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Abstract

The increasing use of automobiles as the primary mode of transportation has made
a critical focus on safety measures to address the growing traffic-related problems. This
thesis presents an exploration of four objectives, contributing to the advancement of vision
based accident prevention and the enhancement of vision based smart traffic surveillance
through the use of evolutionary optimization techniques and deep learning models.

In the first objective, a Genetic Algorithm (GA) based Neural Architecture Search
(NAS) is proposed for constructing a Mask R-CNN based object detection model specif-
ically designed for vehicle brake light detection. By automating the design process, the
approach addresses the limitations of manually designed Deep Neural Network (DNN)
architectures, leading to superior performance in detecting brake light status for both two-
wheeler and four-wheeler vehicles.

The second objective aims to expand the scope of the first objective for vehicle brake
light detection task. This approach involves a NAS with an expanded search space en-
compassing the backbone architecture parameters and training parameters. We employ a
modified Differential Evolution (DE) algorithm for the search strategy. This algorithm in-
corporates evaluation correction based selection for mutation and species protection based
selection, aiming to identify an optimal DNN model. The experiments on two-wheeler and
four-wheeler vehicle datasets demonstrate the effectiveness of the proposed method. Fur-
ther, cross-dataset evaluation and experiments on real-world traffic videos demonstrate the
proposed approach’s generalization capability.

The third objective introduces NAS based approach using a DNN model, designed for
vehicle re-IDentification (reID) task useful for smart surveillance systems. The Grasshop-
per Optimization Algorithm (GOA) is employed to search for the optimal DNN model,
considering both architecture parameters and hyperparameters related to the relD task. The
experiments on two vehicle reID datasets demonstrate the effectiveness of the proposed
method in automatically discovering optimal models for vehicle relD task.

Finally, the fourth objective addresses driver distraction detection task for accident pre-

vention. Recognizing the limitations of manually developed DNN architectures for this

1l



task, we employ NAS with an improved GA to design a one-stage object detection model.
The proposed approach explores YOLO backbone architecture parameters and training pa-
rameters. Experimental results showcase the proposed approach’s superiority compared to
existing models on driver distraction detection datasets, emphasizing its efficacy in improv-
ing driver safety.

In summary, this thesis offers a comprehensive exploration of evolutionary optimization
techniques applied to deep learning models for object detection and relD tasks, contributing
to vision based accident prevention and smart traffic surveillance systems. The integration
of NAS and evolutionary algorithms across these works demonstrates their effectiveness
in automating the design process and improving the efficiency of deep learning models for

various tasks.
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Chapter 1

Introduction

The increase in the number of vehicles is leading to a rise in both traffic accidents and
vehicle related crimes, posing significant threats to public safety. The World Health Orga-
nization (WHO) report mentions that approximately 1.35 million lives are lost each year
due to road traffic accidents [1]. To prevent these accidents and vehicle related crimes,
industry and academia are focused on developing safety systems as well as smart traffic
monitoring systems.

Vehicles with essential safety features can avoid collisions and minimize the risk of
catastrophic injuries. Pre-collision sensing and collision avoidance are areas of interest
among automobile manufacturers in order to achieve the ultimate goal of accident preven-
tion. Collision avoidance systems are classified as either passive or active safety systems.
Passive safety systems use techniques like maintaining high production safety standards
and enforcing strict traffic restrictions, such as the use of helmets and seat belts, to ensure
a safe driving environment. Active safety systems can use techniques such as a collision
avoidance warning system to alert and assist the driver in preventing accidents before they
happen. Some existing studies rely on active sensors like radar technology [2], beam-
forming techniques [3, 4], infrared sensors, etc. With the exponential growth in processing
power and the advancement of computer vision techniques, vision based sensing technolo-
gies can be used for developing cost-efficient solutions. Vision based techniques have a
significant advantage over non-vision based techniques. New and efficient functionality

can be incorporated into a solution by only modifying the software without changing the
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hardware.

Vision based brake light detection and vision based driver distraction recognition are
crucial for avoiding collision. The signals of vehicles, in particular the brake lights, are
used to effectively communicate a possible reduction of a vehicle’s speed to the vehicles
following them. As a result, real-time detection and recognition of brake lights can assist
in reducing collisions in traffic. Driver distraction detection systems are designed to moni-
tor the driver’s behavior and alertness and detect signs of distraction or drowsiness, which
can provide warnings to the driver, thereby preventing a possible collision. Vision based
smart traffic surveillance is crucial for urban areas, contributing significantly to traffic man-
agement, road safety, emergency response, enforcement of regulations, informed decision-
making, environmental sustainability, economic prosperity, and public convenience. Ob-
ject re-IDentification (relD) is a vital component of smart traffic surveillance systems. It
enables continuous vehicle tracking, swift incident detection and response, effective traf-
fic law enforcement, investigation and forensics support, traffic flow analysis insights, en-
hanced public safety and security, and data-driven decision-making for urban management.

The approaches used in vision based accident prevention systems and smart traffic
surveillance systems can be categorized into two, namely, traditional and deep learning
based methods. The initial work in this domain used traditional techniques, such as color
based segmentation, statistical machine learning, employing Support Vector Machines (SVM)
[5], AdaBoost [6], etc., for classification based on color, shape, and texture features. In con-
trast, deep learning based approaches, particularly Convolutional Neural Networks (CNN’s)
[7], have demonstrated notable efficiency in visual recognition tasks. The CNNs excel in
learning hierarchical semantic features and have made significant strides in the detection
of vehicle tail light when compared to the traditional approaches. Deep learning methods
were found to have better generalization capability for tasks related to object recognition
and classification, which can be used in approaches for accident prevention and smart traf-
fic surveillance.

In computer vision, both driver distraction detection and brake light detection are clas-
sified as object detection tasks. Object detection is a computer vision task that involves

identifying and locating objects of interest within an image or video frame. It goes beyond
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image classification, which simply classifies the entire image, by providing precise local-
ization of objects through bounding boxes and identifying multiple objects within the same
image. In the case of driver distraction detection, the system analyzes video feeds from
cameras installed in vehicles to identify instances where the driver’s attention is diverted
from the road, such as texting, eating, or interacting with electronic devices. This involves
detecting and localizing the driver’s face and hand regions within the image, often using
facial recognition or hand tracking techniques. Similarly, brake light detection focuses on
identifying and locating brake lights on vehicles within the scene. This information is cru-
cial for tasks such as monitoring traffic flow, detecting potential collisions, or assessing
driver behavior. Both tasks utilize object detection algorithms, such as CNNs, to analyze
visual data and extract relevant features for identifying and localizing the objects of interest
within the image or video frame.

The one-stage and two-stage models are the most commonly used object detection ap-
proaches. On one hand, we have one-stage detectors like the YOLO family [8, 9, 10] and
SSD [11], which use a single neural network to learn the bounding box coordinates and the
probability of their labels for an input image, treating object recognition as a simple regres-
sion task. On the other hand, two-stage detectors, like the R-CNN Family (R-CNN [12],
Fast R-CNN [13], Faster R-CNN [14], and Mask R-CNN [15]) use the first stage to extract
regions of interest using a Region Proposal Network (RPN) and the second stage to predict
bounding boxes of objects along with their class labels. Fig. 1.1 shows the framework of

the object detection model.
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___________________________________________________________________________________________________________________________________________________________

Object Detection System
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Backbone Head
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Figure 1.1: Object detection framework

Vision based smart traffic surveillance involves the use of cameras and computer vision
algorithms to monitor and analyse traffic situations in real-time. Tracking vehicles over
time involves re-identifying the vehicles across locations which is one of the important
task of smart traffic surveillance. Object relD task is the process of matching the same ob-
ject across multiple cameras. An approach for object relD is crucial for identifying objects
like people, cars, motorcycles, etc., in video surveillance systems. This is an active area
of research in both industry and academia due to the ever-growing population and need
for smart surveillance, public safety, and traffic management. Object reID [16] based on
CNN typically involves two main phases: feature learning and re-identification. During
the feature learning phase, images are used to train a classification network to extract fea-
ture vectors. In the re-identification phase, test images are split into gallery images of one
camera and probe images of another camera, and these are then fed into the trained classi-
fication network to extract their respective feature vectors. A distance measure is used to
match objects and identify the same object across different locations. Fig. 1.2 shows this

relD process.
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Figure 1.2: Object relD framework

However, the existing approach of using a manually designed Deep Neural Network
(DNN) architecture requires expertise and empirical experimentation. Recently, Neural Ar-
chitecture Search (NAS) based approaches have achieved great success in designing DNN
architecture automatically for tasks related to image classification [17], object detection
[18], and segmentation [19].

To design a NAS based system, the search space needs to be defined and an efficient
search strategy should be used. The first step involves defining the “search space” of the
DNN architecture. The hyper-parameters of the DNN architecture, such as the type of
layer, number of units in each layer, number of kernels, kernel size, etc, are generally con-
sidered in the NAS search space. In addition, other parameters, such as the loss function,
optimization algorithm, activation function, etc., can also be included in the search space.
The inclusion of more parameters in the NAS search space may lead to the identification
of a better model at the expense of computational complexity. Finding the best DNN ar-
chitecture, even for a smaller search space, is a challenging task without a search strategy.
As a result, NAS approaches require an efficient “search strategy” to identify the optimal
values of the parameters in the search space. The commonly used search strategies for
finding the best DNN architecture are based on Evolutionary Algorithms (EA) [20], Rein-
forcement Learning (RL) [21], and Gradient-based optimizers [22]. The candidate DNN
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models explored by NAS in a generation are evaluated using an objective function to select
the optimal DNN models for the next generation. The main goal of this thesis work is to
develop an automated NAS based approach for identifying DNN models through optimiza-
tion by evolutionary algorithms for tasks related to vision based accident prevention and

smart traffic surveillance systems. The overall framework of the proposed thesis is given in

Fig. 1.3.

DNN Model

Object Detection

Fitness Termination Yes
Search Space > . o
Evaluation Criteria

Object
re-IDentification No

Search
Strategy

Figure 1.3: Overall proposed NAS framework

1.1 Motivation and objectives

In this work, we aim to identify optimal DNN models to address tasks related to accident
prevention and traffic surveillance by using evolutionary algorithms for optimization. De-
tecting vehicle brake lights is essential for preventing collisions, but the task is challenging
due to occlusion, varying light conditions, and variations in vehicle make and model. Most
existing research focuses on car brake light detection, but real-world systems must handle
a broader range of vehicles, including two-wheelers. Two-wheelers exhibit diverse brake
light shapes, sizes, and locations, depending on the make and model, further complicating

the detection process. Traditional methods [23, 24], which primarily use color-based and
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Harr-like features with machine learning models like SVM, have shown limited effective-
ness in real-world conditions due to their reliance on handcrafted features. In contrast, deep
learning approaches, particularly CNN based models [25, 26, 27] have demonstrated im-
proved performance for brake light detection. However, these manually designed models
face challenges in adapting to real-world environmental conditions and variations.

In the context of driver distraction detection, research has evolved from traditional ma-
chine learning techniques [28, 29] that depend on manual feature extraction to more ad-
vanced deep learning models such as CNNs and Vision Transformers [30, 31]. Recent
innovations, including lightweight models [32] and attention mechanisms [33], have sig-
nificantly improved the accuracy and efficiency of these systems. Moreover, using self-
supervised learning [34] and federated learning [35] frameworks has addressed issues like
the need for large labeled datasets and privacy concerns. Despite the progress, manually
designed models still have limitations, particularly in adapting to real-world situations.

Despite significant progress in relD task, most research has focused on person relD
[36, 37, 38] and four-wheeler relD [39, 40, 41]. These tasks differ significantly due to
differences in object characteristics, camera angles, and movement patterns. Motorcycles,
which are often overlooked in relD research, present unique challenges because they in-
clude both a rider and a vehicle, each with distinct characteristics. Motorcycle riders fre-
quently wear helmets that obscure their faces, and their clothing can hide additional charac-
teristics. Furthermore, motorcycles are smaller and often get occluded, making them more
difficult to spot in surveillance cameras. Although some studies have attempted motorcy-
cles relD using traditional [42] and deep learning methods [43, 44, 45], further research
is required to develop robust motorcycle relD techniques that can perform well in diverse
real-world scenarios.

Given the limitations of traditional methods and manually designed DNN models, we
propose an Evolutionary NAS approach to automatically generate optimal DNN models
for detecting brake lights status, driver distractions and vehicle re-identification tasks. The
exploration mechanism in NAS can be used to facilitate the automatic exploration and
identification of optimal parameters for a DNN model. Using evolutionary algorithms to

explore the search space offers an effective way to identify models that perform well in
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diverse conditions. Most of the existing literature used NAS to identify the optimal DNN
architecture only (like the type of blocks, kernel size, number of layers, etc.), while it can
also be used to identify the optimal training parameters.

The following objectives are formulated in this thesis with respect to the above men-

tioned research gaps:

1. The first objective of this research is to design an evolutionary based optimization
of the DNN model for detecting brake light status on two-wheeler and four-wheeler
vehicles for accident prevention. This involves designing a NAS search space for the
DNN model to include backbone architecture parameters and training parameters.
The search space exploration to identify the optimal model is done using a genetic
algorithm. The genetic algorithm will optimize the parameters of the DNN model,
thereby enhancing its ability to identify the brake light status accurately. We also
proposed a new dataset, NITW Motorcycle Brake Light Status (NITW-MBS), for
detecting brake lights in two-wheelers in this objective due to the unavailability of

publicly available datasets for this task.

2. The second objective extends the scope of the search space to design a DNN for de-
tecting the brake light status of multiple types of vehicles. The methodology consid-
ers a NAS search space with the parameters of the backbone architecture and training
parameters. A modified differential evolution algorithm with evaluation correction
based selection for mutation and species protection based selection is used to identify

an optimal DNN model.

3. The third objective focuses on developing an evolutionary based optimization of the
DNN model for vehicle re-identification in smart traffic surveillance systems. The
search space is designed to include the parameters of the DNN backbone architecture
and the training parameters. The search space is explored using the grasshopper op-
timization technique to identify an optimal DNN model for vehicle re-identification

tasks.

4. The fourth objective is to develop an evolutionary based optimization of the DNN

model to detect driver distractions that can be used in an accident prevention system.

8
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The NAS search space is designed to include the parameters of the model backbone
architecture and the DNN model’s training parameters. The search strategy involves
using a genetic algorithm with evaluation correction based selection and species pro-
tection based selection to identify an optimal DNN model. This system can be used

to alert drivers when they are distracted to prevent accidents.

1.2 Overview of the contributions of the thesis

In this section, an overview of the chapter-wise contributions of this thesis is presented.

Each subsection presents a summary of the contributions of the corresponding chapter.

1.2.1 Genetic algorithm based optimization of deep neural networks
for vision based vehicle brake light status detection for accident

prevention systems

A break light detection system is necessary for vehicles to avoid collisions. In the auto-
mobile industry, collision sensing and accident prevention techniques are an active area
of research. However, the task of vehicle brake light detection in computer vision is a
challenging task due to occlusion, variation in capturing conditions, and the smaller size
of brake lights. Thus, it is crucial to detect brake light status to avoid collisions and to
ensure safety during driving. To the best of our knowledge, existing research primarily fo-
cuses on detecting brake light status in four-wheeler vehicles. However, in the real world,
a vehicle may come across a wide range of vehicles, such as motorcycles, four-wheelers,
buses, trucks, etc. Motivated to replicate such a scenario, as there was no publicly available
dataset for identifying the status of motorcycle brake lights, a new dataset is proposed in
this work. We proposed a NAS based DNN technique with a genetic algorithm to construct
a DNN model by searching for better backbone and optimal training parameters.

The major contributions of this work are listed below:

* A new dataset (NITW-MBS) for detecting the status of two-wheeler brake lights

status is proposed. In this dataset, rear-view tail light images of different types of

9
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motorcycles are considered.

* For the detection of brake light status, a DNN based object detection model using
Mask R-CNN is considered in this work. A Genetic Algorithm (GA) based NAS

approach is used to find the optimal backbone architecture and training parameters.

 Evaluation of the proposed approach against the existing brake light status detection
approaches as well as existing state-of-the-art object detection models for both two-

wheeler and four-wheeler vehicles is conducted.

Proposed method

According to the vision based object detection literature, single-stage detectors excel
at identifying large objects but struggle to recognize smaller ones. Given the small size
of the brake light, we chose a two-stage object detection model based on Mask R-CNN in
this work. We formulated NAS to find the optimal DNN model for object detection tasks.
In this context, we use mean Average Precision (mAP) as the fitness function to maximize
validation accuracy.

To enable a comprehensive exploration of DNN architecture and training parameters,
a search space is designed with essential components such as type of block, loss functions
(class loss, BBox loss), activation function, and optimizer. For the activation function
ReLU, Mish are considered, for optimizer SGD, Adam are included in the search space.
The study considers cross-entropy loss, Focal loss for class loss parameters. We also con-
sider L1 loss, MSE loss for BBox loss parameter.

In this work, GA is used to automatically identify the optimal neural network architec-
ture. GA is based on Darwin’s natural evolution hypothesis, which generates a new pop-
ulation with better average fitness than the population in the current generation. In binary
encoded genetic algorithms, the GA chromosome is represented by a binary bit string. A
chromosome comprises genes that capture the individual’s genetic characteristics, thereby
representing a solution. The three primary operations of genetic algorithms are selection,
crossover, and mutation. The “selection” operation aims to identify individuals, known
as parents, with a higher fitness value so that the resulting offspring may inherit the bet-

ter characteristics of the parents. In this work, tournament selection is used for selecting

10
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parents. The diversity in the population is achieved through crossover and mutation. In
the “Crossover” operation, a random crossover site is identified, and the bit strings of the
selected parents are interchanged to form new offspring. The “Mutation” operation inserts
random genes into offspring to achieve population diversity and prevent early convergence.

The object detection model identified by the proposed approach achieved a mean ac-
curacy of 97.14% on the proposed two-wheeler (NITW-MBS) dataset and 89.44% on the
four-wheeler (CaltechGraz) dataset, respectively. The proposed model obtained better re-
sults than the existing approaches for both two-wheeler and four-wheeler vehicle brake
light status detection. This indicates that the proposed approach can explore the search

space to identify the optimal object detection model for the brake light detection task.

1.2.2 Differential evolution based optimization of deep neural networks
for vision based vehicle brake light status detection for accident

prevention systems

This work aims to design a vehicle brake light status detection system that is effective
for multiple types of vehicles by considering a strong search space. Existing manually
designed DNN architectures for brake light status detection face challenges in accurately
estimating the brake light status in diverse real-world conditions. This is because brake
lights come in various shapes, color shades, and brightness levels, which differ between
cars, motorcycles, trucks, buses, and other vehicle types. In addition, the position of the
tail light can vary even within the same category of vehicle. The wear and tear of the
vehicle further adds to its diversity. The current solutions can’t handle these challenging
conditions effectively, resulting in only a few reliable brake light status detection methods.
Recently, NAS based approaches have achieved great success in automatically designing
DNN models for image classification [17], object detection [18], and segmentation [19]
tasks. This is the motivation of the proposed NAS based approach that uses Evaluation
correction based Differential Evolution (E-DE) for exploring the search space to find an

optimal brake light status detection task.

11
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The major contributions of this work are listed below:

* A modified DE based NAS approach is proposed to optimize the two-stage object
detection framework for two-wheeler and four-wheeler vehicle brake light status de-

tection tasks.

* The search space is designed to include the parameters of DNN backbone architec-

ture and training parameters for brake light status detection.

* An Evaluation correction based selection for mutation and species protection based

selection is used in the modified DE algorithm to find the optimal DNN network.

Proposed method

In this work, we designed a two-stage Mask R-CNN based object detection model
for brake light status detection. A search space is designed to include the parameters of
backbone architecture and training parameters for designing a system for brake light status
detection.

The proposed search space explores four kinds of blocks: Resnet block [46], ReneXt
block [47], ReneSt block[48] and Swin transformer block [49]. Apart from parameters to
search for the backbone architecture, this work includes the parameters related to training
like activation function, optimizer, box loss and class loss in the search space. For the
activation function parameter {ReLU, GELU, CELU, Mish} are considered, for optimizer
{SGD, Adam, AdamW} are used, for box loss {MSE loss, L1 loss, Smooth L1 loss} is
used, and finally for class loss {Cross Entropy loss, Focal loss} are used.

A modified version of the DE algorithm named E-DE is used for the search strategy.
Traditional mutation strategies use the best vector to choose parents for generating the
donor vector. Estimating performance based on validation mAP only may lead to a better
network but may not be efficient in terms of computation. Hence, we introduce the use of
an Evaluation Correction based Selection strategy to choose individuals for the Mutation
operation (ECSM). In the evolutionary process, maintaining the diversity in the population
of network architectures is crucial for improving the algorithm’s overall performance. To
address this issue, this work explores the use of Species Protection based environmental

Selection (SPS) operation.

12
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The optimal DNN models discovered using the proposed approach achieved mean ac-
curacy of 89.73 % and 88.90 % on the four-wheeler vehicle datasets CaltechGraz [50, 51]
and UC Merced Vehicle Rear Signal [52], respectively. We also evaluated this approach on
the proposed two-wheeler NITW-MBS dataset, for which the proposed approach achieved
an accuracy of 97.97 %. The comparative study with other existing manually designed
DNN approaches and NAS based object detectors on these datasets indicates the effective-
ness of the proposed approach. In addition, a comparison of the proposed approach with
basic DE suggests the effectiveness of the modified DE approach. Finally, we have tested
the proposed method on real-life video sequences to evaluate the effectiveness of the pro-

posed vision based approach for detecting brake light status.

1.2.3 Grasshopper algorithm based optimization of deep neural net-
works for vision based vehicle re-identification for smart traffic

surveillance systems

Object re-identification is an important visual recognition task in computer vision, with
applications in security, surveillance, traffic monitoring, retail analytics, robotics, sports
analytics, and more. Object relD is a challenging task due to the variations in illumina-
tion, occlusions, appearance, and other factors, making it difficult to recognize and track
objects/persons across various cameras. Most research on re-identification focuses on iden-
tifying persons. This study aims to address vehicle re-identification tasks by developing a
vehicle re-identification system based on appearance features crucial for recognizing vehi-
cles. With the existing license plate recognition systems, it is difficult to identify vehicles
from different views. Therefore, we have proposed a NAS based DNN optimization ap-

proach for vision based vehicle re-identification tasks.

The major contributions of this work are listed below:

* A NAS based DNN optimization approach using Grasshopper Optimization Algo-

rithm (GOA) is proposed for re-identification task.

13
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» A search space is designed to include the parameters of the backbone architecture as

well as the training hyperparameters to compute an object re-identification model.

* Experiments are conducted to search and train different architectures for reID without
pretraining on two publicly available reID datasets which outperformed the existing

approaches.

Proposed method

The proposed object re-identification approach comprises two phases: feature learning
and re-identification. In the feature learning phase, a classification network is trained on
images to extract feature vectors. The re-identification phase involves dividing test im-
ages into gallery images from one camera and probe images from another. These images
are then processed through the trained classification network to obtain the feature vectors.
Then, a distance measure facilitates the re-identification of the same object across different
locations using probe images and gallery images. In this work, we have modeled this entire
process as a NAS optimization task to design an optimal deep neural network model for
vehicle re-identification.

In this work, we propose the search space with four kinds of blocks: Resnet block [7],
EfficientnetV2 block [53], Regnet block [54, 55] and Densenet block [56]. In addition to
the parameters of the backbone, we have also included the parameters associated with train-
ing such as Size of input , Pooling operation, Activation function, Optimization algorithm,
Loss function and Distance metric in the search space.

The Rank-1 accuracy is a key metric for evaluating the performance of object re-
identification. The rank-1 accuracy measures the percentage of correctly identified probe
images, where the matched highly ranked gallery image is correct. Therfore, in this work,
we use rank-1 accuracy as the fitness function.

GOA was first introduced by Saremi et al. in [57]. In the literature, it is found to be
effective in solving various optimization problems, including medical image segmentation
[58], image enhancement [59], image fusion and feature selection [60, 61]. Its simplicity,
efficiency, and robustness make it a popular optimization technique. Therefore, this ap-

proach uses GOA as the NAS search strategy for finding an optimum DNN model for the

14
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relD task.

The performance of the proposed approach is compared with the existing approaches
for vehicle re-identification on the MoRe and BPRelD datasets. The experimental results
suggest that the proposed approach outperforms the existing methods, indicating its effec-

tiveness for the vehicle re-identification task.

1.2.4 An improved genetic algorithm based optimization of deep neu-
ral networks for vision based driver distraction detection for ac-

cident prevention systems

The manually designed DNN architectures for driver distraction detection may be inef-
fective for predicting driver behavior in real-world scenarios with several types of driver
distractions such as texting, eyes closed, yawning, talking on the phone, etc. Further, ac-
curate estimation of driver behavior under real-world driving conditions depends on the
localization of the driver’s facial and hand actions. Current approaches struggle to deal
with these practical, diverse driving conditions. In this work, we propose an evolutionary
NAS based approach to automatically design a DNN model for detecting driver distraction

using an improved GA as the NAS search strategy.

The major contributions of this work are listed below:

* A NAS based approach with improved GA optimization of a single-stage YOLO

object detection framework is proposed to localize and classify driver distractions.

* A search space is designed to include the parameters of the backbone and the training

parameters of the YOLO object detection network.

* An evaluation correction based selection and species protection based environment
selection are used in the Genetic Algorithm to find an optimal DNN model with fewer

parameters.

Proposed method

15
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In this work, a one-stage YOLO architecture is considered the base model for NAS
based optimization of the DNN model. The search space is designed to include parameters
of backbone architecture and training parameters. In the search for backbone architecture,
we consider four types of blocks: CSPDarknet53 block [62], RepVGG block[63], CSP-
NeXt blocks [64], and CSPResNet block [65]. We consider that the depth of blocks and
width of blocks in each stage of the backbone architecture vary from 0O to 2. In addition to
the search for the backbone architecture, the proposed search space also includes training
parameters such as the box loss, class loss, activation function, and optimizer. For box loss,
we explored {IoU loss, GIoU loss, SIoU loss, CloU loss}, and for class loss, we consid-
ered {Cross Entropy loss, Focal loss, VariFocal loss, QualityFocal loss}. For the activation
function, we considered {ReL.U, GELU, Swish, SiLU}, and finally, for the optimizer, the
alternatives are {SGD, NAdam, Adamax, AdamW}.

A modified version of the GA algorithm is used as the search strategy. In the standard
GA, selection strategies like tournament selection, roulette wheel selection, etc., are used
to select parents that are used to generate offspring. However, performance estimation
based on only validation mAP may lead to a better network but is inefficient in terms of
computation. Hence, we have introduced the Evaluation Correction based Selection (ECS)
strategy, which is considered to choose individuals in the modified selection operation. In
the evolutionary process, maintaining diversity in the population of network architectures is
crucial for improving the overall performance of the NAS based approach. To accomplish
this task, this work utilizes Species Protection based environmental Selection operation
(SPS).

The obtained DNN model of the proposed approach achieved a mean accuracy of
87.14% on the Distracted Driver Detection Image (DDDI) [66] dataset and 88.87% on the
Distracted Driving Computer Vision project (DDCV) [67] dataset. On both datasets, the
generated DNN model outperformed the existing methods for detecting distracted drivers,

highlighting its effectiveness in addressing the driver distraction detection task.
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1.3 Organization of the thesis

This thesis mainly focuses on developing a NAS based DNN optimization approach using
evolutionary algorithms. This approach is used to design models for visual recognition
tasks such as brake light status detection, detection of distracted drivers to prevent acci-
dents, and vehicle re-identification for smart traffic surveillance. The remainder of the
thesis consists of six chapters, including related work, four contributions of the thesis and
a conclusion chapter. The content of each of these chapters is described briefly below:
Chapter 2: Related Work

In this chapter, a survey of the recent work on vision based approaches related to acci-
dent prevention mechanisms and tasks related to smart traffic surveillance is provided. In
particular, it focuses on the works related to the detection of brake light status, vehicle re-
identification, and driver distraction detection tasks.

Chapter 3: Genetic Algorithm based Optimization of Deep Neural Networks for Ve-
hicle Brake Light Detection

This chapter covers the optimization of a deep neural network model for the task of vehi-
cle brake light status detection. A new dataset (NITW-MBSY) is introduced to evaluate this
work for two-wheeler vehicles, and a NAS based DNN optimization approach is presented.
The genetic algorithm is used as the NAS search strategy, exploring a search space encom-
passing both DNN backbone architecture and training parameters. This approach aims to
design an optimal two-stage Mask R-CNN based object detection model for two-wheeler
and four-wheeler vehicle brake light status detection tasks.

Chapter 4: Differential Evolution based Optimization of Deep Neural Networks for
Vehicle Brake Light Detection

This chapter focuses on optimizing DNN models to detect the status of brake lights for mul-
tiple types of vehicles simultaneously. The search space is designed to enable the detection
of brake light status across different types of vehicles. A modified differential evolution
strategy is proposed as the NAS search strategy to find the optimal two-stage Mask R-CNN
based object detection model. The experimental study suggests the efficacy of the modified

DE based NAS approach for finding an optimal DNN model for detecting the vehicle brake
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light status.

Chapter 5: Grasshopper Optimization based Deep Neural Networks for Vehicle Re-
identification

In this chapter, we propose a NAS based optimization of the DNN model for vehicle re-
identification task. The grasshopper optimization algorithm is used as a NAS search strat-
egy. The search space is designed to include parameters of DNN architecture and training
parameters for the re-identification task. The proposed approach is evaluated on two pub-
licly available datasets to showcase the effectiveness of the proposed NAS based optimiza-
tion of deep learning models for vehicle re-identification task.

Chapter 6: Improved Genetic Algorithm based Optimization of Deep Neural Net-
works for Driver Distraction Detection

This chapter explores the optimization of a DNN model for the task of detecting distracted
drivers. A modified GA is used as the NAS search strategy. The search space is designed to
cover parameters related to backbone architecture and training parameters for a one-stage
object detection model. The proposed approach is evaluated on two publicly available
datasets to demonstrate the effectiveness of the proposed NAS based optimization of DNN
model for detecting driver distraction.

Chapter 7: Conclusion and Future work

This chapter presents the conclusion of the thesis. It also outlines potential future research

directions based on the findings presented in this thesis.
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Chapter 2

Related Work

A comprehensive literature review of different tasks is presented in this chapter. The liter-
ature on vehicle brake light detection is discussed in Section 2.1, while Section 2.2 covers
the literature on vehicle re-identification. Section 2.3 focuses on the literature related to

driver distraction detection. Finally, a summary is provided in Section 2.4.

2.1 Vehicle brake light detection

This section presents the literature related to vehicle brake light detection and determining
the status of the vehicle brake light signal to prevent rear-end collisions. The vision based
methods that are used for brake light status classification can be categorized into traditional
and deep learning based methods. During the early attempts, researchers predominantly
employed traditional techniques, such as segmentation based on colour information, shape,
brightness, and other features, along with statistical machine-learning models. Colour
based techniques often utilize morphology and colour/intensity thresholds to extract rel-
evant features. Among the machine learning classifiers, SVM [5] and AdaBoost [6] are the
two most popular algorithms used to classify tail lights based on colour features.

Chen et al. [68] proposed a vision based technique for brake light detection using a tail
light symmetry verification to extract the vehicles, and a combination of radial symmetry
traits and luminance was used to determine the brightness of each pixel inside a vehicle’s

bounding box, to be a Red component. Missed targets are addressed in a detection refining

19



CHAPTER 2. RELATED WORK Section 2.1

process based on temporal information. Jen et al. [23] used a Harr-like based classifier to
detect vehicles and their paired tail lights, then they used a kernelized correlation filter to
track the detected Rol regions and finally used colour and brightness analysis of the tail
light area to identify the status of the tail light. The tail light detection system, developed
by Almagambetov et al. [69] can detect and track a vehicle’s tail lights as well as predict
the status of tail light signals. In this work, in order to find potential tail regions, the ap-
proach identifies Red or White colours first. Then, the symmetry test and Kalman filtering
were used to find a sequence of sequential matching tail light pairings. Cui et al. [70]
proposed a hierarchical framework with three stages: first, vehicle bounding box detection
using the Deformable Parts Model (DPM); second, tail light candidate extraction using
Hue-Saturation-Value (HSV) colour space, and the two most significant clusters are then
extracted using the OPTICS method; and finally, turn and brake light status is estimated
using the brightness values of the tail light region. In order to extract tail light features in-
fluenced by external lighting and weather, Weis et al.[71] developed pixel values of interest
for tail light areas by processing the input video stream to extract colour, shape, and other
information that is closely related to the object of interest. Arun et al. [24] employed HSV
colour space to detect brake and turn signals, and an optical flow technique was used to
detect moving cars. SVM was then used to classify the brake and the turn signals.
However, traditional methods relying on manually determined features may not be ef-
fective in real-world conditions with varying illumination conditions and cluttered environ-
ments. In contrast, deep learning based approaches, particularly CNNs, have demonstrated
notable efficiency in addressing these challenges. CNNs excel in learning hierarchical se-
mantic concepts and have made significant strides in the detection of vehicle tail light when
compared to the traditional approaches. Zhong et al. [72] used a Faster R-CNN based
model to identify the vehicles, then used colour information and morphological operations
to recognize the brake light regions. An SVM classifier was used to classify the status of
the tail lights Vancea et al. [73] employed two strategies for tail light detection. The first
strategy uses the L*a*b* colour space and explicit thresholds to detect Red colour regions.
The second strategy uses a deep learning model based on FCN-VGG16 to recognize vehi-

cles first and then uses the detected vehicles to segment candidate tail lights. The identified
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tail lights are then tracked using a Kalman filter. Wang et al. [74] introduced a brake light
detection system that uses a modified HoG detector to extract the vehicle’s rear light sig-
nal. To detect vehicles, CNN based AlexNet model was used. Later, they extended this
work to HDR cameras instead of standard colour cameras. Vancea et al. [75] developed
a CNN based model to recognize the tail light of vehicles. A Faster RCNN was utilized
to detect vehicles, while a sub-network was used to segment tail light pixels and classify
their signal status. Rapson et al. [76] compared the performance of various YOLO models.
The YOLOv3 model recognizes vehicles in low-resolution images. The tiny YOLO can
recognize vehicle tail lights in high-resolution images from the vehicles. Frossard et al.
[77] proposed a deep learning model to identify a vehicle’s brake light status directly. In
this work, a VGG16 was used to predict an attention mask and extract spatial data, and a
CNN-LSTM was used to extract temporal information. Nava et al. [78] proposed a model
for detecting and classifying brake lights, which was primarily designed for daytime colli-
sion warning systems. They used YOLO and a lane detection algorithm in the first phase to
detect the vehicles. In the second phase, they used SVM to recognize the status of the brake
light. Li et al. [79] developed a one-stage model using modified YOLOvV3. They used three
techniques for tail light detection: multi-scale detection for detecting objects at varying
sizes, the Spatial Pyramid Pooling (SPP) technique for extracting rich information and the
focal loss to address the issue of class imbalance. Hsu et al. [25] developed two distinct
classifiers to recognize turn signals and brake signals. The CNN-LSTM model receives an
image sequence to determine the braking condition of a vehicle from its rear view. To de-
termine the status of a turn signal, SIFT flow alignment is used to determine the difference
between succeeding frames for the turn signal state. The Rol regions of turn signals are
given as input to the CNN-LSTM model for prediction. Lee et al. [26] combined a spatial
attention model and a temporal attention model into a CNN-LSTM framework to recognize
vehicle tail lights. From the above discussion, it can be concluded that these approaches do
not localize tail light regions in each frame; instead, they learn spatiotemporal properties
from a sequence of frames. As a result, they do not distinguish between the tail light signal
and other light signals, such as traffic lights. It is crucial to know the location of the tail

lights and the status of the vehicles that are going in front of the vehicle.
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2.2 Vehicle re-identification

In this section, we outline some of the existing approaches to re-identification tasks. The
deep learning methods have been successfully used for many computer vision tasks, and
many deep learning methods have been developed in the literature for person relD and ve-
hicle relD. The state-of-the-art methods typically employ a deep neural network to extract
features from the visual representation of persons/vehicles. For object relD, two popular
approaches were proposed in the literature, which are based on ranking and classifica-
tion concepts. In ranking-based methods, three images are input: two depict the same
identity, while the third belongs to a different identity. The model is trained using a loss
function such as Triple Loss [80], Quadruplet Loss [81], or Margin Sample Mining Loss
(MSML) [82]. The objective of these loss functions is to bring together samples with the
same ID while simultaneously pushing apart those with different IDs. On the other hand,
classification-related approaches [83, 84] use classification loss with a carefully designed
special structure for object relD.

Luo et al. [16] introduced a baseline model for person relD incorporating a BNNeck
technique. This approach aims to improve performance by combining ID loss and triplet
loss in the training process. Pu et al. [85] presents a methodology for person image re-
identification in a multi-camera setup. It proposes a multi-scale feature fusion network
model that combines global and local features. The network is made up of four stacked
building blocks, each of which processes multi-scale features with different weights before
fusing them based on output conditions. Furthermore, a multi-head attention mechanism
network is used to model relationships between input images, which improves feature ag-
gregation from neighbouring images. Huynh et al. [41] presented a model for vehicle relD
that introduces the concept of multi-head attention combined with Supervised Contrastive
Loss [86]. Chen et al. [87] introduced an end-to-end distance-learning deep network for
vehicle reID. This network integrates global features and local features at a more detailed
level, aiming to improve the performance of vehicle relD systems. Khorramshahi et al.
[88] employed a key point detection approach to segment vehicle images and extract de-

tailed information. They then utilized deep learning techniques to refine these features
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and effectively combine both coarse and fine features, resulting in more discriminative and
efficient representations. Cheng et al. [89] introduced a multi-granularity deep feature fu-
sion method for vehicle reID. Their approach involved designing two distinct branches to
extract and fuse global features and local features, ultimately utilizing the fused feature rep-
resentation for vehicle image representation. Wang et al. [90] introduced an efficient deep
convolution method for re-identification tasks. Their approach involved learning deep fea-
tures guided by essential attributes, which collectively contributed to improving the overall
re-identification performance. Zheng et al. [91] proposed a method to enhance feature rep-
resentation using a multi-head architecture to extract multi-scale information. He et al. [92]
investigated the utilization of vision transformers for re-identification tasks. They explored
several domain adaptations and proposed a robust baseline called ViT-BoT, which served
as the backbone network. To address the specific characteristics of re-identification data,
the researchers introduced two modules: side information embedding and jigsaw patch
module. Zhang et al. [93] explored the use of transformers for person re-identification
in videos. However, they noted a challenge related to training transformers: the require-
ment for a large amount of data. Insufficient data can lead to a higher risk of overfitting.
Yuan et al. [42] have created BPRelD, a large-scale dataset that focuses on bike person
re-identification collected in a campus environment. An approach based on handcrafted
features of the bike and person parts of the image is used for bike-person re-identification.
While this approach worked on the campus dataset, the challenges faced by real-time urban
monitoring systems can’t be handled by this approach. The MoRe dataset, which was first
proposed by Figueiredo et al. [43], is the first large-scale dataset that focuses entirely on
motorcycles and is captured from urban traffic surveillance cameras in real-time. A strong
baseline approach is developed using a deep learning model with a combination of triple
loss [94, 80], quadruplet loss [81], and MSML [82], which are metric learning losses. They
have also used techniques like warmup learning rate and label smoothing to increase the
performance of motorcycle re-identification. Li et al. [44] proposed the pyramid attention
mechanism to enhance the strong baseline introduced by Figueiredo [43] for capturing the
essential information of the rider’s images. The effectiveness of this approach was evalu-

ated on BPReID and MoRe datasets.
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In the literature, few NAS approaches have been specifically designed for the relD task.
Auto-relD [95] differs from expert-designed neural networks [36, 43, 44] as it focuses on
automating the search for neural network architectures. Zhou et al. [96] introduced NAS
based attention modules to learn spatial and channel attention feature maps. These fea-
ture maps were then combined to enhance the model’s feature representation capabilities
without the need for pretraining. To optimize the efficiency of attention placement in the
re-identification module, an Attention Search Space (ASS) was proposed. Fu et al. [97]
proposed a cross-domain deep network architecture search method that specifically ex-
plores Batch Normalization (BN) layers to discover the optimal architecture. Their work
emphasizes the importance of learning shared information between different modalities in
existing representation learning methods, which primarily aim to improve feature extrac-
tion. Chen et al. [98] introduced a NAS approach for person relD task. This method
involved searching for an optimal cell structure by making greedy decisions during the
search process. Further, they introduced a triplet loss with batch hard mining [80] as the
retrieval loss, aimed at enhancing the feature representation capability of the backbone net-
work and improving the overall generalization performance. Unlike these methods, which
primarily concentrate on the search for backbone architectures in DNN, this work aims to
automate the search process for the optimal backbone architecture of DNN and its hyper-

parameters for vehicle relD tasks.

2.3 Driver distraction detection

Various studies have been conducted to detect and mitigate the effects of driver distrac-
tion, improve road safety and reduce accidents. The survey by [99, 100] reviews existing
studies on driver distraction, examining various methodologies, experimental setups, and
their results. These categorize the impact of different distractions on drivers’ physiological
responses, visual signals, and performance. Another review by [101] follows the PRISMA
guidelines and assesses various technologies such as eye tracking systems, and cardiac sen-
sors to monitor driver distraction.

Earlier research on identifying driver distraction behavior relied mainly on manually
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collected features and conventional machine learning approaches. Zhang et al. [102] cre-
ated a dataset that included four unique categories of driving activities: safe driving, gear-
stick manipulation, talking on the phone, and eating. They also evaluated the performance
of their proposed Hidden Conditional Random Fields model by evaluating the recogni-
tion accuracy with different classifiers. Zhao et al [103] proposed a method for improving
detection model performance by integrating the pyramid histogram of oriented gradients
with spatial scale feature extractors. This methodology was evaluated using a self-created
distracted driving database, which included four driver activities: shifting, gripping the
steering wheel, chatting on the phone, and eating. Artan et al. [104] used SVM to detect
driver behavior, with a particular focus on mobile phone usage. This was achieved by inte-
grating a near-infrared camera system aimed at the vehicle’s front screen. Berri et al. [28]
manually extracted features and used an SVM model to detect driver attention. In addition,
they used a genetic algorithm to optimize the model parameters. The primary objective
was to identify cell phone usage based on front-facing images of drivers. Craye and Karray
[105] started by extracting four features from the driver using a Kinect camera, which pro-
vided a comprehensive representation of the driver’s entire range. Head orientation, facial
expression, eye focus and closure, and arm position were among the characteristics. The
combination of these characteristics resulted in a representation capable of detecting driver
distraction. Following that, an AdaBoost classifier was used to classify distraction behav-
ior. Yan et al. [29] created a pyramidal histogram of gradients using the driver’s motion
history images, taking into account the data’s temporal features. The collected features
were fed into a random forest classifier to classify distraction behavior. However, manual
feature extraction is time-consuming, requires specialized knowledge, and frequently pro-
duces substandard results.

In recent years, researchers have explored employing a deep learning approach to ad-
dress driver behaviour detection. Baheti et al. [106] introduced an improved VGG-16
model that replaced two convolutional layers with fully connected layers. They modified
the activation function of LeakyReLU and added a dropout layer. Eraqi et al. [107] cre-
ated the American University in Cairo Driver Distraction Dataset (AUCD2), which has ten

classes in it. A pre-trained AlexNet and InceptionV3 models were used for face image and
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hand image segmentation. A genetic algorithm was used to fine-tune the models. However,
because of the large scale size of the model, real-time detection is difficult. Ghizlene et al.
[108] introduced a method for detecting driver drowsiness that combines the Haar cascade
with the YOLO algorithm for fast recognition of the driver’s eyes. Lu et al. [109] proposed
dilated and deformable Faster R-CNN as a driver action recognition system. This system
detects driver actions by detecting items with motion specificity that show both inter-class
and intra-class distinctions. The use of dilated and deformable residual blocks facilitates
the extraction of irregular and tiny characteristics such as cell phones and cigarettes. The
authors collected a dataset of images, which contains diverse driver activities. Masood et
al. [110] used the VGG16 and VGG19 models to detect driver distraction and efficiently
classify the distinct driving actions. Alkinani et al. [111] used deep learning techniques
to detect both inattentive and aggressive driving behaviors in drivers. They classified inat-
tentive driving into subtypes such as driver fatigue, drowsiness, distraction, and other risky
behaviors such as aggressive driving. These risky behaviors were discovered to be related
to factors such as driving age, experience, health conditions, and gender. CNNs, Recurrent
Neural Networks (RNNs), and LSTMs were used in the research for their task. Li et al.
[112] created a two-stage system for detecting driver distraction. The YOLO deep learning
object detection model is used in the first module to detect the bounding boxes associated
with the driver’s right ear and right hand from RGB images. These bounding boxes are
then used as input for the second module, a multi-layer perceptron, which predicts the type
of distraction based on the information provided by the bounding boxes. Shahverddy [113]
used a recursive graph technique to analyze driver behavior. Driving signals such as ac-
celeration, gravity, and throttle were converted into images. After that, a CNN was used
to detect driver distractions. Based on the analysis of signals such as acceleration, gravity,
throttle, speed, and Revolutions Per Minute (RPM), the system classified driving styles into
five categories: normal, aggressive, distracted, drowsy, and drunk. Methuku et al. [114]
presented a deep learning model for identifying and classifying drivers’ behaviors and ac-
tions while traveling. The model divides driver actions into ten categories, with the first
representing safe driving and the remaining nine representing various unsafe actions such

as fixing makeup and texting. CNNs were used in the training and detection processes,
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with ResNet50 serving as the backbone of DNN architecture. For classification, a dense
net architecture was used after the ResNet50 architecture. The State Farm dataset was
used for training, which included images depicting various driver actions associated with
distracted driving. Li et al. [115] developed a deep learning research approach aimed at
investigating the relationship between typical driving behavior and instances of distracted
driving. The researchers used advertisements to recruit 24 volunteers for their study and
conducted signal collection experiments. The results were derived from their gathered
dataset. Zhao et al. [116] proposed a system for detecting driver behavior based on an
adaptive spatial attention mechanism. To extract features, the model employs an adaptive
discriminative space. A multi-scale feature representation is extracted, and classification is
performed using a k-Nearest Neighbour (K-NN) classifier. Zhang et al. [117] developed
an unsupervised multimodal fusion network for detecting driving distractions. The model
is made up of three major modules: multimodal representation learning, multiscale feature
fusion, and unsupervised driver distraction detection. Qin et al. [118] presented an im-
proved eye-tracking object detection dataset based on driving videos. Following that, the
Increase-Decrease YOLO network was developed to simulate the driver’s selective atten-
tion mechanism, with a focus on identifying key objects on the driver’s face.

With the advancement of deep learning, Vision Transformers (ViT) [119] have gained
popularity in distraction detection tasks. They can capture long-range dependencies in
visual data, making them suitable for tasks that require high-level semantic understand-
ing. [30] proposes a lightweight vision transformer-based method for detecting distracted
behavior using a pseudo-label-based semi-supervised learning approach. This method al-
lows accurate detection by generating strong and weak augmented versions of the input
data. Another approach, CaTNet, introduced in [32], integrates self-attention with con-
volutional layers to capture local and global features efficiently. This lightweight model
achieves good accuracy with fewer parameters. Swin Transformers has also been explored
in [31], where a driver distraction detection model incorporates a high-discrimination fea-
ture learning strategy to improve the separation between different classes of distractions.
This method, evaluated on two public datasets SFDDD and AUCD?2, achieved superior

performance over CNN-based approaches.
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Attention mechanisms have been applied to driver distraction detection to focus on rele-
vant parts of the visual input and improve classification performance. In [33], a constrained
attention (CA) mechanism is introduced for real-time distraction detection. The CA mech-
anism includes an internal constraint, with concentrative regularization to prevent exces-
sive or ambiguous attention and orthogonal regularization to differentiate attention across
classes. It also uses an intersample constraint to optimize image representations within a
batch. The method has been tested on SFDDD and AUCD?2 datasets and demonstrated
significant gains in accuracy. [120] proposed a three-level attention mechanism, combin-
ing channel, spatial, and batch-level attention, to enhance the generalization ability of a
lightweight vision transformer model. This method strikes a balance between performance
and efficiency. The technique incorporates a lightweight feature extraction backbone with a
dual-stream structure, enhancing training efficiency. It employs contrastive learning based
on similarity calculations, with attention visualization at different depths demonstrating the
method’s effectiveness.

Self-supervised learning has emerged as an efficient approach to reducing the reliance
on large labeled datasets. The work presented in [34] introduces a self-supervised learning
framework based on Masked Image Modeling (MIM) for driver distraction detection. Us-
ing the Swin Transformer as an encoder, the model achieves high accuracy while maintain-
ing lightweight architecture. Various data augmentation strategies are applied to improve
recognition and generalization, making the model highly effective in large-scale driver dis-
traction datasets. Representation learning has also been explored to enhance driver dis-
traction detection. A multi-modal ViT method, ViT-DD, presented in [121], integrates
emotion recognition with distraction detection to enhance the model’s performance. The
semi-supervised learning algorithm allows the integration of driver distraction images with-
out emotion labels into the multi-task training process, resulting in improved accuracy on
standard benchmarks.

The challenge of protecting user privacy while collecting driver data has prompted
the exploration of federated learning. In [35], the Asynchronous Federated Meta-learning
framework (AFM3D) is proposed to address data heterogeneity, privacy concerns, and the

inefficiencies of centralized learning paradigms in driver distraction detection. The frame-
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work bridges data islands using federated learning and meta-learning to quickly adapt to
new driver data. At the same time, an asynchronous mode ensures efficient learning even
in the presence of delays. The model outperforms existing methods in terms of accuracy,

recall, and learning speed.

2.4 Summary

This chapter provides an overview of the literature on tasks related to the detection of vehi-
cle brake lights, vehicle re-identification, and driver distraction detection, particularly in the
context of vision based accident prevention and smart traffic surveillance applications. It
commences by discussing traditional approaches and subsequently explores various tech-
niques based on deep learning. Furthermore, it explores the use of NAS techniques for
optimizing DNN models. Subsequent chapters (Chapter 3, 4, 5, and 6) will delve into more

elaborate solutions focusing on NAS based optimization of DNN models for these tasks.
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Chapter 3

Genetic Algorithm based Optimization
of Deep Neural Networks for Vehicle
Brake Light Detection

This chapter proposes a NAS based optimization of deep neural networks using a genetic
algorithm for the task of vehicle brake light detection.

Chapter Organization:

Section 3.1 presents the proposed methodology, Section 3.2 discusses the experimental

results and analysis and finally, Section 3.3 provides the summary of the work.

3.1 Proposed approach

This section introduces the proposed use of NAS to optimize the object detection network,
including both the backbone and the training attributes, specifically designed for the brake
light detection task. The details of the proposed model are shown in Fig. 3.1. The initial
population is set randomly. A GA chromosome in the population is encoded using the
scheme shown in Fig. 3.1 (c), to create a corresponding Mask R-CNN based object detec-
tion network. Then, the model is trained on vehicle data to evaluate its fitness value. A GA
based search strategy is used to generate a new population. After each generation, a new

population is generated, and the GA cycle is terminated when certain criteria are met.
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Figure 3.1: (a) The proposed GA based NAS for brake light detection (b) Mask R-CNN
based object detection network (c) Encoding of GA chromosome.

Neural Architecture Search(NAS):

A NAS approach is composed of three parts: a search space, a search strategy, and a per-
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formance estimation method. The first step in using a NAS is to define the “search space"
for the design of the neural network architecture. The neural network hyper-parameters
generally set using NAS are the number of filters, type of layer, number of units in each
layer, kernel size, etc. Other parameters can also be included in the search space, such as the
loss function, optimization algorithm, activation function, etc., which are related to training
a neural network architecture. More versatility can be obtained by adding more parameters
to the search space. However, as the search space grows, the cost of finding the best deep
neural network architecture increases. Finding the best DNN architecture, even for a sim-
ple search space, is a challenging task without a proper search strategy. As a result, NAS
approaches require an efficient “search strategy". The commonly used search strategies
for finding the best DNN architecture are based on evolutionary algorithms, reinforcement
learning, and gradient-based optimizers. After training the deep learning models using the
NAS approach, the objective function used for optimization is used to find the best neural

network. We can formulate NAS as an optimization problem, as given in Eq. 3.1.

mazqees Mya(Ala, w*(a))) (3.1)

Here, S denotes the search space of the DNN models that can be represented by a Di-
rected Acyclic Graph (DAG), in which each path in the DAG corresponds to a specific
DNN model denoted by a, which is an element in S, i.e. a € S. Here, the DNN model in-
cludes both the backbone architecture and training parameters. A(a, w) refers to the DNN
model a with weight w. Similarly, A(a,w*(a)) refers to the DNN model a with optimal
weights w*, that is obtained through training as given in Eq. 3.2. Here, L,,,;, is the training
loss. M, represents the validation criteria based on mean Average Precision (mAP). Eq.
3.1 identifies the optimal architecture a with optimal weights w* that maximizes validation

accuracy, which is the formulation of NAS based optimization of the DNN model.

A(a, w*(a)) = minyg LygnAla,w) (3.2)

The performance of the object detectors depends on the features extracted by the back-

bone. In image classification, a significant performance improvement can be achieved
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by replacing a ResNet-50 backbone with deeper neural networks, such as ResNet-101,
ResNet-152, etc. However, using NAS for identifying a backbone used in the object detec-
tor, is a challenging task. A backbone is pre-trained on ImageNet for image classification.
Pretrained models have two limitations in the standard object detector training process. The
first limitation is that they explore predefined architecture as the backbone, which may not
be the best architecture for a given object detection task. The second limitation is that each
candidate architecture requires training on ImageNet before it is fine-tuned for the given
detection dataset, which is computationally expensive. In this work, we presented an ap-
proach for finding optimal DNN architecture for object detection, by using GA based NAS

to search for optimal backbone and training attributes.

3.1.1 Search space design

The search space will have a significant impact on the performance of the architectures
generated by the NAS approach. In this work, six parameters are considered in the search
space, including the backbone architecture and the training attributes as given in Table
3.1. From the [7] it is observed that the type of blocks and depth of the neural network
determines the performance of the DNN recognition model. In [15], He et al. explored the
use of fixed number blocks in each stage with a fixed number of layers (e.g. Resnet-50,
Resnet-101 and Resnet-152), which may not give an optimal model. Hence, we considered
the type of block and the number of blocks as parameters in the search space to identify
the best backbone architecture. In [7], He et al. considered two blocks (Basic block and
Bottleneck block shown in Fig. 3.2) in which, the Bottleneck block is used to reduce the
number of parameters of the model as the depth of the model increases. In this work, the
Bottleneck block is used in each stage, if the total number of blocks is greater than or equal
to 40; else, the Basic block is used. The number of blocks in each stage is set to vary from
1 to 31 to explore up to Resnet- 374 (When the Bottleneck block is chosen, each block
consists of three convolutional layers. For example, if a stage has 31 blocks, it contains
31 x 3 =93 layers. Since the network has four stages, the total number of layers across

all stages is 93 x 4 = 372 layers. Adding two more layers, one for the input convolution

33



CHAPTER 3. GENETIC ALGORITHM BASED OPTIMIZATION OF DEEP NEURAL NETWORKS FOR VEHICLE BRAKE LIGHT DETECTION Section 3.1

and one fully connected layer at the end, gives a maximum depth of 374 layers, creating
the ResNet-374 architecture). This parameter for four stages is considered in the search
space to search for the optimal number of blocks in each stage, thereby finding the optimal
number of layers.

Recent literature [122, 123] is focused on optimization of the neural network’s back-
bone architecture but does not consider training attributes such as loss function, activation
function, and optimization algorithms that have a significant impact on the model’s perfor-
mance [124, 125]. As a result, we have incorporated the training attributes and parameters
related to backbone architecture in the search space of this work. ReLLU [126] is a generic
activation function that is used in models capable of performing a variety of tasks. Mish
[127], a recently proposed activation function with ReLU-like properties, adds continu-
ous differentiability, non-monotonicity, and other behaviour, which outperformed ReLLU in
some tasks. As a result, these functions are included in the search space as values for the
activation function parameter. For the optimization algorithms, Stochastic Gradient De-
scent (SGD) and Adam are considered. The class loss and bounding box loss also have a
major impact on the performance of the object detection model. For bbox loss, L1 loss and
Mean Squared Error (MSE) loss were used. For class loss, cross-entropy loss and Focal
loss [128] are used in recent literature [79], the focal loss is found to be effective in dealing
with class imbalance problems.

A 24-bit chromosome is used to encode the architecture and the training attributes, as
shown in Fig. 3.1 (c). The first bit encodes the class loss, the second bit encodes box
loss, the third bit encodes the activation function, the fourth bit encodes the optimization
algorithm, and bits from 5 to 24 encode the number of blocks in each of 4 stages (5 bits per

stage).
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Table 3.1: Parameters in the search space, considered in this work

Type of parameter Range
Type of block {Basic Block, Bottleneck Block}
Number of blocks in each stage [1-31]
Activation {ReLLU, Mish}
Optimizer {Adam, SGD}
Class Loss {Cross Entropy loss, Focal loss}
BBox loss {L1 loss, MSE loss}
Input
Input l256d
64d
Conv1(1x1,64)
[ Conv1(3x3,64) ] l
[ Conv2(3x3,64) ]
[ Conv2(3x3,64) ] l
é: Addition Conv2(1x1,256)
v Addition
Output <
(a) Basic Block (b) Bottleneck Block

Figure 3.2: Type of block (a) Basic Block (b) Bottleneck Block

3.1.2 Search strategy

We use the evolutionary algorithm as the search strategy for the proposed NAS based opti-
mization approach. In contrast to RL based and gradient-based NAS approaches, the evolu-
tionary search strategy can consistently meet hard limitations, such as inference speed. RL

based approaches require a carefully tuned reward function to optimize inference speed,
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whereas gradient-based methods require a well-designed loss function. GA 1is the most
commonly used evolutionary algorithm for exploring neural network architectures. In this
work, GA is used to automatically identify the optimal neural network architecture. GA
is based on Darwin’s natural evolution hypothesis, which generates a new population with
better fitness than the existing population. In binary encoded genetic algorithms, the GA
chromosome is represented by a binary bit string. A chromosome comprises of genes that
capture the individual’s genetic characteristics, thereby representing a solution. The indi-
vidual GA chromosome is a candidate in the population. The three primary operations of
genetic algorithms are selection, crossover, and mutation. The “selection” aims to identify
individuals, known as parents, with a higher fitness value and hence may result in offspring
that have a better chance of surviving in the following generation. Tournament selection
is used in this work to select parents. The diversity in the population is achieved through
crossover and mutation. In “crossover" a random crossover site is identified and the bit
strings of the parents identified in the selection are interchanged, to form a new offspring.
“Mutation" inserts random genes into offspring, to achieve population diversity and prevent
early convergence. It simply means changing O to 1 and 1 to 0. The process of population
generation begins with creating a random population of candidate solutions. These GA
operations will produce a new population from the existing population. The selection op-
eration identifies parents from the existing population. Then, to create new offspring, the
crossover and mutation operations are applied to the parents and offspring, respectively. Fi-
nally, new individuals are evaluated and included in the next generation’s population. The

flowchart of the GA process is given in Fig. 3.3.

3.2 Experimental results and analysis

In this section, we first discuss the evaluation metric and implementation details. Section
3.2.1 presents the evaluation of the proposed approach for two-wheeler vehicle brake light
detection on the proposed NITW-MBS dataset. The evaluation of the proposed approach
for four-wheeler vehicles on the CaltechGraz dataset [50, 129] is discussed in Section 3.2.2.

The effectiveness of the proposed approach against existing approaches for the brake light
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Figure 3.3: Flowchart of Genetic Algorithm

detection task is presented in Section 3.2.5.

Experimental Settings:

The experimental study in this work is performed on a computer with an Intel Xeon(R)

Silver 4110 CPU running at 2.10GHz, 64GB of RAM, and one NVIDIA GeForce RTX
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2080 Ti GPU, with CUDA 11.1 in Linux platform with Pytorch framework. During the
exploration of the search space, if SGD is selected as the optimizer then the weight decay
of 0.005, momentum of 0.9 and the initial learning rate of 0.02 are considered. Similarly,
if Adam is selected as the optimizer then the weight decay of 0.005, momentum of 0.9 and
the initial learning rate of 0.0003 are considered. The input images are scaled to 227 x 227
pixels, before giving them as input to the object detection model.

Evaluation Metrics: Accuracy based on Intersection over Union (IoU) and mAP are com-
monly used evaluation metrics to assess the performance of the object detection model. To
compute Accuracy, the IoU threshold is set to determine if a prediction is correct or not. If
the IoU between the predicted and ground truth bounding boxes exceeds the threshold, it
is considered a true positive; otherwise, it is a false positive. Accuracy is the percentage of
correct detections (true positives) out of the total predictions made by the model, indicating
its ability to localize objects accurately. mAP calculates the average precision across mul-
tiple object classes. It involves generating precision-recall curves for each class by varying
the IoU thresholds (0.5, 0.55, 0.95). The formulas for calculating IoU, Precision, Recall,
and Accuracy are provided in Eq. 3.3, 3.4, 3.5, and 3.6, respectively.

_ Areaof Overlap

IoU = (3.3)

Area of Union

Precisi True Positive (3.4)
recision = .
True Positive + False Positive

True Positive
Recall = 3.5
ced True Positive + False Negative (3-5)

True Positive + True Negative
Accuracy = — (3.6)
Total number of predictions
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3.2.1 Experimental study for Motorcycle (two-wheeler) brake light

detection

In this section, we discuss the details of the evaluation of the proposed approach for detect-
ing brake lights of two-wheelers. A new dataset (NITW-MBS) for detecting motorcycle
brake lights is presented. The evaluation of the proposed approach against various existing

approaches on this dataset is presented.

NITW-MBS dataset:

To our knowledge, no publicly available dataset for detecting motorcycle brake lights
exists. For the task of brake light detection, we proposed the NITW-MBS dataset to evalu-
ate the proposed approach. We have recorded several videos of vehicles on different roads
and at different times using a handheld camera. The dataset is built to cover different cap-
turing & environmental conditions along with different shapes and sizes of brake lights.
2125 images are selected and annotated for brake light detection in the COCO data format
[130]. Fig. 3.4 and Fig. 3.5 show some of the observations in this dataset. To train a
model, the dataset should be split into three parts: training, validation, and test data. The
training data is used to train the model, and the validation data is used to adjust the model’s
hyper-parameters to avoid over-fitting, and the test data is used to compute the model’s
performance on unseen data. The dataset has two classes: glowing light and non-glowing
light, with 1650 images for training, 210 images for validation, and 265 images for test

data. The statistics of the dataset are given in Table 3.2

Table 3.2: Number of images in each class, for the training, validation and test data of
NITW-MBS dataset

Data Glowing light Non-Glowing light Total
#training 1036 614 1650
#validation 138 72 210
ftest 157 108 265
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Figure 3.4: Images from NITW-MBS dataset, with the status of brake light as glowing

We evaluate the existing object detectors, including one-stage YOLOv3 [10], TOOD
[131] and two-stage Faster R-CNN [14], Mask R-CNN [15] and Sparse R-CNN [132]. The
results are given in Table 3.3. It can be observed that the model identified by the proposed
approach performs better than the existing benchmark object detection models. Fig. 3.6
and Fig. 3.7 show the brake light status detection results using the proposed approach on
sampled images from the test data. Fig. 3.9 shows the change in validation mAP of the

methods given in Table 3.3 against the number of training epochs.
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Figure 3.5: Images from NITW-MBS dataset, with the status of brake light as non-glowing

Table 3.3: Comparison with state-of-the-art models for two-wheeler brake light detection

on NITW-MBS dataset
mAP(%)
Method —— Params
Valid Test
YOLOV3 [10] 356 37.1 61.5M
Faster R-CNN [14] 52.1 48.2 63.6M
Mask R-CNN [15] 52.7 48.7 31.6M
TOOD [131] 539 495 224M
Sparse R-CNN [132] 53.8 514 96.6 M
Mask R-CNN-Resnet131 (Ours) 54.5 522 983 M

Note: The best values are highlighted in bold.
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Figure 3.6: Glowing brake light status detection results of the proposed approach on NITW-
MBS dataset

We compared the performance of the top-5 distinct architectures generated by the pro-
posed approach, results are given in Table 3.4. It can be observed that in most architectures,
the ReLLU activation function outperforms the Mish activation function, Cross entropy loss
outperforms Focal loss, and MSE loss outperforms L1 loss. Furthermore, when it comes
to optimizers, Adam sometimes outperforms SGD while at other times SGD outperforms
Adam. The Mask R-CNN is compared with the modified backbone with basic and bottle-
neck blocks. The generated optimal architecture has a detection result of 54.5 % mAP on
validation data and 52.2 % mAP on test data, indicating that the identified architecture is

more effective than the existing models for the Motorcycle brake light detection task, as
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Figure 3.7: Non-Glowing brake light status detection results of the proposed approach on
NITW-MBS dataset

shown in Table 3.4.

We analyzed the various values used while exploring the search space by the proposed
approach across GA generations. We first calculate the fitness of the initial random popu-
lation, considering a population size of 20. Now, the top 10 chromosomes are selected and
subjected to selection, cross-over, and mutation to generate the population for the next gen-
eration. If the maximum fitness value across three generations does not differ significantly,
the algorithm is set to terminate. In this study, the proposed approach converged after seven
generations. Fig. 3.8 shows the number of times a parameter value is used in the population
across generations. The analysis between the parameter exploration process and the top-1
model identified by the proposed NAS based approach reveals both consistencies and de-
viations. The exploration favoured Cross Entropy loss over Focal loss, and MSE loss was

preferred over both L1 and Smooth L1 losses, with the final model choosing Cross Entropy
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and MSE, confirming their suitability for the task. The ReLU activation function, which
dominated during exploration, was also selected in the final model. While Adam was ini-
tially common, SGD became the preferred optimizer as generations progressed, aligning
with its selection in the final model. Despite the exploration favouring the basic block, the
choice of the bottleneck block for final model, indicates a strategic adjustment recogniz-
ing the bottleneck design’s enhanced performance potential for the task. Overall, the final

model reflects key exploration trends while also incorporating strategic choice for block

type.

3.2.2 Experimental study for four-wheeler brake light detection

In this section, we evaluate and analyse the effectiveness of the proposed approach for four-
wheeler vehicles on the CaltechGraz [50] dataset. The comparison of the performance of
the proposed approach against the existing object detection approaches is presented.

We considered CaltechGraz dataset [50] from the Caltech database [51, 133] to evaluate
the proposed approach. We selected 490 images and annotated them in the COCO data

format. Fig. 3.10 and Fig. 3.11 show some of the observations in this dataset.

To train the model, the dataset is split into three parts: training, validation, and test
data. CaltechGraz dataset has two classes: glowing light and non-glowing light, with 350
images for training, 50 images for validation and 90 images for test data. The statistics of

the CaltechGraz dataset considered in this work are given in Table 3.5.

Table 3.5: Number of Images, Bounding boxes for each class in the training, validation,
and test data of CaltechGraz dataset considered in this study

Glowing light  Non-Glowing light

Data #Images
Bounding boxes  Bounding boxes

#training 400 324 350

#validation 54 51 50

#test 116 80 90
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Figure 3.8: The number of times a parameter value is used across generations in the popu-
lation

We evaluate the existing object detectors, including one-stage models such as YOLOv3
[10], TOOD [131], and two-stage models such as Faster R-CNN [14], Mask R-CNN [15]
and Sparse R-CNN [132] and the results are given in Table 3.6. It can be observed that

the proposed model outperforms the existing object detection models by a considerable
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Figure 3.9: Change in validation mAP against training epochs for YOLOv3, Faster R-CNN,
Mask R-CNN, TOOD, Sparse R-CNN and proposed model on NITW-MBS dataset

margin. Fig. 3.12 and Fig. 3.13 show the detection of the brake light status by the proposed

approach on some test images in the CaltechGraz dataset. Fig. 3.14 shows the plot of

variations of mAP for the object detectors in Table 3.6 against training epochs.

Table 3.6: Comparison with the state of the art models on CaltechGraz dataset

mAP(%)
Method —— Params
Valid Test
YOLOV3 [10] 189 209 615M
TOOD [131] 294 244 224M
Faster R-CNN [14] 28,6 31.1 63.6M
Mask R-CNN [15] 29.7 3311 31.6M
Sparse R-CNN [132] 325 362 96.6 M
Mask R-CNN-Resnet64 (Ours) 353 369 27.7M

Note: The best values are highlighted in bold.

The comparison of the performance of the top-5 architectures generated by the proposed

approach is given in Table 3.7. The optimal architecture has a detection result of 35.3 %
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Figure 3.10: Images from CaltechGraz dataset, with the status of the brake light as glowing

mAP on validation data and 36.9 % mAP on test data, indicating that the proposed approach

is effective for four-wheeler vehicle brake light detection on the CaltechGraz dataset.

3.2.3 Network architectures identified by the proposed approach

The proposed approach explored various deep neural network architectures and their cor-
responding parameters across four-wheeler and two-wheeler vehicles. The details of the
top-1 identified DNN architectures are shown in Tables 3.4 and 3.7. The tables show that
the Bottleneck block combined with Cross Entropy loss, MSE loss, SGD, and ReLu acti-
vation performed well for two-wheeler vehicles. Meanwhile, the Basic block with Cross
Entropy loss, MSE loss, Adam optimizer, and ReLu activation performed well for the four-
wheeler vehicles. For the two-wheeler vehicles, the identified architecture is Mask R-CNN
with a ResNet-131 backbone. The configuration includes 43 bottleneck blocks, with each
stage comprising 15, 8, 5, and 15 blocks, respectively. Since each bottleneck block consists
of 3 convolutional layers, this results in 129 layers (43 x 3 = 129). There are two extra

layers: an input layer with a 7 x 7 convolution (64 kernels with stride 2) and a fully con-
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Figure 3.11: Images from CaltechGraz dataset, with the status of the brake light as non-
glowing

-
- n =-

Figure 3.12: Glowing brake light status detection results of the proposed approach on Cal-
techGraz dataset
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Figure 3.13: Non-Glowing brake light status detection results of the proposed approach on
CaltechGraz dataset
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Figure 3.14: Change in validation mAP against training epochs for YOLOv3, Faster R-
CNN, Mask R-CNN, TOOD, Sparse R-CNN and proposed model on CaltechGraz dataset
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Algorithm 3.1 Pseudocode to calculate accuracy

Input: Model, input_images (1), ground_truth_labels (G)¥_,, IoU_threshold (7).
Output: accuracy

I: Create (P)Y,, (E)Y, > P;, E; stores predicted and expected ground truth labels
2: fori=1,2,...., N do > Here, N is number of images given as input
3: Initialize S, So =) > Temporary lists to store class labels of bboxes
4:
5 Predict the bboxes along with their class labels and scores in I; using M odel
6: S1 < predicted classes of bboxes with scores greater than T
7: if Glowing_light ¢ S; then
8: P, + Non_Glowing_light > I; has no glowing light
9: else
10: P; < Glowing_light > I; has glowing light
11:
12: So < ground truth labels of bboxes given in G;
13: if Glowing_light ¢ S, then
14: E; < Non_Glowing_light > I; has no glowing light
15: else
16: E; < Glowing_light > I; has glowing light
17:
18:

19: Calculate accuracy from (P)Y |, (E)X, using Eq. 3.6 .

nected layer, bringing the total to 131 layers. For the four-wheeler vehicles, the identified
architecture is Mask R-CNN with a ResNet-64 backbone. The configuration comprises
31 basic blocks, distributed across stages as 15, 11, 1, and 4 blocks, respectively. Since
each basic block contains two convolutional layers, the total becomes 62 layers (31 x 2
= 62). As with the two-wheeler model, the additional two layers include an input layer
with a 7 x 7 convolution (64 kernels with stride 2) and a fully connected layer, result-
ing in 64 layers. Furthermore, the analysis of the combination of parameter values for the
best-performing models of both two-wheeler and four-wheeler vehicles suggests that Cross
Entropy loss, MSE loss, and ReLLU activation effectively optimise performance across both
cases. However, the choice of optimizers and block types differs between the two mod-
els, reflecting differences in their NAS exploration process. Specifically, SGD was used
for the two-wheeler model and Adam for the four-wheeler model, while the two-wheeler
model employed the Bottleneck block, and the four-wheeler model used the Basic block.

These distinctions suggest that different architectures and optimizers were suited for differ-
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ent types of vehicles, leading to optimal performance in their respective type of vehicles.

3.2.4 Computational complexity analysis

The time complexity of a GA is determined by the number of generations ('), population
size (N), and the fitness evaluation cost. The most computationally expensive task is eval-
uating the fitness of each individual, which involves training the neural network models
and takes O(N X Eiyin), where Ei, is the time required to train a model on the dataset.
Selection, crossover, and mutation operations each take O(/N') per generation. Since these
steps are repeated for 7" generations, the overall time complexity of the proposed GA based
NAS approach is O(T" x (N X Eyn + N)), with fitness evaluation being the dominant

factor.

3.2.5 Effectiveness of brake light status detection

To assess the effectiveness of the proposed approach, we compare the proposed approach
with the existing brake/tail light detection models. In [79], YOLOV3-tiny is used as the
baseline model with an SPP module and focal loss for brake/tail light detection task. The
top-2 models identified by the proposed approach and the YOLOv3-tiny-spp-focal [79]
model are evaluated on two-wheeler vehicles (NITW-MBS dataset), and four-wheeler ve-
hicles (CaltechGraz dataset) and their performance are given in Table 3.8. From the table, it
can be observed that the proposed approach achieves 54.5% and 52.5% mAP for validation
and test data, respectively, for the NITW-MBS dataset. It can also be observed that the pro-
posed approach achieves 35.3% and 36.9% mAP on validation and test data, respectively,
on the CaltechGraz dataset. It can be concluded that the proposed approach outperforms
the existing approaches for two-wheeler and four-wheeler brake light status detection.
Vehicles typically have one or more brake lights/tail lights. For computing accuracy,
we assume that the vehicle has applied the brakes if at least one of the detected brake lights
is glowing; otherwise, we consider it non-glowing. The Pseudocode used for computing
accuracy is given in Algorithm 3.1. This pseudocode uses the model identified by the

proposed approach, denoted by Model, the N input images, denoted by (1) ,, the cor-

33



CHAPTER 3. GENETIC ALGORITHM BASED OPTIMIZATION OF DEEP NEURAL NETWORKS FOR VEHICLE BRAKE LIGHT DETECTION Section 3.3

Table 3.8: Performance comparison of the top-2 models identified by the proposed ap-
proach and the existing approach on the NITW-MBS and CaltechGraz datasets for brake
light detection task

Method Dataset —mAP(%) Params
valid test
YOLOV3-tiny-spp-focal [79] 40.5 37.8 89M
Mask R-CNN-Resnet62 (Our top-2 model) (two whe ]?er) 54.1 50.6 36.7M
Mask R-CNN-Resnet131 (Our top-1 model) 545 522 983 M
YOLOv3-tiny-spp-focal [79] It 2277 303 89M
Mask R-CNN-Resnet48 (Our top-2 model) (160 whonldd) 315 361 27.1M
Mask R-CNN-Resnet64 (Our top-1 model) 353 369 27.7M

Note: The best values are highlighted in bold.

responding ground truth labels, represented by (G)X; and IoU threshold, represented by
T as inputs. These inputs are used to predict the bounding boxes and their assigned class
labels (i.e. Glowing_light/Non_Glowing_light) for a given IoU threshold (The formula
in Eq. 3.3 is used to calculate IoU). The input image /; is considered to be Glowing_light
if at least one of the bounding boxes is assigned the glowing class label; otherwise, we
consider it to be Non_Glowing_light, and we store the corresponding class label in P;.
Similarly, from the ground truth labels, we consider image I; as Glowing_light if at least
one of its bounding box class labels is glowing, and Non_Glowing_light if none are glow-
ing, and we store the corresponding class label in ;. The efficiency is determined from P
and £ by computing accuracy using Eq. 3.6. The performance of the proposed and existing
approaches for different values of IoU thresholds is given in Table 3.9. From Table 3.9, it
can be observed that the proposed approach gives better results than the existing approach

on the NITW-MBS dataset and on the CaltechGraz dataset.

3.3 Summary

In this chapter, a genetic algorithm based Neural Architecture Search approach for vehicle
brake light detection is proposed based on the Mask R-CNN object detection model. A
genetic algorithm is used as a search strategy to explore the search space, thereby identify-

ing the optimum backbone architecture and training attributes for the brake light detection
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task. The object detection model identified by the proposed approach achieves a mean
accuracy of 97.14% on the proposed two-wheeler (NITW-MBS) dataset and 89.44% on
the four-wheeler (CaltechGraz) dataset, respectively. The resulting model exhibits signif-
icant improvement over the existing approaches for both two-wheeler and four-wheeler
vehicle brake light status detection. This indicates that the proposed approach can explore
the search space to identify the optimum architecture of the object detection model and its

training attributes for the brake light detection task.
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Chapter 4

Differential Evolution based
Optimization of Deep Neural Networks

for Vehicle Brake Light Detection

This chapter proposes a NAS based optimization of deep neural networks using a differen-
tial evolution algorithm for the task of vehicle brake light detection.

Chapter Organization:

Preliminaries for the proposed NAS based approach is covered in Section 4.1. The
proposed approach is described in Section 4.2. Section 4.3 presents the experimental results

and analysis. Finally, Section 4.4 presents the summary of the work.

4.1 Preliminaries

This section covers the background of the Differential Evolution algorithm, which is used

as the NAS search strategy in this objective.

4.1.1 Differential Evolution (DE)

DE is an evolutionary optimization method first proposed by Storn and Price [134]. DE

has several advantages over other evolutionary algorithms, such as obtaining global op-
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tima with few control parameters and fast convergence [135]. DE can also be applied to
difficult optimization problems in various spaces, including multi-modal, noisy, and multi-
dimensional spaces [136]. In DE, domain knowledge or constraints can be incorporated
into the search methodology for discrete or continuous optimization of neural network
models. In the last few years, it has been successfully applied in a broad range of industrial
and academic research areas, including machine learning [137], signal processing [138],
and pattern recognition [139]. Despite its ease of implementation and extensive use in en-
gineering, it is still uncommon to utilize it to solve neural network optimization problems

like image classification, object detection, and image segmentation.

The four phases of DE’s working principle are initialization, mutation, crossover, and
selection. First, an initial random population of target vectors of length M is generated.

The target vectors are represented as shown in Eq. 4.1.

Xlt = {X’i,laXi,QaXi,?); "'7Xi,M} (41)

Here, X! denotes the target vector at ™

generation, where ©+ = 1,2.., N; N denotes the
population size, and ¢ denotes the generation number.

Then, for each target vector X;, a mutation operation is carried out to produce a donor
vector using Eq.4.2

Hlt — Xrl + F(XTQ - XT3) (42)

Here, H! denotes the donor vector at ¢ generation, X,1, X2, X,3 € X! are randomly
chosen target vectors, where 1 # r2 # r3 # ¢ and F' is the scaling factor.
To add diversity to the population, a crossover operation is applied on the donor vector

and target vector to get trial vector U/, using Eq. 4.3

H! if rand < C, or j = rand(i)
Ut = 4.3)

X!, otherwise

Here, C, is a crossover rate and rand(7) is randomly selected index, where j = 1,2, ....M.
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Next, greedy selection strategy is performed on the trial vector and on the target vector us-

ing Eq. 6.6. Here vector with a higher fitness value will be selected for the next generation.

O LA RICAER 89 s

X!, otherwise

Where f(U}) and f(X}) are the fitness values of the trial vector and target vector, respec-

tively.

4.2 Proposed approach

This section first discusses the proposed search space designed for the target object detec-
tion network, including the backbone architecture and training parameters for brake light
status detection in Section 4.2.1. Then, a search strategy based on a modified version of
the DE algorithm, named E-DE, is discussed in Section 4.2.2. Fig.4.1 (a) illustrates the
overall E-DE based NAS framework used for designing the brake light detection system
in the proposed approach. The framework begins by generating an initial population that
is randomly initialized. Each DE vector in the population undergoes an encoding process,
as depicted in Fig.4.1 (c). This encoded vector is then decoded, resulting in a two-stage
object detection network represented in Fig. 4.1 (b). The model’s performance is evaluated
on vehicle brake light detection data, and its fitness value is computed. The search for the

optimum DNN model continues until the termination of the DE cycle.
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Figure 4.1: (a) The proposed E-DE based NAS for optimizing an object detection network
(b) Two-stage object detection network (c) Encoding of E-DE Vector.

4.2.1 Search space design for object detection

Similar to the work done in Chapter 3, to detect the brake lights that are small in size, we
consider a modified two-stage Mask R-CNN object detector in this work. We considered
different types of blocks and varying sizes of depth to search for a better backbone. In

addition, different types of training parameters like activation functions, optimization tech-
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niques, and loss functions are explored in the search to find the optimum architecture for
brake light detection task.

The backbone architectures of object detectors are crucial for the effective recognition
of objects. The effectiveness of object detectors heavily depends on the features extracted
by the backbone. Therefore, we included parameters related to the backbone in the search
space. Backbone search space consists of a sequence of blocks. Each part of the backbone
could be divided into several stages according to the resolution of the output features, where
the stage refers to a number of blocks fed by the features with the same resolution. In this
work, the proposed search space is based on four kinds of blocks: Resnet block [46],
ReneXt block [47], ReneSt block[48] and Swin transformer block [49], as shown in Fig.
4.2. The number of blocks in each stage of the backbone varies from 1 to 16. The number
of stages considered is 4. We allow the same number of blocks in each stage except for the
last stage, where three blocks are used in the last stage.

Apart from backbone search, we have also included training parameters like activation
function, optimizer, box loss, and class loss in the proposed search space. For the activation
function, we have used ReLU, GELU, CELU, Mish, for the optimizer, we have used SGD,
Adam, AdamW; for the box loss, we have used MSE loss, L1 loss, Smooth L1 loss, and
finally for the class loss, we have used Cross Entropy loss, Focal loss. The details of the
parameters and their values explored in the search space are described in Table 4.1.

A complete architecture is encoded as a vector of length six. The first placeholder
encodes a block type, the second placeholder encodes activation function, the third place-
holder encodes box loss, the fourth placeholder encodes optimizer, the fifth placeholder
encodes class loss, and the last placeholder encodes the number blocks as shown in Fig.

4.1 (c).
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Table 4.1: Parameters in the search space, considered in this work

Type of parameter Range
Type of block {Swin,ResneSt,ResneXt,Resnet}
Activation {ReLLU, Mish, GELU, CELU}
Optimizer {Adam, AdamW, SGD}
BBox loss {L1 loss, MSE loss, Smooth L1 loss}
Class Loss {Cross Entropy loss, Focal loss}
Number of blocks in each stage [1-16]
Input
256d
Input ———
256d ‘/\
Conv1(1x1,64) 256, Convix1, 4 256, Convix1, 4 256, Convix1, 4
l l Total 32

aths
Conv2(3x3,64) { 4, Conv3x3, 4 } [ 4, Conv3x3, 4 } p ...... 4, Conv3x3, 4

Conv2(1x1,256) 4, Convix1, 256 4, Conv1ix1, 256 4, Convix1, 256
éAddition
- |
Output
Output
(a) Resnet Block (b) ResneXt Block
Output
Input-
(hwe) 7
Cardinal 1 /\ Cardinal k P—
Split 1 Splitr Split 1 Splitr
Convixi, Convix1, Convix1, Convix1, MLP
c'lkir c'lkir c'lkir c'lkir T
{ Conv3x3, } { Conv3x3, ] [ Conv3x3, ] [ Conv3x3, ] Layer Norm Layer Norm
c'lk c'lk c'lk c'lk
% 5
Split Attention Split Attention
\ / W-MSA SW-MSA
(h,w,c'k) T T
(h,w,c’) Layer Norm Layer Norm
IConv1x1,c|
(h,w,c) L
Y \
Input
Output
(c) ResneSt Block (d) Two Successive Swin Transformer Blocks

Figure 4.2: Type of blocks considered in this work (a) Resnet Block (b) ResneXt Block (c)
ResneSt Block (d) Two Successive Swin Transformer Blocks
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4.2.2 E-DE based NAS optimization

This section introduces the adapted mutation and selection strategies used within the pro-

posed E-DE based NAS framework.

Evaluation Correction based Selection for Mutation (ECSM): Traditional mutation
strategies use random selection or the best vector as parents to generate donor vectors.
However, estimating performance only based on validation mAP may lead to a better net-
work, but it is not efficient in terms of computation. Therefore, we have adapted the eval-
uation correction based selection strategy from [17] to choose individuals for mutation
operation. In this method, the network architecture is evaluated based on the validation
mAP. If there is a noticeable difference in the validation mAP, the network with the higher
mAP is chosen. However, if the validation mAP scores are similar, the network with fewer
parameters is preferred. This method ensures that the network with superior validation
mAP, as well as the network with less number of parameters, is selected. The logic for this

method is given in Algorithm 4.2.

Algorithm 4.2 Evaluation Correction based Selection for Mutation

Input: Population (X/), population size N, number of parameters z and fitness . of each
individual in X7, threshold « in individual fitness, scale factor F.

Output: Donor vector (HY)
1: fori=1,2,....., N do

2 E < Select three individuals at random from the population

3 while |E| > 1 do

4: X1, X5 < Select 2 individuals from £

5: E(-E—{Xl,Xg}

6: 1, po <— Fitness of X7, X,

7 21, 29 <— Number of parameters of X7, X5

8 if |1 — po| < o then

9: Put the individual with fewer number of parameters in { X, X, } back into
E

10: else

11: Put the individual with greater accuracy in { X7, X5} back into £
12: Xrest < Return the best individual in £

13: X,1, X2 < Return the remaining individual from (F — Xpey)

14: Hzt < Xbest + F x (Xrl — X’V’Q)
15: Output the donor Vector H!
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The ECSM initially chooses three individuals randomly from the population. The se-
lection process begins by comparing two vectors, and the better one is determined. This
selected vector is then compared with the last individual from the set to identify the optimal
architecture. In cases where the mAP scores of the two vectors show no significant differ-
ence (i.e., the difference is below the threshold «), ECSM considers the network with fewer
parameters. After the selection process, the best vector is chosen as the base vector, and
the other two vectors are used to create difference vectors. This difference vector is added
to the base vector to generate a donor vector, which further contributes to the population’s

evolution and the search for optimal network architecture.

Species Protection based Selection (SPS):

Traditional DE algorithms typically employ a greedy selection strategy, which favors
exploitation but tends to reduce the diversity of the population over time. However, in the
evolutionary process, maintaining diversity in the population of network architectures is
crucial for improving the algorithm’s overall performance. To address this issue, this work
explores the use of Species Protection based environmental Selection operation (SPS) [17].
The process for this SPS strategy is described in Algorithm 4.3.

SPS starts by dividing the population P into different species, denoted as F,j,s. From
Pass, species @ is selected with uniform probability. An individual B, is randomly chosen
from ® to promote diversity. However, a challenge arises regarding the lack of competition
among different species. To overcome this challenge, SPS introduces a random number r
that controls whether to employ the SPS strategy to balance competitive pressures within
and outside species. Additionally, SPS incorporates an elite retention strategy to protect the
optimal individuals in the population from being eliminated during evolution. The strategy
involves retaining the top 2/N x + individuals in the population before species division,
where N represents the population size and 7 is a retention parameter. When dividing
the species into Py, SPS prioritizes the network’s building block type. The block type
significantly influences the performance when compared to the other parameters within the

search space.
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Algorithm 4.3 Species Protection based Selection

Input: Population P = X' U U’, population size N, elite rate 7 in the population.
Output: The new population X1,
1: Xt < Select 2N x + individuals with the highest fitness from population P using
the elite retention strategy.
2: P is divided into 4 distinct species, denoted as P, based on the first field of DE
vector representing the type of block, which ranges from O to 3.
3: while | X/™'| < N do
4: r <— Generate a random number.

5: if » < 0.5 then

6: Randomly select a species @ from P, ;.

7: Select the best individual B,y from ® by using Algorithm 4.2 lines 3 to 15.
8: else

9: Select the best individual B,y from P by using Algorithm 4.2 lines 3 to 15.

10 X XU Pyt

11: Return the new population X+,

The overall framework of proposed E-DE based NAS optimization:

The proposed E-DE based NAS framework is given in Algorithm 4.4, which incorpo-
rates modified mutation (ECSM) and selection (SPS) operations. The proposed approach
begins by randomly generating an initial population X°. Fitness values are then calculated
for the N individuals in X°. The framework proceeds with T rounds of iterative evolution.

During the ¢ generation evolution process, three vectors are randomly selected, and
the ECSM is applied to generate donor vectors for each target vector. Subsequently, a trial
vector is generated by performing a binomial crossover between the target vector and the
donor vector. This process continues until a set of trial vectors (U?) is generated with the
same size as that of the population. Finally, the proposed approach utilizes an SPS op-
eration to select the next generation population X**! from the union of the current target
vectors X' and the trial vectors U, This selection process ensures diversity and balances

competitiveness. The framework then proceeds to the next round of the evolutionary pro-
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cess. After completing the T-round evolutionary process, the top 5 optimal network archi-

tectures are selected.

Algorithm 4.4 The overall framework of proposed E-DE based NAS optimization

Input: train_images [;.;», number of evolutionary iterations 7', population size N.
Output: The top-5 optimal network architectures.

1: XY < Generate a randomly initialized population.

2: Decode the vectors of X into object detection networks

3: Calculate the fitness and parameters of each decoded network using ;-

4: t + 1.

5: whilet < T do

6: Ut + {}.

7: while |U?| < N do

8: Apply mutation on each vector to generate donor vector H! using Algorithm

4.2.

9: Generate trial vector U} with binomial crossover operation using Eq. 4.3.
10: Decode the trial vector U} into object detection networks.
11: Calculate the fitness and parameters of the decoded network using 4.
12: Ut + U'U{U}}.
13: X1 < Generate next-generation populations from X' U U* using Algorithm 4.3.

14: t+—t+1.

15: Return the top-5 optimal network architectures based on their fitness.

4.3 Experimental results and analysis

In this section, we present the experimental evaluation of the proposed approach on the
four-wheeler and two-wheeler brake light detection datasets. We first discuss the experi-
mental settings. Section 4.3.1 presents the evaluation of the proposed approach on four-
wheeler vehicles on the CaltechGraz dataset [50, 129] and UC Merced Vehicle Rear Signal
dataset [25]. Section 4.3.2 presents the evaluation of the proposed approach on the pro-

posed NITW-MBS dataset. Finally, we analyze the effectiveness of the proposed approach
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for brake light detection task on these datasets.
Experimental Settings:

The experimental study in this work is performed on a computer with an Intel Xeon(R)
Silver 4110 CPU running at 2.10GHz, 64GB of RAM, and one NVIDIA GeForce RTX
2080 Ti GPU, with CUDA 11.1 in Linux platform with PyTorch framework. During the
search space exploration, if Adam or AdamW are selected as the optimizer, then the weight
decay of 0.0001 and the initial learning rate of 0.0001 are considered. Similarly, if SGD
is selected as the optimizer, then the momentum of 0.9 and the initial learning rate of 0.02
are considered. In the evolutionary process, selecting the DE parameters is critical for the
algorithm’s success. A trial-and-error approach generally determines the optimal values of
these parameters and can vary depending on the specific problem being addressed. In this
study, a scaling factor of /' = 0.5 and a crossover rate of C, = 0.5 were considered similar
to existing literature [140]. The other parameters of the proposed E-DE, elite rate v of 30
% and a threshold « of 2, were considered. The vector length M was set to six since the
search space consisted of six parameters, and the population size /N was set to 20. The
experiments were conducted for a total of 7'(= 10) generations. Initially, all models were
trained for 20 epochs in the evolutionary process. Subsequently, the top-5 distinct models

generated by the proposed approach were trained for an additional 80 epochs.

4.3.1 Experimental study for four-wheeler brake light detection

This section evaluates the effectiveness of the proposed approach for four-wheeler vehicles.
The comparison of the performance of the proposed approach against the existing manually
designed object detection approaches, as well as NAS based object detection approaches,
is presented in this section. The performance of the top-5 distinct models identified by the
proposed approach is also discussed in this section.

In addition to the CaltechGraz dataset [50], which is used in the Chapter 3, we consid-
ered the UC Merced Vehicle Rear Signal dataset [25] to evaluate the proposed approach
in this contribution. For the CaltechGraz dataset, we selected 490 images and annotated

them in the COCO data format. Fig. 3.10 and Fig. 3.11 show some of the observations in
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this dataset. The statistics of the CaltechGraz dataset considered in this work are given in
Table 3.5. For the UC Merced Vehicle Rear Signal dataset, we selected 6375 frames and
annotated them in the COCO data format. Fig. 4.3 shows some of the sample images in
this dataset. In this dataset, we have selected every tenth frame from a given sequence of
frames from each observation. The statistics of the UC Merced Vehicle Rear Signal dataset

considered in this work are given in Table 4.2
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(a) Glowing light

o

T _—

(b) Non-glowing light

Figure 4.3: Images from UC Merced Vehicle Rear Signal dataset with the status of the
brake light
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Table 4.2: Number of Images, Bounding boxes for each class in the training, validation,
and test data of UC Merced Vehicle Rear Signal dataset considered in this study

Glowing light  Non-Glowing light

Data #Images
Bounding boxes =~ Bounding boxes

#training 6644 3823 4145

#validation 1171 1360 960

#test 1877 1368 1270

We conduct a comprehensive evaluation of various manually designed object detectors
and propose an automated approach for brake light detection task. The evaluated models
include both one-stage models, such as YOLOv3 [10], YOLOF [141], and TOOD [131],
as well as two-stage models, such as Faster R-CNN [14], Mask R-CNN [15], Sparse R-
CNN [132], and a NAS based object detection model MAE-DET [18]. The evaluation
results are summarized in Table 4.3. From the table, it can be observed that the proposed
model outperforms the existing manually designed and NAS based object detection models
by a considerable margin. The optimal model identified by the proposed approach on the
CaltechGraz dataset is trained on the UC Merced Vehicle Rear Signal dataset for cross-
dataset evaluation. Fig. 4.4 and Fig. 4.5 show the detection of the brake light status by the
proposed approach on some test images in the CaltechGraz dataset and UC Merced Vehicle
Rear Signal dataset. Fig. 4.7 shows the plot of variations of mAP for the object detectors

in Table 4.3 against training epochs.
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Table 4.3: Comparison of mAP of the existing object detection models with proposed
approach on CaltechGraz dataset and UC Merced Vehicle Rear Signal dataset

Dataset
Method CaltechGraz UC Merced Params
Valid (%) Test (%) Valid (%) Test (%)

YOLOV3 [10] 18.9 20.9 31.8 31.6 61.5M
TOOD [131] 294 244 40.5 36.3 224 M
YOLOF [141] 36 36.4 36.5 34.4 328 M
Faster R-CNN [14] 28.6 31.1 40.2 36.4 63.6 M
Mask R-CNN [15] 29.7 33.1 39.1 35.9 31.6 M
Sparse R-CNN [132] 32.5 36.2 37.9 34.3 96.6 M
MAE-DET [18] 36.4 38.6 41.6 37.2 529M
Ours 40.4 393 42.2 40.4 543 M

Note: The best values are highlighted in bold.

The performance of the top-5 different architectures generated by the proposed ap-

proach on the CaltechGraz dataset and the same architectures trained on the UC Merced

Vehicle Rear Signal dataset is given in Table 4.4. The optimal architecture has a detection

of 40.4 % , 42.2 % mAP on validation data and 39.3 % mAP, 40.4 % mAP on test data

respectively, for the CaltechGraz dataset and UC Merced Vehicle Rear Signal dataset re-

spectively, indicating that the proposed approach is effective for four-wheeler vehicle brake

light detection on both datasets.
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result result result

(a) Glowing light

(b) Non-glowing light

Figure 4.4: Brake light status detection results of the proposed approach on CaltechGraz
dataset

72



CHAPTER 4. DIFFERENTIAL EVOLUTION BASED OPTIMIZATION OF DEEP NEURAL NETWORKS FOR VEHICLE BRAKE LIGHT DETECTION Section 4.3

- R o—

(a) Glowing light

[

(b) Non-glowing light

Figure 4.5: Brake light status detection results of the proposed approach on UC Merced
Vehicle Rear Signal dataset

We have analyzed the various values explored by the proposed approach for the param-
eters of the search space, given in Table 4.1, across E-DE generations in the evolutionary

process on the CaltechGraz dataset. Fig. 4.6 shows the number of times a parameter value
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is used in the population across generations. From the figure, it can be observed that in
the exploration process for the four-wheeler brake light detection task, the Cross Entropy
loss dominated Focal loss; MSE loss dominated L1 loss and Smooth L1 loss; the GELU
and CELU activation functions dominated the other activation functions; the AdamW and
Adam optimizer dominated SGD, and finally, Resnet and Swin blocks dominated the other
types of blocks. The comparison of the explored parameters and the final identified model
parameters for the four-wheeler brake light status detection task reveals both agreement
and divergence in parameter selection. The Swin block, which was frequently used along-
side Resnet during exploration, was included in the final model. Although Cross Entropy
and MSE loss were the dominant loss functions during the search process, the final model
chose Focal loss and L1 loss, indicating that these less frequently explored options per-
formed better for this task. The GELU activation function, which was frequently used
during exploration, was also used in the final model, highlighting its importance to accu-
racy. Similarly, using the Adam optimizer in the final model corresponds to its frequent use

during exploration, further validating its effectiveness in achieving better convergence.

75



CHAPTER 4. DIFFERENTIAL EVOLUTION BASED OPTIMIZATION OF DEEP NEURAL NETWORKS FOR VEHICLE BRAKE LIGHT DETECTION

Section 4.3

20.0 20.0
W Focal loss
. Cross Entropy loss
175 175
15.0 15.0
125

Frequency
o
S
o

Frequency
i
1
°

W MSE loss
L1 loss
[ Smooth L1 loss

7.5 7.5
5.0 5.0
25 25
0.0 0.0
Genl Gen2 Gen3 Gen4 Gen5 Gen6 Gen7 Gen8 Gen9 Genl0 Genl Gen2 Gen3 Gend Gen5 Gen6 Gen7 Gen8 Gen9 Genl0
Generations Generations
(a) Class Loss (b) BBox Loss
20.0
m— RelU
- GELU - AdamW
12 = Mish = Adam
17.5 . SGD
. CELU
10 15.0
: 8 a.12.5
H €
g o
g_ 3 10.0
-
26 [
w w
7.5
4
5.0
2 25
0.0
Genl Gen2 Gen3 Gen4 Gen5 Gen6 Gen7 Gen8 Gen9 GenlO Genl Gen2 Gen3 Gen4 Gen5 Gen6 Gen7 Gen8 Gen9 Genl0
Generations Generations
(c) Activation function (d) Optimizer
m— Swin
N ResneSt
10 [ ResneXt
mmm Resnet

Frequency
o

Genl

Gen2

Gen3 Gen4 Gen5 Gen6
Generations
(e) Block Type

Gen7

Gen8

Gen9 GenlO

Figure 4.6: The number of times a parameter value is used across generations in the popu-

lation on CaltechGraz dataset
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Figure 4.7: Change in validation mAP against training epochs for YOLOv3, TOOD,
YOLOF, Faster R-CNN, Mask R-CNN, Sparse R-CNN, MAE-DET, and the proposed
model for four-wheeler datasets

4.3.2 Experimental study for Motorcycle brake light detection

In this section, we discuss the details of the evaluation of the proposed approach to detect
and classify the brake light status of two-wheeler vehicles. A new dataset (NITW-MBS)
proposed in Chapter 3, is used for detecting two-wheeler brake lights is discussed. The

performance comparison of the proposed approach against various existing approaches on
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this dataset is presented. The performance of top-5 models generated by the proposed
approach is also discussed.

We considered the proposed two-wheeler dataset, which is discussed in Section 3.2.1,
to evaluate the proposed approach. 2125 images are selected and annotated in the COCO
data format. Fig. 3.4 and Fig. 3.5 show some of the sample images in this dataset. To
train a model, the dataset should be split into three parts: training, validation, and test
data. The dataset has two classes: glowing light and non-glowing light, with 1650 images
for training, 210 images for validation, and 265 images for test data. The statistics of the
dataset are given in Table 3.2

We evaluated the existing manually designed object detectors, including one-stage YOLOv3
[10], TOOD [131], YOLOF [141] and two-stage Faster R-CNN [14], Mask R-CNN [15]
and Sparse R-CNN [132] and NAS based object detection model MAE-DET [18] on this
dataset. The results are given in Table 4.5. From the table, it can be observed that the
model identified by the proposed approach performs better than the existing benchmark
models. Fig. 4.8 shows some of the brake light status detection results, predicted by the
proposed approach on test data images. Fig. 4.10 shows the change in validation mAP of

the methods given in Table 4.5 against the number of training epochs.
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Table 4.5: Comparison of mAP of existing object detection models against the proposed

approach on NITW-MBS dataset

NITW-MBS Dataset

Method Params
Valid (%) Test (%)

YOLOv3 [10] 35.6 37.1 61.5M
TOOD [131] 53.9 49.5 224M
YOLOF [141] 56.1 50.8 328 M
Faster R-CNN [14] 52.1 48.2 63.6 M
Mask R-CNN [15] 52.7 48.7 31.6 M
Sparse R-CNN [132] 53.8 51.4 96.6 M
MAE-DET [18] 56.6 50.1 529 M
Ours 57.9 53.3 46 M

Note: The best values are highlighted in bold.

The comparison of the performance of the top-5 different architectures generated by

the proposed approach is given in Table 4.6. The optimal architecture has a detection

performance of 57.9 % mAP on validation data and 53.3 % mAP on test data, indicating

that the proposed approach is effective for two-wheeler vehicle brake light detection on the

NITW-MBS dataset.
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(a) Glowing light

(b) Non-glowing light

Figure 4.8: Brake light status detection results of the proposed approach on NITW-MBS
dataset
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We have analyzed the various values explored by the proposed approach for the pa-
rameters of the search space given in Table 4.1 across DE generations. Fig. 4.9 shows
the number of times a parameter value is used in the population across generations. In the
exploration process to find the optimal DNN model for the two-wheeler brake light de-
tection task, it can be observed from the figure that the Cross Entropy loss dominated the
Focal loss, the L1 loss dominated the MSE loss & the Smooth L1 loss; the Mish activa-
tion function dominated the other activation functions; the AdamW optimizer dominated
the Adam and SGD; and finally, ResneSt dominated the other type of blocks. The com-
parison of the parameter explored for the two-wheeler brake light detection task and the
final identified model by the proposed approach reveals both consistency and divergence.
During the exploration process, Cross Entropy loss was preferred over Focal loss, and the
final model’s choice of Cross Entropy loss is consistent with this trend, indicating its suit-
ability for the task. While L1 loss was preferred over both MSE loss and Smooth L1 loss
during exploration, the final model includes Smooth L1 loss as well as Cross Entropy loss,
indicating that this combination may improve performance by balancing regression accu-
racy with classification tasks. In terms of optimization, the AdamW optimizer dominated
the exploration phase, and its inclusion in the final model demonstrates its effectiveness in
improving convergence. Finally, the exploration favoured the ResneSt block, which was
eventually chosen for the final model, demonstrating a clear alignment between the explo-

ration findings and the architecture chosen by the proposed approach.
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Figure 4.9: The number of times a parameter value is used across generations in the popu-
lation on the NITW-MBS dataset
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Figure 4.10: Change in validation mAP against training epochs for YOLOv3, TOOD,
YOLOF, Faster R-CNN, Mask R-CNN, Sparse R-CNN, MAE-DET and the proposed

model on NITW-MBS dataset

We have also compared the proposed approach E-DE with traditional DE using mean

and standard deviation metrics whose results are given in Table 4.7. The results indicate

that the proposed method outperforms the traditional DE in terms of performance. The

proposed approach has achieved better performance with fewer parameters when compared

to DE, specifically for the two-wheeler dataset. The best fitness model of DE requires 59

million parameters, while E-DE achieved better performance with 46 million parameters

only.
Table 4.7: Comparison of mean, standard deviation and best fitness value of mAP for E-DE
and DE algorithms
Dataset Algorithm Mean Standard deviation Best fitness value
DE 36.1 1.26 39.5
CaltechGraz
E-DE 36.83 0.28 40.4
DE 56.43 0.42 57.5
NITW-MBS
E-DE 56.71 0.52 57.9
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4.3.3 Network architectures searched by proposed approach

The proposed approach explored network architectures and their corresponding parameters
on two four-wheeler datasets and one two-wheeler dataset. The details of the identified
architectures is given in Tables 4.4 and 4.6. From the tables, we can observe that the Swin
block with Focal loss, L1 loss, Adam, and GELU performed well on the four-wheeler
dataset, while the ResneSt block with Cross Entropy loss, Smooth L1 loss, AdamW, and
ReL.U excelled on the two-wheeler dataset. The Swin block demonstrated its capability to
effectively extract complex patterns, making it suitable for the four-wheeler dataset. On the
other hand, the ResneSt block showed strong performance in capturing relatively simple
patterns, making it well-suited for the two-wheeler dataset. It is worth noting that the
proposed algorithm was able to optimize the number of parameters compared to a simpler
DE approach for the two-wheeler dataset. Further, we have analyzed the top-5 distinct
architectures because focusing only on the top architecture may not fully capture the impact
of different parameters. We have selected the top-5 distinct architectures based on the
type of block used to analyze the impact of SPS, which is based on the block type used.
Additionally, certain block types may yield high validation accuracy but not necessarily
high test accuracy. By considering the top-5 models, we can observe how the different
architectures perform in terms of both validation and test accuracy. This allows us to assess
the effectiveness of different block types across different datasets and identify architectures

that demonstrate superior performance on the test set compared to the top-1 model.

4.3.4 Computational complexity analysis

The time complexity of the ECSM algorithm is O(N)where N is the population size. The
SPS algorithm has a time complexity of O(NlogN) due to sorting in the elite retention
step, combined with O(N) for selecting individuals from species. The overall E-DE based
NAS framework has a total time complexity of O(T X (N X Eyin + NlogN), where T
is the number of generations, and FEj,.;, 1S the time complexity of evaluating a network

architecture, which is the most computationally expensive part.
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4.3.5 Effectiveness of brake light status detection

Vehicles typically have one or more brake lights. If the front vehicle applies the brakes and
at least one of the brake lights is glowing, we consider it as a braking alert (Glowing_light).
Otherwise, it is not considered as a braking alert (Non_Glowing_light). The pseudocode
used for computing accuracy is given in Algorithm 3.1. This pseudocode uses the model
identified by the proposed approach that is denoted by Model. The performance of the
discovered optimal model for different values of IoU thresholds is given in Table 4.8.

Table 4.8: Accuracy of brake light status detection of the discovered optimal model for

IoU threshold range of 0.3 to 0.9, for a four-wheeler and two-wheeler vehicle brake light
detection datasets

Accuracy(%) for various IoU thresholds

Dataset Mean Accuracy(%)
0.3 0.4 0.5 0.6 0.7 0.8 0.9

NITW-MBS 95.07 96.59 97.77 98.48 99.24 99.62 98.48 97.97

CaltechGraz 86.09 88.63 88.63 89.77 92.04 94.31 88.63 89.73

UC Merced 87.48 88.18 89.16 89.16 89.68 89.68 88.93 88.90

4.3.6 Cross-dataset evaluation

To evaluate the effectiveness of the proposed method for the brake light status detection
task, we have performed cross-dataset evaluation, i.e. the model is evaluated on the test
data from a different dataset. Based on our knowledge, the sole publicly available dataset
designed for field testing of brake light detection systems in the context of predictive brak-
ing is given by J. Pirhonen et al. in [142, 143]. To conduct cross-dataset evaluation, we
used the proposed top-1 model, which is identified in Section 4.3.1 on the UC Merced Ve-
hicle Rear Signal dataset. This top-1 model is used to compute the performance of the test
data given in [143]. We followed the same evaluation scheme given in [143]. The perfor-
mance comparison of the proposed method against existing approaches is given in Table
4.9. From the table, it can be observed that the proposed method achieved an accuracy of
93.92 %, which is a 20.52 % improvement over the existing approach. Fig. 4.11 shows the

input and output of the proposed method for some observations in this dataset. The figure
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shows that the proposed method effectively identifies brake light status across various types

of vehicles, even when the location of brake lights is different across vehicles.

Table 4.9: The performance of brake light status detection methods on raw test images of
dataset given in [143]

Model Accuracy(%)
J. Pirhonen et al. [143] 73.40
Ours 93.92

Note: The best values are highlighted in bold.

Figure 4.11: Brake light status detection results of the proposed approach on test data given
in [143]

4.3.7 Experiments on real-world videos

The proposed model is also evaluated on real-world traffic videos. We selected three videos
in Driving Event Camera Dataset [144], which cover various real-world driving scenarios:
street view (streetl.mp4), back view (back6.mp4), and early morning view (sunl3.mp4). In
these videos, we sample every 10*" frame as the difference in visual information between
adjacent frames is less. The number of occurrences of different vehicles that appear in the
selected frames of these videos is given in Table 4.10. The evaluation process comprises

two phases: the pre-trained YOLOX [145] model is employed to detect the region of vehi-
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cles during the first phase. In the second phase, the detected vehicle is given as input to the
proposed model to determine the status of the brake lights. For two-wheeler vehicles, we
use the top-1 model identified in Section 4.3.2 on the NITW-MBS dataset, and for the four-
wheeler vehicles, we consider the top-1 model identified in Section 4.3.1 on UC Merced
Vehicle Rear Signal dataset for the prediction of brake light status. To estimate the braking
status of a vehicle, if at least one of the detected brake lights has Glowing_light status, we
consider it as a braking alert (shown as Ain Fig. 4.12,4.13, 4.14); otherwise, there is no
braking alert. The experimental results, presented in Table 4.11, convey the effectiveness
of the proposed method for the detection of the braking status of vehicles in real-world

videos.

Table 4.10: The frequency of appearance of vehicles in videos

Number of frames a vehicle appeared
Video Total number frames in video
carl car2 car3 card truck bus motorcycle

streetl.mp4 61 0 0 0 0 33 - 80
back6.mp4 46 6 28 18 10 - 10 46
sun13.mp4 42 95 - - 24 - - 145

Table 4.11: The detection accuracy of vehicles braking status on real-world videos

Accuracy(%)
Video Mean accuracy(%)
carl car2 car3 card truck bus motorcycle
streetl.mp4  90.16 - - - - 81.82 - 87.23
back6.mp4 100 100 100 77.8 100 - 80 95.00
sunl3.mp4 83.33 93.68 - - 100 - - 91.93

The predicted braking status and the visualization of the braking alert for four consec-
utive video frames in streetl.mp4 video are shown in Fig. 4.12. In each subfigure of Fig
4.12, the bottom half shows the individual vehicles and the braking status predicted by the
proposed model; the top half shows the visualization of the braking alert for corresponding
vehicles in the video frame. From the figure, it can be observed that the brake lights of the

bus are glowing in the frames associated with Fig. 4.12 (b) and Fig. 4.12 (d), while the
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brake lights of the car are glowing in all the frames. The proposed method is able to iden-
tify the glow associated with braking and classify the individual brake lights accurately.
The use of two-phased processing in the proposed workflow prevents misinterpretation of

traffic lights as brake lights.

(©) (d)

Figure 4.12: Visualization of the predicted brake light status in four consecutive frames of
street].mp4 video, along with braking alert for each vehicle

The predicted braking status and the visualization of the braking alert for four consec-
utive video frames in back6.mp4 video are shown in Fig. 4.13. Similar to Fig. 4.12, Fig
4.13 shows the status of the brake lights of individual vehicles and the braking status of the
vehicles in each subfigure. The proposed method successfully detects cars and motorcycles

in these frames, even in scenarios with densely crowded vehicles.
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(©) (d)

Figure 4.13: Visualization of the predicted brake light status of vehicles in four consecutive
frames of back6.mp4 video, along with braking alert for each vehicle

Fig. 4.14 shows the visualization of the predicted braking status of vehicles in six con-
secutive video frames from the sun13.mp4 video. The car’s brake lights remained glowing
throughout all six frames. However, the proposed method is unable to predict the correct
status of brake lights for the frames associated with Fig. 4.14 (d) and Fig. 4.14 (e). This
discrepancy may be due to the blur in the visual information of the detected vehicle due
to various factors like the distance of the vehicle from the camera, blur due to the camera

motion, blur due to the speed of the vehicle, etc.

90



CHAPTER 4. DIFFERENTIAL EVOLUTION BASED OPTIMIZATION OF DEEP NEURAL NETWORKS FOR VEHICLE BRAKE LIGHT DETECTION Section 4.4

(a) (b)

©) ®

Figure 4.14: Visualization of the predicted brake light status in six consecutive frames of
sunl3.mp4 video, along with braking alert for each vehicle

4.4 Summary

In this chapter, we proposed an automated approach for designing a deep neural network
model to detect brake lights in both four-wheeler and two-wheeler vehicles. The proposed
approach utilizes strong search space to identify the optimal backbone architecture and
training parameters, resulting in an approach capable of identifying efficient DNN models.
We employ a modified Differential Evolution based search strategy, which includes eval-

uation correction based selection for a mutation to find architectures with high fitness and
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a reduced number of parameters. Additionally, species protection based selection is intro-
duced to maintain population diversity and to achieve global optima. The optimal models
discovered using the proposed approach have achieved mean accuracies of 89.73 % and
88.90 % on the four-wheeler datasets CaltechGraz and UC Merced Vehicle Rear Signal,
respectively. On the proposed two-wheeler NITW-MBS dataset, the proposed approach
has achieved an accuracy of 97.97 %. The comparative study with other existing manually
designed and NAS based object detectors on these datasets indicates the effectiveness of
the proposed approach. In addition, the comparison of the proposed approach with ba-
sic DE highlights the effectiveness of the proposed approach. We have used cross-dataset
evaluation to assess the effectiveness of the proposed method for unseen data. We further
explored the possibility of practical use by evaluating the proposed method on real-world

traffic videos.
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Chapter 5

Grasshopper Optimization based Deep
Neural Networks for Vehicle

Re-identification

This chapter proposes a NAS based optimization of deep neural networks using a grasshop-
per optimization algorithm for the task of vehicle re-identification.
Chapter Organization:

Preliminaries for the proposed approach is covered in Section 5.1. The proposed ap-
proach is described in Section 5.2. Section 5.3 presents the experimental results and anal-

ysis. Finally, Section 5.4 summarizes the proposed work.

5.1 Preliminaries

This section provides the fundamentals of the GOA, which is used as the NAS search

strategy for this objective.

5.1.1 Grasshopper Optimization Algorithm (GOA)

GOA is a swarm intelligence algorithm inspired by the foraging and swarming behaviour

of grasshoppers in nature. It was first introduced by Saremi et al. in [57]. It has been
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shown to be effective in solving various optimization problems, including medical image
segmentation [58, 146], image enhancement [59], image fusion and feature selection [60,
61]. Its simplicity, efficiency, and robustness make it a popular optimization technique.
From our review of the existing literature, we noticed that there is no existing approach
utilizing GOA for the reID task. This motivated us to use GOA as the search strategy in
this work for finding an optimum DNN model for motorcycle relD task.

In GOA, the grasshoppers move based on the attractiveness of the food source and the
distance to other grasshoppers. The swarming behaviour of grasshoppers is mathematically
modelled in Eq. 5.1

Y,=So, +Gf,i + Wa, 5.1
Here, Y; indicates the i** grasshopper position, So; represents the social interaction, G'f;
denotes the gravity force on the i** grasshopper, and Wa, is the wind advection.

The social interaction So; is defined as follows:

Soi= Y s(dij)u (5.2)

j=1i#i K

where N denotes the number of grasshoppers, d;; = |Y; — Y;| denotes the Euclidean
distance between the i*" and the j** grasshopper s(r) represents the social forces that can

be computed from the formula in Eq. 5.3.

s(r)=Fxe "l —¢7 (5.3)

where F' and L denote the attraction intensity and attraction length scale, respectively. The
social interaction among grasshoppers can be denoted as attraction and repulsion. The

gravity force G f; can be computed using the formula in Eq. 5.4.

Gfi=—gx*é, (5.4)

Here, g represents the gravitational constant, and ¢, denotes a unit vector toward the

centre of the earth.
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The wind advection Wa; is defined by the formula in Eq. 5.5.

Wa; = —u * é, (5.5

where u represents the drift constant and €, is a unit vector in the wind direction.

According to Saremi et al., [57], Eq. 5.1 is modified to suit the actual conditions of the

grasshopper’s movement, using the formula in Eq. 5.6.

N
b—1b Y, -Y,
Yﬂ=c< > o s(D@d—m)J—) +T, (5.6)

d.:
j=Li#i Y

Where [b, ub is defined as the lower-bound and upper-bound in the d"* dimension. T}
is defined as the best value of the d" dimension in the target.

The coefficient C'is defined in Eq. 5.7.

C=Cuw — tM (5.7)

tmax

5.2 Proposed approach

This section presents the proposed use of NAS with GOA for finding the optimal model for
the re-IDentification (reID) task.

Object re-identification typically involves two main phases: feature learning and re-
identification. During the feature learning phase, images are used to train a classification
network to extract feature vectors. In the re-identification phase, test images are split into
gallery images of one camera view and probe images of another camera view, and these are
then fed into the trained classification network to extract their respective feature vectors.
Once these feature vectors have been extracted, a distance measure is used to match objects
and identify the same object across different views. In this work, we have modelled this
entire process as a NAS framework to design optimal deep neural network structure for
re-identification. Fig. 5.1 illustrates the flow diagram of different stages of the proposed

approach. In Fig. 5.1, the process initiates with the random initialization of grasshoppers.
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These grasshoppers represent potential solutions or configurations of the DNN models.
Each grasshopper configuration is then transformed into a DNN model, which is subse-
quently trained on a dataset containing training images. During the feature learning phase,
the DNN models learn to extract discriminative features from the input images. These
learned features are crucial for accurately identifying and matching individuals across dif-
ferent images in the re-identification phase. In the re-identification phase, the performance
of the DNN models is evaluated using a metric such as rank-1 accuracy. This measures
the model’s ability to correctly match probe images and gallery images. Subsequently,
the Grasshopper Optimization Algorithm is applied to optimize the DNN models further.
Unlike GA and DE, which depend on a limited set of individuals to produce offspring,
GOA utilizes the collective behavior of the entire population to explore the search space
more thoroughly, enhancing the balance between exploration and exploitation. The GOA
optimization process involves several phases: Normalizing the distances between grasshop-
pers, Updating the position of grasshoppers, and bringing current grasshoppers back if they
go outside the boundary. The entire process, from grasshopper initialization to grasshop-
per updations, is repeated iteratively until a predetermined stopping criterion, typically a
maximum number of iterations, is met. This iterative approach allows for the continuous
updation and enhancement of the DNN models, ultimately leading to improved perfor-
mance in re-identification tasks. We can formulate NAS as an optimization problem for the

relD task, as given in Eq. 5.8.

mazzes My (A(z, w*(z)), P,G) (5.8)

Az, w*(x)) = ming LoyginA(x, w) (5.9

Here, S represents the search space of the DNN architecture denoted by a Directed Acyclic
Graph (DAG), = € S is a specific path in the DAG corresponding to a DNN architecture, w
represents the weights of the DNN architecture, .A(x, w) denotes a DNN model with archi-
tecture  weight w and L,,,;, is the training loss. Now, Eq. 5.9 represents the computation

of the DNN model A with optimal weights w*(z) for the DNN architecture x, that mini-
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Figure 5.1: The flow diagram of the proposed GOA based NAS approach for finding an
optimum DNN model

mizes the training loss L. In Eq. 5.8, M, is the rank-1 accuracy, and GG, P represents a
set of gallery and probe images, respectively. Eq. 5.8 represents the identification of DNN
architecture x € S, such that its rank-1 accuracy, M, is maximum, corresponding to the

optimum DNN model A identified by Eq. 5.9.

5.2.1 Search space design for re-identification

The performance of the relD task is dependent on the features extracted by the CNN back-
bone architecture. Due to this reason, we include the parameters related to the backbone
in the search space. The search space of the backbone architecture consists of different
kinds of blocks. Backbone architecture could be divided into several stages according to
the resolution of the output features, where the stage refers to a number of blocks fed by

the features with the same resolution.
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In addition to the parameters of the backbone, we have also included parameters asso-
ciated with training like Size of input , Pooling opeation, Activation function, Optimization
algorithm, Loss function and Distance metric in the proposed search space. The details of

the search space used in this work are described in Table 5.1.

Table 5.1: The Parameters in the search space and their values considered in this work

Parameter Range

Block type {Regnet, EfficientnetV2, Densenet, Resnet}

Size of input {320x320, 256x256, 224 x224, 128 x 128}

Pooling operation {Average, Max}

Activation function {ReLLU, Swish}

Optimization algorithm {Adam, SGD}

Loss function {Cross Entropy Loss, Triplet Loss, Quadruplet Loss, MSML }
Distance metric {Euclidean, Cityblock, Minkowski, Sqeuclidean }

Backbone architecture directly impacts feature representation and extraction. By incor-
porating diverse Block type such as ResNet, DenseNet, EfficientNetV2, and RegNet, we
aim to explore various architectural paradigms, from skip connections to dense connec-
tions, to capture discriminative features from input images effectively. This diversification
enables us to explore various complex architectures and improve the relD performance.
The Size of input images directly influence the receptive field of the network and its abil-
ity to capture spatial information. By considering multiple input sizes such as 320x320,
256x256, 224x224, and 128x128, we included variations in image resolution commonly
encountered in relD datasets. Pooling operation, such as max pooling and average pool-
ing, are pivotal for feature down-sampling and spatial aggregation. We aim to identify
optimal methods for preserving discriminative information by exploring different pooling
strategies within the search space. Activation function, such as ReLLU and Swish, introduce
non-linearity essential for learning complex patterns. By incorporating both ReLU and
Swish, we leverage their respective strengths. Optimization algorithm, including Adam,
and to improve superior generalization performance for relD tasks. Loss function, such as
Cross Entropy Loss, Triplet Loss, Quadruplet Loss, and Margin Sample Mining Loss, are
used for metric learning losses. Through the inclusion of diverse loss functions, we aim to

use their unique properties to effectively model class imbalance issues, which is essential
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for discriminative feature learning in reID. Finally, the choice of Distance metric, encom-
passing Euclidean, Cityblock, Minkowski, and Sqeuclidean distances, whose equations are
given in Egs. 5.10, 5.11, 5.12, 5.13, which directly impacts similarity computation and

rank1 accuracy in relD evaluation.

n

> (a; = b)? (5.10)

i=1

Euclidean distance =

City block distance = Y _|a; — bj| (5.11)
i=1

Minkowski distance = (Z la; — bl-|p> (5.12)
=1

Squared Euclidean distance = Z(ai — b;)? (5.13)

i=1

Grasshoppers are encoded from the search space using a proposed encoding scheme.
This scheme uses variable length encoding to represent various Block type and their depths,
allowing for flexible architecture selection. 2 bits are allocated to encode each of the pa-
rameters: Size of input, Loss function, and Distance metric. 1 bit is used to each parameter

representing Pooling operation, Activation function, and Optimization algorithm.

5.2.2 Search objective

Rank-1 accuracy is a key metric for evaluating the performance of object reidentification.
The rank-1 accuracy measures the percentage of correctly identified probe images where
the top-ranked match is correct. The rank-1 accuracy can be defined as follows:

Let P be the set of probe images and G be the set of gallery images. For each probe
image p in P, the reidentification algorithm returns a ranked list of gallery images ¢, go, ...,
gn in G, where n is the total number of gallery images. The rank-1 accuracy denoted as r1,

which can be defined as:

n=13"me P)fp.g)] (5.14)

Where, m is the total number of probe images, f(p, g;) is an indicator function that

equals 1 if the top-ranked gallery image g, is the correct match for the probe image p, and
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0 otherwise.
Eq. 5.14 represents the average number of correct top-ranked matches across all probe

images, expressed as a percentage of the total number of probe images.

5.2.3 GOA based NAS optimization

This section discusses the proposed NAS approach’s comprehensive framework, MNAS-
relD, utilizing the GOA. The proposed Nature-inspired Optimization based NAS algorithm
explained in Algorithm 5.5, begins by generating a diverse population of Grasshoppers,
each representing a unique neural network architecture within the search space. These ar-
chitectures are then encoded and trained using the provided training images (/4.4 ), along
with specified encoding schemes and search space. The fitness of each trained model is
then evaluated using a test dataset (/ss:), and measures the rank-1 accuracy within Eq.
5.14. The model with the highest fitness, denoted as 7}, represents the best-performing
architecture discovered in that iteration.

Throughout the iterative optimization process, the algorithm adjusts the positions of
Grasshoppers based on their fitness evaluations. This includes updating parameters like C'
using Eq. 5.7, normalizing distances between Grasshoppers, and updating their positions
with Eq. 5.6. The iterative loop runs until it reaches the maximum number of iterations
(tmaz)- The proposed approach uses the GOA to efficiently explore the proposed NAS

search space, resulting in superior performance for the given task.
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Algorithm 5.5 Proposed GOA based NAS approach
Input: train_images ()i, test_images (), = (PG), N.

Output: rank-1 accuracy of the best model ( Tpeq)
1: Generate the initial random population of Grasshoppers Y; of size N
2: Initialize C},00,Cminstmaz.La, Lat=1.
3: while t<t,,,, do
4: Encode the DNN models from initial Grasshopper population, using encoding
scheme
5: Train DNN model with given input data (1)qin
6: Evaluate the fitness (rank-1 accuracy given in Eq. 5.14) of each trained model,
using (I)es; corresponding to its grasshopper(Y;)
7: The grasshopper with the highest fitness is assigned to Tj.;
8: fori=1,2,..... N do

9: Update the value of C' by using the computation given in Eq. 5.7
10: Normalize the distance between grasshoppers
11: Update the position of the current grasshopper using Eq. 5.6
12: Bring the current grasshopper back if it is outside the boundaries
13: Update t=t+1

5.3 Experimental results and analysis

In this section, we present the experimental evolution of the proposed approach on two mo-
torcycle relD datasets, i.e., MoRe [43] and BPRelD [42]. We first discuss the implemen-
tation details and evaluation metrics. The comparison of the performance of the proposed
approach against the existing relD also approaches is presented in Section 5.3.1. Finally,

an analysis of the results of the proposed approach is presented in Section 5.3.4.

Implementation details:
In this work, we use the TensorFlow framework for implementing the proposed ap-

proach. The experimental study is performed on a computer with an Intel Xeon(R) Silver
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4110 CPU running at 2.10GHz, 64GB of RAM, and one NVIDIA GeForce RTX 2080 Ti
GPU, with CUDA 11.1 in the Linux platform. The Rotation, Translation, and Horizontal
flipping operations are used for data augmentation. Attraction intensity /a is considered
0.5, and attraction length scale La is considered 1.5. C},4, 18 1, C)pyp 18 0.00004 and maxi-
mum number of iterations %,,,, is considered to be 20. The batch size is 24, and each batch

is sampled with randomly selected 6 identities and 4 images per identity.

Datasets and evaluation metrics:

We evaluate the proposed approach on two motorcycle relD datasets, i.e., MoRe and
BPReID. The MoRe dataset [43] consists of 14,141 images of 3,827 identities. As per
the standard evaluation scheme, 1913 identities are used for training, and 1914 identities
are used for testing. The BPReID dataset [42] contains 18,763 motorcycle images of 940
identities. The details of these datasets are given in Table 5.2. The Rank-1 accuracy given
in Eq. 5.14 and mAP [87] are considered in this work to evaluate the relD task. The
mAP is widely used to evaluate the performance of the convolutional networks for relD.
We compare the performance of the proposed approach against the existing approaches by

using these two evaluation metrics on the two datasets.

Table 5.2: Number of Images, number identities in MoRe and BPReID datasets

Dataset #Cameras #IDs #Images
Motorcycles BPRelD 6 940 18,763
MoRe 10 3,827 14,141

5.3.1 Experimental results

We evaluate the performance of existing Motorcycle re-identification algorithms against
our proposed approach on the MoRe dataset and BPRelID dataset and summarize these in
Table 5.3. Since we specifically focus on motorcycles, the number of images our approach
considers differs from the rider reID approach mentioned in [44]. Therefore, we cannot
directly compare our results with theirs for the BPRelID dataset.

In the MoRe [43] method, a pre-trained ResNet50 model serves as the backbone for
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feature extraction in classification task. A Fully connected layer is added on top of the
backbone to map features to the /N identities for classification. Various training tricks are
used, including Label Smoothing, to prevent overfitting by introducing slight modifications
to training labels and the Warmup Learning Rate, which aids the convergence of the model
through a gradual increase in learning rate during initial epochs. Additionally, BNNeck in-
tegrates a Batch Normalization layer aligned with classification and metric learning losses,
while Last Stride adjusts the final down-sampling operation to enhance spatial resolution
in learned representations. Center Loss minimizes intra-class variability by minimizing
the distance of all samples within a class from its centroid. Metric learning losses such as
Triplet Loss construct triplets of anchor, positive, and negative samples, encouraging the
anchor to be closer to the positive sample than the negative one by a margin. Quadruplet
Loss extends this by introducing an additional negative pair, further promoting inter-class
separation. MSML Loss selects hard positive and negative samples within each batch to
maximize the margin between them. These techniques collectively contributed to improv-
ing experimental outcomes in the re-identification task.

The Rider relD [44] utilized a ResNet50 as the backbone and Pyramid Attention Net-
work (PANet) to integrate attention computation within both spatial and channel dimen-
sions. This PANet module guides the network to progressively emphasize crucial regions
by incorporating pyramid attention after multiple stages. Operating across multiple scales,
the pyramid structure captures attention efficiently. Spatial attention directs focus to dis-
criminative regions in input feature maps, while channel attention prioritizes channels with
stronger responses facilitated by the use of a Squeezed Excitation (SE) block. The BNNeck
structure is employed for batch normalization. Training the network involves employing
triplet loss and ID loss. To prevent overfitting and to maintain stability during training,
Label Smoothing is applied to the ID loss. This proposed training loss comprises the sum
of triplet loss and ID loss, ensuring a balanced optimization approach.

The AANet [45] used EfficientNetV?2 as the backbone and integrated custom Atrous At-
tention blocks into the network, creating a feature-pyramid network capable of capturing
both global and local information effectively. The AANet, used for feature extraction, in-

corporates EfficientNet architecture, optimizing depth, width, and resolution for enhanced
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visual recognition performance. Global average pooling as the final layer improves effi-
ciency and reduces feature dimensionality, refining the model to increase robustness and re-
duce overfitting. The Atrous Attention block, a modification of the local branch in DOLG,
comprises multi-atrous convolution layers and a self-attention module, facilitating infor-
mation extraction over image regions. Atrous Convolution widens the receptive field with
different dilated rates to consider scale variations. Following Multi-Atrous Convolution,
outputs from various dilated rates are concatenated and forwarded to subsequent stages.
The researchers also integrated Supervised Contrastive loss into the training pipeline by
combining it with Arcface loss to achieve superior re-identification results, effectively im-

proving both inter-class distinctions and intra-class differentiations.

Table 5.3 shows that the proposed approach achieved 90.24% and 92.14% in perfor-
mance for r1 and mAP metrics, respectively, on the MoRe dataset. For the BPRelD dataset,
the proposed approach achieved a performance of 43.76% and 52.64% on the r1 and mAP
metrics, respectively. From Table 5.3, we can conclude that our proposed approach sur-
passes the baseline model as well as the recent models in terms of both r1 and mAP met-
rics. Furthermore, we compared the sizes of existing models and the proposed approach
in terms of the number of parameters. The proposed approach has fewer parameters than

existing models, highlighting its effectiveness on both the MoRe and BPRelD datasets.

5.3.2 Network architecture identified by the proposed approach

The parameter values for the final network architecture identified by the proposed GOA
based NAS approach is summarized in Table 5.4. From the Table, it can be observed
that EfficientV2 is the Block type, which serves as the backbone network. For Pooling
operation, average pooling is selected, and ReLU is chosen as the Activation function.
The Size of input is chosen as 256256 pixels. The city block distance is selected as
the Distance metric. Quadruplet Loss is adopted as the Loss function, while the Adam

optimizer is chosen as the Optimization algorithm.
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Table 5.3: The performance comparison of rankl accuracy and mAP of the top-1 model
obtained from the proposed approach against existing re-identification approaches on the
MoRe dataset and BPRelD dataset

Dataset
Method rl (%)Mon}ip (%) | rl (%]?PRnifP @) Tparams (M)
MoRe [43] 8341 8638 1694  23.08 23.58
Rider reID [44]  89.1 909 . . 27.77

AANet [45] 86.60 88.32 - - -

MNASrelD 90.24 92.14 43.76 52.64 20.33
Note: The best values are highlighted in bold.

Table 5.4: Final network architecture parameter values obtained by proposed approach

Parameter Value Obtained
Block type EfficientnetV?2
Size of input 256x256
Activation function ReLU
Pooling operation Average
Optimization algorithm Adam
Loss function Quadruplet Loss
Distance metric Cityblock

5.3.3 Computational complexity analysis

The proposed GOA based NAS framework involves several steps, including initial popula-
tion generation, encoding, training, fitness evaluation, and updating grasshopper positions.
The time complexity of Algorithm 3.1 primarily stems from: (i) Model training and fitness
evaluation (£;) given in steps 5 and 6, (ii) Updating grasshopper positions (F,) given in
steps 9 to 13, (iii)) Number of iterations (%,,,,) and the number of grasshoppers (N). E;
depends upon the generated network structures and their size. Hence, we can express the
time complexity of the proposed algorithm to be O(,,4, X (E; + (N x E,))). The exact
computation of the various parameters in the time complexity is reliant on its dependent

factors.
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To streamline the computationally expensive process of NAS, we adopted a strategy
to accelerate the optimization. Firstly, we incorporated pre-termination criteria, which in-
volved monitoring the model’s loss after 20 epochs. If the loss does not decrease signifi-
cantly within this period, we terminate the training early. Otherwise, we continued training
the model for a total of 80 epochs and recorded the results. Additionally, to optimize
the NAS process further, we implemented a caching strategy to avoid retraining the same
model if it had been generated in previous iterations of the GOA. This approach allowed us
to skip redundant training of previously generated model architectures during optimization,

thereby speeding up the search for the best architecture.

5.3.4 Experimental analysis

The number of times the NAS search space parameter value is used by the NAS explo-
ration process to identify the optimal DNN model for the reID task is analyzed. The results
of this analysis depicting the frequency of usage of each parameter value by the proposed
MNASrelID is shown in Figure 5.2. This reveals the trends in using parameter values by
the NAS exploration process. Among the block types, ‘Resnet’ and ‘EfficientnetV2’ are
the most commonly chosen block types, surpassing other block types. For pooling opera-
tion, ‘Max’ pooling is more favored than ‘Avg’ pooling. The ‘ReLU’ activation function
emerged as the dominant choice, outperforming ‘Swish’. The ‘SGD’ optimizer is preferred
over the ‘Adam’ optimizer. Among the distance metrics, the ‘Sqeuclidean distance’ metric
is selected most frequently compared to other distance metrics. As per the size of the input,
128128 pixels is more prevalent compared to other sizes, and for the loss function, ‘Mar-
gin Sample Mining Loss’ is the dominant choice. These observations reveal the preference
for these particular parameter values during the NAS optimization process. The analysis
of parameter values used during NAS exploration for the relD task reveals both agreement
and disagreement with the final identified model by the proposed approach. EfficientnetV2,
which was frequently selected during the search, was chosen as the block type in the final
model, indicating its high performance. Despite Max pooling being preferred during ex-

ploration, the final model employs Average pooling. ReLLU’s frequent selection is directly
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related to its use in the final architecture. Although SGD was more commonly explored,
Adam was used in the final model for better optimization. While the Sqeuclidean dis-
tance was preferred during the exploration, the City Block distance was chosen for the final
model. The exploration leaned towards a smaller 128x128 pixel input size, but the final
model opted for a larger 256x256 size for better feature representation. Lastly, although
Margin Sample Mining Loss was commonly selected, Quadruplet Loss was chosen for its
superior performance in proposed relD task.

The rank-1 accuracy of Grasshoppers in each iteration is analysed by evaluating the per-
formance of the best grasshoppers. Fig. 5.3 shows the trajectory details of the MNASreID
rank-1 accuracy achieved by the best grasshopper after each iteration. The figure shows
that, as the iterations progress, the accuracy steadily increases and eventually reaches a
convergence point at subsequent iterations.

Analysis of occlusion and collision scenarios:

Addressing “occlusion" presents a significant challenge in object re-identification, particu-
larly in surveillance or tracking scenarios where objects may become obscured by obstacles
or other objects. In our proposed approach, to evaluate performance in occlusion scenarios,
we segregated occluded images from the test set of both the MoRe and BPRelD datasets.
We identified 158 occluded images in the MoRe dataset and 177 occluded images in the
BPRelD dataset. Sample images with occlusion from MoRe and BPRelD datasets are
shown in Fig. 5.4 and Fig. 5.5, respectively, where the first row shows gallery images
and the second row shows corresponding probe images. The model identified by the pro-
posed approach on the MoRe dataset used the City block distance metric as given in Table
5.4. The performance of this model on occluded images of MoRe and BPRelD datasets
is shown in Table 5.5. The model identified by the proposed approach and trained on the
BPRelD dataset is evaluated on occluded images, whose results are shown in the second
row of Table 5.4. From the cross-dataset evaluation results shown in Table 5.4, it can be
observed that the best performance can be achieved when the model is trained and tested
on the same dataset. The performance (mAP) of the model identified by the proposed ap-
proach on occluded images of the MoRe dataset using Euclidean, Sqeuclidean, Minkowski,

and City block distance metrics is 96.11 %, 96.11 %, 96.01 %, and 95.95 %, respectively.
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Figure 5.2: The frequency of parameter values appearing in the population during 20 iter-
ations of the MNASrelD optimization process on the MoRe dataset.

Similarly, on occluded images of the BPRelID dataset, the performance (mAP) of the pro-

posed approach using Euclidean, Sqeuclidean, Minkowski, and Cityblock distance metrics

is 88.94 %, 88.94 %, 88.27 %, and 88.69 %, respectively. From this analysis, it can be ob-

108



CHAPTER 5. GRASSHOPPER OPTIMIZATION BASED DEEP NEURAL NETWORKS FOR VEHICLE RE-IDENTIFICATION Section 5.3

100

60 | /”M/‘

60 -
S
=

40 A

20 A

—e— rank-1 accuracy
0 5 10 15 20 25

Iterations

Figure 5.3: Iteration wise rank-1 accuracy of the MNASreID approach for the best
Grasshopper

served that Euclidean and Sqeuclidean distances give better results than Cityblock distance
on occluded images of both datasets. When a similar experiment using various distance
metrics was conducted on the entire MoRe dataset, the Cityblock distance metric achieved
the best results. When this study was repeated for the entire BPRelD dataset, the City-
block distance metric achieved the best results. From this analysis, it can be concluded
that the Cityblock distance metric gives optimal results in all possible scenarios, while the
Euclidean/Sqeuclidean distance metric gives better results for occlusion scenarios. The de-
tails of the computation of these distances are given in Eq. 5.10 to Eq. 5.13.

In object re-identification, “collision" refers to the situation where two or more objects
physically interact or overlap in a scene, posing challenges in identifying and tracking
individual objects, particularly when they share similar appearance features. To evaluate
the performance of the proposed approach in collision scenarios, we identified 14 images
with similar appearance features from the MoRe test set. Sample images are depicted in
Fig. 5.6, where the second row shows similar images with different IDs compared to their
corresponding images in the first row. By considering these 14 images in the gallery and
probe datasets, we evaluated our proposed approach, which achieved an rl-accuracy of

92.81 % and an r2-accuracy of 100 %. The high rl-accuracy indicates that the proposed
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Figure 5.4: Sample occluded images from MoRe dataset

approach was able to correctly identify even under collision conditions. The 100 % r2-
accuracy indicates that the proposed approach was able to identify the correct object for all

the probing objects using the top-2 distance.
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Figure 5.5: Sample occluded images from BPRelD dataset

Table 5.5: The performance comparison of rankl accuracy and mAP of the top-1 model
obtained from the proposed approach on MoRe dataset and BPRelID dataset in occluded
scenarios

Dataset
MoRe | BPRelID
rl (%) mAP (%) rl (%) mAP (%)

Method

Final model trained on MoRe 93.57 95.95 37.71 39.01

Final model trained on BPReID 42.14 47.85 88.57 88.69
Note: The best values are highlighted in bold
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Figure 5.6: Sample images with similar appearance features from MoRe dataset
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5.4 Summary

This work presents MNASrelD, a novel automated Neural Architecture Search approach
utilizing the Grasshopper optimization algorithm as a search strategy specifically designed
for motorcycle re-identification. MNASrelD efficiently explores both neural network ar-
chitecture and hyperparameters to find the optimal deep neural network architecture. The
performance of MNASrelID is compared with the existing approaches for motorcycle re-
identification task. On the MoRe dataset, MNASrelD exhibits improvements of +1.14 %
and +1.24 % in r1 and mAP metrics, respectively, compared to existing methods. Sim-
ilarly, on the BPReID dataset, MNASrelD outperforms existing approaches, exhibiting
significant enhancements of +26.82 % and +29.56 % in r1 and mAP metrics respectively.
These findings show the proposed approach’s effectiveness in advancing motorcycle relD
performance, establishing clear superiority over existing models. Additionally, an analysis
of NAS search space parameter values shows insights on the trends in parameter selection

by MNASrelD, providing insights into its optimization process.
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Chapter 6

Improved Genetic Algorithm based
Optimization of Deep Neural Networks

for Driver Distraction Detection

This chapter proposes a NAS based optimization of deep neural networks using a modified
genetic algorithm for the task of driver distraction detection.

Chapter Organization:

Proposed approach is described in Section 6.1. Section 6.2 presents the experimental

results and analysis. Finally, Section 6.3 summarizes the proposed work.

6.1 Proposed approach

This section discusses the use of NAS to optimize the target object detection network’s
backbone and training parameters for detecting driver distraction. The components of the
proposed model are shown in Fig. 6.1. The initial population is generated at random, and
an improved GA that encodes a chromosome, as shown in Fig. 6.1 (¢), to represent a YOLO
object detection model. The model is trained on driver distraction detection image data to
determine the fitness value of each chromosome/YOLO object detection model. A search
strategy based on the improved GA is used to generate a new population in each GA cycle,

that ends when the termination criteria is met.
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Figure 6.1: (a) The proposed improved GA based NAS framework for driver distraction
task (b) YOLO based object detection network (c) Encoding of GA chromosome.

6.1.1 Search space design for object detection

The efficacy of object detectors is significantly affected by backbone architectures, which
play a critical role in extracting essential features from visual data. Due to this reason, we
included the backbone related parameters in the search space. The backbone search space

is made up of a series of blocks, and each component of the backbone can be divided into
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different stages based on the resolution of the output. A stage is a collection of blocks that
receive features with the same resolution. In this work, the proposed search space consists
of four types of blocks: CSPDarknet53 block [62], RepVGG block[63], CSPNeXt blocks
[64], and CSPResNet block [65]. We consider 4 stages with the Depth of blocks and Width
of blocks in each stage of the backbone represented with deepen factor and widen factor
whose values vary from 0 to 2.

In addition to the backbone search, the proposed search space includes training param-
eters such as the Box loss, and Class loss, Activation function, and Optimizer. For Box loss,
we explored {IoU loss, GloU loss, SIoU loss, CloU loss}, and for Class loss, we consid-
ered {Cross Entropy loss, Focal loss, VariFocal loss, QualityFocal loss}. For the activation
function, we considered {ReL.U, GELU, Swish, SiLU}, and finally, for the optimizer, the
choices include {SGD, NAdam, Adamax, AdamW}. The details of the parameters and
their corresponding values explored in the search space are outlined in Table 6.1. A 16-bit
chromosome, as shown in Fig. 6.1, is used as the encoding mechanism for both architec-
ture and the training properties. It uses 2 bits for the Type of block, 2 bits for the Activation
function, 2 bits for the Box loss, 2 bits for Class loss, 2 bits for the Optimizer, 3 bits for the
Depth of blocks, and 3 bits for the Width of blocks.

Table 6.1: Search space parameters and their values considered in this work

Type of parameter Range

Type of block {CSPDarknet53, RepVGG, CSPNeXt, CSPResNet}
Activation {ReLU, GELU, Swish, and SiLLU}

Optimizer {SGD, NAdam, Adamax and AdamW }

Box loss {IoU loss, GIoU loss, SIoU loss, CloU loss}

Class loss {Cross Entropy loss, Focal loss, VariFocal loss, QualityFocal loss }
Depth of blocks {0.33,0.5,0.67,1.0,1.33,1.5,1.67,2}

Width of blocks {0.25,0.5,0.75,1.0,1.25,1.5,1.75,2}

6.1.2 An improved GA based NAS optimization

In this section, we will discuss the modified selection strategy and species protection based

on next generation population used in the proposed improved GA based NAS framework.
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Evaluation Correction based Selection (ECS):

The traditional selection strategy uses various approaches to select the best chromo-
somes as parents for the generation of an offspring population. However, depending only
on the validation mAP for performance estimation may result in a better network, but it
is computationally inefficient. Therefore, we have adopted an evaluation correction based
selection approach for the “selection" operation, which is inspired by [17]. In this method,
the network architecture is assessed based on the validation mAP. If a significant difference
exists in the validation mAP, the network with the higher mAP is chosen. In cases where
the validation mAP scores are similar, preference is given to the network with fewer pa-
rameters. This approach ensures the selection of a network with superior validation mAP

as well as fewer parameters. The pseudo-code for this method is outlined in Algorithm 6.6.

Algorithm 6.6 Evaluation Correction based Selection

Input: Population (X7}), population size N, number of parameters p and fitness f of each
individual in X7, threshold .
Output: Best individual X,
1: fort=1,2,...., N do
2: L < Select three individuals at random from the population

3:  while |[A| > 1do

4: X1, X5 < Select 2 individuals from L

5: L+ L—{X, X5}

6: f1, fo < Fitness of X, X,

7: p1, p2 <— Number of parameters of Xy, Xy

8: if | fi — f2] < a then

9: Put the individual with fewer parameters in { X, X5} back into L
10: else
11: Put the individual with greater accuracy in { X7, X5} back into L
12: Xpest < Return the best individual in L

Species Protection based Next Generation Population (SPNGP):

Ensuring the diversity of the population, i.e., different types during the evolutionary

117



CHAPTER 6. IMPROVED GENETIC ALGORITHM BASED OPTIMIZATION OF DEEP NEURAL NETWORKS FOR DRIVER DISTRACTION DETECTION  Section 6.1

process, may improve the algorithm’s global performance. This work presents a species
protection based next generation population, which is inspired by [17], to ensure the di-
versity of neural network architectures considered in each GA generation. Algorithm 6.7
describes the logic for this approach. SPNGP begins by classifying the population P into
k distinct species, denoted by Fx. Species s is chosen with uniform probability from %
distinct species py, pa, ..., Pr. One individual py is picked at random from s and removed
from P without replacement. However, a problem occurs due to a lack of competition
among distinct species. To address this issue, SPNGP includes a random number r that
regulates whether the SPNGP approach is used to balance competitiveness within and out-
side the species. SPNGP also includes an elite retention method to protect the population’s
best individuals from elimination during evolution. The technique is to preserve the top
2N x ~ individuals in the population before species division, where N denotes the popu-
lation size of X and Of, X represents the parent population, O represents the offspring
population and -, is a retention parameter. In this work, the SPNGP considers the backbone
network’s type of block for identifying the s species when splitting the species into F. This
is because, when compared to the other parameters in the search space, the type of block

has a major impact on performance.

Algorithm 6.7 Species Protection based Next Generation Population

Input: Population P = X' U O, population size 2N, elite rate +y in the population.
Output: The new population X1,
1: Xt < Select 2N x ~ individuals with the highest fitness from population P using
the elite retention strategy.
2: P is divided into k(=4) distinct species, denoted as F, based on the first two bits of
GA chromosome representing the type of block, which ranges from O to 3.
while | X! < N do
r <— Generate a random number.
if » < 0.5 then
With uniform probability select species s from F.
Select the best individual pyey from s by using Algorithm 6.6.
else
Select the best individual pyey from P by using Algorithm 6.6.

10: X XU preg.
11: Return the new population X1,

R N

The overall framework of proposed improved GA based NAS:
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The proposed improved GA based NAS framework is given in algorithm 6.8, which
incorporates modified selection and species protection based selection operations. The
proposed approach begins by randomly generating an initial population X°. Fitness values
are then calculated for the N individuals in X°. The framework proceeds with T rounds of
iterative evolution.

During the ¢ generation evolution process, the ECS operation is initially applied to se-
lect the best chromosomes with fewer parameters. Subsequently, a crossover and mutation
are applied to generate offspring. Finally, the proposed approach utilizes an SPNGP opera-
tion to select the next generation population X! from the union of the current population
and offspring population X*. This selection process ensures diversity and balances com-
petitiveness. The framework then proceeds to the next round of the evolutionary process.
After completing the T rounds of the evolutionary process, the optimal network architec-

ture will be selected.

Algorithm 6.8 The overall framework of proposed improved GA based NAS optimization

Input: train_images [;qin, number of GA generations 7', population size N.
Output: The optimal network architecture.

1: X% + Generate an initial population randomly.
2: Decode the vectors of X into object detection networks
3: Calculate the fitness and parameters of each decoded network using ;-
4: t <+ 1.
5: whilet < T do
6: O+ {}.
7: while |O'| < N do
8: Select two individuals using using Algorithm 6.6.
9: Generate two offsprings 01, oo with crossover
and mutation operations.
10: Calculate the fitness and parameters of the decoded network
using yqin-
11: 0k (-OtU{Ol,OQ}.
12: X1 < Generate next-generation population from X* U O*

using Algorithm 6.7.
13: t<+—1t+1.
14: Return the optimal network architecture
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6.2 Experimental results and analysis

In this section, we present the evaluation metric and the experimental settings in Section
6.2.1. Subsequently, Section 6.2.2 presents the comparative study of the proposed driver
distraction detection approach using the Distracted Driver Detection Image Dataset [66]
and the Distracted Driving Computer Vision Project [67] datasets. Section 6.2.5 discusses

the analysis of the proposed approach.

6.2.1 Experimental settings

The experiments were carried out on a system with an Intel Xeon(R) Silver 4110 CPU
running at 2.10GHz, 64GB of RAM, and a single NVIDIA GeForce RTX 2080 Ti GPU.
Which were done on a Linux operating system, utilizing CUDA and the PyTorch frame-
work. While exploring the search space, if the SGD optimizer was used, the parameters
chosen were a momentum of 0.9 and an initial learning rate of 0.01. When using the
AdamW, NAdam, or Adamax optimizers, We have chosen the weight decay of 0.0005 and
an initial learning rate of 0.0001. The input image size is set to 640 x 640 pixels. This
study considered a crossover rate of C, = 0.5. The additional parameters for the improved
GA are configured with an elite rate () of 0.3 and a threshold («) of 2. The population
size N was set to 20. The experiments were carried out for 7'(= 10) generations. Initially,
all models identified by the NAS were trained for 20 epochs. The best model in the final
GA population is trained for an additional 80 epochs and is considered the best model gen-
erated by the proposed approach.

Datasets: Popular datasets like SFDDD (State Farm Distracted Driver Detection) [147]
and AUCD?2 [107] are designed for direct image classification tasks, classifying images
into different types of distractions like Texting or Drinking. However, these datasets lack
localization capabilities, which means they do not specify where the distraction occurs
in the image, such as on the driver’s head rotation or hand movements. In contrast, the
Distracted Driver Detection Image (DDDI) [66] and Distracted Driving Computer Vi-
sion Project (DDCV) [67] datasets provide both classification and localization informa-

tion. They include annotated data that provides bounding boxes to identify where distrac-

120



CHAPTER 6. IMPROVED GENETIC ALGORITHM BASED OPTIMIZATION OF DEEP NEURAL NETWORKS FOR DRIVER DISTRACTION DETECTION  Section 6.2

tions occur in the image. This is critical for creating models that can accurately identify
distractions, thereby increasing the robustness and reliability of driver distraction detec-
tion systems. Furthermore, these datasets cover a similar range of classes as SFDDD and
AUCDD?2 datasets, ensuring that models trained on them can detect the same types of dis-
tractions while benefiting from localization of action. This makes them more appropriate
for real-world applications, such as video-based analysis, where precise action tracking and
localization are critical for effective driver monitoring and safety improvement.

The proposed approach was evaluated using two driver distraction datasets: the Dis-
tracted Driver Detection Image (DDDI) dataset [66] and the Distracted Driving Computer
Vision Project (DDCV) dataset [67]. The Distracted Driver Detection Image Dataset con-
sists of 2,000 images, encompassing 8 classes (Talking on the Phone, Hair and Makeup,
Talking to Passenger, Texting, Operating the Radio, Reaching Behind, Drinking, and Safe
Driving). Sample images from the dataset are shown in Fig. 6.2. In this dataset, 1,391 im-
ages are available for training, 398 images for validation, and 211 images for testing. The
DDCYV includes 8,865 images, spanning 12 classes (Eyes Open, Eyes Closed, Yawning,
Nodding Off, Talking to Passenger, Talking on the Phone, Drinking, Operating the Radio,
Hair and Makeup, Reaching Behind, Texting, and Safe Driving). Sample images from the
dataset are shown in Fig. 6.3. In this dataset, 6,860 images are given for training, 1,000

images for validation, and 1,005 images for testing.

6.2.2 Comparision with state of the art models

We evaluated existing object detection models, including one-stage models like YOLOv5
[148] and YOLOV7 [149] as well as two-stage models like Faster R-CNN [14], Mask R-
CNN [15], Sparse R-CNN [132] and NAS based model like MAE-DET [18] on the DDDI,
DDCYV datasets. The optimal architecture generated by the proposed method has an mAP
of 86.8 % and 85.1 % on validation and test data, respectively, for the DDDI dataset. Also,
for the DDCV dataset, the proposed method achieved an mAP of 76.4 % on validation
data and 51.5 % on test data, whose results are presented in Table 6.2. From this table, it

can be observed that our proposed approach outperforms these benchmark one-stage and
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(e) Drinking

(g) Operating the Radio (h) Safe Driving

Figure 6.2: Sample images of driver distraction categories in DDDI dataset [66]

two-stage models; on the DDCV dataset, the proposed approach outperformed the existing

methods for detecting driver distraction behavior. On the DDDI dataset, the proposed ap-
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(g) Eyes Closed (h) Safe Driving

Figure 6.3: Sample images of driver distraction categories in DDCV dataset [67]

proach gives comparable performance with a recent model with fewer parameters. Fig. 6.4

and Fig. 6.5 demonstrate the detection of driver distraction types by our proposed approach
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on some test images from the DDDI and DDCV datasets, respectively.

Table 6.2: Comparison of mAP of the existing object detection models with proposed
approach on two datasets

Dataset
Method Roboflow-DDDI Roboflow-DDCV Params
Valid (%) Test (%) Valid (%) Test (%)
Faster R-CNN [14] 72.1 74.5 70.9 42.7 63.6 M
Mask R-CNN [15] 78.4 78.1 72.6 41.8 344 M
Sparse R-CNN [132] 78.6 81.7 75.3 44.0 96.6 M
MAE-DET [18] 51.3 55.1 65.1 354 347 M
YOLOVS [148] 73.2 75.4 74.1 50.6 462 M
YOLOvV7 [141] 75.2 77.8 75.6 51.2 373 M
Proposed appraoch 86.8 85.1 76.4 51.5 211 M

Note: The best values are highlighted in bold.

Figure 6.4: Driver distraction detection results of the proposed approach on DDDI dataset

6.2.3 Backbone architectures identified by the proposed approach

The proposed approach minimized the number of parameters and achieved good accuracy.
The proposed NAS-based approach effectively searched for the optimal network architec-
ture and parameters for driver distraction detection, whose details are given in Table 6.3.

The components of the identified model are: CSPNeXt blocks as Type of block, GELU for
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Figure 6.5: Driver distraction detection results of the proposed approach on DDCV dataset

Activation, Cross Entropy Loss for Class loss, CIoU loss for Box loss, and the AdamW
as Optimizer, 0.67 as textitDepth of blocks and 0.75 as Width of blocks. This approach’s
primary goal was to balance model complexity and performance by reducing the number
of parameters while maintaining high accuracy. The model’s depth and width largely de-
termine the number of parameters required. The proposed model achieves high accuracy
while reducing depth and width, making it highly efficient and ideal for real-time driver

distraction detection.

Table 6.3: The parameter values of the best model identified by the proposed approach

Parameter Value Obtained
Type of block CSPNeXt
Activation GELU
Optimizer AdamW
Box loss CIoU loss
Class loss Cross Entropy Loss
Depth of blocks 0.67
Width of blocks 0.75

6.2.4 Computational complexity analysis

The time complexity of the proposed improved GA-based NAS framework is primarily

determined by the number of generations (7") and population size (/V). The most computa-
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tionally expensive task is training and evaluating each individual’s fitness, which depends
on the complexity of the generated DNN architecture and the size of the training dataset, de-
noted by Ei,in. Other tasks, such as sorting the population based on fitness, take O(NlogN)
in Algorithm 6.7 and generating new offspring through crossover and mutation takes O(NV)
in Algorithm 6.6, which contribute less to the overall time complexity. The overall time
complexity of the NAS framework is O(T" X (N X Eyn + NlogN)). This denotes that
the computational cost scales linearly with the number of generations. Fitness evaluation

(E\rain) increases with the complexity of the DNN model and the size of the training dataset.

6.2.5 Discussion

This section analyzes the parameter values explored by the proposed approach within the
search space across various generations of the GA for the DDDI dataset. Figure 6.6 illus-
trates the distribution of these explored parameters. Several trends are evident from the
figure. CSPResNet and CSPNeXt are more frequently selected than other block types, and
the GELU activation function is favored over other options. In terms of class loss func-
tions, Quality Focal Loss and Focal Loss are the most commonly used. As the generation
number increases, the usage of IoU Loss, GloU Loss, and CloU Loss also rises for box
loss functions. While NAdam is frequently chosen in most generations, AdamW becomes
the preferred optimizer as the generations progress. This analysis offers insight into the
common choices made by the NAS framework, revealing preferences for block type, acti-
vation functions, loss functions, and optimizers across multiple generations of the GA. The
generational trends in parameter selection closely align with the identified model archi-
tecture in the proposed NAS based approach. CSPResNet and CSPNeXt blocks were fre-
quently explored, with CSPNeXt chosen for the top-performing model. Similarly, GELU
was consistently favoured across generations and selcted in the final model, highlighting
its importance in achieving high accuracy. While Focal Loss and Quality Focal Loss were
commonly selected as class loss functions during exploration, Cross Entropy Loss emerged
as the final choice, suggesting it provided a better balance of complexity and performance.

As generations progressed, CloU Loss gained popularity and was incorporated into the final
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model for box loss, demonstrating its effectiveness in localization tasks. Lastly, although
NAdam was often used early on, AdamW became more prominent in later generations and
was selected as the optimizer in the identified model, indicating its superior optimization

performance.
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Figure 6.6: The number of times a value for a search space parameter explored across GA
generations by the proposed approach for DDDI dataset
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6.3 Summary

In this work, we introduce a novel approach for Driver Distraction Detection utilizing an
improved GA based NAS, employing the single-stage YOLO object detection model. The
proposed approach involves the use of an improved Genetic Algorithm to efficiently explore
the search space, aiming to identify the optimal backbone architecture and training param-
eters. The primary goal is to simultaneously increase the accuracy and reduce the number
of parameters of the DNN model. The resulting DNN architecture from this approach
showcases superior performance compared to existing one-stage and two-stage models in
detecting driver distraction behavior across both DDDI and DDCV datasets, highlighting

its effectiveness in addressing the driver distraction detection task.
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Chapter 7

Conclusion and Future Scope

This chapter presents the summary of the contributions of this thesis, the conclusion of each

objective and the future scope of research for further direction of this thesis is presented.

7.1 Conclusion

This thesis develops techniques for optimizing deep learning models using evolutionary al-
gorithms for vision based applications in vehicle safety and surveillance systems. Through
the use of evolutionary optimization techniques, the research achieves enhanced perfor-
mance in tasks such as vehicle brake light detection, driver distraction detection for accident
prevention systems, and vehicle re-identification for smart surveillance systems. This ap-
proach facilitates the exploration of various deep learning model architectures and their op-
timization, resulting in enhanced performance and expanded potential applications across
these tasks.

In Chapter 3, the authors introduced a novel dataset for motorcycle brake light detec-
tion task. Then, a NAS framework to optimize a two-stage Mask R-CNN object detection
model, focusing on finding optimal parameters related to the backbone and training at-
tributes. A Genetic algorithm is used as the search strategy in the NAS search process. The
proposed model outperformed the performance of existing one-stage and two-stage object
detection models on the proposed two-wheeler dataset and existing four-wheeler dataset.

In Chapter 4, a modified Differential evolution is used as a NAS search strategy to
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optimize a two-stage object detection network. This chapter expanded the search space
compared to the search space proposed in Chapter 3 to enhance the performance of brake
light detection for various vehicle types, including both two-wheelers and four-wheelers.
The proposed model outperformed the performance of existing one-stage and two-stage
object detection models on the proposed two-wheeler dataset and existing 2 four-wheeler
datasets.

In Chapter 5, the authors focussed on the optimization of deep learning models using
NAS for vehicle re-identification task and designed a search space that included network
architecture parameters and training attributes. The Grasshopper optimization algorithm
was used as a search strategy, leading to a model that outperformed existing methods on
two publicly available datasets for re-identification tasks.

In Chapter 6, the authors proposed a NAS based approach for driver distraction detec-
tion, incorporating a search space covering backbone architecture and training parameters.
A modified Genetic algorithm was employed as a NAS search strategy, resulting in a model
outperforming existing methods for detecting driver distraction behaviors on two publicly

available datasets.

7.2 Future scope

In the future, we plan to speed up optimization by exploring parallelism, make NAS ap-
proaches handle more computer vision tasks, and improve efficiency by using weight-
sharing techniques and incorporating tracking in real-time systems. We also aim to con-
tinue enhancing optimization methods and making NAS models work better for different
computer vision tasks through ongoing research and development.

Exploring parallelism to speed-up the optimization: Explore techniques for paralleliz-
ing training across multiple devices, distributed training, and GPU acceleration to acceler-
ate DNN optimization. This involves training multiple models simultaneously on different
machines in each generation of the evolutionary NAS, enabling independent model train-
ing within the generation. Assess the impact of parallelism on reducing training time and

enhancing optimization efficiency, particularly for large-scale DNN models in vison based
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tasks.

Expanding NAS approaches for handling different vision based tasks: Expand cur-
rent NAS approaches to address multiple computer vision tasks, such as object detection,
semantic segmentation, and other vision related tasks. Develop new search strategies and
objective functions customized for vision based tasks to guide the NAS search process ef-
fectively. Evaluate the performance of multi-objective NAS models in terms of accuracy,
efficiency, and scalability, comparing them to single-objective NAS models. Continuously
improve NAS based optimization methods for vision based tasks, and conduct thorough
experiments to assess NAS model capabilities for specific applications.

Improving efficiency through weight-sharing techniques: Study techniques like param-
eter sharing to lower the computational burden of NAS. Assess how these techniques affect
the efficiency and performance of NAS models in vision tasks.

Incorporating tracking to existing systems: Incorporating temporal information along-
side spatial information for object detection tasks. Develop algorithms to integrate tracking
data into the NAS framework, enhancing the robustness and adaptability of vision based
systems. Assess the effectiveness of NAS models with real-world tracking across diverse
datasets related to accident prevention and smart traffic surveillance systems.

Integration of explainable AI techniques for DNN optimization: Incorporate explain-
able Al techniques into the NAS framework to enhance the transparency and trustworthi-
ness of DNN models. This involves exploring methods such as attention mechanisms and
visualization tools to provide insights into the decision-making process of NAS optimized

models.
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