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ABSTRACT

Psychological stress has engulfed the world and has turned out to be a major

propellant for both physiological health disorders and suicides across the globe. The

more concerning issue is the prevalence of psychological stress among youth and the

increasing vulnerability of the young generation to stress. Hence, the detection of

stress, before it becomes chronic, is of paramount importance. There exist many

traditional stress detection mechanisms like interviews with psychiatrists, question-

naires, etc. However, the social stigma attached to these methods, makes people

either avoid them or give incomplete or misleading information. Furthermore, the

methods to detect stress using electronic devices and sensors are seen as invasive to

daily life. Hence, this leads to searching for alternative approaches to detect stress

early by capturing genuine emotions without any stigma. Social media data, with the

growing popularity of social media usage, can be an ideal candidate in such a scenario.

In micro-blogging sites like Twitter (now called X), people participate in a large scale

to express their opinions, and daily activities in a free manner devoid of any social

stigma. This makes Twitter a very lucrative resource for capturing human emotions

and therefore, social media-based text-level stress detection has caught the attention

of the researchers. The initial approaches using social media to detect text-level stress

have focused on crowd-sourcing of the data for collection and labeling. Nevertheless,

the crowd-sourcing approach is prone to a problem similar to that of questionnaires,

while the manual labeling is laborious, time-consuming, and vulnerable to errors. To

address this, automatic labeling based on sentence patterns of “I feel” was proved to

be effective in labeling the social media data for stress detection. Using this strat-

egy to collect tweets, many works in the literature had proposed tweet-level stress

detection methods. These techniques have also developed more detailed hand-crafted

features from the text data of tweets. Furthermore, deep-learning-based methods

like stacked cross autoencoders for the classification of tweet-level stress, apart from

traditional machine learning techniques, were also developed.

The literature of text-level stress detection problem has many gaps despite provid-
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ing the initial solutions. First, there is an issue of data sparsity; most of the tweets

are short in size, and hence existing approaches do not utilize text content of the

data, content of previous or neighborhood tweets, and clues from the text data about

sarcasm. Second, the lack of a large amount of labeled data for stress detection using

social media makes it difficult to implement supervised algorithms. This gives moti-

vation to explore solutions based on semi-supervised learning methods which require

a lesser amount of labeled data. Third, the concept of sarcasm is found to be one of

the useful attributes in detecting tweet-level stress, and with sarcasm being a classifi-

cation problem on its own, there is a scope to study and develop multi-task learning

approach to detect stress with the help of the auxiliary task of sarcasm detection. In

this thesis, the issues mentioned are addressed using various machine learning-based

solutions. Initially, a new approach called neighborhood-based tweet-level stress de-

tection(NTSD), a modified logistic regression that includes neighborhood tweets, is

developed to utilize the text content of the tweets for detecting stress. In addition, a

new attribute called Sarcasm_Level is proposed which captures the sarcasm present

in the text content of the tweet. These solutions help to address both the data sparsity

problem and the utilization of the text by capturing the related concept of sarcasm.

However, it has an overhead due to the additional requirement of the neighborhood

tweets. To overcome this, later, a new method called sarcasm-based tweet-level stress

detection (STSD) was developed, wherein sarcasm is used to develop the modified

logistic regression such that the loss of sarcastic tweets, which reflect positive and

friendly moments, is penalized. Simultaneously, the loss of the non-sarcastic tweets is

minimized. This makes the proposed STSD perform better without the requirement

of extra data like neighborhood tweets.

In the real world, most of the data is unlabeled in many scenarios, and on the

contrary, most of the approaches for tweet-level stress detection are supervised models.

To address this issue, a new semi-supervised approach based on logistic regression,

called semi-supervised method for tweet-level stress detection (SMTSD) is developed.

This utilizes semi-labeled data and the concept of sarcasm in computing the pseudo-

labels, thereby improving the performance of tweet-level stress detection. Though

iv



many approaches consider sarcasm as a useful attribute in the detection of stress

at tweet-level, sarcasm detection is a classification task in itself and is related to

emotion and stress detection. To this end, a multi-task approach for tweet-level

stress detection (MATSD) is proposed where deep neural networks are utilized for

the prediction of stress as the primary task using long short term memory (LSTM)

and sarcasm as an auxiliary task using convolutional neural network (CNN), sharing

a joint map layer. The simultaneous prediction of the tasks act as regularization and

helps in the betterment of the efficacy of tweet-level stress prediction. To conclude,

from this research, we propose different solutions for text-level stress detection by

maximizing the utilization of text data.

Keywords: Psychological stress, social media, twitter, data sparsity, tweet-level

stress detection, neighborhood tweets, sarcasm, logistic regression, PCA, kernel-PCA,

semi-supervised learning, self-training, multi-task learning, CNN, LSTM.
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Chapter 1

Introduction

The changing lifestyle across the globe has been a major propellant for health and

psychological disorders among people, especially youngsters. This is more pronounced

during the pandemic, where, sudden and harsh social isolations and lockdowns were

commonplace s [1]. Psychological stress is a physiological phenomenon of being in-

compatible with the surrounding environment [2]. The events that trigger the stress

are termed stressors [3]. Psychological stress, if it becomes chronic, can be a serious

amplifier of other physical health issues or diseases [4]. Also, depression has become

a general illness throughout the world with more than 264 million people suffering

from it [5]. More than half of the world’s population is experiencing a noticeable rise

in stress, as per the worldwide survey reported by Newbusiness in 20101.

Chronic stage of stress, which arises due to the persistence of stress with no

mitigation at early stages, can lead to multiple health problems and also affects sleep

patterns [6, 7]. According to the China Center for Disease Control and Prevention,2

extreme stress is concluded as a major aspect for suicide, which has become a top

cause for the death of youngsters in China. The COVID-19 pandemic had further

enhanced the prevalence of stress among people, especially among women [1]. In

the second and third most populous countries of the world, India and the USA, the
1https://www.newbusiness.co.uk/articles/entrepreneurs/mark-dixon-how-keep-staff-happy-and-

motivated
2https://theweek.com/articles/457373/rise-youth-suicide-china
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stigma for COVID-19 and other related matters had acted as a major stressor causing

anxiety among the people [8]. The consequences of chronic stress have been found

to be taking a huge toll on health with various physiological effects [9]. Moreover,

it is found that among youth, stress has both short-term and long-term effects on

health [10]. Stressors are the events that act as the cause of stress [11]. The early

detection of stress and identifying relevant stressors could prevent the persistence of

long-term stress. Compared to the sources in the traditional ways of detecting stress,

social media has evolved as a major pool of data for human emotions [12]. Moreover,

the long period of the pandemic has furthered the vulnerability to negative emotions

and psychological anxiety across the globe [13]. Hence, it is required to detect stress

among people beforehand, especially in preventing the chronicity of stress. The early

detection and diagnosis of stress would reduce the chances of stress turning chronic.

There exist many traditional methods to detect stress. The traditional methods

to detect stress employed electronic monitoring of the physiological activity apart

from well-known methods like interviews with psychiatrists, questionnaires, surveys,

etc [14–16]. In interviews with psychiatrists and the questionnaires, the process is

seen with social stigma by the patients and the affected [17–19]. Hence, in most cases,

these classical procedures of interviews and questionnaires, suffer from one of the two

problems- either the interviews would be avoided, or incorrect information would be

given. This makes interviews and questionnaires less dependable. The traditional

method of detecting stress using electronic monitoring of physiological signals are not

popular as they are seen as invasive to normal life. Furthermore, these electronic

device-based methods to detect stress are not cost-effective [17].

The traditional techniques, as seen earlier, are beleaguered with the challenge of

social stigma, less participation, and inaccurate data. In this scenario, there is a need

to detect stress through a mechanism where there exists voluntary participation of

people with a relatively lesser social taboo. Social media, especially microblogging

sites like X (formerly, Twitter)3 is well-known for the large participation of the public

[20] on their own discretion. Twitter and other related social media platforms like
3In this thesis, we use the old term Twitter as a substitute for the current name X.
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Sina Weibo have changed the mode of virtual interaction among the public and paved

the way for a consistent increase in the users of social media. They provide free and

fair media where users express their feelings and opinions with open minds and hardly

hide or fear social ramifications. Moreover, Twitter also captures the users’ opinions

on daily routines like lunch, meetings, interaction with friends, etc, in a timeline.

Hence, with the huge rise in their popularity, social media sites like Twitter are an

ideal choice for capturing the opinions of users with reliability [19]. In addition, they

provide an easy and effective way to collect the data through many tools.

Though social media is vulnerable to misinformation, it is an important part of

networking life where instant sharing of information, messages, and bringing up issues

is possible [20]. Therefore, using social media for stress detection is both feasible and

accurate [19]. However, this has many challenges throughout the data mining pipeline

- from the collection and cleaning of the data to the building of efficient models and

interpretation of the results. Various works in the literature of stress detection using

social media had addressed many of these problems [18, 19, 21–26].

The usage of social media for expressing opinions about COVID-19 pandemic de-

picts the potential of social media as an important source of public opinion data.

COVID-19 had devastated the daily lives of people all over the world, with more

than 409 million people infected and over 5.7 million deaths reported globally until

January 31, 20224. The pandemic has also changed the lifestyle due to isolation and

quarantines, which, along with an unhealthy diet, intensify stress, resulting in an

increase in cardiovascular illnesses, especially among women [1]. Also, the world’s

second and third most populous countries, India and the United States of America,

have been severely affected by the second and third waves of COVID-19, respec-

tively [8, 27] 5. And the impact was observed in social media usage as well as in

the population [28, 29]. Unsurprisingly, people during the period of isolation and

quarantine have increased their usage of social media communication with peers for

mobilizing emotional support—a process called the buffer effect [30]. Moreover, it
4https://covid19.who.int/
5https://www.sciencedaily.com/releases/2022/02/220210154230.htm
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is observed that due to the ripple effect of COVID-19, the pandemic is acting as a

stressor 6, impacting psychological stress on people of various walks of life, ranging

from students to migrant workers [31]. The greater reach of social media allowed

larger sections of society to express themselves. However, with the change in lifestyle

owing to the measures taken as part of COVID-19 control, there is an increased trend

of expressing negative emotions on social media [32]. The surge in negative emotions

reflected in tweets related to COVID-19 gives an opportunity to automatically detect

text-level stress. It is also understood that text features have the greatest individual

contribution to stress detection [17, 19]. All this further reinforce the importance of

social media as the source for detecting psychological stress.

With the gaining popularity of social media like Twitter and the need for early

diagnosis of stress, social media-based stress detection is an area of increasing re-

search interest [17–19]. The problem of detecting stress from a given social media

posting (tweet, in the case of Twitter) is modeled as a classification problem and

termed tweet-level or text-level stress detection [18]. Early methods of text-level

stress detection relied on crowd-sourcing for data collection. In addition, the labeling

for the data was either manual or through questionnaires [18, 19, 21–26]. Also, the

initial methods of stress detection were of binary classification by analyzing a given

text content of a tweet [21, 22]. Later approaches used multi-class models to classify

a text into different categories of stress [18, 24, 25]. In addition, the transmission

of misinformation and fake news about the epidemic via social media has long-term

consequences, particularly in terms of psychological health [33]. To this end, research

in social media-based stress detection has recently gained a lot of traction over tra-

ditional stress detection techniques, as the latter suffer from many inconsistencies in

data collection apart from social stigma [14–16]. Twitter data, especially tweets that

contain textual information, was widely used to detect stress [18, 19, 24, 34]. Hence,

in this thesis, tweet-level stress and text-level stress are used interchangeably.

To address the issue of text-level stress detection, social media-based stress detec-

tion methods gained traction in the research community [22, 23]. In early methods,
6Any event that acts as a trigger for stress is a stressor [3]

4



CHAPTER 1. INTRODUCTION

n-grams were used as features to represent text data and the problem is to detect

the stress from a given snippet of text’s features [21]. Hand-crafted features based

on text were used to represent text data in other social media-based text-level stress

detection methods [18, 25, 34]. Off late, deep-learning multi-modal approaches were

also proposed for detecting text-level stress using social media posts [18]. The text

content of the tweets had more role in determining the stress and therefore giving

scope for utilizing more information from text content. Sarcasm, a way of expressing

the content that contradicts the intention, or a kind of ironical statement, is said to

have an influence on the human emotional usage [35]. It is understood that sarcasm

is mostly used with known people by exchanging funny talk or actions [36]. Hence,

employing the sarcasm recorded in a given text-content as an additional information

or feature for determining stress will also be a case of increase in utilization of the

text-content for tweet-level stress detection.

Furthermore, all of these methods address the problem of text-level stress detec-

tion using supervised learning methods [3, 18, 34, 37]. Moreover, in many real-world

applications, it takes a great deal of effort to label the data given the fact that there is

a scarcity of labeled data and an abundance of unlabeled data. This requires methods

to utilize unlabeled data to improve the performance of supervised learning, which

leads to semi-supervised learning. Hence, it is required to devise semi-supervised

strategies for detecting text-level stress detection. Also, predicting sarcasm is a clas-

sification task on its own and is related to many human emotions. Hence, there is

a scope to develop sarcasm as an auxiliary task that helps in detection of stress.

Though deep learning-based solutions for the problem of text-level stress detection,

the solutions are mostly based on single-task-based approaches and there is ample

opportunity to utilize information from the related text-level classification problems

for better utilization of text data [3, 18, 19, 37, 38]. All these issues are addressed as

part of the objectives.
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CHAPTER 1. INTRODUCTION 1.1. MOTIVATION AND OBJECTIVES

1.1 Motivation and Objectives

As mentioned earlier, the detection of stress through the text-contents of the user’s

social media postings is very important for the early diagnosis and prevention of

stress. Social media microblogging sites like Twitter are suitable for capturing human

emotions. Hence, text-level or tweet-level stress detection approaches are widely

studied in the literature [17–19, 21–26]. However, the constraint on the size of the

tweet, of at most 280 characters since 20177 acts as a major challenge. The size limit of

tweets was 140 characters, earlier. According to Twitter, the additional space allotted

for tweets did not increase the average size of tweets significantly. Nevertheless, this

increase in the size of tweets improved the number of people who engaged online

apart from an increase in the number of mentions 8. However, the research in the

domain of tweet-level stress detection concludes that the linguistic or text attributes

are major contributors to the performance of detecting stress from tweets [17, 19].

This motivates us to explore the text content of the tweets for the betterment of the

tweet-level classification of stress.

In addition, the concept of sarcasm is widely used for expressing human emotions.

It is understood that sarcasm can be expressed in many ways in human and virtual

communication [39–41]. The usage of sarcasm in expressing opinions and other cases

shows that it is used mostly in a fun interaction with close pals or known persons [36].

Though there exist different forms of sarcasm in textual content, illocutionary sarcasm

captures the contradictory sentiment between the facial expression and the sentence

spoken [39, 40]. This illocutionary sarcasm can be adapted to the text contents of

the tweets and its effect in improving the performance of tweet-level stress detection

models could be studied. This gives ample motivation for exploring the effect of

sarcasm on tweet-level stress detection approaches. It is understood that for the

sarcastic tweets, which have inconsistency in emojis and text sentiment, the inherent

and the explicit meanings conveyed contradict each other. This gives scope to explore

the utilization of illocutionary sarcasm in detecting text-level stress detection. Figure
7https://blog.twitter.com/en_us/topics/product/2017/tweetingmadee asier.html
8https://www.theverge.com/2018/2/8/16990308/twitter-280-character-tweet-length
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Figure 1.1: An example of sarcastic and non-sarcastic tweet’s text

1.1 explains the concept of illocutionary sarcasm expressed through textual content

and emojis.

Though many traditional and social media-based tweet-level stress detection so-

lutions based on machine learning models are proposed in the literature, most of

them are supervised learning approaches, requiring huge amounts of labeled training

data [17–19,42]. In many real-world problems, it is hard to collect large labeled data.

As there is a scarcity of labeled data in many of the real-world problem domains

related to text-level stress detection, it leaves room to explore the semi-supervised

paradigms in building classifiers.

Though there exist few multi-task learning approaches for the detection of stress

[43], the possibility of utilizing multi-task learning to detect tweet-level stress in

conjunction with learning sarcasm, which is related to stress, is not explored in the

literature [18,19,38,42,44,45]. To better utilize information from text content, there

is a scope to develop multi-task learning with stress detection as the primary task

and a related task of sarcasm detection as the auxiliary task. This helps in better

7
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sharing of parameters and extraction of content from the text.

All the gaps mentioned above act as important motivations for formulating the

following objectives in this thesis:

1. Developing a model to detect tweet-level stress using neighborhood tweets. The

neighborhood tweet-based stress detection (NTSD) model also incorporates a

new feature called Sarcasm_Level.

2. Utilizing the concept of sarcasm to improve the performance of tweet-level stress

detection by penalizing the tweets with sarcastic content. In addition, the

dimensionality reduction techniques are utilized for better performance.

3. Developing a semi-supervised approach based on self-training for the tweet-level

stress detection problem by utilizing the information of sarcasm in the tweets.

4. Developing a multi-task learning-based approach for detecting tweet-level stress

with sarcasm detection as an auxiliary task.

1.2 Overview of Contributions of the Thesis

This section presents the chapter-wise contributions to the thesis. The following

subsections summarize the contributions corresponding to each chapter.

1.2.1 Neighborhood-based tweet-level psychological stress de-

tection

Tweet-level stress detection gained the interest of the research community. Never-

theless, the aforementioned reasons for size constraints on tweets pose a challenge of

data sparsity. The objective of this contribution is to develop a neighborhood-based

tweet-level stress detection (NTSD) mechanism that addresses the issue of data spar-

sity and also to include the concept of sarcasm as a feature for better utilization

of a tweet’s text information. For this purpose, initially, exploratory data analysis

8
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is performed to develop evidence and intuition for the similarity in the distribution

of tweets and their neighborhood tweets concerning a few statistics on class labels.

Consequently, based on this intuition, a novel neighborhood-based tweet-level stress

detection is developed and explained.

1.2.1.1 Formal description

Let D be the set of historical tweets collected from Twitter over a period of time,

given by
⋃
i xi, where xi is i-th tweet of the dataset belonging to some user u ∈ U . Let

|D| = N , where N represents the total number of tweets in the primary dataset and

yi ∈ {0, 1} gives the stress label of tweet xi. Let, Dδ be the set of neighborhood tweets

within the neighborhood window δ for each tweet in primary dataset, D. Formally,

Dδ =
⋃N
i=1

⋃Nδ

j=1 xi
j, where, xi

j is the j-th previous tweet corresponding to the primary

tweet xi of user u under the neighborhood window δ and Nδ is maximum possible

neighborhood tweets for any primary tweet allowed under the neighborhood window

δ. And, the size of this dataset is N < |Dδ| ≤ NNδ. Therefore, based on the principle

of NTSD, the proposed NTSD approach aims to optimize the following loss function

Therefore, based on the principle of NTSD, neighborhood tweets should also be

considered in training the datasets for text-level stress detection , to compute weights

w and predictions of logistic-regression-based prediction, the likelihood function for

the proposed model is defined as follows:

f(w) =
N∑
i=1

{
yi log(p(xi)) + (1− yi) log(1− p(xi))

}
+

N∑
i=1

Nδ∑
j=1

{
yi log(p(xi

j)) + (1− yi) log(1− p(xi
j))

}
(1.1)

1.2.1.2 Research Findings:

Based on the experiments conducted as part of the work on the datasets collected

using tweepy API, it is observed that the neighborhood tweets of current tweets have

9
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similar distribution on few statistics with respect to class labels. In addition, from

the experiments executed on the proposed NTSD model and other baseline machine

learning classifiers like LR, SVM, and RF, it can be noted that the proposed NTSD

outperforms the other models significantly when previous tweets are included. More-

over, when the new attribute Sarcasm_Level was considered, there was a significant

improvement in the performance of all the models.

1.2.2 Sarcasm-based tweet-level psychological stress detec-

tion

It is understood from the previous contribution that sarcasm as an attribute has

an important role in improving the performance of the tweet-level stress detection

model. Also, from the previous contribution, it can be seen that the problem of

constraint in tweet’s length is addressed through the model called NTSD. The usage

of neighborhood tweets of the user for the current in detecting the stress of the

current tweet forms the crux of NTSD. In addition, a new attribute called Sarcasm_-

Level was proposed to increase the utilization of the textual information. The results

show that the usage of sarcasm and neighborhood tweets improved the performance,

Nevertheless, this approach has its own shortcomings. One, the usage of neighborhood

tweets makes the process data-intensive and computationally slow. In addition, the

large number of hand-picked attributes affect the performance of the model. The

sarcasm present in the tweet’s text content can be utilized to better exploit the

textual information present in the tweets. The objective of this contribution is to

develop a sarcasm-based tweet-level stress detection method called sarcasm-based

tweet-level stress detection, STSD, which uses information from sarcasm in logistic

loss for better utilization of text content. The aim is to maximize the loss for sarcastic

tweets and to minimize the loss for non-sarcastic tweets. This is due to the observed

fact that sarcastic expression is mostly used to express happiness and exchange with

friends [36]. In addition, it is also verified if the usage of the dimensionality reduction

10
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techniques improves the performance of the model.

1.2.2.1 Formal Description

The principle of the proposed STSD is to utilize the information from sarcasm by

penalizing the loss of sarcastic tweets. For this purpose, a new loss function based on

logistic regression loss was proposed to include the sarcasm attribute. If xi is a tweet

feature vector and let the set of tweets,
⋃
i xi forms the training dataset D, whose

corresponding class label is yi, and if the Sarcasm_value of the tweet xi is si, then

the proposed STSD model learns weights by optimizing the following loss function:

f(w) = −
N∑
i=1

(1− si)
{
yi log(p(xi)) + (1− yi) log(1− p(xi))

}
+

N∑
i=1

si

{
yi log(1− p(xi)) + (1− yi) log(p(xi))

}
(1.2)

1.2.2.2 Research Findings:

Based on the experiments conducted as part of the work on the datasets collected

using Tweepy API, it is observed that the proposed STSD model outperforms other

basic ML models like LR, SVM, RF, etc. Apart from the above, the proposed model

also records better performance than the NSTD approach with no previous tweets.

In addition, it is observed that all the models record an improvement in performance

after applying the dimensionality reduction techniques like kernel-PCA. It is noted

that the proposed STSD records the highest improvement after application of poly-

nomial kernel PCA. The case study conducted also validates that the proposed STSD

outperforms all other basic ML models.

11
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1.2.3 Semi-supervised approach for tweet-level psychological

stress detection

Many studies in the literature on social of tweet-level stress detection utilize super-

vised learning mechanisms for building classifiers [17, 46]. However, real-world data

is often largely unlabeled. Hence, the tweet-level stress detection mechanisms need

to develop models in semi-supervised mechanisms for better handling real-world sce-

narios. The objective of this contribution is to develop a semi-supervised approach

for the detection of stress at tweet-level by utilizing text content. To this end, in

this chapter, a new model based on the self-training approach for the semi-supervised

paradigm called the self-training method for tweet-level stress detection (SMTSD), is

developed. This model utilizes the text information in the tweets’ textual content to

compute sarcasm value, which is later used to finalize the pseudo-labels computed as

part of the self-training process. This approach, therefore, proposes semi-supervised

solutions for tweet-level stress detection, which can be useful in real-world cases,

where there is a paucity of adequate labeled data.

1.2.3.1 Formal Description

The principle of the proposed SMSTD is to utilize the information of sarcasm in

tweet-level stress detection in a semi-supervised method of self-training approach.

The concept is to invert the pseudo-labels of sarcastic tweets and append the modi-

fied pseudo-labeled data to the existing labeled dataset. Let xL
i and xνi denote the Let

D be the dataset containing a small amount of labeled tweet data, DL = {xi
L, yLi } for

the tweet vector xi
L ∈ DL users u ∈ U , and a large amount of unlabeled tweet data

Dν = {xi
ν}, for the users w ∈ U . Also, let the set of tweet features in labeled training

data is DL
X = {(x|(x, y) ∈ DL)}. If DL

TR is the training part of D̃ is the pseudo-labeled

data updated based on sarcasm values, then the combined loss function which the

proposed SMSTD needs to be optimized is given as follows:
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Combined_Loss =
|DL

TR∪D̃|∑
j=1

l(y∗j , ĝ(xj, γ)) (1.3)

where, l() is the cross-entropy function as defined in equation 5.2. Also, y∗j is the

labels of combined data, DL
TR

⋃
D̃. While ĝ is the sigmoid function for the given

tweet vector, xj ∈ DL
TR

⋃
D̃, ∀j ∈

{
1, 2, ...|DL

TR

⋃
D̃|

}
1.2.3.2 Research Findings:

The datasets used for this contribution are collected using Twitter tweepy API and

a small part of them are labeled manually by experts. This partially labeled data is

used to build the models. From the results obtained from the experiments conducted,

it is noted that the proposed SMTSD model outperforms all the basic supervised

models like LR, SVM, RF and NB. In addition, when the basic ML models are also

used as base classifiers implemented in the semi-supervised self-training paradigm,

the proposed SMTSD outperforms all other self-training approaches. Furthermore,

the ablation study was conducted to view how the proposed SMTSD outperforms the

basic traditional self-training approach without the inclusion of sarcasm.

1.2.4 A multi-task learning-based approach for tweet-level

stress detection

Earlier contributions have shown the importance of illocutionary sarcasm as an at-

tribute in both supervised and semi-supervised models. As sarcasm detection for a

given piece of text turns out to be a classification problem, there is ample scope to

consider sarcasm detection as a related task contributing to the task of early stress

detection [17,42,46]. The objective of this chapter is to develop a deep-learning-based

approach to tweet-level stress detection. In addition, the objective is to utilize the

information from sarcasm in the text to help improve the performance of stress. To

this end, a multi-task learning paradigm-based deep learning solution called Multi-

13
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task approach for tweet-level stress detection (MATSD) is developed. In addition,

the contribution of individual components of the architecture is also analyzed. For

this purpose, an ablation study is performed. Also, the performance of the model

needed to evaluated against the state-of-the-art techniques.

1.2.4.1 Formal Description

The proposed MATSD involves joint training of all the models (tasks) that are part

of the multi-task framework. In order to achieve this, the loss of the multi-task model

needs to be minimized. However, the loss of the model is characterized as the sum of

losses of constituent tasks. Hence, in the MATSD, the total loss of the model is given

as the weighted sum of the losses of tasks of sarcasm and stress. If D = (xi, ysi , yai )
N
i=1

is the dataset of size N consisting of tweet (xi) along with the labels for both stress

(ys) and sarcasm (ya), the total loss to be optimized by the MATSD is given by the

following equation:

LT (α)← λ1Ls + λ2La (1.4)

Where λ1 and λ2 are the weights for the losses of tasks. While Ls and La are losses

corresponding to stress and sarcasm tasks, respectively. They are defined based on

the cross entropy loss [47] as follows:

Ls =
N∑
i=1

{
ysi log(hβ,θ(xi)) + (1− ysi )(log(1− hβ,θ(xi)))

}
(1.5)

La =
N∑
i=1

{
yai log(hγ,θ(xi)) + (1− yai )(log(1− hγ,θ(xi)))

}
(1.6)

1.2.4.2 Research Findings:

From the implementation and evaluation of the proposed model and other baseline

models, it is observed that the proposed MATSD outperforms the basic ML models

in terms of accuracy and F1-score. In addition, it can be noted that the proposed

MATSD model records a statistically better performance than the state-of-the-art
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methods. The usage of sarcasm as an auxiliary task helped in improving the perfor-

mance, as seen from the ablation study. Furthermore, the sigmoid link between the

two tasks also helped in increasing the performance of stress detection, as observed

in the ablation study. This makes the proposed MATSD approach paves way for

multi-task learning approaches for detecting tweet-level stress.

1.3 Performance Metrics used in the thesis

To analyze the performance and effectiveness of the developed model against the other

standard models, the popular metrics of Accuracy and F1-score are utilized. These

two are the main measures are used in the thesis for performance evaluation of the

proposed models with the existing models.

Accuracy: The number of correctly classified data points among all data points

used for testing. [48]. The predicted data points are categorized into the following

categories:

• True positives (TP): The number of stress positive test samples correctly

classified by the model.

• True negatives(TN): The number of stress negative test samples correctly

classified by the model.

• False positives (FP): The number of stress negative test samples incorrectly

classified by the model.

• False negatives (FN): The number of stress positive test samples incorrectly

classified by the model.

Then, the accuracy is computed as:

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(1.7)

15



CHAPTER 1. INTRODUCTION 1.4. ORGANISATION OF THE THESIS

F1-Score: It is the harmonic mean of precision and recall. If precision, a, is the ratio

of correct predictions among all predictions and if recall, b, is the ratio of correct

predictions out of the total actual observations [49], then F1-score is defined as;

F1− score = 2× a× b
(a+ b)

(1.8)

1.4 Organisation of the Thesis

The thesis focuses on investigating various machine-learning approaches for psycho-

logical stress detection at the text level. In addition, the thesis focuses on incorpo-

rating the concept of illocutionary sarcasm in the prediction of stress at text level.

To this end, supervised models like NTSD and STSD are proposed along with an em-

pirical analysis of the performance of these models on various datasets. In addition,

the semi-supervised paradigm, called SMTSD, was developed for text-level stress de-

tection and studied with extensive empirical experiments. Moreover, the thesis also

discusses the deep-learning-based multi-task learning model called MATSD for the

classification of text-level stress. The thesis is organized into seven chapters.

Chapter 1: This chapter presents the introduction and broad topics related to the

thesis. In addition, a crisp and short description of the research objectives is

also presented in this chapter.

Chapter 2: This chapter covers a thorough and detailed review of the problem of

text-level stress detection.

Chapter 3: This chapter presents a detailed and formal approach for tweet-level or

text-level stress detection. In addition to the collection of the data, extensive

pre-processing is performed to get an intuition of the usage of neighborhood

data. The concept of sarcasm is used as an attribute, to improve the perfor-

mance

Chapter 4: In this chapter, the new supervised model of STSD is employed to
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predict tweet-level stress. It also gives tries to investigate the role of the PCA

in text-level stress detection.

Chapter 5: This chapter presents a model with semi-supervised learning. Self-

training mechanism of semi-supervised paradigm, called SMTSD, is employed

to implement tweet-level stress detection. In addition, extensive experiments

were conducted to understand the effectiveness of a semi-supervised approach

Chapter 6: This chapter proposed a deep-learning model for detecting tweet-level

(text-level) stress. The multi-task learning approach is presented in this chapter

to detect the primary task of tweet-level stress with the help of auxiliary task

of sarcasm.

Chapter 7: This chapter presents the conclusion and future work for the thesis.
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Chapter 2

Literature Survey

This chapter presents a detailed background literature for the text-level 1 stress de-

tection problem. In this chapter, initially, the traditional stress detection approaches

are presented. Later, the details of various methods in social media-based tweet-level

stress detection approaches are presented. In addition, the role of sarcasm and di-

mensionality reduction are discussed. Also, the multi-task learning solutions in the

problems related to tweet-level stress detection are discussed. The chapter concludes

with the summary and major gaps found in the literature.

2.1 Social-media-based stress detection approaches

2.1.1 Issues with traditional methods of stress detection

Traditional methods used to detect stress through signals from wearable sensors or

from personal interviews with psychiatrists, questionnaires and feedback [14–16]. But

most of them suffer from the fact that they are not proactive in detecting the stress.

In addition, they suffer from the quality of data as the procedure of data collection

is error-prone, preoccupied with labour and as most users don’t prefer to undergo

such a process due to social stigma. Moreover, some of the traditional methods
1As mentioned in chapter 1, most of the literature for detecting social media-based text-level stress

detection is based on twitter datasets, hence, the tweet-level and text-level are used interchangeably
throughout the thesis.
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use wearable sensors to monitor physiological activity for detecting stress. But this

method interferes with normal life making people to avoid it. Hence, social media-

based approach for detecting stress has gained prominence over traditional methods.

2.1.2 Early social media-based approaches

Numerous studies have been conducted on the methods used to detect health-related

issues using social media [50]. But detecting mental health-related issues is difficult

because psychological health issues or stress in social media data is reflected by subtle

changes in the behavior and language used [21]. The possibility of utilizing social

media to identify and diagnose the commonly occurring mental illness like major

depressive disorder is explored in [22]. An advance prediction of significant variations

in the behavior of mothers during the postpartum period is studied in [23]. In [51],

a simple keyword-based classifier is developed to determine the sentiment in short

messages like tweets. Beyond depression, detecting post traumatic stress disorder

(PTSD) using social media postings was first studied in [21]. The broader set of

mental health illnesses are analyzed for intuitive linguistic signals from social media

postings in [52], indicating that Twitter and other social media are a good source for

getting unique quantifiable signals of human behavior [21]. An improved microblog-

based system to detect stress in teenagers in advance and help them to overcome

the stress was proposed in [53]. Wherein, Gaussian process-based classifier is used to

detect the tweet-level stress, which is later aggregated to compute user-level stress in

that category [53]. Despite throwing new light on the approaches to detect stress using

social media, the above techniques suffer from either of the following two drawbacks.

First, they depend upon manual filtering for labeling the data [21,52], which is time-

consuming and laborious. Second, they are based on the data collected through

crowdsourcing and surveys [22, 23], which takes time and is erroneous because many

individuals avoid taking surveys.

Adolescent stress is detected using tweets of teenagers in [25] by extracting various

linguistic features and classifying the detected stress in each category into six levels

in the integer range [0,5]. But there is no justification provided in [25] for using
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the dependency tree to label training data. In [34], the effect of the sensitivity of

time-based comment and response interactions on detecting the stressful state of

a user is analyzed. It does not consider the importance of neighborhood tweets

of the given tweet of the user for identifying stress. Moreover, the labeling scheme

employed in [34] is a manual procedure, which is a major drawback. Different patterns

of adolescents’ stress based on microblog postings of teens are considered in [26].

Chronic stress is computed with the aggregation over individual tweet-level stress

states [26]. Similar to earlier approaches, this scheme suffers from the significant

drawback of using questionnaires as the ground truth for labeling data [26], making it

less applicable. In [54], an intelligent system, TensiStrength is proposed for automatic

detection of stress state from a wealth of short text messages, so as to use this

information in other applications like intelligent transport systems. But, it does not

consider the impact of neighborhood messages in detecting stress levels in a given

message. In [55], a web-based application is proposed for determining the depression

state of Twitter users based on the sentiment of their tweets. However, it did not

explore the impact of neighborhood tweets.

2.1.3 Deep learning-based text-level stress detection approaches

The problem of detecting stress using techniques of deep learning is gaining research

interest. [18] is an initial work that uses deep sparse neural network to detect whether

a given tweet reflects the stressed state of its author. This approach labels training

data based on the ground-truth that the words in hashtags of the tweets represent

the opinion of the user, which turns out to be the major shortcoming because it is

intuitive that hashtagged phrases may not correctly reflect the perspective of the user.

In [24], several hand-selected features such as linguistic and statistical attributes are

computed at the tweet and user levels, respectively, and then fed into a convolutional

neural network to generate modality invariant attributes at the user-level. After

that, a model based on a deep neural network is designed to solve the problem of

detecting stress, with modality invariant attributes as input [24]. In [3], a rich set

of features that are oriented towards stress are extracted to identify stressor subjects
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and stressor events from a given social media posting, where a multi-task learning

model is employed. Also, [3] uses convolutional neural networks to learn tweet-level

features from word-level vectors. But the procedure relies on manual labeling of

data, making it infeasible to scale for larger datasets. According to [19], the authors

have proposed a hybrid model of convolutional neural network and partially labeled

factor graph to solve the problem of detecting the user-level stress. In addition, [19]

had performed a systematic investigation on the correlation of users’ stress states

and social interaction networks; wherein it was concluded that stressed users have

14% higher sparse connections than non-stressed users. In the works, [3, 19, 24], the

training data is labeled based on the presence of tweets with sentence patterns like “I

feel stressed” or “I feel stressed this week”, as it is proved that “I feel” based sentence

patterns are effective in the emotional analysis [56]. Therefore, the preceding works

[3,24], suffer from the major drawback of lacking time-sensitive analysis of comment,

response interactions and also there is no study on the effect of neighborhood postings

of the user in the tweet-level stress detection.

In [57], big data framework like Apache Spark and several word embeddings are

exploited to develop a method in order to operate a multi-class multi-label classi-

fication of a discussion within a range of six classes of toxicity. But it does not

consider the impact of sarcasm and previous comments. Recently, [38] proposed a

deep learning-based fusion net model to detect depressed users based on multi-task

learning of text based vectors and statistical features. Though this work aims to max-

imize the utilization of the text content of the tweets, it does not address the impact

of immediate previous tweets. In [58], a deep learning approach based on convolu-

tional neural networks(CNN) and long short term memory(LSTM) is presented to

detect the sentiment in tweets with the extraction of various features with word2vec

and stopwords to capture the context. [59] explores a deep learning-based solution

for detecting clickbaits in social media posts, which may mislead the users and affect

their stress levels. But both of these works fail to capture the importance of im-

mediate previous tweets. In [60], a machine learning-based approach is developed to

detect clues of depression in the text. It presents an method for identifying depressive
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profiles on Twitter using machine learning, sentiment analysis, and natural language

processing techniques. However, the impact of neighborhood tweets in detecting the

stress level of the present tweet has not been investigated.

2.1.4 Need for Semi-supervised approach for tweet-level stress

detection

Semi-supervised techniques fall somewhere between supervised and unsupervised tech-

niques and are useful when there is a large amount of unlabeled data but only a small

amount of labeled data available [61]. This case is true for the problem of social media-

based text-level stress detection [19, 45]. There were few deep learning-based solu-

tions utilizing semi-supervised mechanisms for detecting user-level stress [19, 62, 63].

However, the tweet-level stress detection approaches using classical machine learning

approaches are all based on supervised learning models [25, 34]. Furthermore, even

the deep learning-based solutions for the tweet-level stress detection are largely based

on supervised learning approaches [18, 37]. Hence, it is concluded that there is a

gap in applying semi-supervised learning techniques to tweet-level stress detection.

There also exists scope to utilize information from sarcasm in the paradigm of semi-

supervised solutions for tweet-level stress detection, as sarcasm in conjunction with

semi-supervised models was not explored in existing literature [17, 19, 37, 62, 63].

2.2 Role of Sarcasm and dimensionality reduction

2.2.1 Sarcasm

Sarcasm is a type of communication wherein the meaning conveyed is the opposite

to the meaning stated explicitly [64]. In [65], a behavioural modelling framework is

employed to detect sarcasm in users’ tweets. It is proposed in [66] that for the effective

automatic recognition of sarcasm in Twitter data, both text content features and

authorial style criteria are required. In [67], a fuzzy-logic-based approach is presented

for detecting sarcasm in tweets and classifying sarcasm into four categories based on
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the intensity of hurt in the statement. The impact of sarcasm, embedded in the text

content of the tweet, on detecting stress is not studied in the literature [14,17–19,24].

Essentially, sarcasm is a way of expressing verbal irony intended to convey contempt

or ridicule 2. There is a mention of four different types of sarcasm in [39, 40] :

i) Propositional sarcasm: A situation in which the meaning of the proposition

made is opposite to the explicit meaning. For example, ”You sound fantastic!”

may be interpreted as non-sarcastic without the context.

ii) Embedded sarcasm: In this type of sarcasm, there is an embedded incompati-

bility in the expressed words or phrases. For example, in the sentence “John has

turned out to be such a diplomat that no one takes him seriously.”, the incom-

patibility is embedded in the word of ”diplomat” and rest of the sentence.

iii) Like-Prefixed sarcasm: A Like-phrase is used for the denial of immediate

meaning conveyed. For example, the sentence “Like you care!” is a common

sarcastic response.

iv) Illocutionary sarcasm: In this case, sarcasm is expressed with non textual

clues, like facial expressions to convey an inverted sentiment and attitude to a

sincere utterance. For example, rolling one’s eyes when pronouncing the phrase

“Yeah right”.

In this work, a new feature called Sarcasm_Level is computed based on the concept

of illocutionary sarcasm, where facial expression is represented in the form of emojis,

by the users, to exhibit the sarcasm.

2.2.2 Importance of sarcasm in stress detection

The aim of this thesis is to develop a binary classifier to detect stress at tweet-

level using information of sarcasm. And the problem addresses to develop a binary

classifier that learns from the features of textual data. Though most of the literature

on tweet-level stress uses multi-class classification, there are a few binary classification
2https://www.thefreedictionary.com/
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approaches as well [68,69]. The detection of psychological stress is of high importance

during and after the COVID-19 pandemic era, where there is a wide presence of mental

health problems [70] . Moreover, the utility of sarcasm, which exists in the tweet’s text

data, in detecting stress is yet to be explored to its full potential. Sarcasm, a word play

that hides the original intent of the speaker, has an important role in conveying the

opinion of users and affects their mood [41]. Sarcasm is subjective and is relatively

tough to detect as compared to sentiment. However, few studies have concluded

that sarcastic conversations can have a different emotional impact compared to non-

sarcastic responses [35]. In much of the existing work related to stress detection, the

role of sarcasm is not investigated thoroughly [18, 19, 21–26]. The main intention of

the usage of sarcasm is to express a contradictory emotion than what is explicitly

specified. Furthermore, it is noted that sarcasm, as an expression of humour, can

be seen as an increase in creativity [71]. Due to the implicit presence of sarcasm

within the tweet’s text content, the influence of sarcasm in the stress detection helps

in maximizing the utilization of information from the text. In this regard, the work

in [45] had employed a new attribute whose computation is derived from the principle

of illocutionary sarcasm in order to capture sarcasm to improve the performance of

stress detection.

In [45], the authors have proposed two solutions for overcoming the problem of

sparsity in the detection of stress at the granularity of tweets. First, an attribute

called Sarcasm_Level is extracted to reflect the sarcasm that exists in the content

of a tweet for the detection of tweet-level stress. Second, a novel method called

Neighborhood-based Tweet-level Stress Detection (NTSD) is proposed to utilize the

information from neighboring tweets to increase the availability of related data. And

it was concluded that the use of sarcasm as a binary-valued feature helps in increasing

the performance of stress detection. Also, the NTSD in combination with the new

attribute outperforms all the basic models considered. But the model has an overhead

as it includes the content of neighborhood tweets as well.

Sarcasm is a form of expressing irony where the literal meaning contradicts the

intended meaning. Though sarcasm is complex and subjective, few studies have con-
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cluded that sarcastic conversations can cause a different and contradictory emotional

impact than non-sarcastic responses [35]. Furthermore, usage of sarcasm is observed

to be more prevalent during ”funny” movements and targeted towards known per-

sons [36]. All this helps to frame a new model that utilizes the information from

sarcasm to detect stress.

2.2.3 Dimensionality reduction

Dimensionality reduction analysis for improving the performance of tweet-level stress

detection is not addressed in the literature [3,18,19,26,34,45,72]. It is observed that

Kernel Principal Component Analysis (PCA) helps in obtaining the dimensionality

reduction when the classes are linearly non-separable [73]. The reasons for choosing

PCA over other dimensionality reduction methods are listed as follows:

• There are many dimensionality reduction techniques that rely on the use of clas-

sifiers, such as forward selection, chi square, backward selection, etc. Whereas,

PCA is an unsupervised dimensionality reduction technique and hence does not

use any classifiers for the reduction of dimensions [74].

• The data taken is replete with many sparse values in many of the features, and

hence there is a need for a dense representation of the feature sets. This is

possible with a linear or nonlinear combination of the original features, unlike

simple feature selection algorithms, which just remove the features, making

little change in the sparsity of the feature values.

• PCA captures the distribution of datasets and selects the directions with the

highest variations for projections, making a new projection to capture most of

the information within a smaller number of dimensions with only a small loss

of information [47, 75].
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2.3 Multi-task approach for tweet-level stress de-

tection

The concept of simultaneous learning of multiple related classification problems using

a single model from a given data can be termed multi-task learning [38, 44, 76]. The

simultaneous learning of multiple tasks is similar to regularization with each task

acting as regularizer to the other task. This could lead to better models with the

sharing of information of parameters [47].

2.3.1 Multi-task approaches in related problems

Though multi-task learning (MTL) approaches were not explored in the solutions for

text-level stress detection, they are explored in other closely related text classification

problems of depression and complaint detection [38, 44].

In [76], one of the earliest approaches using MTL mechanisms for mental health

and suicide risk on social media data, apart from mental health issues, gender is

predicted as an auxiliary task, and the conditions of health are considered as different

tasks in MTL. Nevertheless, this work did not consider the influence of sarcasm in

detecting stress.

MTL-based CNN architectures were developed by considering the multi-input

strategy of emotional categories in [43]. This model was developed for detection of the

related mental illness tasks like depression and post-traumatic stress disorder (PTSD)

in a multi-task framework using multi-channel CNN architecture. It is concluded in

the work that despite the lack of availability of large training data, the performance

achieved is high due to the shared information across the tasks. However, this work

did not consider the influence of sarcasm, in detecting stress.

In 2021, [44], there is a novel approach to develop an MTL mechanism to predict

emotion and personality traits by providing a variety of information flow gates be-

tween the networks of two tasks at various levels. Nevertheless, the utilization of text

information like sarcasm is not considered in the work. In [77], a multi-task learning
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approach is developed to detect sentiment from social media postings using complaint

detection as an auxiliary task. The pipe-lined architecture in the model is based on

a Bi-directional gated recurrent unit (Bi-GRU) and the complaint predicted is used

for sentiment detection [77].

In all of these works the concept of sarcasm was not utilized in detecting stress

as part of multi-task learning. As stress and sarcasm are related tasks, there is a

need for developing a multi-task classifier that depicts the utility of sarcasm in the

detection of stress. In this thesis, a few of the state-of-the-art multi-task learning

approaches are adopted to stress detection, for better validation and comparison of

the proposed system.

2.3.2 Sarcasm as an auxiliary task in related problems

Sarcasm can be defined as an expression where the explicit intention conveyed is

the opposite of the actual intention and hence, sarcasm can affect stress and human

emotion [40]. Earlier literature proved that sarcasm in the textual part of the tweet

affects the stress state of the tweet [45]. Also, multi-task learning-based techniques

utilize sarcasm as a task related to emotions. In [78], a multi-task learning approach

was employed in developing generalized embeddings called Emo2Vec. The concept is

based on a multi-task learning mechanism with the utilization of information from

six related emotions, including stress and sarcasm. This gives a clue that sarcasm

and stress are related tasks, giving better performance than existing embeddings,

especially on smaller datasets. In [42], the authors develop a semi-supervised scheme

to detect tweet-level stress by utilizing information of illocutionary sarcasm in filtering

of the pseudo-labels. Hence, from the above literature, it is intuitive that sarcasm

helps in better capturing of the stress that exists in the user’s tweet. Therefore, there

is a scope to develop a multi-task-based model, where stress is the primary task and

sarcasm is considered as the auxiliary task that influences the detection of stress.
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2.4 Summary

In essence, most of the social media-based text-level stress detection literature relied

on only current tweets, making way for the problem of data sparsity. In addition, the

related concept of sarcasm is not examined for its role in improving the performance

of tweet-level stress detection models. Hence, as a part of this thesis, the problems

of data sparsity and usage of sarcasm in tweet-level stress detection are addressed.

It is known that in the real world, finding or building large labeled datasets for

classification is a tough task and the same applies to the problem of tweet-level stress

detection. This motivates in exploring the semi-supervised approach in this thesis to

develop classifiers for the tweet-level stress detection as it is observed that most of the

models in existing literature related to tweet-level stress detection employ supervised

learning approaches. Sarcasm identification is found to be a related task for tweet-

level stress detection. From the literature, it is found that there is an acute lack of

multi-task learning approaches to detect tweet-level stress. Furthermore, the scope

to explore the understudied concept of using sarcasm as an auxiliary task in the

paradigm of multi-task learning to detect tweet-level stress.
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Chapter 3

Neighborhood-based Tweet-level

Stress Detection

As discussed in chapter 1, this chapter proposes two solutions for solving tweet-level

stress detection problem. It considers the information from neighborhood tweets and

the sarcasm present in the tweet.

Organization of the chapter:

The chapter is organized as follows. Section 3.1 discusses the problem formulation,

including the formal notations used in the chapter. The proposed NTSD model and its

training are discussed in sections 3.2. The attributes used in the models including the

proposed new attribute of Sarcasm_level is discussed in section 3.2.1.1. Whereas,

the experimental setup and the data collection procedure are briefed in section 3.3.

The results and the findings of the proposed model are presented in section 3.4.

Finally, the summary of the chapter was presented in section 3.6.

3.1 Problem Formulation

In this chapter, we propose a novel neighborhood-based tweet-level stress detection

approach. All the notations used in this chapter are summarized in the Table 3.1.

Let U be the set of users and let x be the tweet posted by a user u ∈ U . Let

y ∈ {0, 1} is the stress label for the tweet x. The datasets of tweets considered for the
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model is composed of two sets, primary and auxiliary. Before defining the problem,

few definitions are presented.

Table 3.1: Notations used in the NTSD model and their definitions

Notation Definition

U Set of users

u Any user u ∈ U ,where U is set of users

xi i-th tweet (tweet feature vector) in primary dataset D and belongs to some user u

N Total number of tweets in the primary dataset D

M Total number of features or dimensions (Length of feature vector)

δ The neighborhood window

Nδ Maximum number of previous tweets considered for a given tweet under neighborhood window δ

xi
j The j-th previous tweet corresponding to the primary tweet xi of user u under the window δ

xim The m-th feature value of primary tweet xi, where m ∈ {0, 1, ...,M}

xijm The m-th feature value of auxiliary tweet xi
j, where m ∈ {0, 1, ...,M}

D The set of labeled primary tweets collected for analysis.

Dδ Set of auxiliary tweets collected from primary tweets dataset under window δ

yi ∈ {0, 1} Stress state label corresponding to tweet xi ∈ D

yij ∈ {0, 1} Stress state label corresponding to neighborhood tweet xi
j ∈ Dδ

Y Set of class labels for primary dataset, D

w The feature weight vector of size M , w = [w1,w2, ...,wM ]T

f(w) The log-likelihood function of the proposed model

(DTq , D
Tq
δ ) Training data sample corresponding primary tweets dataset, D, and auxiliary tweets dataset, Dδ

(DVq , D
Vq
δ ) Validation data sample corresponding primary tweets dataset, D, and auxiliary tweets dataset, Dδ

Ŷq Predicted class labels for validation sample of primary tweets, DVq

∇f Gradient of the objective function, f(w) with respect to parameter vector wT

∇fi Gradient of the objective function at ith training example with respect to parameter vector wT

∆w The change in weight vector wT

η Learning rate

P (yi|xi) Prediction probability of class yi for primary tweet xi

P (yi|xi
j) Prediction probability of class yi for auxiliary tweet xi

j corresponding to primary tweet xi

Pc

(
yi

∣∣∣xi,
⋃
j xi

j

)
Combined prediction probability of class y for tweet xi when the set of auxiliary or previous tweets are also considered

α The weight for prediction probability of primary tweet

γk The weight for prediction probability for kth auxiliary tweet, 1 ≤ k ≤ Nδ

v The number of tress in the Random forest

h The average depth of the trees in Random forest classifier

Definition 1 (Primary tweet dataset): Let D be the set of historical tweets

collected from the Twitter over a period of time, given by
⋃N
i=1 xi , where xi is i-th

tweet of the dataset and the tweet xi belongs to some user u ∈ U . Let |D| = N ,

where N represents the total number of tweets in the primary dataset and each of
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the tweets in this dataset are labeled, where yi ∈ {0, 1} gives the stress label of tweet

xi. In this chapter, the terms primary tweets, present tweets and current tweets are

used interchangeably.

Definition 2 (Neighborhood window): The neighborhood window, denoted

by δ, provides the limit on the set of most recent tweets for each tweet in the primary

dataset. That is, it is the set of the most recent tweets considered from the current

tweet of primary dataset. For any given window δ, let Nδ be the maximum possible

neighborhood tweets allowed in the window for any tweet in the primary dataset.

Definition 3 (Auxiliary tweet dataset): Let, Dδ be the set of neighborhood

tweets within the neighborhood window δ for each tweet in primary dataset, D.

Formally, Dδ =
⋃N
i=1

⋃Nδ

j=1 xi
j, where, xi

j is the j-th previous tweet, of user u, corre-

sponding to the primary tweet xi of same user u under the neighborhood window δ

and Nδ is maximum possible neighborhood tweets for any primary tweet allowed un-

der the neighborhood window δ. And, the size of this dataset is N < |Dδ| ≤ NNδ. It

is to be noted that we do not consider time-frame in this approach. We only consider

count of previous tweets

Problem Definition: Given a set of labeled tweets (D) and corresponding aux-

iliary tweets (Dδ), the problem is to learn a function g that predicts a label for any

unlabeled tweet xr by incorporating the content from its auxiliary tweets
⋃
j xr

j con-

sidered under neighborhood window δ. The function g is the tweet classifier which

is described as g : D ⊗ Dδ → C, where, D ⊗ Dδ is the collection of tweets along

with the corresponding previous tweets, and C is the set of unique labels used in the

classification (here, C = {0, 1}). Then, the classifier g is used to learn the unknown

label yr of the unlabeled tweet xr based on the content of the neighborhood tweets⋃
j xr

j as following:

yr = g
(
xr,

Nδ⋃
j=1

xr
j
)

(3.1)

where yr ∈ {0, 1}
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3.2 Methodology

3.2.1 The Framework of the Model

Basic framework of the proposed model is depicted in figure 3.1. The primary tweets

are collected by crawling over Twitter using Twitter’s API tweepy and for each primary

tweet, the corresponding neighborhood tweets of the user of the tweet are collected.

Following this, all the required features are extracted for both sets of tweets. Later,

the proposed NTSD model is trained using the feature vectors of primary tweets and

the corresponding auxiliary tweets. The trained NTSD model is then used to predict

the stress-state label of any unlabeled tweet by utilizing the information from the

content of the given tweet and its immediate previous tweets.

Figure 3.1: Framework of the NTSD model

3.2.1.1 Tweet’s features

Before presenting the model, the tweet’s feature space, which is employed in this

problem, is described. As the problem addresses the tweet level stress detection,

the textual and social attributes specific to each tweet are extracted. Most of the
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features are based on tweet’s textual content so as to leverage the text content of the

tweets and their neighborhood tweets, while the social attributes at the tweet level

are extracted to understand the social engagement of the tweets. In addition, a new

text-based feature called Sarcasm_Level is defined to understand the contribution of

the sarcasm, present in the text content of the tweet, in detecting the stress at the

tweet level. The features used in the model are summarized as follows:

• Linguistic/Textual Features

– The word-counts for ten categories of EMPATH based linguistic-psychology

library: EMPATH is a free-of-cost library for psychological -linguistic word

count [79]. This library is used to extract the word count related to 10

categories of linguistic psychological clues for the text content of the tweet.

The categories include - Family, health, school, academics, exam, disease,

business, interpersonal, office and informal language. This is a vector of

length 10.

– Number of positive and negative verbs: It is a vector of size 2 containing

the count of positive and negative verbs found in the tweet.

– Number of positive and negative adjectives: It is a vector of size 2 specifying

the count of positive and negative adjectives found in the tweet.

– Degree adverbs: The attribute computes the intensity or level of adverbs

used in the tweet as computed in [18,19,24]. The scale of the degree is in

the range of [−3, 3]. For example, “I feel stressed” has degree −1, while “I

feel more stressed” has a degree of −2. Similarly, “I am happy” has degree

+1, while “I am extremely happy” will be given a degree of +3.

– Emoji Count: The number of positive and negative emojis present in the

tweet. It is a vector of size 2. NLTK and Emoji libraries of Python are

employed to extract the sentiment of emojis.

– Punctuation: It is the count of punctuation marks that reflect emotions

found in the text content of the tweet like question marks (?), exclamation

marks (!) and dots (...). This is a vector of size 3.
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– Sarcasm_Level: It is one of the two proposed solutions for utilizing text

content of the tweet to mitigate the problem of data sparsity. This at-

tribute captures the sarcasm embedded in the content of the tweet. It

indicates the inconsistency in the tweet if the polarity of text has one

sentiment but the emojis and words in the hashtags of the tweet are of op-

posite sentiment. This is necessary as the emotion conveyed in a sarcastic

tweet generally contradicts with the explicit emotion found in the tweet.

This is common in illocutionary sarcasm [40].

To understand the computation of this attribute, few notations are

defined. Let the total positive and negative polarity words in the tweet

are pos and neg, respectively. Also, let the total number of positive and

negative emojis in the tweet are epos and eneg, respectively, while hpos and

hneg be the count of hashtags with positive polarity and negative polarity

in the tweet content, respectively. Then, the Sarcasm_Level of tweet t is

defined as follows:

Sarcasm_Level(t) =



1, if
{
(epos ≥ eneg ∧ pos ≤ neg) ∨

(epos ≤ eneg ∧ pos ≥ neg) ∨

(hpos ≥ hneg ∧ pos ≤ neg) ∨

(hpos ≤ hneg ∧ pos ≥ neg)
}

0, otherwise

(3.2)

Where, the symbols ∧ and ∨ respectively denote the operations of logical

AND and logical OR. The hashtags should not be filtered out in the pre-

processing as they are used to compute this attribute.

• Social Features of Tweet: The social attributes extracted in this chapter describe

the social engagement of the tweet. They are computed as the number of

favorites or likes, retweets and comments for a given tweet.
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3.2.2 Preprocessing

The tweets are preprocessed to filter out noisy data and then the required features

are extracted. For data cleaning, the tweets that contain only URL information

or the tweets which contain only image content are filtered out. Also excluded are

the tweets of users who block timeline access, preventing the extraction of previous

tweets in the user’s timeline. Finally, the dataset of tweets is normalized using z-score

normalization [48]. In this manner, the collected tweets are preprocessed.

3.2.3 Proposed Model

In this section, the working of the proposed model, NTSD, is presented. Stress is a

psychological phenomenon with contiguity, persisting over a longer period of time.

The central idea is that if the immediate previous tweets are stressful, then there is

a high chance that the given tweet is also stressed. For this, a simple and efficient

model is developed to address the problem of data sparsity at the tweet level stress

detection. The concept is that for computing the class label of a given tweet, the

information of the immediate neighborhood tweets of the user of the given tweet is

utilized. The neighborhood window for neighborhood tweets is constructed based

on count of previous tweets considered from corresponding primary tweet. In other

words, the window contains the recent previous tweets of the user of a given primary

tweet. Then, both primary and neighborhood tweet datasets are used to train the

model. The proposed model is developed over logistic regression, which employs a

sigmoid or logistic function to predict the probability of the input tweet vector x

belonging to class stressed (y = 1) :

P (y = 1|x) = 1

1 + exp (−wT .x) = p(x) (3.3)

where w is the feature weight vector that must be solved [80, 81]. The problem is

to find the appropriate w so that the log-likelihood, L(w), of the training data is

maximized, where, L(w) =
∑N

k=1 yk ∗ log p(xk) + (1− yk) ∗ (1− log p(xk)).

In this chapter, the combined training of primary tweets and corresponding neigh-
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borhood tweets is performed. To train the model, the likelihood that for every tweet

xi in primary dataset D and its associated neighborhood tweets
⋃
j xi

j in auxiliary

dataset Dδ belonging to the same class is maximized [80]. Therefore, based on the

notations specified in the table 3.1, the likelihood function for the proposed model is

defined as follows:

l(w) =
N∏
i=1

{
p(xi)

yi(1− p(xi))
1−yi

Nδ∏
j=1

[
p(xi

j)
yij(1− p(xi

j))
1−yij

]}
(3.4)

For simpler computation, log-likelihood is considered [82]. Hence, the objective

function of this model is to maximize the log-likelihood of the current tweet along

with the loss of its related neighborhood tweets such that they have a common class

label. The parameters at which the likelihood is maximum gives the weights of the

model, which are then used to predict the class label of an unlabeled tweet. The

log-likelihood of the proposed model is computed as:

f(w) = log(l(w))

=
N∑
i=1

{
yi log(p(xi)) + (1− yi) log(1− p(xi))

}
+

N∑
i=1

Nδ∑
j=1

{
yij log(p(xi

j)) + (1− yij) log(1− p(xi
j))

}
(3.5)

According to the proposed model, if the neighborhood tweets xi
j of ith primary tweet

are stressed, then the ith primary tweet is also stressed. Therefore, yij = yi, 1 ≤ i ≤ N

and 1 ≤ j ≤ Nδ. Hence, the objective function becomes,

f(w) =
N∑
i=1

{
yi log(p(xi)) + (1− yi) log(1− p(xi))

}
+

N∑
i=1

Nδ∑
j=1

{
yi log(p(xi

j)) + (1− yi) log(1− p(xi
j))

}
(3.6)

36



CHAPTER 3. NEIGHBORHOOD-BASED TWEET-LEVEL STRESS DETECTION 3.2. METHODOLOGY

3.2.4 Training the Model

Training the model is an optimization problem because it must find the parameter

vector that maximizes the objective function. In order to optimize the objective

function given in equation (6), a greedy solution of gradient ascent is used. Gradient

ascent is a maximization version of gradient descent in which the solution is searched

by taking large steps in the direction of the gradient [80, 83]. The parameter vector

to be learned is w = [w1,w2, ...,wM ]T , where M is the total number of features

and w0 is the bias. The process starts with the initialization of the weight vector

and then updates its weight until no more change in weights is observed. This is

known as the point of convergence [81]. The learning rate η is a small real-valued

constant (0 < η < 0.1). It is a value which can decay with iterations. Algorithm 19

gives the complete working process of the proposed model, NTSD. The variable k in

the algorithm represents the value of k in the implemented k-fold cross-validation.

Typically, k=10. The gradient ascent solution to learn the parameter vector of the

the proposed model is given in algorithm 7 and it is invoked from algorithm 19.

As normal gradient ascent is a batch processing technique that requires scanning

of the entire set of training examples before updating the weights, it slows down with

increase in the size of the data [80, 83]. In contrast to this, algorithm 3 presents

the solution to find optimal values of the weight vector w using the stochastic gra-

dient ascent method. This method is also called incremental gradient ascent, where

the parameter vector is updated in each iteration instead of a batch update [80, 83].

Stochastic gradient ascent with small batch size is implemented in the solution, con-

sidering its efficiency and fast convergence [82, 83]. And the model is trained for

various window-sizes chosen for the neighborhood window to understand the impact

of neighborhood tweets in the detection of stress for the given primary tweet.

3.2.5 Prediction

After learning the feature weights of the model, the prediction is performed to find

the class label of an unlabeled tweet. Based on the notations specified in the table
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Algorithm 1: Neighborhood tweet-based Stress detection
Input: Primary Dataset D and auxiliary dataset Dδ

Output: Model object with learned parameters and performance metrics
1 Function NTSD(D,Dδ):
2 Y ←

{
yi
∣∣(xi, yi) ∈ D, 1 ≤ i ≤ N

}
;

3 Invoke NTSD_preprocessing(D,Dδ);
4 w← NTSD_Gradient_Ascent(D,Dδ) ;
5 for q ← 1 to k do
6 count ← 0;
7 (DTq , D

Tq
δ )← qth iteration’s Training Sample from Dataset (D,Dδ);

8 (DVq , D
Vq
δ )← qth iteration’s Validation Sample from Dataset (D,Dδ);

9 Yq ←
{
yi
∣∣(xi, yi) ∈ DVq , 1 ≤ i ≤ |DVq |

}
;

10 wq ← NTSD_Gradient_Ascent(DTq , D
Tq
δ ) ;

11 Ŷq ←
{
ŷi
∣∣ŷi= argmax

yi∈dom(Yq)

Pc

(
yi

∣∣∣xi,
⋃
j xi

j

)
,

1 ≤ i ≤ |Yq|, 1 ≤ j ≤ |Nδ|, (xi, yi) ∈ DVq ,
xi

j ∈ D
Vq
δ

}
. Set of predicted stress labels for qth validation sample

DVq ;
12 Matched_Labels←

{
yi
∣∣yi=ŷi; yi ∈ Yq , ŷi ∈ Ŷq, 1 ≤ i ≤ |Yq|

}
. Set

of correctly predicted labels among the predicted labels for qth
validation sample DVq ;

13 Accuracy[q]← |Matched_Labels|
|Yq | ;

14 F1-Score[q] ← Harmonic_Mean(Precision[q], Recall[q]);
15 end
16 Final_Accuracy ← Average(Accuracy[1], Accuracy[2], · · · , Accuracy[k]);
17 Final_F1-Score ← Average(F1-Score[1], F1-Score[2], · · · , F1-Score[k]);
18 result_object← (w, Final_Accuracy, Final_F1-Score);
19 return result_object

38



CHAPTER 3. NEIGHBORHOOD-BASED TWEET-LEVEL STRESS DETECTION 3.2. METHODOLOGY

Algorithm 2: Gradient Ascent Algorithm for training NTSD model
Input: Training Data consisting of D, features of primary tweets dataset,

and Dδ, features of auxiliary tweets dataset under neighborhood
window δ and condition for convergence, η

Output: Parameter Vector w of the objective function
1 Function NTSD_Gradient_Ascent(D,Dδ):
2 Initialize parameter vector w to small random values ;
3 while convergence is not reached do
4

∇f=
N∑
i=1

(yi − p(xi))xim

+
N∑
i=1

{
yi

Nδ∑
j=1

xi
j −

Nδ∑
j=1

(p(xi
j)x

i
jm)

}
5 Update the weight vector, w← w + η ∗ ∇f
6 end
7 return w

Algorithm 3: Stochastic Gradient Ascent Algorithm for training NTSD
model

Input: Training Data consisting of D, features of primary tweets dataset,
and Dδ, features of auxiliary tweets dataset under neighborhood
window δ and condition for convergence, η

Output: Parameter Vector w of the objective function
1 Function NTSD_Stochastic_Learning(D,Dδ):
2 Initialize parameter vector w to small random values ;
3 while Convergence is not reached do
4 for each training example (xi, yi) do
5

∇fi=(yi − p(xi))xim

+
{
yi

Nδ∑
j=1

xi
j −

Nδ∑
j=1

(p(xi
j)x

i
jm)

}
6 Update the weight vector as, w← w + η ∗ ∇fi
7 end
8 end
9 return w
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3.1, the combined prediction probability Pc
(
yi

∣∣∣xi,
⋃
j xi

j

)
of a primary tweet xi using

the content of its own tweet and set of its neighborhood tweets is computed as the

weighted harmonic mean of the prediction probabilities of the given tweet and its

neighborhood tweets within the neighborhood window δ. If there are no previous

tweets available for the user, the prediction probability becomes the original prediction

probability of the given tweet itself. The combined prediction probability of the model

is specified in the following equation:

Pc

(
yi

∣∣∣xi,
⋃
j

xi
j

)
=


α+

∑Nδ
k=1 γk

α∗ 1
P (yi|xi)

+
∑Nδ

k=1 γk∗
1

P (yi|xi
k)

, if Nδ > 0

P (yi|xi) , otherwise
(3.7)

Where, α, γ1, γ2, ..., γNδ
are the weights for the prediction probabilities. Also, P (yi|xi)

and P (yi|xi
k) are computed according to equation (3.3). For simplicity, in this chapter,

all weights are treated equal to one. Hence, it reduces to a simple harmonic mean

of probabilities of each of the neighborhood tweets and the given primary tweet. For

any unlabeled tweet that is given as input, its neighborhood tweets are extracted and

using the learned parameter vector of the model, the prediction probabilities of the

unlabeled tweet and its corresponding neighborhood tweets are computed.

3.3 Experimental Setup

The description of the datasets, the baseline models used for comparison and the

performance measures are discussed in this section. All the experiments for the col-

lection of tweets, data preprocessing and building of classifier models are implemented

in Python using the Jupyter Notebook 4.1.1 as IDE.
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3.3.1 Dataset Collection

3.3.1.1 Process of data collection

For experimental evaluation, two datasets of tweets are collected. The Twitter’s

API tweepy was used to collect tweets from the Twitter. Initially, primary tweets

are collected and labeled automatically by extracting them using matching sentence

patterns as specified in earlier works [19]. Later, these are used to collect auxiliary

tweets. For example, in the automatic tweet labeling, tweets that match the searched

patterns like “I feel stressed”, “I feel stressed so much” are collected and labeled

with positive stress, (yi = 1). And the tweets that match the search queries like “I

feel relaxed” and “I feel non-stressed” are collected and labeled with negative stress,

(yi = 0). The tweets collected in this way form the part of primary dataset. The most

recent previous tweets of the users of each tweet in primary dataset are extracted

using Twitter’s API, tweepy. The auxiliary tweets, for a given tweet’s username,

are extracted using the method called API.user_timeline() belonging to twitter API

class. This method is invoked with the current primary tweet and the parameter

count. The function returns the number of tweets specified in the parameter count of

the function.

These tweets form the part of auxiliary dataset. The auxiliary dataset is grouped

into subsets based on the size of neighborhood window. The window sizes considered

in this chapter are Nδ = 1 and Nδ = 2.

3.3.1.2 Details of the datasets

Datasets used in the experiments are summarized in the Table 2. The dataset

DS1(dataset1) consists of 2040 primary tweets of 1400 users spanning over one month,

crawled using Twitter’s API, tweepy. The dataset contains 1020 tweets that have been

positively labeled and 1020 tweets that have been negatively labeled. In addition, the

auxiliary data of DS1 consists of 4,000 tweets. Similarly, dataset DS2(dataset2) con-

sists of 16,000 primary tweets of 4,000 users spanning over two months, which consists
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of 8,000 are positively labeled tweets and other 8,000 are negatively labeled tweets.

In addition, the auxiliary dataset consists of 31,200 tweets. Auxiliary datasets are

grouped into two subsets based on the size of the neighborhood window. The window

sizes considered in this chapter are Nδ = 1 and Nδ = 2.

Table 3.2: The datasets and their description

Dataset
#tweets

(Primary)

#neighborhood

tweets (Auxiliary)
#users

DS1 2040 tweets (1020 positive class and 1020 negative class) 4000 tweets 1400

DS2 16,000 tweets (8000 positive tweets and 8000 negative tweets) 31200 tweets 4000

3.3.2 Comparison with Baseline Machine Learning Classifiers

For analyzing the performance of the proposed NTSD model, it is compared with

the popular classification techniques such as Support Vector Machines (SVM), Ran-

dom Forest (RF), and Logistic Regression (LR). These classifiers are chosen for two

reasons. First, they are known for better performance among the machine learn-

ing classifiers in the literature on stress detection based on social media, especially,

when text and related information is exploited [18, 24–26, 34]. Second, all these 3

different baseline models build the model based on different mathematical proper-

ties [48, 80, 82, 84–86]. Hence comparison with these models supports the generaliz-

ability of the results. The metrics used for comparison are Accuracy and F1-Score,

which are defined in section 1.3.

1. SVM: Support Vector Machines is a discriminatory classifier that finds a de-

cision boundary to separate data points of different classes. SVM is known

for high performance and hence used for wide range of classification prob-

lems [48,82,84]. The principle of SVM is to map the data into higher dimension

space and to find the maximum margin hyper-plane that separates data points

of different classes [48, 84].

2. RF: Random Forests is a kind of ensemble method over decision tree classifiers

that takes decision based on majority vote [82,85]. Bagging is used to improve
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the consistency and stability of the results of individual decision trees in the

forest. The aggregate value of all decisions of individual trees forms the resultant

decision of the ensemble [82, 85].

3. LR: Logistic regression is a popular method of binary classification which uses

logistic function to predict posterior probability of the class [86]. Logistic re-

gression is a generalized linear model that uses sigmoid or logistic function as

the link function [80]. LR is a baseline model from which the proposed model

in this chapter is developed.

All these classifiers are implemented along with the proposed NTSD model on both

the datasets DS1 and DS2.

The following list of experiments are conducted on two datasets DS1 and DS2:

• Building all the classifiers specified in this section along with the proposed

NTSD model, to detect the stress when;

1. no neighborhood tweets are included.

2. at most one neighborhood tweet is considered along with primary tweets.

3. at most two neighborhood tweet is considered along with primary tweets.

• In each of the above experiments, two separate models are built for each clas-

sifier to analyze the effect of the new attribute, Sarcasm_Level - one with only

basic features and the other with the new attribute, Sarcasm_Level. So, on

each of the datasets - DS1 and DS2 - a total of six experiments are run for each

classifier.

3.4 Results

This section presents the results of experiments conducted.
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Table 3.3: Model results for dataset1 - With basic attributes

Input_dataset / Classifier Model
LR SVM RF NTSD

Acc(%) F1-score Acc(%) F1-score Acc(%) F1-score Acc(%) F1-score

Without neighborhood tweets 69.4 0.40 47.87 0.22 59.7 0.24 69.4 0.51

With 1 neighborhood tweet 72.29 0.45 52.67 0.28 63.4 0.33 73.4 0.62

With 2 neighborhood tweets 72.7 0.49 51.06 0.35 68.9 0.39 75.2 0.69

Table 3.4: Model results for dataset1 - By considering Saracasm_Level attribute

Input_dataset / Classifier Model
LR SVM RF NTSD

Acc(%) F1-score Acc(%) F1-score Acc(%) F1-score Acc(%) F1-score

Without neighborhood tweets 69.94 0.56 50.05 0.25 62.5 0.32 69.95 0.55

With 1 neighborhood tweet 73.29 0.50 52.67 0.36 63.5 0.42 74.01 0.65

With 2 neighborhood tweets 73.81 0.66 53.61 0.45 69.6 0.54 79.51 0.73

Table 3.5: Model results for dataset2 - With basic attributes

Input_dataset / Classifier Model
LR SVM RF NTSD

Acc(%) F1-score Acc(%) F1-score Acc(%) F1-score Acc(%) F1-score

Without neighborhood tweets 70.4 0.42 51.97 0.38 61.72 0.35 70.5 0.55

With 1 neighborhood tweet 72.59 0.53 54.57 0.42 65.4 0.42 73.3 0.63

With 2 neighborhood tweets 72.9 0.58 52.23 0.47 69.7 0.48 75.5 0.73

3.4.1 Evaluation of Stress Detection Performance and Im-

pact of Neighborhood Tweets

To evaluate the performance of the proposed NTSD model, the experiments are con-

ducted on the datasets DS1 and DS2. The performance measures in each exper-

iment are recorded after 10-fold cross-validation. Furthermore, to understand the

significance of the results, t-tests are conducted for each experiment as part of cross-

validation and the null hypothesis is rejected when the results of the proposed model

are compared with other models, with a p-value of ≤ .01, making the findings statis-

tically significant.

Table 3.6: Model results for dataset2 - By considering Saracasm_Level attribute

Input_dataset / Classifier Model
LR SVM RF NTSD

Acc(%) F1-score Acc(%) F1-score Acc(%) F1-score Acc(%) F1-score

Without neighborhood tweets 70.94 0.45 53.05 0.42 64.5 0.38 70.95 0.59

With 1 neighborhood tweet 73.18 0.55 54.57 0.47 65.5 0.46 74.1 0.66

With 2 neighborhood tweets 74.01 0.60 55.71 0.51 69.76 0.55 80.26 0.80

44



CHAPTER 3. NEIGHBORHOOD-BASED TWEET-LEVEL STRESS DETECTION 3.4. RESULTS

Table 3.3 records the results of different experiments conducted on dataset DS1

when only existing basic features are considered. Here, the highest performance for

all the classifiers is observed when two neighborhood tweets are included. When

two neighborhood tweets are considered, the NTSD has an improvement in its stress

detection accuracy by 5.8% compared to the case when no neighborhood tweet is

included. Whereas, the F1-score also increases by 0.18 points. Similarly, LR has an

improvement of 2.8% in accuracy and an increase of 0.09 points in F1-score when two

neighborhood tweets are included. The baseline model employed in developing in the

proposed NTSD model is the LR without inclusion of the neighborhood tweets. When

compared to the baseline model, the NTSD with the inclusion of two neighborhood

tweets improves accuracy by 5.8 percent and F1-score by 0.28 points. Moreover,

NTSD built by considering two neighborhood tweets, also has better performance

compared LR model implemented with two neighborhood tweets. RF and SVM also

show improvement in performance with the inclusion of neighborhood tweets. RF

records highest accuracy of 68.9% and F1 measure of 0.39. On the other hand,

SVM records the lowest performance. When implemented on the dataset DS1, the

improvement in accuracy of the classifiers with the inclusion of the neighborhood

tweets can be observed in the blue bars present in the figure 3.3. Figure 3.5 also

illustrates that when neighborhood tweets are taken into account, the F1-score of

the classifiers increases significantly. Hence, it can be inferred that including the

neighborhood tweets enhances the performance of the model.

The results of the experiments on the dataset DS2 with the basic attributes are

recorded in table 3.5. Here, the highest performance for all the classifiers is observed

when two neighborhood tweets are included. The NTSD model, built by considering

two neighborhood tweets, has a better performance compared to the LR model im-

plemented with the same case. Also, there is a significant increase in the F1-score of

the classifiers when the neighborhood tweets are considered as seen in the blue bars

present in figure 3.5.

In the figures 3.2a and 3.2b, F1-Scores of all the models are plotted by varying

the number of neighborhood tweets. As the median of F1-Scores of all models for the
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inclusion of two neighborhood tweets is higher than the inter-quartile region for cases

where neighborhood tweets are not considered, it is intuitive that taking previous

tweets into account significantly improves the performance of stress detection. Also,

the in the case of the proposed model, NTSD – when considered with inclusion of two

neighborhood tweets – the median F1-Score is significantly higher than the other cases

in all other models. This is true for experiments conducted on both datasets DS1

and DS2. Hence, it can be concluded that considering the immediate neighborhood

tweets improves the performance of detecting stress significantly, and the proposed

model, NTSD, outperforms the other base-line models.

3.4.2 Contribution of the Sarcasm_Level Attribute: An Anal-

ysis

Table 3.4 demonstrates the result of applying various experiments on dataset DS1

by including the new attribute of Sarcasm_Level in addition to the existing basic

features. While table 3.3 presents the results of the experiments on same dataset

without including this new attribute. Figure 3.3 shows the bar plot for the accuracy

measure of these models. The inclusion of the new attribute has improved the perfor-

mance of all the models in detecting stress. But, the improvement is greater when the

neighborhood tweets are also considered. The NTSD model with two neighborhood

tweets has highest improvement in accuracy of 4.31% over NTSD implemented with-

out the new attribute, but has only a small positive increment of F1-score by 0.04

points. When compared to LR model implemented with the new attribute in the case

of including two neighborhood tweets, the proposed NTSD model has an improve-

ment in accuracy by 5.7% and F1-score by 0.07 points. There is also a significant

improvement in the F1-score when the models are implemented by considering the

new attribute Sarcasm_Level when compared to the baseline LR. The next highest

improvement in F1-score with the inclusion of the new attribute is noted in RF, while

SVM models show least change in the F1-score.

When Sarcasm_Level is considered, there is nearly 9.56% improvement in the
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Figure 3.2: Box plots for F1-Score Results of classifiers LR, SVM, RF and NTSD. (a)
& (b) present F1-Scores of the classifiers analyzing the effect of neighborhood tweets,
performed on datasets DS1 and DS2, respectively. (c) & (d) depict F1-Scores of the
classifiers analyzing the effect of the new attribute, Sarcasm_Level on datasets DS1
and DS2, respectively and neighborhood tweets on both datasets

47



CHAPTER 3. NEIGHBORHOOD-BASED TWEET-LEVEL STRESS DETECTION 3.4. RESULTS

Figure 3.3: Accuracy Results of Models on dataset1

Figure 3.4: Accuracy Results of Models on dataset2

Figure 3.5: F1-Score Results of Models on dataset1

accuracy of detecting stress by NTSD model implemented without the inclusion of

the neighborhood tweets, when compared to the baseline LR model. Also, the NTSD

model that is implemented with the inclusion of the Sarcasm_Level and with two

previous tweets, there is a considerable increase of 10.11% in accuracy and 0.33 points

in F1-score, when compared to the baseline model.

The results of the experiments on the dataset DS2, by including the Sarcasm_-

Level attribute, are recorded in table 3.6. According to the results, when two neigh-
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Figure 3.6: F1-Score Results of Models on dataset2

borhood tweets are included, NTSD has a 4.74 percent improvement in accuracy when

Sarcasm_Level is included over the same model when implemented without the new

attribute. When compared to the baseline LR model, the NTSD model - by including

the new attribute and considering two neighborhood tweets - has a greater enhance-

ment in the accuracy, and F1-score by 9.86%, and 0.38 points respectively. Also,

NTSD model implemented with a new attribute by considering two neighborhood

tweets, has an improvement of 6.25% in accuracy, and 0.20 points in F1-score over

LR model under the same case. Figure 3.6 presents the bar plot for the F1-scores of

the classifiers experimented on the dataset DS2. There is only a small improvement

in F1-score of the models when only the attribute Sarcasm_Level is included, and it

should be noted that both RF and the proposed NTSD model improve F1-score by

0.07 points when compared to other models. It can be seen that when the classifier

is built by considering two neighborhood tweets, the performance improvement is

greatest in both cases of including and excluding the new attribute, Sarcasm_Level.

In the figure 3.2c and 3.2d, F1-Scores of all the considered models are plotted for

the cases of including the new attribute Sarcasm_Level with basic and the case of only

basic attributes. It can be seen that the median of F1-Scores for the case of including

the Sarcasm_Level attribute in addition to the basic attributes is consistently higher

than the medians of other cases. Hence, it is intuitive that taking into account the new

attribute, Sarcasm Level, improves the performance of the stress detection. Moreover,

the median F1-Score for the proposed model, NTSD, is significantly higher than the

other cases for all models when the new attribute is incorporated. This holds true
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for all experiments performed on both datasets, DS1 and DS2. Hence, it is concluded

that the inclusion of the new attribute improves the performance of stress detection.

3.5 Discussion

From the experiments conducted in this chapter, it was observed that the addition of

neighborhood tweets and a new attribute, Sarcasm_Level, improves the performance

of tweet-level stress detection. The results show that the textual information of tweets

helps in detecting tweet-level stress. Sarcasm embedded in the tweet contributes

to the improved performance of stress detection. Also, it is concluded from the

experiments that the proposed NTSD model - when implemented with neighborhood

tweets and the new attribute Sarcasm_Level - outperforms the baseline machine

learning models employed in this chapter. Moreover, in the same case, the proposed

NTSD model has an improvement of 10.11% in accuracy and 0.33 points in F1-score

over baseline logistic regression model on the dataset DS1. While in the same scenario

on the dataset DS2, NTSD model has an enhancement in the accuracy by 9.6% and

F1-score by 0.38 points. The experiments are conducted on different combinations of

features and neighborhood tweets. In all the cases, NTSD model exhibits better than

the baseline models. The discussion on the time complexity analysis is given below.

Furthermore, the section 3.5.1 discusses the limitations of the proposed model.

3.5.1 Limitations of the proposed NTSD model

There are few limitations in the proposed model, such as:

• The presence of tweets with only URLs does not provide useful content to the

model in understanding the stress state of current tweet.

• If some of the neighborhood tweets are not relevant to the current tweet, it

provides very little information for understanding the stress state of current
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tweet. Consequently, the proposed method will not yield good performance in

such situations.

3.6 Summary

Stress has become a major contributor to people’s health problems all over the world,

necessitating early diagnosis before it advances to chronic disease. Social media-

based stress detection has gained popularity due to the large number of people who

use it to freely express their opinions. In this chapter, two solutions were proposed

to maximize the utilization of text content of tweets for stress detection. First, a

new textual content-based attribute of Sarcasm_Level is computed to capture the

sarcasm embedded in the tweet content. Second, neighborhood tweet-based stress

detection, a model that incorporates the contents of a given tweet and those of its

neighboring tweets is developed for tweet-level stress detection. This addresses the

problem of data sparsity in tweet-level stress detection. The data is collected using

Twitter’s API, Tweepy. And for every primary tweet, neighborhood tweets are also

collected and labeled in preprocessing stage. Also, the experiments are conducted

by varying the number of neighborhood tweets in order to understand the impact of

the neighborhood tweets on stress detection. The effectiveness of the proposed model

is validated against the standard and widely used classifiers like SVM, RF and LR

on the two different datasets collected. It is demonstrated that the proposed NTSD

model outperforms the other models significantly when implemented with the new

attribute, Sarcasm_Level.
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Chapter 4

Sarcasm-based Tweet-level Stress

Detection

From the chapter 3, it is observed that the tweet-level stress detection problem can

be addressed by considering neighborhood tweets and a new attribute to compute

illocutionary sarcasm in the given tweet. However, the usage of neighborhood tweets

is an extra overhead. In this chapter, we develop a solution to tweet-level stress

detection using sarcasm attribute without the requirement of neighborhood tweets.

In addition, dimensionality reduction is considered to improve the performance.

Organization of the chapter:

The chapter is organized as follows. Section 4.1 discusses the problem formulation,

including the formal notations used in this chapter. The proposed STSD model and

its training are discussed in section 4.2. The experimental setup and the data collected

are presented in section 4.3. The results and the findings of the chapter are presented

in section 4.4. The discussion of this chapter is presented in section 4.5. Finally,

section 4.6 gives the summary of the chapter.

4.1 Problem Formulation

In this chapter, we develop sarcasm-based tweet-level stress detection using logistic

regression-based approach. All the notations used in this chapter are presented in the
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table 4.1.

4.1.1 Problem Statement

The aim of the chapter is to build a classifier model for tweet-level stress detection

by utilizing information about sarcasm present in the tweet. The problem is to find

a function G that takes an unlabeled tweet (z) and considers its Sarcasm_state (s),

to produce a label (y) for the tweet, where, y ∈ {0, 1} is class label denoting stress

of the tweet. The parameters of the function G are learned from training data such

that the log-likelihood loss for sarcastic tweets (si = 1) is penalized while the log-

likelihood loss for non-sarcastic tweets (si = 0) is minimized. The function g is

described as g : D → C, where C is the set of unique labels used in the classification

(here, C = {0, 1}). Subsequently, the classifier G is employed to predict the label y

of the unlabeled tweet z by utilizing the information of its Sarcasm_state.
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Table 4.1: Description of the symbols employed in STSD

Symbol Description

U Collection of users.

u Any particular user u, where u ∈ U .

xi It is feature vector of i-th tweet in dataset D and there exists some

owner u ∈ U , for this tweet.

N The cardinality or the number of tweets present in the dataset D.

M Count of attributes in the model or length of the tweet’s feature vector

xi.

si The value of Sarcasm_state for the tweet xi.

Ds The set of sarcastic tweets in the training data.

D′s The set of non-sarcastic tweets in the training data, D = Ds

⋃
Ds
′.

yi ∈ {0, 1} Class label denoting Stress state of the tweet xi ∈ D.

Y Collection of class labels of all tweets, xi , ∀i ∈ 1, 2, ..., N , where

N = |D|.

w The weight vector of features. It is of size M , w = [w1,w2, ...,wM ]T .

p(x) The sigmoid function or logistic function, defined as p(x) =

1
1+exp (−w.x) .

f(w) The loss function for the proposed model of STSD.

∇f Gradient for the loss function, f(w) with respect to parameter vector

wT .

∇fi Gradient for loss function at ith sample of training data,D, with re-

spect to weight vector wT .

η Learning rate.

Ps(yi|xi) Prediction probability for STSD model, specifying the probability that

the class yi corresponds to tweet xi.
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Table 4.2: The Details of the Datasets

Dataset #tweets #positive labeled
tweets

#negative
labeled tweets #users COVID-19

Period
D1 7,289 6,134 1,155 1732 February, 2021
D2 16,532 12,628 3904 5119 March, 2021
D3 4062 3176 886 1888 December, 2021
D4 7209 5495 1714 2558 January, 2022

4.2 Methodology

In this section, the description of datasets along with the operations performed on

them is presented. In addition, the methods that form the basis of the proposed

model of Sarcasm-based Tweet-level Stress Detection (STSD) are discussed.

4.2.1 Data Collection

To evaluate the model, four datasets of tweets are extracted using Tweepy, Twitter’s

API. The datasets D1 and D2 were collected during the starting stage of the second

wave of COVID-19 in India during the months of February and March 2021. The

rest of the datasets are collected in two stages. Dataset D3 is extracted during

the starting stage of the third wave in India, from December 2021 to January 2022.

Whereas, dataset D4 is collected during the peak stage to tail-end of the third wave in

India, from January 2022 to February 2022. The datasets from different time periods

are used for implementation to evaluate the model’s generalizability. The details of

the datasets collected are presented in Table 4.2. The distribution of positive and

negative polarity words in each dataset is presented in Table 4.3.

Table 4.3: The number of positive and negative sentiment words in each dataset

Dataset #positive words #negative words

D1 4,466 2,689

D2 10,773 5,334

D3 2,687 1,246

D4 4,625 2,031
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4.2.1.1 Pre-processing

The datasets collected are first preprocessed, and later features are extracted. Sub-

sequently, the datasets are normalized. The preprocessing and normalization are

described in this section.

Tweets are extracted using the Tweepy API. After the collection of tweets, pre-

processing should be performed to remove the noise and missing information in the

tweets. The procedure is comprised of the following steps:

• Purging of tweets that are not useful: The data is cleaned by removing tweets

that have no textual content in them. Also, tweets that contain only URLs

are removed. In addition, all tweets that contain text in a language other than

English are removed

• The collected tweets are processed such that the stopwords and punctuation

marks in the text content of the tweets are removed. In the process of cleaning

the tweets, the symbols giving no valuable information, like @, $, etc., are

removed from the tweets.

• The URLs present in the text content of the tweets are removed.

• The user mentions and retweets labels (RT) are eliminated from the tweets.

• Later, the hashtags from each tweet are collected and later utilized for comput-

ing the sarcasm, as shown in equation 4.3 of section 4.2.2.2. Following this, the

hashtags are removed from the text content of the tweets.

This filtered set of tweets is used for extracting features relevant for the classi-

fication of tweet-level stress. Later, the filtered set of tweets is used in exploratory

data analysis. Furthermore, for the extraction of the attributes, the natural language

toolkit is utilized for the process of stopword removal and stemming of the words in

the tweet.
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(b) Normalization: In this chapter, normalization is applied to the datasets

after the extraction of the features. Normalization forms an essential pre-processing

step for applying Principal Component Analysis [87]. Normalization maps all values

to a magnitude of the smaller range, making way for faster computation.

The normalization technique of Z-score is applied on the datasets. Z-score nor-

malization transforms the dataset values such that the resultant data has features

with zero mean and unit variance [48]. If x represents the data value and if µ and σ

respectively denote the mean and standard deviation of the attribute of the dataset

considered, the following is the formula employed in the computation of the Z-score

normalization [48].

Z =
x− µ
σ

4.2.2 Approach

The base method employed to develop the proposed model is logistic regression. It

is a classical supervised machine learning (ML) algorithm known for its good per-

formance in binary classification [48]. The classification using logistic regression is

based on a special function called sigmoid, which is also termed a logistic function

and predicts the probability of class for a given feature vector [88]. The parameters

used in the sigmoid function are learned by maximizing the likelihood of the training

data. From the work [88], it is noticed that, in a logistic regression model, for any

feature vector x, whose corresponding class label is y, the likelihood of the tweet x

belonging to the class y is given as:

p(x)y(1− p(x))(1−y) (4.1)

Where, p(x) is sigmoid or logistic function, defined as follows:

p(x) = 1

1 + exp (−w.x)
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Therefore, the log-likelihood in this scenario is given as:

y log(p(x)) + (1− y) log(1− p(x)) (4.2)

In the proposed method, the log-likelihood is developed based on the log-likelihood

of logistic regression, shown in equation 4.2.

4.2.2.1 Feature Extraction

In order to predict tweet-level stress more accurately, the information from a tweet’s

text content and clues of sarcasm in it are leveraged. For this purpose, linguistic-

content features are extracted. In this chapter, except the value of Sarcasm_state,

all the remaining linguistic and social attributes related to tweet’s content and social

engagement are same as in chapter 3 and are computed as per the procedure discussed

in section 3.2.1.1 of chapter 3. The procedure is according to the existing literature

[19, 45].

4.2.2.2 Computing Sarcasm_State value

The computation of this value is similar to earlier literature, but with some modi-

fications. Based on the work [45], a new value called Sarcasm_state is derived to

represent the sarcasm that exists in the tweet’s text, built on the notion of illocu-

tionary sarcasm. In this chapter, the computation of sarcasm is further modified to

capture the contradictory emotions within words and hash tags, apart from reflect-

ing the inconsistency between the polarity of text content (like words and hashtags)

and the polarity of non-verbal expressions like emojis and emoticons. Broadly, the

Sarcasm_state is allocated a value of 1, when there is a disagreement between the

polarity of the majority of words and the polarity of the majority of the hashtags

within the text part of the tweet. In addition, the Sarcasm_state is given a value

of 1 when there is a disagreement between the polarity of the majority of words in

a tweet’s text content and the polarity of the majority of non-verbal expressions like

emojis and emoticons. Similarly, the Sarcasm_state is assigned a value of 1 in cases
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where there is a disagreement between the polarity of the majority of hashtags and

the polarity of the majority of non-verbal expressions like emojis and emoticons. In

all the remaining cases, where there is similar polarity for the majority of text content

and the majority of non-verbal expressions like emojis and emoticons, the Sarcasm_-

state is assigned a value of 0. Hence, the process of computing Sarcasm_State is an

extension of computation as shown in equation 3.2 of chapter 3. the computation of

Sarcasm_state is presented in equation 4.3.

Sarcasm_State(t) =



1, if
{
(epos ≥ eneg ∧ pos ≤ neg) ∨

(epos ≤ eneg ∧ pos ≥ neg) ∨

(hpos ≥ hneg ∧ pos ≤ neg) ∨

(hpos ≤ hneg ∧ pos ≥ neg) ∨

(hpos ≥ hneg ∧ epos ≤ eneg) ∨

(hpos ≤ hneg ∧ epos ≥ eneg)
}

0, otherwise

(4.3)

4.2.3 Proposed STSD

In this section, the concept, formulation, and procedure of the proposed model of

Sarcasm-based Tweet-level Stress Detection (STSD) are discussed. The aim of this

approach is to develop a classification model to detect stress at tweet-level by availing

sarcasm information, thereby increasing the utilization of the text information for

better performance.

4.2.3.1 Framework

The framework representing the concept of the proposed STSD model is depicted in

figure 4.1. The figure shows the proposed Sarcasm-based Tweet-level Stress Detection

(STSD) method consists of two phases - STSD training and STSD prediction. During

training, the tweets are preprocessed and the feature extraction is performed. The

resulting processed training data is categorized into two sets based on the value of

59



CHAPTER 4. SARCASM-BASED TWEET-LEVEL STRESS DETECTION 4.2. METHODOLOGY

Figure 4.1: Framework of the STSD model

Sarcasm_state. In this approach, the label for stress is learned by minimizing the loss

for non-sarcastic tweets and penalizing the loss for sarcastic tweets, as sarcastic tweets

generally have subtle sentiment that is contrary to the explicit emotion specified. For

this purpose, the value of sarcasm is utilized in the loss function of the proposed

approach. During the prediction stage, the unlabelled input vectors are processed

based on the value of the Sarcasm_state. The symbols employed to formulate and

implement this problem are described in Table 4.1. The detailed procedure of all the

steps involved in the process is presented in section 4.2.3.
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4.2.4 Working of Sarcasm-based Tweet-level Stress Detection

(STSD)

In this section, the detailed process of the proposed STSD method is described, from

the initial preprocessing of tweets to prediction. Also, the idea and working mech-

anism of the proposed Sarcasm-based Tweet-level Stress Detection (STSD) are pre-

sented. Finally, dimensionality reduction techniques for improving the performance

of the proposed STSD model are also discussed. As noted in the works related to

sarcasm in human emotions across many diverse geographies, the reason for the usage

of sarcasm is more for cases like ”to be funny”, and having fun or entertainment with

a group of friends [36]. The principle of STSD is formulated based on this idea -

the sarcastic tweets are likely to be on a lighter or funny note than the non-sarcastic

tweets.

4.2.4.1 Mathematical formulation of training of the proposed STSD model

In this section, the training procedure and related algorithms of the proposed STSD

model are discussed. To understand the loss function and training procedure of the

proposed model, the idea and working mechanism of the proposed model of STSD

are presented.

The principle of the proposed STSD model is to maximize the likelihood of a

tweet belonging to the class of stress if it is a non-sarcastic tweet and to minimize

the likelihood of a tweet belonging to the class of stress if it is a sarcastic tweet. This

can be interpreted as-to minimize the loss for non-sarcastic tweets and penalize the

loss for sarcastic tweets.

From the work [88], it is noticed that, in a logistic regression model, for any feature

vector x, whose corresponding class label is y, the likelihood of the tweet x belonging

to the class y is given as:

p(x)y(1− p(x))(1−y)
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Where, p(x) is Sigmoid or logistic function, defined as follows:

p(x) = 1

1 + exp (−w.x)

Therefore, the log-likelihood in this scenario is given as:

y log(p(x)) + (1− y) log(1− p(x))

According to the principle of the proposed model, the likelihood of the model is

constructed based on the likelihoods of sarcastic and non-sarcastic tweets as follows:

1. For non-sarcastic tweets (si = 0), the likelihood of belonging to the class stress

is maximized. Hence, the likelihood of the tweets xi ∈ Ds
′ is presented as

follows [88]:

p(xi)
yi(1− p(xi))

1−yi

Then the log-likelihood in this scenario is given by

yi log(p(xi)) + (1− yi) log(1− p(xi)) (4.4)

2. The equations used in this step and later on are developed as part of the pro-

posed STSD model. Following the principle of STSD, the likelihood of belong-

ing to the class stress is to be minimized for sarcastic tweets (si = 1). This

is achieved by maximizing the likelihood of belonging to the class non-stressed

and minimizing the likelihood of belonging to the class stress. Hence, the like-

lihood for the tweets xi ∈ Ds is

p(xi)
1−yi(1− p(xi))

yi

Then the log-likelihood in this case is given as

(1− yi) log(p(xi)) + yi log(1− p(xi)) (4.5)
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Hence, using the equations (4.4) and (4.5), the total log-likelihood, l(w), of the pro-

posed model, computed for all the tweets in the training dataset, is given as:

l(w) =
N∑
i=1

(1− si)
{
yi log(p(xi)) + (1− yi) log(1− p(xi))

}
+

N∑
i=1

si

{
yi log(1− p(xi)) + (1− yi) log(p(xi))

}

Then the loss of the proposed model STSD, f(w), is computed as negative value

of log-likelihood l(w):

f(w) = −l(w)

f(w) = −
( N∑
i=1

(1− si)
{
yi log(p(xi)) + (1− yi) log(1− p(xi))

}
+

N∑
i=1

si

{
yi log(1− p(xi)) + (1− yi) log(p(xi))

})
(4.6)

In other words, the concept of the proposed STSD model is defined as minimizing

the loss for non-sarcastic tweets while penalizing the loss for sarcastic tweets. For

solving the parameters of the proposed model, gradient descent-based algorithms are

implemented. The optimization algorithms of gradient descent require the computa-

tion of the gradient of the loss function of the proposed model, which is derived in

Equation 4.8. As the prediction function, p, is a composite function of both weight

vector, w and feature vector xi, the computation of the gradient of loss function of

the proposed STSD model is as follows:
∂f
∂w = ∇f
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= −

[
N∑
i=1

∂
{
(1− si)

{
yi log(p(xi)) + (1− yi) log(1− p(xi))

}}
∂w

+
N∑
i=1

∂
{
(si)

{
yi log(1− p(xi)) + (1− yi) log(p(xi))

}}
∂w

]
(4.7)

= −

[
N∑
i=1

(1− si)
{
yi

1

p(xi)

∂p(xi)

∂w + (1− yi)
1

(1− p(xi))

∂(1− p(xi))

∂w

}
+

N∑
i=1

si

{
yi

1

(1− p(xi))

∂(1− p(xi))

∂w + (1− yi)
1

p(xi)

∂p(xi)

∂w

}]

= −

[
N∑
i=1

{
(1− si)(yi − p(xi))xim

}
+

N∑
i=1

{
si(1− yi − p(xi))xim

}]

=⇒ ∇f = −
[ N∑
i=1

{
yi − 2yisi + si − p(xi)

}
xim

]
(4.8)

4.2.4.2 Steps of the proposed STSD framework and its training algorithm

The whole process describing the training and prediction of the proposed STSD model

is presented in the Algorithm 4. The Algorithm describes how the information of

sarcasm present in the tweet is extracted from each tweet of the training data and

is utilized for learning the parameters using gradient descent. This can be seen

from steps 4-9 in Algorithm 4. The procedure call at step 6 invokes the method to

compute sarcasm using equation 4.3 and returns the value of sarcasm. The procedure

call of Gradient_Descent_STSD at step 9 invokes Algorithm 5, which returns learned

parameters, w. To predict labels for unlabeled tweets, first the value of Sarcasm_state
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of the tweets is determined and then the label is predicted with the help of sigmoid

function.

Algorithm 4: Sarcasm-based tweet-level stress detection
Input: Labeled Dataset of Tweets, D
Output: Object with learned parameters and labels for unlabeled tweets

1 Function STSD(D):
2 Y ←

{
yi
∣∣(xi, yi) ∈ D, 1 ≤ i ≤ N

}
3 Perform initial preprocessing of the data
4 s← φ
5 for xi ∈ D do
6 s_i← Sarcasm_state(xi);
7 s← s

⋃
s_i

8 end
9 w← Gradient_Descent_STSD(D, s)

10 p(x)← 1
1+e−w.x , ∀ tweet x

11 Z← Unlabeled_tweets
12 YZ ← φ
13 for z ∈ Z do
14 sz ← Sarcasm_state(z);
15 if sz = 1 then
16 prediction_probability ← p(−z)
17 else
18 prediction_probability ← p(z)
19 end
20 if prediction_probability > 0.5 then
21 yz ← 1
22 else
23 yz ← 0
24 end
25 YZ ← YZ

⋃
yz

26 end
27 result_object← {w, YZ}
28 return result_object

Theorem 4.2.1. The loss function of the proposed STSD model is a special form of

logistic regression loss.

Proof. From the loss function of the proposed STSD model, presented in Equation

(4.6), it is observed that at any given iteration, only one component of the loss
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function is computed due to the binary variable si. For the tweets with si = 1, only

the second component is computed, while only the first component is computed for

the tweets with si=0.

From the definition of the sigmoid function [48]:

p(−x) = 1

1 + exp(−w.(−x)) =
exp(−w.x)

1 + exp(−w.x) = 1− 1

1 + exp(−w.x) = 1− p(x)

Hence, using the above relation, the loss function is rewritten as:

f(w) = −l(w)

=⇒ f(w) = −
( N∑
i=1

(1− si)
{
yi log(p(xi)) + (1− yi) log(1− p(xi))

}
+

N∑
i=1

si

{
yi log(p(−xi)) + (1− yi) log(1− p(−xi))

})
(4.9)

From Equation (4.9), it is noticed that the two components in the summation are

characterized by the value of Sarcasm_state, si. The first component of the loss

exists only if the value of Sarcasm_state vanishes if si = 0 and the second component

exists if si = 1. Hence, equation (4.9) can be rewritten into a single component as

follows:

f(w) = −
( N∑
i=1

{
yi log(p(xti)) + (1− yi) log(1− p(xti))

})
(4.10)

where,

xti = xi ,if si = 0

xti = −xi, if si = 1

The equation (4.10) is similar to a logistic loss function [88]. Hence, it is demonstrated

that the proposed STSD model’s loss function reduces to a special case of the logistic

regression loss.

The gradient descent and stochastic gradient descent algorithms for learning the

parameters of the proposed STSD model are described in Algorithms 5 and 6, re-

spectively. Both the Algorithms use the gradient of the loss function of the proposed
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model, ∇f , as specified in Equation (4.8).

Algorithm 5: Gradient Descent Algorithm for training of STSD Model
Input: Training dataset consisting of D containing the features of tweets in

dataset, with |D| = N and s = {si|i = 1, 2, ..., N}, a vector
representing the Sarcasm_state of each tweet and η, the rate of
convergence

Output: Parameter Vector w of the objective function
1 Function STSD_Gradient_Descent(D, s):
2 Initialize parameter vector w to small random values ;
3 while convergence is not reached do
4 ∇f =

∑N
i=1(yi − 2yisi + si − p(xi))xim;

5 Update the weight vector, w← w + η ∗ ∇f ;
6 end
7 return w

Algorithm 6: Stochastic Gradient Descent Algorithm for training of STSD
Model

Input: Training dataset consisting of D containing the features of tweets in
dataset, with |D| = N and s = {si|i = 1, 2, ..., N}, a vector
representing the Sarcasm_state of each tweet and η, the rate of
convergence

Output: Parameter Vector w of the objective function
1 Function STSD_Stochastic_Learning(D, s):
2 Initialize parameter vector w to small random values ;
3 while Convergence is not reached do
4 for each training example (xi, yi) do
5 ∇fi = (yi − 2yisi + si − p(xi))xim;
6 Update the weight vector as, w← w + η ∗ ∇fi
7 end
8 end
9 return w

The model’s parameters, which have been learned during training, are used in

the prediction function to predict the label for the unlabeled tweets. Based on the

principle of STSD, the prediction function for the proposed STSD model is defined
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with respect to the value of Sarcasm_state, si, of the tweet xi as shown below:

Ps(yi|xi) =

P (yi|xi) , if si = 0

P (yi|−xi) , otherwise

where, P (yi|xi) is sigmoid function and hence, P (yi|−xi) = p(−xi) =
1

1+exp (−wT .x) .

4.2.4.3 Dimensionality Reduction

In this chapter, various techniques of dimensionality reduction are applied so as to

improve the classification performance of the model. Given the large number of

features and sparse nature of the training data of tweet-level stress detection, applying

an effective dimensionality reduction technique is essential to reduce the features and

to improve the performance of the model [48]. An exploratory analysis of the datasets

is conducted by applying popular dimensionality reduction techniques such as Linear

Principal component Analysis (PCA) and Nonlinear or Kernel Principal component

Analysis [89].

In linear PCA, the data is projected onto a linear subspace of lower dimensions

[48]. But linear PCA does not perform well when the data is linearly non-separable

[73].

In non-linear or kernel-PCA, the features are transformed into higher dimensions

using a non-linear mapping and, later, linear PCA is applied in the transformed higher

space [89]. Given the high computational cost in computing the transformation to

higher dimensions, kernel trick is used [48]. The kernel trick is helpful as it avoids the

computation of mapping to higher dimensions but allows the computation of linear

sub-spaces of higher dimensions using kernel functions within the original input space.

The three popular kernels used in kernel PCA are the Linear kernel, Radial Basis

Function (RBF) kernel, and Polynomial kernel. In this chapter, Linear kernel PCA,

RBF kernel PCA, and Polynomial kernel PCA are applied on 4 different datasets,

and it is observed that polynomial kernel PCA (with degree 3) has good separation

of classes when projected onto the two principal components. Hence, the proposed
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model employs kernel PCA with a polynomial kernel for dimensionality reduction.

The detailed discussion of the obtained results using three PCA techniques on all the

datasets is presented in section 4.4.

4.3 Experimental Setup

This section describes the experimental setup, utilized datasets, and the employed

machine learning models, which were used to assess the proposed model’s perfor-

mance. All the experiments were conducted using Python with the IDE Jupyter

Notebook 4.1.1.

4.3.1 Dataset Description

To evaluate the model, four datasets of tweets were extracted using Tweepy, Twitter’s

API. The datasets D1 and D2 were collected during the starting stage of the second

wave of COVID-19 in India during the months of February and March, 2021. The

rest of the datasets were collected in two stages. Dataset D3 is extracted during

the starting stage of the third wave in India, from December 2021 to January 2022.

Whereas, dataset D4 was collected during the peak stage to tail-end of third wave

in India -January 2022 to February 2022. The datasets belonging to different time-

periods were used for implementation to validate the generalizing ability of the model.

Tweets were extracted using Tweepy with two types of queries. The tweets were

collected using the query “I feel Stressed” along with the search words “COVID-

19”,‘covid”. All the tweets collected using this query and keywords were labelled as

stressed (yi = 1). While the tweets collected using the query “I feel relaxed”, “I

don’t feel stressed” along with the search words “COVID-19, covid” are labelled non-

stressed (yi = 0). This is because “I feel” pattern-based extraction has proved to be

effective in labelling tweets [19, 45]. The collected datasets were cleaned to remove

noise. The details of the datasets collected are presented in Table 4.2.
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4.3.2 Models utilized for comparison

Popular ML classifiers such as Logistic Regression (LR), Support Vector Machines

(SVM), Random Forest (RF), and Naive Bayes (NB) are used to evaluate the per-

formance of the proposed STSD model. All of these models, except Naïve Bayes

(NB) are discussed in section 3.3.2 of chapter 3. The metrics used for comparison are

Accuracy and F1-Score, which are defined in section 1.3. The abstract details of the

Naïve Bayes model are given below:

Naïve Bayes: Naïve Bayes (NB) is a popular binary classification algorithm built

upon the concept of Bayes theorem [48]. It predicts posterior probabilities for each

class label for a given unlabeled tuple using Bayes theorem [48]. The tuple is assigned

to a class with the highest posterior probability. Naïve

Bayes assumes class-conditional independence, where each of the input features is

independent of each other [48, 66, 90].

On the four datasets-D1, D2, D3 and D4-the following experiments were con-

ducted:

1. All the models considered in this chapter (baseline models and the proposed

STSD model) are built with original features without applying any dimension-

ality reduction technique.

2. Transforming the data by applying the polynomial kernel PCA.

3. Building all the models considered in this chapter on data of reduced dimen-

sions.

4.4 Results

This section contains the results for all the experiments that are performed as part

of this chapter.
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4.4.1 Visualization of PCA results

This section discusses the results of exploratory data analysis after applying PCA

techniques as part of the dimensionality reduction task that is described in section

4.2.4.3. In this chapter, to reduce the dimensionality of the data and to mitigate the

low performance of the models, a linear PCA technique and a kernel PCA technique

with two different kernels—RBF Kernel and Polynomial Kernel—were employed. In

the figures 4.2, 4.3, 4.4 and 4.5, the plots respectively show the projection of the

datasets D1, D2, D3, and D4 on the two principal components after applying various

PCA techniques used in this chapter.

For the dataset D1, the separation of points into stressed and non-stressed classes

is more clear after applying a polynomial kernel, as noted from the figure 4.2. But after

applying Linear PCA and RBF kernel PCA, the classes were not linearly separable.

Similarly, for dataset D2, the points of the stressed class are hidden behind the non-

stressed points after applying polynomial kernel PCA, as seen from the figure 4.3. For

dataset D3, it is observed from figure 4.4 that the data-points were linearly separable

after applying polynomial kernel PCA. Also, in the case of dataset D4, there was a

clustering of two classes in both directions of the axes of principal components, as

observed in the figure 4.5. There was no clear linear separation of the points in the

projection after polynomial kernel PCA in the case of dataset D4. Nonetheless, in all

the four datasets, the data points were grouped into nearly linearly separable classes

after the application of polynomial kernel PCA. Consequently, this helps in better

classification. Hence, the polynomial kernel PCA technique was used for feature

reduction in this chapter before building the classifiers.

4.4.2 Evaluation of the Proposed STSD Model

For evaluating the proposed STSD model’s performance, many experiments were im-

plemented on four datasets such as D1, D2, D3, and D4. All the results were recorded

following the 10-fold cross validation of the model. Furthermore, the statistical sig-

nificance of the results is analysed by conducting one-sample Wilcoxon signed rank
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Figure 4.2: The projection of Dataset D1 on two principal components after different
PCA techniques

Figure 4.3: The projection of Dataset D2 on two principal components after different
PCA techniques

Figure 4.4: The projection of Dataset D3 on two principal components after different
PCA techniques
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Figure 4.5: The projection of Dataset D4 on two principal components after different
PCA techniques

test [91]. The null and alternate hypothesis for the one-sample Wilcoxon signed rank

test were given as:

H0 : The mean performance of other models is equal to the mean performance of the

proposed STSD model.

H1 : The mean performance of the other models differs from the mean performance

of the proposed STSD model.

The decision of rejecting the null hypothesis is determined when observations of a

proposed model are analysed with other models. In this chapter, the rejection of the

null hypothesis was done with a p−value ≤ 0.05, inferring that the recorded results

are statistically significant [91].

Table 4.4 stores the results of the experiments executed on the baseline models

using the four datasets of D1, D2, D3, and D4 with original features. Initially,

experiments were conducted on baseline models of Logistic Regression (LR), Support

Vector Machines (SVM), Random Forest (RF), and Naïve Bayes (NB) along with the

proposed STSD model. In Table 4.4, it can be observed that the proposed STSD

performed better than all other models on all the four datasets. The STSD model

delivered an accuracy of 77.63% on dataset D1 and recorded an F1-score of 0.762.

The SVM performed second best with respect to accuracy but records a low F1-score

when compared with the proposed model. In the experiments on dataset D2, the
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proposed STSD model had leading performance with 76.79% accuracy and F1-score

of 0.770. Here, SVM had the second best performance with 73.94% accuracy and

an F1-score of 0.761. In the experiments on datasets pertaining to the third wave,

D3 and D4, the STSD outperformed other baseline models. The STSD achieved an

accuracy of 77.24% and an F1-score of 0.792 in experiments on dataset D3. While

SVM and LR were ranked second and third in terms of both accuracy and F1-score.

Also, on dataset D4, STSD records an accuracy of 76.75% and an F1-Score of 0.780,

outperforming all other baseline models. Hence, when implemented with original

features, the proposed STSD model delivered better performance when compared

with all other baseline ML models.

Table 4.5 recorded the performances of all the models in this chapter after the

application of polynomial kernel PCA. From Table 4.5, it is noted that the perfor-

mance of all the models on all datasets improves significantly by applying polynomial

kernel PCA. The proposed STSD model delivers a leading performance with accu-

racy of 86.82% and F1-Score of 0.926 on dataset D1, while SVM has second highest

accuracy of 83.74% and RF had second highest F1-Score of 0.880. For dataset D2,

the proposed STSD records a high accuracy 83.01% with a high F1-Score of 0.855,

while SVM recorded the second highest accuracy of 77.17% and RF recorded the

second best F1-score of 0.799. After implementation on the datasets concerned with

the third wave, D3 and D4, the proposed STSD model exhibited better performance

than any other baseline models. The STSD exhibited a high accuracy of 86.3% and

an F1-Score of 0.907 on dataset D3, while NB recorded the second best accuracy of

79.2% and SVM gave the second best F1-Score of 0.816. In the case of dataset D4,

the STSD lead with an accuracy of 82% and an F1-Score of 0.889, while SVM had

the second best accuracy of 76.86% and RF recording the second best F1-Score of

0.785. Accordingly, it was concluded that the proposed STSD leads in accuracy and

F1-Score when compared to all other baseline ML models considered.

The bar-plots representing accuracy for each of the classifiers when implemented

with original features and with polynomial kernel PCA, are presented in figure 4.6. It

is observed that the STSD has the highest accuracy in both cases-first, with original
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features, shown with red coloured bars; and second, with polynomial kernel PCA,

shown with cyan coloured bars. And the STSD model exhibits better accuracy than

any other baseline model in both cases for all four datasets. Similarly, the bar-plots for

F1-Score for each of the models considered with original features and with polynomial

kernel PCA are depicted in figure 4.7. And the STSD model exhibits a better F1-

Score than all other baseline models in both cases-first, with original features, shown

with red coloured bars; and second, with polynomial kernel PCA, shown with cyan

coloured bars. This is true for all the four datasets.

Table 4.4: Performance results for experiments on all four datasets - with original
features

Datasets D1 D2 D3 D4

Models/Measures
Accuracy

(%)
F1-Score

Accuracy

(%)
F1-Score

Accuracy

(%)
F1-Score

Accuracy

(%)
F1-Score

LR 74.62 0.734 73.92 0.750 74.91 0.772 74.4 0.761

SVM 77.30 0.744 73.94 0.761 75.96 0.772 75.06 0.762

RF 74.40 0.734 72.01 0.755 73.80 0.780 74.30 0.761

NB 74.30 0.734 72.70 0.750 74.01 0.772 74.70 0.761

STSD 77.63 0.762 76.79 0.770 77.24 0.792 76.75 0.780

Table 4.5: Performance results for experiments on all four datasets - By applying
polynomial kernel PCA

Datasets D1 D2 D3 D4

Models/Measures
Accuracy

(%)
F1-Score

Accuracy

(%)
F1-Score

Accuracy

(%)
F1-Score

Accuracy

(%)
F1-Score

LR 82.71 0.805 77.16 0.781 78.08 0.798 76.34 0.770

SVM 83.74 0.821 77.17 0.788 77.64 0.816 76.86 0.770

RF 82.2 0.880 76.8 0.799 78.1 0.807 76.4 0.785

NB 82.6 0.860 76.3 0.765 79.2 0.790 76.2 0.766

STSD 86.82 0.926 83.01 0.855 86.3 0.907 82 0.889

4.4.2.1 Analyzing the effect of using dimensionality reduction with STSD

The low performance of the models in their original features was noted in Table

4.4. The dimensionality reduction technique of polynomial kernel PCA was applied

because it grouped the classes of tweets, as seen from the results of preprocessing in
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Figure 4.6: The bar-plots representing the accuracies of all models on the datasets
D1, D2, D3, and D4

section 4.4.1. This helps in better classification. The accuracy and F1-score results on

experiments conducted in this chapter on all four datasets with original features were

presented in Table 4.4. While the results of experiments after applying polynomial

kernel PCA were presented in Table 4.5. The bar-plot in figure 4.6 depicted the

comparison of accuracies exhibited by all the models when implemented with original

features and polynomial kernel PCA, for all the four datasets. The bar-plot in figure

4.7 compares the F1-Scores obtained by all models when implemented with original

features and polynomial kernel PCA. The cyan bars in the figure 4.6 denote the

accuracy of the models after the application of kernel PCA. Hence, it was observed

that for all the models considered, the accuracy improves with the dimensionality

reduction technique of polynomial kernel PCA. And the largest improvement was seen

in the proposed STSD on all the four datasets. STSD with kernel PCA records at

least 9.19% improvement in accuracy when compared to all the models implemented

without PCA on dataset D1. While the same STSD recorded an improvement in
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Figure 4.7: The bar-plots representing the F1-measure values of all models on the
datasets D1, D2, D3, and D4

accuracy by 6.22%, 9.06% and 5.25% when compared to other models implemented

on datasets D2, D3, and D4, respectively. The least improvement in accuracy was

observed when models were implemented on dataset D4. This was due to a lack of

clear separation of classes after the application of polynomial kernel PCA, as observed

from figure 4.5.

Similarly, the cyan bars in the figure 4.7 denote the F1-scores of the models after

the application of the polynomial kernel PCA. It was observed that the F1-Score

of all the models has seen an improvement after using the dimensionality reduction

technique of polynomial kernel PCA. Moreover, the largest increment in F1-Score

over all the datasets was noted for the proposed STSD model. When compared

to all models implemented without PCA on dataset D1, STSD with kernel PCA

improved F1-Score by at least 0.164 points. Whereas, the same STSD recorded an

improvement of 0.085 points, 0.115 points, and 0.109 points when compared to other

models implemented on datasets D2, D3, and D4, respectively. The least improvement
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in F1-Score was observed when models were implemented on dataset D4. This was

due to the lack of clear separation of classes after the application of polynomial kernel

PCA, as observed from figure 4.5.

4.5 Discussion

This section presents the discussion of the results of the proposed STSD model when

compared to the state-of-the-art models. It is known from the previous section that

the proposed STSD had outperformed the baseline models on the datasets collected

from two different time periods of COVID-19, as evidenced by the results presented

in section 4.4.2.

4.5.1 Comparison with state-of-the-art

The proposed STSD is compared with two state-of-the-art models, like the NTSD

proposed in [45]. However, in [45], the methodology used neighborhood tweets, which

would be computationally costly. And the proposed STSD approach doesn’t address

the concept of stress detection with the inclusion of neighborhood tweets. Never-

theless, NTSD, in the case of no-neighborhood tweets, can be compared with the

proposed STSD. It includes sarcasm as an attribute. Table 4.6 shows the best results

obtained in terms of accuracy and F1-score by the models of NSTD and proposed

STSD. These performances are recorded when implemented on dataset D1. After

application of the PCA, the proposed STD outperformed the NTSD in accuracy and

F1-score.

Table 4.6: Accuracy recorded by NTSD and the proposed STSD on dataset D1

Model/Performance Accuracy F1-Score

NTSD without PCA 75.92 0.758

STSD without PCA 77.63 0.762

NTSD with PCA (polynomial kernel) 84.16 0.846

STSD with PCA (polynomial kernel) 86.82 0.926
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It is concluded that with the use of sarcasm information, STSD outperforms other

baseline models. Furthermore, with the effective use of the PCA techniques, a better

separation of classes is achieved. This resulted in good improvements in the perfor-

mances by all the models considered. And, the proposed STSD model recorded the

highest magnitude of enhancement in performance. Hence, STSD with polynomial

kernel PCA is the better model for tweet-level stress detection, by enhancing the

utilization of tweet-content.

4.5.2 Limitations of the proposed STSD model

The limitations of the proposed STSD model are presented below:

• The proposed model will work only if the tweets contain textual content infor-

mation.

• As text is the major source for extracting the features, the proposed model

would perform well only for tweets that contain sarcasm or its forms present in

textual content rather than embedded in media other than text.

4.6 Summary

Psychological stress has emerged as a major global health problem, and social media-

based stress detection has caught the attention of numerous researchers. In this

chapter, for detecting tweet-level stress, a novel sarcasm-based tweet-level stress de-

tection (STSD) classifier has been developed for availing the information related to

sarcasm present in the tweet-content.

The principle of the STSD model is to minimize the loss for non-sarcastic tweets

while penalizing the loss for sarcastic tweets. Subsequently, a theorem is framed

to prove the loss function of the proposed STSD model as the special form of the

standard logistic loss. The experiments are conducted on four different datasets,

with datasets D1 & D2 collected during the second wave of the COVID-19 pandemic

and the datasets D3 & D4 collected during the third wave of the pandemic in India.
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A thorough preprocessing is performed and an appropriate dimensionality reduction

technique of polynomial kernel PCA is applied to all the datasets so as to enhance

the performance of the models. From the experimental results, it is noted that the

proposed STSD outperforms all the other baseline models in both the cases of the

implementation with original features and the implementation after polynomial kernel

PCA. The STSD model with polynomial kernel PCA records accuracies of 86.82%,

83.01%, 86.3%, and 82%, with datasets D1, D2, D3, and D4 respectively. Also, STSD

with polynomial kernel PCA achieves an improvement in accuracy of at least 9.19%,

6.22%, 9.06%, and 5.25% when compared to the baseline models implemented without

PCA on datasets D1, D2, D3, and D4 respectively. Moreover, STSD with polynomial

kernel PCA records F1-Scores of 0.926, 0.855, 0.907, and 0.889 with datasets D1,

D2, D3, and D4 respectively. Also, STSD with polynomial kernel PCA achieves an

improvement in F1-score by at least 0.164 points, 0.085 points, 0.115 points, and

0.109 points when compared to all other baseline models implemented without PCA

on datasets D1, D2, D3, and D4 respectively. In addition, all the models considered in

this chapter record improved performance when implemented with polynomial kernel

PCA as compared to their implementation without PCA. Wherein, the proposed

STSD shows the highest improvement in accuracy and F1-score when compared to

the increment recorded by all the other baseline models.
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Chapter 5

Semi-supervised Approach for

Tweet-level Stress Detection

Supervised learning-based solutions of NTSD and STSD are proposed in chapters

3 and 4, respectively, for tweet-level stress detection with better utilization of text

data. Since there is a severe lack of availability of large amounts of labeled data

for the problem, in this chapter, we propose a semi-supervised approach to solve the

problem of text-level stress detection.

Organization of the chapter:

The chapter is organized as follows. Section 5.1 discusses the problem formulation,

including the formal notations used in this chapter. The proposed SMTSD model and

its training are discussed in section 5.2. The experimental setup and the data collected

is presented in section 5.3. The results and the findings of the chapter are presented

in section 5.4. The discussion of the results of this chapter is presented in section 5.5.

Finally, section 5.6 gives the summary of the chapter.

5.1 Problem Formulation

In this chapter, a semi-supervised approach called self-training method for tweet-

level stress detection (SMTSD) is proposed. All the notations used in this work are

presented in Table 5.1.
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Let D be the dataset containing a small amount of labeled tweet data, DL =

{xi
L, yLi } for the users u ∈ U , and a large amount of unlabeled tweet data Dν =

{xi
ν}, for the users w ∈ U . Also, let the set of tweet features in labeled training

data is DL
X = {(x|(x, y) ∈ DL)} and let C is the set of unique labels used in the

classification (here, C = {0, 1}). The problem is to find a function g, described as

g : DL
X

⋃
Dν −→ C, that learns the parameters so that it predicts labels for unlabeled

tweets, Dν . The function g is later used to predict the label for any unlabeled tweet

z.
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Table 5.1: Description of the symbols employed in SMTSD

Symbol Description

U Collection of users

u Any particular user u, where u ∈ U for labeled data

w Any particular user u, where w ∈ U for unlabeled data

Dν Unlabeled dataset of tweets

DL Labeled dataset of tweets

DL
X Set of tweets for Labeled dataset of tweets

D The total training data, D = DL
⋃
Dν

xi
L It is feature vector of i-th tweet in labeled dataset DL and there exists some owner u ∈ U , for this tweet.

xi
ν It is feature vector of i-th tweet in unlabeled dataset Dν and there exists some owner w ∈ U , for this tweet.

NL The cardinality or the number of tweets present in the labeled dataset DL

Nν The cardinality or the number of tweets present in the unlabeled dataset Dν

N The cardinality or the number of tweets present in the dataset D , N = NL +Nν

ψ The length of the tweet’s feature vector x

si The value of Sarcasm for the ith tweet xi

s[j] The value of sarcasm in jth element of Sarcasm vector, sj = s[j]

Ds The set of sarcastic tweets in Training data.

D′s The set of non-sarcastic tweets in Training data, D = Ds

⋃
Ds
′

yi ∈ {0, 1} Class label denoting Stress state of the tweet xi ∈ D

Y L Collection of class labels of all tweets, xi
L, ∀i ∈ 1, 2, ..., NL, where NL = |DL|

y∗j The label in combined data, DL
TR ∪ D̃, where j ∈

{
1, 2, ...|DL

TR

⋃
D̃|

}
Ỹ Collection of pseudo-labels that needs to be predicted for unlabeled tweets, xi

ν , ∀i ∈ 1, 2, ..., Nν , where Nν = |Dν |

β, γ The weight vectors of features. They are of size ψ,β = [β1, β2, ..., βψ]
T , γ = [γ1, γ2, ..., γψ]

T ,

pos number of positive polarity words in the tweet x

neg number of negative polarity words in the tweet x

e+ number of positive polarity emojis and emoticons in the tweet x

e- number of negative polarity emojis and emoticons in the tweet x

h+ number of hashtags with positive polarity in the tweet x

h- number of hashtags with negative polarity in the tweet x

p(x) The sigmoid function or logistic function, defined as p(x) = 1
1+exp (−w.x)

f() The sigmoid function learned by the model, when trained on labeled data

f̂(xi, β) predicted label after training with labeled data, DL
TR

g() The sigmoid function learned by the model, when trained on combined data of labeled and pseudo-labeled data

l(β, f̂()) The loss function for training the labeled training data, DL
TR

ĝ(xi, γ) predicted label after training with combined data, DL
TR

⋃
D̃

l(γ, ĝ()) The loss function for the combined proposed model of SMTSD after training the combined data, DL
TR

⋃
D̃

Ps(yi|xi) Prediction probability for SMTSD model, specifying the probability that the class yi corresponds to tweet xi

β∗ weight vector learned by the model after learning from labeled data, DL
TR. It is of size ψ.

γ∗ weight vector learned by the model after learning from combined data, DL
TR

⋃
D̃, It is of size ψ.
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5.2 Methodology

This section presents the proposed approach and methodology developed for a semi-

supervised solution for tweet-level stress detection. Here, the problem statement is

defined first, and then the features required for the model are discussed. Later, the

proposed model is discussed in detail.

5.2.1 Features Extraction

this chapter focuses on utilizing semi-supervised learning methods for improving the

performance of tweet-level stress detection. The aim is to exploit the information

inherently present in the text content of the tweets for better stress detection. The

features employed in the proposed method are based on state-of-the-art works [19,45].

Except for the value of sarcasm, all the set of features to be computed and the

procedure to compute them is according to the section 3.2.1.1 of chapter 3. However,

the sarcasm is computed as per the procedure discussed in 4.2.2.2 of chapter 4.

The proposed solution incorporates a sarcasm vector in its approach, the compu-

tation of which is similar to the works [45, 46]. Here, the concept of ”illocutionary

sarcasm” is implemented, which captures the contrast between the explicit meaning

conveyed in the text and the emotions specified in emojis and expressions [40,45]. In

this method, the concept of sarcasm is used as an attribute in the basic self-training

and other baseline approaches as per the previous literature in this domain [45]. How-

ever, in case of the proposed SMTSD method, sarcasm is not considered as one of

the attributes.

5.2.1.1 Computation of Sarcasm

The value of sarcasm is computed based on the existing literature [45, 46]. It is

developed on the basis of illocutionary sarcasm, where the explicit meaning of the

sentence is in contradiction to the facial expressions [40]. In this chapter, the sarcasm

is computed for all the tweets in the dataset, and a vector storing the sarcasm value

for each tweet is computed and returned. The process for calculating sarcasm for a
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set of tweets is described in algorithm 7. Here, the sarcasm of a tweet is assigned a

value of 1, if there is a contrast in the polarity of the majority of text content and

non-textual content. Also, sarcasm of tweet is assigned 1, if there is a contradiction

between the polarity of the majority of hashtags and the majority of words in the

text content. For all the remaining cases, it is assigned a value of 0. In Table 5.2,

examples of the variables used to compute the sarcasm function are presented.

It is to be noted that the aim of the proposed method is to utilize the information

of sarcasm in the self-training process to decide the pseudo-labels. To this end,

the computation of sarcasm is performed during the process of self-training in the

proposed model of SMTSD. The procedure for computing is invoked after predicting

the confidence of the pseudo-labels.

Table 5.2: Examples of the variables used to compute the sarcasm

Variable Examples of the variable

Positive Words ‘successful’, ‘good’, ‘HAPPY’, ‘easy’, ‘healthy’, ‘free’, ‘incredible’, ‘extraordinary’, etc.

Negative Words ‘grief’, ‘mental’, ‘poor’, ‘alcoholic’, ‘tough’, ‘forced’, ‘difficult’, ‘worst’, ‘disappointment’, etc.

Positive Hashtags #love, #joy, #HappyHolidays, #LoveYourHeart, #PrimaryCare, #’CredibleMind, #CleanAir, #HotTea.., etc.

Negative Hashtags #anxious, #anger, #LongCovid #StaySafe, #MentalHealth, #Grief, #LongTermCare, #FakeNews, etc.

Positive Emojis , etc.

Negative Emojis , etc.

5.2.2 Self-training Method for Tweet-level Stress Detection

(SMTSD)

Using the self-training approach in semi-supervised learning, this chapter proposes

a solution for the tweet-level stress detection problem. In semi-supervised learning,

self-training is a popular approach in which unlabeled data is assigned pseudo-labels

based on predictions made by a model trained on a small set of labeled data [61,92].

The pseudo-labels predicted with high confidence are added back to the labeled data,

thereby expanding it. This process is repeated iteratively until one of two conditions

is met: either there are no more unlabeled tweets or there are no pseudo-labels

predicted with high confidence [93]. This approach is popular and has been found to
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Algorithm 7: Computing_Sarcasm
Input: Dataset of Tweets,D consisting of tweet vectors DL = {x1, x2, ..}
Output: Sarcasm_vector, s

1 Function Sarcasm(D):
2 sarcasm_level← φ
3 i← 0
4 for x ∈ D do
5 pos←− number of positive polarity words in the tweet x
6 neg ←− number of negative polarity words in the tweet x
7 e+ ←− number of positive polarity emojis and emoticons in the tweet x
8 e- ←− number of negative polarity emojis and emoticons in the tweet x
9 h+ ←− number of hashtags with positive polarity in the tweet x

10 h- ←− number of hashtags with negative polarity in the tweet x
11 if e+ ≥ e- & pos < neg then
12 si ←− 1
13 end
14 if e+ < e- & pos ≥ neg then
15 si ←− 1
16 end
17 if h+ ≥ h- & pos ≤ neg then
18 si ←− 1
19 end
20 if h+ ≤ h- & pos ≥ neg then
21 si ←− 1
22 end
23 if h+ ≥ h- & e+ ≤ e- then
24 si ←− 1
25 end
26 if h+ ≤ h- & e+ ≥ e- then
27 si ←− 1
28 else
29 si ←− 0
30 end
31 i← i+ 1

32 end
33 Sarcasm_V ector ←

⋃
i∈|D| si

34 return Sarcasm_V ector
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be successful in improving model performance in cases of abundant unlabeled data

as it gradually uses the information from unlabeled data [92, 93].

In the proposed approach of SMTSD, self-training approach with logistic regres-

sion as the base-learner is extended by utilizing the information of sarcasm of the

tweet. The framework of the proposed model is depicted in Figure 5.1. The process

is similar to the generic self-training approach until the prediction of pseudo-labels.

Later, in the proposed model, the information from the value of sarcasm (s) is com-

puted for each tweet in the dataset of confident pseudo-labels. And it is used to

categorize the tweets into sarcastic (s = 1) and non-sarcastic (s = 0). In pseudo-

labeled data with high confidence, for the tweets falling under the “sarcastic” cate-

gory, the predicted pseudo-labels are negated, and the updated data is added back to

the labeled training data. For pseudo-labeled tweets falling under the “non-sarcastic”

category, the pseudo-label remains unchanged. The extended training data after the

addition of updated pseudo-labeled data is retrained. This process is repeated un-

til either no more unlabeled data is present or no more confident pseudo-labels are

predicted. Subsequently, the test data taken from the original labeled data is used

to assess the performance of the model. The parameters learned are later utilized

for predicting the stress labels for any new unlabeled tweets in the future. In the

proposed solution of self-training, the base-learner employed to build the models on

labeled data is logistic regression, as it is known for better performance on the binary

classification of tweet-level stress [45].

5.2.2.1 Training Algorithm

The training algorithm for the proposed SMTSD is based on the principle of self-

training of the semi-supervised learning mechanism, extended by employing informa-

tion related to sarcasm.

The training process is presented in algorithm 8. The algorithm’s initial input

training dataset is divided into two sets, labeled (DL) and unlabeled (Dν), with

sizes NL and Nν , respectively, where Nν >> NL. As unlabeled data is updated and

changed for each iteration, the unlabeled data available for any iteration is maintained
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in the dataset, Dν
current, by removing tweets of high-confidence pseudo-labels. And

the labeled dataset, DL, is further subdivided into training and testing sets, DL
TR and

DL
TS, respectively. The traditional supervised model of logistic regression is trained

over DL
TR. The algorithm is trained in this chapter to minimize the loss, l(), between

the actual label yLi and the predicted label, f̂(xi
L, β), where the model(L) learns the

sigmoid function f() with the parameters β.

For the labeled training dataset, DL
TR, the total loss is defined as :

Labeled_Loss =
|DL

TR|∑
i=1

l(yLi , f̂(xi
L, β)) (5.1)

In the case of logistic regression, the loss function l is given by the cross-entropy

coefficient [88], which is given as follows:

l(yLi , f̂(xi
L, β)) = yLi log(p(xi

L)) + (1− yLi ) log(1− p(xi
L)) (5.2)

where, p is the sigmoid function and is defined as follows [88] :

p(xi
L) = f̂(xi

L, β) =
1

1 + exp(−β.xiL)
(5.3)

The sigmoid function represents the posterior probability of class, yLi for the given

tweet vector, xi
L ∈ DL

TR.

The resultant model is then utilized to predict pseudo-labels for an unlabeled

dataset, where, the pseudo-labels predicted with high-confidence are of main inter-

est. The criterion for determining a pseudo-label’s confidence is computed using the

posterior probability of the label, p(y|x). And labels y that exceed the threshold, τ ,

in their posterior probability predictions are referred to as “confident labels”. The

sarcasm value si of confident pseudo-labels is then computed for each data point xi

in the dataset of confident pseudo-labels, D̃. The sarcasm vector, hence, is defined

as s =
⋃
i∈D̃ si. Subsequently, based on the value of the sarcasm computed for the

pseudo-labeled tweets, the pseudo-labels are modified. The labels are negated for
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the data vectors whose value of sarcasm(s) is 1. The pseudo-labels for the vectors

corresponding to non-sarcastic (s = 0) tweets, on the other hand, remain unchanged.

Finally, the updated pseudo-labeled dataset is added back to the training data, ex-

tending it. The updated data is then trained again to minimize the combined loss,

which is given as follows:

Combined_Loss =
|DL

TR∪D̃|∑
j=1

l(y∗j , ĝ(xj, γ)) (5.4)

where, l() is the cross-entropy function as defined in equation 5.2. Also, y∗j is the

labels of combined data, DL
TR

⋃
D̃. While ĝ is the sigmoid function for the given

tweet vector, xj ∈ DL
TR

⋃
D̃, ∀j ∈

{
1, 2, ...|DL

TR

⋃
D̃|

}
and is defined as in the

equation 5.3:

ĝ(xj, γ) = p(xj) =
1

1 + exp(−γ.xj)
(5.5)

The current unlabeled dataset, Dν
current, is updated after each iteration by remov-

ing tweets with high-confidence pseudo-labels, D̃X . The final model of the proposed

SMTSD is formed by the resultant parameters, γ∗, after all iterations. The idea of

availing the information related to sarcasm in the model is to maximize the utilization

of text content in predicting tweet-level stress and improve the performance of the

general semi-supervised approach.

The loss functions in equations (5.1) and (5.4) are functions of the parameters

β, γ. The goal of the training is to learn the optimal values of these parameters,

β∗, γ∗ at which the loss functions are at their minimum. These optimal values are

solved using optimization of the loss functions (5.1) and (5.4) [88].

5.2.3 Prediction

After training the model with confident pseudo-labels for unlabeled data, the model

is built, and the logistic function is employed to predict the labels of unlabeled and

new tweets. The prediction is given as follows [88]:

89



CHAPTER 5. SEMI-SUPERVISED APPROACH FOR TWEET-LEVEL STRESS DETECTION 5.3. EXPERIMENTAL SETUP

P (y|xi) =
1

1 + exp (−γ∗.xi)
(5.6)

The labels are assigned based on the prediction probability as follows:

y =

1 , If P (y|xi) ≥ 0.5

0 , If P (y|xi) < 0.5

(5.7)

5.3 Experimental Setup

This section presents the datasets collected and the experiments conducted as part

of the proposed SMTSD model. All the experiments are conducted on Python 3.7.15

using the IDE Jupyter Notebook 4.1.1.

5.3.1 Data collection

Twitter’s tweepy API is used to collect five different datasets of tweets. The datasets

D1 and D2 were respectively collected during February and March, 2021, when India

was reeling under the rise of the second wave of COVID-19, which made people

experience more stress. The dataset D3 was collected in December 2021, whereas the

dataset D4 was collected in January 2022, when the third wave of COVID-19 affected

India. Of the collected data, only about thirty percent of the tweets are labeled. Using

the process mentioned in literature [19, 45], the data is collected with the Tweepy

search API by using the patterns “I feel stressed” and “covid-19” for positive stress.

And the patterns used to collect negative stress are “I am not feeling stressed” and

“covid-19”. The pattern “covid-19” is employed in data collection so as to collect user

opinions related to the pandemic. The datasets are manually labeled by three experts,

and the majority label is considered. In each of the collected datasets, only about

thirty percent are labeled, leaving seventy percent of the data unlabeled. Among the

thirty percent, ten percent is kept aside as test data for measuring the performance.

In this chapter, we evaluate the performance of basic supervised machine learning
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Figure 5.1: Framework of the SMTSD model
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Algorithm 8: Proposed self-training semi-supervised based approach
Input: Dataset of Tweets,D consisting of labeled part

DL = {(xL1 , yL1 ), (xL2 , yL2 ), ..., (xLM , yLM))} and unlabeled part
Dν = {xν1, xν2, ..., xνN−M} and confidence threshold τ

Output: Model object with learned parameters and labels for unlabeled
tweets

1 Function SMTSD(D):
2 Perform initial preprocessing of the data;
3 Organise labeled data into training and testing parts, DL ← DL

TR

⋃
DL
TS

4 cp = 1
5 Dν

current ← Dν

6 for Dν
current 6= φ and cp 6= 0 do

7 model(L) ← arg min
β

∑M
i=1 l(y

L
i , f̂(xi

L, β)) ;

8 (f, β∗)← model(L);
9 ỹi ← f(xi

ν , β∗) ∀i ∈ {1, 2, ..., |Dν
current|} ;

10 D̃ ← {(xi
ν , ỹi)

∣∣P (y|x) >= τ and xνi ∈ Dν
current} ;

11 cp ← |D̃|
12 s← Computing_Sarcasm(D̃);
13 Ds ← φ ;
14 count← 0

15 for (x, y) ∈ D̃ do
16 if s[count] = 1 then
17 D̃ ← D̃\{(x, y)} ;
18 y ← ¬y ;
19 Ds ← Ds

⋃
{(x, y)} ;

20 end
21 count← count+ 1 ;
22 end
23 D̃ ← D̃

⋃
Ds ;

24 Dnew ← DL
TR

⋃
D̃ ;

25 model← arg min
γ

{∑|Dnew|
i=1 l(y∗i , ĝ(xi

new, γ))
}

;

26 (g, γ∗)← model
27 DL

TR ← Dnew ;
28 M ← |DL

TR|;
29 D̃X ← {x|(x, y) ∈ D̃} ;
30 Dν

current ← Dν\D̃X ;
31 end
32 result_object← {g, γ∗};
33 return result_object
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models and existing state-of-the art works of [18] and [37], in the literature by adding

the predicted pseudo-labels of the proposed semi-supervised model of SMTSD to the

original labeled data. The details of the datasets, mentioning the number of tweets,

the number of unlabeled tweets, and the exact time periods during which the datasets

are collected, are presented in Table 5.3.

The distributions of aggregates of various features among the collected features

are presented in various tables. In Table 5.4, the number of labeled tweets and the

class label distribution of the two classes are presented. The dataset is balanced, as

the number of data points in both positive and negative classes of stress is nearly

equal. In table 5.5, the polarity-based distributions of words, emojis, and hashtags

are presented. The distribution of the value of sarcasm in the tweets, predicted using

algorithm 7, is noted in table 5.6.

Table 5.3: The Details of the Datasets

Dataset #tweets #users #Unlabeled tweets

D1 7,289 1,732 5,193

D2 16,532 5,119 11,779

D3 4,062 1,888 2,894

D4 7,209 2,558 5,136

Table 5.4: Distribution of the class-labels in the Datasets

Dataset #tweets #labeled tweets
#positive

labeled tweets

#negative

labeled tweets

D1 7,289 2,096 1,048 1,048

D2 16,532 4,753 2,376 2,377

D3 4,062 1,168 584 584

D4 7,209 2,073 1,036 1,037
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Table 5.5: The distribution of positive and negative polarity among words, emojis
and hashtags

Dataset
(#positive words,

#negative words)

(#positive emojis,

#negative emojis)

( #positive hastags,

#negative hashtags)

D1 (4,466 , 2,689) (366 , 251) (12 , 30)

D2 (10,773 , 5,334) (1,017 , 440) (55 , 127)

D3 (2,687 , 1,246) (545 , 272) (14 , 7)

D4 (4,625 , 2,031) (416 , 167) (22 , 74)

Table 5.6: The sarcasm distribution Details of the Datasets

Dataset #tweets
#tweets

with sarcasm value=1

#tweets

with sarcasm value=0

D1 7,289 397 6,892

D2 16,532 1,198 15,334

D3 4,062 504 3,558

D4 7,209 955 6,254

5.3.2 Baseline supervised methods for comparison

Tweet-level stress detection techniques are applied on a variety of popular machine

learning models like logistic regression, support vector machines, naïve bayes and ran-

dom forests. Of them, logistic regression and support vector machines are considered

to be high performers for tweet-level stress detection [19, 94]. All the basic machine

learning models used here are discussed in section 4.3.2 of chapter 4. However, there

are other deep learning-based models like Deep Neural Network with Cross-Auto En-

coder (DNN-CAE) and Bidirectional long short term memory (Bi-LSTM) which are

considered additionally in this chapter. In the baseline models, all the classical ma-

chine learning models except the state-of-the-art Bi-LSTM use features similar to the

previous work [45] and have sarcasm as one of the features. The Bi-LSTM model,

on the other hand, relies on word embedding techniques rather than hand-crafted
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features [37].

1. Deep Neural Network with Cross-Auto Encoder (DNN-CAE): A Deep

Neural Network with Cross Auto Encoder (DNN-CAE) is used in [18] to predict

tweet-level stress. It takes cross-media data from tweets, consisting of tweets’

text, social, and visual contents, and then finds a middle-level representation

using CAE. Later, DNN is used for classification. It performed better than the

classic ML algorithms, when data from all three different media was considered.

2. Bidirectional long short term memory (Bi-LSTM) [37] : This is a

state-of-the-art work in this domain. It develops a sequential model of bidirec-

tional long short term memory (Bi-LSTM) to identify the psychological stress

disclosed by minority group. The input text data, after being preprocessed into

tokens, is fed into the embedding layer, which outputs the word vectors for each

word. The dimension of the output vectors from the embedding layer is 300.

The embedding layer output is then sent to the Bi-LSTM layer. The Bi-LSTM

architecture expands the capabilities of sequential models like LSTM. It achieves

this by considering the context of or influence on a word from neighboring words

in both directions. The context in Bi-LSTM captures the influence on a word

from previous text sequences and future text sequences as well. The output

of the Bi-LSTM layer is fed into a dropout or regularization layer. The final

feature vector is then fed into a fully connected neural network for classifica-

tion. Bi-LSTM performed better at capturing true positives and true negatives.

In this chapter, all the baseline models considered above are implemented on all

the four datasets. In the experiments, the supervised machine learning models are

implemented on the combined data of labeled and predicted pseudo-labeled data.

The pseudo-labels are generated using two ways- first, from both basic self-training

approach and second, from the proposed SMTSD approach. All the baseline models

presented in this section are implemented using the combined data formed using the

two methods mentioned above. The comparative analysis includes the performance
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comparison among baseline models, including the state-of-the-art Bi-LSTM model

and the proposed SMTSD method. The metrics used for comparison are Accuracy

and F1-Score, which are defined in section 1.3.

Table 5.7: Accuracy and F1-Score recorded for models implemented in this chapter.
The results of baseline models correspond to the sampling of combined data considered
being 1.0

Model/Dataset
D1 D2 D3 D4

Accuracy

(%)
F1-Score

Accuracy

(%)
F1-Score

Accuracy

(%)
F1-Score

Accuracy

(%)
F1-Score

Proposed Semi-supervised methods
Basic

Self-training
83.01 0.905 82.01 0.911 83.2 0.880 81.6 0.860

Proposed

SMTSD
87.16 0.929 86.77 0.918 85.8 0.901 85.2 0.919

Baseline models trained with the

combined data of labeled and

pseudo-labeled data from the

proposed SMTSD model

LR 84.4 0.915 78.95 0.87 78.59 0.87 78.92 0.87

SVM 82.3 0.902 75.74 0.86 78.9 0.88 76.30 0.865

RF 84.4 0.914 77.0 0.87 78.8 0.88 76.3 0.86

NB 84.4 0.916 75.7 0.86 75.8 0.86 77.5 0.86

DNN-CAE

[18]
72.43 0.735 71.60 0.710 71.8 0.731 70.8 0.733

Bi-LSTM

[37]
84.41 0.915 82.01 0.901 82.4 0.891 80.6 0.901

Baseline models trained with the

combined data of labeled and

pseudo labeled data from the

basic Self-training model

SVM 80.3 0.792 75.2 0.79 76.9 0.8 74.9 0.799

RF 81.4 0.884 76.4 0.78 76.8 0.791 75.3 0.771

NB 81.1 0.798 73.7 0.78 73.9 0.75 73.2 0.79

DNN-CAE

[18]
71.27 0.72 70.6 0.70 70.3 0.709 68.8 0.703

Bi-LSTM

[37]
82.6 0.809 76.55 0.773 79.9 0.801 77.07 0.789

5.4 Results

This section presents the results of the experiments conducted as part of this chapter

and the analysis of their performance.

The performances recorded for every experiment are presented in Table 5.7. All

the results obtained are tested for statistical significance using the one-sample Wilcoxon

signed rank test [91]. It is found that the null hypothesis is rejected with p ≤ 0.05

and hence the results are considered statistically significant.

The experiments are initially implemented for the proposed SMTSD and basic

self-training. Here, a simple implementation of generic self-training without the us-
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Figure 5.2: The variation in accuracy of the proposed SMTSD model and other
supervised baseline models for different sample sizes of combined data containing
labeled and pseudo-labeled data predicted by SMTSD on Dataset D1.

Figure 5.3: The variation in accuracy of the proposed SMTSD model and other
supervised baseline models for different sample sizes of combined data containing
labeled and pseudo-labeled data predicted by SMTSD on Dataset D2.
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Figure 5.4: The variation in accuracy of the proposed SMTSD model and other
supervised baseline models for different sample sizes of combined data containing
labeled and pseudo-labeled data predicted by SMTSD on Dataset D3.

Figure 5.5: The variation in accuracy of the proposed SMTSD model and other
supervised baseline models for different sample sizes of combined data containing
labeled and pseudo-labeled data predicted by SMTSD on Dataset D4.
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Figure 5.6: The variation in F1-Scores of the proposed SMTSD model and other
supervised baseline models for different sample sizes of combined data containing
labeled and pseudo-labeled data predicted by SMTSD on Dataset D1.

Figure 5.7: The variation in F1-Scores of the proposed SMTSD model and other
supervised baseline models for different sample sizes of combined data containing
labeled and pseudo-labeled data predicted by SMTSD on Dataset D2.
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Figure 5.8: The variation in F1-Scores of the proposed SMTSD model and other
supervised baseline models for different sample sizes of combined data containing
labeled and pseudo-labeled data predicted by SMTSD on Dataset D3.

Figure 5.9: The variation in F1-Scores of the proposed SMTSD model and other
supervised baseline models for different sample sizes of combined data containing
labeled and pseudo-labeled data predicted by SMTSD on Dataset D4.

100



CHAPTER 5. SEMI-SUPERVISED APPROACH FOR TWEET-LEVEL STRESS DETECTION 5.4. RESULTS

age of information related to sarcasm for predicting pseudo-labels, is termed “basic

self-training”. The predicted pseudo-labeled data is then combined with the labeled

data. The combined sets of labeled and unlabeled data are formed correspondingly

for all four datasets. The baseline supervised models are then implemented on the

combined datasets. The combined datasets are formed in two ways. First, by adding

the predicted pseudo-labeled data from the proposed SMTSD method. Second, by

adding the pseudo-labels from the basic self-training approach. The combined data,

formed by pseudo-labels from the proposed SMTSD approach, is trained on the su-

pervised algorithms, including logistic regression. On the other hand, the combined

data formed by the pseudo-labels from the basic self-training approach is trained on

supervised algorithms other than logistic regression. Because the base classifier is

the same in the basic self-training approach and supervised logistic regression, the

sarcasm is used as a feature in the supervised models. Table 5.7 presents the per-

formances in terms of accuracy and F1-Score for the proposed SMTSD and baseline

self-training models on all four datasets. Also, the table records the performance of

the baseline supervised models when trained with combined data prepared from two

semi-supervised models on all four datasets.

From Table 5.7, it is observed that the proposed SMTSD model outperforms the

basic self-training model and all other baseline supervised ML models, including the

existing works on DNN-CAE and Bi-LSTM models in the literature. On the other

hand, the basic self-training-based approach outperforms other supervised models,

except the Bi-LSTM, when implemented on datasets D2, D3, and D4. But on dataset

D1, the basic self-training approach records low performance when compared to Bi-

LSTM and basic ML models, except for SVM. The state-of-the-art model, Bi-LSTM,

gives the second-best performance in both accuracy and F1-Score on all the datasets

after the proposed SMTSD approach.

SMTSD records the highest performance on dataset D1, where it records the max-

imum improvement in accuracy and F1-Score by 4.86% and 0.027 points compared to

the performance of SVM. While, in the case of datasets D2, D3, and D4, the proposed

SMTSD records the highest improvement in accuracy over the baseline ML algorithm
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of naïve bayes. In the case of F1-Score improvement recorded by SMTSD, the highest

is observed in dataset D2 when compared to both naïve bayes and SVM. While, in the

case of datasets D3 and D4, the highest improvement in F1-Scores is recorded over

naïve bayes. Moreover, as shown in Table 5.7, proposed model of SMTSD has the

largest improvement in performance scores compared to the performance achieved by

the supervised model of DNN-CAE. Also, when trained on the combined data formed

from the pseudo-labeled data predicted by the proposed SMTSD, the proposed model

of SMTSD records the highest improvement in accuracy by 4.76% over the state-of-

the-art Bi-LSTM model when implemented on dataset D2. In the same case, it is

observed that the proposed model achieves the highest improvement in the F1-Score

by 0.1 points when implemented on dataset D3.

Furthermore, it is noted that the proposed SMTSD model outperforms the basic

semi-supervised self-training model on all datasets. This provides empirical validation

for the use of information related to sarcasm in the proposed model. The maximum

improvement in accuracy of 4.4% is recorded by the proposed SMTSD when imple-

mented with dataset D2. Also, the maximum increase in F1-Score observed is 0.07

points when implemented using the dataset D2. This confirms that the use of sarcasm

was effective in maximizing the performance of stress detection. Also, it is observed in

table 5.7 that the performances of the baseline algorithms decrease when the baseline

models are trained with combined labeled and pseudo-labeled data predicted from

the basic self-training, when compared to the performances recorded with combined

data formed by the pseudo-labels predicted from the proposed SMTSD model. It is

also noted that the basic self-training model, implemented with logistic regression,

records better performance than the other baseline and state-of-the-art techniques

when trained with the combined labeled and pseudo-labeled data obtained from the

basic self-training method.
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Table 5.8: The number of pseudo-labels included in the final combined data

Dataset
#pseudo-labeled data points included

in final dataset

D1 636

D2 2,709

D3 390

D4 1,517

In addition to the above, the combined data, comprising labeled and pseudo-

labeled data from the proposed SMTSD model, is sampled for four different sizes:

0.4, 0.6, 0.8, and 1.0. Here, each sample size reflects the proportion of combined

data. And the baseline supervised models are implemented on each of these sampled

datasets. Figure 5.2 depicts the accuracy recorded by all the supervised models

considered as part of this experiment, along with the proposed SMTSD model, at

varying levels of sampling size of the combined data for dataset D1. Similarly, 5.3,

5.4 and 5.5 depict the accuracy recorded by all the supervised models considered as

part of this experiment, along with the proposed SMTSD model, at varying levels of

sampling size of the combined data for the datasets D2, D3, and D4, respectively.

And the F1-Scores of all the supervised models and the proposed SMTSD model with

varying sample sizes of the combined pseudo-labeled data, for dataset D1, are shown

in Figure 5.6. While figures 5.7, 5.8, and 5.9 present the F1-Scores of all the supervised

models and the proposed SMTSD model with varying sample sizes of the combined

pseudo-labeled data, for the datasets D2, D3, and D4, respectively. From figures

5.2, 5.3, 5.4, 5.5 and figures 5.6, 5.7, 5.8,5.9, it is observed that, with the increase in

sample size taken from the predicted labels of the proposed SMTSD, the accuracy

and F1-Score of all the models also grow steadily. This confirms that the pseudo-

labels predicted by the proposed semi-supervised approach are valid. Also, even in

the scenario of considering the entire predicted labeled dataset (sample_size = 1.0),

all of these models record lower performance when compared to the proposed SMTSD

model. Moreover, from figures 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, and 5.9, it is observed
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that the proposed SMTSD model outperforms the state-of-the-art Bi-LSTM model.

Also, it depicts the gradual increase in the performances of the Bi-LSTM classifier

with the increase in sample size from 0.6. Table 5.8 gives the number of pseudo-

labeled data points included in the final combined data when the proposed SMTSD

was implemented with respect to all four datasets.

5.5 Discussion

In this section, the discussion of the contribution of the proposed SMTSD model and

results are presented. In addition, the limitations of the proposed method are also

presented.

The tweet-level stress detection problem is handled only when there is availability

of labeled data [3,18,19,21–26]. Since it is not possible to get huge amounts of labeled

data in a real world scenario, a semi-supervised approach is devised to develop a

tweet-level stress detection model. In existing works on the tweet-level, either using

traditional machine learning classifiers or using deep learning models such as DNN-

CAE [18] and Bi-LSTM [37], only supervised mechanisms were proposed. In this

chapter, the semi-supervised models developed using self-training mechanisms handle

the problem of the scarcity of labeled data and also improve the performance.

Furthermore, the proposed SMTSD method in this chapter employs the concept

of sarcasm in self-training for better prediction of pseudo-labels. This enabled better

utilization of the text content of the tweet for improving tweet-level stress detection

performance. The concept of utilizing information from text-content through sarcasm

is not addressed in the existing literature. The proposed SMTSD model is developed

to utilize the information of sarcasm value in predicting the pseudo-labels during the

process of self-training. Hence, with regards to the concept of utilizing the information

of sarcasm in the proposed model, there are three cases –

• Utilizing sarcasm within the semi-supervised self-training framework to com-

pute pseudo-labels (SMTSD with logistic regression as the base learner).
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Table 5.9: Role of Sarcasm- Results

Model Accuracy F1-Score
D1 D2 D3 D4 D1 D2 D3 D4

Proposed SMTSD
(Utilizing sarcasm to predict
pseudo labels in self-training)

87.16 86.77 85.8 85.2 0.929 0.918 0.901 0.919

Basic self-training with sarcasm as an attribute 83.01 82.01 83.2 81.6 0.905 0.911 0.880 0.860
Basic self-training without sarcasm as an attribute 80.32 79.10 79.9 78.7 0.83 0.79 0.765 0.78

• Utilizing sarcasm only as an attribute in data without using it in computing

the pseudo-labels during the process of self-training.

• Not using sarcasm even as an attribute.

From the table 5.9, it can be gauged that with the usage of sarcasm, the per-

formance of the tweet-level stress detection increases. There are two ways in which

sarcasm could be used in the models. First, as one of the features, and second, as

the variable in deciding the pseudo-labels during self-training. In the first case, when

basic self-training is implemented with sarcasm as an attribute, there is a significant

increase in the performance of tweet-level stress detection when compared to the basic

self-training model implemented without sarcasm as an attribute. It is observed that

there is an improvement of at least 2.69% in accuracy and 0.075 points in the F1-

Score. In the second case, when sarcasm is utilized to decide pseudo-labels as part

of self-training, as in the proposed SMTSD model, there is a steady improvement

in performance in both accuracy and F1-Score compared to the basic self-training

implemented with sarcasm as one of the features. It is observed that the proposed

SMTSD method has an improvement over basic self-training with sarcasm as an at-

tribute, by at least 2.6% in accuracy and 0.007 points in F1-Score. Moreover, when

the second case is implemented without using sarcasm in deciding pseudo-labels dur-

ing self-training, it reduces to the case of basic self-training without sarcasm as an

attribute. The proposed SMTSD, when compared to basic self-training without sar-

casm as an attribute, records an improvement of at least 5.9% in accuracy and 0.099

points in F1-Score. Hence, from the study of the impact of sarcasm in the proposed

semi-supervised approach for tweet-level stress detection, it is intuitive that the pro-
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posed SMTSD model, which is a combination of a semi-supervised approach with the

usage of sarcasm in self-training, outperforms other baseline models.

5.5.1 Limitations of the proposed SMTSD model

The limitations of the proposed SMTSD model are given as follows:

1. The proposed model doesn’t perform well when the tweets lack text-content in

them.

2. The proposed model may have different performance for the tweets which have

sarcasm embedded without the usage of emojis.

5.6 Summary

In this chapter, a semi-supervised solution is proposed for tweet-level stress detection,

as there is a scarcity of labeled data in the real-world. As a solution to this problem,

a self-training approach based on logistic regression, Self-training Method for Tweet-

level Stress Detection (SMTSD), is proposed. Unlike a general self-training approach,

this method relies on utilizing the information of sarcasm in predicting the pseudo-

labeled data. For empirical verification, four different datasets are collected using the

Twitter API, tweepy, with only a small portion of them being labeled manually. It

is observed that, on all four datasets, the proposed SMTSD model outperforms the

baseline supervised ML models as well as the state-of-the-art methods like Bi-LSTM

and other techniques like DNN-CAE method in the existing literature. The expanded

data with predicted pseudo-labels is then sampled with four different sample sizes, and

the supervised models considered in this chapter are trained on all of these samples.

It is noted that the performance of the supervised models increased as the sample

size of the combined data increased. All results obtained are statistically significant.
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Chapter 6

Multi-task Learning Approach for

Tweet-level Stress Detection Using

Deep Learning

As discussed in previous chapters, sarcasm, as an attribute helps in improving the

performance of the stress detection at text-level. From chapters 3 and 4, it is found

that sarcasm helped in detecting stress. And in chapter 5, sarcasm helped in deciding

the pseudo-label. It is intuitive that sarcasm is closely related to stress and could

help in detecting the stress. Hence, there is a scope to explore the multi-task learning

approach for detecting stress, by using sarcasm as an auxiliary task. In this chapter,

we propose a multi-task deep learning-based framework as a solution to tweet-level

stress detection.

Organization of the chapter:

The chapter is organized as follows. Section 6.1 discusses the problem formulation,

including the formal notations used in this chapter. The proposed MATSD model

and its training are discussed in section 6.2. The experimental setup and the data

collected are presented in section 6.3. The results and the findings of the chapter are

presented in section 6.4. The discussion of this chapter is presented in section 6.5.

Finally, section 6.6 gives the summary of the chapter.
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6.1 Problem Formulation

In this chapter, a multi-task deep learning-based approach of MATSD was proposed

to detect the psychological stress in a given tweet, along with the auxiliary task of

sarcasm. The notations used in this chapter are presented in table 6.1.

6.1.1 MATSD: Problem Statement

If D = (xi, ysi , yai )
N
i=1 is the dataset of tweets containing the labels for both stress

(ys) and sarcasm (ya), then the problem is to learn a function that approximates the

mapping from tweet (x) to labels of stress (ys) and sarcasm (ya). For greater clarity,

the problem of the proposed MATSD is - If D = (xi, ysi , yai )
N
i=1 is the dataset of

tweets containing the labels for both stress and sarcasm, then the problem is to learn

functions hs : D −→ Cs and ha : D −→ Ca jointly for the tasks of stress and sarcasm

respectively. Here, Cs and Ca represent unique class labels in the classifcation tasks

of stress and sarcasm, respectively (here, Cs = {0, 1} and Ca = {0, 1} as both are

binary classifiers). For any unlabeled tweet z, the learned functions hs, ha are used

to predict stress and sarcasm labels respectively as ps = hs(z) and pa = ha(z).
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Table 6.1: Notations utilized in MATSD

Nota-

tion

Definition

U Set of users

xi ith tweet in dataset D, of user w, ∃w ∈ U ,

N The total size of the dataset D, N = |D|.

DTR The training-set part of the dataset D

DTS The validation-set part of the dataset D

ysi ∈

{0, 1}

dependent variable or class label denoting the state of stress for some the tweet xi ∈ DTR,∀i ∈

{1, 2, ..|DTR|}

yai ∈

{0, 1}

dependent variable or class label denoting the state of sarcasm for some the tweet xi ∈ DTR,∀i ∈

{1, 2, ..|DTR|}

Y TR
s set of stress labels for training dataset, DTR

Y TR
a set of sarcasm labels for training dataset, DTR

ps ∈

{0, 1}

predicted class label denoting the state of stress for some the unknown tweet z /∈ DTR

pa ∈

{0, 1}

predicted class label denoting the state of sarcasm for some the unknown tweet z /∈ DTR

w any word in in a tweet x in training dataset DTR

Ew embedding vector for the word w in tweet x ∈ DTR

Em embedding matrix for the tweet x ∈ DTR. It is vector of embedding vectors for every w in tweet

x ∈ DTR

ED set of embedding matrices, where each matrix corresponds to a tweet x ∈ DTR

Ls Training Loss function for the task of stress for all tweets x ∈ DTR

La Training Loss function for the task of sarcasm for all tweets x ∈ DTR

λ1 weight for Training Loss function for the task of stress

λ2 weight for Training Loss function for the task of sarcasm

LT Combined or total Training Loss function of the multi-task network for x ∈ DTR, LT = λ1Ls+λ2La

∇LT Gradient of the Combined Training Loss, LT
α parameters learned for the total multi-task neural network of the proposed MATSD model. Total

loss LT
β parameters learned that are present only in the subnet for prediction of stress

γ parameters learned that are present only in the subnet for prediction of sarcasm

θ parameters learned that are common for both the subnets predicting stress and sarcasm

hβ,θ(z) The predicted label of stress task classifier for some tweet z

hγ,θ(z) The predicted label of sarcasm task classifier for some tweet z
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6.2 Methodology

This section presents a detailed description of the proposed MATSD (Multi-task

Approach for Tweet-level stress detection) model and its training procedure.

6.2.1 MATSD: Framework

The framework of the proposed model is depicted in the figure 6.1. The tweets

collected from the users are preprocessed during the initial stages. The preprocessed

tweets are then vectorized using standard embedding techniques like Glove. After

the embedding phase, the embedded matrices of tweets are then passed as input into

networks corresponding to two tasks of sarcasm and stress. After convolution and

max-pooling stages in the subnet of sarcasm, the resultant feature vector is passed

through the sigmoid gate, which is represented in figure 6.1 as σ. Later it is mapped

with the LSTM final layer on the stress subnet. Finally, both tasks have their own

task-specific fully connected, and Softmax layers. The output of the Softmax layers

forms the predictions for the tasks. The maxpooled feature vectors are shared by

subnets of both tasks.

6.2.2 MATSD : Architecture

The proposed MATSD is a multi-task learning solution based on stress detection

using information from sarcasm. The architecture consists of two subnets. One of

them is for the primary task of learning the stress and the other is for the auxiliary

task of learning the sarcasm. As in general multi-task approaches, few layers are

shared between both tasks. There are many components in the proposed MATSD

architecture. The details of all the components are described in this section.

6.2.2.1 Data Collection, labeling, and preprocessing

Twitter’s Tweepy API is used to collect tweets during the periods of 2021 March and

2021 December to 2022 January and February. The collected tweets are preprocessed

to remove noise and other unreadable characters, etc. The details are described in
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Figure 6.1: Framework of the proposed MATSD model

Figure 6.2: Illustration of Joint Map Layer
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section 6.3. The datasets are same as those collected in 4. For the extracted data

using the queries ”I feel stressed”, ”I feel relaxed”, the labels for the primary task

of stress are assigned as 1 and 0 respectively. Later, the sarcasm value computed in

chapter 4, for all the datasets collected. In this chapter, we use this attribute as the

class-label for the sarcasm task.

Preprocessing of the datasets in this chapter is similar to the preprocessing pro-

cedure that was performed in chapter 5. In the case of data preprocessing, the tweets

with only images or GIFs are also removed as the focus of the model was more on

textual information. The preprocessed tweets with the class-labels corresponding to

the two tasks are then passed as input to the word embedding layer.

6.2.2.2 Word Embedding

In this layer, the GloVe Embedding technique is employed to build word vectors.

Global vector for word representation (GloVe) builds the word vectors using an unsu-

pervised learning algorithm trained on large global corpus [95]. This method is proven

to produce vectors that better capture the syntax and semantics of the vocabulary

space.

6.2.2.3 Sarcasm subnet - Convolution Layer

In the sarcasm subnet, which is the network pertaining to the task of detecting

sarcasm, the convolutional neural network architecture is employed. The traditional

CNN layers for text classification are known to use 1D convolution filters of sizes 2

and 3 [47]. In this chapter, the filters of sizes 2 and 3 are employed. A total of 128

filters are used. Figure 6.1 illustrates the convolution. The resultant feature maps are

given as input to the activation function of the rectified linear unit (ReLU) function.

6.2.2.4 Sarcasm subnet - ReLU and Maxpool

The ReLU function stands for the rectified linear unit, which provides non-linearity

and helps in mitigating the problem of vanishing gradient [47]. The ReLU function

is 0 for all negative inputs. However, for the positive valued inputs, the value of the
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ReLU function is a maximum of zero and the input value. The output of the ReLU

function is sent for aggregation in the max-pooling layer. In the max pooling stage,

the aggregate values of the feature maps are considered. The resultant is a hidden or

latent representation of input.

6.2.2.5 Sarcasm subnet - Sigmoid

The resultant of the maxpool layer is sent to the sigmoid function to get a resultant

vector which is then sent to the stress subnet through a joint map layer. Here the

sigmoid gate takes the vector generated by the maxpool layer to produce a resultant

vector, where each element is the output of the sigmoid function applied to the cor-

responding element in the vector from the maxpool layer. The size of this resultant

vector is considered to be k.

6.2.2.6 Joint Map Layer

In this the feature map of the maxpool layer on the sarcasm subnet and the LSTM

output signal on the stress subnet are mapped to a new layer such that the LSTM

layer is mapped as fully connected to one half chunk of the resultant vector and the

maxpool layer from the sarcasm CNN subnet is mapped to another half chunk of the

resultant vector. Each of these chunks of size k+d
2

. This is illustrated in figure 6.2.

6.2.2.7 Sarcasm subnet - Task specific fully-connected (FC) layer and

Softmax

The flattened maxpool feature vector is sent to a fully connected layer that is specific

to each task. This performs hidden layer mapping (i.e., mapping to other dimension

space), typical to general shallow artificial neural networks.

The output of the FC layer is sent to the sigmoid or Softmax layer to produce

probabilities of prediction (hγ,θ(x)) for each class of sarcasm for the given input tweet.

Also, the error or loss in the prediction is computed at this layer. The total loss(La)

for all the training data is computed using cross entropy and it is specific to the
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subnet of sarcasm [47]. It is given as follows:

La =
N∑
i=1

{
yai log(hγ,θ(xi) + (1− yai )(log(1− hγ,θ(xi)))

}
6.2.2.8 Stress subnet - LSTM Layer

The primary task of the proposed MATSD method is to detect stress. The subnet

for detecting stress is composed of gated recurrent neural networks called long short

term memory (LSTM) [47]. The input embeddings are passed to the first cell of the

LSTM layer, along with the initial cell state. At every block, the input to the block

consists of three vectors- the previous cell state, the previous hidden state, and the

current input word vector. Every block or cell of the LSTM layer produces an output

vector. The output of the final block is considered as the feature representation of the

input tweet. The architecture of the LSTM network used in the proposed MATSD

approach learns a feature vector of size d. This feature vector of the final LSTM cell

in the layer is sent to the joint map layer. The number of LSTM cells used in this

chapter is 64.

6.2.2.9 Stress subnet - Task specific fully-connected(FC) layer and Soft-

max

The task-specific fully connected layer of the stress subnet takes the input as the

resultant vector of the joint map layer or connecting layer between two subnets. The

fully connected layer maps the feature vector to other spaces.

The output of the FC layer is sent to the sigmoid or Softmax layer to produce

probabilities of prediction (hβ,θ(x)) for each class of stress for the given input tweet.

Also, the error or loss in the prediction is computed at this layer. The total loss(Ls)

for all the training data is computed using cross entropy and it is specific to the

subnet of sarcasm [47]. It is given as follows:
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Ls =
N∑
i=1

{
ysi log(hβ,θ(xi) + (1− ysi )(log(1− hβ,θ(xi)))

}

Ls =
N∑
i=1

{
ysi log(hβ,θ(xi) + (1− ysi )(log(1− hβ,θ(xi)))

}
This Softmax layer of the stress subnet is the final layer of the stress subnet takes

the output of the previous fully connected layer and inputs it to the Softmax or

sigmoid layer to produce a probability distribution of predictions of stress class for

the given input tweet.

The predicted output at this layer is used to compute the error or loss which

is then propagated back to the previous layers and used to compute the gradients.

These errors will be propagated to both subnets of both layers from the point-wise

multiplication layer.

6.2.3 Multi task context

The subnet for the auxiliary task is based on CNN while the subnet for the primary

task is based on LSTM. Both tasks have common embeddings as input. Also, the

vector output of the max pool layer in the sarcasm subnet is used as a shared layer

in both tasks.

A multi-task framework is a generalization of regularization, where each task acts

as a regularizer to other tasks making all the tasks learn from shared parameters. This

helps in improving the performance of all tasks through the sharing of knowledge of

tasks. This is useful, especially in the case of data scarcity. Moreover, the multi-

task learning should be done carefully among the related tasks, otherwise, the shared

parameters of both the tasks can mislead each other decreasing the performance of

all the tasks.

Hence, in this chapter, we propose a gate-based sharing where only the important

information of a task is shared with the other task via sigmoid gate (σ) and mapping

with the joint map layer, instead of direct concatenation of the vectors.
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6.2.4 Training

The proposed MATSD is a multi-task learning approach wherein multiple tasks using

a set of shared parameters. This saves a lot of time and space resources when com-

pared to training multiple tasks individually. In essence, by sharing of parameters,

for each task, all the other tasks act as regularizers. Thus apart from sharing of

information, the tasks also constrain each other, paving the way for better prediction

models.

To this end, the multiple tasks represented by each subnet in the MATSD are

trained together. The proposed MATSD architecture is based on soft-parameter

sharing as only a few parameters are shared between the two tasks and the sharing is

achieved through the transfer of information through the sigmoid gate (σ) and joint

map layer.

Training a multi-task learning architecture like MATSD involves joint training of

all the models (tasks) that are part of the multi-task framework. In order to achieve

this, the loss of the multi-task model needs to be minimized. However, the loss of

the model is characterized as the sum of losses of constituent tasks. Hence, in the

MATSD, the total loss of the model is given as the weighted sum of the losses of tasks

of sarcasm and stress. This is given by the following equation:

LT (α)← λ1Ls + λ2La (6.1)

Where λ1 and λ2 are the weights for the losses of tasks. While Ls and La are losses

corresponding to stress and sarcasm tasks, respectively. They are defined based on

the cross entropy loss [47] as follows:

Ls =
N∑
i=1

{
ysi log(hβ,θ(xi)) + (1− ysi )(log(1− hβ,θ(xi)))

}

La =
N∑
i=1

{
yai log(hγ,θ(xi)) + (1− yai )(log(1− hγ,θ(xi)))

}
To train the network, the weights or parameters α at which combined loss, T (α),
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presented in the equation 6.1 is minimized. Formally the following equation represents

the goal of the learning in the proposed MATSD model.

α← arg min
α
{LT (α)} (6.2)

The entire process of training the proposed MATSD model is presented in Algo-

rithm 9. The algorithm takes dataset of Tweets, D consisting of set of tweets and

labels, D = {(xi, ysi , yai }Ni=1, as input. The learned parameters are the output of the

algorithm. The initial steps involve preprocessing the data and partitioning the data

into training and testing parts. Steps 4 and 5 denote the initialization of the class

labels from the training dataset (DTR), corresponding to the tasks of stress and sar-

casm, respectively. The steps 6 to 9 denote the initialization of various parameters.

The tweets are then sent to the embedding layer, where the embedding matrix, Em

are computed for every tweet. The set of embedding matrices corresponding to all

the tweets is denoted by ED. Later, in each epoch, the forward pass of the network

is executed to compute the final error at the output layers. The gradient of total

loss, LT , denoted by ∇LT , is computed using the backpropagation strategy. The

parameters, α, are updated with the gradient value as shown in line 32 of the algo-

rithm 9. The cycle of epochs runs as long as the number of iterations crosses the

threshold value. Finally, obtained weights after convergence, are partitioned as per

the network architecture and each task gets its own sets of parameters and also the

set of shared parameters as well. All three sets of parameters form the result object

and are returned as output of the algorithm. In this chapter, the input batch size is

taken as 32 and the number of epochs considered is 100.

6.3 Experimental Setup

This section describes dataset details and the environment setup of the experiments

conducted. The experiments are implemented in Python 3.8 version using the devel-

opment environment of Jupyter-notebook, of version 6.5.2.

Datasets are collected as per the procedure followed in section 4.2.1. The collected
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Algorithm 9: Proposed Multi-task learning framework for tweet level stress
detection

Input: Dataset of Tweets (D), consisting of tweets and labels of two tasks, D = {(xi, ysi , yai }Ni=1 ; The
maximum number of epochs (epoch_threshold); learning rate(η)

Output: Model object with learned parameters.
1 Function MATSD1(D):
2 Perform the Preprocessing of the data;
3 Reorganize the data into training and testing sets, such that, D ← DTR

⋃
DTS ;

4 YTR
s ←

{
ysi |(xi, ysi , yai ) ∈ DTR, ∀i ∈ {1, 2, ...|DTR|}

}
;

5 YTR
a ←

{
yaj |(xj , ysj , yaj ) ∈ DTR, ∀j ∈ {1, 2, ...|DTR|}

}
;

6 ED ← φ;
7 Initialize all weights (α) in the network to default values ;
8 epoch_count = 0;
9 τ1 ← epoch_threshold ;

10 ED ← φ ;
11 for x ∈ DTR do
12 Em ← φ ;
13 for w ∈ x do
14 Ew ← Embedding_Vector(w) ;
15 Em ← Em ⊕ Ew ;
16 end
17 ED ← ED

⋃
Em;

18 end
19 while epoch_count < τ1 do
20 for Em ∈ ED do
21 f1 ←Conv(Em);
22 f2 ←ReLU(f1);
23 f3 ←Max_Pool(f2);
24 f4 ← FC(f3);
25 f5 ← Soft_Max(f4);
26 g1 ← LSTM(Em);
27 σf ← σ(f4) ;
28 JL1 ← FC(σf);
29 JL2 ← FC(g1);
30 g2 ← FC(JL1 ⊕ JL2 );
31 g3 ← Soft_max(g2);
32 end
33 Compute the Gradient ∇LT of the combined (total) loss function ;
34 Update weights α as α← α− η.∇LT ;
35 epoch_count← epoch_count+ 1 ;
36 end
37 Partition α← β

⋃
γ
⋃
θ ;

38 θ ← Parameters shared by both the tasks;
39 β

⋃
θ ← Parameters specific to the task of detecting Stress;

40 γ
⋃
θ ← Parameters specific to the task of detecting Sarcasm;

41 result_object← {< θ, β, γ >} ;
42 return result_object
43 return result_object
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and labeled tweets are then preprocessed in order to remove unnecessary symbols and

links, as specified in the seciton 4.2.1.1. This makes the data ready for classification

The description of the information related to datasets is presented in tables 6.2 and

6.3. Table 6.2 records the label distribution of the primary task of stress. Table 6.3

presents the distribution of sarcasm labels in the datasets.

Table 6.2: The description of the distribution of stress labels in the datasets

Dataset
Number of

tweets

Number of

stressed tweets

Number of

non-stressed tweets

DS1 7,289 6,134 1,155

DS2 16,532 12,628 3,904

DS3 4,062 3,176 886

DS4 7,209 5,495 1,714

Table 6.3: The description of the distribution of sarcasm labels in the datasets

Dataset
Number of

tweets

Number of

sarcastic tweets

Number of

non-sarcastic tweets

DS1 7,289 397 6,892

DS2 16,532 1,198 15,334

DS3 4,062 504 3,558

DS4 7,209 955 6,254

6.3.1 State-of-the-art methods used for comparative analysis

This section presents the list of baseline machine learning models and state-of-the-art

models in tweet-level stress detection. The baseline classic machine learning models

are known for their better performances in text classification.

The evaluation of the results of the proposed MATSD model is compared with

the popular single-task learning algorithms as well as the state-of-the-art multi-task

learning algorithms. The metrics used for comparison are Accuracy and F1-Score,

which are defined in section 1.3.
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• Convolutional Neural Network (CNN) [47, 96]: It is one of the popular deep

neural networks used for classification. The network uses convolution and max

pooling operations for the automatic extraction of the features specific to the

classification problem. The input text sequences are embedded into a matrix

and fed as input to the convolution network. It consists of three stages- convo-

lution, maxpoling, and fully connected layer. A set of filters is used to perform

convolution over the input embedding matrix, producing multiple feature maps.

The activation function of rectified linear unit (ReLU) is applied on the resul-

tant features. Later the max pooling stage applies the aggregate operation, to

extract a compact feature map. The final set of feature maps are flattened and

sent as input to the connected layer and Softmax layer for classification.

• Long-short-term-memory (LSTM) [97]: It is a kind of recurrent neural network

to learns long-term dependencies from the sequence data. It consists of a set of

three gates ( input gate, forget gate, and output gate) in each cell and a set of

LSTM cells form an LSTM layer. At every cell, the input consists of cell state

and hidden state. Every cell generates hidden states at the next time step.

Also, the hidden state. Moreover, the hidden state produced at each cell is also

considered as the output of the cell. For sequence-to-sequence and vector-to-

sequence prediction problems, the output of each cell is activated. On the other

hand for the classification problems or sequence-to-vector prediction problems,

the output of every cell except the final cell is ignored. The output of the final

cell is passed into the fully connected layer for the purpose of classification.

• Bi-LSTM with dropout [37] : This is a single-task learning mechanism for learn-

ing stress and state-of-the-art work in the detection of stress at tweet-level. The

model is developed for the identification of the stress experienced by minority

groups in any given demography. To this end, it uses a bi-directional sequen-

tial model of Bi-directional long short-term memory (Bi-LSTM). The input is

initially preprocessed and sent to the layer of embedding, which produces an

output vector of 300 dimensions for each word. Later, the embedded vectors are
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given as input to the Bi-LSTM layer. The output of this layer is then sent to the

dropout layer. The resultant vector is flattened and passed to a fully-connected

layer. This Bi-LSTM is implemented separately for each of the single tasks.

• Multi task Multi-channel CNN [43]: This is a state-of-the-art multi-task learning-

based model for the detection of psychological stress. This model uses multi-

channel convolutional neural network architecture in the multi-task learning

scenario for learning three tasks simultaneously. This model is adapted for two

tasks sarcasm and stress in implementation.

• Multi task Hybrid CNN Bi-GRU [98]: this chapter utilizes a multi-task archi-

tecture consisting of two components. The first component of the convolutional

neural network (CNN) is to learn the global feature representation and the

gated recurrent units(GRU) in combination with the attention layer to learn

the local representation of the features. This chapter is adapted to the current

problem of stress detection using sarcasm as auxiliary task. The concept of

stress and sarcasm are learned by learning the global and local features.

• Multi task Bi-GRU with Attention [77]: this chapter proposed three different

multi-task learning architectures for complaint detection as the primary task

with sentiment detection as an auxiliary task. The embedding layer generates

the word embeddings which are later fed into the Bi-directional gated recurrent

units, which store the context of the words in a sentence, and the output of this

layer is fed into the attention layer. Following this, there exist task-specific lay-

ers. In the pipelined multitask architecture of complaint detection, the output

of the sentiment task is concatenated with the task-specific layer of complaint

detection and then fed as input to the output layer of the complaint detection

task. This multi-task pipelined system of these architectures is selected for

comparison with the proposed MATSD in this chapter.
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6.4 Results

This section gives a description of the experimental results of this chapter. It presents

the evaluation of the working performance of the proposed model and other state-

of-art models on various datasets. The performance results of the experiments of

various models are measured in terms of accuracy and F1-score and are recorded in

tables 6.4, 6.5, 6.6, and 6.7. The obtained results are evaluated using the statistical

hypothesis test of ”Students’ t-test” and the null hypothesis is rejected at the critical

value of α < 0.05, making the obtained results statistically significant.

6.4.1 Performance evaluation of the multi-task learning mod-

els over the single task learning approaches

The multi-task learning can act as regularization and help in better performance.

From table 6.4, it is noted that the multi-task learning approaches record better

accuracy and F1 scores compared to the single-task learning models. This is true for

all the datasets, as can be observed in the tables 6.5, 6.6, and 6.7. It is noted that

in the multi-task approaches, only the multi-channel CNN approach of [43] records

lesser performance than the single-task learning models for the prediction of both

tasks. However, it is observed that when the task of stress is predicted using the

proposed MATSD approach, it outperforms the accuracy in stress detection models

based on single task learning by at least 8.2%, 16.4%, 11.4%, 8.4% when implemented

with datasets DS1, DS2, DS3, and DS4 respectively. And it is concluded that the

proposed MATSD model records an improvement in F1-score by at least 0.043 points,

0.0925 points, 0.0661 points, and 0.0294 points respectively, on implementation with

datasets DS1, DS2, DS3, and DS4. Therefore, it is concluded that the proposed multi-

task approach of MATSD records a better performance than the popular traditional

single-task learning approaches.
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6.4.2 Performance evaluation of stress detection using pro-

posed MATSD over the state-of-the-art multi-task learn-

ing methods

The multi-task approach using the proposed MATSD framework develops a deep

neural network model, where the information learned from sarcasm detection is shared

with the stress detection subnet after applying a sigmoid function. From the table 6.4,

it is observed that the proposed MATSD model records at least a 2.75 % increment

in accuracy over the other state-of-the-art models. Similarly, from tables 6.5, 6.6,

and 6.7, it is noted that when the models are implemented on datasets DS2, DS3,

and DS4, the MATSD algorithm shows an increment in accuracy by 6.55%, 1.84%,

10.98% respectively.

The proposed MATSD outperforms the state-of-the-art models in the F1 score

as well. From the tables 6.4, 6.5, 6.6, and 6.7, it is observed that the performance

of the proposed MATSD model, when implemented on the datasets DS1, DS2, DS3

and DS4, records an improvement in F1-Score by a minimum of 0.0128 points, 0.0365

points, 0.0147 points, 0.0685 points, respectively. Hence, it can be concluded that

the proposed MATSD outperforms the state-of-the-art multi-task learning strategies

in both accuracy and F1-score.

6.4.3 The performance of the auxiliary task of sarcasm

In multi-task learning mechanisms, the auxiliary tasks act as regularizers in con-

straining the weights of the primary task. In the proposed multitask learning model

of MATSD, sarcasm is utilized as the auxiliary task and the information learned as

part of sarcasm detection is shared with the stress task through a joint map layer.

This joint map is preceded with an application of a sigmoid function to the output

of maxpooling layer of the sarcasm subnet. Hence, the joint map layer contains in-

formation from the both the tasks and helps in stress prediction.

It is also noted that the sarcasm detection performance improves when imple-

mented using multi-task approaches when compared to the sarcasm detection perfor-
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mance when implemented as a single-task learning approach. It is observed from the

tables, 6.4, 6.5, 6.6 and 6.7,that except for the model of [98], the sarcasm detection

shows an improved performance when implemented as a multi-task learning model,

when compared to the sarcasm prediction as a single task. The tables 6.4, 6.5, 6.6

and 6.7 depict that the performance of sarcasm predicted by the proposed MATSD

model records an improvement of accuracy by a minimum of 8.35% 8.19% 5.9%,

and 11.59% on implementation with datasets DS1, DS2, DS3, and DS4, respectively.

Furthermore, from the tables6.4, 6.5, 6.6 and 6.7, it is noted that the minimum

increment recorded in F1-Scores of sarcasm detection over the single-task learning

models as 0.107 points, 0.113 points, 0.091 points, and 0.107 points on datasets DS1,

DS2, DS3 and DS4, respectively. Hence, it can be concluded that multi-task learning

helped in the sharing of parameters and helped improve the performance of all the

tasks when compared to the single-task learning models.

Table 6.4: The results of the proposed and baseline models on dataset DS1

Approach Classifier
Stress (Primary task) Sarcasm (Auxiliary Task)

Accuracy F1-Score Accuracy F1-Score

Single-task Learning

CNN 0.845 0.9159 0.837 0.81

LSTM 0.8553 0.9162 0.846 0.801

Bi-LSTM [37] 0.9053 0.946 0.8472 0.827

Multi-task Learning

Multi-Channel CNN [43] 0.845 0.9159 0.882 0.803

GRU-CNN-GRU [98] 0.93 0.9589 0.8744 0.729

Pipelined Bi-GRU [77] 0.9595 0.9762 0.9082 0.887

Proposed MATSD 0.987 0.989 0.9307 0.934
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Table 6.5: The results of the proposed and baseline models on dataset DS2

Stress (Primary task) Sarcasm (Auxiliary Task)
Approach Classifier

Accuracy F1-Score Accuracy F1-Score

CNN 0.7693 0.8695 0.8335 0.8234

LSTM 0.7693 0.8595 0.845 0.8151Single-task Learning

Bi-LSTM [37] 0.8231 0.8949 0.853 0.8165

Multi-Channel CNN [43] 0.7693 0.8695 0.8935 0.8449

GRU-CNN-GRU [98] 0.9217 0.9509 0.9026 0.7008

Pipelined Bi-GRU [77] 0.7693 0.8695 0.9135 0.8442
Multi-task Learning

Proposed MATSD 0.9872 0.9874 0.9349 0.9362

Table 6.6: The results of the proposed and baseline models on dataset DS3

Stress (Primary task) Sarcasm (Auxiliary Task)
Approach Classifier

Accuracy F1-Score Accuracy F1-Score

CNN 0.8155 0.8972 0.8547 0.7983

LSTM 0.8204 0.9058 0.8659 0.8383Single-task Learning

Bi-LSTM [37] 0.8659 0.9141 0.8684 0.80

Multi-Channel CNN [43] 0.8069 0.8931 0.8747 0.8105

GRU-CNN-GRU [98] 0.9606 0.9655 0.8973 0.8067

Pipelined Bi-GRU [77] 0.8069 0.8931 0.9047 0.8217
Multi-task Learning

Proposed MATSD 0.979 0.9802 0.9274 0.9298

Table 6.7: The results of the proposed and baseline models on dataset DS4

Stress (Primary task) Sarcasm (Auxiliary Task)
Approach Classifier

Accuracy F1-Score Accuracy F1-Score

CNN 0.7693 0.8695 0.8029 0.7921

LSTM 0.7693 0.8695 0.8135 0.795Single-task Learning

Bi-LSTM [37] 0.8942 0.9486 0.8535 0.8609

Multi-Channel CNN [43] 0.7693 0.8695 0.8935 0.8423

GRU-CNN-GRU [98] 0.8682 0.9095 0.9008 0.733

Pipelined Bi-GRU [77] 0.7693 0.8695 0.9035 0.8621
Multi-task Learning

Proposed MATSD 0.978 0.978 0.9694 0.968

125



CHAPTER 6. MULTI-TASK LEARNING APPROACH FOR TWEET-LEVEL STRESS DETECTION USING DEEP LEARNING6.5. DISCUSSION

6.5 Discussion

This section presents a discussion on the results of the experiments conducted.

6.5.1 Analysis of loss function behavior for the proposed model

The value of the loss function computed during the training of the model is termed

as training loss. The aggregated value of the loss function computed during the vali-

dation phase on the validation dataset is called validation loss. The relative variation

of training loss and validation loss of the proposed MATSD model, when executed

over the large number of epochs shows whether the proposed model is an underfit, or

overfit or good fit [47]. If both training and validation loss are high and validation

loss doesn’t reduce, it is termed as an underfit. If the training loss decreases gradu-

ally, and the validation loss is high and increases after some epochs, it is a scenario

of overfitting. The good fit scenario tells that the training and validation loss both

decrease with the number of epochs and after some epochs, the validation loss also

reduces and becomes either equal or less than that of the training loss variation. In

this chapter, the cross entropy loss is considered for computing loss function values.

Figure 6.3 shows the training loss and validation loss when the proposed MATSD

model is implemented on dataset D1. This is recorded over 100 epochs. It can

be observed that the training loss has a smooth decrease and few peaks of smaller

magnitude less number of peaks. Whereas the validation loss is varying and not

smooth. However, the magnitude of the difference between validation and training

losses is not very high. At the end of epochs, it decreases and nearly converges with

training loss. Figure 6.4 shows the training loss and validation loss when the proposed

MATSD model, implemented on dataset D2, which is recorded over 100 epochs. It

can be observed that the training loss has smooth decrease after one epoch. The

validation loss has some peak at initial epochs, but it is smooth and not varying

much. The training and validation loss maintain nearly constant small difference

after 20 epochs.

Figure 6.5 shows the training loss and validation loss when the proposed MATSD
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Figure 6.3: Graph showing loss functions of training and validation of the proposed
MATSD model implemented on dataset DS1

model is implemented on dataset D3. This is recorded over 100 epochs. It can be

observed that the training loss has a smooth decrease after the first epoch and few

peaks of smaller magnitude less number of peaks. The validation loss too varies

smoothly after the first epoch. However, the validation loss has few peaks and a

valley though the the magnitude of the difference between validation and training

losses is not very high. At the end of epochs, it decreases and nearly converges

with training loss. Figure 6.6 shows the training loss and validation loss when the

proposed MATSD model, during implementation on dataset D4, which is recorded

over 100 epochs. It can be observed that the training loss has two peaks before 40

epochs and it converges to nearly zero later on. The validation loss decreases after

two epochs, and later a plateau kind of peak is observed from epochs 15 to 36. During

the later epochs, the variation in validation loss is nearly unchanging except for a dip

between the epochs of 65 to 70. The training and validation loss maintains a nearly

constant small difference after 35 epochs and the validation loss is nearing to training

loss after 80 epochs. It can be concluded that on all four datasets the validation loss

and training loss curves are having less difference in magnitude and in a few cases

converge.
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Figure 6.4: Graph showing loss functions of training and validation of the proposed
MATSD model implemented on dataset DS2

Figure 6.5: Graph showing loss functions of training and validation of the proposed
MATSD model implemented on dataset DS3

Figure 6.6: Graph showing loss functions of training and validation of the proposed
MATSD model implemented on dataset DS4
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6.5.2 Limitations of the proposed MATSD model

The Limitations of the proposed MATSD model are given as follows:

• The proposed model of MATSD doesn’t perform well in case the tweets are

devoid of textual information.

• The proposed model of MATSD may not give the desired performance if the

sarcasm expressed in the content is not in a textual form such as any other

means of media.

6.6 Summary

In this chapter, a deep multi-task learning-based framework called MATSD is pro-

posed for detecting tweet-level stress detection using sarcasm present in the tweets’

content. The datasets required for the training are crawled from Twitter’s API

Tweepy and the labels of the sarcasm task are taken from the sarcasm value com-

puted in chapter 4. In the proposed MATSD, the detection of sarcasm is an auxiliary

task learned using CNN and the detection of of stress is the primary task imple-

mented using the LSTM network. Both of these tasks are jointly learned so that

performance for the task of stress detection is improved when compared to the case

where stress detection is developed using a standalone single-task model. In addi-

tion, the proposed model uses the sigmoid function before sharing the information

from the sarcasm task subnet with the stress task subnet. An extensive set of exper-

iments is conducted on various baselines and state-of-the-art techniques to validate

the results of the proposed method. Also, the loss function values are analyzed for

the proposed model over all four datasets. It is observed that the proposed MATSD

records an improvement in F1 scores of a minimum of 0.0128 points, 0.0365 points,

0.0147 points, and 0.0685 points, respectively, on the four datasets DS1, DS2, DS3,

DS4 when compared to the state-of-the-art multi-task learning models. Similarly, the

proposed model records an increment in the accuracy by a minimum of 2.75%, 6.55%,
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1.84%, and 10.98% respectively on the four datasets DS1, DS2, DS3, and DS4 com-

pared to the state-of-the-art multi-task learning models. This is significantly greater

than the baseline models and state-of-the-art techniques implemented with the same

datasets.
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Chapter 7

Conclusion and Future Directions

In this thesis, we had investigated text-based stress detection approaches like NTSD,

STSD, SMTSD and MATSD. As chronic stress can be detrimental to both physical

and mental health, early detection and mitigation of stress has attained importance.

Traditional techniques to detect stress have shown the initial way. The traditional

methods to detect stress used questionnaires, interviews with psychiatrists, measuring

physiological activity with electronic devices, etc. However, these techniques suffer

from social stigma and electronic device-based detection is viewed as invasive to nor-

mal activities. The growing popularity of social media- as a medium where people

can express themselves freely - made researchers to explore the potential of social

media postings as the data source for detecting stress. In this thesis, the popular

social media microblogging site called Twitter was used to collect data.

The problem of stress detection at tweet-level is investigated in the literature, but

the influence of the neighboring or previous tweets in detecting stress is studied as

part of neighborhood-based tweet-level stress detection (NTSD) in chapter 3. Also,

the concept of sarcasm, especially illocutionary sarcasm, is utilized as an attribute

in NTSD. Furthermore, the concept of sarcasm is used to train the loss function in

STSD, as discussed in chapter 4.

In most of the works on stress detection, as observed in the literature and also the

above two objectives, the supervised classification models are employed. However, in

real-world, the paucity of labeled datasets makes us to investigate a semi-supervised
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solution for stress detection, called SMTSD, which is presented in chapter 5. With

sarcasm being used as an important attribute in all the initial three objectives, it was

intuitive to explore the multi-task approach to detect tweet-level stress with sarcasm

detection as an auxiliary task. In chapter 6, a multi-task learning-based for detecting

stress, MATSD is presented. It is also known from the literature that the text-level

stress detection approaches have not explored the concept of multi-task learning.

7.1 The Major Outcomes of the Thesis

The chapters from 3 to 6 form the major contributions of this Thesis. The detailed

contributions are listed as follows:

1. Chapter 3 : The role of neighborhood tweets in improving the performance

of the tweet-level stress detection is presented through the model of NTSD. In

addition, the concept of illocutionary sarcasm is formulated as a new attribute

called Sarcasm_Level. It is also observed from extensive experiments that the

inclusion neighborhood tweets and the new sarcasm attribute has shown better

performance than the traditional classifiers without including them. The pro-

posed NTSD had outperformed the traditional baseline ML classifiers like LR,

SVM and RF.

2. Chapter 4: The concept of illocutionary sarcasm is further extended to include

hashtags. In addition, a new model called STSD is proposed which utilizes the

concept of illocutionary sarcasm in the loss function, so as to maximize the like-

lihood of non-sarcastic tweets and penalize the likelihood of sarcastic tweets. In

addition, dimensionality reduction techniques like non-linear PCA was applied

and its usage was found to improve the performance of the proposed model. For

evaluating the performance of the model, an extensive set of experiments were

conducted and the proposed model is compared with the standard baseline ML
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models and the zero-neighborhood case of the NTSD model. It is observed that

the proposed STSD records a better performance in all these cases.

3. Chapter 5: The semi-supervised approach to detect tweet-level stress called

SMTSD is proposed. In this solution, self-training method of semi-supervised

approach is employed. The concept of illocutionary sarcasm is utilized to invert

the pseud-labels. For evaluation of the performance, large set of experiments

were conducted using the proposed SMTSD as well as baseline self-training

approach against the basic supervised models of LR, SVM, RF and NB. In

addition, the state-of-the art methods like Bi-LSTM and CNN-DAE are also

utilized. It is observed that the proposed SMTSD outperforms all other meth-

ods. Moreover, the supervised models also record better performance with the

pseudo-labeled data set formed from the proposed SMTSD against the pseudo-

labeled data from the baseline self-training method.

4. Chapter 6: Develops a multi-task approach called MATSD to detect tweet-

level stress with sarcasm as an auxiliary task. The proposed MATSD outper-

forms state-of-the-art multi-task learning architectures like Multi-channel CNN,

Bi-GRU, etc. Hence, it can be intuitive that tasks of detecting sarcasm and

stress can share information thereby improving the performance.

7.2 Future Directions

There is an ample potential to extend future research from this thesis. Importance

of stress detection has only grown with time and the recent pandemic has further

re-affirmed the need to detect stress before it turns chronic. The NTSD proposed in

chapter 3 can be extended to by considering the similarity co-efficient of the previous

tweets with the current tweet. This is used to include relevant neighborhood tweets,

among the neighborhood tweets, to the given primary tweet. In both chapters 3 and

4, the text-level data can be extended to include all modalities of input tweet data

-text, image, and multimedia. Furthermore, modality-invariant prediction models
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need to be built for the purpose. Finally, the NTSD model can be extended to use

neighborhood tweets based on time-units rather than count.

From chapter 5, in which we proposed a semi-supervised approach of SMTSD as

a solution for the problem of tweet-level stress detection, there is a future scope to

develop unsupervised models to solve the problem. It is intuitive from the chapter

6, the proposed multi-task deep learning-based solution called MATSD for detecting

tweet-level stress using sarcasm as auxiliary attribute can be extended to multi-modal

datasets. In addition, the semi-supervised modeling can also be utilized with multi-

task learning approach, given the lack of large labeled datasets in realworld.

In all the four chapters from 3 to 6, illocutionary sarcasm is computed as an

attribute and utilized in the models either as an attribute or as an auxiliary task.

There is a scope to extend the computation of illocutionary sarcasm in future by

considering the multi-modal datasets. In addition, multi-stage learning approaches

could also be employed for filtering the tweets with sarcasm and then detecting stress

in both sarcastic and non-sarcastic categories.
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Transliteration

Ōṃ śānti śānti śānti

Translation

Ōṃ Peace, Peace, and Peace to all, everywhere, in all circumstances !
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