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Abstract

The cloud marketplace is continuously rising as enterprises desire to streamline their

processes. The marketplace can address the potential computation, storage, databases, and

bandwidth needs across various sectors, including business, industry, manufacturing, en-

tertainment, government, education, agriculture, banking and smart cities. As adaptability

increases, cloud service providers (CSPs) expand their datacenters to handle requests of

any size. It increases the fossil fuels consumed in each datacenter, increasing the over-

all cost. Therefore, many CSPs have adopted renewable energy (RE) sources to increase

profitability and reduce carbon emissions. However, RE generation fluctuates with time, lo-

cation and climate conditions, which introduces uncertainty (UN) in fulfilling user requests

(URs). Thus, non-renewable energy (NRE) generation continues to power the datacenters

to make stability. Recent works are directed to the use of RE generation followed by NRE

generation while assigning the URs to the resources of the datacenters. However, they

present the requirements of URs using the processor nodes without considering memory

nodes. Moreover, these works aim to maximize the usage of RE or minimize the cost and

do not model the UN of RE and NRE resources and the level of UN (UNL). Furthermore,

the URs may be redirected from one datacenter to another depending on the presence of RE

resources to minimize the cost. However, systematically planning of datacenter migration

to move URs is quite challenging.

This thesis mainly addresses the UR-based scheduling problems in geo-distributed data-

centers. It presents several algorithms for these problems, considering processor and mem-

ory nodes, UN, UNL, and migration. Firstly, we present two algorithms, processor and

memory-based future-aware best fit (PM-FABEF) and processor and memory-based high-

est available renewable first (PM-HAREF), that incorporate both processor and memory

nodes for geographical load balancing (GLB). PM-FABEF determines the cost of proces-

sor and memory nodes for assigning URs to the datacenters and assigns them to the least

cost datacenter. PM-HAREF determines the highest RE resource slots in processor and

memory for assigning the URs. Secondly, we present three UR-based scheduling algo-

rithms, namely UN-based future-aware best fit (UN-FABEF), UN-based highest available
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renewable first (UN-HAREF) and UN-based round-robin (UN-RR), by managing the UN

of RE and NRE. These algorithms consider two types of UN, namely UN of RE (UN-RE)

and UN of NRE (UN-NRE) resources, concerning the UR. UN-FABEF matches the UR

to all the available datacenters and determines the assignment cost, including UN time du-

ration. Then, it assigns that UR to a datacenter that results in the least assignment cost.

UN-HAREF matches the UR to all the available datacenters and determines the number of

RE resource slots, including UN time duration. Then, it assigns that UR to a datacenter

that results in the highest number of RE resource slots. On the contrary, UN-RR assigns

the URs to the datacenters in a circular fashion. Thirdly, we extend the three benchmark

algorithms, namely FABEF, HAREF and RR, by incorporating UN and UNL, and we call

them UNL-based future-aware best fit (UNL-FABEF), UNL-based highest available re-

newable first (UNL-HAREF) and UNL-based round-robin (UNL-RR), respectively. The

goal of UNL-FABEF is to minimize the overall cost, whereas UNL-HAREF is to maxi-

mize the available RE usage. On the contrary, UNL-RR assigns the URs to the datacenters

in a roundabout fashion. Then, we introduce the UNL-based multi-objective scheduling

algorithm (UNL-MOSA) to make a trade-off between UNL-FABEF and UNL-HAREF.

UNL-MOSA creates a balance between the overall cost and the available RE usage. Lastly,

we introduce a novel RE-oriented migration algorithm (REOMA) to minimize the total cost

of geo-distributed datacenters through strategic migration between datacenters. REOMA

finds the cost based on the time window of the UR in each datacenter. Then, it fits the

cost of each datacenter into a polynomial curve based on the time window and determines

the slope and intercept. Subsequently, it finds the migration points between the datacenter

with the lowest cost and the other datacenters and performs the migration between a pair

of datacenters that results in the lowest cost.

We perform rigorous simulations on the proposed algorithms and measure their per-

formance in terms of various performance metrics, namely overall cost (OCO), the total

number of used RE resource slots (TNRE), the total number of used NRE resource slots

(TNNRE), the UN time (UNT) and the UN cost (UNCO). The proposed algorithms are

compared with three benchmark algorithms using fifty instances of ten datasets with 200 to

2000 URs and 20 to 200 datacenters based on their applicability. For comparison purposes,
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we also evaluate the simulation results against existing scheduling algorithms and present

the findings in various tabular and graphical formats. The comparison results demonstrate

that the proposed scheduling algorithms outperform existing ones in terms of the afore-

mentioned performance metrics. Furthermore, we validate these results using analysis of

variance (ANOVA) statistical tests based on the applicability.

Keywords: Cloud Computing, Cloud Service Provider, Datacenter, Geo-Distributed

Datacenters, Geographical Load Balancing, Non-Renewable Energy, Overall Cost, Renew-

able Energy, Scheduling, Uncertainty, Uncertainty Level, User Request.
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Chapter 1

Introduction

The global cloud computing market has a tremendous upward trajectory and has trans-

formed our lives and livelihoods [1–4]. The market provides a platform for enterprises to

buy services from cloud service providers (CSPs) over the Internet [5–7]. It reforms how

to conduct business, develop applications, and configure infrastructure [8–11]. It enables

enterprises to compete in the market without concern about infrastructure cost, applica-

tion deployment, computation, storage, databases, security and recovery [12–15]. As per

Cloudwards [16], 94% of enterprises rely on various cloud services. The enterprises also

streamline their processes by adopting various services, namely infrastructure (IaaS), plat-

form (PaaS) and software (SaaS) [1, 17–19]. As per the survey conducted by Centrify

and CensusWide, 43% of organizations were reluctant to migrate to the cloud before the

COronaVIrus Disease of 2019 (COVID-19) pandemic in March 2020 [20]. The rational-

ity behind this reluctance is security, compliance, migration plan or approach, availability,

cost and stability. However, most organizations have streamlined their migration plan and

digitized their process through cloud technology after the pandemic. Therefore, the cloud

computing market’s compound annual growth rate (CAGR) is expected to reach 17.5% and

be worth around $832.1 billion by the end of 2025 [16]. More specifically, the CAGR

of the cloud computing storage market from 2021 to 2028 is expected to reach 26.2%

and be worth around $390 billion by the end of 2028 [16]. Cloud infrastructure provides

creative solutions to any scale enterprise, from small to large, and become one of the game-

changing technologies in today’s era. In general, the solutions are provided by deploying
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applications in virtual machines (VMs), which take the resources from the servers of the

datacenters [21–28]. CSPs deliver on-demand services to fulfil enterprise requirements and

charge them as per the pay-as-you-go model [2]. As the demand increases daily, CSPs are

constantly looking to escalate hardware and software infrastructures and their efficiency

to accommodate any scale requirements without hindrance. For instance, as per Gartner

Incorporated, a research and consulting firm in the United States (US), user spending on

cloud services is estimated to reach $678.8 billion in 2024, which was $563.6 billion in

2023, with a CAGR of 20.4% [29].

The overwhelming growth of the cloud market opens up new challenges to CSPs. The

challenges include infrastructure management, energy consumption, cost, security, cus-

tomization, vendor lock-in, expanded service availability, and skilled engineers [30–41].

Power management is one of the biggest challenges, as it directly impacts the cost, envi-

ronment, and outages. For instance, the average power usage effectiveness (PUE) of large

datacenters is approximately 1.58 as per the survey conducted in 2023 [42]. Most of the

datacenters hosted by CSPs primarily depend on the electric grid. The uninterrupted sup-

ply of electricity will ensure the timely delivery of cloud services. Still, the CSPs maintain

backup power systems to run their datacenters without interruption. The primary source

of electricity and backup power systems is fossil fuels (i.e., coal and its products, gas and

its variants (natural and derived), petroleum, etc.) [43, 44]. However, these sources are

unsustainable and harmful to our physical environments, such as climate change, water

pollution, and air pollution. They are formed by decomposing animals and plants. As

the cost of these fuels increases daily and their availability is delimited, many CSPs have

been planning to minimize their carbon footprints, water usage, electricity usage, and so

on. The tiny changes and progress can save significant power and costs [45]. One of the

possible solutions is to adopt renewable energy (RE) sources, namely sunlight/solar, wa-

ter/hydropower, wind, biomass, geothermal and tidal [46–51]. For instance, the average

cost of hydroelectric power, solar, wind, and biomass is $0.05 per kilowatt hour (kWh),

$0.10/kWh, $0.13/kWh and $0.10/kWh, respectively, as per Forbes, a business magazine

in the US [52]. On the other hand, Google claims that it is the largest buyer of RE and

has attained 100% RE in its datacenters since 2017 [53]. Microsoft has also powered its
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datacenter using 100% RE since 2014 [53]. Amazon has announced that it has achieved

85% RE and is committed to attaining 100% by 2025 [53]. These sources are sustainable

and not harmful to the environment. However, CSPs continue to use fossil fuels, as RE

sources are affected by weather conditions, locations and storage. Therefore, recent litera-

ture (especially future-aware best fit (FABEF) [46], static cost-aware ordering (SCA) [54],

round-robin (RR) [46] and highest available renewable first (HAREF) [46], MinBrown

(MB) [55]) focuses on RE sources for managing the resources of datacenters without de-

taching the traditional way of powering datacenters using non-renewable energy (NRE)

sources. However, these studies focus on minimizing the cost or maximizing the usage of

RE without considering both processors and memory nodes while assigning the user re-

quests (URs) and assume that the URs execute smoothly without interruption. Note that

Amazon’s popular service, called elastic compute cloud (EC2), considers both processor

and memory while deploying an instance. Moreover, the studies have not emphasized on

the uncertainty (UN). Here, UN refers to the delay in executing URs due to internal and

external factors [56]. Some examples of these factors include network failure, VM inter-

ruption, checkpointing, overbooking, economics, load structure, human resources, power

supply, air conditioning, and many more [57]. CSPs need to adopt several precautions to

deal with these UN factors. Otherwise, the UN will violate the service-level agreement

(SLA) and cause customer dissatisfaction. On the other hand, the URs can be migrated

from one datacenter to another to fulfil the requirements.

The rest of this chapter is organized as follows. In Section 1.1, the motivation behind

the proposed works and four objectives are discussed. In Section 1.2, the overview of the

four contributions of the thesis is highlighted. In Section 1.3, the organization of the thesis

with seven chapters is presented.

1.1 Motivation and Objectives

A datacenter is a centralized facility for building, processing and storing applications,

services and data [1, 58, 59]. They are owned by CSPs, wholesale operators and retail

firms [60]. These owners seek ways to improve energy efficiency and reduce the data-
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center operating costs [31]. Moreover, they make a power purchase agreement with the

electricity providers [61]. On the other hand, the commercial sector is the largest electric-

ity consumer globally, with Alphabet (Google), Microsoft, and Facebook at the top of the

list [62]. Therefore, energy is shifted from non-renewable to renewable sources to power

the datacenters. This shift not only helps to safeguard our environment but also decar-

bonizes datacenters. RE is generated from natural sources: biomass, geothermal, hydro,

ocean, sunlight, tidal and wind [33,46]. They are being replenished significantly more than

their use. The carbon dioxide (CO2) emissions of RE generation are much less than those

of NRE generation. Therefore, RE is a changer in the climate crisis [63, 64]. According

to the International energy agency (IEA), 35% of global power will be generated using

RE by 2025 [65]. Even though RE has numerous advantages, it results in low efficiency,

high initial cost and substantial space requirements. Moreover, its generation depends on

time and location. For instance, CSPs can use solar energy in those locations (like Norway,

Iceland, Finland, etc.) where sunlight is available almost around the clock [66]. Simi-

larly, they can use wind energy in windy areas like New Zealand, France, Canada, etc.

Still, RE generation is inconsistent and unpredictable in its current state [43, 67, 68]. As

a result, CSPs power their datacenters using RE and NRE generation. When RE genera-

tion cannot fulfil the power requirements of datacenters, CSPs switch to NRE generation

to meet such requirements [67]. However, no datacenter has an unlimited power supply,

processor and memory nodes. Therefore, each datacenter encounters some unavoidable

circumstances concerning its resources. These circumstances can be considered UN while

assigning the URs to such resources. As the RE generation is more unstable than the NRE

generation, the UN of the RE generation is relatively higher than the NRE generation. Re-

cent literature focuses on both RE and NRE generation and makes their proper usage while

assigning the URs to the datacenters without looking into the UN of resources and UN

level (UNL) [46,57,63,64,69–71]. This fact motivates us to develop RE-based scheduling

algorithms by incorporating processor and memory nodes, UN and UNL, and migration

between datacenters, which are not well-investigated in the literature.

The following objectives are formulated concerning the above-mentioned motivation.

Objective 1: To minimize the cost of assigning URs to the resources of datacenters by
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incorporating processor and memory nodes of datacenters.

Objective 2: To maximize the usage of RE resources of datacenters by managing the UN

of RE and NRE resources while assigning the URs.

Objective 3: To minimize the overall cost and maximize the usage of RE resources of

datacenters by incorporating UN of RE and NRE resources and their level while assigning

the URs.

Objective 4: To find the migration points of the URs to facilitate their relocation among

datacenters and minimize overall costs.

In this thesis, we present RE-based scheduling algorithms for geo-distributed datacen-

ters. First, we present RE-based algorithms by incorporating processor and memory nodes

of datacenters to minimize the cost of assigning URs. Then, we consider the UN of RE and

NRE resources and present RE-based algorithms to maximize the usage of RE resources

for assigning URs. Subsequently, we model the UN from the user and CSP perspectives

and propose RE-based algorithms to minimize the cost and maximize the usage of RE

resources for assigning URs. Finally, we present a RE-oriented migration algorithm to mi-

grate the URs among the datacenters to minimize the overall costs. Throughout the thesis,

we interchangeably use brown (or green) energy and non-renewable (renewable) energy.

Similarly, we use nodes and slots interchangeably.

1.2 Overview of the Contributions of the Thesis

In this section, an overview of the chapter-wise contributions of the thesis is presented.

1.2.1 Efficient Renewable Energy-Based Geographical Load Balanc-

ing Algorithms

As the adaptability of the cloud increases, CSPs expand their datacenters to handle any UR

size. It increases the fossil fuels consumed in each datacenter, increasing the overall cost

(OCO). Therefore, CSPs are looking for economical ways to reduce fossil fuels. Conse-

quently, three benchmark algorithms were developed in the literature for geographical load
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balancing (GLB) using RE sources. However, they present the UR using the processor

nodes without considering memory nodes. This work presents two algorithms, processor

and memory-based future-aware best fit (PM-FABEF) and processor and memory-based

highest available renewable first (PM-HAREF), for green cloud computing (GCC) that in-

corporates processor and memory nodes. PM-FABEF determines the cost of processor and

memory nodes for assigning URs to the datacenters and assigns them to the least cost dat-

acenter. PM-HAREF determines the highest RE resource slots in processor and memory

for assigning the URs. The proposed algorithms are compared with three algorithms using

ten datasets to show their superiority in three performance metrics, namely the OCO, the

total number of used RE resource slots (TNRE) and the total number of used NRE resource

slots (TNNRE). The primary novelties of this work are as follows.

1. We develop two GLB algorithms by incorporating processor and memory nodes at a

glance.

2. We consider the varying costs with respect to processor and memory nodes in each

datacenter to make the proposed algorithms more realistic.

3. The proposed algorithms are compared with three benchmark algorithms to show

their efficacy in three performance metrics.

1.2.2 User Request-Based Scheduling Algorithms by Managing Un-

certainty of Renewable Energy

Many CSPs have adopted RE sources to increase profitability and reduce carbon emissions.

Recent literature focuses on managing cloud infrastructure with RE sources in addition to

traditional NRE sources whenever required. However, these works aim to maximize the us-

age of RE or minimize the cost without considering the UN. This work presents three UR-

based scheduling algorithms, namely UN-based FABEF (UN-FABEF), UN-based HAREF

(UN-HAREF), and UN-based RR (UNRR), by managing the UN of RE and NRE. These

algorithms consider two types of UN, namely UN of RE (UN-RE) and UN of NRE (UN-

NRE), concerning the UR. The proposed algorithms undergo a rigorous simulation process
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with 200 to 2000 URs and 20 to 200 datacenters. They are compared using OCO, TNRE,

UN time (UNT), and UN cost (UNCO). The significant contributions of this work are listed

as follows.

1. Development of three UR-based scheduling algorithms by managing the UN-RE and

UN-NRE sources.

2. The UN of UR is modelled in terms of the percentage of UN-RE and UN-NRE and

considered as a variable for RE resources and fixed for NRE resources as per their

sustainability.

3. The UNT is determined using the number of RE and NRE resource slots assigned to

the UR. This time can be considered as a reserved time to handle the UN.

4. Simulation of three proposed algorithms in ten different datasets and comparison of

results in four performance metrics.

1.2.3 Uncertainty Level-Based Algorithms by Managing Renewable

Energy for Geo-Distributed Datacenters

RE generation fluctuates with time and location, introducing the UN in fulfilling URs.

Thus, NRE generation continues to power the datacenters to achieve stability. Recent

works are directed to the use of RE generation followed by NRE generation while as-

signing the URs to the resources of the datacenters. These works do not model the UN of

RE and NRE resources and the UNL. This work extends the three benchmark algorithms,

FABEF, HAREF, and RR, by incorporating UNL, which we call UNL-based FABEF (UNL-

FABEF), UNL-based HAREF (UNL-HAREF), and UNL-based RR (UNL-RR), respec-

tively. The goal of UNL-FABEF is to minimize the OCO, whereas UNL-HAREF is to

maximize the TNRE. On the contrary, UNL-RR assigns the URs to the datacenters in a

roundabout fashion. This work also introduces the UNL-based multi-objective scheduling

algorithm (UNL-MOSA) to make a trade-off between UNL-FABEF and UNL-HAREF.

UNL-MOSA creates a balance between the OCO and the TNRE. All four algorithms con-

sider three UNLs of URs, namely low, medium and high, for RE resources. These al-
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gorithms are tested using fifty instances of ten datasets with 200 to 2000 URs and 20 to

200 datacenters and compared using five performance metrics: the OCO, TNRE, TNNRE,

UNT and UNCO. The performance of four algorithms in these performance metrics is ex-

tensively examined to know their applicability. The uniqueness of this work is listed as

follows.

1. We develop four scheduling algorithms for geo-distributed datacenters in which UN

is modelled from the user and CSP perspectives. The user’s perspective categorizes

the UNLs into low, medium, and high, whereas the CSP’s perspective presents the

uncertainty between 1% to 100%.

2. The UN-RE generation is modelled as dynamic, whereas UN-NRE generation is

fixed as per their relevance in real-life scenarios.

3. UNL-MOSA balances the performance of UNL-FABEF and UNL-HAREF using

their objectives’ linear combination.

4. The proposed algorithms are examined using ten datasets and five performance met-

rics to show their supremacy and applicability.

1.2.4 A Renewable Energy-Oriented Migration Algorithm for Mini-

mizing Cost in Geo-Distributed Cloud Datacenters

A datacenter migration systematically plans to move URs/infrastructure/assets/ applica-

tions from one datacenter to another. It reduces costs and complexities and increases

agility, flexibility, scalability, security and performance. As the digital revolution pro-

gresses swiftly, datacenter companies have embarked on initiatives to integrate RE sources

and detach their total dependence on NRE sources. However, the accessibility of RE

sources varies based on geographical location and climate conditions. As a result, URs

may be redirected from one datacenter to another depending on the presence of RE re-

sources to minimize the OCO. The benchmark algorithm, FABEF, matches the UR with

the available datacenters and prioritizes assignment to the datacenter with the lowest cost.
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However, this algorithm fails to utilize the availability of RE resources within the datacen-

ters. This observation motivates us to incorporate RE resources into FABEF by facilitating

the migration of URs from one datacenter to another. We introduce a novel RE-oriented

migration algorithm (REOMA) to minimize the OCO of geographically distributed data-

centers through strategic migration between datacenters. REOMA finds the cost based on

the time window of the UR in each datacenter. Then, it fits the cost of each datacenter

into a polynomial curve based on the time window and determines the slope and intercept.

Subsequently, it finds the migration points between the datacenter with the lowest cost and

the other datacenters and performs the migration between a pair of datacenters that results

in the lowest cost. We compare the performance of the proposed algorithm with three

benchmark algorithms in three metrics: the OCO, TNRE, and TNNRE, using 200 to 2000

URs and 20 to 200 datacenters and demonstrate significant improvements. In summary, the

work offers the following contributions to the research community.

1. We develop a novel migration algorithm that integrates RE and NRE sources. This

algorithm facilitates the efficient relocation of URs from one datacenter to another

within a geo-distributed cloud datacenter environment, aiming to minimize OCO.

2. The proposed migration algorithm fits the costs of datacenters over time intervals for

a UR into a polynomial curve and calculates both the slope and intercept.

3. The proposed migration algorithm identifies the intersection point between the least

cost datacenter and other datacenters as the migration point.

4. The proposed migration algorithm is evaluated against three benchmark algorithms,

FABEF, HAREF and RR, to demonstrate its enhancements in OCO reduction and

optimization of TNRE and TNNRE across ten datasets.

1.3 Organization of the Thesis

The main focus of this thesis is to design RE-based scheduling algorithms for geo-distributed

datacenters. The thesis comprises seven chapters, namely an introduction, a literature re-
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view, four contributions, and a conclusion and future scope. The content of these chapters

is briefly described as follows.

Chapter 1: This chapter presents the importance of RE in geo-distributed datacenters,

motivation, thesis objectives, significant contributions and thesis outline.

Chapter 2: This chapter presents the literature on RE-based scheduling algorithms based

on the thesis objectives, especially cost, RE and NRE generations, UN and migration.

Chapter 3: This chapter presents the PM-FABEF and PM-HAREF algorithms by incorpo-

rating processors and memory nodes of datacenters to minimize the OCO of assigning the

URs.

Chapter 4: This chapter introduces the UN-FABEF, UN-HAREF and UN-RR algorithms

by managing the UN-RE and UN-NRE resources to maximize the TNRE.

Chapter 5: This chapter develops the UNL-FABEF, UNL-HAREF, UNL-RR and UNL-

MOSA algorithms by incorporating the UN-RE and UN-NRE resources and UNL to min-

imize the OCO and maximize the TNRE of datacenters.

Chapter 6: This chapter presents the REOMA algorithm to find the migration points of

the URs to facilitate their relocation among datacenters and minimize the OCO.

Chapter 7: This chapter summarizes the contributions of the thesis and discusses further

extensions of the proposed works.
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Chapter 2

Literature Review

The research on RE for sustainable development is rapidly increasing and is the need of

the hour [72–74]. The CSPs are willing to run their datacenters using RE sources to

provide low-cost services and attract more enterprises to increase profitability. For in-

stance, Microsoft Azure targets to achieve carbon neutrality by 2030. Similarly, Ama-

zon Web Service (AWS) targets to achieve carbon-free by the year 2025 [75–78]. Still,

they face many challenges in supplying power to the datacenters. Therefore, researchers

[46, 57, 79–85] suggest using RE and NRE sources to handle future circumstances, such

that the OCO is minimized and the TNRE is maximized. Moreover, many GLB algo-

rithms have been developed to balance the assignment of URs or VMs among datacen-

ters [43, 46, 54, 55, 57, 58, 63, 64, 67–69, 80–122]. These algorithms consider the OCO,

availability of RE, change in energy, carbon footprint, UN and many more. However, most

of these algorithms assume the requirement of UR in terms of the processor nodes with-

out memory nodes. Here, minimizing the cost of the processor node does not necessarily

reduce the cost of the memory node and vice-versa. Moreover, the UN of these sources

needs to be taken care of to handle the URs without violating their requirements. Alterna-

tively, the SLA between the user and the CSP is violated, leading to service credits. On

the other hand, the URs can be migrated between datacenters to meet their requirements.

CSPs are generally looking for intelligent algorithms in their platforms to schedule the URs

to the datacenters to optimize one or more objectives, namely OCO, time, energy, carbon

footprint, operations, overhead, efficiency, and many more. Therefore, we segregate the
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existing RE-based scheduling algorithms by considering cost, RE and NRE generations,

UN and migration objectives.

2.1 Cost-Based Scheduling Algorithms

Majid and Kumar [80] have discussed RE development in various states/countries/ conti-

nents and presented predictions, employments, and obstacles. They have shown the pro-

jections from 1990 to 2040 by targeting some regions, namely Africa, Brazil, China, the

European Union, India, the Middle East, Russia, and the US. They have reported that

the lack of regulations and policies is one of the significant barriers to adopting RE. In

the cloud context, the standardization of SLA is needed to avoid this barrier. Toosi and

Buyya [46] have introduced a fuzzy logic-based load balancing (FLB) algorithm without

considering future RE generation. They have also presented three benchmark algorithms:

FABEF, HAREF and RR. FABEF routes the UR to a minimum cost datacenter, whereas

HAREF routes the UR to maximum available RE datacenters. On the contrary, RR does not

consider the cost and available RE. It simply routes the UR circularly without any further

information. They have shown that FABEF saves 14% normalized cost, whereas HAREF

saves 7.5% normalized cost compared to worst performing RR.

Nayak, Panda and Das [69] have presented an algorithm, called unconstrained power

management (UPM), using three power sources, namely photovoltaic (PV), battery and

grid. The objective is to provide a continuous power supply to the datacenters with the help

of green and brown energy sources. However, they have not considered the minimum power

generation of the three supplies that may lead to power failure. To avoid power failure,

Nayak, Panda and Das [64] have again presented an algorithm, called constrained power

management (CPM), using four power supplies, namely wind, PV, battery and grid. The

algorithm applies a minimum threshold on each RE source to run the datacenter smoothly

and avoid power failure. However, they have taken only one datacenter and UR duration

without resource slots. Furthermore, Nayak et al. [63] have obtained the advantage of both

FABEF and HAREF. They have introduced a multi-objective RE (MORE) algorithm to

consider the OCO and the RE generation at a glance. Their algorithm makes a trade-off

12
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between FABEF and HAREF. However, the cost of the memory nodes in datacenters is

not taken into consideration. Nayak et al. [100] have developed a minimum utilization

(MinUtil) algorithm to allocate the URs to the geo-distributed datacenters. Their algorithm

is a task consolidation algorithm in which they consider UR utilization. The datacenters’

resources are categorized into RE and NRE resources. They restricted the utilization of

NRE resources to a pre-defined threshold, i.e., 70%, whereas the utilization of RE resources

is not restricted to take full advantage. They suggest investigating this threshold further.

Al-Jumaili et al. [101] have comprehensively reviewed hybrid RE systems. They have

focused on two areas, namely battery management systems and power management sys-

tems. They have identified three functions of battery management systems, namely battery

protection, power management and battery monitoring. They have controlled power con-

sumption monitoring as follows. If the RE sources generate enough energy and the battery

charge is below 20%, then the excess energy is used to charge the battery. However, if

the RE sources generate insufficient energy, then the battery is used to supply power. In

this case, the battery charge is between 20% to 95%. But, if the battery charge is more

than 95%, it is only charged once the level reaches 20%. For this, sensors are used to stop

charging and charging upon reaching the mentioned levels. They have suggested lower

and upper-range charging as per the institute of electrical and electronics engineers (IEEE)

standard. On the contrary, if the RE sources generate insufficient energy and the battery

charge is also insufficient, then the electric generator provides an uninterrupted power sup-

ply. In the worst case, if the RE sources, battery charge and electric generator do not pro-

vide sufficient energy, then the power grid is used to provide the supply. In summary, they

have aimed to minimize costs by developing battery charging as a service. Rajagopalan

et al. [102] have shown the impact of power systems by combining two emerging tech-

nologies, namely cloud computing and the Internet of Things (IoT). More specifically, they

aim to improve power distribution efficiency. Cloud computing can help store and analyze

data, whereas IoT can help reduce cost, minimize user interaction, and improve services

and maintenance. However, seamless integration of multiple technologies is always chal-

lenging, especially when applied in real-life scenarios, such as a grid to vehicle technology,

electric vehicles and many more.
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Hassan et al. [103] have introduced a task-scheduling algorithm to deal with mobility

and dealy-sensitive applications. Their objective is to minimize the cost of the applications

that apply to mobile cloud computing (MCC) and improve resource utilization, boot time

and arrival time (AT). Their proposed approach is divided into three layers: mobile users,

task scheduling, and mobile cloud. Here, scheduling is performed by matching resources,

sequencing, and offloading tasks. In sequencing tasks, they use three well-known algo-

rithms: shortest job first, shortest size first and first come, first served. They have shown

the results by taking tasks for various applications, namely augmented reality, e-transport,

three-dimensional (3D) games, and healthcare. However, their algorithm does not explic-

itly consider RE, which can increase the OCO. Tervydis et al. [104] have developed a tool

called cloud-edge-asset-optimizer to provide estimates in order to ensure decision-making

and resource allocation. They have mentioned the requirements as cost, battery capacity,

and delay. Their tool considers data processing requests (e.g., arrival rate), load balancing,

edge parameters (i.e., number of devices, processing time, battery performance and cost),

cloud parameters (i.e., number of servers, processing time and cost) and critical parameters

(i.e., waiting time and working time). They have listed other related tools, iFogSim, Myi-

FogSim, EdgeCloudSim, FogNetSim++, EdgeFogCloud, FogTorch, EmuFog and FogBus.

The basic difference between their tool and other tools is that if the user enters the wrong

parameters, their tool helps correct and explain such parameters. They have suggested

further improving this tool to support geographical distribution and load distribution sce-

narios.

Chakraborty, Toosi and Kopp [88] have introduced a framework, named elastic power

utilization, to match the RE generation and energy demand. Their algorithm addresses

both the overbooking of resources and VM consolidation. However, they focus only on

central processing unit (CPU) utilization and consider only homogenous servers in the

datacenters. Regaieg et al. [89] have solved the VM placement problem by forming integer

linear programming (ILP). They consider the problem to have multiple objectives, namely

minimizing the count of active servers, reducing the wastage of resources, and reducing

the number of VMs to lessen power consumption. They model the VM requirements in

terms of CPU, memory and storage. They consider both homogeneous and heterogeneous
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datacenters in their solution. However, they do not examine RE sources in their work.

Chen et al. [55] have presented a scheduling algorithm, MB, to minimize the usage of

NRE resources by managing the load among the datacenters. The algorithm is based on

the availability of RE resources, energy consumption, deadline, workload structure, fine-

grained scheduling, and cooling power. However, they have not considered the cost of

memory nodes.

2.2 Renewable and Non-Renewable Generation-Based

Scheduling Algorithms

Carvalho et al. [84] have listed the factors influencing the energy regulatory process on the

energy clouds. Specifically, they have considered twenty-nine factors grouped into seven

types: availability, economic, ideology, information, institutional and market, personal and

regulatory infrastructure. They have suggested establishing the mathematical model by an-

alyzing the relationships between these factors. This model can determine the crucial fac-

tors that need immediate attention. This thesis highlights some of these types by developing

RE-based scheduling algorithms. Toosi and Buyya [46] have discussed three benchmark

algorithms: FABEF, HAREF, and RR. HAREF matches a UR to all the available datacen-

ters and assigns it to the highest available RE resource datacenter. They have observed

that HAREF utilizes maximum RE resources compared to FABEF and FLB. HAREF uti-

lizes RE generation and is the best performing over all the algorithms regarding RE us-

age. However, RE usage does not necessarily reduce the OCO, as seen from HAREF and

FABEF results. Mishra and Panda [87] have proposed a cost-aware RE scheduling (CRES)

algorithm by considering a variety of RE sources and their costs. They assume two types

of URs, called non-critical and critical. Non-critical UR can execute using any resources,

whereas critical UR can execute only in NRE resources. However, their primary focus is to

minimize the OCO without emphasizing much on the usage of RE resources. Le et al. [54]

have identified that datacenters’ cost and ambient temperature vary based on location. As

a result, they have introduced a load distribution policy to save the cost to a greater extent.
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They have also shown three baseline policies: RR, worst fit (WF), and SCA. Here, the WF

assigns the URs to the highest available resources datacenter. SCA assigns the URs to the

least cost datacenter.

Leng and Zhang [105] have suggested evaluating the different plans of RE sources

before further exploiting such resources. They have introduced a new evaluation method

using the grey cloud model and rough set theory. Their evaluation model is divided into

three phases: building a matrix, determining the index weights and finally ranking. They

apply rough set theory in the second phase, whereas the grey cloud model in the last phase.

They have compared the CO2 emissions of two RE sources, wind and coal and reported

that the effect of coal is greater in the production, manufacturing, operation, maintenance

and overall life cycle. In contrast, the effect of wind is more on transport, construction,

recycling, and disposal of life cycles. They have shown the life cycle of various electricity

generation systems with respect to CO2 emissions in which coal dominates all the systems

with 666 to 888 g/kWh and wind is the least among all with 3.404 to 40.996 g/kWh. Al-

ternatively, the order of the systems is coal, diesel, gas, PV, hydropower and wind from the

highest to the lowest. However, their study is limited to RE production of two countries,

China and Turkey.

He et al. [106] have ordered the RE sources as hydro, wind, electrochemical, biological

and solar using the prospect theory. They have reported that determining the optimal RE

source is challenging for sustainable growth. Moreover, they have listed some critical

issues as follows. 1) A set of criteria can determine the optimal RE source. However, such

criteria need to be more well-defined. 2) The evaluation of RE sources needs to include the

UN. However, it has not been taken into consideration. 3) The evaluation of RE ignores the

rational choices of the decision-makers. They have solved these issues and shown the use

cases by considering China country. They have shown the energy consumption of coal, oil,

gas and RE from 2000 to 2020. It is noteworthy to mention that the percentage of energy

consumption is dominated by coal from 2000 to 2020, i.e., 68.5% to 56.8%. However, it

is slowly reducing year by year. Next to coal, the percentage of energy consumption of

oil was 22% in 2000 and reduced to 18.9% in 2020. Next to oil, the percentage of energy

consumption of RE was 7.3% in 2000 and increased to 15.9% in 2020. Next to RE, the
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percentage of energy consumption of gas was 2.2% in 2000 and increased to 8.4% in 2020.

These statistics clearly show the adoption of RE in energy sectors.

Zhao and Zhou [107] have stated that the grid and RE source power the geographically

distributed datacenters. Their study also stated that energy consumption is not necessarily

related to carbon emissions. As a result, optimizing energy consumption does not optimize

carbon emissions. Therefore, both energy consumption and carbon emissions need to be

tackled mutually. They have proposed an energy-aware and carbon-aware algorithm to

place the VMs on the two cloud servers, namely Hewlett-Packard (HP) ProLiant G4 and HP

ProLiant G5. The power consumption of the HP ProLiant G4 server is 86 watts at idle load,

whereas it is increased to 117 watts at full load. Similarly, the power consumption of the HP

ProLiant G5 server is 93.7 watts at idle load, whereas it is increased to 135 watts at full

load. The CPU capacity of these servers is 1860 and 2660 million instructions per second

(MIPS), respectively, whereas the number of cores in these servers is 2. They have shown

the comparison with the first fit, best fit, energy-aware and carbon-footprint aware with

predictive and non-predictive RE source, energy-aware with predictive and non-predictive

RE source and carbon footprint-aware with predictive RE source algorithms. However,

their algorithm is limited to VM placement without scheduling the URs to the VMs or

cloud servers.

Jeong et al. [108] have investigated the public opinion on RE and other energy sources

using social media data. They have used correlation and sentiment analyses. They have

collected data from Reddit and performed data preprocessing. They have ranked the top

five keywords as energy, electricity, RE, oil, nuclear power, and fossil fuel. For instance,

the five keywords related to energy are energy, solar, power, oil and nuclear in the order of

their rank. Similarly, the five keywords related to electricity are electricity, power, energy,

voltage and current. The five keywords related to fossil fuels are coal, gas, energy, solar and

power. They found that the relationship between RE and nuclear energy is complementary

and positive. On the contrary, the substitute relationship is negative. However, their study

does not consider the opinion of decision-makers. Panda and Jana [109] have presented

an energy-efficient algorithm for a heterogeneous cloud environment. The algorithm com-

prises three steps: estimation, normalization and selection, and execution. Although energy
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is considerably reduced using this algorithm, they have not taken RE sources into consid-

eration. Table 2.1 summarizes cost-based, renewable and non-renewable generation-based

scheduling algorithms.

2.3 Uncertainty-Based Scheduling Algorithms

Kabir et al. [57] have explored various uncertainties and their possible impact on the cloud

components. They have identified five parameters affecting the UN: availability, OCO,

security, traffic, and workload. They have shown the impact of common influencing fac-

tors, such as user location, AT, checkpointing, execution time, VM interruption, network

failure, and closest datacenters, on the five parameters. This thesis focuses on two param-

eters, namely availability and OCO, and considers some of the influencing factors: AT,

execution time, and network failure. They have suggested the researchers to design cloud

management techniques by incorporating the UN. Koutsoyiannis [83] has suggested that

UN modelling is essential in managing the RE. This modelling needs both structural mea-

sures and optimization techniques. This thesis intends to focus on optimizing the resources

and their OCO.

Panda and Jana [56] have considered UN for the low quality of service (QoS) appli-

cations. They categorize the URs into high and low QoSs. They further categorize low

QoS into high UN and low UN, respectively. Here, high UN and low UN are determined

based on the deviation from the expected completion time. However, their study is limited

to task scheduling without considering RE resources. Methenitis et al. [81] have adopted

SLA by incorporating cost, reliability, and quantity. The rationality behind this adoption

is that electricity production using RE sources is uncertain, and the delivery of the same

cannot be promised. However, their study focuses on the smart grid and does not consider

the UN of NRE sources. Zhao, Wang and Mo [58] have aimed to manage the workload and

energy of datacenters and presented an optimal power generation scheduling algorithm.

Their algorithm uses local RE to reduce operating costs and energy consumption. They

have suggested combining datacenters and green energy to reduce the environmental im-

pact. In our work, we consider the green energy of datacenters in order to dispatch the URs
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to an appropriate datacenter.

Hasan et al. [110] have focused on green SLA, which is challenging for CSPs and

network providers. They have shown both explicit and implicit integration of RE in the

datacenters. The availability of the UN of RE is addressed through the virtualization of

RE. They have compared total energy demand and RE demand to calculate the surplus

and degraded energy to define virtualized RE. In their cloud architecture, they have shown

the end-user as a consumer of the SaaS provider, which is further a consumer of the IaaS

provider and further a consumer of the energy-as-a-service provider. In each provider,

the service-level objectives (SLOs) are well-defined. For instance, SLOs between end-

user and SaaS are availability and response time. Similarly, SLOs between SaaS and IaaS

are the availability of physical and green resources. On the contrary, SLOs between IaaS

and energy-as-a-service are the availability of RE and NRE. They have used cloud SLA

language to enable green SLA. Pabitha et al. [111] have addressed the uncertain UR de-

mands and shown its impact on the performance of task scheduling. They have mentioned

some uncertain factors, such as bandwidth, processing speed in millions of instructions per

second, cost, makespan and task completion time. Subsequently, they have presented an

optimization algorithm called a chameleon and remora search for task scheduling. How-

ever, they have considered only two datacenters and 100 to 500 tasks for implementation.

Saini, Al-Sumaiti and Kumar [113] have addressed the UN in the context of power

supply, storage systems and microgrids. They have proposed a UN quantification fusion

mechanism that integrates with RE. Their fusion mechanism is developed using three mod-

els: support vector regression (SVR), long short-term memory (LSTM), and convolutional

neural networks gated recurrent unit (CNN-GRU), which can forecast a one-day load ahead

of time. Specifically, input data is given to the LSTM and SVR models simultaneously, and

the outcome is given to CNN-GRU. The performance is compared using mean squared er-

ror, mean absolute error, mean absolute percentage error, and root mean squared error, in

which the fusion model outperforms other models. However, their framework does not

incorporate spatio-temporal aspects. Further, Saini et al. [112] have shown the necessity

of cloud energy storage systems, which enable the interaction between utilities and con-

sumers. They have used artificial ecosystem optimization and UN quantization using ma-
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chine learning to calculate the ideal battery capacity. Moreover, they consider the UN with

respect to price. Their methodology comprises input elements, process data, evaluation

process and test process. In the input elements, they collect load data from the individual

household. In the process data, they perform preprocessing and split the data into training,

validation and testing. In the evaluation process, they use various models, such as LSTM,

GRU, bidirectional LSTM (Bi-LSTM) and bidirectional GRU (Bi-GRU), to optimize the

loss function. In the test process, they use mean absolute error, mean squared error, and

root mean squared error as performance metrics. They found that Bi-LSTM, GRU and

LSTM outperform other models in load, PVs and price forecasting, respectively. They

have claimed that their approach not only minimizes the cost of users but also maximizes

the profit of the provider incorporating UN.

Tchernykh et al. [114] have stated that the study of the UN is limited in the field of cloud

computing systems and addressed the UN in the context of availability, confidentiality and

integrity. The source of UN is cost, replication, data, energy consumption, migration, fault

tolerance, virtualization, elastic provisioning, infrastructure, provisioning time, consolida-

tion, communication, elasticity, availability, etc. They have provided various scheduling

objectives, namely expected makespan, expected mean turnaround time, waiting time and

bounded slowdown, and expected total weighted completion time and tardiness, to deter-

mine the quality of solutions. However, the risk cannot be overcome in future large-scale

systems. Xu et al. [67] have presented a job scheduling algorithm to address the cost

minimization problem in geographically distributed datacenters. They have integrated re-

inforcement learning and neural networks. However, they have not considered the UN of

jobs in datacenters.

Ahmed [82] has reported that the traditional SLA does not cover the eco-friendly, green,

and information technology ethics issues. As a circumstance, they have suggested a green

SLA framework by incorporating these issues and adding a new layer to their framework.

However, the UN is not considered in the green SLA framework. In summary, most of the

algorithms do not consider the UN and assume that the URs finish their execution without

interruption. Padhi and Subramanyam et al. [115] have considered the UN of renewable

and non-renewable resources and modelled them in percentages between 1% and 100%.
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They have also extended the three benchmark algorithms and called them UN-FABEF,

UN-HAREF and UN-RR. However, the UN’s resources are considered static, and there is

no level of uncertainty. The above-discussed scheduling algorithms are compared in terms

of the UNL of UR, UN consideration of resources, objectives (i.e., minimizing cost and

maximizing available RE usage), scheduling decision (i.e., static and dynamic) and ease of

implementation as shown in Table 2.2.

2.4 Migration-Based Scheduling Algorithms

Xu and Buyya [79] have addressed the problem of huge energy consumption in the datacen-

ters. They have suggested managing the loads among various clouds deployed in different

time zones to minimize the usage of NRE and maximize the usage of RE resources. How-

ever, their model considers RE, power consumption, and carbon emissions without looking

into UN in load shifting. Khosravi, Toosi and Buyya [33] have developed an optimal offline

cost algorithm. Here, they have assumed the awareness of future RE generation. However,

it is impractical to know such a generation apriori. Therefore, they have proposed two on-

line algorithms, optimal online deterministic and future-aware dynamic provisioning, by

considering no or limited knowledge of RE generation. However, their main goal is mi-

grating VMs from the datacenter with no RE to the datacenter with more RE.

Silva et al. [117] have conducted energy and resource migrations within datacenters,

focusing on transferring these resources between green compute nodes equipped with en-

ergy storage and transport capabilities. Nevertheless, their analysis did not encompass NRE

sources, especially when RE may be insufficient. Rajeev and Ashok [116] have analyzed

the consumers’ load-shifting patterns to utilize the RE sources properly. They have con-

sidered both temporal and locational characteristics, namely metering and monitoring of

RE sources for forecasting. They categorize the energy consumer into low, medium and

high-end to provide the solar power in kW. For instance, a high-end consumer requires

two, whereas a low-end consumer requires one. On the contrary, a medium-end consumer

requires 1.5. Similarly, the number of 12 V, 200 Ampere hours (Ah) batteries required for

a high-end consumer is five, whereas low-end and medium-end consumers require three.
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They categorize the events into temperature and time-shiftable, in which television, mi-

crowave, dish wash and washing machine are time-shiftable events. In contrast, freezers,

air conditioners and water heaters are temperature-shiftable events. The priority of these

events is in the order of washing machine, water heater, dish wash, microwave, television,

air conditioner and freezer from high to low. However, the average load is in the order

of microwave, water heater, air conditioner, washing machine, dish wash, television and

freezer from high to low. They have claimed 8% annual bill savings of households using a

load-shifting algorithm.

Guitart [118] has implemented various container migrations, namely iterative and disk-

less, for specific high-performance computing (HPC) applications. Note that a container

is an executable software unit that packs codes and their dependencies and libraries. The

author has integrated checkpoint/restore (C/R) techniques of HPC with containerization in

order to reduce the freeze time and enable live migrations. Here, the C/R technique enables

the storage of the computation state so that computation can be resumed from that point

without losing the preceding things. On the other hand, live migration enables an executing

process to move from one physical host to another physical host with minimal downtime.

It leads to improved load-balancing capabilities. The various forms of live migrations are

storage, memory (diskless and iterative) and networking. Further, diskless migration can

be considered disk and diskless, without and with page servers. On the contrary, naive/cold

migration pauses the executing process in one host, dumps its state, transfers it via the net-

work and resumes its execution in another host. As a result, the downtime is quite high.

The iterative migration is similar to the live migration and is presented in two forms, pre-

copy and post-copy. In the first form, all the states are copied from source to destination

without interrupting the execution at the source. In the later form, the migration is ini-

tiated by pausing the execution and transferring the minimal part of the execution state

(e.g., registers and CPU state) to the destination host to resume the execution. The remain-

ing part of the execution state is later transferred from the source host to the destination

host. However, resource management and scheduling algorithms have not been taken into

consideration. Seddiki et al. [119] have performed VM migrations among datacenters and

implemented them using Cloudsim. They have considered the availability of RE dynam-
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ically in the datacenters. They have enabled two functionalities, namely conceptual and

simulation entities, in Cloudsim. The conceptual entities include a renewable cloud data-

center, renewable power host and meta-scheduler, whereas the simulation entities include

cluster information, renewable cluster, renewable helper and renewable constants. In their

implementation, they use two servers, namely HP ProLiant ML110 G4 and HP ProLiant

ML110 G5. Note that the latter is more powerful than the former in terms of processing

speed. They have considered three scenarios with the number of hosts as 265, 530 and 800

and VMs as 350, 695 and 1052, respectively. On the other hand, the number of cloudlets

in these scenarios ranges from 500 to 3000, 1000 to 5000 and 1500 to 10000, respectively.

They have claimed a maximum of 64% RE usage using their proposed systems. However,

UR scheduling is not explicitly considered in their systems.

Xu, Toosi and Buyya [122] have targeted minimizing the carbon footprint by utiliz-

ing RE and avoiding brown energy. They have presented a self-adaptive algorithm for

managing the resources to handle both batch and interactive workloads. Specifically, they

have proposed two algorithms, namely the brownout-based algorithm and deferring algo-

rithm, for interactive and batch workloads, respectively. The microservices of interactive

and batch workloads are made optional and mandatory, respectively. In their perspective

model, the controller monitors, analyses, plans, and executes workloads. They have used

nine machines for the performance evaluation, three of which were IBM X3500 M4, four

of which were IBM X3200 M3, and two of which were Dell OptiPlex 990. The CPU sizes

of these three types of machines are 2, 2.8 and 3.4 gigahertz (GHz). The number of cores

is 12, 4 and 4, respectively. Moreover, the memory sizes are 64 Gigabyte (GB), 16 GB

and 8GB, respectively, whereas the storage sizes are 2.9 TB, 199 GB and 399 GB, respec-

tively. On the other hand, the idle power of these three types of machines is 153 watts,

60 watts and 26 watts, respectively, whereas the peak power is 230 watts, 150 watts and

106 watts, respectively. Their algorithms minimize brown energy by 21% and increase RE

usage by 10%. However, they have not considered multiple clouds available in different

zones to migrate the workloads. Yang et al. [120] have examined RE source patterns and

introduced a task migration algorithm to relocate workloads to areas with abundant RE

generation to combat carbon pollution. Their algorithm distinguishes between two task
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types: delay-tolerant and delay-sensitive. However, their model does not account for each

task’s required number of nodes.

Benblidia et al. [121] have focused on power grid-cloud architecture and modelled the

power issues as a non-cooperative game. They have proved the existence of Nash equi-

librium. Their proposed scheme is aware of price, gas, power and renewable. In their

implementation, they have considered only three datacenters, the peak and off-peak times

as 6 AM to 10 PM and 10 PM to 6 AM, respectively, and PUE is between 1.1 and 2, re-

spectively. They have compared with the RE-based scheme and price-based approach in

which they achieve a 31.2% improvement regarding power load rate. Grange et al. [123]

have taken a batch of jobs with individual due date constraints and proposed an algorithm

to minimize the utilization of NRE, consequently lowering costs. However, their algorithm

is constrained to a single datacenter, lacking virtualization and full awareness of RE gener-

ation. Table 2.3 summarizes migration-based scheduling algorithms.

2.5 Summary

This chapter discusses the importance of RE for sustainable development. Then, it seg-

regates the existing RE-based scheduling algorithms into various objectives, such as cost,

RE and NRE generations, UN and migration and explains each in different sections. This

chapter also compares various cost-based, RE and NRE-based scheduling algorithms us-

ing certain characteristics and remarks in tabular form. Subsequently, it compares various

UN-based scheduling algorithms using their consideration, decision and implementations.

Finally, it compares various migration-based scheduling algorithms and their applicability

in different characteristics.
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Chapter 3

Efficient Renewable Energy-Based

Geographical Load Balancing

Algorithms

This chapter targets the problem of assigning n URs with their requirements to m datacen-

ters with o servers each, powered by RE and NRE generations, for a GCC environment.

The goal is to reduce the OCO and increase the usage of RE resources. Here, we introduce

two algorithms, PM-FABEF and PM-HAREF, toward the solution to the problem. PM-

FABEF takes the URs based on their start time (ST) and determines the cost of processor

and memory nodes in each datacenter. Then, it calculates the sum of the cost of processor

and memory nodes. Subsequently, it schedules the URs to the minimum cost datacenter.

On the other hand, PM-HAREF considers the URs based on their ST and calculates the

number of RE resource slots in the processor and memory for each datacenter. Then, it cal-

culates the sum of the processor and memory resource slots. Subsequently, it assigns the

URs to the datacenter with the maximum RE resource slots. It is noteworthy to mention

that both algorithms make decisions based on processor and memory nodes of datacenters

in contrast to only processor nodes considered in the literature. We show that PM-FABEF

achieves good performance in the OCO, and PM-HAREF achieves better in RE usage. We

compare two proposed and three existing benchmark algorithms using ten datasets with

200 to 2000 URs and 20 to 200 datacenters. We also compared all of them using three

29



Section 3.1 3.1. CLOUD MODEL AND PROBLEM STATEMENT

performance metrics, called the OCO, TNRE and TNNRE. The comparison results depict

the supremacy of the PM-FABEF and PM-HAREF algorithms as per their applicability.

The primary novelties of this work are as follows.

1. We develop two GLB algorithms by incorporating processor and memory nodes at a

glance.

2. We consider the varying costs with respect to processor and memory nodes in each

datacenter to make the proposed algorithms more realistic.

3. The proposed algorithms are compared with three benchmark algorithms to show

their efficacy in three performance metrics.

The upcoming sections are outlined as follows. Section 3.1 introduces the cloud model

and problem to be investigated. Section 3.2 introduces two proposed algorithms, PM-

FABEF and PM-HAREF, with their illustration. Section 3.3 presents the simulation runs’

results and discussion. Section 3.4 summarizes the chapter.

3.1 Cloud Model and Problem Statement

This section outlines the system model and defines the problem, including its objectives

and constraints.

3.1.1 Cloud Model

We visualize the proposed model in the IaaS cloud, where datacenters are geographically

distributed worldwide. For instance, AWS spans over 31 regions, 99 availability zones

and more than 450 points of presence [76]. Moreover, Amazon announces another five

regions and 15 availability zones to expand its global infrastructure. Therefore, CSPs (e.g.,

Amazon, Google, International business machines (IBM) and others) rely on RE sources

to create a sustainable business for the enterprises/users and the environment. Amazon

is currently the leading purchaser of RE and expects to use 100% RE by 2025. It has

generated more than 20 Gigawatts of power using RE sources by January 2023. Still, CSPs
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rely on NRE sources to avoid any hindrance to RE sources. On the other hand, CSPs

receive the URs from the users and accommodate their requests in the resources/servers

of the datacenters. They attempt to run the servers using RE sources and switch to NRE

sources in case of insufficiency. As a result, CSPs save a considerable amount of cost by

minimizing the usage of NRE. As a result, the cost of using green energy resources is low-

priced than brown energy resources for the users.

3.1.2 Problem Statement

We consider n URs, UR = {UR1, UR2, UR3,. . ., URn} and m datacenters, DC = {DC1,

DC2, DC3, . . ., DCm}. A UR, URk, 1 ≤ k ≤ n, is presented using five requirements,

namely UR identification (ID) number, ST, duration (D), number of required processor

nodes (NP) and number of required memory nodes (NM). Note that NP and NM can be

visualized as virtual CPU (vCPU) and memory in Amazon EC2 instance (i.e., t2.medium,

t2.small, t2.micro and so on), respectively. A datacenter, DCi, 1 ≤ i ≤ m, is presented

using ID, number of resources/servers, a series of green energy and brown energy resources

over time and a cost series of green energy and brown energy resources over time for

processor and memory nodes, respectively. It should be noted that the number of resources

is the sum of green energy and brown energy resources.

The problem is to determine a mapping (i.e., matching and scheduling) between the

URs and resources of the datacenters without prior knowledge of available RE beyond a

time window so that the below goals are achieved.

1. Minimize the OCO of datacenters

2. Maximize the proper usage of RE resources

3. Minimize the usage of NRE resources

The following restrictions bound the above problem.

1. The execution order of URs, i.e., UR1, UR2, UR3,. . ., URn, remains unchanged.

2. A UR can take a mixture of RE and NRE resources without any hindrance.
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3. A UR cannot migrate from one datacenter to another datacenter at any cost.

4. A UR cannot be postponed due to the future availability of RE, i.e., in the next time

window.

3.2 Renewable Energy-Based GLB Algorithms

In this section, we introduce two algorithms, PM-FABEF and PM-HAREF, for the GCC

environment. They are RE-based scheduling algorithms for GLB. The objective of PM-

FABEF and PM-HAREF is to reduce the OCO by improving green energy usage. PM-

FABEF determines a UR’s cost for processor and memory nodes in each datacenter and

calculates the OCO by adding both the cost of processor and memory nodes. It then chooses

the datacenter that results in the least OCO. On the contrary, PM-HAREF determines the

available RE resource slots for processor and memory in each datacenter as per the UR

requirements. Then, it aggregates the total available green energy resource slots and selects

the datacenter with the maximum available green energy resource slots. The pseudo-code

of the proposed algorithms, PM-FABEF and PM-HAREF, is shown in Algorithms 3.1 and

3.2, respectively.

PM-FABEF takes a set of n URs with their properties, namely, ST, D, NP and NM, a set

of m datacenters with a number of resources/servers, a series of green energy and brown

energy resources over time and a cost series of green energy and brown energy resources

over time for the processor (proc cost re and proc cost nre) and memory (mem cost re

and mem cost nre). We represent each datacenter as two-dimensional (2D) matrices, P

and M, in which columns indicate the time series and rows indicate the processors/memory/

resources/servers. PM-FABEF determines the OCO, TNRE and TNNRE.

PM-FABEF creates a UR queue (URQ) to hold the URs as they arrive in the system.

At a time instance, it checks whether the queue is empty (Line 1 of Algorithm 3.1). If

the queue is not empty, then it picks a UR from the URQ and finds a suitable datacenter

(Line 3 and Line 4). Note that the values of k or URk are present in a one-dimensional

(1D) array. Then it determines the free resource slots for that UR between the ST and the

D from the ST (Line 6 and Line 8). In each time slot, PM-FABEF checks whether the
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Algorithm 3.1 PM-FABEF
Input: URQ, n, m, ST , D, o, P , M , proc cost re, proc cost nre, mem cost re, mem cost nre, NP
and NM
Output: OCO, TNRE and TNNRE

1: while URQ is not empty do
2: Set OCO← 0, TNRE ← 0 and TNNRE ← 0
3: for k← 1 to n do
4: for i← 1 to m do
5: Set ACOP [i]← 0, ACOM [i]← 0, proc slots re← 0, proc slots nre← 0, mem slots re
← 0 and mem slots nre← 0

6: for l← ST [k] to ST [k] + D[k] - 1 do
7: Set proc slots← 0, mem slots← 0, proc flag← 0 and mem flag← 0
8: for j ← 1 to o do
9: if P [l, j] is free and proc flag = 0 then

10: Set proc slots += 1
11: if P [l, j] is supplied by the RE sources then
12: Set proc slots re += 1 and ACOP [i] += proc cost re[l]
13: else
14: Set proc slots nre += 1 and ACOP [i] += proc cost nre[l]
15: end if
16: end if
17: if M [l, j] is free and mem flag = 0 then
18: Set mem slots += 1
19: if M [l, j] is supplied by the RE sources then
20: Set mem slots re += 1 and ACOM [i] +=mem cost nre[l]
21: else
22: Set mem slots nre += 1 and ACOM [i] +=mem cost nre[l]
23: end if
24: end if
25: if proc slots = NP [k] then
26: Set proc flag← 1
27: end if
28: if mem slots = NM [k] then
29: Set mem flag← 1
30: end if
31: if proc flag← 1 and mem flag← 1 then
32: break
33: end if
34: end for
35: end for
36: end for
37: for i← 1 to m do
38: Set ACO[i]← ACOP [i] + ACOM [i]
39: end for
40: Determine min(ACO) and the datacenter i′ that keeps the least value
41: Schedule the UR k to the selected datacenter i′

42: Set OCO += ACO[i′], TNRE += proc slots re + mem slots re and TNNRE +=
proc slots nre + mem slots nre

43: end for
44: end while
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Algorithm 3.2 PM-HAREF
Input: URQ, n, m, ST , D, o, P , M , proc cost re, proc cost nre, mem cost re, mem cost nre, NP
and NM
Output: OCO, TNRE and TNNRE

1: while URQ ̸= empty do
2: Set OCO← 0
3: for k← 1 to n do
4: for i← 1 to m do
5: Set ACOP [i] ← 0, ACOM [i] ← 0, proc slots re[i] ← 0, mem slots re[i] ← 0,

proc slots nre[i]← 0 and mem slots nre[i]← 0
6: for l← ST [k] to ST [k] + D[k] - 1 do
7: Set proc slots← 0, mem slots← 0, proc flag← 0 and mem flag← 0
8: for j ← 1 to o do
9: if P [l, j] is free and proc flag = 0 then

10: Set proc slots += 1
11: if P [l, j] is supplied by the RE sources then
12: Set proc slots re[i] += 1 and ACOP [i] += proc cost re[l]
13: else
14: Set proc slots nre[i] += 1 and ACOP [i] += proc cost nre[l]
15: end if
16: end if
17: if M [l, j] is free and mem flag = 0 then
18: Set mem slots += 1
19: if M [l, j] is supplied by the RE sources then
20: Set mem slots re[i] += 1 and ACOM [i] +=mem cost nre[l]
21: else
22: Set mem slots nre[i] += 1 and ACOM [i] +=mem cost nre[l]
23: end if
24: end if
25: if proc slots = NP [k] then
26: Set proc flag← 1
27: end if
28: if mem slots← NM [k] then
29: Set mem flag← 1
30: end if
31: if proc flag = 1 and mem flag = 1 then
32: break
33: end if
34: end for
35: end for
36: end for
37: for i← 1 to m do
38: Set ACO[i] ← ACOP [i] + ACOM [i], TNRE[i] ← proc slots re[i] + mem slots re[i]

and TNNRE[i]← proc slots nre[i] + mem slots nre[i]
39: end for
40: Determine max(TNRE) and the datacenter i′ that keeps the least value
41: Schedule the UR k to the selected datacenter i′

42: Set OCO += ACO[i′] and determine the TNRE and TNNRE
43: end for
44: end while
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processor resource slot is free and the flag is unset (Line 9). Note that P [l, j] represents

a 2D array (as there are two subscripts). If so, it subsequently finds whether the resource

slot is powered by RE (Line 11). If so, it increases the number of used RE resource slots

by one and calculates the processor cost (Line 12). Otherwise, it increases the number of

used NRE resource slots by one and calculates the processor cost (Line 13 and Line 14).

In a similar manner, PM-FABEF checks whether the memory resource slot is free and

the flag is unset (Line 17). Note that M [l, j] represents a 2D array. If so, it subsequently

finds whether the resource slot is powered by RE (Line 19). If so, it increases the number

of used RE resource slots by one and calculates the memory cost (Line 20). Otherwise,

it increases the number of used NRE resource slots by one and calculates the memory

cost (Line 21 and Line 22). If the number of required processor slots matches the UR

requirement, then PM-FABEF sets the flag (Line 25 to Line 27). Similarly, if the number

of required memory slots matches the UR requirement, then PM-FABEF sets the flag (Line

28 to Line 30). If both flags are set, then it exits from the innermost loop (Line 31 to Line

32) and continues with the next time slot (Line 6). Note that the flags are zero in line 7

of Algorithm 3.1 and one in lines 26, 29 and 31. The reason behind this is that these flags

count the number of processor and memory slots, respectively. When the count reaches the

required slots, they are set as one. However, it is reset to zero for each time slot. The above

process is iterated for each datacenter for a specific duration as per the UR requirement

(Line 4 to Line 36). Now, PM-FABEF calculates the assignment cost (ACO) by adding the

processor and memory costs (Line 37 to Line 39). Then it finds the minimum assignment

cost and the datacenter that keeps the least value (Line 40). Finally, it assigns that UR to

the corresponding datacenter (Line 41) and updates the OCO, TNRE and TNNRE (Line

42). The above process is iterated for all the URs until the URQ is empty (Line 1 to Line

44).

PM-HAREF works in a similar way to PM-FABEF, but with a different objective. It

takes the same inputs and determines the OCO, TNRE and TNNRE. It also maintains URQ

to keep the URs (Line 1 of Algorithm 3.2) and processes them in order of arrival (Line 3).

It finds a suitable datacenter with maximum RE resource slots, including processor and

memory (Line 4). For this, it iterates from the ST of a UR to the ST + D - 1 (Line 6). Each
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time slot determines the available RE resource slots for the processor and memory (Line

8 to Line 34) and exits upon identifying the resource slots (Line 32). Once PM-HAREF

iterates over all the datacenters, it calculates the ACO to update the OCO (Line 37 to Line

39). It also determines the TNRE by adding processor and memory slots of each datacenter.

It selects the datacenter with maximum TNRE and assigns the UR to that datacenter (Line

40 and Line 41). The above process is iterated for all the URs until the URQ is NULL

(Line 1 to Line 44).

3.2.1 Time Complexity Analysis

In PM-FABEF, Step 2 requires constant time or O(1). Step 3 loop requires O(n) time.

Step 4 loop needs O(m) time. Step 5 requires constant time. Step 6 takes O(d) time by

assuming d is the maximum duration. Step 7 needs constant time. In the worst case, the

Step 8 loop takes O(o) time. Step 9 to Step 33 take constant time. Step 37 loop needs O(m)

time. Step 40 takes O(m) time. Step 41 and Step 42 take constant time. Therefore, the

whole time complexity of PM-FABEF (Step 1 to Step 44) is O(nmdo) for assigning n URs

to m datacenters. In a similar way, we can calculate that the complexity of PM-HAREF is

O(nmdo) time.

3.2.2 Illustration

We demonstrate the proposed algorithms, PM-FABEF and PM-HAREF, using nine URs

(i.e., UR1 to UR9) and two datacenters (i.e., DC1 and DC2). Each datacenter contains

seven processors/resources/servers for processor and memory. The UR properties appear

in Table 3.1, and the primary setups of datacenters are demonstrated in Fig. 3.1. In Fig.

3.1, RE and NRE resource slots are shown in green and white colours, respectively. Each

datacenter’s first row of processor and memory represents the cost of brown resource slots.

However, the cost of green resource slots is assumed to be 0.1 unit, irrespective of datacen-

ters. The last row of processor and memory represents the time slot. It is initially shown

from t = 1 to t = 9.

In the proposed algorithm, PM-FABEF, the first UR, UR1, requires one unit of proces-
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Figure 3.1: A view of datacenter with RE and NRE resource slots.

37



Section 3.2 3.2. RENEWABLE ENERGY-BASED GLB ALGORITHMS

DC1

P 0.5 0.4 0.6 0.5 0.4 0.5 0.4 0.3 0.4
7
6
5
4
3
2
1 UR1 UR1 UR1 UR1

Processor

t 1 2 3 4 5 6 7 8 9
DC1

M 0.4 0.3 0.5 0.4 0.5 0.4 0.5 0.3 0.2
7
6
5
4
3
2 UR1 UR1 UR1 UR1

1 UR1 UR1 UR1 UR1

Memory

t 1 2 3 4 5 6 7 8 9
DC2

P 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.4 0.2
7
6
5
4
3
2
1 UR1 UR1 UR1 UR1

Processor

t 1 2 3 4 5 6 7 8 9
DC2

M 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.3
7
6
5
4
3
2 UR1 UR1 UR1 UR1

1 UR1 UR1 UR1 UR1

Memory

t 1 2 3 4 5 6 7 8 9

Figure 3.2: Matching of UR1 to DC1 and DC2 in PM-FABEF.

38



CHAPTER 3. EFFICIENT RENEWABLE ENERGY-BASED GLB ALGORITHMS 3.2. RENEWABLE ENERGY-BASED GLB ALGORITHMS

Table 3.1: A set of nine URs with their ST, D, NP and NM

UR ID ST D NP NM

UR1 t = 1 4 1 2
UR2 t = 1 1 1 2
UR3 t = 1 4 1 2
UR4 t = 3 5 2 1
UR5 t = 4 3 1 2
UR6 t = 5 2 1 2
UR7 t = 5 3 1 2
UR8 t = 7 2 2 3
UR9 t = 8 2 3 4

sor node and two units of memory nodes for the time instance t = 1 to t = 4, and it can be

assigned to one of the two datacenters, i.e., DC1 and DC2. The UR1 is first checked with

DC1 as demonstrated in Fig. 3.2 in which occupied RE resource slots are underlined ( )

as the colour of the UR and the colour of the resource slots are overlaps with each other.

The processor cost for assigning the UR1 is 0.4 in DC1, as the resource slots are renew-

able. The memory cost for assigning the UR1 is 1.1, as there are seven RE resource slots

and one NRE resource slot. Therefore, the ACO for assigning UR1 to DC1 is 1.5. Simi-

larly, the processor and memory cost for assigning UR1 to DC2 is 0.4 and 0.9, respectively.

Therefore, the ACO is 1.3. As DC2 results in the minimum cost, UR1 is assigned to DC2.

The TNRE and TNNRE of DC2 are 11 and 1, respectively. Next, UR2 needs one unit of

processor node and two units of memory nodes for the time interval t = 1. The processor

and memory costs for assigning the UR2 is 0.1 and 0.5 in DC1. Therefore, the ACO for

assigning UR2 to DC1 is 0.6. Similarly, the processor and memory costs for assigning

UR2 to DC2 is 0.1 and 0.3, respectively. Therefore, the ACO is 0.4. As DC2 results in

the minimum cost, UR2 is assigned to DC2. The TNRE and TNNRE of DC2 are 2 and 1,

respectively.

Next, UR3 needs one unit of processor node and two units of memory nodes for the

time instance t = 1 to t = 4. The processor and memory costs for assigning the UR3 is

0.4 and 1.1 in DC1. Therefore, the ACO for assigning UR3 to DC1 is 1.5. Similarly,

the processor and memory costs for assigning UR3 to DC2 is 0.5 and 1.4, respectively.
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Therefore, the ACO is 1.9. As DC1 results in the minimum cost, UR3 is assigned to DC1.

The TNRE and TNNRE of DC1 are 11 and 1, respectively. Next, UR4 needs two units

of processor nodes and one unit of memory node for the time interval t = 3 to t = 7. The

processor and memory costs for assigning the UR4 is 1.8 and 0.9 in DC1. Therefore, the

ACO for assigning UR4 to DC1 is 2.7. Similarly, the processor and memory costs for

assigning UR4 to DC2 is 1.2 and 0.7, respectively. Therefore, the ACO is 1.9. As DC2

results in the minimum cost, UR4 is assigned to DC2. The TNRE and TNNRE of DC2 are

11 and 4, respectively. Similarly, UR5 to UR9 are assigned to DC2, DC1, DC2, DC2 and

DC1, respectively. The ACOs are 1.9, 1.3, 1.0, 1.6, 1.9 and 2.2, respectively. However,

the OCO is 13.1 as the OCO of DC1 and DC2 is 4.7 and 8.4, respectively. The TNRE and

TNNRE are 61 and 29, respectively. The Gantt chart of PM-FABEF is depicted in Fig. 3.3.

In the proposed algorithm, PM-HAREF, the first UR, UR1, requires one unit of proces-

sor node and two units of memory nodes for the time instance t = 1 to t = 4. The UR1 is first

checked with DC1. The TNRE for the processor and memory is four and seven in order to

assign the UR1 to DC1. Therefore, the TNRE in DC1 is 11. Similarly, the TNRE for the

processor and memory is four and seven in order to assign the UR1 to DC2. Therefore, the

TNRE in DC2 is 11. As both datacenters contain the same TNRE, UR1 is assigned to DC1

to break the ties. The ACO of assigning UR1 to DC1 is 1.5. Next, the UR2 is checked with

DC1. The TNRE for the processor and memory is one and zero in order to assign the UR2

to DC1. Therefore, the TNRE in DC1 is one. Similarly, the TNRE for the processor and

memory is one and two in order to assign the UR2 to DC2. Therefore, the TNRE in DC2

is 3. As DC2 holds the maximum TNRE, UR2 is assigned to DC2. The ACO of assigning

UR2 to DC2 is 0.3.

Next, the UR3 is checked with DC1. The TNRE for the processor and memory is three

and two in order to assign the UR3 to DC1. Therefore, the TNRE in DC1 is five. Similarly,

the TNRE for the processor and memory is four and six in order to assign the UR3 to DC2.

Therefore, the TNRE in DC2 is 10. As DC2 holds the maximum TNRE, UR3 is assigned

to DC2. The ACO of assigning UR3 to DC2 is 1.4. Next, the UR4 is checked with DC1.

The TNRE for the processor and memory is eight and four in order to assign the UR4
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Figure 3.3: Final Gantt chart of PM-FABEF.
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Figure 3.4: Final Gantt chart of PM-HAREF.
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Table 3.2: Comparison of illustration results for PM-FABEF, FABEF, PM-HAREF,
HAREF and RR algorithms

Algorithm OCO TNRE TNNRE
PM-FABEF 13.1 61 29
FABEF [46] 14.3 62 28
PM-HAREF 14.8 67 23
HAREF [46] 14.9 63 27
RR [46] 16.5 60 30

to DC1. Therefore, the TNRE in DC1 is 12. Similarly, the TNRE for the processor and

memory is eight and three in order to assign the UR4 to DC2. Therefore, the TNRE in DC2

is 11. As DC1 holds the maximum TNRE, UR4 is assigned to DC1. The ACO of assigning

UR4 to DC1 is 2.7. Similarly, UR5 to UR9 are assigned to DC2, DC1, DC2, DC1 and

DC2, respectively. The TNREs for UR5 to UR9 are 12, 9, 3, 4, 6 and 9, respectively. The

TNRE and TNNRE is 67 and 23, respectively. However, the ACO is 14.8 as the ACO of

DC1 and DC2 is 8.4 and 6.4, respectively. The Gantt chart of PM-HAREF is depicted in

Fig. 3.4. We compare the illustration results of PM-FABEF and PM-HAREF algorithms

with FABEF, HAREF and RR algorithms as shown in Table 3.2. The Gantt charts are also

shown in Figs. 3.5-3.7. As seen from this table, PM-FABEF outperforms FABEF regarding

the OCO, and PM-HAREF beats HAREF regarding the TNRE.

3.3 Simulation Results

This section explains the three performance metrics that are used to carry out the simulation

results, system configuration and datasets, and compares the simulation results.

3.3.1 Performance Metrics

We consider three performance metrics, called OCO, TNRE and TNNRE. OCO is the

cost of assigning all the URs to the datacenters by considering both processor and memory
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Figure 3.5: Final Gantt chart of FABEF.
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Figure 3.6: Final Gantt chart of HAREF.
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Figure 3.7: Final Gantt chart of RR.
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nodes. Mathematically,

OCO =
n∑

k=1

m∑
i=1

(ACOP [k, i] + ACOM [k, i])×X[k, i] (3.1)

where

X[k, i] =

1 if URk is scheduled to DCi

0 if URk is scheduled to DCi′ , i ̸= i′
(3.2)

TNRE is the total number of used green energy resource slots by all the URs. Mathemat-

ically,

TNRE =
n∑

k=1

TNRE[k] (3.3)

TNNRE is the total number of used brown energy resource slots by all the URs. Mathe-

matically,

TNNRE =
n∑

k=1

TNNRE[k] (3.4)

3.3.2 System Configuration and Datasets

We carry out the simulation runs with the help of a workstation with the following con-

figuration. (1) Processor name: Intel Xeon Gold Processor 6226R CPU @ 2.90 GHz 2.89

GHz and x64-based processor (2) Random-access memory (RAM) size: 64.0 GB (3) Make

and model: HP Incorporated Z6 G4 workstation (4) Operating system: Windows 10 and

64-bit. Each simulation run is independent of the other without any parallel events and is

not limited to the above system configuration. However, each simulation contains parallel

events, as seen in the proposed algorithms. We generate ten datasets by considering 200 to

2000 URs with a gap of 200 each and 20 to 200 datacenters with a gap of 20 each. As a

result, the URs and datacenters are discrete and not continuous. Each dataset is shown in

terms of URs × datacenters. For example, 1000 × 100 indicates that 1000 URs are to be

assigned to 100 datacenters. The datasets are categorized into low and medium datasets.

In the low dataset, the number of URs is 200 to 1000, and datacenters is 20 to 100. On

the other hand, in the high dataset, the number of URs is 1200 to 2000, and datacenters

is 120 to 200. Each dataset comprises five independent instances. The outcomes of the
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Table 3.3: UR/datacenter properties and their range

UR/Datacenter Properties Range
ST [1 ∼ 100]
D [10 ∼ 25]
NP [10 ∼ 100]
NM [10 ∼ 100]
o [10 ∼ 400] per datacenter
proc cost nre [1 ∼ 100]
mem cost nre [1 ∼ 100]
proc cost re and mem cost re 1

five instances are summed and divided by the number of instances, i.e., five, to show the

result of the dataset. These instances are created using the predefined random function of

MATLAB R2022b, version 9.13.0.2105380. Note that the random function follows the

uniform discrete distribution and sampling with replacement. The range of UR and data-

center properties is shown in Table 3.3. It should be noted that the number of resource slots

is 10 to 400 per datacenters. As a result, the total number of resource slots ranges from 200

to 80000 across all the datacenters.

3.3.3 Results, Comparison and Discussion

The simulation results are conducted by running the proposed and existing algorithms in

all 50 instances of 10 datasets. The comparison of the OCO for these algorithms in low and

high datasets is shown graphically in Fig. 3.8 and Fig. 3.9, respectively. Here, the x-axis

(horizontal) shows the low and high datasets, and the y-axis (vertical) shows the OCO. It

can be seen from these figures that the proposed algorithm, PM-FABEF, outperforms all

other algorithms in terms of OCO. On the contrary, the HAREF algorithm is the worst-

performing algorithm than others. The reason behind the performance of PM-FABEF is

that it considers the cost of the processor and memory nodes to schedule the UR to the

selected datacenter.

Next, we compare the proposed and existing algorithms regarding the TNRE in Fig.

3.10 (low dataset) and Fig. 3.11 (high dataset). It is clear from the figures that PM-HAREF

performs better than other algorithms as it dispatches the URs based on the RE in the
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Figure 3.8: Comparison of the OCO for PM-FABEF, FABEF, PM-HAREF, HAREF and
RR algorithms in low datasets.
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Figure 3.9: Comparison of the OCO for PM-FABEF, FABEF, PM-HAREF, HAREF and
RR algorithms in high datasets.

datacenters. Notably, using RE resource slots does not necessarily reduce the OCO, as

seen in Fig. 3.8 to Fig. 3.11 and mentioned in [46]. We also compare the TNNRE for

the proposed and existing algorithms in low and high datasets and show the results in Fig.

3.12 and Fig. 3.13, respectively. These figures are converse to Fig. 3.10 and Fig. 3.11,

respectively, in the sense that the usage of RE resource slots reduces the usage of NRE

resource slots. For instance, PM-HAREF uses more RE resource slots. Therefore, as seen

in the figures, it reduces the use of NRE resource slots than other algorithms. On the

contrary, RR is the worst-performing algorithm compared to other algorithms.
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Figure 3.10: Comparison of the TNRE for PM-FABEF, FABEF, PM-HAREF, HAREF and
RR algorithms in low datasets.
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Figure 3.11: Comparison of the TNNRE for PM-FABEF, FABEF, PM-HAREF, HAREF
and RR algorithms in high datasets.
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Figure 3.12: Comparison of the TNNRE for PM-FABEF, FABEF, PM-HAREF, HAREF
and RR algorithms in low datasets.
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Figure 3.13: Comparison of the TNNRE for PM-FABEF, FABEF, PM-HAREF, HAREF
and RR algorithms in high datasets.

3.4 Summary

In this chapter, we have introduced two algorithms, PM-FABEF and PM-HAREF, for GCC.

They target to reduce the OCO and TNNRE and maximize the TNRE. PM-FABEF min-

imizes the OCO, whereas PM-HAREF maximizes the TNRE. Both algorithms appear to

require O(nmdo) time for n URs, m datacenters, d maximum duration and o maximum

resources. We have presented the simulation results of the proposed algorithms using 50

instances of 10 datasets and compared them with three benchmark algorithms, namely

FABEF, HAREF and RR, using three performance metrics. The results and compari-

son show the superiority of PM-FABEF in the OCO and PM-HAREF in the TNRE and

TNNRE. We found a non-linear relationship between the OCO and TNRE. However, the

proposed algorithms do not consider the UN of the RE and NRE resources. As a result,

the D of UR may deviate due to unforeseen circumstances. Therefore, we aim to explore

the the UN of the RE and NRE resources and develop RE-based scheduling algorithms by

managing the UN in the next chapter.
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Chapter 4

User Request-Based Scheduling

Algorithms by Managing Uncertainty of

Renewable Energy

This chapter addresses the problem of matching and scheduling URs to the resources of

datacenters by managing the UN of RE and NRE resources. It presents three RE-based

scheduling algorithms for cloud computing, namely UN-FABEF, UN-HAREF, and UN-

RR. These algorithms considers two types of UN, namely UN-RE and UN-NRE, and model

the UN in terms of the percentage of UN-RE and UN-NRE. The UN-RE is variable, and

the UN-NRE is fixed as RE and NRE resources are unreliable and reliable, respectively.

For instance, consider a UR (i.e., UR1) that requires one node for four time slots in one

of the two available datacenters. The UN of this request is pre-determined as 50% for

RE and 10% for NRE. The request is matched with datacenters DC1 and DC2. In both

datacenters, four RE resource slots are available. Therefore, there is no need to assign the

NRE resources. The UN is calculated by multiplying four RE resource slots and 50%,

which is 2. This means that the duration of UR1 can be extended from 4 to 6 (i.e., 4 + 2)

by incorporating the UN. Note that this is essential for fulfilling the requirements as per the

SLA.

UN-FABEF matches the UR to all the available datacenters and determines the OCO,

including UN time duration. Then it assigns that UR to a datacenter that results in the
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least OCO. UN-HAREF matches the UR to all the available datacenters and determines the

TNRE, including UN time duration. Then it assigns that UR to a datacenter that results

in the highest TNRE. On the contrary, UN-RR assigns the URs to the datacenters in a cir-

cular fashion. The performance of the proposed algorithms is assessed through a rigorous

simulation process by incorporating UN and tested with 200 to 2000 URs and 20 to 200

datacenters. The results are obtained in terms of OCO, TNRE, UNT and UNCO. Note that

there is no dependency between the OCO and TNRE. To the best of our knowledge, exist-

ing literature does not consider the UN of URs in terms of the percentage of UN-RE and

UN-NRE. Therefore, the proposed algorithms are compared among themselves to show

their applicability.

The significant contributions of this chapter are listed as follows.

1. Development of three RE-based scheduling algorithms by managing the UN-RE and

UN-NRE sources.

2. The UN of UR is modelled in terms of the percentage of UN-RE and UN-NRE and

considered as a variable for RE resources and fixed for NRE resources as per their

sustainability.

3. The UN time is determined using the TNRE and TNNRE that are assigned to the

UR. This time can be considered as a reserved time to handle the UN.

4. Simulation of three proposed algorithms in ten different datasets and comparison of

results in four different performance metrics.

The remaining sections of this chapter are arranged as follows. Section 4.1 presents

the RE-based system model with UN and the problem statement with objectives and con-

straints. Section 4.2 focuses on three proposed algorithms, their pseudocode, illustrations,

and complexity analysis. Section 4.3 discusses the performance metrics, the simulation

configuration, the generation of datasets, the simulation results, and the performance anal-

ysis. Section 4.4 summarizes this chapter.
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4.1 Renewable Energy-Based System Model and Problem

Formulation

This section discusses the system model and presents the problem with objectives and

constraints.

4.1.1 System Model

Consider a CSP that hosts a set of datacenters to assign resources to the URs as per their

SLA requirements. These datacenters are powered by both RE and NRE sources. However,

the CSP tries to balance the power requirement of the resources of the datacenters by RE

sources as it is sustainable and environment-friendly. In case of further power requirements,

it can be provided using NRE sources. In the view of CSP, the cost of using RE resources is

negligible, whereas the cost of using NRE resources varies with respect to time as it relies

on electricity generation costs. On the contrary, in the view of the user, the cost of using

RE resources is cheaper than NRE resources. However, the UN of using RE resources is

more compared to the NRE resources. In the proposed model, the UR is matched with

all the available datacenters to determine the TNRE and TNNRE as per its requirements.

Subsequently, the UN can be determined using these resource slots. Finally, the OCO

of the UR is determined in each datacenter, including UN time duration. In the case of

UN-FABEF, the UR is assigned to the datacenter with the least OCO. On the contrary,

the UN-HAREF assigns the UR to the datacenter with the highest TNRE. However, UN-

RR assigns the UR to the datacenter without considering the OCO and TNRE. The above

model is an extension of the model considered in [46, 63].

4.1.2 Problem Formulation

Consider a set of n URs, UR = {UR1, UR2, UR3,. . ., URn} and a set of m datacenters,

DC = {DC1, DC2, DC3,. . ., DCm}. Note that n >> m. Each UR, URk, 1 ≤ k ≤ n,

is represented using a 6-tuple, i.e., URk = <UR ID, ST , D, N , UN -RE, UN -NRE>.

Here, UR ID represents the unique ID of URk, ST represents start time of URk, D rep-
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resents duration of URk, N represents the number of nodes required for URk, UN -RE

represents the UN of RE resources available for URk and UN -NRE represents the UN

of NRE resources available for URk. UN -RE and UN -NRE can be any value between

1% and 100%. Mathematically, UN -RE = [1%∼ 100%] and UN -NRE = [1%∼ 100%].

In the best-case scenario, the value of UN -RE and UN -NRE is 0%. However, in the

worst-case scenario, the value of UN -RE and UN -NRE is 100%.

Each datacenter, DCi, 1 ≤ i ≤ m, is represented by using a 5-tuple, i.e., DCi = <DC

ID, o, ARE, ANRE, CO>. Here, DC ID represents the unique ID of DCi, o represents

a number of resources in DCi, ARE represents a series of available RE resources in DCi

over a period of time, ANRE represents a series of available NRE resources in DCi over a

period of time and CO represents the cost of RE and NRE resources of DCi, respectively.

The sum of RE (i.e., re) and NRE (i.e., nre) resources is o. Mathematically, o = re +

nre. The problem is to match each UR, one by one, with all the available datacenters and

schedule the UR to a suitable datacenter, such that the following objectives are fulfilled.

1. The OCO is minimized.

2. The TNRE is maximized.

3. The UNT and UNCO are minimized.

This problem is formulated with the following constraints.

1. The order of URs remains intact.

2. The number of nodes can be provided from either RE or NRE resources or both, and

it cannot exceed the maximum available resources at any particular time.

3. The duration of UR can be adjusted by incorporating the UN.

4.2 Proposed Scheduling Algorithms

This section presents three proposed algorithms: UN-FABEF, UN-HAREF, and UN-RR.

These algorithms aim to minimize the OCO, UNT and UNCO, and maximize the TNRE.
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The pseudo-codes for UN-FABEF, UN-HAREF and UN-RR are shown in Algorithm 4.1

to Algorithm 4.3, respectively.

4.2.1 UN-FABEF

UN-FABEF picks a UR (say, URk) from the URQ (Line 1 and Line 3 of Algorithm 4.1)

and matches the UR with all the available datacenters (Line 4). In the process of matching,

it finds the resource slots that are available between ST of URk, and the sum of ST and D

of URk minus one, as per the requirement of URk (Line 6). Then it determines the number

of RE (i.e., slots re) and NRE (i.e., slots nre) resource slots that can be given to that UR

and the ACO without UN (Line 8 to Line 21).

If the number of resource slots is equal to the number of resource slots required for

that UR at a time instance (Line 18), then it breaks the loop (Line 19) and continues with

another time instance (Line 6). Otherwise, it will be an infinite loop. Next, UN-FABEF

calls the Procedure 1 (DETERMINE-UN ) to determine the UN (Line 23). UN can be

determined as follows (Line 1 of Procedure 1).

UN [k] = ⌈(re× UN -RE[k] + nre× UN -NRE[k])⌉, 1 ≤ k ≤ n (4.1)

where UN -RE[k] and UN -NRE[k] are UN of RE and NRE for URk. The range of UN -

RE and UN -NRE is between 1% and 100%. As the number of resource slots is an integer,

we use the ceil function (⌈ ⌉) to round the value to the next integer.

Next, the D of URk is extended from ST [k] + D[k] - 1 to ST [k] + D[k] + ⌈UN [k]
N [k]
⌉ by

incorporating the UN (Line 2). Then it adds the number of RE and NRE resource slots that

can be required to fulfil the UN and calculates the updated ACO by considering UN (Line

4 to Line 17). This procedure is called for each UR to determine the updated ACO.

Now, the least ACO is calculated, and the corresponding datacenter is identified (Line

25 of Algorithm 4.1). Finally, the UR is assigned to the least ACO datacenter, and the OCO

is updated (Line 26 and Line 27).
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Algorithm 4.1 UN-FABEF
Input: URQ, ST , D, N , R, CO, n, m, o
Output: OCO and TNRE

1: while URQ is not NULL do
2: Set OCO← 0
3: for k← 1, 2, 3,. . ., n do
4: for i← 1, 2, 3,. . ., m do
5: Set ACO[i]← 0, slots re← 0 and slots nre← 0
6: for l ← ST [k], ST [k] + 1, ST [k] + 2,. . ., ST [k] + D[k] - 1

do
7: Set slots← 0
8: for j ← 1, 2, 3,. . ., o do
9: if R[l, j] is not assigned to any UR then

10: slots += 1
11: if R[l, j] is powered by the RE sources then
12: slots re += 1
13: else
14: slots nre += 1
15: ACO[i] += CO[l]
16: end if
17: end if
18: if slots = N [k] then
19: break
20: end if
21: end for
22: end for
23: Call DETERMINE-UN (k, UN -RE, UN -NRE, ST ,

D, N , R, o, re, nre, ACO, CO)
24: end for
25: Find min(ACO) and determine the best datacenter i′ that holds

the minimum value
26: Assign the UR k to the datacenter i′

27: OCO += ACO[i′] and update the TNRE
28: end for
29: end while
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Procedure 1 DETERMINE-UN (k, UN -RE, UN -NRE, ST , D, N , R, o, re, nre,
ACO, CO)

1: UN [k]← ⌈re× UN -RE[k] + nre× UN -NRE[k]⌉
2: for l← ST [k] + D[k], ST [k] + D[k] + 1,. . ., ST [k] + D[k] + ⌈UN [k]

N [k]
⌉ do

3: Set slots← 0
4: for j ← 1, 2, 3,. . ., o do
5: if R[l, j] is not assigned to any UR then
6: slots += 1
7: if R[l, j] is powered by the RE sources then
8: slots re += 1
9: else

10: slots nre += 1
11: ACO[i] += CO[l]
12: end if
13: end if
14: if slots = N [k] then
15: break
16: end if
17: end for
18: end for

4.2.2 UN-HAREF

UN-HAREF picks a UR (say, URk) from the URQ (Line 1 and Line 3 of Algorithm 4.2)

and matches the UR with all the available datacenters (Line 4). In the process of matching,

it finds the resource slots that are available between ST of URk, and the sum of ST and D of

URk minus one (Line 6). Then, it determines the slots re and slots nre that can be given

to that UR and the ACO without UN (Line 8 to Line 21). We exit from the inner for loop

(line 8) using the break statement in line 19. This is performed when the node requirements

of a UR are fulfilled by a datacenter in a particular time slot.

Next, UN-HAREF calls the Procedure 2 (DETERMINE-UN -HAREF ) to deter-

mine the UN (Line 23). Like UN-FABEF, the D of URk is extended from ST [k] + D[k] -

1 to ST [k] + D[k] + ⌈UN [k]
N [k]
⌉ by incorporating the UN (Line 2). Then, it adds the slots re

and slots nre that can be required to fulfil the UN and calculates the updated ACO by

considering UN (Line 4 to Line 17).

Now, the datacenter with the highest slots re is identified (Line 25 of Algorithm 4.2).

Finally, the UR is assigned to the datacenter with the highest slots re, and the OCO is
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updated (Line 26 and Line 27).

Algorithm 4.2 UN-HAREF
Input: URQ, ST , D, N , R, CO, n, m, o
Output: OCO and TNRE

1: while URQ ̸= NULL do
2: Set OCO← 0
3: for k← 1, 2, 3,. . ., n do
4: for i← 1, 2, 3,. . ., m do
5: Set ACO[i]← 0, slots re[i]← 0 and slots nre[i]← 0
6: for l← ST [k], ST [k] + 1, ST [k] + 2,. . ., ST [k] + D[k] - 1 do
7: Set slots← 0
8: for j ← 1, 2, 3,. . ., o do
9: if R[l, j] is not assigned to any UR then

10: slots += 1
11: if R[l, j] is powered by the RE sources then
12: slots re[i] += 1
13: else
14: slots nre[i] += 1
15: ACO[i] += CO[l]
16: end if
17: end if
18: if slots = N [k] then
19: break
20: end if
21: end for
22: end for
23: Call DETERMINE-UN -HAREF (k, UN -RE, UN -NRE, ST , D, N ,

R, o, re, nre, ACO, CO)
24: end for
25: Find max(slots re) and determine the best DC i′ that holds the maximum

value
26: Assign the UR k to the DC i′

27: OCO += ACO[i′] and update the TNRE
28: end for
29: end while

4.2.3 UN-RR

UN-RR picks a UR (say, URk) from the URQ (Line 1 and Line 3 of Algorithm 4.3). Then

it determines the datacenter by finding whether k is a multiple of m (Line 4). In the process
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Procedure 2 DETERMINE-UNCERTAINTY -HAREF (k, UN -RE, UN -NRE,
ST , D, N , R, o, re, nre, ACO, CO)

1: UN [k]← ⌈re[i]× UN -RE[k] + nre[i]× UN -NRE[k]⌉
2: for l← ST [k] + D[k], ST [k] + D[k] + 1,. . ., ST [k] + D[k] + ⌈UN [k]

N [k]
⌉ do

3: Set slots← 0
4: for j ← 1, 2, 3,. . ., o do
5: if R[l, j] is not assigned to any UR then
6: slots += 1
7: if R[l, j] is powered by the RE sources then
8: slots re[i] += 1
9: else

10: slots nre[i] += 1
11: ACO[i] += CO[l]
12: end if
13: end if
14: if slots = N [k] then
15: break
16: end if
17: end for
18: end for

of matching, it finds the resource slots that are available between ST of URk, and the sum

of ST and D of URk minus one (Line 6). Then, it determines the slots re and slots nre

that can be given to that UR and the OCO (Line 8 to Line 21).

We use the break statement in line 19 to exit from the line 8 inner for loop. This is done

when a datacenter in a particular time slot fulfils the node requirements of a UR. Next, UN-

RR calls the Procedure 1 (DETERMINE-UN ) to determine the UN (Line 23). Note

that the procedure is the same as the UN-FABEF. Hence, it is not explicitly shown here.

However, the symbol ACO needs to be replaced with OCO in line 11 of Procedure 1.

4.2.4 Time Complexity Analysis

Let n be the number of UR, m be the number of datacenters, d be the maximum dura-

tion of all the URs, and o be the number of resources. In the UN-FABEF, the process of

matching for each request takes O(mdo) time. Procedure 1 takes O(do) time for each UR.

The process of scheduling for each request takes O(m) time. Therefore, the overall time

complexity of UN-FABEF is O(nmdo) time for executing all the URs.
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Like UN-FABEF, the overall time complexity of UN-HAREF is O(nmdo) time for

executing all the URs. In the UN-RR, the process of matching for each request takes O(do)

time. Procedure 1 takes O(do) time for each UR. The process of scheduling for each

request takes O(1) time. Therefore, the overall time complexity of UN-RR is O(ndo) time

for executing all the URs. Note that the selection of the datacenter in UN-RR takes O(1)

time.

4.2.5 Illustration

Let us consider that there are nine URs (i.e., UR1 to UR9) with their tuple (i.e., ST, D, N,

UN-RE and UN-NRE) as shown in Table 4.1 and these URs need to be matched to two

datacenters (i.e., DC1 and DC2) in order to assign to one of the datacenters. Note that

we use different colours for URs to uniquely identify each pictorially during the matching

process and in the Gantt chart.

An initial setup of two datacenters and their resource is shown in Table 4.2. Here, we

show seven resources in each datacenter for simplicity of illustration, and it is shown in

the second column of the same table. The first row and last row of each datacenter show

the cost of the NRE resources and time slots. For instance, the cost of the NRE resources

in DC1 is 0.3 at time slot t = 3, whereas the cost of the NRE resources in DC2 is 0.5 at

the same time slot. The green colour in each datacenter represents the RE resources, and

the white colour represents the NRE resources, respectively. As seen in this table, the RE

resources of each datacenter fluctuate over the time slots. The cost of RE resources is lower

than that of NRE resources. Therefore, it is assumed to be negligible for easy illustration.

4.2.5.1 Illustration of UN-FABEF

In the UN-FABEF, the first UR (i.e., UR1) requires one node for the time slots t = 1 to t = 4

(i.e., duration of 4 time slots) without UN. The UN of RE for this UR is pre-determined as

50%, and NRE is pre-determined as 10%. The UR1 is first matched with DC1 as shown in

Table 4.3 in which we underline ( ) the RE resource slots occupied by that UR. Here, DC1

can provide four RE resource slots. Therefore, the finish time of UR1 in DC1 is determined
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Algorithm 4.3 UN-RR
Input: URQ, ST , D, N , R, CO, n, m, o
Output: OCO and number of used RE resources

1: while URQ ̸= NULL do
2: Set OCO← 0
3: for k← 1, 2, 3,. . ., n do
4: (k is a multiple of m) ? i←m : i← k mod m
5: ACO[i]← 0, re← 0 and nre← 0
6: for l← ST [k], ST [k] + 1, ST [k] + 2,. . ., ST [k] + D[k] - 1 do
7: Set slots← 0
8: for j ← 1, 2, 3,. . ., o do
9: if R[l, j] is not assigned to any UR then

10: slots += 1
11: if R[l, j] is powered by the RE sources then
12: slots re += 1
13: else
14: slots nre += 1
15: OCO[i] += CO[l]
16: end if
17: end if
18: if slots = N [k] then
19: break
20: end if
21: end for
22: end for
23: Call DETERMINE-UN (k, UN -RE, UN -NRE, ST , D, N , R, o, re, nre,

ACO, CO)
24: end for
25: Update the TNRE
26: end while

Table 4.1: A set of nine URs with their tuple

UR ID ST D N UN -RE UN -NRE
UR1 1 4 1 50% 10%
UR2 1 1 1 100% 10%
UR3 1 4 1 25% 10%
UR4 3 5 2 60% 10%
UR5 4 3 1 33% 10%
UR6 5 2 1 50% 10%
UR7 5 3 1 33% 10%
UR8 7 2 2 100% 10%
UR9 8 2 3 50% 10%
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Table 4.2: An initial setup of datacenters and their resource, and cost of the NRE resources

0.1 0.1 0.3 0.4 0.4 0.2 0.2 0.1 0.1 0.3
7
6
5
4
3
2
1

DC1

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

0.1 0.1 0.5 0.3 0.2 0.3 0.4 0.5 0.1 0.3
7
6
5
4
3
2
1

DC2

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

as 4 + ⌈(4 × 50%)⌉ = 6 with UN, and the ACO is calculated as negligible (i.e., 0). Then,

UR1 is matched DC2 as shown in Table 4.3. Like DC1, DC2 can provide four RE resource

slots. Therefore, the finish time of UR1 in DC2 is determined as 4 + ⌈(4 × 50%)⌉ = 6.

However, the ACO is calculated as 0.3. This cost is due to the NRE resource slot at t = 6.

As DC1 takes least ACO, UR1 is assigned to it.

Next, UR2 requires one node at the time slot t = 1 without UN. The UN of RE for

this UR is pre-determined as 100%, and NRE is pre-determined as 10%. The UR2 is first

matched with DC1 as shown in Table 4.4 in which we underline ( ) the RE resource slots

occupied by that UR. Here, DC1 can provide one RE resource slot. Therefore, the finish

time of UR2 in DC1 is determined as 1 + ⌈(1 × 100%)⌉ = 2 with UN, and the ACO is

calculated as 0.1. This cost is due to the NRE resource slot at t = 2. Then, UR2 is matched

DC2 as shown in Table 4.4. Like DC1, DC2 can provide one RE resource slot. Therefore,

the finish time of UR2 in DC2 is determined as 1 + ⌈(1× 100%)⌉ = 2. However, the ACO

is calculated as 0. As DC2 takes least ACO, UR2 is assigned to it.

Next, UR3 requires one node for the time slots t = 1 to t = 4 without UN. The UN of
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Table 4.3: Matching of UR1 to DC1 and DC2 to determine its ACO

0.1 0.1 0.3 0.4 0.4 0.2 0.2 0.1 0.1 0.3
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5
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3
2
1 UR1 UR1 UR1 UR1 UR1 UR1

DC1

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

0.1 0.1 0.5 0.3 0.2 0.3 0.4 0.5 0.1 0.3
7
6
5
4
3
2
1 UR1 UR1 UR1 UR1 UR1 UR1

DC2

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

Table 4.4: Matching of UR2 to DC1 and DC2 to determine its ACO

0.1 0.1 0.3 0.4 0.4 0.2 0.2 0.1 0.1 0.3
7
6
5
4
3
2 UR2 UR2

1 UR1 UR1 UR1 UR1 UR1 UR1

DC1

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

0.1 0.1 0.5 0.3 0.2 0.3 0.4 0.5 0.1 0.3
7
6
5
4
3
2
1 UR2 UR2

DC2

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10
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Table 4.5: Matching of UR3 to DC1 and DC2 to determine its ACO

0.1 0.1 0.3 0.4 0.4 0.2 0.2 0.1 0.1 0.3
7
6
5
4
3
2 UR3 UR3 UR3 UR3 UR3

1 UR1 UR1 UR1 UR1 UR1 UR1

DC1

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

0.1 0.1 0.5 0.3 0.2 0.3 0.4 0.5 0.1 0.3
7
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5
4
3
2 UR3 UR3

1 UR2 UR2 UR3 UR3 UR3

DC2

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

RE for this UR is pre-determined as 25%, and NRE is pre-determined as 10%. The UR3 is

first matched with DC1 as shown in Table 4.5. Here, DC1 can provide three RE resource

slots and one NRE slot. Therefore, the finish time of UR3 in DC1 is determined as 4 +

⌈(3× 25%) + (1× 10%)⌉ = 5 with UN and the ACO is calculated as 0.1. This cost is due

to the NRE resource slot at t = 2. Then, UR3 is matched DC2 as shown in Table 4.5. Like

DC1, DC2 can provide two RE resource slots and two NRE resource slots. Therefore, the

finish time of UR3 in DC2 is determined as 4 + ⌈(2× 25%) + (2× 10%)⌉ = 5. However,

the ACO is calculated as 0.2. This cost is due to the NRE resource slots at t = 1 and t = 2.

As DC1 takes least ACO, UR3 is assigned to it.

Next, UR4 requires 2 nodes for the time slots t = 3 to t = 7 without UN. The UN of

RE for this UR is pre-determined as 60%, and NRE is pre-determined as 10%. The UR4

is first matched with DC1. Here, DC1 can provide seven RE resource slots and three NRE

resource slots. The UN time is ⌈(7 × 60%) + (3 × 10%)⌉ = 5 for 2 nodes. Therefore,

the finish time of UR4 in DC1 is determined as 5 + ⌈5
2
⌉ = 8 with UN and the ACO is

calculated as 2.3. Then UR4 is matched DC2. Here, DC2 can provide eight RE resource
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Table 4.6: Final Gantt chart of assigning the URs to the DCs using UN-FABEF

0.1 0.1 0.3 0.4 0.4 0.2 0.2 0.1 0.1 0.3
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6 UR9
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t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

0.1 0.1 0.5 0.3 0.2 0.3 0.4 0.5 0.1 0.3
7
6
5
4
3
2 UR4 UR4 UR4 UR4 UR4 UR4 UR4 UR4
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t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

slots and two NRE resource slots. The UN time is ⌈(8 × 60%) + (2 × 10%)⌉ = 5 for 2

nodes. Therefore, the finish time of UR4 in DC2 is determined as 5 + ⌈5
2
⌉ = 8. However,

the ACO is calculated as 0.8. As DC2 takes least ACO, UR4 is assigned to it. In the similar

process, UR5 to UR9 are assigned to DC1, DC1, DC1, DC1 and DC1, respectively. The

ACOs are 0.6, 0.6, 0.6, 0.6 and 0.9, respectively. The OCO of DC1 and DC2 is 3.4 and

0.8, respectively. Note that the UNT and UNCO are 12 and 0.5, respectively. The TNRE is

33. The final Gantt chart for UN-FABEF is shown in Table 4.6.

4.2.5.2 Illustration of UN-HAREF

In the UN-HAREF, the first UR (i.e., UR1) requires one node for the time slots t = 1 to t =

4 (i.e., duration of 4 time slots) without UN. The UN of RE for this UR is pre-determined

as 50%, and NRE is pre-determined as 10%. The UR1 is first matched with DC1. Here,

DC1 can provide four RE resource slots. Therefore, the finish time of UR1 in DC1 is

determined as 4 + (4 × 50%) = 6 with UN in which all the resource slots are RE. Here, the

ACO is calculated as 0. Then, UR1 is matched DC2. Like DC1, DC2 can provide four RE
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resource slots. Therefore, the finish time of UR1 in DC2 is determined as 4 + (4 × 50%)

= 6, in which five resource slots are RE and one resource slot is NRE. Here, the ACO is

calculated as 0.3. As DC1 gives highest TNRE, UR1 is assigned to it.

Next, UR2 requires one node at the time slot t = 1 without UN. The UN of RE for

this UR is pre-determined as 100%, and NRE is pre-determined as 10%. The UR2 is first

matched with DC1. Here, DC1 can provide one RE resource slot. Therefore, the finish

time of UR2 in DC1 is determined as 1 + (1 × 100%) = 2 with UN in which one resource

slot is RE, and another resource slot is NRE. Here, the ACO is calculated as 0.1. Then, UR2

is matched DC2. Like DC1, DC2 can provide one RE resource slot. Therefore, the finish

time of UR2 in DC2 is determined as 1 + (1 × 100%) = 2, in which two resource slots are

RE. Here, the ACO is calculated as 0. As DC2 gives highest TNRE, UR2 is assigned to it.

Next, UR3 requires one node for the time slots t = 1 to t = 4 without UN. The UN of

RE for this UR is pre-determined as 25%, and NRE is pre-determined as 10%. The UR3 is

first matched with DC1. Here, DC1 can provide three RE resource slots and one NRE slot.

Therefore, the finish time of UR3 in DC1 is determined as 4 + (3 × 25%) + (1 × 10%)

= 5 with UN in which four resource slots are RE, and one resource slot is NRE. Here, the

ACO is calculated as 0.1. Then, UR3 is matched DC2. Like DC1, DC2 can provide two

RE resource slots and two NRE resource slots. Therefore, the finish time of UR3 in DC2

is determined as 4 + (2 × 25%) + (2 × 10%) = 5, in which three resource slots are RE

and two resource slots are NRE. Here, the ACO is calculated as 0.2. As DC1 gives highest

TNRE, UR3 is assigned to it.

Next, UR4 requires 2 nodes for the time slots t = 3 to t = 7 without UN. The UN of

RE for this UR is pre-determined as 60%, and NRE is pre-determined as 10%. The UR4

is first matched with DC1. Here, DC1 can provide seven RE resource slots and three NRE

resource slots. The UN time is ⌈(7 × 60%) + (3 × 10%)⌉ = 5 for 2 nodes. Therefore,

the finish time of UR4 in DC1 is determined as 5 + ⌈5
2
⌉ = 8 with UN in which twelve

resource slots are RE, and four resource slots are NRE. Here, the ACO is calculated as 2.3.

Then, UR4 is matched DC2. Here, DC2 can provide eight RE resource slots and two NRE

resource slots. The UN time is ⌈(8 × 60%) + (2 × 10%)⌉ = 5 for 2 nodes. Therefore, the

finish time of UR4 in DC2 is determined as 5 + ⌈5
2
⌉ = 8, in which twelve resource slots are
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RE and four resource slots are NRE. Here, the ACO is calculated as 0.8. Both DC1 and

DC2 give the same TNRE, UR4 is assigned to DC2 based on least ACO.

In the similar process, UR5 to UR9 are assigned to DC1, DC1, DC1, DC1 and DC1,

respectively. The ACOs are 0.6, 0.6, 0.6, 0.6 and 0.9, respectively. The OCO of DC1 and

DC2 is 3.4 and 0.8, respectively. Note that the UNT and UNCO are 12 and 0.5, respectively.

The TNRE is 33. The final Gantt chart for UN-HAREF is shown in Table 4.7.

4.2.5.3 Illustration of UN-RR

In the UN-RR, the first UR (i.e., UR1) is assigned to DC1 as 1 % 2 = 1. Here, DC1 can

provide four RE resource slots. However, the finish time of UR1 in DC1 is determined as

4 + ⌈(4× 50%)⌉ = 6 with UN, and the ACO is calculated as 0.

Next, UR2 is assigned to DC2. Here, DC2 can provide one RE resource slot. However,

the finish time of UR2 in DC2 is determined as 1 + ⌈(1 × 100%)⌉ = 2 with UN, and the

ACO is calculated as 0. Then, UR3 is assigned to DC1 as 3 % 2 = 1. Here, DC1 can

provide three RE resource slots and one NRE resource slot. However, the finish time of

UR3 in DC1 is determined as 4 + ⌈(3× 25%) + (1× 10%)⌉ = 5 with UN and the ACO is

calculated as 0.1. This cost is due to the NRE resource slot at t = 2.

Next, UR4 is assigned to DC2. Here, DC2 can provide two NRE resource slots and

eight RE resource slots. The UN time is ⌈(8 × 60%) + (2 × 10%)⌉ = 5 for 2 nodes.

Therefore, the finish time of UR4 in DC2 is determined as 5 + ⌈5
2
⌉ = 8 with UN and the

ACO is calculated as 0.8.

In the similar process, UR5 to UR9 are assigned to DC1, DC2, DC1, DC2 and DC1,

respectively. The ACOs are 0.6, 0.9, 0.6, 2.0 and 0.7, respectively. The OCO of DC1 and

DC2 is 2.0 and 3.7, respectively. Note that the UNT and UNCO are 12 and 0.5, respectively.

The TNRE is 32. The final Gantt chart for UN-RR is shown in Table 4.8.
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Table 4.7: Final Gantt chart of assigning the URs to the DCs using UN-HAREF
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Table 4.8: Final Gantt chart of assigning the URs to the DCs using UN-RR
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4.3 Performance Metrics, Simulation Configuration and

Simulation Results

This section discusses the performance metrics used to evaluate the proposed algorithms,

the simulation configuration and the simulation results.

4.3.1 Performance Metrics

We use four performance metrics, namely OCO, TNRE, UNT and UNCO. The OCO is the

sum of the cost incurred for using RE and NRE resources in all the datacenters. However,

the cost of RE resources is assumed to be negligible. Mathematically,

OCO =
n∑

k=1

m∑
i=1

ACO[i]×X[k, i] (4.2)

where X[k, i] =

1 if URk is assigned to DCi

0 Otherwise


Note that resources are not explicitly shown here. The UNT is the sum of the extended

time duration of URs to fulfil their UN . Mathematically,

UNT =
n∑

k=1

UN [k] (4.3)

The UNCO is the sum of the cost incurred for using RE and NRE resources in the

UN time duration. Note that the time duration is between ST + D and ST + D + ⌈UN
N
⌉.

Mathematically,

UNCO =
n∑

k=1

m∑
i=1

ST [k]+D[k]+⌈UN [k]
N [k]

⌉∑
l=ST [k]+D[k]

CO[l]×X[k, i] (4.4)
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The TNRE is the sum of RE resource slots that are assigned to the URs.

TNRE =
n∑

k=1

slots re[k] (4.5)

4.3.2 Simulation Configuration

The simulation is carried out in a system with the following configuration. 1) System

processor: Intel(R) Core(TM) i3-7020U CPU @ 2.30 GHz 2.30 GHz 2) Installed system

RAM: 4.00 GB 3) System type: x64-based processor 4) System operating system: 64-bit 5)

Windows edition: Windows 10 Home 6) System software: MATLAB R2021a. As there are

no benchmark datasets, we generate datasets by taking the number of URs in the range of

[200 ∼ 2000] and the number of datacenters in the range of [20 ∼ 200]. Alternatively, we

generate ten datasets, namely 200 × 20, 400 × 40, 600 × 60, 800 × 80, 1000 × 100, 1200

× 120, 1400 × 140, 1600 × 160, 1800 × 180 and 2000 × 200 using uniformly distributed

pseudorandom integers. Note the first values (i.e., 200, 400, 600,. . ., 2000) represent the

number of URs, and the second values represent the number of datacenters. In each dataset,

there are five instances, namely i1 to i5. These instances are generated in the same range.

The results of these instances are averaged and shown as the result of the dataset. We

consider 10 to 400 resources per datacenter. It indicates that the number of resources in

the dataset ranges from 200 to 80000. The cost of using NRE resources is generated in

the range of [1 ∼ 100], and the cost of RE resources is assumed as 0. The parameters of

URs are configured as follows. 1) ST: [1 ∼ 100] 2) D: [10 ∼ 25] 3) N: [10 ∼ 100] 4)

UN-RE: [10 ∼ 90] 5) UN-NRE: 10%. It is noteworthy to mention that all these parameters

are combined together and given in a single file for all the URs. In a similar fashion, all the

parameters associated with the datacenters are given in another file. Each algorithm takes

these files to produce the simulation results using four performance metrics.

4.3.3 Simulation Results

In the simulation process, the results of the proposed algorithms are carried out using the

generated datasets. The OCO of the UN-FABEF, UN-HAREF, and UN-RR algorithms is
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Figure 4.1: Pictorial performance comparison for UN-FABEF, UN-HAREF and UN-RR
algorithms in terms of OCO.

compared and shown in Figure 4.1. Here, the x-axis represents the datasets, and the y-axis

represents the overall cost on the logarithmic scale. As seen in the figure, UN-FABEF

achieves the least OCO compared to UN-HAREF and UN-RR. The rationality behind this

performance is that it assigns the URs to the least ACO datacenter. On the contrary, UN-

HAREF performs poorly once the RE resource slots are occupied. Therefore, the OCO of

UN-HAREF is drastically increased. It is important to notice that UN-RR achieves better

performance than UN-HAREF, even if the scheduling is performed in a circular fashion.

UN-FABEF, UN-HAREF, and UN-RR are compared using the TNRE (Fig. 4.2). It is

noticeable that UN-HAREF performs better than UN-FABEF and UN-RR as it assigns the

UR to the datacenter that provides the highest TNRE. However, UN-FABEF also performs

closely with UN-HAREF. On the contrary, UN-RR performs poorly as it circularly assigns

the UR without looking into TNRE and TNNRE.

In the UNT matrix, the UN-FABEF and UN-RR perform very closely. However, the

performance of UN-HAREF is poor as UNT is directly proportional to the RE resource

slots. Alternatively, if the number of RE slots is increased, then the UNT is also increased,

and we know that UN-HAREF uses more TNRE compared to other algorithms.

The UNT and UNCO of the UN-FABEF, UN-HAREF, and UN-RR algorithms are com-

pared and shown in Figure 4.3 and Figure 4.4, respectively. Like OCO, the performance of

UN-FABEF, UN-HAREF, and UN-RR algorithms remains the same in the UNCO. Specifi-
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Figure 4.2: Pictorial performance comparison for UN-FABEF, UN-HAREF and UN-RR
algorithms in terms of TNRE.
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Figure 4.3: Pictorial performance comparison for UN-FABEF, UN-HAREF and UN-RR
algorithms in terms of UNT.
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Figure 4.4: Pictorial performance comparison for UN-FABEF, UN-HAREF and UN-RR
algorithms in terms of UNCO.

cally, UN-FABEF performs better than UN-HAREF and UN-RR even if the UNT duration

is assigned based on the availability of any resource slots without looking into the RE and

NRE resource slots.

4.4 Summary

In this chapter, we have presented three RE-based scheduling algorithms, namely UN-

FABEF, UN-HAREF, and UN-RR. The aim of these algorithms is to minimize the OCO,

UNT and UNCO, and maximize the TNRE. The UN is modelled in terms of the percent-

age of UN-RE and UN-NRE, in which UN-RE is considered as variable, and UN-NRE

is fixed. Further, UNT is determined based on the number of RE and NRE resource slots.

The complexity analysis of UN-FABEF, UN-HAREF, and UN-RR algorithms is performed

and shown as O(nmdo), O(nmdo), and O(ndo), respectively. These algorithms are rigor-

ously compared using four performance metrics by taking ten different datasets with fifty

different instances. The simulation results show that UN-FABEF performs better in the

OCO, UNT, and UNCO, whereas UN-HAREF performs better in the TNRE. However, the

proposed algorithms do not model UN from the user and CSP perspective. We can model

them by defining different levels from the user’s perspective and UN percentages from the

CSP’s perspective. Therefore, in the next chapter, we explore UN from both perspectives
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and develop UN-level-based algorithms by managing UN for geo-distributed datacenters.
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Chapter 5

Uncertainty Level-Based Algorithms by

Managing Renewable Energy for

Geo-Distributed Datacenters

This chapter aims to solve the problem of assigning n URs to m datacenters that are pow-

ered by both RE and NRE sources. This problem also considers the UN of the resources of

datacenters. We extend three benchmark algorithms, namely FABEF, HAREF and RR, to

solve this problem. These extended algorithms are named as UNL-FABEF, UNL-HAREF

and UNL-RR. These algorithms model the UN from the user and CSP perspectives. From

the user’s perspective, it models the request as a UNL and percentage for RE and NRE

resources, respectively. The UNL is considered as low, medium and high, respectively,

whereas the UN percentage is between 1% to 100%, respectively. On the other hand, from

the CSP perspective, the UN is modelled with respect to the time instance.

UNL-FABEF aims to minimize the OCO of datacenters by considering the UNCO.

UNL-HAREF seeks to maximize available RE usage of datacenters, including the UN pe-

riod. UNL-RR assigns the datacenters to the URs in a roundabout fashion without looking

into the OCO and available RE of datacenters. Therefore, UNL-MOSA is introduced by

taking advantage of UNL-FABEF and UNL-HAREF. Alternatively, UNL-MOSA forms a

balance between the OCO and the available RE usage. Like UNL-FABEF, UNL-HAREF

and UNL-RR, UNL-MOSA models the UN from the user and CSP perspectives and the
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UNL. The three extended algorithms and UNL-MOSA are implemented and compared

among them. The rationality behind this comparison is that no algorithm deals with UNL

in the literature. These algorithms are tested by generating ten datasets. Each dataset has

five instances, and the number of URs and datacenters of datasets is 200 to 2000 and 20

to 200, respectively. All four algorithms are thoroughly compared using five performance

metrics: the OCO, TNRE, TNNRE, UNT and UNCO to demonstrate their applicability.

We use resources and resource slots interchangeably without loss of generality throughout

this chapter. The uniqueness of this chapter is listed as follows.

1. We develop four scheduling algorithms for geo-distributed datacenters in which UN

is modelled from the user and CSP perspectives. The user’s perspective categorizes

the UNL into low, medium, and high, whereas the CSP’s perspective presents the UN

between 1% to 100%.

2. The UN of RE generation is modelled as dynamic, whereas NRE generation is fixed

as per their relevance in real-life scenarios.

3. UNL-MOSA balances the performance of UNL-FABEF and UNL-HAREF using

their objectives’ linear combination.

4. The proposed algorithms are examined using ten datasets and five performance met-

rics to show their supremacy and applicability.

The next sections are outlined as follows. Section 5.1 presents the system model and

the problem statement. Section 5.2 introduces the four proposed algorithms with their

illustration and time complexity analysis. Section 5.3 defines five performance metrics, and

discusses the datasets and simulation results. Section 5.4 concludes the presented work.

5.1 System Model and Problem Statement

This section discusses the system model focusing on RE with UN, followed by the problem

statement addressed in this chapter.
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5.1.1 System Model

We consider a CSP that deploys a set of datacenters around the globe. Each datacenter

contains a set of homogeneous servers. Each server is powered by either RE or NRE

sources. The UN of these sources varies over time instance. However, RE’s UN is quite

more than NRE. On the other hand, RE costs less than NRE. As a result, our system tries to

fulfil the requirements of users using resources powered by RE followed by NRE. Without

loss of generality, a datacenter has unlimited resources to accommodate the requirements

of the URs. However, the cost of resources in each datacenter is different with respect to

the time instance.

Our system model enforces the UN in user and CSP perspectives. As the UN of RE

resources varies over time, the user can select a UNL (i.e., low, medium and high) for RE

resources while submitting the request based on its importance. The UNL is 1% to 30% in

low, 31% to 60% in medium and 61% to 100% in high. Suppose a user selects a UNL of

low (or medium or high). In that case, the CSP assigns the RE resources with less than or

equal to 30% (or 60% or 100%) UN in the given time interval. Otherwise, NRE resources

can be assigned.

We assume that the UN of RE and NRE resources is variable (i.e., 1% to 100%) and

static (say, 10%), respectively. The UN value is calculated once the RE and NRE resources

are estimated. Note that the value is calculated by taking the floor of the average value

of the UNLs, i.e., 15% (
⌊
1+30
2

⌋
), 45% (

⌊
31+60

2

⌋
) and 80% (

⌊
61+100

2

⌋
), respectively, for

RE resources and 10% for NRE resources. Based on the UN value, the duration of each

UR is recalculated. The above system model is expanded using the models presented in

[46, 63, 64, 115].

5.1.2 Problem Formulation

Consider an ordered set UR of n URs and a set DC of m datacenters. A UR URk ∈ UR

is characterized by its unique ID, ST, D, N, UNL of RE (UNL-RE) and UN percentage of
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NRE. The UNL is defined as follows.

UNL =


1 If UN percentage is between 1% and 30%

2 If UN percentage is between 31% and 60%

3 Otherwise

(5.1)

The UN of RE and NRE is variable (i.e., 1% to 100%) and fixed (say, 10%), respec-

tively. A datacenter DCi ∈ DC is characterized by its unique ID, o, a sequence of RE and

NRE resources, a cost sequence of RE and NRE resources, and a UN percentage sequence

of RE and NRE resources with respect to a time window. It is noteworthy to mention that

the resources in one datacenter differ from other datacenters. Mathematically, |DCi| ̸=

|DCi′|, i ̸= i′ and {DCi, DCi′} ∈ DC. The problem is finding a many-to-one function

between the n URs and m datacenters to achieve the following goals.

1. Minimize the OCO of executing the n URs in m datacenters.

2. Maximize the TNRE of m datacenters for executing the n URs.

3. Minimize the UNT and UNCO of n URs.

The problem is framed with some conditions as follows.

1. A UR, URk ∈ UR, can only be assigned to one datacenter.

2. The required number of resources of UR, URk ∈ UR, can be fulfilled by mixing RE

and NRE resources.

3. A UR, URk ∈ UR, can only be assigned to a RE resource if its UNL is satisfied.

4. A UR, URk ∈ UR, cannot migrate from one datacenter to another datacenter to avail

the RE resources.

5.2 Proposed Scheduling Algorithms

We present four UNL-based algorithms, UNL-FABEF, UNL-HAREF, UNL-RR and UNL-

MOSA, by managing RE for geo-distributed datacenters. These UNL-based algorithms
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goal to minimize the OCO of datacenters, the UNT and UNCO of URs, and maximize

the TNRE. The main principle of these algorithms is to model the UN from both user and

CSP perspectives. The pseudo-codes of these algorithms are presented in Algorithm 5.1 to

Algorithm 5.4.

5.2.1 UNL-FABEF

UNL-FABEF aims to minimize the OCO of datacenters. The algorithm checks the avail-

ability of UR in the URQ (Line 1). If the URQ is not empty, then it picks a UR from the

URQ and determines its UNL-RE (Line 3 and Line 4). Then UNL-FABEF checks the

datacenter individually to determine the ACO (Line 5). In each datacenter, it checks the

suitable RE and NRE resource slots from the ST of a UR to the ST + D - 1 of a UR (Line

7). Now, UNL-FABEF calls Procedure 3 to determine the resource slots.

Algorithm 5.1 UNL-FABEF
Input: URQ, n, UNL-RE, m, ST , D, o, R, UNL-R, ACO, CO, N and UN -NRE
Output: OCO, TNRE, TNNRE, UNT and UNCO

1: while URQ is not NULL do
2: Set OCO← 0, TNRE ← 0, TNNRE ← 0, UNT ← 0 and UNCO← 0
3: for k← 1 to n do
4: Determine UNL-RE[k]
5: for i← 1, 2, 3,. . ., m do
6: Set ACO[i]← 0, UN -COST [i]← 0, UN -TIME[i]← 0, slots re[i]← 0 and slots nre[i]
← 0

7: for l← ST [k], ST [k] + 1, ST [k] + 2,. . ., ST [k] + D[k] - 1 do
8: Call DETERMINE-RESOURCE-SLOTS(o, R, l, UNL-R, UNL-RE, k,

slots re, i, ACO, CO, slots nre, N )
9: end for

10: Call DETERMINE-UN -TIME(UNL-RE, k, slots re, i, τ1, slots nre, UN -NRE,
τ2, τ3, ST , D, N , UN -T , o, R, UNL-R, ACO, i, CO)

11: end for
12: Determine the best datacenter i′ by calculating min(ACO)
13: The datacenter i′ is assigned with the UR k.
14: Set OCO ← OCO + ACO[i′], TNRE ← TNRE + slots re[i′], TNNRE ← TNNRE +

slots nre[i′], UNT ← UNT + UN -TIME[i′] and UNCO← UNCO + UN -COST [i′]
15: end for
16: end while

Procedure 3 checks the resource slot individually that is not assigned to any UR and

matches the UNL of resource with UNL of UR (Line 2 and Line 3). If both conditions are

satisfied, it counts that resource slot (Line 4). Further, it checks the RE and NRE power
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Procedure 3 DETERMINE-RESOURCE-SLOTS(o, R, l, UNL-R, UNL-RE, k,
slots re, i, ACO, CO, slots nre, N )
1: Set slots← 0
2: for j ← 1, 2, 3,. . ., o do
3: if R[l, j] is unassigned to any UR and UNL-R[j] = UNL-RE[k] then
4: slots← slots + 1
5: if R[l, j] is taking power from the RE sources then
6: Set slots re[i]← slots re[i] + 1 and ACO[i]← ACO[i] + CO[l]
7: else
8: Set slots nre[i]← slots nre[i] + 1 and ACO[i]← ACO[i] + CO[l]
9: end if

10: end if
11: if N [k] = slots then
12: break
13: end if
14: end for
15: return

supply to that resource slot and calculates the ACO (Line 5 to Line 9). Once the resource

slot requirement of a UR is satisfied, Procedure 3 breaks the loop (Line 11 to Line 13). The

above process is repeated for the entire duration of UR. At last, Procedure 3 returns in line

15 to the main algorithm.

UNL-FABEF calls the Procedure 4 to determine the UNT of a UR (Line 10). Procedure

4 checks the UNL and accordingly calculates the UN (Line 1 to Line 9). Once UN is

determined, this procedure calls Procedure 5 to select the resource slots for the UN period

(Line 10 to Line 12) and calculates the UNT (Line 11) and cost. At last, Procedure 4 returns

in line 14 to the main algorithm.

Procedure 5 finds the resource slots and UNCO. It is similar to Procedure 3 except for

the UNCO calculation in line 6 and line 8. Now, UNL-FABEF contains the ACO of a UR

in each datacenter. Therefore, it determines the best datacenter by calculating the minimum

ACO (Line 12 of Algorithm 5.1). Finally, it assigns that UR to the selected datacenter (Line

13) and updates OCO, TNRE, TNNRE, UNT and UNCO (Line 14).

5.2.2 UNL-HAREF

UNL-HAREF aims to maximize the TNRE of datacenters. The algorithm of UNL-HAREF

(Algorithm 5.2) is similar to the algorithm of UNL-FABEF (Algorithm 5.1). The main

difference is seen in line 12 in which the best datacenter is determined by calculating the
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Procedure 4 DETERMINE-UN -TIME(UNL-RE, k, slots re, i, τ1, slots nre, UN -
NRE, τ2, τ3, ST , D, N , UN -TIME, o, R, UNL-R, ACO, i, CO)

1: if UNL-RE[k] = 1 then
2: Set UN [k]← ⌈slots re[i]× τ1 + slots nre[i]× UN -NRE[k]⌉
3: else
4: if UNL-RE[k] = 2 then
5: Set UN [k]← ⌈slots re[i]× τ2 + slots nre[i]× UN -NRE[k]⌉
6: else
7: Set UN [k]← ⌈slots re[i]× τ3 + slots nre[i]× UN -NRE[k]⌉
8: end if
9: end if

10: for l← ST [k] + D[k], ST [k] + D[k] + 1,. . ., ST [k] + D[k] + ⌈UN [k]
N [k] ⌉ do

11: Set UN -TIME[i]← UN -TIME[i] + ⌈UN [k]
N [k] ⌉

12: Call DETERMINE-RESOURCE-SLOTS-AND-UN -COST (o, R, l, UNL-R, UNL-RE,
k, slots re, i, ACO, CO, UN -COST , slots nre, N )

13: end for
14: return

maximum slots re instead of the minimum ACO.

5.2.3 UNL-RR

UNL-RR follows the circular order for assigning the URs to the datacenters. Like UNL-

FABEF and UNL-HAREF, it checks the URQ, selects a UR and determines the UNL-RE

(Line 1 to Line 4). Then UNL-RR selects a datacenter for a UR in a circular order (Line

5 to Line 9) and checks the suitable RE and NRE resource slots using Procedure 3 in that

datacenter based on the UR requirement (Line 11 to Line 13). Further, it calls the Procedure

4 to determine the UNT , and thereby assign the UR to that datacenter and updates OCO,

TNRE, TNNRE, UNT and UNCO (Line 14 to Line 16).

5.2.4 UNL-MOSA

UNL-MOSA aims to minimize the OCO of datacenters as well as maximize the TNRE

of datacenters. It makes a trade-off between UNL-FABEF and UNL-HAREF. The pro-

cess of UNL-MOSA is similar to UNL-FABEF and UNL-HAREF till the determination of

resource slots (Procedure 3) and UNT (Procedure 4) (Line 1 to Line 10). Note that Pro-

cedure 3 determines the ACO and Procedure 4 calls Procedure 5 to determine the updated

ACO and slots re. Then, UNL-MOSA calls Procedure 6 to determine the multi-objective
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Procedure 5 DETERMINE-RESOURCE-SLOTS-AND-UN -COST (o, R, l,
UNL-R, UNL-RE, k, slots re, i, ACO, CO, UN -COST , slots nre, N )
1: Set slots← 0
2: for j ← 1, 2, 3,. . ., o do
3: if R[l, j] is unassigned to any UR and UNL-R[j] = UNL-RE[k] then
4: Set slots← slots + 1
5: if R[l, j] is taking power from the RE sources then
6: Set slots re[i]← slots re[i] + 1, ACO[i]← ACO[i] + CO[l] and UN -COST [i]← UN -

COST [i] + CO[l]
7: else
8: Set slots nre[i]← slots nre[i] + 1, ACO[i]←ACO[i] + CO[l] and UN -COST [i]← UN -

COST [i] + CO[l]
9: end if

10: end if
11: if N [k] = slots then
12: break
13: end if
14: end for
15: return

Algorithm 5.2 UNL-HAREF
Input: URQ, n, UNL-RE, m, ST , D, o, R, UNL-R, ACO, CO, N and UN -NRE
Output: OCO, TNRE, TNNRE, UNT and UNCO

1: while URQ is not NULL do
2: Set OCO← 0, TNRE ← 0, TNNRE ← 0, UNT ← 0 and UNCO← 0
3: for k← 1 to n do
4: Step 4 to Step 11 is same as Algorithm 5.1

12: Determine the best datacenter i′ by calculating max(slots re)
13: The datacenter i′ is assigned with the UR k.
14: Set OCO ← OCO + ACO[i′], TNRE ← TNRE + slots re[i′], TNNRE ← TNNRE +

slots nre[i′], UNT ← UNT + UN -TIME[i′] and UNCO← UNCO + UN -COST [i′]
15: end for
16: end while

function value in each datacenter (Line 12). This value is determined by normalizing the

ACO and reciprocal of slots re, using their maximum and minimum values, respectively,

so they are not dominating each other (Line 1 to Line 3 of Procedure 6). The rationality

behind this is that ACO needs to be minimized, and slots re needs to be maximized, and

we convert the maximization to the minimization problem. After normalization, the linear

combination of weighted ACO and weighted slots re (i.e., f ) is determined for each data-

center (Line 5.4). At last, Procedure 6 returns in line 6 to the main algorithm. UNL-MOSA

determines the best datacenter by calculating the minimum f (Line 13). Finally, it assigns

that UR to the selected datacenter (Line 14) and updates OCO, TNRE, TNNRE, UNT

and UNCO (Line 15).
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Algorithm 5.3 UNL-RR
Input: URQ, n, UNL-RE, m, ST , D, o, R, UNL-R, ACO, CO, N and UN -NRE
Output: OCO, TNRE, TNNRE, UNT and UNCO

1: while URQ is not NULL do
2: Set OCO← 0, TNRE ← 0, TNNRE ← 0, UNT ← 0 and UNCO← 0
3: for k← 1 to n do
4: Determine UNL-RE[k]
5: if k is a multiple of m then
6: Set i←m
7: else
8: Set i← k mod m
9: end if

10: Set ACO[i]← 0, UN -COST [i]← 0, UN -TIME[i]← 0, slots re[i]← 0 and slots nre[i]←
0

11: for l← ST [k], ST [k] + 1, ST [k] + 2,. . ., ST [k] + D[k] - 1 do
12: Call DETERMINE-RESOURCE-SLOTS(o, R, l, UNL-R, UNL-RE, k, slots re, i,

ACO, CO, slots nre, N )
13: end for
14: Call DETERMINE-UNCERTAINTY -TIME(UNL-RE, k, slots re, i, τ1, slots nre,

UN -NRE, τ2, τ3, ST , D, N , UN -TIME, o, R, UNL-R, ACO, i, CO)
15: The datacenter i is assigned with the UR k.
16: Set OCO ← OCO + ACO[i], TNRE ← TNRE + slots re[i], TNNRE ← TNNRE +

slots nre[i], UNT ← UNT + UN -TIME[i] and UNCO← UNCO + UN -COST [i]
17: end for
18: end while

Algorithm 5.4 UNL-MOSA
Input: URQ, n, UNL-RE, m, ST , D, o, R, UNL-R, ACO, CO, N , UN -NRE, λ1 and λ2

Output: OCO, TNRE, TNNRE, UNT and UNCO

1: while URQ is not NULL do
2: Set OCO← 0, TNRE ← 0, TNNRE ← 0, UNT ← 0 and UNCO← 0
3: for k← 1 to n do
4: Determine UNL-RE[k]
5: for i← 1, 2, 3,. . ., m do
6: Set ACO[i]← 0, UN -COST [i]← 0, UN -TIME[i]← 0, slots re[i]← 0 and slots nre[i]
← 0

7: for l← ST [k], ST [k] + 1, ST [k] + 2,. . ., ST [k] + D[k] - 1 do
8: Call DETERMINE-RESOURCE-SLOTS(o, R, l, UNL-R, UNL-RE, k,

slots re, i, ACO, CO, slots nre, N )
9: end for

10: Call DETERMINE-UN -TIME(UNL-RE, k, slots re, i, τ1, slots nre, UN -NRE,
τ2, τ3, ST , D, N , UN -TIME, o, R, UNL-R, ACO, i, CO)

11: end for
12: Call MOSA(ACO, slots re, m, λ1, λ2)
13: Determine the best datacenter i′ by calculating min(f)
14: The datacenter i′ is assigned with the UR k.
15: Set OCO ← OCO + ACO[i′], TNRE ← TNRE + slots re[i′], TNNRE ← TNNRE +

slots nre[i′], UNT ← UNT + UN -TIME[i′] and UNCO← UNCO + UN -COST [i′]
16: end for
17: end while
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Procedure 6 MOSA(ACO, slots re, m, λ1, λ2)
1: Determine max(ACO) and min(slots re)
2: for i← 1, 2, 3,. . ., m do
3: Set NACO[i]← ACO[i]

max(ACO) and Nslots re[i]←
1

slots re[i]
1

min(slots re)

4: Set f [i]← λ1 × NACO[i] + (1− λ1) × Nslots re[i]
5: end for
6: return

Table 5.1: Time complexity of the proposed algorithms

Time complexity
Line UNL-FABEF Line UNL-HAREF Line UNL-RR Line UNL-MOSA
1-16 O(nmdo) 1-16 O(nmdo) 1-18 O(ndo) 1-17 O(nmdo)

2 O(1) 2 O(1) 2 O(1) 2 O(1)
3-15 O(nmdo) 3-15 O(nmdo) 3-17 O(ndo) 3-16 O(nmdo)

4 O(1) 4 O(1) 4 O(1) 4 O(1)
5-11 O(mdo) 5-11 O(mdo) 5-9 O(1) 5-11 O(mdo)

6 O(1) 6 O(1) 10 O(1) 6 O(1)
7-9 O(do) 7-9 O(do) 11-13 O(do) 7-9 O(do)
8 O(o) 8 O(o) 12 O(o) 8 O(o)

10 O(d) 10 O(d) 14 O(d) 10 O(d)
12 O(m) 12 O(m) 15-16 O(1) 12 O(m)

13-14 O(1) 13-14 O(1) 13 O(m)
14-15 O(1)

Overall O(nmdo) Overall O(nmdo) Overall O(ndo) Overall O(nmdo)

5.2.5 Time Complexity Analysis

The step-by-step time complexity of the proposed algorithms, UNL-FABEF, UNL-HAREF,

UNL-RR and UNL-MOSA, is shown in Table 5.1. Note that |UR| = n, |DC| = m, d is the

maximum duration of any UR, including UNT, and o is the maximum number of resources

under any datacenter.

5.2.6 Illustration

Let us assume that there are nine URs, UR1 to UR9, with their ST, D, N, UNL-RE and

UN-NRE, as depicted in Table 5.2. As mentioned earlier, UNL-RE has three levels, 1 to 3,

representing the maximum UN of RE resources as 30%, 60% and 100%, respectively. We

also assume that there are two datacenters, DC1 and DC2, with their initial RE resource

slots (i.e., t = 1 to t = 11) as shown in Table 5.3. Note that the green colour indicates the

RE resource slots, and the white colour indicates the NRE resource slots. We underline ( )

the RE resource slots occupied by the URs.
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Table 5.2: ST, D, N, UNL-RE and UN-NRE of nine URs

UR ID ST D N UNL-RE UN-NRE
UR1 1 4 1 2 10%
UR2 1 3 2 1 10%
UR3 1 4 1 2 10%
UR4 3 5 2 3 10%
UR5 4 3 1 2 10%
UR6 5 2 1 2 10%
UR7 5 3 1 3 10%
UR8 7 2 2 1 10%
UR9 8 2 3 3 10%

Table 5.3: An initial setup of two datacenters

0.1 0.1 0.3 0.2 0.1 0.2 0.2 0.1 0.1 0.3 0.1
R# 30% 20% 40% 50% 60% 80% 30% 70% 10% 20% 30%
8
7
6
5
4
3
2
1

DC1

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11

0.2 0.1 0.2 0.1 0.1 0.3 0.4 0.5 0.2 0.3 0.1
R# 20% 30% 30% 50% 40% 30% 20% 40% 70% 30% 60%
8
7
6
5
4
3
2
1

DC2

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11
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Table 5.4: Gantt chart for UNL-FABEF

0.1 0.1 0.3 0.2 0.1 0.2 0.2 0.1 0.1 0.3 0.1
R# 30% 20% 40% 50% 60% 80% 30% 70% 10% 20% 30%
8 UR9

7 UR9 UR9

6 UR8 UR9 UR9

5 UR7 UR7 UR8 UR8 UR9

4 UR6 UR6 UR7 UR8 UR8

3 UR4 UR4 UR4 UR4 UR6 UR7 UR8 UR9

2 UR4 UR4 UR4 UR4 UR4 UR4 UR4 UR9

1 UR3 UR3 UR3 UR3 UR3 UR3 UR4 UR4 UR4 UR9

DC1

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11

0.2 0.1 0.2 0.1 0.1 0.3 0.4 0.5 0.2 0.3 0.1
R# 20% 30% 30% 50% 40% 30% 20% 40% 70% 30% 60%
8
7
6 UR2

5 UR2

4
3 UR2 UR2 UR2

2 UR2 UR2 UR2 UR5 UR5 UR5

1 UR1 UR1 UR1 UR1 UR1 UR1 UR5

DC2

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11

Table 5.5: Gantt chart for UNL-HAREF

0.1 0.1 0.3 0.2 0.1 0.2 0.2 0.1 0.1 0.3 0.1
R# 30% 20% 40% 50% 60% 80% 30% 70% 10% 20% 30%
8
7
6
5
4 UR2 UR4 UR8 UR8 UR8

3 UR2 UR2 UR8 UR8 UR8

2 UR2 UR2 UR4 UR2 UR4 UR4 UR4 UR4 UR4 UR4

1 UR2 UR2 UR4 UR4 UR4 UR4 UR4 UR4 UR4 UR4

DC1

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11

0.2 0.1 0.2 0.1 0.1 0.3 0.4 0.5 0.2 0.3 0.1
R# 20% 30% 30% 50% 40% 30% 20% 40% 70% 30% 60%
8
7
6
5 UR7 UR7

4 UR6 UR6 UR9

3 UR5 UR5 UR5 UR7 UR9 UR9 UR9 UR9

2 UR3 UR3 UR3 UR3 UR3 UR3 UR6 UR9 UR9 UR9 UR9

1 UR1 UR1 UR1 UR1 UR1 UR1 UR5 UR7 UR9 UR9 UR9

DC2

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11
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Table 5.6: Gantt chart for UNL-RR

0.1 0.1 0.3 0.2 0.1 0.2 0.2 0.1 0.1 0.3 0.1
R# 30% 20% 40% 50% 60% 80% 30% 70% 10% 20% 30%
8
7
6
5
4 UR7 UR5 UR9

3 UR5 UR5 UR3 UR9 UR9 UR9

2 UR3 UR3 UR3 UR3 UR3 UR1 UR7 UR9 UR9 UR9

1 UR1 UR1 UR1 UR1 UR1 UR7 UR5 UR7 UR9 UR9

DC1

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11

0.2 0.1 0.2 0.1 0.1 0.3 0.4 0.5 0.2 0.3 0.1
R# 20% 30% 30% 50% 40% 30% 20% 40% 70% 30% 60%
8
7
6
5 UR8 UR8

4 UR4 UR4 UR8 UR8 UR8

3 UR4 UR4 UR6 UR6 UR6 UR8

2 UR2 UR2 UR2 UR2 UR4 UR4 UR4 UR4 UR4

1 UR2 UR2 UR2 UR2 UR4 UR4 UR4 UR4 UR4

DC2

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11

Table 5.7: Gantt chart for UNL-MOSA while matching UR1

0.1 0.1 0.3 0.2 0.1 0.2 0.2 0.1 0.1 0.3 0.1
R# 30% 20% 40% 50% 60% 80% 30% 70% 10% 20% 30%
8
7
6
5
4
3
2 UR1

1 UR1 UR1 UR1 UR1 UR1

DC1

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11

0.2 0.1 0.2 0.1 0.1 0.3 0.4 0.5 0.2 0.3 0.1
R# 20% 30% 30% 50% 40% 30% 20% 40% 70% 30% 60%
8
7
6
5
4
3
2
1 UR1 UR1 UR1 UR1 UR1 UR1

DC2

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11
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Table 5.8: Gantt chart for UNL-MOSA

0.1 0.1 0.3 0.2 0.1 0.2 0.2 0.1 0.1 0.3 0.1
R# 30% 20% 40% 50% 60% 80% 30% 70% 10% 20% 30%
8
7
6 UR9

5 UR8 UR9 UR9

4 UR7 UR6 UR8 UR9 UR9

3 UR6 UR5 UR7 UR8 UR9 UR9

2 UR5 UR5 UR3 UR6 UR8 UR8 UR9

1 UR3 UR3 UR3 UR3 UR3 UR7 UR5 UR7 UR8 UR9

DC1

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11

0.2 0.1 0.2 0.1 0.1 0.3 0.4 0.5 0.2 0.3 0.1
R# 20% 30% 30% 50% 40% 30% 20% 40% 70% 30% 60%
8
7
6 UR2

5 UR4 UR2

4 UR4

3 UR2 UR2 UR2 UR4 UR4 UR4

2 UR2 UR2 UR2 UR4 UR4 UR4 UR4 UR4 UR4 UR4

1 UR1 UR1 UR1 UR1 UR1 UR1 UR4 UR4 UR4 UR4

DC2

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11

5.2.6.1 Illustration of UNL-FABEF

In the UNL-FABEF algorithm, the UR1 demands service from t = 1 to t = 4 (i.e., from

ST to ST + D - 1) with one node. The UR1 can be executed in UNL 2 of RE, and its

NRE UN percentage is 10%. It is mapped with each datacenter’s RE UNL for the duration

mentioned. Suppose the RE UNL of a UR is greater than or equal to the RE UNL of

datacenter in a particular time slot. In that case, the RE resources in that time slot can be

assigned to that UR. Otherwise, NRE resources can be assigned in that time slot. As RE

UNL of DC1 is 30%, 20%, 40% and 50% during t = 1 to t = 4, UR1 can be accommodated

in the DC1. On the other hand, RE UNL of DC2 is 20%, 30%, 30% and 50% during t

= 1 to t = 4, UR1 can also be accommodated in the DC2. The UN of DC1 and DC2 is

calculated as 4 × 0.45 = ⌈1.80⌉ ≈ 2. Note that we took the average of higher (i.e., 60) and

lower (i.e., 30) bounds to calculate the UN for the simplicity of calculation. Therefore, the

completion time of UR1 can be extended from 4 to 6 in both datacenters. However, the RE

UNL of DC1 is 60% and 80% in t = 5 and t = 6, respectively. On the contrary, the RE UNL

of DC2 is 40% and 30% in t = 5 and t = 6, respectively. Here, DC2 can only fulfil the RE
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UNL of UR1, whereas DC1 can fulfil using NRE resource. Alternatively, the ACO of UR1

in DC1 and DC2 is 0.7 (i.e., 5 × 0.10 + 1 × 0.20) and 0.6 (i.e., 6 × 0.10), respectively.

Therefore, UR1 is assigned to DC2.

Next, UR2 demands service from t = 1 to t = 3 with two nodes. It can be executed in

UNL 1 of RE, and its NRE UN percentage is 10%. As RE UNL of DC1 is 30%, 20% and

40% during t = 1 to t = 3, UR2 can be accommodated in the DC1. On the other hand, RE

UNL of DC2 is 20%, 30% and 30% during t = 1 to t = 3, UR2 can also be accommodated

in the DC2. The UN of DC1 is calculated as 2× 0.15 + (1× 0.15 + 1× 0.10) + 2× 0.10 =

⌈0.75⌉ ≈ 1. The UN of DC2 is calculated as 2× 0.15 + 2× 0.10 + (1× 0.15 + 1× 0.10) =

⌈0.75⌉ ≈ 1. Note that we took the average of higher (i.e., 30) and lower (i.e., 0) bounds to

calculate the UN for the simplicity of calculation. Therefore, the completion time of UR2

can be extended from 3 to 3 + ⌈1
2
⌉ = 4 in both datacenters. However, the RE UNL of DC1

and DC2 is 50% and 40% at t = 5. Here, both DC1 and DC2 can fulfil the demand of UR2

by providing three RE resource slots and five NRE resource slots. However, the ACO of

UR2 in DC1 and DC2 is 1.40 (i.e., 2 × 0.10 + (1 × 0.10 + 1 × 0.10) + 2 × 0.30 + 2 ×

0.20) and 0.90 (i.e., 2 × 0.10 + 2 × 0.10 + (1 × 0.10 + 1 × 0.20) + 2 × 0.10), respectively.

Therefore, UR2 is assigned to DC2.

Next, UR3 demands service from t = 1 to t = 4 with one node. It can be executed in

UNL 2 of RE, and its NRE UN percentage is 10%. As RE UNL of DC1 is 30%, 20%,

40% and 50% during t = 1 to t = 4, UR3 can be accommodated in the DC1. On the other

hand, RE UNL of DC2 is 20%, 30%, 30% and 50% during t = 1 to t = 4, UR3 can also be

accommodated in the DC2. The UN of DC1 is calculated as 4 × 0.45 = ⌈1.80⌉ ≈ 2. The

UN of DC2 is calculated as 3 × 0.10 + 1 × 0.45 = ⌈0.75⌉ ≈ 1. Therefore, the completion

time of UR1 can be extended from 4 to 6 in DC1 and from 4 to 5 in DC2. However, the RE

UNL of DC1 is 60% and 80% in t = 5 and t = 6, and the RE UNL of DC2 is 40% at t = 5.

Here, DC1 can fulfil the demand of UR3 by providing five RE resource slots and one NRE

resource slot and DC2 by providing two RE resource slots and three NRE resource slot.

However, the ACO of UR1 in DC1 and DC2 is 0.70 (i.e., 5 × 0.10 + 1 × 0.20) and 0.70

(i.e., 2 × 0.10 + 1 × 0.20 + 1 × 0.10 + 1 × 0.20), respectively. Therefore, UR3 is assigned

to DC1. In the same way, UR4 to UR9 are assigned to DC1, DC2, DC1, DC1, DC1 and
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DC1, respectively. The ACOs are 2.00, 0.60, 0.50, 0.60, 0.80 and 1.10, respectively. The

OCO for DC1 and DC2 is 5.70 and 2.10, respectively. The TNRE is 26. The UNT and

UNCO are 12 and 2.20, respectively. The UNL-FABEF’s final Gantt chart is presented in

Table 5.4.

5.2.6.2 Illustration of UNL-HAREF

Like the UNL-FABEF algorithm, the UNL-HAREF algorithm finds the UN and comple-

tion time of DC1 and DC2 for UR1. The TNRE for UR1 in DC1 and DC2 is 5 and 6,

respectively. Therefore, UR1 is assigned to DC2. The ACO of UR1 in DC2 is 0.60 (i.e., 6

× 0.10). Next, the UNL-HAREF algorithm finds the UN and completion time of DC1 and

DC2 for UR2 like the UNL-FABEF algorithm. The TNRE for UR2 in DC1 and DC2 is 3.

Therefore, UR2 is assigned to DC1. The ACO of UR2 in DC1 is 1.4 (i.e., 2 × 0.10 + (1 ×

0.10 + 1 × 0.10) + 2 × 0.30 + 2 × 0.20). Similarly, the TNRE for UR3 in DC1 and DC2

is 3 and 4, respectively. Therefore, UR3 is assigned to DC2. The ACO of UR3 in DC2 is

0.8 (i.e., 1 × 0.10 + 1 × 0.10 + 1 × 0.10 + 1 × 0.10 + 1 × 0.10 + 1 × 0.30). In the same

way, UR4 to UR9 are assigned to DC1, DC2, DC2, DC2, DC1 and DC2, respectively.

The TNRE in these datacenters is 12, 3, 1, 1, 0 and 7, respectively. The ACOs in these

datacenters are 1.90, 0.60, 0.50, 0.90, 0.80, and 2.20, respectively. The OCO for DC1 and

DC2 is 5.50 and 4.20, respectively. The TNRE is 37. The UNT and UNCO are 14 and

2.90, respectively. The UNL-HAREF’s final Gantt chart is presented in Table 5.5.

5.2.6.3 Illustration of UNL-RR

In the UNL-RR algorithm, UR1 is assigned to DC1. Here, DC1 can provide four RE

resource slots without UN. As a result, the UN of DC1 is calculated as 2. The completion

time of UR1 in DC1 is calculated as 6 with UN. The ACO of UR1 in DC1 is 0.7, and the

TNRE is 5. Similarly, UR2 is assigned to DC2. Here, DC2 can provide five RE resource

slots and one NRE resource slot without UN. As a result, the UN of DC2 is calculated as

1. The completion time of UR2 in DC2 is calculated as 4 with UN. The ACO of UR2 in

DC2 is 0.8, and the TNRE is 5. Next, UR3 is assigned to DC1. Here, DC1 can deliver two

RE resource slots and two NRE resource slots without UN. As a result, the UN of DC1 is
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calculated as 2. The completion time of UR3 in DC1 is calculated as 6 with UN. The ACO

of UR3 in DC1 is 0.8, and the TNRE is 3. In the same way, UR4 to UR9 are assigned to

DC2, DC1, DC2, DC1, DC2 and DC1, respectively. The ACOs in these datacenters are

1.80, 0.60, 0.80, 0.50, 2.20 and 1.10, respectively. The TNRE in these datacenters is 11,

1, 1, 2, 0 and 4, respectively. The OCO for DC1 and DC2 is 3.70 and 5.60, respectively.

The TNRE is 34. The UNT and UNCO are 13 and 2.70, respectively. The UNL-RR’s final

Gantt chart is presented in Table 5.6.

5.2.6.4 Illustration of UNL-MOSA

In the UNL-MOSA algorithm, the UR1 demands service from t = 1 to t = 4 with one node

and it can be executed in UNL 2 of RE. The NRE UN percentage is 10%. RE UNL of DC1

is 30%, 20%, 40% and 50% and RE UNL of DC2 is 20%, 30%, 30% and 50% during t

= 1 to t = 4. As a result, UR1 can be accommodated in the DC1 and DC2 with UN as 2.

Therefore, the completion time of UR1 is 6 in both datacenters. The ACO of UR1 in DC1

and DC2 is 0.7 and 0.6, respectively, and their normalized value is 0.7
0.7

and 0.6
0.7

, respectively.

The TNRE of UR1 in DC1 and DC2 is 5 and 6, respectively, and their normalized value is
1/5
1/5

and 1/6
1/5

, respectively. The linear combination value of normalized ACO and TNRE in

DC1 and DC2 is 1 (i.e., 0.5 × 1 + 0.5 × 1) and 0.845 (i.e., 0.5 × 0.857 + 0.5 × 0.833),

respectively. Therefore, UR1 is assigned to DC2 as shown in Table 5.7.

Next, the UR2 demands service from t = 1 to t = 3 with two nodes and it can be executed

in UNL 1 of RE. The NRE UN percentage is 10%. RE UNL of DC1 is 30%, 20% and 40%

and RE UNL of DC2 is 20%, 30% and 30% during t = 1 to t = 3. The UN of DC1 and

DC2 is calculated as 1 for two nodes. Therefore, the completion time of UR2 is 4 in both

datacenters. The ACO of UR2 in DC1 and DC2 is 1.4 and 0.9, respectively, and their

normalized value is 1 and 0.64, respectively. The TNRE of UR2 in DC1 and DC2 is 3, and

the normalized value is 1. The linear combination value of normalized ACO and TNRE in

DC1 and DC2 is 1 and 0.82, respectively. Therefore, UR2 is assigned to DC2.

Next, the UR3 demands service from t = 1 to t = 4 with one node and it can be executed

in UNL 2 of RE. UR3 can be accommodated in the DC1 and DC2 with UN as 2 and 1,

respectively. Therefore, the completion time of UR3 is 6 and 5 in DC1 and DC2, respec-
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Table 5.9: Comparison of five performance metrics for the UNL-FABEF, UNL-HAREF,
UNL-RR and UNL-MOSA algorithms

Performance metrics UNL-FABEF UNL-HAREF UNL-RR UNL-MOSA
OCO 7.80 9.70 9.30 7.90

TNRE 26 37 34 34
TNNRE 34 28 26 28

UNT 12 14 13 13
UNCO 2.20 2.90 2.70 2.40

tively. The ACO of UR3 in DC1 and DC2 is 0.7, and the normalized value is 1. The number

of available RE resource slots of UR3 in DC1 and DC2 is 5 and 2, respectively, and their

normalized value is 0.4 and 1, respectively. The linear combination value of normalized

ACO and TNRE in DC1 and DC2 is 0.7 and 1, respectively. Therefore, UR3 is assigned to

DC1. In the same way, UR4 to UR9 are assigned to DC2, DC1, DC1, DC1, DC1 and DC1,

respectively. The ACOs in these datacenters are 2.2, 0.6, 0.5, 0.5, 0.8 and 1.1, respectively.

The TNRE in these datacenters is 12, 2, 0, 2, 2 and 2, respectively. The OCO for DC1

and DC2 is 3.70 and 4.20, respectively. The TNRE is 34. The UNT and UNCO are 13

and 2.40, respectively. The UNL-MOSA’s final Gantt chart is presented in Table 5.8. The

comparison of the UNL-FABEF, UNL-HAREF, UNL-RR and UNL-MOSA algorithms is

shown in Table 5.9. The comparison shows the superiority of the UNL-FABEF in terms of

the OCO, the UNL-HAREF in terms of the TNRE and the UNL-MOSA in balancing the

OCO and the TNRE.

5.3 Performance Metrics, Datasets and Simulation Results

This section presents the definition of the five performance metrics, the dataset generation

process and the four algorithms’ simulation results.

5.3.1 Performance Metrics

We use five performance metrics, namely the OCO, TNRE, TNNRE, UNT and UNCO.

OCO comprises two costs of all the datacenters, i.e., RE and NRE resource costs. These

costs are accumulated using ACO. Therefore, OCO is the sum of ACO of all the URs. It
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can be mathematically expressed as follows.

OCO =

|UR|∑
k=1

|DC|∑
i=1

ACO[i]×X[k, i] (5.2)

where

X[k, i] =

1 If DCi accommodates URk in its resource slots

0 Otherwise
(5.3)

TNRE is the sum of the number of RE resource slots used by all the URs. Mathemat-

ically,

TNRE =
n∑

k=1

slots re[k] (5.4)

Alternatively, TNNRE is the sum of the number of NRE resource slots used by all the

URs. Mathematically,

TNNRE =
n∑

k=1

slots nre[k] (5.5)

UNT is the sum of the additional time durations incurred towards satisfying the UN of

URs. It can be defined as follows.

UNT =
n∑

k=1

Y [k] (5.6)

where

Y [k] =

UN [k] If N [k] = 1⌊
UN [k]
N [k]

⌋
If N [k] ≥ 2

(5.7)

UNCO is the sum of the additional costs incurred for the usage of RE and NRE re-

source slots during UN time durations. It can be defined as follows.

UNCO =
n∑

k=1

m∑
i=1

ST [k]+D[k]+Y [k]∑
l=ST [k]+D[k]

o∑
j=1

CO[l, j]×X[k, i] (5.8)

Note that CO[l, j] is shown as CO[l] in the algorithms because the cost of resource slots at

a particular time instance is the same.
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5.3.2 Datasets

The datasets are generated using a system with Intel(R) Core(TM) i5-10310U CPU @

1.70 GHz 2.21 GHz, 8 GB RAM, 64-bit operating system and x64-based processor. The

edition, version and operating system build of Windows is 11 Home single language, 22H2

and 22621.1702, respectively. The system is installed with MATLAB R2017a with version

9.2.0.538062. However, the datasets can be generated using any system configuration with

any latest version after MATLAB R2014a. It is important to note that the works [46,54,58,

67, 88] used real workload traces, mostly Google cluster-usage traces. However, Toosi and

Buyya [46] stated that there are no publicly available workload traces, and Google traces

lack information regarding workload-containing requests. As a result, they have generated

some of the parameters randomly. In line with [46], we generate the parameters, including

Google trace parameters, using uniformly distributed random numbers in MATLAB, as

no existing dataset/trace deals with the problem introduced in this chapter. Alternatively,

we create a codistributed matrix of uniformly distributed random numbers using the randi

function. The details about the generation of datasets and their properties and attributes are

discussed as follows. (1) We determine the number of URs and datacenters, say 200 and

20, respectively. (2) The UR IDs are generated chronologically from UR1 to UR200 and

kept in one of the columns of the Microsoft Excel file. (3) The ST of URs are generated

between 1 and 100 using the randi([1, 100], [200, 1]) function and kept in another column

of the Microsoft Excel file. Note that this function generates a 200 × 1 matrix in which

the values are in the range of 1 to 100. (4) The D of URs are generated between 10 and 25

using the randi([10, 25], [200, 1]) function and kept in another column. (5) The N of URs

are generated between 10 and 100 using the randi([10, 100], [200, 1]) function and kept in

another column. (6) The UNL-RE of URs are generated between 1 and 3 using the randi([1,

3], [200, 1]) function and kept in another column. (7) The UN-NRE of URs are fixed as

10% and kept in the last column. The Excel file is given as input to all four scheduling

algorithms. It is noteworthy to mention that the attribute of UR ID, ST, D, N, UNL-RE and

UN-NRE is discrete, discrete, discrete, discrete, nominal and fixed, respectively. On the

other hand, the datacenters are configured by taking a 3D matrix in which the dimensions
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Table 5.10: Parameters and their range of values

Parameter Values
Number of datacenters [20 ∼ 200]
Number of resources per datacenter [10 ∼ 400]
Number of URs [200 ∼ 2000]
ST of URs [1 ∼ 100]
D of URs [10 ∼ 25]
N of URs [10 ∼ 100]
UNL of RE 1, 2 and 3
UN of NRE 10%
NRE cost of datacenter [1 ∼ 100]
RE cost of datacenter 1
UN percentage of RE resources [1% ∼ 100%]

represent time instance, number of resources and datacenter ID as follows. (1) The range

of these dimensions is [1, 125], [10, 400] and [20, 200], respectively. (2) The NRE cost of

each datacenter is generated using the randi([1 100], [125, 1]) function. In contrast, the RE

cost of each datacenter is fixed as 1. (3) The UN percentage of RE resources is generated

using the randi([1 100], [125, 1]) function. It is noteworthy to mention that the attribute of

time instance, number of resources, datacenter ID, NRE cost, RE cost and UN percentage

is discrete, discrete, discrete, discrete, fixed and discrete, respectively. The parameters

that are used in the dataset generation are listed in Table 5.10. Using these parameters,

we generate ten datasets and present them using the number of URs and datacenters. For

instance, 200 × 20 shows that 200 URs are assigned to 20 datacenters and 2000 × 200

shows that 2000 URs are assigned to 200 datacenters. Each dataset contains five instances

of the same size to carry out the simulation results of the four algorithms. Then, the results

are averaged to present in the pictorial form.

5.3.3 Simulation Results

The results carried out during the simulation runs of UNL-FABEF, UNL-HAREF, UNL-

RR, and UNL-MOSA algorithms are compared using ten datasets in terms of five perfor-

mance metrics. The extended baseline algorithms and UNL-MOSA are compared using

the same environmental setup and parameters. The discussion on the results is stated as
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follows.

• UNL-FABEF performs better in OCO compared to the other three algorithms, as

shown in Fig. 5.1. More specifically, UNL-FABEF reduces the OCO by 53%, 54%

and 8% on average compared to UNL-HAREF, UNL-RR and UNL-MOSA. On the

other hand, the percentage of reduction in OCO by UNL-FABEF is 50% to 55%,

48% to 56% and 6% to 9% compared to UNL-HAREF, UNL-RR and UNL-MOSA.

The better performance is because UNL-FABEF selects the datacenter with the least

ACO, including the UNT period. UNL-MOSA performs better after UNL-FABEF

as it aims to minimize the OCO. On the other hand, UNL-HAREF is the worst per-

forming as it aims to maximize the TNRE. As a result, it can be concluded that

maximizing RE usage does not lead to minimizing the OCO. Note that the same ob-

servation is also reported in [46, 70, 71].
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Figure 5.1: Pictorial comparison of OCO for UNL-FABEF, UNL-HAREF, UNL-RR and
UNL-MOSA using ten datasets.

• As seen in Fig. 5.2, UNL-HAREF outperforms in TNRE compared to the other

algorithms. UNL-HAREF achieves an average increase of 22%, 33% and 19% in

TNRE compared to UNL-FAREF, UNL-RR, and UNL-MOSA. Conversely, UNL-

HAREF results in an increase in TNRE ranging from 19% to 24%, 31% to 36%,

and 12% to 21% when compared to UNL-HAREF, UNL-RR, and UNL-MOSA. It
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Figure 5.2: Pictorial comparison of TNRE for UNL-FABEF, UNL-HAREF, UNL-RR and
UNL-MOSA using ten datasets.

is evident as UNL-HAREF selects the datacenter with the maximum TNRE. UNL-

MOSA is next to UNL-HAREF as it aims to maximize TNRE. On the contrary,

UNL-RR performs worst as it considers no factor while assigning the URs.

• We know that RE generation is uncertain and unpredictable. It is clearly observed

from Fig. 5.3 that UNL-HAREF is the worst-performing algorithm in terms of UNT

compared to other algorithms. On the other hand, UNL-RR outperforms all, and

the performance of UNL-FABEF is close to UNL-RR. UNL-RR demonstrates an

average reduction of 12%, 19%, and 13% in UNT when compared to UNL-FABEF,

UNL-HAREF, and UNL-MOSA, respectively. Conversely, the reduction percentage

in UNT achieved by UNL-RR ranges from 9% to 14%, 17% to 20%, and 10% to

15% when compared to UNL-FABEF, UNL-HAREF, and UNL-MOSA.

• All four algorithms are finally compared in terms of UNCO using Fig. 5.4. Here,

UNL-FABEF performs better than other algorithms as it selects the least cost re-

source slots in the UNT period. More specifically, UNL-FABEF reduces the UNCO

by 56%, 67% and 8% on average compared to UNL-HAREF, UNL-RR and UNL-

MOSA. On the other hand, the percentage of reduction in UNCO by UNL-FABEF

is 54% to 58%, 58% to 70% and 3% to 17% compared to UNL-HAREF, UNL-RR
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Figure 5.3: Pictorial comparison of UNT for UNL-FABEF, UNL-HAREF, UNL-RR and
UNL-MOSA using ten datasets.

and UNL-MOSA. UNL-MOSA performs better next to UNL-FABEF because of its

objective. On the other hand, UN-RR performs poorly and produces more UNCO.

As a result, it can be concluded that minimizing the UNT does not lead to reducing

the UNCO.

5.3.4 Analysis of Variance Statistical Test

Analysis of variance (called ANOVA) [56] is a well-known statistical test that compares

more than two groups/algorithms and determines their relationship. It takes two hypothe-

ses, namely null and alternate. In the null hypothesis, we consider that the means of four

algorithms, UNL-FABEF, UNL-HAREF, UNL-RR and UNL-MOSA, are equal. On the

contrary, one of the means differs in the alternate hypothesis.

ANOVA considers two sources of variations (SV), namely between and within groups,

to determine the sum of square (SS), degree of freedom (DF), mean square (MS), F value,

P value and F critical (FC) value. As mentioned earlier, there are ten datasets and four

algorithms. As a result, the number of simulation results and tests performed are 40 and 4,

respectively. The DF is calculated between and within groups as follows. In the between

group, DF is calculated by subtracting one from the number of tests (i.e., 4 - 1 = 3). In
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Figure 5.4: Pictorial comparison of UNCO for UNL-FABEF, UNL-HAREF, UNL-RR and
UNL-MOSA using ten datasets.

the within group, DF is calculated by subtracting the number of tests from the number of

simulation results (i.e., 40 - 4 = 36).

We perform the ANOVA statistical tests on OCO and UNCO as shown in Table 5.11

and Table 5.12, respectively, since these cost metrics are key performance indicators. In

both metrics, we found that the F value is greater than the FC value, and the P value is

less than 0.05. As a result, the null hypothesis is rejected, and the alternate hypothesis is

accepted. It means that the means are unequal, and there is a significant difference between

the four scheduling algorithms.

Table 5.11: Comparison of OCO for UNL-FABEF, UNL-HAREF, UNL-RR and UNL-
MOSA using ANOVA statistical test

SV SS DF MS F P FC

Groups
Between 6.1015E+14 3 2.0338E+14

5.0074 0.0053 2.8663Within 1.4622E+15 36 4.0616E+13
Total 2.0723E+15 39

Table 5.12: Comparison of UNCO for UNL-FABEF, UNL-HAREF, UNL-RR and UNL-
MOSA using ANOVA statistical test

SV SS df MS F P FC

Groups
Between 2.0564E+13 3 6.8545E+12

8.7963 0.0002 2.8663Within 2.8053E+13 36 7.7925E+11
Total 4.8616E+13 39
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5.4 Summary

This chapter has presented four algorithms, UNL-FABEF, UNL-HAREF, UNL-RR and

UNL-MOSA. The first three algorithms extend three benchmark algorithms, FABEF, HAREF

and RR. These UNL-based algorithms focus to minimize the OCO, TNNRE, UNT and

UNCO, and maximize the TNRE. The main principle behind these algorithms is to in-

corporate the UN from the user and CSP perspectives by considering three levels, low,

medium and high. The algorithms have been shown to require O(nmdo) for n URs, m

datacenters, d duration and o resources except for UNL-RR. UNL-RR has been shown to

require O(ndo). All these algorithms have been simulated using ten datasets and compared

using five performance metrics. The comparison results show the applicability of each algo-

rithm concerning the performance metrics. More specifically, UNL-FABEF, UNL-HAREF

and UNL-RR perform better in OCO and UNCO, TNRE and UNT, respectively. On the

contrary, UNL-MOSA makes a trade-off between UNL-FABEF and UNL-HAREF and

achieves a balance between OCO and TNRE. However, the proposed algorithms consider

UN and UNL within the datacenter. An improvement introduced is the ability to relocate

the UR from one datacenter to another in response to any UN. Additionally, this reloca-

tion can be optimized based on the availability of RE sources to maximize OCO savings.

Consequently, the next chapter investigates the migration algorithm for geographically dis-

tributed datacenters.
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Chapter 6

A Renewable Energy-Oriented

Migration Algorithm for Minimizing

Cost in Geo-Distributed Cloud

Datacenters

This chapter addresses assigning a set of n URs to a set of m datacenters, where each dat-

acenter is supplied with RE and NRE sources. This problem, known as UR migration in

RE-based scheduling, aims to minimize OCO. The primary motivation originates from the

variability of RE sources, which depend on geographical location, time, cost, and climate

conditions. Consequently, the cost of executing URs varies across different datacenters.

From the user’s perspective, the goal is to minimize billing costs while meeting the desired

requirements. On the other hand, from the CSP’s perspective, the goal is to reduce the

cost of executing URs, thereby maximizing profit. Profit is the margin between the cost

agreed upon with the user based on the SLA and the actual incurred cost. By selecting

appropriate datacenters for each UR, the CSP can increase savings. The three benchmark

algorithms, FABEF, HAREF, and RR, select datacenters based on lowest cost, highest RE

resources, and circular order, respectively. These algorithms must effectively utilize the

available RE resources among the datacenters. In contrast, CSPs can save on OCO by redi-

103



Section 6.0

recting URs from one datacenter to another based on the availability of RE resources. This

insight has led to the developing of a novel algorithm that integrates RE resources into the

cost-minimizing FABEF algorithm by migrating URs between datacenters. Therefore, we

present a novel REOMA to minimize the OCO for geographically distributed datacenters

using strategic migration. REOMA calculates the cost incurred during the time window for

each UR in the datacenters and identifies the least ACO datacenter. It then models each

datacenter’s cost over the time window as a polynomial curve and determines the slope

and intercept. Next, it identifies migration points between the least ACO datacenter and

other datacenters, which may be zero, one, or multiple points. Finally, REOMA selects

the pair of datacenters to perform the migration with the lowest ACO. The effectiveness of

REOMA is evaluated against three benchmark algorithms using OCO, TNRE, and TNNRE

metrics. The evaluation uses datasets ranging from 200 to 2000 URs in increments of 200

and from 20 to 200 datacenters in increments of 20. The performance metrics demonstrate

significant improvements in REOMA over all other benchmark algorithms. In summary,

this chapter offers the following contributions to the research community.

1. We develop a novel migration algorithm that integrates RE and NRE sources. This

algorithm facilitates the efficient relocation of URs from one datacenter to another

within a geo-distributed cloud datacenter environment, aiming to minimize OCO.

2. The proposed migration algorithm fits the costs of datacenters over time intervals for

a UR into a polynomial curve and calculates both the slope and intercept.

3. The proposed migration algorithm identifies the intersection point between the least

ACO datacenter and other datacenters as the migration point.

4. The proposed migration algorithm is evaluated against three benchmark algorithms,

FABEF, HAREF and RR, to demonstrate its enhancements in OCO reduction and

optimization of TNRE and TNNRE across ten datasets.

The next sections are outlined as follows. Section 6.1 presents the system model and the

problem statement. Section 6.2 introduces the proposed algorithms with time complexity
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analysis. Section 6.3 defines three performance metrics, and discusses the datasets and

simulation results. Section 6.4 concludes the presented work.

6.1 System Model and Problem Formulation

6.1.1 System Model

We consider an IaaS CSP that deploys datacenters in various locations worldwide. These

datacenters are interconnected with high bandwidth. For example, the Google cloud plat-

form (GCP) covers over 40 regions, 121 availability zones, and 173 points of presence.

Similarly, Microsoft Azure spans over 60 regions and 140 points of presence [124]. Each

availability zone includes multiple datacenters, each housing numerous servers, necessitat-

ing substantial energy consumption. Traditionally, these datacenters rely on NRE, which

significantly impacts the environment. Consequently, CSPs seek RE-based solutions for

sustainable development. However, RE generation depends on climate conditions, loca-

tion, and time. Thus, CSPs analyze RE generation in the locations of their datacenters

to migrate URs between datacenters for sustainable solutions. These solutions not only

protect the environment but also reduce OCO. Determining an optimal migration point be-

tween datacenters is challenging and not well-studied. Our proposed model aims to migrate

URs between datacenters by identifying an appropriate migration point to minimize OCO.

6.1.2 Problem Formulation

Given an ordered set of n URs, URk, 1 ≤ k ≤ n and a set of m datacenters, DCi, 1 ≤

i ≤ m. A UR, URk, 1 ≤ k ≤ n, is defined as a 3-tuple, i.e., <STk, Dk, Nk> in which

STk, Dk and Nk indicate the start time, duration and number of required nodes/resources

of UR URk. A datacenter, DCi, 1 ≤ i ≤ m, is defined as a 4-tuple, i.e., <Ri, AREi,

ANREi, COi> in which Ri, AREi, ANREi and COSTi indicate the number of available

resources, an array of available RE resources, an array of available NRE resources and an

array of costs over a period of time of datacenter DCi. The problem is to match each UR

with m datacenters and schedule the UR to one of the datacenters, such that the objectives
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described below are achieved.

1. Minimize the OCO

2. Maximize the TNRE and minimize the TNNRE

The constraints below are enforced to solve the above problem.

1. The execution order of URs is unchanged.

2. A UR can relocate from one datacenter to another datacenter.

3. The required resources for each UR can be met by initially utilizing RE resources,

followed by NRE resources if needed.

6.2 Renewable Energy-Oriented Migration Algorithm

We introduce REOMA into geo-distributed cloud datacenters to facilitate seamless migra-

tion of UR from one datacenter to another. The objective is to minimize OCO and TNNRE

and maximize the TNRE. REOMA performs the migration using a three-step process: cost

estimation, planning, and execution. In the cost estimation process, REOMA determines

the ACO of a UR with respect to the time window in each datacenter. Subsequently, it

identifies a datacenter with the least cost. In the planning process, REOMA takes the cost

of a UR relative to its time window, generates a first-degree polynomial curve and provides

the polynomial coefficients, namely slope and intercept. Furthermore, REOMA finds the

migration points between the least cost datacenter and other available datacenters. Finally,

it selects a pair of datacenter, resulting in the lowest cost. In the execution process, RE-

OMA assigns the UR to the least cost datacenter till the migration point and migrates to

another datacenter after the migration point. In this way, REOMA effectively reduces the

OCO associated with executing URs across the datacenters. The pseudocode of REOMA

is outlined in Algorithm 6.1. The pseudocode is described with respect to the three-step

process in the following subsections.
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Algorithm 6.1 REOMA
Input: n, m, 1-D matrix: ST , D, N and 2-D matrix: DCE, DCP
Output: OCO, TNRE, TNNRE
1: for i← 1, 2, 3,. . ., n do
2: for j ← 1, 2, 3, . . ., m do
3: Set t1← 0
4: for k← ST [i], ST [i] + 1, ST [i] + 2,. . ., (ST [i] +D[i]− 1) do
5: Set x← 0, m← 1, ACO← 0 and t1← t1 + 1
6: while N [i] ̸= x do
7: if ASSIGN UR[m, k, j] = 0 then
8: if m ≤ DCE[j, k] then
9: Set COST [j]← COST [j] + α

10: Set ARE[j]← ARE[j] + 1
11: Set ACO← ACO + α
12: else
13: Set COST [j]← COST [j] +DCP [j, k]
14: Set ANRE[j]← ANRE[j] + 1
15: Set ACO← ACO + DCP [j, k]
16: end if
17: end if
18: Set m←m + 1 and x← x + 1
19: end while
20: Set TCOST [j, t1]← ACO
21: end for
22: end for
23: Call FIND MIGRATION POINT (TCOST, ST,D)
24: end for

6.2.1 Cost Estimation

REOMA estimates the ACO of a UR in all the datacenters using Algorithm 6.1. The ACO

is the sum of the cost of RE resources and NRE resources. For this, REOMA iterates

from the ST to (ST + D - 1) of each UR in all the datacenters (Line 1 to Line 4). Then,

it checks whether the number of required N for the UR is non-zero (Line 6). If it is non-

zero, it checks the availability of RE and NRE resource slots (Line 7 to Line 17). If the

RE resource slot is available (Line 8), it calculates the cost and counts the RE slots (Line

9 to Line 11). Note that COST is used to keep the cumulative costs, and ACO is used to

keep the cost of assigning one UR. We assume that the cost of the RE slot is α, which is

generally considered zero. On the other hand, it calculates the cost of the NRE resource

slots and counts the NRE slots (Line 13 to Line 15). Finally, the cost of assigning the UR

in all the datacenters is estimated and stored in TCOST (Line 20).
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6.2.2 Migration Planning

REOMA calls Procedure 7 from line 23 of Algorithm 6.1 to determine the migration points.

For this, it determines the slope and intercept by taking the time window and the estimated

cost of assigning the UR to the datacenter with respect to the time instances (Line 1 to

Line 5). Note that we use a polyfit() function to find the slope and intercept, which is

not shown explicitly. This function generates a first-degree polynomial curve or straight

line, providing the polynomial coefficients as slope and intercept. Then, REOMA finds the

datacenter that estimates the least cost (Line 6 to Line 11). Subsequently, REOMA finds the

possible migration points between the least cost datacenter and other available datacenters

(Line 12 to Line 21). Note that if there are m datacenters, there are (m - 1) migration

points in the worst case. It is noteworthy to mention that the non-least cost datacenters may

intersect with each other. However, REOMA does not consider such intersection points

as the cost is not the least. Then, it selects a migration point from the set of migration

points as follows (Line 22 to Line 45). For instance, if there are (m - 1) migration points

with their x-coordinate and y-coordinate as {(x1, y1), (x2, y2), (x3, y3),. . ., (xm−1, ym−1)},

then it selects the migration point as (xi, yi), 1 ≤ i, j ≤ m - 1, yi = min(y1, y2, y3,. . .,

ym−1). It is important to note that the migration points falling outside the time window

are not considered (Line 26 and Line 37). The rationality behind selecting the minimum

y-coordinate is that it gives the least cost over all the points.

6.2.3 Execution

REOMA calls Procedure 8 from line 46 of Procedure 7 to map the UR to a pair of datacen-

ters by considering the selected migration point (MP). First, it checks whether the migration

point is found or not. If not found, it calls Procedure 9 to assign the UR to the least cost

datacenter like FABEF (Line 1 to Line 3 of 8). If found, it rounds up the x-coordinate as

the time interval is considered a whole number (Line 4). Suppose the slope of the least

cost datacenter is greater than that of the datacenter selected for migration. In that case, it

assigns the UR to the least cost datacenter between the ST of the UR to the migration point

(Line 5 to Line 7), followed by the other datacenter between the migration point to (ST +
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Procedure 7 FIND MIGRATION POINT (TCOST, ST,D)

1: for j ← 1, 2, 3,. . ., m do
2: XV AL← [ST [i], ST [i] + 1, ST [i] + 2,. . ., (ST [i] +D[i]− 1)]
3: Y V AL← [TCOST [j, 1], [TCOST [j, 2], [TCOST [j, 3],. . ., [TCOST [j, k]]
4: [SLOPE[j], INTERCEPT [j]]← POLY FIT [XV AL, Y V AL, 1]
5: end for
6: Set MCOST ← COST [1] and MCOST DC ← 1
7: for j ← 1, 2, 3,. . ., m do
8: if MCOST > COST [j] then
9: MCOST ← COST [j] and MCOST DC ← j

10: end if
11: end for
12: for j ← 1, 2, 3,. . ., m do
13: if MCOST DC ← j then
14: Set XT [j]← -1 and Y T [j]← -1
15: else if SLOPE[MCOST DC]← SLOPE[j] then
16: Set XT [j]← -1 and Y T [j]← -1
17: else
18: Set XT [j]← INTERCEPT [j]−INTERCEPT [MCOST DC]

SLOPE[MCOST DC]−SLOPE[j]

19: Set Y T [j]← SLOPE[MCOST DC] × XT [j] + INTERCEPT [MCOST DC]
20: end if
21: end for
22: Set FMIN DC ← 0 and MIG CHK ← 0
23: for j ← 1, 2, 3,. . ., m do
24: if XT [j]← -1 then
25: continue
26: else if Y T [j] ≤ 0 || XT [j] ≤ ST [i] || XT [j] ≥ ST [i] +D[i] then
27: continue
28: else
29: Set FMIN DC ← j, MIN V AL← Y T [j] and MIG CHK ← 1
30: break
31: end if
32: end for
33: if FMIN DC ← 0 then
34: Set MIG CHK ← 0
35: else
36: for j ← 1, 2, 3,. . ., m do
37: if Y T [j] ≤ 0 || XT [j] ≤ ST [i] || XT [j] ≥ ST [i] +D[i] then
38: continue
39: else
40: if MIN V AL ≥ Y T [j] then
41: MIN V AL← Y T [j] and FMIN DC ← j
42: end if
43: end if
44: end for
45: end if
46: Call MAPPING UR DC(MIG CHK,ST,D,MCOST DC,FMIN DC)
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D - 1). Otherwise, it assigns the UR to the datacenter selected for migration, followed by

the least cost datacenter (Line 8 to Line 10). In summary, Procedure 8 calls Procedure 9 to

assign the UR to a pair of datacenters that results in the least cost.

Procedure 8 MAPPING UR DC(MIG CHK,ST,D,MCOST DC,FMIN DC)

1: if MIG CHK = 0 then
2: Call ASSIGN UR DC(ST [i], ST [i] + D[i] - 1, N [i], MCOST DC)
3: else
4: Set MP ← ROUND(XT [FMIN DC])
5: if SLOPE[MCOST DC] > SLOPE[FMIN DC] then
6: Call ASSIGN UR DC(ST [i], MP , N [i], MCOST DC)
7: Call ASSIGN UR DC(MP + 1, ST [i] +D[i]− 1, N [i], FMIN DC)
8: else
9: Call ASSIGN UR DC(ST [i], MP , N [i], FMIN DC)

10: Call ASSIGN UR DC(MP + 1, ST [i] +D[i]− 1, N [i], MCOST DC)
11: end if
12: end if

REOMA calls Procedure 9 from line 8, line 6, line 7, line 9 and line 10 of Procedure 8

to assign the UR to a pair of datacenters. For this, it begins with ST to the migration point

or the (ST + D - 1) (Line 1). Then, it assigns the nodes to the UR till the required number

of nodes is satisfied and updates the OCO, TNRE and TNNRE (Line 1 to Line 13). The

above process is repeated from the migration point to the (ST + D - 1).

Procedure 9 ASSIGN UR DC(ST,ET,N ′, SEL DC)

1: for k← ST , ST + 1, ST + 2,. . ., ET do
2: Set x← 0
3: while N ′ ̸= x do
4: if ASSIGN UR[m, k, SEL DC] = 0 then
5: Set ASSIGN UR[m, k, SEL DC]← i and x← x + 1
6: if m ≤ DCE[SEL DC, k] then
7: Set OCO← OCO + α and TNRE ← TNRE + 1
8: else
9: Set OCO← OCO + DCP [SEL DC, k] and TNNRE ← TNNRE + 1

10: end if
11: end if
12: end while
13: end for

6.2.4 Time Complexity Analysis

The time complexity of REOMA can be determined as follows. Let |UR| = n, |DC| = m,

d be the maximum duration of a set of URs, and o be the maximum amount of resources
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among a set of datacenters. In Algorithm 6.1, Line 1 iterates for n URs, requiring O(n)

time. Similarly, Line 2 iterates for m datacenters, requiring O(m) time. The inner for loop

in Line 4 iterates for d time in the worst case, resulting in O(d) time. The while loop in Line

6 executes o times in the worst case, resulting in O(o) time. Procedure 7 takes O(m) time

to find the migration point. Procedure 8 takes O(d) time to map the UR to the datacenter,

and Procedure 9 takes O(d) time to assign the UR to the datacenter. Therefore, the overall

time complexity of REOMA is O(nmdo) for executing all the URs in the datacenters.

6.2.5 Illustration

We illustrate the existing algorithm, FABEF, and proposed algorithm, REOMA, using

seven URs and three datacenters. Each UR is presented as a 3-tuple, namely ST, D and

N (see Table 6.1), whereas each data centre is presented as a set of four resources and

sixteen-time intervals (see Table 6.2). The RE and NRE resource slots are presented in

green and white color, respectively. The cost of NRE resource slots is shown in the first

row of each datacenter. The mapping of the URs to the datacenters is explained as follows.

Table 6.1: A set of seven URs with their properties

UR ID ST D N
UR1 1 5 1
UR2 1 7 1
UR3 4 7 2
UR4 8 5 1
UR5 9 4 2
UR6 10 6 1
UR7 13 4 1

The UR1 needs one node from time interval 1 to time interval 5. It is matched with

three datacenters, as shown in Table 6.3. The ACO in three datacenters is 0.7, 0.6 and

1.0, respectively. As datacenter DC2 results the minimum ACO, UR1 is assigned to DC2,

as per FABEF. The OCO of assigning UR1 is 0.6. The RE and NRE resource slots of

assigning UR1 are 2 and 3, respectively, in FABEF.

In the proposed algorithm, REOMA, the cost is fitted to a polynomial curve using a
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Table 6.2: Initial configuration of datacenters with RE and NRE resources

DC1

R # 0.1 0.1 0.1 0.3 0.2 0.1 0.5 0.2 0.3 0.2 0.5 0.3 0.3 0.5 0.6 0.5
4
3
2
1
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DC2

R # 0.1 0.3 0.2 0.1 0.3 0.5 0.3 0.3 0.4 0.1 0.5 0.4 0.4 0.2 0.5 0.6
4
3
2
1
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DC3

R # 0.3 0.6 0.2 0.3 0.1 0.5 0.3 0.3 0.4 0.2 0.1 0.2 0.5 0.3 0.2 0.1
4
3
2
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

set of time intervals and cost values. Note that it can be performed using MATLAB’s

polyfit(x, y, n) function in which the x represents the time intervals, y represents the cost

values, and n is the polynomial degree to fit. The slope and intercept values of datacenters

are (0.06, -0.04), (0.07, -0.09) and (-0.01, 0.23), respectively. REOMA determines the

intersection points between the least cost datacenter and other datacenters, i.e., (DC2, DC1)

and (DC2, DC3). Here, the intersection point of DC2 and DC1 is [5.00 (i.e., −0.04−(−0.09)
0.07−0.06

),

0.26 (i.e., 0.06 × 5.00 + (-0.04) or 0.07 × 5.00 + (-0.09)), and intersection point of DC2

and DC3 is [4.00 (i.e., 0.23−(−0.09)
0.07−(−0.01)

), 0.19 (i.e., 0.07 × 4.00 + (-0.09) or (-0.01) × 4.00 +

0.23)]. As the y represents the cost values, the minimum cost value is the result between

datacenters DC2 and DC3 (i.e., 0.19). Therefore, migration occurs between these two

datacenters, and the migration point is determined as the time interval four based on the

corresponding y-coordinate value, as shown in Fig. 6.1. However, the slope of datacenter

DC2 is greater than the slope of datacenter DC3. Therefore, UR1 is assigned to datacenter

DC2 from time intervals one to four and subsequently migrated to DC3 after time interval

four, as shown in Table 6.4. The cost of assigning UR1 to datacenter DC2 is 0.3 (0 + 0 + 0.2
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Table 6.3: Matching of UR1 to three datacenters

t 1 2 3 4 5 OCO
DC1 0.0 0.1 0.1 0.3 0.2 0.7
DC2 0.0 0.0 0.2 0.1 0.3 0.6
DC3 0.0 0.6 0.0 0.3 0.1 1.0

1 2 3 4 5

0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

Time instance→

C
os

t→

Migration point(s)

DC1

DC2

DC3

Figure 6.1: Migration points among the datacenters, especially (DC2, DC3) and (DC2,
DC1).

+ 0.1) and datacenter DC3 is 0.1 by ignoring the migration cost. The total cost of assigning

UR1 is 0.4. The RE and NRE resource slots of assigning UR1 are 2 and 3, respectively.

The UR2 needs one node from time interval 1 to time interval 7. It is matched with

three datacenters, as shown in Table 6.5. The ACO in three datacenters is 1.2, 1.2 and

1.0, respectively. As datacenter DC3 results the minimum ACO, UR2 is assigned to DC3,

as per FABEF. The OCO of assigning UR1 is 1.0. The RE and NRE resource slots of

assigning UR2 is 4 and 3, respectively, in FABEF.

In the proposed algorithm, REOMA, the slope and intercept values of datacenters are

(0.0500, -0.0286), (0.0607, -0.0286) and (-0.0393, 0.3000), respectively. Then, REOMA

determines the intersection points between the least cost datacenter and other datacenters,

i.e., (DC3, DC1) and (DC3, DC2). Here, the intersection point of DC3 and DC1 is (3.6797,
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Table 6.4: Migration of UR1 from DC2 to DC3

DC1

R # 0.1 0.1 0.1 0.3 0.2 0.1 0.5 0.2 0.3 0.2 0.5 0.3 0.3 0.5 0.6 0.5
4
3
2
1
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DC2

R # 0.1 0.3 0.2 0.1 0.3 0.5 0.3 0.3 0.4 0.1 0.5 0.4 0.4 0.2 0.5 0.6
4
3
2
1 UR1 UR1 UR1 UR1

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
DC3

R # 0.3 0.6 0.2 0.3 0.1 0.5 0.3 0.3 0.4 0.2 0.1 0.2 0.5 0.3 0.2 0.1
4
3
2
1 UR1

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.1554), and intersection point of DC3 and DC2 is (3.2860, 0.1709). As the y represents the

cost values, the minimum cost value is the result between datacenters DC3 and DC1 (i.e.,

0.1554). Therefore, migration occurs between these two datacenters, and the migration

point is determined as the time interval four (i.e., round to nearest whole number of 3.6),

as shown in Fig. 6.2. However, the slope of datacenter DC1 is greater than the slope

of datacenter DC3. Therefore, UR2 is assigned to datacenter DC1 from time intervals

one to four and subsequently migrated to DC3 after time interval four, as shown in Table

6.6. The cost of assigning UR2 to datacenter DC1 is 0.5 and datacenter DC3 is 0.1 by

ignoring the migration cost. The OCO of assigning UR2 is 0.6. The TNRE and TNNRE

of assigning UR2 is 3 and 4, respectively. Similarly, UR3 to UR7 are assigned to (DC1,

DC2), (DC1, DC3), (DC1, DC3), (DC3, DC1) and (DC2, DC3), respectively. The OCO of

assigning these URs are shown in Table 6.7 along with the TNRE and TNNRE. The Gantt

chart for assigning seven URs to three datacenters is shown in Table 6.5. We compare the

proposed algorithm, REOMA, with the FABEF, HAREF, and RR algorithms, as illustrated

in Table 6.6. The comparison demonstrates the superiority of REOMA over the other three

114



CHAPTER 6. A RENEWABLE ENERGY-ORIENTED MIGRATION ALGORITHM 6.3. PERFORMANCE METRICS, DATASETS AND SIMULATION RESULTS

Table 6.5: Matching of UR2 to three datacenters

t 1 2 3 4 5 6 7 OCO
DC1 0.0 0.1 0.1 0.3 0.2 0 0.5 1.2
DC2 0.1 0.0 0.2 0.1 0.3 0.5 0.3 1.2
DC3 0.0 0.6 0.0 0.3 0.1 0.0 0.0 1.0

1 2 3 4 5
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

Time instance→

C
os

t→

Migration point(s)

DC1

DC2

DC3

Figure 6.2: Migration points among the datacenters, especially (DC1, DC3).

algorithms in terms of OCO, TNRE, and TNNRE.

6.3 Performance Metrics, Datasets and Simulation Results

This section discusses three performance metrics used to compare the proposed algorithm,

REOMA, and three benchmark algorithms, followed by a description of datasets and sim-

ulation results.

6.3.1 Performance Metrics

Three performance metrics, namely OCO, TNRE and TNNRE are used to compare the

proposed and existing algorithms. They are defined as follows. OCO is the total cost

incurred to execute all the URs irrespective of the datacenters and energy sources (i.e., RE
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Table 6.6: Gantt chart for REOMA

DC1

R # 0.1 0.1 0.1 0.3 0.2 0.1 0.5 0.2 0.3 0.2 0.5 0.3 0.3 0.5 0.6 0.5
4
3 UR3 UR5 UR5

2 UR3 UR3 UR3 UR5 UR5

1 UR2 UR2 UR2 UR2 UR3 UR3 UR4 UR4 UR4 UR6 UR6 UR6

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
DC2

R # 0.1 0.3 0.2 0.1 0.3 0.5 0.3 0.3 0.4 0.1 0.5 0.4 0.4 0.2 0.5 0.6
4
3
2 UR3 UR3 UR3 UR3

1 UR1 UR1 UR1 UR1 UR3 UR3 UR3 UR3 UR7 UR7

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
DC3

R # 0.3 0.6 0.2 0.3 0.1 0.5 0.3 0.3 0.4 0.2 0.1 0.2 0.5 0.3 0.2 0.1
4 UR6 UR6

3 UR5 UR5

2 UR2 UR5 UR5

1 UR1 UR2 UR2 UR6 UR4 UR4 UR7 UR7

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 6.7: Comparison of OCO, TNRE and TNNRE for REOMA, FABEF, HAREF and
RR

UR ID REOMA FABEF HAREF RR
UR1 0.4 0.6 0.6 0.7
UR2 0.6 1.0 1.0 1.4
UR3 1.8 2.5 2.5 3.1
UR4 0.3 0.8 0.8 0.8
UR5 1.6 1.8 2.6 1.9
UR6 0.8 1.3 1.3 1.5
UR7 0.5 1.1 1.3 0.8
OCO 6.0 9.1 10.1 10.2

TNRE 17 16 17 14
TNNRE 32 33 32 35
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and NRE). If a UR is executed in two datacenters, the cost of both datacenters is summed

to calculate the OCO. However, we ignore the cost of RE resources and migration for

simplicity in calculation. Mathematically,

OCO =

|UR|∑
k=1

|DC|∑
i=1

ST+D−1∑
j=ST

COST [i, j]× Y [k, i, j] (6.1)

where

Y [k, i, j] =

1 If DCi accommodates URk at time instance j

0 Otherwise
(6.2)

TNRE is the number of RE resource slots used for executing all the URs irrespective

of the datacenters.

TNNRE is the number of NRE resource slots used for executing all the URs irrespec-

tive of the datacenters. Note that the sum of TNRE and TNNRE is the total number of

resource slots used for executing all the URs.

6.3.2 Datasets

To our knowledge, no existing dataset considers all the properties of URs and datacenters.

Therefore, a dataset is prepared by taking all the properties of URs, namely ST, D and N

and datacenters, namely R, ARE, ANRE and CO. The range of ST, D and N is [1 ∼ 100],

[10 ∼ 25] and [10 ∼ 100], respectively. On the other hand, the range of R, ARE, ANRE,

and COST is [10 ∼ 400], [10 ∼ 200], [300 ∼ 400] and [1 ∼ 100], respectively.

The number of URs is generated between 200 and 2000, with a gap of 200, whereas

the number of datacenters is generated between 20 to 200, with a gap of 20. Ten datasets

are created, ranging from 200 URs assigned to 20 datacenters (shown as 200× 20) to 2000

URs assigned to 200 datacenters (shown as 2000 × 200). In each dataset, we generate five

instances and average the results. Each instance of the dataset is given as input to produce

the results in terms of OCO, TNRE and TNNRE. Notably, these datasets are generated

using uniform distribution and following the Monte Carlo simulation process to avoid bias.
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6.3.3 Simulation Results

We perform all the simulations using a system with an Intel(R) Core(TM) i5-10310U CPU

@ 1.70 GHz 2.21 GHz, 8 GB RAM, a 64-bit Windows 11 operating system, an x64-based

processor and MATLAB R2021a licensed version. However, our simulation is not limited

to the above specifications. We conduct 50 simulations per algorithm and a total of 200

simulations. The simulation times are ranging from seconds to hours. Note that the simu-

lation times depend on the system configuration.

We categorize the datasets into two types, namely low and high datasets. The first

five datasets are referred to as low datasets, whereas the last five are called high datasets.

We compare the proposed algorithm REOMA with three benchmark algorithms, namely

FABEF, HAREF and RR, in terms of OCO as shown in Figure 6.3 and Figure 6.4 for

low and high datasets, respectively. It is noteworthy that FABEF is the best-performing

benchmark algorithm regarding OCO as stated in [46, 70, 71, 115]. However, the proposed

algorithm REOMA outperforms the FABEF and other benchmark algorithms, as seen from

Figure 6.3 and Figure 6.4.
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Figure 6.3: Comparison of OCO for REOMA, FABEF, HAREF and RR using low datasets.

The rationality behind the better performance is as follows.

1. The migration point is determined between the least-cost datacenter and other data-

centers. The cost cannot be optimized further without a viable migration point. If a

viable point is found, it signifies that there is a datacenter that can provide better cost
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Figure 6.4: Comparison of OCO for REOMA, FABEF, HAREF and RR using high
datasets.

than the least-cost datacenter. As a result, when a UR migrates from one datacenter

to another, it results in the better OCO.

2. The assignment cost of a UR depends on the usage of RE and NRE resources. If

all the resources are RE, then the cost is negligible. As the migration point is de-

termined based on cost, resource usage positively impacts the proposed algorithm’s

performance.

Next, we compare the proposed and existing benchmark algorithms for TNRE by con-

sidering ten datasets, as shown in Figure 6.5 and Figure 6.6, respectively. As seen in the

figures, HAREF outperforms all the algorithms as it is the best-performing algorithm for

TNRE. REOMA outperforms all other algorithms except HAREF and utilizes the RE re-

sources efficiently. The rationality behind this is that REOMA aims to minimize the OCO

and not fully emphasize the RE resources in the scheduling decision process. However,

OCO is a critical factor compared to TNRE. Therefore, REOMA is preferable compared to

HAREF.

Next, the proposed and existing algorithms are compared with another performance

matrix, TNNRE, by taking both low and high datasets, as shown in Figure 6.7 and Figure

6.8, respectively. It is obvious to see that HAREF outperforms all the algorithms. REOMA

performs next to the HAREF. The rationality behind this is that maximizing the TNRE is

proportional to minimizing the TNNRE. As OCO is the primary concern, REOMA is more

suitable than all other algorithms.
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Figure 6.5: Comparison of TNRE for REOMA, FABEF, HAREF and RR using low
datasets.
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Figure 6.6: Comparison of TNRE for REOMA, FABEF, HAREF and RR using high
datasets.
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Figure 6.7: Comparison of TNNRE for REOMA, FABEF, HAREF and RR using low
datasets.
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Figure 6.8: Comparison of TNNRE for REOMA, FABEF, HAREF and RR using high
datasets.

6.4 Summary

This chapter has presented a migration algorithm, REOMA, for geo-distributed datacen-

ters. The algorithm is an extension of one of the benchmark algorithms, FABEF. REOMA

focuses on minimizing the OCO by relocating the URs from one datacenter to another dat-

acenter. The main principle behind this algorithm is to determine a suitable migration point

between the least-cost datacenter and other datacenters. The algorithm has been shown to

require O(nmdo) for n URs, m datacenters, d duration and o resources. All four algo-

rithms have been evaluated by carrying out 200 simulations using ten datasets and three

performance metrics. Each simulation took seconds to hours based on our system config-

uration. The comparison results show the applicability of REOMA over three benchmark

algorithms concerning the performance metrics. However, the proposed algorithm cur-

rently supports only a one-time migration between two datacenters, regardless of the UR

size. To improve this, we could implement multiple migrations among a set of datacenters

based on the UR size, incorporating thresholds on both the migration process and the num-

ber of datacenters involved to prevent excessive overhead.
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Chapter 7

Conclusion and Future Scope

In this chapter, we present the conclusion of the thesis along with notable remarks, followed

by a discussion of future research directions.

7.1 Conclusion

In this thesis, we primarily address various RE-based scheduling algorithms for geograph-

ically distributed datacenters. We begin with an overview of cloud computing, RE and

NRE generation, along with relevant statistics and challenges. We then discuss the motiva-

tion for developing scheduling algorithms that incorporate RE and NRE sources, followed

by outlining four specific objectives. The contributions of this thesis in response to these

objectives are briefly highlighted. Subsequently, we provide a detailed review of various

scheduling algorithms, focusing on cost, RE and NRE generation, UN and migration, along

with their pros, cons, and potential areas for improvement. The main contributions of this

thesis are detailed from Chapter 3 to Chapter 6, where we propose ten algorithms aimed at

minimizing processor and memory costs, UN, UN levels, and migration to reduce OCO,

TNNRE, UNT and UNCO, while maximizing TNRE.

In Chapter 3, we propose two algorithms for geo-distributed datacenters. First, we

introduce a scheduling algorithm called PM-FABEF, designed to minimize the OCO of as-

signing URs to datacenters. In PM-FABEF, the costs of processor and memory nodes are

calculated for each datacenter, and the datacenter with the lowest ACO is selected for UR
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assignment. PM-FABEF has a time complexity of O(nmdo), where n is the number of

URs, m is the number of datacenters, d is the maximum duration, and o is the maximum

number of resources. Second, we propose another scheduling algorithm, PM-HAREF,

which aims to maximize the TNRE while assigning URs to datacenters. In PM-HAREF, the

availability of processor and memory nodes powered by RE is assessed for each datacenter,

and the datacenter with the highest TNRE is chosen for UR assignment. PM-HAREF also

operates with a time complexity of O(nmdo). We simulated these two RE-based schedul-

ing algorithms using fifty instances of ten datasets and compared the results with three

benchmark algorithms: FABEF, HAREF, and RR. The simulations demonstrate that the

proposed algorithms are more efficient than the benchmark algorithms in terms of OCO,

TNRE, and TNNRE, depending on their applicability. Our findings indicate that the rela-

tionship between OCO and TNRE is non-linear.

In Chapter 4, we present three RE-based scheduling algorithms: UN-FABEF, UN-

HAREF, and UN-RR. These algorithms extend three benchmark algorithms (FABEF, HAREF,

and RR) by incorporating the management of UN for RE and NRE resources in geo-

distributed datacenters. The primary objective of these proposed algorithms is to minimize

the OCO, TNNRE, UNT and UNCO, and maximize the TNRE. UNT is calculated based

on the availability of RE and NRE resources. UN-FABEF and UN-HAREF have a time

complexity of O(nmdo), while UN-RR, due to its simplicity, has a time complexity of

O(ndo). Our simulations, comprising 150 runs using ten datasets, demonstrate that UN-

FABEF outperforms in terms of OCO, UNT, and UNCO. At the same time, UN-HAREF

excels in maximizing the TNRE.

In Chapter 5, we have presented four algorithms, UNL-FABEF, UNL-HAREF, UNL-

RR and UNL-MOSA, by incorporating user and CSP perspectives for geo-distributed dat-

acenters. These algorithms consider three levels, low, medium and high, from a user per-

spective and the UN percentage between 1% and 100% from the CSP perspective. The

proposed algorithms incorporate both user and CSP perspectives in three benchmark al-

gorithms, FABEF, HAREF and RR, to minimize the OCO, TNNRE, and UNT and UNCO

and maximize the TNRE. UNL-MOSA is designed to balance the trade-offs between UNL-

FABEF and UNL-HAREF, achieving a balance between OCO and TNRE. UNL-FABEF,
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UNL-HAREF, and UNL-MOSA have a time complexity of O(nmdo), whereas UNL-RR

operates with a time complexity of O(ndo). Simulation results were obtained using ten

datasets, which varied in size from 200 to 2000 URs, 20 to 200 datacenters, and 10 to 400

resources per datacenter. The performance metrics demonstrate the applicability and effi-

ciency of the proposed algorithms.

In Chapter 6, we have proposed a RE-based migration algorithm, called REOMA, for

geo-distributed datacenters. REOMA improves the performance of the best performing

least cost benchmark algorithm FABEF by migrating the UR between the datacenters. It

takes advantage of the cost estimation of a UR in various datacenters, thereby determining

a suitable migration point. The algorithm is shown to require O(nmdo) time. REOMA

is compared with three benchmark algorithms, including FABEF, using fifty instances of

ten datasets (i.e., 200 to 2000 URs and 20 to 200 geo-distributed datacenters) and three

performance metrics. The comparison results show that REOMA performs better than

other algorithms in terms of OCO.

7.2 Future Scope

The proposed RE-based scheduling algorithms perform significantly well according to their

applicability. However, they can be further extended in the future by adopting the following

enhancements.

1. PM-FABEF, UN-FABEF, UNL-FABEF, REOMA and FABEF aim for the minimum

OCO, while PM-HAREF, UN-HAREF, UNL-HAREF, and HAREF aim for the max-

imum TNRE. However, reducing NRE usage doesn’t always equate to cost reduction.

Although their relationship is expected to be linear, it’s actually nonlinear. Conse-

quently, we intend to investigate this relationship and integrate it into our proposed

algorithms as a future extension of our research.

2. All proposed algorithms consider the availability of RE based on time windows.

However, they haven’t been thoroughly examined regarding various RE sources, such

as solar, wind, hydropower, and biomass and their possible costs. Alternatively, RE
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sources are not explicitly mentioned in the proposed works and are not equally capa-

ble. It may be further explored by considering the generation of RE in the location of

the datacenters, thereby determining the cost to make it more realistic. This aspect

needs exploration in future research endeavours.

3. UN-FABEF, UN-HAREF, UN-RR, UNL-FABEF, UNL-HAREF and UNL-RR schedul-

ing algorithms are proposed to manage the UN and its level. UN can be modelled by

considering internal and external factors. However, the detailed study of these factors

is not explicitly shown in the context of these scheduling algorithms. We intend to

investigate such factors as a future extension of our research.

4. UN is shown in terms of the percentage of UN-RE and UN-NRE in the case of UN-

FABEF, UN-HAREF and UN-RR. However, the percentage of different RE sources

(i.e., solar, hydropower, wind, etc.) is not considered for simplicity. Moreover, the

UN about datacenters varies concerning locations. However, it is not considered to

avoid the complexity of the algorithms. These can be further explored in future work.

5. UNL-FABEF, UNL-HAREF, and UNL-RR are proposed to incorporate UN levels

from user and CSP perspectives. Here, the resource slots are considered only in

terms of nodes. However, they can be considered in terms of processor, memory and

storage. In this case, the UR modelling should be in terms of processor, memory and

storage nodes instead of only nodes.

6. The URs considered in all the proposed algorithms can have different duration and

node requirements concerning the datacenters as the type of VMs varies with respect

to the CSPs. These can be further explored in future work.

7. REOMA relocates the UR from one datacenter to another datacenter based on a mi-

gration point. However, it only allows for a one-time migration between two datacen-

ters, regardless of the size of the UR. Further exploration could involve considering

multiple migrations among a set of datacenters based on feasibility criteria. Ad-

ditionally, establishing an appropriate threshold for the number of migrations and

defining zones for datacenters could help mitigate overhead concerns. Moreover, the
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migration cost is not explicitly shown in the proposed algorithm, which can be fur-

ther explored to make it realistic.

8. As there is no benchmark dataset, the proposed algorithms are validated using syn-

thetic datasets by following the uniform distribution and the Monte Carlo simulation

process. However, these works can be validated by taking some parameters from the

real workload traces (e.g., Google cluster-usage traces [125–127]).

9. The proposed algorithms have considered various constraints to describe the user

requirements for executing URs. However, these algorithms can be extended by

introducing further constraints, such as latency, deadline, criticality level, priority,

failover time, recovery time, security factors, encryption time, decryption time, and

authentication time, to model real-time execution and security needs.

10. The proposed algorithms can be extended by applying machine learning-based fore-

casting models, which can predict renewable sources’ short-term and long-term avail-

ability by incorporating data from satellites, weather stations and historical patterns,

to deal with highly dynamically variable availability of renewable resources.

In our future work, we will focus on these enhancements to develop novel RE-based

scheduling algorithms that are more realistic.
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