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ABSTRACT

Drought is a multifaceted natural climatic hazard that significantly affects both ecosystem and
society. In comparison to other natural hazards, such as floods, storms, hurricanes, the spatial
extent of droughts is usually much larger. Climate variability precipitates a heightened
occurrence and severity of droughts on a global scale. Notably, India stands as one of the most
drought-prone regions worldwide, experiencing drought events approximately every three
years across distinct geographic areas, with a particularly profound impact observed in semi-
arid regions. As a result, it is important to investigate drought at regional and local scale with
climatic conditions and its variations. Global Climate Models (GCMs) are the only models
available for projecting climate systems at any timescale. Occurrence and distribution of
drought characteristics can be analysed by using GCMs datasets. Understanding the dynamics
of drought and its impacts in the context of climate change on a regional scale is therefore a
vital area of research, so in this study the regional frequency analysis of droughts using suitable

GCMs for Telangana state is carried out in view of recent catastrophic events.

In the first section, selection of suitable GCMs of Precipitation (P), Maximum Temperature
(Tmax), Average Temperature (7)) and Minimum Temperature (7,x) entails the application of
Standard Statistical Performance Metrics (SSPMetrics) over the period 1975-2005 in
Telangana State, India. Skill Score (SS), Normalized Root Mean Square Deviation (NRMSD)
and Correlation Coefficient (CC) SSPMetrics are utilized to evaluate 36 Coupled Model
Intercomparison Project 5 (CMIPS5) dataset models against observed data. Weights assigned to
SSPMetrics are determined from entropy and sensitivity analysis. Compromise Programming
(CP) is subsequently employed to rank the GCMs for each variable at individual grid point
using distance measure method. The Group Decision-Making Approach (GDMA) is then
applied to derive a combined ranking at each grid point. The ensemble climate models deemed
suitable for each variable are identified as follows: for P, FGOALS-g2, CMCC-CMS and
INMCM4.0; for Tax, BCC-CSM1.1(m), CanESM2 and MIROCS; for Tave, MIROCS, CNRM-
CMS5 and BCC-CSM1.1(m); for Tin, CanESM2, BCC-CSM1-1(m) and ACCESS 1.0 from
historical simulations of CMIPS5 GCMs. The computed net strength of each GCMs aligns with
the ensemble model results. The determined ensemble GCMs are suitable for utilization in
subsequent climate impact assessment studies that focus on precipitation, temperature or both
such as studies on drought, flood, temperature extremes and other regional scale climatic

phenomena.



In the second section of the study, regionalization of the study area and evaluating of drought
indices, namely Standardized Precipitation Index (SPI), Standardized Precipitation
Evapotranspiration Index (SPEI), Self-Calibrated Palmer Drought Severity Index (SC_PDSI)
and their properties(Severity and Duration) are assessed. Regionalization process involved the
analysis of hydro-meteorological data to discern homogeneous regions with akin
characteristics. Application of Fuzzy-C-Means - Unsupervised classification is used for
clustering and optimum number of clusters are identified as three for Telangana state.
Subsequently, Drought indices are computed over a 12-month time scale for three identified
homogenous regions from the year 1975 to 2017. The findings reveal that, in the context of the
SPI, Region 1 exhibited severe drought period during August 2011 to September 2013,
registering with -34.9 severity. The lengthiest drought episode in this region spanned from
September 1984 to September 1987, encompassing a duration of 37 months. In the case of
Region 2, exhibited severe and prolonged drought between June 2001 and August 2005,
recording -44.43 severity and 51 months of duration. Region 3 experienced severe drought
from August 1984 to August 1986, with a severity of -38.5, while the lengthiest drought event
spanned from July 2014 to September 2016, encompassing 27 months of duration. SPEI,
Region 1 exhibited severe and protracted drought event from August 2006 to September 2013,
manifesting a severity of -81.07 and persisting for a duration of 86 months. For Region 2,
experienced severe and extended drought spans during August 2006 to June 2013, registering
-75.1 of severity and persisting for 83 months. Region 3 witnessed its most severe drought
event during the period from March 2014 to December 2017, characterized by a severity of -
68.02, while the lengthiest drought event occurred from March 2007 to May 2011,
encompassing a duration of 51 months. For SC_PDSI, region 1, most severe and longest
drought event occurred during September 2000 to June 2003 with severity -79.77 and duration
33 months; Region 2 exhibits its most severe and extended drought event, spanning from
February 1984 to September 1985, characterized by -38.92 of severity and lasting for 19
months of duration. Conversely, Region 3 confronted an exceptionally severe drought event
extending from May 1979 to June 1988, registering -227.75 of severity and persisting for 110
months of duration. Overall, these valuable insights of severity and duration of SPI, SPEI and

SC_PDSI prove effective for analysing and assessing regional drought conditions.

In the third section, the investigation delves into unravelling the impact of teleconnection on
the relationship between drought indices (SPI, SPEI, SC_PDSI) and four prominent climatic
indices: Southern Oscillation Index (SOI), Dipole Mode Index (DMI), Multivariate ENSO

Vi



Index (MEI) and NINO3.4 are analysed for 1975-2017. Furthermore, interconnection between
drought indices and climate indices is examined using Wavelet Coherence method. The results
indicate that, drought pattern of DMI with SPI, SPEI and SC_PDSI is observed during 1984,
1985 and 1992. MEI and NINO 3.4 with SPI, SPEI and SC_PDSI during 1984 - 1986; SOI
matched well during the year 1992 and 1993 with all the drought indices. Inter annual
variability coherence for SPI with MEI is observed at 16 - 40 months (1982-1994 and 1995-
2017 and SOI inter annual coherence is evident between 1975-1990 and 1995-2017; whereas
Nino 3.4 intermittency is noticed at 1978-1992 and 2002-2015. Coherence is demoted with all
the climate indices in the case of SPEI only SOI exhibited a highly significant influence at 14
to 40 months between 2002- 2014. Whereas significant coherence is smaller for SC_PDSI with
DMI, MEI and NINO 3.4. SOI and MEI has significant coherence with SPI followed by SPEI
and SC_PDSI compared to other climate indices. This reliable and robust quantitively results
helps to understand relation between the climate and drought indices and new insights for

further drought investigation.

In section four, multivariate frequency analysis of Severity-Duration-Frequency (SDF) and
Severity-Area-Frequency (SAF) curves are developed with SPI and SPEI at 12- month time
scale at a threshold of -0.8. for three regions for time span of 1975-2017 (observed), 1975-
2005, 2006-2035, 2036-2065, and 2066-2095 (projected datasets) using drought
characteristics. The temporal evolution of drought entails a comprehensive examination of
drought attributes through the analysis of SPI and SPEI within three homogeneous regions.
This scrutiny encompasses both observed data and four distinct projected datasets. The
objective is to discern the nuanced characteristics of drought over time, thereby contributing
valuable insights to the understanding of drought dynamics. Increase of number of droughts
are noticed in all regions for future periods compared to observed period of IMD. Mean
interarrival time between droughts of SPI and SPEI is found to be maximum for Region 1 and
Region 3 in historic period latter it is decreased further in projected periods. Maximum severity
1s showing increasing trend in all regions during 2036-3065 and 2066-2095 future periods. The
incidence of moderate drought events exhibits an elevated frequency during both historical and
anticipated future periods across all delineated regions i.e., nearly 30% of the droughts are
moderate droughts for all the regions. The best fit copula for three regions is: for SPI —
Clayton(regionl), Gumbel((region2) and Frank(region3). SPEI, Gumbel(regionl),
Frank(region2), and Frank(region3). In later part of twenty-first century mean interarrival time

is observed to be reducing and number of droughts are observed to be increasing for both SPI
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and SPEIL A possibility of high number of droughts with less mean arrival time is expected
with high severity and duration in the future at Region 1 followed by Region 3 and Region 2
respectively. Projected drought SDF curves represent highest severity as noticed for Region 1
and duration for Region 3 for SPI whereas for SPEI highest severity and duration is noticed for
Region 1. All the curves rise convex upwards for region 1 & 2 and concave upwards for Region

3 which represents increase in severity with increase in duration for SPI and SPEI.

Projected SAF curves depict drought severity and its spatial extent in relation to the drought
return period, elucidating the spatial and recurrent patterns inherent in drought occurrences.
These curves prove instrumental in examining the anticipated annual severity of droughts in
the future, encompassing the associated percentage coverage of the affected area. Moreover,
SAF curves facilitate the comparative analysis of historical droughts against those projected
from future climate scenarios derived from GCMs outputs. The temporal evolution reveals a
discernible escalation in drought severity associated with varying durations over time.
Projections indicate that drought hazard is poised to reach its zenith during the periods of 2036-
2065 and 2066-2095, surpassing levels observed in other analysed epochs. Leveraging
information gleaned from SDF and SAF curves concerning drought severity, duration,
percentage coverage of the area and return period, allows for the precise calculation of drought
severity within designated regions. This information proves valuable for addressing

agricultural demand and formulating optimal crop management strategies.

The results and findings based on the application of statistical techniques in this study gives
insight to use suitable GCMs for drought related climate impact studies and this study offers

a view on potential drought condition in Telangana state, India.

Keywords: Global Climate Models, SSPMetrics, CP, Drought indices, SPI, SPEI, SC PDSI,

Severity, Duration, Teleconnections, Drought Frequency Analysis
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CHAPTER 1
INTRODUCTION

1.1 Global Climate Models
1.1.1. Overview of GCMs and Climate Change

Global Climate Models (GCMs) serve as indispensable numerical tools in comprehending the
complex physical processes of the land surface, ocean and atmosphere, particularly in the context
of simulating impacts for regional and hydroclimatological studies. The evaluation of climate
change, particularly its potential influences on hydrometeorological variables, is of paramount
importance and GCMs have proven instrumental in projecting future scenarios (Jiang et al., 2003).
The ramifications of alterations in precipitation and temperature patterns exert profound effects on
diverse societal dimensions, impacting the accessibility of water, reservoir operations, irrigation
practices, in addition to the incidence of extreme events such as floods and droughts.
Acknowledging the gravity of these consequences, GCMs have been customized to indicate the
existing climate conditions with their implications on hydrological variables within interconnected

networks (Pitman et al., 2012) (Smith and Chiew, 2010).

Despite their global applicability, GCMs exhibit limitations when applied at local or regional grid
scales. External forcings are implicitly described at the global scale, but the models often fall short
of indicating the effects of global climate changes at more localized levels (Reichler & Kim, 2008).
The precision of GCMs diminishes gradually when applied at finer scales, introducing
uncertainties related to variability in simulations and challenges in downscaling to local or regional
levels (Xu, 1999). Therefore, identifying and selection of GCMs has become necessary for climate

impact assessment.
1.1.2 Selection of Global Climate Models and their Applications

The evaluation of GCMs at regional or local hydrological scales is riddled with uncertainties,
attributed to factors such as random internal climate variability, anthropogenic activities and
the physical responses embedded in the model equations (Hawkins & Sutton, 2011;

Mujumdar & Nagesh Kumar, 2012). Given these uncertainties, it becomes imperative to



thoroughly evaluate GCMs before employing them in climate change studies. The evaluation of
GCMs extends beyond mere scrutiny, encompassing the selection of suitable models that
demonstrate optimal performance (Smith & Chiew, 2010). This evaluation is crucial for simulating

hydroclimatic variables and conducting hydrological modeling studies (Pitman et al., 2012).

A plethora of studies worldwide has been dedicated to simulating GCMs for the validation of
climatic parameters, utilizing statistical performance metrics to gauge their efficacy
(Errasti et al., 2011; ; Sperber et al., 2013; Perkins et al., 2007; Salman et al., 2019). The
methodologies for evaluating GCMs have evolved, incorporating various statistical performance
metrics, including SS, CC, Normalised Root Mean Square Error, Root Mean Square Error
and other innovative approaches (Fordham et al., 2011; Gleckler et al., 2008; Johnson & Sharma,
2009; Pitman et al., 2012; Tebaldi & Knutti, 2007). Recent studies explore the strength of
individual models and there is a growing emphasis on the selection of suitable ensembles to
enhance consistency in simulations (Johnson et al., 2011; Tebaldi & Knutti, 2007). The utilization
of CP, known for its ability to identify optimal solutions in multi-criteria decision-making, emerges
as a promising avenue for the selection of an ensemble of GCMs, demonstrating its efficacy in
diverse contexts (Salman et al., 2018; Raju et al., 2016; Maxino et al., 2008). Recent literature
reflects a burgeoning body of research dedicated to assessing model performance at both regional

and basin levels, emphasizing the evolving nature of this critical field.
1.2 Drought Monitoring

Drought, as a complex natural hazard, intricately influences ecosystems, society and the economy.
Precise quantification of drought at the regional scale is imperative for a comprehensive
understanding of its multifaceted impacts (Mishra & Singh, 2010). Despite the interrelated nature
of various drought definitions, distinct types exhibit variations in duration and resource impact.
Meteorological drought, denoted by periods of exceptionally low or absent precipitation, forms
the climatic basis. The repercussions of precipitation on reservoirs, streamflow and groundwater
collectively constitute hydrological drought. Agricultural drought focuses on crop responses to
heightened heat stress and insufficient soil moisture. Additionally, socioeconomic drought is
intricately connected to economic factors such as water supply and demand for agricultural

products, with substantial impacts stemming from hydrological, meteorological and agricultural



droughts. Consequently, the imperative to monitor drought emerges as a fundamental requirement

for in-depth investigation across these sectors (Tallaksen and Van Lanen, 2004).

In recent decades, the global surge in drought-related incidents has been a focal point of concern
(Allen et al., 2011; Kang & Sridhar, 2017, 2018). The escalating frequency of drought occurrences
in India, akin to numerous other nations, has been pronounced since 1965 (Bisht et al., 2018b;
Shewale & Shravan Kumar, 2005). Projections suggest a progressive increase in both the average
duration and intensity of drought events in India spanning the temporal domain from 2010 to 2099,
as contrasted with the reference historical epoch spanning 1979 to 2005. This trend underscores a
pronounced regional challenge of considerable significance. (Bisht et al., 2019). The dynamics of
drought in this context are primarily influenced by variations in the monsoon and the demand for
water vapor in precipitation, culminating in the manifestation of extreme events ( Loon et al.,
2013). Drought complexities are exacerbated by the surging demand for water, driven by
population growth, irrigated agriculture and industrialization. The escalated demand for water
resources engenders the unsustainable exploitation of both surface and subsurface reservoirs,
thereby instigating conflicts among stakeholders during drought events. Consequently, the
necessity to systematically monitor drought occurrences at a regional scale becomes imperative
for precise water resource assessment, efficacious management and the formulation of robust

mitigation strategies.

Drought, a recurrent phenomenon within varied climatic regimes, is intricately governed by
multifaceted factors such as precipitation patterns, temporal distribution, intensity, duration,
temperature variations, humidity levels and wind speed. The cumulative impact of these variables
manifests gradually over extended periods, spanning months to years. The gradual and insidious
nature of drought necessitates sophisticated management strategies, given the inherent uncertainty
associated with precisely ascertaining its initiation and cessation. In addressing this challenge,
drought indices emerge as invaluable tools for monitoring, quantifying and evaluating droughts.
These indices simplify the intricate nature of drought into a singular numerical value, facilitating
a more comprehensive understanding (Vicente-Serrano et al., 2010). Over the course of temporal
evolution, these metrics have assumed a pivotal role in the delineation and assessment of drought,
significantly contributing to the domains of drought monitoring and the formulation of early

warning systems. Notwithstanding the abundance of diverse drought indices, an ongoing scholarly



dialogue endures regarding the efficacy with suitability of each respective index. The persisting
discussion underscores the intricate nature of drought assessment, necessitating a thorough
exploration of the strengths and limitations of various indices for robust and context-specific

drought monitoring in the pursuit of effective resource management.

In recent decades, the Palmer Drought Severity Index (PDSI), SPI and SPEI drought indices have
emerged as widely adopted globally (Hayes et al., 2011). Despite their wide utility across diverse
water-related sectors, each index presents inherent limitations. The SPI, in its application, exhibits
a pronounced dependence on precipitation data, thereby overlooking other salient variables that
could significantly impact the comprehensive characterization of drought event. In contrast, the
PDSI derives its computation from duration and weighting factors based on datasets exclusively
observed within the geographical confines of the United States, thus limiting to diverse climate
zones with its generalizability (Palmer, 1965; Zhang et al., 2018). Furthermore, the PDSI lacks the
inherent multi-time scale features intrinsic to SPI, introducing challenges in its comparability with
metrics associated with runoff and reservoir storage. Recognizing these limitations,
Wells et al., (2004) introduced the Self-Calibrated PDSI (SC_PDSI), a novel drought index
designed to accommodate local variations and applicable to diverse regions. Several
comprehensive studies (Dai, 2011; Kang & Sridhar, 2019; Mishra & Singh, 2010; Zhang et al.,
2015a) have extensively examined the strengths and weaknesses of SPI, SPEI and PDSI. From
this thorough analysis, it becomes evident that employing multiple drought indices is imperative
for an intricate analysis and evaluation of drought at regional scales. This multifaceted approach
ensures a more robust and comprehensive understanding of the complex dynamics inherent in

drought assessments.

For global socio-economic security, monitoring and understanding the droughts, along with their
temporal and spatial evolution. The evaluation of drought indices allows for identifying their
precision of drought events. Different indices may capture droughts with varying degrees of
sensitivity and specificity. Precision in identification ensures that drought assessments are reliable
indicators of actual conditions on the ground (Mckee et al., 1993). Evaluating the drought indices
and their properties is crucial for ensuring their reliability and accuracy in representing drought
conditions. Assessing the ability of drought indices to integrate multiple climatic variables is

essential for capturing the complexity of drought conditions. Vicente- Serrano et al., 2011



emphasized the need to assess indices that consider both meteorological and hydrological
variables. The significance of assessing the statistical robustness and precision of indices helps to
enhance their reliability in characterizing drought events. Evaluating the properties and
characteristics of indices ensures that the information generated is actionable and aligns with real-

world scenarios.

1.3 Drought Indices and Link with Teleconnections

Droughts, as prolonged and severe climatic events, pose significant challenges to ecosystems,
agriculture and water resources globally. The accurate assessment and prediction of drought
conditions necessitate a comprehensive understanding of the complex interplay between
meteorological variables and large-scale climate patterns. Drought indices such as the SPI, SPEI
and SC _PDSI have emerged as vital tools for quantifying and characterizing drought severity.
Concurrently, teleconnections, which signify long-range atmospheric and oceanic interactions,
play a pivotal role in influencing regional climate patterns (Ashok et al., 2003; Kug et al., 2009;
Torrence & Compo, 1998).

The global nature of drought necessitates a holistic exploration of its dynamics by considering
both regional and large-scale climatic influences. For India, a country with diverse climatic zones,
understanding the linkage between drought indices and teleconnections becomes particularly
crucial. Prominent teleconnections such as the Southern Oscillation Index (SOI), Multivariate
ENSO Index (MEI), Dipole Mode Index (DMI) and Nifio 3.4 index significantly impact India's
climate (Kripalani & Kulkarni, 2001; Kripalani & Singh, 1993). Investigating how these
teleconnections influence the performance of widely used drought indices in this unique regional
context is essential for advancing our knowledge of drought patterns and improving predictive

models.

Many studies aimed to contribute to the understanding of global and regional drought patterns by
assessing the intricate relationships between drought indices and teleconnections using wavelet
coherence approach (Grinsted et al., 2004). By examining data from various climatic zones
worldwide and focusing on India's diverse regions, the study seeks to identify patterns, correlations
and potential variations in the performance of drought indices under the influence of

teleconnections. Insights gained from this investigation are expected to have implications for



drought monitoring, prediction and adaptation strategies on both a global scale and within the

specific regional context of India.

1.4 Drought Frequency Analysis

Drought, regarded as a natural hazard, manifests when there is a sustained deficiency in
precipitation over prolonged durations. It signifies a transient departure from typical
meteorological conditions and can occur as various climatic patterns. In contrast, aridity is a
permanent climatic condition determined by long-term weather patterns in a specific region
(Araghi et al., 2018; Karamouz et al., 2012). Therefore, the impact of climate change is anticipated
to elevate both aridity and drought, posing significant challenges to agriculture, ecosystem and
economy (Dai, 2013; Lobell et al., 2008). To execute effective water resource planning and
management understanding the characteristics of dry conditions is crucial (Shiau J. T., 2006).
Drought, being a complex natural disaster encompasses various factors like severity, intensity and
duration (Kang & Sridhar, 2019; Mishra & Singh, 2010). Unlike other natural disasters, drought
exerts their influence over large area extent (Kang & Sridhar, 2017; Sehgal et al., 2017; Wilhite et
al., 2014). Consequently, analyzing drought conditions requires consideration of multivariate

complexities and spatial variations.

India experiences drought events approximately once every three years across different
geographical regions. In recent decades, the nation has confronted extended and severe drought
conditions, marked by an escalating frequency in diverse areas (Bisht et al., 2019). Notably, a
substantial proportion (approximately 70-90%) of the annual rainfall in India transpires during the
Southwest monsoon from June to September (Bisht et al., 2018a, 2018b). Since most of the country
rely on monsoonal precipitation, the failure of the monsoon can engender drought conditions
(Kumar et al., 2013). In several aspects the distribution of drought in India is studied (Das et al.,
2016; Gupta et al., 2020; Janga Reddy & Ganguli, 2012) and climate change exacerbates the
vulnerability of India’s water supplies to drought. Therefore, an imperative lies in conducting a
regional investigation that centers on elucidating the imminent spatial and temporal attributes of
drought. This endeavor is crucial for providing decision-makers and planners with essential
insights, facilitating the formulation of efficacious policies aimed at mitigating the adverse effects

associated with drought hazards.



Numerous investigations have systematically examined the intricate of monsoon rainfall at spatial
and temporal nuances. Selected researchers documented an escalation in mean precipitation levels
during the monsoon season, concurrently noting discernible variabilities at inter annual time spans
(Chaturvedi et al., 2012; Fan et al., 2012). At the global level, regional inquiries have been
undertaken to scrutinize the distinctive features of spatial and temporal drought phenomena.
Multivariate models, exemplified by Spatial Duration Function (SDF) and Standardized Anomaly
Function (SAF) curves, offer valuable tools for the comprehensive assessment of regional drought
risk (Mishra & Singh, 2010). Drought curves are meticulously computed across diverse return
periods, facilitating the establishment of mathematical relationships elucidating the interplay
among severity, duration, interarrival time, area coverage and intensity. Providing a quantitative
representation of various drought characteristics, these curves are crucial tools for a comprehensive

understanding of droughts (Kang & Sridhar, 2021; Rajsekhar et al., 2015a).

1.5 Motivation of the Study

The selection of an appropriate GCMs not only help in understanding the physical aspects of
drought but also in assessing the potential impacts on agriculture, water resources, ecosystems,
and human populations. It also facilitates more accurate analysis of drought conditions by
integrating climate variability, including the impacts of large-scale teleconnections. This holistic
approach enhances our understanding of the complex interactions shaping drought dynamics and
supports informed decision-making for sustainable development and climate resilience efforts. the
increasing frequency of drought in recent years in India, using advanced GCMs can provide
valuable insights into how drought risks may evolve in the future under different climate change
scenarios. This information is vital for policymakers, planners, and stakeholders to make informed

decisions regarding water management, agriculture practices, and disaster preparedness

1.6 Objectives of The Study

The primary objective of this study is to conduct a comprehensive regional analysis of drought by
incorporating teleconnections and selecting suitable Global Climate Models over Telangana state,

India.

To enhance clarity, the primary objective is subdivided into four sub-objectives outlined below.



1. Identifying and selecting suitable GCMs for Precipitation, Maximum, Minimum and Average

Temperature.

2. Regionalization and evaluation of major drought events their properties using SPI, SPEI and

SC PDSI

3. Assessing the relationship between drought indices and teleconnections

4. Investigating multivariate frequency analysis: SDF and SAF using Copula
1.7 Outline of the Thesis

The study carried out in this investigation is organized in the following chapters. The thesis
comprises of eight chapters: introduction, literature review, study area and data collection, four

chapters for each sub objectives and finally conclusions in chapter 8.

Chapter 1 provides Introduction of comprehensive overview of the Global Climate Models and
their role in understanding with climate change. Then analysis based on drought indices and its

characteristics and overview of Teleconnections and drought frequency analysis.

Chapter 2 deals with the literature review covering each of the problems studied by earlier

researchers. The summary of each of these studies are critically reviewed.

Chapter 3 deals with exploration of study area and data collection. Subsequent to this chapter, four

additional chapters are presented, addressing each specific sub objective under consideration.
Chapter 4 deals with Selection of suitable GCMs for study area.

Chapter 5 deals with Regionalization and evaluation of drought characteristics (severity and

duration)
Chapter 6 deals with the intricate relationship between drought indices and teleconnections.

Chapter 7 deals with the drought frequency analysis and development of Severity-Duration-

Frequency and Severity-Area-Frequency curves.

Chapter 8 deals with summary, Conclusions and provides a glimpse into the Future outlook of the

undertaken work.



CHAPTER 2

LITERARTURE REVIEW

In this section, a comprehensive examination of the studies conducted by previous investigators
regarding the selection of GCMs, drought indices, their characteristics and their interconnections

with teleconnection factors is presented.
2.1 Global Climate Models

A significant advancement were achieved in the development of GCMs to simulate the prevailing
climate and forecast forthcoming climatic changes by Xu, (1999). Demonstrating commendable
proficiency at continental and hemispheric spatial scales, these models successfully captured a
substantial portion of the complexity inherent in the global system. However, a fundamental
limitation emerged in their incapacity to represent local sub grid-scale features and dynamics. This
study provided a critical examination of the existing disparity between the capabilities of GCMs
and the requisites of hydrological modelers. It delved into methodologies aimed at mitigating the
gap, evaluating both advantages and shortcomings in various approaches. The discourse
culminated in the identification of challenges that had to be addressed in comprehending the

impacts of climate change in future studies.

An essential endeavor to examine coupled GCMs, as utilized in the Fourth Assessment Report
(AR4) of the Intergovernmental Panel on Climate Change (IPCC), was investigated by Perkins et
al. (2007). This scrutiny is specifically targeted at 12 distinct regions within Australia, with a
particular emphasis on the meticulous examination of the daily simulation outputs for P, Ty and
T'min. A robust assessment methodology is introduced centering on Probability Density Functions
(PDFs) and a quantitative metric devised to assess the accuracy of each climate model in
replicating observed PDFs for every variable within each designated region. Surprisingly, the
coupled climate persisted. Averaging over Australia, a subset of climate models demonstrates
commendable performance, capturing more than 80% of observed PDFs for P and 7}, simulation
is generally satisfactory, with a majority of GCMs capturing over 80% of observed PDFs. Tiuax
simulation is also reasonable, with a significant portion of climate models exhibiting fidelity in

capturing over 80% of observed PDFs. This study presented an overarching ranking of GCMs,



emphasizing their performance in P, T,a and Tmin and an aggregate over these variables. This
assessment identified skillful climate models for Australia, offering valuable guidance for their
application in impacts assessments reliant on precipitation or temperature. It is essential to note
that these results pertain specifically to the Australian context and the methodology can serve as a

potent tool for selecting climate models in impacts assessments.

Involvement in the execution of numerous climate models across shared experiments, have yielded
extensive datasets containing projections of future climate under various scenarios as studied by
Tebaldi & Knutti, (2007). These multi-model ensembles systematically capture uncertainties
arising from initial conditions, parameters and structural aspects of model design. Consequently,
diverse methodologies had emerged to probabilistically quantify uncertainty in future climate. This
paper elucidated the rationale behind employing multi-model ensembles, conducted a
comprehensive review of existing methodologies and performed a comparative analysis of their
outcomes, focusing on regional temperature projections. The intricacies associated with
interpreting multi-model results are thoroughly examined, addressing challenges stemming from
the absence of climate projection verification, model dependence, bias, tuning issues and the

complexities inherent in comprehending an ensemble of opportunity.

The performance evaluation of GCMs featured AR4 of IPCC concerning their ability to simulate
P, Tinaxand Tiin across the Murray-Darling Basin in Australia was studied by Maxino et al., (2008).
Utilizing daily data from the AR4, this study computed the mean and PDFs for each variable. The
assessment focused on the skill of GCMs in reproducing the observed PDFs, serving as a basis for
identifying GCMs with significant proficiency over the basin. Notably, the models from the
Commonwealth Scientific and Industrial Research Organization (CSIRO), Institute Pierre Simon
Laplace (IPSL) and MIROC-m demonstrated commendable fidelity in capturing the observed
PDFs for P, Ty and Tpin. While other models exhibited competence in one or two variables, this
study manifested limitations or unassessed for the third variable. Thus, this study recommended
CSIRO, IPSL and MIROC-m for users requiring model results in this basin, emphasizing the
contextual specificity of this recommendation. The outlined methodology offers a quantitatively
based and straightforward approach to model selection for impact assessment in regions with

abundant data. Importantly, the approach emphasizes the simulation of daily derived PDFs, which

10



proves more challenging and robust than merely simulating the mean, providing a stronger basis

for its application in impacts assessment.

Leveraging findings from the AR4 of the IPCC, this study employed extreme value theory to
discern alterations in the 20-year return levels for daily 7Tpnu and Tmin in Australia by
Perkins et al, (2009). The evaluation GCMs encompasses three key aspects: (a) mean
performance (b) adeptness in replicating the observed PDFs and (c) proficiency in capturing the
tails of the PDFs. Each ensemble of weak-skilled models indicated more substantial increases in
both Tnax and Tin return levels compared to their strong-skilled counterparts. Statistical analysis
revealed a significant disparity between weak and strong skilled ensembles in 7). Consequently,
weak-skilled models projected statistically larger increments in warming for both Tax and Tin
across Australia, regardless of the criterion used to assess skill. This study underscored the
significance of model skill in influencing the magnitude of projected temperature changes,
shedding light on the nuanced implications of model performance for temperature-related

assessments.

The unprecedented availability of 6-hourly data from multi-model GCMs was examined by
McSweeney et al., (2015). This advancement prompted an examination of the feasibility of
dynamically downscaling multiple GCMs. The proposed approach facilitates the generation of
high-resolution climate projections, thereby enabling a nuanced evaluation of climate vulnerability
and impacts. While the comprehensive dynamic downscaling of the entire CMIPS5 ensemble
necessitated substantial technical and human resources, such an extensive undertaking becomes
was deemed superfluous. This study delineated a methodological framework for selecting a subset
of 8-10 GCMs from the available CMIPS5 models, to represent suitable GCMs of individual
regions, such as Southeast Asia, Europe and Africa. The process aimed to exclude models deemed
least realistic for each region, while concurrently capturing the maximum conceivable range of
variations in surface temperature and precipitation across the specified continental-scale regions.
Within the subset of CMIP5 GCMs featuring 6-hourly fields, three models (MIROC-ESM,
MIROC-ESM-CHEM and IPSL-CM5B-LR) were identified as inadequately simulating key
regional climate aspects, earning them the classification of 'implausible.'" Subsequently, the
remaining models underwent a selection methodology aimed at precluding the inclusion of the

least performant models unless their exclusion would substantially diminish the range of sampled

11



projections. This meticulous process culminated in the identification of a refined set of models
well-suited for generating downscaled climate change information, thereby facilitating a coherent

and comprehensive multi-regional assessment of climate change impacts and adaptation strategies.

The ensemble of Earth system models accessible in the repository of the fifth phase of the CMIP5
was regarded as a representation of uncertainty in the trajectory of future climate conditions is
proposed by Sanderson et al., (2015a). However, the existence of shared code, forcing and
validation data across multiple models within the archive introduces potential challenges,
including biases in mean and variance, an inflated effective sample size and the risk of spurious
correlations due to model replication. This study provides analytical evidence demonstrating that
the model distribution in the CMIP5 archive deviates from a random sample. To address
codependency issues in the ensemble, a weighting scheme is proposed. Additionally, a method was
introduced for the selection of diverse and skillful model subsets within the archive, offering a
means to mitigate codependency concerns and facilitating the identification of models suitable for
impact studies requiring consistent joint projections of multiple variables, including their temporal

and spatial characteristics.

An investigation delved into the assessment of thirty-six GCMs based on the CMIPS5, focusing on
the simulation performance of Tmax and Tmin across 40 grid points in India by Srinivasa Raju et
al., (2017). Three performance indicators—CC, Normalized Root Mean Square Error (NRMSE)
and SS—were utilized for GCMs evaluation. The entropy method was utilized to determine
weights for these indicators, with equal weights being employed in sensitivity analysis. The CP, a
distance-based decision-making technique, was adopted to amalgamate ranking patterns acquired

for individual grid points, and a straightforward yet efficacious ensemble approach was proposed.
2.2 Drought Indices and its properties

The imperative necessity for comprehensive research encompassing diverse facets of expansive
continental droughts, with the objective of establishing methodologies for their definition, was
underscored by Yevjevich & Ica Yevjevich, (1967). The proposal advocated the utilization of runs
as statistical parameters to delineate the temporal and spatial distribution of water deficits in the
context of drought definition. Three specific types of runs are identified as pivotal parameters for
drought definitions: (1) Run length of negative deviations within a time series (duration of

drought): This parameter focuses on quantifying the temporal extent of droughts by measuring the
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length of continuous periods featuring negative deviations from the norm. (2) Run-sum of negative
deviations between a downcross and an upcross of a time series (severity of a drought): This
parameter evaluated the severity of a drought by summing the negative deviations between the
points where the time series crossed below and then above a defined threshold and (3) Area-run as
the deficit of water over a specific time duration (run-length) and area of drought: This parameter
integrates both temporal and spatial aspects of drought by assessing the deficit of water over a
designated time duration and the corresponding geographical area. Analytical and data generation
methods were proposed to determine runs based on known properties of hydrologic time series
and the interdependence between them. These methodologies were employed at Colorado State
University over a span of 4 to 5 years to investigate the properties of precipitation, effective
precipitation, and runoff, thereby influencing drought descriptions. In essence, the research
outlook encompasses the prediction of large continental droughts and the elucidation of potential

causal factors underlying their occurrences.

A streamflow series was comprehensively analyzed for multiyear drought events by Dracup et
al., (1980). These tests, applied to both high-flow and drought event parameters, encompassed the
examination of (1) stationarity concerning linear trends, (2) randomness in relation to lag-1 serial
correlation and (3) correlation and cross-correlation among critical parameters, including the
duration, magnitude and severity of drought events. The outcomes of these statistical examinations
were carefully analyzed to elucidate their significance in characterizing both high-flow and
drought event series. Furthermore, the assessment of high-flow and drought event series introduces
two distinct types of envelopes designed for drought duration and severity. These envelopes
utilized inequality principles to offer an exceptional representation of the maximum watershed
response concerning drought duration and severity across the entire record period. The
presentation of these envelopes contributed valuable insights into understanding the watershed's

behavior in terms of drought characteristics over time.

Delving into several critical considerations for formulating a pragmatic and analytical definition
of droughts provided by Dracup et al.,, (1980b). Key aspects discussed encompass: (1) The
delineation of the specific nature of the water deficit under scrutiny, distinguishing between
hydrological, meteorological, or agricultural droughts. (2) The selection of the averaging period

utilized to discretize the continuous time series, considering options such as months, seasons, or
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years. (3) the determination of the truncation level applied to separate drought events from the
remaining time series, whether based on mean or median values. and (4) the methodology
employed for standardization. These assessments are thoroughly examined considering their
implications on diverse approaches to drought frequency analysis. Within the scope of this
research, drought events were conceptualized as intricate phenomena characterized by distinct
components, namely, duration, magnitude (quantifying average water deficiency), and severity
(measuring cumulative water deficiency). The study subsequently applied the proposed drought
definition procedure in a practical context, exemplified through a case study involving the
frequency analysis of multiyear hydrologic droughts. This comprehensive exploration aimed to
contribute to the refinement and standardization of analytical frameworks for drought

characterization, fostering a more nuanced understanding of drought dynamics in diverse contexts.

A novel climatic drought index, termed the SPEI was introduced aiming to enhance the existing
methodologies by incorporating both precipitation and temperature data by Vicente-Serrano et al.,
(2010). The SPEI offered the advantage of integrating multiscale characteristics with the ability to
consider temperature variability in the assessment of drought conditions. The computation of the
index entailed a meticulous procedure that integrated a climatic water balance, the aggregation of
deficit or surplus at various time scales and an adjustment to a log-logistic PDFs. Although sharing
mathematical similarities with the SPI, the SPEI uniquely incorporated temperature effects.
Incorporating a water balance, the SPEI allows for a meaningful comparison with the SC PDSI.
Comparative analyses of time series data for these indices was conducted across various
observatories located in distinct climatic regions worldwide. The results under conditions of global
warming reveal that, unlike SPI, both the SC_PDSI and SPEI accurately depict an intensification
in drought severity attributable to heightened water demand resulting from increased

evapotranspiration. Notably, the SPEI, boasting multiscale attributes

, outperforms the SC_PDSI in terms of versatility, proving invaluable for comprehensive drought

analysis and monitoring.

Drought, a stochastic natural hazard induced by prolonged and intense precipitation deficits,
manifested significant and delayed impacts on agriculture and hydrology reviewed by Zargar et
al., (2011). Droughts exhibited distinctive features, characterized by dynamic dimensions such as

severity and duration, contributing to a complex and subjective network of consequences. Effective
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drought management necessitates comprehensive characterization, enabling both retrospective
analyses (e.g., severity-impact assessment) and forward-looking planning (e.g., risk evaluation).
Drought indices, offering a simplified approach, have facilitated this characterization, with over
100 indices proposed to date. Some are operational, providing gridded maps for regional and
national drought assessment, addressing meteorological, agricultural, and hydrological drought
types. This paper critically reviewed 74 operational and proposed drought indices, emphasizing
their distinctions and tracing their developmental trends. The diverse array of indices enabled the
quantification of severity levels and identification of drought onset and cessation, supporting

various applications such as early warning systems, monitoring efforts and contingency planning.

A streamflow simulations derived from the Variable Infiltration Capacity (VIC) model is used to
characterize droughts over the period 1950-2000 was employed by Goyal & Sharma, (2016). The
focus of the study is on regionalization for the state of Texas, with a specific emphasis on annual
drought severity levels and durations. Recognizing the regional nature of droughts, the
identification of homogeneous drought regions becomes imperative for a nuanced exploration of
their characteristics. In this study, the concept of entropy is employed to delineate homogeneous
regions based on both drought severity and duration. Directional information transfer, represented
by a standardized version of mutual information, is utilized for station grouping, and the
homogeneity of regions is rigorously assessed through L-moments. The outcomes of this analysis
reveal the formation of eight regions based on drought severity and nine regions based on drought
duration. Notably, regions in west Texas exhibited heightened severity, in contrast to east Texas,
which manifested the least severity. South Texas and lower valley zones endured the longest
drought durations, while east Texas and the upper coast experienced the least prolonged droughts.
The study highlighted that critically severe and extremely dry droughts are predominantly
concentrated in the western and central parts of Texas, underscoring the spatial variability of

drought characteristics across the state.
2.3 Teleconnections

The temporal patterns of precipitation and the influence of large-scale climate anomalies within
the Pearl River basin in South China particularly on subbasin scale is investigated by Niu, (2013).
Utilizing three prominent data analysis techniques—wavelet analysis, principal component

analysis (PCA) and rank correlation—the research, encompassing hydrological factors, water
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resource activities and large-scale climate data, intricately subdivides the entire basin into ten sub-
basins, with the analysis conducted on monthly data. The wavelet analysis revealed distinct
differences in the temporal scales of fluctuation embedded in monthly precipitation anomalies
across the basin. PCA identified three coherent regions that demonstrate a similar distribution of
variability across scales. Employing cross-wavelet transform and wavelet coherence to analyze
linkages between precipitation and teleconnection patterns, the study indicated that the dominant
variabilities of precipitation are primarily characterized by the IOD, particularly in the central and
eastern parts of the Pearl River basin. Regarding the influence of the El Nifio-Southern Oscillation
(ENSO) signal on precipitation, a more significant correlation was observed in the eastern part of
the basin. Long-term relationships within the 4-8 years band are identified in the western part,
while the central part appears to serve as a transition zone. Rank correlations of scale-averaged
wavelet power between regional precipitation and climate indices for the dominant low-frequency
variability band (0.84-8.40 years) provide additional support for varying precipitation-climate

relationships across different regions.

The influence of large-scale climate drivers on drought is imperative for a more profound
understanding and effective management of these widespread and often prolonged natural hazards
was quantified by Kingston et al., (2015). This study significantly contributed to advancing our
understanding of drought dynamics at the continental scale, with a specific focus on Europe.
Drought events were identified utilizing two key indices: the 6-month cumulative Standardized
Precipitation Index (SPI-6) and the Standardized Precipitation Evapotranspiration Index (SPEI-6).
These indices were computed based on the gridded Water and Global Change (WATCH) Forcing
Dataset, covering the period from 1958 to 2001. By correlating monthly time series of the
percentage of the European area experiencing drought with geopotential height for the same
period, the study revealed an association between the onset of drought and a weakening of the
prevailing westerly circulation. This atmospheric condition was intricately linked to variations in
the eastern Atlantic/western Russia (EA/WR) and North Atlantic Oscillation (NAO) patterns.
Through event-based analysis of the most widespread European droughts, the study observed that
the SPEI-6 identifies a higher number of events compared to the SPI-6. Moreover, SPEI-6 drought
events exhibit a greater diversity in spatial locations and onset dates. The atmospheric circulation
drivers also differ between these two types of events, with EA/WR-type variation frequently

associated with SPEI-6 droughts and NAO associated with SPI-6. This distinction underscored the
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sensitivity of these drought indices to the underlying drought type- meteorological water balance
versus precipitation, respectively- and the consequential variations in their timing and spatial

distribution.

An advanced forecasting scheme designed to enhance the relevance, timeliness and reliability of
climate information was introduced by Manatsa et al., (2017). Departing from traditional
precipitation-only indices such as the SPI, the study adopts the SPEI, incorporating temperature
and other climatic factors in its formulation. Notably, the SPEI demonstrated a more robust
connection to the ENSO compared to the SPI. The developed ENSO-SPEI prediction scheme
provides a quantitative assessment of the spatial extent and severity of predicted drought
conditions, aligning more closely with the risk profile in the context of global warming in the sub-
region. However, the study established that the substantial regional impact of ENSO was confined
to the period December—March. This prompted a reevaluation of traditional ENSO-based forecast
schemes, particularly those dividing the rainfall season into October to December and January to
March. Despite advancements in numerical models for ENSO prediction, this research underscores
that anticipating drought impacts associated with ENSO is feasible based solely on observations.
A notable temporal lag is observed between the development of ENSO phenomena (typically in
May of the preceding year) and the identification of regional SPEI-defined drought conditions.
The study demonstrates that using the Southern Africa Regional Climate Outlook Forum’s
(SARCQOF) traditional 3-month averaged Nino 3.4 Sea Surface Temperature (SST) index (June to
August) as a predictor does not offer significant advantages over using only the May SST index

values.

A comprehensive analysis of monthly and seasonal maximum daily precipitation (MMDP and
SMDP) across 131 stations in Canada was conducted by Tan et al., (2016). Employing various
adaptations of wavelet analysis, the research revealed that interannual oscillations (1-8 years)
manifest more pronounced significance compared to interdecadal oscillations (830 years) across
all selected stations. These oscillations exhibited spatial and temporal dependence. The wavelet
coherence and phase difference between leading principal components of monthly precipitation
extremes and climate indices are found to be highly variable in both time and periodicity. Notably,
a singular climate index accounts for less than 40% of the total variability. Partial wavelet

coherence analysis unveils that both ENSO and PDO modulate the interannual variability, while
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PDO specifically influences interdecadal variability in MMDP across Canada. NAO exhibits
correlation with western MMDP at interdecadal scales and eastern MMDP at interannual scales.
Through composite analysis, it was evident that precipitation extremes at approximately three-
fourths of the stations are significantly influenced by ENSO and PDO patterns, while around half
of the stations are impacted by NAO patterns. Examining extreme El Nifio and extreme PDO
events of positive phase, the study revealed that the magnitude of SMDP is generally lower
(higher) over the Canadian Prairies in summer and winter (spring and autumn) during extreme El

Nifio years and vice versa in extreme La Nifa years.

The impact of large-scale climatic teleconnections on meteorological events in Iran through an
analysis of three prominent climatic indices: Arctic Oscillation (AO), North Atlantic Oscillation
(NAO) and SOI. Spanning the period from 1960 to 2014, the assessment employs wavelet
coherence (WCO) within a time-frequency space across 30 synoptic stations was investigated by
Araghi et al., (2017) . The investigation yields insights into the substantial influence of climatic
indices on precipitation patterns in Iran. Specifically, the SOI emerges as the most influential, with
noticeable effects also attributed to AO and NAO The dominant effective period of AO on
precipitation is equal to or greater than 32 months at most stations, whereas NAO's major effective
period is equal to or greater than 64 months. In the case of SOI, the impact duration is generally
less than 64 months for most regions, except for the northwestern area where a predominant period
greater than 64 months is observed. Phase differences between the three climatic indices and
precipitation were found to be random, with no consistent patterns. Notably, an anti-phase situation
was identified at most stations for long-term periods of SOI. The study underscores the efficacy of
Wavelet Coherence Analysis (WCO) as a potent and flexible method for analyzing the relationship
between multiple time series in a time—frequency space. The application of WCO in hydrological

and meteorological research was anticipated to witness significant growth in the near future.

Hydro-meteorological variables, including precipitation and streamflow, were intricately
influenced by diverse climatic factors and large-scale atmospheric circulation patterns was
explored by Rathinasamy et al, (2017). Achieving efficient water resources management
necessitates a profound comprehension of the impact of climate indices on the precise
predictability of precipitation. This study focused on elucidating the standalone teleconnection

between precipitation patterns across India and four prominent climate indices: Nifio 3.4, Pacific

18



Decadal Oscillation (PDO), SOI and IOD. The investigation employed partial wavelet analysis,
considering the cross-correlation between the climate indices while estimating their relationship
with precipitation. Unlike prior studies that overlooked the interdependence among these climate
indices when analyzing their effects on precipitation, our study delves into these interrelationships.
The findings underscore that precipitation was primarily influenced by Nifio 3.4 and 10D,
indicating a non-stationary relationship between precipitation and these two climate indices.
Moreover, the partial wavelet analysis revealed that SOI and PDO do not significantly impact
precipitation independently; however, their apparent influence may be attributed to their
interdependence on Nifio 3.4. Notably, the study observes that partial wavelet analysis robustly
unveils the standalone relationship of climatic factors with precipitation after mitigating the
influence of other potential factors. This nuanced understanding enhances our ability to discern

the direct teleconnections between specific climate indices and precipitation in the Indian context.
2.4 Drought Frequency Analysis

Definition of drought was deliberated both practically and analytically was formulated Dracup et
al., (1980b). The key considerations encompassed (1) focus on nature of the water deficit that
specified hydrological, meteorological, or agricultural aspects (2) averaging period for discretize
a continuous time series that helps to analyze data at monthly, seasonal, or yearly intervals are
deemed crucial in capturing the temporal dynamics of drought (3) truncation level for separate
droughts helps to delineate drought time series (mean or median) emphasizing its impact on
drought frequency analysis (4) method of regionalization or standardization. These considerations
explain their impacts on various approaches to drought frequency analysis. To summarize, drought
events were characterized in terms of duration, magnitude and severity. The proposed methodology
was applied in a case study featuring a frequency analysis of multiyear hydrologic droughts. The
study concluded that the definition of drought significantly affects the sample size, drought
severity, magnitude and duration and the areal extent considered in the analysis. Hydrologists and
meteorologists were advised to consider the advantages and disadvantages of a chosen drought

definition in the context of their specific analysis.

The spatio-temporal characteristics of drought for sustainable water resource management in the
Conchos River Basin, Mexico was explored by Kim et al., (2002). The Palmer Drought Severity

Index (PDSI) served as indicator to assess the drought characteristics. Frequency analysis method
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was employed to investigate the spatio-temporal variations of drought based on drought intensity.
The kriging estimator was then utilized to examine the spatial distribution of drought. This study
incorporated the spatial and temporal characteristics of PDSI in developing drought intensity-areal-
frequency curves. These curves explain drought severity and area w.r.t the return period and to
describe the spatial and recurrence patterns of droughts. The analysis highlighted that a severe

drought in the year 1990 with a substantial areal extent and a return period of 80 to 100 years.

A theoretical derivation for univariate and bivariate distribution return periods through a stochastic
approach, was particularly focused on extreme hydrological event Shiau, (2003) presented.
Understanding the nature of complexity of drought and flood events, the bivariate distribution was
considered as a better approach to represent these events (droughts and floods) compared to the
univariate distribution. Return periods were defined using either two joint random variables or
separate single variables for bivariate distribution. The study employed Gumbel marginal
distributions to model the flood peak and flood volume in Pachang River, Southern Taiwan based
on daily streamflow data. The properties associated with both univariate and bivariate distributions

was discussed and a good agreement between the models and observed streamflow data.

A comprehensive analysis of spatial and temporal variations of drought in the Kansabati River
Basin, India was conducted by Mishra & Desai, (2005). Utilizing the SPI at multiple timescales
(1,3,6,9, 12 and 24 month), the basin was divided into 25 grid cells. The inverse distance method
was employed at each grid for spatial interpolation of precipitation dataset and monthly SPI was
evaluated using the rain gauge station data for the period 1965-2001. Drought severity, duration
and frequency were assessed at various timescales. Then, SAF curves were developed using the
spatio-temporal characteristics of SPI. The SAF curves showed drought severity and area at
different return periods to describe the spatial and recurrence patterns of drought. The results
highlighted high short-term droughts in 1979 with return periods of 80 to 100 years over the entire
basin, while Medium and long-term droughts were frequent in the 1980°s with a return period of

50 to 100 years, significantly impacting agriculture, reservoir storage and groundwater in the basin.

A two-dimensional copula for drought severity and duration was constructed by Shiau, (20006).
Copula parameters were estimated using the Inference Function for Margins (IFM) method,

assuming gamma and exponential distributions for drought severity and duration. Further various
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copulas were tested for drought severity and duration, Galambos copula identified as the best fit
for observed drought. The study applied this approach to determine the severity and duration of
droughts using SPI for Wushantou, Taiwan. The results indicated a well-fitted copula for the
drought severity and duration, considered its utility as a valuable tool for exploring the

relationships among drought variables.

A comprehensive examination of hydrological droughts using copulas in the Yellow river, China,
employing copulas to jointly model drought severity and duration was conducted by Shiau et al.,
(2007). Monthly streamflow data was used to evaluate drought characteristics. As droughts were
complex in nature, the study applied a bivariate distribution for drought assessment by utilizing
the clayton copula to describe the joint behavior of drought severity and duration. to model drought
severity and duration jointly and copulas was used to achieve this purpose. Further, bivariate return
periods was also calculated to identify significant historic droughts. The results conclude that a
severe drought occurred during 1930-1933 with a return period of 105 years and a low return
period of 4.4 years during 1997-1998 drought, attributed to significantly reduced streamflow in

the Yellow River due to human activities.

Spatial characteristics of drought over Razavi and Southern Khorasan provinces in Iran using
SPI12 was assessed by Bondarabadi et al., (2008). Drought maps were generated through the thin
plate smoothing splines method and classified into clusters. PDFs were fitted to different SPI
categories and SAF curves corresponding to different return periods were developed for the study
region. The results indicated that droughts with 2-to-5-year return periods were expected to cover
approximately 30% of the region, while severe droughts with 20-to-50-year return periods may
cover around 70% of the region, emphasizing the expectation of severe droughts with high return

periods and less areal coverage.

The assessment of climate change impact on SPI over the Kansabati River Basin, India, as
conducted by Mishra & Singh (2009), involves a comprehensive analysis. Historical drought
events were juxtaposed with SAF curves derived from projected rainfall data, incorporating select
General GCMs and accounting for scenario uncertainties. The Bayesian Neural Network (BNN)
downscaling method was deployed to extrapolate precipitation patterns from six GCMs,

subsequently assessing SPI at 3 and 12-month temporal scales. The results indicated an increase
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in severe droughts during 2001-2050 as compared to the droughts 1980. The developed SAF curves
were deemed useful for anticipating drought severity with the percentage of areal extent over future
periods and the author suggested utilizing multiple GCMs helps to ease biases and uncertainties in

simulations and scenarios.

To assess multi attributes of drought, SDF curves were developed using copulas for two rain gauge
stations in Iran by Shiau & Modarres, (2009). Using rainfall series from 1954-2003, SPI3
calculated and used to define drought properties severity, duration, and frequency. A joint
distribution function was employed for drought severity and duration using copulas and the
drought frequency was related to the copula-based distribution function to develop SDF curves.
The analysis revealed that for a given return period and duration, Anzali station experienced greater
drought severity compared to Abadan station, with the SDF curves concave downwards indicating

an increase in drought severity increases with duration.

SDF curves were developed using a copula-based bivariate probabilistic approach over Western
Rajasthan, India by Janga Reddy & Ganguli, (2012). In this study, SPI at 6-month time scale is
utilized to analyze the drought characteristics. The joint distribution of severity and duration are
modelled using Plackett, Archimedean, Elliptical and Extreme Value copula families were
employed to model the joint distribution of severity and duration. The Gumbel-Hougaard and
Extreme Value copulas functioned better in modelling the drought characteristics, based on upper
tail dependence coefficients and statistical techniques. SDF curves were further derived, with the
conditional return periods assessed using the most effective copula. The study concluded that these
SDF curves hold potential for aiding in the planning and management of water resources at drought

prone areas.

A study was conducted to assess the effectiveness of two metaheuristic methods namely Particle
Swarm Optimization (PSO) and Genetic Algorithm (GA) in estimating the copula parameters and
developing SDF curves over Trans Pecos, which was an arid region in Texas, USA by Reddy &
Singh, (2014) . Drought characteristics was analysed using SPI and drought risk is assessed using
copula methods. To enhance the accuracy of copula model estimation accurate estimation, GA and
PSO techniques were applied. Initially, the drought characteristics: severity and duration were
modelled separately by using various PDFs and the best-fitted models selected for copula

modelling. Three copula families, namely Extreme Value, Plackett and Student’s-t were employed
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to capture the joint dependence between drought severity and duration. The performance of these
copulas was evaluated using Kolmogorov—Smirnov (KS), Akaike Information Criteria (AIC) and
tail dependence tests. The results of these performance measures indicated that the Gumbel-
Hougaard copula was fitted as the best model and subsequently employed for development of SDF
curves. The findings conclude that the use of meta-heuristic techniques helps in accurate estimation

of copula parameters and derivation of SDF curves.

Development of hydrologic drought atlas aimed at delineating the spatial variation of severity for
durations of 3, 6, 12 and 24-months, corresponding to return periods 10, 25, 50 and 100-year across
Texas state by Rajsekhar et al., (2015). Drought characteristics are derived using the Variable
Infiltration Capacity (VIC) model applied to monthly stream flow data. The Standardized Stream
Flow Index (SSFI) is employed to evaluate drought severity and duration and appropriate marginal
distributions is chosen from gamma, exponential, Weibull and log - normal distributions. The study
further modeled the joint dependence between drought severity and duration using various copula
families. Subsequently, SDF curves are developed using the best performed copula. These SDF
curves are used in constructing the drought atlas for Texas, illustrating drought severity for specific
durations and return periods. The findings of the research conclude that SDF curves showed
convex (concave) pattern in arid and semiarid (humid and semi humid) regions. Also, a decreasing

trend in drought severities is noticed from West to East of Texas.

A study focusing on the Lake Urmia Basin in Iran was conducted and developed SPI and SAF
curves based on one month SPI data for the years 1971 to 2013 by Amirataee et al., (2018). The
joint PDFs of drought severity and drought area was subsequently modeled using seven copula
functions from distinct families: Clayton, Gumbel, Frank, Joe, Galambos, Plackett and Normal
copulas. Frank copula was chosen as the most suitable copula for constructing the joint probability
distribution. considering various criteria Akaike Information Criteria (AIC), Bayesian Information
Criteria (BIC) and Root Mean Square Error (RMSE). Frank copula was further used to develop
SAF curves. The findings underscore the substantial influence of both severe/extreme drought and

non-drought (wet) behaviors across the majority of the Urmia basin.

A spatiotemporal analysis of drought occurrence, frequency and hazard in different parts of India

was conducted by Gupta et al., (2020). They utilized meteorological data from a selected regional
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climate model for RCP 8.5 to compute the Standardized Precipitation Evapotranspiration Index
(SPEI) at a 12-month timescale. The study introduced an improved methodology for generating
Severity-Duration-Frequency (SDF) curves under a Bayesian framework. This novel approach,
employing copulas, utilized Markov Chain Monte Carlo simulation for parameter estimation.
Furthermore, the researchers developed Spatially Averaged Frequency (SAF) curves for different
homogeneous drought regions of India. The study also introduced the Modified Drought Hazard
Index (MDHI), an enhanced metric for fuzzy drought hazard assessment based on clustering. The
results of the analysis suggest that, except for Region 2 (Western Ghats), drought frequency
increased over time in all regions of India. Moreover, drought severity associated with various
durations is projected to significantly increase with an increase in duration for most regions. The

study predicted that drought hazard is expected to be higher during the period 2071-2100.

2.5 Summary and Research gaps

The Summary on multivariate drought event analysis using Global climate models and

teleconnections is as follows :

Selection of suitable Global climate model helps to analyze the drought conditions of any
region more accurately. Global climate models are the only models available for projecting
climate systems at any time scale either globally or regionally. In India, frequency of drought
has increased in recent years and so there is a need to analyze drought both spatial and
temporally. Regionally, a special attention is needed to characterize the likely occurrence and
distribution characteristics of droughts for the future. From literature, noticeable effects of
largescale teleconnections were observed on meteorological variables. Therefore, it is also
necessary to analyze climate variability (large scale Teleconnections) with drought indices

pattern.

Limited studies have been conducted to analyze climate change impacts by considering suitable
specific global climate models. A gap in exploration of regional Climate change aspects in
relation to projection of drought indices is noticed. India is significantly influenced by large
scale oscillations; drought indices are to be investigated considering the climate indices. Studies
on multivariate drought frequency analysis (Severity-duration-frequency and Severity-area-

frequency) is not performed and projected using suitable GCMs.

24



CHAPTER 3

STUDY AREA AND DATA COLLECTION

3.1 Study Area

The Telangana region covering an area of 1,12,100 square kilometers, is characterized by a
catchment area of 69% of river Krishna and 79% of river Godavari. It is a semi-arid region and
has a predominantly hot and dry climate. Annual rainfall ranges from 700mm to 1500mm and

average temperature varies from 22° to 42°c.

The economic foundation of Telangana is predominantly rooted in agriculture. The state benefits
significantly from the presence of two major rivers in India, the Godavari and Krishna, which
traverse through, providing essential irrigation support. Agriculture in Telangana relies heavily on
rain-fed water sources. Primary crops include rice, with additional emphasis on cotton, sugar cane,
mango, and tobacco as local staples. Notably, there has been a recent shift towards cultivating
crops such as sunflower and peanuts for vegetable oil production. Ongoing developments
encompass various multi-state irrigation projects, notably the Godavari River Basin Irrigation

Projects and the Nagarjuna Sagar Dam, recognized as the world's highest masonry dam.

Figure 3.1 in the study provides a visual representation of the study area map.
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Figure 3.1. Study area map considered for the research.
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Hydromorphological conditions in Telangana, India, encompass a variety of factors influenced by

the state's geography, climate, and human activities mentioned below:

River Systems: Telangana is traversed by several rivers, including the Godavari, Krishna, and their
tributaries. These rivers play a crucial role in the state's water resources, agriculture, and overall
ecosystem health. However, their flow and health are significantly impacted by damming,

irrigation projects, and diversion for urban and agricultural needs.

Groundwater: The state heavily relies on groundwater for irrigation and domestic use. However,
over-extraction and inadequate recharge mechanisms have led to declining groundwater levels in

several areas, exacerbating water scarcity issues, particularly during dry periods.

Reservoirs and Tanks: Telangana has numerous reservoirs and tanks (local water storage

structures) that play a vital role in water management, particularly for agriculture.

Water Quality: Industrialization and urbanization have introduced pollutants into the water bodies

of Telangana, affecting water quality.

Hydrological Extremes: Telangana experiences both droughts and occasional floods. The state
government has implemented various measures for flood control and mitigation, including the

construction of reservoirs with flood control capabilities.

Erosion and Sedimentation: Soil erosion, particularly in the catchment areas of rivers and

reservoirs, contributes to sedimentation, affecting water storage capacity and water quality.

Urban Water Management: Rapid urbanization in cities like Hyderabad has placed significant
pressure on water resources. Efforts are being made to improve urban water management practices

and infrastructure to meet growing demands sustainably.

Climate Change: The changing climate patterns, including variations in rainfall intensity and
distribution, pose challenges to water resource management in Telangana. Adaptation strategies

are being explored to mitigate the impacts of climate change on water availability and quality.

Overall, the hydro morphological conditions in Telangana reflect a complex interplay of natural
processes and human activities, necessitating integrated water resource management approaches

for sustainable development and environmental conservation.
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Telangana, like many regions in India, has experienced several notable droughts throughout its

history which have significant socioeconomic and environmental impacts.

1966: This drought was severe and widespread across India, including Telangana. It led to

significant agricultural losses and water scarcity.

1972: Another major drought that affected Telangana and other parts of India, causing crop failures

and water shortages.

1985-1987: This was a prolonged drought period that affected Telangana, among other regions in

India. It led to widespread distress in agriculture and affected rural livelihoods.

2002: Telangana experienced a severe drought in 2002, which was part of a larger drought affecting

many parts of India.

2015: In recent times, Telangana faced another severe drought in 2015. This drought significantly

impacted agriculture, particularly rain-fed crops.

2018: Parts of Telangana experienced drought conditions in 2018, leading to agricultural stress and

water scarcity issues.
Issues associated with droughts in Telangana are mentioned

Frequency and Severity: Telangana is prone to recurrent droughts, typically caused by deficient
monsoon rains. These droughts vary in severity and duration, affecting agricultural productivity,

water availability, and livelihoods.

Agricultural Impacts: Agriculture is the backbone of Telangana’s economy, with a substantial
portion of the population dependent on rain-fed farming. Drought leads to crop failures, reduced

yields, and loss of livestock, impacting farmers' incomes and food security.

Water Stress: Droughts exacerbate water stress in Telangana, particularly in rural areas dependent
on groundwater and surface water sources. Over-extraction of groundwater during droughts can

lead to depleted aquifers and long-term water scarcity issues.

Livelihood Challenges: Droughts often result in economic distress and migration as farmers
struggle to cope with crop failures and loss of income. Rural communities dependent on agriculture

face heightened vulnerability during prolonged dry spells.
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Environmental Impact: Droughts can lead to environmental degradation, including soil erosion,
loss of vegetation cover, and depletion of biodiversity. Reduced water availability also affects

ecosystems, wildlife, and natural habitats.

Social Implications: Droughts exacerbate social inequalities and vulnerabilities, disproportionately
affecting marginalized communities, women, and children. Access to water, healthcare, and

education can become compromised during severe drought periods.

Policy and Management Challenges: Effective drought management requires robust policies, early
warning systems, and proactive measures such as water conservation, watershed management, and
drought-resistant crop cultivation. Challenges arise in implementing these measures effectively

across diverse socio-economic landscapes.

Climate Change: Changing climate patterns, including erratic rainfall and rising temperatures, pose
additional challenges for drought mitigation and adaptation strategies in Telangana. Climate
change projections suggest an increase in the frequency and intensity of extreme weather events,

including droughts.

In response to these challenges, Telangana has implemented various drought management
strategies, including drought relief measures, water conservation programs, crop insurance
schemes, and investments in irrigation infrastructure. However, continued efforts are needed to
enhance resilience, improve water resource management, and mitigate the impacts of future

drought events on the state’s population and environment.
3.2 Data Collection
3.2.1 India Meteorological Department (IMD)

In the present investigation, gridded datasets comprising precipitation, maximum temperature,
minimum temperature and average temperature have been employed. These datasets originate
from the India Meteorological Department (IMD) and span the temporal interval from 1975 to
2017. The data under consideration is characterized by a spatial resolution of 1°x1°, with temporal
increments maintained on a monthly basis within the specified study area, as elucidated in the

works of Rajeevan et al. (2008) and Srivastava et al. (2009).
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Table 3.1 Global Climate Models (GCMs) considered in the study.

S.No Model name Resolution
1 BCC-CSM1-1 2.8°%2.8°
2 BCC-CSM1.1(m) 2.8°x2.8°
3 BNU.ESM 2.89x2.8°
4 CanESM?2 2.8°x2.8°
5 CMCC-Cm 0.75°x0.75°
6 CMCC-CMS 1.88°x1.87°
7 CNRM-CM5 1.4°x1.4°
8 ACCESS 1.0 1.25°x1.9°
9 ACCESS 1.3 1.25°x1.9°
10 CSIRO-Mk3.6.0 1.86°x1.87°
11 FIO-ESM 2.89%2.8°
12 EC-EARTH 1.13°x1.12°
13 INMCM4.0 2.0°x1.5°
14 [PSL-CMSA-LR 1.89°x3.75°
15 IPSL-CMS5A-MR 1.26°x2.5°
16 IPSL-CM5B-LR 3.75°<1.8°
17 FGOALS-g2 2.8°%2.8°
18 MIROC-ESM 2.8°x2.8°
19 MIROC-ESM-CHEM 2.89%2.8°
20 MIROCS 1.4°<1.4°
21 HadGEM2-CC 1.88°x1.25°
22 HadGEM2-ES 1.87°x1.25°
23 MPI-ESM-LR 1.88°x1.87°
24 MPI-ESM-MR 1.88°=1.87°
25 MRI-CGCM3 1.12°x1.12°
26 GISS-E2-H 2.5°%2.5°
27 GISS-E2-R 2.59%2.5°
28 CCSM4 1.25°x0.94°
29 CESM1(BGC) 1.25°x0.94°
30 CESM1(CAMS) 1.4°x1.4°
31 CESMI1(WACCM) 2.59%1.89°
32 NorESM1-M 2.5°x1.9°
33 HadGEM2-AO 1.88°x1.25°
34 GFDL-CM3 2.5°%2.0°
35 GFDL-ESM2G 2.5°%2.0°
36 GFDL-ESM2M 2.5°%2.0°
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3.2.2 Coupled Model Intercomparison Project S model (CMIPS5)

In this study, CMIP5 GCMs have been meticulously examined, particularly within the framework
of Representative Concentration Pathways (RCP) 8.5 scenarios. The variables under scrutiny
encompass precipitation, maximum temperature, minimum temperature and average temperature.

The CMIPS data, crucial to this analysis, has been sourced from the IPCC website http://www.ipcc-

data.org/sim/gcm monthly/. A total of 36 distinct dataset models derived from CMIPS, each

representing an ensemble of single realizations, have been systematically incorporated into the

study and are itemized in Table 3.1.
3.2.3 Self-Calibrated Palmer Drought Severity Index (SC_PDSI)

The SC_PDSI dataset employed in this investigation is acquired from the Climatic Research Unit
Time Series (CRU TS) website, presenting a spatial resolution of 0.5°%0.5°. The dataset undergoes
regular annual updates, with the present investigation incorporating the CRU TS 4.03 version, a
recent iteration of the dataset. The dataset can be accessed at the following link:

http://www.cru.uea.ac.uk/data.

3.2.4 Climate Data

The study encompasses an analysis of monthly climate oscillations namely NINO 3.4, Multivariate
ENSO Index (MEI), Southern Oscillation Index (SOI) and Dipole Mode Index (DMI), during the
period from 2003 to 2017. Monthly Sea Surface Temperature (SST) anomaly data for NINO3.4 is

accessible at (http://www.esrl.noaa.gov/psd/gcoswesp/Timeseries/Data/nino34.long.anom.data).

MEI is selectively sourced and obtained from (https://www.esrl.noaa.gov/psd/enso/mei). SOI data

is acquired from the National Oceanic and Atmospheric Administration (NOAA) Earth System

Research Laboratory at (https://psl.noaa.gov/gcos wgsp/Timeseries/SOI/). Indian Ocean Dipole

(IOD) is quantified as DMI due to the dipole mode in the tropical Indian ocean and the DMI data

is retrieved from (http://www.jamstec.go.jp/frcgc/research/d1/iod/DATA/dmi).

31


http://www.ipcc-data.org/sim/gcm_monthly/
http://www.ipcc-data.org/sim/gcm_monthly/
http://www.cru.uea.ac.uk/data
http://www.esrl.noaa.gov/psd/gcoswgsp/Timeseries/Data/nino34.long.anom.data
https://www.esrl.noaa.gov/psd/enso/mei
https://psl.noaa.gov/gcos_wgsp/Timeseries/SOI/
http://www.jamstec.go.jp/frcgc/research/d1/iod/DATA/dmi

CHAPTER 4
SELECTION OF SUTIABLE GLOBAL CLIMATE MODELS

4.1 Introduction

GCMs constitute indispensable tools for projecting future climatic scenarios. Facilitated by the
World Climate Research Program (WCRP), the provision of coordinated GCMs datasets
contributes significantly to advancing climate science. The comprehensive nature of GCMs allows
for the evaluation of physical processes across land surfaces, oceans and the atmosphere.
Consequently, GCMs prove instrumental in conducting hydro-climatological studies. Recognizing
their prowess, GCMs are increasingly pivotal in determining climate variables for short, medium
and long-term water resource management and planning strategies. The imperative impact of
climate change on hydrometeorological variables underscores their critical role in predicting

phenomena such as droughts, floods and reservoir operations.

However, the efficacy of GCMs is contingent upon the scale of analysis. While they adeptly
demonstrate global climate changes at a large grid scale, their accuracy diminishes progressively
at smaller, local or regional grid scales (Reichler and Kim, 2008; Xu, 1999). Despite this limitation,
GCMs remain the sole models capable of projecting climate systems across various temporal
scales. Notably, uncertainties escalate when assessing GCMs at regional and local levels
(Mujumdar and Kumar, 2012). The IPCC ARS delineates these uncertainties, attributing them to
the internal variability of short-term projections, variability at small spatial and temporal
magnitudes, the dynamic nature of climate scenarios due to anthropogenic activities, the inherent
physical responses governed by model equations and the predictors influencing the predictands

(IPCC, 2013).

Mitigating these uncertainties necessitates an initial step — the evaluation of climate model
performance within a specified study region. Given the regional and variable-specific variations
in model performance, such evaluations become crucial (IPCC, 2013; McSweeney et al., 2015).
Consequently, appraising the performance of climate models at both global and regional scales
becomes paramount to tempering uncertainty when applying these models in climate change
studies. The assessment of appropriate GCMs at the regional level proves pivotal for scrutinizing

the climatic impact on hydrological, meteorological and climatological studies (Smith and Chiew,
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2010; Pitman et al., 2012). Numerous studies have undertaken evaluations of GCMs, scrutinizing
climatic parameters such as Tmax, Tmin, P and sea surface temperature across diverse global regions
and temporal scales (Perkins et al., 2007; Murphy et al., 2004; Maxino et al., 2008). The
performance evaluations of GCMs involve employing various statistical metrics, including Root
Mean Square Error (RMSE), Normalized Root Mean Square Error (RMSE), Correlation
Coefticient (CC); proposed by Galton, 1888), Skill Score (SS); proposed by Perkins et al., 2007),
among others (Sun et al., 2015; Perkins et al., 2009; Maxino et al., 2008). Recommendations from
various studies emphasize the adoption of simple yet significant SSPMetrics for GCM evaluations

(Johnson et al., 2011; Tebaldi and Knutti, 2007; Johnson and Sharma, 2009).

Contemporary model evaluation studies employ diverse methodologies (Giorgi and Mearns, 2002;
Zeleney, 1973; Raju and Kumar, 2014 a, b; Perkins et al., 2007; Sreelatha and AnandRaj, 2019).
Ensemble models have proven effective in enhancing skill and consistency in climate impact
studies (Tebaldi and Knutti, 2007). Consequently, within multi-model ensembles targeting various
global regions, methodologies such as the equally weighted mean, weighted mean and Bayesian
techniques are applied (Sanderson et al., 2017; Giorgi and Mearns, 2002; Abramowitz and Bishop,
2015).

An extensive review of the existing literature underscores the strategic advantage of evaluating the
capabilities of GCMs within the realm of climate model studies, attributing this practice to its
potential to mitigate uncertainty. This study is directed towards end-users of model outputs and
endeavors to establish a foundational framework for the regional assessment of GCMs within the
realm of climate change evaluations. The paramount objective of this investigation is to conduct
meticulous regional evaluation of GCMs procured from the CMIP5, with a specific focus on P,
Timax, Tavg and Tmin and its projection using suitable models within Telangana State, situated in the
southern part of India. The selection of these four variables are predicated upon their substantial
impact on and reciprocal responses from meteorological, hydrological, agricultural, industrial and
human activities. In the current landscape, climate models find extensive application across diverse
sectors, spanning varied spatial and temporal scales. Consequently, stakeholders necessitate an
acute understanding of each model's performance at regional scales relevant to their specific
domains. It is crucial to acknowledge that models deemed suitable for Telangana State may not

necessarily exhibit optimality when applied to other geographical regions. Considering this,
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researchers are strongly encouraged to discern the most pertinent GCMs for their respective study
regions by adhering to the procedural guidelines expounded in this comprehensive study. The flow

chart illustrating the objective is depicted in Figure 4.1.
The sub objectives of this section are:

e Selecting the suitable global climate models using P, Timax, Tavg and Tmin datasets from IMD
and IPCC

e Projection of suitable global climate models

[ Start

v

Develop apayoff matrix of GCMs and Statistical standard
performance metrics of variable for each grid point

¥
Calculate degree of diversification and weights of
metrics of variable at each grid point

v

[ Apply compromise Programming at each grid point ]

v

Calculate Lp-metric of variable for each GCM at grid )
point and corresponding rank
v

Select best GCM with smaller Lp-metric vahe
v

[ Extend the same for other grid points —

I

[ Group Decision Making methodology

|

Ensemble models

~

o

Figure 4.1: Flow chart for objective 1
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4.2 Methodology

4.2.1 Processing and Analysis of data

a. The spatial resolution of the IMD datasets pertaining to the study region is precisely defined
at 1°x1° obtained for the temporal scale 1975-2017. Thirty-six GCMs encompassing
simulated historical monthly data for P, Tmax, Tavg and Tmin datasets.

b. To achieve coherence and congruence between the GCMs and IMD datasets, bilinear
interpolation is employed to systematically re-grid the climate model datasets using Climate
Data Operator (CDO) ensuring alignment with the identical grid points as those featured in the
IMD data.

c. The re-gridded GCM data with the IMD data are integrated for further analysis and ensuring
that all datasets (GCMs and IMD) are consistently aligned spatially and temporally.

d. Standard statistical performance metrics are calculated (NRMSD,CC,SS)

e. A payoff matrix of GCMs and SSPMetrics for variable at each grid point is developed.

f. Degree of diversification and weights are assigned to each variable at each grid point

g. Compromise programming is applied at each grid point, the lowest Lp metric is considered as
the most suitable GCM at that grid point.

h. The same procedure is followed at each grid point for each variable and group decision
methodology is applied to find ensemble models.

4.2.2 Normalized Root Mean Square Deviation (NRMSD)

The NRMSD quantifies the extent of variation between observed and model values, with a

desirable model exhibiting NRMSD values proximal to zero. NRMSD is computed using equation

4.1.

J& 2z mp
NRMSD = a

(4.1)

where 0; and m; denote observed and model values at each point i (1,2, ... z) of the dataset.
4.2.3 Correlation Coefficient (CC)

The CC establishes a statistical relationship between observed and model values, with an ideal

model exhibiting a CC value approaching 1. The CC value is determined using equation 4.2.

cC = Ziza(0i=0)(mi—m) 4.2)

(z=1)sosm
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where 0 and m represents the mean values and s, and s, are the standard deviations of the

observed and model values, respectively.
4.2.4 SKill Score (SS)

The SS gauges the similarity measure between the observed and model-simulated PDFs, with a

value of 1 indicating best performance. SS is given by equation 4.3.

$§ = ¥gymin(f, f;) (4.3)

where f,, and f; denote the frequencies of observed and model values, ci represents the number of

class intervals and x indicates the number of metrics.
4.2.5 Entropy Method

The entropy method, as elucidated by Hwang and Yoon (1981), explores the disparities between
data sets.

4.2.5.1 Estimation of weights

Weights for metrics are determined through the entropy method (Eq. 4.4), chosen in this study for
its efficacy in ranking models in a multi-criteria decision-making context (Pomerol and Romero,

2000). The entropy of the matrix is computed using equation 4.4.

1
Ex = In (Z) le=1 plZ ln (plx) (4'4)
where p;, is the payoff matrix, E, is the entropy of the metric, x is the number of SSPMetrics
(1,2,..X), i is the number of models. The total number of SSPMetrics is indicated by X.
4.2.5.2 Degree of Diversification

The degree of diversification denoted as D, quantifies the outcome of criterion x from the dataset

and 1s given by using equation 4.5.
D,=1-E, 4.5)
4.2.5.3 Weights of SSPMetrics

Normalized weights of performance metrics are expressed as:

Dy

X 1Dx

Wy

(4.6)

where w, signifies the weights assigned to the SSPMetrics.
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4.2.6 Compromise Programming (CP)

Zeleny (1973) introduced CP as a method to identify solutions closest to an ideal solution. The

distance measure matrix of SSPMetric is given by using equation 4.7.

Ly(@) = S we? | — fu(@)PTr @.7)

where L, (a) denotes the distance measure metric for GCM a of parameter p, f;" is the normalized

value of SSPMetric x, f,(a) is the normalized ideal value of SSPMetric x and p represents the

distance measure parameter (1, 2, ... o).
4.2.7 Group Decision Making Approach (GDMA)

GDMA as outlined by Duckstein et al. (1989) and Stewart et al. (1992), constitutes a process for
determining the optimal option when grid points are considered. In instances where a singular
feasible alternative is sought, GDMA is implemented. Rankings are established in a descending
order and are bifurcated into two distinct parts - upper and lower.

Within the model framework, denoted as X = %, where w represents the total number of GCMs.

The terms within the upper part of the GCMs list are assigned rankings from 1 to X. The

significance strength of the model is given by equation 4.8 and weakness is given by equation 4.9.
Su=XYr1 Yo (x—z+ 1) qi,Vu kvz =1, ..x (4.8)

where S, signifies the strength of model u, q;;, = 1 when model u is in position z for grid k, else
0; The indices k = 1,2, ...m denote the grid points; z represent the rank position varying from 1

to x in the upper part, m denotes the grid points; u indicates the model in the upper part.
Wu = Z‘Ir(nzl Zy:y(z - y + 1) qgjzvu; kVZ = y; W (49)

Similarly, W, denotes the weakness of model u, g%, = 1 when model u is in position z position
for grid k, else it is 0; z is the rank position varying from 1 to y in the lower part; u indicates the

model in the lower part.
The net strength of each GCM model u is articulated as:

N,=S,—W, (4.10)
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The model exhibiting the highest net strength is deemed the preferred choice, while other models
are ranked accordingly in descending order of their net strength values. This structured approach
within the GDMA framework enhances the decision-making process by systematically evaluating

the relative strengths and weaknesses of each GCM model.

4.3 Results and Discussions

In this study, both observed data from the IMD and simulated data from GCMs are utilized for 14
distinct grid points, characterized by latitude and longitude, to analyze P, Timax, Tavg and Tmin. The
assessment involved the computation of CC, SS and NRMSD collectively referred to as
SSPMetrics. For each variable (P, Tmax, Tavg and Tmin) at every grid point, Normalized weights
using the entropy method and equal weights through sensitivity analysis for each SSPMetric are
calculated. The subsequent step involved assigning ranks to GCMs based on their Lp values
obtained through CP. The lowest Lp value for a model is assigned a rank of 1, exemplified in Table
4.1 for P at grid point 18.35°x80.85°. Table 4.5 provides an overview of SSPMetrics with
minimum and maximum values for P, Tmax, Tavg and Tmin at the same grid point, utilizing both
entropy and sensitivity methods. The weight distributions for all three variables are detailed in
Tables 4.6.(a) and 4.6.(b) It is noteworthy that slight variations in the Lp values lead to changes in
the ranking positions of GCMs. This comprehensive procedure is systematically repeated for all

grid points within the study area, with the results exemplified for grid point 18.35°x80.85°.
4.3.1 Analysis of Precipitation

Table 4.1 presents a comprehensive overview of the SSPMetrics and associated ranks for P,
encompassing SS, CC and NRMSD using Entropy method across all 36 GCMs. Notably, an
optimal value of 1 is sought for both SS and CC and to align NRMSD with CC and SS, a negative
sign is ascribed to NRMSD. Weights are meticulously computed for each GCM with respect to
every SSPMetric, employing the entropy method and a sensitivity analysis method with equal
weights.

The weight distribution across the considered SSPMetrics, where SS holds a predominant position
with weight percentages of 41.2% (entropy method) and 38.02% (sensitivity analysis), surpassing
the weight allocations for CC (36.3% and 35.9%) and NRMSD (22.5% and 26.08%) in both

entropy and sensitivity analysis methodologies, respectively.
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4.3.2 Analysis of Maximum Temperature

The same procedure as that described in section 4.3.1 is repeated, to calculate the SSPMetrics and rankings
with respect to the Tmax. Using the entropy method, the minimum value of the L,, metric, 0.0047 (Table 4.2),
is observed for the BCC-CSM1.1(m) model, followed by MIROCS5 (0.0063) and CanESM2 (0.0085). The
maximum value is observed for CCSM4 (0.0479; Table 4.2). In the sensitivity analysis, the minimum value
of L, metric, 0.0681 (Table 4.5), is observed for BCC-CSM1.1(m) and maximum value is observed for
IPSL-CSM5B-LR (0.2671). Note : Column 1-S.No represents model name as of in Table 4.1. From Table
4.6.(a) and (b), In case of Tmax, CC (46.8%) has higher percent of weightage compared to SS (40.4%) and
NRMSD (12.8%) in the entropy method. The same is observed in the sensitivity analysis method : CC
(43.4%), SS (37.9%) and NRMSD (18.7%).

4.3.3 Analysis of Minimum Temperature

The analysis of T,;;, in terms of SSPMetrics and rankings for grid point (18.35° X 80.85°) is presented in
Table 4.3. In the entropy method, the minimum value of the L,, metric (0.0159; Table 4.3) is observed for
CanESM2, followed by ACCESS1.0 (0.0166) and MRI-CGCM3 (0.0171), whereas CMCC-CMS exhibited
the maximum value (0.0418; Table 4.3). In the sensitivity analysis, the minimum value of L, metric is
observed for HadGEM2-CC (0.1937; Table 4.5), while the maximum value is observed for CMCC-CMS
(0.2819). Note : Column 1-S.No represents model name as of in Table 4.1. From the analysis (Table 4.6.(a)
and (b)), CC (57.3%) has higher percent of weightage compared to SS (28.1%) and NRMSD (10.6%) in
the entropy method. The same is observed in the sensitivity analysis, with CC, SS and NRMSD equal to
47.8%, 37.6% and 14.6%, respectively.

4.3.4 Analysis of Average Temperature

The analysis of Tg,,; in terms of SSPMetrics and rankings for grid point (18.35° X 80.85°) is presented in
Table 4.4. In the entropy method, the minimum value of the L, metric (0.0040; Table 4.4) is observed for
BCC-CSM1.1(m), followed by MIROCS (0.0040) and HadGEM2-A0 (0.0041), whereas Had-GEM2ES

exhibited the maximum value (0.0227; Table 4.4). In the sensitivity analysis, the minimum value of

L, metric is observed for MIROCS (0.0052; Table 4.5), while the maximum value is observed for

ACCESSI1.3 (0.0325). Note : S.No represents model name as of in Table 4.1. From the analysis (Table
4.6(a)and (b)), SS has higher percent of weightage compared to CC and NRMSD in both entropy and

sensitivity method.
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Table 4.1: SSPMetrics, L, metric and rank of P at grid point (18.35° X 80.85°)using entropy
method.

S.No | Model name CC SS NRMSD | L, |RANK
1 BCC-CSMI-1 0.5952 | 0.8846 | 0.6891 0.0083 | 14
2 BCC-CSM1.1({m) 0.6053 | 0.8077 | 0.6687 0.0087 | 20
3 BNU.ESM 0.7943 | 0.6250 | 0.8229 0.0001 | 22
4 CanESM2 0.6515 | 0.7788 | 0.5568 0.0077 | 9
5 CMCC-Cm 0.6271 | 0.7821 | 0.6464 0.0083 | 16
o CMCC-CMS 0.7088 | 0.7500 | 0.6865 0.0068 | 2
7 CNRM-CM5 0.1736 ] 0.9423 | 0.552 0.0234 | 34
8 ACCESSL.0 0.5880 | 0.8686 | 0.4915 0.0087 | 19
0 ACCESSL.3 0.1589 | 0.8007 | 0.3259 0.0239 | 36
10 CSIRO-MKk3.6.0 0.2488 | 0.9103 | 0.7614 0.0207 | 31
11 FIO-ESM 0.7493 | 0.7083 | 0.6975 0.0071 |5
12 EC-EARTH 0.7440 | 0.6538 | 0.7543 0.0086 | 17
13 INMCMA4.0 0.8021 | 0.6987 | 0.5494 0.0070 | 3
14 IPSL-CM3A-LR 0.5417 | 0.8462 | 0.6293 0.0105 | 25
15 IPSL-CM3A-MR 0.6410 | 0.8077 | 0.2991] 0.0075 | 8
16 IPSL-CMJ3B-LR 0.1688 | 0.8109 | 0.7859 0.0238 | 35
17 FGOALS-g2 0.7650 | 0.7276 | 0.7944 0.0064 |1
18 MIROC-ESM 0.8147 ] 0.6506 | 0.7857 0.0083 | 15
19 MIROC-ESM-CHEM | 0.7985 | 0.6699 | 0.4475 0.0078 | 10
20 MIROCS 0.2129 | 0.6667 | 0.3063 0.0233 | 33
21 HadGEM2-CC 0.4266 | 0.8558 | 0.4255 0.0145 | 28
22 HadGEM?2-ES 0.5375 | 0.8269 | 0.6542 0.0108 | 26
23 MPI-ESM-LR 0.7366 | 0.6827 | 0.6354 0.0080 | 11
24 MPI-ESM-MR 0.7409 | 0.6763 | 0.392 0.0081 13
25 MRI-CGCM3 0.4257 ) 0.8686 | 0.7139 0.0145 | 27
26 GISS-E2-H 0.3564 | 0.7596 | 0.5497 0.0176 | 30
27 GISS-E2-R 0.2584 | 0.7660 | 0.7596 0.0210 | 32
28 CCSM4 0.7351 | 0.6571 | 0.7963 0.0087 | 18
29 CESM1(BGC) 0.7725 ] 0.6955 | 0.7561 0.0072 | 6
30 CESM1(CAMS) 0.7094 | 0.6090 | 0.7835 0.0103 | 24
31 CESM1(WACCM) 0.7986 | 0.5865 | 0.7051 0.0101 | 23
32 NorESM1-M 0.7378 | 0.7147 | 0.57 0.0071 | 4
33 HadGEM2-AO 0.4041 | 0.7853 | 0.6578 0.0158 | 29
34 GFDL-CM3 0.7662 | 0.6891 | 0.6987 0.0074 | 7
35 GFDL-ESM2G 0.7089 | 0.6987 | 0.6975 0.0080 | 12
36 GFDL-ESM2M 0.6627 ] 0.7115 | 0.552 0.0087 | 21
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Table 4.2: SSPMetrics values of Tpq, (NRMSD-CC-SS), L, metric and Rank at grid point
(18.35° x 80.85°) for entropy method. S.No represents model name as of in Table 4.1.

S.No NRMSD | CC SS L, RANK
1 0.0747 0.8378 10.7372 1 0.0118 |5
2 0.0833 0.8454 | 0.8429 | 0.0047 |1
3 0.1034 0.8152 | 0.5897 | 0.0258 | 16
4 0.0903 0.8367 | 0.7724 | 0.0085 |3
5 0.0880 0.8982 | 0.6699 | 0.0179 | 10
6 0.0971 0.8731 |0.6378 | 0.0210 | 13
7 0.0810 0.8478 |0.7404 | 0.0114 | 4
8 0.1142 0.8132 | 0.5577 | 0.0289 | 22
9 0.1795 0.6483 | 0.5641 | 0.0289 | 21
10 0.1258 0.7382 | 0.6731 | 0.0180 |11
11 0.0997 0.9000 | 0.4968 | 0.0348 | 28
12 0.1409 0.8324 1 0.4199 | 0.0423 | 34
13 0.1652 0.8717 | 0.3814 | 0.0460 | 35
14 0.1436 0.6705 | 0.6571 | 0.0200 | 12
15 0.1277 0.6870 | 0.7340 | 0.0129 |6
16 0.2018 0.4549 | 0.5673 | 0.0304 | 23
17 0.1189 0.7770 | 0.5801 | 0.0268 | 18
18 0.1130 0.8526 | 0.5064 | 0.0339 | 27
19 0.1110 0.8792 | 0.5096 | 0.0335 | 25
20 0.0590 0.8456 | 0.8141 | 0.0063 | 2
21 0.0793 0.8161 | 0.6891 | 0.0164 |8
22 0.0827 0.8239 |1 0.6795|0.0172 |9
23 0.1138 0.8583 | 0.6346 | 0.0212 | 14
24 0.1141 0.8740 | 0.5833 | 0.0263 | 17
25 0.1167 0.8040 | 0.7083 | 0.0142 |7
26 0.1343 0.8175 | 0.5064 | 0.0339 | 26
27 0.1359 0.7404 | 0.5641 | 0.0285 | 19
28 0.1469 0.8928 | 0.3622 | 0.0479 | 36
29 0.1312 0.8945 | 0.4551 | 0.0388 | 29
30 0.1192 0.9126 | 0.4487 | 0.0395 |31
31 0.1167 0.8748 | 0.5160 | 0.0329 |24
32 0.1207 0.8887 |0.4519 | 0.0392 | 30
33 0.1040 0.8683 | 0.6186 | 0.0229 | 15
34 0.1094 0.8862 | 0.5577 | 0.0288 | 20
35 0.1577 0.8912 | 0.4327 | 0.0410 | 33
36 0.1496 0.8913 | 0.4423 | 0.0401 | 32
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Table 4.3: SSPMetrics values of Tp,;, (NRMSD-CC-SS), L, metric and Rank at grid point
(18.35° x 80.85°) for entropy method. S.No represents model name as of in Table 4.1.

S.No |NRMSD | CC SS L, |RANK
1 0.0930 | 0.8713 |0.8590 |0.0171

2 0.1321 | 0.8796 |0.7179 | 0.0211 | 10
3 0.0844 [ 0.9272 |0.8462 | 0.0173

4 0.1547 | 0.8010 |0.8173 | 0.0159 |1
5 0.0926 | 0.9408 |0.8077 |0.0178 |7
6 0.5572 | 0.5584 | 0.4483 | 0.0418 | 36
7 02604 | 0.9114 |0.5801 | 0.0300 | 28
8 0.1676 | 0.8104 | 0.7853 | 0.0166 | 2
9 0.1238 | 0.8057 | 0.7147 | 0.0218 | 11
10 0.1154 | 0.8168 |0.7019 | 0.0229 | 17
11 0.0801 | 0.9312 |0.8141 |0.0180 |8
12 02217 | 0.9346 |0.4968 | 0.0381 | 34
13 0.5561 | 0.5524 | 0.4583 |0.0413 |35
14 02439 | 0.8116 |0.5641 |0.0319 |30
15 02072 | 0.8419 |0.5994 |0.0291 |27
16 03209 | 0.7290 |0.5769 |0.0301 |29
17 0.0999 [0.7962 |0.6891 |0.0242 | 24
18 0.0875 | 0.8790 |0.7179 |0.0223 | 13
19 0.0885 | 0.8814 | 0.7051 | 0.0231 | 19
20 0.0776 | 0.9329 | 0.8526 | 0.0175 | 6
21 02295 | 0.8784 | 0.6603 | 0.0234 | 20
22 0.1780 | 0.8737 | 0.6859 | 0.0224 | 14
23 0.1465 | 0.9354 | 0.6859 | 0.0230 | 18
24 0.1420 | 0.9335 | 0.6763 |0.0238 |21
25 0.0943 | 0.8918 | 0.8429 |0.0171 |3
26 0.1315 | 0.7713 |0.6859 |0.0239 |22
27 0.1353 | 0.7828 | 0.6987 |0.0228 | 16
28 02229 | 0.7643 |0.5353 |0.0349 |33
29 02263 | 0.7818 | 0.5673 |0.0319 |31
30 02016 | 0.8671 | 0.5385 | 0.0346 | 32
31 0.1482 | 0.8165 |0.7404 [0.0195 |9
32 0.1564 | 0.8135 |0.6699 |0.0243 |25
33 0.2307 | 0.8840 |0.6410 |0.0250 | 26
34 0.1295 | 0.9242 |0.7051 |0.0220 | 12
35 0.1206 | 0.9398 |0.6795 |0.0241 |23
36 0.1093 | 0.9244 |0.7051 |0.0225 | 15
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Table 4.4: SSPMetrics values of Ty,; (NRMSD-CC-SS), L, metric and Rank at grid point
(18.35° x 80.85°) for entropy method. S.No represents model name as of in Table 4.1.

S.No | NRMSD | CC SS Lp Rank
0.8267 |0.7212 | 0.0769 | 0.0053 8

0.8560 | 0.8269 | 0.0729 | 0.0040 1

0.8743 ] 0.6186 | 0.0886 | 0.0067 13

0.8509 | 0.7404 | 0.0857 | 0.0045 6
0.9022 | 0.6859 | 0.0764 | 0.0052 7
0.8267 | 0.7115 | 0.0769 | 0.0054 9
0.8758 | 0.7853 | 0.0612 | 0.0042 4
0.8399 ] 0.8173 | 0.0715 | 0.0042 5
0.6513 ] 0.5160 | 0.1981 | 0.0115 31
0.7454 ] 0.6923 | 0.1129 | 0.0067 14
0.9049 | 0.5353 | 0.0955 | 0.0086 18
0.8565 | 0.3590 | 0.1544 | 0.0131 34
0.9042 | 0.4455 | 0.1377 |0.0107 27
0.6679 | 0.6667 | 0.1332 | 0.0086 19
0.6957 10.6763 | 0.1291 | 0.0079 17
0.4733 1 0.5994 | 0.1842 | 0.0140 35
0.8442 | 0.6635 | 0.0921 | 0.0059 11
0.8905 |0.5192 | 0.1044 | 0.0090 20
0.8949 | 0.4968 | 0.1075 | 0.0095 25

Ol Alalan o2 alv|o(x|an|v|b|wiN|—

20 0.8704 | 0.8077 | 0.0638 | 0.0041 3
21 0.8210 | 0.6987 | 0.0717 | 0.0058 10
22 0.8418 | 0.0021 | 0.0651 | 0.0227 36
23 0.8912 | 0.5737 | 0.1079 | 0.0075 16
24 0.8806 | 0.6058 | 0.1045 | 0.0068 15
25 0.7769 |0.6987 | 0.1175 | 0.0059 12
26 0.8011 | 0.5256 | 0.1330 | 0.0092 24
27 0.7565 | 0.5577 | 0.1268 | 0.0091 21
28 0.9047 |0.4455 | 0.1283 | 0.0107 28
29 0.9267 |0.4199 | 0.1221 | 0.0114 30
30 0.9182 | 0.4006 | 0.1338 | 0.0119 32
31 0.8948 | 0.5096 | 0.1101 |0.0092 23
32 0.8961 |0.4712 | 0.1191 | 0.0101 26
33 0.8585 | 0.7949 | 0.0748 | 0.0040 2
34 0.9105 ]0.5096 | 0.1172 | 0.0091 22
35 0.9178 10.3974 | 0.1489 | 0.0119 33
36 0.9170 ]0.4391 | 0.1417 | 0.0108 29
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Table 4.5: SSPMetrics, L, metric and rank of P,Tpax, Tmin and Tg,y at grid point
(18.35° x 80.85°) using Entropy (E) and Sensitivity (S) method.

. Minimum Maximum
Variable Lp Value Model name Lp Value Model name
P(E) 0.064 FGOALS-g2 0.0239 ACCESS1.3
P(S) 0.1098 CMCC-CMS 0.3423 ACCESS1.3

Tmax(E) | 0.0047 | BCC-CSM1.1(m) | 0.0479 | CCSM4
Twmax(S) | 0.0681 | BCC-CSM1.1(m) | 0.2671 | IPSL-CSM5B-LR
Tmin(E) | 0.0159 | CanESM2 0.0418 | CMCC-CMS
Tmin(S) | 0.1937 | HadGEM2-CC | 02819 | CMCC-CMS
Tag (E) | 0.0040 | BCC-CSM1.1(m) | 0.0227 | HadGEM2-ES
Tae (S) | 0.0052 | MIROCS 0.0378 | ACCESS 1.3

Table 4.6.(a): Weight distribution of P, Ty qx, Trnin and Tg,4 over 14 grid points of Telangana State
from entropy method

Weights in %

0-20 20-40 40-60 60-80 80-100
CcC 3
P SS -
NRMSD
CcC

Tmax SS
NRMSD
CcC

Tnin SS
NRMSD
CC

Tave SS
NRMSD

Variables SSPMetrics
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Table 4.6.(b): Weight distribution of P, Tpqx, Trmin and Tyy,g over 14 grid points of Telangana
State from sensitivity method

Variables | SSPMetrics Weights in %
0-20 20-40 40-60 60-80 80-100
CcC 2 6 5 1 -
P SS 1 3 7 3 -
NRMSD 2 3 5 4 -
cc 3 6 5 - -
Tinax SS 4 5 5 - -
NRMSD 6 4 2 2 -
CcC 3 8 3 - -
Tin SS 3 7 4 - -
NRMSD 4 5 5 - -
cc 5 8 1 - -
Tave SS 4 6 4 - -
NRMSD 3 8 3 - -

4.3.5 Application of GDMA, Ensemble Method and Spatial Projections

The net strength for the 36 GCMs using the entropy method. For P, FGOALS-g2 and INMCM4.0
have net strengths of 86 and 85, respectively, ranking first and second among the models. On the
other hand, ACCESS1.3 ranks last with a net strength of -96. For T,,,,,, CanESM2, BCC-CSM1-
I(m), and ACCESS1.3 rank first, second and last, respectively, with net strengths of 80, 79 and -
88. For Ty,in, CanESM2 and BCC-CSM1.1(m) rank first and second with scores of 82 and 81,
respectively, while ACCESS1.3 ranks last with a score of -88. For T, 4, net strength of first
occupied GCM is observed as MIROCS with 73 followed to BCC-CSM1.1 (m) with 69 whereas
IPSL-CM5B-LR has occupied last position with net strength -51. The finalized ensemble GCMs

are represented in Table 4.7

Table 4.7: Finalized ensemble models of P, T, 4x, Trnin and Tgyq in this study.

Variable | Finalized ensemble models
P FGOALS-g2, CMCC-CMS, INMCM4.0
Tmay | BCC-CSMI.1(m), CanESM2, MIROCS
Tinin CanESM2, BCC-CSM1-1({m), ACCESS 1.0
Twe | MIROCS, BCC-CSMI-1(m),CNRM-CMS5
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Results showed that Compromise Programming has the ability to find suitable GCMs. GDMA is
performed for multi model ensemble. The present study provided evaluation of an optimal model
and ensemble multi model selection for the Telangana region which can be used further in different
applications of hydrology or hydrologic studies are represented in Figure 4.2.(a),(b),(c)and(d).
Climate change projections for Telangana State are presented for P, Tonayx, Tayg and Ty for three
future time intervals (1: 2006-2035, 2: 2036-2065 and 3: 2066—2095) using RCP 8.5 scenarios.
The spatial representation of the long-term projection (for the three-time intervals) of is shown in
Figure 4.3. Low amounts of rainfall are observed in relation to high temperatures for both the RCP
8.5 scenarios. The climate change projections in the study area are overall consistent. However,
precisely locating the variations of a variable is difficult. The climate projections for future

scenarios are shown in Figure 4.3.
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Figure 4.2.(a),(b), (c) & (d) presents spatial distribution of ensemble models of P, Tmax, Tmin & Tavg.
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4.4 Conclusions

Three SSPMetrics (CC, SS and NRMSD) for four variables (P, Tinax, Tmin and Tyypg) are evaluated

to compare 36 GCMs against observed data of IMD at 14 grid points in Telangana State, southern

India. Using entropy and sensitivity analysis, the weights of the SSPMetrics are determined for the

four variables. These weights are found to vary at each grid point remarkably, affecting the

rankings of the considered variables. CP and GDMA are performed to identify suitable individual

and ensemble GCMs for applications in climate-related impact assessments in the study region.

Spatial distribution maps of ensemble models and spatial projections are projected to future

scenarios.

The study yields the following conclusions.

e The identified suitable ensemble models for P include FGOALS-g2, CMCC-CMS and
INMCM4.0. BCC-CSM1.1(m), CanESM2, and MIROCS are deemed suitable GCMs for
Tnax- For Ty, the recommended ensemble comprises CanESM2, BCC-CSM 1-1(m) and
ACCESSI1.0. For Tayg, MIROCS5, CNRM-CMS5 and BCC-CSM1.1 (m) emerge as the

suitable models.

e Ifasingle GCM is to be used, then FGOALS-g2 for P and BCC-CSM1.1(m) for Ty,

Tavg and T,,;,, should be considered.
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e In the analysis of SSPMetrics for precipitation (P), SS holds a predominant position with
percentages of 41.2% (entropy) and 38.02% (sensitivity), surpassing CC (36.3% and
35.9%) and NRMSD (22.5% and 26.08%) in both methods.

¢ In the analysis of SSPMetrics for Tmax, Tmin and Tavg: CC receives higher weightage in
entropy (46.8%, 57.3% and 42.3%) and sensitivity (43.4%,47.8% and 46.8%) compared to
SS and NRMSD.

e From spatial projections of GCMs, a rise in temperature can be expected for the future

periods (2036-2065 and 2066-2095), which leads to an increase in evaporation rate.

The proposed method for identifying the optimal individual model or ensemble model Telangana
State can be helpful in various applications, such as in hydrological, meteorological, and climatic
model studies. This study offers a clear and quantitative method for selecting suitable GCMs,
thereby reducing the uncertainty associated with the use of GCMs for climate impact studies at

regional scale.
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CHAPTER 5

REGIONALIZATION OF STUDY AREA AND EVALUATING DROUGHT INDICES
AND ITS CHARACTERSITICS

5.1 Introduction

Droughts stand out as intricate and profoundly impactful natural occurrences observed annually
across various regions, it inflicts substantial losses both in terms of economic resources and human
lives (Goyal et al., 2017; Wilhite, 2000). Compared to other hydrological phenomena characterized
for brief durations, droughts manifest as enduring disasters spanning from several months to
multiple years. Their gradual onset and protracted nature further compound the challenge of
precisely delineating the commencement and conclusion of drought events. Droughts, affecting
both surface and subsurface water resources, play a pivotal role in significantly diminishing the
overall water availability. Moreover, the repercussions extend beyond mere quantity,
encompassing adverse impacts on water quality, agricultural yield failures, reduced power
generation and the degradation of riparian habitats (Goyal & Ojha, 2012; Riebsame et al., 1991).
Empirical evidence substantiates the intensification of extreme hydrological events, such as floods
and droughts, in recent times, marked by a notable reduction in their return periods across diverse
geographical domains (D.P. Lettenmaier et al., 1996). The escalating threats posed by global
warming and climate change further accentuate the likelihood of heightened drought intensity and
increased frequency, a prediction facilitated by advanced downscaling approaches (e.g., Vasiliades

et al., 2009).

Drought, as a phenomenon, exhibits a distinctly regional character. Numerous researchers have
embraced a regional perspective to scrutinize and comprehend drought dynamics, with seminal
contributions from Clausen & Pearson, (1995); Goyal & Sharma, (2016); Hisdal & Tallaksen,
(2003); Liu et al., (2015); Mirakbari et al., (2010); Mishra et al., (2009); Rajsekhar et al., (2011);
Sen, (1980). The inherent spatial variability in drought intensity assumes paramount importance,
particularly in the context of water transfer operations management within drought-affected
regions. Conducting a regional analysis of droughts is imperative for a nuanced understanding of

this phenomenon, given its incremental and pervasive nature. The principal objective of such an
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analysis resides in delineating homogeneous regions, characterized by analogous drought
behaviors. A homogeneous region, defined as a cluster of stations demonstrating comparable
drought behavior or possessing akin frequency distribution patterns for drought occurrences
(Mirakbari et al., 2010), serves as a foundation for devising coherent drought management and
mitigation policies tailored to the specific characteristics of each identified region. This regional
approach contributes substantively to the enhancement of precision in drought analysis and the
formulation of targeted strategies for effective water resource management. The flowchart of

chapter 5 is presented in Figure 5.1. (a) and (b)

Study region
'

Latitude, Longitude, mean, standard deviation,
minimum and maximum value of Pand T

Cluster validate Index ———* -

Fuzzy C means clustering

Parameters —

Figure 5.1.(a). Flowchart for regionalization of study area

Precipitation and Temperature -

\ )
|

SPI, SPEI a.llld SC_PDSI

!

Drought Characteristics

.

Severity and Duration

Figure 5.1.(b) Flowchart for evaluating drought indices and their characteristics.
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5.2 Methodology
5.2.1 Step by procedure used

a. To delineate homogenous regions, parameters — latitude, longitude, mean, standard deviation,
minimum and maximum value of precipitation and temperature datasets are considered.

b. Cluster validate index namely separation index, partition entropy and fuzzy partition index are
used to find optimum number of clusters.

c. Monthly precipitation, temperature and SC_PDSI data is considered for time period of 1975-
2017.

d. SPIis computed at SPI12. Further SPEI is calculated incorporating potential
evapotranspiration (PET), calculated.

e. A drought severity threshold (-0.8) is established and applied to identify drought events based
on SPI, SPEI and SC_PDSI series exceeding the established threshold.

f. Characteristics analysis — severity and duration is determined regionally.
5.2.2 Fuzzy C-Means clustering

The conceptualization of FCM is introduced by Dunn 1973 and subsequently extended by Bezdek
in 1981. Let us consider cluster ¢ with M objects where Yk is the data vector forkm (k = 1,2 ... M)

object. The FCM technique aims to minimize the following objective function 5.1.
](U,C)=Z?4=12f=1u?k||yk—ci||2 (5.1)

let uik denotes the membership value of the ke point in the iwm cluster, where Ci denotes the centre of

the in cluster (i = 1, 2,...,c), IYk - Cill* is the Euclidean squared distance. Here Ciand 8 signify the

cluster center and the fuzziness index (or fuzzifier) respectively, where 6 can assume any value

>1. In the FCM algorithm, the number of clusters and centers are stochastically determined.

Subsequently, the membership matrix is computed using the following expression 5.2.

2 1—1
t c [1Y—Cil| 6-1
ui<k - [ j=1 (”Yk_cj”) ] (5.2)

with an updated membership value, new cluster centers are calculated using C;
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using new cluster centers, the membership matrix is updated to following equation 5.4.

2 4—1
t+1 _ |yc  (lYe=cill\6-2
Hisk _[ f=1(||vk—cj||) ] 4

if U1 - Ut]| < € the algorithm will stop. If not, it goes back to step 1. Three validity indices are

used to check the efficiency of clustering.

5.2.2.1 Separation index (S7)

The compactness and separation function (Si) proposed by (Xie & Beni, 1991) is defined as the
ratio of variance within clusters to the variance between clusters. The Si value is lower, the
clustering is better. Si is represented as in the following equation 5.5.

M
Zf:l Xk (u?k)”Ci_Yk”z
M min ||v;— 2
E [lvi—ykll

S;(U,V:X) = (5.5)

5.2.2.2 Fuzziness partition index (Fpi)

The membership (fuzziness) that various classes share (J. C. Bezdek, 1974; James C. Bezdek,

1973) is calculated by the Fuzziness partition index and is presented in the following equation 5.6.
1
Fpi(U) = — 1 Dy UG (5.6)

5.2.2.3 Partition entropy (Pe)

Partition entropy is represented as

b, (U) = iC=1 Z%I:luikloga (uik) (5.7)

1
m
Lower the Pe value, better the clustering and it varies between 0 and log(c). The FCM clustering

analysis is performed using R software (package: ppclust; version 3.5.1; https://www.r-
project.org/)
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5.2.3 Standardized Precipitation Index (SPI)

SPI is a dimensionless meteorological drought index which requires single hydrological variable
i.e., precipitation to characterize drought events. SPI is simple to analyse, spatially invariant and
can be applied to evaluate meteorological, hydrological and agricultural drought phenomenon.
Using SPI, the temporal analysis of drought events can be evaluated at 3, 6, 9, 12, 24, 36 and 48-
month time scales. To evaluate SPI for a given year i, month j and for time scale of k, the following

steps are used:

e For a specific period of interest j, cumulative precipitation series is evaluated JXj
(i = 1,2,...,n), where each term denotes the sum of precipitation of k — 1 previous successive

months.

e The aggregated monthly precipitation series (say & = 12 months) is fitted with cumulative

PDFs (for e.g., gamma distribution). The gamma distribution function is defined as g(x) =

1 —X

BaT(a) x* e where, I'(e) = gamma function, a = shape parameter and f = scale
parameter. The shape and scale parameters are estimated using method of maximum
likelithood.

e For a specific month and time, the estimated parameters are utilized in finding the
cumulative PDFs of the precipitation event.

e A mixed (containing zero values and continuous precipitation amount) two parameter
gamma distribution function is employed and the corresponding Cumulative Distribution
Function (CDF) is given as F(x) = ¢ + (1 — q) G(x); where, g = probability of zero

precipitation and G(x) = distribution function calculated for non-zero precipitation.

e An equiprobability transformation Panofsky & Brier, (1968) is carried out from the CDF of
mixed distribution to the CDF of standard normal distribution (zero mean and unit variance),
which is given as SPI =y !(F(x)). This transformed probability is the SPI. The negative SPI
value specifies that the precipitation is below average (dry condition) and positive SPI value

indicates above average precipitation (wet condition).
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A drought period is defined as the successive number of SPI values below a threshold
(approximately 0.8). According to Mckee et al., (1993), droughts are classified into four categories
namely mild (D0), moderate (D1), severe (D2) and extreme (D3) droughts as given in Table 5.1.
In this study, SPI is computed over 12-month timescales with monthly gridded precipitation data

at a spatial resolution of 1°x1° from 1975 to 2017.

Table 5.1: SPI - Drought categories under Dry (D) conditions.

Drought Category SPI
DO0: Mild (abnormal) Drought 0 to -0.99
D1: Moderate Drought - 1.00 to -1.49
D2: Severe Drought -1.50 to -1.99
D3:Extreme Drought <2

5.2.4 Standardized Precipitation Evapotranspiration Index (SPEI)

To characterize droughts several drought indexes have been developed by considering one or more
climatic variables like precipitation, temperature, runoff, evapotranspiration and soil moisture. To
quantify meteorological drought, SPI is considered as the most widely used drought index because
it is less data intensive and simple to calculate. As SPI can be calculated at different time scales, it
helps in understanding the effect of rainfall deficit on various hydrological components (Mckee et
al., 1993). The limitation of SPI is that it does not consider other climate variables like
evapotranspiration in quantifying droughts. Therefore, SPI may not reproduce the true water deficit
that is intensified by climate change. By considering all the advantages of SPI, Vicente-Serrano et
al., (2010) developed SPEI which can be calculated at 1 to 48-month time scale representing
hydrological, agricultural and meteorological droughts (Maccioni et al., 2015). For calculating
SPEI, Potential Evapotranspiration (PET) is evaluated first. For the estimation of PET, Penman-
Monteith, Thornthwaite and Hargreaves are the most widely used methods. In the present study,
Hargreaves method is adopted to calculate PET because of its simplicity and lower data

requirement. Then, the difference between precipitation and PET is estimated as shown in Eq. 5.8.

D;=P,— PET (5.8)
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where, P;= precipitation at i, month, D;= surplus or deficit in the i month.

The D; values are then aggregated, PDFs are fitted and the best fitted distribution is chosen using
L-moments method. In this study, L-moments method is adopted in finding the best PDFs because
it is more robust for outliers and is effective in characterizing various distribution functions
compared to other methods. The CDF of the best fitted distribution is then normalized to evaluate
SPEI for the selected region. Henceforth, the SPEI is computed at a 12-month scale utilizing P and
T data from IMD. The dataset, spanning from 1975 to 2017, exhibits a resolution of 1°x1°. Positive
SPEI values denote wet conditions, while negative values signify dry conditions. The SPEI
demonstrates efficacy in assessing drought characteristics, owing to its consistent and adaptable
nature in spatial and temporal dimensions, enabling the replication of water deficiencies across

diverse timescales.

5.2.5 Self-Calibrated Palmer Drought Severity Index (SC_PDSI)

In 1965, Wayne C. Palmer introduced PDSI, a metric designed to assess the equilibrium between
moisture demand and supply by employing a two-layer soil water balance model. Subsequently,
within the PDSI framework, Wells et al., (2004) formulated the SC PDSI model, which
autonomously adjusts climatic characteristics (K) and duration factors based on historical climate
data specific to a given location. The SC PDSI is derived from time series data of precipitation
and temperature, utilizing fixed parameters corresponding to the soil/surface characteristics at each
geographical location. In this investigation, global gridded monthly SC_PDSI values (0.5°%0.5°)

spanning from 1975 to 2017 are considered for analysis.

5.3 RESULTS

5.3.1 Formation of Homogenous Regions

The application of the FCM involves the utilization of a matrix comprising latitude, longitude,
mean, standard deviation, minimum and maximum values of precipitation and temperature series.
Prior to subjecting these selected variables to cluster analysis, normalization is performed to
mitigate the impact of unit variations. The efficacy of FCM is contingent upon the choice of the

fuzzifier index and the optimal number of clusters. In accordance with Urcid and Ritter (2012), the
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cluster range systematically varied from 2 to 5, employing a fuzzifier index of 2, as advocated by
Pal and Bezdek (1995). The selection of the optimal number of clusters is guided by validity
indices, specifically Si, Pe and Fpi, outlined in the methodology Figure 5.1.(a). Notably, the values
of Si, Pe and Fpi collectively indicate a minimum at three clusters detailed in Table 5.2.
Consequently, the optimal number of clusters is determined to be three, as demonstrated in Figure

5.2
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Figure 5.2: Homogenous regions identified by Fuzzy C-Means clustering.

Table 5.2: Statistics of the validity indices

Clusters Si Fpi Pe
2 0.64 0.83 0.85
3 0.37 0.67 0.73
4 0.45 0.65 0.73
5 0.43 0.65 0.78
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From the three homogenous regions delineated within Telangana State, the districts comprising
Region 1 (South Zone) includes Sangareddy, Medak, Siddipet, Medchal Malkajgiri, Hyderabad,
Vikarabad, Rangareddy, Yadagiri Bhuvangiri, Suryapet, Nalgonda, Narayanpet, MahabubNagar,
Nagarkurnool, Jogulamba Gadwal. In Region 2 (North zone), the districts encompass Adilabad ,
Kumurambheem asifabad, Nirmal, Mancherial, Nizambad, Kamareddy, Rajanna Siricilla. Region
3 (east zone) comprises Jagtial, Peddapalli, Karimnagar, Hanumakonda, Jangaon, jayashankar
Bhupallapally, Mulugu, Warangal, Mahububabad, Khammam, Bhadradri kothagudem. This
geographical categorization serves as the foundational basis for subsequent analyses within the
research framework, acknowledging the intrinsic heterogeneity and climatic intricates across these

demarcated regions within Telangana State.
5.3.2 Characterization of SPI12 Drought Indices

The computation of SPI12 values for each homogeneous region in Telangana State is conducted
utilizing the IMD monthly precipitation dataset spanning the years 1975 to 2017. Subsequently,
the Method of Runs, as delineated by Yevjevich (1967), is applied to the SPI series, employing a
threshold of - 0.8 to assess drought characteristics, including severity, duration and events of severe
drought, across the three homogeneous regions. Table 5.3 presents the top five severe drought
events for each region in Telangana State. Notably, the most severe and protracted drought event
occurs in region 2 from June 2001 to August 2005, exhibiting a severity of 44.43 and a duration
spanning 51 months. Region 1 experienced its lengthiest drought period between September 1984
to September 1987 with a duration of 37 months and a severity of 34.9 during between August
2011 and September 2013. Region 3 encounters its most severe drought from August 1984 to
August 1986, registering a severity of 38.5 and a duration of 27 months during July 2014 to
September 2016. Remarkably, all regions exhibit drought events during the periods 1984-1987,
2001-2003 and 2011-2012, underlining the temporal consistency and recurrent nature of drought
occurrences within the study timeframe. Figure 5.3.(a), (b) and (c) presents Timeseries of most

severe droughts event of SPI12 for the period 1975-2017 for each homogenous region.
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Figure 5.3.(a) Timeseries of severe drought of SPI12 (region 1)
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Figure 5.3.(b) Timeseries of severe drought event of SP112 (region 2)
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Figure 5.3.(c) Timeseries of severe drought of SPI12 (region 3)

60



Table 5.3: SPI12- severe drought events (IMD)

Regions Starting month Ending month Severity ?l:;:ll:i:];;
Augustl1979 September 1981 30.19 26
September 1984 September 1987 26.4 37
el June 2001 December 2003 25.5 31
August 2011 September 2013 34.9 26
October 2014 May 2017 26.89 32
July 1979 August 1981 18.92 26
. September 1984 October 1987 35.68 38
Region 2
November 1991 July 1994 21.88 33
June 2001 August 2005 44.43 il
September 2011 April 2013 22.87 20
August 1984 August 1986 38.5 25
August 1991 August 1993 17.02 25
Region 3 August 2001 June 2003 17.19 23
August 2011 August 2012 22.28 13
July 2014 September 2016 29.23 27

5.3.3 Characterization of SPEI12 Drought Indices

The computation of SPEI12 values for each homogeneous region in Telangana State is conducted
utilizing the IMD monthly precipitation and temperature dataset during the years 1975 to 2017. To
calculate SPEI, Potential Evapotranspiration (PET) is initially determined and for this purpose,
various estimation of PET, Penman-Monteith, Thornthwaite and Hargreaves are the most widely
used methods. In the present study, Hargreaves method is adopted to calculate PET because of its
simplicity and lower data requirement. Subsequently, the Method of Runs, as delineated by
Yevjevich (1967), is applied to the SPEI series, employing a threshold of -0.8 to assess drought
characteristics, including severity, duration and events of severe drought, across the three
homogeneous regions. Table 5.4 presents the top five drought events for each region in Telangana
State. Notably, the most severe and protracted drought event occurs in region 1 from August 2006
to September 2013, exhibiting a severity of 81.07 and a duration spanning 86 months. Region 2
experienced its lengthiest drought period between August 2006 to June 2013, with a severity of
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75.1 and a duration of 83 months. Region 3 encounters its most severe drought from March 2014
to December 2017, registering a severity of 68.02 and a duration of 51 months during March 2007
to May 2011. Remarkably, all regions exhibit drought events during the periods 1984-1986, 1992-
1994, 2006-2013 and 2014-2017, highlighting the temporal consistency and recurrent nature of
drought occurrences within the study timeframe. Figure 5.4.(a),(b) and (c) Timeseries of

homogenous regions for the most severe drought event of SPEI12 for the period 1975-2017.
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Figure 5.4.(a) Timeseries of severe drought event of SPEI12 (region 1)
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Figure 5.4.(b) Timeseries of severe drought of SPEI12 (region 2)
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Figure 5.4.(c) Timeseries of severe drought of SPEI12 (region 3)
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Table 5.4: SPEI12- severe drought events (IMD)

Region Starting month Ending month Severity ?nl::z::f;;
November 1984 February 1986 8.18 16
Region 1 March 1992 May 1994 13.98 27
September 2002 May 2004 9.87 21
August 2006 September 2013 81.07 86
February 2014 December 2017 66.15 47
October 1984 February 1986 10.52 17
January 1992 May 1994 16.65 29
Region 2 August 2004 August 2005 6.68 13
August 2006 June 2013 75.1 83
March 2014 December 2017 64.6 46
October 1984 September 1987 15.66 36
March 1992 April 1994 14.49 26
Region 3 March 2007 May 2011 43.67 51
June 2011 September 2013 26.77 27
March 2014 December 2017 68.02 46

5.3.4 Characterization of SC_PDSI Drought Indices

This study considered global grided monthly SC PDSI12 values from 1975 to 2017. Same as
SPI12 and SPEI12, the Method of Runs, as delineated by Yevjevich (1967), is applied to the
SC PDSII2 series, employing a threshold of -0.8 to assess drought characteristics. Table 5.5
presents the top five severe drought events for each region in Telangana State. Notably, the most
severe and protracted drought event occurred in region 3 from March 1979 to April 1988,
exhibiting a severity of 227.75 and a duration of 108 months. Followed by Region 1 experienced
its lengthiest drought period between September 2000 and June 2013, with a severity of 79.77 and
a duration of 33 months. Region 2 encounters its most severe drought from February 1984 to
September 38.92 and duration of 19 months. Remarkably, all regions exhibited drought events
during the periods 1992-1994, 2008-2010 and 2014-2017. Figure 5.5 (a), (b) and (c) represents the
most severe drought event of SC_PDSI.
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5.3.5 Intercomparison of Characterization of SPI12, SPEI 12 and SC_PDSI Drought Indices

Comparing the SPI12, SPEI12, and SC_PDSI12 results across homogeneous regions in Telangana

State reveals distinct drought characteristics:

SPI12 Analysis:

Region 2 had the most severe drought from June 2001 to August 2005, with a severity of 44.43
and a duration of 51 months. Region 1 experienced a severe drought from September 1984 to
September 1987, with a severity of 34.9 and a duration of 37 months. Region 3 encountered a
severe drought from August 1984 to August 1986, with a severity of 38.5 and a duration of 27
months. Consistent drought events were observed during the periods 1984-1987, 2001-2003, and
2011-2012.

SPEI12 Analysis:

Region 1 had the most severe drought from August 2006 to September 2013, with a severity of
81.07 and a duration of 86 months. Region 2 experienced a severe drought from August 2006 to
June 2013, with a severity of 75.1 and a duration of 83 months. Region 3 encountered a severe
drought from March 2014 to December 2017, with a severity of 68.02 and a duration of 51 months.
Consistent drought events were observed during the periods 1984-1986, 1992-1994, 2006-2013,
and 2014-2017.

SC_PDSI12 Analysis:

Region 3 had the most severe drought from March 1979 to April 1988, with a severity of 227.75
and a duration of 108 months. Region 1 experienced a severe drought from September 2000 to
June 2013, with a severity of 79.77 and a duration of 33 months. Region 2 encountered a severe
drought from February 1984 to September 1985, with a severity of 38.92 and a duration of 19
months. Consistent drought events were observed during the periods 1992-1994, 2008-2010, and
2014-2017.

In summary, while SPI12 emphasizes moderate to severe droughts across all regions, SPEI12

incorporates temperature effects, showing longer and more severe droughts. SC_PDSI12, focusing
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on moisture balance, indicates prolonged and extreme droughts, particularly notable in Region 3.

All indices highlight recurrent drought periods, underscoring the temporal consistency and severity

of drought occurrences in Telangana State from 1975 to 2017.
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Figure 5.5.(a) Timeseries of severe drought of SC_PDSI (region 1)
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Figure 5.5.(b) Timeseries of severe drought of SC_PDSI (region 2)
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Figure 5.5.(c) Timeseries of severe drought of SC_PDSI (region 3)
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Table 5.5: SC_PDSI- severe drought events (IMD)

Region Starting month Ending month Severity 3:::231(::;
July 1979 March 1982 58.84 32
March 1984 September 1985 36.73 18
Lsinll February 1992 June 1994 44.82 28
September 2000 June 2003 79.77 33
October 2008 March 2010 39.71 17
September 1976 October 1977 32.72 13
February 1984 September 1985 38.92 19
Region 2 January 1992 August 1993 23.89 18
October 2008 March 2010 26.01 17
March 2011 June 2012 23.95 15
January 1976 October 1977 43.5 22
March 1979 April 1988 227.75 108
Region 3 March 2007 May 2011 172.83 59
July 2011 September 2013 37.83 18
March 2014 December 2017 63.68 29

5.4 Discussions

This research endeavors to delineate homogenous regions within the study area, examining the
distinctive characteristics of three drought indices. Subsequently the assessment of drought
characteristics, specifically severity and duration, involves the calculation and examination of SPI,
SPEI and SC_PDSI. This comprehensive approach enables a nuanced exploration of the diverse
climatic conditions inherent in the study area. The SPI12, emphasizing precipitation patterns, the
SPEI12, encapsulating both precipitation and evapotranspiration dynamics and the SC_PDSI12,
integrating soil moisture considerations, collectively contribute to a holistic understanding of the
spatiotemporal evolution of drought events. A precipitation-based drought index in the context of
India is intricately linked with diverse physical processes, encompassing topography, atmospheric
and oceanic circulation, as well as local phenomena. Employing a singular precipitation indicator
becomes intricate when assessing the Indian monsoon cycle due to the influence of factors such as
moisture, terrain and vegetation, contributing to the variability in precipitation at both regional and
meso-scales (Wang et al., 2015b). The SPEI serves as an indicator of water availability, akin to the
PDSI. SPEI represents the summation of precipitation and evapotranspiration, quantifying
normalized fluctuations in moisture availability. Several studies have attested to the utility of SPEI

in temporally assessing variations (Li et al., 2012). In the computation of the SC PDSI, soil
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moisture is evaluated through the integration of evapotranspiration (demand) and precipitation
(supply), utilizing the water balance equation. Recognized as a multifactorial water budget
indicator, SC_PDSI incorporates monthly precipitation, temperature, and soil properties into its

calculations.

The drought characteristics of the drought indices are calculated and the most severe drought
events are identified and presented in Table 5.3, 5.4 and 5.5. Despite the disparities among drought
indices and the diverse methodologies employed in their computation, it becomes evident that a
more comprehensive understanding of droughts can be attained through the synergistic application
of multiple indices. SPI12 and SPEII2 exhibit heightened sensitivity to precipitation and
evapotranspiration dynamics. This contrasts with SC PDSI12, where the model algorithm
incorporates soil moisture content as a primary component, distinguishing it from the former

indices.

5.5 Conclusions

In this study, delineation of homogenous regions are identified. During the period between 1975-
2017, this study examined and evaluated the drought conditions for three homogenous regions of
Telangana state. Multiple drought indices are used to investigate drought conditions. Moreover,
the assessment of regional-scale drought events is conducted through the utilization of three key
drought indices: SPEI12, SPI12 and SC PDSI12. The primary focus is on evaluating and
understanding drought characteristics, with a specific emphasis on severity and duration across all

regions. The following conclusions are made from this chapter:

e The optimal number of clusters is determined to be three for the study region.

e South zone of region 1 comprises of 14 districts of Telangana, North zone of region 2
comprises 7 districts; east zone of region 3 comprises 10 districts.

e SPI has experienced droughts during the periods 1984 -1987; 2001-2003 and 2011-2013
for all regions; SPEI faced drought events during 1984-1986; 1992-1994; 2006-2017,
SC_PDSI, experienced drought for all regions during 1992 to 1994 and 2008-2011.

e The most severe and protracted drought event for SPI occurred in region 2 from June 2001
to August 2005, exhibiting a severity of 44.43 and a duration spanning 51 months followed
by region 3 and 1.
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e SPEI exhibited the most severe drought event with a severity of 81.07 and a duration of 86
months for region 1 from August 2006 to September 2013.

e SC PDSI major drought event occurred in region 3 from March 1979 to April 1988,
exhibiting a severity of 227.75 and a duration of 108 months.

Overall, these valuable insights of severity and duration of SPI, SPEI and SC PDSI are found to

be effective for analysing and assessing the regional drought conditions.
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CHAPTER 6

ASSESSING THE RELATIONSHIP BETWEEN DROUGHT INDICES AND
TELECONNECTIONS

6.1. Introduction

The intricate interplay of large-scale climate variations in India engenders significant spatio-
temporal distribution of water resource exhibits significant heterogeneity thereby influencing the
agricultural and industrial productivity of the nation (Bhuvaneswari et al., 2013). A noteworthy
instance is the 2016 drought, which impacted 330 million people, resulting in a substantial
economic loss exceeding $100 billion, underscores the critical importance of comprehending
monsoon precipitation variations, water vapor demand and their interconnection with
teleconnections in India. In the context of water resource conservation, gaining insights into these
dynamics is paramount for effective management and sustainable utilization of water resources in

the region.

The impact of climatic circulation exhibits a diverse influence on dry and wet conditions across
various global regions. Numerous investigations have delved into the examination of the El Nifio-
Southern Oscillation (ENSO) phenomenon and its effects on drought occurrences, both on a global
scale and within specific regions. These studies contribute valuable insights into the nuanced
interactions between ENSO dynamics and drought events, offering a comprehensive
understanding of the regional and global implications of climatic circulation patterns. While
agriculture significantly contributes to India's GDP, as evidenced by studies there remains a dearth
of comprehensive investigations into the nexus between the ENSO and drought occurrences in the
Indian subcontinent. This gap in research represents an opportunity for enhancing drought
prediction models. Ganguli (2014) utilized a probabilistic framework to quantify drought risk in
western India, specifically examining the impact of ENSO-induced climatic variability.
Additionally, Kumar et al., (2013) demonstrated the substantial influence of sea surface
temperature variability on monsoon droughts in India. The limited existing research underscores
the need for more extensive studies to elucidate the intricate relationship between ENSO dynamics
and drought patterns in the Indian context, thereby contributing to the refinement of predictive

modeling for drought events in the region.
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The practical utility of teleconnections is encapsulated in the construction of teleconnection maps,
providing a visual representation of the linkages of a specific concerned region with all other
locations within the province. Table 6.1 enumerates commonly utilized climate indices, including
their full names and acronyms. In the present study, the influence of four prominent climate
oscillations namely MEI, SOI, DMI and NINO3.4 on drought indices (SPI, SPEI and SC_PDSI)
is scrutinized across Telangana State. Figure 6.1 delineates the regions monitored for NINO3.4,
SOI, MEI and DMI events, contributing to a comprehensive understanding of the teleconnected

dynamics shaping hydrological patterns in the study area.

Table 6.1: List of climate indices (full names and acronyms)

Index full name Acronym
El Nino Southem Oscillation™ | ENSO
Southem Oscillation Index SOI
Multivariate ENSO Index MEI
North Atlantic Oscillation NAO
Oceanic Nino Index ONI
Pacific Decadal Oscillation PDO
Arctic Oscillation AO
Pacific North America PNA
Antarctic Oscillation AAO
Indian Ocean Dipole IOD
Sea Surface Temperature SST
Indian Summer Monsoon Index | ISMI

NINO3.4

NING2
west east R A . NINO4 b NINO3 ! LA
Drarwin SOl Tahiti

Indian Ocean - 10D : Pacific Ocean - NINO

Figure 6.1: Climate indices regions. (Chowdhury, M.R. (2022))
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6.2 Methodology
6.2.1 Teleconnections

The atmospheric circulation, arising from the dynamic interplay between the ocean-atmosphere
and land-atmosphere interactions, facilitates the transfer of energy and water mass across vast
distances, exerting a profound influence on climatic conditions (Wallace & Gutzler, 1981). This
intricate system transmits climatological variations through the conveyance of heat, moisture and
momentum fluxes, manifesting as precipitation and evaporation within the expansive continental
water cycle and ocean circulation. The atmospheric circulation emerges as a primary driver
impacting both terrestrial and marine environments, thereby contributing significantly to climate
fluctuations (Alexander et al., 2002). These variations exhibit discernible patterns across diverse
temporal scales, encompassing diurnal, daily, weekly and monthly intervals as well as intra-
seasonal, seasonal and interannual epochs. Teleconnections, in this context, serve as a conceptual
framework elucidating atmospheric interactions and transport processes, offering a means to distill
climate variability into a set of indices. Coined by Walker in 1924, the term "teleconnection" is

introduced to assess correlations among atmospheric pressure, temperature and rainfall.

ENSO represents a recurring phenomenon characterized by periodic variations in sea surface
temperature (El Nifio) and atmospheric air pressure (Southern Oscillation) over the equatorial
Pacific Ocean. Regarded as a pivotal driver of global inter-annual climate fluctuations, ENSO
significantly influences weather patterns in numerous regions across the globe. The manifestation
of El Nifio or its counterpart, La Nifia, markedly alters the atmospheric circulation, impacting local
and regional weather conditions. It is typically indicated by four indices: Nino 142, 3, 4 and 3.4.
These indices delineate sea surface temperature (SST) anomalies within specific regions of the
equatorial Pacific. Among these, Nino 3.4 stands out as the most widely utilized index, spanning
latitudes between 5°S-5°N and longitudes between 170°W-120°W. Positive values of the Nino 3.4
signify El Nifo conditions, indicative of elevated sea surface temperatures, while negative values
denote La Nifia conditions, reflecting colder sea surface temperatures. The prominence of ENSO
indices, particularly Nino 3.4, underscores their significance in quantifying and characterizing the
phases of El Nifio and La Nifia events, contributing to a comprehensive understanding of their

climatic implications.
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The SOI serves as a standardized metric derived from observed alterations in sea level pressure
between Tahiti and Darwin, Australia. Specifically designed to capture large-scale air pressure
oscillations during El Nifo and La Nifia phases, the SOI quantifies the atmospheric pressure
differentials across the western and eastern tropical Pacific. Smoothed time series of the SOI
exhibit significant correlations with variations in ocean temperatures within the eastern tropical
Pacific region. The negative phase of the SOI, observed at Tahiti, signifies below-normal air
pressure, whereas at Darwin, it indicates above-normal air pressure. The persistence of negative
(positive) SOI values during El Nifio (La Nina) occurrences is indicative of prolonged periods
characterized by exceptionally warm (cold) ocean waters in the eastern tropical Pacific. The SOI,
through its nuanced assessment of atmospheric pressure dynamics, offers valuable insights into
the manifestation and progression of El Nifio and La Nifia events, contributing to a comprehensive

understanding of the associated climatic phenomena.

The MEI constitutes a methodological approach that integrates both oceanic and atmospheric
variables to quantitatively characterize the intensity of an ENSO event. This comprehensive index
is derived from the first principal component of six key observed variables, including sea level
pressure, sea surface temperature, zonal and meridional components of surface wind, surface air
temperature and total cloudiness fraction of the sky across the tropical Pacific. The data utilized
for MEI computation is sourced from the Comprehensive Ocean Atmosphere Data Set (COADS).
The MEI is calculated for each of the twelve-sliding bi-monthly periods, such as
December/January, January/February and so forth. Positive MEI values indicate the presence of
El Nifio conditions, signifying an intensified ENSO event, while negative MEI values denote the
occurrence of La Nifia conditions, indicative of an augmented ENSO event in the opposite phase.
The MEI through its multidimensional integration of diverse climatic variables, facilitates a
nuanced and robust assessment of ENSO intensity, contributing to an enhanced understanding of

the climatic variations associated with El Nifio and La Nina events.

The DMI is instrumental in discerning IOD events, which are characterized by fluctuations in the
tropical Indian Ocean. These events are delineated by prolonged changes in SSTs across the
tropical Western and Eastern Indian Oceans. The 1OD is quantitatively evaluated through an index,
also known as the DMI, which is calculated as the disparity between two SST anomalies in the
tropical Indian Ocean. The IOD West region encompasses the area between 5S0°E to 70°E and 10°S
to 10°N, while the IOD East region covers the expanse from 90°E to 110°E and 10°S to 0°S, as
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depicted in Figure 6.1. A positive DMI indicates cooler water in the tropical Eastern Indian Ocean
and warmer water in the tropical Western Indian Ocean compared to the respective averages.
Conversely, a negative DMI denotes warmer water in the tropical Eastern Indian Ocean and cooler
water in the tropical Western Indian Ocean relative to the averages. The DMI, by virtue of its
polarity, provides a nuanced representation of the temperature anomalies within the specified

regions, contributing to a comprehensive understanding of the Indian Ocean Dipole dynamics.

Correlation analysis stands as a widely employed technique for elucidating teleconnection
patterns. As a methodological approach to construct teleconnection maps, correlation analysis is
distinguished by its simplicity and directness. The teleconnection map, in this context, serves as a
graphical representation of the correlation between two geographical points, offering insights into
the relationships between atmospheric or oceanic phenomena. A notable illustration of this
methodology is evidenced in the work of Wallace and Gutzler in 1981, where correlation analysis
is applied to investigate teleconnections associated with the North Atlantic Oscillation (NAO), the
North Pacific Oscillation (NPO) and the Pacific-North America (PNA). This analytical tool
facilitates the identification and visualization of significant correlations, thereby contributing to
the comprehension of interrelated climatic variables and patterns on a global scale. In
contemporary research endeavors, the Wavelet transform methodology has emerged as a potent
analytical tool for discerning intricate relationships within the realm of meteorological phenomena

and their interplay with large-scale climatic oscillations (Han et al., 2019).
6.2.2 Wavelet Transform

Fourier transform serves as a valuable instrument for analyzing the components of a stationary
signal, wherein the signal parameters remain constant. Nonetheless, natural observations often
yield non-stationary signals, demanding a more nuanced understanding of frequency variations
over time. While the Fourier transform exclusively offers information pertaining to the frequency
domain, the Wavelet transform, as articulated by (Farge, 1992), presents a spectrum that is not only
localized in frequency but also in the time domain, thus offering a more comprehensive depiction

of signal characteristics.

Wavelet transform, while conceptually akin to Fourier transformations, offers heightened
versatility in analyzing frequencies within a time series. Its applicability extends across a spectrum

from stationary to non-stationary and short to long-term components, providing a more nuanced
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approach to frequency analysis (Percival and Walden, 2000). Widely adopted in hydro-climatology
and signal processing domains (Z. Jiang et al., 2003; L. Xu et al., 2019), Wavelet Transformations
(WT) manifest in two primary forms: Continuous WT (CWT) and Discrete WT (DWT). These two
methods of WT exhibit notable distinctions, succinctly outlined herein. In the current study, the
time-frequency spectrum derived from Continuous WT (CWT) is employed to scrutinize the

relationship between climate indices and drought indices.

A wavelet is characterized as a wave-like oscillation with an amplitude that initiates from zero,
undergoes growth and subsequently returns to zero. In accordance with Farge (1992), a
fundamental component of wavelet transformation, known as the mother wavelet basis function

y(t), adheres to the following condition:

. 2
Cp=2m | Mdumo 6.1)

[ee] |0)

where, C, = admissibility constant. Integral is considered over all frequencies w. ¥(w) = Fourier
transform of the wavelet (7). The wavelet function oscillates along time axis and decays rapidly
in both directions of time. Therefore, CWT with respect to wavelet y(z), for a time series x(¢) is

defined as given below (Farge, 1992).
Ws(t,s) = [ x(t)%¢*“{dt =0 (6.2)

where, Wi(z,s) = wavelet transform, with 7 = time shift and s = scale factor. = wavelet function

and y* = complex conjugate. (z,s) = (0,1) represents basic or mother wavelet.

The basic or mother wavelet is denoted by 7 =0 and s = 1. The wavelet transform’s flexibility
comes from the scale variations in a time series, which allow it to capture both long and short
frequencies. Also, the time series can be divided into high and low frequencies with s > 1
corresponds to high frequency of . In general, by varying s and 7 values, we obtain the wavelet
spectrum at various time and frequency scales. The Morlet wavelet is one of the most widely used

wavelet functions in hydro-climatology and is represented by the equation below.

Po(0) = — —— (6.3)

. 4
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where, @o represents mother wavelet; wo,d denotes frequency and time; higher wo time resolution

decreases, scale resolution increases and vice versa.

6.2.3 Wavelet Coherence

Within the time-frequency space, wavelet coherence can be used to determine the relationship
between two time series by estimating the correlation between them that varies between 0 and 1.
In accordance with Torrence & Webster (1999) coefticient of wavelet coherence between the two

sets of time series data can be denoted as follows:

2
|s(s‘1ny(s,'r))|
S(sTHWy(s,)|2.5(s~ Wy (5,7)]?)

R2(s,T) = (6.4)

where, R%(s,7) = coherence coefficient minimum and maximum coherence at 0 and 1. Wy, (s,7) =
cross wavelet transforms between two series. The wavelet coherence varies between 0 and 1 (Liu,

1994). s= smoothing operator represented as given below

S( W) = Sscale (Stime (W(S: T))) (65)

The smoothing along wavelet axis (scale and time) are represented as Sscare and Srime respectively.
Designing the smoothing operator so that it has a similar footprint as the wavelet used is a common
process and Torrence & Webster (1999) proposed a suitable smoothing operator for the Morlet
wavelet, details can be found in Grinsted et al., (2004). Using Monte Carlo method, the statistical
significance level is estimated using 1000 ensemble surrogate pairs with AR1 coefficients as the
input datasets. Then we evaluate wavelet coherence for each pair and for each scale calculate the
significance level using only values outside the cone of influence. Grinsted et al., (2004) specified
that resolution chosen when computing the scale smoothing has a major impact on the significance
level. Therefore, the number of scales per octave should be high enough to capture the rectangle
shape of the scale smoothing operator while minimizing computing time. In the present study, the

wavelet coherence is examined at 5% significance level or at the confidence interval > 95%.
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6.2.4 Step by procedure used

a. SPI12, SPEI12 and SC_PDSI are computed using R software tool
b. Severity i.e., minimum value of drought index during each drought event is calculated
¢. Duration number of consecutive months below the threshold -0.8 is measured.

&

Teleconnection indices (ENSO, MEI, SOI and NINO3.4) data is considered and standardized.

e. Correlation coefficients are computed between drought indices and teleconnection indices are
computed using MATLAB.

f. The significance of teleconnection indices in predicting drought events is evaluated.

g. Overlap of drought indices with teleconnections are identified using timeseries plot.

6.3 RESULTS
6.3.1 Correlation between Drought Indices and Teleconnection Factors

Previous studies have shown that droughts are closely related to climate variables (Mishra &
Singh, 2010). In this study, MEI, NINO3.4, SOI and DMI are chosen to describe the influences of
teleconnections over droughts. Moreover, Wavelet coherence is employed to evaluate the link
between drought indices (SPI.SPEI and SC_PDSI) and climate factors during 1975-2017. The 95%
confidence level is presented as thick contour and the relative phase relationship is represented by
arrows with anti-phase pointing left and in-phase pointing right as shown in Figure. 6.2, 6.3, 6.4

and 6.5.

The Wavelet coherence analysis between SPI and various climate factors (DMI, MEI, NINO3.4
and SOI) is depicted in Figure 6.2. A sustained coherence in interannual variability is discerned
throughout the temporal spans of 1980-1995 and 2002-2017, primarily evident at time scales
ranging from 20 to 40 months. Notably, intermittency is observed between 4 to 16 months during
different years for SOI. For NINO3.4, intermittency is noticed between 1978-1992 and 2002-2015
for time scales spanning 18 to 40 months, with intermittent coherence observed at varying years
within the range of 4 to 10 months. Regarding the SOI, interannual coherence is evident between
1975-1990 and 1995-2017, spanning time scales from 10 to 20 months. MEI interannual coherence
is evident between 1982-1994 and 1995-2017, spanning time scales from 16-40 months and
intermittency is observed between 4-12 months. In contrast, DMI exhibited comparatively weaker

effects across various scales during diverse years when compared to other teleconnections.
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For SPEI, the Wavelet coherence analysis between SPEI and various climate factors(DMI, MEI,
NINO3.4 and SOI) is presented in Figure 6.3. The impact of the DMI is notably observed across
time scales spanning 6 to 20 months during the period of 1990-2000. In the case of MEI,
interannual variability manifests within the 4—12 month time scale, while annual variability is
discerned at the 16-32 month time scale over the interval of 2002-2012. Annual variability of the
NINO3.4 index is evident between 2002-2015, spanning an 18-50 month time scale, with
interannual variability observed at the 6-16 month time scale. The SOI exhibits a highly significant
influence within the time scale range of 14-40 months during the period 2002-2014.

SPI-DMI
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i P il =
1980 1985 1990 1985 2000 2005 2010 2015

SPI-SOI

°
4

Period (in months)
o

Period (in months)

1980 1985 1980 1995 2000 2005 2010 2015

1980 1885 1980 1995 2000 2005 2010 2015

Figure 6.2: Wavelet coherence between SPI with (a) DMI (b) MEI (¢) NINO 3.4 and (d) SOI
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Figure 6.3: Wavelet coherence between SPEI with (a) DMI (b) MEI (c) NINO 3.4 and (d) SOI

The Wavelet coherence analysis between the SC_PDSI and various climate factors (DMI, MEI,
NINO3.4 and SOI) is represented in Figure 6.4. SC_PDSI, annual variability demonstrates notable
insufficiency in coherence with DMI. For the SOI, where it is observed intermittently across
different years within the time scale range of 8-32 months. Interannual variability is discerned in
the time scale range of 4-10 months at different years for SOI. Furthermore, the impact of
interannual variability spans is observed between the time scales of 4-32 months for all climate
factors. Notably, the annual variability of DMI is relatively less pronounced when compared with
the MEI, SOI and NINO3.4. For MEI, interannual variability is observed between the time scales
of 20-32 months across diverse years within the span of 1980-1990. The annual variability of
NINO3.4 exhibits high significance within the 12-32 month time scales. In the case of SOI,
interannual variability is discerned across time scales ranging from 4 to 32 months for different

years.
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Figure 6.4: Wavelet coherence between SC_PDSI with (a) DMI (b) MEI (c) SOI & (d) NINO 3.4

6.3.2 Analysis of Annual Time Series of Teleconnections with Drought Indices

For DMI, the annual time series reveals noticeable overlap periods with SPI12 during 1979-1982,
1984-1987 and 1992-1994. Similarly, for SPEI12, a substantial correlation in overlap periods is
observed in 1984-1987, 1992-1994 and 2004-2007. In the case of SC_PDSI, notable overlap with
DMI is identified during the periods 1979-1982, 1984-1987, 1992-1994 and 2004-2006. It is
noteworthy that SC_PDSI exhibited overlaps at different time intervals, followed by SPI12 and
SPEI12. Fig 6.5 represents the annual time series of DMI with Drought indices.
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during the periods 1977-1979, 1980-1981, 1982-1984, 1987-1989, 1993-1994, 2002-2006, 2008-
2009 and 2014-2016. SOI demonstrates robust overlaps at different time intervals for all drought

indices. Figure 6.7 visually represents the annual time series of SOI with drought indices
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Figure 6.7 Annual series of SOI with Drought indices
The annual time series of NINO 3.4 reveals discernible overlap periods with SP112 during 1980-
1982, 1984-1987, 1999-2001, 2000-2009, 2012 and 2017. Similarly SPEI12, a substantial

correlation in overlap periods is observed in 1984-1987, 1992-1993, 2007-2009, 2010-2013 and

2016-2017. In the case of SC PDSI

, notable overlap with NINO 3.4 is identified during the periods

82



1984-1987, 1989, 1999-2000, 2001-2002 and 2011-2012. Figure 6.8 visually represents the annual

time series of NINO 3.4 with drought indices.
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Figure 6.8 Annual series of NINO 3.4 with Drought indices

6.3.3. Intercomparison of Drought Indices with Teleconnections

with various climate indices reveals

and SC_PDSI

3

SPEI12

3

The intercomparison of SPI12

significant overlap periods indicating drought correlations:

SPI12 Overlaps:

1.
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Significant overlaps with DMI during 1979-1982, 1984-1987, and 1992-1994. MEI shows
overlaps in 1984-1987 and 2011-2013. SOI overlaps during 1977-1979, 1980-1981, 1986-1988,
1991-1995, 1997-1999, 2002-2004, and 2014-2017. NINO 3.4 overlaps in 1980-1982, 1984-1987,
1999-2001, 2000-2009, and 2012.

2. SPEI12 Overlaps:

Significant overlaps with DMI in 1984-1987, 1992-1994, and 2004-2007. MEI shows overlaps in
1984-1987, 2007-2009, 2010-2013, and 2016-2017. SOI overlaps during 1980-1981, 1986-1988,
1992-1994, 2002-2004, 2007-2009, 2010, 2012, and 2014-2016. NINO 3.4 overlaps in 1984-1987,
1992-1993, 2007-2009, 2010-2013, and 2016-2017.

3. SC_PDSI Overlaps:

Significant overlaps with DMI in 1979-1982, 1984-1987, 1992-1994, and 2004-2006. MEI shows
overlaps in 1980-1982, 1984-1987, 1999-2002, 2008-2009, and 2016-2017. SOI overlaps during
1977-1979, 1980-1981, 1982-1984, 1987-1989, 1993-1994, 2002-2006, 2008-2009, and 2014-
2016. NINO 3.4 overlaps in 1984-1987, 1989, 1999-2000, 2001-2002, and 2011-2012.

These overlaps indicate consistent periods of drought conditions as measured by SPI12, SPEI12,
and SC_PDSI with variations in intensity and duration influenced by different climate indices

across the studied periods.

6.4 Discussions

Researchers have established that climate factors significantly contribute to the initiation of
drought events (Dai, 2011). Moreover, the results obtained from Wavelet coherence analysis reveal
an impactful association between climate factors, namely the MEI, SOI, DMI, NINO3.4 and the
evolution of drought. Notably, in the context of Indian regions, MEI, SOI and NINO3.4 exhibit
the most pronounced influence on drought patterns (Fig. 6.2, 6.3 and 6.4). Multiple teleconnections
exert their influence on drought indices, encompassing various components across India. While
earlier studies predominantly focused on the impact of the ENSO, relying on a single indicator to
encapsulate the diverse climatic variability features across extensive regions is deemed inadequate

(Zhu et al., 2017). In the present study, four widely acknowledged climate factors are considered
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and their connections with drought indices are meticulously assessed. The outcomes underscore
substantial variations in the influence of each teleconnection on different drought indices. The
coherence observed in drought indices with teleconnections (MEI, SOI, DMI and NINO3.4) at
approximately 8-32 months may be attributed to the correlation existing among climate indices, as
depicted in Figure. 6.2, 6.3 and 6.4. Consequently, a comprehensive analysis, isolating the
standalone impact of teleconnection factors on drought indices after mitigating the effects of other

influential time series, may yield a more robust correlation (Tan et al., 2016).
6.5 Conclusions

In the present study, during 1975-2017, the time series of drought indices are examined climate
indices. Then, using the Wavelet coherence method, the relationship between drought indices and
climate factors is evaluated. This reliable and robust quantitively results helps to understand the
relation between the climate and drought indices and new insights for further investigating the

drought. The key findings from this study are given as follows:

e A sustained coherence for SPI interannual variability is discerned throughout the temporal
spans of 1980-1995 and 2002-2017, primarily evident at time scales ranging from 20 to 40
months. Notably, intermittency is observed between 4 to 16 months during different years
for MEI. The SOI, interannual coherence is evident between 1975-1994 and 1995-2017
spanning time scales from 16 to 40 months.

e The SOI exhibits a highly significant influence within the time scale range of 14-40 months
during the period 2002-2014 in the case of SPEI.

e Annual variability of DMI with SC_PDSI is relatively less pronounced when compared
with the MEI, SOI and NINO3 4.

e Asubstantial correlation in overlap periods is observed in 1984-1987,2010-2013 and 2016-
2017 among all drought indices with climate factors.

o The Wavelet coherence analysis effectively demonstrated the connection between climate
indices and drought events. The influence of SOI on drought is significantly high followed
by NINO3.4 and MEI with all drought indices. SOI has the strongest impact in detecting

the progression of drought compared to other climate indices.
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CHAPTER 7

INVESTIGATIONG MULTIVARIATE FREQUENCY ANALYSIS USING SEVERITY-
DURATION-FREQUENCY AND SEVERITY-AREA-FREQUENCY CURVES

7.1 Introduction

Evaluation of SDF and SAF regional drought curves is conducted within the context of drought
manifestations within three homogenous regions in Telangana, where the predominant reliance on
rainfed source of irrigation is observed. Presently, the Copula concept finds widespread application
for quantifying bivariate and multivariate joint probability distributions within the realms of
Hydrology and engineering (Ganguli, 2014; Thilakarathne & Sridhar, 2017). In the modeling of
characteristics pertaining to two or more dependent variables encompassing dimensions such as
severity, duration and the spatial extent, Copula functions emerge as potent and resourceful
analytical tools. This efficacy is attributed to Copula's capacity to maintain a robust correlation
between the variables under consideration, unhindered by the requirement for identical marginal
probability distributions in the context of long-term predictions. The ensuing section provides a
comprehensive delineation of the methodology employed in the derivation of SDF and SAF

Curves.

Within the confines of this chapter, the analytical framework relies upon the IMD precipitation
and temperature dataset for the evaluation of the 12-month Standardized Precipitation Index (SPI)
and Standardized Precipitation Evapotranspiration Index (SPEI) for the temporal span between
1975 and 2017. In parallel, Suitable GCMs datasets (FGOALS-g2 and BCC-CSM1.1(m))
pertaining to precipitation and temperature variables are harnessed to compute SPI and SPEI for
the time span from 1975 to 2095. Leveraging the computed SPI12 and SPEI12 indices, the
derivation of SDF and SAF curves unfolds across homogeneous regions, encapsulating the entire
temporal continuum from 1975 to 2095. Furthermore, the ensuing section provides an elucidation
on the projection of these SDF and SAF curves, offering insights into their future trajectories and
implications within the stipulated timeframe. The methodology for developing SDF and SAF
involves a systematic approach to data collection, preprocessing and statistical analysis

represented in Figure 7.1.
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Figure 7.1: Methodology for the development of SDF and SAF curves.

7.2. METHODOLOGY

The investigation in this section encompasses the following components: (i). quantification of

alterations in drought climatology utilizing the SPI12 and SPEI12 through the analysis of the

precipitation and temperature dataset (IMD and GCMs(RCP 8.5 Scenario)) (ii). A copula-based

methodology is employed to formulate SDF curves. This involves scrutinizing modifications in

the joint return period concerning drought characteristics. (ii1) derivation of SAF curves is

conducted, scrutinizing alterations of return periods that encapsulate areal extent (percentage)

alongside corresponding severity.

Step by procedure followed is mentioned below

a. Monthly precipitation and temperature data for the study area is obtained with timescales

(IMD dataset (1975-2017) and GCMs (1975-2095).
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b. SPI is computed at SPI12 further SPEI is calculated incorporating potential
evapotranspiration (PET), calculated.

c. A drought severity threshold (-0.8) is established and applied to identify drought events based
on SPI and SPEI series exceeding the established threshold.

d. Characteristics analysis — number of droughts, mean interarrival time , mean severity,
maximum severity, mean duration and maximum duration is analysed.

e. Frequency of occurrence is further calculated

f. Characteristics of drought and frequency of occurrence is further compared regionally over

the study region.

7.2.1 Copula function

The Copula function, introduced by Sklar, (1959), serves as a pivotal tool for associating or
coupling two or more random variables. This mathematical construct inherent ability to uphold a
robust correlation among the considered variables, irrespective of the demand for identical
bivariate or multivariate marginal distributions, especially in the context of long-term predictions..
Consider a pair of random variables, X and Y, each characterized by marginal cumulative
distribution functions Fx(x) and Fy(y). Sklar's theorem establishes that the joint distribution
function Fxy (x,y) for these dependent random variables can be succinctly expressed using the

Copula function C:

P(X <x, Y <y)=Fxy(x,y) = C(Fx(x), Fy()) (7.1)

Here, Fyy(x,y) represents the joint Cumulative Distribution Function (CDF) of the considered
random variables X and Y and u and v are uniformly distributed random variables defined as u =
Fx(x) and v = Fy(y)The bivariate copula is characterized by the distribution function C (), with
the mapping C:[0,1]> — [0,1]. Each element (u,v) in the domain adheres to the following

properties:
C(u,0) = 0 = C(0,v)Vu,v € [0,1]?
C(u,1) = w;C(L,v) = vVYuv € [0,1]?
If C(u, v) is a joint distribution function, then

C(uy,vy) — C(up,v1) — C(ug, v3) + C(uy,v1) > 0;
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for0 <uyy <uy, <land0 < vy < v, < L

Various copula families, with distinct properties, are established and a comprehensive exposition
of these families is available in Nelsen, (2007). Prominent among copula classes are Archimedean,
Extreme, Elliptical and Plackett. In the current investigation, copulas from the Archimedean class
(specifically Clayton, Gumbel and Frank), Galambos from the Extreme class and Plackett copulas
are applied to model the joint dependence of drought variables. Expressions for Cumulative
Distribution Functions (CDFs), corresponding PDFs and pertinent copula family set parameters

are presented in Table 7.1.

Table 7.1. Expressions for CDF (C(u,v)) of copula families.

Copula family C(u,v) Parameter space
Clayton (b +v?f— 1)—5 8=0
1 (e—ﬂu _ 1)(8—9v _ 1)
——In 0+1
Frank an 1+ @ ?—1) +
1
Gumbel exp {—[(—Inu)g + (—Ems')g]e} 8=1
1
Galambos UV exp {[(—Enu.)_e + (—Inv) 9] 9} 0=0
Plackett m(s — q) 6=0

Note: u and v represent two dependent CDFs, 6 is the copula parameter,

s=1+@—1)(u+v)and g =Ps*=Fuv T — 1)
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7.2.1.1 Copula parameter estimation

The primary methodologies employed for copula parameter estimation encompass (i) Method of
Moments (MoM) expounded by Genest & Rivest, (1993) (ii) Inference from Margins (IFM)
introduced by Joe, (1997) (iii) Exact Maximum Likelihood (EML) and (iv) Maximum Pseudo-
Likelihood (MPL) methods as outlined by C. Genest et al., (1995). In this present analysis, copula
parameter estimation is conducted using Maximum Pseudo-Likelihood (MPL) method is adopted

for.

Within the MPL framework, the estimation of copula parameters is predicted on the utilization of
a pseudo log-likelihood function. Let X € X;,1,X;,2,...,X;, d represent observations from a d-
dimensional random vector X. The pseudo-observations are constructed based on the ranks of the
observed data and the empirical Cumulative Distribution Function (CDF) is estimated using the
following expression. This approach ensures a rigorous and technically sound methodology for

copula parameter estimation within the context of the present study.

U=U,4 = Ranked data of X; g4 Vi=12,.... n (7.2)
’ n+1
1 . . .
Uig = —7 Lj=1 WX g <Xjq} Vi=12,.... NjFELd=12,...,n (7.3)

In the context of this study, where Ui, d represents the vector of pseudo-samples, particularly in
the bivariate scenario denoted as U = {Ui,1, Ui,2} foralli=1, 2, ..., n, the integration of empirical
Cumulative Distribution Functions (CDFs) into the bivariate copula density yields a log-likelihood
function in accordance with the formulation proposed by Christian Genest & Favre, (2007). This
log-likelihood function serves as a pivotal element in the analytical framework, encapsulating the
statistical underpinnings of copula parameter estimation.

R; S

Ly(8)= i log [cg (Ui Uiz)] = Eieylog [co(l, “0)| Vie(L, ...,n}  (7.4)

Here, cp as the bivariate copula density and acknowledging R; and S; as the ranks corresponding
to the observed data, the derivation of the copula parameter 6 involves the maximization of the

rank-based pseudo log-likelihood function. This endeavor yields the parameter 6 through the
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utilization of the following expression. The optimization of the pseudo log-likelihood function
constitutes a fundamental step in the estimation of copula parameters, embodying the statistical

foundation of this analytical procedure.
0 = arg max[InLu(0)] (7.5)

7.2.1.2 Goodness of Fit

The discernment of a suitable copula model is executed through the application of distance-based
statistical measures, such as Anderson—Darling (AD) and Akaike Information Criterion (AIC)

which helps to identify best fit copula. The formulae of AD and AIC statistics are given as follows

AD = max Il -rolen) (7.6)

1sisn,1sjanCp9( )[1 Cve(l 1)]

where, i and j denotes order statistics of the random variable u and v.
AIC(m) = nlog(MSE) + 2m (7.7)

where, m= number of fitted parameters; n= number of observations; MSE= mean square error of

the fitted copula model and is expressed as follows
MSE = _— ™ .(0; — P)? (7.8)

where, O;, P;are the observed and simulated variables. the lowest 4D and AIC is considered as

best copula (Amirataee et al., 2018; Janga Reddy and Ganguli, 2012).

7.2.1.3 Drought Frequency analysis

In the current study, the quantification of drought characteristics, encompassing severity and
duration, adheres to the runs theory as outlined by Yevjevich & Ica Yevjevich, (1967). Let X
represent a drought variable with a time series denoted by t. Accordingly, a run is identified as a
segment within the time series wherein all values either exceed or fall below a predetermined
threshold Xo. Consequently, values surpassing (or falling below) this threshold are termed positive
runs (negative runs). Notably, the properties of drought are intricately linked to the selected
threshold, which may either be constant or exhibit variability over time (Mishra & Singh, 2010).
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In this study, a threshold is established with 20" percentile of the SPI and SPEI values,
approximately corresponding to a threshold value of -0.8. This selection is informed by its utility
in signifying drought occurrences, as values beneath this threshold indicate the onset of drought
conditions (Reddy & Ganguli, 2013). This rigorous consideration of the threshold, grounded in
established methodologies, ensures a nuanced analysis of drought characteristics within the

defined temporal framework.

Numerous investigations into drought properties have been conducted through the lens of
univariate frequency analysis by researchers Cancelliere & Salas, (2004); Tallaksen et al., (1997).
Recognizing the limitations inherent in univariate approaches, Researchers such as Kim et al.,
(2006); Rajsekhar et al., (2015); Shiau & Shen, (2001) have advanced the field by extending their
focus to bivariate frequency analysis. This extension is particularly pertinent since the joint
behavior of multiple drought characteristics remains concealed within the confines of univariate
analyses. Hence, a rigorous exploration of the collective dynamics inherent in drought
characteristics becomes imperative for augmenting regional drought assessment and strategic
planning. This transformative paradigm has engendered the formulation and application of SDF
and SAF curves. These curves play a pivotal role in unraveling the intricate interdependencies and
joint dynamics of various drought attributes. By adopting a bivariate frequency analysis approach,
researchers can gain a more comprehensive understanding of drought occurrences, thereby
facilitating improved regional assessment and strategic planning in the context of water resource

management and environmental sustainability.
7.2.1.4 Severity-Duration-Frequency Analysis

SDF curves represent invaluable tools for conducting multivariate analyses of regional and global
drought frequencies. A comprehensive exploration of relevant literature reveals several seminal
studies that have applied SDF analysis to characterize drought features across diverse geographic
regions. ISO-severity maps are developed using SDF analysis by Dalezios et al., (2000) &
Saghafian et al., (2003). An alternative analytical approach utilizing copula for SDF curve
derivation is presented by Shiau & Modarres, (2009). Building on these foundations, notable
studies by Janga Reddy & Ganguli, (2012), Rad et al., (2017) have further contributed to the field

by deriving SDF curves employing copula methodologies.
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The methodological steps employed in generating Standardized Drought Frequency (SDF) curves

through copula analysis in this investigation encompass the following:

Selection of pertinent goodness-of-fit statistics to assess the optimal fitting marginal
distribution for severity and duration.

Formulation of joint and conditional marginal distributions employing a best-fit copula
approach for severity and duration.

Establishment of the interdependence among severity, duration and frequency in relation
to return periods for drought events, utilizing the conditional recurrence interval
methodology as proposed by Shiau et al. (2007).

1

Tle (sld) = Y(l—FS|D(5|d))

(7.9)

where, d = duration, s = severity, y = arrival rate, Fgp(s|d) and Tgp(s|d) are the
conditional CDF and conditional recurrence interval of S given D = d respectively. The

expression for conditional CDF is given below.

0Fsp(s,d)

oo @) (7.10)

Fsip (sld) =
where Fs (s, d) = joint CDF and Fj, (d) represents the CDF of drought duration.

SDF curves are derived from Eq. 7.9 and 7.10 at various return periods.

7.2.1.5 Severity-Area-Frequency Analysis

The determination of the return period for a drought event characterized by a specified percentage

of areal extent is facilitated through the application of SAF curves, serving as a decisive indicator

of drought occurrence (Burke & Brown, 2010). Noteworthy antecedent studies, such as those
conducted by Tase, (1976), Hisdal & Tallaksen, (2003), Santos, (1983) Loukas & Vasiliades,
(2004), Bonaccorso et al., (2015), Mishra & Singh, (2009) have contributed to develop SAF

curves.

The assessment of SAF curves is systematically executed through the following procedural steps:

Annual drought severity is calculated using run theory at each grid point.
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e Areal extents are subsequently delineated through the computation of distinct severity
thresholds expressed as a percentage of the total area for each calendar year.

e [-moments serve as the basis for calculating distribution parameters, enabling the
identification of the optimal fit among various probability distributions intended for
severity values related to varied areal extents.

e Frequency analysis is conducted entailing the computation of return periods corresponding

to diverse levels of drought severity associated with percentage areal extents.

Within the scope, the quantification of drought severity is conducted through the application of the
run theory approach. The spatial delineation of areal extents is intricately tied to the calibration of
severity metrics specific to each designated drought region. A meticulous examination of various
probability distributions ensues, using Akaike Information Criterion (AIC), to discern the optimal

fit that characterizes the severity values within the respective drought regions.

7.3 RESULTS
7.3.1 Characterization of Drought using SPI12 and SPEI12
7.3.1.1 SPI12

The SP112 values are computed for each homogenous region using IMD (1975-2017) and GCM
(1975-2095: 1975-2005, 2006-2035, 2036-2065 and 2066-2095) monthly precipitation dataset.
The method of runs (Yevjevich, 1967) is applied to the SPI series with a threshold of -0.8 to
evaluate drought characteristics (Number of drought events, mean interarrival time, maximum
duration, minimum duration, maximum severity and minimum severity) for three homogeneous
regions. From analysis it is noticed that number of droughts is increasing in future compared to the
IMD. An increasing trend is noticed in the maximum duration and severity for future scenarios.
The mean inter arrival time is gradually decreasing with an increase in the number of droughts.
The graphical representation of the observed dataset, specifically a scatterplot and histogram,
delineates the relationship between drought intensity and duration within the stipulated regions are

shown in Fig. 7.2 (a).
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7.3.1.2 SPEI12

The SPEI12 values are computed for each homogenous region using IMD (1975-2017) and GCM
(1975-2095, 1975-2005, 2006-2035, 2036-2065 and 2066-2095) monthly precipitation and

temperature dataset. Here in SPEI, Same as SPI a threshold of -0.8 is used to evaluate drought

characteristics for three homogeneous regions. From analysis is noticed that number of droughts

is increasing in future compared to the IMD. An increasing trend is noticed in the maximum

duration and severity for future scenarios. The mean inter arrival time is gradually decreasing with

increase in number of droughts. The graphical representation of the observed dataset, specifically

a scatterplot and histogram, delineates the relationship between drought intensity and duration

within the stipulated regions are shown in shown in Fig. 7.2 (b).

Table 7.2 (a): SPI12 - Drought characteristics

IMD GCM
Region Drought . 1975-
characteristic 2017 1975-2005 | 2006-2035 | 2036-2065 | 2066-2095
No. of droughts 18 16 19 15 18
Mean interarrival time | 24.8 22.4 19.7 23.6 20.5
Region 1 Mean severity 1145 | 8.7 9.1 9.1 10.3
Maximum severity 34.9 32.2 38.7 55.6 64.9
Mean duration 12.35 | 11.2 13 13.7 12.2
Maximum duration 37 34 58 48 61
No. of droughts 20 20 20 13 21
Mean interarrival time | 26.31 18.3 21.4 23.5 24.2
Seen Meap severity : 10.2 6.9 7.78 10.9 10.1
Maximum severity 4443 | 33.7 41.8 56.5 62.8
Mean duration 13.63 | 9.1 9.7 12 10.8
Maximum duration 51 37 45 72 64
No. of droughts 21 16 23 25 18
Mean interarrival time | 23.65 | 22.68 24.69 26.64 26.47
Feome Mean severity 9.52 8.72 9.08 8.78 9.87
Maximum severity 38.5 30.87 36.68 52.53 57.3
Mean duration 10.9 10.93 11.08 9.6 11.64
Maximum duration 48 44 43 51 59
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The drought characteristics are evaluated using SPI12 and SPEI 12 for each homogeneous drought
region. Regions 2 and 3 experienced the highest number of drought events for IMD and the same
is expected for GCMs in future scenarios in both the cases. Whereas, the mean inter-arrival time
is maximum for regions 3, followed by region 1. In case of maximum severity and duration, regions
1 and 3 experienced the highest values. With respect to the drought characteristics, decreasing
trend is observed from region to region. Regions 1 exhibit a lower frequency of drought
occurrences characterized by elevated severity levels and extended mean interarrival times.
Overall, it is expected to experience a greater number of droughts with high mean arrival time,
severity and duration for most part of the Region 1 and 3. This expectation aligns with the findings
of Gupta and Jain (2018), who observed an escalated rate of increase in potential
evapotranspiration (PET) compared to rainfall across numerous regions in the country.
Consequently, a heightened proclivity towards increased aridity is envisaged in the latter portion
of the 21st century, contributing to a concomitant elevation in the severity and duration of drought
episodes.

The frequency of occurrence is also shown in Figure 7.3 (a) and (b) for SPI 12 and SPEI 12 . The
prevalence of moderate drought events is notably elevated in both historical and projected future
periods across all examined regions, constituting nearly 30% of the total drought occurrences. This
heightened occurrence of moderate droughts is consistently observed throughout the study
duration across all regions. Specifically, Region 1 exhibits a comparatively greater frequency of
moderate droughts compared to other regions. A substantial escalation in the incidence of both
moderate and severe drought events is discernible across the entirety of the three regions.
Anticipations for the future indicate a pronounced likelihood of extreme drought events,
particularly in Regions 1 and 3. Notably, the hydrological dynamics in India are profoundly
influenced by the monsoon season (June-September), accounting for 70% of the annual
precipitation. Consequently, the manifestation, progression and spatial distribution of drought
events are intricately linked to the patterns of monsoonal rainfall. The anticipated rise in
evaporation rates due to global warming is expected to induce drier terrestrial conditions and an
augmentation of water vapor content in the atmosphere, contributing to the evolving dynamics of

drought occurrences over time.
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7.3.1.3 Intercomparison of characterization of Drought using SPI12 and SPEI12

The comparison between SPI12 and SPEII2 reveals distinctive quantitative details in drought

characteristics across homogeneous regions:

Frequency and Severity:

Both SPI12 and SPEI12 indicate a notable increase in the frequency of moderate drought events

across historical and projected future periods, constituting nearly 30% of total drought

occurrences. Region 1 shows a higher frequency of moderate droughts compared to other regions,

suggesting varying susceptibility to drought conditions.
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Severity and Duration:

Regions 1 and 3 consistently exhibit the highest values for maximum severity and duration of

drought events, highlighting their vulnerability to prolonged and severe drought conditions. A

decreasing trend in drought characteristics is observed from Region 1 to Region 3, with Region 1

typically experiencing lower frequency but higher severity and longer mean inter-arrival times of

droughts.
Table 7.2 (b) : SPEI12 — Drought Characteristics

Region Drought . L. 3/!7];- -
characteristic 2017 1975-2005 | 2006-2035 | 2036-2065 | 2066-2095
No. of droughts 17 18 17 14 19
Mean interarrival time | 25.63 | 19.27 20.76 23.64 21.47

Sesfon | Meap severity ‘ 11.47 |7.76 11.78 10.38 14.53
Maximum severity 81.07 | 28.56 38.18 56.19 58.08
Mean duration 13.18 |9.5 9.7 12.07 12.8
Maximum duration 86 33 41 46 51
No. of droughts 20 20 14 17 19
Mean interarrival time | 21.84 | 17.35 26.07 18.83 20.38

. Mean severity 9.6 5.41 13.72 7.34 15.14

Region 2 ; :
Maximum severity 75.1 29.88 45.73 51.29 50.39
Mean duration 11.21 |84 7.57 9.83 14.31
Maximum duration 83 32 43 41 61
No. of droughts 23 19 16 16 15
Mean interarrival time | 20.27 | 19.10 21.87 23.68 21.64

Sesom’ Meap severity ‘ 8.29 7.51 12.53 9.53 17.47
Maximum severity 68.02 | 25.38 35.12 39.79 52.59
Mean duration 9.86 9.21 8.31 11 11.83
Maximum duration 51 23 39 54 58

Future Projections:

Future scenarios suggest an escalation in both moderate and severe drought events across all

regions, with Regions 1 and 3 particularly vulnerable to extreme drought episodes. These

projections align with studies indicating increased evapotranspiration rates relative to rainfall,

contributing to heightened aridity and prolonged drought conditions in the latter part of the 21st

century.
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Hydrological Dynamics and Monsoon Influence:

The hydrological cycle in India, heavily influenced by the monsoon season, plays a crucial role in
shaping drought patterns. Expected rise in evaporation rates due to global warming may intensify
terrestrial dryness and atmospheric water vapor content, further influencing the spatial distribution

and evolution of drought events.

In summary, while both SPI12 and SPEI12 capture similar trends in drought frequency and
severity, SPEI12's incorporation of evapotranspiration data enhances understanding of drought
impacts on water availability and vegetation, particularly in regions prone to increased aridity and

prolonged drought episodes.

7.3.2 Drought Frequency Analysis using SPI12 and SPEI12.

7.3.2.1 Severity-Duration-Frequency analysis

The copula best fitting the frequency analysis is determined based on the distribution with the
minimum values for Kolmogorov-Smirnov (K-S), Carmer Vos Mises (C-M) and Anderson-Darling
(A-D) statistics, as presented in Table 7.3 (a). Specifically, for SP112, the Clayton copula emerges
as the optimal fit for Region 1, the Gumbel copula for Region 2 and the Frank copula for Region
3. Conversely, for SPEI12, the Gumbel copula is identified as the most suitable for Region 1, the
Frank copula for Region 2 and once again, the Frank copula for Region 3. These determinations
are made based on the evaluation of Log Likelihood (L-L) and Akaike Information Criterion (AIC)
values as shown in Table 7.4 (a). for SPI12 and 7.4 (b) SPEI 12.
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Furthermore, an analysis of optimal parameter values and the corresponding probabilities of
duration is presented in Table 7.3(a) and (b) for SPI12 and SPEI12, respectively. The performance
assessment involves the consideration of various probability distributions to model drought
severity and duration, calibrated through the inverse cumulative distribution of distinct univariate
distributions. Subsequently, the joint probability dependence across diverse return periods is

computed using the inverse h-function of the best-fit copula.

For each homogenous region, SDF curves are formulated, as illustrated in Fig. 7.4 (a) for SPI and
7.4 (b) for SPEI. Notably, Regions 1 and 3 exhibit elevated severity levels across different return
periods, indicative of a heightened frequency of drought occurrences in the regions under
investigation. Furthermore, the SDF curves demonstrate an upward concavity for all regions in

this analysis, signifying an augmentation in severity with an increase in duration.

Table 7.3 (a): SPI12 - Best probability distributions fit for characteristics of drought

Variable | Distribution K§ | CM AD KS CM |AD KS | CM| AD
Region 1 Region 2 Region 3
Exponential 023 {022 | 123 | 021 |022 1.68 024|033 | 1.85
Normal 013 | 008 |0.39 | 031 | 028 1.57 025|031 |1.76
Drought L og normal 022 1026 |1.47 |0.15 | 0.08 | 0.48 0221025 | 1.34
severity Gamma 0.19 | 0.18 |1.11 |0.17 | 0.17 | 0.74 023|031 | 1.43
Weibull 021 1017 |0.71 |0.16 | 029 | 067 0.19 | 0.22 | 1.31
Gumbel 024 1028 |1.76 | 024 | 023 143 024 | 034 | 1.86
Exponential 023 1023 097 |0.16 | 0.05 | 0.65 026 | 031 | 1.95
Normal 026 | 035 |2.16 | 024 | 023 1.25 027|034 | 1.94
Drought L og normal 0.15 | 017 |0.73 | 0.18 | 0.11 0.82 028 | 035 | 216
duration Gamma 024 1027 |1.03 |0.17 | 0.12 | 0.78 029|033 | 1.97
Weibull 029 | 022 |1.26 | 020 |0.09 |0.75 0.23 | 0.24 | 1.83
Gumbel 026 | 026 |1.52 | 021 |0.16 1.13 026 | 038 | 2.04
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Figure 7.4 (a) SDF curves for various return periods of SPI12
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Table 7.3 (b): SPEI12 - Best probability distributions fit for characteristics of drought

L ... . |KS|CM |AD [KS|CM |AD |[KS |[CM |[AD
Variable | Distribution : : :
Region 1 Region 2 Region 3
Exponential | 0.13 | 0.17 [0.79]029|023 | 145 /024 |0.32 |1.88
Normal 027 | 057 |[202]0.15]0.07 046 |027 | 033 |1.84
Drought | Lognormal | 022 |046 |088|0.18]025 |069 |024 |0.27 [1.57
severity | Gamma 023 |026 1.02 023,021 (078 (018 |0.22 |1.21
Weibull 021 |045 |[081]0.19]0.18 /076 024 1024 |1.44
Gumbel 025 |03 176 | 022 | 025 | 144 | 026 | 031 [1.96
Exponential | 0.14 | 0.13 |0.77|023]022 | 088 |022 |0.28 |1.83
Normal 0.25 | 031 176 | 025 | 021 | 1.18 | 027 |0.32 [ 1.88
Drought | Lognormal | 023 |025 |0.87]021]0.19 073 025 |0.34 |2.12
duration | Gamma 023 019 |1.12/0.19]024 | 083 |0.18 |0.24 |1.07
Weibull 0.19 | 015 |088|0.17]0.11 |0.65 | 026 |0.31 |1.86
Gumbel 026 1027 |168[020]023 |1.01 024 1032 |1.77
Table 7.4 (a): SPI12 - Best fit copula model
Copula 0 |LL |[AIC 8 |[LL [AIC 8 |LL |AIC
Region 1 Region 2 Region 3
Clayton 6.87 18.13 -54.44 6.62 18.12 | -46.54 | 6.66 16.74 | -41.34
Frank 24.54 28.74 -64.43 17.75 21.04 | -46.13 | 3.15 14.57 | -38.68
Gumbel 8.75 23.48 -60.18 5.33 15.52 | -41.52 | 5.76 15.67 | -39.28
Galambos | 7.58 23.08 -58.15 4.88 18.82 | -43.08 | 5.98 18.54 | -40.02
Plackett 26.53 2942 -63.32 17.89 2046 | -44.54 | 7.36 21.22 | -4047
Table 7.4 (b): SPEI12 - Best fit copula model
Copula 6 |L-L |AIC 6 |LL |AIC 6 |LL AIC
Region 1 Region 2 Region 3
Clayton 10.47 21.85 | -56.47 7.84 18.47 | -46.49 | 8.27 1941 -41.47
Frank 23.87 28.75 | -64.87 4.91 15.28 | -40.39 | 3.42 14.87 -36.41
Gumbel 4.63 20.94 | -55.75 6.42 17.31 | -42.42 |5.73 15.38 -38.65
Galambos | 5.89 23.47 | -58.74 5.39 16.01 | -43.45 | 439 18.64 -40.44
Plackett 24.28 29.47 | -65.34 13.17 1942 | 4481 | 11.74 20.42 -42.19
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Figure 7.4 (b) SDF curves for various return periods of SPEI12

7.3.2.2 Severity-Area-Frequency analysis

For various spatial extents, gamma distribution is identified as the optimal fit. Parameters of the
Distribution are determined with the L - moments method. The SAF curves corresponding to
various return periods (5, 10, 25, 50, 75, 100) and Future scenarios (2021-2025, 2061-2065 and
2091-2095) are depucted in Fig. 7.5 (a) for SPI12 and Fig 7.5 (b) for SPEI12. For regions 1-3;
1971-1976, 1984-1989, 1995-2000 and 2000-2005 timespans are identified as the most severe
drought periods as compared to the projected SAF curves. Analysis of Fig. 7.5(a) reveals that
region 1 exhibited higher severity values for both IMD and GCMs datasets. Additionally, region 3
manifests a steeper slope in comparison to other two regions indicating a heightened risk of

drought for small spatial extents.

Regarding SPEI12 from Fig 7.5 (b) region 3 experienced higher severity values for both IMD and
GCMs datasets, with a steeper slope compared to regions 1 and 2. Notably, there is an inverse
relationship observed between severity and spatial extent — an increase in the percentage of the

area results in a decrease in severity and vice versa. The SAF curves elucidate that severity values

104



ranging between 10 to 25 are prominent for 50% of the area, diminishing with an expansion in

areal extent for both SPI12 and SPEI12.
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Figure 7.5 (a) SAF curves for various return periods of SPI12
7.4. Discussions

Upon closer examination of the findings, it becomes evident that an escalation in both the intensity
and duration of drought is observed across virtually all regions and throughout the temporal
progression. The investigation into the incidence of various drought categories (moderate, severe
and extremely severe) indicates a probable uptick in the frequency of drought occurrences in most
regions, barring region 3. Analysis of Severity-Duration-Frequency (SDF) curves indicates a
consistent trend where the severity rate tends to rise with prolonged durations in most regions.

Nevertheless, critical drought events are anticipated to manifest across diverse time scales in three
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homogeneous regions. Furthermore, the derived Standardized Anomaly Frequency (SAF) curves
imply that droughts are likely to encompass a larger spatial extent for lower severity values across

all regions.

The SAF study previously examined highlights an anticipation of an increased areal extent of
drought in the latter part of the century (Gupta and Jain, 2018). Notably, Indian regions exhibit
steeper SAF curve slopes characterized by heightened variability in topographical and
hydrological attributes. The SAF curves serve as valuable tools for comparing past and future
drought scenarios. Consequently, the results indicate that India is currently grappling with severe
droughts in the region 3 significantly impacting the local population. Prolonged droughts,
attributed to insufficient soil moisture, underscore the importance of regulating turbulent heat flux

and boundary layer distribution to mitigate surface energy loss (Alapaty et al., 1997).

Furthermore, a surge in population corresponds to an elevated demand for energy. Presently
standing as the third-largest global consumer of energy, following China and the United States,
India contends with an escalating need for electricity, exerting a direct influence on the prospective
availability of water resources. Consequently, proactive measures such as enhanced preparedness,
vigilant monitoring and accurate prediction of droughts emerge as pivotal adaptation strategies to
mitigate the risks associated with impending droughts. Policymakers should formulate strategic
frameworks tailored to address local and regional vulnerabilities, ensuring successful mitigation

of drought risks induced by climate change.
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Figure 7.5 (b) SAF curves for various return periods of SPEI12

7.5. Conclusion

* In later part of twenty-first century mean interarrival time is reduced and number of

droughts have increased for both SPI and SPEIL.

* The mean inter-arrival time is maximum for region 3 followed by region 1 and these

regions are also experiencing highest values of maximum severity and duration

» It is evident that moderate drought events exhibit a significant increase in both historical
records and future projections across all studied regions. Specifically, these events

constitute approximately 30% of all observed drought occurrences.

» The potential exists for an increased occurrence of droughts characterized by shorter mean
interarrival times, elevated severity and extended duration in the future, with Region 1

anticipated to experience the highest frequency, followed by Region 3 and then Region 2.

* Over the temporal progression, a noteworthy rise in drought severity across varying

durations, paralleling the increase in temporal extent.

* Regions 1 and 3 consistently show increased severity across various return periods,
reflecting heightened drought frequency. Additionally, all regions exhibit upward-concave

SDF curves, indicating severity escalation with prolonged durations.
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For regions 1-3; 1971-1976, 1984-1989, 1995-2000 and 2000-2005 timespans are

identified as the most severe drought periods as compared to the projected SAF curves.

Region 1 showed higher severity values in both IMD and GCMs datasets, while region 3
displayed a steeper slope, suggesting increased drought risk at smaller spatial extents

compared to other regions.

An inverse relationship was observed between severity and spatial extent, with severity
values between 10 to 25 prominently affecting 50% of the area, diminishing as the areal

extent increases for SPI12 and SPEI12 SAF curves.

The high point of drought hazard is envisaged during the periods 2036-2065 and 2066-

2095, demonstrating heightened susceptibility compared to other analyzed intervals.
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CHAPTER 8
CONCLUSIONS

This chapter is organized as follows: Section 8.1 presents the summary of this study, Section 8.2.
Conclusions, 8.3 Research contributions, 8.4 Limitations of the study and 8.5 Scope for the future

study.
8.1 Summary of the Thesis

In this study, suitable Global Climate Models (GCMs) are identified through the comprehensive
analysis of CMIP5 datasets at the first phase which include historical and future climate
projections. A thorough evaluation of GCMs based on their performance metrics is conducted
which involves assessing their ability to simulate historical climate conditions accurately..
Ensemble models are identified using a group decision-making analysis, ensuring a robust
selection process. Following this, suitable models are downscaled and spatially projected to the

study area.

In the second phase, delineation of homogeneous regions and drought characteristics analysis is
performed. historical precipitation and temperature data is used for each homogeneous region to
evaluate drought characteristics. Relevant drought indices SPI12,SPEI12 and SC PDSI are
computed for each homogenous region. The temporal trends namely severity and duration are

assessed and drought events are distributed regionally to examine the historical drought patterns.

In the subsequent third section, a pivotal aspect of our study involves a detailed examination of
the intricate relationship between climate indices and drought indices. This analysis provides
valuable insights into the complex interplay between climate patterns and the occurrence and
severity of drought events. The relationship between climate indices and drought indices (SPI,
SPEI, SC_PDSI) helped in analyzing the variations in climate patterns impact drought occurrences

and severity

Finally, SDF and SAF curves are employed to comprehensively depict the characteristics of
drought events within each homogeneous region. It also helps to understand the severity of drought
events with duration and its frequency of occurrence. These curves serve as invaluable tools for
quantifying and visualizing the severity, spatial extent and frequency of drought occurrences,

providing a holistic understanding of the drought landscape within the study area.
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8.2 Conclusions

The conclusion of the entire work includes.

The identified suitable ensemble models for P include FGOALS-g2, CMCC-CMS and
INMCM4.0. BCC-CSM1.1(m), CanESM2, and MIROCS are deemed suitable GCMs for
Tmax- For Ty, the recommended ensemble comprises CanESM2, BCC-CSM 1-1(m) and
ACCESS1.0. For Tayg, MIROCS, CNRM-CM5 and BCC-CSM1.1 (m) emerge as the
suitable models.

The optimal number of clusters is determined to be three for the study region. South zone
of region 1 comprises 14 districts of Telangana, North zone of region 2 comprises 7
districts; east zone of region 3 comprises 10 districts.

For SPI, the most severe and protracted drought event occurs in region 2 from June 2001
to August 2005, exhibiting a severity of 44.43 and a duration spanning 51 months.
Followed by region 3 and 1. SPEI exhibited a severity of 81.07 and a duration of 86 months
for region 1 from August 2006 to September 2013. SC PDSI major drought events
occurred in region 3 from March 1979 to April 1988, exhibiting a severity of 227.75 and a
duration of 108 months.

In case of SPI, the period 1984-1987; 2001 to 2003; and 2011 to 2013 has experienced
droughts for all regions; SPEI faced drought events during 1984-1986; 1992-1994; 2006-
2017; SC_PDSI experienced drought for all regions during 1992 to 1994 and 2008- 2011.
For SPI, A sustained coherence in interannual variability is discerned throughout the
temporal spans of 1980-1995 and 2002-2017, primarily evident at time scales ranging from
16 to 40 months. Notably, intermittency is observed between 4 to 12 months during
different years for MEI. The SOI, interannual coherence is evident between 1975-1990 and
1995-2017, spanning time scales from 16 to 40 months.

A substantial correlation in overlap periods is observed in 1984-1987,2010-2013 and 2016~
2017 among all drought indices with climate factors.

In later part of twenty-first century mean interarrival time is reduced and number of
droughts have increased for both SPI and SPEI. A possibility to experience a high number
of droughts with less mean arrival time, high severity and duration in the future for region

1 followed by region 3 and 2.
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e The prognosticated drought SAF curves delineate the interplay between drought severity,
spatial extent and recurrence in relation to the drought return period. Concurrently, SAF
curves prove instrumental in scrutinizing the future outlook of annual drought severity,
including its spatial occurrences represented as a percentage of the total area.

e SAF curves serve as a valuable tool for the comparative analysis of historical drought
occurrences against those projected from future climate scenarios, leveraging GCMs
outputs.

e Over the temporal progression, a noteworthy rise in drought severity across varying
durations, paralleling the increase in temporal extent.

e The high point of drought hazard is envisaged during the periods 2036-2065 and 2066-

2095, demonstrating heightened susceptibility compared to other analyzed intervals.

The results and findings based on the application of statistical techniques in this study gives
insight to use suitable GCMs for drought related climate impact studies and this study offers a

view on potential drought condition in Telangana state, India.

8.3 Research contributions

* GCM Selection advances spatially projecting GCM outputs to align with specific spatial
resolution by improving precision of climate data in local analyses. This includes using a
group decision-making approach to select a robust ensemble of models that provides
accurate climate projections for the study area.

* Delineating homogenous regions based on climatic data allows for more nuanced analysis
of drought impact at regional context in understanding drought patterns and spatial
distribution.

* Intricate relationship between teleconnections and drought indices elucidate variations in
climatic patterns influence over drought occurrences and severity which offers valuable
insights in driving drought events

* Development of SDF and SAF curves contributes deeper understanding of the relationship
between severity, duration , frequency and spatial extent. This novel application provides
a comprehensive view of the impact of droughts on different spatial scales, enhancing the

assessment of drought impacts on regional and local levels.
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These contributions collectively advance the understanding of drought dynamics and their

interplay with climate factors, providing valuable tools and insights for managing and

mitigating drought impacts in the study region and potentially beyond.

8.4 Limitations of the study

GCM Limitations: The study relies on a selection of Global Climate Models (GCMs)
from the CMIP5 dataset. Despite rigorous selection processes, inherent uncertainties and
biases in these models can affect the accuracy of climate projections. Variability in model
performance and the choice of models included in the ensemble may influence results.
Resolution Mismatch: Even after downscaling, the spatial resolution of climate data
might not perfectly align with the heterogeneous nature of the study region. This can limit
the granularity of the analysis and might affect the accuracy of drought characterization.
Index Limitations: Each drought index has its own limitations and assumptions. For
instance, SPI focuses solely on precipitation, while SPEI incorporates potential
evapotranspiration, and SC_PDSI accounts for soil moisture. The differences in these
indices may lead to variations in drought characterization and might not fully capture the

complexity of drought conditions.

8.5 Future Scope

1.

The identified suitable ensemble GCMs can be further used in climate impact assessment
studies based on precipitation, temperature, drought, flood and temperature extremes and
so on at regional scale.

The suitability of other popular drought indices can be investigated at a seasonal scale
incorporating the CMIP5 models.

In this study, efforts have been made to identify meteorological droughts. However,
hydrological, agricultural and socio-economic drought is the area where this work can be
extended further in future.

A well-structured Drought Information System (DIS) and Decision Support System (DSS)
can be designed to effectively manage drought mitigation and response efforts.

An attempt can be made to develop a common drought model for all types of agro-climatic

regions which would serve as a tool for drought assessment, monitoring and management.
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