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Abstract

The delay-sensitive applications, such as self-driving, intelligent transportation, nav-

igation, and augmented reality assistance, can be evolved in vehicular ad-hoc networks

(VANETs) using one of the leading paradigms, fog computing (FC). The demand for these

vehicular services has increased due to the emergence of fifth-generation (5G) technology.

By blending FC and 5G technologies, the service quality can be improved in intelligent

transportation system (ITS) of smart cities. Intelligent vehicles are connected to the road-

side infrastructure, such as high power nodes (HPNs) and roadside units (RSUs), also called

fog nodes (FNs), to obtain on-demand services. These FNs possess finite resources and can

provide services to limited vehicles. However, when vehicles reach the network spike in

demand, the FNs become impuissant in furnishing services in the existing solutions. As a

result, there is a significant reduction in the network service capability and throughput and

an increase in the FNs’ energy consumption. Therefore, we propose resource management

algorithms such as dynamic resource management (DRM), efficient resource orchestration

(ERO) and energy-efficient resource allocation (EERA) to harmonize the resource blocks

(RBs) allocation among FNs. Then, to coordinate the allocation of RBs among FNs, the

allocated RBs of vehicles in the overlap coverage regions are reduced. This reduction is

done by migrating RBs between pairs of FNs to offload upstream services. The problem

of reducing RBs among FNs is formulated as integer linear programming (ILP), and its

NP-hardness is determined by reducing it from the seminar assignment problem.

The proposed algorithm, DRM, considers the set of vehicles in overlapped coverage

regions of FNs and communicates with those corresponding FNs. Then, it migrates the

RBs of the set of vehicles between pairs of FNs to minimize the allocated RBs. As a result,

the network’s service capability is enhanced. The proposed algorithm, ERO, maximizes

the network’s throughput by partitioning the FN coverage region into restricted and non-

restricted coverage regions. Then, it coordinates the allocation of RBs among FNs by

reducing RBs for vehicles in the non-restricted coverage regions. A minimum priority

queue is constructed using the occupied capacity of FNs to perform optimal migration

between pairs of FNs. However, as the vehicles that reach the network grow, FNs’ energy
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consumption increases. Consequently, FNs become futile in delivering services. Therefore,

to handle this issue, we present an EERA algorithm to harmonize RB allocation among

FNs to reduce the energy utilization of FNs. The proposed algorithm, EERA, relocates

the assigned RBs of vehicles in overlap coverage regions amid pairs of FNs, such that the

allocated RBs of FNs and energy consumption of FNs are minimized.

In ITS, FNs (i.e., HPNs and RSUs) are operated with batteries. FNs are deployed such

that the coverage region of each FN intersects with the neighbouring FN(s) to provide

services in remote areas where consistent power sources are unavailable. Vehicles in such

regions offload delay-sensitive tasks into FNs to get services. However, when the number

of vehicles arriving into the network grows over peak hours, the energy dissipation of FNs

for processing tasks increases. Consequently, energy-limited FNs become ineffective in

delivering services without efficient task scheduling. Therefore, we present reinforcement

learning (RL) based energy-efficient and delay-aware (EEDA) task scheduling among FNs

in the intersecting regions to reduce the energy dissipation of FNs. The RL agent is trained

for different vehicle arrival rates to schedule tasks in a suitable FN of the intersecting areas.

The proposed algorithms, DRM, ERO and EERA, are simulated extensively in terms

of service capability, serviceability, availability, throughput, energy consumption of FNs

and resource utilization. In addition, the simulation results are analogized with benchmark

algorithms, such as dynamic resource orchestration (DRO), signal aware (SA), DRO+SA,

adaptive resource balance (ARB), minimum cost flow (MCF) and random order (RO), as

per their applicability. Similarly, the EEDA algorithm is evaluated by considering FN

energy usage, FN response time, and vehicles’ sojourn time in intersecting regions to meet

task delay constraints. The simulation outcomes are compared with the priority-aware

semi-greedy (PSG), earliest deadline first (EDF), and first come, first serve (FCFS).

Keywords: Availability, Deadline, Delay-Sensitive Tasks, Energy Consumption, Fog

Computing, Fog-Empowered Vehicular Ad-hoc Networks, Intelligent Transportation Sys-

tems, Resource Blocks Allocation, Resource Management, Resource Utilization, Service-

ability, Service Capability, Service Migration, Task Scheduling, Throughput, Vehicular

Ad-hoc Networks and Vehicular Networks.
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Chapter 1

Introduction

The emergence of fifth-generation (5G) technology promotes ubiquitous services through

the Internet [1–4]. At the same time, the instantaneous transition of the Internet of Things

(IoT) and vehicular technology are attaining tremendous favour in vehicular ad-hoc net-

works (VANETs) [5–7]. Integrating these technologies initiates a smart city’s intelligent

transportation system (ITS) to share and transmit information among smart vehicles and

the cloud [8, 9]. There is increasing demand for vehicular services and applications, such

as virtual reality-based driving assistance, remote intelligent control and vehicular video

streaming, which demands high computational capabilities [1, 10–12]. Thus, due to fi-

nite resource constraints (i.e., battery, storage, computation, etc.), the vehicle offloads

these computation-intensive and delay-sensitive tasks to the cloud server for cloud com-

puting [13]. Nevertheless, the services from the cloud suffer from network congestion and

transmission delay [11, 12, 14, 15]. Therefore, a contemporary computing paradigm, fog

computing (FC), is incorporated in vehicular networks, emerging as fog-empowered ve-

hicular ad-hoc networks (FVNETs) [16–20]. FC is a distributed architecture consisting of

fog nodes (FNs) near the end user and provides services by bringing cloud services to the

networks’ edge [21–23]. FNs are devices, such as gateways, routers, and other electronic

devices, capable of computing, storing and communicating with other FNs and the cloud.

As a result, computation-intensive and delay-sensitive tasks are offloaded to FNs for meet-

ing deadlines, low latency and elastic computation [1, 10].

The architecture of FVNETs is shown in Figure 1.1. In ITS, each smart vehicle is fitted
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Section 1.0

with onboard units (OBUs) for storage and processing resources. Roadside infrastructures,

such as high power nodes (HPNs) and roadside units (RSUs), are employed along the road

to furnish vehicular services. These HPNs and RSUs are considered as FNs [24]. The cen-

tral supervisor is connected to the cloud over the Internet and manages the HPNs. HPNs

have more resource capabilities than RSUs and can coordinate with RSUs nearby. In addi-

tion, intelligent vehicles with OBUs seek connection with FNs using various device coop-

erative schemes, such as signal-aware (SA), content-aware, and capacity-aware. Using SA,

the contact between the vehicles and the FNs depends on the signal-to-interference-plus-

noise ratio (SINR) quality [25]. The connection using a content-aware scheme between the

vehicles and the FNs depends on the user’s favourite contents [26]. On the other hand, the

connection in the capacity-aware scheme is based on the availability of FNs resources [27].

Further, the 5G technology’s key feature, cellular vehicle-to-everything (C-V2X), is used

for connection between vehicles and FNs, which supports vehicle-to-infrastructure (V2I)

and infrastructure-to-vehicle (I2V) communications [28].

Figure 1.1: Architecture of FVNETs.
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The V2I, I2V and vehicle-to-vehicle (V2V) communications are realized using insti-

tute of electrical and electronics engineers (IEEE) 802.11p protocol-based dedicated short-

range communication (DSRC) technology [29–31]. Therefore, intelligent vehicles can

communicate with other vehicles and FNs through OBUs. For this, the spectrum allotted

to DSRC in the 5.9 GHz frequency band is split into a single control channel (CCH) and

several service channels (SCH) [31, 32]. However, DSRC meets many challenges in terms

of high bandwidth, low latency and the network coverage need of vehicle-to-everything

(V2X) applications due to the format of its physical and medium access control (MAC)

layer [33]. These challenges of DSRC and evolution of long-term evolution (LTE)-V in

third generation partnership project (3GPP) release 14 [34] inspired the researchers to ex-

amine C-V2X communications. However, the network must allocate orthogonal frequency

division multiple access (OFDMA) resource blocks (RBs) with power assignments before

providing services to the users. OFDMA is the modulation method for the LTE in down-

link. An RB is the smallest time-frequency unit in an OFDMA system, and a smart vehicle

must be assigned with RBs before data transmission [35]. In this thesis, serviceable time

is a fixed length time interval T in which the network provides services to the vehicles

arriving. The serviceable time of the network is partitioned to allow FNs to serve vehicles

at different time slots. Figure 1.2 shows the partitioning of the total available time divided

into a number of equal time slots. In each time slot tq, 1 ≤ q ≤ T , a set of FNs is active to

serve vehicles simultaneously [25].

T

tq

δs

t1 t2 ... ... tT

Figure 1.2: FN communication channel time.

As the number of vehicles rises during peak hours, the FNs become inefficient in serv-

ing the vehicles due to finite resource restraints. Consequently, there is a reduction in the

network service capability and throughput. Therefore, managing FN resources is a key

measure to improve the quality of services (QoS) in FVNETs [36]. Moreover, efficient

resource engagement to maximize service capability and throughput is the primary chal-
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lenge for FVNETs. Note that the service capability indicates the availability of the network

to serve the vehicles with their desired data rates [36]. Due to limited resources, the FNs

become impuissant in serving vehicles. Consequently, vehicles arriving at the network

connect the FNs with insufficient resources, reducing the network’s throughput. To man-

age this issue, we present resource management algorithms for coordinating RB allocation

and offloading upstream services among FNs to maximize the network service capability

and throughput.

The increase in arrived vehicles in the intersecting region rapidly generates compute-

intensive and delay-sensitive tasks in the network, causing increases in the processing of

tasks at FNs [37]. It may lead to high energy consumption by FNs and influence the end-

user experience without proper management. In contrast, efficient energy utilization in

energy-limited FVNETs enhances the network’s throughput and lifetime. Therefore, we

present energy-efficient task scheduling in intersecting regions of energy-limited FVNETs

to mitigate the energy consumption of FNs and improve the network’s throughput by satis-

fying the delay constraints of the tasks.

The rest of this chapter is organized as follows. The motivation behind this work is

presented in Section 1.1. The overview of the contributions of the thesis is discussed in

Section 1.2. Section 1.3 presents the organization of this thesis.

1.1 Motivation and Objectives

The existing literature needs more attention to address challenges in FVNETs when the

coverage region of a FN intersects with neighbouring FNs. This gap in research inspired

us to concentrate on implementing effective resource management and delay-sensitive task

scheduling in FVNETs where the FN coverage region intersects with neighbouring FNs’

coverage. Without loss of generality, this thesis considers the deployment of FVNETs cov-

ering the city area such that the FNs’ coverage region intersects with neighbouring FNs’

coverage to provide services. In these circumstances, managing efficient resource utiliza-

tion to improve the QoS is the primary challenge due to limited resource constraints in

FVNETs. As a result, this management of resources is a crucial measure to enhance the
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service capability and throughput in FVNETs [36]. Besides, this thesis considers that the

FNs are powered by rechargeable batteries, which require periodic recharging due to the

lack of a permanent power source. Human intervention or solar energy is required to re-

vive FNs when their batteries are depleted to ensure uninterrupted services. This reviving

FNs to deliver services and ensure energy preservation till the successive recharge cycle

is challenging when the FNs cover highway segments of remote areas (i.e., forests or hill

terrain) where consistent power sources are unavailable [38]. In this circumstance, con-

sider that the FVNETs cover remote areas’ highway segments such that the FNs’ coverage

region intersects with neighbouring FNs’ coverage. Subsequently, the dealy-sensitive tasks

generated by the vehicles in the intersecting regions are offloaded into FNs (i.e., RSUs or

HPNs) for computation. However, HPN acts as a central node that decides the scheduling

of tasks among FNs of intersecting regions, including itself. It is worth mentioning that the

RSUs are exclusively operated to execute the allotted tasks.

In this thesis, the following objectives are formulated concerning the above-mentioned

motivation.

Objective 1: Managing allocated RBs to maximize the service capability in FVNETs by

considering vehicles in overlapped coverage regions.

Objective 2: Orchestrating allocated RBs to maximize the throughput in FVNETs by con-

sidering vehicles in overlap and non-overlap coverage regions.

Objective 3: Managing allocated RBs to minimize the energy consumption of FNs in

FVNETs by considering vehicles in overlap and non-overlap coverage regions.

Objective 4: Handling the delay-sensitive tasks among FNs in overlap coverage areas of

FVNETs to reduce FNs’ energy consumption while meeting task deadlines.

1.2 Overview of the Contributions of the Thesis

In this section, an overview of the chapter-wise contributions of the thesis is presented.

Each subsection presents a summary of the contributions of the corresponding chapter.
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1.2.1 A Dynamic Resource Management Algorithm for Maximizing

Service Capability in FVNETs

Dynamic resource management (DRM), a polynomial time algorithm, is presented for ef-

ficient resource allocation among FNs to improve their service capability and resource

utilization efficiency. In this work, we consider the set of vehicles in overlapped coverage

regions of two or more FNs and served by those FNs. The allocated RBs of vehicles in

the overlapped coverage regions are migrated between pairs of FNs. This migration of

RBs reduces the allocated RBs of vehicles in overlapped coverage regions to maximize the

service capability. We simulate the proposed algorithm by taking 10 to 50 FNs and 300 to

2100 vehicles at an arrival rate of 10 vehicles/s. We compare the simulation results with

dynamic resource orchestration (DRO) [24], SA [25], DRO + SA and random order (RO) in

terms of service capability, serviceability, availability, throughput, and resource utilization

efficiency. The simulation outcomes show that the proposed algorithm reduces occupied

RBs among FNs by migrating RBs of the set of vehicles and achieves better service capa-

bility, serviceability, availability, throughput and resource utilization efficiency than other

migration algorithms, such as DRO, SA, DRO + SA and RO. The major contributions of

this work are listed as follows.

1. We consider allocating RBs to newly arrived vehicles by migrating RBs between

pairs of FNs without affecting the services. The RBs of vehicles are migrated to

minimize overall allocated RBs.

2. The optimal RBs migration problem in FVNETs is formulated into integer linear pro-

gramming (ILP) by considering the variables that impact FNs’ resource constraints

and the network’s service capability.

3. We propose a polynomial-time DRM algorithm for optimal migration of RBs be-

tween pairs of FNs to minimize occupied RBs among FNs and maximize the service

capability and resource utilization efficiency of the network by migrating RBs of a

set of vehicles.

4. We present extensive simulations to show that the DRM algorithm can achieve better
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performance than the four existing algorithms in terms of service capability, service-

ability, availability, throughput, and resource utilization efficiency of the network.

1.2.2 An Efficient Resource Orchestration Algorithm for Enhancing

Throughput in FVNETs

This work presents an efficient resource orchestration (ERO) algorithm for coordinating RB

allocation and offloading upstream services among FNs to maximize the network through-

put. ERO algorithm partitions the FNs’ coverage region into restricted and non-restricted

coverage areas. The restricted coverage area is a coverage region that does not overlap with

neighbouring FNs’ coverage. Similarly, FN’s coverage region overlaps with neighbouring

FN’s coverage regions, called non-restricted coverage areas. The maximizing throughput

problem is formulated to reduce assigned RBs of vehicles in the non-restricted coverage

areas. Hence, the assigned RBs of vehicles in the non-restricted coverage areas are mi-

grated between pairs of FNs to reduce allotted RBs. Further, a minimum priority queue is

constructed based on the occupied capacities of FNs to perform optimal RB migration. We

simulate the proposed algorithm, ERO, considering the vehicle arrival rate as 5 to 10 vehi-

cles/s and 150 to 3000 vehicles with 10 to 50 FNs in FVNETs. We consider the influence

of the rise in the number of vehicles on the network’s throughput, serviceability, availabil-

ity and service capability for three scenarios: the mean arrival rate is greater than the mean

departure rate, the mean arrival rate is equal to the mean departure rate and the mean arrival

rate is less than the mean departure rate. The simulation outcomes are compared with RO,

adaptive resource balance (ARB) [39], SA [25], and DRO [24] in terms of throughput, ser-

viceability, availability and service capability of the network. The simulation results show

that the ERO performs better than existing algorithms in terms of throughput, serviceabil-

ity, availability, and service capability. The novel contributions of this work are listed in

the following points.

1. The throughput is maximized by migrating allotted RBs of vehicles in non-restricted

coverage regions such that the allotted RBs of these vehicles are minimized among

pairs of FNs.
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2. We formulated the RBs migration problem in FVNETs to an ILP by scrutinizing the

variables influencing the network throughput and FNs resource constraints.

3. We propose an ERO algorithm, a polynomial time algorithm, which constructs the

minimum priority queue for optimal RBs migration between pairs of FNs to augment

the network’s throughput.

4. The ERO algorithm synchronizes the RBs allocation for offloading upstream services

such that throughput is maximized by partitioning the coverage of FNs into restricted

and non-restricted coverage regions.

5. We present the simulation results showing that the ERO algorithm outperforms the

existing algorithms regarding throughput, serviceability, availability, and service ca-

pability. The results are obtained by considering the influence of the rise in the arrival

of vehicles to the network.

1.2.3 An Energy-Efficient Resource Allocation Algorithm for Manag-

ing On-Demand Services in FVNETs

We present a resource allocation algorithm, energy-efficient resource allocation (EERA),

for offloading upstream services by coordinating RBs allocation among FNs, such that the

energy usage of FNs in the downlink is diminished, and the network resource utilization

efficiency is maximized. The EERA algorithm builds the B+ tree using occupied RBs of

FNs to reduce the allocated RBs of vehicles in the overlap coverage areas of FNs. In ad-

dition, the allocated RBs of vehicles are minimized by relocating RBs between pairs of

FNs. Further, this reduction of allocated RBs minimizes FNs’ energy usage in furnishing

vehicles’ services. We simulate the proposed algorithm considering the vehicle arrival and

departure rates as 10 and 5 vehicles/s, respectively, with a range of 300 to 2100 vehicles

and 10 to 50 FNs in FVNETs. The simulation results are compared with RO, minimum

cost flow (MCF) [40], DRO and SA in terms of the percentage of RBs occupied, the energy

consumption of FNs and the resource utilization efficiency. The outcome of simulations
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shows that the suggested EERA algorithm surpasses other existing algorithms when analo-

gized with them. The major contributions of this work are listed below.

1. We consider coordinating RBs of vehicles in the overlap coverage areas of FNs in

FVNETs while meeting the vehicle’s desired requirements by relocating RBs among

pairs of FNs.

2. The optimal migration of RBs in FVNETs is framed as ILP by assessing the resource

parameters of FNs.

3. We propose an EERA algorithm using a B+ tree for optimal RBs migration among

FNs for offloading upstream services, such that the energy utilization of FNs in the

downlink is reduced and resource usage efficiency is maximized.

4. We demonstrate the simulations that depict the growing number of vehicles arriving

on the energy utilization of FNs and the resource usage efficiency of the network.

Also, the influence of increasing the number of FNs on the energy utilization of FNs

shows the applicability of the proposed algorithm over the existing algorithms.

1.2.4 An Energy-Efficient and Delay-Aware Task Scheduling in Energy-

Limited FVNETs using Q-Learning

We present an RL-based energy-efficient and delay-aware (EEDA) task scheduling algo-

rithm in intersecting regions of energy-limited FVNETs. This algorithm mitigates the en-

ergy consumption of FNs while discharging and improving the network’s throughput by

satisfying the delay constraints of the tasks. EEDA is a greedy-based RL algorithm that

provides a sub-optimal solution to task scheduling in the intersecting regions of FVNETs.

It uses the Q-learning approach to train FNs for different vehicle arrival rates of traffic

scenarios. It chooses the FN, which consumes minimum energy to schedule tasks in each

time slot while meeting the deadline of tasks. Further, the selection of FNs for schedul-

ing tasks depends on the sojourn time of the vehicle in the intersecting region, the task

deadline, the response time from the FN and the average energy usage of the FN. We sim-

ulated the proposed algorithm for the mean arrival rate of vehicles ranging from 2 to 6
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per second in each intersecting region to train the FNs for free-flow traffic of 100 seconds

duration. Subsequently, simulated results compared with benchmark algorithms, such as

priority-aware semi-greedy (PSG) [41], earliest deadline first (EDF) [42], first come first

serve (FCFS) [43], and RO [44] in terms of average energy usage, network throughput,

total transmitted data, completed service request and total service time of FN. The sim-

ulation results show that the RL-based EEDA algorithm performs better than benchmark

algorithms in minimizing the average energy consumption of FN and enhancing the net-

work throughput. The main contributions of this work can be summarized as follows.

1. This work investigates the scheduling of time-critical tasks among FNs in the inter-

secting regions to reduce the average energy usage of FN while considering the task’s

deadline, FN’s energy usage and vehicle’s sojourn time in the intersecting region.

2. The scheduling of tasks among FNs is transformed into an ILP by evaluating the

task’s deadline, response time from the FN and the residing time of the vehicle in the

intersecting region.

3. Since the ILP of EEDA is NP-hard, we design a greedy-based task scheduling in the

intersecting regions of FVNETs using the Q-learning-based RL technique to mitigate

the energy consumption of FN and satisfy the delay constraints of vehicles.

4. Performance evaluation has been carried out by considering the impact of the in-

crease in the number of vehicles in the intersecting regions for various vehicle arrival

rates in the network concerning the energy usage of FN and throughput of the net-

work.

1.3 Organization of the Thesis

The main focus of this thesis is to design resource management and energy-efficient task

scheduling algorithms for FVNETs. The thesis comprises seven chapters, namely an in-

troduction, a literature review, four contributions and a conclusion. The content of these

chapters is briefly described as follows.
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Chapter 1: This chapter presents the FVNETs architecture, motivation and thesis objec-

tives. It also provides an overview of the major contributions and a thesis outline.

Chapter 2: This chapter presents the preliminaries in FVNETs and the literature on re-

source management algorithms categorized based on their objectives. It also presents the

literature on optimizing energy consumption in FVNETs.

Chapter 3: This chapter presents the preliminaries of FVNETs, common terminologies,

and the various performance metrics used to compare the proposed algorithms’ perfor-

mance with the existing ones.

Chapter 4: This chapter presents the DRM algorithm for migrating RBs between pairs of

FNs such that the service capability of FVNETs is maximized.

Chapter 5: This chapter describes the orchestration of RBs in FVNETs to maximize the

throughput. It introduces the ERO algorithm using binary heap to migrate RBs of vehicles

in the non-restricted coverage regions.

Chapter 6: This chapter presents the EERA algorithm to minimize the energy consumption

of FNs in FVNETs. The EERA performs RBs migration among pairs of FN by constructing

a B+ tree of FNs’ occupied capacities.

Chapter 7: This chapter introduces the EEDA task scheduling algorithm using Q-Learing

in energy-limited FVNETs. This algorithm reduces FNs’ energy consumption and im-

proves the network’s throughput by satisfying delay constraints of the tasks in overlapped

coverage regions of FVNETs.

Chapter 8: This chapter summarizes the thesis and discusses the future scopes for the

extension of the proposed works.
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Chapter 2

Literature Review

This chapter presents the literature review on challenges in resource management and task

scheduling in FVNETs using reinforcement learning and fuzzy logic.

2.1 Literature Review

Kansal et al. [45] have presented a systematic review of FC and its advantages in appli-

cations such as autonomous vehicles, smart traffic control, the Internet of Vehicles (IoV),

and many more. Moreover, vehicles fitted with computational capacities produce massive

amounts of data that can be transferred to the FN for optimized processing [46]. FVNETs

provide vehicular services and applications for driving safety, traffic efficiency and com-

fort in transport [47]. However, the service delivery to the requested vehicles is challenging

due to interim connections in FVNETs [48]. The FVNETs deployed in a highway segment

such that the FN’s coverage region intersects with neighbouring FNs and has its distinctive

challenges described below.

1. Limited energy: The roadside infrastructures or FNs (i.e., RSUs and HPNs) are de-

ployed along the highway segments of remote areas (i.e., forests or hill terrain) where

consistent power sources are unavailable. FNs require periodic recharging when

powered by large batteries. Reviving the FNs when batteries are depleting using

renewable energy or human intervention to ensure continuous services is challeng-

ing until the next recharge cycle [38]. However, ensuring energy preservation and
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potential consumption of preserved energy until the next recharge cycle is critical to

improving network life.

2. Limited computation: FNs have limited energy and computational capabilities, such

as processing and memory. The smart vehicles are equipped with devices such as

OBUs, sensors, processors, memory, global positioning systems and wireless tech-

nology. These devices enhance the computational capability of vehicles to pro-

cess the tasks offloaded by FNs or other vehicles. However, the vehicles offload

computation-intensive and delay-sensitive tasks to FNs based on the vehicles’ avail-

able resources.

3. Mobility and location of vehicles: The vehicles are considered mobile nodes in

FVNETs. The mobility of the vehicles in FVNETs is constrained by the road net-

work. Since the FVNETs cover the highway segment, the vehicles maintain a steady

velocity with high mobility [49]. This steady mobility of vehicles leads to accurately

predicting the location of vehicles in the FN coverage area.

4. Vehicle density: Vehicle density in FVNETs depends on the vehicles’ speed, direc-

tion and mean arrival and departure rates. The vehicles’ mean arrival and mean

departure rates follow a Poisson distribution. Vehicles’ interarrival time follows an

exponential distribution. Further, a free flow discrete time traffic model is considered

for uninterrupted and homogenous vehicular traffic over a fixed length of overlapping

coverage regions [38, 50].

5. Interim connections: The moving vehicles in overlap coverage regions of FVNETs

establish interim connections with stationary FNs for vehicular services. The con-

nection between vehicles and FNs is temporary due to the high mobility of vehicles

on highways. Further, it is difficult to furnish seamless services for the entire high-

way due to the installation cost of stationary FNs [51].

6. Network topology: A dynamic hierarchical topology organizes FNs, vehicles and the

cloud, as shown in Figure 1.1. The vehicles are connected to a FN using star topology.
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However, there are rapid changes in the star topology due to interim connections

between FNs and vehicles [52].

2.1.1 Resource Management in FVNETs

The improper management of offloaded data to the FNs leads to a significant increase

in energy consumption and subsequently impacts the throughput. Therefore, many re-

searchers are paying attention to improving the performance of FVNETs. Saad et al. [53]

have presented an overview of the load-balancing self-optimization models in 5G mobile

networks. The load balancing model moves the surplus traffic of heavily loaded cells to

their neighbour cells to make a uniform load among the cells. They have listed the techni-

cal challenges and suggested solutions for mobile networks. Patil et al. [54] have compared

intelligent computing technologies such as cloud and edge to accommodate the demands

of delay-sentient applications in VANETs based on different performance metrics.

The 5G feature, C-V2X, provides two types of communications for different applica-

tions in FVNETs, namely infrastructure-based communication (i.e., V2I/I2V) and V2V

communication [55], as shown in Figure 2.1. In FVNETs, roadside infrastructures, such

as RSUs, are considered as FNs [24]. V2V communication plays a vital role in furnish-

ing safety applications. V2I/I2V communication plays a role in collecting real-time data

at RSUs for traffic management, smart navigation, logistics and remote intelligent control.

These V2I/I2V communications furnish essential information for condition and location-

based utilities, such as safe distance warnings, speed restriction information, accident warn-

ings and traffic jam warnings [56].

Facilitating a highly reliable 5G network for realizing V2X communication services

with low latency is challenging because V2X communication services are foremost for

driver safety applications. Husain et al. [57] have outlined the current efforts within 3GPP

aimed at enhancing V2X communications and the role of the 5G network in ensuring ex-

pected capacity, lower latency, throughput and high reliability in V2X services. High mo-

bility of vehicles in VANETs leads to uncertainty in channels. Hence, Asim et al. [55]

have integrated non-orthogonal multiple access in V2X communications to enhance traffic
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Figure 2.1: Communications in FVNETs.

efficiency, reliability and management in 5G transport systems.

Mehrdad et al. [58] have presented two-way cooperative communications in inter-

vehicular networks for communication, namely vehicle-assisted V2V communication and

access point-assisted V2V communication. In vehicle-assisted V2V transmission, the source

and relay transmission channel is adapted as cascaded Nakagami. In access point-assisted,

the transmission channel between the source and the access point is adapted as Nakagami.

Tuan et al. [59] have explored the I2V and infrastructure-to-infrastructure (I2I) cooper-

ative communications in an energy-limited vehicular network for driving assistance and

efficient traffic management services in ITS. Cooperative techniques, such as relay se-

lection and multiple-input-multiple-output (MIMO), are applicable for enhancing perfor-

mance and mitigating the energy consumption of FNs. Chapters 4-7 of this thesis examine

infrastructure-based communications between FNs (i.e., RSUs or HPNs) and vehicles for

data transmission services in FVNETs. I2V communication is used for downlink transmis-

sion from FNs to vehicles, and V2I communication is used for uplink transmission from

vehicles to FNs. Additionally, these chapters leverage I2I cooperative communication to

coordinate FNs within FVNETs.

Information dissemination in VANETs, where the wireless channel is shared by vehi-

cles within the communication range of each other, is affected by the node interference

phenomenon. This node interference in the network limits the network’s capacity due to

the near-linear spatial distribution of vehicles. Therefore, the performance and condition of

the network in disseminating information are affected by the range and rate of transmission
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of information [60]. Wang et al. [61] have presented a system architecture to assist the

RSUs in data dissemination in V2I communication. They exploited the benefits of V2V

communication among vehicles for sharing data. The author proposed a clustering method

where vehicles join and leave based on their velocities. Rmaiyan et al. [62] have used vehi-

cles as intermediate nodes for store-and-forward to transfer data from a fixed source node

to a destination node. They addressed the communication problem between two nodes that

were far from their communication range using vehicles as relays. Wang et al. [63] have

proposed a store-carry-forward scheme to reduce the transmission time of vehicles in dark

areas. The dark areas are the coverage areas not covered by the range of stationary RSUs

in VANETs. Hence, their proposed scheme uses the vehicles in both directions as relays

for transmitting data to the target vehicles in the dark areas.

The dynamic topology arising from the rapid mobility of vehicles and uncertain channel

conditions within vehicular networks presents a challenge for data transmission, especially

for large-size data. Hence, Chen et al. [64] have proposed a strategy for cooperative com-

munication to transmit large-size data by exploiting V2I, V2V and the mobility of vehicles

in the network. They provided the relationship between infrastructure, vehicles, vehicular

density and V2V and V2I communications transmission rates. The study in [65] provides

the cooperation between centralized and decentralized data transmission in VANETs. In

centralized data transmission, RSUs disseminate the data using I2V and V2V cooperative

communications. RSUs coordinate with each other by transferring undelivered requests.

In decentralized data transmission, vehicles moving in opposite directions are used for data

sharing via V2V communication. In [29,66], the authors have focused on data propagation

for seamless communication between RSU and OBU in VANETs. However, data propa-

gation tends to fail due to the mobility of vehicles. In this thesis, infrastructure-based (i.e.,

I2V and V2I) cooperative communications are used for data dissemination between FNs

and vehicles in Chapters 4-7. On the other hand, I2I communication is used in these chap-

ters for data dissemination among FNs.

The existing resource management algorithms proposed by the researchers [24–27, 39,

67–79] can be segregated considering objectives like service capability, throughput, QoS,

serviceability, spectral efficiency, etc.
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2.1.1.1 Service Capability

The DRO scheme in [24] coordinates the resource allocation amidst pairs of FNs in fog-

enabled connected vehicle networks. The DRO scheme maximizes the network’s service

capability by reducing vehicles’ RBs amid pairs of FNs. The problem of RBs reduction is

formulated as a maximum weight matching problem to obtain the set of edges as a solution

for optimal RBs shifting among FNs. As a result, there is a lowering in throughput, ser-

viceability, availability, and service capability as vehicles arriving at the network increase

using this scheme. However, the DRO scheme enhances the throughput, serviceability,

availability, and service capability when integrated with the SA algorithm [25].

2.1.1.2 Throughput

A downlink sum-rate optimization (DSRO) scheme in [67] grants the resource allotment us-

ing the Hungarian method among remote radio heads (RRHs) in fog radio access networks

(F-RANs). The DSRO scheme enhances the throughput and serviceability of the network.

However, the authors do not consider the network’s service capability and availability. A

joint user association technique in [25] uses graph colouring and resource partitioning to

reduce the co-tier interference among nodes in two-tier heterogeneous networks. This ap-

proach improves user throughput. However, serviceability is reduced due to an imbalance

among FNs when there is an increase in vehicles connecting the network. Finally, a joint

user association and user scheduling approach in [68] addresses load balancing using a

network-wide utility maximization problem over downlink in heterogeneous networks. The

nonconvex throughput is obtained using a concave function with user scheduling. In [68],

user association and user scheduling (UA-US) are implemented using the distributed con-

vex optimization approach.

2.1.1.3 Quality of Service

The semi-Markov decision process (SMDP) in [69] facilitates video streaming in VANETs.

Their proposed resource allocation (RA) scheme provides better QoS by increasing the net-

work’s bandwidth. However, it leads to an imbalance amid FNs. Various device cooperative
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approaches, such as SA in [25], capacity aware in [27], and content-aware in [26], provide

better network utilization and serviceability for traditional networks. However, these coop-

erative techniques use resource scheduling, leading to an inequitable imbalance amid FNs,

impacting network utilization efficiency and serviceability. The fuzzy-based systems for re-

source coordination in [70] are proposed to decide on running applications on fog or cloud

layers in VANETs backed by a software-defined network. It improves network utilization

efficiency. Priority queue, fuzzy and analytical hierarchy process, a priority-based schedul-

ing algorithm, is proposed in [71] to optimize the latency issues in mobile fog computing.

A fair and efficient multi-resource allocation scheme is proposed in [72] to maximize the

resource utilization of F-RANs while satisfying economic properties. Furthermore, Adnan

et al. [73] have proposed a priority-based scheduling algorithm to address QoS concerns in

software-defined vehicular networks. The priority-based scheduling mechanism improves

QoS by categorizing the traffic flow into safety and non-safety queues. Several researchers

in [74–76] have dedicated their efforts to addressing network load balancing issues in pur-

suit of achieving an optimal resource allocation. These load-balancing challenges become

particularly prominent as the number of vehicles entering the network rises significantly.

2.1.1.4 Serviceability and Spectral Efficiency

The ARB in [39] is proposed for addressing imbalance among RRHs. The ARB scheme

uses the backpressure algorithm and the Hungarian method to select user equipment and

maximize the serviceability of the F-RANs. However, the authors do not assess other

performance measures, such as resource utilization efficiency and service capability, which

disturb the network performance as the number of vehicles entering the network rises. The

methods in the literature [25,67,69] provide data optimization but need to furnish resources

effectively due to the inexact results. Various researchers have been focused on spectral

efficiency, a performance metric for network evaluation [77]. However, the optimization

techniques proposed in [78] and game theoretical models [79] can be used to enhance this

metric.
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2.1.2 Energy-Efficiency in Vehicular Networks

Kansal et al. [45] have presented a systematic review of FC and its advantages in au-

tonomous vehicles, smart traffic control, IoV, and many more applications. In traditional

vehicular networks, there are various restrictions, such as latency, location cognition, and

real-time responses, for delay-sensitive applications. They are addressed by integrating FC

with vehicular networks, referred to as vehicular fog computing (VFC) [16]. Moreover,

vehicles endowed with computational capacities produce a range of data that can be trans-

ferred to the FN for optimized processing [46]. However, energy consumption, response

time and throughput have become necessary to enhance the efficiency of the network. Many

researchers are dedicating attention to these research directions to improve the performance

of FVNETs. Hammad et al. [80] have presented a greedy scheduling algorithm called the

nearest fastest set (NFS) scheduler. The NFS schedules faster vehicles among those close

to the RSUs. Zhang et al. [81] have offered an offline scheduling algorithm for switching

on or off RSU. This algorithm minimizes the energy usage cost by multiple RSUs while

providing services to the vehicles.

Abdulla et al. [40] have proposed online and offline scheduling algorithms for constant

bit rates. More specifically, online algorithms based on the greedy approach have been

offered to schedule energy-efficient vehicles within the RSU range. An offline scheduling

algorithm is presented to reduce downlink energy communication costs while providing

services to vehicles’ requests within the coverage of RSUs. Atoui et al. [82] have offered

offline and online scheduling for energy harvesting in RSUs to maximize the number of

vehicles serving. Satish et al. [32] have presented an energy-efficient nearest neighbour

forwarder (NNF) augmented by the MCF algorithm. The MCF-NNF schedules a relay

vehicle near RSU to deliver the remaining data to a vehicle in the uncovered region of

RSU. Task scheduling approach in [83] minimizes the offloading energy usage of IoT de-

vices in IoT-fog-cloud architecture. This approach ensures the maximum tolerable delay

for tasks considering multi-user multi-fog node scenarios. Jang et al. [84] have proposed

an optimal task-offloading strategy for vehicular edge computing for preserving energy

in energy-limited vehicles. This offloading strategy significantly reduces the energy con-
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sumed by vehicles when offloading tasks to edge nodes.

Asim et al. [55] have proposed a non-orthogonal multiple access multicasting-based

energy-efficient power allocation scheme for V2X communications. Their proposed scheme

enhances the energy efficiency of RSUs and QoS of vehicles by transforming vehicles’

power allocation from the RSUs problem into concave-convex fractional programming

through convex approximation. Using a normalized min-max algorithm, Amir et al. [85]

have proposed two algorithms for downlink traffic scheduling in vehicular networks. The

first algorithm is a greedy algorithm for selecting RSU, and the second algorithm assigns

the minimum energy time slot. Nazeri et al. [86] have proposed an evolutionary-based

energy-aware scheduling in FC to reduce energy consumption. Pejman et al. [87] have pro-

posed an energy-aware task scheduling to minimize energy consumption in FC using the

dynamic voltage and frequency scaling method. However, they generated task sequences

using an evolutionary algorithm. Chapters 6 and 7 present the energy-efficient resource

allocation and task scheduling algorithms in FVNETs, respectively. Specifically, Chapter

6 presents the efficient RA algorithm to minimize the energy consumption of FNs. Chapter

7 offers the energy-efficient task scheduling algorithm in FVNETs to reduce the energy

consumption of FNs and enhance the network throughput.

2.1.3 Task Scheduling in FVNETs

Edge computing and FC are identical in processing the data on computing edge nodes

near the end user. However, the rationality between edge computing and FC is in using

computing resources from different types of devices. Edge computing was initiated by

IBM and Nokia Siemens Network in 2013, whereas FC was introduced by Cisco in 2012

[88]. Edge computing focuses on the devices from local networks or mobile and embedded

devices that generate data. In contrast, FC focuses on nodes situated at the network’s edge

so that the data can be distributed among edge nodes called FNs for processing [88].

Vehicular services require high computational capability for processing. Hence, the ve-

hicles offload these tasks to FNs for computational resources and immediate response in

FC [10]. Moreover, the IoV provides connected vehicles for vehicular applications. As a
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result, a massive amount of IoV data will be generated to process vehicular services. Hence,

to meet the computational needs of IoV data, the vehicles are used as computational infras-

tructures in FC called VFC [89]. Arnav et al. [90] have presented the vehicular congestion

identification system using the IoV for vehicular networks. This system is feasible and

performs accurately in various scenarios. Feng et al. [46] have proposed an autonomous

vehicular edge framework using ant colony optimization to increase the computational ca-

pability of vehicles in a dynamic vehicular environment. This framework addresses job

assignments by scheduling the jobs using the idle resources of vehicles.

Jiang et al. [91] have proposed a delay-aware task offloading (DATO) scheme for

scheduling heterogeneous deadline-sensitive tasks in fog networks. The DATO is a ba-

sic offloading model that minimizes overall task disutility by capturing the critical features

of the fog network. PSG algorithm is presented by Azizi et al. [41] to schedule diverse

IoT tasks in a fog environment. This algorithm tries to minimize tasks’ deadline violation

time by considering tasks that did not meet their deadline. It also optimizes the energy

usage of FNs and maximizes the system’s active time while fulfilling the QoS necessities

of tasks. Deadline-aware dynamic task placement (DDTP) process to schedule the tasks

in appropriate FNs in fog networks is proposed by Sarkar et al. [92]. DDTP is a federated

framework containing many fog clusters, and it chooses the suitable FN to place the tasks

such that communication time and task completion time are reduced while meeting dead-

line constraints. Fair scheduling is proposed by Mithun et al. [93] for offloaded tasks in FC.

This scheduling strategy increases the number of tasks meeting deadline constraints while

retaining network stability.

Mainak et al. [94] have proposed a delay-dependent priority-aware task offloading ap-

proach to schedule IoT tasks among suitable FNs. This approach uses the multilevel-

feedback queue to distinguish the priority of the tasks, organizes the tasks based on the

resource vacancy in FNs, and dispatches delay from IoT devices to diminish the offload-

ing time while satisfying the deadline. Tang et al. [95] have proposed a greedy offloading

decision algorithm (GODA) to optimize the latency in VFC. GODA is a greedy schedul-

ing strategy for deciding task offloading among vehicles in VFC, considering the vehicles

in the FN’s vicinity as mobile FNs. Zhu et al. [96] have suggested Fog Following Me
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(Folo), a resolution to offload tasks among mobile FNs. Folo achieves optimal latency and

quality-balanced task assignment in VFC by considering restrictions on fog capacity, qual-

ity loss, and latency. An application offloading strategy is presented in [97] using swarm

optimization for a fog environment. The accelerated particle swarm optimization approach

detects suitable FN for real-time tasks based on QoS parameters such as resource usage and

computation cost to reduce the overall delay in computation time and average cost. In this

thesis, FC architecture is used in vehicular networks. Chapter 7 presents the delay-aware

task scheduling in energy-limited FVNETs to reduce the energy usage of FNs in overlap

coverage regions of FVNETs.

2.1.3.1 Reinforcement Learning for Vehicular Networks

Recently, many RL-based algorithms were proposed for resource allocation [98, 99], task

offloading [10, 38, 100] and relay selection [101] in vehicular networks. For efficient re-

source allocation in VFC, Seung et al. [98] have proposed an RL-based algorithm consid-

ering the vehicles’ movement and parking status from the smart environment. Further, the

authors combined the RL algorithm with a heuristic algorithm to allocate fog resources and

minimize latency. Dong et al. [99] have presented an RL technique to learn RA in a wire-

less network where the user’s mobility is high. They trained the RL agent by increasing the

mobility of each user sequentially so that the RL agent could learn accurately. RL’s upper

confidence bound (UCB) can be used for making sequential decisions under uncertain sit-

uations as it quickly convergences [102, 103].

Peng et al. [10] have proposed UCB learning-based task offloading to reduce energy

consumption using resources of idle vehicles in vehicular collaborative edge computing.

Q-learning-based protocol for energy-efficient adaptive scheduling using RL (PEARL) is

presented in [38] to schedule tasks in vehicular networks. The authors assume that the FNs

are equipped with energy-limited rechargeable batteries. Hence, PEARL tries to preserve

the FNs’ energy during discharge and enhance the total completed request and throughput

per vehicle. An offloading decision-based state-action-reward-state-action (OD-SARSA)

is proposed for time-critical task offloading and resource allotment by Taha et al. [100].

OD-SARSA is a reinforcement learning technique for addressing resource management
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problems in mobile edge computing to mitigate system cost, processing delay and energy

usage. An RL method is proposed to select the relay for broadcasting the task in VANETs,

which uses random topology and dynamic behaviour in [101]. They used neural network

classification to select forwarding nodes.

The resource management affects the performance of the fog-enabled networks. Hence,

Wei et al. [104] have proposed a joint optimization approach for RA in fog-enabled net-

works using deep reinforcement learning (DRL). They used an actor-centric RL framework

to make decisions and reduce latency. e-Divert [105], a multi-agent DRL technique, is pro-

posed using a convolution neural network (CNN) to enhance cooperation among vehicles

and competition among them and charging stations to improve energy efficiency and data

transmission such that energy consumption is reduced. Li et al. [106] have proposed a

DRL-based method to adjust the user’s transmit power to share a similar spectrum with

another user. This approach trains users to transmit their data with the required QoS in

vehicular networks. He et al. [107] have proposed a DRL-based integrated framework for

vehicular networks. This framework coordinates the caching and computing resources for

the vehicles in the network to enhance the performance of next-generation vehicular net-

works. A task scheduling algorithm using Q-Learning is presented in Chapter 7 to reduce

the energy consumption of FNs in FVNETs. The proposed algorithm schedules the delay-

sensitive tasks among FNs of an overlap coverage region in FVNETs to reduce the energy

consumption of FNs and maximize the network throughput.

2.1.3.2 Fuzzy Logic for Vehicular Networks

Fuzzy logic is used in various domains, such as image processing, artificial intelligence,

control systems, medical diagnosis and natural language processing. Fuzzy logic was intro-

duced by Zadeh in 1965, and it is used to make decisions from uncertain information [108].

Fuzzy logic has three stages: 1. Fuzzification 2. Fuzzy inference engine, and 3. Defuzzifi-

cation. Figure 2.2 shows the association among these stages in the fuzzy logic system.

Fuzzification takes the crisp values (i.e., input parameters), such as the vehicle’s ve-

locity and distance from FNs, and maps to fuzzy values using membership functions. The

fuzzy inference engine maps the fuzzy values obtained from fuzzification into fuzzy values
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Figure 2.2: Fuzzy logic system.

using predefined inference (i.e., IF-THEN) rules. These inference rules are defined from

numerical data. For instance, IF velocity is very high and distance is very close THEN

mark the vehicle to high. Then, the defuzzification maps the fuzzy values obtained from

the inference engine to crisp values based on output membership functions.

Sathish et al. [108] have presented the fuzzy-based reinforcement learning (FRL) tech-

nique for task offloading in vehicular fog networks. FRL schedules the vehicles to offload

IoT tasks to mobile FNs. This greedy-based technique mitigates the energy consumption

of FNs to improve the efficiency of the network. An intelligent localization method is

proposed by Lina et al. [109] to determine the location of a vehicle in the networks using

fuzzy logic. The vehicles are assigned the weights using fuzzy logic to locate the vehicle

location accurately. A fuzzy logic-based multi-hop intelligent broadcast protocol [110] is

proposed to decide whether to rebroadcast. It uses the user’s coverage, connectivity, and

mobility to make decisions on broadcasting using fuzzy logic. Multi-hop broadcast is a

mechanism for safety applications in vehicular networks, in which vehicles send beacon

notices to neighbouring vehicles and identify the multi-hop neighbours based on mobility,

distance and connectivity.

2.1.4 Applications of Cooperative Connections in FVNETs

A survey on cooperative vehicular networking presented by Ahmed et al. [111] gives an

overview of scheduling, routing, and security in vehicular infrastructure. Cooperative con-

nections/communications, such as I2V/V2I and V2V, assist in ITS for smart navigation,

efficient traffic management and remote intelligent control. The applications of coopera-

tive communications are discussed as follows.
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2.1.4.1 Smart Navigation

The navigation system directs the vehicles towards their destination via optimal navigation

paths. Thus, the navigation system eases transportation through the network-wide optimal

paths. Therefore, Jeong et al. [112] have proposed a self-adaptive interactive navigation

tool (SAINT) for cloud-based vehicular networks. SAINT provides the interaction between

the cloud and the vehicles by collecting travel paths and vehicle navigation experiences.

Subsequently, the cloud uses the collected information for better navigation guidance for

other vehicles. Evolved SAINT+ [113] is proposed to reduce the vehicle delivery time

for emergency services. It also optimizes the navigation routes of vehicles affected by the

accident areas. A virtual path reservation strategy is used to guarantee fast delivery of

emergency services. Further, the vehicles near the affected accident areas are navigated

using the congestion contribution matrix and protection zones.

2.1.4.2 Traffic Management

Platooning is a road train formed by a group of vehicles without coupling between them.

A short distance is maintained between vehicles using V2V communication in platooning.

Van et al. [114] focused on highway platooning to enhance the fuel efficiency of trucks.

Green light optimal speed advisory (GLOSA) [115] is an information advisory on traffic

signals. GLOSA predict when the signal will turn green, and the driver can adjust the

speed to avoid congestion coming ahead. The authors in [115] also introduced the signal

guru, a software service that enables GLOSA to predict traffic signals by leveraging mobile

phones.

2.1.4.3 Self Driving Cars

Shen et al. [116] have proposed a context-awareness safety driving (CASD) framework for

safe driving in vehicular networks. CASD leverages the V2V cooperative communication

to share various information and provides vehicles with a safety action plan for three situ-

ations: line-of-sight unsafe, non-life-of-sight unsafe and the safe situation. In line-of-sight

unsafe conditions, the vehicles take over the driving, ensuring less risk when driver action
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fails. Stop-and-go traffic oscillation in VANETs causes uncomfortable driving and addi-

tional energy consumption. Therefore, adaptive cruise control (ACC) is widely used to deal

with traffic oscillations by leveraging V2V. Cooperative adaptive cruise control (CACC) is

an extension of ACC to maintain steady speed differences between vehicles in platoons and

guarantee V2V communication for safety [117].

2.2 Summary

This chapter discusses the challenges of FVNETs. Then, it discusses the advantages of in-

corporating FC in VANETs for vehicular services and various task scheduling approaches

in FVNETs. Different RL approaches and fuzzy logic for FVNETs are presented for energy

efficiency and task scheduling in FVNETs. Further, various cooperative communications

and ways of data transmission in FVNETs using these cooperative communications are

discussed. This chapter also presents the applications of cooperative communications in

FVNETs, resource management, and other challenges associated with resource manage-

ment in FVNETs.
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Chapter 3

Preliminaries

This chapter presents the preliminaries in FVNETs and common terminologies, followed

by the performance metrics, such as service capability, serviceability, availability, and

throughput, used to evaluate the performance of proposed algorithms and compare them

to the existing algorithms.

3.1 Preliminaries in FVNETs and Common Terminolo-

gies

The primary elements of FVNETs are vehicles and FNs. The connection between vehicles

and FNs is established using wireless access for the vehicular environment (WAVE) proto-

col stack of DSRC technology. DSRC is a prominent technology for utilizing distributed

channel access based on the IEEE 802.11p protocol [118]. Other components of FVNETs

are OBUs and FNs. Here, the applications are hosted by either FNs or OBUs, but the FNs

act as service providers to the vehicles. Therefore, the devices that consume the services

are users, and the devices that host the applications are providers.

3.1.1 Dedicated Short-Range Communication

DSRC is a core part of the WAVE standard, installed in many countries since its release and

used for V2V communication [55]. According to the United States Department of Federal
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Communication Commission, 75 MHz licensed spectrum at 5.9 GHz frequency band is

assigned for DSRC [119]. The allocated spectrum is split into six SCH and one CCH, each

channel having a capacity of 10 MHz, as shown in Figure 3.1. SCH channels dispatch the

public safety messages such as collision warnings and driver safety messages. In addition,

SCH channels are also used for video and audio message dispatching. Similarly, the CCH

channel is used to dispatch control notices.

Figure 3.1: DSRC allocated spectrum.

3.1.2 Resource Block

A resource block (RB) is the smallest time-frequency unit in an OFDMA system. The

network must allocate RBs with power allocation before data transmission [35]. The LTE

channel bandwidth can be 1.4, 3, 5, 10, 15, or 20 MHz according to 3GPP specifications.

Further, all available spectrum is divided into RBs. Then, the number of available RBs

depends on the LTE channel bandwidth, shown in Table 3.1 [34, 120].

Table 3.1: Number of available RBs according to channel bandwidth

Channel bandwidth (MHz) 1.4 3 5 10 15 20

Number of RBs 6 15 25 50 75 100

3.1.3 Onboard Unit

The major operations of onboard unit (OBU) are ad-hoc routing, message transfer, wireless

radio access, and Internet protocol (IP) mobility [121]. Vehicles fitted with OBUs can es-

tablish connections with other vehicles or FNs. Further, the advances in dual-radio OBUs

enable full-duplex communication in vehicles. As a result, the vehicles can dispatch and

collect messages concurrently through identical channels. In this dual-radio OBU, the first
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radio is tuned to SCH, publicizing public safety notices, such as V2V crash-dodging noti-

fications and driver safety messages. The second radio switches among CCH and SCH in

uniform intermissions [122].

3.1.4 Fog Nodes

Fog nodes (FNs) are the network’s edge nodes in the FC. This thesis considers roadside

infrastructures (i.e., RSU and HPNs) as FNs [24]. These FNs are situated along the road

and use wireless communication technologies to furnish vehicular services to vehicles.

FNs are coordinated through the central supervisor and connected to the cloud through the

Internet.

3.2 Performance Metrics

The effectiveness of the proposed algorithms compared to existing algorithms is evaluated

in terms of service capability, serviceability, availability, throughput and FN’s energy con-

sumption. A brief description of these performance metrics is given as follows.

3.2.1 Service Capability

The service capability of a FN is the ratio of remaining resources to the total number of

resources in that FN at time slot t. Similarly, network service capability is obtained by

dividing the sum of remaining resources at each FN by the total resource capacity of the

network at time slot t. Detailed mathematical descriptions of a FN’s and network’s service

capability are provided in Chapter 4.

3.2.2 Serviceability and Availability

Serviceability and availability of the network are defined as the percentage of vehicles

getting services within the desired and minimum data rate (e.g., throughput and delay),

respectively [39, 123].
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3.2.3 Throughput

Throughput is the network’s capability to provide new RBs to vehicles. However, network

throughput at time slot t depends on the vehicle’s achievable rate and time fraction allotted

to the vehicle. We use the Shannon formula to find the vehicles’ achievable rate at each

time slot from each FN. A detailed description of finding network throughput at time slot t

is given in Chapter 5.

3.2.4 FN’s Energy Consumption

This thesis considers two different ways of FN’s energy consumption. Firstly, the FN

energy consumption in transmitting data in a downlink channel to a vehicle using transmis-

sion power. Secondly, the energy used by FN to process the task and transmit the data using

transmission rate. The energy consumption of a FN using transmission power depends on

the bandwidth of a FN and the distance of the vehicle from that FN, which is described in

Chapter 6. Similarly, the energy consumption of FN depends on processing the task and

amount of transmission rate required to transmit the data to a vehicle, described in Chapter

7.

3.3 Summary

This chapter discusses the preliminaries of FVNETs, establishing connections between ve-

hicles and FNs using WAVE protocol and available RBs according to FN channel band-

width and common terminologies. Then, it discusses the various performance metrics

considered to compare the performance of the proposed algorithms with the existing al-

gorithms.
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Chapter 4

A Dynamic Resource Management

Algorithm for Maximizing Service

Capability in FVNETs

This chapter presents dynamic resource management (DRM), a polynomial time algorithm,

for efficient resource allocation among FNs to improve their service capability and resource

utilization efficiency. In this chapter, we consider the set of vehicles in overlapped coverage

regions of two or more FNs and served by those FNs. The allocated RBs of vehicles in

the overlapped coverage regions are migrated between pairs of FNs. This migration of

RBs reduces the allocated RBs of vehicles in overlapped coverage regions to maximize

the service capability. The existing algorithms [24, 25, 39, 69] migrate the RBs of vehicles

between pairs of FNs without considering the load on FN. On the contrary, the proposed

algorithm migrates the RBs of vehicles between pairs of FNs, such that the load on FN

is minimal. The differences between the proposed and existing algorithms in terms of

performance metrics, fog environment and vehicles in overlapped coverage regions are

shown in Table 4.1.

The proposed algorithm is simulated by taking 10 to 50 FNs and 300 to 2100 vehicles

at an arrival rate of 10 vehicles/s. We compare the simulation results with DRO [24],

SA [25], DRO + SA and RO in terms of service capability, serviceability, availability,

throughput, and resource utilization efficiency. The simulation outcomes show that the

33



Section 4.0

Ta
bl

e
4.

1:
T

he
di

ff
er

en
ce

s
be

tw
ee

n
th

e
pr

op
os

ed
an

d
ex

is
tin

g
al

go
ri

th
m

s

W
or

k
Pe

rf
or

m
an

ce
m

et
ri

cs
Fo

g

en
vi

ro
nm

en
t

A
na

ly
si

s
Ve

hi
cl

es
in

ov
er

la
pp

ed

co
ve

ra
ge

re
gi

on

V
u

et
al

.[
24

]
Se

rv
ic

e
ca

pa
bi

lit
y,

se
rv

ic
ea

bi
lit

y,

av
ai

la
bi

lit
y

an
d

th
ro

ug
hp

ut

√
T

he
re

is
a

re
du

ct
io

n
in

th
e

se
rv

ic
e

ca
pa

bi
lit

y

an
d

se
rv

ic
ea

bi
lit

y
as

ve
hi

cl
es

co
nn

ec
tin

g
to

th
e

ne
tw

or
k

in
cr

ea
se

.

×

L
iu

et
al

.[
25

]
T

hr
ou

gh
pu

t
×

T
he

y
ha

ve
no

tc
on

si
de

re
d

th
e

se
rv

ic
e

ca
pa

bi
lit

y,

se
rv

ic
ea

bi
lit

y
an

d
av

ai
la

bi
lit

y.
×

D
ao

et
al

.[
39

]
Se

rv
ic

ea
bi

lit
y,

av
ai

la
bi

lit
y

an
d

th
ro

ug
hp

ut
×

T
he

y
ha

ve
no

tc
on

si
de

re
d

th
e

se
rv

ic
e

ca
pa

bi
lit

y.
×

H
e

et
al

.[
69

]
T

hr
ou

gh
pu

t,
ba

nd
w

id
th

ut
ili

za
tio

n
×

T
he

re
is

a
re

du
ct

io
n

in
th

e
se

rv
ic

ea
bi

lit
y

of
th

e

ne
tw

or
k.

×

Pr
op

os
ed

al
go

ri
th

m
(D

R
M

)

Se
rv

ic
e

ca
pa

bi
lit

y,
se

rv
ic

ea
bi

lit
y,

av
ai

la
bi

lit
y

an
d

th
ro

ug
hp

ut

√
W

e
en

ha
nc

e
th

e
se

rv
ic

e
ca

pa
bi

lit
y,

se
rv

ic
ea

bi
lit

y,

av
ai

la
bi

lit
y,

th
ro

ug
hp

ut
an

d
re

so
ur

ce
ut

ili
za

tio
n

ef
fic

ie
nc

y
as

ve
hi

cl
es

co
nn

ec
tin

g
to

th
e

ne
tw

or
k

in
cr

ea
se

.

√

34



CHAPTER 4. A DYNAMIC RESOURCE MANAGEMENT ALGORITHM

proposed algorithm reduces occupied RBs among FNs by migrating RBs of the set of

vehicles and achieves better service capability, serviceability, availability, throughput and

resource utilization efficiency than other migration algorithms, such as DRO, SA, DRO +

SA and RO. The major contributions of this chapter are listed as follows.

1. We consider allocating RBs to newly arrived vehicles by migrating RBs between

pairs of FNs without affecting their services. The RBs of vehicles are migrated to

minimize overall allocated RBs.

2. The optimal RBs migration problem in FVNETs is formulated into ILP by consid-

ering the variables that impact FNs’ resource constraints and the network’s service

capability.

3. We propose a polynomial-time DRM algorithm for optimal migration of RBs be-

tween pairs of FNs to minimize occupied RBs among FNs and maximize the service

capability and resource utilization efficiency of the network by migrating RBs of a

set of vehicles.

4. We present extensive simulations to show that the DRM algorithm can achieve better

performance than the four existing algorithms in terms of service capability, service-

ability, availability, throughput, and resource utilization efficiency of the network.

The simulation outcomes show that the proposed DRM algorithm minimizes the occu-

pied RBs among FNs by migrating RBs of vehicles in the overlap coverage regions and

enhances the network’s service capability, serviceability, availability, throughput and re-

source utilization efficiency when compared to DRO [24], SA [25], DRO + SA and RO.

The results also show the impact of the increased number of vehicles connecting to the

network.

The rest of this chapter is structured as follows. The problem statement is presented in

Section 4.1. Section 4.2 gives the polynomial time DRM algorithm for RB migration by

formulating the RB migration problem into ILP. Section 4.3 demonstrates the evaluation of

the proposed algorithm with existing algorithms. The summary of this chapter is presented

in Section 4.4.
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4.1 Problem Statement

Consider a FVNETs in a city area A in which G number of FNs are deployed. Each FN i,

1 ≤ i ≤ G, has a communication range R and it can overlap with the communication range

of neighboring FN j, 1≤ j ≤ G, i ̸= j. A FN i provides services to the set of vehicles Pt(i)

reaching its communication range at time slot t. Note that the Poisson distribution is used

for the arrival rate (departure rate) of vehicles to (from) the network with mean value λ (or

µ). Table 4.2 summarizes the different notations and their definitions used in this chapter.

Table 4.2: Important notations and their descriptions in the system model

Notation Description

G Number of FNs

λ (or µ) Mean arrival (or departure) rate of vehicles

Li Capacity of ith FN in terms of RB units

Z Set of overlapped coverage regions in FVNETs

N A set of natural numbers

E Expected value

Pt(i) A set of vehicles served by ith FN at time slot t

Ot(i) Currently occupied RBs of ith FN at time slot t

At(i) Available RBs of ith FN at time slot t

Sct(i) Current service capability of ith FN at time slot t

Sct Service capability of the network at time slot t

P in
t (i) A set of vehicles reaching to the ith FN at time slot t

Pout
t (i) A set of vehicles leaving from the ith FN at time slot t

Pt(ij)
A set of vehicles in overlapped coverage area between

pairs of FNs i and j at time slot t

p∗t (ij)
An optimal set of vehicles for migrating RBs between

pairs of FNs i and j at time slot t

P∗
t (i)

An optimal set of vehicles served by ith FN after

resource blocks migration at time slot t

bik Number of RBs allocated by ith FN to kth vehicle

Let bik be the total number of RBs required for kth vehicle with data rate rk from the

ith FN, when kth vehicle is present in the coverage area of ith FN. It can be obtained as
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follows [24, 124].

bik =

⌈
1

B × log2(1 + ψ(ik))
× rk

⌉
(4.1)

where B denotes the bandwidth that is used by one RB in a period of 1 ms, which is

equivalent to 180 KHz [125], bik ∈ N, and ψ(ik) is the signal strength between the ith FN

and kth vehicle on the data channel [126].

Let P in
t (i) be a set of vehicles arriving to ith FN at time slot t and Pout

t (i) be a set of

vehicles departing from ith FN at time slot t, after successful completion of their tasks. In

this situation, the mean departure rate of the vehicles from the network (µ) is obtained as

follows [24].

µ = E

[
G∑

i=0

|Pout
t (i)|

]
(4.2)

At time slot t, the number of vehicles served by FNs is denoted by Pt(i) and can be

defined as follows [24].

Pt(i) = Pt−1(i) ∪ P in
t (i) \ Pout

t (i) (4.3)

In a particular scenario, the number of vehicles getting service is limited due to resource

constraints. In this circumstance, the remaining RBs, At(i) of ith FN, after assigning the

RBs to vehicles in Pt(i), can be obtained as follows [24].

At(i) = Li −Ot(i) = Li −
|Pt(i)|∑
k=1

bik (4.4)

where Ot(i) and Li are the occupied RBs and capacity of the ith FN at time instant t,

respectively. The service capability of ith FN at time slot t is given as follows [24].

Sct(i) = At(i)×
1

Li

(4.5)

In the similar fashion, the network service capability at time slot t can be determined

as follows [24].

Sct =
G∑

i=0

At(i)×
1∑G

i=0 Li

(4.6)
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The deluge of vehicles arriving at the network can connect to preferred FNs based on

the signal strength and favorite contents. The number of vehicles connecting to these FNs

increase rapidly over time. It can exhaust the capacity of FNs and become impotent to

provide the services because of limited resource constraints. As a result, the new incoming

vehicles connect to the FNs that own inadequate resources. In order to provide better

services, the services of the vehicles are migrated between pairs of FNs without increasing

the number of RBs and balancing the load among the FNs. Alternatively, FNs are required

to assign a large number of RBs to satisfy these vehicles’ required latency and data rate.

Otherwise, it leads to a shrink in the network service capability and resource utilization

efficiency.

In this chapter, we consider allocating RBs to newly arrived vehicles among the FNs

without increasing the number of RBs, such that the following objectives are fulfilled.

1. Network service capability is maximized.

2. Network serviceability is maximized.

3. Network availability is maximized.

4. Network throughput is maximized.

5. Resource utilization efficiency is maximized.

4.2 Dynamic Resource Management Algorithm

The proposed algorithm, DRM, is a resource management algorithm for maximizing ser-

vice capability in FVNETs. The objective of this algorithm is to maximize the service

capability, serviceability, availability, throughput, and resource utilization efficiency of the

networks without increasing the number of RBs of the FNs. The basic idea of the proposed

algorithm is as follows. Firstly, DRM identifies the vehicles in the overlapped region of the

pairs of FNs and determines the number of RBs allocated to those vehicles from the FNs.

Then DRM migrates the RBs of vehicles between the pairs of FNs in order to reduce the

occupied RBs on the FNs. It is noteworthy to mention that the reduction of RBs leads to an
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increase in service capability, serviceability, availability, throughput, and resource utiliza-

tion efficiency of the networks. The detailed description is discussed as follows.

At time slot t, assume that the number of vehicles |Pt(i)| connecting to preferred FNs

increases, for which the resources of the FNs are tends to exhaust. Next, consider the

vehicles present in a coverage area of two or more FNs and served by those FNs. Let

Pt(ij) be a set of vehicles in an overlapped coverage area of ith FN and jth FN at time slot

t. The set of vehicles, Pt(ij), between pairs of FNs i and j, 1≤ i, j ≤ G, i ̸= j can be

obtained as follows.

Pt(ij) = Pt(i) ∩ Pt(j) (4.7)

The Pt(ij) represents vehicles for which RBs can be migrated between pairs of FNs.

Let Z be the set of overlapped coverage areas in FVNETs. The vehicles’ RB migration

between pairs of FNs takes place only if there exists a minimum of one vehicle in the

overlapped coverage area (i, j) ∈ Z and is served by those pairs of FNs. Mathematically,

Pt(ij) ̸= ∅.

Let p∗t (ij) be an optimal set of vehicles whose RBs can migrate from ith FN to jth FN

and its converse p∗t (ji) be an optimal set of vehicles whose RBs can migrate from jth FN

to ith FN. Let P∗
t (i) and P∗

t (j) be an optimal set of vehicles served by ith and jth FNs after

optimal migration of RBs is performed. They can be derived as follows.

P∗
t (i) = (Pt(i) \ p∗t (ij)) ∪ p∗t (ji)

P∗
t (j) = (Pt(j) \ p∗t (ji)) ∪ p∗t (ij)

 (4.8)

The optimal RB migration among FNs in resource-constrained FVNETs can be formu-

lated as an ILP problem, which is discussed in Section 4.2.1.
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4.2.1 ILP Formulation for Optimal RB Migration

We define a boolean variable xkij to denote a vehicle k ∈ Pt(ij) chosen for migrating RBs

between ith and jth FNs, ∀(i, j) ∈ Z .

xkij =


1, If kth vehicle is chosen for migrating

RBs between pairs of FNs i and j

0, Otherwise

To maximize the network resource utilization efficiency, the vehicles in the overlapped

coverage area (i, j), ∀(i, j) ∈ Z , are considered for optimal migration of RBs between

pairs of FNs i and j, such that the overall occupied RBs by these vehicles is minimized.

The optimal service migration among pairs of FNs i and j can be formulated as follows.

min
∑

∀(i,j)∈Z

 ∑
∀k∈Pt(ij)

xkijr
k
ij

 (4.9)

subjected to ∑
∀k∈Pt(ij)

xkijr
k
ij ≤ δij,∀(i, j) ∈ Z (4.10)

∑
(i,j)∈Z

xkij ≤ |Pt(ij)|,∀k ∈ Pt(ij), 1 ≤ i, j ≤ G, i ̸= j (4.11)

∑
∀(i,j)∈Z

xkij ≤ 1, k ∈ Pt(ij) (4.12)

xkij ∈ {0, 1}, ∀k ∈ Pt(ij),∀(i, j) ∈ Z (4.13)

where rkij and δij are given by

rkij =



bik, if RBs of vehicle k are migrated from

jth FN to ith FN

bjk, if RBs of vehicle k are migrated from

ith FN to jth FN
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and

δij =

Li = At(i) +
∑

∀k∈Pt(ij)
(bik)

Lj = At(i) +
∑

∀k∈Pt(ij)
(bjk)

(4.14)

In Eq. (4.9), the objective is to minimize the overall allocated RBs in the network by

considering the vehicles in overlapped coverage regions in order to migrate the allocated

RBs between pairs of FNs subjected to the following constraints. The constraint (given in

Eq. (4.10)) guarantees that the RBs occupied by the vehicles, when optimal migration is

administered, do not surpass the capacity of the destination FN. The constraint (shown in

Eq. (4.11)) ensures that the at most |Pt(ij)| vehicles in a region (i, j) ∈ Z can be chosen

for migrating services between ith and jth FNs. The constraints in (Eq. (4.12)) and (Eq.

(4.13)) ensure a vehicle from all overlapped coverage regions is chosen only once for RB

migration. By solving objective function (Eq. (4.9)), we get the optimal set p∗t (ij), and

p∗t (ji) of vehicles (from Eq. (4.8)) for the optimal service migration between the pairs of

FNs i and j.

Theorem 4.2.1. The ILP optimization problem in Eq. (4.9) is NP-hard.

Proof: We use a well-known NP-hard problem, called seminar assignment problem (SAP),

which is a special case of general assignment problem (GAP) [127] and reduce it to our ILP

optimization problem in order to prove this theorem. Consider an instance of SAP having a

number of n students and m seminar halls. Each seminar hall r ∈m has a capacity of Br ∈

N. The assignment of student s ∈ n to a seminar hall r has a profit prs. The aim is to assign

a subset of students to seminar halls, such that the number of students in each seminar hall

r should be at most Br, and the total profit is maximized.

The instance of SAP is reduced to an instance of our ILP problem by mapping (one-

to-one) the seminar halls to FNs, the students to the set of vehicles, and rth seminar hall

capacity Br to ith FN capacity (given as Qi). However, the profit of assigning sth student

to rth seminar hall is negated in the mapping of the allocated RBs of ith FN to kth vehicle,

k ∈ Pt(ij). Here, we assume that there exists a set of vehicles to do RB migration. This

reduction can be carried out in polynomial time. Therefore, the instance of SAP has an

assignment if and only if the instance of ILP problem has an assignment. This establishes
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the NP-hardness of the ILP optimization problem.

Theorem 4.2.2. ILP optimization problem in Eq. (4.9) can be optimally solved in polyno-

mial time when G is fixed.

Proof: From Theorem 4.2.1, it is clear that the ILP optimization problem is NP-hard. Now

consider a graph model, G(V,E), representing the FVNETs with G FNs (Figure 4.1a), in

which set of vertices V represents the FNs and E is the set of edges in G. There exists an

edge between ith FN and jth FN if and only if there exists one or more vehicle(s) in the

overlapped coverage region and connected to those FNs as shown in Figure 4.1b. As we

know, this graph model can be solved in polynomial time when V is fixed [127]. Therefore,

the ILP problem can also be solved in polynomial time when G is fixed.

4.2.2 Algorithm Description

Algorithm 4.1 Dynamic Resource Management
Inputs: G, G(V,E)
Outputs: An optimal set of vehicles for RBs migration, service capability, serviceabil-

ity, availability, throughput and Resource utilization efficiency
1: for i← 1 to G do
2: Pt ← ∅
3: Ot(i)←

∑|Pt(i)|
k=0 bik

4: C ← Ot(i)
5: for each neighbor FNj of i, 1≤ j ≤ G, i ̸= j do
6: Find Pt(ij)
7: Pt←Pt ∪ Pt(ij)

8: Ot(j)←
∑|Pt(j)|

k=0 bjk
9: C ← C ∪Ot(j)

10: end for
11: MIGRAGERBS(Pt, i, C)
12: end for
13: Find service capability, serviceability, availability, throughput and resource utilization

efficiency

Algorithm 4.1 presents the proposed algorithm, DRM, for the optimal RB migration

in FVNETs. The graph model G(V,E) and G are given as input to Algorithm 4.1 and

generates an optimal set of vehicles Pt for RBs migration. Upon the arrival of vehicles in
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the overlapped coverage area (i, j), ∀ (i, j) ∈ Z at time slot t, it finds union of all vehicles

Pt, which is present in the overlapped coverage area of each neighbor of ith FN, say, jth

FN, 1 ≤ i, j ≤ G, i ̸= j. Also, it finds the set of the occupied capacity of each neighboring

FN, C (Step 5 to Step 10). The vehicles present in the set Pt are served by both ith and

jth FNs. For optimal RB migration, it invokes the MIGRATERBS (Procedure 1) with Pt

and C for FN i in Step 11 of Algorithm 4.1. For a given set of vehicles Pt and the set

Procedure 1 MigrateRBs(Pt, i, C)
Input: An optimal set of vehicles Pt

Output: RB migration
1: while Pt ̸= ∅ do
2: kmin, f ← FINDMINVEHICLE(Pt,C)
3: if kmin not served by f and At(f) ≥ bfkmin

then
4: Migrate the RBs of vehicle kmin from FN i to FN f
5: Update the remaining RBs and occupied capacity of f th and ith FNs
6: else
7: Skip the vehicle kmin from RB migration
8: end if
9: Pt ← Pt − {kmin}

10: end while

of occupied capacities C, the MIGRATERBS in Procedure 1 finds the vehicle kmin with

minimum RBs and the corresponding f th FN, such that the load on f th FN is minimum in

Step 2. Procedure 1 invokes FINDMINVEHICLE ,given in Procedure 2, to find the vehicle

kmin and the corresponding f th FN by taking Pt and C as input. In Procedure 1, the RBs

of vehicle kmin are migrated from ith FN to f th FN only if the remaining RBs of f th FN

satisfy the desired requirements of vehicle kmin and the vehicle kmin not served by FN f in

Steps 3 and 4. Then it updates the occupied capacity and remaining RBs of ith and f th FNs

in Step 5. Otherwise, it skips the vehicle kmin from the process of RB migration in Step 6.

The vehicle kmin is removed from the set Pt in Step 9. This process is repeated from Step

1 to Step 9 until the set Pt becomes empty.

4.2.3 An Illustration

Figure 4.1 shows as an example of FVNET for optimal RB migration between FNs using

the proposed algorithm, DRM, to reduce the occupied RBs in the group of FNs. This figure
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Procedure 2 FindMinVehicle(Pt, C)
function FINDMINVEHICLE(Pt, C)

min rb← max value
kmin ← −1
for vehicle k ∈ Pt do

if bf1k +Ot(f1) < bf2k +Ot(f2) then
if bf1k +Ot(f1) ≤ min rb then

min rb← bf1k +Ot(f1)
f ← f1
kmin ← k

end if
else

if bf2k +Ot(f2) ≤ min rb then
min rb← rbf2k +Ot(f2)
f ← f2
kmin ← k

end if
end if

end for
return kmin, f

end function

illustrates a scenario of FVNET with four FNs and ten vehicles. The vehicles that FNs

currently serve are indicated by solid orange lines, whereas dashed orange lines indicate the

vehicles whose services can be migrated to FNs. The number of RBs required from FNs to

satisfy desired requirements of vehicles is represented by numbers beside the orange lines.

Figure 4.1b is a graph representation of FVNET, corresponding to Figure 4.1a in which

vertices represent FNs and an edge between vertices exists if vehicles are located in an

overlapped coverage area of two FNs.

Firstly, the set of vehicles is connected to each FN given by FN1 = {V1, V2, V4, V7},

FN2 = {V3, V4, V5, V8}, FN3 = {V3, V6, V9} and FN4 = {V1, V2, V5, V6, V10}. The union

of vehicles in overlapped coverage region of two or more FNs is given by {V1, V2, V3, V4, V5, V6}.

The current occupied RBs of each FN for vehicles in the overlapped coverage region are

shown in Figure 4.2 (i.e., before RB migration). The set of vehicles connected to each FN

is given as input to Algorithm 4.1 for optimal RB migration among FNs.

When FN1 is chosen (i.e., iteration i = 1 of Algorithm 4.1), the set of all vehicles,

which are in the overlapped coverage area of FN1 and its neighbor FNs, is determined.
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(a) A FVNET with four FNs and ten vehicles.

(b) A graph model of Figure 4.1a.

Figure 4.1: An example for RB migration using the proposed algorithm.

They are Pt = {V1, V2, V4}. Here, the neighboring FN is FNj = FN2 and Pt(ij) = Pt

= {V4}. Similarly, when FNj = FN4, Pt(ij) = {V1, V2} and Pt = {V1, V2, V4}. The

migration algorithm MIGRATRBS defined in Procedure 1 is invoked with the set Pt and C

that consists of a set of vehicles for RB migration and occupied capacities of neighboring
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FN1 FN2 FN3 FN4

V1 292 433
V2 551 209
V3 328 288
V4 531 223
V5 278 200
V6 374 123

Ot(i) = 1082 328 374 633
(a)

FN1 FN2 FN3 FN4

V2 209
V4 223
V1 292

Ot(i) = 292 223 - 209
After iteration

i = 1
V3 288

Ot(i) = 292 223 288 209
V5 200

Ot(i) = 292 223 288 409
After iteration

i = 2
V6 123

Ot(i) = 292 223 288 532
After iteration

i = 3
(b)

Figure 4.2: An optimal RB migration using DRM scheme for FVNET. (a) Occupied RBs
of FNs before migration. (b) Occupied RBs of FNs after migration using DRM.

FNs, respectively. The vehicle kmin = V2 ∈ Pt and corresponding FNj = FN4 are chosen

for RB migration from FN1, since vehicle V2 is required minimum RBs (i.e., rbkmin
j =

209) from FN4 using FINDMINVEHICLE. After successful migration, the occupied RBs

of FN4 are updated to 209, and vehicle V2 is removed from Pt. Subsequently, vehicles V4

and V1 are chosen from Pt for RB migration. Note that these vehicles are selected based

on the minimum number of RBs. After the completion of iteration i = 1, the occupied RBs

of each FN are shown in Figure 4.2. In the next iteration (i.e., iteration i = 2 of Algorithm

4.1), the union of all vehicles in overlapped coverage region of FN2 and its neighbor FNs

is Pt = {V3, V5}.

After the iteration i = 2, the occupied RBs of FNs FN1, FN2, FN3, and FN4 are 292,
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223, 288, and 409, respectively. In the iteration i = 3, the FN3 is chosen and Pt = {V6} is

obtained. For migrating RBs of vehicle V6, the load on FN3 and FN4 is 662 (i.e., 288 +

374) and 532 (i.e., 409 + 123), respectively. Since FN4 contains minimum load, the RBs

are migrated from FN3 to FN4. The overall occupied RBs are 2417 before RB migration

and RBs are reduced to 1335 after the migration. Therefore, the percentage of reduction is

44.76% (i.e., (2417−1335)
2417

). Note that this reduction greatly improves the service capability,

serviceability, availability, throughput, and resource utilization efficiency of the network.

On the other hand, the percentage of reduction is 21.64% in the DRO [24], 43.67% in the

SA [25] and 16.75% in the RO. This clearly shows the superior performance of DRM over

the existing algorithms.

Theorem 4.2.3. The number of vehicles in the overlapped coverage region of two or more

FNs for RB migration from ith FN to each neighboring FNj (1 ≤ j ≤ G, i ̸= j) is at most

|Pt|.

Proof: The jth FN allocates the required RBs, bjk, when migrating service of a vehicle

k from ith FN if and only if the jth FN has sufficient available RBs (i.e., At(i) ≥ bjk).

Therefore, the total number of vehicles in the overlapped coverage region for RB migration

from ith FN to all the neighboring FNs is at most |Pt|. Note that the set Pt is the union of

the set of vehicles in the overlapped coverage region of each jth FN (1 ≤ j ≤ G, i ̸= j),

which is neighbor to ith FN (i.e., Pt = Pt ∪ Pt(ij)).

Theorem 4.2.4. The proposed algorithm DRM migrates the RBs of vehicle kmin ∈ Pt with

minimum load bfkmin
to f th FN, such that the load on f th FN is minimum.

Proof: Consider the FVNET example with G = 4 as shown in Figure 4.1a. When FIND-

MINVEHICLE( ) is invoked in Procedure 1 with Pt = {V3, V5} for FN2 (i.e. in iteration i

=2), suppose vehicle V3 is selected. Then the load on FN2 and FN3 is 551 (i.e., 223 + 328)

and 228 (i.e., 0 + 228), respectively. When the vehicle V5 is selected, the load on FN2 and

FN4 is 501 (i.e., 223 + 278) and 409 (i.e., 209 + 200), respectively. The proposed algorithm

DRM using FINDMINVEHICLE( ) selects vehicle V3 and the corresponding FN3 instead

of vehicle V5 with RBs 200. Since the load on FN3 is minimum, the RBs of vehicle V3 are
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migrated from FN2 to FN3. Therefore, it is proved that the proposed algorithm migrates

the vehicle’s RBs to the corresponding FN, such that the load on FN is minimum.

4.2.4 Complexity Analysis

The proposed algorithm DRM is presented in Algorithm 4.1, which invokes MIGRATERBS(

) (Procedure 1) with the occupied capacities and a set of vehicles in the overlapped cover-

age area (i, j), ∀(i, j) ∈ Z of pairs of FNs as input. In Procedure 1, Step 2 (i.e. Procedure

2) takes O(|Pt|) time in worst case as it iterates for O(|Pt|) times. Steps 3-9 take constant

time. The while loop iterates for O(|Pt|) times. Therefore, the overall running time of

Procedure 1 is O(|Pt|2) in the worst case.

In the Algorithm 4.1, for a given FNi, Step 5 finds a set of vehicles in the overlapped

coverage regions of each neighbor, say FNj , of ith FN, 1 ≤ i, j ≤ G, i ̸= j. It takes O(G)

time in the worst case. The outer for loop in Algorithm 4.1 takes O(G) time. Therefore,

the worst case time complexity of Algorithm 4.1 is given as O(G(G + |Pt|2)) ≈ O(G2 +

G(|Pt|2)).

4.3 Performance Evaluation

The performance of the proposed algorithm is evaluated in terms of service capability,

serviceability, availability, throughput, and resource utilization efficiency. The simulated

results were compared with existing service migration algorithms, such as DRO [24], SA

[25] and RO, in which FNs and vehicles are selected randomly.

4.3.1 Simulation Setup

The simulations were carried out by creating a virtual environment using Python (version

3.8) on PyCharm IDE 2020.1.3. This IDE was running on an Intel(R) Xeon(R) Gold 622R

CPU @ 2.90GHz 2.89 GHz processor, 64-bit operating system and 64.0 GB installed RAM.

The simulation environment, including network traffic details, was set up based on the setup

given in [24, 25]. We evaluate the execution of the proposed algorithm DRM in a network
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Figure 4.3: A road map of [5000 × 5000] square meters.

model with [10 ∼ 50] FNs deployed in a region size of [5000 × 5000] square meters as

shown in Figure 4.3. This road map shows an area of a city in which the deployment of

FNs ranges from 10 to 50. These FNs are deployed in such a way that their coverage area

overlaps with one or more FNs. We consider the mobility patterns of vehicles that arrived

and/or departed to/from the network. They follow the Poisson distribution in each time

slot. However, the mean arrival rate (λ) and mean departure rates (µ) are 10 vehicles/s

and 5 vehicles/s, respectively. It is noteworthy to mention that the velocity of vehicles is

not explicitly shown as it is modelled in the form of λ and µ. When FNs cannot allocate

required RBs, vehicles are served with minimum data rates ranging from 0.5 to 2 Mbps.

As the mean arrival rate exceeds the mean departure rate, the number of vehicles available

at the network increases in each time slot. The simulation results show the impact of the

increase in the number of vehicles on the service capability, serviceability, availability and

throughput of the network. The average results were obtained by conducting the Monte-

Carlo simulations up to one hundred five times (i.e., 15 times for each result) with 210 time

slots using queuing model. We use IEEE 802.11p as our MAC protocol to enable wireless

access in FVNETs. The Nakagami model is used to model the data/signal propagation.

This model is considered as the most realistic model. The different parameters considered

for the simulations with their values are given in Table 4.3.
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Table 4.3: Parameters and their values for simulations

Parameter Value

G [10 ∼ 50]

Vehicle density
Mean arrival rates (λ) 10 vehicles/s

Mean departure rates (µ) 5 vehicles/s

Number of vehicles with respect to one simulation 2100

Network area 5000 m × 5000 m

Radio communication range in single-hop communications 500 m

Bandwidth of FNs {10, 15, 20}MHz

Coverage radius of a FN 500 m

Cumulative number of service connections 2100

Required data rate [0.5 ∼ 2] Mbps

Time slot duration 1 s

Confidence interval or simulation duration 210 s

4.3.2 Service Capability

Service capability is the ratio between the remaining resources and the total number of re-

sources in a network [24]. Figure 4.4 shows the network service capability by the proposed

algorithm DRM algorithm and other existing migration algorithms, such as DRO, SA, and

RO. It is observed that the FNs possess sufficient RBs to satisfy requests of the vehicles

during initial time slots. Hence, all the algorithms produce better service capability in the

initial duration. However, as the deluge arrival of vehicles to the network increases, the

network service capability reduces due to the reduction in the available RBs of FNs. The

DRO algorithm uses the solution of maximum weight matching, which is the set of edges

without common vertices and reduces the RBs of those vehicles in the set of edges returned

by the matching solution. Therefore, there is a severe reduction in the service capability

using the DRO algorithm.

The SA and RO algorithms enhance the service capability of the network as the num-

ber of vehicles arriving at the network increases. The SA algorithm improves the service

capability using the graph colouring solution up to 97.80% and 24.03% when compared

to DRO and RO, respectively. However, the proposed algorithm outperforms the service

capability when compared to SA, RO and DRO + SA combined. The proposed algorithm
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Figure 4.4: Pictorial comparison of network service capability for DRM, DRO, SA, DRO
+ SA and RO algorithms.

enhances the service capability by 21.78%, 51.05% and 19.65% when compared to SA,

RO and DRO + SA, respectively. The rationality behind this is that it is greedy to select a

vehicle with minimum RBs.

4.3.3 Serviceability

The network serviceability is the percentage of vehicles getting served with desired re-

quirements in a network [39]. The serviceability of the network by the proposed algorithm

and other migration algorithms is shown in Figure 4.5. The simulation results show that

all the algorithms behave similarly during the initial time slot, as FNs contain enough RBs.

However, the serviceability of the network reduces as the deluge arrival of vehicles at the

network causes the FNs to be impotent in providing services to arrived vehicles. Therefore,

there is a reduction in the serviceability of the network. The SA and the DRO augmented by

SA (i.e., DRO + SA) behave similarly as vehicles arriving at the network increase. The SA

and RO algorithm improves the serviceability of the network. The SA algorithm improves

the serviceability by 52.42% and 13. 03% when compared to DRO and RO algorithms, re-
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Figure 4.5: Pictorial comparison of network serviceability for DRM, DRO, SA, DRO + SA
and RO algorithms.

spectively. However, the proposed algorithm is greedy in selecting vehicles with minimum

RBs for migrating RBs between pairs of FNs. Furthermore, it maximizes the RBs reduction

of vehicles in the overlapped coverage regions to accommodate vehicles with their desired

data rates. Therefore, the proposed algorithm enhances the serviceability by 15.55%, as

the vehicles connecting to the network increase when compared to the SA algorithm.

4.3.4 Availability

Availability is the percentage of vehicles getting served with minimum requirements in a

network [39]. Figure 4.6 presents the availability of the network satisfying incoming ve-

hicles with a minimum data rate of 0.5 Mbps. As incoming vehicles connecting to the

network increase, the capacity of FNs tends to exhaust in servicing vehicles. As a result,

the network availability reduces gradually. The DRO algorithm enhances the availability

better than the other algorithm. However, as vehicles arriving at the network increase at

time slot 150, the availability reduces. This reduction in availability is due to a few RB

migrations among pairs of FNs for the vehicles in overlapped coverage regions. However,
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Figure 4.6: Pictorial comparison of network availability for DRM, DRO, SA, DRO + SA
and RO algorithms.

the proposed algorithm reduces the allocated RBs by migrating RBs among pairs of FNs.

Figure 4.7 shows the percentage of RB reduction using the proposed algorithm and exist-

ing algorithms. The proposed algorithm maximizes the RBs reduction of vehicles up to

2.0% on average. Therefore, it is able to accommodate the vehicles with minimum data

rates when not allocated with required RBs. Moreover, the proposed algorithm improves

the availability of the network as vehicles connecting to the network increase by 08.94%,

17.41%, and 32.57% when compared to DRO, SA and RO, respectively.

4.3.5 Throughput

Network throughput is obtained using the vehicle’s achievable rates at different time slots

and from different FNs. Using the Shannon formula, the achievable rate of vehicle k from

FN i ∈ G, at time slot t, is Tt(ik) = B log2(1+ψ(ik)), where B is the available bandwidth

at ith FN. If αt(ik) is an allocated time fraction to vehicle k, then the throughput of ve-

hicle k from FN i is τt(ik) = αt(ik) × Tt(ik). The network throughput is obtained from∑
∀k∈∥Pt(i)∥ log

(∑
t

∑
i∈G τt(ik)

)
[25]. The network’s throughput is directly proportional
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Figure 4.7: Pictorial comparison of RBs reduction for DRM, DRO, SA, DRO + SA and
RO algorithms.

to the time fraction allocated to the vehicles getting services. As a result, the throughput

increases as the number of vehicles getting services increases. The network’s throughput

for the proposed and existing algorithms is shown in Figure 4.8, in which the throughput

increases gradually as the vehicles getting services from the network increase. Further-

more, the proposed algorithm can accommodate newly arrived vehicles at FNs by reducing

allocated RBs of vehicles that have already arrived without affecting their services. As a

result, the proposed algorithm improves the network throughput up to 57.31%, 20.74%,

and 39.13%, compared to DRO, SA, and RO algorithms, respectively.

4.3.6 Resource Utilization Efficiency

Resource utilization efficiency is the percentage of occupied RBs in a network. Figure 4.9

shows the distribution of the average percentage of RBs used in the network obtained from

the proposed and existing algorithms. The height of the box represents the distribution of

the percentage of occupied RBs of FNs. The blue diamond symbol denotes the average

percentage of RBs utilization of the entire network, and the red line inside the box denotes
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Figure 4.8: Pictorial comparison of throughput for DRM, DRO, SA, DRO + SA and RO
algorithms.

the median. When the arrival of vehicles at the network increases, it leads the FNs to be

overloaded with their capacity. As a result, FNs become impotent to provide services to the

new arriving vehicles. Thus, the existing algorithms, DRO, SA, and RO, provide 90.05%,

81.00%, and 83.38% of average RBs utilization, respectively. The DRO augmented by SA

provide 82.12% of RBs utilization. On the contrary, the proposed algorithm minimizes the

allocated RBs of vehicles that have arrived early in order to allocate RBs to newly arrived

vehicles. Thus, the proposed algorithm provides 78.46% of average resource utilization

by reducing allocated RBs of vehicles in overlapped coverage regions. Furthermore, the

allocated RBs of vehicles are reduced by migrating allocated RBs between pairs of FNs.

The percentage of RBs reduction as vehicles connecting to the network increases for the

proposed and existing algorithms is shown in Figure 4.7. The reduced RBs of vehicles

from FNs are reused to provide services to the vehicles that arrive. The simulation results

show that the proposed algorithm improves RB utilization efficiency by reducing allocated

RBs by 12.87%, 03.13%, and 05.90% as compared to DRO, SA, and RO algorithms, re-

spectively. Therefore, the proposed algorithm improves resource utilization efficiency by

allocating released RBs to newly arrived vehicles.
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Figure 4.9: Pictorial comparison of network resource utilization efficiency for DRM, DRO,
SA, DRO + SA and RO algorithms.

4.4 Summary

In this chapter, we propose a DRM algorithm to manage RBs allocation in FVNETs by

considering vehicles in overlapped coverage regions of two or more FNs and migrating

RBs of a set of vehicles among pairs of FNs. The objective of the proposed algorithm

is to improve the network service capability, serviceability, availability, throughput, and

resource utilization efficiency by minimizing allocated RBs. The proposed algorithm max-

imizes the service capability of the network by minimizing the occupied RBs of vehicles

that have already arrived. This reduction in allocated RBs is achieved by migrating allo-

cated RBs of a set of vehicles among FNs, and it is addressed by formulating ILP. The

simulation outcomes show that the proposed algorithm reduces occupied RBs among FNs

by migrating RBs of the set of vehicles and achieves better service capability, serviceability,

availability, throughput and resource utilization efficiency when compared to other migra-

tion algorithms, such as DRO, SA, DRO + SA and RO.
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Chapter 5

An Efficient Resource Orchestration

Algorithm for Enhancing Throughput in

FVNETs

This chapter presents an efficient resource orchestration (ERO) algorithm for coordinat-

ing RB allocation and offloading upstream services among FNs to maximize the network

throughput. ERO algorithm partitions the FNs’ coverage region into restricted and non-

restricted coverage areas. The restricted coverage area is a coverage region that does not

overlap with neighbouring FNs’ coverage. Similarly, FN’s coverage region overlaps with

neighbouring FN’s coverage regions, which are called non-restricted coverage areas. The

maximizing throughput problem is formulated to reduce assigned RBs of vehicles in the

non-restricted coverage areas. Hence, the assigned RBs of vehicles in the non-restricted

coverage areas are migrated between pairs of FNs to reduce allotted RBs. Further, a mini-

mum priority queue is constructed based on the occupied capacities of FNs to perform opti-

mal RB migration. The existing algorithms [24,25,39,68,69] from the above literature have

been designed to maximize the performance measures, such as throughput, serviceability,

availability, and service capability, while satisfying the vehicles’ desired requirements in

the FVNETs. Table 5.1 shows the difference between the existing and proposed algorithms

in terms of fog environment and vehicles in restricted and non-restricted coverage regions.

However, the proposed algorithm differs from the state-of-the-art in the following forms.
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1. Unlike [24, 25, 39, 68, 69], the proposed algorithm constructs the minimum priority

queue using occupied capacities of FNs.

2. Unlike [24, 68, 69], the proposed algorithm for migrating RBs amidst pairs of FNs

is greedy in choosing the vehicle with minimum RBs and greedy in choosing FNs

having the minimum occupied capacity.

The proposed algorithm, ERO, is simulated by considering the vehicle arrival rate as

5 to 10 vehicles/s and 150 to 3000 vehicles with 10 to 50 FNs in FVNETs. This chapter

considers the influence of the rise in the number of vehicles on the network’s throughput,

serviceability, availability and service capability for three scenarios: the mean arrival rate

is greater than the mean departure rate, the mean arrival rate is equal to the mean departure

rate and the mean arrival rate is less than the mean departure rate. The simulation out-

comes are compared with DRO [24], ARB [39], SA [25], and RO in terms of throughput,

serviceability, availability and service capability of the network. The simulation results

show that the ERO performs better than existing algorithms regarding throughput, service-

ability, availability, and service capability. The novel contributions of this chapter are listed

in the following points.

1. The throughput is maximized by migrating allotted RBs of vehicles in non-restricted

coverage regions such that the allotted RBs of these vehicles are minimized among

pairs of FNs.

2. We formulated the RBs migration problem in FVNETs to an ILP by scrutinizing the

variables influencing the network throughput and FNs resource constraints.

3. We propose an ERO algorithm, a polynomial time algorithm, which constructs the

minimum priority queue for optimal RBs migration between pairs of FNs to augment

the network’s throughput.

4. The ERO algorithm synchronizes the RBs allocation for offloading upstream services

such that throughput is maximized by partitioning the coverage of FNs into restricted

and non-restricted coverage regions.
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5. We present the simulation results showing that the ERO algorithm outperforms the

existing algorithms regarding throughput, serviceability, availability, and service ca-

pability. The results are obtained by considering the influence of the rise in the arrival

of vehicles to the network.

The remainder of this chapter is structured as follows. The system model and problem

statement are illustrated in Section 5.1. The ILP formulation of the problem is presented

in the same section. The description of the proposed ERO algorithm with an illustration is

presented in Section 5.2. Its complexity analysis is also given in Section 5.2. Section 5.3

shows the extensive simulation outcomes of the proposed ERO algorithm and its perfor-

mance with the existing algorithms. Finally, the summary of this chapter is in Section 5.4.

5.1 System Model and Problem Statement

This section presents the system model for downlink communication and problem state-

ment for maximizing network throughput.

5.1.1 System Model

Consider a city area A in which FVNET is fixed with G number of FNs. Let R be the

communication range of each FN i, 1 ≤ i ≤ G, and it overlaps with the communication

range of neighbouring FN j, 1 ≤ j ≤ G, i ̸= j. Let Pt(i) be a set of vehicles within the

communication range of the FN i for getting services at time slot t. The mean arrival rate

and mean departure rate of vehicles to the network follow a Poisson distribution with the

mean values of λ and µ, respectively. The values for the Poisson distribution are computed

as the expected number of arrived vehicles (E) by taking the timeslot duration (δs) on the

mean arrival rate λ and are computed as λ.δs as per the previous research [24]. The values

are extracted randomly using mean and variance within the time interval (T ). The interar-

rival time of vehicles follows an exponential distribution. Further, a free flow discrete time

traffic model is considered for uninterrupted and homogenous vehicular traffic over a fixed

length of overlapping coverage regions [38, 50]. It is worth mentioning that the velocity of
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Table 5.2: Description of notations

Notation Description

Z A set of non-restricted coverage areas in FVNETs

λ, µ Mean arrival and departure rate of vehicles, respectively

Pr
t (i) A set of vehicles in restricted region of ith FN at time slot t

Pnr
t (ij)

A set of vehicles in non-restricted region of ith FN and jth FN at

time slot t

Tt(ik) Achievable rate of kth vehicle from ith FN at time slot t

A A city area in which FVNET is fixed

B Bandwidth of a FN

Dki Euclidean distance between ith FN and kth vehicle

ρt(ik)
Transmission power of ith FN when connecting with kth vehicle at

time slot t

Nk, Ik Gaussian noise and co-channel inference of kth vehicle, respectively

G(V,E) A graph of FVNET with a set of vertices V and a set of edges E

αt(ik) An allocated time fraction of kth vehicle from ith FN at time slot t

τt(ik) kth vehicle throughput from ith FN at time slot t

ψ(ik) SINR of kth vehicle from ith FN

β Pathloss exponent

γ Scaling co-efficient

T Serviceable time of the network

tq Time slot tq, 1 ≤ q ≤ T
δs Time slot duration

vehicles is not explicitly considered. However, vehicles are generated by varying data rates

of vehicles and distance from FN.

Table 5.2 summarises the various notations and their definitions used in our work. In

each time slot, the FNs provide services to the vehicles in their coverage region based on

the SINR of those vehicles. However, the signal strength depends on the distance between

vehicle k and FN i, which is obtained by considering the vehicle k located at (xk, yk) and

FN i at the origin in 2D space using Euclidean distance, as Dki =
√
(x2k + y2k) [77].

The FN uses the transmit power control in downlink communication to achieve a con-

stant bit rate in each time slot, irrespective of the vehicle’s position in the coverage region

of the FN [85]. The approximate transmission power of FNs can be obtained using the

distance-dependent exponential radio model [128,129]. In this model, as the distance from

FN increases, the transmission power also increases [130]. Therefore, assuming a constant
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bitrate (B bits per each slot), the transmission power of FN i when communicating with

vehicle k at time slot t is indicated by ρt(ik) and is obtained by

ρt(ik) = Dβ
ki ×

B

γ
(5.1)

where γ is a scaling co-efficient and β is a path loss exponent [130]. Thus, the SINR of

vehicle k from FN i is obtained as follows.

ψ(ik) =
ρt(ik)

Nk + Ik
(5.2)

where Nk is the Gaussian noise power of vehicle k and Ik is the co-channel inference

power of vehicle k [95].

Suppose the vehicle k has requested services with data rate rk in the coverage area of

FN i. Then total RBs, bik, allotted from FN i to the vehicle k, can be obtained from Eq.

(4.1).

5.1.2 Problem Statement

Consider the vehicles reaching to and leaving from FN i is represented by the sets P in
t (i)

and Pout
t (i), respectively. Then, the mean departure rate of vehicles, µ, in the network is

obtained using expectation E as discussed in Eq. (4.2).

As stated Chapter 1, the total duration of a FN, T , is partitioned into equal time slots, tq,

1 ≤ q ≤ T , such that each time slot has a duration of δs as shown in Figure 1.2. The FNs

provide services to the vehicles reaching them at each time slot tq. Let the set of vehicles

getting services from FN i at time slot t be Pt(i) and it can be defined in Eq. (4.3).

At time slot t, |Pt(i)| gives the number of vehicles getting services from FN i. Due to

the finite resource restraints of FNs, the network provides services to a limited number of

vehicles. Thus, the FNs become impuissant in providing services to the vehicles when the

vehicles arriving at the network increase at a particular instant of time t. In this situation, the

available RBs of ith FN, service capability of ith FN and service capability of the network

are obtained using Eq. (4.4), Eq. (4.5) and Eq. (4.6), respectively.
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Similarly, the percentage of vehicles getting services within the desired and minimum

data rate (e.g., throughput and delay) defines the serviceability and availability of the net-

work, respectively [39, 123].

We use the Shannon formula to find the vehicles’ achievable rate at each time slot from

each FN. The achievable rate of a vehicle k ∈ Pt(i) from FN i, at time slot t, is given

as [25]

Tt(ik) = B × log2(1 + ψ(ik)) (5.3)

where B is the bandwidth available at FN i. If αt(ik) is a time fraction allotted to vehicle

k, then, the kth vehicle throughput from FN i is given in [25] as

τt(ik) = αt(ik)× Tt(ik) (5.4)

Then, the resource allocation problem P is represented as

P : max
τ⃗ ,⃗t

|Pt(i)|∑
k=1

log

(
T∑
t

∑
i∈G

τt(ik)

)
, 1 ≤ i ≤ G (5.5)

s.t
|Pt(i)|∑
k=1

τt(ik)

Tt(ik)
≤ tq, 1 ≤ i ≤ G, 1 ≤ q ≤ T (5.6)

τt(ik) ≥ 0 (5.7)

tq ≥ 0 (5.8)

where notations τ⃗ and t⃗ are the collections of throughput variables τt(ik) and time slot

variables tq, respectively. Constraint shown in Eq. (5.6) corresponds to the available time

fraction for the ith FN, 1 ≤ i ≤ G, in time slot tq, 1 ≤ q ≤ T. Moreover, minimizing

the standard deviation of FNs using occupied capacities (i.e. min σ(Ot)) to measure load

balance among FNs and minimizing the FNs’ energy consumption in transmitting services

to vehicles can be considered other objective functions.

In practical systems, only one FN provides services to a vehicle for downlink commu-

nication. The vehicle in the restricted region of a FN gets services from a single FN, and
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the vehicle in the non-restricted region of a FN gets services from either one of the FNs

of that non-restricted region. However, when the number of vehicles reaching the network

rises over time, the FNs become impuissant in providing services due to the finite resource

restraints of FNs. As a result, the FNs allocate inadequate resources to the arrived vehicles.

This results in the degradation of vehicles’ throughput and affects the QoS. Hence, the al-

located RBs of vehicles in the non-restricted regions of FNs are migrated between pairs of

FNs to maximize throughput and provide better QoS. Additionally, various performance

metrics, including serviceability, availability, and service capability, are examined with the

growing number of vehicles connecting to the network.

5.2 Efficient Resource Orchestration Algorithm

In this work, the proposed algorithm partitioned the coverage region of a FN as a non-

restricted coverage region and a restricted coverage region. The non-restricted coverage

region of a FN is a coverage region which is overlapped with the neighbouring FN coverage

regions. The restricted coverage region of a FN is a non-overlapped coverage region of that

FN. The restricted and non-restricted coverage regions of FNs in FVNETs are shown in

Figure 5.1a. The ERO algorithm maximizes the objective given in Eq. (5.5) by minimizing

the allotted RBs of vehicles in the non-restricted coverage areas of FNs. This minimization

of RBs is carried out by migrating allocated RBs amid pairs of FNs. Therefore, the ERO

algorithm constructs a minimum priority queue using the binary tree data structure for the

occupied capacities of FNs. The migration of RBs of vehicles in the non-restricted regions

is carried out by fetching a FN with minimum occupied capacity from the priority queue.

The proposed algorithm is presented in Algorithm 5.1 and described in Section 5.2.2.

The set of non-restricted coverage regions in FVNETs is denoted by Z . The ERO

algorithm identifies the vehicles in the non-restricted and restricted coverage parts of FNs.

The set of vehicles in the non-restricted part of FN i and FN j at time slot t is denoted by

Pnr
t (ij), 1 ≤ i, j ≤ G, i ̸= j and the set of vehicles in the restricted coverage part of FN i

at time slot t is denoted by Pr
t (i). The sets Pnr

t (ij) and Pr
t (i) are defined as follows.
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Pnr
t (ij) = Pt(i) ∩ Pt(j) (5.9)

Pr
t (i) = Pt(i) \ Pnr

t (ij) (5.10)

In this chapter, we assume that there exists at least a single vehicle in the non-restricted

coverage region (i, j) ∈ Z of ith and jth FNs to migrate the allotted RBs of vehicles in

the set Pnr
t (ij) (i.e., Pnr

t (ij) ̸= ∅). Subsequently, consider the vehicles in the set Pnr
t (ij)

whose RBs migrate from FN i to FN j, and its converse defined as p∗t (ij) ∈ Pnr
t (ij) and

p∗t (ji) ∈ Pnr
t (ij), respectively. They can be accomplished using Eq. (4.8).

The RBs migration problem for the vehicles in the non-restricted coverage regions in

the FVNETs is mapped as an ILP problem, which is explained in Section 5.2.1.

5.2.1 ILP Formulation of Problem

The aggregated throughput is maximized by considering the vehicles in the non-restricted

regions, Pnr
t (ij), ∀(i, j) ∈ Z for reducing allocating RBs among pairs of FNs. This RBs

reduction is carried out by migrating RBs of vehicles in the set Pnr
t (ij), such that allocated

RBs of these vehicles are minimized. Therefore, the RBs migration amidst pairs of FNs i

and j is mapped as an ILP problem, which is described in Section 4.2.1.

The ILP problem in Eq. (4.9) is a SAP, a well-known NP-Hard problem. SAP is

a particular case of GAP, which maps the l number of students to p number of seminar

halls to maximize the profit [127]. The SAP instance is transformed into our ILP problem

instance by relating the students to a set of vehicles in the non-restricted coverage areas,

seminar halls to FNs, and the capacity of the sth seminar hall, denoted asBs, to the capacity

of the ith FN, labelled as Li. However, it is essential to note that the profit derived from

assigning student r to seminar hall s is reversed when establishing connections between

vehicles k ∈ Pnr
t (ij) and FN i ∈ G. This transformation is carried out in polynomial time.

On the other hand, the ILP problem can be solved when the number of FNs is fixed (i.e.,

the number of seminar halls is fixed) [127]. Therefore, we propose an ERO algorithm to

maximize the throughput by fixing the number of FNs to a finite number.
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5.2.2 Algorithm Description

The proposed algorithm is given in Algorithm 5.1 for relocating RBs amidst pairs of FNs in

FVNETs. An example of FVNET is shown in Figure 5.1a. Now consider a graph, G(V,E),

with a set of vertices and edges, representing the FVNETs with G number of FNs. The set

V constitutes the FNs, and the setE comprises the edges in G. An arc between FN i and FN

j in G exists if and only if there exists at least a vehicle in a non-restricted area (i, j) ∈ Z

as shown in Figure 5.1b. The ERO algorithm takes the graph, G(V,E), and the number of

FNs, G, as input. It performs the RBs migration by constructing a minimum priority queue

using the binary heap in Procedure 3. The ERO algorithm finds, Dt, the set of vehicles

in all non-restricted coverage areas of FNs, ∀(i, j) ∈ Z , 1 ≤ i, j ≤ G, i ̸= j, for RBs

migration in a time instant t. Further, it also finds the occupied capacity, L, of all FNs

at a particular time instant t (Line 5 to Line 14 in Algorithm 5.1). For migrating RBs of

vehicles in Dt, it invokes the Migrate( ) (Procedure 3) with Dt and L as parameters in

Line 15 of Algorithm 5.1.

The Migrate( ) (Procedure 3) constructs the minimum priority queue, Qp, for the

given set of vehicles inDt using occupied capacities of FNs in L (Line 2). It finds the FN g

with minimum occupied RBs and the vehicle kmin ∈Dt with minimum RBs with respect to

FN g. The FN g is obtained using the GetMinKey( ), which is an operation on the priority

queue, Qp, in Line 3, and the vehicle kmin is obtained by invoking SelectVehicle( )

(Procedure 4). If SelectVehicle( ) returns the vehicle kmin having the least RBs with

respect to FN g in Line 9, then the RBs of vehicle kmin are migrated to the FN g in the lines

from Lines 13 to 15. Otherwise, the FN g is removed from L in Line 11. From Lines 12

to 18, the Procedure 3 relocates the RBs of vehicle kmin from FN i to FN g only if kmin is

not served by FN g and desired RBs of that vehicle satisfied by the FN g. Then it updates

the occupied RBs and available RBs of FN i and FN g in Line 15. Otherwise, it skips the

kmin vehicle from RBs migration in Line 17. After the successful migration of RBs, the

vehicle kmin is discarded from the set Dt in Line 18. This practice is repeated until the set

Dt becomes empty.
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Algorithm 5.1 ERO Algorithm
Inputs: G(V,E), G
Outputs: A set of vehicles for RBs migration, throughput, service capability, service-

ability, and availability

1: Dt ← ∅ ▷ The set of vehicles in the non-restricted coverage areas of FNs
2: L← ∅ ▷ The set of occupied capacities of FNs
3: i← 1 ▷ Initialization of ith FN
4: while i ≤ G do
5: Di← ∅
6: for each neighbor FN j of i, 1≤ j ≤ G, i ̸= j do
7: Pnr

t (ij)←Pt(i) ∩ Pt(j)
8: Pr

t (i)←Pt(i) \ Pnr
t (ij)

9: Pr
t (j)←Pt(j) \ Pnr

t (ij)
10: Di ← Di ∪ Pnr

t (ij)
11: end for
12: Dt←Dt ∪ Di

13: Ot(i)←
∑|Pt(i)|

k=1 bik
14: L← L ∪Ot(i)
15: i← i+ 1
16: end while
17: Migrate(Dt, L)
18: Find throughput, serviceability, availability and service capability

5.2.3 An Illustration

Consider an FVNET with four FNs and eight vehicles for RBs migration, as shown in

Figure 5.1a and its corresponding graph model, shown in Figure 5.1b, is given as input to

the ERO algorithm. In FVNET, shown in Figure 5.1a, the vehicles which FNs serve are

illustrated by thick red lines, and the vehicles whose RBs can be shifted to FNs are depicted

by dashed red lines. A number beside the red lines denotes the number of RBs required

by the vehicle from the corresponding FN. In the graph representation of FVNET, given

in Figure 5.1b, the vertices denote the FNs, and the edge between vertices represents the

existence of vehicles in the non-restricted coverage region of FNs. The FVNET depicted in

Figure 5.1a is a sample snapshot of a traffic scenario for easy understanding of the proposed

algorithm.

The proposed algorithm finds the vehicles in FNs’ non-restricted and restricted cover-

age regions using Algorithm 5.1. The algorithm ERO always strives to reduce the allotted
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Procedure 3 Migrate(Dt, L)
Inputs: A set of vehicles in non-restricted coverage regions, Dt and allocated capacity

of FNs, L
Outputs: RBs Migration

1: while Dt ̸= ∅ do
2: Qp ← MinPriorityQueue(L)
3: g ← Qp.GetMinKey()
4: list← Dt(g)
5: migrateList← ∅
6: for ∀ k ∈ list do
7: if k ∈ Dt then
8: migrateList← migrateList ∪ k
9: end if

10: end for
11: kmin ← SelectVehicle(migrateList, g)
12: if kmin = −1 then
13: L.Remove(g)
14: else
15: if At(g) ≥ bgkmin

and kmin is not served by g then
16: Migrate the RBs of kmin from FN i to FN g
17: Update the Ot(i), Ot(g), At(i) and At(g) of ith and gth FNs
18: else
19: Skip the vehicle kmin from RBs migration
20: end if
21: Dt ← Dt − {kmin}
22: end if
23: end while

Procedure 4 SelectVehicle(migrateList, g)
1: min rbs← max number
2: ϑmin ← −1
3: for ∀ϑ ∈ migrateList do
4: if bϑg ≤ min rbs then
5: min rbs← bϑg
6: ϑmin ← ϑ
7: end if
8: end for
9: return ϑmin
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(a) An FVNET with four FNs and eight vehicles.

FN1

FN4

FN2

FN3

FN

Vehicles in Pnr
t (ij)

(b) A graph model of Figure 5.1a.

Figure 5.1: An FVNET for RBs migration using the proposed algorithm.
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Figure 5.2: Binary heap construction using allocated capacities of FNs while migrating
RBs of vehicles using the proposed algorithm.
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RBs of vehicles in non-restricted coverage areas by relocating RBs among pairs of FNs.

For migrating RBs, the algorithm selects the vehicle kmin ∈ Pnr
t with minimum RBs, such

that the occupied RBs of FN g is minimum. To ensure the minimum occupied RBs of FN

g, the ERO constructs the minimum priority queue using the occupied capacities of FNs.

From the Algorithm 5.1, we obtain the union of vehicles in all non-restricted coverage re-

gions of FNs, i.e., Dt = {V2, V5, V7, V8}. The obtained occupied capacities of FNs for the

vehicles in the restricted and non-restricted regions is L = {O1 = 944, O2 = 0, O3 = 948,

O4 = 987}. Then, Figure 5.2a shows that the binary heap is built using these occupied

capacities. The RBs migration is performed using Procedure 3 by giving the set of vehicles

in non-restricted regions and occupied capacities, Dt and L, respectively, as inputs. How-

ever, by constructing a minimum priority queue, the Migrate( ) (Procedure 3) always

finds the FN g with minimum occupied RBs for migration. The minimum priority queue

is built using the binary heap data structure in the first iteration, as shown in Figure 5.2a.

The Procedure 3 also finds the vehicle kmin having minimum RBs required from the FN g.

Thus, it finds g = FN2 from Figure 5.2a. Then the set of vehicles that are in the vicinity of

FN g = FN2 is list = {V7, V8} and the set of vehicles whose RBs can be migrated to FN

g = FN2 is migrateList = {V7, V8}. The vehicle kmin = V8 is obtained from the vehicles

in the set migrateList using the SelectVehicle( ) (Procedure 4). Then the RBs of

vehicle kmin = V8 are shifted to FN g from FN i (i.e., FN2 from FN3) only if the FN g

= FN2 satisfies the desired RBs of vehicle kmin. After successful migration, the vehicle

kmin = V8 is removed from Dt. Then the updated occupied capacity of FNs and vehicles in

non-restricted regions are L = {O1 = 944, O2 = 180, O3 = 620, O4 = 987} and Dt = {V2,

V5, V7}, respectively. In the same way, the proposed algorithm constructs the binary heap

in each iteration until the RBs migration of vehicles in the non-restricted coverage areas is

completed in FVNET (i.e., the set Dt becomes empty).

Figure 5.3 shows the overall occupied capacity of FNs before migration is 2879, and it

is reduced to 2112 after migration using the proposed algorithm. Therefore, the percentage

of RBs reduced using ERO is 26.64%. This minimization greatly improves the number of

vehicles getting services from the network, which alternatively improves the throughput of

the network. Note that this minimization also enhances the network’s throughput, service-
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FN1 FN2 FN3 FN4

V1 250
V2 324 620
V3 185
V4 274
V5 315 527
V6 210
V7 485 374
V8 180 328

Ot(i) = 944 0 948 987
(a)

FN1 FN2 FN3 FN4

V1 250
V3 185
V4 274
V6 210

Ot(i) = 459 - - 460
Occupied capacity

for vehicles in Pr
t (i)

V8 180
V7 374
V2 324
V5 315

Ot(i) = 783 554 315 460
Overall occupied

capacities after migration
(b)

Figure 5.3: An optimal RB migration using ERO algorithm for FVNET. (a) Occupied RBs
of FNs before migration. (b) Occupied RBs of FNs after migration using ERO.

ability, availability, and service capability. On the other hand, the existing algorithms like

RO, ARB [39], SA [25], and DRO [24] reduce the allocated RBs up to 21.5%, 26%, 26%,

and 10.28%, respectively. This exhibits the remarkable performance of the ERO algorithm

over the existing algorithms.

5.2.4 Complexity Analysis

Procedure 4, invoked with the set migrateList as input, iterates O(|migrateList|) times.

It is worth noting that the set migrateList is finite, so this algorithm operates in constant

time to find ϑmin. In Procedure 3, a binary heap is constructed with |L| nodes. If the
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size of set L is |L| = G, in the worst case, the construction of the binary heap in Line 2

takes O(G log G). In Procedure 3, operations such as retrieving the FN with the minimum

occupied capacity in Line 3 and removing the FN from the set L in Line 13 take O(1).

Furthermore, the binary heap is constructed in each iteration of the while loop, which runs

O(|Dt|) times in Procedure 3. Therefore, it runs forO(|Dt|G log G) times in the worst case.

In Algorithm 5.1, the set of vehicles in the restricted and non-restricted coverage re-

gions, from Line 6 to Line 10, is obtained for a given ith FN and its neighbouring jth FN,

with 1 ≤ i, j ≤ G and n ̸= m. This operation is completed in O(G) time. However, the

outer while loop also iterates O(G) times and invokes Procedure 3 in Line 15. Therefore,

the worst-case running time complexity of the proposed algorithm is O(G2 + |Dt|G log G).

5.3 Performance Evaluation

The effectiveness of the proposed algorithm ERO is assessed in terms of throughput, ser-

viceability, availability, and service capability. In addition, the simulation results are analo-

gized with current algorithms, such as RO, ARB [39], SA [25], and DRO [24]. As stated

earlier, the vehicles and FNs are chosen randomly in the RO algorithm.

5.3.1 Simulation Setup

A virtual environment is created for simulation runs using Python 3.8 on PyCharm IDE

2020.1.3. A computing device with 64.0 GB installed RAM, a 64-bit operating system,

and Intel(R) Xeon(R) Gold 622R CPU @ 2.90 GHz 2.89 GHz processor is used to run this

IDE. Note that 2.90 GHz and 2.89 GHz are the clock speeds of the processor base frequency

and the frequency computed by Windows, respectively. The simulation environment, in-

cluding traffic parameters, is configured by following the setup provided in [24, 39]. The

proposed algorithm’s performance is assessed within a network where FNs are deployed

across a city measuring an area of [5000 × 5000]2 meters, as depicted in Figure 5.4. The

Voronoi tessellation, indicated by the dotted lines, illustrates a city area accommodating 10-

50 FNs. The FNs are deployed in a way that the coverage areas overlap with one or more

neighbouring FNs. Vehicle arrivals and departures from the network adhere to a Poisson
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Table 5.3: Simulation parameters and their values

Parameter Value

Number of FNs (Z) [10 ∼ 50]

Radius of FN coverage (R) 500 m

Bandwidth of FNs (B) [10, 15, 20] MHz

Vehicles arrival rate (λ) [5 ∼ 10] vehicles/s

Vehicles departure rate (µ) [5 ∼ 10] vehicles/s

Data rate required (rk) [0.5 ∼ 2] Mbps

Network area (A) 5000 m × 5000 m

Number of vehicles [150 ∼ 3000] vehicles

Gaussian Noise (Nk) -104 dBm

Co-channel Inference (Ik) -75 dBm

Pathloss exponent (β) 3

Scaling co-efficient (γ) 1

Time slot duration (δs) 1 s

distribution, with mean arrival and departure rates varying between 5 vehicles/s and 10

vehicles/s. The number of vehicles with the required data rates and distance from FNs is

generated randomly within a range from 150 to 3000 in the environment. A free flow dis-

crete time traffic model is considered for uninterrupted and homogenous vehicular traffic

over a fixed length of non-restricted coverage regions [38, 50]. The FNs serve the vehicles

meeting data rates [0.5 ∼ 2] Mbps. A dynamic hierarchical topology is used to organize

HPNs, RSUs and vehicles in FVNETs. However, vehicles are connected to a FN using the

star topology. Further, the Monte-Carlo simulations are conducted using a queuing model

with 300 time slots, considering three traffic scenarios. The average results are obtained by

running simulations equal to one hundred and fifty times. The Nakagami model, the most

realistic model, is used to illustrate signal propagation. IEEE 802.11p is used in FVNETs

as a MAC protocol to facilitate wireless connectivity. The simulation outcomes display the

consequence of the rise in the number of connections to the network on the throughput,

serviceability, availability, and service capability. The various parameters used for the sim-

ulations are given in Table 5.3.
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Figure 5.4: Voronoi tessellation (dotted lines) and the distribution of thirty FNs and sixty
vehicles in an area of [5000 × 5000]2 meters in the simulation where the coverage regions
are formed corresponding to the distance threshold (circles centered at blue dots).

5.3.2 Results and Discussions

The different resource management algorithms proposed in literature [24, 25, 39] such as

DRO, ARB, SA, and RO, respectively, are considered for performance comparison. The

DRO algorithm performs the RBs migration to reduce the RBs of vehicles in the non-

restricted area. To maximize the RBs reduction, DRO uses the maximum weight matching

solution, i.e., it reduces the RBs of vehicles in the non-restricted areas obtained from the

set of edges. The set of edges is drawn from the maximum weight matching problem. The

SA algorithm relocates the RBs of vehicles from the selected FN to the neighbouring FN.

However, the FN is selected using the graph colouring solution of the network. The ARB

algorithm uses the Hungarian method for associating vehicles and FNs [131]. Then, using

the back pressure approach, it migrates the RBs of vehicles in the non-restricted regions

from a higher load FN to a lower load neighbouring FN. The RO algorithm selects the

random FN for migrating RBs of vehicles selected randomly in the non-restricted regions.
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However, the ERO algorithm always selects a FN with minimum occupied capacity using

the minimum priority queue. Then, it selects the vehicle that needs minimum RBs from the

selected FN to perform RBs migration.

The performance of ERO is analyzed with the DRO, ARB, SA, and the basic algorithm

RO. However, the network throughput is obtained using the achievable rate of vehicles get-

ting services from different FNs in different time slots [25]. The other performance metrics

like serviceability, availability, and service capability are defined in Section 5.1.2. The ef-

fectiveness of ERO is measured in terms of throughput, serviceability, service capability,

and availability in each time slot when the number of vehicles connecting to the network

rises.

5.3.3 Influence of the Rise in the Number of Vehicles

In this chapter, we consider the influence of the rise in the number of vehicles on the

network’s throughput, serviceability, availability and service capability for three scenarios:

(a) the mean arrival rate is greater than the mean departure rate (λ > µ), (b) the mean arrival

rate is equal to the mean departure rate (λ = µ), and (c) the mean arrival rate is less than

the mean departure rate (λ < µ). Subsequently, the average results of three scenarios are

obtained for the network’s throughput, serviceability, availability, and service capability.

5.3.3.1 Throughput

The mean departure (arrival) rate indicates the number of vehicles leaving (entering) the

network. The achievable rate of the vehicle is obtained from the Shannon formula as shown

in Eq. (5.3). The throughput of the network is proportional to the time assigned to the ve-

hicles receiving utilities. Therefore, as the number of vehicles obtaining services increases,

the throughput also increases. The influence of the rise in the number of vehicles coming at

the network on throughput when λ > µ, λ = µ and λ < µ is shown in Figure 5.5a, Figure

5.5b and Figure 5.5c, respectively.

In the scenario λ > µ, the network experiences a continuous increase in the number of

vehicles connecting in every time slot, as the mean arrival rate is greater than the mean de-
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(a) Network throughput when λ > µ.
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(c) Network throughput when λ < µ.
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Figure 5.5: The network throughput with confidence intervals in each time slot using the
ERO, RO, ARB, SA, and DRO algorithms.
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parture rate. However, it is noticed that the FNs have abundant resources during initial time

slots to furnish utilities to the vehicles. Therefore, the rise in the coming of vehicles in the

network makes the FNs helpless to provide desired services, which impacts the throughput

of the network. The network’s throughput increases gradually during the initial time slots

for all algorithms. Subsequently, the throughput stabilizes as the network becomes con-

gested due to growing traffic. The reduction of RBs using the DRO scheme is declining

due to the maximum weight-matching solution. Hence, there is a stable throughput using

DRO. Similarly, the RO and SA algorithms demonstrate consistent network throughput as

the number of vehicles entering the network rises. This consistency is due to less RBs

reduction for the vehicles in the non-restricted areas using RO, SA and DRO algorithms.

At the same time, the ARB algorithm enhances the throughput by coordinating RBs mi-

gration to reduce allocated RBs for the vehicles in the non-restricted areas. However, the

ERO algorithm experiences a gradual increase in the throughput. More specifically, the

throughput reaches 6000 Mbps at time slot 240. Subsequently, the throughput stabilizes as

resource blocks become fully occupied by previously arrived vehicles. As a result, some

vehicles are not admitted to the network. In summary, the proposed algorithm improves

the throughput by 61.76%, 6.86% and 43.56% on average compared to RO, ARB and SA,

respectively.

When λ = µ, where the mean arrival rate equals the mean departure rate, it is evident

that the FNs retain adequate resources to deliver services to vehicles in every time slot. The

RO, SA and DRO algorithms perform the minimum number of RB migrations to reduce

the allocation of RBs as the network experiences an influx of vehicles. As a result, there

is a stable throughput using RO, SA and DRO algorithms due to decreased available RBs

in the network. Nonetheless, the proposed ERO algorithm enhances network throughput

by migrating RBs of vehicles in non-restricted regions between pairs of FNs. As a result,

newly arrived vehicles get services in the network. Here, the throughput reaches 6000

Mbps at time slot 300 and it stabilizes in the long perspective. On average, ERO surpasses

RO, ARB, SA, and DRO by 47.06%, 5.39%, 35.71%, and 95.36%, respectively.

When λ < µ, we initialize the network with a set of [(µ - λ) × T ] vehicles. The

rationality behind this initialization is that there are enough vehicles for departure to realize
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Figure 5.6: Average network throughput and CI of ERO, RO, ARB, SA, and DRO algo-
rithms.
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the λ < µ scenario. Otherwise, λ < µ scenario is the same as λ = µ scenario as the

maximum number of vehicles that can leave equals λ. We observe different trends in the

λ > µ and λ < µ scenarios in Figure 5.5. Particularly, in the λ < µ scenario, throughput

increases linearly up to the time slot 300 and is not stabilized until that time. This is due to

a decrease in the number of vehicles and an increase in the available RBs in the network.

As a result, there is no exhaustion of available RBs in the networks. The RO algorithm

provides stable throughput in all time slots as the network is already fully occupied with

available RBs from the initial time slot. The DRO provide better throughput as vehicle

congestion decreases in the network. However, the ERO algorithm enhances the throughput

by reducing the RBs of vehicles in non-restricted regions. Therefore, it provides throughput

better than DRO in initial time slots, and it exhibits throughput similar to DRO on average

as traffic decreases in the network. Notably, the ERO algorithm outperforms the ARB and

SA algorithms by an average of 6.85% and 8.00%, respectively.

We calculate the average network throughput for the three scenarios at every time slot as

depicted in Figure 5.6a. It is evident that with an increasing number of vehicles entering the

network, throughput gradually rises using both proposed and existing algorithms. Notably,

the proposed algorithm outperforms the existing algorithms due to its greedy approach in

selecting vehicles with minimal RBs requirements and FNs with the least occupied ca-

pacity. Consequently, it achieves a significant throughput improvement, surpassing RO,

ARB, SA, and DRO algorithms by 97.6%, 6.65%, 20.19%, and 29.90%, respectively. We

compute the 95% confidence intervals (CIs) for every time slot in all scenarios with 150

simulation runs and show CIs of average throughput for every time slot in Figure 5.5 and

Figure 5.6a, respectively. The CI is determined by the formula CI = x̄ ± Z ( σ√
n
), where

x̄ is the sample mean, σ is the standard deviation, n is the sample size and Z is the value

from standard normal distribution corresponding to desired confidence level (e.g., 1.96 for

a 95% CI). The top and bottom lines denote the upper and lower limits, and the middle line

denotes the mean. Figure 5.6b shows the CIs by averaging the network throughput values

for each algorithm over all the points from Figure 5.6a, which in turn are average values

of corresponding points over the three scenarios (Figure 5.5). Further, Figure 5.6c shows

the average throughput of three scenarios with CIs for the number of FNs in the network
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using proposed and existing algorithms. The ERO algorithm enhances the throughput as

number of FNs increases on average by 11.94%, 21.39%, and 29.27% when compared to

ARB, SA, and DRO algorithms, respectively.

5.3.3.2 Serviceability

The network’s serviceability and CIs for every time slot of the proposed and existing algo-

rithms are assessed by considering three distinct scenarios (i.e., λ > µ, λ = µ, and λ < µ),

as depicted in Figure 5.7a, Figure 5.7b, and Figure 5.7c, respectively. When λ > µ, as

the number of vehicles entering the network increases over time, the serviceability of the

network diminishes using both proposed and existing algorithms. This decline is attributed

to the escalating traffic within the network, leading to a depletion of resources and a con-

sequent decline in the network’s ability to serve arriving vehicles effectively. However, in

contrast, the ERO algorithm enhances network serviceability as the influx of vehicles into

the network grows. On average, it improves serviceability by 44.49%, 2.35%, 30.78%, and

97.2% compared to the RO, ARB, SA, and DRO algorithms, respectively.

In the scenario λ = µ, both the proposed and existing algorithms exhibit enhanced

serviceability during the initial time slots. Notably, the ARB algorithm provides better ser-

viceability in the early time slots. However, the network experienced increased vehicles

over time due to reduced available RBs. Therefore, the serviceability of the network de-

clines in ARB. Simultaneously, the proposed ERO algorithm demonstrates serviceability

levels similar to ARB during the initial time slots. Subsequently, it improves serviceability

as the vehicles arrive in the network by migrating RBs of vehicles in non-restricted re-

gions between pairs of FNs. Consequently, the ERO algorithm maximizes serviceability

on average by 32.43%, 1%, 23.88%, and 71.57% compared to RO, ARB, SA, and DRO

algorithms, respectively.

In the scenario λ < µ, there is an increase in the available RBs and a decrease in

the number of vehicles in the network in each time slot. This increase in the available RBs

enhances the serviceability in every time slot. The serviceability using RO declines because

the network is initialized with vehicles from the initial time slot, leaving the network with

no available RBs. The DRO algorithms provide superior serviceability as the congestion of
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(c) Network serviceability when λ < µ.
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Figure 5.7: The network serviceability with CIs in each time slot using the ERO, RO, ARB,
SA, and DRO algorithms.
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Figure 5.8: Average network serviceability of λ > µ, λ = µ and λ < µ scenarios.

vehicles in the network decreases. Nevertheless, the ERO algorithm ultimately surpasses

the DRO by 2.09% on average. The ERO algorithm prioritizes the FNs with minimum

occupied capacity and vehicles requiring the least RBs for relocation between pairs of

FNs. Consequently, the ERO algorithm outperforms the RO, ARB, and SA algorithms by

an average of 90.03%, 3.89% and 4.91%, respectively.

Figure 5.8 shows the average serviceability of the network obtained by averaging the

serviceability of the three scenarios. It also shows the CIs of average serviceability for

every time slot. The serviceability of the network reduces gradually in each time slot.

This reduction is due to a decrease in the available RBs in the network, causing the FNs

to exhaust and become inoperable in delivering utilities to arrived vehicles. It is noted

that the ARB provide better serviceability in the initial time slots. Simultaneously, the

proposed ERO algorithm exhibits serviceability similar to ARB and enhances serviceability

as the number of vehicles arriving in the network grows. As a result, the ERO algorithm

surpasses the RO, ARB, SA, and DRO by an average of 54.95%, 1.73%, 15.79%, and

35.08%, respectively.
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50 100 150 200 250 300

40

60

80

100

Time slots (seconds) −→

A
va

ila
bi

lit
y

(%
)−
→

λ < µ

(c) Network availability when λ < µ.
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Figure 5.9: The network availability with CIs in each time slot using the ERO, RO, ARB,
SA, and DRO algorithms.
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Figure 5.10: Average network availability of λ > µ, λ = µ and λ < µ.

5.3.3.3 Availability

FNs deliver the services to the vehicles meeting a minimum data rate of 0.512 Mbps as

FNs allocate RBs to the vehicles that guarantee the minimum rate. Figure 5.9 shows the

availability of the network with CIs at each time slot for the three scenarios. In the scenario

where λ > µ, both the proposed and existing algorithms demonstrate similar availability

in the initial time slot, which proceeds to decline as the number of vehicles arriving at the

network increases, as shown in Figure 5.9a. It is observed that the use of the DRO algorithm

results in a significant decrease in network availability due to a reduction in the available

RBs in the network. In contrast, the proposed algorithm effectively manages RB reduction

by relocating RBs among pairs of FNs for vehicles in non-restricted regions. As a result,

it maximizes network availability, surpassing the RO, ARB, SA, and DRO algorithms by

an average of 44.82%, 3.22%, 31.3%, and 44.09%, respectively. Figure 5.9b shows that

the proposed ERO and ARB algorithms experience similar availability in initial time slots

when λ = µ. Subsequently, as vehicles arrive in the network, the ERO algorithm provides

better availability than existing algorithms due to the availability of RBs. As a result, the

ERO algorithm excels in delivering higher availability compared to the RO, ARB, SA, and

DRO algorithms by an average of 30.6%, 1.44%, 22.52%, and 22.04%, respectively.

When λ < µ, the network is assessed by randomly distributing vehicles at the network’s
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initial time slot. Subsequently, the availability is obtained as shown in Figure 5.9c. The

availability increases gradually with the decreasing number of vehicles in the network. The

DRO algorithm provides better availability. However, there is an increase in availability

using the ERO algorithm due to reduced congested traffic in the network. Moreover, the

ERO algorithm is greedy in selecting the vehicles requiring minimum RBs and FNs with

minimum occupied capacity. As a result, it enhances availability by 90.28%, 4.84%, and

6.1%, on average, compared to RO, ARB and SA, respectively, with the decrease in the

number of vehicles in the network.

The average network availability across the three scenarios with CIs is illustrated in

Figure 5.10. The average availability of the network decreases with the decrease in the

available RBs of FNs. During the initial time slots, the ARB algorithm attains superior

availability. Initially, the ERO algorithm reaches the availability levels of the ARB. How-

ever, with decreasing available RBs, the ERO algorithm eventually enhances availability

by 3.01% compared to the ARB. Furthermore, the ERO algorithm consistently exhibits

better average availability, outperforming the RO, SA, and DRO algorithms by margins of

53.85%, 16.17%, and 15.67%, respectively.

5.3.3.4 Service Capability

Figure 5.11 illustrates the service capability of the network with CIs in each scenario as

the number of vehicles reaching the network grows. Service capability reflects the percent-

age of available resources for allocating RBs to arriving vehicles in the network, according

to Eq. (4.6). When λ > µ, it is observed that service capability is significantly reduced

when employing the RO, SA, and DRO algorithms as the number of vehicles connecting

the network increases, as shown in Figure 5.11a. This decrease is due to an increase in the

number of vehicles, resulting in a reduction in RBs for vehicles in non-restricted regions. In

comparison, the ARB provide better service capability. However, the ERO algorithm opti-

mizes service capability by efficiently reducing allocated RBs for vehicles in non-restricted

regions through RB migration between pairs of FNs. As a result, it significantly enhances

service capability, outperforming the ARB algorithm by averages of 9.59%.

In the scenario where λ = µ, the service capability obtained is shown in Figure 5.11b.
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(b) Network service capability when λ = µ.
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(c) Network service capability when λ < µ.
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Figure 5.11: The network service capability with CIs in each time slot using the ERO, RO,
ARB, SA, and DRO algorithms.
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Figure 5.12: Average network service capability of λ > µ, λ = µ and λ < µ.

The ERO algorithm excels in optimizing RBs reduction due to the ample availability of

RBs for migration between pairs of FNs. As a result, the ERO algorithm enhances the

network’s service capability as congestion-free traffic in the network. It improves service

capability by an average of 7.8% compared to the ARB algorithms. Similarly, the service

capability is obtained in the λ < µ scenario as shown in Figure 5.11c. It is observed that the

service capability is close to zero in the initial time slots due to the lack of available RBs

in the network. Subsequently, service capability increases as more vehicles departing the

network release the allocated RBs. The RO algorithm provides lower service capability due

to fewer RBs migration between pairs of FNs, resulting in vehicle congestion in the net-

work. However, the ERO algorithm maximizes the service capability as vehicle congestion

decreases. It enhances the service capability by 35.72%, 22.43% and 36.64% on average

compared to ARB, SA and DRO, respectively. We compute the average service capability

for the three scenarios with CIs at each time slot shown in Figure 5.12. It is observed that

the service capability is more in the initial time slots as there are ample available RBs in the

network. Then, it decreases due to an increase in the number of vehicles. Subsequently, the

number of vehicles leaving the network increases, and there is an increase in the available

RBs in the network. As a result, there is an increase in the service capability of the network.

The ERO algorithm exhibits enhanced average service capability compared to existing al-
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Figure 5.13: Average RBs reduction of λ > µ, λ = µ and λ < µ.

gorithms. It improves the service capability by 13.75% and 48% on average compared to

ARB and SA, respectively.

Figure 5.13 illustrates the average percentage of RBs reduction for the three scenarios

in the network with CIs using proposed and existing algorithms. On average, the RO, SA,

and DRO algorithms achieve a reduction of less than 1% in allocated RBs, primarily aimed

at minimizing the occupied capacity of FNs. In contrast, the RO, ARB, DRO and ERO

algorithms achieve average RB reductions of 1%, 2.8%, 0.2% and 5.98%, respectively.

The proposed ERO algorithm optimizes the occupied capacity of FNs by coordinating the

RBs migration between pairs of FNs. This optimization, in turn, leads to improvements in

the network’s throughput, serviceability, availability, and service capability. We calculate

the standard deviation of FNs based on the average occupied capacity of FNs across three

scenarios with CIs, as depicted in Figure 5.14. Standard deviation serves as a metric for

evaluating the load balance among FNs in the network. According to simulation results, it

is observed that the DRO algorithm initially yields a higher standard deviation, which sub-

sequently decreases to its lowest point. This decline is attributed to a drop in the remaining

RBs in the network. On the other hand, the proposed algorithm exhibits a lower deviation

in occupied capacity among FNs compared to the existing algorithms in the initial time

slot. Furthermore, it consistently maintains a lower standard deviation among FNs as the

number of vehicles in the network increases.
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Figure 5.14: Standard deviation of occupied capacities for ERO, RO, ARB, SA, and DRO
algorithms.

5.4 Summary

In this chapter, we present an ERO algorithm to synchronize RBs allotment between pairs

of FNs to maximize the network’s throughput. First, the coverage region of FNs is par-

titioned into restricted and non-restricted coverage regions. Then, the throughput maxi-

mization problem is formulated as reducing allocated RBs of vehicles in the non-restricted

coverage areas. This reduction is carried out by migrating RBs of the vehicles among pairs

of FNs. Hence, the minimum priority queue is constructed using occupied RBs of FNs

to perform optimal migration. As a result, the ERO algorithm always selects a FN with

minimum occupied capacity and a vehicle with the minimum required RBs using the min-

imum priority queue. Therefore, it can maximize the RBs reduction among pairs of FNs,

which maximizes the network’s throughput. Moreover, the ERO algorithm is assessed in

terms of throughput, serviceability, availability, and service capability in each time slot as

the number of arriving vehicles within the network grows. The simulation outcomes show

that the ERO algorithm surpasses existing algorithms regarding the network’s throughput,

serviceability, availability, and service capability.
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Chapter 6

An Energy-Efficient Resource Allocation

Algorithm for Managing On-Demand

Services in FVNETs

This chapter presents a resource allocation algorithm, energy-efficient resource allocation

(EERA), for offloading upstream services by coordinating RBs allocation among FNs, such

that the energy usage of FNs in the downlink is diminished, and the network resource

utilization efficiency is maximized. The EERA algorithm builds the B+ tree using occupied

RBs of FNs to reduce the allocated RBs of vehicles in the overlap coverage areas of FNs. In

addition, the allocated RBs of vehicles are minimized by relocating RBs between pairs of

FNs. Further, this reduction of allocated RBs minimizes FNs’ energy usage in furnishing

vehicles’ services. We simulate the proposed algorithm considering the vehicle arrival and

departure rates as 10 and 5 vehicles/s, respectively, with a range of 300 to 2100 vehicles

and 10 to 50 FNs in FVNETs. The simulation results are compared with MCF [40], DRO,

and SA in terms of the percentage of RBs occupied, the energy consumption of FNs and

the resource utilization efficiency. The outcome of simulations shows that the suggested

EERA algorithm surpasses when analogized with other existing algorithms. The major

contributions of this chapter are listed below.

1. We consider the coordinating RBs of vehicles in the overlap coverage areas of FNs in
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FVNETs while meeting the vehicle’s desired requirements by relocating RBs among

pairs of FNs.

2. The optimal migration of RBs in FVNETs is framed as ILP by assessing the resource

parameters of FNs.

3. We propose an EERA algorithm using a B+ tree for optimal RBs migration among

FNs for offloading upstream services, such that the energy utilization of FNs in the

downlink is reduced and resource usage efficiency is maximized.

4. We demonstrate the simulations that depict the growing number of vehicles arriving

on the energy utilization of FNs and the resource usage efficiency of the network.

Also, the influence of increasing the number of FNs on the energy utilization of FNs

shows the applicability of the proposed algorithm over the existing algorithms.

The rest of this chapter is catalogued as follows. The system model and problem state-

ment are illustrated in Section 6.1. The description of the proposed EERA algorithm and

its complexity analysis are explained in Section 6.2. An illustration for EERA is also

presented in the same section. Section 6.3 shows the extensive simulation results of the

proposed EERA algorithm and its execution with the existing algorithms. Ultimately, Sec-

tion 6.4 summarises the work.

6.1 System Model and Problem Statement

This section presents the system model and problem statement. The system model of

FVNETs contains the FN’s energy consumption and communication model for FNs and

vehicles in FVNETs.

6.1.1 System Model

Consider a FVNET deployed in a city areaAwith G number of FNs. Let the coverage range

of FN i, 1 ≤ i ≤ G be R, and it can overlap with the coverage range of neighbouring FN j,

1 ≤ i ≤ G, i ̸= j. Vehicles’ occurrence time and release time follow a Poisson distribution
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with a mean occurrence rate λ and leave rate µ. The interarrival time of vehicles follows

an exponential distribution. Figure 1.2 shows the downlink medium time of FN, which

is split into small time intervals, each with a time fraction of δτ . Within each timeslot,

the FNs can serve vehicles within their coverage region. FNs assign RBs to the vehicles

available in their coverage region to provide services based on the SINR signal strength of

those vehicles [77]. However, the strength of the signal depends on the distance between

ith FN and kth vehicle, which is calculated in a 2D space by considering FN located at

the origin and vehicles at (xk, yk) using Euclidean distance Dki =
√

(x2k + y2k). In this

system model, we consider the vehicles in overlap coverage parts of FNs and the power

consumption of FNs in the downlink communication when RBs are assigned by the FNs.

As discussed in Chapter 1, HPNs and RSUs are regarded as FNs since these devices provide

communication, storage, computation and wide-area coverage with other FNs and the cloud

[24]. The dynamic hierarchical topology is used to organize HPNs, RSUs and vehicles in

FVNETs as shown in Figure 6.1.

Figure 6.1: Hierarchical organization of HPNs, RSUs and vehicles in FVNETs
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6.1.1.1 Communication Model

The FNs use the transmit power control in downlink transmission to achieve the sus-

tained bit rate in each timeslot [85]. The estimated downlink transmission energy cost

of FNs can be obtained by assuming the distance-depended exponential radio path loss

model [128,129]. In this model, FN power consumption increases as the distance from FN

increases [130]. Hence, the power consumption of FN i, when communicating with vehicle

k, assuming a constant bitrate (B bits per each slot) at timeslot t is given by

ρt(ik) = (Dki)
β × B

α
(6.1)

where ρt(ik) is the transmission power of ith FN, Dki is the distance between ith FN and

kth vehicle at timeslot t, β is a path loss exponent and α is a scaling co-efficient [130].

Then the SINR of kth vehicle from ith FN with Gaussian noise power Nk and co-channel

inference power Ik can be obtained using Eq. (5.2) [95]. Consider the total number of RBs

required by kth vehicle from the ith FN with data rate rk be bik. The required RBs by kth

vehicle with bandwidth B from ith FN is obtained using Eq. (4.1).

In a FVNET, a vehicle can communicate with one or more FN(s). We assume that the

vehicles available in coverage areas overlapped by two or more FNs coverage. In a typical

scenario, each vehicle is close to one FN and far from another FN. Eq. (6.1) gives the

power consumption by the FN to serve a vehicle. It is regarded that the power consumption

by the FN to a nearby vehicle is minimum when analogised to a vehicle at a far distance

within the coverage area of that FN [85].

6.1.2 Problem Statement

Let us consider a set of vehicles coming at ith FN be P in
t (i) and a set of vehicles exiting at

ith FN be Pout
t (i), at timeslot t. In this environment, the mean leave rate of vehicles leaving

the network, µ, is calculated from Eq. (4.2).

As discussed in Chapter 4.1, Pt(i), At(i) and Pt(ij) denote the set of vehicles getting

services from ith FN, the remaining RBs of ith FN and the set of vehicles in the overlap
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coverage region of ith FN and its neighbouring jth FN at timeslot t, respectively. These

Pt(i), At(i) and Pt(ij) can be accomplished from Eqs. (4.3), (4.4) and (4.7), respectively.

Let Z be the set of overlap coverage parts in FVNETs. A vehicle k ∈ Pt(ij) can be

served by either FN i or FN j in the overlap region (i, j) ∈ Z . Therefore, we define a

binary variable to indicate the vehicle k in the overlap region (i, j) ∈ Z is served by FN i.

yki =

1, If vehicle k served by FN i

0, Otherwise

∑
∀(i,j)∈Z

(yki + ykj ) ≤ 1, k ∈ Pt(ij) (6.2)

The Eq. (6.2) ensures that the vehicle k is served by either FN i or FN j from all overlap

coverage regions of FVNETs. As vehicles joining the network increases, the number of

vehicles gaining services also enriches. This growth in on-demand services directs to the

immense energy utilization of FNs in FVNETs. Therefore, the problem is to mitigate the

FNs’ total energy usage in FVNETs, which is depicted as follows

P : min
G∑

n=1

ρt(ik),∀k ∈ Pt(ij) (6.3)

subject to
G∑

n=1

yki ≤ 1,∀k ∈ Pt(ij) (6.4)

bik ≤ At(n), 1 ≤ i ≤ G,∀k ∈ Pt(ij) (6.5)

The objective in Eq. (6.3) indicates the reduction of the total energy cost of FNs in

FVNETs considering the resource limitations of the network. The Eq. (6.4) guarantees the

vehicle k in the overlap coverage area (i, j) ∈ Z is furnished by a single FN. Constraint in

Eq. (6.5) ensures the required RBs of vehicle k in the region (i, j) ∈ Z should be less than

remaining RBs of FN i to acquire utilities from FN i. The increase in vehicles coming to

the network drives the vehicles to couple with FNs based on their signal strength. However,

as joining vehicles to the network grows, the FNs become futile in providing on-demand
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services to the vehicles due to finite resource limitations. Consequently, there is a severe

reduction in resource utilization efficiency. Alternatively, it also leads to an upsurge in

the FNs’ energy cost in the network. Therefore, to address this problem and enhance the

network’s services, the allocated RBs of vehicles in the overlap coverage parts are reduced

amid pairs of FNs. In this chapter, we regard the reduction of vehicles’ allocated RBs in

the overlap areas of FNs by migrating those vehicles’ RBs amid pairs of FNs to realize the

following goals. (1) Minimizing energy cost of FNs. (2) Maximizing resource utilization

efficiency.

6.2 Energy-Efficient Resource Allocation Algorithm

The presented EERA algorithm recedes occupied RBs by harmonizing RBs allocation

among FNs. The RBs reduction is accomplished by migrating RBs of vehicles in the over-

lapping coverage of pairs of FNs. The objective of the EERA algorithm is to degrade the

energy consumption cost of FNs and maximize the resource utilization efficiency in the

network. The idea of the proposed algorithm is presented as follows: first, the algorithm

constructs a B+ tree using occupied RBs of FNs. Further, it chooses the FN f having min-

imum occupied RBs. Then, it strives to find the vehicle vmin with minimum RBs to that

FN f . Subsequently, it migrates the RBs of vehicle vmin to FN f such that the allocated

RBs of FN f is minimized. However, the migration of RBs to the FN f is successful only

if the available RBs of the FN f meet the vehicle’s vmin desired necessities. The proposed

algorithm is depicted in Algorithm 6.1 and clarified in Section 6.2.2.

At a particular instant of time t, consider a situation in which vehicles reaching the net-

work increases, and the available resources of the FNs tend to drain. The EERA algorithm

identifies the set of vehicles in the overlapping coverage part (i, j) ∈ Z of FVNETs. The

set of vehicles in the overlapping range of FNs (i.e., Pt(ij)) is obtained using Eq. (4.7).

|Pt(ij)| gives the total vehicles in the overlapping range of ith and jth FNs. Then, the al-

located RBs of vehicles in the set Pt(ij) can be migrated between FNs by assuming that

there exists at least one vehicle in the overlapping coverage (i, j) ∈ Z of ith and jth FNs,

i.e., Pt(ij) ̸= ∅. Consider a set of vehicles whose RBs can relocate from ith FN to jth FN

96



CHAPTER 6. AN ENERGY-EFFICIENT RESOURCE ALLOCATION ALGORITHM 6.2. EERA ALGORITHM

(denoted as p∗t (ij)) and its converse, i.e., a set of vehicles whose RBs can relocate from jth

FN to ith FN (denoted as l∗t (mn)). At timeslot t, the set of vehicles, furnished by ith and jth

FNs after RBs are migrated, is denoted as P∗
t (i) and P∗

t (j), respectively. The sets, P∗
t (i)

and P∗
t (j), can be accomplished from Eq. (4.8). The RBs deduction of vehicles in the

overlapping coverage of FNs is framed as an ILP problem, which is examined in Section

6.2.1.

6.2.1 Framing ILP for RBs Reduction

The assigned RBs of the vehicles in the overlapping coverage are reduced to solve the

objective P and maximize the resource utilization efficiency. This deduction of RBs is

carried out by migrating RBs of the vehicles in Pt(ij), ∀(i, j) ∈ Z between pairs of FNs,

such that the allocated RBs to these vehicles from FNs is minimum. The RBs reduction of

vehicles in Pt(ij), ∀(i, j) ∈ Z , can be mapped as ILP, which is described in Section 4.2.1.

Note that the ILP problem in Eq. 4.9, selecting vehicles from overlapped coverage

regions for RBs migration between pairs of FNs, is a SAP problem which is a prominent

NP-Hard problem that aims to maximize the profit [127]. The model of SAP is reduced

to the model of our ILP problem by drawing students to vehicles in overlapping coverage

parts, seminar halls to FNs, and rth seminar hall capacity, Br, to ith FN capacity (Cn).

However, the profit of mapping sth student to rth seminar hall is negated in the mapping of

kth vehicle RBs to ith FN. This reduction is achieved in polynomial time. On the contrary,

The ILP problem can be cracked in polynomial time when the number of seminar halls

is fixed (i.e., the number of FNs (G) is fixed in our problem) [127]. In this context, we

propose an EERA algorithm to diminish the energy consumption cost of FNs and enhance

the resource utilization efficiency, which is discussed in Section 6.2.2.

6.2.2 Algorithm Description

The EERA algorithm provides a solution for FVNETs to lower the energy usage of FNs and

enhance resource utilization efficiency by employing a well-known data structure called the

B+ tree. The proposed algorithm, EERA, is demonstrated in Algorithm 6.1.
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Algorithm 6.1 Energy-Efficient Resource Allocation

Input: G(V,E), G
Output: Energy consumption, resource utilization efficiency

1: Lt ← ∅
2: Q← ∅
3: for i← 1 to G do
4: Li← ∅
5: for each neighbour FN j of i, 1≤ j ≤ G, i ̸= j do
6: Obtain Pt(ij)
7: Li ← Li ∪ Pt(ij)
8: end for
9: Lt←Lt ∪ Li

10: Ot(i)←
∑|Pt(i)|

k=1 bik
11: Q← Q ∪Ot(i)
12: end for
13: energy← Compute_Energy(Lt, Q)
14: Find resource utilization efficiency

Algorithm 6.1 takes a graph G(V,E) of FVNETs and G as inputs and produces en-

ergy consumed by FNs and resource utilization efficiency in FVNETs. It also invokes the

procedure Compute_Energy() (i.e., Procedure 5) to find the energy utilization of FNs

by passing the vehicles set in the overlapping range areas and occupied capacities of FNs

as parameters. At time instant t, when vehicles arrive in the overlapping coverage (i, j),

∀(i, j) ∈ Z (Lines 3-11), the algorithm finds the Lt, which is a vehicles set in the over-

lapping range of ith FN by considering each neighbouring FN (say, jth FN), i ̸= j. Also,

it computes the allocated capability Ot(i) of each FN at timeslot t in Line 10. The set Q,

which is a union of the allocated capability of each FN, is obtained in Line 11. In Line 13,

it invokes Procedure 5 (i.e., Compute_Energy()) by passing Lt and Q as arguments.

The Procedure 5 performs the RBs relocation by finding the FN f and vehicle vmin.

After finding the FN f and vehicles vmin, it strives to relocate the RBs of vehicle vmin to

FN f . Relocation of RBs of vehicle vmin to FN f possible only if the vehicles vmin not

served by FN f and the required RBs of vehicle vmin is satisfied by FN f from Line 6 to

Line 15. Otherwise, the vehicle vmin is skipped from the RBs relocation in Line 12. After

successfully migrating RBs, the allocated capability and available RBs of FN f are updated

in Line 9. Subsequently, the energy consumed by FN f in downlink communication is
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Procedure 5 Compute Energy(Lt, Q)
Input: A set of vehicles, Lt, in overlapping parts of FNs and set of allocated capacity, Q,

of FNs
Output: RBs Migration, FNs energy consumption

1: while Lt ̸= ∅ do
2: energy used← 0
3: f ,vmin ← FindFNandVehicle(Lt, Q)
4: if vmin = −1 then
5: Q.delete(f)
6: else
7: if vmin is not served by f and At(f) ≥ bfvmin

then
8: Migrate the RBs of vehicle vmin to FN f from FN i
9: Update the allocated capacity and remaining RBs of f th and ith FNs

10: energy used← energy used + ρt(fvmin)
11: else
12: Skip the vehicle vmin from RBs migration
13: end if
14: Lt ← Lt − {vmin}
15: end if
16: end while
17: return energy used

computed in Line 10 and the vehicle vmin is withdrawn from the set Lt in Line 14. The

FN f having minimum occupied RBs and vehicle vmin with minimum RBs for FN f are

obtained by invoking the Procedure 6 in Line 3. If Procedure 5 finds no vehicle to be

migrated, then the obtained FN f is deleted from the set of the occupied capability of FN,

Q, in Line 5. These Lines from 2 to 15 are iterated until the setLt becomes empty. The total

energy FNs consumed is returned in Line 17. FindFNandVehicle() (i.e. Procedure 6)

is invoked from Procedure 5 in Line 3, constructs the B+ Tree data structure with an order

of seven keys using the set of the occupied capacity of FNs, Q in Line 1 of Procedure 6.

The FN f with minimum occupied capacity is obtained using the operation GetMinFN()

on B+ Tree in Line 2. Consequently, it finds the set, rb migrate, with the vehicles in the

overlapping coverage part of FN f from Line 3 to Line 9. Subsequently, from Line 10 to

Line 17, Procedure 6 finds the vehicle vmin having minimum desired RBs for the FN f

from the set rb migrate. Then, it returns the FN f and vehicle vmin in Line 18.
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Procedure 6 FindFNandVehicle(Lt, Q)

1: tree← B+_Tree(Q)
2: f ← tree.GetMinFN()
3: V list← Pt(f)
4: rb migrate← ∅
5: for vehicle v ∈ V list do
6: if v ∈ Lt then
7: rb migrate← rb migrate ∪ v
8: end if
9: end for

10: min rb← max number
11: vmin ← −1
12: for vehilce v ∈ rb migrate do
13: if bfv ≤ min rb then
14: min rb← bfk
15: vmin ← v
16: end if
17: end for
18: return f ,vmin

6.2.3 An Illustration

Let us consider a FVNET with four FNs and ten vehicles, as shown in Figure 6.2a. The

solid green lines between FNs and vehicles indicate that the vehicles are connected to FNs,

and the dashed green lines denote that the RBs of those vehicles can be migrated to the

corresponding FNs. A number beside the green lines shows the total RBs that must be

allocated from the FN to the corresponding vehicle. The graph representation of FVNETs

is shown in Figure 6.2b. The vertices designate the FNs, and there exists an edge amid

FNs only if vehicles present in the overlap coverage areas of corresponding FNs. The

graph model, G(V,E), of FVNETs and the number of FNs, G, are given as input to the

EERA algorithm (i.e., Algorithm 6.1). The Algorithm 6.1 finds the vehicles set in overlap

coverage regions and occupied capacity of FNs as Lt = {V4, V5, V6, V7, V8, V10} and Q =

{Q1 = 1120, Q2 = 677, Q3 = 1137, Q4 = 540}, respectively. Figure 6.3 shows the occupied

capacity of FNs before and after RBs migration in Figure 6.3a and Figure 6.3b, respectively.

Subsequently, Algorithm 6.1 invokes the Compute_Energy() (i.e., Procedure 5) with

the sets Lt and Q as parameters to compute the energy consumption of FNs. Then the FN

f and vehicle vmin are obtained by calling FindFNandVehicle() (i.e., Procedure 6) in
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Procedure 5). In each iteration of Procedure 5, Procedure 6 constructs a B+ tree to find the

FN f with minimum occupied capacity. In the first iteration, Procedure 6 returns FN f =

FN4 and vmin = V5 (i.e., 215) for RBs migration. Then, the Procedure 5 migrates the RBs

of vehicles vmin = V5 from FN3 to f = FN4. Consequently, it removes the vehicle vmin =

V5 from the set Lt and updates the sets Lt and Q as {V4, V6, V7, V8, V10} and {Q1 = 1120,

Q2 = 677, Q3 = 652, Q4 = 755}, respectively. In the second iteration, Procedure 6 returns

FN f = FN3 by constructing B+ tree and vmin = V6 (i.e., 235). Then Procedure 5 updates

the sets Lt and Q after relocating RBs of vehicle vmin = V6 from FN FN2 to FN f = FN3,

and it also remove vmin = V6 from the set Lt. The updated sets after the iteration are Lt

= {V4, V7, V8, V10} and Q = {Q1 = 1120, Q2 = 169, Q3 = 887, Q4 = 755}. In the third

iteration, Procedure 6 returns FN f = FN2 using B+ tree and vehicle vmin = V7 (i.e., 279)

for RBs relocation between FNs FN1 and f = FN2. The allocated RBs of vehicle vmin =

V7 are reduced by relocating from FN FN1 to FN f = FN2 in Procedure 5. Consequently,

after relocation, the updated sets Lt and Q are {V4, V8, V10} and {Q1 = 663, Q2 = 448, Q3

= 887, Q4 = 755}, respectively.

In the fourth iteration, Procedure 6 returns the FN f = FN2 but fails to return vehicle

vmin for RBs migration. Procedure 6 fails to return vehicle vmin when no vehicles are

present for RBs migration in the overlap regions of given FN f = FN2. As a result,

Procedure 5 deletes FN f = FN2 from the set Q. In the fifth iteration, Procedure 6 returns

the FN f = FN1 from the set Q = {Q1 = 663, Q3 = 887, Q4 = 755} and it also return

vehicle vmin = V8 (i.e., 135) for RBs migration. Then, Procedure 5 migrates RBs for the

vehicle vmin = V8 from FN FN3 to FN f = FN1 which results in the sets Lt and Q are {V4,

V10} and {Q1 = 798, Q3 = 586, Q4 = 755}, respectively. In the sixth iteration, Procedure 6

returns the FN f = FN3 but fails to return vehicle vmin for RBs migration. Consequently,

Procedure 5 deletes FN f = FN3 from the set Q resulting to Q = {Q1 = 798, Q4 = 755}.

In the seventh iteration, the B+ tree is constructed using the values of Q and the values for

f = FN4 and vmin = V10 (i.e., 250) are obtained from Procedure 6. Then, the RBs of the

vehicle vmin = V10 is relocated from FN FN1 to FN f = FN4. After migration the vehicle

vmin = V10 is removed from the set Lt and the values of Q are updated as {Q1 = 373, Q4 =

1005}. In the eighth iteration, Procedure 5 fetches the values of f = FN1 and vmin = V4 (i.e.,
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(a) A FVNET with ten vehicles and four FNs.

FN4

FN1

FN2

FN3

(b) A graph represntation of Figure 6.2a.

Figure 6.2: An FVNET for RBs migration using the proposed algorithm.

262) from Procedure 6. Then it migrates the RBs of the vehicle vmin = V4 from FN FN4 to

FN f = FN1 and vmin = V4 is deleted from Lt after successful migration. Subsequently, the

updated values of Lt and Q are {∅} and {Q1 = 635, Q4 = 627}, respectively. The allocated

capacity of FNs was 3474 before the migration of RBs. After successfully migrating the
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FN1 FN2 FN3 FN4

V1 162
V2 351
V3 169
V4 262 378
V5 485 215
V6 508 235
V7 457 279
V8 135 301
V9 238
V10 425 250

Occupied RBs 1120 677 1137 540

(a)

FN1 FN2 FN3 FN4

V1 162
V2 351
V3 169
V9 238 215
V5 485 215

FNs occupied
RBs 1120 677 652 755 After 1st iteration

V6 508 235
FNs occupied

RBs 1120 169 887 755 After 2nd iteration

V7 457 279
FNs occupied

RBs 663 448 887 755 After 3rd iteration

V8 135 301
FNs occupied

RBs 798 448 586 755 After 5th iteration

V10 425 250
FNs occupied

RBs 373 448 586 1005 After 7th iteration

V4 262 378
FNs occupied

RBs 635 448 586 627 After 8th iteration

(b)

Figure 6.3: An optimal RB migration using EERA algorithm for FVNET. (a) Occupied
RBs of FNs before migration. (b) Occupied RBs of FNs after migration using EERA.
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RBs of all the vehicles in Lt, the total allocated capacity of FNs is reduced to 2296, as

shown in Figure 6.3b. Alternatively, the proposed algorithm reduces the allocated RBs up

to 33.91%. This RBs reduction minimizes the energy consumption in the downlink services

of FNs and enhances resource utilization efficiency. However, existing algorithms, such as

RO, DRO, SA, and MCF, reduce the allocated RBs up to 26.71%, 16.23%, 17.87%, and

25.53%, respectively.

6.2.4 Complexity Analysis

Procedure 6 construct the B+ tree with |Q| number of keys. The size of set Q is |Q| = G,

hence the construction of B+ tree consumeO(log G) time in the worst case. Finding the set

of vehicles, rb migrate, from Line 3 to Line 9 and finding the vehicle vmin from Line 10

to Line 17 in Procedure 6 takes O(|rb migrate| + |V list|) times which is finite amount

of time. Therefore, Procedure 6 completed O(log G) time in the worst case complexity.

Whereas in Procedure 5, relocating RBs of vehicle vmin from Line 6 to Line 15 takes a

constant amount of time. Also, it invokes the Procedure 6 in Line 3. However, Lines

from Line 1 to Line 16 are repeated O(|Lt|) times. Hence, the general time complexity

of Procedure 5 is O(|Lt| log G). The Lines from 3 to Line 12 in Algorithm 6.1 iterates for

O(G2) times in the worst case. Consequently, the comprehensive time complexity of the

EERA algorithm takes O(G2 + |Lt| log G) time complexity in the worst case.

6.3 Performance Evaluation

The proposed EERA algorithm performance is evaluated by considering the energy usage

of FNs and the resource utilization efficiency of the network. The simulation setup is

explained in Section 6.3.1. The simulation results are analogized with existing algorithms,

such as RO, MCF [40], DRO [24] and SA [25]. We demonstrated the influence of the

growth in vehicles arriving at the network on the energy consumption of FNs and resource

utilization efficiency of the network. Further, the influence of the increase in the number of

FNs on the energy consumption of FNs is also demonstrated.
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Table 6.1: Parameters and their values for simulations

Parameter Value

Network area (A) 5000 m × 5000 m

Number of FNs (G) [10 ∼ 50]

Radius of FN coverage (R) 500 m

Bandwidth of FNs (W ) [10, 15, 20] MHz

Vehicles arrival rate (λ) 10 vehicles/s

Vehicles departure rate (µ) 5 vehicles/s

Required data rate [0.5 ∼ 2] Mbps

Pathloss exponent (β) 3

Scaling co-efficient (α) 1

Gaussian Noise (Nk) -104 dBm

Co-channel Inference (Ik) -75 dBm

Time slot duration 1 s

6.3.1 Simulation Setup

The proposed algorithm considers a FVNET consisting of energy-limited FNs ranging from

10 to 50. The network is deployed in a city area of [5000 × 5000] m2. The vehicles

joining and leaving the network follow the Poisson process with a mean coming rate λ =

10 vehicles/s and mean leave rate µ = 5 vehicles/s. The vehicles served with the minimum

0.5 Mbps of data rate when FNs could not assign the demanded RBs. The energy cost

of FNs is readily available in [128, 129]. The energy cost is obtained from the distance-

dependent path-loss model using the path-loss exponent β = 3. The FN estimates the

energy usage cost in the downlink transmission, assuming the constant bit rate. The media

access control protocol, IEEE 802.11p, provides wireless connectivity in FVNETs. The

Monte-Carlo simulations are conducted with 210 timeslots. The simulations are conducted

by creating an environment in PyCharm IDE 2023.1.2 using Python 3.11, Intel(R) Xeon(R)

Gold 622R CPU @ 2.90 GHz processor, and 64.0 GB RAM. This IDE runs on the 64-bit

Windows operating system. The average results are obtained over ninety simulations. The

additional parameters assumed for the simulations are specified in Table 6.1.
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6.3.2 Results and Discussions

The literature in [24, 25] proposes various resource management algorithms, including

DRO, and SA, respectively. The literature in [40] proposes an energy-efficient scheduler,

namely MCF. The RO algorithm selects the vehicles randomly for RBs migration from the

FN picked randomly. The DRO algorithm determines the maximum weight-matching so-

lution to migrate RBs of vehicles amid pairs of FNs. In contrast, the SA finds the graph

colouring solution to relocate the RBs of vehicles among pairs of FNs. The MCF is an

energy-efficient scheduler that minimizes the FN’s total energy consumption while provid-

ing the vehicles’ services in overlapped coverage regions in each time slot. We analyze

the efficacy of EERA with the performance of RO, MCF, DRO, and SA algorithms. The

effectiveness of the EERA is illustrated in terms of the energy usage of FNs and resource

usage efficiency when vehicles coming to the network rise. The energy usage per time slot

is defined as the average energy usage of FN to provide services to the vehicle with B bits

of data. Similarly, resource utilization efficiency is the rate of allocated RBs in the network.

Moreover, the performance is also measured in terms of the average energy usage of FNs

when the number of FNs increases in the network.

6.3.3 Energy Consumption of FNs

The mean coming (leaving) rate implies the number of vehicles entering (leaving) the net-

work. In our case, the mean coming rate is greater than the mean departure rate. As a result,

the number of vehicles connecting to the network grows in all time slots. The assigned RBs

of FNs increase as the vehicles connected to FNs grow. Therefore, the allocated RBs of

vehicles in overlapping coverage are migrated to minimise the overall occupied RBs of

FNs. Figure 6.4 shows the influence of the growth in the vehicles joining the network on

occupied RBs of the network after lessening allotted RBs of vehicles in the overlap cov-

erage parts for the EERA and existing algorithms. To reduce the allocated RBs, the DRO

employs the maximum weight-matching solution, which returns the set of edges with no

shared vertices. Thus, only the vehicles in the matching edges are used to reduce allocated

RBs. Therefore, the allocated RBs after reduction using DRO is high and increases as ve-
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Figure 6.4: Total allocated RBs for EERA, RO, MCF, DRO, and SA algorithms after RBs
reduction.

hicles increase in the network. The algorithms (i.e., RO, MCF, and SA) perform better in

reducing the RBs of vehicles in overlapping parts of FNs as the increase of vehicles join-

ing the network. The SA and MCF algorithms reduce the RBs of vehicles in overlapping

coverage parts using the graph colouring solution and by selecting vehicles with minimum

RBs at each time slot, respectively. The SA strives to reduce the RBs of vehicles from

overlap regions such that the burden on FNs is low. Therefore, the SA algorithm enhances

the lowering of RBs as vehicles increase in the network by 3.63%, 1.91%, and 7.94% on

average when analogised to RO, MCF and DRO, respectively. However, the EERA algo-

rithm, which builds the B+ tree using occupied capacities of FNs, reduces the RBs and

enhances the occupied RBs significantly as vehicles increase in the network by 2.73% on

average compared to the SA algorithm.

An increase in the vehicles joining the network increases the bandwidth consumption,

resulting in competing among vehicles for finite bandwidth [132]. As a result, some ve-

hicles with good signals strive to utilize FNs heavily, depriving services to other vehicles.

However, this poses a significant challenge in terms of tremendous energy usage by FNs to
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Figure 6.5: Energy consumption of FNs per time slot for EERA, RO, MCF, DRO, and SA
algorithms.

provide continuous utilities to the vehicles when limited energy sources power FNs. Once

the RBs reduction is successful for vehicles in the overlapping coverage parts, FNs are

ready to deliver the data. The proposed algorithm selects vehicles nearer to the FNs (i.e.,

vehicles with the least RBs) by relocating the RBs of vehicles in the overlapping coverage

parts among pairs of FNs. As a result, there is a reduction in the energy consumption of

the FNs. Figure 6.5 shows the energy consumption by FNs as the vehicles joining the net-

work grow. When analogized with other algorithms, the proposed algorithm remarkably

lessens the FNs’ energy usage in downlink communication. Here, the SA performs better

because it uses the graph colouring solution to reduce the RBs of vehicles in the overlap-

ping regions in each time slot, and it improves the reduction in the energy consumption by

the FNs up to 34.37%, 48.07% and 22.31% on average when analogized to RO, MCF and

DRO algorithms, respectively. However, the proposed EERA algorithm reduces the energy

consumption of FNs. It outperforms the SA as it is greedy in selecting FN with minimum

occupied capacity and greedy in deciding the vehicle with the least RBs. Therefore, it re-

duces the energy consumption of FNs by 6.62% on average when analogized to the SA

algorithm.
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Figure 6.6: Energy consumption cost of FNs as FNs in FVNETs increase for EERA, RO,
MCF, DRO, and SA algorithms.

The energy consumption of FNs as FNs in the FVNETs increase is pictured in Figure

6.6. As deploying the number of FNs in the network rises, more FNs are available to

provide services as vehicles joining the network grow. MCF, DRO, and SA algorithms

reduce FNs’ energy consumption as the FNs increase. The SA algorithm reduces FNs’

energy consumption by FNs by 31.78%, 25.55% and 16.59% on average when analogized

to RO, MCF and DRO algorithms, respectively. Nevertheless, there is a notable reduction in

the FN energy utilization using the EERA algorithm. The EERA algorithm diminishes the

energy consumption of FNs by 37.58%, 32.51%, 22.95%, and 8.33% on average analogized

to RO, MCF, DRO, and SA algorithms, respectively.

6.3.4 Resource Utilization Efficiency

The percentage of assigned RBs in the network indicates resource usage efficiency. The

distribution of the percentage of average RBs occupied for the EERA algorithm and ex-

isting algorithms is portrayed in Figure 6.7. The black diamond mark represents the av-

erage percentage of RBs used. The blue line inside the box signifies the median, and the
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Figure 6.7: Resource utilization efficiency for EERA, RO, MCF, DRO, and SA algorithms.

boxplot’s height denotes the distribution of assigned RBs of FNs in FVNETs. The FNs

become ineffective when vehicles joining the network increase due to inadequate available

RBs. Consequently, the algorithms RO, MCF, DRO and SA deliver an average of 89.46%,

87.61%, 88.22%, and 86.94% of RBs utilization in the network, respectively. In contrast,

the proposed algorithm is greedy in deciding FNs with the least occupied capacity and re-

duces the allocated RBs by selecting vehicles with minimum RBs in the overlap regions.

Therefore, the EERA algorithm exhibits an average of 84.92% RBs utilization. The re-

duced allocated RBs from FNs are reused for the vehicles in overlap regions. Therefore,

the simulation results depict that the EERA algorithm enhances the efficiency of RBs uti-

lization by 4.21%, 3.15%, 3.87%, and 2.37% when analogue to RO, MCF, DRO and SA

algorithms, respectively.

6.4 Summary

In this chapter, we proposed an EERA algorithm to coordinate RBs allocation among FNs

to minimize the energy usage of FNs and augment the resource usage efficiency of the
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network. The allocated RBs of vehicles are lessened by relocating RBs among pairs of

FNs so that the occupied capacity of FNs is minimized. We have considered the vehi-

cles in the overlapping coverage parts of FNs to migrate the allocated RBs of vehicles.

However, as vehicles joining the network grow, FNs become impuissant to furnish services

to the vehicles due to limited resources and pose a challenge in terms of massive energy

consumption by FNs for continuously serving vehicles. Therefore, the EERA algorithm

reduces assigned RBs of vehicles in overlapping regions by relocating RBs among pairs of

FNs. Consequently, the FNs’ energy consumption is minimized with the growing number

of vehicles joining the network. Further, we have analyzed FNs’ energy consumption as

the number of FNs in the network grows. The proposed algorithm has been evaluated with

existing algorithms, namely RO, MCF, DRO, and SA. The simulation outcomes illustrate

that the proposed algorithm outruns the energy consumption of FNs by 37.58%, 32.51%,

22.95% and 8.33% on average compared to RO, MCF, DRO and SA algorithms, respec-

tively.
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Chapter 7

Energy-Efficient and Delay-Aware Task

Scheduling in Energy-Limited FVNETs

using Q-Learning

This chapter presents an RL-based EEDA task scheduling algorithm in intersecting regions

of energy-limited FVNETs. This algorithm mitigates the energy consumption of FNs while

discharging and improving the network’s throughput by satisfying the delay constraints of

the tasks. EEDA is a greedy-based RL algorithm that provides a sub-optimal solution to

task scheduling in the intersecting regions of FVNETs. It uses the Q-learning approach to

train FNs for different vehicle arrival rates of traffic scenarios. It chooses the FN, which

consumes minimum energy to schedule tasks in each time slot while meeting the deadline

of tasks. Further, the selection of FNs for scheduling tasks depends on the sojourn time of

the vehicle in the intersecting region, the task deadline, the response time from the FN and

the average energy usage of the FN. The literature [10, 108, 133] considers various objec-

tives like latency, waiting time, FN energy usage, reliability, etc. Moreover, these works

need to adequately discuss the challenges in the finite resource FVNETs when the cover-

age region of FNs intersects with neighbouring FNs. In contrast, the proposed algorithm

considers the task deadline, task data size, energy usage of FNs, and vehicle’s sojourn time

in the intersecting region for scheduling tasks in a suitable FN of an intersecting region.

Subsequently, the FNs are trained for various traffic conditions such that the average en-
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ergy usage of FNs is reduced, and the network’s throughput is improved.

The proposed algorithm is simulated for the mean arrival rate of vehicles ranging from

2 to 6 per second in each intersecting region to train the FNs for free-flow traffic of 100

seconds duration. Subsequently, simulated results compared with benchmark algorithms,

such as PSG [41], EDF [42], FCFS [43], and RO [44] in terms of average energy usage,

network throughput, total transmitted data, completed service request and total service time

of FN. The simulation results show that the RL-based EEDA algorithm performs better than

benchmark algorithms in minimizing the average energy consumption of FN and enhancing

the network throughput. The main contributions of this chapter can be summarized as

follows.

1. This chapter investigates the scheduling of time-critical tasks among FNs in the in-

tersecting regions to reduce the average energy usage of FN while considering the

task’s deadline, FN’s energy usage and vehicle’s sojourn time in the intersecting re-

gion.

2. The scheduling of tasks among FNs is transformed into an ILP by evaluating the

task’s deadline, response time from the FN and the residing time of the vehicle in the

intersecting region.

3. Since the ILP is NP-hard, we design a greedy-based task scheduling in the inter-

secting regions of FVNETs using the Q-learning-based RL technique to mitigate the

energy consumption of FN and satisfy the delay constraints of vehicles.

4. Performance evaluation has been carried out by considering the impact of the in-

crease in the number of vehicles in the intersecting regions for various vehicle arrival

rates in the network concerning the energy usage of FN and throughput of the net-

work.

The remainder of this chapter is structured as follows. The system model and the

problem formulation are imparted in Section 7.1. Next, Section 7.2 describes the energy-

efficient task scheduling approach using the RL technique. Then, the simulation setup and
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performance evaluation are explained in Section 7.3. Finally, Section 7.4 summarizes the

chapter.

7.1 System Model and Problem Formulation

The architecture of a FVNET is shown in Figure 1.1 in Chapter 1. Each smart vehicle is

fitted with OBUs for storage and processing resources in ITS. In matters of famine of re-

sources, HPNs and RSUs are employed along the road to supply vehicular services. These

HPNs and RSUs are roadside infrastructures regarded as FNs [24]. The central compo-

nent is connected to the cloud over the Internet and manages the HPNs. HPNs have more

resource capabilities than RSUs, and they coordinate the RSUs nearby. Further, the 5G

technology’s key feature, C-V2X, which supports V2I and I2V communications, is used

for connection between vehicles and FNs [28]. Figure 1.2 shows the network’s total ser-

viceable time, T , is partitioned into equal timeslots δτ . In each timeslot, the FNs are

available for vehicular services to one or more vehicles [25].

This chapter assumes that the FNs are powered by rechargeable batteries, which require

periodic recharging due to the lack of a permanent power source. Hence, human interven-

tion or solar energy is required to revive FNs when their batteries are depleted to ensure

uninterrupted services. This reviving FNs to deliver services and ensure energy preserva-

tion till the successive recharge cycle is challenging when the FNs cover highway segments

of remote areas (i.e., forests or hill terrain or military bases or airports) where consistent

power sources are unavailable [38]. In this circumstance, consider that the FVNETs cover

remote areas’ highway segments such that the FNs’ coverage region intersects with neigh-

bouring FNs’ coverage. Further, the dealy-sensitive tasks generated by each arrived vehicle

in the intersecting region are offloaded into FN (i.e., RSU or HPN) for computation. How-

ever, HPN acts as a central node, which decides the scheduling of tasks among FNs of

intersecting regions, including itself. It is worth mentioning that the RSUs are exclusively

operated for executing the allotted tasks. The increase in arrived vehicles in the intersecting

region rapidly generates compute-intensive and delay-sensitive tasks in the network, caus-

ing increases in the processing of tasks at FNs [37]. It may lead to high energy consumption
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by FNs and influence the end-user experience without proper management. In contrast, ef-

ficient energy utilization in limited energy FVNETs enhances the network’s throughput and

lifetime. Therefore, we propose a RL based EEDA task scheduling in intersecting regions

of energy-limited FVNETs to mitigate energy consumption of FNs while discharging and

improving the network’s throughput by satisfying delay constraints of the delay-sensitive

tasks.

EEDA is a greedy-based RL algorithm which provides a sub-optimal solution to task

scheduling in the intersecting regions of FVNETs. It uses the Q-learning approach to

train FNs for different vehicle arrival rates of traffic scenarios. It chooses the FN, which

consumes minimum energy to schedule tasks in each time slot while meeting the deadline

of tasks. Further, the selection of FNs for scheduling tasks depends on the sojourn time of

the vehicle in the intersecting region, the task deadline, the response time from the FN and

the average energy usage of the FN. The system model, communication model, execution

model, energy consumption model and formulation of energy consumption of FNs into an

ILP problem are described in the following sections.

7.1.1 System Model

Consider G as the number of energy-limited FNs deployed near the highway forming the

FVNET such that their coverage area intersects with neighbouring FNs as shown in Figure

7.1. Assume each FN i, 1 ≤ i ≤ G, has the coverage range R and the Z number of in-

tersecting regions in FVNETs. Then the neighbouring FN i and FN j form an intersecting

region denoted by (i, j) ∈ Z . Further, a free flow discrete time traffic model is consid-

ered using uninterrupted and homogeneous vehicular traffic over a fixed-length highway

segment of L, L ≥ R. The total serviceable time, T , of the network is partitioned into

fixed-duration time slots, δτ . FNs can provide services to one or more vehicles in every

time slot. However, the Poisson process is used for vehicles’ mean arrival at the network,

and the interarrival time of vehicles follows the exponential distribution for free-flow traffic

conditions. Let Vt(i) and Tt(i) be the set of vehicles and set of vehicle’s respective tasks

in the vicinity of FN i, respectively, at time slot t. Then the set of vehicles and tasks in the
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Figure 7.1: Energy limited FNs and vehicles in FVNETs.

intersecting region of FNs i and j at time slot t is obtained as follows.

Vt(ij) = Vt(i) ∩ Vt(j) (7.1)

Tt(ij) = Tt(i) ∩ Tt(j) (7.2)

In every time slot, the HPN accumulates the set of independent tasks Tt(ij) received

from corresponding the set of vehicles Vt(ij) in the intersecting region (i, j) ∈ Z . Each

task k is denoted by a tree-tuple (ck, hk, dk). Here, ck denotes the required CPU cycles in a

million instructions per second (MIPS) of task k, hk describes the data size (in bytes), and

dk gives the task’s deadline k. Table 7.1 summarises the notations and their description.

In each time slot, vehicles in the intersecting region send the service request to FN. Sub-

sequently, FN forwards the set of tasks to HPN to schedule the tasks for processing. HPN

schedules the tasks based on deadline constraints of tasks, the sojourn time of the vehicle

in the intersecting region and the energy consumption of FNs. Consequently, FNs process

the tasks to provide services in the downlink to the vehicles.
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Table 7.1: List of notations and their description

Notation Description

Vt(ij)
Set of vehicles in the intersecting region (i, j) at time

slot t ∈ Z
ck CPU cycles (in MIPS) required by task k

Fi CPU cycles of FN i

hk Data size (in bytes) of task k

Tt(ij) Set of tasks in the intersection part (i, j) ∈ Z at time slot t

dk Deadline of task k

Sk
ij

Sojourn time of the vehicle ϑk in the intersecting region

(i, j) ∈ Z
L Length of the intersecting coverage parts of FVNETs

vk Velocity of vehicle ϑk ∈ Vt(ij)

δct2(ϑk)
Covered distance of vehicle ϑk in an intersecting region at

time slot t2
χki Transmission rate of FN i for the task k

T tr
ki Transmission time of task k from FN i

T e
ki Execution time of task k from FN i

T r
ki Response time of FN i for the task k

Ee
ki FN i energy consumption in executing task k

Etr
ki FN i energy consumption in transmitting data hk

Eki(t) Energy consumed by FN i in serving vehicle ϑk at time slot t

Eij(t)
Energy consumed by FNs i and j in serving all the tasks in

an intersecting region (i, j) ∈ Z at time slot t

E(t) Energy consumed in FVNETs at time slot t

7.1.2 Communication Model

We presumed that the vehicles in the FNs’ intersecting region maintain a constant velocity

throughout their sojourn time. Every vehicle at time slot t enters the intersecting region

at location I and sends the beacon message to FN to establish a connection. A beacon

message from vehicle ϑk describes the vehicle’s arrival time and the velocity at location

I of an intersecting region. Subsequently, we assess the adequate communication time of

each vehicle in the intersecting region as follows.

Let ϑk be a vehicle with the velocity vk entering the intersecting region from the point

of notice I at time slot t1. The vehicle ϑk will send the service request to the FN at time
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slot t2 after covering some distance, δct2(ϑk), in the intersecting region (i, j) ∈ Z . As a

result, the distance covered by the vehicle ϑk is obtained in the duration between t1 and t2

as follows.

δct2(ϑk) = vk ×∆t (7.3)

where ∆t = |t2 - t1|, is the difference between when the vehicle arrived at location I and

when the vehicle sent a service request to FN.

The adequate communication time of the vehicle ϑk depends on the vehicle’s sojourn

time in the intersecting region. The sojourn time, Sk
ij , of vehicle ϑk is detailed as the

amount of time the vehicle ϑk resides in the intersecting region (i, j) of FNs i and j. Thus,

the sojourn time is expressed as follows.

Sk
ij = min

(
L

vk
,
L− δct2(ϑk)

vk

)
(7.4)

The FN attain a steady bit rate using the transmit power control in downlink trans-

mission in every time slot, regardless of the position of the vehicle in the intersecting re-

gion [85]. Further, this system assumes the distant-dependent path loss communication

model [32, 40] to fetch the transmit power of a FN. In this model, the transmit power of

a FN increases as the vehicle distance from FN increases [130]. Therefore, considering a

steady bit rate (B bits per each slot), the transmission power of FN i when contacting with

vehicle ϑk at time slot t is denoted by ρt(ik) and expressed using Eq. (5.1). The distance

between FN and the vehicle is obtained by considering the FN i is located at the origin (0,

0). The vehicle ϑk is at (xk, yk) in the 2D coordinate space using Euclidean distance as

Dki =
√
(x2k + y2k) [32]. Then, the SINR between FN i and vehicle ϑk at time slot t on

the data channel, which is denoted by ψt(ik), is derived from Eq. (5.2). Subsequently, the

transmission rate of a FN i is obtained for the task k using the Shannon formula, and it is

represented as follows [95].

χki = B × log2(1 + ψt(ik)) (7.5)

where B is the available bandwidth at each FN.
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Figure 7.2: Service request from vehicles to FNs is surjective.

Theorem 7.1.1. The service request from the set of vehicles, Vt(ij), to the FNs, Gij , at time

slot t in the intersecting regions, ∀(i, j) ∈ Z , is surjective.

Proof: Let Vt(ij) be the set of vehicles at time slot t and Gij be the set of FNs in an

intersecting region (i, j) ∈ Z . Then the function f1 : Vt(ij) → Gij describes the service

request to FNs from the vehicles in the intersecting region (i, j) ∈ Z as shown in Figure

7.2. The function f1 is injective only if no two vehicles send a request to the same FN.

However, in function f1, two different vehicles, ϑk and ϑl, can send the request to the same

FN. In contrast, every FN in Gij has a service request from vehicles in Vt(ij) (i.e., for every

image in Gij there is a preimage in Vt(ij)). Therefore, the service request from vehicles to

FNs is surjective, not injective.

7.1.3 Execution Model

Let λ be the mean arrival rate of vehicles in the network and the set of vehicles at time slot

t, Vt(ij), in the intersecting region having N number of vehicles is expressed as Vt(ij) =

{ϑ1, ϑ2, . . ., ϑN}. Further, each vehicle ϑk, 1 ≤ k ≤ N , offloads a delay-sensitive task to a

FN in the intersecting region to exploit the network’s services. However, it is worth noting

that the time to transmit the task k from vehicle ϑk to FN i is not considered. Therefore,
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the execution time of task k in FN i is given as [134].

T e
ki =

ck
Fi

(7.6)

where Fi denotes the CPU frequency of FN i. The transmission time to transmit the data

hk in the downlink communication from FN i to vehicle ϑk is given as

T tr
ki =

hk
χki

(7.7)

Consequently, the response time of FN i for offloading task k to the corresponding vehicle

ϑk is given as

T r
ki = T e

ki + T tr
ki (7.8)

7.1.4 Energy Consumption Model

Two kinds of energy consumption of a FN exist in this system model. Firstly, energy

consumed by FN in processing the scheduled task k. Secondly, the energy consumed by

FN in transmitting data hk of task k to vehicle ϑk in downlink communication. The energy

consumption of FN i for processing the task k of a vehicle in the intersection region depends

on various factors such as clock frequency and task type. Along with existing studies,

[32, 134, 135], we consider the energy consumption of FN i is given as

Ee
ki = E × (Fk)

2 × ck (7.9)

where E is the energy coefficient depending on the chip architecture. Besides, after execu-

tion of task k, the energy consumed by FN i for transmitting the data hk to vehicle ϑk in

the intersecting region is given as

Etr
ki = T tr

ki × ρt(ik) (7.10)
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Therefore, the energy consumed by FN i for providing services to the vehicle ϑk at time

slot t is defined as

Eki(t) = Ee
ki + Etr

ki (7.11)

7.1.5 Problem Formulation

We define two boolean variables, yki , and ykj to indicate the task k in an intersecting region

(i, j) ∈ Z that is selected for processing in one of the FNs i and j.

yki =

1, If the task k is processed by FN i

0, Otherwise

and

ykj =

1, If the task k is processed by FN j

0, Otherwise

(yki + ykj ) ≤ 1, ∀k ∈ Tt(ij), (i, j) ∈ Z (7.12)

The Eq. (7.12) ensures that the tasks in an intersecting region are processed by either

FN i or FN j of an intersecting region (i, j) ∈ Z in FVNETs. Therefore, each task in an

intersecting region is scheduled for processing in a suitable FN. The total energy consumed

by FNs i and j in an intersecting region (i, j) ∈ Z for processing N number of tasks at

time slot t is obtained as follows.

Eij(t) =
N∑
k=1

1{yki }Eki(t) +
N∑
k=1

1{ykj }Ekj(t) (7.13)

where 1{X} is an index function that results the value 1 when X is assigned with value 1,

otherwise 0. Besides, the total energy consumed in the FVNETs at time slot t is obtained

as follows

E(t) =
∑

∀(i,j)∈Z

Eij(t) (7.14)

The vehicles in the intersecting region of FNs can get services from either of the FNs
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of the intersecting region. On the other hand, a FN furnishes services to a vehicle in the

downlink transmission in the practical systems. Moreover, service requests to the network

increase as vehicles enter the network rises over time. This increase in the service con-

nections yields an increase in the energy consumption of FNs for processing and downlink

offloading tasks. Accordingly, the problem is stated as reducing the energy consumption of

FNs formulated as an ILP problem, expressed as follows.

P : min
∑
∀t∈T

E(t) (7.15)

such that

T r
kiy

k
i + T r

kiy
k
j ≤ dk,∀k ∈ Tt(ij), (i, j) ∈ Z (7.16)

(yki + ykj )Sk
ij ≥ dk,∀ϑk ∈ Vt(ij), (i, j) ∈ Z (7.17)

T r
kiy

k
i + T r

kiy
k
j ≤ (yki + ykj )Sk

ij,∀k ∈ Tt(ij), (i, j) ∈ Z (7.18)

N∑
k=1

(yki + ykj ) ≤ N, (i, j) ∈ Z (7.19)

∑
∀(i,j)∈Z

(yki + ykj ) ≤ 1, k ∈ Tt(ij) (7.20)

yki ∈ {0, 1}, ykj ∈ {0, 1} (7.21)

The objective in Eq. (7.15) denotes the minimization of total energy consumed by

FNs in all time slots subjected to the various constraints in the network. Constraint in Eq.

(7.16) guarantees the response time from a FN should be less than or equal to the task k

deadline. Constraint in Eq. (7.17) assures the sojourn time of vehicle ϑk is greater than

the deadline of corresponding task k in the region (i, j) ∈ Z . Constraint in Eq. (7.18)

ensures response time from a FN for the task k should be less than the residing time of the

respective vehicle in an intersecting part. Constraint in Eq. (7.19) guarantees that the total

number of tasks scheduled among FNs i and j in an intersecting region should be less or

equal to the number of available tasks N in that region (i, j) ∈ Z . However, the constraint

in Eq. (7.20) ensures the task k is scheduled in either FN i or FN j in an intersecting region
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(i, j) ∈ Z of FVNETs. Finally, Eq. (7.21) is the integer constraint.

Scheduling a task in an optimal FN generally requires an exponential complexity solu-

tion for the objective P in Eq. (7.15). When N number of available tasks are offloaded to

HPNs at time slot t, scheduling decisions among FNs in every intersecting region is a 0/1

multiple knapsack problem, a prominent NP-hard optimization problem [95]. As a result,

we propose a RL-based sub-optimal task scheduling algorithm for the objective P.

7.2 Reinforcement Learning based Energy-Efficient Task

Scheduling

The intent for RL in the system is to train the FNs for various traffic conditions (i.e.,

λ = 2 ∼ 6) in FVNETs, such that the long-term reward is maximized in each time slot t.

Here, the FN reward is a function of total transmitted bits and the average energy consump-

tion of FN. In this approach, the RL agent learns FN’s energy consumption for different

arrival rates of vehicles in the network. The RL agent can achieve the highest rewards by

scheduling the vehicle’s task in a suitable FN, consuming minimum energy in an intersect-

ing region for each time slot.

7.2.1 RL agent

As the RL agent is clueless about the network and state transition, it follows the ϵ-greedy

approach to explore myriad actions in the network for obtaining optimal scheduling policy

in each state. Moreover, this system assumes time slots and vehicles as the states and

corresponding state actions, respectively. The RL agent operation is illustrated in Figure

7.3. In the ϵ-greedy method, there are two phases, first the exploration phase and second

the exploitation phase. In an initial state, as the agent is unaware of state transition and

network condition, it follows the exploration phase, in which the agent probes all feasible

moves greedily till it manipulates the most promising actions to increase the long-term

return. The RL agent uses the random numbers in the range of (0, 1) denoted by W as

shown in Figure 7.3 in the exploration phase. Subsequently, in the exploitation phase, it
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Vehicle weight
calculation

Exploitation Phase

Exploration Phase

W > ϵ

Tt(ij), Sij, D, h, d  

HPN

Exploit optimal
approach

Choose a random action

Choose current state
optimal action

{ω1, .., ωN}

RL agent ϵ-greedy 
 

Update
Q-Matrix

No

Yes

Select
Vehicle

Vehicle ϑk and task k

Figure 7.3: RL agent operation.

chooses the vehicle which enhances the long-term reward.

However, the agent directly can not determine vehicles as actions in this dynamic cir-

cumstance. Further, an action refers to vehicles identified by their respective weights rather

than their specific identities. Therefore, the agent is instructed to treat the weights of ve-

hicles as actions to take. The weights of vehicles are calculated using the parameters such

as the vehicle’s distance from FN, sojourn time in the intersecting region, respective task

data size and task deadline. Then, the agent’s current policy for the action is determined

by selecting the vehicle with the highest weight for each FN in the intersecting region. As

a result, the off-policy performance of the RL system converges towards the optimal selec-

tion of the vehicle ϑk and the vehicle’s task k for the FNs i and j in the intersecting region

to maximize the reward.

Theorem 7.2.1. The service from the set of FNs, Gij , to the vehicles in the set Vt(ij), at

time slot t in an intersecting region (i, j), ∀(i, j) ∈ Z , is injective.

Proof: Consider the function f2 : Gij → Vt(ij), which describes the FNs in the set Gij
serving the vehicles belonging to the set Vt(ij) at time slot t in an intersecting region

(i, j) ∈ Z , as shown in Figure 7.4. The FNs, FN i and FN j, in an intersecting region
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ϑ1
ϑ2
.
.

ϑk
.

ϑN

FNi

FNj

Vt (ij)

Ƶij

f2

Figure 7.4: Services from FNs to vehicles is injective.

(i, j) ∈ Z serve the vehicles ϑk and ϑl, k ̸= l, belong to the set Vt(ij), respectively. In

other words, every FN in an intersecting region will serve the vehicles belonging to the set

Vt(ij) at time slot t. However, no two vehicles ϑk and ϑl, k ̸= l, belong to the set Vt(ij) get

services from the same FN in an intersecting region at time slot t. Therefore, the service

from FNs to vehicles in an intersecting region is injective but not surjective.

7.2.2 Vehicle Weight Calculation

FNs in an intersection region maintain the list of vehicles in their coverage area and forward

the beacon messages disseminated by vehicles to HPN in each time slot. Further, FN

forwards the set of vehicle tasks in the intersection region to HPN. Then, HPN compiles

the following information at the beginning of every time slot t.

• HPN computes the vehicles set in each intersecting region at time slot t. Let there

are N number of vehicles in the intersecting region (i, j) ∈ Z denoted by Vt(ij) =

{ϑ1,. . ., ϑN} and their respective tasks are denoted by the set Tt(ij) = {1, 2,. . ., k,. . .,

N}.

• Sij = {S1
ij , S

2
ij ,. . ., S

N
ij } is a set of sojourn time of vehicles.

• D = {D1i, D2i,. . ., DNi} is a set of distances of vehicles from FN i or FN j in an
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intersecting region (i, j).

• h = {h1, h2,. . ., hN} is a set of data sizes of vehicles tasks.

• d = {d1, d2,. . ., dN} is a set of deadlines of vehicles tasks.

• ω = {ω1, ω2,. . ., ωN} is a set of weights of vehicles in the intersecting region (i, j).

HPN calculates the vehicles’ weight using the sets Sij, D, h, d. It is worth mentioning that

the FN energy consumption increases when communicating with vehicles as the vehicle’s

distance from FN increases [136]. Hence, FNs strive to serve vehicles which are close to

FN to mitigate energy consumption. However, this kind of operational policy deteriorates

the QoS of vehicles when leaving the intersecting region without completing the service re-

quest. Therefore, the RL agent considers this event as undesired to bypass the penalty. The

vehicle’s weight, denoted by ωk, is obtained to train the FN to serve the vehicle with min-

imum energy consumption and bypass undesired events. The vehicle weight is influenced

by its proximity to the FN, task data size, task deadline and sojourn time in the intersecting

region. Vehicle weight increases as vehicle distance from FN decreases to make FN trans-

mit the data at a high rate instead of transmitting data to distant vehicles using the exact

quantity of energy, and vehicle weight increases as data size increases. Further, vehicle

weight increases as task deadlines decrease to prioritise the tasks with lower deadlines, and

vehicle weight increases as vehicle sojourn time decreases to prioritise the vehicles leaving

the intersecting region without receiving complete service (to bypass penalty). Hence, ve-

hicle weight is directly proportional to task data size and indirectly proportional to vehicle

distance, vehicle sojourn time, and task deadline. The mathematical vehicle weight is de-

fined as follows.

ωk =
hk

(Dki × Sk
ij × dk)

(7.22)

Finally, the RL agent uses the set of weights, ω, to schedule the tasks among suitable FNs

in an intersecting region such that the energy consumption of FNs is reduced.
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7.2.3 Task Scheduling in an Intersection Region using RL

The RL agent is trained to schedule tasks in optimal FNs of an intersecting region while

collaborating with its environment. Here, the RL system considers the Markov Decision

model with horizon T containing the data set (Ss,A, rt,Θ, η) that is described as follows.

Procedure 7 RL agent’s optimal policy (Max-weight)

Input: Vij(t), ω
Output: A(st) = {at1,. . . ,atN} and g number of vehicles from A(st) for FNs in (i, j) ∈ Z

(i.e.,
(
N
g

)
)

1: Let Vij(t) be the set N number of vehicles in the intersecting region of FNs i and j
2: A(st)← {atp = ϑp | ∀ ϑp ∈ Vij(t), 1≤ p ≤ N}
3: Find action atk = max(A(st)) such that ωk ≥ . . .≥ω1

4: return atk

1. System space: Ss is the system state space in which st ∈ Ss is a state at time slot t,

1 ≤ t ≤ T .

2. Action space: The available actions at state st is A(st) = {at1,. . . , atN}. The action

atk represents the vehicle ϑk with corresponding weight ωk. The number of available

actions equals N number of vehicles available at state st in an intersection region

(i, j) ∈ Z and vehicles are selected for each FN of an intersecting region. If g is the

number of FNs available in an intersecting region, then the combination of vehicles

selected from the action space, g, is given by
(
N
g

)
. As g and N remain constant, the

number of actions remains consistent in each state. Moreover, the available actions

A(st) in each state are uniquely identified. Suppose the vehicles in the available

actions at state st may differ from those at state st+1. However, the agent chooses

the vehicle (i.e., action) found on the current policy (i.e., maximum-weight policy),

which is given in Procedure 7. The agent selects action atk at state st if the vehicle ϑk

with the highest weight ωk is chosen.

3. Reward: The agent’s goal is to maximize the reward it receives from the environment,

and rst is the reward at state st received from the environment for taking action atk.

It is defined as the ratio of bits transmitted to the selected vehicles and the average

128



CHAPTER 7. AN ENERGY-EFFICIENT AND DELAY-AWARE TASK SCHEDULING 7.2. RL-BASED TASK SCHEDULING

energy consumed by the FN at time slot t. However, when a vehicle leaves the

intersecting region without receiving complete service, the reward is penalized by the

remaining data that must be transmitted to complete the vehicle’s request. Hence, the

agent always tries to transmit a large amount of data from a FN, consuming minimum

energy at time slot t to maximize the reward while avoiding the vehicles leaving

intersecting regions without complete service. On the other hand, FNs consume less

energy to transmit the data to closer vehicles. Hence, the RL agent tries to select a

vehicle close to the FN. Therefore reward for action atk at state st is given as,

rst = r(st, a
t
k) =

hk
f(Eki(t))

,∀t ∈ T (7.23)

where f(.) is a function of average energy consumption of FN i at time slot t given

as f(Eki(t)) =
∑t

t̄=1 Eki(t̄)

t
, ∀t ∈ T . In this system, each FN can provide services to

one vehicle at each time slot.

4. Θ is the transition probability for the state-action pair (st, atk) ∈ Ss. The probability

of possible pair of next state st+1 and reward rst is denoted by Θ(st+1, rst |st, atk).

The transition probability from any pair (st, atk) ∈ Ss × A, gives the probability of

transition to next state st+1 from current state st provided that the action atk is taken

at state st. In this RL system, the transition probability equals one when the agent

moves to the next state st+1 from the current state st.

5. η is the learning rate set between 0 and 1.

The RL agent uses the policy π to obtain action atk at state st ∈ Ss denoted by atk =

π(st), ∀atk ∈ A(st) to maximize the rewards. The agent can adjust its policy towards

optimal policy π∗ when following the policy π while observing the next state st+1 and

reward r(st, atk). The objective is to find the optimal policy π∗ that maximizes the overall

discounted rewards over horizon T . Then, the total discounted rewards, Υ is expressed as

Υ = r1 + γr2 + γ2r3 + · · ·+ γT−1rT =
T∑

st=1

γst−1rst (7.24)
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where γ is the discounting factor that takes a value in the (0, 1) range. When following the

policy π, the total discounted reward becomes

Υπ =
T∑

st=1

γst−1r(st, π(st)) (7.25)

Consider the set Π represents all possible policies, then the optimal approach is given

by

π∗ = argmax
π∈Π

Υπ (7.26)

The value function Vπ : Ss → R quantify the envisioned value for following the policy

π using transition probability from state st to state st+1. Then the value function can be

expressed as

Vπ(st) = r(st, π(st)) + γ
∑
st+1

Θ(st+1, rst |st, atk),∀st ∈ Ss (7.27)

Consequently, the optimal policy π∗ gives the optimal value function Vπ∗ : Ss → R,

expressed as follows

Vπ∗(st) = max
π∈Π

Vπ(st) (7.28)

The optimal policy in Eq. (7.28) earns the maximum reward using Eq. (7.25) [38]. Eq.

(7.28) can be solved by using transition probability function Θ. However, state transition

mapping in the Markov model is unavailable. Hence, the RL system uses Q-Learning to

train optimal policy for FNs by observing the outcome of various actions without transition

function. The RL agent implements the iterative Q-Learning to realize the optimal policy

π∗.

In Q-learning, the agent memorises optimal approach π∗ by initiating the Q-values

Q(st, a
t
k). Subsequently, at each state st ∈ Ss it maps best action atk ∈ A(st). In other

words, the agent first observes the current state st in the learning phase and takes the cor-

responding best action atk. As a result, it earns the reward rst and next state st+1. Then

it updates the Q-values Q(st, atk) for the observed outcomes rst and st+1. Similarly, the

process above is replicated in the next iteration till the agent learns the optimal policy π∗,
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Algorithm 7.1 Q-learning based Reinforcement Learning

1: Initialize Q(st, atk) = 0, ∀ ∈ Ss
2: Initialize ϵ, ηst , γ
3: for each episode do
4: for each (i, j) ∈ Z do
5: for t← 1 to T , ∀st ∈ Ss do
6: for each FN in (i, j) ∈ Z do
7: take action atk, observe rst and next state

st+1

8: if RANDOM(0, 1) < ϵ then
9: Select a random atk from state st+1

10: else
11: Select a atk from state st+1 using

ϵ-greedy approach
12: end if
13: Update Q(st, atk) using Eq. (7.31)
14: end for
15: st← st+1

16: end for
17: end for
18: end for

especially when the agent earns the maximum rewards by taking action in the given state

using optimal policy π∗. Then the optimal Q-values for all state action pair (st, a
t
k) ∈

Ss× A(st) is Q∗(st, a
t
k) and is expressed as follows.

Q∗(st, a
t
k) = r(st, a

t
k) + γ

∑
st+1∈Ss

Θ(st+1, rst |st, atk)Vπ∗(st) (7.29)

However, the optimal value function is Vπ∗(st) = maxatk Q
∗(st, a

t
k), then the optimal policy

for the state st is given as

π∗(st) = argmax
atk

Q∗(st, a
t
k) (7.30)

Hence, the Q-values can be obtained using the stochastic increment Q-learning, using the

below equation.

Q(st, a
t
k) =Q(st, a

t
k)+

ηst

{
r(st, a

t
k) + γmax

at+1
k

Q(st+1, a
t+1
k )−Q(st, atk)

}
(7.31)
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where ηst is the learning rate, which takes a value between 0 and 1. Moreover, if ηst = 0,

learning will not occur, i.e., Q-values are not updated. However, setting ηst with higher

values makes learning fast. Therefore, ηst satisfies the condition
∑

st
ηst =∞ and

∑
st
η2st

<∞. The former condition guarantees the convergence of the algorithm pre-maturely. The

latter condition ensures fading the noise in the algorithm [38]. In most cases ηst is set to

1/st. Once the algorithm convergence, the optimal policy and the optimal Q-values are

obtained. It is worth noting that γ plays an essential role in converging Q-values. The

value of γ = 0 makes the agent consider only the current state reward. If the discount factor

is near 1, the agent tries for maximum future reward. The off-policy Q-learning-based

reinforcement learning for FVNETs is given in Algorithm 7.1.

7.3 Performation Evaluation

In this section, the performance of the EEDA algorithm is investigated. The simulation

model is described in Section 7.3.1, and results are presented by comparing with PSG [41],

EDF [42], FCFS [43] and RO [44] in Section 7.3.3.

7.3.1 Simulation Setup

A virtual environment is created for evaluating EEDA’s performance on the integrated de-

velopment kit PyCharm 2020.1.3 using Python 3.8. Windows 11 64-bit operating system,

64 GB RAM and CPU @ 2.90 GHz Intel(R) Xeon(R) Gold 622R processor is used to run

the environment. The FNs in the environment are arranged in an area of [3000 × 3000]2

meter, as shown in Figure 7.5a. The figure shows one HPN and two RSUs forming three in-

tersecting regions in FVNET. The graph modelG(V,E) of corresponding FVNET is shown

in Figure 7.5b in which vertices represent the FNs and an arc between vertices denotes the

intersecting region of respective FNs. The length of each intersecting region in FVNETs

is approximately 900 meters. The Monte-Carlo simulations are conducted for various ar-

rival rates of vehicles from 2 vehicle/s to 6 vehicle/s in each intersecting region. The mean

arrival rate of vehicles follows Poisson distribution. Moreover, the most realistic propa-

gation model, IEEE 802.11p, is used for wireless connectivity in FVNETs. Subsequently,
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(a)

FN1

FN2 FN3

(b)

Figure 7.5: Topology of FVNET and graph model with one HPN and three RSUs consid-
ered for simulations.

the average results are obtained by carrying simulations in each intersecting region up to

100 timeslots. The simulation outcome shows the impact of the increase in the number of

vehicles in the intersecting regions for various vehicle arrival rates in the network on FN’s

energy usage and throughput. Other performance metrics, such as the percentage of trans-

mitted data in the network, the number of completed service requests, and service time, are

also considered to show the performance of the proposed algorithm. The parameters used

for the simulation setup are shown in Table 7.2.

7.3.2 Benchmark Algorithms

The RL-based EEDA scheduling technique is evaluated with the performance of the fol-

lowing baselines: PSG [41], EDF [42], FCFS [43] and RO [44]. The PSG algorithm is the

scheduling algorithm that schedules tasks with lower deadlines. The PSG is semi-greedy

and achieves optimal energy consumption by scheduling tasks in a FN consuming mini-

mum energy among available FNs. The task scheduling in the EDF algorithm is based on

the lower deadlines in the FN selected randomly among the FNs. The tasks having the

least arrival time are scheduled first in the arbitrally selected FN in the FCFS scheduling.

Similarly, RO scheduling schedules the tasks selected randomly in a FN selected randomly.

On the other hand, in the EEDA algorithm, the scheduling tasks in suitable FNs are decided
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Table 7.2: Parameters and their values for simulations

Parameter Value

Covered distance of vehicle ϑk, δct (ϑk) [100 ∼ 799] m

Mean arrival rate of vehicles, λ [2 ∼ 6] vehicles/s

Task k data size, hk [100 ∼ 150] MB

Vehicle speed, vk [15 ∼ 25] m/s

Task k CPU requirements, ck [1000 ∼ 2500] Mega cycles

FN CPU frequency, Fi 3.0 GHz

Task k deadline, dk [1 ∼ 10] s

Link bandwidth, B 20 MHz

Length of Intersecting region, L 900 m

Radius of FN coverage, R 500 m

Channel Inference, Iki -70 dBm

Gaussian Noise, Nki -80 dBm

Pathloss exponent, β 3

Scaling coefficient, α 1

Learning rate, ηst 1/st
Discounting factor, γ 0.9

Epsilon, ϵ 0.2

Time slot length 1 s

Simulation duration 100 s

by examining the response time from the FN, the task’s deadlines, the energy usage of FNs

and the vehicle’s sojourn time in the intersecting region. Hence, the RL agent is trained for

various arrival rates of vehicles in the network to obtain better results.

7.3.3 Results and Discussion

The performance of EEDA is analyzed with PSG, EDF, FCFS and RO algorithms in terms

of average energy consumption, network throughput, percentage of transmitted data, per-

centage of tasks meeting their deadlines and total service time for different vehicle arrival

rates from 2 to 6 vehicles/s.
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7.3.3.1 Average Energy Consumption

The energy usage per time slot is the average energy usage of FN to deliver utilities to the

vehicle with the required bits of data. We assume that each arrived vehicle in each time slot

offloads a task into a FN for services, and a FN provides services to a vehicle in each time

slot. Further, the impact of the increase in the number of vehicles in FVNETs on the average

energy consumption of FN is assessed for different arrival rates (λ) of vehicles. Figure 7.6

shows the average energy usage of FN in processing tasks for each vehicle arrival rate

(λ) from 2 to 6 vehicles/s for the benchmark and proposed algorithm. Subsequently, FN’s

energy usage for the different arrival rates of vehicles in the network is shown in Figure

7.7. From Figure 7.6, it is observed that the energy consumption of FN increases linearly

as the number of tasks increases. The PSG is greedy in deciding FNs consuming minimum

energy to schedule tasks in the intersecting region while meeting delay constraints of tasks.

However, PSG suffers from the increased response time from FN. As it is unaware of the

residing time of the vehicle in the intersecting region, the FNs process the tasks even after

the vehicle leaves the intersecting region. Hence, using the PSG algorithm, FN’s energy

usage increases for λ values between 2 and 6.

As mentioned earlier, the intersecting regions in FVNETs formed with two FNs having

finite resources. Hence, the number of vehicles getting services in the intersecting regions

is approximately the same as the vehicle arrival rate increases. In the case of the EDF

algorithm, the lower deadline tasks are prioritised. Hence, for each vehicle arrival rate (λ),

energy usage increases as vehicles arriving in the network increase using EDF. However,

the FN’s energy consumption is approximately the same for vehicle arrival rates ranging

from 2 to 6 using EDF. The FCFS schedules the first arrived task, and the RO schedules

the task arbitrarily among FNs selected arbitrarily. FCFS and RO strive to schedule tasks

in randomly chosen FNs in the intersecting region without considering the energy usage of

FNs and the sojourn time of vehicles. Consequently, the energy usage using FCFS and RO

increases when vehicles arriving in the network increase for the arrival rates ranging from

2 to 6. Nevertheless, energy usage in the network is reduced when the arrival rate increases

from 3 to 5 using FCFS and RO, as shown in Figure 7.7.
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On the other hand, the RL agent in the EEDA algorithm is trained for different arrival

rates in the FVNETs. The RL agent schedules tasks among two FNs in each intersecting

region by selecting a vehicle with maximum weight among many arrived vehicles in all

timeslots. The number of vehicles in the intersecting regions increases as the vehicle arrival

rate increases. However, the EEDA algorithm schedules tasks in a FN consuming minimum

energy in each timeslot to satisfy deadline constraints of tasks while considering the sojourn

time of the vehicle in the intersecting region. Moreover, the EEDA algorithm optimizes

the energy usage of FNs as vehicles arriving in the network increase compared to other

algorithms for arrival rates from 2 to 6, as shown in Figure 7.6. Thus, the average energy

usage of FN for different vehicle arrival rates using the EEDA algorithm is minimized to

53.06%, 52.59%, 56.24% and 56.36% on average compared to PSG, EDF, FCFS and RO

algorithms, respectively.

7.3.3.2 Network Throughput

The network’s throughput is obtained using the transmission rate from FNs to vehicles at

timeslot t. The allocated time fraction at time slot t from FN i to the vehicle ϑk is σt(ki),

then the throughput is obtained using the Shannon formula in Eq. (7.5). The throughput

from FN i to the vehicle ϑk is given as Γt(ki) = σt(ki) × χki. Subsequently, the network

throughput is given as
∑

∀(i,j)∈Z log(
∑

t

∑
i∈(i,j) Γt(ki)) ∀ϑk ∈ Vt(ij) [25]. Figure 7.8

shows the network throughput achieved when there is an increase in vehicles reaching the

network for each arrival rate from 2 to 6. The network’s throughput depends on the time

fraction allocated to the vehicles getting services. Therefore, the network’s throughput is

proportional to the number of vehicles getting services. The figure shows that the through-

put increases as the number of vehicles in the network increases, and the EEDA algorithm

maximizes the network throughput for each value of λ.

The throughput decreases gradually when the vehicle arrival rate increases from 2 to 6,

as shown in Figure 7.9. As mentioned earlier, in this chapter, the intersecting regions in

FVNETs consist of two FNs yielding limited resources. Therefore, the network throughput

is reduced for values of λ from 2 to 6. The benchmark algorithms provide services to vehi-

cles about to leave the intersecting region. Hence, the throughput is significantly reduced

136



CHAPTER 7. AN ENERGY-EFFICIENT AND DELAY-AWARE TASK SCHEDULING 7.3. PERFORMATION EVALUATION

20 40 60 80 100
0

50

100

Time slots (s) −→

E
ne

rg
y

us
ag

e
of

FN
(K

J)
−→

λ = 2

20 40 60 80 100
0

50

100

Time slots (s) −→

λ = 3

20 40 60 80 100
0

50

100

Time slots (s) −→

λ = 4

20 40 60 80 100
0

50

100

Time slots (s) −→

E
ne

rg
y

us
ag

e
of

FN
(K

J)
−→

λ = 5

20 40 60 80 100
0

50

100

Time slots (s) −→

λ = 6

PSG EDF FCFS RO EEDA

Figure 7.6: Average energy consumption of a FN when there is an increase in the number
of tasks for various arrival rates in FVNETs using PSG, EDF, FCFS, RO and EEDA algo-
rithms.
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Figure 7.7: Average energy consumption of a FN in FVNETs for various arrival rates of
vehicles using PSG, EDF, FCFS, RO and EEDA algorithms.
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Figure 7.8: Network throughput when there is an increase in the number of vehicles for the
arrival rates from 2 to 6 using PSG, EDF, FCFS, RO and EEDA algorithms.

using PSG, EDF and FCFS algorithms. Using the RO algorithm, due to its randomness, the

throughput increases and then decreases arbitrarily. However, the EEDA algorithm strives

to avoid serving the vehicles leaving the intersecting region to bypass the penalty. There-

fore, the RL-based EEDA algorithm enhances the network throughput by 13.21%, 14.77%,

5.96% and 5.70% on average when compared to PSG, EDF, FCFS and RO algorithms, re-

spectively, for various values of λ.

7.3.3.3 Percentage of Transmitted Data

The percentage of transmitted data is defined as the number of bits transmitted to the vehi-

cle over the total amount of bits requested during its sojourn time in the intersecting region

of the network. Figure 7.10 shows the percentage of data transmitted to the vehicles in the

intersecting regions of the network for different values of λ. The benchmark algorithms
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Figure 7.9: Network throughput for various arrival rates of vehicles using PSG, EDF, FCFS,
RO and EEDA algorithms.
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Figure 7.10: Transmitted data (%) in the FVNETs for various arrival rates of vehicles using
PSG, EDF, FCFS, RO and EEDA algorithms.

fail to transmit total request data to the vehicles as the vehicle arrival rate in the network

increases due to selecting the vehicles leaving the intersecting regions. However, the RL

agent in the EEDA algorithm is trained to avoid selecting vehicles leaving the intersecting

regions for maximizing long-term reward. Consequently, the EEDA algorithm completes

the transmission data to the vehicle during its sojourn time as arrival rates into the net-

work increase. Hence, the EEDA enhances percentage data transmission by an average of

14.66%, 15.06%, 7.06%, and 6.88% compared to PSG, EDF, FCFS and RO algorithms,

respectively.
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Figure 7.11: Completed requests in FVNETs for various arrival rates of vehicles using
PSG, EDF, FCFS, RO and EEDA algorithms.

7.3.3.4 Percentage of Completed Requests

Figure 7.11 indicates the percentage of vehicles leaving the intersecting regions with com-

pleted service requests for the vehicle arrival rate from 2 to 6. Similarly, Figure 7.12 shows

the percentage of vehicles leaving the intersecting regions with incomplete service from

FN for different arrival rates. Figure 7.11 shows that as the network’s vehicle arrival rate

increases, the percentage of vehicles receiving completed requests reduces. Alternatively,

Figure 7.12 shows that the percentage of vehicles leaving with incomplete requests in-

creases as the arrival rate increases. However, the RL agent prioritizes the serving vehicles

leaving the intersecting region in case of satisfying the task’s deadline constraints. Other-

wise, it bypasses the penalty by not scheduling the tasks of vehicles leaving the intersecting

regions in the EEDA algorithm. As a result, it enhances the percentage of completed ser-

vices on an average of 13.57%, 15.12%, 6.28%, and 6.11% compared to PSG, EDF, FCFS

and RO algorithms, respectively. Similarly, the EEDA algorithm diminishes the percentage

of vehicles leaving with incomplete services by 25.15%, 26.46%, 21.00%, and 21.15% on

average compared to PSG, EDF, FCFS and RO algorithms, respectively.
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Figure 7.12: Incomplete requests in FVNETs for various arrival rates of vehicles using
PSG, EDF, FCFS, RO and EEDA algorithms.

7.3.3.5 Total Service Time

The service time of a FN is the total time needed to process the tasks when scheduled in a

FN. FNs’ service time depends on the processing task type (i.e., data size and CPU cycles).

The CPU requirement of a task is represented in megacycles per second. The total service

time in FVNETs is shown in Figure 7.13 for different values of λ. The figure shows that

the service time in FVNETs reduces as the vehicle’s arrival rates increase using the PSG,

EDF and FCFS algorithms. There is consistent service time using the RO algorithm for the

vehicle arrival rate from 2 to 4. However, the service time using the EEDA algorithm for

the vehicle arrival rate from 2 to 6 is consistent. Overall, the EEDA algorithm performs

better in service time than the competing benchmarks. In other words, the EEDA algorithm,

on average, performs better in reducing service time by 2.36%, 1.00%, 8.31%, and 8.48%

compared to PSG, EDF, FCFS and RO algorithms, respectively.

7.4 Summary

This chapter considers the intersecting regions of FNs in FVNETs covering remote areas

and schedules the delay-sensitive tasks offloaded by the vehicles in the intersecting regions

among FNs. The RL-based EEDA algorithm is proposed to schedule the tasks in intersect-

ing regions to minimize the energy usage of FNs in serving the vehicles while discharging.
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Figure 7.13: Service time in FVNETs for various arrival rates of vehicles using PSG, EDF,
FCFS, RO and EEDA algorithms.

Hence, the RL agent is trained for free-flow traffic, considering vehicle arrival rates rang-

ing from 2 to 6 in the FVNETs. Further, to decide on suitable FN for processing tasks, the

RL agent considers the task deadline, FN response time, FN energy usage, and vehicle’s

sojourn time in the intersecting region. Henceforth, a greedy-based sub-optimal solution,

EEDA, using RL is obtained to mitigate energy usage of FNs as vehicles arriving in the net-

work increase for different arrival rates. Moreover, the EEDA algorithm is assessed in FN’s

energy usage, network throughput, percentage of transmitted data, percentage of services

completed and total service time. The simulation results show that the RL-based EEDA

algorithm performs better than benchmark algorithms in minimizing the average energy

consumption of FN and enhancing the network throughput. The proposed EEDA algo-

rithm reduces the energy consumption of FNs in serving vehicles up to 53.06%, 52.59%,

56.24% and 56.36% on average, compared to PSG, EDF, FCFS and RO algorithms, respec-

tively.
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Chapter 8

Conclusion and Future Scope

This thesis investigates the resource management and task scheduling algorithms in FVNETs

to enhance the user QoS and minimize the energy consumption of FNs while meeting dead-

line constraints of tasks, respectively. Specifically, it mainly dealt with vehicles in the in-

tersecting regions and FVNETs in which FNs are deployed such that the FN’s coverage

region intersects with neighbouring FNs. First, it introduces the FVNETs, followed by the

background of FC in VANETs, along with various applications of FVNETs and challenges

in FVNETs. The main contributions of this thesis are discussed from Chapter 4 to Chap-

ter 7, where it proposes various resource management and task scheduling algorithms. In

this thesis, contributions have been made by considering the significant challenges, such

as service capability, serviceability, availability, throughput, energy consumption of FNs,

resource utilization efficiency, response time of FNs and vehicles sojourn time in the inter-

secting regions to satisfy the delay constraints of tasks.

8.1 Conclusion

In Chapter 4, the DRM algorithm manages the RBs allocation in FVNETs by considering

vehicles in overlapped coverage regions of FNs. The objective of the DRM algorithm is

to minimize the occupied RBs of vehicles that have already arrived. This reduction in

allocated RBs is achieved by migrating allocated RBs of a set of vehicles among FNs, and

it is addressed by formulating ILP. The DRM algorithm maximizes the network’s service
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capability by minimizing allocated RBs. The simulation outcome shows that the DRM

algorithm enhances the service capability by migrating RBs of the set of vehicles compared

to other migration algorithms, such as DRO, SA, DRO+SA and RO.

In Chapter 5, an ERO algorithm is proposed to synchronize RB allocation among pairs

of FNs to maximize the network’s throughput. The ERO algorithm partitions the FNs’

coverage region into restricted and non-restricted coverage regions. Then, it reduces the

assigned RBs of vehicles in the non-restricted coverage regions by migrating the RBs of

those vehicles among pairs of FNs. The ERO algorithm uses the minimum priority queue to

select the FNs with minimum occupied capacity and a vehicle with the minimum required

RBs. It constructs the minimum priority queue using the occupied capacity of FNs to per-

form optimal migration. As a result, the RBs reduction among pairs of FNs maximizes the

network’s throughput. Further, the performance of the ERO algorithm is assessed in each

time slot as the number of vehicles grows within the network. The simulation outcomes

show that the ERO algorithm enhances the network’s throughput compared to existing al-

gorithms, such as RO, ARB, SA and DRO.

In Chapter 6, the EERA algorithm reduces the energy consumption of FNs with the in-

creasing number of vehicles joining the network while maximizing the resource utilization

efficiency. Here, the EERA algorithm considers the vehicles in the overlapping coverage

parts of FNs to reduce the allocated RBs of vehicles. The EERA has been evaluated with

RO, MCF, DRO and SA in terms of the percentage of RBs occupied, the energy consump-

tion of FNs and the resource utilization efficiency. Further, FN’s energy consumption as the

number of FNs in the network increases is also analyzed using EERA. The simulation out-

comes show that the EERA algorithm reduces the energy consumption of FNs by 37.58%,

32.51%, 22.95% and 8.33% on average compared to RO, MCF, DRO and SA algorithms,

respectively.

Chapter 7 presents the RL-based task scheduling algorithm in FVNETs to minimize

the energy consumption of FNs during their battery-depleting time. The coverage region of

each FN intersects with the neighbouring FN(s) to provide services in remote areas where

consistent power sources are unavailable. Vehicles in such regions offload delay-sensitive

tasks into FNs to get services. However, when the number of vehicles arriving into the net-
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work grows over peak hours, the energy dissipation of FNs for processing tasks increases.

Consequently, energy-limited FNs become ineffective in delivering services without effi-

cient task scheduling. Therefore, the RL-based EEDA task scheduling among FNs is pro-

posed to reduce the energy dissipation of FNs. The RL agent is trained for different vehicle

arrival rates to schedule tasks in a suitable FN of the intersecting regions. The performance

of EEDA is evaluated by considering FN energy dissipation, FN response time and vehicle

living time in the intersecting region to meet delay constraints of tasks. The simulation

outcomes show that the EEDA algorithms lower the FN’s energy dissipation by 53.06%,

52.59%, 56.24% and 56.36% on average compared to benchmark algorithms PSG, EDF,

FCFS and RO, respectively.

8.2 Future Scope

Although the proposed resource management and task scheduling algorithms show promis-

ing performance improvements compared to the existing algorithms available in the recent

literature, other techniques, namely evolutionary computing, deep learning and game the-

ory, need to be investigated to improve the proposed algorithms further. Some of the po-

tential extensions of our research work presented in this thesis are listed as follows.

As a future extension of the resource management algorithms, to make them more ro-

bust and realistic, these algorithms can be extended by considering the dynamic conditions

of the network, such as the mobility of the vehicles. The load of FNs can be determined

periodically to identify the overloaded and underloaded FNs and provide further services

to the incoming vehicles. Further, a proactive algorithm can be developed to avoid the load

imbalance among the FNs. The multi-level feedback queue type of algorithm can experi-

ment with delay and non-real-time tasks in the FVNETs as the extension of current works.

Task scheduling in intersecting regions of FVNETs can be extended by offloading

delay-sensitive tasks into mobile FNs and vehicles in the parking lots to minimize the

energy consumption of FNs. Further, different approaches, such as fuzzy logic and meta-

heuristic-based, can be investigated to schedule the tasks among mobile FNs for efficient

energy preservation.
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Recently, osmotic computing has emerged as a related paradigm of edge, fog and cloud

computing. It provides a promising solution to delay-sensitive tasks. Therefore, it can

be integrated into VANETs to provide efficient ITS and smart city solutions as a further

extension. In this paradigm, energy preservation is a primary challenge that needs more

attention from the research community in the future.

The data transmission between FNs (i.e., transmitter) and vehicles (i.e., receiver) is

affected by the intersymbol interference (ISI) problems in the communication channel.

This inference is due to the interference of allotted time intervals with neighbouring pulses.

Moreover, RB migration has demerits, such as noise disruption in communication. It leads

to the channel fading also. Hence, we will consider addressing the ISI problems and noise

disruption in FVNETs in our future work.
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