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ABSTRACT

Protection and control are crucial to maintain the stable operation of the power
systems. Growth in global electricity consumption due to urbanization and industrialization,
demands enhanced generation and transmission capacities with higher order network
configurations. Power transmission network plays a vital role in transmitting power to distant
areas or load centres. Often, renewable energy integration into power systems is encouraged
due to low carbon emissions. There is a steady growth in the amount of renewable energy
generation every year. The geographically dispersed nature and intermittent generation of
renewables require increased transmission capabilities to move excess energy to distant load
centres. Rising power demand and renewable integration are a challenge to the power system's
protection and control. In order to have improved system stability, reduced service
disruptions, and enhanced power delivery efficiency, the protection of transmission lines and
frequency control of the system are vital. This work focuses on artificial intelligent protection
schemes for various transmission line configurations (double circuit three-phase, single
circuit six-phase, and single circuit three-phase), to ensure reliable and secure power
transmission and control strategy for frequency control of microgrid. The main aim of the
transmission line protection scheme is to identify and isolate the fault as quickly as possible
to maintain the stability of the system. The quick detection and classification of faults help

the repairmen or maintenance crew to improve the service restoration time.

An intelligent protection scheme is proposed based on a single fuzzy inference system
and discrete Fourier transform towards the faulty phase detection and classification on the
mutually coupled double circuit lines. This proposed protection technique uses the magnitude
of the pre-processed current information measured at the sending end bus only. This is
implemented in the MATLAB/Simulink environment on a 400 kV, 50 Hz, and 300 km double
circuit transmission line model. The efficacy of the proposed scheme has been tested by
performing a wide range of simulation studies concerning different types of faults viz.
common short circuit faults, cross-country and evolving faults, and high impedance faults.
Typical fault scenarios viz. current transformer saturation, noisy environment, and faults
occurring during power swing scenarios with variations in different fault parameters and
operating conditions were also studied. The results presented confirm that the proposed
method detects/classifies all types of faults within one cycle time and is reliable with a

detection/classification accuracy of 99.75%. It is found immune to the variations in fault
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parameters and for varying operating conditions. Also, it is not affected by the zero-sequence
mutual impedance of the line and does not require any training and communication link.

Furthermore, the performance is also appraised with other training-based protection schemes.

The enhanced power transfer capability is possible with the six-phase transmission
system but it did not gain popularity due to the lack of a proper protection scheme to secure
the line for 120 types of different possible short circuit faults. This work presents a
comprehensive protection scheme utilizing discrete wavelet transform (db4 mother wavelet)
and artificial neural networks (ANNs). Levenberg-Marquardt algorithm is used for training
the ANNs. This protection scheme requires only pre-processed current information of the
sending end bus. For fault detection and classification of all 120 types of faults, a single ANN
module is implemented with six inputs and six outputs. For the estimation of fault location in
each phase, 11 ANN modules with six outputs are used viz. one for each of the 11 types of
combination of faults. The proposed protection scheme is implemented on a six-phase
Allegheny power transmission system using MATLAB/Simulink platform. The simulation
results prove its efficiency and effectiveness in detecting and classifying all types of faults
with varying parameters. All fault types are detected/classified within one cycle time and the
detection/classification accuracy is found to be 99.76%. It is found that the performance of
the fault location estimation modules is better with the training data and moderate with the

testing data.

The integration of renewable energy sources (RES), such as solar and wind power,
into power systems presents unique challenges for transmission line protection. Traditional
distance protection schemes may not be adequately sensitive or adaptable to the dynamic
characteristics of RES-connected lines. To address these challenges, this work proposes an
intelligent novel protection scheme that combines the fuzzy logic system for fault
detection/classification with regression-based bagged ensemble learning for fault location
estimation. The proposed scheme utilizes voltage signals of the bus connected to renewable
energy sources processed with discrete Fourier transform (DFT) to extract relevant features
for fault diagnosis. A Mamdani based fuzzy inference system is implemented to analyze the
DFT-extracted features and make decisions regarding fault occurrence and type. A bagged
ensemble learning approach, incorporating multiple regression trees, is employed to
accurately estimate the fault location along the transmission line. The performance and

efficacy of the proposed protection scheme are verified through extensive
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MATLAB/Simulink simulations on the transmission line model integrated with renewable
energy sources (solar and wind). The simulations were carried out considering the variations
in fault parameters with different solar irradiations and wind speeds. The results demonstrate
that the scheme effectively detects and classifies various fault types in one cycle time, even
under dynamic RES generation conditions. The proposed scheme achieved 99.56% accuracy
in fault detection/classification confirming its reliable operation. Further, the proposed fault
location estimation approach approximates the fault location within £5% error band and the

Chi-square test is performed to assess its reliability.

However, apart from the protection of transmission lines, there is another equally
concerned issue as much as protection i.e., frequency control of microgrid. Microgrid (MG)
is a combination of diesel engine generators, renewable energy sources, loads and various
energy storage systems. The low inertia of the microgrid system, stochastic loads and
intermittent/discontinuous generation of renewables create complications in the frequency
control of microgrid. Massive frequency deviations will cause stability and reliability

problems and sometimes may lead to microgrid blackouts.

A more rugged and efficient control action is needed to ameliorate the frequency
stability of the microgrid. Therefore, a multi-stage PID controller whose parameters are
optimized by the moth flame optimization (MFO) algorithm is proposed to control the
frequency of an islanded Bella Coola microgrid. This microgrid has renewable energy sources
and coordinated control of plug-in hybrid electric vehicles with diesel engine generators.
Some popular meta-heuristic based PID control techniques viz. PSO-PID, TLBO-PID, and
GOA-PID are also applied to assess the superior performance of the MFO algorithm. The
effectiveness of the proposed control method is evaluated on the Bella Coola microgrid to
obtain its dynamic response considering the simultaneous changes in renewable energy
sources, load, and parametric uncertainties. The dynamic response of the microgrid is
enhanced significantly which is confirmed through MATLAB/Simulink simulation results.
Moreover, the proposed multi-stage PID controller is robust towards parametric uncertainties
of microgrid and plug-in hybrid electric vehicles as compared to other PID controllers. The

stability and comparison analysis prove that the proposed method works efficiently.

seskoskoskok
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Chapter 1

Introduction



1.1 Introduction

Protection and control of power systems are the thrust of research areas in the present era.
In recent times, due to urbanization, industrialization and population growth, the world has
witnessed a drastic rise in electrical energy/power consumption. The electrical energy
consumption has reached approximately 23643 Terra Watt hour globally in the year 2022 [1].
To meet the growing demands, the generation and transmission capacities must be increased.
The power transmission network plays a vital role in meeting the growing electrical demand.
Transmission lines are the backbone of the electrical grid, carrying electricity from power
plants to consumers over long distances. They facilitate electricity trading between different
regions and countries. Also, facilitates the integration of renewable energy sources. To have
enhanced power transmission capabilities with better efficiencies, higher order power
transmission network configurations are preferred. Furthermore, nations across the world
have aimed towards reducing the carbon emissions by encouraging renewable energy sources
to generate clean energy. Despite the global economic crisis in 2020, there is a considerable
rise in global renewable energy generation with capacity reaching 260 GW during COVID
2019 pandemic. Solar (127 GW) and wind (111 GW) dominated this capacity expansion by
91% [2]. Higher levels of renewable energy penetration have been witnessed in the
distribution levels and installation of renewable energy sources has also creeped into the sub-
transmission levels. In the next few years, it is presumed that the penetration of renewables
may also take place at the transmission levels. This penetration of renewable energy sources
in the transmission and distribution sectors poses challenges to protection and control,
especially towards the load frequency control of the microgrid. However, due to the terrestrial
and environmental conditions, renewable energy generation is not possible at all the locations.
The excess renewable energy generated is to be transmitted to the load centres wherever it is
required. The resulting intermittent generation and centralized demand require increased

transmission capabilities.

In view of the above, to handle the power, the most viable configurations of the
transmission networks are required. The transmission lines spread over long distances are
exposed to different weather conditions and are easily prone to fault conditions as insulation
is not provided. Faults on transmission lines are inevitable. A reliable protection scheme
ensures the safe and secure operation of the transmission network with minimal interruption

and early restoration of the quality power supply. The main aim of the transmission line
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protection scheme is to identify and isolate the fault as quickly as possible to maintain the
stability of the system. The quick detection and classification of faults help the
repairs/maintenance crew to improve the service restoration time. However, apart from the
protection of transmission lines which transfer the generated electrical power, there is another
equally concerned issue as much as protection i.e., frequency control of the microgrid.
Microgrid (MG) is a combination of diesel engine generators (DEG), renewable energy
sources (RES), loads and various energy storage systems (ESS). The frequency control task
is quite simple in conventional power systems because the disturbances arise only due to the
stochastic loads. However, the frequency control problem in an islanded microgrid is always
a concerning challenge for the operators. The low inertia of the system, stochastic loads and
intermittent/discontinuous generation of renewables create complications in the frequency
control of the microgrid. Massive frequency deviations will cause stability and reliability
problems and sometimes may lead to microgrid blackouts. In this regard, this thesis presents
the protection of double circuit three-phase transmission lines, single circuit six-phase
transmission lines, and single circuit three-phase transmission lines connected to renewable
energy sources. Also, the frequency control of an islanded microgrid having renewable energy

sources and plug-in hybrid electric vehicles (PHEV) is presented.

1.1.1 Types of Short Circuit Faults in Three-phase and Six-phase

Transmission Lines

The primary job of transmission lines is to transfer the electrical power from the
generation units to the distribution units or the load centres. The vast existence of transmission
lines over several kilometres exposed to different terrestrial weather conditions makes them
vulnerable to inevitable fault situations. The transmission line faults are broadly classified
into two categories: open circuit faults (series faults, where one or more conductors are open-
circuited) and short circuit faults (shunt faults, where one or more conductors are short-
circuited). The short circuit faults are characterized by an increase in current and a decrease
in voltage. The short circuit faults are further classified as symmetrical (LLL/LLLG: triple
line/triple line to ground faults) and unsymmetrical (LG/LLG/LL: single line to
ground/double line to ground/double line faults) faults in case of three-phase transmission
system [3]. Broadly, there are about 11 types of short circuit fault combinations that can
possibly occur in a three-phase transmission system. However, there are about 120 types of

short circuit fault combinations that can possibly occur in a six-phase transmission system.



These 120 fault combinations are grouped into 11 categories of faults. Table 1.1 gives the 11
categories of faults and Fig. 1.1 presents the flowchart of the segregation of 120 fault types

of a six-phase transmission system [4, 5].

Table 1.1 Types and no. of short circuit faults on six-phase transmission line

Fault type I-LG  2-L

2-LG

3-L  3-LG 4L 4LG 5L 5LG 6-L 6-LG

No. of faults 6 15

15

20 20 15 15 6 6 1 1

Total

120

A

LG

AG, BG, CG, DG, EG, FG  (6-types)

Y

2-L

AB, AC, AD, AE, AF,
BC, BD, BE, BF,CD,
CE, CF, DE, DF, EF

(15-types)

LG

ABG, ACG, ADG, AEG., AFG,
BCG, BDG, BEG, BFG,CDG,
CEG, CFG, DEG, DFG, EFG

(15-types)

A

3-L

ABC, ABD, ABE, ABF, ACD, ACE, ACF,
ADE, ADF, AEF, BCD, BCE, BCF, BDE,
BDF, BEF, CDE, CDF, CEF, DEF

(20-types)

Y

Segregation of 120 /

short circuit fault

e
LG

ABCG, ABDG, ABEG, ABFG, ACDG, ACEG, ACFG,

ADEG, ADFG, AEFG, BCDG, BCEG, BCFG, BDEG, (20-types)

BDFG, BEFG, CDEG, CDFG, CEFG, DEFG

\

types on six-phase
transmission line

4L

ABCD, ABCE, ABCF, ABDE, ABDF,
- ABEF, ACDE, ACDF, ACEF, ADEF, (15-types)

BCDE, BCDF, BCEF, BDEF, CDEF

A

LG

ABCDG, ABCEG, ABCFG, ABDEG, ABDFG,
= ABEFG, ACDEG, ACDFG, ACEFG, ADEFG, (15-types)
BCDEG, BCDFG, BCEFG, BDEFG, CDEFG

Y

5-L

—» ABCDE, BCDEF, CDEFA, DEFAB, EFABC, FABCD (6-types)

5
LG

—» ABCDEG, BCDEFG, CDEFAG, DEFABG, EFABCG, FABCDG (6-types)

Y

6-L

- ABCDEF (1-type)

[
|

6-
LG

- ABCDEFG (1-type)

Fig. 1.1 Flowchart of segregation of 120 types of short circuit faults



The number of non-simultaneous short circuit faults (Ny) for the ‘.4’ phase transmission
system is given in Eq. (1.1) [6]. For ex., k = 3, Nyy= 3+2(3)+2(1) = 11 and for k = 6, Ny =
6+2(15)+2(20)+2(15)+2(6)+2(1)=120.

k
Ny = (’1‘) +2 Z (’l‘) (L1

Protection of transmission of lines is crucial because:

» Maintaining a safe, reliable, and stable power supply.

» Faults on these lines can disrupt service, causing outages and economic losses. Also
affects the homes, businesses, and critical infrastructure.

» Transmission lines carry high-voltage electricity, which can be dangerous if not properly
protected. Faults can lead to arcing, fires, and even electrocution. Protecting transmission
lines helps to prevent these accidents and keep people safe.

» Transmission lines are expensive to build and maintain. Faults can damage equipment,
such as transformers, switchgear, and other expensive equipment, requiring costly repairs
and replacements. Protecting transmission lines helps to extend the life of equipment and

reduce maintenance costs and equipment damage.

Effective protection systems quickly isolate the fault, minimizing damage and preventing the

hazardous situation from escalating.
1.2 Brief Overview of Artificial Intelligent Techniques

The rise of artificial intelligence (AI) has revolutionized its application to solve power
system problems. Fuzzy logic, artificial neural networks, decision trees, and evolutionary
optimization techniques are now employed in developing sophisticated power system
protection and control schemes. The advancements in Al techniques opened doors to
extensive research in power system protection and control, paving the way for more robust
and intelligent solutions. The main computational Al philosophies include fuzzy logic, neural
networks, evolutionary computation, machine learning, and probabilistic reasoning. These
computational methods are encouraged due to their ability to solve complex problems

(achieve solutions) at a lower cost than conventional computing methods.



1.2.1 Fuzzy Logic Systems

In 1965, Lotfi Zadeh, the “father of fuzzy logic,” introduced this revolutionary concept.
Fuzzy logic, unlike traditional binary logic with its strict true/false (1/0) values, embraces the
notion of vagueness and uncertainty. Fuzzy logic that is based on fuzzy set theory allows for
degrees of truthfulness between these extremes. This makes it ideal for handling uncertainty
and imprecision, i.e. common in real-world situations. Fuzzy logic can be defined as a form
of knowledge representation suitable to define imprecise/uncertain data using linguistic
variables and fuzzy sets instead of just numbers. This enables the computing devices to mimic
and reason like humans. Fuzzy logic's simplicity and flexibility make it well-suited for
problems with incomplete or imprecise data. It uses simple "[F-THEN" rules, making its
knowledge representation easy to understand and modify accordingly to build systems that
adapt to changing environments and incomplete information. The core concept of fuzzy logic
is the membership function, which assigns a numerical value between 0 and 1 to represent

how much an element belongs to a fuzzy set [7, 8].
1.2.1.1 Membership function

Membership function can be defined as a function where each element of a fuzzy set is
mapped to a membership value ranging from 0 to 1. In simple terms, a membership function
is a curve that defines the characteristics of a fuzzy set with a membership value for each
member in the set. The membership function defines the fuzziness in a fuzzy set. The degree
of membership is essentially a score indicating how well that element fits the characteristics
of the fuzzy set. Graphical representations are generally used to represent a membership
function. In graphical representations, the x-axis represents the elements of the fuzzy set and
the y-axis represents the membership value. The commonly used different membership

functions are listed in Table 1.2.



Table 1.2 Types of membership functions

S. Membership Function Expression
No.
- - X — X
1. Triangular (x;, x2, and x; are vertices of L X SX< %,
triangle) X2 X
s y=f@)={ X=X
2 x,<x<x,
X3 — X2
0 , otherwise
: : X —X
2. Trapezoidal (x;, x2, x3, and x4 are vertices 1 ‘ X, <x<x,
. X2 — X1
of trapezoid
P ) _ _ 1 , XS XS X3
y - f(x) - X — x3
, X3 S X< Xy
Xq4 — X3
0 , otherwise
3. Gaussian (¢ and w are the centre and _0_5(ﬂ)2
y=fx)=e w

width of membership function)

4. Generalized Bell (¢, w, and s are the £ = _
centre, width, and slope of membership 1+ (|x; C|)
function curve)

5. Sigmoid (c and w are the centre and width

fG) = 1+ elw-ol

of membership function)

1.2.1.2 Fuzzy inference system (FIS)

FIS is also known by other terms viz., fuzzy-rule-based system, fuzzy logic controller,
fuzzy model, fuzzy associative memory, fuzzy expert system or simply fuzzy system due to
its wide applications in different domains of discipline. Basically, the whole process of
reaching an optimal solution from inputs through a process of fuzzy logic reasoning
mimicking human-like decision-making is referred to as an FIS. The main task of FIS is to
make decisions based on fuzzy logical reasoning. The decisions are made by using simple
“IF-THEN” rules and “OR”/“AND” logical relations. The basic architecture of an FIS
consists of a rule base and database combinedly known as a knowledge base, a decision-
making block, a fuzzification block and a defuzzification block. The basic block schematic of
FIS is shown in Fig. 1.2. Mamdani FIS and Takagi-Sugeno FIS are the main types of FIS.
The difference between these two 1is their approach to output representation and
defuzzification. While the Mamdani FIS uses membership functions and a defuzzification

process the other depends on linear or constant functions without a defuzzification process to



provide outputs. Compared to the Sugeno FIS, the Mamdani FIS is simpler to implement.

There are four stages in the fuzzy inference processing:

Fuzzification: This process involves the conversion of crisp sets of inputs and outputs into
fuzzy quantities using the linguistic variables and membership functions to define the

fuzziness in the crisp sets.

Fuzzy Inference: In this process, the knowledge base is used to take decisions based on the
fuzzy rules devised for specific applications of the system. In simple words, it is a process
where the input variables are mapped onto the output variables using the fuzzy logic concept

with “IF-THEN” rules.

Aggregation: In this process, all the fuzzy outputs that are obtained after the execution of

fuzzy rules are aggregated/combined to form an aggregated fuzzy set.

Defuzzification: The defuzzification process converts the aggregated output fuzzy sets back
to crisp quantities. Centroid, max-membership, weighted average, mean-max membership,
centre of sums, centre of largest area, and first of maxima and last of maxima are the different

types of defuzzification methods.

Crisp Fuzzification uzzy Inference Defuzzification Crisp
Input Block Processing Block Output

Knowledge Base
Data Rule
Base Base

Fig. 1.2 Basic block schematic of FIS

1.2.2 Artificial Neural Networks

The concept of an artificial neuron is an inspiration drawn from the biological neuron.
The human brain neuron system design and working mechanism is the base for the artificial
neural network (ANN). An ANN acts as a data processing system that mimics the information
processing capabilities of the biological nervous system. Brains have billions of
interconnected neurons for the exchange, communication, and processing of information.

Likewise, an ANN also consists of interconnected artificial neurons. Each typical biological



neuron has three main parts: 1) cell body (soma): which contains the nucleus and acts as the
central processing unit of the neuron, ii) dendrites: these branch-like structures receive
electrical signals from other neurons through junctions called synapses, and iii) axon: this
single long fibre transmits the processed electrical signal to other neurons. Fig. 1.3 illustrates

the structure of a biological neuron.

0 Synapse
8 Q
Nucleus  Axon q
0
" Cell Body or \
vah Soma
Dendrites .

Fig. 1.3 Structure of biological neuron

An artificial neural network (ANN) is essentially a smart computer program (or even
specialized hardware) designed to mimic the human brain and tackle specific tasks. It works
like a massively parallel processor, distributing information across many interconnected units.
ANNSs can store and acquire knowledge through a learning process by adjusting their internal
connections, allowing them to adapt to new information and excel at tasks like pattern
recognition and data classification. A typical artificial neuron has simple components: inputs,
summation, an activation function that processes the information, and finally, an output. Fig.
1.4 depicts the structure of an artificial neuron. The working of the neuron can be explained
as follows: the net product WX and the input bias are summed up at the summer location,
where the net product (WX) is obtained by the multiplication of different inputs (x;, x2,
X3, ....,Xn) With the corresponding weight values (w;, wz, ws, ..., wy) respectively. The weights
can modify the actual inputs. The activation function ( f) processes the net input (WX+b) to
deliver the output [9]. The output (y) of the neuron is given in Eq. (1.1) and Eq. (1.2) (matrix

form), where W = [wi, wa, w3, ..., wiuJ and X = [x1, X2, X3, ....,Xn/.



y = f(net input) = f (Z wix; + b) (1.1)

=1

y = f(WTX + b) (1.2)

X7 Activation
Function
X2
Output
. foem,
Inputs

Fig. 1.4 Structure of artificial neuron

The architecture of ANN generally comprises of three layers: input layer, hidden layer,
and output layer. The number of neurons in all three layers depends on the application of
ANN for a task. The ANNSs can be broadly categorized into feedforward neural networks and
recurrent neural networks. A feed-forward network is a network which does not have any
feedback paths. In this type of network, all three layers are connected in the forward direction
by providing the flow of information only in one direction (forward). The input layer sends
the information to the hidden layer and the hidden layer transmits the information to the output
layer [9, 10]. The recurrent neural network is a network which contains feedback paths from
output to input. Recurrent networks are feedback networks with closed-loop paths. Further,
feedforward neural networks can be classified as supervised (single-layered/multi-layered)

and unsupervised feedforward neural networks.

Activation functions, also known as transfer functions, play a crucial role in extracting
meaningful information within artificial neural networks. They filter the net input (a
combination of weighted inputs and a bias) and transform it into an output. The choice of
activation function depends heavily on the specific task. These functions can be either linear
or non-linear, offering different capabilities for processing the information. Some common

activation functions used in ANNs are listed in Table 1.3.
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Table 1.3 Commonly used activation functions in ANNs

Name of Activation

Relation between input-output

Function
Hard Limit _ (0, x<0
y_f(x)_{l, x=0
Symmetrical Hard Limit _ (1, x<0
y=r@ =13 xso
Linear y=f(x)=x
Positive Linear _ (0, x <0
y—f(x)—{x' x=0
4. Saturating Linear 0, x<0
y=fx)={x 0<x<1
1, x>1
5. Symmetric Saturating -1, x<0
- y=fx)={x 0<x<1
Linear +1, x>1
6. Log-Sigmoid _ _
y=f®=1=
7. Hyperbolic Tangent e*—e™
P s y=fx)=—F7=
Sigmoid e’ te

1.2.3 Decision Trees

Decision trees stand as a powerful paradigm of data mining that is the most versatile
and effective method in Al. These supervised learning algorithms excel at predicting the
relationship between a feature and its target value, making them ideal for various tasks like
classification, regression, clustering, and even feature selection. They can handle various data
types, including numeric, nominal, and even text, and they can even work with missing or
erroneous data. Their ability to analyze large imperfect datasets to deliver accurate predictions
with minimal computational effort led to the successful application to solve power system

related issues [11].

Decision trees are powerful predictive models used for either classification or regression
tasks. They are termed as classification trees when they tackle the classification problem that
aims to categorize the data points into specific classes to predict discrete outcomes. They are
called as regression trees when used for regression problem that predicts continuous values.
While the underlying structure and core working functionality are similar for both trees, the

convergence criteria for reaching a terminal node differ based on the specific task. Decision
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tree algorithms offer impressive efficiency despite the fact of simplicity. They follow a
strategy called “divide and conquer” to grow/construct the trees by recursively splitting the
training data until desired patterns emerge within each group, signifying a single class. A
decision tree structure comprises three types of nodes: 1) root or parent node: the starting
point, with only outgoing branches leading to further decision points, ii) test/child/internal
node: nodes with both incoming and outgoing branches, representing a specific decision, and
1i1) leaf/terminal/decision nodes: end points with no outgoing branches, indicating the final
predicted class or target value. Fig. 1.5 depicts an illustration of a simple decision tree
structure using yes/no questions. Square boxes represent root or test nodes, while circles
represent leaf nodes. The features are denoted by f, f2, and f3, with s; (i = 1, 2, 3, 4, and 5)
representing optimal split points and C; (i = I to 6) signifying the predicted classes or target

values.

Data set
Root
¥ node
see Child
i °
P %e ¥ node
g MO
f2 <8y Y &

Fig. 1.5 Structure of simple decision tree

There are various kinds of decision tree inducer algorithms viz., CHAID (CHi-squared
Automatic Interaction Detector), ID3 (Iterative Dichotomiser 3), CART (Classification and
Regression Trees), C 4.5 etc., [11-13]. They automate the process of building optimal
predictive models from the given training data by minimizing errors. A decision tree is trained

in two stages: (i) the growing stage, which splits the data or grows the tree until a set of
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stopping criteria is met; and (ii) the pruning stage, where redundant branches are removed to
optimize the tree's depth and prevent overfitting. This creates a more generalizable model

with the right level of complexity. The different stopping criteria are listed below:

(1) all the instances in the training set belong to a single class.

(i1) when the maximum depth of the tree has been reached.

(iii))  when the number of cases in the terminal nodes is less than the minimum number
of cases for parent nodes.

(iv)  if the node were split, the number of cases in one or more child nodes would be
less than the minimum number of cases for the child nodes.

(v) the best splitting criteria is not greater than a certain threshold.

The decision trees are grown by following optimal splitting criteria that optimize the split to
choose the best feature and value for splitting the data based on the impurity measurement of
the split. The impurity metrics namely, gain ratio, information gain, Gini index/Gini diversity
index, twoing rule, and binary criteria are commonly used for classification purposes while
the mean square error reduction of prediction or variance reduction is used for regression
purposes. However, a fully grown tree can be complex and prone to overfitting. It is necessary
to prune the tree optimally to reduce the unwanted tree size to get a tree with the best minimum
size and minimum generalization error striking a balance between complexity and accuracy.
The different pruning methods are cost complexity pruning (balancing tree size and prediction
error), reduced error pruning (focusing on reducing generalization error), minimum error
pruning (selecting the sub-tree with the lowest error), pessimistic error pruning, and critical

value pruning [11, 12].

One of the most widely used decision tree algorithms is CART. The CART algorithm uses
the Gini index or minimum mean square error of prediction as the splitting criterion and cost
complexity pruning method for constructing the tree. The working principle of classification
and regression trees is similar, but classification trees predict a class and regression trees
predict a real number. A node is pure, if all the instances under it belong to a single class in
the classification tree and if the prediction of the mean square error of all instances under the
node is minimum in a regression tree [11-14]. For validation of a decision tree, the K-fold
cross-validation method is used to choose the tree that gives the least prediction or
misclassification error. A flowchart of growing regression trees is shown in Fig. 1.6, where
D is the input training dataset with d features {f}, />, f3, ..., fa}and N no. of instances, Y is the
13



target data, and S is the set of potential splits obtained from D through the exhaustive search

method. The best tree is validated using the minimum mean square error of the prediction.

h oo fd V1 S 85 Sa
D = Gy Y = yg S = Sij where §; = aij gty
i=1toN ' i=1ltoN-—1 2
j=1tod YN j=1tod
Start with training data
DandY
Step-1
Identify the potential splits for every feature f; as S; PHY T
N samples

Step-2 Y

Calculate the variance (var), standard deviation (std),
and co- efflc:lent of variation (CV) of the target Y ‘

var(Y) Z(}’l ), where § = Nzy‘

Step-3 L

Parent node

f<split

: | % DVt pe3ve
std(Y) = Jvar(Y) and CV(Y) = std(Y)/7 | g

# Find the optimal splits and optimal features
Calculate the variance reduction (VR) for every potential split of fon Y

NC E
VR(Y,f]-) =var(Y) — Z ;{ld var(child)
child

[) VR, Opnmag(y f;) =max{VR(Y,f),vS =s;;i=1to N -1}

j=1tod

”) VRS,optimal(Yl f}',aptima[) = max{VRs,optima[(YJf})lvj =1to d}

Take f_optimal and s_optimal at the root node

Step-4 Y

# Check the stopping criterion after splitting the node
A child node is a leaf node with leaf value as mean of the target values
in that child node
CV(child) < 10%
i no.of samples < 10
lf var{child) =0 |
: max. depth is reached |

!

Else repeat the process from step-1 to step-4 with the impure child nodes

Fig. 1.6 Flowchart of growing regression trees
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1.3 Literature Survey

This thesis aims to develop intelligent protection and control schemes for the power
system. Several authors have proposed different fault detection and classification (FDC)
protection schemes either for three-phase single/double circuit transmission lines, six-phase
transmission lines and transmission lines connected to renewable energy sources using
threshold-based methods, artificial intelligent methods (fuzzy logic, artificial neural networks
(ANNSs), support vector machines (SVMs), extreme learning machines (ELMs), decision
trees), and hybrid schemes. Similarly, for the frequency control of microgrid, different nature-
inspired or evolutionary algorithms are employed to optimize the PI/PID controller
parameters. The following subsections describe a brief literature review on transmission line
protection schemes and microgrid frequency control strategies implemented by different

authors.

1.3.1 Protection Schemes for Three-phase Single/Double Circuit

Transmission Lines

Several authors have proposed different fault detection and classification (FDC)
protection schemes either for the single circuit or double circuit transmission lines using
threshold-based methods [15—-19] and artificial intelligent methods [20-27], namely, fuzzy
logic, artificial neural networks (ANNSs), support vector machines (SVMs), extreme learning
machines (ELMs), decision trees, and hybrid schemes [28—31]. The threshold-based methods
in [15-19] depend on the voltage and/or current signals transformation. The protection of
parallel transmission lines with wavelet transform using two-terminal voltage and current data
is proposed in [15]. The FDC protection scheme for the shunt compensated double circuit
transmission lines (DCTL) with fast discrete S-transform in [16] and discrete wavelet
transform in [17] using the energy of the transformed current signals is proposed. Likewise,
the FDC protection scheme for the double circuit transmission lines in [18,19] is proposed
with the maximal overlap discrete wavelet transform and three-dimensional triangular fault
plane that uses the energy and standard deviation of the wavelets of the current signals. An
artificial intelligent FDC protection scheme based on the fuzzy inference system (FIS) is
proposed in [20] for the protection of a single-circuit transmission line only. The FDC
protection schemes utilizing ANN and discrete Fourier transform (DFT) or discrete wavelet

transform (DWT) viz., DFT-ANN in [21], protects the double circuit transmission lines from
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the common short circuit faults, and DWT-ANN in [22], protects from cross-country and
transforming faults. The DFT-ANN method uses the magnitude of the fundamental
component of voltage and current (MFCV and MFCC). The DWT-ANN method uses the
standard deviation of the sixth-level detailed coefficients of current signals. The Kalman
filtering approach based on the modular SVM using the voltage harmonics for the FDC of
faults on the DCTL with non-linear loads has been proposed in [23]. The Kalman filtering
technique is computationally expensive and may diverge if the initial estimate or the modelled
process is incorrect. In [24], an FDC scheme for a series compensated transmission line based
on the modular DWT-ELM has been proposed. Although the ELMs are robust with good
generalization ability, their performance is degraded when dealing with huge amounts of
training data. The data mining techniques, random forests in [25], decision trees in [26] and
[27], protect the FACTS compensated transmission lines, DCTL, and series compensated
DCTL, respectively. These methods [25-27] use the instantaneous voltage and current signals
(for fault detection only), DFT processed voltage and current data (for identifying the faults
during power swing situations), and the two-terminal voltage and current data for deriving the
input phase angle of the differential impedance of the lines, respectively. Hybrid protection
schemes, namely, a linear discriminant analyzer for the feature extraction in conjunction with
the random forest approach tuned by the cuttlefish optimization in [28] and particle swarm
optimization (PSO) optimized SVM in [29] or ANN in [30], are proposed for the protection
of single-circuit transmission lines only. The accurate performance of the PSO-based
protection schemes depends on the optimal values of the algorithm-specific parameters
(namely, W, CI, and C2: controls the movement, personal performance, and social
performance of the swarms, respectively). A fault classifier based on the supervised relevance
vector machine is proposed in [31] for the protection of series compensated transmission lines.

+ Research Gap: Most of the aforementioned research works reported earlier,
particularly for the protection of DCTL are training based artificial intelligent techniques.
They require huge sets of training data and proper selection/tuning of training parameters
for acquiring accurate FDC. Only a few papers have addressed different fault situations
and operating conditions for the performance evaluation of the protection scheme. No work
was reported earlier without training the protection module based on artificial intelligence

for the protection of DCTL.
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1.3.2 Protection Schemes for Six-phase Transmission Line

The acceptance of the six-phase transmission is vaguely encouraged due to the lack of
proper protection schemes to tackle the 120 different types of short circuit faults. The existing
protection schemes available for single/double circuit three-phase transmission systems are
not apt for the six-phase transmission system. The protection schemes developed for the
conventional three-phase transmission system either with distance relays or other artificial
intelligence-based techniques [32—34] can only utilize the voltage and current information of
three phases to detect/classify the fault. But, when these protection schemes are applied to the
six-phase line, the relay may or may not operate for all 120 fault combinations. It is reported
that a total of twenty-one conventional distance relays (six for phase-ground fault detection
and fifteen for phase-phase fault detection) are required for the complete protection of the six-
phase line [35]. Only a few works were reported for the protection of six-phase transmission
lines. The fault analysis of the six-phase system with sequence components and phase
coordinate method is presented in [36, 37] and fault detection based on negative sequence
currents is proposed in [38]. A fault detection and classification technique with discrete
Fourier transform (DFT) based ANN is proposed in [39, 40] for only six-phases to ground
faults and single-phase to ground faults respectively. A fault classification scheme for phase
to phase faults (2 — L faults) is implemented using voltage and current signals in [41] with a
DWT (Haar wavelet) based ANN approach. The protection for one conductor’s open faults
in a six-phase transmission system is proposed using ANN in [42]. A complete protection
scheme with 22 modular DFT based ANNs (11 — ANNs for FDC and 11 — ANNs for fault
location estimation) is presented in [43] which uses voltage and current signals for the
protection task. Fault zone identification and fault location estimation with modular ANNs
using DWT (db3 wavelet) pre-processed voltage and current signals are proposed [44]. In
[45], a hybrid protection scheme is implemented using the harmonic information of voltage
signals for FDC with 11 decision tree modules and 11 TLBO tuned ANN modules for fault
location estimation. The fuzzy logic-based FDC schemes are presented in [46, 47] using DFT
with voltage and current signals.

¢ Research Gap: The ANN-based protection schemes reported above have either
considered only one type of fault viz. single phase to ground, six-phase to ground, and
phase to phase faults or modular ANN methods for fault detection and classification.

Only a few works have reported the fault location estimation.
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1.3.3 Protection Schemes for Three-phase Transmission Lines Connected
to Renewable Energy Sources

Several authors have proposed different protection schemes to identify the faults on
transmission lines connected to renewable energy sources which include modified distance
protection, differential protection, pilot protection, and training based artificial intelligent
schemes. The pilot protection scheme utilizing currents at both ends of the line with a dynamic
time-warping algorithm reported in [48] is only for balanced faults and the pilot protection
scheme implemented in [49] requires synchronized voltage and current data for fault
impedance calculation using short line and distributed line models for wind power integrated
transmission lines. Similarly, a modified fast distance relaying scheme utilizing the short line
(R-L model) and Bergeron model of transmission line [50] and a modified polygonal distance
protection for improved zone-1 performance [51] are proposed for the wind farm connected
transmission line. Also, a modified distance protection in [52] utilizing local voltage and
current information for calculating line impedance and phase angle of fault impedance,
differential protection in [53] utilizing signed correlation and fault index comparison to detect
faults with the help of phase currents at both ends of the line, directional protection based on
high frequency in [54] with the help of two independent relays processing voltage and current
information available at ends of the line locally, and distance protection schemes employing
least squares estimation [55] and multiple signal classification algorithm [56] to extract
frequency components of voltage and current near to fundamental frequency are proposed by
different authors to detect faults on the transmission lines connected to wind farms. Distance
protection schemes for transmission lines connected to solar photovoltaic (PV) systems were
also reported viz., distance protection based on positive sequence network [57, 58] utilizing
either PV side or grid side voltage and current information, and improved/modified distance
protection based on fault impedance calculation in [59, 60] either utilizing
synchronized/unsynchronized voltage and current data. Artificial intelligence-based
protection schemes were also reported for the transmission lines connected to renewable
energy sources. An enhanced distance protection with the help of support vector machine-
based regression [61] for PV connected lines, ANFIS based fault detection only for wind farm
connected lines [62], fault detection/classification technique for wind farm connected lines
using transient monitoring index with support vector machine in [63] and in [64] maximal

overlap discrete wavelet transform with ANN for symmetrical fault detection only, and the
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intelligent protection methods [65, 66] for FACTS compensated line connected to wind farm
with deep convolution neural network using variational mode decomposition and random
forest classifier using intrinsic time scale decomposition are reported in the literature. Further,
PSO optimized thresholds for adaptive differential protection of transmission lines connected
to wind power systems are presented in [67, 68].

% Research Gap: The protection schemes reported in most of the above-mentioned
literature are hectic mathematical analysis-based distance/pilot/differential protection
schemes which either require single/double end synchronized/unsynchronized current
and/or voltage data for the protection task. On the other hand, the Al based protection
methods are reported which require massive datasets towards training the Al protection
modules for fault detection/classification considering different operating scenarios of the
system. Further, some protection schemes are implemented for the detection of

symmetrical or balanced faults only.

1.3.4 Frequency Control of Microgrid

The load frequency control (LFC) problem of an islanded microgrid (MG) is addressed
using various artificial intelligent-based PI/PID controllers that are proposed by different
authors. The parameters of the PID controller were optimized either by using a single artificial
intelligent technique or hybrid techniques. The genetic algorithm in [69], particle swarm
optimization (PSO) in [70], social spider optimization in [71], grey wolf optimization (GWO)
in [72], firefly algorithm in [73], harmony search optimization in [74], teaching learning based
optimization in [75], grasshopper optimization in [76], and cuckoo search optimization in [77]
are employed to tune the parameters of PID controller to control the frequency of an islanded
microgrid having various renewable energy sources and energy storage devices. Similarly, an
artificial neural network based PID controller in [78], an adaptive fuzzy PI controller in [79],
PSO optimized adaptive fuzzy PI controller in [80], a combination of GWO and PSO
optimized adaptive fuzzy PI controller in [81], and a hybrid of firefly and PSO algorithm

based PID controller in [82] are designed for the frequency control of an islanded microgrid.

In the control studies, the Al-optimized PID controllers are well suited for MG frequency
control applications. However, for certain operating scenarios, it has been observed that these
PID controllers have underperformed due to the difficulty in finding an optimal operating

state. This underperformance is mostly caused by an improper offset between the derivative
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and integral gain components. A PI controller can minimize the system’s error during the
steady state. If the operator has increased the integral gain component the steady state error is
minimized. However, the system exhibits undesirable behaviour during the transient state.
The system's stability and speed are reduced by the dominant integral component. Similarly,
the dominant PD component improves the system's transient response. But, the system's
steady-state response is disturbed.

Recently, the concept of multi-stage controllers has been implemented by several authors
due to their robust performance in regulating the frequency of an islanded MG or multi-MG
with renewable energy sources and energy storage systems. The multi-stage PID (MPID)
control structures were proposed by different authors to tackle the frequency control problem.
A hybrid of whale and pattern search algorithms in [83], fuzzy tuned multi-stage PID and
fractional order multi-stage PID controllers optimized with grasshopper optimization [84] and
future search algorithms [85], chaotic crow search algorithm for fuzzy PD-TID controller in
[86], and salp swarm optimization for PI-PD controller in [87] are proposed by different

authors to control the frequency of microgrid.

% Research Gap: From the above literature, it is understood that the regulation of
frequency of MG either having RES or ESS (energy storage systems) in islanded mode
is achieved with different controller structures whose parameters are optimized with a
variety of swarm intelligent techniques. The performance of these techniques mainly
depends on the choice of specific parameters of the algorithm and the improper choice
may roll the solution towards local optimum values. Although the controller’s approach
based on fuzzy logic or fractional order calculus is exhibiting better performance but at
the cost of optimizing the structure of the fuzzy inference system or the fractional order
system parameters along with controller gain constants. Also, from the literature, it was
observed that controlling the frequency of an islanded MG having RES and PHEVs with

an MPID controller is rarely investigated.

1.4 Research Gaps and Motivation
1.4.1 Research Gaps

The research gaps mentioned at the end of each subsection are summarized below:
e From the literature of Section 1.3.1, it is observed that, protection schemes reported

for the three-phase single or double circuit transmission lines have implemented the
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training based artificial intelligent techniques that require extensive training datasets
with at least two protection modules for the complete protection of the line. Also,
proper tuning and selection of algorithm specific training parameters play a vital role
in achieving accurate performance of the protection jobs.

e From the literature of Section 1.3.2, it is observed that, ANNs were successfully
implemented for the protection of six-phase transmission lines. But either the
protection schemes developed were only for one type of fault (6-LG or 1-LG or 2-L
faults) or the modular ANN concept was implemented for FDC of all types of faults.

e From the literature of Section 1.3.3, it is observed that, the training based artificial
intelligent protection schemes or modified distance protection schemes involving
hectic mathematical analysis are majorly reported for the fault detection on the
transmission line connected with the renewable energy sources.

e From the literature of Section 1.3.4, it is observed that, for controlling the frequency
of an islanded microgrid having RES and PHEVs with a multi-stage PID controller
is rarely investigated. Further, the selection of appropriate optimal techniques for

modifying the control parameters is crucial to improvise the MG’s dynamic response.

1.4.2 Motivation

Following the research gaps, the motivations for this thesis are listed below:

e Todevelop an artificial intelligent protection scheme i.e. free from training of the module
for the protection of three phase double circuit transmission lines and also suitable for
single circuit operation.

e To develop an artificial intelligent protection scheme of a single module for six phase
transmission line that can detect and classify all 120 types of short circuit faults. Also, a
fault location estimation approach for the six phase lines.

e To develop an artificial intelligent protection scheme i.e. free from the training of the
module for the protection of three phase transmission lines connected to renewable
energy resources viz. wind and solar power plants. To propose a fault location estimation
approach for such transmission lines.

e To control the frequency of an islanded microgrid having renewable energy resources
and plug-in hybrid electric vehicles (PHEVs) using a multi-stage PID controller whose

parameters are optimized with the help of nature inspired optimization algorithm. The
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NFL (No Free Lunch) theorem states that no single metaheuristic approach can solve all

engineering optimization issues and that there is always an opportunity for improvement.

1.5 Contributions of the Thesis

Following the motivations of the thesis to develop artificial intelligent protection and
control schemes/strategies towards the fine operation of the power system, four contributions

are presented in this thesis under the titles given below:

Contribution-1: Single Fuzzy Inference Based Fault Detection and Classification Protection

Scheme for Different Types of Short Circuit Faults on Double Circuit Transmission Lines.

Contribution-2: Mono ANN Module Protection Scheme and Multi ANN Modules for Fault

Location Estimation for a Six Phase Transmission Line Using Discrete Wavelet Transform.

Contribution-3: A Novel Protection Scheme for Transmission Lines Connected to Solar
Photovoltaic and Wind Turbine Farms Using Fuzzy Logic Systems and Bagged Ensemble

Learning.

Contribution-4: Frequency Control of an Islanded Microgrid with Multi-stage PID Control
Approach Using Moth Flame Optimization Algorithm.

1.6 Organization of the Thesis

The thesis is organized into six chapters. A brief discussion of each chapter is given below to

provide an overview of the thesis:

Chapter 1 outlines the growing demand for electrical energy globally and the crucial role of
transmission lines. It emphasizes the importance of protecting these lines and maintaining
grid frequency, especially in microgrids. This chapter introduces a brief about Al techniques
like fuzzy logic, neural networks, and decision trees and reviews their application in
transmission line protection for various line configurations and renewable energy integration.
It also covers Al-optimized PI/PID controllers for microgrid frequency control. Following the
discussion on research gaps and motivations, an overview of the thesis structure is presented

at the end of this chapter.
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Chapter 2 proposes an Al-based fault detection and classification system for double circuit
transmission lines using a single fuzzy inference module. It addresses the limitations of
conventional relays in protecting double circuit transmission lines, then details: 1) feature
extraction using discrete Fourier transform, ii) proposed scheme methodology, iii)
performance evaluation under various fault types, operating scenarios, and varying

parameters, and iv) comparison with other Al techniques and summary of the chapter.

Chapter 3 proposes an Al-based fault detection and classification scheme for six-phase
transmission lines using a single ANN module. It also proposes multiple ANN modules for
estimating the fault location in each phase. This chapter highlights the advantages of six-phase
lines and the complexity of their protection compared to three-phase systems. It considers a
six-phase line i.e. between the buses Springdale and McCalmont of Allegheny power system
and discusses the proposed method using discrete wavelet transform and neural networks.
The performance for various fault scenarios for 120 types of faults with varying fault

parameters is evaluated. The comparison results and summary are presented at the end.

Chapter 4 proposes a hybrid Al scheme (fuzzy system and bagged ensemble learner) for
protecting transmission lines connected to renewable energy sources (50 MW solar power
and 50 MW wind power). It addresses the limitations of traditional transmission line distance
protection methods and describes the simulated power system. The proposed scheme
combines: 1) feature extraction with discrete Fourier transform, ii) a fuzzy logic system for
fault detection and classification, and bagged ensemble decision trees for fault location
estimation. The proposed scheme’s performance is evaluated for various fault types under
different solar irradiations and wind speeds. The reliability of fault detection/classification
and location estimation modules is validated through the simulations with the help of the
confusion matrix and Chi-square statistical analysis test. Finally, this chapter presents

comparison results and concludes with a summary of the method.

Chapter 5 proposes a multi-stage PID (MPID) controller optimized by a moth flame
optimization (MFO) algorithm for frequency control in an islanded microgrid (Bella Coola
microgrid) with renewables and plug-in hybrid electric vehicles. It addresses the limitations
of conventional PID controller structure and discusses the mathematical models for microgrid
and MFO algorithm. The performance of the MFO algorithm is appraised with other meta-
heuristic techniques (PSO, GOA, and TLBO) in optimizing PID parameters. Later, the
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performance MFO-PID and MFO-MPID controllers is evaluated and compared under
different operating conditions of the microgrid. The impact of electric vehicles on frequency
control and microgrid stability through eigenvalue and root locus analysis is assessed. This

chapter concludes with a comparison and summary of the proposed controller.

Chapter 6 presents the overall conclusions of the proposed methods towards the protection
and control of power systems from the preceding chapters. This chapter also includes the
future scope of the research in the direction of protection of transmission lines and frequency
control of a microgrid or multi microgrids using further sophisticated artificial intelligent

techniques.

dkokokok
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Chapter 2

Single Fuzzy Inference Based Fault
Detection and Classification Protection
Scheme for Different Types of Short
Circuit Faults on Double Circuit
Transmission Lines
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2.1 Introduction

The vast extent of non-insulated transmission lines experience different weather
conditions that make them easily prone to stochastic fault conditions. The protection of double
circuit transmission lines (DCTL) with conventional distance relays is difficult due to the
mutual inductive coupling between the phases of the two circuits. Whenever a fault occurs on
one of the circuits, the fault current is also induced into the healthy phase(s) of the other circuit
of DCTL besides the faulty phase(s). So, the distance relay operation i.e., based on the voltage
and current measurements, may issue a false trip to the healthy phase(s) of the line(s). The
zero-sequence mutual impedance of the lines, fault path resistance, various faults, pre-fault
system conditions, and the effects due to infeed currents and shunt capacitances pose
problems to the distance relaying schemes [88—90]. The main aim of the transmission line
protection scheme is to identify and isolate the fault as quickly as possible to maintain the
stability of the system. The quick detection and classification of faults help the
repairs/maintenance crew to improve the service restoration time. A reliable protection
scheme ensures the safe and secure operation of the transmission network with minimal
interruption and early restoration of the quality power supply.

The present chapter proposes an artificial intelligence-based protection scheme with a
single FIS module for the FDC of faults on the DCTL. The proposed FIS based FDC
protection scheme is based on the simple fuzzy logic concept. It uses only the magnitude of
the fundamental frequency component of three-phase currents and zero sequence currents of
both the lines of the sending end bus that are pre-processed with DFT. The proposed FDC
protection scheme is implemented in the MATLAB/Simulink environment on 400 kV, 50 Hz,
300 km DCTL; it correctly detects and identifies the different fault types within one cycle
time (20 ms). The key advantages of the proposed protection scheme are:

e Require no training of the FIS module.
e No communication link (hence no communication delay as single-end data is used).
e Single FIS module suitable for single and double circuit operation.

e Reduced complexity of protection task as the simple fuzzy logic concept is involved.
2.2 Details of Double Circuit Power System Model

Fig. 2.1 shows the one-line diagram of the considered power system model. The

considered power system network is modelled and simulated in the MATLAB/Simulink
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environment. It consists of a three-phase double circuit transmission line of 400 kV, 50 Hz,
300 km long line that is fed from the three phase sources at both ends of the line [21]. The
transmission line is divided into three sections (section-1, section-2, and section-3) each 100
km in length. The two three-phase sources of 400 kV, 50 Hz having a short circuit capacity
of 1.25 GVA and X/R ratio of 10 are connected at the bus B1 (sending end bus) and bus B4
(receiving end bus). The three-phase source connected at the bus B4 represents Thevenin’s
equivalent source of the interconnected grid. A load of 100 kW and 100 kVar is connected at
bus B1. At bus B4, a load of 250 kW is connected. The distributed parameter model block
from MATLAB is used to implement the double circuit transmission line to address the effect
of the distributed shunt capacitance and mutual coupling of impedance between the lines of
the two circuits. The three-phase fault breakers are used to simulate the different types of
short circuit faults (symmetrical and unsymmetrical faults) with a particular fault inception

time and fault resistance. The system parameters and operating conditions are detailed in

Appendix — L.
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Fig. 2.1 One-line diagram of the considered double circuit power system model

2.3 Development of Proposed Protection Scheme with FIS for
FDC

In general, any protection scheme has broadly two stages: 1) feature extraction and ii)
the actual method of the protection scheme. In the present work, the DFT is used for the

feature extraction process and the fuzzy inference system is used for the protection scheme.
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2.3.1 Feature Extraction Process with DFT

The raw fault data of instantaneous voltage/current signals available at the relaying point
cannot better represent the fault signatures useful for the protection task as it is highly
oscillatory and transient in nature. Therefore, they should be discretized and pre-processed
for digital protection applications. The time-domain raw signal has to be transformed into a
frequency-domain signal to extract the useful features for relaying purposes using the signal
processing technique (DFT).

The three-phase instantaneous current signals of line-1 and line-2 available at the relaying
point (Bus B1 in Fig. 2.1) are used for the proposed protection scheme. To filter out the
higher-order harmonics in the recorded instantaneous current signals of line-1 and line-2, the
second-order low-pass Butterworth filter with a cut-off frequency of 480 Hz is used. The
filtered current signals are sampled at a 1 kHz sampling frequency according to the Nyquist
sampling theorem. The full cycle DFT is applied to the discrete current samples of line-1 and
line-2 to extract the magnitude of the fundamental frequency component of current signals.

The DFT X(k) of a discrete-time signal x(n) is given in Eq. (2.1)[91].

N-1
X[k] = %Z x(n)e_jzmk/N (2.1)
n=0

where x(n) is the discrete-time signal, k =0, 1, 2, 3, ..., N-I,n =0, 1, 2, 3, ..., N-1, and N is
the no. of samples per cycle.

The zero-sequence currents (ZSCs) are available only when the ground is involved in the fault
loop. So, the zero-sequence analyser from MATLAB is used to extract the ZSCs of both the
lines at bus B1 for ground faults detection/classification purpose. Therefore, the required
seven input features for the proposed FIS based FDC scheme are the magnitudes of
fundamental frequency components of the six phase currents (|/al|, |Ibl|, |Icl| of line-1 and

|la2|, |Ib2|, |Ic2| of line-2) and the sum of ZSCs of line-1 and line-2 (10| = |[01|+]102)).

2.3.2 Proposed FIS Based FDC Protection Scheme

The proposed protection scheme uses the fuzzy logic concept [8]. The fuzzy logic systems
are simple in structure, flexible, and easy to implement. The fuzzy logic system accepts any
type of data (vague or imprecise) and provides a precise solution with human-like reasoning.

They are independent of the mathematical model of the system and can solve non-linear
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models/problems without rigorous computational effort. The fuzzy logic concept is based on
the fuzzy set theory. It introduces the idea of partial true or partial false values. The operation
of the fuzzy logic system is based on the fuzzy rules framed using the simple “IF-THEN”
conditional arguments that maps the input and output fuzzy sets using the fuzzy linguistic
variables (i.e., represented with the membership functions). The functional operation of a
fuzzy inference system consists of three stages: 1) fuzzification, ii) fuzzy inference processing,

and 1ii) defuzzification.

In the present work, a single fuzzy inference system module is implemented using the
Fuzzy Logic Toolbox of MATLAB for the FDC of short circuit faults to protect the three-
phase DCTL. Fig. 2.2 and Fig. 2.3 depict the schematic diagram and the flowchart of the
proposed FIS based FDC protection scheme. It has seven inputs (+Y|lal|, +Y|Ibl|, +Y|Icl|, -
Yla2|, -Y|Ib2|, -Y|Ic2|, and |10|) and seven outputs (‘41°, ‘BI’, ‘C1’, ‘A2’, ‘B2’, ‘C2’ and
‘G’). The input features required for the protection task are obtained from the feature
extraction process i.e., detailed in Section 2.3.1. The FIS based FDC module outputs ‘47’
‘Bl’, ‘CI’ for line-1 and ‘42°, ‘B2°, ‘C2’ for line-2 are used to represent the healthy/faulty
phase(s) for the FDC task. The output ‘G’ is used to detect the ground faults. The output labels
“0” (to indicate the healthy condition) and “/ ” (to indicate the faulty condition) are used for

all the outputs (4i, Bi, Ci, and G, i=1, 2).
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Fig. 2.2 Block diagram of the proposed FIS based FDC protection scheme
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Fig. 2.3 Flowchart of the proposed FIS based FDC protection scheme

The input features obtained after the feature extraction process have been modified by
using the signal selector output to have a better understandability of the input features. Eq.
(2.2) specifies the signal selector output (Y) based on the threshold condition. A wide range
of simulation studies have been performed on the power system network shown in Fig. 2.1 by
simulating different types of faults with varying fault resistances and fault inception angles at

different fault locations for determining the threshold.

-1; |Ip1l] — |Ip2| < -3 A
Y =4 0,-3A<|Ipl|—|Ip2| <3 A ;wherep = a,b,c phases (2.2)
1; [Ip1| — |Ip2] > 3 4;
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The signal selector outputis “/ " or “-7 " if the fault is in line-1 or line-2. The signal selector
output is “0” if the system is healthy. The input features of line-1 are multiplied with the
signal selector output and the input features of line-2 are multiplied with the negative value
of the signal selector output. Thus, the product of signal selector output and input features
yields a positive magnitude for the actual faulty phases and a negative magnitude for the
healthy phases. The modified vector of input features in Eq. (2.3) is given as input to the FIS
based FDC protection module.

Modified vector of input features =

[+Y|Ial] +Y|Ibl] +Yl|Icl| —Y|la2| -—Y|Ib2] -—Y|Ic2| |I0]|]" (2.3)
where |10 = |I01] + |102].

The inputs and outputs of the proposed FIS based FDC protection module are fuzzified
using triangular membership functions. It is generally represented by the three vertices of the
triangle. Although the triangular membership functions are chosen based on the trial-and-
error basis method by conducting a series of simulations with varying extreme fault
conditions, it can easily detect even the smallest changes in the input and output. Table 2.1
presents the information on input and output membership functions. Each of the input and
output variable space is grouped under two fuzzy linguistic variables (two membership
functions) using the triangular membership functions. The input linguistic variables ‘Fault
(F)’ and ‘No-Fault (NF)  are used for the input variable +Y|Ipi|. The ‘+’ sign is for line-1
input features and the -’ sign is for line-2 input features. The input linguistic variable ‘Absent
(4)’ and ‘Present (P)’ are used for the input variable |/0|. Similarly, the output linguistic
variables ‘LOW (L)’ and ‘HIGH (H)’ are used for the output variables Ai, Bi, Ci, and G (i =
1, 2).

Table 2.1 Input and output membership functions

Input Input Linguistic Variable Output Output Linguistic Variable
Variable [Triangular Membership Variable [Triangular Membership
Function] Function]
No-Fault (NF) LOW (L)
+Y|Ipi| Pi
Fault (F) HIGH (H)
Absent (4) LOW (L)
10| G
Present (P) HIGH (H)
where p=a, b, c and i=1, 2 where P=A4, B, C and i=1, 2
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Table 2.2 presents the rule base or framed rules for the proposed FIS based FDC
protection scheme. A total of 22 fuzzy rules are framed for the proposed protection scheme.
The first row and column in Table 2.2 represent the input linguistic variables and all other
rows and columns represent the output linguistic variables. For example, the rule
corresponding to the second row and column with i = 7 is “If Y|lal| is ‘No-Fault’ and Y|IbI|
is ‘Fault’ and Y|Icl| is ‘No-Fault’ and |10| is ‘Present’ then Al is ‘LOW’ Bl is ‘HIGH  Cl is
‘LOW’ G is ‘HIGH’”. Similarly, all other rules are framed. Depending on the fault current
the input is directly mapped to the output based on the fired fuzzy rules. The FIS provides the
degree of fault severity as a crisp value after the defuzzification process. The centroid method
of defuzzification is used. The seven outputs of the FIS based FDC module are given to the
comparator block to have the binary outputs in each phase (“0” and “1”). The trip signal to
the circuit breakers of line-1/line-2 is generated by the “OR " operation of the FIS based FDC
module binary outputs of line-1/line-2. When any short circuit fault occurs on the line, the
outputs of FIS based FDC protection module shows “HIGH” with “1” for faulty phase(s) and
the healthy phases shows “LOW” with “0”, indicating the FDC.

Table 2.2 Rule base for the FIS based FDC

Input Linguistic
Variables
(xY\|lci|, |10]) — [NF, A] [NF, P] [F, 4] [F, P]
(xY\|lai|, £Y|1bi|), i=1,2
!
[NF, NF] [L L L L] - - [L, L, H, H]
[NF, F] - [LHLH [LHHL [HLHH]
[F, NF] - [H L L H [HLHL [HLH H
[F. F] [H HLLH [HHLH [HHHL] -

where NF = No-Fault, F = Fault, 4 = Absent, P = Present, L = LOW, H = HIGH

2.4 Results and Discussion

The performance/response of the proposed FIS based FDC protection scheme is tested for
all the ten types of short circuit faults on the transmission lines and different operating
conditions of the system shown in Fig. 2.1 with varying fault parameters viz., fault location

(Ly) (1 km to 299 km), fault inception angle (@) (0° to 360°), and fault resistance (Ry) (0 Q to
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200 Q). The proposed FDC scheme response is also evaluated for cross-country faults,
evolving faults, and high impedance faults (HIF). Further, the performance has been evaluated
under current transformer (CT) saturation, noisy environment, and fault during power swing
conditions. The following subsections discuss the simulation test results and comparison

results of the proposed FDC protection scheme.
2.4.1 Test Results for Variation in the Fault Parameters

The faults on the transmission lines are random in nature, i.e., they can occur at any
point on the transmission lines at any instant with any fault resistance. The performance of
the proposed FDC scheme is evaluated for the fault parameter variations. Fig. 2.4 (a) and (b)
represents the three phase instantaneous currents of line-1 and line-2 of the sending end bus
(Bus B1) for a single line to ground (LG) fault in line-1 (AG-1) simulated at a fault location
(Ly) of 250 km from the bus B1 with fault resistance (Ry) of 50 Q and fault inception angle
(D) of 0° (fault inception time, 7y= 60 ms). Fig. 2.4 (c) depicts the input features (magnitude
of fundamental component and zero sequence currents) extracted using the feature extraction
process. From Fig. 2.4 (¢), it can be observed that there is also a rise in the current magnitude
of the healthy phase along with the faulty one due to the zero sequence mutual impedance of
the lines. Fig. 2.4 (d) and (e) depicts the response of the proposed FIS based FDC protection
scheme that correctly detects and classifies the fault, and issues a trip signal in 4 ms after the

occurrence of the fault.
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Fig. 2.4 (a) and (b) Current waveforms of line-1 and line-2 during the LG fault in line-1 (AG-
1), (¢) MFCCs and ZSCs of line-1 and line-2, (d) FIS based FDC outputs, and (e) Trip signal

to circuit breakers
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Table 2.3 gives the test results of the proposed FIS based FDC protection scheme with
variations in the fault parameters.

Table 2.3 Test results for variations in the fault parameters

S. Fault Parameters Fuzzy Inference System Based Instant of Fault Detection and
No Fault Detection and Classification Classification Time (ms)
Outputs
Fault Type-Line no, Faut A B C A B C G A B C A B C G
Location (km), Fault Resistance =1 1 1 2 2 2 1 1 1 2 2 2
(€2), Fault Inception Angle (Time
of fault (ms))
1 | AG-1, 80, 50, 0° (60) 1 o 0 0 o0 O 1 63 - - - - - 63
2 BCG-1, 30, 120, 90° (65) 0 1 1 0 0 O 1 - 68 70 - - - 68
3 | AC-1, 170, 10, 45° (62.5) 1 0 1 o o0 0 o0 67 - 67 - - - -
4 | ABC-1, 280, 20, 180° (70) 1 1 1 o o0 0 0 75 75 8 - - - -
5  BG-2,210, 200, 150° (68.33) 0O 0 0 O 1 0 1 - - - - 73 - 73
6  ABG-2, 299,200, 0°(60) 0O 0 O 1 1 0 1 - - - 717 - 079
7 | BCG-2, 165, 150, 300° (76.67) o 0 0 O 1 1 1 - - - - 8 82 80

2.4.2 Test Results for Remote End Fault with High Fault Resistance and

Close-in Faults

Unlike the conventional distance relay which depends on the voltage and current
measurements at the relay point, the proposed protection scheme is dependent only on the
current signals at the relaying point. Fig. 2.5 (f) depicts the response of the proposed FIS based
FDC protection scheme for the remote end fault (LLG fault in the line-2 (ABG-2)) simulated
at Ly= 299 km from the bus B1 with R,= 200 Q and @ = 0° (7y= 60 ms). The proposed FDC
protection scheme can detect and classify the fault within one cycle time of fundamental
frequency.

The performance of the proposed protection scheme is evaluated for remote end and
close-in faults and the test results are depicted in Table 2.4. In Table 2.4, the fault parameter
column gives the details of the simulated fault type in line-1/line-2 with different fault
locations, fault resistances, and fault inception angles. The proposed protection scheme

detects remote end faults and close-in faults effectively.
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Fig. 2.5 (a) and (b) Current waveforms of line-1 and line-2 respectively for the remote end
fault, ABG-2 fault (Ly=299 km, R=200 Q and @ = 0° (Tr= 60 ms)), (¢), (d), and (e) MFCCs
for phase-A and phase-B, and ZSCs respectively for line-1 and line-2, and (f) FIS based FDC

outputs

Table 2.4 Test results for remote end and close-in faults

S.N Fault Parameter Fuzzy Inference System Based Fault Instant of Fault
0 Detection and Classification Outputs Detection and
Classification Time (ms)
Fault Type-Line no., Fault Location @Al Bl Cl A2 B2 (2 G Al Bl  Cl1 G
(km), Fault Resistance (L), Fault
Inception Angle (Time of fault (ms))

1 | AG-1,1,5,0°(60) 10 0 0 00 1 62 - | - 62 | Close-

2 | ABG-1,5, 15,45°(62.5) 1 1 0 0 0 o0 1 64 66 | - 64 m
Faults

3 ABC-l, 15,20, 90° (65) 11 1 0 o0 0 0 66 67 @ 66 -

4 | AC-1,20, 10,270° (75) 1 0o 1 0 0 o0 0 77 - 77 -

5 AG-1,299, 180, 0° (60) 1o 0o 0 010 1 75 - - 75 | Remote

6  ABG-1,295, 190, 45° (62.5) 1 1 0 0 0 0 1 74 82 - 74 End
Faults

7 AB-1,298,25,90° (65) 1 1 0 0 0 0 0 79 79 - -

8 | ABC-1,293, 20, 270° (75) 1 1 1,0 0 0 0 87 82 | 82 -

2.4.3 Test Results for Cross-country and Evolving Faults

The cross-country fault (CCF) is defined as the earth faults occurring on different phases
at different locations of the same circuit or different circuits at different instants or the same
instant of time. The fault which incepts in one phase and spreads/creeps to the other phases
of the same circuit after a few cycles at the same location is called an evolving fault (EF) [18].
The proposed FDC protection scheme can detect and classify the cross-country and evolving

faults as LG, LLG, LL, and LLL faults. As per the proposed FDC scheme, if the difference in
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the FDC time of any two phases is greater than the half-cycle time (10 ms), then the detected
fault is an evolving fault. Otherwise, it is a common short circuit fault. Fig. 2.6 (b) depicts the
test result for a cross-country fault with fault-1 (AG-1 in line-1) and fault-2 (CG-2 in line-2)
simulated at Ly= 30 km from bus B1, with Ry= 100 Q, and & = 0° (7y= 60 ms). The FDC time
for the cross-country fault is within half-cycle time (10 ms), as depicted in Fig. 2.6 (b). Fig.
2.7 (b) depicts the test result for the evolving fault with fault-1: LG fault in the line-1 (AG-1)
at Ly= 150 km with Ry=50 Q and & = 0° (7y= 60 ms) and fault-2: LG in the line-1 (BG-1) at
L= 150 km with Ry= 50 Q and @ = 0° (Ty= 80 ms). The FDC time for the evolving fault is
within 5 ms time after the fault inceptions and the difference in FDC time of the faulty phases

is greater than 10 ms time, as shown in Fig. 2.7 (b).

|Ta1)
- = |la2|
161

- |Ib2|
[Zc1|
== |Ie2]
—|101|
1- - 1102

2000F 0 N m e e e e e - - - - R

1500F

1000 F

Status of Output

500F T

MFCC and ZSC of line-1 and line-2 (A)

0.15 0.2

Time (s)

(a)
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The performance of the proposed protection scheme is evaluated for the cross-country and
evolving faults. The test results are depicted in Table 2.5 and Table 2.6 with fault parameters
of fault-1 and fault-2 in the first two columns and the FIS based FDC outputs along with the

instant of the FDC time in the third column.

Table 2.5 Test results of the proposed protection scheme for cross-country faults

S. Cross-Country Faults Fuzzy Inference System Based Fault Detection and
No. Fault-1 Fault-2 Classification Outputs
(Instant of Fault Detection and Classification Time
(ms))
Fault Type-Line no., Fault | Fault Type-Line no., Fault = Al Bl Cl A2 B2 C2 G
Location (km), Fault | Location (km), Fault
Resistance (Q), Fault | Resistance (Q), Fault
Inception Angle (Time of | Inception Angle (Time of
fault (ms)) fault (ms))
1 AG-1, 7,50, 0° (60) BG-1, 55, 50, 0° (60) 1 1 0 0 0 0 1
(63) (©2) () () ) (=) (62
2 | BCG-1, 50, 150, 0° (60) AG-1, 250, 10, 0° (60) 1 1 1 0 0 0 1
(66) | (63)  (69) () ) () (64)
3 AG-1,98,90,45°(62.5) CG-1, 205, 60, 45° (62.5) 1 0 1 0 0 0 1
65 & 79 ) ) (65)
4 | CG-1, 170,75, 45° (62.5) AG-1, 258, 200, 45° (62.5) 1 0 1 0 0 0 1
a6 () (68 () ) () (67
5 AG-1, 1, 200, 90° (65) CG-1, 299, 5, 90° (65) 1 0 1 0 0 0 1
a6 T ) ) @0
6 | AG-1, 1,200, 90°(65) CG-1, 299, 200, 90° (65) 1 0 1 0 0 0 1
7 6 @H () ) G 3
7 | CG-1, 65, 15, 180° (70) BG-1, 165, 15, 180° (70) 0 1 1 0 0 0 1
G a3 T 6 ) (ORRENCL)!
8 | AG-1, 190, 40, 270° (75) CG-1, 260, 50, 270° (75) 1 0 1 0 0 0 1
G G T O ) ) (79)
9 | AG-1, 80,30, 0° (60) BG-2, 110, 30, 0° (60) 1 0 0 0 1 0 1
63 O] () | (63) ) (63)
10 = BG-1, 10, 100, 0° (60) CG-2, 290, 100, 0° (60) 0 1 0 0 0 1 1
(ORI NENC) Q) G adH (63
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Table 2.6 Test results of the proposed protection scheme for evolving faults

S. Evolving Faults Fuzzy Inference System Based Fault Detection and
No. Fault-1 Fault-2 Classification Outputs
(Instant of Fault Detection and Classification Time (ms))

Fault Type-Line no., Fault | Fault Type-Line no., Fault = Al Bl Cl A2 B2 C2 G
Location (km), Fault | Location (km), Fault
Resistance (Q), Fault | Resistance (Q), Fault
Inception Angle (Time of | Inception Angle (Time of

fault (ms)) fault (ms))

1 AG-1, 20, 50, 0° (60) CG-1, 20, 50, 0° (80) 1 0 1 0 0 0 1
(63) (OREIC) IO Q)] () | (64

2 BG-1, 90, 100, 0° (60) CG-1, 90, 100, 0° (80) 0 1 1 0 0 0 1
() 63 @) ) Q)] () | (63)

3 ABG-1, 150, 40, 90° (65) CG-1, 150, 40, 90° (85) 1 1 1 0 0 0 1
(ORI ) I ) B O] Q)] (- @y

4 | AC-1, 190, 10, 90° (65) BG-1, 190, 10, 90° (85) 1 1 1 0 0 0 1
(700 O | (70) ) O] () 0

5 BG-1, 245, 150, 180° (70) AG-1, 245, 150, 180° (90) 1 1 0 0 0 0 1
%) (82 O] ) O] () (2

6 CG-1, 280, 200, 270° (75) BG-1, 280, 200, 270° (95) 0 1 1 0 0 0 1
() (102)  (88) ) O] ) | (8%)

7 AG-1, 110, 200, 300° (76.67) | BG-1, 110, 200, 300° (96.67) 1 1 0 0 0 0 1
(85) | (102) = () ) O] () (85

8 BC-1, 135, 15, 0° (60) AG-1, 135, 15, 0°(80) 1 1 1 0 0 0 1
(85) | (70) | (70) ) O] () (Y

9  AG-1, 50, 25, 0°(60) BC-1, 50, 25, 0° (80) 1 1 1 0 0 0 1

(63) (83 | (8%) = () ) () | (63

2.4.4 Test Results for Power Swing (PS) Conditions and Fault During Power
Swing (FPS) Conditions

One of the reasons for the stressed conditions of the power system is the power swing.
The variations or oscillations in the power flow angle is called power swing. The power
swings are due to the sudden switching on/off of heavy loads, loss of lines or generators, loss
of frequency synchronism, and the clearance of short circuit faults. The power swing blocking
(PSB) unit provided with the distance relays avoids unnecessary tripping of the lines and
blocks the conventional distance relay operation during the power swings [19, 92, 93]. When
a fault occurs during the power swing, the relay may not detect the fault. A protection scheme
should be good enough to block the trip signal during a power swing condition and issue the

trip signal for a fault during the power swing condition. The proposed protection scheme
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performance has been evaluated for the power swing condition and fault during a power swing
condition. For this case, the generator model from MATLAB is used along with the
transformer with the parameters available in [92]. Fig. 2.8 (a) depicts the current waveform
during power swing conditions due to the switching of heavy load (500 MW) at bus B4 at 0.6
s. Fig. 2.8 (b) presents the FIS based FDC outputs with ‘LOW’ or ‘0’ status for the power

swing condition.
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Fig. 2.8 (a) Current waveforms of line-1 during power swing condition due to the switching

of heavy load at 0.6 s and (b) FIS based FDC outputs

The proposed FDC protection scheme performance is also evaluated for the fault during
the power swing condition. The current waveform for fault during power swing condition is
depicted in Fig. 2.9 (a). The power swing is because of the loss of line-2 at an instant of 0.7 s
due to the clearance of ABG-2 fault (Ly= 150 km, Ry= 50 Q, and T7y= 0.6 s) and the fault is
LG fault in the line-1 (AG-1) at Ly=50 km, Rr=0.01 Q, and 7y= 2 s. During the single circuit
operation, line-1 carries the total power of the system due to the loss of line-2. So, the line-1
inputs applied to the FIS based FDC module are reduced to half to avoid tripping during
power swing conditions. Fig. 2.9 (b) presents the FIS based FDC outputs for fault during
power swing conditions. It is clear from Fig. 2.9 (b) that the proposed FDC protection scheme
can detect/classify the fault correctly for fault during power swing conditions. All the FIS
based FDC outputs are “LOW” with “0” during power swing mode and “HIGH” with “I1”

for the fault during the power swing mode for faulty phases.
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Fig. 2.9 (a) Current waveforms of line-1 for a fault during the power swing case at 2 s and

(b) FIS based FDC outputs

2.4.5 Test Results in the Presence of Noisy Environment

The recorded current signals at the relaying point may be contaminated with noise due to

the integrated circuits in the data acquisition devices and other data pre-processing devices in

the power system network. To evaluate the performance of the proposed FDC protection

scheme in a noisy environment, the white Gaussian noise with different signal to noise ratios

(SNR in dB) 20, 30, 40, 50, and 60 dB is added in current signals. Fig. 2.10 depicts the

proposed protection scheme response for the LLG fault in the line-1 (ABG-1, Ly= 50 km, Ry
=100 Q, and @ = 0° (at 60 ms)) with the SNR of 30 dB.
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Fig. 2.10 (a) and (b) Current waveforms of line-1 and line-2 respectively during the LLG
fault in the line-1 (ABG-1) with the SNR of 30 dB, and (c) FIS based FDC outputs
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Table 2.7 depicts the tabulated test results of the proposed protection scheme response for
different fault types in line-1 at Ly= 50 km from the bus B1 with Ry= 100 Q and @ = 0° (at
60 ms) in the presence of a noisy environment. As seen in Table 2.7, the proposed FIS based
FDC protection scheme can detect and classify the faults within a half-cycle time of

fundamental frequency.

Table 2.7 Test results of the proposed FDC protection scheme in the presence of noise

S. Signal to Noise Fault Fuzzy Inference System Based Fault Instant of Fault Detection and
No. Ratio Type Detection and Classification Outputs Classification Time (ms)
(SNR in dB)

Al ' Bl CI A2 B2 C2 | G Al Bl CI A2 B2 C2 G

1 20 AG-1 1 0 0 0 0 0 1 63 - - - - - 63
2 ABC-1 1 1 1 0 0 0 0 63 | 63 | 68

3 30 ABG-1 1 1 0 0 0 0 1 63 | 62 - - - - 62
4 AB-1 1 1 0 0 0 0 0 63 | 63

5 40 AG-1 1 0 0 0 0 0 1 63 - - - - - 63
6 ABG-1 1 1 0 0 0 0 1 63 | 63 - - - - 63
7 50 BG-1 0 1 0 0 0 0 1 - 63 - - - - 63
8 ABC-1 1 1 1 0 0 0 0 63 | 63 | 68

9 60 BCG-1 0 1 1 0 0 0 1 - 63 | 69 - - - 63
10 CG-1 0 0 1 0 0 0 1 - - 68 - - - 68

2.4.6 Test Results for High Impedance Faults (HIF)

The high impedance faults are concerned with the problems like arcing, fire, and
electrocution. The HIF occurs when the live power conductor touches the tree branches or
comes in contact with surfaces like asphalt, rocks, sandy soils, and concrete structures like
buildings. A simplified Emanuel’s HIF model [94-96] shown in Fig. 2.11 (¢) is implemented
to simulate the HIF. It consists of two anti-parallel diodes (D, — positive half cycle diode and
D, — negative half cycle diode) with fault resistances R,, R, and the DC voltage sources V),
V. to represent the inception of the arcing voltages of air in the soil and/or between trees and
the line. During the HIF simulation, the unequal values of R,, R, and V), V, are varied
randomly in the range of 200 Q to 1000 Q and 100 kV to 200 kV respectively [97]. Fig. 2.11
(d) depicts the test result of the proposed FDC protection scheme for the high impedance fault
on the phase-Al of the line-1 (HIF-A1) at Ly= 90 km from the bus B1 (7y= 60 ms). The FDC
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time by the proposed FDC protection scheme is 13 ms for the HIF-A1 as depicted in Fig. 2.11
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Fig. 2.11 (a) and (b) Currents waveforms of line-1 and line-2 for HIF-A1 respectively, (¢)

Simplified Emanuel’s HIF model, and (d) FIS based FDC outputs

Table 2.8 presents the test results of the proposed FDC protection scheme for the HIF at

different locations.

Table 2.8 Test results of the proposed protection scheme against high impedance faults

S. High Fault Fuzzy Inference System Based Fault Detection Instant of Fault Detection and Classification
No  Impedance Location and Classification Outputs Time (ms)
Fault (km)
at Al Bl C1 A2 B2 Cc2 G Al Bl Cl A2 B2 Cc2 G
T;= 60 ms
1 HIF-A1 1 1 0 0 0 0 0 1 64 - - - - - 64
2 HIF-Al 10 1 0 0 0 0 0 1 64 - - - - - 64
3 HIF-C1 70 0 0 1 0 0 0 1 - - 76 - - - 76
4 HIF-Al 90 1 0 0 0 0 0 1 73 - - - - - 73
5 HIF-BI 150 0 1 0 0 0 0 1 - 72 - - - - 72
6 HIF-A1 250 1 0 0 0 0 0 1 74 - - - - - 74
7 HIF-B1 275 0 1 0 0 0 0 1 - 77 - - - - 77
8 HIF-Al 290 1 0 0 0 0 0 1 76 - - - - - 76
9 HIF-C1 295 0 0 1 0 0 0 1 - - 80 - - - 80
10 HIF-A1 298 1 0 0 0 0 0 1 79 - - - - - 79
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2.4.7 Test Results Under the Effect of Current Transformer Saturation

The high amount of dc offset current in the fault current is responsible for the CT
saturation. The contribution of dc offset current is maximum in the fault current when the
fault occurs at the zero fault inception angle. The reduced amount of the measured CT
secondary current is due to the CT saturation. It is erroneous because it is not the facsimile of
all the primary current. The distance relays may underreach/overreach due to the blinding of
the relay caused by the CT saturation [21, 98, 99]. To consider the CT saturation effect on the
proposed protection scheme performance, the saturated current transformers from MATLAB
are used for the three-phase current measurements with the ratings of 25 VA and a CT ratio
of 2000 A/5 A which are assumed to saturate at 2 pu. Fig. 2.12 (a) depicts the three-phase
instantaneous currents of line-1 under CT saturation for the LG fault in the line-1 (AG-1) (L
=1km, Rr=5 Q, and @ = 0° (Tr= 60 ms)). Fig. 2.12 (b) depicts the FIS based FDC outputs
detecting the fault in 2 ms time after the fault inception. It is evident from Fig. 2.12 (b) that

CT saturation does not affect the proposed FDC protection scheme.
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Fig. 2.12 (a) Currents waveforms of lines-1 for the LG fault in the line-1 (AG-1) under CT
saturation and (b) FIS based FDC outputs under CT saturation

The FIS based FDC scheme response for different faults with CT saturation is tabulated in
Table 2.9.
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Table 2.9 Test results of the proposed protection scheme under current transformer saturation

S. Fault Parameter Fuzzy Inference System Based Fault Instant of Fault Detection and
No Detection and Classification Outputs Classification Time (ms)

Fault Type-Line no., Fault Al Bl | Cl A2 B2 C2 G Al Bl Cl1 A2 B2 C2 G
Location (km), Fault Resistance

() and [Fault Inception Angle

= 0° (Time of fault = 60 ms)]

1 AG-1, 1,5 1 0 0 0 0 0 1 62 - - - - - 62
2 | CG-1,5,100 0 0 1 0 0 0 1 - - 68 - - - 68
3 | BC-1,10, 10 0 1 1 0 0 0 0 - 65 | 65

4 | BG-1,15,15 0 1 0 0 0 0 1 - 62 - - - - 62
5 | AG-2,150,0.01 0 0 0 1 0 0 1 - - - 63 - - 63
6 | BCG-2,150,0.01 0 0 0 0 1 1 1 - - - - 63 71 @ 63
7 | AB-2,150,0.01 0 0 0 1 1 0 0 - - - 63 | 63

8 | ABG-1,297,0.01 1 1 0 0 0 0 1 64 | 67 - - - - 67
9 | BG-1,299,0.01 0 1 0 0 0 0 1 - 73 - - - - 73
10 = ABC-1,299,0.01 1 1 1 0 0 0 0 66 | 66 71 - - - -

2.4.8 Test Results for the Overall Performance

The overall efficacy of the performance of the proposed FIS based FDC protection
scheme for all the ten types of short circuit faults is evaluated. The fault parameters tabulated

in Table 2.10 are considered for the common short circuit fault simulation studies.

Table 2.10 Variation in the fault parameters considered

S. | Fault Parameter Variation of Fault Parameter
No.
1 Fault location (km) 1-299 km with an increment of 4 km (1, 4, 8, ..., 99, 101, 104, 108, ...,

199, 201, 204, 208, ..., 299 km, a total of 156 locations with 78 locations
in each line)
2 Fault resistance (Q2) 0.01, 50, 100, 150, and 200 Q (5-Fault resistances)

3 | Fault inception angle (®) @ 0°, 45° and 270° (3-Fault inception angles)

4 | Fault type All ten common short circuit faults (10-Fault types)
Line to ground: AG, BG, and CG
Line to line: AB, BC, and CA
Line to line to ground: ABG, BCG, and CAG
Line to line to line: ABC
Therefore, a total of 23,400 different fault cases are simulated and tested (156 * 5 * 3* 10 =23, 400)
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The FDC accuracy is defined as the ratio of the total number of correct fault detections
to the total number of correct and false detections. The average accuracy for FDC of the short
circuit faults by the proposed FDC protection scheme is 99.7535%. The individual FDC
accuracies for the LG, LL, LLG and LLL are 99.9145%, 95.7264%, 99.4586%, and 99.9145%
respectively.

Fig. 2.13 (a), (b), and (c) depicts the individual response times of the FDC outputs ‘41", 'B1’,
and 'C'for triple line fault cases shown in Table 2.10 for the section-1, section-2, and section-
3 of the line-1. Fig. 2.13 (d), (e), and (f) represent the difference in the response time of any
two FDC outputs and the ‘AND’ operation response time of the FDC outputs. It is observed
from Fig. 2.13 that the FDC response time is less than 12 ms for most of the faults and the
difference in the response time of any two FDC outputs is less than half-cycle time (10 ms).
For all the simulated fault cases shown in Table 2.10, the FDC response time results are
similar to those shown in Fig. 2.13. However, the difference in response time of any two FDC
outputs is zero for the line to line faults. The FDC response time for all the common short

circuit fault types is less than one cycle time by the proposed protection scheme.
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Fig. 2.13 (a), (b), and (c) Individual response times of the FDC outputs for triple line fault
cases in the section-1, section-2, and section-3 of the line-1, (d), (e), and (f) Difference in the
response time of any two FDC outputs and also the AND operation of the responses for the

triple line faults cases of the line-1

2.4.9 Test Results Under Various Operating Conditions of the System
The operating conditions of a real power system network are not ideal all the time because

of its complex structure and nature. The operating voltage, frequency, power flow angles, and
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transmission line parameters (resistance, inductance, and capacitance) are not constant all the
time. They vary depending on the system conditions or other external factors. The reasons for
the variations in the ideal operating conditions of the power system are: 1) the switching of
the generators or loads causes the variations in the ideal operating voltage, ii) to match the
load demand and power generation the power flow angles are varied, and iii) the variations
of the transmission line parameters are due to the ageing effect, corrosion, and degradation of
the conductor because of the weather and environmental conditions. The performance of the
proposed FDC protection scheme has been evaluated for various operating conditions and the
results are depicted in Table 2.11. The operating voltage and frequency are varied in the range
of £5% of the nominal values, the power flow angle (40) is varied between 5° and 40°, the
short circuit capacity (SCC) and X/R ratio of the sending end source are varied £250 MVA
and 10 to 60 respectively, and the transmission line parameters are varied in the range of

+10% of the actual values.
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Fig. 2.14 (a) and (d) Current waveforms of line-2 for the LLG fault in the line-2 (ABG-2)
without and with frequency variation of -2.5%, (b) and (e) Current waveforms of line-1 for a
triple line fault in the line-1 (ABC-1) without and with power angle variation (40) of 40°, (c)
and (f) Current waveforms of line-1 for the LLG fault in the line-1 (BCG-1) without and with
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transmission line parameters variation of -10%, (g), (h), and (i) FIS based FDC outputs for

the cases in (d), (e), and (f) respectively

Table 2.11 Test results of the proposed FDC protection scheme under various operating

conditions
S. Variation in Fault Type-Line no., Fuzzy Inference System Based Fault Detection and Classification
No. Operating Location (km), Fault Resistance = Outputs (Instant of Fault Detection and Classification Time (ms))
Conditions (Q), Fault Inception Angle (Time = Al Bl Cl A2 B2 C2 G
of fault (ms))
Voltage Variation
(2e4V)
1 +5 % AG-1, 50, 100, 0° (60) 1 (63) 0(-) 0() 0(-) 0(-) 0(-) 1 (63)
2 +2.5 % BCG-1, 50, 100, 90° (65) 0(-) 1 (70) 1 (67) 0(-) 0(-) 0(-) 1 (67)
3 2.5% AC-1, 50, 30, 270° (75) 1(77) 0(-) 1(77) 0(-) 0(-) 0(-) 0(-)
4 -5% ABC-1, 50, 20, 180° (70) 1(72) 1(72) 1 (78) 0(-) 0(-) 0(-) 0(-)
Frequency
Variation (%4f)
5 +5% CG-2, 90, 150, 0° (60) 0(-) 0(-) 0(-) 0(-) 0(-) 1 (65) 1 (65)
6 +2.5% BC-2, 90, 25, 45° (62.5) 0(-) 0(-) 0() 0(-) 1 (66) 1 (66) 0(-)
7 -2.5% ABG-2, 90, 100, 150° (68.33) 0(-) 0(-) 0(-) 1(79) 1(74) 0(-) 1(74)
8 -5% ABC-2, 90, 25,270° (75) 0(-) 0(-) 0() 1(85) 1 (88) 1(85) 0(-)
Power Flow
Angle Variation
(49)
9 5° BG-1, 50, 60, 0° (60) 0(-) 1(63) 0() 0(-) 0(-) 0(-) 1(63)
10 10° ABC-1, 60, 15, 90° (65) 1 (68) 1(71) 1 (68) 0(-) 0(-) 0(-) 0(-)
11 15° AC-1, 70, 10, 270° (75) 1(77) 0(-) 1(77) 0(-) 0(-) 0(-) 0(-)
12 20° ACG-1, 80, 60, 180° (70) 1(73) 0(-) 1 (78) 0(-) 0(-) 0(-) 1(73)
13 25° ABG-2, 90, 80, 180° (70) 0(-) 0(-) 0(-) 1(72) 1(72) 0(-) 1(72)
14 30° AB-2,95, 5, 0° (60) 0(-) 0(-) 0() 1(61) 1(61) 0(-) 0(-)
15 35° BG-2, 105, 100, 90° (65) 0(-) 0(-) 0(-) 0(-) 1 (69) 0(-) 1 (69)
16 40° ABC-2, 120, 10, 270° (75) 0(-) 0(-) 0() 1 (760 1(77) 1 (76) 0(-)
SCC Variation
(MVA)
17 +250 AG-2, 150, 50, 0° (60) 0(-) 0(-) 0(-) 1 (63) 0(-) 0(-) 1 (63)
18 +250 BCG-1, 150, 50, 90° (65) 0(-) 1 (70) 1(67) 0(-) 0(-) 0(-) 1 (67)
19 -250 AC-1, 150, 15, 0° (60) 1(67) 0(-) 1 (67) 0(-) 0(-) 0(-) 0(-)
20 -250 ABC-1, 150, 15, 90° (65) 1 (70) 1(71) 1 (70) 0(-) 0(-) 0(-) 0(-)
Variation of X/R
Ratio
21 10 ABG-1, 225, 200, 0° (60) 1 (65) 1(720  0(-) 0(-) 0(-) 0(-) 1 (65)
22 20 CG-1, 240, 50, 90° (65) 0(-) 0(-) 1 (69) 0(-) 0(-) 0(-) 1(69)
23 30 BC-1, 250, 30, 180° (70) 0(-) 1(83) 1(83) 0(-) 0(-) 0(-) 0(-)
24 40 AG-2, 260, 150, 180° (70) 0(-) 0(-) 0() 1(75) 0(-) 0(-) 1(75)
25 50 ABC-2, 270, 30, 270° (75) 0(-) 0(-) 0() 1(87) 1(81) 1(81) 0(-)
26 60 BCG-2, 280, 170, 0° (60) 0(-0 0(-) 0(-) 0(-) 1(71) 1(78) 1(71)
Variation of
Transmission
Line Parameters
(26042)
27 +10% AG-1, 125, 100, 0° (60) 1(63) 0(-) 0() 0(-) 0(-) 0(-) 1(63)
28 +5% ACG-1, 125, 50, 90° (65) 1 (68) 0(-) 1 (68) 0(-) 0(-) 0(-) 1 (70)
29 -5% AC-2, 125, 20, 180° (70) 0(-) 0(-) 0(-) 1 (76) 0(-) 1 (76) 0(-)
30 - 10% ABC-2, 125, 25, 270° (75) 0(-) 0(-) 0() 1(79) 1 (81) 1(79) 0(-)
31 -10% BCG-1, 125, 100, 0° (60) 0(-) 1(63) 1 (69) 0(-) 0(-) 0(-) 1(63)
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Fig. 2.14 (a) and (d) depict the three-phase instantaneous currents of line-2 for the LLG
fault in the line-2 (ABG-2) (Ly= 90 km, Rr= 100 Q, and @ = 150° (7r= 68.33 ms)) without
and with frequency variation of -2.5% respectively. Fig. 2.14 (b) and (e) depict the three-
phase instantaneous currents of line-1 for the triple line fault in the line-1 (ABC-1) (Ly= 120
km, Ry=25 Q, and @ = 270° (Ty= 75 ms)) without and with the variation of the power flow
angle (40) of 40° respectively. Fig. 2.14 (c) and (f) represent the three-phase instantaneous
currents of line-1 for the LLG fault in the line-1 (BCG-1) (Ly= 125 km, Ry= 100 Q, and @ =
0° (Tf = 60 ms)) without and with -10% variation in the transmission line parameters
respectively. Fig. 2.14 (g), (h), and (i) shows the FIS based FDC outputs for the fault with
frequency variation, power flow angle variation, and transmission line parameters' variations
respectively. The proposed scheme is able to detect the faults even with different operating

conditions.

2.4.10 Comparison of the Proposed Protection Scheme with Other

Protection Techniques

A comparison of the proposed FDC protection scheme with the other earlier reported
artificial intelligent protection techniques is shown in Table 2.12 concerning the method
employed, performance, fault parameter considerations, and other operating conditions. In
Table 2.12, all the protection schemes were employed on the 400 kV, 50 Hz transmission
system. In Table 2.12, all the intelligent protection schemes for single or double circuit
transmission lines require the training of the modules for protection purposes except the FIS
based protection schemes. The FIS based protection scheme implemented in column-1 is only
for the single circuit lines. However, the proposed FDC protection scheme is for the double
circuit lines with a single FIS module and works for the single circuit operation also. The
comparison results shows the equal performance and effectiveness of the proposed non-
training-based FDC protection scheme even with the fault parameters variations and for
different fault scenarios that are not considered by the training-based protection schemes

reported in Table 2.12.
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Table 2.12 Comparison of the proposed FDC

protection schemes

scheme with other artificial intelligent

S. Comparison Reference
No. Parameter
[22] [23] [100] [101] [102] [103] Proposed
1 Transmission 198 km, = 200 km, 200 km, | 150 km, = 100 km, = 300 km, | 300 km,
line length double circuit =~ double double circuit | single circuit single circuit single circuit double circuit
circuit
2 Method and = ANN and SVM and Ensemble of Decision tree Deep learning Chebyshev FIS and DFT
feature DWT Kalman decision trees | and and DWT (20 = neural (1 kHz)
extraction (1 kHz, 1.2 @ filtering and least = mathematical = kHz) network and
technique kHz, 10 kHz) = technique square & | morphology DWT (5 kHz)
(sampling (1 kHz) Adaline (1.2 kHz)
frequency) algorithms (1
kHz)
3 Input type = The standard =Fundament | DC offset and = Sequence The energy of = The energy of | MFCC, ZSC
(no. of inputs) = deviation of | al, 3% 5% ' fundamental components 5t level = 4™ level | (7)
6 level = and 7% | component of = of voltage and = detailed detailed
detailed harmonic currents (7) current (8) coefficients of = coefficients of
coefficients of = components voltage and = current (6)
line currents; of voltage current (6)
neutral signal (3)
current (7)
4 No. of | 2 5 11 1 1 4 1
modules
5 Protected line = 1-197 km 99.5% of = 1-200 km 1-150 km 1-99 km 30-270 km 1-299 km
length the line
(200 km)
6 Relay <10 ms <10 ms <20 ms <5ms <20 ms <10 ms <12 ms
operation (section-1 &
time (ms) 2)
<20 ms
(section-3)
7 Ly (km) 1-197 km (54 = 1-200 km - 1-150 km in = 1-99 km 30-270 km in = 1-299 km
locations) steps of 20 km steps of 30 km | with an
(10 locations) = increment of 4
km (156
locations)
8 R/ (Q) 0-100 Q 0-100 Q - 0-20 Q 0.1-100 Q 0-150 Q 0.01-200 Q
9 @ 0°-270° 0°-360° - 0°-90° 0°-180° 0°-115° 0°-360°
10 No. of fault = 500 - - 77000 10400 23400 23400
cases
11 FDC accuracy | 99.70% - 99.64 % 99.98% 99.55% 98.33% 99.754%
12 CCF & EF Yes No No No No No Yes
13 PS & FPS Yes Yes Yes No No No Yes
14 CT saturation | Yes No No No No No Yes
15 HIF No No No No Yes No Yes
16 Noisy context | Yes No Yes No Yes No Yes
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2.5 Summary

In this chapter, an artificial intelligence-based protection scheme with a single FIS for
FDC of the short circuit faults on the DCTL has been proposed. The proposed FIS based FDC
scheme uses the MFCCs extracted by DFT and the ZSCs of the sending end bus only for the
protection task. It can detect and classify all ten types of short circuit faults within one cycle
time and with an average FDC accuracy of 99.7535%. Also, it correctly detects and classifies
the different fault types with varying fault parameters for HIF, cross-country faults, evolving
faults, CT saturation, noisy conditions, PS and FPS conditions, and variations in operating
conditions. Furthermore, the proposed FDC scheme is passive to the variations in the fault
parameters and varying operating conditions. It can work for the single circuit operation also.
The comparison results justify the aptness and effectiveness of the proposed protection
scheme rather than the training-based protection schemes. The main advantage of the
proposed protection scheme is the non-requirement of module training and communication

link. It is simple and efficient with reduced complexity.

ok skosk ok
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Chapter 3

Mono ANN Module Protection Scheme
and Multi ANN Modules for Fault
Location Estimation for a Six Phase
Transmission Line Using Discrete
Wavelet Transform
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3.1 Introduction

Nations across the world have aimed to reduce carbon emissions by encouraging
renewable energy sources to generate clean energy. Despite the global economic crisis in
2020, there is a record rise in the global renewable energy generation capacity i.e., 260 GW
during COVID 2019 pandemic. Solar (127 GW) and wind (111 GW) dominated this capacity
expansion by 91% [2]. The resulting intermittent generation and centralized demand require
increased transmission capacities. In many countries, obtaining a new right of way to build
an overhead line is very difficult. Building new transmission line corridors is quite an
expensive and time-consuming process. Also encounters the land availability problem and
opposition from the environmentalists for ecological reasons. In the pursuit of meeting the
increasing power demands, the generation or power transfer capabilities of the transmission
network have to be increased. The environmental, economic, and land availability concerns
for building the new transmission infrastructure to have enhanced power transfer capabilities,
led the power system engineers to search for alternate methods. The extra high voltage (EHV)
transmission lines can serve the purpose but the EHV lines produce strong electric fields at
the ground surface, possible biological effects, visual pollution, and audible noise. HVDC
transmission is another alternative but the demerit is, it requires huge capital for installation
and operation. In 1972, H. C. Barnes and L.D. Barthold had proposed the high phase order
transmission systems for maximizing the power density by employing the existing
transmission corridors efficiently. The high phase order transmission is a viable solution. The
six-phase transmission with the existing three-phase double circuit transmission line without
major alterations paved the way with 73% more power transfer capability. The other benefits
of six-phase transmission over three-phase transmission are i) reduced phase to phase
voltages, ii) current imbalances are minimum — so single-pole switching is possible, iii)
reduced radio and audible noise and corona losses are minimum, iv) high compatibility and
stability, v) reduced conductor surface gradients, and vi) improved thermal loading capability,
surge impedance loading, voltage regulation and better efficiency of lines [4, 5, 104, 105].
Now, the countries viz. China and the United Kingdom have again started research
investigations on upgrading the three-phase double circuit transmission lines to six-phase
lines for future needs [106, 107]. The acceptance of the six-phase transmission is vaguely
encouraged due to the lack of proper protection schemes to tackle the 120 different types of

short circuit faults. The segregation of 120 types of faults is detailed in Fig. 1.1 of Chapter 1.
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The maximum number of phases of a transmission line apart from six-phase can be nine,
twelve or even twenty-four phases i.e., multiples of the conventional three-phase system to
provide interfacing with the existing three-phase system through transformers. Different
tower structures are analysed to have simple and compact spacing of lines with minimum
insulation cost. The fact that the adjacent phase to phase voltages are less in high-phase order
systems compared to the conventional three-phase system made it possible for the compaction
of the lines [108]. For six and twelve phase configurations, the hexagonal placement is
preferred. Generally, the phase conductors are placed sequentially on the vertices and/or on
the edges of the hexagon. Fig. 3.1 (a) and 3.1 (d) shows an example of the schematic of the
phases on the tower of a six-phase and twelve-phase transmission line. However, due to the
transposition of phases, each position is occupied by every phase in the order of phase

sequence.
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Fig. 3.1 Schematic of tower structures (a) and (b) Six-phase line, (c¢) and (d) Twelve-phase

line

In the present chapter, a complete protection scheme (fault detection/classification and
fault location estimation (FLE)) is proposed using only the phase current information of the
sending end bus with discrete wavelet transform (DWT) and artificial neural networks. Unlike
the earlier works, the proposed scheme implemented only a single module of ANN for fault
detection and classification. For fault location estimation, the modular ANN method is

implemented where each ANN module gives the fault location estimation in all six phases.
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3.2 Details of Six-phase Transmission System

The six-phase Allegheny’s power transmission system is considered for the present work
referring to the line between the buses Springdale and McCalmont [4]. It consists of a 138
kV, 60 Hz single circuit six-phase transmission line of 68 km length fed from the sources at
both the ends (sending and receiving ends) of the line. The sending end (source-1) and
receiving end (source-2) source impedances are 2.03 +j9.04 Q and 4 + j17.94 Q with short
circuit capacities of 1.25 GV A respectively. Two loads (load-1, 80 MW and load-2, 60 MVar)
are connected at the receiving end bus, B2. Fig. 3.2 shows the one-line diagram of the
considered six-phase power system network along with a block diagram of the proposed
protection scheme. The DWT-ANN based relay is installed at the sending end bus, B1. The

six-phase transmission line parameters are given in Appendix — II.

I Transmission Line — 68 km
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Fig. 3.2 One-line diagram of the considered six-phase transmission system along with a block diagram

of the proposed protection scheme
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Tables 3.1 and 3.2 depict the basic system description and the line configuration data of
the six-phase system considered in the present work. The model used in the work takes into
account the distributive nature of the transmission line by considering the uniform distribution
of resistance, inductance, and capacitance along the line length. The six-phase transmission
line model is implemented and simulation studies are carried out using the software
MATLAB®/Simulink platform.

Table 3.1 Basic system description data

System Voltage 138 kV
No. of phases 6

No. of circuits 1

No. of sub-conductors per phase 1

Total no. of ground wires 2

Earth resistivity 100 Q-m
Frequency 60 Hz
Base voltage 138 kV
Base power 100 MVA
Line length 68 km

Table 3.2 Line configuration data

Phase no. Conductor Horizontal spacing X Height at tower Y Mid-span
designation (ft) (ft) clearance (ft)
1 a -11 68 56
2 b -14 55 43
3 c -11 42 30
4 d 11 42 30
5 e 14 55 43
6 f 11 68 56
0 GR1 -6 77.5 67.1
0 GR2 6 77.5 67.1

3.3 Development of Proposed Protection Scheme with DWT &
ANN

From the protection point of view, any short circuit fault has to be detected and isolated

as early as possible to mitigate the effect of the fault on the system and to estimate the fault
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location accurately to send the repairmen’s crew. In the present work, a protection scheme is
proposed for the six-phase transmission system shown in Fig. 3.2 using the discrete wavelet
transform and artificial neural network. With the proposed protection scheme, two protection
tasks are accomplished. The first task is to identify and classify the fault and the second task
is to estimate the fault location. There are two stages in the proposed protection scheme, 1)

feature extraction process and ii) actual protection scheme implemented using the ANNs.
3.3.1 Feature Extraction Process with DWT

To implement any digital protection scheme, a proper feature of the system (either
voltage/current) has to be used to accomplish the protection task. The recorded time-domain
raw data of instantaneous voltage/current signals available at the relaying point may not be
used as such, so to extract the useful features from the raw data, a transform has to be used
to convert the signal to the frequency domain or time-frequency domain. Discrete wavelet
transform (DWT) is one of the most widely used signal processing techniques in engineering
domains which analyses the signal both in time and frequency domains. This transform has
gained a lot of popularity in power system protection because it efficiently analyses the non-
stationary signals and localizes the signal in time and frequency domains. In DWT, the signal
i1s decomposed into a number of levels and each level corresponds to a particular frequency
band. This transform provides the degree of similarity between the signal to be analysed and
the analysing signal in terms of detail coefficients (higher frequency components) and
approximate coefficients (lower frequency components). The proper selection of the mother
wavelet plays an important role in analysing the signal [44, 109—111]. A schematic diagram
of the signal decomposition by DWT is shown in Fig. 3.3. In the present work, the
instantaneous current signals in each phase of the sending end bus (B1) are employed for the
protection task. The instantaneous current signals of bus B1 are pre-processed with the
second-order low-pass Butterworth filter (anti-aliasing filter) with a cut-off frequency of 480
Hz to eliminate the higher-order harmonics in the signal. Butterworth filters are used because
they provide maximum flat characteristics in the passband region. Eq. (3.1) gives the general
expression for the n” order low-pass Butterworth filter. These filtered signals are sampled at
a 1.2 kHz sampling frequency (20 samples per one cycle data of 60 Hz frequency) according
to the Nyquist sampling criteria. The expression for the second-order low-pass Butterworth
filter with a cut-off frequency of 480 Hz and Nyquist sampling frequency of 1.2 kHz is given
in Eq. (3.2). The DWT is implemented on the sampled current signals with the Daubechies
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wavelet, db4 is used as the mother wavelet. The standard deviation (std) of the second level
approximate coefficients of current signals in each phase are used as the features for the
protection scheme. The basic expression for the DWT of a signal S(z) is given in Eq. (3.3),
where S(k) is the sampled signal, by* is the scaling parameter, kb{* is the translation

parameter, and ¥ is the mother wavelet [112].

Anti-aliasing filter
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Fig. 3.3 Signal pre-processing and DWT decomposition
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= 3.1
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If d;" and a;" represent the detail and approximate coefficients of m™ level of decomposition,

then the standard deviation of approximate coefficients is given by Eq. (3.4).

2

N N
o 1 1
Standard deviation (std) = mZ a" — NZ a” (3.4)
Jj= Jj=
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Where N is the no. of coefficients. The process of calculating the standard deviation of
second-level approximate coefficients of current signals is carried out consecutively for each
cycle window of 20 instantaneous current samples, viz. window-1 of 1-20 samples, window-
2 of 2-21 samples, and so on. Therefore, the required features obtained after the feature

extraction process are stdg, stdy, std., stdy, std,, and std; for each of the six phases.

3.3.2 Proposed ANN Based Protection Scheme for FDC and FLE

ANNs have gained a lot of importance in the engineering domains, especially for the
protection of three-phase single-circuit and double circuit transmission lines for their ability
of self-adaptability to varying operating conditions, non-linear function approximation,
pattern recognition, and learning capabilities. The main advantage of ANN is the high-speed
online computation. The feedforward neural networks with the Levenberg-Marquardt training
algorithm are implemented using MATLAB for fault detection/classification (FDC) and fault
location estimation (FLE). The flowchart for the Levenberg-Marquardt algorithm (LMA) is
given the Fig. 3.4. The Levenberg-Marquardt algorithm is the fastest algorithm and takes less
execution time to train the ANN [113]. This optimization algorithm is an iterative method used
to solve the non-linear least square problems. It is a combination of the Gauss-Newton
method and the gradient descent method [114, 115]. For training the ANN, LMA is used to
learn the weights and biases of the neural network. The advantage of the Levenberg-
Marquardt algorithm is, that it attains second-order training speed without the requirement

to calculate the Hessian matrix.

There is no hard and proven rule to achieve the optimal architecture (no. of hidden
layers and no. of neurons) of the artificial neural network (ANN). A series of pilot runs based
on the hit-and-trail basis method is the general process for selecting the architecture of ANN.
The features that should be taken care of while training the ANN are architecture, neural
network parameters (weights and biases), type of activation function, and training/learning

algorithm.

Unlike the modular ANNs reported earlier for fault detection and classification of 120
types of faults, the present work proposed a single ANN_ FDC module with the standard
deviation of second-level approximate coefficients of six-phase currents of sending end bus
as inputs and six outputs (4, B, C, D, E, and F) one for each phase for faulty phase detection

and classification of faults. The most important tasks in training the ANN are the generation
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of training samples, preparation of input training and target data sets, selection of the
optimum no. of hidden layers, and choosing the activation functions for the proper pattern
recognition. The training and the testing data samples are generated by simulating the
different types of faults with varying fault locations, fault inception angles, and fault
resistances on the six-phase transmission system shown in Fig. 3.2 on the MATLAB®/

Simulink platform.
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Fig. 3.4 Flow chart of Levenberg-Marquardt algorithm
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Table 3.3 presents the different fault parameter variations considered for generating the

training and testing data samples. Ten post-fault data samples of the standard deviation of

second-level approximate coefficients of sending end bus phase currents are collected for each

of the simulated faults and hence the training data set is created. Table 3.4 presents the number

of samples collected for each type of fault for the training and testing data sets. For the fault

detection in each phase and classification purpose, the ANN FDC module outputs are

labelled as “+/"and *-1’. The output “+/’is used to indicate the fault condition and -/’ is

used to indicate the healthy/no-fault (NF) condition in the particular phase.

Table 3.3 Fault parameter variations considered in the training and testing data samples

S. Fault Parameter Variations considered

No. In the training data In the testing data

1. Fault resistance (Q) 0.01 Q, 50 Q, and 100 Q 30 Q and 70 Q

2. Fault inception angle (°) 0° and 90° 0° and 45°

3. Fault location (km) 1 km, 4 km, 8 km, ..., 64 km,and 1km, 6 km, 12 km, ..., 60 km,

67 km (18-locations)

4. No. of fault types 120
5. Total no. of fault cases
considered

3#2*18%120=12960;

1-no fault case

and 66 km (12 - locations)

120

2%2%12%120=5760;

1-no fault case

Table 3.4 Number of training and testing data samples collected for each type of fault

No.  Fault type

Training

Testing

No. of cases

No. of samples

No. of cases

No. of samples

1. I-LG and | (6*3*2*18)+1 = 649 649*10 = 6490 (6¥2*2*12)+1 =289 289%20 = 5780
No fault

2. 2-LG and | 2¥(15*3*2*18) =3240 | 3240*10 =32400 | 2*(15*2*2*12) = 1440 | 1440*20 =28800
2-L

3. 3-LG and | 2%(20*3*2*18) =4320 | 4320*%10=43200 | 2*(20*2*2*12)=1920 | 1920*20 = 38400
3-L

4. 4-LG and | 2*%(15%3*2*18) = 3240 | 3240*%10=32400 | 2*(15*2*2*12) = 1440 | 1440*20 =28800
4-L

5. 5-LG and | 2*(6*3*2*18) = 1296 1296*10 = 12960 | 2*(6*¥2*2*12) =576 576%20 =11520
5-L

6. 6-LG and | 2*(1*3*2*18) =216 216*%10=2160 2*¥(1*2%2*12) =96 96*20 = 1920
6-L

7. Total 12961 129610 5761 115220
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In order to select the optimal architecture of the ANN for fault detection and

classification, a no. of pilot runs were carried out with the generated training data with

different no. of hidden layers and neurons, and with different activation functions on a trial-

and-error basis method. The optimal architecture of ANN_ FDC, type of activation functions,

training input and output data sizes, and mean square error achieved during training are

presented in Table 3.5 for the fault detection and classification module. Fig. 3.5 presents the

architecture 6-18-18-6 of the ANN FDC module with 6 — input neurons, 18 — neurons each

in the two hidden layers, and 6 — output layer neurons with tansig activation function in all

the layers. Fig. 3.6 presents the mean squared error (mse) achieved during the training process

of the ANN_FDC module.
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Fig. 3.5 Architecture of ANN_FDC module
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Fig. 3.6 Mean squared error achieved during the training of the ANN FDC module
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For identifying the involvement of ground in the grounded faults, in 1998, M. Akke and

J. T. Thorp [116] proposed a current index that separates the faults with zero-sequence
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currents from the faults without zero-sequence currents for a three-phase system. The fault
index expression that is used to identify the grounded faults is given in Eq. (3.5) for an ‘n’

phase system.

2| |
median(llll, L], ..., |Ip|) (3.5)

Current index or Fault index (FI) =

wherep = 1,2, ...,n phases
If FI > 0.05,then ground is present.
If FI < 0.05,then ground is absent.

In the present study, the above current index has been extended up to the six-phase system (n
= 6 phasesi.e.,p=a, b, c, d, e, and f phases) and instead of fault index, the standard deviation
of fault index is used to detect the ground involvement in the fault given in Eq. (3.6) and Eq.

(3.7).

M 2

1 1
Standard deviation (stdg;) = mz FI; — i I (3.6)

j=1 j=1

where M = no.of current samples per 60 Hz cycle.

+1,if stdg; > 0.05,then ground is present

Ground (G) = {—1, if stdg; < 0.05,then ground is absent (3.7)

Where stdr; is the standard deviation of fault index, /s, Ip, I, 14, I, and Ir are the six-phase
instantaneous currents of the bus B1. The involvement of ground is detected with ‘+/” when
the stdr; is greater than the threshold and ‘-7 "is used to identify that no involvement of ground
in the fault. In the present work, there are eleven ANN modules for fault location estimation
(FLE), one for each type of fault. In all the ANN fault location estimation modules, there are
six inputs and six outputs one for each phase. The input training data set to the ANN_FLE
modules is the standard deviation of second-level approximate coefficients of the currents of
bus B1 with the fault parameters shown in Table 3.3. For training the ANN_FLE modules,
the target data set is created with the actual fault locations for the faulty phases and healthy
phases are labelled with 140 km. A series of trials are run with the training data to select the
best ANN_FLE modules. The architecture, type of activation function, input and output data

size, and mean square error (mse) achieved during training of the best ANN FLE modules
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are shown in Table 3.5. The tansig activation function is used for the hidden layers and the

purelin activation function is used for the output layers of ANN fault location estimation

modules.

Table 3.5 Details of ANN architecture for FDC and fault location estimation

S. ANN for Architecture Activation function Input & output MSE achieved
No. data size during training
1. ANN _FDC 6-18-18-6 Tansig 6 x 129610 1.336e-06

2. ANN FLE I-LG  6-25-25-6 Tansig & purelin 6 x 6490 9.97e-07

3. ANN FLE 2-L 6-25-25-25-6 Tansig & purelin 6x 16210 1.70e-05

4. ANN FLE 2-LG  6-25-25-25-6 Tansig & purelin 6x 16210 1.22e-05

5. ANN FLE 3-L 6-25-25-25-25-6  Tansig & purelin 6x21610 1.59¢-04

6. ANN FLE 3-LG  6-30-30-30-6 Tansig & purelin 6x21610 9.03e-05

7. ANN FLE 4-L 6-25-25-25-25-6  Tansig & purelin 6x 16210 3.68e-05

8. ANN FLE 4-LG  6-25-25-25-25-6 Tansig & purelin 6x 16210 3.22e-05

9. ANN FLE 5-L 6-25-25-25-6 Tansig & purelin 6 x 6490 3.84e-06

10. ANN _FLE 5-LG  6-30-30-30-6 Tansig & purelin 6 x 6490 5.52e-06

11.  ANN_FLE 6-L 6-15-15-6 Tansig & purelin 6 x 1090 9.97e-07

12.  ANN FLE 6-LG 6-15-15-6 Tansig & purelin 6 x 1090 1.00e-06

The flowchart of the proposed protection scheme is shown in Fig. 3.7. In the proposed
protection scheme, the single-end pre-processed current data is fed to all 12 ANN modules
simultaneously. The ANN_FDC module output and FI output information are used for fault
detection/classification purposes. Based on fault type information the particular fault type of
the ANN_FLE module is selected to have the estimated fault location in each phase. The ‘OR’
operation on the ANN_FDC module outputs is used to generate the trip signal to the circuit

breakers.
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Calculate Fault Index (FI) for
ground detection
_ (fo+ B+ 1+ 1+ L+ If])
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Fig. 3.7 Flowchart of the proposed protection scheme with DWT and ANN

3.4 Results and Discussion

The performance of the proposed protection scheme has been evaluated by conducting a
series of simulations by varying the fault parameters viz. fault resistance (Ry) (0 — 100) €,
fault inception angle (@) (0° - 360°), and fault location (L) (1 — 68) km. Further, to validate
the proposed protection scheme, testing data that is different from the training data is
generated using the fault parameters shown in Table 3.3 and the no. of fault cases (5761) and
samples considered (115220) is shown in Table 3.4. The accuracy and the dependability of

the proposed protection scheme for fault detection and classification are assessed w.r.t
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training and testing data using the confusion matrices. The accuracy and dependability are
evaluated as [45]
total no.of fault cases predicted correctly

A _ x 100 3.8
COUracy =t otal no. of actual fault cases and no fault cases (38)

5 dabilit total no.of fault cases predicted correctly 100 3.9
= X '
ependability total no.of actual fault cases G2

The performance of the protection scheme for the fault location estimation for all the fault
location modules is evaluated in terms of percentage error in the estimated fault location for

all the phases as [44]

Efi—La
total length of the line

% Error in the estimated fault location (%E) = x 100 (3.10)

Where Ej and L, are the estimated fault location and actual fault location.

3.4.1 Performance Evaluation of the ANN_FDC Module for Varying Fault

Parameters

The fault detection/classification of the proposed protection scheme is effective and
efficient even with the variation of fault parameters. A four-phase to ground fault (4-LG,
(ABCDQ)) is simulated at fault location (L,) of 10 km from bus B1 with fault resistance (Ry)
30 Q and fault inception angle (@) of 0° (fault inception time (77) 0.05 s) and the six-phase
instantaneous currents at bus B1 are shown in Fig. 3.8 (a). Fig. 3.8 (b) presents the standard
deviation of the second level approximate coefficients of the current signals i.e., pre-
processed input features by DWT to ANN modules. Fig. 3.8 (c) presents the standard
deviation of the fault index i.e., used for the ground detection. Fig. 3.8 (d) shows the fault
detection and classification outputs for the ANN FDC module where the faulty phases are
detected as a fault with the level of output ‘+7 after the inception of fault while the healthy
phases are shown with ‘-7’ level of output. Hence the ANN_ FDC module clearly identifies
and classifies the fault as ABCDG fault with maximum and minimum FDC time as 2.5 ms
(0.0525 ms — 0.05 ms = 2.5 ms) and 3.33 ms (0.0533 ms — 0.05 ms = 3.33 ms) which is much
less than one cycle time (16.67 ms). The performance of the ANN FDC module for varying
fault resistance is evaluated and the results are tabulated in Table 3.6. The fault location and

the fault inception angle (fault inception time) are kept constant at 34 km and 0° (0.05 s) and
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the different faults are simulated with different resistances. It can be observed from Table 3.6
that the proposed ANN_FDC module correctly identifies the faults within 7 ms time (less than

one cycle time).

I} 1 1

'.9 [fl

2 b c d Q I std sm‘J std s!dd std s:d’

@ 4000 : = - - “ ®

£ c E
o & 2000f [W{W/Y)\'\ §% 4000

= - e
0nw S ot e Ts - ©
23 o RERORRERSOIATIAR  $ 85
a % 2 = 52000
% o -2000F} TTE
n 2 £33 p

] i ; | 5 2 =z ] | ]

S -4000 459 o

c 0 002 004 006  0.08 01 §E 0 0.02 004 006 0.8 0.1

b7 (a) Time (s) » 9 (b) Time (s)

£ @ X 0.0525
c 1 . ¥3

X 0.05083 = Z1

2 Y1 21 [ ——— —aA
S o = i
> 'E o c
g = 0 5 0 X 0.05333 D
TS stdy, = e —E
% 2 G 5 1 Z1 F

o
E o 4 | | | Threshold | 01
Lz 0 002 004 006 0.8 0.1 ANN - FDC outputs ™ 0.05

(c) Time (s) (d) Time (s)

Fig. 3.8 (a) Six phase instantaneous currents, (b) Input patterns for the ANN FDC module,
(c¢) Fault index for ground detection, and (d) ANN-based fault detection and classification

module outputs

Table 3.6 Results of the ANN FDC module for the varying fault resistance

S. Fault type with varying R, (€2) ANN_FDC module outputs FDC time (ms)
No. L,=34km,FIA (®°)=0°(FIT=0.05s) |4 B C D E F G |Min  Max.
1. CG with 70 Q -1 -1 1 -1 -1 -1 1 |58 583
2. BDE with 5 Q -1 1 -1 1 1 -1 -1 |167 50

3. CDFG with 25 Q -1 -1 1 1 -1 1 1 |25 6.67
4. ACDE with 10 Q 1 -1 1 1 1 -1 -1]25 5.83
5. ABCDFG with 85 Q 1 1 1 1 -1 1 1 |25 5.5

6. ABCDEF with 30 Q 1 1 1 1 1 1 -1/25 5.83

The performance of the ANN_FDC module for varying fault locations is evaluated and
the results are tabulated in Table 3.7. The fault resistance and the fault inception angle (fault
inception time) are kept constant at 75 Q and 0° (0.05 s) and the different faults are simulated
at different fault locations. It can be observed from Table 3.7 that the proposed ANN FDC
module correctly identifies the faults within 9 ms time (less than one cycle time). The
performance of the ANN FDC module for varying fault inception angles is evaluated and the

results are tabulated in Table 3.8. The fault resistance and the fault location are kept constant
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at 90 Q and 50 km, and the different faults are simulated at different fault inception angles. It
can be observed from Table 3.8 that the proposed ANN_FDC module correctly identifies the

faults within 8 ms time (less than one cycle time).

Table 3.7 Results of the ANN FDC module for the varying fault location

S. Fault type with varying L, (km) ANN_FDC module outputs FDC time (ms)
No. Rr=75Q,FIA (®°=0°(FIT=0.055s) A B C D E F G |Min. Max
1. AG at 3 km 1 -1 -1 -1 -1 -1 1 |333 3.33
2. ACG at 20 km 1 -1 1 -1 -1 -1 1 |333 75

3. BEFG at 40 km -1 -1 -1 1 1 1 [25 7.5

4. BCDE at 55 km .11 1 1 1 -1 -1/]333 8.3

5. ABCDE at 65 km 11 1 1 1 -1 -1/25 5.0

6. ABCDEF at 67 km 1 1 1 1 1 1 ~-1]25 5.83

Table 3.8 Results of the ANN FDC module for the varying fault inception angles

S. Fault type with varying FIA (@), (FIT | ANN_FDC module outputs FDC time (ms)
No. (8)), La =50 km, Rr=90 Q A B C D E F G |Min Max.
1. FG at 0° (0.05 s) -1 -1 -1 -1 -1 1 1 |667 6.67
2 DF at 45° (0.05208 s) -1 -1 -1 1 -1 1 -1/292 459
3 ACDG at 60° (0.05278 s) 1 -1 1 1 -1 -1 1 |305 3289
4. BCEF at 120° (0.0556 s) -1 1 1 -1 1 1 -1/|357 523
5 ACDEF at 180° (0.0583 s) 1 -1 1 1 1 1 -1]253 6.7

6 ABCDEEF at 270° (0.0625 s) 11 1 1 1 1 -1/25 7.5

Table 3.9 Confusion matrix w.r.t training data

Predicted faults

1-LG 2-L 2-LG  3-L 3-LG 4-L 4-LG 5-L 5-LG 6-L 6-LG NF Total

1-LG | 638 - 10 - - - - - - - - - 648
2-L - 1620 - - - - - - - - - - 1620
2-LG | - 13 1606 - 1 - - - - - - - 1620
3-L - - - 2160 - - - - - - - - 2160
True 3-LG | - - - - 2152 - 8 - - - - - 2160
faults 4-L - - - - - 1620 - - - - - - 1620
4-LG | - - - - - 13 1607 - - - - - 1620

5-L - - - - - - - 648 - - - - 648

5-LG | - - - - - - - - 648 - - - 648

6-L - - - - - - - - - 108 - - 108

6-LG | - - - - - - - - - - 108 - 108

NF - - - - - - - - - - - 1 1
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Table 3.10 Confusion matrix w.r.t testing data

Predicted faults
1-LG 2-L 2-LG 3-L 3-LG 4-L 4-LG 5-L 5-LG 6-L 6-LG NF Total

1-LG | 288 288

2-L 720 720

2-LG 7 713 720

3-L 960 960
True

3-LG 960 960
faults

4-L 720 720

4-LG 7 713 720

5-L 288 288

5-LG 288 288

6-L - - - - - - - - - 48 - - 48

6-LG | - - - - - - - - - - 48 - 48

NF - - - - - - - - - - - 1 1

To obtain the overall assessment of the proposed fault detection and classification of
the ANN_FDC module, confusion matrices w.r.t to training and testing data are presented in
Table 3.9 and Table 3.10. The true and predicted fault types are represented on the left and
top of the tables. The accuracy and the dependability of the proposed protection scheme w.r.t
fault detection and classification are given in Table 3.11. From the table, it can be understood

that the proposed method's performance is efficient and accurate in the FDC task.

Table 3.11 Performance index of ANN_FDC module for FDC

S.No.  Performance index w.r.t Training data w.r.t Testing data
1. Accuracy 12916 _ . 5747 B .
12961 X 100 = 99.65% Tel X 100 = 99.76%
2. D dabili 12915 5746
epencability X 100 = 99.76%

X 100 = 99.645%

12960 5760

3.4.2 Performance Evaluation of the ANN_FLE Modules for Varying Fault

Parameters

The performance of the proposed protection scheme’s ANN FLE fault location
estimation modules detailed in Table 3.5 is evaluated for the different faults simulated i.e.,
with varying fault parameters. A single line to ground fault (AG) is simulated at a fault
location of 65 km from bus B1 at 0.05 s with a fault resistance of 80 Q and a double line to

ground fault (ABQG) is simulated at a fault location of 1 km from bus B1 at 0.05 s with fault
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resistance of 60 Q. The response of the ANN FLE 1-LG module for the AG fault and the
ANN FLE 2-LG module for the ABG fault is shown in Fig. 3.9 and Fig. 3.10. It can be

observed from Fig. 3.9 that the proposed ANN FLE 1-LG module approximately estimates

the actual fault location for the faulty phase (A-phase) as 65.3 km while the healthy phases as
140 km. Similarly, the estimated fault location is obtained as 0.8737 km and 0.9271 km as
depicted in Fig. 3.10 for the faulty phases. Some of the test results of the proposed ANN_FLE
modules are depicted in Table 3.12, Table 3.13, and Table 3.14 for different faults. It is
evident from the test results in Fig. 3.9, Fig. 3.10, and Tables 3.12, 3.13, and 3.14 that the

proposed method provides approximately near-fault location estimation results.
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Fig. 3.9 Estimated fault location by the ANN_FLE 1-LG module for AG fault at 65 km, fault

resistance of 80 Q and fault inception angle of 0° (fault inception time 0.05 s)
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Table 3.12 Estimated fault location by the ANN_FLE modules with R= 0.01 Q, ®#?=0°, and
L,=5km

Estimated fault location for different faults with Ry =0.01 Q, FIA (@) =0°, and L, =5 km

Estimated fault location (Ef;) in each phase (km)

S.No. Fault Type Agrr Bgpp, Cery, Dgpy, Egrr Ferr, Max. % E
1. AG 5.043 140 140 140 140 140 0.063%
2. ABG 5.235 5.259 140 140 140 140 0.38%
3. ABCG 5.37 5.588 5.437 140 140 140 0.865%
4. ABCDG 5.452 5.349 5.463 5.525 140 140 0.772%
5. ABCDEG 4.788 4.822 4.831 4.802 4.831 140 -0.311%
6. ABCDEFG  4.927 4.927 4.927 4.927 4927 4927  -0.107%
7. ABCDEF 4977 4.979 4.977 4.977 4977 498 -0.034%
8. ABCDE 5.052 5.053 5.05 5.053 5.032 140 0.078%
9. ABCD 5.014 5.215 4.962 5.004 140 140 0.316%
10. ABC 5.593 6.035 5.431 139.6 140.2 1393  1.522%
11. AB 4.719 4.932 139.8 140.4 140.1 140.2  -0.413%

Table 3.13 Estimated fault location by the ANN FLE modules with Ry = 90 Q, & = 270°,
and L, = 66 km

Estimated fault location for different faults with Ry = 90 Q, FIA (99 =270° and L, = 66 km

Estimated fault location (Ef,;) in each phase (km)

S.No. Fault Type Agry Bgpy, Cery, Dgpy, Egrr Fgpp, Max. % E
1. AG 66.1 140 140 139.9 140 140 0.147%
2. ABG 66.12 66.26 139.8 140 140 140 0.382%
3. ABCG 63.23 63.43 65.25 140.6 140.5 1402  -4.074%
4. ABCDG 66.01 66.21 66.18 66.29 139.9 140 0.426%
5. ABCDEG 66.5 66.75 66.72 67.08 140 139.7  2.647%
6. ABCDEFG  66.22 66.22 66.22 66.22 66.22 6622  0.324%
7. ABCDEF 66.18 66.18 66.63 66.18 66.18  66.18  0.926%
8. ABCDE 66.04 66.17 66.16 66.14 65.3 140 -1.029%
9. ABCD 66.32 66.14 66.32 66.38 141.6 1384  0.559%
10. ABC 65.03 67.19 67.28 140.7 140.7 1394  1.882%
11. AB 65.84 65.6 140.9 141.2 140.1 139.5  -0.588%
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Table 3.14 Estimated fault location by the ANN FLE modules with varying fault parameters

Estimated fault location (Ef;) in each phase (km)

S. Fault type with Ry (), FIA (®°), and  Agp,  Bgr  Cere Dgpr Epp Fepp  Max,
No. Ly (km) %E

1. AG with 40 Q, 0°, and 15 km 149 140 140 140 140 140 -0.147%
2 ABG with 75 Q, 30°, and 35 km 35.64 35.83 140 140 140 139.5 1.221%
3 ABC with 5Q, 60°, and 50 km 49.83 48.95 49.87 140.3 141.1 1403 -1.544%
4. ABCDG with 60 Q, 90°, and 30 km 29.59 29.55 2959 29.59 140.1 1399 -0.662%
5 ABCDE with 15 Q, 120°,and 45 km  43.25 4324 4325 4324 4324 140 -2.588%
6 ABCDEF with 20 Q, 150°, and 55km 53.82 53.82 53.82 5382 5382 5382 -1.735%

Further to analyse the overall performance of the ANN_ FLE modules, the training and

testing data samples that are given in Table 3.3 and Table 3.4 are used to estimate the fault

location. The percentage error in the estimated fault location in all the faulty phases is

calculated using Eq. (3.10). Table 3.15 presents the no. of fault cases for all the phases under

each range of percentage error in the estimated fault location for the ANN FLE 1-LG fault

location estimation module w.r.t training data and the same has been depicted in Fig. 3.11

with the percentage proportion of 1-LG fault cases under each error range. It can be observed

that about 99% of the 1-LG fault cases are within the £1% error range.

Table 3.15 No. of 1-LG fault cases under each range of percentage error in the estimated fault

location (w.r.t training data)

No. of fault cases

Fault %EL % E2: % E3: % E4: % ES: % E6:
Location -1%to  -2%to-1%  -3%to-2% -4% to -3% -5% to -4% -10% to -5%
Module +1% and +1%to  and +2% to and +3% to and +4% to and +5% to
+2% +3% +4% +5% +10%
ANN_FLE A 108 0 0 0 0 0
_1I-LG B 108 0 0 0 0 0
module C 108 0 0 0 0 0
(108  fault D 108 0 0 0 0 0
cases for E 107 1 0 0 0 0
each phase) F 106 2 0 0 0 0
6x108 =648 L 645 3 0 0 0 0
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Fig. 3.11 Proportion of 1-LG estimated fault location error percentage fault cases in different

error percentage ranges (w.r.t training data)

Similarly, Table 3.16 presents the no. of fault cases for all the phases under each range

of percentage error in the estimated fault location for all the fault location estimation modules

w.r.t training data and Fig. 3.12 portrays the same with the percentage proportion of fault

cases under each error range that is shown in Table 3.16. It can be observed that about 81%

of all the fault cases are within the +1% error range.

Table 3.16 No. of fault cases under each range of percentage error in the estimated fault

location (w.r.t training data)

No. of fault cases

Fault %El: % E2: % E3: % E4: % ES: % E6:

Location Phase 1% to+1%  -2%to-1%  -3%t0-2% -4%t0o-3%  -5%to-4% -10% to -5%

Module and +1%to and +2%to and +3%to  and +4% to and +5% to
+2% +3% +4% +5% +10%

All fault A 5403 989 260 79 26 47

location B 5488 954 237 60 29 36

estimation C 5634 832 210 64 25 39

modules. D 5443 964 272 73 26 26

(6804 fault cases E 5471 968 257 68 21 19

per phase) F 5740 765 198 55 14 32

6 x 6804 = All

40824 faults 33179 5472 1434 399 141 199
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Fig. 3.12 Proportion of all the estimated fault location error percentage fault cases in different

error percentage ranges (w.r.t training data)

Similarly, Table 3.17 and Table 3.18 present the no. of fault cases for each phase in
each of the percentage error ranges for the ANN FLE 1-LG module and all the fault location
estimation modules w.r.t testing data. Fig. 3.13 and Fig. 3.14 present the proportion
percentage of fault cases for each phase under different error ranges for the data shown in
Table 3.17 and Table 3.18. It is observed from Fig. 3.13 and Fig. 3.14 that about 98% and

53% proportion of fault cases are within the £5% error range in the estimated fault location.

Table 3.17 No. of 1-LG fault cases under each range of percentage error in the estimated fault

location (w.r.t testing data)

No. of fault cases

Fault %El: % E2: % E3: % E4: % E5: % E6:
Location Phase | -1%to -2%to-1%  -3%to-2% -4% to -3% -5%t0o-4%  -10% to -5%
Module +1% and +1%to  and +2% to and +3% to and +4% to and +5% to
+2% +3% +4% +5% +10%
ANN FLE A 41 7 0 0 0 0
_1-LG B 30 4 5 5 1 3
module C 34 8 2 3 1 0
(48 fault | D 38 6 2 1 1 0
cases for E 27 10 4 6 0 1
each phase) F 29 14 3 2 0 0
6x48=288 | 1-LG 199 49 16 17 3 4
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Fig. 3.13 Proportion of 1-LG estimated fault location error percentage fault cases in different error

percentage ranges (w.r.t testing data)
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Table 3.18 No. of fault cases under each range of percentage error in the estimated fault

location (w.r.t testing data)

No. of fault cases

Fault %El: % E2: % E3: % EA4: % ES: % E6:
Location Module | Phase | -1%to+1% -2%to-1% -3%to-2% -4%to-3% -5%to-4% -10% to-5%
and +1%to and+2%to and +3%to  and +4% to and +5% to
+2% +3% +4% +5% +10%
All fault location A 439 365 258 238 189 1535
estimation B 470 381 275 244 190 1464
modules. C 589 376 291 224 202 1344
(3024 fault cases D 456 338 283 228 195 1524
per phase) E 493 412 313 249 199 1358
F 463 402 281 254 216 1408
6 x 3024 = All
18144 faults 2910 2274 1701 1437 1191 8633
Table 3.19 Comparison of the proposed scheme with other existing schemes
S. | Comparison Reference
No. | Tem [43] [45] [46] [117] [118]  Proposed
1. | Protection ANN Fuzzy Decision  Adaptive  Bat algorithm ANN
technique inference tree and PSO tuned deep
system TLBO tuned neural
tuned ANN network
ANN
2. | Signal pre- DFT DFT Least DWT Stacked DWT
processing square encoder-
technique Adaline grayscale
algorithm images
3. | Voltage or current | Voltage and  Voltage Voltage Voltage Voltage and Current
information current and and current
requirement current current
4. | No. of FDC 11 7 11 11 11 1
modules
5. | No. of fault cases 4930 - 28830 21600 4836 5761
6. | FDC accuracy 100% 98.02% 99.64% 100% 99.45% 99.76%
7. | FDC time 16.67 ms 16.67 ms 12.4 ms 14 ms 16.67 ms 16.67 ms
8. | No. of FLE 11 - 11 11 - 11
modules
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3.4.3 Comparison of Proposed Scheme with Other Existing Schemes

A comparison of the proposed protection scheme with the existing protection schemes is
presented in Table 3.19. Since the proposed protection technique uses only phase current
information for the protection task, it requires only a current transformer. The cost of the
potential transformer can be saved as the voltage information is not required for the protection
task. The sending end bus data is utilized, therefore there is no requirement for a
communication link and hence no communication latency. As a smaller sampling frequency
(1.2 kHz) is used the cost of the digital fault recorder, computational complexity, and data
storage/handling problem can be minimized. Unlike the other multi-ANN modules technique
for fault detection and classification, the proposed technique uses only a single ANN module
that greatly reduces the computational burden and a good deal of time for training and

selection of the optimal architecture of multi-ANN modules.
3.5 Summary

In this chapter, a protection scheme based on DWT and ANN is proposed for the
complete protection of the six-phase transmission line. A single ANN FDC module is
proposed to identify and classify all the 120 types of faults. The performance of this module
is evaluated with training and testing data in terms of accuracy and dependability. The
performance indices show that the proposed FDC module is efficient and effective with
99.76% accuracy. Moreover, the proposed technique is resistant to fault parameter variations
and detects all types of faults within one cycle time (16.67 ms). The ANN_FLE fault location
estimation modules are proposed for approximating the fault location. The performance of all
the FLE modules is also evaluated with training and testing data. The performance of the fault
location estimation modules is better with training data where 81% of the fault cases are
within the £1% error range but the performance w.r.t testing data is nominal where 53% of
the fault cases are within +£5% error range. It can be concluded that the proposed protection
scheme works efficiently for fault detection and classification with a single module and the
performance of fault location estimation modules can be further improved with optimal

tunning of ANN parameters.

Hkokokok
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Chapter 4

A Novel Protection Scheme for
Transmission Lines Connected to
Solar Photovoltaic and Wind Turbine
Farms Using Fuzzy Logic
Systems and Bagged Ensemble Learning
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4.1 Introduction

The global electrical energy demand is steadily increasing, driven by population growth,
urbanization, and technological advancements. This escalating demand necessitates a
sustainable energy for the future. The growing demand must be met besides addressing the
challenge of climate change. To reduce the carbon emissions from conventional sources,
nations across the globe are rapidly shifting towards renewable energy sources like solar and
wind rather than fossil fuels for power generation. The integration of these inherently variable
and geographically dispersed sources into the existing power grid poses significant
challenges, especially in transmission line protection. Due to terrestrial and environmental
conditions, renewable energy generation is not possible at all locations. The generated
renewable power is to be transmitted to the load centres wherever it is required. The regional

disparities in generation as well as demand necessitate the use of transmission lines.

The settings of conventional distance protection schemes are developed assuming the grid
is solely supplied by the synchronous generators. Upon integration of renewables, the
intermittent nature of renewable power sources creates problems to the distance relay
operation that relies on the positive sequence components of voltage and current signals. The
relay may issue false trips and experience underreach or overreach problems depending on
the system operating conditions. Further, the faulty phase identification gets complicated due
to the partial cancellation of positive and zero sequence components of currents during faults
resulting in reduced fault currents than the healthy phase currents i.e. accounted for the control
mechanisms of the voltage source converters associated with the renewable energy sources

(RES) [119, 120].

This chapter presents an intelligent novel protection scheme with a fuzzy logic system to
identify and classify the short circuit faults of the transmission line connected to RES (solar
and wind power sources). The voltage signals of the bus connected to renewable energy
sources are pre-processed with DFT are the inputs to the proposed Mamdani based fuzzy
inference system for fault detection/classification. A bagged ensemble learning approach with
regression decision trees is proposed for fault location estimation using the DFT processed

voltage signals. The key points of the proposed protection method are:
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e The proposed scheme of protection approach with FIS demonstrates robust
performance in identifying and classifying various fault types, even under variable
generation conditions of the RES connected to lines.

e This scheme achieved an accuracy of 99.56% in fault detection and classification
utilizing only single end voltage data that eliminates the use of communication link.
Hence no communication latency.

e The FIS based protection scheme is simple to implement and does not require any
training for protection purpose.

e The bagged ensemble approach effectively reduces the estimation errors, ensuring
a better approximation of the fault location that facilitates swift repair and
restoration, minimizing downtime and enhancing grid resilience.

e The proposed approach demonstrates the potential of combining fuzzy
logic, ensemble learning, and signal processing techniques for developing

intelligent protection systems adaptable to modern power grids.
4.2 Details of Three-phase Transmission Line Connected to RES

In the present work, a 200 km length transmission line (400 kV and 50 Hz) connected to
RES is considered. Fig. 4.1 depicts the single-line schematic representation of the
transmission system model with RES blocks and block representation of the protection
scheme proposed. The represented power transmission system is modelled and simulated
utilizing the MATLAB/Simulink platform. A three-phase power source represented with
Thevenin’s equivalent having 1.25 GV A short circuit capacity and 10 X/R ratio is connected
to one end of the line at bus B3 represents the 400 kV, 50 Hz grid. The RES are connected at
the other end of the line at bus B1. The solar and wind powers of each 50 MW is integrated
into the power system through the transmission line. The MATLAB components viz.
distributed parameters line block based on Bergeron’s line model and three-phase fault
breakers are used to simulate the transmission line having shunt capacitance effect and various
fault types respectively. The voltage samples collected at bus B1 are utilized for the proposed

protection technique. The parameters of the transmission line are given in Appendix — IIL
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Fig. 4.1 Single-line schematic representation of power transmission system model along with

block diagram of proposed protection method
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Fig. 4.2 Schematic representation of solar PV power source

The solar photovoltaic (PV) power plant rated with 50 MW power consists of PV module,
DC-DC boost converter, and voltage source inverter with a step-up transformer. A schematic
representation of the solar power plant is shown in Fig. 4.2. An aggregate model of the 50
MW solar power plant is developed in MATLAB/Simulink that constitutes 50 number of solar
PV parallel arrays each of 1| MW rated power. Each array consists of 205 number of parallel
strings and each string has 14 number of series connected modules. The solar PV power plant
data and the specifications of the PV module are given in Appendix — IV. The DC-DC boost
converter is used to boost the PV voltage and extract the maximum power from the PV plant

with perturb and observe maximum power point tracking algorithm. The 2-level three-phase
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voltage source inverter (VSI) and step-up transformer are used to interface/integrate the power
of the PV plant into the power system. The block schematic of the inverter control is shown
in Fig. 4.3. The details of the design aspects related to the PV system can be referred in [121,
122].
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PLL 9
Vabz abc 3“ la_ref - la PI-2 %—’ dq Vabc_ret
q [PWM |

labe—™ dq Iy —>
’ |q | |q_ref - lq PI-2 %—D abc
Vdc1_ref = Vdc1 PI-1 Id_ref Pulses

| Vq = |q_refRfi|ter1 = |d_refW|-ﬁ|ter1 |

Fig. 4.3 Block schematic of inverter control

The wind power is generated using the doubly fed induction generators (DFIG). Fig. 4.4
presents the schematic representation of the DFIG based wind farm. An aggregate model of
the 50 MW wind power farm is developed in MATLAB/Simulink. The DFIG based wind
farm rated with 50 MW power consists of 33 number of wind turbine generators each of 1.5
MW rated power. The DFIG based wind farm data is given in Appendix — V. The wind turbine
system, wound rotor induction generator, back-to-back converters (grid side converter (GSC)
and rotor side converter (RSC)) with its associated control system, and the step-up transformer
constitute the wind power farm. The power generated by the wind farm is fed to the power
system through the step-up transformer where the stator windings are directly connected to
the transformer and rotor windings are connected through the back-to-back converters. The
2-level converters are used for GSC and RSC that maintain the dc link voltage and control
the rotor currents respectively. The block schematics of the converter control for RSC and
GSC are shown in Fig. 4.5 and Fig. 4.6. The details of the design aspects related to the wind

power system can be referred in [121, 122].
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Fig. 4.6 Block schematic of GSC control

4.3 Development of Proposed Protection Scheme with FIS and

Bagged Ensemble of Regression Trees

Generally, any digital scheme of protection involves majorly two stages. The first stage is
the signal pre-processing to extract the relevant features useful for the protection task. The
second stage is the implementation of the scheme of protection with the extracted features. In
the present work, the simple and most widely applied discrete Fourier transform is employed
as the signal processing technique and the scheme of protection is developed utilizing the

fuzzy logic system and ensemble learning approach with features retrieved by DFT.
4.3.1 DFT Based Feature Extraction Process

The raw and unprocessed instantaneous fault information (either voltage or current data)
captured at the relaying location are very transitory and oscillatory in nature due to which
they cannot be directly used for the protection job. Hence, the raw fault data discretization
and pre-processing with suitable digital signal processing technique is crucial. In the present
study, the voltage samples collected at bus Bl are only employed for the protection job
because the amount of current injected into the grid may vary depending upon the intermittent
operating conditions of the RES. But, irrespective of RES operating conditions, the voltage
at bus Bl is maintained almost invariable due to the control action of voltage source
converters of RES. The initial stage of signal processing involves the filtering of three-phase
voltage signals at bus B1 using a low pass Butterworth anti-aliasing filter of second-order
with 480 Hz cut-off frequency to ensure the removal of higher order voltage harmonics.

According to the Nyquist sampling criterion, the filtered voltage signal is sampled with a 1
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kHz sampling frequency. Using the discrete Fourier transform, the amplitude of the voltage
signal’s fundamental component is extracted/determined from the discrete voltage samples.

Eq. (4.1) gives Vy(k), the discrete Fourier transform of v,(n) (discrete voltage samples) [91].

—j2nnk

M-1
1
AOEE Z v,(n) e M (4.1)

Where V),(k) is the voltage phasor, v,(n) is a discretized voltage signal, p = a, b, and ¢ phases,
nk=0,1,2, 3, ..., M-I are sample numbers, order of frequency stamps, and M is the number
of samples per cycle. The zero-sequence voltage is determined utilizing MATLAB’s sequence
analyser to ensure the ground involvement in the fault loop of grounded faults. Therefore, the
features extracted relevant to the scheme of protection are the magnitudes of fundamental
component and zero-sequence component of three-phase voltage samples viz. {| V|, | Vs, |Vel,

and |Vol}.

4.3.2 Proposed Protection Scheme for FDC and FLE

The fuzzy logic system is used for the detection and classification of short circuit faults of
the transmission line. Fuzzy logic systems are one of the Al techniques that are based on the
fuzzy logic mathematical framework which works on vague/imprecise input data to produce
precise output mimicking human like reasoning. These are simple, flexible, and have an easily
implementable structure. They can solve non-linear problems without intense computational
effort regardless of the system’s mathematical model. Fuzzy set theory forms the base for
fuzzy logic concepts. Unlike the traditional binary logic where the possible outcomes are
categorized as either completely true or false i.e. 1 or 0, fuzzy logic introduces the concept of
partial truthiness or falseness ranging its degree from 0O to 1 that embraces the ambiguity of
real-world problems. These rule-based systems make decisions using the fuzzy logic idea.
The execution of these systems is based on a set of devised “if-then” fuzzy rules that establish
conditional relationships mapping the input-output fuzzy sets represented by the membership
functions. The execution involves processes like fuzzifying inputs and outputs, fuzzy

inference processing, and defuzzification of outputs [8].

A single module of the Mamdani fuzzy inference system (FIS) is developed using
MATLAB?’s Fuzzy Logic Toolbox to make decisions about the transmission line fault type
and its occurrence. The FIS accepts four inputs {|Va|, |Va|, |Ve|, and |Vo|} and provides four
outputs {4, B, C, and G} to identify and classify the faults. The inputs and outputs are
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organized into different fuzzy sets with the fuzzy linguistic variables labelled as F' (fault), VF
(verge of fault), and UF (unfault) for the inputs, and L (Low), M (Medium), and H (High) for
the outputs. The fuzzy linguistic variables of the inputs and outputs are represented with the
trapezoidal (F, L, and H) and triangular (VF, UF, and M) membership functions. Fig. 4.7

depicts the graphical representation of the fuzzification of inputs and outputs.
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Fig. 4.7 Fuzzification of inputs and outputs

The suggested protection scheme employs 23 fuzzy rules that are formulated with the input-
output fuzzy linguistic variables to detect/classify the faults. Table 4.1 presents the formulated
fuzzy rule base of the scheme with rule no. #1 as “If'| V| is UF and |V| is UF and |V¢| is UF
then Ais L, Bis L, Cis L”. In a similar fashion, all other framed rules can be interpreted. The
outputs {4, B, and C} are dedicated to detect the phase(s) is faulty or healthy represented with
the output labels “+7” or “-1” respectively. Similarly, the output {G} is engaged in the
detection of ground for the grounded faults. The centroid method of defuzzification is applied
to the aggregated fuzzy outputs to deliver a crisp value that signifies the fault severity.
Whenever a fault is detected, the faulty phase output of the FIS module shows “High” with
the label “+/” and for the healthy phase the module output is “Low” with “-1”. The OR
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operation is performed on the FIS outputs {4, B, and C} to issue the trip signal to the circuit

breaker.

Table 4.1 Framed fuzzy rules

# Membership functions for # Membership functions for

Rule . Rule .

no. Vd Vol [Vd [Vl 4 B C G| no Vd Vil V| [Vol; 4 B C G
#1 UF UF UF - L L L - | #13 VF VF F - M M H -
#2 VF VF VF - M M M - | #14 UF VF F - L M H -
#3 I F F F - H H H - | #15 VF UF F - M L H -
#4 F  UF UF - H L L - | #16 F F UF - H H L -
#5 F VF VF - H M M - | #7 F F VF - H H M -
#6 I F VF UF - H M L - | #18 UF F F - L H H -
#71 F  UF VF - H L M - | #9 VF F F - M H H -
#8 UF F UF - L H L - | #20 F UF F - H L H -
#9 VF F VF - M H M - | #1 F VF F - H M H -
#10 UF F VF - L H M - | #2 - - - UF - - - L
#11 VF F UF - M H L - | #23 - - - F - - - H
#12 UF UF F - L L H -

This work employs a regression based bagged ensemble learning approach with
decision trees strategy for estimation/prediction of fault location. The ensemble learning
approach is one of the machine learning techniques i.e. used to improve the overall prediction
accuracy and robustness of the model. An ensemble learner is one which combines the results
of many learners to give a final output of high quality. In the bagged ensemble learning
approach, the learners/models are independent of each other and are trained/processed
parallelly on the training data set or subsets of training data that are obtained by sampling the
initial training data set with replacement. Instead of single model training that may be prone
to underfitting/overfitting due to data changes, the bagging ensemble process that trains
multiple models avoids the overfitting issues making the system robust with good
generalization performance. A pictorial representation of the bagged ensemble learner is

shown in Fig. 4.8, where Dk is the original training data set of K rows (instances) and d
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columns (d-1 features/attributes and the last column represents the target data), D'k; .4, D’k1.4,
D’kia, ..., D'k1a are the subsets of training data, M;, M> Mjs ..., M, are individual
models/learners, Y;, Y2, Y3, ..., Y, are the individual model outputs, and #» is the number of
learners in the ensemble. The Y is the final output of the ensemble. If the bagged ensemble is
used for classification purpose, then the final aggregated output is based on the majority
voting method and if it is a regression ensemble then the final aggregated output is the average

of all the individual outputs [123, 124, 125].
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Fig. 4.8 Pictorial representation of bagged ensemble learner

In the proposed protection method, an ensemble of decision trees (regression) is
implemented. Decision trees are one of the paradigms of data mining that are based on non-
parametric supervised learning algorithms and are capable of effectively predicting input
feature and output target relationships. The fundamental principle of growing decision trees
is to ‘divide and conquer’ the training data by recursively splitting/partitioning the data
optimally using ‘if~then’ conditions until the desired stopping criterion is reached. Impurity
based calculations are employed for optimal splitting of the data to get a pure node in
classification trees whereas minimum mean squared error of prediction is used to define the
purity of split in regression trees. A pictorial representation of the decision tree growing is
shown in Fig. 4.9 where the training data D contains features/attributes (77, />, ..., fa) with N
no. of instances, Y is the target data, and S is the potential splits obtained from D. The optimal
splits and optimal features are derived from impurity-based calculations through the

minimization of mean squared error of prediction. The process of splitting the data is
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continued until the pure nodes are attained or the maximum depth of the tree is reached [13,
14, 126]. In Fig. 4.9, the pure node is represented with a circle and the impure node is

represented with a rectangle.
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Fig. 4.9 Pictorial representation of decision tree growing

A bagged ensemble of 300 number of decision trees is implemented using the regression
learner in MATLAB to estimate the location of the fault. An extensive number of fault

simulations were conducted on the modelled system to generate the fault data for training the
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bagged ensemble learner. A total of 3960 different fault cases were simulated considering the
variations in different fault parameters viz. fault resistance, fault inception angle, fault
location, and different fault types. Table 4.2 presents the details of fault parameters considered
to generate the training data set. The size of the training data set is 39630*4, where the first
Vb

three columns represent the half-cycle moving minimum window of the inputs {| V4 , and

’

|Ve|} and the last column represents the actual fault location (target). In the training data set,
the actual fault location of no-fault cases is labelled as 400 km. The half-cycle post fault data
(10 samples) is collected to construct the training data set. The bagged ensemble learner with
different number of trees and minimum leaf sizes are trained on the generated data set through
a series of pilot runs. The bagged ensemble learner with 300 number of trees and a minimum
leaf size of one is found to be feasible. The estimated fault location (EFL) is derived from the
minimum, maximum, and mean of the estimated location (L.). Whenever a fault is detected
(i.e. Le <400 km), then one cycle data of L. is collected and the EFL is evaluated depending
on the conditions given in Eq. (4.2) using the one cycle data. The training process took a time
0t 93.12 s to train the bagged ensemble model with the prediction metrics: root mean squared
error of 0.996, mean squared error of 0.991 and mean absolute error of 0.719. All the
simulations of the present work are carried out on the Intel® Core(TM) i5-10210U CPU @
2.11 GHz processor with 8 GB RAM Windows 11 operating system. Fig. 4.10 presents the
flowchart of the complete scheme of the suggested protection method and its block diagram

is shown in Fig. 4.1.

Table 4.2 Fault parameters considered in the training data set

S. No. | Fault parameter Variations

1. Fault resistance (Q) 0.01 Q, 50 Q, and 100 Q (3 no.)

2. Fault inception angle (°) | 0° and 90° (2 no.)

3. Fault location (km) 3 km, 6 km, 9 km, ..., 194 km, and 197 km (66 no.)

4. Fault types 10 (ABC, AB, BC, CA, ABG, BCG, CAG, AG, BG, and CQG)

Therefore, total no. of fault cases considered = 3*2*66*10= 3960 and 3 - no fault case

Min(L,), if Min(L,) < 20%(Ly) and Mean(L,) < 55%(L)
Max(L,), if Min(L.) > 20%(Ly) and Mean(L,) > 55%(L)
Max(L,) — Mean(L,) + Min(L,), if Min(L,) < 20%(Ly) and Mean(L,) > 55%(Ly)
Max(L,) — Mean(L,) — Min(L,),if Min(L.) > 20%(Ly) and Mean(L,) < 55% (L)

EFL = (4.2)
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Here, L, Le, and EFL are the total length of the transmission line, estimated location, and

estimated fault location in km respectively.
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Fig. 4.10 Flowchart of the complete scheme of protection with FIS and bagged ensemble

learning approach

4.4 Results and Discussion

The performance of the proposed scheme of protection is discussed in this section by
carrying out extensive fault simulations on the simulated power system model. The suggested
protection method utilizes FIS for the detection/classification of the fault and a regression
based bagged ensemble approach for fault location estimation. The protection scheme’s
efficacy is evaluated for ten different types of short circuit faults simulated on the transmission

line by varying different fault parameters (fault resistance, Ry (0 — 100 Q), fault inception
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angle, @, (0° — 360°), and fault location, Ls (1 — 200 km)) with different solar irradiance and

wind speed levels.

4.4.1 Performance Evaluation of FIS Module for Detection and

Classification of Faults

Short circuit faults are stochastic in nature and can occur at location on any phase(s) of the
transmission line. To evaluate the performance of the FIS based protection module different
short circuit faults are simulated. An LG fault (AG) with fault resistance Ry= 50 Q and fault
inception angle ¢ = 0° (time of fault, 7y= 0.2 s) is simulated at a fault location of 50 km from
the bus B1 with solar irradiance of 1000 W/m? and wind speed of 15 m/s. The three-phase
voltage, current, power, and magnitude of voltage features {|Va|, | Vsl, |Ve|, and |V} measured

at bus B1 are depicted in Fig. 4.11 for the above-mentioned fault.
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Fig. 4.11 AG fault with Rr= 50 Q, ¢ = 0° (Ty= 0.2 s), L= 50 km, solar irradiance = 1000
W/m?, and wind speed = 15 m/s. (a) and (b) Voltage and current waveforms at bus B1, (c)
Voltage magnitudes of fundamental component and zero-sequence component, (d) Three

phase power from renewables, and (e) FDC outputs

Fig. 4.11 (e) presents the FIS based protection module outputs {4, B, C, G} representing
the fault detection and classification (FDC). From the FIS outputs, it can be observed that
until 0.2 s the output level of all the output labels is “-/” (healthy condition) and after the
occurrence of the AG fault at 0.2 s the output level of outputs 4 and G is “+1” (faulty

condition) at 0.206 s indicates the instant of fault detection and its type. Hence, the proposed
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protection scheme clearly identifies the fault type and its occurrence with the FDC time as 6
ms (FDC time = 0.206 ms — 0.2 ms = 6 ms) i.e. less than one cycle time (20 ms). Further, the
performance of the proposed scheme is evaluated for different fault types with solar irradiance
of 1000 W/m? and wind speed of 15 m/s for variations in fault resistance (Table 4.3), fault
inception angle (Table 4.4), and fault location (Table 4.5). The Ly= 50 km and ¢ = 0° are kept
constant in Table 4.3, the Ry= 50 Q and Ly= 105 km are kept constant in Table 4.4, and the
Ry=20 Q and ¢ = 0° are kept constant in Table 4.5 for the tabulated results.

Table 4.3 Performance results of the proposed FIS protection module for varying fault

resistance

Solar irradiance = 1000 W/m? and wind speed =15 m/s Ly=50 km and ¢ = 0° (Ty= 0.2 s)

S.No. Fault Ry (Q) FIS based FDC outputs FDC time (ms)
type

A B C G A B C G
1. AG 0.01 Q 1 -1 -1 1 5 ms - - 1 ms
2. BG 50 Q -1 1 -1 1 - 3 ms - 1 ms
3. ABG 50Q 1 1 -1 1 5 ms 3 ms - 1 ms
4. BCG 100 Q -1 1 1 1 - 3 ms 8 ms 1 ms
5. AB 5Q 1 1 -1 -1 6 ms 4 ms - -
6. ABC 10 Q 1 1 1 -1 6 ms 3 ms 8 ms -

Table 4.4 Performance results of the proposed FIS protection module for varying fault

inception angle (FIA)

Solar irradiance = 1000 W/m? and wind speed =15 m/s Ry=50 Q and Ly= 105 km

S.  Fault FIA (¢°) FIS based FDC outputs FDC time (ms)
No. type
(Tr () A B C G A B Cc G
1. AG 0°(0.2s) 1 -1 -1 1 6 ms - - 2 ms
2. ABG 45°(0.2025s) 1 1 -1 1 35ms 8.5ms - 2.5 ms
3. AB 90° (0.205 s) 1 1 -1 -1 10 ms 8 ms - -
4. ABC 180°(0.215s) 1 1 1 -1 6 ms 3 ms 8 ms -
5. BCG 270°(0.215s) -1 1 1 -1 - 8 ms 4 ms 1 ms
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Table 4.5 Performance results of the proposed FIS protection module for varying fault

location
Solar irradiance = 1000 W/m? and wind speed =15 m/s R=20Q and ¢ = 0° (Ty=0.2 5)
S.No. Fault Ly(km) FIS based FDC outputs FDC time (ms)
type
A B C G A B C G

1. CG 5 km -1 -1 1 1 - - 7 ms 1 ms
2. ABG 50 km 1 1 -1 1 6 ms 3 ms - 1 ms
3. ABC 100 km 1 1 1 -1 6 ms 3 ms 8 ms -
4. BC 150 km -1 1 1 -1 - 4 ms 9 ms -
5. AG 197 km 1 -1 -1 1 5 ms - - 2 ms

Further, the performance of the proposed FIS protection module is evaluated for faults with
different solar irradiance and wind speed levels. Fig. 4.12 depicts the results of the proposed
scheme for the LLG fault (ABG) with the following parameters: Ly= 90 km, Ry= 80 Q, Ty=
0.5 s (¢ = 0°), solar irradiance = 500 W/m?, and wind speed = 8 m/s. From Fig. 4.12 (d), it
can be observed that the ABG fault is detected and classified within 7 ms after the inception
of the fault. Similarly, Fig. 4.13 depicts the results of the proposed scheme for the LLL fault
(ABC) with the following parameters: Ly = 150 km, Ry = 30 Q, Ty = 0.5 s (¢ = 0°), solar
irradiance = 1200 W/m?, and wind speed = 20 m/s. The ABC fault is identified in 8 ms after

the inception of the fault.
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Fig. 4.12 ABG fault with R,=80 Q, ¢ = 0° (Ty= 0.5 s), Ly= 90 km, solar irradiance = 500

93



W/m?, and wind speed = 8 m/s. (a) and (b) Voltage and current waveforms at bus B1, (c)

Three phase power from renewables, and (d) FIS based FDC outputs
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Fig. 4.13 ABC fault with Ry=30 Q, ¢ =0° (7y= 0.5 s), Lr= 150 km, solar irradiance = 1200

W/m?, and wind speed = 20 m/s. (a) and (b) Voltage and current waveforms at bus B1, (c)

Three phase power from renewables, and (d) FDC outputs

Table 4.6 Performance results of the proposed FIS protection module for varying fault

parameters (solar irradiance = 500 W/m? and wind speed = 8 m/s)

Solar irradiance = 500 W/m? and wind speed = 8 m/s

S.  Fault Ls(km) Rr(Q) FIA (¢°) FIS based FDC outputs FDC time (ms)
No. type
(Tr () A B C G A B c G
1. AG 50km  50Q 0°(0.55s) 1 -1 -1 1 6 ms - - 1 ms
2. ABG 90km 80Q 0°(0.55) 1 1 -1 1 7ms 4 ms - 1 ms
3. AB 130km 15Q  90° (0.505 s) 1 1 -1 -1 10ms 8ms - -
4. ABC 180km 10Q  180°(0.515s) 1 1 1 -1 6ms 3ms 8ms -
5 BG 10km 100Q 270°(0.515s) | -1 1 -1 1 - 8 ms - 1 ms
6. BCG 190km 100Q 360°(0.52s) | -1 1 1 1 - 2ms 9ms 1ms

Table 4.6 and Table 4.7 showcase the performance of the proposed method under varying

fault conditions. Table 4.6 presents results for solar irradiance of 500 W/m? and wind speed

of 8 m/s, while Table 4.7 focuses on solar irradiance of 1200 W/m? and wind speed of 20 m/s.
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Both tables explore the impact of different fault types and variations in fault parameters. The
results presented showcase the effectiveness of the proposed FIS protection module even

under different operating conditions of the RES for varying transmission line fault conditions.

Table 4.7 Performance results of the proposed FIS protection module for varying fault

parameters (solar irradiance = 1200 W/m? and wind speed = 20 m/s)

Solar irradiance = 1200 W/m? and wind speed = 20 m/s

S.  Fault Ly(km) R;(Q) FIA (¢°) FIS based FDC outputs FDC time (ms)
No. type

(Tr (s) A B C G A B c G
I. ABC 150km 30Q 0°(0.5s) 1 1 1 -1 6ms 3ms 8ms -
2. CAG 70km 70Q 0°(0.5s) 1 -1 1 1 6 ms - 8ms 1ms
3. CG 25km  55Q  90°(0.505s) | -1 -1 1 1 - - 4ms 1ms
4. BC 160km 25Q 180° (0.51 s) -1 1 1 -1 - 2ms 7ms -
5. ABG 197km 100Q 270°(0.5155s) 1 1 -1 1 9ms 9 ms - 2 ms
6. AG 3km 0.01Q 360°(0.525) 1 -1 -1 1 3 ms - - 1 ms

Further, the reliable operation of the proposed scheme of protection is assessed in terms of
accuracy and dependability with the help of a confusion matrix. The accuracy and
dependability are calculated using Eq. (4.3) and Eq. (4.4). The confusion matrix is developed
for the fault cases that are described in Table 4.2 (3963 fault cases) and Table 4.10 (2400 fault
cases). The number of true and detected fault cases are segregated into LG, LLG, LL, LLL,
and NF fault types depicted in Table 4.8 are listed in the confusion matrix. The three no-fault
cases (NF) are the different operating conditions of RES with no fault on the transmission
line. The accuracy and dependability of the proposed scheme are found to be 99.56% given
in Table 4.9.

total no.of cases detected correctly

y _ x 100 4.3
CUTAEY = total no. of fault and no fault cases -

b dability — total no.of fault cases detected correctly % 100 4.4
ependantlity = total no.of actual fault cases @5
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Table 4.8 Confusion matrix for FDC

Detected faults

LG LLG LL LLL NF Total
LG 1908 - - - - 1908
True faults LLG - 1880 - 28 - 1908
LL - - 1908 - - 1908
LLL - - - 636 - 636
NF - - - - 3 3

Total no. of fault cases = 6363

Table 4.9 Performance index of FIS based protection module

S. No. Performance index

L Aceuracy =222 x 100 = 99.56%

2. Dependability = == x 100 = 99.56%
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Fig. 4.14 Fault detection time of the proposed protection module with FIS for LG fault cases
of Table 4.2
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The response or fault detection time of the proposed FIS based protection module for
different LG fault cases that are detailed in Table 4.2 is shown in Fig. 4.14. The x-axis
represents the variation in fault location and the y-axis denotes fault detection time. The fault
inception angle for the first and last three rows of figures are 0° and 90° respectively. The
fault resistance is 0.01 Q (for 1** and 4" rows), 50 Q (for 2" and 5™), and 100 Q (for 3™ and
6" rows). From Fig. 4.14, it can be observed that the different LG fault cases (AG faults in
column-1, BG faults in column-2, and CG faults in column-3) are detected within half-cycle
time. The fault detection time is also evaluated for the other fault cases in Table 4.2 and Table
4.10. It is noticed that the fault detection time is well within half-cycle time for all the LG,
LLG, and LLL fault cases and one-cycle time for LL fault cases. The accuracy achieved and
fault detection time of one-cycle time demonstrates the reliable operation of the proposed FIS

protection module.

4.4.2 Performance Evaluation of Regression Tree Based Bagged Ensemble

Learning Module for Fault Location Estimation

The effectiveness of the proposed fault location module is assessed for diverse fault cases
considering varying fault locations using the percentage error metric defined in Eq. (4.5). This
metric is the percentage error in estimated fault location that compares the estimated fault

location (EFL) with the actual fault location (4FL), normalized by the total line length (L7).

EFL — AFL
—X
T
An LG fault (AG) with Ry=0.01 Q and ¢ = 0° is simulated at 9 km (4FL) from bus B1. Fig.

% Error in the estimated fault location (%E) = 100 (4.5)

4.15 presents the output (L.) of regression based bagged ensemble learner towards the fault
location estimation. When the system is healthy, the proposed bagged ensemble fault locator
outputs 400 km. In case of a faulty condition, the proposed fault location module estimates
fault location close to AFL i.e. 8.551 km with a -0.2245% error in the EFL. Similarly, Fig.
4.16 and Fig. 4.17 depict the outputs of the fault location module for the LLG fault (ABG
fault with R,= 90 Q and ¢ = 0°) and a triple line fault (ABC fault with R,=0.01 Q and ¢ =
0°) simulated at 104 km (AFL) and 196 km (AFL) respectively. The EFL is found to be 108.13
km (%E = 2.065%) for the ABG fault and 193.10 km (%FE = -1.45%) for the ABC fault with
the proposed method of location estimation. In all the above-mentioned fault cases (AG,

ABG, and ABC), the solar irradiance = 1000 W/m? and wind speed = 15 m/s.
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Estimated Fault Location (km)

Fig. 4.15 Estimated fault location for AG fault with R;=0.01 Q, ¢ =0° and AFL =9 km

Fig. 4.16 Estimated fault location for ABG fault with Ry=90 Q, ¢ = 0° and AFL = 104 km

Estimated Fault Location (km)

Fig. 4.17 Estimated fault location for ABC fault with Ry=0.01 Q, ¢ = 0° and AFL = 196 km
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To assess the effectiveness of the proposed fault location module, a testing data set is
created by simulating different types of faults and Table 4.10 gives the details of fault
parameters considered that counts for 2400 different fault cases. Fig. 4.18 presents the scatter
plot of percentage error in the estimated fault location for different faults mentioned in Table
4.10. It is noticed that the %F lies in the band of +/-5% with the proposed method. Table 4.11
presents the results of the estimated fault location for different faults. Further, to assess the
reliability of the fault location module, the Chi-square error analysis is performed on 400 EFL
errors that are obtained by randomly simulating the faults at different locations along the
transmission line. Table 4.12 presents the Chi-square test for reliability analysis of the
proposed fault location estimation method. The low difference between the observed and
expected number of errors showcases the efficacy of the proposed method and the Chi-square

value (D°) falls in the 5% band of significance level [127].

Table 4.10 Fault parameters considered in the testing data set

S. No. | Fault parameter Variations

1. Fault resistance (£2) 30 Q, 60 Q, and 90 © (3 no.)

2. Fault inception angle (°) 45° and 180° (2 no.)

3. Fault location (km) 5 km, 10 km, 15 km, ..., 190 km, and 195 km (40 no.)

4. Fault types 10 (ABC, AB, BC, CA, ABG, BCG, CAG, AG, BG, and CG)

Therefore, the total no. of fault cases considered = 3*2*40*10= 2400

LG Faults (720 cases) LLG Faults (720 caSGS)
- ‘ ‘ * - * . *
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Fig. 4.18 Percentage error in estimated fault location for all fault cases of Table 4.10
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Table 4.11 Performance of the proposed bagged ensemble learner module for different faults

S. No. Fault type AFL (km) R (Q) FIA (¢°) EFL (km) % Error
1. AG 5 km 50 Q 0° 5.38 km 0.19%
2. ABG 70 km 0.01 Q@ 0° 71.74 km 0.87%
3. AB 120 km 20 Q 0° 116.45 km -1.76%
4. ABC 190 km 0.01 Q 0° 191.27 km 0.64%
5. BG 50 km 60 Q 90° 45.66 km -2.17%
6. BCG 100 km 100 Q 90° 99.31 km -0.35%
7. BC 150 km 10 Q 90° 144.73 km -2.64%
8. ABC 30 km 15Q 90° 30.87 km 0.44%
9. CG 130 km 100 Q 270° 127.65 km -1.18%
10 CAG 80 km 90 Q 270° 79.48 km -0.26%

11. CA 195 km 25Q 270° 193.19 km -0.91%
12. ABC 197 km 10 Q 270° 193.35 km -1.825%

Table 4.12 Chi-square test for fault location estimation reliability analysis

Interval number % Error interval No. of observed No. of expected (Noi — N,)?

(i) errors (Noi) errors (Nej) N,;

1 -4.5t0-3.5 7 5 0.8

2 -3.5t0-2.5 22 19 0.4737
3 -2.5t0-1.5 39 46 1.0652
4 -1.5t0-0.5 78 82 0.1951
5 -0.5t0 0.5 104 101 0.0891
6 0.5t0 1.5 86 83 0.1084
7 1.5t02.5 44 46 0.087
8 2.5t03.5 20 18 0.2222

8
N,; — N,;)?
D? =ZM= 3.0407
n Nei
i=1
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4.4.3 Comparison of the Proposed Protection Scheme

A comparison of the proposed scheme of protection is discussed in this section in terms
of protection and feature extraction techniques, protection tasks implemented, type of RES
integrated, and FDC accuracy. Table 4.13 provides a comparison of different protection
schemes with the proposed method. All the protection methods mentioned in Table 4.13 are
training-based artificial intelligent methods for the detection and classification of faults except
the proposed one. The training-based methods require large sets of training data considering
different operating conditions to train the models for achieving high performance and
accuracy of the trained models in the protection tasks. The proposed scheme is implemented
with the fuzzy inference concept for fault detection and classification that do not require any
training of the module. Further, the FDC accuracy is comparably high with other training-
based techniques.

Table 4.13 Comparison with other protection schemes

Comparison Reference
term
[63] [64] [128] [129] [130] [131] Proposed
Protection SVM ANN SVM Rotation Decision Random FIS and
technique and GPR forest tree and forest regression
based on SVM based bagged
ensemble
learner
Signal  pre- | Transient MODWT; RMS of DWT; DFT, Positive DFT;
processing or | motoring energy of voltages standard amplitude sequence magnitudes
features index of detail and deviation of and phase  currents and Zero-
utilized currents coefficients currents approximate angle of empirical sequence and
of voltage and coefficients  voltage and mode fundamental
current of voltage and current decompositi  components
current phasors on of grid of phase
side voltages
currents
Protection FDC FD of FDC and FDC FDC and FDC and FDC and
tasks symmetrical FLE FLE FLE FLE
faults only
FDC accuracy 99.84% 98.40% 99.50% 99.43% 97.9% 99.95% 99.56%
FDC time 10 ms - 20 ms 16.67 ms - 8 ms 20 ms
PV and/or Wind Wind power - PV and wind Wind Wind power PV and wind
wind  power power power power power
integration (DGs)

FD: Fault detection, FDC: Fault detection and classification, and FLE: Fault location estimation
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4.5 Summary

In this chapter, an FIS based protection module for the detection/classification of short
circuit faults and a bagged ensemble learning approach with regression trees for
approximating actual fault location has been proposed for the transmission line connected to
RES (solar PV and DFIG based wind power). The proposed protection modules utilize only
the DFT processed three-phase voltage information of a single bus (i.e. connected to RES).
Hence, the communication link is not required and there is no communication latency. The
proposed FIS based protection module effectively detects the fault occurrence and classifies
the different short circuit fault types within one cycle time (20 ms) following the fault
inception even for varying fault parameters under different operating conditions of RES. This
showcases that the proposed detection/classification scheme is passive/robust to fault
parameter variations and RES power intermittences. The performance index indicates the
efficacy of the FDC scheme with an accuracy of 99.56% calculated with the help of a
confusion matrix. The proposed fault location module with the bagged ensemble of regression
trees successfully predicts the actual fault location with minimal error. The percentage error
in the estimated fault location is within +5% error band even for various faults with varying
fault parameters demonstrating the adaptability to diverse fault scenarios. Further, the
reliability of the fault location estimation module is confirmed through the statistical analysis
with the Chi-square test (D? = 3.0407) on location errors falling in the 5% band of the
significance level. The proposed approach exemplifies the potential of combining fuzzy logic,
ensemble learning, and signal processing techniques for developing intelligent protection

systems adaptable to modern power grids.

kosk skosk sk

102



Chapter 5

Frequency Control of an Islanded
Microgrid with Multi-stage PID Control
Approach Using Moth Flame
Optimization Algorithm

103



5.1 Introduction

The supply of power from traditional generating units to distant areas and islands is
expensive, unreliable, and damaging to the environment under the current situation of
contemporary power systems [132]. Under these circumstances, microgrids (MGs) offer
reliable and cost-effective power solutions for supplying the required excess power demand
to remote areas. Microgrid is a combination of diesel engine generators (DEGs), loads,
renewable energy sources (RES), and various energy storage systems. An MG acts like a
single controllable unit that contains a group of distributed energy sources to supply the excess
demand from the different connected loads (residential, commercial, or small industrial
loads). It could be regarded as a small-scale local grid with control capabilities at low voltage

distribution levels [133].

In traditional power systems, the frequency regulation job is simple as the disturbance
arises due to the stochastic loads only. But in an islanded MG; the frequency control problem
is always a concerning challenge for the operators that account for some intrinsic attributes
of the system viz. functional complexity, variable structure, and diversity in the generation.
These attributes introduce rapidly changing operational points of the system [134]. Moreover,
the rapid growth in the increased penetration levels of RES into MG will result in low inertia
of the MG system. The low inertia of the MG system, stochastic loads, and
intermittent/discontinuous generation of renewables will create complications in the
frequency control of an islanded MG. Massive frequency deviations will cause stability and
reliability problems and sometimes may lead to MG blackout. Although the PID controllers
are simple in structure, reliable, and better at performance with fair cost, the classical PI/PID
controllers fail to provide a satisfactory response for MG frequency control under these rapid
changes in MG operating conditions [135]. Therefore, an intelligent and robust controller is

required to regulate the frequency of an islanded MG.

The selection of appropriate optimal techniques for modifying the control parameters is
crucial to improvise the MG’s dynamic response. The use of an appropriate algorithm for
optimizing the controller’s parameters (gain constants) could enhance the system’s response
in terms of low overshoots, reduced error values and fast settling times. Therefore, in the
present chapter, a newly developed and powerful moth flame optimization (MFO) algorithm

is presented to optimize the multi-stage PID (MPID) controller gain constants. This chapter
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investigates the frequency dynamics of an MG having DEG, PV (photovoltaic), WTG (wind
turbine generator), and PHEVs (plug-in hybrid electric vehicles) operating in islanded mode.
The coordinated control of DEG and PHEV with the MPID controller is studied using the
MFO algorithm.

The key points of this chapter are listed below:

e The performance of differently tuned PID controllers (GOA, TLBO, PSO, and MFO)
i1s demonstrated and compared through the MATLAB/Simulink simulation results to
show the superiority and feasibility of the MFO algorithm over the other powerful and
well-known meta-heuristic techniques.

e An MFO-tuned MPID controller has been proposed for mitigating the oscillations in
the frequency dynamics of the modelled Bella Coola MG incorporating RES and
PHEVs. The MFO algorithm is applied to optimize the MPID controller's gain
constants.

e The MPID controller’s robustness is evaluated by taking into consideration the
simultaneous changes in RES, load dynamics, and MG and PHEV uncertainties in a
single controller framework.

e The effect of PHEVs in the secondary and primary frequency control loops (SFC and
PFC) of an islanded MG has been analyzed with RES and load disturbances to choose

the better control action.
5.2 Details of Mathematical Model of Investigated MG

Fig. 5.1 shows the simplified form of the Bella Coola hybrid MG mathematical model under
investigation. The present model comprises DEG, PHEV aggregator and RES (wind and solar
power output) [136]. This study considers WTG and PV powers to be uncontrolled power
sources (as disturbances). The advantages of using renewable energy are hindered, as
frequency deviations limit the MPPT output power when they participate in frequency
control. So, in this work, based on load changes and available PV/WTG powers, the diesel
engine generator and PHEVs manage the power balance in the MG that is achieved through
the suggested controller. Table 5.1 contains the parameters of the MG test system. From Fig.

5.1, the generation-load balance equation is:
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The expression for deviation in the MG frequency (4f) caused by the RES and load
disturbances is given in Eq. (5.2) and B is the frequency bias factor (B = D + I/R).

1
Af = Ms+D

(APpgg + APyrg + APpy — APpypy — BAf — APy) (5.2)

The proposed coordinated control’s aim is to minimize the frequency deviations of MG under
critical operating scenarios with the proposed MPID controller. In this work, only DEG and

PHEVs are responsible for power balance. Therefore, the PV and WTG sources are modelled

as disturbances in LFC analysis.

A
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A
1 Speed G i
D @ Bend PMechanism  Diesel Engine GRC i“’ L
| o] el L1 1 R HoA =N ] e
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v Af: PHEV Aggregator »
Wind Power Kwre APyrg
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Solar irradiation [~ 1 "I‘(:;PV ild >
Fig. 5.1 MG mathematical model
Table 5.1 MG system parameters [85]
Parameter Value Parameter Value Parameter Value
M (S) 0.1667 Truey (S) 0.1 Ney 600
D (puMW) 0.015 Twre (s) 2 R, Ry (Hz/puMW) 2.4
T (s) 0.025 Trv (s) 1.8 Prax (kW) 5
T2 (S) 2 KWTG 1 Aﬁ (HZ) 01
Ts (s) 3 Kpy 1 Afi (Hz) 0.1

5.2.1 DEG Model

Since the power generation from the solar PV and WTG systems is stochastic, DEG forms

the best means of supplying reliable and quality power to the essential loads in a standalone
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MG. A speed governing mechanism and diesel engine combination form the diesel engine

generator system. The DEG mathematical model is given in Fig. 5.2 [137].

MFO
Multi-stage

Controller

Speed Governing
Mechanism Diesel Engine GRC

N 1 1 |~ APDEG+ = 1 Af
S2(T Ty) +s(Ty + T + 1| |1 +sTs[ T 7 s Ms+D|

Fig. 5.2 DEG mathematical model

.....

5.2.2 WTG Model

The mechanically produced output power of a WTG is highly inconsistent since it

depends on the stochastic wind speeds and is given by:

P, = 0.5pAV,; C,(B, 1) (5.3)
where,
P,y = power output of windmill, p = air density (kg/m’), V,, = speed of wind (m/s), A = rotor
swept area (m?), and C, = power coefficient (function of tip speed ratio, A and blade pitch
angle, f (deg)). R = radius of the blade (m) and w = angular velocity of the blade (rad/s). The

C, can be expressed as:

C,(8,2) = (Zsyi —1.1-0088f)exp /7 (5.4)
_1
v = /[ 1 0035
T+0088 1+p°
1= Rw
-7

The WTG linear model can be represented as [138]:

APwrg Kwre
TFWTG = = (5 5)
PwPoutpur  1+STwre

Fig. 5.3 depicts the model for the generation of wind output power variations mathematically.
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5.2.3 PV Model

The extraction of electrical energy from photons takes place in the PV cells that are made
from a semiconductor material. The possibility of the desired level of installation capability
of PV sources is the key benefit of photovoltaics. The power generated from a PV source
depends on the amount of solar irradiation and temperature. If 25°C ambient temperature is

maintained then Ppy varies linearly with the irradiation constant (¢) only [138].

Pev = Pootar (=2=) (1 + K, [T, + 0.025694¢ — Terc]) (5.6)

¢
pstc
The APpy, with respect to A can be computed using Eq. (5.7):

APpy = (‘:ps—lc) (A + K, [A@T, + @AT, + 0.051204¢ — TercApl)  (5.7)
T

The PV system's first-order model can be represented as [139]:

__APpy _ Kpy
TFPV - A - 1+sTpy (58)

Fig. 5.4 depicts the mathematical model for PV output power with random solar irradiation
pattern generation [83]. The power data used for the WTG power and PV power can be found
in [139].
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5.2.4 PHEV Model

Fig. 5.5 illustrates the PHEV aggregator’s mathematical model for LFC studies. Due to
their slow discharge rate, quick response time, and dispersed availability, PHEVs are a great
energy storage alternative for LFC needs. The output power from the PHEV aggregator based

on frequency deviation is as follows (4Ppygy):

KEV,iAf; |KEV,iAf| < Pnax
APPHEV,i = Pmax; KEV,iAf > Pmax (5-9)
_Pmax; KEV,iAf < _Pmax

APpygy ac = Ngv * APpygpy (5.10)

AU . (Desired LFC Signal from Controller)

Af., +Pax AP pygy
Af . 10, Kpod 1 APpypvi/ Nl
H L L H—
; Rav 1 + STEV.i /
P Afy —Prax
PHEYV Aggregator

Fig. 5.5 PHEV aggregator model for frequency control studies

The controller’s command signal (AU,) is used to determine whether the APpypy, will
be used for charging/discharging [140]. P4, is the maximum power available from an

individual EV, Kgy,irepresents the single EV’s participation gain. The battery’s state of charge
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(SOC) determines the value of Kgy,;. Fig. 5.6 shows the Kgy,; vs SOC of PHEV [141]. Ngy
denotes the number of EVs, R, denotes the droop characteristics of the PHEV aggregator

and Tgy ; is the battery time constant.
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Fig. 5.6 Kgv i vs. SOC a) Discharge mode, b) Idle mode

5.3 Development of Proposed Moth Flame Optimization Based
MPID Controller

The escalating complexity of power systems requires a quick and precise refining of the
controller’s gain constants to achieve a better LFC response. To address this problem, many
swarm-intelligent strategies for PI/PID controller tuning have been suggested in the literature.
The fundamental characteristics of these algorithms are the absence of derivatives and non-
dependence on the plant model. A few of them are PSO, TLBO, GA, CSO, HSO and GOA.
The NFL (no free lunch) theorem states that no single swarm-intelligent approach has the
potential solution to solve all engineering optimization issues and that there is always an
opportunity for improvement. So, for fine-tuning the MPID controller, a recently developed
and powerful MFO is used. Mirjali et al. developed MFO in 2015, which imitates the social
behaviour of moth flames. This algorithm was benchmarked on various standard test
problems and verified its performance quantitatively and qualitatively with different
optimization approaches in the literature. This method was used extensively to solve different
engineering problems because of its merits viz. quick convergence, few controlling factors,

straightforward implementation structure and simplicity [142 — 144].

5.3.1 Mathematical Modelling of MFO

This algorithm mimics the flying characteristics of moths. Moths are flying insects that

belong to the same class as butterflies. The swarming behaviour is a unique feature of the
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moths that is found at both stages of the moth’s evolution (nymph/larval and adult stages).
Moreover, moths exhibit special navigation paths at night by nature called transverse
orientation. The moths follow a specific path with respect to the moonlight during their travel
in the night. When moths are far away from any light, they travel long distances in a straight
line (single direction) based on moonlight. Once they come too close to a light source, they
fly spirally around it and finally reach convergence after certain modifications.

This algorithm can be divided into two components, called moths and flames, either of
them is regarded to be the solution. The moths and flames are viewed as search agents and
elite positions explored during the iterations in this algorithm. Thus, flames can be regarded
as flags that moths drop when exploring the search space. So that flames can never lose their
best position during the population update and while finding the global best solution. Below
is an illustration of the mathematical model used to replicate the swarming behaviour of
moths:

The moths are initialized as follows for the first iteration:

myq, = Myg
M=[ : : ] (5.11)

My 0 Mpg

Where M is the matrix of moth population, d is the dimension of search space which depends

on the no. of optimization variables and » represents the total no. of moths.

Based on the fitness function and its value, the moths can be sorted in ascending/descending

order. Eq. (5.12) represents the objective value of moth’s population.

OM = (OM,,0M, ......OM, )T (5.12)

Similarly, the flame matrix can be updated as:

fl,l fl,d

F = : . :
fn,l fn,d

(5.13)

Based on the fitness function and its value, the flames can be sorted in ascending/descending
order. Eq. (5.14) represents the objective value of flame’s population.

OF = (OF,,OF, ......0E, )T (5.14)

The typical structure of MFO can be expressed with three approximations as follows:
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MFO = (I,P,T) (5.15)

Where [: Initialization; P: Position update, 7: Termination

In Eq. (5.15), I denotes the initialization of the population, which can be defined as:
M; ;= 1b@i) + (randomno(l,Npop)) (ub(@) — Ib(D)) (5.16)

Where N, denotes the population size, ub is the upper limit boundary, and /b is the lower

limit boundary.
In Eq. (5.15), P denotes the position update of moths. The position update of the moth with
respect to flames can be updated by using Eq. (5.17)

M; = S(M, F;) (5.17)

The logarithmic spiral function (S) is used as the key updating strategy because the algorithm

is based on the moth’s transverse orientation around a flame and can be written as follows:
S(M;, F;) = F; + D;e"* cos(2mt) (5.18)

Where F; denotes the position of the j" flame and M; indicates the position of i moth, ‘¢’

indicates a random number in [-1, 1], and ‘b’ defines the shape of the logarithmic spiral. D; is

the distance of the i moth from the j* flame, which is defined as:
D; = |F, — M| (5.19)

The moth's position is wupdated with respect to flame during exploration and
exploitation [145]. The exploitation is taken care by the logarithmic spiral function and it
takes place if the subsequent point is located between the moth and flame. Exploration is
taken care by the distance term, D;. In any swarm intelligence algorithm, an optimal trade-off
between exploitation and exploration is needed to obtain global optimization. In this
algorithm, the value of ‘#” and number of flames reduces from iteration to iteration to have an
equalized effect on exploitation and exploration, as stated in Eq. (5.20) and Eq. (5.21).

flame_no = round <] —1 (1—71» (5.20)

i
t =1—randomno (2 + T) (5.21)
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where J specifies the maximum no. of flames, 7 is the maximum count of iterations and i is

the present iteration.

5.3.2 Proposed Multi-stage PID (MPID) Controller Using MFO

An MPID controller is a union of PD and PI controllers in tandem. Fig. 5.7 illustrates
the structure of an MPID controller. The PD controller in the initial stage receives an error
(Af) as its input and the PI controller in the final stage receives input from the output of the
initial stage [83]. The MPID controller output (4U.) is a reference power command signal for
DEG and PHEVs. The key benefit of an MPID controller is that the system can utilize the
best features of both controllers. At first, the PD controller is used to produce constant output
to improve the transient response and later the steady-state error is reduced with the integral
component of the PI controller. So, in this controller, the integral term is absent during the
transient state. This overcomes the restriction of a traditional PID controller, which includes

the incorporation of an integral component during the transient state.

The control signal fed to DEG and PHEV through the MPID controller can be expressed as
[83]:

AU, = (Kp + K, %) (1 + Kpp + %) Af (5.22)
PD PI
e ]
1/s + AU,
L |Kp N Kpp -+

Fig. 5.7 Mathematical model of MPID controller
5.3.2.1 Optimizing MPID controller with MFO algorithm

The following steps are an explanation of the process for optimizing the proposed MPID

controller with MFO:

Step 1: Random initialization: In the first iteration, generate a random population by using

Eq. (5.11) & Eq. (5.16). Since the proposed controller has (Kp,Kp, Kpp K; and N) as 5
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controller parameters, the population size is taken to be 100x5. Here, 100 stands for the
population of moths and 5 for the dimensional size of the search space.

Step 2: Objective/fitness assessment: Simulate the developed model to evaluate the
population’s performance with the fitness function (integral time absolute error (ITAE)) given

in Eq. (5.23).
ITAE = min [*™ t|Af|dt (5.23)

Subjected to the optimization of 0.01< Kp Kpp, K;, Kp<2 and 0<N<200 [85]. Where ‘tg;»,’
denotes the total simulation time. The Af value will be obtained from the Simulink model
shown in Fig. 5.1.

Step 3: Selection: Based on the fitness value (ITAE), flag the best positions by flames.

Step 4: Update the MFO algorithm-specific parameters: At each iteration, calculate the
value of D for the corresponding moth and update the number of flames, and value of 7 using
Eq. (5.19), Eq. (5.20) & Eq. (5.21).

Step 5: Population update: Based on the values of D, F and ¢ estimate the updated position
of the moth with respect to the best flame’s position using Eq. (5.18).

Step 6: Stopping rule: When the current iteration exceeds the maximum iteration count, the
optimal parameters for the controller are the most optimal solution achieved till the last
iteration that corresponds to the optimal value of ITAE. Show the optimized Kp Kpp, K}, Kp,
N, and ITAE values.

5.4 Results and Discussion

The simulation studies are performed on the Bella Coola MG having different
renewable energy sources and PHEVs that are modelled in the MATLAB Simulink platform.
An extensive investigation of the simulation outcomes of an islanded MG's frequency
deviations are provided in this section. The MG frequency deviations are analyzed with
variations in the load (4P;), RES power disturbances (solar power (4Ppy) and wind power
(APy 1)) and with the parametric uncertainties of MG and PHEV. The performance of the
MFO-optimized MPID controller is presented for the aforementioned disturbances. Initially,
to examine the supremacy of the MFO algorithm over other popular metaheuristic algorithms

(PSO, TLBO, and GOA), the performance of different PID controllers is assessed with step
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load and multiple step load perturbations. Later, the performance of MFO optimized PID and
MPID controllers is evaluated for several operating scenarios that have been created and
tested on Bella Coola MG. Further, the presence of PHEVs in primary and secondary
frequency control loops is presented. Finally, the stability analysis and comparison results are

presented.

5.4.1 Performance Evaluation of the Proposed Controller Under Different

Operating Conditions

i) Initial case: Dynamic response evaluation of various meta-heuristic-based PID

controllers against step load and multi-step load disturbances (AP)

The initial case is meant to demonstrate the effectiveness of the MFO-based PID
controller above the other well-known meta-heuristic optimized PID controllers in the
literature. In the present operating scenario, a 10% step change in load demand is considered
and the PID controllers’ parameters are optimized using the meta-heuristic algorithms
considering the ITAE as the fitness function. The ITAE characteristics of differently tuned
PID controllers are shown in Fig 5.8. Table 5.2 denotes the optimized parameters of the PID
controller with various meta-heuristic techniques. Fig. 5.9 displays the frequency perturbation
response of the MG for the operating conditions of step load change case using various PID
controllers. Table 5.3 represents the comparative performance analysis of differently tuned
PID controllers, considering Fig. 5.9 with regard to ITAE value, settling time and

overshoot/undershoots.
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Fig. 5.8 ITAE performance characteristics
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Fig. 5.9 MG frequency perturbation response for 10% step load change

Table 5.2 Optimized gains of various controllers

Optimized Gains

Methods

Kp Ki Kp N
PSO-PID 1.0329 1.6248 1.1992 100.2266
TLBO-PID 1.1922 0.8718 1.8374 119.4526
GOA-PID 1.39556 1.42816 1.90277 59.623
MFO-PID 1.8230 1.5632 1.7258 28.5346

Table 5.3 Comparative analysis of differently optimized PID controllers for step load change

case of operating conditions

Performance Analysis Terms

L. Peak Peak
Optimizing Method-PID Settling Integral Time
Undershoot Overshoot
Time (s) Absolute Error
(Hz) (Hz)
PSO-PID -0.12 0.1 21 0.000043
TLBO-PID -0.095 0.05 13 0.000038
GOA-PID -0.093 0.045 11 0.000032
MFO-PID -0.06 0.03 9 0.000021

From the above results, it is evident that the elite performance of the MFO-PID is visible
from the MG dynamic response following a step load perturbation. The MFO-PID controller
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minimizes the frequency drop and improves the settling times far better than others. To have
a next-level comparison, multi-step load disturbances are considered as depicted in Fig. 5.10
(a) and Fig. 5.10 (b) depicts the MG frequency response with differently tuned controllers. In
this case also, the MFO-PID controller offers superior performance than the other controllers.
It is evident that the adopted MFO algorithm is well suited for this problem, hence the MFO
algorithm is employed to optimize the proposed MPID’s gain constants to have better control
of MG frequency deviations. From the next case onwards, the proposed MFO MPID
controller and the MFO PID controller are contrasted to provide a better perspective of the

results view.
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ii) Case-1: Dynamic response evaluation of MFO optimized multi-stage PID controller
considering multiple power disturbances (concurrent changes in AP;, APpy and APy 1)
and parametric uncertainties of MG and PHEV

This case is meant to demonstrate the effectiveness of the multi-stage PID controller
over the PID controller using the MFO algorithm. The parameters of MPID and PID
controllers are optimized considering the simultaneous disturbances in load, solar, and wind
powers along with parametric uncertainties of MG and PHEV using ITAE as the fitness
function. Fig. 5.11 shows the multiple power fluctuations (LD =load disturbance, WD = wind
disturbance, and PVD = photovoltaic disturbance) and Table 5.4 presents the percentage of
parametric uncertainties considered for the MG and PHEV aggregator. Fig. 5.12 shows the
ITAE characteristics of the proposed MFO-MPID and MFO-PID controllers. Table 5.5

presents the optimal gain constants of the two controllers.
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Fig. 5.11 Concurrent power fluctuations (multiple disturbances) in MG
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Fig. 5.12 MFO PID and MPID controllers’ ITAE performance evaluation with case-1
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Table 5.4 Percentage uncertainties in MG and PHEVs

Parameters  Percentage variation Actual

Kev -30 % 1
Ray (Hz/puMW) -50 % 2.4
Tev (5) +50 % 0.1
M (s) 20 % 0.1667
D (puMW) 20 % 0.015
R (Hz/puMW) +20 % 2.4

Table 5.5 MFO PID & MPID controllers’ optimized gains

Controller parameters

Controller

Kr K Kpp Kp N
MFO-PID 1.1334 1.3196 - 1.9169 144.3923
MFO-MPID 1.4922 1.6656 0.0774 2 134.2390

The purpose of this case is to examine how well an MPID controller outperforms the
PID controller in the context of various disturbances, MG, and PHEV uncertainties. Fig. 5.13
depicts the frequency perturbation response of both controllers in this context. It can be
observed that there is an improved performance of the proposed multi-stage PID controller

than the PID in minimizing the frequency deviations of the MG.
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Fig. 5.13 Frequency perturbation response of MG against multiple power disturbances and

parametric uncertainties
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iii) Case-2: Response evaluation of the proposed controller under multiple power
disturbances (concurrent changes in AP;, APpy and AP y1¢)

In case-2, the changes in load, solar and wind power disturbances are considered
concurrently in MG. The concurrent power changes in MG are depicted in Fig. 5.11 and the

MG frequency perturbation response is shown in Fig. 5.14.
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Fig. 5.14 MG frequency perturbation response for multiple power disturbances

iv) Case-3: Response evaluation of the proposed controller under solar power disturbances

(4Ppy)

In case-3, only solar disturbances are considered in MG. Fig. 5.15 (a) depicts the
random change in solar irradiation power and the respective MG frequency deviations are

shown in Fig. 5.15 (b).
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Fig. 5.15 a) Fluctuations of solar power in MG b) MG frequency perturbation response for

case-3

v) Case-4: Response evaluation of the proposed controller to wind power fluctuations

(APyr¢)

For this case-4, only APy, is considered in MG. The random fluctuations in wind
power are shown in Fig. 5.16 (a) and Fig. 5.16 (b) depicts the corresponding response of
frequency deviation in the MG.
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From the results of the above cases-1, 2, 3, and 4, it is understood that the proposed
MFO optimized multi-stage PID controller is performing better in mitigating the MG
frequency deviations than the PID controller. Table 5.6 portrays the dynamic performance
evaluation of both controllers in terms of peak undershoot, peak overshoot, and ITAE value.
Table 5.6 results convey that the suggested MFO-MPID controller enhances the performance
of MG over the MFO-PID controller when subjected to RES/load disturbances. The case-1
result also reveals that the suggested controller showed a good level of resilience towards the
considered parametric uncertainties. Also, it is clear from ITAE performance characteristics
that, in comparison to the PID controller, the ITAE value is still reduced with proper use of
the PID controller in multi-stages. Therefore, the MFO-MPID controller can be utilized for

the control of modern power systems incorporating high renewable energy content.

Table 5.6 Dynamic performance evaluation of MFO PID & MPID controllers against the

cases 1, 2, 3, and 4 operating conditions

Peak Undershoot (Hz) Peak Overshoot (Hz) ITAE
Cases MFO
MFO-PID MFO MPID MFO-PID MFO-PID MFO MPID

MPID

Case-1 -0.1 -0.0357 0.09 0.032 0.0003623 0.0002384

Case-2 -0.058 -0.035 0.056 0.03 0.000283 0.000212

Case-3 -0.055 -0.032 0.052 0.028 0.000250 0.000190

Case-4 -0.039 -0.011 0.042 0.012 0.000216 0.000152
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vi) Case-5: Impact of PHEV’s in the SFC and PFC loops (Primary Frequency Control)

This case’s objective is to investigate the impact of PHEVs on the dynamic frequency
control in the SFC loop with a control signal from the MPID controller versus the impact of
PHEVs in the PFC loop. This can be illustrated with the help of the PHEV aggregator model
(in Fig. 5.5). In the suggested method, the control signal for PHEV aggregator output power
is obtained from the MFO-optimized MPID controller. Whereas in the PFC loop, there will
be no control signal for PHEV output power and the Ppuey is obtained from droop
characteristics of the PHEV aggregator (R.»). The MG frequency perturbation response under
case-5 conditions is depicted in Fig. 5.17. The input disturbances for this case are same as
case-1 conditions. As seen in Fig. 5.17, with the suggested approach the MG frequency
deviations are significantly reduced over the PHEV aggregator in the PFC loop. This due to
proper coordination is established by the proposed controller between DEGs and PHEVs in
the SFC loop.
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Fig. 5.17 Impact of PHEV aggregator due to the proposed method on the frequency response
of MG over the generalized methods in literature [146]

Observations from the simulation results
The following observations have been noticed from various operating cases.

1.  From initial case conditions, it is noticed that the MFO-PID controller exhibits an
improvement in undershoot (50%, 36.84% and 35.48%), overshoot (70%, 40%, and
33.33%) and settling times (57.14%, 30.77% and 18.18%) over PSO-PID, TLBO-

PID and GOA-PID controllers respectively. The above quantitative results confirm
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that the proposed MFO algorithm is precisely adaptable to the present MG
frequency control problem.

ii.  Upon comparison with the MFO-PID controller, it has been noticed that the
suggested MFO-MPID controller reduces the ITAE value by at least 24% for the
operating conditions of cases 1, 2, 3, and 4.

iii.  Finally, from the conditions of case-5, it is observed that the MG frequency
response is improved with the presence of PHEVs in the SFC loop (DEGs and
PHEVs are well coordinated with an MPID controller) rather than in the PFC loop.

5.4.2 Stability Analysis of MG

The linear analysis tool from the Simulink Control Design toolbox of
MATLAB/Simulink is used in the present work to demonstrate the stability analysis of the
MG for various operating situations together with root locus plots [86] and eigenvalues of the
system's linearized transfer function model [87]. Table 5.7 displays the eigen values for
various cases. Fig. 5.18 displays the root locus plots for cases 1 and 2. It can be observed that
from the eigenvalues and root locus plots, all the closed loop poles lie to the left half of the
complex s-plane thereby confirming the stable operation of the MG system. If the gain of the
linearized transfer function model of the MG system is greater than 4.3 (k > 4.3), then two
closed loop poles traverse to the negative half of the complex s-plane making the system

unstable which can be seen in the zoomed view of Fig. 5.18.

Table 5.7 Eigen values of MG system for different operating conditions

Case-1 Cases-2, 3,4
-69.50 +j2949.60 -71.20 +j3231.40
-69.50 +j2949.60 -71.20 - j3231.40

-40 + 0 -40 +j0

-1+30.40 -1+30.40
-1-30.40 -1-30.40
-0.30+30 -0.30 + 0
-0.50 +30 -0.50 + 0
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Fig. 5.18 Root locus plots for case-1 and case-2
5.4.3 Comparison with Earlier Reported Works

Table 5.8 Comparison with earlier reported works

Comparison term Reference

[87] [84] [85] Proposed
Multiple-step load | ST (s) - 5 4 5
perturbation response ITAE - 0.000596 - 0.000190
Simultaneous changes in | ITAE 0.7276 0.000135492 0.006 0.0002384

RES power, load, and

parametric uncertainties

Controller and optimization | MPID and Fuzzy-tuned Adaptive MPID and
techniques hybrid whale MPID and fuzzy-tuned MFO

optimization  grass hopper  fractional order

and pattern optimization MPID and

search algorithm future search

algorithms algorithm
No. of controller parameters 4 11 35 5
optimized
No. of algorithm-specific parameters 5 3 0 1
PHEVs considered (Yes/No) No No No Yes
Stability analysis (Yes/No) No No No Yes

125



The comparison of the suggested approach with earlier reported works for islanded MG
frequency control employing an MPID controller regarding settling time, ITAE, and
controller optimization technique is presented in Table 5.8. Table 5.8 reveals that the
performance of the proposed controller is better and nearly on par with the other reported
methods, demonstrating optimal results in both ITAE value and settling time. A qualitative
comparison of computational burden can be assessed as high/low depending on the count of
controller parameters optimized, the count of optimization techniques employed and their
algorithm-specific parameters. The computational burden required for optimizing more

controller parameters with one or more techniques would be comparatively more.
5.5 Summary

In this chapter, the MFO algorithm is applied to find the optimal gains of the MPID
controller. The standalone MG had been subjected to load, solar and wind power disturbances.
To expose the supremacy of the proposed MPID controller, the frequency response of the MG
during various operating conditions is contrasted with the outcomes of the MFO-PID
controller. The dynamic responses confirm the predominant execution of the proposed MPID
controller when there are load and RES perturbations. Moreover, the proposed MFO-
optimized MPID controller offers enhanced frequency dynamic response and an extended
level of robustness for MG and PHEV parametric uncertainties. Furthermore, the proposed
MFO algorithm has shown its supremacy over recent and well-established optimization
techniques in the literature like GOA, TLBO and PSO. On the other hand, the impact of
PHEVs on the MG frequency response is also examined. It is found that MG attains better
frequency response when PHEVs and DEGs are coordinated as compared to the case when
they are not in coordination. Proper coordination is established between DEGs and PHEVs
with the proposed MFO-MPID controller. Therefore, the suggested controller stands as a

viable solution for dynamic frequency control applications in MG.
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Chapter 6

Conclusions and Future Scope
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6.1 Conclusions

e In the present work, the protection of different transmission lines and frequency

control of islanded microgrid are proposed using artificial intelligent techniques.

e A single fuzzy inference system based protection scheme is proposed for the
protection of three-phase double circuit transmission lines that identify the faults
within one cycle time (20 ms) with fault detection and classification accuracy of
99.75%. This protection scheme is immune to fault parameter variations and typical

system operating conditions.

e A single ANN module is proposed for the protection of six-phase transmission lines
against 120 types of short circuit faults. The accuracy of fault detection and
classification is found to be 99.76% and the faults are identified within one cycle time
(16.67 ms). This scheme is also immune to fault parameter variations. For fault
location estimation, 11 ANN modules are used whose output is selected based on the
fault type suggested by the ANN FDC module. The performance of the fault location
estimation modules is better with the training data (81% of fault cases are within £1%
error range) and nominal performance is observed with the testing data (53% of fault

cases are within £5% error range).

e A protection scheme based on the fuzzy inference system using voltage information
of a single bus is proposed for the protection of transmission lines connected to hybrid
renewable energy sources (solar photovoltaic and wind turbine farms). The proposed
protection scheme detects and classifies the faults within one cycle time (20 ms) and
has an FDC accuracy of 99.56%. The proposed protection scheme is immune to fault
parameter variations and renewable power intermittencies. A regression based bagged
ensemble learner is proposed for the fault location estimation. The proposed fault
location estimation module approximates the fault location within +5% error band.
The Chi-square analysis is used to test the reliability of the fault location module (D?

= 3.0407).
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¢ A moth flame optimization algorithm based multi-stage PID controller is suggested
for the frequency control of an islanded microgrid (Bella Coola MG). The MPID
controller parameters are optimized using the MFO algorithm. The MG frequency
deviations are mitigated effectively with the proposed MFO-MPID controller. The
suggested controller’s performance is found to be robust even with the load and
renewable energy source power fluctuations and also towards parametric

uncertainties.
6.2 Future Scope

e The protection of hybrid transmission lines (cable and overhead line) poses protection
issues as the impedance characteristics of cable and overhead line differ from each
other.

e The FACTS compensated transmission lines also pose protection issues such as
underreaching and overreaching of distance relays.

e The protection tasks such as fault detection and classification and fault location
estimation would be complicated for the above-mentioned transmission lines
connected to renewable energy sources.

e As limited research is explored in the protection of six-phase transmission lines, the
research can be further extended to high-phase order systems. Also, the protection
schemes for cross-country and evolving faults and multi-location faults can be an
opportunity for further research on such lines which have close proximity.

e The scope of the frequency control problem can be extended to multi-microgrid
systems. Furthermore, different controller structures can be adopted whose
controller’s parameters can be optimized with the optimization algorithms viz. Jaya,
Enhanced Jaya, Rao-1, and Rao-2 that are free of algorithm-specific parameters.

e Different artificial intelligent techniques can be adopted for the protection tasks of
transmission lines viz. fuzzy decision trees, random forest, deep neural networks, and
different ensemble learning methods (homogeneous or heterogenous, bagging,

boosting, optimizable learning methods).
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Appendices

Appendix — I

Power system operating conditions and system parameters

Source data at both sending and | Transmission line parameter data
receiving ends of the line. (Transmission line length: 300 km (divided into three equal
sections))
Nominal source voltage and | 400 kV | Parameter Positive Negative Zero Mutual zero
system frequency and 50
Hz
Pre-fault power flow angle of | 15° Resistance 0.0275 0.0275 0.275 0.21
the system (Q/km)
Short circuit capacity 1.25 Inductance 1.002e-03  1.002e-03  3.268e-03  2.0e-03
GVA (H/km)
Base voltage 400kV | Capacitance 13e-09 13e-09 8.5¢-09 -5.0e-09
(F/km)
X/R ratio 10

Appendix — I1

Six-phase transmission line parameters

Resistance matrix (ohm/km):

0.1960 0.1241 0.1186 0.1185 0.1238 0.1338
0.1241 0.1766 0.1104 0.1103 0.1150 0.1238
0.1186 0.1104 0.1675 0.1060 0.1103 0.1185
0.1185 0.1103 0.1060 0.1675 0.1104 0.1186
0.1238 0.1150 0.1103 0.1104 0.1766 0.1241
0.1338 0.1238 0.1185 0.1186 0.1241 0.1960

Inductance matrix (H/km):

1.9717e-03 8.2710e-04 7.0988e-04 6.5597e-04 6.7658e-04 7.0263e-04
8.2710e-04 2.0228e-03 8.6436e-04 7.1351e-04 6.9801e-04 6.7658e-04
7.0988e-04 8.6436e-04 2.0475e-03 7.7846e-04 7.1351e-04 6.5597e-04
6.5597e-04 7.1351e-04 7.7846e-04 2.0475e-03 8.6436e-04 7.0988e-04
6.7658e-04 6.9801e-04 7.1351e-04 8.6436e-04 2.0228e-03 8.2710e-04
7.0263e-04 6.7658e-04 6.5597e-04 7.0988e-04 8.2710e-04 1.9717e-03

Capacitance matrix (F/km):

8.5463e-09 -1.5037e-09 -5.9333e-10 -3.4736e-10 -4.8782e-10 -7.6412¢-10
-1.5037¢-09 8.5282e-09 -1.4971e-09 -4.9062e-10 -4.7051e-10 -4.8782e-10
-5.9333¢-10 -1.4971e-09 8.4771e-09 -8.1902¢-10 -4.9062¢-10 -3.4736e-10
-3.4736¢e-10 -4.9062¢-10 -8.1902e-10 8.4771e-09 -1.4971e-09 -5.9333e-10
-4.8782¢-10 -4.7051e-10 -4.9062e-10 -1.4971e-09 8.5282¢-09 -1.5037e-09
-7.6412¢-10 -4.8782¢-10 -3.4736e-10 -5.9333e-10 -1.5037¢-09 8.5463e-09
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Appendix — II1

Data of transmission line parameters (200 km line length)

Parameter Positive and negative Zero
Resistance (Q/km) 0.0275 0.275
Inductance (H/km) 1.002e-03 3.268e-03
Capacitance (F/km) 13e-09 8.5e-09

Appendix — IV

PV Data Module Specifications
Rated power 50 MW (1 MW units) | PV module type 1Soltech 1STH-350-WH
Lp 1.7 mH Rated power 349.59 W
Switching frequency 2.1 kHz Open circuit voltage (Vo) 515V
Rieri 0.0015 pu Short circuit current (/) 94 A
Liitteri 0.15pu Voltage at max. power point 43V
Ofitter1 0.1 pu Current at max. power point 8.13 A
Ve 1200 V Temperature coefficient of V,. -0.36% /°C
DC link capacitor 16.45 mF Temperature coefficient of /.  0.09% /°C
Voltage regulator (PI-1) K,=7 and K; =800
Current regulator (PI-2) K, =0.3 and K;=20
Appendix — V
DFIG based wind farm data
Rated power of wind farm 50 MW No. of pole pairs (p) 3
Rated power of wind turbine 1.5 MW DC link voltage (Vacz) 1150 vV
Wind turbine inertia constant (H,) 4.32's Riitter2 0.003 pu
Nominal power generator 1.5/09 MW | Ljier 0.3 pu
Inertia constant (H,) 0.685 s Oitter2 0.08 pu
Nominal stator voltage 575V Switching frequency (GSC) 2.7 kHz
Nominal rotor voltage 1975V PI-3 (GSC) K, =8 and K; =400
Stator resistance (R;) 0.023 pu PI-4 (GSC) K,=083and K;=5
Rotor resistance (R)) 0.016 pu Switching frequency (RSC)  1.62 kHz
Stator inductance (L) 0.18 pu Voltage regulator (RSC) K,=5and K;=20
Rotor inductance (L,) 0.16 pu PI-5 (RSC) K,=0.6and K;=8
Magnetizing inductance (L) 2.9 pu
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Appendix — VI

Optimization Data

S.No. Optimization Algorithm Data

1. MFO [145] No. of moths = 100, No. of iterations = 50

2. GOA [147] Population size = 100, No. of iterations = 50, Adaptation factor (c) =
[0.0001 — 4], Attraction factor (f) = 0.5, Attractive length scale (1) = 1.5

3. TLBO [148] Population size = 100, No. of iterations = 50, TF =[2 — 1

4. PSO [70] Population size = 100, No. of iterations = 50, Inertia weight (w) = 0.65,

Cognitive factors (Ci, C2) =2

Appendix — VII

PHEYV Data
50C; =0.1,50C,=0.2,50C5=0.8, S0C,=0.9, Ng;, = 600, Tpyry=0.1 s, R;,=2.4 Hz/puMW, Py, (Individual
EV)=5kw, Af,=0.1 Hz, Af;=0.1 Hz.
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