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ABSTRACT

In bioinformatics and computational biology, DNA Genome sequence analysis covers

a broad range of research issues, such as identifying homology between sequences, recog-

nition of intrinsic features, mutation detection, genetic diversity disclosure, and species

evolution. Sophisticated sequencing technologies produce enormous DNA sequence data,

thereby raising the difficulty of analysing sequences as well. The growth of genomic data

is much faster compared to the sequence analysis rate. So, there is an enormous need for

faster sequence analysis algorithms. Analysis of genome sequences is useful in disease

detection, drug development, agriculture and forensics. Our solution to this problem is a

Convolutional Neural Network (CNN) that can handle huge DNA sequences using Covid-

19 feature extraction.

Given the fast spread of the disease, one of the world’s primary concerns is detecting

coronavirus disease 2019 (COVID-19). There have been over 1.6 million confirmed in-

stances of COVID-19, and the disease is rapidly spreading to numerous nations throughout

the world, according to recent figures. An analysis of the global incidence and distribution

of COVID-19 is presented. We introduce a deep convolutional neural network (CNN) that

can distinguish between the original (non-augmented) dataset and the augmented dataset

that were both utilised for the assessment. A variety of COVID-19 datasets, including those

for MERS-CoV, SARS-CoV, NL63, Alpha-CoV, BetaCoV-1, HKU1-CoV, and 229E-CoV,

have been compiled by us from NCBI and GISAD. Each dataset is annotated with its ac-

cession number and contains nucleotides in FASTA format. In this study, we compiled a

positive and negative dataset consisting of 1582 samples with varying genome sequence

lengths. By using one-hot encoding, every categorical variable is transformed into its own

feature with a binary value of either 1 or 0. Thus, in one-hot encoding, every nucleotide is

represented by a four-dimensional one-hot vector; for example, the letters "A," "C," "G,"

and "T" are encoded as (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)„ and (0, 0, 0, 0), respectively. Us-

ing the top ten most sick coronavirus sequences as a guide, we trained the suggested CNN

module to detect underlying patterns associated with the virus. Learned convolutional fil-

ters produce motif. The activation values for the 20th filter’s entire sub-sequences are less
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than 0.047075363 and close to 1.086 is the highest activation value is obtained.

Advanced Deep Learning Method for COVID-19 Point Mutation Rate Optimisation

by Coot-Lion Preventing disease or tailoring treatment to an individual’s needs both de-

pend on an accurate diagnosis. Unfortunately, the processing time is greatly impacted by

the enormous quantity of sequences, even though DNA sequence illness detection is safe.

Consequently, computational approaches are suggested to enhance diagnostic precision and

expedite the diagnostic procedure. Genetic disorders occur when an organism’s DNA be-

comes aberrant as a result of mutations in exons. Our new Deep Quantum Neural Network

(DQNN) called LBCA-based Deep QNN is built on the Lion-based Coot algorithm. It can

forecast the COVID-19 virus using the DNA biological sequence pattern and the rates of

point mutations. In this step, the genome sequences undergo feature extraction. This pro-

cess extracts specific features from the genome sequences, such as CpG-based features and

numerical mapping for integer and binary data. Additionally, numerical mapping is applied

using the Fourier transform to generate features for skewness, kurtosis, and peak to average

power ratio. To get the entropy feature, we also use K-mer extraction. We determined the

K-group for point mutations in COVID-19 for both the 200- and 400-genome sequence

learning sets, respectively.

Afterwards, we also focused on COVID-19 DNA sequence repeats for bi-character and

tri-character types, among others, and put forward a DNA sequence clustering model called

"ERSIT-GRU" (Exponential Robust Scaling-Identity Tanh-Gated Recurrent Unit) to detect

COVID-19 DNA sequence repeats in large datasets. In order to address these challenges,

such as the fact that the dataset is tiny, imbalanced, and has fasta quality issues, the dataset

has been preprocessed in stages using multiple techniques in order to provide a useful train-

ing dataset. Consequently, computational approaches are suggested to enhance diagnostic

precision and expedite the diagnostic procedure.Genetic disorders manifest in organisms

when there is an aberration in their genetic composition as a result of exon mutations. The

technique that uses the Trie data structure to forecast disease severity by counting the occur-

rences of repeat patterns in exons. Due to the tiny database, the suggested method can only

forecast the condition of a small number of diseases, despite its effectiveness and speed in

doing so based on pattern frequency. There is an immediate need to discover other patterns
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that produce varied diseases in order to solve the problem of a small number of pathogenic

patterns.

There is data in the genetic code that affects how fast and efficient translation is. In this

extensive study of coronaviruses (CoVs) of both human and zoonotic origin, we compare

and contrast their codon usage bias, relative errors in insertion and substitution, mutation

rates in COVID-19, DNA motif sequence, size, feature extraction based on base frequency,

dimer count, and feature extraction based on size. The evolutionary relationship between

seven coronaviruses can be shown by the model Harris Hawks Optimisation (HHO) anal-

ysis, which we have presented. There have been many attempts to fix DNA-based errors

using tandem repeats. Depending upon Age, symptoms, and chromosomes all have a role

in the different patterns that correlate to normal, pre-mutated, and diseased frequencies.

Tandem has identified the ATXN2, DMPK, ATN1, and JPH3 genes, among others, that

are involved with disease state. The pattern frequency allows us to predict the disease’s

progress and treat it at an early stage. Proposed model reached highest Accuracy in terms

of the various Parameters like Accuracy, Precision, Recall, F1 Score. The pattern frequency

allows us to predict the disease’s progress and treat it at an early stage.

Keywords: Repeats,point mutations, Tandem Repeat, Interpretable, Convolution neural

network, Motif, Learned filters, Heatmap, Feature activation, Exons, Genes, Disease pre-

diction, Pre-mutated, Mutations, ATXN2, Explainable, Coronavirus, 2019-nCoV, COVID-

19, RSCU, HHO.
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Chapter 1

Introduction

Bioinformatics uses computer science, mathematics, statistics, and informatics to tackle

biological problems, particularly those involving DNA, RNA, and protein sequences. It has

recently emerged as a top multidisciplinary discipline. A dramatic uptick in the production

of DNA sequences occurred with the introduction of new sequencing technology. Genomic

data is expanding at a considerably quicker rate than it is being analysed. The cost of

storing, processing, analysing, and transmitting the massive amounts of DNA sequence data

is starting to become an obstacle. Numerous fields make use of DNA sequence analysis,

including medicine, forensics, agriculture, and many more. Its primary use in forensics is

in establishing paternity of a child and in identifying offenders using biospecimens. It finds

utility in gene therapy, where it can replace defective genes with healthy ones, and in the

medical field, where it may detect genes linked to certain hereditary or acquired disorders.

The agricultural sector has made good use of DNA sequence analysis to create food crops

and plants, as well as cattle with higher quality milk and meat.

Numerous areas of study encompass sequence analysis in bioinformatics and compu-

tational biology, including but not limited to: discovering mutations, revealing genetic di-

versity, uncovering inherent traits, discovering similarity between sequences, and studying

species evolution. Clustering is one method that can be used to achieve sequence homol-

ogy. It lays bare the underlying biological processes that give rise to species diversity as

well as correlations, patterns, and hints to events in the past. In order to identify genes, their

coding regions, and the roles they play in the body, DNA sequences must be annotated.
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CHAPTER 1. INTRODUCTION Section 1.1

1.1 Preliminaries

Here, we present few definitions and technicalities of Deep learning, Machine learning and

Harris Hawks Optimization that will be used throughout the thesis.

1.1.1 Biological Background

A cell is the fundamental building block of every living thing. Some creatures, like humans,

have a complex network of cells, while others, like bacteria, have just one cell, and viruses,

much less so, do not have any cells at all. Many organelles, including cytoplasm, nucleus,

mitochondria, and others, come together to form cells. The human microbiome consists of

40 trillion bacteria and 37.2 trillion cells. In prokaryotes, the nucleus is not well developed,

but in eukaryotic cells, membranes separate the nucleus and other organelles from the cell.

Genomes, which comprise an organism’s whole collection of DNA, are essential for the

development and survival of all living things. Coding and non-coding DNA, as well as

DNA from chloroplasts and mitochondria, make up the genome. An estimated 3.2 billion

base pairs make up the human genome, which is comprised of 23 chromosomal pairs and

contains an average of 20,000–25,000 genes [1]. Nucleic acid molecules (Nucleotides)

made comprised of nitrogen bases, phosphate groups, and sugar molecules make up DNA

and RNA. DNA is a double helix that is produced when nucleotides (A and G) pair with

each other. A DNA strand is composed of a series of nucleotides. Both the paternal and

maternal lines contribute to the two copies of DNA that are present in each cell.

The structural features of the nucleotide bases allow them to be classified as either

pyrimidines or purines. In contrast to pyrimidines, which only have one ring with six

nitrogen atoms, purines have two ring configurations, one with six nitrogen atoms and

the other with five. The nucleotides adenine and guanine are considered purines, while

cytosine, thymine, and uracil are considered pyrimidines. In DNA, you can find the bases

adenine, cytosine, guanine, and thymine. The sole variation in RNA is the presence of

Uracil rather than Thymine. The five nucleotide structures are illustrated in Figure 1.1
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Figure 1.1: The nucleotides structure and Function of DNA.

Chromosomes, which are made up of DNA base pairs, are where genes are located. A

gene is a functional product of a base pair sequence that can be an RNA molecule or, later

on, a peptide. In the human genome, genes spread over 33.4% from start to stop codon,

of which the protein coding sequences are only 3.66% [2]. The remaining gene space is

occupied by non-coding regions, Introns, which separate adjacent exons from one another.

1.1.2 DNA Repeats

DNA repeats, which are patterns of nucleotides, are found in both prokaryotes and eukary-

otic genomes in many copies. In tandem repetitions, the DNA patterns are directly next

to each other; in other cases, they are dispersed throughout the genome. Repetition in the

form of long diverse components is also seen in the human genome. Forensic and pater-

nity testing uses of DNA fingerprinting can benefit from this variation in individuals. The

degree to which different types of DNA repetitions influence phenotype varies among dif-

ferent types of repeats.
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1.1.2.1 Tandem repeats

The replication of two or more base pairs adjacent to each other is a tandem repeat. These

repeats are commonly correlated with non-coding DNA. In certain cases, the repetition of

base pairs varies in number.

Example: ACTACTACTGTGTTTTTGTGTGTGTGTAAAAAAAGGGGGTGGGGT Con-

sider a pattern (GT) of length two repeated twice from positions 10 and five times from

position 18. in the same way, the three length pattern ACT repeated thrice from position 1.

1.1.2.2 Tandem repeats with interrupts

A tandem repeat with diverse continuation of base pairs is interrupted tandem repeat.

Example: ACACGTGTGTACACGTGTTCTCGTGTGT In the sequence it can be seen

that "AC" is occurring at two different places and one more pattern "GT" is diverting the

continuity of "AC". Hence GT is called the interrupt with tandem repeat. Tandem repeats

with interrupts are shown in Table 1.1 Short tandem repeats is a special case of tandem

repeat involving a repeated unit of 2 to 7 base pairs in length.

Table 1.1: DNA Tandem repeats with interrupt

Pattern Start Index End Index Interrupt Pattern Length of Interrupt
AC 5 10 GTGTGT 6
TG 10 23 TACACGTTCTCG 12
GT 11 14 ACAC 4
GT 19 22 TCTC 4

1.1.2.3 Mirror repeats

A mirror repeat is a sequence segment delimited on the bases of its center of symmetry on a

single strand and identical terminal nucleotides. For example in the mirror repeat sequence

ATCGTCCTGCTA the ATCGTC is the mirror image of CTGCTA.

1.1.2.4 Mirror repeats with interrupts

A mirror repeat with interrupt finds an interrupt between two mirror images. For example

in the mirror repeat with interrupt sequence ATCGGCCTGCTA the ATCGGC is the mirror
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image with interrupt of CTGCTA.

1.1.2.5 Pairing repeats

In the DNA, nucleotides A and T complementary base pairs, similarly C and G. Pairing

repeats are sequence of nucleotides in which a pattern is followed by its complementary

pattern. Variable length pairing repeats are shown in Table 1.2.

Example: ACTGCTTTTGTGACGTGCGACTGGTGACCTAATTTATTAAA In the se-

quence ACGTGC, TAATTTATTAAA are two pairing repeats in which ACG is followed

by its complementary pattern TGC, similarly TAATTT is followed by ATTAAA

Table 1.2: DNA Variable length pairing repeats.

Pairing Repeat Pattern Start
Index

End
Index

Complementary
Pattern

Start
Index

End
Index

ACGTGC ACG 13 15 TGC 16 18
ACTGGTGACC ACTGG 20 24 TGACC 25 29

TAATTTATTAAA TAATTT 30 35 ATTAAA 36 41

1.1.2.6 Pairing repeats with interrupts

A pairing repeat with interrupt finds an interrupt between two complementary patterns. For

example in the repeat CAATTTGTGAAA instead of T at position 9 for complementary

nucleotide A there is an interrupt G occurred.

1.1.2.7 Inverted repeats

The inverted repeats are sequence of nucleotides in which a pattern is followed by its re-

verse complementary pattern.

Example: ACCTAGGTGAAAAAATTTTTC In the sequence ACCTAGGT, GAAAAAATTTTTC

are two inverted repeats in which ACCT is followed by its reverse complementary pattern

AGGT, similarly GAAAAAA is followed by TTTTTC.
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1.1.2.8 Inverted repeats with interrupts

A inverted repeat with interrupt finds an interrupt between pattern and its reverse comple-

mentary pattern. For example in the repeat GAAAAAACTTTTC instead of T at position 8

for reverse complementary nucleotide A there is an interrupt C occurred.

1.1.3 DNA Mutations

Any alteration to the DNA sequence is known as a mutation. A genetic ailment develops

in a person when there is an anomaly in their genetic makeup. Any number of mutations,

from those resulting from the addition or deletion of chromosomal sets to those affecting

only a single nucleotide might cause a genetic disorder. Some diseases are passed down

via generations of parents, while others develop as a result of mutations brought about

by commonplace habits and environmental factors, such as smoking, poor nutrition, lack

of exercise, and so on. A variety of complicated human diseases include genetic compo-

nents. Autosomal dominant (AD), X-linked recessive (XR), X-linked dominant (AD), and

Y-linked holandric (HR) illnesses are the several types of single gene disorders that result

from DNA sequence abnormalities. Mutations in repeats can also cause some neurological

diseases. As an example, the neurological disorder known as Huntington’s disease (HD)

is passed down through generations in families by the autosomal dominant pattern of gene

expansion at the CAG trinucleotide in the first exon of the HD gene. The frequency of the

CAG repeat, which is quite polymorphic, often falls between the usual range of 6 to 37 in

healthy individuals. The CAG frequency range on HD patient genes varies from 30 to 180

due to mutations.

1.1.4 Point Mutations

Any alteration, addition, or deletion of a single base pair in a genome is called a point

mutation. Point mutations are often harmless, although they can modify gene expression

or encode proteins in unexpected ways, among other functional effects.
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Figure 1.2: DNA sequence Point mutation with single character ’C’ change.

While most point mutations are benign, they can also have various functional conse-

quences, including changes in gene expression or alterations in encoded proteins. Different

types of Point mutations can be silent, missense, or nonsense mutations, as shown in Ta-

ble:1.3

Table 1.3: DNA different types of Point mutations

Type Description Example Effect
Silent mutated codon codes for

the same amino acid
CAA (glutamine) → CAG
(glutamine)

none

Missense mutated codon codes for a
different amino acid

CAA (glutamine) → CCA
(proline)

variable

Nonsense mutated codon is a prema-
ture stop codon

CAA (glutamine) → UAA
(stop)

usually
serious

1.1.5 Coronaviruses

In the family of coronaviruses (CoVs), there are two subgroups: common human CoVs and

other human CoVs. Common human CoVs like NL63, OC43, and HKU1 are less danger-

ous to humans, while other human CoVs like SARS-CoV, MERS-CoV, and SARS-CoV-2
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are more dangerous because they originated in animals and were transmitted to humans

[17]. Upper respiratory tract infections caused by human coronaviruses were initially iden-

tified in children in the 1960s. A virus originally known as B814 was reclassified as 229E

after its 1965 discovery in adults [18]. Beta coronavirus, which infects both people and ani-

mals, was discovered later in OC43. In November 2002, SARS-CoV was initially identified

in the Chinese province of Guangdong. The World Health Organisation (WHO) reported

that 800 persons had died from this infectious disease out of an estimated 8,000 cases. Af-

ter that, in 2004, researchers discovered NL63, a different coronavirus that primarily affects

younger children and causes mild to moderate lower respiratory system infections [19]. A

genetic difference between HKU1 and OC43 and other coronaviruses was discovered in

2005 [20]. As a zoonotic virus, MERSCoV was discovered in 2012. The World Health

Organisation reports that approximately 35 of infected individuals have passed away as a

result of MERS-CoV. A new coronavirus, COVID-19, that is similar to SARS-CoV, started

wreaking havoc in December 2019 and will continue to infect over 200 nations and 6.4

million people until 05-06-2020. All three coronaviruses—MERS, SARS-CoV, and SARS-

CoV-2—are zoonotic, meaning they came from animals and then infected people. Congen-

ital obstructive vaginosis viruses can infect just specific host cell types. Parasite (virus)

host specificity refers to the variety and quantity of host species utilised by parasites. The

molecular basis for host specificity suggests that in order for a virus to interact, a surface

molecule known as a viral receptor must be present on the host’s surface. Different coron-

aviruses are host-specific for humans and a wide variety of other animals, including pigs,

dogs, camels, and bats. Permissive cells allow the host receptors to enter and utilise the re-

productive machinery of human cells [21]. Host receptors for 2019-nCoV, SARS-CoV, and

NL63 in humans are Angiotensin-Converting-Enzyme 2 (ACE2), Dipeptidyl Peptidase IV

(DPP4), Aminopeptidase N (hAPN), N-acetyl-9-O-acetylneuraminic acid (Neu5, 9Ac2),

OC43, and HKU1 [24]. Inside a protein shell termed Nucleocapsid (N), coupled with two

membrane proteins, namely Membrane (M) and Envelope (E), and one glycoprotein Spike

(S) [25], are positive-stranded DNA (or RNA) genomes seen in coronaviruses. Initiating

the infection, the S protein binds the virion to the host cell’s receptor (ACE2) and is suscep-

tible to mutations on the receptor interface that protect the host immune system [26, 27]. In
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addition to its role as a channel for ion transport, the E protein creates holes between pro-

teins and lipids [28]. In addition to aiding in viral manufacturing, the M protein is critical

for improving viral RNA transcription [29]. The N protein, which is highly conserved and

versatile, regulates host cells by intoxicating their machinery and interacts with the M pro-

tein during virion assembly [30]. Viruses that replicate genetic material rely on enzymes

and proteins found in host cells to construct their own DNA, which is then translated into

messenger RNA. The process of protein and enzyme synthesis within the host cell is regu-

lated by the viral mRNA.

1.1.6 Technical Background

1.1.6.1 Trie data structure

An effective data structure for retrieving information is the trie. The search complexity can

be optimised using trie. The complexity of searching for a key in a trie data structure is

O(key length). Key values of varying lengths are particularly well-suited to trie indexing.

The trie used links to infer the values of keys rather than store them directly. Only by using

a portion of the key value can trie support multi-way branching, not the full key.

1.1.6.2 Convolutional neural networks

CNNs are multilayer feed-forward neural networks, which learn to map a fixed size input

(images, One hot encoded genome sequences) to a fixed size output (probability for each of

several classes) [3]. The CNN architecture consist of multiple layers, typically, one input

and a number of hidden and one output layers. Each layer contains a number of neurons and

each neuron consist of various parameters (weights) [4]. To go from one to the next layer,

a weighted sum of their inputs from the previous layer is computed and the result is passed

through a non-linear function. The non-linear activation function plays a key role after con-

volution to understand CNN. The three commonly used non-linear activation functions are

Sigmoid, tanh, and ReLU. The most popular non-linear function is a ReLU, simply a half-

wave rectifier (f(z) = max(0,z)), which learns much faster than other activation functions

like tanh(z) and sigmoid(1/1+exp(-z)) as it involves simple mathematical operations [5],
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[6]. Moreover, non-saturation of gradient is indeed biggest boon of ReLU, which speed

up the convergence of stochastic gradient descent than other activation functions [7]. In

classification problems, the output layer uses the softmax to calculate the probability for

each class. CNNs are NNs with one or more convolution layers, which contains a number

of filters, sliding over one hot encoded sequence to detect patterns as features. In CNN, the

weights are stored in filters shared over different positions.

1.2 Motivation, Aim & Objectives

1.2.1 Motivation

Genome sequence analysis involves using computer approaches to investigate and compre-

hend the properties, structure, function, evolution, and characteristics of DNA, RNA, and

proteins. The complexity of analysing sequences has grown in tandem with the massive

amounts of DNA sequence data generated by modern sequencing technology. Genomic

data is expanding at a far quicker rate than sequence analysis. That being said, quicker

techniques for sequence analysis are desperately needed. Disease detection, medication

development, agriculture, and forensics can all benefit from genomic sequence analysis.

Finding sequence homology, intrinsic feature identification, mutation discovery, genetic

diversity disclosure, and species evolution are just a few of the many research topics en-

compassed by sequence analysis in bioinformatics and computational biology.

Clustering and classification allow us to obtain genomic sequence homology. When

processing data from genomic sequences, clustering is a crucial step. When comparing

sequences, most of the current tools rely on alignment-based methods, which are tedious

and time-consuming. When it comes to quick clustering, alignment-free methods work

well. Though they are vulnerable to large-size sequences, state-of-the-art approaches have

been used to cluster tiny genome sequences of different species. Like in other genomes,

the majority of human and other species’ DNA is composed of repetitive sequences. The

structural and functional functions, locations, lengths, and numbers of covid-19 repetitive

DNA types all play a role in how significant each type is. It is still a mystery to biolo-
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gists where exactly these DNA sequences are located on the chromosome and whether or

not they should be conserved. It is still difficult to detect their position and identify new

repeated sequences because of how variable they are. We circumvented this issue by in-

vestigating the function of repetitions in complicated illness initiation in humans and their

type, structure, and control. The role of repetitive DNA, especially tandem repeats, is crit-

ical in genetics. It turns out that the extremely repetitive regions found in the X and Y

chromosomes are really located in other human chromosomes or genomes.

Many cancers arise from diseases or alterations in genes that regulate growth. The abil-

ity to accurately forecast splice signals is fundamental for many biological and medical

fields, including gene regulation, alternative splice events, human illness diagnosis, and

medication discovery. Nevertheless, due to its enormous size and intricate structure, iden-

tifying those borders is no easy feat. Understanding the nucleotide relationships, depen-

dencies, and properties in the Covid-19 environment is crucial for accurate splice boundary

detection.

Any change to the sequence of nucleotides in a gene is called a mutation. Motif fre-

quency in genomic sequences can be altered by mutation. Protein abnormalities caused by

mutations in the coding regions (exons) can cause complicated illnesses. On the one hand,

there are hereditary diseases; on the other, mutations caused by commonplace lifestyle

choices and environmental factors, such as smoking, poor nutrition, lack of exercise, and

so on, are the root causes of many problems. One of the most difficult challenges in person-

alised medicine is disease status prediction for complicated human diseases using genomic

data. Coronaviruses are among the many human diseases caused by viruses; they pene-

trate host cells, interact with host molecules, and may disrupt the normal function of host

cells, which can lead to cancer and other devastating illnesses. In order to comprehend

complicated viral infections such as NL63, MERS-CoV, Ebola, etc., novel viral genome

prediction is essential. There is data in the genetic code that affects how fast and efficient

translation is. The proteome is defined in large part by translation elongation, and diseases

can result from mistakes in proteins. In order to compare the new coronavirus (2019-nCoV)

with other human coronaviruses (CoVs), it is necessary to conduct a codon-level analysis

of the virus. This necessitates an extensive and comparative study of different zoonotic
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and human-associated COVs concerning codon usage bias, relative synonymous codon us-

age (RSCU), codon frequencies, mutation bias, the effective number of codons (ENC), and

slow di-codon and codon proportions.

1.2.2 Aim

Improved genome annotation, analysis, classification, and illness detection can be achieved

by the methods developed in this dissertation, which utilise machine learning and deep

learning to uncover and understand hidden patterns of mutations.

1.2.3 Objectives

The main objectives of this dissertation are stated as follows:

• To develop a Exploring Coronavirus Sequence Motifs through Convolutional Neural

Network for Accurate Identification of Covid-19.

• Coot-Lion Optimized Deep learning Algorithm for COVID-19 Point mutation rate

prediction using Genome Sequences.

• DNA Sequence Clustering and ERSIT-GRU(Exponential Robust Scaling-Identity

Tanh- Gated Recurrent Unit) for Repeat Detection in COVID-19 Prediction.

• Genome-wide analysis for Tandem Repeat and Substitution Errors to detect Covid-

19 using Harris Hawks Optimization.

We describe COVID-19 illnesses in this thesis. The use of deep learning and machine

learning for disease pattern extraction from DNA sequences, with predictions including

DNA point mutations, DNA repeats, motif sizes with filter identifiers, dataset sizes, feature

extraction, frequency calculations, and so on. Optimisation Strategies for Harris Hawks.

1.3 Overview of the Contributions of the Thesis

In this section, an overview of the chapter-wise contributions of the thesis is presented.

Each subsection presents a summary of the contributions of the chapters.

12
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Proposed Work 1: Exploring Coronavirus Sequence Motifs through Convolutional

Neural Network for Accurate Identification of Covid-19.

Technique: To identify Covid-19 datasets in DNA sequences of various types of Corona-

Virus. An alignment-free method for SARS-CoV-2 classification utilising complemen-

tary DNA—DNA produced by the single-stranded RNA virus—is described in this paper.

In this study, we collected data from 1582 samples, including both positive and negative

datasets with genomic sequences of varying lengths. It must be able to efficiently process

huge DNA sequences while improving clustering accuracy and speed by utilising all of the

information in the sequences. We used a new method called convolutional neural networks

(CNNs) to extract unique top DNA motif subpatterns from massive DNA sequences. [8].

One hot encoding uses binary vectors to represent categorical variables. The first step is

to convert the category values to integers. Then, a binary vector with the values 0 and 1

is used to represent each number. By employing 10-fold cross-validation, we were able

to evaluate the classifiers’ efficacy using the training dataset and metrics like accuracy and

F-measure. We investigate and display physiologically significant features (motifs) auto-

matically learned by CNN using the learnt filters in order to solve the neural networks’

decision-making process gap.

1. We applied a method called Convolutional Neural Network (CNN).

2. Our method generates to identify top motifs Pattern diseases in a covid-19 with filter

Id.

3. One hot encoding to extract the features for DNA sequence.

4. It improve the system’s accuracy and solve, prepossessing feature extraction diseased

pattern.

Proposed Work 2: Coot-Lion Optimized Deep learning Algorithm for COVID-19

Point mutation rate prediction using Genome Sequences.

Technique: Proposed Technique:A Deep quantum neural network (DQNN) based on the

Lion-based Coot algorithm (LBCA-based Deep QNN) is employed to predict COVID-19

13
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DNA Point mutation. A change in the sequence of bases in DNA is called mutation[9].

The contributions of this work are listed below.

• We proposed an Coot algorithm (LBCA-based Deep QNN) method to identified

Point mutation in covid-19.

• We extracted DNA CpG-based features CGp1 = P(C ) + P(G).

• DNA Point mutation rate is calculated for each Covid-19 datsets.

• Our technique has been tested on Comparative investigation of LBCA DQNN in

terms of (a) mutation rate, (b) testing accuracy (c) TPR and FPR.

Proposed Work 3: DNA Sequence Clustering and ERSIT-GRU (Exponential Robust

Scaling-Identity Tanh- Gated Recurrent Unit) for Repeat Detection in COVID-19 Pre-

diction):

Technique: Proposed a ERSIT-GRU for a novel repeats in covid-19 from huge DNA se-

quences in Covid-19.

Direct repeat: The Direct Repeats are nucleotide sequences present in multiple copies

within the same pattern in the genome sequence. Example ACGACGACGACGACGAC-

GACG is direct repeat wherein the sequence ACG is repeated many times in a DNA se-

quence [10].

Mirror repeat :DNA Mirror repeat is a sequence Imperfect DNA mirror repeats (IMRs)

are less than 100 percent symmetrical. Example ACGTGTCCACGTCGT is a Mirror repeat

wherein the sequence TGCTGCACCTGTGCA is reverseively. The contributions of this

work are listed below.

• DNA K-mer Repeat Sequence Identification is done such as Uni-character, Bi-character,

Tri-character, Reversion Inversion.

• Direct Repeat feature extracted from DNA Sequence using GRU.

• Mirror Repeat feature extraction from DNA Sequence using GRU.

• DNA repeat strings used to create the repeat set.

14



CHAPTER 1. INTRODUCTION Section 1.4

• Proposed Model The ERSIT-GRU takes 58056ms less time to execute the results,

when we compared with existing models such as GRU, LSTM, and RNN techniques.

Proposed Work 4: Genome-Wide Analysis for Tandem Repeat and Substitution Er-

rors to detect Covid-19 using Harris Hawks Optimization.

Technique: An efficient algorithmic framework for tandem repeat, motif, and mutation rate

detection in COVID-19 is proposed in this article. Our approach finds key DNA motifs and

brief tandem insertion/substitution mistakes with mutation rates ranging from mild to high.

Sequence Length, size, frequency base, and dimer features are extracted. In order to un-

cover the evolutionary relationship between seven coronaviruses, we conducted an analysis

using the proposed model Harris Hawks Optimisation (HHO). [11]. Multiple efforts that

focus on error correction for DNA-based tandem repeats, Insertion Error, Deletion Error,

2-substition Error, 3-substition Error. The contributions of this work are listed below.

• Tandem Repeat storage proposed feature extraction technique, the size of the se-

quence is expressed in terms of KB (Kilo Bytes) Size(S) = Length(S)/1024 .

• The feature ”Dimer Count (DC)” refers to the number of occurrences of all possible

combinations of Dinucleotides in the Genome sequences. Dinucleotides = AA, AC,

AG, AT, CA, CC, CG, CT, GA, GC, GG,GT, TA, TC, TG, TT DC(S) = Number of

occurrences of individual Dinucleotides.

• Most Repeat Pattern Count (MRP):Most Repeat Pattern Count refers to the number

of occurrences of MRP in the Genome Sequence.

• Mutation rate (MR) is calculated by the following formula: MR = TM/TNB x 100

(where TM is the total mutation taking place in the two sequences and TNB is the

total number of nucleotides.)

• Proposed model reached highest Accuracy in terms of the various Parameters like

Accuracy, Precision, Recall, F1 Score.
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1.4 Organization of the Thesis

The rest of the thesis is organized as follows, Chapter 2, is about Literature Survey, this

chapter describes the recent state-of-the-art works on large DNA sequence clustering for

finding homology between different Covid-19 sequences, by applying Machine learning,

Harris Hawks Optimizer (HHO) and Deep learning Techniques applied for predicting viral

DNA sequences based on extracted features different types of Repeats and Mutations. Next

chapter, i.e., Chapter 3, Presents a Exploring Coronavirus Sequence Motifs through Con-

volutional Neural Network for Accurate Identification of Covid-19. Chapter 4, presents

a Coot-Lion Optimized Deep learning Algorithm for COVID-19 Point Mutation rate Pre-

diction using Genome Sequences. Next, chapter 5, presents a DNA Sequence Clustering

and ERSIT-GRU for Repeats Detection in COVID-19 Prediction. Chapter 6, introduces a

Genome-Wide Analysis for Tandem Repeat and substitution Errors to detect Covid-19 us-

ing Harris Hawks Optimization. Finally, chapter 7 summarizes the work presented in this

thesis and mentions future directions of research related to these problems.

16



Chapter 2

Related Work

In this chapter, a brief survey of the literature related to the contributions made in this thesis

is given. The field of bioinformatics and computational biology aims to investigate various

research concerns like sequence analysis, different genome signals prediction and disease

prediction. Toward this end, many works exists to address these concerns. However, there

are some limitations and trade offs. All these approaches are majorly categorized into align-

ment based, alignment free, probabilistic and machine learning, and deep learning based

methods. An alignment based approach needs base-by-base comparisons to obtain similar-

ity score. “Alignment free methods make use of pattern frequency, length of the common

sub-string and the number of word matches for sequence similarity search. Machine learn-

ing methods initially construct a set of features, then perform feature reduction for effective

feature set, and finally these features are used for prediction or classification. Recently deep

learning is emerged as prominent technique in sequence-based bioinformatics because of

its weight sharing and automatic feature extraction mechanism.

2.1 Alignment based methods

In alignment based approach, the similarity is measured by obtaining the score from FASTA

[12] or BLAST [13]. Popular sequence clustering tools like CD-HIT [14], DNACLUST

[15], and UCLUST [16] follow greedy algorithms, which may not guarantee an optimal

solution. Alignment based methods like Tophat [17], use reads from DNA sequence data
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for splice site prediction. The detection of viral sequences in human bio-specimens is gen-

erally performed by using BLAST [13]. The sequences are compared to known publicly

available databases and classify the sequences based on the similarity index. Metagenomic

datasets contain divergent virus sequences so there is no similarity at all among known

database sequences. As a result, many of the virus sequences produced from sequencing

technologies are categorized as “unknown” by the NCBI BLAST [18], [19]. The most pop-

ular alignment-based techniques for viral genome classification are REGA [20], [21], USE-

ARCH [16], and SCUEAL [22]. Another tool for virus sequence detection within metage-

nomic sequence datasets is HMMER3 [23], which uses profile Hidden Markov Models by

comparing with vFams [24] database, vFams, a database with viral family proteins was

designed by Multiple Sequence Alignments (MSA) from all RefSeq viral proteins. HM-

MER3 detects homological viral sequences more effectively but not highly divergent ones

[25] because it depends on the reference database VFams. MeShClust [26] uses mean shift

algorithm to cluster the DNA sequences. The ability of MeShClust is to cluster DNA se-

quences with high accuracy even though the sequence similarity parameter provided by

the user is not very accurate. All these alignment based methods purely depend on the

alignment score between the viral sequence being classified and the reference dataset. The

summary of existing alignment based methods are shown in Table 2.1. The major draw-

backs include, the classification performance depends purely on the selection of one of the

several initial alignments and hyper-parameters. For larger genomes, sequence alignment

is not preferred due to high computational complexity, even though it gives better results.

These methods are expensive and their performance is unstable for divergent regions of the

genome.

2.2 Alignment free methods

Alignment-free methods have been used in sequence similarity searches, clustering, clas-

sification, and more recently in phylogenetics. The pattern based measure is one of the

most commonly used alignment free methods as explained in [27], [28]. In this method,

a short string of length(l) is used to generate n-dimensional vectors by mapping each se-
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quence. Pearson correlation distance [29], Euclidean distance [30] assesses the similarity

between two vectors. Normalized local histograms are obtained by using the frequencies

of four bases(A, C, G, and T), in turn, which are used as features for sequence cluster-

ing effectively [31]. Hierarchical and Partitional clustering [32] are two major genome

clustering algorithms based on the result format. The former algorithm, generates a set of

partitions, which forms a cluster hierarchy, and the latter obtain partitions by optimizing

certain clustering criteria. Hierarchical approaches may produce good clustering results,

but they are complex and need high computational time and memory for large data sets

[33]. Where as, partitional algorithms are simple and best-suited for large genome se-

quences [34]. Hierarchical algorithm generates nested series of clusters while partitional

algorithms produces flat clusters. BlastCLUST [35], a hierarchical clustering approach,

measures sequence similarity based on the BLAST [13] score and generates clusters of

linear topology. The limitation of BlastCLUST is that its performance reduces with the in-

crease in input size. CD-HIT-EST [36], is also a widely used partitional algorithm to cluster

DNA sequences. It aligns sequences by using the frequency of identical motifs between

them. Even though, CD-HIT-EST’s performance is better than BlastCLUST, in most of the

cases both algorithms are generating clusters with only one sequence [37]. K-means is a

partitional clustering algorithm that partition the sequences into some clusters. K-means

is used in [38] to cluster Hepatitis B Virus (HBV) sequences into two groups. In which,

the first group HBV sequences are virulent than the second cluster sequences. Although

MeShClust [26] has shown superior performance in terms of cluster quality with other re-

lated tools its ability to generate training data for classification is not suitable for longer

sequences. MeShClust2 [26], on the other hand, generates semi-synthetic sequence pairs,

avoiding alignment algorithms, with known mutation rates. The method [39], uses the

fuzzy integral with the markov chain to cluster the DNA sequences by taking into account

the occurrence frequencies of of DNA sequence of all possible nucleotide pairs. The sum-

mary of state-of-the-art alignment free methods are shown in Table 2.1. However, align-

ment free methods have consistently shown poorer efficiency in quantifying low-abundance

and small-scale sequences.
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2.3 Probabilistic and Machine learning Methods

In probabilistic methods, consensus patterns are taken into consideration for estimating

position-related probabilities by calculating the likelihood of candidate sites, and find the

underlying relationship between the nucleotides around DNA mutations, Repeat sites re-

gions. Many probabilistic models have proposed to increase the predictive power for in-

stance taking advantage of Markov Models [44], [45], Random Forest [46], Bayesian Net-

works [47], and Support Vector Machines (SVM) [48]. In SpliceIT [48] positional prob-

abilistic descriptions of various orders are created and a pool of candidate characteristics

is produced. Each feature’s discriminative power is evaluated and the most informative

features are selected using either collection of positional features or pruning with exam-

ination of principal features. On probabilistic parameters, the SVM classifier is trained.

Machine learning algorithms learn how to make predictions based on genome data and

have a range of emerging bioinformatics applications. The conventional machine learning

methods have been successfully used for biological prediction problems based on DNA or

protein sequences [49]. To predict exact diseased pattern in covid-19, they focus on learn-

ing complex features from consensus di-nucleotides AG/GT before passing it to a classifier.

Various machine learning methods, including Hidden Markov Model [50], [51], SVM [52],

[53], [54], [55], [56], [57], Random Forests [46], and Bayesian Networks [47] have been

developed for splice signal classification. Various computational methods are the possible

alternative solutions for the prediction of potential DNA and types of Repeats and muta-

tions [58]. PWMs are used to indicate the sequence specificity of a protein and are easy to

interpret to identify mutation occurs in DNA diseased pattern [15]. Sophisticated compu-

tational techniques (like machine learning) have achieved ample performance in capturing

sequence specificities [59], [60]. Various supervised learning and unsupervised machine

learning algorithms have been developed to solve types of Diseased pattern and DNA mu-

tations problems.

Supervised learning methods need label information to infer model training and help to

predict whether the transcription factors are bound or unbound to specific regions. Many

methods exist for predicting binding sites based on supervised learning includes discrim-
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inative maximum conditional likelihood [61], support vector machines[62], and random

forest[63]. Unsupervised techniques generally cluster the bounded and unbounded genome

sequences separately based on their bond to certain transcription factors. Hierarchical mix-

ture models [56], and hidden markov models [64], [29] are unsupervised methods. Hence,

all these probabilistic and machine learning methods mostly use a three step process: first

construct the set of features, then perform feature reduction for effective feature set, and

finally feed these features to a machine learning model for better prediction or classifica-

tion. The performance of probabilistic and machine learning algorithms purely depends

on the constructed features [65]. However, features are extracted by domain experts, the

prediction performance remains undefined and unknown. So, the state-of-the-art machine

learning methods still confront many issues, like their incapability to obtain useful infor-

mation from raw DNA data [3], [66], the challengeable discovery of splice signal patterns,

overfitting, and underfitting. Disease prediction is performed by patient care datasets anal-

ysis [67], DNA patterns analysis [68], [67], [69] and DNA patterns analysis [68], [70].

Several methods are proposed to classify viral metagenomic sequences [71]. VirSorter

[72], a probabilistic tool to predict novel viruses in microbial genome data with and with-

out reference. VirFinder [73], machine learning model to identify viral contigs based on

k-mer frequency. The summary of existing probabilistic and machine learning methods are

shown in Table 2.2.

The existing recommendation like system ViraPipe [43] used an artificial neural net-

work and random forest by using relative synonymous codon usage frequency to improve

the classification of metagenomic data into a virus and non-virus sequences. The perfor-

mance of machine learning algorithms purely depends on the constructed features. Ex-

traction of these numerical features is a tedious job. Moreover, there is a high chance of

missing effective information. So, the state-of-the-art machine learning methods still con-

front many issues like their incapability to obtain useful information from raw DNA data

and the challengeable discovery of various signal patterns. However, features are derived

by domain experts, the predictive performance remains uncertain and unknown.
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CHAPTER 2. RELATED WORK Section 2.4

2.4 Deep learning methods

Due to technological advances, deep learning is emerged as a prominent technique that

has demonstrated outstanding results in the field of bioinformatics, genomics and com-

putational biology. It is a prominent technique, has achieved record-breaking results in

computer vision [77], speech recognition [55], natural language processing [78], [79], Im-

age processing [7], [80], [81] and sequence-based bioinformatics [82], [83]. Deep learning

applications in the bioinformatics, genomics and computational biology mostly concen-

trate in (i) genome sequencing and analysis [84], [80], [85], [86] (ii) classification of DNA

[87], [88], chromatin [89], polyadenylation [90], and (iii) protein structure prediction [80],

[91], [92], [93]. Several architectures based on CNN and RNN have been developed for

splice sites and other signals such as Repeats, mutations branch points and polyadenylation

prediction. Convolutional neural networks is one of the most successful architecture for

genome sequence analysis in widely used deep learning architectures. To address the limi-

tations of existing machine learning algorithms, several CNN based models are developed

for splice sites and other signals such as transcription factor binding sites [94], [49], branch

points [95] prediction. The automatic feature extraction and weight sharing mechanism of

CNN has made it suitable for several sequence analysis tasks such as splice signal classi-

fication and pattern recognition. Various state-of-the-art CNN models for splice junctions

prediction includes SpliceRover [4], iSS-CNN [96], DNN [97], DeepSS [98], Repeats-

Finder [99], and RepeatsDeep [100]. RepeatsRover [4] an end-to-end learning model for

classification of true/pseudo Mutationsand utilized deepLIFT [61] to visualize the patterns.

The performance of iSS-CNN [96] and DNN [97], were evaluated on HS3D acceptor and

donor datasets. DeepSS [98] contains two modules, DeepSS-C for splice site prediction

and DeepSS-M for downstream analysis for pattern prediction.

RepeatsFinder [99], randomly extracted exons to generate acceptor and covid-19 datasets

and predict both canonical and non-canonical Mutations. Repeats2Deep [100] accurately

recognize Mutations for those datasets on which the model was not trained. Disease di-

agnosis is performed by image analysis [101], [102] medical statistical datasets [81] and

pattern matching computational techniques [103].
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This model predicts cell specific enhancer activities and also the impact of SNPs on

binding without ChIP-Seq data. KEGRU a bidirectional Gated Recurrent Unit (GRU) ar-

chitecture for automatic feature extraction and classification. Initially, DNA sequences

are split into k-mers of predefined length with slide window. Each k-mer is converted to

a vector by using word2vec algorithm then passed as input to the model for prediction.

DeeperBind [104] is a hybrid architecture (LSTM+CNN) for prediction of protein binding

specificities concerning to variable length DNA probes. DeepGRN [105] model combines

CNN and RNN with attention mechanism to predict Mutations TFBS on the ENCODE-

DREAM in vivo challenge datasets. iDeepE [106] combines global and local CNNs to in-

terpret variable length RNA-protein binding sites. DanQ [85] a convolutional and recurrent

deep neural network model capture long term dependencies between sequence patterns to

comprehend underlying semantics to improve prediction. FactorNet [81] is a hybrid model

which leverages on variety of features like genome annotations, expressions and signal data

to computationally attribute missing binding sites. The summary of state-of-the-art deep

learning methods are shown in Table 2.4.

Although CNN and RNN methods have shown reasonable performance for classification

and prediction problems, most of them show a limited degree of interpretability as deep

neural networks are criticized for their black-box nature. The reasoning power of the ex-

isting models is very limited, so there is significant room to achieve high prediction per-

formance and to improve the reasoning capability. A relatively large clinical dataset from

380 Covid-19 diagnosed patients was used to train/test the models. Evaluating a series of

conventional classifers for predicting outcomes using patients’ clinical data only, and in-

vestigating strategies to select a set of proper clinical labels from the pool of clinical data

for the classifcation of imbalance data. An optimal data pre-processing is a critical initial

step, prior to the initiation of training process, with possible boosting impacts on the overall

performance of a model. A variety of pre-processing strategies can be chosen based on the

type of data and/or algorithms used.
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2.4.1 Harris Hawks Optimization (HHO) Method

Harris Hawks Optimization (HHO) is a swarm optimization approach capable of handling

a broad range of optimization problems[11]. HHO is a popular swarm based, gradient

free optimization algorithm with several active and time-varying phases of exploration

and exploitation. Whale Optimization Algorithm (WOA)[16] and the Grey wolf opti-

mizer (GWO)[17]. This technique employs the flight patterns of hawks to produce (near)-

optimal solutions, enhanced with feature selection, for challenging classification problems

for covid-19 [113]. For solving feature selection, Feature Extraction problems, this study

presents a hybrid binary version of Harris Hawks Optimization algorithm (HHO). The Har-

ris hawk optimizer (HHO) [8] was an attempt to reach not only better performance but

also low-cost and efficient operators within a new stochastic optimizer we focused on the

Genome wide analysis and developments of the recent well established robust optimizer

Harris hawk optimizer (HHO) [10] as one of the most popular swarm-based techniques.

Harris hawks optimization technique is to reduce the required computational cost while

maintaining optimal outcomes. Harris hawks optimization (HHO) using Harris’ hawk’s

behavior is based on the coordinated behavior and hunting of Harris hawks in nature. This

algorithm is a new type of hunting and hunter algorithm. The HHO algorithm is still rel-

atively new and has not been tested sufficiently on real-world problems. In this research,

therefore, it is applied to the multilevel image segmentation of chest images of COVID-19

patients. Its segmentation results are then analyzed and compared against those obtained

by the HHO method. The authors in this research claim that the use of metaheuristic al-

gorithms in image segmentation domain lowers the amount of computations required to

locate the best threshold configuration. Harris hawk’s optimization is a population-based

swarm intelligence algorithm. It mimics the hunting strategy of Harris hawks, which is

mathematically modeled to address different optimization problems.
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CHAPTER 2. RELATED WORK Section 2.5

2.5 Summary

In this chapter, some of the existing works related DNA sequence clustering, various reg-

ulatory signals, pattern frequency based disease prediction, viral genome prediction, and

translation, mutation rate, evolutionary relationships of corona viruses are discussed. Most

of the existing alignment based techniques handles only small sequences of DNA data and

are time consuming. To overcome the limitations in alignment based approach a few align-

ment free methods are introduced. A survey on different alignment free methods have

been presented. Moreover, an exhaustive survey on probabilistic and machine learning

techniques is performed. Discussed how the performance of machine learning algorithms

purely depends on the constructed features. Further, a survey on state-of-the-art deep learn-

ing techniques for various sequence analysis tasks, and the limitations of those techniques

have been included. Further, a survey on state-of-the-art deep learning techniques for var-

ious sequence analysis tasks, drug prediction tasks, Covid-19 and the limitations of those

techniques have been included. For the purpose of classification, a multi-class SVM clas-

sifier has been considered, as SVM is the most widely classifier in the field of ML and

DNA pattern recognition. The number of training DNA pattern, batch size, DNA pattern

size, learning rate and number of model parameters have a significant impact on the perfor-

mance of a neural network. We done the work on Covid-19 Classification, Point Mutation

rates in covid-19, top Motif’s feature extraction and feature selection, Repeats in covid-19

were identified.
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Chapter 3

Exploring Coronavirus Sequence Motifs

through Convolutional Neural Networks

for Accurate Identification of Covid-19

In order to accurately identify Covid-19, we provide in this chapter a broad and robust CNN

model called DeepCoV. Our CNN-based model successfully captures significant patterns

of human coronaviruses by utilising convolution and weight-sharing techniques. Differen-

tiating new coronaviruses from existing ones and finding important patterns for accurate

identification of new coronaviruses are the two main goals of the suggested method. The

following is a synopsis of the work’s main contributions.

1. It is a convolutional neural network (CNN) architecture comprising two fully con-

nected layers, three sequential convolutional layers, and a max-pooling layer. In

order to reduce noise, this layer-wise learning.

2. Fully linked layers resolve corona prediction by pattern interactions, whereas convo-

lutional and pooling techniques find predictive patterns from corona virus sequences.

3. The suggested model is able to detect distinct patterns associated with coronaviruses

by employing a collection of learnt filters of convolutional layer. We can learn more

about the basics of coronavirus reproduction from these patterns that were retrieved.
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3.1 Materials and Methods

In order to accurately identify COVID-19, the suggested method relies on a convolutional

neural network (CNN) model that necessitates a large dataset of samples. The 2019 Novel

Coronavirus Resource (2019nCoVR) maintained by the National Centre for Bioinforma-

tion in China is a major repository for various coronaviruses [126].

3.1.1 Dataset Collection

Results for this study were culled from datasets sourced from a number of databases, such

as CNCB/NGDC, GISAID, NCBI, and NMDC. Covid-19 is fully integrated with all of

these data centres. It also provides visualisation tools for the results of genome variation

analyses using all of the collected Covid-19 strains and compiles a wide variety of rele-

vant material for scientific dissemination, including scientific literatures, news, and popular

pieces. This collection contains many human coronaviruses, such as Sars-cov-2, NL63-

CoV, HKU1-CoV, AlphaCoV, BetaCoV-1, MERS-CoV, and 229E-CoV. COVID-19 nega-

tive sequences include HKU1-CoV, AlphaCoV, BetaCoV-1, MERS-CoV, and 229E-CoV,

whereas COVID-19 positive sequences comprise SARS-CoV-2. We utilised 592 genome

sequences from different human coronaviruses in our investigation, together with the 1000

SARS-CoV-2 sequences. Our focus is on the fact that, unlike SARS-CoV-2, all human

coronavirus genome sequences are freely available for download.

The datasets S of coroaviruses can be formulated as below



S = SP ∪ SN

SP = SP
Cov−2

SN = SN
AlphaCoV ∪ SN

BetaCoV−1 ∪ SN
MERS−CoV ∪ SN

NL63−CoV

∪SN
HKU1−CoV ∪ SN

229E−CoV

(3.1)
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Table 3.1: The characteristics of human coronavirus whole genome sequences

S.No.
Types of human

CoVs

The number

sequences
Label

1 SARS-CoV-2 1000 1

2 Alpha-CoV 888 0

3 BetaCoV-1 640 0

4 MERS-CoV 341 0

5 NL63-CoV 654 0

6 HKU1-CoV 745 0

7 229E-CoV 247 0

where SP, SN are COVID-19 positive and negative samples of all coronavirus datasets.

Table 6.7 shows the characteristics of various coronaviruses. The majority of coronaviruses

are negative (0), while the main one, SARS-CoV-2, is seen as positive (1). Preprocessing

was applied to the acquired data to ensure that only high-quality data was utilised. We

wrote some Python scripts to filter out genomic sequences sharing an accession number

in order to get rid of duplicates. In order to preserve the genetic signature encoded in

dinucleotide frequencies, sequences that contained any nucleotides other than A, T, C, and

G were excluded from consideration for each species.

3.1.2 Problem Definition

The SARS-CoV-2 gene sequence motif determination and coronavirus gene localization

can be formalised as a two-class classification problem. Binary (two-class) or multi-class

classification problems are the most common ways to express prediction challenges in

bioinformatics and computational biology. In order to construct an effective bioinformat-

ics classifier, one must be competent in designing biological sequence problems. Here,

identification of SARS-CoV-2 can be established as a binary classification problem, with

dataset D of N samples D = {xi, yi
}N

i=1
, xi indicates feature set, that could be considered

as a 4 X N dimensional matrix. DNA sequences contain four bases: Adenine (A), Guanine
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CHAPTER 3. EXPLORING CORONAVIRUS SEQUENCE MOTIFS THROUGH CONVOLUTIONAL NEURAL NETWORKS FOR ACCURATE IDENTIFICATION OF
COVID-19 Section 3.2

(G), Cytosine (C) and Thymine (T). A, G, C, T is the sequence that these four base pairs

form. The one-hot vectors [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1] can be used

to represent these base pairs, in that order. For all sequences, the class label is 0, except

for SARS-CoV-2, which has a value of 1. Due to their similarity to other Coronavirus

sequences, conventional examination of SARS-CoV-2 sequences may yield erroneous re-

sults. Among the several Coronavirus gene sequences, the primary goal of this study is to

accurately predict the SARS-CoV-2 gene sequence. Additionally, we discovered SARS-

CoV-2 sequence-induced common patterns.

3.1.3 Convolutional Neural Networks

Every typical convolutional neural network (CNN) consists of four layers: a convolutional

layer, a non-linearity layer, a max-pooling layer, and a fully connected layer [127]. Con-

volutional neural networks (CNNs) have proven to be highly effective in picture catego-

rization, computer vision, and NLP [128]. Topic categorization and sentiment analysis are

only two examples of the text-related problems that have found solutions with their help.

Genetic sequences display patterns of sequential letters that are not separated from one an-

other, in contrast to text data that contains gaps between words. The words that comprise

these sequences are formed by combining the four nucleotides A, G, C, and T. As men-

tioned in Ref., one-hot vectors can be transformed into 2D matrices and used to describe

DNA sequences. In this case, the DNA sequences are characterised as 2D matrices using

a CNN layer [129]. One compelling reason for including CNNs in proposed DeepCoV, is

that they are quick and effective at representing text or sequences [130]. As a result, we

use a deep learning algorithm CNN, to classify SARS-CoV-2 genes and other Coronavirus

genes.

3.2 Proposed Apporach

A fully linked layer, a pooling (down-sampling) layer, and an output layer follow each

convolution in DeepCoV. When training, the proposed architecture takes as input a raw

binary matrix-embedded DNA sequence with corresponding A, G, C, and T positions that
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is N size-long and NxN sized. One hot encoding method is used to transform the text into

numerical information because neural networks can only process numerical data and the

input is sequences of nucleotides [94].

A one-dimensional convolutional layer including thirty-two equally sized learnable fil-

ters, each seven units wide, constitutes the top layer of the architecture. In order to find

patterns in the input one hot encoded matrix, each layer filter uses a convolution operation

similar to the sliding window. The approach involves mapping each sub-matrix at every

nucleotide position in order to detect motifs around the target SARS-CoV-2 sequences.

Motifs are commonly found subsequences in sequences and are often crucial in identify-

ing authentic and fake Covid-19 sequences. The activation function known as the Rectifier

Linear Unit (ReLu) is used by the convolutional layer. If the activation value x is greater

than 0, the relevant motifs from the current position have progressed to the next level in the

convolutional layer, resolving the issue of vanishing gradients. This is indicated by the ac-

tivation function ReLu, f(x) = Max(0,x). The connected theme is removed as uninteresting

if its value is 0. As the positive number grows, so does the probability that the presented

sequence is a genuine Covid-19 sequence.

We utilised the 100-nucleotide sequence length of the SARS-CoV-2 dataset as an ex-

ample; this methodology is also applied to the sequences of other Corona viruses. After

receiving the 100 x 4 input matrix with binary encoding, the first 1D convolutional layer

sends it to the 7-size feature detector/filter within the layer. With just one filter to train on,

the neural network can only understand a single feature. We need to specify 32 feature

detectors (filters) if we want to gather 32 distinct features. With N being the padded se-

quence length, K the length of the filters, F the total number of filters, and P the padding,

the convolutional layer generates a unique matrix of size (N - K + 2P +1) X F. With a

three-padding P, the window iteratively traverses the data for 100 steps, yielding an output

matrix of size 100 X 32 that is in perfect correspondence with the input matrix.

After removing half of the values from the previous layer, the pooling layer replaces

them with the maximum value and moves a 2-length window over the encoded sequence,

producing 50 X 32. By combining smaller samples, we can detect more interesting fea-

tures and cut the hidden layers in half. Additional precaution against overfitting is taken
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Figure 3.1: DeepCov Architecture: Step-I: showing stacked CNN layers with Maxpooling
and dense layers. Step-II: Shows the procedure to extract diseased patterns from learned
convolutional networks

by including a dropout layer with a 0.2 probability. This leads to the loss of 20The convo-

lution operation is a vital step in CNN. The first convolutional layer convolves the one-hot

encoded input with 32 filters which are slide across the input genome. The filter of size 7

is stride one position at a time and the padding is set to be as ’same’ to preserve the ac-

tual size(300) of the input. These learned filters used to identify the particular patterns as

features in the DNA sequence. In each convolution operation, the encoded input genome

convolves with a number of k filters F={f1,f2, ..... fK}, and biases B = {b1,b2, ..... bK} are

added, and each filter generates separate feature map M l
k[131].

M l
k = bl−1

k +

Nl−1∑
i=1

(f l−1
ik ⊛M l−1

ik ) (3.2)

where f l−1
ik is learned filter weights at previous layer l-1, M l

k is the value after convolution

operation. The non-linear activation transformation σ(.) is applied to feature maps and the
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same process repeated to all convolution layers.

Y l
k = σ(M l

k) (3.3)

Equation (2) provides the ReLU activation, which is used element-wise to build feature

maps after the convolution layer using the max(0,z) operation. “A 0.2-dropout-rate dropout

layer precedes the ReLU activation layers; this layer provides regularisation and reduces

over-fitting by randomly dropping 20

Zk = max(Y1,k, Y2,k, ....., Yn,k) (3.4)

The initial convolutional layer, in conjunction with the max-pooling and dropout layers,

is responsible for extracting the global characteristics. Similar to the first convolution, the

second and third layers are supplemented by max-pooling and dropout layers that extract

local features in the same sequence. In the table 3.2, the detailed structure of the proposed

model is shown.

Table 3.2: The detailed model structure of the proposed approach.

Step Operation Output Dimension
Input Layer One-hot encoding 300x5

Convolutional
Layer 1

Conv1D(32,7) 300 x 32
Activation(ReLU) 300x32
Dropout(0.2) 300x32
Max-pooling1 150 x 32

Convolutional
Layer 2

Conv1D(8,4) 147 x 8
Activation(ReLU) 147 x 8
Dropout(0.2) 147 x 8
Max-pooling1 73 x 8

Convolutional
Layer 3

Conv1D(8,3) 71 x 8
Activation(ReLU) 71 x 8
Dropout(0.2) 71 x 8
Max-pooling1 35 x 8

Flatten step Flatten 280 x 1

Dense
Layer1

Dense(32) 32 x 1
Activation(ReLU) 32 x 1
Dropout(0.2) 32 x 1

Dense
Layer2

Dense(2) 32 x1
Activation(Softmax) 2x1

Output Layer Classification Probabilities

The model’s classifier receives the output of the final pooling layer after all stacking

layers have finished processing it and converted it to a dimensional vector. This section
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consists of two thick layers, the first of which has 32 neurons and the second of which con-

tains 2 neurons. Two thick layers are separated by a dropout layer. The softmax activation

function, which is present in the final dense layer, generates two probabilities: one for the

true target classes and one for the erroneous target classes. The following is a mathematical

representation of a softmax function:

S(Z) =
eZi∑
i e

Zi
(3.5)

Finally, the genome sequence is classified as viral/non-viral type based on the output prob-

ability. The categorical-cross entropy loss function is given in the equation(1). After every

epoch the filter weights are updated to minimize the loss function.We used Keras [132], a

minimalistic, highly modular neural network library, written in Python, in our implemen-

tation of the network.

Two more 1D convolutional layers, max-pooling, and dropout are added so the model

can understand more complex features. In the first convolutional layer, there are eight

filters with four-unit kernel sizes; in the second and last convolutional layers, there are

eight filters with three-unit kernel sizes. To decrease the likelihood of overfitting, a two-

layer pooling layer is added after each convolutional layer with a dropout probability of

0.2. Upon completion of all layer blocks, the final CNN features maps are smoothed out.

The novel coronaviruses are distinguished from other coronaviruses using a probability

distribution across binary output classes that are generated by a softmax classifier using all

the integrated information.

3.2.0.1 Hyper parameter tuning and summary of output parameters

To prevent overfitting caused by an exploding gradient problem, the dropout layers are

employed. Just like with other parameters, the dropout rate is found by running hyperpa-

rameter optimisation. We thought of employing a random search technique to choose an

optimal set of model hyper parameters instead of manually looking for them. An optimisa-

tion process includes defining a search space. The goal of optimisation is to select a vector

that provides the best possible performance to the model, in terms of accuracy or error rate,
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for that particular model. By use of random sampling, we were able to optimise the follow-

ing two convolutional layer parameters: batch size, optimisation method, dropout, number

of fully connected layers, number of filters, and filter length. We tweaked the settings for

the third convolutional layer by hand. All dropout layers were fine-tuned to a single rate

throughout the random search. The model validation set was used to determine the optimal

set of parameters after numerous combinations were considered. The hyper parameters

search space for first and second convolution layers are listed in Table 3.2, and the pa-

rameters which are the best set found. The Table 3.2 displays the many parameters and

dimensions that were utilised to train the proposed DeepCoV model. It provides a concise

overview of the model training process’s inputs and results. It further demonstrates the

layer-to-layer transfer of these vectors together with many other factors such as activation

units, dropouts, and maxpooling layers.

3.2.1 K-Fold Cross Validation

We used a cross validation technique to verify that the DeepCoV model accurately predicts

the SARS-CoV-2. By utilising a cross validation approach, issues such as over fitting and

selection bias can be mitigated, and valuable information about the proposed model’s abil-

ity to generalise to unknown data can be gleaned. For k fold cross validation the whole

dataset is partitioned into k complimentary subsets, performing the analysis on one subset

called as testing set and training other (k-1) subsets. The results of the validation are aver-

aged over k separate tests and sets of trials. To achieve a balanced bias-variance trade-off,

the value of k must be carefully chosen. The researchers in this study estimated the levels

of bias and moderate variation by experimental means using 10-fold cross validation.

3.3 Results Analysis

The performance and discriminative capabilities of the DeepCoV model are compared to

existing benchmark machine learning models in this section [133]. We have already exam-

ined CNN architecture at different levels in order to explore the effects of different designs

on network analysis. We started with a simple model with one (Convolution + Pooling) and
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two fully linked layers. We then added more layers to increase its complexity and tested it

at four different depths to see how well it performed. At 3* (Convolution + Pooling) depth,

we achieved the best results for the datasets that were evaluated for the experiment.

3.4 Experimental Setup

We utilised a desktop computer with a Core i7 3.2 GHz CPU, 16 GB of RAM, and a

GeForce GTX Titan X GPU with 12 GB of DDR5 RAM to conduct the trials for the

suggested model. Dataset overviews, data pre-processing, cross-validation, and training

parameters for the proposed model are all found in this section.

3.4.1 One hot encoding

One hot encoding technique is used to convert DNA sequence to numerical vector as neu-

ral networks handle only numerical data. Specifically, consider a DNA sequence S with n

bases S = {b1, b2, b3, ....., bn}, Si ϵ {A, C, G, T, N}. The encoded vector is stored as an array

(M) of size nx5 as the following:

Ai,j =

1, if Si−1 = jthbase in (A, C, G, T, N).

0, otherwise.
(3.6)

The number of rows is equal to the length of the DNA sequence and the columns are equal

to unique number (five) of bases.

3.4.2 Performance Measures

When it comes to binary classification, the most popular model evaluation parameter, ac-

curacy, could be misleading. When used in isolation from other performance metrics when

dealing with imbalanced data. Consequently, classifiers may be biassed towards the domi-

nant class, rendering classification ineffective. Consequently, the suggested deep learning

model is evaluated and compared using the following metrics produced from a confusion

matrix: An often-used metric for two-class classification problems, the area under the re-
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ceiver operating characteristic (AUC) curve, is used in the proposed model’s performance

evaluation. Finding the optimal threshold values using these curves is a well-known ca-

pability. However, the datasets we have are biassed since SARS-CoV2 and other coro-

naviruses are not evenly distributed. Addressing such an imbalanced problem is better

illustrated using AUC PR curves [134]. Since there is a higher chance of biassed perfor-

mance evaluation in the event of an imbalanced task, the precision-recall curve is added.

The AUC ROC curve displays the TPR and FPR, or True Positive Rate and False Posi-

tive Rate, respectively. The True Positive Rate (TPR) is the proportion of true positives

found from all candidate positives, whereas the False Positive Rate (FPR) is the proportion

of false negatives that are incorrectly classified as true positives. On the AUC PR curve

against TPR, you can see precision, which is the proportion of correctly predicted positive

classes to total positive classes. The equations for these various measurements are as fol-

lows.

Acc =
TP + TN

TP + FN + FP + FN
(3.7)

FPR =
(FP )

(TN + FP )
(3.8)

TPR/Recall =
(TP )

(TP + FN)
(3.9)

Precision =
(TP )

(TP + FP )
(3.10)

F −Measure =
2 ∗ Precision ∗Recall
Precision+Recall

(3.11)

The FP, FN, TP, and TN values indicate the number of false positive, false negative cases

and True positive and True negative cases of whether a given sequence belongs to novel

Coronavirus or not.

3.4.3 DeepCoV Model Interpretablity

There are two main goals that this study aims to achieve. To start, we check if a sequence

is SARS-CoV2 by using stacked convolutional neural network (CNN) layers with Max-

pooling and dense layers. To get sick patterns out of learnt Convolutional Networks, the
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second step is to follow a process. Many problems with biological sequence categorization

have been solved in recent years by using Machine Learning approaches with complex in-

ternal implementations. Classification efficiency has been the subject of much research and

development. However, before a computational model can be accepted, its classification

accuracy must be carefully verified, and the user must have a good grasp of the principles

behind it. While the revised prediction method achieves far higher accuracy, the model

interpretability supporting the algorithm’s prediction is noticeably lacking. The ability to

understand the correct mathematical structure (how a mathematical model achieves classifi-

cation) and conduct some downstream analysis (which biological processes are triggered by

what genomic features hidden in biological sequences) is what makes model interpretability

so important. Attempts to establish a connection to biological differences are thwarted by

the computer models’ opaque machine learning methods and the model’s complex learned

decision rules, which are difficult to understand. Here, we used the activations and feature

map values of the filters to extract SARS-CoV2 illness patterns from the learnt convolution

networks.

3.4.3.1 Procedure to extract Motifs

We trained the proposed CNN module on the Coronavirus dataset (included in the dataset

section) to detect underlying motifs that are positively associated with having coronavirus

sequence motifs. The architecture of this module is the same as that of the part before it

refer Figure 3.1. One key difference is that this model incorporates all sequences from

the dataset into its convolutional and rectification stages. A trained convolutional neural

network (CNN) works by first identifying which subsequence fragments were most ac-

tivated by the first convolutional layer and then using a position weight matrix (PWM)

metric to extract a motif from these fragments. For the purpose of identifying possible lo-

cal subsequence properties, every L-length convolutional filter is matched exactly against

all possible 4 X L one-hot encoded input sub-matrices at every point. It is acknowledged as

a measure of the positional subsequence’s contributions to exercise a prediction function,

since a high value determined by Relu indicates a strong contribution to being a true novel

coronavirus sequence.
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Figure 3.2: Top Ten Motifs generated from learned convolutional filters.

3.4.3.2 Motif discovery for Covid-19

Table 3.3: Patterns that motivate Covid-19 for AlphaCoV, BetaCoV, MERS-CoV-2, NL63-
CoV HKU1-CoV, 229E-CoV.

TSS Pat-
tern

Repeated
in No. of
Filters

Filter Numbers Average
Activity
Value

FSS Pat-
tern

Repeated
in No. of
Filters

Filter Numbers Average
Activity
Value

CCCAGGG 30 1-2,4-32 0.2426 GAGGGGG 27 1-6,8-30 0.2881
CCCAGCT 29 1-2,4-29,31 0.1295 CAGGGAG 25 2,8-12,14-32 0.2363
CTGCAGA 18 16-17,21-32 0.1728 CCTGAGC 15 12-15,17-24,30-32 0.1499
TCCAGGG 13 5-11,13-15,18-20 0.1400 AGGTGGG 11 4-8,11,13-17 0.2674
CCCAGGC 12 5-10,24-27,30,32 0.1964 TGCCCAG 10 1-3,5-11 0.2603
CCCAGGA 12 12-23 0.1432 GCTGCAG 10 7-8,20,25-29,31-32 0.2189
∗CAGGTGG 22 11-32 0.2061 CCTGCAG 10 19,23,25-32 0.1977

∗Neutral Patterns, present in both true and false splice site genome sequences.

Take the pattern CCCAGGG as an example; it appears 64 times and has been duplicated

in 31 filters (1-2, 4-32). Based on their recurrence in various filters, the motifs are arranged

in descending order. True and false Covid-19 share the same themes (CAGGTGG, GT-

GAGTG), but we disregard them since they have no predictive power. Figure shows that

the interpretable CNN framework Inter Covid-19 can predict true and false sites by ex-

tracting high-level information. 3.2. Table 3.4 displays the patterns retrieved from the

Covid-19 TSS and FSS datasets using the second approach. It displays the most common
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Table 3.4: Top-ten filters activation means with motif frequency for Covid-19 TSS and FSS
datasets.

Covid-19 True dataset Covid-19 False dataset
Rank Filter

Number
Filter Mean
Activation

Value

Pattern Pattern
Frequency

Filter
Number

Filter Mean
Activation

Value

Pattern Pattern
Frequency

1 8 0.3688 GGTGAGT 82 30 0.3416 GTGAGTG 266
2 6 0.3366 GCAGGTG 32 20 0.3274 GTGAGTG 206
3 7 0.3342 GGTGAGT 83 26 0.3269 GTGAGTG 266
4 2 0.3252 GGTGAGT 54 7 0.3266 GGTGGGT 266
5 21 0.3218 GGTGAGT 151 5 0.3257 GTGGGTG 67
6 32 0.3210 GGTGAGT 207 14 0.3238 GGTGGGT 144
7 5 0.3186 GGTGAGT 81 28 0.3226 GTGAGTG 266
8 6 0.2090 GGTGAGT 81 27 0.3158 GTGAGTG 266
9 15 0.3064 GGTGAGT 154 9 0.3126 GTGAGTG 266
10 14 0.1899 GGTGAGT 112 21 0.3126 GTGAGTG 206

pattern from each filter, which is one out of 10 that are extremely similar between TSS and

FSS. The fact certain motifs appear with the greatest activation value in nearly all filters is

evidence of their redundancy. If a motif is redundant, it means the motif is very important

for determining the real and false splice locations. If the activation value of the subse-

quence at a specific site (ReLU = max(0; x)) exceeds a threshold for all subsequences and

positions, then the subsequence subunit is kept. In this research, the cutoff is 50

3.4.3.3 Motifs Filter Analysis

Using DeepCoV, we may not only analyse motifs, but also test the limits of the learnt

convolve filters in the first convolutional layer. The function of the filter is to recognise

motifs. From the local sequence context, it can learn SARS-CoV2 illness patterns and

identify candidate motifs. One measure of a filter’s ability to detect relevant motifs is the

frequency with which they appear in sequence windows; this is also known as filter activity.

One way to measure the filter activity value for a group of sequences is to take the average

of the mean activations. First, we activate every consecutive sequence by overlapping each

k X 4 filter on L - k +1 subsequences for one sequence, where L is the length of the sequence

and K is the length of the filter. The average of all subsequences is then used to determine

the final activity value.

The capacity of the filter and the influence of the motif on selecting diseased patterns

increase with increasing filter activity value. The variation of each filter activity, which
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Table 3.5: Mean/Highest activation for top ten filters of the first convolutional layer derived
from DeepCoV model

Rank Filter Motifs
Mean
Activation

Highest
Activation

1 20 CCGTTGA 0.047075363 1.0865947
2 2 CTCCCGC 0.110824939 0.9866006
3 23 GAGTTAG 0.034365958 0.8609414
4 31 ACGCATA 0.077731049 0.8048915
5 4 ACACGTT 0.032601854 0.8019278
6 24 GTCGGCC 0.053501801 0.75201905
7 18 AGAGTCG 0.019740433 0.73908246
8 19 GGACAGC 0.052045315 0.7305308
9 25 TTGGGAA 0.029710728 0.7282068
10 8 CGCTGTG 0.030981092 0.72371507

exemplifies the activation fluctuations range for all sequences, is also calculated. Table 3.5

lists the top ten activities, with the 20th filter’s highest activity value on the Coronavirus

dataset being around 0.0470. Overall, mean and greatest filter activity both drop at the

same time. The activation values for the 20th filter’s entire subsequences are less than

0.047075363 and close to 1.086 is the greatest activation value.

3.4.4 Performance Analysis of DeepCoV model with other existing

benchmark methods

The DeepCoV model’s capability was compared to that of known baseline machine learn-

ing models like SVMs, Naive Bayes, K-NN, and Random Forest methods that classify

Covid-19 sequences by utilizing various methods for feature extraction proposed by Hilal

Arslan [133]. The selection of discrete features is an important step in improving recogni-

tion accuracy based on the properties of the COVID-19 virus. Arslan [133] proposed the

use of CpG island features [135] based on the assumption that SARS-CoV-2 has a inviable

vacancy of CpG [136].

For a proper comparison, the DeepCoV method is subjected to 10-fold cross-validation.

The outcomes demonstrate that, across all performance criteria, the proposed solution has

outperformed competing approaches. Table 3.6 shows, Precision, Recall, F-Measure, Ac-
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Figure 3.3: Ten fold average AUC ROC and AUC PR values of DeepCoV model.

Table 3.6: Results Comparison with Existing techniques

Method Precision Recall F-Measure Accuracy
Support Vector
Machine 0.869 0.873 0.868 0.87

Naive Bayes 0.882 0.879 0.87 0.88
K-Nearest Neighbor 0.927 0.926 0.926 0.92
Random Forest 0.93 0.90 0.91 0.93
(DeepCoV)
(Proposed Method) 0.98 0.97 0.99 0.96

curacy values of DeepCov methods in comparison with existing baseline methods. The

proposed model has achieved an accuracy of 96% nearly showing an improvement of 5%

when compared with Random Forest method [133]. As discussed earlier only considering

accuracy as an evaluation metric can be deceptive, to overcome this issue we also evalu-

ated AUC ROC and AUC PR which has given 98.62% and 98.58%, respectively shown in

Figure 3.3 it demonstrates the DeepCoV model’s ability to discriminate.

3.4.5 Filter ability and visualization

Filters are trained vector of weights, plays a crucial role in pattern (motif) detection for

classification problems. Along with pattern analysis, we also determine the potential of the

convolve filters by Deepcov-CNN in the first convolution layer. The visualization of CE
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acceptor and donor learned filters is shown in Figure 3.4, by using displayr. The X-axis of

heatmaps shows the position of each nucleotide in learned filter weight matrix and Y-axis

shows the nucleotides (A, C, G, T, N).

Figure 3.4: Graphical representation (Heat Map) of CE (a) Covid-19(TSS) (b) Covid-
19(FSS) learned filters.

A filter’s learning weights, displayed visually as a heatmap, indicate the relative rel-

evance of nucleotides at each place in the filter. for that reason, the patterns are more

important in establishing the veracity of the COVID-19. Darker shades of green and red

indicate a higher concentration of that nucleotide at that specific location.

3.4.6 Summery

In this chapter, we presented DeepCoV, a general-purpose and robust CNN model for pre-

cise Covid-19 detection. Our convolutional neural network (CNN) model successfully

identifies significant top pathogenic motif patterns in human coronaviruses by utilising

weight sharing and convolution”. To respond swiftly to a viral outbreak, like COVID-19,

it is crucial to understand the genetic sequence of the virus, as discussed in this chap-

ter. Finding new coronaviruses is difficult since SARS-CoV-2 and other coronaviruses are

so similar. Comparing the similarities between the SARS-CoV-2 virus and other similar

and well-known viruses is crucial for determining if a DNA sequence is of SARS-CoV-2

virus or not. In this research, we propose DeepCoV, an understandable model for accurate

SARS-CoV-2 prediction using deep neural networks, to circumvent these shortcomings.
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Unlike other models, ours uses a convolutional architecture to identify sequence motifs of

biological significance by combining convolution and pooling processes. In order to better

understand the regulatory mechanisms that SARS CoV-2 uses to control gene expression,

DeepCoV finds motifs that identify whether a given sequence is SARS CoV-2 and also

probable trends. There is further dispute regarding the interpretability of convolutional

neural networks since they are said to be opaque.
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Chapter 4

Coot-lion Optimized Deep Learning

Algorithm for COVID-19 Point

Mutation rate Prediction using Genome

Sequences

Here, we introduce a model that uses genome sequences to forecast the spread of carbon

virus type 19. Feature mining involves applying specific traits to genome sequences; these

traits may include CpG-based features, numerical mapping (intger and binary), and numer-

ical mapping (using the Fourier transform to create features for skewness, kurtosis, and

peak-to-average power ratio). Diseases caused by the coronavirus, more often known as

COVID-19, can range from the common cold to more severe respiratory illnesses. A newly

identified coronavirus, COVID-19, has just emerged, causing pneumonia and other severe

diseases. Nevertheless, in order to prevent health risks, it is critical to distinguish between

the favourable possibilities as soon as possible.

4.1 Materials and Methods

To forecast the spread of COVID-19, this chapter makes use of a Deep Quantum Neural

Network (DQNN) trained on the Lion-based Coot algorithm (LBCA-based Deep QNN),
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which accounts for genetic sequences. “Here, the genome sequences undergo feature ex-

traction, which involves extracting specific features (such as CpG-based features) and nu-

merical mapping (such as integer and binary) from the genome sequences. The numerical

mapping is then applied using the Fourier transform to generate features (such as Peak to

average power ratio, skewness, and kurtosis). Furthermore, the entropy feature is extracted

using the K-mer extraction method. The Bray-Curtis distance and the Deep Belief Net-

work (DBN) are used to accomplish the feature fusion. Finally, COVID-19 predictions

are made using a deep quantum neural network. In order to train Deep QNN, the Lion-

based Coot algorithm (LBCA) is utilised. The Coot algorithm and the Lion optimisation

algorithm (LOA) are combined to produce the suggested LBCA. Point mutation is used

for the examination of COVID-19 prediction. Testing accuracy was 0.941, True Positive

Rate (TPR) was 0.931, and False Positive Rate (FPR) was 0.869, demonstrating that the

proposed LBCA-based Deep QNN performed better than current prediction methods.

4.1.1 Motivation

Several models are proposed to anticipate the spread of COVID-19 by analysing genome

sequences; nevertheless, these methods do not yield more accurate predictions.

4.1.2 Problem Definition

Diseases ranging from the common cold to severe respiratory ailments are caused by hu-

man pathogens known as COVID-19. Conventional approaches to vaccine development

neglected to assess CpG motifs and similarity features. Due to the rapid mutation rate of

SARS-CoV-2, genomic sequences are particularly useful for tracking coronavirus genes,

which change constantly as the disease advances from person to person. We built a model

for COVID-19 to forecast the pattern of disease using genomic sequences because early

detection is critical for preventing the development of the disease.

49



CHAPTER 4. COOT-LION OPTIMIZED DEEP LEARNING ALGORITHM FOR COVID-19 POINT MUTATION RATE PREDICTION USING GENOME SEQUENCESSection 4.2

4.1.3 Challenges

The issues confronted by priorly devised COVID-19 prediction models with genome se-

quences are listed below.

• In [121], a technique is devised for predicting COVID-19, considering the genome

sequences. However, this technique did not examine the CpG motifs and similarity

features for developing the vaccines.

• An AI-based model is utilized for learning the interesting data from the genome

sequences of COVID-19. However, this technique failed to handle genome sequences

of varying lengths [133].

• In [137], the DeepCOVID-19 identification pipeline is devised for predicting COVID-

19 using the genome sequences. However, examining model efficacy for other criti-

cal bioinformatics tasks is not explored.

• The training of CNN and its accuracy depends on the datasets utilized. For more

complicated data, the neural network can require going deep in order to discover

more features to categorize precisely and fail to handle noisy data[138].

• Some studies have looked at the treatment for thoroughly examining the disease in

view of COVID-19’s rapid spread. The genetic closeness of COVID-19, however

made the discovery process challenging.

4.2 Proposed approach

We laid out the suggested model and its assessment criteria here. This work aims to pro-

vide a model for predicting COVID-19 point mutations using DNA genome sequences.

Here, the genome sequences undergo feature mining, which yields characteristics includ-

ing CpG based features, integer and binary numerical mapping, and numerical mapping by

applying Fourier transform to create skewness, kurtosis, and peak to average power ratio.

Furthermore, the entropy feature is mined using the K-mer extraction. Using the Bray-

Curtis distance and DBN, the features are fused. Before finishing, the COVID-19 forecast
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is made using Deep QNN. In order to train Deep QNNs, LBCA is used. The LBCA is

created by merging the Coot algorithm with LOA. Examination of point mutations in the

prediction of COVID-19 is carried out. The main contribution includes

• Proposed LBCA-based Deep QNN for COVID-19 prediction: In this work, an LBCA-

based Deep QNN is used for predicting COVID-19, considering the DNA genome

sequences to detect whether diseased is coivd-19 or not by using Deep QNN.

• Proposed LBCA: Deep QNN is trained with LBCA, which is formed by integrating

with Point mutation rate is calculated for 200 and 400 genome sequence with the

hekp of proposed model.

The viral infection caused many illnesses involving cancer and COVID-19. Dangerous ill-

ness develops when viruses infect cells and disrupt the host’s normal process. The model’s

explainability is low, despite the fact that automated feature mining produces multiple

strategies. The purpose is to present a method for COVID-19 prediction based on genomic

sequences. Using hybrid optimisation and genomic sequences, we aim to provide a deep

model for COVID-19 prediction. Features extracted from genomic sequences constitute

the initial stage of the procedure. These features include CpG-based features [121] and

numerical mapping using the Fourier transform to extract characteristics such as Peak to

Average Power Ratio, Skewness, and Kurtosis. In addition, the K-mer extraction is done

to extract the entropy feature. The feature fusion is done using Bray-Curtis distance and

DBN [11]. Finally, the COVID-19 prediction is done using DQNN [100]. The Deep QNN

is trained with LBCA. The proposed LBCA is devised by combining the Coot algorithm

[11] and LOA [139]. The analysis of COVID-19 prediction with respect to mutation point

is performed [95]. The COVID-19 prediction model with LBCA-based DQNN is exposed

in figure 4.1.

4.2.1 Parameter tuning in training model

As the model is learned, its hyperparameters are fine-tuned, and the optimal parameter

values are selected by minimising validation loss. Hyperparameters that have been fine-

tuned include batch size, dropout probability, epochs, strides, filter size, number of filters,
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Figure 4.1: COVID-19 prediction model with LBCA-based DQNN

and convolution layers. All imbalanced datasets have 10 epochs, while all balanced datasets

have 50. Each of the three convolutional layers has a different filter size and number of

filters: (7, 4, 3). 4.1

Table 4.1: Experimental setup parameters for proposed method

Parameters Values
Number of Filters 3, 7, 4
Number of layers 8, 32
Model Sequential
activation relu
optimizer adam
loss mae
metrics accuracy
Epoch 100
learning_rate 0.01
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4.2.2 Acquisition of data

Assume a database Q with various samples of data and is formulated by,

Q = {q1, q2, q3, ...gg, ..qh} (4.1)

where, h is total data and qg is gth data, of size M ×N

4.2.3 Mining of features

The input data qg with size M × N is termed input. Process optimisation is achieved by

the use of numerical mapping, entropy K-mer extraction, peak-to-noise ratio, skewness,

and kurtosis, as well as CpG-based feature mining. Discovering the essential features with

data is the goal of achieving each feature. The characteristics comprise data that needs to

be there in order to finish the job, but which doesn’t necessarily need to be looked at in

detail. Dealing with massive amounts of data is beneficial. It also helps with decreasing

the amount of data.

4.2.3.1 CpG based features

The explanation regarding the CpG based features [121] is examined below. The initial

CpG based feature CpG1 is evaluated by summing ratio C and ratio G in which the ratio

of nucleotide is evaluated by splitting the occurrences of frequency considering nucleotide

to the length of the sequence S . It is mathematically represented by,

CpG1 = ratioC + ratioG (4.2)

where, CpG1 indicates first CpG based features, ratioC is obtained by evaluating the ratio

of C nucleotide in sequence S and ratioG by evaluating ratio of G nucleotide in sequence

S. The second CpG based feature CpG is evaluated by taking the ratio of CG with respect

to ratioC×ratioG. To enhance the prediction of COVID-19, a combination of CpG based

53



CHAPTER 4. COOT-LION OPTIMIZED DEEP LEARNING ALGORITHM FOR COVID-19 POINT MUTATION RATE PREDICTION USING GENOME SEQUENCESSection 4.2

and similar features is performed. It is mathematically represented as,

CpG2 =
ratioCG

(ratioC × ratioG)
(4.3)

where, ratioCG is obtained by computing ratio of CG nucleotides in sequence S. Hence,

the CpG-based features is expressed as Y1.

4.2.3.2 Numerical mapping

Numerical mapping, like binary and integer, is performed. Here, convert the biological

sequence into the numerical sequence.

a) Binary representation The binary technique [140] is extensively utilized for nu-

merical mapping to convert DNA sequences. It splits the complete sequence of DNA

into four subsequences {XA, XG, XT , Xc} of the original length. The existence of

associated nucleotide in position is expressed by binary ’1’ or ’0’. Considering the

DNA sequence, the quadruple dimensionality of generated subsequences of binary

of generated binary subsequences can elevate computational overhead. The binary

representation is modelled as,

f(x) =

1, If nucleotidex exists at kth position.

0, Otherwise;where x ∈ A,G,C, T .
(4.4)

b) Integer method The illustration considering the integer method[140] is demon-

strated below. DNA sequences are encoded with an integer method considering

the real or integer values. The outcome obtained represents a discrete value sig-

nal. The integer technique provides values of integers that relies in {1, 2, 0.3} to

nucleotides C,A, T,G. This type of model reveals that A is higher compared to

T and G and is also higher compared to C. Another integer technique allocates

C = 3, A = 1, T = 4, G = 2 values for the boding biological bar. It is also utilized

for mapping nucleotides C,A, T,Gas. The integer method encodes the genome se-

quences with integer or real values. The integer representation is expressed by 3, 2, 3,
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2, 3, 0, 3, 2, 1, 1, 2. The numerical mapping-based features is expressed as {1, 2, 0.3}.

The integer method encodes the genome sequences with integer or real values. The

integer representation GAGAGTGACCA is expressed by 3, 2, 3, 2, 3, 0, 3, 2, 1, 1, 2.

The numerical mapping-based features is expressed as Y2.

4.2.3.3 Skewness, kurtosis and peak to average power ratio

Calculations are made for the characteristics of skewness, kurtosis, and peak-to-average

power ratio [141]. While processing signals and images, the Discrete Fourier Transform

(DFT) is used to produce characteristics based on the Fourier technique. The DFT of the

signal having a length He ∈ Df at frequency r are given by,

F [r] =
H−1∑
f=0

e[f ]ej
2π
f
rf , r = 0, 1, . . . , H − 1 (4.5)

where H refers signal length such that −1 ≤ r ≤ 0 , refers to frequency.

To enumerate DFT, the fast Fourier transform (FFT) is utilized, which represents the highly

effective process for evaluating the DFT with time series. Numeric modelling must be

utilized to map the GSP model’s genomic data. The feature extraction is considered in

each Fourier to transform representation and adapts PAPR, skewness, and kurtosis. Here,

the PAPR is formulated by,

PAPR =
max0≤r≤H−1(P [r])

1
H

∑H−1
r=0 P [r]

(4.6)

The skewness, kurtosis and PAPR-based features is expressed as Y3, Y4, Y5.

4.2.3.4 Entropy K-mer extraction

Entropy refers to the uncertainty measure that is linked using a probabilistic experiment. A

K-mer method[141] is utilized to produce a probabilistic model. Here, the mapping of each

sequence with the frequency of neighboring bases produces statistical data. Decomposing

a sequence into its K-mers for analysis allows this set of fixed-size chunks to be analysed

rather than the sequence, and this can be more efficient. K-mers are very useful in sequence
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matching.

Figure 4.2: DNA Sequence data encoding using the K-mer step by step process technique.

4.3 Results and Discussion

4.4 Experimental setup

To perform the experiments of the proposed model, we used a desktop computer (Core i7

3.2 GHz CPU, 16 GB RAM) with GeForce GTX TITAN X GPU equipped with 12 GB of

DDR5 RAM. This section contains an overview of datasets, pre-processing of data, cross-

validation and the parameters used in training the proposed model.

4.4.1 Dataset description

The projected COVID-19 prediction scheme utilized the NCBI virus dataset available at

[NCBI Labs](https://www.ncbi.nlm.nih.gov/labs). Here, the dataset has various kinds of

human coronavirus genomes or species. However, this research considered only some

specific species, such as HCov-NL63, HCov-229E, HCov-HKU1, HCov-OC43, MERS-
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CoV, SARS-CoV, SARS-CoV-2, and RaTG13. Moreover, all the selected species come

under the target class of COVID-19. In this dataset, each sequence contains more than

1000 genome sequences. In the first analysis, we used 200 genome sequences from each

file. Now, we are using 400 genome sequences from each dataset. 4.2 shows the types of

human coronavirus genomes processed in this research. First, we performed the analysis

using fewer sequences and now we have improved the analysis using more sequences.

Table 4.2: The number of covid-19 and non covid-19 samples in human metagenomic
datasets.

Species Genus Number of entires Target class
HCov-NL63 Alpha coronavirus 200 COV19-
HCov-229E Alpha coronavirus 200 COV19-
HCov-HKU1 Alpha coronavirus 200 COV19-
HCov-OC43 Alpha coronavirus 200 COV19-
MERS-CoV Beta coronavirus 200 COV19-
SARS-CoV Beta coronavirus 6 COV19-
SARS-CoV-2 Beta coronavirus 200 COV19+
RaTG13 Beta coronavirus 1 COV19-

4.4.2 One hot encoding

One hot encoding technique is used to convert DNA sequence to numerical vector as neu-

ral networks handles only numerical data. Specifically, consider a DNA sequence S with n

bases S = {b1, b2, b3, ....., bn}, Siϵ{A,C,G,T, N}. The encoded vector stored as an array (M)

of size nx5 as the following:

Ai,j =

1, if Si−1 = jthbase in (A, C, G, T, N).

0, otherwise.
(4.7)

The number of rows is equal to the number of bases and number of columns are equal to

different number of bases.
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4.4.3 K-fold cross-validation

Cross-validation is a statistical approach used to evaluate the quality of the proposed model,

which also helps to avoid underfitting and overfitting. In k-fold cross-validation, the dataset

is randomly divided into k, approximately equal size folds or groups. Iteratively, one fold

at a time is treated as a test set and remaining k-1 folds used for model training. We follow

a representative tactic to choose k values as 5 and 10 to evaluate the proposed model on

different benchmark datasets.

4.5 COVID’19 prediction with proposed LBCA-based DQNN

The prediction of COVID’19 is performed with LBCA-based DQNN. The DQNN training

is performed using LBCA and is devised by integrating LOA and Coot algorithm. The

DQNN model and training steps of LBCA is shown in Algorithm 4.1. This section pro-

vides a detailed explanation about anticipated LBCADQNN ’s results and its discussion

in relation to COVID-19 forecast. We have evaluated our method with benchmark eight

datasets.

4.5.1 Evaluation metrics

LBCA_DQNN is assessed based on the metrics, such as testing accuracy, TPR, and FPR.

Testing accuracy: It refers to the proportion of exact predictions to the overall count of

input values, and is illustrated as,

Aa =
αtp + αtn

αtp + αtn + βfp + βfn
(4.8)

where, αtp indicates the true positive, αtmdepicts the true negative, βfp specifies the

false positive and βfnindicates the false negative.

TPR: TPR or sensitivity is defined as the correctly identified affected patients, which
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Algorithm 4.1 Algorithm Steps of LBCA
1: Input: Z,V,M(q)
2: Output:M(q+1)
3: Initialize population
4: Evaluate fitness
5: if (rand < S) then
6: Z, Z_1 and Z_3 are random vectors
7: else
8: Z,Z_1, and Z_3 are random vectors
9: for (i=1toS); S-number of coots

10: Compute u using Eq. (39)
11: if (rand > 0.5) then
12: Update coot position by Eq. (48)
13: else
14: if (rand > 0.5) then
15: Update coot location
16: else
17: Update position of coot
18: for number of leaders
19: if (rand < 0.5) then
20: Update location of leader by an equation that satisfies Z_4 < 0.5
21: else
22: Update the leader’s location by the expression that satisfies condition Z_4 < 0.5
23: Return best solution
24: end

is expressed as,

Asen =
αtp

αtp + βfn
(4.9)

FPR: FPR or specificity is expressed as the correctly identified unaffected patients,

which is indicated as,

Aspe =
αtn

αtn + βfp
(4.10)

4.5.2 Assessment based on Confusion matrix

The confusion matrix is expressed as the matrix form of predicted output, and it portrays

the overall evaluation measure of a proposed model. Thus, the confusion matrix of the

newly modelled LBCA_DQNN scheme for COVID-19 prediction with point mutation as

shown in figure 4.3.

59



CHAPTER 4. COOT-LION OPTIMIZED DEEP LEARNING ALGORITHM FOR COVID-19 POINT MUTATION RATE PREDICTION USING GENOME SEQUENCESSection 4.5

Figure 4.3: Confusion matrix measurement for group-A and group-B

The confusion matrix has two classes: class A and class B. Here, the predicted percent-

age of class A is 44.11% and the predicted percentage of class B is 48.59%. Thereby, the

overall percentage of predicted outcomes is 92.70%.A Confusion matrix is an N x N matrix

used for evaluating the performance of a classification model, where N is the total number

of target classes. The matrix compares the actual target values with those predicted by the

machine learning model. This gives us a holistic view of how well our classification model

is performing and what kinds of errors it is making.

4.5.3 Performance assessment of LBCA_DQNN scheme for COVID-

19 prediction with Point mutation rate

In this section, The performance of the devised LBCA_DQNN scheme for COVID-19

prediction is assessed by changing the epoch with various neurons based on the efficiency

computation metrics.
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4.5.3.1 Performance assessment with respect to epoch using 200 genome sequences

Figure 4.4a shows the performance investigation of devised LBCA_Deep QNN scheme

based on testing accuracy with varying neuron count and epoch. Here, the testing accuracy

of LBCA_Deep QNN is 0.896, 0.908, 0.914 and 0.926 when the count of neurons is 50,

100, 200 and 300, and the epoch size is 40. The TPR of the LBCA_Deep QNN scheme is

computed by varying the epoch size and neurons, and is given in figure 4.4b. The TPR of

LBCA_Deep QNN is 0.860, 0.869, 0.872 and 0.885 when the epoch is 40 and the neuron

is from 50 to 300. The FPR attained by the LBCA_Deep QNN while selecting the epoch

is from 10 to 40 and the neuron is from 50 to 300 with four dissimilar count variations is

given in figure 4.4c. Here, the FPR of LBCA_Deep QNN is 0.824 for the neuron is 50,

0.832 for the neuron is 100, 0.843 for neuron is 200 and 0.851 for neuron is 300.

4.5.4 Performance assessment for epoch using 400 genome sequences

Figure 4.5a shows the performance investigation of devised LBCA_Deep QNN scheme

based on testing accuracy with varying neuron count and epoch. Here, the testing accuracy

of LBCA_Deep QNN is 0.917, 0.927, 0.937, and 0.941 when the count of neurons is 50,

100, 200 and 300, and the epoch size is 40. The TPR of the LBCA_Deep QNN scheme is

computed by varying the epoch size and neurons, and is given in figure 4.5b. The TPR of

LBCA_Deep QNN is 0.908, 0.916, 0.927, and 0.931 when the epoch is 40 and the neuron

is from 50 to 300. The FPR attained by the LBCA_Deep QNN while selecting the epoch

is from 10 to 40 and the neuron is from 50 to 300 with four dissimilar count variations is

given in figure 4.5c. Here, the FPR of LBCA_Deep QNN is 0.837 for the neuron is 50,

0.847 for the neuron is 100, 0.858 for neuron is 200 and 0.869 for neuron is 300.

4.5.5 Algorithmic methods for assessing the performance of LBCA_Deep

QNN

Various optimization algorithms used for assessing the efficacy of LBCA_Deep QNN is

Competitive Swarm Optimization (CSO) +DQNN[142]. Optimization algorithm (ROA)+DQNN
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(a)

(b)

(c)

Figure 4.4: Performance investigation in terms of a) Testing accuracy b) TPR c) FPR
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[142], LOA +DQNN [143] and Coot algorithm +DQNN [51].

4.5.5.1 Algorithmic assessment

A hybrid optimization model and DQNN-based comparative graph of several optimiza-

tion algorithms are shown in Figure 4.5a. The CSO+DQNN, ROA+DQNN, LOA+DQNN,

and Coot+DQNN in this case each reached the testing accuracy of 0.899, 0.900, 0.909,

and 0.912 when the swarm size was 20, while the LBCA_DQNN developed obtained the

testing accuracy of 0.926. Also, the LBCA_Deep QNN’s improved performance in terms

of testing accuracy is 2.93%, 2.82%, 1.84%, and 1.54%. The TPR of the LBCA_DQNN

for COVID-19 prediction is shown in Figure4.5b. When the swarm size is 20, the TPR

for CSO+DQNN, ROA+DQNN, LOA+DQNN, Coot+DQNN, and LBCA_DQNNis 0.845,

0.853, 0.864, 0.873, and 0.885. Moreover, LBCA_DQNNhas improved by 4.47%, 3.62%,

2.37%, and 1.35%. Figure 4.5c depicts the LBCA DQNN’s FPR graph. The FPR for

CSO+DQNN, ROA+DQNN, LOA+DQNN, Coot+DQNN, and LBCA_Deep QNN is 0.813,

0.824, 0.835, 0.840, and 0.851 respectively. As a result, the LBCA_Deep QNN’s improved

performance is 4.5%, 3.0%, 1.89%, and 1.289%.

4.5.6 Comparative Methods for Point Mutation rates with Swarm Genome

sequence size

The efficiency of devised optimal deep learning for COVID-19 detection is validated by

comparing it with conventional COVID-19 prediction techniques, such as KNN+CpG [121],

AKOM [144] and CNN+LSTM [144], RNN-based LSTM [100], intelligent computing

model [145].

4.5.6.1 Comparative analysis for learning set using 200 genome sequences

Figure 4.6a shows the analysis of the learning set with mutation rate. When the learning set

is from 60 to 90, then the mutation rate is reached 1.995, 1.987, 1.979, and 2.592, corre-

spondingly. Figure 4.6b demonstrates the analysis graph testing accuracy for LBCA_DQNN.

Here, the testing accuracy of KNN+CpG is 0.806, AKOM is 0.854, CNN is 0.897 RNN-
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(a)

(b)

(c)

Figure 4.5: Performance investigation in terms of a) Testing accuracy b) TPR c) FPR
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based LSTM is 0.900, CNN+LSTM is 0.907, and intelligent computing model is 0.916,

whereas the testing accuracy of LBCA_DQNN is 0.927 while the mutation rate is 0.075.

Thus, the progressed performance of LBCA_Deep QNN is 13.07%, 7.89%, 3.26%, 2.912%

2.16%, and 1.18%. Figure 4.6c the TPR of LBCA_DQNN for COVID-19 prediction. The

TPR of KNN+CpG, AKOM, CNN, RNN-based LSTM, CNN+LSTM, intelligent comput-

ing model and LBCA_Deep QNN is 0.798, 0.815, 0.852, 0.856, 0.861, 0.875 and 0.885

when the mutation rate is 0.075. In addition, the percentage improvement of LBCA_DQNN

is 9.914%, 7.991%, 3.711%, 3.27%, 2.757%, and 1.12%. The FPR attained by the LBCA_Deep

QNN is given in figure 4.6d. Here, the FPR of LBCA_Deep QNN is 0.851, whereas the

FPR of KNN+CpG, AKOM, CNN, RNN-based LSTM, CNN+LSTM, and intelligent com-

puting model is 0.798, 0.807, 0.813, 0.825, 0.827, 0.836, and 0.852, correspondingly when

the mutation rate is 0.075. Moreover, the percentage improvement of LBCA_DQNN is

6.358%, 5.317%, 4.503%, 3.16%, 2.930%, and 1.87%.

4.5.6.2 Comparative analysis for K-group using 200 genome sequences

Figure 4.7a shows the analysis of the K-group with mutation rate. When the K-group is

from 6 to 10, the mutation rate reaches 2.067, 1.995, 1.989, and 2.700, correspondingly.

Comparative graph of devised model based on testing accuracy. Here, when the mutation

rate is 0.075, the KNN+CpG, AKOM, CNN, RNN-based LSTM, CNN+LSTM, and intel-

ligent computing model and LBCA_Deep QNN achieved the testing accuracy of 0.806,

0.858, 0.879, 0.887, 0.909, 0.913 whereas the devised LBCA_DQNN acquired the testing

accuracy of 0.930. Besides, the progressed performance of LBCA_Deep QNN correspond-

ing to testing accuracy is 13.36%, 7.75%, 5.48%, 4.62%, 2.281%, and 1.82%. Figure4.7b

TPR of LBCA_DQNN for COVID-19 prediction. The TPR of KNN+CpG, AKOM, CNN,

RNN-based LSTM, CNN+LSTM, and intelligent computing model and LBCA_Deep QNN

is 0.800, 0.808, 0.822, 0.836, 0.860, 0.865 and 0.895 when the mutation rate is 0.075. In ad-

dition, the percentage improvement of LBCA_DQNN is 10.69%, 9.791%, 8.155%, 6.59%,

3.955%, and 3.35%. The FPR graph of LBCA_DQNN is shown in figure 4.7c. The FPR

of KNN CpG is 0.780, AKOM is 0.793, CNN is 0.807, RNN-based LSTM is 0.814, CNN

LSTM is 0.837, intelligent computing model is 0.847.Here, by modifying the K-group so
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(a) (b)

(c) (d)

Figure 4.6: Comparative investigation of LBCA_DQNN in terms of a) Mutation rate b)
Testing accuracy c) TPR d) FPR
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that the COVID-19 prediction scheme achieved a testing accuracy of 0.943. shows the

comparative graph of devised model based on testing accuracy.

4.5.6.3 Comparative analysis with respect to learning set using 400 genome sequences

Figure 4.7a shows the analysis of the learning set with mutation rate. When the learning set

is from 60 to 90, then the mutation rate is reached 0.061, 0.061, 0.074, 0.081, correspond-

ingly. Figure 4.7b demonstrates the analysis graph of testing accuracy for LBCA_DQNN.

Here, the testing accuracy of KNN+CpG is 0.832, AKOM is 0.846, CNN is 0.880, RNN-

based LSTM is 0.898, CNN+LSTM is 0.915, and intelligent computing model is 0.930,

whereas the testing accuracy of LBCA_ DQNN is 0.927 while the mutation rate is 0.941.

Figure 4.7c shows the TPR of LBCA_DQNN for COVID-19 prediction. The TPR of

KNN+CpG, AKOM, CNN, RNN-based LSTM, CNN+LSTM, intelligent computing model

and LBCA_Deep QNN is 0.805, 0.822, 0.860, 0.863, 0.907, 0.917, and 0.931 when the

mutation rate is 0.075.The FPR attained by the LBCA_Deep QNN is given in figure 4.7d.

Here, the FPR of LBCA_Deep QNN is 0.851, whereas the FPR of KNN+CpG, AKOM,

CNN, RNN-based LSTM, CNN+LSTM, and intelligent computing model is 0.814, 0.823,

0.830, 0.841, 0.844, 0.852, and 0.869, correspondingly when the mutation rate is 0.075.

The frequency of mutants will increase linearly with time. Thus an accurate estimate of

phenotypic mutation rate requires a long intervals between frequency measurements and

these experiments typically last for hundreds of generations. The frequency of mutants

will increase linearly with time. Thus an accurate estimate of phenotypic mutation rate

requires a long intervals between frequency measurements and these experiments typically

last for hundreds of generations.
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(a) (b)

(c) (d)

Figure 4.7: Comparative investigation of LBCA_DQNN in terms of a) Mutation rate b)
Testing accuracy c) TPR d) FPR
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Figure 4.8: Comparative investigation of LBCA_DQNN in terms of a) Mutation rate, b)
Testing accuracy, c) TPR, d) FPR

4.5.6.4 Comparative analysis for K-group using 400 genome sequences

The study of the K-group with mutation rate is shown in 4.7a. The mutation rate reaches

0.063, 0.063, 0.075, 0.083, 0.085, respectively, when the K-group is between 6 and 10.

The comparative graph of the model developed based on testing accuracy is shown in

4.7b. When the mutation rate was 0.075, the testing accuracy for the KNN+CpG, AKOM,

CNN, RNN-based LSTM, CNN+LSTM, intelligent computing model, and LBCA_ Deep

QNN was 0.819, 0.871, 0.892, 0.900, 0.922, and 0.927, respectively, while the developed

LBCA_ DQNN got the testing accuracy of 0.943. Also, the LBCA_ Deep QNN’s improved

69



CHAPTER 4. COOT-LION OPTIMIZED DEEP LEARNING ALGORITHM FOR COVID-19 POINT MUTATION RATE PREDICTION USING GENOME SEQUENCESSection 4.5

performance in terms of testing accuracy is 13.14%, 7.63%, 5.40%, 4.55%, 2.22%, and

1.69%. The TPR of the LBCA DQNN for COVID-19 prediction is shown in 4.7c. When

the mutation rate is 0.075, the TPR of KNN+CpG, AKOM, CNN, RNN-based LSTM,

CNN+LSTM, intelligent computing model, and LBCA_Deep QNN is 0.815, 0.823, 0.838,

0.862, 0.887, 0.892, and 4.7d0.922. Moreover, the LBCA DQNN showed improvements of

11.60%, 10.84%, 9.11%, 6.50%, 11.38%, and 10.84% respectively. The LBCA DQNN’s

FPR graph. When the mutation rate is 0.075, the FPR of the LBCA_Deep QNN is 0.851,

whereas the FPRs of the KNN+CpG, AKOM, CNN, RNN-based LSTM, CNN+LSTM, and

intelligent computing model are, respectively, 0.785, 0.798, 0.854, 0.869, 0.864, 0.871, and

0.895.

4.5.7 Comparative discussion Results with other models

The comparison of the LBCA_DQNN scheme based on evaluation metrics is shown in

Table 4.3 through adjusting the training set and K-group using 200 and 400 genome se-

quences, respectively. In this case, the devised method with more sequences improved the

prediction performance by adjusting the K-group so that the COVID-19 prediction scheme

obtained testing accuracy of 0.943, TPR of 0.922, and FPR of 0.895, respectively. At

0.819, 0.871, 0.892, 0.900, 0.922, and 0.927, the testing accuracy for traditional techniques

including KNN+CpG, AKOM, CNN, CNN+LSTM, and LBCA_Deep QNN was assessed.

The TPR was recorded at 0.815, 0.823, 0.838, 0.862, 0.887, and 0.892, while the FPR was

measured at 0.785, 0.798, 0.854, and 0.8. In addition to increasing convergence speed,

being simple, scalable, and efficient, the LBCA-based DQNN that was designed provides

an excellent balance between exploration and exploitation. We must determine the effec-

tive point mutation target size in order to convert point mutation rates to a per-base-pair

mutation rate.

4.5.8 Time complexity

The suggested method’s temporal complexity analysis is shown in Table 4.4 alongside com-

parisons to other methods, including CNN, RNN-based LSTM, CNN+LSTM, KNN+CpG,
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Table 4.3: Performance evaluation proposed model with other existing models on covid-19

Dataset Variations Metrics KNN
+
CpG

AKOM CNN RNN-
based
LSTM

CNN +
LSTM

intelligent
com-
puting
model

Proposed
LBCA-
based
DQNN

200 Learning
set

Testing
accuracy

0.806 0.854 0.897 0.900 0.907 0.916 0.927

200 Learning
set

TPR 0.798 0.815 0.852 0.856 0.861 0.875 0.885

200 Learning
set

FPR 0.798 0.807 0.813 0.825 0.827 0.836 0.852

200 K-group Testing
accuracy

0.806 0.858 0.879 0.887 0.909 0.913 0.930

200 K-group TPR 0.800 0.808 0.822 0.836 0.860 0.865 0.895
200 K-group FPR 0.780 0.793 0.807 0.814 0.837 0.847 0.862
400 Learning

set
Testing
accuracy

0.832 0.846 0.880 0.898 0.915 0.930 0.941

400 Learning
set

TPR 0.805 0.822 0.860 0.863 0.907 0.917 0.931

400 Learning
set

FPR 0.814 0.823 0.830 0.841 0.844 0.852 0.869

400 K-group Testing
accuracy

0.819 0.871 0.892 0.900 0.922 0.927 0.943

400 K-group TPR 0.815 0.823 0.838 0.862 0.887 0.892 0.922
400 K-group FPR 0.785 0.798 0.854 0.869 0.864 0.871 0.895

AKOM, and intelligent computing model. The time complexity of the proposed LBCA-

based DQNN is 0.216 sec, while that of the currently used techniques is 0.387 sec for

KNN+CpG , 0.358 sec for AKOM, 0.309 sec for CNN, 0.265 sec for RNN-based LSTM,

0.225 sec for, CNN+LSTM, 0.208 sec for intelligent computing model. Data used for

testing was used for training. Therefore, the percentage of correctly classified records is

defined as accuracy

Table 4.4: Time complexity for different algorithms with proposed model

Method Time (sec.)
KNN+CpG 0.387
AKOM 0.358
CNN 0.309
RNN-based LSTM 0.265
CNN+LSTM 0.225
intelligent computing model 0.208
Proposed LBCA-based DQNN 0.216

Time complexity = O(M(q)n×mq) (4.11)
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Where, M(q) is the population size, n×m is the dimension, and q is the iteration.

Table 4.5: Comparison proposed algorithm with other algorithm analysis

Metrics CSO +
DQNN

ROA +
DQNN

LOA +
DQNN

Coot +
DQNN

Proposed
LBCA-based
DQNN

Testing
accuracy

0.899 0.900 0.909 0.912 0.926

TPR 0.845 0.853 0.864 0.873 0.885
FPR 0.813 0.824 0.835 0.840 0.851

From the analysis using tables 4.3 and 4.5, The effectiveness of the prediction scheme

allowed the anticipated COVID-19 prediction scheme to achieve greater performance. Given

that the LBCA algorithm is used to optimise the expected outcome, the DQNN model pro-

duced the better prediction. The goal of the LBCA is to improve the outcome by optimising

the projected one. In addition, the LBCA algorithm took into account the benefits of both

the Coot method and the Lion optimisation algorithm.

(a) (b)

Figure 4.9: Loss and Accuracy Curves (Training and Validation)

4.5.9 Experimentation tests on Training and validation

A set of data that is kept apart from your training data is referred to as validation data. When

training a network, it is used to test how well it would function with data that hasn’t been

72



CHAPTER 4. COOT-LION OPTIMIZED DEEP LEARNING ALGORITHM FOR COVID-19 POINT MUTATION RATE PREDICTION USING GENOME SEQUENCESSection 4.6

explicitly used to train it. The accuracy graph is shown in Figure4.9a. At 100th iteration,

the testing accuracy and training accuracy of the proposed LBCA-based DQNN are 0.655

and 0.672, respectively”. The proposed LBCA-based DQNN’s loss curve is displayed in

Figure 4.9b. At 100th iterations, the training loss and testing loss of the proposed LBCA-

based DQNN are 0.345 and 0.327, respectively.

4.6 Summary

This chapter introduces a strategy for COVID-19 prediction based on genomic sequences.

The most important thing that this study did was to use hybrid optimisation and genome

sequencing to build a deep Coot lion that could forecast the spread of COVID-19. Three

steps make up this suggested model: extracting features, calculating the point mutation rate,

and predicting the spread of COVID-19. At the outset, Genome sequences undergo feature

extraction, which yields characteristics such as CpG based features, integer and binary

numerical mapping, and numerical mapping derived from the Fourier transform, which

includes features like as skewness, kurtosis, and peak to average power ratio. Furthermore,

the entropy feature is extracted using the K-mer extraction method. In order to merge the

features, the Bray-Curtis distance and DBN are employed. Before finishing, the COVID-19

forecast is made using Deep QNN. We train Deep QNN with LBCA. The suggested LBCA

is a hybrid of the Coot and Lion optimisation algorithms. The COVID-19 prediction is

examined in relation to the mutation spot. A test precision of 0.941, a true positive rate of

0.931, and a false positive rate of 0.869 all point to the proposed LBCA-based Deep QNN

outperforming older methods. In the future, other sophisticated real-time patient data will

also be considered when using genomic sequences to predict the spread of COVID-19. The

correlation between COVID-19’s dispersion across cities and nations and environmental

factors including humidity and terrain will be studied. By combining useful features with

Machine learning and Parallel computing methods, future research may investigate the

elements influencing the recovery status of COVID-19 patients in more depth.
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Chapter 5

DNA Sequence Clustering and

ERSIT-GRU for Repeat Detection in

COVID-19 Prediction

In this chapter, the Deoxyribo Nucleic Acid (DNA) sequences are collected, and the Slid-

ing Window (SW) process is performed. Next, it identified the different sequences in the

data, which are grouped utilizing the Needleman-Wunsch Jaccard K-Means () algorithm.

For every group, the sequence Association score is computed. The genome tree is con-

structed based on this score utilizing the Entropy Neighbor-Joining Algorithm (E-NJA).

Subsequently, feature extraction is performed, and using the Fisher Score (FS) approach,

the optimal features are selected. Meanwhile, utilizing one-hot coding, the initially aligned

data is encoded. Lastly, for predicting DNA Repeats variants in Covid-19, the encoded

vector and the optimal features are given to the Exponential Robust Scaling-Identity Tanh-

Gated Recurrent Unit (ERSIT-GRU). The experimental evaluation revealed that the pro-

posed model is found to be more efficient compared to the prevailing approaches.

5.1 Introduction

Severe pneumonia is caused by the rapid spread of Covid-19, which is also estimated to

generate a high impact on the healthcare system [9]. “By investigating chest X-ray im-
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ages, Computed Tomography (CT) scans, and whole genome sequences, the traditional

approaches identified CoV. Since molecular approaches can easily track CoV genes, they

have attracted attention recently and produced more satisfactory outcomes than CT scan

[121]. Hence, for corona disease prediction, Genomic sequencing by making molecular

genetics diagnoses is hugely important. The total sum of an organism’s complete genetic

potential, which is stored as an encoded sequence consisting of Thymine-T, Guanine-G,

Adenine-A, and Cytosine-C, is named the genome of an organism [146]. Individuals with

35 to 41 repeats might develop corona disease with mild symptoms, whereas it is almost

not possible for individuals with 29 to 34 repeats for developing the disease [147]. In ad-

dition, as the mutation is the basic process, which results in the emergence of a CoV’s new

variant, the SARS-CoV-2 virus has mutated continuously similar to any other virus since its

emergence [11], [148], [149]. From insertions, deletions, and alterations, the virus genome

can mutate into diverse variants [150]. But, owing to its mutational adaptation and mod-

ification in its genomic islands, there are massive complications in designing a prediction

system [96]. Hence, for analyzing the variants of CoV in an individual, identifying the

repeats and mutations in the genome sequence helps. For the prediction of CoV, the pre-

vailing studies used Deep Learning (DL) models [151]. However, in the model, only the

common type of CoV is considered and the multiple new variants are neglected. Hence, for

overcoming this, the work proposed ERSIT-GRU-based multi-variants of CoV prediction

based on DNA Repeats genome sequence analysis.

5.1.1 Problem Definition

Several issues in existing models are: In existing models, CoV was predicted with unstruc-

tured big gene data, which reduced the prediction accuracy. There are only CoV2, SARS,

and MERS CoV prediction were concentrated; but, the other variants were neglected in

the literature. The extraction of mismatched features from different genes was led by the

feature extracted directly from the genome sequence.

For solving these issues, a reliable CoV prediction model is developed in the proposed ap-

proach, and its contributions are:
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• The data are converted to a structured format with the ENJA technique to improve

accuracy.

• Using the ERSIT-GRU model, different variants of Repeats CoV are predicted.

• Sequences are identified and grouped using NWJ-K-Means to perform reliable fea-

ture extraction.

5.2 Proposed Approach

The proposed a genome variant-based disease prediction with DNA sequences using the

ERSIT-GRU technique is shown the figure:

Figure 5.1: Global prediction model for repeats in COVID-19 pandemic with Proposed
model

5.2.1 Sliding Window

By collecting the DNA data of various people, the proposed work begins. The collected

data is expressed as,

ℑ = t1, t2, t3, ....tn (5.1)
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Here, the gene sequence of the nth person is depicted as tn . The SW process is performed

in the input data (ℑ) for reducing the temporal complexity. Moving a window of a specific

length across the genome sample by sample and computing the statistic over the data in

the window are involved in the SW technique. For each input sample, the output is the

statistic over the window of the current sample and the prior sample. Lastly, the sequences

are processed and are denoted as ℑSW .

5.2.2 DNA Sequence K-Mer Identification

In this, to find the occurrence of exactly the same nucleotide in the same position in

aligned sequences ℑSW , sequence identification is performed. Same Uni-character, same

Bi-character, same Tri-character, same number of characters, Reversion, Inversion, Substi-

tution, Duplication, Insertion, Tandem, mirror repeats, and Deletion are identified and the

sequences (S) are expressed as,

Here, the qth sequence identified is depicted as sq . The sequence identification process

is specified in Table 5.1.

Table 5.1: Global analysis of repetitive DNA from Various DNA Repeat Sequences

Sequence Name Sequences Resulted Sequences
Uni-character TTCTGGAGAT A, T, G, C
Bi-character TTCTGGAGAT AA, TT, GG, CC
Tri-character TTCTGGAGAT AAA, TTT, GGG, CCC

Reversion TTCTGGAGAT TTGAGGTCAT
Inversion TTCTGGAGAT TTGTGGACAT

Substitution TTCTGGAGAT TTGACGAGAT
Duplication TTCTGGAGAT TTCTGGAGGAGAT

Insertion TTCTGGAGAT TTCTGGAAGTGAT
Deletion TTCTGGAGAT TTCGAT
Tandem TTCTGGAGAT TTCTTCTTCTGGAGAT
Mirror TTCTGGAGAT TTCTGGAGATTAGAGGTCTT

5.2.3 Sequence Matching

After sequence identification, using the NWJ-K-Means algorithm, all the sequences are

grouped. This sequence matching is for grouping the related genes. The K-Means algo-
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rithm executes effective clustering on big data. However, it has trouble with data having

varying sizes and densities. For solving this, the Needleman–Wunsch algorithm selects the

centroids and the Jaccard index is also used. Primarily, using the Needleman–Wunsch algo-

rithm approach, the sequences (S) form a number of clusters(k) , and the cluster centroids

are selected. The Needleman–Wunsch algorithm initializes the sequences in the form of a

matrix , which is formed with one column and row added to the length of the sequence.

Next, the matrix is filled with a fundamental scoring scheme. The score is 1 if two nu-

cleotides of the sequence at ith and jth position of the matrix are the same. Otherwise, the

score is filled as -1. This matrix filling with maximum score process is explained as,

Mi,j = max{Mi−1,j−1 + δi,j,Mi,j−1 + ϵ,Mi−1,j + ϵ} (5.2)

Here, the mismatch score is depicted as , and the gap score is given as . Lastly, for acquiring

the appropriate matching, a traceback step is performed. The sequence with the maximum

score is selected as the centroid (σ). Currently, based on the similarity, the other sequences

are assigned to the centroids, which is calculated utilizing the Jaccard index (λ) as,

λ(S, σ) =
|S ∩ σ|

|S|+ |σ| − |S ∩ σ|
(5.3)

Till the convergence is attained, repeat the steps. Hence, the grouped sequences are shown

as,

K = {k1, k2, k3, .........., kz} (5.4)

Here, the zth number of the cluster is depicted as k. The NWJ-K-Means’ pseudo-code is

represented as in algorithm5.2:

5.2.4 Sequence Tree Construction

Here, to get accurate features from the structural data, a sequence tree is constructed using

the E-NJA based on the score (Asc). For constructing phylogenetic trees with less time,

NJA is used. However, the undesirable features in it often assign negative lengths to some

branches. Hence, in conventional NJA, the Entropy technique is used. ENJA utilizes a
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Algorithm 5.2 Pseudo-code
Require: : Identified Sequences (S)
Ensure: Matched Sequences (k)

Begin
Initialize the Identified Sequences (S) and the number of clusters
while i = 1toq do

Elect the cluster centre using NW technique
initiate centroids (σ)
for each remaining data do

Compute similarity using Jaccard index

λ(S, σ) =
|S ∩ σ|

|S|+ |σ| − |S ∩ σ|

Assign Si to k with minimum similarity
Return number of clusters
End

distance matrix(dij) grounded on which the association scores are merged to construct a

tree for every gene. The criterion value (Cij)for acquiring the dimension is described as,

Cij = (h− 2)dij − di − dj (5.5)

Here, the number of genes is signified as h. The value (Cij) creates a new node that depicts

the structure’s root. Next, using the entropy technique , the branch lengths (hiu, hju) are

estimated as,

E(h) =
∑ 1

2
P (hi − hiu +

1

2
log(hj − hju) (5.6)

Here, P refers to probability. For every gene sequence, the tree is constructed based on

the lengths.

5.2.5 Feature Extraction

In this phase, the features, namely Pattern length, Mean, Standard deviation, Correlation,

Entropy, MRP Count, ORF Count, Palindrome count, Palindrome Threshold, Occurrences,
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etc., are extracted from the trees. The extracted features(ℜ)are expressed as,

ℜ = {r1, r2, r3, ..., rp} (5.7)

Here, the pth feature is symbolized asrp . The output generated from the ERSIT-GRU phase

is passed to algorithm, to find the frequency of each type of repeat. They are used to create

CSV (Comma-Separated Value) files containing features for different lengths (30, 40, and

50) of repeats. The CSV file contains nine columns, the first column has the filename along

with chromosome number, and the remaining eight columns have frequencies of different

repeats corresponding to that particular chromosome. In some chromosomes, if specific

repeats are not found, then the corresponding column value is set to zero.

5.2.5.1 Algorithm for feature extraction

In the algorithm, fN is the name of a file and freq is the number of lines in that file which

means the number of particular repeats present in that file. Hashmap M stores all file

names along with corresponding frequency. gK is a key extracted from Map M containing

sequence name sN and repeat number rN. rC is a value of a particular file extracted from

Map M. hash map stores sN and all rCs corresponds to that sN.5.3

5.2.6 Feature Selection

Here, for reducing the training time, the optimal features from are selected using the FS

technique. Features with the highest FS are selected by the approach, which also returns a

projection matrix of indicators. The FS process is described as,

FS(ℜ) = v{(−→m1)(
−→m2 + τρ)−1} (5.8)

Here, the total number of features is signified as v,τ is a regularization parameter, the

perturbation term is depicted as ρ, the between-class scatter and total scatter matrix are

symbolized as −→m1 and −→m2, respectively. Hence, the important features ℜim are selected.
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Algorithm 5.3 Feature Extraction()
Input: All files f generated by reduce function for all sequences.
Output: A CSV file fCSV , contains sequence name and frequency of all
repeats as columns.

1: for each file fi do
2: fN ←fileName(fi)
3: freq←numberOfLines(fi)
4: add tuple <fN ,freq> to a Map<String, String> M
5: Create hashMap<String,ArrayList> hM
6: for each tuple <fN ,freq> t of M do
7: gK ←getKey(t)
8: Split gK into sequenceName(sN ) and repeatNumber(rN )
9: if hM is not contains(sN ) then

10: add <sN , arrayList()> to hM
11: rC ←getValue(t)
12: add rC value of all repeats to the corresponding arrayList() of sN
13: add <sN , arrayList()> to hM
14: for each entry r in hM do
15: add a row r + 1 into a CSV file fCSV

16: return fCSV

5.2.7 Encoding

In the meantime, here, One-hot encoding is done in the dataℑsw. Since DL models can only

interpret numerical data, this technique transforms the categorical values into numerical

values. In this technique, a new variable is created for each level of categorical feature.

Each term is mapped with a binary variable with either 0 or 1, where 0 signifies the absence

and 1 depicts the availability of that category. This encoding process is expressed as,

O(ℑsw) = {(1, ifℑsw ∈ category, 0, otherwise) (5.9)

Hence, the strings in the data ℑsw. are processed and an encoded result O(ℑsw). is

acquired

5.2.8 DNA Repeats Prediction

Lastly, to predict the new variants, O(ℑsw) and ℜim are given to the ERSIT-GRU classifier.

The two inputs are merged and depicted as K. To allow the model to learn and train faster,
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GRU employs gating mechanisms. It has a problem with gradient explosion and overfitting.

To solve this, the Exponential-centric Robust Scaling is included in the prevailing GRU. In

addition, to overcome the slow convergence rate, identity Tanh activation is used. Figure

5.2 displays the architecture of ERSIT-GRU.

Figure 5.2: ERSIT-GRU

In ERSIT-GRU, each gate takes two inputs at each time (current input and previous

hidden state). Two primary gates operations are given below:

5.2.9 Clustering based on features

Clustering is applied to thousands of DNA sequences and similar ones are grouped together

based on patterns present in those sequences. Clustering performed directly on actual DNA

sequences is a time-consuming process because of the large length of sequences. Different

types of repeats are extracted and the frequency of each type of repeat is calculated for

every chromosome sequence. Thus, by considering frequencies of repeats as features, time

complexity can be greatly reduced. These features are then used for sequence clustering

with the ERSIT-GRU approach such as K-means. The eight types of repeats, we considered

in the proposed approach are defined as follows:
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5.2.9.1 Repeats Feature generation process

Definition1.a: Tandem Repeat (T ) is a pattern in a DNA sequence S defined over Σ = {A,

C, G, T} based on the following properties:

i T = Υ1Υ2Υ3. . . ,
ii |Υ1| = |Υ2| = |Υ3| = . . . , and Υ1 = Υ2 = Υ3 =. . . , and

iii 3≤|Υi|≤30, ∀i ≥1.

Short Tandem Repeat is defined in the same way as Tandem Repeat but the only difference

is that 1≤|Υi|≤2, ∀i ≥1.

Definition1.b: Tandem Repeat with interrupt (T̀ ) is a pattern in DNA sequence S de-

fined over Σ = {A, C, G, T} based on the following properties:

i T̀ = Ϋ1Ϋ2Ϋ3. . . ,
ii Ϋi ̸= Ϋj , (differing in one or more nucleotides), and |Ϋi| ̸= |Ϋj | (if insertion or

deletion of a nucleotide(s))(or) |Ϋi| = |Ϋj | (if updation of a nucleotide), and
iii 3≤|Ϋi|≤30, ∀i ≥1.

Short Tandem Repeat with interrupt is defined in the same way as Tandem Repeat with

interrupt but the only difference is that 1≤|Ϋi|≤2, ∀i ≥1.

Definition2.a: Mirror Repeat (ç) is a pattern in DNA sequence S defined over Σ= {A,

C, G, T}, where ç= !∂!R, |!| = |!R|, ! = (!R)R, and |∂| = 0 (or) 1.

Definition2.b: Mirror Repeat with interrupt (å)is a pattern in DNA sequence S defined

over Σ= {A, C, G, T}, where å= !∂!R, |!| = |!R|(if updation of a nucleotide), |!| ̸=

|!R|(if insertion or deletion of a nucleotide), ! ̸= (!R)R, and |∂| = 0 (or) 1.

Definition3.a: Pairing Repeat (Þ) is a pattern in DNA sequence S defined over Σ = {A,

C, G, T}, based on the following properties:

i Þ=αβ, |α| = |β| (≥ 1)
ii if αi = A then βi = T and vice versa, ∀i ≥1, and
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iii if αi = C then βi = G and vice versa, ∀i ≥1.

Definition3.b: Pairing Repeat with interrupt (þ) is a pattern in DNA sequence S defined

over Σ = {A, C, G, T}, based on the following properties:

i þ=γδ, |γ| = |δ| = n (≥ 1)
ii if γi = A then δi ̸= T and vice versa, ∃i ≥1, and

iii if γi = C then δi ̸= G and vice versa, ∃i ≥1.

Definition4.a: Inverted Repeat (£) is a pattern in DNA sequence S over Σ = {A, C, G,

T}, defined based on the following properties:

i £=µν, |µ| = |ν | = n (≥ 1)
ii if µi = A then νn-i+1 = T and vice versa, ∀i ≥1, and

iii if µi = C then νn-i+1 = G and vice versa, ∀i ≥1.

Definition4.b: Inverted Repeat with interrupt (ȷ) is a pattern in DNA sequence S de-

fined over Σ = {A, C, G, T}, based on the following properties:

i ȷ =φψ, |φ| = |ψ| = n (≥ 1)
ii if φi = A then ψn-i+1 ̸= T and vice versa, ∃i ≥1, and

iii if φi = C then ψn-i+1 ̸= G and vice versa, ∃i ≥1.

5.3 Computational Complexity Analysis

The time complexity of the proposed method in different phases is estimated in the follow-

ing subsections.

5.3.1 ERSIT-GRU for DNA repeats

In ERSIT phase, to check different types of repeats and to write them into a file, the com-

plexity involved is Time complexity for one gradient step for sequence O(T d2h + T dhdi)

length T, dhdi=hidden state and input dim. In number of time steps it takes for a neuron in

hash table to vanish is achieved by assuming that the probability of either obtaining a nega-

tive or a positive contribution to its activation at step t is 1. The computation of ht does not

involve any matrix multiplications between previous hidden-state ht-1, and the permutation
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operator can be applied in O(dh). However, since b does not require any information from

previous states, it can be applied in parallel to all time steps, thus greatly reducing the total

runtime. It assumes that the number of hidden units in each layer is O(di).

5.3.2 Generation features

To generate a CSV file, which contains the frequency of seven type of repeats in each chro-

mosome of differen species, the time complexity is O(N*M*C)+O((N2)*X)+O((N2)*X/R)+

O(N*X *D) = O(N*M*C+((N2)*X)+N*X*D), where C is maximum number of bytes in a

line of a file, M is number of lines in a file, N is total files, X is maximum size of a file, R

is number of repeats per file, D is total digits in repeats.

5.3.3 Clustering and overall complexity

K-Means is used to cluster genome sequences for evolutionary relationships among differ-

ent biological species. The computational(Time) complexity of the K-Means algorithm is

θ(n∗â∗1∗Î), where n = |S| is the number of genome sequences, â=|R| is a different type of

repeats, 1= |I| is number of iterations and Î=|K| is number of clusters. In Covid-19-Kmeans

the different types of repeats are constant (â=8). So, the worst-case time complexity of K-

Means is θ(n∗1∗Î). The overall time complexity of our proposed methods are O(N*S) +

O(N*M*C+((N2)*X)+N*X*D) + θ(n∗1∗Î).

5.4 Results and Discussion

Here, the proposed system’s experimental outcomes are examined, which were executed

on the working platform of PYTHON.

5.4.1 Dataset description

From the National Center for Biotechnology Information (NCBI) database, the CoV genome

dataset was gathered. The data consisted of the gene sequence of people with the features of

HCoV-NL63, SARS2-Cov2, HCoV-HKU1, MERS-CoV, HCoV-OC43, HCoV-229E, and
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SARS-CoV. The links for the dataset used are given below:

https://www.ncbi.nlm.nih.gov/nuccore/NC_002645.1?report=fasta

https://www.ncbi.nlm.nih.gov/nuccore/NC_019843.3?report=fasta

https://www.ncbi.nlm.nih.gov/nuccore/NC_004718.3?report=fasta

5.4.2 Analysis of mutational bias in different CoVs

We performed mutation analysis of three coronavirus (NL63, MERS-CoV, and 2019-nCoV)

DNA sequences and examine the transformations of slow codons and non-slow codons due

to mutations. A sample of mutations found in the various DNA sequences are shown in Ta-

ble 5.2. We identified and analyzed transition, transversion, silent, missense and nonsense

mutations at codon level in CDs that reveals the genetic diversity of various CoVs. The

mutation rate in 2019-nCoV is very less compare with MERS-CoV and NL63. In 2019-

nCoV, we pointed out silent and missense mutations whereas in other two CoVs nonsense

mutations are also recognized. In MERS-CoV and NL63 silent mutations are very high

compare with 2019-nCoV. The mutation rates in 2019-nCoV DNA strains of human col-

lected from countries like USA, Greece, Brazil, and Srilanka have higher than the China,

India, and South Africa. Due to point mutations at codon level the transformation of slow

codons to non-slow codons found to be high that may impact the protein synthesis rate.

The results provide evidence for genetic diversity and fast evolution of new coronaviruses.

5.4.3 Performance analys on each k-mer DNA sequence

In this segment, the proposed algorithms’ performance in contrast to the prevailing algo-

rithms is discussed.

The common sequences used among different datasets are shown in figures 5.3, 5.4,

5.5, 5.6, 5.7, 5.8. The figures depict several sequences achieved for varying lengths of

descriptors. Uni-character, Bi-character, Tri-character, Reversion, Inversion, Substitution,

Duplication, Insertion, Tandem repeats, Mirror repeats, and Deletion are the major se-
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Table 5.2: Mutations found in different biological DNA sequence 2019-nCoV, MERS-CoV,
and NL63.

CoV
Type

# Transitions:
Transversion
Mutations

Silent Mutations Missense Muta-
tions

Nonsense Muta-
tions

CoVs-Strain

2019-

1 : 2 - GTC(11082)→CTC,
TTC(28143)→CAC

- CHN/Yunnan-
01/2020_MT049951

5 : 0 GTG(18059)→TTT CCT(17746)→CTT,
TAT(17857)→TGT
etc.

- USA/WA3-
UW1/2020_MT163719

nCoV 1 : 0 - GCT(14407)→TTT - ZAF/R03006/2020_MT324062
3 : 0 GTT(18125)→GTC CCT(14407)→CCT,

GCT(14785)→AAT
- GRC/10/2020_MT328032

2 : 2 AAC(14804)→TTT,
GGT(17246)→CGG

GCA(11082)→TTA,
GGT(26143)→GTT

- BRA/SP02cc/2020_MT350282

1 : 0 - CCT(14407)→CTT - IND/GBRC1/2020_MT358637
2 : 1 - AGT(1396)→AAT,

GTA(11082)→TTA
- TWN/CGMH-CGU-

05/2020_MT370518
2 : 3 - AGT(1396)→AAT,

GTA(11082)→TTA
etc.

- LKA/COV38/2020_MT371047

MERS-

41 : 11 CTT(776)→CCG,
AAC(1832)→CCA
etc.

CAT(749)→CAG,
AAA(1453)→AAA
etc.

- HCoV-EMC_MH306207

CoV 43 : 5 AGA(3275)→AGG,
GTC(12683)→ATT
etc.

TTT(541)→TAT,
CAT(749)→CAG
etc.

- HCoV-EMC_MH013216

57 : 14 CCC(1832)→CCA,
AGA(3275)→AGG
etc.

CAT(749)→CAG,
TCG(1381)→TTG
etc.

CAG(13395)→TAG,
GAG(23553)→TAG
etc.

HCoV-EMC_MH454272

57 : 14 CCC(1832)→CCA,
CTG(6285)→TTG

CTA(652)→CAA,
CAT(749)→CAG
etc.

CAG(13395)→TAG,
CAA(29850)→TAA

2366_MH432120

57 : 14 CTG(7554)→TTG,
CTC(8501)→CTT

CTA(1903)→CCA,
TTG(2773)→TCG
etc.

GAG(23553)→TAG,
CAA(29850)→TAA
etc.

2363_MH395139

NL63

42 : 4 TGC(12974)→TGT,
GCC(13352)→GCT
etc.

ATT(17433)→GTT,
TCT(17620)→TTT
etc.

GAA(20799)→TAA Haiti-1/2015_KT266906

67 : 12 TGT(14591)→TGC,
CTC(14672)→CTT
etc.

TTT(414)→CTT,
TAT(2373)→CAT
etc.

GAA(20799)→TAA,
TTG(21478)→TAG

UF-1/2015_KT381875

70 : 12 GAA(12902)→GAG,
TGC(12974)→TTT
etc.

CCC(7740)→TTT,
CGT(9159)→TGT
etc.

GAA(20799)→TAA,
TTT(21478)→TAG

UF-2/2015_KU521535

57 : 14 GAA(12902)→GAG,
TGC(12974)→TGT

AAA(12902)→GAG,
TGC(12974)→TCT
etc.

AAA(20799)→TAA,
TTC(21478)→TAG

UF-2/2015_KX179500

21 : 46 CTT(16560)→TTG,
AAA(16616)→AAG
etc.

AGT(13293)→TGT,
GAT(14627)→GAA
etc.

- UNKNOWN-
CS124012_CS124012
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Figure 5.3: Repeat Sequence Illustration of SARS CoV Tor2

Figure 5.4: Repeat Sequence Illustration of HCoV-EMC 2012

quences considered. Thus, the gene structure of DNA can be well interpreted using such

figures.

Figure 5.9 shows that when compared to Bidirectional-LSTM (Bi-LSTM), LSTM,

and Recurrent Neural Network (RNN) classifiers, the GRU achieved superior accuracy

(96.47%) and precision (93.48%). However, the ERSIT approach in the GRU improved
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Figure 5.5: Repeat Sequence Illustration of 229E

Figure 5.6: Sequence Illustration of SARS-CoV1

the performance by 1.68%, 3.36%, and 2.84% than the traditional GRU. This exhibited the

ERSIT-GRU’s reliability on the proposed CoV prediction.

The F-Measure, specificity, and Negative Predictive Value (NPV) achieved by the ERSIT-

GRU are 96.12%, 96.48%, and 96.32%, which was a higher performance when compared

to the baseline GRU, BiLSTM, LSTM, and RNN approaches. Hence, Figure 5.10 proves
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Figure 5.7: Repeat Sequence Illustration of MERS- CoV

Figure 5.8: Repeat Sequence Illustration of SARS-COV-2

that the proposed technique correctly detects the normal and the new variants of CoV.

Table 5.3 displays the time taken to train the proposed and prevailing algorithms for

disease prediction. The ERSIT-GRU takes 5805ms, 16203ms, and 21006ms less time than

the GRU, LSTM, and RNN approaches. This proves that in the proposed scheme, the

training time was less.
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Figure 5.9: Accuracy, precision, and recall analysis

Figure 5.10: Experimental results outcome of F-Measure, specificity, and NPV

Figure 5.11 analyzes the Area Under the Curve (AUC) that signifies the quality of the

predicted outcomes by the proposed and the prevailing classifiers. In this, the proposed

model attained an AUV of 0.98, which shows its dominance over the other classifiers.

In Figure 5.12 , the Receiver Operating Characteristics (ROC) curve displays the cor-

rectness of separating the diseased and the normal classes by the proposed and conventional
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Table 5.3: Training time during execution process for different model with proposed model

Techniques Training time (ms)
Proposed ERSIT-GRU 77451

GRU 83256
Bi-LSTM 87457

LSTM 93654
RNN 98457

Figure 5.11: EAUC outcome for different models repeats in covid-19

techniques. The ROC characteristics achieved by ERSIT-GRU are 3.06% higher than the

GRU model. Thus, the accurate prediction of the disease and normal class by the ERSIT-

GRU technique is proved.

Table 5.4: Experimental results of error rate, FPR, FNR

Techniques Error Rate (%) FPR (%) FNR (%)
Proposed ERSIT-GRU 1.89 3.26 3.75

GRU 3.78 7.15 8.12
Bi-LSTM 7.48 12.48 11.84

LSTM 13.48 17.34 16.84
RNN 17.65 23.27 22.48

The error rate, False Positive Rate (FPR), and False Negative Rate (FNR) of the ERSIT-

GRU and other traditional classifiers are displayed in Table 5.4. In this, the RNN shows
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Figure 5.12: ROC analysis for different models with proposed model

higher FPR and FNR values; this makes it less reliable for disease prediction. However,

when analogized to other algorithms, the ERSIT-GRU achieved less error rate (1.89%),

FPR (3.26%), and FNR (3.75%).

Figure 5.13: Clustering time analysis for different models

The clustering time of the proposed NWJ-K-Means (Needleman-Wunsch Jaccard K-

Means) and prevailing K-Means, Balanced Iterative Reducing and Clustering using Hi-
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erarchies (BIRCH), Mean-Shift (MS), and Fuzzy-C-Means (FCM) are revealed in 5.13.

Among existing algorithms, the K-Means achieved less clustering time (37845ms). How-

ever, the NWJ-K-Means attained less time, which makes it more suitable for sequence

clustering.

Table 5.5: Sequence Tree Construction Time (STCT) of the proposed ENJA

Techniques STCT (ms)
Proposed E-NJA 4574

NJA 8654
BST 11245
AVL 14542
Splay 17658

Table 5.5 depicts the Sequence Tree Construction Time (STCT) of the proposed ENJA

and conventional NJA, Binary Search Tree (BST), Adelson-Velskys and Landis (AVL),

and Splay. The STCT of the E-NJA is 4080ms, 6671ms, and 13084ms lower than the NJA,

AVL, and Splay approaches. This exhibits the ENJA’s time efficiency during sequence tree

construction.

5.4.4 Comparative analysis

Here, the proposed scheme’s accuracy is analyzed with the existing schemes of [152],

[153], [154]. Figure 5.14 clearly shows that the proposed system predicted the new variants

of the CoV centered on the genome sequence analysis with a higher accuracy rate (98.15%).

However, the prevailing models in [152], [153], [154] predicted the disease variants with

2.05%, 0.19%, and 16.85% less accuracy than the proposed model”. This clearly proved

the efficiency of the proposed model gives the best model compared with other existing

models. In the future will also take into account other advanced real-time patient data.

We will investigate the relationship between temperature, humidity, and topography and

COVID-19’s distribution over cities and countries. Future studies may further look at the

factors impacting the recovery status of COVID-19 for diffrent types of DNA repeats.
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Figure 5.14: Comparative analysis of existing models with Proposed model

5.5 Summary

In this chapter, an ERSIT-GRU model is proposed for predicting new Repeats variants of

CoV. Here, and E-NJA techniques were proposed for sequence grouping and sequence tree

generation. Next, using the ERSIT-GRU algorithm, the disease type was classified. On

the DNA dataset, the proposed approaches were experimentally evaluated. During the ex-

perimental analysis, the proposed ENJA and NWJ-K-Means performed their operations in

4574ms and 32564ms. Subsequently, the proposed ERSIT-GRU achieved higher accuracy,

precision, recall, f-measure, NPV, and specificity with less training time (77451ms). Lastly,

the proposed model’s superiority is proved by the comparative analysis. The sequences of

the gene are analyzed manually in this work, which is a time-consuming process. Hence,

in the future, the unsupervised approach can be included in the proposed system for en-

hancing Coronavirus repeat disease prediction.
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Chapter 6

Genome-wide Analysis for Tandem

Repeat and Substitution Errors to

Detect Covid-19 using Harris Hawks

Optimization

Here, we assess the efficacy of our model, Harris hawks optimisation (HHO), by measuring

its accuracy, F1-score, recall, precision, and specificity, among other indicators.Our Model

stands out from the others because it achieves a 97 accuracy rate, which is higher than any

previous work on the highly diverse COVID-19 dataset. The experimental results show

that our method outperforms the competing algorithms. Research has demonstrated that

the COVID-19 genome has the Tandem Repeat pattern AATCC more frequently than any

other pattern, making the proposed methodologies essential options for identifying disease

Tandem repeat patterns in the SARS-CoV-2 genes.

6.1 Introduction

Repeated DNA sequences that are next to one another in a genome are known as tandem

repeats (TRs). Deoxyribose nucleic acid (DNA) is the building block of all life on Earth. It

contains the instructions for creating and maintaining life. The instructions are expressed
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Figure 6.1: Short Tandem Repeat sequence of AGAC

Figure 6.2: Located one after another, Short Tandem Repeats

using materials that are generated from DNA or RNA. Adenine (A), Cystosine (C), Gua-

nine (G), and Thymine (T) are the four letters that make up DNA, which is also called

the nucleotide bases [155]. The four nucleotide bases are organised in what are known as

genome sequences. The DNA sequence is another name for the DNA nucleotides that make

up the genome. The sample Genome sequence is AGCGTTGATCGTTGACGAGA. Bioin-

formatics’ most important subfield, dealing with the study of living organisms, is genome

sequence analysis. Repeating DNA strands of varying pattern sizes make up the human

genome [156], [120]. When the number of repeats in a TR area grows in succeeding gen-

erations, this process is called an expansion of TRs [157]. Mutation in Genome sequences.

The term ”mutation” is used to describe alterations to the DNA sequence, such as the addi-

tion, deletion, or replacement of nucleotide bases[158]. SARS-CoV-2 is a member of the

Coronaviridae family, which also includes MERS-CoV and SARS-CoV-1 [159], [160]. All

humans have STRs of variable length at specific known locations in the genome (known as

loci). The technique of DNA profiling involves analyzing DNA evidence to identify poten-

tial culprits, as every person’s DNA is unique.

The DNA sequence may be accidentally duplicated and inserted after the original sub-

string in a mistake known as a tandem duplication [120]. As an example, we may get

ACGCGT from ACGT. The substring being copied, 2 in the previous example, is then

Figure 6.3: Short Tandem continuously Repeated in the sequence
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duplicated. There have been studies on both fixed-length duplication[161], [117] and

bounded-length duplication [11], [117], where the duplication length is constrained from

above [162] suggested error-correcting codes for duplications with a maximum length of

3, which is the most relevant case to this research [115]. Demonstrated that these codes

had an asymptotically optimum rate. Any time a symbol is added to, removed from, or

replaced in a sequence, is known as an edit event. The literature has examined substitution

errors in conjunction with fixed-length duplication errors, such as those that occur only in

the inserted copies (representing the copying mechanism’s noisiness during duplication)

[163], [164] and those that can happen anywhere in the string [165]. We focus our atten-

tion on fixing mistakes that may emerge from channels with many short-duplication faults

(those with a length of little more than three) and a single edit error (that can happen any-

where in the string). Taking into consideration a single editing mistake gives significant

insights about the interactions between to explore the general case of t edit mistakes, as

well as edit and duplication errors. The input ACG may be transformed into the follow-

ing basic example using this channel: ACG → ACCCG →ACTCG → ACTACTACTCG

→ACTCTACTACTCG. The underlined copies indicate duplication, and the symbol T is a

consequence of copies of the substitution C → T. An infinite portion of the output word

may be impacted by the mistakes since an indefinite number of duplication’s are conceiv-

able; for instance, the replacement symbol may appear several times. But we prove that

the harmful consequences of the mistakes may be contained by building and preparing the

channel’s output appropriately, based on the notion that brief tandem duplication’s [165].

To start, we’ll build error-correcting codes that can fix a replacement and a number of short

duplicates. We will next demonstrate that by changing deletion and insertion mistakes to

substitution errors, the same code may fix an edit error and an unlimited number of du-

plicates. The DNA sequence of a pattern that repeats perfectly and sequentially is called

an exact tandem repeat. Several techniques have been devised to identify such repetitions.

Some examples of such work include a programme that can identify pre-specified patterns

and an efficient parallel algorithm provided by Tandem repeat [163]. Additionally [117]

presents a vectorizable technique. Since events like mutations, insertions, and deletions

will make the copies defective, most repetitions are approximate rather than accurate. Ap-
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proximate tandem repeats (ATRs) detection is therefore a major area of concentration in

the present study. The pattern size of microsatellites, which are also called short tandem

repeats (STRs), is limited to 1–6 bp, and their length is less than 150 bp. In the human

genome, there are more than 10,000 STR sequences that have been published so far. Anal-

ysis of short tandem repeats (STRs) has garnered significant interest in bioinformatics and

forensics since the late 90s. Segments that have two or more nearly identical copies of a

nucleotide sequence are called tandem repeats [117]. The repeat unit (or sequence pattern)

TGGCA occurs three times throughout a STR, and the pattern breadth may be anything

from two to sixteen base pairs (bp). One use of STR is genetic fingerprinting [166]. Their

link to hereditary illnesses has also been the subject of recent studies [167]. For instance,

a trinucleotide pattern known as CAG may cause an explosion in the copy number, leading

to disorders like Huntington’s disease that impact muscular coordination. We expand upon

STR by introducing SAR, which permits gaps between adjacent repetition units and gen-

eralises it. Mutations and mistakes in genetic modifications during evolution are common

causes of such inter-unit insertions.

Multiple errors occurred within one strand: We concentrate on fixing mistakes that

may result from channels having one unconstrained substitution error and several short

duplications, or duplications of length no more than three [168], [169], [118]. “When an-

alyzing the general case for tandem substitution mistakes, it is useful to consider a single

substitution error since it gives key insights into the interplay between substitution and du-

plication errors. If we take ACG as an example of an input and change it to ACTCTACTCG,

we can see that the symbol T appears because of several instances of the substitution C→ T.

There is no limit to the number of potential duplications, therefore the wrong symbol may

appear several times in the output word and mistakes may impact an unlimited number of

segments.

In recent years, illnesses have been linked to atypical STR enrichment patterns. Dinu-

cleotide GA repeats of lengths 13 to 16 (in the SH2D2A gene) are more common in MS

patients compared to controls, according to research by [8]. When comparing the allelic

frequency distribution of CpG-CA repeat lengths between controls various diseases like

Alzheimer’s patients, another study10 found a change. In a similar vein, Myers11 con-
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Figure 6.4: a. A substitution operator, M̂ S : T → C. The residues before and after the
substitution are in boldface in blue and red, respectively. b. An insertion operator, M̂ I 6;3,
and a fill-in operator, F̂ 6; A;C 1/2. The inserted sites are shaded in cyan. c. A deletion
operator, M̂ D 2;4

firmed that the gene typically contains the trinucleotide sequence CAG around 20 times,

but that the onset of Huntington’s disease requires an approximate doubling of repetitions

to 40 or more. For example, in SCA[170] hexa nucleotide GGCCTG repeats often vary

from 5 to [171], [172] for SCA12 trinucleotide CAG repeats typically range from [173],

and for SCA10 pentanucleotide ATTCT repeats typically range from [174]. Viewers inter-

ested in comprehensive summaries of the existing literature on STRs may consult the cited

works [174], [175]. According to these findings, the frequency of di- and tri-nucleotide

repeats varies across genes associated with health and sickness. Therefore, STR frequency

patterns might serve as genetic identifiers[163], examined in dinucleotide frequency trends

in whole-genome sequences from over 1300 bacterial species. This analysis was conducted

in quite recently. The AC, AG, CA, CT, GA, GT, TC, and TG dinucleotides are more con-

sistently found in different genomes than in other dinucleotides, which differ significantly

among species [117] conducted an independent analysis of 22 coding markers often used

in DNA species categorization. Trinucleotides ATG, TAA, TAG, and TGA were part of

these characteristics; the last three trinucleotides acted as stop codons. Characteristics that

are effectively utilised in C. The authors of the study claim that Elegans isn’t always a good

fit for humans. Prior research indicates that ATA, ATT, and TAT are secondary structures,

whereas TTA is preferred by alpha helix secondary structures. On the other hand, trinu-
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cleotide AAT thrives in beta bulges, which develop when a beta sheet’s typical hydrogen

bonding is disrupted. Protein synthesis can be stopped by trinucleotides such as TAA, TAG,

and TGA. Our initial examination of the approach suggests that genes associated with neu-

rological illness do not randomly exhibit an AA, AT, TA, TG, or TT enrichment pattern.

We show that the trinucleotides in issue are more prevalent in genes that encode families

of neurological diseases compared to all human genes. Protein misfolding causes the cre-

ation of beta sheets and the breakdown of alpha helices, as previously shown in this and

other significant findings[176]. Some neurological illnesses have also been linked to gene

alterations that cause premature termination codons [177], because these dinucleotide se-

quences are part of the trinucleotide sequences that are involved in protein misfolding and

are preferred in secondary structures [177]. Given that trinucleotide repeat patterns[178]

may represent possible genetic traits in neurological disease family genes, we chose to ex-

amine their frequency distribution in relation to premature termination codon mutations

and, by extension, certain neurological illnesses.

6.1.1 Preliminary Definitions and Notations

Here you will find definitions of the terms and symbols that will be utilised throughout

the project. However, that section provides a more comprehensive definition of the lan-

guage that is relevant to each component. In our work, we exclusively handle trinucleotide

sequences. Other forms of repeating sequences include hexa-, penta-, tetra-, and mono-

nucleotide repeats. The terms repeat unit (RU) and STR are often used interchangeably.

Each part of a STR is most commonly referred to as a trinucleotide (RU).In addition, be-

cause an RU possesses three nucleotides of a STR-dependent genetic characteristic, there

are 64 possible pairings (43= 64). The RC of an RU is the total number of times it shows

up in the subsequent parts. A repetition sum (RS) is produced for every RU by adding

up the RCs [178]. Additional classifications for RCs include maximum repetition count

(max RC), lowest repeat count (min RC), and most frequent (most RC), all of which in-

dicate different repeat frequencies[179]. Lastly, a repetition is the term used to describe

the growth of an RU based on the RC. Here we will use a gene sequence as an example
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to show the terminology and their relationships as shown6.4 . There are 64 nucleotides in

the sequence, and two RUs, CAT and AAG, are present[180] due to their more than three

repetitions. There are a number of recommended cutoffs for the repetition count in the lit-

erature; in this case, we are using the four-point minimum that Lai and Sun[181] proposed

for humans. Furthermore, further statistical investigation on human and neurological genes

revealed that almost all repetition units had a minimum RC of four. Thus, RU CAT at

positions i = 0, i = 21 and i = 34 have RCs of 6, 4 and 4, respectively. In addition, RC

ranges from 4 to 6, with 4 being the most common. The result of combining RU CAT

with the RCs is a 12-repeat sequence and an 18-repeat sequence (CATCATCATCATCAT-

CAT), (CATCATCATCAT). Next, RU CAT’s RS is 14. It may be inferred that this gene

exhibits higher amounts of RUCAT (indicating strong CAT expression) and lower levels of

RU AAG (has low expression levels of AAG).

6.2 Materials and Methods

In this section, we collected datasets and introduced various parameters.

6.2.1 Data collection

One of the most important sources of diverse coronaviruses is the 2019 Novel Coronavirus

Resource (2019nCoVR) maintained by China’s National Centre for Bioinformation [181].

The information used in this study comes from several sources, such as CNCB/NGDC, GI-

SAID, NMDC, NCBI, [182]. These data Centers are all fully integrated with 2019nCoVR

(NGDC). In addition, it provides visualization tools for the results of genome variation

studies using all of the collected 2019-nCoV strains and compiles a wide variety of relevant

material for scientific dissemination, including scientific literature, news, and media stories.

The set contains a large number of human coronaviruses, such as [183], SARS-COV-2,

NL63-CoV, HKU1-CoV, AlphaCoV, BetaCoV-1, MERS-CoV, and 229E-CoV. With the

1000 viral sequences[184], we supplemented our analysis with 592 genome sequences

from other human coronaviruses. All human coronavirus genome sequences, apart from

SARS-CoV-2, are available for download[117]. To guarantee that balanced and unbalanced

102



CHAPTER 6. GENOME-WIDE ANALYSIS FOR TANDEM REPEAT AND SUBSTITUTION ERRORS TO DETECT COVID-19 USING HARRIS HAWKS OPTIMIZATIONSection 6.3

datasets are prepossessed is done. To eliminate duplicate sequences, [117] we created some

Python scripts to remove genomic sequences with the same accession number. For each

Tandem Repeats, sequences containing any additional nucleotides outside A, T, C, and G

were disregarded since their presence would obscure the genetic signature encoded in din-

ucleotide frequencies, datasets collected from NCBI. The details of data sets are shown in

the table 6.1www.ncbi.nlm.nih.gov/nuccore/1798174254, https://gisaid.org/CoV2020. The

reference genomes and test sequences of various CoVs for evaluating the mutational bias

are collected from NCBI. There are 13 human slow codons (ACC, AGT, CAT, CCC, CGC,

CTC, GAT, GCC,GGT, GTC, TCC, TGT, TTT) [185]. By the combinations of these 13

slow codons, a total of 169 slow di-codons were formed. For example, by combing ACC,

AGT, and CAT we can form six slow di-codons ACCAGT, AGTACC, ACCCAT, CATACC,

AGTCAT, and CATAGT. Two consecutive slow codons can reduce the translation rate ex-

tremely.

Table 6.1: Data Sets for Tandem repeats in covid-19 for both Positive and Negative

SlNo. strains No. of Samples Name of the Strain
1 HCov-229E 30737 Human coronavirus Common
2 HCoV-NL63 27055 Human coronavirus Infection
3 HCoV-OC43 29604 Mild Lower Respiratory Infection
4 MERS-CoV 27553 Middle East Respiratory Syndrome
5 SARS-CoV 30119 Severe Acute Respiratory Symdrome
6 2019-nCoV 29711 Novel Coronavirus acute respiratory disease
7 SARS-CoV-2 29797 COVID-19+

6.3 Problem Definition

As a binary issue, we can find the sequence motifs of the SARSCoV2 gene and where it

is located among other coronaviruses. The majority of prediction tasks in bioinformatics

and computational biology can be conveyed as classification problems, like binary (two-

class) or multi-class classification tasks[176]. Designing a biological sequence problem is

a skill that requires for building an efficient bioinformatics classifier. Here, identification
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of SARS-CoV-2 can be established as a binary classification problem, with dataset D of N

samples D = D = xi, yiNi = 1 , xi indicates feature set, that could be considered as a 4

X N dimensional matrix. The four nucleotides that make up DNA sequences are adenine

(A), guanine (G), cytosine (C), and thymine (T) [186]. These four base pairs make up the

sequence A, G, C, T. These base pairs can be represented by the one-hot vectors [1, 0, 0, 0],

[0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1] respectively. The class label yi is 1 for SARSCoV2

and 0 for all other sequences. These sequences are similar to the other sequences in the

Coronavirus family , classical analysis of them may produce inaccurate results. Among the

several Coronavirus gene sequences, the primary goal of this study is to accurately predict

the SARS-CoV-2 gene sequence. We also found the frequent patterns which are induced in

the SARSCoV2 sequences.

6.3.1 Standard Harris Hawks Optimization (HHO) Swarm intelligence

This optimization algorithm is invented by the inspiration of Harris’ Hawks hunting mech-

anism. One notable predatory bird that still lives in somewhat stable populations in the

southern part of Arizona, USA, is the Harris’ Hawk [11], [8]. The two primary steps of

HHO, like other meta-heuristics, are diversification (exploration) and intensification (ex-

ploitation). This structure is reminiscent of the way Harris hawks adapt their assault to

different prey conditions [135].

6.3.1.1 Exploration phase

Based on the prey’s escape energy E, the HHO algorithm may switch between exploration

and exploitation [129]. It is possible to define the mathematical model for the prey’s energy

using the equation

E = 2E0(1− t/T ) (6.1)

E0 varies at random within the interval with each iteration, where E0 is a variable in

HHO, T is the total number of sequences, and t is the number of errors that happened in

each sequence. A linear relationship between number of iterations and the reduction of E

is required for this.

104



CHAPTER 6. GENOME-WIDE ANALYSIS FOR TANDEM REPEAT AND SUBSTITUTION ERRORS TO DETECT COVID-19 USING HARRIS HAWKS OPTIMIZATIONSection 6.4

6.3.1.2 Intensification phase (exploitation)

Harris hawks drop down unexpectedly to get their prey. On the other hand, the victim may

easily get away from the danger. Here is how r reflects the prey’s chance of evading attack:

Escape capability =successfully DNA Changes , Un successfully DNA Changes

6.4 Proposed Approach

In this section, we introduced the proposed model architecture, and evaluation metrics.

6.4.1 Proposed Architecture

The stream of bytes vector of size NxN that integrated an N-length Genetic code with lo-

cations for the strands A, G, C, and T serves as the basis for this architecture. A one-hot

encoding approach is used to transform the input DNA sequences to numerical informa-

tion since HHO can only interpret numerical data. This method, as described in reference

[187], is used to transform the text into numerical data that can be processed by the net-

work. The features in the suggested Frequency-based Feature [188] are divided into the

following categories according to the characteristics of the extraction techniques: charac-

teristics according to storage Based on Base(s) Frequency and Features.

6.4.2 Features based on storage

Different species have different genome sizes and lengths, which will be useful for catego-

rization. The length and size of the genome are the two characteristics that make up this

category. Both of these characteristics are connected to one another in some way. DNA

storage is potentially less expensive, more energy-efficient and longer lasting. Studies show

that DNA properly encapsulated with a salt remains stable for decades at room temperature

and should last much longer in the controlled environs of a data center.
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Figure 6.5: Proposed Architecture for Normal, PreMutated, Diseased

Figure 6.6: Clinical features of COVID-19. Typical symptoms of coronavirus disease 2019
(COVID-19) are fever, dry cough and fatigue and in severer cases dyspnea, causes Many
infections, in particular in children and young adults.

106



CHAPTER 6. GENOME-WIDE ANALYSIS FOR TANDEM REPEAT AND SUBSTITUTION ERRORS TO DETECT COVID-19 USING HARRIS HAWKS OPTIMIZATIONSection 6.4

6.4.3 Length

Assume if ’S’ is the sequence of the genome and ’B’ is a base in that sequence. The input

Genome sequence’s length is referred to as length. A human DNA can have up to 500

million base pairs with thousands of genes.

Length(S) = Totalnumberofbases(B) (6.2)

6.4.4 Size

The sequence of nucleotides makes up a genome. The length of the sequence is directly

proportional to its size when represented in terms of bytes as each base requires 1 byte for

storage. The suggested feature extraction method uses Equation 3 to convert sequence size

to KB (Kilo Bytes)(1 Kilo Byte =1024 Bytes).

Si = Length(S)/1024 (6.3)

Table 6.2: Dataset Size (KB)length for tandem repeats in Covid-19

S.No. Features
HCoV-
229E

HCoV-
NL63

HCoV-
OC4

MERS-
CoV

SARS-
CoV

2019-
NCoV

SARS2-
CoV2

1 Length 30737 27055 29604 27553 30119 29711 29797

2
Size
(in KB) 30 26 29 27 29 29 29

6.4.5 Features based on Base(s) Frequency

N Count, Base Count, Dimer Count, and Codon Count are all traits that fall into this cate-

gory.

N Count: Genome sequences consist of a Non template base ’N’ in addition to

the four nucleotide bases(A,C,G and T). The feature N Count (NC) refers to the

number of occurrences of Non-template base (N) in the Genome sequence as given
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in equation 6.4

(S) = numberofoccurencesofBaseN (6.4)

BaseCount: The number of times each nucleotide base (A, C, G, and T) appears in

the sequence of a genome is called the base count. The BC(S) is then calculated in

the following way: Bases = A,C,G,T.

Dimer Count: A dimer is formed when two separate bases come together. The

Dimer Count (DC) feature counts how so many times each potential dinucleotide

combination appears in the genome sequences.There are total of 16 Dimers in a

Genome sequence. Dinucleotides ={ AA, AC, AG, AT, CA, CC, TT, CC, TT,}.

Codon Count: To produce a codon, three separate bases must come together.which

is the total number of trinucleotide pairings found in the sequence. There are total of

64 codons in a Genome sequence. Codons={ Number of all possible combinations

of trinucleotides }

Codons={ AAA, AAC, AAG, AAT, CCA, CCC, CCG, CCT, TTG, TTT }.

6.4.6 Features based on arrangement of patterns

Most Repeat Pattern Count (MRP): The genome sequence has several instances of MRP,

which is referred to as the Most Repeat Pattern Count. Set to 4, the MRP count indicates

the frequency of the most repetitive tetra nucleotide pattern inside the sequence.

Tetra nucleotides = AAAA, AAAC, AAAG, AAAT, CCCC, CCCA, CCCG..., TTTT

MRP(S) = Number of occurrences of most repeat tetra nucleotide pattern.

6.4.7 Exon extraction

Genes are the basic physical and functional units, act as instructions for creating a protein

and are composed of Exons and Introns. Exons are the protein-coding regions of the gene;

they are interleaved with non-coding regions called introns. Exon detection is crucial for

proper disease detection and diagnosis. The existing tools for exon detection are Genome

Scan [189], Genscan server [190], Gene finder [112], Augustus server [191], Ensembl

[192], National Center for Biotechnology Information (NCBI) gene table [193], and spidey
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Table 6.3: Tandem Repeat for Base count and Dimer count

S.No. Features
HCoV-
229E

HCoV-
NL63

HCoV-
OC4

MERS-
CoV

SARS-
CoV

2019-
NCoV

SARS2-
CoV2

K-mer-Base -Count
1 A 7458 7985 7412 7458 7986 9854 8547
2 C 7724 9854 8231 8741 9471 7414 7654
3 G 7584 7123 7321 7064 7145 7954 7658
4 T 9851 6854 8744 9888 8744 8574 8414

K-mer-Dimer -Count
5 AA 1243 1244 2415 2724 2912 1811 2144
6 AC 1471 2144 1247 2144 2021 1877 1421
7 AG 1244 1022 2214 1054 1035 877 988
8 AT 655 688 621 654 1111 587 501

[194]. Genome Scan [189] is a program for identifying the exon-intron structures of genes

in genomic DNA sequences from a variety of organisms, with a focus on human and other

vertebrates. NCBI gene table generates the index range and length of exons in the gene

sequence and also contains index range and length of coding regions as shown in Table 6.4.

Table 6.4: Tandem Repeat Gene for mRNA NM_0020232.1 of AFF2 gene
Exon Range Coding Range Exon Coding Intron
1-528 482-528 526 47 150854
151383-151515 151383-151515 133 133 9776
161292-162152 161292-162152 861 861 147107
309260-309304 309260-309304 45 45 27726
337031-337117 337031-337117 87 87 5232

6.4.8 Cross-validation

Cross-validation is a model quality evaluation method, which is better than the residual

evaluation approach, useful to avoid overfitting and underfitting. K-fold cross-validation

randomly divides the dataset samples into k, approximately equal size folds or groups.

Iteratively, one fold at a time treated as a test set and the model is trained on remaining

k-1 folds. We follow a representative tactic to choose k values like 10 to evaluate the HHO

model on different human Covid-19 datasets experiments. We also evaluated the proposed

model with Leave-One-Experiment-Out (LOEO) cross-validation. We repeat the LOEO

approach, by using one serum metagenomic experiment as a test set and the remaining four
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Table 6.5: Different patterns and its corresponding genes, chromosomes and Normal, Pre-
mutated and Diseased frequency ranges.

Chromosome Gene Pattern Normal Normal Premutated Premutated Diseased Diseased Disease
Number Name Low High Low High Low High Name

12 ATN1 CAG 6 35 36 47 48 80 DRPLA
4 HTT CAG 10 35 36 39 40 NL HD
6 ATXN1 CAG 4 39 40 50 51 NL SCA1

12 ATXN2 CAG 0 30 31 32 33 NL SCA2
14 ATXN3 CAG 12 43 44 52 53 NL SCA3
8 CACNA1A CAG 4 18 19 19 20 23 SCA6
3 ATXN7 CAG 4 17 28 33 34 NL SCA7
6 TBP CAG 25 42 43 48 49 66 SCA17
6 TBP CAA 25 42 43 48 49 66 SCA17
X AR CAG 0 36 37 37 38 NL SMBA
5 PPP2R2B CAG 0 42 43 50 51 NL SCA12

14 PABPN1 GCN 0 10 11 11 12 17 OPMD
19 DMPK CTG 5 37 38 49 51 NL DM1
3 CNBP CCTG 0 25 26 74 75 1100 DM2
X AFF2 CCG 4 40 50 200 200 NL FRAX-E
9 FXN GAA 5 33 34 65 66 1000 FRDA
X FMR1 CGG 5 40 55 200 201 NL FXS
16 JPH3 CTG 6 28 29 43 44 59 HDL2
16 JPH3 CAG 6 28 29 43 44 59 HDL2
13 KLHL1 CGG 0 49 50 70 80 1300 SCA8
22 ATXN10 ATTCT 10 32 280 850 851 4500 SCA10
20 NOP56 GGCCTG 3 14 15 649 650 NL SCA36
21 C9orf72ÿ GGGGCC 0 30 31 39 40 NL Atony

experiments are used to train the model. We also evaluated the model by considering 5

serum experiments as test set and remaining 4 metagenomic covid datasets experiments

are used to train the model.

6.4.9 Disease database design for Tandem repeats

We have collected different patterns related to Covid-19 diseases (HCov-229E, HCoV-

NL63, and HCoV-OC4, MERS-CoV, 2019-nCoV etc.) from National Institute of Health

genetics home reference [195], which contains only 21 out of 1480 genes that have pattern

frequency-based disease information. Additionally from various existing works [196], [70],

[197], [198], [199], [200], and from some standard genome projects [201] also gathered.

The collected pre-mutated and diseased frequency ranges of a gene pattern corresponding

to specific chromosome for accurate disease diagnosis is stored in Table 6.5. The algorithm

6.1 reads the received inputFile (.xls) that contains patterns and its corresponding frequency
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Algorithm 6.1 CreateDB()
Input: inputFile that contains patterns and its frequencies.
Output: Disease database as a Hashmap.

1: workbook = getWorkbook(File(inputFile))
2: sheet = workbook.getSheet(0)
3: numRows = sheet.getRows()
4: for each row ϵ numRows do
5: cell = sheet.getCell(row,col)
6: extract gene and pattern using cell.getContents()
7: key = geneName + - + Repeat pattern
8: extract Chromosome number, All ranges, Disease

using cell.getContents()
9: value = append(All frequency ranges,Chromosome

number,Disease name)
10: Disase Data Base.put(key,value)

ranges. It generates Disease database as an output. Disease database is a hashmap, which

is in the form key-value pairs. The key is <gene name, pattern> and the value is frequency

ranges. The different methods (getContents(), getRows() etc.,) used to handle the data in

workbook. Now the Create Data Base(filePath) reads the database and stores it in hashmap

in the form key-value pairs. The key is Tandem Repeat gene name and pattern and the

value is frequency ranges.

6.4.10 Tandem Repeat Disease Prediction in genes for covid-19

In all the exons corresponding to the particular gene, the frequency of those special pat-

terns are calculated by updating pointers and counters. Algorithm 6.3 maintains maximum

pattern length plus one pointers to point different levels of Trie based on nucleotides in the

exons.

6.4.11 Trie Construction for Tandem Repeat Disease Patterns

Constructed a Trie data structure for all the patterns stored in the disease database. The

Construct Trie algorithm is used for the construction of a Trie 6.2. This Trie is used to find

the frequency of multiple disease patterns in exons very fast by using pointers. The Trie

data Structure for the diseased patterns are as shown in 6.7. If all characters of pattern have

been processed, i.e., there is a path from root for characters of the given pattern, then print
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all indexes where pattern is present. To store indexes, we use a list with every node that

stores indexes of suffixes starting at the node.

Algorithm 6.2 Construct Trie(pattern, pattern Index, root)
Input: Pattern, pattern index and rpointer.

Output: Generates a Trie data structure for the given input Tandem repeat patterns.

1: length = pattern.length()

2: node = root

3: for each level ϵ length do

4: index = getIndex(pattern.charAt(level))

5: if node.children[index] == null then

6: node.children[index]=new Trie Node()

7: node=node.children [index]

8: if level == length - 1 then

9: node.pattern Index = pattern Index

10: node.is End Of Word=true

A trie pattern for tandem is a rooted tree where each edge is labeled with a symbol

and the string concatenation of the edge symbols on the path from the root to a leaf gives a

unique word (k-mer) X. We label each leaf with a set of T VNTRs that contain correspond-

ing k-mer.

Figure 6.7: Trie for Tandem repeat disease-related patterns.
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Algorithm 6.3 Proposed Algorithm for Tandem Repeat Disease Prediction in genes
Input: DNA Short Tandem Repeats Sequence from NCBI.

Output: TR Error types Feature Extraction, Base frequency, Predict the tandem repeat disease(s)

status Normal, PreMuted, Diseased.

1: rPointer = new Trienode

2: keys[] = {CAG, CTG, CCG, GAA, GGG, CGG, CCTG, ATTCT, GGCCTG, GGGGCC}

3: kmerInds[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

4: for each i ϵ keys.length do

5: ConstructTrie(keys[i], kmerInds[i], rPointer)

6: TrieNode[] q = TrieNode[maxKmerSize+1]

7: q[0] = rootPointer

8: for each index ϵ keys.length do

9: kmerCounts[index] = 0

10: diseaseDatabaseFile= path(DiseaseDb1.xls)

11: DiseaseDB<String, DiseaseData> = GenerateDB(disease DatabaseFile).readFile()

12: File[] dirs = path(Exons_NCBI).listFiles is (Directory)

13: for each k ϵ dirs.length do

14: if dirs[k] ̸= null then

15: for each file ϵ dirs[k].listFiles() do

16: String[] filepath = file.getPath().split(\\)

17: geneName = filepath[4]

18: exonPath = filepath[5]

19: exonName=geneExt[0]

20: for each temp ϵ reader.readLine ̸= null do

21: list.add(temp)

22: minLength = Integer.MAXVALUE

23: for each index ϵ keys.length do

24: key = geneName + - + keys[index]

25: if DiseaseDB.containsKey(key) then

26: hasDisease = false

27: hasPremuted = false
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28: for each index1 ϵ list.size() & !hasDisease do

29: if list.get(indexl).length() < minLength then

30: continue

31: for each index2 ϵ maxKmerSize do

32: Tq[index2] = null

33: for each index ϵ keys.length do

34: exon = list.get(indexl)

35: for each index2 ϵ exon.length do

36: updatePointers(Tq, exon.charAt(index2))

37: updateCounts(Tq, kmerCounts)

38: for each index ϵ keys.length do

39: checkFreqInDB(index)

40: if !hasDisease & !hasPremuted then

41: diseaseStatus.add(geneName +- + exonName+ : + - Normal)

42: reader.close()

6.5 Computational Complexity Analysis

The time complexity of proposed method in different phases is estimated in the following

subsections.

6.5.1 Extraction of Tandem Repeats

In xploration phase phase, to check different type of repeats and to write them into a file,

the complexity involved is O(Td2h+Tdhdi) , where L is maximum length of a sequence, X

is size of key, and P is pattern length. In Partition phase, to process the key, it costs O(X). In

Extraction phase phase, the time complexity involved is O(Td2h+Tdhdi) which is a combi-

nation of reduce function O(K*(P+X)) and the maximum number of patterns(K=O(NF(L-

P))) in output file, where N is number of key-value pairs and F is maximum input files. The
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worst case time complexity of Harris Hawks optimization (HHO) algorithm. is O(N*F*(L-

P)*(P+X)). If P and X are constants, then worst case complexity is O(NFS). If F,P,X,m,p,r

are constants, then worst case time complexity to find different features using HHO is

O(N*L).

6.5.2 Generation Features

Disease database design: The worst case time complexity to design disease database

is O(ℑ), where ℑ is the number of diseases. The time taken by the methods of disease

database module is O(1).

Construction of Trie for various patterns: The time complexity to insert and search for

various patterns in Trie depends on the maximum length pattern. So, the worst case time

complexity is O(ℓ), where ℓ is the maximum length pattern of all the patterns.

K-mer counter for the exons and overall time complexity: The worst case time com-

plexity to update pointers and to find different k-mers count is O(L eM ), where L is the

length of the exon, e is the number of exons for each gene and M is the maximum k-mer

size. To diagnose the diseases, the time complexity is (K eM ), K is the maximum num-

ber of key k-mers. The overall time complexity of proposed algorithm is ((L +K )eM ).

If L value is greater than K , then the time complexity is O(L eM ). Finally the overall

worst case time complexity is O(L e).

6.6 Discussion and Results

6.6.1 Performance Metrics Mesures

The proposed CNN model was assessed by using two popular classification performance

metrics i.e., AUC-ROC and AUC-PR. To calculate these metrics precision (Prec), Speci-

ficity (Sp), Recall or Sensitivity (Sn),True Positive Rate(TPR), False Positive Rate(FPR),

and Accuracy (Acc) are required.

Prec =
TP

TP + FP
(6.5)
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TPR(or)Sn =
TP

TP + FN
(6.6)

Sp =
TN

TN + FP
(6.7)

Acc =
TP + TN

TP + TN + FP + FN
(6.8)

FPR = 1− Sp (6.9)

The TP, TN, FP, FN are the number of true positive, true negative, false positive, and

false negative values respectively. Accuracy, sensitivity and specificity are sensitive to the

dataset class distribution, because there are very less viral sequences than non-viral.The

majority of samples would have a greater effect on the curve than the minority, which may

result in bias. On the other hand, for the class of imbalanced problems, a precision-recall

curve is largely used as it does not accept false positives and false negatives, so there is no

probability of effect of majority samples, thus providing sufficient evaluation.

6.6.2 Tandem Repeat Gene prediction results

The genes are collected from NCBI [193] database. The gene contains multiple mRNAs

that contain exons of that particular gene. The mutations in the exon sequence could

lead to the production of abnormal proteins leading to complex diseases. We introduce

a HHO pattern matching approach in this work to predict the disease because of the num-

ber of mutations. The gene DMPK contains 11 Tandem Repeat mRNAs (NM_004409.5,

NM_004943.2, NM_175865.5, NM_001081560.3, NM_001288764.2, NM_001288766.2,

NR_147192.1, NM_001081562, NM_001081563.2, and NM_001288765.1). Due to mu-

tations one of the exons in the mRNA NM_001081563.2 the CTG frequency increased to

47 and NM_ 175875.5 CTG count became 59. So, the mRNAs NM_001081563.2 and

NM_175875.5 are pre-mutated and diseased respectively. The genes ATN1, ATXN2 and

JPH3 contains 8, 16 and 37 mRNAs respectively. In one of the exons of ATN1 gene’s
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mRNA(XM_0152938 81), the CTG pattern frequency increased to 61 due to point muta-

tions, which leads to DRPLA (phenomena which causes brain disorder). The JPH3 gene’s

mRNAs NM_001271604, NM_001271605 are pre-mutated due to the increase in the fre-

quency of tri-nucleotide CTG and mRNA NM_020655 affected to Covid-19 disease be-

cause of increase in CAG repeats. In the gene ATXN2 most of the mRNAs are diseased

because of mutations in the corresponding exons. The detailed results are shown in Figure

6.8. Different types of samples, including tandem repeats, prostate secretion, serum, and

cervical tissues, were used to train our model’s divergent metagenomic contig sequences.

The unknown test dataset, which was not part of the training set, is used by the trained

HHO to predict viral sequences. When used to forecast viral sequences from fresh sam-

ples, the suggested model performs admirably. The HHO model was trained using fourteen

datasets from human metagenomic experiments. The filters transform into learnt filters

once training is complete; this allows the filter to automatically adjust its weights to their

optimal values. Our computationally-based, step-by-step technique allows us to identify

the underlying patterns that drive viral sequence prediction. If your dataset is balanced,

then AUC-ROC is the way to go. If it’s imbalanced, then AUC-PR is the way to go. Bi-

assed measurements in AUC-ROC could be the consequence of a majority sample having a

greater influence on the curve than a minority sample. Big AUR-ROC numbers might not

always mean accurate classifications. However, false positives and false negatives are not

taken into account by the AUR-PR curve. Due to the lack of bias caused by majority-over-

minority sampling, it is a superior metric for evaluating performance. The proposed model

achieves the 0.988 and 0.989 AUC-PR values on human metagenomic and human serum

datasets respectively shown in 6.11. In contrast, the pattern ACACACA is the most re-

peated and occurred in 27 filters(6-32) with frequency 16110, which predicts the sequence

as non-viral. The motifs (AAAAAAA, AAAGAAA, TTTTTTT) are skipped, which are

present in both viral and non-viral sequences because the influence of those patterns is neu-

tral in viral prediction. Each pattern frequency is compared with disease database, which

outputs one of the following: Normal, Premutated and Disease Occurred. The graphical

illustration of the disease prediction system. The continuous development of these meth-

ods leads to a reduction in the number of errors appearing in the encoding and decoding
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processes.

Figure 6.8: Disease status in mRNAs of a) ATXN2 b) DMPK c) ATN1 and d) JPH3 genes.

The proposed method finds the frequencies of all the exons and detected whether the

exon is pre-mutated or diseased as shown in Table 6.6. The results in Figure 6.9 shows

time comparison for different mRNA sequences of various genes to diagnose nucleotide

Tandem repeat diseases. The proposed HHO multi-string pattern matching algorithm runs

on multiple genes with increasing patterns, it gives better execution performance than se-

quential and GPGPU based HHO pattern matching algorithm. Even though, the patterns

are increased it gives better speed up against sequential and parallel based different Mod-

els.Top four Mutations rate is calculated for each Nuclotide present in Covid-19 for Tandem

repeats top diseased pattern”. This is clear that all rates have a common factor of having

the high mutation rate of T and A. But there is a significant increase in the mutation rate

compared to other mutations. This clearly indicates that this virus is some changes in T

and A as shown 6.10. In the gene ATXN2 most of the mRNAs are diseased because of

mutations in the corresponding exons.
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Table 6.6: Disease status in Tandem repeat various mRNAs of a) ATXN2 b) DMPK c)
ATN1 and d) JPH3 genes.

Gene mRNA Pattern Frequency Disease
Status

Disease Name

ATN1 XM_015293881.2 CAG 61 Diseased DRPLA
ATN1 XR_003075411.1 CAG 17 Normal -
HTT NM_002111.8 CAG 123 Diseased Huntington disease
HTT NR_045414.1 CAG 15 Normal -
ATXN1 XR_001748535.1 CAG 109 Diseased Cerebellum, spinal cord and brainstem related disorder
ATXN1 NM_006877.4 CAG 10 Normal -
ATXN2 NM_001357857.2 CAG 114 Diseased Short term memory problem
ATXN2 NM_001310121.1 CAG 11 Normal -
ATXN3 NR_028457.1 CAG 103 Diseased Memory loss
CACNA1A NM_001357857.1 CAG 20 Diseased Loss of coordination in their arms, muscles, tremors
CACNA1A NM_001127221.1 CAG 18 Normal -
ATXN7 NM_000333.3 CAG 36 Diseased Macular degeneration, upper motor neuron
ATXN7 XM_024453841.1 CAG 5 Normal -
ATXN10 NM_013236.4 ATTCT 4 Normal -
TBP NM_003194.5 CAG 48 Pre-mutated Spinocerebellar ataxia type17
TBP NM_002793.4 CAG 8 Normal -
AR NM_000044.6 CAG 112 Diseased Disorder of muscle movement nerve cells
PPP2R2B XR_002956249.1 CAG 44 Pre-mutated Head and hand tremor, akinesia
PPP2R2B NM_181674.2 CAG 17 Normal -
PABPN1 NM_004643.3 GCN 0 Normal -
DMPK NM_001081563.2 CTG 47 Pre-muted Affects skeletal and smooth muscle
DMPK NM_175875.5 CTG 59 Diseased Affects skeletal and smooth muscle
DMPK NR_147193.1 CTG 11 Normal -
CNBP NM_001127193.2 CCTG 15 Normal -
AFF2 NM_002025.4 CCG 60 Pre-mutated Impairs thinking ability and cognitive functioning
AFF2 NM_001170628.1 CCG 2 Normal -
FXN NM_000144.5 GAA 109 Diseased Affects nerves which causes movement problems
FMR1 NM_001185081.2 CGG 35 Normal -
JPH3 NM_001271605.2 CTG 35 Diseased Emotional, movement and cognitive abnormalities
JPH3 XR_001751940.1 CTG 11 Normal -
JPH3 NM_001271604.3 CTG 29 Pre-muted Huntington disease
KLHL1 NM_001286725.1 CGG 3 Normal -
NOP56 XR_001754267.1 GGCCTG 0 Normal -

Figure 6.9: Time comparison of differnt models with Proposed HHO Tandem Repeat pat-
tern matching.
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Table 6.7: Top-1 motifs with the highest activation value from each filter extracted from 19
metagenomic experiments, which act as features to predict Tandem Repeat viral genomes.

Filter Id Viral Pattern Mean Acti-
vation

Activation
Value

Filter Id Viral Pattern Mean Acti-
vation

Activation
Value

12 ACGACCC 0.689984 1.4799685 9 GCTGTTT 0.69609371 1.2921874
14 AGCAGAG 0.692365 1.2847302 28 GATTTGA 0.58795887 1.1759177
24 GGGATCG 0.778848 1.3576957 3 GCGAGGT 0.58052796 1.1610559
21 TACGGGG 0.673739 1.3474776 7 TCAGGTC 0.57200754 1.1440151
4 AGGCGGG 0.652724 1.3054485 19 AAAGTCT 0.55970358 1.1194072
10 AAAAATT 0.650489 1.3009783 23 GTCCTGA 0.55340659 1.1068132
18 AGTACGA 0.649528 1.2990574 31 CCGTTAT 0.54953909 1.0990782
1 CTTTTTT 0.644374 1.2887475 14 ATGGAGT 0.54869616 1.0973923
20 GTCACTC 0.634448 1.2688965 22 GAGAAAA 0.54356331 1.0871266
2 ACCTCTG 0.632819 1.2656392 8 ATATGTG 0.54122984 1.0824597
26 CACAGTG 0.630168 1.2603375 17 TTGAAAT 0.52796107 1.0559222
5 TGAGCTC 0.924386 1.2487631 29 CGTGCCC 0.52501839 1.0500368
32 CTAGGCT 0.708599 1.2171972 27 TAACGTC 0.51818478 1.0363696
30 TGGGCCG 0.703728 1.2074571 13 GATCCTA 0.48595235 0.9719047
6 TCACATC 0.403138 1.2062765 25 ATGAGAG 0.46512297 0.9302594
12 TCACAAC 0.497368 1.2062765

Table 6.8: The patterns extracted by most of the filters with a threshold as an average of
all activations, which act as features to predict viral and non-viral genomes from human
metagenomic datasets.

Viral Pat-
tern

Frequency Repeated in
No. of Filters

Filter Num-
bers

Non-Viral
Pattern

Frequency Repeated in
No. of Filters

Filter
Numbers

TAAAAAA 4229 28 1-3,7-19,21-32 ACACACA 16110 27 6-32
AAAAAAA 1783 23 7-29 GAAAAAA 8113 26 6-31
TTTTTTT 1036 20 1-20 AAGAAAA 4282 11 1-5, 7-12
AAAAAAA∗ 6915 32 1-32 CACACAC 11133 5 13-16,32
AAAAAAA∗ 4796 32 1-32 TTTTTTT∗ 13978 13 20-32

∗Neutral patterns, present in viral and non-viral genome sequences

6.6.3 Comparative results of the Proposed Model with the existing

models

The HHO model’s capability was compared to that of known baseline ML models like

Random forests, Naive Bayes, RNN, XGBoost and HHO that classify Covid-19 in Short

Tandem Repeat sequences by utilizing various methods for feature extraction proposed by

Hilal Arslan[121]. HHO algorithm for finding the best features subset A 99.88 accuracy is

obtained by using a moderate Tandem repeat datasets for Covid-19. Further more, the HHO

algorithm’s searching power was used to construct a novel suggested algorithm compared

with other existing algorithms 6.9 compares the HHO techniques to the baseline methods

in terms of accuracy, recall, precision, and F-measure.method[121].
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Figure 6.10: Top 4 Mutation Rates for a) HCov-229E b) HCoV-NL63 c) HCoV-OC4 d)
MERS-CoV.

Figure 6.11: The ROC and Precision-Recall curves for (a) human metagenomic Tandem
Repeat dataset (b) human-Cov serum dataset 5-fold cross-validation is used.
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Table 6.9: Evaluation of metrics measurements accuracy, precision, recall, F1-score,

Sl.No. Classifier
Accuracy

(%)

Precision

(%)

Recall

(%)

F1 Score

(%)

1 RNN 89.56 79.22 86.33 9.11

2 NB 93.56 65.36 90.11 15.12

3 RF 84.61 68.55 87.23 9.36

4 XGBoost 74.95 71.35 79.36 11.54

5 CNN 88.36 71.33 89.99 8.55

6 HHO 99.88 99.75 98.91 18.55

The results are compared with existing models our proposed models give best results

and achieved good accuracy, Precision, Recall, F1 Score.

Figure 6.12: Performance comparison of different models with Existing proposed
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6.7 Summary

Here, we introduced Harris hawks optimisation, or HHO. Depending on the mutation rate,

the HHO approach can move between exon extraction, features based on base(s) frequency,

disease database creation for tandem repeats, and transitioning from exploration to ex-

ploitation. It can also switch between behaviours involving DNA short tandem repeats

(STR) mistakes. Model for optimising Harris Hawks for accurate prediction of SARS-

CoV-2 symptoms. For each nuclotide, HHO uses and analyses mutations tate to make it

interpretable, unlike other approaches. This model stands out because it uses an HHO de-

sign to incorporate DNA sick pattern motifs that are low, moderate, high, and biologically

significant. Insight into the methods by which SARS CoV-2 regulates gene expression and

the ability to identify Tandem repeat sequences are both provided by these patterns. Al-

though HHO are successful, they are frequently criticised for not being easily interpretable.

Consequently, the topic of building a database and a Trie for tandem pattern disorders in

COVID-19 is also covered in this paper.
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Chapter 7

Conclusion and Future Scope

Here, we present the summary of contributions made in this thesis and mention the open

problems triggered out of the study.

7.1 Conclusions

In addition to detecting the predisease condition, the suggested method is significantly

more efficient, which could lead to the early identification of complicated disorders. In

complicated illness investigation, the prediction of the viral genome is a crucial task. Im-

portant features, possible viral mutation sequences, and virally-associated sequences can

all be extracted by the suggested CNN framework. The mechanisms of viral illnesses can

be better understood by observing repeating patterns. An accurate mutation rate estimation

for COVID-19 enables us to comprehend genetic variants and compare other COVs. Using

deep convolution neural networks, the suggested method may forecast the likelihood that

DNA mutations produce an increased frequency of DNA diseases. Classification of Omi-

cron virus variants using deep learning approaches can also anticipate patterns associated

with the new coronavirus.
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CHAPTER 7. CONCLUSION AND FUTURE SCOPE Section 7.2

7.2 Future Scope

Here are a few of the open sequence analysis problems that this study brought to light.

To improve prediction using recurring pattern pathogenic themes, the suggested study uses

convolutional neural networks (CNNs) to automatically extract features in chapter 3. Addi-

tionally, the suggested model has the potential to be expanded to anticipate various genomic

signals, such as locations of polyadenylation, pupylation, protein-protein interactions, and

so on. Chapter 4 presents the suggested work which is optimised for Coot-Lion. We used

a deep learning technique to forecast the point mutation rate for both the positive and neg-

ative datasets. A more accurate prediction of which DNA mutations are causal for a given

disease is possible with the help of the improved model. In order to increase the disease

database, a deep learning algorithm is used to extract viral patterns. Additionally, using

any viral or bacterial genome, a generalised deep-learning model may be trained to antic-

ipate different illness patterns. Major disorders can result from DNA sequence repeats, as

discussed in chapter 5, which can be misidentified as regulating genome patterns. Mov-

ing forward, the suggested ERSIT-GRU learning models can be enhanced to detect various

Repeats and the corresponding patterns. In Chapter 6, we analysed the mutation rates of

different coronaviruses and assessed different metrics that show how important Tandem

Repeat is in 2-deletion error rates. In addition, the novel Omicron coronavirus can be anal-

ysed using HHO methods for pattern prediction and medication discovery.AI-Enhanced

Mutation Analysis, Real-Time Genome Sequencing and Analysis, Predictive Modelling

of Mutation Evolution Identifying common mutation patterns can inform the development

of targeted antivirals that remain effective against a broad range of variants, reducing the

risk of resistance. Advanced machine learning models, particularly deep learning (DL) and

transformer-based architectures, can help detect and predict mutations’ effects faster. These

innovations in mutation detection and analysis can make COVID-19 monitoring more ef-

ficient and effective, improving global response to future variants and enhancing readiness

for other viral threats. We demonstrated that the RNN based RF generate valid novel Re-

peats.
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