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ABSTRACT 

The utilization of biological processes to treat polluted wastewater has become prevalent, 

encompassing both conventional domestic and industrial wastewater. This approach aims to 

eliminate nutrients, specifically carbon, nitrogen, and phosphorus, while adhering to regulatory 

guidelines for reducing nutrient discharge into surface water, as mandated by municipal water 

directives. There is a growing interest for enhancing the effluent quality (EQ) of sewage 

wastewater treatment facilities. 

Wastewater treatment plants are complex, nonlinear, and slow processes. The lack of adequate 

instrumentation, stringent environmental regulations, and the need for cost-effective plants 

have highlighted the significance of automating wastewater treatment processes. However, the 

process's complexity makes it difficult to successfully implement control systems. The main 

challenge is developing a control strategy that reduces operational costs (OC) while also 

improving EQ. This study looks into the development of various control strategies to meet 

these challenges. 

The Benchmark Simulation Model No. 1-P (BSM1-P) and Sequencing Batch Reactor (SBR) 

serve as test platforms for these control strategies. The primary goal is to prevent violations in 

effluent ammonia, total nitrogen, and total phosphorus levels while reducing operational costs 

and improving effluent quality. The proposed control strategies use proportional integral (PI), 

fractional PI (FPI), fuzzy logic controller (FLC), and model predictive control (MPC). 

To meet strict environmental laws, wastewater treatment plants (WWTPs) must balance 

efficiency and cost-effectiveness in their extremely non-linear operations. The ASM3bioP 

framework inside a BSM1-P is employed in this study to enable simultaneous nitrogen and 

phosphorus removal using an activated sludge process model with seven reactor 

configurations. The activated sludge process is the most complicated and energy-intensive 

phase of a WWTP. To control dissolved oxygen in aerobic reactors and nitrate levels in anoxic 

reactors, two robust PI controllers – a classical PI and a non-integer (fractional) order PI – with 

both integer-order and fractional-order models are designed. The controllers are created and 

simulated with the use of a mathematical model that has been developed based on the input 

data. Control theory has actively explored fractional calculus and its applications in recent 

years. This work regulates DO and NO concentrations in aerobic and anoxic reactors using 

IMC-based fractional filters cascaded with PI and FPI controls. Based on integer and non-
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integer commands, these controllers optimize plant efficiency, longevity, production costs, and 

effluent nutrient content. IMC fractional PI controllers prioritize maximal sensitivity (Ms) 

within gain margin (GM) and phase margin (PM) as limitations. Fractional-order calculus 

advances highlight the dynamic character of real-time complicated processes, reducing 

complexity while retaining complex system dynamics. The fractional-order PID (PIλDμ) 

controller, an improved variant of the integer-order PID, adds integration (λ) and differentiation 

(μ) orders, improving closed-loop response stability with parameter alterations. The lower level 

Fractional controller with a fractional order model improves both the effluent quality index 

(EQI) and operational cost index (OCI) significantly. For such biological WWTP, a 

hierarchical Fuzzy logic controller or a MPC are designed to adjust the dissolved oxygen in the 

seventh reactor (DO7) to control ammonia. The implemented supervisory layer control strategy 

improves EQI while increasing OCI marginally. 

The treatment of wastewater is highly challenging due to large fluctuations in flow rates, 

pollutants, and variable influent water compositions. A sequencing batch reactor (SBR), and 

Modified SBR Cycle-Step-Feed Process (SSBR) configuration are studied in this work to 

effectively treat municipal wastewater while simultaneously removing nitrogen and 

phosphorus. To control the amount of Dissolved Oxygen in a SBR, three axiomatic control 

strategy (PI, FPI), and Fuzzy logic controllers (FUZZY)) is presented. A biological process 

and relevant control algorithm has been designed using real-time plant data with the models of 

biological processes (SBR, and SSBR), and aeration system. ASM2d mathematical modelling 

framework is considered for development of control relevant simulations. The use of the 

intricate ASM2d model, as well as the application of a control strategy to a batch process, 

makes the work significant. A comparison of plant performance concerning PI, FPI and 

FUZZY control framework is included. A comparison of FPI with the other two control 

strategies showed a significant reduction in nutrient levels and added an improvement in 

effluent quality. The SSBR, which is improved by precisely optimizing nutrient supply and 

aeration, establishes a delicate equilibrium. This refined method reduces oxygen requirements 

while reliably sustaining important biological functions.   

This thesis also proposes a novel supervisory control scheme for SBR based WWTP. It 

integrates hierarchical fuzzy control, based on ammonia and nitrate observations, in the 

presence of lower-level PI and FPI controllers, with the dual goal of aeration cost reduction 

and effluent quality enhancement. In the hierarchical control system, variable DO trajectories 

are generated by the supervisory fuzzy logic controller and passed to the lower level controller, 
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according to ammonia and nitrate profiles within SBR. It is crucial to adjust this element 

properly in order to maximize wastewater treatment efficiency and reduce plant costs, 

especially for the aeration system. A notable aspect of nitrate based hierarchical control scheme 

is to curtail the fresh oxygen use since nitrate (SNO), a product of nitrification, is utilized for 

limiting aeration costs. Six distinct control techniques are implemented of which PI and FPI 

controllers for control of DO at the lower level. Four types of hierarchical ammonia and nitrate-

based controllers employing intelligent Fuzzy control are deployed. Addition of Fuzzy 

controller contributes to an airflow reduction of 40.08% for ammonia control and 31.58% for 

nitrate control strategies. This study highlights the superiority of the ammonia-based control 

strategy, particularly coupled with lower level FPI controller, based on its ability to minimize 

airflow without affecting effluent quality. These findings offer helpful insights for advancing 

the field of wastewater treatment, improving efficiency, and promoting cost-effective and 

sustainable practices in SBR. 

Another study which aims to investigate the effect of different seasons where the temperature 

would be different on the performance (phosphorous, nitrogen, and organic matter removal) of 

SBR based wastewater treatment plants. The modified ASM2d module, including the microbial 

kinetics is used to simulate the EBPR-based SBR process and the temperature is chosen 

between 10 to 33°C. Influent data from distinct wastewater treatment plants located in India 

and Europe are considered. The investigation of the kinetic variables is performed over a wide 

temperature range, and significant increases are seen as the temperature rises. The effluent 

parameters are within the government guidelines. It is clear that an increase in temperature 

results in better effluent quality with reduced COD, BOD, NH, and TN values and a slight 

increase in TP and TSS. In conclusion, this study highlights the importance of considering the 

effect of temperature on the performance of SBR-based wastewater treatment plants in 

different climatic conditions. 

Keywords: Activated sludge system, Benchmark simulation model, Effluent quality index, PI 

controller, FPI controller, Non- integer model, Sequencing batch reactor, Operational cost 

index. 
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1. INTRODUCTION 

     In wastewater treatment plants (WWTPs), control techniques are necessary for the plants to 

run efficiently and meet government standards. This thesis highlights their pivotal role in 

optimizing treatment processes, ensuring compliance, enhancing resource utilization. Control 

strategies also make it possible to adapt to changes in wastewater composition and flow rates, 

lower operating risks, and make decisions based on data. Control strategies are an important 

part of modern wastewater treatment. They ensure the system works well and sustainably by 

using advanced tracking, dynamic adjustments, and smart decision-making. 

1.1  Wastewater Treatment 

Water is the cornerstone of life, an absolute must for the survival of all living beings. In the 

face of escalating global population growth and widespread urbanisation, sustainable oversight 

of water resources has arisen as a paramount corner. One of the foremost significant aspects of 

this quest is the efficient clean-up of wastewater, an intricate process that is required to protect 

both environmental integrity and the wellness of society. It is critical to comprehend and apply 

cutting-edge technology for wastewater treatment since growing urbanisation and 

industrialization continue to put pressure on water bodies. Based on this context, developing 

countries have to establish initiatives to promote the recycling and reuse of treated wastewater.  

As a result, several nations are tightening their environmental restrictions. Research into 

intensifying wastewater treatment plants (WWTPs) is in vogue. 

Wastewater, a by-product of domestic, industrial and agricultural operations, contains an 

intricate array of contaminants ranging from organic matter to toxic substances. Unchecked 

discharge of untreated wastewater straight into water bodies destroys aquatic ecosystems 

and increases the danger of waterborne infections, putting public health at risk. As a result, 

developing and deploying robust wastewater treatment systems has become critical to shield 

water resources and maintain ecological balance. The exploration towards wastewater 

treatment is a study of the sensitive balance between anthropogenic activity and aquatic 

ecosystem resilience. It entails the delicate interaction of creative engineering solutions and 

environmental preservation. As the world grapples with the effects of pollution and water 

scarcity, a nuanced understanding of wastewater treatment processes is critical for devising 

holistic and successful water management policies. Because of the numerous biological, 

chemical, and physical elements influencing wastewater treatment systems, such as 

fluctuations, dynamics, disturbances, and uncertainties in the influent, monitoring the 
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wastewater treatment plant is often difficult. Several research materials dedicated to enhancing 

the wastewater treatment process have been published as a result of significant studies done by 

the global research community. In recent years, there has been a greater emphasis on the water-

energy-food nexus, intending to understand the interconnectedness of these components and 

analyse their reciprocal requirements. At present, researchers are investigating wastewater 

treatment plants as potential sources of resource recovery. 

1.1.1 Wastewater treatment facility: Water conversion tool  

We are in an era where water scarcity is a growing concern, wastewater treatment addresses 

the challenge by promoting a circular water economy. Its sophisticated treatment methods 

contribute to environmental conservation while aligning with global sustainability goals. An 

innovative wastewater treatment facility stands at the forefront of sustainable water 

management. This cutting-edge water conversion tool integrates advanced technologies to 

efficiently treat and convert wastewater into high class water resources. 

The wastewater treatment process involves a series of steps to remove impurities and 

contaminants from water, from wastewater collection to grit removal, primary treatment to 

secondary treatment, sludge treatment, tertiary treatment, and disinfection. The two types of 

wastewater treatment facilities are chemical or physical WWTPs and biological WWTPs. A 

biological WWTP uses biological microbes to break down waste (organic material). Through 

microbial activity, the biological approach is responsible for the removal of organic 

contaminants and pollutants. The physical method deals with the process of primary treatment 

like grit, screening, primary sedimentation, and filtration. Physical wastewater treatment plants 

are frequently used to handle wastewater from industries, factories, and industrial companies, 

whereas biological treatment facilities are appropriate for dealing with wastewater from 

municipal and commercial sectors. The chemical approach involves the addition of chemical 

doses to remove pollutants. 

 

 

 

 

   

Biological treatment Secondary settlement 

 

Influent Primary settlement 

Tertiary treatment Effluent 

Figure 1.1: Schematic diagram of wastewater treatment facility 
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Figure 1.1 depicts an intricate wastewater treatment operation. The contaminated influent is 

collected and passed through primary settlement via screening, gritting, and a primary clarifier 

before entering the biological treatment process via multiple anaerobic or anoxic and mostly 

aeration treatments before reaching secondary settlement. Following that, some complex water 

recycling units known as tertiary treatment takes place. The water has been treated and is now 

ready for discharge. The complicated chemical and biological interactions within the process, 

the particular properties of microbes, the progressive nature of the process, and the variations 

in concentrations and dynamic flow rates all contribute to the complexity of WWTPs. 

Furthermore, functioning is highly energy-intensive, challenging and complicated the work of 

controlling WWTPs. Nonetheless, new research reveals that, in addition to water treatment, 

WWTPs have the potential to produce important resources. It is becoming increasingly clear 

that wastewater can be used to recover value-added products such as clean water, clean energy, 

and fertilisers. 

1.1.2 Biological wastewater treatment plant 

Biological WWTPs are complex and nonlinear systems with interwoven dynamics 

encompassing a wide range of erratic time constants and several sub-processes. These 

biological treatment procedures entail the oxidation of organic compounds in wastewater by 

microbial activities such as lagoons or anaerobic processes, activated sludge, and microalgae 

photosynthesis. These methods are used to reduce physiological variables like pH, biochemical 

oxygen demand (BOD), and chemical oxygen demand (COD). 

The classic approach for biological treatment of industrial and domestic wastewaters is 

characterised as activated sludge treatment. The unusual behaviour of microorganisms in 

biological events occurring within the process is the primary cause of the process's nonlinear 

and complex dynamics. The primary goal of wastewater treatment is to reduce effluent 

concentrations prior to disposal. However, only some of the contaminants in wastewater are 

treated and reduced below the allowable limit by the procedure used. Furthermore, the plant is 

subjected to a wide range of disturbances and variations in the properties of the influent with 

magnitudes that exceed those experienced by most other process industries. Even so, the plant 

must run continually in order to meet the rigorous effluent quality restrictions. Currently, 

because the process is highly energy-intensive, the plant must be operated in an energy-

efficient manner. Thus biological wastewater treatment stands out as a cutting-edge topic of 

research in the contemporary landscape. 
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 According to the operating mode of biological treatment process it can be classified into two 

types, Activated Sludge Process (ASP) and Sequencing Batch Reactor (SBR). The activated 

sludge process is an interrupted treatment method that uses a suspension of microorganisms in 

wastewater within an aeration tank. This microbial consortia digests and degrades organic 

contaminants. A portion of the organic matter is completely oxidised, resulting in harmless end 

products and other inorganic chemicals and giving energy to sustain microbial growth and 

biomass creation (flocs). A typical activated sludge plant is shown in Figure 1.2. 

A SBR is an example of batch-mode wastewater treatment technology. It is intended to treat 

sewage in a series of steps, with treatment operations taking place in particular time-based 

stages within a single tank. The SBR system is often divided into the following phases: Fill, 

React, Settle, Decant, and Idle. In contrast to the ASP scheme, the SBR technology does not 

require a secondary sedimentation basin to operate. Furthermore, the SBR system, unlike the 

ASP scheme, does not include sludge return back to the aeration basin. A diagram of time 

sequence SBR process is shown in Figure 1.3 

 

 

 

 

 

Influent 

Aeration 

Internal recycle 

External recycle Waste sludge 

Effluen

Secondary clarifier 

Effluent 
Influent Retention Tank FIL

L 

AERATION SETTLE DECANT 

EXCESS SLUDGE 

Figure 1.2: Activated sludge Process (ASP) 

Figure 1.3: Sequencing batch Reactor (SBR) 
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1.2  Control of Biological Wastewater treatment Plants 

Recently, it has become increasingly difficult to achieve any process plant performance 

standards. Upstretched productivity, severe environmental and safety laws, and rapidly 

changing economic conditions have all contributed considerably to this complexity. As a result, 

product quality criteria have become more severe, resulting in a greater emphasis on improving 

plant profitability. Another degree of complication derives from the present trend towards 

sophisticated and compactly integrated processes, which makes it difficult to limit disturbances 

that propagate among interconnected components. Process control has grown in importance as 

the emphasis on safe and efficient plant operations has grown. Computer-based process control 

systems have developed as important tools, allowing modern factories to operate safely and 

profitably while satisfying quality requirements and environmental restrictions. Figure 1.4 

illustrates the systematic procedure to operate a WWTP and valuable outcomes.   

 The control strategies in Biological WWTPs ensure environmental compliance, improve 

operational efficiency, and optimize treatment processes. In practice, the most commonly 

utilised control configurations are for dissolved oxygen control, nitrate control, ammonia-based 

aeration control, orthophosphate control, total suspended solids management, and so on. In 

recent years, the operation of WWTPs with lower operating costs and improved effluent quality 

has become critical.   

1.2.1 Role of Process control engineers in WWTP  

Process control engineers play an important role in WWTPs by ensuring that the treatment 

processes run efficiently and effectively. Their responsibilities include a wide range of tasks 

geared at improving plant performance, meeting environmental standards, and guaranteeing 

the facility's general reliability. The following are significant features of process control 

engineers' roles in WWTPs: 

Figure 1.4: Integrated technologies in WWTP and their outcome 
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 Design and setup: Control engineers are involved in the design and implementation of 

control systems for various treatment processes. They integrate sensors, programmable 

logic controllers (PLCs), and other automation technologies to monitor and control the 

plant's operations. 

 Process optimization: These engineers constantly analyse and assess the performance of 

treatment procedures. They attempt to improve the efficiency of biological, chemical, and 

physical treatment methods by fine-tuning control strategies, modifying set points, and 

optimising parameters. 

 Dealing with Instrumentation & sensor: Control engineers are responsible for the 

calibration and maintenance of the plant's instruments and sensors. For effective control, 

accurate measurements of important parameters such as flow rates, pH levels, and dissolved 

oxygen concentrations are required. 

 Troubleshooting and Diagnostics: When problems or disturbances occur during the 

treatment process, process control engineers play an important role in diagnosing the issue. 

They apply their knowledge to troubleshoot control system problems, identify root causes, 

and put corrective measures in place. 

 Plant safety: The safety of plant operations is of the utmost importance. Process control 

engineers seek to put safety precautions and emergency shutdown of systems. 

 Data Analysis and Reporting: Process control engineers prepare plant performance 

reports by monitoring and analysing data from control systems. This data-driven strategy 

aids in the development of informed judgements for process optimisation and regulatory 

reporting. 

 Adopting new technology: As technology advances, process control engineers investigate 

and integrate sophisticated technologies such as artificial intelligence, machine learning, 

and advanced sensors to improve the efficiency and automation of wastewater treatment 

processes. 

In essence, a process control engineers play an important role in maintain the reliable and 

sustainable functioning of wastewater treatment plants, thereby contributing to the protection 

of environmental and public health. 

Figure 1.5 displays benefits of controller implementation in WWTP. It becomes vital for the 

success of a control system to investigate the incentives that can motivate a system or individual 

to encourage optimal performance. 
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It becomes vital for the success of a control system to investigate the incentives that can 

motivate a system or individual to encourage optimal performance. The use of automatic 

controllers can improve process monitoring, allowing operations to be more closely aligned 

with restrictions like effluent assessment and cost considerations. Process control is crucial in 

wastewater treatment facilities because it assures optimal performance, increasing the plant's 

lifespan and lowering unit product costs. Wastewater treatment plants are one-of-a-kind, which 

changes the control strategy and adds complexity to the process. Here are some of the features: 

• The amount of wastewater that needs to be treated every day can be very large. 

• The disturbances in the influent are very high compared to most industries. 

 • The influent has to be accepted and treated; it can't be sent back to the supplier. 

 • The process isn't linear, which makes simple controllers less useful. 

• The biological processes involved may have unstable behaviour.  

• The amounts of nutrients are very low, making sensors difficult to use. 

WWTP 

Increased 

Affordability 

Process 

Excellence 

  

Predictive 

maintenance  

Public safety 

  

Advances 

Technologies 

Environmental 

protection 

Process 

Safety 

  

Reduced operational cost 

 Figure 1.5: Outcomes of controller implementation in a WWTP 
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In addition, the subsequent ones represent a few more reasons why control is not easy to plan 

or put into place. 

• The type of bacteria and how they act and where they live. 

• It's hard to separate the effluent from the biomass, and it's easy to mess up the process.  

• There are very strict effluent standards that must be met before the wastewater can be released. 

Taking all of these things into account, there are set goals and objectives for putting in place 

the right control methods for biological wastewater. The aims and goals are broken down into 

three groups: operational goals, process or plant goals, and community or societal goals. The 

company's community or societal goals include taking care of the environment, its workers, 

and the people in the neighbourhood where it does business. It is important for the process or 

plant goals to help reach the bigger group goals. Some of them are meeting limits on effluent 

discharge, getting good disturbance rejection, and keeping running costs as low as possible. In 

order for a certain company to meet the process or plant goals, the operational objectives spell 

out exactly how it should be run. Operational objectives, plant dynamics, and traditional 

instrumentation and management systems shape control strategy execution. The pyramid in 

Figure 1.6 shows the hierarchical organisation of instrumentation and management systems. 

Left of the pyramid classifies hardware, software, and labour; right classifies purpose and duty. 

Information in diminishing amounts flows up, and operating instructions in larger amounts 

flow down. All of these are considered while implementing control measures to satisfy 

biological wastewater treatment facility goals.   

Figure 1.6: Standard Operating and Control Hierarchy 
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1.2.2 Control structures and algorithms 

Different control structures are employed depending on the procedures used to accomplish 

specific goals. Designing the control system involves determining which variables to manage, 

and regulate, and how these groups of variables interact to build control loops. Several well-

known control structures, such as Feedback Control (FB), Feed-forward Control (FF), Cascade 

Control, and Supervisory Control, are used and evaluated for WWTPs in this work. The general 

framework of feedforward, feedback, and cascade control is depicted in Figures 1.7, 1.8, 1.9. 

A controller's principal responsibility is to keep the process value at the desired level. The most 

extensively used control technique for achieving this study is the Proportional-Integral-

Derivative (PID) controller (Aström and Hägglund 1995). PID controllers are classified into 

three types: P (Proportional), PD (Proportional-Derivative), and PI (Proportional-Integral). The 

proportional section responds to current control errors, the integral section collects previous 

control errors, and the derivative section predicts future control mistakes by using the control 

error's derivative. 
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Figure 1.7: Feedback-feedforward control 
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Responsibility for the integral action lies with the integral segment. Alternatively, the steady-

state offset can be eliminated via integral action. The main issue with PID is that it is linear, 

which might not work for complex systems. An expansion of the integer-order PID controller 

that incorporates the integration (λ) and differentiation (µ) orders is the fractional-order PIλDµ 

controller, elucidates in Figure 1.10. The extra tuning options in fractional order controllers are 

what really make them appealing, they may be used to make the closed-loop system more 

resilient in general.  

Water treatment plants often use advanced control algorithms like MPC, Fuzzy, and ANN. 

There has been the utilisation of Fuzzy logic control across the entirety of the wastewater 

treatment process. It was also discovered that the FLCs operate admirably under a range of 

Fractional integrator 

Fractional 

differentiator 

PIλDµ control action 

 

 

 

   WWTP 𝟏

𝑺𝝀
 

Sµ 

Input  

y(t) 

e(t
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Figure 1.9: A supervisory layer strategy which determines set point to lower loop. 

Figure 1.10: Fractional PID block diagram 
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operational circumstances. The WWTP's basic fuzzy logic controller is shown in Figure 1.11. 

Recent trends highlight the importance of FLCs in wastewater treatment, however direct 

control approaches can fail in many ways depending on the sensitivity of the process. In 

traditional FLC, the control model represents the human body of knowledge. There are three 

parts to FLC. In the main portion, input values are used to fuzzify membership functions (MFs). 

In the second section, we'll use the inference process to identify the outputs after connecting 

the fuzzy inputs and outputs using specified rules. De-fuzzification, the third section, involves 

computing stringent output values. To control aeration for energy efficiency and reduce nitrous 

oxide (N2O) emissions, wastewater treatment plants use fuzzy logic control. 

 

 

 

 

 

 

 

 

MPC is a control approach widely accepted in a variety of industrial applications, including 

wastewater treatment. MPC is a sophisticated control technique that use a dynamic process 

model to anticipate future system behaviour and optimise control inputs over a predetermined 

time horizon. The core components of MPC are process models, objective functions, and 

control rules. The basic MPC controller in the WWTP is shown in Figure 1.12. Several studies 

have demonstrated that MPC, when applied to a linear process model, is beneficial in treating 

wastewater (Steffens and Lant (1999), Charef et al. (2000), and Sotomayor et al. (2002)).  

We can see how an MPC controller can incorporated with WWTP:  

Development of a dynamic model: To initiate the implementation of MPC, the initial step 

involves constructing a dynamic model of the wastewater treatment process. The model should 

accurately represent the essential connections and behaviours of the system, encompassing the 

Defuzzifier  

Knowledge Base 

Rulebase 

Database 

Interface Engine Fuzzifier 
Fuzzy  

Input 

Fuzzy  

Output 

Figure 1.11: Structure of Fuzzy Interface system 
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interplay between different elements like as pumps, valves, tanks, and biological activities. 

Then defining the Objective Function: It necessitates the use of an objective function that must 

be minimised across the prediction horizon. Regarding wastewater treatment, the objective 

function in question may encompass minimising energy usage, maximising efficiency in 

removing pollutants, or ensuring that the quality of the effluent remains within the limitations 

set by regulations. Then putting the constraints Statement: Constraints play a crucial role in 

MPC by ensuring that the control inputs and system states stay within acceptable limits. 

Limitations in wastewater treatment may encompass restrictions on the dynamics of influent 

flow, quantities of chemicals used, and other variables within the treatment process. 

Real-time optimisation: MPC addresses the optimisation problem in real-time by utilising 

current measurements and adjusting the control inputs accordingly at each time step. Execution 

of MPC Controller: The MPC algorithm computes optimal control inputs by considering the 

present system state and forecasting its future dynamics.  

Benefits of Model Predictive Control in the field of Wastewater Treatment adds enhanced 

process performance by optimising crucial objectives, including pollution removal, energy 

efficiency, and resource utilisation, thereby improving the overall performance of the 

wastewater treatment plant. However implementation of MPC in wastewater treatment may 

pose challenges, including the requirement for precise dynamic models, limitations in sensor 

capabilities, and the computational intricacy of solving real-time optimisation problems. 

Nevertheless, achieving its effective execution necessitates a comprehensive comprehension 

of the distinct attributes of the wastewater treatment facility and the creation of precise dynamic 

process models. 

Optimizer  WWTP  

Model 

Cost 

Function  

Constraints  

Output 

Predicted Output 

Future Input 

Input 

Future 

Error 

Figure 1.12: Typical structure of model Predictive controller 
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1.2.3 Sensors 

WWTPs utilise a range of sensors to monitor and control the treatment process. These sensors 

offer real-time information on crucial parameters, enabling operators to enhance treatment 

efficiency. Here some important sensors frequently adopted in a WWTP. 

 Physical sensors: To measure physical attributes of WWTP. 

Flow Sensors are used to quantify the rate at which wastewater flows through the treatment 

facility, like internal & external recycle. Typical varieties comprise of electromagnetic flow 

metres, ultrasonic flow metres, and open channel flow metres. 

Level Sensors monitor the liquid levels in tanks and basins. Level measuring often employs 

capacitance, ultrasonic, and radar sensors. 

Pressure Sensors are used to gauge the pressure levels inside pipes and tanks, aiding in the 

supervision and regulation of wastewater flow. 

Temperature Sensors are used to monitor the temperature of wastewater at different stages of 

the treatment process. Typical examples comprise thermocouples and resistance temperature 

detectors (RTDs). 

 Chemical sensors: To monitor chemical parameters in treatment facilities. 

pH Sensors, are utilised to quantify the level of acidity or alkalinity in wastewater. pH sensors 

play a vital role in ensuring the ideal conditions are maintained in biological treatment 

procedures. 

Dissolved Oxygen Sensors, are used to quantify the concentration of oxygen that is dissolved 

in wastewater. Crucial for evaluating the condition of aerobic treatment processes. According 

to the aspects of our current study to implement aeration control this sensors are very crucial. 

Conductivity Sensors are used to measure the electrical conductivity of wastewater, which 

gives an indication of the concentration of total dissolved solids (TDS). 

Turbidity sensors are used to quantify the level of cloudiness or haziness in wastewater, which 

serves as an indicator of the presence of suspended materials. 

 

 Biological sensors: 
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Ammonia Sensors are used to gauge the level of ammonia in wastewater, a crucial factor in 

evaluating the effectiveness of biological treatment methods. 

BOD Sensors are used to measure the quantity of organic substances present in wastewater. 

They assist in evaluating the level of biodegradable material and determining the necessary 

treatment measures. 

 Gas sensors:  

Hydrogen Sulphide Sensors are used to quantify the levels of hydrogen sulphide gas, which 

may arise during anaerobic treatment procedures. Methane Sensors are used to detect the 

presence of methane gas, which can be generated during anaerobic digestion processes. 

The selection of sensors is contingent upon the particular demands and attributes of the 

treatment facility. By using sophisticated sensor technology and data analytics, the efficiency 

and performance of WWTPs can be significantly improved. 

1.3  Aeration Control  

Controlling the level of dissolved oxygen is crucial in the activated sludge process, whether it 

is in continuous or in alternating or periodic systems. The implementation of aeration control 

was initially initiated in the 1960s with the objective of conserving energy by preventing 

excessive aeration during episodes of low load. The influence of the dissolved oxygen (DO) 

concentration and/or aerobic volume (in a continuous system) or aeration phase length (in a 

batch system) on the features and performance of a biological wastewater treatment system 

extends beyond mere cost savings. Indeed, the attention has been directed towards the influence 

of dissolved oxygen control on the process of removing biological nitrogen and phosphorus. 

Figure 1.13 delivers a concise overview. 

Nitrification: Ammonia is converted to nitrite and then to nitrate in this process by ammonia-

oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB). Both are aerobic and rely on 

oxygen as an electron acceptor. DO provides energy to these bacteria, altering the pace of 

nitrification. Higher DO levels promote faster nitrification, whereas oxygen deficiency can 

slow rates and block nitrifying microorganisms. DO level monitoring and control are critical 

for optimising nitrification rates and overall treatment efficiency. 
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 Denitrification:  DO significantly influences denitrification in wastewater treatment. 

Denitrification, converting nitrate and nitrite into nitrogen gas under anoxic conditions, relies 

on low oxygen levels. Excessive DO inhibits denitrification, favouring aerobic processes. 

Maintaining optimal DO concentrations, typically below 0.5 mg/L, is crucial for effective 

denitrification. Wastewater treatment plants control aeration to balance aerobic and anaerobic 

needs.  

 

1.4  Simulation models 

Modelling the biological wastewater treatment process typically presents a complex and multi-

faceted task. Essentially, the primary goal of mathematical models in WWTPs is to demonstrate 

the dynamic characteristics of the plant's operation. WWTPs are known for their complex 

model development and extensive kinetic, stoichiometric, and state factors correlation. The 

International Association for Water Quality (IWAQ), formerly IAWPRC, established a task 

Denitrification:  

 In WWTP, "simultaneous" 

denitrification declines with higher DO 

level. 

 In some conditions, such as low DO 

levels (e.g., <1 mg/L) or high COD 

level, major nitrate/nitrite reduction in 

the bulk liquid phase is significant. 

 Controlling DO to 0.5 mg/L can 

eliminate ammonia and nitrite/nitrate 

completely. 

Nitrification:  

 Elevated DO levels enhance nitrification rates  

 Optimum nitrification in activated sludge 

systems is typically achieved at 1.5-3 mg/L DO 

level. 

 In biofilm environments, nitrification increases 

linearly with DO levels up to saturation, 

demonstrating that DO is crucial to nitrification. 

Costs: 

In a biological wastewater 

treatment system, aeration is 

usually the second most 

expensive part of running the 

system, after sludge handling. 

DO 

Concentration   

Figure 1.13: Impact of DO level on WWTP performance 
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group to create a mathematical model of wastewater treatment plants. This model aims to 

accurately predict the effectiveness of single sludge systems in carrying out various process 

operations such as carbon oxidation, hydrolysis, nitrification, denitrification, and the growth of 

poly accumulating organisms (PAO's). The development of this model is based on the research 

of Henze et al. (2000), Gujer et al. (2000), Gernaey et al. (2004), and Riger et al. (2001). This 

section defines BSM1-P as the designated working situations. It platforms of a simulation 

environment encompass the depiction of the physical arrangement of the plant, a model that 

simulates the plant's behaviour, the processes for conducting tests, and the criteria used to 

evaluate performance. 

1.4.1 Benchmark simulation models.1-P (BSM1-P)    

The BSM1-P framework of a WWTP is shown in Figure 1.14. It is made up of seven 

bioreactors lined up in a row and one more settling tank. Each of the first two anaerobic reactors 

is 2000 m³ in volume, and then there are two anoxic reactors, also 2000 m³ in volume, and 

finally, for every single reactor, complete mixing is taking place. Each of the other three fully 

mixed and aerated aerobic reactors has a volume of 3,999 m³. The sedimentation tank has 6,000 

m³ in volume. Two recycle loops are in operation: one connects the third aeration tank to the 

anoxic reactor (Qintr) with a flow rate of 34,500 m³/d, and the other connects the sedimentation 

tank's underflow to the influent flow (Qr) with a flow rate of 18446 m³/d. During the dry season, 

the WWTP is expected to operate at a flow rate of 18446 m³/d. The output effluent (Qe) is 

taken into account, and the sludge flow rate (Qw) is set at 385 m³/d. Out of the 14 days that are 

accessible, only the last 7 are used for analysis. From day zero until day fourteen, the simulation 

continues. During the first week, the system reaches and stays in a dynamic "pseudo" steady-

state. The remaining seven days are open for the implementation and evaluation of any control 

method, allowing for a fair comparison of alternative algorithms. It is possible to test the control 

Internal recycle (Qintr) 
External recycle (Qr) 

Waste sludge (QW) 

(Qw)(Qw)(QW) 

Qin 

Aerobic Anoxic Anaerobi

c 

Qe 
Settler 

Figure 1.14:BSM1-P framework 
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algorithms' efficacy by running the dynamic simulation repeatedly. It is possible to test the 

control algorithms' efficacy by running the dynamic simulation repeatedly.  

1.4.2 Overview of the activated sludge model (ASM) and it’s factors 

The renowned mathematical models responsible for the chemical and biological reactions that 

occur in ASP are known as activated sludge models. Table 1.1 provides a summary of the 

literature that is based on the ASM and also displays the reported total parameters, state 

variables, process equations, and substrates removal for six ASM models. For the process 

operation, ASM3bioP is chosen in those ASMs. As an additional mathematical model, 

activated sludge model No. 3 (ASM3) was designed to evaluate the biological WWTP's 

performance. Its capacity to treat sewage wastewater is dependent on its oxygen consumption 

rate, nitrification and denitrification rates, and sludge formation rates. In addition to including 

the chemicals used for internal cellular storage, ASM3 fixes a few additional issues with 

ASM1, such as the fact that the decay rate of nitrifiers differs under aerobic and anoxic 

environments (Gujer et al. (2000)). Similarly, Rieger et al. (2001) and Solon (2015) mainly 

built a modification of the ASM3 model (i.e., ASM3bioP) to forecast biological phosphorus 

elimination. This model incorporates modified processes from the ASM2d model, but it does 

not account for the fermentation of easily biodegradable substrates. The biological P 

elimination mechanism is detailed in Figure 1.15 of the ASM3bioP model. In the cellular 

internal system, PAOs are represented as a model structure called XPHA. All the by-products of 

organic matter are integrated into this structure, and the formation of PAOs is what causes it to 

function as a substrate. In addition, the growth of the PAO is affected by oxygen and nitrate. 

To address the shortcomings of ASM1 and briefly compare the nitrification lysis rates in anoxic 

and oxic environments, ASM3 was developed based on the work of Gujer et al. (2000). It also 

addresses problems with the internal storage of cells. Moreover, the COD rate differs 

significantly between ASM1 and ASM3. 

SPO4 

Storage XPHA 

XPP 

SS 

Anoxic (nitrate) 

Aerobic (oxygen) 

SPO4 

XPP 

XPAO 
Growth 

XPHA 

Figure 1.15: P-removal process incorporated in ASM3-bioP 
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Table 1.1: ASM models with their features 

ASM Models Substrates Number 

of 

Process 

State 

variables 

Total kinetic and 

Stoichiometric 

parameters 

References  

ASM1 CN 8 13 26 Henze et al. (2000) 

ASM2d CNP 21 19 74 Henze et al. (2000) 

ASM3 CN 12 13 46 Gujer et al. (2000) 

AMS3-BioP CNP 23 17 83 Rieger et al. (2001) 

ASM2d+TUD CNP 22 18 98 Meijer (2004) 

UCTPHO CNP 35 16 66 Hu et al. (2007) 

 

The Sludge Model 3 with bio-phosphorous (ASM3-bioP) is used to simulate the biological 

process of the reactors. There are 23 biological processes that were assumed to describe what 

was going on in each reactor. The double exponential settling velocity model represents the 

vertical transfer between layers in the settler. 13 state variables are already in ASM3, and four 

more state variables tied to bio-P make the total seventeen number of state variables. In 

addition, ASM3 techniques are further developed by using the ASM2d process, which includes 

bio-P reactions but excludes precipitation reactions. The ASM3 model incorporates hydrolysis, 

heterotrophic, and autotrophic processes. Additionally, it predicts a lower growth rate for 

phosphorus (P). The ASM3bioP model incorporates the effects of temperature on kinetic 

parameters, oxygen saturation concentration, and KLa (oxygen mass transfer coefficient) at a 

temperature of 15°C. The state variables, along with their corresponding symbols and units, 

are displayed in Table 1.2 as presented by Solon (2015). The ASM3-bioP model includes a 

total of twenty-three biological processes. These processes are based on the stoichiometric 

parameters matrix for the particulate components of ASM3 (Henze et al., 2000) and the 

EAWAG Bio-P module (Rieger et al., 2001). Appendix Table A3 displays the kinetic rate 

expressions for ASM3, as documented by Henze et al. (2000). Additionally, Appendix Table 

A4 offers the kinetic rate expressions for the EAWAG Bio-P module, as documented by Rieger 

et al. (2001). 
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Table 1.2: State variables of ASM3bioP with average influent data 

 

The ASM3-bioP model comprises a total of twenty-three processes, which are outlined below: 

1 Hydrolysis 

2 Heterotrophic organisms XH 

3 Aerobic Storage of XSTO 

4 Anoxic Storage of XSTO 

5 Aerobic growth 

6 Anoxic growth 

7 Aerobic endogenous Respiration 

8 Anoxic endogenous Respiration 

9 Aerobic respiration of XSTO 

10 Anoxic resp. of XSTO 

11 Aerobic endogenous Respiration 

Compound Symbol Units Average influent 

Dissolved oxygen SO g(COD)m-3 0 

Readily biodegradable organic substrate SS g(COD)m-3 90.34 

Inert soluble organic SI g(COD)m-3 30 

Ammonia+Nitrogen SNH g(N)m-3 39.40 

Nitrate and nitrite SNO g (N)m-3 0 

Dinitrogen SN g(N)m-3 0 

Primarily orthophosphates SPO4 g(P)m-3 8.86 

Alkalinity SHCO mol(HCO3)m-3 7 

Inert Particulate XI g(COD)m-3 51.20 

Slowly biodegradable substrates XS g(COD)m-3 202.34 

Heterotrophic Organisms XH g(COD)m-3 28.17 

Cell internal storage XSTO g(COD)m-3 0 

Phosphate accumulating organisms XPAO g(COD)m-3 0 

Polyphosphate XPP g(P)m-3 0 

Primarily polyhydroxy alkanoates XPHA g(P)m-3 0 

Nitrifying Organisms XA g(COD)m-3 0 

Suspended solids XTSS g(SS)m-3 215.51 
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12 Anoxic endogenous Respiration 

13 Storage of XPHA 

14 Aerobic storage of XPP 

15 Anoxic storage XPP 

16 Aerobic growth 

17 Anoxic Growth 

18 Aerobic endogenous Respiration 

19 Anoxic endogenous Respiration 

20 Aerobic lysis of XPP 

21 Anoxic lysis of XP 

22 Aerobic respiration of XPH 

23 Anoxic resp. of XPHA 

 

The equations defining the mass balance is listed below: 

The mass balance equations are given in below: 

 1111

1

1
1

1
ZQVrZQZQ

Vdt

dZ
r rrOO                                                                                 (1.1)                                                        

Where  rO QQQ 1         

 222211

2

2
2

1
ZQVrZQ

Vdt

dZ
r                                                                                             (1.2) 
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3

3

3

1
ZQVrZQZQ

Vdt

dZ
r aa                                                                                 (1.3) 

Where  23 QQQ a                       

From K = 4 to 7 

 KKKKKK

K

K
K ZQVrZQ

Vdt

dZ
r   11

1
                                                                             (1.4)      

Z represents the concentration of the process, Qa represents the concentration in the internal 

recycling rate, Qr represents the concentration in the external recycle, and V represents the 

volume of the reactors. The flow rates Qr and Q0 represent the influent flow rates, and their 

sum corresponds to the total influent flow rate into reactor1, denoted as r1. In the third reactor, 

Qa is introduced to Qo. Equations (1.1-1.4) can be used to write similar equations for the 

remaining six reactors. Furthermore, equation (1.5) will depict the dynamics of dissolved 
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oxygen in aerated reactors. An additional factor is included in this equation to account for the 

oxygen concentration provided to aerobic reactors. The oxygen saturation coefficient, denoted 

as SO*, is set at 8 mg O2/L. The variable KLa represents the oxygen mass transfer coefficient 

for the kth reactor. The special scenario for the presence of in the aerobic tanks is being 

considered: 

    KOKKOOKKLKKKOK

KO
SQSSVaKVrSQ

Vdt

dS
,,

*

1,1

, 1
 

                                         (1.5)  

The oxygen supplied to the aeration tanks must match the oxygen demand of the 

microorganisms involved in the activated sludge process. This need includes the oxidation of 

organic waste and the maintenance of appropriate levels of dissolved oxygen (DO). Insufficient 

oxygen can hinder the growth of microorganisms, leading to an increase in filamentous 

microorganisms. This can result in poor settleability and reduced quality of activated sludge. 

Conversely, an overly elevated dissolved oxygen (DO) level, which is often associated with a 

high flow rate, results in increased energy consumption and can also degrade the quality of the 

sludge. In aerobic aeration tanks, the DO content should be maintained at 1.5 to 4 mg O2/L, at 

2 being a common range. If nitrate consumption in the final pre-denitrification zone is below a 

specific threshold, aeration zones need not use excessive air. 

For optimal nitrate concentration in anoxic reactors, maintain 1−3 mg N/L with internal 

recirculation, with 1 mg N/L being the preferred value. Denitrification occurs in anoxic 

reactors. Ordinary heterotrophs and PAO biomass convert internal recirculation nitrate from 

aerobic reactor 7 to molecular nitrogen in anoxic reactor 3 (or 4). Autotrophic organisms nitrify 

ammonium to nitrate in aerobic reactors. In contrast, the internal recirculation flow rate from 

the final aerobic reactor controls denitrification (nitrate concentration in the anoxic reactor). 

Table 1.3 listed the stoichiometric parameter. 

Table 1.3: stoichiometric parameter values 

Parameters Value 

Heterotrophic max specific growth rate 3 

Heterotrophic decay rate 0.3 

Half saturation coefficient for heterotrophs 10 

Oxygen half-saturation for heterotrophs 0.2 

Nitrate half-saturation coefficient for denitrifying heterotrophs 0.5 
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1.4.3 Secondary sedimentation tank 

There are no biological interactions in the model of the ten-layer secondary sedimentation tank 

since it is not reactive. Looking at the stack from top to bottom, the feed layer is the sixth layer. 

The settler has an area (A) of 1,500 m2. The height of each layer, denoted as Zm, is 0.4 metres, 

resulting in a cumulative height of 4 metres. Consequently, the volume of the settler is 6,000 

cubic metres. Equation 1.29, proposed by Takas et al. (1991), describes the solid flux caused 

by gravity using a double exponential velocity. Figure 1.16 illustrates the secondary clarifier 

model. 

𝐽𝑠 = 𝑣𝑠 (𝑋𝑠𝑐 ) 𝑋𝑠𝑐                                                                                                                                 (1.6) 

𝑣𝑠 (𝑋𝑠𝑐 ) =  𝑚𝑎𝑥 [ 0,𝑚𝑖𝑛{ 𝑣0
′ , 𝑣0(𝑒

−𝑟ℎ( 𝑋𝑠𝑐  −  𝑋𝑚𝑖𝑛 )  − 𝑒−𝑟ℎ( 𝑋𝑠𝑐  −  𝑋𝑚𝑖𝑛 )                            (1.7) 

 𝑋𝑚𝑖𝑛 =  𝑓𝑛𝑠  𝑋𝑓                                                                                                                                 (1.8)         

The variables in question are as follows: XSC represents the overall concentration of sludge, v0 

denotes the maximum Vesilind settling velocity, v0' represents the maximum settling velocity, 

rp is the settling parameter for the flocculent zone, rh is the settling parameter for the hampered 

zone, and fns represents the proportion of sludge that does not settle. 

Autotrophic max. specific growth rate 1 

Autotrophic decay rate 0.2 

Oxygen half-saturation coefficient for autotrophs 0.5 

Ammonia half-saturation coefficient for autotrophs 1 

Correction factor for anoxic growth of heterotrophs 0.8 

Ammonification rate 0.01 

Maximum specific hydrolysis rate 9 

Half saturation coefficient for hydrolysis  

of slowly biodegradable substrate 

1 

Correction factor for anoxic hydrolysis 0.33 

Rate constant XPHA storage 6 

The rate constant for XPP 1.5 

Rate constant lysis of XPP 0.2 

Rate constant for respiration of  XPAO 0.2 

Maximum growth rate XPAO 1 
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The calculations for the upward (vup) and downward (vdn) velocities are determined according 

to the equations provided. 

𝑣𝑑𝑛 = 
𝑄𝑢

𝐴
 =  

𝑄𝑟+𝑄𝑤 

𝐴
                                                                                                                 (1.9)  

 𝑣𝑢𝑝 = 
𝑄𝑒

𝐴
                                                                                                                                  (1.10)    

According to the notations provided, the feed is introduced into the settler at the 6th layer from 

the bottom. The sludge mass balance equation for the feed layer (m=6) is presented below: 

𝑑𝑋𝑠𝑐,𝑚
𝑑𝑡

=

𝑄𝑓𝑋𝑓
𝐴 + 𝐽𝑠𝑐,𝑚+1 − (𝑣𝑢𝑝 + 𝑣𝑑𝑛)𝑋𝑠𝑐,𝑚 −𝑚𝑖𝑛(𝐽𝑠,𝑚, 𝐽𝑠,𝑚−1)

𝑧𝑚
                              (1.11) 

For layers m = 2–5, the mass balance of the sludge is: 

𝑑𝑋𝑠𝑐,𝑚
𝑑𝑡

=
𝑣𝑑𝑛(𝑋𝑠𝑐,𝑚+1 − 𝑋𝑠𝑐,𝑚) +𝑚𝑖𝑛(𝐽𝑠,𝑚, 𝐽𝑠,𝑚+1) − 𝑚𝑖𝑛(𝐽𝑠,𝑚, 𝐽𝑠,𝑚−1)

𝑧𝑚
                    (1.12) 

For layer m = 1: 

𝑑𝑋𝑠𝑐,1
𝑑𝑡

=
𝑣𝑑𝑛(𝑋𝑠𝑐,2 − 𝑋𝑠𝑐,1) + 𝑚𝑖𝑛(𝐽𝑠,2, 𝐽𝑠,1)

𝑧1
                                                                         (1.13) 
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Figure 1.16: Secondary clarifier model (Takacs settler) 
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For layers’ m = 7 to 9: 

𝑑𝑋𝑠𝑐,𝑚
𝑑𝑡

=
𝑣𝑢𝑝(𝑋𝑠𝑐,𝑚−1 − 𝑋𝑠𝑐,𝑚) + 𝐽𝑠𝑐,𝑚+1 − 𝐽𝑠𝑐,𝑚

𝑧𝑚
                                                                 (1.14) 

For m = 10 (top layer): 

𝑑𝑋𝑠𝑐,10
𝑑𝑡

=
𝑣𝑢𝑝(𝑋𝑠𝑐,9 − 𝑋𝑠𝑐,10) − 𝐽𝑠𝑐,10

𝑧10
                                                                                        (1.15) 

Where,  𝐽𝑠𝑐,𝑗 = {
min(𝑣𝑠,10𝑋𝑠𝑐,10, 𝑣𝑠,9𝑋𝑠𝑐,9) 𝑖𝑓 𝑋𝑠𝑐,9 > 𝑋𝑡

𝑜𝑟
𝑣𝑠,10𝑋𝑠𝑐,10 𝑖𝑓 𝑋𝑠𝑐,9 ≤ 𝑋𝑡

} 

 

Hence, the threshold concentration 𝑋𝑡 is 3000 g.m-3.  

Each layer is treated as an independent volume for calculating the concentrations of soluble 

components. 

For layer m = 6: 

dZsc,m
dt

=

QfZf
A − (vup + vdn)Zsc,m

zm
                                                                                          (1.16) 

For layer’s m = 1 to 5: 

dZsc,m
dt

=
vdn(Zsc,m+1 − Zsc,m)

zm
                                                                                                (1.17) 

For layers’ m = 7 to 10: 

dZsc,m
dt

=
vup(Zsc,m−1 − Zsc,m)

zm
                                                                                               (1.18) 

Where zm is the height of mth layer of the sedimentation tank. 

1.5  SBR a modified ASP  

Certainly, the Sequential Batch Reactor (SBR) represents a modified version of the traditional 

Activated Sludge Treatment (AST) methodology. The SBR process is a kind of wastewater 

treatment wherein multiple treatment phases are integrated within a solitary reactor, 

functioning in a batch mode. The following is an outline of the SBR procedure and its 

distinctions from the conventional Activated Sludge Treatment: 

 

Batch Process: The SBR process consists of a single reactor where the treatment is conducted, 

with the treatment phases (aeration, settling, and decanting) executed in cycles. Activated 
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sludge treatment involves the concurrent occurrence of aeration and sedimentation in distinct 

containers, as opposed to the conventional approach. 

Cycle Stages: The SBR cycle generally comprises the following four stages: load, react, settle, 

and decant. During the load phase, the reactor is supplied with wastewater. Aeration and 

biological treatment occur during the react phase. In the settle phase, clarification takes place, 

and in the concluding phase, the clarified effluent is decanted. 

Adaptability: SBR systems provide operational flexibility and are readily modifiable to 

accommodate fluctuations in influent flow and load. Modifications are possible in order to suit 

diverse treatment requirements. The adaptability of conventional activated sludge treatment 

systems to variations in influent characteristics may be limited. 

Process Management: SBRs enable enhanced optimisation and control of processes. By 

exerting greater authority over each stage of the treatment cycle, operators are able to make 

modifications in accordance with the particular needs of the effluent. Activated sludge 

treatment may necessitate the implementation of more advanced control strategies in order to 

attain maximum efficiency. 

The footprint: Differentiating themselves from conventional activated sludge systems, SBRs 

integrate several treatment stages within a solitary vessel, potentially resulting in a reduced 

physical footprint. ASP systems generally comprise distinct containers designated for aeration, 

sedimentation, and additional treatment procedures, which may necessitate additional spatial 

considerations. 

In brief, SBR represents a modified iteration of the activated sludge process that functions in a 

bulk fashion, providing benefits such as increased adaptability, enhanced regulation, and 

potentially a reduced environmental impact. The SBR process's sequential configuration 

facilitates enhanced regulation of each treatment phase, rendering it well-suited for a wide 

range of wastewater treatment applications. 

In the SBR process and other batch transfer processes, nitrate can be removed using one of 

three techniques. These include: (1) reducing nitrate by using a mixed fill period without 

aeration; (2) establishing aeration cycles with intermittent aeration; and (3) reducing the 

concentration of DO while performing operations. Enabling denitrification during periods of 

mixed fill that aren't aerated is the most efficient way to get rid of nitrate. This technique also 

stops filaments from bulking up. The SBR tank's decant volume ranges between 20 and 30 
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percent, so the majority of the nitrate produced during the previous aerobic cycle remains there. 

Following decanting, McCarty and Smith (1986) claim that residual nitrate mass can be 

decreased in the fill period if there is enough time and BOD. Additional aeration time might 

improve the reactor's ability to remove any remaining organic matter (Jung et al., 2004). 

SBRs are renowned for several qualities, including the simplicity with which sludge can be 

handled, the high rate at which phosphorus and nitrogen are removed from wastewater, and the 

significant technological simplification they provide. The basic technological process 

parameters, such as dissolved oxygen and the concentration of organic compounds, depend on 

time when the fill phase starts. Wastewater is not aerated at this point (Janczukowicz et al., 

2001). In addition, the anaerobic period's length should be adjusted to achieve the near-

complete removal of COD that is easily biodegradable, and the aerobic period should be long 

enough to allow for complete nitrification, in order to successfully remove biological 

phosphorous and nitrogen. In order to achieve a net growth of biomass in the reactor, the total 

COD-loading rate must be maintained at a high level (Helness and degaard, 2001). Five 

common steps are shown in typical sequences in Figure 1.17. 

Stage 1: Filling 

The cycle starts with the fill operation, which involves dispersing the influent wastewater 

evenly throughout the tank, in order to promote a favourable reaction between both the 

substrate & the microorganisms and to promote microbial activity as the wastewater arrives 

the bioreactor. A number of factors can be taken into consideration when choosing the fill's 

duration. The procedure will resemble a continuous flow system if the time is limited 

(successive tanks). As a result, the biomass will be exposed to high concentrations of organic 

materials and other components in the wastewater. 

 
Figure 1.17: Events order in the sequencing batch reactor (SBR) 
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But as time passes, these concentrations will fall. On the other hand, if the fill time is prolonged, 

the system will operate similarly to when a continuous stream is fully mixed into the system. 

The biomass will be present in this instance in low concentrations, comparable to other 

wastewater constituents. 

Stage 2: Reaction 

After the fill stage is complete, the wastewater components can now begin to react during the 

react stage, which also allows for aeration and the consumption of biomass and substrate. 

Additionally, at this stage, compression or mixing can be used. Due to the impact of each on 

the way the process behaves, it is preferable that each phase's completion be specified 

separately. The fill phase can also include the reaction (aeration and mixing). 

Stage 3: Settling 

Following the reaction phase, there is a stage of sedimentation with the crucial requirement 

that all aeration and mixing be stopped. This indicates that there is solid-liquid segregation. 

Additionally, biomass that has been given permission to settle and clean the effluent will show 

up above the sludge. Due to the absence of liquids entering and exiting the tank, a discontinuous 

system may be able to carry out sedimentation more effectively than a continuous flow. 

 Stage 4: Decanting (Draw) 

In order to ensure the withdrawal, treated effluent must be removed from a finite height above 

the sludge sedimentation once sufficient settling has taken place. The bioreactor's reserve of 

liquid and biomass makes up the biomass recycle for the following cycle. It is comparable to 

biomass recycling in a continuous process if a significant volume is held back in relation to the 

influent volume (to provide nitrate for an initial denitrification period).  

Stage 5: Idling 

Finally, each cycle typically allows for an idle period to add flexibility. In the last stage, the 

waste sludge can only be pumped to reduce volume in accordance with the amount of time 

needed to finish the cycle. The idle phase is over when the new fill opens, and a new cycle is 

started. Depending on the system design, the frequency range for waste sludge should be once 

every (60-100 days). The bioreactor's reserve of liquid and biomass makes up the biomass 

reprocessing for the following cycle. The improvement of poly-P occurs when there is a greater 
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energy requirement for bacterial preservation, as found by Chen et al. (2013) when comparing 

the performance of two different SBR reactors for the removal of phosphorus. 

Anaerobic and aerobic conditions are created sequentially in a sequencing batch reactor to build 

the system for biological phosphorous removal. As a result, no chemical additives are required 

for the system to remove the phosphorus. The system could be changed, as shown in Figure 

1.18, to lead to the co-oxidation of nitrogen and carbon. After the aerobic reaction phase, this 

modification would involve the addition of an anoxic phase. 

 

1.5.1 Modelling of SBR: Conceptual approach in ASM2d 

ASM2d is a computational framework used to simulate and analyse the process of removing 

phosphorus from wastewater using activated sludge. ASM2d is a small-scale extension of 

ASM2. Two additional processes that need to be taken into account are polyphosphate storage 

and growth under anoxic conditions. PAOs in ASM2 have the ability to accumulate 

polyphosphate (poly-P) and can only thrive in aerobic conditions. ASM2d, in contrast, 

incorporates a simulation of denitrifying polyphosphate-accumulating organisms (PAOs) 

metabolism for the purpose of polyphosphate growth and storage. ASM2d shares the same 

constraints as ASM2. Additional details regarding the ASM2d model can be found in the 

literature (Henze et al., 1999). The metabolic processes that rely on Monod kinetics can be 

characterised by utilising kinetic and stoichiometric coefficients for all parameters and 

organising them in a matrix style. The stoichiometric coefficients can be easily accessed 

through the utilisation of matrix notation. Consequently, calculations uphold their mass 

balances as anticipated.. 

Figure 1.18: SBR for the removal of nitrogen and phosphorus 
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The parameters of the ASM2d model were derived based on the assumptions and correlations 

of the ASM2 model. The symbol X is used to denote particulate material, with a subscript 

indicating the acronym for the substance present in that form. Similarly, the letter S is employed 

to symbolise a substance that can dissolve, and its composition is indicated by a subscript. 

There is a belief that particle constituents are linked to activated sludge. Soluble components 

refer to substances that are capable of being dissolved in water. 

1.5.2 Definition of soluble components in ASM2d 

ASM2d model parameters for soluble components are defined as follows: 

SA [M(COD)L-3]: Acetate-like fermentation products were suspected. Fermentation products 

are calculated separately from other dissolved organic materials in the calculations. These 

biological processes use acetate as a carbon source. 

SALK [mol (HCO3)L-3]: The alkalinity of the effluents was used to assess electrical charge 

conservation in biological reactions. SALK was thought to be bicarbonate HCO3-only. 

SF [M(COD)L-3]: Organic substrates that are fermentable and easily biodegradable and can be 

obtained directly from heterotrophic organisms' transformation of the soluble COD fraction. 

Because these substrates were assumed to be fermentation substrates, they weren't included in 

fermentation products. 

SI [M(COD)L-3]: Organic material that is inert but soluble. This substance can't be changed 

any further. This material was thought to be present in the influent as well as in the XS 

hydrolysis. 

SN2 [M(N)L-3]: N2 stands for dinitrogen. This was presented as the only denitrification product. 

SNH4 [M(N)L-3]: Nitrogen in the form of ammonium plus nitrogen in the form of ammonia. 

SNH4 was assumed to be all SNH4+ to balance the electrical charges. 

SNO3 [M(N)L-3]: Nitrogen in the form of nitrate and nitrite. SNO3 is a nitrogen compound made 

up of nitrate and nitrite. Nitrite was not calculated as a separate model component. SNO3 was 

supposed to be NO3- -N only, in contrast to all other stoichiometric calculations (COD 

conservation). 

SO2 [M(O2)L-3]: Oxygen that has been dissolved. SO2 was thought to be susceptible to gas 

exchange. 



Introduction 

31 | P a g e  

 

SPO4 [M(P)L-3]: Orthophosphate is a type of inorganic soluble phosphorus. At any pH, it was 

presumed that SPO4 contained 50 percent H2PO4 and 50 percent HPO42- to stabilize the 

electrical charges. 

SS [M(COD)L-3]: A substrate that is easily biodegradable. It was calculated as the sum of SF + 

SA 

1.5.3 Definition of particulate components in ASM2d 

ASM2d model parameters for particulate components are defined as follows: 

XAUT [M(COD)L-3]: Nitrifying organisms. Organisms that decompose nitrate. These 

organisms were involved in the nitrification process. It was previously assumed that autotrophs 

directly oxidise ammonium (SNH4) to nitrate (SNO3). 

XH [M(COD)L-3]: Heterotrophic organisms. These heterotrophs are thought to be able to grow 

aerobically as well as anoxically (during denitrification) while also fermenting anoxically. 

They are in charge of hydrolysis and can use any degradable organic substrate under any of the 

study's environmental conditions. 

XI [M(COD)L-3]: Inert particulate organic substrates. In these systems, the flocculation was 

not degradable. They can come from decay processes or a small percentage of the influent. 

XPAO [M(COD)L-3]: Organisms that accumulate phosphorus (PAOs). These organisms are 

thought to be capable of producing internal cell storage products. PAOs do not contain XPP or 

XPHA. According to the ASM2d model's assumptions, these organisms can grow in both anoxic 

and aerobic environments. 

XPHA [M(COD)L-3]: A phosphorus-accumulating organism's internal storage product. The 

primary product of XPHA is poly-hydroxy-alkanoates (PHA), which can only be produced by 

PAOs. 

XPP [M(P)L-3]: Polyphosphate. PAOs store this product internally, but this is not counted as 

part of their mass. 

XS [M(P)L-3]: Slowly biodegradable substrate. Heterotrophic organisms can ferment these 

particulate organic substrates after they've been hydrolyzed. 

XTSS [M(TSS)L-3]: Total suspended solids. Total suspended solid materials must be taken into 

consideration when computing stoichiometric bio kinetic models. Phosphorus removal 
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influences TSS prediction. The fraction of phosphorus in activated sludge grows as phosphorus 

removal efficiency improves. 

Henze et al.'s 1999 material extensively documented and explained the ASM2d model, a 

commonly used ASP in wastewater treatment. It covers model preparation, biological 

processes, stoichiometry, and process rate equations, making it a great resource for 

professionals and researchers. It also methodically address biological processes, a cornerstone 

of wastewater treatment. The authors explain treatment system biological changes by 

examining microbial activity principles. The stoichiometric features of ASM2d modelling, 

which define the quantitative relationships between biological reactions components is clearly 

mentioned in this literature. Henze et al. pioneered the utilisation of ASM2d with matrix 

notation in 1999. The matrix notation pattern encompasses both the components and 

conversion operations. 
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2. LITERATURE REVIEW  

This chapter reviews the literature related to WWTP models, controllers. These areas include 

studies that look at how to make wastewater treatment plants work better, how to model and 

control ASP based wastewater treatment plants, control strategies implemented in SBR based 

wastewater treatment, how temperature affects biological wastewater treatment processes in 

SBR. 

To improve the efficiency of treatment plants, many control approaches have been used to 

optimise the production, transportation, and wastewater treatment processes, in addition to the 

pursuit of cleaner and more sustainable energy sources. The BSM1 model is frequently used in 

existing literature as a framework, with a primary emphasis on organic matter and nitrogen. 

The operational scenario chosen for this work is BSM1-P. Certain research focus on mitigating 

effluent limit violations by directly manipulating effluent factors, while others investigate the 

balance between operational expenses and effluent effectiveness. Management strategies vary 

from basic methods, such as managing the amount of dissolved oxygen in aerated reactors and 

the concentration of nitrate-nitrogen in anoxic tanks, to more intricate hierarchical systems, 

such as ammonia-based aeration management. Standardising the model is essential for efficient 

control because of the difficulty in assessing and linking different control approaches suggested 

in the literature. The temporal constants inherent to the activated sludge process and the 

variability of the influent load make it challenging to conduct meaningful assessments using 

simulations.  

Temperature, a crucial determinant affecting the activity of biomass, necessitates meticulous 

attention to ensure the optimal functioning of biological processes. The temperature variations 

affect the physiochemical features of activated sludge systems, including dissolved oxygen 

levels and settling velocity. These changes are important for modelling and predicting the 

behaviour of such systems. The global setting introduces intricacy since ambient temperatures 

fluctuate according to regional atmospheric and environmental factors, frequently impacted by 

abrupt shifts in seasonal climate on a global scale. 

2.1  Literature focused on BSM1-P control strategies 

In a pilot wastewater treatment facility, Real-Time Expert System is used to naturally remove 

organic debris and nutrients. Baeza et al. (1999) introduced a remarkable demonstration of their 

ability to run the pilot plant of WWTP. A distributed control system (Knowledge-Based Expert 

System (KBES) designed with G2©) is suggested in A2/O (anaerobic-anoxic-oxic) setup in 
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the pilot plant introduced by Baeza et al. 2002. Cho et al. (2002) devised a two-level control 

strategy for the pre-denitrification system. The main goal of the principal controller is to 

balance the SNO concentration in the targeted effluent concentrations. The study conducted by 

Gernaey et al. (2004) examines the performance of the ASM2d model in BSM1-P, which 

incorporates two control loops for dissolved oxygen and nitrate levels. The model is tested 

using dry, rain, and storm data. A comparison is made between the results obtained from the 

model with PI controllers and those from an open-loop system. The study concludes that there 

is a trade-off between operational cost and effluent quality. Shen et al. (2008) constructed a 

feed-forward (FF) control system using influent and nonlinear model predictive control (MPC). 

They also incorporated a penalty function on BSM1. The system demonstrated a low index of 

effluent efficiency and acceptable energy usage for aeration and pumping. Shen et al. (2009) 

and Cristea et al. (2008) have devised a feedforward control system to enhance nitrogen 

removal in a pilot-scale A2/O process used for municipal wastewater treatment. Their efforts 

resulted in a notable improvement in nitrogen removal. Implementing structured control of 

dissolved oxygen (DO) is crucial because to its significant impact on aeration energy 

consumption.  

Another idea is a two-level control approach. Next, Brdys et al. (2009) show the methodical 

track of the DO path in the BSM1 framework. Feed-forward controllers have been utilised in 

wastewater treatment plants (WWTPs) to enhance the removal of biological nitrogen (N) and 

carbon (C) by considering the effluent quality and performance improvement. This approach 

is based on the research conducted by Baeza et al. in 2002 and Nopens et al. in 2010. In their 

study, Ostace et al. (2011) implemented model predictive control (MPC) using a reactive 

secondary settler model. They successfully obtained a decrease in the operational cost index 

(OCI) while improving the effluent quality index (EQI). Despite being widely recognised as a 

notable technique, EBPR still encounters challenges in achieving efficient removal of nitrogen 

and phosphorus in full-scale treatment plants due to the complex interactions between nitrate 

and phosphorus throughout the uptake process. The failures are impacted by the COD/P ratio 

and the organic matter in the influent. These two factors are the fundamental characteristics 

that need to be understood in order to comprehend the process. Guerrero and colleagues in 

2011. The implementation is based on the ASM2d model. Xu and Vilanova (2013) devised 

various control strategies utilising BSM1-P and found that the levels of ammonia nitrogen and 

chemical oxygen demand (COD) in the effluent remained within the prescribed limits. 

However, other parameters of the effluent exceeded the imposed constraints.   
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The BSM1-P investigation evaluates the effectiveness of a new control application that 

combines cascade and override control techniques, using both metal and carbon dosages, in a 

carbon-limited wastewater system. Guerrero et al. (2014) discovered that the control 

application demonstrates superior effluent quality at an optimal cost. A fuzzy control 

framework was developed to decrease the concentration of phosphorus in effluent water. It was 

observed that fuzzy control yielded superior outcomes in eliminating P compared to the PI 

control loop (Xu and Vilanova, 2015 a, b). Valverde-Pérez et al. (2016) implemented control 

strategies to improve the removal of phosphorus using two control frameworks in a sequence 

batch reactor and continuous flow reactor. An activated sludge method including Enhanced 

Biological Phosphorus Removal (EBPR) is implemented to improve the efficiency of the 

Effluent Quality Index (EQI). In certain situations, the removal of nitrogen (N) and phosphorus 

(P) may not be feasible due to a lack of chemical oxygen demand (COD) in the wastewater. 

Either the inclusion of an external carbon source or the use of chemical precipitation is typically 

the chosen technological method for effectively removing phosphorus from wastewater with 

limited chemical oxygen demand (COD). The dosages mentioned in Garikiparthy et al. (2016) 

are costly and result in a rise in plant operating expenses. Sdeghassadi et al. (2018) created a 

nonlinear model predictive control (MPC) system using the BSM1 framework, which resulted 

in enhanced accuracy in following set-points.   

The recent research by Santín et al. (2015) and Crisan et al. (2018) demonstrate the 

implementation of the cascade technique in the DO design. In relation to energy conservation 

in a wastewater treatment plant operating in real-time, hierarchical control systems are 

suggested to achieve the necessary DO levels for the oxidation of ammonia to nitrate. Baklouti 

et al. (2018) assessed the fault detection of the benchmark models. Hongyang et al. (2018) 

created MPC system using the BSM1-P model to ensure a sufficient level of nitrate 

concentration and dissolved oxygen. The study found that the control performance significantly 

increased by 95% in all three weather conditions (dry, rain, storm) when using MPC controller. 

To minimise ammonia fluctuations, a strategy combining MPC with Feedforward (FF) 

controllers was implemented at the base level to regulate SNO and DO. Additionally, a fuzzy 

controller was employed at a higher level to manipulate the DO. Furthermore, the use of MPC 

at the supervisory level is suggested to enhance the overall efficiency of the plant, leading to 

cost reduction and improved effluent quality. This proposal is based on the design of Santín et 

al. (2016). 
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 The artificial neural network (ANN) developed by Santin et al. (2019) is specifically built to 

forecast the desired value of dissolved oxygen (DO) set point. Schraa et al. (2019) have 

developed a control strategy called ammonia-based aeration control (ABAC) with solid 

retention time (SRT) management in the Activated sludge process. This approach aims to 

maintain a balance between SRT, DO, and ammonia levels in order to ensure both treatment 

efficiency and energy savings in the plant. BSM1 serves as the operational framework for 

conducting all of these tasks. The regulation limitations for TN concentration were achieved 

by implementing three control loops that rely on monitoring the concentrations of inorganic P, 

ammonia, and suspended particles (Luca et al., 2019). In order to forecast the DO levels, 

artificial neural networks are employed to account for the time delays caused by sensors and 

filters, ultimately achieving the desired set-point (Santin et al., 2019). The efficacy of the 

heuristic fuzzy controller was evaluated and it was determined that all the pollutants comply 

with rigorous criteria, while maintaining a high level of dissolved oxygen (Piotrowski et al., 

2020). The researchers in Tejaswini et al. (2020) have established hierarchical control 

strategies for BSM1 and observed that these strategies lead to improved effluent quality at a 

reasonable cost. The outcome is a decrease in effluent ammonia nitrogen and total nitrogen, 

resulting in energy efficiency. An advanced method utilising sensors, residual ammonia 

controls, and dissolved oxygen set-points is employed in a granular sludge reactor to eliminate 

nutrients from wastewater. The study conducted by Bekele et al. (2020) demonstrates that 

maintaining a stable aerobic granular sludge is beneficial for enhancing the reactor's 

performance. 

However, the increase in poly accumulating organisms (PAOs) is the cause of phosphorus 

removal in both the anaerobic and aerobic stages of the activated sludge system (AS), as stated 

by Rampho et al. (2005) and Ersu et al. (2010). The A2O process, which stands for anaerobic, 

anoxic, and oxic, is a widely-used method in municipal wastewater treatment plants for the 

simultaneous removal of nitrogen (N) and phosphorus (P). This process was introduced by 

Oehmen et al. (2010), Zhou et al. (2015), Zhang et al. (2016), and Massara et al. (2018). 

Concerning phosphorus (P), the installation of enhanced biological phosphorus removal 

(EBPR) is a sustainable strategy to meet strict rules for wastewater discharge. However, only 

a few researchers have presented an effective design for improving phosphorus removal in 

WWTPs.  

Process control is utilised in wastewater treatment facilities to optimise their performance, 

prolong their lifespan, and reduce both the cost per unit of product and operational expenses 
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(Agarwal et al., 2016; Åmand et al., 2013). Various feed-forward controllers have been utilised 

in BWTPs to improve the quality and efficiency of the effluent, specifically in terms of 

removing biological nitrogen and organic matter (Nopens et al., 2010; Tejaswini et al., 2020). 

The most rational strategy to achieve the required P discharge levels is by enhanced organic P 

removal, also known as Enhanced Biological Phosphorus Removal (EBPR) (Solon et al., 

2017). BSM1 employed four distinct control schemes: C1, which utilised a DO-controller; C2, 

which employed both a DO-controller and a NO controller; C3, which implemented an NH-

DO cascade controller; and C4, which utilised a TSS controller. Additionally, C5 employed a 

P controller. These control schemes were combined in various ways, and an advanced and 

intelligent controller was also utilised (Sheikh et al., 2021; Solís et al., 2022; Solon et al., 2017). 

To achieve the most efficient and environmentally sustainable operation of wastewater 

treatment, it is recommended to maintain a DO set-point of 2 mgO2/L. This should be done 

while ensuring the proper SRT and adding the necessary carbon source. By following these 

guidelines, the treatment process can be optimised without negatively impacting EQ, OC, or 

greenhouse gas (GHG) emissions. The effects of operational circumstances on EQ, OC, and 

GHG emissions were evaluated through the simulation of four scenarios. Two PI control loops, 

namely the DO-PI controller and the nitrate (NO)-PI controller, were implemented in the 

BSM2P model (Sheikh et al., 2021; Solís et al., 2022). The optimal arrangement of 

control/operational parameters (such as dissolved oxygen and solids retention time) and the 

management of dissolved oxygen, nitric oxide, and ammonia concentrations are essential 

factors that work together harmoniously. 
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Table 2.1: Control strategies of P in secondary BWTP 

Control combinations employed in secondary treatment  

S.No ASM BSM Control 

Algorithm 

Control 

variables 

Manipulating 

variables 

Effluent 

quality 

(EQ) 

Energy 

cost (EC) 

Comment Reference 

1 A2/O 

(ASM2d) 

BSM1P PI, metal, 

carbon 

dosages 

 DO KLa Improved 

EQ 

 

EC 

increases 

Improved P 

removal 

(Gernaey & 

Jørgensen, 2004) 

2 A2/O 

(ASM2d) 

BSM1P PI Different DO, 

NO, NH, TSS, 

PO4 

KLa, H-DO, 

Qw, Qintr 

Improved 

EQ 

EC 

increases 

Improved P 

removal 

(Ingildsen et al. 

2006) 

3 A2/O 

(ASM2d) 

BSM1P PID DO KLa Improved 

EQ 

 

EC 

reduction 

achieved 

Improved P 

removal 

(Shen et al. 2010) 

4 A2/O 

(ASM2d) 

BSM1P Cascade 

MPC, PI 

DO, NH, NO KLa, H-DO, 

Qintr 

Improved 

EQ 

EC 

increases 

Improved P 

removal 

(Liu et al. 2012) 

5 A2/O 

(ASM2d) 

BSM1P PI Different DO, 

TSS, NH 

KLa, Qw,Qintr Improved 

EQ 

 

EC 

increases 

Improved P 

removal 

(Xu & Vilanova, 

2013) 
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6 A2/O 

(ASM2d) 

BSM1P PI, 

override 

control 

NO, PO4 Qintr, NO Improved 

EQ 

EC 

increases 

Improved P 

removal 

(Guerrero et al. 

2014) 

7 A2/O 

(ASM2d 

BSM1P PI, Fuzzy DO, NO KLa, Qintr Improved 

EQ 

EC 

increases 

Improved P 

removal 

(Xu & Vilanova, 

2015) 

8 A2/O 

(ASM2d) 

BSM1P PI, MPC DO, NO KLa, Qintr Improved 

EQ 

EC 

increases 

Improved 

EQ 

(Hongyang et al. 

2018) 

9 A2/O 

(ASM2d) 

BSM1P PI DO, TSS, PO4,  

 NH, NO 

KLa, H-DO, 

Qr, QW 

Improved 

EQ 

EC 

increases 

Improved 

EQ 

(Luca et al. 2019) 

10 A2/O 

(ASM2d) 

BSM1P Robust 

optimal 

control, 

FNN 

DO, NH, NO KLa, H-DO, 

Qintr 

Improved 

EQ 

EC 

decreases 

Improved P 

removal 

(Han et al. 2021) 

11 A2/O 

(ASM3bioP) 

BSM1P PI, 

Override, 

Fuzzy 

DO, NH, PO4, 

NO 

KLa, H-DO, 

NO and Qintr 

Improved 

EQ 

EC 

increases 

Improved P 

removal 

(Sheik et al. 

2022) 

12 A2/O, R-

A2O, I-A2O 

(ASM2d) 

BSM1P PI DO-carbon 

and metal 

dosages 

KLa Improved 

EQ 

EC 

increases 

Improved P 

removal 

(Sheik et al. 

2022) 
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2.2  Literature focused on SBR control strategies 

In industrial contexts, two different types of biological WWTPs are used: SBRs and WWTPs 

with continuous flow across the entire plant. In the SBR, the first type of plant conducts all 

biochemical reactions in a single tank, following a pre-set sequence, rather than using multiple 

tanks connected by both internal and external recirculation flows. This thesis examines the 

second type of biological WWTP too. The complex biological processes at the WWTP are 

highly dependent on the oxygen supplied by the aeration system to the SBR. The SBR's 

dissolved oxygen content affects phosphorus removal, nitrification, and denitrification 

efficiency. In addition, the scheme will have a significant financial burden due to the fact that 

the electricity consumed by blowers constitutes around 50% to 75% of the total operational 

expenses of the WWTP (Jenkins 2013). 

Optimising the effectiveness of DO control has been a focal point of research endeavours for a 

considerable period. Prior studies have recorded many control structures and techniques for 

DO, including the adaptive and multivariable PID controller (Wahab et al, 2009 and Du et al, 

2018), fuzzy controller (Belchior et al, 2012, and Piotrowski et al, 2020), adaptive controller 

(Piotrowski et al, 2016), predictive controller (Yang et al, 2014, Piotrowski, et al, 2015, Li et 

al, 2020), and hierarchical-nonlinear MPC (Piotrowski et al, 2021). 

The second category of DO control approaches includes algorithms that measure and adjust 

the levels of nitrate (NO3) (Mulas et al, 2015, Santín et al, 2015] and ammonium nitrogen (NH4) 

(Vrečko et al, 2011, Åmand 2012), in addition to monitoring DO levels, to enhance the control 

system. The algorithms in the next category of DO control, equipped with supervisory 

controllers, are designed to determine the time-varying reference trajectory of DO–DOref 

(Houzhao et al, 2013, Grochowski et al, 2016, Piotrowski 2020). Regular updates and extensive 

modifications to the hardware-software structure of WWTP control are necessary to 

incorporate modern control methods, such as adaptive and predictive control. These approaches 

also require comprehensive staff training. Integrating fuzzy control systems into the current 

setup is a straightforward task. Furthermore, the knowledge and skills possessed by the WWTP 

employees contribute to the development of unclear control strategy guidelines. Therefore, it 

is an essential instrument when developing cutting-edge control systems for WWTPs. The 

different ways that fuzzy logic can be used for DO control at a WWTP have been talked about 

in Fan et al, 2011, Piotrowski et al, 2019 and Wu e al, 2015. In each case, the aeration system 

was left unturned. Fuzzy logic is used in a complicated hybrid nonlinear dynamic system that 
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controls things. As a result, it could have a big impact on the WWTP's operations and safety 

steps. 

2.3 Literature focused on Effect of temperature on the biological activity and treatment 

Wastewater's average yearly temperature changes depending on where it's located. Like, in 

Latin America, the temperature is generally between 3 °C and 27 °C. In Africa, Asia, and the 

Middle East, on the other hand, the temperature ranges from 28°C to 45°C. It is very important 

to know the temperature of wastewater because it affects the reaction rates and metabolic rates 

of bacteria in the wastewater. No matter what the working and ambient temperatures are, strict 

effluent limits must be followed when treating wastewater from cities and factories. WWTP 

has a lot of problems because of the active biomass for nitrogen removal (N) when it comes to 

handling wastewater from factories and cities. The amount of nitrogen is limited by the rate of 

nitrification. It is known that the rate of nitrification is the rate-limiting step for getting rid of 

N. Taking in acetate in the anaerobic part is also a key factor in determining the amount of 

PAOs and, by extension, the amount of P that is removed. The impact of temperature on the 

moving parts in a typical WWTP has not been widely researched in the past, so this study aims 

to fill that gap. Hydrolysis and fermentation are not affected as much by the lower temperature. 

Stoichiometry and kinetic factors are affected by short-term changes in temperature. Long-term 

changes in temperature have an effect on plant activity. 

Most of the time, temperatures between 25°C and 35°C are best for cellular processes. The 

nitrification process stops when the temperature reaches 50°C, and bacteria that produce 

methane stop working at 15°C. Based on the research by Metcalf and Eddy (2003), autotrophic 

nitrifying bacteria almost stop working at 5°C. Collins et al. (1973) say that the effluent quality 

has been a good sign, and the temperatures run from 10 to 30°C. The rate of aerobic phosphorus 

uptake becomes very high between 15°C and 20°C, as Baetens et al. (1999) found when they 

looked into how weather affected bio-P removal. Even though the solid retention time (SRT) 

and settling sludge compositions are different, when the temperature goes up from 25°C, 

nitrogen is removed at the same time as denitrification and nitrification processes, as explained 

by Gorgün et al. (2002). 

What are the flocculants in activated sludge after it has settled? Ghanizadeh et al. (2001) looked 

into this when the temperature was between 3°C and 15°C. It has also been seen that as the 

temperature rises, the amount of suspended solids in the effluent increases while the removal 

of COD drops. We looked into how temperature affects things by comparing temperatures from 
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9°C to 30°C in an SBR that treats wastewater from a tannery to see how well it removes 

nitrogen. Also, it has been seen that the quality of the waste meets the standards set by Murat 

et al. (2004) above 20°C. Increasing the temperature from 15°C to 35°C in an up-flow micro 

aerobic sludge system makes a big difference in how much COD and SS are removed. Based 

on De Kreuk et al. (2005) and Meng et al. (2019), the reduction rates of COD and SS slow 

down when the temperature drops from 20oC to 8oC. In their 2002 study, Singh and 

Viraraghavan looked at the up-flow anaerobic sludge blanket system and changed the 

temperature from 6°C to 32°C to find out the bio-kinetic rates for treating sewage wastewater. 

The temperature is one of the most important factors that affects biomass activity, which is 

necessary to keep biological activity going well. Lippi et al. (2009) also talk about physical 

features such as dissolved oxygen, changes in settling velocity, and mixed liquor in response 

to temperature changes. These features help in modelling and predicting the activated sludge 

system. About every 10 to 15°C rise in temperature makes the rate of biological violations 

either double or cut in half.  

If you raise the temperature by 10°C, Van't Hoff's rule says that the rate of cellular activity 

doubles. Different studies have come to different conclusions about how temperature affects 

BNR. Many studies have shown that higher temperatures (20–37°C) are better for getting rid 

of phosphorous (Brdjanovic et al. 1997). No matter what the carbon matter does, poly 

accumulating organisms (PAO) control microorganisms at low temperatures (10°C). Also, the 

temperature effect did not give metabolic advantages to organisms that stored glycogen over 

PAOs, even though López-Vázquez et al. (2008) research on aerobic metabolism was taken 

into account. A new study looks at how temperature affects the activated sludge model (ASM1) 

on the BSM1 platform, using the dynamic parameters. A difference was seen between the strict 

limits set by Tejaswini et al. (2019) for sewage when the temperature was less than 20°C and 

more than 30°C. 

Alterations in temperature in WWTPs haven't gotten as much attention from the point of view 

of modelling and controlling the whole plant. Because biological reactions are more 

complicated, they needed less temperature control in WWTP processes. Most of the time, 

WWTPs are run at temperatures that are normal for the area. The weather has a big effect on 

the quality of the effluent (EQI), the cost of operations, and the general output. An up-flow 

micro aerobic sludge device is being used to study the effect of temperature right now. The 

results show that nitrogen removal works better at 17°C. These findings were published in 

Meng et al. (2019). According to Alsawi (2020), kinetic factors have a big effect on how 
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productive WWTPs are, and changes in temperature have an effect on how well the process 

works. The fixed-bed reactor system described in the study by Hamdani et al. (2020) works 

better at removing nitrogen and carbon when the temperature is lowered to 10-15°C for diary 

effluent. 

2.4  Motivation  

Optimal operation of the WWTP is the primary motivation for preserving legislative 

regulations governing the extant WWTP. To achieve this, the possible routes are either redesign 

of the process or making it better with improved process control strategies. All of these things 

work together to control the amount of nitrogen (N), carbon (C), and phosphorus (P) in the 

waste while keeping the costs low. A lot of implementations and improvements have been 

written about, but a lot of WWTPs are still running without being upgraded because people 

don't know how to use modelling, control, and optimisation tools to keep an eye on the 

problems that come up when trying to meet strict WWTP effluent quality standards. It is very 

hard to control and keep an eye on the whole WWTP because different unit operations rely on 

chemical, biochemical, mechanical, and biological events. Also, the ecosystem around a 

WWTP is always changing, including the feed flow rate, temperature, nutrient concentrations, 

and toxic material concentration peaks. All of these changes can make biological wastewater 

treatment very difficult. These differences can have a big effect on how well the process works, 

and in some cases they can even cause the process to fail. 

In order to follow strict rules: It is better to use advanced control methods to get the effluent 

consistency that regulations call for. The concentration of the effluent can also be kept more 

stable, and problems with the process that stop the treatment can be cut down. There are more 

complex ways to run a plant when there are more unit operations, like treatment steps that 

happen across the whole plant. Modern control programmes can be used to successfully 

regulate the quality of the effluent, making it possible to meet even the strictest environmental 

regulations. 

Cutting down on costs: Olsson et al. (2005) say that a nutrient removal WWTP can work 10–

30% better if the plants are managed well and controls are used correctly. As processes become 

more efficient, the space needed for new WWTPs shrinks, which lowers the cost of building 

them. Cutting down on the energy needed for aeration and the use of different chemicals could 

also help nutrient removal plants save a lot of money. 
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How temperature affects the WWTP: In many WWTPs, temperature is very important. The 

temperature is thought to be the most important factor in WWTP methods, especially for 

organic WWTP. No matter what the working and ambient temperatures are, strict effluent 

limits must be followed when treating wastewater from cities and factories. WWTP has a lot 

of problems because of the active biomass for nitrogen removal (N) when it comes to handling 

wastewater from factories and cities. The amount of nitrogen is limited by the rate of 

nitrification. Taking in acetate in the anaerobic part is also a key factor in determining the 

amount of PAOs and, by extension, the amount of P that is removed. It hasn't been studied in 

depth how temperature affects the kinetic processes in a normal WWTP, so that's what this 

thesis is all about. 

Driven by these motivating factors and recognizing a literature gap, the current research is 

structured around the following objectives. 

Ojective-1: To identify fractional‑order models and control within a supervisory control 

framework for efficient nutrients removal in biological wastewater treatment plants 

Objetive-2: To design IMC-Based Fractional Controllers within a Supervisory MPC Control 

Scheme for WWTPs. 

Objetive-3: To design control strategies for sequencing batch reactor based biological 

wastewater treatment. 

Objetive-4: To develop hierarchical control strategies for evaluating the DO set points by 

measuring Ammonia concentrations in the SBR with Fuzzy logic in higher level.  

Objetive-5: To study the effect of temperature on the estimation of kinetic and stoichiometric 

parameters and on the water-energy nexus.



 

 

 

Chapter 3 
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Chapter 3 

3. FRACTIONAL ORDER MODELS IDENTIFICATION AND 

CONTROL WITHIN A SUPERVISORY CONTROL 

FRAMEWORK FOR EFFICIENT NUTRIENTS REMOVAL  

 

The literature study on the ASM3-bioP platform unveils diverse control strategies utilising 

different algorithms. However, there exist notable gaps in fractional modelling, especially in 

the design on a fractional controller. This aspect is crucial, given the considerable advantages 

demonstrated in the biological treatment of WWTPs with different ASP platforms. 

Consequently, this study concentrates not only on the implementation of a fractional controller 

but also on the development of fractional modelling for the ASM3-bioP process. The results 

achieved are quite beneficial, demonstrating substantial advancements in both plant and 

controller performance. 

3.1  Combining lower-level and higher-level control methods on BSM1-P 

To lower the nutrient contains and enhance the effluent quality (EQI), hierarchical control 

systems have been developed for biological wastewater treatment plants. The activated sludge 

model no. ASM3-bio-P was used to make the benchmark simulation model no. 1 (BSM1-P). 

This model is used to control the amount of liquid oxygen in aerobic reactors and the amount 

of nitrate in anoxic reactors. At the lower level, Fractional PI (FPI) controllers are made along 

with fractional order model of the process. At the higher level, a rule based fuzzy controller are 

used to improve tracking of set points. Initially, the prediction-error method is employed to 

construct an integer-order (IO) transfer function centred on the operating point at the lower 

level. Consequently, both an integer order controller (PI) and a fractional order controller (FPI) 

are applied to the IO model transfer function. At last, a Fractional order model of BSM1-P has 

been determined and an FPI controller has been integrated with it at the lower level. In order 

to find the higher-level model, the lower-level control loop works in a closed loop with the 

intended controller. After that, the controls are made based measurements of ammonia in last 

aeriation tank at the higher level. 
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3.2  Introduction  

Controlling a WWTP with inherent complexity and influent variations requires an effective 

control technique. Worldwide, wastewater treatment plants use simple PI control to complex 

structures like FUZZY, MPC. In all activated sludge WWTPs, the aerobic region's dissolved 

oxygen (DO) concentration should be high enough to meet microorganisms' oxygen needs and 

boost nitrification. However, an extremely high DO requires a high airflow rate, which uses 

more energy and may lower sludge quality. DO control is crucial for process efficiency and 

economic benefits.  

A two-level hierarchical control architecture with FPI controllers at lower levels and advanced 

control methods at higher levels is created in this chapter. An FPI control scheme is constructed 

at the lower level and an intelligent higher-order decision-making system utilising fuzzy logic 

is created to enhance set-point tracking.  

ASM3-BioP process model have not discussed about the development of fractional models and 

also the associated fractional controllers for nitrogen and phosphorus removal using the BSM1-

P framework. Despite the complexity of system dynamics, fractional order systems can 

represent them with minimal terms. As part of the current study, a fractional model of the 

ASM3bioP process has been developed, based on which a fractional controller is designed for 

improved process performance. The novelty is establishing a systematic procedure for 

development of fractional order models and then design of fractional order controllers and 

analysis of the fractional controllers’ performance. In the closed-loop, for DO & SNO control, 

all three situations namely 1. Integer Order (IO) plant with IO controller, 2. IO plant with 

fractional-order (FO) controller and 3. FO plant with FO controller have been implemented. 

Further, ammonia-based aeration control with an adaptive Fuzzy logic control is also designed 

and performance is analysed. 

3.3 Plant’s performance Indices 

Benchmark is a common assessment criterion that serves as the foundation for regionally 

independent assessments of globally established comparison strategies. The plant's 

performance is evaluated at two levels based on the evaluation criteria defined. The first level 

monitors the controller's implementation in a closed-loop system by eliminating the error to 

track the desired level, while the subsequent level investigates its impact on plant performance. 

Overall performance of the treatment plant is monitored by the effluent quality index (EQI), 
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the operating cost index (OCI), obtainable effluent concentrations and violations. EQI is 

described by Equation 3.1, where t0 and tf are 7th and 14th day respectively 

EQI =  
1

100(tf − to)
∫ HU(t)Qe(t)

tf

to

dt                                                                                         (3.1) 

Where HU(t)  represents the average load of pollutant levels in influent and effluent data and is 

described by equation 3.2 

HU(t) = HUTSS(t) + HUCOD(t) + HUBOD(t) + HUTKN(t) + HUNO3(t) + HUPtot(t)             (3.2) 

The assessment of OCI is performed in order to calculate the cost of various control strategies. 

Equation 3.3 represents the OCI. 

OCI = (3 × EC) + ME + (5 × SP) + AE + PE                                                                        (3.3) 

Here, all energies like the aeration Energy (AE) (kW hr/day), the pumping Energy (PE) (kW 

hr/day), the mixing Energy (ME) (kW hr/days) respectively, are calculated to get the OCI 

indices. External carbon dosages (EC) are not taken into account in our approach. The relevant 

parameter and corresponding equations involved in calculating WWTP’s performance indices 

are well described in the literature (Shiek et al., 2021 a,b). The equations defining the 

concentrations of various components, the associated energy, and the sludge production are 

provided in above said literature. Moreover, the effluent quality must be maintained in 

accordance with severe legal criteria. The effluent estimation is computed using average data. 

Table 3.1 displays the effluent concentration restrictions that must be satisfied by any WWTP. 

Table 3.1: Effluent restrictions norms 

 

 

 

 

3.4  Implementation of control approaches 

In the lower-level control, common but popular feedback control employing the PI controller 

is considered for reference. Figure 3.1 shows two PI controllers in the lower level, while DO7, 

whose set-point value is 2 mg O2/L is controlled by adjusting KLa7 in the seventh reactor and 

Variable VALUE 

TN <18 mg N/L  

COD <100 mgCOD/L 

NH <4   mg N/L  

TSS <30  mgSS/L 

BOD5 <10  mgBOD/L 

TP <2  mgP/L 
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the other control loop is in charge of keeping SNO4 at 1 mg N/L by controlling Qintr. The main 

focus of this study is the development of a fraction controller and replacing this PI controller 

at the lower level for both integer and fractional models (Figure 3.1). Figure 3.2 also depicts 

the hierarchical strategy with a supervisory layer. Higher-level control aims to determine DO7 

levels (lower-level set points) by manipulating SNH7 in the seventh reactor which reflects as a 

set point to the lower DO7 loop. In terms of the lower-level controller, DO7 and SNO4 are 

controlled by regulating KLa7 and Qintr respectively. Higher DO is required for improved 

nitrification if SNH7 levels are higher. Nitrification converts ammonium to nitrate, during de-

nitrification nitrate is converted to nitrogen gas. The presence of too high DO in the aeration 

tank will reduce ammonia but same time nitrate will increase. In the same scenario, if the DO 

level is too low, the ammonia level rises and the amount of existing nitrate available for de 

nitrification decreases. Additionally, the level of aeration affects energy use. As a consequence, 

the DO set point must be chosen carefully. 

 

 

 

 

Waste sludge (QW)   

SNO4 

External recycle (Qr) 

Internal recycle (Qintr) 

Anoxic Anaerobic 

Qe 

Aerobic 

Qin 

PI/F

Settler 

KLa7 

PI/ 

FPI 

SO7 

Figure 3.1: PI and FPI control approach for both DO and NO loop in lower level 
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3.5  Modelling of system from process Input-output data 

The very first need for implementing a control structure for any type of process is to identify 

the right process model. In this work as discussed earlier, both IO and FO models of WWTP 

are identified from simulation work and hence both the IO and FO controller are implemented 

on it.  

3.5.1 Algorithm to develop an IO Model to design controllers 

The idea of identification is to derive a dynamic system model from data collected during an 

experiment. In general, obtaining a link between system inputs and outputs under different 

influences (input signals, disturbances) is required to determine and estimate system behaviour.  

 

 

 

 

Qin 
Qe 

Qintr 
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Anaerobic Aerobic Anoxic 

Settler 
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Figure 3.2: ABAC based hierarchical adaptive control strategy with lower-level PI and FPI control 

Figure 3.3: SISO system with input, output and disturbance 
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Select control (SNO4, DO7) and manipulating variables (Qintr, KLa7) 

for desired control loop 

Stimulate the inputs (Qintr, KLa7) by ±10% using random source 

around the operating point and collect input/output data  

After selecting the required range, Pre-process the 

data (take out trends and means) 

Split the data for modelling and 

Create the FOPTD model or a state 

space model using PEM 

Check for model 

If the 

model 

fit >70 

Design PI controller tuned by SIMC 

method and Fractional PI controller 

tuned by Chen method based on the 

Deploy the intended controllers on the 

WWTP and assess the plant 

performance 

No 

Yes 

Figure 3.4: Algorithm for identifying an Integer-Order (IO) Model 
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Here the system is with input u, output y, measured disturbance d and unmeasured disturbance 

‘w’. SISO system with input, output and disturbance is depicted in Figure 3.3. Above flow 

diagram in Figure 3.4 describes the identification of IO First order plus time delay (FOPDT) 

model using system Identification toolbox. 

3.5.2 Algorithm to develop an FO Model to design controllers 

Figure 3.5 explain the systematic steps involved to identify a fractional order (FO) model using 

FOMCON toolbox in MATLAB. 

Prior information 

Data Obtained 

Experimenting 

with design 

Select model set 

Estimate model 

Model verification 

Select fitting 

standard 

Model 

acceptable? 

Model Obtained 

Design FPI controller using based on the obtained Fractional model 

  

Deploy the intended controllers on the WWTP and assess the plant performance 

No 

Yes 

Figure 3.5: Algorithm for identifying a Fractional-order (FO) model 
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A critical stage of the identification is measuring the level of noise and disturbances in the 

acquired data and then filtering and processing the data before dealing with the identification 

algorithm. The FO model is identified based on the time-domain approach. The Simulation 

parameters window helps to select the type of system simulation we would like to use.  

Among these are the following:  

• Fractional derivatives being evaluated utilising Grunwald-Letnikov method. 

• Approximation utilising Oustaloup filter. 

• Approximation utilising Refined Oustaloup filter. 

First and obviously, a ‘fidata’ structure must be selected. The Identified model comes with the 

fractional zero and pole polynomials in symbolic form. As the options available to fix either 

polynomial, the model is identified with fixed unity gain and fractional pole polynomial. An 

initial guess model is formed. To do this, polynomials can be generated independently by 

specifying a commensurate-order q such that 0.01 ≤ q < 2, the order of the polynomial. At the 

end of the identification process, a plot with a satisfactory fitting result should be displayed 

and also indicates the stable behaviour of the identified system. As the results are satisfactory, 

the model is saved to implement a controller. 

3.6  Employed Control scheme  

The selection of control structure is critical in developing an efficient control scheme. The 

elementary strategy acclaims controlling the nitrification and denitrification rates. The DO is 

controlled by varying the flow rate of the air supply, which ensures the necessary nitrification 

in the oxic reactors. In the de-nitrification process, nitrate is controlled by changing the internal 

recirculation flow rate based on SNO in the final anoxic reactor. Considering these two default 

loops into account, PI, FPI controllers are constructed in this study to regulate SNO4 and SO7 by 

adjusting Qintr in 1st anoxic reactor and KLa7 in the 7th reactor (aerobic) (in Figure 3.1). The 

resultant model is only valid for balancing DO level 2 mg O2/l and SNO level 1 g/m3 (Mulas M. 

2007). For the steady-state values, the operative point for the DO loop is 2 mg O2/l of DO when 

KLa7 is 252 likewise when the internal recycling flow is 34,500 m3/day, the operating point for 

SNO loops is 1 mg N/l of SNO. To maintain residual DO values in aeration reactors, the amount 

of DO supplied is usually equal to the microorganisms need. In environments with low oxygen 

levels, filamentous microorganisms may predominate, which results in poor sludge settlement. 

A high DO, on the other hand, requires more energy consumption and may lead to deterioration 
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of sludge quality. In an aeration reactor, the DO levels are practically maintained between 1.5 

and 4 mg O2/l, with 2 mg O2/l being the most common value. Further, if the last pre-

denitrification zone does not consume more than a certain value of nitrate, excessive air 

consumption is not required during aeration. Anoxic reactors with the presence of internal 

recirculation must maintain nitrate levels between 1 and 3 mg N/l, with 1 mg N/l typically 

being the most desirable value. Apart from this, a Fuzzy controller at the supervisory level is 

presented in cascaded with the FO-PI at the lower level as shown in Figure 3.2. In order to save 

energy usage, estimation of SO is important. As more 'SO' (DO level) is essential for nitrification 

while SNH (ammonia concentration) is high. When SNH is comparatively low then, fewer SO is 

essential for making less SNO. 

3.6.1 Proportional integral (PI) controller design 

In the benchmark models, the default controller is assumed to be PI. The default loops are 

considered, which use PI controller to control the concentrations of nitrate (SNO) and DO in the 

respective 4th and 7th reactors. Figure 3.1 depicts the plant arrangement with this PI controller. 

A wide range of methods is available in the literature for designing PI controllers.  Reputable 

SIMC rules by Grimholt and Skogestad (2018) are deployed in this work. To develop 

controllers using this method, the first step is to derive a First Order Plus   Time Delay (FOPTD) 

model (GP) using the popular PEM method (Prediction-Error Minimization) (Ljung, 1999) 

discussed in algorithm to develop an IO model, presents in this form 

Gp =
Kp

T ∗ S + 1
e−L∗S                                                                                                                         (3.4) 

In the identified process model, KP signifies the process gain and L is the delay time and the 

time constant is denoted by T. We explored the above mention original SIMC tuning rule for 

the first-order with delay (FOPDT) process in equation 3.4. The SIMC tunings for this FOPDT 

process results in a PI controller like in equation 3.5, 

Kc =
1

KP

T

(TC + L)
   and  Ti = min { T, 4(TC + L)}                                                                     (3.5) 

Here the parameter TC, the closed-loop time constant is an adjustable tuning parameter that is 

used to achieve the desired trade-off between efficiency, robustness, and input utilization. TC 

= L is suggested for "tight control" (good performance) alongside acceptable robustness 

(Grimholt et al., 2018). 
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3.6.2 Fractional Proportional integral (FPI) controller design 

The FPI controller is also implemented for the same FOPTD model. Investigations on tuning 

FPI controllers demonstrate a range of tuning rules for designing FPID parameters, namely 

controller gain Kc, integral time constant Ti and fractional order α, are given in equations. The 

equivalent transfer function model of the fractional controller after doing Laplace transform, 

stated as, 

𝐺𝐶 = 𝐾𝑐 +
𝐾𝑖
𝑠𝛼
= 𝐾𝑐 (1 +

1

𝑇𝑖𝑠𝛼
)                                                                                  (3.6) 

Ever since substantial work has been done to propose fractional-order PID controllers. 

Oustaloup et al. (2000); Podlubny (2008) conducted early research. The tuning guidelines 

provided by Chen et al. (2008) are used to develop the FPI controllers. According to the 

identified FOPDT model in equation 3.4, a very important parameter called the relative dead 

time (τ) of the system defined as in equations (3.7),   

τ =
𝐿

𝐿 + 𝑇
                                                                                                                    (3.7) 

The ‘τ’ ranges between 0 and 1, and systems with L>>T are referred to as delay dominated, 

while systems with T>> L are referred to as lag dominated. Hence the tuning parameters come 

in below equations (3.8, 3.9 and 3.10). 

Kc =
1

Kp
(

0.2978

τ + 0.000307
)                                                                                                                (3.8) 

Ti = 𝑇 (
0.8578

𝛕2 − 3.402𝛕 + 2.405
)                                                                                                    (3.9) 

α = {

  1.1                 if  τ ≥ 0.6
1.0     if  0.4 ≤ τ < 0.6
0.9     if  0.1 ≤ τ < 0.4
0.7                if  τ < 0.1

                                                                                                  (3.10) 

3.6.3 Fuzzy logic controller (FLC) design 

Another combination in cascade mode structure a well-known tool, fuzzy logic is applied. Now 

a day’s fuzzy logic is well accepted in various domains of control applications. The DO set-

point in the seventh reactor is controlled at a hierarchical level with a Fuzzy logic controller to 

limit ammonia effluent violations in reactor 7. The membership functions (MF) of DO and 

ammonia (SNH7) in reactor 7 were examined in the ranges of 0–4 mg O2/l and 0–25 mg N/l, 
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respectively. To work on these two variables, a Membership Function is chosen in a form of a 

Gaussian-shaped-bell curve, and they are segmented into linguistic rules of three levels, "low" 

"medium" and "high". The three ‘IF-THEN’ rules to regulate the DO loop are as follows: 

• IF level of Ammonia is “low”, THEN set-point for DO is “low”. 

• IF level of Ammonia is “medium”, THEN set-point for DO is “medium”. 

• IF level of Ammonia is “high”, THEN set-point for DO is “high”. 

The higher-level fuzzy control framework is developed employing these rules and attached 

with the lower-level Fractional PI controller. 

3.7  Results and discussions  

Those above-described best control schemes are designed, next applied for the Wastewater 

treatment system. According to the BSM criteria, an ideal sensor is utilised for all simulations.  

Here in closed-loop systems for DO & NO control, all three situations: 1. IO plant with IO 

controller, 2. IO plant with FO controller and 3. FO plant with FO controller have implemented 

and enhanced performance is analysed. Apart from that higher-order Fuzzy controller is also 

implemented and analysed in terms of plant performance.   

3.7.1 Integer order (IO) plant with IO controller 

An IO controller in PI (default controller) form is applied to an IO model in a FOPDT form at 

the lower level. The FOPDT model is identified for both the DO and NO loop as discussed in 

the algorithm to develop an IO model. They are given below in FOPDT format, 

GDO(s) =
0.013824

0.0015778 ∗ s + 1
e−0.006021∗s 

GNO(s) =
0.000071395

0.013636 ∗ s + 1
e−0.00025001∗s 

The corresponding controllers for both DO and NO are tuned using original SIMC rules. 

controller Tunning DO  =  [Ti=0.0015
Kc=9.47  

controller Tunning NO  =  [Ti=0.0136
Kc=3.81×104 

Finally, the controller for both DO and NO loops are 
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CDO(s) = 9.47[1 + 
1

0.0015s
] 

CNO(s) = 3.81 × 10
4 [1 + 

1

0.0136s
] 

3.7.2 Integer order (IO) plant with Fractional Order (FO) controller 

Calculating the fractional order controller for the same IO plant (IO Model with PI control) we 

have used the Chen Method. To tune the parameter of the fractional PI controller we need the 

relative dead time of the system (τ) =  L/(L+T). The relative dead time for both the DO and NO 

loops are 0.79244 and 0.01800 respectively. 

Fractional Controller Tunning DO−loop = [
𝐾𝑐 = 27.1415
𝑇𝑖 = 0.0040   
𝛼 = 1.1           

 

Fractional Controller Tunning NO−loop = [
Kc = 2.27 × 105

Ti = 0.0050       
α = 0.7               

 

Finally, the FPI controller for DO and NO loops are 

CDO(s) = 27.1415 [1 + 
1

0.0040𝑠1.1
] 

CNO(s) = 2.27 × 10
5 [1 + 

1

0.0050𝑠0.7
] 

3.7.3 Fractional order (FO) plant with Fractional Order (FO) controller 

Using the FOMCON toolbox a FO model plant is identified as discussed earlier (algorithm to 

develop an FO Model). The fractional-order (FOTF) model is identified based on the time-

domain approach using ‘Oustaloup filter approximation’. The stable FOTF plant for DO and 

NO loops are 

FOTF system DO(𝑠)= 
1

6.4179∗s0.48039−99.996∗s0.21498+205.54∗s0.052764
 

FOTF system NO(𝑠) =
1

35.742 ∗ s1.8253 + 34336 ∗ s1.3281e−10
 

Finally, the Fractional-order PI controller is optimized using the ‘Nelder-Mead’ algorithm by 

choosing the performance metric as ISE. After selecting their minimum and maximum allowed 

values of all tuning parameters of the FPI controller is optimized. After selecting the minimum 
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and maximum allowable values for all tuning parameters, the FPI controller is optimized. The 

tuned parameters are 

Fractional Controller Tunning FOTF system DO = [
Kc = 50.00         
Ti = 0.01040      
α = 1.0519         

 

Fractional Controller Tunning FOTF system NO = [
Kc = 1744.8         
Ti = 0.003221    
α = 0.5011         

 

Finally, the FPI controller for DO and NO loops are 

CDO(s) = 50.00 [1 + 
1

0.01040s1.0519
] 

CNO(s) = 1744.8 [1 + 
1

0.003221𝑠0.5011
] 

3.7.4 Hierarchical Fuzzy controller 

To achieve a strong set-point tracking, along with conventional PI and fractional PI controllers 

at the lower level, a cascaded advance controller such as Fuzzy control is explored at the 

supervisory level. The major goal of adopting this cascaded method is to change the dissolved 

oxygen set-point in response to changes in ammonia concentration in tank 7. This is Ammonia-

based aeration control (ABAC) strategy. The control algorithms at lower level (PI and FPI) and 

at higher level (Fuzzy control) are distinct in nature. They are interconnected in a cascaded 

loop. The higher level Fuzzy control is operated for the purpose of the Ammonia-based aeration 

control (ABAC) strategy without affecting the lower level FPI and PI controller algorithms, 

but the only connection is providing the variable DO set point to the lower level PI and FPI 

controller from the hierarchical Fuzzy controller by manipulating the NH7.The major goal of 

adopting this cascaded method is to change the dissolved oxygen set-point in response to 

changes in ammonia concentration in tank 7. We choose the ranges for DO and SNH7 

membership functions as 0-4 mg O2/l and 0-25 mg N/l respectively. The membership curve is 

considered as a Gaussian bell curve. To ensure adequate oxidation of ammonia (SNH7) to nitrite 

(SNO), the DO concentration should be kept high enough so that it does not drop before a 

significant quantity of nitrification occurs. 
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(A) 

 

(B) 

 

Figure 3.6: Input Membership Function for SNH (A) Output Membership Function for DO (B) 

As shown in Figure 3.6 (A), the distributions of membership for ammonia (SNH7) concentration 

in tank 7 are established as 0-2 mg N/l labelled as "low”, 2-4 mg N/l labelled as "medium" and 

values over than 4 mg N/l labelled as "high", with the fuzzy set ammonia value membership 

value as 1. Figure 3.6 (B) clearly shows that for DO, values less than 0.5 mg O2/l are labelled 

undoubtedly "low," hence the membership values for this DO are assigned as 1. Similarly, 

values ranging from 0.5 - 2.0 mg O2/l are labelled as "medium" in the fuzzy set. DO values 

more than 2.5 mg O2/l are labelled as "high". These DO7 values are conceded to the lower DO7 

loop as set points. Figures 3.9 (A) and 3.10 (A) depict the changing DO set-point delivered by 

the upper level Fuzzy and it’s tracking by the bottom level. Figure 3.7 (A) shows that keeping 
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the set-point of DO at 2 mg O2/l for the entire duration, as in the default bottom level control. 

Ideally, DO7 set point is recommended as 2 mg O2/l. However, this value may not be required 

all the time and that depends on the availability of ammonia concentration in the aerobic 

reactors. The additional contribution of this study is the creation of a two-level hierarchical 

approach with a supervisory layer that employs Fuzzy Logic Control. The higher-level 

controller’s role is to compute DO7 values (lower-level set points) by measuring NH7 in the 

seventh reactor. These DO7 values are passed to the lower DO7 loop as set points. As a result, 

the higher-level control loop aids in determining the set points for the lower loop. Greater DO 

is required for improved nitrification when NH7 levels are higher. Nitrification converts 

ammonium to nitrate, whereas denitrification converts nitrate into nitrogen gas. If the DO in 

the aeration tank is too high, ammonia will drop but nitrate will rise. If the DO is too low, 

ammonia levels rise and the amount of nitrate available for denitrification falls. Additionally, 

the degree of aeration affects energy use. As a result, the DO set point should be chosen smartly. 

At a lower level, default two PI and FPI controllers are used, and Fuzzy Logic controller is 

built at a higher level. The set value of DO at 2 mg O2/l can indeed be changed to meet the 

requirements of the WWTP. It can be smaller if the ammonia load is low, and it can be larger 

if the ammonia load is high. One should note that, to have minimal operational costs, ammonia 

should always be kept at the lowest value to keep the effluent level below the discharge limit. 

Thus the simulation results showed that changing set-point using Fuzzy Logic Control 

improves plant performance in terms of providing better effluent quality. 

3.8  Controller Performance analysis 

Set-point tracking is used to evaluate performance from a controller standpoint. In the fourth 

tank, a set-point is chosen as 1 mg N/l for SNO, and for DO7 in seventh tank 2 mg O2/l is chosen 

as a set-point. 

3.8.1 Lower level controller Performance Analysis 

The set-point tracking of DO and nitrate (SNO) by PI, FPI, and Fractional Model plant with FPI 

(FM-FPI) have shown in Figures 3.7 (A, B) respectively. The effective tracking ability of the 

FM-FPI controller is comparatively superior for both DO and NO controllers, and at the same 

time, the FM-FPI controller results in superior plant performance when compared to PI control 

and the IO model with FPI control. The FPI controller using the Chen method in lower level 

NO control gives oscillatory response because of high controller gain with low integral order 

action. The main contribution of this work is implementing fractional controller in both IO and 
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FO plant model for DO and NO control. The plots in Figures 3.8 (A, B) show FM-FPI impacts 

more on set point tracking compared to IO model FPI. The manipulated variable plots by lower-

level PI, FPI and FM-FPI controller for both DO and NO loops are well tested. 

(A) 

(B) 

Figure 3.7: (A) DO tracking for lower-level PI FPI and FM-FPI (B) SNO tracking for lower-level PI FPI and 

FM-FPI 
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(A) 

 

(B) 

Figure 3.8: (A) DO tracking in IO FPI and FM-FPI (B) SNO tracking in IO FPI and FM-FPI 

In the two considered control loops, to maintain the NO and DO levels in the anoxic and aerobic 

biological reactor the internal recycling flow rate and the oxygen transfer co-efficient are 

manipulated, respectively, removal of the organic and nutrient content from the influent is done 

efficiently. 

3.8.2 Supervisory level controller Performance Analysis 

In addition, the cascaded approach with the fuzzy controller is used to adjust the dissolved 

oxygen set-point in response to changes in ammonia concentration in tank 7. It has been 

discovered that employing a Fuzzy controller with the changing set-point increases plant 
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performance. Figures 3.9 (A, B) shows the DOSP tracking of supervisory Fuzzy controller and 

nitrate tracking in the fourth reactor. 

 

(A) 

 

(B) 

Figure 3.9: (A) DOSP tracking of supervisory Fuzzy controller with lower-level FPI controller (B) Nitrate 

tracking in last anoxic reactor 

The Figures 3.10 (A, B) shows the dynamic set-point tracking with higher-level Fuzzy utilizing 

FO model FO control, as well as improved DOSP tracking and robust control action in terms 

of nitrate (SNO) tracking. 
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(A) 

 

(B) 

Figure 3.10: (A) DO tracking of supervisory Fuzzy controller with lower-level FM-FPI (B) Nitrate tracking in 

last anoxic reactor 

3.9  Plant Performance analysis 

All created controllers are employed on the plant design, and their performance assessment is 

measured using the EQI and OCI indicators. In the nitrification process in a WWTP, ammonia 

oxidises into nitrates. This is done efficiently by the FL control approach, which results in 

lower ammonia concentrations when compared to other added control strategies, ensuring the 

best EQI. As stated in the plant Performance evaluation index, OCI is computed using the ME, 

SP, AE and PE cost indices. The current controller is selected in such a way that it has a 

noticeable impact on the governing processes. Figure 3.11 shows the column chart for these 
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cost indices. The first lower loop, which manipulates Qintr to control SNO, has an effect on the 

de-nitrification process, which has a direct influence on the energy index in terms of pumping 

cost. Similarly, the change in the cost index of aeration energy is an outcome of the nitrification 

process, which is controlled by the other loop by altering KLa7. Results show that FL control at 

the higher level resulted in the highest aeration energy cost index. Table 3.2 displays the plant 

performance improvement in terms of EQI and OCI which shows with fractional modelling 

and fractional controller implementation. 

Table 3.2: Impact of proposed control strategies in evaluation criteria 

 

 

Average effluent 

concentration 

OL 

(Sheik et 

al., 2021a) 

IO model 

IO control 

IO model 

FO 

control 

FO model 

FO 

control 

IO model FO 

control 

higher-order 

Fuzzy 

FO model 

FO control 

higher-

order Fuzzy 

Components Limit  

 

NH 4 6.08415 6.09 5.74 5.73 5.79 5.76 

TSS 30 13.68 13.69 13.72 13.68 13.75 13.71 

TN 18 16.5 15.92 15.80 15.77 15.53 15.57 

TP 2 3.58 3.59 3.63 3.64 3.41 3.45 

COD 100 44.75 44.79 44.82 44.79 44.83 44.79 

BOD5 10 1.79 1.79 1.79 1.79 1.80 1.79 

NH (% of violation) 66.22 66.51 65.32 65.17 69.40 68.89 

TP (% of violation) 65.77 67.41 69.64 69.49 66.6 66.81 

TN (% of violation) 38.09 25.51 23.95 23.21 23.95 23.51 

IQI 72152.2 72152.22 72152.22 72152.22 72152.22 72152.22 

EQI 13,411 13332.76 13265.74 13253.56 12874.25 12871.22 

SP 2973.45 2969.81 2958.63 2957.10 2983.72 2980.03 

AE 4336.6 4254.57 4261.27 4259.72 4322.89 4321.61 

PE 304.81 331.52 328.80 329.82 333.40 335.69 

ME 480 480 480 480 480 480 

OCI 18,753 18680.72 18623.33 18619.22 18811.15 18799.30 



Chapter 3 

67 | P a g e  

 

Table 3.3: Performance of the different control framework in terms of EQI and OCI 

Plant 

Performance 

PI (%I) FPI 

(%I) 

FMFPI 

(%I) 

FPI-

Fuzzy 

(% I) 

FMFPI-

Fuzzy 

(%I) 

Improvement % 

with PI to FPI 

Improvement % 

with PI to FMFPI 

EQI 0.59% 1.09% 1.18% 4.00% 4.03% 0.50% 0.59% 

OCI 0.39% 0.69% 0.71% -0.3% -0.25% 0.31% 0.33% 

*%I - Improvement % with respect to OL 

 

It has been noticed that the control approaches implemented have a significant impact on plant 

performance in terms of EQI, OCI, set-point tracking, effluent concentrations, and violations. 

Total nitrogen violations in the effluent are considerably decreased by the proposed control 

approaches, whereas ammonia violations are reduced moderately in the lower level. Figures 

3.12 (A, B, C, D) shows the effluent violations percentage and their concentration in all adopted 

control schemes. Table 3.3 displays the increasing percentage of accepted controllers in terms 

of EQI and OCI. In the open-loop scenario, the EQI and OCI are 13411 and 18753, accordingly. 

When fractional controllers with integer models are used, EQI and OCI improve by 1.09 % and 

0.69 %, respectively. When fractional controllers with fractional models are used, there is a 

considerable improvement of 1.18 % in EQI and 0.71 % in OCI. Again, the improvement 

percentage for EQI in FPI control and FMFPI control with respect to PI control is 0.50% and 

0.59% respectively and for OCI it is 0.31% and 0.33%. In terms of EQI, the Fuzzy control in 

sequential order affecting the IO model with FPI control is improved by 4.00 %, while the FO 

model with FPI control improved by 4.03 % from the open-loop. However, as a result of 

controller cost, increases in OCI have been observed with Fuzzy control. An achievement like 
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Figure 3.11: Column chart for all cost indices. 
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robust set-point tracking is also accomplished for the control loops utilising both the IO and 

FO model with the same FO Controller structure, but the FO model indicates that fractional 

control strategy implementation has a significant impact on WWTP treatment. 

 

 

(A) 

 

(B) 
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(C) 

 

(D) 

Figure 3.12: (A). Ammonia concentration (B) TP concentration (C) TN concentration and (D) Column chart 

shows the effluent violations percentage in all adopted control schemes 

3.10 Comparative analysis of existing and current control plans 

The summary of current and previous control strategies indicates that adopting these fractional 

control schemes in this ASM3-bioP framework has a considerable impact on plant performance 

in terms of EQI and OCI. In the lower level control structure, designed controllers (Shiek et 

al., 2021b) like PI, Fuzzy and MPC (Table 3.4) are compared with present fractional control 

schemes.  
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Table 3.4: Comparison of Performance indices in lower level control strategy 

Plant  

Performance 
FPI FMFPI Fuzzy 

(% I) 

wrt FPI 

(% I) 

wrt 

FMFPI 

MPC 
(% I) 

wrt FPI 

(% I) 

wrt 

FMFPI 

EQI 13265 13253 13381.96 0.87% 0.96% 13,243.49 -0.16% -0.07% 

OCI 18623 18619 18,739.13 0.62% 0.64% 18,619.64 -0.02% 0.00% 
*%I - Improvement % 

*** Fuzzy and MPC controller’s performance index is presented by Shiek et al., 2020. 

The plant performance in EQI and OCI is improved by 0.87% and 0.62% by FPI controller 

with IO plant and 0.96% and 0.64% by FPI controller with FO plant when comparing with 

Fuzzy control. MPC controller shows almost the same performance analysis in terms of OCI 

and EQI. The ammonia controller in supervisory schemes defined by (Shiek et al., 2021a) is 

again compared with the present heretical Fuzzy controller (Table 3.5).  

Table 3.5: Comparison of Performance indices in supervisory level control strategy 

Plant  

Performance 

FPI- 

FUZZY 

FMFPI- 

FUZZY 

PI-

Fuzzy 

(%  I) wrt 

FPI-Fuzzy 

(% I) wrt 

FMFPI-

Fuzzy 

PI-

MPC 

(%  I) wrt 

FPI-Fuzzy 

(% I) wrt 

FMFPI-

Fuzzy 

EQI 12874 12871 12978 0.80% 0.82% 12741 -1.04% -1.02% 

OCI 18811 18799 18769 -0.22% -0.16% 18945 0.71% 0.77% 
*%I - Improvement %  

*** Supervisory level PI-Fuzzy and PI-MPC controller’s performance index is presented by Shiek et al., 2021. 

Compared with PI-Fuzzy schemes with the current two fractional schemes the EQI is updated 

by 0.80% and 0.82% in FPI-Fuzzy and FM-FPI-Fuzzy schemes. However, OCI is a little more. 

The PI-MPC result outperforms the current fractional schemes, in terms of EQI, but OCI is 

improved by 0.71% and 0.77% in FPI-Fuzzy and FM-FPI-Fuzzy schemes respectively. 

3.11 Conclusions 

A biological WWTP is evaluated using PI, FPI, and higher-level FL control techniques based 

on ASM2d wastewater data (Gernaey & Jrgensen, 2004). It has been found that the three 

implemented control strategies (i) IO model and IO control (ii) IO model FO control and (iii) 

FO model FO control in lower level have a considerable impact on the plant performance in 

terms of EQI, OCI, set-point tracking, effluent concentrations and violations. The improvement 

percentages of EQI for FPI control and FMFPI control compared to PI control are 0.50% and 



Chapter 3 

71 | P a g e  

 

0.59%, respectively, while for OCI they are 0.31% and 0.33%. Whereas implementing 

supervisory Fuzzy logic control, EQI improved by 4.00% for the IO model with FPI control, 

while the FO model with FPI control improved by 4.03 % from the open-loop model. Fuzzy 

control, however, leads to increases in OCI due to controller costs. With the described FPI 

control techniques, violations of total nitrogen in the effluent are greatly diminished by 9.01% 

for FO model and 6.11% in IO model based strategy while comparing with PI controller. 

Violations of ammonia are also reduced moderately in lower-level control using FPI controller 

in FO model and IO model by 2.01% and 1.78% respectively, while compared with default PI. 

Compared with the open-loop scenario, the EQI and OCI both have improved significantly. 

When compared with the PI controller the results in the FO controller showed more influence 

on plant performance but the best result is found in the FM-FPI strategy. A Fuzzy logic 

controller, as a higher level ammonia controller improves the EQI significantly, however, 

increased OCI is observed. 
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Chapter 4 

4. DESIGN OF IMC-BASED FRACTIONAL CONTROLLERS 

WITHIN A SUPERVISORY MPC CONTROL. 

This chapter places a heightened emphasis on the design of a fractional controller using the 

Internal Model Control (IMC) technique. The IMC based fractional controller design 

necessitates a specific structured transfer function model, which could be either integer or non-

integer order, contingent upon the chosen controller (PI/FPI). Consequently this chapter centres 

on a systematic analytical approach to craft a fractional controller within an identified non-

integer order model. The ultimate validation of this controller is conducted in a nonlinear 

process within the WWTP plant, applying the previous ASM3-bioP model. 

4.1 Introduction 

This study optimises wastewater treatment plants (WWTPs), specifically the activated sludge 

process (ASP) and its aeration process, a seven-reactor arrangement that removes nitrogen and 

phosphorus simultaneously. In recent years, the field of control theory has experienced 

substantial expansion in its study of fractional calculus and its practical implementations. To 

regulate the concentrations of dissolved oxygen (DO) and nitrate (NO) in aerobic and anoxic 

reactors, respectively, IMC-based fractional filter cascaded with PI and FPI controls are the 

two types of controllers utilised. These controllers employ models with integer and non-integer 

orders, respectively. The objective is to guarantee the highest level of plant efficiency, resulting 

in a longer plant lifespan, decreased cost per unit of production, and minimal nutrient 

concentration in the wastewater. The IMC fractional PI controller is designed with the 

maximum sensitivity (Ms) as a priority, taking into account the process's gain margin (GM) 

and phase margin (PM) as constraints. Conversely, advancements in the study of fractional-

order calculus have allowed scientists to prove that real-time complex processes possess a 

dynamic nature characterised by fractional order. Systems with fractional order exhibit reduced 

complexity while retaining intricate system dynamics. The fractional-order PID (PIλDμ) 

controller is an enhanced version of the integer-order PID controller that incorporates 

additional integration (λ) and differentiation (μ) orders. Adjusting the parameters of this 

controller improves the stability of the closed-loop response. The FOMCON Toolbox is utilised 

to evaluate fractional model Systems based on real-time simulation data. The results of 

fractional model structures are also compared to those of an integer order model structure. The 
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non-commensurate fractional model has superior performance compared to other fractional and 

integer model structures during simulations.    

4.2  Identification of Non-integer order model with time delay (NOPDT) 

We have selected the ASM3bioP model and its aeration process to study the IMC fraction filter 

in the non-linear processes of wastewater treatment plants (WWTPs). Our attention is 

specifically on an activated sludge process (ASP) that utilises a BSM1-P configuration of seven 

reactors, as described in section 1.4. Figure 4.1 describes the algorithm of non-integer order 

model identification. 

Create a 'fidata' format through simulated input and output data. 

Select time domain identification to generate a ‘fotf’ 

object.   (The tool offers a frequency domain alternate.) 

Based on workspace 'fidata' decide a ‘simulation parameter 

method’ and a ‘preferred algorithm’ for the identification.     

Generate an initial guess model by selecting the order of the 

polynomial q (0.01 ≤ q < 2)     

Select control (SNO4, DO7) and manipulating variables (Qintr, 

KLa7) for desired control loop 

Stimulate the inputs (Qintr, KLa7) by ±10% using random 

source 

around the operating point and collect input/output data  

Estimate the model and Check for model fit 

If the model 

fit >75 % No 

Yes 

Export the system for controller design 

o Grunwald-Letnikov 

method.  

o Oustaloup filter,  

o Refined Oustaloup 

filter. 

o Preferred 

algorithm is set 

to 'Trust-Region-

Reflective.' 

Figure 4.1: Algorithms to develop a non-integer model utilizing ‘FOMCON’ toolbox 
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Before implementing an efficient structure for any process, it is essential to determine a suitable 

process model. Transfer Functions (TF) explain the processes in our control system by 

integrating key principles of physics and bio-chemical engineering, including Newton's law, 

material balance, heat transfer, and fluid dynamics. Nevertheless, in practical applications, 

numerous industrial processes are too complex to be solely described by these fundamental 

concepts. The content offers an overview of the equations and modelling approach used in the 

process identification of the ASM3-bioP model, which helps in comprehending the intricate 

systems involved. In this study, we use simulation studies to identify non-integer order models 

with time delays in WWTP. We next develop a fractional controller by cascading GA-based 

IMC fractional filters onto these models. The PI controller with a fractional filter is constructed 

using the integer order plant model, as described in the study by Indranil et al. 2022, by 

applying the IMC technique. 

Fractional-order calculus is a generalization of integer-order calculus which comprises 

arbitrary order differential and integral equations. Any derivative or integral of any order can 

be solved using fractional calculus theory, as can continuous versions of the fractional calculus 

operator, as described in (Tepljakov 2017) in Eq. (4.1). 

 

                                a𝒟t
p
= {

dp

dtp
 Re(p) > 0

1        Re(p) = 0

∫ (dt)−p
t

a
 Re(p) < 0

  

  

(4.1) 

Where 'a' and ’t’ represent the calculus upper and lower limits, and is an arbitrary intricate. 

Many other definitions of fractional calculus have been generated by fractional order calculus 

theory, like the GL, RL, and Caputo theories, by Tepljakov 2017.  

Based on the time-domain approach, a non-integer order time delay transfer function model is 

found using the MATLAB FOMCON toolbox. We can choose the kind of system simulation 

we want to use using the Simulation parameters window. The input and output data is generated 

by giving the random input to the model of ASM3-bioP model at steady sate with plant influent 

and relating all state variable. Steps to explain a well-fitted model identification. First and 

foremost, a "fidata" format has to be selected. Pick the ‘Time domain Identification’, can also 

choose frequency domain in the ‘Identification’ tab. Select the ‘simulation parameter methods’ 

in the options of Grunwald-Letnikov method or Oustaloup filter or Refined Oustaloup filter. 

(The next two options must allow you to choose the 'w' range and order). 
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4.2.1 Oustaloup filter 

The Oustaloup recursive filter is commonly used in fractional calculus because it provides a 

fair approximation of fractional operators over a specified frequency range (Oustaloup et. al, 

2000).  An operator is assigned a frequency range (ωb, ωh) and a filter of order N, operator as 

sγ   0 < γ < 1, is specified by, 

𝐺𝑓(𝑠) = 𝐾 ∏
𝑠 + ώ𝑘
𝑠 + 𝜔𝑘

𝑁

𝐾=−𝑁

                                                                             (4.2) 

Where,  

ώ𝑘 = 𝜔𝑏 (
𝜔ℎ
𝜔𝑏
)

𝑘+𝑁+
1
2
(1−𝛾)

2𝑁+1
 

   𝜔𝑘 = 𝜔𝑏 (
𝜔ℎ
𝜔𝑏
)

𝑘+𝑁+
1
2
(1+𝛾)

2𝑁+1
 

𝐾 = 𝜔ℎ
𝛾
𝑎𝑛𝑑 𝑁 =  Approximation order 

Figure 4.1 displays the algorithm involves in Non-integer model identification in FOMCON 

toolbox. Using the Oustaloup filter in the ‘Identification and options’ section, right ‘fidata’ 

name should be chosen and our preferred algorithm is ‘Trust-Region-Reflective’. It contains a 

symbolic illustration of the defined model in terms of fractional pole and zero polynomials. A 

first-guess model is created. In order to create polynomials autonomously, a commensurate-

order q that has the property that 0.01 ≤ q < 2 —the order of the polynomial—can be defined. 

It is essential at the end of the identification process to display a plot that displays upright fitting 

results and shows the identified system's stable behaviour. As long as the results are 

satisfactory, the model is retained for use in developing a controller. 

As a final step, we find a process model in the form of non-integer orders plus time delays 

(NOPDT), and 𝜷 is the non-integer order. 

                                          GP = 
𝑲

𝑻𝑺𝜷+𝟏
𝒆−𝑻𝒅𝑺                                (4.3) 

4.3 Controller Implementation 

Careful consideration is essential when selecting a control structure for an effective control 

scheme. Controlling nitrification and denitrification rates is key in WWTPs. As discussed 
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earlier the amount of DO that blowers add to the water in the aeration tank is a crucial indicator 

of the effectiveness of the biological treatment process and is directly related to the health of 

the microbial culture. One simple way to monitor and manage the treatment process is to 

monitor and control the dissolved oxygen content. Under certain conditions, high air 

consumption in the aeration zones is no longer necessary if the nitrate intake in the last pre-

denitrification zone stays below a particular threshold. In an anoxic reactor, keeping the nitrate 

(NO) level within the optimal operating range of 1-3 mg N/l is critical when internal recycling 

takes place. Usually, 1 mg N/l is used as the desired amount. 

 

In this study, the fourth reactor (anoxic) controls Qintr to maintain SNO4 at 1 mg N/l, while the 

seventh reactor (aerobic) modifies KLa7 to maintain SO7 at 2 mg O2/l. This is accomplished by 

cascading Fractional PI (FPI) controllers with an Internal Model Control (IMC) -based 

fractional filter (as illustrated in Figure 4.2). In the end, a comparison is made between the 

outcomes and an IMC-based fractional filter Integer Order PI that has been developed. The 

main focus of this study is the development of a fraction controller (FPI) for a non-integer order 

model system and replacing a PI controller at the lower level for both integer and fractional 

models. 
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Figure 4.2: BSM-1P plant framework with IMC-based PI and FPI control approach for DO control 
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4.3.1 IMC Fractional filter deign using Constrained GA 

A popular type of feedback control system used in process control and factory automation is 

the IMC controller, which stands for "Internal Model Control controller." It gives you an 

organised way to control things that uses math models to get accurate control and make the 

system work well. To reach the control goals and keep the system stable, it is very important 

that IMC controllers are designed and tuned correctly. For IMC to work, there needs to be a 

mathematical model of the system or process that needs to be controlled. The IMC scheme and 

feedback loop are shown in Figure 4.3. GP, GP˼, and Gc* stand for the process, the internal 

model of the process, and the IMC controller, respectively. Ysp stands for the set point, Y for 

the managed variable as an output, and D for the disturbance. 

Getting DO tracking at 2 mg O2/l in the ASM3bioP model by changing KLa7 is seen as a servo 

problem, while dealing with changing inputs is seen as a regulatory problem. 

To tune an IMC controller, you have to change its parameters to get the amount of control you 

want. Parameters like gains, time constants, and other values tell the controller how to act. 

Tuning is necessary for control to work reliably and well. In this research, a Genetic Algorithm 

(GA) with constraints is used to find the IMC controller's filter parameter. The IMC model 

design is used to find the controller's wins. 

The steps needed to make an IMC-PID controller are shown in Equations (4.4–4.7), which 

describe the controller design using the IMC method. 

The final response of a classical feedback controller is described in Eq. (4.4). 

Y =
GCG

1 + GCG
YSP +

1

1 + GCG
D                                       (4.4) 

Step 1: Factor Process Eq. (4.5) follows the model's method. 

IMC 

Controller 
Biological WWTP 

(ASM3-bioP) 

Process Internal Model 

Gc* GP 

GP˜ 

    YSP 

Set-Point 

Disturbance 

(D) 

Output  

(Y) 

Figure 4.3: IMC-based feedback control technique 
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GP = G+G−                                                                                     (4.5) 

Step 2: Derive the IMC transfer function from the IMC structures using Eq. (4.6). 

Y =
GC
∗G

1 + GC
∗ (G − GP)

YSP +
1 − GC

∗GP
1 + GC

∗ (G − GP)
D                      (4.6) 

GC =
GC
∗

1−GC
∗GP

    GC
∗ =

1

G−
f 

Here f is the filter function for the system's physical reliability f =
1

(TS∝+1)r
              T = Time     

constant   r = Positive integer. 

Step 3: Obtain the model's controller from the IMC approach using Eq. (4.7). 

GC =
GC
∗

1 − GC
∗GP

                                                                            (4.7) 

4.3.2 Non-integer filter with integer PID controller (NOF-IOPID) 

The time domain version of the generic integer order controller formula is represented by Eq. 

(4.8). 

u(t) = KP e(t) + KdDe(t) + Ki∫e(t)                                                     (4.8) 

Using error signal e(t) as a starting point, Kp, Ki and Kd define the proportional (P), integral 

(I), and derivative (D) gains. The controller's equation (4.8) is translated into equation (4.9) by 

performing the Laplace transform, which has zero initial conditions. 

GC (s) =  KP +
Ki
s
+ Kd s                                                                            (4.9) 

Eq. (4.10) represents an integer order process with a fractional filter. 

CIF(s) =
1

(λsα−1 + Td)

T

K
 (1 +

1

Ts
)                                                      (4.10) 

Eq. (4.11) shows a fractional filter term and α is the order of filter 

H(s) =
1

(λsα−1 + Td)
                                                                            (4.11) 
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PID Controller gain values from the IMC method is   Kp =
T

K
 , Ki =

1

Ti
, Kd = 0 

4.3.3 Non-integer filter cascaded with fractional order PID controller (NOF-FOPID) 

Eq. (4.12) is the generic time domain variant of the fractional order controller equation. 

u(t) = KP e(t) + Ki𝒟 
−ηe(t) + Kd𝒟 

Υe(t)                           (4.12) 

Like Integer PID, the error signal e(t) then Kp, Ki and Kd define the proportional (P), integral 

(I), and derivative (D) gains. Finally these η , Υ are the fractional derivate and integral co-

efficient. Eq. (4.12) is changed into Eq. (4.13) through the application of the Laplace transform 

to the controller assuming zero initial conditions. 

GC (s) =  KC +
Ki
sη
+ Kd s

Υ                                                    (4.13) 

Eq. (4.14) displays the fractional order system with a fractional filter CFF(s) from the IMC 

process. 

CFF(s) =
1

(λsα−β + Tds
1−β)

T

K
 (1 +

1

Tsβ
)                    (4.14) 

Eq. (4.15) represents the fractional filter term V(s) and α is the order. 

V(s) =
1

(λsα−β + Tds1−β)
                                                         (4.15) 

Fractional PID Controller parameters from the IMC technique is  KC =
T

K
 , Ki =

1

Ti
, Kd =

0, η = β 

4.4 Tuning deploying MS-based GA Constrained optimization 

The genetic algorithm (GA) is a way to solve optimisation problems with and without 

constraints. It works by using the ideas of natural selection and is similar to how living things 

evolve. The algorithm updates a group of individual answers over and over again. At each 

stage, the GA picks people at random from the present population and uses them as parents to 

make children for the next generation. 

A fitness function is used in genetic algorithms to figure out how close a design answer is to 

reaching the goal value. A chromosome, which is also called a genotype, is a group of factors 

that together make an idea for how to solve the problem. The population includes all possible 
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options. A genetic operator called crossover is used to change the code of one or more 

chromosomes from one generation to the next. To keep genetic diversity in a community, 

genetic algorithms are based on the way that living things cross-breed and reproduce. Mutation 

changes the numbers of one or more genes on a chromosome from how they were at the start. 

In a genetic algorithm, the selection process includes picking out individual genomes from a 

population to breed with other genomes. The flowchart of the method is shown in Figure 4.1. 

The evaluation index used in this study was picked to minimise error. It is shown as the Integral 

of Absolute Magnitude of Error (IAE). 

The maximum sensitivity for the gain margin and phase margin was chosen as a constraint 

when designing the IMC fractional P-I-D controller of the first order plus time delay structure. 

A constrained genetic algorithm operates to fine-tune the filter parameters (λ, α) utilising 

criteria such as Gain Margin (GM), Phase Margin (PM), Gain crossover frequency (Wgc), 

Phase crossover frequency (Wpc), and Maximum Sensitivity (MS). Eqs. (4.16–4.17) describe 

the closed-loop model. 

L(s) = GP(s)c(s)                                                                                                                           (4.16) 

L(s) =
1 − Tds

(λsα + Tds)
                                                                                                                       (4.17) 

While s=jw was entered into Eq. (4.17), it was transferred to Eq. (4.18). 

L(jw) =
1 − Tdjw

(λ(jw)α + Tdjw)
                                                                                                          (4.18) 

Based on the complex numbers, j = cos (
π

2
) + j sin (

π

2
). The power and roots of complex 

numbers can be easily calculated using De Moivre's Theorem. 

Eq. (4.19-4.20) represents j from De Moivre's Theorem. 

(j)k = (cos (
π

2
) + j sin (

π

2
))
k

= cos (k
π

2
) + j sin (k

π

2
) where k = 1,2… . n     (4.19)             

(j)∝ = cos (∝
π

2
) + j sin (∝

π

2
)                                                                          (4.20)      

In case Eq. (4.20) is substituted for Eq. (4.18), the process model is as follows. Eq. (4.21) 
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   L(jw) =
1 − Tdjw

[λ(w)α cos (∝
π
2) + j (Tdw+ λ

(w)α sin (∝
π
2))]

                                              (4.21) 

To run the GA algorithm in a predetermined form for the closed loop model L(S), gains margin 

(GM), phases margin (PM), and crossover frequencies (WGC, WPC) are calculated. 

4.4.1 Maximum Sensitivity (MS):  

We find the greatest value of the sensitivity function over a wide frequency range. Shown in in 

Eq. 4.22, 

MS|max(0<ω<∞)=
C(s)G(s)

1+C(s)G(s)
                                                                                                        (4.22) 

Eqs. (4.23-4.24) show the relationship involving the process models' maximum sensitivity 

(Ms), gain margin (GM), and phase margin (PM).  

GM ≥
MS

MS − 1
                                                                                                                                   (4.23) 

PM ≥ 2 sin−1 (
1

2MS
)                                                                                                                      (4.24) 

4.4.2 Performance Indices  

The integral of squared error (ISE) and integral of absolute error (IAE) are frequently utilised 

to evaluate the performance of the controller. These are outlined by the subsequent equations 

(4.25-4.26). 

ISE = ∫  
∞

0

e2(t)dt                                                                                                                           (4.25) 

IAE = ∫  
∞

0

|e(t)|dt                                                                                                                         (4.26)  

4.5  Higher order filter with IMC Fractional controller deign- an analytical method 

A fractional-order model generated through "Fractional order model identification" can be fine-

tuned using an IMC filter. Previously described GA based IMC PID or FPID controller 

generates a lower order Non-integer filter. The current study also focus for a higher order non-

integer filter implementation in the current application of Wastewater treatment in terms of 

ASM3-bioP framework. This study addresses the downsides of GA-based design and illustrates 

how a higher-order filter changes the current non-integer order transfer function at the same 
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time. The Fractional Proportional-Integral-Derivative (FPID) controller's values stay the same 

as they were in the Internal Model Control (IMC) method. In this case, however, Li et al. (2015) 

explain a mathematical method that is used to find the higher-order non-integer filter. The main 

goal is to look into how higher-order filter factors affect the tuning of the IMC controller. A 

comparison study is also done between two IMC FPID controls in the complex processes of 

biological wastewater treatment plants (WWTPs). This method helps us understand the 

differences in how well the two systems work in this complicated WWTP setting. The design 

technique offered a simple method for setting PID parameters that consider the control system's 

resilience and maximise sensitivity. This method yields a fractional IMC-PID controller with 

a fractional-order PID structure with a Non-integer filter.  

The controller design for the plant with a non-integer structure, as shown in Eq. (4.3), can be 

separated according to non-integer order, making it more realisable. 

Gp(DO) =
0.007985

0.00057858 ∗ S1.1 + 1
e−0.0059∗S                                                                           (4.27) 

Gp(NO) =
0.0000291254

0.00403027 ∗ S1.05 + 1
e−0.0051∗S                                                                         (4.28) 

When 0 <β< 1, Eq. (4.29) gives the controller. 

C(s) =
1 + 0.5TdS

S1−β(0.5λS + λ + Td)

T

K
 (1 +

1

TSβ
)                                                                  (4.29) 

And when 1 ≤β< 2, controller is given by Eq. 4.30 

C(s) =
1 + 0.5TdS

S1−β(0.5λ2TdS2 + (λTd + λ2)S + 2λ + Td)
 
T

K
 (1 +

1

TSβ
)                                 (4.30) 

Where  

𝜆 ≈ L(−0.0667𝑀𝑠
5 + 0.5314𝑀𝑠

4 − 1.6861𝑀𝑠
3 + 2.667𝑀𝑠

2 − 2.1076𝑀𝑠 + 0.6679)

× 103   (4.31) 

Both Equations (4.29-4.30) reveal that the PIβ parameters are previously known. The only 

parameter that needs to be tuned is λ. As a result, higher control performance can be predicted 

if λ is correctly calibrated. In this work, the maximum sensitivity Ms for both loops is set to 

1.2, likewise previously set, resulting in λ = 0.0130 for the dissolved oxygen loop and λ = 
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0.0112 for the nitrate loop. Furthermore, the above Eqs. (4.27-4.28) show that for both loops 

is 1 ≤β< 2 therefore by Eq. (4.30), controllers for both loops are given in Eqs. (4.32-4.33): 

 

CDO(s)

=
1 + 0.5 × 0.0059 × S

S(1−1.1){0.5 × 0.01302 × 0.0059 × S2 + (0.0130 × 0.0059 + 0.01302)S + (2 × 0.0130) + 0.0059}
  

                                                               [0.07245 (1 +
1

0.00057858

1

s1.1
)]                                        (4.32)    

 

CNO(s)

=
1 + 0.5 × 0.0051 × S

S(1−1.05){0.5 × 0.01122 × 0.0051 × S2 + (0.0112 × 0.0051 + 0.01122)S + (2 × 0.0112) + 0.0051}
  

                                                             [138.376 (1 +
1

0.00403027

1

s1.05
)]                                            (4.33) 

 

4.6  Hierarchical control scheme: Model Predictive Control 

Lower level control controllers maintained dissolved oxygen set-point. The higher level 

controller adjusts DO controller set-points dependent on tank ammonia level.  Different ASM3-

bioP mechanisms handle SNH biologically.  More SO is needed for nitrification when SNH rises. 

As SNH declines, SO is needed less, reducing SNO.  Following sections propose supervisory 

combinations for lower and higher-level controllers. Figure 4.4 shows the two-level controller 

design used in this work. The higher level controller must provide appropriate set points to the 

lower level. Lower level DO set-point is based on tank 7 (SNH7) ammonia content, which is a 

configurable variable at the upper level. The bottom level must follow its set-point trajectory. 

MPC is a sophisticated control approach that is used in the majority of process industries. It 

improves performance by combining an approximation prediction model with a control method 

that delivers the ideal trajectory of the manipulated variable.  The prediction model in this case 

is a linear dynamic model of the process that is used to anticipate its expected future response 

and then select the optimal control action available while satisfying a set of constraints. A 

mathematical model of the plant is used to create model predictive control systems. A state-

space model is assumed to be employed in the control system design. Basically, MPC is 
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composed of three main components: a plant model, a cost function, and an optimizer. A model 

simulates the behaviour of the actual process and forecasts output in the future over a 

predefined period (prediction horizon). Future errors are estimated based on that, and the 

optimizer attempts to minimise them over time (control horizon). The prediction and control 

horizons that are chosen can have a significant impact on the controller's functionality. 

Steps to set a supervisory MPC controller 

 MPC utilises a process model to predict the future behaviour of a certain variable, combined 

with an optimisation method to address the control problem. The MPC algorithm predicts the 

trajectory of output variables for each control instance over a prediction horizon (p). 

Afterwards, it calculates a series of control actions for a control horizon (m) using the predicted 

output. The optimisation algorithm aims to minimise a quadratic objective function, as 

specified in equation (4.34). 

𝐽 =  ∑ ||𝛤𝑦(𝑦(𝑘 + 𝑙|𝑘) − 𝑟(𝑘 + 𝑙))||
2𝑝

𝑙=1 + ∑ ||𝛤∆𝑢(∆𝑢(𝑘 + 𝑙 − 1))||
2𝑚

𝑙=1                      (4.34) 

Where, y(k+l|k) is the controlled output at future sampling instant k+l, predicted by model at 

current instant k. And ΓΔu and Γy represent input rate weight and output weight respectively. 

Model Predictive Control (MPC) provides set-points to lower-level fractional-order 

Proportional-Integral (PI) controllers at a more advanced level. The technique of determining 

the linear model for prediction in MPC closely resembles the identification procedure at the 

lower level. The Parameter Estimation Method (PEM) is used to construct the higher-level 

linear state-space model. The linear model is employed for prediction in Model Predictive 

Control (MPC) and is obtained by perturbing the set-point of the Disturbance Observer (DO) 

for the lower level within a range of its nominal value (±10%) and observing the resulting effect 

on SNH7. The measured disturbance is considered to be the inlet flow rate. To add lower-level 

control, the PEM approach is applied using a third-order state-space model of the system, as 

described in equation (4.35). 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) 

𝑦(𝑘) =  𝐶𝑥(𝑘) + 𝐷𝑢(𝑘)                                                                                 (4.35) 

Where x(k) represents the state vector and A, B, C, D represent the state space matrices. 
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The operating point of DO is found to be 2.2 mg O2/lfor an ammonia set-point of 3.01 mg/l. 

The impact on SNH7 is noted and the system's model obtained as per equation (4.35) is given in 

equation (4.36). 

𝐴 = [
−1.5794 −5.9788 0.0970
16.7419 −22.5856 −12.4775
−1.8143 19.4594 −2.5352

] 

B =  [
0.4457
4.1247
−4.7635

]                 (4.36)  

𝐶 =  [1.8750 −0.3941 −0.1303] 

D =  [0] 

 

The tuning parameters selected to design the higher level MPC are as follows: 

 Control horizon=10,  

 Prediction horizon=15  

 Sampling time=0.0100 days for FPI-IMC MPC  
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4.7 Result and Discussion 

This section presents the key outcomes of the work, which include finding non-integer order 

models and looking at how well-tuned controllers work. In the concluding phase, the developed 

methodology is put to the test on the complex ASM3bioP platform model in order to assess the 

wastewater treatment plant's overall performance. 

Non integer model 

This paper’s 1st focus is identifying the Non-integer model of ASM3-bioP framework and 

implementing a systematic IMC based controller for enhanced effluent control as well as 

operation cost minimization. The plant operation is done for 0-14 days. During the 

identification, the simulation model is made on that full range of biological processes and 

sampling is done by 1/96. So a total of 1345 data points are considered for process model 

identification. We select the Oustaloup filter as ‘simulation parameter methods’ and the 

preferred algorithm is ‘Trust-Region-Reflective’ for identification. Figure 4.5(a, b) presents the 

validation of identified non-interger order model for both DO and NO loops. 
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Figure 4.4: BSM-1P plant framework with IMC-based PI and FPI control approach for DO control with a supervisory MPC 

control 
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Figure a Figure b 

Figure 4.5: Validation of identified Non-integer order model with time delay; Figure a for DO loop and Figure 

b for NO loop 

The Final process models are found in form of non-integer order with Time delay (NOPDT) 

for both DO and NO control loop, like equation 4.3. Stability analysis of the identified process 

model is also examined.  

Gp(DO) =
0.007985

0.00057858 ∗ S1.1 + 1
e−0.0059∗S                                                                           (4.27) 

Gp(NO) =
0.0000291254

0.00403027 ∗ S1.05 + 1
e−0.0051∗S                                                                         (4.28) 

4.7.1 IMC based controller design using GA 

The integer (Indranil et. al, 2022) and non-integer order transfer function models for DO and 

NO control that have been identified are presented earlier. The cascaded filter controller 

structure, where the filter parameters (λ, α) are tuned using GA by minimising the ISE of the 

closed-loop response by selecting maximum sensitivity (MS) =1.2. The IMC structure 

controllers are designed in two forms: integer order and non-integer model as CIF(S) for NOF-

IOPID and CFF(S) for NOF-FOPID. Table 4.1 displays the evaluated control structure for both 

dissolved oxygen (DO) and Nitrate (NO) loop and Table 4.2 shows the evaluated controller 

performance during two simulations. 
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Table 4.1: NOF-IOPID and NOF-FOPID control structure for dissolved oxygen (DO) and Nitrate (NO) loop 

control 

 

Table 4.2: controller performance 

 

Control 

loop 

Transfer 

function 

Identified model  Fractional 

Filter 

Parameters 

IMC based Controller  

(according to Equation 10 and 14) 

 

 

Integer Order 

𝐾

𝑇𝑆 + 1
𝑒−𝑇𝑑𝑆 

 

0.013824

0.0015778 ∗ S + 1
e−0.006021∗S 

λ = 

0.1557 

α = 

0.9688 

CIF(s) = 

1

(0.1557 s0.9688−1 + 0.006021)
  

                         

 [0.11413 (1 +
1

0.0015778

1

s
)] 

 

Non-Integer 

Order 

𝐾

𝑇𝑆𝛽 + 1
𝑒−𝑇𝑑𝑆 

 

0.007985

0.00057858 ∗ 𝑆1.1 + 1
e−0.0059∗S 

λ = 

0.0718 

α = 

0.9998 

β = 1.1 

CFF(s) = 

1

(0.0718 s0.9998−1.1 + 0.0059s1−1.1)
  

[0.07245 (1 +
1

0.00057858

1

𝑠1.1
)] 

 

 

Integer Order 

𝐾

𝑇𝑆 + 1
𝑒−𝑇𝑑𝑆 

 

0.000071395

0.013636 ∗ S + 1
e−0.00025001∗S 

λ = 

0.1857 

α = 

1.001 

CIF(s) = 

1

(0.1857 s1.001−1 + 0.00025001)
  

                      

[190.9937 (1 +
1

0.013636

1

s
)] 

 

Non-Integer 

Order 

𝐾

𝑇𝑆𝛽 + 1
𝑒−𝑇𝑑𝑆 

 

0.0000291254

0.00403027 ∗ 𝑆1.05 + 1
e−0.0051∗S 

λ = 

0.1001 

α = 

1.0091 

β = 1.05 

CFF(s) = 

1

(0.1001 s1.0091−1.05 + 0.0051s1−1.05)
  

[138.376 (1 +
1

0.00403027

1

𝑠1.05
)] 

Controller 
Dissolved oxygen (DO) loop Nitrate (NO) loop 

IAE ISE IAE ISE 

NOF-IOPI 0.4852 0.4224 0.3719 0.1865 

NOF-FOPI 0.3326 0.2759 0.2501 0.1288 
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The Implemented controller is tuned by IMC approach and non-integer filter parameters are 

optimized by constrained GA. The controller’s performance is impressive for both servo and 

regulatory problem. Both IAE and ISE is minimized into quite good number. Based on the 

performance parameters and response of the controller in Figure 4.6 (a,b), can conclude FF-

FOPI outperforms FF-IOPI.    

4.7.1.1 Uncertainty analysis with perturbations in Model 

One mathematical model is not enough to show how a real system works. System uncertainties 

can be caused by disturbance signals or changes in system variables. In this situation, a reliable 

control system should always work the same way. To make a strong device, maximum 

sensitivity (Ms) =1.2 was used. Figure 4.7 (a,b) shows controller response with perturbed 

model for DO loop transfer function and what happens to the controller action when the 

FOPTD and fractional order with delay model settings are changed. There are 20% changes in 

the delay parameter, 20% changes in the gain parameter, and 20% changes in the time constant 

parameter. Based on these results, the findings demonstrate that a well-designed optimised 

robust controller protects the system against unpredictable variables. We thoroughly analysed 

the uncertainty related to the determined model when it was subjected to closed-loop control 

action. We carefully evaluated the possible changes and unpredictability in the system's 

response. We conducted an in-depth study of closed-loop control, exploring the complexities 

involved and taking into account potential sources of uncertainty, such as disturbances, 

variations in parameters, and external effects. After an extensive evaluation, we can certainly 

 

Figure a 

 

Figure b 

Figure 4.6: Set point tracking in closed loop control action with disturbance; Figure a DO tracking at 2 mg 

O2/L; Figure b NO tracking at 1 mg N/L 
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affirm that our method successfully dealt with and reduced the uncertainties present in the 

identified model through closed-loop control action. 

Table 4.3: Uncertainty of plant in case of DO integer order 

 

 

Table 4.3 and 4.4 summarises the performance metrics of the controller with uncertainties in 

the FOPTD and fractional order with delay models. For all perturbations in the models, the FF-

FOPID of the Fractional order with delay model has lower values than the FF-IOPID of the 

FOPTD model. 

Table 4.4: Uncertainty of plant in case of DO non-integer order 

 

 

Identified Model 

(DO Integer) 
Perturbed Model 

Perturbatio

n 

Controller  

Performance 

ISE IAE 

 

𝟎. 𝟎𝟏𝟑𝟖𝟐𝟒

𝟎. 𝟎𝟎𝟏𝟓𝟕𝟕𝟖 ∗ 𝐒 + 𝟏
 

𝐞−𝟎.𝟎𝟎𝟔𝟎𝟐𝟏∗𝐒 

0.0110592

0.00126224 ∗ S + 1
e−0.0048168∗S -20% 

0.517

3 

0.606

4 

0.0165888

0.00189336 ∗ S + 1
e−0.00752252∗S +20% 

0.358

2 

0.404

6 

Identified Model 

(DO Non integer) 
Perturbed Model Perturbation 

Controller  

Performance 

ISE IAE 

 

 

𝟎. 𝟎𝟎𝟕𝟗𝟖𝟓

𝟎. 𝟎𝟎𝟎𝟓𝟕𝟖𝟓𝟖 ∗ 𝑺𝟏.𝟏 + 𝟏
 

𝐞−𝟎.𝟎𝟎𝟓𝟗∗𝐒 

 

0.006388

0.000462864 ∗ 𝑆1.1 + 1
𝑒−0.00472∗𝑆 

 

-20% 

 

0.3282 

 

0.4011 

 

0.009582

0.000694296 ∗ 𝑆1.1 + 1
𝑒−0.00708∗𝑆 

 

+20% 

 

0.2424 

 

 

0.2879 
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Figure 4.7: controller response with perturbed model for DO loop transfer function; Figure a Integer Plant 

perturbation; Figure b Non-integer perturbation. 

4.7.1.2 Fragility analysis of controller for DO fractional TF 

This index checks how resilient the control loop is compared to how robust it is when the 

controller settings change. Find out how much the control loop's strength is lost when one or 

more of the nominal controller parameter values given by the equation change by up to 20%. 

Figures 4.8 and 4.9 depict controller and filter factor variations for the respective DO and NO 

loop fractional order with delay models when subjected to a 20% perturbation. Despite this 

notable perturbation, the system demonstrates outstanding tracking abilities in servo and 

regulatory responses. The controller can handle changes in parameters of up to 20%, so it is 

not fragile and is strong. 

Table 4.5: Fragility analysis of controller for DO fractional TF 

 

Figure a 

 

Figure b 

Perturbed Controller Perturbation 

Controller  Performance 

IAE ISE 

𝐂𝐅𝐅(𝐬)

=
𝟏

(𝟎. 𝟎𝟓𝟐𝟒𝟒 𝐬𝟎.𝟕𝟗𝟗𝟖𝟒−𝟎.𝟖𝟖 + 𝟎. 𝟎𝟎𝟓𝟗𝐬𝟏−𝟎.𝟖𝟖)
 

 

[𝟎. 𝟎𝟓𝟕𝟗𝟔𝟔𝟒 (𝟏 +
𝟏

𝟎. 𝟎𝟎𝟎𝟓𝟕𝟖𝟓𝟖

𝟏

𝒔𝟎.𝟖𝟖
)] 

 

-20% 0.2859 0.2347 

𝐂𝐅𝐅(𝐬)

=
𝟏

(𝟎. 𝟎𝟖𝟔𝟏𝟔 𝐬𝟏.𝟏𝟗𝟕𝟔−𝟏.𝟑𝟐 + 𝟎. 𝟎𝟎𝟓𝟗𝐬𝟏−𝟏.𝟑𝟐)
 

 

[𝟎. 𝟎𝟖𝟔𝟗𝟒𝟗𝟔 (𝟏 +
𝟏

𝟎. 𝟎𝟎𝟎𝟓𝟕𝟖𝟓𝟖

𝟏

𝒔𝟏.𝟑𝟐
)] 

+20% 1.082 0.8529 
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4.7.1.3 Fragility analysis of controller for NO fractional TF 

Conducting fragility analysis involves assessing the susceptibility of the controller to outside 

influences, specifically with a 20% perturbation for a NO loop non-integer order plant. This 

assessment enables us to comprehend the system's sensitivity to variations and emphasises the 

resilience of the controller in sustaining stability and performance in such circumstances. 

Figure 4.9 illustrates the non-fragile closed loop control action for NO loop.  

Table 4.6: Fragility analysis of controller for NO fractional TF 

Perturbed Controller Perturbation 

Controller  Performance 

IAE ISE 

𝐂𝐅𝐅(𝐬)

=
𝟏

(𝟎. 𝟎𝟖𝟎𝟎𝟖 𝐬𝟎.𝟖𝟎𝟕𝟐𝟖−𝟎.𝟖𝟒 + 𝟎. 𝟎𝟎𝟓𝟏𝐬𝟏−𝟎.𝟖𝟒)
 

 

[𝟏𝟏𝟏. 𝟎𝟎𝟖 (𝟏 +
𝟏

𝟎. 𝟎𝟎𝟒𝟎𝟑𝟎𝟐𝟕

𝟏

𝒔𝟎.𝟖𝟒
)] 

 

-20% 0.2096 0.1097 

𝐂𝐅𝐅(𝐬)

=
𝟏

(𝟎. 𝟏𝟐𝟎𝟏𝟐 𝐬𝟏.𝟐𝟏𝟎𝟗𝟐−𝟏.𝟐𝟔 + 𝟎. 𝟎𝟎𝟓𝟏𝐬𝟏−𝟏.𝟐𝟔)
 

 

[𝟏𝟔𝟔. 𝟓𝟏𝟐 (𝟏 +
𝟏

𝟎. 𝟎𝟎𝟒𝟎𝟑𝟎𝟐𝟕

𝟏

𝒔𝟏.𝟐𝟔
)] 

 

+20% 0.5016 0.2257 

Figure 4.8: A fragile controller is successfully tested on DO loop Non-integer model 
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4.7.2 DO tracking in ASM3-bioP Platform with dynamic influent 

Set-point tracking is a way to determine how well a controller is performing. The set-point 

values for SNO and DO7 are as follows:  

 

 

 

 

 

 

 

 

 

 

 

 

 

b 

Figure 4.9: A fragile controller is successfully tested on NO loop Non-integer model 

Figure 4.10: (a )DO tracking in the seventh tank with dynamic influent; (b) manipulated variable plot in terms of 

oxygen transfer coefficient 

a 
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1 mg N/l is selected for the fourth tank, and 2 mg O2/l is chosen for the seventh tank. The 

tracking of dissolved oxygen (DO) for three different control schemes is shown in Figure 4.10 

(a,b), along with their manipulated variable plots that are given in terms of the oxygen transfer 

coefficient (KLa7). The graph makes it clear that the FPI controller with a non-integer-order 

plant (GA-FPI) works better than the PI controller with a integer plant (GA-PI) when the same 

Internal Model Control (IMC) method is used. Furthermore, it is clear that the FPI controller 

with a higher-order filter setting (Analytical-FPI) works better than the one with a lower-order 

filter (GA-FPI). 

4.7.3 NO tracking in ASM3-bioP Platform with dynamic influent 

The set-point tracking of nitrate (SNO) by GA-PI, GA-FPI, and analytical-FPI have shown in 

Figures 4.11 a. The effective tracking ability of the analytical-FPI controller is comparatively 

superior for NO controller, and at the same time, the analytical-FPI controller results in superior  

 

Figure 4.11: NO tracking in the fourth tank with dynamic influent; Figure Manipulated variable plot in terms of 

Internal recycle 

a 

b 
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performance when compared to GA-PI, GA-FPI. Figure 4.11b indicates the manipulated 

variable plots by lower-level PI, FPI and FM-FPI controller for NO loops in-terms of internal 

recycle flow rate (Qintr). 

4.7.4 Plant performance analysis 

Comparative analysis of all three controllers is revealed as the evolution of the plant's 

performance is traced via the matric and effluent parameters in Table 4.7.  

Table 4.7: over all plant performance analysis on lower level strategies. 

Average effluent 

concentration 

Open loop GA-IMC 

fractional 

filter +PI 

GA-IMC 

fractional 

filter +FPI  

Analytical-

IMC higher 

order 

fractional 

filter + FPI 

Components Limit   

NH 4 6.08415 6.47 6.285 6.10 

TSS 30 13.68 13.68 13.6762 13.6709 

TN 18 16.5 16.17 16.1479 16.03 

TP 2 3.58 3.49 3.526 3.54 

COD 100 44.75 44.73 44.7404 44.73 

BOD5 10 1.79 1.78 1.7869 1.785 

IQI 72152.2 72152.2 72152.2 72152.2 

EQI 13,411 13314.72 13306.03 13255.02 

SP 2973.45 2975.73 2973.145 2970.44 

AE 4336.6 4231.50 4246.96 4253.48 

PE 304.81 337.25 332.112 331.98 

ME 480 480 480 480 

OCI 18,753 18692.009 18689.74 18683.11 
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4.7.5 Variable DO tracking by supervisory strategy 

Notably, a significant improvement is shown when the higher-order fractional filter is used 

with the IMC FPI control technique. The highest level of efficiency is achieved, as evidenced 

by the lowest Effluent Quality Index (EQI) and Operational Cost Index (OCI) during the 

execution of the higher-order fractional filter with the IMC FPI control scheme. Upon 

comparing the open-loop EQI and OCI with the GA-based PI control approach, there is a 

noticeable improvement of 0.72% and 0.34%, respectively. When compared to the GA –FPI 

approach, these two metrics improve marginally by 0.06% and 0.01%, respectively. Finally, 

when GA-PI is compared to the higher-order filter-based FPI controller, there is a more 

substantial improvement, with gains of 0.44% and 0.05% in EQI and OCI, respectively. All 

the effluent parameters are well under the legal restrictions and lowest value of NH and TN is 

observed in higher-order filter-based FPI controller, however a slight increase is noted in TP. 

Figure 4.12 all displays the column chart on percentage of violation in effluent in terms of NH, 

TP and TN. 

Table 4.8: plant performance comparison in best lower level controller and MPC at higher level 

 

Furthermore, a cascaded technique implementing the MPC controller is used to dynamically 

adjust the dissolved oxygen set-point based on ammonia concentration changes in tank 7. This 

unique method resulted in a significant improvement in plant performance. Figure 4.13 depicts 

the dynamic interplay, highlighting the changeable dissolved oxygen (DO) set-point delivered 

by the supervisory MPC controller and adeptly tracked by the lower-level IMC-FPI controller. 

Performance of Plant IMC fractional filter + FPI IMC FF-FPI+MPC 

EQI 13255.02 13203.8419 

OCI 18683.11 18884.949 

0

20

40

60

80

NH (% of violation) TP (% of violation) TN (% of violation)

Open loop GA-IMC fractional filter+FPI

GA-IMC fractional filter+PI Analytical-IMC fractional filter+FPI

Figure 4.12: Column chart on percentage of violation in effluent 
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Now implementing a supervisory MPC controller cascaded with best lower level strategy 

(higher order filter +FPI) shows a significant improvement in EQI but operational cost increase 

as a trade-off between the two.  

 

Figure 4.13: Variable DO set-point tracking of supervisory MPC controller with lower-level IMC FF-FPI 

 

4.8 Conclusions 

The non-integer order system for Biological Wastewater Treatment Plants (WWTP) is found 

using the ASM3bioP model and the FOMCON tools. It focuses on controlling Dissolved 

Oxygen (DO) and Nitrate concentration (NO). We use the Genetic Algorithm (GA) to find the 

best values for the Integral of Absolute Error (IAE) of the closed-loop response. This helps us 

figure out the fractional filter parameters (λ, α) for the Internal Model Control (IMC) controller. 

It is used in MATLAB Simulink to build the improved controller on the Aeration system for 

DO control. 

Both the uncertainty of the plant and the weakness of the controller are put through a lot of 

tests to make sure they work well. We come up with a mathematical method that uses a higher-

order fractional filter and the same IMC fractional controller for the non-integer model. The 

closed-loop reaction shows better tracking of the set point and rejection of disturbances. In the 

Fractional Filter - Fractional Order Proportional Integral (FF-FOPI) control strategy, the 

controller performance measures, like Integral of Squared Error (ISE) and IAE, are kept as low 

as possible at the same time. 
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When looking at how Fractional Order (FO) controllers affect plant performance, it is seen that 

FO controllers have a bigger effect than Proportional Integral (PI) controllers. The FF-FOPI 

approach, on the other hand, works the best overall. Notably, the FF-FOPI strategy works better 

than any other strategy when compared to the analytical higher-order filter. 
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Chapter 5 

5. DESIGN OF FRACTIONAL AND INTELLIGENT CONTROL 

STRATEGIES FOR SBR BASED WASTEWATER TREATMENT 

PROCESS FOR EFFLUENT QUALITY IMPROVEMENT 

 

From this chapter onwards, the attention is directed towards the exploration of a batch process 

within the context of biological wastewater treatment. The focus will be on understanding and 

implementing different control strategies in a batch process and analysing the intricacies of this 

particular method throughout the remainder of the thesis material. 

 In Sequencing Batch Reactor (SBR)-based wastewater treatment plants (WWTPs), controlling 

dissolved oxygen (DO) is a very important part of treating wastewater. SBR technology is a 

flexible and effective way to treat biological wastewater. It works by putting in, reacting, 

settling, and decanting steps in order inside a single reactor. Managing the amounts of dissolved 

oxygen is very important for making sure that the biological treatment process in SBRs works 

at its best. Finding the right mix between giving microbes enough oxygen and keeping energy 

use as low as possible requires a thorough and flexible control system. This outline looks at the 

main things that need to be thought about, the methods, and the technologies that are used to 

control the amount of dissolved oxygen in SBR-based WWTPs. It emphasises how important 

this is for making wastewater treatment work well and be good for the environment. 

5.1  Introduction 

The SBR system is highly successful in removing nitrogen and phosphate (Ketchum et al., 

1987; Guo et al., 2007). SBR processes are more stable than continuous processes, but they 

require more precise process control. This system is commonly used for smaller wastewater 

inputs and can be configured with a single tank or a system of many tanks in conjunction. This 

method employs a series of fill and draw cycles. A conventional cycle has five functional 

stages: filling, reactions (aerobic and anaerobic), sedimentation, decantation, and idle condition 

(Wilderer et al., 2001). In SBR reactor operating parameters were determined by an additional 

optimization layer added to the previously described two-layer hierarchical control structure. 

The outcome of optimization was an increase in efficiency and a decrease in energy 

consumption (Piotrowski et al., 2019). Piotrowski (2020) proposed a supervisory heuristic 
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fuzzy control system which deployed to a SBR. The pollutants achieved its discharge limits 

with a reduced 9% operational cost. Many investigations have been attempted as automation 

technology (Feedback and intelligent controllers) has grown to select the proper condition for 

the SBR process (Yang et al., 2010). 

In this research work, implementation of different controllers like simple PI to more effective 

FPI controller and later adaptive FUZZY controller are adopted to control dissolved oxygen 

(DO) in the SBR process. To run the simulation model of SBR and validate the SBR process 

with all control strategies in Indian climatic conditions, we need the influent. Influent data is 

collected from the Visakhapatnam WWTP, irrespective of the type of treatment technology 

(Tejaswini et al., 2021). The real plant data is used for simulations. However, the aspect that 

make the paper interesting is the application of control strategies to batch process in a 

sequential manner. 

A step-feed method of filling the SBR, is also used to investigate the controller impact in the 

SBR process with different aeration timing. Aside from the benefits of traditional SBRs, step-

feed SBRs may make effective use of influent COD as the carbon source necessary in the de-

nitrification process. This indicates that a carbon supply is necessary to denitrify nitrite via step 

feeding and repeated aerobic/ anoxic phases. The anoxic period influent provides the nitrate 

generated during each aerobic period. Furthermore, the step-feed technique allows nitrification 

to occur during aerobic times with lower organic loading, which estimates the limitation of 

increased organic loading on autotrophic nitrifiers and reduces oxygen demand to oxidise these 

organic materials (Guo et al. 2007). 

The novel aspect of this work is the development of three distinct control schemes for DO 

control in a batch process, SBR-based wastewater treatment plant. 

This work is organised as follows: Materials and methods describe the monitoring plant and 

the model used, while the next segment discusses the architecture and application of the control 

system. The root level (DO control) PI, Fuzzy logic, and FPI controller's design processes are 

elucidated clearly. The subsequent portion discusses the simulation-based control findings by 

fixing real data records from Vizag WWTP. 
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5.2  Materials and Methods 

5.2.1 Wastewater treatment plant description and simulation  

SBRs perform biological pollutant removal in the second phase of WWTP. Unlike an ASP 

process, a SBR does not have any clarifier. To purify sewage sediments and minerals, 

mechanical pre-treatment is used. Grid, screen, grit chamber, and sand separator are used in 

the first step. Figure 5.1 depicts the SBR plant's process phase layout. As indicated in the 

introduction, a single SBR cycle consists of the following phases: filling, biological reactions 

(aerobic and anaerobic), sedimentation, decantation, and idling with the settler model is 

incorporated for better effluent quality. Double exponential settling velocity of the secondary 

settler model by Takas et al. (1991); is used (Sheik et al., 2021 a,b). The corresponding 

mathematical modelling and layout of settler (Figure 1.16) are reported in section 1.6.2. The 

most widely used mathematical representation of biological processes in WWTPs is Activated 

Sludge Models (ASM), a series established by the International Water Association. The 

ASM2d model (Gernaey et al., 2014; Henze et al., 2000) is used to model the biological 

processes of SBR in this paper, which has 21 state variables and 20 kinetic and stoichiometric 

parameters. The flow along with COD, TSS, and ammonia concentrations of influent are 

collected from Vizag plant to validate SBR process in Indian climatic conditions. The STOWA 

guidelines are used to compute the state variables, which contain the dynamic data needed to 

implement different control strategies for the treatment plant. The validation of the embraced 

ASM2d model is carried out in terms of the kinetic parameters of the process. BSM1 lists the 

kinetic and stoichiometric parameters at a temperature of 20 ºC, which is not the average 

ambient temperature for the Indian climate. After collecting influent data we have done kinetic 

parameter calculations with varying temperatures. At 20 °C (Henze et al., 2000) the values of 

those parameters are the same as their default values. After matching with the typical values 

for the kinetic rate constants of ASM2d at 20 ºC, we started executing Process Identification 

and controller implementation.  Temperature effect on kinetic parameters given by equation as 

follows (Gernaey & Jeppsson (2014)): 

αT = αT20 . exp((
ln(

αT20
αT10

)

5
) . (T − 20))                                                 (5.1)  

Where αT the considered parameter temperature (T) value and αT20, αT10is the defined 

benchmark parameter values at 10 oC and 20oC (Henze et al., (2000)). Based on the equation 

(5.1) we have calculated the kinetic parameters at 30oC to evaluate the Indian conditions. The 
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table of typical values for the estimated kinetic parameters of ASM2d at 30 ºC is reported in 

the Table 5.4. Influent flow rate of simulated SBR - 0.033 l/min (Marsili Libelli et al., (2001)). 

Average influent data with state and particulate variables with symbols are reported in the 

Table 5.3. 

WWTPs are required to meet certain strict effluent concentration restrictions which are 

tabulated in the Table 3.1 in section 3.2.1. The aeration system is intricate, nonlinear, and 

dynamic in nature. A general framework for modelling aeration systems was given (Henze et 

al., 1999). The aeration system used in this study consists of a blower station, collecting pipe, 

diffuser systems, and collector-diffuser pipes which were previously used for a variety of 

aeration systems reported in the literature (Piotrowski et al., 2014, 2015). Piotrowski et al., 

(2014) elucidate the main framework for modelling of aeration systems in SBR. The aeration 

system was modelled using measurement data and technical data from individual elements. 

Differential and algebraic equations describe the nonlinear aeration system model that was 

developed. Piotrowski et al., (2016) describes the model in detail, and it has been used in 

additional research endeavors. So DO control in SBR was tested with real data from the 

Visakhapatnam WWTP and implemented in a MatLab/SIMULINK environment. The data is 

collected from the Plant itself and is analyzed by following the STOWA guidelines. 

 

 

Table 5.1: Influent load data as reported from Visakhapatnam WWTP 

    Table 5.2: SBR operational parameters 

 

 

 

 

 

 

 

 

Influent load Average Value 

COD (mg/l) 381.99 

BOD5 (mg/L) 219.1083 

TN (mg/l) 41.5992 

TP (mg/l) 11.0751 

TSS (mg/l) 238.92 

Operation Parameters Capacity 

Working volume 5L 

Influent volume 1 L 

Total operation cycle 360 Mins 

Solids retention time 20 days 



Chapter 5 

105 | P a g e  

 

 

 

Table 5.3: Average influent data with state and particulate variables with symbols 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.4: Effect of temperature on kinetic parameters (verified with Hence et al., (2000)) 

Kinetic Variable 10°C 15°C 20°C 30°C 

KH 

Hydrolysis rate constant 
1.3333 2 3 6.7500 

µH 

Maximum growth rate on substrate 

 

1.50 3 6 24 

qfe 

Maximum rate for fermentation 

 

0.75 1.50 3 12 

bH 

Rate constant for lysis and decay 

 

0.1175 0.2350 0.4700 1.8800 

qPHA 1.3333 2 3 6.7500 

Components Average 

SO Dissolved oxygen 0 

SF Readily biodegradable substrate) 54.21 

SA fermentation product 36.14 

SI inert organics 30 

SNH ammonium 39.66 

SN2 Dinitrogen 0 

SNO3 nitrate 0 

SPO4 phosphate 8.92 

SALK bicarbonate alkalinity 7 

XI inert organics 51.2 

XS slowly biodegradable substrate 202.32 

XH heterotrophic biomass 28.17 

XPAO phosphorous -accumulating organisms 0 

XPP stored poly-phosphate of PAO 0 

XPHA Organic storage product of PHA 0 

XA Autotrophic, nitrifying biomass 0 

XTSS particulate material 215.49 

XMeOH Ferric-hydroxide 0 

XMeP Ferric-phosphate 0 
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Rate constant for storage of XPHA 

(base XPP) 

 

 

qPP 

Rate constant for storage of XPP 

 

0.6667 1 1.5000 3.3750 

µPAO 

Maximum growth rate of PAO 

 

0.4489 0.6700 1 2.2277 

bPAO 

Rate for lysis of XPAO 

 

0.05 0.1000 0.2000 0.8000 

bPP 

Rate for lysis of XPP 

 

0.05 0.1000 0.2000 0.8000 

bPHA 

Rate for lysis of XPHA 

 

0.05 0.1000 0.2000 0.8000 

µNS 

Maximum growth ratio Nitrosomonas 

Bacteria 

 

0.2923 0.4700 0.7558 1.9542 

µNB 

Maximum growth ratio Nitrobacter 

Bacteria 

 

0.5807 0.7800 1.0476 1.8899 

bNS 

Constant decay ratio Nitrosomonas 

Bacteria 

 

0.0496 0.0860 0.1491 0.4478 

bNB 

Constant decay ratio Nitrobacter 

Bacteria 

0.0496 0.0860 0.1491 0.4478 
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5.2.2 SBR plant configuration 

The parameters of the Visakhapatnam WWTP are described in Table 5.1. A 

pilot scale Sequencing Batch Reactor (SBR) with 6-hour cycles of anoxic/anaerobic/oxic 

phases was employed (Marsili Libelli et al., (2001)). The operating parameters of the SBR are 

described in Table 5.2, and the operational cycle is depicted in Figure 5.2. 

 

 

 

 

 

Modified SBR Cycle (Step-feed) 

To study the step-feed mechanism in our present work SBR operation cycles are modified. As 

with pulse filling, there are three fill stages that are completed in a relatively short period of 

time. Three anoxic and anaerobic combinations are performed, with an aerobic phase in each 

cycle in the last. Following the sequential repeating of these stages, a setting phase with 

minimal decanting and sludge removal is performed in a total 6-hour cycle of SBR operation. 

The time duration of these phases was decided by the same method as described prior. The 

diagram (Figure 5.3) depicts the stages of SBR in a step feed scheme. SBR phases are Filling 

Filling 

Mixing 

Aeration 

Settling 

Decanting 

Idle 

Anoxic and Anaerobic Aerobic Settling 

Minutes 

0 150 300 360 

Feed Sludge waste & 

Effluent 

 

Figure 5.1: Sequential Batch Reactor phases 

Figure 5.2: Conventional SBR Operation Phases in the current study 
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(F) in 10 mins, Anoxic and Anaerobic (AN) phases of 40 mins and next Aerobic (AE) phases 

of 50 mins and finally 40 mins settling (S) and 10 mins Decanting (D), last 10 mins for Sludge 

Removal (SR). 

 

 

 

 

5.3 WWTP’s Performance Criteria  

5.3.1 Effluent quality index 

Weighted average effluent concentration levels are used to compute the EQI. A steady state 

model simulation analysis is done by using the weighted average data from treatment plant. 

The plant performance assessment is done using the below equations (Sheik et al., 2021b; 

Santín et al., 2015): 

 EQI =
1

100(tf−t0)
∫ KU(t)
tf
t0

Qe(t)dt                                                                                                  (5.2) 

 KU(t) = KUTSS(t) + KUCOD(t) + KUBOD(t) + KUTKN(t) + KUNO3(t) + KUPtot(t)                (5.3) 

In formula (5.3), the to and tf imply the starting and ending times for calculating the EQI, while 

the KUt indicates the average of polluted combinations in the influent and effluent streams. 

Typically, it comprises of COD (chemical oxygen demand), BOD5 (biological oxygen 

demand),  TSS (total suspended solids), TKN (total Kjeldahl nitrogen), NO3 (nitrate), SNH 

(ammonia), TN and total phosphorous (TP) in equation (3). Thus the corresponding expression 

for KUt is given in equation (5.4). 
 

 𝐾𝑈𝑡 = 𝛽𝑡 𝐼𝑡                                                                                                                                        (5.4) 

Where βt (g
-1) are weighting factors (Sheik et al., 2021b; Gernaey et al., 2014) ascribe every 

component of the pollution. The weighting factor values are represented below. Moreover, the 

concentrations of different components (Gare is computed by using Eq. (5.5)-(5.11). 

The values of weighting factors are assigned to each effluent component, the factors are 

considered as follows: 2ss , 1cod , 20TKN , 10NO , 2
5
BOD , 𝛽𝑃 = 100 

Besides It, 

spontaneous concentrations of various nutrients are calculated corresponding to their state 

variables and particulate symbol with description is in the Table 5.3: 

 ITSS = XTSS                                                                                                                                       (5.5) 
 ICOD = SF+SA+ SI+ XI+ XS+ XH+ XPAO +XPHA + XA                                                  (5.6) 

AN AE F AN AE F AN AE F S D S

R 

0 10 50 100 110 150 200 210 250 300 340 350 360 

Minutes 

Figure 5.3: Modified SBR Operation Phases (SSBR) 
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IBOD = 0.25 (SF + SA + (1 − fSi)XS + (1 − fXIH)XH + (1 − fXIP)(XPAO + XPHA) + (1 − fXIA)XA)     (5.7) 

 ITKN = SNH + iP,SFSF + iP,SASA + iN,SISI + iN,XIXI + iN,XSXS + iN,BM(XH + XPAO + XA)     (5.8) 

 INtot = ITKN + GNO3                                                                                                                                   (5.9) 

  INO3 = SNO3                                                                                                                                                (5.10) 

  𝐼𝑃𝑡𝑜𝑡 = 𝑆𝑃𝑂4 + iP,SFSF + iP,SASA + iP,XIXI + iP,XSXS + iP,BM(XH + XPAO + XA) + XPP + (
1

4.87
) X  𝑀𝑒𝑝  (5.11) 

According to (Gernaey et al., 2014; Henze et al., 2000), correlated conversion factors (fi) are 

selected in equations (5.6), (5.7), and (5.10). 

 

5.3.2 Controller Performance 

The standard establishes a universal assessment criterion which should serve as the basis for 

geographically independent reference measures for initiatives created throughout the world. 

The first level monitors controller installation, whereas the second is concerned with its 

influence on plant efficiency. The integral square error (ISE) and integral absolute error (IAE) 

is employed to assess controller performance. Where ‘e’ is the error between the set value and 

the value measured by the sensor (Piotrowski et al., (2021); Santín et al., 2015). 

ISE = ∫ 𝑒𝑖
2300 𝑚𝑖𝑛𝑠

150 𝑚𝑖𝑛𝑠
𝑑𝑡                                                                                                           (5.12)      

 IAE = ∫ |𝑒𝑖|
300 𝑚𝑖𝑛𝑠

150 𝑚𝑖𝑛𝑠
𝑑𝑡                                                                                                                   (5.13) 

 

5.4  Controller Implementation  

The provision of an adequate amount of dissolved oxygen (DO) is required to produce an 

acceptable growth of microorganisms included in activated sludge. Aeration of the wastewater 

is consequently required to carry out biological processes. The oxygen released into SBR by 

the aeration system is a crucial component of the complicated biological processes in a WWTP. 

The concentration of DO in SBR affects the processes like de-nitrification, nitrification, and 

phosphorus removal. The aeration system delivers an oxygen atmosphere in the reactor, which 

is intended to keep the tank in a condition of suspension. The newly generated cells combine 

with the old microbes and then carry out the impurity removal procedure. The aeration process 

is required for optimal biological responses to occur. A low dissolved oxygen content causes 

inadequate proliferation of microorganisms, which prevents them from decomposing nitrogen 

and phosphorus compounds. Excessive aeration causes over blending in the reactor, which can 

lead to the disintegration of flocculants. 

As oxygen is required to oxidize organic material in aeration reactors and maintain residual 

oxygen levels, it is usually equal to the amount the microorganisms require. Microorganism 
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growth may be limited if oxygen is low, causing filamentous microorganisms to dominate, and 

leading to poor settling of sludge. The opposite is true when DO is high, which requires more 

energy consumption and may deteriorate the sludge quality. The DO levels should typically be 

maintained between 1.5 and 4 mg O2/l in an aeration reactor, with 2 mg O2/l being the more 

commonly retained level. To control the DO in SBR during aeration, a common but popular 

feedback control employing the PI controller is considered. First of all, this is composed of the 

PI controller, as shown in Figure 5.4,  for ‘DO’ control, whose set-point value is 2 mg O2/l is 

controlled by adjusting the ‘AIR-FLOW’ in the reactor. Another contribution of this study is 

the development of a fraction controller (FPI) by replacing the PI controller for the DO control 

purpose with a developed fractional model of SBR during aeration (Figure 5.4). For both these 

control approaches a stable process model is required. Fuzzy Logic Control can be used for 

controlling many nonlinear processes around the operating point through the use of FUZZY 

rules and membership functions that are identical in design to human inferences. 

 

 

 

 

 

 

 

 

 

As the air flow is manipulated for efficient DO level inside a reactor then net amount of air 

supplied to the reactor during aeration is a measure of the control cost, which is expressed as: 

 𝑄𝑇𝑜𝑡𝑎𝑙 = ∫ (𝑄𝑎𝑖𝑟(𝑡))𝑑𝑡
300

150
                                                                                                                                (5.14) 

To check the effect of control action on both SBR Cycles, all the parameters are calculated for 

the Indian influent data (Visakhapatnam Plant) at 30°C and finally, effluent quality index along 

with controller performance are measured. 

5.5  Modelling of System form Process Input output Data 

The selection of the appropriate process model is a prerequisite for putting a control structure 

in place for any kind of process. As previously discussed, this work identifies contextual integer 

PI/FPI, and FUZZY 

controller 

Air Flow 

(l/min) 

DO 

sensor 

Figure 5.4: Three distinct control schemes on SBR during Aerobic Phase 
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order (IO) and fraction order (FO) modelling of SBR-based WWTPs by performing a 

simulation, hence both the IO and FO controllers are incorporated on it. 

5.5.1 Algorithm to develop an IO Model to design PI controller 

The primary objective of identification is to create a stable process model based on the data 

collected during an experiment. In general, determining and estimating system dynamical 

behavior requires establishing a link with both process inputs and outputs under various 

influences (input signals). The flow diagram in section 3.5.1 in Figure 3.4 describes the 

identification of Integer Order (IO) model using system Identification toolbox. During the 

process of identification the developed model G(S) of SBR comes as 

𝐺(𝑠) =
0.002753𝑆 + 0.0001987

𝑆2 + 0.1216𝑆 + 4.662𝑒−5
 

Later using proper model order reduction technique (Linear Feedback Control Analysis and 

Design with MATLAB by Dingyü Xue et al., (2007). we have developed a First order with 

delay time (FOPDT) process model of SBR. Finally, we have validated the reduced order 

model by checking both the Step Response Analysis and Bode Plot method and its stability. 

Results of validation is provided in Figure 5.5. Final sable FOPDT model GR(S) of SBR comes 

as, 

𝐺𝑅(𝑠) =
 0.0016434 

𝑠 + 0.0003856
 𝑒−0.96∗𝑠   =

 4.2619

2593.36 𝑠 +  1
 𝑒−0.96∗𝑠 

 

Figure 5.5: Step response plot to validate the model reduction 
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5.5.2 Algorithm to develop an FO Model to design FPI controller 

Fractional-order calculus involves arbitrary order differential and integral equations and is a 

generalization of integer-order calculus. Fractional calculus theory can solve any derivative or 

integral of any order, as well as continuous versions of the fractional calculus operator which 

is defined as follows in Equation (5.15) 

 

  a𝒟t
p
= {

dp

dtp
 Re(p) > 0

1        Re(p) = 0

∫ (dt)−p
t

a
 Re(p) < 0

  

  

(5.15) 

Where ‘a’ and ‘t’ are the calculus upper and bottom bounds, respectively, and is an arbitrary 

complex. Fractional order calculus theory has developed many different definitions of 

fractional calculus, including the GL, RL, and Caputo definitions (Tepljakov A et al. (2019)).  

Based on the time-domain approach, a non-integer order transfer function is found using the 

MatLab “Fractional-Order Modelling and Control” FOMCON toolbox. We can choose the 

kind of system simulation we want to use using the Simulation parameters window. Indranil et 

al., (2022) illustrate the algorithms to identify a fractional model (FO) utilizing FOMCON 

toolbox. 

The input and output data is generated by giving the random input to the model of ASM3-bioP 

model at steady sate with plant influent and relating all state variables. 

 

Steps to identify a good fitted identified model  

 A "fidata" structure must be chosen first and foremost. 

 Select ‘Time domain Identification’, where options are available to choose frequency 

domain too. 

 Choose the ‘simulation parameter methods’ in Grunwald-Letnikov method or 

Oustaloup filter or Refined Oustaloup filter. (Should select ‘w’ range and order for the 

last two options). We select the Oustaloup filter. 

 In the ‘Identification and options’ section chosen ‘fidata’ name will show and the 

preferred algorithm is ‘Trust-Region-Reflective’. 

 There is a symbolic form of identified model in terms of the fractional pole and zero 

polynomials. A first-guess model is created. In order to create polynomials 

autonomously, a commensurate-order q that has the property that 0.01 ≤ q < 2 —the 

order of the polynomial—can be defined. 
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 A plot that displays a worthy fitting result (fitness >75 %) and the identified system's 

stable behavior should be displayed at the conclusion of the identification process. As 

long as the outcomes are satisfactory, the model is saved for creating a controller. 

The identified Fractional model G(S) of SBR comes as      

𝐺(𝑠) =
1

0.80739𝑠0.8955 − 16.77𝑠0.11936 + 23.319𝑠0.077491
 

5.5.3 Fuzzy logic Control 

FUZZY logic is a widely used method in a variety of control contexts. FLCs have been 

employed at every level of wastewater treatment. Fuzzy control or rules (FLC) are commonly 

used to solve the utmost unconventional control and processing units in WWTPs, as evidenced 

by the literature. Fuzzy rules are used to accomplish this, much like those used when humans 

make inferences. In this study, FLC is employed on this SBR-based WWTP. To confine DO 

saturation in the SBR, the desired DO set-point is monitored by a fuzzy logic controller. In the 

ranges of 0–6 mg O2/l and 0–30 l/min, respectively, the membership functions (MF) of DO and 

Airflow in SBR were investigated.  A Gaussian-shaped-bell curve membership function is 

chosen for these two variables, and they are separated into three linguistic rules: "LOW," 

"MEDIUM," and "HIGH." The following are the three rules for governing the DO control loop: 

 

 If the DO level  is “LOW” then the  Airflow set-level is “LOW” 

 If the DO level  is “MEDIUM” then the  Airflow set-level is “MEDIUM” 

 If the DO level  is “HIGH” then the  Airflow set-level is “HIGH” 

 

5.6  Results and Discussion 

5.6.1 Implementing Proportional and Integral (PI) control 

To regulate the dissolved oxygen (DO) in SBR during the aeration phase a conventional PI 

controller is used inside this reflected control loop. The strategic orientation with PI controllers 

is depicted in Figure 5.4. Designing PI controllers can be accomplished using a variety of 

tuning methods. A well-accepted robust tuning rule based on Grimholt and Skogestad (2018) 

(SIMC rule) is deployed in this scheme. To tune a controller using this procedure, the first step 

involves obtaining the first-order plus time delay (FOPTD) model G(s), as previously 

mentioned. 
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G(s)  =
Kp

τ ∗ S + 1
e−θ∗S                                                                                                                                                  (5.16) 

Where KP, the process gain, L the time delay, and T is the time constant of the identified model. 

On the first-order with delay (FOPDT) process in equation 5.16, the authors employed the 

original SIMC tuning rule. The SIMC PI tunings for this process result in a PI controller like 

in equation 5.17, 

Kc =
1

KP

τ

(τC+θ)
   and  Ti = min {τ , 4(τC + θ)}                                                                       (5.17)      

The value τC, the closed loop time constant, is a tuning constraint that can be adjusted to 

attain the optimal trade-off among efficiency, robustness, and input allocation. τC= θ is 

recommended for "tight control" (decent performance) as well as adequate robustness. The 

tuned Parameter of PI controller using SIMC, Kc =316.92, Ti=7.66, and Ki = (Kc/Ti) = 40.32. 

So, the final PI control structure for identified DO loop looks like (in Figure 5.5) 

 

Table 5.5: PI controller settings for DO control 

            SBR (IO) Process Model        Controller Gain                     PI controller 

𝐺(𝑠) =
 4.26193

2593.36 𝑠 +  1
 𝑒−0.96∗𝑠 

            Kc =316.92 

            Ki = 40.32 
CDO(s) = 316.9243 +  40.32

1

s
 

 

5.6.2 Implementing Fractional Proportional integral (FPI) controller 

A fractional-order (FOTF) model of the SBR plant is identified utilizing FOMCON toolbox. 

The “Oustaloup filter approximation" is applied in the time-domain approach to identify the 

model and a stable FOTF DO model is identified. Ultimately, the Fractional-order PI controller 

is optimized using the 'Interior -point' algorithm and the ISE as a performance metric. The 

maximum and minimum values for all tuning parameters should be chosen to optimize the 

Fractional order (FPI) controller.  The final satisfactory tuned parameters of the FPI controller 

are Kc = 349.56, Ki = 48.95, and λ= 0.9796. As a final point, the FPI controller for SBR model 

is deployed and the FOTF DO loop along with controller appears to be (in Figure 5.6) 

Table 5.6: FPI controller settings for DO control 

SBR (FOTF) Process Model Controller Gain FPI Controller 

 

𝐺(𝑠) =
1

0.80739𝑠0.8955−16.77𝑠0.11936+23.319𝑆0.077491
  

Kc =349.56  

Ki = 48.95 

λ= 0.9796 

 

CDO(s) = 349.56 +  48.95 
1

s0.9796
] 
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5.6.3 Implementing FUZZY Logic controller (FC) 

Numerous unknowable factors are involved in the Wastewater Treatment Plant’s functioning. 

Seeing as biological mechanisms in wastewater treatment are extremely complicated, 

traditional approaches face significant challenges to control automatically. As a result, 

intelligent computing techniques, especially fuzzy logic, are an ideal choice for controlling 

nonlinear time-varying processes. The main objective is to conserve energy even as 

maintaining effluent quality. This is essentially aeration control based on DO concentration. 

The membership functions range explored for Dissolved oxygen (DO) and Airflow is 0-6 mg 

O2/l & 0-30 l/min individually. We consider the membership curve to be a Gaussian bell curve 

with the degree of membership 1. The membership distributions of DO concentration in SBR 

are developed with 0-1 mg O2/l as "low," 1-2 mg O2/l as "medium," and values over 2 mg O2/l 

considered to go into the "high" fuzzy set, values less than 0.05 l/min are undoubtedly regarded 

as "low," hence likewise, the fuzzy set values ranging from 0.05 l/min to 9.5 l/min are classified 

as "medium" and  Airflow values of beyond 9.5 l/min are considered "high". Table 5.7 shows 

the rule base for fuzzy task. 

Table 5.7: FUZZY rule base tabulation 

 

 

 

 

 

 

 

5.7  DO tracking and plant performance analysis 

As previously discussed, a DO set-point of 2 mg/l is selected in the reactor. The set-point 

tracking graphs for PI, FPI, and FUZZY are presented in Figure (5.6 A) for DO Control. From 

the Figure, it is observed that the tracking capability of the FPI controller is superior to that of 

the PI and FUZZY controllers. Figure (5.6 B), the manipulated variable plot demonstrates that, 

when initial aeration starts, in order to attain the DO set-point as soon as possible, the controller 

sends a high-value control signal in terms of airflow such that the DO reference of 2 mg O2 

/l should be tracked as soon as possible. Control performance is measured by using IAE and 

ISE, plant performance is measured by effluent quality. From Table 5.8, it was observed that 

the Total Airflow Volume (L) is approximately the same for all the control applications. For 

 

Membership Function (MF) 

Ranges 

Parameters as member 

Input (DO) 

(0-6 mg O2/l) 

Output (Airflow) 

(0-30 l/min) 

LOW 0-1 0- 0.05 

MEDIUM 1-2 0.05-9.5 

HIGH > 2 > 9.5 
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the control performance case, ISE & IAE are improved in the FPI controller on comparing with 

PI and FUZZY. The percentage of improvement in FPI is 17.38 %, 0.07% than PI for IAE & 

ISE respectively. In terms of effluent quality, the FPI controller showed optimal outputs when 

compared to PI & FUZZY. EQI is improved in FPI by 0.86% than PI & 1.036% than the 

FUZZY controller. COD, BOD5, TN, TP , NH4 & TSS are improved by 0.53%, 1.05%,1.18%, 

0.80%, 0.07%  & 2.22% respectively with the FPI controller than PI controller which they 

provide better effluent quality. 

 

 

(A) 

 

(B) 

Figure 5.6: (A) DO tracking by PI, FPI and FUZZY controller during aeration time (B) Airflow plot in terms of 

the manipulated variable for all adopted controller 
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Table 5.8: Effluent quality in conventional SBR with controller performance 

  

 

 

 

 

 

 

 

 

5.8  Effect of Control action on Modified SBR Cycle - Step-Feed Process (SSBR) 

The primary responsibility of the DO controller is to maintain a predefined trajectory. The 

controller should better reflect the trajectory of any changes in DO concentration caused by 

changes in SBR configurations. So step feed is used to check controller performance by varying 

DO reference trajectory as described in Figure 5.7 A. Total volume filling during step feed. 

Figure 5.7 B depicts the reactor loading level with step feed over the whole operational cycle. 

The DO set-point of 2 mg/l is selected in the reactor for different time zones of aerobic phases 

as shown in Figure 5.7 A. The set-point tracking graphs for PI, FPI, and FUZZY are shown in 

Figure 5.7 C. It is observed that the FPI controller has a superior tracking capability than the 

PI and FUZZY controllers. Figure 5.7 D shows that the controller sends a high-value control 

signal with each change in DO trajectory, indicating that it is essential to attain DO set-value 

as soon as possible.  

From Table 5.9, it was observed that the Total Airflow Volume (l) is approximately the same 

for all the control applications. For the control performance case, ISE & IAE are improved in 

FPI controller on comparing with PI and FUZZY. The percentage of improvement in FPI is 

0.74 %, 0.14% than PI for IAE & ISE respectively. In terms of effluent quality, the FPI 

controller showed optimal outputs when compared to PI & FUZZY. EQI is improved in FPI 

by 0.34% than PI & 0.51% than FUZZY controller. COD, BOD5, TN, TP & TSS are improved 

by 0.17%,  0.152%, 1.69%, 0.26% & 0.08% respectively with the FPI controller than PI 

controller which they provide better effluent quality. 

 PI FPI FUZZY 

IAE 0.1057 0.08732 0.2412 

ISE 0.05673 0.05669 0.1421 

Total Airflow volume (l) 231.8 231.8 231.7 

Effluent parameters 

COD (mg/l) 52.2850 52.0073 52.3550 

BOD (mg/l) 13.1205 12.9816 13.5905 

TN (mg/l) 3.0015 2.9658 3.0500 

TP (mg/l) 2.2675 2.2492 2.2575 

TSS (mg/l) 11.5721 11.3146 11.5921 

NH4 (mg/l) 1.8200 1.8186 1.8195 

IQI (kg polls units/day) 0.7684 0.7684 0.7684 

EQI (kg polls units/day) 0.0578 0.0573 0.0579 
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(A)  

 

(B) 

 

(C) 
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(D) 

Figure 5.7: (A) varying DO reference trajectory due to step feed (B) SBR total volume filling during step feed 

(C) DO tracking by PI, FPI and FUZZY controller during aeration time in step-feed approach (D) Airflow plot 

in terms of manipulated variable for all adopted controller. 

 

Table 5.9: Effluent quality on step-feed in SBR with controller performance 

 

 

 

 

 

 

 

 

 

5.9 Conclusions 

Three control frameworks such as PI, FPI, and FUZZY are attached to the SBR plant layout 

under the ASM2d platform. In the root level, control approaches like PI, FPI, and Fuzzy control 

are used to control DO during the aeration phase by manipulating the air flow rate. The ASM2d 

 PI FPI Fuzzy 

IAE 3.35 3.325 4.419 

ISE 0.2796 0.2792 0.5252 

Total airflow volume (l) 206.2 206.2 206.5 

Effluent parameters 

COD (mg/l) 52.2919 52.2010 52.3520 

BOD (mg/l) 13.1562 13.1362 13.1825 

TN (mg/l) 3.0005 2.9496 3.0050 

TP (mg/l) 2.2911 2.2850 2.2795 

TSS (mg/l) 11.5912 11.5812 11.6111 

NH4 (mg/l) 1.8255 1.8259 1.8201 

IQI (kg polls units/day) 0.7684 0.7684 0.7684 

EQI (kg polls units/day) 0.0582 0.0580 0.0583 
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model calibrated to real plant data is used to represent the SBR-based water treatment plant. 

However, the aspects that make the paper interesting: control strategy applied to a 

discontinuous process, use of the complex ASM2d model, and calibration to real plant data. 

Controller performances are studied. ISE & IAE are improved in the FPI controller on 

comparing with PI and FUZZY. The corresponding plant performance concentration is 

compared with the PI controller. It was noticed that average effluent compositions of nutrients 

such as BOD, ammonia, COD, TN, TP, and TSS attained inside the regulatory limits. Better 

optimized results for nutrient removal rates and effluent quality is observed in FPI controller 

compared with the other two controllers. COD, BOD, TN, TP , NH4 & TSS are improved by 

0.53%, 1.05%,1.18%, 0.80%, 0.07%  & 2.22% respectively with the FPI controller than PI 

controller. In the same control strategies (PI, FPI, and FUZZY) on modified SBR Cycle (Step-

Feed Process) is implemented where they achieve even same type of improvement is observed 

from the resultant simulation outcomes. 
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Chapter 6 

6. DESIGN OF SUPERVISORY FUZZY CONTROL FOR 

ENHANCED ENERGY SAVING IN A SEQUENCING BATCH 

REACTOR BASED WASTEWATER TREATMENT PLANT 

WWTPs need supervisory cascade control to save operational expenses. Supervisory cascade 

control saves time and energy by coordinating and optimising control activities across several 

process units. Control techniques in WWTPs ensure efficient, cost-effective, and 

environmentally sustainable wastewater treatment through dynamic adjustments, informed 

decision-making, and effective coordination. 

6.1  Introduction 

To ensure optimal operation and control of a wastewater treatment plant (WWTP), suitable 

advanced control strategies are required as they are inherently nonlinear in nature and subjected 

to different influent conditions. This study proposes a novel supervisory control scheme for 

Sequencing Batch Reactor (SBR) based WWTP. It integrates hierarchical fuzzy control, based 

on ammonia and nitrate observations, in the presence of lower-level Proportional Integral (PI) 

and Fractional-order PI (FPI) controllers, with the dual goal of aeration cost reduction and 

effluent quality enhancement. A modified ASM2d (Activated sludge model No. 2d) framework 

is used as a model for SBR. In the hierarchical control system, variable dissolved oxygen (DO) 

trajectories are generated by the supervisory fuzzy logic controller and passed to the lower level 

controller, according to ammonia and nitrate profiles within SBR. It is crucial to adjust this 

element properly in order to maximize wastewater treatment efficiency and reduce plant costs, 

especially for the aeration system. Intelligent computing techniques like MPC, RTO, 

particularly fuzzy logic, are indeed a good choice for controlling these types of non-linear time-

varying systems. The primary objective of the controller is to save energy while maintaining 

the effluent quality. An intelligent fuzzy controller which combines the two distinct signals 

SNH/SNO profile and the DO concentration. Further, the desired level of DO can be attained 

with nominal energy consumption. In the research of Piotrowski et. al, 2019 and 2020, they 

came up with optimization methods that were able to optimize sequential phases in an efficient 

SBR operation, but to minimize aeration energy incorporating a fuzzy logic to develop a 

supervisory control network that generates variable DO set-points depending on the presence 

of the SNH or SNO profile inside the reactor is new and novel study. According to the author’s 
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best knowledge, an efficient aeration strategy based on nitrate or ammonia measurement has 

not been applied in this SBR-based treatment plant until now to reduce the amount of energy 

consumed inside a hierarchical control structure. The present work addresses this point and 

shows the benefits of having such a control architecture. A multi-level cascaded hierarchical 

control arrangement is considered that combines PI & FPI controllers one at a time at lower 

levels while advanced fuzzy control strategies are utilized at higher levels. This research work 

establishes different controllers like simple PI to more effective FPI controller to control DO, 

and a smart higher-order decision-making technique, built on fuzzy logic (Fuzzy controller) to 

track variable DO by measuring the ammonium nitrogen (NH4) and nitrate (NO3) profile in the 

SBR reactor. A calibrated ASM2d model based on real plant data is used to represent the 

wastewater treatment plant. However, the aspect that makes the paper novel and interesting is 

applying control strategies to a batch process in a sequential manner. The developed control 

strategies are tested for the influent collected from the wastewater treatment plant located in 

Andhra Pradesh, India. 

6.2 Control approaches 

The oxygen released into SBR during aeration scheme is a crucial factor in the complicated 

biological processes. The concentration of DO in SBR affects processes like de-nitrification, 

nitrification, and phosphorus removal. The aeration system delivers an oxygen atmosphere in 

the reactor, which is intended to keep the tank in a condition of suspension. The newly 

generated cells combine with the old microbes and then carry out the impurity removal 

procedure. Low DO content causes inadequate proliferation of microorganisms, which 

prevents them from decomposing nitrogen and phosphorus compounds. Too much aeration 

leads to over-blending in the tank of reactor, which can result in flocculants disintegration.  

The aeration reactors need oxygen to oxidise organic material. Maintain residual oxygen levels, 

which are usually enough for microbes. Low oxygen may limit microbe growth, causing 

filamentous microorganisms to dominate and poor sludge settling.  Conversely, high DO needs 

more energy and may degrade sludge.  

The DO levels should typically be sustained between 1.5 and 4 mg O2 /l in an aeration reactor, 

with 2 mg O2 /l being the more commonly maintained level. To control the DO in SBR during 

aeration, a conventional but widespread feedback control technique, the PI controller is chosen. 

The PI controller at lower level controls DO by adjusting the 'AIR-FLOW' in the reactor, whose 
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set-point is 2 mg O2/l, as shown in Figure 6.1. In addition to PI, fractional order PI (FPI) 

controller is also presented as an alternative.  

 

The implementation of hierarchical controllers in SBR-based WWTP is limited. Hence, in this 

research, different control strategies are designed and implemented by simulation. Preferably, 

the DO set point should be 2 mg O2/l. However, depending on the obtainability of ammonia or 

nitrate present in the reactors, the above value may not be required throughout the aeration 

process. An important aid of this paper is the development of the two-tier hierarchical strategy 

with the supervisory layer that uses Fuzzy Controller (Figure 6.2). As aeration begins, SNH 

(ammonia concentration) is more in the reactor, so nitrification requires additional SO (DO 

level). The opposite occurs as SNH is less, since less SO is required to form less SNO. So it is 

very crucial to reduce Air and energy consumption in SBR, it is necessary to determine the 

right DO during the aeration phase. Besides ammonia concentration-based (SNH) aeration, 

Nitrate-based (SNO) aeration control was also studied in this work. Many studies are carried out 

in the literature to examine how different operative circumstances (e.g. low DO concentration, 

selective inhibition and temperature) favour nitrite growth. So a nitrate (SNO) controller at a 

higher level can affect low air consumption to reduce aeration energy in low DO operational 

conditions. 

The role of the supervisory controller is to generate DO values (set points for lower-level) by 

determining the presence of NH or NO in the SBR. These variable DO values are used as 

flexible set points in the lower level DO loop. As a result, the higher-level control loop assists 

in deciding the lower loop's set points. Moreover, the amount of aeration impacts energy 

PI / FPI controller 

Air Flow 

(l/min) 

DO 

sensor 

Figure 6.1: SBR at Aerobic Phase with DO control without supervisory layer 
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consumption. As a consequence, it is important to choose the DO set point wisely. In this work, 

the lower level uses the conventional PI and FPI controllers, while a higher level builds a Fuzzy 

Logic controller. 

Thus the set point of Dissolved Oxygen at 2 mg O2/l can be altered to ensure the WWTP's 

performance requirements. If the ammonia load is low, the DO set value can be lower, and 

higher if the ammonia level is high. The simulation result shows, that varying the set-point by 

Fuzzy Controller improves the plant performance by improving the effluent quality. The effect 

of control action on conventional SBR cycle is calculated at 30°C for all parameters. 

Integral Square Error (ISE) and Integral Absolute Error (IAE) are the evolution criteria for 

controller performance, which we decided to minimize for controlling DO during aeration. The 

control action is only happening during aeration and that time interval is t= 150-300 min. Our 

reference for DO control is 2 mg O2/l for lower level PI and FPI control strategy. In the 

hierarchical architecture, fuzzy controller is used which also considers ammonia or nitrate 

based aeriation during the same time period i.e. t = 150-300 min. Hence, the performance of 

controller (ISE and IAE) is calculated in this aeration time interval only.  The effluent quality 

index (EQI, in kg pollution units d-1), is a weighted average sum of pertinent effluent 

concentrations (Copp, 2002).  

For SBR based biological process we are running one batch cycle from t0= 0 min to tf = 360 

mins. So, the EQI should be calculated for the total operational time of single batch process of 

SBR operation. So EQI is defined between t0 and tf.            

PI/ FPI controller 

Air Flow 

(l/min) 

DO 

sensor 

Variable DO set value  

 SNH   

  SNO 

 

Figure 6.2: Higher Level (HL) Fuzzy control in SBR during aeration 
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Table 6.1 clearly specifies the recommended control strategies (CS). Based on the control loops 

and using the PI control strategy as the core approach, a total of 6 control combinations are 

assessed in terms of how they affect and provide the assessment criteria. A total of six control 

frameworks are developed in this research as given below. 

 CS1 is lower level PI controller for DO control in SBR. 

 CS2 is lower level FPI controller for DO control in SBR. 

 CS3 is lower level PI and higher level Fuzzy for ammonia-based Aeration. 

 CS4 is lower level FPI and higher level Fuzzy for ammonia-based Aeration. 

 CS5 is lower level PI and higher level Fuzzy for nitrate-based Aeration. 

 CS6 is lower level FPI and higher level Fuzzy for nitrate-based Aeration. 

The controller performance is tested by same like section 5.3.2. and total air volume (QTotal) 

consumption is same like last lower level controller calculation. 

Table 6.1: List of developed control strategies for SBR 

Label 
Lower level controller 

Ammonia (NH4) based 

Supervisory controller 

 

Nitrate (NO3) based 

Supervisory controller 

 

Characteristic

s  

CS1 

CS2             CS3+CS4              CS5+CS6 

LL 

PI/FPI 

HL Fuzzy 
LL PI/FPI HL Fuzzy 

DO (SO) 

control 

DO (SO) 

control 

DO (SO) 

control 

Ammonia 

(SNH) 

control 

DO (SO) 

control 

Nitrate 

(SNO) 

control 

Measuring 

Variable 

DO in 

SBR  

DO in 

SBR  

SO in SBR 

reactor 
SNH in SBR  

SO in SBR 

reactor 
SNO SBR 

Set-Value  2 mg O2 /l 2 mg O2 /l 

Variable 

set 

point 

1 mg/l  
Variable set 

point 
4 mg/l 

Manipulated 

Variable 
Air-Flow Air-Flow Air-Flow  

Set-point for 

DO 

controller 

Air-Flow  

Set-point 

for DO 

controller 

Control 

Configuration 
PI  FPI  PI / FPI Fuzzy  PI / FPI  Fuzzy 
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The lower-level controllers are consistent with those discussed in the prior section, with the 

subsequent insertion of a supervisory Fuzzy controller. 

6.2.1 Lower level model and controller (PI & FPI) 

The dynamics around the operating point can be adequately represented by a linear model, 

despite the highly nonlinear nature of the process. The identified form of Integer Order (IO) 

model of SBR is shown in the below format, 

𝑮(𝒔) =
 𝟎. 𝟎𝟎𝟏𝟔𝟒𝟑𝟒 

𝒔 + 𝟎. 𝟎𝟎𝟎𝟑𝟖𝟓𝟔
 𝒆−𝟎.𝟗𝟔∗𝒔 

To implement a lower level controller in the form of PI and FPI structures, a FOPDT model of 

the SBR process is identified.  This considered control loop uses a PI controller to control the 

DO in the SBR. Figure 6.1 depicts the plant layout with PI and FPI controllers. SIMC rules are 

deployed to design the controllers (Grimholt & Skogestad 2018). The tuned Parameters of PI 

controller using SIMC are  

Kc =316.9243, Ti=7.86, and Ki = (Kc/Ti) = 40.32. 

So, the final PI controller structure for DO loop is shown below, 

𝑪𝑫𝑶(𝒔) = [𝟑𝟏𝟔. 𝟗𝟐𝟒𝟑 +  𝟒𝟎. 𝟑𝟐
𝟏

𝒔
] 

To identify a fractional model (FO), fractional derivatives are evaluated utilising the Grunwald-

Letnikov method with the corresponding approximations utilising the Oustaloup filter. Fixed 

unity gain and a fractional pole polynomial are used to identify the model. The identified 

Fraction model GFO(S) of SBR comes as written in below format, 

𝑮𝑭𝑶(𝒔) =
𝟏

𝟎. 𝟖𝟎𝟕𝟑𝟗𝒔𝟎.𝟖𝟗𝟓𝟓 − 𝟏𝟔. 𝟕𝟕𝒔𝟎.𝟏𝟏𝟗𝟑𝟔 + 𝟐𝟑. 𝟑𝟏𝟗𝑺𝟎.𝟎𝟕𝟕𝟒𝟗𝟏
 

The FPI controller is tuned by choosing the minimum and maximum values for all tuneable 

parameters like Kc, Ki, and λ. The tuned parameters such as  

Kc = 349.99, Ki = 49.95, and λ= 0.9796.  

The obtained FPI controller for DO loop is shown below, 

𝑪𝑫𝑶(𝒔) = [𝟑𝟒𝟗. 𝟓𝟔 +  𝟒𝟗. 𝟗𝟓𝟔 
𝟏

𝒔𝟎.𝟗𝟕𝟗𝟔
] 
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6.2.2 Higher level FUZZY Logic Control 

FUZZY logic has become a popular strategy for a variety of control options. FLCs have been 

employed at all phases of wastewater treatment. The literature says, fuzzy control or rules 

(FLC) are frequently employed to solve the most modern control and processing elements in 

WWTPs. Fuzzy rules are used to accomplish this, much like those used when humans make 

inferences. In this study, FLC is employed on this SBR-based WWTP. The set-point for DO 

value in the SBR is controlled at a higher level with a fuzzy controller to track variable DO set 

point in SBR by measuring Ammonia and nitrate. Figure 6.2 depicts the plant layout with PI 

and FPI controllers at lower level and an intelligent fuzzy logic controller at the supervisory 

level. 

SNH are controlled through the manipulation of DO set-points by the fuzzy control at a 

supervisory level. The ranges examined for the membership functions of SO and SNH / SNO are 

0-2 mg O2/l and 0-16 mg N/l, respectively. As a membership function for both variables, a 

Gaussian curve (gauss2mf) is chosen and is separated into two linguistic variables, "Low" and 

"High". The idea of choosing this fuzzy logic comes from the basics of ON-OFF controller, 

where the variation of the measured variable lies in between two states either low or high. In 

the batch process of SBR, the influent flow is restricted for one cycle of operation and then the 

presence of the measured variable is also limited in these two forms. The main principles for 

the DO Control loop utilising ammonia readings are as follows:  

 If Ammonia content is “Low” then the DO content is also “Low”. 

 If Ammonia content is “High” then the DO content is “High”. 

The rules for the Dissolved Oxygen Control loop considering nitrate readings are as follows: 

 If Nitrate content is “Low” then the DO content is “Low”. 

 If Nitrate content is “High” then the DO content is “High”. 

These rules are used to evaluate the integrated lower and higher level (PI/FPI-Fuzzy) 

controllers. 

6.3  Results and discussions  

For the SBR-based WWTP, the described control strategies are designed and implemented. 

The corresponding closed-loop performances of the WWTP with its performance indices are 

analysed. The lower level controller setting as described at earlier section 6.2.1 
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6.3.1 Higher level controller as ammonia based control (CS3 and CS4) 

These CS3 and CS4 control strategies use a simple PI or FPI configuration at the lower level 

strategy and an intelligent Fuzzy controller at a supervisory level during this aeration phase of 

SBR. For supervisory control structure, intelligent computing techniques, such as fuzzy logic, 

are indeed a good choice (Fiter et. al, 2005).  In the batch process of SBR, the influent flow is 

restricted for one cycle of operation. So in one operational phase, volume of influent is fixed. 

The idea of choosing a two membership fuzzy function originated from the foundation level 

where an ON-OFF controller can operate with two diverse states as Low and High. Here inside 

the SBR at running period the presence of NH or NO are in two possibilities, either high at 

initial or low after utilization. The higher level fuzzy controller computes the DO values (lower-

level set points) by using the measurements of NH or NO in the SBR. These DO values are 

used as set points in the lower level DO loop. As a result, the higher-level control loop assists 

in determining the lower loop's set points. This is well established ammonia based aeration 

control (ABAC). In CS3, a lower level controller is PI and Fuzzy is at supervisory level. 

Respective Input range & output range are set to 0-2 mg O2/l and 0-16 mg N/l. Importantly, 

the membership curves are considered to be Gaussian bell shaped. An adequate amount of DO 

is necessary for optimal ammonia-to-nitrite oxidation so that it does not wash out before 

nitrification occurs. The ammonia set value is provided as 1 mg N/l as a lower ammonium 

value requires a low oxygen demand. 

In SBR batch reactor, with a stagnant capacity of influent, the variation or changes in these two 

(NH or NO) measuring components are limited with high or low profile. So when we choose 

a fuzzy membership function we make it in two memberships ‘HIGH’ and ‘LOW. Thus, the 

membership patterns of ammonia profile in SBR are created by treating 0-1 mg N/l as "Low" 

ammonia quantity, 1-16 mg N/l as "High", at membership value one, as shown in Figure 6.3 

A. For the DO, values less than 0.01 mg O2/l are certainly low, hence they are allocated a 

membership value of 1 to the fuzzy set "low." This is congruent with the concept of 

membership, which defines the importance of a variable's connectedness to a fuzzy set. DO 

values more than 1.99 mg O2/l are measured as “High”. Figure 6.3 B clearly demonstrates this. 

The main objective of employing this approach is to adjust the DO set-point in response to 

variations in the ammonia concentration within the SBR. The simulations use the original 

nonlinear model as a foundation. In this control method, Figure 6.4 A portrays the variable DO 

set-point given by the higher level and tracked by the lower level PI controller (CS3). Figure 

6.4 A displays that maintaining the DO set-point at 2 mg O2/l for the whole duration, as 
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explained in lower level DO control technique, is unnecessary. Figure 6.4 B shows the plot of 

manipulated variable by lower level controller. When ammonia concentrations are low, the 

requirement for DO is lower, hence energy may be lost in an effort to maintain the set-point. 

Additionally, there are situations when a greater quantity of DO is necessary; in certain cases, 

a shortage of DO may degrade effluent quality. As a consequence, a changeable set-point via 

Fuzzy Controller results in greater plant performance in terms of fewer air needs. 

 

(A) 

(B) 

Figure 6.3: (A) MF of input for ammonia (SNH) concentration (Lower level PI/FPI -Fuzzy); (B) MF of output for 

DO (SO) concentration (Lower level PI/FPI -Fuzzy) 
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(A) 

(B) 

(C) 

Figure 6.4: (A) variable DO set point tracking in higher level (HL) control strategy; (B) Airflow by lower level 

PI controller as manipulated variable; (C) NH4 profile in SBR 
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A 

B 

 

C 

Figure 6.5: (A) DO set point tracking in higher level (HL) control strategy; (B) Airflow by lower level FPI 

controller as manipulated variable; (C) NH4 profile in SBR 
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CS4's control strategy is fairly similar to that of CS3. However, in this case, the PI controller 

at lower level is substituted by FPI controllers. When compared to traditional PI controllers, 

FPI contains an additional tuning parameter, and tuning is done as described in CS2. The same 

fuzzy rule base is used to check the effect of this Fractional PI controller. A lower level control 

based on fractional PI coupled with a higher level control strategy improves tracking. The 

adaptable DO set-point and tracing via FPI-Fuzzy setup are shown in Figure 6.5A. Figure 6.5 

A shows that the DO set-point is not a continual function and fluctuates as needed. This rises 

when nitrification in the aerobic time phase requires more DO, and it falls when ammonia 

content in the SBR tank is low. Figure 6.5B displays the manipulated variable plot in terms of 

AIR Flow by lower level controller. This dynamic DO set-point is very effectively traced by 

the lower level Fractional PI controller, and the arrangement of these two methodologies results 

in more effective and energy-tradeable operation in terms of aeration and concern to controller 

performance and EQI, as shown in Table 6.2. The plot of ammonia profile in both this control 

strategy is also presented in Figure 6.4 C and 6.5 C respectively. 

6.3.2 Higher level controller as nitrate control (CS5 and CS6) 

Similar to ammonia control, a higher-level control strategy is implemented in SBR to use 

Nitrate (NO3) in order to minimize DO utilization during aeration. Both PI and FPI controllers 

are used in lower level in CS5 and CS6 control strategy respectively with a supervisory level 

fuzzy controller. The SNO which is produced during nitrification can be utilised as an oxygen 

source to minimize the aeration cost as fresh air supply to the SBR tank can be minimized. 

Same time effluent quality is also improved. The set point for Nitrate in SBR is fixed at 4 mg 

N/l as a higher value of nitrate can be present in SBR tank to replace use of fresh oxygen. For 

higher level fuzzy control, each input and output range is fixed to 0-2 mg O2/l and 0-16 mg N/l, 

respectively. A Gaussian bell-like curve is taken to represent the membership's shape. Thus, 

the membership patterns of SNO concentration in SBR are created by treating 0-4 mg N/l as a 

"low" nitrate value, 4-16 mg N/l as a "high" with membership value 1, as shown in Figure 6.6 

A. For DO, values less than 0.01 mg O2/l are certainly low, hence they are allocated a 

membership value of 1 to the fuzzy set "low." This is congruent with the concept of 

membership, which defines the value of a variable's connectedness to a fuzzy set. DO values 

more than 1.99 mg O2/l are decided high. Figure 6.6 B clearly demonstrates this. 
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(A) 

(B) 

Figure 6.6: (A) MF of input for Nitrate (SNO) concentration (Lower level PI/FPI -Fuzzy); (B) MF of output for 

DO (SO) concentration (Lower level PI/FPI -Fuzzy) 

The main goal of implementing this scheme is to reduce the absorption of fresh oxygen because 

SNO produced during nitrification may only be used for aeration purposes, hence minimising 

the aeriation cost. A lower level FPI control with higher level fuzzy with same membership 

function is also implemented in CS6. In those control methods, Figure 6.7A and 6.8A depict 

flexible DO set values provided by superior level fuzzy and it’s tracking in by bottom level PI 

(CS5) and FPI (CS6) control respectively. Both cases have noticeable improvement in 

controller performance criteria as well as good set-point tracking and reduced effluent quality, 

tabulated in Table 6.2. The Figure 6.7B and 6.8 B show the manipulated variable plots of AIR-

FLOW to vary DO by lower level PI and FPI controller. The set value of Nitrate in SBR is at 

4 mg N/l, nitrate profile in SBR is shown in Figures 6.7 C and 6.8 C in CS5 and CS6 

respectively. 
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(A) 

(B) 

(C) 

Figure 6.7: (A) DO set point tracking in higher level (HL) control strategy; (B) Airflow by lower level PI 

controller as manipulated variable; (C) NO3 profile in SBR 
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(A) 

(B) 

(C) 

Figure 6.8: (A) DO set point tracking in higher level (HL) control strategy; (B) Airflow by lower level FPI 

controller as manipulated variable; (C) NO3 profile in SBR 
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Table 6.2: Effluent quality in SBR with controller performance 

 

As part of this HL control configuration, ammonia concentration is sustained at a 

predetermined level of 1 mg N/l.  For improved plant performance, it calculates the level of 

DO essential according to the ammonia concentration and permits it down to the lower level 

as a set-point. Based on the two linguistic variables that describe the input & output variables, 

and the fuzzy controller analyses the control action. Figures 6.4A, 6.5A, 6.7A, and 6.8 A 

illustrate variable DO set-point tracking, whereas Figures 6.4 C, 6.5C, 6.7C, and 6.8C depict 

ammonia concentration set-point tracking by higher level Fuzzy in all control techniques CS3, 

CS4, CS5, and CS6, respectively. Observation indicates lower level controllers are adept at 

tracking the variability of the DO set-point pattern. SBR ammonia concentration affects the 

DO set-point. Variations in airflow will affect the required operational energy of plant more, 

so reducing the air supply will lead to a decrease in aeration cost. It is also found that all the 

proposed strategies yield similar results. According to Table 6.2, hierarchical control 

 

 

 

 

 

Performance Index 

Lower level 

Ammonia (NH4) based 

Supervisory Level 

controller 

 

Nitrate (NO3) based 

Supervisory Level 

controller 

 

 

PI 

(CS1) 

FPI 

(CS2) 

LL PI+HL 

Fuzzy 

(CS3) 

LL FPI+HL 

Fuzzy 

(CS4) 

LL PI+HL 

Fuzzy 

(CS5) 

LL FPI+HL 

Fuzzy 

(CS6) 

IAE 0.1057 0.08732 1.442 1.431 1.683 1.618 

ISE 0.05673 0.05669 0.8446 0.8374 1.442 1.03 

Total Airflow volume 

(l) 

231.8 231.8 138.9 138.9 158.6 158.6 

 

COD (mg/l) 52.2850 52.0073 52.1965 51.9872 52.2851 52.2975 

BOD (mg/l) 13.1205 12.9816 13.1175 12.9800 13.1200 12.9776 

TN (mg/l) 3.0015 2.9658 3.0012 2.9257 3.0013 2.9262 

TP (mg/l) 2.2675 2.2492 2.2224 2.2109 2.2424 2.2265 

TSS (mg/l) 11.5721 11.3146 11.5655 11.2855 11.5670 11.3002 

NH4 (mg/l) 1.8200 1.8186 1.8195 1.8095 1.8257 1.8157 

IQI (kg polls units/day) 0.7684 0.7684 0.7684 0.7684 0.7684 0.7684 

EQI (kg polls 

units/day) 
0.0578 0.0573 0.0576 0.0570 0.0577 0.0573 
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approaches are compared with lower level control strategies. In comparison to lower-level PI 

and FPI strategies, the proposed strategies result in better overall airflow consumption (QTotal) 

and EQI index for SBR, while at the same time increasing controller performance. Despite 

maintaining set-points for NH4 and NO3, all supervisory control strategies produced different 

results. From the results in Table 6.2, at lower level control loop, the FPI controller with two 

extra tuning parameters can give lower IAE with 17.39% improvement and also improve EQI 

by 0.87% compared with PI controller.  

As mentioned earlier, the main focus of this study is to minimize the aeration cost by 

minimizing the total air volume consumed. Less air consumption has been shown as a result of 

implementing the hierarchical fuzzy controller with lower level PI and FPI controller. Airflow 

is decreased by 40.08% as given in Table 6.2 by ammonia control strategy and 31.58% by 

nitrate control strategy with the addition of fuzzy controller at supervisory level. The amount 

of TN in effluent is also reduced by 1.19% by implementing FPI controller compared with PI 

controller and when the same fuzzy logic control is applied to this lower level controller FPI-

Fuzzy (CS4) a reduction of 2.52% in TN is noticed compared with PI-Fuzzy (CS3) in 

ammonia-based control. In the case of TP, lower level FPI gives a 0.81% reduction compared 

with lower level PI (CS1) and with higher order Fuzzy 1.99% reduction noticed in PI-Fuzzy 

(CS3) when compared with CS1. Comparing lower level FPI (CS2) with higher level FPI-

Fuzzy (CS4) a reduction of 1.70% has been noticed in the case of ammonia based aeration. 

 Now in nitrate based aeration, the main objective is to minimize fresh oxygen use and force 

the microbes to use compound oxygen in form of nitrate (NO3). Table 6.2 shows a good amount 

of reduction in total air volume, apart from that both this nitrate based higher level strategy 

(CS5 and CS6) also impacts on TN and TP removal and improves EQI also. Overall the 

ammonia control strategy is more effective in both EQI and aeration cost by minimizing air 

flow without affecting the effluent quality. 

6.4  Conclusions 

A biological WWTP based on SBR is modelled with a modified ASM2d framework and then 

simulated for DO control during aeration phase using real-time data from the Vizag WWTP in 

30°C Indian climates. The main attention is to maintain DO in SBR during 150 to 300 minutes 

of one cycle of batch operation. Further, ammonia and nitrate based supervisory fuzzy control 

is implemented with lower level PI and FPI controller for better effluent quality and lesser 

aeration cost by providing precise airflow to the SBR reactor during aeration. A total of six 
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control strategies are implemented including two DO controllers in the lower level and four 

hierarchically arranged nitrates and ammonia controllers employing fuzzy logic. A fractional 

controller with lower level DO control gives better EQI and Controller performance. Attaching 

an intelligent fuzzy control cascaded with PI and FPI controller greatly affects effluent quality 

as well as troughs air consumption which minimizes the aeration cost. With the addition of a 

fuzzy controller at supervision level, ammonia control strategy has less airflow of 40.08%, and 

nitrate control strategy has less airflow of 31.58%. In nitrate-based aeration, the main objective 

was to limit the use of fresh oxygen and force microbes to use compound oxygen in the form 

of nitrate. This nitrate-based higher level strategy (CS5 and CS6) reduces total air volume 

intake, helps to remove TN and TP and improves EQI. Finally, the present study concludes that 

by minimizing airflow without affecting the effluent quality, the ammonia control strategy with 

lower level FPI controller is more efficient in terms of both EQI and aeration cost. A low 

volume industries or domestic wastewater treatment facilities can take advantage of this low 

cost aeration approach incorporating a conventional SBR technologies. 
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Chapter 7 

7. INFLUENCE OF SEASONS ON THE EFFLUENT QUALITY IN 

SEQUENCING BATCH REACTOR BASED WASTEWATER 

TREATMENT PLANTS 

 

The temperature has a significant impact on the performance of the microorganisms used in 

BNR. The ideal temperature for BNR is usually between 25°C and 35°C, with some variations 

depending on the microorganisms used. The activity of the microorganisms responsible for 

BNR decreases at lower temperatures, resulting in slower nutrient removal rates. This can result 

in a longer retention time in the treatment system and a larger treatment plant footprint. Higher 

temperatures increase microorganism activity, which can lead to higher nutrient removal rates 

but also increases the risk of operational problems such as foam formation or toxic substance 

accumulation. Temperature can affect the composition of the microbial community as well as 

the performance of the microorganisms, with different microorganisms becoming dominant at 

different temperatures. As a result, when selecting microorganisms for BNR, the temperature 

range of the wastewater to be treated should be considered. With strict discharge restrictions 

and a variety of treatable influents, temperature management in biological wastewater 

treatment processes has received minimal attention. As a result, the above processes function 

at ambient temperatures, and the corresponding rates reduce effectiveness due to seasonal 

variations. According to a study, the effluent quality showed a positive resemblance with 

temperature in the range of 10 to 30 °C, regardless of the sludge settling characteristics or solids 

retention time (SRT) (Collins et al. 1978). When nitrification and de-nitrification occur 

concurrently at high temperatures greater than 25 °C, nitrogen is removed from the system 

(Görgün et al, 2007).The effects of temperature on the flocculent settling in the activated sludge 

process were investigated at temperatures ranging from 15 to 35 degrees Celsius (Ghanizadeh 

et al, 2001). It was found that as the temperature rose, chemical oxygen demand removal 

percentage decreased and the concentration of suspended solids in effluent increased. The 

nitrogen separation efficiency of tannery wastewater analysed in an SBR over a broad range of 

temperatures of 9 to 30 °C was evaluated in a study (Murat et al, 2003) and the effluent limits 

achieved are noted for the temperatures above 20 °C. Temperature is believed to be one of the 

primary tangible factors impacting nutrient removal efficiency because it impacts the rate of 
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metabolism directly (Azeez et al, 2010). The impact of temperature on wastewater and organic 

element treatment in wastewater is explored and rising the temperature results in a considerable 

improvement in the reduction of suspended solids and COD (Ahsan et al, 2005). 

7.1  Materials and Methods 

7.1.1 Influent Data 

This section gives clarification of the working scheme of the SBR process with a modified 

ASM2d model. Our work is on modelling and studying the effect of temperature on biological 

processes and for this purpose, we have used an SBR-based biological process. After successful 

modelling utilizing the ASM2d model, we have validated our SBR simulation model with real 

plant data by giving Indian wastewater influent, collected from Visakhapatnam WWTP in 

India, irrespective of the type of treatment technology (Tejaswini et al, 2021). To study the 

seasonal temperature variation globally, we have also observed the SBR process with European 

influent data (Valverde-Pérez et al, 2016). State variables and particulate symbols with 

descriptions are in the Table 5.3 in chapter 5. 

Table 7.1: Influent load data as reported from Visakhapatnam WWTP and European climate 

 

7.1.2 Treatment plant description and Simulation model 

SBRs perform biological pollutant removal in the second phase of WWTP. Unlike an ASP 

process, an SBR does not have any clarifier. To purify sewage sediments and minerals, 

mechanical pre-treatment is used. The first step uses the grid, screen, grit chamber, and sand 

separator. Figure 7.1 A depicts the EBPR process of SBR and in Figure 7.1B its phase’s layout. 

A single SBR cycle consists of the following phases: filling, biological reactions (aerobic, 

anoxic and anaerobic), sedimentation, decantation, and idling. A settler model which is 

incorporated for better effluent quality during settling. The double exponential settling velocity 

of the secondary settler model by is used (Takács et al, 1991). The corresponding mathematical 

modelling and layout of the settler (Figure 1.16) are reported in section 1.3.2. The most widely 

Indian climate (Vizag 

WWTP) 

Influent Load European climate 

(Borja 2016) 

381.99 CODi 711.99 

219.1083 BODi 420.05 

41.5992 TNi 79.01 

11.0751 TPi 16.17 

27.58 NH4i 54 

238.92 TSSi 430.5045 
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used mathematical representation of biological processes in WWTPs is Activated Sludge 

Models (ASM), a series established by the International Water Association. 

  

Figure 7.1:  The EBPR process of SBR and its phase layout in a single cycle of the SBR phases 

  

 

Figure 7.2:  Time sequences in model SBR 

The ASM2d model is used to model the biological EBPR processes of the SBR in this study, 

which has 21 state variables and 20 kinetic and stoichiometric parameters (Gernaey et al, 2014 

and Henze et al, 1999). ASM2d is a minor ASM2 expansion. Two other processes must be 

considered: poly-P storage and anoxic growth. PAOs in ASM2 can store polyphosphate (poly-

P) and only grow in aerobic environments. ASM2d, on the other hand, includes a denitrifying 

PAOs metabolism simulation for poly-P growth and storage. ASM2d suffers from the same 

confines as ASM2. The literature provides more information about the ASM2d model (Henze 

et al, 2000). By using kinetic & stoichiometric coefficients for all parameters & presenting 

them in matrix format, metabolic processes depending on Monod kinetics are described. The 

access to the stoichiometric coefficients is simple due to the use of matrix notation. As a result, 

calculations maintain their mass balances as intended. The method for model preparation of 
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ASM2d is elucidated in Henze et al, 2000. The processes involved in ASM2d are pictured in 

Figure 7.3. 

Table 7.2: Influent in terms of state variables of two global locations 

 

The model becomes rather complicated because of including EBPR and phosphorus 

accumulating organisms (PAO) in ASM, as shown in the Figure 7.3. The figure's left side 

illustrates the conversions that are done by nitrifiers and regular heterotrophs, while the other 

side illustrates the extension required to describe the intricate physiology of PAO. The nitrifiers 

and typical heterotrophs oxidise their substrate with oxygen to produce CO2, nitrate, and 

biomass. Their relatively straightforward physiology leads to straightforward processes. 

Internal storage polymers (poly-hydroxy-alkanoate: PHA, poly-P) are a part of PAO 

physiology, and their behaviour under anaerobic, anoxic, and aerobic conditions varies. In 

State variable SF Sa Si SNH Sh Sno SPO4 Salk Xi XS Xbh Xpao XPP XPHA X

A 

XTSS XA X

ME

P 

XME

OH 

Indian Influent   21.1

0 

31.9

325 

19.8

55 

27.5

8 

0 0 7.30 7 59.5

8 

202.

23 

47.3

0 

0 0 0 0 231.

84 

0 0 0 

European 

Influent 

87.3

3 

15.4

1 

34.2

5 

54.0

0 

0 0.25 9 7 260 260 55 0 0 0 0 439 0 0 0 

Figure 7.3: ASM2d processes have included in SBR 
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aerobic environment, they also react differently based on whether the substrate is available or 

not. The flow along with COD, TSS, and ammonia concentrations of influent is collected from 

the Vizag plant to validate SBR process in Indian climatic conditions (shown in Table 7.2). 

The average value of all state variable apart from some dummy variable of each influent is 

tabulated in Table 7.2. (The full form with unit is mention in Table 7.3). The STOWA 

guidelines are used to compute the state variables, which contain the dynamic data needed to 

implement different strategies for the treatment plant. The operating parameters of the SBR are 

described in Table 3, and sludge gets added to the initially empty 4 L of the SBR tank, it’s 

initial sludge parameter is reported in Table 4 [6]. 

Table 7.3: state variables with their symbols and units. 

State variable  Unit Initial value  Range 

Dissolved Oxygen  (SO2) [g-O2/m3] 0.01 (0-4) 

Rapidly biodegradable organic substrate (SF) [g-COD/ m3] 0.1  

Fermentation products (SA) [g-COD/ m3] 10 (0-10) 

Ammonium nitrogen + ammonium ions 

(SNH4) 

[g-N/ m3] 0.5  

Nitrites (SNO2)                                         [g-N/ m3] 5  

Nitrates (SNO3)                                         [g-N/ m3] 5 (5-10) 

Soluble inorganic phosphorus (SPO4) [g-P/ m3] 0.4  

Soluble inert organic material(SI)                 [g-COD/ m3] 30 (10-100) 

Alkalinity (SALK) [mol HCO3-/ m3] 20 (10-20) 

Particulate inert material (XI)                      [g-COD/ m3] 25  

Slowly biodegradable substrate (XS) [g-COD/ m3] 25  

Heterotrophic biomass (XH) [g-COD/ m3] 1547.17 (1000-2000) 

Phosphorus-accumulating biomass (XPAO) [g-COD/ m3] 600  

Polyphosphates (XPP) [g-COD/ m3] 150 (10-20 %XPAO) 

Organic compounds inside the biomass cell 

(XPHA) 

[g-COD/ m3] 100 (10-20 %XPAO) 

Autotrophic biomass(Nitrosomonas) 

(Xns) 

[g-COD/ m3] 80  

Autotrophic biomass(Nitrobacter)( Xnb)                [g-COD/ m3] 50  

Metallic hydroxides (XMeOH)                        

 

[g-Fe(OH)3/ m3] 10  

Metallic polyphosphates (XMeP)                      [g-FePO4/ m3] 10  

Initial volume   L 4  

* The Particulate material is represented by the symbol X, and S is used to represent the soluble 

substance 

The influent content as a composite form are shown in the equations  

CODin= [SF + SA + SI + X I+ XS + (XH+XN) + XNS + XNB + XPAO + XPHA]                                                         (7.1)  
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BOD5 in = [0.65*(SF + SA+ XI + (0.9* XS) + 0.9*(XH+XN) + XPP + (0.9* XPHA))]                                             (7.2) 

NH3in= [SNH4]                                                                                                                                                      (7.3) 

TNin= [(XI*iNXI) + (XS*iNXS) + SNH4 + (SF*iNSF) + (SI* iNSI) + (XH+XN) + XPAO+ XNS + (XNB* iNBM)]    (7.4) 

TPin= [(Xs*iPXS+) + (XI*iPXI) + SPO4 + (SF**iPSF) + (SI* iPSI) + (XH+XN) + XPAO+ XNS + (XNB*iPBM)]     (7.5) 

TSSin= [XMeP+ XMeOH+ (XI*iTSSXI) + (XS*iTSSXS) + (XH+XN+XPAO)* iTSSBM + (3.23* XPHA) + (0.6* XPP)]                                            

                                                                                                                                                                            (7.6) 

Where, iNXI, iNXS, iNSF, iNSI, iNBM, iPXI, iPXS, iNSF, iPSI, iPBM, iTSSXI, iTSSXS, iTSSBM are the conversion 

factor according to the ASM2d [24]. 

7.2 Temperature assessment 

Irrespective of every aspect that has been taken into account, temperature seems to be the most 

uncertain, especially in open environments. After collecting influent data we performed kinetic 

parameter calculations with varying temperatures. At 20 °C the values of those parameters are 

the same as their default values (Henze et al, 2000). Temperature effect on kinetic parameters 

given by equation as follows (Gernaey et al, 2014): 

αT = αT20 . exp

(

 
 
(

ln (
αT20
αT10

)

5
) . (T − 20)

)

 
 
                                                                                                                   (7.7) 

Where αT the considered parameter temperature (T) value and αT20, αT10is the defined 

benchmark parameter values at 10 oC and 20o C (Henze et al, 2000). Based on the equation 

(7.7) we have calculated the kinetic parameters in a range of temperatures to evaluate the Indian 

climatic conditions. The influent flow rate of simulated SBR - 0.033 l/min (Marsili Libelli et 

al, 2001). Average influent data with state and particulate variables with symbols are reported 

in section 5.2.2. Temperature influences aeration efficiency and consequently energy 

utilization through airflow and SO
satu. Temperature influences oxygen solubility, which rises as 

the temperature falls. The SO
satu is valid in the range of 273.15 to 348.15 K. 

SO
satu(T) =

8

10.50237016
∗ 6791.5 ∗ K(Tk)                                                                                                                         (7.8) 

K(TK) = 56.12e
−66.7354+

87.4755
T∗

+24.4526∗ln(T∗)
 

T∗ = Tk 100⁄  , The term 8/10.50237016 is denoted as  SO
satu value at 15oC is exactly 8 mg/L. 

A steady state simulation is executed to analyze the effluent concentrations at a temperature 

range of 10– 33 °C. The foremost work of temperature analysis of the SBR Process is to 
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measure the impact of temperature on the kinetic parameters. Table 7.4 provides a list of the 

kinetic parameters observed in the SBR reactor at the above-mentioned temperatures.  

The aeration system is intricate, nonlinear, and dynamic in nature. A general framework for 

modelling aeration systems was given (Murat et al, 2003). The aeration system used in this 

study consists of a blower station, collecting pipe, diffuser systems, and collector-diffuser pipes 

which were previously used for a variety of aeration systems reported in the literature 

(Piotrowski et al, 2015). SBR is experienced with real data from the Visakhapatnam WWTP 

and implemented in a Matlab/SIMULINK environment. To check the temperature effect on 

European influent, a municipal WWTP of 135,000 people equivalent is chosen. The description 

and typical findings of each kinetic parameter for the model ASM2d are listed in Table 7.4. 

Additionally, although some kinetic parameters for biological phosphorus removal were 

approximated using data from ASM1, those for ASM2's full-scale verification studies and 

experience in the laboratory. It should be noted that the saturation coefficients Ki for any given 

molecule may differ for various organisms (for example, KO2 may have four different values 

subject to the process and organism to which it is related). The investigation of the kinetic 

variables is conducted over a wide temperature range, and a significant increases in the kinetic 

variables become evident with the increase in temperature. 

Table 7.4: kinetic parameters as temperature changes 

Kinetic Variable/ Temp(°C) 10 15 20 25 30 33 

KH           Hydrolysis rate constant  1.3333 2 3 4.5000 6.7500 7.9385 

µH           Maximum growth rate on substrate 1.50 3 6 12 24 31.6682 

qfe          Maximum rate for fermentation 0.75 1.50 3 6 12 15.8341 

bH           Rate constant for lysis and decay 0.1175 0.2350 0.4700 0.9400 1.8800 2.4807 

qPHA      Rate constant for storage of XPHA  1.3333 2 3 4.5000 6.7500 7.9385 

qPP         Rate constant for storage of XPP 

 

0.6667 1 1.5000 2.2500 3.3750 3.9693 

µPAO      Maximum growth rate of PAO 0.4489 0.6700 1 1.4925 2.2277 2.6147 

bPAO       Rate for lysis of XPAO 0.05 0.1000 0.2000 0.4000 0.8000 1.0556 

bPP          Rate for lysis of XPP 0.05 0.1000 0.2000 0.4000 0.8000 1.0556 

bPHA       Rate for lysis of XPHA 0.05 0.1000 0.2000 0.4000 0.8000 1.0556 

µNS          Maximum growth ratio Nitrosomonas 0.2923 0.4700 0.7558 1.2153 1.9542 2.3631 

µNB          Maximum growth ratio Nitrobacter 0.5807 0.7800 1.0476 1.4071 1.8899 2.1266 

bNS          Constant decay ratio Nitrosomonas 0.0496 0.0860 0.1491 0.2584 0.4478 0.5580 

bNB         Constant decay ratio Nitrobacter 0.0496 0.0860 0.1491 0.2584 0.4478 0.5580 
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7.3  Results and discussion 

The effluent concentrations are investigated using a steady-state simulation at temperatures 

spanning 10 and 33 °C. The parameters related to kinetics for the above-indicated temperatures 

are listed in Table 7.4. As the temperature rose, the hydrolysis rate constant (KH), indicated in 

the table, gradually increased. In case of heterotrophic organisms (XH), the Maximum growth 

rate on substrate (µH) and Maximum rate for fermentation (qfe) have higher rate during 

temperature goes up. It has been shown that other values of heterotrophic rates tend to increase 

naturally during periods of high temperatures. In Phosphorus-accumulating organisms (XPAO), 

the values of qPHA, qPP, µPAO, bPHA exhibit a rising trend in their values during temperature rises.  

After observing the increasing kinetic variations in parameters triggered by increased 

temperature, influent from various global locations is finally exposed to the SBR process. As 

temperature rises and biological rates climb, the effluent quality for Indian influent 

(Visakhapatnam plant) improves with lower values. Table 7.5 lists the changes in effluent 

values due to temperature change for Indian Influent .There is a noticeable drop in the effluent 

parameters COD, BOD, TN, and NH4 by 2.5003%, 14.927%, 5.80%, and 9.0951%, 

respectively.  Unless a minimal rise is seen in the total amount of suspended solids and 

phosphorus, which are 2.0798% and 1.0745%, respectively. As temperature rises, more oxygen 

gets utilised by the biomass, resulting in a sharp drop in oxygen saturation (SO2-SAT) of 

33.716%. Figure 7.4 plots a chart bar aimed at the effluent values in Indian influent.   

Table 7.5: Effect on Effluent due to temperature change in Indian Influent (Ref. temperature=20 °C) 

Temperature (°C) COD BOD TN TP NH4 TSS SO2-SAT 

        

10 53.3327 13.9549 3.1370 2.2406 1.9615 11.4569 8.9127 

13 53.2444 13.8882 3.1294 2.2399 1.9530 11.4570 8.3420 

15 53.1760 13.8368 3.1227 2.2397 1.9458 11.4638 8 

17 53.0986 13.7783 3.1146 2.2396 1.9373 11.4757 7.6854 

20 52.9623 13.6742 3.0989 2.2396 1.9212 11.5000 7.2596 

23 52.7973 13.5447 3.0779 2.2415 1.9003 11.5248 6.8827 

25 52.6693 13.4413 3.0603 2.2457 1.8831 11.5398 6.6556 

27 52.5260 13.3228 3.0394 2.2522 1.8629 11.5530 6.4458 

30 52.2806 13.1142 3.0011 2.2668 1.8264 11.5680 6.1608 

33 51.9992 11.8718 2.9549 2.2872 1.7831 11.5800 5.9077 
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In water quality metrics, dissolved oxygen (DO) is crucial for secondary treatment procedures. 

The amount of oxygen that is dissolved and distributed throughout a water sample is indicated 

by the DO level. Dissolved oxygen is used by bacteria and other microbes to break down 

organic matter, which drops DO concentrations. Microorganisms are released in flocs during 

wastewater treatment to aerobically break down and eliminate organic matter. Therefore, the 

concentration of dissolved oxygen are crucial for effective treatment. During the first 150 

minutes, no oxygen is delivered because the process is anaerobic/anoxic (mention in Figure 

7.1).  After 150 minutes, oxygen is supplied with a flow of 1.85 L/min, however since there is 

an abundance of substrate, oxygen gets utilised by the biomass, resulting in the DO content 

decreasing for the initial 150 to around 200 minutes. After that, as there is not as much substrate 

present, less oxygen is required, but the flow remains constant at 1.85 L/min, and the DO value 

rises. Due to the extremely high demand for oxygen at higher temperatures, DO will be lower. 

The usage of oxygen by microorganisms in the reactor increases dramatically as the 

temperature rises, as can be observed in the Figure 7.5 A.  At 10 °C it upholds at 8mg/l but 

drops to 2-4 mg/l above 30 °C. It implies that microbial activity increases with increasing 

temperature. A similar plot structure can also be identified in the context of European influent. 
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(A) 

(B) (C) 

Figure 7.5: (A) DO concentration during SBR Phases; (B) Nitrate (NO3) profile; (C) Phosphate (PO4) profile 

The NO3 concentration in the wastewater drops during the first 150 minutes of treatment 

because the anoxic conditions cause the NO3 to be consumed. The majority of the biomass will 

quit anoxic reactions and switch to employing aerobic reactions after 150 minutes when the 

oxygen supply is started. Therefore, the NO3 content rises (in Figure 7.5B). The PO4 plot's (in 

Figure 7.5C) assessment is comparable to the explanation provided for the Total P analysis. 

In general, the chemical oxygen demand measures how much oxygen is required to oxidise 

organic material. The SBR's initial 150 minutes of treatment will be both anoxic and anaerobic, 

thereby the batch reactor's overall COD won't fluctuate much during that period of time. From 

the Figure 7.6 A, Chemical oxygen demand will initially be quite high since there is a more 

organic and nitrogenous substrate in the wastewater.  Following 150 minutes, the reactor will 

begin to experience an aerobic reaction, creating the amount of organic matter in the 

wastewater to decrease, and this in effect causes the chemical oxygen demand to drop. Because 
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the biological activity of the biomass grows at higher temperatures, COD will be much lower 

after 360 minutes at higher temperatures than at lower temperatures. It follows that the COD 

value after treatment will be higher at lower temperatures and vice versa. Unlike the COD plot, 

the BOD5 and TSS plots' conduct patterns, as well as the characteristics of the COD plot are 

identical. 

 

In SBR, the plot for ammonia is particularly dynamic (Figure 7.5 B). Due to the 

ammonification of the organic nitrogen, the NH4 content in the wastewater will dramatically 

rise within the first 150 minutes. Following 150 minutes, the nitrogen from the ammonia serves 

as both an energy source for the autotrophic nitrifying bacteria and a source of nitrogen for the 

 

 

(A) 

 

  

(B) 

  

(C) 

 

(D) 

Figure 7.6: (A)  COD profile;  (B)  NH4 profile;  (C)  TN profile; (D)  TP  profile; ( Inside the SBR reactor) 

with Indian influent and initial sludge parameter. 
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heterotrophic bacteria's synthesis. Since biological activity will be strong at high temperatures, 

NH4 conversion will also be high. Most of the biomass will decay and be turned into the slowly 

biodegradable matter between 300 and 360 minutes. Part of that slowly biodegradable 

substance will then be converted into NH4, which causes the NH4 content to increase slightly. 

Organic nitrogen, ammonia nitrogen, and nitrates will make up the total nitrogen content. 

Nitrogen oxides (NO) arrive at the reactor during the first few minutes of the treatment, 

increasing the total Nitrogen attention. The total nitrogen concentration stays the same even 

when it changes from NO3 to N2, as picturised in Figure 7.6 C. When the aerobic process begins 

150 minutes later, nitrogenous materials are transformed into biomass. Temperature throughout 

the treatment process directly relates to the biomass's consumption of nitrogenous substrate. 

During the first few minutes in the reactor, Phosphorous Accumulating Organisms will use the 

energy provided by releasing the polyphosphates in their cell store in the form of 

hydrophosphate to convert the fermentation products into Poly-Hydroxyl-Alkanoates. When 

the aerobic process begins, hydrophosphates will be transformed to polyphosphates and stored 

in the cell of phosphorus-accumulating organisms. Thus, the wastewater's total phosphorus 

level drops. According to Figure 7.6 D, temperature has a direct correlation with the rate at 

which phosphorus changes states. 

While European influent is fed into the SBR reactor, a similar type of impact has been observed. 

The effluent characteristics that differ with temperature variations are listed in Table 7.6. 

Likewise, as the temperature increased here, the effluent reduced. At 10°C, the COD 

concentration of the effluent is 53.40, and it dropped by 2.50% to 52.06 at 33 °C. Similar 

reductions are seen in BOD, TN, and NH4 of 7.76%, 5.800%, and 9.10%, respectively. The 

minor increases in TP and TSS are 1.94% and 1.02%, respectively. 

The utilisation of oxygen by microorganisms in the reactor is likely seen in the Figure 7.8 B, 

which shows how the DO concentration quickly rises as the temperature goes up. At 10 °C, the 

level stays at 8 mg/l, meanwhile, at temperatures exceeding 30 °C, it stays around 2-4 mg/l, 

indicating an increase in microbial activity as the temperature of the atmosphere climbs. 

According to the COD graph in Figure 7.8 A, the rate at which COD in the reactor reduces 

increases as temperature rises. High temperatures encourage higher rates of nitrification and 

denitrification, and that's why it arises. 
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Table 7.6: Effect on Effluent due to temperature change in European Influent 

 

 

 

 

Temperature (°C) COD BOD TN TP NH4 TSS SO2-SAT 

        

10 53.4039 13.9906 3.1392 2.2413 1.9615 11.5055 8.9127 

13 53.3157 13.9242 3.1318 2.2403 1.9530 11.5077 8.3420 

15 53.2467 13.8722 3.1250 2.2398 1.9457 11.5127 8 

17 53.1686 13.8129 3.1170 2.2395 1.9371 11.5214 7.6854 

20 53.0318 13.7079 3.1013 2.2402 1.9211 11.5437 7.2596 

23 52.8667 13.5782 3.0802 2.2413 1.9001 11.5685 6.8827 

25 52.7386 13.4747 3.0626 2.2455 1.8829 11.5835 6.6556 

27 52.5950 13.3558 3.0410 2.2517 1.8627 11.5965 6.4458 

30 52.3488 13.1465 3.0033 2.2654 1.8262 11.6111 6.1608 

33 52.0673 12.9044 2.9571 2.2849 1.7829 11.6236 5.9077 
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Figure 7.7: Effluent quality for European influent in various temperatures 
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Figure 7.8:  (A) COD profile;  (B) DO profile;  (C) NH4 profile; (D) NO3 profile; (E) TN profile;  (F) TP 

profile;  ( Inside the SBR reactor) with European influent and initial sludge parameter. 
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Figure 7.8 D, NO3 indicates that nitrate utilisation in the anoxic-anaerobic phase is low at lower 

temperatures and develops at elevated temperatures, while nitrate production in the aerobic 

phase increases at warmer weather. PO4 in the Figure 7.9, it is able to see that at cold 

temperatures, both the anaerobic and aerobic periods PO4 production and consumption are 

minimal. In the anaerobic and aerobic phases, respectively, utilisation and production climb 

along with heat. Total phosphorus (TP) contents in Figure 7.8 F is evident in the image to 

follow a similar pattern to PO4 levels. Figures 7.8 E and 7.8 C for TN and NH4 show that total 

nitrogen removal is higher at high temperatures, as are ammonia production and utilisation, 

respectively. Figure 7.7 illustrates the effluent parameters along with oxygen saturation in a 

SBR along with how these factors influence the effluent parameters when it comes to 

temperature dependence. Effluent plots with European inlets are quite comparable to those with 

Indian influent. 

7.4  Conclusion 

The study revealed that temperature has a substantial impact on sequential batch reactor’s 

(SBR’s) performance, which could have significant consequences for the layout and 

management of SBR-based wastewater treatment facilities across the globe. This might lead to 

the development of wastewater treatment strategies that are more effective and sustainable. 

Utilizing a steady-state simulation to examine effluent quantities at temperatures ranging from 

10°C to 33°C, the study specifically identifies the influence of temperature on removing 

organic carbon and nitrogen in a sequential batch reactor. As temperature rises, the effluent 

Figure 7.9: plot for PO4 in European influent condition 
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quality noticeably improves. In order to reach acceptable discharge limits, it is observed that 

changes in kinetic parameters at various temperature ranges have a significant impact on the 

effluent quality.  The kinetic parameter investigation is carried out at a temperature of 20 °C. 

In Indian influent, COD, BOD, TN, and NH4 have decreased substantially by 2.5003%, 

14.927%, 5.80%, and 9.0951%, respectively. While a slight increase in total suspended solids 

and phosphorus levels are noticed, which are 2.0798% and 1.0745%, respectively. As the 

temperature rises, the biomass consumes more oxygen, resulting in a significant decrease in 

oxygen saturation (SO2-SAT) of 33.716%. As the temperature rises, the amount of oxygen 

consumed by microbes in the reactor notably increases, as seen in Figure 4A.  It maintains 

about 8 mg/l levels at 10 °C but declines to 2-4 mg/l over 30 °C. It signifies that as warmer 

temperatures occur, microbial activity does as well. The levels of DO in wastewater treatment 

decrease as the microorganisms become more active. Using low DO concentrations will result 

in microorganisms dying off and this will lead to a loss of efficacy of treatment. The optimum 

control strategy requires aeration and bubbler systems to be installed in order to keep the DO 

levels at or below 2 mg/L as well as to evenly distribute the DO throughout the flocs containing 

microorganisms. Similar effects have been noted when the SBR reactor receives European 

influent. Furthermore, the effluent decreased when the temperature rose in this area. The 

effluent's COD concentration was 53.40 at 10 °C and 52.06 at 33 °C, a 2.50% decrease. BOD, 

TN, and NH4 all experienced similar declines of 7.76%, 5.800%, and 9.10%, respectively. TSS 

and TP both experienced slight increases of 1.94% and 1.02%, respectively and all parameter 

are under restricted norms for effluent discharge. Finally, this study notices that temperature 

has considerable influence on SBR’s performance, which may have concerns for the design 

and operation of SBR-based wastewater treatment facilities worldwide. This could pave the 

way for more efficient and long-lasting wastewater treatment solutions in rationally exposed 

environments. 
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8. CONCLUSIONS AND FUTURE SCOPE 

 

8.1 Overall conclusion  

In conclusion, this thesis has undertaken a comprehensive exploration of various control 

strategies and their impact on the performance of Biological Wastewater Treatment plants 

(WWTPs), particularly focusing on the performance of sequencing Batch Reactor (SBR) and 

aeration systems. The evaluation utilized four primary control techniques - PI, FPI, FUZZY 

and MPC implementing them across different levels of control hierarchy.  

8.1.1 A supervisory FUZZY control framework with lower level fractional-order 

models on wastewater treatment plant’s nutrient removal. 

The performance of a biological wastewater treatment plant in ASM3bioP platform is greatly 

impacted by three lower-level implemented methods: IO model and IO control, IO model FO 

control, and FO model FO control. These strategies are evaluated using PI, FPI, and higher-

level FL control approaches. The EQI improvement percentages for FPI and FMFPI relative to 

PI are 0.50% and 0.59%, respectively, whilst the OCI improvement percentages are 0.31% and 

0.33%. 

The application of FUZZY controller at the supervisory level demonstrated substantial 

improvements in Effluent Quality Index (EQI), supressing the outcomes achieved by lower 

level PI and FPI controllers. EQI is improved by 4.00% for the IO model with FPI and 4.03% 

for the FO model with FPI when supervisory fuzzy logic control is used. Fuzzy control lowers 

violations of total nitrogen by 9.01% (FO model) and 6.11% (IO model) compared to lower 

level PI, despite higher OCI brought on by controller costs. 

Lower-level control ammonia violations are somewhat decreased in the FO model (2.01%) and 

IO model (1.78%) when using FPI. Plant performance is more strongly impacted by the FO 

controller, although the FM-FPI approach produces the greatest outcomes and greatly improves 

the EQI. The results underscored the importance of higher level control strategies in enhancing 

overall plant performance, albeit with a slight increase in overall cost (OCI).  

8.1.2 Optimising wastewater treatment employing IMC-based fractional controllers in 

a supervisory MPC control scheme for biological treatment. 

A non-integer order system for biological wastewater treatment plants (WWTP) is found for 

the ASM3bioP model by utilizing FOMCON toolbox, with an emphasis on regulating 
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dissolved oxygen (DO) and nitrate content (NO). Using the Genetic Algorithm (GA) 

determines the fractional filter parameters (λ, α) for the Internal Model Control (IMC) 

controller by optimizing the Integral of Absolute Error (IAE) for closed-loop response. Using 

MATLAB Simulink, the IMC controller is used to improve the aeration system for the DO 

control. The effectiveness of the controller and the uncertainty of the plant are validated 

through extensive testing. For the non-integer model, a mathematical method using the same 

IMC fractional controller and a higher-order fractional filter is created, leading to a better 

closed-loop response with enhanced set point tracking and disturbance rejection. The control 

approach known as Fractional Filter - Fractional Order Proportional Integral (FF-FOPI) 

simultaneously minimises IAE and Integral of Squared Error (ISE). Fractional Order (FO) 

controllers have a greater effect on plant performance when compared to Proportional Integral 

(PI) controllers. The FF-FOPI approach with higher order filter outperformed both GA based 

IMC PI and FPI controllers, highlighting its potential for optimizing WWTP operations. 

Moving forward, the investigation extended to the SBR plant layout, incorporating complex 

ASM2d modelling and calibrated real plant data. 

8.1.3 Design of control strategies for biological wastewater treatment of sequential 

batch reactor 

PI, FPI, and Fuzzy control frameworks are integrated into an SBR facility utilizing the ASM2d 

platform. These methods control dissolved oxygen (DO) during aeration by altering the air 

flow rate. The ASM2d model, calibrated with actual plant data, represents an SBR-based water 

treatment facility. Notably, the study investigates regulating a batch process utilizing the 

complicated ASM2d model and real-world plant data calibration. The controller performance 

is examined, and the finding showcased the superiority of FPI controllers in terms of ISE and 

IAE compared to PI and Fuzzy controllers. Effluent nutrient compositions remain within legal 

limits. FPI improves nutrient removal rates and effluent quality by 0.53%, 1.05%, 1.18%, 

0.80%, 0.07%, and 2.22% over PI. A modified SBR cycle (Step-Feed Process) shows similar 

advantages. When FPI controller performance is examined only based on total air volume 

consumption, step-feed SBR shows an 11.04% reduction compared to standard SBR. The 

results demonstrated optimized nutrient removal rates and effluent quality with the FPI 

controller emphasizing its efficiency in real-world wastewater treatment scenarios. 
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8.1.4 Design of supervisory fuzzy control for enhanced energy saving in a sequencing 

batch reactor based wastewater treatment plant 

This part of study models a biological WWTP based on SBR using a modified ASM2d 

framework and simulates DO controlling during the aeration phase using real-time data from 

the Vizag WWTP in 30°C Indian conditions. The goal is to keep DO levels in SBR between 

150 and 300 minutes for one batch operating cycle. Supervisory fuzzy control for ammonia 

and nitrate, along with lower level PI and FPI controllers, attempts to improve effluent quality 

and cut aeration costs by optimizing airflow to the SBR reactor during aeration. Six control 

techniques are applied, including two DO controllers at the lowest level and four hierarchically 

structured nitrate and ammonia controllers based on fuzzy logic. Using an intelligent fuzzy 

control cascaded with PI and FPI controllers improves effluent quality and reduces air 

consumption, lowering aeration costs. Fuzzy control at the supervision level reduces airflow 

by 40.08% for ammonia control and 31.58% for nitrate control. The study concludes that an 

ammonia control strategy with a lower level FPI controller is more efficient in terms of both 

EQI and aeration cost, providing a cost-effective aeration approach suitable for small-scale 

industries or domestic wastewater treatment facilities that use conventional SBR technologies. 

8.1.5 Influence of seasons on the effluent quality in sequencing batch reactor based 

wastewater treatment plants 

Furthermore, the thesis delved into the impact of temperature on SBR performance, revealing 

temperature’s substantial influence on the efficiency of SBR based wastewater treatment 

facilities. As temperature increased, effluent quality improved, necessitating careful 

consideration in the design and operation of such facilities, particularly in varying climatic 

conditions.   

The study demonstrates temperature's critical significance in organic carbon and nitrogen 

removal in SBRs using steady-state simulation at temperatures ranging from 10°C to 33°C, 

with higher temperatures significantly increasing effluent quality. Notably, changes in kinetic 

parameters throughout temperature ranges have a considerable impact on effluent quality, 

notably at 20°C. COD, BOD, TN, and NH4 levels fall dramatically in Indian influent, whereas 

total suspended solids and phosphorus levels rise slightly. As the temperature rises, microbial 

activity increases, affecting dissolved oxygen (DO) levels, demanding optimal management 

solutions involving aeration and bubbler systems to maintain DO levels and assure treatment 

effectiveness. Similar trends are seen with European influent, indicating temperature's 
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significant impact on SBR performance and the possibility for more effective and sustainable 

wastewater treatment options around the world. 

In Summary, this thesis contributes valuable insights into realm of wastewater treatment 

control strategies, showcasing the efficacy of higher level control techniques, non-integer order 

systems, and the influence of environmental factors. The finding presented here not only 

expand the theoretical foundations but also offer practical implications for optimising the 

performance of Biological WWTP in diverse operational contexts. The journey undertaken in 

this thesis sets the stage for continued exploration and advancements in the field of fractional 

modelling and control in wastewater treatment plants, inspiring future researchers to delve 

deeper into the intricate dynamics of WWTP processes. A low volume industries or domicile 

wastewater treatment facilities can benefits from this low cost aeriation techniques that 

incorporates standard SBR.  

8.2  Plan for future work  

This study sheds light on the dynamic interaction of environmental factors and wastewater 

treatment systems, giving important insights for future investigations. Building on these 

findings, future studies could look into novel approaches to improving treatment efficiency and 

environmental sustainability. The opportunities are  

o Develop advanced control approaches to effectively eliminate phosphorus utilising a 

Total Suspended Solids (TSS) controller. 

o Develop a fractional model and controller for a complete wastewater treatment system. 

o Design machine learning models for wastewater treatment plant sensors to substitute 

sensor hardware with soft sensor model. 

o Apply the designed control strategies to an experimental setup of a pilot plant for 

practical implementation.   
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APPENDIX A 

 

Table A3 Kinetic rate expressions for ASM3 (Henze et al. (2000)) 

 

No. Process Process rate equation 

Hydrolysis 

P1 Hydrolysis 
𝑘ℎ

𝑋𝑆 𝑋𝐻⁄

𝐾𝑋 + 𝑋𝑆 𝑋𝐻⁄
𝑋𝐻 

Heterotrophic organisms 

P2 Aerobic storage of 

COD 
𝑘𝑆𝑇𝑂

𝑆𝑂
𝐾𝑂,𝐻 + 𝑆𝑂

𝑆𝑆
𝐾𝑆𝑆,𝐻 + 𝑆𝑆

𝑋𝐻 

P3 Anoxic storage of COD 
𝑘𝑆𝑇𝑂𝜂𝑁𝑂,𝐻

𝐾𝑂,𝐻
𝐾𝑂,𝐻 + 𝑆𝑂

𝑆𝑁𝑂
𝐾𝑁𝑂,𝐻 + 𝑆𝑁𝑂

𝑆𝑆
𝐾𝑆𝑆,𝐻 + 𝑆𝑆

𝑋𝐻 

P4 Aerobic growth 
𝜇𝐻

𝑆𝑂
𝐾𝑂,𝐻 + 𝑆𝑂

𝑆𝑁𝐻
𝐾𝑁𝐻,𝐻 + 𝑆𝑁𝐻

𝑆𝑃𝑂4
𝐾𝑃𝑂4,𝐻 + 𝑆𝑃𝑂4

𝑆𝐻𝐶𝑂
𝐾𝐻𝐶𝑂,𝐻 + 𝑆𝐻𝐶𝑂

𝑋𝑆𝑇𝑂 𝑋𝐻⁄

𝐾𝑆𝑇𝑂 + 𝑋𝑆𝑇𝑂 𝑋𝐻⁄
𝑋𝐻 

P5 Anoxic growth(deni) 
𝜇𝐻𝜂𝑁𝑂,𝐻

𝐾𝑂,𝐻
𝐾𝑂,𝐻 + 𝑆𝑂

𝑆𝑁𝑂
𝐾𝑁𝑂,𝐻 + 𝑆𝑁𝑂

𝑆𝑁𝐻
𝐾𝑁𝐻,𝐻 + 𝑆𝑁𝐻

𝑆𝑃𝑂4
𝐾𝑃𝑂4,𝐻 + 𝑆𝑃𝑂4

𝑆𝐻𝐶𝑂
𝐾𝐻𝐶𝑂,𝐻 + 𝑆𝐻𝐶𝑂

𝑋𝑆𝑇𝑂 𝑋𝐻⁄

𝐾𝑆𝑇𝑂 + 𝑋𝑆𝑇𝑂 𝑋𝐻⁄
𝑋𝐻 

P6 Aerobic endog. Resp 
𝑏𝐻

𝑆𝑂
𝐾𝑂,𝐻 + 𝑆𝑂

𝑋𝐻 

P7 Anoxic endog. Resp 
𝑏𝐻𝜂𝑁𝑂,𝑒𝑛𝑑,𝐻

𝐾𝑂,𝐻
𝐾𝑂,𝐻 + 𝑆𝑂

𝑆𝑁𝑂
𝐾𝑁𝑂,𝐻 + 𝑆𝑁𝑂

𝑋𝐻 
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P8 Aerobic resp. of XSTO 
𝑏𝐻

𝑆𝑂
𝐾𝑂,𝐻 + 𝑆𝑂

𝑋𝑆𝑇𝑂 

P9 Anoxic resp. of XSTO 
𝑏𝐻𝜂𝑁𝑂,𝑒𝑛𝑑,𝐻

𝐾𝑂,𝐻
𝐾𝑂,𝐻 + 𝑆𝑂

𝑆𝑁𝑂
𝐾𝑁𝑂,𝐻 + 𝑆𝑁𝑂

𝑋𝑆𝑇𝑂 

Autotrophic organisms 

P10 Nitrification 
𝜇𝐴

𝑆𝑂
𝐾𝑂,𝐻 + 𝑆𝑂

𝑆𝑁𝐻
𝐾𝑁𝐻,𝐻 + 𝑆𝑁𝐻

𝑆𝑃𝑂4
𝐾𝑃𝑂4,𝐻 + 𝑆𝑃𝑂4

𝑆𝐻𝐶𝑂
𝐾𝐻𝐶𝑂,𝐻 + 𝑆𝐻𝐶𝑂

𝑋𝐴 

P11 Aerobic endog. resp. 
𝑏𝐴

𝑆𝑂
𝐾𝑂,𝐻 + 𝑆𝑂

𝑋𝐴 

P12 Anoxic endog. resp. 
𝑏𝐴𝜂𝑁𝑂,𝐴

𝐾𝑂,𝐻
𝐾𝑂,𝐻 + 𝑆𝑂

𝑆𝑁𝑂
𝐾𝑁𝑂,𝐻 + 𝑆𝑁𝑂

𝑋𝐴 
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Table A4 Kinetic rate expressions for the EAWAG Bio-P module (Rieger et al. (2001)) 

No. Process Process rate equations 

Phosphorus accumulating organisms 

P13 Storage of XPHA 
𝑞𝑃𝐻𝐴

𝑆𝑆
𝐾𝑆𝑆,𝑃𝐴𝑂 + 𝑆𝑆

𝑆𝐻𝐶𝑂
𝐾𝐻𝐶𝑂,𝑃𝐴𝑂 + 𝑆𝐻𝐶𝑂

𝑋𝑃𝑃 𝑋𝑃𝐴𝑂⁄

𝐾𝑃𝑃,𝑃𝐴𝑂 + 𝑋𝑃𝑃 𝑋𝑃𝐴𝑂⁄
𝑋𝑃𝐴𝑂 

P14 Aer. storage of XPP 
𝑞𝑃𝑃

𝑆𝑂
𝐾𝑂,𝑃𝐴𝑂 + 𝑆𝑂

𝑆𝑃𝑂4
𝐾𝑃𝑂4,𝑃𝑃 + 𝑆𝑃𝑂4

𝑆𝐻𝐶𝑂
𝐾𝐻𝐶𝑂,𝑃𝐴𝑂 + 𝑆𝐻𝐶𝑂

𝑋𝑃𝐻𝐴 𝑋𝑃𝐴𝑂⁄

𝐾𝑃𝐻𝐴 + 𝑋𝑃𝐻𝐴 𝑋𝑃𝐴𝑂⁄

𝐾𝑚𝑎𝑥,𝑃𝐴𝑂 − (𝑋𝑃𝐻𝐴 𝑋𝑃𝐴𝑂⁄ )

𝐾𝑖𝑃𝑃,𝑃𝐴𝑂 + 𝐾𝑚𝑎𝑥,𝑃𝐴𝑂−(𝑋𝑃𝑃 𝑋𝑃𝐴𝑂)⁄
𝑋𝑃𝐴𝑂 

P15 Anox. storage of XPP 
𝑞𝑃𝑃𝜂𝑁𝑂,𝑃𝐴𝑂

𝐾𝑂,𝑃𝐴𝑂
𝐾𝑂,𝑃𝐴𝑂 + 𝑆𝑂

𝑆𝑁𝑂
𝐾𝑁𝑂,𝑃𝐴𝑂 + 𝑆𝑁𝑂

𝑆𝑃𝑂4
𝐾𝑃𝑂4,𝑃𝑃 + 𝑆𝑃𝑂4

𝑆𝐻𝐶𝑂
𝐾𝐻𝐶𝑂,𝑃𝐴𝑂 + 𝑆𝐻𝐶𝑂

𝑋𝑃𝐻𝐴 𝑋𝑃𝐴𝑂⁄

𝐾𝑃𝐻𝐴 + 𝑋𝑃𝐻𝐴 𝑋𝑃𝐴𝑂⁄

𝐾𝑚𝑎𝑥,𝑃𝐴𝑂 − (𝑋𝑃𝐻𝐴 𝑋𝑃𝐴𝑂⁄ )

𝐾𝑖𝑃𝑃,𝑃𝐴𝑂 +𝐾𝑚𝑎𝑥,𝑃𝐴𝑂−(𝑋𝑃𝑃 𝑋𝑃𝐴𝑂)⁄
𝑋𝑃𝐴𝑂 

P16 Aer. growth of XPAO 
𝜇𝑃𝐴𝑂

𝑆𝑂
𝐾𝑂,𝑃𝐴𝑂 + 𝑆𝑂

𝑆𝑁𝐻
𝐾𝑁𝐻,𝑃𝐴𝑂 + 𝑆𝑁𝐻

𝑆𝑃𝑂4
𝐾𝑃𝑂4,𝑃𝑃 + 𝑆𝑃𝑂4

𝑆𝐻𝐶𝑂
𝐾𝐻𝐶𝑂,𝑃𝐴𝑂 + 𝑆𝐻𝐶𝑂

𝑋𝑃𝐻𝐴 𝑋𝑃𝐴𝑂⁄

𝐾𝑃𝐻𝐴 + 𝑋𝑃𝐻𝐴 𝑋𝑃𝐴𝑂⁄
𝑋𝑃𝐴𝑂 

P17 Anox. growth of XPAO 
𝜇𝑃𝐴𝑂𝜂𝑁𝑂,𝑃𝐴𝑂

𝐾𝑂,𝑃𝐴𝑂
𝐾𝑂,𝑃𝐴𝑂 + 𝑆𝑂

𝑆𝑁𝑂
𝐾𝑁𝑂,𝑃𝐴𝑂 + 𝑆𝑁𝑂

𝑆𝑁𝐻
𝐾𝑁𝐻,𝑃𝐴𝑂 + 𝑆𝑁𝐻

𝑆𝑃𝑂4
𝐾𝑃𝑂4,𝑃𝑃 + 𝑆𝑃𝑂4

𝑆𝐻𝐶𝑂
𝐾𝐻𝐶𝑂,𝑃𝐴𝑂 + 𝑆𝐻𝐶𝑂

𝑋𝑃𝐻𝐴 𝑋𝑃𝐴𝑂⁄

𝐾𝑃𝐻𝐴 + 𝑋𝑃𝐻𝐴 𝑋𝑃𝐴𝑂⁄
𝑋𝑃𝐴𝑂 

P18 Aerobic endog. respiration 
𝑏𝑃𝐴𝑂

𝑆𝑂
𝐾𝑂,𝑃𝐴𝑂 + 𝑆𝑂

𝑋𝑃𝐴𝑂 

P19 Anoxic endog. respiration 
𝑏𝑃𝐴𝑂𝜂𝑁𝑂,𝑒𝑛𝑑,𝑃𝐴𝑂

𝐾𝑂,𝑃𝐴𝑂
𝐾𝑂,𝑃𝐴𝑂 + 𝑆𝑂

𝑆𝑁𝑂
𝐾𝑁𝑂,𝑃𝐴𝑂 + 𝑆𝑁𝑂

𝑋𝑃𝐴𝑂 

P20 Aerobic lysis of XPP 
𝑏𝑃𝑃

𝑆𝑂
𝐾𝑂,𝑃𝐴𝑂 + 𝑆𝑂

𝑋𝑃𝑃 
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P21 Anoxic lysis of XPP 
𝑏𝑃𝐴𝑂𝜂𝑁𝑂,𝑙𝑦𝑠𝑖𝑠,𝑃𝑃

𝐾𝑂,𝑃𝐴𝑂
𝐾𝑂,𝑃𝐴𝑂 + 𝑆𝑂

𝑆𝑁𝑂
𝐾𝑁𝑂,𝑃𝐴𝑂

𝑋𝑃𝑃 

P22 Aerobic resp. of XPHA 
𝑏𝑃𝐻𝐴

𝑆𝑂
𝐾𝑂,𝑃𝐴𝑂 + 𝑆𝑂

𝑋𝑃𝐻𝐴 

P23 Anoxic resp. of XPHA 
𝑏𝑃𝐻𝐴𝜂𝑁𝑂,𝑟𝑒𝑠𝑝,𝑃𝐻𝐴

𝐾𝑂,𝑃𝐴𝑂
𝐾𝑂,𝑃𝐴𝑂 + 𝑆𝑂

𝑆𝑁𝑂
𝐾𝑁𝑂,𝑃𝐴𝑂

𝑋𝑃𝐻𝐴 
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Procedure for Identification of Different Models used in this work Identification of 

FOPTD Model for Lower Level 

System Identification process is used to identify the plant models to be used for control 

of BSM1-P in FOPTD form. 

Step 1. Decide the control loops and corresponding manipulated and controlled variables. 

Step 2. Run the Plant simulation model to reach steady state. It may be achieved after 

100- 150 days for BSM1. (Steady state should be the point around which identification 

is desired to be performed). 

Important Tip: Make sure that steady state achieved for the controlled variable should 

be approximately the value near the set-points wished to be maintained in closed loop. 

Thus, a set of manipulated variables needed to maintain the controlled variables at their 

set-points with define an operating point. Here, for PI configuration the operating point 

used is SO,7=2 mg (O2)/l, SNO,4=1 mg N/l, KLa7=252 1/d and Qintr=34500 m3/d. 

Step 3. Now run the identification file which varies all the manipulated variables (here, 

KLa7 and Qintr) ±10% around their operating point simultaneously and record this input. 

If there is a need, include the disturbance variable as an additional input (here Qintr) and 

give only the +5% to +10% of step change to it. 

Step 4. Collect the data for variations respective controlled variables (here SO,7 and SNO,4) 

due to input supplied. 

Step 5. Create a “iddata” object with recorded controlled and manipulated variables 

including disturbance variable and use a proper sampling time (here, 1/96). 

Step 6. Go to System Identification tool box and import the data object created in 

previous step. 

Step 7. Use only the portion with consistent oscillations in output around operating point. 

(Use select range option provided in toolbox). 

Step 8. Preprocess the data if needed (i.e. remove means and trends). 

Step 9. Create the estimation and validation parts of data (generally 2/3 part is used for 

estimation and 1/3 part for validation) and import estimation data in “working data” and 

rest in “validation data” in toolbox. 

Step 10. For estimating FOPTD model, chose the option of “Process Model” form 

estimation options and provide any of the initial details (like gain) if available and 

estimate the model.  

From estimation option and specify the order and type of model (continuous or discrete) 
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to be estimated. There are several methods available for estimation like Subspace N4SID 

algorithm or prediction error method but the later one is generally used.  

Step 11. Check the fit to estimation data and validation data, if it is within acceptable 

limits (generally above 70%) then model is fit to use otherwise repeat steps 2 -10 again. 

 

 

Figure A1. Lower Level Identification File 

Fractional order model identification.  

Based on the time-domain approach, a non-integer order time delay transfer 

function model is found using the MATLAB FOMCON toolbox.  

Steps to identify a good fitted identified model  

Step 1. A "fidata" structure must be chosen first and foremost. 

Step 2. Select ‘Time domain Identification’, where you can choose frequency 

domain too. 

Step 3. Choose the ‘simulation parameter methods’ in Grunwald-Letnikov 

method or Oustaloup filter or Refined Oustaloup filter. (You need to select 

‘w’ range and order for the last two options). We select the Oustaloup filter. 

Step 4. In the ‘Identification and options’ section chosen ‘fidata’ name will 

show and the preferred algorithm is ‘Trust-Region-Reflective’. 
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Step 5. There is a symbolic form of identified model in terms of the fractional 

pole and zero polynomials. A first-guess model is created. In order to create 

polynomials autonomously, a commensurate-order q that has the property that 

0.01 ≤ q < 2 —the order of the polynomial—can be defined. 

Step 6. A plot that displays a good fitting result and shows the identified 

system's stable behavior should be displayed at the conclusion of the 

identification process. As long as the outcomes are pleasing, the model is 

saved for use in creating a controller. 

 

 

Figure A2. BSM1 Simulink Diagram with lower level PI / FPI controller. 



References 

 

Deciding Rules for Higher Level Fuzzy Controller 

As the procedure is described for deducing the membership functions and rules for lower 

level fuzzy controller, similar approach is followed for higher level fuzzy controller also. 

Here, data is collected for ammonia concentration in tank 7 and respective DO set-point 

needed to be maintained by lower level control in tank 7 and a graph is generated 

between both variables. This graph then can be used for diving the variables into fuzzy 

sets. 

 

Figure B4. BSM1-P with PI or FPI with Fuzzy Configuration 
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APPENDIX B 

 

Identification of State Space Model for Higher Level 

Step 1. Fix the lower level controller to be used along with higher level control. Decide 

the control loops and corresponding manipulated and controlled variables for higher 

level. 

Step 2. Run the Plant simulation model to reach steady state. It may be achieved after 

100- 150 days for BSM1. (Steady state should be the point around which identification 

is desired to be performed). 

Important Tip: For higher level control, the value of ammonia concentration and DO 

concentration in tank 7. Make sure that the steady state reached for ammonia 

concentration should be the value of set-point of ammonia you plan to achieve. The DO 

value needed to achieve the desired set-point of ammonia and the steady state value of 

ammonia concentration itself make a set of operating point. For example, if SNH,7 ref 

=1.71  for FPI-MPC configuration then the steady state value of DO set-point needed is 

SO,7 ref=2.45. 

Step 3. Now run the identification file (close lower level loop and open higher level 

loop) which varies all the manipulated variable (here SO,7 ref) ±10% around their 

operating point simultaneously and record this input. 

Step 4. Collect the data for variations in respective controlled variable (here SNH,7) due 

to input supplied. 

Step 5. Create a “iddata” object with recorded controlled and manipulated variable and 

use a proper sampling time (here, 1/96). 

Step 6. Go to System Identification tool box and import the data object created in 

previous step. 

Step 7. Use only the portion with consistent oscillations in output around operating point. 

(Use select range option provided in toolbox). 

Step 8. Preprocess the data if needed (i.e. remove means and trends). 

Step 9. Create the estimation and validation parts of data (generally 2/3 part is used for 

estimation and 1/3 part for validation) and import estimation data in “working data” and 

rest in “validation data” in toolbox. 

Step 10. For estimating State space model, chose the option of “State Space Models” 



Appendix 

 

185 | P a g e  

 

from estimation option and specify the order and type of model (continuous or discrete) 

to be estimated. There are several methods available for estimation like Subspace or 

prediction error method but the later one is generally used. There is an option available 

to choose the input which have immediate effect on output (i.e. values in D matrix). 

Usually, matrix D=0. Chose all the desired options and estimate the model. 

Step 11. Check the fit to estimation data and validation data, if it is within acceptable limits 

(generally above 70%) then model is fit to use otherwise repeat steps 2 -10 again. 

 

Figure B1. An Example of Higher Level State space model Identification 

File  

 

Designing of MPC Controller 

Step 1. Determine the state space model of the plant to be controlled with MPC controller. 

And save the model in workspace. 

Step 2. Import the model in MPC designer app and give the nominal values for controlled 

and manipulated variables. 

Step 3. After the model is imported, a default controller is created in controller section. Tune 

the controller parameters and export the designed controller to workspace. 

Note: The response of the controller to test signals (step, ramp, etc) in controlled as well as 

manipulated variables, assuming that the model of the plant describes the exact dynamics as 

real plant can be checked simulating a scenario in designer app. 



Appendix 

 

186 | P a g e  

 

 

Figure B2. BSM1-P with FPI-MPC Configuration 
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APPENDIX C 

 

This is the Simulink diagram to generate data to create the transfer function model for both 

Integer and fractional order model. The process of generating the transfer function model for 

both Integer and fractional order model of SBR during the Aeriation phase are same like 

continuous process (ASP) identification. Only we have to choose the data during the aeriation 

time only that is 150 to 300 minutes. 

Figure C1. An Example of Lower level model Identification File in SBR  

 

This Simulink is implementation of lower level PI controller with proper tuning (SIMC) for 

the SBR process. In the other two lower level control strategies the author has changed Integer 

controller with Fractional (FPI) and Fuzzy controller. 

Figure C2. SBR Simulink Diagram with lower level PI controller. 
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Figure C3. SBR Simulink Diagram with lower level FPI controller. 

 

Figure C3. SBR Simulink Diagram with lower level Fuzzy controller. 
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Figure C4. SBR with Stepfeed (SSBR) Simulink Diagram with lower level FPI controller. 

 

 

 

Figure C5. SBR with Stepfeed (SSBR) Simulink Diagram with lower level Fuzzy controller. 
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APPENDIX D 

 

This is implementation of supervisory Fuzzy logic control to determine variable set point to 

lower level controller inside a cascaded scheme. For the other supervisory schemes the author 

changes only the sensors (NH4/NO3) and lower level controller (PI/FPI).  

The same Simulink model is available model where PI model is replaced by FPI controller. 

 

Figure D1. SBR Simulink Diagram with lower level PI with higher level fuzzy controller 

(NH4/NO3 based aeriation).
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