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ABSTRACT

Medical image analysis plays a critical role in modern healthcare for treatment plan-

ning, diagnosis, and disease prediction, including brain tumors. It encompasses various

modalities, including X-ray, Computed Tomography (CT), and Magnetic Resonance Imag-

ing (MRI), each with unique strengths and applications. Analyzing these complex im-

ages pose challenges due to noise, and image quality variability, making them prone to

errors and heavily reliant on the knowledge and experience of physicians. Medical imag-

ing tasks, such as denoising, aim to improve image quality for precise diagnosis, while

accurate segmentation enables quantitative analysis and visualization of anatomical abnor-

malities, with early detection of brain tumors crucial for timely intervention and improved

patient outcomes. Deep Neural Networks (DNNs) have shown promising results in medical

image analysis. However, manually designing DNN models is challenging, tedious, time-

consuming, and requires domain-specific knowledge. The increasing number of available

training techniques adds complexity to finding the optimal structure, and selecting the suit-

able hyperparameters for a given task often entails multiple trial-and-error iterations. To

address these challenges, Neural Architecture Search (NAS) has emerged as a promising

solution, which automates the design of DNNs for specific tasks. Nevertheless, NAS meth-

ods need further optimization in designing a search space, constructing a DNN from search

space (encoding), and exploring different search strategies for specific tasks. The Meta-

heuristic Algorithm (MA) based methods in NAS have gained traction for automating the

DNN architecture design process. This thesis proposes automatically designing flexible

and efficient DNN architectures and hyperparameters using MAs. Integrating metaheuris-

tic optimization with deep learning can lead to adaptable and practical solutions for medical

image analysis. Flexible search spaces, advanced techniques, and consideration of compu-

tational resources contribute to developing practical solutions. The proposed metaheuristic

optimization framework has the potential to revolutionize medical image analysis, enhanc-

ing patient care by enabling better diagnosis, treatment planning, and research in medical

imaging.

The main objectives of this thesis include: (i) To design a metaheuristic block-based
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deep neural network for medical image denoising, (ii) To develop a metaheuristic-based

modified U-shaped network for 2D medical image segmentation with denoising, (iii) To

develop a metaheuristic based encoder-decoder model for 3D medical image segmentation,

and (iv) To design a multi-objective metaheuristic model for detecting brain tumors in 3D

medical images.

In this thesis, to achieve the abovementioned objectives, we proposed some

metaheuristic-based approaches for medical image analysis tasks, including denoising, seg-

mentation, and brain tumor detection. Firstly, a metaheuristic block-based deep neural net-

work is designed for medical image denoising. The denoising performance is enhanced

by utilizing the Differential Evolution (DE) algorithm, which facilitates the exploration

of various combinations of network components and hyperparameters within the specified

search space. Secondly, a metaheuristic-based modified U-shaped network is developed

for 2D medical image segmentation with denoising. A modified U-shaped architecture is

used with a flexible search space that allows the optimization of individual blocks. Further-

more, attention blocks are incorporated to enhance segmentation accuracy. The Teaching-

Learning-Based Optimization (BTLBO) algorithm is used for optimization, resulting in im-

proved segmentation performance. Thirdly, a metaheuristic-based encoder-decoder model

is developed for 3D medical image segmentation. A powerful search space is constructed

to optimize the network blocks and training parameters. The Chameleon Search Algorithm

(CSA) explores the search space to improve the segmentation performance. Lastly, the

third objective is extended to brain tumor detection using a multi-objective optimization ap-

proach to optimize detection performance and network size. The search space is expanded

to include various blocks and parameters. The Multi-objective Iterative Teaching-Learning-

Based Optimization (MO-ITLBO) algorithm is utilized to identify optimal block structures

and training parameters. The experimental results of this research demonstrate the effec-

tiveness of metaheuristic optimization techniques in enhancing various tasks of medical

image analysis. The proposed models outperform existing methods, offering improved de-

noising, segmentation, and brain tumor detection performance. These advancements can

revolutionize medical image analysis, leading to better patient care, diagnosis, and treat-

ment planning in medical imaging.
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Chapter 1

Introduction

Medical image analysis plays a critical role in modern healthcare for treating, diagnosing,

and predicting diseases, such as brain tumors. Medical images differ from natural images

as they exhibit heterogeneous appearances due to variations in acquisition protocols, imag-

ing equipment, and the characteristics of the anatomical structures of interest regarding

location, size, and shape. Medical imaging encompasses different modalities like X-ray,

Computed Tomography (CT), and Magnetic Resonance Imaging (MRI), each with its own

strengths and applications. For instance, X-rays use electromagnetic radiation to generate

2D images, commonly utilized for bone and lung examinations. CT scans combine X-rays

and computer processing to provide cross-sectional views of bones, organs, and blood ves-

sels. MRIs employ magnetic fields and radio waves to produce detailed images, ideal for

visualizing soft tissues and diagnosing conditions in the brain, spinal cord, and joints [1].

2D medical images, like X-rays and single-slice CT scans, are easy to acquire and suit-

able for initial screenings, emergency situations, and routine monitoring. In contrast, 3D

medical images, like volumetric CT scans or MRI sequences, offer detailed anatomical in-

formation, supporting surgical guidance, quantitative analysis, and advanced research. The

choice of imaging modality depends on the specific medical condition and the information

required by healthcare professionals. Analyzing these complex images poses significant

challenges due to various factors, including noise, variability in image quality, and the

need for precise segmentation, prediction of pathological structures and tumor detection

[2, 3]. However, addressing these tasks in medical images is time-consuming, prone to er-

1
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rors, and heavily reliant on physicians’ knowledge and experience. Therefore, developing

accurate, reliable, and automatic brain tumor detection algorithms holds immense clinical

significance [4]. Two approaches are commonly used in medical image analysis: tradi-

tional and deep learning.

Traditional methods used in medical image tasks include threshold-based [5], region-

based [6], and machine learning [7] techniques. Threshold-based methods involve assign-

ing pixels to different classes based on an intensity threshold value. Selecting an appro-

priate threshold value is crucial for accurate segmentation results. Region-based methods

use algorithms like watershed and region-growing to identify distinct regions but can be

sensitive to noise and introduce holes in extracted regions. Machine learning techniques

like Clustering, Support Vector Machines (SVM), and Random Forest (RF) approaches are

less suitable for large-scale data [8, 9].

The advancement of deep learning and computer vision algorithms have revolutionized

medical image analysis, resulting in significant advancements in various tasks. The Convo-

lutional Neural Networks (CNNs) have emerged as one of the most popular deep learning

methods, showing promising results in denoising, segmentation, and tumor detection tasks.

Deep Neural Networks (DNNs) have gained significant popularity in various fields due

to their ability to learn complex patterns and make accurate predictions in medical image

analysis. However, the process of designing a DNN architecture involves determining the

number of layers, the number of neurons in each layer, and the connectivity patterns be-

tween the layers. These decisions significantly impact the performance and efficiency of

the network. A poorly designed architecture may result in suboptimal performance or even

failure to learn from the data. In addition to architecture design, selecting appropriate hy-

perparameters is crucial for training a DNN effectively. Hyperparameters include learning

rate, batch size, regularization techniques, activation functions, and others. The choice of

hyperparameters can greatly influence the training dynamics and the final performance of

the network. With the advancements in deep learning, numerous training techniques and

optimization algorithms have been developed. Each technique may have specific require-

ments and constraints on the network architecture and hyperparameters. Consequently,

finding the optimal structure and selecting the best hyperparameters for a given task often

2
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involves multiple iterations of trial-and-error experiments. The iterative process of trying

different architectures and hyperparameters adds complexity to the task [10]. Researchers

and practitioners need to spend a significant amount of time experimenting and fine-tuning

the network to achieve satisfactory results. The manual exploration can be a tedious and

resource-intensive process, especially when dealing with large-scale datasets or complex

tasks. To address these challenges, automated approaches are needed to design efficient

DNN architectures and determine the appropriate hyperparameters for specific task [11].

Neural Architecture Search (NAS) has emerged as a promising solution for architecture

search and hyperparameter optimization [12, 13]. NAS aims to discover the best network

architecture and hyperparameters for a given task through automated exploration of various

architectures. These automated methods help in reducing the human effort required and can

potentially discover more effective architectures and hyperparameters than manual design

[12]. In general, the NAS can be formulated as follow equations 1.1, 1.2:

A∗ = argminA∈S f(A, ω∗(A)) (1.1)

where,

ω∗(A) = argminLT (A, ω) (1.2)

In equation 1.1, the search space denoted by S contains all possible architectures from

which the optimal architecture A∗ is selected. The search space can be defined based on

specific architectural constraints and design choices. The objective function f(A, ω∗(A))

evaluates the performance of an architecture A with its learned parameters ω∗(A). The ob-

jective function can be defined based on the specific task and desired optimization criteria.

In equation 1.2, ω∗(A) represents the optimal learned parameters for a given architecture

A obtained by minimizing the loss function LT (A, ω), which measures the error between

the predictions made by the architecture A with parameters ω and the ground truth labels

or targets of the given task T .

The NAS problem is typically solved using an iterative process that involves evaluat-

ing the performance of a set of candidate architectures, selecting the most promising ones,

and generating new architectures based on the insights gained from the evaluation. This

3
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process can be guided by different search strategies, such as Reinforcement Learning (RL)

[14], Metaheuristic Algorithms (MA) [15], or Gradient-based optimization [16]. The MAs

are preferred for NAS in computer vision over RL and gradient-based learning techniques

due to their numerous advantages such as flexibility, robustness, and efficiency [13]. For

example, MAs offer greater flexibility, allowing for the exploration of a broader range

of network structures and configurations. They are robust to factors like random weight

initialization and hyperparameter choices, resulting in less susceptibility to suboptimal ar-

chitectures. Additionally, MAs efficiently search large architectural spaces, avoiding local

optima that RL and gradient-based methods may get stuck in due to insufficient guidance

from gradients or rewards.

Therefore, MAs are employed as search methods for NAS in this research. The process

of metaheuristic algorithms based NAS (MetaNAS) can be summarized as follows:

1. Initialize a population of DNN architectures randomly. Each individual in the popu-

lation represents a unique DNN architecture.

2. Evaluate each individual’s fitness in the population by training and evaluating the

performance of the corresponding DNN.

3. Select the best-performing individuals from the population and use them to create a

new population by applying MAs operations.

4. Repeat steps 2 and 3 for a fixed number of generations or until convergence is

achieved.

MetaNAS is usually modelled as an optimization problem, where the aim is to optimize

the fitness function on a given search space. The fitness function can be defined based on

the specific task and evaluation metric, such as accuracy, F1 score, mean squared error etc.

The operations used in the MAs can be designed to promote diversity in the population and

explore the search space efficiently. In the exploration process, the MetaNAS can gradually

converge to a set of high-performing DNN architectures for the given task. The architec-

tures discovered by these approaches have outperformed manual-designed architectures in

4
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high-level vision tasks like image classification, segmentation and detection, etc. How-

ever, these algorithms need to be further optimized in terms of designing a search space,

constructing a DNN from search space (encoding) and exploring different metaheuristic

algorithms for specific tasks. Metaheuristic algorithm-based models have been rapidly in-

creasing to automate the DNN architecture design process [13].

1.1 Motivation & Objectives

1.1.1 Motivation

Medical image analysis poses significant challenges in removing noise, accurate segmen-

tation, and tumor detection. Medical images often have noise that can affect image quality

and robustness of detection methods [17]. Complex mixed noise, such as photon starvation

artifacts, may appear in CT perfusion images due to factors like poor enlightenment, camera

sensor cells, and transmission issues. This noise poses a significant challenge for tasks like

segmentation, detection, and classification, compromising the performance and robustness

of the results. Medical image denoising reduces noise and enhances image quality, leading

to a more accurate diagnosis. Accurate segmentation in medical imaging is crucial for pre-

cise measurements, quantitative analysis, and enhanced visualization of anatomical abnor-

malities. 2D medical image segmentation focuses on delineating and identifying specific

structures or regions of interest, while 3D medical image segmentation offers a comprehen-

sive understanding of anatomical structures in three-dimensional space. Early detection of

brain tumors holds significant importance, as it enables timely intervention and ultimately

improves patient outcomes. Tumor detection assists radiologists in expediting the diag-

nosis process, reducing interpretation time, minimizing potential errors, and facilitating

efficient treatment planning for better patient care. Designing DNN architectures manually

for these tasks involves finding the optimal network structure and hyperparameters, which

is complex and time-consuming, often requiring multiple trial-and-error iterations. Man-

ual exploration requires domain-specific knowledge and is a tedious and resource-intensive

process, particularly when dealing with large-scale datasets or complex tasks [18].
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The motivation behind this research stems from the need to overcome the limitations

of manually building DNNs. The goal is to automatically design efficient DNN architec-

tures and optimize hyperparameters to enhance the performance of denoising, segmenta-

tion, and brain tumor detection by leveraging the power of MAs. As per the "no free lunch"

(NFL) theorem [19], there is no single optimizer that can effectively handle and outper-

form all types of optimization tasks, which highlights the importance of using different

MAs with broader applicability to address the different natures of optimization problems.

Furthermore, the integration of metaheuristic optimization techniques with deep learning

approaches can pave the way for more adaptable and practical solutions for medical image

analysis. Additionally, exploring flexible search spaces, integrating advanced techniques,

and considering computational resources contribute to developing more adaptable and prac-

tical solutions for medical image analysis [15]. The development of such a metaheuristic

optimization framework has the potential to revolutionize medical image analysis and im-

prove patient care. The results of this research hold great potential for improving diagnosis,

treatment planning, and medical research in the field of medical imaging.

1.1.2 Objectives

The following objectives formulated in this thesis are:

Objective 1: To design a metaheuristic block-based method that presents a novel approach

to design deep neural network architectures and training parameters specifically for medical

image denoising. A comprehensive search space is designed to achieve this with activation

functions, network blocks, and optimizers. The Differential Evolution (DE) algorithm fa-

cilitates efficient exploration and optimization within the search space.

Objective 2: This objective aims to develop a metaheuristic approach to 2D medical image

segmentation. The optimal block structures in the modified U-shaped network are discov-

ered by utilizing the Binary Teaching-Learning-Based Optimization (BTLBO) algorithm.

Additionally, the performance of 2D medical image segmentation is enhanced by incorpo-

rating denoising as a preprocessing step.

Objective 3: To design a metaheuristic encoder-decoder-based model tailored for 3D med-

6



CHAPTER 1. INTRODUCTION Section 1.2

ical image segmentation, leveraging insights gained from the previous objective on 2D

segmentation. The efficient exploration of the search space and identification of optimal

network structures and parameters for the development of high-performance 3D CNN mod-

els is accomplished through the utilization of the Chameleon Swarm Algorithm (CSA) al-

gorithm.

Objective 4: This objective extends the previous objective by expanding the search space

into developing a metaheuristic-based multi-objective model for brain tumor detection in

3D images. A Multi-Objective Improved Teaching-Learning-Based Optimization (MO-

ITLBO) algorithm is employed to simultaneously optimize performance and model size.

1.2 Summary of the contributions

In this section, an overview of chapter-wise contributions to this thesis has been presented.

Each subsection presents a summary of the contributions of the corresponding chapter.

1.2.1 To design a metaheuristic block-based deep neural network for

medical image denoising.

In this work, a metaheuristic block-based deep neural network is designed for medical

image denoising. This objective focuses on developing a specialized architecture tailored

for denoising medical images.

To enable a comprehensive exploration of model hyperparameters, a search space is

designed with essential components such as network blocks, activation functions, number

of filters, batch normalization, number of blocks, and number of convolution layers in a

block. Additionally, training parameters, including loss function, optimizers, and learn-

ing rate, are incorporated into the search space to facilitate the training of the architecture.

These hyperparameters are treated as vector parameters within the evolutionary process,

enabling us to explore diverse combinations and configurations. Then the designed search

space is explored using the DE algorithm [20] by treating these parameters as vector pa-

rameters to search for optimal network parameters for designing CNN architectures.
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Furthermore, a transfer learning technique is incorporated to update the search space

during the evolutionary process dynamically. The metaheuristic algorithm is guided toward

promising regions in the search space using knowledge gained from previously evolved ar-

chitectures. This dynamic update accelerates the optimization rate of evolution, leading to

the discovery of optimal network parameters for medical image denoising. The proposed

model is evaluated on four medical image datasets, and the results demonstrate its supe-

rior performance compared with existing denoising models. The DE-based optimization

framework significantly improves the quality of medical image denoising, with potential

applications in various medical fields and improving patient care.

1.2.2 To develop a metaheuristic based modified U-shaped network

for 2D medical image segmentation with denoising.

This work aims to improve the performance of 2D medical image segmentation by inte-

grating denoising (from Objective-1) as a preprocessing step and introducing a modified

U-shaped architecture. The proposed method combines denoising and segmentation capa-

bilities to accurately identify and delineate structures and regions of interest within medical

images.

A modified U-shaped architecture is proposed as the backbone network for the seg-

mentation task, taking inspiration from the encoder-decoder framework of U-Net [21]. In

order to enhance the flexibility and adaptability of the U-shaped network, a search space

is introduced that enables the optimization of each block within the proposed U-shaped

architecture. This search space consists of 32 node operations divided into pre-activation

nodes, where the activation function is applied before the convolution operation, and post-

activation nodes, where the activation function is applied after the convolution operation.

The search space encompasses different node operations with various convolutional

kernel sizes, activation functions, normalization functions, pooling layers, and loss func-

tions. Furthermore, attention blocks are used instead of addition or concatenation opera-

tions during upsampling in U-shaped architecture to identify complex structures within the

input images and improve segmentation performance. These attention blocks enable the
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network to focus on salient features and essential regions during segmentation.

The BTLBO algorithm [22] is employed to optimize the block structures within the U-

shaped network by exploring the search space. A cache mechanism that avoids redundant

evaluations further enhances the algorithm’s efficiency. The proposed model is evaluated

and compared with state-of-the-art models on various 2D medical image datasets. The

results demonstrate its superiority in terms of performance and indicate its potential for

clinical applications.

1.2.3 To develop a metaheuristic based encoder-decoder model for 3D

medical image segmentation.

This work focuses on improving the segmentation performance of three-dimensional med-

ical images by employing an encoder-decoder CNN architecture with a metaheuristic opti-

mization process.

The encoder-decoder architecture used in a previous objective is adapted for the 3D seg-

mentation task. Unlike previous approaches that use a uniform block structure throughout

the encoder-decoder architecture, this method individually optimizes the blocks within the

network using a metaheuristic algorithm. This approach enables improved segmentation

performance and the development of customized 3D medical image segmentation models,

leveraging the network’s flexibility to adapt to diverse medical imaging datasets.

To improve the segmentation performance, a powerful search space is designed with

network parameters, such as blocks, activation functions, normalization layers, up-sample

layers, as well as training parameters, including optimizers and loss functions. Then, the

CSA algorithm [23] is employed to explore different combinations and variations from the

designed search space that can effectively enhance the performance of the encoder-decoder

architecture for 3D medical image segmentation.

The efficacy of the proposed model is evaluated using two 3D medical image segmen-

tation datasets. The experimental results show its superior performance in comparison to

existing models. The framework holds substantial potential for advancing segmentation

outcomes, ultimately leading to more precise and reliable analyses for medical profession-
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als.

1.2.4 To design a multi-objective metaheuristic based deep learning

model for brain tumor detection.

In this work, the Objective-3 work is extended to a detection task with denoising (Objective-

1) as a preprocessing step, aiming to improve detection performance and reduce the model

size by employing a multi-objective optimization approach for the detection of brain tumors

in 3D medical images.

The search space is expanded to include efficient-net, transformer, and convolution

meet transformer blocks to facilitate improved brain tumour detection, incorporating top-

performing blocks from the previous segmentation task and training hyperparameters. To

effectively explore this search space, a multi-objective ITLBO algorithm [24] is employed

to identify optimal block structure in the encoder-decoder architecture along with training

parameters. This algorithm considers multiple objectives, aiming to simultaneously op-

timize both the detection performance and network size, resulting in the development of

more effective models.

The proposed method is evaluated using two brain tumor datasets and demonstrates

superior performance compared to existing models. Through the application of multi-

objective metaheuristic optimization, brain tumor detection of 3D medical images is en-

hanced by simultaneously optimizing detection performance and model size. This advance-

ment can improve patient care by enabling efficient and accurate predictions, particularly

in environments with limited resources.

1.3 Organization of the Thesis

The main focus of this thesis is to design a metaheuristic framework to design deep neural

networks for 3D medical image detection. The thesis consists of seven chapters, including

an introduction, a literature survey, and a conclusion. The content of each of these chapters

is described briefly below:
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Chapter 1: This chapter provides a comprehensive introduction to the thesis topic and

briefly outlines the objectives that are pursued throughout the research.

Chapter 2: In this chapter, an overview of state-of-the-art works in the field of medical

image analysis is provided, with a specific focus on brain tumor detection and other related

tasks, including denoising, segmentation, and 3D segmentation with NAS.

Chapter 3: In this chapter, a metaheuristic block-based model employing the DE algorithm

for medical image denoising is introduced. Transfer learning technique is incorporated for

dynamically updating the search space to accelerate the rate of evolution and optimization.

Comprehensive experimental evaluations demonstrate that the proposed model effectively

reduces noise and artifacts, significantly improving the quality of medical images.

Chapter 4: This chapter proposes a metaheuristic-based framework for 2D medical image

segmentation by incorporating denoising as a preprocessing step. A modified U-shaped

network is introduced, which integrates attention blocks and cache mechanisms. The op-

timal block structure within the network is determined using the metaheuristic BTLBO

algorithm. Experimental results demonstrated that the proposed approach has improved

the segmentation performance compared to existing 2D medical image segmentation mod-

els.

Chapter 5: This chapter presents a metaheuristic encoder-decoder-based model designed

specifically for 3D medical image segmentation, leveraging insights gained from previous

work on 2D segmentation. The flexibility and performance of the model are enhanced

by introducing a comprehensive search space encompassing various blocks within the

encoder-decoder CNN architecture. The CSA algorithm efficiently explores the search

space and identifies optimal network structures and parameters for creating highly accurate

3D CNN models. The comparative analysis demonstrates that the proposed metaheuristic

model significantly improves the performance of 3D medical image segmentation.

Chapter 6: This chapter extends the third objective by introducing efficient-net, trans-

former, and convolution meet transformer blocks into the search space for brain tumor

detection in 3D images. Then, a MO-ITLBO algorithm is utilized to optimize both tumor

detection performance and model size of a 3D CNN model. The results demonstrate that

the proposed approach enhances detection performance and reduces model size, which is
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particularly beneficial for applications with limited computational resources.

Chapter 7: This chapter provides conclusions of the thesis, essential outcomes of the

contributions, and the scope for future expansion of the research conducted in this thesis.
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Chapter 2

Related Work

A comprehensive literature review of different tasks in medical image analysis is presented

in this chapter. The literature related to medical image denoising is discussed in Section

2.1, while Section 2.2 covers the literature on 2D medical image segmentation. Further-

more, Section 2.3 focuses on the literature related to 3D medical image segmentation and

detection. Finally, a summary is provided in Section 2.4.

2.1 Medical image denoising

Various traditional methods have been proposed in the literature for medical image denois-

ing. In the Spatial Domain, techniques like the Median Filter [25], Bilateral Filter [26], and

Non-local Means Filtering [27] have been utilized. However, these methods often result in

image blurring and compromise image resolution. In contrast to Spatial Domain Filters,

Transform Domain Filters in image denoising, first transform the given noisy image to an-

other domain, and then apply denoising procedure on the transformed image. Transform

Domain Filters, such as Wavelet-based thresholding [28], Wavelet Sub-band Coefficient

Mixing (WSM) [29], and the Contourlet Transform [30], offer improved edge preservation

but require prior knowledge of the noise present in the image. George et al. [31] conducted

a study where they explored the use of various wavelet transforms to enhance the quality

and reduce noise levels in medical images.

Convolutional Neural Networks (CNNs) have emerged as a prominent approach for
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automatic feature extraction in medical image analysis. Agostinelli et al. [32] utilized

adaptive multi-column deep neural networks for medical image denoising. Vincent et al.

[33] demonstrated the effectiveness of stacking denoising autoencoders to create deep net-

works, where the output of one denoising autoencoder serves as input for the subsequent

one. Gondara et al. [34] developed denoising autoencoders employing convolutional lay-

ers tailored specifically for medical image denoising. He et al. [35] introduced the concept

of residual learning, which involves the use of residual connections, into deeper CNNs

to improve the performance of denoising tasks. Yuan et al. [36] proposed a denoising

approach for hyperspectral images that combines deep CNNs, residual learning, and mul-

tiscale knowledge. Gholizadeh et al. [37] incorporated dilated convolutions to expand

the receptive field and reduce network depth for CT image denoising. Most of the meth-

ods mentioned above rely on improved CNN architectures for medical image denoising.

Therefore, the design of network architectures plays a crucial role in achieving effective

denoising outcomes.

In the domain of medical image analysis, Neural Architecture Search (NAS) techniques

have also been employed. For example, Mortazi et al. [11] optimized individual lay-

ers within building blocks and hyperparameters while maintaining a relatively fixed block

structure. Rundo et al. [38] combined histogram equalization with a Genetic Algorithm

(GA) [39] to improve image histogram frequency for image enhancement in medical imag-

ing systems. Elhoseny et al. [40] proposed a bilateral filter for medical imaging denoising

based on Dragonfly (DF) and Modified Firefly (MFF) algorithms utilizing a CNN classi-

fier for the classification task of denoised images as normal or abnormal. Liu et al. [41]

proposed a network evolution approach utilizing GA to design CNN network structures for

medical image denoising automatically. However, their approach focused solely on resid-

ual blocks, potentially limiting the exploration of other recent blocks beyond the residual

block paradigm. Hence, there is a growing need to automatically generate efficient de-

noising models based on CNN, incorporating optimal layer connections, and appropriate

hyperparameter combinations while considering a various types of blocks.
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2.2 2D Medical image segmentation

Traditional 2D medical image segmentation methods encompass various strategies such

as threshold-based, region-based, clustering, and supervised methods. In threshold-based

method [5], an intensity threshold is computed based on MRI scans, and each pixel is as-

signed to different classes based on a comparison between its gray value and the threshold.

This approach assumes that pixels within a specific range belong to the same category

[42]. However, this method struggles to segment complex images accurately. Select-

ing an appropriate threshold is crucial as it directly impacts the quality of the segmen-

tation results. Region-based segmentation methods employ algorithms like watershed and

region-growing to identify distinct regions [6, 43]. These techniques offer advantages such

as simplicity in calculations, high accuracy, and effective extraction of regional features.

However, they are susceptible to noise and may introduce holes in the extracted regions

[44].

Clustering techniques, including k-means and fuzzy c-means, partition the input im-

age into multiple segments [7, 45]. However, these methods’ computational demands and

time complexity make them less suitable for large-scale data processing. In supervised

approaches such as support vector machines and Random Forest, labeled data is required

for accurate segmentation [46, 47]. Although these algorithms tend to outperform other

traditional methods, they still have limitations in brain tumor segmentation. For instance,

selecting appropriate hyperparameters for a support vector machine can be highly challeng-

ing, and Random Forest may not perform optimally with low-dimensional tumor data [44].

Deep learning algorithms, specifically CNNs, have shown exceptional performance in

pixel-wise medical image segmentation. One standard architecture in this domain is the

U-Net, introduced by Ronneberger et al. in 2015 [21]. The U-Net architecture has revo-

lutionized medical image segmentation by employing an encoder to extract features from

input data and a decoder to generate segmentation masks. Notably, U-Net-based networks

incorporate skip connections, enabling them to learn highly effective representations [48].

Dual U-Net [49] contains two encoders for extracting spatial and context data with a unique

module to merge the data from two encoder pathways. Francia et al. [50] recommended
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integrating U-Net and U-Net with residuals, where the U-Net can extract the crude features

and then U-Net with residuals can capture additional features using multi-scale fusion.

This technique requires more complicated image preprocessing, and feature extraction is

performed using two U-Nets, which increases the computational cost. The dense residual

network (DRNet) was suggested by Guo et al. [51] by using the U-Net skip connection

to link several residual blocks with dense-residual blocks and to correlate various dense-

residual blocks for retinal vessel segmentation. But, these blocks are prone to overfitting

with short datasets. Li et al. [52] proposed the IterNet model using numerous U-Net struc-

tures where each structure has its segmentation outputs and loss function. As a result, the

network becomes four times deeper than the traditional U-Net due to the iterative network

structure.

Weng et al. [15] introduced the NAS U-Net model for finding block structures in a fixed

U-Net-based network for medical image segmentation. Hassanzadeh et al. [53] proposed

EvoU-Net, an evolutionary model utilizing GA to evolve deep CNNs for medical image

segmentation, discovering both network structures and training parameters. Sun et al. [54]

presented EvoCNN, utilizing GA with a novel crossover strategy to generate evolution-

ary deep CNNs for image classification. Fan et al. [55] developed an autoencoder-based

network whose configuration parameters are optimized through evolutionary algorithms to

improve the segmentation results. Wang et al. [56] proposed a PSO-based approach for

image classification, focusing on optimizing a single network block consisting of dense

layers while using fixed hyperparameters for convolutional and pooling layers. However,

this approach may not fully capture image classification’s complexity and could overlook

essential interactions between different network layers. Hassanzadeh et al. [57] introduced

an evolutionary genetic algorithm-based model combining residual blocks and dense blocks

in a U-Net for medical image segmentation. Wei et al. [58] incorporated an environmen-

tal selection mechanism in GA that considers population elitism and diversity to enhance

search efficiency and avoid premature convergence, aiming to improve segmentation pre-

cision. However, it is important to note that most of the existing models optimize a single

block and depend on fixed hyperparameters. Consequently, there has been a growing in-

terest in developing automated and efficient DNN models for medical image segmentation
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tasks.

2.3 3D Medical image segmentation and Detection

Designing CNN models for 3D medical image segmentation poses greater complexity com-

pared to 2D segmentation, primarily due to the larger volume of data and the substantial

increase in the number of parameters involved. Furthermore, medical image data is often

volumetric, and analyzing 3D images necessitates the consideration of the entire volume

for segmentation. To tackle this challenge, researchers have suggested various approaches.

Initially, Çiçek et al. [59] extended U-Net architecture for 3D medical image data and

proposed a 3D U-Net directly dealing with 3D medical data. Then, Milletari et al. [60]

proposed a similar architecture, V-Net. It is well known that residual connections can

avoid vanishing gradients and accelerate network convergence, and it is thus easy to design

deeper network structures that can provide better feature representation. Christ et al. [61]

proposed a cascaded fully convolutional network (FCN) for automatically segmenting the

liver and lesions in CT images. Chen et al. [62] presented a 3D CNN architecture called

VoxResNet, designed with residual learning for volumetric brain segmentation. Shakeri

et al. [63] used a 2D CNN architecture to detect tumors from a series of brain slices and

applied a 3D CRF algorithm for post-processing to implement volumetric homogeneity.

Yu et al. [64] utilized mixed residual connections to build volumetric ConvNets for 3D

prostate segmentation. Lee et al. [65] proposed 3DRUNet, a neural network model that

achieves superhuman accuracy in segmenting neurons in electron microscopy images in

the SNEMI3D Connectomics Challenge.

Furthermore, Li et al. [66] introduced H-DenseUNet, a hybrid densely connected UNet

architecture that integrates 2D and 3D functionalities for accurate liver and tumor segmen-

tation in CT volumes. Oktay et al. [67] proposed an Attention U-Net model by integrating

an attention mechanism into the U-Net architecture to enhance the model’s ability to focus

on relevant image regions for medical image segmentation. Kolavri et al. [68] proposed

an optimized 3D dense-U-Net model, which integrates densely connected layers into the

U-Net architecture for spine and brain segmentation. Myronenko et al. [69] introduced
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SegResNet, which uses an autoencoder regularization method for detecting brain tumors

in 3D images. A 3D deep learning-based method is proposed by Li et al. [70] for the

automatic segmentation of the liver from MRI and CT images. Nevertheless, this method

requires both MRI and CT images for training, which may not be available in some clin-

ical settings. Liu et al. [71] proposes an ensemble of 3D deep neural networks for the

automatic segmentation of the liver in CT images. Hatamizadeh et al. [72] introduced the

integration of swin transformers, a self-attention mechanism, into a U-Net architecture for

brain tumor prediction in 3D MRI images. Demoustier et al. [73] proposed residual 3D

U-Net by incorporating residual connections and localization techniques with Localization

(R3D-UNet-Loc) for brain tumor detection. However, due to their large parameter size,

these 3D networks suffer from high computational costs and GPU memory usage.

Regarding NAS approaches, there are two categories: algorithms that search for 2D

architectures and produce the final segmentation by processing each slice independently

[63, 74, 75, 76] and algorithms that search for 3D segmentation architectures [77, 78, 79,

80]. Nevertheless, converting 2D image segmentation models to 3D often results in subpar

segmentation performance. These works focused on either optimizing the best number of

cells and their connection while keeping the configuration of the cell fixed or the best con-

figuration for the cell while arbitrarily setting the number of cells and their connections.

However, these methods mainly focus on optimizing accuracy without considering addi-

tional objective functions or constraints imposed by the application.

Furthermore, Isensee et al. [81] presented a self-adapting framework that utilizes a

rule-based approach to determine the training parameters and pre-processing operations

for a pool of U-Net architectures, facilitating medical image segmentation. Kim et al. [77]

proposed a differentiable NAS method specifically designed for optimizing the architec-

ture of a 3D U-Net for accurate segmentation of 3D medical images. Zhu et al. [79]

proposed V-NAS for volumetric medical image segmentation, exploring a hybrid design

search space of 2D, 3D, and pseudo-3D convolution operations. Calisto et al. [82] pro-

posed AdaEn-Net, which is an evolutionary model designed for both 2D and 3D networks.

These networks trained separately and then combined them in an ensemble. Hassanzadeh

et al. [83] developed an evolutionary 2D convolutional neural network transformed into
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3D networks for optimal evolutionary 3D deep networks in medical image segmentation.

Yu et al. [84] presented a coarse-to-fine NAS that addresses network structure through a

two-stage optimization problem. However, the sequential optimization of the two problems

makes their approach time-consuming. Kaur et al. [75] proposed a GA-based model for

the segmentation of 2D and 3D medical images. However, their approach requires addi-

tional search time due to the exploration of both 2D and 3D architectures. Hassanzadeh et

al. [74] introduced attention-based CNNs using a GA to tune the CNN hyperparameters

for 2D and 3D medical image segmentation. However, their approach does not fully ex-

ploit volumetric information, potentially limiting segmentation accuracy. Qian et al. [85]

proposed Hasa, a hybrid architecture search method using a NAS-based framework to au-

tomatically design an optimal architecture, incorporating a pre-trained backbone model for

echinococcosis classification and ovary segmentation in ultrasound images. Chu et al. [86]

proposed a differentiable search algorithm for designing a unified network for 3D medical

image classification. Nevertheless, their approach’s extensive joint search space results in

high computational costs.

In [87], a multi-objective evolutionary-based algorithm was introduced to adapt a semi-

fixed 2D FCN architecture. However, the segmentation is performed slice-wise and does

not fully utilize the available volumetric information. Similarly, in [88], an ensemble of

2D and 3D FCNs was automatically designed using a multi-objective evolutionary-based

algorithm, which also requires searching for both 2D and 3D architectures and can be

time-consuming. Calisto et al. [89] proposed a random forest surrogate-assisted multi-

objective evolutionary algorithm for 3D medical image segmentation optimization, which

is computationally expensive and takes significant time to converge. Zhang et al. [90]

proposed a multi-objective evolutionary algorithm-based method for 3D medical image

segmentation. This method combines with a reinforcement learning-based controller to

automatically search for an optimal neural architecture. Hu et al. [91] proposed an au-

tomated approach for designing deep learning methods using multi-objective evolutionary

optimization for medical image segmentation. Zanaty et al. [92] proposed a multi-objective

optimization approach for brain tumor detection in MRI scans using DCNNs. This method

optimizes accuracy and robustness through a weighted combination of two loss functions.
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Guo et al. [93] proposed a multi-objective evolutionary algorithm for designing a 3D CNN

for medical image detection. Zhao et al. [94] presented a multi-objective NAS approach

for 3D medical image segmentation that automatically searches for an optimal network

architecture achieving high accuracy and efficiency. However, it requires a large amount

of computational resources, limiting its practical applicability. To address this, there is a

growing demand for the automatic development of deep learning models for 3D medical

imaging tasks with minimal resource requirements.

2.4 Summary

This chapter presents a brief literature review of the advancements made in medical image

processing and analysis, specifically focusing on medical image denoising, segmentation

on both 2D and 3D images, and detection. It begins by discussing the limitations of tra-

ditional denoising methods and then presents various CNN architectures and techniques

used to enhance performance in these tasks. Then explores the use of NAS techniques for

optimizing network structures and training parameters in medical imaging, highlighting

different optimization algorithms and techniques for finding optimal architectures.

Moreover, the chapter emphasizes the significance of accurate and efficient network

architectures in medical image analysis. It emphasizes the importance of an appropriate

search space for successful evolutionary CNN parameter optimization. In this regard, the

following chapters (chapters 3, 4, 5, and 6) delve into more detailed solution mechanisms

for denoising, 2D and 3D segmentation, and brain tumor detection tasks.
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Chapter 3

To design a metaheuristic block-based

deep neural network for medical image

denoising

In this chapter, a metaheuristic block-based model that utilizes Differential Evolution (DE)

algorithm for medical image denoising is proposed.

Chapter Organization: Section 3.1 provides the background knowledge related to the

proposed model. Section 3.2 presents the proposed methodology. Section 3.3 discusses the

experimental results and analysis. Section 3.5 provides the summary of the work.

3.1 Background

This section provide background knowledge relevant to the proposed model, covering top-

ics such as differential evolution, residual block, dense block, and transfer learning. Differ-

ential evolution is a popular optimization algorithm commonly used for global optimization

problems. Residual blocks are fundamental building blocks in deep neural networks, par-

ticularly in the context of residual neural networks (ResNets). Dense blocks, on the other

hand, are building blocks commonly employed in DenseNet architectures. Transfer learn-

ing is a technique in machine learning where knowledge learned from one task or domain is

applied to a different but related task or domain. Understanding these concepts is essential
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for comprehending the proposed model and its components, as they form the basis for the

design and optimization strategies employed in the research.

3.1.1 Differential Evolution

In 1997, Storn and Price [20] developed the DE algorithm. DE is a vector-based stochastic

search algorithm and is used to solve various combinatorial optimization problems. The

advantage of the DE is that it obtains global optimum by using a few control parameters

and fast convergence [95]. The DE produces optimal solutions than other metaheuristic

algorithms [96, 97, 98], and it can be applied to any difficult optimization problems despite

multi-modal, noisy, and multi-dimensional spaces. DE could include domain knowledge

for all combinatorial optimization steps to dictate the search methodology. Generally, neu-

ral network combinations need to incorporate constraints like domain-specific knowledge

for search techniques. Differential evolution has been successfully applied in a wide range

of applications, including neuroevolution, digital signal processing, and image processing,

such as segmentation [99], classification [100], fusion [101], denoising [102], and regis-

tration [103]. Therefore, DE is chosen over other heuristic algorithms for the evolution of

neural networks in medical image denoising.

In the DE algorithm, there are four main operations: Initialization, Mutation, Crossover,

and Selection. The Initialization step involves randomly initializing a population of Np

individual vectors with K dimensions. Each dimension of an individual vector is assigned

a random value between the predefined lower bound Xj,low and upper bound Xj,high, as

shown in Equation 3.1.

X t
i,j = Xj,low + r ∗ (Xj,high −Xj,low), (3.1)

where r is a random value generated between [0,1], i is the individual (0, 1, . . . Np − 1),

j is a dimension (0, 1, . . . K − 1) in the current population; t is index of generation; For

instance, X t
i,j is jth dimension of ith individual vector in a tth generation. During the

Mutation step, a donor vector Vi is calculated by combining three randomly selected and

distinct individuals, Xa1 , Xa2 , and Xa3 , with the current individual Xi. The donor vector
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V t
i at tth generation is determined using Equation 3.2.

V t
i = X t

a1
+ F ∗ (X t

a2
−X t

a3
); where a1, a2, a3 ∈ {0, 1, . . . Np − 1}, (3.2)

where the scaling factor constant F is chosen in between [0, 1], a1, a2, and a3 are three

individuals which are randomly selected and distinct from the current individual i (i.e.,

a1 ̸= a2 ̸= a3 ̸= i) in a population. In the Crossover step, a trial vector U t
i is generated by

mixing the donor vector V t
i and the target vector X t

i . The crossover operation is controlled

by the crossover probability Cr, which determines the extent to which the trial vector’s

parameters come from the donor vector. Equation 3.3 describes the crossover process:

U t
i,j =

V t
i,j, if Rv ≤ Cr or j = j̄; where j̄ ∈ {0, 1, . . . K − 1}

X t
i,j, otherwise.

, (3.3)

where Rv is a real number chosen randomly in between 0 to 1, Cr is the crossover prob-

ability (0 ≤ Cr ≤ 1) controls how much of the trial vector’s parameters come from the

donor vector. Furthermore, the donor vector parameter with the randomly generated index

j̄ is always inherited by the trial vector, which is different from the trial vector, with at least

one parameter being compared to it.

Finally, in the Selection step, the trial vector U t
i is compared to the target vector X t

i

based on their fitness scores. If the fitness score of the trial vector is lower than that of

the target vector, the trial vector replaces the target vector in the population. Otherwise,

the target vector remains unchanged for the next generation. Equation 3.4 represents the

selection process, where the fitness function f is used to evaluate the fitness scores of the

vectors.

X t+1
i =

U t
i , if f(U t

i ) ≤ f(X t
i ),

X t
i , otherwise.

, (3.4)

This iterative process continues until a certain stopping condition is met.
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3.1.2 Residual Block

A Residual Neural Network [35] is a type of neural network that is formed by residual

blocks, which uses skip or shortcut connections between layers. These connections directly

link the input of a block or layer to its output, allowing the network to "skip" over certain

layers. By doing so, shortcut connections enable the flow of information from earlier layers

to subsequent layers, facilitating the propagation of gradients during training. This helps

alleviate the vanishing gradients problem [104] and promotes better gradient flow, allowing

to effectively train deeper architectures. Figure 3.1a illustrates the structure of a residual

block, in which the input and output feature maps of the same size are added together

to produce the block’s output. Several recent studies, including Sharif et al. [105], and

Jifara et al. [106] used a residual network approach for denoising the medical images. The

proposed approach incorporated residual block as one type of building block in a network

for medical image denoising.

3.1.3 Dense Block

A Dense Network [107] is a deep neural network constructed by Dense blocks, where each

block has multiple layers. To reuse extracted feature maps in this network, each layer’s out-

put feature maps are concatenated with the outcomes of all preceding levels in the block,

and the output feature maps can be transmitted to the further layers as shown in Figure

3.1b. Stacking many feature maps of varying quality generated by shortcut connections

may help the network to reuse features, increase propagation quality, and solve the vanish-

ing gradients problem [104]. Recently, Jia et al. [108] and Park et al. [109] used dense

networks for the image denoising process. The proposed approach also integrated a dense

block as another type of building block in a network for medical image denoising.

3.1.4 Transfer Learning

The transfer learning technique, as described by Torrey and Shavlik in 2010 [110], refers to

the process of leveraging knowledge gained from previous tasks and applying it to enhance

learning in other related tasks. This approach enables the utilization of pre-existing trained
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Addition

Input

Output

(a) Residual Block

Concatenation

Output

Input

(b) Dense Block

Figure 3.1: An example structure of Residual and Dense block.

models, hyperparameters, and learned weights from source tasks, which can be transferred

and adapted to new tasks. In neural networks, transfer learning optimizes architectures by

leveraging knowledge and representations from previous tasks, resulting in more efficient

models for target tasks. This approach reduces the need for extensive training on large

datasets from scratch, leading to improved performance, reduced training time, and better

generalization of new tasks.

3.2 Methodology

In this section, a detailed explanation of the search space is provided, which encompasses

the range of possible parameters explored by the DE algorithm. Subsequently, the encoding

process is describes the representation of vectors as DNN models. Furthermore, the vector

parameter splitting technique and the proposed DEvoNet method are discussed.

3.2.1 Search space and Encoding

Search space: The search space includes the combination of Dense and Residual blocks to

design deep neural networks for medical image denoising. When a network contains many

residual or dense blocks, it can be challenging to identify the ideal network architecture

for the specific task. Manually designing such a complex structure takes a long time and

involves a lot of trial-and-error processes [111]. To solve this issue, a block-based model
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is proposed for automatically designing a optimal network architecture. The proposed

method aims to find the optimal layer pattern in the residual or dense blocks and network

training parameters using DE. Table 3.1 lists the search space with 11 parameters and their

respective ranges for designing and training a network in the proposed work.

Table 3.1: Hyperparameters and their range to build a network.

Hyperparameter Hyperparameter Range

Type of block [Residual (0), Dense (1)]

Number of blocks [2, 3, 4, 5, 6, 7]

Number of conv layers [1, 2, 3, 4]

Filter size [3×3, 5×5, 7×7]

Number of filters [8, 16, 32, 64, 128]

Activation [ReLU, Tanh, Leaky ReLU]

Optimizer [Adam, Adadelta, Adamax, SGD, Adagrad]

Batch normalization [False (0), True (1)]

Learning rate [0.1, 0.01, 0.001]

Loss function [Mean Absolute Error, Mean Squared Error]

Batch size [8, 16, 32, 64, 96]

Encoding: In a population, each vector corresponds to a network during the evolution

process. The maximum number of blocks is seven, and one to three convolution layers can

be present in each block. A block-based approach is used to configure the type of block,

activation function, number of filters, and batch normalization. However, each of these

parameters can affect the whole block. For example, when Batch Normalization (BN) [112]

is enabled in a block, it implies that the BN will be applied after every two convolution

layers. A dense block vectortype example shown in Figure 3.2a with its corresponding

phenotype shown in Figure 3.2b and residual block vectortype (see Figure 3.2c) with the

corresponding phenotype (see Figure 3.2d) is shown in Figure 3.2.

As shown in Figure 3.2a, 3.2c, the parameters show the type of block (TOB), whether

it is dense or residual, the number of dense/residual blocks (NOB) present in a network,

convolution layers per block (NOC), filter size (FS), number of filters (NOF), activation

function (ACT), and batch normalization (BN) in the convolution layer respectively. In

addition, the remaining respective four parameters, such as learning rate (LR), optimizer
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(OPT), loss function (LF), and batch size (BS), are used to train the network.

(a) Dense Block Vectortype

Concatenation

Conv(32, [3*3])

Conv(32, [3*3])

Conv(32, [3*3])

Conv(32, [3*3])

BN
, R

eLU
BN

, R
eLU

(b) Dense Block Phenotype

(c) Res Block Vectortype

Conv(64, [3*3])

Conv(64, [3*3])

Conv(64, [3*3])

Addition

Conv(64, [3*3])

Conv(64, [3*3])

Conv(64, [3*3])

ReL
U

ReL
U

(d) Res Block Phenotype

Figure 3.2: Example Vectortype with its Phenotype of Dense and Residual block.

3.2.2 Vector parameter splitting

In the proposed work, the network’s construction parameters, such as type of block, num-

ber of blocks, number of conv layers, filter size, number of filters, batch normalization,

activation function and training parameters, including the loss function, optimizer, learning

rate, batch size are represented by vector parameters. The universal-vector-parameter set

(θ) encompasses all hyperparameters, which is further divided into a fine-vector-parameter

set (θf ) and a complementary-vector-parameter set (θc). The θf includes hyperparameters
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selected from existing CNN models like DnCNN [113], while θc consists of the universal-

vector-parameter set excluding θf . The initial population in the DE is initialized based

on θf , and the DE operations are constructed based on θc. Combining this approach with

the DE allows for the early identification of optimal CNNs in the search process. The

fittest vector parameters take precedence over preserving network structures, ensuring the

transmission of potential vector parameters to the population and the examination of the

fittest network structures in the early generations. The vector parameters from the top-

performing evolved CNNs in the previous evolutionary environment are used to generate

θf . This method accelerates the identification of optimal network structures, eliminating

the need to search the entire search space. As a result, the proposed method captures and

transmits this knowledge to subsequent generations.

3.2.3 DEvoNet

The flowchart of the proposed DEvoNet is given in Figure 3.3. The initial population is ini-

tialized based on θf . Each individual in the population represents a solution for NAS (i.e.,

DNN architecture), and each individual can be encoded as a DNN architecture, as shown in

Figure 3.2. The DNN architectures are then trained and evaluated on the dataset, returning

fitness values (Peak Signal-to-Noise Ratio (PSNR) (Equation (3.5))). The PSNR [114] is a

metric used in medical image denoising to assess the quality of the denoised image. PSNR

provide a quantitative measure of the similarity between the denoised image and the orig-

inal image. A higher PSNR value indicates a higher level of similarity, implying that the

denoised image preserves more details and closely resembles the original image. Follow-

ing the fitness evaluation of the initial population, the DE operations are performed on the

population. Mutation generates donor vectors (Equation (3.2)), then crossover generates

trial vectors (Equation (3.3)). The trial vectors are converted to their corresponding DNN

architectures, and the networks are trained for a fixed number of epochs. The networks

return their PSNR values. The DE selection operation is then conducted, comparing the

fitness values of the trial and target vectors (Equation (3.4)). The vector with the high-

est fitness value is selected and remains in the population. The networks with the highest
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PSNR values are carried forward to future generations. Additionally, the maximum fitness

vector parameters are added to θf , and the complementary-vector-parameter set is updated

by θc = θ − θf . The DE operations are performed using θc. The DEvoNet process con-

tinues until the termination criterion is reached, which corresponds to a specified number

of generations T . Finally, the top five individuals with the highest fitness values in the

population are selected as the output. It is important to note that the proposed model is a

single objective method, where each vector is individually examined based on its fitness

value. The objective of the proposed model is to discover networks with the maximum

PSNR value using the DE algorithm.

Is t <= T ?

Generate
population P

Evaluate P by designing
CNN's to determine fitness Initialize t=1

P'(t) = Mutation(P(t)) P''(t) = Crossover(P'(t))

 P(t+1) = Selection(P(t), P''(t)) 

Evaluate P''(t) by designing
CNN's to determine fitness

t = t+1
No

Yes

Define Parameters

Output the top five
fitness individuals

Figure 3.3: Flowchart of the proposed method.

Due to the large search space, DE requires significant computational resources, mak-

ing it challenging to evaluate performance on large datasets. Therefore, a transfer learning

strategy is adopted in this work to transfer the discovered parameters across different sizes

or methods in the training data. To facilitate the transfer of network population structures

among various-sized datasets, the hyperparameter sets are dynamically updated. The ob-

jective is to train a CNN on a small subset Ds to explore optimal combinations of hyperpa-

rameters. For this purpose, a total of 250 random images are chosen from the training data.

Notably, the entire image, rather than patches or slices, is considered during the evolution.

The hyperparameters observed from Ds are then transferred to the larger training set Dl,

where the transferred hyperparameters are utilized for further evolution. The effective con-

struction of the neural network is achieved using the fine-vector-parameters θf , which have

been learned from the small dataset Ds. The utilization of transfer learning accelerates the
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evolution rate of the optimization process.

3.3 Experiments

This section provides a description of the datasets, noise levels, and evaluation metrics

employed to assess the proposed model. The qualitative and quantitative results of the

proposed model are then compared with the existing models.

3.3.1 Datasets

In the experiments, four publicly available medical image datasets, namely CT [115],

CheXNet [116], MRI [117], and BraTs2019 [118], were chosen to evaluate the model.

The CT dataset comprises 10,000 gray-scale cerebral perfusion chest CT images of size

512×512. This CT image data is collected by the China National Center for Bioinforma-

tion (CNCB) as part of the China Consortium of Chest CT Image Investigation (CC-CCII)

from various hospital groups across China [115]. The CheXNet dataset consists of chest

X-ray images with a size of 384×384, containing information on suspected and positive

COVID-19 patients [116]. The MRI dataset comprises 7,022 brain tumor images of size

256×256 [117]. Lastly, the BraTs2019 dataset contains brain tumor MRI images that were

cropped to a size of 384×384 [118]. Random image selection is performed to create a

diverse training dataset to address overfitting issues. The small training dataset, denoted as

Ds, is composed of 250 randomly selected images from each dataset. For each dataset, the

training, testing, and validation sets were split into percentages of 60, 25, and 15, respec-

tively, ensuring no overlap between the sets.

3.3.2 Noise Simulation

Unlike natural images, medical images contain signal-dependent noise, making it difficult

to eliminate these noises using the conventional natural image denoising techniques cur-

rently available in the literature. The present noise is the result of numerous noise sources,

including capturing sensors, device processing, and data transmission media, such a noise
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creation process is too intricate to handle. Gaussian noise is a statistical concept related to

the distribution of noise values. It describes a random process in which noise values follow

gaussian distribution. Most of the works [119, 120] assumed the noise present in a medical

image as mixed Gaussian–Poisson noise. So, in the experiments, noise standard deviation

σ is varied at values of 15, 24, 36, and 52 to investigate the performance of the proposed

method.

3.3.3 Experimental Setup

Based on the promising results presented in the literature [121, 113], feasible vector pa-

rameters were selected from the CNN hyperparameters. A constrained scenario is adopted,

where θ consisted of 11 sub-vector types, as detailed in Table 3.1 in section 3.1. The initial

fine-vector-parameter set θf is initialized with the following values: type of block = [0, 1],

number of convolutional layers = [2, 3], number of blocks = [3, 4, 5], number of filters =

[16, 32, 64], filter size = [3×3, 5×5], activation = [ReLU, Tanh], batch normalization =

[False, True], optimizer = [Adagrad, Adam, SGD], learning rate = [0.1, 0.01], loss function

= [Mean Squared Error, Mean Absolute Error], and batch size = [16, 32]. The model is

implemented using the TensorFlow Keras [122], and computations were performed on a

system equipped with a 2.2GHz Intel Xeon®CPU, 16 GB of RAM, and a Quadro P5000

graphics card.

Four datasets were considered during experiments, and the model is trained separately

on each dataset. Based on preliminary experiments, the population size Np is initialized

as 40, and the total number of generations Tg is set to 10. Additionally, a pre-termination

condition (Tc) is defined to terminate the algorithm when the top five vectors remain un-

changed for consecutive generations. During the initialization stage, 40 networks were

initialized as potential solutions derived from state-of-the-art methods. Relatively large

population size is chosen to increase diversity and facilitate the discovery of optimal net-

works. From the second generation onwards, the population size is halved, selecting the

top 20 vectors, and training continues for nine generations. To save time, networks were

trained for up to 8 epochs on small datasets Ds and 12 epochs on large datasets Dl during
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the training process. The crossover rate (Cr) and scaling factor (F ) were set to 0.7 and

0.5, respectively, based on experiments conducted during the DE process. Zero-padding is

performed to maintain consistent feature map sizes during each convolution. The evolved

networks were evaluated using the Peak Signal-to-Noise Ratio (PSNR) (Equation (3.5)),

which served as the fitness function during the evolution process and is employed to ana-

lyze networks.

PSNR = 10 ∗ log10 ∗
(

R2

MSE

)
, (3.5)

where MSE is the mean squared error between denoised and original images and R

indicates maximum pixel value. Additionally, structural similarity index (SSIM) [123]

(Equation (3.6)) is also employed to compare the proposed model with existing models,

SSIM =
(2 ∗ µY ∗ µȲ + k1)(2 ∗ σY Ȳ + k2)

(µ2
Y + µ2

Ȳ
+ k1)(σ2

Y + σ2
Ȳ
+ k2)

, (3.6)

where µY , µȲ are the means of the original and test image, k1 and k2 both are constants,

σ2
Y and σ2

Ȳ
denotes the variances, σY Ȳ represent the covariance between Y and Ȳ .

3.3.4 Experimental Results

As mentioned previously, the proposed evolutionary procedure is iterated for 10 generations

for each dataset, and the final denoised networks are selected based on the acquired results.

The top five networks were chosen for further analysis. In contrast, the finest networks

underwent training for 12 epochs, but additional retraining is required. The weight initial-

ization of the network played a role in the results since it is randomized. Consequently,

each network underwent training for 35 epochs to determine the optimal architecture. Sub-

sequently, the optimal networks were selected for each dataset. The PSNR values of the top

5 networks trained for 12 and 35 epochs for each dataset are presented in Table 3.2. The

proposed model identified denoised networks with PSNR values of 35.50 for CheXNet,

35.42 for the MRI dataset, 34.89 for the CT dataset, and 36.85 for the BraTs2019 dataset

when σ=24. These results highlight the capability of the proposed framework to discover

networks with high PSNR values, exhibiting diverse features across different datasets.
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Table 3.2: The top five networks PSNR values when trained on 12 and 35 epochs for each
dataset.

Network
CT CheXNet MRI BraTs2019

12 35 12 35 12 35 12 35

Network1 33.95 34.62 35.02 35.37 35.02 35.29 36.41 36.85

Network2 34.01 34.84 34.94 35.50 34.92 35.24 36.30 36.56

Network3 33.76 34.39 34.92 35.27 34.81 35.42 36.33 36.81

Network4 34.20 34.89 34.90 35.36 34.75 35.30 36.29 36.71

Network5 33.96 34.72 34.99 35.42 34.62 35.41 36.26 36.83

The proposed evolutionary model discovers the unique structures of the network for

each dataset along with its training parameters. For each dataset, the top five network struc-

ture vectortypes are shown in Table 3.3. For instance, the first network structure vectortype

of the CheXNet dataset indicates that the network is developed by six residual blocks where

two convolution layers in each block with relu as activation, 3×3 filter size, 64 filters, the

loss function is the mean absolute error, Adam optimizer with learning rate 0.01, and batch

size is 16. Moreover, every network has a different set of training parameters.

Table 3.3: The top five network structure vectortype with respect to dataset.

Dataset Network TOB NOB NOC FS NOF ACT OPT BN LR LF BS

CT

Network1 1 1 1 0 3 0 1 1 2 0 1
Network2 1 2 1 0 3 0 0 1 2 1 0
Network3 1 1 1 0 3 0 0 0 2 0 2
Network4 0 3 0 0 3 0 0 0 2 0 0
Network5 1 3 1 0 3 1 2 1 2 1 1

CheXNet

Network1 0 4 1 0 3 0 1 0 1 0 2
Network2 1 3 1 0 2 1 0 0 2 1 0
Network3 0 3 1 0 3 0 0 1 2 0 1
Network4 1 4 2 0 3 0 0 0 2 1 0
Network5 0 3 0 0 3 1 0 1 2 0 2

MRI

Network1 1 3 1 0 3 0 0 0 2 0 0
Network2 0 4 1 0 3 0 0 1 2 0 0
Network3 0 3 0 0 3 0 1 0 2 0 2
Network4 0 3 1 0 3 1 2 0 2 1 1
Network5 1 2 1 1 2 0 0 0 1 1 1

BraTs2019

Network1 0 3 0 0 3 0 1 0 2 0 2
Network2 0 4 1 1 3 0 2 1 1 1 1
Network3 1 3 0 0 3 0 0 0 2 0 0
Network4 0 4 1 0 3 1 1 1 2 0 1
Network5 0 3 2 0 3 1 0 0 2 1 2

A comparison of both qualitative and quantitative results of a proposed model named
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DEvoNet with existing methods, including DnCNN [113], FFDNet [124], CBDNet [125],

RIDNet [126], EvoNet [41]. The quantitative results of PSNR and SSIM are summarised

in Table 3.4. Based on the obtained results, the DEvoNet model performs significantly

better than existing denoising models, where the proposed model achieves higher SSIM

and PSNR values at different noise levels. Accurate and reliable visual information is of

utmost importance in medical imaging for effective diagnosis and analysis. Therefore,

evaluating the quality of denoised images becomes crucial in this context. To assess the

performance of the proposed model, visual comparisons are made with existing models on

four datasets: CheXNet, CT, MRI, and BraTs2019. The denoised results are showcased

in Figures 3.4, 3.5, 3.6, and 3.7, respectively, under a noise level of σ = 24. These figures

provide a visual representation of the improvement achieved by the proposed model in

comparison to existing models on different medical imaging datasets. In these figures, the

red boxes of the original image are scaled up to below blue box images for better visual

comparison. The evolutionary framework’s flexibility of the proposed model allows for

identifying a better combination of network components that is suitable for the target task.

3.4 Experimental Analysis

In this section, a comprehensive analysis of the results obtained during the evolutionary

process is presented.

3.4.1 DE Parameters

The success of evolutionary optimization techniques heavily relies on the probabilities of

crossover rate and scaling factor. The determination of optimal values for these parameters

involves a trial-and-error process and may vary depending on the specific problem [127].

Different crossover rate and scaling factor values have been defined and utilized in the liter-

ature based on the architecture model. Through an extensive survey, several combinations

of crossover rate and scaling factor were identified, and experimentation is conducted to

evaluate their impact. The results revealed that certain values yielded improved outcomes.

The performance is examined at various rates (e.g., 0.3, 0.5, and 0.7) for the scaling fac-
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Table 3.4: Average PSNR and SSIM of models: FFDNet, CBDNet, RIDNet, DnCNN,
EvoNet, and DEvoNet at different σ = 15, 24, 36, and 52

.
Model σ

CT CheXNet MRI BraTs2019
PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM

DnCNN [113]

15 34.42 0.90 35.32 0.90 35.71 0.92 36.26 0.92
24 33.73 0.88 33.27 0.89 33.16 0.91 34.37 0.90
36 31.56 0.86 30.21 0.87 32.93 0.88 31.41 0.88
52 30.01 0.84 28.87 0.82 30.65 0.84 30.93 0.86

FFDNet [124]

15 34.45 0.90 35.99 0.89 35.87 0.92 36.11 0.93
24 33.42 0.88 33.54 0.88 33.54 0.91 34.11 0.92
36 32.04 0.87 30.18 0.86 32.64 0.88 33.17 0.89
52 31.11 0.86 29.97 0.84 30.92 0.85 32.13 0.87

CBDNet [125]

15 35.81 0.91 37.16 0.92 37.73 0.93 37.14 0.95
24 34.88 0.89 35.22 0.90 35.38 0.92 36.76 0.94
36 33.46 0.87 33.03 0.86 33.49 0.90 34.16 0.90
52 31.74 0.86 31.90 0.84 31.69 0.86 32.52 0.88

RIDNet [126]

15 35.94 0.91 37.26 0.93 37.71 0.94 37.13 0.95
24 34.04 0.89 35.41 0.90 35.36 0.92 36.60 0.94
36 33.27 0.87 34.15 0.89 33.48 0.89 34.32 0.90
52 32.04 0.86 32.61 0.87 31.75 0.86 32.49 0.88

EvoNet [41]

15 35.60 0.91 37.25 0.93 37.64 0.94 37.09 0.95
24 34.11 0.89 35.48 0.91 34.91 0.90 36.82 0.94
36 33.16 0.87 34.09 0.89 33.34 0.89 34.87 0.91
52 32.01 0.86 32.64 0.87 31.77 0.87 32.62 0.89

DEvoNET (Ours)

15 35.97 0.91 37.27 0.93 37.78 0.94 37.18 0.95
24 34.89 0.90 35.50 0.91 35.42 0.92 36.85 0.94
36 33.49 0.88 34.19 0.89 33.60 0.90 34.89 0.91
52 32.11 0.86 32.74 0.87 31.79 0.87 32.71 0.89

Note: The best values for each dataset are highlighted in bold.

tor (Figure 3.8a) and crossover rates (Figure 3.8b). High scaling factors resulted in faster

search speeds within the search area, but optimal networks may not be found. Conversely,

excessively low scaling factors led to network structures quickly converging to local op-

tima instead of the global optimum. Based on these experiments, the values of 0.5 for the

scaling factor (F ) and 0.7 for the crossover rate (Cr) were selected.

3.4.2 Network Structure Parameters

The parameters utilized to construct an optimal network architecture are examined. The

type of block (such as residual block and dense block), number of blocks, convolution

layers in each block, activation function, and batch normalization can contribute to network

construction. For instance, as per results shown in Table 3.3, the top five networks produced

for the CT dataset have more dense block based networks, while the top five networks

produced for the BraTs2019 dataset have less dense block based networks. Moreover, the
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(a) GroundTruth (b) Noisy

(c) DnCNN (d) FFDNet (e) CBDNet

(f) RIDNet (g) EVONet (h) DEvoNet

Figure 3.4: CheXNet dataset visual results when noise level (σ) = 24.

top five networks used 11 residual and 9 dense blocks.

Convolution has the most important role in constructing networks in all four datasets.

In addition, the number of filters, filter size, and the number of convolution layers play a

prominent role in feature extraction. The number of filters and filter size for the convolution
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(a) GroundTruth (b) Noisy

(c) DnCNN (d) FFDNet (e) CBDNet

(f) RIDNet (g) EVONet (h) DEvoNet

Figure 3.5: CT dataset visual results when noise level (σ) = 24.

layer were also determined independently in the proposed model. Based on the obtained

results, 37 convolution layers were used by the top five networks in that 35 convolution

layers used 3×3 filter size and 64 filters, remaining convolution layers utilized 32 filters

and 5×5 filter size. This diversity demonstrates the complexity of determining the best
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(a) GroundTruth (b) Noisy

(c) DnCNN (d) FFDNet (e) CBDNet

(f) RIDNet (g) EVONet (h) DEvoNet

Figure 3.6: MRI dataset visual results when noise level (σ) = 24.

block combination to construct a network.

Furthermore, the output of each node concerning its input can be specified using acti-

vation functions, which is essential for neural network convergence and speed. Besides, it
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(a) GroundTruth (b) Noisy

(c) DnCNN (d) FFDNet (e) CBDNet

(f) RIDNet (g) EVONet (h) DEvoNet

Figure 3.7: BraTs2019 dataset visual results when noise level (σ) = 24.

can prevent the neural network from convergence in some cases. Therefore, the convolution

layer should use an optimal activation function. In the evolutionary process, each dataset

produces a different number and type of activation functions in the evolution process, as
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(a) Scaling Factor vs PSNR (b) Crossover rate vs PSNR

Figure 3.8: Change in the performance with different values of scaling factor and crossover
rate.

shown in Figure 3.9. However, the obtained results demonstrate the diversity of network

architectures and the relevance of the automatic construction of the networks.

Figure 3.9: The frequency of activation functions in network evolution.

3.4.3 Training Parameters of Network

The optimizer with the corresponding learning rate is chosen automatically during the evo-

lution of the proposed method. Figure 3.10 shows the evolution of optimizers for each

generation when training on a small dataset and after transferring them to a larger training

dataset. As can be seen, the low-performance vector parameters such as SGD and Adagrad
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are gradually eliminated over generations. Simultaneously, high-performance vector pa-

rameters such as Adamax and Adadelta are discovered by DE operations. The optimal vec-

tor parameters such as Adamax, Adadelta, and Adam are retained over generations when

the initialization set is transferred from a small training set Figure 3.10a to a larger training

set Figure 3.10b. Throughout evolution, top-performing vector parameters like Adam and

Adadelta have dominated the optimizer function vector parameters. It also demonstrates

that CNN hyperparameters (vector parameters) and structures learned on a small dataset

can be transferred to a large dataset. Furthermore, for training, the majority of networks

used a small learning rate (0.001). The loss functions (such as mean absolute error and

mean squared error) and batch size are the next two training parameters discovered using

the evolutionary method.

(a) The appearance of optimizers on the small
datasets Ds

(b) The appearance of optimizers after transferred
to large dataset Dl from small datasets Ds

Figure 3.10: The appearance of optimizers in the evolution process.

3.5 Summary

In this chapter, a metaheuristic block-based deep neural network named DEvoNET is de-

signed by integrating a differential evolution algorithm to automatically identify the optimal

network structure and training parameters for medical image denoising. The incorporation

of the differential evolution algorithm enables DEvoNET to efficiently explore the search

space and discover high-performing configurations. A transfer learning approach is em-

ployed to further accelerate the evolutionary process, leveraging the knowledge gained
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from previous evolved architectures. The experimental results demonstrate the superiority

of the proposed DEvoNET model over existing denoising models, emphasizing its potential

in automatically constructing networks for various denoising applications. This capability

holds promise for enhancing the quality of medical image denoising and ultimately im-

proving patient care by providing clearer and more accurate medical images. In the next

chapter, the proposed model will be utilized as a preprocessing step in 2D medical image

segmentation.
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Chapter 4

To develop a metaheuristic based

modified U-shaped network for 2D

medical image segmentation with

denoising

In this chapter, a metaheuristic based modified U-shaped network is developed for 2D

medical image segmentation using the BTLBO algorithm, along with the incorporation of

denoising (Chapter 3) as a preprocessing step.

Chapter Organization: The proposed methodology is presented in Section 4.1. The

experimental results are provided in Section 4.2. The experimental analysis is discussed in

Section 4.3. Lastly, Section 4.4 presents the summary of the work.

4.1 Proposed Method

In this section, the modified U-shaped network, the search space and attention blocks are

presented. Subsequently, the proposed BTU-Net method with the caching technique is

discussed.
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4.1.1 Modified U-shaped network

Generally, a simplified hierarchical architecture, known as a U-shaped (encoder-decoder)

network, is employed in the image segmentation process to extract more details and mul-

tiscale features compared to other networks. The U-shaped network consists of down-

sampling (encoder) and upsampling (decoder) parts. Feature extraction is achieved using

pooling layers as the network progresses from higher to lower resolutions in the downsam-

pling section. Conversely, deconvolution is employed in the upsampling part to reconstruct

the coarse tone segmentation. A specific block, known as the bottleneck (bridge), connects

these two parts. The rationale behind selecting a U-shaped network as the backbone of the

proposed work is its ability to achieve improved segmentation results, even with limited

datasets.

While the basic U-Net utilizes fixed block structures, which may not always be suitable

for different segmentation tasks, the proposed model incorporates different block structures

that are chosen from a designed search space. In the U-Net structure, employing multiple

pooling layers during downsampling can result in the loss of spatial data. During upsam-

pling, addition or concatenation is utilized to recover this information loss. As attention

blocks may autonomously learn to focus on target structures without any further supervi-

sion, four attention block structures have been employed, as shown in Figure 4.2 based on

[67]. These attention blocks are used to recover spatial information and then transfer them

during upsampling in place of addition or concatenation operations. The choice of atten-

tion block parameters is also included in the search space of the proposed work. Figure 4.1

illustrates the modified U-shaped (encoder-decoder) network structure, which consists of 9

blocks and attention blocks.

4.1.2 Search space and Encoding

In the previous work, as mentioned in 3.2.1, only residual and dense blocks were utilized.

However, in this work, the proposed approach has been expanded by incorporating various

nodes with different kernel sizes, activations, and normalization layers. The focus is on

optimizing the node structure within each block of the encoder-decoder architecture. Addi-
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AB

AB

AB

AB

Up sampling

AB Attention Block

Down sampling

Skip connection

Figure 4.1: The proposed modified U-shaped network.

tionally, to streamline the optimization process, less impactful parameters such as learning

rate and batch size are eliminated by fixing their values.

Search space: The search space encompasses various building blocks and parameters that

enable the generation of diverse types of DNNs. A larger search space, in theory, encom-

passes more neural network architectures. However, there is a trade-off between efficiency

and search space. A large search space requires more resources and search time. In this

work, the search space is restricted to a specific number of operations and these operations

are chosen from the state-of-the-art model components [128, 53, 58]. The proposed search

space contains 32 node operations as depicted in Table 4.1. Furthermore, these 32 nodes are

divided into pre-activation nodes (where the activation function performs before the con-

volution operation) and post-activation nodes (where the activation function performs after

the convolution operation). The node sequence operations in search space were designed

with different convolutional kernel sizes (1×1, 3×3, and 5×5), activation functions (ReLu

[129] and Mish [130]), normalization functions (batch normalization [112], and instance
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Figure 4.2: Attention blocks [67]

normalization [131]). Additionally, pooling layers for the downsampling (Averagepool and

Maxpool), upsampling (bilinear upsampling and transposed convolution [132]), and loss

functions (Focal loss [133], DiceBCE loss (a mix of Dice loss and Binary Cross Entropy

loss) [134]) are added into the search space.

Table 4.1: The node sequence operations.

Post-activation nodes Pre-activation nodes
ID Conv Norm Act ID Norm Act Conv

00000 1×1 - Relu 10000 - Relu 1×1
00001 1×1 - Mish 10001 - Mish 1×1
00010 1×1 IN - 10010 IN - 1×1
00011 1×1 BN - 10011 BN - 1×1
00100 3×3 - Relu 10100 - Relu 3×3
00101 3×3 - Mish 10101 - Mish 3×3
00110 3×3 IN ReLu 10110 IN ReLu 3×3
00111 3×3 IN Mish 10111 IN Mish 3×3
01000 3×3 BN ReLu 11000 BN ReLu 3×3
01001 3×3 BN Mish 11001 BN Mish 3×3
01010 5×5 - ReLu 11010 - ReLu 5×5
01011 5×5 - Mish 11011 - Mish 5×5
01100 5×5 IN ReLu 11100 IN ReLu 5×5
01101 5×5 IN Mish 11101 IN Mish 5×5
01110 5×5 BN ReLu 11110 BN ReLu 5×5
01111 5×5 BN Mish 11111 BN Mish 5×5

Conv: Convolution kernel size, Norm: Normalization, Act: Activation
function, BN: Batch Normalization, IN: Instance Normalization.

Encoding: The proposed method consider the internal block structure in a modified U-

shaped network as a directed acyclic graph with nodes and edges based on Genetic CNN

[135]. The connections between nodes are represented by edges, whereas each node indi-
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cates a set of operations, as shown in Table 4.1. The output feature map of the pre-node can

be transferred to the post-node through a directed edge between these nodes. The elements

of the feature maps will be summed up if a node has multiple edge inputs, as the size of all

feature maps inside a block is configured to be the same. If the maximum number of inter-

mediate nodes is P , then P (P+1)
2

(i.e., 1+2+3+· · ·+(P+1) = P (P+1)
2

) bits are needed for

encoding the inter-node connections. The proposed model considers 5 nodes; this requires

10 bits to build the network structure and 5 bits to choose the node ID. The two examples

of binary string encoding between nodes in a block are shown in Figure 4.3. The first bit

of binary string represents the link between (node1, node2), the next two bits represent the

link between (node1, node3) and (node2, node3), and so on. The two nodes are connected

if the corresponding bit is 1. In a block, the input node (red-coloured) receives input from

the predecessor pooling layer and transfers it to the successor nodes (blue-coloured). The

output node (violet-coloured) takes input from the predecessor nodes (blue-coloured) and

forwards it to the next layer in a network.

2

4

51

32

3

51

4

(a) 0-10-011-1010 (b) 0-01-110-1001

Figure 4.3: Encoding of the block inter-node connections.

4.1.3 BTU-Net

The BTU-Net used the Binary Teaching-Learning-Based Optimization (BTLBO) algorithm

in the search process to search for the optimal node structure of each block in the designed

U-shaped network. The standard TLBO algorithm, proposed by Rao et al. [22], takes

inspiration from the interactions and communications between students and teachers in a

classroom to design an effective optimization approach. The BTLBO algorithm is a binary

version of TLBO that offers distinct advantages over other algorithms. Unlike many swarm

intelligence and evolutionary-based algorithms that require tuning algorithm-specific pa-

rameters like mutation and crossover probabilities, BTLBO relies on general control pa-
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rameters such as the number of generations and population size. This eliminates the need

for extensive parameter tuning, reducing computational effort and avoiding suboptimal so-

lutions trapped in local optima. The effectiveness of this algorithm has been demonstrated

in various applications [136], [137], [138]. Therefore, BTLBO has been utilized in this

work to find optimal medical image segmentation models during the evolution process.

The BTLBO is an efficient metaheuristic algorithm that contains the teacher, learner, and

binary conversion phases.

Teacher Phase: This phase imitates the learning process with the teacher’s instruction.

Let X be a population of the classroom, Xmean represent the mean of all learners’ results,

Np represents the number of learners in the class, i.e., population size, decision variable

K represents the number of subjects, and f indicates fitness function. In this phase, the

optimal learner in the classroom is elected as a teacher Xteacher. The selected teacher tries

to improve the class average result based on their ability. The X t
teacher represents the teacher

at iteration t, and each learner Xi in the population X updates their values using Equation

4.1.

X t+1
i = X t

i + (rand(0, 1)× (Xteacher − (Tf ×Xmean))) (4.1)

where Tf is a teaching factor, the value can be either 1 or 2 chosen randomly. Each

learner Xi in a population X can be encoded as a U-shaped network (as given in section

4.1.2) and runs on a particular dataset then returns a Dice score (Equation 4.5) as a fitness

score f(Xi). The new learner X t+1
i is updated to the population X if its fitness score

f(X t+1
i ) is greater than the old learner X t

i fitness value f(X t
i ).

Learner phase: This phase simulates the learning process with the other learners. Through

group discussions and presentations, learners improve their knowledge by interacting with

others. A learner gains new information from others who are more knowledgeable than

them. Each learner X t
i interacts randomly with another learner X t

j where (i ̸= j) iteration

t to improve their knowledge. A unique partner Xj is chosen for every learner so that every

learner can interact with any one of the learner in one generation. The learner X t+1
i updates

its value using Equation 4.2.
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X t+1
i =

X t
i − r × (X t

i −X t
j), f(Xi) >= f(Xj)

X t
i + r × (X t

i −X t
j), otherwise

(4.2)

Similar to the teacher phase, the old learner is replaced in the population only if the new

learner provides a higher fitness value than the old learner.

Binary Conversion: In BTLBO, the position is represented by a binary vector, while the

velocity is still a floating-point vector. When the position of particles is updated, velocity is

used to compute the probability of a change from 0 to 1 or 1 to 0. The sigmoid function is

a prominent function for normalizing velocities in the [0, 1]. The sigmoid function is used

on the velocity component to normalize velocities into the range [0, 1] as follows:

X t
i =

1, Sigmoid(X t
i ) ≥ rand(0, 1)

0, otherwise
(4.3)

where,

Sigmoid(x) =
1

e−x + 1
(4.4)

The proposed method utilizes the Dice score (Equation 4.5) as a fitness function in the

BTLBO algorithm to optimize the network structures for medical image segmentation. The

Dice score [139] is a widely used measure in medical image segmentation, which quanti-

fies the similarity between the segmented region and the ground truth region. It calculates

the overlap between the regions, providing a quantitative assessment of the segmentation

quality. A higher Dice score indicates a greater degree of spatial correspondence, signi-

fying a more accurate and precise segmentation. To optimize the network structures, the

BTLBO algorithm aims to maximize the Dice score. By iteratively evolving the network

parameters, the algorithm seeks to find the optimal configuration that maximizes the seg-

mentation performance. The proposed method’s pseudocode is outlined in Algorithm 4.1,

which describes the steps involved in the BTLBO algorithm for optimizing the network

structures. The fitness evaluation, defined in Algorithm 4.2, is responsible for calculating

the Dice score as the fitness value for each network configuration during the optimization

process.
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Algorithm 4.1 The pseudocode of the proposed BTU-Net.

Input: Initial population X with Fitness scores f , Number of generations Tg,

Pre-termination criteria Tc

Output: Evolved population X with Fitness scores f

1: global cache Gc = {}

2: for t = 0 to Tg do

3: for each learner i in population X do

4: // Teacher Phase

5: Xteacher = max(X, f)

6: Xnew = Xi + (rand(0, 1)× (Xteacher − (Tf ×Xmean)))

7: Convert learner Xnew to binary learner Xbnew using Equations 4.3, 4.4

8: Calculate fitness f(Xbnew) of Xbnew by Algorithm 4.2

9: Greedy selection between Xbnew and Xi

10: // Learner Phase

11: Choose j randomly where j ̸= i

12: if f(Xi) ≥ f(Xj) then

13: Xnew = Xi − r × (Xj −Xi)

14: else

15: Xnew = Xi + r × (Xi −Xj)

16: end if

17: Convert learner Xnew to binary learner Xbnew using Equations 4.3, 4.4

18: Calculate fitness f(Xbnew) of Xbnew by Algorithm 4.2

19: Greedy selection between new Xbnew and Xi

20: end for

21: if Tc is True then

22: break

23: end if

24: end for

25: return X , f
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In the search process, it is possible for metaheuristic algorithms to generate duplicate

learners, resulting in the same network architecture. So, a cache mechanism is utilized

in fitness evaluation to avoid retraining the same model (learner) that has already been

evaluated or trained. The empty global cache Gc is initialized as described in Algorithm

4.1. The global cache Gc can contain each learner Xi with its fitness value f(Xi). As

given in Algorithm 4.2, the presence of learner Xi in Gc is checked before encoding the

model [line 1]. If the learner is present, the fitness value f(Xi) is obtained from Gc [line

2]. Otherwise, the model is encoded from learner Xi according to the process described in

section 4.1.2, followed by training and evaluation of the model [from lines 3 to 17]. The

encoded model is trained for a certain number of training epochs M on the training dataset

(considered as 130epochs), and then the Dice score is calculated on the test dataset starting

from the test epoch N , assumed to be the 80th epoch. The fitness score for the learner is

determined based on the epoch that achieves the highest score [from lines 8 to 13]. Finally,

the learner Xi and its fitness score f(Xi) are added to Gc to prevent the model from being

retrained [line 16].

Algorithm 4.2 The pseudocode of the Fitness evaluation of a Learner

Input: Learner Xi, Global cache Gc, Train Dtrain, Test Dtest datasets, Training epochs

M , and Test epochs N

Output: Fitness score f(Xi) of a Learner Xi

1: if Xi in Gc then

2: f(Xi) = query the fitness score f(Xi) of learner from Gc

3: else

4: Construct a U-shaped network model based on the information encoding learner as

given in section 4.1.2

5: Set fbest = 0

6: for epoch = 1 to M do

7: Train the model on Dtrain dataset

8: if epoch > N then

9: Dice = Calculate the Dice score 4.5 (fitness score) on Dtest dataset

10: if fbest < Dice then
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11: fbest = Dice

12: end if

13: end if

14: end for

15: Set f(Xi) = fbest

16: Add the learner Xi and fitness score f(Xi) into the global Cache Gc

17: end if

18: return f(Xi)

4.2 Experimental Results

This section discussed the datasets and metrics used in the evaluation process. Later the

experimental results of the proposed models with the state-of-the-art segmentation models

were presented.

4.2.1 Datasets & Preprocessing

The proposed method is evaluated on five retinal vessel segmentation datasets and a spleen

segmentation dataset. The retinal vessel datasets, including DRIVE [140], STARE [141],

CHASEDB [142], IOSTAR [143], and HRF [144] are commonly available in the 2D format

as retinal images are typically captured and represented as 2D images. The spleen segmen-

tation dataset [145] contains 1051 2D slice images of CT scans with a size of 512×512.

The DRIVE (Digital Retinal Pictures for Vessel Extraction) dataset comprises 40 coloured

fundus images with dimensions of 565×584 pixels. The STARE (Structured Analysis of

the Retina) dataset includes 20 fundus images with a resolution of 700×605. The IOSTAR

dataset comprises 30 images of size 1024×1024. The HRF (High-Resolution Fundus)

dataset contains three sets (glaucomatous, diabetic retinopathy and healthy patients), each

with 15 fundus images at a resolution of 3504×2336. Lastly, the CHASEDB dataset con-

sists of 28 images with a size of 999×960 from both the left and right eyes.

The datasets mentioned above were split into a training set Dtrain and a test set Dtest.

The training set is used to adjust the network weights, and the test set is used for per-
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formance evaluation. The Spleen dataset is divided into 822 images for training and 229

images for testing. The standard partitioning strategy of 20 images for training and 20

images for testing is followed for the DRIVE dataset. For datasets without predefined

splits, a random selection of images is performed for training and testing. In the case of

the STARE dataset, 5 random images were chosen for testing and the remaining 15 for

training. CHASEDB utilized 21 randomly selected images for training and the remaining

7 for testing. The IOSTAR dataset involved 24 randomly chosen images for training and 6

images for testing. As for HRF, five random images from each set were used for testing,

while the remaining 30 images were used for training.

Considering the limited size of the datasets, data augmentation techniques, including

vertical and horizontal flipping and random rotation [146], were applied to augment the

training data. To ensure consistency, min-max normalization is performed to normalize the

pixel values of all images to the range of 0 to 1.

4.2.2 Experimental Setup

In the of process of BTU-Net, the initial random binary population size Np is set to 50.

After determining the fitness scores of the population, the top 20 learners with the high-

est fitness scores were selected for the next generation. Therefore, starting from the 1st

generation, the population size Np is set to 20. The number of generations Tg is set to

30. Additionally, a pre-termination criterion Tc is used, which specifies that the algorithm

would terminate if the top five learners remained unchanged for three consecutive genera-

tions. The proposed method utilized the Adam as optimizer [147] with a learning rate of

0.001 and a batch size of 2. The model is implemented using PyTorch v1.9.0 and executed

on a 2.2GHz Intel Xeon®CPU and a Quadro P5000 graphics card with 16 GB of memory.

Evaluation metrics: The Dice score [139] (Equation 4.5) is used as a fitness function f()

to evaluate the networks, where A represents the ground truth image, B represents the

predicted segmented image, |A| and |B| represents the cardinality of A and B. Further-

more, accuracy (Equation 4.6), recall (Equation 4.7), specificity (Equation 4.8), precision

(Equation 4.9) and AUROC (Area Under the ROC Curve) are utilized as metrics during
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evaluation. Where Fn, Fp, Tp, Tn indicates false negative, false positive, true positive, and

true negative, respectively.

Dicescore =
2× |A ∩B|
|A|+ |B|

(4.5)

Accuracy =
Tp + Tn

Tp + Tn + Fn + Fp

(4.6)

Recall =
Tp

Fn + Tp

(4.7)

Specificity =
Tn

Fp + Tn

(4.8)

Precision =
Tp

Fp + Tp

(4.9)

4.2.3 Comparison with Existing Methods

During the experiments, a denoising technique (developed in Chapter 3) is initially applied

as a preprocessing step on the original spleen dataset. This denoising process effectively

removed noise from the images, resulting in clearer views, as depicted in Figure 4.4. Sub-

sequently, the proposed method is evaluated on both the original and denoised images, and

its performance is compared to existing segmentation models, including U-Net [21], Segnet

[148], DeepLabv3+ [149], and CPFNet [150]. The segmentation results for both the orig-

inal and denoised image datasets are presented in Figure 4.5 to showcase the importance

of denoising in the segmentation task. Furthermore, Table 4.2 provides the experimental

results, highlighting the segmentation performance of the proposed model in comparison

to state-of-the-art models. It is evident from both the quantitative and visual results that the

proposed method outperforms existing models across all metrics. Notably, the consistent

improvement observed in denoised images when compared to original images.

Furthermore, the evaluation is expanded to include five retinal vessel datasets in order

to showcase the effectiveness of the proposed model. Based on the demonstrated improve-
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Figure 4.4: Original vs Denoised images.
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Figure 4.5: Visual results of Original and Denoised images of Spleen dataset.

ment in segmentation performance through denoising, denoising is performed on a dataset

followed by segmentation. The segmented results of the proposed model were compared

with the existing models, such as U-Net [21], CE-Net [151], FC-Densenet [152], CS2-Net
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Table 4.2: Comparison with existing models on Spleen Dataset.

Model Original Denoised
Accuracy Recall Specificity Precision Dice score Accuracy Recall Specificity Precision Dice score

U-Net 0.9689 0.8550 0.9712 0.8451 0.8325 0.9737 0.8601 0.9785 0.8555 0.8427
Segnet 0.9780 0.8685 0.9816 0.8559 0.8450 0.9860 0.8685 0.9894 0.8606 0.8514
DeepLabv3+ 0.9805 0.8694 0.9827 0.8656 0.8608 0.9956 0.8743 0.9882 0.8662 0.8709
CPFNet 0.9845 0.8785 0.9826 0.8688 0.8612 0.9973 0.8843 0.9888 0.8702 0.8757
Proposed 0.9886 0.8853 0.9835 0.8729 0.8699 0.9985 0.8855 0.9902 0.8734 0.8778

Note: The highest values for original images and denoised images are shown in bold.

[153], FR-UNet [154], IterNet [52], and Genetic U-net [58]. All these models are trained

in the same environment as the discovered architecture to ensure a fair comparison. From

Table 4.3, it can be observed that the proposed model outperforms other existing models

on all five datasets. The segmented results of the proposed model and existing models on

five datasets are illustrated in Figures 4.6, 4.7, 4.8, 4.9, 4.10. Two small frames have been

extracted from the resultant segmented images to gain a better insight into the preservation

of details. These frames are depicted below, enclosed within blue and green boxes (Fig-

ures 4.6, 4.7, 4.8, 4.9, 4.10). These figures show the effectiveness of the proposed model

in extracting complex structures from retinal images compared to existing models. These

quantitative and qualitative results demonstrate that the proposed BTU-Net model outper-

forms other segmentation models. Additionally, the results illustrate the efficacy of NAS

in designing neural network architectures for medical image segmentation, outperforming

manually designed architectures across all metrics.

To compare the effectiveness of the BTLBO algorithm with other metaheuristic op-

timization algorithms, a few recent algorithms such as Equilibrium Optimizer Algorithm

(EOA) [155], Grasshopper Optimization Algorithm (GOA) [156], Chameleon Swarm Al-

gorithm (CSA) [157], and Marine Predators Algorithm (MPA) [158] were chosen. To

evaluate the overall performance of algorithms, two metrics (mean and standard deviation)

are used. The significance of findings is also assessed using the non-parametric statistical

test known as the Wilcoxon rank-sum test [159]. Each algorithm is run for 30 generations,

and each model for 30 epochs during training. The BTLBO algorithm produced the highest

mean, standard deviation, and fitness score compared to other algorithms, as shown in Ta-

ble 4.4. Additionally, Table 4.5 shows that the Wilcoxon rank-sum test’s p-values are less

than 0.05. This demonstrates the statistical significance of the results. The experimental re-
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Table 4.3: Comparison with existing models on retinal vessel segmentation datasets.

Dataset Model Accuracy Recall Specificity Precision Dice score AUROC

IOSTAR

U-Net 0.9703 0.8324 0.9821 0.8387 0.8012 0.9013
FC-Densenet 0.9688 0.8012 0.9662 0.8195 0.7853 0.8757
CE-Net 0.9703 0.8013 0.9756 0.8284 0.7896 0.8834
CS2-Net 0.9727 0.8101 0.9843 0.8371 0.7936 0.8987
FR-UNet 0.9730 0.8249 0.9827 0.8320 0.8063 0.9086
IterNet 0.9742 0.8322 0.9862 0.8417 0.8120 0.9104
Genetic U-net 0.9731 0.8286 0.9863 0.8438 0.8054 0.9074
BTU-Net 0.9747 0.8388 0.9868 0.8473 0.8126 0.9118

CHASEDB

U-Net 0.9746 0.8181 0.9850 0.7877 0.7936 0.9015
FC-Densenet 0.9755 0.8257 0.9854 0.7929 0.8031 0.9055
CE-Net 0.9738 0.8055 0.9850 0.7825 0.7892 0.8952
CS2-Net 0.9744 0.8272 0.9842 0.7792 0.7940 0.9057
FR-UNet 0.9750 0.8315 0.9835 0.7929 0.8024 0.9119
IterNet 0.9757 0.8233 0.9858 0.7958 0.8053 0.9046
Genetic U-net 0.9753 0.8374 0.9845 0.7825 0.8048 0.9110
BTU-Net 0.9787 0.8405 0.9864 0.7987 0.8109 0.9124

HRF

U-Net 0.9716 0.8170 0.9841 0.8051 0.8019 0.9001
FC-Densenet 0.9711 0.8245 0.9839 0.8019 0.7999 0.9042
CE-Net 0.9704 0.8125 0.9833 0.7940 0.7901 0.8979
CS2-Net 0.9725 0.8091 0.9858 0.8132 0.8002 0.8974
FR-UNet 0.9726 0.8270 0.9842 0.8133 0.8081 0.9048
IterNet 0.9718 0.8258 0.9828 0.8125 0.8032 0.9029
Genetic U-net 0.9728 0.8269 0.9849 0.8116 0.8071 0.9059
BTU-Net 0.9782 0.8274 0.9864 0.8187 0.8174 0.9084

DRIVE

U-Net 0.9667 0.8125 0.9807 0.8153 0.8075 0.8916
FC-Densenet 0.9672 0.7947 0.9799 0.8091 0.8060 0.8894
CE-Net 0.9631 0.7915 0.9798 0.8013 0.7994 0.8856
CS2-Net 0.9656 0.8174 0.9813 0.8172 0.8056 0.8939
FR-UNet 0.9659 0.8209 0.9803 0.8015 0.8097 0.8957
IterNet 0.9661 0.8213 0.9785 0.8003 0.8116 0.8989
Genetic U-net 0.9677 0.8221 0.9834 0.8236 0.8119 0.8950
BTU-Net 0.9689 0.8249 0.9844 0.8264 0.8178 0.9030

STARE

U-Net 0.9621 0.7907 0.9786 0.7999 0.7906 0.8792
FC-Densenet 0.9674 0.7936 0.9825 0.8053 0.7962 0.8881
CE-Net 0.9623 0.8045 0.9751 0.8020 0.7919 0.8888
CS2-Net 0.9641 0.7998 0.9785 0.8006 0.8019 0.8984
FR-UNet 0.9682 0.7972 0.9832 0.8107 0.8005 0.9006
IterNet 0.9699 0.7991 0.9849 0.8170 0.8036 0.8920
Genetic U-net 0.9706 0.8194 0.9843 0.8195 0.8136 0.9018
BTU-Net 0.9793 0.8284 0.9862 0.8197 0.8189 0.9034

Note: The best values for each dataset are highlighted in bold.

sults show that the proposed method achieves optimal results when the BTLBO algorithm

is used for the segmentation task.
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(a) Image (b) GroundTruth

(c) U-Net (d) FC-Densenet

(g) CE-Net (h) CS2-Net (i) Genetic U-net (j) BTU-Net

(e) IterNet (f) FR-UNet

Figure 4.6: Visual segmentation results of IOSTAR dataset.

4.3 Discussion & Analysis

In this section, a comprehensive analysis and discussion of the proposed model components

are presented, based on the obtained search results.
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(a) Image (b) GroundTruth

(c) U-Net (d) FC-Densenet

(g) CE-Net (h) CS2-Net (i) Genetic U-net (j) BTU-Net

(e) IterNet (f) FR-UNet

Figure 4.7: Visual segmentation results of CHASEDB dataset.

4.3.1 Performance analysis of Search Process

Figure 4.11 illustrates the maximum fitness scores achieved by the BTU-Net during its

search process across generations. From the first generation, the scores of the learners grad-

ually improve and converge at approximately subsequent generations. The pre-termination

condition (Tc) states that the algorithm will terminate if the top five learners do not change
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(a) Image (b) GroundTruth

(c) U-Net (d) FC-Densenet

(g) CE-Net (h) CS2-Net (i) Genetic U-net (j) BTU-Net

(e) IterNet (f) FR-UNet

Figure 4.8: Visual segmentation results of HRF dataset.

for the following three generations. Furthermore, the last generation’s top five network ar-

chitectures from the population have been selected and trained on all datasets, and the op-

timal model outputs are taken. Figure 4.12 shows the performance of the proposed method

on the training and test sets for each dataset.
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(a) Image (b) GroundTruth

(c) U-Net (d) FC-Densenet

(g) CE-Net (h) CS2-Net (i) Genetic U-net (j) BTU-Net

(e) IterNet (f) FR-UNet

Figure 4.9: Visual segmentation results of DRIVE dataset.

4.3.2 Cache enabled BTLBO

In the search process, the cache component is used to speed up the fitness evaluation of

a population based on the following aspects: 1) learners who survive into the following

generation (if architecture remains unchanged) do not need to re-evaluate their fitness, and

2) the architecture that has been evaluated can be regenerated in future generations. The
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(a) Image (b) GroundTruth

(c) U-Net (d) FC-Densenet

(g) CE-Net (h) CS2-Net (i) Genetic U-net (j) BTU-Net

(f) FR-UNet(e) IterNet

Figure 4.10: Visual segmentation results of STARE dataset.

BTLBO algorithm generates two learners for each learner from two phases in one genera-

tion, so there can be a chance that the same learner can reappear in any generation during

the search process. In that case, the cache will retrieve the saved fitness score of the par-

ticular learner by avoiding re-execution. Generally, a cache system should take its size

seriously and provide details to discuss the conflicting problem caused by duplicate keys.
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Table 4.4: Mean, standard deviation and max fitness score values obtained from 30 runs.

Algorithm Mean Standard deviation Max fitness score
CSA 0.7720551211029644 0.013247007656711045 0.7820
MPA 0.7686482127341582 0.012701060322495477 0.7779
EOA 0.7667829428999998 0.010721337729667133 0.7735
GOA 0.7797869557545665 0.013104164794438189 0.7867
BTLBO 0.7813792232272889 0.013744832946680097 0.7938

Table 4.5: Wilcoxon rank-sum test p-values.

Algorithm P-value
BTLBO vs CSA 3.463437399492168e-06
BTLBO vs MPA 3.338018333641698e-05
BTLBO vs EOA 3.391034943845661e-05
BTLBO vs GOA 3.478324915956094e-06

The cache component of the proposed approach is similar to a map data structure, with a

string comprising the learner and the corresponding model’s fitness value. Even though

there are thousands of records, the cache component will take very little disc space. Thus,

there is no need to be concerned about the size of the cache component.

4.3.3 Operations and Operation Sequences

The primary goal of the proposed method is to find the optimal node connection structure

for each block in a U-shaped network. For this, a total of 32 nodes were developed and

divided into pre-activation and post-activation nodes, as outlined in Table 4.1, in the search

space. Figure 4.13 shows the frequency of each node that occurred in top architectures

during the evolution. However, the pre-activation nodes (such as 31, 29, 23, and 15) have

appeared more times than post-activation nodes in the search process. These values show
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Figure 4.11: Generation wise fitness scores
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(a) CHASEDB (b) DRIVE

(c) IOSTAR (d) HRF

(e) STARE

Figure 4.12: Training and Test Dice scores

that applying the activation function before the convolution operation in encoder-decoder

blocks can also improve the segmentation performance. The model with the highest Dice

score during the evolution process is referred to as the optimal model, and its internal

structure is the optimal structure. The optimal model discovered by the proposed model

used nodes 23, 7, 12, 16, 15, 7, 29, 17, and 13 for 9 blocks in a modified U-Net. The

experimental results show that replacing fixed block structures in U-shaped networks like

U-Net with different block structures can enhance the segmentation accuracy.
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Figure 4.13: Frequency of node operations

4.3.4 Attention blocks

The attention mechanism is employed in the proposed model to capture the intricate ves-

sels during segmentation. The results of the proposed method demonstrate the effectiveness

and impact of utilizing an attention mechanism in a segmentation network. Moreover, the

attention blocks Figure 4.2 that were used in the proposed work do not require computa-

tional overhead and a large number of model parameters as they use 1x1 convolutions. The

frequency of each attention block in the search process is shown in Figure 4.14. Atten-

tion blocks 2 and 3, which have a skip connection with the downsampling layer, appeared

many times during evolution. Furthermore, experiments were conducted using attention

blocks, as well as utilizing both addition and concatenation operations. From Table 4.6,

the proposed model performs much better using the attention blocks instead of addition or

concatenation. This is because attention blocks can automatically learn more features.
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Figure 4.14: Frequency of attention blocks

Table 4.6: Performance with Attention blocks, Addition and Concatenation.

Operation Dice score
Addition 0.7973
Concatenation 0.8027
Attention blocks 0.8198

4.3.5 Network Structure Parameters

In a U-shaped network, the downsampling and upsampling sections have a pooling layer

after each block. However, choosing the appropriate pooling layer in a network can help

to improve the model performance. Therefore, the proposed work has used the popular

pooling layers such as average pooling and max pooling layers for downsampling, bilinear

upsampling and transposed convolution for upsampling. The frequency distribution of each

pooling layer during the search process is given in Figure 4.15. The average pooling layer

in downsampling and transposed convolution layer in upsampling appeared more times

during evolution. Furthermore, the Focal loss function has a higher frequency than the

DiceBCE loss function in the search process, as shown in Figure 4.16.
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4.3.6 Comparison of model size and parameters

The comparison between the size and parameters of the discovered architecture and other

models is presented in Table 4.7. The discovered architecture has lesser parameters and

execution time than U-Net but is comparatively greater than Genetic U-net due to convolu-

tion kernel sizes and attention blocks.

Table 4.7: Model size, number of parameters, and execution time comparison.

Model Size Params Time
U-Net 120MB 31.03M 35.4ms
Genetic U-net 1.2MB 0.27M 27.5ms
BTU-Net 53MB 16.8M 31.1ms

4.4 Summary

In this chapter, a modified U-shaped (encoder-decoder) model based on the metaheuristic

BTLBO algorithm, named BTU-Net, is introduced for 2D medical image segmentation
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with denoising as a preprocessing step. The incorporation of the BTLBO algorithm opti-

mizes each block within the U-shaped network, leading to enhanced segmentation perfor-

mance. The attention mechanism is employed in BTU-Net to capture complex structures,

allowing for more precise and accurate segmentation. To facilitate the search for an opti-

mal model, a condensed but flexible search space is defined, enabling efficient exploration

of various configurations. The utilization of a cache-enabled BTLBO algorithm signifi-

cantly accelerates the fitness evaluation process by avoiding redundant training. By opti-

mizing each block within the U-shaped network using the BTLBO algorithm, the proposed

method achieves improved segmentation performance. Furthermore, the experimental re-

sults obtained from various medical image datasets highlight the significance of denoising

as a preprocessing step in enhancing the performance of medical image segmentation. The

results indicate the potential clinical applications of the proposed model in medical image

segmentation tasks. In the next chapter, a metaheuristic based 3D medical image segmen-

tation model will be discussed.
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Chapter 5

To develop a metaheuristic based

encoder-decoder model for 3D medical

image segmentation

In this chapter, a metaheuristic based encoder-decoder model is presented, which has been

specifically designed for 3D medical image segmentation using Chameleon Swarm Algo-

rithm, leveraging insights gained from 2D segmentation in Chapter 4.

Chapter Organization: Section 5.1 provides the Preliminaries. The proposed method-

ology is presented in Section 5.2. The experimental results and analysis are provided in

Section 5.3. A summary of the work is described in Section 5.5.

5.1 Preliminaries

In this section, the overview of the preliminaries, including the Chameleon Swarm Algo-

rithm, which is relevant to the proposed method is discussed.

5.1.1 Chameleon Swarm Algorithm (CSA)

The CSA was recently introduced by Braik et al. [160] in 2021. This algorithm is in-

spired by chameleons’ hunting and food-finding strategies. Chameleons are known for
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their ability to change color and blend in with their surroundings, making them a highly

specialized species. Although chameleons usually consume insects, they can survive in

deserts, semi-desert, mountains, and lowland environments. Its food-hunting procedure

includes many phases, including tracking the prey, chasing the prey with their sight, and

attacking the prey. It has been validated on various benchmark functions, demonstrating

competitive performance compared to other metaheuristic algorithms, including grey wolf

optimization (GWO), PSO, and GA [23]. The effectiveness of CSA has also been evalu-

ated in various optimization problems and engineering design applications, such as plant

leaf disease identification [161], power engineering [162], feature selection [163] and im-

age processing [164]. With its versatility and strong global search capabilities, CSA proves

to be a valuable choice for optimizing functions and addressing practical problems. Based

on its demonstrated versatility and effectiveness in various optimization problems, the CSA

algorithm is chosen as a promising approach to enhance 3D medical image segmentation.

The CSA algorithm comprises four steps: initialization, search for prey, eye rotation, and

hunting, as given in Algorithm 5.3.

In this Algorithm 5.3, a random population X is initialized with a size of Np chameleons

in K-dimensional space, where each chameleon represents a candidate solution to a prob-

lem. Furthermore, Velocity V is initialized based on the chameleon’s dropping tongue,

lower bound Lb, and upper bound Ub are defined [lines 1 to 4]. Then,the fitness f() is

evaluated for each chameleon in the population X [line 5]. Then, an index of generation,

t, which ranges from 0 to Tg (the number of generations), is assigned [lines 6 to 34]. In the

search for prey step, prey is sought by the chameleons as they roam the desert and trees,

causing their position to change accordingly [lines 9 to 19]. The perception of prey by the

chameleon is determined by the probability Pr. The best position is denoted by Pi,j , while

the global best position is denoted by Qj , where jth is the dimension of the ith chameleon

in the tth generation. During the eye rotation step, the chameleons’ eyes rotate indepen-

dently, enabling them to explore the search space and locate prey [lines 20 to 24]. In the

hunting step, chameleons primarily capture prey by extending their tongues [lines 25 to

31]. Subsequently, the fitness f() is evaluated for each chameleon Xi in the population X

[line 32]. This process is iterated for Tg iterations.

70

OFFICE USER
Highlight



CHAPTER 5. TO DEVELOP A METAHEURISTIC BASED ENCODER-DECODER MODEL FOR 3D MEDICAL IMAGE SEGMENTATION Section 5.1

Algorithm 5.3 The pseudocode of the CSA algorithm [160].

Input: Population size Np, Chameleon dimension K, Number of generations Tg

Output: Final Population X with Fitness scores f(X)

1: //Initialization

2: Ub and Lb are the upper and lower bounds

3: Initialize random population X with Np chameleons and K dimension

4: Initialize the velocity V based on chameleon’s dropping tongue

5: Evaluate the fitness f() for each chameleon in the population X

6: Initialize t = 0

7: while t < Tg do

8: Define the iteration parameter function µ, inertia weight ω, and acceleration rate α,

and position update probability Pr

9: //Search of prey

10: for i = 0, 1, . . . Np − 1 do

11: for j = 0, 1, . . . K − 1 do

12: Choose r, r1, r2, r3 randomly in [0,1]

13: if r >= Pr then

14: Xi,j = Xi,j +m1(Pi,j −Qj)r2 +m2(Qj −Xi,j)r1

15: else

16: Xi,j = Xi,j + µ((Ubj − Lbj)r3 + Lbj)sgn(rand− 0.5)r1

17: end if

18: end for

19: end for

20: //Eye rotation

21: for i = 0, 1, . . . Np − 1 do

22: Choose ri randomly in [0,1]

23: Xi = Xri +Xi

24: end for
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25: //Hunting

26: for i = 0, 1, . . . Np − 1 do

27: for j = 0, 1, . . . K − 1 do

28: Vi,j = ωVi,j + c1(Qj −Xi,j)r1 + c2(Pi,j −Xi,j)r2

29: Xi,j = Xi,j + ((Vi,j)
2 − (Vi,j)

2)/(2α)

30: end for

31: end for

32: Evaluate the fitness f() for each chameleon (Xi) in the population (X)

33: Update t = t+ 1

34: end while

5.2 Methodology

The proposed method utilizes a 3D encoder-decoder CNN architecture consisting of three

stages. Each stage includes an encoder block followed by a down-sampling layer and a

decoder block followed by an up-sample layer with a residual skip connection [35], which

connects the output of the encoder block to one of the inputs of the decoder block, facili-

tating the propagation of gradients and improving the flow of information. Additionally, a

bridge block connects the blocks of the final stage blocks in the network. However, con-

structing these seven blocks is crucial as they play specific roles in the overall architecture

of the effective analysis and processing of three-dimensional data. To find the optimal struc-

ture for each block in the network, the proposed NAS framework, named CS3DEA-Net,

proposes a search space that encompasses various block structures and hyperparameters

and employs a CSA algorithm by exploring different block structures and hyperparameters

for 3D medical image segmentation.

5.2.1 Search space and Encoding

Search space: In Section 4.1.2, the focus is on searching for an optimal node structure

within each block of the encoder-decoder architecture, which may improve the compu-

tational complexity for 3D images. In this work, the search space is composed of 8
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different blocks, each comprising various activation and normalization layers. Table 5.1

describes the parameters and their corresponding ranges in the search space of the pro-

posed method. The search space consists of 8 different blocks, 4 types of activation

functions (MEMSWISH [165], ReLU [129], PReLU [166], and Leaky ReLU [167]), 4

types of normalization layers (Batch [112], Instance [131], Group [168], and None, i.e.,

no normalization layer), and 2 types of up-sample layers (Upsampling3D and ConvTrans-

pose3D). Additionally, the search space includes 4 types of optimizers, including Adam

[147], Adadelta [169], Adamax [147], and Stochastic Gradient Descent (SGD) [170], as

well as 4 types of loss functions, including Dice loss [171], Dice focal loss [172], Focal loss

[133], and Tversky loss [173]. The 8 distinct blocks were considered from various litera-

ture [69, 174, 175, 176, 177] to enhance the segmentation performance. Figure 5.1 displays

these 8 distinct blocks. To enhance performance, more parameters can be included in the

search space. However, this can lead to increased computational requirements. Therefore,

an effective search space is chosen, allowing for the exploration of diverse architectures

and training attributes.

In the proposed search space, the Block ID, activation function, normalization, and up-

sample parameters are utilized to construct the backbone of the 3D encoder-decoder CNN

network. Then the constructed 3D network is trained using the loss function and optimizer

parameters. The CS3DEA-Net algorithm considers these parameters as decision variables

and optimizes them for a specific dataset. This proposed algorithm aims to discover the

optimal architecture that can yield the maximum fitness (Dice) score.

Table 5.1: Search space.

Parameter Range
Block IDs [Block1-Block8]
Activations [MEMSWISH, ReLU, PReLU, Leaky ReLU]
Normalizations [BATCH, INSTANCE, GROUP, None]
Up-sample [ConvTranspose3D, Upsample3D]
Loss functions [DiceLoss, DiceFocalLoss, FocalLoss, TverskyLoss]
Optimizers [Adam, Adadelta, Adamax, SGD]

Encoding: The proposed 3D encoder-decoder CNN network features a distinct block struc-

ture, contrasting the fixed block structures employed in previous approaches. The network

is composed of seven blocks, and each is assigned a unique block ID, activation function,
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Figure 5.1: Structure of the 8 Blocks in the search space.

and normalization layer. To select a specific block, 3 bits are required for the block ID (with

8 blocks requiring 23 combinations), 2 bits for the activation function (with 4 functions re-

quiring 22 combinations), and 2 bits for the normalization layer (with 4 layers requiring

22 combinations). Thus, for all seven blocks, 21 bits are needed for the block ID, 14 bits

for the activation function, and 14 bits for the normalization layer. Additionally, 3 bits are

utilized for selecting the up-sample layers for three stages, while 2 bits each are used for

choosing the loss function and optimizer. The encoding scheme of a chameleon vector with

dimension (K) 56 is depicted in Figure 5.2.

74



CHAPTER 5. TO DEVELOP A METAHEURISTIC BASED ENCODER-DECODER MODEL FOR 3D MEDICAL IMAGE SEGMENTATION Section 5.2

Figure 5.2: Encoding of a Chameleon vector.

5.2.2 CS3DEA-Net

The flow diagram of the proposed CS3DEA-Net for 3D medical image segmentation with

the CSA algorithm, is shown in Figure 5.3. The CSA algorithm begins with the initializa-

tion of a random binary population consisting of Np chameleons with a dimension of K.

These chameleon undergo the steps outlined in Algorithm 5.3 within the CSA algorithm,

generating a new population. Each chameleon vector generated by the CSA algorithm is

then transformed into a binary vector using the sigmoid function, as described in Equation

4.3. This binary representation allows for encoding each chameleon vector into an encoder-

decoder CNN network, as given in Section 5.2.1. The encoded network is then trained on

the training (Dtrain) and validation (Dval) datasets. Following training, the trained model

evaluates the Dice score (Equation 4.5) on the test (Dtest) dataset. The Dice score serves

as the fitness function within the CSA algorithm, and the CSA algorithm aims to maximize

the fitness score through iterative generations of the population. The pseudocode for the

fitness evaluation of each chameleon (Xi) and subsequent steps is provided in Algorithm

5.4.

To prevent the retraining of previously evaluated or trained models (chameleons), the

proposed method incorporates a cache mechanism, as described in Section 4.1.3. The

cache, denoted as Gc, is initialized as an empty global cache to store each chameleon

(Xi) along with its corresponding fitness score (f(Xi)). The utilization of the cache is

illustrated in Algorithm 5.4. Before encoding a model, the presence of the chameleon

(Xi) in Gc is checked [lines 1-2]. If the chameleon is found in the cache, its fitness value

f(Xi) is retrieved from Gc. This step ensures that the model does not undergo unnecessary

encoding, training, and evaluation, saving computational resources and time. However,

if the chameleon is not present in the cache, it proceeds to be encoded into a encoder-
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Figure 5.3: The flow diagram of CS3DEA-Net based on CSA.

decoder CNN model. The model is then trained and evaluated using the designated train

and validation datasets [lines 3-17]. The training process involves training the encoded

CNN model with the training dataset (Dtrain) for a specific number of epochs, typically

denoted as M (considering 150 epochs). During training, after each even epoch, the Dice

score is computed on the validation dataset (Dval). The model checkpoint with the highest

Dice score is saved by storing the model weights [lines 10-16]. This allows for the retrieval

of the best performing model during testing. During testing, the saved weights of the

model are loaded, and the Dice score, which is fitness score (f(Xi)) for the chameleon Xi,

is evaluated on the test dataset (Dtest) [lines 19-20]. To ensure that the model does not

undergo retraining, the chameleon (Xi) and its fitness score (f(Xi)) are added to the cache

Gc [line 21].

Algorithm 5.4 The pseudocode of the fitness evaluation of a Chameleon.

Input: Chameleon (Xi), Global cache (Gc), Train (Dtrain), Val (Dval) and Test (Dtest)

datasets, Training epochs (M )

Output: Fitness score f(Xi) of a chameleon Xi

1: if Xi in Gc then

2: f(Xi) = query the fitness score f(Xi) of chameleon from Gc

3: else
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4: //Training

5: Construct a CNN model from a Chameleon as given in section 5.2.1

6: Set fbest = 0

7: for epoch = 1, 2, . . .M do

8: Train the model on training dataset Dtrain

9: //Validation

10: if epoch%2 == 0 then

11: Dice = Calculate the Dice score (Equation 6.7) on validation dataset Dval

12: if fbest < Dice then

13: Update fbest = Dice

14: Save the weights of current epoch

15: end if

16: end if

17: end for

18: //Testing

19: Load the saved weights to model

20: f(Xi) = Calculate the Dice score (Equation 6.7) as fitness score on test Dtest dataset

21: Add the chameleon Xi and fitness score f(Xi) into the global Cache Gc

22: end if

23: return f(Xi)

5.3 Experiments

This section discusses the datasets and implementation details utilized in the evaluation

process. Then, the proposed model’s experimental results are provided and compared with

existing state-of-the-art 3D segmentation models.

5.3.1 Datasets

The proposed CS3DEA-Net in this study is evaluated on publicly available two 3D medical

image segmentation datasets, such as CT Spleen and MRI Heart segmentation datasets from
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the Medical Segmentation Decathlon challenge [145]. The spleen segmentation dataset

comprises 41 CT volumes with spleen body annotations, while the heart segmentation

dataset includes 20 MRI volumes with corresponding annotations. Due to the limited

number of images, various types of augmentation techniques, such as rotation and verti-

cal and horizontal flips [178], were used to increase the number of training images for both

datasets. Furthermore, the voxel intensities of the images were normalized to the range

[0,1]. To focus on the valid body area of the images and labels, all zero borders are ne-

glected and randomly sampled with volume sizes of [96,96,96]. The datasets were split

into the train (Dtrain), validation (Dval), and test (Dtest) sets, with the details of the dataset

splitting described in Table 5.2.

Table 5.2: The number of volumes in train Dtrain, validation Dval, and test Dtest datasets.

Dataset Type Volumes Dtrain Dval Dtest

Spleen CT 41 29 6 6
Heart MRI 20 13 3 4

5.3.2 Implementation Details

The CSA algorithm process is initiated with a population size Np of 20 chameleons, which

were represented as random binary vectors. The top 10 chameleons with the highest fitness

scores were selected to update the population for the next generation, resulting in a pop-

ulation size Np of 10 from the second generation onwards. The algorithm is designed to

terminate termination criteria Tc, which is if the top three chameleons remain unchanged

for three consecutive generations, or if the number of generations Tg reach to 30. The im-

plementation of the proposed CS3DEA-Net framework utilized PyTorch v1.9.0 and Python

3.6. A learning rate of 0.0001 and a batch size of 2 were used for training. The training pro-

cess is conducted on a system equipped with an Intel 2.2 GHz Xeon® Processor, a Quadro

P5000 graphics card, and 16 GB RAM. For evaluating the segmentation performance of the

proposed model, the Dice score (Equation 4.5) and Intersection Over Union (IoU) (Equa-

tion 5.1) metrics were employed. These metrics uses false negative, false positive, true

negative, and true positive values, denoted as Fneg, Fpos, Tneg, Tpos, respectively.
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IoU = Tpos/(Fpos + Fneg) (5.1)

5.3.3 Experimental Results

The performance of the top model discovered by the proposed method is evaluated on two

datasets: the CT Spleen dataset and the MRI Heart dataset. In order to assess its effi-

cacy, the discovered model is compared against state-of-the-art 3D segmentation models,

including 3D U-Net [59], V-net [60], SegResNet [69], Convnet [64], 3D Dense U-Net [68],

NAS U-Net [15], 3D Evolve Net [83], and SwinUnetr [72]. To ensure a fair comparison, all

models are trained and evaluated in the same environment. The results of the evaluation are

presented in Table 5.3, showcasing the performance of each model on both the CT Spleen

and MRI Heart datasets. The results demonstrate that the top model discovered by the

proposed method outperforms all existing models on both datasets. This performance im-

provement highlights the effectiveness of the proposed CS3DEA-Net method in achieving

accurate and robust segmentation results. To provide visual evidence of the segmentation

quality, segmented images produced by the proposed model and the existing models on both

datasets are displayed in Figures 5.4 and 5.5. These images visually illustrate the superior

segmentation achieved by the proposed model compared to the other models, showcasing

its ability to accurately delineate the desired structures. To further evaluate the preserva-

tion of details in the segmented images, small frames are cropped and extracted from the

resultant segmented images of both the CT Spleen and MRI Heart datasets. These frames

are depicted in Figures 5.6 and 5.7, respectively. The displayed frames clearly demonstrate

the effectiveness of the proposed method in accurately extracting segmented images from

the 3D data compared to the existing models. The level of detail and precision exhibited by

the proposed model confirms its superior performance in accurately segmenting the desired

structures. The combined qualitative and quantitative results firmly establish the superior-

ity of the proposed CS3DEA-Net method over the existing segmentation models. Its ability

to outperform state-of-the-art models in terms of accuracy and preservation of details high-

lights its potential for various applications in the field of medical image segmentation.

79



CHAPTER 5. TO DEVELOP A METAHEURISTIC BASED ENCODER-DECODER MODEL FOR 3D MEDICAL IMAGE SEGMENTATION Section 5.4

Table 5.3: Comparison with existing models on Spleen CT, Heart MRI datasets.

Models Spleen Heart
Dice score IOU Dice score IOU

3D U-Net 0.841 0.750 0.722 0.692
V-net 0.865 0.792 0.766 0.709
SegResNet 0.933 0.876 0.844 0.792
Convnet 0.778 - 0.843 -
3D Dense U-Net 0.778 - 0.843 -
NAS U-Net 0.837 - 0.845 -
3D Evolve Net 0.941 - 0.887 -
SwinUNETR 0.892 0.814 0.805 0.780
CS3DEA-Net (Proposed) 0.944 0.895 0.898 0.816

Note: The highest values for each dataset is shown in bold.

5.4 Experimental Analysis

The maximum fitness scores achieved by CS3DEA-Net during its search process across

generations are depicted in Figure 5.8. The graph illustrates that the chameleons’ maximum

fitness scores steadily improve with each subsequent generation and eventually converge at

approximately subsequent generations. A pre-termination condition (Tc) is set, which halts

the process if the top three chameleons remain the same for three consecutive generations.

To assess the effectiveness of the CSA algorithm in comparison to other metaheuristic

optimization algorithms, recent algorithms such as GOA [156], BTLBO [179], and MPA

[158] were selected. The significance of the findings is determined through the Wilcoxon

rank-sum test [159], a non-parametric statistical test. Each algorithm is executed for 30

generations, and each model undergoes 30 epochs during the training process. As de-

picted in Table 5.4, the CSA algorithm demonstrates superior mean, standard deviation,

and fitness scores compared to the other algorithms. Furthermore, Table 5.5 reveals that

the p-values of the Wilcoxon rank-sum test are below 0.05, indicating the statistical signifi-

cance of the results. These experimental outcomes strongly support the effectiveness of the

proposed method in achieving optimal results for 3D segmentation tasks when employing

the CSA algorithm.

The proposed method aims to determine the optimal parameters for constructing the

encoder-decoder network and its hyperparameters to train a network. Figure 5.9 illustrates

the frequency distribution of the blocks that appeared in the top architectures for the Spleen
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Figure 5.4: Visual segmentation results of Spleen dataset.

and Heart datasets in the search process. Notably, block IDs 8 and 7 appeared more fre-

quently than the other blocks for both datasets during the evolution.

In addition to specifying the input-output relationship of each block, the choice of ac-

tivation functions and normalization layers is crucial for ensuring neural network conver-

gence and efficiency. However, it is also important to choose these components carefully to
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Figure 5.5: Visual segmentation results of Heart dataset.

prevent the network from getting stuck during training. During the search process, differ-

ent datasets generate different types and numbers of activation functions and normalization

layers, as illustrated in Figure 5.10 and Figure 5.11, respectively. Interestingly, the Leaky

ReLU activation function is more frequently selected than any other activation function for

both datasets.
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Ground truth SegResNet SwinUNETR3D U-Net V-net CS3DEA-Net

Figure 5.6: Cropped segmentation results of Spleen dataset.

Ground truth SegResNet SwinUNETR3D U-Net V-net CS3DEA-Net

Figure 5.7: Cropped segmentation results of Heart dataset.

The performance of an encoder-decoder network can be significantly affected by the

pooling layers used in the up-sampling and down-sampling sections. Therefore, the pro-

posed method has incorporated commonly used pooling layers, such as the upsampling3D

and 3D transposed convolution layers, to achieve better segmentation results. Figure 5.12
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Figure 5.8: Generation wise fitness scores during evolution.

Table 5.4: Mean, standard deviation and max fitness score values obtained from 30 gener-
ations.

Algorithm Mean Standard deviation Max fitness score
BTLBO 0.8720551211029644 0.02716676763359414 0.939
MPA 0.8547571383000001 0.14767009039123113 0.921
GOA 0.8470874825333333 0.09772537566730831 0.934
CSA 0.8966901123000002 0.01153792606106088 0.944

Table 5.5: Wilcoxon rank-sum test p-values.

Algorithm p-value
CSA vs BTLBO 3.002414704136034e-04
CSA vs MPA 3.017518393579125e-04
CSA vs GOA 3.789619441580871e-06

Figure 5.9: Frequency of blocks during evolution.

presents the frequency of each pooling layer used in the evolution. Notably, the upsam-

pling3D layer is more frequently used than the 3D transposed convolution layer in the

up-sampling section for both datasets during the evolution process.

The proposed method also selected the training parameters, including the optimizer
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Figure 5.10: Frequency of activation functions during evolution.

Figure 5.11: Frequency of normalization layers during evolution.
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Figure 5.12: Frequency of up-sampling layers during evolution.

and loss function. The frequency distribution of optimizers and loss functions in the search

process is presented in Figure 5.13 and Figure 5.14, respectively. During the evolution

process, the Tversky loss function and SGD were more frequently selected than the other

parameters on both datasets.
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Figure 5.13: Frequency of optimizers during evolution.

Figure 5.14: Frequency of loss functions during evolution.

Table 5.6 provides a comprehensive comparison of the discovered architecture and ex-

isting models in terms of size and the number of parameters. The results clearly demon-

strate that the discovered architecture exhibits a significantly smaller size and requires

fewer parameters compared to the other models. The discovered architecture has a size of

278.69MB. In contrast, the other existing models, such as 3D U-Net, V-net, SegResNet, and

SwinUNETR, have sizes ranging from 314.71MB to 512.99MB. These findings highlight

the compactness of the discovered architecture, making it more efficient in terms of storage

requirements. Furthermore, the number of parameters for the discovered CS3DEA-Net ar-

chitecture only requires 0.7 million parameters. In comparison, the existing models, such

as 3D U-Net, V-net, SegResNet, and SwinUNETR, consist of parameters ranging from

3.8 million to 4.8 million. This substantial difference in the number of parameters further

emphasizes the efficiency and effectiveness of the discovered architecture. The discovered
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CS3DEA-Net architecture outperforms existing models not only in terms of segmentation

accuracy, as discussed earlier, but also in terms of its compact size and reduced number of

parameters.

Table 5.6: Model size and number of parameters.

Model Size Params
3D U-Net 512.99MB 4.8M
V-net 341.15MB 45.5M
SegResNet 314.71MB 4.7M
SwinUNETR 406.63MB 3.8M
CS3DEA-Net 278.69MB 0.7M

5.5 Summary

In this chapter, a metaheuristic-based NAS framework using an encoder-decoder architec-

ture called CS3DEA-Net is introduced for 3D medical image segmentation. The proposed

framework incorporates a search space that encompasses various types of block structures

and training parameters required for constructing the network. The CSA algorithm is em-

ployed to enhance the performance of 3D medical image segmentation. It explores the de-

signed search space to individually optimize the network blocks within an encoder-decoder

architecture and identify the optimal training parameters for training the model. The perfor-

mance of CS3DEA-Net is evaluated on both the Spleen and Heart 3D medical image seg-

mentation datasets, revealing its superior performance compared to state-of-the-art models.

These findings highlight the exceptional potential of CS3DEA-Net for clinical applications

in the field of medical image segmentation. In the next chapter, the exploration of this

approach will be extended by incorporating a multi-objective optimization algorithm for

brain tumor detection.
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Chapter 6

To design a multi-objective

metaheuristic model for detecting brain

tumors in 3D medical images

In this chapter, the work from Chapter 5 is extended by introducing EffiecientNet block,

Transformer block, and Convolutional Neural Networks Meet Vision Transformer blocks

into the search space for brain tumor detection in 3D medical images using a MO-ITLBO

algorithm.

Chapter Organization: Section 6.1 provides the Preliminaries. The proposed method-

ology is presented in Section 6.2. The experimental results and analysis are provided in

Section 6.3.4. A summary of the chapter is described in Section 6.4.

6.1 Preliminaries

This section offers an overview of the background knowledge of Multi-objective Neural

Architecture Search, Improved Teacher Learner Based Optimization, and multi-objective

optimization, which are utilized in the proposed method.
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6.1.1 Multi-objective Neural Architecture Search (MO-NAS)

In recent years, the emergence of MO-NAS has attracted considerable attention for its

ability to generate architectures that excel in diverse tasks. MO-NAS revolutionizes the op-

timization process by simultaneously considering multiple objectives, departing from the

traditional single-objective approach. The primary objective of MO-NAS is to discover

a collection of optimal architectures A1,A2, . . .An, that can optimize multiple objectives

f1, f2, . . . , fn simultaneously. These objectives often present conflicts, where enhancing

one objective may have a detrimental impact on the others. For instance, reducing model

size might result in decreased accuracy, while maximizing accuracy could lead to larger

models. To address this inherent trade-off, MO optimization techniques are employed.

These approaches excel in identifying a set of non-dominated solutions, referred to as the

Pareto Front (PF). The PF represents the optimal balance between the conflicting objec-

tives, offering a range of diverse and high-performing architectures. The common formu-

lation of MO-NAS is as follows:

A∗ = argminA∈S fi(A, ω∗(A)) (6.1)

where A∗ ∈ S are non-dominated architectures from a search space S, optimizes multi-

ple objective functions fi where i = 2, 3 . . . n and ω∗ represents the learned parameters of

A.

6.1.2 Improved Teacher Learner Based Optimization (ITLBO)

The ITLBO algorithm [180] is an improved version of the standard TLBO algorithm, in-

corporating improvements such as the introduction of the adaptive teaching factor, number

of teachers, and self-motivated learning concepts to improve the performance of the algo-

rithm.
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6.1.2.1 Initialization

In the Initialization step, a random population X is initialized with a size of Np, consisting

of learners (i = 0, 1, . . . Np − 1), as well as a specified number of subjects, i.e. decision

variables (K), and a number of teachers (NT ). The fitness f(X) of the population X is

then evaluated by calculating the fitness function.

6.1.2.2 Teacher Selection

The teacher selection phase ranks the evaluated population based on their fitness scores.

For the maximization problem, the solutions are ranked in descending order, while for the

minimization problem, they are ranked in ascending order. The best solution, denoted as

f(Xb), is selected as the chief teacher (Tl) of the class (Tl = f(Xb)) and remain teachers

(Ts) are chosen by following Equation 6.2:

Ts = f(Xb)± f(Xb) ∗ r, (6.2)

where r is a random number chosen from range [0, 1], s = 2, 3, . . . NT . While the calcu-

lated value of Ts may not exactly match with the fitness value of existing solutions, in such

instances, the existing solution with the fitness score closest to the calculated Ts value is

selected.

6.1.2.3 Assignment of Learners to Teachers

In the assignment of learners to teachers, learners are grouped into various groups (s) based

on their performance levels i.e., fitness scores. Each group within the population is assigned

to a specific teacher selected from the pool of teachers (Ts). These teachers play a crucial

role in guiding and enhancing the performance of their assigned groups. If a group’s per-

formance matches or exceeds their assigned teacher, the group is reassigned to another

proficient teacher.
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6.1.2.4 Teacher Phase

The teaching factor (Tf ) determines the degree to which learners learn from the teacher,

ranging from learning nothing to learning everything. In the standard TLBO algorithm,

increasing the value of Tf accelerates the search process but diminishes the exploration

capability. Conversely, decreasing the value of Tf enables a more precise search in smaller

increments but may result in slower convergence. In the teaching-learning phenomenon,

learners have the flexibility to learn from the teacher in varying proportions, indicating that

the value of Tf can vary within its extremes. To capture this variability, the teaching factor

is modified in ITLBO according to the Equation 6.3:

(Tf )
t
s =

1 If Ts = 0,(
f(Xi)
Ts

)t

, Otherwise.
, (6.3)

Here, f(Xi) represents the fitness value of a learner i of a group s, and the result of

a teacher in the same group s is denoted by Ts at iteration t. As a result, the value of Tf

dynamically adjusts in the search process based on the relative performance of the learners

and teachers.

In the teacher phase, learners can learn by interacting with the teacher or with their

peers, similar to discussions and assignments during tutorial hours. This search mechanism

is incorporated to allow students to increase their knowledge by collaborating with others

as Equation 6.4:

X t
j,i =


(
X t

j,i + r1(X
s
j,i − (Tf )

t
s ∗Ms,j)

)
+
(
r2(X

t
j,h −X t

j,i)
)
, If f(Xi) > f(Xh), i ̸= h,(

X t
j,i + r1(X

s
j,i − (Tf )

t
s ∗Ms,j)

)
+
(
r2(X

t
j,i −X t

j,h)
)
, Otherwise.

,

(6.4)

where h ∈ {0, 1, . . . Np − 1}, Ms,j represents the mean grade of the learner in group s

for subject j, and Xs
j,i represents the grade of the teacher associated with group s for subject

j in a population X . The equation consists of two terms on the right side: the first term

represents learning within the classroom, and the second term represents learning through
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tutorials. The fitness of the population generated during the teacher phase is evaluated; then

the individuals with the best fitness scores are retained in the population using the greedy

approach.

6.1.2.5 Learner Phase

The learner phase incorporates self-learning, allowing learners to acquire knowledge in-

dependently. This phase enables exploration and knowledge enhancement through self-

motivation. Learners update their positions by learning from other learners and through

self-motivated learning as given in Equation 6.5:

X t+1
j,i =


(
X t

j,i + r1(X
t
j,p −X t

j,q) + r2(X
s
j,i − Ef ∗X t

j,p)
)

If f(Xq) > f(Xp), q ̸= p,(
X t

j,i + r1(X
t
j,q −X t

j,p) + r2(X
s
j,i − Ef ∗X t

j,p)
)
, Otherwise.

,

(6.5)

where p, q ∈ {0, 1, . . . Np − 1}, Ms,j , Ef represents the exploration factor, which is

calculated as Ef = round(1 + ri), r1 and r2 are two random numbers in the range [0,1].

The first term on the right side of Equation 6.5 indicates learning through interactions with

other learners, while the second term represents self-motivated learning. The fitness of the

population is evaluated and the individuals with the highest fitness values are retained in

the updated population using greedy approach.

The algorithm iterates until a termination condition is satisfied, often defined as a pre-

determined number of iterations. Figure 6.1 shows the ITLBO algorithm steps.

6.1.3 Multi-Objective Optimization

In Single-Objective Optimizations (SOOs), selecting the optimal individual for the popu-

lation is a straightforward task, whereas, in Multi-Objective Optimizations (MOOs), the

decision-making process is complex. In MOOs, two key concepts, namely Non-dominated

sorting and Crowding distance sorting, are useful in the decision-making process [181].
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Initialization
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Assign Learners to
Teachers

Teacher Phase

Learner Phase

Fitness Evaluation and
Greedy Selection

Terminate?

Output the top learner

Fitness Evaluation and
Greedy Selection

No
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Figure 6.1: Flow chart of the ITLBO algorithm.

6.1.3.1 Non-dominated sorting

This approach sorts the solutions in a population by comparing the non-domination levels.

In a minimization problem, two solutions are considered non-dominated if neither solu-

tion has a lower value than the other in all objectives. Each solution in a population is

evaluated against every other solution to determine if it is dominant. For each solution i,

two parameters are calculated: the first parameter, denoted as Si, represents a set of so-

lutions dominated by solution i, and the second parameter ni denotes the set of solutions

that dominate solution i. The solutions in the first level of non-dominated front F1 have

ni = 0, while solutions in subsequent fronts are determined by reducing the domination

count of their corresponding sets [181]. This iterative process runs until all fronts such as

F2, F3, . . . , Fn are identified [182].

6.1.3.2 Crowding distance sorting

The density of solutions surrounding a specific solution i in the population is estimated

using this approach. The computation of crowding distance occurs in two scenarios. Firstly,

when two solutions do not dominate each other, their crowding degrees are evaluated with

respect to the non-dominated solutions in the population. The less crowded solution is

selected as the new solution for the next generation. Secondly, if the number of solutions
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exceeds the population size, the solutions located in the most crowded region are identified

and eliminated from the population.

To compute the crowding distance, the population is initially sorted in ascending order

of each objective function. The boundary solutions, which have the smallest and largest

values, are assigned an infinite distance. For intermediate solutions, the distance is de-

termined by the absolute normalized difference between the function values of adjacent

solutions. This process is repeated for each objective function, and the crowding distance

is computed by summing the individual distance values for each objective. Prior to cal-

culating the crowding distance, each objective function is normalized [181]. This enables

an accurate assessment of solution density and aids in efficient decision-making within the

algorithm [182].

6.2 Methodology

This section introduces the proposed search space, encoding process and presents the pro-

posed method, called 3DMOEA-Net, which uses a multi-objective ITBLO algorithm to

build the optimal network for brain tumor detection.

6.2.1 Search space and Encoding

Search space: Segmentation involves the precise delineation and identification of specific

structures or regions of interest within an image, such as tumor boundaries. The utilization

of this segmentation knowledge in the detection process enables the identification and local-

ization of abnormalities, such as tumors, within the segmented regions. The performance

of the detection task can be enhanced by accurately segmenting the relevant structures, al-

lowing detection algorithms to focus on the areas of interest. To extend the segmentation

work, the top 5 well-performed blocks (i.e., block1, block3, block5, block6, block8) from

Chapter 5 were selected, and an additional three blocks, including EffiecientNet block,

Transformer block, and Convolutional Neural Networks Meet Vision Transformer blocks,

were added to the search space. Furthermore, the less effective Adadelta optimizer is re-

placed with AdamW [183], and the DiceFocalLoss is replaced with the DiceCE loss [173]
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in the search space. These modifications were implemented to improve the overall perfor-

mance and effectiveness of the detection process in the evolution. The parameters and their

corresponding range in the search space of the proposed method are described in Table 6.1.

Table 6.1: Proposed search space.

Parameter Range
Block IDs [Block1-Block8]
Activations [MEMSWISH, ReLU, PReLU, Leaky ReLU]
Normalization [BATCH, INSTANCE, Group, None]
Upsampling [ConvTranspose3D, Upsample3D]
Loss functions [DiceLoss, DiceCELoss, FocalLoss, TverskyLoss]
Optimizers [Adam, AdamW, Adamax, SGD]
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Figure 6.2: Structure of the 8 Blocks in the search space.

Encoding: The proposed approach incorporates a 3D encoder-decoder CNN network with

a unique block structure, setting it apart from previous methods that utilize fixed block

structure. The encoder-decoder network used in the proposed method consists of a total

of seven blocks, each distinguished by a specific block ID, activation function, and nor-
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malization layer. The encoding process for each block requires 7 bits, with 3 bits for the

block ID, 2 bits for the activation function, and 2 bits for the normalization layer. Conse-

quently, a total of 49 bits are allocated to represent all seven blocks within the network.

In addition to the block encoding, 3 bits are used to select the up-sample layers for three

stages of the network. Furthermore, 2 bits each are used for specifying the loss function

and optimizer in the learner. The encoding of a learner, depicted in Figure 6.3, consists of

a length of 56 bits. Within the defined search space, the block ID, activation function, nor-

malization layer, and up-sample parameters are utilized for constructing the backbone of

the 3D encoder-decoder CNN network. Once the network structure is formed, it is trained

using the specified optimizer and loss function parameters to optimize its performance and

achieve accurate results. By encoding and optimizing these network components, the pro-

posed approach aims to find the most effective configuration for the 3D encoder-decoder

CNN network within the search space.

e1 Up pool Loss function Optimizer

49 bits 3 bits 2 bits 2 bits

Block ID Activation Normalization

7 bits

Block

e2 e3 bridge d3 d2 d1

Figure 6.3: Encoding of a Learner.

6.2.2 3DMOEA-Net

Figure 6.4 illustrates the flow diagram of the proposed 3DMOEA-Net method. The pro-

posed method’s goal is to identify the optimal blocks and hyperparameters for constructing

efficient 3D detection networks. The proposed method employs the MO-ITLBO algorithm

as a search strategy to optimize the multi-objective NAS for brain tumor detection. The

MO-ITLBO algorithm incorporates non-dominated sorting and crowding distance compu-

tation in the selection process of the ITLBO algorithm. These techniques are used to select

superior solutions from the population while maintaining diversity among the chosen so-

lutions. By employing these strategies, the method ensures optimal detection results while

effectively reducing loss and computational complexity. By considering the search space
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parameters as decision variables, the MO-ITLBO algorithm aims to minimize two metrics:

the Dice loss (Equation 6.8) and the model parameters, which serve as the fitness functions.

Algorithm 6.5 describes the MO-ITLBO algorithm.

Define Parameters, Search space 

Initialize the random population

Terminate?

Train and Evaluate the constructed
model on the 3D medical dataset

False

Output top model with its fitness
scores

Construct the CNN model using
Encoding scheme

True

MO-ITLBO

New Population

Figure 6.4: The flow diagram of 3DMOEA-Net based on MO-ITLBO.

In each iteration t, the population X t undergoes the teacher phase. During this phase,

a new population X̄ t is derived according to the procedure outlined in Section 6.1.2.4.

The fitness scores f(X̄ t) of the new population X̄ t are then evaluated using Algorithm

6.6. Subsequently, the population X t is combined with the teacher phase population X̄ t,

resulting in X t ∪ X̄ t. From the combined population X t ∪ X̄ t, the Pareto front population

is obtained, which is denoted by (Y t) for iteration t, with a size equal to the population size

Np, are selected using non-dominated sorting and crowding distance computation [lines 2

to 5].

The resulting population Y t is subsequently transferred to the learner phase, where a

new population Ȳ t is obtained using the procedure outlined in Section 6.1.2.5. Next, the

population Y t is combined with the learner phase population Ȳ t, leading to Ȳ t ∪ Y t. From

the combined population Ȳ t∪Y t, the Pareto front solutions of the population X for the next

iteration t+1, with a size equal to the population size Np, are chosen using non-dominated

sorting and crowding distance computation [lines 6 to 9]. The resulting population X t+1

is utilized as the population for the subsequent generation. The algorithm is runs for Tg

generations and designed for a termination criteria Tc, which terminate if the top three

learners remain unchanged for three consecutive generations [lines 10, 11].

Algorithm 6.5 The pseudocode of MO-ITLBO.
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Input: Population X , Number of generations Tg, Population size Np

Output: Population X , Fitness scores f(X)

1: for t = 0, 1, . . . , Tg − 1 do

2: //Teacher Phase

3: X̄ = Generate a population from population X using teacher phase (from Section

6.1.2.4)

4: f(X̄) = Calculate the fitness scores of population X̄ using Algorithm 6.6

5: Y = Select the top Np pareto front learners from (X ∪ X̄) (from Section 6.1.3)

6: //Learner Phase

7: Ȳ = Generate a population from population Y using learner phase (from Section

6.1.2.5)

8: f(Ȳ ) = Calculate the fitness scores of population Ȳ using Algorithm 6.6

9: X = Select the top Np pareto front learners from (Y ∪ Ȳ ) (from Section 6.1.3)

10: if Tg is True or Tc is True then

11: break

12: end if

13: end for

14: return Fitness scores f(X)

To prevent duplicate training of models, the proposed method incorporates a cache

mechanism [179] during fitness evaluation. Upon evaluating a model, each learner Xi

along with its fitness values f(Xi) are stored in a cache denoted as Gc. Prior to initiating

the training process, a check is performed to determine if the learner Xi exists within the

cache Gc. If it is found, the fitness values f(Xi) are retrieved from Gc, thereby avoiding

redundant training [lines 2, 3]. In case the learner is not found in the cache, the model

undergoes training for a specified number of epochs (M ), with a value of 40 epochs [lines 5

to 25]. Additionally, an Early Stop Criterion denoted as ESC is adopted, which terminates

the training process if there is no improvement in the Dice score (Equation 6.7) within 15

epochs, thereby saving training time [lines 12, 13]. The fitness evaluation of a population

is described in Algorithm 6.6.
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Algorithm 6.6 The pseudocode for fitness evaluation of a population.

Input: Population X , Cache Gc, Train Dtrain and Test Dtest datasets

Output: Fitness scores f(X) of a Population X

1: for each learner Xi in X do

2: if Xi in Gc then

3: f(Xi) = query the Dice loss, parameters of Xi from Gc

4: else

5: Construct a 3D model by encoding a learner as described in Section 6.2.1

6: //Training

7: Set fbest = 0

8: Set epoch = 1

9: while epoch ≤ M do

10: Train the model on train (Dtrain) dataset

11: Dice = Calculate the Dice score (Equation 6.7) on test Dtest dataset

12: if ESC is True then

13: break

14: end if

15: if fbest < Dice then

16: fbest = Dice

17: Save the weights of current epoch

18: end if

19: end while

20: //Testing

21: Load the saved weights to model

22: diceLoss = Calculate the Dice loss (Equation 6.8) on test Dtest dataset

23: params = Calculate number of parameters of a model

24: Set f(Xi) = diceLoss, params

25: Add the learner Xi with fitness scores f(Xi) into the Cache Gc

26: end if

27: end for
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28: return f(X)

6.3 Experiments and Analysis

In this section, the datasets used for evaluation, implementation details, and the exper-

imental results of the proposed method are presented. Additionally, a comparison with

state-of-the-art models is included, followed by an analysis to provide further insights.

6.3.1 Datasets

The evaluation of the proposed 3DMOEA-Net is conducted on the BraTS2021 and Brain-

Tumor datasets. In order to focus on the valid body area, any blank labels present in the

images and labels are removed. Random sampling is performed on images with [96, 96,

96] volume size, and voxel intensities are normalized to the [0, 1] range. To mitigate the

limited size of the dataset, augmentation techniques like rotation and vertical/horizontal

flips [178] are applied to the training data.

6.3.2 Implementation details

The metaheuristic algorithm is initiated with an initial population size Np of 20 random

learners, number of generations Tg is 20. The top 10 learners with the highest fitness

scores were selected for the next generation, resulting in a population size Np of 10. The

proposed 3DMOEA-Net method is implemented using MONAI v1.1, PyTorch v1.9.0, and

Python 3.8. The training process utilized a batch size of 4 and a learning rate of 0.0001.The

experiments were carried out on a system equipped with an Intel 2.2 GHz Xeon® Processor,

16 GB of memory, and a Quadro P5000 graphics card.

Evaluation Metrics: During the experiments, the detection performance is evaluated

using the 95% Hausdorff Distance (HD) (Equation 6.6) and the Dice score (Equation 6.7).

The 95% HD calculates the distance between the point sets of the prediction and ground

truth surfaces, specifically using the 95th percentile. The prediction and ground truth vol-

umes are denoted as P and G, respectively, while the point sets of the prediction and ground

truth surfaces are represented as P̄ and Ḡ, respectively.
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95%HD = max

(
max
ρ∈P̄

min
δ∈Ḡ

||ρ− δ||,max
δ∈Ḡ

min
ρ∈P̄

||δ − ρ||
)

(6.6)

Dicescore =
2
∑I

i=1GiPi∑I
i=1 Pi +

∑I
i=1Gi

(6.7)

DiceLoss = 1− 2
∑I

i=1GiPi∑I
i=1 Pi +

∑I
i=1 Gi

(6.8)

6.3.3 Experiments

To evaluate the performance, a comparison is conducted between the top model discovered

by the proposed framework and several state-of-the-art models, such as 3D U-Net [59],

V-net [60], UNETR [177], SegResNet [69], and SwinUnetr [72]. Furthermore, to ensure a

fair comparison, all models are trained in the same environment.

6.3.3.1 Experimental results on BraTS2021 dataset

The BraTS2021 dataset from the BraTS challenge [184] consists of four types of MRI

scans, namely T1-weighted (T1), T2-weighted (T2), T1-enhanced contrast (T1-ce), and

T2 fluid-attenuated inversion recovery (Flair). The dataset includes labels for background,

GB-enhancing tumors, peritumoral edema, and necrotic and non-enhancing tumors. The

labels are used for segmenting the enhanced tumor (ET), tumor core (TC), and whole tumor

(WT) regions. The dataset is divided into two sets: the training set (Dtrain) comprising

1001 volumes, and the test set (Dtest) comprising 250 volumes.

The experimental results are illustrated in Table 6.2, which compares the proposed

3DMOEA-Net model to other existing models. Figure 6.5 displays the visual results of the

proposed 3DMOEA-Net model, along with existing models, on the BraTS2021 dataset.

Notably, the proposed model outperforms the existing models in both Dice score and HD

metrics for TC, WT, and ET on the BraTS2021 dataset.
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Figure 6.5: Visual results of BraTS2021 dataset (Whole tumor (Green), Enhanced Tumor
(Blue), Tumor core (Red)).

6.3.3.2 Experimental results on BrainTumor dataset

The BrainTumor dataset, provided by the Decathlon challenge [145], consists of 484 MRI

volumes along with corresponding label volumes. The dataset is partitioned into two sets:

102



CHAPTER 6. TO DESIGN A MULTI-OBJECTIVE METAHEURISTIC MODEL FOR DETECTING BRAIN TUMORS IN 3D MEDICAL IMAGES Section 6.3

Table 6.2: Comparison with existing models on BraTS2021 dataset.

Models Dice score (%) 95% HD (mm)
TC WT ET Avg TC WT ET Avg

3D U-Net 0.6761 0.7501 0.6969 0.7077 15.00 20.81 14.18 16.66
UNETR 0.7054 0.7811 0.7674 0.7513 14.05 18.28 13.17 15.16
V-net 0.7504 0.7986 0.7857 0.7782 13.61 17.06 13.02 14.56
SegResNet 0.7618 0.7971 0.7750 0.7779 12.60 14.66 11.95 13.06
SwinUNETR 0.8024 0.8270 0.8100 0.8131 11.67 13.40 10.27 11.78
3DMOEA-Net 0.8048 0.8319 0.8136 0.8167 10.41 11.92 9.07 10.46

Note: The best values are shown in bold.

the training set (Dtrain) consisting of 363 volumes, and the test set (Dtest) consisting of

121 volumes. Table 6.3 shows that the proposed 3DMOEA-Net model outperformed exist-

ing models on the BrainTumor dataset. The superior performance of the proposed model

in accurately extracting tumor from 3D images is evident in Figure 6.6, where the pro-

posed model’s segmented images exhibit higher quality compared to other models. These

compelling qualitative and quantitative outcomes show the superiority of the proposed

3DMOEA-Net model over existing detection models.

Table 6.3: Comparison with existing models on BrainTumor dataset.

Models Dice score (%) 95% HD (mm)
TC WT ET Avg TC WT ET Avg

3D U-Net 0.6331 0.7643 0.6263 0.6745 20.78 22.38 21.19 21.45
UNETR 0.6512 0.7970 0.6655 0.7045 19.63 20.61 21.64 20.62
V-net 0.7655 0.8002 0.7712 0.7789 15.23 17.91 18.45 17.19
SegResNet 0.7897 0.8081 0.7756 0.7911 13.87 16.23 16.56 15.55
SwinUNETR 0.8085 0.8197 0.7847 0.8043 12.48 14.49 13.47 13.48
3DMOEA-Net 0.8267 0.8351 0.7949 0.8189 10.86 11.61 13.20 11.89

Note: The best values are shown in bold.

6.3.4 Experimental analysis

The evolutionary trajectory of the average Dice scores for both brain tumor datasets is

illustrated in Figure 6.7. The plot demonstrates the progression of Dice scores over succes-

sive generations during the search process. As the generations advance, there is a gradual

improvement in the Dice scores, indicating an enhancement in the detection performance.

The trajectory eventually converges, suggesting that the algorithm has reached a stable state

where further improvement in the Dice scores becomes minimal. This convergence indi-

103



CHAPTER 6. TO DESIGN A MULTI-OBJECTIVE METAHEURISTIC MODEL FOR DETECTING BRAIN TUMORS IN 3D MEDICAL IMAGES Section 6.3

Im
ag

e
Gr

ou
nd

tru
th

3D
 U-

Ne
t

UN
ET

R
Sw

inU
NE

TR
3D

MO
EA

-Ne
t

V-n
et

Se
gR

esN
et

Figure 6.6: Visual results of BrainTumor dataset (Whole tumor (Green), Enhanced Tumor
(Blue), Tumor core (Red)).

cates that the proposed method effectively optimizes the detection performance through the

search process.

The effectiveness of the MO-ITLBO algorithm in comparison to other metaheuristic
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Figure 6.7: Generation wise Dice scores.

optimization algorithms, such as GOA [156], CSA [157], BTLBO [179], and MPA [158],

is assessed. The significance of the findings is determined through the Wilcoxon rank-sum

test [159], a non-parametric statistical test. Each algorithm is executed for 30 generations,

and each model underwent 30 epochs during the training process. As shown in Table 6.4,

the MO-ITLBO algorithm exhibited superior mean, standard deviation, and Dice scores

compared to the other algorithms. Additionally, Table 6.5 demonstrated that the p-values

of the Wilcoxon rank-sum test were below 0.05, indicating the statistical significance of

the results. These experimental outcomes strongly support the effectiveness of the pro-

posed method in achieving optimal results for brain tumor detection tasks when employing

the MO-ITLBO algorithm. The improved teaching and learning phases in the MO-ITLBO

algorithm contribute to accelerated convergence rates. Furthermore, the incorporation of

non-dominated sorting enables the algorithm to handle problems with multiple objectives,

while the calculation of the crowding distance ensures solution diversity is maintained

within a single run, resulting in more efficient search processes. These features estab-

lish the MO-ITLBO algorithm as a superior choice when compared to other algorithms in

3D brain tumor detection.

Table 6.4: Mean, standard deviation and max dice score values obtained from 30 genera-
tions.

Algorithm Mean Standard deviation Max Dice score
MO-BTLBO 0.7702645483333334 0.05831463716580559 0.8123
MO-MPA 0.7507568571428557 0.11534369098136387 0.8026
MO-CSA 0.7647825066666666 0.04775903374379986 0.8081
MO-GOA 0.7595219220000001 0.10829973361561454 0.8109
MO-ITLBO 0.7847825066666666 0.02262811794524536 0.8167
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Table 6.5: Wilcoxon rank-sum test p-values.

Algorithm p-value
MO-ITLBO vs MO-BTLBO 1.907348632e-06
MO-ITLBO vs MO-CSA 1.715625643e-06
MO-ITLBO vs MO-MPA 1.001953125e-05
MO-ITLBO vs MO-GOA 1.103515625e-05

The proposed method aims to optimize the construction and training of the encoder-

decoder network by identifying the optimal blocks and hyperparameters. Figure 6.8 pro-

vides valuable insights into the frequency distribution of the blocks present in the top archi-

tectures obtained through the search process for both datasets. It is noteworthy that block

IDs 1, 5, and 7 demonstrate significantly higher occurrence rates compared to other blocks.

This observation suggests that these particular blocks play a crucial role in achieving im-

proved detection performance, as they are repeatedly selected and incorporated into the

top-performing architectures. This information can guide future studies in focusing on the

design and optimization of these specific blocks to further enhance the performance of the

encoder-decoder network.
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Figure 6.8: Frequency of blocks.

The selection of activation functions and normalization layers is pivotal in ensuring

network convergence and efficiency. Figures 6.9, 6.10 provide detailed insights into the

distribution of activation functions and normalization layers obtained on top architectures

during the search process. Notably, the PReLU and MEMSWISH activation functions,

along with Batch and Instance normalizations, were selected more frequently compared to

other options. This preference suggests that these specific activation functions and normal-
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ization layers demonstrate superior performance in achieving desirable network behaviour,

as they were repeatedly favoured by the optimization algorithm.
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Figure 6.9: Frequency of activation functions.
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Figure 6.10: Frequency of normalization layers.

To enhance the performance of encoder-decoder networks, the proposed method in-

tegrates popularly used pooling layers, specifically the upsampling3D and 3D transposed

layers, in the up-sampling part of encoder-decoder architecture. Figure 6.11 provides valu-

able insights into the distribution and occurrence of these pooling layers within the top

architectures generated during the search process. Notably, the 3D transposed convolution

layer is found to be more frequently utilized compared to the upsampling3D layer in the

up-sampling section. This observation highlights the preference for the 3D transposed con-

volution layer due to its effectiveness and suitability for the task of enhancing the resolution

and preserving spatial information during the up-sampling process.

In addition to identifying optimal blocks and architecture components, the proposed
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Figure 6.11: Frequency of up-sampling layers.

method also focuses on determining the most suitable training parameters, including the

optimizer and loss function. The analysis of Figures 6.12, 6.13 offers valuable insights

into the distribution and occurrence of different optimizers and loss functions in the top

architectures generated through the search process. It is noteworthy that the SGD optimizer

and Tversky loss function were consistently chosen more frequently than other parameters,

indicating their effectiveness in brain tumor detection. The Tversky loss function excels

in handling class imbalance and capturing intricate details in detection tasks, while the

SGD optimizer is widely acknowledged for its simplicity and robustness. The prominence

of these choices among the top architectures demonstrates their potential for improving

detection performance and highlights their importance in the task of brain tumor detection.
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Figure 6.12: Frequency of optimizers.

Table 6.6 displays a comparison of the size and parameters of the discovered architec-

ture with other models, indicating that it has fewer parameters and a smaller size compared

to existing models. Furthermore, the proposed method achieves significant improvement in
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Figure 6.13: Frequency of loss functions.

both Hausdorff distances and Dice scores over traditional CNN models like V-Net, 3D U-

Net, and SegResNet, as well as transformer-based models like UNETR and SwinUNETR.

Table 6.6: Comparison of existing models size and parameters.

Model Size Parameters
V-net 3410.15MB 45.60M
SegResNet 3145.71MB 24.70M
SwinUNETR 6061.63MB 62.19M
3DMOEA-Net 2785.69MB 17.39M

6.4 Summary

In this chapter, a novel multi-objective NAS based framework named 3DMOEA-Net is

proposed for discovering optimal 3D models to detect brain tumors in 3D MRI volumes.

The proposed method introduces a diverse search space comprising different blocks such as

EffiecientNet block, Transformer block, and Convolutional Neural Networks Meet Vision

Transformer blocks, as well as training parameters. To explore this search space effectively,

a multi-objective ITLBO algorithm is employed, which identifies non-dominant solutions

on the Pareto front by optimizing both the number of parameters and Dice loss. Experimen-

tal outcomes demonstrate the superiority of the proposed method in brain tumor detection,

demonstrating enhanced performance while minimizing parameters compared to state-of-

the-art methods. Notably, the utilization of different block structures in encoder-decoder

networks, as opposed to fixed block structures like U-Net, significantly enhances detection

109



CHAPTER 6. TO DESIGN A MULTI-OBJECTIVE METAHEURISTIC MODEL FOR DETECTING BRAIN TUMORS IN 3D MEDICAL IMAGES Section 6.4

performance and shows the significance of the diverse network architectures in construct-

ing automated CNN models. In the next chapter, the conclusion and future scope of the

thesis are presented.
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Chapter 7

Conclusion and Future Scope

This chapter presents the summary of the contributions of this thesis, the conclusion of each

objective and the future scope of research for further direction of this thesis is presented.

7.1 Conclusions

This thesis demonstrates the efficacy of metaheuristic optimization algorithms in devel-

oping various deep-learning models for medical image analysis. The utilization of meta-

heuristic approaches allows for comprehensive exploration, optimization, and customiza-

tion of architectures, resulting in improved performance and potential applications across

various medical imaging tasks such as denoising, segmentation, and detection.

In chapter 3, a metaheuristic block-based deep neural network named DEvoNET is

designed for medical image denoising. By leveraging the power of the differential evolu-

tion algorithm, DEvoNET autonomously identifies the optimal network structure and train-

ing parameters. The incorporation of DE algorithm allows for efficient exploration of the

search space and the discovery of high-performing architectural components. Additionally,

a transfer learning approach is employed to accelerate the evolutionary process by leverag-

ing knowledge from previously evolved architectures. The experimental results showcased

the superior performance of DEvoNET compared to existing denoising models, highlight-

ing its potential in automatically constructing networks for medical image denoising tasks.

In chapter 4, a modified U-shaped (encoder-decoder) model based on the metaheuristic
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algorithm called BTU-Net is proposed for 2D medical image segmentation with denoising

(from chapter 3) as a preprocessing step. The proposed method utilized the metaheuris-

tic BTLBO algorithm to optimize each block within the network, resulting in enhanced

segmentation performance. The attention mechanism incorporated in BTU-Net enabled

precise and accurate segmentation of complex structures. By defining a condensed and

flexible search space, the method efficiently explored different architectural components.

Additionally, the use of a cache-enabled BTLBO algorithm accelerated the fitness eval-

uation process, avoiding redundant training. The proposed method achieved improved

segmentation performance by optimizing each block within the U-shaped network. The

experimental results obtained from various medical image datasets emphasized the im-

portance of denoising as a preprocessing step in enhancing medical image segmentation

performance. These findings indicate the potential clinical applications of the BTU-Net

model in medical image segmentation tasks.

In chapter 5, a metaheuristic NAS based framework named CS3DEA-Net is devel-

oped for 3D medical image segmentation. The proposed framework employed an encoder-

decoder architecture and incorporated a comprehensive search space containing various

block structures and training parameters. By utilizing the CSA algorithm, CS3DEA-Net

achieved enhanced performance in 3D medical image segmentation. The algorithm ef-

ficiently explored the search space, optimizing the network blocks within the encoder-

decoder architecture and identifying the optimal training parameters for model training.

Extensive evaluations on diverse 3D medical image segmentation datasets demonstrated the

superior performance of CS3DEA-Net compared to state-of-the-art models. These findings

showcase the exceptional potential of CS3DEA-Net for clinical applications in the field of

medical image segmentation, indicating its significance in advancing the accuracy and re-

liability of segmentation tasks in healthcare settings.

In chapter 6, a multi-objective NAS based framework named 3DMOEA-Net is pro-

posed for discovering optimal 3D models to detect brain tumors in 3D MRI volumes. The

proposed method developed a diverse search space, combining top-performing blocks from

chapter 5 segmentation work with additional blocks such as EffiecientNet block, Trans-

former block, and Convolutional Neural Networks Meet Vision Transformer blocks, along
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with training parameters. To effectively explore this search space, a multi-objective ITLBO

algorithm is employed, optimizing both the number of parameters and dice loss to iden-

tify non-dominant solutions on the pareto front. Notably, the utilization of different block

structures in encoder-decoder networks instead of fixed block structures like U-Net signifi-

cantly improved the detection performance and highlighted the importance of architectural

diversity in constructing automated CNN models. Experimental results demonstrated the

superiority of the proposed 3DMOEA-Net method in brain tumor detection, achieving en-

hanced performance while minimizing parameters compared to state-of-the-art methods.

These findings emphasize the potential of multi-objective NAS frameworks in advancing

automated brain tumor detection and highlight the benefits of incorporating diverse archi-

tectural components in the design of CNN models.

7.2 Future Scope

Future scope for the proposed metaheuristic-based deep learning models in medical image

analysis can focus on several directions:

• As medical imaging datasets continue to grow in size and complexity, future research

can explore strategies to improve the scalability and efficiency of the proposed mod-

els. This can involve investigating parallel computing techniques, distributed train-

ing, and model compression methods to reduce memory and computational require-

ments without compromising performance.

• There is a scope to expand the search space in medical image analysis by incorpo-

rating novel architectural components or the exploration of different combinations of

existing blocks and considering other parameters. This would enable the discovery

of more diverse and effective network architectures that can further enhance the per-

formance of medical image analysis tasks.

• Collaborating with medical experts and conducting large-scale studies on diverse

datasets from different healthcare institutions can provide valuable insights into the

models’ performance and their impact on clinical decision-making.
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• Real-time or dynamic medical imaging, such as video sequences or continuous mon-

itoring data, pose unique challenges due to their temporal nature. Future work can

extend the proposed models to handle such data by incorporating temporal informa-

tion and developing specialized architectures that can effectively process and analyze

dynamic medical imaging data.

• Deep learning models are often considered black boxes, making it challenging to in-

terpret and explain their decisions. Future work can focus on developing Explainable

AI techniques to build trust and promote the adoption of these models by enhancing

their interpretability and explainability. This can involve integrating visual explana-

tions or generating saliency maps to highlight the regions of interest that contribute

to the model’s predictions.
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