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ABSTRACT

Growing oil prices, rapid depletion of fossil fuels, and emission of Green House Gases
have compelled a shift from conventional combustion engine to Electric Vehicle (EV). It
is anticipated that the share of EV is going to rise within a short time. However, driving
range and charging time are issues that limit the share of EV. Providing proper charging
infrastructure along the road side of urban roads and utilization of advanced technology
in charging could tackle the above mentioned issues.

There are many charging methods available for EVs, and one of them is DC Rapid
Charging, which can quickly charge an EV battery. The performance of the distri-
bution system is impacted by increased power loss and voltage deviation caused by
additional load brought on by EVs. Furthermore, positioning charging stations haphaz-
ardly throughout a power distribution network does great harm. In addition, planning
of charging station considering only distribution networks is not a reliable approach.
Moreover, the location of the charging station should offer convenience to the EV user
in a given EV driving range and benefits the charging station owner. All of the aforemen-
tioned issues were the rationale for the thesis, which aims to plan charging stations in a
coupled network involving power distribution network and road transportation network.

Initially, a multi-objective approach for optimal planning of Rapid Charging Stations
(RCSs) and distributed generators (DGs) was proposed. The method suggested aims to
achieve reduced active power loss, EV user costs, and voltage deviation for effective
RCSs and DGs planning. IEEE 33 bus power distribution network superimposed with
a 25-node road transportation network was considered as the test system. Rao 3 algo-
rithm was applied for optimization, and the results were compared with PSO and JAYA
algorithms.

The number of charging connectors at charging station not only impacts the station
installation cost but also waiting time. Hence, determination of optimal number of con-
nectors is necessary in optimal planning. Therefore, a two-stage optimal planning is
proposed in this thesis to address the issues stated above. In the first stage, simultaneous
optimal planning of RCSs and distributed generators is done to minimize active power
loss, voltage deviation, EV user cost and to maximize voltage stability index. In the
second stage, an optimal number of connectors was decided to minimize the installation
cost and waiting time in queue at RCS. Here, M1/M2/C queuing model was considered
to determine the waiting time.
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In addition, integration of D-STATCOMs was done along with charging station and DGs
to improve the performance of distribution system through a two stage approach. In
Stage 1, RCSs, DGs, and D-STATCOMs were planned optimally by improving voltage
stability index, active power loss, voltage deviation, and EV user cost. RCS connectors
count was identified in Stage 2 by reducing building cost and waiting time.

Further, network reconfiguration was employed along with optimal planning of RCSs,
DGs, and D-STATCOMs to improve the performance of the distribution system. Mini-
mization of active power loss, voltage deviation, EV user cost, waiting time, installation
cost, and improvement of voltage stability index were considered in optimal planning.

The proposed approach was tested using an IEEE 33 bus RDN coupled with transporta-
tion network. Daily load variation at buses and hourly charging probability of EVs
were used in the analysis. The optimization problem was solved using the novel Multi-
Objective Rao 3 Algorithm (MORA), and the solutions validated using NSGA-II. The
results demonstrate the effectiveness of the suggested strategy by MORA in determining
optimal sizes and locations to benefit EV users, charging station owners, and distribution
network operators.
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Chapter 1
Introduction
The effects of global warming and other issues brought on by carelessness have recently
been recognized as harmful to the planet by the global community. The primary cause of
global warming is the emission of carbon dioxide (CO2) and other pollutants by internal
combustion engines (ICE), which are regarded as one of the most significant elements in
the transportation sector for causing such issues [6]. The depletion of fossil fuels is an-
other issue posing a challenge to transportation system [7]. Rising oil prices, greenhouse
gas emissions, and increased public awareness of environmental damage are encourag-
ing individuals to consider other options to favor green transportation. The transport
industry in India is the primary source of the country’s greenhouse gas emissions [8].
In this context, electrification of the road transportation system by Electric Vehicles is a
potential solution to reduce the damage caused by environmental pollution. The deploy-
ment of 20 million Electric Vehicles (EVs) globally is a promising beginning to reduce
greenhouse gas emissions by 2020. Such a global deployment of EVs will replace 62 %
of fleet vehicles by 2050.

1.1 Electric Vehicles
EVs have gained attention in the transportation industry as they offer low noise and
emissions. Advancements in battery technology, the evolution of electric vehicle indus-
try, and other factors are escalating the population of EVs on the roads. Also, global-
ization has witnessed a reduction in 1 kWh battery price from 1000 $ in 2007 to 200 $
in 2020, which favors EV sales. There are four types of EVs: Battery Electric Vehicle
(BEV), Hybrid Electric Vehicles (HEV), Plug in Hybrid Electric Vehicles (PHEV), and
Fuel Cell Electric Vehicles (FCEV) [9].

1. BEVs are electric vehicles driven by the energy stored in the battery, where the
energy required to charge the EV is taken from the grid. In BEVs the inverter
converts the available DC power to AC power, and the control module sends a
signal according to the acceleration and deceleration [10]. TATA tigor, TATA
Nexon, and Mahindra E20 plus are a few examples.

2. HEVs consist of both an engine and a motor. The engine uses conventional fuel,
and the motor is powered by a battery. The energy captured during the braking is
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utilized to charge the battery [11]. In HEV, the transmission is supported by both
an electric motor and an engine at the same time. Volvo XC90 and Toyota Prius
are a few examples.

3. PHEV consists of both an engine and an electric motor. Here, the battery is
charged by both regenerative braking and an external source [12]. It starts and
runs with battery energy, and once the battery drains, transmission is supported
by an engine. Porsche Cayenne S E-Hybrid, and BMW 330e are a few examples.

4. FCEV utilizes fuel cell technology to drive the EV. Here, chemical reactions in the
fuel cell generate the required energy to run the FCEV [13]. These are also called
zero-emission EVs. Riversimple Rasa, Honda Clarity Fuel Cell, and Hyundai
Nexo are a few examples.

1.2 Charging methodology for EVs
The installation of proper charging infrastructure is necessary to charge the batteries of
EVs. There are three main types of charging: 1. Conductive charging, 2. Inductive
charging, 3. Battery swapping

1. Conductive charging includes direct contact between the charging inlet and EV
connector. This methodology has the benefits of economic viability, quick charg-
ing, and efficient operation. It is categorized into onboard charging systems and
off-board charging systems. In an onboard charging system, a power electronic
converter is in the EV, which converts the external AC to DC to charge the EV
battery. It charges the battery at a slower rate. In off-board charging, the converter
is at the charging station that enables fast charging [14].

2. Inductive charging uses two-coil technology, where the charging coil is installed
in the EV and another coil is installed at the charging lots and roads. Contact-
less charging, lower accident risk, and more convenience are a few advantages,
whereas eddy current loss would be an issue in inductive charging [15].

3. Battery swapping is a method of battery exchange in which an EV owner can swap
his battery with one that has been completely charged. Every swap only takes a
few minutes, so it is a rapid operation. The distribution system can profit from the
V-G strategy by using battery swapping stations (BSS). However, the investment
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cost is very high, as stations have to have various sizes and types of batteries. The
EV user also has to pay the utilization fee to station owner [16].

1.2.1 Types of Electric Vehicle Charging modes

By putting up Electric Vehicle Charging Stations (EVCS) in strategic areas throughout
the distribution network, green transportation can be promoted. The distribution system
must be examined by including EVCS before installing it at a particular location. How-
ever, adding EVCS to the distribution system will use more power, which will influence
the bus voltage and thermal stability of the branches [17]. Generally, three modes of
charging are available at charging stations. Each has a different rate of charging, various
voltage levels, and various applications. They are listed below.

1. Level 1 mode uses a 120V AC supply to charge an EV. It has the capability to sup-
ply a maximum current capacity of 16 A. These are mostly installed in residential
places and other places where 120 V outlets are available. In this mode, AC is
converted to DC using the vehicle’s onboard charger [18]. The maximum power
output of this station is 1.9 kW, and it takes 8–16 hours to charge a battery. The
presence of this station has the least impact on the distribution system. The esti-
mated installation cost is around 500 $ to 800 $. It is the least expensive charging
method, but it takes more time to charge [19].

2. Level 2 stations can be placed in both residential and commercial places. These
are the most commonly installed charging stations [20]. These charging stations
operate on a 240 V AC source and have a maximum current capacity of 40 A for
domestic use. These charging stations operate on a three-phase 400 V AC supply
and support 80 A of current for commercial purposes. These charging stations
take 4–10 hours to charge an EV. The maximum charging power is around 12 kW.
The estimated installation cost is around 2150 $ to 2300 $ per unit [21].

3. Level 3 charging stations take 20 to 30 minutes to charge an EV battery up to 80
%, so these are called rapid charging stations. These are installed in public places,
mostly along the roadside. These are supplied from 400 V to 600 V AC and have
a current capacity of 200 A [22]. It has a maximum power outlet of 36–240 kW.
These are bulk loads; hence, locating them at random locations in the distribution
system hinders performance. The estimated installation cost is around 50000 $ to
150000 $ [23].
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1.3 Literature Review
The transportation industry uses a lot of fossil fuels, which results in 37 % of total
greenhouse gas (GHG) emissions across all sectors. The introduction of EVs into road
transportation can reduce GHG emissions [24]. EVs have two modes of operation: one
is the G-V mode, which deals with charging EVs from the grid and acts as a load on the
distribution system. The second is V-G mode, where EVs can inject power into the grid,
i.e., act as spinning reserves, and can be utilized to improve resilience, reliability, and
performance of distribution systems [25] [26].

Although EVs have several advantages, they also have the drawbacks of low driving
range and high charging time, and these are the major reasons for the slow expan-
sion of EVs [27]. Adoption of advanced charging technologies and the installation of
proper charging infrastructure are potential solutions to above-mentioned issues. There
are three charging methodologies: level 1 and level 2 take a few hours for charging,
while level 3 (DC rapid charging) takes 15-20 minutes [28]. Therefore, level 3 charg-
ing methodology is used at Rapid charging stations (RCSs). The deployment of RCS
can encourage customers to switch to EV-based transportation over combustion engines.
However, the load caused by the charging station (CS) acts as a bulk load on the dis-
tribution system, whether it is deployed at home or in public areas. The distribution
system’s ability to operate normally is altered by extra CS load. Further, peak-hour EV
charging can put greater strain on the grid. Because they are mobile in nature and their
power usage is dependent on how far they go each day, electric cars are regarded as
highly dynamic loads. The unpredictable fluctuation of CS load causes violations of
voltage limitations. This has an impact on the power network’s stability [29] [30].

Voltage deviation at the lowest possible value and the voltage stability index at the high-
est possible value are always anticipated for a healthy power system. The load due to
CS cause extra power flows across the power network, resulting in increased power loss,
voltage deviations, and component overloading. Converters are typically used to convert
AC power into DC power while charging an EV battery. This conversion may introduce
harmonics into the power network. This affects the life of transformers and other com-
ponents in power networks [31]. Further, the placement of CS at improper locations can
increase the harmful impact on the distribution system that alters the healthy operating
conditions of the power system [32].

It is observed from an extensive literature survey that the following two major categories
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of optimal planning of charging stations exist:

1. Electric Vehicle charging stations in the Power network

2. Electric vehicle charging stations in a coupled power distribution network and
road transportation network.

1.3.1 Optimal planning of EVCS in power distribution network

The EVCS hurts the distribution system. In the literature, most of the authors concen-
trated on the minimization of power loss and voltage deviation as objectives to support
distribution systems in the presence of charging stations. EVCS integration into the
distribution system changes operational parameters. Further, placing EVCS at inappro-
priate locations escalates the damage [33]. Installing charging stations in a distribution
network could change the operation of the power network, driving behaviour of EV
users, traffic flow, increase power loss, and voltage variations [34]. It is not advisable to
install charging stations at random locations because it may lead to performance degra-
dation of the radial distribution network and burden the EV user. Hence, there is a need
to find optimal locations for charging stations [35].

The design and feasibility analysis of a charging station was done in [36] by considering
different configurations and techno-economic performance. Integration of EVCS has a
significant influence on system losses, supply-demand imbalance, and harmonic injec-
tion in the Distribution System (DS) [37]. The authors in [38] considered minimizing
power loss, reducing average voltage deviation, and improving voltage stability index
for optimal planning of charging stations in a radial distribution network using Teaching
learning-based optimization algorithm for solving optimization problems. In [39], the
researchers considered the unstable nature of the distribution network with the uncer-
tainty of loads while planning charging stations using a fuzzy-based differential evolu-
tion algorithm for solving the optimization problem. In [40], the installation of level 1,
level 2, and level 3 connectors was done at the charging station by considering power
loss, installation cost, and transformer loading, where the uncertainty of the EV load
was modelled using stochastic process. The authors in [41] presented a CS planning
approach that considers reliability while minimizing investment, maintenance, and op-
erational costs. Similarly, in [42], the concept of an incentive-based demand response
program was used in optimal planning, where minimization of investment cost, con-
nection cost, total cost of losses, and demand response (DR) cost were considered as
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objectives for placing CS optimally. In [43], the authors proposed a two-stage strategy
to plan fast charging stations. Stage 1 involves the evaluation of the system with existing
resources to supply the EV demand, while Stage 2 matches the extra EV load with the
installed fast charging station capacity.

Though the charging station is located in proper places, high loading on DS causes an
increase in power loss and voltage deviation. Integrating the DGs into the DS could
improve DS performance [44, 45]. In [46], the authors analysed the DS with the in-
clusion of EV charging during peak power and off-peak power EV loading by employ-
ing butterfly optimization algorithm to install DGs at optimal locations for improving
the performance of the DS. In [47], optimal placement of charging stations and solar
power DGs was done by considering the charging station investor decision index, land
cost index, and electric vehicle population index. In [48], the authors used a hybrid
meta-heuristic algorithm to identify CS locations with randomly distributed PVs in DS
by considering the minimization of power loss, voltage deviation, and voltage stability
index (VSI). In [49], the authors used demand side management approach for coordina-
tion of DGs, Battery Energy Storage, and Photo Voltaic source in the presence of EVs.
In [50], the authors used the Arithmetic Optimization Algorithm for optimal planning
of charging stations and DGs. In [51], the authors proposed a framework for optimal
allocation of renewable based DGs, battery energy storage systems, and EV charging
stations to improve the performance of the distribution system. In [52], the authors pro-
posed improved bald eagle search algorithm to optimally allocate fast charging stations
and PV-DGs in the distribution system. In this paper, reliability analysis was carried out
after the placement of FCS and PV-DGs to analyse the impact of FCS and PV-DGs on
the distribution system. Integration of RCS puts stress on RDN and to reduce it, renew-
able type DGs were installed and energy management scheme was utilised in [53].

Integrating both DGs and reactive power compensating devices in the distribution sys-
tem could improve the performance reduction caused by the inclusion of RCSs [54].
In [55], the authors proposed a new hybrid technique of grey wolf optimizer and parti-
cle swarm optimization for optimal placement of charging station and shunt capacitors.
In [56], the authors proposed a novel hybrid optimization approach to plan charging
station, DGs, and D-STATCOM optimally by considering the reconfiguration of dis-
tribution network. In [57], the authors recommended a strategy for optimal placement
of distribution generators and shunt compensator’s in distribution system by Adaptive
African Vulture Optimization Algorithm by considering minimization of power loss,
voltage deviation, and maximization of loading margin. In [58], the authors proposed
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a two-stage approach for optimal planning of distributed generators (DGs), shunt ca-
pacitors (SCs), and charging stations with grass-hopper optimization based fuzzy multi-
objective technique. The optimal planning of DGs and SCs was done in the first stage
and the planning of CS was done in the second stage. As RCS load increases on RDN,
it could also impact the substation power factor, and to improve power factor, DGs and
Shunt capacitors were installed along with charging station in [59].

Further, EV customers always try to take advantage of getting to charging stations early
and spending less time in queue to charge their EVs [60]. In [61], the authors used
M1/M2/N queue model for modelling EV charging demand, and used optimal planning
of CS, BESS, and Photo Voltaic DGs. In [62], the authors used hybrid algorithm in
bi-level optimization of CS. Optimal location and capacity of CS were determined by
considering minimization of total cost and service tardiness in upper level. Lower level
dealt with the allocation of users to each station.

Load growth on power sector is in exponential form these days. As the load is increas-
ing, there is a need to expand the power network, but it results in higher cost and more
power loss. In this context, Network Reconfiguration Technique (NRT) is an attractive
choice, as it uses existing resources in an optimal way by offering better performance to
RDN. In [63], simultaneous optimal planning of charging station and DGs along with
NRT was done by considering power loss, voltage deviation, and energy not supplied
as objectives using hybrid algorithm comprising ant colony optimization and artificial
bee colony optimization. Reactive power regulation was employed in the presence of
EVs along with changing topology in [64], where power loss and voltage deviation were
considered as objectives. In [65], the authors considered the minimization of initial in-
vestment cost and energy loss while planning fast charging stations and network recon-
figuration, where a cooperative co-evolutionary genetic algorithm was used for solving
the optimization problem.

1.3.2 Optimal planning of EV charging stations in coupled Power
distribution and Road transportation network

Generally, both power network and road transportation network are interconnected. The
increasing number of EVs on the roads could bring issues of over loading of distribu-
tion network. Planning the setting up of charging stations keeping in mind road network
ensures a superior site. In planning for CS, very few authors have considered the trans-
portation network.
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In [66], the authors considered coupled network in optimal planning of fast charging
stations by considering land cost, installation cost, and trip cost. In [67], the authors
considered EV energy loss, station development cost, electric gird loss along with loca-
tion of electric substations on urban roads for optimal sizing and locating fast-charging
stations. To plan a CS near an existing CS, the authors in [68] suggested a two-level
method by minimizing power loss, voltage deviation and CS installation cost as objec-
tives. In [69], the authors applied Enhanced Heuristic Descent Gradient (EHDG) and
Voronoi diagram to optimally plan charging stations by considering route distributions,
consumption profile, and operating cost. The author of [70], proposed a method for po-
sitioning and sizing the fast charging station (FCS). In addition to reducing power loss
and waiting times, FCS positioning was done as efficiently as possible to compensate
for reactive power.

In [71], a hybrid algorithm based on genetic algorithm and conventional particle swarm
optimization was used to determine optimal planning of fast charging station, where the
authors factored power quality parameters of electrical network and investment cost as
objectives. In [72], the authors proposed a two stage approach for optimal placement
of charging stations. In Stage 1 minimization of land cost and maximization of EV
flow were considered, while power loss has been minimized in Stage 2. In [73], the
authors developed charging infrastructure for EVs by formulating profit maximizing
mixed integer linear programming problem. The planning comprised the identification
of EV fleet size, charging station location and size. EVs fuelled from coal fired energy
could create more challenges; to address this, fast charging station planning on coupled
network was done keeping in mind human health in [74].

In [75–78], the authors formulated a multi objective problem for optimal planning of
charging stations. In [75], optimal planning was done with the goals of reducing voltage
variation and power loss, maximization of EV flow supplied by fast charging station
while confirming the impact of service radius and waiting time on planning. In [76], the
authors applied meta-heuristic algorithms to solve problems pertaining to energy loss,
voltage deviation, and minimize the land cost to support maximum EVs with low es-
tablishment cost. Minimization of VRP (Voltage deviation, Reliability, and Power loss)
index, installation and operation cost, and improving accessibility index was considered
for optimal planning of charging stations in [77]. In [78], the authors used NSGA II
algorithm for simultaneous placing and sizing of FCS, where investment cost, energy
losses, waiting time, and traffic flow were considered in planning.
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The authors of [79, 80] considered the DG integration in the distribution system to re-
duce the harmful impact of RCS. In [79], a method for CS and wind based DG planning
was proposed while minimizing power loss, voltage deviation, and EV user cost. In
addition to operational parameters of distribution system and EV user behaviour, instal-
lation cost was considered in optimal planning of fast charging stations and DGs in [80].
In [81], the authors proposed coupled planning for EV parking lots placement and Dis-
tribution Network (DN) reinforcement. Initially, the number of EVs at parking lots were
calculated by considering EV parking lot profit, DN cost, and EV charging cost.

Queuing theory is rarely used by authors in the domain of electric vehicles. Some au-
thors employed queue theory to set up RCS in the best possible way while taking waiting
time into account. By using a queuing analysis, the authors of [82] modelled the load of
plug-in electric vehicles. In [83], the authors suggested a method to determine locations
and capacity of charging stations optimally along with the multi stage expansion of dis-
tribution network considering waiting time. In [84], the best site for charging stations
(CS) was determined by minimizing power loss and EV energy loss incurred during
the trip to CS, where queue theory was employed to capture the dynamic behavior of
CS serviceability. The authors in [85], suggested a queue theory-based CS planning by
minimizing power loss, EV User Cost, installation costs, and maximizing VSI for the
coupled network. In [86], the waiting time at CS was minimized together with power
loss, voltage deviation, and accessibility index.

In the above literature, many authors installed only charging station. However, the load
due to CS deteriorates the healthy operation of distribution system. In this context, the
inclusion of DGs and providing reactive power support could improve the performance
of the distribution system. Moreover, the planning that considers only distribution sys-
tem may not provide comfort to EV user and CS owner. This thesis factors in the above
issues to favour everyone: CS owner, EV user, and Distribution Network Operator.

1.4 Solving methods for charging station placement prob-
lem

Modern problems frequently involve the examination of massive data sets and are ex-
tremely complex. Assuming that the best solution is typically unknown, this issue can
be quite difficult and require solid mathematical analysis. Many real-world problems
can be formulated as optimisation problems. Optimisation problem often have goal to
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minimise or maximise an objective function to assess the quality of the generated solu-
tion [87].

Optimization algorithms can be classified into two major groups, exact and approximate
algorithms. Exact algorithms provide an exact answer to the problem, while approxi-
mate algorithms may or may not provide exact solutions i.e they provide approximate
solutions. Approximate algorithms can further be classified into two groups; heuristic
and meta-heuristic algorithms.

1.4.1 Exact algorithms

The optimization technique that can ensure the all optimal solutions is known as exact
optimization, where, the optimality of the yielded solution can be verified mathemati-
cally, and so it is also called mathematical optimization. However, this technique is not
feasible for larger size problems, because the effort and time for solving grows as the
dimension of the problem grows. Linear programming, mixed integer programming,
and constraint programming are often employed exact algorithms.

1.4.2 Approximate algorithms

Approximate algorithms uses NP (nondeterministic problem) approach to find a solu-
tion for the optimization problem. The optimal solution is not always ensured by this
method. In an acceptable period of time, which is at most polynomial time, an approxi-
mation method aims to get as close to the optimal value as possible.

1.4.2.1 Heuristic algorithms

Heuristic Algorithms (HA) are used for solving mathematical optimization problems
when exact algorithms fail to find an optimal solution or take a lot of time. The solutions
yielded from HA may not be optimal but are generated in less time. These algorithms
are problem-dependent. Hill climbing, best first search, etc. are a few examples of HA.

1.4.2.2 Meta heuristic algorithms

Meta-heuristic Algorithms (MHA) have been developed to find the near optimal solution
of complex and high dimensional problems [88]. These are not problem specific i.e any
MHA can be applied to all problems. These involves the initialization of solution by
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random approach. Random initialization helps in avoiding the trapping of solution in
local optima [89].

Exploration and Exploitation are the main components of MHA [90]. Exploration finds
a new solution in a search space, while exploitation focuses on searching for the best
solution in a local region. A good combination of both exploration and exploitation of
MHA makes the search process reach global optima. Primarily, MHAs can be classified
as population-based and trajectory-based. Population-based MHAs use a set of solu-
tions and information exchange among them to reach a global optimal solution. Genetic
algorithm, particle swarm optimization algorithm, and Ant colony optimization algo-
rithm are some examples. Trajectory based algorithms follows modification of single
solution to reach global solution. Simulated annealing, Tabu search algorithm, etc are
the few examples [91].

Few MHA algorithms that are nature inspired use evolution and intelligent behaviour of
swarms of birds, fish, ants, and other living beings in the optimization process. Genetic
algorithm was proposed by Jhon Holland in 1992 [92], it works on the principle of "sur-
vival of the fittest". It involves stages of selection, crossover, and mutation in achieving
the optimal solution. Particle Swarm Optimization algorithm was proposed by Eberhart
and Kannedy et.al [1] in 1995 based on the flocking behaviour of birds. The convergence
rate of PSO depends on its control parameters like acceleration coefficients and inertia
weight. Another algorithm that works on the behaviour of fireflies movement towards
the light is firefly algorithm; it was proposed by Yang et al. in 2010 [93]. The intelli-
gent behaviour of honey bees in searching for food was used to develop Artificial Bee
Colony optimization algorithm, which was proposed by Karaboga in 2005 [94]. Gen-
erally, ants communicate using pheromone in travelling and find shortest paths while
searching for food; this behaviour inspired the Ant colony optimization (ACO) algo-
rithm [95]. However, the above mentioned algorithms are parameter dependent and the
accuracy of solution depends on fine tuning of parameters. Rao et al. proposed Teach-
ing and Learning Based Optimization algorithm (TLBO) in 2012 [96]. The influence
of teacher on students and communication among students to achieve the goals is the
principle involved in TLBO algorithm, where no algorithm specific parameters are re-
quired. Rao et al. also proposed Jaya and Rao algorithms, where the ability of candidate
solution to move towards best solution and away from the worst solution along with the
random interactions among candidate solutions is implemented [2] [97].

Placement problem is complex and nonlinear in nature, while planning on large systems
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needs an efficient solution method. In the literature, researchers used various solving
methods i.e classical methods and intelligence methods. The ability of exploration,
exploitation, and high dimensionality in meta-heuristic algorithms ensures the success
in handling complex problems. In the literature, researchers applied various algorithms
to solve the complex placement problem. According to "No free lunch theorem" [98]
for optimization, there is no guarantee that every optimization technique can solve every
optimization issue. In [99], the authors described various nature inspired algorithms
used in charging station planning.

In some cases there is a need to consider more than one objective in optimal planning.
These can be handled by multi objective approaches [100], [101]. In [4], researchers
proposed NSGA-II algorithm for handling multi objective optimization problems that
involve the selection, crossover, and mutation to generate off-springs where ideal so-
lutions are chosen through crowding distance and non dominating sorting approach.
In [5], the authors proposed multi objective Rao algorithm for constrained and uncon-
strained problems. The ranking of solutions in optimal front can be done through non
dominated sorting and crowding distance.

In conclusion, meta-heuristic algorithms are well suited for optimisation of EVCS plan-
ning since the problem formulation necessitates extensive numerical computation, a
precise solution that takes into account a wide range of dimensions, and numerous con-
straints that limit the viability of the solutions.

1.4.3 Research gaps identified

The location and size of EVCS impacts the operation of distribution system and EV
user driving behaviour. Based on the limitations that exist in the literature, the following
research gaps were identified.

1. Optimal planning of charging station, DGs, and D-STATCOM have not been done
by considering coupled network.

2. Optimal number of charging connectors have not been considered.

3. Parameter independent algorithms have not been used for optimization of charg-
ing station placement problems.

4. Waiting time at charging stations has not been considered in the optimal planning
of charging stations.
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1.5 Motivation
Green House Gas (GHG) emission and environment pollution are major issues now a
days. Road transportation by conventional combustion engine is the main cause for
the emission of GHG. According to US economic sector, around 28% of share GHG
was discharged by road transportation from burning fossil fuels for cars, two Wheelers,
trucks, and planes. Growing oil prices and environmental degradation due to fossil fuels
have led to the search for alternatives for fossil fuels and renewable energy sources.

Transforming the existing road transportation to green transportation by adopting the
Electric Vehicle (EV) is a potential solution for reducing GHG emission. The number
of EVs is increasing in many countries like China, Europe, and the US. Government
initiatives and policies of EVs are supporting EV sales. EV sales tripled in India in 2022
compared to 2021. However, low driving range and high waiting times are limiting the
adoption of EVs.

Installation of proper charging infrastructure and adopting new charging technologies
can counter the above mentioned issues. Integration of charging stations along the road-
side supports EV user. However, the integration of charging station reduces the per-
formance of distribution system through power losses and deteriorating voltage profile.
Locating charging stations at random locations can further increase damage to the dis-
tribution system. So charging stations have to be placed at optimal locations which do
not alter the healthy operation of DS. Further, the optimal planning of charging station
should consider EV user behaviour. The EV user always expects charging station to be
near, so the energy losses when travelling towards charging station would reduce.

In the literature, most of the authors have used parameter dependent meta-heuristic algo-
rithms in optimal planning. Fine tuning of parameters is necessary for getting accurate
and efficient solutions. As the placement problem is complex and computationally bur-
densome, there is a need to employ novel algorithms which have no algorithm specific
parameters in optimal planning. Formulation of single objective function does not al-
ways yields feasible solution; hence, the formation of multi-objective problems has to
be considered in optimal planning.

Location of EVCS has a significant impact on promoting EVs, since it influences cus-
tomers’ purchasing decisions. Also, the location and size of EVCS effects the operation
of distribution system and EV user driving behaviour. As per the limitations that exist
in the literature, the motivation of this research is..

13



1. To plan EVCS using a combination of both Power distribution network and Road
transportation network.

2. To explore the reduction of installation cost of EVCS and enhance the comfort of
EV user.

3. To ensure the performance of distribution system (power loss, voltage deviation,
and voltage stability index).

4. To consider the EV user perspective on installation of EVCS.

1.6 Contributions
The thesis aims to examine various perspectives on issues with respect to planning for
charging stations, formulation of complex placement problem, and finding solutions
using meta-heuristic algorithms. The planning of Rapid Charging Stations (RCSs) con-
sidered in this thesis is shown in Figure 1.1.

The outcomes of the research described in this thesis are highlighted as follows:

1. Optimal planning of Rapid Charging Stations (RCSs) and Distributed Generators
(DGs) in a coupled power distribution network and road transportation network.

2. Two-stage optimal planning of RCSs and DGs along with the identification of
optimal number of connectors at the RCSs in a coupled network.

3. Improving the performance of distribution system through simultaneous integra-
tion of RCSs, DGs, and D-STATCOM in a coupled network.

4. Improving the performance of distribution system through the simultaneous in-
tegration of RCSs, DGs, and D-STATCOM in a coupled network, considering
network reconfiguration technique.
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Figure 1.1: Optimal planning of Rapid charging stations in coupled network

The following subsections elaborates the aforementioned research objectives.

1.6.1 Optimal planning of Rapid Charging Stations (RCSs) and Dis-
tributed Generators (DGs) in a coupled network

The integration of RCS deteriorates the operational parameters of distribution system.
The positioning of RCS should consider EV user convenience and cause less harm to the
distribution system. To meet this, the first objective is the simultaneous optimal plan-
ning of RCS and DGs in coupled Power distribution network and Road transportation
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network. Optimal planning includes the reduction of active power loss, voltage devia-
tion, and EV user cost. Complex placement problem is formulated as a weighted sum
multi-objective problem. Novel metaphor-less Rao 3 algorithm was used to solve the
optimization problem. The suggested planning was validated on the coupled network of
IEEE 33 bus radial distribution network and 25 node transportation network.

1.6.2 Queue theory based optimal planning of RCSs and DGs and
identification of optimal connectors in a coupled network

In this thesis, unlike traditional approaches, the number of connectors at RCSs is de-
termined by considering waiting time as an objective. A two stage optimal planning
of RCSs and DGs is proposed in a coupled network of Power distribution network and
Road transportation network. In Stage 1, reduction of active power loss, voltage de-
viation, EV user cost and improvement of voltage stability index was taken into con-
sideration. Optimal count of connectors was determined by considering the conflict-
ing objectives of waiting time and installation cost of RCSs in Stage 2. Novel pareto
dominance based multi-objective Rao 3 algorithm was used for solving the complex
placement problem.

1.6.3 Optimal planning of RCSs, DGs, and D-STATCOMs in a cou-
pled network

The integration of charging station in distribution system increases power loss and volt-
age deviation. The performance of distribution system is enhanced by the installation of
D-STATCOMs along with RCSs and DGs at appropriate locations in a coupled network.
A two-stage multi-objective optimization approach is proposed for identifying optimal
locations, capacities, and connector count. Reduction of active power loss, voltage de-
viation, EV user cost and improvement of VSI were considered in Stage 1. Optimal
connector count was determined by the minimization of waiting time and RCS’s in-
stallation cost was considered in Stage 2. Novel metaphor less multi objective Rao 3
algorithm was used for solving the optimization problem and the results were validated
using NSGA II.
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1.6.4 Network reconfiguration and optimal planning of RCSs, DGs,
and D-STATCOMs in a coupled network

Network reconfiguration can enhance the performance of the distribution system. In this
context, the system is analysed by employing network reconfiguration technique with
prior deployment of RCSs, DGs, and D-STATCOMs. Further, simultaneous network
reconfiguration and optimal planning of RCSs, DGs, and D-STATCOM was done in two
stages. In Stage 1, optimal locations of RCSs, optimal locations and capacities of DGs
and D-STATCOMs were identified by considering minimization of active power loss,
voltage deviation, EV user cost, and maximization of voltage stability index. In Stage
2, waiting time and RCSs installation cost were considered to determine the optimal
number of connectors at each RCS. The effect of future EV load growth was analysed
for the new optimal network. Multi objective Rao 3 algorithm was adopted for solving
the optimization problem, and the results were verified by NSGA II.

1.7 Organization of thesis
The thesis has been organized into six chapters.

Chapter 1 provides information regarding the Electric Vehicle, various charging meth-
ods, and various levels of charging stations. It also details research done in the field of
charging station placement problem and the rationale for research work.

Chapter 2 deals with simultaneous planning of RCSs and DGs in a coupled network of
IEEE 33 bus electrical distribution system and 25 node road transportation network.

Chapter 3 discusses two stage multi-objective approach for planning RCSs and DGs
along with the identification of optimal number of connectors at RCSs using multi-
objective Rao 3 algorithm in a coupled network.

Chapter 4 presents optimal planning of RCSs, DGs, and D-STATCOM using multi-
objective Rao 3 algorithm in a coupled network.

Chapter 5 looks at simultaneous network reconfiguration and optimal planning of RCSs,
DGs, and D-STATCOM using multi-objective Rao 3 algorithm in a coupled network.

Chapter 6 presents the key findings of the research and describes future research that
could be done in the area of optimal planning of charging stations.
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1.8 Summary
This chapter provides an introduction to EVs and an extensive review of the literature
about optimal location, size, and several issues related to the installation of CS. Finally,
the rationale for and contributions of the research study are presented.
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Chapter 2
Optimal planning of Rapid Charging Stations
and Distributed Generators in coupled network

2.1 Introduction
Greenhouse gas emission, depletion of fossil fuels, and growing oil prices are favouring
the choice of Electric Vehicles (EVs) for transportation. The deployment of 20 million
EVs globally was a promising beginning to reduce greenhouse gas emissions by 2020.
Such a global deployment of EVs will replace 62% of fleet vehicles by 2050. Although
EVs have several advantages, they also have the drawbacks of low driving range and
high charging time, and these are major reasons for the slow expansion of EVs. In-
stalling proper charging infrastructure (Rapid Charging Stations (RCSs)) can mitigate
the problem of low driving range. However, installing these at random locations would
reduce the performance of the distribution network. Because EV users always choose
the closest RCS to charge their vehicles, considering the road network is crucial for
effective planning. Even when RCS is positioned at optimal locations, their presence
would increase power loss and voltage deviation. In this regard, DG integration is a
feasible solution to address the aforementioned issues.

This chapter presents the optimal planning of RCSs and DGs in a coupled power distri-
bution network and the road transportation network. In addition to the other two goals of
minimizing active power loss and voltage deviation, the placement also considered cus-
tomer convenience through the minimization of EV user costs. A novel metaphor-less
Rao 3 algorithm was used for obtaining the optimal location and capacities of RCSs and
DGs. A coupled network of an IEEE 33 bus radial distribution network and a 25-node
road network is used as a test network for validating the proposed approach.

2.2 Problem formulation

2.2.1 DG modelling

PV or PQ modelling can be used to model distributed generators. In this chapter, PQ
(negative load model) mode has been taken for modelling DGs. Here the quantities
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emphasized are real power output (Pdg) and power factor (p. f ). Reactive power output
(Qdg) can be calculated from the relation governing real power, reactive power, and
power factor as shown in Eq. (2.1). Eq. (2.2) and (2.3) shows the calculation of real
effective load (Pe f f ectiveload) and reactive effective load (Qe f f ectiveload) at distribution
buses, respectively.

Qdg = Pdgtan(cos−1(p f )) (2.1)

Pe f f ectiveload = Pload −Pdg (2.2)

Qe f f ectiveload = Qload −Qdg (2.3)

2.2.2 Multi objective function (MOF)

In this chapter, the minimization of active power loss, EV user cost, and voltage de-
viation were considered for optimal planning of charging stations and DGs. Here, the
weighted sum multi-objective formulation was done with equal weights.

MOF = min(w1 ×APLRI +w2 ×MV DRI +w3 ×EVUCI) (2.4)

In Eq. (2.4), w1, w2, and w3 are weights between [0,1], and the sum of these weights
needs to be 1. In this chapter, equal weights were considered for all individual objec-
tives.

2.2.2.1 Active power loss reduction index (APLRI)

Power flow in a power distribution system causes active power loss (Ploss). The addition
of rapid charging stations (RCSs) to the power distribution system puts more strain on
the network, resulting in higher power losses and voltage magnitude degradation for
buses. Further, the placement of RCSs in improper places increases losses abnormally
and alters the healthy voltage profile. Usually, RCS is considered as the load at the
power distribution substation. Mathematically, the load due to EVs at ith RCS (CSi

load)
is calculated as per Eq. (2.5). The connectors at ith RCS (CSi

connectors) and the capacity
of ith RCS (CSi

capacity) are calculated using Eq. (2.6) and (2.7), respectively. Power loss
can be reduced by minimizing the active power loss reduction index (APLRI). Here,
APLRI (Eq. 2.8) is the ratio of daily Ploss after the placement of CS or DG or both, to
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the daily Ploss before the placement of both.

CSi
load = NiCS

ev Pb (2.5)

CSi
connectors = max(Pevc)NiCS

ev (2.6)

CSi
capacity =CSi

connectorsRc (2.7)

APLRI =
∑

24
t=1 P f cs/dg

loss

∑
24
t=1 Ploss

(2.8)

2.2.2.2 EV user cost index (EVUCI)

Electric vehicle user has a choice to select the nearest RCS to charge their EV. This
decision not only helps the user but also reduces the energy loss from travelling to the
RCS. Consider m possible charging station locations and q charging demand nodes,
which belong to road network nodes. The selection of RCS in optimal planning is done
by the calculation of the distance between qth demand node to all available RCSs, which
is stored in a D matrix with the order of [q,z] z ∈ m. After comparing the distances of
the qth demand node to all RCSs, EVs present at the demand node are assigned to the
nearest RCS and the corresponding distance is stored in the DD matrix. Here, the DD
matrix has the order of [q,1].

D =


d1c1 d1c2 .. d1cz
d2c1 d2c2 .. d2cz
. . . .
. . . .

dqc1 dqc2 .. dqcz

DD =


min()
min()
.
.

min()

 (2.9)

d=[d1,d2, ...,dq] is the set of demand points, and c=[c1,c2, ...,cm] is the set of charging
nodes belonging to road network nodes. EV user cost can be calculated from Eq. (2.10).
Here, Nev(i) is total number of EVs at ith RCS, EC is the energy consumption of EVs
and Pe is the electricity price.

EVusercost =
q

∑
n=1

DD(i)Nev(i)ECPe (2.10)

Calculating the distance from qth demand node to all m charging nodes and choosing the
longest distance among them offers the maximum distance that an EV customer must
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travel from qth demand node. DDmax is the result of forming a DD matrix for maximum
distances. The values of maximum EV user loss cost and EV user cost index are given
by Eqs. (2.11) and (2.12).

EV max
usercost =

q

∑
n=1

DDmax(i)Nev(i)ECPe (2.11)

EVUCI =
EVusercost
EV max

usercost
(2.12)

2.2.2.3 Maximum voltage deviation reduction index (MVDRI)

Loading the power distribution system with RCS can cause a deviation in voltage be-
yond its limits. The ac load flow gives the value of the voltage at each bus. The maxi-
mum voltage deviation (V Dmax) can be calculated using Eq. (2.13).

V Dmax = max(1− v(i)) i = 1,2,3...Ndistnodes (2.13)

MVDRI refers to the ratio of maximum voltage deviation over the day with the inte-
gration of RCS/DG or both to the maximum voltage deviation over the day without the
integration of both RCS and DG. It is calculated as follows.

MV DRI =
∑

24
t=1V DRCS/DG

max , t

∑
24
t=1V Dmax, t

(2.14)

2.2.3 System constraints

Each RCS must have at least one charging connector to supply the EVs, and Eq. (2.15)
supports this constraint. Eq. (2.16 and 2.17) are the real and reactive power balance
constraints, respectively, in the system. Integration of RCS alters the voltage profile, so
there is a need to check voltage limits in optimal planning. Eq. (2.18) adds the voltage
limits as a constraint. Each DG has maximum and minimum capacity limits (Eq. (2.19)),
and the maximum total capacity supplied by all DGs (PT,max

DG ) is a user-defined quantity
and should be less than the minimum total real power consumption throughout a day
(Eq. (2.20)).
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CSi
connector ≥ 1 i = 1,2, ..z(numbero f RCS) (2.15)

Psub +∑Pdg = PD +∑PRCS +Ploss (2.16)

Qsub +∑QDG = QD +Qloss (2.17)

|Vmin| ≤ |Vn| ≤ |Vmax| n = 1,2, ...Nbus (2.18)

Pmin
dg ≤ Pa,dg ≤ Pmax

dg a = 1,2, ..NDG (2.19)
NDG

∑
a=1

Pa,DG ≤ PT,max
DG < min(Pn,D) (2.20)

Here, Psub and Qsub are the substation real power and reactive power, respectively. PD,
QD, Ploss and Qloss are real power demand, reactive power demand, real power loss,
and reactive power loss in a given test system respectively. Here, RCSs are considered
as only real power loads i.e PRCS equal to CSi

load . Vmin, Vmax, Pmin
dg and Pmax

dg are the
voltage minimum limit, voltage maximum limit, DGs minimum real power limit, and
DGs maximum real power limit, respectively. PT,max

DG is the maximum limit of total
active power supplied by all DGs. Pn,D real power demand at nth node of the power
distribution system.

2.3 Algorithms

2.3.1 PSO algorithm

Particle Swarm Optimization (PSO) is a powerful meta-heuristic optimization algorithm
and inspired by swarm behavior observed in nature such as fish and bird schooling. PSO
algorithm was proposed by Kennedy in 1995 [1]. Eq. (2.21) gives the position value
in (t + 1)th iteration, which depends on the position value in tth iteration and velocity
in (t + 1)th iteration. Eq. (2.22) gives the velocity in (t + 1)th iteration. It depends on
inertia weight (w), acceleration coefficients (C1 and C2), local best value (Pbest), global
best (Gbest), and random values (r1 and r2). Flow chart of PSO algorithm is shown in
Figure 2.1.

Pt+1
i = Pt

i +V t+1
i (2.21)

V t+1
i = wV t

i +C1r1(Pt
best −Pt

i )+C2r2(gbest −Pt
i ) (2.22)
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Figure 2.1: Flow chart of PSO algorithm [1]
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2.3.2 Jaya algorithm

Rao proposed the Jaya algorithm [2], which is a population based meta-heuristic algo-
rithm. The premise of this algorithm is that the solution to an optimization problem
goes towards the global best solution while avoiding the worst solution. It has the ad-
vantage that it requires only the common control parameters which are: population size
and maximum iterations, and it does not require any algorithm-specific parameter set-
ting. The modified value of kth candidate ith variable in jth iteration is obtained using
Eq. (2.23) given below. Figure 2.2 shows the flow chart of jaya algorithm.

x′k,i, j = xk,i, j + r1i, j(xbest,i, j − xk,i, j)− r2i, j(xworst,i, j − xk,i, j) (2.23)

Here x
′
k,i, j is the modified kth candidate, ith variable in jth iteration, xk,i, j is the present

kth candidate, ith variable in jth iteration. r1, r2 are the random values between 0 and 1
i.e [0 1]. xbest,i, j is the best solution of ith variable among all candidates in jth iteration.
xworst,i, j is the worst solution of ith variable among all candidates in jth iteration. If
the objective value yield by modified x

′
k,i is better than xk,i, then the modified candidate

solution is accepted in each iteration. Acceptable solutions are kept in each iteration,
and subsequent searches are based on the solutions in the following iteration. When the
termination criteria are met, the final optimal solutions are achieved.

2.3.3 Rao 3 algorithm

Rao 3 algorithm was proposed by Rao in 2020 [3]. The algorithm is easy to understand
and has the advantage of being metaphor-less with few algorithm-specific parameters.
The principle behind this algorithm is random interaction between the candidate solu-
tions, and the candidate solutions move towards the best solutions and away from the
worst solutions in the optimization process. This algorithm is a population-based tech-
nique and updates equations in each iteration, as shown below.

X
′
i, j,k = Xi, j,k + r1 j,k(X j,best,k −|(X j,worst,k)|)

+r2 j,k((|Xi, j,korXr, j,k|)− (Xr, j,korXi, j,k))
(2.24)
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Figure 2.2: Flowchart of JAYA algorithm [2]
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update equation and evaluate the fitness 

function.

If (fnew <fold)

If (gen>MaxGen)
Yes No

Read the system data, initialize the algorithm parameters and 
system constants.

Initialize feasible population according to cases, evalute the 
fitness values.

Obtain the best and worst values based on the fitness value.

Set gen=1

Stop

Start

Figure 2.3: Flowchart for implementation of Rao 3 algorithm [3]

Here X
′
i, j,k is the updated solution of ith candidate, jth variable in kth iteration. Xi, j,k

is the solution of ith candidate, jth variable in kth iteration, r1,r2 are random values
between [0,1]. X j,best,k is the best value of jth variable of X in the kth iteration. X j,worst,k

is the worst value of jth variable of X in the kth iteration. Xr, j,k randomly selected rth

candidate, jth variable in kth iteration. The flowchart of Rao 3 algorithm for optimal
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planning is shown in Figure. 2.3.

Lcspop =


X1,1 X1,2 .. X1,z
X2,1 X2,2 .. X2,z
. . . .
. . . .

Xpop,1 Xpop,2 .. Xpop,z

 (2.25)

Ldgpop =


Y1,1 Y1,2 .. Y1,n

Y2,1 Y2,2 .. Y2,n

. . . .

. . . .

Ypop,1 Ypop,2 .. Ypop,n

 (2.26)

Sdgpop =


S1,1 S1,2 .. S1,n

S2,1 S2,2 .. S2,n

. . . .

. . . .

Spop,1 Spop,2 .. Spop,n

 (2.27)

Initcspop = [Lcspop] is the matrix used for optimal planning of only RCSs (Case 1). This
matrix consist of feasible locations of RCSs in a power distribution system. Initdgpop =

[Ldgpop,Sdgpop] is the matrix consisting of randomly initialized feasible locations and the
corresponding size of DGs is used in order to plan DGs in the power distribution network
optimally (Case 2). Initcsdgpop = [Lcspop,Ldgpop,Sdgpop] is the matrix that consists of
RCS location, DG location and the corresponding DG size. It is utilised to plan RCSs
and DGs at the same time to get the best results (Case 3). Here X indicates the location
of RCS, Y indicates the location of DG and S indicates the size of the DG.
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Figure 2.4: Super imposed IEEE 33 bus power distribution system with 25 node road
transportation network

2.3.3.1 Implementation of Rao 3 algorithm for optimal planning of RCSs and
DGs

Step 1: Read the test system data and initialize the algorithm parameters (population
size and maximum iterations).
Step 2: Randomly initialize the population according to cases and determine the respec-
tive fitness values.
Step 3: Obtain best and worst solutions based on fitness values.
Step 4: Set gen = 1.
Step 5: Update the candidate solutions based on update equation (2.24) and find the
updated fitness value.
Step 6: Accept the modified solution if it is superior to previous solution, otherwise
keep the previous solution.
Step 7: Set gen=gen+1.
Step 8: Check terminating criteria, if (gen > MaxGen) prints the results, otherwise
continue from step 5 to step 8.
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2.4 Simulation Results and Analysis
Superimposed IEEE 33 bus Power distribution network and 25 node road network is
considered as test system [77], as shown in Figure 2.4. All the buses in IEEE 33 bus
test system were segregated as 17 residential load buses, 9 industrial load buses and 5
commercial load buses shown in Table 2.1. Bus data and line data were taken from
[102]. The hourly load at various buses vary according to the load patterns (in p.u) as
shown in Figure 2.6. The data regarding road network was taken from [103], and 1
km per unit was considered. Superimposed nodes of the distribution network and road
network were taken from [77], which are represented in Table 2.3.

Table 2.1: Identification of types of load buses

Residential Commercial Industrial
loads loads loads

2,3,5,6 4,11,12,18 22,26,27,28

7,8,9,10 19 29,30,31,32

13,14,15,16 – 33

17,20,21,23,24 – –

Table 2.2: Electric vehicle technical parameters

Parameter Value

Total number of EVs (NT EV ) 238

Connector rating (Rc) (kW) 96

EV battery capacity (Pb) (kWh) 50

Energy Consumption (EC) (kWh/km) 0.219

Electricity Price (Pe) ($/MWh) 87.7

The total number of EV population at road network nodes was assumed to be 238, and
were allowed to charge at select charging stations according to the probability of EV
charging shown in Figure 2.5. Table 2.4 gives the assumed number of EVs present at
the nodes of the road network. In this work, all 25 road network nodes were consid-
ered demand nodes. For all optimization algorithms, 100 maximum generations and 30
population size are considered. For the PSO algorithm, inertia constants C1=C2=2 were
considered. Simulations were carried out on PC with windows 10 operating system,
4Gb RAM, and MATLAB 2014b software.
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In this chapter, analysis was done by considering the Base case, Case 1, Case 2, and
Case 3.

• Base case: In this case, the load flow study was done on power distribution sys-
tem without the integration of RCSs and DG to find daily active power loss and
maximum voltage deviation.

• Case 1: In this case, optimal placement and sizing of RCSs were done on the su-
perimposed network to minimize the EV user cost, active power loss, and voltage
deviation.

• Case 2: The load due to charging stations from Case 1 is added to the current load
at the corresponding distribution bus in Case 2. In this system, optimal placement
and sizing of DGs were done to minimize the EV user cost, active power loss, and
voltage deviation.

• Case 3: In this case, concurrent placement and sizing of RCSs and DGs were done
to minimize active power loss, EV user cost, and voltage deviation.

Table 2.3: Coupling of the road network nodes (Rn) with the distribution network nodes
(Dn)

Dn Rn Dn Rn

03 09 20 04

06 08 23 22

14 11 26 05

16 12 28 07

17 16 30 06

Table 2.4: Assumed EVs present at road network nodes

Rn EVs Rn EVs Rn EVs Rn EVs Rn EVs

1 5 6 8 11 3 16 15 21 9

2 9 7 15 12 3 17 8 22 12

3 13 8 6 13 10 18 6 23 15

4 8 9 4 14 12 19 7 24 5

5 5 10 15 15 15 20 15 25 15

31



Time (hours)
0 5 10 15 20 25

0

0.02

0.04

0.06

0.08

0.1
P
ev
c

Figure 2.5: Variation of Electric Vehicle charging probability

Time (hours)
2 4 6 8 10 12 14 16 18 20 22 24

0.2

0.4

0.6

0.8

1

1.2

Commercial load
Industrial load
Residential load

D
em

an
d

 in
 p

.u

Figure 2.6: Plot of different types of load patterns

2.4.1 Base case

The test system consists of IEEE 33 bus power distribution system. As it is radial and
has a high R/X ratio, backward forward sweep load flow algorithm was used for load
flow study. In the Base case, the distributed load flow study was simulated without the
integration of RCSs and DGs into the test system by considering hourly load patterns of
different load types over 24 hours.
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Figure 2.7: Plot of hourly varying load demand with and with out RCSs load

V
ol

ta
ge

(p
.u

)

0.8

0.85

0.9

0.95

1
1 hour
2 hour
3 hour
4 hour
5 hour
6 hour
7 hour
8 hour
9 hour

10 hour
11 hour
12 hour
13 hour
14 hour
15 hour
16 hour
17 hour
18 hour
19 hour
20 hour
21 hour
22 hour
23 hour
24 hour

Bus number
0 5 10 15 20 25 30

Figure 2.8: Distribution system voltage profile in base case

It was observed that the load flow led to daily active power loss of 2811 kW and daily
maximum voltage deviation of 1.5816 (p.u). The lowest voltage of 0.8968 (p.u) was
observed at 18th node in 17th hour. Voltage profile over 24 hours is shown in Figure 2.8

2.4.2 Case 1: Optimal planning of RCSs

Case 1 deals with optimal placement and sizing of RCSs. The placement was done
based on the following assumptions:
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• The superimposed nodes were considered for RCS’s placement.

• RCSs can be placed at 3 buses and it is observed that placement at more than 3
buses makes the system unstable.

In Case 1, RCSs were optimally planned. In optimal planning, primarily all the EVs
were distributed among initialized RCS locations to minimize EV user costs by select-
ing the nearest RCS. After adding the RCS load, the distribution load flow algorithm
is applied to the test system to find Ploss and MVD. To minimize the multi-objective
function, various algorithms were applied. It is observed from Table 2.5 that, power
distribution system performance is affected by RCS’s installation. Daily active power
loss increased by 19.5 %, 12.1 %, and 9.73 % compared with Base case Ploss, that were
obtained using PSO, JAYA, and Rao 3 algorithms, respectively. The presence of RCSs
was also witnessed by the increased value of MVD (1.6120 (p.u)) in comparison with
Base case MVD (1.5816 (p.u)). Here, Rao 3 algorithm gave least MVD compared to
other two algorithms. The system’s minimum voltage was 0.8949 (p.u), which appeared
at the 18th bus in the 17th hour using Rao 3 algorithm, as shown in Figure 2.9.
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Figure 2.9: Distribution system voltage profile in Case 1
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Table 2.5: Comparison of various algorithms for optimal allocation of RCSs in Case 1

Parameter PSO JAYA Rao 3

CS locations 23,20,30 23,20,26 20,23,3

EVs 129,50,59 144,76,18 105,114,19

Connectors 13,5,6 14,8,2 11,11,2

Size (kW) 1248,480,576 1344,768,192 1056,1056,192

Ploss (kW) 3359.8 3151.8 3084.6

EVUC ($) 34.0335 36.1270 36.3383

MVD (p.u) 1.6608 1.6271 1.612

APLRI 1.1952 1.1212 1.0973

EVUCI 0.3643 0.3867 0.3890

MVDRI 1.0501 1.0288 1.0193

MOF 0.8690 0.8447 0.8343

Time (sec) 250.4 169.3 155.6

RCSs placement caused the downfall of system minimum voltage from 0.8968 (p.u,
Base case) to 0.8949 (p.u). EVUC is 36.3383 $ with Rao 3 algorithm which is highest
among EVUC of PSO and JAYA algorithms. However, the overall objective function
value of 0.8343 by Rao 3 algorithm was lowest in comparison with JAYA algorithm
(0.8447) and PSO algorithm (0.8690). Rao 3 algorithm took less time for evalution
compared to PSO and JAYA algorithms. To counter the effects caused by RCSs instal-
lation in the power distribution system, DGs are installed.

2.4.3 Case 2: Optimal planning of DGs

Installing DGs in the power distribution system reduces power loss and improves voltage
profile. Renewable type DGs of size 5 kW-1MW were considered for integration. It has
been observed that integration of three DGs in a power distribution system outperforms
integration of single DG or two DGs. It’s also been observed that adding more than
three DGs to a power distribution system doesn’t significantly increase performance.
As a result, three DGs were considered in this study. The hourly total real load demand
on the system, which includes RCSs load and the hourly charging probability of EVs,
is depicted in Figure 2.7. According to this plot, the minimum real power load demand
of 1420.8 kW appeared at the 4th hour. As a result, the total real power injection by all
DGs was limited to less than or equal to 1400 kW (<1420.8), according to the constraint
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(Eq. 2.20).

Table 2.6 shows the optimal placements, DG sizes, and numerous technical observa-
tions. When compared to the Base case, active power loss was reduced to 38.42 % in
Case 2. This reduction was aided by the insertion of DGs in the power distribution sys-
tem. The PSO and JAYA algorithms reduced active power loss by 40.06 % and 39.45 %,
respectively, but the optimal placements and sizes of DGs obtained by Rao 3 algorithm
reduced active power loss to maximum in comparison with other two algorithms. The
maximum voltage deviation with Rao 3 algorithm was 0.5215 (p.u), which was higher
than 0.5151 (p.u), 0.5162 (p.u) of PSO, and JAYA algorithms, respectively.

Furthermore, compared to 0.3718 of PSO and 0.3699 of JAYA, the multi-objective func-
tion (MOF) with Rao 3 algorithm was 0.3675, which was the lowest value. The voltage
profile at all buses throughout the day is depicted in Figure 2.10, with DGs placed at
optimal locations and sizes using Rao 3 algorithm. A minimum voltage of 0.9626 (p.u)
appeared at the 30th bus in the 19th hour, according to Figure 2.10. The lowest voltage at
the 18th bus improved from 0.8968 (p.u Base case) to 0.9627 in the 17th hour (p,u). The
placement of DGs in appropriate locations is responsible for this improvement. When
compared to PSO and JAYA algorithms, Rao 3 produced more efficient outcomes in the
shortest time.
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Figure 2.10: Distribution system voltage profile in Case 2
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Figure 2.11: Distribution system voltage profile in Case 3

Table 2.6: Comparison of various algorithms for optimal allocation of DGs in Case 2

Parameter PSO JAYA Rao 3

DGs locations 15,33,5 33,15,8 33,15,12

Size (kW) 609,784,5 793,554,52 773,429,196

Ploss (kW) 1126.3 1108.9 1080

EVUC ($) 36.3383 36.3383 36.3383

MVD (p.u) 0.5151 0.5162 0.5215

APLRI 0.4007 0.3945 0.3841

EVUCI 0.3890 0.3890 0.3890

MVDRI 0.3257 0.3264 0.3297

MOF 0.3718 0.3699 0.3675

Time (sec) 274.2 136.1 130.5
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Table 2.7: Comparison of various algorithms for concurrent optimal allocation RCSs
and DGs in Case 3

Parameter PSO JAYA Rao 3

CS locations 20,28,16 23,20,6 16,20,23

EVs 44,112,82 104,40,94 67,73,98

Connectors 4,11,8 10,4,9 7,7,10

Size (kW) 384,1056,768 960,384,864 672,672,960

DGs locations 13,11,30 14,31,30 31,11,17

Size(kW) 514,69,791 569,461,151 615,389,395

Ploss (kW) 1271.9 1219.2 1079.2

EVUC ($) 42.3306 31.1142 25.3715

MVD (p.u) 0.8192 0.6714 0.5960

APLRI 0.4525 0.4337 0.3839

EVUCI 0.4531 0.3331 0.2716

MVDRI 0.5179 0.4245 0.3768

MOF 0.4745 0.3971 0.3441

Time (sec) 298.8 160.1 148.06

2.4.4 Case 3: Concurrent optimal planning of RCSs and DGs

In this case, Rao 3 algorithm was used to plan RCSs and DGs at the same time. RCS
location, DG location, and DG size make up the initialization matrix. The system was
examined for improved overall objective function once these two were added. Table
2.7 shows the optimal results by various algorithms. Rao 3 algorithm was shown to
generate a better multi-objective function (MOF) of 0.3441. The daily active power
loss was 1079.2 kW, or 38.39% of the base active power loss. In comparison to PSO
and JAYA algorithms, the maximum voltage deviation (MVD) was 0.5960 (p.u), which
was the lowest of the values. With Rao 3 algorithm, EV user cost of electric vehicles
was 25.3715 $, which is cost - effective when compared to 42.3306 $ and 31.1142 $ for
PSO and JAYA, respectively.
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Table 2.8: Comparison of Ploss, MVD, and EVUC in various cases by Rao 3 algorithm

Parameter Base case Case 1 Case 2 Case 3

Ploss (kw) 2811 3084.2 1080 1079.3
MVD (p.u) 1.5816 1.6120 0.5215 0.5960
EVUC ($) – 36.3383 36.3383 25.3715
MOF – 0.8343 0.3675 0.3441
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Figure 2.12: Convergence characteristics by various algorithms in Case 1
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Figure 2.13: Convergence characteristics by various algorithms in Case 2
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Figure 2.14: Convergence characteristics by various algorithms in Case 3

The system’s voltage profile is shown in Figure. 2.11, with RCSs and DGs placed
simultaneously using Rao 3 algorithm. At 16th bus in 20th hour, the system’s minimum
voltage was 0.9518 (p.u). The voltage improved from 0.8968 (p.u, Base case) to 0.9629
(p.u) at the 18th bus in the 17th hour. When compared to other two algorithms, Rao 3
algorithm takes less time to simulate and produce optimal results.

We know from Table 2.8 that, daily active power loss is gradually reduced from Case 1
to Case 3. Though the maximum voltage deviation is slightly higher in Case 3 compared
to Case 2, EVUC and overall objective function are the smallest of all cases (Case 1 and
Case 2) in Case 3. Based on these findings, it can be inferred that using Rao 3 algorithm
to plan RCSs and DGs concurrently (Case 3) generated the best outcomes.

2.5 Summary
The optimal locations and capacities of RCSs and DGs were obtained by considering
the following scenarios: i) RCSs alone, ii) Optimal DG planning with prior RCSs out-
comes, iii) Concurrent planning of RCSs and DGs. In the proposed planning, variation
of load demand and Electric Vehicle charging probability over 24 hours was considered.
The use of the metaphor less Rao 3 algorithm yielded faster convergence with better
performance for the optimal planning of RCSs and DGs simultaneously. Random inter-
actions between candidate solutions and the ability to move candidate solutions towards
the best optimal solution and away from the worst solution of Rao 3 algorithm outper-
form PSO and Jaya algorithms. Future research will identify the appropriate number of
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connectors at each RCS that provide the best trade-off between waiting time and RCS
installation cost.
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Chapter 3
Queue theory based optimal planning of RCSs,
DGs, and identification of optimal connectors in
coupled network

3.1 Introduction
In the previous chapter, voltage stability index, charging station installation cost, and
waiting time at charging stations were not considered. This chapter, presents a two stage
approach for optimal planning of RCSs and DGs in a coupled transportation and distri-
bution network. Optimal location of RCSs and optimal planning of DGs was done in the
first stage by minimizing power loss, voltage deviation, EV user cost and maximizing
voltage stability index. Optimal number of connectors was determined in second stage
by minimizing the waiting time in queue at RCSs and installation cost of RCSs. A novel
Multi-Objective Rao 3 algorithm was employed to determine the optimal solutions.

3.2 Problem formulation
This section presents two a stage approach for optimal planning of RCSs and DGs in a
coupled network, objective functions, operational constraints considered in each stage,
DG modelling, and RCS modelling.

3.2.1 Two stage approach

In this chapter, optimal planning of RCSs and DGs was done in two stages (Figure
3.1). Integration of only RCS into the power distribution system causes performance
degradation. In this context, DG integration was adopted and the test system analysed
in Stage I. Based on the results achieved from Stage I, optimal number of connectors
was determined in Stage II to benefit EV user and RCS owner.
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3.2.1.1 Stage I: Optimal location of RCSs and optimal location and sizing of DGs
in a coupled network

In stage I, optimal locations of RCSs and optimal planning of DGs were done through
two scenarios. In scenario 1, the impact of RCS on the performance of power distri-
bution system was analysed through various cases (explained in Section 3.4.2.1). In
scenario 2, concurrent optimal planning of RCSs and DGs was done and the perfor-
mance of power distribution system was analysed through various cases (explained in
Section 3.4.2.2). Optimal location of RCSs, optimal location and sizing of DGs were
done by minimizing power loss (Ploss), maximum voltage deviation (MV D), EV user
cost (EVUC), and maximizing voltage stability index (V SI). Eq. (3.1) shows the objec-
tive function in Stage I, where feasible locations of RCSs (lRCS), locations of DGs (lDG),
and size of DGs (SDG) were decision variables.

f (lRCS, lDG,SDG) = min(Ploss,MV D,EVUC,(1/V SI)) (3.1)

Here certain constraints exist while planning the RCSs and DGs optimally in the cou-
pled network. Backward forward sweep load flow algorithm was used for load flow
study to achieve power loss, node voltages, and voltage stability index. While planning
RCSs and DGs in a coupled network optimally in Stage I, some equality and inequality
constraints are considered. The real and reactive power balance in the power distribu-
tion system was considered using Eqs. (3.2) and (3.3). Addition of RCSs results in
deterioration of voltage profile. Hence, to maintain voltage limits, Eq. (3.4) was used
as constraint. DG’s minimum active power limits and total active power supplied by all
DGs were used as constraints using Eq. (3.5) and Eq. (3.6) respectively. In Eq. (3.6),
the contribution from all DGs was limited by minimum active power consumption over
a 24 hour period.

Psub +∑Pdg = PD +∑PRCS +Ploss (3.2)

Qsub +∑Qdg = QD +∑QRCS +Qloss (3.3)

|V min| ≤ |Vn| ≤ |V max| n = 1,2, ...Nbus (3.4)

Pmin
dg ≤ Pdg ≤ Pmax

dg (3.5)

Pdg ≤ PT,max
dg < min(Pn,D) (3.6)

Here, Psub and Qsub are real power and reactive powers of substations respectively. PD

and QD are real and reactive power demands in power distribution system. Ploss and Qloss
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are real power loss and reactive power loss. Here, RCS has real power load (PRCS) and
reactive power load (QRCS). V min, V max, Pmin

dg , and Pmax
dg are lower voltage limit, upper

voltage limit, DGs lower real power limit and DGs upper real power limit respectively.
PT,max

dg is the maximum limit of total active power supplied by all DGs. Pn,D is real
power demand at nth node of power distribution system.

3.2.1.2 Stage II: Optimal sizing of RCSs

After identifying the optimal locations of RCSs, optimal locations and sizes of DGs,
the number of assigned EVs at each RCS calculated in Stage I were considered as input
information to Stage II. Based on this, arrival rate was calculated and used in M1/M2/C
queuing model for finding the waiting time in queue at RCSs. In stage II, optimal sizing
of RCS was done by determining the optimal number of connectors at each RCS loca-
tion. Installation cost of RCS (ICRCS) and waiting time (WT ) in queue at RCSs depend
on the number of connectors at RCSs. In Stage II, the optimal number of connectors
was determined by minimizing the ICRCS and WT . Eq. (3.7) shows objective function
in Stage II, where the feasible number of connectors (C) at each RCS were decision
variables.

f (C) = min(WT , ICRCS) (3.7)

Eq. (3.8) is supporting the fact that every RCS should have a minimum of one connector,
and is used in Stage II while determining the optimal number of connectors at RCS,
where CSconnector

i is the number of connectors at ith RCS.

CSconnector
i ≥ 1 i = 1,2, ..z(numbero f RCS) (3.8)
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Figure 3.1: Proposed two stage model for optimal planning of RCSs and DGs

3.2.2 DG modelling

Modelling of DGs is necessary for the load flow studies. DGs can be modelled either
as PQ mode or PV mode. In this chapter, DG is modelled in PQ mode i.e negative load
model. Here, the DG reactive power output is calculated from Eq. (3.9) with known
quantities of real power output (Pdg) and power factor (pf).

Qdg = Pdg × tan(cos−1(p f )) (3.9)

3.2.3 RCS modelling

In this work, RCS is modelled as load due to EVs. Real power load (PRCS
i ) and reactive

power load (QRCS
i ) due to EVs at ith RCS are obtained by Eqs. (3.10) and (3.11) respec-

tively. Eqs. (3.12) and (3.13) are used to determine the connectors and capacity of ith

RCS respectively. Here, Rc is the connector capacity, Pevc is the charging probability
of EVs. PRCS

i depends on the total number of EVs (NEV
i ) at ith RCS and rating of EV

battery (Pmax
EV ). The effective real and reactive power loads (PE f f load

n ,QE f f load
n ) at nth

bus in power distribution system are calculated using Eq. (3.14) and (3.15) respectively.
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It is considered that charging station is operating at 0.95 lag power factor [58].

PRCS
i = NEV

i ×Pmax
EV (3.10)

QRCS
i = PRCS

i × tan(cos−1(p f )) (3.11)

RCSconnectors
i = max(Pevc)×NEV

i (3.12)

RCScapacity
i = RCSconnectors

i ×Rc (3.13)

PE f f load
n = Pload

n −Pdg
n +PRCS

n (3.14)

QE f f load
n = Qload

n −Qdg
n +QRCS

n (3.15)

3.2.4 Network power loss

RCS integration results in high active power loss as there will be an increase in current
flow through the branches. Furthermore, RCS location has a significant impact on power
distribution system performance. Power loss can be calculated from the backward for-
ward sweep load flow algorithm. Eq. (3.16) gives the total network power loss at tth

hour. Daily power loss was calculated using Eq. (3.17).

ploss(t) =
nb

∑
b=1

(ib)2 × (Rb) (3.16)

Ploss =
24

∑
t=1

ploss(t) (3.17)

Where ib is bth branch current, Rb is bth branch resistance, and nb is the total number
of branches. Rapid charging stations (RCSs) impose additional load on the network,
resulting in increased power loss and voltage magnitude degradation at the buses.

3.2.5 Voltage Deviation (VD)

Voltage variations beyond the permissible limits are produced by RCSs loading. As a
result, the system may become unstable. The voltage stability of the system is achieved
by reducing the maximum voltage deviation (MVD) and increasing the voltage stability
index (VSI). The load flow algorithm gives the voltage magnitude at each bus. Eq.
(3.18) gives the maximum value of voltage deviation ( V Dmax(t) ) at time t. Maximum
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voltage deviation (MVD) over a day can be calculated by Eq. (3.19).

V Dmax(t) = max(1− v(i), t) i = 1,2,3...Ndistnodes (3.18)

MV D =
24

∑
t=1

V Dmax(t) (3.19)

3.2.6 Voltage Stability Index (VSI)

Voltage stability index (Eq. (3.20)) is one of the important factors that gives information
about system voltage stability. Utility expects VSI at each bus to be near unity. VSI
varies with loading i.e as the loading increases, VSI would reduce. The bus having
maximum VSI (≤ 1) is strong, and is capable of taking extra load.

V SIr = 2V 2
s V 2

r −V 4
r −2V 2

r (PrR(k)+QrX(k))−|z|2(P2
r +Q2

r ) (3.20)

Where, V SIr is VSI at receiving end of a line k, Vr and Vs are receiving end and sending
end voltages, Pr and Qr are real and reactive power at the receiving end of line k, R(k)

and X(k) are resistance and reactance of line k.

3.2.7 EV User Cost (EVUC)

When moving from an EV location to RCS, energy is lost. The EV user selects the
closest charging station available for charging. The best locations for RCS must take
EV user behaviour into account when choosing the RCS to use. Minimization of the
user cost of electric vehicles is considered in the objective function while locating RCS.

Consider m (m ∈ S) RCSs dispersed at various sites (C1,C2, ..Cs). The road transporta-
tion network is segmented into Z zones, with electric vehicles assumed to be present at
each zone’s geometrical center. RCS can be placed at interconnected points of power
distribution network and road transportation network in a coupled network. Figure 3.4
shows the test system, in question where each zone and feasible charging station loca-
tions were identified by its coordinates i.e (xZ1,yZ1) and (xC1,yC1) respectively. In a test
system, distribution network nodes are the possible locations for RCS placement. So
there is a need to find the distance between all zones to selected m charging station loca-
tions in optimal planning. Eq. (3.21) can determine the distance between the selected m
charging stations and each zone. Information about the distances between all zones and
particular charging stations is provided by D matrix Eq. (3.22). Each element in DD

47



matrix reflects the distance between the nearest RCS among the selected RCS and the
corresponding zones and is determined by the minimum value in each row of D matrix
using Eq. (3.23). EVs located at the zones are assigned to the nearest RCS.

dZ1−C1 =
√
(xZ1 − xC1)

2 +(yZ1 − yC1)
2 (3.21)

D =


dZ1−C1 dZ1−C2 .. dZ1−Cm

dZ2−C1 dZ2−C2 .. dZ2−Cm

. . . .

. . . .
dZz−C1 dZz−C2 .. dZz−Cm

 (3.22)

DD =


min(dZ1−C1 dZ1−C2 .. dZ1−Cm)

min(dZ2−C1 dZ2−C2 .. dZ2−Cm)

min(. . . .)

min(. . . .)

min(dZz−C1 dZz−C2 .. dZz−Cm)

 (3.23)

EVusercost =
z

∑
n=1

DD(i)×NEV
i ×Ec ×Pe (3.24)

Eq. (3.24) gives the Electric vehicle user cost. Here NEV
i is the number of EVs getting

charged from ith RCS, Ec is the average energy consumption of EVs and Pe is the cost
of electricity.

3.2.8 Installation Cost of RCSs (ICRCS)

The installation cost of an RCS is important from a charging station owner perspective.
ICRCS depends on the number of connectors (RCSconnectors

i ) at RCS, and is computed
using Eq. (3.25).

ICRCS(i) =Cinit +25×Cland ×RCSconnectors
i +Ccon(RCSconnectors

i −1)×Pc (3.25)

Where, Cinit is initial investment cost, Cland is land cost, RCSconnectors
i is the number of

connectors at ith RCS, Ccon is connector cost, and Pc is connector rating.
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3.2.9 RCS connector operation Model

The M1/M2/C queuing model is taken into account in this study to describe the service-
ability of charging stations [82]. M1 denotes the rate of EV arrivals per hour, M2 is
the rate of RCS connector service per hour, and C denotes the number of service points
at the charging station. Electric Vehicles (EVs) often drive up to a charging station to
charge their batteries. They arrive at a rate of λ/hour on average. It is modelled as a
non-homogeneous Poisson process as it is time-dependent. Connectors are available in
the RCS to charge the EV. These connectors perform the role of servers and charge the
EVs at a service rate of µ/hour. In this case, the waiting line for EVs is assumed to be
infinitely long. To ensure service to all EVs in the RCS, the arrival rate must always be
lower than the service rate (Eq. (3.27)).

λ (t) = NiCS
ev ×Pevc (3.26)

ρ =
λ (t)
Cµt

< 1 (3.27)

The probability of number of EVs charging at each RCS simultaneously is modelled
using Eq. (3.28).

pt(n) =
(Cρ)n

n!
× pt(0) n = 1,2,3, ...,C (3.28)

pt(0) =

[
C−1

∑
s=0

(Cρ)s

s!
+

(Cρ)C

C!
1

(1−ρ)

]−1

(3.29)

Where, pt(0) as expressed in above equations is the probability of no EV getting charged.

According to Little’s equations, Eq. (3.30) gives the expected number of EV users
waiting at the RCS at tth hour.

Et [n] = pt(0)

[
1

(C−1)!

(
λt

µt

)C
λt µt

(Cµt −λt)2

]
(3.30)

Waiting time in queue of EV at tth hour can be calculated using Eq. (3.31). Total waiting
time in a 24 hours period at all RCS is calculated using Eq. (3.32)

W (t) =
Et [n]
λ (t)

(3.31)
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WT =
m

∑
i=1

24

∑
t=1

W (t) (3.32)

It is necessary to calculate the minimum and maximum limit for connectors at each RCS
to satisfy Eq. (3.27). The arrival rate at RCS is calculated using Eq. (3.26). Eq. (3.12)
can be used to calculate the maximum number of connectors (Cmax) at RCS, while Eq.
(3.33) can be used to get the minimum number of connectors (Cmin).

λ max

µ
<Cmin

λ
max ∈ λ (t) (3.33)

3.3 Multi-Objective Optimization Algorithms
Multi-objective optimization is preferable to identify the best solution for achieving
multiple goals. Multiple-objective issues can be resolved using scalarization techniques
and Pareto-based approaches. The weighted sum strategy is used in scalarization ap-
proaches to combine all the objectives into a single objective function. Here, a single
objective is the sum of individual objectives, multiplied by weights according to their
priority. However, this approach is not optimal for multi-objective problems with con-
flicting objectives. In this case, pareto dominance based multi-objective approaches
provide the most efficient solutions.

3.3.1 Non dominated Sorting Genetic Algorithm (NSGA II)

A multi objective optimization problem with conflicting objectives can be solved using
NSGA II, proposed by Kalyan Deb in [4]. To achieve optimal pareto fronts, crowding
distance, and dominance principle are used. Since the objectives are inherently conflict-
ing, the best compromise solution is selected using a fuzzy min-max decision-making
method. The flowchart of NSGA II algorithm is shown in Figure 3.2.

3.3.2 Multi Objective Rao 3 Algorithm (MORA)

Dominance principle and crowding distance analysis must be used to determine pareto
optimal solutions in a system with multiple objectives that are in conflict with each other.
In this study, Multi objective Rao Algorithm (MORA) proposed by Rao in 2021 [5]
was used to find the best solution. Fewer algorithmic parameters (population size and
maximum iterations) make MORA simpler to understand and use.
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The population of a feasible decision variable (Po) with size (N) is initially generated
at random. The rank and crowding distance were used to determine the best and worst
solutions after evaluating the fitness function. New solutions (Pn) were determined using
Eq. (3.34). A set of solutions of size (N) was chosen from a set (PoUPn) based on rank
and crowding distance after the evaluation of the fitness function for the new solution.

X
′
i, j,k = Xi, j,k + r1 j,k(X j,best,k −|(X j,worst,k)|)

+r2 j,k((|Xi, j,korXr, j,k|)− (Xr, j,korXi, j,k))
(3.34)

Here X
′
i, j,k is the new solution of ith candidate, jth variable in kth iteration. Xi, j,k is the old

solution of ith candidate, jth variable in kth iteration, r1,r2 are random values between
[0,1]. X j,best,k is the best value of jth variable of X in kth iteration. X j,worst,k is the
worst value of jth variable of X in kth iteration. Xr, j,k randomly selected rth candidate,
jth variable in kth iteration. The flowchart of MORA for optimal planning is shown in
Figure 3.3.

3.3.3 Implementation of Multi Objective Rao 3 Algorithm (MORA)
for optimal planning of RCS and DGs

Step 1: Read the test system data and initialize the algorithm parameters (population
size and maximum iterations).
Step 2: Randomly initialize the population and determine the respective fitness values.

• Popstage1 = [lRCS, lDG,SDG] for Stage 1

• Popstage2 = [C] for Stage 2.
(lRCS is location of RCS, lDG is location of DG, SDG is size of DG, and C is number
of connectors).

Step 3: Set gen = 1.
Step 4: Perform the non dominated sorting and calculate the crowding distance.
Step 5: Obtain best and worst solutions based on the non dominated sorting and crowd-
ing distance.
Step 6: Update the candidate solutions based on the update equation (3.34) and find the
updated fitness value.
Step 7: Combine both old and modified solutions and perform non dominated sorting
and crowding distance.
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Step 8: Select best population of size (N) from combined solutions of size 2N.
Step 9: Set Iter=Iter+1.
Step 10: Terminate the process, if (Iter > Itermax) and save the pareto optimal front data
otherwise continue from step 4 to step 10.
Step 11: Perform the fuzzy min max decision making technique to select the compro-
mised optimal solution optimal front and print the results.

Table 3.1: Parameters of EV

Parameters Values

EV battery capacity 27.69 kWh

No of EVs 600

Avg. power consumption 0.142 kWh/km

Connector rating (Pc) 96 kW

Table 3.2: Cost coefficients of land

Coefficients Costs

Cinit 70000 $

Cland 240$/m2

Ccon 280.33$/kW

Table 3.3: Classification of connected loads in IEEE 33 bus RDS

Residential Commercial Industrial
loads loads loads

2,3,5,6,7,8 4,11,12,18 22,26,27,28

9,10,13,14,15 19 29,30,31,32

16,17,20,23,24 – 33
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Figure 3.2: Flowchart of NSGA II [4] for the proposed problem.
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Figure 3.3: Flowchart of MORA [5] for the proposed problem.

3.4 Simulation Results and Discussion
The effectiveness of the proposed method for RCS and DG optimal planning in cou-
pled networks was evaluated on the proposed test system. The proposed test system is a
coupled network of IEEE 33 bus power distribution system superimposed on a 20×38
km2 road transportation area. The transportation area in chosen test system is divided
into 190 zones with each zone having an area of 2×2km2. It is considered that EVs are
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located at the geometrical center of each zone, and the distribution of 600 EVs through-
out 190 zones in the transportation area is represented in Table 3.4. In the first stage,
the best location for RCS and the best location and size for DGs were determined si-
multaneously. Queuing theory was employed in the second Stage to size RCS properly.
In both stages, multi-objective Rao 3 algorithm (MORA) was used to solve optimiza-
tion problems with a population size of 30 and 100 iterations respectively. The optimal
results obtained by MORA were compared with the results obtained by NSGA II algo-
rithm. The parameters considered for NSGA II in optimization population size of 30,
maximum generation of 100, crossover probability of 0.8, and mutation probability of
0.33.

Table 3.4: Assumed Number of Electric Vehicles assigned to each of the 190 zones of
Transportation system

1 4 3 1 5 1 1 2 3 4 4 5 5 4 2 5 3 3 4

3 4 2 4 1 3 3 1 5 5 4 4 2 1 2 4 5 1 4

3 5 4 1 1 5 4 5 4 4 3 1 3 3 5 2 5 5 2

4 1 2 2 5 2 2 4 4 4 5 4 2 3 5 2 2 5 1

4 3 4 4 4 5 4 1 4 3 4 4 4 1 2 1 5 3 4

2 4 5 3 3 4 2 3 3 5 3 4 3 3 1 5 4 2 1

5 5 4 2 2 2 4 4 5 5 2 5 4 2 2 3 3 3 2

5 5 4 2 4 4 3 5 5 4 1 1 1 5 3 4 3 3 3

1 4 3 1 1 1 4 2 1 3 5 4 4 2 2 1 4 3 3

4 1 1 1 5 1 4 3 5 2 1 2 4 3 5 4 1 5 4

Figure 3.5 shows the probability of EVs charging at RCS. Observations show that EVs
do not charge before 5:00 am and after 9:00 pm. The line and load data for IEEE 33 bus
system were taken from [102]. There are 33 buses and 32 lines in the test system. Of
the 33 buses, 17 carry residential loads, 9 carry industrial loads, and 5 carry commercial
loads (Table 3.3). In this study, the variation in load was also taken into account. Figure
3.6 depicts the load demand variation over 24 hours. Simulations were carried out in
MATLAB 2014b software with PC specification of Intel core i3 processor and 4 GB
RAM.
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Figure 3.4: Test system (Coupled network of Road transportation network and IEEE 33
Bus Power distribution network)
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Figure 3.5: Electric Vehicle charging probability

3.4.1 Base case

The analysis of test system was done without integrating RCSs and DGs in Base case.
Backward forward sweep algorithm was employed to analyse the network, because the
test system consists of IEEE 33 bus power distribution system, which has high R/X
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ratio. It reported a Base case active power loss of 2811 kW, maximum voltage deviation
of 1.5816 (p.u.), and voltage stability index (V SImin) of 0.6479. Figure 3.7 shows a plot
of voltage profiles of IEEE 33 bus RDS for 24 hours at each bus. It is observed from
Figure 3.7 that at 17th hour the system’s minimum voltage is 0.8968 (p.u.) at the 18th

bus of IEEE 33 Bus RDS.

3.4.2 Stage 1: Optimal location of RCSs and optimal location and
sizing of DGs

MORA was used to find the optimal locations for RCSs and optimal locations and sizes
for DGs in the first stage. Two scenarios, with three cases in each, were used to analyse
the optimal planning.

3.4.2.1 Scenario 1: Optimal planning of RCS in coupled network

In this scenario, the analysis of network was done by integrating RCSs. In scenario
1 three cases were considered to analyse the network for optimal planning of RCSs.
MORA algorithm was applied in each case to get the optimal fronts.
Case 1: Optimal planning of RCSs by minimizing Ploss, MVD, and EVUC.

Case 2: Optimal planning of RCSs by minimizing Ploss, 1/V SImin, and EVUC.

Case 3: Optimal planning of RCSs by minimizing Ploss, MVD, 1/V SImin, and EVUC.

Table 3.5: Optimal locations of RCSs and the number of EVs assigned to RCSs in
Scenario 1 by NSGA II and MORA for different cases

NSGA II MORA
Case No. RCSs location Number of EVs RCSs location Number of EVs

Case 1 2, 23, 27 150, 69, 381 2, 19, 27 134, 70, 396

Case 2 2, 22, 27 165, 77, 358 2, 19, 24 103, 198, 299

Case 3 2, 19, 23 102, 235, 263 2, 19, 22 171, 57, 372
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Figure 3.6: Plot of load demands of various types of loads
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Figure 3.7: Plot of Voltage profiles at each bus of IEEE 33 Bus RDS for 24 hours with
out the integration of RCSs and DGs

Fuzzy min max decision making technique was employed to achieve the compromised
optimal solution. The optimal pareto front in Case 3 by MORA is shown in Figure
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3.13. Optimal locations of RCSs and the corresponding objective function parameters
are given in Table 3.5 and Table 3.6 respectively.

Table 3.6: Objective function parameters in Scenario 1 by NSGA II and MORA for
different Cases

NSGA II MORA
Case No. Ploss MVD V SImin EVUC Ploss MVD V SImin EVUC

(kW) (p.u) ($) (kW) (p.u) ($)

Case 1 3572.8 1.7223 0.6182 60.7222 3560.3 1.7217 0.6182 60.0221

Case 2 3499.8 1.7093 0.6219 60.9249 3124.5 1.6124 0.6424 88.6718

Case 3 3026 1.6093 0.6430 94.2015 2977.1 1.5898 0.6464 86.7004

From Table 3.6, it is observed that MORA algorithm yielded better objective parameters
compared to NSGA II with Ploss of 3560.3 kW, MVD of 1.7217 (p.u), V SImin of 0.6182,
and EVUC of 60.0221 $ in Case 1. The maximization of VSI in place of MVD resulted
in improvement of voltage profile in Case 2. Better values of Ploss, MVD, and V SImin

were obtained by MORA in Case 2. However the highest EVUC was encountered by
MORA (EVUC 88.6718 $) compared to NSGA II (EVUC 60.9249 $). The considera-
tion of VSI maximization along with minimization of Ploss, MVD, and EVUC resulted
in better voltage profile (MVD, VSI) and Ploss in Case 3 compared to all cases in Sce-
nario 1. In Case 3, MORA yielded Ploss of 2997.1 kW, MVD of 1.5898 (p.u), V SImin

of 0.6464, and EVUC 86.7004 $. From Figure 3.8 and Figure 3.9, it is observed that
the presence of RCSs in the test system resulted in reduction of minimum voltage of the
system to 0.8963 (p.u) and 0.8951 (p.u) at 18th bus in 17th hour by MORA and NSGA
II algorithms, respectively compared to Base case (0.8968 (p.u)). From Scenario 1, it
is clear that though the RCSs are placed at appropriate locations in the distribution net-
work, it resulted in increased power loss i.e 1.07 % of Base case (Ploss) and deteriorated
voltage profile.
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Figure 3.8: Plot of Voltage profiles at each bus of IEEE 33 Bus RDS for 24 hours with
the integration of RCSs by MORA in Case 3
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Figure 3.9: Plot of Voltage profiles at each bus of IEEE 33 Bus RDS for 24 hours with
the integration of RCSs by NSGA II in Case 3
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3.4.2.2 Scenario 2: Concurrent optimal planning of RCSs and DGs.

Though the RCSs were located at optimal places, loading due to RCSs would reduce
the performance of the power distribution system. To solve the above issue, Renewable
type DGs of size 5 kW-1 MW placement in power distribution system was adopted in
this chapter in Scenario 2. The power distribution system has a minimum active power
demand of 1420 kW at 4th hour (Figure 3.10). To prevent reverse power flow, the total
active power supplied by DGs is limited to less than or equal to 1400 kW. Three cases
were considered in this scenario to analyse the network.
Case 4: Concurrent optimal planning of RCSs and DGs in coupled network by minimiz-

ing the Ploss, EVUC, and MVD.

Case 5: Concurrent optimal planning of RCSs and DGs in coupled network by minimiz-

ing the Ploss, EVUC, and 1/V SImin.

Case 6: Concurrent optimal planning of RCSs and DGs in coupled network by minimiz-

ing the Ploss, EVUC, 1/V SImin, and MVD.
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Figure 3.10: Daily Real power demand with and without RCSs load

MORA and NSGA-II algorithms were applied on the test system to obtain optimal lo-
cations and sizes of RCSs and DGs. Fuzzy min max decision making was employed
to obtain the best compromised solution from optimal fronts. The optimal front by
MORA is shown in Figure 3.14. The optimal locations of RCSs and assigned EVs at
RCSs obtained by MORA and NSGA II algorithms are mentioned in Table 3.7. Opti-
mal locations and sizes of DGs obtained by MORA and NSGA II are given in Table 3.8.
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Objective parameters obtained in various cases by MORA and NSGA II algorithms in
Scenario 2 are listed in Table 3.9.
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Figure 3.11: Plot of Voltage profiles at each bus of IEEE 33 Bus RDS for 24 hours with
the integration of RCSs and DGs by MORA in Case 6
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Figure 3.12: Plot of Voltage profile at each bus of IEEE 33 Bus RDS for 24 hours with
the integration of RCSs and DGs by NSGA II in Case 6

Table 3.9 shows that the integration of DG reduced power loss, MVD, and improved VSI
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of power distribution system compared to Scenario 1. In Case 4, MORA algorithm led
to lower power loss (1228.1 kW), MVD (0.6955 (p.u), and EVUC (52.5431 $) compared
to NSGA II. However, better V SImin (0.7870) was obtained by NSGA II.
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Figure 3.13: Optimal pareto-front of Ploss, MVD, VSI, and EVUC by MORA in Case
3

Table 3.7: Optimal locations of RCSs and the number of EVs assigned to RCSs in
Scenario 2 by NSGA II and MORA for different cases

NSGA II MORA
Case No. RCSs location Number of EVs RCSs location Number of EVs

Case 4 2, 21, 32 178, 138, 284 2, 22, 32 196, 135, 269

Case 5 2, 21, 30 167, 107, 326 2, 21, 29 163, 33, 338

Case 6 2, 21, 33 183, 157, 260 2, 22, 33 201, 151, 248

Table 3.8: Optimal locations and sizes of DGs in Scenario 2 by NSGA II and MORA
for different cases

NSGA II MORA
Case No. DG location DG size DG location DG size
Case 4 18, 30, 33 383, 246, 748 9, 18, 33 280, 300, 804
Case 5 15, 18, 33 708, 226, 443 11, 17, 32 280, 250, 854
Case 6 17, 30, 32 383, 276, 718 14, 30, 32 483, 103, 804
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In Case 5, lower Ploss (1274.2 kW), MVD (0.7035 (p.u)), and better V SImin (0.7797)
were obtained by MORA compared to NSGA II. Furthermore, the maximization of VSI
along with the minimization of Ploss and EVUC resulted in better values of V SImin

(0.7797) in Case 5 compared to Case 4 (V SImin (0.7785)) by MORA. Collective consid-
eration of Ploss, MVD, V SImin and EVUC parameters in objective function resulted in
lowest Ploss (1182.3 kW), MVD (0.6864 (p.u)), and better value of V SImin of 0.7946
and EVUC of 53.4033 $ in Case 6 by MORA. The minimum voltage of system is 0.9432
(p.u) in Case 6, at bus 33 in 17th hour (Figure 3.11). It was more compared to 0.9428
(p,u) by NSGA-II in Case 6 (Figure 3.12). The voltage at 18th bus 17th hour improved
to 0.9461 (p.u) compared to base case (0.8968 (p.u)).

Table 3.10: Comparison of objective function parameters in Base case, Case 3, and Case
6

Case No. Ploss MVD V SImin EVUC
(kW) (p.u) ($)

Base case 2811 1.5816 0.6479 –

Case 3 2977.1 1.5898 0.6464 86.7004

Case 6 1182.3 0.6864 0.7946 53.4033
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The objective function parameters of best cases from scenario 1 (Case 3), scenario 2
(Case 6) and Base case are listed in Table 3.10. Table 3.10 shows concurrent optimal
planning of RCSs and DGs (Case 6) solved the issues caused by the integration of RCSs
(Case 3). Ploss was 42 % of base case in Case 6 while it was 107 % in Case 3. MVD
was 43.17 % of Base case MVD in Case 6 while it was 100.6 % in Case 3.

Maximum value of V SImin was obtained in Case 6 compared to Base case and Case
3. Furthermore, lowest EVUC (53.4033 $) was obtained in Case 6 compared to Case
3. Therefore, the proposed method of integration of DGs along with RCSs is a viable
method to optimally locate RCSs without losing power distribution system performance.
Furthermore, selecting optimal number of connectors at each RCS is necessary to min-
imize the installation cost of RCSs and waiting time in queue at RCSs. This would
benefit the RCS owner financially. To achieve this goal, the optimal number of connec-
tors was calculated in Stage 2.

3.4.3 Stage 2: Optimal sizing of RCSs

The number of connectors at RCS decides its size, cost, and waiting time for EVs to
be charged at RCS. In the literature, Eqs. (3.12) and (3.13) were used to calculate the
connectors at RCSs and RCS capacity. However, Eq. (3.12) gives maximum connectors
at RCS. Consideration of maximum connectors at RCS results in high installation cost
and low waiting time in queue. However, it is not feasible. Hence, it is necessary to
determine the optimal number of connectors.

Table 3.11: Comparison of results in traditional and proposed approach in stage 2

Traditional approach Proposed approach
Parameter NSGA II MORA

Optimal no of 20, 15, 25 9, 13, 15 10, 8, 14
connectors

RCS capacity (kW) 1920, 1440, 2400 864, 1248, 1440 960, 768, 1344

ICRCS ($) 3.15×106 2.01×106 1.75×106

WT (min) 0.0088 35.5202 27.9801

From Stage 1, it is observed that in Case 6, better objective parameters are obtained by
MORA. In Case 6, three RCSs were optimally located at 2nd , 22nd , and 33rd buses of
distributions system with each assigned EVs of 201, 151, and 248 respectively.
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To employ queue theory, arrival rate (λ (t)) at each RCS and, the service rate of con-
nector is required. Here, Arrival rate (λ (t)) at RCS is time dependent, and is obtained
by Eq. (3.26). EV battery takes 22 minutes to get 85% charge [82]. Hence service rate
µ/hr of 2.73/hr was considered in this chapter. Here the number of connectors (C) at
each RCS is a variable, its minimum (Cmin) and maximum (Cmax) limits are calculated
according to Eqs. (3.33) and (3.27) respectively. NSGA II and MORA algorithms were
applied to obtain the compromised optimal feasible solution for sizing of RCS with C
limits of Cmin =[8, 6, 10] and Cmax = [20, 15, 25]. Fuzzy min max decision making was
used to find the best solution among solutions from pareto fronts.

Table 3.11 shows that, traditionally 20, 15, and 25 connectors were installed at RCS 1,
RCS 2, and RCS 3 respectively. This resulted in maximum installation cost of 3.15×
106$ and minimum waiting time in queue of 0.0088 minutes i.e no waiting time in
queue. However, it is not economical for the owner of RCS because of which waiting
time was considered in the proposed approach. Using the proposed approach, NSGA
II yielded 2.01× 106$ installation cost and 36.96 minutes of waiting time in queue for
9, 13, and 15 connectors at RCS 1, RCS 2, and RCS 3 respectively. Best compromised
objective parameters of 1.75× 106$ installation cost and 27.9801 minutes of waiting
time in queue were obtained with 10, 8, and 14 connectors by MORA. The optimal
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connectors decided the size of RCS 1 as 960 kW, RCS 2 as 768 kW, and RCS 3 as 1344
kW by MORA. The plot between waiting time in queue and installation cost by NSGA
II and MORA (Figure 3.11) shows the effectiveness of MORA in achieving optimal
results.

3.5 Summary
The proposed two stage approach considered the distribution network operational pa-
rameters, EV user behaviour, and charging station owner perspectives in optimal plan-
ning of RCS, which was validated on coupled road transportation network and power
distribution network. In the planning, M1/M2/C queuing model was used for finding
the waiting in queue at RCS. During the analysis, the load demand variation of various
types of load and variation of EV charging probability was considered.

The formulation of placement problem as multi objective problem and solved through
the pareto based Multi objective Rao algorithm (MORA) yielded better locations and
capacities that favoured optimal performance of power distribution system in Stage 1.
Optimal number of connectors obtained in Stage 2 at each RCS favoured EV user by
reducing waiting time and RCS owner by reducing RCS installation cost. This work
can be further extended by integrating the D-STATCOM along with RCS and DGs to
enhace the performance of power distribution system.
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Chapter 4
Optimal planning of RCSs, DGs, and D-STATCOMs
in coupled network

4.1 Introduction
Two stage approach proposed in the previous chapter improved the performance of
power distribution system. However, the integration of D-STATCOMs along with RCSs
and DGs would result in better performance. This chapter proposes a two stage method-
ology for optimal planning of RCSs, D-STATCOMs, and DGs in a coupled power dis-
tribution and road transportation network. Best optimal positions of RCSs and optimal
positions and capacities of DGs and D-STATCOMs are identified in Stage 1 by consid-
ering the minimization of power loss, voltage deviation, EV user cost, and maximization
of voltage stability index. In Stage 2, optimal connectors count is identified by consid-
ering the minimization of installation cost of RCSs and waiting time in queue at RCSs.

4.2 Problem formulation

4.2.1 Distributed Generator modelling

Distributed generators (DG) can be modelled either in PV mode or PQ mode. PQ mode
is a negative load model, implying that the output of the DG is simulated as a negative
load. In this chapter, PQ load modelling is considered, hence reactive power output
(Qdg) is computed using known values of real power output (Pdg) and DG operational
power factor (p fdg) using Eq. (4.1).

Qdg = Pdg × tan(cos−1(p fdg)) (4.1)

4.2.2 D-STATCOM modelling

D-STATCOM is a power electronic device consisting of a voltage source converter sup-
ported by a DC source. It injects/absorb reactive power into/from a power distribution
system. D-STATCOM can mitigate the issues like voltage fluctuations, low power fac-
tor, power loss, and reliability. In the thesis D-STATCOM is used as reactive power
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Figure 4.1: Single line diagram of Radial distribution system with D-STATCOM

compensating device to support RDS by injecting reactive power at connected node. It
is modelled in negative load (PQ) mode [56]. The single line diagram of radial dis-
tribution system connected with D-STATCOM is shown in Fig. 4.1. Integration of
D-STATCOM at nth bus of power distribution network could change the net reactive
power; it is computed using Eq. (4.2), where, Qnew

n is the new demand after adding
D-STATCOM at nth bus. Qbase

n is the base reactive power demand at nth bus and QDS
n

is the reactive power output of D-STATCOM at nth bus. Eq. (4.3) and Eq. (4.4) gives
power loss after the placement of D-STATCOM and Eq. (4.5) gives loss reduction due
to D-STATCOM integration.

Qnew
n = Qbase

n −QDS
n (4.2)

Ploss(n,n+1) =
P2

n+1 +(Qbase
n+1 −QDS

n+1)
2

|V |2
Rn,n+1 (4.3)

Ploss(n,n+1) =
P2

n+1 +Q2,base
n+1

|V |2
Rn,n+1 +

Q2DS
n+1 −2QDS

n+1Qbase
n+1

|V |2
Rn,n+1 (4.4)

∆PDS
loss =

Q2DS
n+1 −2QDS

n+1Qbase
n+1

|V |2
Rn,n+1 (4.5)
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4.2.3 Rapid Charging Stations (RCSs)

Rapid charging stations are needed to charge Electric Vehicle (EVs) batteries. These
RCSs acts as bulk load on the power distribution system. RCS works at lagging power
factor (0.95), so it has the real power load and reactive power load [58]. The real power
load (PRCS) due to ith RCS depends on the number of EVs getting charged and the rating
of EV battery Pmax

EV,B from a particular RCS, it is calculated using Eq. (4.6). Reactive
power load (QRCS) due to ith RCS is calculated using Eq. (4.7).

PRCS(i) = NiRCS
EV ×Pmax

EV,B (4.6)

QRCS(i) = PRCS(i)× tan(cos−1(p fEV )) (4.7)

4.2.4 Objective function

Optimal planning of DGs and D-STATCOMs along with RCSs is done in two stages. In
Stage 1, the most suitable locations for RCSs, D-STATCOMs, and DGs, and capacities
of DGs and D-STATCOMs are determined by considering minimization of active power
loss (Ploss), maximum voltage deviation (MVD), EV user cost (EVUC), and maximiz-
ing of voltage stability index (VSI). Eq. (4.8) shows the objective function considered
in Stage 1, where the location of RCS (lRCS), location of DG (lDG), size of DG (SDG),
location of D-STATCOM (lDST ), and size of D-STATCOM (SDST ) are the decision vari-
ables.

f (lRCS, lDG, lDST ,SDG,SDST ) = min(Ploss,MV D,EVUC,1/V SI) (4.8)

Number of EVs that are taking energy from a particular RCS is calculated in Stage
1, and it is utilised in Stage 2 for determining the waiting time at the corresponding
RCS. Minimization of building cost of RCS (ICRCS) and waiting time (WT ) at RCS
are considered in Stage 2 for determining the optimal capacity of RCS. The objective
function taken into account in Stage 2 is shown in Eq. (4.9), where the decision variable
is the connectors count (C) at each RCS.

f (C) = min(ICRCS,WT ) (4.9)
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4.2.5 Active power loss (Ploss)

Power flow through the lines cause power loss in power distribution system. Extra load
on the system could cause more power loss and voltage deviation. Backward Forward
Sweep load flow algorithm is applied to get branch flows, node voltages, and the corre-
sponding angles. Active power loss is calculated using Eq. (4.10), where i(b) is current
through bth branch, having a resistance of R(b). Ploss is the daily active power loss in
kW.

Ploss =
24

∑
t=1

nb

∑
b=1

i2(b)×R(b) (4.10)

4.2.6 Maximum Voltage Deviation (MVD)

The loading of the distribution network resulted in deviation of voltage from its base
values. Maximum Voltage Deviation (MVD) is the sum of maximum voltage deviation
values in 24 hours period. It is calculated using Eq. (4.11), where vt(i) is the voltage at
ith bus in tth hour.

MV D =
24

∑
t=1

nb

∑
i=1

max(1− vt(i)) (4.11)

4.2.7 Voltage Stability Index (VSI)

The VSI and voltage deviation both have a role in the stability of the distribution net-
work. VSI at the receiving end of a line k (V SIr) was calculated using Eq. (4.12), where
Vr and Vs are the voltages at the receiving and sending ends of the line, Pr and Qr are
the real and reactive power at the receiving end of the line, and R(k) and X(k) are the
resistance and reactance of the line k, respectively.

V SIr = 2V 2
s V 2

r −V 4
r −2V 2

r (PrR(k)+QrX(k))−|z|2(P2
r +Q2

r ) (4.12)

4.2.8 EV User Cost (EVUC)

EV user cost is the cost of electrical energy lost in travelling towards RCS location from
EV position. EVUC depends on the distance between RCS and the current location of
EV. An EV user expects the charging station to be located in proximity to his location.
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The EV user behaviour is included in the optimal planning of RCS by adding the mini-
mization of EVUC as an objective in optimization. In this chapter, coupled distribution
network with road transportation network is considered for optimal planning. In test
system, distribution nodes are superimposed on transportation area as shown in Figure
4.2. Distribution nodes are the possible locations for placing the RCS. Each distribution
node and transportation zone has x and y coordinates on the coordinate plane. The dis-
tance between each zone to RCS can be calculated using Eq. (4.13), where dZz−Cm is
the distance between zth zone and mth RCS. Where, xZ and yZ are x and y coordinates
of zone, xC and yC are x and y coordinates of RCS.

dZz−Cm =
√

(xZz − xCm)
2 +(yZz − yCm)

2 (4.13)

EVUC can be calculated using Eq. (4.14). Where PE is the electricity price while SEC

is the specific energy consumption of EV. DD is a matrix consisting of distance between
each zone to the nearest RCS. DD matrix consists of the minimum distance between
each zone to all RCSs (Eq. (4.15)).

EVUC =
nz

∑
z=1

DD(z)×NEV (z)×SEC×PE (4.14)

DD =


min(dZ1−C1 dZ1−C2 .. dZ1−Cm)

min(dZ2−C1 dZ2−C2 .. dZ2−Cm)

min(. . . .)

min(. . . .)

min(dZz−C1 dZz−C2 .. dZz−Cm)

 (4.15)
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Figure 4.2: IEEE 33 Bus Power distribution network coupled with Road transportation
network (Test system)

4.2.9 RCS building cost (ICRCS)

From the standpoint of an RCS owner, ICRCS is the key consideration. The RCS owner
expects low installation cost so as to install more RCSs. It also helps EV user as more
RCS would provide RCS to charge EVs. ICRCS mainly depends on the number of
connectors at ith RCS (N.CRCS

i ), and is calculated using Eq. (4.16). The number of
connectors determines the RCS’s capacity, which is computed using Eq. (4.17), where
Cinit (7000$) is the initial investment cost, Cland (240 $/m2) is the land cost, Ccon (280.33
$/kW) is the connector cost, and Pc is connector rating.

ICRCS(i) =Cinit +25×Cland ×N.CRCS
i +Ccon(N.CRCS

i −1)×Pc (4.16)

RCS(i)cap = N.CRCS
i ×Pc (4.17)

4.2.10 Waiting time (WT )

In this study the serviceability of charging stations is described using M1/M2/C queuing
model [82]. Here, M1 denotes arrivals rate per hour, M2 denotes service rate per hour,
and C denotes the number of service points. Electric vehicles (EVs) frequently arrive
at charging station at the rate of λ/hour to fuel their batteries. Here, arrival rate is
time-dependent, and is calculated using Eq. (4.18). The connectors at each RCS charge
EVs at a service rate of µ/hour. Though there exists a waiting line of EVs at RCS,
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connectors must guarantee a service to all EVs in the RCS, and this factor is governed
by Eq. (4.19).

λ (t) = NiRCS
EV ×Pevc (4.18)

ρ =
λ (t)
Cµt

< 1 (4.19)

Total time taken in queue at RCSs can be calculated using (Eq. 4.20), where wt(t) is the
average waiting time of EVs at tth hour (Eq. 4.21). The anticipated count of EV users
waiting in tth hour at RCSs can be calculated using Eq. (4.22). The probability of no
EV getting charged can be calculated using Eq. (4.23).

WT =
m

∑
i=1

24

∑
t=1

wt(t) (4.20)

wt(t) =
Et [n]
λ (t)

(4.21)

Et [n] = pt(0)

[
1

(C−1)!

(
λt

µt

)C
λt µt

(Cµt −λt)2

]
(4.22)

pt(0) =

[
C−1

∑
s=0

(Cρ)s

s!
+

(Cρ)C

C!
1

(1−ρ)

]−1

(4.23)

In order to calculate optimal connectors count using optimization technique, it is re-
quired to calculate limits of connectors count at RCSs. Eq. (4.24) gives the most count
of connectors (Cmax) at RCS, while Eq. (4.25) gives least count of connectors (Cmin).

Cmax = max(Pevc)×NiRCS
EV (4.24)

λ max

µ
<Cmin

λ
max ∈ λ (t) (4.25)

4.2.11 Constraints

A few equality and inequality constraints must be taken into account during optimisation
to guarantee system stability. Eq. (4.26) and Eq. (4.27) are the equality constraints of
real and reactive power in a considered system. Eq. (4.28) is used to maintain voltage of
each bus within limits (V min, V max). DG’s minimum and maximum active power limits
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(Pmin
dg , Pmax

dg ) are imposed by Eq. (4.29) in the optimization. However, the output of all
DGs has to be limited to minimum real power load at any time on the system to avoid
reverse power flow (Eq. (4.30)).

Psub +∑PDG = PD +∑PRCS +Ploss (4.26)

Qsub +∑QDG +∑QDST = QD +∑QRCS +Qloss (4.27)

|V min| ≤ |Vn| ≤ |V max| n = 1,2, ...Nbus (4.28)

Pmin
dg ≤ Pdg ≤ Pmax

dg (4.29)

Pdg ≤ PT,max
dg < min(PD) (4.30)

Here Psub, PDG, PD, Ploss, and PRCS are substation real power, real power output of DG,
base real power demand on system, real power loss, and real power load due to RCS.
Qsub, QDG, QD, Qloss, and QRCS are substation reactive power, reactive power output
of DG, base reactive power demand on system, reactive power loss, and reactive power
load due to RCS. QDST is the reactive power output of D-STATCOMs. The maximum
amount of active power that can be delivered by all DGs is PT,max

dg .

4.3 Multi-objective algorithms
Majority of the problems are complex in nature and there is a need to consider more than
one goal in finding optimal solution. There are mainly two approaches for solving multi
objective problems. The first is the weighted sum strategy, in which many objectives
are combined into a single objective by adding their respective weights together. Here,
the sum of all weights is equal to 1. Second is pareto based technique, it consist of
dominance principle, which is preferred when at least one objective is in conflict with
other objectives. In pareto based approaches, decision making techniques are deployed
to pick up best solution from pareto front.

4.3.1 Multi objective Rao 3 Algorithm (MORA)

Multi objective Rao 3 algorithm was proposed in 2021 by Rao et.al to solve constrained
and unconstrained multi objective problems having conflicting objectives [5]. It has
no algorithm specific parameters and searching process involves the interaction of best,
worst and random solutions. It is less complex and easier to understand. Dominance
principle and crowding distance evaluation are used in deciding the best and worst so-
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lution. New solution is generated using Eq. (4.31) shown below:

X
′
p = Xp + r1 × (Xb −|Xw|)+ r2 × (|(XporXr)|− (XrorXp)) (4.31)

Figure 4.3: Flow chart of MORA algorithm [5]

Here, X
′
p is new solution, Xp is present solution, Xb is best solution, Xw is worst solution,

r1 and r2 are random values between 0 and 1. Xr is randomly selected solution for multi
objective problems.
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4.3.2 Non dominated Sorting Genetic Algorithm II (NSGA II)

NSGA-II was proposed by Deb in 2002 for solving constrained and unconstrained multi-
objective problems [4]. It has significance in finding solutions to problems with conflict-
ing objectives. It is fast and elitist in nature and uses non dominating sorting approach.
It involves non dominated sorting, crowding distance, cross over and mutation processes
in finding the best optimal solutions.

4.3.3 Implementation of Multi Objective Rao Algorithm (MORA)
for optimal planning of RCSs, DGs, and D-STATCOMs

Step 1: Read the test system data and initialize the algorithm parameters (population
size and maximum iterations).
Step 2: Randomly initialize the population and determine the respective fitness values.

• Popstage1 = [lRCS, lDG, lDST ,SDG,SDST ] for Stage 1

• Popstage2 = [C] for Stage 2.
(lRCS is location of RCS, lDG is location of DG, lDST is location of D-STATCOM,
SDG is size of DG, SDST is size of D-STATCOM, and C is number of connectors).

Step 3: Set iter = 1.
Step 4: Perform the non dominated sorting and calculate the crowding distance.
Step 5: Obtain best and worst solutions based on the non dominated sorting and crowd-
ing distance.
Step 6: Update the candidate solutions based on the update equation (4.31) and find the
updated fitness value.
Step 7: Combine both old and modified solutions and perform non dominated sorting
and crowding distance.
Step 8: Select best population of size (N) from combined solutions of size 2N.
Step 9: Set Iter=Iter+1.
Step 10: Terminate the process, if (Iter > Itermax) and save the pareto optimal front data
otherwise continue from step 4 to step 10.
Step 11: Perform the fuzzy min max decision making technique to select the compro-
mised optimal solution optimal front and print the results.
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Table 4.1: Parameters of EV

Parameters Values

Pmax
EV B 27.69 kWh

NEV
T 600

SEC 0.142 kWh/km

Pc 96 kW

Table 4.2: Bus groups of connected loads in power distribution network

Residential Commercial Industrial
loads loads loads

2,3,5,6,7,8 4,11,12,18 22,26,27,28

9,10,13,14,15 19 29,30,31,32

16,17,20,23,24 – 33

Table 4.3: Assumed Number of Electric Vehicles at the 190 zones of Transportation
system

1 4 3 1 5 1 1 2 3 4 4 5 5 4 2 5 3 3 4

3 4 2 4 1 3 3 1 5 5 4 4 2 1 2 4 5 1 4

3 5 4 1 1 5 4 5 4 4 3 1 3 3 5 2 5 5 2

4 1 2 2 5 2 2 4 4 4 5 4 2 3 5 2 2 5 1

4 3 4 4 4 5 4 1 4 3 4 4 4 1 2 1 5 3 4

2 4 5 3 3 4 2 3 3 5 3 4 3 3 1 5 4 2 1

5 5 4 2 2 2 4 4 5 5 2 5 4 2 2 3 3 3 2

5 5 4 2 4 4 3 5 5 4 1 1 1 5 3 4 3 3 3

1 4 3 1 1 1 4 2 1 3 5 4 4 2 2 1 4 3 3

4 1 1 1 5 1 4 3 5 2 1 2 4 3 5 4 1 5 4

4.4 Simulation Results and discussion
In this chapter, coupled Power distribution network and Road transportation network
is considered as test system. It is assumed that the road transportation network of test
system has an area of 20× 38 km2. There are 190 zones, each with a 4 km2 area. It is
assumed that SOC of each EV arrived is 20% SOC and charge up to 85% SOC. In [82],
EV battery characteristics were shown, where EV battery is charged up to 85% SOC in
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22 minutes. The load data and line data of IEEE 33 bus power distribution network are
taken from [102]. The simulations were run on a computer with an Intel I3 processor
and 4GB of RAM using MATLAB 2014b software.

The buses of power distribution network are classified into residential type, commercial
type, and industrial type loads. Buses of various types of loads are shown in Table 4.2.
Each type of load varies with respect to time and the variation of load demand in p.u
of the above stated loads is shown in Figure 4.4. Figure 4.5 depicts the variation in EV
charging probability during a 24-hour period.

The optimal planning of RCSs along with the DGs and D-STATCOMs was done through
the following four cases.

• Base case : Test system without the integration of RCSs, DGs, and D-STATCOMs.

• Case 1 : Integration of RCSs into the coupled network.

• Case 2 : Integration of RCSs along with DGs into the coupled network.

• Case 3 : Integration of RCSs along with the DGs and D-STATCOMs into the
coupled network.
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Figure 4.4: Plot of various types of loads demand
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Figure 4.5: Hourly probability of Electric Vehicle charging

4.4.1 Base case

In Base case RCSs, DGs, and D-STATCOMs were not integrated into the coupled net-
work. The variation of load demand for various loads was considered in the analysis.
This consideration results in total active power demand and reactive power demand of
63,868 kW and 39,236 kVAr respectively. Backward forward sweep load flow analysis
was performed and found that total active power loss is 2811 kW. Though the RCSs
were not installed, poor results for MVD (1.5816 p.u), and VSI (0.6479) were observed.
The variation of voltage profile in Base case is shown in Figure 4.6. From the figure, it
is observed that the system experienced a minimum voltage (0.8968 p.u) at 18th bus in
17th hour.

4.4.2 Case 1 : Integration of RCSs into the coupled network

Impact of RCS integration into the power distribution system is analysed in Case 1.
MORA is employed to solve the optimization problem by following the above men-
tioned constraints. Optimal front corresponding to Case 1 by MORA algorithm is shown
in Figure 4.8. The best compromised solution is chosen using fuzzy min max technique.
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Figure 4.6: Voltage profile of IEEE 33 bus power distribution network in Base case
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Figure 4.7: Voltage profile of IEEE 33 bus power distribution network in Case 1

Table 4.4 shows the optimal locations of RCSs and various objective parameters consid-
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ered in Stage 1 by both algorithms. From Table 4.4 it is noticed that MORA outperforms
NSGA-II in all four objective parameters. Integration of RCSs resulted in increased
Ploss (2977.1 kW) and MVD (1.5818 p.u). V SImin (0.6464) is reduced compared to
base case values. EV user cost is minimum for locations obtained by MORA (86.7004
$) compared to NSGA-II outcomes. It is expected that the system always maintains
voltage within the limits. However, Figure 4.7 shows that the integration of RCSs re-
sulted in system minimum voltage of 0.8951 p.u by MORA, which is lower compared
to base case value of 0.8968 p.u.

Table 4.4: Optimal RCSs locations and objective parameters obtained in Stage 1 of Case
1 by MORA and NSGA-II algorithms

Optimal results NSGA II MORA

RCSs location 2, 19, 23 2, 19, 22

EVs at RCSs 102, 235, 263 171, 57, 372

Ploss (kW) 3026 2977.1

MVD (p.u) 1.6093 1.5818

V SImin 0.6430 0.6464

EVUC ($) 94.2015 86.7004

Table 4.5: Optimal RCSs sizes and objective parameters obtained in Stage 2 of Case 1
by MORA and NSGA-II algorithms

Optimal results NSGA II MORA

RCSs connectors 5, 10, 20 10, 3, 22

Wt (min) 94.8866 81.2981

ICRCS ($) 1.91 ×106 1.9 ×106

RCSs size 480, 960, 1920 960, 288, 2112

Table 4.5 shows various optimal results achieved in Stage 2. The connector count at
every RCS was decided optimally by considering minimization of waiting time at RCSs
and ICRCS in Stage 2. Both service rate (µ) and arrival rate (λ ) were required to
calculate waiting time. Here, charging time of 22 minutes for an EV battery showed that
a connector could serve 2.73 EVs per hour i.e connector service rate (µ) is 2.73/hr [82].
Arrival rate can be obtained from the number of EVs assigned to a particular RCS and
EVs charging probability (Eq. (4.18)). From Stage 1 (Table 4.4), it is known that
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charging stations were located at 2nd , 19th, and 22nd bus locations with allocated EVs
of 171, 57, and 372 by MORA.
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From the allocated EVs at each RCS, minimum connectors (Cmin=[7 3 14]) and maxi-
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mum connectors (Cmax [17 6 37]) were calculated using Eqs. (4.25) and (4.19) respec-
tively. In the same way Cmin=[4 9 10] and Cmax=[10 24 26] were obtained for NSGA
II from Stage 1. Both algorithms were applied to obtain optimal connectors count at
every RCS. Optimal front yielded in Stage 2 of Case 1 by MORA is shown in Figure
4.9. From Table 4.5 it is observed that lower waiting time at RCS of 81.2981 (min) and
ICRCS of 1.9× 106 $ were achieved by MORA. Optimal connectors of 10, 3, and 22
were placed at RCS1, RCS2, and RCS3 respectively with corresponding sizes of 960
kW, 288 kW, and 2112 kW respectively.
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Figure 4.10: Daily real power demand including and excluding with RCS load.

4.4.3 Case 2 : Integration of RCSs along with DGs into the coupled
network

From Case 1 it is observed that the integration of RCSs caused escalation of Ploss,
MVD, and reduction of V SImin. In this context, 5 kW to 1 MW size DGs were considered
for installation with 0.95 lag power factor. From Figure 4.10 it is noticed that, at 4th

hour, the system experienced lowest real power demand of 1420 kW. The combined real
power share by all DGs was bounded to less than or equal to 1400 kW to avoid reverse
power flow. Both algorithms were applied to find optimal locations and capacities of
RCSs and DGs. Figure 4.13 shows the optimal front of objectives considered in Stage
1 of Case 2 yielded by MORA. Fuzzy min max technique was used to identify the best
solution from optimal front. From Table 4.6, it is observed that DG integration resulted
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in better values of objective parameters compared to Case 1. Rapid charging stations
were located at 2nd , 22nd , and 33rd buses of RDS. DGs were located at 14th, 30th, 32nd

buses of RDS with DG sizes of 483 kW, 103 kW, and 804 kW respectively by MORA
algorithm. MORA offered lowest Ploss of 1182.3 kW while NSGA II yielded 1218.2
kW power loss. Better voltage profile was achieved through lower values of MVD at
0.6864 p.u and V SImin of 0.7946 by MORA algorithm.
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Figure 4.11: Daily reactive power demand including and excluding with RCSs load.

Table 4.6: Optimal RCSs locations and objective parameters obtained in Stage 1 of Case
2 by MORA and NSGA II algorithms

Optimal results NSGA II MORA

RCSs location 2, 21, 33 2, 22, 33

EVs at RCSs 183, 157, 260 201, 151, 248

Location of DGs 17, 30, 32 14, 30, 32

DG size(kW) 383, 276, 718 483, 103, 804

Ploss (kW) 1218.2 1182.3

MVD (p.u) 0.6964 0.6864

V SImin 0.7933 0.7946

EVUC ($) 54.4474 53.4033
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Table 4.7: Optimal RCSs sizes and objective parameters obtained in Stage 2 of Case 2
by MORA and NSGA II algorithms

Optimal results NSGA II MORA

RCSs connectors 11,7,15 10, 8, 14

WT (min) 56.1041 27.9801

ICRCS ($) 1.8 ×106 1.75×106

RCSs size 1056, 762, 1440 960, 768, 1344

Integration of DGs allows RCSs to settle at optimal locations to reduce EVUC. The
optimal locations of RCSs by MORA algorithm yielded an EVUC value of 53.4033 $
while NSGA II resulted in 54.4474 $ of EVUC. Figure 4.12 shows the voltage profile
of power distribution network with the inclusion of DGs along with RCSs at locations
achieved by MORA. From this figure it is observed that the presence of DG in power
distribution network resulted in better system lowest voltage (0.9432 (p.u)) compared to
Case 1 and Base case. When compared to base case scenario (0.8968 p.u), the voltage
at 18th buses in 17th hours improved to 0.9461 p.u.
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Figure 4.12: Voltage profile in IEEE 33 bus power distribution network in Case 2
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Figure 4.13: Optimal pareto fronts in Stage 1 of Case 2 by MORA.

Figure 4.14: Optimal pareto fronts in Stage 2 of Case 2 by MORA.

Both algorithms were applied to obtain the optimal number of connectors in Stage 2.
MORA yielded 10, 8, and 14 connectors at the respective charging stations; NSGA II
led to 11, 7, and 15 connectors at the corresponding RCSs. The optimal front of Stage
2 achieved by MORA in Case 2 is shown in Figure 4.14. Fuzzy min max technique was
used to identify better solution. Minimum waiting time at RCSs was 27.9801 minutes
and a lower installation cost of 1.75 ×106 $ was yielded by MORA algorithm.
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4.4.4 Case 3 : Integration of RCSs along with the DGs and
D-STATCOMs into the coupled network

Providing Reactive power support could improve the performance of power distribution
network. Hence, simultaneous integration of DGs and D-STATCOMs is done along
with RCSs in Case 3 by both algorithms. Figure 4.11 shows that the systems minimum
reactive power requirement is 882 kVAr. However, DGs have the capability to supply
460 kVAr reactive power. So the total Reactive power supplied by all D-STATCOMs is
limited to 420 kVAr in optimal planning.

Figure 4.15 shows pareto front in Stage 1 of Case 3 yielded by MORA. Fuzzy min max
technique was used to identify better results. Table 4.8 shows that charging stations
were located at 2nd , 21st , and 32nd buses of RDS along with DGs located at 15th, 29th,
33rd buses of RDS with the sizes of 391 kW, 303 kW, and 704 kW respectively. Here
D-STATCOMs are located at 13th, 17th, and 31st buses of RDS with sizes of 30 kVAr, 87
kVAr, and 302 kVAr, as determined by MORA algorithm. Locations and sizes of DGs,
D-STATCOMs and RCSs obtained by NSGA II are shown in Table 4.8. Minimum power
loss of 990.34 kW resulted in Case 3 by MORA compared to 1092.8 kW power loss
by NSGA II. Better voltage profile was observed with the inclusion of D-STATCOMs
along with DGs. Lower MVD of 0.5934 p.u and higher V SImin of 0.8195 were yielded
by MORA algorithm. The better spreading of charging stations in a coupled network
resulted in lower value of EVUC in Case 3. Lowest EVUC of 53.2199 $ was achieved
for RCSs locations obtained by MORA algorithm. Figure 4.17 shows the integration of
D-STATCOMs and DGs which resulted in improved system lowest voltage of 0.9521
(p.u), which is the best value among all cases considered in this study.
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Figure 4.15: Optimal pareto fronts in Stage 1 of Case 3 by MORA.

Figure 4.16: Optimal pareto fronts in Stage 2 of Case 3 by MORA.
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Table 4.8: Optimal RCSs locations and objective parameters obtained in Stage 1 of Case
2 by both algorithms

Optimal results NSGA II MORA

RCSs locations 3, 21, 33 2, 21, 32

EVs at RCSs 206, 134, 260 178, 138, 284

DG locations 2, 16, 31 15, 29, 33

DG size (kW) 110, 407, 853 391, 303, 704

D-STATCOMs locations 14, 18, 32 13, 17, 31

D-STATCOMs size (kVAr) 28, 35, 354 30, 87, 302

Ploss (kW) 1092.8 990.34

MVD (p.u) 0.6412 0.5934

V SImin 0.8094 0.8195

EVUC ($) 53.2344 53.2199

Optimal pareto front in Stage 2 is shown in Figure 4.16. Fuzzy min max technique is
used to obtain better solutions and are shown in Table 4.10. Table 4.10 demonstrates
the superiority of the MORA algorithm in reaching the optimal number of connectors.
Lowest waiting time at RCSs of 28.4217 (min) and lowest ICRCS of 1.7×106 $ were
observed for connectors of 9, 8, and 14 at the respective charging stations by MORA
algorithm.

Table 4.9: Comparison of various objective in all cases

Case Ploss MVD V SImin EVUC Wt ICRCS
(kW) (p.u) ($) (min) ($)

Base case 2811 1.5816 0.6479 – – –

Case 1 2977.1 1.5818 0.6464 86.7004 81.2981 1.9×106

Case 2 1182.3 0.6864 0.7946 53.4033 27.9801 1.75×106

Case 3 990.34 0.5934 0.8195 53.2199 28.4217 1.7×106
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Table 4.10: Optimal RCSs sizes and objective parameters obtained in Stage 2 of Case 2
by MORA and NSGA-II algorithms

Optimal results NSGA II MORA

RCSs connectors 10, 10, 12 9, 8, 14

Wt (min) 32.9638 28.4217

ICRCS ($) 1.72 ×106 1.7×106

RCSs size 960, 960, 1152 864, 768, 1344
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Figure 4.17: Voltage profile in IEEE 33 bus power distribution network in Case 3

Table 4.9 shows better objective values achieved in various cases. From this it can be
concluded that the optimal planning of RCSs, DGs, and D-STATCOMs reduced Ploss by
64.8 % and MVD by 62.4 % compared to base case values. For better voltage stability,
V SImin should be near unity (≤ 1); it improved by 26.5 % in Case 3 when compared to
Base case. Integration of D-STATCOMs and DGs made the RCSs spread over the test
system, which resulted in low EVUC in Case 3. Optimal connectors count in Stage 2
of Case 3 resulted in low ICRCS of 1.7× 106 $ and waiting time at RCSs of 28.4217
minutes. Thus, it can be concluded that simultaneous optimal planning of RCSs, DGs
and D-STATCOMs offers better performance for power distribution system and EV user
convenience (low EVUC). Furthermore it also favours RCS owner by lowering building
cost and waiting time at RCSs.
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4.5 Summary
A two stage approach is proposed for optimal placement and sizing of RCSs, DGs, and
D-STATCOMs in coupled network. Stage 1 dealt with the minimization of active power
loss, voltage deviation, EV user cost, and improvement of voltage stability index. Queue
theory has been utilized in stage 2 and an optimal number of connectors obtained at each
RCS for low waiting time and RCS installation cost. During the simulation, hourly load
demand variation at various bus types and the hourly probability of EVs charging are
considered. The placement problem is solved using novel metaphor less pareto based
Multi objective Rao algorithm. The simultaneous integration of D-STATCOMs along
with RCSs and DGs resulted in better voltage profile, lower power loss, and lower EV
user cost. The performance of distribution network can be further enhanced through the
employment of network reconfiguration technique.
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Chapter 5
Network reconfiguration and optimal planning
of RCSs, DGs, and D-STATCOMs in coupled
network

5.1 Introduction
The integration of Rapid charging stations (RCSs) increases voltage deviation and power
losses. If RCS located at wrong location it harms the power distribution system further.
As the EV load increases, the existing distribution network may not operate at optimum
level, where network reconfiguration plays a vital role. This chapter proposes a multi
objective two-stage approach that includes both optimal planning of RCSs, DGs, and
D-STATCOMs and network reconfiguration. Pareto based multi objective Rao 3 algo-
rithm and queue theory were used in optimal planning. The proposed approach yielded
optimal locations, capacities and optimal network for a reduced values of active power
loss, voltage deviations, EV user cost, waiting time, RCS installation cost and improved
voltage stability index.

5.2 Problem formulation

5.2.1 Distributed Generator

Distributed Generator (DG) modelling can be carried out in either PV mode or PQ mode.
In this chapter, PQ mode is considered to model DG. Real power output (Pdg) and oper-
ating power factor (p fdg) are known values in PQ mode, which is a negative load model.
Using Eq. (5.1), reactive power output (Qdg) is calculated from known values.

Qdg = Pdg × tan(cos−1(p fdg)) (5.1)

5.2.2 D-STATCOM

Reactive power is compensated by D-STATCOM to support the power distribution sys-
tem. The output of D-STATCOM (QDST

n ) is represented with a negative value at the
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appropriate bus because it is modelled in PQ mode. The net reactive power (Qnet
n ) after

adding D-STATCOM at nth bus is calculated using Eq. (5.2).

Qnet
n = Qbase

n −QDST
n (5.2)

5.2.3 Rapid Charging Stations (RCSs)

Electric vehicles (EVs) are charged quickly at rapid charging stations. The count of
EVs consuming energy determines the burden caused by RCSs. As RCS operate at 0.95
power factor lagging, there are demands from both active and reactive power from the
utility. Eqs. (5.3) and Eq. (5.4) provide real power demand and reactive power demands
(PRCS

i and QRCS
i ) caused by RCS, where NEV

i and Pmax
EB are the number of EVs at ith

station and EV battery capacity respectively

PRCS
i = NEV

i ×Pmax
EB (5.3)

QRCS
i = PRCS

i × tan(cos−1(p fRCS)) (5.4)

5.2.4 Objective function

Optimal planning of RCSs, DGS, and D-STATCOMs along with network reconfigura-
tion has been done in two stages. In Stage 1, active power loss, voltage deviation, and
EV user cost were minimized while improving voltage stability index. Stage 1 yields
the locations of RCSs, locations and capacities of DGs and D-STATCOMs. Information
regarding the EV count that is allocated to each RCS was used in Stage 2 for calculating
waiting time. The optimal connector count at each RCS was determined in Stage 2 by
considering RCS building cost and waiting time. Eq. (5.8) shows the objective function
considered in Stage 1, where, ts, L, and S (Eq. (5.5) - Eq. (5.7)) are the matrices which
consist of tie line switches, locations of RCS, DG, D-STATCOM (LRCS, LDG, LDST ),
and sizes of DG and D-STATCOM ( SDG, SDST ) as decision variables. Eq. (5.9) shows
the objective function considered in Stage 2, where C is the connector count and it is a
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decision variable in Stage 2.

ts = [ts1, ts2, .., tsn] (5.5)

L = [LRCS,LDG,LDST ] (5.6)

S = [SDG,SDST ] (5.7)

f (ts,L,S) = min(Ploss,MV D,EVUC,1/V SI) (5.8)

f (C) = min(ICRCS,WT ) (5.9)

5.2.5 Power loss (Ploss)

Power loss results from power flow across power distribution network lines. The volt-
ages and associated angles of power distribution network buses were obtained using the
backward-forward sweep load flow technique. Power loss, voltage variation, and VSI
were computed using the load flow algorithm’s output. The active power loss of power
distribution network over a day was calculated using Eq. (5.10), where, i is the current
flowing through branch ’b’ with resistance R.

Ploss =
24

∑
t=1

nb

∑
b=1

i2 ×R(b) (5.10)

5.2.6 Maximum Voltage Deviation (MVD)

Voltage variations at the buses would be caused by the loading of power distribution
network. But voltage deviation should be as minimal as possible for power distribution
network to operate efficiently. The Maximum Voltage Deviation (MVD) in power dis-
tribution network was calculated using Eq. (5.11). It is always anticipated that power
distribution networks should have a minimum MVD, Where vt(i) is the voltage of ith

bus at tth hour in a day.

MV D =
24

∑
t=1

nb

∑
i=1

max(1− vt(i)) (5.11)

5.2.7 Voltage Stability Index (VSI)

Along with voltage deviation, VSI affects voltage stability. Here, power distribution
network must always operate at its highest VSI (≤ 1). Eq. (5.12) can be used to deter-
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mine VSI at the receiving end line of k. Where, kth line has the sending end voltage of
Vs and receiving end voltage of Vr. Pr and Qr are the real and reactive demands at the
receiving end of line k.

V SIr = 2V 2
s V 2

r −V 4
r −2V 2

r (PrR(k)+QrX(k))−|z|2(P2
r +Q2

r ) (5.12)

5.2.8 EV User Cost (EVUC)

The cost associated with energy loss incurred during a trip to RCS is the EV user cost.
When deciding the best location, it is necessary to determine the distance between RCS
and EVs. Eq. (5.13) is used to find the distance between two points. Here (xZ yZ) is a
point on the coordinate plane where the EV user is present and (xC yC) is a point on the
coordinate plane where RCS is present. Charging Station (CS) at a location close to EV
user is an economical choice from the user perspective. DD matrix (Eq. (5.14)) consists
of distance between each zone (EV location) to the nearest RCS. EVUC is calculated
using Eq. (5.15), and depends on factors like distance between charging station and
EV user location, number of EVs being charged at the charging station (NEV ), specific
energy consumption of the EV (SEC), and price of electricity (Ep).

dZz−Cm =
√

(xZz − xCm)
2 +(yZz − yCm)

2 (5.13)

DD =


min(dZ1−C1 dZ1−C2 .. dZ1−Cm)

min(dZ2−C1 dZ2−C2 .. dZ2−Cm)

min(. . . .)

min(. . . .)

min(dZz−C1 dZz−C2 .. dZz−Cm)

 (5.14)

EVUC =
nz

∑
z=1

DD(z)×NEV (z)×SEC×PE (5.15)
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Figure 5.1: IEEE 33 Bus Power distribution network coupled with Road transportation
network (Test system)

5.2.9 RCS building cost (ICRCS)

The owner of an RCS always tries to bring down the installation cost. ICRCS is gener-
ally affected by several factors, but it mostly depends on the connector count (N.CRCS

i )
that are installed there. It can be observed that ICRCS would increase as the number of
connectors increases, but there would be reduction in waiting time in queue at RCSs.
Eq. (5.16) can be used to calculate ICRCS, where Cinv (70000 $) is initial investment,
Cland (240 $/m2) is the cost of land, Ccon (280.33 $/kW) is the cost of each connec-
tor, and Pc is the connector rating (96 kW). Also the capacity of RCS depends on the
connector count. It is calculated using Eq. (5.17).

ICRCS(i) =Cinit +25×Cland ×N.CRCS
i +Ccon(N.CRCS

i −1)×Pc (5.16)

RCS(i)cap = N.CRCS
i ×Pc (5.17)

5.2.10 Waiting time (WT )

EVs may have to wait a while before getting energy from RCS. The number of connec-
tors (C) at RCS typically affects waiting time. In order to determine the waiting time,
M1/M2/C queuing model is taken into account [82]. In considered queuing model, Eq.
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(5.18) gives the total waiting time at all queues of all RCSs in a day. The hourly waiting
time is provided by Eq. (5.19), which depends on the estimated number of EV users
waiting in queue at RCS (Et [n] Eq. (5.20)) and arrival rate (λ (t) Eq. (5.22)). The prob-
ability that no EVs will be charged by connectors at RCS is given by Eq. (5.21). Every
RCS must typically serve every EV that arrives, which means that each connector’s ser-
vice rate must be higher than the connector’s arrival rate. This requirement is taken into
account by optimization Eq. (5.23). The optimal number of connectors must be es-
tablished within the constraints of minimum and maximum numbers. Here, Eq. (5.24)
provides the maximum number of connectors (Cmax), whereas Eq. (5.25) determines
the least number of connectors Cmin.

WT =
m

∑
i=1

24

∑
t=1

W (t) (5.18)

W (t) =
Et [n]
λ (t)

(5.19)

Et [n] = pt(0)

[
1

(C−1)!

(
λt

µt

)C
λt µt

(Cµt −λt)2

]
(5.20)

pt(0) =

[
C−1

∑
s=0

(Cρ)s

s!
+

(Cρ)C

C!
1

(1−ρ)

]−1

(5.21)

λ (t) = NiRCS
EV ×Pevc (5.22)

ρ =
λ (t)
Cµt

< 1 (5.23)

Cmax = max(Pevc)×NiRCS
EV (5.24)

λ max

µ
<Cmin

λ
max ∈ λ (t) (5.25)

5.2.11 Constraints

In the optimization, real and reactive power balances are included using Eq. (5.26) and
Eq. (5.27). The loading on power distribution network results in the deterioration of
voltages at the buses. To maintain the voltage within limits, Eq. (5.28) is included.
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Every DG has their minimum and maximum generation limits, and these are handled by
Eq. (5.29). Eq. (5.30) shows that the combined contribution of all DGs must be limited
by the minimum load on the system.

Psub +∑Pdg = PD +∑PRCS +Ploss (5.26)

Qsub +∑Qdg +∑QDST = QD +∑QRCS +Qloss (5.27)

|V min| ≤ |Vn| ≤ |V max| n = 1,2, ...Nbus (5.28)

Pmin
dg ≤ Pdg ≤ Pmax

dg (5.29)

Pdg ≤ PT,max
dg < min(Pn,D) (5.30)

Here Psub and Qsub are real power and reactive powers of substations respectively. PD

and QD are real and reactive power demands in power distribution system. Ploss and Qloss

are real power loss and reactive power loss. Here, RCSs have real power loads (PRCS)
and reactive power load (QRCS). QDST is the reactive power output of D-STATCOMs.
V min, V max, Pmin

dg , and Pmax
dg are the lower voltage limit, upper voltage limit, DGs lower

real power limit and DGs upper real power limit respectively. PT,max
dg is the maximum

limit of total active power supplied by all DGs. Pn,D is real power demand at nth node
of power distribution system.

5.3 Algorithm

5.3.1 Multi objective Rao Algorithm (MORA)

Generally, optimization of complex problems considers more than two objectives. These
type of problems are solved through multi objective approach. Multi objective com-
plex problems are solved through heuristic methods due to the advantages on offer by
such methods. Mainly, these types of problems are solved through weighted sum ap-
proach or Pareto based methods. If the objectives are conflicting in nature, Pareto based
methods offer better optimal solutions. Multi objective Rao algorithm is a pareto based
optimization algorithm. It was proposed by Rao in 2021 for solving constrained and
unconstrained complex optimization problems [5]. It is metaphor less and has no algo-
rithm specific parameters. It has the ability of random interaction among the candidate
solutions and moves the candidate solution towards the best solution and away from the
worst solution. Eq. (5.31) was used to obtain a new solution in the optimization process.
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Figure 5.2 shows the flow chart of implementation of MORA in the optimal planning
considered in the present study.

X
′
p = Xp + r1 × (Xb −|Xw|)+ r2 × (|(XporXr)|− (XrorXp)) (5.31)

Figure 5.2: Flow chart of MORA algorithm [5]

Here, X
′
p is new solution, Xp is present solution, Xb is best solution, Xw is worst solution,
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r1 and r2 are random values between 0 and 1. Xr is randomly selected solution for multi
objective problems.

5.3.2 Non dominated Sorting Genetic Algorithm II (NSGA II)

NSGA II was proposed by Deb in 2002 for solving multi objective problems. The
optimization consists of selection stage, cross over stage, and mutation stage [4]. Non
dominated sorting and formation of pareto fronts lead to better solution.

5.3.3 Implementation of Multi Objective Rao Algorithm (MORA)
for optimal planning of RCSs, DGs, and D-STATCOMs con-
sidering network reconfiguration

Step 1: Read the test system data and initialize the algorithm parameters (population
size and maximum iterations).
Step 2: Randomly initialize the population (according to section 5.2.4) and determine
the respective fitness values.

• Popstage1 = [ts,LRCS,LDG,LDST ,SDG,SDST ] for stage 1.

• Popstage2 = [C] for stage 2
(ts is a set of tie line switches, LRCS is location of RCS, LDG is location of DG,
LDST is location of D-STATCOM SDG is size of DG, SDST is size of D-STACOM,
and C is number of connectors).

Step 3: Set Iter = 1.
Step 4: Perform the non dominated sorting and calculate the crowding distance.
Step 5: Obtain best and worst solutions based on non dominated sorting and crowding
distance.
Step 6: Update candidate solutions based on update equation (5.31) and find the updated
fitness value.
Step 7: Combine both old and modified solutions and perform non dominated sorting
and crowding distance.
Step 8: Select best population of size (N) from combined solutions of size 2N.
Step 9: Set Iter=Iter+1.
Step 10: Terminate the process, if (Iter > Itermax) and save the pareto optimal front data
otherwise continue from step 4 to step 10.
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Step 11: Perform the fuzzy min max decision making technique to select the compro-
mised optimal solution optimal front and print the results.

Table 5.1: Parameters of EV

Parameters Values
Pmax

EV B 27.69 kWh
NEV

T 600
SEC 0.142 kWh/km
Pc 96 kW

Table 5.2: Bus groups of connected loads in power distribution network

Residential Commercial Industrial
loads loads loads
2,3,5,6,7,8 4,11,12,18 22,26,27,28
9,10,13,14,15 19 29,30,31,32
16,17,20,23,24 – 33

Table 5.3: Assumed Number of Electric Vehicles at the 190 zones of Transportation
system

1 4 3 1 5 1 1 2 3 4 4 5 5 4 2 5 3 3 4
3 4 2 4 1 3 3 1 5 5 4 4 2 1 2 4 5 1 4
3 5 4 1 1 5 4 5 4 4 3 1 3 3 5 2 5 5 2
4 1 2 2 5 2 2 4 4 4 5 4 2 3 5 2 2 5 1
4 3 4 4 4 5 4 1 4 3 4 4 4 1 2 1 5 3 4
2 4 5 3 3 4 2 3 3 5 3 4 3 3 1 5 4 2 1
5 5 4 2 2 2 4 4 5 5 2 5 4 2 2 3 3 3 2
5 5 4 2 4 4 3 5 5 4 1 1 1 5 3 4 3 3 3
1 4 3 1 1 1 4 2 1 3 5 4 4 2 2 1 4 3 3
4 1 1 1 5 1 4 3 5 2 1 2 4 3 5 4 1 5 4

5.4 Simulation Results and discussion
Coupled network of IEEE 33 bus Power distribution network and Road transportation
network has been taken for the analysis of the proposed approach. It is shown in Figure
5.1, where transportation area of 20× 38 km2 was divided into 190 zones with each
zone of area 2× 2 km2. Table 5.3 shows the assumed number of EVs in each zone of
transportation area. It is assumed that EVs are located at the geometrical centre of the
respective zones. The loads of power distribution network are categorized into industrial
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loads, residential loads, and commercial loads. Table 5.2 shows the bus numbers where
various types of loads are connected. The demand variation of various types of loads
(Figure 5.3) and hourly charging probability of EVs (Figure 5.4) were considered in the
simulation. In the recommended approach, the test system was analysed with Base case,
Case 1, Case 2, and Case 3.

• Base case: Analysis of system without including RCSs, DGs, D-STATCOMs, and
Network Reconfiguration in a coupled network.

• Case 1: Simultaneous optimal planning of RCSs, DGs, and D-STATCOMs with-
out Network Reconfiguration in coupled network.

• Case 2 : Network reconfiguration of power distribution network in the presence
of previous RCSs load, DGs, D-STATCOMs obtained from Case 1.

• Case 3: Simultaneous optimal planning of Network Reconfiguration and RCSs,
DGs, and D-STATCOMs in coupled network.
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Figure 5.3: Demand variation of various types of loads
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Figure 5.5: Hourly voltage profile of IEEE power distribution network in Base case
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5.4.1 Base case

In Base case, the system was analysed without including either RCSs or DGs and D-
STATCOMs. Backward forward sweep load flow algorithm was used to perform the
load flow study. The state variables of voltage and angles were used to calculate the ob-
jective functions that affect the power distribution system. Base case simulation resulted
in power loss of 2811 kW, lowest VSI value of 0.6479, and maximum voltage deviation
of 1.5816 p.u. The system experienced a minimum voltage of 0.8968 p.u at 18th bus
(Figure (5.5)).

5.4.2 Case 1: Simultaneous optimal planning of RCSs, DGs, and
D-STATCOMs without Network Reconfiguration in coupled
network

In this case, RCSs, distributed generator and distributed static compensators were op-
timally planned on a coupled network. In planning, the total contribution of all DGs
and D-STATCOMs was determined by observing the hourly real power demand (Figure
(5.6)) and hourly reactive power demand (Figure (5.7)) on the power distribution sys-
tem. Here, 1420 kW and 882 kVAr were the minimum real and reactive power demands
on the system. The DGs were able to support power distribution network by supplying a
reactive power of 460 kVAr. To maintain the system stability, total output power of DGs
was limited to 1400 kW and total reactive power output of D-STATCOMs was limited
to 420 kVAr.

Figure (5.8) shows the pareto front in Case 1 by MORA algorithm. Here, fuzzy min
max decision making technique was employed to select better solution. Table 5.4 shows
the placements and sizes of DGs, D-STATCOMs, and RCSs. RCSs were located at 2nd ,
21st , 32nd buses while DGs were located at 15th, 29th, 33rd buses with capacities of
391 kW, 303 kW, and 704 kW respectively. D-STATCOMs were placed at 13th, 17th,
and 31st buses of power distribution network with capacities of 30 kVAr, 87 kVAr, and
302 kVAr respectively. The above locations and capacities were obtained by MORA
algorithm. The technical objectives caused by these locations with out reconfiguration
technique are shown in Table 5.5. The integration of DGs, D-STATCOMs and RCSs in
power distribution network resulted in lower values of active power loss (990.34 kW),
MVD (0.5934 p.u), and EVUC(53.2199 $) in comparison with NSGA II results. The
minimum value of VSI should be near unity. Here, the V SImin value is better for the
location of MORA (0.8195) compared to NSGA II (0.8094) value. Figure 5.9 shows the
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variation of voltage magnitude over 24 hours in a day by MORA algorithm. This figure
shows that the system’s minimum voltage increased to 0.9521 p.u with the inclusion of
RCSs, D-STATCOMs and DGs compared to Base Case.
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Figure 5.6: Hourly real power demand on the IEEE 33 power distribution system
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Figure 5.7: Hourly reactive power demand on the IEEE 33 power distribution system

In Stage 2, the optimal count of connectors was decided by employing MORA and
NSGA II algorithms. Here, fuzzy min max decision making was employed to select
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Table 5.4: Optimal locations and capacities obtained in Stage 1 of Case 1 by both algo-
rithms

Optimal locations NSGA II MORA
and capacities
RCSs locations 3, 21, 33 2, 21, 32
EVs at RCSs 206, 134, 260 178, 138, 284
DG locations 2, 16, 31 15, 29, 33
DG size (kW) 110, 407, 853 391, 303, 704
D-STATCOMs locations 14, 18, 32 13, 17, 31
D-STATCOMs size (kVAR) 28, 35, 354 30, 87, 302

Table 5.5: Optimal Tie switches and objective parameters obtained in Stage 1 of Case 1
by both algorithms

Optimal results NSGA II MORA
Tie switches 34,35,36,37,38 34,35,36,37,38
Ploss (kW) 1092.8 990.34
MVD (p.u) 0.6412 0.5934
V SImin 0.8094 0.8195
EVUC ($) 53.2344 53.2199

optimal solution from the optimal front (Figure (5.10)). In this stage, queue theory was
used for determining waiting time. Table 5.6 shows that MORA performed better in
achieving better count of connectors that offered low waiting time (28.4217 min) and
low building cost of RCS (1.7×106 $) compared to NSGA II.

Table 5.6: Optimal RCSs sizes and objective parameters obtained in Stage 2 of Case 1
by both algorithms

Optimal results NSGA II MORA
RCSs connectors 10, 10, 12 9, 8, 14
Wt (min) 32.9638 28.4217
ICRCS ($) 1.72 ×106 1.7×106

RCSs size (kW) 960, 960, 1152 864, 768, 1344

Table 5.7 shows the the effect of EV load increment on the operational parameters of
power distribution system, i.e as the EV load increases, power loss, voltage deviation,
system minimum voltage were decreased, while voltage stability index reached worst
value. In this context, network reconfiguration is adopted to improve the system perfor-
mance.
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Table 5.7: Effect of EV demand on various objective functions in Case 1 for MORA
outcomes

EV demand factor Ploss MVD VSImin Vmin
1 990 0.5934 0.8195 0.9521

1.1 1020 0.6094 0.8100 0.9493
1.2 1052 0.6255 0.8005 0.9464
1.3 1087 0.6424 0.7910 0.9435
1.4 1124 0.6599 0.7815 0.9406
1.5 1164 0.6778 0.7721 0.9377
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Figure 5.8: Pareto front in Stage 1 of Case 1 by MORA algorithm
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by MORA algorithm

Figure 5.10: Pareto front in Stage 2 of Case 1 by both algorithms
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5.4.3 Case 2 : Network reconfiguration of power distribution net-
work after the integration of RCSs, DGs, and D-STATCOMs

In Case 2, Network Reconfiguration Technique (NRT) was employed on the distribu-
tion network of coupled network with RCS load, DGs, and D-STATCOMs placed at
locations achieved from Case 1.

In network reconfiguration, the opening and closing of sectionalizing switches and tie
switches of power distribution system were performed by maintaining radiality to ob-
tain optimal network. Both (MORA and NSGA II) algorithms were applied to obtain
optimal tie switches of distribution network. Here, minimization of active power loss,
MVD and EV user cost were considered as technical objectives along with improve-
ment of VSI. Table 5.8 shows the tie switches and technical objectives obtained in Case
2 by both algorithms. These were selected by fuzzy min max technique from optimal
pareto front (Figure (5.11)). From the table it is observed that tie switches yielded by
MORA algorithm resulted in better values of the technical objectives considered com-
pared to NSGA II. From Table 5.5 and Table 5.8, it is noticed that the performance of the
distribution network improved after reconfiguration. Active power loss of 791.93 kW
resulted after the reconfiguration, which was lower compared to the system before re-
configuration. Better voltage stability was maintained with a low value of MVD (0.4560
p.u) and high value of VSI (0.8381) after NRT compared to Case 1 (0.5934 p.u, 0.8195).
However, EVUC was same in both Case 1 and Case 2 as EVUC depends on RCS lo-
cations. The reconfiguration of distribution network improved the system’s minimum
voltage to 0.9544 p.u (Figure (5.12)). Optimal connector count, waiting time, ICRCS,
and RCS size were same as Case 1 because RCS locations were same in both cases.
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Figure 5.11: Pareto front in Stage 1 of Case 2 by MORA algorithm

Bus number
1 5 10 15 20 25 30 33

V
ol

ta
g

e
(p

.u
)

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02 h 1
h 2
h 3
h 4
h 5
h 6
h 7
h 8
h 9
h 10
h 11
h 12
h 13
h 14
h 15
h 16
h 17
h 18
h 19
h 20
h 21
h 22
h 23
h 24

Figure 5.12: Hourly voltage profile of IEEE 33 bus power distribution network in Case
2 by MORA algorithm

From the Table 5.9 and Table 5.7, it is observed that network reconfiguration has resulted
in better operational parameters compared to Case 1 .
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Table 5.8: Optimal Tie swiches and objective parameters obtained in Stage 1 of Case 2
by both algorithms

Optimal results NSGA II MORA
Tie switches 6,8,28,34,36 7,12,27,35,36
Ploss (kW) 921.4615 791.93
MVD (p.u) 0.5145 0.4560
V SImin 0.8385 0.8381
EVUC ($) 53.2344 53.2199

Table 5.9: Effect of EV demand on various objective functions in Case 2 for MORA
outcomes

EV demand factor Ploss MVD VSImin Vmin
1 791.9 0.4560 0.8381 0.9574

1.1 824.23 0.4705 0.8302 0.9551
1.2 858.65 0.4859 0.8223 0.9528
1.3 895.20 0.5018 0.8145 0.9504
1.4 933.9 0.5197 0.8067 0.9480
1.5 974.8 0.5384 0.7988 0.9457

5.4.4 Case 3: Simultaneous Network Reconfiguration and optimal
planning of RCSs, DGs, and D-STATCOMs in coupled net-
work

In Case 3, network reconfiguration and optimal planning were done simultaneously.
NSGA II and MORA algorithms were applied to achieve optimal tie switches of power
distribution network, optimal locations and capacities of RCSs, DGs, and D-STATCOMs.

Optimal pareto front achieved by MORA algorithm is shown in Figure (5.13). The
compromised optimal solutions were selected using fuzzy min max decision technique.
Table 5.10 shows the optimal results obtained in Stage 1 of Case 3. Both algorithms were
implemented to determine the optimal locations and capacities of RCSs, distributed
generators, and distributed static compensator. MORA yielded 3rd , 22nd , and 33rd buses
for placing RCSs, while NSGA II picked 2nd , 21st , 33rd buses. DGs were located at 14th,
29th, and 32nd buses with capacities of 341 kW, 349 kW, and 703 kW respectively. Here,
reactive power compensating was done by installing D-STATCOMs at 17th, 18th, and
31st buses with capacities of 48 kVAr, 107 kVAr, and 262 kVAr.
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Figure 5.13: Optimal pareto front in Stage 1 of Case 3 by MORA algorithm

Table 5.11 shows tie switches and technical objectives which resulted in Stage 1 by
both algorithms. It is observed from this table that tie switches obtained by MORA
resulted in better objectives. Active power loss (762.6367 kW) was lower in MORA
compared to NSGA II (768.01 kW). MVD of 0.4318 p.u was minimum for MORA
while it was 0.4357 p.u by NSGA II. Minimum value of VSI was 0.8357 for MORA,
and it was more compared to VSI value yielded by NSGA II. Better locations of RCSs
by MORA algorithm resulted in lower value of EVUC (52.2025 $). Figure (5.14) shows
the voltage magnitude variations over a day. From the figure it is noticed that the system
experienced better voltage profile with minimum voltage of 0.9573 p.u, and had an
improved value compared to all cases considered in this chapter.
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Figure 5.14: Hourly voltage profile of IEEE 33 bus power distribution network in Case
3 by MORA algorithm

Figure (5.15) shows the pareto front obtained in Stage 2 by MORA. Table 5.12 shows the
optimal results obtained in Stage 2 of Case 3. MORA yielded 11, 8, and 12 connectors
at RCS1, RCS2, and RCS3, respectively, while NSGA II yielded 10, 9 , 12 connectors.
The selection of optimal connectors at respective RCS by MORA resulted in lower
waiting time of 27.37 min compared to NSGA II (29.37 min) while both algorithms
yielded same ICRCS of 1.7×106 $.

115



Table 5.10: Optimal locations and capacities obtained in Stage 1 of Case 3 by both
algorithms

Optimal locations NSGA II MORA
and capacities
RCSs locations 2, 21, 33 3, 22, 33
EVs at RCSs 183, 157, 260 209, 143, 248
DG locations 14, 28, 32 14, 29, 32
DG size (kW) 386, 290, 723 341, 349, 703
D-STATCOMs locations 3, 18, 31 17, 18, 31
D-STATCOMs size (kVAR) 50, 113, 256 48, 107, 262

Table 5.11: Optimal Tie switches objective parameters obtained in Stage 1 of Case 3 by
both algorithms

Optimal results NSGA II MORA
Tie switches 7,8,27,34,36 7,8,17,28,34
Ploss (kW) 768.01 762.6367
MVD (p.u) 0.4357 0.4318
V SImin 0.8415 0.8357
EVUC ($) 54.4474 52.2025

Figure 5.15: Optimal pareto front in Stage 2 of Case 3 by both algorithms

Table 5.13 shows that simultaneous network reconfiguration and optimal planning of
RCSs, DGs, and D-STATCOMs in Case 3 has resulted in better values of system opera-
tional parameter compared to Case 1 and Case 2.

116



Table 5.12: Optimal RCSs sizes and objective parameters obtained in Stage 2 of Case 3
by MORA and NSGA-II algorithms

Optimal results NSGA II MORA
RCSs connectors 10, 9, 12 11, 8, 12
Wt (min) 29.37 27.37
ICRCS ($) 1.7×106 1.7×106

RCSs size (kW) 960,864, 1152 1056, 768, 1152

Table 5.13: Effect of EV demand on various objective functions in Case 3 for MORA
outcomes

EV demand factor Ploss MVD VSImin Vmin
1 762.6 0.4318 0.8357 0.9591

1.1 799.04 0.4479 0.8332 0.9550
1.2 837.62 0.4653 0.8302 0.9526
1.3 878.4 0.4834 0.8201 0.9515
1.4 921.39 0.5019 0.8080 0.9507
1.5 966.62 0.5208 0.7982 0.9502

Table 5.14 shows the comparison of objective parameters in Stage 1 of all cases by
MORA algorithm. It is noticed from the comparison that, simultaneous network recon-
figuration and optimal planning RCSs, DGs, and D-STATCOMs (Case 3) yielded better
performance and user comfort. The active power loss was 27.13 % of base power loss
in Case 3 while it was 35.23 % and 28.17 % in Case 1 and Case 2 respectively. Better
voltage profile with 27.3 % MVD and 28.98 % V SImin was obtained compared to base
case. The optimal locations of DGs and D-STATCOMs obtained in Case 3 made the
RCSs spread over the network considered and this resulted in lower EVUC of 52.2025
$. Table 5.15 shows the waiting time and RCS building cost in all Cases. From the
comparison, it can be observed that Case 3 resulted in lower waiting time of 27.37 min
compared to Case 1 and Case 2. The building cost was same in all cases. From the
analysis made in all the cases, it can be concluded that simultaneous optimal planning

Table 5.14: Comparison of objective parameters of Stage 1 in all cases by MORA algo-
rithm

Objective parameter Base Case Case 1 Case 2 Case 3
Ploss (kW) 2811 990.34 791.93 762.6367
MVD (p.u) 1.5816 0.5934 0.4560 0.4318
V SImin 0.6479 0.8195 0.8381 0.8357
EVUC ($) – 53.2199 53.2199 52.2025
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Table 5.15: Comparison of objective parameters of Stage 2 in all cases by MORA algo-
rithm

Objective parameter Base Case Case 1 Case 2 Case 3
Wt (min) – 28.42 28.42 27.37
ICRCS ($) – 1.7×106 1.7×106 1.7×106

of RCSs, DGs, and D-STATCOMs along with reconfiguration techniques gives better
performance of power distribution network and also offers benefit of low EVUC from
EV user perspective.

5.5 Summary
The load due to RCSs reduces the performance of the power distribution system. In this
context, optimal planning of RCSs, DGs, and D-STATCOMs along with network recon-
figuration was done in a coupled network. Optimal planning was done in two stages.
Stage 1 deals with network reconfiguration and optimal planning of RCSs, DGs and
D-STATCOMs by considering minimization of active power loss, EV user cost, voltage
deviation, and improvement of voltage stability index. In Stage 2, queue model was em-
ployed in obtaining optimal connector count at each RCS. Minimization of waiting time
and building cost of RCS were considered in Stage 2. In the simulation, variation of var-
ious load types and EV charging was considered. Analyses included optimal planning
of RCSs, DG, and D-STATCOMs without network reconfiguration as Case 1, applying
network reconfiguration of power distribution network with the location obtained and
sizes of RCSs, DGs, and D-STATCOMs from Case 1 as Case 2, and simultaneous opti-
mal planning and network reconfiguration as Case 3. The reduction of 72.86 % active
power loss, 72.69 % of MVD, and improvement of V SImin from 0.6479 to 0.8357 in
Case 3 (compared to base case) by MORA algorithm showed that simultaneous optimal
planning of RCSs, DGs, and D-STATCOMs along with network reconfiguration offers
better performance of the power distribution network. Here, the ability of random in-
teractions among candidate solutions and moving the candidate solution toward the best
and away from the worst solution yielded better solutions than NSGA II algorithm.

118



Chapter 6
Conclusion

6.1 General
In order to reduce greenhouse gas emissions, transportation system must be electrified.
Adopting electric vehicles for road transport is a feasible way to reduce to a large extent
greenhouse gas emissions. Installing infrastructure for quick charging could enable EV
adoption. However, integration of RCS into Radial Distribution Network (RDN) cause
performance degradation. The location of RCS affects both the performance of RDN
and the comfort of EV users. The optimal planning of charging station considering only
power network is not feasible.

In this thesis, optimal planning of Rapid charging stations, Distributed Generators, and
D-STATCOMs have been done on a proposed coupled network. Optimal number of
charging connectors at each RCS was determined by employing queue theory based op-
timization approach. In the optimal planning, minimization of active power loss, voltage
deviation, EV user cost, waiting time, RCS installation cost, and maximization of volt-
age stability index were considered. Further, the performance of power distribution
system was enhanced by including the network reconfiguration technique in optimal
planning. A novel metaphor less Rao 3 algorithm was utilized for optimizing single
objective and multi objective problems. The results were verified by PSO, JAYA, and
NSGA II algorithms.

6.2 Summary of Important findings
The summary of the findings from the current research is as follows:

It is important to consider EV user behaviour for RCSs planning while installing charg-
ing stations. This thesis presents a concise planning of RCSs and DGs to reduce power
loss, voltage deviation, and EV user cost on a coupled network. Optimal RCSs planning
has been analysed and compared for the following scenarios: i) RCSs alone, ii) Optimal
DG planning with prior RCSs outcomes. iii) Concurrent planning of RCSs and DGs.
The proposed planning was implemented by considering daily EV charging probability
and load patterns. The use of metaphor less Rao 3 algorithm can ensure faster conver-
gence with better performance for optimal planning of RCSs and DGs simultaneously.

119



Random interactions between candidate solutions and the ability to move candidate so-
lutions towards the best optimal solution and away from the worst solution of Rao 3
algorithm, outperform both PSO and Jaya algorithms.

In this thesis, a planning approach of charging station that favours electrical network,
EV user, and charging station owner has been proposed. Consideration of EV user loss,
RCS installation cost, and waiting time in queue at RCS plays a vital role in obtaining
optimal locations for RCS, and these objectives are conflicting in nature. To address
the above issues, a two stage approach was proposed to determine the optimal size and
locations of RCSs and DGs using pareto based multi objective approach. Optimal loca-
tion of RCSs and optimal location and size of DGs are determined by minimizing power
loss, voltage deviation, EV user cost and maximizing voltage stability index in the first
stage. M1/M2/C queue theory model was used for finding the waiting in queue at RCS.
Minimization of waiting time and installation cost of RCS were considered as objec-
tives to determine the optimal number of connectors at RCS in second stage. During the
analysis, the variation of various types of loads and the variation of probability of charg-
ing of EVs was considered. The simultaneous placement of RCSs and DGs resulted in
57.9% reduction in active power loss, 56.6% reduction in voltage deviation, and 22.6%
improvement in VSI (compared to base case). The optimization problem was solved
by Multi objective Rao optimization algorithm (MORA) and NSGA II. The ability of
random interactions and move candidate solution close to the best solution and far away
from the worst solution of MORA yielded better solutions than NSGA-II.

In this thesis, a two stage approach has been proposed for determining optimal place-
ments and capacities for RCSs, DGs, and D-STATCOMs in a coupled network. At
Stage 1, improvement of active power loss, reducing voltage deviation, EV user cost,
and voltage stability index, were taken into consideration. Optimal connector count
was determined by considering the minimization of waiting time at RCS and installa-
tion cost of RCS in Stage 2. Hourly load demand variation at various bus types and
the hourly probability of EVs charging were taken in the analysis. The optimization
problem was solved using Multi-Objective Rao Algorithm (MORA). It is clear from the
results that the presence of RCSs worsened the voltage profile and increased power loss
(Case 1). The installation of RCSs and DGs improved the performance of RDN (Case
2). Finally, providing reactive power support by concurrent planning of RCSs, DGs, and
D-STATCOMs in Case 3 yielded better results than Base case, Case 1, and Case 2. The
simultaneous placement of RCSs, DGs, and D-STATCOMs resulted in 64.76% reduc-
tion in active power loss, 62.76% reduction in voltage deviation, and 26.48% improve-
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ment in VSI (compared to Base case). The spread of RCS in the coupled network was
helped by the presence of DGs and D-STATCOMs, which led to a low value of EVUC
(i.e EV user comfort). The ability of random interactions and move candidate solution
close to the best solution and far away from the worst solution of MORA yielded better
solutions than NSGA-II.

In this thesis, optimal planning of RCSs, DGs, and D-STATCOMs along with network
reconfiguration of Radial Distribution Network (RDN) was proposed in a coupled net-
work. Optimal planning was done through two stages. Stage 1 deals with network
reconfiguration and optimal planning of RCSs, DGs, and D-STATCOMs by considering
minimization of active power loss, EV user cost, voltage deviation, and improvement of
voltage stability index. In Stage 2, queue model was employed in obtaining optimal con-
nector count at each RCS. Minimization of waiting time and building cost of RCSs were
considered in Stage 2. In the simulation, variation of various load types and EV charging
was considered. Analyses included optimal planning of RCSs, DG, and D-STATCOMs
without network reconfiguration as Case 1, applying network reconfiguration of RDN
with the location obtained and sizes of RCSs, DGs, and D-STATCOMs from Case 1 as
Case 2, and simultaneous optimal planning and network reconfiguration as Case 3. The
reduction of 72.86 % active power loss, 72.69 % of MVD, and improvement of V SImin

from 0.6479 to 0.8357 in Case 3 (compared to Base case) by MORA algorithm showed
that simultaneous optimal planning of RCSs, DGs, and D-STATCOMs along with net-
work reconfiguration offers better performance for RDN. Here, the ability of random
interactions among candidate solutions and moving the candidate solution toward the
best and away from the worst solution yielded better solutions than NSGA II algorithm.

6.3 Future Scope
The following are the possible extensions of the current research work.

1. Optimal planning can be extended by considering the EV load and base load un-
certainties.

2. Optimal planning can be extended by considering reliability indices like Aver-
age Energy Not Supplied (AENS), System Average Interruption Frequency Index
(SAIFI), Customer Average Interruption Frequency Index (CAIFI), and etc.

3. Optimal planning can be extended by considering the improvement of resiliency
of power network.
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4. Utilization of advanced optimization techniques in the complex placement prob-
lems can be researched.

5. Optimal planning of RCS can be done by considering the realistic road network
along with distribution network.

.
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Appendix A
IEEE 33 bus radial distribution system
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Figure 6.1: Single line diagram of IEEE 33 bus system
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Table 6.1: IEEE 33 bus radial distribution system line data

Line No Starting bus End bus R (p.u) X (p.u)

1 1 2 0.0575 0.0298

2 2 3 0.3076 0.1567

3 3 4 0.2284 0.1163

4 4 5 0.2378 0.1211

5 5 6 0.5110 0.4411

6 6 7 0.1168 0.3861

7 7 8 1.0678 0.7706

8 8 9 0.6426 0.4617

9 9 10 0.6489 0.4617

10 10 11 0.1227 0.0406

11 11 12 0.2336 0.0772

12 12 13 0.9159 0.7206

13 13 14 0.3379 0.4448

14 14 15 0.3687 0.3282

15 15 16 0.4656 0.3400

16 16 17 0.8042 1.0738

17 17 18 0.4567 0.3581

18 2 19 0.1023 0.0976

19 19 20 0.9385 0.8457

20 20 21 0.2555 0.2985

21 21 22 0.4423 0.5848

22 3 23 0.2815 0.1924

23 23 24 0.5603 0.4424

24 24 25 0.5590 0.4374

25 6 26 0.1267 0.0645

26 26 27 0.1773 0.0903

27 27 28 0.6607 0.5826

28 28 29 0.5018 0.4371

29 29 30 0.3166 0.1613

30 30 31 0.6080 0.6008

31 31 32 0.1937 0.2258

32 32 33 0.2128 0.3308
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Table 6.2: IEEE 33 bus radial distribution system load data

Bus No. Real power (kW) Reactive power (kW)

1 0 0

2 100 60

3 90 40

4 120 80

5 60 30

6 60 20

7 200 100

8 200 100

9 60 20

10 60 20

11 45 30

12 60 35

13 60 35

14 120 80

15 60 10

16 60 20

17 60 20

18 90 40

19 90 40

20 90 40

21 90 40

22 90 40

23 90 50

24 420 200

25 420 200

26 60 25

27 60 25

28 60 20

29 120 70

30 200 600

31 150 70

32 210 100

33 60 40
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Appendix B
25 node road network
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Figure 6.2: Single line diagram of 25 node road network
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Table 6.3: Distance between nodes of 25 node road network

From node To node Distance (km)

1 2 4

1 5 5

2 3 3

2 4 4

3 4 4

3 9 4

4 9 7

4 8 5

4 7 5

4 5 3

5 6 5

5 7 5

6 7 3

7 8 3

7 11 8

7 12 9

8 9 6

8 10 6

8 11 7

8 13 7

9 10 6

10 13 6

10 14 3

11 13 3

11 16 7

11 12 2

12 15 4

12 16 4
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From node To node Distance (km)

13 14 7

13 19 4

14 19 7

14 21 2

14 22 4

15 16 4

16 17 4

17 18 3

17 19 3

18 20 30

19 20 30

20 21 20

21 14 20

21 20 20

21 14 20

21 20 20

22 23 30

23 24 30

24 25 80

25 24 80

140



About Author
Vutla Vijay received M.Tech. from Jawaharlal Nehru Technological University Konda-
gattu, Jagityal, Karimnagar in 2018. Currently he is a research scholar in the Depart-
ment of Electrical Engineering at National Institute of Technology (NIT) Warangal. His
present research is in the area of optimal planning of DGs and Electric Vehicle charging
stations. Artificial Intelligence applications in power system.

141


