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ABSTRACT 

Drought is a multifaceted natural climatic hazard that significantly affects both ecosystem and 

society. In comparison to other natural hazards, such as floods, storms, hurricanes, the spatial 

extent of droughts is usually much larger. Climate variability precipitates a heightened 

occurrence and severity of droughts on a global scale. Notably, India stands as one of the most 

drought-prone regions worldwide, experiencing drought events approximately every three 

years across distinct geographic areas, with a particularly profound impact observed in semi-

arid regions. As a result, it is important to investigate drought at regional and local scale with 

climatic conditions and its variations. Global Climate Models (GCMs) are the only models 

available for projecting climate systems at any timescale. Occurrence and distribution of 

drought characteristics can be analysed by using GCMs datasets. Understanding the dynamics 

of drought and its impacts in the context of climate change on a regional scale is therefore a 

vital area of research, so in this study the regional frequency analysis of droughts using suitable 

GCMs for Telangana state is carried out in view of recent catastrophic events.  

In the first section, selection of suitable GCMs of Precipitation (P), Maximum Temperature 

(Tmax), Average Temperature (Tavg) and Minimum Temperature (Tmin) entails the application of 

Standard Statistical Performance Metrics (SSPMetrics) over the period 1975-2005 in 

Telangana State, India. Skill Score (SS), Normalized Root Mean Square Deviation (NRMSD) 

and Correlation Coefficient (CC) SSPMetrics are utilized to evaluate 36 Coupled Model 

Intercomparison Project 5 (CMIP5) dataset models against observed data. Weights assigned to 

SSPMetrics are determined from entropy and sensitivity analysis. Compromise Programming 

(CP) is subsequently employed to rank the GCMs for each variable at individual grid point 

using distance measure method. The Group Decision-Making Approach (GDMA) is then 

applied to derive a combined ranking at each grid point. The ensemble climate models deemed 

suitable for each variable are identified as follows: for P, FGOALS-g2, CMCC-CMS and 

INMCM4.0; for Tmax, BCC-CSM1.1(m), CanESM2 and MIROC5; for Tavg, MIROC5, CNRM-

CM5 and BCC-CSM1.1(m); for Tmin, CanESM2, BCC-CSM1-1(m) and ACCESS 1.0 from 

historical simulations of CMIP5 GCMs. The computed net strength of each GCMs aligns with 

the ensemble model results. The determined ensemble GCMs are suitable for utilization in 

subsequent climate impact assessment studies that focus on precipitation, temperature or both 

such as studies on drought, flood, temperature extremes and other regional scale climatic 

phenomena.  
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In the second section of the study, regionalization of the study area and evaluating of drought 

indices, namely Standardized Precipitation Index (SPI), Standardized Precipitation 

Evapotranspiration Index (SPEI), Self-Calibrated Palmer Drought Severity Index (SC_PDSI) 

and  their properties(Severity and Duration) are assessed. Regionalization process involved the 

analysis of hydro-meteorological data to discern homogeneous regions with akin 

characteristics. Application of Fuzzy-C-Means - Unsupervised classification is used for 

clustering and optimum number of clusters are identified as three for Telangana state. 

Subsequently, Drought indices are computed over a 12-month time scale for three identified 

homogenous regions from the year 1975 to 2017. The findings reveal that, in the context of the 

SPI, Region 1 exhibited severe drought period during August 2011 to September 2013, 

registering with -34.9 severity. The lengthiest drought episode in this region spanned from 

September 1984 to September 1987, encompassing a duration of 37 months. In the case of 

Region 2, exhibited severe and prolonged drought between June 2001 and August 2005, 

recording -44.43 severity and 51 months of duration. Region 3 experienced severe drought 

from August 1984 to August 1986, with a severity of -38.5, while the lengthiest drought event 

spanned from July 2014 to September 2016, encompassing 27 months of duration. SPEI, 

Region 1 exhibited severe and protracted drought event from August 2006 to September 2013, 

manifesting a severity of -81.07 and persisting for a duration of 86 months. For Region 2, 

experienced severe and extended drought spans during August 2006 to June 2013, registering 

-75.1 of severity and persisting for 83 months. Region 3 witnessed its most severe drought 

event during the period from March 2014 to December 2017, characterized by a severity of -

68.02, while the lengthiest drought event occurred from March 2007 to May 2011, 

encompassing a duration of 51 months. For SC_PDSI, region 1, most severe and longest 

drought event occurred during September 2000 to June 2003 with severity -79.77 and duration 

33 months; Region 2 exhibits its most severe and extended drought event, spanning from 

February 1984 to September 1985, characterized by -38.92 of severity and lasting for 19 

months of duration. Conversely, Region 3 confronted an exceptionally severe drought event 

extending from May 1979 to June 1988, registering -227.75 of severity and persisting for 110 

months of duration. Overall, these valuable insights of severity and duration of SPI, SPEI and 

SC_PDSI prove effective for analysing and assessing regional drought conditions. 

In the third section, the investigation delves into unravelling the impact of teleconnection on 

the relationship between drought indices (SPI, SPEI, SC_PDSI) and four prominent climatic 

indices: Southern Oscillation Index (SOI), Dipole Mode Index (DMI), Multivariate ENSO 
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Index (MEI) and NINO3.4 are analysed for 1975-2017. Furthermore, interconnection between 

drought indices and climate indices is examined using Wavelet Coherence method. The results 

indicate that, drought pattern of DMI with SPI, SPEI and SC_PDSI is observed during 1984, 

1985 and 1992. MEI and NINO 3.4 with SPI, SPEI and SC_PDSI during 1984 - 1986; SOI 

matched well during the year 1992 and 1993 with all the drought indices. Inter annual 

variability coherence for SPI with MEI is observed at 16 - 40 months (1982-1994 and 1995-

2017 and SOI inter annual coherence is evident between 1975-1990 and 1995-2017; whereas 

Nino 3.4 intermittency is noticed at 1978-1992 and 2002-2015. Coherence is demoted with all 

the climate indices in the case of SPEI only SOI exhibited a highly significant influence at 14 

to 40 months between 2002- 2014. Whereas significant coherence is smaller for SC_PDSI with 

DMI, MEI and NINO 3.4. SOI and MEI has significant coherence with SPI followed by SPEI 

and SC_PDSI compared to other climate indices. This reliable and robust quantitively results 

helps to understand relation between the climate and drought indices and new insights for 

further drought investigation. 

In section four, multivariate frequency analysis of Severity-Duration-Frequency (SDF) and 

Severity-Area-Frequency (SAF) curves are developed with SPI and SPEI at 12- month time 

scale at a threshold of -0.8. for three regions for time span of 1975-2017 (observed), 1975-

2005, 2006-2035, 2036-2065, and 2066-2095 (projected datasets) using drought 

characteristics. The temporal evolution of drought entails a comprehensive examination of 

drought attributes through the analysis of SPI and SPEI within three homogeneous regions. 

This scrutiny encompasses both observed data and four distinct projected datasets. The 

objective is to discern the nuanced characteristics of drought over time, thereby contributing 

valuable insights to the understanding of drought dynamics. Increase of number of droughts 

are noticed in all regions for future periods compared to observed period of IMD. Mean 

interarrival time between droughts of SPI and SPEI is found to be maximum for Region 1 and 

Region 3 in historic period latter it is decreased further in projected periods. Maximum severity 

is showing increasing trend in all regions during 2036-3065 and 2066-2095 future periods. The 

incidence of moderate drought events exhibits an elevated frequency during both historical and 

anticipated future periods across all delineated regions i.e., nearly 30% of the droughts are 

moderate droughts for all the regions. The best fit copula for three regions is: for SPI – 

Clayton(region1), Gumbel((region2) and Frank(region3). SPEI, Gumbel(region1), 

Frank(region2), and Frank(region3).  In later part of twenty-first century mean interarrival time 

is observed to be reducing and number of droughts are observed to be increasing for both SPI 
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and SPEI. A possibility of high number of droughts with less mean arrival time is expected 

with high severity and duration in the future at Region 1 followed by Region 3 and Region 2 

respectively. Projected drought SDF curves represent highest severity as noticed for Region 1 

and duration for Region 3 for SPI whereas for SPEI highest severity and duration is noticed for 

Region 1. All the curves rise convex upwards for region 1 & 2 and concave upwards for Region 

3 which represents increase in severity with increase in duration for SPI and SPEI.  

Projected SAF curves depict drought severity and its spatial extent in relation to the drought 

return period, elucidating the spatial and recurrent patterns inherent in drought occurrences. 

These curves prove instrumental in examining the anticipated annual severity of droughts in 

the future, encompassing the associated percentage coverage of the affected area. Moreover, 

SAF curves facilitate the comparative analysis of historical droughts against those projected 

from future climate scenarios derived from GCMs outputs. The temporal evolution reveals a 

discernible escalation in drought severity associated with varying durations over time. 

Projections indicate that drought hazard is poised to reach its zenith during the periods of 2036-

2065 and 2066-2095, surpassing levels observed in other analysed epochs. Leveraging 

information gleaned from SDF and SAF curves concerning drought severity, duration, 

percentage coverage of the area and return period, allows for the precise calculation of drought 

severity within designated regions. This information proves valuable for addressing 

agricultural demand and formulating optimal crop management strategies. 

The results and findings  based on the application of statistical techniques in this study gives 

insight  to use  suitable GCMs  for drought related  climate impact studies and this study offers 

a view on potential drought condition in Telangana state, India. 

Keywords: Global Climate Models, SSPMetrics, CP, Drought indices, SPI, SPEI, SC_PDSI, 

Severity, Duration,  Teleconnections, Drought Frequency Analysis 
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CHAPTER 1 

INTRODUCTION 

1.1 Global Climate Models 

1.1.1. Overview of GCMs and Climate Change 

Global Climate Models (GCMs) serve as indispensable numerical tools in comprehending the 

complex physical processes of the land surface, ocean and atmosphere, particularly in the context 

of simulating impacts for regional and hydroclimatological studies. The evaluation of climate 

change, particularly its potential influences on hydrometeorological variables, is of paramount 

importance and GCMs have proven instrumental in projecting future scenarios (Jiang et al., 2003). 

The ramifications of alterations in precipitation and temperature patterns exert profound effects on 

diverse societal dimensions, impacting the accessibility of water, reservoir operations, irrigation 

practices, in addition to the incidence of extreme events such as floods and droughts. 

Acknowledging the gravity of these consequences, GCMs have been customized to indicate the 

existing climate conditions with their implications on hydrological variables within interconnected 

networks (Pitman et al., 2012) (Smith and Chiew, 2010). 

Despite their global applicability, GCMs exhibit limitations when applied at local or regional grid 

scales. External forcings are implicitly described at the global scale, but the models often fall short 

of indicating the effects of global climate changes at more localized levels (Reichler & Kim, 2008). 

The precision of GCMs diminishes gradually when applied at finer scales, introducing 

uncertainties related to variability in simulations and challenges in downscaling to local or regional 

levels (Xu, 1999). Therefore, identifying and selection of GCMs has become necessary for climate 

impact assessment. 

1.1.2 Selection of Global Climate Models and their Applications 

The evaluation of GCMs at regional or local hydrological scales is riddled with uncertainties, 

attributed to factors such as random internal climate variability, anthropogenic activities and 

the  physical responses embedded in the model equations (Hawkins & Sutton, 2011; 

Mujumdar  &  Nagesh Kumar, 2012). Given these uncertainties, it becomes imperative to 
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thoroughly evaluate GCMs before employing them in climate change studies. The evaluation of 

GCMs extends beyond mere scrutiny, encompassing the selection of suitable models that 

demonstrate optimal performance (Smith & Chiew, 2010). This evaluation is crucial for simulating 

hydroclimatic variables and conducting hydrological modeling studies (Pitman et al., 2012).  

A plethora of studies worldwide has been dedicated to simulating GCMs for the validation of 

climatic parameters, utilizing statistical performance metrics to gauge their efficacy 

(Errasti  et  al., 2011; ; Sperber et al., 2013; Perkins et al., 2007; Salman et al., 2019). The 

methodologies for evaluating GCMs have evolved, incorporating various statistical performance 

metrics, including SS, CC, Normalised Root Mean Square Error, Root Mean Square Error 

and  other innovative approaches (Fordham et al., 2011; Gleckler et al., 2008; Johnson  &  Sharma, 

2009; Pitman et al., 2012; Tebaldi & Knutti, 2007). Recent studies explore the strength of 

individual models and there is a growing emphasis on the selection of suitable ensembles to 

enhance consistency in simulations (Johnson et al., 2011; Tebaldi  & Knutti, 2007). The utilization 

of CP, known for its ability to identify optimal solutions in multi-criteria decision-making, emerges 

as a promising avenue for the selection of an ensemble of GCMs, demonstrating its efficacy in 

diverse contexts (Salman  et  al., 2018; Raju et al., 2016; Maxino et al., 2008). Recent literature 

reflects a burgeoning body of research dedicated to assessing model performance at both regional 

and basin levels, emphasizing the evolving nature of this critical field. 

1.2 Drought Monitoring  

Drought, as a complex natural hazard, intricately influences ecosystems, society and the economy. 

Precise quantification of drought at the regional scale is imperative for a comprehensive 

understanding of its multifaceted impacts (Mishra & Singh, 2010). Despite the interrelated nature 

of various drought definitions, distinct types exhibit variations in duration and resource impact. 

Meteorological drought, denoted by periods of exceptionally low or absent precipitation, forms 

the climatic basis. The repercussions of precipitation on reservoirs, streamflow and groundwater 

collectively constitute hydrological drought. Agricultural drought focuses on crop responses to 

heightened heat stress and insufficient soil moisture. Additionally, socioeconomic drought is 

intricately connected to economic factors such as water supply and demand for agricultural 

products, with substantial impacts stemming from hydrological, meteorological and agricultural 
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droughts. Consequently, the imperative to monitor drought emerges as a fundamental requirement 

for in-depth investigation across these sectors (Tallaksen and Van Lanen, 2004). 

In recent decades, the global surge in drought-related incidents has been a focal point of concern 

(Allen et al., 2011; Kang & Sridhar, 2017, 2018). The escalating frequency of drought occurrences 

in India, akin to numerous other nations, has been pronounced since 1965 (Bisht et al., 2018b; 

Shewale & Shravan Kumar, 2005). Projections suggest a progressive increase in both the average 

duration and intensity of drought events in India spanning the temporal domain from 2010 to 2099, 

as contrasted with the reference historical epoch spanning 1979 to 2005. This trend underscores a 

pronounced regional challenge of considerable significance. (Bisht et al., 2019). The dynamics of 

drought in this context are primarily influenced by variations in the monsoon and the demand for 

water vapor in precipitation, culminating in the manifestation of extreme events ( Loon et al., 

2013). Drought complexities are exacerbated by the surging demand for water, driven by 

population growth, irrigated agriculture and industrialization. The escalated demand for water 

resources engenders the unsustainable exploitation of both surface and subsurface reservoirs, 

thereby instigating conflicts among stakeholders during drought events. Consequently, the 

necessity to systematically monitor drought occurrences at a regional scale becomes imperative 

for precise water resource assessment, efficacious management and the formulation of robust 

mitigation strategies. 

Drought, a recurrent phenomenon within varied climatic regimes, is intricately governed by 

multifaceted factors such as precipitation patterns, temporal distribution, intensity, duration, 

temperature variations, humidity levels and wind speed. The cumulative impact of these variables 

manifests gradually over extended periods, spanning months to years. The gradual and insidious 

nature of drought necessitates sophisticated management strategies, given the inherent uncertainty 

associated with precisely ascertaining its initiation and cessation. In addressing this challenge, 

drought indices emerge as invaluable tools for monitoring, quantifying and evaluating droughts. 

These indices simplify the intricate nature of drought into a singular numerical value, facilitating 

a more comprehensive understanding (Vicente-Serrano et al., 2010). Over the course of temporal 

evolution, these metrics have assumed a pivotal role in the delineation and assessment of drought, 

significantly contributing to the domains of drought monitoring and the formulation of early 

warning systems.  Notwithstanding the abundance of diverse drought indices, an ongoing scholarly 
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dialogue endures regarding the efficacy with suitability of each respective index. The persisting  

discussion underscores the intricate nature of drought assessment, necessitating a thorough 

exploration of the strengths and limitations of various indices for robust and context-specific 

drought monitoring in the pursuit of effective resource management. 

In recent decades, the Palmer Drought Severity Index (PDSI), SPI and SPEI drought indices have 

emerged as widely adopted globally (Hayes et al., 2011). Despite their wide utility across diverse 

water-related sectors, each index presents inherent limitations. The SPI, in its application, exhibits 

a pronounced dependence on precipitation data, thereby overlooking other salient variables that 

could significantly impact the comprehensive characterization of drought event. In contrast, the 

PDSI derives its computation from duration and weighting factors based on datasets exclusively 

observed within the geographical confines of the United States, thus limiting to diverse climate 

zones with its generalizability (Palmer, 1965; Zhang et al., 2018). Furthermore, the PDSI lacks the 

inherent multi-time scale features intrinsic to SPI, introducing challenges in its comparability with 

metrics associated with runoff and reservoir storage. Recognizing these limitations, 

Wells  et  al.,  (2004) introduced the Self-Calibrated PDSI (SC_PDSI), a novel drought index 

designed to accommodate local variations and applicable to diverse regions. Several 

comprehensive studies  (Dai, 2011; Kang & Sridhar, 2019; Mishra & Singh, 2010;  Zhang et al., 

2015a) have extensively examined the strengths and weaknesses of SPI, SPEI and PDSI. From 

this thorough analysis, it becomes evident that employing multiple drought indices is imperative 

for an intricate analysis and evaluation of drought at regional scales. This multifaceted approach 

ensures a more robust and comprehensive understanding of the complex dynamics inherent in 

drought assessments. 

For global socio-economic security, monitoring and understanding the droughts, along with their 

temporal and spatial evolution. The evaluation of drought indices allows for identifying their 

precision of drought events. Different indices may capture droughts with varying degrees of 

sensitivity and specificity. Precision in identification ensures that drought assessments are reliable 

indicators of actual conditions on the ground (Mckee et al., 1993). Evaluating the drought indices 

and their properties is crucial for ensuring their reliability and accuracy in representing drought 

conditions. Assessing the ability of drought indices to integrate multiple climatic variables is 

essential for capturing the complexity of drought conditions. Vicente- Serrano  et  al.,  2011 
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emphasized the need to  assess  indices that consider both meteorological and hydrological 

variables. The significance of assessing the statistical robustness and precision of indices  helps to 

enhance their reliability in characterizing drought events. Evaluating the properties and 

characteristics of indices ensures that the information generated is actionable and aligns with real-

world scenarios.  

1.3 Drought Indices and Link with Teleconnections  

Droughts, as prolonged and severe climatic events, pose significant challenges to ecosystems, 

agriculture and water resources globally. The accurate assessment and prediction of drought 

conditions necessitate a comprehensive understanding of the complex interplay between 

meteorological variables and large-scale climate patterns. Drought indices such as the SPI, SPEI 

and SC_PDSI have emerged as vital tools for quantifying and characterizing drought severity. 

Concurrently, teleconnections, which signify long-range atmospheric and oceanic interactions, 

play a pivotal role in influencing regional climate patterns (Ashok et al., 2003; Kug et al., 2009; 

Torrence & Compo, 1998). 

The global nature of drought necessitates a holistic exploration of its dynamics by considering 

both regional and large-scale climatic influences. For India, a country with diverse climatic zones, 

understanding the linkage between drought indices and teleconnections becomes particularly 

crucial. Prominent teleconnections such as the Southern Oscillation Index (SOI), Multivariate 

ENSO Index (MEI), Dipole Mode Index (DMI) and Niño 3.4 index significantly impact India's 

climate (Kripalani & Kulkarni, 2001; Kripalani & Singh, 1993). Investigating how these 

teleconnections influence the performance of widely used drought indices in this unique regional 

context is essential for advancing our knowledge of drought patterns and improving predictive 

models. 

Many studies aimed to contribute to the understanding of global and regional drought patterns by 

assessing the intricate relationships between drought indices and teleconnections using wavelet 

coherence approach (Grinsted et al., 2004). By examining data from various climatic zones 

worldwide and focusing on India's diverse regions, the study seeks to identify patterns, correlations 

and potential variations in the performance of drought indices under the influence of 

teleconnections. Insights gained from this investigation are expected to have implications for 
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drought monitoring, prediction and adaptation strategies on both a global scale and within the 

specific regional context of India. 

1.4 Drought Frequency Analysis 

Drought, regarded as a natural hazard, manifests when there is a sustained deficiency in 

precipitation over prolonged durations. It signifies a transient departure from typical 

meteorological conditions and can occur as various climatic patterns. In contrast, aridity is a 

permanent climatic condition determined by long-term weather patterns in a specific region 

(Araghi et al., 2018; Karamouz et al., 2012). Therefore, the impact of climate change is anticipated 

to elevate both aridity and drought, posing significant challenges to agriculture, ecosystem and 

economy (Dai, 2013; Lobell et al., 2008). To execute effective water resource planning and 

management understanding the characteristics of dry conditions is crucial (Shiau J. T., 2006). 

Drought, being a complex natural disaster encompasses various factors like severity, intensity and 

duration (Kang & Sridhar, 2019; Mishra & Singh, 2010). Unlike other natural disasters, drought 

exerts their influence over large area extent (Kang & Sridhar, 2017; Sehgal et al., 2017; Wilhite et 

al., 2014). Consequently, analyzing drought conditions requires consideration of multivariate 

complexities and spatial variations. 

India experiences drought events approximately once every three years across different 

geographical regions. In recent decades, the nation has confronted extended and severe drought 

conditions, marked by an escalating frequency in diverse areas (Bisht et al., 2019). Notably, a 

substantial proportion (approximately 70-90%) of the annual rainfall in India transpires during the 

Southwest monsoon from June to September (Bisht et al., 2018a, 2018b). Since most of the country 

rely on monsoonal precipitation, the failure of the monsoon can engender drought conditions 

(Kumar et al., 2013). In several aspects the distribution of drought in India is studied (Das et al., 

2016; Gupta et al., 2020; Janga Reddy & Ganguli, 2012) and climate change exacerbates the 

vulnerability of India’s water supplies to drought. Therefore, an imperative lies in conducting a 

regional investigation that centers on elucidating the imminent spatial and temporal attributes of 

drought. This endeavor is crucial for providing decision-makers and planners with essential 

insights, facilitating the formulation of efficacious policies aimed at mitigating the adverse effects 

associated with drought hazards. 
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Numerous investigations have systematically examined the intricate of monsoon rainfall at spatial 

and temporal nuances. Selected researchers documented an escalation in mean precipitation levels 

during the monsoon season, concurrently noting discernible variabilities at inter annual time spans 

(Chaturvedi et al., 2012; Fan et al., 2012). At the global level, regional inquiries have been 

undertaken to scrutinize the distinctive features of spatial and temporal drought phenomena. 

Multivariate models, exemplified by Spatial Duration Function (SDF) and Standardized Anomaly 

Function (SAF) curves, offer valuable tools for the comprehensive assessment of regional drought 

risk (Mishra & Singh, 2010). Drought curves are meticulously computed across diverse return 

periods, facilitating the establishment of mathematical relationships elucidating the interplay 

among severity, duration, interarrival time, area coverage and intensity. Providing a quantitative 

representation of various drought characteristics, these curves are crucial tools for a comprehensive 

understanding of droughts (Kang & Sridhar, 2021; Rajsekhar et al., 2015a).  

1.5 Motivation of the Study 

The selection of an appropriate GCMs not only help in understanding the physical aspects of 

drought but also in assessing the potential impacts on agriculture, water resources, ecosystems, 

and human populations. It also facilitates more accurate analysis of drought conditions by 

integrating climate variability, including the impacts of large-scale teleconnections. This holistic 

approach enhances our understanding of the complex interactions shaping drought dynamics and 

supports informed decision-making for sustainable development and climate resilience efforts. the 

increasing frequency of drought in recent years in India, using advanced GCMs can provide 

valuable insights into how drought risks may evolve in the future under different climate change 

scenarios. This information is vital for policymakers, planners, and stakeholders to make informed 

decisions regarding water management, agriculture practices, and disaster preparedness 

1.6 Objectives of The Study 

The primary objective of this study is to conduct a comprehensive regional analysis of drought by 

incorporating teleconnections and selecting suitable Global Climate Models over Telangana state, 

India. 

To enhance clarity, the primary objective is subdivided into four sub-objectives outlined below. 
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1. Identifying and selecting suitable GCMs for Precipitation, Maximum, Minimum and Average 

Temperature. 

2. Regionalization and evaluation of major drought events their properties using SPI, SPEI and 

SC_PDSI 

3. Assessing the relationship between drought indices and teleconnections 

4. Investigating multivariate frequency analysis: SDF and SAF using Copula 

1.7 Outline of the Thesis 

The study carried out in this investigation is organized in the following chapters. The thesis 

comprises of eight chapters: introduction, literature review, study area and data collection, four 

chapters for each sub objectives and  finally conclusions in chapter 8. 

Chapter 1 provides Introduction of comprehensive overview of the Global Climate Models and 

their role in understanding with climate change. Then analysis based on drought indices and its 

characteristics and overview of Teleconnections and drought frequency analysis. 

Chapter 2 deals with the literature review covering each of the problems studied by earlier 

researchers. The summary of each of these studies are critically reviewed. 

Chapter 3 deals with exploration of study area and data collection. Subsequent to this chapter, four 

additional chapters are presented, addressing each specific sub objective under consideration.  

Chapter 4 deals with Selection of suitable GCMs for study area. 

Chapter 5 deals with Regionalization and evaluation of drought characteristics (severity and 

duration) 

Chapter 6 deals with the intricate relationship between drought indices and teleconnections. 

Chapter 7 deals with the drought frequency analysis and development of Severity-Duration-

Frequency and Severity-Area-Frequency curves. 

Chapter 8 deals with summary, Conclusions and provides a glimpse into the Future outlook of the 

undertaken work.  
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CHAPTER 2 

LITERARTURE REVIEW 

 

In this section, a comprehensive examination of the studies conducted by previous investigators 

regarding the selection of GCMs, drought indices, their characteristics and their interconnections 

with teleconnection factors is presented. 

2.1 Global Climate Models 

A significant advancement were achieved in the development of GCMs to simulate the prevailing 

climate and forecast forthcoming climatic changes by Xu, (1999). Demonstrating commendable 

proficiency at continental and hemispheric spatial scales, these models successfully captured a 

substantial portion of the complexity inherent in the global system. However, a fundamental 

limitation emerged in their incapacity to represent local sub grid-scale features and dynamics. This 

study provided a critical examination of the existing disparity between the capabilities of GCMs 

and the requisites of hydrological modelers. It delved into methodologies aimed at mitigating the 

gap, evaluating both advantages and shortcomings in various approaches. The discourse 

culminated in the identification of challenges that had to be addressed in comprehending the 

impacts of climate change in future studies. 

An essential endeavor to examine coupled GCMs, as utilized in the Fourth Assessment Report 

(AR4) of the Intergovernmental Panel on Climate Change (IPCC), was investigated by Perkins et 

al. (2007). This scrutiny is specifically targeted at 12 distinct regions within Australia, with a 

particular emphasis on the meticulous examination of the daily simulation outputs for P, Tmax and 

Tmin. A robust assessment methodology is introduced centering on Probability Density Functions 

(PDFs) and a quantitative metric devised to assess the accuracy of each climate model in 

replicating observed PDFs for every variable within each designated region. Surprisingly, the 

coupled climate persisted. Averaging over Australia, a subset of climate models demonstrates 

commendable performance, capturing more than 80% of observed PDFs for P and Tmin simulation 

is generally satisfactory, with a majority of GCMs capturing over 80% of observed PDFs. Tmax 

simulation is also reasonable, with a significant portion of climate models exhibiting fidelity in 

capturing over 80% of observed PDFs. This study presented an overarching ranking of GCMs, 
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emphasizing their performance in P, Tmax and Tmin and an aggregate over these variables. This 

assessment identified skillful climate models for Australia, offering valuable guidance for their 

application in impacts assessments reliant on precipitation or temperature. It is essential to note 

that these results pertain specifically to the Australian context and the methodology can serve as a 

potent tool for selecting climate models in impacts assessments. 

Involvement in the execution of numerous climate models across shared experiments, have yielded 

extensive datasets containing projections of future climate under various scenarios as studied by 

Tebaldi & Knutti, (2007). These multi-model ensembles systematically capture uncertainties 

arising from initial conditions, parameters and structural aspects of model design. Consequently, 

diverse methodologies had emerged to probabilistically quantify uncertainty in future climate. This 

paper elucidated the rationale behind employing multi-model ensembles, conducted a 

comprehensive review of existing methodologies and performed a comparative analysis of their 

outcomes, focusing on regional temperature projections. The intricacies associated with 

interpreting multi-model results are thoroughly examined, addressing challenges stemming from 

the absence of climate projection verification, model dependence, bias, tuning issues and the 

complexities inherent in comprehending an ensemble of opportunity. 

The performance evaluation of GCMs featured AR4 of IPCC concerning their ability to simulate 

P, Tmax and Tmin across the Murray-Darling Basin in Australia was studied by Maxino et al., (2008). 

Utilizing daily data from the AR4, this study computed the mean and PDFs for each variable. The 

assessment focused on the skill of GCMs in reproducing the observed PDFs, serving as a basis for 

identifying GCMs with significant proficiency over the basin. Notably, the models from the 

Commonwealth Scientific and Industrial Research Organization (CSIRO), Institute Pierre Simon 

Laplace (IPSL) and MIROC-m demonstrated commendable fidelity in capturing the observed 

PDFs for P, Tmax and Tmin. While other models exhibited competence in one or two variables, this 

study manifested limitations or unassessed for the third variable. Thus, this study recommended 

CSIRO, IPSL and MIROC-m for users requiring model results in this basin, emphasizing the 

contextual specificity of this recommendation. The outlined methodology offers a quantitatively 

based and straightforward approach to model selection for impact assessment in regions with 

abundant data. Importantly, the approach emphasizes the simulation of daily derived PDFs, which 
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proves more challenging and robust than merely simulating the mean, providing a stronger basis 

for its application in impacts assessment. 

Leveraging  findings from the AR4 of the IPCC, this study employed extreme value theory to 

discern alterations in the 20-year return levels for daily Tmax and Tmin in Australia by 

Perkins  et  al.,  (2009). The evaluation GCMs encompasses three key aspects: (a) mean 

performance (b) adeptness in replicating the observed PDFs and (c) proficiency in capturing the 

tails of the PDFs. Each ensemble of weak-skilled models indicated more substantial increases in 

both Tmax and Tmin return levels compared to their strong-skilled counterparts. Statistical analysis 

revealed a significant disparity between weak and strong skilled ensembles in Tmax. Consequently, 

weak-skilled models projected statistically larger increments in warming for both Tmax and Tmin 

across Australia, regardless of the criterion used to assess skill. This study underscored the 

significance of model skill in influencing the magnitude of projected temperature changes, 

shedding light on the nuanced implications of model performance for temperature-related 

assessments.   

The unprecedented availability of 6-hourly data from multi-model GCMs was examined by 

McSweeney et al., (2015). This advancement prompted an examination of the feasibility of 

dynamically downscaling multiple GCMs. The proposed approach facilitates the generation of 

high-resolution climate projections, thereby enabling a nuanced evaluation of climate vulnerability 

and impacts. While the comprehensive dynamic downscaling of the entire CMIP5 ensemble 

necessitated substantial technical and human resources, such an extensive undertaking becomes 

was deemed superfluous. This study delineated a methodological framework for selecting a subset 

of 8–10 GCMs from the available CMIP5 models, to represent suitable GCMs of individual 

regions, such as Southeast Asia, Europe and Africa. The process aimed to exclude models deemed 

least realistic for each region, while concurrently capturing the maximum conceivable range of 

variations in surface temperature and precipitation across the specified continental-scale regions. 

Within the subset of CMIP5 GCMs featuring 6-hourly fields, three models (MIROC-ESM, 

MIROC-ESM-CHEM and IPSL-CM5B-LR) were identified as inadequately simulating key 

regional climate aspects, earning them the classification of 'implausible.' Subsequently, the 

remaining models underwent a selection methodology aimed at precluding the inclusion of the 

least performant models unless their exclusion would substantially diminish the range of sampled 
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projections. This meticulous process culminated in the identification of a refined set of models 

well-suited for generating downscaled climate change information, thereby facilitating a coherent 

and comprehensive multi-regional assessment of climate change impacts and adaptation strategies. 

The ensemble of Earth system models accessible in the repository of the fifth phase of the CMIP5 

was regarded as a representation of uncertainty in the trajectory of future climate conditions is 

proposed by Sanderson et al., (2015a). However, the existence of shared code, forcing and 

validation data across multiple models within the archive introduces potential challenges, 

including biases in mean and variance, an inflated effective sample size and the risk of spurious 

correlations due to model replication. This study provides analytical evidence demonstrating that 

the model distribution in the CMIP5 archive deviates from a random sample. To address 

codependency issues in the ensemble, a weighting scheme is proposed. Additionally, a method was 

introduced for the selection of diverse and skillful model subsets within the archive, offering a 

means to mitigate codependency concerns and facilitating the identification of models suitable for 

impact studies requiring consistent joint projections of multiple variables, including their temporal 

and spatial characteristics. 

An investigation delved into the assessment of thirty-six GCMs based on the CMIP5, focusing on 

the simulation performance of Tmax  and Tmin across 40 grid points in India by Srinivasa Raju et 

al., (2017). Three performance indicators—CC, Normalized Root Mean Square Error (NRMSE) 

and SS—were utilized for GCMs evaluation. The entropy method was utilized to determine 

weights for these indicators, with equal weights being employed in sensitivity analysis. The CP, a 

distance-based decision-making technique, was adopted to amalgamate ranking patterns acquired 

for individual grid points, and a straightforward yet efficacious ensemble approach was proposed. 

2.2 Drought Indices and its properties 

The imperative necessity for comprehensive research encompassing diverse facets of expansive 

continental droughts, with the objective of establishing methodologies for their definition, was 

underscored by Yevjevich  & Ica Yevjevich, (1967). The proposal advocated the utilization of runs 

as statistical parameters to delineate the temporal and spatial distribution of water deficits in the 

context of drought definition. Three specific types of runs are identified as pivotal parameters for 

drought definitions: (1) Run length of negative deviations within a time series (duration of 

drought): This parameter focuses on quantifying the temporal extent of droughts by measuring the 
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length of continuous periods featuring negative deviations from the norm. (2) Run-sum of negative 

deviations between a downcross and an upcross of a time series (severity of a drought): This 

parameter evaluated the severity of a drought by summing the negative deviations between the 

points where the time series crossed below and then above a defined threshold and (3) Area-run as 

the deficit of water over a specific time duration (run-length) and area of drought: This parameter 

integrates both temporal and spatial aspects of drought by assessing the deficit of water over a 

designated time duration and the corresponding geographical area. Analytical and data generation 

methods were proposed to determine runs based on known properties of hydrologic time series 

and the interdependence between them. These methodologies were employed at Colorado State 

University over a span of 4 to 5 years to investigate the properties of precipitation, effective 

precipitation, and runoff, thereby influencing drought descriptions. In essence, the research 

outlook encompasses the prediction of large continental droughts and the elucidation of potential 

causal factors underlying their occurrences. 

A streamflow series was comprehensively analyzed for multiyear drought events by  Dracup  et 

al., (1980). These tests, applied to both high-flow and drought event parameters, encompassed the 

examination of (1) stationarity concerning linear trends, (2) randomness in relation to lag-1 serial 

correlation and (3) correlation and cross-correlation among critical parameters, including the 

duration, magnitude and severity of drought events. The outcomes of these statistical examinations 

were carefully analyzed to elucidate their significance in characterizing both high-flow and 

drought event series. Furthermore, the assessment of high-flow and drought event series introduces 

two distinct types of envelopes designed for drought duration and severity. These envelopes 

utilized inequality principles to offer an exceptional representation of the maximum watershed 

response concerning drought duration and severity across the entire record period. The 

presentation of these envelopes contributed valuable insights into understanding the watershed's 

behavior in terms of drought characteristics over time. 

Delving into several critical considerations for formulating a pragmatic and analytical definition 

of droughts provided by Dracup et al., (1980b). Key aspects discussed encompass: (1) The 

delineation of the specific nature of the water deficit under scrutiny, distinguishing between 

hydrological, meteorological, or agricultural droughts. (2) The selection of the averaging period 

utilized to discretize the continuous time series, considering options such as months, seasons, or 
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years. (3) the determination of the truncation level applied to separate drought events from the 

remaining time series, whether based on mean or median values. and (4) the methodology 

employed for standardization. These assessments are thoroughly examined considering their 

implications on diverse approaches to drought frequency analysis. Within the scope of this 

research, drought events were conceptualized as intricate phenomena characterized by distinct 

components, namely, duration, magnitude (quantifying average water deficiency), and severity 

(measuring cumulative water deficiency). The study subsequently applied the proposed drought 

definition procedure in a practical context, exemplified through a case study involving the 

frequency analysis of multiyear hydrologic droughts. This comprehensive exploration aimed to 

contribute to the refinement and standardization of analytical frameworks for drought 

characterization, fostering a more nuanced understanding of drought dynamics in diverse contexts.  

A novel climatic drought index, termed the SPEI was introduced aiming to enhance the existing 

methodologies by incorporating both precipitation and temperature data by Vicente-Serrano et al., 

(2010). The SPEI offered the advantage of integrating multiscale characteristics with the ability to 

consider temperature variability in the assessment of drought conditions. The computation of the 

index entailed a meticulous procedure that integrated a climatic water balance, the aggregation of 

deficit or surplus at various time scales and an adjustment to a log-logistic PDFs. Although sharing 

mathematical similarities with the SPI, the SPEI uniquely incorporated temperature effects. 

Incorporating a water balance, the SPEI allows for a meaningful comparison with the  SC_PDSI. 

Comparative analyses of time series data for these indices was conducted across various 

observatories located in distinct climatic regions worldwide. The results under conditions of global 

warming reveal that, unlike SPI, both the SC_PDSI and SPEI accurately depict an intensification 

in drought severity attributable to heightened water demand resulting from increased 

evapotranspiration. Notably, the SPEI, boasting multiscale attributes 

, outperforms the SC_PDSI in terms of versatility, proving invaluable for comprehensive drought 

analysis and monitoring. 

Drought, a stochastic natural hazard induced by prolonged and intense precipitation deficits, 

manifested significant and delayed impacts on agriculture and hydrology reviewed by Zargar et 

al., (2011). Droughts exhibited distinctive features, characterized by dynamic dimensions such as 

severity and duration, contributing to a complex and subjective network of consequences. Effective 
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drought management necessitates comprehensive characterization, enabling both retrospective 

analyses (e.g., severity-impact assessment) and forward-looking planning (e.g., risk evaluation). 

Drought indices, offering a simplified approach, have facilitated this characterization, with over 

100 indices proposed to date. Some are operational, providing gridded maps for regional and 

national drought assessment, addressing meteorological, agricultural, and hydrological drought 

types. This paper critically reviewed 74 operational and proposed drought indices, emphasizing 

their distinctions and tracing their developmental trends. The diverse array of indices enabled the 

quantification of severity levels and identification of drought onset and cessation, supporting 

various applications such as early warning systems, monitoring efforts and contingency planning. 

A streamflow simulations derived from the Variable Infiltration Capacity (VIC) model is used to 

characterize droughts over the period 1950–2000 was employed by Goyal & Sharma, (2016). The 

focus of the study is on regionalization for the state of Texas, with a specific emphasis on annual 

drought severity levels and durations. Recognizing the regional nature of droughts, the 

identification of homogeneous drought regions becomes imperative for a nuanced exploration of 

their characteristics. In this study, the concept of entropy is employed to delineate homogeneous 

regions based on both drought severity and duration. Directional information transfer, represented 

by a standardized version of mutual information, is utilized for station grouping, and the 

homogeneity of regions is rigorously assessed through L-moments. The outcomes of this analysis 

reveal the formation of eight regions based on drought severity and nine regions based on drought 

duration. Notably, regions in west Texas exhibited heightened severity, in contrast to east Texas, 

which manifested the least severity. South Texas and lower valley zones endured the longest 

drought durations, while east Texas and the upper coast experienced the least prolonged droughts. 

The study highlighted that critically severe and extremely dry droughts are predominantly 

concentrated in the western and central parts of Texas, underscoring the spatial variability of 

drought characteristics across the state. 

2.3 Teleconnections 

The temporal patterns of precipitation and the influence of large-scale climate anomalies within 

the Pearl River basin in South China particularly on subbasin scale is investigated by Niu, (2013). 

Utilizing three prominent data analysis techniques—wavelet analysis, principal component 

analysis (PCA) and rank correlation—the research, encompassing hydrological factors, water 
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resource activities and large-scale climate data, intricately subdivides the entire basin into ten sub-

basins, with the analysis conducted on monthly data. The wavelet analysis revealed distinct 

differences in the temporal scales of fluctuation embedded in monthly precipitation anomalies 

across the basin. PCA identified three coherent regions that demonstrate a similar distribution of 

variability across scales. Employing cross-wavelet transform and wavelet coherence to analyze 

linkages between precipitation and teleconnection patterns, the study indicated that the dominant 

variabilities of precipitation are primarily characterized by the IOD, particularly in the central and 

eastern parts of the Pearl River basin. Regarding the influence of the El Niño-Southern Oscillation 

(ENSO) signal on precipitation, a more significant correlation was observed in the eastern part of 

the basin. Long-term relationships within the 4–8 years band are identified in the western part, 

while the central part appears to serve as a transition zone. Rank correlations of scale-averaged 

wavelet power between regional precipitation and climate indices for the dominant low-frequency 

variability band (0.84–8.40 years) provide additional support for varying precipitation-climate 

relationships across different regions.  

The influence of large-scale climate drivers on drought is imperative for a more profound 

understanding and effective management of these widespread and often prolonged natural hazards 

was quantified by Kingston et al., (2015). This study significantly contributed to advancing our 

understanding of drought dynamics at the continental scale, with a specific focus on Europe. 

Drought events were identified utilizing two key indices: the 6-month cumulative Standardized 

Precipitation Index (SPI-6) and the Standardized Precipitation Evapotranspiration Index (SPEI-6). 

These indices were computed based on the gridded Water and Global Change (WATCH) Forcing 

Dataset, covering the period from 1958 to 2001. By correlating monthly time series of the 

percentage of the European area experiencing drought with geopotential height for the same 

period, the study revealed an association between the onset of drought and a weakening of the 

prevailing westerly circulation. This atmospheric condition was intricately linked to variations in 

the eastern Atlantic/western Russia (EA/WR) and North Atlantic Oscillation (NAO) patterns. 

Through event-based analysis of the most widespread European droughts, the study observed that 

the SPEI-6 identifies a higher number of events compared to the SPI-6. Moreover, SPEI-6 drought 

events exhibit a greater diversity in spatial locations and onset dates. The atmospheric circulation 

drivers also differ between these two types of events, with EA/WR-type variation frequently 

associated with SPEI-6 droughts and NAO associated with SPI-6. This distinction underscored the 
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sensitivity of these drought indices to the underlying drought type- meteorological water balance 

versus precipitation, respectively- and the consequential variations in their timing and spatial 

distribution. 

An advanced forecasting scheme designed to enhance the relevance, timeliness and reliability of 

climate information was introduced by Manatsa et al., (2017). Departing from traditional 

precipitation-only indices such as the SPI, the study adopts the SPEI, incorporating temperature 

and other climatic factors in its formulation. Notably, the SPEI demonstrated a more robust 

connection to the ENSO compared to the SPI. The developed ENSO-SPEI prediction scheme 

provides a quantitative assessment of the spatial extent and severity of predicted drought 

conditions, aligning more closely with the risk profile in the context of global warming in the sub-

region. However, the study established that the substantial regional impact of ENSO was confined 

to the period December–March. This prompted a reevaluation of traditional ENSO-based forecast 

schemes, particularly those dividing the rainfall season into October to December and January to 

March. Despite advancements in numerical models for ENSO prediction, this research underscores 

that anticipating drought impacts associated with ENSO is feasible based solely on observations. 

A notable temporal lag is observed between the development of ENSO phenomena (typically in 

May of the preceding year) and the identification of regional SPEI-defined drought conditions. 

The study demonstrates that using the Southern Africa Regional Climate Outlook Forum’s 

(SARCOF) traditional 3-month averaged Nino 3.4 Sea Surface Temperature (SST) index (June to 

August) as a predictor does not offer significant advantages over using only the May SST index 

values.  

A comprehensive analysis of monthly and seasonal maximum daily precipitation (MMDP and 

SMDP) across 131 stations in Canada was conducted by Tan et al., (2016). Employing various 

adaptations of wavelet analysis, the research revealed that interannual oscillations (1–8 years) 

manifest more pronounced significance compared to interdecadal oscillations (8–30 years) across 

all selected stations. These oscillations exhibited spatial and temporal dependence. The wavelet 

coherence and phase difference between leading principal components of monthly precipitation 

extremes and climate indices are found to be highly variable in both time and periodicity. Notably, 

a singular climate index accounts for less than 40% of the total variability. Partial wavelet 

coherence analysis unveils that both ENSO and PDO modulate the interannual variability, while 
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PDO specifically influences interdecadal variability in MMDP across Canada. NAO exhibits 

correlation with western MMDP at interdecadal scales and eastern MMDP at interannual scales. 

Through composite analysis, it was evident that precipitation extremes at approximately three-

fourths of the stations are significantly influenced by ENSO and PDO patterns, while around half 

of the stations are impacted by NAO patterns. Examining extreme El Niño and extreme PDO 

events of positive phase, the study revealed that the magnitude of SMDP is generally lower 

(higher) over the Canadian Prairies in summer and winter (spring and autumn) during extreme El 

Niño years and vice versa in extreme La Niña years. 

The impact of large-scale climatic teleconnections on meteorological events in Iran through an 

analysis of three prominent climatic indices: Arctic Oscillation (AO), North Atlantic Oscillation 

(NAO) and SOI. Spanning the period from 1960 to 2014, the assessment employs wavelet 

coherence (WCO) within a time-frequency space across 30 synoptic stations was investigated by 

Araghi et al., (2017) . The investigation yields insights into the substantial influence of climatic 

indices on precipitation patterns in Iran. Specifically, the SOI emerges as the most influential, with 

noticeable effects also attributed to AO and NAO The dominant effective period of AO on 

precipitation is equal to or greater than 32 months at most stations, whereas NAO's major effective 

period is equal to or greater than 64 months. In the case of SOI, the impact duration is generally 

less than 64 months for most regions, except for the northwestern area where a predominant period 

greater than 64 months is observed. Phase differences between the three climatic indices and 

precipitation were found to be random, with no consistent patterns. Notably, an anti-phase situation 

was identified at most stations for long-term periods of SOI. The study underscores the efficacy of 

Wavelet Coherence Analysis (WCO) as a potent and flexible method for analyzing the relationship 

between multiple time series in a time–frequency space. The application of WCO in hydrological 

and meteorological research was anticipated to witness significant growth in the near future. 

Hydro-meteorological variables, including precipitation and streamflow, were intricately 

influenced by diverse climatic factors and large-scale atmospheric circulation patterns was 

explored by Rathinasamy et al., (2017). Achieving efficient water resources management 

necessitates a profound comprehension of the impact of climate indices on the precise 

predictability of precipitation. This study focused on elucidating the standalone teleconnection 

between precipitation patterns across India and four prominent climate indices: Niño 3.4, Pacific 
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Decadal Oscillation (PDO), SOI and IOD. The investigation employed partial wavelet analysis, 

considering the cross-correlation between the climate indices while estimating their relationship 

with precipitation. Unlike prior studies that overlooked the interdependence among these climate 

indices when analyzing their effects on precipitation, our study delves into these interrelationships. 

The findings underscore that precipitation was primarily influenced by Niño 3.4 and IOD, 

indicating a non-stationary relationship between precipitation and these two climate indices. 

Moreover, the partial wavelet analysis revealed that SOI and PDO do not significantly impact 

precipitation independently; however, their apparent influence may be attributed to their 

interdependence on Niño 3.4. Notably, the study observes that partial wavelet analysis robustly 

unveils the standalone relationship of climatic factors with precipitation after mitigating the 

influence of other potential factors. This nuanced understanding enhances our ability to discern 

the direct teleconnections between specific climate indices and precipitation in the Indian context. 

2.4 Drought Frequency Analysis 

Definition of drought was deliberated both practically and  analytically was formulated Dracup et 

al., (1980b). The key considerations encompassed (1) focus on nature of the water deficit  that 

specified hydrological, meteorological, or agricultural aspects (2) averaging period for  discretize 

a continuous time series that helps to analyze data at monthly, seasonal, or yearly intervals are 

deemed crucial in capturing the temporal dynamics of drought (3) truncation level for separate 

droughts helps to delineate drought time series (mean or median) emphasizing its impact on 

drought frequency analysis (4) method of regionalization or standardization. These considerations 

explain their impacts on various approaches to drought frequency analysis. To summarize, drought 

events were characterized in terms of duration, magnitude and severity. The proposed methodology 

was applied in a case study featuring a frequency analysis of multiyear hydrologic droughts. The 

study concluded that the definition of drought significantly affects the sample size, drought 

severity, magnitude and duration and the areal extent considered in the analysis. Hydrologists and 

meteorologists were advised to consider the advantages and disadvantages of a chosen drought 

definition in the context of their specific analysis. 

The spatio-temporal characteristics of drought for sustainable water resource management in the 

Conchos River Basin, Mexico was explored by Kim et al., (2002). The Palmer Drought Severity 

Index (PDSI) served as indicator to assess the drought characteristics. Frequency analysis method 
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was employed to investigate the spatio-temporal variations of drought based on drought intensity. 

The kriging estimator was then utilized to examine the spatial distribution of drought. This study 

incorporated the spatial and temporal characteristics of PDSI in developing drought intensity-areal-

frequency curves. These curves explain drought severity and area w.r.t the return period and to 

describe the spatial and recurrence patterns of droughts. The analysis highlighted that a severe 

drought in the year 1990 with a substantial areal extent and a return period of 80 to 100 years. 

A theoretical derivation for univariate and bivariate distribution return periods through a stochastic 

approach, was particularly focused on extreme hydrological event Shiau, (2003) presented. 

Understanding the nature of complexity of drought and flood events, the bivariate distribution was 

considered as a better approach to represent these events (droughts and floods) compared to the 

univariate distribution. Return periods were defined using either two joint random variables or 

separate single variables for bivariate distribution. The study employed Gumbel marginal 

distributions to model the flood peak and flood volume in Pachang River, Southern Taiwan based 

on daily streamflow data. The properties associated with both univariate and bivariate distributions 

was discussed and a good agreement between the models and observed streamflow data. 

A comprehensive analysis of spatial and temporal variations of drought in the Kansabati River 

Basin, India was conducted  by Mishra & Desai, (2005). Utilizing the SPI at multiple timescales 

(1, 3, 6, 9, 12 and 24 month), the basin was divided into 25 grid cells. The inverse distance method 

was employed at each grid for spatial interpolation of precipitation dataset and monthly SPI was 

evaluated using the rain gauge station data for the period 1965–2001. Drought severity, duration 

and frequency were assessed at various timescales. Then, SAF curves were developed using the 

spatio-temporal characteristics of SPI. The SAF curves showed drought severity and area at 

different return periods to describe the spatial and recurrence patterns of drought. The results 

highlighted high short-term droughts in 1979 with return periods of 80 to 100 years over the entire 

basin, while Medium and long-term droughts were frequent in the 1980’s with a return period of 

50 to 100 years, significantly impacting agriculture, reservoir storage and groundwater in the basin. 

A two-dimensional copula for drought severity and duration was constructed by Shiau, (2006). 

Copula parameters were estimated using the Inference Function for Margins (IFM) method, 

assuming gamma and exponential distributions for drought severity and duration. Further various 
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copulas were tested for drought severity and duration, Galambos copula identified as the best fit 

for observed drought. The study applied this approach to determine the severity and duration of 

droughts using SPI for Wushantou, Taiwan. The results indicated a well-fitted copula for the 

drought severity and duration, considered its utility as a valuable tool for exploring the 

relationships among drought variables. 

A comprehensive examination of hydrological droughts using copulas in the Yellow river, China, 

employing copulas to jointly model drought severity and duration was conducted by  Shiau et al., 

(2007). Monthly streamflow data was used to evaluate drought characteristics. As droughts were 

complex in nature, the study applied a bivariate distribution for drought assessment by utilizing 

the clayton copula to describe the joint behavior of drought severity and duration.  to model drought 

severity and duration jointly and copulas was used to achieve this purpose. Further, bivariate return 

periods was also calculated to identify significant historic droughts. The results conclude that a 

severe drought occurred during 1930-1933 with a return period of 105 years and a low return 

period of 4.4 years during 1997–1998 drought, attributed to significantly reduced streamflow in 

the Yellow River due to human activities. 

Spatial characteristics of drought over Razavi and Southern Khorasan provinces in Iran using 

SPI12 was assessed by Bondarabadi et al., (2008). Drought maps were generated through the thin 

plate smoothing splines method and classified into clusters. PDFs were fitted to different SPI 

categories and SAF curves corresponding to different return periods were developed for the study 

region. The results indicated that droughts with 2-to-5-year return periods were expected to cover 

approximately 30% of the region, while severe droughts with 20-to-50-year return periods may 

cover around 70% of the region, emphasizing the expectation of severe droughts with high return 

periods and less areal coverage. 

The assessment of climate change impact on SPI over the Kansabati River Basin, India, as 

conducted by Mishra & Singh (2009), involves a comprehensive analysis. Historical drought 

events were juxtaposed with SAF curves derived from projected rainfall data, incorporating select 

General GCMs and accounting for scenario uncertainties. The Bayesian Neural Network (BNN) 

downscaling method was deployed to extrapolate precipitation patterns from six GCMs, 

subsequently assessing SPI at 3 and 12-month temporal scales. The results indicated an increase 
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in severe droughts during 2001-2050 as compared to the droughts 1980. The developed SAF curves 

were deemed useful for anticipating drought severity with the percentage of areal extent over future 

periods and the author suggested utilizing multiple GCMs helps to ease biases and uncertainties in 

simulations and scenarios. 

To assess multi attributes of drought, SDF curves were developed using copulas for two rain gauge 

stations in Iran  by  Shiau & Modarres, (2009). Using rainfall series from 1954-2003, SPI3 

calculated and used to define drought properties severity, duration, and frequency. A joint 

distribution function was employed for drought severity and duration using copulas and the 

drought frequency was related to the copula-based distribution function to develop SDF curves. 

The analysis revealed that for a given return period and duration, Anzali station experienced greater 

drought severity compared to Abadan station, with the SDF curves concave downwards indicating 

an increase in drought severity increases with duration. 

SDF curves were developed using a copula-based bivariate probabilistic approach over Western 

Rajasthan, India by Janga Reddy & Ganguli, (2012). In this study, SPI at 6-month time scale is 

utilized to analyze the drought characteristics. The joint distribution of severity and duration are 

modelled using Plackett, Archimedean, Elliptical and Extreme Value copula families were 

employed to model the joint distribution of severity and duration. The Gumbel-Hougaard and 

Extreme Value copulas functioned better in modelling the drought characteristics, based on upper 

tail dependence coefficients and statistical techniques. SDF curves were further derived, with the 

conditional return periods assessed using the most effective copula. The study concluded that these 

SDF curves hold potential for aiding in the planning and management of water resources at drought 

prone areas. 

A study was conducted to assess the effectiveness of two metaheuristic methods namely Particle 

Swarm Optimization (PSO) and Genetic Algorithm (GA) in estimating the copula parameters and 

developing SDF curves over Trans Pecos, which was an arid region in Texas, USA by Reddy & 

Singh, (2014) . Drought characteristics was analysed using SPI and drought risk is assessed using 

copula methods. To enhance the accuracy of copula model estimation accurate estimation, GA and 

PSO techniques were applied. Initially, the drought characteristics: severity and duration were 

modelled separately by using various PDFs and the best-fitted models  selected for copula 

modelling. Three copula families, namely Extreme Value, Plackett and Student’s-t were employed 
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to capture the joint dependence between drought severity and duration. The performance of these 

copulas was evaluated using Kolmogorov–Smirnov (KS), Akaike Information Criteria (AIC) and 

tail dependence tests. The results of these performance measures indicated that the Gumbel-

Hougaard copula was fitted as the best model and subsequently employed for development of SDF 

curves. The findings conclude that the use of meta-heuristic techniques helps in accurate estimation 

of copula parameters and derivation of SDF curves. 

Development of hydrologic drought atlas aimed at delineating the spatial variation of severity for 

durations of 3, 6, 12 and 24-months, corresponding to return periods 10, 25, 50 and 100-year across 

Texas state by Rajsekhar et al., (2015). Drought characteristics are derived using the Variable 

Infiltration Capacity (VIC) model applied to monthly stream flow data. The Standardized Stream 

Flow Index (SSFI) is employed to evaluate drought severity and duration and appropriate marginal 

distributions is chosen from gamma, exponential, Weibull and log - normal distributions. The study 

further modeled the joint dependence between drought severity and duration using various copula 

families. Subsequently, SDF curves are developed using the best performed copula. These SDF 

curves are used in constructing the drought atlas for Texas, illustrating drought severity for specific 

durations and return periods. The findings of the research conclude that SDF curves showed 

convex (concave) pattern in arid and semiarid (humid and semi humid) regions. Also, a decreasing 

trend in drought severities is noticed from West to East of Texas. 

A study focusing on the Lake Urmia Basin in Iran was conducted and  developed SPI and SAF 

curves based on one month SPI data for the years 1971 to 2013 by Amirataee et al., (2018). The 

joint PDFs of drought severity and drought area was subsequently modeled using seven copula 

functions from distinct families: Clayton, Gumbel, Frank, Joe, Galambos, Plackett and Normal 

copulas. Frank copula was chosen as the most suitable copula for constructing the joint probability 

distribution. considering various criteria Akaike Information Criteria (AIC), Bayesian Information 

Criteria (BIC) and Root Mean Square Error (RMSE). Frank copula was further used to develop 

SAF curves. The findings underscore the substantial influence of both severe/extreme drought and 

non-drought (wet) behaviors across the majority of the Urmia basin. 

A spatiotemporal analysis of drought occurrence, frequency and hazard in different parts of India 

was conducted by Gupta et al., (2020). They utilized meteorological data from a selected regional 
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climate model for RCP 8.5 to compute the Standardized Precipitation Evapotranspiration Index 

(SPEI) at a 12-month timescale. The study introduced an improved methodology for generating 

Severity-Duration-Frequency (SDF) curves under a Bayesian framework. This novel approach, 

employing copulas, utilized Markov Chain Monte Carlo simulation for parameter estimation. 

Furthermore, the researchers developed Spatially Averaged Frequency (SAF) curves for different 

homogeneous drought regions of India. The study also introduced the Modified Drought Hazard 

Index (MDHI), an enhanced metric for fuzzy drought hazard assessment based on clustering. The 

results of the analysis suggest that, except for Region 2 (Western Ghats), drought frequency 

increased over time in all regions of India. Moreover, drought severity associated with various 

durations is projected to significantly increase with an increase in duration for most regions. The 

study predicted that drought hazard is expected to be higher during the period 2071–2100. 

2.5 Summary and Research gaps 

The Summary on multivariate drought event analysis using Global climate models and 

teleconnections is as follows :  

Selection of suitable Global climate model helps to analyze the drought conditions of any 

region more accurately. Global climate models are the only models available for projecting 

climate systems at any time scale either globally or regionally. In India, frequency of drought 

has increased in recent years and so there is a need to analyze drought both spatial and 

temporally. Regionally, a special attention is needed to characterize the likely occurrence and 

distribution characteristics of droughts for the future. From literature, noticeable effects of 

largescale teleconnections were observed on meteorological variables. Therefore, it is also 

necessary to analyze climate variability (large scale Teleconnections) with drought indices 

pattern. 

Limited studies have been conducted to analyze climate change impacts by considering suitable 

specific global climate models. A gap in exploration of  regional Climate change aspects in 

relation to projection of  drought indices is noticed. India is significantly influenced by large 

scale oscillations; drought indices are to be investigated considering the climate indices. Studies 

on multivariate drought frequency analysis (Severity-duration-frequency and Severity-area-

frequency) is not performed  and projected  using suitable GCMs. 
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CHAPTER 3 

STUDY AREA AND DATA COLLECTION 

3.1 Study Area 

The Telangana region covering an area of 1,12,100 square kilometers, is characterized by a 

catchment area of 69% of river Krishna and 79% of river Godavari. It is a semi-arid region and 

has a predominantly hot and dry climate. Annual rainfall ranges from 700mm to 1500mm and 

average temperature varies from 22° to 42°c.  

The economic foundation of Telangana is predominantly rooted in agriculture. The state benefits 

significantly from the presence of two major rivers in India, the Godavari and Krishna, which 

traverse through, providing essential irrigation support. Agriculture in Telangana relies heavily on 

rain-fed water sources. Primary crops include rice, with additional emphasis on cotton, sugar cane, 

mango, and tobacco as local staples. Notably, there has been a recent shift towards cultivating 

crops such as sunflower and peanuts for vegetable oil production. Ongoing developments 

encompass various multi-state irrigation projects, notably the Godavari River Basin Irrigation 

Projects and the Nagarjuna Sagar Dam, recognized as the world's highest masonry dam.  

Figure 3.1 in the study provides a visual representation of the study area map.  

 

Figure 3.1. Study area map considered for the research. 
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Hydromorphological conditions in Telangana, India, encompass a variety of factors influenced by 

the state's geography, climate, and human activities mentioned below: 

River Systems: Telangana is traversed by several rivers, including the Godavari, Krishna, and their 

tributaries. These rivers play a crucial role in the state's water resources, agriculture, and overall 

ecosystem health. However, their flow and health are significantly impacted by damming, 

irrigation projects, and diversion for urban and agricultural needs. 

Groundwater: The state heavily relies on groundwater for irrigation and domestic use. However, 

over-extraction and inadequate recharge mechanisms have led to declining groundwater levels in 

several areas, exacerbating water scarcity issues, particularly during dry periods. 

Reservoirs and Tanks: Telangana has numerous reservoirs and tanks (local water storage 

structures) that play a vital role in water management, particularly for agriculture.  

Water Quality: Industrialization and urbanization have introduced pollutants into the water bodies 

of Telangana, affecting water quality.  

Hydrological Extremes: Telangana experiences both droughts and occasional floods. The state 

government has implemented various measures for flood control and mitigation, including the 

construction of reservoirs with flood control capabilities. 

Erosion and Sedimentation: Soil erosion, particularly in the catchment areas of rivers and 

reservoirs, contributes to sedimentation, affecting water storage capacity and water quality. 

Urban Water Management: Rapid urbanization in cities like Hyderabad has placed significant 

pressure on water resources. Efforts are being made to improve urban water management practices 

and infrastructure to meet growing demands sustainably. 

Climate Change: The changing climate patterns, including variations in rainfall intensity and 

distribution, pose challenges to water resource management in Telangana. Adaptation strategies 

are being explored to mitigate the impacts of climate change on water availability and quality. 

Overall, the hydro morphological conditions in Telangana reflect a complex interplay of natural 

processes and human activities, necessitating integrated water resource management approaches 

for sustainable development and environmental conservation. 



27 
 

Telangana, like many regions in India, has experienced several notable droughts throughout its 

history which have significant socioeconomic and environmental impacts.  

1966: This drought was severe and widespread across India, including Telangana. It led to 

significant agricultural losses and water scarcity. 

1972: Another major drought that affected Telangana and other parts of India, causing crop failures 

and water shortages. 

1985-1987: This was a prolonged drought period that affected Telangana, among other regions in 

India. It led to widespread distress in agriculture and affected rural livelihoods. 

2002: Telangana experienced a severe drought in 2002, which was part of a larger drought affecting 

many parts of India. 

2015: In recent times, Telangana faced another severe drought in 2015. This drought significantly 

impacted agriculture, particularly rain-fed crops. 

2018: Parts of Telangana experienced drought conditions in 2018, leading to agricultural stress and 

water scarcity issues. 

Issues associated with droughts in Telangana are mentioned  

Frequency and Severity: Telangana is prone to recurrent droughts, typically caused by deficient 

monsoon rains. These droughts vary in severity and duration, affecting agricultural productivity, 

water availability, and livelihoods. 

Agricultural Impacts: Agriculture is the backbone of Telangana’s economy, with a substantial 

portion of the population dependent on rain-fed farming. Drought leads to crop failures, reduced 

yields, and loss of livestock, impacting farmers' incomes and food security. 

Water Stress: Droughts exacerbate water stress in Telangana, particularly in rural areas dependent 

on groundwater and surface water sources. Over-extraction of groundwater during droughts can 

lead to depleted aquifers and long-term water scarcity issues. 

Livelihood Challenges: Droughts often result in economic distress and migration as farmers 

struggle to cope with crop failures and loss of income. Rural communities dependent on agriculture 

face heightened vulnerability during prolonged dry spells. 
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Environmental Impact: Droughts can lead to environmental degradation, including soil erosion, 

loss of vegetation cover, and depletion of biodiversity. Reduced water availability also affects 

ecosystems, wildlife, and natural habitats. 

Social Implications: Droughts exacerbate social inequalities and vulnerabilities, disproportionately 

affecting marginalized communities, women, and children. Access to water, healthcare, and 

education can become compromised during severe drought periods. 

Policy and Management Challenges: Effective drought management requires robust policies, early 

warning systems, and proactive measures such as water conservation, watershed management, and 

drought-resistant crop cultivation. Challenges arise in implementing these measures effectively 

across diverse socio-economic landscapes. 

Climate Change: Changing climate patterns, including erratic rainfall and rising temperatures, pose 

additional challenges for drought mitigation and adaptation strategies in Telangana. Climate 

change projections suggest an increase in the frequency and intensity of extreme weather events, 

including droughts. 

In response to these challenges, Telangana has implemented various drought management 

strategies, including drought relief measures, water conservation programs, crop insurance 

schemes, and investments in irrigation infrastructure. However, continued efforts are needed to 

enhance resilience, improve water resource management, and mitigate the impacts of future 

drought events on the state’s population and environment. 

3.2 Data Collection 

3.2.1 India Meteorological Department (IMD) 

In the present investigation, gridded datasets comprising precipitation, maximum temperature, 

minimum temperature and average temperature have been employed. These datasets originate 

from the India Meteorological Department (IMD) and span the temporal interval from 1975 to 

2017. The data under consideration is characterized by a spatial resolution of 1°×1°, with temporal 

increments maintained on a monthly basis within the specified study area, as elucidated in the 

works of Rajeevan et al. (2008) and Srivastava et al. (2009). 
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Figure 3.2. Study area map with grid points considered for the research. 
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Table 3.1 Global Climate Models (GCMs) considered in the study. 
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3.2.2 Coupled Model Intercomparison Project 5 model (CMIP5) 

In this study, CMIP5 GCMs  have been meticulously examined, particularly within the framework 

of Representative Concentration Pathways (RCP) 8.5 scenarios. The variables under scrutiny 

encompass precipitation, maximum temperature, minimum temperature and average temperature. 

The CMIP5 data, crucial to this analysis, has been sourced from the IPCC website http://www.ipcc-

data.org/sim/gcm_monthly/. A total of 36 distinct dataset models derived from CMIP5, each 

representing an ensemble of single realizations, have been systematically incorporated into the 

study and are itemized in Table 3.1. 

3.2.3 Self-Calibrated Palmer Drought Severity Index (SC_PDSI) 

The SC_PDSI dataset employed in this investigation is acquired from the Climatic Research Unit 

Time Series (CRU TS) website, presenting a spatial resolution of 0.5°×0.5°. The dataset undergoes 

regular annual updates, with the present investigation incorporating the CRU TS 4.03 version, a 

recent iteration of the dataset. The dataset can be accessed at the following link: 

http://www.cru.uea.ac.uk/data. 

3.2.4 Climate Data 

The study encompasses an analysis of monthly climate oscillations namely NINO 3.4, Multivariate 

ENSO Index (MEI), Southern Oscillation Index (SOI) and Dipole Mode Index (DMI), during the 

period from 2003 to 2017. Monthly Sea Surface Temperature (SST) anomaly data for NINO3.4 is 

accessible at (http://www.esrl.noaa.gov/psd/gcoswgsp/Timeseries/Data/nino34.long.anom.data). 

MEI is selectively sourced and obtained from (https://www.esrl.noaa.gov/psd/enso/mei). SOI data 

is acquired from the National Oceanic and Atmospheric Administration (NOAA) Earth System 

Research Laboratory at (https://psl.noaa.gov/gcos_wgsp/Timeseries/SOI/). Indian Ocean Dipole 

(IOD) is quantified as DMI due to the dipole mode in the tropical Indian ocean and the DMI data 

is retrieved from (http://www.jamstec.go.jp/frcgc/research/d1/iod/DATA/dmi).  

 

 

 

http://www.ipcc-data.org/sim/gcm_monthly/
http://www.ipcc-data.org/sim/gcm_monthly/
http://www.cru.uea.ac.uk/data
http://www.esrl.noaa.gov/psd/gcoswgsp/Timeseries/Data/nino34.long.anom.data
https://www.esrl.noaa.gov/psd/enso/mei
https://psl.noaa.gov/gcos_wgsp/Timeseries/SOI/
http://www.jamstec.go.jp/frcgc/research/d1/iod/DATA/dmi
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CHAPTER 4 

SELECTION OF SUTIABLE GLOBAL CLIMATE MODELS 

 

4.1 Introduction  

GCMs constitute indispensable tools for projecting future climatic scenarios. Facilitated by the 

World Climate Research Program (WCRP), the provision of coordinated GCMs datasets 

contributes significantly to advancing climate science. The comprehensive nature of GCMs allows 

for the evaluation of physical processes across land surfaces, oceans and the atmosphere. 

Consequently, GCMs prove instrumental in conducting hydro-climatological studies. Recognizing 

their prowess, GCMs are increasingly pivotal in determining climate variables for short, medium 

and long-term water resource management and planning strategies. The imperative impact of 

climate change on hydrometeorological variables underscores their critical role in predicting 

phenomena such as droughts, floods and reservoir operations. 

However, the efficacy of GCMs is contingent upon the scale of analysis. While they adeptly 

demonstrate global climate changes at a large grid scale, their accuracy diminishes progressively 

at smaller, local or regional grid scales (Reichler and Kim, 2008; Xu, 1999). Despite this limitation, 

GCMs remain the sole models capable of projecting climate systems across various temporal 

scales. Notably, uncertainties escalate when assessing GCMs at regional and local levels 

(Mujumdar and Kumar, 2012). The IPCC AR5 delineates these uncertainties, attributing them to 

the internal variability of short-term projections, variability at small spatial and temporal 

magnitudes, the dynamic nature of climate scenarios due to anthropogenic activities, the inherent 

physical responses governed by model equations and the predictors influencing the predictands 

(IPCC, 2013). 

Mitigating these uncertainties necessitates an initial step – the evaluation of climate model 

performance within a specified study region. Given the regional and variable-specific variations 

in model performance, such evaluations become crucial (IPCC, 2013; McSweeney et al., 2015). 

Consequently, appraising the performance of climate models at both global and regional scales 

becomes paramount to tempering uncertainty when applying these models in climate change 

studies. The assessment of appropriate GCMs at the regional level proves pivotal for scrutinizing 

the climatic impact on hydrological, meteorological and climatological studies (Smith and Chiew, 
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2010; Pitman et al., 2012). Numerous studies have undertaken evaluations of GCMs, scrutinizing 

climatic parameters such as Tmax, Tmin, P  and sea surface temperature across diverse global regions 

and temporal scales (Perkins et al., 2007; Murphy et al., 2004; Maxino et al., 2008). The 

performance evaluations of GCMs involve employing various statistical metrics, including Root 

Mean Square Error (RMSE), Normalized Root Mean Square Error (RMSE), Correlation 

Coefficient (CC); proposed by Galton, 1888), Skill Score (SS); proposed by Perkins et al., 2007), 

among others (Sun et al., 2015; Perkins et al., 2009; Maxino et al., 2008). Recommendations from 

various studies emphasize the adoption of simple yet significant SSPMetrics for GCM evaluations 

(Johnson et al., 2011; Tebaldi and Knutti, 2007; Johnson and Sharma, 2009). 

Contemporary model evaluation studies employ diverse methodologies (Giorgi and Mearns, 2002; 

Zeleney, 1973; Raju and Kumar, 2014 a, b; Perkins et al., 2007; Sreelatha and AnandRaj, 2019). 

Ensemble models have proven effective in enhancing skill and consistency in climate impact 

studies (Tebaldi and Knutti, 2007). Consequently, within multi-model ensembles targeting various 

global regions, methodologies such as the equally weighted mean, weighted mean and Bayesian 

techniques are applied (Sanderson et al., 2017; Giorgi and Mearns, 2002; Abramowitz and Bishop, 

2015).  

An extensive review of the existing literature underscores the strategic advantage of evaluating the 

capabilities of GCMs within the realm of climate model studies, attributing this practice to its 

potential to mitigate uncertainty. This study is directed towards end-users of model outputs and 

endeavors to establish a foundational framework for the regional assessment of GCMs within the 

realm of climate change evaluations. The paramount objective of this investigation is to conduct 

meticulous regional evaluation of GCMs procured from the CMIP5, with a specific focus on P, 

Tmax, Tavg and Tmin and its projection using suitable models  within Telangana State, situated in the 

southern part of India. The selection of these four variables are predicated upon their substantial 

impact on and reciprocal responses from meteorological, hydrological, agricultural, industrial and 

human activities. In the current landscape, climate models find extensive application across diverse 

sectors, spanning varied spatial and temporal scales. Consequently, stakeholders necessitate an 

acute understanding of each model's performance at regional scales relevant to their specific 

domains. It is crucial to acknowledge that models deemed suitable for Telangana State may not 

necessarily exhibit optimality when applied to other geographical regions. Considering this, 
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researchers are strongly encouraged to discern the most pertinent GCMs for their respective study 

regions by adhering to the procedural guidelines expounded in this comprehensive study. The flow 

chart illustrating the objective is depicted in Figure 4.1. 

The sub objectives of this section are:  

• Selecting the suitable global climate models using P, Tmax, Tavg and Tmin datasets from IMD 

and IPCC 

• Projection of suitable global climate models    

 

 

Figure 4.1: Flow chart for objective 1 
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4.2 Methodology 

4.2.1 Processing and Analysis of data 

a. The spatial resolution of the IMD datasets pertaining to the study region is precisely defined 

at 1°×1° obtained for the temporal scale  1975-2017. Thirty-six GCMs encompassing 

simulated historical monthly data for P, Tmax, Tavg and Tmin datasets. 

b. To achieve coherence and congruence between the GCMs and IMD datasets, bilinear 

interpolation is employed to systematically re-grid the climate model datasets using Climate 

Data Operator (CDO) ensuring alignment with the identical grid points as those featured in the 

IMD data.  

c. The re-gridded GCM data with the IMD data are integrated for further analysis and  ensuring 

that all datasets (GCMs and IMD) are consistently aligned spatially and temporally. 

d. Standard statistical performance metrics are calculated (NRMSD,CC,SS) 

e. A payoff matrix of GCMs and SSPMetrics for variable at each grid point is developed. 

f. Degree of diversification and weights are assigned to each variable at each grid point 

g. Compromise programming is applied at each grid point, the lowest Lp metric is considered as 

the most suitable GCM at that grid point.  

h. The same procedure is followed at each grid point for each variable and group decision 

methodology is applied to find ensemble models. 

4.2.2 Normalized Root Mean Square Deviation (NRMSD) 

The NRMSD quantifies the extent of variation between observed and model values, with a 

desirable model exhibiting NRMSD values proximal to zero. NRMSD is computed using equation 

4.1. 

                       𝑁𝑅𝑀𝑆𝐷 =
√[(

1

𝑧
) ∑ (𝑜𝑖−𝑚𝑖)2]𝑧

𝑖=1

𝑜̅
                                                               (4.1) 

where 𝑜𝑖 and 𝑚𝑖 denote observed and model values at each point 𝑖 (1,2, … 𝑧) of the dataset. 

4.2.3  Correlation Coefficient (CC) 

The CC establishes a statistical relationship between observed and model values, with an ideal 

model exhibiting a CC value approaching 1. The CC value is determined using equation 4.2. 

                                    𝐶𝐶 =
∑ (𝑜𝑖−𝑜̅)(𝑚𝑖−𝑚̅)𝑧

𝑖=1

(𝑧−1)𝑠𝑜𝑠𝑚
      (4.2) 
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where 𝑜̅ and 𝑚̅  represents the mean values and 𝑠𝑜 and 𝑠𝑚 are the standard deviations of the 

observed and model values, respectively. 

4.2.4 Skill Score (SS) 

The SS gauges the similarity measure between the observed and model-simulated PDFs, with a 

value of 1 indicating best performance. SS is given by equation 4.3. 

                                   𝑆𝑆 =  ∑ min(𝑓𝑜,𝑓𝑠)𝑐𝑖
𝑥=1                        (4.3)  

where 𝑓𝑜 and 𝑓𝑠 denote the frequencies of observed and model values, 𝑐𝑖 represents the number of 

class intervals and  𝑥 indicates the number of metrics.  

4.2.5 Entropy Method 

The entropy method, as elucidated by Hwang and Yoon (1981), explores the disparities between 

data sets. 

4.2.5.1 Estimation of weights   

Weights for metrics are determined through the entropy method (Eq. 4.4), chosen in this study for 

its efficacy in ranking models in a multi-criteria decision-making context (Pomerol and Romero, 

2000). The entropy of the matrix is computed using equation 4.4. 

                                             𝐸𝑥 =
1

ln (𝑧)
∑ 𝑝𝑖𝑧

𝑧
𝑖=1 ln (𝑝𝑖𝑥)     (4.4) 

where 𝑝𝑖𝑧 is the payoff matrix, 𝐸𝑥 is the entropy of the metric, 𝑥 is the number of SSPMetrics 

(1,2, . . 𝑋), 𝑖 is the number of models. The total number of SSPMetrics is indicated by 𝑋. 

 4.2.5.2 Degree of Diversification  

The degree of diversification denoted as 𝐷𝑥  quantifies the outcome of criterion 𝑥 from the dataset 

and is given by using equation 4.5. 

                                                 𝐷𝑥 = 1 −  𝐸𝑥       (4.5) 

4.2.5.3  Weights of SSPMetrics 

Normalized  weights of performance metrics  are expressed as: 

                                             𝑤𝑥 =  
𝐷𝑥

∑ 𝐷𝑥
𝑋
𝑥=1

         (4.6) 

where 𝑤𝑥 signifies the weights assigned to the SSPMetrics. 
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4.2.6 Compromise Programming (CP) 

Zeleny (1973) introduced CP as a method to identify solutions closest to an ideal solution. The 

distance measure matrix of SSPMetric is given by using equation 4.7. 

                                  𝐿𝑝(𝑎) = [∑ 𝑤𝑥
𝑝𝑋

𝑥=1 |𝑓𝑥
∗ − 𝑓𝑥(𝑎)|𝑝]

1

𝑝                (4.7) 

where 𝐿𝑝(𝑎) denotes the distance measure metric for GCM 𝑎 of parameter 𝑝,  𝑓𝑥
∗
 is the normalized 

value of SSPMetric 𝑥, 𝑓𝑥(𝑎) is the normalized ideal value of SSPMetric 𝑥 and 𝑝 represents the 

distance measure parameter (1, 2, … ∞). 

4.2.7 Group Decision Making Approach (GDMA) 

GDMA as outlined by Duckstein et al. (1989) and Stewart et al. (1992), constitutes a process for 

determining the optimal option when grid points are considered. In instances where a singular 

feasible alternative is sought, GDMA is implemented. Rankings are established in a descending 

order and are bifurcated into two distinct parts - upper and lower.  

Within the model framework, denoted as 𝑋 =
𝑤

2
, where 𝑤 represents the total number of GCMs. 

The terms within the upper part of the GCMs list are assigned rankings  from 1 to 𝑋. The 

significance strength of the model is given by equation 4.8 and weakness is given by equation 4.9. 

                             𝑆𝑢 = ∑ ∑ (𝑥 − 𝑧 + 1)𝑥
𝑧=1 𝑞𝑢𝑧

𝑘 ∀𝑢, 𝑘∀𝑧 = 1, … 𝑥𝑚
𝑘=1         (4.8)                 

where 𝑆𝑢 signifies the strength of model 𝑢, 𝑞𝑢𝑧
𝑘 = 1 when model 𝑢 is in position 𝑧 for grid 𝑘, else 

0; The indices 𝑘 = 1,2, … 𝑚 denote the grid points; 𝑧 represent the rank position varying from 1 

to 𝑥 in the upper part, 𝑚 denotes the grid points; 𝑢 indicates the model in the upper part.    

                             𝑊𝑢 = ∑ ∑ (𝑧 − 𝑦 + 1)𝑤
𝑧=𝑦 𝑞𝑢𝑧

𝑘 ∀𝑢, 𝑘∀𝑧 = 𝑦, … 𝑤𝑚
𝑘=1    (4.9)       

Similarly,  𝑊𝑢 denotes the weakness of model 𝑢, 𝑞𝑢𝑧
𝑘 = 1 when model 𝑢 is in position 𝑧 position 

for grid 𝑘, else it is 0; 𝑧 is the rank position varying from 1 to 𝑦 in the lower part;  𝑢 indicates the 

model in the lower part.  

The net strength of each  GCM model 𝑢 is articulated as: 

                          𝑁𝑢 = 𝑆𝑢 − 𝑊𝑢                      (4.10)                     
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The model exhibiting the highest net strength is deemed the preferred choice, while other models 

are ranked accordingly in descending order of their net strength values. This structured approach 

within the GDMA framework enhances the decision-making process by systematically evaluating 

the relative strengths and weaknesses of each GCM model. 

4.3  Results and Discussions   

In this study, both observed data from the IMD and simulated data from GCMs are utilized for 14 

distinct grid points, characterized by latitude and longitude, to analyze P, Tmax, Tavg and Tmin. The 

assessment involved the computation of CC, SS and NRMSD collectively referred to as 

SSPMetrics. For each variable (P, Tmax, Tavg and Tmin) at every grid point, Normalized weights 

using the entropy method and equal weights through sensitivity analysis for each SSPMetric are 

calculated. The subsequent step involved assigning ranks to GCMs based on their Lp values 

obtained through CP. The lowest Lp value for a model is assigned a rank of 1, exemplified in Table 

4.1 for P at grid point 18.35°×80.85°. Table 4.5 provides an overview of SSPMetrics with 

minimum and maximum values for P, Tmax, Tavg and Tmin at the same grid point, utilizing both 

entropy and sensitivity methods. The weight distributions for all three variables are detailed in 

Tables 4.6.(a) and 4.6.(b) It is noteworthy that slight variations in the Lp values lead to changes in 

the ranking positions of GCMs. This comprehensive procedure is systematically repeated for all 

grid points within the study area, with the results exemplified for grid point 18.35°×80.85°. 

4.3.1 Analysis of Precipitation 

Table 4.1 presents a comprehensive overview of the SSPMetrics and associated ranks for P, 

encompassing SS, CC and NRMSD using Entropy method across all 36 GCMs. Notably, an 

optimal value of 1 is sought for both SS and CC and to align NRMSD with CC and SS, a negative 

sign is ascribed to NRMSD. Weights are meticulously computed for each GCM with respect to 

every SSPMetric, employing the entropy method and a sensitivity analysis method with equal 

weights. 

The weight distribution across the considered SSPMetrics, where SS holds a predominant position 

with weight percentages of 41.2% (entropy method) and 38.02% (sensitivity analysis), surpassing 

the weight allocations for CC (36.3% and 35.9%) and NRMSD (22.5% and 26.08%) in both 

entropy and sensitivity analysis methodologies, respectively. 
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4.3.2 Analysis of Maximum Temperature  

The same procedure as that described in section 4.3.1 is repeated, to calculate the SSPMetrics and rankings 

with respect to the Tmax. Using the entropy method, the minimum value of the 𝐿𝑝 metric, 0.0047 (Table 4.2), 

is observed for the BCC-CSM1.1(m) model, followed by MIROC5 (0.0063) and CanESM2 (0.0085). The 

maximum value is observed for CCSM4 (0.0479; Table 4.2). In the sensitivity analysis, the minimum value 

of 𝐿𝑝 metric, 0.0681 (Table 4.5), is observed for BCC-CSM1.1(m) and maximum value is observed for 

IPSL-CSM5B-LR (0.2671). Note : Column 1-S.No represents model name as of in Table 4.1. From Table 

4.6.(a) and (b), In case of Tmax, CC (46.8%) has higher percent of weightage compared to SS (40.4%) and 

NRMSD (12.8%) in the entropy method. The same is observed in the sensitivity analysis method : CC 

(43.4%), SS (37.9%) and NRMSD (18.7%). 

4.3.3 Analysis of Minimum Temperature 

The analysis of 𝑇𝑚𝑖𝑛 in terms of SSPMetrics and rankings for grid point (18.35° × 80.85°) is presented in 

Table 4.3. In the entropy method, the minimum value of the 𝐿𝑝 metric (0.0159; Table 4.3) is observed for 

CanESM2, followed by ACCESS1.0 (0.0166) and MRI-CGCM3 (0.0171), whereas CMCC-CMS exhibited 

the maximum value (0.0418; Table 4.3). In the sensitivity analysis, the minimum value of 𝐿𝑝 metric is 

observed for HadGEM2-CC (0.1937; Table 4.5), while the maximum value is observed for CMCC-CMS 

(0.2819). Note : Column 1-S.No represents model name as of in Table 4.1. From the analysis (Table 4.6.(a) 

and (b)), CC (57.3%) has higher percent of weightage compared to SS (28.1%) and NRMSD (10.6%) in 

the entropy method. The same is observed in the sensitivity analysis, with CC, SS and NRMSD equal to 

47.8%, 37.6% and 14.6%, respectively. 

4.3.4 Analysis of Average Temperature 

The analysis of 𝑇𝑎𝑣𝑔 in terms of SSPMetrics and rankings for grid point (18.35° × 80.85°) is presented in 

Table 4.4. In the entropy method, the minimum value of the 𝐿𝑝 metric (0.0040; Table 4.4) is observed for 

BCC-CSM1.1(m), followed by MIROC5 (0.0040) and HadGEM2-A0 (0.0041), whereas Had-GEM2ES 

exhibited the maximum value (0.0227; Table 4.4). In the sensitivity analysis, the minimum value of 

𝐿𝑝 metric is observed for MIROC5 (0.0052; Table 4.5), while the maximum value is observed for 

ACCESS1.3 (0.0325). Note : S.No represents model name as of in Table 4.1. From the analysis (Table 

4.6(a)and (b)), SS has higher percent of weightage compared to CC and NRMSD in both entropy and 

sensitivity method. 
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Table 4.1: SSPMetrics, 𝐿𝑝 metric and rank of P at grid point (18.35° × 80.85°)using entropy 

method. 
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Table 4.2: SSPMetrics values of 𝑇𝑚𝑎𝑥 (NRMSD-CC-SS), 𝐿𝑝 metric and Rank at grid point 

(18.35° × 80.85°) for entropy method. S.No represents model name as of in Table 4.1. 

S.No NRMSD CC SS 𝑳𝒑 RANK 

1 0.0747 0.8378 0.7372 0.0118 5 

2 0.0833 0.8454 0.8429 0.0047 1 

3 0.1034 0.8152 0.5897 0.0258 16 

4 0.0903 0.8367 0.7724 0.0085 3 

5 0.0880 0.8982 0.6699 0.0179 10 

6 0.0971 0.8731 0.6378 0.0210 13 

7 0.0810 0.8478 0.7404 0.0114 4 

8 0.1142 0.8132 0.5577 0.0289 22 

9 0.1795 0.6483 0.5641 0.0289 21 

10 0.1258 0.7382 0.6731 0.0180 11 

11 0.0997 0.9000 0.4968 0.0348 28 

12 0.1409 0.8324 0.4199 0.0423 34 

13 0.1652 0.8717 0.3814 0.0460 35 

14 0.1436 0.6705 0.6571 0.0200 12 

15 0.1277 0.6870 0.7340 0.0129 6 

16 0.2018 0.4549 0.5673 0.0304 23 

17 0.1189 0.7770 0.5801 0.0268 18 

18 0.1130 0.8526 0.5064 0.0339 27 

19 0.1110 0.8792 0.5096 0.0335 25 

20 0.0590 0.8456 0.8141 0.0063 2 

21 0.0793 0.8161 0.6891 0.0164 8 

22 0.0827 0.8239 0.6795 0.0172 9 

23 0.1138 0.8583 0.6346 0.0212 14 

24 0.1141 0.8740 0.5833 0.0263 17 

25 0.1167 0.8040 0.7083 0.0142 7 

26 0.1343 0.8175 0.5064 0.0339 26 

27 0.1359 0.7404 0.5641 0.0285 19 

28 0.1469 0.8928 0.3622 0.0479 36 

29 0.1312 0.8945 0.4551 0.0388 29 

30 0.1192 0.9126 0.4487 0.0395 31 

31 0.1167 0.8748 0.5160 0.0329 24 

32 0.1207 0.8887 0.4519 0.0392 30 

33 0.1040 0.8683 0.6186 0.0229 15 

34 0.1094 0.8862 0.5577 0.0288 20 

35 0.1577 0.8912 0.4327 0.0410 33 

36 0.1496 0.8913 0.4423 0.0401 32 
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Table 4.3: SSPMetrics values of 𝑇𝑚𝑖𝑛 (NRMSD-CC-SS), 𝐿𝑝 metric and Rank at grid point 

(18.35° × 80.85°)  for entropy method. S.No represents model name as of in Table 4.1. 

 

S.No NRMSD CC SS 𝑳𝒑 RANK 

1 0.0930 0.8713 0.8590 0.0171 4 

2 0.1321 0.8796 0.7179 0.0211 10 

3 0.0844 0.9272 0.8462 0.0173 5 

4 0.1547 0.8010 0.8173 0.0159 1 

5 0.0926 0.9408 0.8077 0.0178 7 

6 0.5572 0.5584 0.4483 0.0418 36 

7 0.2604 0.9114 0.5801 0.0300 28 

8 0.1676 0.8104 0.7853 0.0166 2 

9 0.1238 0.8057 0.7147 0.0218 11 

10 0.1154 0.8168 0.7019 0.0229 17 

11 0.0801 0.9312 0.8141 0.0180 8 

12 0.2217 0.9346 0.4968 0.0381 34 

13 0.5561 0.5524 0.4583 0.0413 35 

14 0.2439 0.8116 0.5641 0.0319 30 

15 0.2072 0.8419 0.5994 0.0291 27 

16 0.3209 0.7290 0.5769 0.0301 29 

17 0.0999 0.7962 0.6891 0.0242 24 

18 0.0875 0.8790 0.7179 0.0223 13 

19 0.0885 0.8814 0.7051 0.0231 19 

20 0.0776 0.9329 0.8526 0.0175 6 

21 0.2295 0.8784 0.6603 0.0234 20 

22 0.1780 0.8737 0.6859 0.0224 14 

23 0.1465 0.9354 0.6859 0.0230 18 

24 0.1420 0.9335 0.6763 0.0238 21 

25 0.0943 0.8918 0.8429 0.0171 3 

26 0.1315 0.7713 0.6859 0.0239 22 

27 0.1353 0.7828 0.6987 0.0228 16 

28 0.2229 0.7643 0.5353 0.0349 33 

29 0.2263 0.7818 0.5673 0.0319 31 

30 0.2016 0.8671 0.5385 0.0346 32 

31 0.1482 0.8165 0.7404 0.0195 9 

32 0.1564 0.8135 0.6699 0.0243 25 

33 0.2307 0.8840 0.6410 0.0250 26 

34 0.1295 0.9242 0.7051 0.0220 12 

35 0.1206 0.9398 0.6795 0.0241 23 

36 0.1093 0.9244 0.7051 0.0225 15 
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Table 4.4: SSPMetrics values of 𝑇𝑎𝑣𝑔 (NRMSD-CC-SS), 𝐿𝑝 metric and Rank at grid point 

(18.35° × 80.85°)  for entropy method. S.No represents model name as of in Table 4.1. 

S.No NRMSD CC SS Lp Rank 

1 0.8267 0.7212 0.0769 0.0053 8 

2 0.8560 0.8269 0.0729 0.0040 1 

3 0.8743 0.6186 0.0886 0.0067 13 

4 0.8509 0.7404 0.0857 0.0045 6 

5 0.9022 0.6859 0.0764 0.0052 7 

6 0.8267 0.7115 0.0769 0.0054 9 

7 0.8758 0.7853 0.0612 0.0042 4 

8 0.8399 0.8173 0.0715 0.0042 5 

9 0.6513 0.5160 0.1981 0.0115 31 

10 0.7454 0.6923 0.1129 0.0067 14 

11 0.9049 0.5353 0.0955 0.0086 18 

12 0.8565 0.3590 0.1544 0.0131 34 

13 0.9042 0.4455 0.1377 0.0107 27 

14 0.6679 0.6667 0.1332 0.0086 19 

15 0.6957 0.6763 0.1291 0.0079 17 

16 0.4733 0.5994 0.1842 0.0140 35 

17 0.8442 0.6635 0.0921 0.0059 11 

18 0.8905 0.5192 0.1044 0.0090 20 

19 0.8949 0.4968 0.1075 0.0095 25 

20 0.8704 0.8077 0.0638 0.0041 3 

21 0.8210 0.6987 0.0717 0.0058 10 

22 0.8418 0.0021 0.0651 0.0227 36 

23 0.8912 0.5737 0.1079 0.0075 16 

24 0.8806 0.6058 0.1045 0.0068 15 

25 0.7769 0.6987 0.1175 0.0059 12 

26 0.8011 0.5256 0.1330 0.0092 24 

27 0.7565 0.5577 0.1268 0.0091 21 

28 0.9047 0.4455 0.1283 0.0107 28 

29 0.9267 0.4199 0.1221 0.0114 30 

30 0.9182 0.4006 0.1338 0.0119 32 

31 0.8948 0.5096 0.1101 0.0092 23 

32 0.8961 0.4712 0.1191 0.0101 26 

33 0.8585 0.7949 0.0748 0.0040 2 

34 0.9105 0.5096 0.1172 0.0091 22 

35 0.9178 0.3974 0.1489 0.0119 33 

36 0.9170 0.4391 0.1417 0.0108 29 
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Table 4.5: SSPMetrics, 𝐿𝑝 metric and rank of 𝑃, 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛 and 𝑇𝑎𝑣𝑔 at grid point 

(18.35° × 80.85°) using Entropy (E) and Sensitivity (S) method.  

Variable 
Minimum 

Lp Value  
 Model name  

Maximum 

Lp Value 
 Model name  

P(E) 0.064 FGOALS-g2  0.0239 ACCESS1.3 

P(S) 0.1098 CMCC-CMS 0.3423 ACCESS1.3 

Tmax(E) 0.0047 BCC-CSM1.1(m) 0.0479 CCSM4 

Tmax(S) 0.0681 BCC-CSM1.1(m) 0.2671 IPSL-CSM5B-LR 

Tmin(E) 0.0159 CanESM2 0.0418 CMCC-CMS 

Tmin(S) 0.1937 HadGEM2-CC 0.2819 CMCC-CMS 

Tavg (E)    0.0040 BCC-CSM1.1(m) 0.0227 HadGEM2-ES 

Tavg (S)    0.0052 MIROC5 0.0378 ACCESS 1.3 

 

Table 4.6.(a): Weight distribution of 𝑃, 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛 and 𝑇𝑎𝑣𝑔 over 14 grid points of  Telangana State 

from entropy method  
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Table 4.6.(b): Weight distribution of 𝑃, 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛 and 𝑇𝑎𝑣𝑔 over 14 grid points of  Telangana 

State from sensitivity method  

 

4.3.5 Application of GDMA, Ensemble Method and Spatial Projections 

The net strength for the 36 GCMs using the entropy method. For 𝑃,  FGOALS-g2 and INMCM4.0 

have net strengths of 86 and 85, respectively, ranking first and second among the models. On the 

other hand, ACCESS1.3 ranks last with a net strength of -96. For 𝑇𝑚𝑎𝑥, CanESM2, BCC-CSM1-

1(m), and ACCESS1.3 rank first, second and last, respectively, with net strengths of 80, 79 and -

88. For 𝑇𝑚𝑖𝑛, CanESM2 and  BCC-CSM1.1(m) rank first and second with scores of 82 and 81, 

respectively, while ACCESS1.3 ranks last with a score of -88.  For 𝑇𝑎𝑣𝑔, net strength of first 

occupied GCM is observed as MIROC5 with 73 followed to BCC-CSM1.1 (m) with 69 whereas  

IPSL-CM5B-LR has occupied last position with net strength -51. The finalized ensemble GCMs 

are represented in Table 4.7 

Table 4.7: Finalized ensemble models  of 𝑃, 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛 and 𝑇𝑎𝑣𝑔 in this study. 
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Results showed that Compromise Programming has the ability to find suitable GCMs. GDMA is 

performed for multi model ensemble. The present study provided evaluation of an optimal model 

and ensemble multi model selection for the Telangana region which can be used further in different 

applications of hydrology or hydrologic studies are represented in Figure 4.2.(a),(b),(c)and(d). 

Climate change projections for Telangana State are presented for 𝑃, 𝑇𝑚𝑎𝑥, 𝑇𝑎𝑣𝑔 and 𝑇𝑚𝑖𝑛 for three 

future time intervals (1: 2006–2035, 2: 2036–2065 and 3: 2066–2095) using RCP 8.5 scenarios. 

The spatial representation of the long-term projection (for the three-time intervals) of is shown in 

Figure 4.3. Low amounts of rainfall are observed in relation to high temperatures for both the RCP 

8.5 scenarios. The climate change projections in the study area are overall consistent. However, 

precisely locating the variations of a variable is difficult. The climate projections for future 

scenarios are shown in Figure 4.3. 

                                                                                                           

 

 

 

 

. 

 

Figure 4.2 (a) Precipitation 
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                                   Figure 4.2 (b)Maximum Temperature 

 

Figure 4.2 (c) Minimum Temperature 
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Figure 4.2 (d) Average Temperature 

Figure 4.2.(a),(b), (c) & (d) presents spatial distribution of ensemble models of P, Tmax, Tmin & Tavg. 

For 2006-2035 

 

 

 

 

For 2036- 2065 

 

 

  

P Tmax Tmin Tavg 

P Tmin Tavg Tmax 
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For 2066-2095 

 

 

 

    

      Figure 4.3 Climate Projections for  RCP 8.5 future scenarios P (mm),Tmax, Tmin & Tavg(degree celsius) 

4.4 Conclusions 

Three SSPMetrics (CC, SS and NRMSD) for four variables (𝑃, 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛 and 𝑇𝑎𝑣𝑔) are evaluated 

to compare 36 GCMs against observed data of IMD at 14 grid points in Telangana State, southern 

India. Using entropy and sensitivity analysis, the weights of the SSPMetrics are determined for the 

four variables. These weights are found to vary at each grid point remarkably, affecting the 

rankings of the considered variables. CP and GDMA are performed to identify suitable individual 

and ensemble GCMs for applications in climate-related impact assessments in the study region. 

Spatial distribution maps of ensemble models and spatial projections are projected to future 

scenarios. 

The study yields the following conclusions.  

• The identified suitable ensemble models for P include FGOALS-g2, CMCC-CMS and 

INMCM4.0. BCC-CSM1.1(m), CanESM2, and MIROC5 are deemed suitable GCMs for 

𝑇𝑚𝑎𝑥. For 𝑇𝑚𝑖𝑛, the recommended ensemble comprises CanESM2, BCC-CSM 1-1(m) and 

ACCESS1.0. For Tavg, MIROC5, CNRM-CM5 and BCC-CSM1.1 (m) emerge as the  

suitable models. 

•  If a single GCM is to be used, then FGOALS-g2 for 𝑃 and BCC-CSM1.1(m) for  𝑇𝑚𝑎𝑥, 

Tavg  and 𝑇𝑚𝑖𝑛 should be considered.  

Tmin Tavg 
P Tmax 
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• In the analysis of SSPMetrics for precipitation (P), SS holds a predominant position with 

percentages of 41.2% (entropy) and 38.02% (sensitivity), surpassing CC (36.3% and 

35.9%) and NRMSD (22.5% and 26.08%) in both methods.  

• In the analysis of SSPMetrics for Tmax, Tmin and Tavg: CC receives higher weightage in 

entropy (46.8%, 57.3% and 42.3%) and sensitivity (43.4%,47.8% and 46.8%) compared to 

SS and NRMSD. 

•  From spatial projections of GCMs, a rise in temperature can be expected for the future 

periods (2036-2065 and 2066-2095), which leads to an increase in evaporation rate. 

The proposed method for identifying the optimal individual model or ensemble model Telangana 

State can be helpful in various applications, such as in hydrological, meteorological, and climatic 

model studies. This study offers a clear and quantitative method for selecting suitable GCMs, 

thereby reducing the uncertainty associated with the use of GCMs for climate impact studies at 

regional scale. 

 

 

 

 

  

 

 

 

 

 

 

 

 



51 
 

CHAPTER 5 

REGIONALIZATION OF STUDY AREA AND EVALUATING DROUGHT INDICES 

AND ITS CHARACTERSITICS 

5.1 Introduction 

Droughts stand out as intricate and profoundly impactful natural occurrences observed annually 

across various regions, it inflicts substantial losses both in terms of economic resources and human 

lives (Goyal et al., 2017; Wilhite, 2000). Compared to other hydrological phenomena characterized 

for brief durations, droughts manifest as enduring disasters spanning from several months to 

multiple years. Their gradual onset and protracted nature further compound the challenge of 

precisely delineating the commencement and conclusion of drought events. Droughts, affecting 

both surface and subsurface water resources, play a pivotal role in significantly diminishing the 

overall water availability. Moreover, the repercussions extend beyond mere quantity, 

encompassing adverse impacts on water quality, agricultural yield failures, reduced power 

generation and the degradation of riparian habitats (Goyal & Ojha, 2012; Riebsame et al., 1991). 

Empirical evidence substantiates the intensification of extreme hydrological events, such as floods 

and droughts, in recent times, marked by a notable reduction in their return periods across diverse 

geographical domains (D.P. Lettenmaier et al., 1996). The escalating threats posed by global 

warming and climate change further accentuate the likelihood of heightened drought intensity and 

increased frequency, a prediction facilitated by advanced downscaling approaches (e.g., Vasiliades 

et al., 2009). 

Drought, as a phenomenon, exhibits a distinctly regional character. Numerous researchers have 

embraced a regional perspective to scrutinize and comprehend drought dynamics, with seminal 

contributions from Clausen & Pearson, (1995); Goyal & Sharma, (2016); Hisdal & Tallaksen, 

(2003); Liu et al., (2015); Mirakbari et al., (2010); Mishra et al., (2009); Rajsekhar et al., (2011); 

Sen, (1980). The inherent spatial variability in drought intensity assumes paramount importance, 

particularly in the context of water transfer operations management within drought-affected 

regions. Conducting a regional analysis of droughts is imperative for a nuanced understanding of 

this phenomenon, given its incremental and pervasive nature. The principal objective of such an 
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analysis resides in delineating homogeneous regions, characterized by analogous drought 

behaviors. A homogeneous region, defined as a cluster of stations demonstrating comparable 

drought behavior or possessing akin frequency distribution patterns for drought occurrences 

(Mirakbari et al., 2010), serves as a foundation for devising coherent drought management and 

mitigation policies tailored to the specific characteristics of each identified region. This regional 

approach contributes substantively to the enhancement of precision in drought analysis and the 

formulation of targeted strategies for effective water resource management. The flowchart of 

chapter 5 is presented in Figure 5.1. (a) and (b) 

 

Figure 5.1.(a). Flowchart for regionalization of study area 

  

Figure 5.1.(b) Flowchart for evaluating drought indices and their characteristics. 
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5.2 Methodology  

5.2.1 Step by procedure used  

a. To delineate homogenous regions, parameters – latitude, longitude, mean, standard deviation, 

minimum and maximum value of precipitation and temperature datasets are considered. 

b. Cluster validate index namely separation index, partition entropy and fuzzy partition index are 

used to find optimum number of clusters.  

c. Monthly precipitation, temperature and SC_PDSI data is considered for time period of 1975-

2017. 

d. SPI is computed at SPI12. Further SPEI is calculated  incorporating potential 

evapotranspiration (PET), calculated. 

e. A drought severity threshold (-0.8) is established and applied to identify drought events based 

on SPI, SPEI  and SC_PDSI series exceeding the established threshold. 

f. Characteristics analysis – severity and duration is determined regionally. 

5.2.2 Fuzzy C-Means clustering 

The conceptualization of FCM is introduced by Dunn 1973 and subsequently extended by Bezdek 

in 1981. Let us consider cluster 𝑐 with 𝑀 objects where Yk is the data vector for kth (𝑘 =  1, 2 … 𝑀) 

object. The FCM technique aims to minimize the following objective function 5.1. 

                            𝐽(𝑈, 𝐶) = ∑ ∑ 𝑢𝑖𝑘
𝜃𝑐

𝑖=1 ||𝑌𝑘 − 𝐶𝑖||
𝑀
𝑗=1

2                                (5.1) 

let uik denotes the membership value of the kth point in the ith cluster, where Ci denotes the centre of 

the ith cluster (i = 1, 2,...,c), ∥Yk - Ci∥2 is the Euclidean squared distance. Here Ci and 𝜃 signify the 

cluster center and the fuzziness index (or fuzzifier) respectively, where θ can assume any value 

>1. In the FCM algorithm, the number of clusters and centers are stochastically determined. 

Subsequently, the membership matrix is computed using the following expression 5.2. 

                                           𝑢𝑖<𝑘
𝑡 = [∑ (

||𝑌𝑘−𝐶𝑖||

||𝑌𝑘−𝐶𝑗||
)

2

𝜃−1𝑐
𝑗=1 ]

−1

                         (5.2)                   

with an updated membership value, new cluster centers are calculated using 𝐶𝑖 
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                                                   𝐶𝑖 =  
∑ 𝑢𝑖𝑘

𝜃 𝑦𝑘
𝑀
𝑘=1

∑ 𝑢𝑖𝑘
𝜃𝑀

𝑘=1

           (5.3)     

  

using new cluster centers, the membership matrix is updated to following equation 5.4. 

                                           𝑢𝑖<𝑘
𝑡+1 = [∑ (

||𝑌𝑘−𝐶𝑖||

||𝑌𝑘−𝐶𝑗||
)

2

𝜃−1𝑐
𝑗=1 ]

−1

                         (5.4)                   

if ∥Ut+1 - Ut∥ < ε the algorithm will stop. If not, it goes back to step 1. Three validity indices are 

used to check the efficiency of clustering. 

5.2.2.1 Separation index (Si) 

The compactness and separation function (𝑆𝑖) proposed by (Xie & Beni, 1991) is defined as the 

ratio of variance within clusters to the variance between clusters. The 𝑆𝑖 value is lower, the 

clustering is better. Si is represented as in the following equation 5.5. 

                                        𝑆𝑖(𝑈, 𝑉: 𝑋) =  
∑ ∑ (𝑢𝑖𝑘

𝑎 )||𝑐𝑖−𝑦𝑘||2𝑀
𝑘

𝑐
𝑖=1

𝑀 min
𝑖≠𝑘

||𝑣𝑖−𝑦𝑘||2                                  (5.5) 

5.2.2.2 Fuzziness partition index (Fpi) 

The membership (fuzziness) that various classes share (J. C. Bezdek, 1974; James C. Bezdek, 

1973) is calculated by the Fuzziness partition index and is presented in the following equation 5.6. 

                                                𝐹𝑝𝑖(𝑈) =
1

𝑚
∑ ∑ 𝑢𝑖𝑘

2𝑀
𝑘=1

𝑐
𝑖=1               (5.6) 

5.2.2.3 Partition entropy (Pe) 

Partition entropy is represented as 

                                            𝑃𝑒(𝑈) =
1

𝑚
∑ ∑ 𝑢𝑖𝑘𝑙𝑜𝑔𝑎

𝑀
𝑘=1 (𝑢𝑖𝑘)𝑐

𝑖=1                      (5.7) 

Lower the Pe value, better the clustering and it varies between 0 and log(c). The FCM clustering 

analysis is performed using R software (package: ppclust; version 3.5.1;  https://www.r-

project.org/) 

 

https://www.r-project.org/
https://www.r-project.org/
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5.2.3 Standardized Precipitation Index (SPI) 

SPI is a dimensionless meteorological drought index which requires single hydrological variable 

i.e., precipitation to characterize drought events. SPI is simple to analyse, spatially invariant and 

can be applied to evaluate meteorological, hydrological and agricultural drought phenomenon. 

Using SPI, the temporal analysis of drought events can be evaluated at 3, 6, 9, 12, 24, 36 and 48-

month time scales. To evaluate SPI for a given year i, month j and for time scale of k, the following 

steps are used: 

• For a specific period of interest j, cumulative precipitation series is evaluated Xij
 

(i  =  1,2,...,n), where each term denotes the sum of precipitation of k − 1 previous successive 

months. 

• The aggregated monthly precipitation series (say k = 12 months) is fitted with cumulative 

PDFs (for e.g., gamma distribution). The gamma distribution function is defined as 𝑔(𝑥) =

1

𝛽𝛼Γ(𝛼)
𝑥𝛼−1𝑒

−𝑥

𝛽 ; where, Γ(α) = gamma function, α = shape parameter and β = scale 

parameter. The shape and scale parameters are estimated using method of maximum 

likelihood.  

• For a specific month and time, the estimated parameters are utilized in finding the 

cumulative PDFs of the precipitation event.    

• A mixed (containing zero values and continuous precipitation amount) two parameter 

gamma distribution function is employed and the corresponding Cumulative Distribution 

Function (CDF) is given as F(x) = q + (1 − q) G(x); where, q = probability of zero 

precipitation and G(x) = distribution function calculated for non-zero precipitation. 

• An equiprobability transformation Panofsky & Brier, (1968) is carried out from the CDF of 

mixed distribution to the CDF of standard normal distribution (zero mean and unit variance), 

which is given as SPI = ψ−1(F(x)). This transformed probability is the SPI. The negative SPI 

value specifies that the precipitation is below average (dry condition) and positive SPI value 

indicates above average precipitation (wet condition). 
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A drought period is defined as the successive number of SPI values below a threshold 

(approximately 0.8). According to Mckee et al., (1993), droughts are classified into four categories 

namely mild (D0), moderate (D1), severe (D2) and extreme (D3) droughts as given in Table 5.1. 

In this study, SPI is computed over 12-month timescales with monthly gridded precipitation data 

at a spatial resolution of 1°×1° from 1975 to 2017. 

Table 5.1: SPI - Drought categories under Dry (D) conditions. 

 

5.2.4 Standardized Precipitation Evapotranspiration Index (SPEI) 

To characterize droughts several drought indexes have been developed by considering one or more 

climatic variables like precipitation, temperature, runoff, evapotranspiration and soil moisture. To 

quantify meteorological drought, SPI is considered as the most widely used drought index because 

it is less data intensive and simple to calculate. As SPI can be calculated at different time scales, it 

helps in understanding the effect of rainfall deficit on various hydrological components (Mckee et 

al., 1993). The limitation of SPI is that it does not consider other climate variables like 

evapotranspiration in quantifying droughts. Therefore, SPI may not reproduce the true water deficit 

that is intensified by climate change. By considering all the advantages of SPI, Vicente-Serrano et 

al., (2010) developed SPEI which can be calculated at   1 to 48-month time scale representing 

hydrological, agricultural and meteorological droughts  (Maccioni et al., 2015). For calculating 

SPEI, Potential Evapotranspiration (PET) is evaluated first. For the estimation of PET, Penman-

Monteith, Thornthwaite and Hargreaves are the most widely used methods. In the present study, 

Hargreaves method is adopted to calculate PET because of its simplicity and lower data 

requirement. Then, the difference between precipitation and PET is estimated as shown in Eq. 5.8. 

 Di = Pi − PET (5.8) 
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where, Pi = precipitation at ith month, Di = surplus or deficit in the ith month. 

The Di values are then aggregated, PDFs are fitted and the best fitted distribution is chosen using 

L-moments method. In this study, L-moments method is adopted in finding the best PDFs because 

it is more robust for outliers and is effective in characterizing various distribution functions 

compared to other methods. The CDF of the best fitted distribution is then normalized to evaluate 

SPEI for the selected region. Henceforth, the SPEI is computed at a 12-month scale utilizing P and 

T  data from IMD. The dataset, spanning from 1975 to 2017, exhibits a resolution of 1°×1°. Positive 

SPEI values denote wet conditions, while negative values signify dry conditions. The SPEI 

demonstrates efficacy in assessing drought characteristics, owing to its consistent and adaptable 

nature in spatial and temporal dimensions, enabling the replication of water deficiencies across 

diverse timescales. 

5.2.5 Self-Calibrated Palmer Drought Severity Index (SC_PDSI) 

In 1965, Wayne C. Palmer introduced PDSI, a metric designed to assess the equilibrium between 

moisture demand and supply by employing a two-layer soil water balance model. Subsequently, 

within the PDSI framework, Wells et al., (2004) formulated the SC_PDSI model, which 

autonomously adjusts climatic characteristics (K) and duration factors based on historical climate 

data specific to a given location. The SC_PDSI is derived from time series data of precipitation 

and temperature, utilizing fixed parameters corresponding to the soil/surface characteristics at each 

geographical location. In this investigation, global gridded monthly SC_PDSI values (0.5°×0.5°) 

spanning from 1975 to 2017 are considered for analysis. 

5.3 RESULTS 

5.3.1 Formation of Homogenous Regions 

The application of the FCM involves the utilization of a matrix comprising latitude, longitude, 

mean, standard deviation, minimum and maximum values of precipitation and temperature series. 

Prior to subjecting these selected variables to cluster analysis, normalization is performed to 

mitigate the impact of unit variations. The efficacy of FCM is contingent upon the choice of the 

fuzzifier index and the optimal number of clusters. In accordance with Urcid and Ritter (2012), the 



58 
 

cluster range systematically varied from 2 to 5, employing a fuzzifier index of 2, as advocated by 

Pal and Bezdek (1995). The selection of the optimal number of clusters is guided by validity 

indices, specifically Si, Pe and Fpi, outlined in the methodology Figure 5.1.(a). Notably, the values 

of Si, Pe and Fpi collectively indicate a minimum at three clusters detailed in Table 5.2. 

Consequently, the optimal number of clusters is determined to be three, as demonstrated in Figure 

5.2 

 

Figure 5.2: Homogenous regions identified by Fuzzy C-Means clustering. 

Table 5.2: Statistics of the validity indices 
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From the three homogenous regions delineated within Telangana State, the districts comprising 

Region  1 (South Zone) includes Sangareddy, Medak, Siddipet, Medchal Malkajgiri, Hyderabad, 

Vikarabad, Rangareddy, Yadagiri Bhuvangiri, Suryapet, Nalgonda, Narayanpet, MahabubNagar, 

Nagarkurnool, Jogulamba Gadwal. In Region 2 (North zone), the districts encompass Adilabad , 

Kumurambheem asifabad, Nirmal, Mancherial, Nizambad, Kamareddy, Rajanna Siricilla. Region 

3 (east zone) comprises Jagtial, Peddapalli, Karimnagar, Hanumakonda, Jangaon, jayashankar 

Bhupallapally, Mulugu, Warangal, Mahububabad, Khammam, Bhadradri kothagudem. This 

geographical categorization serves as the foundational basis for subsequent analyses within the 

research framework, acknowledging the intrinsic heterogeneity and climatic intricates across these 

demarcated regions within Telangana State. 

5.3.2 Characterization of SPI12 Drought Indices 

The computation of SPI12 values for each homogeneous region in Telangana State is conducted 

utilizing the IMD monthly precipitation dataset spanning the years 1975 to 2017. Subsequently, 

the Method of Runs, as delineated by Yevjevich (1967), is applied to the SPI series, employing a 

threshold of - 0.8 to assess drought characteristics, including severity, duration and events of severe 

drought, across the three homogeneous regions. Table 5.3 presents the top five severe drought 

events for each region in Telangana State. Notably, the most severe and protracted drought event 

occurs in region 2 from June 2001 to August 2005, exhibiting a severity of 44.43 and a duration 

spanning 51 months. Region 1 experienced its lengthiest drought period between September 1984 

to September 1987 with a duration of 37 months and a severity of 34.9 during between August 

2011 and September 2013. Region 3 encounters its most severe drought from August 1984 to 

August 1986, registering a severity of 38.5 and a duration of 27 months during July 2014 to 

September 2016. Remarkably, all regions exhibit drought events during the periods 1984-1987, 

2001-2003 and 2011-2012, underlining the temporal consistency and recurrent nature of drought 

occurrences within the study timeframe. Figure 5.3.(a), (b) and (c) presents Timeseries of most 

severe droughts event of SPI12 for the period 1975-2017 for each homogenous region. 
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Figure 5.3.(a) Timeseries of severe drought of SPI12 (region 1) 

 

 

Figure 5.3.(b) Timeseries of severe drought event of SPI12 (region 2) 

 

 

Figure 5.3.(c) Timeseries of severe drought of SPI12 (region 3) 
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Table 5.3: SPI12- severe drought events (IMD) 

 

 

5.3.3 Characterization of SPEI12 Drought Indices 

The computation of SPEI12 values for each homogeneous region in Telangana State is conducted 

utilizing the IMD monthly precipitation and temperature dataset during the years 1975 to 2017. To 

calculate SPEI, Potential Evapotranspiration (PET) is initially determined and for this purpose, 

various estimation of PET, Penman-Monteith, Thornthwaite and Hargreaves are the most widely 

used methods. In the present study, Hargreaves method is adopted to calculate PET because of its 

simplicity and lower data requirement.  Subsequently, the Method of Runs, as delineated by 

Yevjevich (1967), is applied to the SPEI series, employing a threshold of -0.8 to assess drought 

characteristics, including severity, duration and events of severe drought, across the three 

homogeneous regions. Table 5.4 presents the top five drought events for each region in Telangana 

State. Notably, the most severe and protracted drought event occurs in region 1 from August 2006 

to September 2013, exhibiting a severity of 81.07 and a duration spanning 86 months. Region 2 

experienced its lengthiest drought period between August 2006 to June 2013, with a severity of 
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75.1 and a duration of 83 months. Region 3 encounters its most severe drought from March 2014 

to December 2017, registering a severity of 68.02 and a duration of 51 months during March 2007 

to May 2011. Remarkably, all regions exhibit drought events during the periods 1984-1986, 1992-

1994, 2006-2013 and 2014-2017, highlighting the temporal consistency and recurrent nature of 

drought occurrences within the study timeframe. Figure 5.4.(a),(b) and (c) Timeseries of 

homogenous regions for the most severe drought event of SPEI12 for the period 1975-2017. 

 

Figure 5.4.(a) Timeseries of severe drought event of SPEI12 (region 1) 

 

Figure 5.4.(b) Timeseries of severe drought of SPEI12 (region 2) 

 

Figure 5.4.(c) Timeseries of severe drought of SPEI12 (region 3) 
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Table 5.4: SPEI12- severe drought events (IMD)  

 

5.3.4 Characterization of SC_PDSI Drought Indices 

This study considered global grided monthly SC_PDSI12 values from 1975 to 2017. Same as 

SPI12 and SPEI12, the Method of Runs, as delineated by Yevjevich (1967), is applied to the 

SC_PDSI12 series, employing a threshold of -0.8 to assess drought characteristics. Table 5.5 

presents the top five severe drought events for each region in Telangana State. Notably, the most 

severe and protracted drought event occurred in region 3 from March 1979 to April 1988, 

exhibiting a severity of 227.75 and a duration of 108 months. Followed by Region 1 experienced 

its lengthiest drought period between September 2000 and June 2013, with a severity of 79.77 and 

a duration of 33 months. Region 2 encounters its most severe drought from February 1984 to 

September 38.92 and duration of 19 months. Remarkably, all regions exhibited drought events 

during the periods 1992-1994, 2008-2010 and 2014-2017. Figure 5.5 (a), (b) and (c) represents the 

most severe drought event of SC_PDSI. 
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5.3.5 Intercomparison of Characterization of SPI12, SPEI 12 and SC_PDSI Drought Indices 

Comparing the SPI12, SPEI12, and SC_PDSI12 results across homogeneous regions in Telangana 

State reveals distinct drought characteristics: 

SPI12 Analysis: 

Region 2 had the most severe drought from June 2001 to August 2005, with a severity of 44.43 

and a duration of 51 months. Region 1 experienced a severe drought from September 1984 to 

September 1987, with a severity of 34.9 and a duration of 37 months. Region 3 encountered a 

severe drought from August 1984 to August 1986, with a severity of 38.5 and a duration of 27 

months. Consistent drought events were observed during the periods 1984-1987, 2001-2003, and 

2011-2012. 

SPEI12 Analysis: 

Region 1 had the most severe drought from August 2006 to September 2013, with a severity of 

81.07 and a duration of 86 months. Region 2 experienced a severe drought from August 2006 to 

June 2013, with a severity of 75.1 and a duration of 83 months. Region 3 encountered a severe 

drought from March 2014 to December 2017, with a severity of 68.02 and a duration of 51 months. 

Consistent drought events were observed during the periods 1984-1986, 1992-1994, 2006-2013, 

and 2014-2017. 

SC_PDSI12 Analysis: 

Region 3 had the most severe drought from March 1979 to April 1988, with a severity of 227.75 

and a duration of 108 months. Region 1 experienced a severe drought from September 2000 to 

June 2013, with a severity of 79.77 and a duration of 33 months. Region 2 encountered a severe 

drought from February 1984 to September 1985, with a severity of 38.92 and a duration of 19 

months. Consistent drought events were observed during the periods 1992-1994, 2008-2010, and 

2014-2017. 

In summary, while SPI12 emphasizes moderate to severe droughts across all regions, SPEI12 

incorporates temperature effects, showing longer and more severe droughts. SC_PDSI12, focusing 
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on moisture balance, indicates prolonged and extreme droughts, particularly notable in Region 3. 

All indices highlight recurrent drought periods, underscoring the temporal consistency and severity 

of drought occurrences in Telangana State from 1975 to 2017. 

 

 

Figure 5.5.(a) Timeseries of severe drought of SC_PDSI (region 1) 

 

Figure 5.5.(b) Timeseries of severe drought of SC_PDSI (region 2) 

 

Figure 5.5.(c) Timeseries of severe drought of SC_PDSI (region 3) 
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Table 5.5: SC_PDSI- severe drought events (IMD)  

 

5.4 Discussions  

This research endeavors to delineate homogenous regions within the study area, examining the 

distinctive characteristics of three drought indices. Subsequently the assessment of drought 

characteristics, specifically severity and duration, involves the calculation and examination of SPI, 

SPEI and SC_PDSI. This comprehensive approach enables a nuanced exploration of the diverse 

climatic conditions inherent in the study area. The SPI12, emphasizing precipitation patterns, the 

SPEI12, encapsulating both precipitation and evapotranspiration dynamics and the SC_PDSI12, 

integrating soil moisture considerations, collectively contribute to a holistic understanding of the 

spatiotemporal evolution of drought events. A precipitation-based drought index in the context of 

India is intricately linked with diverse physical processes, encompassing topography, atmospheric 

and oceanic circulation, as well as local phenomena. Employing a singular precipitation indicator 

becomes intricate when assessing the Indian monsoon cycle due to the influence of factors such as 

moisture, terrain and vegetation, contributing to the variability in precipitation at both regional and 

meso-scales (Wang et al., 2015b). The SPEI serves as an indicator of water availability, akin to the 

PDSI. SPEI represents the summation of precipitation and evapotranspiration, quantifying 

normalized fluctuations in moisture availability. Several studies have attested to the utility of SPEI 

in temporally assessing variations (Li et al., 2012). In the computation of the SC_PDSI, soil 
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moisture is evaluated through the integration of evapotranspiration (demand) and precipitation 

(supply), utilizing the water balance equation. Recognized as a multifactorial water budget 

indicator, SC_PDSI incorporates monthly precipitation, temperature, and soil properties into its 

calculations. 

The drought characteristics of the drought indices are calculated and the most severe drought 

events are identified and presented in Table 5.3, 5.4 and 5.5. Despite the disparities among drought 

indices and the diverse methodologies employed in their computation, it becomes evident that a 

more comprehensive understanding of droughts can be attained through the synergistic application 

of multiple indices.  SPI12 and SPEI12 exhibit heightened sensitivity to precipitation and 

evapotranspiration dynamics. This contrasts with SC_PDSI12, where the model algorithm 

incorporates soil moisture content as a primary component, distinguishing it from the former 

indices. 

5.5 Conclusions 

In this study, delineation of homogenous regions are identified. During the period between 1975-

2017, this study examined and evaluated the drought conditions for three homogenous regions of 

Telangana state. Multiple drought indices are used to investigate drought conditions. Moreover, 

the assessment of regional-scale drought events is conducted through the utilization of three key 

drought indices: SPEI12, SPI12 and SC_PDSI12. The primary focus is on evaluating and 

understanding drought characteristics, with a specific emphasis on severity and duration across all 

regions. The following conclusions are made from this chapter:  

• The optimal number of clusters is determined to be three for the study region. 

• South zone of region 1 comprises of 14 districts of Telangana, North zone of region 2 

comprises 7 districts; east zone of region 3 comprises 10 districts. 

• SPI has experienced droughts during the periods 1984 -1987; 2001-2003 and 2011-2013 

for all regions; SPEI faced drought events during 1984-1986; 1992-1994; 2006-2017; 

SC_PDSI, experienced drought for all regions during 1992 to 1994 and 2008-2011. 

• The most severe and protracted drought event for SPI occurred in region 2 from June 2001 

to August 2005, exhibiting a severity of 44.43 and a duration spanning 51 months followed 

by region 3 and 1. 
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• SPEI exhibited the most severe drought event with a severity of 81.07 and a duration of 86 

months for region 1 from August 2006 to September 2013. 

• SC_PDSI major drought event occurred in region 3 from March 1979 to April 1988, 

exhibiting a severity of 227.75 and a duration of 108 months. 

Overall, these valuable insights of severity and duration of SPI, SPEI and SC_PDSI are found to 

be effective for analysing and assessing the regional drought conditions. 
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CHAPTER 6 

ASSESSING THE RELATIONSHIP BETWEEN DROUGHT INDICES AND 

TELECONNECTIONS 

 

6.1. Introduction 

The intricate interplay of large-scale climate variations in India engenders significant spatio-

temporal distribution of water resource exhibits significant heterogeneity thereby influencing the 

agricultural and industrial productivity of the nation (Bhuvaneswari et al., 2013). A noteworthy 

instance is the 2016 drought, which impacted 330 million people, resulting in a substantial 

economic loss exceeding $100 billion, underscores the critical importance of comprehending 

monsoon precipitation variations, water vapor demand and their interconnection with 

teleconnections in India. In the context of water resource conservation, gaining insights into these 

dynamics is paramount for effective management and sustainable utilization of water resources in 

the region.   

The impact of climatic circulation exhibits a diverse influence on dry and wet conditions across 

various global regions. Numerous investigations have delved into the examination of the El Niño-

Southern Oscillation (ENSO) phenomenon and its effects on drought occurrences, both on a global 

scale and within specific regions. These studies contribute valuable insights into the nuanced 

interactions between ENSO dynamics and drought events, offering a comprehensive 

understanding of the regional and global implications of climatic circulation patterns. While 

agriculture significantly contributes to India's GDP, as evidenced by studies there remains a dearth 

of comprehensive investigations into the nexus between the ENSO and drought occurrences in the 

Indian subcontinent. This gap in research represents an opportunity for enhancing drought 

prediction models. Ganguli (2014) utilized a probabilistic framework to quantify drought risk in 

western India, specifically examining the impact of ENSO-induced climatic variability. 

Additionally, Kumar et al., (2013) demonstrated the substantial influence of sea surface 

temperature variability on monsoon droughts in India. The limited existing research underscores 

the need for more extensive studies to elucidate the intricate relationship between ENSO dynamics 

and drought patterns in the Indian context, thereby contributing to the refinement of predictive 

modeling for drought events in the region.  
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The practical utility of teleconnections is encapsulated in the construction of teleconnection maps, 

providing a visual representation of the linkages of a specific concerned region with all other 

locations within the province. Table 6.1 enumerates commonly utilized climate indices, including 

their full names and acronyms. In the present study, the influence of four prominent climate 

oscillations namely MEI, SOI, DMI and NINO3.4 on drought indices (SPI, SPEI and SC_PDSI) 

is scrutinized across Telangana State. Figure 6.1 delineates the regions monitored for NINO3.4, 

SOI, MEI and DMI events, contributing to a comprehensive understanding of the teleconnected 

dynamics shaping hydrological patterns in the study area. 

Table 6.1: List of climate indices (full names and acronyms) 

 

 

Figure 6.1: Climate indices regions. (Chowdhury, M.R. (2022)) 
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6.2 Methodology 

6.2.1 Teleconnections 

The atmospheric circulation, arising from the dynamic interplay between the ocean-atmosphere 

and land-atmosphere interactions, facilitates the transfer of energy and water mass across vast 

distances, exerting a profound influence on climatic conditions (Wallace & Gutzler, 1981). This 

intricate system transmits climatological variations through the conveyance of heat, moisture and 

momentum fluxes, manifesting as precipitation and evaporation within the expansive continental 

water cycle and ocean circulation. The atmospheric circulation emerges as a primary driver 

impacting both terrestrial and marine environments, thereby contributing significantly to climate 

fluctuations (Alexander et al., 2002). These variations exhibit discernible patterns across diverse 

temporal scales, encompassing diurnal, daily, weekly and monthly intervals as well as intra-

seasonal, seasonal and interannual epochs. Teleconnections, in this context, serve as a conceptual 

framework elucidating atmospheric interactions and transport processes, offering a means to distill 

climate variability into a set of indices. Coined by Walker in 1924, the term "teleconnection" is 

introduced to assess correlations among atmospheric pressure, temperature and rainfall.  

ENSO represents a recurring phenomenon characterized by periodic variations in sea surface 

temperature (El Niño) and atmospheric air pressure (Southern Oscillation) over the equatorial 

Pacific Ocean. Regarded as a pivotal driver of global inter-annual climate fluctuations, ENSO 

significantly influences weather patterns in numerous regions across the globe. The manifestation 

of El Niño or its counterpart, La Niña, markedly alters the atmospheric circulation, impacting local 

and regional weather conditions. It is typically indicated by four indices: Nino 1+2, 3, 4 and 3.4. 

These indices delineate sea surface temperature (SST) anomalies within specific regions of the 

equatorial Pacific. Among these, Nino 3.4 stands out as the most widely utilized index, spanning 

latitudes between 5°S-5°N and longitudes between 170°W-120°W. Positive values of the Nino 3.4 

signify El Niño conditions, indicative of elevated sea surface temperatures, while negative values 

denote La Niña conditions, reflecting colder sea surface temperatures. The prominence of ENSO 

indices, particularly Nino 3.4, underscores their significance in quantifying and characterizing the 

phases of El Niño and La Niña events, contributing to a comprehensive understanding of their 

climatic implications. 
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The SOI serves as a standardized metric derived from observed alterations in sea level pressure 

between Tahiti and Darwin, Australia. Specifically designed to capture large-scale air pressure 

oscillations during El Niño and La Niña phases, the SOI quantifies the atmospheric pressure 

differentials across the western and eastern tropical Pacific. Smoothed time series of the SOI 

exhibit significant correlations with variations in ocean temperatures within the eastern tropical 

Pacific region. The negative phase of the SOI, observed at Tahiti, signifies below-normal air 

pressure, whereas at Darwin, it indicates above-normal air pressure. The persistence of negative 

(positive) SOI values during El Niño (La Niña) occurrences is indicative of prolonged periods 

characterized by exceptionally warm (cold) ocean waters in the eastern tropical Pacific. The SOI, 

through its nuanced assessment of atmospheric pressure dynamics, offers valuable insights into 

the manifestation and progression of El Niño and La Niña events, contributing to a comprehensive 

understanding of the associated climatic phenomena. 

The MEI constitutes a methodological approach that integrates both oceanic and atmospheric 

variables to quantitatively characterize the intensity of an ENSO event. This comprehensive index 

is derived from the first principal component of six key observed variables, including sea level 

pressure, sea surface temperature, zonal and meridional components of surface wind, surface air 

temperature and total cloudiness fraction of the sky across the tropical Pacific. The data utilized 

for MEI computation is sourced from the Comprehensive Ocean Atmosphere Data Set (COADS). 

The MEI is calculated for each of the twelve-sliding bi-monthly periods, such as 

December/January, January/February and so forth. Positive MEI values indicate the presence of 

El Niño conditions, signifying an intensified ENSO event, while negative MEI values denote the 

occurrence of La Niña conditions, indicative of an augmented ENSO event in the opposite phase. 

The MEI, through its multidimensional integration of diverse climatic variables, facilitates a 

nuanced and robust assessment of ENSO intensity, contributing to an enhanced understanding of 

the climatic variations associated with El Niño and La Niña events. 

The DMI is instrumental in discerning IOD events, which are characterized by fluctuations in the 

tropical Indian Ocean. These events are delineated by prolonged changes in SSTs across the 

tropical Western and Eastern Indian Oceans. The IOD is quantitatively evaluated through an index, 

also known as the DMI, which is calculated as the disparity between two SST anomalies in the 

tropical Indian Ocean. The IOD West region encompasses the area between 50°E to 70°E and 10°S 

to 10°N, while the IOD East region covers the expanse from 90°E to 110°E and 10°S to 0°S, as 
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depicted in Figure 6.1. A positive DMI indicates cooler water in the tropical Eastern Indian Ocean 

and warmer water in the tropical Western Indian Ocean compared to the respective averages. 

Conversely, a negative DMI denotes warmer water in the tropical Eastern Indian Ocean and cooler 

water in the tropical Western Indian Ocean relative to the averages. The DMI, by virtue of its 

polarity, provides a nuanced representation of the temperature anomalies within the specified 

regions, contributing to a comprehensive understanding of the Indian Ocean Dipole dynamics. 

Correlation analysis stands as a widely employed technique for elucidating teleconnection 

patterns. As a methodological approach to construct teleconnection maps, correlation analysis is 

distinguished by its simplicity and directness. The teleconnection map, in this context, serves as a 

graphical representation of the correlation between two geographical points, offering insights into 

the relationships between atmospheric or oceanic phenomena. A notable illustration of this 

methodology is evidenced in the work of Wallace and Gutzler in 1981, where correlation analysis 

is applied to investigate teleconnections associated with the North Atlantic Oscillation (NAO), the 

North Pacific Oscillation (NPO) and the Pacific-North America (PNA). This analytical tool 

facilitates the identification and visualization of significant correlations, thereby contributing to 

the comprehension of interrelated climatic variables and patterns on a global scale. In 

contemporary research endeavors, the Wavelet transform methodology has emerged as a potent 

analytical tool for discerning intricate relationships within the realm of meteorological phenomena 

and their interplay with large-scale climatic oscillations (Han et al., 2019). 

6.2.2 Wavelet Transform  

Fourier transform serves as a valuable instrument for analyzing the components of a stationary 

signal, wherein the signal parameters remain constant. Nonetheless, natural observations often 

yield non-stationary signals, demanding a more nuanced understanding of frequency variations 

over time. While the Fourier transform exclusively offers information pertaining to the frequency 

domain, the Wavelet transform, as articulated by (Farge, 1992), presents a spectrum that is not only 

localized in frequency but also in the time domain, thus offering a more comprehensive depiction 

of signal characteristics. 

Wavelet transform, while conceptually akin to Fourier transformations, offers heightened 

versatility in analyzing frequencies within a time series. Its applicability extends across a spectrum 

from stationary to non-stationary and short to long-term components, providing a more nuanced 
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approach to frequency analysis (Percival and Walden, 2000). Widely adopted in hydro-climatology 

and signal processing domains (Z. Jiang et al., 2003; L. Xu et al., 2019), Wavelet Transformations 

(WT) manifest in two primary forms: Continuous WT (CWT) and Discrete WT (DWT). These two 

methods of WT exhibit notable distinctions, succinctly outlined herein. In the current study, the 

time-frequency spectrum derived from Continuous WT (CWT) is employed to scrutinize the 

relationship between climate indices and drought indices. 

A wavelet is characterized as a wave-like oscillation with an amplitude that initiates from zero, 

undergoes growth and subsequently returns to zero. In accordance with Farge (1992), a 

fundamental component of wavelet transformation, known as the mother wavelet basis function 

ψ(t), adheres to the following condition: 

                                    𝐶𝜓 = 2𝜋 ∫
|Ψ(ω)|2

|ω|

∞

∞
𝑑ω < 0                                         (6.1) 

where, Cψ = admissibility constant. Integral is considered over all frequencies ω. Ψ(ω) = Fourier 

transform of the wavelet ψ(t). The wavelet function oscillates along time axis and decays rapidly 

in both directions of time. Therefore, CWT with respect to wavelet ψ(t), for a time series x(t) is 

defined as given below (Farge, 1992). 

                                 𝑊𝑆(𝜏, 𝑠) = ∫ 𝑥(𝑡)
∞

∞

1

√𝑠
𝜓∗ 𝑡−𝜏

𝑠
𝑑𝑡 = 0                               (6.2) 

where, Ws(τ,s) = wavelet transform, with τ = time shift and s = scale factor. ψ = wavelet function 

and ψ∗ = complex conjugate. (τ,s) = (0,1) represents basic or mother wavelet. 

The basic or mother wavelet is denoted by τ = 0 and s = 1. The wavelet transform’s flexibility 

comes from the scale variations in a time series, which allow it to capture both long and short 

frequencies. Also, the time series can be divided into high and low frequencies with s > 1 

corresponds to high frequency of ψ. In general, by varying s and τ values, we obtain the wavelet 

spectrum at various time and frequency scales. The Morlet wavelet is one of the most widely used 

wavelet functions in hydro-climatology and is represented by the equation below. 

                         𝜑0(𝜃) = 𝜋 −
1

4𝑒𝑖𝜔0𝜃𝑒−
𝜃2

2

                                                    (6.3) 
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where, φ0 represents mother wavelet; ω0,θ denotes frequency and time; higher ω0 time resolution 

decreases, scale resolution increases and vice versa. 

6.2.3 Wavelet Coherence 

Within the time-frequency space, wavelet coherence can be used to determine the relationship 

between two time series by estimating the correlation between them that varies between 0 and 1. 

In accordance with Torrence & Webster (1999) coefficient of wavelet coherence between the two 

sets of time series data can be denoted as follows:  

                             𝑅2(𝑠, 𝜏) =
|𝑠(𝑠−1𝑊𝑥𝑦(𝑠,𝜏))|

2

𝑠(𝑠−1|𝑊𝑥(𝑠,𝜏)|2.𝑠(𝑠−1|𝑊𝑦(𝑠,𝜏)|2)
                             (6.4) 

where, R2(s,τ) = coherence coefficient minimum and maximum coherence at 0 and 1. Wxy(s,τ) = 

cross wavelet transforms between two series. The wavelet coherence varies between 0 and 1 (Liu, 

1994). s= smoothing operator represented as given below 

  

 S(W) = Sscale  (Stime (W(s,τ))) (6.5) 

The smoothing along wavelet axis (scale and time) are represented as Sscale and Stime respectively. 

Designing the smoothing operator so that it has a similar footprint as the wavelet used is a common 

process and Torrence & Webster (1999) proposed a suitable smoothing operator for the Morlet 

wavelet, details can be found in Grinsted et al., (2004). Using Monte Carlo method, the statistical 

significance level is estimated using 1000 ensemble surrogate pairs with AR1 coefficients as the 

input datasets. Then we evaluate wavelet coherence for each pair and for each scale calculate the 

significance level using only values outside the cone of influence. Grinsted et al., (2004) specified 

that resolution chosen when computing the scale smoothing has a major impact on the significance 

level. Therefore, the number of scales per octave should be high enough to capture the rectangle 

shape of the scale smoothing operator while minimizing computing time. In the present study, the 

wavelet coherence is examined at 5% significance level or at the confidence interval > 95%. 

 

 



76 
 

6.2.4 Step by procedure used 

a. SPI12, SPEI12 and SC_PDSI are computed using R software tool 

b. Severity i.e., minimum value of drought index during each drought event is calculated 

c. Duration number of consecutive months below the threshold -0.8 is measured. 

d. Teleconnection indices (ENSO, MEI, SOI and NINO3.4) data is considered and standardized. 

e. Correlation coefficients are computed between drought indices and teleconnection indices are 

computed using MATLAB. 

f. The significance of teleconnection indices in predicting drought events is evaluated. 

g. Overlap of drought indices with teleconnections are identified using timeseries plot. 

6.3 RESULTS 

6.3.1 Correlation between Drought Indices and Teleconnection Factors 

Previous studies have shown that droughts are closely related to climate variables (Mishra & 

Singh, 2010). In this study, MEI, NINO3.4, SOI and DMI are chosen to describe the influences of 

teleconnections over droughts. Moreover, Wavelet coherence is employed to evaluate the link 

between drought indices (SPI.SPEI and SC_PDSI) and climate factors during 1975-2017. The 95% 

confidence level is presented as thick contour and the relative phase relationship is represented by 

arrows with anti-phase pointing left and in-phase pointing right as shown in Figure. 6.2, 6.3, 6.4 

and 6.5. 

The Wavelet coherence analysis between SPI and various climate factors (DMI, MEI, NINO3.4 

and SOI) is depicted in Figure 6.2. A sustained coherence in interannual variability is discerned 

throughout the temporal spans of 1980-1995 and 2002-2017, primarily evident at time scales 

ranging from 20 to 40 months. Notably, intermittency is observed between 4 to 16 months during 

different years for SOI. For NINO3.4, intermittency is noticed between 1978-1992 and  2002-2015 

for time scales spanning 18 to 40 months, with intermittent coherence observed at varying years 

within the range of 4 to 10 months. Regarding the SOI, interannual coherence is evident between 

1975-1990 and 1995-2017, spanning time scales from 10 to 20 months. MEI interannual coherence 

is evident between 1982-1994 and 1995-2017, spanning time scales from 16-40 months and 

intermittency is observed between 4-12 months. In contrast, DMI exhibited comparatively weaker 

effects across various scales during diverse years when compared to other teleconnections. 
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For SPEI, the Wavelet coherence analysis between SPEI and various climate factors(DMI, MEI, 

NINO3.4 and SOI)  is presented in Figure 6.3. The impact of the DMI is notably observed across 

time scales spanning 6 to 20 months during the period of 1990-2000. In the case of MEI, 

interannual variability manifests within the 4–12 month time scale, while annual variability is 

discerned at the 16-32 month time scale over the interval of 2002-2012. Annual variability of the 

NINO3.4 index is evident between 2002-2015, spanning an 18–50 month time scale, with 

interannual variability observed at the 6-16 month time scale. The SOI exhibits a highly significant 

influence within the time scale range of 14-40 months during the period 2002-2014. 

 

 

Figure 6.2: Wavelet coherence between SPI with (a) DMI (b) MEI (c) NINO 3.4 and (d) SOI 
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Figure 6.3: Wavelet coherence between SPEI with (a) DMI (b) MEI (c) NINO 3.4 and (d) SOI 

The Wavelet coherence analysis between the SC_PDSI and various climate factors (DMI, MEI, 

NINO3.4 and SOI) is represented in Figure 6.4. SC_PDSI, annual variability demonstrates notable 

insufficiency in coherence with DMI. For the SOI, where it is observed intermittently across 

different years within the time scale range of 8-32 months. Interannual variability is discerned in 

the time scale range of 4-10 months at different years for SOI. Furthermore, the impact of 

interannual variability spans is observed between the time scales of 4-32 months for all climate 

factors. Notably, the annual variability of DMI is relatively less pronounced when compared with 

the MEI, SOI and NINO3.4. For MEI, interannual variability is observed between the time scales 

of 20-32 months across diverse years within the span of 1980-1990. The annual variability of 

NINO3.4 exhibits high significance within the 12–32 month time scales. In the case of SOI, 

interannual variability is discerned across time scales ranging from 4 to 32 months for different 

years. 
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Figure 6.4: Wavelet coherence between SC_PDSI with (a) DMI (b) MEI (c) SOI & (d) NINO 3.4 

 

6.3.2 Analysis of Annual Time Series of Teleconnections with Drought Indices 

For DMI, the annual time series reveals noticeable overlap periods with SPI12 during 1979-1982, 

1984-1987 and 1992-1994. Similarly, for SPEI12, a substantial correlation in overlap periods is 

observed in 1984-1987, 1992-1994 and 2004-2007. In the case of SC_PDSI, notable overlap with 

DMI is identified during the periods 1979-1982, 1984-1987, 1992-1994 and 2004-2006. It is 

noteworthy that SC_PDSI exhibited overlaps at different time intervals, followed by SPI12 and 

SPEI12. Fig 6.5 represents the annual time series of DMI with Drought indices. 
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Figure 6.5 Annual series of DMI with Drought indices  

For MEI,  the annual time series reveals discernible overlap periods with SPI12 during 1984-1987 

and 2011-2013. Likewise, SPEI12, a substantial correlation in overlap periods is observed in 1984-

1987, 2007-2009, 2010-2013 and 2016-2017. In the case of SC_PDSI, notable overlap with DMI 

is identified during the periods 1980-1982, 1984-1987, 1999-2002, 2008-2009 and 2016-2017. It 
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is noteworthy that SPEI12 exhibits overlaps at different time intervals, followed by SC_PDSI and 

SPI12. Figure 6.5 visually represents the annual time series of MEI with drought indices. 

 

 

 

 

Figure 6.6 Annual series of MEI with Drought indices  

The annual time series unveils that SOI overlap periods with SPI12 during 1977-1979, 1980-1981, 

1986-1988,1991-1995,1997-1999, 2002-2004 and 2014-2017. Similarly, for SPEI12, a substantial 

correlation in overlap periods is observed in 1980-1981, 1986-1988, 1992-1994, 2002-2004, 2007-

2009, 2010, 2012 and 2014-2016. In the case of SC_PDSI notable overlap with DMI is identified 
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during the periods 1977-1979, 1980-1981, 1982-1984, 1987-1989, 1993-1994, 2002-2006, 2008-

2009 and 2014-2016. SOI demonstrates robust overlaps at different time intervals for all drought 

indices. Figure 6.7 visually represents the annual time series of SOI with drought indices 

 

 

 

 

Figure 6.7 Annual series of SOI with Drought indices 

The annual time series of NINO 3.4 reveals discernible overlap periods with SPI12 during 1980-

1982, 1984-1987, 1999-2001, 2000-2009, 2012 and 2017. Similarly SPEI12, a substantial 

correlation in overlap periods is observed in 1984-1987, 1992-1993, 2007-2009, 2010-2013 and 

2016-2017. In the case of SC_PDSI, notable overlap with NINO 3.4 is identified during the periods 
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1984-1987, 1989, 1999-2000, 2001-2002 and 2011-2012. Figure 6.8 visually represents the annual 

time series of NINO 3.4 with drought indices. 

 

 

 

Figure 6.8 Annual series of NINO 3.4 with Drought indices  

6.3.3. Intercomparison of  Drought Indices with Teleconnections 

The intercomparison of SPI12, SPEI12, and SC_PDSI with various climate indices reveals 

significant overlap periods indicating drought correlations: 

1. SPI12 Overlaps: 
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Significant overlaps with DMI during 1979-1982, 1984-1987, and 1992-1994. MEI shows 

overlaps in 1984-1987 and 2011-2013. SOI overlaps during 1977-1979, 1980-1981, 1986-1988, 

1991-1995, 1997-1999, 2002-2004, and 2014-2017. NINO 3.4 overlaps in 1980-1982, 1984-1987, 

1999-2001, 2000-2009, and 2012. 

2. SPEI12 Overlaps: 

Significant overlaps with DMI in 1984-1987, 1992-1994, and 2004-2007. MEI shows overlaps in 

1984-1987, 2007-2009, 2010-2013, and 2016-2017. SOI overlaps during 1980-1981, 1986-1988, 

1992-1994, 2002-2004, 2007-2009, 2010, 2012, and 2014-2016. NINO 3.4 overlaps in 1984-1987, 

1992-1993, 2007-2009, 2010-2013, and 2016-2017. 

3.   SC_PDSI Overlaps: 

Significant overlaps with DMI in 1979-1982, 1984-1987, 1992-1994, and 2004-2006. MEI shows 

overlaps in 1980-1982, 1984-1987, 1999-2002, 2008-2009, and 2016-2017. SOI overlaps during 

1977-1979, 1980-1981, 1982-1984, 1987-1989, 1993-1994, 2002-2006, 2008-2009, and 2014-

2016. NINO 3.4 overlaps in 1984-1987, 1989, 1999-2000, 2001-2002, and 2011-2012. 

These overlaps indicate consistent periods of drought conditions as measured by SPI12, SPEI12, 

and SC_PDSI with variations in intensity and duration influenced by different climate indices 

across the studied periods. 

6.4 Discussions  

Researchers have established that climate factors significantly contribute to the initiation of 

drought events (Dai, 2011). Moreover, the results obtained from Wavelet coherence analysis reveal 

an impactful association between climate factors, namely the MEI, SOI, DMI, NINO3.4 and the 

evolution of drought. Notably, in the context of Indian regions, MEI, SOI and NINO3.4 exhibit 

the most pronounced influence on drought patterns (Fig. 6.2, 6.3 and 6.4). Multiple teleconnections 

exert their influence on drought indices, encompassing various components across India. While 

earlier studies predominantly focused on the impact of the ENSO, relying on a single indicator to 

encapsulate the diverse climatic variability features across extensive regions is deemed inadequate 

(Zhu et al., 2017). In the present study, four widely acknowledged climate factors are considered 
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and their connections with drought indices are meticulously assessed. The outcomes underscore 

substantial variations in the influence of each teleconnection on different drought indices.  The 

coherence observed in drought indices with teleconnections (MEI, SOI, DMI and NINO3.4) at 

approximately 8-32 months may be attributed to the correlation existing among climate indices, as 

depicted in Figure. 6.2, 6.3 and 6.4. Consequently, a comprehensive analysis, isolating the 

standalone impact of teleconnection factors on drought indices after mitigating the effects of other 

influential time series, may yield a more robust correlation (Tan et al., 2016). 

6.5 Conclusions 

In the present study, during 1975-2017, the time series of drought indices are examined climate 

indices. Then, using the Wavelet coherence method, the relationship between drought indices and 

climate factors is evaluated. This reliable and robust quantitively results helps to understand the 

relation between the climate and drought indices and new insights for further investigating the 

drought. The key findings from this study are given as follows: 

• A sustained coherence for SPI interannual variability is discerned throughout the temporal 

spans of 1980-1995 and 2002-2017, primarily evident at time scales ranging from 20 to 40 

months. Notably, intermittency is observed between 4 to 16 months during different years 

for MEI. The SOI, interannual coherence is evident between 1975-1994 and 1995-2017 

spanning time scales from 16 to 40 months. 

• The SOI exhibits a highly significant influence within the time scale range of 14-40 months 

during the period 2002-2014 in the case of SPEI. 

• Annual variability of DMI with SC_PDSI is relatively less pronounced when compared 

with the MEI, SOI and NINO3.4. 

• A substantial correlation in overlap periods is observed in 1984-1987, 2010-2013 and 2016-

2017 among all drought indices with climate factors. 

• The Wavelet coherence analysis effectively demonstrated the connection between climate 

indices and drought events. The influence of SOI on drought is significantly high followed 

by NINO3.4 and MEI with all drought indices. SOI has the strongest impact in detecting 

the progression of drought compared to other climate indices. 
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CHAPTER 7 

INVESTIGATIONG MULTIVARIATE FREQUENCY ANALYSIS USING SEVERITY-

DURATION-FREQUENCY AND SEVERITY-AREA-FREQUENCY CURVES 

 

7.1 Introduction 

Evaluation of SDF and SAF regional drought curves is conducted within the context of drought 

manifestations within three homogenous regions in Telangana, where the predominant reliance on 

rainfed source of irrigation is observed. Presently, the Copula concept finds widespread application 

for quantifying bivariate and multivariate joint probability distributions within the realms of 

Hydrology and engineering (Ganguli, 2014; Thilakarathne & Sridhar, 2017). In the modeling of 

characteristics pertaining to two or more dependent variables encompassing dimensions such as 

severity, duration and the spatial extent, Copula functions emerge as potent and resourceful 

analytical tools. This efficacy is attributed to Copula's capacity to maintain a robust correlation 

between the variables under consideration, unhindered by the requirement for identical marginal 

probability distributions in the context of long-term predictions. The ensuing section provides a 

comprehensive delineation of the methodology employed in the derivation of SDF and SAF 

curves. 

Within the confines of this chapter, the analytical framework relies upon the IMD precipitation 

and temperature dataset for the evaluation of the 12-month Standardized Precipitation Index (SPI) 

and Standardized Precipitation Evapotranspiration Index (SPEI) for the temporal span between 

1975 and 2017. In parallel, Suitable GCMs datasets (FGOALS-g2 and BCC-CSM1.1(m)) 

pertaining to precipitation and temperature variables are harnessed to compute SPI and SPEI for 

the time span from 1975 to 2095. Leveraging the computed SPI12 and SPEI12 indices, the 

derivation of SDF and SAF curves unfolds across homogeneous regions, encapsulating the entire 

temporal continuum from 1975 to 2095. Furthermore, the ensuing section provides an elucidation 

on the projection of these SDF and SAF curves, offering insights into their future trajectories and 

implications within the stipulated timeframe. The methodology for developing SDF and SAF 

involves a systematic approach to data collection, preprocessing and statistical analysis 

represented in Figure 7.1. 
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Figure 7.1: Methodology for the development of SDF and SAF curves. 

7.2. METHODOLOGY  

The investigation in this section encompasses the following components: (i). quantification of 

alterations in drought climatology utilizing the SPI12 and SPEI12 through the analysis of the 

precipitation and temperature dataset (IMD and GCMs(RCP 8.5 Scenario)) (ii). A copula-based 

methodology is employed to formulate SDF curves. This involves scrutinizing modifications in 

the joint return period concerning drought characteristics. (iii) derivation of SAF curves is 

conducted, scrutinizing alterations of return periods that encapsulate areal extent (percentage) 

alongside corresponding severity.  

Step by procedure followed is mentioned below 

a. Monthly precipitation and temperature data for the study area is obtained with timescales 

(IMD dataset (1975-2017) and GCMs (1975-2095). 
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b. SPI is computed at SPI12 further SPEI is calculated  incorporating potential 

evapotranspiration (PET), calculated. 

c. A drought severity threshold (-0.8) is established and applied to identify drought events based 

on SPI and SPEI series exceeding the established threshold. 

d. Characteristics analysis – number of droughts, mean interarrival time , mean severity, 

maximum severity, mean duration and maximum duration is analysed.  

e. Frequency of occurrence is further calculated 

f. Characteristics of drought and frequency of occurrence is further compared regionally over 

the study region.  

7.2.1 Copula function 

The Copula function, introduced by Sklar, (1959), serves as a pivotal tool for associating or 

coupling two or more random variables. This mathematical construct inherent ability to uphold a 

robust correlation among the considered variables, irrespective of the demand for identical 

bivariate or multivariate marginal distributions, especially in the context of long-term predictions.. 

Consider a pair of random variables, X and Y, each characterized by marginal cumulative 

distribution functions FX(x) and FY(y). Sklar's theorem establishes that the joint distribution 

function FXY (x,y) for these dependent random variables can be succinctly expressed using the 

Copula function C:  

𝑃(𝑋 ≤ 𝑥,  𝑌 ≤ 𝑦) = 𝐹𝑋𝑌(𝑥, 𝑦) = 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦))                                          (7.1)  

Here, 𝐹𝑋𝑌(𝑥, 𝑦) represents the joint Cumulative Distribution Function (CDF) of the considered 

random variables X and Y and 𝑢 and 𝑣 are uniformly distributed random variables defined as 𝑢 =

𝐹𝑋(𝑥) and  𝑣 = 𝐹𝑌(𝑦)The bivariate copula is characterized by the distribution function 𝐶(•), with 

the mapping  𝐶: [0,1]2  →  [0,1]. Each element (𝑢, 𝑣) in the domain adheres to the following 

properties:  

𝐶(𝑢, 0)  =  0 =  𝐶(0, 𝑣) ∀ 𝑢, 𝑣 ∈  [0,1]2 

𝐶(𝑢, 1)  =  𝑢; 𝐶(1, 𝑣)  =  𝑣 ∀ 𝑢, 𝑣 ∈  [0,1]2 

If 𝐶(𝑢, 𝑣) is a joint distribution function, then 

 𝐶(𝑢2, 𝑣2) − 𝐶(𝑢2, 𝑣1) − 𝐶(𝑢1, 𝑣2) +  𝐶(𝑢1, 𝑣1)  >  0; 
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for 0 ≤  𝑢1  ≤  𝑢2  ≤  1 𝑎𝑛𝑑 0 ≤  𝑣1  ≤  𝑣2  ≤  1. 

Various copula families, with distinct properties, are established and a comprehensive exposition 

of these families is available in Nelsen, (2007). Prominent among copula classes are Archimedean, 

Extreme, Elliptical and Plackett. In the current investigation, copulas from the Archimedean class 

(specifically Clayton, Gumbel  and Frank), Galambos from the Extreme class and Plackett copulas 

are applied to model the joint dependence of drought variables. Expressions for Cumulative 

Distribution Functions (CDFs), corresponding PDFs and pertinent copula family set parameters 

are presented in Table 7.1. 

 

Table 7.1. Expressions for CDF (C(u,v)) of copula families. 

 

Note: 𝑢 and 𝑣 represent two dependent CDFs, θ is the copula parameter, 

s = 1 + (θ − 1)(u + v) and q = ps2 − 4uv θ(θ − 1) 
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7.2.1.1 Copula parameter estimation 

The primary methodologies employed for copula parameter estimation encompass (i) Method of 

Moments (MoM) expounded by Genest & Rivest, (1993) (ii) Inference from Margins (IFM) 

introduced by Joe, (1997) (iii) Exact Maximum Likelihood (EML) and (iv) Maximum Pseudo-

Likelihood (MPL) methods as outlined by C. Genest et al., (1995).  In this present analysis, copula 

parameter estimation is conducted using  Maximum Pseudo-Likelihood (MPL) method is adopted 

for.  

Within the MPL framework, the estimation of copula parameters is predicted on the utilization of 

a pseudo log-likelihood function. Let 𝑋 ∈  𝑋𝑖, 1, 𝑋𝑖, 2, . . . , 𝑋𝑖, 𝑑 represent observations from a d-

dimensional random vector X. The pseudo-observations are constructed based on the ranks of the 

observed data and the empirical Cumulative Distribution Function (CDF) is estimated using the 

following expression. This approach ensures a rigorous and technically sound methodology for 

copula parameter estimation within the context of the present study. 

                   U = 𝑈𝑖,𝑑 =
𝑅𝑎𝑛𝑘𝑒𝑑 𝑑𝑎𝑡𝑎 𝑜𝑓 𝑋𝑖,𝑑

𝑛+1
 ∀ 𝑖 = 1,2, … … , 𝑛                                         (7.2)                                         

𝑈𝑖,𝑑 =
1

𝑛+1
 ∑ 1{𝑋𝑗,𝑑

𝑛
𝑗=1 ≤ 𝑋𝑗,𝑑}  ∀ 𝑖 = 1,2, … … , 𝑛; 𝑗 ≠ 𝑖; 𝑑 = 1,2, … . , 𝑛             (7.3) 

 

In the context of this study, where Ui, d represents the vector of pseudo-samples, particularly in 

the bivariate scenario denoted as U = {Ui,1, Ui,2} for all i = 1, 2, ..., n, the integration of empirical 

Cumulative Distribution Functions (CDFs) into the bivariate copula density yields a log-likelihood 

function in accordance with the formulation proposed by Christian Genest & Favre, (2007). This 

log-likelihood function serves as a pivotal element in the analytical framework, encapsulating the 

statistical underpinnings of copula parameter estimation. 

     𝐿𝑈(𝜃)= ∑ log [𝑐𝜃
𝑛
𝑖=1 (𝑈𝑖,1,𝑈𝑖,2,)] =  ∑ log [𝑐𝜃(

𝑅𝑖

𝑛+1
,𝑛

𝑖=1
𝑆𝑖

𝑛+1
)] ∀ 𝑖𝜖{1, … . . , 𝑛}          (7.4)  

Here, cθ as the bivariate copula density and acknowledging Ri and Si as the ranks corresponding 

to the observed data, the derivation of the copula parameter θ involves the maximization of the 

rank-based pseudo log-likelihood function. This endeavor yields the parameter θ through the 
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utilization of the following expression. The optimization of the pseudo log-likelihood function 

constitutes a fundamental step in the estimation of copula parameters, embodying the statistical 

foundation of this analytical procedure.  

                                        θˆ = arg max[lnLU(θ)]                                                            (7.5) 

7.2.1.2 Goodness of Fit 

The discernment of a suitable copula model is executed through the application of distance-based 

statistical measures, such as Anderson–Darling (AD) and Akaike Information Criterion (AIC) 

which helps to identify best fit copula. The formulae of AD and AIC statistics are given as follows 

                                       AD  = max
1≤𝑖≤𝑛,1≤𝑗≤𝑛

|𝐶𝑛̂(
𝑖

𝑛
,
𝑗

𝑛
)−𝐶𝑝𝜃(

𝑖

𝑛
,
𝑗

𝑛
)|

√𝐶𝑝𝜃(
𝑖

𝑛
,
𝑗

𝑛
)[1−𝐶𝑝𝜃(

𝑖

𝑛
,
𝑗

𝑛
)]

                            (7.6) 

where, 𝑖 and 𝑗 denotes order statistics of the random variable 𝑢 and 𝑣. 

 𝐴𝐼𝐶(𝑚)  =  𝑛 𝑙𝑜𝑔(𝑀𝑆𝐸)  +  2𝑚          (7.7) 

where, m= number of fitted parameters; n= number of observations; MSE= mean square error of 

the fitted copula model and is expressed as follows 

                                                𝑀𝑆𝐸 =  
1

𝑛−𝑚
∑ (𝑂𝑖 − 𝑃𝑖)2𝑛

𝑖=1                                         (7.8) 

where, Oi, Pi are the observed and simulated variables. the lowest AD and AIC is considered as 

best copula (Amirataee et al., 2018; Janga Reddy and Ganguli, 2012). 

7.2.1.3 Drought Frequency analysis 

In the current study, the quantification of drought characteristics, encompassing severity and 

duration, adheres to the runs theory as outlined by Yevjevich & Ica Yevjevich, (1967). Let Xt 

represent a drought variable with a time series denoted by t. Accordingly, a run is identified as a 

segment within the time series wherein all values either exceed or fall below a predetermined 

threshold X0. Consequently, values surpassing (or falling below) this threshold are termed positive 

runs (negative runs). Notably, the properties of drought are intricately linked to the selected 

threshold, which may either be constant or exhibit variability over time (Mishra & Singh, 2010). 
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In this study, a threshold is established with 20th percentile of the SPI and SPEI values, 

approximately corresponding to a threshold value of -0.8. This selection is informed by its utility 

in signifying drought occurrences, as values beneath this threshold indicate the onset of drought 

conditions (Reddy & Ganguli, 2013). This rigorous consideration of the threshold, grounded in 

established methodologies, ensures a nuanced analysis of drought characteristics within the 

defined temporal framework. 

Numerous investigations into drought properties have been conducted through the lens of 

univariate frequency analysis by researchers Cancelliere & Salas, (2004); Tallaksen et al., (1997). 

Recognizing the limitations inherent in univariate approaches, Researchers such as Kim et al., 

(2006); Rajsekhar et al., (2015); Shiau & Shen, (2001) have advanced the field by extending their 

focus to bivariate frequency analysis. This extension is particularly pertinent since the joint 

behavior of multiple drought characteristics remains concealed within the confines of univariate 

analyses. Hence, a rigorous exploration of the collective dynamics inherent in drought 

characteristics becomes imperative for augmenting regional drought assessment and strategic 

planning. This transformative paradigm has engendered the formulation and application of SDF 

and SAF curves. These curves play a pivotal role in unraveling the intricate interdependencies and 

joint dynamics of various drought attributes. By adopting a bivariate frequency analysis approach, 

researchers can gain a more comprehensive understanding of drought occurrences, thereby 

facilitating improved regional assessment and strategic planning in the context of water resource 

management and environmental sustainability. 

7.2.1.4 Severity-Duration-Frequency Analysis 

SDF curves represent invaluable tools for conducting multivariate analyses of regional and global 

drought frequencies. A comprehensive exploration of relevant literature reveals several seminal 

studies that have applied SDF analysis to characterize drought features across diverse geographic 

regions. ISO-severity maps are developed using SDF analysis by Dalezios et al., (2000) &  

Saghafian et al., (2003). An alternative analytical approach utilizing copula for SDF curve 

derivation is presented by Shiau & Modarres, (2009). Building on these foundations, notable 

studies by Janga Reddy & Ganguli, (2012), Rad et al., (2017) have further contributed to the field 

by deriving SDF curves employing copula methodologies. 
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The methodological steps employed in generating Standardized Drought Frequency (SDF) curves 

through copula analysis in this investigation encompass the following:  

• Selection of pertinent goodness-of-fit statistics to assess the optimal fitting marginal 

distribution for severity and duration. 

• Formulation of joint and conditional marginal distributions employing a best-fit copula 

approach for severity and duration. 

• Establishment of the interdependence among severity, duration and frequency in relation 

to return periods for drought events, utilizing the conditional recurrence interval 

methodology as proposed by Shiau et al. (2007). 

                                 𝑇𝑆|𝐷(𝑠|𝑑) =
1

𝛾(1−𝐹𝑆|𝐷(𝑠|𝑑))
                                       (7.9)  

  

where,  𝑑 = duration, 𝑠 = severity, 𝛾 = arrival rate, 𝐹𝑆|𝐷(𝑠|𝑑) and  𝑇𝑆|𝐷(𝑠|𝑑) are the 

conditional CDF and conditional recurrence interval of 𝑆 given 𝐷 =  𝑑 respectively. The 

expression for conditional CDF is given below. 

                                       𝐹𝑆|𝐷(𝑠|𝑑) =
𝜕𝐹𝑆,𝐷(𝑠,𝑑)

𝜕𝐹𝐷(𝑑)
                    (7.10)  

              where 𝐹𝑆,𝐷(𝑠, 𝑑) = joint CDF and 𝐹𝐷(𝑑) represents the CDF of drought duration. 

• SDF curves are derived  from Eq. 7.9 and 7.10 at various return periods. 

7.2.1.5 Severity-Area-Frequency Analysis 

The determination of the return period for a drought event characterized by a specified percentage 

of areal extent is facilitated through the application of SAF curves, serving as a decisive indicator 

of drought occurrence (Burke & Brown, 2010). Noteworthy antecedent studies, such as those 

conducted by Tase, (1976), Hisdal & Tallaksen, (2003), Santos, (1983) Loukas & Vasiliades, 

(2004),  Bonaccorso et al., (2015), Mishra & Singh, (2009)  have contributed to develop SAF 

curves. 

The assessment of SAF curves is systematically executed through the following procedural steps: 

• Annual drought severity is calculated using run theory at each grid point. 
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• Areal extents are subsequently delineated through the computation of distinct severity 

thresholds expressed as a percentage of the total area for each calendar year. 

• L-moments serve as the basis for calculating distribution parameters, enabling the 

identification of the optimal fit among various probability distributions intended for 

severity values related to varied areal extents. 

• Frequency analysis is conducted entailing the computation of return periods corresponding 

to diverse levels of drought severity associated with  percentage areal extents. 

Within the scope, the quantification of drought severity is conducted through the application of the 

run theory approach. The spatial delineation of areal extents is intricately tied to the calibration of 

severity metrics specific to each designated drought region. A meticulous examination of various 

probability distributions ensues, using Akaike Information Criterion (AIC), to discern the optimal 

fit that characterizes the severity values within the respective drought regions. 

 

7.3 RESULTS 

7.3.1 Characterization of Drought using SPI12 and SPEI12 

7.3.1.1 SPI12  

The SPI12 values are computed for each homogenous region using IMD (1975-2017) and GCM 

(1975-2095: 1975-2005, 2006-2035, 2036-2065 and 2066-2095) monthly precipitation dataset. 

The method of runs (Yevjevich, 1967) is applied to the SPI series with a threshold of -0.8 to 

evaluate drought characteristics (Number of drought events, mean interarrival time, maximum 

duration, minimum duration, maximum severity and minimum severity) for three homogeneous 

regions. From analysis it is noticed that number of droughts is increasing in future compared to the 

IMD. An increasing trend is noticed in the maximum duration and severity for future scenarios. 

The mean inter arrival time is gradually decreasing with an increase in the number of droughts. 

The graphical representation of the observed dataset, specifically a scatterplot and histogram, 

delineates the relationship between drought intensity and duration within the stipulated regions are 

shown in Fig. 7.2 (a).  
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7.3.1.2 SPEI12  

The SPEI12 values are computed for each homogenous region using IMD (1975-2017) and GCM 

(1975-2095, 1975-2005, 2006-2035, 2036-2065 and 2066-2095) monthly precipitation and 

temperature dataset. Here in SPEI, Same as SPI a threshold of -0.8 is used to evaluate drought 

characteristics for three homogeneous regions. From analysis is noticed that number of droughts 

is increasing in future compared to the IMD. An increasing trend is noticed in the maximum 

duration and severity for future scenarios. The mean inter arrival time is gradually decreasing with 

increase in number of droughts. The graphical representation of the observed dataset, specifically 

a scatterplot and histogram, delineates the relationship between drought intensity and duration 

within the stipulated regions are shown in shown in Fig. 7.2 (b).  

 

Table 7.2 (a): SPI12 - Drought characteristics  

Region 
Drought 

characteristic 

IMD GCM 

1975-

2017 
1975-2005 2006-2035 2036-2065 2066-2095 

Region 1 

No. of droughts 18 16 19 15 18 

Mean interarrival time 24.8 22.4 19.7 23.6 20.5 

Mean severity 11.45 8.7 9.1 9.1 10.3 

Maximum severity 34.9 32.2 38.7 55.6 64.9 

Mean duration 12.35 11.2 13 13.7 12.2 

Maximum duration 37 34 58 48 61 

Region 2 

No. of droughts 20 20 20 13 21 

Mean interarrival time 26.31 18.3 21.4 23.5 24.2 

Mean severity 10.2 6.9 7.78 10.9 10.1 

Maximum severity 44.43 33.7 41.8 56.5 62.8 

Mean duration 13.63 9.1 9.7 12 10.8 

Maximum duration 51 37 45 72 64 

Region 3 

No. of droughts 21 16 23 25 18 

Mean interarrival time 23.65 22.68 24.69 26.64 26.47 

Mean severity 9.52 8.72 9.08 8.78 9.87 

Maximum severity 38.5 30.87 36.68 52.53 57.3 

Mean duration 10.9 10.93 11.08 9.6 11.64 

Maximum duration 48 44 43 51 59 
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The drought characteristics are evaluated using SPI12 and SPEI 12 for each homogeneous drought 

region. Regions 2 and 3 experienced the highest number of drought events for IMD and the same 

is expected for GCMs in future scenarios in both the cases. Whereas, the mean inter-arrival time 

is maximum for regions 3, followed by region 1. In case of maximum severity and duration, regions 

1 and 3 experienced the highest values. With respect to the drought characteristics, decreasing 

trend is observed from region to region. Regions 1 exhibit a lower frequency of drought 

occurrences characterized by elevated severity levels and extended mean interarrival times. 

Overall, it is expected to experience a greater number of droughts with high mean arrival time, 

severity and duration for most part of the Region 1 and 3. This expectation aligns with the findings 

of Gupta and Jain (2018), who observed an escalated rate of increase in potential 

evapotranspiration (PET) compared to rainfall across numerous regions in the country. 

Consequently, a heightened proclivity towards increased aridity is envisaged in the latter portion 

of the 21st century, contributing to a concomitant elevation in the severity and duration of drought 

episodes. 

The frequency of occurrence is also shown in Figure 7.3 (a) and (b) for SPI 12 and SPEI 12 . The 

prevalence of moderate drought events is notably elevated in both historical and projected future 

periods across all examined regions, constituting nearly 30% of the total drought occurrences. This 

heightened occurrence of moderate droughts is consistently observed throughout the study 

duration across all regions. Specifically, Region 1 exhibits a comparatively greater frequency of 

moderate droughts compared to other regions. A substantial escalation in the incidence of both 

moderate and severe drought events is discernible across the entirety of the three regions. 

Anticipations for the future indicate a pronounced likelihood of extreme drought events, 

particularly in Regions 1 and 3. Notably, the hydrological dynamics in India are profoundly 

influenced by the monsoon season (June-September), accounting for 70% of the annual 

precipitation. Consequently, the manifestation, progression and spatial distribution of drought 

events are intricately linked to the patterns of monsoonal rainfall. The anticipated rise in 

evaporation rates due to global warming is expected to induce drier terrestrial conditions and an 

augmentation of water vapor content in the atmosphere, contributing to the evolving dynamics of 

drought occurrences over time. 
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Figure 7.2 (a) SPI12 - Scatterplot and histograms  

 

Figure 7.2 (b) SPEI12 - Scatterplot and histograms  

7.3.1.3 Intercomparison of characterization of Drought using SPI12 and SPEI12 

The comparison between SPI12 and SPEI12 reveals distinctive quantitative details in drought 

characteristics across homogeneous regions: 

Frequency and Severity: 

Both SPI12 and SPEI12 indicate a notable increase in the frequency of moderate drought events 

across historical and projected future periods, constituting nearly 30% of total drought 

occurrences. Region 1 shows a higher frequency of moderate droughts compared to other regions, 

suggesting varying susceptibility to drought conditions. 
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Severity and Duration: 

Regions 1 and 3 consistently exhibit the highest values for maximum severity and duration of 

drought events, highlighting their vulnerability to prolonged and severe drought conditions. A 

decreasing trend in drought characteristics is observed from Region 1 to Region 3, with Region 1 

typically experiencing lower frequency but higher severity and longer mean inter-arrival times of 

droughts. 

Table 7.2 (b) : SPEI12 – Drought Characteristics 

Region 
Drought 

characteristic 

IMD GCM 

1975-

2017 
1975-2005 2006-2035 2036-2065 2066-2095 

Region 1 

No. of droughts 17 18 17 14 19 

Mean interarrival time 25.63 19.27 20.76 23.64 21.47 

Mean severity 11.47 7.76 11.78 10.38 14.53 

Maximum severity 81.07 28.56 38.18 56.19 58.08 

Mean duration 13.18 9.5 9.7 12.07 12.8 

Maximum duration 86 33 41 46 51 

Region 2 

No. of droughts 20 20 14 17 19 

Mean interarrival time 21.84 17.35 26.07 18.83 20.38 

Mean severity 9.6 5.41 13.72 7.34 15.14 

Maximum severity 75.1 29.88 45.73 51.29 50.39 

Mean duration 11.21 8.4 7.57 9.83 14.31 

Maximum duration 83 32 43 41 61 

Region 3 

No. of droughts 23 19 16 16 15 

Mean interarrival time 20.27 19.10 21.87 23.68 21.64 

Mean severity 8.29 7.51 12.53 9.53 17.47 

Maximum severity 68.02 25.38 35.12 39.79 52.59 

Mean duration 9.86 9.21 8.31 11 11.83 

Maximum duration 51 23 39 54 58 

 

Future Projections: 

Future scenarios suggest an escalation in both moderate and severe drought events across all 

regions, with Regions 1 and 3 particularly vulnerable to extreme drought episodes. These 

projections align with studies indicating increased evapotranspiration rates relative to rainfall, 

contributing to heightened aridity and prolonged drought conditions in the latter part of the 21st 

century. 
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Hydrological Dynamics and Monsoon Influence: 

The hydrological cycle in India, heavily influenced by the monsoon season, plays a crucial role in 

shaping drought patterns. Expected rise in evaporation rates due to global warming may intensify 

terrestrial dryness and atmospheric water vapor content, further influencing the spatial distribution 

and evolution of drought events. 

In summary, while both SPI12 and SPEI12 capture similar trends in drought frequency and 

severity, SPEI12's incorporation of evapotranspiration data enhances understanding of drought 

impacts on water availability and vegetation, particularly in regions prone to increased aridity and 

prolonged drought episodes. 

7.3.2 Drought Frequency Analysis using SPI12`and SPEI12. 

7.3.2.1 Severity-Duration-Frequency analysis 

The copula best fitting the frequency analysis is determined based on the distribution with the 

minimum values for Kolmogorov-Smirnov (K-S), Carmer Vos Mises (C-M) and Anderson-Darling 

(A-D) statistics, as presented in Table 7.3 (a). Specifically, for SPI12, the Clayton copula emerges 

as the optimal fit for Region 1, the Gumbel copula for Region 2 and the Frank copula for Region 

3. Conversely, for SPEI12, the Gumbel copula is identified as the most suitable for Region 1, the 

Frank copula for Region 2 and once again, the Frank copula for Region 3. These determinations 

are made based on the evaluation of Log Likelihood (L-L) and Akaike Information Criterion (AIC) 

values as shown in Table 7.4 (a). for SPI12 and 7.4 (b) SPEI 12. 
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Figure 7.3 (a) SPI12 - Frequency of occurrence  
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Figure 7.3 (b) SPEI12 - Frequency of occurrence  
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Furthermore, an analysis of optimal parameter values and the corresponding probabilities of 

duration is presented in Table 7.3(a) and (b) for SPI12 and SPEI12, respectively. The performance 

assessment involves the consideration of various probability distributions to model drought 

severity and duration, calibrated through the inverse cumulative distribution of distinct univariate 

distributions. Subsequently, the joint probability dependence across diverse return periods is 

computed using the inverse h-function of the best-fit copula. 

 For each homogenous region, SDF curves are formulated, as illustrated in Fig. 7.4 (a) for SPI and 

7.4 (b) for SPEI. Notably, Regions 1 and 3 exhibit elevated severity levels across different return 

periods, indicative of a heightened frequency of drought occurrences in the regions under 

investigation. Furthermore, the SDF curves demonstrate an upward concavity for all regions in 

this analysis, signifying an augmentation in severity with an increase in duration. 

Table 7.3 (a): SPI12 - Best probability distributions fit for characteristics of drought 

 

 

Figure 7.4 (a) SDF curves for various return periods of SPI12 
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Table 7.3 (b): SPEI12 - Best probability distributions fit for characteristics of drought 

 

Table 7.4 (a): SPI12 - Best fit copula model  

 

Table 7.4 (b): SPEI12 - Best fit copula model 
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Figure 7.4 (b) SDF curves for various return periods of SPEI12 

7.3.2.2 Severity-Area-Frequency analysis 

For various spatial extents, gamma distribution is identified as the optimal fit. Parameters of the 

Distribution are determined with the L - moments method. The SAF curves corresponding to 

various return periods  (5, 10, 25, 50, 75, 100) and Future scenarios (2021-2025, 2061-2065 and 

2091-2095) are depucted in Fig. 7.5 (a) for SPI12 and Fig 7.5 (b) for SPEI12. For regions 1-3; 

1971-1976, 1984-1989, 1995-2000 and 2000-2005 timespans are identified as the most severe 

drought periods as compared to the projected SAF curves. Analysis of  Fig. 7.5(a) reveals that 

region 1 exhibited higher severity values for both IMD and GCMs datasets. Additionally, region 3 

manifests a steeper slope in comparison to other two regions indicating a heightened risk of 

drought for small spatial extents.   

Regarding SPEI12 from Fig 7.5 (b) region 3 experienced higher severity values for both IMD and 

GCMs datasets, with a steeper slope compared to regions 1 and 2. Notably, there is an inverse 

relationship observed between severity and spatial extent – an increase in the percentage of the 

area results in a decrease in severity and vice versa. The SAF curves elucidate that severity values 
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ranging between 10 to 25 are prominent for 50% of the area, diminishing with an expansion in 

areal extent for both SPI12 and SPEI12.       

 

  

Figure 7.5 (a) SAF curves for various return periods of SPI12 

7.4. Discussions  

Upon closer examination of the findings, it becomes evident that an escalation in both the intensity 

and duration of drought is observed across virtually all regions and throughout the temporal 

progression. The investigation into the incidence of various drought categories (moderate, severe 

and extremely severe) indicates a probable uptick in the frequency of drought occurrences in most 

regions, barring region 3. Analysis of Severity-Duration-Frequency (SDF) curves indicates a 

consistent trend where the severity rate tends to rise with prolonged durations in most regions. 

Nevertheless, critical drought events are anticipated to manifest across diverse time scales in three 
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homogeneous regions. Furthermore, the derived Standardized Anomaly Frequency (SAF) curves 

imply that droughts are likely to encompass a larger spatial extent for lower severity values across 

all regions. 

The SAF study previously examined highlights an anticipation of an increased areal extent of 

drought in the latter part of the century (Gupta and Jain, 2018). Notably, Indian regions exhibit 

steeper SAF curve slopes characterized by heightened variability in topographical and 

hydrological attributes. The SAF curves serve as valuable tools for comparing past and future 

drought scenarios. Consequently, the results indicate that India is currently grappling with severe 

droughts in the region 3 significantly impacting the local population. Prolonged droughts, 

attributed to insufficient soil moisture, underscore the importance of regulating turbulent heat flux 

and boundary layer distribution to mitigate surface energy loss (Alapaty et al., 1997). 

Furthermore, a surge in population corresponds to an elevated demand for energy. Presently 

standing as the third-largest global consumer of energy, following China and the United States, 

India contends with an escalating need for electricity, exerting a direct influence on the prospective 

availability of water resources. Consequently, proactive measures such as enhanced preparedness, 

vigilant monitoring and accurate prediction of droughts emerge as pivotal adaptation strategies to 

mitigate the risks associated with impending droughts. Policymakers should formulate strategic 

frameworks tailored to address local and regional vulnerabilities, ensuring successful mitigation 

of drought risks induced by climate change. 
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Figure 7.5 (b) SAF curves for various return periods of SPEI12 

 

7.5. Conclusion 

• In later part of twenty-first century mean interarrival time is reduced and number of 

droughts have increased for both SPI and SPEI.  

• The mean inter-arrival time is maximum for region 3 followed by region 1 and these 

regions are also experiencing highest values of maximum severity and duration  

• It is evident that moderate drought events exhibit a significant increase in both historical 

records and future projections across all studied regions. Specifically, these events 

constitute approximately 30% of all observed drought occurrences. 

• The potential exists for an increased occurrence of droughts characterized by shorter mean 

interarrival times, elevated severity and extended duration in the future, with Region 1 

anticipated to experience the highest frequency, followed by Region 3 and then Region 2. 

• Over the temporal progression, a noteworthy rise in drought severity across varying 

durations, paralleling the increase in temporal extent.  

• Regions 1 and 3 consistently show increased severity across various return periods, 

reflecting heightened drought frequency. Additionally, all regions exhibit upward-concave 

SDF curves, indicating severity escalation with prolonged durations. 



108 
 

• For regions 1-3; 1971-1976, 1984-1989, 1995-2000 and 2000-2005 timespans are 

identified as the most severe drought periods as compared to the projected SAF curves. 

• Region 1 showed higher severity values in both IMD and GCMs datasets, while region 3 

displayed a steeper slope, suggesting increased drought risk at smaller spatial extents 

compared to other regions. 

• An inverse relationship was observed between severity and spatial extent, with severity 

values between 10 to 25 prominently affecting 50% of the area, diminishing as the areal 

extent increases for SPI12 and SPEI12 SAF curves. 

• The high point of drought hazard is envisaged during the periods 2036-2065 and 2066-

2095, demonstrating heightened susceptibility compared to other analyzed intervals. 
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                                                      CHAPTER 8 

CONCLUSIONS 

This chapter is organized as follows: Section 8.1 presents the summary of this study, Section 8.2. 

Conclusions, 8.3 Research contributions, 8.4 Limitations of the study and 8.5 Scope for the future 

study. 

8.1 Summary of the Thesis 

In this study, suitable Global Climate Models (GCMs) are identified through the comprehensive 

analysis of CMIP5 datasets at the first phase which include historical and future climate 

projections. A thorough evaluation of GCMs based on their performance metrics is conducted 

which involves assessing their ability to simulate historical climate conditions accurately.. 

Ensemble models are identified using a group decision-making analysis, ensuring a robust 

selection process. Following this, suitable models are downscaled and spatially projected to the 

study area. 

In the second phase, delineation of homogeneous regions and drought characteristics analysis is 

performed. historical precipitation and temperature data is used for each homogeneous region to 

evaluate drought characteristics. Relevant drought indices SPI12,SPEI12 and SC_PDSI are 

computed for each homogenous region. The temporal trends namely severity and duration are 

assessed and drought events are distributed regionally to examine the historical drought patterns.  

In the subsequent third section, a pivotal aspect of our study involves a detailed examination of 

the intricate relationship between climate indices and drought indices. This analysis provides 

valuable insights into the complex interplay between climate patterns and the occurrence and 

severity of drought events. The relationship between climate indices and drought indices (SPI, 

SPEI, SC_PDSI) helped in analyzing the variations in climate patterns impact drought occurrences 

and severity 

Finally, SDF and SAF curves are employed to comprehensively depict the characteristics of 

drought events within each homogeneous region. It also helps to understand the severity of drought 

events with duration and its frequency of occurrence.  These curves serve as invaluable tools for 

quantifying and visualizing the severity, spatial extent and frequency of drought occurrences, 

providing a holistic understanding of the drought landscape within the study area.  
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8.2 Conclusions 

The conclusion of the entire work includes. 

• The identified suitable ensemble models for P include FGOALS-g2, CMCC-CMS and 

INMCM4.0. BCC-CSM1.1(m), CanESM2, and MIROC5 are deemed suitable GCMs for 

𝑇𝑚𝑎𝑥. For 𝑇𝑚𝑖𝑛, the recommended ensemble comprises CanESM2, BCC-CSM 1-1(m) and 

ACCESS1.0. For Tavg, MIROC5, CNRM-CM5 and BCC-CSM1.1 (m) emerge as the  

suitable models. 

• The optimal number of clusters is determined to be three for the study region. South zone 

of region 1 comprises 14 districts of Telangana, North zone of region 2 comprises 7 

districts; east zone of region 3 comprises 10 districts. 

• For SPI, the most severe and protracted drought event occurs in region 2 from June 2001 

to August 2005, exhibiting a severity of 44.43 and a duration spanning 51 months. 

Followed by region 3 and 1. SPEI exhibited a severity of 81.07 and a duration of 86 months 

for region 1 from August 2006 to September 2013. SC_PDSI major drought events 

occurred in region 3 from March 1979 to April 1988, exhibiting a severity of 227.75 and a 

duration of 108 months. 

• In case of SPI, the period 1984-1987; 2001 to 2003; and 2011 to 2013 has experienced 

droughts for all regions; SPEI faced drought events during 1984-1986; 1992-1994; 2006-

2017; SC_PDSI experienced drought for all regions during 1992 to 1994 and 2008- 2011. 

• For SPI, A sustained coherence in interannual variability is discerned throughout the 

temporal spans of 1980-1995 and 2002-2017, primarily evident at time scales ranging from 

16 to 40 months. Notably, intermittency is observed between 4 to 12 months during 

different years for MEI. The SOI, interannual coherence is evident between 1975-1990 and 

1995-2017, spanning time scales from 16 to 40 months. 

• A substantial correlation in overlap periods is observed in 1984-1987, 2010-2013 and 2016-

2017 among all drought indices with climate factors. 

• In later part of twenty-first century mean interarrival time is reduced and number of 

droughts have increased for both SPI and SPEI. A possibility to experience a high number 

of droughts with less mean arrival time, high severity and duration in the future for region 

1 followed by region 3 and 2.  
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• The prognosticated drought SAF curves delineate the interplay between drought severity, 

spatial extent and recurrence in relation to the drought return period. Concurrently, SAF 

curves prove instrumental in scrutinizing the future outlook of annual drought severity, 

including its spatial occurrences represented as a percentage of the total area.  

• SAF curves serve as a valuable tool for the comparative analysis of historical drought 

occurrences against those projected from future climate scenarios, leveraging GCMs 

outputs. 

• Over the temporal progression, a noteworthy rise in drought severity across varying 

durations, paralleling the increase in temporal extent.  

• The high point of drought hazard is envisaged during the periods 2036-2065 and 2066-

2095, demonstrating heightened susceptibility compared to other analyzed intervals. 

The results and findings based on the application of statistical techniques in this study gives 

insight to use suitable GCMs for drought related climate impact studies and this study offers a 

view on potential drought condition in Telangana state, India. 

8.3 Research contributions 

• GCM Selection advances spatially projecting GCM outputs to align with specific spatial 

resolution by improving precision of climate data in local analyses.  This includes using a 

group decision-making approach to select a robust ensemble of models that provides 

accurate climate projections for the study area. 

• Delineating homogenous regions based on climatic data allows for more nuanced analysis 

of drought impact at regional context in understanding drought patterns and spatial 

distribution. 

• Intricate relationship between teleconnections and drought indices elucidate variations in 

climatic patterns influence over drought occurrences and severity which offers valuable 

insights in driving drought events 

• Development of SDF and SAF curves contributes deeper understanding of the relationship 

between severity, duration , frequency and spatial extent. This novel application provides 

a comprehensive view of the impact of droughts on different spatial scales, enhancing the 

assessment of drought impacts on regional and local levels. 
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These contributions collectively advance the understanding of drought dynamics and their 

interplay with climate factors, providing valuable tools and insights for managing and 

mitigating drought impacts in the study region and potentially beyond. 

8.4 Limitations of the study 

• GCM Limitations: The study relies on a selection of Global Climate Models (GCMs) 

from the CMIP5 dataset. Despite rigorous selection processes, inherent uncertainties and 

biases in these models can affect the accuracy of climate projections. Variability in model 

performance and the choice of models included in the ensemble may influence results. 

• Resolution Mismatch: Even after downscaling, the spatial resolution of climate data 

might not perfectly align with the heterogeneous nature of the study region. This can limit 

the granularity of the analysis and might affect the accuracy of drought characterization. 

• Index Limitations: Each drought index has its own limitations and assumptions. For 

instance, SPI focuses solely on precipitation, while SPEI incorporates potential 

evapotranspiration, and SC_PDSI accounts for soil moisture. The differences in these 

indices may lead to variations in drought characterization and might not fully capture the 

complexity of drought conditions. 

8.5 Future Scope 

1. The identified suitable ensemble GCMs can be further used in climate  impact assessment 

studies based on precipitation, temperature, drought, flood and temperature extremes and 

so on at regional scale. 

2. The suitability of other popular drought indices can be investigated at a seasonal scale 

incorporating the CMIP5 models. 

3. In this study, efforts have been made to identify meteorological droughts. However, 

hydrological, agricultural and socio-economic drought is the area where this work can be 

extended further in future.  

4. A well-structured Drought Information System (DIS) and Decision Support System (DSS)  

can be designed to effectively manage drought mitigation and response efforts. 

5. An attempt can be made to develop a common drought model for all types of agro-climatic 

regions which would serve as a tool for drought assessment, monitoring and management. 
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