L 6-25-25-25-6 Tansig & purelin 6 x 16210 1.70e-05 

4. ANN_FLE_2-LG 6-25-25-25-6 Tansig & purelin 6 x 16210 1.22e-05 

5. ANN_FLE_3-L 6-25-25-25-25-6 Tansig & purelin 6 x 21610 1.59e-04 

6. ANN_FLE_3-LG 6-30-30-30-6 Tansig & purelin 6 x 21610 9.03e-05 

7. ANN_FLE_4-L 6-25-25-25-25-6 Tansig & purelin 6 x 16210 3.68e-05 

8. ANN_FLE_4-LG 6-25-25-25-25-6 Tansig & purelin 6 x 16210 3.22e-05 

9. ANN_FLE_5-L 6-25-25-25-6 Tansig & purelin 6 x 6490 3.84e-06 

10. ANN_FLE_5-LG 6-30-30-30-6 Tansig & purelin 6 x 6490 5.52e-06 

11. ANN_FLE_6-L 6-15-15-6 Tansig & purelin 6 x 1090 9.97e-07 

12. ANN_FLE_6-LG 6-15-15-6 Tansig & purelin 6 x 1090 1.00e-06 

 

The flowchart of the proposed protection scheme is shown in Fig. 3.7. In the proposed 

protection scheme, the single-end pre-processed current data is fed to all 12 ANN modules 

simultaneously. The ANN_FDC module output and FI output information are used for fault 

detection/classification purposes. Based on fault type information the particular fault type of 

the ANN_FLE module is selected to have the estimated fault location in each phase. The ‘OR’ 

operation on the ANN_FDC module outputs is used to generate the trip signal to the circuit 

breakers. 
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Fig. 3.7 Flowchart of the proposed protection scheme with DWT and ANN 

3.4 Results and Discussion 

The performance of the proposed protection scheme has been evaluated by conducting a 

series of simulations by varying the fault parameters viz. fault resistance (Rf) (0 – 100) Ω, 

fault inception angle (Φ) (0º - 360º), and fault location (Lf) (1 – 68) km. Further, to validate 

the proposed protection scheme, testing data that is different from the training data is 

generated using the fault parameters shown in Table 3.3 and the no. of fault cases (5761) and 

samples considered (115220) is shown in Table 3.4. The accuracy and the dependability of 

the proposed protection scheme for fault detection and classification are assessed w.r.t 
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training and testing data using the confusion matrices. The accuracy and dependability are 

evaluated as [45] 

        𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑓𝑎𝑢𝑙𝑡 𝑐𝑎𝑠𝑒𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑓𝑎𝑢𝑙𝑡 𝑐𝑎𝑠𝑒𝑠 𝑎𝑛𝑑 𝑛𝑜 𝑓𝑎𝑢𝑙𝑡 𝑐𝑎𝑠𝑒𝑠
× 100           (3.8) 

   𝐷𝑒𝑝𝑒𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑓𝑎𝑢𝑙𝑡 𝑐𝑎𝑠𝑒𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑓𝑎𝑢𝑙𝑡 𝑐𝑎𝑠𝑒𝑠
× 100                  (3.9) 

The performance of the protection scheme for the fault location estimation for all the fault 

location modules is evaluated in terms of percentage error in the estimated fault location for 

all the phases as [44] 

  % 𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (%𝐸) =
ா೑೗ି௅ೌ

௧௢௧௔௟ ௟௘௡௚௧௛ ௢௙ ௧௛௘ ௟௜௡௘
× 100     (3.10)  

Where Efl and La are the estimated fault location and actual fault location. 

3.4.1 Performance Evaluation of the ANN_FDC Module for Varying Fault 

Parameters 

The fault detection/classification of the proposed protection scheme is effective and 

efficient even with the variation of fault parameters.  A four-phase to ground fault (4-LG, 

(ABCDG)) is simulated at fault location (La) of 10 km from bus B1 with fault resistance (Rf) 

30 Ω and fault inception angle (Φ) of 0° (fault inception time (Tf) 0.05 s) and the six-phase 

instantaneous currents at bus B1 are shown in Fig. 3.8 (a). Fig. 3.8 (b) presents the standard 

deviation of the second level approximate coefficients of the current signals i.e., pre-

processed input features by DWT to ANN modules. Fig. 3.8 (c) presents the standard 

deviation of the fault index i.e., used for the ground detection. Fig. 3.8 (d) shows the fault 

detection and classification outputs for the ANN_FDC module where the faulty phases are 

detected as a fault with the level of output ‘+1’ after the inception of fault while the healthy 

phases are shown with ‘-1’ level of output. Hence the ANN_FDC module clearly identifies 

and classifies the fault as ABCDG fault with maximum and minimum FDC time as 2.5 ms 

(0.0525 ms – 0.05 ms = 2.5 ms) and 3.33 ms (0.0533 ms – 0.05 ms = 3.33 ms) which is much 

less than one cycle time (16.67 ms). The performance of the ANN_FDC module for varying 

fault resistance is evaluated and the results are tabulated in Table 3.6. The fault location and 

the fault inception angle (fault inception time) are kept constant at 34 km and 0º (0.05 s) and 
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the different faults are simulated with different resistances. It can be observed from Table 3.6 

that the proposed ANN_FDC module correctly identifies the faults within 7 ms time (less than 

one cycle time). 

 

Fig. 3.8 (a) Six phase instantaneous currents, (b) Input patterns for the ANN_FDC module, 

(c) Fault index for ground detection, and (d) ANN-based fault detection and classification 

module outputs 

Table 3.6 Results of the ANN_FDC module for the varying fault resistance 

 

The performance of the ANN_FDC module for varying fault locations is evaluated and 

the results are tabulated in Table 3.7. The fault resistance and the fault inception angle (fault 

inception time) are kept constant at 75 Ω and 0º (0.05 s) and the different faults are simulated 

at different fault locations. It can be observed from Table 3.7 that the proposed ANN_FDC 

module correctly identifies the faults within 9 ms time (less than one cycle time). The 

performance of the ANN_FDC module for varying fault inception angles is evaluated and the 

results are tabulated in Table 3.8. The fault resistance and the fault location are kept constant 

S. 

No. 

Fault type with varying Rf (Ω)  

La = 34 km, FIA (Φº) = 0º (FIT = 0.05 s) 

 ANN_FDC module outputs FDC time (ms) 

A B C D E F G Min. Max. 

1. CG with 70 Ω -1 -1 1 -1 -1 -1 1 5.83 5.83 

2. BDE with 5 Ω -1 1 -1 1 1 -1 -1 1.67 5.0 

3. CDFG with 25 Ω -1 -1 1 1 -1 1 1 2.5 6.67 

4. ACDE with 10 Ω 1 -1 1 1 1 -1 -1 2.5 5.83 

5. ABCDFG with 85 Ω 1 1 1 1 -1 1 1 2.5 5.5 

6. ABCDEF with 30 Ω 1 1 1 1 1 1 -1 2.5 5.83 
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at 90 Ω and 50 km, and the different faults are simulated at different fault inception angles. It 

can be observed from Table 3.8 that the proposed ANN_FDC module correctly identifies the 

faults within 8 ms time (less than one cycle time). 

Table 3.7 Results of the ANN_FDC module for the varying fault location 

S. 

No. 

Fault type with varying La (km)  

Rf = 75 Ω, FIA (Φº) = 0º (FIT = 0.05 s) 

ANN_FDC module outputs FDC time (ms) 

A B C D E F G Min. Max. 

1. AG at 3 km 1 -1 -1 -1 -1 -1 1 3.33 3.33 

2. ACG at 20 km 1 -1 1 -1 -1 -1 1 3.33 7.5 

3. BEFG at 40 km -1 1 -1 -1 1 1 1 2.5 7.5 

4. BCDE at 55 km -1 1 1 1 1 -1 -1 3.33 8.3 

5. ABCDE at 65 km 1 1 1 1 1 -1 -1 2.5 5.0 

6. ABCDEF at 67 km 1 1 1 1 1 1 -1 2.5 5.83 

 

Table 3.8 Results of the ANN_FDC module for the varying fault inception angles 

S. 

No. 

Fault type with varying FIA (Φº), (FIT 

(s)), La = 50 km, Rf = 90 Ω  

ANN_FDC module outputs FDC time (ms) 

A B C D E F G Min. Max. 

1. FG at 0º (0.05 s) -1 -1 -1 -1 -1 1 1 6.67 6.67 

2. DF at 45º (0.05208 s) -1 -1 -1 1 -1 1 -1 2.92 4.59 

3. ACDG at 60º (0.05278 s)  1 -1 1 1 -1 -1 1 3.05 3.89 

4. BCEF at 120º (0.0556 s) -1 1 1 -1 1 1 -1 3.57 5.23 

5. ACDEF at 180º (0.0583 s) 1 -1 1 1 1 1 -1 2.53 6.7 

6. ABCDEF at 270º (0.0625 s) 1 1 1 1 1 1 -1 2.5 7.5 

  
Table 3.9 Confusion matrix w.r.t training data 

   Predicted faults  

Total   1-LG 2-L 2-LG 3-L 3-LG 4-L 4-LG 5-L 5-LG 6-L 6-LG NF 

 

 

 

 

True 

faults 

1-LG 638 - 10 - - - - - - - - - 648 

2-L - 1620 - - - - - - - - - - 1620 

2-LG - 13 1606 - 1 - - - - - - - 1620 

3-L - - - 2160 - - - - - - - - 2160 

3-LG - - - - 2152 - 8 - - - - - 2160 

4-L - - - - - 1620 - - - - - - 1620 

4-LG - - - - - 13 1607 - - - - - 1620 

5-L - - - - - - - 648 - - - - 648 

5-LG - - - - - - - - 648 - - - 648 

6-L - - - - - - - - - 108 - - 108 

6-LG - - - - - - - - - - 108 - 108 

NF - - - - - - - - - - - 1 1 
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Table 3.10 Confusion matrix w.r.t testing data 

   Predicted faults  

Total   1-LG 2-L 2-LG 3-L 3-LG 4-L 4-LG 5-L 5-LG 6-L 6-LG NF 

 

 

 

 

True 

faults 

1-LG 288 - - - - - - - - - - - 288 

2-L - 720 - - - - - - - - - - 720 

2-LG - 7 713 - - - - - - - - - 720 

3-L - - - 960 - - - - - - - - 960 

3-LG - - - - 960 - - - - - - - 960 

4-L - - - - - 720 - - - - - - 720 

4-LG - - - - - 7 713 - - - - - 720 

5-L - - - - - - - 288 - - - - 288 

5-LG - - - - - - - - 288 - - - 288 

6-L - - - - - - - - - 48 - - 48 

6-LG - - - - - - - - - - 48 - 48 

NF - - - - - - - - - - - 1 1 

 

To obtain the overall assessment of the proposed fault detection and classification of 

the ANN_FDC module, confusion matrices w.r.t to training and testing data are presented in 

Table 3.9 and Table 3.10. The true and predicted fault types are represented on the left and 

top of the tables. The accuracy and the dependability of the proposed protection scheme w.r.t 

fault detection and classification are given in Table 3.11. From the table, it can be understood 

that the proposed method's performance is efficient and accurate in the FDC task. 

Table 3.11 Performance index of ANN_FDC module for FDC 

S. No. Performance index w.r.t Training data w.r.t Testing data 

1. Accuracy 12916

12961
× 100 = 99.65% 

5747

5761
× 100 = 99.76% 

2. Dependability 12915

12960
× 100 = 99.645% 

5746

5760
× 100 = 99.76% 

 

3.4.2 Performance Evaluation of the ANN_FLE Modules for Varying Fault 

Parameters 

The performance of the proposed protection scheme’s ANN_FLE fault location 

estimation modules detailed in Table 3.5 is evaluated for the different faults simulated i.e., 

with varying fault parameters. A single line to ground fault (AG) is simulated at a fault 

location of 65 km from bus B1 at 0.05 s with a fault resistance of 80 Ω and a double line to 

ground fault (ABG) is simulated at a fault location of 1 km from bus B1 at 0.05 s with fault 
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resistance of 60 Ω. The response of the ANN_FLE_1-LG module for the AG fault and the 

ANN_FLE_2-LG module for the ABG fault is shown in Fig. 3.9 and Fig. 3.10. It can be 

observed from Fig. 3.9 that the proposed ANN_FLE_1-LG module approximately estimates 

the actual fault location for the faulty phase (A-phase) as 65.3 km while the healthy phases as 

140 km. Similarly, the estimated fault location is obtained as 0.8737 km and 0.9271 km as 

depicted in Fig. 3.10 for the faulty phases. Some of the test results of the proposed ANN_FLE 

modules are depicted in Table 3.12, Table 3.13, and Table 3.14 for different faults. It is 

evident from the test results in Fig. 3.9, Fig. 3.10, and Tables 3.12, 3.13, and 3.14 that the 

proposed method provides approximately near-fault location estimation results. 

  

Fig. 3.9 Estimated fault location by the ANN_FLE_1-LG module for AG fault at 65 km, fault 

resistance of 80 Ω and fault inception angle of 0° (fault inception time 0.05 s) 

 

Fig. 3.10 Estimated fault location by the ANN_FLE_2-LG module for ABG fault at 1 km, 

fault resistance of 60 Ω and fault inception angle of 0° (fault inception time 0.05 s) 
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Table 3.12 Estimated fault location by the ANN_FLE modules with Rf = 0.01 Ω, Φº =0º, and 

La = 5 km 

Estimated fault location for different faults with 𝑹𝒇  = 0.01 Ω, FIA (Φº) = 0º, and 𝑳𝒂 = 5 km 

  Estimated fault location (𝐸௙௟) in each phase (km)  

S. No. Fault Type 𝐴ாி௅  𝐵ாி௅  𝐶ாி௅  𝐷ாி௅  𝐸ாி௅ 𝐹ாி௅  Max. % 𝐸 

1. AG 5.043 140 140 140 140 140 0.063% 

2. ABG 5.235 5.259 140 140 140 140 0.38% 

3. ABCG 5.37 5.588 5.437 140 140 140 0.865% 

4. ABCDG 5.452 5.349 5.463 5.525 140 140 0.772% 

5. ABCDEG 4.788 4.822 4.831 4.802 4.831 140 -0.311% 

6. ABCDEFG 4.927 4.927 4.927 4.927 4.927 4.927 -0.107% 

7. ABCDEF 4.977 4.979 4.977 4.977 4.977 4.98 -0.034% 

8. ABCDE 5.052 5.053 5.05 5.053 5.032 140 0.078% 

9. ABCD 5.014 5.215 4.962 5.004 140 140 0.316% 

10. ABC 5.593 6.035 5.431 139.6 140.2 139.3 1.522% 

11. AB 4.719 4.932 139.8 140.4 140.1 140.2 -0.413% 

 

Table 3.13 Estimated fault location by the ANN_FLE modules with Rf = 90 Ω, Φº = 270º, 

and La = 66 km 

Estimated fault location for different faults with 𝑹𝒇 = 90 Ω, FIA (Φº) = 270º, and 𝑳𝒂 = 66 km 

  Estimated fault location (𝐸௙௟) in each phase (km)  

S. No. Fault Type 𝐴ாி௅  𝐵ாி௅  𝐶ாி௅  𝐷ாி௅  𝐸ாி௅ 𝐹ாி௅  Max. % 𝐸 

1. AG 66.1 140 140 139.9 140 140 0.147% 

2. ABG 66.12 66.26 139.8 140 140 140 0.382% 

3. ABCG 63.23 63.43 65.25 140.6 140.5 140.2 -4.074% 

4. ABCDG 66.01 66.21 66.18 66.29 139.9 140 0.426% 

5. ABCDEG 66.5 66.75 66.72 67.08 140 139.7 2.647% 

6. ABCDEFG 66.22 66.22 66.22 66.22 66.22 66.22 0.324% 

7. ABCDEF 66.18 66.18 66.63 66.18 66.18 66.18 0.926% 

8. ABCDE 66.04 66.17 66.16 66.14 65.3 140 -1.029% 

9. ABCD 66.32 66.14 66.32 66.38 141.6 138.4 0.559% 

10. ABC 65.03 67.19 67.28 140.7 140.7 139.4 1.882% 

11. AB 65.84 65.6 140.9 141.2 140.1 139.5 -0.588% 
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Table 3.14 Estimated fault location by the ANN_FLE modules with varying fault parameters 

  Estimated fault location (𝑬𝒇𝒍) in each phase (km) 

S. 

No. 

Fault type with 𝑅௙ (Ω), FIA (Φº), and 

𝐿௔  (𝑘𝑚) 

𝐴ாி௅  𝐵ாி௅ 𝐶ாி௅  𝐷ாி௅ 𝐸ாி௅ 𝐹ாி௅  Max. 

% 𝐸 

1. AG with 40 Ω, 0º, and 15 km 14.9 140 140 140 140 140 -0.147% 

2. ABG with 75 Ω, 30º, and 35 km 35.64 35.83 140 140 140 139.5 1.221% 

3. ABC with 5Ω, 60º, and 50 km 49.83 48.95 49.87 140.3 141.1 140.3 -1.544% 

4. ABCDG with 60 Ω, 90º, and 30 km 29.59 29.55 29.59 29.59 140.1 139.9 -0.662% 

5. ABCDE with 15 Ω, 120º, and 45 km 43.25 43.24 43.25 43.24 43.24 140 -2.588% 

6. ABCDEF with 20 Ω, 150º, and 55 km 53.82 53.82 53.82 53.82 53.82 53.82 -1.735% 

 

Further to analyse the overall performance of the ANN_FLE modules, the training and 

testing data samples that are given in Table 3.3 and Table 3.4 are used to estimate the fault 

location. The percentage error in the estimated fault location in all the faulty phases is 

calculated using Eq. (3.10). Table 3.15 presents the no. of fault cases for all the phases under 

each range of percentage error in the estimated fault location for the ANN_FLE_1-LG fault 

location estimation module w.r.t training data and the same has been depicted in Fig. 3.11 

with the percentage proportion of 1-LG fault cases under each error range. It can be observed 

that about 99% of the 1-LG fault cases are within the ±1% error range. 

Table 3.15 No. of 1-LG fault cases under each range of percentage error in the estimated fault 

location (w.r.t training data) 

  No. of fault cases 

Fault  

Location 

Module 

 

Phase 

 % E1: 

-1% to 

+1% 

% E2: 

-2% to -1% 

and +1% to 

+2% 

% E3: 

-3% to -2% 

and +2% to 

+3% 

% E4: 

-4% to -3% 

and +3% to 

+4% 

% E5: 

-5% to -4% 

and +4% to 

+5% 

% E6: 

-10% to -5% 

and +5% to 

+10% 

ANN_FLE 

_1-LG 

module 

(108 fault 

cases for 

each phase) 

A 108 0 0 0 0 0 

B 108 0 0 0 0 0 

C 108 0 0 0 0 0 

D 108 0 0 0 0 0 

E 107 1 0 0 0 0 

F 106 2 0 0 0 0 

6 𝗑 108 = 648 1-LG 645 3 0 0 0 0 
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Fig. 3.11 Proportion of 1-LG estimated fault location error percentage fault cases in different 

error percentage ranges (w.r.t training data) 

Similarly, Table 3.16 presents the no. of fault cases for all the phases under each range 

of percentage error in the estimated fault location for all the fault location estimation modules 

w.r.t training data and Fig. 3.12 portrays the same with the percentage proportion of fault 

cases under each error range that is shown in Table 3.16. It can be observed that about 81% 

of all the fault cases are within the ±1% error range. 

Table 3.16 No. of fault cases under each range of percentage error in the estimated fault 

location (w.r.t training data) 

   No. of fault cases  

Fault  

Location 

Module 

 

Phase 

% E1: 

-1% to +1% 

% E2: 

-2% to -1% 

and +1% to 

+2% 

% E3: 

-3% to -2% 

and +2% to 

+3% 

% E4: 

-4% to -3% 

and +3% to 

+4% 

% E5: 

-5% to -4% 

and +4% to 

+5% 

  % E6: 

-10% to -5% 

and +5% to 

+10% 

All fault 

location 

estimation 

modules. 

(6804 fault cases 

per phase) 

A 5403 989 260 79 26 47 

B 5488 954 237 60 29 36 

C 5634 832 210 64 25 39 

D 5443 964 272 73 26 26 

E 5471 968 257 68 21 19 

F 5740 765 198 55 14 32 

6 𝗑 6804 = 

40824 

All 

faults 33179 5472 1434 399 141 199 
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Fig. 3.12 Proportion of all the estimated fault location error percentage fault cases in different 

error percentage ranges (w.r.t training data) 

Similarly, Table 3.17 and Table 3.18 present the no. of fault cases for each phase in 

each of the percentage error ranges for the ANN_FLE_1-LG module and all the fault location 

estimation modules w.r.t testing data. Fig. 3.13 and Fig. 3.14 present the proportion 

percentage of fault cases for each phase under different error ranges for the data shown in 

Table 3.17 and Table 3.18. It is observed from Fig. 3.13 and Fig. 3.14 that about 98% and 

53% proportion of fault cases are within the ±5% error range in the estimated fault location. 

Table 3.17 No. of 1-LG fault cases under each range of percentage error in the estimated fault 

location (w.r.t testing data) 

  No. of fault cases 

Fault  

Location 

Module 

 

Phase 

% E1: 

-1% to 

+1% 

% E2: 

-2% to -1% 

and +1% to 

+2% 

% E3: 

-3% to -2% 

and +2% to 

+3% 

% E4: 

-4% to -3% 

and +3% to 

+4% 

% E5: 

-5% to -4% 

and +4% to 

+5% 

% E6: 

-10% to -5% 

and +5% to 

+10% 

ANN_FLE 

_1-LG 

module 

(48 fault 

cases for 

each phase) 

A 41 7 0 0 0 0 

B 30 4 5 5 1 3 

C 34 8 2 3 1 0 

D 38 6 2 1 1 0 

E 27 10 4 6 0 1 

F 29 14 3 2 0 0 

6 𝗑 48 = 288 1-LG 199 49 16 17 3 4 
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Fig. 3.13 Proportion of 1-LG estimated fault location error percentage fault cases in different error 

percentage ranges (w.r.t testing data) 

 

Fig. 3.14 Proportion of all the estimated fault location error percentage fault cases in different 

error percentage ranges (w.r.t testing data) 
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Table 3.18 No. of fault cases under each range of percentage error in the estimated fault 

location (w.r.t testing data) 

  No. of fault cases 

Fault  

Location Module 

 

Phase 

% E1: 

-1% to +1% 

% E2: 

-2% to -1% 

and +1% to 

+2% 

% E3: 

-3% to -2% 

and +2% to 

+3% 

% E4: 

-4% to -3% 

and +3% to 

+4% 

% E5: 

-5% to -4% 

and +4% to 

+5% 

% E6: 

-10% to -5% 

and +5% to 

+10% 

All fault location 

estimation 

modules. 

(3024 fault cases 

per phase) 

A 439 365 258 238 189 1535 

B 470 381 275 244 190 1464 

C 589 376 291 224 202 1344 

D 456 338 283 228 195 1524 

E 493 412 313 249 199 1358 

F 463 402 281 254 216 1408 

6 𝗑 3024 = 

18144 

All 

faults 2910 2274 1701 1437 1191 8633 

 

Table 3.19 Comparison of the proposed scheme with other existing schemes 

S. 

No. 

Comparison  
Term 

Reference      

[43] [45] [46] [117] [118] Proposed 

1. Protection 

technique 

ANN Fuzzy 

inference 

system 

Decision 

tree and 

TLBO 

tuned 

ANN 

Adaptive 

PSO 

tuned 

ANN 

Bat algorithm 

tuned deep 

neural 

network 

ANN 

2. Signal pre-

processing 

technique 

DFT DFT Least 

square 

Adaline 

algorithm 

DWT Stacked 

encoder-

grayscale 

images 

DWT 

3. Voltage or current 

information 

requirement 

Voltage and 

current 

Voltage 

and 

current 

Voltage Voltage 

and 

current 

Voltage and 

current 

Current 

4. No. of FDC 

modules 

11 7 11 11 11 1 

5. No. of fault cases 4930 - 28830 21600 4836 5761 

6. FDC accuracy 100% 98.02% 99.64% 100% 99.45% 99.76% 

7. FDC time 16.67 ms 16.67 ms 12.4 ms 14 ms 16.67 ms 16.67 ms 

8. No. of FLE 

modules 

11 - 11 11 - 11 
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3.4.3 Comparison of Proposed Scheme with Other Existing Schemes 

A comparison of the proposed protection scheme with the existing protection schemes is 

presented in Table 3.19. Since the proposed protection technique uses only phase current 

information for the protection task, it requires only a current transformer. The cost of the 

potential transformer can be saved as the voltage information is not required for the protection 

task. The sending end bus data is utilized, therefore there is no requirement for a 

communication link and hence no communication latency. As a smaller sampling frequency 

(1.2 kHz) is used the cost of the digital fault recorder, computational complexity, and data 

storage/handling problem can be minimized. Unlike the other multi-ANN modules technique 

for fault detection and classification, the proposed technique uses only a single ANN module 

that greatly reduces the computational burden and a good deal of time for training and 

selection of the optimal architecture of multi-ANN modules.  

3.5 Summary 

In this chapter, a protection scheme based on DWT and ANN is proposed for the 

complete protection of the six-phase transmission line. A single ANN_FDC module is 

proposed to identify and classify all the 120 types of faults. The performance of this module 

is evaluated with training and testing data in terms of accuracy and dependability. The 

performance indices show that the proposed FDC module is efficient and effective with 

99.76% accuracy. Moreover, the proposed technique is resistant to fault parameter variations 

and detects all types of faults within one cycle time (16.67 ms). The ANN_FLE fault location 

estimation modules are proposed for approximating the fault location. The performance of all 

the FLE modules is also evaluated with training and testing data. The performance of the fault 

location estimation modules is better with training data where 81% of the fault cases are 

within the ±1% error range but the performance w.r.t testing data is nominal where 53% of 

the fault cases are within ±5% error range. It can be concluded that the proposed protection 

scheme works efficiently for fault detection and classification with a single module and the 

performance of fault location estimation modules can be further improved with optimal 

tunning of ANN parameters. 

 *****  
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4.1 Introduction 

The global electrical energy demand is steadily increasing, driven by population growth, 

urbanization, and technological advancements. This escalating demand necessitates a 

sustainable energy for the future. The growing demand must be met besides addressing the 

challenge of climate change. To reduce the carbon emissions from conventional sources, 

nations across the globe are rapidly shifting towards renewable energy sources like solar and 

wind rather than fossil fuels for power generation. The integration of these inherently variable 

and geographically dispersed sources into the existing power grid poses significant 

challenges, especially in transmission line protection. Due to terrestrial and environmental 

conditions, renewable energy generation is not possible at all locations. The generated 

renewable power is to be transmitted to the load centres wherever it is required. The regional 

disparities in generation as well as demand necessitate the use of transmission lines. 

The settings of conventional distance protection schemes are developed assuming the grid 

is solely supplied by the synchronous generators. Upon integration of renewables, the 

intermittent nature of renewable power sources creates problems to the distance relay 

operation that relies on the positive sequence components of voltage and current signals. The 

relay may issue false trips and experience underreach or overreach problems depending on 

the system operating conditions. Further, the faulty phase identification gets complicated due 

to the partial cancellation of positive and zero sequence components of currents during faults 

resulting in reduced fault currents than the healthy phase currents i.e. accounted for the control 

mechanisms of the voltage source converters associated with the renewable energy sources 

(RES) [119, 120]. 

This chapter presents an intelligent novel protection scheme with a fuzzy logic system to 

identify and classify the short circuit faults of the transmission line connected to RES (solar 

and wind power sources). The voltage signals of the bus connected to renewable energy 

sources are pre-processed with DFT are the inputs to the proposed Mamdani based fuzzy 

inference system for fault detection/classification. A bagged ensemble learning approach with 

regression decision trees is proposed for fault location estimation using the DFT processed 

voltage signals. The key points of the proposed protection method are: 
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 The proposed scheme of protection approach with FIS demonstrates robust 

performance in identifying and classifying various fault types, even under variable 

generation conditions of the RES connected to lines. 

 This scheme achieved an accuracy of 99.56% in fault detection and classification 

utilizing only single end voltage data that eliminates the use of communication link. 

Hence no communication latency. 

 The FIS based protection scheme is simple to implement and does not require any 

training for protection purpose. 

 The bagged ensemble approach effectively reduces the estimation errors, ensuring 

a better approximation of the fault location that facilitates swift repair and 

restoration, minimizing downtime and enhancing grid resilience. 

 The proposed approach demonstrates the potential of combining fuzzy 

logic, ensemble learning, and signal processing techniques for developing 

intelligent protection systems adaptable to modern power grids. 

4.2 Details of Three-phase Transmission Line Connected to RES 

In the present work, a 200 km length transmission line (400 kV and 50 Hz) connected to 

RES is considered. Fig. 4.1 depicts the single-line schematic representation of the 

transmission system model with RES blocks and block representation of the protection 

scheme proposed. The represented power transmission system is modelled and simulated 

utilizing the MATLAB/Simulink platform. A three-phase power source represented with 

Thevenin’s equivalent having 1.25 GVA short circuit capacity and 10 X/R ratio is connected 

to one end of the line at bus B3 represents the 400 kV, 50 Hz grid. The RES are connected at 

the other end of the line at bus B1. The solar and wind powers of each 50 MW is integrated 

into the power system through the transmission line. The MATLAB components viz. 

distributed parameters line block based on Bergeron’s line model and three-phase fault 

breakers are used to simulate the transmission line having shunt capacitance effect and various 

fault types respectively. The voltage samples collected at bus B1 are utilized for the proposed 

protection technique. The parameters of the transmission line are given in Appendix – III. 
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Fig. 4.1 Single-line schematic representation of power transmission system model along with 

block diagram of proposed protection method 

 

Fig. 4.2 Schematic representation of solar PV power source 

The solar photovoltaic (PV) power plant rated with 50 MW power consists of PV module, 

DC-DC boost converter, and voltage source inverter with a step-up transformer. A schematic 

representation of the solar power plant is shown in Fig. 4.2. An aggregate model of the 50 

MW solar power plant is developed in MATLAB/Simulink that constitutes 50 number of solar 

PV parallel arrays each of 1 MW rated power. Each array consists of 205 number of parallel 

strings and each string has 14 number of series connected modules. The solar PV power plant 

data and the specifications of the PV module are given in Appendix – IV. The DC-DC boost 

converter is used to boost the PV voltage and extract the maximum power from the PV plant 

with perturb and observe maximum power point tracking algorithm. The 2-level three-phase 
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voltage source inverter (VSI) and step-up transformer are used to interface/integrate the power 

of the PV plant into the power system. The block schematic of the inverter control is shown 

in Fig. 4.3. The details of the design aspects related to the PV system can be referred in [121, 

122]. 

 

Fig. 4.3 Block schematic of inverter control 

The wind power is generated using the doubly fed induction generators (DFIG). Fig. 4.4 

presents the schematic representation of the DFIG based wind farm. An aggregate model of 

the 50 MW wind power farm is developed in MATLAB/Simulink. The DFIG based wind 

farm rated with 50 MW power consists of 33 number of wind turbine generators each of 1.5 

MW rated power. The DFIG based wind farm data is given in Appendix – V. The wind turbine 

system, wound rotor induction generator, back-to-back converters (grid side converter (GSC) 

and rotor side converter (RSC)) with its associated control system, and the step-up transformer 

constitute the wind power farm. The power generated by the wind farm is fed to the power 

system through the step-up transformer where the stator windings are directly connected to 

the transformer and rotor windings are connected through the back-to-back converters. The 

2-level converters are used for GSC and RSC that maintain the dc link voltage and control 

the rotor currents respectively. The block schematics of the converter control for RSC and 

GSC are shown in Fig. 4.5 and Fig. 4.6. The details of the design aspects related to the wind 

power system can be referred in [121, 122]. 
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Fig. 4.4 Schematic representation of the DFIG based wind farm 

 

Fig. 4.5 Block schematic of RSC control 
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Fig. 4.6 Block schematic of GSC control 

4.3 Development of Proposed Protection Scheme with FIS and 

Bagged Ensemble of Regression Trees 

Generally, any digital scheme of protection involves majorly two stages. The first stage is 

the signal pre-processing to extract the relevant features useful for the protection task. The 

second stage is the implementation of the scheme of protection with the extracted features. In 

the present work, the simple and most widely applied discrete Fourier transform is employed 

as the signal processing technique and the scheme of protection is developed utilizing the 

fuzzy logic system and ensemble learning approach with features retrieved by DFT. 

4.3.1 DFT Based Feature Extraction Process 

The raw and unprocessed instantaneous fault information (either voltage or current data) 

captured at the relaying location are very transitory and oscillatory in nature due to which 

they cannot be directly used for the protection job. Hence, the raw fault data discretization 

and pre-processing with suitable digital signal processing technique is crucial. In the present 

study, the voltage samples collected at bus B1 are only employed for the protection job 

because the amount of current injected into the grid may vary depending upon the intermittent 

operating conditions of the RES. But, irrespective of RES operating conditions, the voltage 

at bus B1 is maintained almost invariable due to the control action of voltage source 

converters of RES. The initial stage of signal processing involves the filtering of three-phase 

voltage signals at bus B1 using a low pass Butterworth anti-aliasing filter of second-order 

with 480 Hz cut-off frequency to ensure the removal of higher order voltage harmonics. 

According to the Nyquist sampling criterion, the filtered voltage signal is sampled with a 1 
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kHz sampling frequency. Using the discrete Fourier transform, the amplitude of the voltage 

signal’s fundamental component is extracted/determined from the discrete voltage samples. 

Eq. (4.1) gives Vp(k), the discrete Fourier transform of vp(n) (discrete voltage samples) [91]. 

𝑉௣(𝑘) =
1

𝑀
෍ 𝑣௣(𝑛)

ெିଵ

௡ୀ଴

𝑒
ି௝ଶగ௡௞

ெ                                                               (4.1) 

Where Vp(k) is the voltage phasor, vp(n) is a discretized voltage signal, p = a, b, and c phases, 

n, k = 0, 1, 2, 3, …, M-1 are sample numbers, order of frequency stamps, and M is the number 

of samples per cycle. The zero-sequence voltage is determined utilizing MATLAB’s sequence 

analyser to ensure the ground involvement in the fault loop of grounded faults. Therefore, the 

features extracted relevant to the scheme of protection are the magnitudes of fundamental 

component and zero-sequence component of three-phase voltage samples viz. {|Va|, |Vb|, |Vc|, 

and |V0|}. 

 

4.3.2 Proposed Protection Scheme for FDC and FLE 

The fuzzy logic system is used for the detection and classification of short circuit faults of 

the transmission line. Fuzzy logic systems are one of the AI techniques that are based on the 

fuzzy logic mathematical framework which works on vague/imprecise input data to produce 

precise output mimicking human like reasoning. These are simple, flexible, and have an easily 

implementable structure. They can solve non-linear problems without intense computational 

effort regardless of the system’s mathematical model. Fuzzy set theory forms the base for 

fuzzy logic concepts. Unlike the traditional binary logic where the possible outcomes are 

categorized as either completely true or false i.e. 1 or 0, fuzzy logic introduces the concept of 

partial truthiness or falseness ranging its degree from 0 to 1 that embraces the ambiguity of 

real-world problems. These rule-based systems make decisions using the fuzzy logic idea. 

The execution of these systems is based on a set of devised “if-then” fuzzy rules that establish 

conditional relationships mapping the input-output fuzzy sets represented by the membership 

functions. The execution involves processes like fuzzifying inputs and outputs, fuzzy 

inference processing, and defuzzification of outputs [8]. 

 

A single module of the Mamdani fuzzy inference system (FIS) is developed using 

MATLAB’s Fuzzy Logic Toolbox to make decisions about the transmission line fault type 

and its occurrence. The FIS accepts four inputs {|Va|, |Vb|, |Vc|, and |V0|} and provides four 

outputs {A, B, C, and G} to identify and classify the faults. The inputs and outputs are 
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organized into different fuzzy sets with the fuzzy linguistic variables labelled as F (fault), VF 

(verge of fault), and UF (unfault) for the inputs, and L (Low), M (Medium), and H (High) for 

the outputs. The fuzzy linguistic variables of the inputs and outputs are represented with the 

trapezoidal (F, L, and H) and triangular (VF, UF, and M) membership functions. Fig. 4.7 

depicts the graphical representation of the fuzzification of inputs and outputs. 

 

Fig. 4.7 Fuzzification of inputs and outputs 

The suggested protection scheme employs 23 fuzzy rules that are formulated with the input-

output fuzzy linguistic variables to detect/classify the faults. Table 4.1 presents the formulated 

fuzzy rule base of the scheme with rule no. #1 as “If |Va| is UF and |Vb| is UF and |Vc| is UF 

then A is L, B is L, C is L”. In a similar fashion, all other framed rules can be interpreted. The 

outputs {A, B, and C} are dedicated to detect the phase(s) is faulty or healthy represented with 

the output labels “+1” or “-1” respectively. Similarly, the output {G} is engaged in the 

detection of ground for the grounded faults. The centroid method of defuzzification is applied 

to the aggregated fuzzy outputs to deliver a crisp value that signifies the fault severity. 

Whenever a fault is detected, the faulty phase output of the FIS module shows “High” with 

the label “+1” and for the healthy phase the module output is “Low” with “-1”. The OR 
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operation is performed on the FIS outputs {A, B, and C} to issue the trip signal to the circuit 

breaker. 

Table 4.1 Framed fuzzy rules 

# 
Rule 
no. 

Membership functions for # 
Rule 
no. 

Membership functions for 

|Va| |Vb| |Vc| |V0| A B C G |Va| |Vb| |Vc| |V0| A B C G 

#1 UF UF UF - L L L - #13 VF VF F - M M H - 

#2 VF VF VF - M M M - #14 UF VF F - L M H - 

#3 F F F - H H H - #15 VF UF F - M L H - 

#4 F UF UF - H L L - #16 F F UF - H H L - 

#5 F VF VF - H M M - #17 F F VF - H H M - 

#6 F VF UF - H M L - #18 UF F F - L H H - 

#7 F UF VF - H L M - #19 VF F F - M H H - 

#8 UF F UF - L H L - #20 F UF F - H L H - 

#9 VF F VF - M H M - #21 F VF F - H M H - 

#10 UF F VF - L H M - #22 - - - UF - - - L 

#11 VF F UF - M H L - #23 - - - F - - - H 

 #12 UF UF F - L L H -          

This work employs a regression based bagged ensemble learning approach with 

decision trees strategy for estimation/prediction of fault location. The ensemble learning 

approach is one of the machine learning techniques i.e. used to improve the overall prediction 

accuracy and robustness of the model. An ensemble learner is one which combines the results 

of many learners to give a final output of high quality. In the bagged ensemble learning 

approach, the learners/models are independent of each other and are trained/processed 

parallelly on the training data set or subsets of training data that are obtained by sampling the 

initial training data set with replacement. Instead of single model training that may be prone 

to underfitting/overfitting due to data changes, the bagging ensemble process that trains 

multiple models avoids the overfitting issues making the system robust with good 

generalization performance. A pictorial representation of the bagged ensemble learner is 

shown in Fig. 4.8, where DK,d is the original training data set of K rows (instances) and d 
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columns (d-1 features/attributes and the last column represents the target data), D1
K1,d, D2

K1,d, 

D3
K1,d, …, Dn

K1,d are the subsets of training data, M1, M2, M3, …, Mn are individual 

models/learners, Y1, Y2, Y3, …, Yn are the individual model outputs, and n is the number of 

learners in the ensemble. The Y is the final output of the ensemble. If the bagged ensemble is 

used for classification purpose, then the final aggregated output is based on the majority 

voting method and if it is a regression ensemble then the final aggregated output is the average 

of all the individual outputs [123, 124, 125]. 

Fig. 4.8 Pictorial representation of bagged ensemble learner 

In the proposed protection method, an ensemble of decision trees (regression) is 

implemented. Decision trees are one of the paradigms of data mining that are based on non-

parametric supervised learning algorithms and are capable of effectively predicting input 

feature and output target relationships. The fundamental principle of growing decision trees 

is to ‘divide and conquer’ the training data by recursively splitting/partitioning the data 

optimally using ‘if-then’ conditions until the desired stopping criterion is reached. Impurity 

based calculations are employed for optimal splitting of the data to get a pure node in 

classification trees whereas minimum mean squared error of prediction is used to define the 

purity of split in regression trees. A pictorial representation of the decision tree growing is 

shown in Fig. 4.9 where the training data D contains features/attributes (f1, f2, …, fd) with N 

no. of instances, Y is the target data, and S is the potential splits obtained from D. The optimal 

splits and optimal features are derived from impurity-based calculations through the 

minimization of mean squared error of prediction. The process of splitting the data is 
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continued until the pure nodes are attained or the maximum depth of the tree is reached [13, 

14, 126]. In Fig. 4.9, the pure node is represented with a circle and the impure node is 

represented with a rectangle. 

  

Fig. 4.9 Pictorial representation of decision tree growing 

A bagged ensemble of 300 number of decision trees is implemented using the regression 

learner in MATLAB to estimate the location of the fault. An extensive number of fault 

simulations were conducted on the modelled system to generate the fault data for training the 
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bagged ensemble learner. A total of 3960 different fault cases were simulated considering the 

variations in different fault parameters viz. fault resistance, fault inception angle, fault 

location, and different fault types. Table 4.2 presents the details of fault parameters considered 

to generate the training data set. The size of the training data set is 39630*4, where the first 

three columns represent the half-cycle moving minimum window of the inputs {|Va|, |Vb|, and 

|Vc|} and the last column represents the actual fault location (target). In the training data set, 

the actual fault location of no-fault cases is labelled as 400 km. The half-cycle post fault data 

(10 samples) is collected to construct the training data set. The bagged ensemble learner with 

different number of trees and minimum leaf sizes are trained on the generated data set through 

a series of pilot runs. The bagged ensemble learner with 300 number of trees and a minimum 

leaf size of one is found to be feasible. The estimated fault location (EFL) is derived from the 

minimum, maximum, and mean of the estimated location (Le).  Whenever a fault is detected 

(i.e. Le < 400 km), then one cycle data of Le is collected and the EFL is evaluated depending 

on the conditions given in Eq. (4.2) using the one cycle data. The training process took a time 

of 93.12 s to train the bagged ensemble model with the prediction metrics: root mean squared 

error of 0.996, mean squared error of 0.991 and mean absolute error of 0.719. All the 

simulations of the present work are carried out on the Intel® Core(TM) i5-10210U CPU @ 

2.11 GHz processor with 8 GB RAM Windows 11 operating system. Fig. 4.10 presents the 

flowchart of the complete scheme of the suggested protection method and its block diagram 

is shown in Fig. 4.1. 

Table 4.2 Fault parameters considered in the training data set 

S. No. Fault parameter Variations 

1. Fault resistance (Ω) 0.01 Ω, 50 Ω, and 100 Ω (3 no.) 

2. Fault inception angle (°) 0° and 90° (2 no.) 

3. Fault location (km) 3 km, 6 km, 9 km, …, 194 km, and 197 km (66 no.) 

4. Fault types 10 (ABC, AB, BC, CA, ABG, BCG, CAG, AG, BG, and CG) 

Therefore, total no. of fault cases considered = 3*2*66*10= 3960 and 3 - no fault case 

 

𝐸𝐹𝐿 =

⎩
⎨

⎧
𝑀𝑖𝑛(𝐿௘),                                                  𝑖𝑓 𝑀𝑖𝑛(𝐿௘) ≤ 20%(𝐿்) 𝑎𝑛𝑑 𝑀𝑒𝑎𝑛(𝐿௘) ≤ 55%(𝐿்)

𝑀𝑎𝑥(𝐿௘),                                                𝑖𝑓 𝑀𝑖𝑛(𝐿௘) > 20%(𝐿்) 𝑎𝑛𝑑 𝑀𝑒𝑎𝑛(𝐿௘) > 55%(𝐿்)

𝑀𝑎𝑥(𝐿௘) − 𝑀𝑒𝑎𝑛(𝐿௘) + 𝑀𝑖𝑛(𝐿௘), 𝑖𝑓 𝑀𝑖𝑛(𝐿௘) < 20%(𝐿்) 𝑎𝑛𝑑 𝑀𝑒𝑎𝑛(𝐿௘) > 55%(𝐿்)

𝑀𝑎𝑥(𝐿௘) − 𝑀𝑒𝑎𝑛(𝐿௘) − 𝑀𝑖𝑛(𝐿௘), 𝑖𝑓 𝑀𝑖𝑛(𝐿௘) > 20%(𝐿்) 𝑎𝑛𝑑 𝑀𝑒𝑎𝑛(𝐿௘) < 55%(𝐿்)

         (4.2) 
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Here, LT, Le, and EFL are the total length of the transmission line, estimated location, and 

estimated fault location in km respectively. 

 

Fig. 4.10 Flowchart of the complete scheme of protection with FIS and bagged ensemble 

learning approach 

4.4 Results and Discussion 

The performance of the proposed scheme of protection is discussed in this section by 

carrying out extensive fault simulations on the simulated power system model. The suggested 

protection method utilizes FIS for the detection/classification of the fault and a regression 

based bagged ensemble approach for fault location estimation. The protection scheme’s 

efficacy is evaluated for ten different types of short circuit faults simulated on the transmission 

line by varying different fault parameters (fault resistance, Rf (0 – 100 Ω), fault inception 
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angle, ɸ, (0° – 360°), and fault location, Lf (1 – 200 km)) with different solar irradiance and 

wind speed levels. 

4.4.1 Performance Evaluation of FIS Module for Detection and 

Classification of Faults 

Short circuit faults are stochastic in nature and can occur at location on any phase(s) of the 

transmission line. To evaluate the performance of the FIS based protection module different 

short circuit faults are simulated. An LG fault (AG) with fault resistance Rf = 50 Ω and fault 

inception angle ɸ = 0° (time of fault, Tf = 0.2 s) is simulated at a fault location of 50 km from 

the bus B1 with solar irradiance of 1000 W/m2 and wind speed of 15 m/s. The three-phase 

voltage, current, power, and magnitude of voltage features {|Va|, |Vb|, |Vc|, and |V0|} measured 

at bus B1 are depicted in Fig. 4.11 for the above-mentioned fault.  

 

Fig. 4.11 AG fault with Rf = 50 Ω, ɸ = 0° (Tf = 0.2 s), Lf = 50 km, solar irradiance = 1000 

W/m2, and wind speed = 15 m/s. (a) and (b) Voltage and current waveforms at bus B1, (c) 

Voltage magnitudes of fundamental component and zero-sequence component, (d) Three 

phase power from renewables, and (e) FDC outputs  

Fig. 4.11 (e) presents the FIS based protection module outputs {A, B, C, G} representing 

the fault detection and classification (FDC). From the FIS outputs, it can be observed that 

until 0.2 s the output level of all the output labels is “-1” (healthy condition) and after the 

occurrence of the AG fault at 0.2 s the output level of outputs A and G is “+1” (faulty 

condition) at 0.206 s indicates the instant of fault detection and its type. Hence, the proposed 
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protection scheme clearly identifies the fault type and its occurrence with the FDC time as 6 

ms (FDC time = 0.206 ms – 0.2 ms = 6 ms) i.e. less than one cycle time (20 ms). Further, the 

performance of the proposed scheme is evaluated for different fault types with solar irradiance 

of 1000 W/m2 and wind speed of 15 m/s for variations in fault resistance (Table 4.3), fault 

inception angle (Table 4.4), and fault location (Table 4.5). The Lf = 50 km and ɸ = 0° are kept 

constant in Table 4.3, the Rf = 50 Ω and Lf = 105 km are kept constant in Table 4.4, and the 

Rf = 20 Ω and ɸ = 0° are kept constant in Table 4.5 for the tabulated results. 

Table 4.3 Performance results of the proposed FIS protection module for varying fault 

resistance 

Solar irradiance = 1000 W/m2 and wind speed =15 m/s Lf = 50 km and ɸ = 0° (Tf = 0.2 s) 

S. No. Fault 
type 

Rf (Ω) FIS based FDC outputs FDC time (ms) 

A B C G A B C G 

1. AG 0.01 Ω 1 -1 -1 1 5 ms - - 1 ms 

2. BG 50 Ω -1 1 -1 1 - 3 ms - 1 ms 

3. ABG 50 Ω 1 1 -1 1 5 ms 3 ms - 1 ms 

4. BCG 100 Ω -1 1 1 1 - 3 ms 8 ms 1 ms 

5. AB 5 Ω 1 1 -1 -1 6 ms 4 ms - - 

6. ABC 10 Ω 1 1 1 -1 6 ms 3 ms 8 ms - 

Table 4.4 Performance results of the proposed FIS protection module for varying fault 

inception angle (FIA) 

Solar irradiance = 1000 W/m2 and wind speed =15 m/s Rf = 50 Ω and Lf = 105 km 

S. 
No. 

Fault 
type 

FIA (ɸ°) 

(Tf (s)) 

FIS based FDC outputs FDC time (ms) 

A B C G A B C G 

1. AG 0° (0.2 s) 1 -1 -1 1 6 ms - - 2 ms 

2. ABG 45° (0.2025 s) 1 1 -1 1 3.5 ms 8.5 ms - 2.5 ms 

3. AB 90° (0.205 s) 1 1 -1 -1 10 ms 8 ms - - 

4. ABC 180° (0.21 s) 1 1 1 -1 6 ms 3 ms 8 ms - 

5. BCG 270° (0.215 s) -1 1 1 -1 - 8 ms 4 ms 1 ms 
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Table 4.5 Performance results of the proposed FIS protection module for varying fault 

location 

Solar irradiance = 1000 W/m2 and wind speed =15 m/s Rf = 20 Ω and ɸ = 0° (Tf = 0.2 s) 

S. No. Fault 
type 

Lf (km) FIS based FDC outputs FDC time (ms) 

A B C G A B C G 

1. CG 5 km -1 -1 1 1 - - 7 ms 1 ms 

2. ABG 50 km 1 1 -1 1 6 ms 3 ms - 1 ms 

3. ABC 100 km 1 1 1 -1 6 ms 3 ms 8 ms - 

4. BC 150 km -1 1 1 -1 - 4 ms 9 ms - 

5. AG 197 km 1 -1 -1 1 5 ms - - 2 ms 

Further, the performance of the proposed FIS protection module is evaluated for faults with 

different solar irradiance and wind speed levels. Fig. 4.12 depicts the results of the proposed 

scheme for the LLG fault (ABG) with the following parameters: Lf = 90 km, Rf = 80 Ω, Tf = 

0.5 s (ɸ = 0°), solar irradiance = 500 W/m2, and wind speed = 8 m/s. From Fig. 4.12 (d), it 

can be observed that the ABG fault is detected and classified within 7 ms after the inception 

of the fault. Similarly, Fig. 4.13 depicts the results of the proposed scheme for the LLL fault 

(ABC) with the following parameters: Lf = 150 km, Rf = 30 Ω, Tf = 0.5 s (ɸ = 0°), solar 

irradiance = 1200 W/m2, and wind speed = 20 m/s. The ABC fault is identified in 8 ms after 

the inception of the fault. 

 

Fig. 4.12 ABG fault with Rf = 80 Ω, ɸ = 0° (Tf = 0.5 s), Lf = 90 km, solar irradiance = 500 
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W/m2, and wind speed = 8 m/s. (a) and (b) Voltage and current waveforms at bus B1, (c) 

Three phase power from renewables, and (d) FIS based FDC outputs 

 

Fig. 4.13 ABC fault with Rf = 30 Ω, ɸ = 0° (Tf = 0.5 s), Lf = 150 km, solar irradiance = 1200 

W/m2, and wind speed = 20 m/s. (a) and (b) Voltage and current waveforms at bus B1, (c) 

Three phase power from renewables, and (d) FDC outputs 

Table 4.6 Performance results of the proposed FIS protection module for varying fault 

parameters (solar irradiance = 500 W/m2 and wind speed = 8 m/s) 

 Solar irradiance = 500 W/m2 and wind speed = 8 m/s 

S. 
No. 

Fault 
type 

Lf (km) Rf (Ω) FIA (ɸ°) 

(Tf (s)) 

FIS based FDC outputs FDC time (ms) 

A B C G A B C G 

1. AG 50 km 50 Ω 0° (0.5 s) 1 -1 -1 1 6 ms - - 1 ms 

2. ABG 90 km 80 Ω 0° (0.5 s) 1 1 -1 1 7 ms 4 ms - 1 ms 

3. AB 130 km 15 Ω 90° (0.505 s) 1 1 -1 -1 10 ms 8 ms - - 

4. ABC 180 km 10 Ω 180° (0.51 s) 1 1 1 -1 6 ms 3 ms 8 ms - 

5. BG 10 km 100 Ω 270° (0.515 s) -1 1 -1 1 - 8 ms - 1 ms 

6. BCG 190 km 100 Ω 360° (0.52 s) -1 1 1 1 - 2 ms 9 ms 1 ms 

Table 4.6 and Table 4.7 showcase the performance of the proposed method under varying 

fault conditions. Table 4.6 presents results for solar irradiance of 500 W/m² and wind speed 

of 8 m/s, while Table 4.7 focuses on solar irradiance of 1200 W/m² and wind speed of 20 m/s. 
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Both tables explore the impact of different fault types and variations in fault parameters. The 

results presented showcase the effectiveness of the proposed FIS protection module even 

under different operating conditions of the RES for varying transmission line fault conditions. 

Table 4.7 Performance results of the proposed FIS protection module for varying fault 

parameters (solar irradiance = 1200 W/m2 and wind speed = 20 m/s) 

 Solar irradiance = 1200 W/m2 and wind speed = 20 m/s 

S. 
No. 

Fault 
type 

Lf (km) Rf (Ω) FIA (ɸ°) 

(Tf (s)) 

FIS based FDC outputs FDC time (ms) 

A B C G A B C G 

1. ABC 150 km 30 Ω 0° (0.5 s) 1 1 1 -1 6 ms 3 ms 8 ms - 

2. CAG 70 km 70 Ω 0° (0.5 s) 1 -1 1 1 6 ms - 8 ms 1 ms 

3. CG 25 km 55 Ω 90° (0.505 s) -1 -1 1 1 - - 4 ms 1 ms 

4. BC 160 km 25 Ω 180° (0.51 s) -1 1 1 -1 - 2 ms 7 ms - 

5. ABG 197 km 100 Ω 270° (0.515 s) 1 1 -1 1 9 ms 9 ms - 2 ms 

6. AG 3 km 0.01 Ω 360° (0.52 s) 1 -1 -1 1 3 ms - - 1 ms 

Further, the reliable operation of the proposed scheme of protection is assessed in terms of 

accuracy and dependability with the help of a confusion matrix. The accuracy and 

dependability are calculated using Eq. (4.3) and Eq. (4.4). The confusion matrix is developed 

for the fault cases that are described in Table 4.2 (3963 fault cases) and Table 4.10 (2400 fault 

cases). The number of true and detected fault cases are segregated into LG, LLG, LL, LLL, 

and NF fault types depicted in Table 4.8 are listed in the confusion matrix. The three no-fault 

cases (NF) are the different operating conditions of RES with no fault on the transmission 

line. The accuracy and dependability of the proposed scheme are found to be 99.56% given 

in Table 4.9. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑓𝑎𝑢𝑙𝑡 𝑎𝑛𝑑 𝑛𝑜 𝑓𝑎𝑢𝑙𝑡 𝑐𝑎𝑠𝑒𝑠
× 100                        (4.3) 

𝐷𝑒𝑝𝑒𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑓𝑎𝑢𝑙𝑡 𝑐𝑎𝑠𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑓𝑎𝑢𝑙𝑡 𝑐𝑎𝑠𝑒𝑠
× 100             (4.4) 
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Table 4.8 Confusion matrix for FDC 

Detected faults 

 

 

True faults 

 LG LLG LL LLL NF Total 

LG 1908 - - - - 1908 

LLG - 1880 - 28 - 1908 

LL - - 1908 - - 1908 

LLL - - - 636 - 636 

NF - - - - 3 3 

Total no. of fault cases = 6363 

Table 4.9 Performance index of FIS based protection module 

S. No. Performance index 

1. Accuracy = 
଺ଷଷହ

଺ଷ଺ଷ
× 100 = 99.56% 

2. Dependability = 
଺ଷଷଶ

଺ଷ଺଴
× 100 = 99.56% 

 

Fig. 4.14 Fault detection time of the proposed protection module with FIS for LG fault cases 

of Table 4.2 
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The response or fault detection time of the proposed FIS based protection module for 

different LG fault cases that are detailed in Table 4.2 is shown in Fig. 4.14. The x-axis 

represents the variation in fault location and the y-axis denotes fault detection time. The fault 

inception angle for the first and last three rows of figures are 0° and 90° respectively. The 

fault resistance is 0.01 Ω (for 1st and 4th rows), 50 Ω (for 2nd and 5th), and 100 Ω (for 3rd and 

6th rows). From Fig. 4.14, it can be observed that the different LG fault cases (AG faults in 

column-1, BG faults in column-2, and CG faults in column-3) are detected within half-cycle 

time. The fault detection time is also evaluated for the other fault cases in Table 4.2 and Table 

4.10. It is noticed that the fault detection time is well within half-cycle time for all the LG, 

LLG, and LLL fault cases and one-cycle time for LL fault cases. The accuracy achieved and 

fault detection time of one-cycle time demonstrates the reliable operation of the proposed FIS 

protection module. 

4.4.2 Performance Evaluation of Regression Tree Based Bagged Ensemble 

Learning Module for Fault Location Estimation 

The effectiveness of the proposed fault location module is assessed for diverse fault cases 

considering varying fault locations using the percentage error metric defined in Eq. (4.5). This 

metric is the percentage error in estimated fault location that compares the estimated fault 

location (EFL) with the actual fault location (AFL), normalized by the total line length (LT). 

 

% 𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (%𝐸) =
𝐸𝐹𝐿 − 𝐴𝐹𝐿

𝐿்
× 100                 (4.5) 

An LG fault (AG) with Rf = 0.01 Ω and ɸ = 0° is simulated at 9 km (AFL) from bus B1. Fig. 

4.15 presents the output (Le) of regression based bagged ensemble learner towards the fault 

location estimation. When the system is healthy, the proposed bagged ensemble fault locator 

outputs 400 km. In case of a faulty condition, the proposed fault location module estimates 

fault location close to AFL i.e. 8.551 km with a -0.2245% error in the EFL. Similarly, Fig. 

4.16 and Fig. 4.17 depict the outputs of the fault location module for the LLG fault (ABG 

fault with Rf = 90 Ω and ɸ = 0°) and a triple line fault (ABC fault with Rf = 0.01 Ω and ɸ = 

0°) simulated at 104 km (AFL) and 196 km (AFL) respectively. The EFL is found to be 108.13 

km (%E = 2.065%) for the ABG fault and 193.10 km (%E = -1.45%) for the ABC fault with 

the proposed method of location estimation. In all the above-mentioned fault cases (AG, 

ABG, and ABC), the solar irradiance = 1000 W/m2 and wind speed = 15 m/s.  
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Fig. 4.15 Estimated fault location for AG fault with Rf = 0.01 Ω, ɸ = 0° and AFL = 9 km 

 

Fig. 4.16 Estimated fault location for ABG fault with Rf = 90 Ω, ɸ = 0° and AFL = 104 km 

 

Fig. 4.17 Estimated fault location for ABC fault with Rf = 0.01 Ω, ɸ = 0° and AFL = 196 km 
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To assess the effectiveness of the proposed fault location module, a testing data set is 

created by simulating different types of faults and Table 4.10 gives the details of fault 

parameters considered that counts for 2400 different fault cases. Fig. 4.18 presents the scatter 

plot of percentage error in the estimated fault location for different faults mentioned in Table 

4.10. It is noticed that the %E lies in the band of +/-5% with the proposed method. Table 4.11 

presents the results of the estimated fault location for different faults. Further, to assess the 

reliability of the fault location module, the Chi-square error analysis is performed on 400 EFL 

errors that are obtained by randomly simulating the faults at different locations along the 

transmission line. Table 4.12 presents the Chi-square test for reliability analysis of the 

proposed fault location estimation method. The low difference between the observed and 

expected number of errors showcases the efficacy of the proposed method and the Chi-square 

value (D2) falls in the 5% band of significance level [127]. 

Table 4.10 Fault parameters considered in the testing data set 

S. No. Fault parameter Variations 

1. Fault resistance (Ω) 30 Ω, 60 Ω, and 90 Ω (3 no.) 

2. Fault inception angle (°) 45° and 180° (2 no.) 

3. Fault location (km) 5 km, 10 km, 15 km, …, 190 km, and 195 km (40 no.) 

4. Fault types 10 (ABC, AB, BC, CA, ABG, BCG, CAG, AG, BG, and CG) 

Therefore, the total no. of fault cases considered = 3*2*40*10= 2400 

Fig. 4.18 Percentage error in estimated fault location for all fault cases of Table 4.10 
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Table 4.11 Performance of the proposed bagged ensemble learner module for different faults 

S. No. Fault type AFL (km) Rf (Ω) FIA (ɸ°) EFL (km) % Error 

1. AG 5 km 50 Ω 0°  5.38 km 0.19% 

2. ABG 70 km 0.01 Ω 0° 71.74 km 0.87% 

3. AB 120 km 20 Ω 0° 116.45 km -1.76% 

4. ABC 190 km 0.01 Ω 0° 191.27 km 0.64% 

5. BG 50 km 60 Ω 90° 45.66 km -2.17% 

6. BCG 100 km 100 Ω 90° 99.31 km -0.35% 

7. BC 150 km 10 Ω 90° 144.73 km -2.64% 

8. ABC 30 km 15 Ω 90° 30.87 km 0.44% 

9. CG 130 km 100 Ω 270° 127.65 km -1.18% 

10 CAG 80 km 90 Ω 270° 79.48 km -0.26% 

11. CA 195 km 25 Ω 270° 193.19 km -0.91% 

12. ABC 197 km 10 Ω 270° 193.35 km -1.825% 

Table 4.12 Chi-square test for fault location estimation reliability analysis 

Interval number 
(i) 

% Error interval No. of observed 
errors (Noi) 

No. of expected 
errors (Nei) 

(𝑵𝒐𝒊 − 𝑵𝒆𝒊)𝟐

𝑵𝒆𝒊

 

1 -4.5 to -3.5 7 5 0.8 

2 -3.5 to -2.5 22 19 0.4737 

3 -2.5 to -1.5 39 46 1.0652 

4 -1.5 to -0.5 78 82 0.1951 

5 -0.5 to 0.5 104 101 0.0891 

6 0.5 to 1.5 86 83 0.1084 

7 1.5 to 2.5 44 46 0.087 

8 2.5 to 3.5 20 18 0.2222 

𝐷ଶ = ෍
(𝑁௢௜ − 𝑁௘௜)ଶ

𝑁௘௜

= 3.0407

଼

௜ୀଵ
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4.4.3 Comparison of the Proposed Protection Scheme 

A comparison of the proposed scheme of protection is discussed in this section in terms 

of protection and feature extraction techniques, protection tasks implemented, type of RES 

integrated, and FDC accuracy. Table 4.13 provides a comparison of different protection 

schemes with the proposed method. All the protection methods mentioned in Table 4.13 are 

training-based artificial intelligent methods for the detection and classification of faults except 

the proposed one. The training-based methods require large sets of training data considering 

different operating conditions to train the models for achieving high performance and 

accuracy of the trained models in the protection tasks. The proposed scheme is implemented 

with the fuzzy inference concept for fault detection and classification that do not require any 

training of the module. Further, the FDC accuracy is comparably high with other training-

based techniques. 

Table 4.13 Comparison with other protection schemes 

Comparison 
term 

Reference 

[63] [64] [128] [129] [130] [131] Proposed 

Protection 
technique 
based on 

SVM ANN SVM 
and GPR 

Rotation 
forest 

Decision 
tree and 

SVM 

Random 
forest 

FIS and 
regression 

based bagged 
ensemble 
learner 

Signal pre-
processing or 
features 
utilized 

Transient 
motoring 
index of 
currents 

MODWT; 
energy of 

detail 
coefficients 

of voltage and 
current 

RMS of 
voltages 

and 
currents 

DWT; 
standard 

deviation of 
approximate 
coefficients 

of voltage and 
current 

DFT; 
amplitude 
and phase 
angle of 

voltage and 
current 
phasors 

Positive 
sequence 

currents and 
empirical 

mode 
decompositi
on of grid 

side 
currents 

DFT; 
magnitudes 

zero-
sequence and 
fundamental 
components 

of phase 
voltages 

Protection 
tasks 

FDC FD of 
symmetrical 
faults only 

FDC and 
FLE 

FDC FDC and 
FLE 

FDC and 
FLE 

FDC and 
FLE 

FDC accuracy 99.84% 98.40% 99.50% 99.43% 97.9% 99.95% 99.56% 

FDC time 10 ms - 20 ms 16.67 ms - 8 ms 20 ms 

PV and/or 
wind power 
integration 

Wind 
power 

Wind power - 

(DGs) 

PV and wind 
power 

Wind 
power 

Wind power PV and wind 
power 

FD: Fault detection, FDC: Fault detection and classification, and FLE: Fault location estimation 
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4.5 Summary 

In this chapter, an FIS based protection module for the detection/classification of short 

circuit faults and a bagged ensemble learning approach with regression trees for 

approximating actual fault location has been proposed for the transmission line connected to 

RES (solar PV and DFIG based wind power). The proposed protection modules utilize only 

the DFT processed three-phase voltage information of a single bus (i.e. connected to RES). 

Hence, the communication link is not required and there is no communication latency. The 

proposed FIS based protection module effectively detects the fault occurrence and classifies 

the different short circuit fault types within one cycle time (20 ms) following the fault 

inception even for varying fault parameters under different operating conditions of RES. This 

showcases that the proposed detection/classification scheme is passive/robust to fault 

parameter variations and RES power intermittences. The performance index indicates the 

efficacy of the FDC scheme with an accuracy of 99.56% calculated with the help of a 

confusion matrix. The proposed fault location module with the bagged ensemble of regression 

trees successfully predicts the actual fault location with minimal error. The percentage error 

in the estimated fault location is within ±5% error band even for various faults with varying 

fault parameters demonstrating the adaptability to diverse fault scenarios. Further, the 

reliability of the fault location estimation module is confirmed through the statistical analysis 

with the Chi-square test (D2 = 3.0407) on location errors falling in the 5% band of the 

significance level. The proposed approach exemplifies the potential of combining fuzzy logic, 

ensemble learning, and signal processing techniques for developing intelligent protection 

systems adaptable to modern power grids. 

 

***** 
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5.1 Introduction 

The supply of power from traditional generating units to distant areas and islands is 

expensive, unreliable, and damaging to the environment under the current situation of 

contemporary power systems [132]. Under these circumstances, microgrids (MGs) offer 

reliable and cost-effective power solutions for supplying the required excess power demand 

to remote areas. Microgrid is a combination of diesel engine generators (DEGs), loads, 

renewable energy sources (RES), and various energy storage systems. An MG acts like a 

single controllable unit that contains a group of distributed energy sources to supply the excess 

demand from the different connected loads (residential, commercial, or small industrial 

loads). It could be regarded as a small-scale local grid with control capabilities at low voltage 

distribution levels [133]. 

In traditional power systems, the frequency regulation job is simple as the disturbance 

arises due to the stochastic loads only. But in an islanded MG; the frequency control problem 

is always a concerning challenge for the operators that account for some intrinsic attributes 

of the system viz. functional complexity, variable structure, and diversity in the generation. 

These attributes introduce rapidly changing operational points of the system [134]. Moreover, 

the rapid growth in the increased penetration levels of RES into MG will result in low inertia 

of the MG system. The low inertia of the MG system, stochastic loads, and 

intermittent/discontinuous generation of renewables will create complications in the 

frequency control of an islanded MG. Massive frequency deviations will cause stability and 

reliability problems and sometimes may lead to MG blackout. Although the PID controllers 

are simple in structure, reliable, and better at performance with fair cost, the classical PI/PID 

controllers fail to provide a satisfactory response for MG frequency control under these rapid 

changes in MG operating conditions [135]. Therefore, an intelligent and robust controller is 

required to regulate the frequency of an islanded MG. 

The selection of appropriate optimal techniques for modifying the control parameters is 

crucial to improvise the MG’s dynamic response. The use of an appropriate algorithm for 

optimizing the controller’s parameters (gain constants) could enhance the system’s response 

in terms of low overshoots, reduced error values and fast settling times. Therefore, in the 

present chapter, a newly developed and powerful moth flame optimization (MFO) algorithm 

is presented to optimize the multi-stage PID (MPID) controller gain constants. This chapter 
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investigates the frequency dynamics of an MG having DEG, PV (photovoltaic), WTG (wind 

turbine generator), and PHEVs (plug-in hybrid electric vehicles) operating in islanded mode. 

The coordinated control of DEG and PHEV with the MPID controller is studied using the 

MFO algorithm.  

The key points of this chapter are listed below: 

 The performance of differently tuned PID controllers (GOA, TLBO, PSO, and MFO) 

is demonstrated and compared through the MATLAB/Simulink simulation results to 

show the superiority and feasibility of the MFO algorithm over the other powerful and 

well-known meta-heuristic techniques. 

 An MFO-tuned MPID controller has been proposed for mitigating the oscillations in 

the frequency dynamics of the modelled Bella Coola MG incorporating RES and 

PHEVs. The MFO algorithm is applied to optimize the MPID controller's gain 

constants.  

 The MPID controller’s robustness is evaluated by taking into consideration the 

simultaneous changes in RES, load dynamics, and MG and PHEV uncertainties in a 

single controller framework. 

 The effect of PHEVs in the secondary and primary frequency control loops (SFC and 

PFC) of an islanded MG has been analyzed with RES and load disturbances to choose 

the better control action. 

5.2 Details of Mathematical Model of Investigated MG 

 Fig. 5.1 shows the simplified form of the Bella Coola hybrid MG mathematical model under 

investigation. The present model comprises DEG, PHEV aggregator and RES (wind and solar 

power output) [136]. This study considers WTG and PV powers to be uncontrolled power 

sources (as disturbances). The advantages of using renewable energy are hindered, as 

frequency deviations limit the MPPT output power when they participate in frequency 

control. So, in this work, based on load changes and available PV/WTG powers, the diesel 

engine generator and PHEVs manage the power balance in the MG that is achieved through 

the suggested controller. Table 5.1 contains the parameters of the MG test system. From Fig. 

5.1, the generation-load balance equation is: 

∆𝑃஽ாீ + ∆𝑃௉ுா௏ + ∆𝑃ௐ்ீ + ∆𝑃௉௏ = ∆𝑃௅                                        (5.1) 
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The expression for deviation in the MG frequency (𝛥𝑓) caused by the RES and load 

disturbances is given in Eq. (5.2) and B is the frequency bias factor (B = D + 1/R). 

∆𝑓 =
ଵ

ெ௦ା஽
(∆𝑃஽ாீ + ∆𝑃ௐ்ீ + ∆𝑃௉௏ − ∆𝑃௉ுா௏ − 𝐵∆𝑓 − ∆𝑃௅)                      (5.2) 

The proposed coordinated control’s aim is to minimize the frequency deviations of MG under 

critical operating scenarios with the proposed MPID controller. In this work, only DEG and 

PHEVs are responsible for power balance. Therefore, the PV and WTG sources are modelled 

as disturbances in LFC analysis. 

 

Fig. 5.1 MG mathematical model 

Table 5.1 MG system parameters [85] 

Parameter Value Parameter Value Parameter Value 

M (s) 0.1667 TPHEV (s) 0.1 NEV 600 

D (puMW) 0.015 TWTG (s) 2 R, Rav (Hz/puMW) 2.4 

T1 (s) 0.025 TPV (s) 1.8 Pmax (kW) 5 

T2 (s) 2 KWTG 1 Δfu (Hz) 0.1 

T3 (s) 3 KPV 1 Δfl (Hz) 0.1 

 

5.2.1 DEG Model 

Since the power generation from the solar PV and WTG systems is stochastic, DEG forms 

the best means of supplying reliable and quality power to the essential loads in a standalone 
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MG. A speed governing mechanism and diesel engine combination form the diesel engine 

generator system. The DEG mathematical model is given in Fig. 5.2 [137]. 

 
Fig. 5.2 DEG mathematical model 

 

5.2.2 WTG Model 

The mechanically produced output power of a WTG is highly inconsistent since it 

depends on the stochastic wind speeds and is given by: 

𝑃௪௣ = 0.5𝜌𝐴𝑉௪
ଷ𝐶௣(𝛽, 𝜆)                                                           (5.3) 

where,  

Pwp = power output of windmill, 𝜌 = air density (kg/m3), Vw = speed of wind (m/s), A = rotor 

swept area (m2), and Cp = power coefficient (function of tip speed ratio, 𝜆 and blade pitch 

angle, 𝛽 (deg)). R = radius of the blade (m) and 𝜔 = angular velocity of the blade (rad/s). The 

Cp can be expressed as: 

𝐶௣(𝛽, 𝜆) = ቀ
ଶହ.ହଶ

ఊ
− 1.1 − 0.088𝛽ቁ 𝑒𝑥𝑝

ିଵଶହ
ఊൗ                              (5.4) 

𝛾 = 1

൤
1

𝜆 + 0.08𝛽
−

0.035
1 + 𝛽ଷ൨

൘   

𝜆 =
𝑅𝜔

𝑉௪
                                         

The WTG linear model can be represented as [138]: 

𝑇𝐹ௐ்ீ =
∆௉ೈ೅ಸ

௉ೈು೚ೠ೟೛ೠ೟

=
௄ೈ೅ಸ

ଵାௌ்ೈ೅ಸ
                                                  (5.5) 

Fig. 5.3 depicts the model for the generation of wind output power variations mathematically. 
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Fig. 5.3 Mathematical model for wind output power with random wind velocity pattern 

generation 

5.2.3 PV Model 

 The extraction of electrical energy from photons takes place in the PV cells that are made 

from a semiconductor material. The possibility of the desired level of installation capability 

of PV sources is the key benefit of photovoltaics. The power generated from a PV source 

depends on the amount of solar irradiation and temperature. If 25°C ambient temperature is 

maintained then PPV varies linearly with the irradiation constant (𝜑) only [138]. 

𝑃௉௏ = 𝑃௦௢௟௔௥ ቀ
ఝ

ఝೄ೅಴
ቁ (1 + 𝐾௧[𝑇௔ + 0.0256𝜑𝛥𝜑 − 𝑇ௌ்஼])                    (5.6) 

The ∆𝑃௉௏ with respect to 𝛥𝜑 can be computed using Eq. (5.7): 

𝛥𝑃௉௏ = ቀ
௉ೞ೚೗ೌೝ

ఝೄ೅಴
ቁ (𝛥𝜑 + 𝐾௧[𝛥𝜑𝑇௔ + 𝜑𝛥𝑇௔ + 0.0512𝜑𝛥𝜑 − 𝑇ௌ்஼𝛥𝜑])      (5.7) 

The PV system's first-order model can be represented as [139]: 

𝑇𝐹௉௏ =
∆௉ುೇ

∆ఝ
=

௄ುೇ

ଵା௦்ುೇ
                                                   (5.8) 

Fig. 5.4 depicts the mathematical model for PV output power with random solar irradiation 

pattern generation [83]. The power data used for the WTG power and PV power can be found 

in [139]. 
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Fig. 5.4 Mathematical model for PV output power with random solar irradiation pattern 

generation 

 

5.2.4 PHEV Model 

Fig. 5.5 illustrates the PHEV aggregator’s mathematical model for LFC studies. Due to 

their slow discharge rate, quick response time, and dispersed availability, PHEVs are a great 

energy storage alternative for LFC needs. The output power from the PHEV aggregator based 

on frequency deviation is as follows (𝛥𝑃௉ுா௏): 

𝛥𝑃௉ுா௏,௜ = ቐ

𝐾ா௏,௜𝛥𝑓;  ห𝐾ா௏,௜𝛥𝑓ห ≤ 𝑃௠௔௫

𝑃௠௔௫;  𝐾ா௏,௜𝛥𝑓 > 𝑃௠௔௫

−𝑃௠௔௫;  𝐾ா௏,௜𝛥𝑓 < −𝑃௠௔௫

                              (5.9) 

 

∆𝑃௉ுா௏,஺ீ = 𝑁ா௏ ∗ ∆𝑃௉ுா௏,௜                                                  (5.10) 

 

Fig. 5.5 PHEV aggregator model for frequency control studies 

The controller’s command signal (∆𝑈௖) is used to determine whether the 𝛥𝑃௉ுா௏ will 

be used for charging/discharging [140]. 𝑃௠௔௫  is the maximum power available from an 

individual EV, KEV,i represents the single EV’s participation gain. The battery’s state of charge 
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(SOC) determines the value of KEV,i. Fig. 5.6 shows the KEV,i  vs SOC of PHEV [141]. NEV 

denotes the number of EVs, 𝑅௔௩ denotes the droop characteristics of the PHEV aggregator 

and  𝑇ா௏,௜ is the battery time constant. 

 

Fig. 5.6 KEV,i vs. SOC a) Discharge mode, b) Idle mode 

5.3 Development of Proposed Moth Flame Optimization Based 

MPID Controller 

The escalating complexity of power systems requires a quick and precise refining of the 

controller’s gain constants to achieve a better LFC response. To address this problem, many 

swarm-intelligent strategies for PI/PID controller tuning have been suggested in the literature. 

The fundamental characteristics of these algorithms are the absence of derivatives and non-

dependence on the plant model. A few of them are PSO, TLBO, GA, CSO, HSO and GOA. 

The NFL (no free lunch) theorem states that no single swarm-intelligent approach has the 

potential solution to solve all engineering optimization issues and that there is always an 

opportunity for improvement. So, for fine-tuning the MPID controller, a recently developed 

and powerful MFO is used. Mirjali et al. developed MFO in 2015, which imitates the social 

behaviour of moth flames. This algorithm was benchmarked on various standard test 

problems and verified its performance quantitatively and qualitatively with different 

optimization approaches in the literature. This method was used extensively to solve different 

engineering problems because of its merits viz. quick convergence, few controlling factors, 

straightforward implementation structure and simplicity [142 – 144]. 

5.3.1 Mathematical Modelling of MFO 

This algorithm mimics the flying characteristics of moths. Moths are flying insects that 

belong to the same class as butterflies. The swarming behaviour is a unique feature of the 
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moths that is found at both stages of the moth’s evolution (nymph/larval and adult stages). 

Moreover, moths exhibit special navigation paths at night by nature called transverse 

orientation. The moths follow a specific path with respect to the moonlight during their travel 

in the night. When moths are far away from any light, they travel long distances in a straight 

line (single direction) based on moonlight. Once they come too close to a light source, they 

fly spirally around it and finally reach convergence after certain modifications. 

This algorithm can be divided into two components, called moths and flames, either of 

them is regarded to be the solution. The moths and flames are viewed as search agents and 

elite positions explored during the iterations in this algorithm. Thus, flames can be regarded 

as flags that moths drop when exploring the search space. So that flames can never lose their 

best position during the population update and while finding the global best solution. Below 

is an illustration of the mathematical model used to replicate the swarming behaviour of 

moths: 

The moths are initialized as follows for the first iteration: 

𝑀 = ൥

𝑚ଵ,ଵ ⋯ 𝑚ଵ,ௗ

⋮ ⋱ ⋮
𝑚௡,ଵ ⋯ 𝑚௡,ௗ

൩                                               (5.11)                                                                                    

Where M is the matrix of moth population, d is the dimension of search space which depends 

on the no. of optimization variables and n represents the total no. of moths. 

Based on the fitness function and its value, the moths can be sorted in ascending/descending 

order. Eq. (5.12) represents the objective value of moth’s population. 

𝑂𝑀 = (𝑂𝑀ଵ, 𝑂𝑀ଶ … … 𝑂𝑀௡  )்                                     (5.12)                                

Similarly, the flame matrix can be updated as: 

𝐹 = ቎

𝑓ଵ,ଵ ⋯ 𝑓ଵ,ௗ

⋮ ⋱ ⋮
𝑓௡,ଵ ⋯ 𝑓௡,ௗ

቏                                                (5.13)                                              

Based on the fitness function and its value, the flames can be sorted in ascending/descending 

order. Eq. (5.14) represents the objective value of flame’s population. 

𝑂𝐹 = (𝑂𝐹ଵ, 𝑂𝐹ଶ … … 𝑂𝐹௡  )்                                        (5.14)                                 

 

The typical structure of MFO can be expressed with three approximations as follows: 
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𝑀𝐹𝑂 = (𝐼, 𝑃, 𝑇)                                                            (5.15) 

Where I: Initialization; P: Position update, T: Termination 

In Eq. (5.15), I denotes the initialization of the population, which can be defined as: 

𝑀௜,௝ = 𝑙𝑏(𝑖) + ቀ𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑜൫1, 𝑁௣௢௣൯ቁ ൫𝑢𝑏(𝑖) − 𝑙𝑏(𝑖)൯            (5.16) 

Where 𝑁௣௢௣ denotes the population size, ub is the upper limit boundary, and lb is the lower 

limit boundary. 

In Eq. (5.15), P denotes the position update of moths. The position update of the moth with 

respect to flames can be updated by using Eq. (5.17) 

𝑀௜ = 𝑆൫𝑀௜, 𝐹௝൯                                                  (5.17) 

The logarithmic spiral function (S) is used as the key updating strategy because the algorithm 

is based on the moth’s transverse orientation around a flame and can be written as follows: 

𝑆൫𝑀௜, 𝐹௝൯ = 𝐹௝ + 𝐷௜𝑒
௕௧ cos(2𝜋𝑡)                               (5.18) 

Where 𝐹௝ denotes the position of the jth flame and  𝑀௜ indicates the position of ith moth, ‘t’ 

indicates a random number in [-1, 1], and ‘b’ defines the shape of the logarithmic spiral. 𝐷௜ is 

the distance of the ith moth from the jth flame, which is defined as: 

          𝐷௜ = ห𝐹௝ − 𝑀௜ห                                                   (5.19) 

The moth's position is updated with respect to flame during exploration and 

exploitation [145]. The exploitation is taken care by the logarithmic spiral function and it 

takes place if the subsequent point is located between the moth and flame. Exploration is 

taken care by the distance term, Di. In any swarm intelligence algorithm, an optimal trade-off 

between exploitation and exploration is needed to obtain global optimization. In this 

algorithm, the value of ‘t’ and number of flames reduces from iteration to iteration to have an 

equalized effect on exploitation and exploration, as stated in Eq. (5.20) and Eq. (5.21).  

𝑓𝑙𝑎𝑚𝑒_𝑛𝑜 = 𝑟𝑜𝑢𝑛𝑑 ൬𝐽 − 𝑖 ቀ
௃ିଵ

்
ቁ൰                              (5.20) 

𝑡 = 1 − 𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑜 ൬2 +
𝑖

𝑇
൰                                           (5.21) 
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where J specifies the maximum no. of flames, T is the maximum count of iterations and i is 

the present iteration. 

5.3.2 Proposed Multi-stage PID (MPID) Controller Using MFO 

An MPID controller is a union of PD and PI controllers in tandem. Fig. 5.7 illustrates 

the structure of an MPID controller. The PD controller in the initial stage receives an error 

(𝛥𝑓) as its input and the PI controller in the final stage receives input from the output of the 

initial stage [83]. The MPID controller output (ΔUc) is a reference power command signal for 

DEG and PHEVs. The key benefit of an MPID controller is that the system can utilize the 

best features of both controllers. At first, the PD controller is used to produce constant output 

to improve the transient response and later the steady-state error is reduced with the integral 

component of the PI controller. So, in this controller, the integral term is absent during the 

transient state. This overcomes the restriction of a traditional PID controller, which includes 

the incorporation of an integral component during the transient state.  

The control signal fed to DEG and PHEV through the MPID controller can be expressed as 

[83]: 

∆𝑈௖ = ቀ𝐾௉ + 𝐾஽
௦ே

௦ାே
ቁ ቀ1 + 𝐾௉௉ +

௄಺

௦
ቁ ∆𝑓                                 (5.22) 

 

Fig. 5.7 Mathematical model of MPID controller 

5.3.2.1 Optimizing MPID controller with MFO algorithm 

The following steps are an explanation of the process for optimizing the proposed MPID 

controller with MFO: 

Step 1: Random initialization: In the first iteration, generate a random population by using 

Eq. (5.11) & Eq. (5.16). Since the proposed controller has (𝐾௉, 𝐾஽ , 𝐾௉௉,𝐾ூ, 𝑎𝑛𝑑 𝑁) as 5 
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controller parameters, the population size is taken to be 100×5. Here, 100 stands for the 

population of moths and 5 for the dimensional size of the search space. 

Step 2: Objective/fitness assessment: Simulate the developed model to evaluate the 

population’s performance with the fitness function (integral time absolute error (ITAE)) given 

in Eq. (5.23).  

𝐼𝑇𝐴𝐸 = 𝑚𝑖𝑛 ∫ 𝑡|∆𝑓|𝑑𝑡
௧ೞ೔೘

଴
                                            (5.23) 

Subjected to the optimization of 0.01≤ 𝐾௉,𝐾௉௉, 𝐾ூ, 𝐾஽≤2 and 0≤N≤200 [85]. Where ‘𝑡௦௜௠’ 

denotes the total simulation time. The 𝛥𝑓 value will be obtained from the Simulink model 

shown in Fig. 5.1. 

Step 3: Selection: Based on the fitness value (ITAE), flag the best positions by flames. 

Step 4: Update the MFO algorithm-specific parameters: At each iteration, calculate the 

value of D for the corresponding moth and update the number of flames, and value of t using 

Eq. (5.19), Eq. (5.20) & Eq. (5.21). 

Step 5: Population update: Based on the values of D, F and t estimate the updated position 

of the moth with respect to the best flame’s position using Eq. (5.18). 

Step 6: Stopping rule: When the current iteration exceeds the maximum iteration count, the 

optimal parameters for the controller are the most optimal solution achieved till the last 

iteration that corresponds to the optimal value of ITAE. Show the optimized 𝐾௉,𝐾௉௉, 𝐾ூ, 𝐾஽, 

N, and ITAE values. 

5.4 Results and Discussion 

The simulation studies are performed on the Bella Coola MG having different 

renewable energy sources and PHEVs that are modelled in the MATLAB Simulink platform. 

An extensive investigation of the simulation outcomes of an islanded MG's frequency 

deviations are provided in this section. The MG frequency deviations are analyzed with 

variations in the load (𝛥𝑃௅), RES power disturbances (solar power (𝛥𝑃௉௏) and wind power 

(𝛥𝑃ௐ்ீ)) and with the parametric uncertainties of MG and PHEV. The performance of the 

MFO-optimized MPID controller is presented for the aforementioned disturbances. Initially, 

to examine the supremacy of the MFO algorithm over other popular metaheuristic algorithms 

(PSO, TLBO, and GOA), the performance of different PID controllers is assessed with step 
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load and multiple step load perturbations. Later, the performance of MFO optimized PID and 

MPID controllers is evaluated for several operating scenarios that have been created and 

tested on Bella Coola MG. Further, the presence of PHEVs in primary and secondary 

frequency control loops is presented. Finally, the stability analysis and comparison results are 

presented. 

5.4.1 Performance Evaluation of the Proposed Controller Under Different 

Operating Conditions 

i) Initial case: Dynamic response evaluation of various meta-heuristic-based PID 

controllers against step load and multi-step load disturbances (𝜟𝑷𝑳) 

The initial case is meant to demonstrate the effectiveness of the MFO-based PID 

controller above the other well-known meta-heuristic optimized PID controllers in the 

literature. In the present operating scenario, a 10% step change in load demand is considered 

and the PID controllers’ parameters are optimized using the meta-heuristic algorithms 

considering the ITAE as the fitness function. The ITAE characteristics of differently tuned 

PID controllers are shown in Fig 5.8. Table 5.2 denotes the optimized parameters of the PID 

controller with various meta-heuristic techniques. Fig. 5.9 displays the frequency perturbation 

response of the MG for the operating conditions of step load change case using various PID 

controllers. Table 5.3 represents the comparative performance analysis of differently tuned 

PID controllers, considering Fig. 5.9 with regard to ITAE value, settling time and 

overshoot/undershoots. 

 

Fig. 5.8 ITAE performance characteristics 
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Fig. 5.9 MG frequency perturbation response for 10% step load change 

Table 5.2 Optimized gains of various controllers 

Methods 
Optimized Gains 

KP KI KD N 

PSO-PID 1.0329 1.6248 1.1992 100.2266 

TLBO-PID 1.1922 0.8718 1.8374 119.4526 

GOA-PID 1.39556 1.42816 1.90277 59.623 

MFO-PID 1.8230 1.5632 1.7258 28.5346 

Table 5.3 Comparative analysis of differently optimized PID controllers for step load change 

case of operating conditions 

 

From the above results, it is evident that the elite performance of the MFO-PID is visible 

from the MG dynamic response following a step load perturbation. The MFO-PID controller 

Optimizing Method-PID 

Performance Analysis Terms 

Peak 

Undershoot 

(Hz) 

Peak 

Overshoot 

(Hz) 

Settling 

Time (s) 

Integral Time 

Absolute Error 

PSO-PID -0.12 0.1 21 0.000043 

TLBO-PID -0.095 0.05 13 0.000038 

GOA-PID -0.093 0.045 11 0.000032 

MFO-PID -0.06 0.03 9 0.000021 
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minimizes the frequency drop and improves the settling times far better than others. To have 

a next-level comparison, multi-step load disturbances are considered as depicted in Fig. 5.10 

(a) and Fig. 5.10 (b) depicts the MG frequency response with differently tuned controllers. In 

this case also, the MFO-PID controller offers superior performance than the other controllers. 

It is evident that the adopted MFO algorithm is well suited for this problem, hence the MFO 

algorithm is employed to optimize the proposed MPID’s gain constants to have better control 

of MG frequency deviations. From the next case onwards, the proposed MFO MPID 

controller and the MFO PID controller are contrasted to provide a better perspective of the 

results view. 

 

 
Fig. 5.10 Dynamic response of various controllers: a) Multistep load disturbances in MG b) 

Frequency perturbation response of MG 
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ii) Case-1: Dynamic response evaluation of MFO optimized multi-stage PID controller 

considering multiple power disturbances (concurrent changes in 𝜟𝑷𝑳, 𝜟𝑷𝑷𝑽 and 𝜟𝑷𝑾𝑻𝑮) 

and parametric uncertainties of MG and PHEV 

 This case is meant to demonstrate the effectiveness of the multi-stage PID controller 

over the PID controller using the MFO algorithm. The parameters of MPID and PID 

controllers are optimized considering the simultaneous disturbances in load, solar, and wind 

powers along with parametric uncertainties of MG and PHEV using ITAE as the fitness 

function. Fig. 5.11 shows the multiple power fluctuations (LD = load disturbance, WD = wind 

disturbance, and PVD = photovoltaic disturbance) and Table 5.4 presents the percentage of 

parametric uncertainties considered for the MG and PHEV aggregator. Fig. 5.12 shows the 

ITAE characteristics of the proposed MFO-MPID and MFO-PID controllers. Table 5.5 

presents the optimal gain constants of the two controllers. 

 

Fig. 5.11 Concurrent power fluctuations (multiple disturbances) in MG 

 
Fig. 5.12 MFO PID and MPID controllers’ ITAE performance evaluation with case-1 

conditions 
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Table 5.4 Percentage uncertainties in MG and PHEVs 

Parameters Percentage variation Actual 

KEV -30 % 1 

Rav (Hz/puMW) -50 % 2.4 

TEV (s) +50 % 0.1 

M (s) -20 % 0.1667 

D (puMW) -20 % 0.015 

R (Hz/puMW) +20 % 2.4 

 
Table 5.5 MFO PID & MPID controllers’ optimized gains 

Controller 
Controller parameters 

KP KI KPP KD N 

MFO-PID 1.1334 1.3196 - 1.9169 144.3923 

MFO-MPID 1.4922 1.6656 0.0774 2 134.2390 

The purpose of this case is to examine how well an MPID controller outperforms the 

PID controller in the context of various disturbances, MG, and PHEV uncertainties. Fig. 5.13 

depicts the frequency perturbation response of both controllers in this context. It can be 

observed that there is an improved performance of the proposed multi-stage PID controller 

than the PID in minimizing the frequency deviations of the MG. 

 

Fig. 5.13 Frequency perturbation response of MG against multiple power disturbances and 

parametric uncertainties 
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iii) Case-2: Response evaluation of the proposed controller under multiple power 

disturbances (concurrent changes in 𝜟𝑷𝑳, 𝜟𝑷𝑷𝑽 and 𝜟𝑷𝑾𝑻𝑮) 

In case-2, the changes in load, solar and wind power disturbances are considered 

concurrently in MG. The concurrent power changes in MG are depicted in Fig. 5.11 and the 

MG frequency perturbation response is shown in Fig. 5.14. 

 

Fig. 5.14 MG frequency perturbation response for multiple power disturbances 

iv) Case-3: Response evaluation of the proposed controller under solar power disturbances 

(𝜟𝑷𝑷𝑽) 

In case-3, only solar disturbances are considered in MG. Fig. 5.15 (a) depicts the 

random change in solar irradiation power and the respective MG frequency deviations are 

shown in Fig. 5.15 (b). 
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Fig. 5.15 a) Fluctuations of solar power in MG b) MG frequency perturbation response for 

case-3 

v) Case-4: Response evaluation of the proposed controller to wind power fluctuations 

(𝜟𝑷𝑾𝑻𝑮) 

For this case-4, only 𝛥𝑃ௐ்ீ is considered in MG. The random fluctuations in wind 

power are shown in Fig. 5.16 (a) and Fig. 5.16 (b) depicts the corresponding response of 

frequency deviation in the MG. 
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Fig. 5.16 a) Fluctuations of wind power in MG b) MG frequency perturbation response for 

case-4 

From the results of the above cases-1, 2, 3, and 4, it is understood that the proposed 

MFO optimized multi-stage PID controller is performing better in mitigating the MG 

frequency deviations than the PID controller. Table 5.6 portrays the dynamic performance 

evaluation of both controllers in terms of peak undershoot, peak overshoot, and ITAE value. 

Table 5.6 results convey that the suggested MFO-MPID controller enhances the performance 

of MG over the MFO-PID controller when subjected to RES/load disturbances. The case-1 

result also reveals that the suggested controller showed a good level of resilience towards the 

considered parametric uncertainties. Also, it is clear from ITAE performance characteristics 

that, in comparison to the PID controller, the ITAE value is still reduced with proper use of 

the PID controller in multi-stages. Therefore, the MFO-MPID controller can be utilized for 

the control of modern power systems incorporating high renewable energy content. 

Table 5.6 Dynamic performance evaluation of MFO PID & MPID controllers against the 

cases 1, 2, 3, and 4 operating conditions 

Cases 

Peak Undershoot (Hz) Peak Overshoot (Hz) ITAE 

MFO-PID MFO MPID MFO-PID 
MFO 

MPID 
MFO-PID MFO MPID 

Case-1 -0.1 -0.0357 0.09 0.032 0.0003623 0.0002384 

Case-2 -0.058 -0.035 0.056 0.03 0.000283 0.000212 

Case-3 -0.055 -0.032 0.052 0.028 0.000250 0.000190 

Case-4 -0.039 -0.011 0.042 0.012 0.000216 0.000152 
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vi) Case-5:  Impact of PHEVs in the SFC and PFC loops (Primary Frequency Control) 

This case’s objective is to investigate the impact of PHEVs on the dynamic frequency 

control in the SFC loop with a control signal from the MPID controller versus the impact of 

PHEVs in the PFC loop. This can be illustrated with the help of the PHEV aggregator model 

(in Fig. 5.5). In the suggested method, the control signal for PHEV aggregator output power 

is obtained from the MFO-optimized MPID controller. Whereas in the PFC loop, there will 

be no control signal for PHEV output power and the PPHEV is obtained from droop 

characteristics of the PHEV aggregator (Rav). The MG frequency perturbation response under 

case-5 conditions is depicted in Fig. 5.17. The input disturbances for this case are same as 

case-1 conditions. As seen in Fig. 5.17, with the suggested approach the MG frequency 

deviations are significantly reduced over the PHEV aggregator in the PFC loop. This due to 

proper coordination is established by the proposed controller between DEGs and PHEVs in 

the SFC loop. 

 

Fig. 5.17 Impact of PHEV aggregator due to the proposed method on the frequency response 

of MG over the generalized methods in literature [146] 

Observations from the simulation results 

The following observations have been noticed from various operating cases. 

i. From initial case conditions, it is noticed that the MFO-PID controller exhibits an 

improvement in undershoot (50%, 36.84% and 35.48%), overshoot (70%, 40%, and 

33.33%) and settling times (57.14%, 30.77% and 18.18%) over PSO-PID, TLBO-

PID and GOA-PID controllers respectively. The above quantitative results confirm 
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that the proposed MFO algorithm is precisely adaptable to the present MG 

frequency control problem. 

ii. Upon comparison with the MFO-PID controller, it has been noticed that the 

suggested MFO-MPID controller reduces the ITAE value by at least 24% for the 

operating conditions of cases 1, 2, 3, and 4. 

iii. Finally, from the conditions of case-5, it is observed that the MG frequency 

response is improved with the presence of PHEVs in the SFC loop (DEGs and 

PHEVs are well coordinated with an MPID controller) rather than in the PFC loop. 

5.4.2 Stability Analysis of MG 

The linear analysis tool from the Simulink Control Design toolbox of 

MATLAB/Simulink is used in the present work to demonstrate the stability analysis of the 

MG for various operating situations together with root locus plots [86] and eigenvalues of the 

system's linearized transfer function model [87]. Table 5.7 displays the eigen values for 

various cases. Fig. 5.18 displays the root locus plots for cases 1 and 2. It can be observed that 

from the eigenvalues and root locus plots, all the closed loop poles lie to the left half of the 

complex s-plane thereby confirming the stable operation of the MG system. If the gain of the 

linearized transfer function model of the MG system is greater than 4.3 (k > 4.3), then two 

closed loop poles traverse to the negative half of the complex s-plane making the system 

unstable which can be seen in the zoomed view of Fig. 5.18. 

Table 5.7 Eigen values of MG system for different operating conditions 

Case-1 Cases-2, 3, 4 

-69.50 + j2949.60 -71.20 + j3231.40 

-69.50 + j2949.60 -71.20 - j3231.40 

-40 + j0 -40 + j0 

-1 + j0.40 -1 + j0.40 

-1 – j0.40 -1 – j0.40 

-0.30 + j0 -0.30 + j0 

-0.50 + j0 -0.50 + j0 
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Fig. 5.18 Root locus plots for case-1 and case-2 

5.4.3 Comparison with Earlier Reported Works 

Table 5.8 Comparison with earlier reported works 

Comparison term Reference 

[87] [84] [85] Proposed 

Multiple-step load 

perturbation response 

ST (s) - 5 4 5 

ITAE - 0.000596 - 0.000190 

Simultaneous changes in 

RES power, load, and 

parametric uncertainties 

ITAE 0.7276 0.000135492 0.006 0.0002384 

Controller and optimization 

techniques 

MPID and 

hybrid whale 

optimization 

and pattern 

search 

algorithms 

Fuzzy-tuned 

MPID and 

grass hopper 

optimization 

algorithm 

Adaptive 

fuzzy-tuned 

fractional order 

MPID and 

future search 

algorithm 

MPID and 

MFO 

No. of controller parameters 

optimized 

4 11 35 5 

No. of algorithm-specific parameters 5 3 0 1 

PHEVs considered (Yes/No) No No No Yes 

Stability analysis (Yes/No) No No No Yes 
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The comparison of the suggested approach with earlier reported works for islanded MG 

frequency control employing an MPID controller regarding settling time, ITAE, and 

controller optimization technique is presented in Table 5.8. Table 5.8 reveals that the 

performance of the proposed controller is better and nearly on par with the other reported 

methods, demonstrating optimal results in both ITAE value and settling time. A qualitative 

comparison of computational burden can be assessed as high/low depending on the count of 

controller parameters optimized, the count of optimization techniques employed and their 

algorithm-specific parameters. The computational burden required for optimizing more 

controller parameters with one or more techniques would be comparatively more. 

5.5 Summary 

In this chapter, the MFO algorithm is applied to find the optimal gains of the MPID 

controller. The standalone MG had been subjected to load, solar and wind power disturbances. 

To expose the supremacy of the proposed MPID controller, the frequency response of the MG 

during various operating conditions is contrasted with the outcomes of the MFO-PID 

controller. The dynamic responses confirm the predominant execution of the proposed MPID 

controller when there are load and RES perturbations. Moreover, the proposed MFO-

optimized MPID controller offers enhanced frequency dynamic response and an extended 

level of robustness for MG and PHEV parametric uncertainties. Furthermore, the proposed 

MFO algorithm has shown its supremacy over recent and well-established optimization 

techniques in the literature like GOA, TLBO and PSO. On the other hand, the impact of 

PHEVs on the MG frequency response is also examined. It is found that MG attains better 

frequency response when PHEVs and DEGs are coordinated as compared to the case when 

they are not in coordination. Proper coordination is established between DEGs and PHEVs 

with the proposed MFO-MPID controller. Therefore, the suggested controller stands as a 

viable solution for dynamic frequency control applications in MG. 

****** 

 

 

 



127 
 

Chapter 6 

 

 

 

 

Conclusions and Future Scope 
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6.1 Conclusions 

 In the present work, the protection of different transmission lines and frequency 

control of islanded microgrid are proposed using artificial intelligent techniques. 

 

 A single fuzzy inference system based protection scheme is proposed for the 

protection of three-phase double circuit transmission lines that identify the faults 

within one cycle time (20 ms) with fault detection and classification accuracy of 

99.75%. This protection scheme is immune to fault parameter variations and typical 

system operating conditions. 

 

 

 A single ANN module is proposed for the protection of six-phase transmission lines 

against 120 types of short circuit faults. The accuracy of fault detection and 

classification is found to be 99.76% and the faults are identified within one cycle time 

(16.67 ms). This scheme is also immune to fault parameter variations. For fault 

location estimation, 11 ANN modules are used whose output is selected based on the 

fault type suggested by the ANN_FDC module. The performance of the fault location 

estimation modules is better with the training data (81% of fault cases are within ±1% 

error range) and nominal performance is observed with the testing data (53% of fault 

cases are within ±5% error range). 

 
 

 A protection scheme based on the fuzzy inference system using voltage information 

of a single bus is proposed for the protection of transmission lines connected to hybrid 

renewable energy sources (solar photovoltaic and wind turbine farms). The proposed 

protection scheme detects and classifies the faults within one cycle time (20 ms) and 

has an FDC accuracy of 99.56%. The proposed protection scheme is immune to fault 

parameter variations and renewable power intermittencies. A regression based bagged 

ensemble learner is proposed for the fault location estimation. The proposed fault 

location estimation module approximates the fault location within ±5% error band. 

The Chi-square analysis is used to test the reliability of the fault location module (D2 

= 3.0407). 
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 A moth flame optimization algorithm based multi-stage PID controller is suggested 

for the frequency control of an islanded microgrid (Bella Coola MG). The MPID 

controller parameters are optimized using the MFO algorithm. The MG frequency 

deviations are mitigated effectively with the proposed MFO-MPID controller. The 

suggested controller’s performance is found to be robust even with the load and 

renewable energy source power fluctuations and also towards parametric 

uncertainties. 

6.2 Future Scope 

 The protection of hybrid transmission lines (cable and overhead line) poses protection 

issues as the impedance characteristics of cable and overhead line differ from each 

other. 

 The FACTS compensated transmission lines also pose protection issues such as 

underreaching and overreaching of distance relays. 

 The protection tasks such as fault detection and classification and fault location 

estimation would be complicated for the above-mentioned transmission lines 

connected to renewable energy sources. 

 As limited research is explored in the protection of six-phase transmission lines, the 

research can be further extended to high-phase order systems. Also, the protection 

schemes for cross-country and evolving faults and multi-location faults can be an 

opportunity for further research on such lines which have close proximity. 

 The scope of the frequency control problem can be extended to multi-microgrid 

systems. Furthermore, different controller structures can be adopted whose 

controller’s parameters can be optimized with the optimization algorithms viz. Jaya, 

Enhanced Jaya, Rao-1, and Rao-2 that are free of algorithm-specific parameters. 

 Different artificial intelligent techniques can be adopted for the protection tasks of 

transmission lines viz. fuzzy decision trees, random forest, deep neural networks, and 

different ensemble learning methods (homogeneous or heterogenous, bagging, 

boosting, optimizable learning methods). 

 

****** 
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Appendices 

Appendix – I 

Power system operating conditions and system parameters 

Source data at both sending and 
receiving ends of the line. 

Transmission line parameter data  
(Transmission line length: 300 km (divided into three equal 
sections)) 

Nominal source voltage and 
system frequency 

400 kV 
and 50 
Hz 

Parameter Positive Negative Zero Mutual zero 

Pre-fault power flow angle of 
the system 

15° Resistance 
(Ω/km) 

0.0275 0.0275 0.275 0.21 

Short circuit capacity 1.25 
GVA 

Inductance 
(H/km) 

1.002e-03 1.002e-03 3.268e-03 2.0e-03 

Base voltage 400 kV Capacitance 
(F/km) 

13e-09 13e-09 8.5e-09 -5.0e-09 

X/R ratio 10      

Appendix – II 

Six-phase transmission line parameters 

Resistance matrix (ohm/km): 

0.1960    0.1241    0.1186    0.1185    0.1238    0.1338 

0.1241    0.1766    0.1104    0.1103    0.1150    0.1238 

0.1186    0.1104    0.1675    0.1060    0.1103    0.1185 

0.1185    0.1103    0.1060    0.1675    0.1104    0.1186 

0.1238    0.1150    0.1103    0.1104    0.1766    0.1241 

0.1338    0.1238    0.1185    0.1186    0.1241    0.1960 

Inductance matrix (H/km): 

 1.9717e-03   8.2710e-04   7.0988e-04   6.5597e-04   6.7658e-04   7.0263e-04 

 8.2710e-04   2.0228e-03   8.6436e-04   7.1351e-04   6.9801e-04   6.7658e-04 

 7.0988e-04   8.6436e-04   2.0475e-03   7.7846e-04   7.1351e-04   6.5597e-04 

 6.5597e-04   7.1351e-04   7.7846e-04   2.0475e-03   8.6436e-04   7.0988e-04 

 6.7658e-04   6.9801e-04   7.1351e-04   8.6436e-04   2.0228e-03   8.2710e-04 

 7.0263e-04   6.7658e-04   6.5597e-04   7.0988e-04   8.2710e-04   1.9717e-03 

Capacitance matrix (F/km): 

8.5463e-09  -1.5037e-09  -5.9333e-10  -3.4736e-10  -4.8782e-10  -7.6412e-10 

-1.5037e-09   8.5282e-09  -1.4971e-09  -4.9062e-10  -4.7051e-10  -4.8782e-10 

-5.9333e-10  -1.4971e-09   8.4771e-09  -8.1902e-10  -4.9062e-10  -3.4736e-10 

-3.4736e-10  -4.9062e-10  -8.1902e-10   8.4771e-09  -1.4971e-09  -5.9333e-10 

-4.8782e-10  -4.7051e-10  -4.9062e-10  -1.4971e-09   8.5282e-09  -1.5037e-09 

-7.6412e-10  -4.8782e-10  -3.4736e-10  -5.9333e-10  -1.5037e-09   8.5463e-09 
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Appendix – III 

Data of transmission line parameters (200 km line length) 

Parameter Positive and negative Zero 

Resistance (Ω/km) 0.0275 0.275 

Inductance (H/km) 1.002e-03 3.268e-03 

Capacitance (F/km) 13e-09 8.5e-09 

Appendix – IV 

PV Data Module Specifications 

Rated power 50 MW (1 MW units) PV module type 1Soltech 1STH-350-WH 

LB 1.7 mH Rated power 349.59 W 

Switching frequency 2.1 kHz Open circuit voltage (Voc) 51.5 V 

Rfilter1 0.0015 pu Short circuit current (Isc) 9.4 A 

Lfilter1 0.15 pu Voltage at max. power point 43 V 

Qfilter1 0.1 pu Current at max. power point 8.13 A 

Vdc1 1200 V Temperature coefficient of Voc -0.36% /°C 

DC link capacitor 16.45 mF Temperature coefficient of Isc 0.09% /°C 

Voltage regulator (PI-1) Kp = 7 and Ki = 800   

Current regulator (PI-2) Kp = 0.3 and Ki = 20   

Appendix – V 

DFIG based wind farm data 

Rated power of wind farm 50 MW No. of pole pairs (p) 3 

Rated power of wind turbine 1.5 MW DC link voltage (Vdc2) 1150 V 

Wind turbine inertia constant (Ht) 4.32 s Rfilter2 0.003 pu 

Nominal power generator 1.5/0.9 MW Lfilter2 0.3 pu 

Inertia constant (Hg) 0.685 s Qfilter2 0.08 pu 

Nominal stator voltage 575 V Switching frequency (GSC) 2.7 kHz 

Nominal rotor voltage 1975 V PI-3 (GSC) Kp = 8 and Ki = 400 

Stator resistance (Rs) 0.023 pu PI-4 (GSC) Kp = 0.83 and Ki = 5 

Rotor resistance (Rr) 0.016 pu Switching frequency (RSC) 1.62 kHz 

Stator inductance (Ls) 0.18 pu Voltage regulator (RSC) Kp = 5 and Ki = 20 

Rotor inductance (Lr) 0.16 pu PI-5 (RSC) Kp = 0.6 and Ki = 8 

Magnetizing inductance (Lm) 2.9 pu   
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Appendix – VI 

 Optimization Data 

S. No. Optimization Algorithm Data 

1. MFO [145] No. of moths = 100, No. of iterations = 50 

2. GOA [147] Population size = 100, No. of iterations = 50, Adaptation factor (c) = 

[0.0001 – 4], Attraction factor (f) = 0.5, Attractive length scale (l) = 1.5 

3. TLBO [148] Population size = 100, No. of iterations = 50, TF = [2 – 1 

4. PSO [70] Population size = 100, No. of iterations = 50, Inertia weight (w) = 0.65, 

Cognitive factors (C1, C2) = 2 

 

Appendix – VII 

PHEV Data 

𝑆𝑂𝐶ଵ = 0.1, 𝑆𝑂𝐶ଶ= 0.2, 𝑆𝑂𝐶ଷ=0.8, 𝑆𝑂𝐶ସ=0.9, 𝑁ா௏ = 600, 𝑇௉ுா௏=0.1 s, 𝑅௔௩=2.4  Hz/puMW, 𝑃ெ௔௫  (Individual 

EV) = 5 kw, 𝛥𝑓௅= 0.1 Hz, 𝛥𝑓௎= 0.1 Hz. 
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