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Abstract 

The resin transfer moulding (RTM) technique is a widely used liquid composite moulding 

(LCM) process due to its advantages of uniform thickness and good surface finish for 

manufacturing complex composite parts. However, the RTM process is not practised widely 

due to the cost involved in developing mould design and process parameters. A proper mould 

design requires designing an effective injection strategy which contains the least number and 

appropriate positions of injection ports and vents that result in minimum mould filling time 

without dry spot content. As well, the judicious choice of mould heating time-temperature cycle 

is required for the effective curing process. In addition, the cognition on resin gelation-cure 

kinetics-rheokinetics and reinforcement mat permeabilities are the essentially required material 

parameters for the successful development of the RTM process. On the contrary, RTM being 

the closed moulding process, it is difficult to visualize resin flow and sense resin curing. 

Therefore, it becomes a hard task to analyse influential mould fill and cure process parameters 

through experimental trials and thus, the development of composite parts via the RTM process 

is confined. 

To address these challenges, this research proposes a simulation-based optimization 

framework utilizing supervised learning algorithms to automate and optimize the RTM 

process. In this framework, simulation packages are coupled with optimization algorithms to 

autonomously determine optimal design and process parameters. The study introduces a robust 

and cost-effective methodology to simulate and optimize RTM mould-filling and curing 

processes using an in-house coded multi-objective optimization (MOO) algorithm integrated 

with process simulation via multi-phase porous flow, transient heat transfer and resin cure 

kinetics models. This framework was implemented using COMSOL Livelink for MATLAB 

focusing on manufacturing a vinyl ester-glass fiber-reinforced automotive bonnet and an 

RTM6-carbon fiber-reinforced aircraft wing flap. 

Initially, vinyl ester and RTM6 resins were thermally characterized to develop the cure 

process windows through which the appropriate time-temperature cure cycles were identified 

for the curing of composite parts. From the thermal characterization of neat resins, the modified 

Kamal and Sourour model was effectively fitted to the experimental data of the degree of cure 

versus the rate of cure for both vinyl ester and RTM6 resins. Subsequently, the permeabilities 

of reinforcement fibre mats were measured using mould-filling experiments for their 

applicability in the mould-filling simulations. The effective permeability of 2.0×10-9 m2 and 
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1.0×10-9 m2 were obtained using the mould-filling experiments for woven roving glass and 

carbon fibre mats, respectively.  

In the mould-filling phase, novel in-house coded Multi-Objective Stochastic-Optimization 

(MOSO) and Non-dominated Sorting Differential Evolution (NSDE) algorithms were 

developed and implemented to optimize the mould-fill phase. The NSDE algorithm was 

implemented for simultaneous optimization of two objectives namely, dry spot content and 

mould-fill time by changing the locations of gates and vents at the fixed input numbers of gates 

and vents. Consecutively, the MOSO algorithm was implemented for simultaneous 

optimization of three objectives namely, dry spot content, mould-fill time and total number of 

ports by simultaneously changing both the numbers as well as locations of gates and vents. The 

effect of race-tracking was also investigated using higher permeability values at the composite 

part-cut edges. Then, the efficacy of the proposed algorithms was examined with the trial and 

error process model simulations. From the comparative assessment, the trial and error process 

required more iterations with trials in numbering and positioning ports and manual efforts for 

obtaining a single optimal solution. Conversely, the MOO algorithms were automated and 

needed less manual effort and problem-specific experience to obtain the number of Pareto 

optimal solutions. In comparison to the NSDE algorithm, the MOSO algorithm predicted less 

dry-spot content, number of ports, mould-fill time and uniform resin flow-front progressions 

with lesser functional evaluations and computational time. 

In the curing phase, a novel in-house coded NSDE algorithm was developed and 

implemented for the simultaneous minimization of composite part thermal gradients and cure 

process time for both the studied composite parts. The efficacy of the proposed algorithm was 

examined with the in-house coded non-dominated sorting genetic algorithm (NSGA-II) and 

trial-error process simulations in terms of a thermal gradient, cure-time, and cure progression 

at the applied temperature cycles. From the results, the NSDE algorithm was found to be 

effective in achieving faster convergence with less cure process and computational time when 

compared to the NSGA-II algorithm. The NSDE algorithm performed effectively in terms of 

thermal gradient and cure-time with the automated predictions of the mould heating parameters 

when compared with the trial-error process for both the composite parts.  

This research significantly contributes to the field by introducing efficient and automated 

optimization algorithms for RTM composite parts by enhancing both manufacturing precision 

and time efficiency. 

Keywords:  Mould Filling, Curing, Multi-objective Optimization, Trial-and-Error Process 

Model Simulation, Reinforcement Mat Permeability, Curing Kinetics. 
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Chapter 1 

Introduction 

1.1 Composites 

Composites are formed by combining two or more constituents having different properties. 

The major materials used are reinforcement fibre mats which carry the structural load and the 

resin matrix system which holds the fibre together. The different reinforcement materials that 

can be used are fibres, whiskers and particulates and the resin matrix materials that can be used 

are polymers, metals and ceramics. Based on the type of matrix, the composites are classified 

as polymer matrix composites, metal matrix composites and ceramic matrix composites[1].  

1.1.1 Polymer Matrix Composites 

Polymer Matrix Composite (PMC) [2] uses a polymer as the matrix and a fibre as the 

reinforcement. The resin matrix spreads the load applied to the composite between each of the 

individual fibres and also protects the fibres from damage caused by weathering, abrasion and 

impact. Depending upon the type of polymer matrix used, PMCs are classified into 

thermoplastic PMC and thermoset PMC. Thermoplastic matrix is highly viscous and their 

viscosity ranges million times more than that of water. The production of PMCs is difficult as 

the matrix is supplied in solid form and it is difficult to make them flow through reinforcement 

fibre. Thermoplastic matrix does not crosslink and hence, the composite parts are flexible and 

reformable. The thermoplastic matrix can be either amorphous or semi-crystalline. In the 

amorphous phase, plastic molecules are randomly arranged whereas in crystalline plastics they 

are arranged in an orderly fashion. The thermoset PMC uses a thermoset resin as the polymer
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matrix which is 50 to 500 times more viscous than that of water. Thermoset resins can be cross-

linked and converted to hard solids using a curing agent and/or with elevated temperature. After 

curing, thermoset PMCs cannot be re-melted or reformed. Some of the commonly used 

thermoset polymer matrices are polyesters, epoxies, phenolics, polyurethanes, polyimides 

etc.[3]. 

1.1.2 Applications of Polymer Matrix Composites 

Polymer matrix composites are used in different sectors of the industry such as marine, 

energy, infrastructure, aerospace, automotive and sports. The major characteristics of polymer 

matrix composites are lightweight-high strength and environmentally friendly which results in 

increased fuel efficiency and reduced CO2 emission [4]. 

The worldwide polymer composites market distribution in the early years between 2002 

and 2005 is given in Figure 1.1. North America was the highest contributor to the composite 

market i.e. 39%, followed by Europe (34%), Asia (24%) and the remaining 3% was contributed 

by the rest of the world. The percentage segregation of PMCs in different sectors of industry is 

given in Figure 1.2. The transport sector is the highest one i.e. 35% contains aerospace, 

automotive, marine and railway divisions. Subsequently, the construction sector (31%) 

includes applications from civil engineering, followed by the sports sector (10%), electrical 

engineering sector (14%) and then other sectors of the industry (10%). Although this data was 

collected between 2004 and 2006, still it represents closely to the present scenario[5]. 

 

 

 Figure 1. 1 The Worldwide Market of 

Composite Materials 

Figure 1. 2 The Percentage Segregation of 

PMCs in Different Sectors of Industry 

Nowadays, the world is seeking techniques for reducing CO2 emissions and increasing fuel 

efficiency in different transportation sectors. Weight reduction is one of the effective ways to 

reduce CO2 emissions and enhance the fuel efficiency of a vehicle. From the reported studies, 
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every 10% reduction in vehicle weight results in a 7% improvement in fuel economy[6]. In 

addition to the different characteristics of composite materials such as corrosion resistance, 

thermal conduction and high strength, composite materials contribute to the weight reduction 

of 15% to 40% in the automobile sector[7]. From the reported studies, the United States 

automotive composite market revenue has continuously increased in the last decade as shown 

in Figure 1.3. From Figure 1.3, it can be seen that the automotive market revenue in 2014 was 

200 million USD and it was expected to reach around 700 million USD by 2025 [7]. Around 

65% of polymer matrix composites were used for automobile exterior and interior parts from 

the global application and the remaining 35% were used for structural and powertrain 

components as shown in Figure 1.4 [8]. 

 

Figure 1. 3 The Automotive Polymer 

Composite Market Revenue of the United 

States (From 2014 to 2025) [7] 

Figure 1. 4 Global Application of 

Polymer Composites in Various 

Automotive Components [8] 

 

The structural materials of Airbus 350 and Boeing 787 contain 50% composites as shown in 

Figure 1.5a. The Boeing 787 was found 21% more fuel efficient [9] than the previous models 

as per the reported studies by All Nippon Airlines Co., Ltd. The recent unmanned aerial 

vehicles contain 60-90% composites as shown in Figure 1.5b [10]. 



4 

 

 

Figure 1. 5 Applications of Composites Structures in the Aerospace Industry: (a) 

Commercial Aircraft (Boeing 787) [9], (b) Unmanned Aerial Vehicles (MQ-1 Predator) 

[10] 

1.1.3 Processing Methods 

The main purpose of polymer composite processing methods is to bring the resin and 

reinforcement fibre together in the required shape of the product targeting minimum voids with 

maximum resin-fibre wet-out. Various composite production techniques such as hand lay-up, 

filament winding, pultrusion, compression moulding, Liquid Composite Moulding (LCM) and 

autoclave moulding are currently practised. However, the choice of the composite production 

process for a particular application is governed by the trade-off between lower manufacturing 

cost, high-performance parts, higher production rate and ease in making complex geometries. 

LCM techniques such as Resin Transfer Moulding (RTM), Vacuum Assisted Resin Transfer 

Moulding (VARTM) and Vacuum Assisted Resin Infusion (VARI) have taken a promising 

interest over the traditional methods in structural applications due to their ability to 

manufacture good finished complex structures with increased fibre volume fractions [11]. 

1.1.4 Resin Transfer Moulding Process  

The resin transfer moulding technique is a widely used LCM process in the automotive 

and aerospace field due to its ability to manufacture high-performance composite parts [12]. 

RTM is a closed mould process that minimizes styrene emissions and material wastage. RTM 

becomes a competitive composite manufacturing process to the other traditional methods due 

to its selective reinforcement and accurate fibre management, incorporation of inserts and 

ability to produce net shape complex structures and hollow shapes [13]. The stages followed 

in the RTM process for making the composite part are given in Figure 1.6. At first, the fibre is 

cut to the required shape of mould called a preform. Then, the preform is loaded between the 

two solid airtight halves of the mould.  After closing the mould, the resin is injected through 
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the appropriately located gates at constant injection pressure or flow rate. As the pressurized 

resin is injected through the gates, the air inside the cavity dispels out from the vents. Complete 

resin impregnation of fibre preform with minimum mould filling time and minimum voids is 

the objective of the mould filling stage [14]. This requires optimal mould design that delivers 

optimal numbers and locations of gates and vents and optimal pressure and temperature 

distributions.  

 When the mould is filled, the resin injection is stopped and the resin is allowed to cure 

and post-processed to obtain the finished composite part. The resin is allowed to cure either at 

room temperature or at elevated temperature which depends on the choice of the resin selected 

based on the application. During the curing process, heat is applied to the mould as per the 

recommended time-temperature-cure cycle of the specific resin. During curing, with an 

increase in temperature, resin undergoes chemical change predominantly through free radical 

polymerization and forms a networked three-dimensional structure with exothermal heat. Also, 

the resin undergoes physical change due to cross-linking from liquid to gel state and then to 

rigid solid state [15]. Minimum cure time and thermal gradient with the maximum degree of 

cure is the objective of the curing stage. The exothermal heat generated during resin curing can 

lead to temperature overshoots and thus, affects the quality of the manufactured composite part. 

Hence, the optimal design of the curing phase requires a well-defined mould heating 

temperature profile to reduce thermal overshoots and gradients [16]. After the successful 

completion of the curing stage, the cured composite part is extracted from the mould. 

 

 

 

 

 

 

 

 

Figure 1. 6 Major Stages of the RTM Process 

1.2 Motivations 

In spite of several advantages, the RTM process is still not practised by small-scale 

industries due to the development cost involved in the development of effective mould design 
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and process parameters for a specific application [17], [18]. A proper mould design requires 

designing of effective injection strategy which contains the least number and appropriate 

positions of injection ports and vents that result in minimum mould filling time without dry 

spot content [19]. The judicious choice of injection pressure or injection flow rate, line or point 

injection ports and port diameter are required for the accomplished mould-filling process [20]. 

As well, the judicious choice of mould heating time-temperature cycle is required for the 

effective curing process [21]. In addition, the cognition on resin gelation-cure kinetics-

rheokinetics and reinforcement mat permeabilities are the essentially required material 

parameters for the successful development of the RTM process [22], [23]. On the contrary, 

RTM being the closed moulding process, it is difficult to visualize resin flow and sense resin 

curing [24]. Therefore, it becomes a hard task to analyse influential mould fill and cure process 

parameters through experimental trials and thus, the development of industrial composite 

components via the RTM process is confined [25].  

Alternatively, researchers are practising various LCM process simulation packages to 

predict the suitable configurations of gates and vents during mould design. These simulation 

tools are relatively easy and cost-effective to predict the various configurations of mould design 

and process parameters when compared to trial and error experimental methods [26]. Because 

new mould design and its alteration for each configuration of gates and vents are expensive 

and intricate through trial experiments. Also, there is added material cost for developing mould 

design and process parameters through iterative trial experimentations [27]. The most 

commonly used numerical tools through various simulation packages are Finite Volume 

Method (FVM), Finite Element Method (FEM) and hybrid Control Volume Finite Element 

Method (CVFEM). Moreover, the numerical tools used by researchers are specially developed 

simulation tools for the isothermal LCM processes such as PAM-RTM, RTMSIM, LIMS3D, 

LIMS, RTM-Worx [28]–[33]etc. However, these simulation packages lack the ability to 

improve mould design or the process parameters on their own via supervised learning iterations 

[34]. In recent trends, researchers have introduced the simulation-based optimization 

framework where simulation packages are coupled with the optimization algorithms as shown 

in Figure 1.7 [20]. At first, the mould filling and curing processes are evaluated for given input 

parameters using numerical simulations. Then, the processes are analysed for a predefined 

objective function and constraints. Subsequently, the optimization algorithm search for new 

candidate solutions and send them to the simulator for process evaluations. Hence, the coupling 

of new candidate solution generation (search) and the process assessment (evaluation) forms 

the simulation-based optimization framework. These simulation-based optimization 
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frameworks will enable them to attain the optimal design and process parameters on their own 

using supervised learning algorithms [35], [36]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 7 Simulation-Based Optimization Framework 

1.3. Numerical Optimization 

Although there are several optimization algorithms developed by the researchers, the 

selection of an effective optimization algorithm is problem-specific based on the No Free 

Lunch Theorem [37]. Implementation of an unsuitable algorithm results in unsatisfactory 

performance and unnecessary wastage of computational costs. Thus, the effective design of the 

RTM process depends on the type of optimization problem and the selection of a proper 

optimization algorithm. Commonly, an optimization problem contains one or more objective 

functions, design variables or constraints [38]. The general formulation of any type of 

optimization problem is given below,  

 

max/min
𝑋

𝑓𝑘(𝑋)   k = 1, 2, …, N 

Subject to, 

ℎ𝑙(𝑋) = 0   l = 1, 2, …, L 

𝑔𝑚(𝑋) ≤ 0  m = 1,2,…M 

1 
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Mould Design 
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(Mould Filling & 
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Algorithms 
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  𝑙𝑏 ≤ 𝑋 ≤ 𝑢𝑏  X = (x1, x2,….xd )
T 

here, 𝑓𝑘(𝑋) is the scalar objective function which has to maximize or minimize, ℎ𝑙(𝑋) 

represents the J number of equality constraints also called active constraints, 𝑔𝑚(𝑋) represents 

the M number of inequality constraints and X is the vector of d-dimensional design variables. 

The optimization problems can be classified in different ways as follows [39]: 

1. Single-variable and multi-variable optimization problems contain a single or more than 

one design variable, respectively.  

2. Discrete and continuous optimization problems contain the discrete and continuous set 

of design variables, respectively.   

3. In the constrained optimization approaches design variables change by satisfying 

certain constraints whereas, in unconstrained optimization problems, design variables 

are free to change without any constraints.  

4. When there is a single objective to optimize, such problems are called single-objective 

optimization problems and problems which contain multiple conflicting objectives to 

optimize, such problems are called multi-objective optimization problems. Multi-

objective optimization (MOO) problem contains more than one objective that conflicts 

with each other. Hence, there will be more optimal solutions which are represented in 

terms of Pareto fronts. The best optimal solutions are called non-dominated solutions 

as shown in Figure 1.8. 

5. The optimality procedure of a problem depends on time for the dynamic optimization 

problems whereas the optimal design does not depend on time for the static types  

 

 

 

 

 

 

 

 

 

 

Figure 1. 8 Pareto Front for Minimization of Two Conflicting Objective Functions 
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After the formulation of the optimization problem in the above-mentioned standard 

form, the task is to solve it using an appropriate optimization technique. There are different 

types of optimization techniques based on the nature of the optimization problem which 

are classified as [40]: 

1. Deterministic algorithms: These methods are heavily based on exploitation search 

mechanisms in which the solutions improve with iterations within the local domain as 

shown in Figure 1.9. These algorithms have higher convergence rates due to their deep 

understanding of search space and efficient navigation in the neighbourhood search points. 

However, these algorithms are more dependent on initial guesses and more prone to get 

stuck in local optima. Optimization techniques namely Newton’s method, secant method, 

simplex method, and box-complex method fall into the deterministic algorithms category. 

2. Stochastic algorithms: These algorithms are heavily based on exploration search 

mechanisms in which a randomly generated population covers the whole search space as 

shown in Figure 1.8. Therefore, these algorithms are less prone to local stagnation and 

increase the probability of obtaining a global optimal solution. However, extreme 

exploration results in a slower convergence rate and unnecessary wastage of computational 

resources. Optimization techniques based on the Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO) algorithm, Ant Colony Optimization (ACO) algorithm and Cuckoo 

Search Algorithm (CSA) fall into the stochastic algorithms [41]–[43]. 

3. Hybrid algorithms: In this method, two or more algorithms are combined so that the 

potential aspects are counted and the weaker aspects are eliminated. Hybrid algorithms are 

mostly the integration of local search strategies with global search based algorithms. A 

hybrid Box-Complex method with Cuckoo Search (BC-CS) algorithm, hybrid PSO with 

Genetic algorithm and hybrid Nelder-Mead PSO (NM-PSO) algorithm can be the best 

examples of hybrid algorithms [44]–[46]. The development of robust hybrid algorithms is 

still an active area of research to address the complexity of real-world applications. 
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Figure 1. 9 Convergence Flow of Optimal Solution for Stochastic and Deterministic 

Techniques 

Recently, composite practitioners have started highlighting the investigation of how well 

the optimization algorithm performs for the given problem of interest. This will guide the 

selection of appropriate optimization algorithms for future optimization studies. The 

appropriate choice of optimization algorithm for the given composite manufacturing problem 

will open the door to obtaining the best optimal solutions and reducing the wastage of 

computational resources, time and money [47], [48]. 

1.4. Bibliometric Analysis 

A bibliometric analysis was conducted on August 21, 2023, utilizing the Web of Science 

core database. A collection of 2391 articles was obtained through the primary search term 

'Resin Transfer Moulding' within the topics section. Bibliometric network visualization was 

carried out using the VOSviewer software [49], as depicted in Figure 1.10. The analysis 

focused on bibliometric coupling occurrences of author keywords that appeared more than 8 

times. Out of a pool of 4276 keywords, 157 keywords met this threshold and were consequently 

selected for further examination. From these 157 keywords, the cumulative strength of co-

occurrence links with other keywords was computed. This computation guided the selection of 

keywords with the highest total link strength. Among these keywords, resin transfer moulding, 

mechanical properties, polymer matrix composites, permeability and others emerged as 

prominent author keywords. 
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Figure 1. 10 Schematic Representation of the Bibliographic Networking Diagram 

Obtained from the Web of Science Core Database through the Search Conducted on 

August 21, 2023. 

 Figure 1.11 shows the network visualization of bibliographic coupling between 

countries for the searched phrases related to resin flow and curing process. The bibliographic 

coupling for more than 5 documents of a country were analyzed. Out of 75 countries, 48 

countries met this coupling criterion and thus, were chosen. From the 48 countries, the total 

strength of bibliographic coupling links with other countries was computed and the countries 

with greatest total link strength were selected. From Figure 9, it can be seen that the USA has 

the greatest link strength followed by China, South Korea, Japan, Canada and India. 
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Figure 1. 11 Schematic Representation of the Bibliographic Coupling between 

Countries Obtained from the Web of Science Core Database through the Search 

Conducted on August 21, 2023. 

1.5. Research Gaps 

From the detailed literature review included in Chapters 2 - 5, it was found that the 

researchers addressed RTM mould filling and curing simulations independently and no straight 

reports were found on the development of multi-objective optimization algorithms with the 

coupling of multi-phase porous flow, transient heat transfer and resin cure kinetics models to 

address the complete RTM process optimization.  

Researchers have handled the optimizations of mould fill and cure phases separately using 

variants of GA. However, from the comparative studies, the Differential Evolution (DE) 

algorithm performed significantly better than GA for multi-objective optimization problems 

[50]. Notably, there were no reports on the development of the non-dominated sorting 

differential evolution (NSDE) algorithm for the simultaneous optimization of the RTM mould 

fill and cure phases. Also, there were no straight reports found on the development of robust 

optimization techniques for multiple-complex industrial composite structures with varied 

resin-fibre properties.  
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The development of an effective injection strategy that contains the least numbers and 

appropriate positions of mould gates-vents is vital to attain the optimized RTM mould fill 

phase. From the literature review, it was found that the optimization of mould gate and vent 

locations was addressed independently using various heuristic and deterministic optimization 

techniques. However, there were no reports found on the development of a multi-objective 

stochastic optimization (MOSO) algorithm that predicts the simultaneous optimization of gate-

vent numbers and positions with the prediction of minimum dry spot content and mould fill 

time. 

Prior to this work, there were no published works on the development of a resin cure 

process window for the selection of appropriate time-temperature cycles for the composite 

cure. Consequently, there were no reports found to obtain the time-temperature-cure difference 

window that evaluates the cure differences and the rate of cure differences between neat resin 

and composite panel. A detailed review of the present status, research gaps and research work 

proposed related to this thesis is tabulated in Table 1.1. 

Table 1. 1 Research Gaps and Proposed Novelties 

Present Status Research Gaps Research Proposed 

Few MOO techniques were 

reported for the RTM 

process optimization based 

on variants of GA. 

No global optimization 

techniques other than GA 

were used for RTM process 

optimization. From the 

literature review, the 

optimization techniques 

namely PSO, DE and CSA 

were proved to be efficient 

for other applications than 

the GA.   

Developed a non-dominated 

sorting differential evolution 

algorithm (NSDE) for RTM 

process optimization. 

Optimization techniques for 

gates and vents location 

optimization were developed 

for the constant numbers of 

gates and vents. 

No optimization algorithm 

was developed which can 

simultaneously predict the 

optimal numbers and 

locations of gates and vents. 

Developed a multi-objective 

stochastic optimization 

algorithm (MOSO) which 

simultaneously optimizes 

both the numbers and 

locations of gates and vents 

with the prediction of 
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minimum dry spot content 

and mould fill time. 

Optimization techniques for 

multi-dwell thermal profile 

optimization were developed 

for thick and ultra-thick 

composite components based 

on variants of GA. 

No algorithm based on the 

differential evolution 

technique was developed for 

the optimization of the 

composite panel cure 

process. 

 

 

Developed a robust NSDE 

algorithm for multi-dwell 

thermal profile optimization. 

The efficacy of the 

developed algorithm was 

tested for various 

applications with variations 

in the composite part 

thickness and raw materials. 

Novelties 

1. Developed a time-temperature-cure process window for neat vinyl ester and RTM6 

resins using thermal characterizations for its applicability in RTM cure process 

simulations. 

2. Developed a reinforcement mat permeability model as a function of material and 

process parameters using mould-filling experiments for its applicability in RTM 

mould-filling simulation. 

3. Developed a methodology to simulate and optimize the RTM mould-filling and 

curing processes through a framework based on simulation-driven optimization. This 

was accomplished by integrating a multi-objective optimization algorithm with 

process simulation through coupled multi-phase porous flow, transient heat transfer 

and resin cure kinetics models. The developed framework was implemented using 

COMSOL Livelink for MATLAB. 

4. Developed novel in-house NSDE and MOSO algorithms to optimize the RTM 

mould-filling and curing processes. 

1.6. Research Objectives 

The main objective of this work is to develop a robust one-shot multi-objective 

optimization algorithm for the sustainable manufacturing of resin transfer moulded composite 

parts. An optimized mould-filling and curing process is the prerequisite for the development 

of composite parts through the RTM process for a specific application. The optimized mould-

filling phase requires an effective injection strategy to deliver the optimal number and locations 
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of gates and vents with minimum dry spot content and mould-filling time. The optimized curing 

phase requires an appropriate time-temperature cure cycle to deliver minimum thermal gradient 

and cure time. 

The following sub-objectives were framed to accomplish the main objective of 

developing a robust multi-objective optimization algorithm for the sustainable manufacturing 

of resin transfer moulded composite parts. 

 Sub-Objective 1. Development of time-temperature-cure process window for neat vinyl 

ester and RTM6 resins using thermal characterizations for its applicability in RTM cure process 

simulations. 

Sub-Objective 2. Measurement of reinforcement mat permeabilities using mould filling 

experiments for its applicability in RTM mould filling simulations. 

Sub-Objective 3. Development of an optimized RTM mould-filling phase through trial 

and error process model simulations, novel in-house coded non-dominated sorting differential 

evaluation (NSDE) and multi-objective stochastic optimization (MOSO) algorithms. 

Sub-Objective 4. Development of optimized isothermal and non-isothermal curing 

processes through trial and error process model simulations and in-house coded NSDE and 

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) optimization algorithms. 

1.7. Research Roadmap 

In this research, a glass fibre-vinyl ester-based automotive bonnet and carbon fibre-RTM6 

mono-component epoxy resin-based aircraft wing flap were selected as the composite parts for 

the development of robust multi-objective optimization algorithms for the sustainable RTM 

manufacturing process. Initially, the vinyl ester and RTM6 resins were thermally characterized 

to develop the cure process windows through which the appropriate time-temperature cure 

cycles were identified for the curing of composite parts. Then, the permeabilities of glass and 

carbon fibre woven roving mats were measured using mould-filling experiments. The 

reinforcement mat permeabilities and the resin cure kinetics were the prerequisites required for 

the RTM mould-filling and curing simulations.  

In this work, the RTM process optimization for studied composite parts was developed 

using two approaches namely: (i) Trial-and-error process model simulation, and (ii) 

Simulation-based optimization framework. The trial and error mould-filling process model 

simulation was performed by manually changing the number and locations of gates and vents 

to deliver the effective injection strategy with minimum dry spot content and mould-filling 
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time. The trial and error curing process model simulation was performed by manually changing 

the mould-heating parameters to deliver the optimal thermal-cure cycle with minimum thermal 

gradient and cure time. Subsequently, a simulation-based optimization framework was 

developed by integrating the in-house coded optimization algorithm with process model 

simulation via COMSOL live link for MATLAB.  

To optimize the mould-filling phase, a novel in-house coded non-dominated sorting 

differential evaluation (NSDE) and multi-objective stochastic optimization (MOSO) 

algorithms were developed. The NSDE algorithm was developed for the simultaneous 

minimization of dry spot content and mould-fill time by changing the locations of mould gates 

and vents with a constraint of pre-fixed port numbers. The MOSO algorithm was developed 

for the simultaneous minimization of dry spot content, mould-fill time and the total number of 

ports by changing the numbers and locations of gates and vents.  

A two-dwell and one-dwell thermal profiles / time-temperature cure cycles were designed 

for the cure phase optimization of the automotive bonnet and aircraft wing flap composite parts, 

respectively. The NSDE and NSGA-II algorithms were developed for the simultaneous 

minimization of thermal gradients and cure time by changing the mould heating parameters for 

the studied composite parts.  

Finally, a comparative assessment was made between the optimized mould-filling and cure 

phase results obtained from the trial and error process simulations and the developed 

optimization algorithms for the studied composite parts. Figure 1.12 shows the complete 

workflow involved in this research.  
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Figure 1. 12 Roadmap of Proposed Research Work 
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1.8. Organization of Thesis 

 The thesis is structured to provide a comprehensive exploration of the development of 

robust multi-objective optimization algorithms for the RTM manufacturing process. The 

following chapters collectively address key aspects of the research, each contributing to the 

overarching objectives of optimizing the RTM mould-filling and curing processes. The 

organization of the thesis is summarized as follows: 

Chapter 1: Introduction 

 This chapter provides an overview of polymer matrix composites, their applications, 

and processing methods. It emphasizes the significance of the mould-filling and curing phases 

in resin transfer moulding (RTM) and explores the motivation behind optimizing the RTM 

process using simulation-based optimization. Research gaps identified through a thorough 

literature review are presented along with the formulation of research objectives and the scope 

of the study. 

Chapter 2: Development of Time-Temperature-Cure Process Window for Neat 

Resins 

  Chapter 2 presents an in-depth literature review on cure kinetics and the thermal 

characterizations of neat vinyl ester and RTM6 resins using Differential Scanning Calorimetry 

(DSC) experiments. It defines cure kinetics models and establishes time-temperature-cure 

process windows for both resins. The outcome of this chapter namely cure kinetic parameters 

and time-temperature cure cycles are applied in chapter 5 for RTM cure process simulation as 

part of objective 1.  

Chapter 3: Reinforcement Mat Permeability Characterization using Mould-Filling 

Experiments.  

This chapter extensively reviews the literature on reinforcement mat permeability and 

introduces a coupled mould-filling simulation and experimental-based approach to determine 

mat permeability. It introduces the use of Adaptive Neuro-Fuzzy Inference System (ANFIS) 

and Artificial Neural Network (ANN) models to predict reinforcement mat permeability based 

on material and process parameters using experimental data. The permeability data for glass 

and carbon fibre mats obtained in this chapter are employed in chapter 4 during mould-filling 

simulations, contributing to objective 2. 
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Chapter 4. Development of an Optimized RTM Mould-Filling Process using Multi-

Objective Optimization Algorithms 

Focusing on the mould-filling phase of the RTM process, this chapter conducts a 

thorough literature review and implementation of process model simulations using the 

COMSOL multi-physics simulator. It also incorporates in-house coded NSDE and MOSO 

MOO algorithms for enhancing mould-filling efficiency. Additionally, the chapter carries out 

comparative analyses between trial and error mould-filling process model simulations and the 

developed optimization algorithms as part of objective 3. 

Chapter 5. Development of an Optimized RTM Curing Process using Multi-Objective 

Optimization Algorithms 

This chapter delves into the curing phase of the RTM process, detailing the 

methodology and implementation of a simulation-based optimization framework using 

COMSOL Livelink for MATLAB. It presents a comparative analysis between trial and error 

curing process model simulations and the developed optimization algorithm as part of objective 

4. 

Chapter 6. Conclusions and Future Directions 

The concluding chapter summarizes the major findings obtained from this research 

work. It also outlines potential areas for further research.  

The section on thesis contributions provides the practical implications of the research 

outcomes applicable to industry and academia in the field of polymer composites. This section 

also includes a list of publications and conference participation that resulted from the research 

work. 
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Chapter 2 

Development of Time-Temperature-Cure Process Window 

for Neat Resins 

2.1 Introduction 

Curing constitutes a pivotal stage in the production of high-quality composite parts within 

the RTM process. During curing, the resin undergoes a transformation, forming a three-

dimensional networked structure through exothermic reactions [51]. This transformation 

involves transitioning from a liquid state to a gel-like intermediate state and eventually 

solidifying into a rigid structure [15]. Notably, inappropriate selection of cure cycle parameters, 

such as time and temperature, can lead to non-uniform curing and the development of residual 

stresses within the composite [16]. Consequently, the overall quality of the manufactured 

composite part can be compromised. 

Therefore, achieving an optimal design for the curing phase necessitates the establishment 

of a precisely defined time-temperature cure cycle [52]. This approach aims to mitigate the 

occurrence of thermal overshoots and gradients, thereby enhancing the uniformity of the curing 

process [53]. In this context, the thermal characterization of the neat resin holds significant 

importance. This characterization offers valuable insights into the cure kinetics and cure cycle 

parameters [54]. By determining a well-defined time-temperature cure cycle for the resin, the 

number of experimental trials required during the RTM process can be reduced. This  
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streamlined approach contributes to obtaining the optimal thermal cure profile for composite 

parts, resulting in both time and cost savings [55]. 

Furthermore, the comprehensive understanding of the thermal characteristics of the neat 

resin holds broader implications. It serves as a foundational element for the design of composite 

parts that demonstrate durability and longevity, particularly when exposed to demanding 

service environments [56]. By comprehending the behaviour of the resin throughout the curing 

process, it becomes possible to tailor the manufacturing parameters to ensure consistent quality 

and reliable performance of the composite parts across various applications [57]. This 

knowledge empowers engineers and manufacturers to create composite structures that meet 

stringent requirements while minimizing the risks associated with thermal stresses and material 

degradation over time [58]. 

In this chapter, an in-depth thermal characterization of Vinyl Ester Resin (VER) and RTM6 

resin was carried out to acquire essential insights into their cure kinetics. The primary objective 

was to establish a comprehensive understanding of the time-temperature cure cycle, which 

proves invaluable in facilitating the simulation of the Resin Transfer Molding (RTM) curing 

process. The subsequent subsections provide an extensive literature review of the cure kinetics 

of both these resins and the composites derived from them. 

2.1.1 Bibliometric Analysis 

A bibliometric analysis was conducted on August 9, 2023, utilizing the Web of Science 

core database. A total of 3825 articles were identified using the primary search term 'thermal 

characterization of resin' within the topics section. Bibliometric network visualization was 

carried out using the VOSviewer software [49], as depicted in Figure 2.1. Bibliometric 

coupling was analyzed for author keywords that occurred more than 5 times. Subsequently, 

keywords such as 'thermal properties,' 'epoxy resin,' 'composites,' 'characterization,' and 

'thermal analysis' were explored. 
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Figure 2. 1 Schematic Representation of the Bibliographic Networking Diagram 

Obtained from Web of Science Core Database through the Search Conducted on 

August 9th, 2023. 

 

2.1.2 Literature Review  

Researchers have dedicated significant effort to investigating the cure kinetics of neat 

resins, aiming to comprehend the curing process of composite components. This is crucial as 

the final quality of composite parts heavily relies on the state of the resin achieved at the 

culmination of the curing process. During the kinetics of resin cure, chemical transformations 

primarily occur through free radical polymerization, resulting in the creation of a three-

dimensional network structure accompanied by the release of exothermal heat. Simultaneously, 

the resin undergoes physical alterations as it transitions from a liquid state to a gel state, 

ultimately solidifying into a rigid solid[59].  

Researchers have extensively explored the cure kinetics of resins using a variety of 

experimental approaches, including Differential Scanning Calorimetry (DSC)[60], 

spectroscopy[61], rheometry[62], Thermal Gravimetric Analysis (TGA)[63], and Fourier 

Transform Infrared Spectroscopy (FTIR)[64]. These characterization techniques have unveiled 

the intricacies of resin cure kinetics, attributable to the occurrence of multiple crosslinking 
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chain reactions within the thermosetting polymer. To comprehend this complexity, various 

empirical models for cure rates have been devised to mimic the kinetic behaviour of 

thermosetting resins[65], [66]. 

Mathematically, empirical models for cure rate (dα/dt) have been formulated as a function 

of temperature (T) and the degree of cure (α), represented as: 

𝑑𝛼

𝑑𝑡
= 𝐾(𝑇)𝑓(𝛼)                             (2.1) 

Here, K(T) is the rate constant determined by the Arrhenius expression:  

𝐾(𝑇) = 𝐴𝑒−𝐸 𝑅𝑇⁄                             (2.2) 

Where A represents the frequency factor, E is the activation energy, R is the ideal gas 

constant, and T signifies temperature. The function f(α) is defined with respect to the degree of 

cure α. Among the various empirical models, the nth-order cure rate model [67], represented by 

Equation (2.3), emerges as the simplest and most commonly employed two-parameter model: 

𝑑𝛼

𝑑𝑡
= 𝐾(𝑇)(1 − 𝛼)𝑛       (2.3) 

In this equation, f(α) is defined in terms of (1 - α)n, where 'n' denotes the reaction order. 

However, the nth-order model, while predicting higher initial cure rates, is not applicable for 

resin systems following autocatalytic kinetics. For such systems, a four-parameter autocatalytic 

kinetics cure rate model, as presented in Equation (2.4), was proposed by Kamal and Sourour 

[68]: 

𝑑𝛼

𝑑𝑡
= (𝐾1 + 𝐾1𝛼

𝑛)(1 − 𝛼)𝑚     (2.4) 

In this model, 'k1' and 'k2' represent the cure rate constants, 'α' is the degree of cure, and 'm' 

and 'n' are the reaction orders. Nonetheless, this model does not account for incomplete curing 

and becomes ineffective in the later stages of the reaction. Researchers have addressed this 

limitation by modifying Kamal and Sourour's model to consider incomplete reactions, as 

summarized in Table 2.1. 

 Table 2. 1 Modified Forms of Kamal & Sourour Model 

Kamal & Sourour Model Equation Parameters 

Modified Form No. 1 [68] 𝑑𝛼

𝑑𝑡
= 𝑘1(1 − 𝛼)𝑛1 + 𝑘2𝛼

𝑚(1 − 𝛼)𝑛2 
k1, k2, n1, n2, 

m 

Modified Form No. 2 [69] 𝑑𝛼

𝑑𝑡
= 𝑘1(1 − 𝛼)𝑛 + 𝑘2(1 − 𝛼)𝑛𝛼𝑚 

k1, k2, n, m 
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Modified Form No. 3 [70] 𝑑𝛼

𝑑𝑡
= (𝑘1 + 𝑘2𝛼)(1 − 𝛼)2 

k1, k2, m 

Modified Form No. 4 [71] 𝑑𝛼

𝑑𝑡
= 𝑘𝛼𝑚(1 − 𝛼)𝑛 

k, m, n 

Modified Form No. 5 [72] 𝑑𝛼

𝑑𝑡
= 𝑘(1 − 𝛼)𝑛 𝑒𝑥𝑝(𝑚𝛼) 

k, n, m 

Modified Form No. 6 [73] 𝑑𝛼

𝑑𝑡
= 𝑘𝛼𝑚(1 − 𝛼)𝑛(1 − 𝛼)𝑝 

k, m, n, p 

 

Despite the proliferation of empirical cure rate models, their applicability remains 

contingent on the resin system type. As different resin systems entail variations in kinetics and 

time-temperature cure cycles, researchers have scrutinized the stability of these models across 

diverse resin systems. Siddiqui et al.[74] delved into the complete cure kinetics of cyanate-

ester resin using isothermal DSC scans, identifying multiple cure zones characterized by 

varying reaction orders. To accommodate this complexity, separate nth-order kinetic models 

were employed for each zone. Javdanitehran et al.[75] adopted an iterative approach for 

isothermal cure kinetics modelling of an epoxy resin system using DSC scans. This iterative 

method estimates released enthalpy during each heat-up phase and determines the degree of 

cure, iteratively converging until stabilization. Cure kinetics modelling was then conducted 

using the Kamal and Sourour model in conjunction with the Rabinowitch approach. 

Zhao and Hu devised a novel cure kinetics model for thermosetting resins employing an 

autocatalytic reaction mechanism. This innovative model incorporates temperature-dependent 

reaction orders instead of constant values. Vargas et al.[76] investigated polyester resin curing 

using NIR spectroscopy and 1H-NMR relaxometry, employing an autocatalytic kinetic model 

to determine kinetic parameters based on catalyst and temperature concentrations. Jiangbo Lv 

et al.[77] explored the cure kinetics of phthalonitrile resin by varying proportions of the 

Melamine curing agent, and successfully validated the autocatalytic kinetic model using DSC 

scans. García-Martínez et al. [78] analyzed the curing and rheology kinetics of benzoxazine 

resin for potential use in liquid composite moulding processes. By combining DSC and 

rheological experiments, they obtained crucial parameters including reaction order, 

viscoelastic properties, and resin gelation and vitrification temperatures. Hwang et al. [79] 
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ingeniously coupled Dynamic Mechanical Analyzer (DMA) and DSC experiments with 

process model simulation to derive cure kinetics and rheology data for epoxy-amine resins. 

This comprehensive dataset facilitated the optimization of multi-dwell cure profiles for Out of 

Autoclave (OAA) processes. 

In conclusion, researchers' meticulous investigations into resin cure kinetics have led to the 

development of diverse empirical models, each tailored to specific resin systems. In the 

subsequent subsections, a thorough literature review was undertaken to delve into the cure 

kinetics of Vinyl Ester Resin (VER) and RTM6 resin, aiming to capture essential insights into 

their respective curing processes. This undertaking is expected to considerably enhance our 

comprehension of the intricate curing dynamics associated with VER and RTM6 resin, thereby 

paving the way for the refinement of composite manufacturing techniques. 

2.1.2.1 Vinyl Ester Resin 

Vinyl Ester Resin (VER) is a widely utilized thermoset polymer in the composite industry, 

owing to its notable characteristics of high moisture and chemical resistance, coupled with 

commendable mechanical properties. VER possesses a unique amalgamation of attributes from 

both polyester and epoxy resins, rendering it a competitive alternative and a potential substitute 

for numerous other thermoset polymers[80]. The curing process of VER involves free radical 

polymerization and is significantly influenced by factors such as curing temperature, catalysts, 

and accelerators[81]. 

In a broader context, VER can undergo curing at either room temperature or elevated 

temperatures. Curing at room temperature may span from several minutes to hours, while 

elevated temperature curing might necessitate a relatively shorter timeframe, often on the order 

of minutes. Nevertheless, it's important to note that non-uniform curing can occur, particularly 

during elevated-temperature curing. This phenomenon can lead to the development of thermal 

stresses within the composite part. Consequently, achieving a well-defined time-temperature 

cure cycle for the neat resin becomes instrumental. This established cycle not only aids in 

addressing the challenges of non-uniform curing but also facilitates the proactive design of the 

composite cure cycle[82]. 

Researchers have extensively examined the cure kinetics of Vinyl Ester Resin (VER) 

through a range of experimental methodologies. Additionally, they have formulated various 

models to elucidate the kinetics of the curing process. Hong and Chung [83] for instance, 

employed DSC to analyze cure kinetics and devised a model that yielded a comprehensive 

time-temperature-transformation (TTT) cure plot. Sultania et al. [84] on the other hand, 
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investigated VER resin's cure kinetics using non-isothermal DSC experiments. They 

successfully matched the experimental data with a two-parameter autocatalytic model. In 

another study, Martin et al.[85] delved into VER cure kinetics using dynamic-mechanical 

thermal analysis (DMTA) and thermal scanning rheometry (TSR) under isothermal conditions. 

The apparent activation energy was derived from both the gel time and the complex viscosity 

versus time plot. COOK et al. [86] explored VER's cure kinetics by analyzing DSC and DMTA 

data while varying catalyst concentration and cure temperature under isothermal and non-

isothermal settings. Notably, they observed an accelerated reaction rate and decreased gel time 

with higher concentrations of methyl-ethyl ketone peroxide (MEKP) catalyst. 

Furthermore, researchers have investigated the efficacy of VER as a matrix in fibre-

reinforced plastic composites. Ganesh Gupta K et al. [87] evaluated the performance of glass 

fibre-reinforced composites based on both epoxy and VER matrices. They quantified 

improvements of 22.54%, 21.83%, and 13.43% in tensile strength, interlaminar shear strength 

(ILSS), and flexural strength, respectively, for the VER-based composite over the epoxy-based 

counterpart. Similarly, Bonsu et al.[88] analyzed the performance of Glass Fiber Reinforced 

Vinyl Ester Epoxy (GFRP) and Basalt Reinforced Vinyl Ester Epoxy (BFRP) composites in 

terms of tensile, flexural, and impact strengths in seawater applications. They established a 

decrease in these strengths with prolonged seawater exposure. Notably, GFRP and BFRP 

composites exhibited comparable seawater ageing behaviour. Additionally, Thomason and 

Xypolias [89] conducted an extensive literature review focusing on the hydrothermal ageing 

applications of Glass Fiber Reinforced Vinyl Ester Epoxy (GFRP) composites. Their work 

underscores the increasing relevance of studying the long-term environmental effects on VE-

based composites due to the expanding use of such materials. 

2.1.2.2 RTM6 resin 

The mono-component RTM6 resin, provided by Hexcel, has been specifically formulated 

for applications in the RTM process. Renowned for its usage in crafting high-performance 

carbon fibre-reinforced composites, this RTM6 resin stands as an endorsed choice for 

aerospace applications. Distinctive in its high viscosity, it undergoes pre-heating to 80°C before 

being infused into the RTM process. Extensive research has been directed toward 

comprehending the curing kinetics of RTM6 resins, employing a variety of experimental 

methodologies[90]–[92]. 

Navabpour et al. [93] conducted an exhaustive study on the cure kinetics of RTM6 resin 

utilizing both Differential Scanning Calorimetry (DSC) and a microwave-heated calorimeter. 
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Their investigation encompassed isothermal and dynamic scan conditions, leading to an in-

depth analysis of cure reaction rates. Interestingly, despite a comparable cure reaction 

mechanism between the two calorimeters, the microwave heating calorimeter demonstrated a 

swifter cure reaction rate compared to the conventional DSC technique. Skordos and Partridge 

[94] devised a numerical approach for investigating cure kinetics modelling of RTM6 resin, 

utilizing data obtained from DSC experiments. This algorithm mirrors the chemical and 

physical behaviour of the resin, eliminating the need for parameter calculation that is 

characteristic of other empirical cure rate models. Instead, it hinges on a heuristic approach that 

aligns experimental data, offering a more accurate depiction of cure kinetics. Struzziero et al. 

[95] embarked on the development of a finite element model designed to measure the thermal 

conductivity of RTM6 resin in relation to curing temperature. By delving into an in-depth 

analysis of cure kinetics, they derived a thermal conductivity model contingent upon both the 

degree of cure and the curing temperature. Aduriz et al. [96] opted to study the cure cycle of 

RTM6 resin through refractive index measurements. Their findings indicated a linear 

increment in the degree of cure corresponding to an increase in refractive index, underscoring 

the potential for this measurement technique. 

Numerous works have honed in on the analysis of cure cycles for RTM6 resins in the 

context of composite part manufacturing via the RTM process. Gross et al.[97] delved into the 

influence of alterations in the time-temperature profile of RTM6 resin on hydrostatic residual 

stresses generated within 3D woven composite parts. Through a modified cure cycle, involving 

heating, temperature stabilization, cooling, subsequent stabilization, and re-heating, they 

observed a reduction in residual stresses. Nawab et al. [98] employed the COMSOL multi-

physics simulator to determine the residual stress induced in RTM6 matrix-based carbon 

woven composites. They integrated a heat transfer model along with cure kinetics to examine 

how variations in thermal properties impact both the degree of cure and thermal gradients. 

In summary, the exploration of VER and RTM6 resin's cure kinetics has spurred a plethora 

of research activities, spanning multiple experimental techniques and modelling approaches. 

This collective effort has substantially expanded our understanding of VER and RTM6 resin 

behaviour, ultimately contributing to the refinement of the RTM process. 

Through a comprehensive review of the existing literature, it becomes evident that 

researchers have been primarily engaged in investigating the kinetics of resin curing as a 

prerequisite for its application within the realm of composite manufacturing. Furthermore, it's 

apparent that these researchers have either developed cure kinetics models tailored to specific 

resin systems or scrutinized the robustness of these kinetics by employing a range of cure rate 
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models. To the best of the investigator's knowledge, prior to this work, no literature has been 

identified that directly addresses the formulation of time-temperature-cure process windows 

for resins. Moreover, a notable absence is noted in published works pertaining to the 

establishment of time-temperature-cure process windows for neat vinyl ester and RTM6 resins. 

This type of process window furnishes crucial insights into the progress of cure reactions and 

the required duration for a given temperature setting. The aim of this chapter is to develop a 

time-temperature-cure process window for neat vinyl ester and RTM6 resins, utilizing thermal 

characterizations to simulate the resin transfer moulding process. The steps involved in 

obtaining the cure process windows for both resins were provided in detail in subsection 2.2.3.  

This comprehensive and systematic approach ensures the establishment of accurate and 

informative time-temperature-cure process windows, thereby contributing to an enhanced 

understanding of the curing dynamics for both the vinyl ester and RTM6 resins in the context 

of resin transfer moulding simulations. 

2.2 Materials and Methods 

2.2.1 Materials 

The thermal cure analysis was conducted using two distinct resins: Derakane 8084 vinyl 

ester resin provided by Ashland and mono-component RTM6 resin supplied by Hexcel. These 

resins have been tailor-made for deployment within advanced liquid composite moulding 

processes. The curing of the vinyl ester resin was facilitated through the application of methyl 

ethyl ketone peroxide as the catalyst, complemented by cobalt octate serving as the 

accelerator—both of which were supplied by Hexcel. 

2.2.2 Differential Scanning Calorimetric Experiments 

Thermal characterization of neat vinyl ester and RTM6 resins was carried out using the TA 

Instrument DSC Q200 model. The process commenced with a dynamic DSC run conducted at 

a heating rate of 10°C/min, intended to determine the suitable temperatures for subsequent 

isothermal experiments. Isothermal DSC experiments were then conducted within the 

temperature range spanning from the onset to the peak resin cure temperatures, as identified 

from the dynamic DSC scan. These isothermal DSC experiments involved the measurement of 

heat flow over time, extending until the resin cure process was completed. 
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2.2.3 Cure Process Window using Cure Kinetics Modelling 

The objective of cure kinetics modelling is to accurately establish the reaction rate of the 

curing process. To initiate this process, heat flow was measured over time at various isothermal 

temperatures using DSC until the reaction reached completion. The degree of cure at the time 

't', denoted as α(t), can be deduced from the DSC heat flow curves through Equation (2.5): 

α(t) = Q(t) / Q∞      (2.5) 

Here, for a given isothermal temperature, Q(t) represents the cumulative heat of reaction up 

to the curing time 't', which is depicted by the area beneath the heat flow curve at that time. On 

the other hand, Q∞ signifies the total enthalpy of the reaction, encompassing the complete area 

under the heat flow curve. 

The steps involved in constructing the time-temperature-cure process window are outlined 

as follows: 

i. Initially, dynamic Differential Scanning Calorimetry (DSC) scans were conducted to 

determine the suitable temperatures for subsequent isothermal experiments. 

ii. Subsequently, isothermal DSC experiments were executed, covering temperatures 

ranging from the initiation of curing to the peak resin cure temperatures as determined 

from the dynamic DSC scans. This process yielded a heat flow vs. time curve.  

iii. Then, the heat flow vs. time curve was numerically integrated to obtain the total heat 

of reaction Q∞ and the accumulative heat of reaction Q(t) at any instant time t. 

iv. Next, the degree of cure α(t) was computed at each interval of time using Equation 

(2.5), and the degree of cure vs. time curve was generated. 

v. Subsequently, the degree of cure vs. time curve was numerically differentiated to obtain 

the rate of degree of cure vs. time curve. 

vi. Following that, the rate of cure was fitted as a function of the degree of cure using non-

linear regression analysis with the classic resin cure kinetics models and the cure kinetic 

parameters were obtained. 

vii. The obtained experimental cure kinetics parameters were extrapolated for wide ranges 

of temperatures and thus, a time-temperature-cure process window was obtained for all 

possible processing conditions. 
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 Figure 2. 2 Development of Time-Temperature-Cure Process Window using Resin 

Cure Kinetics 

2.3 Results and Discussion 

2.3.1 Vinyl Ester Resin Cure Kinetics 

From the dynamic DSC scans the temperatures between 50°C and 100°C were selected for 

isothermal DSC experiments. It may be mentioned that the resin reactivity will be very low at 

temperatures below 50°C and the samples are needed to keep longer times at DSC for complete 

curing. Also, it may be mentioned that the resin reactivity will be very high at temperatures 

above 100°C and DSC may fail to sense the higher heat flow rates at the onset. Hence, 

temperatures between 50°C and 100°C were selected to conduct an isothermal DSC resin cure. 

Figure 2.3 shows the heat flow vs. cure time at 50°C, 60°C and 70°C.  From Figure 2.3 it 

can be seen that the peak of the heat flow rate increases with increasing temperature and the 

time taken to reach the peak heat flow rate decreases. The isothermal heat flow vs. time data 

as given in Figure 2.3 was numerically integrated to obtain the degree of cure using Equation 

6, which is shown in Figure 2.4. From Figure 2.4, it is evident that at all the temperatures, the 
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degree of cure has a steep rise in the earlier stages of the curing, and at any given time, the 

higher the isothermal temperature, the higher the degree of cure.  From Figures 2.3 and 2.4, 

the rate of cure vs degree of cure can be obtained from the steps explained in subsection 2.2.3.  

Figure 2.5 shows the rate of cure versus cure conversion at different isothermal 

temperatures. As can be seen from Figure 2.5, the peak of the cure rate increases with 

increasing temperature and the peak cure rate is reached at the earlier conversions with 

increasing temperature. At a given temperature, the rate of cure increases with the degree of 

cure and attains a maximum at α<0.1, then gradually decreases and finally tends to zero. At a 

given conversion, the higher the isothermal temperature, the higher the rate of cure and the 

lesser the time to complete the cure reaction. Several rate models were tried to fit 

experimentally obtained cure rate versus the degree of cure for vinyl ester resin. From the 

results, it was found that the modified Kamal and Sourour autocatalytic form of the kinetic 

model fitted well with the experimental data. Figure 2.5 shows comparisons between the 

experimental and modelled results and the respective kinetics model parameters were obtained 

using non-linear regression analysis. The modelled kinetic parameters and the correlation 

factors for different models are tabulated in Table 2.2.  

The temperature dependency of the kinetic rate constants within the Modified Kamal & 

Sourour kinetics model has been assessed by fitting it to the Arrhenius formulation, illustrated 

in Figure 2.6. The optimal fitting of the Arrhenius equation, which establishes the correlation 

between rate constants and temperature, is represented by Equation (2.2). The frequency factor 

(A) and activation energy (E) were determined as 1.04 x 109 min-1 and 61.19 kJ mol-1, 

respectively. To project the behaviour of the resin cure across a range of temperatures, the 

parameters of the Modified Kamal & Sourour kinetics model were extrapolated. Consequently, 

the complete process window for the epoxy-vinyl ester resin was derived, visually depicted in 

Figure 2.7. 
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Figure 2. 3 Isothermal Heat Flow of Neat Vinyl Ester Resin 

 

 
 Figure 2. 4 Degree of Cure of Neat Vinyl Ester Resin 

 



33 

 

 
Figure 2. 5 Modified Kamal & Sourour Cure Kinetics of Vinyl Ester Resin 

 

Table 2. 2 Cure Kinetics Rate Model Analysis for Vinyl Ester Resin 

Rate 

Models 
Parameters 

Modelled Parameter Values with Goodness of 

Fit, R2 

Remarks 

50°C  60°C 70°C 

nth Order 

Kinetics 
k, n 

k = 0.0633 

n = 0.3362 

R2 = 0.458 

k = 0.170 

n = 0.726 

R2 = 0.573 

k= 0.314 

n = 1.023 

R2 = 0.592 

No goodness of 

fit at all studied 

temperatures. 

The model is 

incapable of 

predicting 

autocatalytic 

kinetics 

Kamal & 

Sourour 

(KS) 

k1, k2, n, m 

k1 = -1.5×10-7 

k2 = 0.0748 

m = 2.8×10-16 

n = 0.4773 

R2 = 0.898 

k1 = 0.1103 

k2 = 0.1103 

m =-7.69×10-16 

n = 1.069 

R2 = -0.995 

k1 = 0.217 

k2 = 0.217 

m = -6.1×10-16 

n = 1.55 

R2 = 0.998 

Negative 

rate constants, 

the Model  fails 

at a lower 

temperature   
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KS 

Modified 

Form No. 

1 

k1, k2, n1, n2, 

m 

k1 = 1.4×10-4 

k2 = 0.075 

n1 = 0.478 

n2= 0.475 

m = 3.9×10-16 

R2 = 0.892 

k1 = -0.086 

k2 = 0.306 

n1 = 0.778 

n2= 0.975 

m = -5.7×10-16 

R2 = 0.995 

k1 = 0.0017 

k2 = 0.515 

n1 = -0.537 

n2= 1.784 

m = 0.0645 

R2 = 0.999 

Too many 

model 

parameters, 

predicted 

negative 

reaction order,  

Model  fails at a 

lower 

temperature   

KS 

Modified 

Form No. 

2 

k1, k2, n, m 

k1 = 0.025 

k2 = 0.0748 

m = -0.014 

n = -0.012 

R2 = 0.325 

k1 = -0.014 

k2 = 0.256 

m = 0.063 

n = 1.205 

R2 = -0.998 

k1 = 0.298 

k2 = 0.146 

m = -0.024 

n = 1.636 

R2 = 0.997 

Too many 

model 

parameters, 

predicted 

negative 

reaction order,  

Model  fails at a 

lower 

temperature   

KS 

Modified 

Form No. 

3 

k1, k2, m 

k1 = 0.055 

k2 = 0.055 

m = 0 

R2 = -0.352 

k1 = 0.1387 

k2 = 0.1387 

m = 0 

R2 = -0.810 

k1 = 0.2415 

k2 = 0.2415 

m = 0 

R2 = 0.975 

Predicted 

convergence 

issue 

KS 

Modified 

Form No. 

4 

k, m, n 

k = 0.132 

m = 0.284 

n = 0.858 

R2 = 0.995 

k = 0.2558 

m = 0.0625 

n = 1.205 

R2 = 0.998 

k = 0.499 

m = 0.0521 

n = 1.712 

R2 = 0.999 

This model   

was capable of 

capturing both 

the degree of 

cure and the 

curing rate 

qualitatively 

and 

quantitatively at 

all the studied 

temperatures 

KS 

Modified 

Form No. 

5 

k, n, m 

k = 0.045 

m = 3.487 

n = 2.022 

R2 = 0.692 

k = 0.132 

m = 5.326 

n = 3.985 

R2 = 0.661 

k = 0.231 

m = 10.36 

n = 8.12 

R2 = 0.698 

No goodness of 

fit at all the 

studied 

temperatures. 
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Figure 2. 6 Arrhenius Plot for Vinyl Ester Resin Kinetics Model 

KS 

Modified 

Form No. 

6 

k, m, n, p 

k = 0.132 

m = 0.284 

n = 0.429 

p = 0.429 

R2 = 0.995 

k = 0.256 

m = 0.062 

n = 0.556 

p = 0.649 

R2 = 0.998 

k = 0.499 

m = 0.052 

n = -11.63 

p = 13.34 

R2 = 0.999 

Too many 

model 

parameters 

predicted 

negative 

reaction order  
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Figure 2. 7 Time-Temperature-Cure Process Window for Epoxy-Vinyl Ester Resin 

2.3.2 RTM6 Resin Cure Kinetics 

Figure 2.8 shows the heat flow curves obtained from a standard 10°C/min dynamic DSC 

scan. The total heat of reaction for the complete resin cure is obtained from the area under each 

heat flow curve. From Table 2.3, it can be seen that the heat of reaction for complete resin cure 

varies from 450 – 467 J/g and hence, an average of 458 J/g was used as heat of reaction for the 

simulation studies. From Figure 2.8, it is evident that the onset of the curing reaction is above 

130°C and the maximum heat flow of the curing reaction occurs around 240°C. Also, the final 

temperature at the cure curve was found to be 300°C. It may be mentioned that the resin 

reactivity will be very low at temperatures below 130°C and the samples are needed to keep 

longer times at DSC for complete curing. Also, it may be mentioned that the resin reactivity is 

very high at temperatures above 240°C and DSC may fail to sense the higher heat flow rates at 

the onset. Hence, temperatures between 130°C and 240°C were selected to conduct an 

isothermal DSC resin cure. 
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Figure 2. 8 The heat of Reaction of Neat RTM6 Resin 

  

Table 2. 3 RTM6 – Heat of Reaction, Cure Onset, Peak and Final Cure Temperatures 

Sample 

No. 

DSC Mode Weight of 

Sample, mg 

Cure Onset 

Temperature, 

°C  

Cure Peak 

Temperature, 

°C 

Final Cure 

Temperature, 

°C 

Heat of 

Reaction, 

J/g. 

1 Dynamic Scan at 

10°C/min 

8 130 243 300 450.5 

2 Dynamic Scan at 

10°C/min 

11.8 130 242 300 466.5 

3 Dynamic Scan at 

10°C/min 

14.7 130 241 300 457.6 

  

Figure 2.9 illustrates the heat flow versus process time at different isothermal temperatures 

180°C, 200°C, 220°C and 240°C. With an increase in temperature, the peak heat flow increases 

and the curing time decreases. This may be attributed due to the increase in resin reactivity 

with an increase in process temperature. At first, the heat flow curve as shown in Figure 2.9 

was numerically integrated to obtain the degree of cure as a function of cure time at different 

isothermal temperatures. Then, the rate of cure is obtained by numerically differentiating the 

degree of cure versus time curves and the detailed procedure is illustrated in Figure 2.2. Figure 

2.10 shows the degree of cure versus cure time at different isothermal temperatures.  From 

Figure 2.10, it is evident that at all the temperatures, the degree of cure has a steep rise in the 
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earlier stages of the curing, and at any given time, the higher the isothermal temperature, the 

higher the degree of cure.  Figure 2.11 shows the rate of cure versus cure conversion at 

different isothermal temperatures. As can be seen from Figure 2.11, the peak of the cure rate 

increases with increasing temperature and the peak cure rate is reached at the earlier 

conversions with increasing temperature. At a given temperature, the rate of cure increases 

with the degree of cure and attains a maximum at 0.3<α<0.6, then gradually decreases and 

finally tends to zero. At a given conversion, the higher the isothermal temperature, the higher 

the rate of cure and the lesser the time to complete the cure reaction.  

Several rate models were tried to fit experimentally obtained cure rate versus the degree of 

cure for RTM6 resin. From the results, it was found that the classical Kamal and Sourour and 

the modified Kamal and Sourour autocatalytic form of kinetics models fit well with the 

experimental data. Figure 2.11 shows comparisons between the experimental and modelled 

results and the respective kinetics model parameters were obtained using non-linear regression 

analysis. The modelled kinetic parameters are tabulated in Table 2.4.  

Kamal and Sourour and modified Kamal and Sourour’s models for RTM6 resin curing 

kinetics are given in Equations (2.6 & 2.7), respectively. The best fit between the rate 

constants and temperature in terms of Arrhenius form is given in Equations (2.8 – 2.10). The 

temperature dependence of the kinetic rate constants of the kinetics models has been 

determined by fitting to the Arrhenius form as shown in Figure 2.12. The associated activation 

energies and frequency factors obtained from Arrhenius plots are tabulated in Table 4. 

 
𝑑𝛼

𝑑𝑡
= (1.31 × 107 × 𝑒

−9953
𝑇⁄ + 8.98 × 106 × 𝑒

−8116
𝑇⁄ × 𝛼0.983) × (1 − 𝛼)1.203 (2.6) 

𝑑𝛼

𝑑𝑡
= (3.2 × 106 × 𝑒

−7706
𝑇⁄ × 𝛼0.774) × (1 − 𝛼)1.097     (2.7) 

ln(𝑘1) =
−9953

𝑇
+ 16.39,   𝑅2 = 0.993      (2.8) 

ln(𝑘2) =
−8116

𝑇
+ 16,   𝑅2 = 0.936       (2.9) 

ln(𝑘) =
−7706

𝑇
+ 14.98,   𝑅2 = 0.91      (2.10) 
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Figure 2. 9 Isothermal Heat Flow of Neat RTM6 Resin 

 

 
Figure 2. 10 Degree of Cure of RTM6 resin 

 

 



40 

 

 

Figure 2. 11 RTM6 Resin Cure Kinetics Modelling 

 

Figure 2. 12 Arrhenius Plot for RTM6 Resin Kinetics Modelling 
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Table 2. 4 Classical and Modified Kamal and Sourour Cure Kinetics Model Parameters 

Classical Kamal and Sourour Cure Kinetics Model Parameters 

Temperature, 

C 
k1, Minute-1 k2, Minute-1         m        n 

Correlation 

Coefficient 

180 0.004 0.18 0.958 0.890 0.993 

200 0.0085 0.2248 1.052 1.173 0.984 

220 0.0244 0.6973 0.9616 1.24 0.997 

240 0.049 1.284 0.962 1.51 0.996 

E1 = 82.75 kJ mol-1     E2 = 67.48 kJ mol-1     A1 = 1.31 x 107 min-1    A2 = 8.98 x 106 min-1  

Modified Kamal and Sourour Cure Kinetics Model Parameters 

Temperature, 

C 

k, 

Minute-1  
m n 

Correlation 

Coefficient 

180 0.164 0.824 0.835 0.989 

200 0.183 0.797 1.051 0.976 

220 0.589 0.755 1.137 0.992 

240 1.029 0.720 1.366 0.991 

E = 64.07 kJ mol-1             A= 3.2 x 106 min-1 

 

The cure data acquired through experimentation at temperatures of 180°C, 200°C, 220°C, 

and 240°C was employed to model the cure kinetics utilizing the Kamal and Sourour model. 

The parameters obtained from this modelling were then extrapolated to ascertain the RTM6 

resin's curing behaviour across the entirety of the temperature spectrum. As a result, the 

comprehensive process window for the RTM6 heat application was formulated, depicted in 

Figure 2.13. The extrapolated model parameters for the remaining temperatures are tabulated 

in Table 2.5. 



42 

 

 
Figure 2. 13 Time-Temperature-Cure Process Window of RTM6 Resin 

 

Table 2. 5 Kamal & Sourour Cure Kinetics Parameters for RTM6 Process Window 

Temperature, 

C 
Temperature, K K1, min-1 K2, min-1 

100 373 4.97335E-05 0.005034048 

110 383 9.63224E-05 0.008547045 

120 393 0.000180383 0.014125861 

130 403 0.000327448 0.022771159 

140 413 0.000577496 0.0358685 

150 423 0.000991529 0.055298244 

160 433 0.001660422 0.083565297 

170 443 0.00271658 0.123949594 

180 453 0.004348977 0.18067785 

190 463 0.00682219 0.259116566 

200 473 0.010500082 0.365985849 

E1 = 78.51 kJ mol-1  A1 = 4917447 s-1  E2 = 62.87 kJ mol-1   A2 = 3213914 s-1 

m = 0.961   n = 1.213 
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2.4 Summary 

The primary objective of this chapter was to produce a time-temperature-cure process 

window for both neat vinyl ester and RTM6 resins. A methodology employing thermal 

characterization of the neat resin and cure kinetics modelling was introduced to attain the cure 

process window. Initially, the vinyl ester and RTM6 resins were thermally characterized using 

Differential Scanning Calorimetry (DSC) under isothermal and non-isothermal conditions. 

Subsequently, various cure kinetic models were examined to describe the cure kinetics of the 

vinyl ester and RTM6 resins. 

For neat vinyl ester resin, the modified Kamal and Sourour three-parameter model emerged 

as the most adept in capturing both the degree of cure and the curing rate, exhibiting both 

qualitative and quantitative agreement. Conversely, in the case of neat RTM6 resin, both the 

Kamal & Sourour model and the modified Kamal & Sourour model 4 demonstrated robust 

alignment with our experimental data. Specifically, for vinyl ester resin composite part process 

simulations, the cure rate model 
𝑑𝛼

𝑑𝑡
= (1.04 × 109 × 𝑒

−7359.8
𝑇⁄ × 𝛼0.284) × (1 − 𝛼)0.857 was 

effectively employed. On the other hand, during the simulation of RTM6 resin composite part 

processes, the cure rate model 
𝑑𝛼

𝑑𝑡
= (3.2 × 106 × 𝑒

−7706
𝑇⁄ × 𝛼0.774) × (1 − 𝛼)1.097 exhibited 

commendable suitability. 

This analysis was not limited to the experimental temperatures; rather, the model 

parameters were extrapolated to encompass broader operational temperature ranges, thereby 

yielding comprehensive cure evolution profiles. By extrapolating the cure kinetics model to 

resin processing temperatures, we derived Time-Temperature-Cure process windows for both 

vinyl ester and RTM6 resins. These process windows furnish invaluable insights by offering a 

means to predict the degree of cure and the corresponding cure time for any given temperature 

setting. Ultimately, this development proves instrumental in devising efficient strategies for 

designing the optimal cure cycles for composite parts. 
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Chapter 3 

Reinforcement Mat Permeability Characterization using 

Mould-Filling Experiments 

3.1 Introduction  

The Resin Transfer Moulding (RTM) process simulation software packages are designed 

to replicate various aspects of the manufacturing process. These packages are capable of 

modelling essential factors such as the flow of resin, distribution of pressure and temperature, 

as well as the curing of resin. The most widely used software for simulating Liquid Composite 

Moulding (LCM) processes include LIMS [99], PAM-RTM [100], ANSYS Fluent [101] and 

COMSOL multi-physics [90]. However, the accuracy of these simulations heavily relies on the 

quality of input data. Hence, it is imperative to have precise processing parameters and material 

properties to achieve accurate simulations in order to mimic the real process. 

These simulation packages primarily focus on reproducing the phase where the mould is 

filled with resin, accomplished by solving the flow of resin through a porous medium [102]. 

The flow pattern is established by linking variables like flow velocity, pressure gradient, fluid 

viscosity, permeability, and porosity of the porous medium [103]. The flow through porous 

media is represented by Darcy's law as given in Equation (3.1) 

𝑢⃗ =  
−𝑲

∅𝜇
∇P      (3.1) 

𝑢⃗  denotes the fluid velocity vector, ∅ signifies porosity, 𝜇 represents resin viscosity and ∇p 

embodies pressure gradient. The tensor K symbolizes the permeability of the reinforcement 

mat as given in Equation (3.2): 
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𝑲 = |

𝐾𝑥𝑥 𝐾𝑥𝑦 𝐾𝑥𝑧

𝐾𝑥𝑦 𝐾𝑦𝑦 𝐾𝑦𝑧

𝐾𝑥𝑧 𝐾𝑦𝑧 𝐾𝑧𝑧

|     (3.2) 

For orthotropic mats, individual directional permeabilities are simplified to principle 

permeabilities in which Equation (3.2) deduces to Equation (3.3) as given below 

                𝑲 = |

𝐾𝑥𝑥 0 0
0 𝐾𝑦𝑦 0

0 0 𝐾𝑧𝑧

|     (3.3) 

𝐾𝑥𝑥, 𝐾𝑦𝑦, and 𝐾𝑧𝑧 denotes the principal permeabilities along the x, y and z directions, 

respectively. 

The interaction between the fluid and the structure of the porous medium is simplified into 

a single variable, which is called permeability. Permeability refers to the degree of resistance 

offered by the reinforcement preform against the flow of the impregnating fluid. The accuracy 

of the reinforcement permeability is the primary requisite for the realistic RTM mould-filling 

process and thus, reinforcement permeability data becomes vital for any LCM process 

simulators. From the literature review, it was found that the reinforcement mat permeabilities 

were highly influenced by mould fill injection pressure, mat porosity, mat thickness and fluid 

viscosity [104], [105]. These parameters play a significant role in shaping the permeability and 

thus, the overall mould-fill pattern of the RTM process. 

In this chapter, the permeability of reinforcement mats was evaluated by systematically 

varying both influential material (fluid viscosity, mat porosity, mat thickness) and process 

parameters (mould-filling injection pressure) through a series of mould-filling experiments. 

The main objective was to formulate a permeability model for reinforcement mats that 

considers the dependency on material and process parameters. This model was developed using 

machine learning techniques, with the aim of utilizing it to simulate the Resin Transfer 

Moulding (RTM) mould-filling process. The following subsections provide a comprehensive 

literature review exploring different methods employed to characterize the permeability of 

reinforcement mats and influential material and process parameters on mat permeability.  

3.1.1 Bibliometric Analysis 

A bibliometric analysis was conducted on August 20, 2023, utilizing the Web of Science 

core database. A collection of 150 articles was obtained through the primary search terms 

'Permeability' within the topics section and ‘resin flow’ within the Author Keywords section. 

Bibliometric network visualization was carried out using the VOSviewer software[49], as 
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depicted in Figure 3.1. The analysis focused on bibliometric coupling occurrences of author 

keywords that appeared more than 3 times. Out of a pool of 334 keywords, 43 keywords met 

this threshold and were consequently selected for further examination. 

From these 43 keywords, the cumulative strength of co-occurrence links with other 

keywords was computed. This computation guided the selection of keywords with the highest 

total link strength. Among these keywords, 'resin flow', 'permeability', 'process monitoring', 

and others emerged as prominent author keywords. 

 

 

Figure 3. 1 Schematic Representation of the Bibliographic Networking Diagram 

Obtained from the Web of Science Core Database through the Search Conducted on 

August 20, 2023. 

3.1.2 Literature Review  

Resin Transfer Moulding (RTM) has emerged as a cost-effective and efficient 

technique for manufacturing composite parts. The process involved transferring resin from a 

reservoir into a reinforcing preform placed within a sealed mould [106]. Permeability 

properties were used to characterize resin flow within the preform and the resin-fibre wetting 

process. A comprehensive review of state-of-the-art literature, including both experimental and 

theoretical investigations for measuring permeability was presented [107]–[109]. 
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Researchers developed unsaturated and saturated flow tests to measure the permeability 

of 1-D/isotropic reinforcement mats [110]–[112]. In unsaturated flow experiments, the fluid 

was introduced either at a constant pressure or a constant flow rate. In constant pressure 

injection experiments, the position of the flow front relative to filling time was tracked. On the 

other hand, in constant flow rate injection experiments, the position of the flow front increased 

linearly with time, and 1-D Darcy's law was used to measure the permeability. However, less 

accurate transient permeability data was obtained by constant flow rate injection experiments 

due to the complex interaction between flow and pressure drop [113]. As a result, many studies 

opted for mould-fill experiments based on constant pressure injection to measure mat 

permeability [114]–[117]. In saturated flow experiments, the transient variations of flow front 

position and flow rate/pressure were not taken into account and the permeability data was 

measured based on the complete resin-fibre saturation to the predefined mould dimension. It 

was also found that the saturated permeability for reinforcement is always greater than the 

unsaturated permeability. 

Researchers have used radial flow experiments for the measurement of 2D permeability 

data [118].  In this experiment, the resin was introduced into the mould through a central 

injection port [119]. As the resin flows through the preform, the resulting flow front can be 

observed as circular or elliptical depending on the preform type. Circular flow fronts were 

observed in isotropic mats with equal permeability in all directions whereas elliptical flow 

fronts were observed in anisotropic mats with varying permeability in different directions 

[120]. 

Numerous efforts have been devoted to the study of fibre mat permeability using both 

one-dimensional and two-dimensional flow measurement techniques. Weitzenbock et al. [121] 

proposed an analytical approach for measuring 2-dimensional unsaturated permeability. The 

proposed analytical model equation was applicable to radial flow experiments. This proposed 

model helps to determine the permeability values from the experimentally obtained flow front 

positions as a function of elapsed mould-filling time. Fratta et al. [122] proposed a novel 

unidirectional permeability measurement approach to characterize permeability as a function 

of fibre volume content. In their experimental setup, they positioned one pressure transducer 

at the inlet gate and embedded the second one within the mould. They developed a rapid 

algorithm to extract data from these two sensors. This algorithm automatically generated the 

permeability distribution thereby eliminating the need for manual observation of the flow front. 

Prosenjit Maji et al. [123] developed a methodology for determining the transverse 

permeability of prepregs using process modelling and simulations. The experimental and 
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process simulation approach was employed to predict the consolidated thickness and the 

corresponding times for various permeability values. The permeability value was considered 

the effective permeability of prepregs when the predicted and experimentally obtained 

consolidation times matched perfectly. Kuppusamy et al. [124] developed a methodology to 

determine the two-dimensional permeability of glass fibre mats. They compared simulated and 

experimental flow front positions over time. They utilized a sensitivity analysis approach to 

predict the effective mat permeability for matched temporal flow front positions. 

Kim et al. [26] framed an analytical model to forecast the permeability of shear-

deformed woven fabric and then, the modelled results were compared with the experimentally 

obtained permeability values. They characterized the in-plane permeability of woven 

composites by altering the fibre orientation of the deformed woven fabric. This was done to 

simulate the vacuum-assisted resin transfer moulding (VARTM) process accurately. Tan et al. 

[125] developed a constant flow rate injection experiment to study one-dimensional porous 

flow. Their study explored the influence of porosity on the inlet pressure profile. They utilized 

three different types of fibre mats unidirectional, bi-axial, and tri-axial to examine the 

relationship between 1-D permeability and the inlet pressure profile. 

  Many efforts have been devoted to measuring the permeability in natural and synthetic 

fibre mats [109], [126]–[129]. The influence of processing and material parameters on 

reinforcement mat permeabilities was also reported. This included investigating the effects of 

mat porosity, fluid injection pressure, variations in test fluids and their viscosities on the 

reinforcement mat permeabilities. 

Effect of Porosity on the Reinforcement Mat Permeability: Many studies in the 

literature have investigated the effect of fibre mat porosity and architecture on their 

permeabilities [130], [131]. Yan Li et al. [132] assessed the permeability of hybrid natural 

fibre-reinforced composites. They noted increased permeability in hybrid composites due to 

the higher porosity of jute fibre when compared to ramie fibre. Franucci et al. [133] examined 

the correlation between permeability and the porosity of natural fibres. Their findings indicated 

that both saturated and unsaturated permeabilities increase with increased porosity. Moreover, 

saturated permeability was found to be higher than the unsaturated permeability. In comparison 

to glass fibre mats, the permeabilities of natural fibre mats decreased due to greater fluid 

absorption and swelling. Kim and Daniel [131] devised a setup to investigate the relationship 

between permeability and flow rate. They observed a continuous increase in both saturated and 

unsaturated permeability with an increase in the flow rate. The effect of stitching patterns and 
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seam distances on the mat porosity was also explored well in the literature. The findings 

indicated that an increase in porosity resulted in higher permeability [130], [134]. 

Effect of Fluid Injection Pressure on the Reinforcement Mat Permeability: From the 

literature review, it was found that the fluid injection pressure affects the transient permeability 

and the behaviour of the flow front. Additionally, it was observed that the transient 

permeability decreased with an increase in the injection pressure [135], [136]. Shojaei et al. 

[116] found enhanced permeabilities under both transient and steady-state conditions with 

increased flow rates. They conducted their research in a one-dimensional domain using woven 

glass fabrics with varying pressures. Amico and Lekakou [137] conducted unsaturated flow 

experiments using plain weave glass fabric. Their experiments involved the use of both silicone 

oil and epoxy resin. Their findings indicated that there was a decrease in transient permeability 

as the injection pressure was increased. Ma and Shishoo [114] investigated the relationship 

between permeability and the position of the flow front. They noted that the transient 

permeability increases with the flow advancement. These studies were conducted using various 

reinforcement materials. 

Effect of Test Fluids on the Reinforcement Mat Permeability: The literature review 

revealed that the selection of test fluids can influence the measured permeability values. 

Research has shown that the steady-state and transient permeabilities increase with a slight 

magnitude with the decrease in the test fluid viscosities [114], [138]. From the existing studies, 

it was found that the influence of viscosity is minimal on the permeabilities when fluid viscosity 

is lesser with proper cavity filling. In contrast, there is an increased mould-filling complication 

with an increase in test fluid viscosities and hence, the permeability decreases with the increase 

in the test fluid viscosities [138], [139]. Luo et al. [140] examined the effect of test fluids on 

different types of reinforcement mats. They observed a minimal effect of test fluids on the mat 

permeability. This finding aligns with the observations made by Hammond and Loos [115]. 

They concluded that the measured permeability remained constant regardless of the liquid used. 

This observation demonstrated its independence from factors such as contact angle and 

capillary number. 

To sum up, this chapter measures the permeability of natural and synthetic fibre 

reinforcements using mould-filling experiments. The investigation takes into account the 

influence of various parameters such as porosity, fluid injection pressure, preform thickness, 

and viscosity of the test fluid. Research findings have revealed the relationships between these 

parameters and permeability, providing valuable insights for the refinement of the RTM 

process. To the best of the investigator's knowledge, there are no published articles that have 
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addressed models encompassing the synergetic influence of processing parameters, fibre 

architecture, and resin properties on the permeabilities of reinforcement mats. To be specific, 

there are no research articles available that discuss the use of machine learning techniques, 

such as artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS), 

to predict permeability as a function of multiple influencing parameters. 

The main aim of this chapter is to measure the reinforcement mat permeabilities using 

mould-filling experiments, for its applicability in mould-filling simulations. To achieve this 

main objective, the following steps were followed: (i) Initially, a 2D radial constant-pressure 

injection setup coupled with a visualization technique was employed to measure the mat 

permeability. In this method, the permeability was obtained by matching the experimental and 

the simulated flow progressions iterated with guessed permeability values [124]. (ii) The fibre 

wetting analysis was performed using the contact angle measurement method for analysing the 

test fluid saturation at the reinforcement mats. (iii) Experimental permeability data were 

collected with the variations in the processing parameters, fibre architecture and resin 

properties. (iv) The ANN and ANFIS models were trained from the obtained experimental 

input data set for the prediction of reinforcement mat permeability as a function of four input 

key parameters. (v) Statistical analysis was performed and the results obtained through 

different machine learning techniques were compared. 

3.2 Materials 

In this work, five different reinforcement mats and five different test fluids were used 

to perform mould-filling experiments for the measurement of mat permeability. Woven roving 

and chopped strand glass fibre mats, woven roving carbon fibre mat, jute fibre and hemp fibre 

mats were used in this study. The porosity of the mats was computed using areal density data 

as given in Equation (3.4). 

𝜑 = 1 − (
𝑁×𝜌𝐴

ℎ×𝜌𝑓
)     (3.4) 

where 𝜑 is the porosity, 𝑁 is the number of mat layers, 𝜌𝐴 is the areal density of the fibre 

mats in  Kg/m2, ℎ is the thickness of fibre preform in m and 𝜌𝑓 is the density of fibre in Kg/m3. 

The measured areal density of the fibre mat and the calculated porosity for the single-layer mat 

are given in Table 3.1. The physical properties of test fluids used in this work are given in 

Table 3.2. 
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Table 3. 1 Fibre Mat Properties 

Reinforcement Mat Thickness of 

Fibre Mat, h 

(mm) 

Fibre 

Density 

(Kg/m3), 𝝆𝒇 

Mat Areal 

Density 

(g/m2), 𝝆𝑨 

𝜑 

Chopped Strand Glass 

Fibre Mat (CSM) 

0.45 2450 450 0.59 

90o Woven Roving 

Glass Fibre Mat (WRM) 

0.49 2450 610 0.5 

90o Woven Roving 

Carbon Fibre Mat 

0.42 1770 400 0.46 

Jute Fibre Mat 0.67 1450 266 0.726 

Hemp Fibre Mat 0.77 1500 395 0.658 

 

Table 3. 2 Test Fluid Properties. 

Test Fluid Density 

(Kg/m3) 

Viscosity (Pa-s) 

Edible Oil 922 0.0398 

Glycerol 1260 1.412 

Epoxy Araldite LY 

556 

1150 11.81 

Epoxy Araldite LY 

5052 

1170 1.358 

Epoxy Vinyl Ester 1050 0.35 

3.3 Methodology 

The permeability of the reinforcement mat was measured using the constant flow 2D 

radial injection experimental technique. This method involved tracking the experimental flow 

front through a flow visualization technique. Then, the mat permeability was computed by 

matching the experimental flow progression with simulated flow progressions obtained from 

iteratively guessed permeability values. Next, the contact angle of test fluids on different fibre 
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mats was measured to analyze fibre wet-out as a function of wetting time for different test 

fluids. Subsequently, ANFIS and ANN models were developed to predict the permeability of 

the reinforcement mat. These models utilized an experimental input dataset, which included 

four independent variables: viscosity of the test fluid, number of layers, porosity of the 

reinforcement mats, and injection pressure. The sole dependent variable in this dataset was the 

reinforcement mat permeability. 

3.3.1 Permeability based on Flow Tracking using Visualization Technique 

A constant flow 2D radial injection experimental setup as shown in Figure 3.2 was 

used to determine the permeability of the fibre mat. The top and bottom halves of the mould 

were made of acrylic material, 60 cm long, 60 cm wide and 1 cm thick. A single injection port 

of diameter 0.3 cm was positioned at the centre of the top mould. The test fluid was injected at 

a constant injection pressure and a video camera was used to record the resin flow through the 

fibre mat. The flow front progression during mould filling was recorded using a NIKON D3500 

DSLR video camera. A pressure controller was employed to maintain a constant fluid injection 

pressure throughout the experiment. The flow front position as a function of time was tracked 

using the temporal frames obtained from the video camera [124]. 

In sequence, the experimental mould-filling conditions were mimicked in the 

COMSOL Multi-Physics simulator. Darcy's law and the level set model physics were 

incorporated to execute the isothermal mould-filling simulations within the COMSOL 

platform. Comprehensive insights related to relevant models and their implementation in 

COMSOL Multi-Physics were detailed in Chapter 4. The permeability value was determined 

by comparing the experimental flow fronts with simulated flow fronts generated using guessed 

permeability values. The guessed permeability value was considered the effective permeability 

value when the simulated and experimentally obtained flow fronts matched perfectly at all the 

time frames. 
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Figure 3. 2 Experimental Setup for Reinforcement Mat Permeability Measurement 

3.3.2 Fibre Wetting Analysis  

The fibre wetting analysis was performed using the contact angle measurement instrument 

HOLMARC (HO-IAD-CAM-01) by dropping 10μL of test fluid on the reinforcement fibre 

mat surface. The experiments were performed to analyse the test fluid saturation at the 

reinforcement mats using the change in droplet spread and its effect on reinforcement 

permeability[138].  

3.3.3 ANFIS Modelling 

ANFIS is a type of hybrid artificial intelligence (AI) model that combines the strengths 

of a fuzzy inference system (if-then rule) and ANN. This method effectively uses a fuzzy logic 

model with rules that are created during the model’s training process using neural network 

theory. The membership function parameters of the fuzzy inference system (FIS) created by 

ANFIS were generated from the training samples [141]. In the present work, the ANFIS 

structure was constructed for four input parameters namely, the number of layers, porosity, test 

fluid viscosity and injection pressure and transient permeability as the output parameter. The 

rules for a Sugeno fuzzy model for a four-input system are as follows, 

Rule 1: If x1 is A1, x2 is A2, x3 is A3 and x4 is A4, then y1 = c1 + d1x1 + e1x2 + f1x3 + g1x4 

Rule 2: If x1 is B1, x2 is B2, x3 is B3 and x4 is B4, then y2 = c2 + d2x1 + e2x2 + f2x3 + g2x4 

Rule 3: If x1 is C1, x2 is C2, x3 is C3 and x4 is C4, then y3 = c3 + d3x1 + e3x2 + f3x3 + g3x4 

Pressure 

Controller 

Video Camera 

 

 

Mould 

Compressor Resin 

Tank 

Injection Pressure 

Indicator 

Experimental Flow Front 

ON/OFF  

Valve 
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54 

 

Rule 4: If x1 is D1, x2 is D2, x3 is D3 and x4 is D4, then y4 = c4 + d4x1 + e4x2 + f4x3 + g4x4 

where A1, A2, A3, and A4 are the fuzzy sets that define the membership functions for the 

input variables x1, x2, x3, and x4, respectively. B1, B2, B3 and B4 are the negation of A1, A2, A3, 

and A4, respectively. C1, C2, C3 and C4 are the intersection of A1 and A2, A2 and A3, A3 and A4, 

and A4 and A1, respectively. D1, D2, D3 and D4 are the union of A1 and A2, A2 and A3, A3 and 

A4, and A4 and A1, respectively. The coefficients c, d, e, f, and g are constants that define the 

linear function of the input variables for each rule. These coefficients are determined using 

linear regression or other optimization techniques based on the input-output data. 

 

Figure 3. 3 ANFIS Topology for Modelling of Permeability 

Figure 3.3 shows the five-layer architecture of the ANFIS model. The five layers structure 

of ANFIS can be explained as follows: 

Layer 1 (Fuzzification Layer): The function of this layer is to transfer the incoming data to 

each fuzzy set's level of membership. Each input variable has a set of MFs attached to it, and a 

membership function equation is used to calculate how much of the input data belongs to each 

function. This layer produces a matrix showing the degree to which each input value is a 

member of each fuzzy set as given in Equation (3.5). 

𝑂𝑖
1 = 𝜇𝐴𝑖

(𝑥), for i = 1,2,3,4    (3.5) 

where 𝑂𝑖
𝑗
 denotes the output of the ith node and jth layer. 

Layer 2 (Rule Layer): This layer's function is to decide how strongly each rule will apply 

depending on how much of the incoming data is a member of each fuzzy set. The membership 
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degree of the input data to each linked fuzzy set is multiplied to determine the firing strength 

(FS) of each rule. A vector representing the FS of each rule is the layer's output as given in 

Equation (3.6). 

𝑂𝑖
2 = 𝑤𝑖 = 𝜇𝐴𝑖

(𝑥1) ∗ 𝜇𝐴𝑖
′(𝑥2), for i = 1,2,3,4   (3.6) 

Layer 3 (Normalization Layer): The role of this layer is to normalize the FS of the rules to 

ensure that they sum up to one. This is done by dividing the FS of each rule by the combined 

FS of all the rules.  This layer's output is a vector representing the normalised FS of the rules 

as given in Equation (3.7). 

   𝑂𝑖
3 =𝑤̅𝑖 =

𝑤𝑖

∑𝑤𝑖
, i = 1,2,3,4                  (3.7) 

where 𝑤̅𝑖 is the output of Layer 3. 

Layer 4 (Consequent Parameters Layer): This layer's function is to compute the consequent 

parameters of each rule based on the input data and the normalized FS of the rule. This layer's 

output is a matrix of the consequent parameters of each rule as given in Equation (3.8). 

𝑂𝑖
4 = 𝑤̅𝑖 ∗ 𝑦𝑖       (3.8) 

where, 𝑦𝑖  is the output with parameter set {c, d, e, f, g}. 

Layer 5 (Aggregation Layer):  This layer's function is to combine the consequent 

parameters of all the rules to produce the output of the ANFIS model. This is done by summing 

the product of the consequent parameters of each rule and the normalized firing strength of the 

rule for combined rules. This layer's output is a single scalar value representing the output of 

the ANFIS model as given in Equation (3.9). 

𝑂𝑖
5 = ∑ 𝑤̅𝑖

𝑛
𝑖=1 ∗ 𝑦𝑖      (3.9) 

The experimental data were split into two portions for the ANFIS modelling. 75% of the 

data was used for training purposes. The remaining data (25%) was used to evaluate the model. 

In MATLAB R2016a, the fuzzy logic designer toolbox was used to produce FIS while taking 

the grid partition approach into account. The hybrid optimization approach was used to train 

the generated FIS, with 50 epochs and zero error tolerance. For the four input variables, five 

membership functions (MFs) were applied. In this work, it was attempted to optimise the 

outcomes using output MFs of the linear and constant types. The target data were the 

permeability values from experimental results.  In the current work, the effective permeability 

prediction was determined using FIS created using the aforesaid technique. The created ANFIS 

model was evaluated using the following statistical criteria: R2, RMSE and MAPE. 

𝑅2 (correlation coefficient) = 1 −
∑ (𝑦𝑖

𝑒−𝑦𝑖
𝑝
)
2𝑛

𝑖=1

∑ (𝑦𝑖
𝑒−𝑦̅𝑝)

2𝑛
𝑖=1

    (3.10) 
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𝑅𝑀𝑆𝐸 (root mean square error) = √
1

𝑛
∑ (𝑦𝑖

𝑒 − 𝑦𝑖
𝑝)

2𝑛
𝑖=1   (3.11) 

𝑀𝐴𝑃𝐸(%)(mean absolute percentage error) = (
100

𝑛
)∑ |

𝑦𝑖
𝑒−𝑦𝑖

𝑝

𝑦𝑖
𝑒 |𝑛

𝑖=1  (3.12) 

where 𝑦𝑖
𝑒 and 𝑦𝑖

𝑝
 are the ith experimental and predicted data points of transient permeability 

values, respectively. Where n is the total data points and 𝑦̅𝑝 is the mean of the predicted 

permeability values. 

3.3.4 ANN Modelling 

 The function of the ANN is to train the neural network from past data and use this 

trained neural network for predicting future data. Generally, the multi-layered perceptron 

neural network consists of an input layer, a number of hidden layers and an output layer. These 

layers are interconnected via the weight and bias matrices [142]. The input layer sends the input 

data to the hidden layer, the hidden layer trains the data and the output layer predicts the data 

as shown in Figure 3.4. Figure 3.4 shows the four input parameters, one hidden layer 

containing 10 neurons with log-sigmoid transfer function and an output layer with pure-linear 

transfer function. The input and output data were normalized between 0 and 1. The predicted 

output is calculated as a function of the input data provided and the weight and bias matrices 

using the following Equation (3.13). 

𝑌𝑖 = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑖
𝑁
𝑖=1 )     (3.13) 

where N is the total number of neurons, 𝑌𝑖 is the predicted output and 𝑥𝑖 is the input 

connected to the ith neuron. 𝑤𝑖𝑗 and 𝑏𝑖 are the weight and bias matrices, respectively. The ANN 

modelling was implemented in MATLAB software using the nntool function and the 

Levenberg–Marquard technique was used as a learning algorithm. The performance of the 

model was evaluated using the regression coefficient and the mean square error (MSE) between 

the predicted and targeted output. The MSE was computed using the following Equation 

(3.14). 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑌𝑡 − 𝑌𝑝)

2𝑛
𝑖=1       (3.14) 

Where n is the total number of data points, 𝑌𝑡 and 𝑌𝑝 are the experimental and predicted 

permeability data, respectively. 
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Figure 3. 4 ANN Topology for Modelling of Effective Permeability 

3.4 Results and Discussions 

3.4.1 Reinforcement Mats Permeabilities using Visualization Technique 

The permeability of reinforcement mats was measured through temporal flow front-

tracking using a visualization technique. A total of 67 experiments were performed with the 

variations in fibre architecture, resin injection pressure, resin viscosity and the number of mat 

layers. The permeability value was determined by comparing the experimental flow fronts with 

simulated flow fronts generated using guessed permeability values.  

The experiments as shown in Tables 3.3 and 3.4 were performed at 2 bar injection 

pressure for a CSM glass fibre mat having glycerol as test fluid. Table 3.3 shows the 

comparison of the experimental flow front position with simulated flow fronts for different 

guessed permeability values at 100 seconds of fill time. From the experimental results, a 

circular flow front position was observed at all the time intervals and hence, an isotropic 

permeability value was considered. From the simulated flow fronts, there was not observed an 

appreciable movement in the flow fronts for guessed permeability values ranging from 1×10-

10 m2 to 6×10-10 m2. The guessed permeability values in the range of 7×10-10 m2 to 5×10-9 m2 

have shown a significant movement of flow fronts with time. Specifically, the simulated flow 

fronts were perfectly matched with experimental flow fronts for the guessed permeability value 

of 1×10-9 m2 at 100 seconds of fill time.  

Table 3.4 shows the matched experimental and simulated flow front positions obtained 

for the permeability value of 1×10-9 m2 at every time interval of 20 s from 20 s to 100 s and it 

was found that the flow front positions were matching between experiments and simulations at 

every time frame studied. Therefore, a value of 1×10-9 m2 was considered as the effective 
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permeability for the CSM reinforcement mat when the glycerol test fluid is injected at 2 bar 

pressure.  

Table 3. 3 Sensitivity of Simulated Flow Front Positions for Different Permeability 

Values (Flow Front Position at 100 s, Injection Pressure: 2 bar, Fluid: Glycerol, Fibre 

Mat: Chopped Strand Mat) 

 
    

Experimental Flow 

Front 

K=3×10-10 m2 K=4×10-10 m2 K=5×10-10 m2 K=6×10-10 m2 

 
    

K=7×10-10 m2 K=8×10-10 m2 K=9×10-10 m2 K=1×10-9 m2 K=2×10-9 m2 

 

Table 3. 4 Experimental & Simulated Matched Flow Fronts at Different Intervals of 

Time for K=1×10-9 m2, Injection Pressure: 2 bar, Fluid: Glycerol, Fibre Mat: Chopped 

Strand Mat) 

     

     

20s 40s 60s 80s 100s 

 

The experiments shown in Tables 3.5 and 3.6 were performed at 1 bar injection 

pressure for a woven roving glass fibre mat having epoxy vinyl ester resin as test fluid. Table 
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3.5 shows the comparison of the experimental flow front position with simulated flow fronts 

for different guessed permeability values at 60 seconds of mould fill time. From the results, it 

was observed that the experimental and simulated flow front was perfectly matched for the 

permeability value of 2×10-9 m2 at 60 seconds of mould fill time.  

Table 3.6 shows the matched simulated & experimental flow fronts for 2×10-9 m2 of 

permeability value at every time interval of 10 s from 10 s to 50 s. Therefore, a value of 2×10-

9 m2 was considered as the effective permeability for woven roving glass fibre mat when the 

epoxy vinyl ester resin is injected at 1 bar pressure.  

Table 3. 5 Sensitivity of Simulated Flow Front Positions for Different Permeability 

Values (Flow Front Position at 60 s, Injection Pressure: 1 bar, Fluid: Vinyl Ester Resin, 

Fibre Mat: Woven Roving Glass Fibre Mat) 

 

  
Experimental Flow 

Front at 60 s Fill Time 

K=5×10-10 m2 K=7×10-10 m2 

   
K=9×10-10 m2 K=1×10-9 m2 K=2×10-9 m2 

 

Table 3. 6 Experimental & Simulated Matched Flow Fronts at Different Intervals of 

Time for K=2×10-9 m2, Injection Pressure: 1 bar, Test Fluid: Vinyl Ester Resin, Fibre 

Mat: Woven Roving Glass Fibre Mat 

     

6 cm 

12 cm 
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10 s 20 s 30 s 40 s 50 s 

 

The experiments shown in Tables 3.7 and 3.8 were performed at 1 bar injection 

pressure for a jute fibre mat having epoxy Araldite LY5052 resin as test fluid. Table 3.7 shows 

the comparison of the experimental flow front position with simulated flow fronts for different 

guessed permeability values at 50 seconds of mould fill time. From the results, the guessed 

permeability values in the order of 10-9 m2 have shown fast flow front progression with time 

compared to the order of 10-10 m2 permeability value. It was also observed that the experimental 

and simulated flow front was perfectly matched for the permeability value of 5×10-9 m2 at 50 

seconds of mould fill time.  

Table 3.8 shows the matched simulated & experimental flow fronts for 5×10-9 m2 of 

permeability value at every time interval of 10 s from 10 s to 60 s. Therefore, a value of 5×10-

9 m2 was considered as the effective permeability for the jute fibre mat when the epoxy Araldite 

LY5052 resin was injected at 1 bar pressure. From the results, it was also observed that the 

permeability value obtained for the jute fibre mat was more than the CSM and WRM glass 

fibre mats (shown in Tables 3.4 and 3.6) due to their comparatively high porous nature. 

Table 3. 7 Sensitivity of Simulated Flow Front Positions for Different Permeability 

Values (Flow Front Position at 50 s, Injection Pressure: 1 bar, Fluid: LY 5052 Resin, 

Fibre Mat: Jute Fibre Mat) 

    
Experimental Flow 

Front 

K=8×10-10 m2 K=9×10-10 m2 K=1×10-9 m2 

Flow Front 

Position at 50 s 

(11,0) 
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K=2×10-9 m2 K=3×10-9 m2 K=4×10-9 m2 K=5×10-9 m2 

 

Table 3. 8 Experimental & Simulated Matched Flow Fronts at Different Intervals of 

Time for K=5×10-9 m2, Experiment No-46, Injection Pressure: 1 bar, Fluid: Epoxy 

Araldite LY5052, Fibre Mat: Jute Fibre) 

     

     
10 s 20 s 30 s 40 s 60 s 

 

The experiment shown in Table 3.9 was performed at 0.5 bar injection pressure for a 

carbon fibre mat having edible oil as test fluid. Table 3.9 shows the mould top and bottom side 

experimental temporal flow fronts and matched simulated temporal flow fronts for a guessed 

permeability value of 1×10-9 m2. From Table 3.9 results, it can be seen that the fibre preform 

saturation time is similar on both sides of the preform. This signifies that there is no variation 

in permeability along the transverse direction. From Table 3.9, it is also observed that the 

simulated flow fronts for a guessed permeability value of 1×10-9 m2 were perfectly matched 

with experimental flow fronts at each interval of filling time from 2 seconds to 14 seconds. 
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Table 3. 9 Experimental (top & bottom side) & Simulated Matched Flow Fronts at 

Different Intervals of Time for K=1.0×10-9 m2, Injection Pressure: 0.5 bar, Fluid: 

Edible Oil, Fibre Mat: Carbon Fibre) 

 

 

The experiment shown in Table 3.10 was performed at 1 bar injection pressure for a 

carbon fibre mat having epoxy Araldite LY5052 resin as test fluid. Table 3.10 shows the 

comparison of the experimental flow front position with simulated flow fronts for 2×10-9 m2 of 

permeability value at every time interval of 30 s from 10 s to 120 s. From the results, the flow 

fronts obtained at guessed permeability values of 2×10-9 m2 were perfectly matched with 

experimental flow fronts at each interval of mould fill time. Therefore, a value of 2×10-9 m2 

was considered as the effective permeability for carbon fibre mat when the epoxy Araldite 

LY5052 resin is injected at 1 bar pressure. From the results, it was also observed that the 

permeability value obtained for the carbon fibre mat was lesser than the jute fibre mat (shown 

in Table 3.8), due to its comparatively less porous nature. 

 

 

Top Side 

Flow 

Fronts 

    
Bottom 

Side Flow 

Fronts 

    
Simulated 

Flow 

Fronts 

    

Filling 

Time  

2 seconds 4 seconds 8 seconds 14 seconds 
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Table 3. 10 Experimental & Simulated Matched Flow Fronts at Different Intervals of 

Time for K=2×10-9 m2, Injection Pressure: 1 bar, Test Fluid: Epoxy Araldite LY5052, 

Fibre Mat: Carbon Fibre) 

     

    

 

10 s 30 s 60 s 90 s 120 s 

 

The permeability data obtained for 67 experiments with variations in the materials and 

process parameters is tabulated in Table 3.11. From the results, the order of permeability was 

obtained between 8×10-10 to 8×10-9 m2 for chopped strand glass fibre mat, 8.8×10-10 to 8×10-9 

m2 for jute fibre mat, 8.9×10-10 to 8.5×10-9 m2 for woven roving glass fibre mat, and 8.9×10-10 

to 1×10-8 m2 for hemp fibre mat.   

 

Table 3. 11 Reinforcement Mat Permeability Data as a Function of Material and 

Process Parameters 

Ex. 

No. 

Reinforcement 

Fibre Mat 

No. of 

mat 

Layers 

Porosity 
Test 

Fluid 

Viscosity 

of Fluid 

(Pa-s) 

Injection 

Pressure 

(bar) 

Permeability 

m2 

 

1 

CSM Glass 

Fibre Mat 
10 

 

0.591837 

 

Edible 

Oil 

 

0.0398 
1 3.91×10-10 

 

2 

CSM Glass 

Fibre Mat 
10 

 

0.591837 

 

Edible 

Oil 
0.0398 1.5 

 

3.5×10-10 

 

3 
CSM Glass 

Fibre Mat 

 

15 

 

0.591837 

 

Edible 

Oil 
0.0398 1 3.32×10-10 

 

4 

CSM Glass 

Fibre Mat 

 

15 

 

0.591837 

 

Edible 

Oil 
0.0398 1.5 3.1×10-10 

5 
CSM Glass 

Fibre Mat 

 

10 

 

0.591837 

 

Glycerol 
 

1.412 

 

1.5 

 

1.61×10-9 
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6 

 

CSM Glass 

Fibre Mat 

 

10 

 

0.591837 

 

Glycerol 
 

1.412 

 

2 

 

1.16 ×10-9 

 

7 

 

CSM Glass 

Fibre Mat 

 

15 

 

0.591837 

 

Glycerol 
 

1.412 

 

1.5 
5.19 ×10-10 

8 

 

CSM Glass 

Fibre Mat 

 

15 

 

0.591837 

 

Glycerol 
 

1.412 

 

2 
9.5 ×10-10 

9 
CSM Glass 

Fibre Mat 

 

5 

 

0.591837 

 

Epoxy 

Araldite 

(LY556) 

 

11.81 

 

3 
9.62×10-10 

10 
CSM Glass 

Fibre Mat 

 

3 

 

0.591837 

 

Epoxy 

Araldite 

(LY556) 

 

11.81 

 

3 
1.23×10-9 

11 
CSM Glass 

Fibre Mat 

 

5 

 

0.591837 

 

Epoxy 

Araldite 

(LY556) 

 

11.81 

 

4 
8.99×10-10 

12 
CSM Glass 

Fibre Mat 

 

3 

 

0.591837 

 

Epoxy 

Araldite 

(LY556) 

 

11.81 

 

4 
1.58 ×10-9 

13 
CSM Glass 

Fibre Mat 

 

2 

 

0.591837 

 

Epoxy 

Araldite 

(LY556) 

 

11.81 

 

3 
1.53×10-9 

 

14 

CSM Glass 

Fibre Mat 

 

4 

 

0.591837 

 

Epoxy 

Araldite 

(LY556) 

 

11.81 

 

3 
1.15 ×10-9 

15 
CSM Glass 

Fibre Mat 

 

3 

 

0.591837 

 

Epoxy 

Araldite 

(LY5052) 

 

1.358 

 

1.5 
2.1×10-9 

16 

 

CSM Glass 

Fibre Mat 

 

4 

 

0.591837 

 

Epoxy 

Araldite 

(LY5052) 

 

1.358 

 

1.5 
1.31×10-9 

17 

 

CSM Glass 

Fibre Mat 

 

4 

 

0.591837 

 

Epoxy 

Araldite 

(LY556) 

 

11.81 

 

2 
1.11 ×10-9 

18 

 

CSM Glass 

Fibre Mat 

 

3 

 

0.591837 

 

Epoxy 

Vinyl 

Ester 

 

0.35 

 

0.5 
1 x10-9 

19 

 

CSM Glass 

Fibre Mat 

 

4 

 

0.591837 

 

Epoxy 

Vinyl 

Ester 

 

0.35 

 

0.5 
9x10-10 

20 

 

CSM Glass 

Fibre Mat 

 

5 

 

0.591837 

 

Epoxy 

Vinyl 

Ester 

 

0.35 

 

0.5 
8.5x10-10 
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21 

 

CSM Glass 

Fibre Mat 

 

3 

 

0.591837 

 

Epoxy 

Vinyl 

Ester 

 

0.35 

 

1 
8.9 x10-10 

22 

 

CSM Glass 

Fibre Mat 

 

4 
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Figure 3.5 shows the effect of injection pressure, number of mat layers, test fluid 

viscosity and porosity on the reinforcement mat permeability. From Figure 3.5a, it was 

observed that for the same test fluid with the increase in porosity, the permeability increases. 

This may be attributed to the increase in the reinforcement mat pore volume with an increase 

in porosity. From Figures 3.5b & 3.5c, it can be seen that for the same fibre mat, the order of 

permeability decreases with the increase in the injection pressure and the number of fibre mat 

layers. From Figure 3.5b, the order of permeability decreased from 9×10-9 to 2×10-9 m2 with 

an increase in injection pressure from 3 to 4 bar for woven roving glass fibre mat. Subsequently, 

the permeability decreased from 2×10-9 to 9×10-10 m2 with an increase in the number of layers 

from 2 to 4 for the chopped strand fibre mat as shown in Figure 3.5c. This may be attributed 

to the increased through-thickness flow resistance with an increase in the number of layers. 

 

(a) 
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(b) 

 

(c) 

Figure 3. 5 Effect of Material and Process Parameters on Permeability shown in (a), (b) 

and (c) 

3.4.2 Fibre Wetting Analysis  

The fibre wetting analysis was performed for all the studied fibre mats using water and 

glycerol as test fluids. Table 3.12 shows the snapshots of the test fluid-fibre wetting as a 

function of time for all the studied fibre mats. From Table 3.12, it was observed that the fibre 

wetting time required for glycerol was greater than that of water for all the fibre mats. This 

may be due to the hydrophilicity nature of the studied mat surface. In the case of CSM glass 

fibre mat, the complete fibre-wetting time required for water is less than 4 seconds and the 
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fibre-wetting time required for glycerol is more than 20 seconds. Similarly, for WRM glass 

fibre and carbon fibre mats, test fluid water wets instantaneously and it is required more than 

20 seconds for glycerol as test fluid. It may also be mentioned that the test fluid spreading time 

was increased with the increase in fluid viscosity. It was also observed that the jute and hemp 

fibre mats required significantly higher wetting time compared to synthetic fibre for both test 

fluids. This may be due to the use of chemically untreated natural fibre mats.  

From the fibre-wetting analysis, it was found that the fibre-wetting time and test fluid-fibre 

saturation have a strong influence on the fluid-mat permeation. From the results, it was 

observed that the fluid-mat permeation decreases when there is an increase in fibre wetting 

time and lesser mat surface saturation.  

 

Table 3. 12 Fibre Wetting Analysis for Water and Glycerol for Different Fibre Mats 

CSM Fibre Mat 

Water  

 

 

 

 

 
Wetting 

Time 

0 seconds 2 seconds 4 seconds 

Glycerol  
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3.4.3 Results of ANFIS Modelling 

ANFIS modelling was employed to forecast the effective permeability of reinforcement 

mats, factoring in both material and processing parameters. The dataset was characterized by 

four input parameters: porosity, mat layers, injection pressures, and test fluid viscosity. These 

inputs were represented using input membership functions encompassing Gaussian functions. 

The model's training was accomplished by integrating Gaussian membership functions for 

inputs and constant membership functions for outputs. In contrast, other membership functions 

like generalized bell, triangular, and trapezoidal functions were excluded from this study due 

to their association with elevated RMSE values. Figure 3.6 provides an encompassing view of 

the ANFIS model's architecture, featuring four inputs, input membership functions (inputmf), 

an assemblage of rules (3×3×3×3 = 81), an output membership function (outputmf), and a 

solitary output. 

Figure 3.7 illustrates the rule viewer plot, showcasing the ANFIS model proficiency in 

forecasting output data based on given input information. For instance, by supplying input 

parameter values of 6 layers (input 1), 0.592 porosity (input 2), 0.881 Pa.s test fluid viscosity 

(input 3), and 1.24 bar injection pressure (input 4), the ANFIS model generated a permeability 

estimate of 2.02×10-10 m², as evidenced in Figure 3.7. Within the specified range of data, the 

model effectively predicted each output value corresponding to its respective input parameter. 

Moreover, the rule viewer allows users to choose inputs to generate desired outputs, 

showcasing the model's versatility. Notably, the model's predictive capabilities extend in both 



73 

 

directions – it can anticipate output permeability data from input values and vice versa. It's also 

worth mentioning that the model exhibits sensitivity, enabling it to forecast output permeability 

data even with slight adjustments in the input parameters. 

 

Figure 3. 6 ANFIS Modelling Structure from MATLAB for Four Input and One Output 

Parameters 

 

Figure 3. 7 ANFIS Rule Viewer Structure from MATLAB for Four Input and One 

Output Parameters 
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Figure 3.8 depicts the relationship between the experimental permeability and the 

permeability values predicted by the ANFIS model. The determination coefficient (R2) for the 

combined dataset, encompassing both training and testing data, was calculated to be 0.975. 

This substantial R2 value underscores the model's remarkable accuracy in forecasting effective 

permeability. The ANFIS model's predictive outcomes harmonize exceptionally well with the 

experimental results, signifying a strong alignment between the model's objectives and its 

achievements.  

A comparison of the experimental and predicted outcomes of the ANFIS model across 

various test conditions is presented in Figure 3.9. Notably, the lines representing the 

experimental and predicted permeability closely coincide for all tested scenarios. This 

remarkable congruence underscores the ANFIS model's effectiveness in performance. As a 

result, it becomes evident that the fuzzy inference system provides a robust means to anticipate 

effective permeability based on the interplay of process and material parameters. 

 

Figure 3. 8 Regression Model Analysis between Experimental and ANFIS Predicted 

Permeability 

The mean absolute percentage error (MAPE) was calculated to assess the disparity 

between the experimental and predicted mat permeability datasets using Equation (3.12). The 

% MAPE value was determined to be 16.72% from the results. Furthermore, a sensitivity 

analysis was conducted utilizing the MAPE values in order to examine the impact of each input 

variable on the permeability of the reinforcement mat. By excluding individual input 

parameters from the combined training and testing dataset, the % MAPE values were 

compared. The results, presented in Table 3.13, illustrate the % MAPE values achieved 
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between the experimental and predicted mat permeability datasets for each input parameter that 

was excluded. The findings indicate that the reinforcement mat permeability is influenced by 

all of the input parameters. Notably, the fibre mat architecture holds the highest degree of 

influence, as evidenced by the % MAPE value of 49.82%. Following this is the viscosity of the 

test fluid at 38.52%, followed by the test fluid injection pressure at 32.4%. The input parameter 

with the least impact on the permeability is the number of layers, with a % MAPE value of 

29.8%. 

 

Figure 3. 9 Variation of Experimental and ANFIS Predicted Permeability Data for 

Different Test Conditions 

 

Table 3. 13 MAPE Values Obtained between the Experimental and Predicted Mat 

Permeability Datasets for Excluded Input Parameter. 

Excluded 

Parameter 

Porosity Test Fluid 

Viscosity 

Test Fluid 

Injection Pressure 

Number of 

Layers 

% MAPE 49.82 38.52 32.4 29.8 

 

The noise level within a dataset can be assessed through an error plot, providing insight 

into whether the error value diminishes with the inclusion of additional epochs. Examining 

Figure 3.10, it becomes evident that the error gradually decreased to a value of 3.4×10-10 by 

the 50th epoch. 
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Figure 3. 10 Variation of Model Training Error with Epochs 

 

3.4.4 ANN Modelling 

Prior to the ANFIS modelling analysis, an Artificial Neural Network (ANN) approach was 

employed to forecast the effective permeability of reinforcement mats. Experimental outcomes 

were employed as the target for training and validation, utilizing input data. The neural network 

for modelling the experimental results consisted of a single hidden layer containing 10 neurons 

with a log-sigmoid transfer function, coupled with an output layer utilizing a pure linear 

transfer function. Figure 3.11 visually portrays the comprehensive architecture of the ANN 

model, featuring four inputs, a hidden layer utilizing a log-sigmoid transfer function, an output 

layer employing a pure linear transfer function, and a single output.  

 

Figure 3. 11 ANN Modelling Structure from MATLAB 

The dataset was partitioned into training (50%), validation (25%), and testing (25%) 

subsets. The neural network underwent training on the combined training and validation data 
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over 12 epochs, achieving a minimum mean squared error value of 0.018908 at epoch 6, 

depicted in Figure 3.12.  

  

Figure 3. 12 Performance Analysis of Data for Different Conditions 

 

Figure 3. 13 ANN Model Regression Analysis for Predicting the Mat Permeability 
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The regression coefficients for the training, validation, and testing datasets were determined 

as 0.95762, 0.99815, and 0.98887 respectively. Collectively, the overarching regression 

coefficient yielded by the ANN modelling reached 0.96765. Figure 3.13 features a linear 

relationship demonstrated by the straight line, showcasing the connection between the 

predicted data (output) and the experimental data (target). 

3.4.5 Comparative Assessment between Machine Learning Techniques 

The obtained ANN results were compared with the ANFIS model results. ANFIS 

modelling showed better prediction than ANN modelling. On the other hand, the tree-based 

machine learning regression models were used to predict the permeability by directly importing 

these models from the scikit-learn library in google colab notebook. Figure 3.14 shows the 

comparison between all the ML models used in this study. It was observed that all the models 

had a correlation coefficient greater than 80%. In comparison with the other regression models 

like DecisionTreeRegressor, BaggingRegressor, RandomForestRegressor, 

ExtraTreesRegressor and GradientBoostingRegressor, The XGBoost regression model showed 

superior performance with a greater correlation coefficient of about 0.963 and lowest error 

indices despite a training process based on a relatively sparse input dataset. However, the 

highest R2 value was found to be 0.975 for the ANFIS model. This shows the effective 

performance of the ANFIS model.  

  

Figure 3. 14 Regression Analysis for Different ML Models 
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3.5 Summary 

 The main objective of this chapter was to measure the reinforcement mat permeabilities 

using mould-filling experiments, for its applicability in mould-filling simulations. 

Additionally, the effect of processing and material parameters on the reinforcement mat 

permeability was evaluated using mould-filling experiments. Subsequently, the permeability 

of the reinforcement mat as a function of material and process parameters was predicted using 

machine learning techniques. At first, the mould-filling experiment coupled with the 

visualization technique was implemented for in-plane permeability measurement. In this 

method, the effective permeability value was obtained by matching the experimental flow front 

progression with the isothermal mould-filling simulated flow front progressions with iterative 

guessed permeability values.  

A total of 67 isothermal mould-filling experiments were performed to relate mat 

permeability as a function of fibre mat porosity, mat layers, test fluid viscosity and injection 

pressure. From the results, a circular flow front position was observed for all the studied 

experiments and hence, an isotropic permeability value was obtained. It was observed that the 

fibre preform permeability was increased with an increase in porosity, and decreased with an 

increase in the number of mat layers, fluid viscosity and test fluid injection pressure. From the 

results, the order of permeability was obtained between 7×10-9 to 7×10-8 m2 for chopped strand 

glass fibre mat, 7.5×10-9 to 4×10-8 m2 for jute fibre mat, 8×10-9 to 1.5×10-8 m2 for woven roving 

glass fibre mat, and 6×10-9 to 6.4×10-8 m2 for hemp fibre mat. From the fibre-wetting analysis, 

it was found that the fibre-wetting time and test fluid-fibre saturation have a strong influence 

on the fluid-mat permeation. From the fibre-wetting results, it was also observed that the fluid-

mat permeation decreases when there is an increase in fibre-wetting time and lesser mat surface 

saturation.  

ANFIS and ANN machine learning models were developed in MATLAB using the 

Sugeno and nntool toolboxes, respectively. These models were trained for four input key 

parameters (number of layers, porosity, test fluid viscosity and injection pressure) and one 

output parameter (effective permeability) using the obtained experimental data. From the 

results, both models have shown excellent correlation and a minimum mean square error. The 

R2 values obtained for the ANN and ANFIS techniques were 0.967 and 0.975, respectively. 

Different tree-based regression machine-learning models were trained from the scikit-learn 

library for statistical analysis with the ANFIS and ANN models. From the comparative 

analysis, ANFIS has shown an excellent correlation with the experimental permeability as a 
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function of input key parameters than the other machine learning approaches. Thus, the fuzzy 

inference system offers an efficient way to predict effective permeability as a function of 

process and material parameters. 
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Chapter 4 

Development of an Optimized RTM Mould-Filling Process 

using Multi-Objective Optimization Algorithms 

4.1 Introduction 

The resin transfer moulding (RTM) technique stands as a pivotal liquid composite 

moulding (LCM) process for the manufacturing of complex and large composite components 

[143]. Among the essential stages influencing the ultimate quality of the composite parts, the 

mould-filling phase serves as a critical cornerstone for the development of an efficient 

manufacturing process [17]. During the mould-filling phase, the pressurized resin is injected 

into the mould via designated injection ports ultimately leading to the complete saturation of 

the fibre preform [14]. Given the intricate nature of composite parts characterized by their 

complexity and scale, the utilization of multiple injection ports and strategically positioned 

vents emerges as a crucial strategy. This multifaceted approach ensures the uniform saturation 

of the entire mould, effectively mitigating the formation of undesirable dry spots prior to the 

initiation of resin gelation [20].  

Notably, effective mitigation of the dry spots becomes a significant challenge, 

especially at the cut edges of composite parts where the race-tracking phenomenon becomes 

influential [144]. The phenomenon of race-tracking highlights the tendency for the formation 

of dry spots along cut-edges underscoring the need for careful attention during the mould-

filling process. In addition, dry spots are also formed with the collisions of flow fronts rising 
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from different injection gates [118]. As a result, the optimum design of the mould fill phase 

requires adequate numbers and appropriate positions of mould gates and vents along with the 

implementation of an appropriate race-tracking effect [20], [145]. 

In this context, the current chapter develops multi-objective optimization algorithms to 

thoroughly explore the mould-filling phase of the resin transfer moulding technique. These 

developed algorithms are integrated with a finite element simulator to investigate the complex 

interaction between resin flow dynamics, injection port arrangements, vent placements, and the 

management of race-tracking effects. This research aims to contribute to the refining of the 

RTM process for manufacturing industrially viable components such as automotive bonnet and 

aircraft wing flap composite parts. This investigation not only seeks to advance the scientific 

understanding of RTM but also holds the promise of finding novel insights that could 

potentially revolutionize the manufacturing landscape for large and complex composite 

structures. Through a comprehensive analysis of these critical elements, this chapter aims to 

enhance precision, efficiency and reliability in RTM-based composite part production. 

4.1.1 Bibliometric Analysis 

A bibliometric analysis was conducted on August 21, 2023, utilizing the Web of Science 

core database. A collection of 119 articles was obtained through the primary search terms 

'Resin Transfer Moulding' within the topics section and ‘resin flow’ within the Author 

Keywords section. Bibliometric network visualization was carried out using the VOSviewer 

software [49], as depicted in Figure 4.1. The analysis focused on bibliometric coupling 

occurrences of author keywords that appeared more than 2 times. Out of a pool of 268 

keywords, 68 keywords met this threshold and were consequently selected for further 

examination. From these 68 keywords, the cumulative strength of co-occurrence links with 

other keywords was computed. This computation guided the selection of keywords with the 

highest total link strength. Among these keywords, 'resin flow', 'process monitoring', 'resin 

transfer moulding', and others emerged as prominent author keywords. 
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Figure 4. 1 Schematic Representation of the Bibliographic Networking Diagram 

Obtained from the Web of Science Core Database through the Search Conducted on 

August 21, 2023. 

4.1.2 Literature Review 

The growing demand for lightweight structural components particularly in sectors like 

aerospace and automotive has emphasized the need for efficient high-volume composite 

manufacturing capabilities [5], [7]–[10], [25], [146]. Over the span of several decades, the 

RTM process has consistently evolved and shown significant promise in offering cost-effective 

solutions for producing composites in large quantities [147], [148]. The RTM process involves 

four stages: preforming, mould filling, curing and demoulding of parts. Among these stages, 

the mould-filling phase holds importance as it significantly impacts production efficiency and 

final product quality [149], [150]. During this phase, the resin is introduced through injection 

gates to saturate the dry fibrous reinforcement while simultaneously removing air, volatile 

elements and excess resin through air vents. The primary objective of the mould-filling stage 

is to achieve complete saturation of the fibre preform with resin while minimizing the 

formation of undesired dry spots. 

Several experimental works have been reported in the literature in averting the 

formation of dry spots during the mould-filling process using flow visualization [124], [151] 

and sensor [152] techniques. However, the development of an optimized RTM production 
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process using experimental trials with intricately embedded sensors was proven to be sub-

optimized, laborious, costly and time-consuming. Alternatively, using RTM process 

simulations and optimizations was proven to be an inexpensive and effective approach that 

results in optimal solutions with iterations [20]. From the literature, the commonly used finite 

element, finite volume and control volume finite element method-based simulators were 

COMSOL Multi-physics, PAM-RTM, RTM-Worx, LIMS, and ANSYS Fluent for performing 

the mould filling process simulations [27], [29], [101].  

Spiridon Koutsonas [153] modelled the race-tracking variability for curved composite 

parts for the resin transfer moulding process. They developed the finite element/control volume 

modelling approach to predict the 2D and 3D race-tracking permeability for any composite 

structure. Shevtsov et al. [90] performed a trial and error numerical simulation using a 

COMSOL multi-physics simulator for mould gate-vent location optimization of large and 

complex shape composite structures. They considered three trials and analyzed the flow front 

progression and dry spot formation for each trial studied. Kuppusamy et al. [100] performed 

trial-and-error numerical simulations to obtain an optimal injection strategy for the cab front 

composite part. They performed the isothermal mould-filling simulations and analyzed the fill 

time and dry spot formation using the PAM-RTM simulator for each trial studied. Solanki et 

al. [101] have published isothermal mould-filling simulations for natural fibre-reinforced 

composites using the ANSYS Fluent simulator. They analyzed the effect of swelling on the 

isothermal mould-filling phase in natural fibre porous media.  

Yang et al. [55] have studied non-isothermal mould filling and curing phases using 

ANSYS fluent simulator. Yang et al. utilized the composite structure and material parameters 

from the research work published by Fei Shi and Xianghuai Dong [154]. The author analysed 

the sensitivity of mould fill time and degree of cure with the change in process temperature 

with the help of subroutines. However, the use of subroutines increases computational 

complexity and convergence issues. In summary, the evolution of RTM optimization strategies 

is marked by a shift from predominantly experimental endeavours towards simulation-driven 

approaches. Through these studies, the potential of simulation-based techniques to enhance 

RTM processes and optimize critical parameters becomes increasingly evident. 

In the domain of optimization algorithms, the literature review revealed that the widely 

employed techniques for optimizing mould-filling gate-vent locations include the genetic 

algorithm (GA), ant swarm strategy and the non-dominated sorting genetic algorithm-II 

(NSGA-II) [155]–[159].  These techniques were used to optimize various objective functions 
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such as process time, void content, weld lines, setup costs and others within the framework of 

RTM process optimization [160], [161]. 

Ye, Xugang et al.[149] developed a graph-based heuristic algorithm for optimizing the 

single gate and multiple vent locations. They considered six different 2D geometries. Initially, 

the gate location was fixed and then the locations of the vents were optimized by minimizing 

the maximum distance between the gate and the vents. However, a single injection port may 

not be sufficient for large and complex structures to achieve complete saturation of the fibre 

preform within the minimum mould filling time. Liu et al.[162]  proposed a hybrid simulated 

annealing genetic algorithm (SAGA) for multiple mould gate location optimizations to 

improve the convergence rate. They varied the gate configurations from two to five and 

compared the results obtained from SAGA with those of GA. They found an improvement in 

convergence rate for SAGA than GA with an increase in the number of mould gates. J. Wang 

et al.[163] implemented the iterative Lloyd’s algorithm for multiple-gate injection optimization 

based on the Centroidal Voronoi Diagram (CVD) approach. They found that the CVD method 

required fewer simulation runs to achieve minimum fill time compared to the exhaustive search 

technique and GA.  

Okabe et al.[164] and Oya et al.[118] used a multi-objective optimization algorithm 

with fixed vent positions and searched for the optimal positions of multi-point injection ports. 

Also, they varied the distance between gates and vents to obtain the trade-off between the weld 

line, fill time, resin wasted and dry spot content. Seyednourani et al.[99] designed a two-stage 

optimization methodology for optimizing the gate-vent locations using GA. They used the 

concept of distribution media (DM) layout and incorporated the race-tracking effect to develop 

a robust LCM process. However, the work was more focused on implementing a DM layout 

with a pre-fixed number of gates and vents to optimize their locations. 

The injection strategy containing the least numbers and appropriate positions of mould 

gates-vents is vital for attaining the optimized mould fill phase. From the literature review, it 

was found that the optimization of mould gate and vent locations was independently addressed 

using different heuristic and deterministic optimization techniques. Also, it was found only one 

research article that implemented the effect of race-tracking along with the multi-objective 

optimization algorithms [99]. According to the knowledge of the investigator, there were no 

straight reports found in the literature that directly deal with simultaneous optimization of the 

numbers and positions of mould gates-vents together. Also, there were no straight reports found 

on the development of robust optimization techniques for multiple-complex industrial 

composite structures with varied resin-fibre properties.  
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In the realm of optimization algorithms, researchers have handled the optimizations of 

the mould fill phase using variants of GA. However, from the comparative studies, the 

differential evolution (DE) algorithm performed significantly better than GA for multi-

objective optimization problems [50]. This finding underscores the potential of exploring 

alternative optimization techniques to elevate the efficiency and effectiveness of the 

optimization process. Digging deeper, the non-dominated sorting differential evolution 

(NSDE) algorithm stands out as a promising avenue for further research. By combining 

differential evolution with non-dominated sorting principles, this algorithm has the potential to 

simultaneously minimize mould fill time and dry spot content offering a novel approach to 

addressing multiple optimization objectives.  

Furthermore, no reports were found regarding the development of a multi-objective 

stochastic optimization (MOSO) algorithm that predicts both the optimal gate-vent numbers 

and positions while simultaneously minimizing dry spot content, mould filling time and the 

total number of ports. This multifaceted approach holds the promise of providing a 

comprehensive optimization solution that effectively addresses the intricate challenges posed 

by the mould-fill phase. In a domain-specific context, the application of robust MOO 

techniques integrated with multi-physics process simulation for manufacturing aircraft wing 

flaps and automotive bonnet composite parts using the RTM process remains largely 

unexplored. This gap represents a unique research opportunity where integrating developed 

optimization methodologies with the COMSOL multi-physics simulator for these composite 

components could lead to transformative advancements in the manufacturing landscape.  

This chapter examines a comprehensive comparative analysis between trial and error 

process simulations and developed multi-objective optimization algorithms to refine the RTM 

mould-filling process. The focus of this study centres on two specific composite components: 

vinyl ester-glass fibre-reinforced automotive bonnet and RTM6-carbon fibre-reinforced 

aircraft wing flap. Initially, the mould-filling simulation trials were performed by changing the 

number and position of gates and vents for both the selected composite parts. Then mould-

filling phase optimization was performed using the in-house coded evolutionary optimization 

algorithms. A novel in-house coded non-dominated sorting differential evaluation (NSDE) and 

multi-objective stochastic optimization (MOSO) algorithms were developed. The NSDE 

algorithm was developed for the simultaneous minimization of dry spot content and mould-fill 

time by changing the locations of mould gates and vents with a constraint of pre-fixed port 

numbers. The MOSO algorithm was developed for the simultaneous minimization of dry spot 

content, mould-fill time and total number of ports by changing both the numbers and locations 
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of gates and vents. Finally, comparisons were made between the optimized mould fill phase 

results obtained from the trial and error process and the developed optimization algorithms for 

the studied composite structures.  

4.2 Process Models 

The process models that simulate multi-phase fluid flow in porous media and resin cure 

kinetics of the RTM process using Darcy’s law, the level set model and the thermo-chemical 

model were implemented as given below.   

4.2.1 Multi-Phase Fluid Flow in Porous Media 

The fluid flow through the porous media is modelled using Darcy’s law as given in 

Equation (4.1) and the associated flow mass balance is modelled using the continuity equation 

as given in Equation (4.2). The level set model as given in Equation (4.3) is used to track the 

flow front progression through the fibre preform. 

 𝑢⃗ = −
𝑲

𝜇
𝛻𝑃          (4.1) 

𝜕(∅𝜌𝑟)

𝜕𝑡
+ 𝛻. (𝜌𝑟𝑢⃗ ) = 0         (4.2) 

𝑑𝜃

𝑑𝑡
+ 𝑢⃗ . 𝛻𝜃 = 𝛾𝛻. (𝜀𝛻𝜃 − 𝜃

𝛻𝜃

|𝛻𝜃|
)      (4.3) 

where 𝑢⃗  is the velocity vector, ∅ is the porosity of the fibre mat, 𝜌𝑟 is the density of resin, 𝑲 

is the fibre mat permeability tensor, 𝛻𝑃 is the pressure gradient and 𝜇 is the viscosity of the 

resin. Also 𝜃, 𝜀, and 𝛾 represent the fluid volume function, the thickness of the interface and 

the initialization factor, respectively from the interface tracking level set model. 

Where 𝜃 is defined as,   𝜃 =  {
0             resin unfilled domain
(0,1)     resin flow front          

         1             resin − saturated domain
 

The boundary conditions associated with Equations (4.1-4.3) are given as, 

         Mould-gate:   P = P0 

     Air-vent and resin flow interface: P = 1 atmosphere 

 Mould boundary:  −𝑛. 𝜌𝑟𝑢⃗ = 0 ;  𝑛. (𝜀𝛻𝜃 − 𝜃
𝛻𝜃

|𝛻𝜃|
) = 0 

where P0 is the injection pressure of resin at the gate.  

4.2.2 Thermo-Chemical Process Model 

 In industrial practices, both the resin injection and mould are kept at elevated 

temperatures to enhance the porous media fluid flow and to reduce mould filling time. The 
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transient energy balance for the cure analysis during mould filling that includes conduction, 

convection and resin cure is given in Equation (4.4), 

(∅𝜌𝑟𝐶𝑃𝑟 + (1 − ∅)𝜌𝑓𝐶𝑃𝑓)
𝜕𝑇

𝜕𝑡
+ 𝜌𝑟𝐶𝑃𝑟(𝑢⃗ . 𝛻𝑇) + 𝛻. (−𝑘𝑐𝛻𝑇) = −𝜌𝑟∅∆𝐻

𝜕𝛼

𝜕𝑡
        (4.4) 

The thermal conductivity of the composite part is computed using the rule of mixture as 

given in Equation (4.5), 

𝑘𝑐 = 
𝑘𝑟𝑘𝑓

𝑘𝑟∅+𝑘𝑓(1−∅)
        (4.5) 

where ∆𝐻 denotes the reaction heat and subscript ‘r’ and ‘f’ denotes the resin and fibre 

physical properties, respectively.  

The resin cure kinetic model is demonstrated as follows,  

𝑑𝛼

𝑑𝑡
= 𝐴𝑒

−𝐸

𝑅𝑇𝛼𝑚(1 − 𝛼)𝑛     (4.6) 

The boundary conditions allied to address the Equations (4.4 - 4.6) are given as, 

Initial time t = 0: T = T0 ; α = 0 and 
𝑑𝛼

𝑑𝑡
= 0 

mould boundary:     T = Tmould; 

T0 denotes the initial temperature and Tmould denotes the mould temperature. 

E denotes activation energy, A denotes frequency factor, T denotes temperature, R denotes 

an ideal gas constant, and m and n denote the order of the reaction.  

4.3 Raw Materials and Methodology 

4.3.1 Raw Materials 

A vinyl ester Derakane 8084 and Mono-component RTM6 epoxy resins supplied by 

Ashland and Hexcel, respectively were used as the resin matrices in this study. A twill-weave 

carbon fibre mat having 400 g/m2 areal density and 46% porosity and a twill-weave glass fibre 

mat having 610 g/m2 areal density and 51% porosity were used as the reinforcement mats for 

this study. The reinforcement mats used in this study were supplied by Sree Industrial 

Composite Products, Hyderabad, India. 

4.3.2 Raw Material Parameters 

The cure kinetics parameters for vinyl ester and RTM6 resins were sourced from 

Chapter 2, while the permeability values obtained for the glass and carbon fibre mats were 

extracted from Chapter 3. From the thermal conductivity experiments, an average thermal 

conductivity of 0.164 W/m-K at 50 0C was obtained for the neat vinyl ester resin. The physical 
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properties of vinyl ester and RTM6 resins were supplied from their respective technical data 

sheet. The physical properties of glass and carbon fibre mats were collected from the literature. 

The respective material properties were tabulated in Table 4.1.  

  Table 4. 1 Resin and Fibre Properties 

Parameters Values Parameters Values 

RTM6 resin properties [91], [95], [165] 

Density of resin 

𝜌𝑟 

1117 kg m-3 Thermal 

conductivity of 

the resin 𝑘𝑟 

1+0.35 𝛼

−33.6+0.05𝑇
 W m-1K-1 

∆𝐻 5.04×108 J/m-3   

Viscosity of resin 

𝜇𝑟 

0.06 Pa.s at 120 ⁰C Specific heat 

of the resin 𝐶𝑝𝑟 

1208.15 

+15.1969 𝑇 −
0.0499𝑇2 Jkg-1K-1 

Vinyl ester resin properties [166] 

Density of resin 

𝜌𝑟 

1040 kg m-3 Thermal 

conductivity of 

the resin 𝑘𝑟 

0.16 W m-1K-1 

∆𝐻 1.54×108 J/m-3   

Viscosity of resin 

𝜇𝑟 

0.36 Pa.s at 25 ⁰C Specific heat 

of the resin 𝐶𝑝𝑟 

1208.15 Jkg-1K-1 

Carbon fibre properties  [165] 

Thermal conductivity 

of fibre (𝑘𝑓) 

2.7 W m-1K-1 Specific heat 

of fibre 𝐶𝑝𝑓 

577.4 +
 6.85165𝑇 −

0.01807𝑇2 Jkg-1K-1 

Density of fibre 

𝜌𝑓 

1770 kg m-3 Porosity 0.46 

Glass fibre properties [55] 

Thermal conductivity 

of fibre (𝑘𝑓) 

0.0335 W m-1K-1 Specific heat 

of fibre 𝐶𝑝𝑓 

670 Jkg-1K-1 

Density of fibre 

𝜌𝑓 

2540 kg m-3 Porosity 0.51 

4.3.3 RTM Process Composite Parts 

The RTM process was developed for the vinyl ester-glass fibre-reinforced automotive 

bonnet and the RTM6-carbon fibre-reinforced aircraft wing flap composite parts. Figures 4.2 

and 4.3 show the dimensions of the automotive bonnet and aircraft wing flap structures, 

respectively. The composite parts of the automotive bonnet and aircraft wing flap were used 

with thicknesses of 12 mm and 5 mm, respectively. 

A grid independence test was conducted on the automotive bonnet, wherein the number of 

domain elements varied from 16155 to 176685, as depicted in Figure 4.4. It was observed that 

a coarser mesh with 16155 domain elements led to a slower progression of the resin flow front, 
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resulting in an extended mould filling time. Conversely, there was no significant change in 

mould-filling time for domain elements ranging from 26000 to 180000. For the bonnet 

structure, process simulations were conducted using a tetrahedron mesh with a maximum 

element size of 50 mm and 45178 domain elements. 

Similarly, a grid independence test was performed on the aircraft wing flap by altering 

the domain elements from 1800 to 33000. The outcomes indicated no noticeable alterations in 

mould-filling time within the examined range. For the wing flap structure, process simulations 

utilized a tetrahedron mesh with a maximum element size of 50 mm and 8854 domain elements. 

However, there were minor variations in the total number of domain elements due to changes 

in the count of injection ports and vents for both composite parts. 

Resin injection temperatures of 120°C and 25°C were used during the mould-fill phase 

simulations for the wing flap and bonnet composite parts, respectively. A 10 mm diameter 

mould gates and vents and the resin injection pressure of 4 × 105 Pa was used during the 

mould-filling simulations. The process models and respective initial and boundary conditions 

given in Equations (4.1 - 4.6) were addressed during the mould-filling simulations. The re-

initialization parameter 𝛾 and interface thickness 𝜀 from the level set module were tuned to 

obtain the numerical stability in the simulation results. From the literature[90], [167] the 

interface thickness 𝜀 value was suggested as half of the maximum element mesh size.  The 

sensitivity of 𝛾 on the numerical stability of mould filling simulations was analyzed and a value 

of 0.001 m/s was observed as the tuned value. 

The concept of race-tracking was applied to the boundary edges of the composite parts, 

as there is less observed flow resistance across the cut edges compared to the fibre preform. 

Hence, by considering race-tracking channels a highly permeable media, the race-tracking 

permeability was used 100 times higher than the fibre mat permeability. 
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 Figure 4. 2 Automotive Bonnet Structure Figure 4. 3 Aircraft Wing Flap Structure 

 

Figure 4. 4 A Grid Independence Study for Automotive Bonnet Composite Part 

4.3.4 Trial and Error Process Simulation 

The non-isothermal mould filling simulations were performed to obtain the effective 

injection strategy based on a trial and error process for the selected composite structures. 

Several simulation trials were performed by changing the number and position of injection 

ports and air vents. Salient simulation trials are tabulated in Tables 4.2 and 4.3 for the 

automotive bonnet and aircraft wing flap structures, respectively.  
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Table 4. 2 Trial Injection Strategies for Automotive Bonnet Structure 
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Table 4. 3 Trial Injection Strategies for Aircraft Wing Flap Structure 

Gate position                          Vent position 

   

   

Trial 1. One gate and one vent Trial 2. Two gates and one vent Trial 3. One gate and two vents 

Trial 5. One gate and four vents Trial 6. Four gates and one vent 

Trial 8. Four gates and two vents 

Trial 1: One gate and one vent Trial 2: One gate and two vents Trial 3: Two gates and one vent 

Trial 4: Two gates and two 

vents 

Trial 5: Four gates and one 

vent 
Trial 6: One gate and four 

vents 

Trial 5. Two Gates and Two 

Vents 

Trial 8. Two gates and four vents 
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4.3.5 Non-Dominated Sorting Differential Evolution (NSDE) Algorithm 

The non-dominated sorting differential evolution (NSDE) algorithm was developed to 

optimize the positions of gates and air vents for a fixed number of ports (gates + vents). The 

NSDE algorithm is a class of multi-objective optimization (MOO) techniques which is simply 

an extension of the differential evolution (DE) algorithm to address the MOO problems. Many 

researchers used GA for optimizing the mould fill phase [99], [162]–[164], however from the 

comparative studies, the DE algorithm has performed significantly better than GA for MOO 

problems [50]. In this work, the DE algorithm was developed for the multi-objective 

optimization of the RTM-mould fill phase. The optimization objectives considered were the 

minimization of dry spot content and mould-filling time. Dry spot content is the unsaturated 

area of resin in the composite part when the resin reaches the vents and it is calculated based 

on the total number of unfilled nodes using Equation (4.7). Filling time is calculated as the 

amount of time required for the resin to reach the vents. These two objectives were 

simultaneously optimized by finding the optimum locations of gates and vents within the 

geometry search space RD. In addition, the minimum distance between any two ports was 

constrained to be 200 mm for the bonnet and 100 mm for the wing flap parts in consideration 

of their dimensions.  The mathematical formulation of the optimization problem described 

above is given in Equation (4.8). 

% dry spot content = ∑ ( 
1−𝑟𝑒𝑠𝑖𝑛 𝑓𝑖𝑙𝑙 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑖

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠
)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 
𝑖=1 × 100  (4.7) 

Minimization      𝑑𝑟𝑦 𝑠𝑝𝑜𝑡 𝑐𝑜𝑛𝑡𝑒𝑛𝑡, 𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒       (4.8) 

                                  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

Location of gates and vents ∈ RD 

The NSDE algorithm was coupled with finite element simulation to find the optimal 

positions of gates and vents for a fixed number of ports. The number of ports was pre-defined 

as two gates and four vents for the bonnet part and one gate and four vents for the wing flap 

part in consideration of their dimensions and geometric complexity. The generation of input 

parameters (positions of gates and vents) and elitism of dominated solutions based on the 

NSDE optimization algorithm was programmed in MATLAB. These generated input 

parameters were utilized to perform the mould-filling process model simulations in COMSOL 

software. The integration of the optimization algorithm and mould-filling simulation was 

programmed in MATLAB using COMSOL Live-Link for MATLAB. This Live-Link interface 

enables the COMSOL simulation to be loaded into the MATLAB directory using the 'mphload' 

command. The implementation guidelines for the Live-Link interface were referenced from 
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the user guidelines for Live-Link for MATLAB[168].  The following steps were incorporated 

for the implementation of the NSDE algorithm for simultaneous minimization of dry spot 

content and mould-filling time. 

Step 1: In this step, the process was initiated by defining parameters namely crossover 

probability (Cp), mutation factor (F), population size (Np), and the maximum number of 

generations (max_gen).  

Initially, six and five different mesh node elements were randomly predicted in the plain 

geometry (without adding inlet-outlet ports) for the bonnet and wing flap, respectively. These 

randomly generated nodal elements were imported to COMSOL using the ‘model.param.set’ 

command. The inlet (gate) and outlet (vent) cylinders were constructed based on the predicted 

nodal elements from the composite part. The dimensions of the gate and vents were pre-defined 

as 5 mm in radius and 10 mm in height. After building the geometry with new positions of gate 

and vent, the generation of meshing is programmed with a tetrahedron type of mesh. Then, the 

mould-filling simulation was programmed using the ‘model.sol('sol1').runAll’ command 

function. The mould-filling process model simulations were performed using the new positions 

of the gate and vent. Upon completion of the mould-filling simulation, the results of the resin 

filling fraction reached to the nodal elements of the geometry at filling time ‘t’ were extracted 

programmatically in MATLAB using the ‘model. result’ command function. The resin filling 

fraction at each vent node is computed at filling time ‘t’ and then, the objective functions were 

computed for the obtained resin content value of 0.9 and above at each vent node. For resin 

filling fraction lesser than 0.9 at the vent node, the mould-filling simulations were performed 

for the extended time loops until a value of 0.9 and above. From the composite part dimension 

and viscosity of the resin, the initial mould-filling time was defined as 10 minutes for the bonnet 

and 80 seconds for the wing flap. A time step of 5 minutes and 5 seconds was used for each 

subsequent time loop for the bonnet and wing flap parts, respectively. The generation of input 

parameters and subsequent computation of % dry spot content and filling time from the mould-

filling process simulation was performed for a population size of Np. The complete dataset 

generated for a population size of Np was designated as the parent population (Pg). 

Step 2: This step involved mutation and crossover processes.  

Three random vectors were selected from the parent population (Pg) to generate a 

mutated population (Mg). The mutated vectors were obtained by applying mutation to the 

locations of the gate and vent as given in Equation (4.9). Similar to Step 1, % dry spot content 

and fill time values were computed for the mutated population.  
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𝑀𝑔,𝑖 = 𝑃𝑔,𝑟1 + 𝐹(𝑃𝑔,𝑟2 − 𝑃𝑔,𝑟3)     (4.9) 

Here 𝑟1, 𝑟2, and 𝑟3 indicate three distinct random numbers. Subsequently, the binomial 

crossover was performed utilizing the mutated and parent populations to create a child 

population (Qg) as given in Equation (4.10). The mutation factor (F) and crossover probability 

(Cp) were set to 0.8 and 0.25, respectively. The mathematical implementation of the 

Differential Evolution (DE) algorithm was referenced from the research work published by 

Karaboga and Okdem[169]. 

 𝑄𝑔 = {
𝑃𝑔,      𝑖𝑓 𝑟𝑎𝑛𝑑 > Cp

𝑀𝑔,    𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 𝐶𝑝
     (4.10) 

Step 3: In this step, a selection process takes place to determine the best solutions from the 

current generation to undergo further next-generation evolutionary steps.  

A dominance check was conducted between the parent population (Pg) and the child 

population (Qg). If a vector in the child population dominates a vector in the parent population, 

the child vector is included in the new population (Pg+1) for the next generation. Conversely, if 

a parent vector dominates a child vector, the parent vector is retained in the new population 

(Pg+1). After calculating the dominance of each solution in the population, the rankings are 

assigned to the new population (Pg+1) based on the dominance check. Typically, solutions that 

are not dominated by any other solution (Pareto front solutions) are given the highest rank (rank 

1). Solutions that are dominated by rank 1 solutions but dominate other solutions are assigned 

the next rank (rank 2), and so forth. Additionally, the crowding distance measure is also 

computed to differentiate between solutions with the same rank. The crowding distance 

measures how close a solution is to its neighbours in the objective space. Solutions with higher 

crowding distances are preferred because they provide better coverage of the Pareto front. The 

dominance check of the NSDE algorithm was performed using the non-dominated sorting 

approach based on the NSGA-II algorithm[170]. 

Steps 2 and 3 were repeated for the defined maximum number of generations to 

iteratively improve the solution. The outcome was a Pareto front depicting the trade-offs 

between % dry spot content and filling time. The vector in rank 1 represents the Pareto optimal 

solution. Figure 4.5 illustrates the flow diagram for the implementation of an in-house coded 

NSDE algorithm to find the optimal positions of a gate and vent for the pre-defined port 

numbers. The population size was set at 10 and the maximum number of generations was set 

to 30. 
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Figure 4. 5 Flow Diagram for In-House Coded NSDE Algorithm for Location 

Optimization of the Pre-fixed Numbers of Gates and Vents  

4.3.6 Multi-Objective Stochastic Optimization (MOSO) Algorithm 

The meta-heuristics optimization algorithms such as the cuckoo search algorithm, 

particle swarm optimization, GA and DE compute the new generation population with an 

improved search direction using a step size. These algorithms efficiently deliver global or 

nearer-to-global optimal solutions. However, these algorithms require significant 

computational time based on the complexity of the problem. In the context of the RTM mould-

filling process, utilizing a lesser number of ports would lead to extended computational time in 

order to saturate the entire mould with resin. Conversely, utilizing a larger number of ports 

might result in reduced mould-filling time but it would elevate the intricacy of the actual mould 

design. Therefore, there is a necessity to develop an algorithm that can effectively explore the 

entire search space of composite panels to define gate-vent numbers and positions within a 

shorter computational time. 

Therefore, the multi-objective stochastic optimization (MOSO) algorithm was 

developed for the simultaneous optimization of numbers and locations of gates and vents. The 

optimization objectives considered under this algorithm were the minimization of dry spot 

content, the total number of ports, and the mould-filling time. The total number of ports was 

calculated using the total number of gates and the total number of vents used for each 

simulation. The in-house coded MOSO algorithm adapts the random exploration of geometry 

search space using uniform distribution probability and then, it adapts an elitism selection using 
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NSGA-II. In this work, the number of gates and vents was limited to four to avoid the 

complexity of the actual mould design. In addition, the minimum distance between any two 

ports was constrained to be 200 mm for the automotive bonnet and 100 mm for the aircraft 

wing flap parts in consideration of their dimensions. The mathematical formulation of the 

optimization problem described above is given in Equation (4.11). 

Minimization      𝑑𝑟𝑦 𝑠𝑝𝑜𝑡 𝑐𝑜𝑛𝑡𝑒𝑛𝑡, 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑟𝑡𝑠, 𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 (4.11) 

                                  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

1 ≤ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑎𝑡𝑒𝑠 ≤ 4 

1 ≤ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑛𝑡𝑠 ≤ 4 

Location of gates and vents ∈ RD 

This optimization problem was implemented in MATLAB by combining the finite 

element (FE) simulation package using the COMSOL live link for MATLAB. The total 

configurations were computed based on the number of combinations of gates and vents. A total 

number of 4 gates and 4 vents were used. Therefore, a total of 16 combinations were obtained 

for gates and vents as shown in Figure 4.6. Also, the total number of ports was obtained from 

the summation of the number of gates and number of vents used for each configuration. 

 

Figure 4. 6 Number of Gates and Vents Pattern for a Defined Configuration 

The following steps were incorporated for the implementation of the MOSO algorithm 

to identify the optimum number and positions of gates and vents 

Step 1 Population Generation: In this step, the process was initiated by defining parameters 

such as geometry search space RD, bounds on the number of gates and vents, total number of 

configurations and maximum number of generations (max_gen).  

Initially, the locations of gates and vents were randomly predicted for each 

configuration of the ports (gates + vents). The prediction and generation of gate and vent 

locations followed a similar procedure described in the NSDE algorithm in Section 3.4.1. The 

mould-filling simulations were performed for each configuration of the gate and vent. Upon 
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completion of the mould-filling simulation, the results of the resin-filling fraction at each vent 

node were extracted programmatically in MATLAB using the ‘model. result’ command 

function. The filling time, the total number of ports, and the percentage of dry spot content 

were computed for each configuration.  

Step 2 Selection: During elitism, the solutions obtained from the previous generation were 

compared with the current generation for a similar number of ports. For example, the solutions 

obtained from 1st configuration of the previous generation were compared with the 1st 

configuration of the current generation. However, the ranking and non-dominated sorting were 

implemented based on NSGA-II on all the configurations. Then, the fronts of different ranks 

were obtained between dry spot content, the total number of ports and the mould-filling time. 

Figure 4.7 shows the flow diagram for the implementation of an in-house coded MOSO 

algorithm for the simultaneous optimization of numbers and positions of gates and vents.  

 

 

Figure 4. 7 Flow Diagram for In-House Coded MOSO Algorithm for the Simultaneous 

Optimization of Numbers and Positions of Gates and Vents  

4.4 Results and Discussion 

The main objective of mould fill phase optimization is to search for an optimized 

injection strategy that contains the least number of gates and vents which are placed at optimal 

positions. Importantly, the optimized injection strategy should deliver uniform mould filling 

and minimum filling time without the formation of dry spots. A non-uniform mould filling 



99 

 

occurs when the flow fronts rising from the two different mould gates collide with each other. 

Dry spots are formed once the resin flow front reaches mould vents before saturating the entire 

mould. The mould fill phase optimization was performed for the automotive bonnet and aircraft 

wing flap composite parts using the trial and error process model simulation, non-dominated 

sorting differential evolution (NSDE) algorithm and multi-objective stochastic optimization 

(MOSO) algorithm. The effect of race-tracking was implemented in the NSDE and MOSO 

algorithms by incorporating race-tracking permeability at the boundary cut edges. A value of 

2.0×10-7 m2 and 1.0×10-7 m2 were used as the race-tracking permeabilities for the automotive 

bonnet and aircraft wing flap composite parts, respectively. The comparisons of mould-filling 

results obtained for both geometries through trial and error process simulations, NSDE and 

MOSO algorithms are discussed in the following sections.   

4.4.1 Trial and Error Mould Filling Simulation Results  

The trial and error mould-filling simulations were performed by manually changing the 

numbers and positions of gates and vents. The simulated results of resin-filled surface plots, 

resin fraction at the vent and resin volumetric filling ratio at the composite part for the studied 

trials are demonstrated in Tables 4.4 and 4.5 for the automotive bonnet and aircraft wing flap 

composite parts, respectively. The resin volumetric filling ratio (𝜔𝑟) is measured as the ratio 

of resin volume filled in the composite panel at any time ‘t’ to the total resin volume at the 

complete mould fill. The resin fraction at vent (vr) is measured as the ratio of resin volume 

reached to the vent at any time ‘t’ to the total volume of resin and air at the vent. At the surface 

plots, the resin-filled area is demonstrated in the dark red colour and the unfilled area is 

demonstrated in the blue colour. The formation of dry spots with a change in the numbers and 

locations of gates and vents is also exhibited in Tables 4.4 and 4.5.  

From Table 4.4, the dry spot contents and non-uniform resin filling pattern were 

observed for trial cases 1-3. This may be attributed to the insufficient number of gates and 

vents. Irrespective of no dry spot content, a non-uniform resin fill pattern at the vents was 

observed for trials 4 and 5. This may be due to the improper positioning of gates and vents. 

With all trial cases compared, injection strategies adopted in trials 7 and 8 produced lesser 

filling time and uniform resin fill pattern without dry spots content. However, in trial 8, it was 

observed that the resin flow fronts rising from four different gates moved at different speeds 

towards the vents and thus, large differential filling times were observed between the two vents. 

Simulation trial 7 having the injection strategy of two gates positioned at the centre and front 

middle edge and four vents positioned at the four corners of the composite part was obtained 
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as an optimum injection strategy for the automotive bonnet composite part. This optimum 

injection strategy requires a minimum filling time of 15 minutes with a smooth resin filling and 

with no dry spot formation. 

From Table 4.5, the dry spot contents were observed for the injection strategies adopted 

in trials 1-5. Also, an incomplete resin volumetric filling ratio and resin filling fraction at the 

vents for trials 1-3 were observed due to the insufficient number of gates and vents. 

Additionally, a non-uniform resin filling pattern was observed in injection strategies given in 

trials 4 and 5 due to the improper positioning of gates and vents. The injection strategy as 

shown in trial 6 requires a minimum fill time of 120 seconds with no dry spot contents formed. 

Thus, the injection strategy of one gate at the centre and four vents at the corners as adopted in 

simulation trial 6 was obtained as an optimum injection strategy for the aircraft wing flap 

composite part. 

Table 4. 4 Mould Filling Simulation Trials for Automotive Bonnet Composite Part 

Injection Strategy Resin Flow Front 

Gate Position 

Vent Position 

Resin Filling Fraction 

   

Trial 1 

One gate and one vent 

Gate position: Rear 

middle edge 

Vent position: Front 

middle edge 

 Filling time 40 

minutes 

 Dry spots formation   
Trial 2  

One gate and four 

vents 

Gate position: Rear 

middle edge 

Vent position: Four 

corners 

 Filling time 25 

minutes 

 Dry spots formation 
  

Trial 3 

Two gates and two 

vents 

Gate position: Two 

corners at the rear 

Vent position: Two 

corners in front 

 Filling time 40 

minutes 

 Dry spots formation 

 
 

Dry spots formation 

Dry spots formation 

Dry spots formation 

Incomplete vr  

Non-uniform vr  

Incomplete vr  
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Trial 4  

Two gates and one 

vent 

Gate position: Two 

corners at the rear 

Vent position: Front 

middle edge 

 Filling time 40 minutes 

 No dry spot formation 

 

 

 

 
Trial 5 

One gate  and two air 

vents 

Gate position: Rear 

middle edge 

Vent position: Two 

corners at the front 

 Filling time 40 minutes 

 No dry spot formation   
Trial 6 

Four gates and one 

vent 

Gate position: Four 

corners 

Vent position: Centre 

of middle edge 

 Filling time 30 minutes 

 No dry spot formation   
Trial 7  

Two gates and four 

vents 

Gate position: Centre 

and front of the middle 

edge 

Vent position: Four 

corners 

 Filling time 15 minutes 

 No dry spot formation 
  

Trial 8 

 Four gates and two 

vents 

Gate position: Four 

corners 

Vent position: Centre 

and front of the middle 

edge 

 Filling time 15 minutes 

 No dry spot formation 
  

 

 

 

 

Non-uniform vr  

Non-uniform vr  

Non-uniform vr  
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Table 4. 5 Mould Filling Simulation Trials for Aircraft Wing Flap Composite Part 

Injection Strategy Resin Flow Front 

Gate Position 

Vent Position 

Resin Filling Fraction 

Trial 1 

One gate and one 

vent 

Gate position: Rear 

middle edge 

Vent position: Front 

middle edge 

 Filling time 200 s 

 Dry spots formation 

 

 

 

 
Trial 2  

One gate and two 

vents 

Gate position: Rear 

middle edge 

Vent position: Four 

corners 

 Filling time 180 s 

 Dry spots formation   
Trial 3 

Two gates and one 

vent 

Gate position: Two 

corners at the rear 

Vent position: Front 

middle edge 

 Filling time 150 s 

 Dry spots formation   
Trial 4 

Two gates and two 

vents 

Gate position: Two 

corners at the rear 

Vent position: Two 

corners in front 

 Filling time 135 s 

 Dry spots formation   
Trial 5 

Four gates and one 

vent 

Gate position: Four 

corners 

Vent position: Centre 

of middle edge 

 Filling time 100 s 

 Dry spots formation   
 

 

 

 

 

 

 

 

 

Dry spots formation 

Dry spots formation 

Dry spots formation 

formation 

Dry spots formation 

Dry spots formation 

Non-uniform vr  

Non-uniform vr  

Incomplete vr 

at vent 1 
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Trial 6 

Two gates and four 

vents 

Gate position: Centre 

and front of the middle 

edge 

Vent position: Four 

corners 

 Filling time 120 s 

 No dry spot formation 

 

 

 

 

4.4.2 Gate and Vent Location Optimization using NSDE Algorithm 

At first, the positions of gates and vents were optimized using the NSDE algorithm for 

a pre-fixed number of gates and vents. The two gates and four vents for the automotive bonnet 

and one gate and four vents for the aircraft wing flap were used as the prefixed numbers of 

gates and vents and their locations were optimized using the NSDE algorithm. A population 

size of 10 and 30 generations was used to perform the iterative simulation runs. The non-

dominated solutions of rank 1 were extracted for different generations and the effect of 

generations on the Pareto front solutions was also studied.  

Figure 4.8 shows the Pareto optimal solutions obtained between the dry spot content 

and the mould fill time for the automotive part. Figure 4.8a shows the rank 1 fronts for 

generations 1 to 30 with a difference of 5 generations. From Figure 4.8a, it was observed an 

improvement in the Pareto optimal solutions with the increase in generation number. Thus, it 

may be mentioned that the adopted NSDE algorithm effectively explores the search space for 

obtaining the optimal positions of gates and vents with the increase in generation number. It 

was also found that there are no significant differences in the Pareto optimal solutions obtained 

after the 30th generation. This signifies the efficacy of the NSDE algorithm for obtaining the 

converged optimal solutions for the framed objectives. Figure 4.8b shows the rank 1 and 2 

fronts obtained at the 30th generation. The solutions in rank 1 were considered as Pareto optimal 

solutions. From Figure 4.8b, the obtained Pareto optimal solutions are in conflict in nature 

with the corresponding objective function. For a minimum mould filling time, dry spot content 

is more and vice versa. The Pareto optimal point corresponding to a minimum dry spot content 

of 0.93 % and a corresponding filling time of 35 minutes was used for the comparative 

assessment. 

Figure 4.9 shows the Pareto optimal solutions obtained between the dry spot content 

and mould fill time for the aircraft part. There was an improvement in Pareto optimal solutions 

with the increase in generation number as shown in Figure 4.9a. It was also observed that there 
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are no significant differences in the Pareto optimal solutions after the 20th generation. Figure 

4.9b shows the rank 1-5 fronts obtained at the 20th generation. The Pareto optimal point 

corresponding to dry spot content of 0.617 % and a corresponding filling time of 100 s was 

used for the comparative assessment.   

 

(a)  (b)  

Figure 4. 8 Results of Bonnet Part for Two Gates and Four Vents Injection Strategy: (a) 

Pareto Fronts of Dry Spot Content vs. Fill Time for Different Generations, (b) Dry Spot 

Content vs. Fill Time Fronts at Maximum Generation 30. 

 

(a)  (b)  

Figure 4. 9 Results of Wing Flap Part for One Gate and Four Vents Injection Strategy: 

(a) Pareto Fronts of Dry Spot Content vs. Fill Time for Different Generations, (b) Dry 

Spot Content vs. Fill Time Fronts at Maximum Generation 20. 

4.4.3 Simultaneous Number and Position Optimization for Gates and Vents 

using MOSO Algorithm 

The numbers and locations of gates and vents were simultaneously optimized using the 

MOSO algorithm. A population size of 16 and 5 generations was used to perform the iterative 

simulation runs. The Pareto fronts were obtained between the dry spot content, mould-filling 
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time and the total number of ports (gates + vents) for the automotive bonnet and aircraft wing 

flap composite parts. 

Figure 4.10 shows the Pareto fronts obtained between % dry spot content, mould-filling 

time and total number of ports for the bonnet part. From Figure 4.10, the obtained Pareto 

optimal solutions are conflicting in nature with the corresponding objective functions as 

expected. Figure 4.10 shows that more dry spot content was observed for fewer ports and 

shorter filling times, and vice versa. Figure 4.10a shows the rank 1 fronts for generations 1 to 

5. In Figure 4.10a, an improvement in the Pareto optimal solutions was observed with the 

increase in generation number. From the results, it was also observed that there were no 

significant differences in the Pareto optimal solutions after the 5th generation. This shows the 

fast exploration and efficient convergence of the MOSO algorithm for obtaining the optimal 

solutions within the five generations. Figure 4.10b depicts the rank 1 and rank 2 fronts between 

the dry spot content, filling time and the total number of ports at the 5th generation. From the 

results in Figure 4.10b, a distinction in solutions was observed between each rank and 

neighbourhood solution. This shows the efficacy of elitism selection using non-dominated 

sorting and crowding distance.  

Table 4.6 shows the number and positions of gates and vents for substantial Pareto 

optimal points obtained at the 5th generation. From Table 4.6, it can be seen that the positions 

of gates and vents are quite apart from each other for all the Pareto points. This signifies the 

efficacy of the MOSO algorithm to search for an optimal number and position of gates and 

vents. From Table 4.6, it was also observed that the dry spot content was not observed at the 

edges due to the addition of a race-tracking effect at the boundary edges. The dry spot content 

obtained using the MOSO algorithm was within the acceptable range of 1%. Also, the dry spot 

content observed near the vent port is due to the immediate termination of the simulation when 

reaches the vent port. Furthermore, the dry spot content and filling time were computed when 

the resin reached the vents. It may be mentioned the final dry spot content obtained around the 

vents may become insignificant when the simulation time elapses. The Pareto optimal point 

corresponding to the total number of ports 5, filling time of 25 minutes and the corresponding 

% dry spot content of 0.259 % was used for the comparative assessment.   
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(a) (b) 

Figure 4. 10 Results of Automotive Bonnet Composite Part using MOSO Algorithm (a) 

Pareto Front of Dry Spot Content vs. Total Number of Ports vs. Mould-Filling Time for 

Different Generations, (b) Different Rank Fronts for Dry Spot Content vs. Total 

Number of Ports vs. Mould-Filling Time at Generation 5 

Table 4. 6 Pareto Optimal Numbers and Positions of Gates and Vents at the Automotive 

Bonnet Composite Part (max_gen = 5) 

One Gate – One Vent 

 

% Dry Spot Content = 0.526;  

Fill Time = 37 Minutes 

One Gate – Two Vents 

 

% Dry Spot Content = 1.0015; 

Fill Time = 31 Minutes 

One Gate – Three Vents 

 

% Dry Spot Content = 0.367; 

Fill Time = 28 Minutes 

Two Gates – Two Vents 

 

% Dry Spot Content = 0.421; 

Fill Time = 30 Minutes 

Two Gates – Three Vents 

 

% Dry Spot Content = 0.295; 

Fill Time = 25 Minutes 

      

 Vent Position 

 

 

 Gate Position 

 

 

 

Figure 4.11 shows the Pareto fronts obtained between % dry spot content, filling time 

and the total number of ports for the aircraft wing flap composite part. Figure 4.11a shows the 

rank 1 fronts for generations 1 - 5 and Figure 4.11b shows the rank 1, rank 2 and rank 3 fronts 
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at the 5th generation. From the results, it was found that the Pareto optimal front was obtained 

within the 5th generation and with the increase in generations, the rank 1 fronts were converging 

to the optimal set of solutions. Also, after the 5th generation, it was found no significant 

differences in the optimal solutions. This signifies the efficacy of obtaining the converged 

solutions using the MOSO algorithm.  

Table 4.7 shows the numbers and positions of gates and vents for the Pareto front at 

the 5th generation. From Table 4.7, it can be seen that the positions of gates and vents have 

effectively occupied the geometry space using the MOSO algorithm and there is a significant 

distance between gates and vents for each Pareto optimal point. From Table 4.7, it was also 

observed that the dry spot content was not observed at the edges due to the addition of the race-

tracking effect. Similar to the automotive part, a dry spot content was observed around the 

vents due to immediate simulation termination before complete resin venting. It may be 

mentioned the final dry spot content obtained around the vents may become insignificant when 

the simulation time elapses. The Pareto optimal point corresponding to the 2 gates and 2 vents 

injection strategy with 0.45% of dry spot content at 100 s of filling time was used for 

comparative assessment. 

 

(a) (b) 

Figure 4. 11 Results of Aircraft Wing Flap Composite Part using MOSO Algorithm (a) 

Pareto Front of Dry Spot Content vs. Total Number of Ports vs. Mould-Filling Time for 

Different Generations, (b) Different Rank Fronts for Dry Spot Content vs. Total 

Number of Ports vs. Mould-Filling Time at Generation 5. 
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Table 4. 7 Pareto Optimal Numbers and Positions of Gates and Vents at the Aircraft 

Wing Flap Composite Part (max_gen = 5) 

 

 

 

 

 

 

  

      

         Vent Position 

 

      Gate Position 

4.4.4 Comparative Assessment between Trial and Error Process, NSDE and 

MOSO Algorithms for Mould Fill Phase Optimization 

The comparative assessments were done based on the optimal solutions obtained from 

the trial and error process simulation, NSDE and MOSO algorithms. The results were 

compared in terms of dry spot content, the total number of ports, resin fraction at vent (vr), fill 

time, resin volumetric filling ratio (wr), number of function evaluations (NFEs), and the total 

computational time.  

Table 4.8 shows a comparison of the optimal solutions obtained for the automotive 

bonnet composite part. From the results, it was observed that the trial and error process 

predicted a lesser mould fill time of 15 minutes without dry spots when compared with the 

adopted two in-house optimization algorithms. However, the dry spot content obtained using 

the NSDE and MOSO algorithms was within the acceptable range of 1%.  From the wr and vr 

versus time plots, there observed a uniform resin fill pattern for all three techniques. However, 

the resin flow fronts rising from two different gates moved at different speeds towards the vents 

in the case of NSDE and MOSO algorithms. This results in large differential filling times 

between the vents, which was evident from the wr and vr versus time plots. The trial and error 

process performed effectively for automotive bonnet composite parts in terms of dry spot 

content, mould fill time and uniform speed of resin flow front progression towards all vents 

One Gate-One Vent 

% Dry Spot Content = 3.29 

Mould-Filling Time = 185 s 
% Dry Spot Content = 1.55 

Mould Filling Time = 100 s 

One Gate-Three Vents  Three Gates-One Vent  

% Dry Spot Content = 0.92 

Mould Filling Time = 150 s 

Three Gates- Three Vents 

formation 

% Dry spot content = 0.269 

Mould-Filling Time = 100 s 

      

Two Gates-Two Vents 

formation 

% Dry Spot Content = 0.45 

Mould Filling Time = 100 s 
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when compared to the optimization algorithms. The MOSO algorithm predicted a better 

optimal solution in terms of lesser dry spot content, lesser mould fill time and lesser total 

number of ports than the NSDE algorithm. Notably, the MOSO algorithm was capable of 

optimizing three objectives simultaneously whereas the NSDE algorithm was limited to 

optimizing two objectives simultaneously.  

Table 4.9 shows a comparison of the optimal solutions for the aircraft wing flap 

composite part. From the results, it was observed that the NSDE algorithm predicted a dry spot 

content of 0.617% with a mould fill time of 100 seconds for one gate and four vents injection 

strategy. The MOSO algorithm predicted a dry spot content of 0.45% and mould filling time 

of 100 seconds for two gates and two vents injection strategy. From the wr and vr versus time 

plots, the resin flow front rising from the mould gate moved at different speeds towards the 

different vents in the case of NSDE and trial and error process compared to the MOSO 

algorithm. For the aircraft wing flap composite part, the MOSO algorithm outperformed the 

NSDE algorithm and trial and error process in terms of uniform speed of resin flow front 

progression towards the vents, lesser mould-filling time and lesser number of ports. This may 

be attributed due to the uniform flow front arising from two different gates instead of one gate 

and thus proved, the efficacy of the MOSO algorithm in the automatic selection of numbers as 

well as the positions of mould gates and vents. 

From the results, it was found that the trial and error process performed effectively in 

terms of dry spot content, mould fill time and uniform resin flow front progression towards the 

vents when compared to the optimization algorithms for the automotive bonnet composite part. 

However, the trial and error process needed intuitions, experiences and manual efforts to obtain 

a single optimal solution. Also, the process required more iterations with trials in numbering 

and positioning ports, and there was no clue of obtaining the optimality. Thus, the trial and 

error process was always found to be a sub-optimized method. As mentioned, several trials and 

iterations were performed for both composite structures and the best solutions were reported 

as optimized injection strategies. Conversely, the MOO algorithms are automated and need less 

manual effort and problem-specific experience to obtain the number of Pareto optimal 

solutions. Furthermore, the MOO algorithms give several choices for the user in selecting the 

application-specific best design. Specifically, the MOSO algorithm was programmed to choose 

the number and locations of gates and vents automatically from the defined geometry space 

without manual interference.  

Table 4.10 shows a comparison of the dry spot content, fill time, total number of ports, 

number of function evaluations (NFEs) and the total computational time between the trial and 
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error process, NSDE and MOSO algorithms. From Table 4.10, it can be seen that the NFEs 

and total computational time required for the MOSO algorithm were significantly lesser than 

the NSDE algorithm. This may be attributed to the fast exploration quality of the MOSO 

algorithm. The NFEs and computational time for the trial and error process were not 

considered. Because each simulation trial was performed separately and therefore, the 

computation of NFEs and computational time were not programmed. The MOSO algorithm 

outperformed both the composite structures in terms of dry spot content, the total number of 

ports, mould fill time and computational time when compared to the NSDE optimization 

algorithm. The automotive bonnet and aircraft wing flap composite parts mould filling 

optimizations were performed with an Intel i7-9700 CPU, 32 GB RAM computer and an Intel 

E3-1240 CPU, 32 GB RAM computer, respectively. 

Table 4. 8 Comparative Assessment between Trial and Error Process Model 

Simulations, NSDE and MOSO Algorithms for Automotive Bonnet Composite Part 

Trial and Error Process 

Injection Strategy: Two 

gates and four vents 

● Filling time 15 

minutes 

● No dry spot formation 

 

 

 

 

NSDE Algorithm 

Injection Strategy: 

two gates and four 

vents 

● Filling time 35 

minutes 

● Dry spot content 

0.93%   

MOSO Algorithm 

Injection Strategy: two 

gates and three vents 

● Filling time 25 

minutes 

● Dry spot content 

0.295% 
  

 

 

  

Dry spots 

Dry spots 
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Table 4. 9 Comparative Assessment between Trial and Error Process Model 

Simulations, NSDE and MOSO Algorithms for Aircraft Wing Flap Composite Part 

Trial and Error Process 

Injection Strategy: One 

gate and four vents 

● Filling time 120 s 

● No dry spot formation 

 

 

 

NSDE Algorithm 

Injection Strategy: 

One gate and four 

vents 

● Filling time 100 s 

● Dry spot content 

0.617% 
  

MOSO Algorithm 

Injection Strategy: Two 

gates and three vents 

● Filling time 100 s 

● Dry spot content 

0.45% 

  

 

Table 4. 10 Comparative Assessment between Trial and Error Process Model 

Simulations, NSDE and MOSO Algorithms 

 Automotive Bonnet Composite Part 

Technique Filling time % Dry 

spot 

content 

Total 

number of 

ports 

No. of function 

evaluations 

(NFEs) 

Approximate 

computational 

time, hours 

Trial and 

Error Process 

15 minutes - 6 - - 

NSDE 

Algorithm 

35  minutes 0.93 6 300 50 

MOSO 

Algorithm 

25  minutes 0.295 5 96 9 

 Aircraft Wing Flap Composite Part 

Trial and 

Error Process 

120 seconds - 5 - - 

NSDE 

Algorithm 

100 seconds 0.639 5 200 34 

MOSO 

Algorithm 

100 seconds 0.45 4 160 27 

Dry spots 
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4.5 Summary 

The objective of this work was to develop an in-house coded multi-objective 

optimization algorithm for the development of an optimized mould fill phase of the resin 

transfer moulded composite parts. A vinyl ester-glass fibre-reinforced automotive bonnet and 

an RTM6-carbon fibre-reinforced aircraft wing flap composite parts were used as the case 

studies. At first, the trial and error process simulations were performed to identify an optimized 

injection strategy at the mould-filling phase. Then, a novel in-house coded NSDE algorithm 

was implemented for simultaneous optimization of two objectives namely, dry spot content 

and mould-fill time by changing the locations of gates and vents at the fixed input numbers of 

gates and vents. Consecutively, a newly proposed MOSO algorithm was implemented for 

simultaneous optimization of three objectives namely, dry spot content, mould-fill time and 

total number of ports by changing both the numbers as well as locations of gates and vents.  

From the automotive bonnet composite part results, the trial and error process predicted 

a lesser mould fill time of 15 minutes without dry spots when compared with the adopted two 

in-house optimization algorithms for the two gates and four vents injection strategy. However, 

the dry spot content obtained using the NSDE and MOSO algorithms was within the acceptable 

range of 1%. NSDE algorithm predicted a lesser dry spot content of 0.35% with a mould-filling 

time of 35 minutes for pre-fixed 2 gates and 4 vents injection strategy. In contrast, the MOSO 

algorithm predicted a dry spot content of 0.295% and a mould-filling time of 25 minutes for 

two gates and three vents injection strategy. From the aircraft wing flap composite part results, 

the NSDE algorithm predicted a lesser dry spot content of 0.617% with a mould fill time of 

100 seconds for one gate and four vents injection strategy. On the other hand, the MOSO 

algorithm predicted a dry spot content of 0.45% and mould filling time of 100 seconds for two 

gates and two vents injection strategy. Notably, the inclusion of a race-tracking effect at the 

boundary edges led to the absence of dry spot content at the edges of both composite parts. 

Additionally, it is worth noting that the final dry spot content observed around the vents in both 

composite parts may become insignificant as the simulation progresses and the allotted time 

elapses. 

From the comparative assessment, the trial and error process was observed to be 

effective to other algorithms in terms of dry spot content, mould fill time, and uniform resin 

flow front progression towards the vents when compared to the optimization algorithms for the 

automotive bonnet composite part. However, the trial and error process required more 

iterations with trials in numbering and positioning ports and manual efforts for obtaining a 
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single optimal solution. Conversely, the MOO algorithms were automated and needed less 

manual effort and problem-specific experience to obtain the number of Pareto optimal 

solutions. Significantly, the MOO algorithms deliver multiple optimality for the user in 

selecting the application-specific best design. Specifically, the MOSO algorithm was 

programmed to choose the number and locations of gates and vents automatically from the 

defined geometry space without manual interference. In comparison to the NSDE algorithm, 

the MOSO algorithm exhibited several advantages, including lower dry spot content, a reduced 

number of required ports, a more consistent speed of resin flow front progression towards the 

vents, significantly fewer evaluations (NFEs), and shorter computational time as given in Table 

4.10. It is worth noting that the MOSO algorithm had the capability to simultaneously optimize 

three objectives while the NSDE algorithm was limited to concurrently optimizing only two 

objectives. 
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Chapter 5 

Development of an Optimized RTM Curing Process using 

Multi-Objective Optimization Algorithms 

5.1 Introduction 

In various industries such as aerospace, navigation and automotive, the growing demand 

for enhanced performance and reduced weight has encouraged the widespread utilization of 

fibre-reinforced polymer composites. This preference is attributed to their high specific 

stiffness and strength characteristics. Notably, intricate composite components especially those 

used in automotive and aircraft structures are predominantly fabricated through Resin Transfer 

Moulding (RTM) processes [143]. Among the pivotal stages that influence the ultimate quality 

of these composite parts, the curing process holds paramount significance. 

During the composite curing process, a predefined cure cycle from the neat resin cure 

profile is imposed onto the resin-saturated preforms [15]. Manufacturers typically recommend 

a neat resin cure temperature profile to provide guidance for successful composite part curing. 

This prescribed profile may not universally suit all component types specifically for thick-

sectioned composite parts. In the case of thick-sectioned composite parts, effectively 

transferring heat from the surface to the mid-thickness of the parts presents a challenge due to 

the low thermal conductivity and substantial thickness of the preforms. Utilizing the 

manufacturer-recommended profile under these conditions might cause significant thermal 

gradients within thick composite parts leading to problems like resin degradation, uneven 

curing and residual stresses [16]. 
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In industrial practice, the complexities arising from temperature gradients in thick 

composite parts often lead to the adoption of conservative cure cycles or trial-and-error 

approaches. Unfortunately, this cautious approach inevitably extends processing times and 

increases manufacturing costs. Hence, there is a need to establish an optimal curing temperature 

profile capable of minimizing thermal gradients and addressing other defects that may arise 

during the curing process. The successful optimization of such a thermal-cure profile requires 

a comprehensive understanding of the physio-chemical transformations occurring within 

composite parts during the curing process [52]. 

This chapter aims to address these challenges by introducing a multi-objective optimization 

algorithm specifically designed to improve the RTM cure temperature profile for composite 

parts. This algorithm is seamlessly integrated with a finite element simulation platform, 

enabling in-depth exploration of the intricate interplay between resin cure kinetics and heat 

transfer phenomena. The main objective of this chapter is to refine the RTM cure process for 

the production of industrially viable components such as automotive bonnet and aircraft wing 

flap composite parts. This chapter provides insights into enhancing the composite curing 

process and its optimization.  

5.1.1 Bibliometric Analysis 

A bibliometric analysis was conducted on August 24, 2023, utilizing the Web of Science 

core database. A collection of 966 articles was obtained through the primary search term 

'Composite Curing Optimization' within the topics section. Bibliometric network visualization 

was carried out using the VOSviewer software[49], as depicted in Figure 5.1. The analysis 

focused on bibliometric coupling occurrences of author keywords that appeared more than 5 

times. Out of a pool of 2692 keywords, 120 keywords met this threshold and were consequently 

selected for further examination. From these 120 keywords, the cumulative strength of co-

occurrence links with other keywords was computed. This computation guided the selection of 

keywords with the highest total link strength. Among these keywords, 'optimization', 

'mechanical properties', 'curing', and others emerged as prominent author keywords. 
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Figure 5. 1 Schematic Representation of the Bibliographic Networking Diagram 

Obtained from the Web of Science Core Database through the Search Conducted on 

August 24, 2023. 

5.1.2 Literature Review 

The composite processing techniques are extensively developed to manufacture large 

and complex thick-sectioned composite parts [143]. Curing is the crucial stage for the 

production of composite parts, despite the use of any manufacturing techniques. Extensive 

investigations on the curing phase are needed to develop the optimized manufacturing process 

for industrial composite components[17], [171]. During curing, the resin undergoes the 

formation of the 3D networked structure with exothermal heat with a state change from liquid 

to gel, then to rigid solid [15]. The exothermal heat generated during resin curing can lead to 

temperature overshoots and thus, affect the quality of the manufactured composite part [16]. 

Hence, the optimal design of the curing phase requires a well-defined mould heating 

temperature profile to reduce thermal overshoots and gradients [52].  

Several experimental works were reported monitoring the resin curing process using 

temperature and viscosity sensors [172], [173]. However, the development of an optimized 

composite production process using experimental trials with intricately embedded sensors was 

proven to be sub-optimized, laborious, costly, and time-consuming. Alternatively, cure process 

simulations and optimizations were proven to be an inexpensive and effective approach that 

results in optimal solutions with iterations [20]. From the literature, the commonly used finite 
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element and control volume finite element method-based simulators were COMSOL Multi-

physics, ABAQUS and ANSYS for performing cure process simulations [27], [29], [101]. 

Through the use of these platforms, researchers have skillfully analyzed intricate curing 

processes. This analysis has provided valuable insights into how changing temperatures 

influence the fundamental dynamics of curing. 

Within the realm of cure process optimization, it was found that the optimizations of 

the thermal-cure profile were addressed using different single and multi-objective optimization 

techniques. The extensively used optimization techniques were the simplex method, genetic 

algorithm (GA), ant swarm strategy, non-dominated sorting genetic algorithm-II (NSGA-II), 

and multi-objective optimization genetic algorithm (MOOGA) toolbox[155]–[159]. Objective 

functions based on cure process time, temperature overshoot, residual stresses, setup cost, 

temperature gradient, and so on were considered for the cure process optimization [160], [161]. 

Shevtsov et al. [174]  developed a curing model for a helicopter rotor blade in the 

COMSOL multi-physics simulator and optimized the thermal profile for both the solidification 

and liquefaction stages using a built-in optimization toolbox. However, the built-in 

optimization toolbox is limited to a few traditional optimization techniques and the obtained 

results were dependent on the initial guesses which reduced the efficacy of obtained results. 

Also, the toolbox was limited to the use of advanced hybrid multi-objective optimization 

techniques. Jahromi et al. [58] designed the artificial neural network (ANN) toolbox to 

minimize the temperature differences between two selected points. The sequential quadratic 

programming (SQP) deterministic optimization technique was used to achieve the uniform 

temperature and degree of cure along the thickness of the fibre-reinforced composite part. 

Struzziero and Skordos [35] developed the multi-objective optimization strategy by 

combining the finite element simulation package with the MOOGA for cure process 

optimization for both thick and ultra-thick composites. They considered three different 

structures for two different thicknesses and analyzed the results obtained from the standard 

two-dwell and multi-dwell thermal profiles. From the results, they found with an increase in 

the thickness of composites the multi-dwell thermal profile performed better than the standard 

two-dwell thermal profile. Tifkitsis et al. [36] developed a stochastic multi-objective 

optimization algorithm by integrating GA with the coupled surrogate model and Monte Carlo 

simulator for optimizing the thermal-cure profile of thick composite parts. They compared the 

results obtained from the one-dwell and two-dwell mould heating profiles between 

deterministic and stochastic multi-objective optimization algorithms. Gao et al. [175] 

developed a multi-objective optimization strategy by combining the Latin hypercube sampling 



118 

 

method with the neural network model and NSGA-II for optimizing the thermal-cure profile 

of ultra-thick composite parts. The cure time, maximum cure gradient, and maximum thermal 

gradient were simultaneously optimized and the results were compared with the manufacturer-

recommended cure cycle (MRCC). Yuan et al. [176]  developed a multi-objective strategy by 

combining the multi-physics finite element process model with the radial basis function (RBF) 

surrogate model and NSGA-II for cure process optimization of thick composites. They reported 

the efficacy of the developed optimization strategy over the MRCC by comparing the obtained 

thermal-cure profiles. 

From the in-depth literature review, it was found that researchers have handled cure 

phase optimization mainly using the variants of GA. However, from the comparative studies, 

the differential evolution (DE) algorithm performed significantly better than GA for multi-

objective optimization problems [177]. According to the knowledge of the authors, there were 

no straight reports found in the literature that directly deal with the development of the non-

dominated sorting differential evolution (NSDE) algorithm for the simultaneous optimization 

of the thermal gradient and cure time of the composite processing technique. With problem 

specific, there are no published reports on the development of robust multi-objective 

optimization techniques with varied composite part thickness and resin-fibre properties for the 

automotive bonnet and aircraft wing flap composite parts. Precisely, there were no published 

works found in the literature that address the comparative analysis between trial and error 

process simulations and multi-objective optimization algorithms for the development of vinyl 

ester-glass fibre reinforced automotive bonnet and RTM6-carbon fibre reinforced aircraft wing 

flap composite parts.  

This work proposes the in-house coded multi-objective optimization algorithm for the 

development of the optimized cure process for vinyl ester-glass fibre-reinforced automotive 

bonnet and RTM6-carbon fibre-reinforced aircraft wing flap composite parts. Initially, the two-

dwell and one-dwell thermal profile was designed for the 12 mm thick automotive bonnet and 

5 mm thick aircraft wing flap composite parts, respectively. Then, the newly proposed NSDE 

algorithm was developed to optimize the thermal-cure process through the minimization of part 

thickness thermal gradients and cure time for the studied composite structures. Subsequently, 

to evaluate the efficacy of the developed NSDE algorithm, the NSGA-II algorithm was in-

house coded for the simultaneous minimization of thermal gradient and cure time for the 

studied composite structures. Then, the trial and error process model simulations were 

performed by manually changing the mould heating rates and dwell times for both the selected 

composite parts. Finally, comparisons between the optimized thermal-cure cycles obtained 



119 

 

from the NSDE and NSGA-II optimization algorithms and the trial and error process were 

reported to ascertain the efficacy of the developed NSDE algorithm. 

5.2 Thermo-Chemical Process Model 

 In industrial practices, moulds are kept at elevated temperatures to enhance the cure 

reaction and to reduce the cure process time. In general, various temperature ramps and dwells 

are practised to obtain the final isothermal temperatures. Hence, the resin curing analysis is 

analyzed with the multi-dwell mould heating profile. The transient energy balance for the cure 

analysis that includes conduction and resin cure is given in Equation (5.1) in the Cartesian 

coordinate system, 

𝜌𝑐𝐶𝑃𝑐
𝜕𝑇

𝜕𝑡
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𝜕

𝜕𝑥
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(𝑘𝑧

𝜕𝑇

𝜕𝑧
) −

𝜕𝑄

𝜕𝑡
                (5.1) 

𝜌, 𝐶𝑃 and  𝑘  represents the density, heat capacity and thermal conductivity of respective 

materials. The thermal conductivity of the material is represented by ki (where i = x, y, z) in 

their respective orthogonal directions. 

The thermal conductivity, specific heat and density of the composite part are computed 

using the rule of mixture as given in Equations (5.2), (5.3) and (5.4), respectively [178].  

𝑘𝑐 = 
𝑘𝑟𝑘𝑓

𝑘𝑟∅+𝑘𝑓(1−∅)
      (5.2) 

𝐶𝑃𝑐 = 𝐶𝑃𝑟∅ + 𝐶𝑃𝑓(1 − ∅)     (5.3) 

𝜌𝑐 = 𝜌𝑟∅ + 𝜌𝑓(1 − ∅)      (5.4) 

Subscript ‘r’, ‘f’, and ‘c’ denote the resin, fibre and composite material physical properties, 

respectively. Here,  ∅  denotes the porosity of the fibre mat. An experimentally measured 

thermal conductivity of 2.7 W m-1K-1 was used for the woven roving carbon fibre mat as 

published by Villiere et al.[165] 

The internal heat consumption sink term (
𝜕𝑄

𝜕𝑡
) corresponds to the endothermic nature 

of the resin-curing reaction. When the resin flow within the composite part is not taken into 

account, the sink term (
𝜕𝑄

𝜕𝑡
) can be directly linked to the cure rate (

𝜕𝛼

𝜕𝑡
) through the following 

Equation (5.5) [67]. 

𝜕𝑄

𝜕𝑡
  = 𝜌𝑟∅∆H

𝜕𝛼

𝜕𝑡
       (5.5) 

Where, 𝐻𝑟 denotes the heat of reaction. The resin cure rate model 
𝜕𝛼

𝜕𝑡
  is defined as a function 

of temperature T and degree of cure 𝛼 as follows,  
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𝑑𝛼

𝑑𝑡
= 𝐴𝑒

−𝐸

𝑅𝑇𝛼𝑚(1 − 𝛼)𝑛    (5.6) 

The boundary conditions allied to address the Equations (5.1-5.6) are as follows, 

Initial condition at time t = 0:  T = T0 ; α = 0 and 
𝑑𝛼

𝑑𝑡
= 0 

      At the mould wall:      T = Tmould 

T0 represents the initial temperature and Tmould represents the mould temperature. 

A is the frequency factor, E is the activation energy, R is the ideal gas constant, T is the 

temperature and m and n represent the order of the reaction.   

5.3 Materials and Methods 

5.3.1 Materials 

Mono-component RTM6 epoxy resin supplied by Hexcel company and vinyl ester 

Derakane 8084 epoxy resin supplied by Ashland company were used as the resin matrices in 

this study. These resins have been specifically designed for advanced composite parts and for 

use in advanced liquid composite moulding processes. The vinyl ester resin was cured by 

applying methyl ethyl ketone peroxide as the catalyst along with cobalt octoate as the 

accelerator both of which were provided by Hexcel company. A twill-weave carbon fibre mat 

having 400 g/m2 areal density and 46% porosity, and a twill-weave glass fibre mat having 610 

g/m2 areal density and 51% porosity, were used as the reinforcement mats for this study. The 

reinforcement mats used in this study were supplied by Sree Industrial Composite Products, 

Hyderabad, India. The cure kinetics for vinyl ester and RTM 6 resins is reported in Chapter 

2. The material parameters used for curing optimizations are listed in Table 4.3 of Chapter 4.  

5.3.2 RTM Process Composite Parts 

In this work, the RTM process was developed for the vinyl ester-glass fibre-reinforced 

automotive bonnet and the RTM6-carbon fibre-reinforced aircraft wing flap composite parts 

as shown in Figures 4.2 and 4.3, respectively. The process models that are given in Equations 

(5.1 to 5.6) with their associated initial and boundary conditions were used to perform the 

curing simulations. The initial temperature (T0) of mould heating was selected based on the 

resin injection temperature during mould-filling experiments. The vinyl ester and RTM6 resin 

were injected at 298 K and 393 K, respectively during mould-filling experiments. The choice 

of resin injection temperature was selected using recommended process parameters from the 

RTM6 [91] and vinyl ester [166]  resins supplier technical datasheet. 
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The COMSOL multi-physics simulator was employed to simulate the composite parts 

curing process. The non-isothermal energy balance during the curing stage was computed using 

the COMSOL heat transfer module and the cure kinetics of the composite panel was studied 

by manually defining the cure rate model in the domain ordinary differential equations (ODEs) 

and differential algebraic equations (DAEs) module. The heat transfer in solids and domain 

ODEs and DAEs physics were coupled to address the cure reaction dependency on 

temperature. The relevant initial and boundary conditions corresponding to energy balance and 

cure kinetics were solved to analyse the thermal-cure profile of composites. The process flow 

for performing the curing simulation of the composite panel in the COMSOL multi-physics 

simulator is depicted in Figure 5.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 2 COMSOL Model Implementation for Composite Panel Cure Process 

Simulation 

5.3.3 Trial and Error Isothermal Cure Process Simulations 

Once the mould filling is completed, the mould is heated to elevated cure temperatures 

using electrical cartridge heaters with higher ramp rates of more than 20°C/min. The 

differential cure occurring between mould filling temperature and cure temperatures was 

assumed to be negligible due to the use of higher ramp rates (smaller dynamic heating time 

compared to isothermal cure time) and the temperature rises from lower to higher values. 

Hence, dynamic heating time is not considered in the total cure cycle time. Due to the zero 

flow velocity and assumption of no air voids, neat resin cure data can be compared with 
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composite panel cure data for the applied mould temperatures. In this work, temperatures 

ranging from 393 K to 513 K were selected as mould temperatures to perform isothermal curing 

simulations for the aircraft wing flap composite part. From the curing simulations, the time-

temperature-degree of cure window for the composite panel was obtained. Then, cure 

differences between neat resin and composite panel were obtained as a function of time and 

temperature. 

5.3.4 Trial and Error Non-Isothermal Cure Process Simulations 

The objective of the trial-and-error cure process simulation is to search for optimum 

values of mould heating parameters to attain the minimum thermal gradient, cure differences 

and cure time with negligible temperature overshoot. Usually, the components having a 

thickness greater than 10 mm and 50 mm were considered thick and ultra-thick components, 

respectively. From past studies, it was found that the multi-dwell heating profile is desirable 

for thick and ultra-thick components to reduce the temperature overshoot and thermal gradient 

within the composite part. However, with an increase in the number of dwells, the associated 

independent variables are increased and the thermal profile becomes more dependent on the 

mould heating parameters. In this work, an automotive bonnet part with 12 mm thickness was 

selected and a two-dwell temperature profile was used to cure this thick sectioned composite 

part. In contrast, a thin-sectioned aircraft wing flap composite structure with 5 mm thickness 

was also selected and a one-dwell temperature profile was used to cure the composite part. 

Figures 5.3 and 5.4 show the two-dwell and one-dwell mould heating temperature profiles 

used for the cure process simulations of the automotive bonnet and aircraft wing flap composite 

parts, respectively.  

The trial and error non-isothermal cure process simulations were performed by 

manually changing the values of mould heating parameters, 1st ramp rate a, 2nd ramp rate b, 1st 

dwell time  𝑡1, 1st hold time  𝑡2 and 2nd dwell time  𝑡3. Numerous simulation trials were 

executed by varying the values of mould heating parameters. Salient simulation trials are 

tabulated in Tables 5.1 and 5.2 for the automotive bonnet and aircraft wing flap composite 

parts, respectively.  
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Figure 5. 3 Two-Dwell Mould Heating 

Profile for Automotive Bonnet Composite 

Part 

Figure 5. 4 One-Dwell Mould Heating 

Profile for Aircraft Wing Flap Composite 

Part 

Table 5. 1 Cure Process Simulation Trials for Automotive Bonnet Composite Part 

Trial 

Number 

1st Ramp 

Rate a, 

K/min 

1st Dwell 

Time  𝒕𝟏, 

Minutes 

1st Hold 

Time  𝒕𝟐, 

Minutes 

2nd Ramp 

Rate b, K/min 

2nd Dwell Time 

 𝒕𝟑, Minutes 

1 3 10 40 1 50 

2 4 10 40 1 50 

3 2 10 30 1 35 

4 3 10 30 1 35 

5 2 20 50 1 60 

6 2 20 40 1 50 

 

Table 5. 2 Cure Process Simulation Trials for Aircraft Wing Flap Composite Part 

Trial 

Number 

Ramp Rate 

a, K/min 

Dwell Time 𝒕𝟏, 

Minutes 

1 1 10 

2 1 20 

3 5 10 

4 5 20 

5.3.5 Curing Optimization using NSDE Algorithm 

The main objective of this optimization was to minimize the thermal gradient and cure 

time (𝑡𝑐𝑢𝑟𝑒 ) during the composite curing process. The thermal gradient was computed as the 

a 

              

b 

Temperature,  

         K 

t3 t2 t1 

a 

Time, Minutes 

             

Temperature, 

    K 

Time, Minutes 

t1 
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difference between the mould surface temperature (𝑇𝑚𝑎𝑥) and the composite panel mid-

thickness temperature (𝑇𝑚𝑖𝑛). The curing optimization was performed to obtain the optimum 

mould heating profile with negligible temperature overshoot during the curing phase of the 

studied composite parts. The two-dwell mould heating profile was considered for the curing 

phase optimization of the bonnet composite part. However, the two-dwell mould heating 

profile converges to one dwell when there are no appreciable temperature differences between 

the adjacent dwells. The framed objectives were optimized simultaneously by optimizing the 

four parameters: (i) ramp rate a, (ii) 1st dwell time 𝑡1, (iii) 1st hold time 𝑡2 and (iv) 2nd dwell 

time 𝑡3. Also, the average degree of cure (𝛼𝑎𝑣𝑔) at the end of the curing process was constrained 

to 0.9 to ensure the composite part cure completion. The mathematical formulation for the 

curing phase optimization of the automotive bonnet composite part is given in Equation (5.7). 

   Minimization            𝑓1 = 𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛 𝑎𝑡 𝑡𝑐𝑢𝑟𝑒 , 𝑓2 = 𝑡𝑐𝑢𝑟𝑒                         (5.7) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜, 

𝛼𝑎𝑣𝑔 ≥ 0.90 

1 ≤ 𝑎 ≤ 4 

5 ≤ 𝑡1 ≤ 10 

𝑡1 ≤ 𝑡2 ≤ 40 

𝑡2 ≤ 𝑡3 ≤ 60 

b =1 

Minimization of the thermal gradient and cure time were the objective functions 

considered for the curing of the wing flap composite part using a one-dwell temperature profile. 

The mathematical formulation of the problem is given in Equation (5.8). 

   Minimization            𝑓1 = 𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛 𝑎𝑡 𝑡𝑐𝑢𝑟𝑒  , 𝑓2 = 𝑡𝑐𝑢𝑟𝑒                         (5.8) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜, 

𝛼𝑎𝑣𝑔 ≥ 0.90 

1 ≤ 𝑎 ≤ 5 

5 ≤ 𝑡1 ≤ 20 

A non-dominated sorting differential evolution (NSDE) algorithm coupled with finite 

element simulation was adopted to solve the curing multi-objective optimization problem. The 

generation of input parameters and elitism of dominated solutions based on the NSDE 

optimization algorithm was programmed in MATLAB. These generated input parameters were 

utilized to perform the cure process model simulations in COMSOL software. The integration 

of the optimization algorithm and cure process simulation was programmed in MATLAB using 
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COMSOL Live-Link for MATLAB. This Live-Link interface enables the COMSOL 

simulation to be loaded into the MATLAB directory using the 'mphload' command. The 

implementation guidelines for the Live-Link interface were referenced from the user guidelines 

for Live-Link for MATLAB[168].  The following steps were incorporated for the 

implementation of the NSDE algorithm for simultaneous optimization of thermal gradient and 

cure time. 

Step 1: In this step, the process was initiated by defining parameters such as crossover 

probability (Cp), mutation factor (F), population size (Np), and the maximum number of 

generations (max_gen). Initially, dwell times and ramp rates were randomly generated within 

the specified limits. These randomly generated input parameter values were imported to 

COMSOL using the ‘model.param.set’ command and the cure process simulation was 

programmed using the ‘model.sol ('sol1').runAll’ command function. The cure process model 

simulations were performed using the new input parameter values for ramp rates and dwell 

times at the cure time of t. Upon completion of the cure process simulation, the results of 𝑇𝑚𝑎𝑥, 

𝑇𝑚𝑖𝑛 and 𝛼𝑎𝑣𝑔 at cure time ‘t’ were extracted programmatically in MATLAB using the ‘model. 

result’ command function. The 𝛼𝑎𝑣𝑔 value was computed at cure time ‘t’ and then, the objective 

functions were computed for the obtained 𝛼𝑎𝑣𝑔 value of 0.9 and above.  For 𝛼𝑎𝑣𝑔 value lesser 

than 0.9, the cure process simulations were performed for the extended time loops until a value 

of 0.9 and above. From the resin cure cycles, the initial cure time was defined as 30 minutes 

and a time step of 5 minutes was used for each subsequent time loop. The generation of input 

parameters and subsequent computation of thermal gradient and cure time from the cure 

process simulation was performed for a population size of Np. The complete dataset generated 

for a population size of Np was designated as the parent population (Pg). 

Step 2: This step involved mutation and crossover processes. Three random vectors were 

selected from the parent population (Pg) to generate a mutated population (Mg). The mutated 

vectors were obtained by applying mutation to the dwell time and ramp rate values as given in 

Equation (5.9). Similar to Step 1, thermal gradient and cure time values were computed for 

the mutated population.  

𝑀𝑔,𝑖 = 𝑃𝑔,𝑟1 + 𝐹(𝑃𝑔,𝑟2 − 𝑃𝑔,𝑟3)   (5.9) 

Here 𝑟1, 𝑟2, and 𝑟3 indicate three distinct random numbers. Subsequently, the binomial 

crossover was performed utilizing the mutated and parent populations to create a child 

population (Qg) as given in Equation (5.10). The mutation factor (F) and crossover probability 

(Cp) were set to 0.8 and 0.25, respectively. The mathematical implementation of the 
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Differential Evolution (DE) algorithm was referenced from the research work published by 

Karaboga and Okdem[169]. 

 𝑄𝑔 = {
𝑃𝑔,      𝑖𝑓 𝑟𝑎𝑛𝑑 > Cp

𝑀𝑔,    𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 𝐶𝑝
    (5.10) 

Step 3: In this step, a selection process takes place to determine which solutions from the 

current generation will be part of the next generation or undergo further evolutionary steps. A 

dominance check was conducted between the parent population (Pg) and the child population 

(Qg). If a vector in the child population dominates a vector in the parent population, the child 

vector is included in the new population (Pg+1) for the next generation. Conversely, if a parent 

vector dominates a child vector, the parent vector is retained in the new population (Pg+1). After 

calculating the dominance of each solution in the population, the rankings are assigned to the 

new population (Pg+1) based on the dominance check. Typically, solutions that are not 

dominated by any other solution (Pareto front solutions) are given the highest rank (rank 1). 

Solutions that are dominated by rank 1 solutions but dominate other solutions are assigned the 

next rank (rank 2), and so forth. Additionally, the crowding distance measure is also computed 

to differentiate between solutions with the same rank. The crowding distance measures how 

close a solution is to its neighbours in the objective space. Solutions with higher crowding 

distances are preferred because they provide better coverage of the Pareto front. The dominance 

check of the NSDE algorithm was performed using the non-dominated sorting approach based 

on the NSGA-II algorithm[170]. 

Steps 2 and 3 were repeated for the defined maximum number of generations to 

iteratively improve the solution. The outcome was a Pareto front depicting the trade-offs 

between thermal gradient and cure time. The vector in rank 1 represents the Pareto optimal 

solution. Figure 5.5 illustrates the flow diagram for the implementation of an in-house coded 

NSDE algorithm to find the optimal thermal-cure profiles. The population size was set at 10 

and the maximum number of generations was set to 20. 
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Figure 5. 5 In-House Coded NSDE Algorithm to Optimize the Composite Parts 

Thermal-Cure Profile 

5.3.4 Curing Optimization using NSGA-II Algorithm 

The NSGA-II algorithm was also employed to assess the effectiveness of the proposed 

NSDE algorithm. The problem formulation presented in Equations (5.7 & 5.8) was addressed 

to simultaneously minimize the thermal gradient and cure time for the selected composite parts. 

The integration of the NSGA-II algorithm with the COMSOL Multi-physics simulator 

followed a similar procedure to that of the NSDE algorithm. The implementation process was 

also similar to the NSDE algorithm except for the generation of mutated and crossover 

populations. Mutation and crossover were performed using a real-coded genetic algorithm with 

a two-point crossover and a mutation rate of 0.01[170]. 

5.4 Results and Discussion 

5.4.1 Isothermal Curing Simulations  

The extent of the cure reaction within the composite panel was simulated using the 

experimental RTM6 resin time-temperature cure cycles. To analyse the through-thickness cure 

variations, the degrees of cure at the panel surface and degrees of cure at the mid-thickness of 

the panel were computed and compared. The averaged degree of cure of the composite part 

was also computed and compared with the surface and mid-thickness degrees of cure. From 

the simulated results, it was found there were negligible cure variations within the part through-
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thickness due to the smaller thickness of the composite part. The simulated surface, mid-

thickness and averaged composite panel degrees of cure obtained for 180°C, 200°C, 220°C, 

and 240°C temperatures are shown in Figure 5.6. From Figure 5.6, it can be seen that the cure 

variations compared were found to be negligible and thus, surface, mid-thickness and averaged 

composite panel degrees of cure overlaps in the cure-temporal plots at all studied temperatures. 

Therefore for further analysis of simulated time-temperature cure cycles, average degrees of 

cure within the composite panel are considered. 

 

Figure 5. 6 Effect of Part Thickness on the Curing of Composite Wing Flap 

5.4.2.1 Cure Process Window 

Figure 5.7 illustrates the cure process window developed for composite panel cure. The 

composite panel cure was simulated for different isothermal temperatures using the neat resin 

cure kinetics. The simulated composite panel degree of cure and rate of cure was used to 

develop a composite panel cure process window using the same procedure as described in 

Figure 2.2. With a similar approach, the composite panel rate of cure was modelled as a 

function of the degree of cure and temperature using classical cure rate models. From the 

results, the rate of cure versus degree of cure curves of the composite panel fits well with the 

modified Kamal and Sourours kinetics model for all the temperatures studied. The composite 

panel cure kinetic parameters with their correlation coefficients are tabulated in Table 5.3. The 

activation energy and frequency factor for composite panel cure were obtained from the 

Arrhenius plot. From the kinetics modelling, the activation energies obtained for neat resin cure 
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and composite panel cure are almost similar to 64.07 kJ-mol-1 and 64.007 kJ-mol-1, 

respectively.  

The cure process window shows the evolution of the cure for the composite panel as a 

function of temperature and time. In Figure 5.7, it was observed a similar trend in the 

progression of cure between neat RTM6 resin (shown in Figure 2.13) and composite panel for 

the applied cure cycles. It was also observed that the time for cure completion decreases with 

an increase in process temperatures for the composite panel. It may also be observed that the 

neat resin cure conversion is higher than the composite panel cure conversion at any instance 

of time-temperature cure cycles. This may be attributed to the fibre thermal resistance for the 

heat flow within the composite panel. From the cure process windows, a slow cure rate was 

observed at the initial cure stages. Then, the rate of cure increases steeply with time until an 

approximate 90% cure conversion. This cure progression may be due to autocatalytic 

phenomena induced by exothermal heat flow. Finally, the rate of cure decreases to a very low 

value due to vitrification phenomena at the latter stages of curing. 

 

Figure 5. 7 Simulated Wing Flap Composite Panel Cure Process Window 

Table 5. 3 Modified Kamal and Sourour Cure Kinetics Model Parameters for Wing 

Flap Composite Panel 

Temperature, 

C 

k, per 

Minute 
m n 

Correlation 

Coefficient 

180 0.118 0.733 1.054 0.999 

200 0.243 0.740 1.099 0.996 
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220 0.464 0.710 1.101 0.997 

240 0.867 0.681 1.301 0.998 

E = 64.007 kJ mol-1             A= 2.84 x 106 min-1 

5.4.2.2 Cure Difference Window 

A detailed cure comparison between neat resin and composite panel at different applied 

temperatures is shown in Figure 5.8. From Figure 5.8, it is observed that for lower 

temperatures cure differences between neat resin and composite panel are larger due to the 

lesser thermal conductivity of fibre mat. However, the differences in cure curves tend to 

decrease with an increase in applied process temperatures. The final cure process time required 

for the composite panel and neat resin is similar when the temperatures are greater than 220°C. 

It may also be observed that the cure differences between the composite panel and neat resin 

are negligible at 240°C and hence, merged cure curves are obtained after 80% cure conversion. 

This may be attributed to the increase in exothermal heat flow during composite panel curing 

at higher mould temperatures.  

A cure difference window was computed as a function of time and temperature for the 

detailed analysis of cure differences between neat resin and the composite panel. The trend, 

magnitude and peak values of cure differences between neat resin and the composite panel with 

varying cure cycles are depicted in Figure 5.9. As can be seen in Figure 5.9, for a given 

temperature the cure differences between neat resin and composite panel increases with time 

until they reach the peak value and then gradually decreases. It is also observed that for a given 

time, the cure differences between neat resin and the composite panel decrease with an increase 

in temperature and become negligible at 240°C. It may be mentioned that the magnitude of the 

cure difference curve and the peak values decreases with an increase in the temperature.  
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Figure 5. 8 Cure Comparison between Neat RTM6 Resin and Composite Panel 

 

Figure 5. 9 Cure Difference Window of Neat RTM6 Resin and Composite Panel 

5.4.2.3 Peak Cure Differences  

The peak values of cure differences (i. e ∆αpeak) between neat resin and composite 

panel were plotted as a function of time and temperature in Figure 5.10. The comparisons 

between the neat resin and composite panel cure conversions at ∆αpeak were also shown in 

Figure 5.10. From Figure 5.10, it can be seen that the ∆αpeak value as well as cure time at 
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∆αpeak (i. e t∆αpeak
) decreases with an increase in applied temperatures. The composite panel 

cure conversion at ∆αpeak increases with an increase in temperature and conversely, the neat 

resin cure conversion at ∆αpeak decreases with an increase in temperature.  

Using non-linear regression analysis, several mathematical models were tried to 

develop ∆αpeak and  t∆αpeak
 as a function of temperature. From the results, it was found that 

the cubic and logistic functions were fitting well to relate  ∆αpeak = f(temperature) and t∆αpeak
 

= f(temperature), respectively. Figure 5.11 shows the comparisons between t∆αpeak
 and ∆αpeak 

data and the modelled results. The developed models and their associated parameters are given 

in Equations (5.11 & 5.12). 

t∆αpeak
= 1/(a1

T × a2)  : R2 = 0.999            

  a1 = 1.04552, a2 = 1.50773 × 10−5    R2 = 0.999          

 (5.11) 

∆αpeak = b1T
3 + b2T

2 + b3  : R2 = 0.967                  

 b1 = −4.04 × 10−8, b2 = 5.24 × 10−6, b3 = 0.53     (5.12) 

 

Figure 5. 10 Neat Resin and Composite Panel Cure Conversions at ∆𝛂𝐩𝐞𝐚𝐤 
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Figure 5. 11  ∆𝛂𝐩𝐞𝐚𝐤 and  𝐭∆𝛂𝐩𝐞𝐚𝐤
  as a Function of Temperature. 

5.4.2.4 Cure Rate at ∆𝜶𝒑𝒆𝒂𝒌 

Figure 5.12 shows the rate of cure versus time for both the neat resin and composite 

panel at different isothermal temperatures. As can be seen from Figure 5.12, the peak of the 

cure rate increases with increasing temperature and the peak cure time decreases with an 

increase in temperature for both the neat resin and composite panel. It is also observed that for 

a given temperature, the peak value of the cure rate for the neat resin is higher than that of the 

peak value of the cure rate for the composite panel. However, the difference in peak values of 

cure rate between neat resin and composite panel decreases with an increase in temperature. 

The rate of cure at  ∆αpeak and the corresponding cure rate time at ∆αpeak (𝑡∆αpeak
) is shown 

by a dotted line in Figure 5.12. From Figure 5.12, it is observed that for a given temperature, 

the cure rate at ∆αpeak falls at the termination phase after peaking of neat resin cure whereas 

the cure rate at ∆αpeak falls at the cure progression zone before peaking for the composite 

panel.  
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Figure 5. 12 Cure Rate of Neat RTM6 Resin and Composite Panel 

5.4.2.5 Kinetics of Cure Difference Progression  

The kinetics of cure difference progression between neat resin and composite panel was 

modelled as a function of neat resin cure conversion for the applied process temperatures. 

Figure 5.13 shows the degree of cure difference (∆𝛼) between neat resin and composite panel 

as a function of neat resin cure conversion for different temperatures. From Figure 5.13, the 

peak value of ∆𝛼 (i. e ∆αpeak) decreases with an increase in temperature and the ∆αpeak value 

reaches earlier neat resin conversions with an increase in applied temperature. At a given 

temperature, ∆𝛼  increases with the neat resin conversion and attains a maximum at 

0.4< 𝛼𝑛𝑒𝑎𝑡 𝑟𝑒𝑠𝑖𝑛 <0.7, then gradually decreases to zero. At a given neat resin conversion, the 

higher the temperature, the lesser the value of ∆𝛼 and the lesser the time to complete the cure 

reaction. 

Several models were tried to fit the relationship between ∆𝛼 and neat resin degree of cure. 

From the results, it was found that the modified Kamal and Sourour autocatalytic kinetic model 

was fitted well to the ∆𝛼 versus neat resin cure conversion data at all studied temperatures. 

Figure 5.13 shows the modelled results of ∆𝛼 versus neat resin cure conversions for 180oC, 

200oC, 220oC and 240oC temperatures. The Modified Kamal and Sourour’s model for relating 

∆𝛼 as a function of neat resin conversion and temperature is given in Equation (5.13). The 

modelled kinetic parameters are tabulated in Table 5.4.  

Figure 5.14 shows the temperature dependency of the kinetic rate constants and their 

functional relationship was obtained by fitting to the modified Arrhenius form as given in 
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Equation (5.14). The associated activation energy and frequency factor obtained from the 

Arrhenius plot are tabulated in Table 5.4. 

From the kinetics of cure difference progression, it is possible to predict the cure 

differences between neat resin and composite panel from the experimental neat resin cure 

conversion data with the applied time-temperature cycles. Thus, composite panel cure 

conversion can also be predicted from the cure difference data. This will help to adjudge the 

operable cure cycle for the composite part from the experimental neat resin cure conversion 

data.  From the results, it was found that the mould temperature of 240oC has the minimum 

cure differences at any resin cure conversion. 

∆𝛼(𝑡) = 𝑘𝛼𝑛𝑒𝑎𝑡 𝑟𝑒𝑠𝑖𝑛
𝑚(1 − 𝛼𝑛𝑒𝑎𝑡 𝑟𝑒𝑠𝑖𝑛)

𝑛   (5.13) 

𝑘 = 𝐴𝑒−𝐸/𝑅𝑇 + 𝑏   (5.14) 

 

Figure 5. 13 Kinetics of Cure Difference Progression 
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Figure 5. 14 Arrhenius Form 

Table 5. 4 Modified Kamal and Sourour Cure Kinetics Model Parameters for Cure 

Difference Progression 

Temperature, 

C 
K m n 

Correlation 

Coefficient 

120 0.9245 1.0183 0.1919 0.965 

140 0.9485 1.028 0.240 0.98 

160 0.9504 1.009 0.241 0.978 

180 0.9994 1.033 0.389 0.998 

200 1.113 1.01 0.52 0.991 

220 1.4925 1.244 0.838 0.992 

240 1.502 1.248 1.339 0.981 

𝑘 = 𝐴𝑒−𝐸/𝑅𝑇 + 𝑏           A = 1.49×1011 min-1    E  = 107.885 kJ mol-1      

b = 0.936 min-1 

 

5.4.3 Trial and Error Non-Isothermal Cure Process Simulations 

The trial-and-error non-isothermal cure process simulations were performed by 

manually changing the values of mould heating parameters as described in Section 5.3.4. From 

the selected mould heating parameters, the mould surface temperature was obtained as a 
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function of time. Then, for the given mould surface temperature profile, part mid-thickness 

temperature and averaged cure conversion within the composite panel were computed as a 

function of time. Several cure trials were performed using different mould heating parameters 

and the case studies were tabulated in Tables 5.5 and 5.6 for the bonnet and wing flap parts, 

respectively. The cure case studies were analyzed to obtain the optimum thermal cure profile 

with the proper choice of mould heating parameters that deliver minimum temperature 

overshoot, thermal gradient and cure time as shown in Figures 5.15 and 5.16.  

Table 5.5 and Figure 5.15 show the two-dwell cure process simulation trials for the 

bonnet part. From the results, the mid-thickness temperature overshoot of 7 - 9 K was observed 

for trials 1, 3, and 5. This may be attributed to the increased exothermal heat at the ramp 

applied. Additionally, it was found either a faster onset cure rate or non-uniform cure 

progression at the cure curves due to the improper choice of mould heating parameters at these 

trials. In contrast, a negligible mid-thickness temperature overshoot along with uniform cure 

progression was found at trials 2, 4, and 5. This may be attributed to the temporal effect of 

exotherm and cure progression with applied mould temperatures obtained from the proper 

choice of mould heating parameters. With all the trials studied, trial 6 containing mould heating 

parameters of a = 2 K/min, t1 = 20 min, t2 = 40 min, and t3 = 50 min delivered a negligible 

temperature overshoot, a minimum thermal gradient of 0.48 K, and a minimum cure time of 

60 minutes.  

Table 5.6 and Figure 5.16 show the one-dwell trial and error cure process simulations 

for the wing flap part. In all trials studied, it was found an increase in thermal gradient and a 

decrease in cure time with the increase in ramp rate and dwell time. Trial 1 predicted the lowest 

thermal gradient of 0.0317 K and the highest cure time of 400 minutes to attain the target value 

of 90 % cure extent. Also, trial 4 predicted the highest thermal gradient of 2.1946 K and the 

lowest cure time of 30 minutes to attain the target value of 90 % cure extent. With all the trials 

studied, trial 3 containing mould heating parameters of a = 5 K/min and t1 = 10 minutes 

delivered a good balance between the thermal gradient and cure time which is 0.248 K and 80 

minutes, respectively. From the results, the trial and error process was found significantly 

challenging to optimize the multiple parameters simultaneously for both the composite parts. 
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Table 5. 5 Cure Process Simulation Trials for Bonnet Part 

Trials Input Parameters Output Parameters 

a, 

K/min 

t1, 

minutes 

t2, 

minutes 

t3, 

minutes 

Mould 

Temperature

, K 

Thermal 

Gradient, 

K 

Overshoot

, K 

1 3 10 40 50 338 0.07 9.23 

2 4 10 40 50 348 0.505 0 

3 2 10 30 35 323 0.177 7.36 

4 3 10 30 35 333 0.513 0 

5 2 20 50 60 348 0.28 9.58 

6 2 20 40 50 348 0.48 0 

 

  
Trial 1 Trial 2 

  
Trial 3 Trial 4 
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Trial 5 Trial 6 

Figure 5. 15 (Trials 1-6) Cure profiles for Bonnet Part 

Table 5. 6 Cure Process Simulation Trials for Wing Flap Part 

Trials Input Parameters Output Parameters 

a, K/min t3, minutes Mould 

Temperature, K 

Thermal 

Gradient, K 

1 1 10 403 0.0317 

2 1 20 413 0.0665 

3 5 10 423 0.177 

4 5 20 493 0.513 

 

 

Trial 1 Trial 2 
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Trial 3 Trial 4 

Figure 5. 16 (Trials 1 - 4) Cure profiles for Wing Flap Part 

5.4.4 Curing Optimization using NSDE Algorithm 

The thermal-cure profiles were optimized using the in-house coded NSDE algorithm 

for both composite parts. The Pareto fronts were obtained between the thermal gradient and 

cure time. The effect of population size and the total number of generations were studied on 

the obtained rank 1 fronts as shown in Figures 5.17 and 5.20. The Pareto optimal fronts in 

Figures 5.17 and 5.20 are in the form of an L-shape curve. This encompasses three regions: 

(i) the vertical region corresponds to the significant change in thermal gradient values with a 

small change in cure time; (ii) the horizontal region corresponds to the significant change in 

cure time with small changes in thermal gradient values; and (iii) the curved region which 

delivers the good balance between the thermal gradient and curing time. 

Figure 5.17 shows the Pareto front between the thermal gradient and cure time for the 

automotive bonnet composite part. From Figures 5.17a and 5.17b, it was observed that an 

increase in population size increases the range of the optimal solutions.  From Figure 5.17a, at 

a population size of 5 and generation 10, the maximum thermal gradient and cure time were 

found to be 0.09 K, and 75 minutes respectively. From Figure 5.17b, at a population size of 

10 and generation 5, the maximum thermal gradient and cure time was observed to be 0.6 K, 

and 120 minutes respectively. This may be attributed to the widening of search space with an 

increase in population size. However, the extreme broadening of search space can delay the 

convergence rate and thus, result in more generations. Therefore, a population size of 10 was 

used and the total number of generations varied from 5-15 and the results were analyzed for 

generations 5, 10 and 15.  

Figure 5.18 shows the effect of mould temperature on the Pareto front between thermal 

gradient and cure time at generation 5 and population size of 10 for automotive bonnet 
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composite part. From Figure 5.18, it was observed that for a given mould temperature, the 

higher the thermal gradient the lesser the cure time and vice versa, as expected. Figure 5.19 

shows the effect of ramp rate on the Pareto front between thermal gradient and cure time. From 

Figure 5.19, it was found an increase in thermal gradient and a decrease in cure time with the 

increase in ramp rates. This may be attributed to the increased exothermal heat with the increase 

in ramp rates and mould temperatures. 

 

(a) (b) 

Figure 5. 17 Pareto Front of Thermal Gradient vs. Cure Time for Bonnet Composite 

Part: (a) Np = 5 and max_gen = 5 and 10, (b) Np = 10 and max_gen = 5, 10 and 15 

 

Figure 5. 18 Effect of Mould Temperature on Thermal Gradient and Cure Time for Np 

= 10 and max_gen = 5 for Bonnet Part 
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Figure 5. 19 Effect of Ramp Rate on Thermal Gradient and Cure Time for Np = 10 and 

max_gen = 5 for Bonnet Part 

Figure 5.20 shows the Pareto front between the thermal gradient and cure time for the 

aircraft wing flap composite part. Figures 5.20a, 5.20b and 5.20c show the Pareto fronts for 

the population size of 5, 10 and 20, respectively for different generations. From the results, it 

can be seen that with the decrease in thermal gradient, there perceived an increase in cure time 

and vice versa. The extreme minimum and maximum thermal gradients values range from 

0.004 K to 1.49 K and the cure time value ranges from 30 minutes to 300 minutes, respectively.  

Figure 5.21 shows the effect of mould temperature variations on the Pareto front 

between thermal gradient and cure time for the aircraft wing flap composite part. From the 

results, it can be seen that with the increase in mould temperature, the thermal gradient values 

are increased and cure time values are reduced. From the results, it was also found that the 

thermal gradients are significantly reduced after 50 minutes of cure time and more crowded 

solutions can be seen in the horizontal region for both the composite parts. This shows the 

efficacy of the NSDE algorithm for optimizing the thermal cure profile for the studied 

composite parts. 
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(a) (b) 

 

(c) 

Figure 5. 20 Pareto Front of Thermal Gradient vs. Cure Time for Aircraft Wing Flap 

Composite Part: (a) Np = 5 and max_gen = 1 to 30 with a Difference of 5 Generations, 

(b) Np = 10 and max_gen = 1 to 20 with a Difference of 5 Generations, (c) Np = 20 and 

max_gen = 1 to 20 with a Difference of 5 Generations 
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Figure 5. 21 Effect of Mould Temperature on Thermal Gradient and Cure Time for Np 

= 20 and max_gen = 20 for Aircraft Wing Flap Part 

5.4.5 Curing Optimization using NSGA-II Algorithm 

Pareto fronts between thermal gradient and cure time were obtained using the NSGA-

II algorithm. The population size and maximum number of generations were set to 10. The 

Pareto fronts obtained from the NSGA-II algorithm were compared with those obtained from 

the NSDE algorithm by using similar population size and number of generations as shown in 

Figures 5.22a and 5.22b. Figures 5.22a and 5.22b show the Pareto fronts obtained for the 

bonnet and wing flap parts, respectively. 

From the results, it can be seen that the Pareto fronts obtained from the NSGA-II 

algorithm also exhibit an L-shaped curve. From the results, it can be seen that with the increase 

in cure time thermal gradient values are decreased and vice versa. The extreme minimum and 

maximum thermal gradient values range from 0.0068 K to 0.828 K for the bonnet part and 

0.007 K to 0.39 K for the wing flap part, respectively. Similarly, the extreme minimum and 

maximum cure time values range from 40 minutes to 120 minutes for the bonnet part and 40 

minutes to 490 minutes for the wing flap part, respectively. From the results, it was also 

observed that with an increase in the number of generations, the NSGA-II algorithm explored 

the search space more extensively, resulting in slower convergence rates. This indicates that 

the NSGA-II algorithm excels in exploration but lags in exploitation leading to a higher number 

of function evaluations and increased computational time. 

In comparison, most solutions obtained from the NSDE algorithm are concentrated in 

the curved region of the Pareto front. This indicates that the NSDE-obtained solutions achieve 

a good balance between thermal gradient and cure time. Additionally, the NSDE solutions 
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converged relatively faster than those obtained from the NSGA-II algorithm. For the NSDE 

algorithm, the extreme minimum and maximum thermal gradient values range from 0.0008 K 

to 0.609 K for the bonnet part and 0.0022 K to 0.17 K for the wing flap part, respectively. 

Similarly, the extreme minimum and maximum cure time values range from 40 minutes to 120 

minutes for the bonnet part and 35 minutes to 300 minutes for the wing flap part, respectively. 

This indicates that the NSDE algorithm is more effective in achieving faster convergence with 

less cure process and computational time when compared to the NSGA-II algorithm. 

 

(a) (b) 

Figure 5. 22 Pareto Front of Thermal Gradient vs. Cure Time: (a) Automotive Bonnet 

Composite Part, (b) Aircraft Wing Flap Composite Part 

5.4.6 Comparative Assessment between Trial and Error Process 

Simulations, NSDE and NSGA-II Optimization Algorithms  

The efficacy of the NSDE algorithm was evaluated by comparing the Pareto optimal 

solutions obtained from the NSDE algorithm with solutions obtained from the trial and error 

process simulations and the NSGA-II algorithm for both selected composite parts. The 

comparisons were made from the solutions obtained from either similar ramp rates or identical 

final mould temperatures at the cure cycle. The comparisons were analyzed in terms of a 

thermal gradient, cure time and uniform cure progression at the applied temperature cycles. 

Case 1 in Figure 5.23 compares the thermal-cure cycles obtained for the bonnet part 

using closely identical final mould temperatures. From the Case 1 results, it can be seen that 

the composite panel mid-thickness temperatures predicted from the NSDE and NSGA-II 

algorithms were found to be uniformly progressive with the applied mould surface 

temperatures when compared to the trial and error predictions. Thus, the thermal gradient 

predicted using the NSDE and NSGA-II algorithms at the final cure time was significantly 

lesser than the trial and error process as can be seen in Table 5.7. However, the thermal gradient 
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predicted using the NSDE algorithm was comparatively lesser than the NSGA-II algorithm. 

Case 2 in Figure 5.23 compares the thermal-cure cycles obtained for the bonnet part using 

identical ramp rates. From the Case 2 results, it can be seen that the NSDE algorithm predicted 

the targeted degree of cure at 90% within the 1st dwell and hence, there were no further 

computations found at the 2nd dwell. Whereas, trial and error simulations predicted degrees of 

cure at both dwells due to its manual approach. Moreover, the NSGA-II algorithm predicted a 

lower value for dwell times, necessitating a two-dwell thermal profile and requiring more cure 

time as can be seen in Table 5.7. 

Table 5.8 and Figure 5.24 show a comparison of cure process results between the 

studied simulation trials and the Pareto optimal solutions generated by the NSDE and NSGA-

II algorithms at the 10th generation with a population size of 10 for the wing flap composite 

part. From the results of Case 1, it is evident that the NSGA-II algorithm predicted a maximum 

cure time of 490 minutes, while trial and error simulations resulted in a maximum cure time of 

400 minutes and the NSDE algorithm predicted a maximum cure time of of only 300 minutes. 

Furthermore, in the Case 2 results, trial and error simulations predicted a higher thermal 

gradient of 2.1946 K, whereas the NSDE and NSGA-II algorithms predicted thermal gradients 

of 0.07 K and 0.06 K, respectively. Hence, the efficacy of the NSDE algorithm is confirmed in 

predicting converged solutions with reduced cure time and thermal gradient compared to both 

trial and error simulations and the NSGA-II algorithm. In addition, one of the thermal-cure 

profiles predicted by the NSDE algorithm matched the optimal thermal-cure profile obtained 

from trial and error simulation in Case 3. However, the NSGA-II algorithm was unable to 

predict this similar cure profile. This reinforces the effectiveness of the NSDE algorithm in 

providing a greater number of optimal choices for thermal cure cycles. 

From the results, it was found that the NSDE algorithm predictions were effective in 

terms of a thermal gradient, cure time and automatic selection of the mould heating parameters 

when compared to the trial and error simulations and NSGA-II algorithm for both the studied 

composite parts. This may be attributed to the effective tuning of mould heating parameters 

through supervised learning iterations of the NSDE algorithm.  

Table 5. 7 Comparative Assessment for Bonnet Part 

Case Input Parameters Output Parameters 

a, 

K/min 

t1, 

min 

t2, 

min 

t3, 

min 

Mould 

Temperature, 

K 

Thermal 

Gradient, 

K 

Cure 

Time, 

Minutes 
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Case 

1 

Trial and 

Error 

Simulation 

3 10 30 35 333 0.513 60 

NSGA-II 

Algorithm 

3.43 7 27 35 330 0.0469 50 

NSDE 

Algorithm 

3.59 7 25 35 333.13 0.0198 45 

 

Case 

2 

Trial and 

Error 

Simulation 

4 10 40 50 348 0.505 60 

NSGA-II 

Algorithm 

4 5 26 27 319 0.0099 65 

NSDE 

Algorithm 

4 9 - - 334 0.01 40 

 

 

Case 1 Case 2 

Figure 5. 23 (Case 1 & 2) Thermal-Cure Profiles Comparative Assessment for Bonnet 

Part 

Table 5. 8 Comparative Assessment for Wing Flap Part 

Case Input 

Parameters 

Output Parameters 

a, 

K/min 

t1, 

minutes 

Mould 

Temperature, 

K 

Thermal 

Gradient, 

K 

Cure 

Time, 

Minutes 

 

Case 

1 

Trial and 

Error 

Simulation 

1 10 403 0.0317 400 

NSGA-II 

Algorithm 

1 5 398 0.0007 490 

NSDE 

Algorithm 

2 8 409 0.0022 300 

 

Case 

2 

Trial and 

Error 

Simulation 

5 20 493 2.1946 30 
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NSGA-II 

Algorithm 

4.71 17 473 0.39 40 

NSDE 

Algorithm 

4.6 20 485 0.0177 35 

 

Case 

3 

Trial and 

Error 

Simulation 

5 10 443 0.0646 80 

NSGA-II 

Algorithm 

3.49 14 441 0.0717 85 

NSDE 

Algorithm 

5 10 443 0.0646 80 

 

 

Case 1 Case 2 

Figure 5. 24 (Case 1&2) Thermal-Cure Profiles Comparative Assessment for Wing Flap 

Part 

5.5 Summary 

The main objective of this chapter was to develop a simpler and cost-effective multi-

objective optimization algorithm for the cure cycle optimization of industrial composite parts. 

A vinyl ester-glass fibre-reinforced automotive bonnet and an RTM6-carbon fibre-reinforced 

aircraft wing flap composite parts were used as the optimization case studies. At first, 

isothermal trial and error cure process simulations were performed to obtain the time-

temperature-degree of cure window for the aircraft wing flap composite panel using the 

identical temperature cycles used in RTM6 DSC experiments as reported in Chapter 2. Then, 

non-isothermal trial and error cure process simulations were performed by manually changing 

the mould heating parameters to optimize the composite part cure profile of both composite 

parts. The thermal-cure process optimizations were performed using two-dwell and one-dwell 

mould heating parameters for the 12 mm thick automotive bonnet and the 5 mm thick aircraft 

wing flap composite parts, respectively. Subsequently, a novel in-house coded NSDE 
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algorithm was developed and implemented for the simultaneous minimization of composite 

part thermal gradients and cure process time for both the studied composite parts. To evaluate 

the efficacy of the developed NSDE algorithm, the NSGA-II algorithm was also in-house 

coded for the simultaneous optimization of framed objectives. The efficacy of the proposed 

algorithm was examined with the trial and error process model simulations and NSGA-II 

optimization algorithm in terms of a thermal gradient, cure time and uniform cure progression 

at the applied temperature cycles.  

From the isothermal trial and error cure process simulation results, the rate of cure for the 

composite panel was found to be slower than that of the neat resin cure rate due to fibre thermal 

resistance. From the cure difference analysis, the magnitude and the peak values of cure 

differences decreased with an increase in applied mould temperatures. Finally, the kinetics of 

cure difference progression was modelled as a function of neat resin cure conversion using the 

modified Kamal and Sourour autocatalytic model. From the kinetics of cure difference 

progression, it is possible to predict the cure differences between neat resin and composite 

panel from the experimental neat resin cure conversion data with the applied time-temperature 

cycles. Thus, composite panel cure conversion can also be predicted from the cure difference 

data. This will help to adjudge the operable cure cycle for the composite part from the 

experimental neat resin cure conversion data.   

From the non-isothermal trial and error cure process simulation results, the composite 

part thermal profiles were obtained with a mid-thickness temperature overshoot of 7 to 9 K due 

to the improper choice of mould heating parameters for the bonnet part. In all trials studied for 

the wing flap part, it was found an increase in thermal gradient and a decrease in cure time with 

the increase in ramp rate and dwell time. Importantly, the trial and error process was found 

significantly challenging to optimize the multiple parameters simultaneously for both the 

composite parts. From the optimization results, the NSGA-II algorithm predicted a thermal 

gradient of 0.0068 K and a cure time of 40 minutes for the bonnet part and a thermal gradient 

of 0.007 K and a cure time of 40 minutes for the wing flap part. The NSDE algorithm predicted 

a lesser thermal gradient of 0.0008 K and cure time of 40 minutes than trial and error cure 

simulation and NSGA-II algorithm for the bonnet part and a lesser thermal gradient of 0.0022 

K and cure time of 35 minutes for the wing flap part.  

From the comparative assessment, the NSGA-II algorithm was found to be good at 

exploration but lags in exploitation leading to increased function evaluations and computational 

time. The NSDE algorithm was found to be effective in achieving faster convergence with less 

cure process and computational time when compared to the NSGA-II algorithm. The NSDE 
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algorithm was observed to be effective in terms of a thermal gradient and cure time with the 

automated selection of the mould heating parameters when compared to the trial and error 

simulations. This may be attributed to the effective tuning of mould heating parameters through 

supervised learning iterations of the NSDE algorithm. Whereas, the trial and error simulation-

based optimizations were found to be significantly challenging and time-consuming with the 

iterative manual selection of thermal-cure process parameters. 
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Chapter 6  

Overall Conclusions and Scope for Future Work 

6.1 Conclusions 

The main objective of this work was to develop the in-house coded MOO algorithm for the 

manufacturing of resin transfer moulded composite parts. A vinyl ester-glass fibre-reinforced 

automotive bonnet and an RTM6-carbon fibre-reinforced aircraft wing flap composite parts 

were selected as the composite parts. An in-house coded MOSO and NSDE algorithms were 

developed to optimize mould-fill and curing phases for the selected composite parts. At first, 

vinyl ester and RTM6 resins were thermally characterized to develop the cure process windows 

through which the appropriate time-temperature cure cycles were identified for the curing of 

composite parts. Subsequently, the permeabilities of reinforcement fibre mats were measured 

using mould-filling experiments for their applicability in the mould-filling simulations. Then, 

a novel in-house coded NSDE algorithm was implemented for simultaneous optimization of 

two objectives namely, dry spot content and mould-fill time by changing the locations of gates 

and vents at the fixed input numbers of gates and vents. Consecutively, a newly proposed 

MOSO algorithm was implemented for the simultaneous optimization of three objectives 

namely dry spot content, mould-fill time and total number of ports by changing both the 

numbers as well as locations of gates and vents, simultaneously. Then, the efficacy of the 

proposed algorithms was examined with the trial and error process model simulations.  
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The thermal-cure process optimizations were performed using two-dwell and one-dwell 

mould heating parameters for the 12 mm thick automotive bonnet and the 5 mm thick aircraft 

wing flap composite parts, respectively. Subsequently, a novel in-house coded NSDE 

algorithm was developed and implemented for the simultaneous minimization of composite 

part thermal gradients and cure process time for both the studied composite parts. To evaluate 

the efficacy of the developed NSDE algorithm, the NSGA-II algorithm was also in-house 

coded for the simultaneous minimization of composite part thermal gradients and cure process 

time. The efficacy of the proposed algorithm was examined with the trial and error process 

model simulations and NSGA-II optimization algorithm in terms of a thermal gradient, cure 

time and uniform cure progression at the applied temperature cycles.  

From the thermal characterization of neat resins, the modified Kamal and Sourour three-

parameter model was effectively fitted to the experimental degree of cure vs. cure rate data for 

both vinyl ester and RTM6 resins. The obtained cure kinetic models, 
𝑑𝛼

𝑑𝑡
= (1.04 × 109 ×

𝑒
−7359.8

𝑇⁄ × 𝛼0.284) × (1 − 𝛼)0.857 and 
𝑑𝛼

𝑑𝑡
= (3.2 × 106 × 𝑒

−7706
𝑇⁄ × 𝛼0.774) × (1 − 𝛼)1.097 

were effectively employed during the simulation of vinyl ester resin and RTM6 resin composite 

parts processes, respectively.  

From the mould-filling experiments, the effect of processing and material parameters on 

the reinforcement mat permeability was evaluated using mould-filling experiments. From the 

results, the reinforcement mat permeability was increased with an increase in porosity and 

decreased with an increase in injection pressure, number of mat layers and fluid viscosity. 

Subsequently, the permeability of the reinforcement mat as a function of material and process 

parameters was predicted using machine learning techniques. From the modelling analysis, the 

ANN and ANFIS techniques predicted permeability values qualitatively and quantitatively 

with R2 values of 0.967 and 0.975, respectively. The effective permeability of 2.0×10-9 m2 and 

1.0×10-9 m2 were used for the mould-filling simulations of the vinyl ester - glass fibre reinforced 

automotive bonnet and RTM6- carbon fibre reinforced aircraft wing flap composite parts, 

respectively. 

From the mould-filling phase optimization results, the trial and error process predicted a 

lesser mould fill time of 15 minutes without dry spots when compared with the developed 

optimization algorithms for the bonnet part. However, the dry spot content obtained using the 

NSDE and MOSO algorithms was within the acceptable range of 1%. NSDE algorithm 

predicted a lesser dry spot content of 0.35% with a mould-filling time of 35 minutes for pre-

fixed 2 gates and 4 vents injection strategy. In contrast, the MOSO algorithm predicted a dry 
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spot content of 0.295% and a mould-filling time of 25 minutes for two gates and three vents 

injection strategy. For wing flap composite part, the MOSO algorithm outperformed the NSDE 

algorithm and trial and error predictions in terms of lower dry spot content of 0.45%, utilizing 

only two gates and two vents of injection strategy, uniform speed of resin flow front 

progression towards the vents, lesser NFEs and a shorter computational time. Notably, the 

inclusion of a race-tracking effect at the boundary edges led to the absence of dry spot content 

at the edges of both composite parts. Additionally, it is worth noting that the final dry spot 

content observed around the vents in both composite parts may become insignificant as the 

simulation progresses and the allotted time elapses. 

From the comparative assessment, the trial and error process was observed to be effective 

to other algorithms in terms of dry spot content, mould fill time, and uniform resin flow front 

progression towards the vents when compared to the optimization algorithms for the 

automotive bonnet composite part. However, the trial and error process required more 

iterations with trials in numbering and positioning ports and manual efforts for obtaining a 

single optimal solution. Conversely, the MOO algorithms were automated and needed less 

manual effort and problem-specific experience to obtain the number of Pareto optimal 

solutions. Significantly, the MOO algorithms deliver multiple optimality for the user in 

selecting the application-specific best design. Specifically, the MOSO algorithm was 

programmed to choose the number and locations of gates and vents automatically from the 

defined geometry space without manual interference. In comparison to the NSDE algorithm, 

the MOSO algorithm exhibited several advantages, including lower dry spot content, a reduced 

number of required ports, a more consistent speed of resin flow front progression towards the 

vents, significantly fewer evaluations (NFEs) and shorter computational time. It is worth noting 

that the MOSO algorithm had the capability to simultaneously optimize three objectives while 

the NSDE algorithm was limited to concurrently optimizing only two objectives. 

In cure phase optimization, initially, isothermal trial and error cure process simulations were 

performed to obtain the time-temperature-degree of cure window for the aircraft wing flap 

composite panel using the identical temperature cycles used in RTM6 DSC experiments. From 

the isothermal trial and error cure process simulation results, the rate of cure for the composite 

panel was found to be slower than that of the neat resin cure rate due to fibre thermal resistance. 

From the cure difference analysis, the magnitude and the peak values of cure differences 

decreased with an increase in applied mould temperatures. Finally, the kinetics of cure 

difference progression was modelled as a function of neat resin cure conversion using the 

modified Kamal and Sourour autocatalytic model. From the kinetics of cure difference 
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progression, it is possible to predict the cure differences between neat resin and composite 

panel from the experimental neat resin cure conversion data with the applied time-temperature 

cycles. Thus, composite panel cure conversion can also be predicted from the cure difference 

data. This will help to adjudge the operable cure cycle for the composite part from the 

experimental neat resin cure conversion data.  From the results, it was found that the mould 

temperature of 240oC has the minimum cure differences at any resin cure conversion. 

Then, non-isothermal trial and error cure process simulations were performed by manually 

changing the mould heating parameters to optimize the composite part cure profile of both 

composite parts. From the non-isothermal trial and error cure process simulation results, the 

composite part thermal profiles were obtained with a mid-thickness temperature overshoot of 

7 to 9 K due to the improper choice of mould heating parameters for the bonnet part. In all 

trials studied for the wing flap part, it was found an increase in thermal gradient and a decrease 

in cure time with the increase in ramp rate and dwell time. Importantly, the trial and error 

process was found significantly challenging to optimize the multiple parameters 

simultaneously for both the composite parts. From the optimization results, the NSGA-II 

algorithm predicted a thermal gradient of 0.0068 K and a cure time of 40 minutes for the bonnet 

part and a thermal gradient of 0.007 K and a cure time of 40 minutes for the wing flap part. 

The NSDE algorithm predicted a lesser thermal gradient of 0.0008 K and cure time of 40 

minutes than trial and error cure simulation and NSGA-II algorithm for the bonnet part and a 

lesser thermal gradient of 0.0022 K and cure time of 35 minutes for the wing flap part.  

From the comparative assessment, the NSGA-II algorithm was found to be good at 

exploration but lags in exploitation leading to increased function evaluations and computational 

time. The NSDE algorithm was found to be effective in achieving faster convergence with less 

cure process and computational time when compared to the NSGA-II algorithm. The NSDE 

algorithm was observed to be effective in terms of a thermal gradient and cure time with the 

automated selection of the mould heating parameters when compared to the trial and error 

simulations. This may be attributed to the effective tuning of mould heating parameters through 

supervised learning iterations of the NSDE algorithm. Whereas, the trial and error simulation-

based optimizations were found to be significantly challenging and time-consuming with the 

iterative manual selection of thermal-cure process parameters. 
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6.2 Future Scope 

The research has successfully developed and implemented in-house coded MOSO and 

NSDE algorithms for optimizing the mould-fill and curing phases of the resin transfer 

moulding process. Future work can focus on refining these algorithms further.  

1. Exploring the MOSO Algorithm for Micro-Scale and Meso-Scale Voids Investigation: 

The developed MOSO (Multi-Objective Stochastic Optimization) algorithm has shown 

promise in optimizing complex systems. Extending the application of this algorithm to 

investigate micro-scale and meso-scale voids can be a substantial area of research. 

Simultaneously optimizing the total void content (combining macro, meso, and micro voids), 

mould-fill time and the number of ports is a challenging task. Future research can delve into 

refining the existing optimization model and algorithm to handle these multi-objective 

functions efficiently. This could involve refining the algorithm to handle intricate geometries 

and material properties and conducting comprehensive simulations and experiments to validate 

its effectiveness in void detection and analysis.  

2. Addressing Cure Phase Optimization for Simultaneously Minimizing Temperature 

Overshoot, Cure Time and Thermal Gradients Using NSDE Algorithm: 

The cure phase optimization of composite processing is crucial for determining the final 

properties of the product. Optimizing parameters such as temperature overshoot, cure time and 

thermal gradients is essential to achieve high-quality composite parts. The developed NSDE 

(Non-dominated Sorting Differential Evolution) algorithm provides an opportunity to tackle 

this optimization problem. Future research can focus on enhancing the capability of the 

algorithm by incorporating temperature overshoot as a new objective function for handling 

varying material properties and geometries. Furthermore, conducting detailed simulations and 

experimental studies to validate the optimized parameter's impact on the final product's 

structural integrity and performance would be valuable. 

3. Implementation of Real-Time Process Control: 

Developing a real-time process control system based on the optimized parameters could be 

an area of future research. Implementing sensors and actuators in the manufacturing setup that 

can adjust parameters dynamically based on real-time feedback can enhance the efficiency and 

quality of the manufacturing process. NSDE algorithm could be employed for predictive 

analytics, enabling the system to anticipate issues and adjust parameters proactively. 

4. Development of User-Friendly Software Tool: 
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Translating complex algorithms and methodologies into a user-friendly software tool could 

significantly impact industrial adoption. Developing an intuitive interface that allows engineers 

and manufacturers to input their parameters, visualize the optimization process and interpret 

results could bridge the gap between academic research and practical industrial applications. 

5. Real-World Implementation and Industrial Applications: 

One of the crucial steps in any research is the practical implementation of developed 

algorithms and methodologies in real-world industrial settings. Future work can focus on 

collaborating with industries to implement optimized processes on their production lines. Case 

studies and feedback from industrial partners can provide valuable insights into the 

applicability, efficiency and economic viability of the developed algorithms. This practical 

validation can lead to the development of best practices and guidelines for implementing 

similar optimization techniques in various manufacturing sectors. 

In summary, the future work in this PhD thesis can encompass a broad spectrum of research 

activities ranging from algorithmic enhancements and integration to practical implementations 

in industrial contexts. These efforts would not only contribute significantly to the academic 

community but also have a substantial impact on the efficiency and quality of manufacturing 

processes in diverse industries. 



157 

 

Thesis Contributions 

The research work performed in this PhD thesis has made significant contributions to 

the research community in the process and product development of resin transfer moulded 

composite parts. The main objective of this work was to develop in-house coded multi-

objective optimization (MOO) algorithms for the manufacturing of composite parts and the 

algorithm's efficacy was exhibited with the case studies of vinyl ester-glass fibre-reinforced 

automotive bonnet and RTM6-carbon fibre-reinforced aircraft wing flap composite parts. 

1. Development of Novel In-House Coded MOO Algorithms: One of the primary 

contributions of this research is the development of two novel in-house coded MOO 

algorithms, namely the Multi-Objective Stochastic Optimization (MOSO) and the Non-

dominated Sorting Differential Evolution (NSDE) algorithms. These algorithms were designed 

to optimize the mould-filling and curing phases of the composite parts by addressing critical 

aspects of the RTM manufacturing process. 

2. Development of Simulation-based Optimization Framework: A robust and cost-

effective methodology was developed to simulate and optimize the RTM mould-filling and 

curing processes through a framework based on simulation-driven optimization. This was 

accomplished by integrating a multi-objective optimization algorithm with process simulation 

through coupled multi-phase porous flow, transient heat transfer and resin cure kinetics models. 

The developed framework was implemented using COMSOL Livelink for MATLAB. 

3. Development of Cure Process Window: The research provided a valuable contribution 

by developing the Time-Temperature-Cure Process Window of neat vinyl ester and RTM6 

resins using thermal characterization. The obtained cure process window can help the 

composite practitioners to predict the cure completion time and degree of curing for the applied 

time- temperature cycles. 

4. Reinforcement Fibre Mats Permeability Analysis: The study involved measuring 

reinforcement mat permeability as a function of various processing and material parameters 

through mould-filling experiments. The experimental data was utilized for predicting 

permeability values using Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy 

Inference System (ANFIS) machine learning models. These techniques provide valuable tools 

for researchers and engineers involved in the resin transfer moulding process. 
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4. Multi-Objective Optimization for Mould Filling: The development and application of 

the NSDE and MOSO algorithms for the simultaneous optimization of multiple objectives 

related to mould filling such as dry spot content, mould-fill time and the number and location 

of ports represent a significant advancement in the field. These algorithms design an effective 

injection strategy by simultaneously optimizing gate-vent numbers and locations. These 

algorithms offer efficient ways to achieve optimal mould-filling process by reducing 

manufacturing defects and improving efficiency.  

5. Cure Phase Optimization: The research addressed the critical phase of curing in 

composite manufacturing. It developed a novel in-house coded NSDE algorithm for the 

simultaneous minimization of composite part thermal gradients and cure process time. The 

algorithm was compared to the widely used NSGA-II algorithm by providing insights into the 

strengths and weaknesses of different optimization approaches. 

6. Cure Difference Modelling: The study introduced a novel approach to model cure 

differences between neat resins and composite panels by enabling the prediction of cure 

conversion for composite parts based on neat resin data. This approach has the potential to 

streamline the determination of operable cure cycles for composite manufacturing.  

In summary, this PhD thesis has contributed significantly to the research community 

by developing innovative optimization algorithms and providing valuable data on resin thermal 

characterization and permeability. Additionally, it has advanced the understanding and 

optimization of critical phases in the manufacturing of composite parts. These contributions 

can benefit both academic researchers and industry professionals working in the field of 

composite materials and manufacturing. 
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