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ABSTRACT

The utilization of biological processes to treat polluted wastewater has become prevalent,
encompassing both conventional domestic and industrial wastewater. This approach aims to
eliminate nutrients, specifically carbon, nitrogen, and phosphorus, while adhering to regulatory
guidelines for reducing nutrient discharge into surface water, as mandated by municipal water
directives. There is a growing interest for enhancing the effluent quality (EQ) of sewage

wastewater treatment facilities.

Wastewater treatment plants are complex, nonlinear, and slow processes. The lack of adequate
instrumentation, stringent environmental regulations, and the need for cost-effective plants
have highlighted the significance of automating wastewater treatment processes. However, the
process's complexity makes it difficult to successfully implement control systems. The main
challenge is developing a control strategy that reduces operational costs (OC) while also
improving EQ. This study looks into the development of various control strategies to meet

these challenges.

The Benchmark Simulation Model No. 1-P (BSM1-P) and Sequencing Batch Reactor (SBR)
serve as test platforms for these control strategies. The primary goal is to prevent violations in
effluent ammonia, total nitrogen, and total phosphorus levels while reducing operational costs
and improving effluent quality. The proposed control strategies use proportional integral (PI),

fractional P1 (FPI), fuzzy logic controller (FLC), and model predictive control (MPC).

To meet strict environmental laws, wastewater treatment plants (WWTPS) must balance
efficiency and cost-effectiveness in their extremely non-linear operations. The ASM3bioP
framework inside a BSM1-P is employed in this study to enable simultaneous nitrogen and
phosphorus removal using an activated sludge process model with seven reactor
configurations. The activated sludge process is the most complicated and energy-intensive
phase of a WWTP. To control dissolved oxygen in aerobic reactors and nitrate levels in anoxic
reactors, two robust PI controllers — a classical Pl and a non-integer (fractional) order Pl — with
both integer-order and fractional-order models are designed. The controllers are created and
simulated with the use of a mathematical model that has been developed based on the input
data. Control theory has actively explored fractional calculus and its applications in recent
years. This work regulates DO and NO concentrations in aerobic and anoxic reactors using

IMC-based fractional filters cascaded with P1 and FPI controls. Based on integer and non-
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integer commands, these controllers optimize plant efficiency, longevity, production costs, and
effluent nutrient content. IMC fractional Pl controllers prioritize maximal sensitivity (Ms)
within gain margin (GM) and phase margin (PM) as limitations. Fractional-order calculus
advances highlight the dynamic character of real-time complicated processes, reducing
complexity while retaining complex system dynamics. The fractional-order PID (PI*D*)
controller, an improved variant of the integer-order PID, adds integration (1) and differentiation
(w) orders, improving closed-loop response stability with parameter alterations. The lower level
Fractional controller with a fractional order model improves both the effluent quality index
(EQI) and operational cost index (OCI) significantly. For such biological WWTP, a
hierarchical Fuzzy logic controller or a MPC are designed to adjust the dissolved oxygen in the
seventh reactor (DO-) to control ammonia. The implemented supervisory layer control strategy
improves EQI while increasing OCI marginally.

The treatment of wastewater is highly challenging due to large fluctuations in flow rates,
pollutants, and variable influent water compositions. A sequencing batch reactor (SBR), and
Modified SBR Cycle-Step-Feed Process (SSBR) configuration are studied in this work to
effectively treat municipal wastewater while simultaneously removing nitrogen and
phosphorus. To control the amount of Dissolved Oxygen in a SBR, three axiomatic control
strategy (PI, FPI), and Fuzzy logic controllers (FUZZY)) is presented. A biological process
and relevant control algorithm has been designed using real-time plant data with the models of
biological processes (SBR, and SSBR), and aeration system. ASM2d mathematical modelling
framework is considered for development of control relevant simulations. The use of the
intricate ASM2d model, as well as the application of a control strategy to a batch process,
makes the work significant. A comparison of plant performance concerning Pl, FPI and
FUZZY control framework is included. A comparison of FPI with the other two control
strategies showed a significant reduction in nutrient levels and added an improvement in
effluent quality. The SSBR, which is improved by precisely optimizing nutrient supply and
aeration, establishes a delicate equilibrium. This refined method reduces oxygen requirements

while reliably sustaining important biological functions.

This thesis also proposes a novel supervisory control scheme for SBR based WWTP. It
integrates hierarchical fuzzy control, based on ammonia and nitrate observations, in the
presence of lower-level P1 and FPI controllers, with the dual goal of aeration cost reduction
and effluent quality enhancement. In the hierarchical control system, variable DO trajectories
are generated by the supervisory fuzzy logic controller and passed to the lower level controller,
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according to ammonia and nitrate profiles within SBR. It is crucial to adjust this element
properly in order to maximize wastewater treatment efficiency and reduce plant costs,
especially for the aeration system. A notable aspect of nitrate based hierarchical control scheme
is to curtail the fresh oxygen use since nitrate (Sno), a product of nitrification, is utilized for
limiting aeration costs. Six distinct control techniques are implemented of which PI and FPI
controllers for control of DO at the lower level. Four types of hierarchical ammonia and nitrate-
based controllers employing intelligent Fuzzy control are deployed. Addition of Fuzzy
controller contributes to an airflow reduction of 40.08% for ammonia control and 31.58% for
nitrate control strategies. This study highlights the superiority of the ammonia-based control
strategy, particularly coupled with lower level FPI controller, based on its ability to minimize
airflow without affecting effluent quality. These findings offer helpful insights for advancing
the field of wastewater treatment, improving efficiency, and promoting cost-effective and

sustainable practices in SBR.

Another study which aims to investigate the effect of different seasons where the temperature
would be different on the performance (phosphorous, nitrogen, and organic matter removal) of
SBR based wastewater treatment plants. The modified ASM2d module, including the microbial
kinetics is used to simulate the EBPR-based SBR process and the temperature is chosen
between 10 to 33°C. Influent data from distinct wastewater treatment plants located in India
and Europe are considered. The investigation of the kinetic variables is performed over a wide
temperature range, and significant increases are seen as the temperature rises. The effluent
parameters are within the government guidelines. It is clear that an increase in temperature
results in better effluent quality with reduced COD, BOD, NH, and TN values and a slight
increase in TP and TSS. In conclusion, this study highlights the importance of considering the
effect of temperature on the performance of SBR-based wastewater treatment plants in

different climatic conditions.

Keywords: Activated sludge system, Benchmark simulation model, Effluent quality index, Pl
controller, FPI controller, Non- integer model, Sequencing batch reactor, Operational cost

index.
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Introduction

1.INTRODUCTION

In wastewater treatment plants (WWTPs), control techniques are necessary for the plants to
run efficiently and meet government standards. This thesis highlights their pivotal role in
optimizing treatment processes, ensuring compliance, enhancing resource utilization. Control
strategies also make it possible to adapt to changes in wastewater composition and flow rates,
lower operating risks, and make decisions based on data. Control strategies are an important
part of modern wastewater treatment. They ensure the system works well and sustainably by

using advanced tracking, dynamic adjustments, and smart decision-making.

1.1 Wastewater Treatment

Water is the cornerstone of life, an absolute must for the survival of all living beings. In the
face of escalating global population growth and widespread urbanisation, sustainable oversight
of water resources has arisen as a paramount corner. One of the foremost significant aspects of
this quest is the efficient clean-up of wastewater, an intricate process that is required to protect
both environmental integrity and the wellness of society. It is critical to comprehend and apply
cutting-edge technology for wastewater treatment since growing urbanisation and
industrialization continue to put pressure on water bodies. Based on this context, developing
countries have to establish initiatives to promote the recycling and reuse of treated wastewater.
As a result, several nations are tightening their environmental restrictions. Research into

intensifying wastewater treatment plants (WWTPSs) is in vogue.

Wastewater, a by-product of domestic, industrial and agricultural operations, contains an
intricate array of contaminants ranging from organic matter to toxic substances. Unchecked
discharge of untreated wastewater straight into water bodies destroys aquatic ecosystems
and increases the danger of waterborne infections, putting public health at risk. As a result,
developing and deploying robust wastewater treatment systems has become critical to shield
water resources and maintain ecological balance. The exploration towards wastewater
treatment is a study of the sensitive balance between anthropogenic activity and aquatic
ecosystem resilience. It entails the delicate interaction of creative engineering solutions and
environmental preservation. As the world grapples with the effects of pollution and water
scarcity, a nuanced understanding of wastewater treatment processes is critical for devising
holistic and successful water management policies. Because of the numerous biological,
chemical, and physical elements influencing wastewater treatment systems, such as

fluctuations, dynamics, disturbances, and uncertainties in the influent, monitoring the
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wastewater treatment plant is often difficult. Several research materials dedicated to enhancing
the wastewater treatment process have been published as a result of significant studies done by
the global research community. In recent years, there has been a greater emphasis on the water-
energy-food nexus, intending to understand the interconnectedness of these components and
analyse their reciprocal requirements. At present, researchers are investigating wastewater

treatment plants as potential sources of resource recovery.

1.1.1 Wastewater treatment facility: Water conversion tool

We are in an era where water scarcity is a growing concern, wastewater treatment addresses
the challenge by promoting a circular water economy. Its sophisticated treatment methods
contribute to environmental conservation while aligning with global sustainability goals. An
innovative wastewater treatment facility stands at the forefront of sustainable water
management. This cutting-edge water conversion tool integrates advanced technologies to

efficiently treat and convert wastewater into high class water resources.

The wastewater treatment process involves a series of steps to remove impurities and
contaminants from water, from wastewater collection to grit removal, primary treatment to
secondary treatment, sludge treatment, tertiary treatment, and disinfection. The two types of
wastewater treatment facilities are chemical or physical WWTPs and biological WWTPs. A
biological WWTP uses biological microbes to break down waste (organic material). Through
microbial activity, the biological approach is responsible for the removal of organic
contaminants and pollutants. The physical method deals with the process of primary treatment
like grit, screening, primary sedimentation, and filtration. Physical wastewater treatment plants
are frequently used to handle wastewater from industries, factories, and industrial companies,
whereas biological treatment facilities are appropriate for dealing with wastewater from
municipal and commercial sectors. The chemical approach involves the addition of chemical

doses to remove pollutants.

-

=2 L

Influent Primarv settlement Biological treatment econdary settlement

Effluent Tertiary treatment

Figure 1.1: Schematic diagram of wastewater treatment facility
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Figure 1.1 depicts an intricate wastewater treatment operation. The contaminated influent is
collected and passed through primary settlement via screening, gritting, and a primary clarifier
before entering the biological treatment process via multiple anaerobic or anoxic and mostly
aeration treatments before reaching secondary settlement. Following that, some complex water
recycling units known as tertiary treatment takes place. The water has been treated and is now
ready for discharge. The complicated chemical and biological interactions within the process,
the particular properties of microbes, the progressive nature of the process, and the variations
in concentrations and dynamic flow rates all contribute to the complexity of WWTPs.
Furthermore, functioning is highly energy-intensive, challenging and complicated the work of
controlling WWTPs. Nonetheless, new research reveals that, in addition to water treatment,
WWTPs have the potential to produce important resources. It is becoming increasingly clear
that wastewater can be used to recover value-added products such as clean water, clean energy,

and fertilisers.

1.1.2 Biological wastewater treatment plant

Biological WWTPs are complex and nonlinear systems with interwoven dynamics
encompassing a wide range of erratic time constants and several sub-processes. These
biological treatment procedures entail the oxidation of organic compounds in wastewater by
microbial activities such as lagoons or anaerobic processes, activated sludge, and microalgae
photosynthesis. These methods are used to reduce physiological variables like pH, biochemical

oxygen demand (BOD), and chemical oxygen demand (COD).

The classic approach for biological treatment of industrial and domestic wastewaters is
characterised as activated sludge treatment. The unusual behaviour of microorganisms in
biological events occurring within the process is the primary cause of the process's nonlinear
and complex dynamics. The primary goal of wastewater treatment is to reduce effluent
concentrations prior to disposal. However, only some of the contaminants in wastewater are
treated and reduced below the allowable limit by the procedure used. Furthermore, the plant is
subjected to a wide range of disturbances and variations in the properties of the influent with
magnitudes that exceed those experienced by most other process industries. Even so, the plant
must run continually in order to meet the rigorous effluent quality restrictions. Currently,
because the process is highly energy-intensive, the plant must be operated in an energy-
efficient manner. Thus biological wastewater treatment stands out as a cutting-edge topic of

research in the contemporary landscape.
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According to the operating mode of biological treatment process it can be classified into two
types, Activated Sludge Process (ASP) and Sequencing Batch Reactor (SBR). The activated
sludge process is an interrupted treatment method that uses a suspension of microorganisms in
wastewater within an aeration tank. This microbial consortia digests and degrades organic
contaminants. A portion of the organic matter is completely oxidised, resulting in harmless end
products and other inorganic chemicals and giving energy to sustain microbial growth and

biomass creation (flocs). A typical activated sludge plant is shown in Figure 1.2.

Aeration Secondary clarifier
- o
Influent o © ° ST g Effluen
o 00 o ®
o © oo o g °o .o g %
o) o
o o o

Internal recycle

»

External recycle Waste sludge

Figure 1.2: Activated sludge Process (ASP)

A SBR is an example of batch-mode wastewater treatment technology. It is intended to treat
sewage in a series of steps, with treatment operations taking place in particular time-based
stages within a single tank. The SBR system is often divided into the following phases: Fill,
React, Settle, Decant, and Idle. In contrast to the ASP scheme, the SBR technology does not
require a secondary sedimentation basin to operate. Furthermore, the SBR system, unlike the
ASP scheme, does not include sludge return back to the aeration basin. A diagram of time

sequence SBR process is shown in Figure 1.3

iuent | Retention Tank FIL  AERATION SETTLE DECANTI E¢fiuent

—)

EXCESS SLUDGE

Figure 1.3: Sequencing batch Reactor (SBR)
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1.2 Control of Biological Wastewater treatment Plants

Recently, it has become increasingly difficult to achieve any process plant performance
standards. Upstretched productivity, severe environmental and safety laws, and rapidly
changing economic conditions have all contributed considerably to this complexity. As a result,
product quality criteria have become more severe, resulting in a greater emphasis on improving
plant profitability. Another degree of complication derives from the present trend towards
sophisticated and compactly integrated processes, which makes it difficult to limit disturbances
that propagate among interconnected components. Process control has grown in importance as
the emphasis on safe and efficient plant operations has grown. Computer-based process control
systems have developed as important tools, allowing modern factories to operate safely and
profitably while satisfying quality requirements and environmental restrictions. Figure 1.4

illustrates the systematic procedure to operate a WWTP and valuable outcomes.

The control strategies in Biological WWTPs ensure environmental compliance, improve
operational efficiency, and optimize treatment processes. In practice, the most commonly
utilised control configurations are for dissolved oxygen control, nitrate control, ammonia-based
aeration control, orthophosphate control, total suspended solids management, and so on. In

recent years, the operation of WWTPs with lower operating costs and improved effluent quality

has become critical.

Clean water,
Value added products

-
N

\_" )

Model selection Control application

Clean energy

Figure 1.4: Integrated technologies in WWTP and their outcome

1.2.1 Role of Process control engineers in WWTP

Process control engineers play an important role in WWTPs by ensuring that the treatment
processes run efficiently and effectively. Their responsibilities include a wide range of tasks
geared at improving plant performance, meeting environmental standards, and guaranteeing
the facility's general reliability. The following are significant features of process control

engineers' roles in WWTPs:
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Design and setup: Control engineers are involved in the design and implementation of
control systems for various treatment processes. They integrate sensors, programmable
logic controllers (PLCs), and other automation technologies to monitor and control the
plant's operations.

Process optimization: These engineers constantly analyse and assess the performance of
treatment procedures. They attempt to improve the efficiency of biological, chemical, and
physical treatment methods by fine-tuning control strategies, modifying set points, and
optimising parameters.

Dealing with Instrumentation & sensor: Control engineers are responsible for the
calibration and maintenance of the plant's instruments and sensors. For effective control,
accurate measurements of important parameters such as flow rates, pH levels, and dissolved
oxygen concentrations are required.

Troubleshooting and Diagnostics: When problems or disturbances occur during the
treatment process, process control engineers play an important role in diagnosing the issue.
They apply their knowledge to troubleshoot control system problems, identify root causes,
and put corrective measures in place.

Plant safety: The safety of plant operations is of the utmost importance. Process control
engineers seek to put safety precautions and emergency shutdown of systems.

Data Analysis and Reporting: Process control engineers prepare plant performance
reports by monitoring and analysing data from control systems. This data-driven strategy
aids in the development of informed judgements for process optimisation and regulatory
reporting.

Adopting new technology: As technology advances, process control engineers investigate
and integrate sophisticated technologies such as artificial intelligence, machine learning,
and advanced sensors to improve the efficiency and automation of wastewater treatment

processes.

In essence, a process control engineers play an important role in maintain the reliable and

sustainable functioning of wastewater treatment plants, thereby contributing to the protection

of environmental and public health.

Figure 1.5 displays benefits of controller implementation in WWTP. It becomes vital for the

success of a control system to investigate the incentives that can motivate a system or individual

to encourage optimal performance.
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Environmental Process
Advances protection Safety
Technologies

Predictive
maintenance

Process ¢
Excellence ° 35
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Increased e
Affordability

Reduced operational cost

Public safety

Figure 1.5: Outcomes of controller implementation in a WWTP

It becomes vital for the success of a control system to investigate the incentives that can
motivate a system or individual to encourage optimal performance. The use of automatic
controllers can improve process monitoring, allowing operations to be more closely aligned
with restrictions like effluent assessment and cost considerations. Process control is crucial in
wastewater treatment facilities because it assures optimal performance, increasing the plant's
lifespan and lowering unit product costs. Wastewater treatment plants are one-of-a-kind, which

changes the control strategy and adds complexity to the process. Here are some of the features:
» The amount of wastewater that needs to be treated every day can be very large.

* The disturbances in the influent are very high compared to most industries.

* The influent has to be accepted and treated; it can't be sent back to the supplier.

* The process isn't linear, which makes simple controllers less useful.

* The biological processes involved may have unstable behaviour.

* The amounts of nutrients are very low, making sensors difficult to use.
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In addition, the subsequent ones represent a few more reasons why control is not easy to plan

or put into place.

* The type of bacteria and how they act and where they live.

« It's hard to separate the effluent from the biomass, and it's easy to mess up the process.

* There are very strict effluent standards that must be met before the wastewater can be released.

Taking all of these things into account, there are set goals and objectives for putting in place
the right control methods for biological wastewater. The aims and goals are broken down into
three groups: operational goals, process or plant goals, and community or societal goals. The
company's community or societal goals include taking care of the environment, its workers,
and the people in the neighbourhood where it does business. It is important for the process or
plant goals to help reach the bigger group goals. Some of them are meeting limits on effluent
discharge, getting good disturbance rejection, and keeping running costs as low as possible. In
order for a certain company to meet the process or plant goals, the operational objectives spell
out exactly how it should be run. Operational objectives, plant dynamics, and traditional
instrumentation and management systems shape control strategy execution. The pyramid in
Figure 1.6 shows the hierarchical organisation of instrumentation and management systems.
Left of the pyramid classifies hardware, software, and labour; right classifies purpose and duty.
Information in diminishing amounts flows up, and operating instructions in larger amounts
flow down. All of these are considered while implementing control measures to satisfy

biological wastewater treatment facility goals.

Process Management Weeks Goals
to
Days
Days
Supervisory Control to Objectives

Hours

Advanced Process Hours

Control System to Strategies
Minutes
Minutes

Sensors and . ol i

Basic Control o mplementation
Seconds

Figure 1.6: Standard Operating and Control Hierarchy
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1.2.2 Control structures and algorithms

Different control structures are employed depending on the procedures used to accomplish
specific goals. Designing the control system involves determining which variables to manage,
and regulate, and how these groups of variables interact to build control loops. Several well-
known control structures, such as Feedback Control (FB), Feed-forward Control (FF), Cascade
Control, and Supervisory Control, are used and evaluated for WWTPs in this work. The general

framework of feedforward, feedback, and cascade control is depicted in Figures 1.7, 1.8, 1.9.

A controller's principal responsibility is to keep the process value at the desired level. The most
extensively used control technique for achieving this study is the Proportional-Integral-
Derivative (PID) controller (Astrom and Hagglund 1995). PID controllers are classified into
three types: P (Proportional), PD (Proportional-Derivative), and P1 (Proportional-Integral). The
proportional section responds to current control errors, the integral section collects previous
control errors, and the derivative section predicts future control mistakes by using the control

error's derivative.

Disturbances

| Feedforward
Controller
Actuating
Input Error Controller Signal o Output

= Sianal (Through "

1 Actuators) :

I .

I Ammonia :

1

L —————— J

Feedback signal

Figure 1.7: Feedback-feedforward control

Actuating
Input Error Signal ﬁl:t_PEt
Signal (Through
4
1
1
1
1

Actuators)

Feedback

. Element
Feedback signal (Sensors)

| I —

Figure 1.8: Feedback Control
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Cost Disturbance
Function Constrains

o | |
&=

DO
Set-point

Dissolved oxygen (DO)

Figure 1.9: A supervisory layer strategy which determines set point to lower loop.

Responsibility for the integral action lies with the integral segment. Alternatively, the steady-
state offset can be eliminated via integral action. The main issue with PID is that it is linear,
which might not work for complex systems. An expansion of the integer-order PID controller
that incorporates the integration ()) and differentiation (u) orders is the fractional-order PI*D*
controller, elucidates in Figure 1.10. The extra tuning options in fractional order controllers are
what really make them appealing, they may be used to make the closed-loop system more

resilient in general.

Water treatment plants often use advanced control algorithms like MPC, Fuzzy, and ANN.
There has been the utilisation of Fuzzy logic control across the entirety of the wastewater

treatment process. It was also discovered that the FLCs operate admirably under a range of

PI*DH control action

Fractional integrator l
%

Fractional
differentiator

Input

Figure 1.10: Fractional PID block diagram
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operational circumstances. The WWTP's basic fuzzy logic controller is shown in Figure 1.11.
Recent trends highlight the importance of FLCs in wastewater treatment, however direct
control approaches can fail in many ways depending on the sensitivity of the process. In
traditional FLC, the control model represents the human body of knowledge. There are three
parts to FLC. In the main portion, input values are used to fuzzify membership functions (MFs).
In the second section, we'll use the inference process to identify the outputs after connecting
the fuzzy inputs and outputs using specified rules. De-fuzzification, the third section, involves
computing stringent output values. To control aeration for energy efficiency and reduce nitrous

oxide (N20) emissions, wastewater treatment plants use fuzzy logic control.

Knowledge Base
m

\_ J

A 4 \ 4 \ 4

Fuzz Fuzzy :
|:> Fuzzifier : Interface Engine Defuzzifier
Input Output

Figure 1.11: Structure of Fuzzy Interface system

wastewater treatment. MPC is a sophisticated control technique that use a dynamic process
model to anticipate future system behaviour and optimise control inputs over a predetermined
time horizon. The core components of MPC are process models, objective functions, and
control rules. The basic MPC controller in the WWTP is shown in Figure 1.12. Several studies
have demonstrated that MPC, when applied to a linear process model, is beneficial in treating
wastewater (Steffens and Lant (1999), Charef et al. (2000), and Sotomayor et al. (2002)).

We can see how an MPC controller can incorporated with WWTP:

Development of a dynamic model: To initiate the implementation of MPC, the initial step
involves constructing a dynamic model of the wastewater treatment process. The model should

accurately represent the essential connections and behaviours of the system, encompassing the
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interplay between different elements like as pumps, valves, tanks, and biological activities.
Then defining the Objective Function: It necessitates the use of an objective function that must
be minimised across the prediction horizon. Regarding wastewater treatment, the objective
function in question may encompass minimising energy usage, maximising efficiency in
removing pollutants, or ensuring that the quality of the effluent remains within the limitations
set by regulations. Then putting the constraints Statement: Constraints play a crucial role in
MPC by ensuring that the control inputs and system states stay within acceptable limits.
Limitations in wastewater treatment may encompass restrictions on the dynamics of influent

flow, quantities of chemicals used, and other variables within the treatment process.

Real-time optimisation: MPC addresses the optimisation problem in real-time by utilising
current measurements and adjusting the control inputs accordingly at each time step. Execution
of MPC Controller: The MPC algorithm computes optimal control inputs by considering the

present system state and forecasting its future dynamics.

Benefits of Model Predictive Control in the field of Wastewater Treatment adds enhanced
process performance by optimising crucial objectives, including pollution removal, energy
efficiency, and resource utilisation, thereby improving the overall performance of the
wastewater treatment plant. However implementation of MPC in wastewater treatment may
pose challenges, including the requirement for precise dynamic models, limitations in sensor
capabilities, and the computational intricacy of solving real-time optimisation problems.
Nevertheless, achieving its effective execution necessitates a comprehensive comprehension
of the distinct attributes of the wastewater treatment facility and the creation of precise dynamic

process models.

Cost Constraints
Function
Input Output
;"‘FU'[U"@ » WWTP >
@ Error

A

Future Input

Predicted Output

Figure 1.12: Typical structure of model Predictive controller
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1.2.3 Sensors
WWTPs utilise a range of sensors to monitor and control the treatment process. These sensors
offer real-time information on crucial parameters, enabling operators to enhance treatment

efficiency. Here some important sensors frequently adopted in a WWTP.
» Physical sensors: To measure physical attributes of WWTP.

Flow Sensors are used to quantify the rate at which wastewater flows through the treatment
facility, like internal & external recycle. Typical varieties comprise of electromagnetic flow

metres, ultrasonic flow metres, and open channel flow metres.

Level Sensors monitor the liquid levels in tanks and basins. Level measuring often employs

capacitance, ultrasonic, and radar sensors.

Pressure Sensors are used to gauge the pressure levels inside pipes and tanks, aiding in the

supervision and regulation of wastewater flow.

Temperature Sensors are used to monitor the temperature of wastewater at different stages of
the treatment process. Typical examples comprise thermocouples and resistance temperature
detectors (RTDs).

» Chemical sensors: To monitor chemical parameters in treatment facilities.

pH Sensors, are utilised to quantify the level of acidity or alkalinity in wastewater. pH sensors
play a vital role in ensuring the ideal conditions are maintained in biological treatment

procedures.

Dissolved Oxygen Sensors, are used to quantify the concentration of oxygen that is dissolved
in wastewater. Crucial for evaluating the condition of aerobic treatment processes. According

to the aspects of our current study to implement aeration control this sensors are very crucial.

Conductivity Sensors are used to measure the electrical conductivity of wastewater, which

gives an indication of the concentration of total dissolved solids (TDS).

Turbidity sensors are used to quantify the level of cloudiness or haziness in wastewater, which

serves as an indicator of the presence of suspended materials.

> Biological sensors:
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Ammonia Sensors are used to gauge the level of ammonia in wastewater, a crucial factor in

evaluating the effectiveness of biological treatment methods.

BOD Sensors are used to measure the quantity of organic substances present in wastewater.
They assist in evaluating the level of biodegradable material and determining the necessary

treatment measures.

» Gas sensors:
Hydrogen Sulphide Sensors are used to quantify the levels of hydrogen sulphide gas, which
may arise during anaerobic treatment procedures. Methane Sensors are used to detect the

presence of methane gas, which can be generated during anaerobic digestion processes.

The selection of sensors is contingent upon the particular demands and attributes of the
treatment facility. By using sophisticated sensor technology and data analytics, the efficiency
and performance of WWTPs can be significantly improved.

1.3 Aeration Control

Controlling the level of dissolved oxygen is crucial in the activated sludge process, whether it
is in continuous or in alternating or periodic systems. The implementation of aeration control
was initially initiated in the 1960s with the objective of conserving energy by preventing
excessive aeration during episodes of low load. The influence of the dissolved oxygen (DO)
concentration and/or aerobic volume (in a continuous system) or aeration phase length (in a
batch system) on the features and performance of a biological wastewater treatment system
extends beyond mere cost savings. Indeed, the attention has been directed towards the influence
of dissolved oxygen control on the process of removing biological nitrogen and phosphorus.

Figure 1.13 delivers a concise overview.

Nitrification: Ammonia is converted to nitrite and then to nitrate in this process by ammonia-
oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB). Both are aerobic and rely on
oxygen as an electron acceptor. DO provides energy to these bacteria, altering the pace of
nitrification. Higher DO levels promote faster nitrification, whereas oxygen deficiency can
slow rates and block nitrifying microorganisms. DO level monitoring and control are critical

for optimising nitrification rates and overall treatment efficiency.
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Denitrification: DO significantly influences denitrification in wastewater treatment.
Denitrification, converting nitrate and nitrite into nitrogen gas under anoxic conditions, relies
on low oxygen levels. Excessive DO inhibits denitrification, favouring aerobic processes.
Maintaining optimal DO concentrations, typically below 0.5 mg/L, is crucial for effective
denitrification. Wastewater treatment plants control aeration to balance aerobic and anaerobic

needs.

COD removal:

Costs:

In a Dbiological wastewater
treatment system, aeration is
usually the second most
expensive part of running the
system, after sludge handling.

Figure 1.13: Impact of DO level on WWTP performance

1.4 Simulation models

Modelling the biological wastewater treatment process typically presents a complex and multi-
faceted task. Essentially, the primary goal of mathematical models in WWTPs is to demonstrate
the dynamic characteristics of the plant's operation. WWTPs are known for their complex
model development and extensive kinetic, stoichiometric, and state factors correlation. The
International Association for Water Quality (IWAQ), formerly IAWPRC, established a task
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group to create a mathematical model of wastewater treatment plants. This model aims to
accurately predict the effectiveness of single sludge systems in carrying out various process
operations such as carbon oxidation, hydrolysis, nitrification, denitrification, and the growth of
poly accumulating organisms (PAQO's). The development of this model is based on the research
of Henze et al. (2000), Gujer et al. (2000), Gernaey et al. (2004), and Riger et al. (2001). This
section defines BSM1-P as the designated working situations. It platforms of a simulation
environment encompass the depiction of the physical arrangement of the plant, a model that
simulates the plant's behaviour, the processes for conducting tests, and the criteria used to

evaluate performance.

1.4.1 Benchmark simulation models.1-P (BSM1-P)

The BSM1-P framework of a WWTP is shown in Figure 1.14. It is made up of seven
bioreactors lined up in a row and one more settling tank. Each of the first two anaerobic reactors
IS 2000 m? in volume, and then there are two anoxic reactors, also 2000 m? in volume, and
finally, for every single reactor, complete mixing is taking place. Each of the other three fully
mixed and aerated aerobic reactors has a volume of 3,999 m3. The sedimentation tank has 6,000
m?3 in volume. Two recycle loops are in operation: one connects the third aeration tank to the
anoxic reactor (Qintr) with a flow rate of 34,500 m?/d, and the other connects the sedimentation
tank's underflow to the influent flow (Qr) with a flow rate of 18446 m3/d. During the dry season,
the WWTP is expected to operate at a flow rate of 18446 m3/d. The output effluent (Qe) is
taken into account, and the sludge flow rate (Qw) is set at 385 m3/d. Out of the 14 days that are
accessible, only the last 7 are used for analysis. From day zero until day fourteen, the simulation
continues. During the first week, the system reaches and stays in a dynamic "pseudo" steady-
state. The remaining seven days are open for the implementation and evaluation of any control

method, allowing for a fair comparison of alternative algorithms. It is possible to test the control

Settler Qe
> —>
O() (@) O() (@)
o L O o L. O
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N
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Internal recycle (Qintr)

External recycle (Qr)

v

Figure 1.14:BSM1-P framework
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algorithms' efficacy by running the dynamic simulation repeatedly. It is possible to test the

control algorithms' efficacy by running the dynamic simulation repeatedly.

1.4.2 Overview of the activated sludge model (ASM) and it’s factors

The renowned mathematical models responsible for the chemical and biological reactions that
occur in ASP are known as activated sludge models. Table 1.1 provides a summary of the
literature that is based on the ASM and also displays the reported total parameters, state
variables, process equations, and substrates removal for six ASM models. For the process
operation, ASM3bioP is chosen in those ASMs. As an additional mathematical model,
activated sludge model No. 3 (ASM3) was designed to evaluate the biological WWTP's
performance. Its capacity to treat sewage wastewater is dependent on its oxygen consumption
rate, nitrification and denitrification rates, and sludge formation rates. In addition to including
the chemicals used for internal cellular storage, ASM3 fixes a few additional issues with
ASM1, such as the fact that the decay rate of nitrifiers differs under aerobic and anoxic
environments (Gujer et al. (2000)). Similarly, Rieger et al. (2001) and Solon (2015) mainly
built a modification of the ASM3 model (i.e., ASM3bioP) to forecast biological phosphorus
elimination. This model incorporates modified processes from the ASM2d model, but it does
not account for the fermentation of easily biodegradable substrates. The biological P
elimination mechanism is detailed in Figure 1.15 of the ASM3bioP model. In the cellular
internal system, PAOs are represented as a model structure called Xpra. All the by-products of
organic matter are integrated into this structure, and the formation of PAOs is what causes it to
function as a substrate. In addition, the growth of the PAO is affected by oxygen and nitrate.
To address the shortcomings of ASM1 and briefly compare the nitrification lysis rates in anoxic
and oxic environments, ASM3 was developed based on the work of Gujer et al. (2000). It also
addresses problems with the internal storage of cells. Moreover, the COD rate differs
significantly between ASM1 and ASM3.

SPAO4 SF;O4
Xpp Xpp
Ss Storage > XpHa Xeao4 Growth I Xown
IAerobic (oxygen)

Figure 1.15: P-removal process incorporated in ASM3-bioP
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Table 1.1: ASM models with their features

ASM Models | Substrates | Number | State Total kinetic and | References

of variables Stoichiometric

Process parameters
ASM1 CN 8 13 26 Henze et al. (2000)
ASM2d CNP 21 19 74 Henze et al. (2000)
ASM3 CN 12 13 46 Guijer et al. (2000)
AMS3-BioP | CNP 23 17 83 Rieger et al. (2001)
ASM2d+TUD | CNP 22 18 98 Meijer (2004)
UCTPHO CNP 35 16 66 Hu et al. (2007)

The Sludge Model 3 with bio-phosphorous (ASM3-bioP) is used to simulate the biological
process of the reactors. There are 23 biological processes that were assumed to describe what
was going on in each reactor. The double exponential settling velocity model represents the
vertical transfer between layers in the settler. 13 state variables are already in ASM3, and four
more state variables tied to bio-P make the total seventeen number of state variables. In
addition, ASM3 techniques are further developed by using the ASM2d process, which includes
bio-P reactions but excludes precipitation reactions. The ASM3 model incorporates hydrolysis,
heterotrophic, and autotrophic processes. Additionally, it predicts a lower growth rate for
phosphorus (P). The ASM3bioP model incorporates the effects of temperature on kinetic
parameters, oxygen saturation concentration, and Kra (oxygen mass transfer coefficient) at a
temperature of 15°C. The state variables, along with their corresponding symbols and units,
are displayed in Table 1.2 as presented by Solon (2015). The ASM3-bioP model includes a
total of twenty-three biological processes. These processes are based on the stoichiometric
parameters matrix for the particulate components of ASM3 (Henze et al., 2000) and the
EAWAG Bio-P module (Rieger et al., 2001). Appendix Table A3 displays the kinetic rate
expressions for ASM3, as documented by Henze et al. (2000). Additionally, Appendix Table
A4 offers the kinetic rate expressions for the EAWAG Bio-P module, as documented by Rieger
et al. (2001).
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Table 1.2: State variables of ASM3bioP with average influent data

Compound Symbol Units Average influent
Dissolved oxygen So g(COD)m® 0
Readily biodegradable organic substrate Ss g(CoD)m™® 90.34
Inert soluble organic Si g(COD)m® 30
Ammonia+Nitrogen SnH g(N)m?3 39.40
Nitrate and nitrite Sno g (N)m? 0
Dinitrogen SN g(N)m?3 0
Primarily orthophosphates Spo4 g(P)m3 8.86
Alkalinity SHco mol(HCO3)m3 7
Inert Particulate Xi g(CoD)m™® 51.20
Slowly biodegradable substrates Xs g(CoOD)m™® 202.34
Heterotrophic Organisms XH g(CoOD)m® 28.17
Cell internal storage XsT0 g(CoD)m™® 0
Phosphate accumulating organisms Xpao g(CoOD)m™® 0
Polyphosphate Xpp g(P)m3 0
Primarily polyhydroxy alkanoates XpHA g(P)m 0
Nitrifying Organisms Xa g(COD)m™® 0
Suspended solids Xrss g(SS)m3 215.51

The ASM3-bioP model comprises a total of twenty-three processes, which are outlined below:

1 Hydrolysis

Heterotrophic organisms Xu
Aerobic Storage of Xsto
Anoxic Storage of Xsto
Aerobic growth

Anoxic growth

Aerobic endogenous Respiration

Anoxic endogenous Respiration

© oo N o O B~ W DN

Aerobic respiration of Xsto

=
o

Anoxic resp. of Xsto

[N
[SEN

Aerobic endogenous Respiration
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12 Anoxicendogenous Respiration
13  Storage of Xpua

14 Aerobic storage of Xpp

15  Anoxicstorage Xpp

16  Aerobic growth

17 Anoxic Growth

18  Aerobic endogenous Respiration
19  Anoxic endogenous Respiration
20  Aerobic lysis of Xpp

21 Anoxic lysis of Xp

22 Aerobic respiration of Xph

23 Anoxic resp. of XpHa

The equations defining the mass balance is listed below:

The mass balance equations are given in below:

dz, 1
n= dt V1 (Qoz + Q P T rlvl - lel) (1-1)
Where Q, =Q, +Q,
dz 1
r :d_tzz\/_z(lel +r2V2 _szz) (1-2)
dz,
Iy = (sz + Q at r3V3 - Q323) (1-3)
dt v,

Where Q,=Q, +Q,

FromK=4to7
dz 1
e = £ = _(QK—lZK—l + rKVK - QKZK ) (1-4)
dt v,

Z represents the concentration of the process, Qa represents the concentration in the internal
recycling rate, Qr represents the concentration in the external recycle, and V represents the
volume of the reactors. The flow rates Qr and QO represent the influent flow rates, and their
sum corresponds to the total influent flow rate into reactorl, denoted as rl. In the third reactor,
Qa is introduced to Qo. Equations (1.1-1.4) can be used to write similar equations for the

remaining six reactors. Furthermore, equation (1.5) will depict the dynamics of dissolved
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oxygen in aerated reactors. An additional factor is included in this equation to account for the
oxygen concentration provided to aerobic reactors. The oxygen saturation coefficient, denoted
as So*, is set at 8 mg O2/L. The variable K. represents the oxygen mass transfer coefficient
for the kth reactor. The special scenario for the presence of in the aerobic tanks is being

considered:
ds 1 *
d(?[’K - V—(Q}HSO’K& + Ve + (KLa)KVK (So ~Sox )_ QuSox ) (19)

The oxygen supplied to the aeration tanks must match the oxygen demand of the
microorganisms involved in the activated sludge process. This need includes the oxidation of
organic waste and the maintenance of appropriate levels of dissolved oxygen (DO). Insufficient
oxygen can hinder the growth of microorganisms, leading to an increase in filamentous
microorganisms. This can result in poor settleability and reduced quality of activated sludge.
Conversely, an overly elevated dissolved oxygen (DO) level, which is often associated with a
high flow rate, results in increased energy consumption and can also degrade the quality of the
sludge. In aerobic aeration tanks, the DO content should be maintained at 1.5 to 4 mg O2/L, at
2 being a common range. If nitrate consumption in the final pre-denitrification zone is below a

specific threshold, aeration zones need not use excessive air.

For optimal nitrate concentration in anoxic reactors, maintain 1-3 mg N/L with internal
recirculation, with 1 mg N/L being the preferred value. Denitrification occurs in anoxic
reactors. Ordinary heterotrophs and PAO biomass convert internal recirculation nitrate from
aerobic reactor 7 to molecular nitrogen in anoxic reactor 3 (or 4). Autotrophic organisms nitrify
ammonium to nitrate in aerobic reactors. In contrast, the internal recirculation flow rate from
the final aerobic reactor controls denitrification (nitrate concentration in the anoxic reactor).

Table 1.3 listed the stoichiometric parameter.

Table 1.3: stoichiometric parameter values

Parameters Value
Heterotrophic max specific growth rate 3
Heterotrophic decay rate 0.3
Half saturation coefficient for heterotrophs 10
Oxygen half-saturation for heterotrophs 0.2
Nitrate half-saturation coefficient for denitrifying heterotrophs 0.5
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Autotrophic max. specific growth rate 1
Autotrophic decay rate 0.2
Oxygen half-saturation coefficient for autotrophs 0.5

Ammonia half-saturation coefficient for autotrophs 1
Correction factor for anoxic growth of heterotrophs 0.8
Ammonification rate 0.01

Maximum specific hydrolysis rate 9

Half saturation coefficient for hydrolysis 1

of slowly biodegradable substrate

Correction factor for anoxic hydrolysis 0.33
Rate constant Xpna Storage 6

The rate constant for Xpp 1.5

Rate constant lysis of Xpp 0.2

Rate constant for respiration of Xpao 0.2
Maximum growth rate Xpao 1

1.4.3 Secondary sedimentation tank

There are no biological interactions in the model of the ten-layer secondary sedimentation tank
since it is not reactive. Looking at the stack from top to bottom, the feed layer is the sixth layer.
The settler has an area (A) of 1,500 m2. The height of each layer, denoted as Zm, is 0.4 metres,
resulting in a cumulative height of 4 metres. Consequently, the volume of the settler is 6,000
cubic metres. Equation 1.29, proposed by Takas et al. (1991), describes the solid flux caused

by gravity using a double exponential velocity. Figure 1.16 illustrates the secondary clarifier
model.

Js=Vs (Xsc ) Xse (16)
Vs (Xsc) = max [0, mln{ 176, vo(e_rh(xsc = Xmin) — e—rh(xsc = Xmin) (17)
Xmin = fus Xr (1.8)

The variables in question are as follows: Xsc represents the overall concentration of sludge, vo
denotes the maximum Vesilind settling velocity, vo' represents the maximum settling velocity,
rp is the settling parameter for the flocculent zone, ry is the settling parameter for the hampered

zone, and fns represents the proportion of sludge that does not settle.
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Figure 1.16: Secondary clarifier model (Takacs settler)

The calculations for the upward (vup) and downward (van) velocities are determined according

to the equations provided.

Qu Qr+Qw

Vg = 2 = L (1.9)
_ Qe
Vyp = =2 (1.10)

According to the notations provided, the feed is introduced into the settler at the 6th layer from
the bottom. The sludge mass balance equation for the feed layer (m=6) is presented below:

QrX, .
dXsc,m % + ]sc,m+1 - (vup + 1Jdn)Xsc,m - mln(]s,m']s,m—l)

= 1.11
dt Zm ( )
For layers m = 2-5, the mass balance of the sludge is:
dXsc,m _ vdn(Xsc,m+1 - Xsc,m) + min(]s,m»]s,m+1) - min(]s,m']s,m—l) (1 12)
dt Zm '
For layer m = 1:
dXsc,l — vdn(Xsc,Z - Xsc,l) + min(]s,Z»]s,l) (1 13)

dt Z4
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For layers’ m =7 to 9:

dXsc,m vup (Xsc,m—l - Xsc,m) + ]sc,m+1 - ]sc,m

= 1.14
dt Zm ( )
For m = 10 (top layer):
dXsc,lO — vup(Xsc,9 - Xsc,lo) _]sc,lo (1 15)

dt Z10

min(vs,loxsc,loi vs,9Xsc,9) if Xsc,9 > Xt
Where, Jg.;j = or
Us,lOXsc,lo if Xsc,9 < Xt

Hence, the threshold concentration X, is 3000 g.m.
Each layer is treated as an independent volume for calculating the concentrations of soluble

components.

For layer m = 6:

Z
Qo _ 5 (up Ve s
m _ (1.16)
dt Zm
For layer’s m =110 5:
dZsc,m _ Vdn(Zsc,m+1 - Zsc.m) (1.17)
dt Zm
For layers’ m =7 to 10:
dZsc,m _ Vup (ZSC:m—l — Zsc,m) (1.18)

dt Zm
Where zn is the height of m™ layer of the sedimentation tank.
1.5 SBR a modified ASP
Certainly, the Sequential Batch Reactor (SBR) represents a modified version of the traditional
Activated Sludge Treatment (AST) methodology. The SBR process is a kind of wastewater
treatment wherein multiple treatment phases are integrated within a solitary reactor,
functioning in a batch mode. The following is an outline of the SBR procedure and its

distinctions from the conventional Activated Sludge Treatment:

Batch Process: The SBR process consists of a single reactor where the treatment is conducted,

with the treatment phases (aeration, settling, and decanting) executed in cycles. Activated
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sludge treatment involves the concurrent occurrence of aeration and sedimentation in distinct

containers, as opposed to the conventional approach.

Cycle Stages: The SBR cycle generally comprises the following four stages: load, react, settle,
and decant. During the load phase, the reactor is supplied with wastewater. Aeration and
biological treatment occur during the react phase. In the settle phase, clarification takes place,

and in the concluding phase, the clarified effluent is decanted.

Adaptability: SBR systems provide operational flexibility and are readily modifiable to
accommodate fluctuations in influent flow and load. Modifications are possible in order to suit
diverse treatment requirements. The adaptability of conventional activated sludge treatment

systems to variations in influent characteristics may be limited.

Process Management: SBRs enable enhanced optimisation and control of processes. By
exerting greater authority over each stage of the treatment cycle, operators are able to make
modifications in accordance with the particular needs of the effluent. Activated sludge
treatment may necessitate the implementation of more advanced control strategies in order to

attain maximum efficiency.

The footprint: Differentiating themselves from conventional activated sludge systems, SBRs
integrate several treatment stages within a solitary vessel, potentially resulting in a reduced
physical footprint. ASP systems generally comprise distinct containers designated for aeration,
sedimentation, and additional treatment procedures, which may necessitate additional spatial

considerations.

In brief, SBR represents a modified iteration of the activated sludge process that functions in a
bulk fashion, providing benefits such as increased adaptability, enhanced regulation, and
potentially a reduced environmental impact. The SBR process's sequential configuration
facilitates enhanced regulation of each treatment phase, rendering it well-suited for a wide

range of wastewater treatment applications.

In the SBR process and other batch transfer processes, nitrate can be removed using one of
three techniques. These include: (1) reducing nitrate by using a mixed fill period without
aeration; (2) establishing aeration cycles with intermittent aeration; and (3) reducing the
concentration of DO while performing operations. Enabling denitrification during periods of
mixed fill that aren't aerated is the most efficient way to get rid of nitrate. This technique also

stops filaments from bulking up. The SBR tank's decant volume ranges between 20 and 30
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percent, so the majority of the nitrate produced during the previous aerobic cycle remains there.
Following decanting, McCarty and Smith (1986) claim that residual nitrate mass can be
decreased in the fill period if there is enough time and BOD. Additional aeration time might
improve the reactor's ability to remove any remaining organic matter (Jung et al., 2004).

SBRs are renowned for several qualities, including the simplicity with which sludge can be
handled, the high rate at which phosphorus and nitrogen are removed from wastewater, and the
significant technological simplification they provide. The basic technological process
parameters, such as dissolved oxygen and the concentration of organic compounds, depend on
time when the fill phase starts. Wastewater is not aerated at this point (Janczukowicz et al.,
2001). In addition, the anaerobic period's length should be adjusted to achieve the near-
complete removal of COD that is easily biodegradable, and the aerobic period should be long
enough to allow for complete nitrification, in order to successfully remove biological
phosphorous and nitrogen. In order to achieve a net growth of biomass in the reactor, the total
COD-loading rate must be maintained at a high level (Helness and degaard, 2001). Five

common steps are shown in typical sequences in Figure 1.17.
Stage 1: Filling

The cycle starts with the fill operation, which involves dispersing the influent wastewater
evenly throughout the tank, in order to promote a favourable reaction between both the
substrate & the microorganisms and to promote microbial activity as the wastewater arrives
the bioreactor. A number of factors can be taken into consideration when choosing the fill's
duration. The procedure will resemble a continuous flow system if the time is limited
(successive tanks). As a result, the biomass will be exposed to high concentrations of organic

materials and other components in the wastewater.
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Figure 1.17: Events order in the sequencing batch reactor (SBR)
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But as time passes, these concentrations will fall. On the other hand, if the fill time is prolonged,
the system will operate similarly to when a continuous stream is fully mixed into the system.
The biomass will be present in this instance in low concentrations, comparable to other

wastewater constituents.
Stage 2: Reaction

After the fill stage is complete, the wastewater components can now begin to react during the
react stage, which also allows for aeration and the consumption of biomass and substrate.
Additionally, at this stage, compression or mixing can be used. Due to the impact of each on
the way the process behaves, it is preferable that each phase's completion be specified
separately. The fill phase can also include the reaction (aeration and mixing).

Stage 3: Settling

Following the reaction phase, there is a stage of sedimentation with the crucial requirement
that all aeration and mixing be stopped. This indicates that there is solid-liquid segregation.
Additionally, biomass that has been given permission to settle and clean the effluent will show
up above the sludge. Due to the absence of liquids entering and exiting the tank, a discontinuous

system may be able to carry out sedimentation more effectively than a continuous flow.
Stage 4: Decanting (Draw)

In order to ensure the withdrawal, treated effluent must be removed from a finite height above
the sludge sedimentation once sufficient settling has taken place. The bioreactor's reserve of
liquid and biomass makes up the biomass recycle for the following cycle. It is comparable to
biomass recycling in a continuous process if a significant volume is held back in relation to the

influent volume (to provide nitrate for an initial denitrification period).
Stage 5: Idling

Finally, each cycle typically allows for an idle period to add flexibility. In the last stage, the
waste sludge can only be pumped to reduce volume in accordance with the amount of time
needed to finish the cycle. The idle phase is over when the new fill opens, and a new cycle is
started. Depending on the system design, the frequency range for waste sludge should be once
every (60-100 days). The bioreactor's reserve of liquid and biomass makes up the biomass

reprocessing for the following cycle. The improvement of poly-P occurs when there is a greater
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energy requirement for bacterial preservation, as found by Chen et al. (2013) when comparing

the performance of two different SBR reactors for the removal of phosphorus.

Anaerobic and aerobic conditions are created sequentially in a sequencing batch reactor to build
the system for biological phosphorous removal. As a result, no chemical additives are required
for the system to remove the phosphorus. The system could be changed, as shown in Figure
1.18, to lead to the co-oxidation of nitrogen and carbon. After the aerobic reaction phase, this

modification would involve the addition of an anoxic phase.
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Figure 1.18: SBR for the removal of nitrogen and phosphorus

1.5.1 Modelling of SBR: Conceptual approach in ASM2d

ASM2d is a computational framework used to simulate and analyse the process of removing
phosphorus from wastewater using activated sludge. ASM2d is a small-scale extension of
ASM2. Two additional processes that need to be taken into account are polyphosphate storage
and growth under anoxic conditions. PAOs in ASM2 have the ability to accumulate
polyphosphate (poly-P) and can only thrive in aerobic conditions. ASM2d, in contrast,
incorporates a simulation of denitrifying polyphosphate-accumulating organisms (PAOSs)
metabolism for the purpose of polyphosphate growth and storage. ASM2d shares the same
constraints as ASM2. Additional details regarding the ASM2d model can be found in the
literature (Henze et al., 1999). The metabolic processes that rely on Monod kinetics can be
characterised by utilising kinetic and stoichiometric coefficients for all parameters and
organising them in a matrix style. The stoichiometric coefficients can be easily accessed
through the utilisation of matrix notation. Consequently, calculations uphold their mass

balances as anticipated..
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The parameters of the ASM2d model were derived based on the assumptions and correlations
of the ASM2 model. The symbol X is used to denote particulate material, with a subscript
indicating the acronym for the substance present in that form. Similarly, the letter S is employed
to symbolise a substance that can dissolve, and its composition is indicated by a subscript.
There is a belief that particle constituents are linked to activated sludge. Soluble components

refer to substances that are capable of being dissolved in water.

1.5.2 Definition of soluble components in ASM2d
ASM2d model parameters for soluble components are defined as follows:

Sa [M(COD)L-3]: Acetate-like fermentation products were suspected. Fermentation products
are calculated separately from other dissolved organic materials in the calculations. These

biological processes use acetate as a carbon source.

Sark [mol (Hcos)L-3]: The alkalinity of the effluents was used to assess electrical charge

conservation in biological reactions. SALK was thought to be bicarbonate Hcos-only.

Sr [M(COD)L-3]: Organic substrates that are fermentable and easily biodegradable and can be
obtained directly from heterotrophic organisms' transformation of the soluble COD fraction.
Because these substrates were assumed to be fermentation substrates, they weren't included in
fermentation products.

Si [M(COD)L-3]: Organic material that is inert but soluble. This substance can't be changed
any further. This material was thought to be present in the influent as well as in the XS

hydrolysis.
Sn2 [M(N)L-3]: N2 stands for dinitrogen. This was presented as the only denitrification product.

SnHa [M(N)L-3]: Nitrogen in the form of ammonium plus nitrogen in the form of ammonia.

SNH4 was assumed to be all Snws+ to balance the electrical charges.

Snos [M(N)L-3]: Nitrogen in the form of nitrate and nitrite. Snos is a nitrogen compound made
up of nitrate and nitrite. Nitrite was not calculated as a separate model component. Snos was
supposed to be NOs- -N only, in contrast to all other stoichiometric calculations (COD

conservation).

So2 [M(02)L-3]: Oxygen that has been dissolved. So> was thought to be susceptible to gas

exchange.
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SPos [M(P)L-3]: Orthophosphate is a type of inorganic soluble phosphorus. At any pH, it was
presumed that SPO4 contained 50 percent HPO4; and 50 percent HPo42- to stabilize the
electrical charges.

Ss[M(COD)L-3]: A substrate that is easily biodegradable. It was calculated as the sum of Sg+
Sa

1.5.3 Definition of particulate components in ASM2d

ASM2d model parameters for particulate components are defined as follows:

Xaur [M(COD)L-3]: Nitrifying organisms. Organisms that decompose nitrate. These
organisms were involved in the nitrification process. It was previously assumed that autotrophs

directly oxidise ammonium (Snha) to nitrate (Snos).

XH [M(COD)L-3]: Heterotrophic organisms. These heterotrophs are thought to be able to grow
aerobically as well as anoxically (during denitrification) while also fermenting anoxically.
They are in charge of hydrolysis and can use any degradable organic substrate under any of the

study's environmental conditions.

Xi[M(COD)L-3]: Inert particulate organic substrates. In these systems, the flocculation was

not degradable. They can come from decay processes or a small percentage of the influent.

Xpao [M(COD)L-3]: Organisms that accumulate phosphorus (PAQOs). These organisms are
thought to be capable of producing internal cell storage products. PAOs do not contain Xpp Or
Xpra. According to the ASM2d model's assumptions, these organisms can grow in both anoxic

and aerobic environments.

XpHa [M(COD)L-3]: A phosphorus-accumulating organism's internal storage product. The
primary product of Xpna is poly-hydroxy-alkanoates (PHA), which can only be produced by
PAOs.

Xep [M(P)L-3]: Polyphosphate. PAOs store this product internally, but this is not counted as

part of their mass.

Xs [M(P)L-3]: Slowly biodegradable substrate. Heterotrophic organisms can ferment these

particulate organic substrates after they've been hydrolyzed.

Xtss [M(TSS)L-3]: Total suspended solids. Total suspended solid materials must be taken into

consideration when computing stoichiometric bio kinetic models. Phosphorus removal
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influences TSS prediction. The fraction of phosphorus in activated sludge grows as phosphorus

removal efficiency improves.

Henze et al.'s 1999 material extensively documented and explained the ASM2d model, a
commonly used ASP in wastewater treatment. It covers model preparation, biological
processes, stoichiometry, and process rate equations, making it a great resource for
professionals and researchers. It also methodically address biological processes, a cornerstone
of wastewater treatment. The authors explain treatment system biological changes by
examining microbial activity principles. The stoichiometric features of ASM2d modelling,
which define the quantitative relationships between biological reactions components is clearly
mentioned in this literature. Henze et al. pioneered the utilisation of ASM2d with matrix
notation in 1999. The matrix notation pattern encompasses both the components and

conversion operations.
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2.LITERATURE REVIEW

This chapter reviews the literature related to WWTP models, controllers. These areas include
studies that look at how to make wastewater treatment plants work better, how to model and
control ASP based wastewater treatment plants, control strategies implemented in SBR based
wastewater treatment, how temperature affects biological wastewater treatment processes in
SBR.

To improve the efficiency of treatment plants, many control approaches have been used to
optimise the production, transportation, and wastewater treatment processes, in addition to the
pursuit of cleaner and more sustainable energy sources. The BSM1 model is frequently used in
existing literature as a framework, with a primary emphasis on organic matter and nitrogen.
The operational scenario chosen for this work is BSM1-P. Certain research focus on mitigating
effluent limit violations by directly manipulating effluent factors, while others investigate the
balance between operational expenses and effluent effectiveness. Management strategies vary
from basic methods, such as managing the amount of dissolved oxygen in aerated reactors and
the concentration of nitrate-nitrogen in anoxic tanks, to more intricate hierarchical systems,
such as ammonia-based aeration management. Standardising the model is essential for efficient
control because of the difficulty in assessing and linking different control approaches suggested
in the literature. The temporal constants inherent to the activated sludge process and the
variability of the influent load make it challenging to conduct meaningful assessments using

simulations.

Temperature, a crucial determinant affecting the activity of biomass, necessitates meticulous
attention to ensure the optimal functioning of biological processes. The temperature variations
affect the physiochemical features of activated sludge systems, including dissolved oxygen
levels and settling velocity. These changes are important for modelling and predicting the
behaviour of such systems. The global setting introduces intricacy since ambient temperatures
fluctuate according to regional atmospheric and environmental factors, frequently impacted by

abrupt shifts in seasonal climate on a global scale.

2.1 Literature focused on BSM1-P control strategies

In a pilot wastewater treatment facility, Real-Time Expert System is used to naturally remove
organic debris and nutrients. Baeza et al. (1999) introduced a remarkable demonstration of their
ability to run the pilot plant of WWTP. A distributed control system (Knowledge-Based Expert
System (KBES) designed with G2©) is suggested in A2/O (anaerobic-anoxic-oxic) setup in
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the pilot plant introduced by Baeza et al. 2002. Cho et al. (2002) devised a two-level control
strategy for the pre-denitrification system. The main goal of the principal controller is to
balance the Sno concentration in the targeted effluent concentrations. The study conducted by
Gernaey et al. (2004) examines the performance of the ASM2d model in BSM1-P, which
incorporates two control loops for dissolved oxygen and nitrate levels. The model is tested
using dry, rain, and storm data. A comparison is made between the results obtained from the
model with PI controllers and those from an open-loop system. The study concludes that there
is a trade-off between operational cost and effluent quality. Shen et al. (2008) constructed a
feed-forward (FF) control system using influent and nonlinear model predictive control (MPC).
They also incorporated a penalty function on BSM1. The system demonstrated a low index of
effluent efficiency and acceptable energy usage for aeration and pumping. Shen et al. (2009)
and Cristea et al. (2008) have devised a feedforward control system to enhance nitrogen
removal in a pilot-scale A%/O process used for municipal wastewater treatment. Their efforts
resulted in a notable improvement in nitrogen removal. Implementing structured control of
dissolved oxygen (DO) is crucial because to its significant impact on aeration energy

consumption.

Another idea is a two-level control approach. Next, Brdys et al. (2009) show the methodical
track of the DO path in the BSM1 framework. Feed-forward controllers have been utilised in
wastewater treatment plants (WWTPs) to enhance the removal of biological nitrogen (N) and
carbon (C) by considering the effluent quality and performance improvement. This approach
is based on the research conducted by Baeza et al. in 2002 and Nopens et al. in 2010. In their
study, Ostace et al. (2011) implemented model predictive control (MPC) using a reactive
secondary settler model. They successfully obtained a decrease in the operational cost index
(OCI) while improving the effluent quality index (EQI). Despite being widely recognised as a
notable technique, EBPR still encounters challenges in achieving efficient removal of nitrogen
and phosphorus in full-scale treatment plants due to the complex interactions between nitrate
and phosphorus throughout the uptake process. The failures are impacted by the COD/P ratio
and the organic matter in the influent. These two factors are the fundamental characteristics
that need to be understood in order to comprehend the process. Guerrero and colleagues in
2011. The implementation is based on the ASM2d model. Xu and Vilanova (2013) devised
various control strategies utilising BSM1-P and found that the levels of ammonia nitrogen and
chemical oxygen demand (COD) in the effluent remained within the prescribed limits.

However, other parameters of the effluent exceeded the imposed constraints.
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The BSM1-P investigation evaluates the effectiveness of a new control application that
combines cascade and override control techniques, using both metal and carbon dosages, in a
carbon-limited wastewater system. Guerrero et al. (2014) discovered that the control
application demonstrates superior effluent quality at an optimal cost. A fuzzy control
framework was developed to decrease the concentration of phosphorus in effluent water. It was
observed that fuzzy control yielded superior outcomes in eliminating P compared to the Pl
control loop (Xu and Vilanova, 2015 a, b). Valverde-Pérez et al. (2016) implemented control
strategies to improve the removal of phosphorus using two control frameworks in a sequence
batch reactor and continuous flow reactor. An activated sludge method including Enhanced
Biological Phosphorus Removal (EBPR) is implemented to improve the efficiency of the
Effluent Quality Index (EQI). In certain situations, the removal of nitrogen (N) and phosphorus
(P) may not be feasible due to a lack of chemical oxygen demand (COD) in the wastewater.
Either the inclusion of an external carbon source or the use of chemical precipitation is typically
the chosen technological method for effectively removing phosphorus from wastewater with
limited chemical oxygen demand (COD). The dosages mentioned in Garikiparthy et al. (2016)
are costly and result in a rise in plant operating expenses. Sdeghassadi et al. (2018) created a
nonlinear model predictive control (MPC) system using the BSM1 framework, which resulted

in enhanced accuracy in following set-points.

The recent research by Santin et al. (2015) and Crisan et al. (2018) demonstrate the
implementation of the cascade technique in the DO design. In relation to energy conservation
in a wastewater treatment plant operating in real-time, hierarchical control systems are
suggested to achieve the necessary DO levels for the oxidation of ammonia to nitrate. Baklouti
et al. (2018) assessed the fault detection of the benchmark models. Hongyang et al. (2018)
created MPC system using the BSM1-P model to ensure a sufficient level of nitrate
concentration and dissolved oxygen. The study found that the control performance significantly
increased by 95% in all three weather conditions (dry, rain, storm) when using MPC controller.
To minimise ammonia fluctuations, a strategy combining MPC with Feedforward (FF)
controllers was implemented at the base level to regulate Sno and DO. Additionally, a fuzzy
controller was employed at a higher level to manipulate the DO. Furthermore, the use of MPC
at the supervisory level is suggested to enhance the overall efficiency of the plant, leading to
cost reduction and improved effluent quality. This proposal is based on the design of Santin et
al. (2016).
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The artificial neural network (ANN) developed by Santin et al. (2019) is specifically built to
forecast the desired value of dissolved oxygen (DO) set point. Schraa et al. (2019) have
developed a control strategy called ammonia-based aeration control (ABAC) with solid
retention time (SRT) management in the Activated sludge process. This approach aims to
maintain a balance between SRT, DO, and ammonia levels in order to ensure both treatment
efficiency and energy savings in the plant. BSM1 serves as the operational framework for
conducting all of these tasks. The regulation limitations for TN concentration were achieved
by implementing three control loops that rely on monitoring the concentrations of inorganic P,
ammonia, and suspended particles (Luca et al., 2019). In order to forecast the DO levels,
artificial neural networks are employed to account for the time delays caused by sensors and
filters, ultimately achieving the desired set-point (Santin et al., 2019). The efficacy of the
heuristic fuzzy controller was evaluated and it was determined that all the pollutants comply
with rigorous criteria, while maintaining a high level of dissolved oxygen (Piotrowski et al.,
2020). The researchers in Tejaswini et al. (2020) have established hierarchical control
strategies for BSM1 and observed that these strategies lead to improved effluent quality at a
reasonable cost. The outcome is a decrease in effluent ammonia nitrogen and total nitrogen,
resulting in energy efficiency. An advanced method utilising sensors, residual ammonia
controls, and dissolved oxygen set-points is employed in a granular sludge reactor to eliminate
nutrients from wastewater. The study conducted by Bekele et al. (2020) demonstrates that
maintaining a stable aerobic granular sludge is beneficial for enhancing the reactor's

performance.

However, the increase in poly accumulating organisms (PAQOS) is the cause of phosphorus
removal in both the anaerobic and aerobic stages of the activated sludge system (AS), as stated
by Rampho et al. (2005) and Ersu et al. (2010). The A?0 process, which stands for anaerobic,
anoxic, and oxic, is a widely-used method in municipal wastewater treatment plants for the
simultaneous removal of nitrogen (N) and phosphorus (P). This process was introduced by
Oehmen et al. (2010), Zhou et al. (2015), Zhang et al. (2016), and Massara et al. (2018).
Concerning phosphorus (P), the installation of enhanced biological phosphorus removal
(EBPR) is a sustainable strategy to meet strict rules for wastewater discharge. However, only
a few researchers have presented an effective design for improving phosphorus removal in
WWTPs.

Process control is utilised in wastewater treatment facilities to optimise their performance,

prolong their lifespan, and reduce both the cost per unit of product and operational expenses
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(Agarwal et al., 2016; Amand et al., 2013). Various feed-forward controllers have been utilised
in BWTPs to improve the quality and efficiency of the effluent, specifically in terms of
removing biological nitrogen and organic matter (Nopens et al., 2010; Tejaswini et al., 2020).
The most rational strategy to achieve the required P discharge levels is by enhanced organic P
removal, also known as Enhanced Biological Phosphorus Removal (EBPR) (Solon et al.,
2017). BSM1 employed four distinct control schemes: C1, which utilised a DO-controller; C2,
which employed both a DO-controller and a NO controller; C3, which implemented an NH-
DO cascade controller; and C4, which utilised a TSS controller. Additionally, C5 employed a
P controller. These control schemes were combined in various ways, and an advanced and
intelligent controller was also utilised (Sheikh et al., 2021; Solis et al., 2022; Solon et al., 2017).
To achieve the most efficient and environmentally sustainable operation of wastewater
treatment, it is recommended to maintain a DO set-point of 2 mgO2/L. This should be done
while ensuring the proper SRT and adding the necessary carbon source. By following these
guidelines, the treatment process can be optimised without negatively impacting EQ, OC, or
greenhouse gas (GHG) emissions. The effects of operational circumstances on EQ, OC, and
GHG emissions were evaluated through the simulation of four scenarios. Two PI control loops,
namely the DO-PI controller and the nitrate (NO)-PI controller, were implemented in the
BSM2P model (Sheikh et al., 2021; Solis et al., 2022). The optimal arrangement of
control/operational parameters (such as dissolved oxygen and solids retention time) and the
management of dissolved oxygen, nitric oxide, and ammonia concentrations are essential

factors that work together harmoniously.
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Table 2.1: Control strategies of P in secondary BWTP

Control combinations employed in secondary treatment

S.No ASM BSM Control Control Manipulating Effluent Energy Comment  Reference
Algorithm variables variables quality cost (EC)
(EQ)
1 A?/0 BSM1P Pl, metal, DO KLa Improved EC Improved P (Gernaey &
(ASM2d) carbon EQ increases  removal Jorgensen, 2004)
dosages
2 A?/0 BSM1P Pl Different DO, Kia, H-DO, Improved EC Improved P (Ingildsen et al.
(ASM2d) NO, NH, TSS, Quw, Qintr EQ increases  removal 2006)
PO4
3 A?%/0 BSM1P  PID DO Kpa Improved  EC Improved P (Shen et al. 2010)
(ASM2d) EQ reduction  removal
achieved
4 A?/0 BSM1P Cascade DO,NH,NO Kia, H-DO, Improved EC Improved P (Liu etal. 2012)
(ASM2d) MPC, PI Qintr EQ increases  removal
5 A?/0 BSM1P Pl Different DO, Kia, QwQinr  Improved EC Improved P (Xu & Vilanova,
(ASM2d) TSS, NH EQ increases  removal 2013)
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2018)
(Luca et al. 2019)
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2.2 Literature focused on SBR control strategies

In industrial contexts, two different types of biological WWTPs are used: SBRs and WWTPs
with continuous flow across the entire plant. In the SBR, the first type of plant conducts all
biochemical reactions in a single tank, following a pre-set sequence, rather than using multiple
tanks connected by both internal and external recirculation flows. This thesis examines the
second type of biological WWTP too. The complex biological processes at the WWTP are
highly dependent on the oxygen supplied by the aeration system to the SBR. The SBR's
dissolved oxygen content affects phosphorus removal, nitrification, and denitrification
efficiency. In addition, the scheme will have a significant financial burden due to the fact that
the electricity consumed by blowers constitutes around 50% to 75% of the total operational
expenses of the WWTP (Jenkins 2013).

Optimising the effectiveness of DO control has been a focal point of research endeavours for a
considerable period. Prior studies have recorded many control structures and techniques for
DO, including the adaptive and multivariable PID controller (Wahab et al, 2009 and Du et al,
2018), fuzzy controller (Belchior et al, 2012, and Piotrowski et al, 2020), adaptive controller
(Piotrowski et al, 2016), predictive controller (Yang et al, 2014, Piotrowski, et al, 2015, Li et
al, 2020), and hierarchical-nonlinear MPC (Piotrowski et al, 2021).

The second category of DO control approaches includes algorithms that measure and adjust
the levels of nitrate (NOs) (Mulas et al, 2015, Santin et al, 2015] and ammonium nitrogen (NHa)
(Vrecko et al, 2011, Amand 2012), in addition to monitoring DO levels, to enhance the control
system. The algorithms in the next category of DO control, equipped with supervisory
controllers, are designed to determine the time-varying reference trajectory of DO-DOrer
(Houzhao et al, 2013, Grochowski et al, 2016, Piotrowski 2020). Regular updates and extensive
modifications to the hardware-software structure of WWTP control are necessary to
incorporate modern control methods, such as adaptive and predictive control. These approaches
also require comprehensive staff training. Integrating fuzzy control systems into the current
setup is a straightforward task. Furthermore, the knowledge and skills possessed by the WWTP
employees contribute to the development of unclear control strategy guidelines. Therefore, it
is an essential instrument when developing cutting-edge control systems for WWTPs. The
different ways that fuzzy logic can be used for DO control at a WWTP have been talked about
in Fan et al, 2011, Piotrowski et al, 2019 and Wu e al, 2015. In each case, the aeration system

was left unturned. Fuzzy logic is used in a complicated hybrid nonlinear dynamic system that
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controls things. As a result, it could have a big impact on the WWTP's operations and safety

steps.

2.3 Literature focused on Effect of temperature on the biological activity and treatment
Wastewater's average yearly temperature changes depending on where it's located. Like, in
Latin America, the temperature is generally between 3 °C and 27 °C. In Africa, Asia, and the
Middle East, on the other hand, the temperature ranges from 28°C to 45°C. It is very important
to know the temperature of wastewater because it affects the reaction rates and metabolic rates
of bacteria in the wastewater. No matter what the working and ambient temperatures are, strict
effluent limits must be followed when treating wastewater from cities and factories. WWTP
has a lot of problems because of the active biomass for nitrogen removal (N) when it comes to
handling wastewater from factories and cities. The amount of nitrogen is limited by the rate of
nitrification. It is known that the rate of nitrification is the rate-limiting step for getting rid of
N. Taking in acetate in the anaerobic part is also a key factor in determining the amount of
PAOs and, by extension, the amount of P that is removed. The impact of temperature on the
moving parts in a typical WWTP has not been widely researched in the past, so this study aims
to fill that gap. Hydrolysis and fermentation are not affected as much by the lower temperature.
Stoichiometry and Kinetic factors are affected by short-term changes in temperature. Long-term

changes in temperature have an effect on plant activity.

Most of the time, temperatures between 25°C and 35°C are best for cellular processes. The
nitrification process stops when the temperature reaches 50°C, and bacteria that produce
methane stop working at 15°C. Based on the research by Metcalf and Eddy (2003), autotrophic
nitrifying bacteria almost stop working at 5°C. Collins et al. (1973) say that the effluent quality
has been a good sign, and the temperatures run from 10 to 30°C. The rate of aerobic phosphorus
uptake becomes very high between 15°C and 20°C, as Baetens et al. (1999) found when they
looked into how weather affected bio-P removal. Even though the solid retention time (SRT)
and settling sludge compositions are different, when the temperature goes up from 25°C,
nitrogen is removed at the same time as denitrification and nitrification processes, as explained
by Gorgun et al. (2002).

What are the flocculants in activated sludge after it has settled? Ghanizadeh et al. (2001) looked
into this when the temperature was between 3°C and 15°C. It has also been seen that as the
temperature rises, the amount of suspended solids in the effluent increases while the removal

of COD drops. We looked into how temperature affects things by comparing temperatures from
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9°C to 30°C in an SBR that treats wastewater from a tannery to see how well it removes
nitrogen. Also, it has been seen that the quality of the waste meets the standards set by Murat
et al. (2004) above 20°C. Increasing the temperature from 15°C to 35°C in an up-flow micro
aerobic sludge system makes a big difference in how much COD and SS are removed. Based
on De Kreuk et al. (2005) and Meng et al. (2019), the reduction rates of COD and SS slow
down when the temperature drops from 200C to 8oC. In their 2002 study, Singh and
Viraraghavan looked at the up-flow anaerobic sludge blanket system and changed the
temperature from 6°C to 32°C to find out the bio-kinetic rates for treating sewage wastewater.
The temperature is one of the most important factors that affects biomass activity, which is
necessary to keep biological activity going well. Lippi et al. (2009) also talk about physical
features such as dissolved oxygen, changes in settling velocity, and mixed liquor in response
to temperature changes. These features help in modelling and predicting the activated sludge
system. About every 10 to 15°C rise in temperature makes the rate of biological violations

either double or cut in half.

If you raise the temperature by 10°C, Van't Hoff's rule says that the rate of cellular activity
doubles. Different studies have come to different conclusions about how temperature affects
BNR. Many studies have shown that higher temperatures (20-37°C) are better for getting rid
of phosphorous (Brdjanovic et al. 1997). No matter what the carbon matter does, poly
accumulating organisms (PAQO) control microorganisms at low temperatures (10°C). Also, the
temperature effect did not give metabolic advantages to organisms that stored glycogen over
PAOs, even though Lopez-Vazquez et al. (2008) research on aerobic metabolism was taken
into account. A new study looks at how temperature affects the activated sludge model (ASM1)
on the BSM1 platform, using the dynamic parameters. A difference was seen between the strict
limits set by Tejaswini et al. (2019) for sewage when the temperature was less than 20°C and
more than 30°C.

Alterations in temperature in WWTPs haven't gotten as much attention from the point of view
of modelling and controlling the whole plant. Because biological reactions are more
complicated, they needed less temperature control in WWTP processes. Most of the time,
WWTPs are run at temperatures that are normal for the area. The weather has a big effect on
the quality of the effluent (EQI), the cost of operations, and the general output. An up-flow
micro aerobic sludge device is being used to study the effect of temperature right now. The
results show that nitrogen removal works better at 17°C. These findings were published in
Meng et al. (2019). According to Alsawi (2020), kinetic factors have a big effect on how

43|Page



Literature Review

productive WWTPs are, and changes in temperature have an effect on how well the process
works. The fixed-bed reactor system described in the study by Hamdani et al. (2020) works
better at removing nitrogen and carbon when the temperature is lowered to 10-15°C for diary
effluent.

2.4 Motivation

Optimal operation of the WWTP is the primary motivation for preserving legislative
regulations governing the extant WWTP. To achieve this, the possible routes are either redesign
of the process or making it better with improved process control strategies. All of these things
work together to control the amount of nitrogen (N), carbon (C), and phosphorus (P) in the
waste while keeping the costs low. A lot of implementations and improvements have been
written about, but a lot of WWTPs are still running without being upgraded because people
don't know how to use modelling, control, and optimisation tools to keep an eye on the
problems that come up when trying to meet strict WWTP effluent quality standards. It is very
hard to control and keep an eye on the whole WWTP because different unit operations rely on
chemical, biochemical, mechanical, and biological events. Also, the ecosystem around a
WWTP is always changing, including the feed flow rate, temperature, nutrient concentrations,
and toxic material concentration peaks. All of these changes can make biological wastewater
treatment very difficult. These differences can have a big effect on how well the process works,

and in some cases they can even cause the process to fail.

In order to follow strict rules: It is better to use advanced control methods to get the effluent
consistency that regulations call for. The concentration of the effluent can also be kept more
stable, and problems with the process that stop the treatment can be cut down. There are more
complex ways to run a plant when there are more unit operations, like treatment steps that
happen across the whole plant. Modern control programmes can be used to successfully
regulate the quality of the effluent, making it possible to meet even the strictest environmental

regulations.

Cutting down on costs: Olsson et al. (2005) say that a nutrient removal WWTP can work 10—
30% better if the plants are managed well and controls are used correctly. As processes become
more efficient, the space needed for new WWTPs shrinks, which lowers the cost of building
them. Cutting down on the energy needed for aeration and the use of different chemicals could

also help nutrient removal plants save a lot of money.
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How temperature affects the WWTP: In many WWTPs, temperature is very important. The
temperature is thought to be the most important factor in WWTP methods, especially for
organic WWTP. No matter what the working and ambient temperatures are, strict effluent
limits must be followed when treating wastewater from cities and factories. WWTP has a lot
of problems because of the active biomass for nitrogen removal (N) when it comes to handling
wastewater from factories and cities. The amount of nitrogen is limited by the rate of
nitrification. Taking in acetate in the anaerobic part is also a key factor in determining the
amount of PAOs and, by extension, the amount of P that is removed. It hasn't been studied in
depth how temperature affects the kinetic processes in a normal WWTP, so that's what this

thesis is all about.

Driven by these motivating factors and recognizing a literature gap, the current research is

structured around the following objectives.

Ojective-1: To identify fractional-order models and control within a supervisory control

framework for efficient nutrients removal in biological wastewater treatment plants

Objetive-2: To design IMC-Based Fractional Controllers within a Supervisory MPC Control
Scheme for WWTPs.

Objetive-3: To design control strategies for sequencing batch reactor based biological

wastewater treatment.

Objetive-4: To develop hierarchical control strategies for evaluating the DO set points by

measuring Ammonia concentrations in the SBR with Fuzzy logic in higher level.

Obijetive-5: To study the effect of temperature on the estimation of kinetic and stoichiometric

parameters and on the water-energy nexus.
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3.FRACTIONAL ORDER MODELS IDENTIFICATION AND
CONTROL WITHIN A SUPERVISORY CONTROL
FRAMEWORK FOR EFFICIENT NUTRIENTS REMOVAL

The literature study on the ASM3-bioP platform unveils diverse control strategies utilising
different algorithms. However, there exist notable gaps in fractional modelling, especially in
the design on a fractional controller. This aspect is crucial, given the considerable advantages
demonstrated in the biological treatment of WWTPs with different ASP platforms.
Consequently, this study concentrates not only on the implementation of a fractional controller
but also on the development of fractional modelling for the ASM3-bioP process. The results
achieved are quite beneficial, demonstrating substantial advancements in both plant and

controller performance.

3.1 Combining lower-level and higher-level control methods on BSM1-P

To lower the nutrient contains and enhance the effluent quality (EQI), hierarchical control
systems have been developed for biological wastewater treatment plants. The activated sludge
model no. ASM3-bio-P was used to make the benchmark simulation model no. 1 (BSM1-P).
This model is used to control the amount of liquid oxygen in aerobic reactors and the amount
of nitrate in anoxic reactors. At the lower level, Fractional Pl (FPI) controllers are made along
with fractional order model of the process. At the higher level, a rule based fuzzy controller are
used to improve tracking of set points. Initially, the prediction-error method is employed to
construct an integer-order (10) transfer function centred on the operating point at the lower
level. Consequently, both an integer order controller (P1) and a fractional order controller (FPI)
are applied to the 10 model transfer function. At last, a Fractional order model of BSM1-P has
been determined and an FPI controller has been integrated with it at the lower level. In order
to find the higher-level model, the lower-level control loop works in a closed loop with the
intended controller. After that, the controls are made based measurements of ammonia in last

aeriation tank at the higher level.
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3.2 Introduction

Controlling a WWTP with inherent complexity and influent variations requires an effective
control technique. Worldwide, wastewater treatment plants use simple Pl control to complex
structures like FUZZY, MPC. In all activated sludge WWTPs, the aerobic region's dissolved
oxygen (DO) concentration should be high enough to meet microorganisms' oxygen needs and
boost nitrification. However, an extremely high DO requires a high airflow rate, which uses
more energy and may lower sludge quality. DO control is crucial for process efficiency and

economic benefits.

A two-level hierarchical control architecture with FPI controllers at lower levels and advanced
control methods at higher levels is created in this chapter. An FPI control scheme is constructed
at the lower level and an intelligent higher-order decision-making system utilising fuzzy logic

is created to enhance set-point tracking.

ASM3-BioP process model have not discussed about the development of fractional models and
also the associated fractional controllers for nitrogen and phosphorus removal using the BSM1-
P framework. Despite the complexity of system dynamics, fractional order systems can
represent them with minimal terms. As part of the current study, a fractional model of the
ASM3bioP process has been developed, based on which a fractional controller is designed for
improved process performance. The novelty is establishing a systematic procedure for
development of fractional order models and then design of fractional order controllers and
analysis of the fractional controllers’ performance. In the closed-loop, for DO & Sno control,
all three situations namely 1. Integer Order (10) plant with 10 controller, 2. 10 plant with
fractional-order (FO) controller and 3. FO plant with FO controller have been implemented.
Further, ammonia-based aeration control with an adaptive Fuzzy logic control is also designed

and performance is analysed.

3.3Plant’s performance Indices

Benchmark is a common assessment criterion that serves as the foundation for regionally
independent assessments of globally established comparison strategies. The plant's
performance is evaluated at two levels based on the evaluation criteria defined. The first level
monitors the controller's implementation in a closed-loop system by eliminating the error to
track the desired level, while the subsequent level investigates its impact on plant performance.

Overall performance of the treatment plant is monitored by the effluent quality index (EQI),
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the operating cost index (OCI), obtainable effluent concentrations and violations. EQI is
described by Equation 3.1, where to and t; are 7" and 14" day respectively

EQI = HU Qe dt (3.1)

1 tf
100(ts —t,) fto
Where HUg) represents the average load of pollutant levels in influent and effluent data and is

described by equation 3.2
HU() = HUrsst) + HUcopr) + HUpopr + HUtknw + HUno, o + HUp (1) (3.2)

The assessment of OCl is performed in order to calculate the cost of various control strategies.

Equation 3.3 represents the OCI.
OCI = (3 X EC) + ME + (5 x SP) + AE + PE (3.3)

Here, all energies like the aeration Energy (AE) (kW hr/day), the pumping Energy (PE) (kW
hr/day), the mixing Energy (ME) (kW hr/days) respectively, are calculated to get the OCI
indices. External carbon dosages (EC) are not taken into account in our approach. The relevant
parameter and corresponding equations involved in calculating WWTP’s performance indices
are well described in the literature (Shiek et al., 2021 a,b). The equations defining the
concentrations of various components, the associated energy, and the sludge production are
provided in above said literature. Moreover, the effluent quality must be maintained in
accordance with severe legal criteria. The effluent estimation is computed using average data.
Table 3.1 displays the effluent concentration restrictions that must be satisfied by any WWTP.

Table 3.1: Effluent restrictions norms

Variable VALUE
TN <18 mg N/L
COD <100 mgCOD/L
NH <4 mg N/L
TSS <30 mgSS/L
BODs <10 mgBOD/L
TP <2 mgP/L

3.4 Implementation of control approaches
In the lower-level control, common but popular feedback control employing the PI controller
is considered for reference. Figure 3.1 shows two Pl controllers in the lower level, while DO7,

whose set-point value is 2 mg O>/L is controlled by adjusting Kra7 in the seventh reactor and
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the other control loop is in charge of keeping Sno4 at 1 mg N/L by controlling Qintr. The main
focus of this study is the development of a fraction controller and replacing this PI controller
at the lower level for both integer and fractional models (Figure 3.1). Figure 3.2 also depicts
the hierarchical strategy with a supervisory layer. Higher-level control aims to determine DOy
levels (lower-level set points) by manipulating Snrz in the seventh reactor which reflects as a
set point to the lower DOy loop. In terms of the lower-level controller, DO7 and Snos are
controlled by regulating KLa7 and Qintr respectively. Higher DO is required for improved
nitrification if Sxn7 levels are higher. Nitrification converts ammonium to nitrate, during de-
nitrification nitrate is converted to nitrogen gas. The presence of too high DO in the aeration
tank will reduce ammonia but same time nitrate will increase. In the same scenario, if the DO
level is too low, the ammonia level rises and the amount of existing nitrate available for de
nitrification decreases. Additionally, the level of aeration affects energy use. As a consequence,

the DO set point must be chosen carefully.
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Figure 3.1: Pl and FPI control approach for both DO and NO loop in lower level
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Figure 3.2: ABAC based hierarchical adaptive control strategy with lower-level Pl and FPI control

3.5 Modelling of system from process Input-output data

The very first need for implementing a control structure for any type of process is to identify
the right process model. In this work as discussed earlier, both 10 and FO models of WWTP
are identified from simulation work and hence both the 10 and FO controller are implemented

on it.

3.5.1 Algorithm to develop an 10 Model to design controllers

The idea of identification is to derive a dynamic system model from data collected during an
experiment. In general, obtaining a link between system inputs and outputs under different
influences (input signals, disturbances) is required to determine and estimate system behaviour.

W

System Y,

Q_l lc

Figure 3.3: SISO system with input, output and disturbance
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Select control (Snos, DO7) and manipulating variables (Qintr, Kra7)
for desired control loop

l<
Stimulate the inputs (Qintr, KLaz) by £10% using random source
around the operating point and collect input/output data

l

After selecting the required range, Pre-process the
data (take out trends and means)

<
<
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Split the data for modelling and
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Create the FOPTD model or a state
space model using PEM
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Design PI controller tuned by SIMC
method and Fractional Pl controller
tuned bv Chen method based on the

l

Deploy the intended controllers on the
WWTP and assess the plant

Figure 3.4: Algorithm for identifying an Integer-Order (10) Model
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Here the system is with input u, output y, measured disturbance d and unmeasured disturbance
‘w’. SISO system with input, output and disturbance is depicted in Figure 3.3. Above flow
diagram in Figure 3.4 describes the identification of 10 First order plus time delay (FOPDT)
model using system Identification toolbox.

3.5.2 Algorithm to develop an FO Model to design controllers
Figure 3.5 explain the systematic steps involved to identify a fractional order (FO) model using
FOMCON toolbox in MATLAB.

with desian l
v I I A
Data Obtained Select model set Select fitting
: standard
v ¢ v
Estimate model J
Model verification
No

’

Design FPI controller using based on the obtained Fractional model

}

Deploy the intended controllers on the WWTP and assess the plant performance

Figure 3.5: Algorithm for identifying a Fractional-order (FO) model
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A critical stage of the identification is measuring the level of noise and disturbances in the
acquired data and then filtering and processing the data before dealing with the identification
algorithm. The FO model is identified based on the time-domain approach. The Simulation

parameters window helps to select the type of system simulation we would like to use.
Among these are the following:

* Fractional derivatives being evaluated utilising Grunwald-Letnikov method.

* Approximation utilising Oustaloup filter.

» Approximation utilising Refined Oustaloup filter.

First and obviously, a ‘fidata’ structure must be selected. The Identified model comes with the
fractional zero and pole polynomials in symbolic form. As the options available to fix either
polynomial, the model is identified with fixed unity gain and fractional pole polynomial. An
initial guess model is formed. To do this, polynomials can be generated independently by
specifying a commensurate-order q such that 0.01 < q <2, the order of the polynomial. At the
end of the identification process, a plot with a satisfactory fitting result should be displayed
and also indicates the stable behaviour of the identified system. As the results are satisfactory,

the model is saved to implement a controller.

3.6 Employed Control scheme

The selection of control structure is critical in developing an efficient control scheme. The
elementary strategy acclaims controlling the nitrification and denitrification rates. The DO is
controlled by varying the flow rate of the air supply, which ensures the necessary nitrification
in the oxic reactors. In the de-nitrification process, nitrate is controlled by changing the internal
recirculation flow rate based on Sno in the final anoxic reactor. Considering these two default
loops into account, PI, FPI controllers are constructed in this study to regulate Snos and So7 by
adjusting Qintr in 1st anoxic reactor and Ka7 in the 7th reactor (aerobic) (in Figure 3.1). The
resultant model is only valid for balancing DO level 2 mg O/l and Sno level 1 g/m® (Mulas M.
2007). For the steady-state values, the operative point for the DO loop is 2 mg O/l of DO when
Ka7 is 252 likewise when the internal recycling flow is 34,500 m®/day, the operating point for
Sno loops is 1 mg N/I of Sno. To maintain residual DO values in aeration reactors, the amount
of DO supplied is usually equal to the microorganisms need. In environments with low oxygen
levels, filamentous microorganisms may predominate, which results in poor sludge settlement.

A high DO, on the other hand, requires more energy consumption and may lead to deterioration
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of sludge quality. In an aeration reactor, the DO levels are practically maintained between 1.5
and 4 mg O2/I, with 2 mg O/l being the most common value. Further, if the last pre-
denitrification zone does not consume more than a certain value of nitrate, excessive air
consumption is not required during aeration. Anoxic reactors with the presence of internal
recirculation must maintain nitrate levels between 1 and 3 mg N/I, with 1 mg N/I typically
being the most desirable value. Apart from this, a Fuzzy controller at the supervisory level is
presented in cascaded with the FO-P1 at the lower level as shown in Figure 3.2. In order to save
energy usage, estimation of Sp is important. As more 'So' (DO level) is essential for nitrification
while Snn (ammonia concentration) is high. When Snw is comparatively low then, fewer So is

essential for making less Sno.

3.6.1 Proportional integral (PI) controller design

In the benchmark models, the default controller is assumed to be PI. The default loops are
considered, which use PI controller to control the concentrations of nitrate (Sno) and DO in the
respective 4th and 7th reactors. Figure 3.1 depicts the plant arrangement with this PI controller.
A wide range of methods is available in the literature for designing PI controllers. Reputable
SIMC rules by Grimholt and Skogestad (2018) are deployed in this work. To develop
controllers using this method, the first step is to derive a First Order Plus Time Delay (FOPTD)
model (Gp) using the popular PEM method (Prediction-Error Minimization) (Ljung, 1999)

discussed in algorithm to develop an 10 model, presents in this form

Kp

Gp=——0—
P=Tys+1

e LS (3.4)

In the identified process model, Kp signifies the process gain and L is the delay time and the
time constant is denoted by T. We explored the above mention original SIMC tuning rule for
the first-order with delay (FOPDT) process in equation 3.4. The SIMC tunings for this FOPDT

process results in a Pl controller like in equation 3.5,

1 T

Ke=———
Kp (T¢c + L)

and T; = min { T,4(Tc + L)} (3.5)
Here the parameter Tc, the closed-loop time constant is an adjustable tuning parameter that is
used to achieve the desired trade-off between efficiency, robustness, and input utilization. Tc
= L is suggested for "tight control” (good performance) alongside acceptable robustness
(Grimholt et al., 2018).
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3.6.2 Fractional Proportional integral (FPI1) controller design

The FPI controller is also implemented for the same FOPTD model. Investigations on tuning
FPI controllers demonstrate a range of tuning rules for designing FPID parameters, namely
controller gain K¢, integral time constant T; and fractional order a, are given in equations. The
equivalent transfer function model of the fractional controller after doing Laplace transform,

stated as,

Q=m+%=m@+1> (3.6)
S T;s%

Ever since substantial work has been done to propose fractional-order PID controllers.
Oustaloup et al. (2000); Podlubny (2008) conducted early research. The tuning guidelines
provided by Chen et al. (2008) are used to develop the FPI controllers. According to the
identified FOPDT model in equation 3.4, a very important parameter called the relative dead

time (t) of the system defined as in equations (3.7),

_ L (3.7)
T L+T '

The ‘1’ ranges between 0 and 1, and systems with L>>T are referred to as delay dominated,

T

while systems with T>> L are referred to as lag dominated. Hence the tuning parameters come
in below equations (3.8, 3.9 and 3.10).

. 1 ( 0.2978 ) .

¢~ Kp\t+ 0.000307 (3:8)

T‘—-T( 0.8578 ) i

17 7 \12 = 3.4021 + 2.405 (39
1.1 if T >0.6
)10 if04<t<06

C=)09 if0l<t<04 (3.10)
0.7 if T <0.1

3.6.3 Fuzzy logic controller (FLC) design

Another combination in cascade mode structure a well-known tool, fuzzy logic is applied. Now
a day’s fuzzy logic is well accepted in various domains of control applications. The DO set-
point in the seventh reactor is controlled at a hierarchical level with a Fuzzy logic controller to
limit ammonia effluent violations in reactor 7. The membership functions (MF) of DO and

ammonia (Snn7) in reactor 7 were examined in the ranges of 0—4 mg O/l and 0-25 mg N/I,
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respectively. To work on these two variables, a Membership Function is chosen in a form of a
Gaussian-shaped-bell curve, and they are segmented into linguistic rules of three levels, "low"

"medium" and "high". The three ‘IF-THEN’ rules to regulate the DO loop are as follows:
* IF level of Ammonia is “low”, THEN set-point for DO is “low”.

¢ [F level of Ammonia is “medium”, THEN set-point for DO is “medium”.

* IF level of Ammonia is “high”, THEN set-point for DO is “high”.

The higher-level fuzzy control framework is developed employing these rules and attached

with the lower-level Fractional PI controller.

3.7 Results and discussions

Those above-described best control schemes are designed, next applied for the Wastewater
treatment system. According to the BSM criteria, an ideal sensor is utilised for all simulations.
Here in closed-loop systems for DO & NO control, all three situations: 1. 10 plant with 10
controller, 2. 10 plant with FO controller and 3. FO plant with FO controller have implemented
and enhanced performance is analysed. Apart from that higher-order Fuzzy controller is also
implemented and analysed in terms of plant performance.

3.7.1 Integer order (10) plant with 10 controller
An 10 controller in PI (default controller) form is applied to an 10 model in a FOPDT form at
the lower level. The FOPDT model is identified for both the DO and NO loop as discussed in

the algorithm to develop an 10 model. They are given below in FOPDT format,

0.013824
G — —0.006021x*s
po(S) = 50015778 x5 £ 1°

0.000071395 | 10025001ss
0.013636 xs+ 1

Gno(S) =

The corresponding controllers for both DO and NO are tuned using original SIMC rules.

controller Tunning po = [Nogoms

. - 4
controller Tunning yo = [MogdLelo

Finally, the controller for both DO and NO loops are
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— 4

3.7.2 Integer order (10) plant with Fractional Order (FO) controller

Calculating the fractional order controller for the same 10 plant (10 Model with P1 control) we
have used the Chen Method. To tune the parameter of the fractional P1 controller we need the
relative dead time of the system (t) = L/(L+T). The relative dead time for both the DO and NO
loops are 0.79244 and 0.01800 respectively.

[Kc = 27.1415
Fractional Controller Tunning po_jo0p = |Ti = 0.0040
la=1.1

[Kc = 2.27 x 10°
Fractional Controller Tunning NO-loop = | Ti = 0.0050

Lo = 0.7

Finally, the FPI controller for DO and NO loops are

1
CDO(S) = 27.1415 [1 + W]

1
=227 x10° [1 —]
Cro(s) 7> 10711+ 50050507

3.7.3 Fractional order (FO) plant with Fractional Order (FO) controller

Using the FOMCON toolbox a FO model plant is identified as discussed earlier (algorithm to
develop an FO Model). The fractional-order (FOTF) model is identified based on the time-
domain approach using ‘Oustaloup filter approximation’. The stable FOTF plant for DO and

NO loops are
_ 1
FOTF SyStem DO(S)_ 6.4179%50:48039 _99 996%50.21498 1 2()5.54x50.052764
1
FOTF system yo(s) =

35.742 x s1.8253 1 34336 x g1.3281e-10

Finally, the Fractional-order PI controller is optimized using the ‘Nelder-Mead’ algorithm by
choosing the performance metric as ISE. After selecting their minimum and maximum allowed

values of all tuning parameters of the FPI controller is optimized. After selecting the minimum
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and maximum allowable values for all tuning parameters, the FPI controller is optimized. The

tuned parameters are

Kc = 50.00
Fractional Controller Tunning gotr system p, = |Ti = 0.01040
a=1.0519
Kc = 1744.8
Fractional Controller Tunning gorr system yo = | Ti = 0.003221
a=0.5011

Finally, the FPI controller for DO and NO loops are

Cpo(s) = 50.00 [1 + 0.0104051-0519]

Cno(s) = 17448 [1 + 0.00322150-5011]

3.7.4 Hierarchical Fuzzy controller

To achieve a strong set-point tracking, along with conventional Pl and fractional PI controllers
at the lower level, a cascaded advance controller such as Fuzzy control is explored at the
supervisory level. The major goal of adopting this cascaded method is to change the dissolved
oxygen set-point in response to changes in ammonia concentration in tank 7. This is Ammonia-
based aeration control (ABAC) strategy. The control algorithms at lower level (Pl and FP1) and
at higher level (Fuzzy control) are distinct in nature. They are interconnected in a cascaded
loop. The higher level Fuzzy control is operated for the purpose of the Ammonia-based aeration
control (ABAC) strategy without affecting the lower level FPI and PI controller algorithms,
but the only connection is providing the variable DO set point to the lower level Pl and FPI
controller from the hierarchical Fuzzy controller by manipulating the NH7.The major goal of
adopting this cascaded method is to change the dissolved oxygen set-point in response to
changes in ammonia concentration in tank 7. We choose the ranges for DO and SNH7
membership functions as 0-4 mg O/l and 0-25 mg N/I respectively. The membership curve is
considered as a Gaussian bell curve. To ensure adequate oxidation of ammonia (Snn7) to nitrite
(Sno), the DO concentration should be kept high enough so that it does not drop before a

significant quantity of nitrification occurs.
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As shown in Figure 3.6 (A), the distributions of membership for ammonia (Sn+7) concentration
in tank 7 are established as 0-2 mg N/1 labelled as "low”, 2-4 mg N/I labelled as "medium" and
values over than 4 mg N/I labelled as "high", with the fuzzy set ammonia value membership
value as 1. Figure 3.6 (B) clearly shows that for DO, values less than 0.5 mg O2/I are labelled
undoubtedly "low," hence the membership values for this DO are assigned as 1. Similarly,
values ranging from 0.5 - 2.0 mg O2/I are labelled as "medium™ in the fuzzy set. DO values
more than 2.5 mg O2/I are labelled as "high". These DO7 values are conceded to the lower DO~
loop as set points. Figures 3.9 (A) and 3.10 (A) depict the changing DO set-point delivered by
the upper level Fuzzy and it’s tracking by the bottom level. Figure 3.7 (A) shows that keeping
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the set-point of DO at 2 mg O/l for the entire duration, as in the default bottom level control.
Ideally, DO7 set point is recommended as 2 mg O2/l. However, this value may not be required
all the time and that depends on the availability of ammonia concentration in the aerobic
reactors. The additional contribution of this study is the creation of a two-level hierarchical
approach with a supervisory layer that employs Fuzzy Logic Control. The higher-level
controller’s role is to compute DO7 values (lower-level set points) by measuring NHy in the
seventh reactor. These DO7 values are passed to the lower DOz loop as set points. As a result,
the higher-level control loop aids in determining the set points for the lower loop. Greater DO
is required for improved nitrification when NHy levels are higher. Nitrification converts
ammonium to nitrate, whereas denitrification converts nitrate into nitrogen gas. If the DO in
the aeration tank is too high, ammonia will drop but nitrate will rise. If the DO is too low,
ammonia levels rise and the amount of nitrate available for denitrification falls. Additionally,
the degree of aeration affects energy use. As a result, the DO set point should be chosen smartly.
At a lower level, default two PI and FPI controllers are used, and Fuzzy Logic controller is
built at a higher level. The set value of DO at 2 mg O2/I can indeed be changed to meet the
requirements of the WWTP. It can be smaller if the ammonia load is low, and it can be larger
if the ammonia load is high. One should note that, to have minimal operational costs, ammonia
should always be kept at the lowest value to keep the effluent level below the discharge limit.
Thus the simulation results showed that changing set-point using Fuzzy Logic Control
improves plant performance in terms of providing better effluent quality.

3.8 Controller Performance analysis
Set-point tracking is used to evaluate performance from a controller standpoint. In the fourth
tank, a set-point is chosen as 1 mg N/I for Sno, and for DOy in seventh tank 2 mg O2/I is chosen

as a set-point.

3.8.1 Lower level controller Performance Analysis

The set-point tracking of DO and nitrate (Sno) by PI, FPI, and Fractional Model plant with FPI
(FM-FPI) have shown in Figures 3.7 (A, B) respectively. The effective tracking ability of the
FM-FPI controller is comparatively superior for both DO and NO controllers, and at the same
time, the FM-FPI controller results in superior plant performance when compared to Pl control
and the 10 model with FPI control. The FPI controller using the Chen method in lower level
NO control gives oscillatory response because of high controller gain with low integral order

action. The main contribution of this work is implementing fractional controller in both 10 and
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FO plant model for DO and NO control. The plots in Figures 3.8 (A, B) show FM-FPI impacts
more on set point tracking compared to 10 model FPI. The manipulated variable plots by lower-

level P1, FP1 and FM-FPI controller for both DO and NO loops are well tested.
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Figure 3.7: (A) DO tracking for lower-level PI FPI and FM-FPI (B) SNO tracking for lower-level Pl FPI and
FM-FPI
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Figure 3.8: (A) DO tracking in 10 FPI and FM-FPI (B) SNO tracking in 10 FPI and FM-FPI

In the two considered control loops, to maintain the NO and DO levels in the anoxic and aerobic
biological reactor the internal recycling flow rate and the oxygen transfer co-efficient are
manipulated, respectively, removal of the organic and nutrient content from the influent is done

efficiently.

3.8.2 Supervisory level controller Performance Analysis
In addition, the cascaded approach with the fuzzy controller is used to adjust the dissolved
oxygen set-point in response to changes in ammonia concentration in tank 7. It has been

discovered that employing a Fuzzy controller with the changing set-point increases plant
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performance. Figures 3.9 (A, B) shows the DOSP tracking of supervisory Fuzzy controller and

nitrate tracking in the fourth reactor.
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Figure 3.9: (A) DOSP tracking of supervisory Fuzzy controller with lower-level FPI controller (B) Nitrate
tracking in last anoxic reactor

The Figures 3.10 (A, B) shows the dynamic set-point tracking with higher-level Fuzzy utilizing
FO model FO control, as well as improved DOSP tracking and robust control action in terms
of nitrate (Sno) tracking.
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Figure 3.10: (A) DO tracking of supervisory Fuzzy controller with lower-level FM-FPI (B) Nitrate tracking in
last anoxic reactor

3.9 Plant Performance analysis

All created controllers are employed on the plant design, and their performance assessment is
measured using the EQI and OCI indicators. In the nitrification process in a WWTP, ammonia
oxidises into nitrates. This is done efficiently by the FL control approach, which results in
lower ammonia concentrations when compared to other added control strategies, ensuring the
best EQI. As stated in the plant Performance evaluation index, OCI is computed using the ME,
SP, AE and PE cost indices. The current controller is selected in such a way that it has a

noticeable impact on the governing processes. Figure 3.11 shows the column chart for these
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cost indices. The first lower loop, which manipulates Qintr to control Sno, has an effect on the

de-nitrification process, which has a direct influence on the energy index in terms of pumping

cost. Similarly, the change in the cost index of aeration energy is an outcome of the nitrification

process, which is controlled by the other loop by altering Kra7. Results show that FL control at

the higher level resulted in the highest aeration energy cost index. Table 3.2 displays the plant

performance improvement in terms of EQI and OCI which shows with fractional modelling

and fractional controller implementation.

Table 3.2: Impact of proposed control strategies in evaluation criteria

Average effluent oL 10 model | 10 model | FO model [ 10 model FO | FO model
concentration (Sheik et | 10 control FO FO control FO control
al., 2021a) control control higher-order higher-
Fuzzy order Fuzzy
Components | Limit
NH 4 6.08415 6.09 5.74 5.73 5.79 5.76
TSS 30 13.68 13.69 13.72 13.68 13.75 13.71
TN 18 16.5 15.92 15.80 15.77 15.53 15.57
TP 2 3.58 3.59 3.63 3.64 341 3.45
COD 100 44.75 44.79 44.82 44.79 44.83 44.79
BODs 10 1.79 1.79 1.79 1.79 1.80 1.79
NH (% of violation) 66.22 66.51 65.32 65.17 69.40 68.89
TP (% of violation) 65.77 67.41 69.64 69.49 66.6 66.81
TN (% of violation) 38.09 25.51 23.95 23.21 23.95 2351
10l 72152.2 72152.22 72152.22 72152.22 72152.22 72152.22
EQI 13,411 13332.76 13265.74 13253.56 12874.25 12871.22
SP 2973.45 2969.81 2958.63 2957.10 2983.72 2980.03
AE 4336.6 4254.57 4261.27 4259.72 4322.89 4321.61
PE 304.81 331.52 328.80 329.82 333.40 335.69
ME 480 480 480 480 480 480
OcClI 18,753 18680.72 | 18623.33 | 18619.22 18811.15 18799.30
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Table 3.3: Performance of the different control framework in terms of EQI and OCI

Plant Pl (%l) | FPI FMFPI FPI- FMFPI- Improvement % | Improvement %

Performance (%) (%) Fuzzy Fuzzy with PI to FPI with Pl to FMFPI
1) (%1)

EQI 0.59% | 1.09% | 1.18% 4.00% | 4.03% 0.50% 0.59%

OClI 0.39% | 0.69% | 0.71% -0.3% -0.25% 0.31% 0.33%

*%I - Improvement % with respect to OL
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Figure 3.11: Column chart for all cost indices.

It has been noticed that the control approaches implemented have a significant impact on plant
performance in terms of EQI, OCI, set-point tracking, effluent concentrations, and violations.
Total nitrogen violations in the effluent are considerably decreased by the proposed control
approaches, whereas ammonia violations are reduced moderately in the lower level. Figures
3.12 (A, B, C, D) shows the effluent violations percentage and their concentration in all adopted
control schemes. Table 3.3 displays the increasing percentage of accepted controllers in terms
of EQI and OCI. In the open-loop scenario, the EQI and OCl are 13411 and 18753, accordingly.
When fractional controllers with integer models are used, EQI and OCI improve by 1.09 % and
0.69 %, respectively. When fractional controllers with fractional models are used, there is a
considerable improvement of 1.18 % in EQI and 0.71 % in OCI. Again, the improvement
percentage for EQI in FPI control and FMFPI control with respect to PI control is 0.50% and
0.59% respectively and for OCI it is 0.31% and 0.33%. In terms of EQI, the Fuzzy control in
sequential order affecting the 10 model with FPI control is improved by 4.00 %, while the FO
model with FPI control improved by 4.03 % from the open-loop. However, as a result of

controller cost, increases in OCI have been observed with Fuzzy control. An achievement like
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robust set-point tracking is also accomplished for the control loops utilising both the 10 and
FO model with the same FO Controller structure, but the FO model indicates that fractional

control strategy implementation has a significant impact on WWTP treatment.
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Figure 3.12: (A). Ammonia concentration (B) TP concentration (C) TN concentration and (D) Column chart
shows the effluent violations percentage in all adopted control schemes

3.10 Comparative analysis of existing and current control plans

The summary of current and previous control strategies indicates that adopting these fractional
control schemes in this ASM3-bioP framework has a considerable impact on plant performance
in terms of EQI and OCI. In the lower level control structure, designed controllers (Shiek et
al., 2021b) like PI1, Fuzzy and MPC (Table 3.4) are compared with present fractional control
schemes.
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Table 3.4: Comparison of Performance indices in lower level control strategy

0 (% 1) 0 (%)
Pe rfl:())lfrz;nce FP1 | FMFPI Fuzzy vv(rf)Fll)Dl wrt MPC vv(rf)Fllll wrt
FMFPI FMFPI
EQI 13265 | 13253 | 13381.96 | 0.87% 0.96% | 13,243.49 | -0.16% -0.07%
OCI 18623 | 18619 | 18,739.13 | 0.62% 0.64% | 18,619.64 | -0.02% 0.00%

*%l - Improvement %

*** Fuzzy and MPC controller’s performance index is presented by Shiek et al., 2020.

The plant performance in EQI and OCI is improved by 0.87% and 0.62% by FPI controller
with 10 plant and 0.96% and 0.64% by FPI controller with FO plant when comparing with
Fuzzy control. MPC controller shows almost the same performance analysis in terms of OCI
and EQI. The ammonia controller in supervisory schemes defined by (Shiek et al., 2021a) is

again compared with the present heretical Fuzzy controller (Table 3.5).

Table 3.5: Comparison of Performance indices in supervisory level control strategy

0, 0,
Plant FPI- | EMFPI-| PI- | (% I)wrt (F/"M')F;‘ﬁt Pl- | (% I)wrt (F/‘)I\/I')F;‘:Et
Performance | FUZZY | FUZZY | Fuzzy | FPI-Fuzzy MPC | FPI-Fuzzy
Fuzzy Fuzzy
EQI 12874 | 12871 | 12978 | 0.80% 0.82% | 12741 | -1.04% -1.02%
OCI 18811 | 18799 | 18769 | -0.22% -0.16% | 18945 | 0.71% 0.77%

*%l - Improvement %

*** Supervisory level PI-Fuzzy and PI-MPC controller’s performance index is presented by Shiek et al., 2021.
Compared with PI-Fuzzy schemes with the current two fractional schemes the EQI is updated
by 0.80% and 0.82% in FPI-Fuzzy and FM-FPI-Fuzzy schemes. However, OCl is a little more.
The PI-MPC result outperforms the current fractional schemes, in terms of EQI, but OCI is

improved by 0.71% and 0.77% in FPI-Fuzzy and FM-FPI-Fuzzy schemes respectively.

3.11 Conclusions

A biological WWTP is evaluated using PI, FPI, and higher-level FL control techniques based
on ASM2d wastewater data (Gernaey & Jrgensen, 2004). It has been found that the three
implemented control strategies (i) 10 model and 10 control (ii) IO model FO control and (iii)
FO model FO control in lower level have a considerable impact on the plant performance in
terms of EQI, OCI, set-point tracking, effluent concentrations and violations. The improvement

percentages of EQI for FPI control and FMFPI control compared to PI control are 0.50% and
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0.59%, respectively, while for OCI they are 0.31% and 0.33%. Whereas implementing
supervisory Fuzzy logic control, EQI improved by 4.00% for the 10 model with FPI control,
while the FO model with FPI control improved by 4.03 % from the open-loop model. Fuzzy
control, however, leads to increases in OCI due to controller costs. With the described FPI
control techniques, violations of total nitrogen in the effluent are greatly diminished by 9.01%
for FO model and 6.11% in 10 model based strategy while comparing with Pl controller.
Violations of ammonia are also reduced moderately in lower-level control using FPI controller
in FO model and 10 model by 2.01% and 1.78% respectively, while compared with default PI.
Compared with the open-loop scenario, the EQI and OCI both have improved significantly.
When compared with the PI controller the results in the FO controller showed more influence
on plant performance but the best result is found in the FM-FPI strategy. A Fuzzy logic
controller, as a higher level ammonia controller improves the EQI significantly, however,

increased OCI is observed.
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Chapter 4

4. DESIGN OF IMC-BASED FRACTIONAL CONTROLLERS
WITHIN A SUPERVISORY MPC CONTROL.

This chapter places a heightened emphasis on the design of a fractional controller using the
Internal Model Control (IMC) technique. The IMC based fractional controller design
necessitates a specific structured transfer function model, which could be either integer or non-
integer order, contingent upon the chosen controller (P1/FP1). Consequently this chapter centres
on a systematic analytical approach to craft a fractional controller within an identified non-
integer order model. The ultimate validation of this controller is conducted in a nonlinear
process within the WWTP plant, applying the previous ASM3-bioP model.

4.1 Introduction

This study optimises wastewater treatment plants (WWTPs), specifically the activated sludge
process (ASP) and its aeration process, a seven-reactor arrangement that removes nitrogen and
phosphorus simultaneously. In recent years, the field of control theory has experienced
substantial expansion in its study of fractional calculus and its practical implementations. To
regulate the concentrations of dissolved oxygen (DO) and nitrate (NO) in aerobic and anoxic
reactors, respectively, IMC-based fractional filter cascaded with Pl and FPI controls are the
two types of controllers utilised. These controllers employ models with integer and non-integer
orders, respectively. The objective is to guarantee the highest level of plant efficiency, resulting
in a longer plant lifespan, decreased cost per unit of production, and minimal nutrient
concentration in the wastewater. The IMC fractional Pl controller is designed with the
maximum sensitivity (Ms) as a priority, taking into account the process's gain margin (GM)
and phase margin (PM) as constraints. Conversely, advancements in the study of fractional-
order calculus have allowed scientists to prove that real-time complex processes possess a
dynamic nature characterised by fractional order. Systems with fractional order exhibit reduced
complexity while retaining intricate system dynamics. The fractional-order PID (PI"DV)
controller is an enhanced version of the integer-order PID controller that incorporates
additional integration (A) and differentiation (p) orders. Adjusting the parameters of this
controller improves the stability of the closed-loop response. The FOMCON Toolbox is utilised
to evaluate fractional model Systems based on real-time simulation data. The results of

fractional model structures are also compared to those of an integer order model structure. The
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non-commensurate fractional model has superior performance compared to other fractional and

integer model structures during simulations.

4.2 ldentification of Non-integer order model with time delay (NOPDT)

We have selected the ASM3bioP model and its aeration process to study the IMC fraction filter
in the non-linear processes of wastewater treatment plants (WWTPs). Our attention is
specifically on an activated sludge process (ASP) that utilises a BSM1-P configuration of seven
reactors, as described in section 1.4. Figure 4.1 describes the algorithm of non-integer order

model identification.

Select control (Snos, DO7) and manipulating variables (Qintr,
KLa7) for desired control loop

<
<

v
Stimulate the inputs (Qintr, Kraz) by £10% using random

source

l o Grunwald-Letnikov

Create a 'fidata' format through simulated input and output data. method.
o Oustaloup filter,

o Refined Oustaloup

\ 4

. .. . . filter.
Select time domain identification to generate a ‘fotf’
object. (The tool offers a frequency domain alternate.) /
le y.
;
Based on workspace ‘fidata' decide a ‘simulation parameter
method’ and a ‘preferred algorithm’ for the identification.
le
r o Preferred
Generate an initial guess model by selecting the order of the algorithm is set
polynomial g (0.01 < q<2) T > to "Trust-Region-
l Reflective.'

///\
/ \
If the model

¢ Yes

Export the system for controller design

Figure 4.1: Algorithms to develop a non-integer model utilizing ‘FOMCON’ toolbox
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Before implementing an efficient structure for any process, it is essential to determine a suitable
process model. Transfer Functions (TF) explain the processes in our control system by
integrating key principles of physics and bio-chemical engineering, including Newton's law,
material balance, heat transfer, and fluid dynamics. Nevertheless, in practical applications,
numerous industrial processes are too complex to be solely described by these fundamental
concepts. The content offers an overview of the equations and modelling approach used in the
process identification of the ASM3-bioP model, which helps in comprehending the intricate
systems involved. In this study, we use simulation studies to identify non-integer order models
with time delays in WWTP. We next develop a fractional controller by cascading GA-based
IMC fractional filters onto these models. The PI controller with a fractional filter is constructed
using the integer order plant model, as described in the study by Indranil et al. 2022, by
applying the IMC technique.

Fractional-order calculus is a generalization of integer-order calculus which comprises
arbitrary order differential and integral equations. Any derivative or integral of any order can
be solved using fractional calculus theory, as can continuous versions of the fractional calculus

operator, as described in (Tepljakov 2017) in Eq. (4.1).

dp
e Re(p) >0
aDf =< 1  Re(p)=0

4.1
[(d)™P Re(p) < 0 @

Where 'a' and ’t’ represent the calculus upper and lower limits, and is an arbitrary intricate.
Many other definitions of fractional calculus have been generated by fractional order calculus
theory, like the GL, RL, and Caputo theories, by Tepljakov 2017.

Based on the time-domain approach, a non-integer order time delay transfer function model is
found using the MATLAB FOMCON toolbox. We can choose the kind of system simulation
we want to use using the Simulation parameters window. The input and output data is generated
by giving the random input to the model of ASM3-bioP model at steady sate with plant influent
and relating all state variable. Steps to explain a well-fitted model identification. First and
foremost, a "fidata” format has to be selected. Pick the ‘Time domain Identification’, can also
choose frequency domain in the ‘Identification’ tab. Select the ‘simulation parameter methods’
in the options of Grunwald-Letnikov method or Oustaloup filter or Refined Oustaloup filter.

(The next two options must allow you to choose the 'w' range and order).
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4.2.1 Oustaloup filter

The Oustaloup recursive filter is commonly used in fractional calculus because it provides a
fair approximation of fractional operators over a specified frequency range (Oustaloup et. al,
2000). An operator is assigned a frequency range (mb, ®n) and a filter of order N, operator as

s’ 0 <y <1, is specified by,

N 4
Gr(s) =K H ST O (4.2)
K=—-N

S+ wyg

Where,

K+N+(1-y)

, ((Dh> 2N+1
Wr = Wp | —
Wp

1
k+N+5(1+y)

((Dh> 2N+1
Wi = Wp | —
Wp

K = a),’{and N = Approximation order

Figure 4.1 displays the algorithm involves in Non-integer model identification in FOMCON
toolbox. Using the Oustaloup filter in the ‘Identification and options’ section, right ‘fidata’
name should be chosen and our preferred algorithm is ‘Trust-Region-Reflective’. It contains a
symbolic illustration of the defined model in terms of fractional pole and zero polynomials. A
first-guess model is created. In order to create polynomials autonomously, a commensurate-
order q that has the property that 0.01 < q <2 —the order of the polynomial—can be defined.
It is essential at the end of the identification process to display a plot that displays upright fitting
results and shows the identified system's stable behaviour. As long as the results are

satisfactory, the model is retained for use in developing a controller.

As a final step, we find a process model in the form of non-integer orders plus time delays
(NOPDT), and B is the non-integer order.

__K —T4S
GP—TSﬁ+1e d (4.3)

4.3 Controller Implementation
Careful consideration is essential when selecting a control structure for an effective control

scheme. Controlling nitrification and denitrification rates is key in WWTPs. As discussed
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earlier the amount of DO that blowers add to the water in the aeration tank is a crucial indicator
of the effectiveness of the biological treatment process and is directly related to the health of
the microbial culture. One simple way to monitor and manage the treatment process is to
monitor and control the dissolved oxygen content. Under certain conditions, high air
consumption in the aeration zones is no longer necessary if the nitrate intake in the last pre-
denitrification zone stays below a particular threshold. In an anoxic reactor, keeping the nitrate
(NO) level within the optimal operating range of 1-3 mg N/l is critical when internal recycling
takes place. Usually, 1 mg N/l is used as the desired amount.

Fractional
Fiter || PVFPI
|_ Controller Settler
q
Q.
> -
oD o o O
X Sule) o u. O
oo (@) (©) OO (@) ®
Anaerobic Anoxic Aerobic \/
Fractional Filter _1
Internal recycle (Q;,,)
External recycle (Q,) Waste sludge (Q,,)

Figure 4.2: BSM-1P plant framework with IMC-based Pl and FPI control approach for DO control

In this study, the fourth reactor (anoxic) controls Qint to maintain Snos at 1 mg N/I, while the
seventh reactor (aerobic) modifies Kia7 to maintain SO7 at 2 mg O%1. This is accomplished by
cascading Fractional Pl (FPI) controllers with an Internal Model Control (IMC) -based
fractional filter (as illustrated in Figure 4.2). In the end, a comparison is made between the
outcomes and an IMC-based fractional filter Integer Order Pl that has been developed. The
main focus of this study is the development of a fraction controller (FP1) for a non-integer order
model system and replacing a PI controller at the lower level for both integer and fractional

models.
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4.3.1 IMC Fractional filter deign using Constrained GA

A popular type of feedback control system used in process control and factory automation is
the IMC controller, which stands for "Internal Model Control controller.” It gives you an
organised way to control things that uses math models to get accurate control and make the
system work well. To reach the control goals and keep the system stable, it is very important
that IMC controllers are designed and tuned correctly. For IMC to work, there needs to be a

mathematical model of the system or process that needs to be controlled. The IMC scheme and

IMC . . Disturbance
Biological WWTP
Controller (ASM3.bioP) (D)
Y B Output
sp G . Go p=
Set-Point (Y\
> Gp”

Process Internal Model

Figure 4.3: IMC-based feedback control technique

feedback loop are shown in Figure 4.3. GP, GP,, and Gc¢* stand for the process, the internal
model of the process, and the IMC controller, respectively. Ysp stands for the set point, Y for
the managed variable as an output, and D for the disturbance.

Getting DO tracking at 2 mg O/l in the ASM3bioP model by changing K.z is seen as a servo
problem, while dealing with changing inputs is seen as a regulatory problem.

To tune an IMC controller, you have to change its parameters to get the amount of control you
want. Parameters like gains, time constants, and other values tell the controller how to act.
Tuning is necessary for control to work reliably and well. In this research, a Genetic Algorithm
(GA) with constraints is used to find the IMC controller's filter parameter. The IMC model

design is used to find the controller's wins.

The steps needed to make an IMC-PID controller are shown in Equations (4.4-4.7), which
describe the controller design using the IMC method.

The final response of a classical feedback controller is described in Eq. (4.4).

GcG 1

Y=———Yp+——D 4.4
1+GcG P T 14 GeG (4.4)

Step 1: Factor Process Eq. (4.5) follows the model's method.
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Gp = G,G_ (4.5)
Step 2: Derive the IMC transfer function from the IMC structures using Eq. (4.6).

GG 1—GiGp

Y= Y. D 4.6
1+ G:(G — Gp) SP+1+GE(G—GP) (4.6)

_ _ Ge « _ 1

Ge = 1-G5Gp Ge = G_f

1

TSrT T=Time

Here f is the filter function for the system's physical reliability f =

constant r = Positive integer.
Step 3: Obtain the model's controller from the IMC approach using Eq. (4.7).

Gg

Ge = ————
T 1-GiGp

(4.7

4.3.2 Non-integer filter with integer PID controller (NOF-1OPID)
The time domain version of the generic integer order controller formula is represented by Eq.
(4.8).

u(t) = Kp e(t) + Ky4De(t) + K; f e(t) (4.8)

Using error signal e(t) as a starting point, Kp, Ki and Kq define the proportional (P), integral
(1), and derivative (D) gains. The controller's equation (4.8) is translated into equation (4.9) by

performing the Laplace transform, which has zero initial conditions.
Kj
GC (S) = Kp + ? + Kd S (49)

Eq. (4.10) represents an integer order process with a fractional filter.

C = ! ! 1 ! 4.10
#5) = G TR L Ts) (410

EQ. (4.11) shows a fractional filter term and a is the order of filter

1

HE = oomtv1y

(4.11)
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PID Controller gain values from the IMC method is K, = E K = Ti,Kd =0

4.3.3 Non-integer filter cascaded with fractional order PID controller (NOF-FOPID)
Eq. (4.12) is the generic time domain variant of the fractional order controller equation.

u(t) = Kp e(t) + K;D Me(t) + K4D Ye(t) (4.12)

Like Integer PID, the error signal e(t) then Kp, Ki and Kd define the proportional (P), integral
(1), and derivative (D) gains. Finally these n , Y are the fractional derivate and integral co-
efficient. Eq. (4.12) is changed into Eq. (4.13) through the application of the Laplace transform

to the controller assuming zero initial conditions.
K; v
GC (S) = KC + s_“ + Kd S (413)

Eq. (4.14) displays the fractional order system with a fractional filter CFF(s) from the IMC

process.

1 T 1
Cox(S) = s Ty (L o) (1

EQ. (4.15) represents the fractional filter term V(s) and a is the order.

1

V(s) =
) = G4 Ty5B)

(4.15)

Fractional PID Controller parameters from the IMC technique is K; = E JKi==,Kq =

1
T;
On=_8

4.4 Tuning deploying MS-based GA Constrained optimization

The genetic algorithm (GA) is a way to solve optimisation problems with and without
constraints. It works by using the ideas of natural selection and is similar to how living things
evolve. The algorithm updates a group of individual answers over and over again. At each

stage, the GA picks people at random from the present population and uses them as parents to
make children for the next generation.

A fitness function is used in genetic algorithms to figure out how close a design answer is to
reaching the goal value. A chromosome, which is also called a genotype, is a group of factors

that together make an idea for how to solve the problem. The population includes all possible
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options. A genetic operator called crossover is used to change the code of one or more
chromosomes from one generation to the next. To keep genetic diversity in a community,
genetic algorithms are based on the way that living things cross-breed and reproduce. Mutation

changes the numbers of one or more genes on a chromosome from how they were at the start.

In a genetic algorithm, the selection process includes picking out individual genomes from a
population to breed with other genomes. The flowchart of the method is shown in Figure 4.1.
The evaluation index used in this study was picked to minimise error. It is shown as the Integral
of Absolute Magnitude of Error (IAE).

The maximum sensitivity for the gain margin and phase margin was chosen as a constraint
when designing the IMC fractional P-1-D controller of the first order plus time delay structure.
A constrained genetic algorithm operates to fine-tune the filter parameters (A, o) utilising
criteria such as Gain Margin (GM), Phase Margin (PM), Gain crossover frequency (Wgc),
Phase crossover frequency (Wpc), and Maximum Sensitivity (Ms). Egs. (4.16-4.17) describe
the closed-loop model.

L(s) = Gp(s)c(s) (4.16)
L . 1-— TdS 417
(s) = m (4.17)

While s=jw was entered into Eq. (4.17), it was transferred to Eq. (4.18).

(4.18)

Based on the complex numbers, j = cos (g) + j sin (g) The power and roots of complex

numbers can be easily calculated using De Moivre's Theorem.

Eq. (4.19-4.20) represents j from De Moivre's Theorem.

(k= (cos (g) + jsin (g))k = cos (kg) + jsin (kg) wherek=1,2...n (4.19)
() = cos (oc ;) + jsin (oc ;) (4.20)

In case Eq. (4.20) is substituted for Eq. (4.18), the process model is as follows. Eq. (4.21)
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1-— Td]W

L(w) = (4.21)

[)\(w)“ cos (oc g) +j (wa + A(w)%sin (oc %))]
To run the GA algorithm in a predetermined form for the closed loop model L(S), gains margin

(GM), phases margin (PM), and crossover frequencies (Wac, Wec) are calculated.

4.4.1 Maximum Sensitivity (Ms):
We find the greatest value of the sensitivity function over a wide frequency range. Shown in in
Eq. 4.22,

C(s)G(s)

Ms |max(0<w<oo):W)G(s) (4.22)

Eqgs. (4.23-4.24) show the relationship involving the process models' maximum sensitivity
(Ms), gain margin (GM), and phase margin (PM).

GM > Ms 4.23
=M -1 (4.23)

PM>2"1(1) (4.24)
> 2sin M, .

4.4.2 Performance Indices

The integral of squared error (ISE) and integral of absolute error (IAE) are frequently utilised
to evaluate the performance of the controller. These are outlined by the subsequent equations
(4.25-4.26).

ISE = ]m e?(t)dt (4.25)
0

IAE = joo le(t)|dt (4.26)
0

4.5 Higher order filter with IMC Fractional controller deign- an analytical method

A fractional-order model generated through "Fractional order model identification™ can be fine-
tuned using an IMC filter. Previously described GA based IMC PID or FPID controller
generates a lower order Non-integer filter. The current study also focus for a higher order non-
integer filter implementation in the current application of Wastewater treatment in terms of
ASM3-bioP framework. This study addresses the downsides of GA-based design and illustrates

how a higher-order filter changes the current non-integer order transfer function at the same
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time. The Fractional Proportional-Integral-Derivative (FPID) controller's values stay the same
as they were in the Internal Model Control (IMC) method. In this case, however, Li et al. (2015)
explain a mathematical method that is used to find the higher-order non-integer filter. The main
goal is to look into how higher-order filter factors affect the tuning of the IMC controller. A
comparison study is also done between two IMC FPID controls in the complex processes of
biological wastewater treatment plants (WWTPs). This method helps us understand the
differences in how well the two systems work in this complicated WWTP setting. The design
technique offered a simple method for setting PID parameters that consider the control system's
resilience and maximise sensitivity. This method yields a fractional IMC-PID controller with

a fractional-order PID structure with a Non-integer filter.

The controller design for the plant with a non-integer structure, as shown in Eq. (4.3), can be

separated according to non-integer order, making it more realisable.

. 0.007985 000501 (427
P = 0.00057858 » ST + 1 ¢ '
0.0000291254
Gp(NO) = e~0-0051+S (4.28)

0.00403027 * S195 4+ 1

When 0 <B< 1, Eq. (4.29) gives the controller.

Cs) = — T O5TaS T( N 1) 420
> T STB(0.5AS + A+ T K \ ' TSP (4.29)
And when 1 <p< 2, controller is given by Eq. 4.30
Cs) = 1+ 0.5T¢S T(1+ 1) 430
> = ST-B(0.502T,S% + (ATy + A2)S + 24 + Tg) K TSP (4:30)
Where

A ~ L(—0.0667M$ + 0.5314M* — 1.6861M3 + 2.667M? — 2.1076M, + 0.6679)
x 103 (4.31)

Both Equations (4.29-4.30) reveal that the PIP parameters are previously known. The only
parameter that needs to be tuned is A. As a result, higher control performance can be predicted
if A is correctly calibrated. In this work, the maximum sensitivity Ms for both loops is set to

1.2, likewise previously set, resulting in A = 0.0130 for the dissolved oxygen loop and A =
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0.0112 for the nitrate loop. Furthermore, the above Egs. (4.27-4.28) show that for both loops
is 1 <B< 2 therefore by Eq. (4.30), controllers for both loops are given in Egs. (4.32-4.33):

CDO(S)
_ 1+ 0.5 % 0.0059 xS
B S(l‘l-l){O.S %X 0.0130% x 0.0059 x S% + (0.0130 x 0.0059 + 0.01302%)S + (2 x 0.0130) + 0.0059}

|0.07245 (1 + ———)]| (4.32)

0.00057858 s1:1

CNO(S)
1+ 0.5x%x0.0051 xS

~ SG-105){0.5 x 0.01122 x 0.0051 x SZ + (0.0112 x 0.0051 + 0.01122)S + (2 x 0.0112) + 0.0051}

138.376 (1+ —— )| (4.33)

0.00403027 s1.05

4.6 Hierarchical control scheme: Model Predictive Control

Lower level control controllers maintained dissolved oxygen set-point. The higher level
controller adjusts DO controller set-points dependent on tank ammonia level. Different ASM3-
bioP mechanisms handle Snw biologically. More So is needed for nitrification when Syn rises.
As Sy declines, So is needed less, reducing Sno. Following sections propose supervisory
combinations for lower and higher-level controllers. Figure 4.4 shows the two-level controller
design used in this work. The higher level controller must provide appropriate set points to the
lower level. Lower level DO set-point is based on tank 7 (Snw7) ammonia content, which is a

configurable variable at the upper level. The bottom level must follow its set-point trajectory.

MPC is a sophisticated control approach that is used in the majority of process industries. It
improves performance by combining an approximation prediction model with a control method
that delivers the ideal trajectory of the manipulated variable. The prediction model in this case
is a linear dynamic model of the process that is used to anticipate its expected future response
and then select the optimal control action available while satisfying a set of constraints. A
mathematical model of the plant is used to create model predictive control systems. A state-

space model is assumed to be employed in the control system design. Basically, MPC is
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composed of three main components: a plant model, a cost function, and an optimizer. A model
simulates the behaviour of the actual process and forecasts output in the future over a
predefined period (prediction horizon). Future errors are estimated based on that, and the
optimizer attempts to minimise them over time (control horizon). The prediction and control

horizons that are chosen can have a significant impact on the controller's functionality.
Steps to set a supervisory MPC controller

MPC utilises a process model to predict the future behaviour of a certain variable, combined
with an optimisation method to address the control problem. The MPC algorithm predicts the
trajectory of output variables for each control instance over a prediction horizon (p).
Afterwards, it calculates a series of control actions for a control horizon (m) using the predicted
output. The optimisation algorithm aims to minimise a quadratic objective function, as

specified in equation (4.34).
J = X0 G, + k) — (e + D)|1? + X7 [T (Aulk + 1= 1)) (4.34)

Where, y(k+l1|k) is the controlled output at future sampling instant k+l, predicted by model at

current instant k. And I'Au and I'y represent input rate weight and output weight respectively.

Model Predictive Control (MPC) provides set-points to lower-level fractional-order
Proportional-Integral (P1) controllers at a more advanced level. The technique of determining
the linear model for prediction in MPC closely resembles the identification procedure at the
lower level. The Parameter Estimation Method (PEM) is used to construct the higher-level
linear state-space model. The linear model is employed for prediction in Model Predictive
Control (MPC) and is obtained by perturbing the set-point of the Disturbance Observer (DO)
for the lower level within a range of its nominal value (£10%) and observing the resulting effect
on SnH7. The measured disturbance is considered to be the inlet flow rate. To add lower-level
control, the PEM approach is applied using a third-order state-space model of the system, as

described in equation (4.35).

x(k +1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k) (4.35)

Where x(k) represents the state vector and A, B, C, D represent the state space matrices.
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The operating point of DO is found to be 2.2 mg O2/Ifor an ammonia set-point of 3.01 mg/I.
The impact on Snhy is noted and the system's model obtained as per equation (4.35) is given in
equation (4.36).

—1.5794 —5.9788 0.0970
A=116.7419 —22.5856 —12.4775
—1.8143 19.4594  —2.5352
0.4457
B=|4.1247 (4.36)
—4.7635
C = [1.8750 —-0.3941 —0.1303]
D = [0]

The tuning parameters selected to design the higher level MPC are as follows:
e Control horizon=10,
e Prediction horizon=15
e Sampling time=0.0100 days for FPI-IMC MPC
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Figure 4.4: BSM-1P plant framework with IMC-based Pl and FPI control approach for DO control with a supervisory MPC
control

4.7 Result and Discussion

This section presents the key outcomes of the work, which include finding non-integer order
models and looking at how well-tuned controllers work. In the concluding phase, the developed
methodology is put to the test on the complex ASM3bioP platform model in order to assess the

wastewater treatment plant's overall performance.
Non integer model

This paper’s 1% focus is identifying the Non-integer model of ASM3-bioP framework and
implementing a systematic IMC based controller for enhanced effluent control as well as
operation cost minimization. The plant operation is done for 0-14 days. During the
identification, the simulation model is made on that full range of biological processes and
sampling is done by 1/96. So a total of 1345 data points are considered for process model
identification. We select the Oustaloup filter as ‘simulation parameter methods’ and the
preferred algorithm is ‘Trust-Region-Reflective’ for identification. Figure 4.5(a, b) presents the
validation of identified non-interger order model for both DO and NO loops.
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Figure 4.5: Validation of identified Non-integer order model with time delay; Figure a for DO loop and Figure
b for NO loop

The Final process models are found in form of non-integer order with Time delay (NOPDT)
for both DO and NO control loop, like equation 4.3. Stability analysis of the identified process

model is also examined.

0.007985
Gp(DO) = 000598 4.27
P(DO) = 550057858 » ST 7 1° (4:27)
0.0000291254
Gp(NO) = g 0:0051+S (4.28)

0.00403027 * S195 + 1

4.7.1 IMC based controller design using GA

The integer (Indranil et. al, 2022) and non-integer order transfer function models for DO and
NO control that have been identified are presented earlier. The cascaded filter controller
structure, where the filter parameters (A, o) are tuned using GA by minimising the ISE of the
closed-loop response by selecting maximum sensitivity (Ms) =1.2. The IMC structure
controllers are designed in two forms: integer order and non-integer model as Ci(S) for NOF-
IOPID and Crr(S) for NOF-FOPID. Table 4.1 displays the evaluated control structure for both
dissolved oxygen (DO) and Nitrate (NO) loop and Table 4.2 shows the evaluated controller

performance during two simulations.
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Table 4.1: NOF-1OPID and NOF-FOPID control structure for dissolved oxygen (DO) and Nitrate (NO) loop

control
Control Transfer Identified model Fractional IMC based Controller
loop function Filter
Parameters (according to Equation 10 and 14)
A= Cip(s) =
Integer Order 0.013824 -0.0060215S 0.1557 1
0.0015778 xS+ 1 (0.1557 s09688-1 4 0,006021)
K rs a=
S TS +1 1
D) — -
28 0.9688 (011413 (1 *0.0015778 s>]
© 5
T O
é) 5 A= Crr(s) =
29
£z Non-Integer 0.007985 000s9:s  0.0718 1
Order 0.00057858 = S11 + 1 (0.0718 50999811 4. 0,0059s1-11)
a =
K -ras [o 07245 (1 PR ! )]
TSP+ 1 0.9998 ' 0.00057858 s11
B=1.1
A= Cir(s) =
Integer Order 0.000071395  _ (0025001, 0.1857 1
0.013636 xS+ 1 (0.1857 s1001-1 4+ 0,00025001)
© K e~ Tas o=
= TS +1 1
o 190. 71+ ——-
o 1.oo1 190593 ( T 0013636 s)]
@)
é A= Crr(s) =
o]
< Non-Integer 0.0000291254 —000s1ss 01001 1
= Order 0.00403027 * S1:05 + 1 (0.1001 s10091-1.05 4 0,0051s1~1.05)
oa=
K ~TaS [138 376 (1 + ! ! )]
TSP +1° 1.0091 ' 0.00403027 5105
B =1.05
Table 4.2: controller performance
Dissolved oxygen (DO) loop Nitrate (NO) loop
Controller
IAE ISE IAE ISE
NOF-I10PI 0.4852 0.4224 0.3719 0.1865
NOF-FOPI 0.3326 0.2759 0.2501 0.1288
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The Implemented controller is tuned by IMC approach and non-integer filter parameters are
optimized by constrained GA. The controller’s performance is impressive for both servo and
regulatory problem. Both IAE and ISE is minimized into quite good number. Based on the
performance parameters and response of the controller in Figure 4.6 (a,b), can conclude FF-
FOPI outperforms FF-10PI.

T
FF-10P1 | |

= FF-FOPI

""""" Set-Point

FF-IOPI

~
T

-
@
T

o
[ o @

———FF-FOPI ||
-------- Set-Point

Nitrate concentration (NO) mg N/L

-
o

Dissolved Oxygen (DO) mg O, /L
- & !
—_— T :

r

o
=
o

Time(sec) Time (sec)

Figure a Figure b

Figure 4.6: Set point tracking in closed loop control action with disturbance; Figure a DO tracking at 2 mg
O-/L; Figure b NO tracking at 1 mg N/L

4.7.1.1  Uncertainty analysis with perturbations in Model

One mathematical model is not enough to show how a real system works. System uncertainties
can be caused by disturbance signals or changes in system variables. In this situation, a reliable
control system should always work the same way. To make a strong device, maximum
sensitivity (Ms) =1.2 was used. Figure 4.7 (a,b) shows controller response with perturbed
model for DO loop transfer function and what happens to the controller action when the
FOPTD and fractional order with delay model settings are changed. There are 20% changes in
the delay parameter, 20% changes in the gain parameter, and 20% changes in the time constant
parameter. Based on these results, the findings demonstrate that a well-designed optimised
robust controller protects the system against unpredictable variables. We thoroughly analysed
the uncertainty related to the determined model when it was subjected to closed-loop control
action. We carefully evaluated the possible changes and unpredictability in the system's
response. We conducted an in-depth study of closed-loop control, exploring the complexities
involved and taking into account potential sources of uncertainty, such as disturbances,

variations in parameters, and external effects. After an extensive evaluation, we can certainly
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affirm that our method successfully dealt with and reduced the uncertainties present in the
identified model through closed-loop control action.

Table 4.3: Uncertainty of plant in case of DO integer order

Controller
Identified Model Perturbatio
Perturbed Model Performance
(DO Integer) n

ISE IAE

00110592 ) 0se160-s 0% 0.5317 0.306

0.013824 0.00126224 «S+ 1
0.0015778 xS+ 1 0.0165888

@—0.00752252+S +20% 0.358 0.404
e~0.006021+S 0.00189336 xS+ 1 2 6

Table 4.3 and 4.4 summarises the performance metrics of the controller with uncertainties in
the FOPTD and fractional order with delay models. For all perturbations in the models, the FF-

FOPID of the Fractional order with delay model has lower values than the FF-IOPID of the
FOPTD model.

Table 4.4: Uncertainty of plant in case of DO non-integer order

- Controller
Identlfled_ Model Perturbed Model Perturbation  Performance
(DO Non integer)

g ISE IAE
0.006388 00047255 20% 03282 0.4011
0.000462864 * S11 + 1
0.007985
0.00057858 « S11 + 1 0.2424 0.2879
@—0.0059:S 0.009582 —0.00708+S +20% ' '

0.000694296 * St1 4+ 1
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Figure 4.7: controller response with perturbed model for DO loop transfer function; Figure a Integer Plant
perturbation; Figure b Non-integer perturbation.

4.7.1.2  Fragility analysis of controller for DO fractional TF

This index checks how resilient the control loop is compared to how robust it is when the
controller settings change. Find out how much the control loop's strength is lost when one or
more of the nominal controller parameter values given by the equation change by up to 20%.
Figures 4.8 and 4.9 depict controller and filter factor variations for the respective DO and NO
loop fractional order with delay models when subjected to a 20% perturbation. Despite this
notable perturbation, the system demonstrates outstanding tracking abilities in servo and
regulatory responses. The controller can handle changes in parameters of up to 20%, so it is

not fragile and is strong.

Table 4.5: Fragility analysis of controller for DO fractional TF

Controller Performance
Perturbed Controller Perturbation

IAE ISE

Crr(s)
1

- (0.05244 s079984-088 1 () 005951088

1 1
[0. 0579664 (1 + )]
0.00057858 588

-20% 0.2859 0.2347

Crr(s)
1

= (0.08616 s11976-132 4 (. 0059s1-132)

1 1
[0. 0869496 (1 + )]
0.00057858 s132

+20% 1.082 0.8529
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Figure 4.8: A fragile controller is successfully tested on DO loop Non-integer model

4.7.1.3  Fragility analysis of controller for NO fractional TF

Conducting fragility analysis involves assessing the susceptibility of the controller to outside
influences, specifically with a 20% perturbation for a NO loop non-integer order plant. This
assessment enables us to comprehend the system's sensitivity to variations and emphasises the
resilience of the controller in sustaining stability and performance in such circumstances.

Figure 4.9 illustrates the non-fragile closed loop control action for NO loop.

Table 4.6: Fragility analysis of controller for NO fractional TF

Controller Performance

Perturbed Controller Perturbation
IAE ISE
Cgr(s)
B 1
"~ (0.08008 5080728084 | (0 0051s1-084)
-20% 0.2096 0.1097
[111 008 (1 ! ! )]
' * 0.00403027 5084
Cgr(s)
B 1
"~ (0.12012 s121092-126 1 (0 0051s1-126)
+20% 0.5016 0.2257

1 1
[166. 512 (1 + )]
0.00403027 s126
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Figure 4.9: A fragile controller is successfully tested on NO loop Non-integer model

4.7.2 DO tracking in ASM3-bioP Platform with dynamic influent
Set-point tracking is a way to determine how well a controller is performing. The set-point

values for Sno and DOy are as follows:

a T
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Figure 4.10: (a )DO tracking in the seventh tank with dynamic influent; (b) manipulated variable plot in terms of
oxygen transfer coefficient
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1 mg N/l is selected for the fourth tank, and 2 mg O/l is chosen for the seventh tank. The
tracking of dissolved oxygen (DO) for three different control schemes is shown in Figure 4.10
(a,b), along with their manipulated variable plots that are given in terms of the oxygen transfer
coefficient (Kra7). The graph makes it clear that the FPI controller with a non-integer-order
plant (GA-FPI) works better than the PI controller with a integer plant (GA-PI) when the same
Internal Model Control (IMC) method is used. Furthermore, it is clear that the FPI controller
with a higher-order filter setting (Analytical-FPI) works better than the one with a lower-order
filter (GA-FPI).

4.7.3 NO tracking in ASM3-bioP Platform with dynamic influent
The set-point tracking of nitrate (Sno) by GA-PI, GA-FPI, and analytical-FPI have shown in
Figures 4.11 a. The effective tracking ability of the analytical-FPI controller is comparatively

superior for NO controller, and at the same time, the analytical-FP1 controller results in superior
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Figure 4.11: NO tracking in the fourth tank with dynamic influent; Figure Manipulated variable plot in terms of
Internal recycle
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performance when compared to GA-PI, GA-FPI. Figure 4.11b indicates the manipulated
variable plots by lower-level PI, FP1 and FM-FPI controller for NO loops in-terms of internal

recycle flow rate (Qintr).

4.7.4 Plant performance analysis
Comparative analysis of all three controllers is revealed as the evolution of the plant's

performance is traced via the matric and effluent parameters in Table 4.7.

Table 4.7: over all plant performance analysis on lower level strategies.

Average effluent | Open loop | GA-IMC GA-IMC Analytical-
concentration fractional fractional IMC higher
filter +PI filter +FP1 | order

fractional
filter + FPI

Components Limit

NH 4 6.08415 6.47 6.285 6.10

TSS 30 13.68 13.68 13.6762 13.6709

TN 18 16.5 16.17 16.1479 16.03

TP 2 3.58 3.49 3.526 3.54

COD 100 44.75 44.73 44,7404 44,73

BODs 10 1.79 1.78 1.7869 1.785

101 72152.2 72152.2 72152.2 72152.2

EQI 13,411 13314.72 13306.03 13255.02

SP 2973.45 2975.73 2973.145 2970.44

AE 4336.6 4231.50 4246.96 4253.48

PE 304.81 337.25 332.112 331.98

ME 480 480 480 480

OCl 18,753 18692.009 18689.74 18683.11
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Figure 4.12: Column chart on percentage of violation in effluent

Notably, a significant improvement is shown when the higher-order fractional filter is used
with the IMC FPI control technique. The highest level of efficiency is achieved, as evidenced
by the lowest Effluent Quality Index (EQI) and Operational Cost Index (OCI) during the
execution of the higher-order fractional filter with the IMC FPI control scheme. Upon
comparing the open-loop EQI and OCI with the GA-based PI control approach, there is a
noticeable improvement of 0.72% and 0.34%, respectively. When compared to the GA —FPI
approach, these two metrics improve marginally by 0.06% and 0.01%, respectively. Finally,
when GA-PI is compared to the higher-order filter-based FPI controller, there is a more
substantial improvement, with gains of 0.44% and 0.05% in EQI and OCI, respectively. All
the effluent parameters are well under the legal restrictions and lowest value of NH and TN is
observed in higher-order filter-based FPI controller, however a slight increase is noted in TP.
Figure 4.12 all displays the column chart on percentage of violation in effluent in terms of NH,
TP and TN.

Table 4.8: plant performance comparison in best lower level controller and MPC at higher level

Performance of Plant IMC fractional filter + FPI IMC FF-FPI+-MPC
EQI 13255.02 13203.8419
0OClI 18683.11 18884.949

Furthermore, a cascaded technique implementing the MPC controller is used to dynamically
adjust the dissolved oxygen set-point based on ammonia concentration changes in tank 7. This
unique method resulted in a significant improvement in plant performance. Figure 4.13 depicts
the dynamic interplay, highlighting the changeable dissolved oxygen (DO) set-point delivered
by the supervisory MPC controller and adeptly tracked by the lower-level IMC-FPI controller.
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Now implementing a supervisory MPC controller cascaded with best lower level strategy

(higher order filter +FP1) shows a significant improvement in EQI but operational cost increase
as a trade-off between the two.
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Figure 4.13: Variable DO set-point tracking of supervisory MPC controller with lower-level IMC FF-FPI

4.8 Conclusions

The non-integer order system for Biological Wastewater Treatment Plants (WWTP) is found
using the ASM3bioP model and the FOMCON tools. It focuses on controlling Dissolved
Oxygen (DO) and Nitrate concentration (NO). We use the Genetic Algorithm (GA) to find the
best values for the Integral of Absolute Error (IAE) of the closed-loop response. This helps us
figure out the fractional filter parameters (A, o) for the Internal Model Control (IMC) controller.

It is used in MATLAB Simulink to build the improved controller on the Aeration system for
DO control.

Both the uncertainty of the plant and the weakness of the controller are put through a lot of
tests to make sure they work well. We come up with a mathematical method that uses a higher-
order fractional filter and the same IMC fractional controller for the non-integer model. The
closed-loop reaction shows better tracking of the set point and rejection of disturbances. In the
Fractional Filter - Fractional Order Proportional Integral (FF-FOPI) control strategy, the

controller performance measures, like Integral of Squared Error (ISE) and 1AE, are kept as low
as possible at the same time.
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When looking at how Fractional Order (FO) controllers affect plant performance, it is seen that
FO controllers have a bigger effect than Proportional Integral (PI) controllers. The FF-FOPI
approach, on the other hand, works the best overall. Notably, the FF-FOPI strategy works better
than any other strategy when compared to the analytical higher-order filter.
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5.DESIGN OF FRACTIONAL AND INTELLIGENT CONTROL
STRATEGIES FOR SBR BASED WASTEWATER TREATMENT
PROCESS FOR EFFLUENT QUALITY IMPROVEMENT

From this chapter onwards, the attention is directed towards the exploration of a batch process
within the context of biological wastewater treatment. The focus will be on understanding and
implementing different control strategies in a batch process and analysing the intricacies of this

particular method throughout the remainder of the thesis material.

In Sequencing Batch Reactor (SBR)-based wastewater treatment plants (WWTPs), controlling
dissolved oxygen (DO) is a very important part of treating wastewater. SBR technology is a
flexible and effective way to treat biological wastewater. It works by putting in, reacting,
settling, and decanting steps in order inside a single reactor. Managing the amounts of dissolved
oxygen is very important for making sure that the biological treatment process in SBRs works
at its best. Finding the right mix between giving microbes enough oxygen and keeping energy
use as low as possible requires a thorough and flexible control system. This outline looks at the
main things that need to be thought about, the methods, and the technologies that are used to
control the amount of dissolved oxygen in SBR-based WWTPs. It emphasises how important

this is for making wastewater treatment work well and be good for the environment.

5.1 Introduction

The SBR system is highly successful in removing nitrogen and phosphate (Ketchum et al.,
1987; Guo et al., 2007). SBR processes are more stable than continuous processes, but they
require more precise process control. This system is commonly used for smaller wastewater
inputs and can be configured with a single tank or a system of many tanks in conjunction. This
method employs a series of fill and draw cycles. A conventional cycle has five functional
stages: filling, reactions (aerobic and anaerobic), sedimentation, decantation, and idle condition
(Wilderer et al., 2001). In SBR reactor operating parameters were determined by an additional
optimization layer added to the previously described two-layer hierarchical control structure.
The outcome of optimization was an increase in efficiency and a decrease in energy

consumption (Piotrowski et al., 2019). Piotrowski (2020) proposed a supervisory heuristic
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fuzzy control system which deployed to a SBR. The pollutants achieved its discharge limits
with a reduced 9% operational cost. Many investigations have been attempted as automation
technology (Feedback and intelligent controllers) has grown to select the proper condition for
the SBR process (Yang et al., 2010).

In this research work, implementation of different controllers like simple Pl to more effective
FPI controller and later adaptive FUZZY controller are adopted to control dissolved oxygen
(DO) in the SBR process. To run the simulation model of SBR and validate the SBR process
with all control strategies in Indian climatic conditions, we need the influent. Influent data is
collected from the Visakhapatnam WWTP, irrespective of the type of treatment technology
(Tejaswini et al., 2021). The real plant data is used for simulations. However, the aspect that
make the paper interesting is the application of control strategies to batch process in a

sequential manner.

A step-feed method of filling the SBR, is also used to investigate the controller impact in the
SBR process with different aeration timing. Aside from the benefits of traditional SBRs, step-
feed SBRs may make effective use of influent COD as the carbon source necessary in the de-
nitrification process. This indicates that a carbon supply is necessary to denitrify nitrite via step
feeding and repeated aerobic/ anoxic phases. The anoxic period influent provides the nitrate
generated during each aerobic period. Furthermore, the step-feed technique allows nitrification
to occur during aerobic times with lower organic loading, which estimates the limitation of
increased organic loading on autotrophic nitrifiers and reduces oxygen demand to oxidise these

organic materials (Guo et al. 2007).

The novel aspect of this work is the development of three distinct control schemes for DO

control in a batch process, SBR-based wastewater treatment plant.

This work is organised as follows: Materials and methods describe the monitoring plant and
the model used, while the next segment discusses the architecture and application of the control
system. The root level (DO control) PI, Fuzzy logic, and FPI controller's design processes are
elucidated clearly. The subsequent portion discusses the simulation-based control findings by

fixing real data records from Vizag WWTP.
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5.2 Materials and Methods

5.2.1 Wastewater treatment plant description and simulation

SBRs perform biological pollutant removal in the second phase of WWTP. Unlike an ASP
process, a SBR does not have any clarifier. To purify sewage sediments and minerals,
mechanical pre-treatment is used. Grid, screen, grit chamber, and sand separator are used in
the first step. Figure 5.1 depicts the SBR plant's process phase layout. As indicated in the
introduction, a single SBR cycle consists of the following phases: filling, biological reactions
(aerobic and anaerobic), sedimentation, decantation, and idling with the settler model is
incorporated for better effluent quality. Double exponential settling velocity of the secondary
settler model by Takas et al. (1991); is used (Sheik et al., 2021 a,b). The corresponding
mathematical modelling and layout of settler (Figure 1.16) are reported in section 1.6.2. The
most widely used mathematical representation of biological processes in WWTPs is Activated
Sludge Models (ASM), a series established by the International Water Association. The
ASM2d model (Gernaey et al., 2014; Henze et al., 2000) is used to model the biological
processes of SBR in this paper, which has 21 state variables and 20 kinetic and stoichiometric
parameters. The flow along with COD, TSS, and ammonia concentrations of influent are
collected from Vizag plant to validate SBR process in Indian climatic conditions. The STOWA
guidelines are used to compute the state variables, which contain the dynamic data needed to
implement different control strategies for the treatment plant. The validation of the embraced
ASM2d model is carried out in terms of the kinetic parameters of the process. BSML1 lists the
kinetic and stoichiometric parameters at a temperature of 20 °C, which is not the average
ambient temperature for the Indian climate. After collecting influent data we have done kinetic
parameter calculations with varying temperatures. At 20 °C (Henze et al., 2000) the values of
those parameters are the same as their default values. After matching with the typical values
for the kinetic rate constants of ASM2d at 20 °C, we started executing Process Identification
and controller implementation. Temperature effect on kinetic parameters given by equation as

follows (Gernaey & Jeppsson (2014)):

T30
(a2)
Op = or,,.€Xp % .(T—=20) (5.1)

Where ar the considered parameter temperature (T) value and ar,,, ar, is the defined
benchmark parameter values at 10 °C and 20°C (Henze et al., (2000)). Based on the equation

(5.1) we have calculated the kinetic parameters at 30°C to evaluate the Indian conditions. The
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table of typical values for the estimated kinetic parameters of ASM2d at 30 °C is reported in
the Table 5.4. Influent flow rate of simulated SBR - 0.033 I/min (Marsili Libelli et al., (2001)).
Average influent data with state and particulate variables with symbols are reported in the
Table 5.3.

WWTPs are required to meet certain strict effluent concentration restrictions which are
tabulated in the Table 3.1 in section 3.2.1. The aeration system is intricate, nonlinear, and
dynamic in nature. A general framework for modelling aeration systems was given (Henze et
al., 1999). The aeration system used in this study consists of a blower station, collecting pipe,
diffuser systems, and collector-diffuser pipes which were previously used for a variety of
aeration systems reported in the literature (Piotrowski et al., 2014, 2015). Piotrowski et al.,
(2014) elucidate the main framework for modelling of aeration systems in SBR. The aeration
system was modelled using measurement data and technical data from individual elements.
Differential and algebraic equations describe the nonlinear aeration system model that was
developed. Piotrowski et al., (2016) describes the model in detail, and it has been used in
additional research endeavors. So DO control in SBR was tested with real data from the
Visakhapatnam WWTP and implemented in a MatLab/SIMULINK environment. The data is
collected from the Plant itself and is analyzed by following the STOWA guidelines.

Table 5.1: Influent load data as reported from Visakhapatnam WWTP

Influent load Average Value Table 5.2: SBR operational parameters
oD (mg/h 381.99 Operation Parameters Capacity
BODs (mg/L) 219.1083 Working volume
TN (mg/l) 41,5992 Influent volume
TP (mg/) 11.0751 Total operation cycle 360 Mins
7SS (mg/l) 938,92 Solids retention time 20 days
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Table 5.3: Average influent data with state and particulate variables with symbols

Components Average
So Dissolved oxygen 0
Sk Readily biodegradable substrate) 54.21
Sa fermentation product 36.14
S inert organics 30
SNH ammonium 39.66
SN2 Dinitrogen 0
Snos nitrate 0
Spos phosphate 8.92
SALK bicarbonate alkalinity 7
Xi inert organics 51.2
Xs slowly biodegradable substrate 202.32
XH heterotrophic biomass 28.17
Xpao phosphorous -accumulating organisms 0
Xpp stored poly-phosphate of PAO 0
XpHA Organic storage product of PHA 0
Xa Autotrophic, nitrifying biomass 0
Xtss particulate material 215.49
XMeOH Ferric-hydroxide 0
Xmep Ferric-phosphate 0

Table 5.4: Effect of temperature on kinetic parameters (verified with Hence et al., (2000))

Kinetic Variable 10°C 15°C 20°C 30°C
K 1.3333 2 3 6.7500
Hydrolysis rate constant
M+
Maximum growth rate on substrate 1.50 3 6 24
(fe
Maximum rate for fermentation 0.75 1.50 3 12
bn
Rate constant for lysis and decay 0.1175 0.2350 0.4700 1.8800
gPHA 1.3333 2 3 6.7500
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Rate constant for storage of XPHA
(base XPP)
gep
Rate constant for storage of XPP 0.6667 1 1.5000 3.3750
HPAO
Maximum growth rate of PAO 0.4489 0.6700 1 2.2277
brao
Rate for lysis of XPAO 0.05 0.1000 0.2000 0.8000
bep
Rate for lysis of XPP 0.05 0.1000 0.2000 0.8000
brHA
Rate for lysis of XPHA 0.05 0.1000 0.2000 0.8000
NS
Maximum growth rat!o Nitrosomonas 0.2923 0.4700 0.7558 1.9542
Bacteria
UNB
Maximum growth ra}tlo Nitrobacter 0.5807 0.7800 10476 1.8899
Bacteria
bns
Constant decay ratlo_ Nitrosomonas 0.049 0.0860 0.1491 0.4478
Bacteria
bne
Constant decay ratio Nitrobacter 0.0496 0.0860 0.1491 0.4478
Bacteria
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Figure 5.1: Sequential Batch Reactor phases

5.2.2 SBR plant configuration

The parameters of the Visakhapatnam WWTP are described in Table 5.1. A
pilot scale Sequencing Batch Reactor (SBR) with 6-hour cycles of anoxic/anaerobic/oxic
phases was employed (Marsili Libelli et al., (2001)). The operating parameters of the SBR are

described in Table 5.2, and the operational cycle is depicted in Figure 5.2.

Feed Sludge waste &
I_ I_ Effluent
Anoxic and Anaerobic Aerobic Settling
150 300 360
Minutes

Figure 5.2: Conventional SBR Operation Phases in the current study

Modified SBR Cycle (Step-feed)

To study the step-feed mechanism in our present work SBR operation cycles are modified. As
with pulse filling, there are three fill stages that are completed in a relatively short period of
time. Three anoxic and anaerobic combinations are performed, with an aerobic phase in each
cycle in the last. Following the sequential repeating of these stages, a setting phase with
minimal decanting and sludge removal is performed in a total 6-hour cycle of SBR operation.
The time duration of these phases was decided by the same method as described prior. The
diagram (Figure 5.3) depicts the stages of SBR in a step feed scheme. SBR phases are Filling
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(F) in 10 mins, Anoxic and Anaerobic (AN) phases of 40 mins and next Aerobic (AE) phases
of 50 mins and finally 40 mins settling (S) and 10 mins Decanting (D), last 10 mins for Sludge
Removal (SR).

AE AE AE S D

0 10 50 100 110 150 200 1210 250 300 340 1350 1360
Minutes

Figure 5.3: Modified SBR Operation Phases (SSBR)

5.3.1 Effluent quality index
Weighted average effluent concentration levels are used to compute the EQI. A steady state
model simulation analysis is done by using the weighted average data from treatment plant.
The plant performance assessment is done using the below equations (Sheik et al., 2021b;
Santin et al., 2015):

1

t
100(te—to) ftof KU(p) Qe(pdt (5.2)

KU = KUrssp + KUcop(o + KUgop(r) + KUtknew) + KUno, o + KUp, (0 (5.3)

EQI =

In formula (5.3), the t, and tr imply the starting and ending times for calculating the EQI, while
the KUt indicates the average of polluted combinations in the influent and effluent streams.
Typically, it comprises of COD (chemical oxygen demand), BODs (biological oxygen
demand), TSS (total suspended solids), TKN (total Kjeldahl nitrogen), NOs (nitrate), Snn
(ammonia), TN and total phosphorous (TP) in equation (3). Thus the corresponding expression
for KUt is given in equation (5.4).

KUy = B It (5.4)
Where Bt (1) are weighting factors (Sheik et al., 2021b; Gernaey et al., 2014) ascribe every
component of the pollution. The weighting factor values are represented below. Moreover, the
concentrations of different components (Gare is computed by using Eq. (5.5)-(5.11).

The values of weighting factors are assigned to each effluent component, the factors are
considered as follows: S =2, B4 =1, iy =20, Brno =10, Beop, =2, Bp = 100 Besides I,
spontaneous concentrations of various nutrients are calculated corresponding to their state
variables and particulate symbol with description is in the Table 5.3:

Itss = Xrss (5.5)

Icop = Sp+Sa+ S+ X;+ Xg+ Xy + Xpao + Xpya + Xa (5.6)
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Igop = 0.25 (Sg + Sa + (1 — fs,)Xs + (1 — iy )X + (1 — fxip) Xpao + Xeua) + (1 — fxi,)Xa)  (5.7)
Itkn = Snu + ipspSr +ips,Sa + ins, St + inx X1 +inxsXs + inpmXn + Xpao +Xa)  (5.8)

Inge = ltrn + Gro, (5.9

INo; = Swo;, (5.10)
—) X yep (5.11)
According to (Gernaey et al., 2014; Henze et al., 2000), correlated conversion factors (f;) are
selected in equations (5.6), (5.7), and (5.10).

Ip,,, = Spo, t ipspSk +ips,Sa + ipx, X1 + ipx Xs + ippm(Xn + Xpao + Xa) + Xpp + (

5.3.2 Controller Performance

The standard establishes a universal assessment criterion which should serve as the basis for
geographically independent reference measures for initiatives created throughout the world.
The first level monitors controller installation, whereas the second is concerned with its
influence on plant efficiency. The integral square error (ISE) and integral absolute error (IAE)
is employed to assess controller performance. Where ‘e’ is the error between the set value and

the value measured by the sensor (Piotrowski et al., (2021); Santin et al., 2015).

300 mins

ISE= [’ """ e dt (5.12)
IAE = [20 "7 o] dt (5.13)

5.4 Controller Implementation

The provision of an adequate amount of dissolved oxygen (DO) is required to produce an
acceptable growth of microorganisms included in activated sludge. Aeration of the wastewater
is consequently required to carry out biological processes. The oxygen released into SBR by
the aeration system is a crucial component of the complicated biological processes ina WWTP.
The concentration of DO in SBR affects the processes like de-nitrification, nitrification, and
phosphorus removal. The aeration system delivers an oxygen atmosphere in the reactor, which
is intended to keep the tank in a condition of suspension. The newly generated cells combine
with the old microbes and then carry out the impurity removal procedure. The aeration process
is required for optimal biological responses to occur. A low dissolved oxygen content causes
inadequate proliferation of microorganisms, which prevents them from decomposing nitrogen
and phosphorus compounds. Excessive aeration causes over blending in the reactor, which can
lead to the disintegration of flocculants.

As oxygen is required to oxidize organic material in aeration reactors and maintain residual

oxygen levels, it is usually equal to the amount the microorganisms require. Microorganism
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growth may be limited if oxygen is low, causing filamentous microorganisms to dominate, and
leading to poor settling of sludge. The opposite is true when DO is high, which requires more
energy consumption and may deteriorate the sludge quality. The DO levels should typically be
maintained between 1.5 and 4 mg O/l in an aeration reactor, with 2 mg O/l being the more
commonly retained level. To control the DO in SBR during aeration, a common but popular
feedback control employing the PI controller is considered. First of all, this is composed of the
PI controller, as shown in Figure 5.4, for ‘DO’ control, whose set-point value is 2 mg O/l is
controlled by adjusting the ‘AIR-FLOW?’ in the reactor. Another contribution of this study is
the development of a fraction controller (FPI) by replacing the PI controller for the DO control
purpose with a developed fractional model of SBR during aeration (Figure 5.4). For both these
control approaches a stable process model is required. Fuzzy Logic Control can be used for
controlling many nonlinear processes around the operating point through the use of FUZZY

rules and membership functions that are identical in design to human inferences.

PI/FPI, and FUZZY
controller

r—-=—=—1

__@ DO

sensor
Air Flow ® o

(o] OO

(I/min) o © 5O

o
o (o)
o < o [ ]
o o

o o ©

Figure 5.4: Three distinct control schemes on SBR during Aerobic Phase

As the air flow is manipulated for efficient DO level inside a reactor then net amount of air

supplied to the reactor during aeration is a measure of the control cost, which is expressed as:

Qrotar = J, 5y (Quir (1)) dt (5.14)

To check the effect of control action on both SBR Cycles, all the parameters are calculated for
the Indian influent data (Visakhapatnam Plant) at 30°C and finally, effluent quality index along
with controller performance are measured.

5.5 Modelling of System form Process Input output Data

The selection of the appropriate process model is a prerequisite for putting a control structure

in place for any kind of process. As previously discussed, this work identifies contextual integer
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order (10) and fraction order (FO) modelling of SBR-based WWTPs by performing a
simulation, hence both the 10 and FO controllers are incorporated on it.

5.5.1 Algorithm to develop an 10 Model to design PI controller

The primary objective of identification is to create a stable process model based on the data
collected during an experiment. In general, determining and estimating system dynamical
behavior requires establishing a link with both process inputs and outputs under various
influences (input signals). The flow diagram in section 3.5.1 in Figure 3.4 describes the
identification of Integer Order (10) model using system Identification toolbox. During the

process of identification the developed model G(S) of SBR comes as

0.002753S + 0.0001987
§240.1216S + 4.662¢°

Later using proper model order reduction technique (Linear Feedback Control Analysis and
Design with MATLAB by Dingyl Xue et al., (2007). we have developed a First order with

G(s) =

delay time (FOPDT) process model of SBR. Finally, we have validated the reduced order
model by checking both the Step Response Analysis and Bode Plot method and its stability.
Results of validation is provided in Figure 5.5. Final sable FOPDT model Gr(S) of SBR comes

as,

Gy = DO0LO83E o 42619

s + 0.0003856 72593365+ 1

Step Response
4.5 T T

b——uG —-—-Gr| |

Amplitude

L L
2 25 3 35 4 4.5 5
Time (seconds) «10%

Figure 5.5: Step response plot to validate the model reduction
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5.5.2 Algorithm to develop an FO Model to design FPI controller

Fractional-order calculus involves arbitrary order differential and integral equations and is a
generalization of integer-order calculus. Fractional calculus theory can solve any derivative or
integral of any order, as well as continuous versions of the fractional calculus operator which

is defined as follows in Equation (5.15)

4p
e Re(p) >0
aDy = 1 Re(p) =0

5.15
J(d)™ Re(p) < 0 19

Where ‘a’ and ‘t” are the calculus upper and bottom bounds, respectively, and is an arbitrary
complex. Fractional order calculus theory has developed many different definitions of

fractional calculus, including the GL, RL, and Caputo definitions (Tepljakov A et al. (2019)).

Based on the time-domain approach, a non-integer order transfer function is found using the
MatLab “Fractional-Order Modelling and Control” FOMCON toolbox. We can choose the
kind of system simulation we want to use using the Simulation parameters window. Indranil et
al., (2022) illustrate the algorithms to identify a fractional model (FO) utilizing FOMCON
toolbox.

The input and output data is generated by giving the random input to the model of ASM3-bioP
model at steady sate with plant influent and relating all state variables.

Steps to identify a good fitted identified model

e A “fidata" structure must be chosen first and foremost.

e Select ‘Time domain Identification’, where options are available to choose frequency
domain too.

e Choose the ‘simulation parameter methods’ in Grunwald-Letnikov method or
Oustaloup filter or Refined Oustaloup filter. (Should select ‘w’ range and order for the
last two options). We select the Oustaloup filter.

e In the ‘Identification and options’ section chosen ‘fidata’ name will show and the
preferred algorithm is ‘Trust-Region-Reflective’.

e There is a symbolic form of identified model in terms of the fractional pole and zero
polynomials. A first-guess model is created. In order to create polynomials
autonomously, a commensurate-order q that has the property that 0.01 < q < 2 —the

order of the polynomial—can be defined.
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e A plot that displays a worthy fitting result (fitness >75 %) and the identified system's
stable behavior should be displayed at the conclusion of the identification process. As

long as the outcomes are satisfactory, the model is saved for creating a controller.
The identified Fractional model G(S) of SBR comes as

1
0.8073950-8955 — 16,775011936 4 2331950077491

G(s) =

5.5.3 Fuzzy logic Control

FUZZY logic is a widely used method in a variety of control contexts. FLCs have been
employed at every level of wastewater treatment. Fuzzy control or rules (FLC) are commonly
used to solve the utmost unconventional control and processing units in WWTPs, as evidenced
by the literature. Fuzzy rules are used to accomplish this, much like those used when humans
make inferences. In this study, FLC is employed on this SBR-based WWTP. To confine DO
saturation in the SBR, the desired DO set-point is monitored by a fuzzy logic controller. In the
ranges of 0—6 mg O/l and 0—30 I/min, respectively, the membership functions (MF) of DO and
Airflow in SBR were investigated. A Gaussian-shaped-bell curve membership function is
chosen for these two variables, and they are separated into three linguistic rules: "LOW,"
"MEDIUM," and "HIGH." The following are the three rules for governing the DO control loop:

4+ Ifthe DO level is “LOW” then the Airflow set-level is “LOW”
+ [fthe DO level is “MEDIUM” then the Airflow set-level is “MEDIUM”
+ Ifthe DO level is “HIGH” then the Airflow set-level is “HIGH”

5.6 Results and Discussion

5.6.1 Implementing Proportional and Integral (PI) control

To regulate the dissolved oxygen (DO) in SBR during the aeration phase a conventional Pl
controller is used inside this reflected control loop. The strategic orientation with P1 controllers
is depicted in Figure 5.4. Designing PI controllers can be accomplished using a variety of
tuning methods. A well-accepted robust tuning rule based on Grimholt and Skogestad (2018)
(SIMC rule) is deployed in this scheme. To tune a controller using this procedure, the first step
involves obtaining the first-order plus time delay (FOPTD) model G(s), as previously
mentioned.
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Kp
T*S+1
Where Kp, the process gain, L the time delay, and T is the time constant of the identified model.

G(s) = e 9 (5.16)

On the first-order with delay (FOPDT) process in equation 5.16, the authors employed the
original SIMC tuning rule. The SIMC PI tunings for this process result in a P1 controller like
in equation 5.17,

1 T

Ke = & @ero)

and T; = min {t,4(tc + 0)} (5.17)

The value 1, the closed loop time constant, is a tuning constraint that can be adjusted to
attain the optimal trade-off among efficiency, robustness, and input allocation. tTc=96 is
recommended for "tight control™ (decent performance) as well as adequate robustness. The
tuned Parameter of PI controller using SIMC, K. =316.92, Ti=7.66, and K; = (K¢/T;) = 40.32.
So, the final PI control structure for identified DO loop looks like (in Figure 5.5)

Table 5.5: PI controller settings for DO control

SBR (IO) Process Model Controller Gain PI controller
426193 =316. 1
G(s) = =——————— 70965 K. =316.92 Cpo(s) = 316.9243 + 40.32—

5.6.2 Implementing Fractional Proportional integral (FPI) controller

A fractional-order (FOTF) model of the SBR plant is identified utilizing FOMCON toolbox.
The “Oustaloup filter approximation" is applied in the time-domain approach to identify the
model and a stable FOTF DO model is identified. Ultimately, the Fractional-order PI controller
is optimized using the 'Interior -point' algorithm and the ISE as a performance metric. The
maximum and minimum values for all tuning parameters should be chosen to optimize the
Fractional order (FPI) controller. The final satisfactory tuned parameters of the FPI controller
are K¢ = 349.56, Ki=48.95, and A= 0.9796. As a final point, the FPI controller for SBR model
is deployed and the FOTF DO loop along with controller appears to be (in Figure 5.6)

Table 5.6: FPI controller settings for DO control

SBR (FOTF) Process Model Controller Gain FPI1 Controller
K¢ =349.56
- L Ki=48.
G(S) = 5073050995516 775011536723 31950077351 = 48.95 Cpo(s) =349.56 + 48.95 -]
A=0.9796 ST
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5.6.3 Implementing FUZZY Logic controller (FC)

Numerous unknowable factors are involved in the Wastewater Treatment Plant’s functioning.
Seeing as biological mechanisms in wastewater treatment are extremely complicated,
traditional approaches face significant challenges to control automatically. As a result,
intelligent computing techniques, especially fuzzy logic, are an ideal choice for controlling
nonlinear time-varying processes. The main objective is to conserve energy even as
maintaining effluent quality. This is essentially aeration control based on DO concentration.
The membership functions range explored for Dissolved oxygen (DO) and Airflow is 0-6 mg
O2/l & 0-30 I/min individually. We consider the membership curve to be a Gaussian bell curve
with the degree of membership 1. The membership distributions of DO concentration in SBR
are developed with 0-1 mg O>/l as "low," 1-2 mg O/l as "medium," and values over 2 mg O>/I
considered to go into the "high" fuzzy set, values less than 0.05 I/min are undoubtedly regarded
as "low," hence likewise, the fuzzy set values ranging from 0.05 I/min to 9.5 I/min are classified
as "medium™ and Airflow values of beyond 9.5 I/min are considered "high". Table 5.7 shows

the rule base for fuzzy task.

Table 5.7: FUZZY rule base tabulation

Parameters as member
Membership Function (MF) Input (DO) Output (Airflow)
Ranges (0-6 mg O2/1) (0-30 I/min)
LOW 0-1 0- 0.05
MEDIUM 1-2 0.05-9.5
HIGH >2 >95

5.7 DO tracking and plant performance analysis

As previously discussed, a DO set-point of 2 mg/l is selected in the reactor. The set-point
tracking graphs for P, FPI, and FUZZY are presented in Figure (5.6 A) for DO Control. From
the Figure, it is observed that the tracking capability of the FPI controller is superior to that of
the Pl and FUZZY controllers. Figure (5.6 B), the manipulated variable plot demonstrates that,
when initial aeration starts, in order to attain the DO set-point as soon as possible, the controller
sends a high-value control signal in terms of airflow such that the DO reference of 2 mg O>
/I should be tracked as soon as possible. Control performance is measured by using IAE and
ISE, plant performance is measured by effluent quality. From Table 5.8, it was observed that

the Total Airflow Volume (L) is approximately the same for all the control applications. For
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the control performance case, ISE & IAE are improved in the FPI controller on comparing with
Pl and FUZZY. The percentage of improvement in FPI is 17.38 %, 0.07% than PI for IAE &
ISE respectively. In terms of effluent quality, the FPI controller showed optimal outputs when
compared to Pl & FUZZY. EQI is improved in FPI by 0.86% than Pl & 1.036% than the
FUZZY controller. COD, BOD5, TN, TP, NH4 & TSS are improved by 0.53%, 1.05%,1.18%,
0.80%, 0.07% & 2.22% respectively with the FPI controller than PI controller which they
provide better effluent quality.

Air Flow Rate (m*/min)

Dissolved Oxygen {mg/L)

- N [\*] (] w
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Figure 5.6: (A) DO tracking by PI, FPl and FUZZY controller during aeration time (B) Airflow plot in terms of
the manipulated variable for all adopted controller
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Table 5.8: Effluent quality in conventional SBR with controller performance

Pl FPI FUZZY
IAE 0.1057 0.08732 0.2412
ISE 0.05673 0.05669 0.1421
Total Airflow volume (1) 231.8 231.8 231.7

Effluent parameters

COD (mg/l) 52.2850 52.0073 52.3550
BOD (mg/l) 13.1205 12.9816 13.5905
TN (mg/l) 3.0015 2.9658 3.0500
TP (mg/l) 2.2675 2.2492 2.2575
TSS (mg/l) 115721 | 11.3146 11.5921
NH4 (mg/l) 1.8200 1.8186 1.8195
1QI (kg polls units/day) 0.7684 0.7684 0.7684
EQI (kg polls units/day) 0.0578 0.0573 0.0579

5.8 Effect of Control action on Modified SBR Cycle - Step-Feed Process (SSBR)

The primary responsibility of the DO controller is to maintain a predefined trajectory. The
controller should better reflect the trajectory of any changes in DO concentration caused by
changes in SBR configurations. So step feed is used to check controller performance by varying
DO reference trajectory as described in Figure 5.7 A. Total volume filling during step feed.
Figure 5.7 B depicts the reactor loading level with step feed over the whole operational cycle.
The DO set-point of 2 mg/l is selected in the reactor for different time zones of aerobic phases
as shown in Figure 5.7 A. The set-point tracking graphs for PI, FPI, and FUZZY are shown in
Figure 5.7 C. It is observed that the FPI controller has a superior tracking capability than the
Pl and FUZZY controllers. Figure 5.7 D shows that the controller sends a high-value control
signal with each change in DO trajectory, indicating that it is essential to attain DO set-value
as soon as possible.

From Table 5.9, it was observed that the Total Airflow Volume (l) is approximately the same
for all the control applications. For the control performance case, ISE & IAE are improved in
FPI controller on comparing with Pl and FUZZY. The percentage of improvement in FPI is
0.74 %, 0.14% than PI for IAE & ISE respectively. In terms of effluent quality, the FPI
controller showed optimal outputs when compared to Pl & FUZZY. EQI is improved in FPI
by 0.34% than Pl & 0.51% than FUZZY controller. COD, BOD5, TN, TP & TSS are improved
by 0.17%, 0.152%, 1.69%, 0.26% & 0.08% respectively with the FPI controller than PI

controller which they provide better effluent quality.
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Figure 5.7: (A) varying DO reference trajectory due to step feed (B) SBR total volume filling during step feed
(C) DO tracking by PI, FPI and FUZZY controller during aeration time in step-feed approach (D) Airflow plot
in terms of manipulated variable for all adopted controller.

Table 5.9: Effluent quality on step-feed in SBR with controller performance

Pl FPI Fuzzy
IAE 3.35 3.325 4419
ISE 0.2796 0.2792 0.5252
Total airflow volume (1) 206.2 206.2 206.5
Effluent parameters
COD (mg/l) 52.2919 52.2010 52.3520
BOD (mg/l) 13.1562 13.1362 13.1825
TN (mg/l) 3.0005 2.9496 3.0050
TP (mg/l) 2.2911 2.2850 2.2795
TSS (mg/l) 11.5912 11.5812 11.6111
NH, (mg/l) 1.8255 1.8259 1.8201
QI (kg polls units/day) 0.7684 0.7684 0.7684
EQI (kg polls units/day) 0.0582 0.0580 0.0583

5.9 Conclusions
Three control frameworks such as PI, FPI, and FUZZY are attached to the SBR plant layout
under the ASM2d platform. In the root level, control approaches like PI, FPI, and Fuzzy control

are used to control DO during the aeration phase by manipulating the air flow rate. The ASM2d
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model calibrated to real plant data is used to represent the SBR-based water treatment plant.
However, the aspects that make the paper interesting: control strategy applied to a
discontinuous process, use of the complex ASM2d model, and calibration to real plant data.
Controller performances are studied. ISE & IAE are improved in the FPI controller on
comparing with Pl and FUZZY. The corresponding plant performance concentration is
compared with the PI controller. It was noticed that average effluent compositions of nutrients
such as BOD, ammonia, COD, TN, TP, and TSS attained inside the regulatory limits. Better
optimized results for nutrient removal rates and effluent quality is observed in FPI controller
compared with the other two controllers. COD, BOD, TN, TP, NH4 & TSS are improved by
0.53%, 1.05%,1.18%, 0.80%, 0.07% & 2.22% respectively with the FPI controller than Pl
controller. In the same control strategies (PI, FPI, and FUZZY') on modified SBR Cycle (Step-
Feed Process) is implemented where they achieve even same type of improvement is observed

from the resultant simulation outcomes.
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6. DESIGN OF SUPERVISORY FUZZY CONTROL FOR
ENHANCED ENERGY SAVING IN A SEQUENCING BATCH
REACTOR BASED WASTEWATER TREATMENT PLANT

WWTPs need supervisory cascade control to save operational expenses. Supervisory cascade
control saves time and energy by coordinating and optimising control activities across several
process units. Control techniques in WWTPs ensure efficient, cost-effective, and
environmentally sustainable wastewater treatment through dynamic adjustments, informed

decision-making, and effective coordination.

6.1 Introduction

To ensure optimal operation and control of a wastewater treatment plant (WWTP), suitable
advanced control strategies are required as they are inherently nonlinear in nature and subjected
to different influent conditions. This study proposes a novel supervisory control scheme for
Sequencing Batch Reactor (SBR) based WWTP. It integrates hierarchical fuzzy control, based
on ammonia and nitrate observations, in the presence of lower-level Proportional Integral (PI)
and Fractional-order P1 (FPI) controllers, with the dual goal of aeration cost reduction and
effluent quality enhancement. A modified ASM2d (Activated sludge model No. 2d) framework
is used as a model for SBR. In the hierarchical control system, variable dissolved oxygen (DO)
trajectories are generated by the supervisory fuzzy logic controller and passed to the lower level
controller, according to ammonia and nitrate profiles within SBR. It is crucial to adjust this
element properly in order to maximize wastewater treatment efficiency and reduce plant costs,
especially for the aeration system. Intelligent computing techniques like MPC, RTO,
particularly fuzzy logic, are indeed a good choice for controlling these types of non-linear time-
varying systems. The primary objective of the controller is to save energy while maintaining
the effluent quality. An intelligent fuzzy controller which combines the two distinct signals
SnH/Sno profile and the DO concentration. Further, the desired level of DO can be attained
with nominal energy consumption. In the research of Piotrowski et. al, 2019 and 2020, they
came up with optimization methods that were able to optimize sequential phases in an efficient
SBR operation, but to minimize aeration energy incorporating a fuzzy logic to develop a
supervisory control network that generates variable DO set-points depending on the presence

of the Snw or Sno profile inside the reactor is new and novel study. According to the author’s
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best knowledge, an efficient aeration strategy based on nitrate or ammonia measurement has
not been applied in this SBR-based treatment plant until now to reduce the amount of energy
consumed inside a hierarchical control structure. The present work addresses this point and
shows the benefits of having such a control architecture. A multi-level cascaded hierarchical
control arrangement is considered that combines Pl & FPI controllers one at a time at lower
levels while advanced fuzzy control strategies are utilized at higher levels. This research work
establishes different controllers like simple P1 to more effective FPI controller to control DO,
and a smart higher-order decision-making technique, built on fuzzy logic (Fuzzy controller) to
track variable DO by measuring the ammonium nitrogen (NH4) and nitrate (NO3) profile in the
SBR reactor. A calibrated ASM2d model based on real plant data is used to represent the
wastewater treatment plant. However, the aspect that makes the paper novel and interesting is
applying control strategies to a batch process in a sequential manner. The developed control
strategies are tested for the influent collected from the wastewater treatment plant located in
Andhra Pradesh, India.

6.2 Control approaches

The oxygen released into SBR during aeration scheme is a crucial factor in the complicated
biological processes. The concentration of DO in SBR affects processes like de-nitrification,
nitrification, and phosphorus removal. The aeration system delivers an oxygen atmosphere in
the reactor, which is intended to keep the tank in a condition of suspension. The newly
generated cells combine with the old microbes and then carry out the impurity removal
procedure. Low DO content causes inadequate proliferation of microorganisms, which
prevents them from decomposing nitrogen and phosphorus compounds. Too much aeration

leads to over-blending in the tank of reactor, which can result in flocculants disintegration.

The aeration reactors need oxygen to oxidise organic material. Maintain residual oxygen levels,
which are usually enough for microbes. Low oxygen may limit microbe growth, causing
filamentous microorganisms to dominate and poor sludge settling. Conversely, high DO needs

more energy and may degrade sludge.

The DO levels should typically be sustained between 1.5 and 4 mg O /I in an aeration reactor,
with 2 mg O /I being the more commonly maintained level. To control the DO in SBR during
aeration, a conventional but widespread feedback control technique, the PI controller is chosen.

The Pl controller at lower level controls DO by adjusting the 'AIR-FLOW' in the reactor, whose
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set-point is 2 mg O2/l, as shown in Figure 6.1. In addition to PI, fractional order PI (FPI)

controller is also presented as an alternative.

r-
|
|
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Air Flow o °
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Figure 6.1: SBR at Aerobic Phase with DO control without supervisory layer

The implementation of hierarchical controllers in SBR-based WWTP is limited. Hence, in this
research, different control strategies are designed and implemented by simulation. Preferably,
the DO set point should be 2 mg O2/l. However, depending on the obtainability of ammonia or
nitrate present in the reactors, the above value may not be required throughout the aeration
process. An important aid of this paper is the development of the two-tier hierarchical strategy
with the supervisory layer that uses Fuzzy Controller (Figure 6.2). As aeration begins, Snn
(ammonia concentration) is more in the reactor, so nitrification requires additional So (DO
level). The opposite occurs as Snr is less, since less So is required to form less Sno. So it is
very crucial to reduce Air and energy consumption in SBR, it is necessary to determine the
right DO during the aeration phase. Besides ammonia concentration-based (Swn) aeration,
Nitrate-based (Sno) aeration control was also studied in this work. Many studies are carried out
in the literature to examine how different operative circumstances (e.g. low DO concentration,
selective inhibition and temperature) favour nitrite growth. So a nitrate (Sno) controller at a
higher level can affect low air consumption to reduce aeration energy in low DO operational

conditions.

The role of the supervisory controller is to generate DO values (set points for lower-level) by
determining the presence of NH or NO in the SBR. These variable DO values are used as
flexible set points in the lower level DO loop. As a result, the higher-level control loop assists

in deciding the lower loop's set points. Moreover, the amount of aeration impacts energy
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consumption. As a consequence, it is important to choose the DO set point wisely. In this work,
the lower level uses the conventional Pl and FPI controllers, while a higher level builds a Fuzzy

Logic controller.

Thus the set point of Dissolved Oxygen at 2 mg O>/I can be altered to ensure the WWTP's
performance requirements. If the ammonia load is low, the DO set value can be lower, and
higher if the ammonia level is high. The simulation result shows, that varying the set-point by
Fuzzy Controller improves the plant performance by improving the effluent quality. The effect

of control action on conventional SBR cycle is calculated at 30°C for all parameters.

Integral Square Error (ISE) and Integral Absolute Error (IAE) are the evolution criteria for
controller performance, which we decided to minimize for controlling DO during aeration. The

control action is only happening during aeration and that time interval is t= 150-300 min. Our
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\ 4 Fuzzy Control
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Figure 6.2: Higher Level (HL) Fuzzy control in SBR during aeration

reference for DO control is 2 mg O/l for lower level Pl and FPI control strategy. In the
hierarchical architecture, fuzzy controller is used which also considers ammonia or nitrate
based aeriation during the same time period i.e. t = 150-300 min. Hence, the performance of
controller (ISE and IAE) is calculated in this aeration time interval only. The effluent quality
index (EQI, in kg pollution units d-1), is a weighted average sum of pertinent effluent

concentrations (Copp, 2002).

For SBR based biological process we are running one batch cycle from t0= 0 min to tf = 360
mins. So, the EQI should be calculated for the total operational time of single batch process of
SBR operation. So EQI is defined between t0 and tf.
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Table 6.1 clearly specifies the recommended control strategies (CS). Based on the control loops
and using the P1 control strategy as the core approach, a total of 6 control combinations are
assessed in terms of how they affect and provide the assessment criteria. A total of six control

frameworks are developed in this research as given below.

O CS1is lower level P1 controller for DO control in SBR.

O CS2 is lower level FPI controller for DO control in SBR.

O CS3 s lower level Pl and higher level Fuzzy for ammonia-based Aeration.
0 CS4 is lower level FPI and higher level Fuzzy for ammonia-based Aeration.
0 CS5 is lower level Pl and higher level Fuzzy for nitrate-based Aeration.

0 CS6 is lower level FPI and higher level Fuzzy for nitrate-based Aeration.

The controller performance is tested by same like section 5.3.2. and total air volume (Qrotar)

consumption is same like last lower level controller calculation.

Table 6.1: List of developed control strategies for SBR

Ammonia (NHs) based | Nitrate  (NOs)  based
Label Lower level controller | sypervisory controller Supervisory controller
CS2 CS3+CS4 CS5+CS6
CS1 LL HL Fuzzy
Characteristic PI/FPI LL PI/FPL | HL Fuzzy
S DO (So) | DO (So) | DO (So) émr;“’”'a DO (So) ?‘S'”";‘te
control control control NH control NO
control control
Measuring DO in| DO in | Soin SBR . So in SBR
Variable SBR SBR reactor SninSBR | o ctor Sno SBR
Variable Variable set
Set-Value 2mgO2/l | 2mg Oz /1 | set 1 mg/l . 4 mg/l
i point
point
. Set-point for Set-point
I\/Iar_npulated Air-Flow | Air-Flow | Air-Flow | DO Air-Flow for DO
Variable
controller controller
Control
Configuration Pl FPI Pl /FPI Fuzzy Pl /FPI Fuzzy
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The lower-level controllers are consistent with those discussed in the prior section, with the

subsequent insertion of a supervisory Fuzzy controller.

6.2.1 Lower level model and controller (Pl & FPI)
The dynamics around the operating point can be adequately represented by a linear model,
despite the highly nonlinear nature of the process. The identified form of Integer Order (10)

model of SBR is shown in the below format,

0.0016434
_ —0.96+s
G($) = 77070003856 ©

To implement a lower level controller in the form of Pl and FPI structures, a FOPDT model of
the SBR process is identified. This considered control loop uses a Pl controller to control the
DO in the SBR. Figure 6.1 depicts the plant layout with Pl and FPI controllers. SIMC rules are
deployed to design the controllers (Grimholt & Skogestad 2018). The tuned Parameters of Pl

controller using SIMC are
Kc =316.9243, Ti=7.86, and Ki = (Kc/Ti) = 40.32.

So, the final PI controller structure for DO loop is shown below,
Cpo(s) = [316.9243 + 40.32]

To identify a fractional model (FO), fractional derivatives are evaluated utilising the Grunwald-
Letnikov method with the corresponding approximations utilising the Oustaloup filter. Fixed
unity gain and a fractional pole polynomial are used to identify the model. The identified

Fraction model Gro(S) of SBR comes as written in below format,

1

Gro(S) = 5750739509955 — 16,7750119% 1 23, 31950077891

The FPI controller is tuned by choosing the minimum and maximum values for all tuneable

parameters like Kc, Ki, and A. The tuned parameters such as
Kc = 349.99, Ki =49.95, and A= 0.9796.

The obtained FPI controller for DO loop is shown below,

1
CDO(S) = 1349.56 + 49.956 W
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6.2.2 Higher level FUZZY Logic Control

FUZZY logic has become a popular strategy for a variety of control options. FLCs have been
employed at all phases of wastewater treatment. The literature says, fuzzy control or rules
(FLC) are frequently employed to solve the most modern control and processing elements in
WWTPs. Fuzzy rules are used to accomplish this, much like those used when humans make
inferences. In this study, FLC is employed on this SBR-based WWTP. The set-point for DO
value in the SBR is controlled at a higher level with a fuzzy controller to track variable DO set
point in SBR by measuring Ammonia and nitrate. Figure 6.2 depicts the plant layout with Pl
and FPI controllers at lower level and an intelligent fuzzy logic controller at the supervisory

level.

SNH are controlled through the manipulation of DO set-points by the fuzzy control at a
supervisory level. The ranges examined for the membership functions of So and Snn / Sno are
0-2 mg O2/l and 0-16 mg N/I, respectively. As a membership function for both variables, a
Gaussian curve (gauss2mf) is chosen and is separated into two linguistic variables, "Low" and
"High". The idea of choosing this fuzzy logic comes from the basics of ON-OFF controller,
where the variation of the measured variable lies in between two states either low or high. In
the batch process of SBR, the influent flow is restricted for one cycle of operation and then the
presence of the measured variable is also limited in these two forms. The main principles for

the DO Control loop utilising ammonia readings are as follows:

O If Ammonia content is “Low” then the DO content is also “Low”.

0 If Ammonia content is “High” then the DO content is “High”.

The rules for the Dissolved Oxygen Control loop considering nitrate readings are as follows:
O If Nitrate content is “Low” then the DO content is “Low”.

O If Nitrate content is “High” then the DO content is “High”.

These rules are used to evaluate the integrated lower and higher level (PI/FPI-Fuzzy)

controllers.

6.3 Results and discussions

For the SBR-based WWTP, the described control strategies are designed and implemented.
The corresponding closed-loop performances of the WWTP with its performance indices are
analysed. The lower level controller setting as described at earlier section 6.2.1
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6.3.1 Higher level controller as ammonia based control (CS3 and CS4)

These CS3 and CS4 control strategies use a simple Pl or FPI configuration at the lower level
strategy and an intelligent Fuzzy controller at a supervisory level during this aeration phase of
SBR. For supervisory control structure, intelligent computing techniques, such as fuzzy logic,
are indeed a good choice (Fiter et. al, 2005). In the batch process of SBR, the influent flow is
restricted for one cycle of operation. So in one operational phase, volume of influent is fixed.
The idea of choosing a two membership fuzzy function originated from the foundation level
where an ON-OFF controller can operate with two diverse states as Low and High. Here inside
the SBR at running period the presence of NH or NO are in two possibilities, either high at
initial or low after utilization. The higher level fuzzy controller computes the DO values (lower-
level set points) by using the measurements of NH or NO in the SBR. These DO values are
used as set points in the lower level DO loop. As a result, the higher-level control loop assists
in determining the lower loop's set points. This is well established ammonia based aeration
control (ABAC). In CS3, a lower level controller is Pl and Fuzzy is at supervisory level.
Respective Input range & output range are set to 0-2 mg O2/1 and 0-16 mg N/I. Importantly,
the membership curves are considered to be Gaussian bell shaped. An adequate amount of DO
is necessary for optimal ammonia-to-nitrite oxidation so that it does not wash out before
nitrification occurs. The ammonia set value is provided as 1 mg N/l as a lower ammonium

value requires a low oxygen demand.

In SBR batch reactor, with a stagnant capacity of influent, the variation or changes in these two
(NH or NO) measuring components are limited with high or low profile. So when we choose
a fuzzy membership function we make it in two memberships ‘HIGH’ and ‘LOW. Thus, the
membership patterns of ammonia profile in SBR are created by treating 0-1 mg N/I as "Low"
ammonia quantity, 1-16 mg N/I as "High", at membership value one, as shown in Figure 6.3
A. For the DO, values less than 0.01 mg O2/I are certainly low, hence they are allocated a
membership value of 1 to the fuzzy set "low." This is congruent with the concept of
membership, which defines the importance of a variable's connectedness to a fuzzy set. DO
values more than 1.99 mg O2/I are measured as “High”. Figure 6.3 B clearly demonstrates this.
The main objective of employing this approach is to adjust the DO set-point in response to
variations in the ammonia concentration within the SBR. The simulations use the original
nonlinear model as a foundation. In this control method, Figure 6.4 A portrays the variable DO
set-point given by the higher level and tracked by the lower level PI controller (CS3). Figure
6.4 A displays that maintaining the DO set-point at 2 mg O2/I for the whole duration, as
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explained in lower level DO control technique, is unnecessary. Figure 6.4 B shows the plot of
manipulated variable by lower level controller. When ammonia concentrations are low, the
requirement for DO is lower, hence energy may be lost in an effort to maintain the set-point.
Additionally, there are situations when a greater quantity of DO is necessary; in certain cases,
a shortage of DO may degrade effluent quality. As a consequence, a changeable set-point via

Fuzzy Controller results in greater plant performance in terms of fewer air needs.
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Figure 6.3: (A) MF of input for ammonia (Snu) concentration (Lower level PI/FPI -Fuzzy); (B) MF of output for
DO (So) concentration (Lower level PI/FPI -Fuzzy)
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CS4's control strategy is fairly similar to that of CS3. However, in this case, the PI controller
at lower level is substituted by FPI controllers. When compared to traditional PI controllers,
FPI contains an additional tuning parameter, and tuning is done as described in CS2. The same
fuzzy rule base is used to check the effect of this Fractional P1 controller. A lower level control
based on fractional Pl coupled with a higher level control strategy improves tracking. The
adaptable DO set-point and tracing via FP1-Fuzzy setup are shown in Figure 6.5A. Figure 6.5
A shows that the DO set-point is not a continual function and fluctuates as needed. This rises
when nitrification in the aerobic time phase requires more DO, and it falls when ammonia
content in the SBR tank is low. Figure 6.5B displays the manipulated variable plot in terms of
AIR Flow by lower level controller. This dynamic DO set-point is very effectively traced by
the lower level Fractional PI controller, and the arrangement of these two methodologies results
in more effective and energy-tradeable operation in terms of aeration and concern to controller
performance and EQI, as shown in Table 6.2. The plot of ammonia profile in both this control

strategy is also presented in Figure 6.4 C and 6.5 C respectively.

6.3.2 Higher level controller as nitrate control (CS5 and CS6)

Similar to ammonia control, a higher-level control strategy is implemented in SBR to use
Nitrate (NOs) in order to minimize DO utilization during aeration. Both P1 and FPI controllers
are used in lower level in CS5 and CS6 control strategy respectively with a supervisory level
fuzzy controller. The Sno which is produced during nitrification can be utilised as an oxygen
source to minimize the aeration cost as fresh air supply to the SBR tank can be minimized.
Same time effluent quality is also improved. The set point for Nitrate in SBR is fixed at 4 mg
N/I as a higher value of nitrate can be present in SBR tank to replace use of fresh oxygen. For
higher level fuzzy control, each input and output range is fixed to 0-2 mg O/l and 0-16 mg N/I,
respectively. A Gaussian bell-like curve is taken to represent the membership's shape. Thus,
the membership patterns of Sno concentration in SBR are created by treating 0-4 mg N/l as a
"low" nitrate value, 4-16 mg N/I as a "high" with membership value 1, as shown in Figure 6.6
A. For DO, values less than 0.01 mg O2/I are certainly low, hence they are allocated a
membership value of 1 to the fuzzy set "low." This is congruent with the concept of
membership, which defines the value of a variable's connectedness to a fuzzy set. DO values

more than 1.99 mg O/l are decided high. Figure 6.6 B clearly demonstrates this.
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Figure 6.6: (A) MF of input for Nitrate (SNO) concentration (Lower level PI/FPI -Fuzzy); (B) MF of output for
DO (So) concentration (Lower level PI/FPI -Fuzzy)

The main goal of implementing this scheme is to reduce the absorption of fresh oxygen because
Sno produced during nitrification may only be used for aeration purposes, hence minimising
the aeriation cost. A lower level FPI control with higher level fuzzy with same membership
function is also implemented in CS6. In those control methods, Figure 6.7A and 6.8A depict
flexible DO set values provided by superior level fuzzy and it’s tracking in by bottom level PI
(CS5) and FPI (CS6) control respectively. Both cases have noticeable improvement in
controller performance criteria as well as good set-point tracking and reduced effluent quality,
tabulated in Table 6.2. The Figure 6.7B and 6.8 B show the manipulated variable plots of AIR-
FLOW to vary DO by lower level Pl and FPI controller. The set value of Nitrate in SBR is at
4 mg N/I, nitrate profile in SBR is shown in Figures 6.7 C and 6.8 C in CS5 and CS6

respectively.
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Table 6.2: Effluent quality in SBR with controller performance

) Nitrate (NOs) based
Ammonia (NH4) based )
) Supervisory Level
Supervisory Level
Lower level controller
controller
o oo LLPI+HL | LLFPI+HL | LLPI+HL | LLFPI+HL
Performance Index Fuzzy Fuzzy Fuzzy Fuzzy
(CS1) (CS2)
(CS3) (CS4) (CS5) (CS6)
IAE 0.1057 0.08732 1.442 1.431 1.683 1.618
ISE 0.05673 0.05669 0.8446 0.8374 1.442 1.03
Total Airflow volume
0 231.8 231.8 138.9 138.9 158.6 158.6
COD (mg/l) 52.2850 52.0073 52.1965 51.9872 52.2851 52.2975
BOD (mg/l) 13.1205 12.9816 13.1175 12.9800 13.1200 12.9776
TN (mg/1) 3.0015 2.9658 3.0012 2.9257 3.0013 2.9262
TP (mg/1) 2.2675 2.2492 2.2224 2.2109 2.2424 2.2265
TSS (mg/l) 11.5721 11.3146 11.5655 11.2855 11.5670 11.3002
NH. (mg/l) 1.8200 1.8186 1.8195 1.8095 1.8257 1.8157
1QI (kg polls units/day) | 0.7684 0.7684 0.7684 0.7684 0.7684 0.7684
EQI (kg polls
) 0.0578 0.0573 0.0576 0.0570 0.0577 0.0573
units/day)

As part of this HL control configuration, ammonia concentration is sustained at a
predetermined level of 1 mg N/I. For improved plant performance, it calculates the level of
DO essential according to the ammonia concentration and permits it down to the lower level
as a set-point. Based on the two linguistic variables that describe the input & output variables,
and the fuzzy controller analyses the control action. Figures 6.4A, 6.5A, 6.7A, and 6.8 A
illustrate variable DO set-point tracking, whereas Figures 6.4 C, 6.5C, 6.7C, and 6.8C depict
ammonia concentration set-point tracking by higher level Fuzzy in all control techniques CS3,
CS4, CS5, and CS6, respectively. Observation indicates lower level controllers are adept at
tracking the variability of the DO set-point pattern. SBR ammonia concentration affects the
DO set-point. Variations in airflow will affect the required operational energy of plant more,
so reducing the air supply will lead to a decrease in aeration cost. It is also found that all the

proposed strategies yield similar results. According to Table 6.2, hierarchical control
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approaches are compared with lower level control strategies. In comparison to lower-level Pl
and FPI strategies, the proposed strategies result in better overall airflow consumption (Q-otar)
and EQI index for SBR, while at the same time increasing controller performance. Despite
maintaining set-points for NHs and NOg, all supervisory control strategies produced different
results. From the results in Table 6.2, at lower level control loop, the FPI controller with two
extra tuning parameters can give lower IAE with 17.39% improvement and also improve EQI

by 0.87% compared with PI controller.

As mentioned earlier, the main focus of this study is to minimize the aeration cost by
minimizing the total air volume consumed. Less air consumption has been shown as a result of
implementing the hierarchical fuzzy controller with lower level Pl and FPI controller. Airflow
is decreased by 40.08% as given in Table 6.2 by ammonia control strategy and 31.58% by
nitrate control strategy with the addition of fuzzy controller at supervisory level. The amount
of TN in effluent is also reduced by 1.19% by implementing FPI controller compared with Pl
controller and when the same fuzzy logic control is applied to this lower level controller FPI-
Fuzzy (CS4) a reduction of 2.52% in TN is noticed compared with Pl-Fuzzy (CS3) in
ammonia-based control. In the case of TP, lower level FPI gives a 0.81% reduction compared
with lower level Pl (CS1) and with higher order Fuzzy 1.99% reduction noticed in Pl-Fuzzy
(CS3) when compared with CS1. Comparing lower level FP1 (CS2) with higher level FPI-

Fuzzy (CS4) a reduction of 1.70% has been noticed in the case of ammonia based aeration.

Now in nitrate based aeration, the main objective is to minimize fresh oxygen use and force
the microbes to use compound oxygen in form of nitrate (NO3). Table 6.2 shows a good amount
of reduction in total air volume, apart from that both this nitrate based higher level strategy
(CS5 and CS6) also impacts on TN and TP removal and improves EQI also. Overall the
ammonia control strategy is more effective in both EQI and aeration cost by minimizing air

flow without affecting the effluent quality.

6.4 Conclusions

A biological WWTP based on SBR is modelled with a modified ASM2d framework and then
simulated for DO control during aeration phase using real-time data from the Vizag WWTP in
30°C Indian climates. The main attention is to maintain DO in SBR during 150 to 300 minutes
of one cycle of batch operation. Further, ammonia and nitrate based supervisory fuzzy control
is implemented with lower level Pl and FPI controller for better effluent quality and lesser

aeration cost by providing precise airflow to the SBR reactor during aeration. A total of six
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control strategies are implemented including two DO controllers in the lower level and four
hierarchically arranged nitrates and ammonia controllers employing fuzzy logic. A fractional
controller with lower level DO control gives better EQI and Controller performance. Attaching
an intelligent fuzzy control cascaded with Pl and FPI controller greatly affects effluent quality
as well as troughs air consumption which minimizes the aeration cost. With the addition of a
fuzzy controller at supervision level, ammonia control strategy has less airflow of 40.08%, and
nitrate control strategy has less airflow of 31.58%. In nitrate-based aeration, the main objective
was to limit the use of fresh oxygen and force microbes to use compound oxygen in the form
of nitrate. This nitrate-based higher level strategy (CS5 and CS6) reduces total air volume
intake, helps to remove TN and TP and improves EQI. Finally, the present study concludes that
by minimizing airflow without affecting the effluent quality, the ammonia control strategy with
lower level FPI controller is more efficient in terms of both EQI and aeration cost. A low
volume industries or domestic wastewater treatment facilities can take advantage of this low

cost aeration approach incorporating a conventional SBR technologies.
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7. INFLUENCE OF SEASONS ON THE EFFLUENT QUALITY IN
SEQUENCING BATCH REACTOR BASED WASTEWATER
TREATMENT PLANTS

The temperature has a significant impact on the performance of the microorganisms used in
BNR. The ideal temperature for BNR is usually between 25°C and 35°C, with some variations
depending on the microorganisms used. The activity of the microorganisms responsible for
BNR decreases at lower temperatures, resulting in slower nutrient removal rates. This can result
in a longer retention time in the treatment system and a larger treatment plant footprint. Higher
temperatures increase microorganism activity, which can lead to higher nutrient removal rates
but also increases the risk of operational problems such as foam formation or toxic substance
accumulation. Temperature can affect the composition of the microbial community as well as
the performance of the microorganisms, with different microorganisms becoming dominant at
different temperatures. As a result, when selecting microorganisms for BNR, the temperature
range of the wastewater to be treated should be considered. With strict discharge restrictions
and a variety of treatable influents, temperature management in biological wastewater
treatment processes has received minimal attention. As a result, the above processes function
at ambient temperatures, and the corresponding rates reduce effectiveness due to seasonal
variations. According to a study, the effluent quality showed a positive resemblance with
temperature in the range of 10 to 30 °C, regardless of the sludge settling characteristics or solids
retention time (SRT) (Collins et al. 1978). When nitrification and de-nitrification occur
concurrently at high temperatures greater than 25 °C, nitrogen is removed from the system
(Gorgun et al, 2007).The effects of temperature on the flocculent settling in the activated sludge
process were investigated at temperatures ranging from 15 to 35 degrees Celsius (Ghanizadeh
et al, 2001). It was found that as the temperature rose, chemical oxygen demand removal
percentage decreased and the concentration of suspended solids in effluent increased. The
nitrogen separation efficiency of tannery wastewater analysed in an SBR over a broad range of
temperatures of 9 to 30 °C was evaluated in a study (Murat et al, 2003) and the effluent limits
achieved are noted for the temperatures above 20 °C. Temperature is believed to be one of the

primary tangible factors impacting nutrient removal efficiency because it impacts the rate of
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metabolism directly (Azeez et al, 2010). The impact of temperature on wastewater and organic
element treatment in wastewater is explored and rising the temperature results in a considerable

improvement in the reduction of suspended solids and COD (Ahsan et al, 2005).

7.1 Materials and Methods

7.1.1 Influent Data

This section gives clarification of the working scheme of the SBR process with a modified
ASM2d model. Our work is on modelling and studying the effect of temperature on biological
processes and for this purpose, we have used an SBR-based biological process. After successful
modelling utilizing the ASM2d model, we have validated our SBR simulation model with real
plant data by giving Indian wastewater influent, collected from Visakhapatnam WWTP in
India, irrespective of the type of treatment technology (Tejaswini et al, 2021). To study the
seasonal temperature variation globally, we have also observed the SBR process with European
influent data (Valverde-Pérez et al, 2016). State variables and particulate symbols with
descriptions are in the Table 5.3 in chapter 5.

Table 7.1: Influent load data as reported from Visakhapatnam WWTP and European climate

Indian climate (Vizag Influent Load European climate

WWTP) (Borja 2016)

381.99 CODi 711.99
219.1083 BOD; 420.05
41.5992 TNi 79.01
11.0751 TPi 16.17

27.58 NH4; 54

238.92 TSSi 430.5045

7.1.2 Treatment plant description and Simulation model

SBRs perform biological pollutant removal in the second phase of WWTP. Unlike an ASP
process, an SBR does not have any clarifier. To purify sewage sediments and minerals,
mechanical pre-treatment is used. The first step uses the grid, screen, grit chamber, and sand
separator. Figure 7.1 A depicts the EBPR process of SBR and in Figure 7.1B its phase’s layout.
A single SBR cycle consists of the following phases: filling, biological reactions (aerobic,
anoxic and anaerobic), sedimentation, decantation, and idling. A settler model which is
incorporated for better effluent quality during settling. The double exponential settling velocity
of the secondary settler model by is used (Takacs et al, 1991). The corresponding mathematical

modelling and layout of the settler (Figure 1.16) are reported in section 1.3.2. The most widely
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used mathematical representation of biological processes in WWTPs is Activated Sludge

Models (ASM), a series established by the International Water Association.

Aeration system

Air Flow !
(I/min)

%¢ﬁ¢ﬁ¢ :

Filling Anaerobic Decanting Idle

Anoxic Settling

Figure 7.1: The EBPR process of SBR and its phase layout in a single cycle of the SBR phases

Feed

| i

Anoxic and Anaerobic Aerobic Settling

150 300 360
Minutes

Figure 7.2: Time sequences in model SBR

The ASM2d model is used to model the biological EBPR processes of the SBR in this study,
which has 21 state variables and 20 kinetic and stoichiometric parameters (Gernaey et al, 2014
and Henze et al, 1999). ASM2d is a minor ASM2 expansion. Two other processes must be
considered: poly-P storage and anoxic growth. PAQOs in ASM2 can store polyphosphate (poly-
P) and only grow in aerobic environments. ASM2d, on the other hand, includes a denitrifying
PAOs metabolism simulation for poly-P growth and storage. ASM2d suffers from the same
confines as ASM2. The literature provides more information about the ASM2d model (Henze
et al, 2000). By using kinetic & stoichiometric coefficients for all parameters & presenting
them in matrix format, metabolic processes depending on Monod kinetics are described. The
access to the stoichiometric coefficients is simple due to the use of matrix notation. As a result,
calculations maintain their mass balances as intended. The method for model preparation of
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ASM2d is elucidated in Henze et al, 2000. The processes involved in ASM2d are pictured in
Figure 7.3.

Table 7.2: Influent in terms of state variables of two global locations

State variable Sk Sa Si SNH o Sh Sno Sposa Sak  Xi  Xs Xoh  Xpao Xep XeHa X X1ss Xa X Xme
A ME OH
P
Indian Influent 211 319 198 275 0 O 730 7 595 202. 473 0 0 o0 0 231. 0 0 O
0 325 55 8 8 23 0 84
European 873 154 342 540 0 025 9 7 260 260 55 0 0 o0 0 439 0 0 O
Influent 3 1 S 0

)
]
1
T
1

hydrolysis

fermentation

Heterotrophs

Figure 7.3: ASM2d processes have included in SBR

The model becomes rather complicated because of including EBPR and phosphorus
accumulating organisms (PAO) in ASM, as shown in the Figure 7.3. The figure's left side
illustrates the conversions that are done by nitrifiers and regular heterotrophs, while the other
side illustrates the extension required to describe the intricate physiology of PAO. The nitrifiers
and typical heterotrophs oxidise their substrate with oxygen to produce CO2, nitrate, and
biomass. Their relatively straightforward physiology leads to straightforward processes.
Internal storage polymers (poly-hydroxy-alkanoate: PHA, poly-P) are a part of PAO
physiology, and their behaviour under anaerobic, anoxic, and aerobic conditions varies. In
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aerobic environment, they also react differently based on whether the substrate is available or
not. The flow along with COD, TSS, and ammonia concentrations of influent is collected from
the Vizag plant to validate SBR process in Indian climatic conditions (shown in Table 7.2).
The average value of all state variable apart from some dummy variable of each influent is
tabulated in Table 7.2. (The full form with unit is mention in Table 7.3). The STOWA
guidelines are used to compute the state variables, which contain the dynamic data needed to
implement different strategies for the treatment plant. The operating parameters of the SBR are
described in Table 3, and sludge gets added to the initially empty 4 L of the SBR tank, it’s

initial sludge parameter is reported in Table 4 [6].

Table 7.3: state variables with their symbols and units.

State variable Unit Initial value Range
Dissolved Oxygen (Soz2) [9-02/m®] 0.01 (0-4)
Rapidly biodegradable organic substrate (S¢)  [g-COD/ m®] 0.1

Fermentation products (Sa) [9-COD/ m?] 10 (0-10)
Ammonium nitrogen + ammonium ions [g-N/ m®] 0.5

(SNHa)

Nitrites (Sno2) [9-N/ m?] 5

Nitrates (Sno3) [9-N/ m?] 5 (5-10)
Soluble inorganic phosphorus (Spo4) [9-P/ m?] 0.4

Soluble inert organic material(SI) [g-COD/ md] 30 (10-100)
Alkalinity (SaLk) [mol HCO3-/ m®] 20 (10-20)
Particulate inert material (Xi) [g-COD/ md] 25

Slowly biodegradable substrate (Xs) [g-COD/ md] 25

Heterotrophic biomass (Xn) [g-COD/ md] 1547.17 (1000-2000)
Phosphorus-accumulating biomass (Xpao) [9-COD/ m?] 600

Polyphosphates (Xpp) [9-COD/ m?] 150 (10-20 %XPAO)
Organic compounds inside the biomass cell [g-COD/ md] 100 (10-20 %XPAO)
(XpHa)

Autotrophic biomass(Nitrosomonas) [g-COD/ md] 80

(an)

Autotrophic biomass(Nitrobacter)( Xnb) [g-COD/ m?] 50

Metallic hydroxides (Xmeon) [g-Fe(OH)3/ m®] 10

Metallic polyphosphates (Xwmep) [g-FePO4/ m?] 10

Initial volume L 4

* The Particulate material is represented by the symbol X, and S is used to represent the soluble

substance

The influent content as a composite form are shown in the equations

CODin=[Sk+ Sa+ Si+ X 1+ Xs+ (Xu+Xn) + Xns+ Xng + Xpao + XpHa] (7.1)
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BODs in= [0.65%(S + Sa+ Xi+ (0.9% Xs) + 0.9%(Xi+Xn) + Xpp + (0.9% Xppia))] (7.2)
NHsin= [Sniia] (7.3)
TNin= [X*INX1) + (Xs*iNXs) + Snna + (SE*INSE) + (S iNS)) + (X Xn) + Xpao+ Xns + (Xne* iNew)]  (7.4)
TPin= [(XS*iPXs+) + (X*iPX1) + Spos+ (SE¥¥iPSE) + (Si* iPS) + (Xt Xn) + Xpao+ Xns + (Xne*iPew)]  (7.5)
TSSin= [Xumep+ Xmeort (X*iTSSX)) + (Xs*ITSSXs) + (Xert Xn+Xpao)* iTSSem + (3.23* Xpua) + (0.6% Xpp)]

(7.6)

Where, iNX|, iNXs, iNSF, iNS|, iNBM, iPX|, iPXs, iNSF, iPS|, ipsm, iTSSX|, iTSSXs, iTSSBM are the conversion
factor according to the ASM2d [24].

7.2 Temperature assessment

Irrespective of every aspect that has been taken into account, temperature seems to be the most
uncertain, especially in open environments. After collecting influent data we performed kinetic
parameter calculations with varying temperatures. At 20 °C the values of those parameters are
the same as their default values (Henze et al, 2000). Temperature effect on kinetic parameters

given by equation as follows (Gernaey et al, 2014):
ot
In(—22
ar = ar,,.exp <<M> (T - 20)) (7.7)

Where ar the considered parameter temperature (T) value and ar,,, ar, is the defined
benchmark parameter values at 10 °C and 20° C (Henze et al, 2000). Based on the equation
(7.7) we have calculated the kinetic parameters in a range of temperatures to evaluate the Indian
climatic conditions. The influent flow rate of simulated SBR - 0.033 I/min (Marsili Libelli et
al, 2001). Average influent data with state and particulate variables with symbols are reported
in section 5.2.2. Temperature influences aeration efficiency and consequently energy
utilization through airflow and Sg2™. Temperature influences oxygen solubility, which rises as

the temperature falls. The S§™ is valid in the range of 273.15 to 348.15 K.

$$t(T) = * 6791.5 * K(Ty) 78

10.50237016

K(TK) =56 12e—66.7354+%355+24.4526*1n(T*)

T* = T,/100 , The term 8/10.50237016 is denoted as SZ™ value at 15°C is exactly 8 mg/L.

A steady state simulation is executed to analyze the effluent concentrations at a temperature

range of 10— 33 °C. The foremost work of temperature analysis of the SBR Process is to
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measure the impact of temperature on the kinetic parameters. Table 7.4 provides a list of the

kinetic parameters observed in the SBR reactor at the above-mentioned temperatures.

The aeration system is intricate, nonlinear, and dynamic in nature. A general framework for
modelling aeration systems was given (Murat et al, 2003). The aeration system used in this
study consists of a blower station, collecting pipe, diffuser systems, and collector-diffuser pipes
which were previously used for a variety of aeration systems reported in the literature
(Piotrowski et al, 2015). SBR is experienced with real data from the Visakhapatnam WWTP
and implemented in a Matlab/SIMULINK environment. To check the temperature effect on
European influent, a municipal WWTP of 135,000 people equivalent is chosen. The description
and typical findings of each kinetic parameter for the model ASM2d are listed in Table 7.4.
Additionally, although some kinetic parameters for biological phosphorus removal were
approximated using data from ASM1, those for ASM2's full-scale verification studies and
experience in the laboratory. It should be noted that the saturation coefficients Ki for any given
molecule may differ for various organisms (for example, KO2 may have four different values
subject to the process and organism to which it is related). The investigation of the Kinetic
variables is conducted over a wide temperature range, and a significant increases in the kinetic

variables become evident with the increase in temperature.

Table 7.4: kinetic parameters as temperature changes

Kinetic Variable/ Temp(°C) 10 15 20 25 30 33

Kn Hydrolysis rate constant 1.3333 2 3 4.5000 6.7500 7.9385
HH Maximum growth rate on substrate 1.50 3 6 12 24 31.6682
gre  Maximum rate for fermentation 0.75 1.50 3 6 12 15.8341
bn Rate constant for lysis and decay 0.1175 0.2350 0.4700 0.9400 1.8800 2.4807
grHa Rate constant for storage of Xpna 1.3333 2 3 4.5000 6.7500 7.9385
ger  Rate constant for storage of Xep 0.6667 1 1.5000 2.2500 3.3750 3.9693
Mpao Maximum growth rate of PAO 0.4489 0.6700 1 1.4925 2.2277 2.6147
brao  Rate for lysis of Xpao 0.05 0.1000 0.2000 0.4000 0.8000 1.0556
ber  Rate for lysis of Xep 0.05 0.1000 0.2000 0.4000 0.8000 1.0556
brHa  Rate for lysis of XpHa 0.05 0.1000 0.2000 0.4000 0.8000 1.0556
pUns  Maximum growth ratio Nitrosomonas 0.2923 0.4700 0.7558 1.2153 1.9542 2.3631
pns  Maximum growth ratio Nitrobacter 0.5807 0.7800 1.0476 1.4071 1.8899 2.1266
bns  Constant decay ratio Nitrosomonas 0.0496 0.0860 0.1491 0.2584 0.4478 0.5580
bne  Constant decay ratio Nitrobacter 0.0496 0.0860 0.1491 0.2584 0.4478 0.5580
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7.3 Results and discussion

The effluent concentrations are investigated using a steady-state simulation at temperatures
spanning 10 and 33 °C. The parameters related to kinetics for the above-indicated temperatures
are listed in Table 7.4. As the temperature rose, the hydrolysis rate constant (Ku), indicated in
the table, gradually increased. In case of heterotrophic organisms (Xu), the Maximum growth
rate on substrate (u+) and Maximum rate for fermentation (gr) have higher rate during
temperature goes up. It has been shown that other values of heterotrophic rates tend to increase
naturally during periods of high temperatures. In Phosphorus-accumulating organisms (Xpao),

the values of gpHa, grp, MPao, brHA eXhibit a rising trend in their values during temperature rises.

After observing the increasing Kinetic variations in parameters triggered by increased
temperature, influent from various global locations is finally exposed to the SBR process. As
temperature rises and biological rates climb, the effluent quality for Indian influent
(Visakhapatnam plant) improves with lower values. Table 7.5 lists the changes in effluent
values due to temperature change for Indian Influent .There is a noticeable drop in the effluent
parameters COD, BOD, TN, and NH4 by 2.5003%, 14.927%, 5.80%, and 9.0951%,
respectively. Unless a minimal rise is seen in the total amount of suspended solids and
phosphorus, which are 2.0798% and 1.0745%, respectively. As temperature rises, more oxygen
gets utilised by the biomass, resulting in a sharp drop in oxygen saturation (SO2-SAT) of

33.716%. Figure 7.4 plots a chart bar aimed at the effluent values in Indian influent.

Table 7.5: Effect on Effluent due to temperature change in Indian Influent (Ref. temperature=20 °C)

Temperature (°C) COD BOD TN TP NHa TSS SO2-SAT
10 53.3327 13.9549 3.1370 2.2406 1.9615 11.4569 8.9127
13 53.2444 13.8882 3.1294 2.2399 1.9530 11.4570 8.3420
15 53.1760 13.8368 3.1227 2.2397 1.9458 11.4638 8
17 53.0986 13.7783 3.1146 2.2396 1.9373 11.4757 7.6854
20 52.9623 13.6742 3.0989 2.2396 1.9212 11.5000 7.2596
23 52.7973 13.5447 3.0779 2.2415 1.9003 11.5248 6.8827
25 52.6693 13.4413 3.0603 2.2457 1.8831 11.5398 6.6556
27 52.5260 13.3228 3.0394 2.2522 1.8629 11.5530 6.4458
30 52.2806 13.1142 3.0011 2.2668 1.8264 11.5680 6.1608
33 51.9992 11.8718 2.9549 2.2872 1.7831 11.5800 5.9077
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Figure 7.4: Effluent quality for Indian influent in various temperatures

In water quality metrics, dissolved oxygen (DO) is crucial for secondary treatment procedures.
The amount of oxygen that is dissolved and distributed throughout a water sample is indicated
by the DO level. Dissolved oxygen is used by bacteria and other microbes to break down
organic matter, which drops DO concentrations. Microorganisms are released in flocs during
wastewater treatment to aerobically break down and eliminate organic matter. Therefore, the
concentration of dissolved oxygen are crucial for effective treatment. During the first 150
minutes, no oxygen is delivered because the process is anaerobic/anoxic (mention in Figure
7.1). After 150 minutes, oxygen is supplied with a flow of 1.85 L/min, however since there is
an abundance of substrate, oxygen gets utilised by the biomass, resulting in the DO content
decreasing for the initial 150 to around 200 minutes. After that, as there is not as much substrate
present, less oxygen is required, but the flow remains constant at 1.85 L/min, and the DO value
rises. Due to the extremely high demand for oxygen at higher temperatures, DO will be lower.
The usage of oxygen by microorganisms in the reactor increases dramatically as the
temperature rises, as can be observed in the Figure 7.5 A. At 10 °C it upholds at 8mg/l but
drops to 2-4 mg/l above 30 °C. It implies that microbial activity increases with increasing

temperature. A similar plot structure can also be identified in the context of European influent.
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Figure 7.5: (A) DO concentration during SBR Phases; (B) Nitrate (NO3) profile; (C) Phosphate (PO4) profile

The NOs concentration in the wastewater drops during the first 150 minutes of treatment
because the anoxic conditions cause the NOz to be consumed. The majority of the biomass will
quit anoxic reactions and switch to employing aerobic reactions after 150 minutes when the
oxygen supply is started. Therefore, the NO3z content rises (in Figure 7.5B). The PO4 plot's (in

Figure 7.5C) assessment is comparable to the explanation provided for the Total P analysis.

In general, the chemical oxygen demand measures how much oxygen is required to oxidise
organic material. The SBR's initial 150 minutes of treatment will be both anoxic and anaerobic,
thereby the batch reactor's overall COD won't fluctuate much during that period of time. From
the Figure 7.6 A, Chemical oxygen demand will initially be quite high since there is a more
organic and nitrogenous substrate in the wastewater. Following 150 minutes, the reactor will
begin to experience an aerobic reaction, creating the amount of organic matter in the

wastewater to decrease, and this in effect causes the chemical oxygen demand to drop. Because
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the biological activity of the biomass grows at higher temperatures, COD will be much lower
after 360 minutes at higher temperatures than at lower temperatures. It follows that the COD
value after treatment will be higher at lower temperatures and vice versa. Unlike the COD plot,
the BODs and TSS plots' conduct patterns, as well as the characteristics of the COD plot are

identical.
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Figure 7.6: (A) COD profile; (B) NH4 profile; (C) TN profile; (D) TP profile; ( Inside the SBR reactor)
with Indian influent and initial sludge parameter.

In SBR, the plot for ammonia is particularly dynamic (Figure 7.5 B). Due to the
ammonification of the organic nitrogen, the NH4 content in the wastewater will dramatically
rise within the first 150 minutes. Following 150 minutes, the nitrogen from the ammonia serves

as both an energy source for the autotrophic nitrifying bacteria and a source of nitrogen for the
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heterotrophic bacteria's synthesis. Since biological activity will be strong at high temperatures,
NH. conversion will also be high. Most of the biomass will decay and be turned into the slowly
biodegradable matter between 300 and 360 minutes. Part of that slowly biodegradable
substance will then be converted into NH4, which causes the NH4 content to increase slightly.
Organic nitrogen, ammonia nitrogen, and nitrates will make up the total nitrogen content.
Nitrogen oxides (NO) arrive at the reactor during the first few minutes of the treatment,
increasing the total Nitrogen attention. The total nitrogen concentration stays the same even
when it changes from NOs to N2, as picturised in Figure 7.6 C. When the aerobic process begins
150 minutes later, nitrogenous materials are transformed into biomass. Temperature throughout

the treatment process directly relates to the biomass's consumption of nitrogenous substrate.

During the first few minutes in the reactor, Phosphorous Accumulating Organisms will use the
energy provided by releasing the polyphosphates in their cell store in the form of
hydrophosphate to convert the fermentation products into Poly-Hydroxyl-Alkanoates. When
the aerobic process begins, hydrophosphates will be transformed to polyphosphates and stored
in the cell of phosphorus-accumulating organisms. Thus, the wastewater's total phosphorus
level drops. According to Figure 7.6 D, temperature has a direct correlation with the rate at

which phosphorus changes states.

While European influent is fed into the SBR reactor, a similar type of impact has been observed.
The effluent characteristics that differ with temperature variations are listed in Table 7.6.
Likewise, as the temperature increased here, the effluent reduced. At 10°C, the COD
concentration of the effluent is 53.40, and it dropped by 2.50% to 52.06 at 33 °C. Similar
reductions are seen in BOD, TN, and NH4 of 7.76%, 5.800%, and 9.10%, respectively. The
minor increases in TP and TSS are 1.94% and 1.02%, respectively.

The utilisation of oxygen by microorganisms in the reactor is likely seen in the Figure 7.8 B,
which shows how the DO concentration quickly rises as the temperature goes up. At 10 °C, the
level stays at 8 mg/l, meanwhile, at temperatures exceeding 30 °C, it stays around 2-4 mg/I,
indicating an increase in microbial activity as the temperature of the atmosphere climbs.
According to the COD graph in Figure 7.8 A, the rate at which COD in the reactor reduces
increases as temperature rises. High temperatures encourage higher rates of nitrification and

denitrification, and that's why it arises.
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Table 7.6: Effect on Effluent due to temperature change in European Influent

Temperature (°C) COD BOD TN TP NH4 TSS SO2-SAT
10 53.4039 13.9906 3.1392 2.2413 1.9615 11.5055 8.9127
13 53.3157 13.9242 3.1318 2.2403 1.9530 11.5077 8.3420
15 53.2467 13.8722 3.1250 2.2398 1.9457 11.5127 8
17 53.1686 13.8129 3.1170 2.2395 1.9371 11.5214 7.6854
20 53.0318 13.7079 3.1013 2.2402 1.9211 11.5437 7.2596
23 52.8667 13.5782 3.0802 2.2413 1.9001 11.5685 6.8827
25 52.7386 13.4747 3.0626 2.2455 1.8829 11.5835 6.6556
27 52.5950 13.3558 3.0410 2.2517 1.8627 11.5965 6.4458
30 52.3488 13.1465 3.0033 2.2654 1.8262 11.6111 6.1608
33 52.0673 12.9044 2.9571 2.2849 1.7829 11.6236 5.9077
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Figure 7.7: Effluent quality for European influent in various temperatures
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Figure 7.8 D, NOs indicates that nitrate utilisation in the anoxic-anaerobic phase is low at lower
temperatures and develops at elevated temperatures, while nitrate production in the aerobic
phase increases at warmer weather. PO4 in the Figure 7.9, it is able to see that at cold
temperatures, both the anaerobic and aerobic periods PO4 production and consumption are
minimal. In the anaerobic and aerobic phases, respectively, utilisation and production climb
along with heat. Total phosphorus (TP) contents in Figure 7.8 F is evident in the image to
follow a similar pattern to PO4 levels. Figures 7.8 E and 7.8 C for TN and NH4 show that total
nitrogen removal is higher at high temperatures, as are ammonia production and utilisation,
respectively. Figure 7.7 illustrates the effluent parameters along with oxygen saturation in a
SBR along with how these factors influence the effluent parameters when it comes to
temperature dependence. Effluent plots with European inlets are quite comparable to those with

Indian influent.

7.4 Conclusion

The study revealed that temperature has a substantial impact on sequential batch reactor’s
(SBR’s) performance, which could have significant consequences for the layout and
management of SBR-based wastewater treatment facilities across the globe. This might lead to
the development of wastewater treatment strategies that are more effective and sustainable.
Utilizing a steady-state simulation to examine effluent quantities at temperatures ranging from
10°C to 33°C, the study specifically identifies the influence of temperature on removing

organic carbon and nitrogen in a sequential batch reactor. As temperature rises, the effluent
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quality noticeably improves. In order to reach acceptable discharge limits, it is observed that
changes in kinetic parameters at various temperature ranges have a significant impact on the
effluent quality. The kinetic parameter investigation is carried out at a temperature of 20 °C.
In Indian influent, COD, BOD, TN, and NHas have decreased substantially by 2.5003%,
14.927%, 5.80%, and 9.0951%, respectively. While a slight increase in total suspended solids
and phosphorus levels are noticed, which are 2.0798% and 1.0745%, respectively. As the
temperature rises, the biomass consumes more oxygen, resulting in a significant decrease in
oxygen saturation (SO2-SAT) of 33.716%. As the temperature rises, the amount of oxygen
consumed by microbes in the reactor notably increases, as seen in Figure 4A. It maintains
about 8 mg/l levels at 10 °C but declines to 2-4 mg/l over 30 °C. It signifies that as warmer
temperatures occur, microbial activity does as well. The levels of DO in wastewater treatment
decrease as the microorganisms become more active. Using low DO concentrations will result
in microorganisms dying off and this will lead to a loss of efficacy of treatment. The optimum
control strategy requires aeration and bubbler systems to be installed in order to keep the DO
levels at or below 2 mg/L as well as to evenly distribute the DO throughout the flocs containing
microorganisms. Similar effects have been noted when the SBR reactor receives European
influent. Furthermore, the effluent decreased when the temperature rose in this area. The
effluent's COD concentration was 53.40 at 10 °C and 52.06 at 33 °C, a 2.50% decrease. BOD,
TN, and NHjs all experienced similar declines of 7.76%, 5.800%, and 9.10%, respectively. TSS
and TP both experienced slight increases of 1.94% and 1.02%, respectively and all parameter
are under restricted norms for effluent discharge. Finally, this study notices that temperature
has considerable influence on SBR’s performance, which may have concerns for the design
and operation of SBR-based wastewater treatment facilities worldwide. This could pave the
way for more efficient and long-lasting wastewater treatment solutions in rationally exposed

environments.
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8. CONCLUSIONS AND FUTURE SCOPE

8.1 Overall conclusion

In conclusion, this thesis has undertaken a comprehensive exploration of various control
strategies and their impact on the performance of Biological Wastewater Treatment plants
(WWTPs), particularly focusing on the performance of sequencing Batch Reactor (SBR) and
aeration systems. The evaluation utilized four primary control techniques - PI, FPI, FUZZY

and MPC implementing them across different levels of control hierarchy.

8.1.1 A supervisory FUZZY control framework with lower level fractional-order

models on wastewater treatment plant’s nutrient removal.
The performance of a biological wastewater treatment plant in ASM3bioP platform is greatly
impacted by three lower-level implemented methods: 10 model and 10 control, IO model FO
control, and FO model FO control. These strategies are evaluated using PI, FPI, and higher-
level FL control approaches. The EQI improvement percentages for FPl and FMFPI relative to
Pl are 0.50% and 0.59%, respectively, whilst the OCI improvement percentages are 0.31% and
0.33%.

The application of FUZZY controller at the supervisory level demonstrated substantial
improvements in Effluent Quality Index (EQI), supressing the outcomes achieved by lower
level P1 and FPI controllers. EQI is improved by 4.00% for the 10 model with FP1 and 4.03%
for the FO model with FPI when supervisory fuzzy logic control is used. Fuzzy control lowers
violations of total nitrogen by 9.01% (FO model) and 6.11% (IO model) compared to lower
level P1, despite higher OCI brought on by controller costs.

Lower-level control ammonia violations are somewhat decreased in the FO model (2.01%) and
IO model (1.78%) when using FPI. Plant performance is more strongly impacted by the FO
controller, although the FM-FPI approach produces the greatest outcomes and greatly improves
the EQI. The results underscored the importance of higher level control strategies in enhancing

overall plant performance, albeit with a slight increase in overall cost (OCI).

8.1.2 Optimising wastewater treatment employing IMC-based fractional controllers in
a supervisory MPC control scheme for biological treatment.
A non-integer order system for biological wastewater treatment plants (WWTP) is found for

the ASM3bioP model by utilizing FOMCON toolbox, with an emphasis on regulating
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dissolved oxygen (DO) and nitrate content (NO). Using the Genetic Algorithm (GA)
determines the fractional filter parameters (A, a) for the Internal Model Control (IMC)
controller by optimizing the Integral of Absolute Error (IAE) for closed-loop response. Using
MATLAB Simulink, the IMC controller is used to improve the aeration system for the DO
control. The effectiveness of the controller and the uncertainty of the plant are validated
through extensive testing. For the non-integer model, a mathematical method using the same
IMC fractional controller and a higher-order fractional filter is created, leading to a better
closed-loop response with enhanced set point tracking and disturbance rejection. The control
approach known as Fractional Filter - Fractional Order Proportional Integral (FF-FOPI)
simultaneously minimises IAE and Integral of Squared Error (ISE). Fractional Order (FO)
controllers have a greater effect on plant performance when compared to Proportional Integral
(PI) controllers. The FF-FOPI approach with higher order filter outperformed both GA based
IMC P1 and FPI controllers, highlighting its potential for optimizing WWTP operations.

Moving forward, the investigation extended to the SBR plant layout, incorporating complex

ASM2d modelling and calibrated real plant data.

8.1.3 Design of control strategies for biological wastewater treatment of sequential
batch reactor
PI1, FPI, and Fuzzy control frameworks are integrated into an SBR facility utilizing the ASM2d
platform. These methods control dissolved oxygen (DO) during aeration by altering the air
flow rate. The ASM2d model, calibrated with actual plant data, represents an SBR-based water
treatment facility. Notably, the study investigates regulating a batch process utilizing the
complicated ASM2d model and real-world plant data calibration. The controller performance
is examined, and the finding showcased the superiority of FPI controllers in terms of ISE and
IAE compared to Pl and Fuzzy controllers. Effluent nutrient compositions remain within legal
limits. FP1 improves nutrient removal rates and effluent quality by 0.53%, 1.05%, 1.18%,
0.80%, 0.07%, and 2.22% over Pl. A modified SBR cycle (Step-Feed Process) shows similar
advantages. When FPI controller performance is examined only based on total air volume
consumption, step-feed SBR shows an 11.04% reduction compared to standard SBR. The
results demonstrated optimized nutrient removal rates and effluent quality with the FPI

controller emphasizing its efficiency in real-world wastewater treatment scenarios.
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8.1.4 Design of supervisory fuzzy control for enhanced energy saving in a sequencing
batch reactor based wastewater treatment plant
This part of study models a biological WWTP based on SBR using a modified ASM2d
framework and simulates DO controlling during the aeration phase using real-time data from
the Vizag WWTP in 30°C Indian conditions. The goal is to keep DO levels in SBR between
150 and 300 minutes for one batch operating cycle. Supervisory fuzzy control for ammonia
and nitrate, along with lower level Pl and FPI controllers, attempts to improve effluent quality
and cut aeration costs by optimizing airflow to the SBR reactor during aeration. Six control
techniques are applied, including two DO controllers at the lowest level and four hierarchically
structured nitrate and ammonia controllers based on fuzzy logic. Using an intelligent fuzzy
control cascaded with Pl and FPI controllers improves effluent quality and reduces air
consumption, lowering aeration costs. Fuzzy control at the supervision level reduces airflow
by 40.08% for ammonia control and 31.58% for nitrate control. The study concludes that an
ammonia control strategy with a lower level FPI controller is more efficient in terms of both
EQI and aeration cost, providing a cost-effective aeration approach suitable for small-scale
industries or domestic wastewater treatment facilities that use conventional SBR technologies.

8.1.5 Influence of seasons on the effluent quality in sequencing batch reactor based
wastewater treatment plants

Furthermore, the thesis delved into the impact of temperature on SBR performance, revealing

temperature’s substantial influence on the efficiency of SBR based wastewater treatment

facilities. As temperature increased, effluent quality improved, necessitating careful

consideration in the design and operation of such facilities, particularly in varying climatic

conditions.

The study demonstrates temperature's critical significance in organic carbon and nitrogen
removal in SBRs using steady-state simulation at temperatures ranging from 10°C to 33°C,
with higher temperatures significantly increasing effluent quality. Notably, changes in kinetic
parameters throughout temperature ranges have a considerable impact on effluent quality,
notably at 20°C. COD, BOD, TN, and NHj4 levels fall dramatically in Indian influent, whereas
total suspended solids and phosphorus levels rise slightly. As the temperature rises, microbial
activity increases, affecting dissolved oxygen (DO) levels, demanding optimal management
solutions involving aeration and bubbler systems to maintain DO levels and assure treatment

effectiveness. Similar trends are seen with European influent, indicating temperature's
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significant impact on SBR performance and the possibility for more effective and sustainable

wastewater treatment options around the world.

In Summary, this thesis contributes valuable insights into realm of wastewater treatment
control strategies, showcasing the efficacy of higher level control techniques, non-integer order
systems, and the influence of environmental factors. The finding presented here not only
expand the theoretical foundations but also offer practical implications for optimising the
performance of Biological WWTP in diverse operational contexts. The journey undertaken in
this thesis sets the stage for continued exploration and advancements in the field of fractional
modelling and control in wastewater treatment plants, inspiring future researchers to delve
deeper into the intricate dynamics of WWTP processes. A low volume industries or domicile
wastewater treatment facilities can benefits from this low cost aeriation techniques that

incorporates standard SBR.

8.2 Plan for future work

This study sheds light on the dynamic interaction of environmental factors and wastewater
treatment systems, giving important insights for future investigations. Building on these
findings, future studies could look into novel approaches to improving treatment efficiency and

environmental sustainability. The opportunities are

o Develop advanced control approaches to effectively eliminate phosphorus utilising a
Total Suspended Solids (TSS) controller.

o Develop a fractional model and controller for a complete wastewater treatment system.

o Design machine learning models for wastewater treatment plant sensors to substitute
sensor hardware with soft sensor model.

o Apply the designed control strategies to an experimental setup of a pilot plant for

practical implementation.
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APPENDIX A
Table A3 Kinetic rate expressions for ASM3 (Henze et al. (2000))
No. Process Process rate equation
Hydrolysis
P1 Hydrolysis Xs/Xn
"Ky + X/ Xy M

Heterotrophic organisms

P2 Aerobic storage of So Ss
ksro Xn
COD Kou + So Kssy + Ss
P3 | Anoxic storage of COD " Kon SNo Ss ¥
SToINo A Kou + So Know + Sno Kssu + S5
P4 Aerobic growth So SnH Spoa SHco Xsro/Xu ¥
U
" Ko + So Knuw + Snu Kpoa + Spoa Kicon + Suco Ksro + Xsro/Xu ™
P5 | Anoxic growth(deni) Ko Sno Snu Spoa Sco Xsro/Xu
HuMno,
HINOH K o 1w+ So Knou + Svo Knug + Sns Kpoan + Spos Kuco + Suco Ksro + Xsro/Xu ™
P6 | Aerobic endog. Resp So
by Xy
Koy + So
P7 | Anoxic endog. Resp b Kou SNo ¥
HTINO,end,H Kon + So Knon + Svo H
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P8

Aerobic resp. of Xsto

by—20 _x
HEy o+ Sy 5TO
P9 | Anoxic resp. of Xsto b Ko n SNo ¥
HYINO,end H Kon + So Knon + Swo STO
Autotrophic organisms
P10 Nitrification p So Snu Spoa Shco ¥
4 Kon + So Knwu + Svu Kpoaw + Spoa Kucon + Suco 4
P11 | Aerobic endog. resp. b So ¥
A A
Koy +So
P12 | Anoxic endog. resp. Kou Sno
bATINO A Xa
Kou + So Know + Sno
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Table A4 Kinetic rate expressions for the EAWAG Bio-P module (Rieger et al. (2001))

No. Process Process rate equations
Phosphorus accumulating organisms
Pl3 Storage Of XPHA SS SHCO XPP/XPAO
rHa’y S K ¥ Suco K T Xop /Ko XPa0
ss,pa0 T 5s Knco,pao + Suco Kpp,pao pp/&Xpao
P14 Aer. storage of Xpp q So Spoa SHco Xpra/Xpao Kmax,pa0 = (Xpa/Xpao) ¥
i Ko,pao + So Kpoapp + Spoa Kucopao + Suco Kpua + Xpua/Xpao Kirp.pao + Kmax,pao —(Xpp/Xpao) pao
P15 Anox. storage of Xep o Ko,pao Sno Spo4 SHco Xpra/Xpao Kmax,pao — (Xph4
PRINOPAO Ko,pao + So Knopao + Sno Kpoapp + Spoa Kuco,pao + Suco Kpua + Xpua/Xpao Kipp pao + Kmax,pao —
P16 AEI’ gI’OW'[h Of XPAO SO SNH Sp04 SHCO XPHA/XPAO X
U
pao Ko,pao + So Knupao + Svu Kpoapp + Spoa Kucopao + Suco Kpua + Xpua/Xpao pao
P17 Anox. growth of Xpao Laoh Ko,pao Sno Snu Spo4 SHco Xpra/Xpao ¥
PAOTINO,PAO Ko,pao + So Kno,pao + Sno Knupao + Snu Kpoapp + Spoa Kuco,pao + Suco Kprua + Xpua/Xpao pAo
P18 | Aerobic endog. respiration b So ¥
PAO —KO,PAO T+, Pao
P19 | Anoxic endog. respiration b Ko,pao SNo x
PA0TINO,end,PAO Ko pao + So Kno.rao + Swo PAO
P20 Aerobic lysis of Xpp b So ¥
P Kopao + So P
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P21 Anoxic lysis of Xpp b Kopao Sno X
PAOTINO,Lysis,PP Ko.pao + So Kno.rao PP
P22 Aerobic resp. of Xpna b So ¥
PHA KO,PAO + SO PHA
P23 Anoxic resp. of Xppa Ko,pao SNo
bPHAUNo,resp,PHA XpHa

Ko pao + So Knopao
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Procedure for ldentification of Different Models used in this work ldentification of

FOPTD Model for Lower Level

System ldentification process is used to identify the plant models to be used for control
of BSM1-P in FOPTD form.

Step 1. Decide the control loops and corresponding manipulated and controlled variables.
Step 2. Run the Plant simulation model to reach steady state. It may be achieved after
100- 150 days for BSM1. (Steady state should be the point around which identification
is desired to be performed).

Important Tip: Make sure that steady state achieved for the controlled variable should
be approximately the value near the set-points wished to be maintained in closed loop.
Thus, a set of manipulated variables needed to maintain the controlled variables at their
set-points with define an operating point. Here, for P1 configuration the operating point
used is So,7=2 mg (O2)/l, Sno4=1 mg N/I, KLa;=252 1/d and Qjny=34500 m?/d.

Step 3. Now run the identification file which varies all the manipulated variables (here,
Kvra; and Qjny) £10% around their operating point simultaneously and record this input.
If there is a need, include the disturbance variable as an additional input (here Qj,) and

give only the +5% to +10% of step change to it.

Step 4. Collect the data for variations respective controlled variables (here Sg 7and Sno 4)
due to input supplied.

Step 5. Create a “iddata” object with recorded controlled and manipulated variables
including disturbance variable and use a proper sampling time (here, 1/96).

Step 6. Go to System Identification tool box and import the data object created in
previous step.

Step 7. Use only the portion with consistent oscillations in output around operating point.
(Use select range option provided in toolbox).

Step 8. Preprocess the data if needed (i.e. remove means and trends).

Step 9. Create the estimation and validation parts of data (generally 2/3 part is used for
estimation and 1/3 part for validation) and import estimation data in “working data” and
rest in “validation data” in toolbox.

Step 10. For estimating FOPTD model, chose the option of “Process Model” form
estimation options and provide any of the initial details (like gain) if available and
estimate the model.

From estimation option and specify the order and type of model (continuous or discrete)
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to be estimated. There are several methods available for estimation like Subspace N4SID
algorithm or prediction error method but the later one is generally used.

Step 11. Check the fit to estimation data and validation data, if it is within acceptable
limits (generally above 70%) then model is fit to use otherwise repeat steps 2 -10 again.

Figure Al. Lower Level Identification File

Fractional order model identification.

Based on the time-domain approach, a non-integer order time delay transfer
function model is found using the MATLAB FOMCON toolbox.

Steps to identify a good fitted identified model
Step 1. A "fidata" structure must be chosen first and foremost.

Step 2. Select ‘Time domain Identification’, where you can choose frequency

domain too.

Step 3. Choose the ‘simulation parameter methods’ in Grunwald-Letnikov
method or Oustaloup filter or Refined Oustaloup filter. (You need to select

‘w’ range and order for the last two options). We select the Oustaloup filter.

Step 4. In the ‘Identification and options’ section chosen ‘fidata’ name will

show and the preferred algorithm is ‘Trust-Region-Reflective’.
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Step 5. There is a symbolic form of identified model in terms of the fractional
pole and zero polynomials. A first-guess model is created. In order to create
polynomials autonomously, a commensurate-order q that has the property that
0.01 < q <2 —the order of the polynomial—can be defined.

Step 6. A plot that displays a good fitting result and shows the identified
system's stable behavior should be displayed at the conclusion of the

identification process. As long as the outcomes are pleasing, the model is

saved for use in creating a controller.

-

Qr
S -
1 DRYINFLUENT Settler_1D
Plant Influent

Store_in

Figure A2. BSM1 Simulink Diagram with lower level P1/ FPI controller.
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Deciding Rules for Higher Level Fuzzy Controller

As the procedure is described for deducing the membership functions and rules for lower
level fuzzy controller, similar approach is followed for higher level fuzzy controller also.
Here, data is collected for ammonia concentration in tank 7 and respective DO set-point
needed to be maintained by lower level control in tank 7 and a graph is generated
between both variables. This graph then can be used for diving the variables into fuzzy

sets.

SNO3 et

DRYINFLUENT

Plant infuent

Store_n

Figure B4. BSM1-P with Pl or FPI with Fuzzy Configuration
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APPENDIX B

Identification of State Space Model for Higher Level

Step 1. Fix the lower level controller to be used along with higher level control. Decide
the control loops and corresponding manipulated and controlled variables for higher
level.

Step 2. Run the Plant simulation model to reach steady state. It may be achieved after
100- 150 days for BSM1. (Steady state should be the point around which identification
is desired to be performed).

Important Tip: For higher level control, the value of ammonia concentration and DO
concentration in tank 7. Make sure that the steady state reached for ammonia
concentration should be the value of set-point of ammonia you plan to achieve. The DO
value needed to achieve the desired set-point of ammonia and the steady state value of
ammonia concentration itself make a set of operating point. For example, if Syn 7 ref
=1.71 for FPI-MPC configuration then the steady state value of DO set-point needed is
So,7 ref=2.45.

Step 3. Now run the identification file (close lower level loop and open higher level
loop) which varies all the manipulated variable (here So7 ref) +10% around their
operating point simultaneously and record this input.

Step 4. Collect the data for variations in respective controlled variable (here Snn,7) due
to input supplied.

Step 5. Create a “iddata” object with recorded controlled and manipulated variable and
use a proper sampling time (here, 1/96).

Step 6. Go to System Identification tool box and import the data object created in
previous step.

Step 7. Use only the portion with consistent oscillations in output around operating point.
(Use select range option provided in toolbox).

Step 8. Preprocess the data if needed (i.e. remove means and trends).

Step 9. Create the estimation and validation parts of data (generally 2/3 part is used for
estimation and 1/3 part for validation) and import estimation data in “working data” and

rest in “validation data” in toolbox.

Step 10. For estimating State space model, chose the option of “State Space Models”
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from estimation option and specify the order and type of model (continuous or discrete)
to be estimated. There are several methods available for estimation like Subspace or
prediction error method but the later one is generally used. There is an option available
to choose the input which have immediate effect on output (i.e. values in D matrix).
Usually, matrix D=0. Chose all the desired options and estimate the model.

Step 11. Check the fit to estimation data and validation data, if it is within acceptable limits

(generally above 70%) then model is fit to use otherwise repeat steps 2 -10 again.

Figure B1. An Example of Higher Level State space model Identification
File

Designing of MPC Controller

Step 1. Determine the state space model of the plant to be controlled with MPC controller.
And save the model in workspace.

Step 2. Import the model in MPC designer app and give the nominal values for controlled
and manipulated variables.

Step 3. After the model is imported, a default controller is created in controller section. Tune
the controller parameters and export the designed controller to workspace.

Note: The response of the controller to test signals (step, ramp, etc) in controlled as well as
manipulated variables, assuming that the model of the plant describes the exact dynamics as

real plant can be checked simulating a scenario in designer app.
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APPENDIX C

This is the Simulink diagram to generate data to create the transfer function model for both
Integer and fractional order model. The process of generating the transfer function model for
both Integer and fractional order model of SBR during the Aeriation phase are same like
continuous process (ASP) identification. Only we have to choose the data during the aeriation

time only that is 150 to 300 minutes.
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Figure C1. An Example of Lower level model Identification—FiIe in SBR

This Simulink is implementation of lower level Pl controller with proper tuning (SIMC) for
the SBR process. In the other two lower level control strategies the author has changed Integer
controller with Fractional (FPI) and Fuzzy controller.

—0
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—8
Figure C2. SBR Simulink Diagram with lower level PI controller.
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Figure C3. SBR Simulink Diagram with lower level FPI controller.
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Figure C3. SBR Simulink Diagram with lower level Fuzzy controller.
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Figure C4. SBR with Stepfeed (SSBR) Simulink Diagram with lower level FPI controller.

Figure C5. SBR with Stepfeed (SSBR) Simulink Diagram with lower level Fuzzy controller.
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APPENDIX D

This is implementation of supervisory Fuzzy logic control to determine variable set point to
lower level controller inside a cascaded scheme. For the other supervisory schemes the author
changes only the sensors (NH4/NOs) and lower level controller (PI/FPI).

The same Simulink model is available model where Pl model is replaced by FPI controller.

Figure D1. SBR Simulink Diagram with lower level Pl with higher level fuzzy controller
(NH4/NOs based aeriation).
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