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ABSTRACT

The significance of software in modern civilization spans across social, political, fi-
nancial, healthcare, and military domains. However, the increasing complexity and size
of software pose challenges, including jeopardizing quality and driving up testing costs.
Software reliability is crucial, especially for mission-critical and high-assurance applica-
tions. This thesis aims to enhance software reliability by predicting faulty modules and
estimating development efforts early in the software development lifecycle. Existing pre-
diction models fall into two categories: Software Reliability Growth Models (SRGMs) and
Early Software Reliability Prediction (ESRP) Models. While reliability growth models of-
fer estimates, relying solely on them for corrective actions can be costly and delayed. Early
prediction facilitates refined project planning, timely delivery, and cost overruns, mitigates
overestimation and underestimation, allocate resources effectively, and formulates the op-
timal development approaches. Software fault prediction (SFP), including Within-Project
Fault Prediction (WPFP) and Cross-Project Fault Prediction (CPFP) models, improves re-
liability. Additionally, effort estimation reduces cost estimation uncertainty and enhances
software quality by estimating required manpower early in development.

The main objectives of this thesis include: (i) To predict the software fault-prone mod-
ules in within-project through the Weighted Average Centroid based Imbalance Learning
approach. (ii) To predict the software fault-prone modules in a cross-project through simi-
larity based source project and training data selection techniques. (iii) To predict the soft-
ware fault-prone modules in a cross-project using applicability based source project selec-
tion, resampling, and feature reduction. (iv) To estimate the software development effort
for a project through a two-stage optimization technique.

Firstly, a diverse imbalance learning technique is designed for WPFP. The prediction
performance is enhanced by diverse synthetic data generation and noisy data elimination.
Secondly, this study utilizes the Wilcoxon Signed Rank (WSR) test to identify similar
source projects for cross-project prediction. A novel oversampling technique is introduced
to address distribution gaps and skewed distributions. Additionally, the performance of

CPFP is improved through the use of the Binary-RAO algorithm. This algorithm explores

1l



diverse combinations of software features and hyperparameters within a specified search
space to extract highly correlated features related to module faultiness. Thirdly, the second
objective is extended by integrating applicability scores with similarity scores to improve
the accuracy of source project selection. A novel resampling technique is devised to extract
highly correlated and similar instances while discarding irrelevant ones from the source
data, thus enhancing the efficiency of training data construction and reducing distribution
discrepancies and class imbalances. Additionally, to tackle the high-dimensionality issue,
an efficient deep learning-based Stacked Autoencoder (SAE) model is developed for fea-
ture reduction, leading to enhanced performance in CPFP. Lastly, an Adaptive Neuro-Fuzzy
Inference System (ANFIS) estimation model is developed using multi-objective optimiza-
tion techniques for efficient software development effort estimation. The multi-objective
rank-based improved Social Network Search (SNS) algorithm is applied to extract optimal
software project features and to identify ANFIS parameters.

The experimental results of this research demonstrate the importance of imbalance
learning, source selection, instance selection, and feature optimization for software datasets
and the effectiveness of metaheuristic optimization techniques in effort estimation models.
The proposed methods outperform existing methods, offering improved software fault pre-

diction and effort estimation performance, thereby improving reliability prediction overall.

Keywords: Software quality, Software reliability, Within-project fault prediction,
Cross-project fault prediction, Software development effort estimation, Imbalance learn-
ing, Source project selection, Distribution difference, Instance filtering, Feature optimiza-

tion, Resampling, Social network search, Wilcoxon signed-rank test
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Chapter 1

Introduction

Over the last few years, the software has played a very crucial role in the current civi-
lization’s life cycle by increasing human dependency on software for various critical and
non-critical applications, including smart homes, manufacturing companies, clinical sup-
port units, air transport management, education systems, shopping, military affairs, and a
few more controlling systems [1]. Moreover, commercial and government organizations
also rely on software systems for their projects.

In traditional software engineering practices, conventional wisdom suggests the im-
portance of evaluating software quality during system implementation. Identifying sig-
nificant quality issues during software application operation may necessitate extensive re-
engineering efforts, which is significantly costly [2]. Hence, software quality holds utmost
importance, particularly for mission-critical and high-assurance applications [3]. Software
quality can be expressed by quality requirements or attributes such as reliability, availabil-
ity, safety, security, and performance. Among these, software reliability stands out as a
key quality factor. The assessment, estimation, and prediction of software reliability are
increasingly essential in projects aiming to achieve highly reliable software systems. The

software reliability is defined as follows:

Definition 1. (Software Reliability): Software Reliability is defined as the probability that
software works without any failure over a specified period of time in a certain environment

[4]. In mathematical terms, reliability, denoted as Reliability(t), signifies the probability
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of a system successfully operating from time 0 to time ¢:

Reliability(t) = Prob(T > t) for t>0 (1.1)

Here, 7" represents a random variable indicating the time-to-failure or failure time as

defined by the developer.

1.1 Overview of Software Reliability Prediction

The existing software reliability prediction models are categorized into two main groups.
The first category involves methods that rely on failure data collected during testing. These
models aim to estimate the current reliability of the software and determine the efforts
needed to achieve a specific level of reliability before its release, called "Software Reli-
ability Growth Models (SRGMs)". The second category consists of models that evaluate
development efforts and predict fault-prone modules to achieve a desired level of reliabil-
ity before the testing phase. These are referred to as "Early Software Reliability Predic-
tion (ESRP) Models". Evaluating software reliability before the testing phase allows these
models to enhance the planning of a project and efficient resource allocation. Early-phase
prediction is essential for efficient and timely project management and for ensuring cost-
effectiveness.

There are a few parameters that affect the early reliability prediction, namely Software
Fault Prediction (SFP), Software Development Effort Estimation (SDEE), Software Test-
ing Effort Estimation (STEE), Software Development Cost Estimation (SDCE), Software
Testing Cost Estimation (STCE), to name a few [5]. In this thesis, we have concentrated
on SFP and SDEE as reliability parameters. These models are particularly valuable during
the early phases of the software development life cycle, as they enable reliability estima-
tion before the software is fully implemented or released. By leveraging early development
data, design information, and historical metrics, these models provide actionable insights.
Implementing them offers significant advantages, including better risk management, opti-

mized resource allocation, and enhanced software quality.
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1.1.1 Overview of Software Fault Prediction

As the complexity and size of the software continue to increase over time, they might pro-
duce a variety of faults, which jeopardize the quality of the software and drive up the testing
cost by demanding more resources for testing [6, 7]. Faulty modules in software are those
with defects or bugs, while non-faulty modules are those without defects. Undiscovered
faults can lead to unpredictable outcomes or failures after software deployment. Moreover,
fault management often costs about 80% of the total budget [8].

SFP models are broadly divided into Within-Project Fault Prediction (WPFP) and Cross-
Project Fault Prediction (CPFP) models. WPFP can be defined as both training and testing
data belonging to the same project under the assumption of having the same distribution. In
reality, collecting historical training data for new projects can be challenging due to small
organizations or the product/service being released for the first time. In such circumstances,
cross-project prediction is an alternative approach to allow multiple projects to share avail-

able historical data.

Definition 2. (Software Failure): It starts with a programmer mistake or oversight during
the implementation phase of a product development process, leading to an error within the
initial phase of the software development life cycle. If this error persists in the final software
code, it is termed as a software fault. If the fault becomes evident during either testing or
actual usage, it is recognized as a software failure. In other words, a software failure occurs
when a software system does not perform as specified, leading to unexpected behavior
because of the fault which occurs during development. A fault may remain hidden in the
software without causing immediate issues, but it can trigger a failure when specific inputs
or circumstances arise. A few examples of faults are logical, arithmetic, multi-threading,

syntax, performance and interface defects, etc.

Definition 3. (Software Module): Although there is no universally accepted definition, a
module is generally considered to be a logically independent component within a system
that carries out a distinct function. Throughout the thesis, the terms "module" and "compo-

nent" will be used interchangeably [9].
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1.1.2 Overview of Software Development Effort Estimation

Software development effort estimation is a process of estimating the effort needed to build
software and is quantified in terms of person-months or person-hours. Estimating effort in
the preliminary stages can enhance project planning, budgeting, process monitoring, task
scheduling, and resource distribution. The precise estimation of software effort holds a
significant role in software engineering since it prevents both overestimation and underes-
timation. Overestimation could result in the misallocation of resources, adversely affect
the progress of other vital projects, and exceed budget limits. Conversely, underestima-
tion could result in budget overruns, delays in project delivery, and delivery of poor-quality
projects, ultimately impacting software reliability and client satisfaction. A thorough com-
prehension and management of the software development process improves the software’s
reliability.

The rest of this chapter is organized as follows. The motivation behind this work is
presented in Section 1.2 along with the objectives. In Section 1.3, the contributions of the

thesis are discussed. The organization of the thesis has been presented in Section 1.4.

1.2 Motivation and Objectives

Currently, SFP is gaining more popularity. As per Boehm [10], the longer a bug stays
in the software, the more expensive it is to fix it. The past studies on the prediction
of software faults emphasized the eminence of many classification models, including K-
Nearest Neighbors (KNN), Logistic Regression (LR), Naive Bayes (NB), Support Vector
Machine (SVM), Decision Tree (DT), Random Forest (RF), and Artificial Neural Networks
(ANN) and Deep Neural Networks (DNN). Due to the class imbalance problem in software
datasets, the classifier trains to recognize non-faulty instances, potentially degrading the
prediction rate of faulty modules. To cope with imbalance data, a large amount of research
work has been raging on the oversampling approaches [11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21]. Few models reproduce instances as new ones, leading to overfitting, where classifiers
trained on redundant data perform well over training data but struggle over test data [15]. A

few models generate synthetic data between closest neighbors, potentially introduced into
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a closed cluster, reduce the diversity of synthetic instances, and increase false positive out-
comes [11, 12, 13]. As per Bennin et al. [14], the diversity of the synthetic faulty instances
plays a key role in reducing false positive outcomes. Moreover, identifying and eliminat-
ing noisy instances during synthetic instance generation is crucial for classification model
performance, as it may impact the model’s overall efficiency. The generation of diverse
synthetic data and the elimination of noisy samples can improve prediction performance
and reduce false positives. This is the motivation behind the use of diverse synthetic data
generation and noisy sample elimination mechanisms in our WPFP work.

Even though the existing CPFP strategies can produce noticeable prediction perfor-
mance, there’s still scope for improvement when comparing their overall performance to
the basic WPFP model and current CPFP models. The distribution difference of cross-
projects impacts the CPFP model’s performance. The prominent models, such as trans-
fer learning techniques [22, 23, 24, 25, 26, 27, 28] and training data selection models
[29, 30, 31], are available to address the distribution difference problem. However, existing
CPFP models are unstable, and the variety of source projects has a great influence on their
performance. The prediction model trained on randomly selected single or set of source
projects [25, 26, 32] can’t generalize over target projects because the randomly selected
source projects may not have an identical distribution as the target and the prediction model
receives a very small amount of data from one source project, which isn’t enough to build a
model. In another scenario, the prediction model is trained on all available source projects,
which may include a significant amount of irrelevant data. This can mislead the model and
result in inaccurate predictions. Therefore, the selection of source projects becomes an im-
perative task, as the number of available open-source software projects expands day to day
[33]. In literature, instead of building a prediction model randomly on available projects,
a few studies concentrated on source project selection [30, 33, 34, 35, 36, 37, 38, 39, 40],
and few studies assume that the similarly distributed source projects might be applicable to
the target [36, 39]. However, Liu et al. [37] and Sun et al. [38] considered the applicability,
but there is a restriction on the number of source projects to be selected. Liu et al. [36]
model limited their selection to two source projects, while Sun et al. [37] model limited to

three source projects for each target project.
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There are two more problems associated with CPFP models. One of the issues is the
imbalanced structure of software datasets, and another is the curse of dimensionality [25,
41, 42, 43, 44]. Existing literature for CPFP considered any one or two issues among
similarity and applicability between projects, distribution dissimilarity, imbalanced data,
and high dimensionality issues, potentially leading to inaccurate fault prediction in target
projects. This motivates us to select source projects and reduce distribution dissimilarity
along with imbalance learning and feature extraction, which can improve the possibility
of providing more accurate predictions and reduce the false positive outcomes in the final
classification over target data.

Most of the machine learning models in effort estimation fall under categories like re-
gression models, Case-Based Reasoning (CBR) models, Analogy-Based Estimation (ABE),
ANN, fuzzy-based neural networks, extreme learning, and ensemble learning models [45,
46, 47, 48, 49, 50, 51, 52]. However, conventional regression models like Linear Regres-
sion (LR), Ridge Regression (RR), Classification, and Regression Tree (CART) are notably
sensitive to outliers and also necessitate considerably a large dataset for training, it is often
difficult in the software effort estimation domain. Lately, the Adaptive Neuro-Fuzzy In-
ference System (ANFIS) is getting notable attention among effort estimation models, due
to its rapid learning capacity, the ability to represent the nonlinear process structure, and
adaptability to improperly specified data. Despite its widespread acceptance, the ANFIS
model encounters constraints such as the curse of dimensionality and high computational
costs, which restrict its use in applications involving a large number of inputs. The num-
ber of rules, premise, and consequent parameters increase exponentially with the number
of inputs. Moreover, the standard learning process of ANFIS involves gradient learning,
which is prone to converge at local minima. This justifies the importance of the feature
selection and parameter optimization and adaptation processes as an essential part of clas-
sical ANFIS, as they play a pivotal role in generating accurate and efficient outcomes with
minimal absolute estimation error. The SDEE datasets are defined by large numbers of
metrics, which might escalate the computational cost of the ANFIS model. This motivates
the importance of feature selection and parameter optimization as an essential part of clas-

sical ANFIS for SDEE.
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By considering the above-mentioned research gaps, the following major objectives are
formulated in this thesis:
Objective 1: To predict the software fault-prone modules in within-project through the
weighted average centroid based imbalance learning approach.
Objective 2: To predict the software fault-prone modules in a cross-project through sim-
ilarity based source project and training data selection techniques.
Objective 3: To predict the software fault-prone modules in a cross-project using appli-
cability based source project selection, resampling, and feature reduction.
Objective 4: To estimate the software development effort for a project through a two-

stage optimization technique.

1.3 Overview of the Contributions of the Thesis

This section provides a summary of the contributions made in each chapter of the thesis.

Each subsection outlines the key points and findings of its respective chapter.

1.3.1 A Diverse Oversampling Technique for Within-Project Fault Pre-
diction

In this work, a Weighted Average Centroid based Imbalance Learning (WACIL) approach
is presented for WPFP. WACIL is an oversampling approach to reduce the ratio of class
imbalance between faulty and non-faulty instances, which generates pseudo-data to make
dataset balance. The novelty of the proposed framework lies in generating a synthetic set
of diverse instances to maximize the recognition rate of faulty instances and minimize false

positive outcomes. The proposed approach consists of two primary stages:

* In the first stage of WACIL, we designed a method to extract important hard-to-
classify borderline instances of the faulty class and construct the borderline faulty

instance set.

» The next stage aims to balance the dataset by introducing diverse pseudo-instances

in faulty class and computing the weighted average pseudo-instances using Maha-
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lanobis distance after extracting borderline instances. Among these pseudo-instances,
few might be noisy samples. The filtered pseudo-instance stage eliminates the noisy
samples parallel with pseudo-instance generation. The generation and elimination
stages ensure equal faulty and non-faulty classes ratio and it can build a better clas-

sifier and improve prediction performance.

To observe the superiority of the proposed model, a widespread comparison with the
other baseline imbalance learning models as well as with the Not Oversampled (NOS)
original dataset, is conducted over a total of 24 PROMISE and NASA projects. The KNN,
LR, NB, SVM, DT, and DNN classifiers are constructed on generated pseudo-data and
measured the performance. The performance measures considered in this work are Fall
Out Rate (FOR), Recall, F-measure, Area Under the Curve (AUC), and Geometric-mean
(G-mean). On average, WACIL ranked 4, 1, 17, 2, 36, and 3 with KNN, LR, NB, SVM,
DT, and DNN, respectively. We can conclude that the classifiers LR and DNN with WACIL
perform the best against all other combinations. In addition, lower FOR and higher Recall
outcomes indicate how effectively imbalanced data is handled by the generated diverse

pseudo-instances.

1.3.2 Source Project and Optimized Training Data Selection Approach

for Cross-Project Fault Prediction

To resolve some of the issues faced by CPFP, we proposed a novel optimized source data
selection approach called WPSTC (Wilcoxon signed-rank (WSR) test based source project
selection (WPS) and optimized training data construction(optimizedTC)). The novelty of
the proposed framework lies in the similarly distributed source selection and a new way of

the training data selection process. The proposed WPSTC model is a two-phase approach.

* In the first phase, for a particular new project, based on the distributional charac-
teristics through the WSR test, the association between it and historical projects is

investigated, and the corresponding similar source projects are recorded.

* In the second phase, in each iteration, one of the source projects is taken as training

data and performs the instance filtering process, then appends it to the filtered data,
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which can reduce the distribution gap and make the dataset balanced. To enhance
the quality of training data even more, the Binary-RAO algorithm is employed to

identify the optimal feature set from the filtered data.

We compared our WPSTC against WPFP, all projects CPFP, and a few previously suc-
ceeded cross-project prediction models over 24 PROMISE and NASA datasets using KNN,
SVM, DT, LR, NB, and ensemble classifiers, and findings are measured through FOR, Re-
call, AUC, F-measure, G-mean, normalized Matthews correlation coefficient (nMCC), and
Balance measures. Based on prediction performance and statistical comparison, FOR, Re-
call, G-mean, and Balance values indicate that WPS+CPFP can handle imbalance issues
much better. The G-mean, AUC, Balance, and nMCC indicate the overall performance
of WPS+CPFP is superior to allCPFP. The WPSTC’s FOR values are high but the Recall,
G-mean, and Balance values are higher than the WPFP. The results further indicate that
WPSTC can handle the imbalance issue in cross-project prediction by improving the Re-

call values without deteriorating the FOR values.

1.3.3 A Cross-project Fault Prediction through Applicability based

Source Project Selection

This study incorporates both similarity and applicability scores to choose comparable his-
torical source projects. Additionally, following a thorough investigation of the issues affect-
ing the cross-project prediction performance, we proposed a three-fold SRES (Similarity
and applicability based source projects selection, REsampling, and Stacked autoencoder)
model for CPFP. The novelty of the proposed framework lies in the effective source project
selection process and novel resampling model. The major contributions to this work are

listed below:

* To minimize the distribution gap between source and target projects, we developed
the novel Similarity and Applicability-based source Project Selection (SAPS) method,
then developed oversampling and undersampling techniques. Later, employed an ef-

ficient deep learning-based Stacked Autoencoder SAE) model for feature reduction.
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* The similarity relationships between the specific target project and all the available
historical projects are explored by comparing the five distributional characteristic
measures, such as mean, mode, median, standard deviation and range. We assume
the model trained on the nearest neighbors of target data in historical projects might
produce superior prediction performance over target data. The applicability scores

are computed by considering AUC as the applicability measure.

* Next, we introduce a novel data resampling method to address class imbalance and
distribution gap issues by modifying source data through undersampling and over-
sampling. The above-generated balanced training data is fed into stacked autoen-
coders to extract deep representations of actual software features without losing the
original information through unsupervised pre-training. Then the training and test-
ing data characterized by a reduced feature set are used to predict labels of the data

through SAE’s supervised fine-tuning.

To assess the performance, FOR, Recall, Balance, AUC, G-mean, and normalized
Matthews correlation coefficient (nMCC) are utilized and experimented on 24 projects.
The performance of the SAPS model compared with the existing source project selection
models. Furthermore, the SRES model was evaluated against the most recent and widely
used CPFP models. We compare the SRES model with WPFP to prove that cross-project
data works better than within-project data more systematically and quantitatively. We com-
pare the SRES model with SAPS and confirm that resampling and feature reduction along

with source project selection techniques can aid in accurate fault prediction.

1.3.4 A Two-Stage Optimization Technique for Software Development
Effort Estimation

This work develops a Two-Stage Optimization Technique for Software Development Effort
Estimation (TSoptEE). The novelty of the proposed framework lies in reducing the number
of features and optimizing the premise and consequent parameters of the ANFIS model
through an improved Social Network Search (SNS) algorithm. So far, based on our knowl-

edge of the literature, no model has concentrated simultaneously on these two issues. The
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major contributions to this work are listed below:

* We proposed the TSoptEE model to enhance effort estimation accuracy. The TSoptEE
model is developed in two stages: Stage 1 performs optimal feature selection through
arank-based improved binary social network search (RiBSNS) multi-objective decision-
making Weighted Sum Method (WSM). It dynamically finds out ranks for moods of
the SNS algorithm in each iteration, then accordingly selects moods and updates the
solutions by considering the minimization of the number of features, maximization
of the Adjusted R2 (R-squared) (Adj R?) (R-squared or R? measures the proportion
of variance in the dependent variable), and minimization of the MAE score, which
can enhance the learning ability of the RiBSNS algorithm. In this context, "moods"
refers to different social and behavioural patterns that influence user interactions and
perceptions, affecting decision-making in the SNS algorithm. The four moods are
imitation, conversation, disputation, and innovation. Then, the selected features are

passed to the ANFIS model as input.

* Stage 2 performs ANFIS parameter optimization to accurately estimate effort, which
searches among a wide range of classical ANFIS parameters through a rank-based
improved continuous social network search (RiCSNS) multi-objective method and
gives the most appropriate set of parameters with the least absolute estimation error

and higher Adj R2.

To demonstrate the superiority of our proposed model, we perform comparisons with a
few fundamental regression models, including LR, RR, CART, and a simple ANN model.
Additionally, compared with three recently developed estimation approaches. The pro-
posed TSoptEE model has been evaluated over nine publicly accessible benchmark datasets,
using a set of seven reliable evaluation metrics such as Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), Mean Magnitude of Relative Error (MMRE), Median Magni-
tude of Relative Error (MdMRE), Balanced Mean Magnitude of Relative Error (BMMRE),
Prediction (PRED), and Adj R? . Itis observed that the estimation accuracy of the TSoptEE
is typically better than or at least comparable to that of the other estimation models. As ob-

served from experimental results, RMSE, MAE, MMRE, MdAMRE, BMMRE, and PRED
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average values of datasets range between 1400 to 3000, 900 to 1200, 0.40 to 3.0, 0.3 to
1.2, 0.6 to 1.3, and 0.3 to 0.5, respectively. Where our TSoptEE achieves the lowest av-
erage over RMSE, MAE, and BMMRE and the highest PRED score. In terms of MMRE
and MdMRE, the second lowest was achieved by TSoptEE because we optimized MAE
and Adj R? as our objective functions in this study, but in the compared models, MMRE
was considered as a minimizing objective. The Win-Draw-Lose (WDL) results reveal that

TSoptEE stands out as a reliable model, with a large number of wins and zero losses.

1.4 Organisation of the Thesis

The main focus of this dissertation is to design early reliability prediction models for soft-
ware projects by considering fault prediction and effort estimation. The efficacy of the
proposed approaches has been shown through experimentation with publicly accessible
software datasets. The thesis has been organized into seven chapters.

Chapter 1: This chapter presents a brief introduction to software reliability prediction
models and reliability parameters, along with problems associated with the prediction mod-
els. A brief description of the objectives of the thesis is also provided in this chapter.
Chapter 2: In this chapter, a detailed literature review on reliability prediction models,
WPFP, CPFP, and SDEE is presented. A detailed survey of existing approaches that re-
duce distribution differences, imbalance, and the curse of dimensionality issues in software
datasets has been presented in this chapter. Additionally, development effort estimation
models are also thoroughly discussed in this chapter.

Chapter 3: This chapter presents the detailed weighted average centroid based imbalance
learning approach, which is designed to address class imbalance within the WPFP. The
aim is to minimize the class imbalance between faulty and non-faulty instances, thereby
optimizing the performance of the predictive model.

Chapter 4: This chapter presents an improved CPFP model to tackle distribution dissim-
ilarity, imbalanced and high-dimensional data through Wilcoxon signed-rank test based
source project selection and an optimized training data construction approach.

Chapter 5: This chapter presents the proposed SRES model for CPFP. Firstly, the sim-

12
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ilarity and applicability based source projects selection, then performed the resampling
through oversampling and undersampling techniques. Later, stacked autoencoder based
feature reduction is introduced to improve CPFP performance.

Chapter 6: This chapter presents a two-stage optimization technique for software develop-
ment effort estimation. The aim is to improve the accuracy of software development effort
estimation through multi-objective feature selection and optimization of parameters in the
ANFIS model.

Chapter 7: This chapter summarises the work, the outcomes of the contributions, and the

scope for future expansion of the work.
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Chapter 2

Literature Survey

This chapter provides an overview of related work in the area of software reliability pre-
diction, especially the work related to software fault prediction and software development
effort estimation. Until the late 1960s, the focus was predominantly on hardware perfor-
mance in systems. However, by the early 1970s, software also emerged as a significant
concern. This shift was largely prompted by the escalating costs of software compared
to hardware, both in development and operation. Producing reliable software applications
has become one of the most challenging issues confronting the software industry. In the
context of large-scale or international software enterprises, the effective development of a
software system hinges on the reliability of its software components.

Software reliability prediction models are constructed from the input of software devel-
opment phases. As illustrated in Figure 2.1, these models fall into two main types: Early
Software Reliability Prediction (ESRP) models and Software Reliability Growth Models
(SRGMs). Early prediction models aim to forecast software reliability in the requirement,
design, and implementation phases of the life cycle. On the other hand, reliability growth
models endeavour to anticipate software reliability during the testing phase by examining
the failure patterns of the software during testing and projecting its performance during
operation. Several other models may be included in either or both of these categories, such
as architecture-based and input domain-based models. Architecture-based models forecast
reliability from the design, implementation, and testing phases, thus integrating elements

of both types. These models prioritize the software’s architecture and calculate reliability
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Figure 2.1: Software development life cycle with reliability prediction models

estimates by consolidating estimates derived from the various components of the software.
Input domain-based models leverage the software’s input domain (validated data) proper-

ties to deduce a correctness probability estimate from properly executed test cases.

2.1 Software Reliability Growth models

In this method, estimating reliability involves measuring the reliability of a software appli-
cation by aligning the failure data gathered during the testing phase of the product devel-
opment cycle with a suitable growth model [53, 54, 55, 56, 57, 58]. These models assess
current and future software reliability based on failure data collected during the testing
phase. As well as these models aim to establish statistical relationships between fault de-
tection data and well-known functions such as exponential functions. If the correlation
proves strong, these established functions can be employed to forecast future performance.
These models quantify reliability by measuring the number of faults discovered versus the
number of faults remaining in the software after a specified period or time interval between
software failures.

Goel et al. [54] introduced a stochastic framework based on a non-homogeneous Pois-
son process (NHPP) for the software failure phenomenon. This approach involves an-

alyzing the failure process to establish an appropriate mean value function for the NHPP,
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enabling the determination of software reliability and performance. Experiments were con-
ducted using the Naval Tactical Data System (NTDS) from the US Navy Fleet Computer
Programming Center. Musa et al. [55] developed a new software reliability model that pre-
dicts expected failures. Huang et al. [56], described how few NHPP growth models, such
as Goel-Okumoto, Gompertz Growth Curve, Logistic Growth Curve, Generalized Goel
NHPP, Yamada Delayed S-Shaped, Inflected S-Shaped, and Weibull-Type Testing-Effort
Function Models, can be thoroughly established by applying the concept of weighted ge-
ometric, arithmetic, or harmonic mean. The purpose of Zhang et al. [59] is to include
fault removal efficiency in the evaluation of software reliability. Debugging is imperfect
because the faults found during the process may not be eliminated, and new faults may
be introduced into the software. Khoshgoftaar & Woodcock proposed an approach [60] to
choose a reliability model over several possible models through the log-likelihood func-
tion. An S-shaped model was determined to be the most suitable for the procedure. A
deterministic distance-based approach was developed by Sharma et al. [58] and used to
choose and rank over sixteen distinct NHPP growth models and concluded that no model
is most effective for all contributing criteria.

SRGMs have certain assumptions regarding software failure and development pro-
cesses, which are not valid in real scenarios. Exponential models assume a static failure
rate over time, which may not reflect changing real-world scenarios where the rate can
change, making them less effective for complex systems. Logarithmic models suggest that
improvements in reliability will decrease over time, which may not hold if significant new
faults are introduced, and they are highly sensitive to data quality. The Goel-Okumoto
model often relies on a single parameter for fitting, oversimplifying complex failure be-
haviours. NHPP models are mathematically complex and require extensive historical data
for accurate failure rate modelling. Weibull models face challenges in accurately estimat-
ing parameters, often needing significant data, while log-logistic models assume a specific

failure distribution that may not be suitable for all software systems.
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2.2 Early Software Reliability Prediction Models

Reliability growth models provide reliability estimates, but taking corrective actions based
on these estimates often occurs too late and at considerable expense. Some reliability es-
timation approaches treat a software system as a single, undifferentiated entity, neglecting
its internal structure, termed black-box approaches. Moreover, many pivotal design deci-
sions concerning a software system are made well before the implementation phase [61].
Therefore, early-stage reliability prediction models hold significant importance, enabling
the early detection of cost overruns, process discrepancies in software development, and the
formulation of optimal development approaches [61]. Early reliability prediction methods
utilize the reliability of individual components and their architectural arrangement to pre-
dict the reliability of the entire system during the initial stages of the software development
lifecycle, spanning from requirements to coding, known as white-box approaches. In these
early phases, precise failure data is absent, hindering the quantitative assessment of soft-
ware reliability [2]. Hence, predictions rely on various factors such as reliability metrics,
expert opinions, developer expertise, and historical failure data from analogous projects.
A standard reference, IEEE Guide for the Use of IEEE Standard Dictionary of Mea-
sures provided to produce reliable software [62]. This standard is used by clients, project
managers, and developers to ensure the highest level of reliability in software products. A
method for predicting early software reliability based on a determination of software pro-
cess failure modes and modelling of the influence on the software product in the requirement-
analysis phase was presented by Smidts et al. in [61]. Functional requirements, perfor-
mance requirements, memory requirements, accuracy requirements, reliability and safety
requirements, and portability requirements are a few examples of the requirement-analysis
phase. The reliability prediction model introduced by the U.S. Air Force Rome Air De-
velopment Centre (RADC) [63] assesses a system’s reliability based on its failure rate.
Initially, the software application’s fault density is approximated using metrics from soft-
ware engineering. Subsequently, this fault density is translated into a failure rate using
specific conversion ratios outlined by the RADC. However, it overlooks object-oriented

metrics and treats the software as a single unit since utilizing this approach for predicting

17



CHAPTER 2. LITERATURE SURVEY Section 2.2

the reliability of software components within the system is unfeasible.

A reliability prediction model for component-based systems has been suggested by
Cortellessa et al. [64]. Utilizing a Bayesian methodology, they calculated the model pa-
rameters based on historical data regarding component failure probability and system uti-
lization. Later, they employed this model with an appropriately annotated use case and
sequence diagrams to estimate system reliability throughout the design phase. Neverthe-
less, their method may cause an overestimation of system reliability because it ignores the
reliability of the component interfaces. In [65], a component’s reliability is determined by
averaging its services’ reliabilities. It is expected that the component services’ reliability
is known. Nevertheless, this approach overlooks the design structure of the component,
potentially diminishing the accuracy of the component’s reliability prediction. Ensemble
models were constructed in [66] to predict software reliability. The ensembles comprise
a range of approaches, such as multivariate adaptive regression, multiple linear regres-
sion, dynamic evolving neuro-fuzzy inference system, back propagation neural network,
and TreeNet. The non-linear ensemble is trained using a back-propagation neural network,
and it gives each strategy a weight according to its prediction capabilities. The nonlinear
ensemble exhibited superior performance compared to all other ensembles and individ-
ual reliability techniques. Cheung et al. presented a methodology in [3] for estimating
component reliability during architectural design. The values derived from this suggested
component-level approach can be fed into other system-level reliability models that require
such information. In [2], Mohanta et al. proposed a bottom-up approach that extracts de-
sign metrics, which have a strong correlation with the specific fault categories, and predicts
the reliability of a system based on the reliabilities of its components, where classes are
considered the basic components over a simple restaurant automation system.

Accurately predicting the reliability of modules in the early stages of product develop-
ment poses a significant challenge due to the unavailability of actual field failure data or
failure data obtained during testing. Hence, fault prediction models utilize class metrics
(module features) of the historical data [67, 68, 69, 70] as the input and assume all modules
are independent of each other. Several metrics, such as Coupling Between Objects (CBO),

Depth Of Inheritance Tree (DIT), Response For Class (RFC), Weighted Method per Class
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Figure 2.2: A typical within-project fault prediction model

(WMC), Lines of Code (LOC), Method Hiding Factor (MHF), Attribute Hiding Factor
(AHF), and Coupling Factor (CF) are used for predicting software faults. Effort estimation
models utilize project attributes of the historical project’s data [71, 72, 73] as the input
to train the estimation model. Several attributes, such as analyst’s capability, program-
mer’s capability, application experience, modern programming practices, use of software
tools, virtual machine experience, language experience, Manager Experience, Team Ex-
perience, Language, Turnaround time, Database size, Source lines of code, Raw function
point counts, Adjusted function points are used for software development effort estimation.
Notably, contemporary methodologies such as machine learning models, neural networks,
fuzzy neural networks, ensemble models, advanced data preprocessing techniques, and
hybrid approaches have demonstrated significant advancements in prediction of software
reliability in terms of fault prediction and effort estimation compared to conventional sta-
tistical methods [66]. A detailed literature review of WPFP, CPFP, and SDEE models is

given in the following sections.

2.3 Within-Project Fault Prediction

Currently, SFP is gaining more popularity in developing superlative-quality software sys-

tems cost-effectively. The basic process of prediction in a WPFP model is depicted in
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Figure 2.2. Within the same project, a subset of labelled modules is employed to train, and
the remaining unlabeled modules are utilized to test the WPFP model. Research studies
on the prediction of software faults emphasized the eminence of many classification mod-
els, including LR [74, 75], SVM [76], RF [75], KNN [77], Bayesian Methods [78, 79],
ANN and DNN models [80, 81, 82, 83]. A significant problem associated with predict-
ing software faulty modules is the class imbalance issue [84, 85]. In practice, this can be
defined where the ratio between faulty and non-faulty instances is very high in datasets
used for WPFP, where the classifier yields results partial towards non-faulty instances [86].
For these reasons, fault prediction pays more attention to the class-imbalance issue and
more research has been raging on this issue. The imbalance learning strategies are mainly
grouped into three prevalent methods:

1) Data level strategies [11, 12, 13, 14, 15, 18, 87, 88, 89, 90]: The first and most preferable
approach, with its simplicity, is a variation of the re-sampling (i.e. oversampling or under-
sampling) approach, whereby an imbalanced dataset with a skewed class distribution is
transformed into a balanced dataset by wisely offering new pseudo-instances (i.e. synthetic
or artificial instances) into the faulty class. A huge amount of research work has been raging
on this approach, such as Random Under Sampling (RUS) [77, 91], Random Over Sam-
pling (ROS) [15], Synthetic Minority oversampling Technique (SMOTE) [11], Borderline-
Synthetic Minority oversampling Technique (BSMOTE) [12], Adaptive Synthetic Sam-
pling Approach (ADASYN) [87], Diversity Based Oversampling Approach (MAHAKIL)
[14] and Semi-Supervised Oversampling approach based on Trigonal Barycenter Theory
(SOTB) [18], to name a few. These data-level approaches produce efficient outcomes with
simple implementation, but the accurate outcome depends on the chosen problem and the
classification algorithm.

2) Algorithm level strategies [92, 93, 94, 95, 96]: These approaches directly alter the
classification mechanism to cope with imbalanced data, such as cost-sensitive learning
techniques and one-class learning techniques, to name a few.

3) Ensemble learning strategies [97, 98, 99, 100, 101, 102, 103]: This approach outper-
forms the existing classifiers by working with a combination of multiple classifiers, namely

bagging, boosting, SMOTEBoost, RAMOBoost, and AdaBoost.NC, to name a few.
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Among these three approaches, we focused more on sampling strategies, especially
oversampling techniques. The cost-sensitive approach works by assigning miss-classification
costs [93, 104]. However, it is not clear how much it will cost. There is a lot of research has
been done in the field of WPFP through ensemble learning approaches [99, 101, 102, 105],
but these methods consume more time for the construction of fault prediction models be-
cause they have to combine multiple models. To resolve imbalance issues, the data-level
strategies resample the actual dataset and construct synthetic information to alter the faulty
class distribution (oversampling) or exclude data from non-faulty classes (undersampling)
to prepare a balanced dataset. The data-level strategies benefit over the other two strategies
in that they don’t alter the classifier and obtain better prediction accuracy. For these rea-
sons, we focused our research on data-level strategies.

RUS [77, 91] eliminates instances from the non-faulty class of the datasets at random.
However, the instances excluded from the non-faulty class might hold essential data for
classification models; the usage of undersampling is the least frequent in SFP. ROS [15]
randomly selects instances from faulty classes and reintroduces them into the same class so
that it can maximize the strength of the class, which may result in severe overgeneralization
of the model. Chawla et al. [11] introduced the SMOTE algorithm. Firstly, each faulty
instance of a faulty class finds its K-closest neighbors, then it randomly selects one of the
closest neighbors and computes a random synthetic instance with the selected neighbour in
the second step. During the past two decades, a significant number of researchers have been
motivated by the conception of SMOTE, particularly Borderline-SMOTE [12], ADASYN
[87], MWMOTE [13], Geometric SMOTE [106], Stable SMOTE [21] and SMOTEFUNA
[20], to name a few.

Han et al. [12] suggested Borderline-SMOTE; it selects near border faulty instances and
then performs synthetic data generation on those border samples as like SMOTE to max-
imize the recognition rate of border faulty instances. Unlike SMOTE, Bennin et al. [14]
suggested a new oversampling technique called MAHAKIL. It calculates the Mahalonobis
distance between the mean vector and all other instances and arranges them in ascending
order according to their Mahalonobis distance, then makes two partitions of the data and

generates synthetic data according to the chromosomal inheritance theory concept. The
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synthetic data generated by MAHAKIL has more diversity than the SMOTE-based ap-
proaches, which can overcome the overgeneralization problem.

Liu et al. [18] presents SOTB, which uses the concept of trigonal barycenter theory to
generate new synthetic instances. It forms non-intersecting triangles and takes an average
of them as new synthetic data. Feng et al. [88] presented the Complexity-based Over Sam-
pling Technique (COSTE). COSTE uses differential evolution to assign complexity to each
feature of instances to produce synthetic data for further computation. Saez et al. [107]
presented the SMOTE-Iterative Partitioning Filter (SMOTE-IPF) model, the oversampling
process is the same as SMOTE. Later, it excludes the noisy and borderline samples from
oversampled data. Lina Gong et al. [108], presented the KMFOS technique to mitigate
imbalanced class issues along with a noise filter. Firstly, the K-means algorithm is utilized
to generate these K clusters. Further, from those clusters, it generates synthetic data and
then filters out noise instances. Khleel et al. [90] introduced a novel approach to fault
prediction by employing bidirectional long short-term memory (Bi-LSTM) networks, a so-
phisticated deep learning method, combined with strategic oversampling techniques. Ex-
periments conducted on standard datasets from the PROMISE repository validate the effec-
tiveness of the proposed model and showed notable enhancements compared to unbalanced
data outcomes. Arun et al. [89] introduced an oversampling method based on multipatch
clustering to address class imbalance and handle smaller disjuncts in fault prediction. The
performance of this approach was evaluated using five different machine learning models,
demonstrating a reduction in false alarm rate.

Currently, deep learning is gaining popularity and for SFP. Zhao et al. [81] introduced
a novel method for assessing code functional similarity called DeepSim. They created a
semantic representation by encoding a matrix based on data and code control flow, then
employed a DNN model to extract features from the matrix and perform fault prediction
classification. Qiao et al. [82] analyze the performance of imbalanced software datasets
through deep learning. They employ two variants of deep learning models (multi-layer
perceptron and convolution neural networks) over four NASA datasets.

We observed that many proposed techniques tend to overlook the issue of class imbal-

ance. However, studies that have specifically addressed this problem emphasize the pivotal
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Figure 2.3: A typical cross-project fault prediction model

role of data balancing methods in enhancing the accuracy of SFP [11, 12, 14, 20, 18]. Par-
ticularly, oversampling with diverse synthetic data is crucial for minimizing false positive
rates. Recent research underscores that combining machine learning with data balanc-
ing techniques can effectively boost prediction accuracy. Consequently, our study aims to

tackle the class imbalance problem in WPFP through the oversampling technique.

2.4 Cross-Project Fault Prediction

A newly launched or small project could not have adequate training data from the same
project, these WPFP models are inappropriate in such cases. Therefore Nagappan et al.
(2006) [109] investigated how a prediction model trained on one project’s history is adapt-
able to other projects. Consequently, numerous studies have been recommended to develop
CPFP models, in which training data is gathered from existing projects for a newly devel-
oped project [23, 25, 26, 29, 32, 36, 37, 38, 42, 109, 110, 111, 112]. The fundamental
process of CPFP is illustrated in Figure 2.3. In this process, the CPFP model is trained
using labeled historical source projects’ data and then evaluated using the unlabeled data

from the target project.
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The majority of the CPFP studies focused on how to minimize the distributional dif-
ference between cross-project data. Transfer learning is the most commonly used tech-
nique to reduce distribution differences [23, 24, 25, 26, 27, 28, 37, 112], which explicitly
maps training and testing projects into a common feature space where the dissimilarity be-
tween the two projects’ data distribution is minimal. Later, training data selection models
[29, 30, 31, 43, 113] utilize the k-NN concept to select similar characteristics training data.
In this way, a machine learning model trained on appropriate source data can more accu-
rately detect the target data. Another approach to address the distribution gap is through
source project selection. Instead of randomly choosing source projects for training, models
select source projects based on their similarity to the target project, thereby reducing the
distribution gap [30, 36, 37, 39, 38, 40]. Two additional challenges are linked to software
datasets. The first challenge concerns the imbalance within these datasets [17, 25, 41, 42].
The second issue is the curse of dimensionality in software datasets [41, 43, 44, 114].

For the past two decades, researchers have been working on these issues to improve
CPFP performance. According to our research, Basili et al. [110] accomplished the first
kind of cross-project fault prediction work. Based on a logistic regression prediction model
that was trained using data retrieved from one open-source project and predicted from
another project. Briand et al. [111] investigated the adaptability of fault prediction models
across projects that came from an identical development setting. Current CPFP research,
however, typically assumes that cross-project data originates from sources outside of an
organization or a company. Zimmermann et al. [32] performed cross-project predictions
for 622 pairs from 28 projects and found that only 21 pairs (3.4%) were successful in
achieving Accuracy, Recall, and Precision measure values above 0.75. In addition, they
discovered that the association among the projects—i.e., the mere fact that project A is
appropriate for training an effective prediction model for project B does not automatically

imply that project B is also appropriate for training an effective model for project A.
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2.4.1 Source project Selection Models

To reduce the distribution gap between source and target projects, many studies first con-
centrate on the concept called source projects selection, which selects similar source projects
to individual target projects. According to a study by He et al., [33], building a prediction
model from the same project’s data may not always result in more accurate predictions. In-
stead, the predictive performance of the cross-project prediction model can be significantly
increased to 52.9% by using meticulously selected cross-project data. Moreover, they select
the training data projects with 16 different distributional features of both the training and
target data to accomplish this success rate. The exponential run time of this approach, how-
ever, means that it cannot scale to large data sets. Jureczko and Madeyski [34] attempted to
group various software fault projects into multiple clusters of similar characteristics under
the assumption that a prediction model should perform effectively for every project that
comes under the same group, based on the approaches called Kohonen’s neural network,
k-means, and hierarchical clustering. Menzies et al. [35] suggest partitioning the projects
into clusters with extremely comparable data can choose source projects wisely. Herbold
[36] presented the nearest neighbour and EM clustering algorithms using distance-based
and clustering-based approaches, respectively, which select the source projects based on
the distributional properties of the data of the readily available source project and the target
project. He assessed the model over 44 open source projects for a certain target project.
A two-phase transfer learning model (TPTL), which combines the source project selection
and transfer learning model for CPFP, was proposed by Liu et al. [37]. The TPTL selects
two source projects with the highest distributional similarity to a target project, and then
models are constructed using the approach used in [23] to enhance the CPFP performance.
The results indicate that TPTL can resolve the instability of TCA+ over different source
projects. Sun et al. [38] put forward a collaborative filtering-based source project selec-
tion (CFPS) method for CPFP. Computed the inter-project similarity score, followed by
the inter-project applicability score, and then selected three appropriate source projects for
a specific target by performing collaborative filtering recommendations over both scores.

Kim et al. [39] proposed a source project selection approach for heterogeneous CPFP
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by controlling the imbalance issue called CorrelAtion-based selection of Multiple source
projects and Ensemble Learning (CAMEL). Three phases of CAMEL’s method are used
to solve heterogeneous CPFP. First, features are matched using the Kolmogorov-Smirnov
test to turn heterogeneous data into homogeneous data. Next, multiple source projects are
selected using correlation analysis. Finally, the ensemble learning model is trained based
on the selected source project data and predicts labels of the target data to deal with the

issue of class imbalance.

2.4.2 Transfer Learning and Training Data Selection Models

The aforementioned studies are not altering the data but instead attempting to choose data
that is already comparable under the same assumption that similar distributions perform
more effectively for CPFP. Furthermore, alternative methods for managing training data
and prediction models like transfer learning models, instance selection models, feature
learning techniques, and imbalance learning techniques are probably required to overcome
issues faced by CPFP. To build a fault prediction model that learns from a Java project
and predicts over a C++ project, Watanabe et al. [115] transformed metric values of trained
data in accordance with test data. It was discovered that the transformation can improve the
recall of predictors applied in a different environment. Turhan et al. [29] explored cross-
company fault prediction, which involves using data from other companies to build fault
predictors for local projects. They investigated three Turkish and seven NASA projects.
They presented a method to select the training data based on the k nearest neighbour tech-
nique by selecting 10 instances from all available project data that are most similar to each
target instance, then concluded that cross-company data increases the true positive rate
while raising the false positive rate. Meanwhile, Pan et al. [22] proposed a domain adap-
tation transfer learning algorithm called the Transfer Component Analysis (TCA) method.
Instead of performing training data selection, TCA maps cross projects into common fea-
ture space to make distribution differences close. Nam et al. [23] further extended the
TCA to TCA+ by including data preprocessing techniques to maximize CPFP performance.

Considering cross-company fault prediction, Ma et al. [116] proposed the Transfer Naive
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Bayes (TNB) method, where the source and target data come from distinct companies.
TNB determines the distribution of the test data, transforms the cross-company data infor-
mation into the weights of the training data, and then constructs a fault prediction model
through weighted training data and investigated the NASA, PROMISE, and SOFTLAB
projects. Bala et al. [117] address the distribution gap and high-dimensionality issues af-
fecting the CPFP through transformation and feature selection approaches. Gong et al. [25]
developed a novel class imbalance learning approach for WPFP and CPFP called STrNN
(stratification embedded in nearest neighbor). First, TCA was used to transform the source
and target data into the same distribution, and then STrNN was applied to reduce the im-
balance between faulty and non-faulty classes. Limsettho et al. [118] developed a novel
approach called Class Distribution Estimation with Synthetic Minority Oversampling Tech-
nique (CDE-SMOTE), which employs CDE to determine the class distribution of a certain
target project. The training data’s distribution is subsequently modified through SMOTE
until it resembles the target project’s approximate class distribution. Amasaki [119] looked
at the effectiveness of CPFP models for cross-version prediction. Zhu et al. [120] de-
veloped a just-in-time fault prediction model based on denoising autoencoder (DAE) and
convolution neural network (CNN) called DAECNN-JDP. First, DAE generates a more ro-
bust representation of features, and then CNN maps this basic feature representation into
the abstract deep semantic feature representation to improve the recognition rate of both
faulty and non-faulty instances accurately. To deal with the distribution gap and high-
dimensionality issues in CPFP models, Ni et al. [121] developed the Feature Selection
Using Clusters of Hybrid Data (FeSCH) model. FeSCH initially groups features into clus-
ters through a density-based clustering technique and then, in the subsequent phase, uses
various heuristic ranking techniques to choose features from each cluster. A two-layer ap-
proach was presented by Xia et al. [122] to capture similar features between the source and
target projects through the genetic algorithm combined with the ensemble model and the
advantages of various classifiers. Bhat et al. [31] proposed a combined data transformation
and instance filtering model called BurakMHD. Initially, data transformation was applied
to numerous source project data and target data, and then training data was constructed by

selecting k-instances from transformed source data with the minimum hamming distance
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from each individual target project instance. Hosseini et al. [43] generated training data
through the filtering method, which is the genetic algorithm integrated with the NN-filter
[29].

In [42], kaliraj et al. explore different classifiers on diverse datasets sourced from mul-
tiple software projects. Subsequently, the effectiveness of CPFP should be assessed to
gauge how well models trained on one project can predict faults in others. Additionally,
it analyzes the impact of augmenting training samples from various projects on prediction
accuracy. Khatri et al. [44] investigated the transfer of knowledge between a source and
target through feature selection. Their proposed approach comprises two distinct feature
selection strategies, each with its focus on balancing cost and performance. Both strategies
were evaluated through 26 cross-project experiments involving eight software projects. In
[123], Tong et al. proposed a new effective Adaptive Triple Feature-Weighted Transfer
Naive Bayes (ARRAY) method. They introduced the idea of feature-weighted instance
weight, determined by feature importance and weighted similarity among features, to limit
the distribution gap. They conducted experiments on 34 datasets and evaluated perfor-
mance using metrics such as AUC, Fl-score, and MCC, with statistical testing methods
applied.

From the literature, we observed that many proposed techniques don’t focus on all the
issues faced by CPFP. However, studies that have specifically addressed distribution dif-
ference, imbalance, and high dimensionality problems emphasize the accuracy of CPFP
models [25, 27, 37, 38, 41, 44]. Recent research underscores that combining transfer learn-
ing and source project selection models with sampling and feature optimization techniques
can effectively boost prediction accuracy. Consequently, our study aims to address the

aforementioned issues in CPFP to improve prediction accuracy.

2.5 Software Development Effort Estimation

Due to the pivotal role that SDEE holds within the development process, a variety of es-
timation approaches have been established to improve the accuracy of estimation. The

fundamental process of SDEE is illustrated in Figure 2.4. According to [124], software ef-
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Figure 2.4: A typical software development effort estimation model

fort estimation techniques fall into six distinct categories, later, they are grouped into three
categories such as expert judgment, algorithmic models, and machine learning processes.
Conventional algorithmic models, such as the constructive cost model (COCOMO) [125],
software life cycle management (SLIM) [126], and Function Point Analysis (FPA) [127]
perform estimations based on a statistical analysis of project input data, which implies the
effort is computed by a mathematical model from the numerical inputs of one or more
projects. In the case of expert judgment, Delphi [128, 129] and work breakdown structure
[130] methods rely on past experience of a domain expert to estimate the required effort.
The problem here is the lack of an objective foundation and in situations where data or
expertise in numerical techniques is limited.

Machine learning (ML) techniques have emerged as promising strategies, showing
comparable accuracy to algorithmic methods while also potentially offering enhanced com-
prehensibility and application ease [131]. Most of the ML models in effort estimation fall
under categories like regression models, CBR models, ABE models, ANN, fuzzy neural
networks, extreme learning, and ensemble learning models. However, conventional re-
gression models are notably sensitive to outliers and also necessitate considerably a large
dataset for training, which is often difficult in the software effort estimation domain.

Optimization techniques are widely applied in SDEE to fine-tune the parameters in

effort estimators like ABE [47, 48, 51, 132, 133, 134]. An artificial Bee colony guided
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Analogy-Based Estimation (BABE) model incorporates the Artificial Bee Colony (ABC)
algorithm with ABE to enhance estimation accuracy. While training, ABC generates and
updates various feature weights and integrates them into the similarity function of ABE
by reducing the MMRE value, out of which the optimal feature weight vector is utilized
to accurately estimate the testing data [47]. In [52], Hameed et al. integrated the genetic
algorithm (GA) into the CBR technique to address the challenge of tuning multiple param-
eters. GA optimizes the feature weights and a number of neighbors for CBR, aiming to
achieve the most accurate effort estimates by minimizing absolute estimation errors. The
results achieved in terms of absolute and relative errors are better than the fixed k-number
of neighbors. In this study [135], a variety of ensemble methods have been explored for
effort estimation, where stacking using a random forest ensemble approach yields superior
results when compared to single-model approaches. In [136], De et al. selected influen-
tial features using Pearson’s correlation coefficient and subsequently applied the Extreme
Learning Machine (ELM) model over selected features for effort estimation. ELM demon-
strated significantly better performance compared to conventional regression models. Kas-
saymeh et al. [137], employed a fully connected neural network (FCNN) model coupled
with gray wolf optimizer (GWO), referred to as GWO-FC. This integration aims to opti-
mize the weights and bias parameters of the FCNN, enhancing result accuracy. Khan et al.
[138] enhanced the deep neural network by integrating strawberry and grey wolf optimizer
algorithms to optimize both learning rate and initial weights for effort estimation.

In a pool of a wide variety of ML techniques, neuro-fuzzy frameworks prove effec-
tive in establishing complex relationships between diverse features of data [49]. Lately,
the ANFIS is getting notable attention among effort estimation models [45, 46]. A neu-
ral network can train itself by learning from a dataset, a fuzzy system necessitates explicit
user-defined parameters. Conversely, neural networks solely perform predictions without
acquiring knowledge, while fuzzy inference systems effortlessly extract knowledge from
user input. Thus, the combination of these two models is beneficial in effort estimation.
Azzeh et al. [139] proposed a new software project similarity measure and adaptation
technique in ABE through fuzzy numbers concept to improve the performance of software

project effort estimation in the early stages, and empirical analyses were carried out us-
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ing five benchmark data sets. In [140], classical and fuzzy analogy-based approaches are
combined to enhance effort estimation. The results indicate that the ensemble based on
fuzzy analogy outperforms the classical analogy model. Agrawal et al. [141] developed
a neuro-fuzzy model to classify software projects and establish rules. The neuro-fuzzy
model with trapezoidal, triangular, and Gaussian membership functions is compared with
the neural network models, and it is observed that the trapezoidal membership function
yielded superior results compared to all the other models. Moosavi et al. [46] proposed
a novel metaheuristic algorithm known as Satin Bower Bird Optimization (SBO) and in-
tegrated it with ANFIS to optimize both premise and consequent parameters by reducing
MMRE and enhancing PRED scores. ANFIS-SBO was assessed using three publicly avail-
able effort estimation data sets and obtained better outcomes. Karimi et al. [50] presented
a hybrid model of ANFIS and the differential evolution algorithm for effort estimation.
Sharma et al. [142] proposed a fusion of the Genetic Elephant Herding Optimization-based
Neuro-Fuzzy Network (GEHO-NFN). A neuro-fuzzy network is used to estimate the effort
in terms of cost, while the GEHO method optimizes NFN parameters. In [49], the neuro-
fuzzy inference system examined the elements of an ANN with fuzzy logic to provide more
accurate estimations. Nanda et al. [45] proposed a hybrid effort estimation model known
as ANFIS-PSO. The ANFIS model uses the particle swarm optimization technique to op-
timize the parameters associated with triangular and Gaussian membership functions by
considering the mean standard error as fitness and experiments performed over the NASA
dataset. Edinson et al. [143] designed the ANFIS model using the fuzzy C-means clus-
tering and subtractive clustering techniques to compute the software effort and compare
it with the Elman neural network. Ali et al. [144] conducted an empirical investigation
by integrating bio-inspired and non-bio-inspired feature selection algorithms with basic
estimation models. The findings revealed that bio-inspired models outperformed non-bio-
inspired models. Recently, the social network search (SNS) algorithm has been used across
various optimization problems and demonstrated its superiority in different domains [145].

The research works mentioned above aimed to generate accurate estimates through
various methods. However, many of them utilizing ANFIS didn’t address the challenge

associated with the complexity arising from the number of parameters generated by the
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number of features. In ANFIS, the number of rules, premise, and consequent function
parameters increase exponentially with the number of inputs. This justifies the importance
of the feature selection, parameter optimization, and adaptation processes as an essential
part of classical ANFIS. Our research endeavours to address this gap by leveraging the
SNS technique to optimize the number of features and ANFIS parameters to enhance effort

estimation capability.

2.6 Summary

In this chapter, we explore various models for predicting software reliability, including
early software reliability models and software reliability growth models. We pay particular
attention to the parameters of the ESRP model, such as fault prediction and effort estima-
tion models, and discuss their merits and limitations. Furthermore, it provides an in-depth
literature review of studies conducted within the scope of this thesis. The next chapter
presents a weighted average centroid based oversampling approach for within-project fault

prediction.
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Chapter 3

A Diverse Oversampling Technique for

Within-Project Fault Prediction

Currently, fault prediction models are gaining popularity for predicting software reliability
in the early phases of development. As discussed in Chapter 1 and Chapter 2, there is
an important problem associated with the prediction of software faults, that is the class
imbalance issue [84, 85]. In this chapter, we proposed an imbalance learning approach
to reduce the percentage of class imbalance between faulty and non-faulty instances to
maximize the prediction capability of the classifier.

The remainder of this chapter is organized as follows: Section 3.1 describes our pro-
posed WACIL approach. The description of the experimental setup and a demonstration of
the experimental results are provided in Section 3.2 and 3.3, respectively, while 3.4 pro-
vides a thorough discussion of those results. Section 3.5 discusses the threats to the validity

of our approach. Finally, the chapter summary is provided in Section 3.6.

3.1 Weighted Average Centroid based Imbalance Learn-
ing (WACIL) for Within-Project Fault Prediction

The WACIL approach is accustomed to build balanced datasets through the introduction

of pseudo-instances into the faulty class. The proposed oversampling algorithm comprises
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two stages: the first stage is the selection of hard-to-classify (borderline) instances from
the faulty class (minority class). The second stage is the introduction of filtered pseudo-
instances into the faulty class. The two stages are repeated until the training data becomes
balanced. The comprehensive description of the two stages is listed in the following sub-

sections.

3.1.1 Extraction of borderline Instances

Many traditional classifiers aim to extract and learn decision boundaries to achieve better
performance. Instances that are far from the decision boundary are more likely to be classi-
fied accurately; conversely, instances near or on the decision boundary have a higher likeli-
hood of being misclassified. We can refer to these as hard-to-classify instances. Therefore,
it is important to generate pseudo-instances of hard-to-classify faulty instances to build a
better classifier.

In our proposed approach (As shown in Algorithm 1), we designed a way to extract
important hard-to-classify borderline instances of faulty class and construct the borderline
faulty instance set, FSy;,.. Suppose that the whole training set is *T°, the faulty class set
is FS and the non-faulty class set is NFS and the whole process of extracting borderline
instances in set FSy;,,. (lines 1-13 of Algorithm 1) can be described as follows:

We have experimented with projects of high imbalance and moderate imbalance rates
from the PROMISE and NASA datasets for different K (closest neighbour) values. The
experimental results indicate that K = 5 produces better performance for both highly and

moderately imbalanced projects, so we consider K =5 for all the experiments.

1. The foremost step in our approach is the identification of the closest neighbors of
each and every instance (CN(/nc;)) of faulty modules in FS and NFS, differently,
according to the cosine similarity measure by considering K = 5. For each instance
(Inc;), compute the sum of the distances of the closest neighbors from NFS and FS
and store those distances in sets Dyprg and Dpg, respectively. For Inc;, if the sum
of the nearest neighbors distance (disty,.;) € Dpg is greater than disty,.; € Dyrs

then append Inc; to a new temporary set (FS;,,;,), €lse the instance is considered as a
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noise instance and not added to FSy,,,,.

2. The further step is, for each Inc; € FSy,,,, identify the closest neighbors (CN (/nc;))
in the total original training dataset according to the cosine similarity measure by
considering K = 5. Make a set of union of all the closest neighbors from NFS in
NFES,,,,;,, for which I'nc; the closest neighbors from NFS are greater than or equal to
three. Here, instances having three or more out of the five closest neighbors from the
non-faulty class (NFS) will share more boundaries with the non-faulty class. There-

fore, we have considered the count to be greater than or equal to three.

3. Now the conclusive move of extraction of borderline instances, for each Inc; €
NFS,,,,,,, identifies the closest neighbors (CN(/nc;)) in FS according to the cosine
similarity measure by considering K = 5. Take a set of union of all the closest neigh-
bors in FSy;,.. The borderline instances in set FSy;,. are used to generate filtered

pseudo-instances of the faulty class.

3.1.2 Weighted Average Centroid based Pseudo-instance Generation

This stage aims to balance the dataset through diverse pseudo-instances introduction in
faulty class. After identifying borderline faulty modules, the process proceeds with cal-
culating the Mahalanobis distance and generating filtered pseudo-instances to oversample
the faulty class data. This stage explains how the pseudo-faulty instances are generated to

make the balanced dataset.

3.1.2.1 Mahalanobis Distance Computation

The first and foremost step is determining the distance of extracted borderline instances of a
faulty class from their mean. The Euclidean distance has been a chart-topping measure for
decades [146] for determining the distance between two points, but it is diplomatic towards
highly correlated features and units of features. For example, if only one feature of two
instances holds more difference, then the Euclidean distance between them is very high,
irrespective of other less differenced features. This can mislead the results. For this reason,

Mahalanobis distance (MD) is considered in this study as a distance measure.
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MD can be defined as a distance measure between point x; and Distribution p. MD is

calculated as follows in Eq. 3.1,

MD(z;, 1) = /(s — )T x COV™Y x (25 — ) (3.1)

where X = {z1,72,23,..., Ty }nxm, COV ™! is the inverse co-variance matrix and
o= {p1, tho, 13-« -« fom Jmx1- 1 is the mean distribution of all features, 1 is mean of
first feature, uo is of second feature , ...., and p,, is of mt" feature, respectively. The *m’

represents the total number of features, 'n’ represents the total number of instances in the
dataset, and x; is an instance.

A few datasets produce singular covariance matrices. We can’t generate the inverse
of singular covariance matrices. In such circumstances, we computed Moore—Penrose in-
verse/generalized inverse [147] of a covariance matrix for Mahalanobis distance calcula-

tion.

3.1.2.2 Filtered Pseudo-instance Generation

Suppose the number of faulty modules is represented as Np and the number of non-faulty
modules as Nn, then the required number of faulty pseudo-instances to be generated is
calculated as N = Nn - Np. The set of borderline instances is arranged in ascending order
with respect to their Mahalanobis distance and then divided into three equal cases or sets,
followed by pseudo-instances generated. Particularly, for a few datasets the number of
faulty modules that occur close to the boundary is extremely low, so the algorithm functions
appropriately through three partitions. Instances are sorted in ascending order, so Case_1
contains samples that are too close to the mean distribution, Case_2 contains fair distanced
samples and Case_3 contains far distanced samples.

After partition, to cope with the problem of nearest sample synthesis, we shuffle the
instances of all three cases. The following step is the tagging process: In all three cases,
instances are tagged with the same labels, sequentially. Case_2 and Case_3 pursue a con-
sistent pattern of Case_1, which signifies case_2 and case_3 instances tagged with similar

labels as Case_1.
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Algorithm 1: WACIL Algorithm

LI N N

11
12
13

14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39

Require: Imbalanced training dataset (T') and K;
Ensure: Balanced training dataset (T”);
Make a partition of T in to faulty class set (F'S) and non-faulty class set (NFS)
For each faulty instance Inc; € F'S, compute K closest instances in (F'S) and store the sum of the
distance of all K neighbors in Dgg according to cosine similarity measure
In similar way, for each faulty instance Inc; € FS, compute K closest instances in NF'S and store
the sum of the distance of all K neighbors in Dnps according to cosine similarity measure.
Initialize an empty set F'Si,p
if distipe; € Drps > distine; € Dnrs then
‘ FS¢mp.append(Inc;)
end
Initialize an empty set N F'Sypp
For each instance Inc; € F'Sty,,, compute K closest instances (C'N (In¢;) in T
if count of CN (Inc;) € NFS > 3 then
‘ Take union of those closest instances belongs to NF'S in N F'Sy,,,,,
end
For each instance Inc; € N FSyp,p, compute K closest instances in F'S , then take the union of all
these closest instances in F Sp;pc
Compute the number of Pseudo-instances (V) to be generated, N = Nn — Np
Initialize N, to keep track of generated pseudo-instances
while N.,,; < N do
Compute Mahalanobis distance (MD) between F'S;;,,. and mean p using Eq. 3.1
Arrange F'Sy;,,. in ascending order with respect to its mahalanobis distance
Initialize an empty set Incpseudo
Initialize n with arraylength(FSpinc)
Create three partitions from (FSy;;,.)
Compute each partition length, j=n/3
Case_1= {Fsbinc(l)a FSbinc(Q)v s Fsbinc(j)}s
Case_2 = {Fsbmc(j+1), FSbinc(j+2)a e Fsbmc(Qj} and
Case_3 = {Fsbinc(2j+l)7 FSbinc(2j+2)7 s Fsbznc(dj)}
fori=1,2...... j do
Inc1=Case_1[i], Inc2=Case_2[i] and Inc3=Case_3[i]
if N.,; < N then
S < min(Inc1,Inc2,Inc3)+rand(0,1)(max(Inc1,Inc2,Inc3)-min(Inc1,Inc2,Inc3))
Compute K closest instance of S in T
Calculate the number of non-faulty instances (n1) and the number of faulty instances
(n0) in K-closest neighbors
if n0 > nl and n0 # K then
Incpseudo — Incpseudo + S
Ncnt — Ncnt +1
end

end
end
Fsbinc = Fsbinc + Incpseudo

end
T’ = Union (NFS, FS, FSyinc)
return T’

Tag_set= {tagi,tags,...tag;}, this Tag_set is the same for all three cases for all in-

stances, sequentially. Where j=n/3 and 'n’ is the total number of instances.
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The generated faulty modules from these three partitions are filtered and included in
the training set. For one combination select instances with tag, from all cases (inc;, inc;4q
and incy;41), for the next combination select instances with tag, from all cases and repeat
similar type combination selection for the remaining instances. It takes the weighted aver-
age of the selected combination of all three instances.

Suppose, Incl € Case_1, Inc2 € Case_2, and Inc3 € Case_3 have same tag.
Incl = {incy1, incya, . . . incrm )
Inc2 = {incay, tncag, . . . t1nCom }
Inc3 = {incsy, tncsa, . .. 1NC3m ).

Where ‘m’ represents the number of features present in the training dataset. Unlike
existing techniques, the minimum and maximum values belong to different instances, thus
the generated pseudo-faulty module resides in between them and shares similar features
with all of these modules. The pseudo instances are generated using the following equation

Eq. 3.2:

Min = [Minimum(Incl, Inc2, Inc3)]ixm

Max = [Mazximum(Incl, Inc2, Inc3)]ixm
3.2)

rand = [random(0, 1)]1xm

New_inc = Min + rand(0,1) x (Max — Min)

After generating pseudo-faulty modules, there could be some undesirable or redundant
instances generated during implementation. These instances can influence the performance
of the prediction model. They often occur in the space of the non-faulty class, share many
more boundaries with the non-faulty class, or are completely redundant with the actual
faulty module. To find out these undesirable instances, a cosine similarity measure is em-
ployed. Firstly, we apply cosine similarity to get the closest neighbors of a pseudo-instance
by considering K = 5. Then, take a different count of the nearest neighbors for faulty mod-
ules and non-faulty modules, respectively. If the number of faulty modules is less than
the number of non-faulty modules, then that faulty instance is undesirable. Otherwise, if

the number of faulty modules is equal to K, then that pseudo-instance is considered as a
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redundant instance. These instances should be excluded from the pseudo-instance set.
Repeat the above explained two stage process until the generated filtered pseudo-instances

count equals N, which means the ratio of faulty and non-faulty modules becomes 1:1.
Through these two stages, the training dataset is constructed. For example, assume a dataset
with Nn = 680, Np = 70, and N becomes 610 (680-70=610). Our proposed algorithm iter-
ates (lines 16-37 of Algorithm 1) until the number of pseudo-faulty class samples reaches
610. After all iterations, the ratio of both classes turns to 1:1 and the dataset becomes bal-
anced. As a result, prediction models trained on this dataset can equally learn parameters

from both classes, ensuring unbiased results and preventing model overgeneralization.

3.2 Experimental Setup

In this Section, we report an overall summary of the datasets and a detailed description of
the model performance assessment measures used to evaluate our simulation work. Next,
we briefly explain baseline methods, classifier selection, experimental framework design,

and statistical comparison measures.

3.2.1 Experimental Objects

To assess our proposed approach, we conducted experiments using a total of 24 diverse
datasets. Among these, 14 were sourced from PROMISE projects [34, 148], while the
remaining 10 were obtained from NASA projects [25, 70, 149, 150]. Detailed information
about the datasets is provided in Table 3.1, consisting of dataset names and their total
number of instances, imbalance rate and total metrics (features). The PROMISE project
datasets imbalance rate varies from 8.97% to 46.67% and the NASA project datasets varies
from 2.15% to 35.2%. Each instance corresponds to a module in the software, with varying
sizes and distinct characteristics. Although these modules share the same features, they
exhibit different distributions, highlighting their unique properties within the dataset. In
datasets, each instance (module) is associated with a specific number of faults; thus, we
transformed the datasets for binary classification by labeling a value of 0 to modules with

zero faults and a value of 1 to modules with one or more faults. The detailed descriptions

39



CHAPTER 3. A DIVERSE OVERSAMPLING TECHNIQUE FOR WITHIN-PROJECT FAULT PREDICTION Section 3.2

of PROMISE and NASA features (metrics) are given in Tables 3.2 and 3.3.

Table 3.1: Summary of PROMISE and NASA project datasets

Project Datasets #Total in- | # faulty in- | #Metrics | Project Datasets #Total in- | # faulty in- | #Metrics
stances stances (%) stances stances (%)

ant-1.7 745 166(22.28%) | 20 PROMISE xalan-2.4 723 110(15.21%) | 20
arc 234 27(11.54%) 20 xerces-1.3 | 453 69(15.23%) 20
camel-1.6 965 188(19.48%) | 20 CM1 327 42(12.84%) 37
ivy-2.0 352 40(11.36%) 20 MWI1 253 27(10.67%) 37
jedit-4.2 367 48(13.10%) 20 KC3 194 36(18.56%) 39

PROMIS log4j-1.0 135 34(25.19%) 20 MC1 1988 46(2.31%) 38
lucene-2.0 195 91(46.67%) 20 NASA MC2 125 44(35.20%) 39
poi-2.0 314 37(11.78%) 20 PC1 705 61(8.65%) 37
redaktor 176 27(15.34%) 20 PC2 745 16(2.15%) 36
synapse-1.2 | 256 86(13.85%) 20 PC3 1077 134(12.44%) | 37
tomcat 858 77(8.97%) 20 PC4 1287 177(13.75%) | 37
velocity-1.6 | 229 78(34.06%) 20 PC5 1711 471(27.53%) | 38

3.2.2 Performance Assessment Measures

Table 3.4 illustrates the confusion matrix for a binary classification task, where faulty mod-
ules are labelled as positive and non-faulty modules as negative. The TP cell contains true
positive results, defined as the number of faulty modules identified as faulty. The TN cell
contains true negative results, defined as the number of non-faulty modules identified as
non-faulty. The FP cell contains false positive results, defined as the number of non-faulty
modules identified as faulty modules. The FN cell contains false negative results, defined
as the number of faulty modules identified as non-faulty modules.

Most of the Software datasets are imbalanced in nature. Hence, we should go with
multiple assessment measures. The performance assessment measures considered in this
work are Fall Out Rate (FOR), Recall, F-measure, G-mean, and AUC [14, 25, 151, 152,
153]. The AUC is a balanced measure [154], it is a trade-off between FOR and Recall.
The G-mean incorporates the classifier’s accuracy into faulty and non-faulty class modules

[151]. Measures are defined as follows in Egs. 3.3 - 3.6:

rpP
FOR=FprTN G-
TP
= 4
Recall TP+ N (3.4
2T P
F — measure = 3.5

2P+ FP+ FN
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Table 3.2: List of features from 14 PROMISE projects

No. Features No. Features

1 WMC (Weighted methods per class) 11 LOC (Lines of code)

2 DIT (Depth of Inheritance Tree) 12 DAM (Data access metric)

3 NOC (Number of children) 13 MOA (Measure of aggregation)

4 CBO (Coupling between object classes) 14 MFA (Measure of functional abstraction)
5 RFC (Response for a class) 15 CAM (Cohesion among methods)

6 LCOM (Lack of cohesion in methods) 16  IC (Inheritance coupling)

7 CA (Afferent couplings) 17  CBM (Coupling between methods)

8 CE (Efferent couplings) 18  AMC (Average method complexity)

9 NPM (Number of public methods) 19 MAX(CC)C%;’;E;“(EE?;EZ?S dss)cydoma“c
10  LCOM3 (Number of cohesion in methods) 20  AVG(CC) (Mean of the CC value)

Table 3.3: List of features from 10 NASA projects

No. Features No. Features
1 BRANCH_COUNT 21  HALSTEAD_LEVEL
2 CALL_PAIRS 22 HALSTEAD_PROG_TIME
3 LOC_CODE_AND_COMMENT 23  HALSTEAD_VOLUME
4  LOC_COMMENTS 24 MAINTENANCE_SEVERITY
5 CONDITION_COUNT 25  MODIFIED_CONDITION_COUNT
6  CYCLOMATIC_COMPLEXITY 26 MULTIPLE_CONDITION_COUNT
7 CYCLOMATIC_DENSITY 27  NODE_COUNT
8 DECISION_COUNT 28  NORMALIZED_CYLOMATIC_COMPLEXITY
9  DESIGN_COMPLEXITY 29  NUM_OPERANDS
10  DESIGN_DENSITY 30  NUM_OPERATORS
11 EDGE_COUNT 31  NUM_UNIQUE_OPERANDS
12 ESSENTIAL_COMPLEXITY 32  NUM_UNIQUE_OPERATORS
13 ESSENTIAL_DENSITY 33  NUMBER_OF_LINES
14  LOC_EXECUTABLE 34  PERCENT_COMMENTS
15 PARAMETER_COUNT 35  LOC_TOTAL
16  HALSTEAD_CONTENT 36  LOC_BLANK
17 HALSTEAD_DIFFICULTY 37  DECISION_DENSITY
19  HALSTEAD_ERROR_EST 38 GLOBAL_DATA_COMPLEXITY
20 HALSTEAD_LENGTH 39  GLOBAL_DATA_DENSITY
Table 3.4: Confusion Matrix
Predicted: Positive Predicted: Negative
(faulty) (non-faulty)
Actual: Positive (faulty) TP FN
Actual: Negative (non-faulty) FP TN
G — mean = \/Recall * (1 — FOR) (3.6)

A high value of F-measure along with a high AUC score indicates that the compre-
hensive performance of the predictive model is good and a high G-mean is also a good

indication of the model’s comprehensive performance.
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3.2.3 Classifier Selection

In our experimental work, we have considered six classifiers to assess the performance of
models. Among them, five are conventional machine learning models, namely KNN [77],
LR [74, 75], NB [78, 79], SVM [76] and DT [155], and the other model is DNN [82, 83].
In the existing literature, these classifiers have been successfully applied in similar contexts
and are recognized for their effectiveness in various scenarios, ensuring their relevance to
our study. The DNN was chosen because, while conventional classifiers are often easier to
interpret, the DNN offers scalability and the ability to capture complex relationships within
the data. These classifiers are implemented using the scikit-learn package in Python. The
fully connected DNN model is implemented in Python using Keras and uses TensorFlow

as the back end.

3.2.4 Experimental Design
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Figure 3.1: Experimental framework of WPFP model
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To acquire extensive knowledge and also to notice the effectiveness of the proposed
model, we conducted experiments on 24 diverse imbalanced datasets selected from PROMISE
and NASA projects. To address the imbalance in the selected datasets, the proposed learn-
ing model generates pseudo-instances in the faulty class to achieve a balanced distribution

with the non-faulty class. Subsequently, the observed outcomes were compared against
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various sampling techniques, including ROS, SMOTE, BSMOTE, MAHAKIL, and SOTB,
as well as with the not oversampled dataset. ROS, SMOTE and BSMOTE are implemented
using the imblearn library available in Python, while MAHAKIL and SOTB are imple-
mented according to the algorithms outlined in [14] and [18]. The experimental framework
is depicted in the Figure 3.1. According to empirical research [14, 18, 156], assigning
20-30% of the dataset to testing and the remaining 70—80% to training yields the greatest
outcomes. We have experimented with both splits, 70/30% (training set/testing set) and
80/20% (training set/testing set) to assess the model’s performance. The experimental re-
sults indicate that a 70% training set and a 30% testing set deliver the best performance.
This is likely because the 70-30% split offers a balanced distribution of data for training
and testing, ensuring that the testing set is sufficiently large to provide a statistically signif-
icant evaluation of the model’s performance. In contrast, the 80-20% split leaves a smaller
portion for testing, which may limit accurate assessment of the model’s effectiveness. To
evaluate the data accurately, we split the data into 70% training and 30% testing sets. The
oversampling techniques were performed on the training set so that the training process
happens equally well in both classes. After that, on the training set, we perform K-Fold
(10-Fold) cross-validation to conquer issues such as selection bias or overfitting, as well as
to provide insight into how the model can extrapolate to an unknown dataset. To reduce the
impact of randomness, the average performance measures of 10 iterations are noted as the

final measures.

3.2.5 Statistical Measures

In contemplation of measuring the statistical performance differences, we choose the WSR
test [20, 157]. For example, the Di f is the difference between the two model’s outcomes.
Let W, be the rank sum of our model, W_ is the rank sum of the base model, and now 'n’
is the count of non-zero differences. W, and W_ are represented below in Eqgs. 3.7 and
3.8, .
W, = ZRank(Abs(Difi)), where Dif > 0 3.7
i=0
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W_ = ZRank(Abs(Difi)), where Dif <0 (3.8)
=0

The assumption of the null hypothesis (/) is the results obtained from the two ap-
proaches are statistically relative. At a confidence level of 95%, the WSR test assumes H|
is true. If the P-value is greater than the significance level a (o = 0.05), then we fail to
reject H, such as observed statistical evidence is inadequate to reject it, else there is a con-
siderable difference in rejecting the default hypothesis Hy. However, the P-value doesn’t
indicate the strength of the relationship. The matched-pairs rank biserial correlation co-
efficient (WW,) can be used to measure effect-size for the WSR test [158, 159]. Eq. 3.9
represents the 1.

il (2

n(n+1)

W, (3.9)

Where *1” is the minimum (W,, W_) and ’n’ is the count of non-zero difference sam-
ples. The effect-size can be rendered using three labels [20], small (W, < 0.1), medium
(0.1 < W, < 0.5) and large (W, > 0.5). Furthermore, Win-Draw-Loss (WDL) statistics
[160] are adopted to compare the overall performance of each predictive model with all
other predictive models (classification models * imbalance learning approaches - 1) for all
performance assessment measures. If the P-value is greater than the « then both models’
win counter increases by one, else win counter increases for the greater rank sum model,

and the loss counter increases for the lesser rank sum model.

3.3 Experimental Results

To demonstrate the effectiveness of our proposed method, we conducted experiments and
addressed the following three research questions:
RQ1: Does WACIL contribute to the diverse nature of generated pseudo-instances
of faulty class data?
RQ2: How effectively does WACIL tackle the class imbalance problem?
RQ3: How does WACIL’s overall performance compare to state-of-the-art strategies?

In order to answer the research questions RQ1, RQ2, and RQ3, we computed WACIL’s
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performance and compared it with ROS [15, 32], SMOTE [11], BSMOTE [12], MAHAKIL
[14], and SOTB [18], and also with the Not Oversampled (NOS) original dataset.
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Figure 3.2: Boxplots of six imbalance learning techniques and NOS on six classifiers over 14
PROMISE project datasets in terms of FOR, Recall, F-measure, AUC and G-mean

3.3.1 Opverall Results

Figures 3.2 and 3.3 represent the results of individual classifiers in box plots for PROMISE

and NASA projects, respectively. Furthermore, Figure 3.4 shows the distribution of corre-
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Figure 3.3: Boxplots of six imbalance learning techniques and NOS on six classifiers over 10 NASA
project datasets in terms of FOR, Recall, F-measure, AUC and G-mean

sponding average (average of all classifier results) results across 24 datasets. The little red
circle in each box represents the mean value of each method. According to the results, we

can conclude the following:

1. Across all datasets and classification models, NOS and WACIL outperform all the
other methods through the best FOR values with a mean of 0.088 and 0.131, respec-
tively. While ROS (0.198), SMOTE (0.206), and BSMOTE (0.199) offer the worse
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Figure 3.4: Boxplots of six imbalance learning techniques and NOS on averaged results over 24
PROMISE and NASA datasets in terms of FOR, Recall, F-measure, AUC and G-mean

FOR values. MAHAKIL (0.163) and SOTB (0.162) produce moderately better re-

sults than those methods.

. In terms of Recall, WACIL with DNN and DT produce better Recall values than

other sampling approaches. Although the average Recall values of WACIL (0.48)
are not always the best, our approach can archive a similar distribution of Recall
results to MAHAKIL (0.483) and SOTB (0.489). While NOS (0.286) produces the
lowest Recall values, BSMOTE (0.528) and SMOTE (0.541) produce the best.

. For almost all datasets and all the classification models, NOS and WACIL outper-

form all the competitive approaches over F-measure with highest means of 0.806
and 0.811, respectively. While ROS (0.758), SMOTE (0.752) and BSMOTE (0.760)
produce the worse outcomes. MAHAKIL (0.781) and SOTB (0.785) produce mod-

erately better values.

. For the vast majority of datasets, the WACIL technique outperforms the other com-
pared approaches in terms of AUC with an average of 0.747. This implies that the

model’s ability to discriminate between faulty and non-faulty classes is better, while
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other models mean results are 0.711, 0.728, 0,726, 0.726, 0.729, 0.721 for NOS,
ROS, SMOTE, BSMOTE, MAHAKIL and SOTB, respectively.

5. WACIL outperforms all the competitive approaches over PROMISE datasets with re-
spect to G-mean outcome. However, over NASA datasets, WACIL with DNN and DT
gives comparable results to the competitive methods. On KNN, LR, and NB, SMOTE
performs better, and on SVM, ROS produces moderately better G-mean values. On
the average results of both project datasets WACIL (0.609) gives comparable results
to other models. While other models mean results are 0.436, 0.622, 0.634, 0.627,
0.611, 0.617 for NOS, ROS, SMOTE, BSMOTE, MAHAKIL and SOTB, respec-

tively.

As per Benin [14], the diverse nature of generated pseudo-instances can be defined by
FOR values. The lower the FOR, the greater the diversity. We found that the WACIL
approach achieves a lower FOR than the other oversampling techniques. As a result, we
can answer the RQ1, yes, WACIL contributes towards diversity.

The predictive model built on the SMOTE and BSMOTE generated training datasets
resulted in higher mean Recall and higher mean FOR. Furthermore, MAHAKIL and SOTB
are better alternatives to ROS, SMOTE, and BSMOTE to generate diverse instances. Over
DT and DNN, WACIL results have higher mean Recall over all the datasets than those of
other sampling approaches. The other classification models with WACIL get comparable
results over PROMISE datasets and fewer steps away from the competitive approaches over
NASA datasets. The fundamental reason is that various data have various distributions, and
it’s possible that the data distribution is only acceptable for certain classifiers. As a result,
we can respond to RQ2. WACIL tackles imbalanced data by introducing pseudo-instance
with lower FOR values and with comparable Recall values.

In accordance with FOR and Recall, one can’t justify a particular approach being su-
perior to others. Therefore, to assess the comprehensive performance, we consider the F-
measure, AUC, and G-mean. The greater these values, the better the overall performance.
Therefore, we compared these measures between different imbalance learning techniques

to answer RQ3. Figures 3.2, 3.3 and 3.4 demonstrate that WACIL outperforms all other
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approaches in terms of AUC and in terms of F-measure, outperforms all other approaches
except NOS. In terms of G-mean, WACIL gives a decent output. Hence, we can conclude

that the comprehensive performance of WACIL is superior to other methods.

3.3.2 Statistical Performance Comparison

To further examine the outcomes as well as to determine if there is any statistically sig-
nificant difference between the proposed approach and the other methods, a WSR test is
applied to the WACIL outcomes versus each other method.

To answer research questions, we statistically analyze each performance measure of all
competitive approaches over all the classification models. Tables 3.5, 3.6 and 3.7 sum-
marize the WSR test results of WACIL compared to competitive approaches. The tabular
results compare methods in terms of P-value, effect size, and rank sums. For each perfor-
mance measure, it shows the P-value (<0.05 or >0.05), the effect size (1//,.), and the positive
rank sum (W, )/negative rank sum (I/_). The positive rank sum is of WACIL and the neg-
ative rank sum is of competitive approaches. In the Tables, the bold part P-value <0.05
represents WACIL is superior to the competitive approach, and the Italian font bold part
P-value >0.05 represents WACIL is statistically identical to the competitive approach.

In order to answer RQ1, we compared the FOR results of our proposed approach with
the competitive approaches. In Tables 3.5, 3.6 and 3.7, the first row of all the tables shows

the comparison of FOR values. We can notice the following points:

1. WACIL with KNN, LR, and SVM statistically outperforms all the compared sam-

pling approaches with high effect sizes except NOS.

2. WACIL with NB statistically outperforms ROS, SMOTE, and BSMOTE, and for
NOS, MAHAKIL, and SOTB, the rank sum is less than our approach, but the P-
value is > 0.05, so it’s statistically proven our approach has an identical distribution

of results with those models on the NB classifier.

3. WACIL with DT statistically outperforms SMOTE and BSMOTE. For NOS, ROS,
MAHAKIL, and SOTB, the P-value is > 0.05, so it is statistically proven that our

approach has an identical distribution of results with them on the DT classifier.
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Table 3.5: Statistical comparison of WACIL with other competitive approaches using KNN, LR,

and NB
K-Nearest Neighbor

Measure measure NOS ROS SMOTE BSMOTE MAHAKIL SOTB

FOR P-value 1.82E-05(< 0.05) 2.07E-05 (<0.05) 1.82E-05 (<0.05) 1.82E-05 (<0.05) 0.000255 (<0.05) 1.82E-05 (<0.05)
We 1 (0/300) 0.993 (299/1) 1 (300/0) 1 (300/0) 0.857 (278.5/21.5) 1 (300/0)

Recall P-value 2.70E-05 (<0.05) 7.14E-05 (<0.05) 1.82E-05 (<0.05) 2.07E-05 (<0.05) 0.01263 (<0.05) 2.35E-05 (<0.05)
We 1 (276/0) 0.927 (11/289) 1 (0/300/) 0.993 (1/299) 0.591 (56.5/219.5) 0.987 (2/298)

F- P-value 0.4489411 (>0.05) 1.82E-05 (<0.05) 1.82E-05 (<0.05) 1.82E-05 (<0.05) 0.000162 (<0.05) 3.98E-05 (<0.05)

measure W, 0.173 (17/124) 1 (300/0) 1 (300/0) 1(299/1) 0.899 (262/14) 1 (253/0)

AUC P-value 3.64E-05 (<0.05) 4.02E-05 (<0.05) 0.004673 (<0.05) 0.001549 (<0.05) 0.051986 (>0.05) 0.338372 (>0.05)
We 0.963 (294.5/5.5) 0.978 (273/0) 0.678 (231.5/44.5) 0.771 (224/29) 0.453 (218/82) 0.223 (116.5/183.5)

G-mean P-value 3.09E-05 (<0.05) 2.88E-02 (<0.05) 0.0018439 (<0.05) 0.001755 (<0.05) 0.061933 (>0.05) 0.001673 (<0.05)
We 0.993 (275/1) 0.513 (73/227) 0.723 (41.5/258.5) 0.73 (40.5/259.5) 0.455 (69/184) 0.733 (40/260)

Logistic Regression

Measure measure NOS ROS SMOTE BSMOTE MAHAKIL SOTB

FOR P-value 2.07056E-05 (<0.05) 2.66915E-05 (<0.05) 3.8838E-05 (<0.05)  2.07056E-05 (<0.05) 0.00013647 (<0.05)  9.05972E-05 (<0.05)
We 0.993 (1/299) 0.98 (297/3) 0.96 (294/6) 0.993 (299/1) 0.89 (283.5/16.5) 0.917 (287.5/12.5)

Recall P-value 1.82153E-05 (<0.05) 0.001636198 (<0.05) 0.000828696 (<0.05) 0.001016031 (<0.05) 0.02986533 (<0.05)  0.015576468 (<0.05)
We 1 (300/0) 0.767 (29.5/223.5) 0.777 (33.5/266.5) 0.767 (35/265) 0.507 (74/226) 0.589 (52/201)

F- P-value 0.259005754 ((>0.05)) 1.81974E-05 (<0.05) 1.82153E-05 (<0.05) 1.82153E-05 (<0.05) 4.38232E-05 (<0.05) 3.02696E-05 (<0.05)

measure W,  0.267 ( 110/190) 1 (300/0) 1 (300/0) 1 (300/0) 0.953 (293/7) 0.977 (296.5/3.5)

AUC P-value 0.000787036 (<0.05) 0.003100486 (<0.05) 0.002670949 (<0.05) 0.001242669 (<0.05) 0.008504642 (<0.05) 0.072686595 ((>0.05))
We 0.787 (268/32) 0.69 (253.5/46.5) 0.731 (219/34) 0.753 (263/37) 0.627 (224.5/51.5) 0.417 (195.5/80.5 )

G-mean P-value 1.82153E-05 (<0.05) 0.201451172 ((>0.05)) 0.170197795 ((>0.05)) 0.265059089 ((>0.05)) 0.391341771 ((>0.05)) 0.423687147 ((>0.05))
We 1 (300/0) 0.308 (95.5/180.5) 0.317 (102.5/197.5)  0.263 (110.5/189.5)  0.203 ( 119.5/180.5)  0.19 (121.5/178.5)

Naive Bayes

Measure measure NOS ROS SMOTE BSMOTE MAHAKIL SOTB

FOR P-value 0.3155264 ((>0.05)) 0.897692 ( (>0.05)) 0.0177021 (<0.05) 0.02062 (<0.05) 0.737954 (((>0.05))  0.077703 (((>0.05))
W,  0.239 (105/171) 0.03 (145.5/154.5)  0.553 (233/67) 0.54 (231/69) 0.08 (149/127) 0.42 (196/80)

Recall P-value 0.0396624 (<0.05) 0.241427 ((>0.05)) 0.4662411 ((>0.05))  0.475051 ((>0.05)) 0.345754 ((>0.05)) 0.753304 ((>0.05))
We 0.48 (222/78) 0.273 (191/109) 0.17 (124.5/175.5) 0.167 (125/175) 0.22 (183/117) 0.07 (139.5/160.5)

F-measure P-value 0.1102107 ((>0.05))  0.103404 ((>0.05)) 0.0018226 (<0.05) 0.003903 (<0.05) 0.124506 ((>0.05)) 0.003404 (<0.05)
We 0.38 (190.5/85.5) 0.38 (207/93) 0.739 (240/36) 0.667 (250/50) 0.37 (189/87) 0.687 (253/47)

AUC P-value 0.4661956 ((>0.05)) 0.587209 ((>0.05))  0.2415541 ((>0.05)) 0.280234 ((>0.05))  0.235469 ((>0.05))  0.042491 (<0.05 )
We 0.17 (175.5/124.5) 0.123 (168.5/131.5)  0.279 (176.5/99.5) 0.257 (173.5/102.5)  0.286 (177/98.5) 0.473 (221/79)

G-mean P-value 0.0078806 (<0.05) 0.014566 (<0.05) 0.3896018 ((>0.05)) 0.345754 ((>0.05)) 0.041046 (<0.05) 0.715111 ((>0.05))
We 0.617 (242.5/57.5) 0.57 (235.5/64.5) 0.209 (153/100) 0.22 (183/117) 0.477 (221.5/78.5) 0.087 (150/126)

4. WACIL with DNN statistically outperforms ROS, SMOTE, BSMOTE, and SOTB
except for NOS and MAHAKIL (> 0.05), which has an identical distribution as our

proposed approach.

. Table 3.7 demonstrates that on average, our method outperforms all the other sam-

pling approaches. The original data gives lower FOR results than any of the sampling

techniques.

In reference to the aforementioned observations, we can conclude that, in terms of

FOR, WACIL is superior to competitive approaches except NOS. As per Benin. [14], it’s

statistically proven that the FOR results are good enough to say WACIL contributes towards

the diversity of generated pseudo-instances.

To answer RQ2, we compared the Recall results of our proposed approach with the

competitive approaches, and the results are as follows:

1. The statistical performance of WACIL with KNN and LR is poor in terms of Recall
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Table 3.6: Statistical comparison of WACIL with other competitive approaches using SVM, DT and

DNN
Support Vector Machine

Measure measure NOS ROS SMOTE BSMOTE MAHAKIL SOTB

FOR P-value 2.70E-05 (<0.05)  2.67E-05 (<0.05) 2.07E-05 (<0.05) 2.07E-05 (<0.05) 0.000162 (<0.05) 9.07E-05 (<0.05)
W, 1 (0/276) 0.98 (297/3) 0.993 (299/1) 0.993 (299/1) 0.88 (282/18) 0.913 (287/13)

Recall P-value 2.70E-05 (<0.05)  5.61E-05 (<0.05) 0.0001288 (<0.05) 0.000285 (<0.05) 0.24719 ((>0.05)) 0.692535 ((>0.05))
We 1 (276/0) 0.94 (9/291) 0.893 (16/284) 0.847 (23/277) 0.27 (109.5/190.5) 0.094 (125/151)

F-measure P-value 0.7494278 ((>0.05)) 9.61E-05 (<0.05) 3.52E-05 (<0.05)  2.67E-05 (<0.05) 0.002828 (<0.05) 0.002038 (<0.05)
We 0.072 (148/128) 0.91 (286.5/13.5) 0.986 (274/2) 0.98 (297/3) 0.703 255.5/44.5  0.747 (221/32)

AUC P-value 1.82E-05 (<0.05)  0.008574 (<0.05) 0.0031035 (<0.05) 0.000914 (<0.05) 0.001591 (<0.05) 0.007039 (<0.05)
W, 1 (300/0) 0.613 (242/58)  0.693 (254/46) 0.786 (246.5/29.5 ) 0.737 (260.5/39.5) 0.66 (210/43)

G-mean P-value 2.70E-05 (<0.05)  0.000262 (<0.05) 0.0042747 (<0.05) 0.005581 (<0.05) 0.539006 ((>0.05)) 0.951492 ((>0.05))
We 1(276/0) 0.87 (18/258) 0.667 (50/250) 0.647 (53/247) 0.147 (128/172)  0.004 (137.5/138.5)

Decision Tree

Measure measure NOS ROS SMOTE BSMOTE MAHAKIL SOTB

FOR P-value 0.0151325 (<0.05) 0.116083 ((>0.05)) 0.0005456 (<0.05) 0.006191 (<0.05) 0.119399 ((>0.05)) 0.068017 ((>0.05))
We 0.567 (65/235) 0.363 (95.5/204.5) 0.803 (270.5/29.5) 0.656 (228.5/47.5) 0.363 (204.5/95.5) 0.431 (197.5/78.5)

Recall P-value 2.67E-05 (<0.05)  0.000747 (<0.05) 0.0537719 ((>0.05)) 0.016384 (<0.05) 0.010128 (<0.05) 0.071861 ((>0.05))
We 0.98 (297/3) 0.787 (268/32) 0.45(217.5/82.5)  0.56 (234/66) 0.6 (240/60) 0.42 (213/87)

F- P-value 0.0225179 (<0.05) 0.136001 ((>0.05)) 7.12E-05 (<0.05)  0.006784 (<0.05) 0.002865 (<0.05) 0.008135 (<0.05)

measure W, 0.551 (214/62) 0.355 (187/89) 0.93 (289.5/10.5)  0.641 (226.5/49.5) 0.714 (236.5/39.5) 0.634 (225.5/50.5)

AUC P-value 3.09E-05 (<0.05)  0.000748 (<0.05) 0.0018439 (<0.05) 0.004668 (<0.05) 0.001017 (<0.05) 0.016265 (<0.05)
We 0.993 (275/1) 0.783 (267.5/32.5) 0.727 (259/41) 0.674 (231/45) 0.767 (265/35) 0.576 (217.5/58.5)

G-mean P-value 1.82E-05 (<0.05)  0.000919 (<0.05) 0.032107 (<0.05)  0.005579 (<0.05) 0.005642 (<0.05) 0.072654 ((>0.05))
We 1 (300/0) 0.773 (266/34) 0.5 (225/75) 0.643 (246.5/53.5) 0.659 (229/47) 0.435 (198/78)

Deep Neural Network

Measure measure NOS ROS SMOTE BSMOTE MAHAKIL SOTB

FOR P-value 0.0011827 (<0.05) 0.001242 (<0.05) 0.0006383 (<0.05) 0.005579 (<0.05) 0.587171 ((>0.05)) 0.04297 (<0.05)
We 0.757 (263.5/36.5)  0.77 (265.5/34.5) 0.797 (269.5/30.5) 0.653 (248/52) 0.13 (169.5/130.5) 0.482 (204.5/71.5)

Recal]  Pvalue 3.43E-05 (<0.05)  0.161492 ((>0.05)) 0.2123927 (>0.05)) 0.05742 (>0.05)) 0.003252<0.05  0.030814 <0.05
We 0.967 (295/5) 0.327 (199/101)  0.297 (179/97) 0.443 (216.5/83.5) 0.683 (252.5/47.5) 0.518 (209.5/66.5)

F- P-value 0.3141425 ((>0.05)) 0.000127 (<0.05) 6.32E-05 (<0.05)  2.66E-05 (<0.05) 0.010979 (<0.05) 0.000122 (<0.05)

measure W, 0.245 (95.5/157.5)  0.913 (264/12) 0.933 (290/10) 0.98 (297/3) 0.6 (240/60) 0.957 (226/5)

AUC P-value 0.1102725 ((>0.05)) 0.002455 (<0.05) 3.88E-05 (<0.05)  0.000828 (<0.05) 0.000965 (<0.05) 1.82E-05 (<0.05)
We 0.377 (190/86) 0.703 (255.5/44.5) 0.963 (294.5/5.5)  0.783 (267.5/32.5) 0.786 (246.5/29.5) 1 (300/0)

Gomean  Pvalue S.61E-05(<0.05)  0.013755 (<0.05) 2.64E-02(<0.05) ~ 0.007871 (<0.05) 0.004273 (<0.05) 1.06E-02 (<0.05)
We  0.94(219/9) 0.583 (218.5/57.5) 0.525(210.5/65.5) 0.617 (242.5/57.5) 0.667 (250/50)  0.609 (222/54)

Table 3.7: Statistical comparison of WACIL with other competitive approaches in terms of average
FOR, Recall, F-measure, AUC and G-mean

Measure measure NOS ROS SMOTE BSMOTE MAHAKIL SOTB
FOR P-value 0.000162316 (<0.05) 3.02413E-05 (<0.05) 2.07056E-05 (<0.05) 2.07056E-05 (<0.05) 0.000374651 (<0.05) 2.6987E-05 (<0.05)
We 0.88 (18/282) 0.97 (295.5/4.5) 0.993 (299/1) 0.993 (299/1) 0.827 (274/26) 0.977 (296.5/3.5)
Recall P-value 2.07056E-05 (<0.05) 0.021434925 (<0.05) 0.000776477(<0.05)  0.00057523 (<0.05)  0.897634428 ((>0.05)) 0.174603819 ((>0.05))
s 0.993 (299/1) 0.537 (69.5/230.5) 0.801 (27.5/248.5) 0.803 (29.5/270.5) 0.03 (154.5/145.5) 0.317 (102.5/197.5)
F-measure P-value 0.447004889 ((>0.05)) 2.6987E-05 (<0.05)  1.82153E-05 (<0.05) 1.81795E-05 (<0.05) 6.32333E-05 (<0.05) 3.9959E-05 (<0.05)
;A 0.178 (162.5/113.5) 1 (276/0) 1 (300/0) 1 (300/0) 0.933 (290/10) 1 (253/0)
AUC P-value 1.8019E-05 (<0.05)  0.000312397 (<0.05) 3.42058E-05 (<0.05) 2.6987E-05 (<0.05)  8.01794E-05 (<0.05) 1.81259E-05 (<0.05)
We 1 (300/0) 0.859 (256.5/19.5) 0.967 (295/5) 1(276/0) 0.92 (288/12) 1 (300/0)
G-mean P-value 2.07056E-05 <0.05  0.310397062 ((>0.05)) 0.317261121 ((>0.05)) 0.303656438 ((>0.05)) 0.010614157 (<0.05) 0.315330456 ((>0.05))

c

0.993 (299/1)

0.237 (185.5/114.5)

0.23 (115.5/184.5)

0.24 (114/186)

0.601 (221/55)

0.239 (221/55)

score; it outperforms only NOS.

2. Over NB, our approach is statistically superior to NOS and statistically has an iden-

tical distribution to all other competitive approaches.

3. Over SVM, our approach statistically outperforms NOS and has identical distribu-
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tion results as MAHAKIL and SOTB. ROS, SMOTE, and BSMOTE are better than
WACIL.

4. Over DT, our approach statistically outperforms NOS, ROS, BSMOTE, and MA-
HAKIL and has an identical distribution of results to SMOTE and SOTB.

5. Over DNN, our approach statistically outperforms NOS, MAHAKIL, and SOTB and
has identical distribution results as ROS, SMOTE, and BSMOTE.

6. Table 3.7 demonstrates that on average our method outperforms NOS, is statistically
identical to MAHAKIL and SOTB, and is unable to outperform the rest of the com-

petitive approaches.

In reference to the aforementioned observations of FOR and Recall, we can conclude
that in terms of FOR, our approach is superior to all the compared sampling techniques
except NOS. In terms of Recall, our approach is superior to NOS, MAHAKIL, and SOTB
except ROS, SMOTE, and BSMOTE on average. So, it’s statistically proven that WACIL
produces lower FOR values with comparable Recall values on average.

In order to answer research question Q3, we compared the F-measure, AUC, and G-
mean results of our proposed approach with the competitive approaches and the results are

as follows:

1. In terms of F-measure, our approach outperforms all the competitive sampling ap-
proaches and is statistically identical to NOS over KNN, LR, SVM, and DNN. WACIL
with NB outperforms SMOTE, BSMOTE, and SOTB and is statistically identical to
NOS, ROS, and MAHAKIL. WACIL with DT outperforms NOS, SMOTE, BSMOTE,
MAHAKIL, and SOTB and is statistically identical to ROS.

2. Interms of AUC, our approach outperforms all the competitive approaches over SVM
and DT. WACIL with KNN outperforms NOS, ROS, SMOTE, and BSMOTE and
is statistically identical to MAHAKIL and SOTB. WACIL outperforms SOTB and
is statistically identical to the rest of the methods over NB. WACIL is statistically
identical to SOTB and outperforms the rest of the methods over LR. WACIL is sta-

tistically identical to NOS and outperforms the rest of the methods over DNN.
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3. In terms of G-mean, WACIL outperforms all the competitive approaches over DT
and DNN. WACIL is superior to NOS, and statistically identical to MAHAKIL
over KNN. WACIL outperforms NOS and is statistically identical to the rest of the
competitive approaches over LR. WACIL outperforms NOS, ROS, MAHAKIL, and
SOTB and is statistically identical to SMOTE and BSMOTE over NB. WACIL out-
performs NOS, statistically identical to MAHAKIL and SOTB over SVM.

4. Table 3.7 demonstrates that on average WACIL outperforms all the other compet-
itive approaches in terms of AUC. In terms of F-measure, WACIL outperforms all
the sampling approaches and is statistically identical to NOS. In terms of G-mean,
WACIL outperforms NOS and MAHAKIL, statistically identical to the rest of the

methods.

We can conclude that in terms of F-measure and AUC, WACIL is superior to almost all
competitive approaches on average, and in terms of G-mean, most of the time, WACIL is
superior to all methods over DT and DNN classifiers. For the rest of the classifiers, WACIL
outperforms NOS, MAHAKIL, and SOTB are identical to ROS, SMOTE, and BSMOTE on
average. Hence, it’s statistically proven that the comprehensive performance of WACIL is
superior to the competitive approaches. In fault detection, missing a faulty module (a false
negative) can lead to severe consequences, including system failures or safety issues. Con-
versely, flagging a non-faulty module as faulty (a false positive) may lead to unnecessary
maintenance or investigation. The importance of faulty and non-faulty modules depends
upon the applications. Few applications like medical (cancer) diagnostics, autonomous
vehicle object detection systems, and fault detection in critical systems (airplane engine
monitoring) give more priority to high recall. Conversely, few applications like network
security (intrusion detection systems), email spam filters and credit card fraud detection
give more priority to low FOR. Our methodology prioritizes maximize balancing between
FOR and recall, so the AUC scores of our model are getting better.

The Table 3.8 reports the comparison results of WDL comparisons over each predictive
model (classification model + imbalance learning techniques). We have computed the total

number of wins, draws, and losses for each model over all five performance measures. For
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Table 3.8: Statistical comparison of all the predictive models over all the performance measures.
W-Wins, D-Draws, and L-Losses

Model FOR Recall F-measure AUC G-mean Total

WL D W-L Rank|W L D W-L Rank|W L D W-L Rank|W L D W-L Rank|W L D W-L Rank|lW L D W-L Rank
KNN+WACIL 295 7 24 6 8 1419-6 23 (340 7 34 25 (182 2116 10 |1111190 16 |[10032 73 68 4
KNN+SOTB 9 1715-8 275|237 1116 12 |9 1220-3 195 (212 1819 7 292 1027 10 |91 40 74 51 7
KNN+MAHAKIL|10 14 17 -4 23 |21 128 9 14 19 1220-3 195 (147 207 20 25106 15 14 (79 55 71 24 13
KNN+BSMOTE [0 338 -33 41 |360 5 36 2 0 3011-30 40 (1010210 255|300 1130 55 [76 73 56 3 19
KNN+SMOTE 0 347 -34 42 (370 4 37 1 0 329 -32 42 (1211181 2351330 8 33 25 (82 77 46 5 18
KNN+ROS 0 3011-30 395302 9 28 6 0 3110-31 41 (9 1715-8 29 |273 1124 11 |[66 83 56 -17 28
KNN+NOS 400 1 40 15 (1 400 -39 41 330 8 33 55 (8 2310-15 33 |1 400 -39 41 (83 10319 -20 29
LR+WACIL 187 1611 12 (229 1013 13 (300 1130 75 (390 2 39 1 290 1229 7 138 16 51 122 1
LR+SOTB 9 2210-13 325295 7 24 8 9 1517-6 23 (290 1229 3 291 1128 85 (10543 57 62 5
LR+MAHAKIL |9 2012 -11 305 (285 8 23 9 9 1517-6 23 (221 1821 45 |291 1128 85 (97 42 66 55 6
LR+BSMOTE 2 2910-27 37 (320 9 32 5 3 2612-23 36 (182 2116 10 (310 1031 4 8 57 62 29 10
LR+SMOTE 1 3010-29 38 (340 7 34 4 0 2615-26 38 (203 1817 8 340 7 34 1 8 59 57 30 9
LR+ROS 0 3011-30 395|350 6 35 3 0 2714-27 39 (182 2116 10 330 8 33 25 (8 59 60 27 115
LR+NOS 392 0 37 3 2 390 -37 40 (340 7 34 25 |8 3 305 21 (2 390 -37 40 |8 83 37 2 205
NB+WACIL 115 256 18 [7 9 25-2 185 (116 245 15 |102 2938 185 (7 1420-7 235 (46 36 12310 17
NB+SOTB 9 5274 20 |7 9 25-2 1853 1127-8 2759 1220-3 27 |7 1420-7 235 |35 51 119 -16 265
NB+MAHAKIL |1 6 34-5 25 (6 8 27-2 185|1 9 31-8 275106 254 22 |5 1719-12 32 (23 46 136 -23 30
NB+BSMOTE 09329 29 (77 270 16 |0 1625-16 32 (9 9 230 255|5 1224-7 235 (21 53 131-32 34
NB+SMOTE 0 1130-11 305 (114 267 15 |0 1526-15 31 (109 221 235|6 1223-6 185 (27 51 127 -24 31
NB+ROS 1 534 23 |59 274 21 |0 9 32-9 295123 269 17 |4 2116-17 34 (22 47 136 -25 32
NB+NOS 153 2312 1053 1919-16 36 |0 9 32-9 295 (113 278 18513 317 -28 39 (32 65 108 -33 35
SVM+WACIL 354 2 31 5 4 1720-13 3451|330 8 33 55 (370 4 37 2 7 1618-9 285 (11637 52 79 2
SVM+SOTB 186 1712 105 |5 1521-10 31.5(206 1514 11 (232 1621 45 |5 1521 -10 305 |71 44 90 27 115
SVM+MAHAKIL|16 8 17 8 15518 1419-6 23 (198 1411 12 |144 2310 16 (8 1419-6 185|655 48 92 17 155
SVM+BSMOTE |2 28 11 -26 355233 1520 10 |3 2612-23 36 (143 2411 15 (245 1219 13 |66 65 74 1 22
SVM+SMOTE 3299 26 3551236 1217 11 |3 2612-23 36 |162 2314 125|255 1120 12 |70 68 67 2  20.5
SVM+ROS 4 289 -24 34 (281 1227 7 4 2215-18 3351222 1720 6 300 1130 55 (88 53 64 35 8
SVM+NOS 400 1 40 15 [0 410 -41 42 |300 1130 75 (8 276 -19 34 |0 410 -41 42 |78 109 18 -31 33
DT+WACIL 1313150 21 |8 1419-6 23 |1410174 1656 341 -28 35 |101417 -4 17 |51 85 69 -34 36
DT+SOTB 1216134 23 |6 1619-10 31.5|9 1616-7 255 |1 364 -35 385|7 1618 -9 285 (35 10070 -65 37
DT+MAHAKIL |11 1713 -6 26 |[5 18 18 -13 3451|1016 15-6 23 |1 364 -35 385 |4 2314-19 35 |[31 11064 -79 395
DT+BSMOTE 101813-8 2756 15209 29519 1616-7 2552 354 -33 37 |6 1619 -10 30.5 (33 100 72 -67 38
DT+SMOTE 8 2112-13 325|6 1421-8 265 (3 2117-18 335 |0 365 -36 40 (4 1720-13 33 |21 10975 -88 41
DT+ROS 179 158 15513 299 -26 37 (9 1121-2 18 |0 374 -37 41 (3 2513-22 36 |32 11162 -79 395
DT+NOS 188 1510 1353 355 -32 3851|9 1418-5 21 [0 392 -39 42 |3 299 -26 37 |33 12549 -92 42
DNN+WACIL 275 9 22 17 1214152 1851|340 7 34 25 |162 2314 12520101110 15 |10931 65 78 3
DNN+SOTB 227 1215 9 6 15209 295266 9 20 10 |5 342 -29 36 (8 1518-7 235|67 77 61 -10 245
DNN+MAHAKIL|24 5 1219 8 6 1718 -11 33 (294 8 25 9 8 1716-9 30 |8 1518-7 23575 58 72 17 155
DNN+BSMOTE (199 1310 135 |6 1421 -8 265 |17 10147 14 |8 2013-12 32 |8 1518 -7 235 |58 68 79 -10 245
DNN+SMOTE 151016 5 19 |6 1421-8 265 (1511154 165|8 1815-10 31 (8 1518 -7 23.5|52 68 85 -16 26.5
DNN+ROS 169 167 17 |6 1421-8 2651910129 13 |8 1518-7 28 (8 1518 -7 235|57 63 8 -6 23
DNN+NOS 373 1 34 4 3 353 -32 385|340 7 34 25 (153 2312 14 |3 308 -27 38 (92 71 42 21 14

each performance measure, each single predictive model computes WDL statistics against

41 other predictive models (6 classification models * 7 imbalance learning techniques -

I). The ranks are assigned to predictive models on the basis of wins-draws. The predictive

models that have the highest wins-draws are assigned higher ranks (starting from rank 1). In

Table 3.8, gray part cells in columns represent the top seven predictive models with respect

to individual measures. WACIL ranked according to individual performance measures in
the following way, FOR of WACIL ranked 6, 12, 18, 5, 21, and 7. The Recall of WACIL
ranked 23, 13, 18.5, 34.5, 23, and 18.5. The F-measure of WACIL ranked 2.5, 7.5, 15,
5.5, 16.5, and 2.5. The AUC of WACIL ranked 10, 1, 18.5, 2, 35, and 12.5 and the G-
mean of WACIL ranked 16, 7, 23.5, 28.5, 17, and 15 on KNN, LR, NB, SVM, DT, and
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DNN, respectively. The total (all performance measures combined) WDL comparisons
are reported in the last column of Table 3.8. On average, WACIL ranked 4, 1, 17, 2, 36,
and 3 over KN, LR, NB, SVM, DT, and DNN, respectively. From the aforementioned
observations, we can conclude that the classifiers LR and DNN with WACIL perform the
best against all other combinations. WACIL with SVM performed the best over FOR,
F-measure, and AUC. WACIL with NB performed the best over all the measures except
G-mean. All the sampling techniques combined with DT, work poorly. Overall, the total
results ranks show that WACIL clearly outperforms all other predictive models with 1, 2,
3, and 4 ranks.

3.4 Discussion of Results

In this section, the analysis of experimental results is presented, exploring why WACIL
achieves superior performance compared to other models, which classifier demonstrates

superior performance and providing insights into the reasons behind these findings.

3.4.1 Why does proposed WACIL perform better than other sampling

techniques?

The imbalance problem can be overwhelmed by the oversampling approaches by introduc-
ing new synthetic modules into the faulty class. While a few synthetic instances overlap
with the non-faulty class because the SMOTE approach uses the nearest neighbors of in-
stances to generate synthetic information, sometimes these may cross the boundary of the
faulty class and overlap with the non-faulty class. On the contrary, MAHAKIL and SOTB
ensure that the synthetic data doesn’t cross the boundary of a faulty class, but the problem
is that the diversity of generated samples is poor.

The modules which are close to the boundary are misclassified most frequently [12, 13].
WACIL wisely selects border instances, which are used to generate pseudo-instances. The
selected instance is neither near nor too far, and to mitigate the limitation of closet sample

selection, it divides the pool of borderline faulty class instances into three clusters (case_1,
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case_2, and case_3) according to Mahalanobis distance and shuffles them. WACIL gener-
ates pseudo-instances by considering the weighted average of the minimum and maximum
values of those cluster instances. So, the generated pseudo data is distributed in a wide
range and is rich in diversity. Furthermore, generated pseudo data is filtered to exclude
out-of-boundary information, ensuring that the distribution of pseudo data is managed to
remain within the boundary of the faulty class, and WACIL doesn’t consider the closest
modules to generate pseudo-instances. So it avoids falling into the trap of sub-cluster en-
hancement. All these challenges are wisely handled by WACIL, resulting in better overall

performance.

3.4.2 Does filtration of generated pseudo-instance affect the WACIL

performance?

During the generation of pseudo-instances, there could be some noisy modules generated.
To maximize the performance of the prediction model, they have to be excluded from the
set of pseudo-instances. In the filtration step, we excluded instances with more closest
neighbors from the non-faulty class than the faulty class. When a classification model is
trained on pseudo-instances that have a large number of closest neighbors from the non-
faulty class, it misclassifies non-faulty modules as faulty modules during testing. As a
result, excluding them reduces the number of false positives and increases the true nega-
tives, which can improve the FPR and TNR of the predictive model (Discussed in Section
3.3). In the filtration step, we excluded instances, which have all K closet neighbors from
the faulty class; this can reduce the predictive model’s over-generalization of the faulty

module class.

3.4.3 What effect does the choice of classifiers have on WACIL’s per-

formance?

As mentioned in Section 3.2.3, we have chosen a total of six classifiers as prediction mod-
els, including KNN, LR, NB, SVM, DT, and DNN. We have noticed the influence of these

classifiers on WACIL and other compared approaches over 24 datasets. We have ana-
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lyzed classifier performance using various performance measures, including FOR, Recall,
F-measure, AUC, and G-mean. From Table 3.8, on the basis of ranks, one can conclude
that WACIL with KNN, NB, and SVM provides the best results, despite showing a slight
difference over a few measures and it statistically achieves superior rankings with LR and
DNN classifiers in comparison to other classifiers over all the measures. Thus, LR and
DNN are the supremely appropriate classifiers to build a model on training data generated

by WACIL.

3.5 Threats to Validity

This section addresses the ascertained potential threats to our experimental determinations.
Different assessment measures cause different results, which could lead to construction
threats in this study. In this work, five distinct performance assessment measures are used to
minimize threat to the model performance. The considered datasets in this study are diverse
in the number of features, instances, and the percentage of faulty modules, thus it might be
helpful to acquire the generalization of our determinations over divergent circumstances,
which can limit the external threat. The main assumption of WACIL is that those borderline
instances form three clusters (case_1, case_2, and case_3). The datasets we utilized in this
study yield a minimum of three border instances. Datasets that do not produce at least three
border instances may jeopardize our study’s internal validity. The experiments are repeated
10 times and consider the average performance measures to avoid biased results, and the
results of WACIL are compared to those of other sampling approaches. Furthermore, we
have used the WSR test for WDL analysis. As a result, the conclusion validity threat to our

research has a limited impact.

3.6 Summary

The WPFP confronts a challenge which is the class imbalance issue. Many prominent
oversampling approaches generated synthetic data that is not diverse. Simultaneously, they

ignored noisy data, which raises the misclassification rate of classifiers. Exploiting these is-
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sues, we demonstrated the imbalance learning for WPFP through the proposed WACIL ap-
proach, which introduces diverse filtered pseudo-instances around the border of the faulty
class through weighted average centroid and noise filtering techniques. WACIL reduces
false positives and increases the diversity of newly generated pseudo-instances. We eval-
uated our proposed approach based on empirical results, by comparing it with not over-
sampled data and the five oversampling approaches, namely ROS, SMOTE, BSMOTE,
MAHAKIL, and SOTB over 24 imbalanced PROMISE and NASA projects, using six clas-
sification models, namely KNN, LR, NB, SVM, DT and DNN and five performance mea-
sures, namely FOR, Recall, F-measure, AUC, and G-mean. The experimental outcomes
and statistical measures show that the performance of our method is superior to the com-
pared approaches. In particular, WACIL outperforms all other oversampling methods in
terms of FOR, F-measure, and AUC while yielding comparable results in terms of Recall
and G-mean. WACIL with LR and DNN outperforms all the other predictive models over
all the performance measures. The next chapter presents a novel source project selection

and optimized training data construction model for cross-project fault prediction.
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Chapter 4

Source Project and Optimized Training
Data Selection Approach for

Cross-project Fault Prediction

The Within-project prediction techniques function effectively when models have sufficient
distinct and homogeneously distributed training data. In such circumstances, CPFP is an
alternative approach to allow multiple projects to share available historical data [23, 25, 26,
29, 37,109, 110, 111, 161]. We proposed a novel optimized source data selection approach
called WSR test based source project selection and optimized training data construction for
CPFP.

The remainder of this Chapter is organized as follows: The implementation details of
the proposed WPSTC are presented in Section 4.1. Section 4.2 consists of an experimental
setup. Section 4.3 reports and compares the experimental findings, While a discussion of
those results is given in Section 4.4, and the possible threats to the validity of the study are

discussed in Section 4.5. Finally, a summary of the chapter is discussed in Section 4.6.
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4.1 Wilcoxon Signed-rank test based Source Project Se-
lection and Optimized Training Data Construction (WP-

STC)

The proposed WPSTC model is a two-phase approach, which includes source project se-
lection in the first phase and construction of the training data in the second phase. The first
phase concerns how similar distributed source projects have been selected for a particu-
lar target project. Next, the proposed fault prediction model introduced instance filtering
and feature selection techniques in the second phase to reduce the distribution difference
between source and target, maintain both the class count ratio, and control the curse of
dimensionality issue. In section 4.1.1, we first explain the notations used in this chapter.
Next, a thorough explanation of the two phases is given in the sections 4.1.2 and 4.1.3, as
well as in Algorithms 2, 3, 4 and 5. The framework of the proposed WPSTC approach is

shown in the figure 4.1.

1 ~--- Phase-I ----------- 1"
1 l
. i | WSR based source Selected
= Source Projects ‘ . . X
] | project selection L[| source projects

1/2]3]...|n 1

| >{ Target Project ! . .
] ! ’ Feature selection Filtered data

FE 23] n-1 | ol y
All Projects ’ Instance filtering ‘ l

Filtered training
data with feature set

Figure 4.1: An overview of WPSTC model framework

60



CHAPTER 4. SOURCE PROJECT AND OPTIMIZED TRAINING DATA SELECTION APPROACH FOR CROSS-PROJECT FAULT PREDICTION Section 4.1

4.1.1 Notations

To maintain a hassle-free explanation of the proposed work, we have given detailed nota-
tions of the terms used in this work.

Suppose, Ps is the set of source (training datasets) projects with labels and Pr is
the set of the target (test dataset) projects without labels. Pg contains a project (train-
ing project) Ds = {(z¥,y?)|i = 1,2,...,ng}, where 27 indicates the i*" instance in a
project Dg, y? is the corresponding class label and ng is the total number of instances in
that particular source project Dg. 1 represents fault proneness of instance, which means
y? € {0, 1}, where y¥ = 0 and y? = 1 represents non-faulty modules (instances/samples)
and faulty modules, respectively. Pr contains a project (test project) without labels is
Dy = {zf|i = 1,2,...,np}, where 27 indicates the i*" instance in a project Dy and
nr is the total number of instances in that particular target project Dp. Since we fo-
cused on homogeneous CPFP, source and target projects possess the same features. So,
each instance belongs to Dg and Dr is described as 27 = [a;|j = 1,2,...,m] and
! = [bjlj = 1,2,...,m], respectively, where a;; & b;; indicates the value of j-th fea-
ture in the " instance of Dg and D7, respectively and *m’ is count of features present in

DS and DT.

4.1.2 Phase-I: WSR based Source Project Selection

Selection of source projects is the fundamental prerequisite of training data construction
since the availability of open source software datasets is multiplying from day to day. Our
proposed source project selection approach is feasible when we have sufficient historical
data that shares similar features with the target data, even if the distribution of the data may
not be the same. When direct data is unavailable, teams can consider using proxy projects
that share similar characteristics to the desired projects. They can also search for external
data sources, employ manual data collection methods, and create simulations based on
general industry standards to help estimate project metrics. The majority of prior research
focuses on training instance filtering while overlooking the significance of selecting source

projects [25, 26, 29, 116, 117, 162]. Herbold [36] states that a CPFP model can achieve a
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reasonable success rate with related (similarly distributed) source and target projects. Thus,

in our proposed approach, we primarily pay attention to the source project selection.

Algorithm 2: WSR based Source Project Selection
Require: Target set (Pr) and Source set (Ps), measure, o;
Ensure: Similar source projects (Simp,[measure));

1 Initialize: Dy <— one of target project from Pr

Measurep, < measure of target project (Dr)
Simp,.[measure] < NULL

for each Dg in Py do

Measurep, < measure of source project (Dg)

p_val < WSR (Measurep,,Measurep,)

if p_val > o then

| Update: Simp, [measure].append (Dg)

end

end

return Simp..[measure]

e e N A R W

o
- S

Motivated by the WSR test [157, 163], we propose WSR test based source project se-
lection. The rationale behind using the WSR test is that its a non-parametric statistical test
used to compare two related samples or paired observations. It is specifically designed to
evaluate the effectiveness of different models or algorithms by analyzing their performance
metrics on the same subjects. The WSR test is particularly effective for this purpose, as it
assesses the median differences between paired results, offering clear insights into signif-
icant changes. Additionally, WSR is robust against outliers, relying on ranks rather than
actual data values, which helps provide a more reliable assessment when the data contains
extreme values. The main steps included in the choice of source projects are explained in
Algorithm 2. For a new target project, based on the distributional characteristics through the
WSR test, the association between it and each historical project is investigated, and the cor-
responding similar source projects with respect to a particular distributional characteristic
are recorded. Here, we considered four distributional source and target data characteristics:
mean, median, standard deviation, and maximum. These four measures are independent
and show similarity when both projects are related.

As an initial step, a set of target projects (Pr), a set of source projects (Ps), a distri-

butional characteristic measure, and alpha («) are provided as inputs. Here, at a time, the
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Algorithm 2 takes a single distributional measure as input and finds similar source projects
for a target project with respect to the measure, while all other measures follow the same
procedure and stores the similar source projects for a particular target in terms of individ-
ual distributional characteristic measures. The algorithm’s output is a set of similar projects
with respect to a specific measure (Simp,.[measure]) for a target project.

We calculate the above-mentioned four characteristic measures for all the features in
the target project (Dr € Pr, [Measurep,|mx1).- A project’s measure is a row vector with
the size of the number of features (m) present in a project, and each cell contains the char-
acteristic measure value of the respective feature. Similarly, we calculate the measure value
([Measurep,]mx1) of each source project (Dg € Ps). Then, the WSR test is performed on
both target and source measures and returns a P-value. We conducted a WSR statistical test
with a confidence level of 95% (a=0.05). If the P-value exceeds the significance level (o),
the test failed to reject the null hypothesis, indicating that the two have statistically similar
distribution of measure values, then the particular source project will be added to the set
of similar sources for a particular measure of the target project. When all source projects’
WSR tests are completed, it will return similar sources of target with that measure. The
same process follows for all the other measures and returns similar sources for all of them.
Then, we take the count of each source project from four sets of similar sources, and the
source projects that have a higher count than the average count will be considered as the fi-
nal source projects for the target project. In this process, the source projects set (Sourcep,.)

is selected for the target project Dy.

4.1.3 Phase-II: Optimized Training Data Construction (optimizedTC)

The training data is constructed for a target project using the above-extracted source projects
in this phase. Constructing optimized training data consists of the proposed new instance
filtering technique and the Binary-RAO algorithm feature selection technique. The com-

prehensive interpretation of these steps can be found in Algorithms 3, 4 and 5.
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Algorithm 3: Optimized Training Data Construction
Require: Target project (Dr),Source of Dy (Sourcep,.);
Ensure: Final training data;
1 Calls the instance filtering function with target project and sources of target project
as parameters
St < INSTANCE_FILTERING (D, Sourcep,.)
Calls the feature selection function with target project and filtered training data as
parameters
Stin < FEATURE_SELECTION (D7, S¢i)
return Sy;,

w N

(7 N

4.1.3.1 Instance Filtering

Even after source project selection, cross-project prediction is still challenging because the
distributions of a few instances from the selected projects are not a perfect match to the
target project and the chosen source projects still pose a class imbalance nature. We intro-
duce a new instance filtering phase as a part of our proposed approach to address these two
issues. Algorithm 4 presents the instance filtering process in detail. Step 1. Target project
(D7) and the selected source projects of Dy (Sourcep,) are provided as input parameters
and return filtered training data (S;;).The algorithm iterates until Sourcep, is NULL. In
each iteration, we take one of the source projects as training data (S) and perform the in-
stance filtering process, then append the filtered data to S';;.

Step 2: The instance filtering process begins here, test_data (7") (target project data) and
training_data (S) (source project data). Divide the training dataset (5) into a faulty in-
stances class set (5,,,;,) (minority class) and a non-faulty instances class set (.S,,,,) (major-
ity class). we perform a partition of the test data (T) into faulty (7,,,;,,) and non-faulty (75,,,;)
sets with artificially generated class labels using the nearest neighbours (NNs) concept. To
begin, compute K1, which is the square root of the number of instances in S,,;,, and then
compute K1-NNs for each instance of the testing dataset (7') in the training dataset (5).
If the number of computed NNs belonging to S,,;, exceeds the number of computed NNs
belonging to \S,,,; for each instance in 7, then update the testing faulty class set (7},r)
with that instance of T; otherwise, update the testing non-faulty class set (7},,4;) with that

instance of 7'. All instances from 7" are divided based on their close relationships, yielding
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Algorithm 4: Instance Filtering Phase

Require: Dy, Sourcep,;
Ensure: Sy;;;
1 function Instance_Filtering D7, Sourcep,,

2 Initialize: test_data (1") <~ Dr without labels
3 Sfi,lt < NULL
4 for each S in Sourcep,. do
5 Smin < faulty instances of .S
6 Smaj < non-faulty instances of S
7 K1 <sqrt(len(.Sy,in))
8 Find K1-NNs of each instance of T" in S
9 Tonin < NULL
10 Timaj < NULL
11 for each inc in T do
12 if #NN(inc)€ Synin, > #NN(inc)€ Sy,q; then
13 | Update: Tpnin.append (inc)
14 else
15 ‘ Update: T},,4;.append (inc)
16 end
17 end
18 Find one NN of each instance of T5,q; in Spyq;
19 Take union of all the NNs in Arrayl along with counts
20 for each inc in Arrayl do
21 if Count(inc) > Avg(count) then
2 | Update: Maj_set.append (inc)
23 end
24 end
25 SMOTE is used to generate len(M aj_set) number of new faulty instances in to training
data (S)
26 Smin < faulty instances of new S
27 K2 « ceil(len(Maj_set/len(Tyin))
28 Find K2-NNs of each instance of T},,;,, in Spin
29 Take union of all the NNs in Array2 along with counts
30 for each inc in Array2 do
31 if Count(inc) > Avg(count) then
32 ‘ Update: Min_set.append (inc)
33 end
34 end
35 Update: S'¢;;¢.append(Maj_set, Min_set)
36 end
37 return S;;;
38 end

Tonin and T},q; sets (lines 5-15 in Algorithm 4).

Step 3: To make data balance, we compute one NN of each instance of 7},,,; in Sy, be-

cause non-faulty instances outnumber the faulty class instances. Take the union of all the

neighbours in a set, along with the number of times that instance occurred as a neighbor.

For which neighbor instance the count exceeds the average count append it to the final
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source project majority set (Maj_set), which means we are holding non-faulty source
project instances that are identical to the target project (lines 16-22 in Algorithm 4).

Step 4: The source projects also suffer from an imbalance issue. That means there are
fewer faulty instances than non-faulty instances. If we generate a minority class set from
the source project, the generated training data will be unbalanced. So, before generating a
similar minority class set, we employed SMOTE [11] to generate the len(Maj_set) num-
ber of new faulty instances into S. Now S,,;, is a faulty instance set of newly generated
S, and k2 is the number of instances in Maj_set divided by the number of instances in
T'nin. Compute the K2 number of NNs of each instance of 7,,;,, in .S,,,;, and take a union
of all the neighbours in a set along with the number of times that instance occurred as a
neighbor. For which neighbor instance the count exceeds the average count, append it to
the final source project minority set (Mn_set), which means we are holding faulty source
project instances similar to the target project into one set. Update Sy in each iteration
with computed maj_set and Min_set (lines 23-33 in Algorithm 4). Sy;;, is the filtered

instances dataset after all iterations.

4.1.3.2 Feature Selection

After source projects and training data selection, CPFP performance could be further im-
proved via feature selection. RAO algorithm [164, 165] is a simple and algorithm-specific
parameter-less optimization technique that can effectively solve complex problems. We
employ a Binary-RAO optimization technique for feature selection in this study to mitigate
the issue of the curse of dimensionality over software fault datasets. Algorithm 5 explains
the step-by-step procedure of the feature selection algorithm. In the algorithm, the fea-
ture selection function takes the target project and the above generated filtered source data

(Stit) as input parameters and returns the best feature subset for a particular target project.

Step 1: we define the size of the population as ‘n’, the number of features present in both
source and target is *m’, and created a random 2D binary population (PO P) with the size
of ‘n’ number of rows and ‘m’ number of columns. In POP, «,,, zero denotes the absence

of a feature and one denotes its presence. We experimented on all the datasets to determine
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Algorithm 5: Feature Selection Phase
Require: Dp,S¢;
Ensure: py..;

1 function Feature_SelectionDr, S

2 Initialize: n < population size
3 m <— #features of project
4 POP, ,, < random binary population
5 fit_val < NULL
6 | foreachiinlen(POP)do
7 | fit_valli] < Fit_fun(POPIi],S )
8 end
9 | while (termination_condition) do
10 Doest < POP[maz|fit_vall|
1 Dworst < POP[min|[fit_val]]
12 for each i in len(POP) do
13 Xoia < POPIi]
14 Xyan ¢ randomly selected population
15 Find X,,.,, using X,;; and X,,, via Eqgs. 4.2, 4.3 and 4.4
16 New, < Fit_fun(X,,c.,,S i)
17 if (Objective_Function) then
18 Update POP[i] with X,
19 Update fit_valli] with New,
20 else
21 Keep X4 at PO PYi]
2 Keep fit_val[i] as of X,q
23 end
24 end
25 end
26 return ppe.;
27 end

the maximum number of iterations needed to converge the RAO algorithm and regard the
iteration count as the termination criteria. Almost all the datasets converge near 50 itera-
tions, so we consider termination criteria to be 50 iterations for all the projects.

Step 2: Define the objective function: our Binary-RAO algorithm has two consecutive ob-
jectives, such as maximization of the fitness function and minimization of the total number
of features with maximum fitness value. Thus, the algorithm updates the population’s solu-
tion if the solution satisfies these two objectives, the formal equation of objective function

given in Eq. 4.1.
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Define fitness function (f7tfun): In our approach, we used the AUC score as the fitness
value. F'ityun takes the one solution from the population and source data as inputs and
returns all the classifiers’ average AUC scores. If we consider only one classifier to find the
AUC score, the selected feature set shows partiality towards a particular classifier. Thus,
we considered the average score of all the classifiers as the return score to ensure the chosen

feature set performs equally well on all the classifiers.

Objective_Function = ((fit_val[Xnew] > fit_val[Xold]>

OR
( fit_val[Xnew] == fit_val[ Xy 4.1)
AND

Count(Xpew) < CO?mt(oncz)>)

Step 3: We calculated the fitness value for all the solutions in PO P (lines 3-5 in Algorithm
5).

Step 4: The iteration process begins here, and we identify the best (ppes:) and worst (Dyorst)
solution from the population based on their fitness function values. ps.s is the solution
(feature set) having the maximum fitness value and p,,..s; is the solution having the mini-
mum fitness value (lines 7 and 8 in Algorithm 5).

Step 5: We update each population (: = 1,2,...,len(POP)) by following Egs. 4.2, 4.3
and 4.4. For that, selects a random solution (X,,,) from POP. If the current solution’s
fitness value fit_val[X ) is greater than the randomly selected solution’s fitness value

fit_val[X,qn), then X, follows the below given: Eq. 4.2

Tempmxl - Xold + Tl(pbest - pworst) + TQ(Xold - Xran) (42)

If the randomly selected solution’s fitness value fit_val[X,.,] is greater than the current

solution’s fitness value fit_val[X 4], then X, follows the below given: Eq.4.3

Tempmxl = Xold + Tl(pbest - pworst) + r2<Xran - Xold) (43)
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0, if Tempnx1 < 0.5.
[Xnew]mxl - (44)
1, otherwise.

Where r1 and 72 are two random numbers selected in the range [0, 1] for the current
iteration. The last terms in Eqgs. 4.2 and 4.3 indicate the random cooperation between the
present solution and the randomly selected solution (lines 9-13 in Algorithm 5).

Step 6: If the objective function is satisfied with X,,.,, then replace X,;; in POP with
Xnew and update fit_val[X,q] with fit_val[X,.,], otherwise discard the new solution
and keep POP and fit_val as previous (lines 14-20 in Algorithm 5). The in-detailed
objective function is given in the Eq. 4.1.

Step 7: In the last step, if the termination criterion is satisfied, we report the optimum
solution (pycs:). Else, we followed the process from Step 4. Finally, Sy;;; data with selected

Ppest Teatures are used to build the Classification model.

4.2 Experimental Setup

This section includes the details of utilized projects, their features, and the evaluation met-
rics we used to assess the proposed work. Next, a concise description of the base models,

classifier selection, and an overview of statistical comparison measures are explained.

4.2.1 Experimental Objects

In the experimental work, we used 24 diverse projects to evaluate WPSTC, including 14
projects from PROMISE [34, 148] and ten projects from NASA [25, 37, 43, 70, 149, 150].
A total of 13 projects from NASA and approximately 30 projects from the PROMISE
repository are available for analysis. We selected specific projects that have undergone ex-
tensive research, ensuring that they possess a robust dataset and relevant performance met-
rics. Focusing on specific projects with established performance metrics allows for mean-
ingful comparisons among different prediction models, leading to more robust conclusions.
The project’s detailed summary is explained in Table 3.1 of Chapter 3. For each PROMISE

project experiment, an extracted similar project set from the rest of the PROMISE projects
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serves as the source projects. The same type of experiments were performed by NASA.
The PROMISE projects have the same feature sets, whereas NASA projects have different
feature sets [43, 150]. All 20 features from PROMISE and 35 common features from all

NASA projects were used to perform a homogeneous CPFP.

4.2.2 Performance Assessment Measures

To assess the performance of the proposed model, the FOR, Recall, micro-averaged F-
measure, G-mean, AUC, nMCC and Balance are considered as evaluation metrics in our
experiments [25, 26, 29, 31, 37, 149]. The evaluation metrics FOR and Recall are used
to assess the model over faulty class, and F-measure, AUC, G-mean, Balance, and nMCC
are used to assess the model’s overall performance. These measures are extracted from the
confusion matrix (represented in Table 3.4 of Chapter 3), which is built from the actual
labels and prediction model generated labels.

The utilized evaluation metrics are defined as follows:

FOR= o (4.5)

Recall = TP};——PFN (4.6)

F' —measure = TP —1—2]2;:’) TEN 4.7)

G — mean = \/Accy, x ACC_ = \/Recall x (1 — FOR) (4.8)
Balannce =1 — V(0 — FOR)? + (1 — Recall)* 4.9)

V2
MCC: MCC calculates the Pearson product-moment correlation coefficient between actual
and predicted values. MCC values range from [-1, 1], so used normalized MCC (nMCC)

for statistical comparisons between experiments [31]. nMCC ranges between [0, 1].

NOC — TPxTN —FP x FN @.10)
/(TP + FP)(TN + FN)(TP + FN)(FP+TN)

nMCC = % (4.11)
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AUC: AUC is a performance metric that measures the tradeoff between FOR and Recall.

All measures except FOR, the higher the values, the better the classifier’s performance.
As per FOR, a lower value indicates better performance. All the measures range between

[0, 1] except MCC.

4.2.3 Classifier Selection

In this work, we employed five standard ML algorithms as classifiers. These ML algorithms
are KNN, LR, SVM, NB, and DT, which have been extensively used in similar CPFP
models [23, 37, 121]. In addition, the voting-based ensemble learning algorithm was used
as a classification model. These five conventional ML classifiers are used as estimators in
that ensemble classifier. The estimated probability of the output class of each estimator is
used to calculate voting. To implement the aforementioned classifiers, we use the Python

Scikit-learn library.

4.2.4 Statistical Measures

To analyze WPSTC’s experimental outcome and demonstrate its superiority, we choose the
WSR as a statistical performance measure [25, 37, 157]. The matched-pairs rank biserial
correlation coefficient measure is used to find the strength of the relationship (effect size)
between the pairs [20, 158, 166]. The effect size (£.) ranges between [0, 1], and it can
be interpreted using three labels [20], large (E,. > 0.5), medium (0.1 < E. < 0.5) and
small (£, < 0.1). Furthermore, to ensure the proposed model superiority, we compare each
base model and our model with that of the remaining predictive models (classifiers * fault

prediction models-1) using widely popular WDL [26, 166] comparison technique.

4.3 Experimental Results

In this section, we addressed the computed FOR, recall, F-measure, AUC, G-mean, nMCC,

and Balance values of each model for all 24 projects with respect to each classification
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model. We compared our WPSTC findings with six baseline models, including WPFP,
allCPFP, WPS+CPFP, WPS+TCA [22], WPS+NNFilter [29], TCA+STrNN [25]. In all-
CPFP approach, for every experiment, one project operates as testing data and the rest of
the projects operate as training data for the prediction model. Basic WPFP and allCPFP
models implemented in Python. We utilised the source code provided by its author for TCA
implementation [22], while NNFilter and STrNN are implemented in Python according to
the algorithms outlined in [29] and [25], respectively.

Firstly, we reported the WPS selected similar source projects in Table 4.1. Few projects
don’t have any characteristics similar to other projects, considering all the available homo-

geneous projects as sources.

Table 4.1: selected source projects for each target project

Target Project | Selected source projects

Ant-1.7 Ivy-2.0, Poi-2.0, Tomcat, Xalan-2.4, Xerces-1.3
Arc Lucene-2.0, Redaktor, Synapse-1.2

Camel-1.6 Lucene-2.0, Redaktor, Tomcat, Velocity-1.6, Xerces-1.3
Ivy-2.0 Ant-1.7, Lucene-2.0, Xerces-1.3

Jedit-4.2 Ant-1.7

Log4j-1.0 Arc, Redaktor

Lucene-2.0 Arc, Camel-1.6, Ivy-2.0, Synapse-1.2

Poi-2.0 Ant-1.7, Camel-1.6, Velocity-1.6, Xalan-2.4
Redaktor Arc, Camel-1.6, Lucene-2.0, Synapse-1.2
Synapse-1.2 Arc, Lucene-2.0, Redaktor

Tomcat Ant-1.7, Camel-1.6, Velocity-1.6, Xerces-1.3
Velocity-1.6 Camel-1.6, Tomcat, Xerces-1.3

Xalan-2.4 Ant-1.7, Poi-2.0, Tomcat

Xerces-1.3 Ant-1.7, Camel-1.6, Ivy-2.0, Tomcat, Velocity-1.6
CM1 MC2, KC3

MW1 PC2, PC4

KC3 CM1, MC2, PC1, PC2

MCl1 PC2, PC4

MC2 CM1, KC3, PC2

PCl1 CM1, KC3, PC2, PC3

PC2 KC3,MC1, MW1, PC1, PC3, PC4

PC3 MCl, PC1, PC2

PC4 MCI1, MW1, PC2

PC5 CM1, KC3, MC1, MC2, MW1, PC1, PC2, PC3, PC4

Furthermore, the obtained results are depicted through scatter plots in Figures 4.2 and
4.3. The Y-axis and X-axis of the figures represent the projects and their performance
measure values, respectively. The results of all models are compared in the Tables 4.2,
4.4 and 4.5. Table 4.2 shows the averaged measures of all the projects for each prediction
model, the bold value represents the highest measure value. Table 4.4 shows the statistical

comparison between WPSTC and the other fault prediction models over all 24 projects for
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each classifier and the average of all classifiers. For each measure, it shows the P-value

and the effect size (Ec), the bold part (P-value < 0.0.5) represents WPSTC as statistically

superior, and the bold italic part (P-value > 0.05) represents WPSTC statistically similar

to other models in terms of a particular measure. Table 4.5 shows the WDL statistics of

each fault prediction model combined with each classifier over other 41 (7 (fault prediction

models) * 6 (classifiers)-1) models. Each measure shows W-L (the difference between the

number of wins and losses), and the rank was assigned to W-L values. The sum of wins

minus losses of all the measures and ranks assigned to the sum of wins - the sum of losses

are represented in the last column of Table 4.5. The grey part represents the top 7 ranked

models for each performance measure. We performed an extensive study and explored the

following three research questions to assess the effectiveness of the WPSTC model:

Performance measures

Fault prediction madels

& WPS+CPFP
o WPSLTCA

» FOR *  F-measure *  G-mean » Balance
. AUC

»  recall

x WPSTC

0 WPS+NNFilter
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AMCC

= allCPFP
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Figure 4.2: Scatter plots of fault prediction models over each classifier across 14 PROMISE projects
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Figure 4.3: Scatter plots of fault prediction models over each classifier across 10 NASA projects

4.3.1 RQ1: How’s the WPS+CPFP performance compared with all-

CPFP?

Figures 4.2 and 4.3 provide more insights into the WPS+CPFP and allCPFP results. The

symbols A and ~ represent WPS+CPFP and allCPFP results, respectively. As we can

observe from the figures, WPS+CPFP surpasses allCPFP across the following count of

projects out of 24 projects with different classification models: WPS+CPFP in combina-

tion with KNN 11, 14, 13, 14,14,15 and 14 projects, with LR 4, 16, 6, 8,17,12 and 17

projects, with NB 1, 24, 3, 12,24,20 and 24 projects, with SVM 8§, 17, 7, 18,17,15 and

17 projects, with DT 14, 15, 16, 16,15,18 and 14 projects, with ensemble learner 6, 18,

5, 16,18,17, and 19 projects achieve greater scores out of 24 projects against allCPFP in

terms of FOR, Recall, F-measure, AUC, G-mean, nMCC, and Balance measures. As we

can see from Table 4.2, on average across 24 experiments, WPS+CPFP outperforms the

allCPFP by 58.38%, 1.65%, 22.64%, 2.45%, and 14.43% in terms of Recall, AUC, G-
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mean, nMCC, and Balance, respectively. The WPS+CPFP is unable to outperform with
FOR and F-measure, because allCPFP uses more data for training, so the misclassification
rate of faulty modules is less for it, but the recognition of faulty and non-faulty modules
should be balanced for a better prediction model. The WPS+CPFP achieves good results
over balanced measures like G-mean and Balance, and overall performance measures AUC
and nMCC are also superior compared to allCPFP.

The statistical comparison of both models over each classifier’s predicted results are
given in Table 4.3. The bold P-value and the bold italic P-value represent WPS+CPFP as
statistically superior and statistically have no significant difference (similarly distributed)
to allCPFP, respectively. The models” KNN and DT generated data on FOR and F-measure
are statistically similar. Nevertheless, in most cases, the WPS+CPFP outperforms CFPF
with medium to large effect sizes for the rest of the measures.

Based on prediction performance and statistical comparison, FOR, Recall, G-mean,
and Balance values indicate WPS+CPFP can handle imbalance issues much better. The
G-mean, AUC, Balance, and nMCC indicate the overall performance of WPS+CPFP is
superior to allCPFP.

Table 4.2: Average results of 24 projects with respect to each fault prediction models

Evaluation measures

Models FOR Recall F-measure AUC G-mean nMCC Balance
WPFP 0.085 0.278 0.815 0.726 0.427 0.618 0.473
allCPFP 0.063 0.173 0.804 0.668  0.349 0.572 0.409

WPS+CPFP 0.108 0.274 0.773 0.679 0428 0.586  0.468
WPS+TCA 0.161 0.258 0.730 0.645 0323  0.551 0.417
WPS+NNFilter 0.110 0.277 0.771 0.678 0.429  0.585 0.470
TCA+STINN  0.138 0.370 0.768 0.670 0.548  0.609  0.540
WPSTC 0.127  0.423 0.784 0.733 0589 0.638  0.573

4.3.2 RQ2: Is WPSTC performing better than the WPFP?

The supposition is that WPFP can accomplish the highest performance than the CPFP
models. We compare our WPSTC performance with the WPFP approach’s performance

to investigate the supposition. The WPSTC and WPFP’s in-detail results are demonstrated
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Table 4.3: Statistical assessment of WPS+CPFP with allCPFP model over six classifiers for each
evaluation measure

Evaluation measures
FOR Recall F-measure AUC G-mean nMCC Balance
P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec
KNN 0.386010 0.214 0.071846 0.420 0.223215 0.296 0.845534 0.040 0.368071 0.210 0.18866 0.300 0.071861 0.417

Models

LR 0.002031 0.723 0.008143 0.630 0.025805 0.527 0.091851 0.390 0.022541 0.543 0.283903 0.247 0.008512 0.627
NB 3.03E-05 0.973 1.82E-05 1.000 0.000301 0.843 0.903163 0.029 1.82E-05 1.000 0.001549 0.783 1.82E-05 1.000
SVM 0.005122  0.693 0.009613 0.645 0.007393 0.652 0.009322 0.610 0.015707 0.602 0.306369 0.245 0.010104 0.641
DT 0.977206 0.007 0.170198 0.320 0.615755 0.116 0.109562 0.373 0.324249 0230 0.145036 0.340 0.265132 0.260

Ensemble 0.001673 0.730 0.001517 0.743 0.001754 0.727 0.106430 0.380 0.003565 0.680 0.049777 0.467 0.001403 0.764

in scatter plot Figures 4.2 and 4.3. The symbols x and o represent WPSTC and WPFP
results, respectively. The scatter plots show that WPSTC obtains greater scores than the
WPEFP for most projects. Comprehensively, WPSTC surpasses WPFP across the following
count of projects out of 24 projects with different classification models: the WPSTC in
combination with KNN 8§, 22, 9, 13,20,19 and 21 projects; with LR 9, 14, 8, 12,15,13 and
15 projects; with NB 15, 13, 14, 14,15,13 and 18 projects; with SVM 7, 18, 9, 12,19,17 and
18 projects; with DT 11, 12, 9, 14,13,13 and 14 projects; with ensemble learner 7, 16, 7,
13,16,14 and 19 projects achieve greater scores out of 24 projects against WPFP in terms
of FOR, Recall, F-measure, AUC, G-mean, nMCC and Balance measures respectively. As
shown in Table 4.2, on average across 24 experiments, WPFP outperforms WPSTC in terms
of FOR and F-measure by 33.07% and 3.95%, respectively, whereas WPSTC outperforms
WPFP by 52.16%, 0.96%, 37.94%, 3.24%, and 21.14% in terms of Recall, AUC, G-mean,
nMCC and Balance, respectively.

The pair-wise WSR test provides a better insight into the results. The statistical com-
parison of both models over each classifier predicted results is given in Table 4.4. The
first row of each classifier in Table 4.4 shows the statistical comparison between WPSTC
and WPFP. With the majority of the classifiers Recall, AUC, G-mean, nMCC, and Balance
results show that WPSTC is superior to WPFP. On average Recall, G-mean and Balance
with P-values 0.00373, 0.000606, and 0.002235, as well as effect sizes of 0.677 (large),
0.8 (large), and 0.713 (large), provide evidence for the statistical superiority of WPSTC
over WPFP. On average, WPSTC’s FOR and F-measure with P-values of 0.015158 and
0.007881 could not outperform the WPFP. On average, AUC and nMCC with P-values of
0.33131 and 0.055347 as well as effect sizes of 0.227 (medium) and 0.453 (medium), pro-

vide evidence for such insignificant differences.
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Based on prediction performance and statistical comparison, the WPSTC’s FOR values
are high, but the Recall, G-mean and Balance values are higher than the WPFP, which
indicates WPSTC can handle imbalance issues much better than the WPFP. The G-mean,
AUC, Balance, and nMCC results are much better than WPFP, which means the overall

performance of WPSTC is superior to WPFP.

4.3.3 RQ3: How’s the overall WPSTC performance compared with
base CPFP models?

The overall results of 24 projects for each fault prediction method, classifier, and perfor-
mance measures are depicted in Figures 4.2 and 4.3. For each individual classifier, the
symbols %, A\, [J, ¢, + and x represent allCPFP, WPS+CPFP, WPS+TCA, WPS+NNFilter,
TCA+STrNN, and our WPSTC. The different colours indicate the different performance
measures. We can note from the plots that our approach produces better scores than the
other cross-project prediction models for more projects with most of the measures and gives
comparable results for a few measures like FOR. Comprehensively, on average, WPSTC
surpasses WPFP across the following count of projects out of 24 projects with different
classification models: the WPSTC has greater scores over allCPFP 2, 24, 10, 22,24,24
and 24 times; over WPS+CPFP 9, 23, 15, 22,23,24 and 23 times; over WPS+TCA 17,
24, 21, 23,24,24 and 24 times; over WPS+NNFilter 7, 23, 15, 22,24,24 and 24 times;
over TCA+STrNN 15, 13, 18, 21,15,19 and 14 times out of 24 experiments in terms of
FOR, Recall, F-measure, AUC, G-mean, nMCC and Balance measures respectively. We
can see the average of all 24 projects’ measure values for each fault prediction model in
Table 4.2, WPSTC outperforms TCA+STrNN by -7.97%, 14.32%, 2.08%, 9.4%, 7.48%,
4.76% and 6.11%; WPS+NNFilter by 15.45%, 52.77%, 1.69%, 13.64%, 37.3% and 9.06%,
21.91%; WPS+TCA by -21.12%, 63.95%, 7.4%, 13.64%, 82.35%, 15.79% and 37.41%;
WPS+CPFP by 17.59%, 54.38%, 1.42%, 7.95%, 37.62%, 8.87% and 22.44%; allCPFP by
98.44%, 144.51%, -2.49%, 9.73%, 68.77%, 11.54% and 40.1% in terms of FOR, Recall,
F-measure, AUC, G-mean, nMCC and Balance. The negative and positive percentages in-

dicate a decrease in value and an increase in value, respectively. For a better prediction
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Table 4.4: Statistical comparison of WPSTC with other fault prediction models using KNN, LR,
NB, SVM, DT and Ensemble classifiers

K-Nearest Neighbour

Models FOR Recall F-measure AUC G-mean nMCC Balance
P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec
WPFP 7.14E-05 0.927 4.96E-05 0.947 0.000673 0.793 0.423663 0.187 6.33E-05 0.933 0.001517 0.743 4.39E-05 0.953
allCPFP 1.82E-05 1 1.82E-05 1 0.032116 0.5  0.000255 0.853 1.82E-05 1 1.82E-05 1 1.82E-05 1
WPS+CPFP 0.000285 0.847 1.82E-05 1 0.113725 0.373 0.000129 0.897 1.82E-05 1 1.82E-05 1 1.82E-05 1
WPS+TCA 0.000441 0.82 1.82E-05 1 0.331335 0.223 5.61E-05 094 1.82E-05 1 1.82E-05 1 1.82E-05 1
WPS+NNFilter 0.000318 0.84 1.82E-05 1 0.235711 0.277 5.61E-05 094 1.82E-05 1 1.82E-05 1 1.82E-05 1
TCA+STINN  0.466127 0.17 0.000526 0.83 0.212366 0.293 0.000115 0.9 0.000285 0.847 0.000228 0.86 0.000318 0.84
Logistic Regression
Models FOR Recall F-measure AUC G-mean nMCC Balance
P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec
WPFP 0.010128 0.597 0.059333 0.44 0.000192 0.87 0.731666 0.077 0.042502 0.467 0.52963 0.143 0.052033 0.453
allCPFP 0.000182 0.873 3.02E-05 0.973 0.103386 0.38 0.005826 0.643 2.67E-05 0.98 0.000162 0.838 2.84E-05 0.977
WPS+CPFP 0.071861 0.42 0.000269 0.85 0.657836 0.103 0.000285 0.843 2.67E-05 0.98 0.000918 0.773 3.02E-05 0.973
WPS+TCA 0.000145 0.887 1.82E-05 1 0.492893 0.16 0.001069 0.763 1.82E-05 1 1.82E-05 1 1.82E-05 1
WPS+NNFilter 0.034472 0.493 0.000182 0.873 0.720971 0.08 0.000255 0.853 2.50E-05 0.983 0.001592 0.737 2.35E-05 0.987
TCA+STINN  0.022257 0.537 0.886397 0.03 0.014561 0.567 0.000441 0.82 0.689157 0.09 0.017675 0.562 0.753304 0.067
Navie Bayes
Models FOR Recall F-measure AUC G-mean nMCC Balance
P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec
WPFP 0.483905 0.163 0.737954 0.08 0.852654 0.04 0.784276 0.065 0.050319 0.457 0.259054 0.263 0.065737 0.435
allCPFP 0.000546 0.807 0.000102 0.907 0.174714 0.317 0.042502 0.473 4.96E-05 0.947 8.54E-05 0.917 8.05E-05 0.92
WPS+CPFP 0.797058 0.06 0.042502 0.473 0.129953 0.357 0.094603 0.393 0.007877 0.62 0.02582 0.52 0.009319 0.61
WPS+TCA 2.07E-05 0.993 8.05E-05 0.92 1.82E-05 1 0.000546 0.807 0.019137 0.553 8.53E-05 0917 0.043969 0.47
WPS+NNFilter 0.324224 0.23  0.18875 0.307 0.137315 0.347 0.013448 0.573 0.078878 0.41 0.082944 0.417 0.112786 0.37
TCA+STINN  0.137274 0.347 0.689157 0.093 0.063277 0.437 0.006642 0.637 0.668203 0.097 0.015148 0.567 0.830316 0.047
Support Vector Machine
Models FOR Recall F-measure AUC G-mean nMCC Balance
P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec
WPFP 0.004675 0.678 0.001517 0.74 0.00148 0.757 0.338471 0.223 0.000491 0.813 0.013755 0.591 0.000829 0.78
allCPFP 1.82E-05 1 1.82E-05 1 0.059332 0.449 2.07E-05 0.993 1.82E-05 1 3.02E-05 0973 1.82E-05 1
WPS+CPFP 0.004275 0.667 3.65E-05 0.963 0.797048 0.06 7.69E-05 0.942 2.07E-05 0.993 1.82E-05 1 2.20E-05 0.99
WPS+TCA 0.001843 0.727 2.07E-05 0.993 0.637318 0.107 5.61E-05 0.94 2.07E-05 0.993 1.82E-05 1 2.07E-05 0.993
WPS+NNFilter 0.003905 0.677 3.02E-05 0.973 0.466241 0.167 0.000102 0.907 2.07E-05 0.993 2.07E-05 0.993 2.67E-05 0.98
TCA+STINN  0.091834 0.39 0.977206 0.007 0.014 0.573 6.33E-05 0933 0.764165 0.07 0.008135 0.63 0.830316 0.05
Decision Tree
Models FOR Recall F-measure AUC G-mean nMCC Balance
P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec
WPFP 0.647568 0.107 0.567709 0.133 0.345705 0.213 0.415457 0.187 0.360567 0.213 0.731706 0.077 0.647568 0.107
allCPFP 0.074131 0.42 0.001307 0.75 0.000918 0.773 4.39E-05 0.953 0.000318 0.837 2.35E-05 0.987 0.000441 0.82
WPS+CPFP 0.001405 0.761 0.006358 0.64 9.07E-05 0.913 3.88E-05 0.96 0.000162 0.88 3.03E-05 0.973 0.00049 0.813
WPS+TCA 0.011583 0.601 3.43E-05 0.967 0.000129 0.893 2.07E-05 0.993 2.35E-05 0.987 2.35E-05 0.987 2.67E-05 0.98
WPS+NNFilter 0.004676 0.66 0.011919 0.59 0.000145 0.887 7.14E-05 0.927 0.000441 0.82 4.97E-05 0.947 0.000674 0.79
TCA+STINN  0.492871 0.16 0.10958 0.373 0.954431 0.013 0.030977 0.503 0.071846 042 0.03324 0.507 0.067422 0.423
Ensemble
Models FOR Recall F-measure AUC G-mean nMCC Balance
P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec
WPFP 0.004676 0.663 0.016395 0.56 0.000102 0.907 0.587228 0.127 0.011923 0.587 0.903168 0.029 0.016395 0.56
allCPFP 2.67E-05 0.98 2.07E-05 0993 0.091785 0.393 0.000517 0.81 2.07E-05 0.993 2.70E-05 1 2.07E-05 0.993
WPS+CPFP 0.05932 0.437 5.61E-05 0.94 0.277605 0.253 0.000491 0.813 2.67E-05 0.983 5.94E-05 0.957 4.67E-05 0.95
WPS+TCA 0.345754 0217 2.07E-05 0.993 0.029817 0.541 7.57E-05 0.923 1.82E-05 1 2.70E-05 1 1.82E-05 1
WPS+NNFilter 0.133595 0.353 6.33E-05 0.933 0.290348 0.25 0.00049 0.813 2.35E-05 0.987 9.90E-05 0.928 3.03E-05 0.973
TCA+STINN  0.290397 0.247 0.265157 026 0.129934 0.353 8.04E-05 0.92 0.06745 0.427 0.000477 0.874 0.120863 0.366
Average measures
Models FOR Recall F-measure AUC G-mean nMCC Balance
P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec P-value Ec
WPFP 0.015158 0.567 0.00373 0.677 0.007881 0.623 0.33131 0.227 0.000606 0.8 0.055347 0.453 0.002235 0.713
CPFP 6.77E-05 0.946 1.82E-05 1 0.196111 0.308 0.000285 0.847 1.82E-05 1 1.82E-05 1 1.82E-05 1
WPS+CPFP 0.078878 0.413 2.67E-05 098 0.097491 0.387 0.000162 0.88 2.07E-05 0.993 1.82E-05 1 2.07E-05 0.993
WPS+TCA 0.034491 0.493 1.82E-05 1 0.000318 0.84 3.43E-05 0.967 1.82E-05 1 1.82E-05 1 1.82E-05 1
WPS+NNFilter 0.091768 0.393 2.35E-05 0.987 0.089098 0.4 0.000162 0.88 1.82E-05 1 1.82E-05 1 1.82E-05 1
TCA+STINN  0.317286 0.233 0.219233 0.287 0.07272 0.428 0.000192 0.87 0.081359 0.407 0.000708 0.793 0.174714 0.317

model, the FOR value should be lower and the other measure values should be high. Thus,

the negative percentage for FOR and positive percentage for other measures indicate that

WPSTC outperforms the competitive approaches.

To thoroughly examine WPSTC’s performance and verify that it is effective in achiev-
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Table 4.5: W(number of wins)/D(number of draws)/L(number of losses) statistics of each model
compared to all the other models

fault prediction models FOR Recall F-measure AUC G-mean nMCC Balance Average
W/D/L  Rank | W/D/L  Rank | W/D/L Rank | W/D/L  Rank | W/D/L  Rank | W/D/L  Rank | W/D/L  Rank | W/D/L Rank

WPFP+KNN 27113/1 6 2/14125 31 37/4/0 2 21/16/4 12 1/1426 32 3/28/10 24 2/15/24 30 93/104/90 21
CPFP+KNN 25/13/3 10 3/8/30 38 21/14/6 8 8/12121 26 3/8/30 37 2/15/24 34 3/8/30 38 65/78/144 30
(WPS+CPFP)+KNN 26/12/3 8 3/10/28 32 18/18/5 9 8/11/22 27 5/9/127 31 7/14/20 29 3/11/27 32 70/85/132 29
(WPS+TCA)+KNN 25/13/3 10 3/9/29 36 14/22/5 11 4/11726 34 3/9/29 34 2/13/26 36 3/9/29 34 54/86/147 37
(WPS+NNFilter)+KNN 26/11/4 10 3/10/28 32 12/22/7 18 8/11/22 27 3/9/29 34 2/16/23 30 3/9129 34 57/88/142 33
(TCA+STrNN)+KNN 71321 27 19/15/7 19 5/19/17 30 9/9/23 27 19/15/7 17 16/16/9 17 19/16/6 17 94/103/90 19
(WPSTC)+KNN 5/12/24 31 36/4/1 2 7/26/8 20 26/141 17 40/1/0 1 35/6/0 1 39/2/0 1 188/65/34 2
WPFP+LR 21/16/4 14 10/19/12 23 38/3/0 1 35/6/0 2 12/15/14 23 30/11/0 5 12/20/9 21 158/90/39 6
CPFP+LR 29/10/2 4 3/8/30 38 28/9/4 6 23/14/4 9 3/9/29 34 6/19/16 26 3/8/30 38 95/77/115 26
(WPS+CPFP)+LR 17/16/8 18 10/10/21 28 5/30/6 20 19/13/9 19 10/9/22 28 13/16/12 23 10/10/21 28 84/104/99 25
(WPS+TCA)+LR 33/8/0 3 074137 40 14/22/5 11 20/15/6 16 0/4/37 41 0/1/40 41 0/4/37 40 67/58/162 38
(WPS+NNFilter)+LR 19/14/8 16 11/11/19 26 5/30/6 20 19/14/8 18 10/10/21 27 13/18/10 19 11/921 27 88/106/93 23
(TCA+STINN)+LR 5/1026 34 23/14/4 9 5/15/21 35 12/18/11 22 25/13/3 8 17177 16 23/15/3 10 110/102/75 14
(WPSTC)+LR 11/13/17 24 21/18/2 9 13/22/6 17 35/6/0 2 24/16/1 17 31/10/0 4 231711 17 158/102/27 4
WPFP+NB 1717123 36 231711 7 2/30/9 28 25/12/4 8 20/20/1 13 212000 8 21/19/1 10 113/135/39 9
CPFP+NB 21/10/10 16 11921 27 16/18/7 11 23/13/5 11 13/9/19 26 14/15/12 22 11/10/20 26 109/84/94 18
(WPS+CPFP)+NB 5/15/21 29 22/16/3 9 5/19/17 30 23/14/4 9 24/14/3 10 20/16/5 12 22/17/2 10 121/111/55 11
(WPS+TCA)+NB 0/0/41 42 41/0/0 1 0/0/41 42 7/10/24 32 22/16/3 13 6/17/18 28 23/16/2 8 99/59/129 28
(WPS+NNFilter)+NB 5/12/24 31 23/16/2 8 5/19/17 30 21/15/5 13 25/15/1 6 23/16/12 8 25/15/1 6 127/108/52 8
(TCA+STrNN)+NB 1712128 37 29/11/1 4 5/14/22 36 18/12/11 20 30/10/1 4 23/13/5 11 31/10/0 3 137/82/68 10
(WPSTC)+NB 5/15/21 29 32/8/1 3 5/28/8 23 28/112 6 33/8/0 2 32/9/0 3 33/8/0 2 168/87/32 3
WPFP+SVM 27/1410 4 0/16/25 32 37/4/0 2 19/19/3 13 1/1426 32 2/30/9 24 0/17/24 32 86/114/87 22
CPFP+SVM 38/3/0 1 0/3/38 41 32/8/1 5 4/5/32 36 1/3/37 40 2/12/27 38 0/3/38 41 771371173 39
(WPS+CPFP)+SVM 28/10/3 7 3/9/129 36 15/20/6 11 712/22 31 3/8/30 37 2/15/24 34 3/9/29 34 61/83/143 31
(WPS+TCA)+SVM 37/410 2 0/3/38 41 13/24/4 11 5/11/125 33 0/1/40 42 0/1/40 41 0/3/38 41 5/47/185 41
(WPS+NNFilter)+SVM 26/12/3 8 3/10/28 32 10/24/7 19 8/11/122 27 3/8/30 37 2/13/26 36 3/9/29 34 55/87/145 35
(TCA+STINN)+SVM 9/14/18 25 20/15/6 17 9/20/12 23 10/9/22 25 21/14/6 16 21/14/6 12 20/15/6 16 110/101/76 15
(WPSTC)+SVM 17/8/16 20 20/15/6 17 15/22/4 10 28/12/1 5 23/15/3 12 31/9/1 5 21/15/5 15 155/96/36 6
WPFP+DT 32117 27 1922171 12 5/23/13 29 4/5/32 36 22/18/1 10 1712173 14 22/18/1 8 92/127/68 16
CPFP+DT 1/6/34 38 15/16/10 20 1/3/37 41 0/3/38 41 15/11/15 21 2/12/27 38 15/11/15 23 49/62/176 40
(WPS+CPFP)+DT 1/5/35 41 20/17/4 15 1/4/36 38 1/2/38 39 20/13/8 17 3/14/24 30 20/14/7 17 66/69/152 34
(WPS+TCA)+DT 1/6/34 38 15/7/19 24 1/4/36 38 0/1/40 42 14/8/19 25 2/9/30 40 14/8/19 24 47/43/197 42
(WPS+NNFilter)+DT 1/6/34 38 20/17/4 15 1/4/36 38 1/2/38 39 19/11/11 19 3/14/24 30 19/14/8 19 64/68/155 36
(TCA+STINN)+DT 6/9/26 33 22/15/4 12 5/14/22 36 4/3/34 38 22/14/5 15 16/12/13 19 21/17/3 14 96/84/107 24
(WPSTC)+DT 4/12/25 34 2711212 5 5/16/20 33 5/6/30 35 26/14/1 5 24/14/13 8 27/13/1 5 118/87/82 13
WPFP+Ensemble 21/15/5 15 13/18/10 21 37/4/0 2 35/6/0 2 14/19/8 20 29/12/0 7 13/19/9 20 162/93/32 5
CPFP+Ensemble 25/13/3 10 519127 30 25/12/4 7 18/11/12 21 51026 30 11/9/21 26 519127 30 94/73/120 27
(WPS+CPFP)+Ensemble 15/13/13 19 14/8/19 25 7/24/10 23 20/16/5 15 15/8/18 24 15/14/12 19 13/10/18 24 99/93/95 19
(WPS+TCA)+Ensemble 13/15/13 22 10/10/21 28 5/16/20 33 11/11/19 24 8/11/22 29 3/14/24 30 9/10/22 29 59/87/141 31
(WPS+NNFilter)+Ensemble | 14/14/13 20 16/8/17 22 7/24/10 23 20/15/6 16 15/11/15 21 15/17/9 18 16/10/15 22 103/99/85 17
(TCA+STrNN)+Ensemble | 8/13/20 26 21/16/4 14 8/20/13 27 17/8/16 22 25/13/3 8 20/14/7 15 22/16/3 13 121/100/66 12
(WPSTC)+Ensemble 12/12/17 23 25/1412 6 13/24/4 11 38/3/0 1 31/9/1 3 33/8/0 2 28/12/1 4 180/82/25 1

ing enhanced (significant) performance measures, we performed a WSR test of WPSTC
against the competitive CPFP approaches with individual classifier results and average re-
sults of classifiers, Table 4.4 presents these results. We also present the win, draw, and loss
results of WPSTC against those of WPFP, CPFP, WPS+CPFP, WPS+TCA, WPS+NNFilter,
and TCA+STrNN per each performance measure across all 24 projects in Table 4.5. From
the Table 4.4, we can observe the following:

1. WPSTC is statistically superior or similar to TCA+STrNN with individual classifiers for
all measures. On average, WPSTC is statistically superior to TCA+STrNN over AUC and
nMCC with P-values of 0.000192 and 0.000708 and high effect sizes of 0.87 and 0.793, re-
spectively. On average, P-values of 0.317286, 0.219233, 0.07272, 0.081359, and 0.174714
are statistically similar in terms of FOR, Recall, F-measure, G-mean, and Balance with
medium effect sizes. TCA+STrNN can somehow handle the imbalance issue, but overall

performance measures like AUC and nMCC are unable to succeed over our approach.

79



CHAPTER 4. SOURCE PROJECT AND OPTIMIZED TRAINING DATA SELECTION APPROACH FOR CROSS-PROJECT FAULT PREDICTION Section 4.3

2. For all the measures except FOR and F-measure, WPSTC is statistically superior to
WPS+NNFilter for individual classifier generated results. On average, with P-values of
0.0000235, 0.0000162, 0.0000182, 0.0000182 and 0.0000182 and with high effect sizes of
0.987, 0.88, 1, 1 and 1, WPSTC statistically outperforms the NNFilter in terms of Recall,
AUC, G-mean, nMCC and Balance, respectively. Possibly because our method maintains
both class count ratios and finds the similarly distributed data through source project selec-
tion and also removes irrelevant features.

3. In terms of FOR, our approach was unable to outperform the WPS+TCA with KNN,
LR and SVM. Our approach is statistically superior except with FOR, regarding all the
other measures. On average, with P-values of 0.034491, 0.0000182, 0.000318, 0.0000342,
0.0000182, 0.0000182 and 0.0000182 and with large effect sizes of 0.493, 1, 0.84, 0.967,
1, 1 and 1, WPSTC statistically outperforms the WPS+TCA in terms of all the measures.
4. In terms of Recall, AUC, G-mean, nMCC and Balance, our approach outperforms the
allCPFP and WPS+CPFP with large effect sizes. Regarding F-measure, WPSTC is statis-
tically similar to allCPFP and WPS+CPFP with medium effect sizes. Merely with FOR,
our approach was unable to outperform. allCPFP gets lower FOR values but at the cost of
degradation of the faulty module prediction rate. Our approach gets a little higher FOR val-
ues than the allCPFP, but it doesn’t cost faulty modules prediction rate. our model manages
the balance between FOR and Recall rate. As we can see, the Balance measure is much
higher for WPSTC and other overall performance indicators are also much better than the
competitive cross-project prediction models.

Table 4.5 shows the ranks obtained by each fault prediction method combined with a
classifier. Each model Compared with the other 41 models and reported the number of
wins, losses, and draws, the rank is determined by the win-loss count. We can observe
from Table 4.5, the ranks obtained by our approach for FOR are 31, 24, 29, 20,34 and 23;
for Recall are 2, 9, 3, 17, 5 and 6; for F-measure are 20,17, 23,10, 33 and 11; for AUC are
7,2,6,5,35 and 1; for G-mean are 1, 7, 2, 12, 5 and 3; for nMCC are 1, 4, 3, 5, 8 and 2;
for Balance are 1, 7, 2, 15, 5 and 4 combined with KNN, LR, NB, SVM, DT and ensemble
classifiers, respectively. Except for F-measure and FOR, WPSTC is supposed to be in the

highest top 7 ranks. The FOR and F-measure ranks are not much better than WPFP but

80



CHAPTER 4. SOURCE PROJECT AND OPTIMIZED TRAINING DATA SELECTION APPROACH FOR CROSS-PROJECT FAULT PREDICTION Section 4.4

comparable with other cross-project prediction models. Moreover, WPSTC ranks higher
with FOR and F-measure than the most recent approach, TCA+STrNN. Based on single
individual measures, we can not justify the superiority of a particular model, so we consider
the average wins, draws, and losses of all the measures and assign a rank for them. The
ranks obtained by our approach combined with KNN, LR, NB, SVM, DT, and ensemble
classifiers are 2, 4, 3, 6, 13, and 1, respectively. Based on the individual measure ranks
and average ranks, we can conclude that WPSTC combined with ensemble, KNN, and NB
performs better than the other classifiers. The DT with WPSTC rank is 13, which is less
compared to other classifiers, but DT with other fault prediction models ranks much less
than our approach.

Although a few projects FOR values are not better than some other approaches, faulty
modules are still more important than non-faulty modules in software testing. The results
further indicate that WPSTC can handle the imbalance issue in cross-project prediction
by improving the Recall values without deteriorating the FOR values, this can be viewed
by the Balance measure. The Balance measure is about maintaining faulty and non-faulty
module recognition rates equally well, so WPSTC obtained Balance values are much better
than the other fault prediction models. The overall performance assessment measures G-
mean, AUC, Balance, and nMCC values are much better for WPSTC than the other fault
prediction models and statistically outperforms all the other methods. We can conclude

that the overall performance of faulty and non-faulty module prediction rates is better.

4.4 Discussion of Results

4.4.1 Why our proposed WPSTC’s overall performance is better than

the other cross-project prediction models?
The distribution difference between historical data and target data is the main issue in CPFP
[23, 25]. Furthermore, the majority of historical software projects are imbalanced in nature

[25, 166] and also plagued by the curse of dimensionality issues [43, 167]. Most of the ex-

isting fault prediction models concentrate on one of the issues only. When a classification
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model uses a large amount of irrelevant data from all the available projects for training,
it may degrade the overall prediction performance. We carefully selected similar source
projects through the WSR test to reduce the distribution difference between testing (target
project data) and training (selected source projects data) data instances through an instance
filtering technique. The overall performance of a binary prediction model depends on the
perfect recognition of positive and negative samples. This method trained the model with
similarly distributed data, which can increase the recognition rate of both classes. Numer-
ous software defect datasets have a low proportion of faulty instances and a high proportion
of faulty-free instances, which leads to exceptionally low performance on faulty class data.
While performing instance filtering, WPSTC uses SMOTE [11] to generate faulty modules,
so the Balance measure gives good results over our approach. We employed the Binary-
RAO algorithm to select relevant feature subsets. Our proposed WPSTC performs better
because we trained the classification model on selected training data with selected features

to maximize prediction performance.

4.4.2 Does the choice of classifiers affect the WPSTC performance?

As reported in Section 4.2.3, we employed six classification models, including KNN, NB,
LR, DT, SVM, and ensemble learner classifiers. Over 24 projects, we examined the influ-
ence of these classification models on WPSTC and the other fault prediction models. On
the basis of overall experimental results, we can conclude that WPSTC combined with en-
semble learner, KNN, and NB performs best. Despite a little discrepancy in a few measures,
WPSTC with LR, SVM, and DT yields the best possible results. An ensemble classifier is
more robust towards overfitting. The ensemble method can use each learner’s (classifier)
probability over predicted classes and predict the most appropriate label for test data. In
our approach, we selected training data instances based on the nearest neighbours of testing
data instances. On the contrary, the KNN classifier performs prediction on test data by se-
lecting closer instances in training data, so KNN performance is better with our approach.
The NB classifier gives equivalent weight to each feature, so the irrelevant features may

bring down the NB prediction performance. NB performs better with WPSTC because
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it removes irrelevant and redundant features through a feature subset selection technique.
Therefore, ensemble, KNN, and NB classifiers are suitable for building a prediction model

on training data extracted by WPSTC.

4.5 Threats to Validity

In this section, we review the potential threats that may influence the validity of this study’s
experimental findings. The selected feature subsets for each project in our approach might
not produce identical subsets and results for the next time the code is run. This could be
an internal threat to our study. NNFilter [29] and STrNN [25] are implemented carefully
and classification models use default parameters, which can limit the internal threat to our
model. The proposed approach performed effectively on publicly available projects, but
we cannot claim the generalizability to other commercial projects, we provided a detailed
explanation of algorithm it can be used for other projects to limit external threats. For
outcomes comparison, the WSR statistical test and WDL comparisons are executed, so the

conclusion threat has a minimal effect on our experimental findings.

4.6 Summary

In this study, we proposed a two-phase WPSTC model for CPFP. WPSTC first develops
a source project selection technique utilizing the concept called WSR statistical test to
choose similar source projects for each target project using four (mean, median, max, and
standard deviation) statistical properties of projects. The next phase is optimized train-
ing data construction, where the model selects similarly distributed training data from the
source projects followed by selecting relevant feature subsets from the filtered training
data. We build six classification models on filtered training data with selected feature
sets and make predictions on target project data with the same feature sets. We evalu-
ate our WPSTC model on 24 projects and compare it with WPFP, allCPFP, WPS+CPFP,
WPS+TCA, WPS+NNFilter, TCA+STrNN in terms of FOR, Recall, micro-averaged F-

measure, G-mean, AUC, nMCC and Balance. Experimental results show that the proposed
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approach outperforms the competitive CPFP models in terms of all measures except FOR
and F-measure. In terms of FOR and F-measure, our approach gives comparable results
to WPS+CPFP, allCPFP, and WPFP. Further, the WDL statistics show that our approach
with ensemble learner, KNN, and NB gives better outcomes than the other classifiers. The
next chapter presents an improved source project selection using an applicability score and

addresses the imbalance and high-dimensionality issues in cross-project fault prediction.
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Chapter 5

A Cross-project Fault Prediction
through Applicability based Source

Project Selection

Earlier studies put forward alternative solutions for cross-project prediction that could over-
come the limitations of CPFP models. However, existing CPFP models are unstable, and
the variety of source projects greatly impacts their performance. As discussed in Chapter
4, we assume that similarly distributed source projects might be applicable to the target.
In this study, as an extension to the work reported in Chapter 4, we proposed a three-fold
SRES model for CPFP, which selects sources using similarity and applicability scores, fol-
lowing imbalance and feature learning methods.

A well-known industry example of source project selection and cross-project fault
prediction is the Apache Software Foundation (ASF). ASF maintains hundreds of open-
source projects. Fault prediction models have been applied using data from similar Apache
projects to predict which parts of new projects are likely to contain faults. For example,
faulty data from the Apache Tomcat web server could be used to predict potential defects in
newer web-based projects with similar architectures. By selecting the right source projects,
then choosing appropriate balanced data and extracting informative features from source
projects of Apache can improve the accuracy of their fault prediction models and focus

testing resources on the areas of new projects that are most at risk of bugs. Benefits of
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source project selection in industry are improved prediction accuracy, resource optimiza-
tion, and applicability across domains.

The remainder of this Chapter is organized as follows: The proposed approach is ex-
plained in Section 5.1. The experimental settings are described in Section 5.2, while Sec-
tion 5.3 presents the experimental result analysis along with a discussion, and Section 5.4
discusses the threats to the validity of our study. Finally, Section 5.5 concludes the sum-

mary of the Chapter.

5.1 SRES Approach for CPFP

We proposed a three-fold SRES model for CPFP. To minimize the distribution gap between
source and target projects, the SRES model develops the SAPS (Similarity and Applicabil-
ity based Source Project Selection) method in the first stage. The second phase performs
the proposed resampling technique over combined selected source projects data to over-
come the issue of imbalanced data and the distribution gap. Finally, to address the high-
dimensionality problem, the third stage employs an efficient Stacked Autoencoder (SAE)
model for feature reduction. Figure 5.1 depicts the overall framework of this study. The im-
plementation phases are explained more particularly in subsequent subsections along with

Algorithms 6, 7, 8 and 9, respectively.
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Figure 5.1: An overview of SRES model framework
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Algorithm 6: SRES model framework
Require: Target project without labels (D7) and set of available projects with
labels (P);
Ensure: Target project labels;
1 Sim_scores <+ SIMILARITY_SCORE (D7, P)
2 App_scores < APPLICABILITY_SCORE (D, P)
3 Sim_sources < Set of projects having Sim_score greater than the
Average(Sim_scores)
4 App_sources < Set of projects having App_score greater than the
Average(App_scores)
/* Selected source projects of Dr */
5 Sourcep, < Intersection of Sim_sources and App_sources
6 Balanced_train_data < RESAMPLING (Sourcep,.,Dr)
7 Compressed_train_data, Compressed_test_data < SAE performs the
unsupervised pre-training over Balanced_train_data and Dy
8 test_data labels < SAE performs the supervised fine-tuning over
Compressed_train_data and Compressed_test_data
9 return fest_data labels

5.1.1 Similarity and Applicability based Source Projects Selection
(SAPS)

In CPFP approaches, the performance of a prediction model over the target project may
differ when using various source projects as a training set. According to Zhou et al.
[168], training a prediction model with suitable source projects may enhance the perfor-
mance of current CPFP approaches, so it is crucial and essential to design an automatic
source projects selection technique for a specific target. According to He et al. [33], a
correlation exists between the distributional characteristics of feature data and the suitabil-
ity of the source project data. Herbold [36] suggested that the CPFP models trained on
closely distributed source project data can enhance the prediction performance over the
target. Accordingly, using similarity and applicability scores, the proposed SRES model
chooses source projects with similar data distribution and higher applicability to the target.
SAPS includes two stages: similarity score computation and applicability score computa-

tion. These two stages are thoroughly explained in the following two subsections.
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Algorithm 7: Similarity Score Computation

Require: D, P;
Ensure: Sim_scorep,;
1 function SIMILARITY_SCORE(Dr, P)

2 Initialize: m < #featuresin Dy

3 n < #projectsin P

4 [Sim_scorep,|ixn < NULL

5 for each project Dg in P do

6 Dist < 0

7 Count < 0

8 T, < Mean(Dry)

9 S1 < Mean(Dg)

10 Ty < Mode(Dr)

11 Sy < Mode(Dg)

12 T3 < Median(Dr)

13 S3 < Median(Dg)

14 T, < Standard_deviation(Dr)

15 Sy « Standard_deviation(Dg)

16 Ts < Mazximum(Dy) — Minimum(Dr)
17 S5 < Mazxzimum(Dg) — Minimum(Dyg)
18 fori=1to5do

19 P — value < WSRTest(7;, S;)

20 if P — value > « then

21 Count < Count + 1

2 Ef fect = EffectSize(T;, S;)

23 Dist < Dist+ Ef fect

24 end

25 end

26 if Count > 0 then

27 | Update: Sim_scorep, [Ds].append (1 — #4254
28 else

29 | Update: Sim_scorep,[Ds].append (0)
30 end

31 end

32 return Sim_scorep,.

33 end

5.1.1.1 Similarity Score Computation

The similarity relationships between the specific target project and all the available projects are ex-

plored, and the corresponding similarity scores are calculated by comparing the below-mentioned

five distributional characteristic measures. Algorithm 7 demonstrates the detailed process of obtain-
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ing similarity scores.

Distributional Measures: Different distributional characteristic measures can uniquely represent
each project since they can quantify both the similarities and differences between projects. We

choose the following five distributional characteristics to measure the similarity between projects:

1. Mean: Mean signifies the average of a set of values and is derived by dividing the sum
of all the elements in a set by the total number of elements. For example consider a set
P = {p1,p2,p3,...,pr} and length (total number elements) of P is 'k’, now the Mean(P)

can be calculated using Eq. 5.1,

k
1Zp_p1+p2+p3+-~+pk

Mean(P) = Z ;= . 5.1

i=1
2. Mode: Mode is a value with the highest frequency in a specific dataset, which means it

appears most of the time compared to other values in the dataset.

3. Median: Median is a value that falls in the middle of a specific dataset when arranged in an
ordered fashion, i.e., from smaller to larger values or vice versa. At least half of the values
are greater than or equal to the median value, while the other half are less than or equal to the

median value. The M edian(P) can be computed using Eq. 5.2,

p[w], if k is odd
Median(P) = 2

2 bl

5.2)
if k is is even

4. Standard deviation: The standard deviation measures how widely the data is distributed
from the mean. The higher and lower standard deviation scores imply that the dataset values
are more dispersed and grouped around the mean. The Standard_deviation(P) can be

computed using Eq. 5.3,

S (pi — w2 (53)

Standard_deviation(P) = -

Where p; are individual values and p is the mean of P.

5. Range: Range can be defined as the difference between the greatest and least values in a
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specific dataset.

The inputs used to calculate similarity scores are a set of available projects (P) and a specific
target project (D7). We compute a similarity score for each project (Dg € P). As an initial step, we
represent each project with its five distributional feature vectors; T1-T5 and S1-S5 are the feature
vectors of the five distributional measures of D and Dg, respectively (lines 8-17 in Algorithm 7).

We consider two distributions to be relative if their difference is statistically significant and the
effect size is small. We apply the WSR test [157] to compare the distribution of feature values
between Dg and D7 data with 95% confidence level (i.e., significance level () =0.05). The WSR
test evaluates the statistical significance of two paired distributions. When the WSR test returned
P-value greater than «, there is evidence to confirm that both distributions are statistically relative. If
the P-value is greater than 0.05, we calculate the matched-pairs rank biserial correlation coefficient
value (Line 22 in Algorithm 7) as the effect size [159] to quantify the difference between the Dg
and Dy for five individual distributional measures. The detailed computation of the WSR test and
matched-pairs rank biserial correlation coefficient test is provided in [13, 20, 166]. The computed
effect size represents the degree of difference between two sample distributions. It ranges from 0
(the difference between two distributions is low) to 1 (the difference between two distributions is
high). If the P-value exceeds alpha, we update the C'ount value by one and the distance (Dist)
value by the computed effect size for the particular distributional measure. This means source and
target projects are statistically relative with a confidence level of 95% (lines 18-25 in Algorithm
7) for particular distributional measures. If the C'ount value is greater than zero after the comple-
tion of all five distributional measures, we then update the similarity score of the source project
(sim_scorep,.[Dg]), which indicates that at least one measure in the source project has to be statis-
tically significant; otherwise, similarity will be zero (lines 26-30 in Algorithm 7). Finally, it returns

the similarity scores of all source projects concerning a specific target project D .

5.1.1.2 Applicability Score Computation

According to [38], the applicability of various available source projects to target project prediction
performance is highly inconsistent. So, in addition to similarity based selection, we also considered
how well each available source project is applicable to the target project. According to [29], the
model trained on its nearest neighbors can perform well on that particular project data. So, while

computing the applicability score, we assume the model trained on the nearest neighbors of target
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Algorithm 8: Applicability Score Computation
Require: D, P;
Ensure: App_scorep,.;
function APPLICABILITY_SCORE(Dr, P)
Initialize: m <« #features in Dy
n < #projects in P
[App_scorep,|ixn < NULL
Source_data < Union of all projects (P) data
/+ Calculating NN of each instance of Dp in
Source_data */
6 NNp,., Count = Nearest_Neighbours (Dr, Source_data) // NNp, stores
Union of NN’s and count stores the instance
repeated count

[ B R VL

7 Sort the instances in NN, in descending order according to their count
8 for each project Dg in P do
9 S_len = 30% of length(Dy)

10 train_data = Dg

11 test_data = NNp,[S_len]

12 Score = Classification_Model_Score (train_data, test_data)

13 Update: App_scorep,.[Dg].append (Score)

14 end

15 return App_scorep,

16 end

data in available projects might produce superior prediction performance over target data. Based on
it, we compute the applicability score using Algorithm 8.

The inputs used to calculate the applicability scores are the same as similarity score computa-
tion, P and Dp.We first take the union of all the projects data into Source_data (line 3 in Algorithm
8). Then, it finds one nearest neighbor (NN) of each instance of Dy in Source_data. The near-
est neighbors set may contain redundant instances; therefore, we transform them into a unique set
(NNp,.) and keep a count of how frequently each instance occurs as NN. Based on the count value,
we sort NN p,, in descending order (lines 6-7 in Algorithm 8). A portion of the generated NN data
serves as testing data. A prediction model is trained on Dy to predict the labels of part of the NNp,,
data and compute the AUC. The AUC score is the applicability score of a particular Dg to the target
project. As per how much NNp,. data should be taken for testing, prior studies suggested that a
prediction model trains with 70% and tests with 30% of the data give better performance [156].
So, we choose the size of test data as 30% of the instances in Dg. The model builds on each Dy,

predicts the labels of the 30% NNp,, data, and then evaluates the model’s applicability to the target
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project. The same holds for all available projects, and applicability scores (App_scorep,.[Dg]) are
updated (lines 8—14 in Algorithm 8). The algorithm returns the applicability scores of all source
projects with respect to a specific target project Dt (App_scorep,.).

From the aforementioned similarity and applicability scores, we derive the target’s correspond-
ing most similar and applicable projects, respectively. The scores of the projects greater than the
average are regarded as the most appropriate projects. Finally, the relevant sources (Sourcep,,) of
a target project D7 computed by considering the intersection of similarity based sources and appli-

cability based sources (lines 1 - 5 in Algorithm 6).

5.1.2 Resampling Source data

A skewed data distribution may reduce the prediction performance of a model. Bennin et al. [169]
suggested that the resampling technique can mitigate class imbalance issues and enhance the per-
formance of the prediction model. We use a combination of selected source projects (Sourcep,.) to
train the model, but that is imbalanced too, and even after source project selection, there is still some
distribution gap between Sourcep, and Dr. Turhan et al. [29] suggested that selecting similar in-
stances of the target data lowers the distribution gap and improves the CPFP model’s prediction
ability. We introduce a novel data resampling method to alleviate the class imbalance and distri-
bution gap issues by modifying the Sourcep, data. Our resampling method is done in two ways:
Undersampling is the process of keeping instances that are statistically comparable to the target data
while eliminating instances that are not similar, and oversampling is the process of generating new
synthetic non-faulty data that share values of both source and target data. The prediction model
will now have an equal likelihood of predicting both the faulty and non-faulty modules and exhibit
a positive influence on prediction performance after resampling. The step-by-step implementation
details are described in Algorithm 9.

Train_data contains the integrated sources data (lines 5-7 in Algorithm 9). As we don’t have
labels for the Dt (test data), we assign pseudo-labels to the test data through unsupervised K-
Means clustering. K-Means divides the D7 into two clusters: faulty instances set (min_test) and
non-faulty instances set (maj_test) (line 8 in Algorithm 9). Furthermore, both undersampling and
oversampling techniques utilize this pseudo-labeled data.

Undersampling: In order to perform undersampling, we split the T'rain_data into a faulty class

set (min_train) and a non-faulty class set (maj_train). Each instance of maj_train statistically
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Algorithm 9: Resampling Source data

Require: Sourcep,., Dr;
Ensure: balanced_train_data;

1 function RESAMPLING(Sourcep,., Dr)

2 Initialize: T'rain_data < NULL
3 New_maj_train <— NULL
4 New_min_train < NULL
5 for each project Dg in Sourcep,. do
6 ‘ Train_data.Append(Dg data)
7 end
8 maj_test, min_test = K-Means_clustering(Dr)
Undersampling:
9 maj_train, min_train < Train_data
10 len_maj < length(maj_train)
11 [Count]yyien maj < O
12 for iin range(len(maj_train)) do
13 for jin range(len(maj_test)) do
14 P — value = WSR(maj_train[i], maj_test[j])
15 if P — value > « then
16 | Count[i]=Count[i]+1
17 end
18 end
19 end
20 Sort maj_train, according to their Count values
21 New_maj_train < Top half of the instances from sorted maj_train
Oversampling:
22 T <« length (New_maj_train) - length (min_train)
23 temp < 0
24 while temp < T do
25 min_incl < random instance from min_train
26 min_inc2 < random instance from min_test
27 New_min_train.append(rand[0,1] X (min_incl + min_inc2) )
28 temp < temp + 1
29 end
30 New_min_train.Append (min_train)
31 balanced_train_data <— New_maj_train U New_min_train
32 return balanced_train_data
33 end

compared to maj_test data using the WSR test. If the computed P-value is higher than the signif-

icance value (alpha), we increase the maj_train instance count value by one. Then, We sort the

instances of maj_train descending order based on the count value and select the top half of the
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instances as under-sampled data (New_maj_train) (lines 9-21 in Algorithm 9). Thus, the under-
sampled data is statistically similar to the target data.
Oversampling: Now, to make the ratio of two classes equal, we need to generate a *T” number of
synthetic instances. Where T is the number of instances in the New_maj_train minus the number
of instances in min_train. We randomly choose an instance from min_train and another from
man_test. Synthetic data is generated by multiplying a random number between 0 and 1 with the
sum of those randomly selected instances. Thus, the generated over-sampled data shares both tar-
get and source distributions. The process repeats until the number of generated synthetic instances
becomes T (lines 22-29 in Algorithm 9).

Finally, the resampling technique returns the balanced training data (Balanced_train_data),
which is a combination of under-sampled non-faulty instances, over-sampled faulty instances, and
actual faulty instances. Thereby, the distribution gap between the training data and target data is

reduced, and the resampled training data have an equal ratio of both classes.

5.1.3 Unsupervised Feature Reduction and Supervised Prediction via
Stacked Autoencoder

According to Kondo et al. [170], unsupervised feature reduction techniques perform better than
supervised techniques in fault prediction models. Accordingly, we employ SAE to perform unsu-
pervised feature reduction in our study to mitigate the issue of the curse of dimensionality. A basic
autoencoder has a symmetrical structure composed of an encoding phase and a decoding phase. For
a particular instance of training data X = {x1,x9,..., 2}, the goal of training is to approximate
X ~ X. Where X is the reconstructed output representation of the input. For a single-layer au-

toencoder, the encoding and decoding are done by following Eqs. 5.4 and 5.5.
H:HX)=f(Wx*xX+b) (5.4)

X=fWl«HX)+b 1) (5.5)

Where ‘X’, ‘H’, and ‘X" are autoencoder input, hidden, and output data. W and b are the
encoder’s weight and bias parameters, while ’f” is a nonlinear activation function. The decoder’s
weight (W 1) and bias (b~!) parameters are the inverse representations of W and b, respectively.

All these parameters are optimized by minimizing the error (J(©)) between X and X as shown in
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training b) Predicting overall performance through supervised fine-tuning
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MSE©) =+ 3 (1 4 — x| 56
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J(©) = MSE(©) + ) zn:(e)Q (5.7)
=1

Where © = {W,b, W1 b71}), 'n’ denotes the total number of instances in a dataset and
M SE(©) is mean squared error represents the loss function. The loss function added by a weight
attenuation term (L2-regularization) controls weight reduction.

As we can see from Figure 5.2, the whole training process of the SAE model includes two steps:
unsupervised pre-training and supervised fine-tuning.

The above-generated balanced training data and the target project’s testing data are fed into
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stacked autoencoders to extract deep representations of actual software features without losing the
original information through unsupervised pre-training. Then, the training data characterized by a
reduced feature set along with labels is used to train the SAE through supervised fine-tuning. Next,
we use testing data characterized by a reduced feature set to evaluate trained SAE.

The balanced training data have the 'n’ number of instances and the 'm’ number of features.
In Figure 5.2a, the first autoencoder receives the instances with “'m’ number of features without
labels as input, then encodes it to *p’ number of reduced representations of those features, and the
decoder attempts to reconstruct the original input with that of reduced data by back-propagating the
mean squared error. Then, the reduced representation from the first autoencoder serves as input for
the second autoencoder. The second autoencoder’s input layer takes the previously encoded data
as input and encodes it into a more abstract form of reduced representation with a ’q’ number of
dimensions. The second autoencoder’s decoder then attempts to reconstruct the original input served
in the first layer of the second autoencoder with that of reduced data by back-propagating mean
squared error. Similarly, each autoencoder trains independently until the hidden representation of
the data is compelling enough, and the sequence of autoencoders should have the node count of the
hidden layer in decreasing order. It results in compressed data with fewer dimensions and produces
optimized parameters (i.e., weights and biases).

The figure 5.2b illustrates that SAE undergoes a supervised fine-tuning process. This involves
adding a softmax classifier with two classes (faulty and non-faulty) on top of the unsupervised pre-
trained network. The hidden layers { H1, Ho, ..., Hy } are utilized in the encoding process as input
parameters for the softmax classifier. The network is then trained with labelled data to optimize pa-
rameters, propagating through subsequent layers towards the softmax layer. With labels available,
supervised fine-tuning occurs by back-propagating cross-entropy loss and L2-regularizer. The ob-
jective is to minimize loss and optimize parameters using labelled training data. After unsupervised
pre-training and supervised fine-tuning, the SAE model trains with balanced training data.

The trained network model validates the model with test data. The network structure and pa-
rameters (for example, the number of nodes in the hidden layers, the number of epochs, and the
batch size of each epoch) are adjusted until the desired prediction performance is reached, varying
across datasets. The number of nodes in each hidden layer, the number of epochs, and the batch size
are different for each project. However, most of the projects performed effectively when the number
of dimensions reduces to 20-30% of their original data. When the optimal parameters finalize for a

project, the SAE model outputs the labels of target data. We then compute the performance of the
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proposed SRES model based on the SAE returned labels and the actual labels of target data.

5.2 Experimental Setup

As part of this study, we collected a few publicly accessible software fault projects and then chose
the fault prediction models. A few performance assessment measures are collected and evaluated
using statistical tests to study the performance of our SRES model. Then, we compare the outcome

of our proposed approach with a few base models.

5.2.1 Experimental Objects

We chose 24 projects from two open-source datasets to experimentally validate the SRES model.
Among them, 14 projects are extracted from the PROMISE repository [34], and the other ten
projects are extracted from the NASA MDP dataset [70], in which both have been extensively
used in various empirical CPFP studies [25, 26, 29, 33, 38, 116]. As listed in Table 3.1 in Chap-
ter 3, each project from the PROMISE repository has 20 and NASA MDP has 36 to 39 features,
respectively. NASA projects don’t have the same feature, so we use all 35 shared features to per-
form homogeneous CPFP. Along with those independent features, one label feature is there for each
project, which represents whether the module is faulty or non-faulty. We purposefully extracted
single versions of different open-source software projects during the experiments since they have
distinct class distributions. These datasets have an imbalanced ratio of 2.15% to 46.67%. This is
performed to verify the experiments’ generalizability because the employed datasets have different
distributions and consist of significantly varying imbalance ratios. For each experiment, one project
served as the target project, and the rest served as source projects for PROMISE and NASA datasets

separately.

5.2.2 Prediction Models

Our proposed SRES CPFP model is compared with base models in two variants. We first com-
pare the SAPS experimental outcome with the existing source project selection models, where we
employ five well-known and extensively used conventional classification models as fault predic-
tion models, including Random Forest (RF), Logistic Regression (LR), Naive Bayes (NB), Support
Vector Machine (SVM) and Decision Tree (DT) classifiers [25, 32, 36, 37, 39, 116, 117]. While
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building a fault prediction model, each classification model has unique benefits. Therefore, we con-
sider the aggregated performance of all five prediction models for the experimental comparison.
The performance of the proposed SRES model can be predicted using the finely measured SAE

model parameters.

5.2.3 Performance Assessment and Statistical Measures

We employ two sets of evaluation indicators to assess the performance of our proposed SRES model
against existing baseline models. One set of measures is used to determine the fault-prone mod-
ules accurately. As suggested by Turhan et al. [29] and Menzies et al. [35], Recall and Fall
Out Rate (FOR) are more reliable measures for assessing the majority and minority classes in
severely unbalanced datasets, respectively. The other set includes four extensively used Balance,
AUC, G-mean, and nMCC measures to assess the overall performance of fault prediction models
[24, 26, 31, 116, 171]. These measures are extracted from the confusion matrix, built from the ac-

tual and predicted labels, as shown in Table 3.1 in Chapter 3.

FP
FOR= —
On FP+TN
TP
frecall = 7P FN

V(0 — FOR)? + (1 — Recall)?
V2

G — mean = \/Accy * ACC_ = \/Recall x (1 — FOR)

Balance =1 —

TPTN —-FPFN

MCC =
/(TP + FP)(TN + FN)(TP + FN)(FP +TN)
WMCC — %

AUC is a performance metric that measures the tradeoff between FOR and Recall. All the
measures range between [0, 1]. For all measures except FOR, the higher the values, the better the
classifier’s performance. As per FOR, a lower value indicates better performance.

To analyze the proposed model’s experimental outcomes and demonstrate its superiority, we
choose the WSR test as a statistical comparison measure [37, 157, 163]. In this study, the null

hypothesis (Hyp) is defined as two populations being compared are statistically similar to one another,
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and the assumption is that Hy is valid under a confidence level of 95% (significance level o = 0.05).
The matched-pairs rank biserial correlation coefficient measure finds the strength of the relationship
(effect size) [158, 159]. Furthermore, to ensure our proposed model superiority, we compare each
base model and proposed model with all the measures using the widely popular Win-Draw-Loss

(WDL) comparison technique.

5.3 Experimental Results and Discussion

In this section, we analyze the prediction performance of the proposed SRES model by comparing
it with a few earlier cross-project prediction studies. We first compare the proposed SRES CPFP
model with four various types of CPFP methods, including NNFilter [29], TCA [22], TNB [116],
and TSFA [117]. The SRES model is compared with the basic WPFP model too. Further, the SAPS
model is compared with three different source project selection methods, including TDS [36], CFPS
[38], and CAMEL [39]. The SAPS model is also compared with All_CPFP. All_CPFP is a basic
cross-project prediction, a specific target project serves as testing data, and the combination of
the rest of the projects serves as training data for the prediction model. The following subsections

describe the performance of our model through the findings of the following four research questions.

5.3.1 RQ1: How much improvement is there in the SAPS based source
projects selection model over state-of-the-art source projects se-
lection models?

Applying various SPS models to different software projects results in varying outcomes. The SAPS
method is a part of the proposed SRES model, which selects the appropriate source projects in
the first phase of our SRES model. RQ1 discusses how preferable our proposed SAPS is over
the three existing SPS models and the all-projects CPFP model. To demonstrate how effectively
SAPS selected source projects improve CPFP performance, we compared SAPS with three base
SPS models and a basic CPFP model including TDS, CFPS, CAMEL, and All_CPFP. Figure 5.3
depicts the box plots of the six performance measures on the SPS prediction models. Table 5.1
provides the average, minimum, and maximum values of SPS models with respect to individual
performance measures across 24 projects. The results of the WSR test and effect size differences

between the proposed SAPS model and the base SPS models are outlined in Table 5.2.

99



CHAPTER 5. A CROSS-PROJECT FAULT PREDICTION THROUGH APPLICABILITY BASED SOURCE PROJECT SELECTION Section 5.3

Table 5.1: The Average, Minimum, and Maximum values of SPS based CPFP models across all 24
projects

Methods FOR Recall Balance AUC G-mean MCC

Average
All_CPFP 0.037 0.144 0.393 0.685 0.307 0.574
TDS 0.011 0.063 0.337 0.624 0.201 0.562
CFPS 0.043 0.142 0.386 0.693 0.273 0.566

CAMEL  0.032 0.144 0.394 0.714 0.332 0.582
SAPS 0.057 0.209 0.437 0.719 0.391 0.594

Minimum
All_CPFP 0.002 0.014 0.303 0.549 0.068 0.496
TDS 0 0 0.293 0.458 0 0.489
CFPS 0 0.028 0.313 0.550 0.088 0.505
CAMEL 0 0 0.293 0.514 0 0.473
SAPS 0.012 0.063 0.337 0.569 0.173 0.494
Maximum
All_CPFP 0.145 0.477 0.613 0.782 0.630 0.675
TDS 0.087 0.246 0.465 0.783 0.480 0.626
CFPS 0.177 0.347 0.534 0.813 0.544 0.657

CAMEL  0.084 0.400 0.574 0.832 0.614 0.711
SAPS 0.125 0477 0.618 0.842 0.639 0.683

Table 5.2: The statistical comparison of SAPS with base SPS based CPFP models using WSR test

All_CPFP TDS CFPS CAMEL

P-value  Ec(W+/W-) P-value Ec(W+/W-) P-value  Ec(W+/W-) P-value  Ec(W+/W-)

FOR 0.001842 0.717(42.5/257.5) 2.67E-05 0.980(3.0/297.0) 0.094506 0.407(75.0/178.0) 0.000821 0.804(27.0/249.0)
Recal 3.43E-05 0.967(295.0/5.0) 2.67E-05 0.980(297.0/3.0) 0.002972 0.723(218.0/35.0) 0.007237 0.627(244.0/56.0)
Balance 3.09E-05 0.993(275.0/1.0) 3.03E-05 0.973(296.0/4.0) 0.000651 0.834(232.0/21.0) 0.006639 0.633(245.0/55.0)
AUC 9.60E-05 0.910(286.5/13.5) 3.88E-05 0.960(294.0/6.0) 0.001236 0.787(226.0/27.0) 0.988599 0.000(150.0/150.0)
G-mean 3.43E-05 0.967(295.0/5.0) 4.97E-05 0.947(292.0/8.0) 0.000136 0.929(244.0/9.0) 0.086467 0.400(210.0/90.0)
nMCC  0.000517 0.822(251.5/24.5) 0.001244 0.753(263.0/37.0) 0.000427 0.854(234.5/18.5) 0.247189 0.277(191.5/108.5)

Measures

Prediction performance: Figure 5.3 depicts the distribution of each SPS model over a specific
performance measure across 24 projects. Each box in the subfigure represents a particular measure
outcome distribution with that of a specific SPS model, and the red circle in that box represents
the mean measure value. The black diamond-shaped symbol above and below each box denotes
the outliers among those outcomes. Each box’s bottom and top lines represent the minimum and
maximum values, respectively. As we can notice from Figure 5.3 and Table 5.1, our SAPS selected
sources substantially outperform baseline SPS based CPFP models. On average across 24 projects,
SAPS outperforms All_CPFP, TDS, CFPS, and CAMEL by 45.14%, 231.75%, 47.18%, and 45.14%
in terms of Recall, 11.2%, 29.67%, 13.21%, and 10.91% in terms of Balance, 4.96%, 15.22%,
3.75%, and 0.7% in terms of AUC, 27.36%, 94.53%, 43.22%, and 17.77% in terms of G-mean, and
3.48%, 5.69%, 4.95%, and 2.06% in terms of nMCC, respectively. Furthermore, the minimum in
terms of Recall, Balance, AUC, and G-mean for SAPS has the highest scores with 0.063, 0.337,
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Figure 5.3: Box plots of five SPS based CPFP models outcomes across 24 projects

0.569, and 0.173 values. In terms of nMCC, CFPS gets the highest minimum value with just an
excess of 2.27%. As per the maximum scores, in terms of Recall, Balance, AUC, and G-mean, SAPS
has the highest scores with 0.477, 0.618, 0.842, and 0.639 values. In terms of nMCC, CAMEL gets
the highest maximum value with just an excess of 4.09%.

As per FOR, SAPS didn’t get a good enough performance. The compared base models achieve
less FOR at the expense of a lower Recall measure value. According to Bennin et al. [169], both
an increase in FOR with an increase in Recall and a decrease in FOR with a decrease in the Re-
call are improper recommendations for a specific application. To compute the combined perfor-
mance of FOR and Recall, we use the Balance measure. In terms of the Balance measure, our
SAPS outperforms the other All_CPFP, TDS, CFPS, and CAMEL models with average increases of
4.96%, 15.22%, 3.75%, and 0.7%, respectively. As we can see, TDS is unable to surpass the basic
All_CPFP model, while CFPS and CAMEL performance is comparable to All_CPFP. Nevertheless,
our SAPS exhibits significant improvement over All_CPFP with respect to all considered measures
except FOR. Because the All_CPFP model is built with a lot of information by combining all the
available projects, it can only reduce the false positives but is unable to maximize the overall per-
formance.

Statistical Test: Table 5.2 presents the statistical comparison of SAPS against base SPS mod-

els. It contains the WSR test’s returned P-values, the positive sum (W+) of our proposed model,
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and the negative sum (W-) of the compared base model, as well as the matched-pairs rank biserial
correlation coefficient measure’s returned effect size (Ec). As we can see from Table 5.2, the bold
cells indicate that our model is statistically superior to the others, while the italic cells indicate that
both models have a statistically similar distribution of results across 24 projects. The SAPS statis-
tically outperforms (as the P-value is <0.05 and the W+ is more than the W-) the All_CPFP, TDS,
and CFPS models with very large effect sizes (Ec from 0.723 to 0.993) in terms of Recall, Balance,
AUC, G-mean, and nMCC. SAPS statistically wins over CAMEL in terms of Recall and Balance
while being statistically similar (as the P-value is >0.05) in terms of AUC, G-mean, and nMCC. As
per FOR, SAPS is statistically identical to CFPS with an effect size of 0.407, but it doesn’t show
significant improvement against other models. Regarding overall performance measures like Bal-
ance, AUC, G-mean, and nMCC, SAPS statistically outperforms all the compared models.
Besides, the SAPS’s advantage over TDS and CAMEL indicates that although a suitable source
project can be chosen by comparing its feature distribution to that of the target project, a prefer-
able alternative is to learn their relationship through applicability among them (Section 5.1.1.2).
Although the CFPS model considers both similarity and applicability into account, it is limited to
choosing only three sources for each target, which might degrade the prediction performance over
a few project datasets. Our SAPS model doesn’t limit the number of sources to be selected. The
All_CPFP model trains with all of the available projects data; too much unnecessary data might

degrade the performance of the prediction model.

Results RQ1: The SAPS, the part of the proposed SRES model, shows significant improve-
ment over previously succeeded SPS based CPFP models, including TDS, CFPS, CAMEL, and

the basic All_CPFP model, in terms of overall performance measures.

5.3.2 RQ2: How effective is the proposed SRES model compared to
the state-of-the-art CPFP models?

RQ?2 discusses whether the suggested SRES approach can improve prediction performance over
the target project by addressing CPFP-related issues such as distribution gaps, class imbalances,
and high-dimensional data. We propose the SRES model to overcome these issues by introducing
SPS, resampling, and feature reduction techniques. To demonstrate how effectively SRES improves
CPFP performance, we compare the SRES model with four widely popular CPFP models, including
NNFilter, TCA, TNB, and TSFA.
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Table 5.3: The Average, Minimum, and Maximum values of CPFP models acorss 24 projects

Methods FOR Recall Balance AUC G-mean nMCC
Average

NNFilter 0.101 0.332 0.519 0.728 0.526 0.614

TCA 0.138 0.211 0.431 0.537 0.400 0.532

TNB 0.140 0374 0.535 0.703 0.540 0.612

TFSA 0.036 0.124 0.379 0.698 0.290 0.566

SRES 0.126 0472 0.614 0.740 0.635 0.655
Minimum

NNFilter 0.032 0.065 0.339 0.593 0.251 0.514

TCA 0.038 0.019 0.300 0.447 0.090 0.437

TNB 0.016 0.019 0.306 0.441 0.137 0.489

TFSA 0 0 0.293 0495 0 0.455
SRES 0.063 0.250 0.466 0.641 0.477 0.592
Maximum

NNFilter 0.215 0.637 0.707 0.841 0.715 0.729
TCA 0.250 0.482 0.593 0.616 0.601 0.616
TNB 0.580 0.727 0.738 0.858 0.749 0.752
TFSA 0.152 0.442 0.601 0.819 0.636 0.681
SRES 0.235 0.688 0.755 0.812 0.764 0.755

Table 5.4: The statistical comparison of proposed SRES model with Base CPFP models using WSR
test

NNFilter TCA TNB TFAS

P-value Ec(W+/W-) P-value Ec(W+/W-) P-value Ec(W+/W-) P-value Ec(W+/W-)
FOR 0.015149 0.570(64.5/235.5) 0.308222 0.250(172.5/103.5) 1.000 0.000(138.0/138.0) 6.33E-05 0.933(10.0/290.0)
Recal  6.33E-05 0.933(290.0/10.0) 2.67E-05 0.980(297.0/3.0)  0.004137 0.714(198.0/33.0) 1.82E-05 1.000(300.0/-0.0)
Balance 5.28E-05 0.943(291.5/8.5) 2.35E-05 0.987(298.0/2.0)  0.000228 0.860(279.0/21.0) 1.82E-05 1.000(300.0/-0.0)
AUC 0.059302 0.449(200.0/76.0) 1.82E-05 1.000(300.0/-0.0) 0.004882 0.657(248.5/51.5) 0.000203 0.867(280.0/20.0)
G-mean 5.61E-05 0.943(291.5/8.5) 1.82E-05 1.000(300.0/-0.0) 0.000102 0.907(286.0/14.0) 1.82E-05 1.000(300.0/-0.0)
nMCC 3.88E-05 0.960(294.0/6.0) 1.82E-05 1.000(300.0/-0.0) 3.03E-05 0.973(296.0/4.0)  2.70E-05 1.000(276.0/-0.0)

Measure

Prediction performance: Figure 5.4 depicts the box plots of the distribution of each CPFP
model with a specific performance measure across 24 projects. Table 5.3 outlines the precise nu-
merical average, minimum, and maximum values of each CPFP model over individual measure-
ments across 24 projects. We can observe from Figure 5.4 and Table 5.3 that our proposed SRES
model performs significantly better than baseline CPFP models. On average over 24 software fault
projects, our SRES model outperforms the NNFilter, TCA, TNB, and TFSA models in terms of Re-
call by 42.17%,123.69%,26.20%, and 280.65%, Balance by 18.30%, 42.46%, 14.77%, and 62.01%,
AUC by 1.65%, 37.80%, 5.27%, and 6.08%, G-mean by 20.72%, 58.75%, 17.59%, and 118.96%,
and nMCC by 6.68%, 23.12%, 7.03%, and 15.72%. On average, with respect to all the performance
measures except FOR, SRES shows superiority over the compared models. Regarding FOR, SRES
is unable to get a good enough outcome compared to the NNFilter and TFSA, but on average, SRES

achieves an 8.70% and 10% lower score than the TCA and TNB models, respectively. In our SRES
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Figure 5.4: Box plots of five CPFP models outcomes across 24 projects

approach, while performing oversampling we introduce a few synthetic instances into the faulty
instances class that might increase the false positives; due to this reason, SRES is unable to outper-
form the baseline models in terms of the FOR measure. In imbalanced datasets, the FOR and Recall
measures should be balanced. Thus, we considered the Balance measure between FOR and Recall.
As we can observe from Table 5.3 and Figure 5.4, the SRES model average score is significantly
superior to the base models. In terms of FOR, SRES is unable to outperform the NNFilter and
TFSA models, while their Balance scores and other metrics of overall performance, such as AUC,
G-mean, and nMCC scores, are substantially lower than our approach. Moreover, we can compare
the minimum and maximum of each CPFP model’s performance scores over 24 projects in Table
5.3. The minimum in terms of Recall, Balance, AUC, G-mean, and nMCC for SRES has the highest
scores with 0.250, 0.466, 0.641, 0.477, and 0.592 values, respectively. As per the maximum scores,
SRES has the highest scores with 0.755, 0.764, and 0.755 values in terms of Balance, G-mean,
and nMCC, respectively. Regarding Recall and AUC, TNB gets the highest maximum value with
little excess of 5.67% and 5.66%, respectively. As per FOR, SRES is not superior but gives slightly
comparable outcomes to those models.

Statistical Test: Table 5.4 presents the statistical comparison of SRES against base CPFP mod-
els. The bold cells indicate that our SRES model is statistically superior to the others, while the

italic cells indicate that both the SRES and compared models have a statistically similar distribu-
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tion of results across 24 projects. The SRES statistically outperforms the TCA, TNB, and TFSA
models with large effect sizes (Ec from 0.714 to 1.000) in terms of Recall, Balance, AUC, G-mean,
and nMCC. SAPS statistically defeats NFilter with large effect sizes (Ec from 0.933 to 0.960) in
terms of Recall, Balance, G-mean, and nMCC, while being statistically similar in terms of AUC. As
per FOR, SAPS is statistically identical to TCA and TNB with effect sizes of 0.250 and 0, respec-
tively, but it doesn’t significantly improve against the TFSA model. In terms of Recall and overall
performance measures such as Balance, AUC, G-mean, and nMCC, our proposed SRES model sta-

tistically outperforms all the compared models with very large effect sizes.

Results RQ2: The proposed SRES outperforms previously established state-of-the-art CPFP

models, including NNFilter, TCA, TNB, and TFSA, in terms of overall performance measures.

5.3.3 RQ3: Is prediction performance over the target project improved
through SRES based cross-project prediction compared to within-
project prediction performance?

It is a widespread misconception to believe the training data from the same project will enhance the
accuracy of predictions. In [23, 24, 32, 33], reported that due to the different distributions between
various projects, the prediction models learned from cross-project data exhibit significantly lower
performance than the models learned from the same project data. To address the RQ3, we analyzed
how much performance improvement is achieved by our proposed SRES model by comparing the

prediction outcomes with the WPFP model more systematically and quantitatively.

Table 5.5: The Average, Minimum, and Maximum values of WPFP, SAPS, and SRES models across
all 24 projects

Methods FOR Recall Balance AUC G-mean nMCC
Average

WPFP 0.101 0.305 0.488 0.717 0.454 0.624

SAPS 0.057 0.209 0.437 0.719 0.391 0.594

SRES 0.126 0472 0.614 0.740 0.635 0.655
Minimum

WPFP 0.024 0.087 0.345 0.560 0.121 0.509

SAPS 0.012 0.063 0.337 0.569 0.173 0.494

SRES 0.063 0.250 0.466 0.641 0477 0.592
Maximum

WPFP 0.315 0.610 0.706 0.852 0.726 0.724

SAPS 0.125 0477 0.618 0.842 0.639 0.683

SRES 0.235 0.688 0.755 0.812 0.764 0.755
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Table 5.6: The statistical comparison of SRES with WPFP and SAPS models using WSR test

WPFP SAPS
P-value Ec(W+/W-) P-value Ec(W+/W-)
FOR 0.042491 0.473(79.0/221.0) 2.66E-05 0.980(3.0/297.0)
Recal 0.000747 0.790(268.5/31.5) 1.82E-05 1.000(300.0/0.0)
Balance  0.000129 0.893(284.0/16.0) 1.82E-05 1.000(300.0/0.0)
AUC 0.067985 0.435(198.0/78.0) 0.081203 0.407(211.0/89.0)
G-mean  0.000129 0.893(284.0/16.0) 1.82E-05 1.000(300.0/0.0)
nMCC 0.009322  0.610(241.5/58.5) 3.43E-05 0.967(295.0/5.0)

Measures
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Figure 5.5: Box plot of WPFP and SRES models outcomes across 24 projects

Prediction performance: Figure 5.5 depicts the WPFP and SRES outcomes in box plots across
24 projects. Table 5.5 outlines both models’ precise numeric average, minimum, and maximum
values over individual measurements. On average across 24 software fault projects, SRES approach
outperforms the WPFP model in terms of Recall, Balance, AUC, G-mean and nMCC by 54.75%
(i.e., from 0.305 to 0.472), 25.82% (i.e., from 0.488 to 0.614), 3.21% (i.e., from 0.717 to 0.740),
39.87%(i.e., from 0.454 to 0.635), and 4.97% (i.e., from 0.624 to 0.655), NASA, and PROMISE
datasets, respectively. According to previous studies, the AUC of the CPFP models doesn’t improve
much compared to the WPFP model over imbalanced data. Our proposed model showed a 3.21%
improvement in AUC over the WPFP model. Even though AUC and nMCC'’s improvement is lower
compared to Recall, Balance, and G-mean, it is still superior to the other CPFP models that are
currently in use. While other models are unable to improve the performance compared to WPFP,
our model gains considerably better improvement in terms of Recall, Balance and G-mean and a

slight improvement in terms of AUC and nMCC. The training data we consider for the SRES model
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integrates all the selected sources data, and we oversample the faulty instances of training data by
introducing synthetic data, which could be the reason for the FOR performance degradation. As
we discussed in RQ2, only FOR doesn’t determine the overall performance of a prediction model
in imbalanced datasets. As we can observe from Table 5.5 and Fig 5.5, even though FOR score
of our SRES model is not superior to WPFP, while the Balance scores of WPFP and other overall
performance measures, such as AUC, G-mean, and nMCC scores, are substantially lower than our
approach. Moreover, we compared the minimum and maximum performance scores of the WPFP
and SRES models across 24 projects in Table 5.5. The minimum in terms of Recall, Balance, AUC,
G-mean, and nMCC for SRES has the highest scores with 0.250, 0.466, 0.641, 0.477, and 0.592
values, respectively. As per the maximum scores, SRES has the highest scores with 0.688, 0.755,
0.764, and 0.755 values in terms of Recall, Balance, G-mean, and nMCC, respectively. Regarding
AUC, WPFP gets the highest maximum value with a slight excess of 5.93%. As per FOR, SRES
gives the highest minimum value for a project but reports the lowest maximum value.

Statistical Test: The statistical comparison of SRES against the WPFP model is presented in
the first column of Table 5.6. The bold cells indicate that our SRES model is statistically superior
to the WPFP, while the italic cells indicate that both the SRES and WPFP have statistically similar
results across 24 projects. The SRES statistically outperforms the WPFP model with very large
effect sizes (Ec from 0.610 to 0.893) in terms of Recall, Balance, G-mean, and nMCC, while being
statistically similar in terms of AUC. As per FOR, WPFP statistically outperforms the SRES model
with a medium effect size of 0.473. Even though, in terms of single-class measure Recall and overall
performance measures such as Balance, G-mean, and nMCC, SRES statistically outperforms the
WPFP model with very large effect sizes. Hence, we can assert that the overall performance of our

proposed SRES based CPFP model is superior to the WPFP.

Results RQ3: We can observe from the prediction performance and statistical comparison be-
tween the SRES and WPFP models that the overall prediction performance of the proposed
SRES model improved on the target projects compared to the within-project prediction perfor-

mance.
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Figure 5.6: Box plot of SAPS and SRES models outcomes across 24 projects.

5.3.4 RQ4: How much improvement does the proposed SRES model
gain over the SAPS model?

The SAPS method is a part of the proposed SRES model, which selects the appropriate source
projects prior to resampling and feature reduction. In this RQ, we explore whether only source
projects selection is sufficient to improve the cross-project prediction performance? To give a wor-
thy explanation for this, we compare the SRES model with the SAPS model, where SRES is the
combination of SAPS along with resampling and feature reduction techniques. We computed and
compared the prediction outcomes of both the SAPS and SRES models.

Prediction performance : The box plots of the distribution of both the SAPS and SRES
model’s performance measures (i.e., FOR, Recall, Balance, AUC, G-mean, and nMCC) are de-
picted in Figure 5.6. The red circle in each box indicates the mean score of individual measures
with respect to a particular prediction model. Table 5.5 outlines both models’ precise numeric av-
erage, minimum, and maximum values over individual measurements across 24 projects. On aver-
age across 24 NASA and PROMISE software fault projects, SRES outperforms the SAPS model in
terms of Recall, Balance, AUC, G-mean and nMCC by 125.84% (i.e., from 0.209 to 0.472), 40.50%
(i.e., from 0.437 t0 0.614), 2.92% (i.e., from 0.719 to 0.74), 62.40% (i.e., from 0.391 to 0.635), and
10.27%(i.e., from 0.594 to 0.655). In terms of FOR, the performance of SRES is not much better
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than SAPS because we utilize the combination of selected sources data without any modifications
as training data for the SAPS model. Unlike SAPS, to address issues that influence the CPFP, like
imbalanced data, a distribution gap between training and target data, and high-dimensionality is-
sues, SRES takes data generated from SAPS as training data and applies resampling and feature
reduction techniques. While resampling, we introduce fault-prone synthetic data into training data
to equal faulty and non-faulty class instances. As a result, the prediction performance of the faulty
modules (true positives) increases at the cost of increasing false positives. Afterwards, the feature
set is reduced through the SAE model to address the high dimensionality issue. As a result, the
overall performance of the prediction model quietly improved compared to SAPS. Moreover, we
compared the minimum and maximum performance scores of the SAPS and SRES models across
24 projects in Table 5.5. The minimum in terms of Recall, Balance, AUC, G-mean, and nMCC for
SRES has the highest scores with 0.250, 0.466, 0.641, 0.477, and 0.592 values, respectively. As per
the maximum scores, SRES has the highest scores with values of 0.688, 0.755, 0.764, and 0.755
in terms of Recall, Balance, G-mean, and nMCC, respectively. Regarding AUC, SAPS gets the
highest maximum value with a slight excess of 3.69%. As we discussed, SAPS reported the highest
minimum and maximum values in terms of FOR.

Statistical Test: The statistical comparison of SRES against the SAPS model is presented in
the second column of Table 5.6. The bold cells indicate that the SRES model is statistically superior
to the SAPS, while the italic cells indicate that both the SRES and SAPS have a statistically similar
distribution of results across 24 projects. The SRES statistically outperforms the SAPS model with
very large effect sizes (Ec from 0.967 to 1.0) in terms of Recall, Balance, G-mean, and nMCC
while being statistically similar in terms of AUC. As per FOR, SAPS statistically outperforms the
SRES model with a large effect size of 0.980. However, in terms of Recall and overall performance
measures such as Balance, G-mean, and nMCC, SRES statistically outperforms the SAPS model
with very large effect sizes. Hence, we can assert that the overall performance of the SRES model

is superior to the SAPS.

Results RQ4: From analyzing the prediction performance and statistical comparisons, we can
assert that the SRES model improves over the SAPS model after applying resampling and

feature reduction techniques by overcoming the imbalance and high dimensionality issues.

To analyze the performance of each fault prediction model, we perform WDL comparison,

where each fault predictor is compared with 10 other models. The results (Shown in Table 5.7)
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Table 5.7: WSR test based Win-Draw-Loss comparison performance across all fault prediction
models per each performance measure

Models Win Draw Loss Win-Loss  Rank CPFP Win Draw Loss Win-Loss  Rank
FOR Recall
WPFP 1 3 6 -5 9 WPFP 5 4 1 4 4
All_CPFP 6 3 1 5 3 All_CPFP 1 3 6 -5 8.5
TDS 10 0 0 10 1 TDS 0 0 10 -10 11
CFPS 5 4 1 4 5 CFPS 1 3 6 -5 8.5
CAMEL 6 3 1 5 3 CAMEL 1 3 6 -5 8.5
NNFilter 2 2 6 -4 7.5 NNFilter 7 2 1 6 2.5
TCA 0 3 7 -7 11 TCA 5 2 3 2 5.5
TNB 0 4 6 -6 10 TNB 7 2 1 6 2.5
TFSA 6 3 1 5 3 TFSA 1 3 6 -5 8.5
SAPS 5 1 4 1 6 SAPS 5 2 3 2 5.5
SRES 2 2 6 -4 7.5 SRES 10 0 0 10 1
Balance AUC
WPFP 5 4 1 4 4 WPFP 3 7 0 3 5
All_CPFP 1 3 6 -5 8.5 All_CPFP 2 2 6 -4 9
TDS 0 0 10 -10 11 TDS 1 0 9 -8 10
CFPS 1 3 6 -5 8.5 CFPS 2 4 4 -2 7.5
CAMEL 1 3 6 -5 8.5 CAMEL 5 5 0 5 3.5
NNFilter 7 2 1 6 2.5 NNFilter 6 4 0 6 1.5
TCA 5 2 3 2 5.5 TCA 0 0 10 -10 11
TNB 7 2 1 6 2.5 TNB 3 5 2 1 6
TFSA 1 3 6 -5 8.5 TFSA 2 4 4 -2 7.5
SAPS 5 2 3 2 5.5 SAPS 5 5 0 5 3.5
SRES 10 0 0 10 1 SRES 6 4 0 6 1.5
G-mean nMCC
WPFP 5 3 2 3 4 WPFP 6 3 1 5 3.5
All_CPFP 2 2 6 -4 7.5 All_CPFP 1 4 5 -4 8.5
TDS 0 0 10 -10 11 TDS 1 4 5 -4 8.5
CFPS 1 2 7 -6 10 CFPS 1 4 5 -4 8.5
CAMEL 1 4 5 -4 7.5 CAMEL 1 5 4 -3 6
NNFilter 7 2 1 6 3 NNFilter 7 2 1 6 2
TCA 5 2 3 2 5 TCA 0 0 10 -10 11
TNB 8 1 1 7 2 TNB 6 3 1 5 3.5
TFSA 1 3 6 -5 9 TFSA 1 4 5 -4 8.5
SAPS 4 3 3 1 6 SAPS 5 3 2 3 5
SRES 10 0 0 10 1 SRES 10 0 0 10 1

are then aggregated across the prediction models, resulting in 110 (/I(single prediction model) *
10 (other prediction models)) comparisons for each performance measure. Ranks were assigned
based on wins-losses values. The highest wins-losses value receives the top rank (Rank 1), while
the lowest values receive the worst rank. The better the model the higher the wins-losses ratio.
Out of the 110 comparisons, the SRES approach consistently ranked first across all performance
measures except FOR. Apart from our proposed SRES, NNFilter and TNB consistently rank in the
top three positions for all measures except FOR. The part of the proposed SRES model which is
SAPS based source projects selection approach, has always ranked in the middle. We can see from

the Table 5.7 that the ranks of SAPS are 6, 5.5, 5.5, 3.5, 6, and 5 in terms of FOR, Recall, Balance,
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AUC, G-mean, and nMCC, respectively. Moreover, SAPS never gets a negative wins-losses ratio.
Next, in terms of FOR, TDS, All_CPFP, CAMEL, and TFSA are in the top 3 ranks, while getting
the lower ranks by consistently attaining negative wins-losses values for the rest of the measures.
From Table 5.7, we can draw average rankings as 4.9, 7.5, 8.8, 8, 6.2, 3.2, 8.2, 4.4, 7.5, 5.3, and
2.2 for WPFP, All_CPFP, TDS, CFPS, CAMEL, NNFilter, TCA, TNB, TFSA, SAPS, and SRES,
respectively. We can observe that, on average, our proposed SRES model achieved the top rank,
followed by NNFilter and TNB.

From RQI, RQ2, RQ3, RQ4, and overall rankings, we conclude that our proposed SRES per-
forms superior to WPFP, basic CPFP, source projects selection models, and some popular CPFP
models. The results are consistent with findings observed by [29, 36, 116], WPFP performs better
than the CPFP models when assessed using the FOR performance measure. As well as our results
are consistent with [31] and [33], in which CPFP models can outperform the WPFP models by
cautiously selecting source projects and reducing the distribution gap between source and target

projects.

5.4 Threats to Validity

This section reviews the potential threats that jeopardize the validity of this study’s experimental
findings. SRES approach selects source projects based on two assumptions: 1) Two projects with a
statistically similar distribution can predict each other well, which might not be the case with a few
projects. 2) While verifying applicability, we select test data from the entire set of available projects.
However, when the set of available projects changes, there might be a change in the selected source
projects of our study. Additionally, we used the trial-and-error method to determine the ideal number
of hidden nodes, epochs, and batch size for SAE while performing feature reduction, which could
lead to biased findings with various projects at different times. These could be internal threats to
our study. In this study, we examined a large number of projects of various sizes from two different

open-source datasets, limiting external threats to the model.

5.5 Summary

Over the past few years, CPFP models have received considerable attention and demonstrated ac-

ceptable prediction performance, although there is still scope for improvement. We addressed the
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issue of how to predict software faults using cross-project data using a novel cross-project fault pre-
diction model called SRES. SRES is a combination of three phases, including a new source projects
generation using applicability and similarity scores, a novel resampling of the source data through
oversampling and undersampling, and it performs feature reduction using the employed SAE net-
work. It makes the SRES model robust enough to address the aforementioned issues.

In this study, 24 software projects are selected for the experimental study and the effectiveness
of the proposed SRES model is assessed with six recommended performance measures, including
FOR, Recall, Balance, AUC, G-mean, and nMCC. In the experiments, we first compare the SPS
CPFP models with our SAPS model. We also compared the proposed SRES model with the WPFP
and baseline CPFP models. Experimental findings demonstrate that the SRES approach outper-
forms the competitive CPFP models in terms of all measures except FOR. The next chapter presents
another early reliability prediction model called software development effort estimation through a

two-stage optimization technique.
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Chapter 6

Two-stage Optimization Technique for

Software Development Effort Estimation

Due to the pivotal role that effort estimation holds within the development process, a variety of
estimation approaches have been established to improve its accuracy. By considering the limitations
in existing estimation models, we proposed a two-stage optimization effort estimation (TSoptEE)
technique to improve the prediction performance.

The remainder of this chapter is organized as follows: Section 6.1 and 6.2 presents the back-
ground works and research methodology, respectively. Section 6.3 shows the details of experimental
setup objects. Section 6.4 demonstrates the obtained results and the discussion. Finally, the chapter

ends with a summary in Section 6.5.

6.1 Background

This section discusses the basic architecture of the ANFIS model and Social Network Search (SNS)

meta-heuristic algorithm.

6.1.1 ANFIS: Adaptive Neuro-Fuzzy Inference System

The ANFIS model introduced by Jang [172] explains the basic ANFIS model’s architecture and
learning procedure. The ANFIS model has gained significant attention from researchers as an ef-

fective estimation model among neuro-fuzzy systems and other machine learning models. ANFIS
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combines fuzzy logic with neural networks, demonstrating notable improvement in effort estima-
tion. ANFIS follows a five-layer architecture consisting of two kinds of nodes: fixed (layer 2, 3,
and 5 nodes) and tunable (layer 1 and 2 nodes). The ANFIS architecture is depicted in Figure 6.1.
ANFIS learns by adjusting all its tunable parameters to effectively map input data to the desired
output with minimal error. The layers of the ANFIS model are described as follows:

Layer 1: In this layer, every input of node ¢ is adaptive with a membership function and generates

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

x zy
y vy
2 L Zl
AN
Pose
B e (: )—’@2 - Wals
y vy

Figure 6.1: ANFIS model architecture

the membership degree of input values. Eq. 6.1 shows the output of membership functions:

O'(zi) = Ai = pa, (), i=1,2

O'y;) = B; = up,(y), i=1,2

6.1

Where x and y are the inputs to the first layer nodes, A; and B; are their respective membership
values, ’¢’ is the number of membership functions for each feature, and ;1 4, and p g, are membership
functions associated with each node and parameters in those functions called premise parameters.

This process is called fuzzification. In this study, we use a generalized Bell (Gbell) membership

114



CHAPTER 6. TWO-STAGE OPTIMIZATION TECHNIQUE FOR SOFTWARE DEVELOPMENT EFFORT ESTIMATION Section 6.1

function, which computes as follows in Eq. 6.2:

1
pe) = ——— (6.2)

2b
()
Where ’x’ is the input value, and a, b, and ¢ are Gbell premise parameters to be tuned.
Layer 2: All potential rules between the membership values are formulated by applying fuzzy

intersection (AND) as shown in Eq. 6.3, called weights:

= pa;(®) X pa,(y) 1=1,2 (6.3)

Layer 3: In the third layer, weights obtained from the second layer are normalized by following Eq.
6.4, called firing strengths:
— Wi

= =12 6.4
G = =L (6.4)

Layer 4: Each node computes the contribution of the i*” rule to the overall output. This process is

called defuzzification. Eq. 6.5 shows the computation:
Wil = ch(aix + by + Ci) 1=1,2 (6.5)

Where w; is the output of layer three and a;, b;, ¢; is the consequent parameter set to be tuned.
Layer 5: The final layer computes the overall output as the summation of all incoming values from

layer 4 using Eq. 6.6:

wiZi
Ofmal = sz i Z i (6.6)

Figure 6.1 explains the architecture of the ANFIS model used for software development effort
estimation. When it comes to real-time project management, the project manager provides features
(attributes) of the software dataset to the ANFIS model, and then optimal premise and consequent
parameters are computed in layers 1 and 4, respectively. Layer 5 returns the estimated effort, while
the accuracy of the estimated effort is decided by how the parameters are optimized. The project
manager takes the returned effort as an estimated effort and makes project management and bud-
get plans accordingly. This approach helps to mitigate overestimation and underestimation issues,

which can significantly impact the project’s cost estimation.
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6.1.2 SNS: Social Network Search Algorithm

Social networks serve as virtual platforms where users can interact with one another. This interac-
tion and influence among users follow an optimized process where individuals consistently strive to
enhance their popularity within the network. Talatahari et al. [173] proposed the SNS algorithm,
which replicates this interactive behaviour among users. As users interact, they might be influenced
by the perspectives of other network users in different scenarios, including imitation, conversation,
disputation, and innovation. The following is an explanation and mathematical modelling of these
moods:

Mood 1 (Imitation): Imitation means that the views of other users are attractive, and usually, users
try to imitate each other in expressing their opinions. One user imitates another user to update its

view as follows in Eq. 6.7:

Uinew = U; + rand(—1,1) x P
P =rand(0,1) xp 6.7)

p=U;-U;

Where Uipew is the new view vector of it user, U j 1s the randomly chosen user view vector.
rand(—1,1) and rand(0, 1) are two random vectors in intervals [-1, 1] and [0, 1], respectively, and
P is the difference in the U; and U; users.

Mood 2 (Conversation): In social networks, users communicate with each other and benefit from

their conversations. One user interacts with another user and updates its view as follows in Eq. 6.8:

Uinew = Uk +d
d =rand(0,1) * D (6.8)

D = sign(f; — f;) * (U; = Uy)

Where Uiy is the new view vector of it user, Uy, is the randomly defined view vector, and
Uj is the randomly chosen user in the network, rand(0, 1) is a random vector in the interval [0, 1].
D is the difference between ¥ and j** users where sign(fi — f;) tells the effect of 4t view on U;
view, it can be positive or negative.
Mood 3 (Disputation): In disputation, users see different views from a group of close-circle users

and may be influenced by the expressed opinions. One user interacts with a group of users and
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updates its view vector as follows in Eq. 6.9:

Uinew = Uz + mnd(O, 1) * (M — F % Uz)

_ Zf;\; Ui 6.9)

F =1+ round(rand(0,1))

7

Where Uypey is the new view vector of i user, rand(0, 1) is a random vector in the interval
[0,1], N, is the random number selected to decide the group size, p is mean of NV, user viewpoints
in the network. F' is the influence factor, which can be either 1 or 2, and round is a function that
rounds its input to the nearest integer number
Mood 4 (Innovation): In Innovation mood, a part of user opinion changes according to their per-
spective modification and random user perspective. The new viewpoint of a user develops by chang-
ing a randomly selected feature as follows in Eq. 6.10:

Ud

mew

:tl*UJd—F(l—tl)*nd

new

(6.10)
nd ., = lbg+ ty * (ubg — lbg)

new

Where Ugww is the new view of the particular *d*"> feature of i*" user viewpoint, d is the
feature that is selected randomly in the interval [1, M], and M is the number of features. ¢; and o
are random numbers in the interval [0, 1]. Also, ub, and lb, are maximum and minimum values for
the d* feature.

The selection and handling of these four moods influence each user’s perspective, prompting

them to adopt a new view vector. If the new view vector surpasses the existing one, users accept

and communicate it within the network.

6.2 TSoptEE: Two-Stage Optimization Technique for Soft-
ware Development Effort Estimation

The objective of this study is to accurately estimate the software development effort in terms of
manpower per month or hour. This study employs the neuro-fuzzy ANFIS model to estimate the
software development effort. Despite its widespread acceptance, the ANFIS model encounters con-

straints such as the curse of dimensionality and high computational costs, which restrict its use in
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Figure 6.2: An overview of TSoptEE model framework

Algorithm 10: Two stage optimization technique for SDEE
Require: Dataset (D);
Ensure: Ef fort,,.q;
1 train_data(7'r), test_data (7'e) < split projects of dataset into training and testing
sets
2 optimal_feature_set + RiBSNS (train_data(7'r))
3 Ef fortyeq <— RICSNS_ANFIS (T'r[optimal_feature_set],
Teloptimal_feature_set))
4 return Ef fort, eq

applications involving large numbers of inputs. ANFIS generates a maximum number of rules by
combining all possible fuzzy values, which escalates the computational cost due to the large num-
ber of consequent function coefficient parameters of these rules. The total number of premise and

consequent parameters computed as follows below Eq. 6.11 :

F(m,nf,pf) = (mxnf xpf)+ (nf™ x (m+1)) (6.11)
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Where *m’ denotes the number of features in the dataset, each feature value *m’ is divided into
"nf’ number of membership functions, and ’pf” denotes the number of parameters that need to be
tuned for each membership function. Thus, the total number of premise and consequent parameters
to be tuned are m x nf x pf’ and 'nf™ x (m + 1)’, respectively. In the field of effort estimation,
a frequently used publicly available dataset is "Maxwell’, comprising 26 independent features. In
this study, each feature value is split into two membership functions, utilizing a generalized bell
function as the membership function, which necessitates three parameters. So, the total number
of parameters that require tuning is (26 x 2 x 3) + (220 x (26 + 1)) = 1811939484. This is an
exceedingly large value, presenting significant complexity. ANFIS demonstrates its effectiveness
when the input count is limited to five or fewer [174]. Considering these limitations, we have
proposed a two-phase optimization approach for the software development effort estimation model,
which is structured into two stages. These stages are thoroughly outlined in Algorithms 10, 11, and
12.

We employed a three-fold cross-validation strategy to assess the model’s realistic accuracy.
The model evaluates the data over each fold, making three possible experiments possible. In each
experiment, two folds are used to train the model, while the remaining fold serves as the testing data.
Firstly, multi-objective RiBSNS feature selection is carried out on training data to obtain an optimal
feature set. Then, the training and testing data reduce their feature data to the selected optimal
feature set. The nearest neighbour samples of each test sample are computed from the training
data. The ANFIS model trains over the selected neighbour samples to obtain optimal premise and
consequent parameters through the multi-objective RiCSNS algorithm, and the obtained optimal
parameters are used to estimate the effort of the particular test sample. The process continues
until all the testing samples have been evaluated. The average performance metrics across all three
experiments are then considered as the final results. The process is depicted in Figure 6.2, where
each iteration involves a different fold for testing, while the remaining folds are used for training.

Further details about the two optimization stages are discussed in the subsequent subsections.

6.2.1 Stage 1: Multi-objective RiBSNS for feature selection

Firstly, TSoptEE selects optimal feature subsets using a multi-objective RiBSNS algorithm, which
is detailed in Algorithm 11. To select optimal features through the RiBSNS algorithm, moods are

assigned by ranks. Ranks are assigned to moods in the RiBSNS and RiCSNS algorithms. Out of
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Algorithm 11: Multi-objective RiBSNS Feature Selection
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Require: train_data(7'r);
Ensure: optimal_feature_set;
function RiBSNS(train_data(T'r))
Initialize population: C'PO P using Egs. 6.12 and 6.13
Convert the population (C'PO Py ) into binary population (BPO Py« )
using Eq. 6.14
Calculate the fitness value f1, y for all solutions in BPO Py« ) using WSM
method
Ranklm < NULL
while T'ermination do
for each solution(i) in CPOP do
Select the best mood out of four moods based on the assigned rank
if Mood == 1 then
Calculate new solution C' PO P,;,.,, and BPO P;,.,, using Egs. 6.7
and 6.15
end
if Mood == 2 then
Calculate new solution C' PO P,;,.,, and B PO P;,.,, using Egs. Egs.
6.8 and 6.15
end
if Mood == 3 then
Calculate new solution C' PO P,;,.,, and B PO P;,.,, using Egs. Eqs.
6.9 and 6.15
end
if M ood == 4 then
Calculate new solution C' PO P,;,.,, and B PO P,,.,, using Egs. Eqs.
6.10 and 6.15

end
f_inew <— Compute the fitness value of updated B PO P;,.,, using
WSM method
if finew Z fz then
fi = finew
CPOP, = CPOP;,., and BPOP;, = BPOP,,.,,
Rank[mood] ++
else
‘ Rank[mood] - -
end
end
foest = max(WSM(f))

end

optimal_feature_set < fbest
return optimal_feature_set
end
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four moods (Shown in Section 6.1.2), the mood with the best rank is selected to update the particular
population’s solution in that iteration, which can enhance the learning ability of the SNS algorithm.
Ranks are assigned to moods in RiBSNS and RiCSNS algorithms to improve the feature selection
process and ANFIS parameters optimization, respectively. The experimental results analysis is pro-
vided for selected features to predict software development effort. The first step of RiBSNS is the
initialization of the population. As we are performing feature selection with a binary population, we
first generate a population with continuous values and then convert them into binary. To maintain
diversity in generated binary feature data, we perform mathematical computations over the contin-
uous population and then convert it to binary while calculating fitness value. The dimension of the
population is N x M, where * N’ represents the randomly decided number of solutions and * M’
represents the number of features present in that particular dataset. The initialization of the popula-
tion is done as follows in Eqgs. 6.12 and 6.13:

Initialization: Continuous population (CPOP|n ) 1s initialized as follows Eq. 6.12
CPOPnyp = Min +rand(0,1) * (Max — Min) (6.12)

Where rand(0, 1) is a random vector in the interval of [0,1]. The maximum and minimum values
of each feature are denoted by M ax[1 s and Minj py), respectively.

Updating C'POP into the range of O to 1 by following Eq. 6.13:

rand(0,0.5), if CPOP < Mean(CPOP).
CPOPNxp = (6.13)

rand(0.5,1), otherwise.

Computing Binary population (BPO Py s7) by following Eq. 6.14:

1, ifrand(0,1) < CPOP
BPOPyNxy = (6.14)

0, otherwise
Updation: The fitness score for each solution within the population is computed using a multi-
objective decision-making technique called the weighted sum method (WSM). Next, a mood is
selected for each solution based on rank and updated according to the Eqs. 6.7 - 6.10 in every iter-
ation, resulting in updated solutions. The process involves conducting mathematical operations on

the continuous solution before converting it into a binary solution. The transfer function defines the
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probability of updating a solution from continuous to binary. This approach transforms the updated
solution within each mood into a binary solution using the sinusoidal (wave-shaped) transfer func-
tion as given in Eq. 6.15. Subsequently, the fitness score of the updated binary solution is calculated
and compared with the current solution, if it is superior to the current one it will be updated. After
each iteration, a locally optimal feature subset is identified, and ultimately, the RiBSNS outputs the
optimal feature set for a specific dataset, which is then utilized in the subsequent optimization stage.

1+ Sin(2 * 7w * CPOPjpe)
2

Probt =

1 — BPOP;, ifrand(0,1) < Probt (6.15)
BPOPinew =

BPOPF;, otherwise

Further, the modifications employed in RiBSNS are explained, such as the ranking moods
method, multi-objective fitness function, and weighted sum method.
Ranking Moods: To expedite the reach of the global optimum value, we introduced dynamic
selection within the SNS algorithm. Despite choosing moods at random, assigning ranks to moods
and selecting them based on ranks will enhance the learning ability of the SNS algorithm. All mood
ranks are initially set to zero, resulting in an equal random chance of mood selection in the first
iteration. In the first iteration, the rank of the specific selected mood increments by one for each
solution if the updated solution’s fitness value is better than the current solution; otherwise, the rank
decreases by one. This procedure establishes individual ranks for all four moods by the end of the
first iteration. Subsequently, moods with the highest ranks are chosen from the second iteration
onwards to update each solution. It’s because moods with higher ranks are preferred for updating
solutions, as they are more likely to lead to improved fitness. In the following iterations, every
solution undergoes a similar process to update ranks until the termination criterion is met. In our
study, the termination criterion is the number of iterations. The training performance determines the
iteration count for each dataset and varies from one dataset to another.
Multi-objective Fitness function: Our motivation behind performing feature selection
in this study is to reduce as many features as possible, which has to maximize the estimation ac-
curacy and reduce the complexity of the ANFIS model. In the RiBSNS optimization technique,
the fitness function comprises three objectives: minimizing MAE, maximizing Adjusted R2, and
minimizing the number of features. Linear regression estimates the effort for each binary solution

within the population. During regression model training, only the features corresponding to 1’s in
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the binary solution are utilized, and the corresponding effort is estimated. The resultant estimated
effort is used to calculate MAE and Adjusted R? values. The WSM [175] method computes the

aggregated fitness values to satisfy these three objectives of the problem.

6.2.2 Stage 2: Multi-objective RiCSNS for ANFIS Parameters Opti-

mization

Algorithm 12: Multi-objective RiCSNS for ANFIS parameters optimization
Require: T'r[optimal_feature_set], Teloptimal_feature_set];
Ensure: Ef fort,, .q;
function
RiCSNS_ANFIS(T'r[optimal_feature_set|, Teloptimal _feature_set])
Testing_data < Te[optimal_feature_set]
Training_data < Tr[optimal_feature_set]
Test_len < len(T'esting_data)
Traint_len < len(Training_data)
for each project(P) in Testing_data do
N N_set < Nearest projects of P in Training_data
optimal_parameters < training RICSNS based ANFIS model over
N N_set with multi-objective(MAE and Adj R2) optimization
9 Ef forty.ea|P] < ANFIS model with optimal_parameters estimated
effort for testing project P

o

L N B AW N

10 end
11 return E f fort,,eq
12 end

The default ANFIS learning algorithm employs gradient descent and least squares estimation to
fine-tune the premise and consequent parameters. However, gradient descent encounters the limita-
tion of getting stuck in local minima and slower convergence. The RiCSNS algorithm is utilized in
this study to enable efficient ANFIS parameter optimization. Algorithm 12 gives a comprehensive
outline of ANFIS training with RiCSNS. The training and testing data are pruned with the selected
optimal feature set. The ANFIS model trains using pruned data reduces the complexity of the AN-
FIS model. The ANFIS model trains with its nearest neighbours from training data for each testing
sample by adjusting the premise and consequent parameters. Then, the ANFIS model with optimal
parameters estimates the testing sample effort. As per how much neighbourhood has to be consid-
ered, large datasets (>100 projects) took 20%, and small datasets (<100 projects) took up to 50%

nearest samples from training data. The process repeats for each test sample until the testing set
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ends. The ANFIS model trained with the nearest samples will enhance the estimation capability by
precisely adjusting the tunable parameters rather than training with the entire data. In the training
phase, the ANFIS model’s parameters are optimized by the RiCSNS algorithm. The operations of
RiCSNS are analogous to the RiBSNS, with the exception of binary population conversion. Pop-
ulation size varies across datasets, and the number of attributes is equal to the number of premise
and consequent parameters. The ranges of these parameters are manually adjusted according to the
performance observed during the training phase. The objective is to minimize MAE and maximize
Adj R?; thus, the fitness value used in RiCSNS is computed using the WSM with two objectives.
Throughout the training phase, for each solution (comprising a set of tunable parameters) within
the population and during solution updates, these solutions are inputted into the ANFIS model for
training, returning estimated effort. From estimated effort, MAE and Adj R? are calculated, subse-
quently serving as the fitness score within the RICSNS algorithm. Then, the trained ANFIS model
estimates the required effort for each testing sample using those optimal parameters. The estimated
effort values of all the testing samples are then used to compute performance measures by compar-

ing them with the actual effort values.

6.3 Experimental Setup

As part of the study, a few performance assessment measures are collected and evaluated using
statistical tests across a few publicly accessible effort estimation projects to assess the performance

of the proposed TSoptEE model. Then, we compare the outcome with a few base models.

6.3.1 Experimental Objects

We extracted nine benchmark effort estimation datasets to assess the effectiveness of the proposed
model, which exhibits different characteristics [46, 47, 52, 176, 177]. A descriptive summary of
all nine datasets, including the total number of projects (instances or size), the number of features
(attributes), and units of software effort, is provided in Table 6.1. The effort of each dataset is not
evenly distributed and presents a challenge for the advancement of software project development

effort estimation.
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Table 6.1: Description of the Datasets

No. Datasets #project #feature Units
1 albrecht 24 8 months
2 china 499 18 hours
3 cocomo81 63 17 months
4 desharnais 81 11 hours
5 kemerer 15 7 months
6 kitchenham 145 4 months
7 maxwell 62 27 hours
8 miyazaki 48 8 months
9 Telecom1 18 3 months

6.3.2 Performance Assessment Measures

This section describes various performance indicators such as RMSE, MAE, MMRE, MdMRE,
BMMRE, PRED (0.25), and Adj R? to validate the efficiency of the proposed TSoptEE model
compared to other estimation models [46, 47, 52, 134, 135, 136, 176]. Due to the asymmetric dis-
tribution of MRE, measures which depended on MRE are often claimed to be biassed by numerous
studies [178, 179]. The model can’t be chosen just based on these measures. Despite this, our study
incorporated them for comparative purposes since many studies have reported. All these perfor-

mance assessment measures are defined in Eqs. 6.16 - 6.24:

n

RMSE = % ;(AEi — EE;)? (6.16)
MAE = % iznyAEi — EEj| (6.17)
MRE = |(AEZ;4_EjE Ei)l (6.18)
MMRE = % ZZ:;MREi (6.19)
MdJMRE = Median(MRE) (6.20)
BMMRE = izn: m (6.21)

=1

125



CHAPTER 6. TWO-STAGE OPTIMIZATION TECHNIQUE FOR SOFTWARE DEVELOPMENT EFFORT ESTIMATION Section 6.4

A n_ |1, ifMRE; <0.25
PRED= ">, A=) ' (6.22)

n : .
i=1 | 0, otherwise.

o i (AE; — EE)?
=t Zi:l(AEi - AfE)2 023
_ P2 _
AdjR*=1— (1 - iil(’i : D) (6.24)

Here, AFE; and EF'E; are the actual and estimated efforts, respectively; 'n’ and m’ represent
the count of projects and the count of independent features in a dataset. The parameter A’ in
PRED represents the number of projects with less than or equal to 0.25 MRE value. A model
must produce lower values for employed measures except PRED and Adj R? to achieve relative
estimation accuracy.

Interpreting these measures without the support of statistical tests can introduce instability in
conclusions. Therefore, we employed WSR [157, 180, 181] test to compare the performance statis-
tically. In this study, the null hypothesis assumes that two compared models are statistically similar
under a 95% confidence level (significance level o = 0.05) if the computed P-value is greater than «,
otherwise, a significant difference exists. Moreover, to measure relationship strength (effect size),
the matched-pairs rank biserial correlation coefficient (Ec) technique [159, 182] is adopted. To
summarize the comparison results among estimation models, we employed Win-Draw-Loss (WDL)

statistics.

6.4 Experimental Results and Analysis

This section presents the findings of our experiments. To demonstrate the superiority of the proposed
model, we perform comparisons with a few fundamental regression models, including linear regres-
sion (LR), ridge regression (RR), classification and regression tree (CART), and a simple artificial
neural network (ANN) model. Additionally, compared with three recently developed estimation ap-
proaches such as the neuro-fuzzy based ANFIS-SBO model [46], the analogy-based BABE model
[47], and the CBR-GA model [52]. The results are reported in Tables 6.2 - 6.8, in terms of RMSE,
MAE, MMRE, MdMRE, BMMRE, PRED, and Adj RZ2, the bold cell in each row represents the
best measure score of the model for a particular dataset. The last three rows represent the statistical

comparison between the TSoptEE and other base models. We conducted statistical comparisons
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using the WSR test, which returns the P-value, positive rank sum (W+) of TSoptEE, negative rank
sum (W-) of other compared models, and effect size (Ec). The bold P-value (< 0.05) signifies that
our model is statistically superior to the compared model, while bold and italic P-value (> 0.05)
indicate that our model and the compared models are statistically similar. In addition, the bar plots

shown in Figure 6.3 for the comparison of average measure values over all the datasets.

Table 6.2: RMSE results in comparison with other models

Datasets LR RR CART ANN ANFIS-SBO BABE CBR-GA TSoptEE
albrecht 14.996 17.693 16.863 13.697 20.909 9.1905 8.3734 6.3429
china 1169.3 1074.5 1766.5 1025.7 2558.8 1987.1 3119.7 1045.5
cocomo81  1814.3 1423.7 1480.2 1504.9 3665.8 1410.5 1385.1 1192.4
desharnais  3009.8 2789.9 4049.7 4140.8 3585.3 3137.5 3892.7 3489.6
kemerer 321.51 222.39 270.02 226.83 140.15 209.32 231.69 117.32
kitchenham 1838.2 1956.5 5833.2 2217.8 3124.1 5560.0 1377.9 1600.0
maxwell 7639.1 7922.7 7656.9 6303.9 7196.5 7298.4 7065.2 5275.6
miyazaki 118.83 119.19 152.27 111.45 118.73 86.314 158.23 94.861
Telecom1 132.25 145.26 139.80 135.14 112.38 119.81 98.594 101.51
P-value 0.066316 0.085831 0.007686 0.020879 0.0076858 0.085831 0.085831

Effect size  0.689 0.644 1 0.867 1 0.644 0.644

W+/W- 38/7 37/8 45/0 42/3 45/0 37/8 37/8

Table 6.3: MAE results in comparison with other models

Datasets LR RR CART ANN ANFIS-SBO BABE CBR-GA TSoptEE
albrecht 11.286 11.853 11.049 11.951 11.173 7.613 5.597 4.8850
china 407.92 413.59 573.71 389.81 1250.6 762.54 1515.8 355.26
cocomo81  1104.6 711.06 667.03 539.25 2348.5 569.54 575.48 432.44
desharnais  2128.3 21111 2781.8 2715.8 2301.6 2118.3 27227 2419.5
kemerer 263.91 166.72 169.75 155.77 95.123 133.44 143.32 97.009
kitchenham 816.69 827.24 1459.8 995.54 918.63 1240.7 827.20 795.52
maxwell 5623.6 5613.2 4671.7 3760.8 4008.9 4231.1 4410.5 3450.3
miyazaki 46.382 48.932 60.344 51.629 47.750 43.813 48.550 41.820
Telecom1 106.71 110.04 89.264 89.928 76.276 82.971 67.759 62.664
P-value 0.066316 0.085831 0.007686 0.007686 0.049103 0.049103 0.007686

Effect size  0.689 0.644 1 1 0.733 0.733 1

W+/W- 38/7 37/8 45/0 45/0 39/6 39/6 45/0

The results of applying the proposed model to all datasets with respect to the RMSE evaluation
measure compared with the other base models are shown in Table 6.2. It’s notable that TSoptEE
consistently produces lower RMSE values compared to other estimation models across five of the
nine datasets, specifically Albrecht, Cocomo81, Kemerer, Maxwell, and Miyazaki. The results
of the remaining four datasets are comparable. Moreover, even though with some datasets, other

models have slightly better values, they aren’t statistically superior to our model. As we can see,
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Table 6.4: MMRE results in comparison with other models

Datasets LR RR CART ANN ANFIS-SBO BABE  CBR-GA TSoptEE
albrecht 1.3368 0.8554 1.0667 1.3668 0.6241 0.4070  0.8231 0.6624
china 0.2262 0.2437 0.1322 0.1354 0.3024 0.2261  0.4452 0.0986
cocomo81  19.823 11.429 1.5635 0.6968 0.5797 23414  1.5875 1.2945
desharnais  0.5980 0.6510 0.6731 0.5463 0.5447 0.4646  0.7250 0.4422
kemerer 2.0579 1.1420 0.7914 0.8225 0.4712 0.7335  0.7937 0.5692
kitchenham 0.5256 0.5052 0.3501 0.5092 0.2581 0.2994  0.3665 0.2668
maxwell 1.4219 1.6956 0.7210 0.5168 0.4029 0.5614  0.7412 0.5453
miyazaki 0.7372 0.7734 0.6897 0.7223 0.5894 0.3085 0.6270 0.3849
Telecoml 0.7264 0.6894 0.3842 0.3767 0.3236 0.3557  0.2157 0.3909
P-value 0.007686 0.007686 0.010862 0.173071 0.7670969 0.51467 0.020879

Effect size 1 1 0.956 0.511 0.111 0.244 0.867

W+/W- 45/0 45/0 44/1 34/11 20/25 28/17 42/3

Table 6.5: MdMRE results in comparison with other models

Datasets LR RR CART ANN ANFIS-SBO BABE CBR-GA TSoptEE
albrecht 0.6675 0.7381 0.5391 0.7672 0.3619 0.4341 0.3224 0.6013
china 0.1001 0.1046 0.0837 0.0928 0.2882 0.1449 0.3803 0.0748
cocomo81  5.5056 3.3888 0.7522 0.5337 0.3509 0.7435 0.8336 0.6421
desharnais  0.3644 0.3915 0.3811 0.4668 0.3199 0.3194 0.3945 0.3028
kemerer 1.8401 0.6467 0.5741 0.5205 0.3357 0.4605 0.6521 0.3020
kitchenham 0.3074 0.2976 0.2427 0.3711 0.1768 0.1827 0.2732 0.1768
maxwell 09116 0.9770 0.5088 0.4699 0.3973 0.4507 0.5658 0.4009
miyazaki 0.4028 0.5223 0.5016 0.5194 0.2229 0.2390 0.4458 0.2961
Telecom1 0.4618 0.3773 0.2414 0.2236 0.2232 0.2017 0.2377 0.2005
P-value 0.007686 0.007686 0.020879 0.028402 0.767097 0.313938 0.066316

Effect size 1 1 0.867 0.822 0.111 0.378 0.689

W+/W- 45/0 45/0 42/3 41/4 20/25 31/14 38/7

our model exhibits statistical superiority (P-value <0.05 and W+ value is greater than the W-) over
CART, ANN, and ANFIS-SBO while being similar to other models with medium range effect sizes,
but any other model is not statically superior to TSoptEE. Even in cases with P-value > 0.05, our
model’s rank sum (W+) is much higher than the other model’s rank sum (W-) (TSoptEE compared
to LR, RR, BABE and CBR-GA, 31 highest rank sums are there, respectively). Each dataset yields
different outcomes over a single measure, so we conducted a comparison of the average outcomes
across all datasets, as depicted in Figure 6.3. When considering the average RMSE values of all
the models in Figure 6.3, it is evident that TSoptEE consistently outperforms the other models,
producing significantly lower average RMSE values.

Table 6.3 presents the results of the MAE evaluation measure across all models. As we can ob-
serve, the proposed model consistently produces lower MAE values than the other estimation mod-

els across seven of the nine datasets, namely Albrecht, China, Cocomo81, Kitchenham, Maxwell,
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Table 6.6: BMMRE results in comparison with other models

Datasets LR RR CART ANN ANFIS-SBO BABE CBR-GA TSoptEE
albrecht 0.6203 0.6587 1.7625 1.6474 0.9266 0.6979 1.3527 0.6658
china 0.2940 0.3962 0.1516 0.1382 0.4144 0.2623 0.4513 0.0991
cocomo81  4.5077 3.4031 2.5152 2.6676 0.8206 6.0743 3.3011 1.7504
desharnais  0.3697 0.2789 0.8386 1.0999 0.7909 0.5819 0.9190 0.6331
kemerer 0.8415 1.0926 1.2042 0.9583 0.5959 1.0539 1.2225 0.5692
kitchenham 0.3529 2.5782 0.5057 0.5304 0.3417 0.4145 0.4634 0.3373
maxwell 0.0419 0.4557 0.8994 0.7928 0.9716 0.9802 1.3439 0.7848
miyazaki 0.4449 2.3445 1.0838 0.7957 0.8436 0.6183 0.8937 0.4946
Telecom1 0.4786 0.3739 0.4415 0.4156 0.3764 0.3920 0.2934 0.4147
P-value 0.678402 0.213524 0.007686 0.007686 0.2135244 0.028402 0.010862

Effect size  0.156 0.467 1 1 0.467 0.822 0.956

W+/W- 26/19 33/12 45/0 45/0 33/12 41/4 44/1

Table 6.7: PRED results in comparison with other models

Datasets LR RR CART ANN ANFIS-SBO BABE CBR-GA TSoptEE
albrecht 0.2083 0.2083 0.2417 0.25 0.4167 0.1250 0.4583 0.3750
china 0.7495 0.7455 0.8858 0.8979 0.3668 0.7417 0.6086 0.9879
cocomo81  0.1270 0.1270 0.1905 0.1746 0.3210 0.1111 0.0794 0.2063
desharnais  0.2963 0.3457 0.3333 0.1975 0.2710 0.4074 0.2840 0.4444
kemerer 0.0667 0.1333 0.1333 0.2667 0.3333 0.2000 0.2667 0.4000
kitchenham 0.4766 0.4756 0.5378 0.3043 0.6620 0.6410 0.4742 0.6349
maxwell 0.1758 0.2121 0.2697 0.2424 0.3561 0.2881 0.2303 0.3045
miyazaki 0.3333 0.2292 0.2917 0.2083 0.5 0.5000 0.2533 0.3750
Telecom1 0.3889 0.3333 0.4444 0.5556 0.6667 0.6667 0.5000 0.6667
P-value 0.007686 0.007686 0.007686 0.007686 0.952765 0.109745 0.015156

Effect size 1 1 1 1 0.056 0.667 0.911

W+/W- 45/0 45/0 45/0 45/0 19/17 30/6.0 43/2

Miyazaki, and Telecoml. For the remaining two datasets, our model yields results that are very
close to the best-performing model. In addition, our proposed model demonstrates statistical supe-
riority over CART, ANN, ANFIS-SBO, BABE, and CBR-GA with large effect sizes (1, 1, 0.733,
0,733, and 1, respectively) while being similar to other models with medium effect sizes. In terms
of MAE, TSoptEE is statistically similar to LR and RR with medium effect sizes (0.689 and 0,644)
and a high positive rank sum (38 and 37). Moreover, we can observe from Figure 6.3 that the av-
erage MAE value for TSoptEE is consistently lower than the other models. We can see significant
differences between TSoptEE and other models from Tables 6.2 and 6.3, the lowest RMSE and
MAE values are achieved by TSoptEE, and the following lowest values are obtained by CBR-GA,
due to the fitness function which is considered while optimizing the number of features and ANFIS
parameters.

Table 6.4 presents the results with respect to the MMRE evaluation measure across all models.
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Table 6.8: Adj R? results in comparison with other models

Datasets LR RR CART ANN ANFIS-SBO BABE CBR-GA TSoptEE
albrecht -2.1439  -2.4542 -3.6725 -0.9692 -3.6729 0.3426 0.3243 0.4978
china 0.9611 09693 09098 09662 0.8146 09174 0.3224 0.9716
cocomo81  -5.4596 -3.4167 -2.3444 -3.3073 -0.1956 -3.2546 -3.8767 0.5086
desharnais  0.1809 0.3691 -0.5001 -0.5276 -0.1917 0.0674 0.0749 0.3772
kemerer 29.6706 8.9230 16.7523 9.0235 2.5911 5.4699 -0.4546 -0.1579
kitchenham 0.8743 0.8781 0.4169 0.7930 0.7762 0.5748 0.7518 0.8428
maxwell 89791 94819 39165 2.6046 2.9528 3.3445 3.4575 0.6039
miyazaki 0.2070 0.1043 0.18306 -0.4715 0.8099 0.1061 0.2140 0.2776
Telecom1 0.2480 0.2514 0.2803 0.3619 0.3657 0.4093 0.4231 0.5668
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Figure 6.3: Average values across all datasets for each model and performance measure

We can generally notice that the proposed model consistently produces lower MMRE values than

the other estimation models across two of the nine datasets, namely China and Desharnais. For the

remaining five datasets, our results are comparable and not inferior to the best-performing models.

In addition, our model demonstrates statistical superiority over LR, RR, CART, and CBR-GA with
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Table 6.9: Win (W), draw (D), loss (L) comparison of all models

Measures LR RR CART ANN ANFISBABE CBR-TSoptEE
SBO GA
RMSE w 0 0 0 0 0 1 0 3
D 7 7 5 6 6 6 7 4
L 0 0 2 1 1 0 0 0
MAE w 0 0 0 1 0 1 0 5
D 7 7 4 5 6 5 6 2
L 0 0 3 1 1 1 1 0
MMRE w 0 0 2 1 5 2 1 4
D 1 3 3 5 2 5 4 3
L 6 4 2 1 0 0 2 0
MdAMRE w 0 0 2 0 4 4 0 4
D 3 3 2 6 3 3 5 3
L 4 4 3 1 0 0 2 0
BMMRE \W% 1 0 0 0 1 0 0 4
D 6 7 6 6 6 5 5 3
L 0 0 1 1 0 2 2 0
PRED w 0 0 2 0 0 1 0 5
D 4 5 4 6 7 6 6 2
L 3 2 1 1 0 0 1 0
All Measures W 1 0 6 2 10 9 1 25
D 28 32 24 34 30 30 33 17
L 13 10 12 6 2 3 8 0
W-L -12 -10 -6 -4 8 6 7 25

large effect sizes (1, 1, and 0.956, respectively) while being similar to ANN, ANFIS-SBO, and
BABE models with small to medium effect sizes (0.511, 0.111, and 0.244, respectively). Addition-
ally, when analyzing Figure 6.3, it is observed that TSoptEE achieves the second lowest average
MMRE value compared to other models. The ANFIS-SBO model achieves the lowest average
MMRE value, as it prioritizes the minimization of MMRE while optimizing ANFIS parameters
through the SBO algorithm.

Table 6.5 presents the results with respect to the MAMRE evaluation measure across all mod-
els. We can generally notice that the proposed model consistently produces lower MAMRE values
than the other estimation models over five of nine datasets, namely China, Desharnais, Kemerer,
Kitchenham, and Telecom1. At the same time, the other four dataset’s results are very close to the
best-performing model. In addition, our model demonstrates statistical superiority over LR, RR,
CART, and ANN with large effect sizes (1, 1, 0.867, and 0.822, respectively) while being similar
to ANFIS-SBO, BABE, and CBR-GA models with small to medium effect sizes (0.111,0.378, and
0.689, respectively). Moreover, when analyzing Figure 6.3, it is observed that TSoptEE achieves

the second lowest average MAMRE value compared to other models. ANFIS-SBO model attains
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Figure 6.4: Ranks of all models

the lowest average MAMRE value.

Table 6.6 presents the results with respect to the BMMRE evaluation measure across all models.
We can generally notice that the proposed model consistently produces lower BMMRE values than
the other estimation models over three of nine datasets, namely China, Kemerer, and Kitchenham.
We obtained results comparable to those of the best model for the remaining six datasets. In addi-
tion, we can observe that our model is statistically superior to CART, ANN, BABE, and CBR-GA
with large effect sizes (1, 1, 0.822, and 0.956, respectively) while being similar to LR, RR, and
ANFIS-SBO models with small to medium effect sizes (0.156, 0.467, and 0.467, respectively) and

having highest rank sums comparatively. Moreover, we can observe from Figure 6.3 that the aver-
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age BMMRE value is lower for TSoptEE compared to other estimation models.

Table 6.7 provides an overview of the results with respect to the PRED evaluation measure
across all models. In the case of PRED, a higher value indicates better model performance. We
can generally notice that the proposed TSoptEE model generated better predictions than other es-
timation models over five out of nine datasets, namely China, Cocomo81, Desharnais, Kemerer,
and Telecom1. The remaining four datasets obtained almost similar results to the best-performing
model. In addition, we can observe that our model is statistically superior to LR, RR, CART, ANN,
and CBR-GA with large effect sizes (1, 1, 1, 1, and 0.911, respectively) while being similar to
ANFIS-SBO and BABE models with small and medium effect sizes (0.056 and 0.667, respectively)
and high positive rank sums. Moreover, we can observe from Figure 6.3 that the average PRED
value for TSoptEE is the highest among all the estimation models, indicating its overall superior
predictive performance.

Table 6.8 presents an overview of the results with respect to the Adjusted R? evaluation measure
across all models. The higher Adjusted R? value indicates better model performance, it should
ideally range between 0 and 1. We can generally notice that the proposed TSoptEE model is able
to generate better predictions than other estimation models over seven out of nine datasets, namely
Albrecht, China, Cocomo81, Desharnais, Kemerer, Maxwell, and Telecoml, in terms of Adj R2.
We obtained almost identical results to the best-performing model for the remaining two datasets.
On the other hand, it’s essential to address the presence of negative values and values exceeding 1
for the Adj R%. Adj R? measures the percentage of variance in the target explained by the input
variables [183]. When the number of samples and independent variables is close, the denominator
approaches zero, which can result in exceeding one or becoming negative [184]. An increase in the
Adj R? value only occurs when the inclusion of a new independent variable significantly improves
the model fit beyond what it had previously; otherwise, it decreases [183]. The proposed TSoptEE
model achieves superior Adj R? values compared to other models without encountering negative
or greater than one value. This can be attributed to its feature selection capability, which enables
it to select features that enhance the model’s fit. TSoptEE also tries to maximize Adj R? during
feature selection and ANFIS parameter optimization by considering it as part of the fitness score
of the optimization technique. Consequently, TSoptEE demonstrates strong predictive performance
in terms of Adj R? and other estimation measures. It’s worth noting that statistical analysis over
negative values is not possible. Instead, a straightforward comparison is made in Table 6.8 without

statistical testing due to the prevalence of negative values in the base models.
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As we can observe from Figure 6.3, RMSE, MAE, MMRE, MdMRE, BMMRE, and PRED
average values range between 1400 to 3000, 900 to 1200, 0.40 to 3.0, 0.3 to 1.2, 0.6 to 1.3, and 0.3
to 0.5, respectively. Our TSoptEE achieves the lowest average over RMSE, MAE, and BMMRE
and the highest PRED score. Regarding MMRE and MdMRE, the second lowest was achieved by
TSoptEE because we optimized MAE and Adj R? as our objective functions in this study, but in
the compared models, MMRE was considered a minimizing objective. According to past studies,
MMRE is a biased measure [185, 47]. So, in this study, minimizing MMRE isn’t chosen as the
objective. Moreover, statistical comparison among all the measures and their ranks are depicted
in Figure 6.4. To provide a comprehensive overview of our analysis and compare the predictive
performance of our model against the base models, we employed the WDL technique [182]. The
results of applying the WDL algorithm to all possible experimental outcomes are detailed in Table
6.9. These results reveal that our proposed TSoptEE outperformed other models with substantial
wins across all measures except for MMRE. Regarding MMRE, ANFIS-SBO has the highest wins
with only one higher value than TSoptEE. The last row summarizes the aggregated wins, draws,
losses, and wins-losses over all the combined measures. It becomes evident that TSoptEE stands
out as a reliable model, with a large number of wins and zero losses. Particularly, the TSoptEE
achieved 25 wins, 17 draws, and 0 losses out of 42 comparisons. This large number of wins indicates
the significant differences between the proposed TSoptEE and other base models and shows its
competitive performance capability. Notably, we also observed that only ANFIS-SBO and BABE
managed to attain positive win-losses.

Furthermore, we established ranks for all models by analyzing each model’s performance us-
ing the wins-losses values depicted in Figure 6.4. The X-axis and Y-axis in Figure 6.4 represent
each model’s performance metrics and their corresponding ranks. The ’all_msr’ signifies the rank
achieved through averaging wins-losses across all performance metrics. The first rank is assigned
to the highest wins-losses value, followed by ascending ranks for subsequent values. Figure 6.4
illustrates that TSoptEE consistently ranks within the top two positions across all performance mea-
sures, and on average (all_msr) obtained the top rank. Additionally, it is noticeable that LR and RR
share similar rankings, while ANN obtains average ranks across all measures. Regarding RMSE
and MAE, CART and ANFIS-SBO obtain lower ranks, but their ranks in terms of other measures
are comparable. The BABE and CBR-GA achieve average rankings for all performance measures,
except for BMMRE, where its rank is notably higher compared to others. Overall, while some mod-

els exhibit superior performance in specific measures only, the proposed TSoptEE model stands out
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by delivering the best performance across all the performance measures through accurate estimation

of the required effort.

6.5 Summary

In the field of software engineering, accurately estimating the effort required for software develop-
ment has always been a challenging task. In this chapter, we proposed a two-stage TSoptEE model
for effort estimation. Firstly, the multi-objective RiBSNS algorithm performs a feature selection,
which selects the most influential features contributing to effort estimation. The selected features
are fed into ANFIS and then the multi-objective RiICSNS algorithm performs ANFIS parameter
optimization to evaluate the accuracy of the TSoptEE model. We evaluate our approach using nine
publicly accessible benchmark datasets and measure performance using metrics like RMSE, MAE,
MMRE, MdMRE, BMMRE, PRED (0.25), and Adj R?. The results were compared with those
basic regression models and recently published effort estimation models. Based on the findings, it
can be concluded that the TSoptEE model is more accurate than the existing models. Finally, the
statistical WDL analysis of the results supported the superiority of the proposed model over the
other models. According to the overall findings, it can be concluded that the method introduced in
this study can enhance SDEE accuracy. In the next chapter, the conclusion and future scope of the

thesis are presented.
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Chapter 7

Conclusion and Future Directions

This chapter presents the summary of this thesis, the conclusion of each objective and the future

scope for further direction of research.

7.1 The Major Contributions of the Thesis

This thesis explores and endeavours challenges related to software fault prediction and develop-
ment effort estimation models. The research aims to create more accurate prediction models by
investigating various imbalance learning techniques, feature extraction methods, transfer learning
techniques, source project selection approaches, and exploration of different types of effort esti-
mation models and optimization of model parameters. The ultimate goal is to develop an efficient
early software reliability prediction model that ensures the production of reliable software without
exceeding project budgets and testing costs.

Chapter 3 introduces the WACIL approach for WPFP, focusing on addressing imbalance learn-
ing. WACIL involves extracting diverse pseudo-instances around the border of the faulty class
through the extraction of borderline instances, pseudo-instance generation, and noisy data elimina-
tion. Extraction of borderline instances for synthetic data generation to overcome the problem of
faulty instance misclassification and increase the recognition rate. Pseudo-instance generation aids
in introducing diverse pseudo-data, while undesirable or redundant data from generated pseudo-
instances is eliminated in the noisy data elimination process to reduce negative influence on the
performance. The WACIL technique’s main objective is to reduce false positive outcomes and in-
crease the recognition rate of faulty modules. Experimental results demonstrate the superiority of

WACIL over existing approaches.

136



CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS Section 7.2

In Chapter 4, the WPSTC approach is proposed for CPFP. It begins with employing the WSR
test to select source projects based on statistical properties, maximizing the relevance of selected
sources. Optimized training data construction follows, involving novel instance filtering to select
similarly distributed training data to minimize the distribution gap and imbalance rate and feature
extraction using the Binary-RAO algorithm to further improve the model’s prediction capability.
WPSTC aims to maximize fault prediction performance in cross-project scenarios while balancing
false positive and true positive outcomes. WDL statistics demonstrate that WPSTC with ensemble,
KNN, and NB classifiers yields better predictions.

In Chapter 5, the novel SRES model is introduced for predicting software faults using cross-
project data. SRES comprises three phases: SAPS for source project selection, resampling of train-
ing data, and SAE feature reduction. SAPS considers similarity (as mentioned in Chapter 4) and
applicability among source and target projects to enhance the source projects selection process. Re-
sampling involves oversampling data with similar characteristics to the target and undersampling
data that doesn’t address imbalance and distribution differences. The resampled data is then com-
pressed using SAE to obtain optimal training data. The main objective of the SRES model is to
obtain optimal training data to improve the prediction performance. SRES is evaluated on 24 soft-
ware datasets, showing effectiveness in experimental comparisons against other CPFP models and
basic WPFP.

In Chapter 6, the TSoptEE model is developed for SDEE. The multi-objective RiBSNS al-
gorithm performs feature selection using an improved binary SNS algorithm, which explores the
search space more effectively and selects the most influential features contributing to effort esti-
mation. RiCSNS algorithm then explores the search space and optimizes the ANFIS parameters,
which identifies the most appropriate premise and consequent parameters. We evaluate our ap-
proach using nine publicly accessible benchmark datasets and measure performance using met-
rics such as RMSE, MAE, MMRE, MdMRE, BMMRE, PRED (0.25), and Adj R?. Evaluation of
nine benchmark datasets shows TSoptEE’s superiority over existing models, supported by statistical

Win-Draw-Loss analysis.

7.2 Future Directions

The future scope for the proposed fault prediction and development effort estimation models can

focus on several directions in the context of early reliability prediction:
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Future research should focus on enhancing the scalability and efficiency of the proposed mod-
els to cope with the increasing size and complexity of software datasets. Assessing extensive
different development environments, the software will offer insights into the scalability, gen-

eralization ability, and reliability of these techniques in real-world scenarios.

Collaborating with software developing companies and conducting large-scale studies on
diverse real-time commercial datasets from different fields can provide valuable insights into

the models’ performance and impact on accurate decision-making.

The proposed WACIL approach can be enhanced by considering software feature optimiza-
tion techniques along with imbalance learning. This would enable the discovery of more
diverse and optimum training data to further enhance the performance of the employed pre-

diction models.

The proposed fault prediction models can be modified and will apply to other areas in soft-
ware reliability prediction, such as finding the number of faults during different stages of the
early software development process. Finding the number of faults associated with a module
can generalize the severity of a module, which can be used to give priority to modules while

testing the whole software.

Real-time newly developed software projects pose unique challenges due to their develop-
ment environment, where the software develops in different environments with different mod-
ule metrics that will be different from historical projects. Chapter 4 and Chapter 5 focus on
recommendations between homogeneous data, where the source project and target project
have similar software features in a cross-project environment. Future work can be extended
to handle heterogeneous data by incorporating metric matching techniques and developing

specialized architectures that can effectively process and analyze heterogeneous CPFP.

A few datasets used for development effort estimation in Chapter 6 consist of a very small
number of projects such as Telecom1, Kemerer, Albrecht, and Miyazaki, which aren’t enough
to effectively train the estimation model. Hence, effort estimation models should be evalu-
ated on large-scale databases to validate their effectiveness and significance in real-world

scenarios.

In Chapter 6, the ANFIS premise and consequent parameters are optimized. In future works,
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ANFIS rule optimizations can be enabled to reduce the complexity of the model and improve

the accuracy of software development effort estimation.

* In this thesis, we have proposed a framework for early reliability models such as fault predic-
tion and effort estimation. However, the other reliability parameters may be considered for

future work.
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