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ABSTRACT

Disease diagnosis is a fundamental aspect of modern healthcare, where accurate and

timely detection can profoundly impact patient outcomes. Leveraging the power of en-

semble techniques has emerged as a promising avenue to enhance diagnostic accuracy.

However, the intricate landscape of disease data presents challenges that necessitate inno-

vative solutions. Ensemble methods, which combine the predictions of multiple models,

offer a means to improve disease diagnosis by leveraging diverse perspectives. Yet, ef-

fectively harnessing these techniques remains challenging due to class imbalance within

datasets and the intricate task of configuring optimal ensembles.

This thesis embarks on a comprehensive exploration, addressing these challenges

through a meticulously designed sequence of objectives. In this thesis first, we intro-

duced a three-level stacking approach that integrates the Adaptive Synthetic Sampling

(ADASYN) technique to handle class imbalance, while Particle Swarm Optimization

(PSO) fine-tunes Support Vector Machine (SVM) meta-model. The resulting ensemble ex-

hibits exceptional performance across key metrics, including AUC, accuracy, specificity,

and precision.

Building on this foundation, we delve into diversity-based ensemble frameworks. In

our second objective, address the challenges of diversity based classifier selection. To

achieve this proposed a novel fitness function that enhances the diversity of base learners

within the ensemble. By combining this with bootstrapped bags and cross-validation, we

demonstrate its superiority over existing ensemble models, reinforcing the potential of

diversity-driven strategies.

Continuing our exploration, the third objective introduces the Bagging Approach with

Teaching-Learning-Based Optimization (BA-TLBO). This dynamic ensemble optimiza-

tion technique strikes a delicate balance between accuracy and diversity through dynamic
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weight updation and bag size adjustments. The approach’s ability to maintain exploration

while optimizing exploitation is validated through rigorous experimentation, positioning

it as a robust alternative to traditional ensemble methods.

Our final objective takes on the complex challenge of classifier selection and placement

within an ensemble framework. We navigate the intricate landscape of classifier config-

urations through a dynamic three-level ensemble framework guided by a nested Genetic

Algorithm (GA) and an innovative fitness function. The approach’s remarkable outcomes

further underscore its potential for accurate disease diagnosis.

In summary, this thesis unveils a strategic sequence of ensemble techniques that ef-

fectively address challenges in disease diagnosis. By systematically advancing from class

imbalance solutions to diversity-driven strategies and sophisticated ensemble optimiza-

tion, it promises enhanced diagnostic accuracy and ultimately improved patient care.
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Chapter 1

Introduction

Disease diagnosis is a process by which a doctor determines whether a patient has a dis-

ease based on the patient’s health condition and the type of disease the patient has. In an

actual disease diagnosis environment, especially when there are a huge number of patients

and the amount of data to be processed is too large, it may be troublesome for doctors

to handle in a short period of time. In disease diagnosis, to improve predictive perfor-

mance, we ensure that data should be preprocessed and processed with outliers, missing

values, and data scaling. Various preprocessing techniques, such as the Inter Quartile

Range (IQR), are used to assess the variability where most of your values lie. Most of

the disease datasets are class-imbalanced, and classification results are biased towards the

majority class. There is much attention to dealing with class-imbalanced data for effective

disease diagnosis. In the literature, there are various oversampling techniques already used

in disease diagnosis, such as the Synthetic Minority Over-Sampling Technique (SMOTE),

Borderline Synthetic Minority Over-Sampling Technique (BSMOTE), Adaptive Synthetic

Minority Over-Sampling Technique (ADASYN), and Random Over-Sampling Technique

(ROS) [1]. SMOTE creates new artificial instances utilizing knowledge about the neigh-
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bors that surround each sample of the minority class [2]. Whereas in other approaches

oversampled instances are arbitrarily chosen through duplication. To determine the k clos-

est neighbors of a given minority data instance from the neighborhood, SMOTE uses the

K-Nearest Neighbour (K-NN) technique. BSMOTE steps are similar to SMOTE to pro-

duce artificial data [3]. To solve the issue of minority instance misclassification (and to

improve the detection rate of minority instances), it also reinforces the border by taking

borderline minority class instances into account while producing synthetic data.ADASYN

creates more minority samples near the decision border, helping to develop the classifi-

cation boundary [4]. Based on the percentage of majority samples in the KNN sets of

the minority class, this technique will calculate the number of synthesized minority sam-

ples.ROS replicates minority class instances and inserts them into the same class to provide

a balanced training dataset, which is the oldest oversampling technique [5].

Various ensembled-based approaches have already been used to improve the predic-

tive performance of models such as bagging [6], boosting, and stacking [7]. In bagging

[6] bootstrapped approach is used for homogeneous classifiers to maintain diversity and

reduce bias. Boosting [8] is an ensemble modeling technique that attempts to build a

strong classifier from the pool of weak classifiers. It is done by building a model by using

weak models in series. While bagging and boosting used homogeneous weak learners for

ensemble, stacking often considers heterogeneous weak learners, learns them in parallel,

and combines them by training a meta-learner to output a prediction based on the different

weak learner’s predictions [9].

Hyper-parameter optimization will improve the predictive performance of the individ-

ual classifier [10]. In the literature, various search techniques are used for hyperparameter

optimization such as grid search, random search, etc [11]. In the stacked ensemble pa-

rameter optimization of the base model as well as the meta-model is also important other-

wise, it may impact the performance of the ensemble model [10]. Various meta-heuristic
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algorithms such as evolutionary-based, nature-inspired algorithms are used for hyperpa-

rameter optimization [12]. Particle swarm optimization (PSO) is an algorithm for swarm

intelligence based on stochastic and population-based adaptive optimization inspired by

the social behavior of bird flocks and fish swarms [13].

The best configuration of the stacking model will give an effective predictive perfor-

mance. so selecting optimal base models and meta-models are important in the stacking

approach [14].

In disease diagnosis procedures, a physician has to make accurate decisions after an-

alyzing the patient’s data. These decisions are very crucial for early diagnosis and some-

times lead to erroneous diagnosis [15]. Hence life-threatening disease diagnoses such as

diabetes, chronic kidney disease, heart disease, breast cancer, etc. are challenging. In re-

cent years, most researchers interested in using a combination of optimization techniques

and ML algorithms for the early detection of diseases and to improve classification accu-

racy. Several machine learning algorithms, including LR, KNN, SVM, and DT, have been

used to diagnose diseases[16]. Similarly, various meta-heuristic optimization algorithm

approaches have been used to detect diseases accurately. However, no researchers con-

cluded that any single classifier is effective in predicting various diseases. As a result, the

research community has focused on the use of ensemble learning approaches.

It is also well recognized that individual classifiers’ performance is a poor comparison

with ensemble approaches. Ensemble-based learners are based on the assumption that

different types of classification errors are generated by different base classifiers, and they

integrate all of these individual learners in terms of robustness and accuracy. Most of

the ensemble models are boosting accuracy while overlooking ensemble complexity and

diversity.

Most of the researchers attempted to improve the diagnosis, prediction, classification,

therapy, etc using various machine learning algorithms. They have resulted in improve-
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ments in profound conventional methods. The current research focuses on Multiple Clas-

sifier Systems (MCS) or Classifier Ensemble (CE). By integrating these systems, we may

overcome the drawbacks of the traditional approach based on single classifiers and make

effective decisions at many levels. The varied biases and variances of each classifier model

are exploited by ensembles containing diverse individual classifiers. The model’s general-

ization error can be broken down into bias, variance, and noise.

MCS demonstrates significant complexity in terms of difficulty in separating classes.

Three processes are typically involved in the formation of an MCS: (i) pool generation, (ii)

classifier selection, and (iii) classifier aggregation [17]. A pool of classifiers is provided in

the first step. The MCS training or testing phases, which correspond to a static or dynamic

selection, are when the optional classifier selection step can be carried out. Numerous

selection options for ensemble selection or single classifier utilizing dynamic or static

algorithms may be found in the literature [18].

Despite the fact that there is no proper correlation between accuracy and diversity

[19] pool generation is commonly carried out by investigating the concept of developing

diverse classifiers in the sense that they each generate different prediction errors and are

thus expected to complement one another. Some well-known approaches in the literature

investigate diversity to produce homogeneous ensembles given a base inducer. All of these

effective approaches involve manipulating data horizontally, vertically, or both. While

the latter trains classifiers on samples representing only a portion of the original feature

space, such as Random Subspace [20], the former trains classifiers in separate subsets of

instances, such as Bagging and Boosting.

The "no free lunch" principle [21] serves as the driving force behind ensemble learning

techniques [22], which combine predictions from various machine learning models using

various techniques. Compared to individual models, the performance is frequently notice-

ably improved [23], [24].
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The most common ensemble methods right now are bagging and boosting, with the

most well-known implementations being Random Forest and Ada Boost, respectively.

These techniques can be used in a variety of fields, such as face recognition [25, 26],

anomaly detection [27], and medicine [28, 29]. A popular ensemble technique for train-

ing individual learners using randomly selected portions of the initial training dataset is

bagging. Given the bias-variance breakdown of error for machine learning models, the

aggregation of several learners reduces the variance of the model while keeping its bias

constant. The bias of the machine learning algorithm is the resemblance between the aver-

age prediction of the models and the actual data, and its variance is the difference between

the predictions, given many models of the same machine learning algorithm are trained on

various training datasets [30].

A popular application of bagging that makes use of decision trees and adds new char-

acteristics to the sampling process is random forest [31]. In contrast to bagging, which

takes into account all features, a random forest only takes into account a random subset

of the characteristics during each split. To further reduce the computational expense of

figuring out how to split the data, decision trees include an addition called Extra-tree [32]

that uses random splits. Fewer correlated decision trees are possible with random forest

and extra trees than with bagging, which is a desirable trait because it allows alternative

features to be represented rather than being dominated by strong predictors [33].

As greater performance is the only benefit of lower variance, bagging has the drawback

that the bias of a single machine learner is typically the same as the bias of the combined

model [34]. For instance, decision trees will likely underfit the data and yield high bias

errors if the data is not appropriate for them. An ensemble of decision trees will then have

the same bias error as a single decision tree in that scenario. As a result, errors made

by the individual learners that result in high bias (model under-fitting) are carried over to

the predictions that are made collectively. To tackle this issue, it becomes sense to focus
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optimization on bags that are more representative than bootstrapped bags. According to

several researchers who used bootstrapping to choose the best size for each bag, employing

bags the same size as the entire training set is inefficient [35, 36].

These, however, operate with the best-sized bags without actually taking into account

the information contained in each bag. However, it has also been suggested that we should

optimize the data contained in each bag and concentrate on the specific issue of imbal-

anced data with either over or under-sampling for the data labels [37, 38, 39]. The notion

of evolution serves as the inspiration for a subset of optimization algorithms known as evo-

lutionary algorithms (EAs) [40]. In EAs, a population of candidate solutions—cooperate

and compete using an error-based metric called fitness.

Due to their adaptability, EAs are frequently used for machine learning models for a

variety of tasks, including training recurrent neural networks (neuroevolution) [41], deci-

sion tree induction [42], image segmentation [43], and multi-task learning [44, 45]. In the

past, efforts have been undertaken to improve bagging, with a primary focus on the study

of the contents of the bags in the ensemble [46, 47]. We observe that approaches, such as

the set of weights for individual learners or the subsets of features [48, 49], that did not

change the training samples in each bag had the advantage of optimizing over a smaller

search space.

However, because the set of training samples in each bag stayed the same through-

out the evolution process, these methods were unable to optimize them. This may be a

significant drawback if an informative representation of the data is needed, such as when

an imbalanced situation calls for either an oversampling of the majority class or an un-

dersampling of the minority class. Additionally, it is crucial to change the content of the

bags during model learning from them (individual learners), as doing so would otherwise

result in highly linked learners. By maximizing accuracy and minimizing the amount of

data needed, Garcia and Herrera [50] proposed a series of methods for under-sampling for
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classification with imbalanced datasets.

With large datasets, the absence of a focused optimization method cannot provide a

steady learning process. Proposed population-based bagged ensemble learning framework

in which the TLBO-based algorithm updates and shuffles the data across the bags to iter-

atively increase the ensemble’s diversity. Dynamic weight updation allows us to maintain

the balance between accuracy and diversity.

Ensemble methods combine the predictions of multiple classifiers to produce more

accurate and robust predictions compared to individual classifiers. The selection of an

appropriate ensemble is crucial in harnessing the benefits of ensemble methods. This

work is inspired by the traditional Teaching-Learning-Based Optimization [51] (TLBO)

approach for the selection of an optimized ensemble of classifiers. The TLBO algorithm,

inspired by the teaching and learning processes in a classroom, facilitates the exploration

and exploitation of the solution space to identify superior ensemble configurations.

The objective of this study is to find an ensemble that not only achieves high predic-

tion accuracy but also exhibits diversity among its constituent classifiers. High accuracy

ensures reliable predictions, while diversity promotes the ensemble’s ability to capture

different aspects of the underlying data distribution, leading to improved generalization

performance. The BA-TLBO algorithm provides an effective framework to simultane-

ously optimize accuracy and diversity by iteratively updating the ensemble.

The proposed approach leverages a set of diverse classifiers, including LR [52], KNN

[53], DT [54], and SVM [55]. Each classifier is associated with a hyperparameter grid for

tuning its configuration, allowing for fine-grained optimization. The BA-TLBO algorithm

initializes a set of bags randomly and evaluates their performance based on accuracy and

diversity metrics. The worst-performing bag is replaced with a new bag randomly sam-

pled from the dataset, encouraging exploration and convergence toward better ensemble

configurations.
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To evaluate the performance of the optimized ensemble, extensive experimentation is

conducted on real-world datasets. The dataset is divided into training and test sets, with

the training set used for optimization and the test set used for evaluation. The ensem-

ble predictions are obtained using majority voting [56], where each classifier’s prediction

contributes to the final decision. The evaluation metrics include accuracy, AUC, precision,

recall, and F1-measure, providing a comprehensive assessment of the ensemble’s predic-

tive capabilities.

The contributions of this work lie in the application of TLBO optimization to ensem-

ble classifier selection, combining accuracy and diversity metrics for ensemble evaluation,

and the comprehensive evaluation of the optimized ensemble using multiple performance

metrics. The experimental results demonstrate the effectiveness of the proposed approach

in constructing an optimized ensemble that outperforms individual classifiers and tradi-

tional ensemble methods.

A doctor must make a precise conclusion in disease diagnosis procedures after re-

viewing the patient’s data. These choices can sometimes result in incorrect diagnoses

but are very important for early diagnosis. Therefore, it can be difficult to diagnose life-

threatening diseases such as breast cancer, lung cancer, heart, diabetes, chronic kidney

disease, etc [57] [58].

In the literature, several studies have demonstrated that ensemble learning performs

better than individual base models. creating a systematic approach to merge base models

is a bit challenging task. The performance of models can be evaluated on two factors i.e.

bias and variance. The interactions between the data and the selected model affect both.

Variance is a model’s sensitivity to changes in training data, whereas bias is a model’s

knowledge of the underlying correlation between features and target output. When trying

to predict the output, the main task is to find the most appropriate function with a low-

bias and low-variance prediction model it can reduce the variance using techniques like
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bagging (which helps reduce variance by averaging the outcomes of various models and

thus reducing the chance of misclassification) and cross-validation (as most of the data is

used for validation). Similarly, bias can be reduced with the help of boosting.

It is also well recognized that as compared to ensemble methods, the performance of

an individual classifier is subpar [59]. Based on the premise that different base classifiers

produce different types of classification errors, ensemble-based learners combine the re-

silience and accuracy of all of these diverse learners. The majority of ensemble models

increase accuracy while ignoring the complexity and variety of the ensemble.

Majority of researchers used various machine learning methods to try and enhance

diagnosis, prediction, categorization, therapy, etc [60]. They have led to significant ad-

vancements in conventional techniques. Multiple Classifier Systems (MCS) or Classifier

Ensembles (CE) are the focus of the present research. By integrating various systems, one

can make decisions that are effective on multiple levels. The various biases and variances

of each classifier model assist ensembles composed of diverse classifiers. The generaliza-

tion error of the model is made up of bias, variance, and noise.

There are various meta-heuristic evolutionary algorithms are already used in disease di-

agnoses [61] Such as GA, PSO, etc.In the multi-level ensemble approach, classifier place-

ment should be optimal to get maximum fitness value here possible combinations are more

so GA is used to search for optimal classifier placement.

Ensemble-based approaches are used with meta-heuristic optimization algorithms to

generate the best set of classifier combinations which will improve the predictive per-

formance. Multi-level ensemble learning with novel fitness functions will significantly

improve predictive model performance.

When trying to predict the output, the main task is to find the most appropriate function

with a low-bias and low-variance prediction model it can reduce the variance using tech-

niques like bagging (which helps reduce variance by averaging the outcomes of various
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models and thus reducing the chance of misclassification) and cross-validation (as most of

the data is used for validation). Similarly, bias can be reduced with the help of boosting.

Based on the premise that different base classifiers produce different types of classifi-

cation errors, ensemble-based learners combine the resilience and accuracy of all of these

diverse learners. The majority of ensemble models increase accuracy while ignoring the

complexity and variety of the ensemble.

Ensemble-based approaches are used with meta-heuristic optimization algorithms to

generate the best set of classifiers combinations which will improve the predictive per-

formance. Multi-level ensemble learning with novel fitness functions will significantly

improve predictive model performance.

1.1 Motivation & Objectives

1.1.1 Motivation

In disease diagnosis, most of the datasets are class-imbalanced. ML models are biased

toward the majority of samples in class imbalanced data. To address this problem vari-

ous oversampling approaches are used. Directly applying oversampling techniques does

not guarantee the improvement of performance due to noise while generating synthetic

data. To overcome this we combined oversampling and ensemble learning to improve the

predictive performance. However, in the ensemble approach, most of the researchers at-

tempted the optimization of base classifiers with limited research on the optimization of

meta classifiers. In the stacking approach if we are increasing the number of layers there

should be an effective meta-model that can combine the predictions of the previous layers.

we have optimized base classifiers with grid search and the last level meta-model with PSO

with a novel fitness function. Research questions are to be addressed with the proposed
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approach.

RQ 1. Can we improve predictive performance with an oversampling and ensemble ap-

proach?

RQ 2. Extended stacking approach (Multi-level) is better in prediction than the basic

stacking approach?

RQ 3. Does final Meta-model parameter optimization make any improvement in overall

performance?

RQ 4. How does the proposed model have more significance than other base-level models

The motivation behind this is to address the critical gap in effective disease diagno-

sis on a global scale. Despite the advancements in medical science and technology, the

challenges posed by the intricate mechanisms and varied symptoms of diseases persis-

tently hinder the development of models for early diagnosis and efficient treatment. While

ensemble-based machine learning models have shown promise in aiding doctors with early

diagnosis, a major obstacle remains: selecting diverse classifiers to enhance the overall

performance of these models.

Past attempts to improve classification accuracy using ensemble learning approaches

have faced limitations and yielded less-than-optimal outcomes. Therefore, the motivation

of this research is to introduce a novel solution – a diversity-based evolutionary ensemble

framework powered by GA. This framework aims to enhance the predictive performance

of ensemble models for disease diagnosis by incorporating a variety of classifiers. These

classifiers are employed using a bootstrapped approach to create 20 diverse base learners,

each generated from five bootstrapped bags and employing 5-FCV.

The motivation extends to proposing a novel fitness function to further improve predic-

tive performance. Robustness testing, involving running the model 20 times and assessing

average performance and ensemble complexity, adds credibility to the research’s approach.

In essence, the motivation of this study is to tackle the pressing need for enhanced dis-
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ease diagnosis by introducing an innovative ensemble framework that combines diversity-

based classifiers with robust optimization techniques, ultimately leading to superior diag-

nostic accuracy across a range of benchmark disease datasets.

Balancing accuracy and diversity in ensemble learning is essential to harness the full

potential of multiple models while mitigating their limitations. The motivation behind

achieving this balance stems from several key reasons:

• Improved Robustness: Ensemble models with diverse predictions are less likely to

be influenced by outliers or noise in the data. By combining models with varying

strengths and weaknesses, the ensemble becomes more robust and capable of han-

dling complex and uncertain situations.

• Reduced Overfitting: Highly accurate individual models might overfit specific pat-

terns in the training data, leading to poor generalization. Diversity introduces vari-

ability in the predictions, reducing the risk of overfitting and ensuring better perfor-

mance on unseen data.

• Enhanced Generalization: A balanced ensemble strikes a harmony between mod-

els that excel in different aspects of prediction. This leads to improved generaliza-

tion performance as the ensemble collectively leverages the specialized knowledge

of each base model.

• Bias Reduction: Models might inherently carry biases due to their training data or

algorithms. Diversity can help reduce these biases and produce more unbiased and

fair predictions, especially in sensitive applications like healthcare.

• Adaptability: Ensembles with both accuracy and diversity are more adaptable to

changing data distributions, concept drift, or evolving patterns, ensuring that the

ensemble’s performance remains reliable over time.
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• Handling Uncertainty: Diverse models provide different perspectives on uncer-

tainty estimation, enabling the ensemble to better quantify and manage uncertainty

in predictions, which is particularly important in critical applications like disease

diagnosis.

• Ensemble Paradox: It has been observed that ensembles composed of less accu-

rate but diverse models can outperform ensembles of more accurate but less diverse

models. This paradox underscores the importance of achieving the right balance.

In the ensemble learning approach for effective disease, diagnosis needs an optimal

classifier pool to improve predictive model accuracy and effective sensitivity and speci-

ficity. Various ML classifiers are used in disease diagnosis, however, classifier selection

and also placement in the ensemble framework will impact the ensemble model perfor-

mance. The effective approach should select optimal classifiers from a pool of classifiers

and place them in the ensemble framework. For example, a pool of n classifiers has to

choose m classifiers for the proposed model, possible
(
n
m

)
ways. Again, these

(
n
m

)
possi-

bilities can be arranged in m! ways. Finding the best m classifiers and their positions from

total
(
n
m

)
m! ways is challenging. There are various meta-heuristic optimization algorithms

that exist in the literature. GA is used to solve optimization problems in machine learning

and it helps solve complex problems that would take a long time to solve. Our proposed

model attempted to solve this problem using a 3-level ensemble framework using a GA

with an ensemble-based novel fitness function.

1.1.2 Objectives

The following objectives formulated in this thesis are:

Objective 1: Proposed 3-level Stacked-ADASYN-PSO model to address the challenges
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of class imbalance and optimal ensemble in the multi-level framework. In this study, a

novel 3-level stacking approach with ADASYN oversampling technique with PSO Opti-

mized SVM meta-model (Stacked-ADASYN-PSO) is proposed. Our proposed Stacked-

ADASYN-PSO model uses base models such as LR, KNN, SVM, DT, and MLP in layer

0. In layer-1 three meta classifiers namely LR, KNN, and Bagging DT are used. In layer-2

PSO optimized SVM is used as the final meta-model to combine the previous layer pre-

dictions.

Objective 2: Proposed ensemble based model using GA to address challenges of the di-

versity based classifier selections to improve disease diagnosis performance. To improve

the disease diagnosis performance in this study a novel diversity-based evolutionary en-

semble framework with a GA is proposed. To improve the predictive performance used

five diversity-based classifiers such as KNN, SVM, LR, and DT using the bootstrapped

approach to generate 20 diverse base learners with five bootstrapped bags using 5-FCV.

Objective 3: Ensemble learning has emerged as a powerful approach to disease diagnosis

by combining multiple classifiers to improve predictive accuracy and robustness. How-

ever, selecting an optimal ensemble configuration and balancing accuracy and diversity

remains a challenge. This study proposed a Bagging Approach with Teaching-Learning-

Based Optimization (BA-TLBO) algorithm for ensemble optimization in disease diagno-

sis. To create a compromise between accuracy and diversity, a novel fitness function was

proposed that incorporated ensemble mean accuracy and mean diversity and used ham-

ming distance as a diversity measure. In addition, dynamic weight updation is proposed to

optimize the weights over the iterations in the BA-TLBO optimization process to balance

exploration and exploitation. And also used dynamic bag size over the iterations to bal-

ance the bias and variance and it improves the generalization. By iteratively selecting and

replacing bags in the ensemble, the BA-TLBO explores different classifier combinations
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to achieve high accuracy while maintaining diversity. .

Objective 4: Effective disease diagnosis is a critical unmet need on a global scale. The

intricacies of the numerous disease mechanisms and underlying symptoms make devel-

oping a model for early diagnosis and effective treatment extremely difficult. ML can

help to solve some of these issues. Recently, various ensemble-based ML models have

benefited clinicians in early diagnosis. However, one of the most difficult challenges in

multi-level ensemble approaches is the classifier selection and their placement in the en-

semble framework as it improves the overall performance. Let m classifiers have to select

from n classifiers there are
(
n
m

)
ways. Again, these

(
n
m

)
possibilities can be arranged in

m! ways. Finding the best m classifiers and their positions from total
(
n
m

)
m! ways is a

challenging and hard problem. To address this challenge, a dynamic three-level ensemble

framework is proposed. A nested GA and novel fitness function are employed to optimize

the classifier selection and their placement in a three-level ensemble framework. Our ap-

proach used eleven classifiers and chose seven classifiers by maximizing the novel fitness

function.

1.2 Summary of the contributions

In this section, an overview of chapter-wise contributions to this thesis has been presented.

Each subsection presents a summary of the contributions of the corresponding chapter.

1.2.1 A Novel Stacking Framework with PSO Optimized SVM for

Effective Disease Classification

In this work, in order to address the class imbalance and optimal ensemble to improve

the disease diagnosis performance, a three-level stacking framework is proposed. The
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proposed model is fed with the pre-processed dataset. During the pre-processing step,

IQR was used for outlier removal and ADASYN for class imbalance. This pre-processed

dataset is used to train the proposed 3-level stacking framework. In this stacking frame-

work, level 0 learners (LR, SVM, DT, KNN, and MLP) and level 1 learners (Bagged DT,

KNN, and LR) are optimized using grid search. The level 2 learner i.e., SVM is optimized

with PSO. For a better optimization process, a novel fitness function is proposed. The

proposed model experimented on PID, SHD, CHD, CKD, and WBC datasets. The pro-

posed model is compared with different combinations of base learners and outperformed

in terms of all the performance measures. Further, the proposed model is compared with

SOTA ensemble and non-ensemble methods in terms of accuracy, AUC, specificity, and

precision and it outperformed all the models in terms of AUC and accuracy on all the

datasets. Finally, to prove the robustness of the proposed model a paired statistical t-test

is performed. The statistical test proved that the proposed model significantly differs from

all the base-level models.

1.2.2 A Novel Diversity-based Ensemble Approach with Genetic Al-

gorithm for Effective Disease Diagnosis

This work aims to improve the diversity and reduce training time and varience for that pro-

posed bagging approach with an evolutionary algorithm, and evaluated the performance of

the individual classifiers on various types of disease datasets. To improve the performance

of the models performed bootstrapped aggregation of the training set and evaluated the

performance of individual classifiers w.r.t to data bag to further improve the performance

an ensemble approach using GA and computed fitness using the proposed novel fitness

function. In our proposed approach we have used four classifiers such as LR, KNN, SVM,

and DT with fine-tuned hyperparameters using grid search. Further, 5-FCV was applied
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on the training part and divided into 5 folds and applied GA as an evolutionary search

for optimal ensemble candidates of 20 learners trained on the bootstrapped data. Using

5-FCV the validation set is used to evaluate the fitness of each chromosome and to eval-

uated the robustness of the proposed diversity based ensemble model undergone 20 runs

and considered the mean of 20 runs as proposed model performance and also considered

mean of diversity based selected classifiers.

1.2.3 Enhancing Disease Diagnosis Accuracy and Diversity through

BA-TLBO Optimized Ensemble Learning.

The proposed BA-TLBO approach gives promising results in constructing optimized en-

sembles across the PID, SHD, SLC, and WBC datasets. The experimental analysis demon-

strates that the optimized ensemble exhibits improved performance compared to individual

classifiers and potentially other baseline ensemble methods. In the proposed study we have

introduced a novel fitness function that balances accuracy and diversity and gives good ex-

ploration and exploitation in the BA-TLBO optimization process. And also dynamically

updated the accuracy and diversity weight, making the proposed model adaptable and

robust. And also analyzed various diversity measures such as Hamming, Bhattacharya,

Entropy, and Q statistics out of these Hamming distance-based diversity measure perfor-

mance is superior compared to others.

And also analyzed the worst bag optimization and compared it with the best bag op-

timization and observed that with the best bag possibility of overfitting risk and not fo-

cused weak component in the ensemble. so finally hamming distance-based diversity and

worst bag-based optimization will give effective results in disease diagnosis. so it is rec-

ommendable to use hamming distance-based diversity with BA-TLBO-based worst bag

optimization.
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Overall, the proposed BA-TLBO ensemble approach demonstrates its potential to im-

prove predictive performance and generate robust predictions across different datasets.

Further research could focus on exploring additional classifiers, enhancing the optimiza-

tion algorithm, or considering other optimization techniques to improve ensemble perfor-

mance.

1.2.4 Nested Genetic Algorithm-based Classifier Selection and Place-

ment in Multi-Level Ensemble Framework for Effective Disease

Diagnosis

In this study, a dynamic three-level ensemble framework is proposed. It is experimented

with using four benchmark disease datasets from UCI and Kaggle repositories. All these

disease datasets have undergone the pre-processing stage. After the pre-processing stage,

nested GA is employed to optimize the classifiers and their positions in the proposed three-

level ensemble framework. Outer GA selects the best classifiers and inner GA is used to

optimize the selected classifiers’ positions in the framework. Further, proposed a novel

fitness function for a better solution. Our approach used eleven classifiers and chose seven

classifiers by maximizing the ensemble based fitness function.

The performance of the proposed model is compared with SOTA ensemble and non-

ensemble models, and the proposed approach gave better results in terms of accuracy,

AUC, precision, recall, specificity, and G-measure. Next, ROC-AUC analysis is carried

out and the proposed model achieved superior performance than other ensemble models

such as RF, BC, GBC, and XGB. Next, our proposed framework performance is evaluated

level-wise, and the proposed 3-level ensemble approach gives superior performance when

compared to others.

Further, sensitivity and specificity analysis of the proposed model on the top 5 per-
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formed disease datasets is carried out. In terms of sensitivity and specificity, our proposed

model performance is superior when compared with SOTA ensemble and non-ensemble

models.

1.3 Organization of the Thesis

The main focus of the thesis is to address the challenges of ensemble based models to en-

hance the disease diagnosis by introducing ensemble-based machine-learning approaches.

These approaches are designed to improve the accuracy and effectiveness of early disease

diagnosis, particularly in the context of complex disease mechanisms and varied patient

symptoms. The thesis aims to enhance the performance of ensemble models by strategi-

cally selecting diverse classifiers, optimizing their configurations, and applying innovative

techniques such as GA and novel fitness functions.

The thesis centers on the development and evaluation of these ensemble frameworks,

which are tailored to overcome the limitations of traditional methods in disease diagnosis.

The core emphasis is on achieving robust predictive performance by incorporating a range

of diverse classifiers, including KNN, SVM, LR, and DT. Additionally, the thesis focuses

on addressing the challenges of class imbalance and optimizing ensemble configurations

to strike the right balance between diversity and accuracy.

In summary, the main focus of the thesis revolves around introducing innovative ensemble-

based solutions to enhance disease diagnosis accuracy. Through the strategic integration of

diverse classifiers, optimization techniques, and robust evaluations on benchmark datasets,

the research aims to contribute to the advancement of early disease diagnosis and improve

patient care on a global scale.

The thesis consists of seven chapters as follows. The content of each of these chapters

is described briefly below:
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Chapter 1: This chapter provides a comprehensive introduction to the thesis topic and

briefly outlines the objectives that are pursued throughout the research.

Chapter 2: In this chapter, an overview of state-of-the-art works in the field of disease

diagnosis using optimization of ensemble approaches is provided, with a specific focus on

class imbalance, classifier selection, diversity, and optimal placement of classifiers in the

ensemble framework.

Chapter 3: In this chapter, a novel 3-level stacking approach with ADASYN oversam-

pling technique with PSO Optimized SVM meta-model (Stacked-ADASYN-PSO) is pro-

posed. Our proposed Stacked-ADASYN-PSO model uses base models such as LR, KNN,

SVM, DT, and MLP in layer 0. In layer-1 three meta classifiers namely LR, KNN, and

Bagging DT are used. In layer-2 PSO optimized SVM is used as the final meta-model to

combine the previous layer predictions.

Chapter 4: This chapter proposes a novel diversity-based evolutionary ensemble frame-

work with a GA is proposed. To improve the predictive performance of four diversity-

based classifiers such as KNN, SVM, LR, and DT using the bootstrapped approach to

generate 20 diverse base learners with five bootstrapped bags using 5-FCV. Also to im-

prove the predictive performance proposed a novel fitness function. To test the robustness,

the model was run 20 times and the average performance and average ensemble complex-

ity of the proposed model were computed.

Chapter 5: This chapter proposed a BA-TLBO algorithm for ensemble optimization in

disease diagnosis. To create a compromise between accuracy and diversity, a novel fitness

function was proposed that incorporated ensemble mean accuracy and mean diversity and

used hamming distance as a diversity measure. In addition, dynamic weight updation is

proposed to optimize the weights over the iterations in the BA-TLBO optimization process

to balance exploration and exploitation. And also used dynamic bag size over the itera-

tions to balance the bias and variance and it improves the generalization. By iteratively
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selecting and replacing bags in the ensemble, the BA-TLBO explores different classifier

combinations to achieve high accuracy while maintaining diversity.

Chapter 6: This chapter proposed a dynamic three-level ensemble framework using a

nested GA and novel fitness functions are employed to optimize the classifier selection and

their placement in a three-level ensemble framework. Our approach used eleven classifiers

and chose seven classifiers by maximizing the novel fitness function. The proposed model

experiments on four disease datasets.

Chapter 7: This chapter provides conclusions of the thesis, essential outcomes of the

contributions, and the scope for future expansion of the research conducted in this thesis.
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Chapter 2

Related Work

A comprehensive literature review of different tasks is presented in this chapter. The

literature related to optimized ensemble approaches in disease diagnosis is discussed in

Section 2.1, while Section 2.2 covers the literature on various bagging approaches used

and optimization of bagging approaches. Furthermore, Section 2.3 focuses on the liter-

ature related to various diversity measures and optimized configurations. Finally, in the

last section classifier placements in the ensemble framework followed by a summary is

provided in Section 2.4.

2.1 Ensemble based models and optimization

Kalagotla et al. [62] proposed a novel stacking technique on PID and compared the Ad-

aBoost and stacking revealing that the accuracy of stacking a heterogeneous ensemble

78.2% outperforms the AdaBoost a homogeneous ensemble 76.54%. D. Joshi et al. [63]

used the R tool on the PID dataset to predict T2DM. They applied DT and LR classifiers

on PID and reported 78.26% and 74.48% accuracies respectively. S. Arukonda et al. pro-
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posed a disease diagnosis ensemble model. This study used four diversity-based classifiers

on five data bags and optimized classifiers from a pool of 20 diverse learners using GA.

This study used PID, SHD, CKD, and WBC disease datasets to test the robustness of the

models. Accuracies are 90.91%, 96.05%, 97.56%, and 98.08% respective to PID, CKD,

SHD, and WBC datasets.

Singh et al. [64] proposed a stacking approach on PID and evaluated the predictive

performance of various ensemble approaches such as Bagging (L-SVM), Bagging (RBF-

SVM), Bagging (Poly-SVM), Bagging (REP), Bagging (4.5), Ada boost (DS), Ada boost

(C4.5), Random Subspace Method (RSM), Random Forest, Majority Voting (MV), Stack-

ing, Stacking (LR), Stacking (NSGA-II) the proposed system achieve the highest accuracy

of 83.8%, the sensitivity of 96.1%, specificity of 79.9%, f-measure of 88.5% and area un-

der ROC curve of 85.9%. S.Arkonda et al. proposed a model for Lung cancer is one

of the most common cancer-related disorders with a high mortality rate, which is mostly

owing to the late detection of malignancy.Mohapatra et al. [65] proposed a two-level

stacking approach for detecting heart irregularities and predicting Cardiovascular disease

and pre-processed with outlier detection and the stacking of classifiers for predicting heart

diseases . In this study, various classifiers were used to take advantage of their differences

in strengths. Using MLP as the meta-learner, Obtained results with 92% accuracy. The

proposed stacked classifier outperformed the traditional machine learning classifiers bet-

ter in terms of overall parameter comparison with a precision of 92.6%, a sensitivity of

92.6%, and a specificity of 91%.

Sampath et al. proposed a model for cancer disease. Cancer is still a fatal illness with

numerous subtypes, posing numerous hurdles in biomedical research. Tiwari et al. pro-

posed an Ensemble framework for cardiovascular disease prediction proposed framework

consist of Stacking Ensemble learning which adds diversity to the classifier experimented

on IEEE Data Port proposed stacked ensemble attained an accuracy of 92.34% [9]. Obai-
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dat et al. proposed a stacking ensemble model for predicting heart attacks and combined

a group of three base-level classifiers such as Naïve Bayes, Random Forest, and Extreme

Gradient Boosting (XGBoost) in the predictive model. Kolukisa et al. proposed a classi-

fication method with ensemble feature selection for coronary artery disease diagnosis and

achieved 85.55% and 85.47% accuracy for the Statlog and Cleveland data sets respectively

[66]. D. Joshi and K. Dakhal have used the R tool on the PID dataset to predict T2DM [63].

They applied DT and LR classifiers on PID and reported 78.26% and 74.48% accuracies

respectively. Kumari et al. have proposed an ensemble method with a soft voting classifier

on the PID dataset [67]. They combined three classifiers RF, LR, and Naive Bayes (NB)

with a soft voting classifier. They also compared this model with Adaptive Boosting (Ada

Boost), RF, Bagging, Gradient Boost, Extreme Gradient Boosting (XGBoost), and Cat-

Boost (CAT) algorithms. Their proposed method obtained an accuracy of 79.04% which

is the best among other state-of-the-art ensemble methods. Bashir et al. combined three

decision tree-based classifiers namely CART, ID3, and C4.5 on the PIMA dataset and got

an accuracy of 76.5% [68].

Kumar Kalagotla et al. have proposed a stacking ensemble approach on the PID dataset

[62]. They pre-processed the PID dataset with IQR and min-max scaling. They used

MLP and SVM as base learners and LR as meta-learners. The proposed staking approach

achieved an accuracy of 78.2%. Rajendra et al. have proposed a stacking framework

with KNN, DT, and NB as base learners and LR as meta learner [69]. It reported an

accuracy of 77.83% on the PID dataset. In this work, SVM, KNN, DT, MLP, Bagging

DT, and Bagging KNN are used in the proposed stacking framework. While DT benefits

from flexibility, unambiguity, robustness, and other factors, K-NN benefits from simplic-

ity and non-parametric behavior [70]. SVM is renowned for its excellence in classification

tasks, and one of its groundbreaking features is the ability to generalize high-dimensional

data [71] and MLP can be applied to resolve challenging nonlinear issues. Additionally,
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ensemble approach stacking offers diversity, stability, and exceptional performance. Chit-

tora, Pankaj, et al. [72] used seven classification models to predict chronic kidney disease

and the highest accuracy reported was 90.73% with random tree classifier . Tiwari et al.

have used a stacking-based ensemble model for the prediction of cardiovascular disease

and it obtained an accuracy of 92.34% . Al-Azzam et al. proposed a model for breast

cancer prediction. In this study, various classification algorithms for supervised and semi-

supervised learning were proposed. These models were evaluated using Random Forest,

Xgboost, and Gradient Boosting on the Wisconsin cancer dataset and reported 96.00%,

97.00 %, and 93.00 % accuracies respectively.

2.2 Bagging approaches for disease diagnosis

Kolukisa et al. proposed a classification method with ensemble feature selection for coro-

nary artery disease diagnosis and achieved 85.55% and 85.47% accuracy for the Statlog

and Cleveland data sets respectively [66]. D. Joshi and K. Dakhal have used the R tool on

the PID dataset to predict T2DM [63]. They applied DT and LR classifiers on PID and

reported 78.26% and 74.48% accuracies respectively. Kumari et al. have proposed an en-

semble method with a soft voting classifier on the PID dataset [67]. They combined three

classifiers RF, LR, and NB with a soft voting classifier. They also compared this model

with AB, RF, BC, GB, XGBoost, and CAT algorithms. Their proposed method obtained

an accuracy of 79.04% which is the best among other state-of-the-art ensemble methods.

Bashir et al. combined three decision tree-based classifiers namely CART, ID3, and C4.5

on the PIMA dataset and got an accuracy of 76.5% [68].

Kumar Kalagotla et al. has proposed a stacking ensemble approach on the PID dataset

[62]. They pre-processed the PID dataset with IQR and min-max scaling. They used

MLP and SVM as base learners and LR as meta-learners. The proposed staking approach
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achieved an accuracy of 78.2%. Rajendra et al. have proposed a stacking framework

with KNN, DT, and NB as base learners and LR as meta learner [69]. It reported an

accuracy of 77.83% on the PID dataset. In this work, SVM, KNN, DT, MLP, Bagging

DT, and Bagging KNN are used in the proposed stacking framework. While DT benefits

from flexibility, unambiguity, robustness, and other factors, K-NN benefits from simplicity

and non-parametric behavior [70]. SVM is renowned for its excellence in classification

tasks, and one of its groundbreaking features is the ability to generalize high-dimensional

data [71] and MLP can be applied to resolve challenging nonlinear issues. Additionally,

ensemble approach stacking offers diversity, stability, and exceptional performance.

Chittora, Pankaj, et al. used seven classification models to predict chronic kidney

disease and the highest accuracy reported was 90.73% with random tree classifier [72].

Tiwari et al. have used a stacking-based ensemble model for the prediction of cardio-

vascular disease and it obtained an accuracy of 92.34% [9]. Al-Azzam et al. proposed

a model for breast cancer prediction. In this study, various classification algorithms for

supervised and semi-supervised learning were proposed. These models were evaluated

using Random Forest, Xgboost, and Gradient Boosting on the Wisconsin cancer dataset

and reported 96.00%, 97.00 %, and 93.00 % accuracies respectively.

2.3 Diversity based optimization

The most common ensemble methods right now are bagging and boosting, with the most

well-known implementations being Random Forest and Ada Boost, respectively. These

techniques can be used in a variety of fields, such as face recognition [25, 26], anomaly

detection [27], and medicine [28, 29]. A popular ensemble technique for training indi-

vidual learners using randomly selected portions of the initial training dataset is bagging.

Given the bias-variance breakdown of error for machine learning models, the aggregation
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of several learners reduces the variance of the model while keeping its bias constant. The

bias of the machine learning algorithm is the resemblance between the average prediction

of the models and the actual data, and its variance is the difference between the predic-

tions, given many models of the same machine learning algorithm are trained on various

training datasets [30].

A popular application of bagging that makes use of decision trees and adds new char-

acteristics to the sampling process is random forest [31]. In contrast to bagging, which

takes into account all features, a random forest only takes into account a random subset

of the characteristics during each split. To further reduce the computational expense of

figuring out how to split the data, decision trees include an addition called extra-tree [32]

that uses random splits. Fewer correlated decision trees are possible with random forest

and extra trees than with bagging, which is a desirable trait because it allows alternative

features to be represented rather than being dominated by strong predictors [33].

As greater performance is the only benefit of lower variance, bagging has the drawback

that the bias of a single machine learner is typically the same as the bias of the combined

model [34]. For instance, decision trees will likely underfit the data and yield high bias

errors if the data is not appropriate for them. An ensemble of decision trees will then have

the same bias error as a single decision tree in that scenario. As a result, errors made

by the individual learners that result in high bias (model under-fitting) are carried over to

the predictions that are made collectively. To tackle this issue, it becomes sense to focus

optimization on bags that are more representative than bootstrapped bags. According to

several researchers who used bootstrapping to choose the best size for each bag, employing

bags the same size as the entire training set is inefficient [35] and [36].

These, however, operate with the best-sized bags without actually taking into account

the information contained in each bag. However, it has also been suggested that we should

optimize the data contained in each bag and concentrate on the specific issue of imbalanced
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data with either over or under-sampling for the data labels [37, 38, 39]. The notion of

evolution serves as the inspiration for a subset of optimization algorithms known as EAs

[40]. In EAs, a population of candidate solutions cooperate and compete using an error-

based metric called fitness.

Due to their adaptability, EAs are frequently used for machine learning models for a

variety of tasks, including training recurrent neural networks (neuroevolution) [41], deci-

sion tree induction [42], image segmentation [43], and multi-task learning [44, 45]. In the

past, efforts have been undertaken to improve bagging, with a primary focus on the study

of the contents of the bags in the ensemble [46, 47]. We observe that approaches, such

as the set of weights for individual learners or the subsets of features [48], [49], [46], that

did not change the training samples in each bag had the advantage of optimizing over a

smaller search space.

However, because the set of training samples in each bag stayed the same through-

out the evolution process, these methods were unable to optimize them. This may be a

significant drawback if an informative representation of the data is needed, such as when

an imbalanced situation calls for either an oversampling of the majority class or an under

sampling of the minority class. Additionally, it is crucial to change the content of the

bags during model learning from them (individual learners), as doing so would otherwise

result in highly linked learners. By maximizing accuracy and minimizing the amount of

data needed, Garcia and Herrera [50] proposed a series of methods for under-sampling for

classification with imbalanced datasets. Using a multi-objective optimization technique,

Roshan and Asadi [47] enforced these properties together with good classification perfor-

mance.

With large datasets, the absence of a focused optimization method cannot provide a

steady learning process. These studies [46] and [47] are likewise restricted to unbalanced

classification problems with under-sampling, which is vulnerable to biased selection of
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the majority class and also a potential loss of crucial data if caution is not exercised. The

population-based bagged ensemble learning framework in which the TLBO-based algo-

rithm updates and shuffles the data across the bags to iteratively increase the ensemble’s

diversity. Dynamic weight updation allows us to maintain the balance between accuracy

and diversity.

Ensemble methods combine the predictions of multiple classifiers to produce more

accurate and robust predictions compared to individual classifiers. The selection of an ap-

propriate ensemble is crucial in harnessing the benefits of ensemble methods. This work is

inspired by the traditional TLBO [51] approach for the selection of an optimized ensem-

ble of classifiers. The TLBO algorithm, inspired by the teaching and learning processes

in a classroom, facilitates the exploration and exploitation of the solution space to identify

superior ensemble configurations.

The objective of this study is to find an ensemble that not only achieves high predic-

tion accuracy but also exhibits diversity among its constituent classifiers. High accuracy

ensures reliable predictions, while diversity promotes the ensemble’s ability to capture

different aspects of the underlying data distribution, leading to improved generalization

performance. The BA-TLBO algorithm provides an effective framework to simultane-

ously optimize accuracy and diversity by iteratively updating the ensemble.

The proposed approach leverages a set of diverse classifiers, including LR [52], KNN

[53], DT [54], and SVM [55]. Each classifier is associated with a hyperparameter grid for

tuning its configuration, allowing for fine-grained optimization. The BA-TLBO algorithm

initializes a set of bags randomly and evaluates their performance based on accuracy and

diversity metrics. The worst-performing bag is replaced with a new bag randomly sam-

pled from the dataset, encouraging exploration and convergence toward better ensemble

configurations.

To evaluate the performance of the optimized ensemble, extensive experimentation is
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conducted on real-world datasets. The dataset is divided into training and test sets, with

the training set used for optimization and the test set used for evaluation. The ensem-

ble predictions are obtained using majority voting [56], where each classifier’s prediction

contributes to the final decision. The evaluation metrics include accuracy, AUC, precision,

recall, and F1-measure, providing a comprehensive assessment of the ensemble’s predic-

tive capabilities.

The contributions of this work lie in the application of TLBO optimization to ensem-

ble classifier selection, combining accuracy and diversity metrics for ensemble evaluation,

and the comprehensive evaluation of the optimized ensemble using multiple performance

metrics. The experimental results demonstrate the effectiveness of the proposed approach

in constructing an optimized ensemble that outperforms individual classifiers and tradi-

tional ensemble methods.

In the literature that falls under ensemble learning approaches such as bagging, boost-

ing, and stacking for disease diagnosis and evolutionary approaches such as GA, PSO, and

so on various disease datasets such as PID, SHD, CKD, WBC, and so on and reported our

findings as follows.

Ensemble-based proposed model and used six algorithms for classification tasks us-

ing Machine Learning and Deep Learning the best disease prediction accuracy achieved

88.70% [73].

Srinu et al. [74] proposed a disease diagnosis ensemble model. This study used four

diversity-based classifiers on five data bags and optimized classifiers from a pool of 20

diverse learners using GA . This study used PID, SHD, CKD, and WBC disease datasets

to test the robustness of the models. Accuracies are 90.91%, 96.05%, 97.56%, and 98.08%

respectively, for the PID, CKD, SHD, and WBC datasets.

Singh et al. [64] proposed the prediction of diabetes using a stacking approach that

used diversity-based classifiers and achieved 83.8% highest accuracy.
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Kumari et al. [67] developed a model for diabetes mellitus classification and prediction

using an ensemble technique, with the highest accuracy achieved on the PID dataset being

79.04%.

Ubeyli et al. [75] proposed a model and used neural networks such as recurrent neural

networks, probabilistic neural networks, combined neural networks, multi-layer percep-

tron, and SVM, achieving 98.15%, 98.61%, 97.4%, 91.92%, and 99.54%, respectively .

Saifudin et al. [76] proposed a model to reduce the misclassification rate and bagging

technique used based on random forest, and bagging achieved 77.10% and Random Forest

+ Bagging is 84.07%, respectively .Miene et al. [77] proposed a model for predicting heart

disease. and accuracy of the models such as 93% and 91%, respectively, to the Cleveland

and Framingham datasets.

Kolukisa et al. [66] proposed a model using an ensemble approach of 85.55% and

85.47% accuracies achieved, respectively, to the SHD and Cleveland datasets . D. Joshi

and K. Dakhal et al. [63] proposed a model to predict diabetes and achieved 78.26% and

74.48% accuracy with DT and LR classifiers, respectively. Kalgotla et al [62] proposed an

ensembled model using RF, LR, NB, and soft voting classifiers.

Kalagotla et al. [62] used an ensemble technique to propose a model on the PID

dataset. The proposed model was accurate to 78.2% . Rajendra et al. [69] proposed a

model on PID with DT, NB, and KNN as base learners and logistic regression as a meta

learner, and the proposed model achieved 77.83% . Chittora et al. [72] proposed a model

to predict the CKD disease with a random tree, and the accuracy reported was 90.73% .

Tiwari et al. proposed a model for heart disease, and it achieved an accuracy of 92.34%.

On the Wisconsin Breast Cancer (WBC) dataset, Al-Azzam et al. offered a model on

breast cancer employing ensemble models such as RF, XGB, and GBC. They reported

96.00%, 97.00%, and 93.00% accuracy, respectively.

In the literature that falls under ensemble learning approaches such as bagging, boost-
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ing, and stacking for disease diagnosis and evolutionary approaches such as GA, PSO, and

so on, various disease datasets such as PID, SHD, CKD, WBC, and so on were reported,

as follows:.

Alqahtani et al. [73] proposed an ensemble-based model that used six algorithms for

classification tasks using machine learning and deep learning. The best disease prediction

accuracy achieved was 88.70% .

Rani et al. proposed an ML-based model to predict heart diseases and also used the RF

model for accurate prediction with 86.60% accuracy [78, 79] proposed a model and used

RF, NB, SVM, Hoeffding Decision Tree, and Logistic Model Tree (LMT), with Cleveland

and RF giving the best accuracy. Nasser et al. [80] proposed a model for lung cancer

prediction using the KNN algorithm and achieved an accuracy of 90.7%.

Arukonda et al. proposed a disease diagnosis ensemble model. This study used four

diversity-based classifiers on five data bags and optimized classifiers from a pool of 20

diverse learners using GA .This study used PID, SHD, CKD, and WBC disease datasets

to test the robustness of the models. Accuracies are 90.91%, 96.05%, 97.56%, and 98.08

Singh et al. proposed the prediction of diabetes using a stacking approach that used

diversity-based classifiers and achieved 83.8% highest accuracy [64]. Kumari et al. devel-

oped a model for diabetes mellitus classification and prediction using an ensemble tech-

nique, with the highest accuracy achieved on the PID dataset being 79.04% [67].

Ubey et al. proposed a model and used neural networks such as recurrent neural net-

works, probabilistic neural networks, combined neural networks, multi-layer perceptron,

and SVM, achieving 98.15%, 98.61%, 97.4%, 91.92%, 99.54% respectively [75]. Saifud-

inp et al. proposed a model to reduce the misclassification rate and bagging technique used

based on random forest, and bagging achieved 77.10% and Random Forest + Bagging is

84.07% respectively [76, 77] proposed a model for predicting heart disease. and accu-

racy of the models such as 93% and 91%, respectively, to the Cleveland and Framingham
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datasets.

.

2.4 Summary

The presented literature review extensively covers various aspects of ensemble-based ap-

proaches to disease diagnosis. The review focuses on different types of ensemble mod-

els, their optimization, bagging techniques, diversity measures, and classifier placements

within ensemble frameworks. The studies discussed pertain to a diverse range of diseases,

including diabetes, heart disease, lung cancer, chronic kidney disease, and more. Key

points from the literature review include:

• Ensemble Model Types and Optimization: The review delves into the usage of

ensemble techniques like stacking, bagging, and other optimization algorithms to

enhance the accuracy of disease prediction models. These models often combine the

strengths of different base learners, such as decision trees, support vector machines,

k-nearest neighbors, and neural networks, to create more robust predictions.

• Diversity Measures and Importance: The literature underscores the significance

of diversity among the classifiers within an ensemble. Diversity ensures that various

aspects of the data distribution are captured, leading to better generalization perfor-

mance. Techniques for achieving diversity involve optimizing the composition of

training bags and dynamically updating the weights of individual classifiers.

• Evolutionary Algorithms and TLBO: The review highlights the use of evolution-

ary algorithms like GA and PSO, along with TLBO, for selecting and evolving en-

semble configurations. These optimization strategies help strike a balance between

accuracy and diversity, resulting in improved ensemble performance.
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• Application to Different Diseases: The studies cover a wide range of diseases,

showcasing the versatility of ensemble-based approaches in medical diagnosis. The

discussed diseases include diabetes, heart disease, lung cancer, chronic kidney dis-

ease, and more.

• Accuracy Enhancement and Robustness: Ensemble techniques are employed to

enhance the accuracy and robustness of disease prediction models. By combining

multiple models, the ensembles can better handle the complexities and variations

present in medical datasets.

• Comparison of Different Approaches: The literature review compares the perfor-

mance of various ensemble-based approaches, showcasing the strengths of different

methods for different datasets and diseases. This comparison helps in understanding

the relative efficacy of each approach.

In summary, the literature review provides a comprehensive overview of the use of en-

semble techniques in disease diagnosis. It demonstrates the evolution of these techniques,

from traditional methods to more advanced optimization algorithms, and highlights the

importance of diversity and optimization in constructing effective ensemble models for

accurate and robust disease diagnosis models. In this regard, the following chapters (chap-

ters 3, 4, 5, and 6) delve into more detailed solutions for ensemble-based optimization

approaches for disease diagnosis.
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Chapter 3

A Novel Stacking Framework with PSO

Optimized SVM for Effective Disease

Classification

In this chapter three-level stacking framework is proposed and the final meta-model is

optimized SVM with PSO for effective disease diagnosis. The novel 3-level stacking ap-

proach, Stacked-ADASYN-PSO, proposed in this chapter presents a compelling solution

for enhancing predictive performance in disease diagnosis. By integrating ADASYN over-

sampling and PSO-optimized SVM as a meta-model, this ensemble framework operates by

leveraging diverse and complementary insights from various base models. The multi-level

aggregation strategy employed in the approach is particularly effective as it enables the

exploitation of intricate patterns and relationships within the data. Through the stacking

mechanism, lower-level base models contribute their strengths to capture different aspects

of the underlying complexities in disease data. The subsequent layers capitalize on the col-

lective intelligence of these base models to generate more refined and accurate predictions.
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The introduction of ADASYN oversampling ensures that the ensemble is well-equipped

to address class imbalance, a common challenge in medical datasets, thereby enhancing

the framework’s robustness. Moreover, the utilization of PSO-optimized SVM as the fi-

nal meta-model further refines the ensemble’s predictive capabilities by fine-tuning the

model’s parameters for optimal performance.

Chapter Organization: Section 3.1 provides the background knowledge related to the

proposed model. Section 3.2 presents the proposed methodology. Section 3.3 discusses

the experimental settings. Section 3.4 discusses the experimental results and analysis.

Section 3.5 provides the discussion and summary of the work.

3.1 Background

This section provides background knowledge relevant to classifier combinations for en-

sembles and hyperparameter optimization for ensembles, covering topics such as PSO,

oversampling techniques, stacking frameworks, and various ML-based classifiers such as

LR, DT, KNN, SVM, and MLP. Particle Swarm Optimization is a popular optimization

algorithm commonly used for global optimization problems.

3.1.1 Classifier Combination for Ensembles

The selection of classifiers and a combination of those for the best ensemble is a very

tedious task [17]. Researchers and data analysts use various machine learning algorithms

and choose the best algorithm according to the performance measures [81]. To make

the best predictions, a single algorithm may be unable to capture the entire underlying

structure of the data [82]. This is where the successful integration of numerous models

gathered into a single meta-model has been discovered [82]. Bagging creates numerous
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versions of predictors and aggregates them by voting on each version and taking the av-

erage of them [6]. Bagging meta-estimator and random forest are two algorithms that use

the bagging approach [6]. Boosting works similarly to bagging in that it adaptively com-

bines numerous low-performing base learners [8]. Bagging is beneficial for data sets with

noisy values, according to experimental results. Stacking is the third approach. It uses the

output of selected classifiers on the training data to predict response values using another

learning algorithm. The stacking generalization architecture typically consists of two lay-

ers. First, in layer 1, there is base classification, which uses basic classifiers to build the

ensemble by training the dataset. It generates the second layer’s input. Second, in layer 2,

the meta-classification integrates the outputs of layer 1 using a meta-classifier to build the

final predictive model.

3.1.2 Hyper parameter optimization of classifiers

Best hyperparameters will give a better performance so optimization of hyperparameters is

a very crucial step in machine learning [83]. Hyper parameter optimization is the process

of selecting the right parameter values for classifiers to build the best prediction model.

For optimizing hyperparameters, there are numerous methods available [10], including

(1) grid search, (2) random search, (3) simulated annealing algorithm, (4) Bayesian opti-

mization, (5) genetic algorithm, and (6) particle swarm optimization. Grid search, random

research, and Bayesian optimization are the most prevalent hyperparameter optimization

methodologies [83].

The grid search is the most basic way. For each possible combination of all hyperpa-

rameter settings, a prediction model will be built, and each model will be assessed to see

which architecture produces the best results. Random search provides better models than

grid search because it searches a larger, less promising configuration space. The following
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method, also known as the surrogate method, keeps track of previous assessment outcomes

that are utilized to form a probabilistic model and converts the hyperparameters to a prob-

ability of a score on the objective function that it employs. Because they investigate the

best set of hyperparameters to evaluate based on previous trials, it may be able to find a

better set of hyperparameters in less time. citesun2021improved.

GA is a meta-heuristic algorithm that is based on the evolutionary concept [84]. It

looks for individuals that have the best chance of survival. The abilities of one generation

are passed on to the next. The next generation inherits that trait from their parents and

matures into better people as a result. The worst of humanity will gradually fade away.

This concept will be utilized to optimize classifier hyperparameters. The population, chro-

mosomes, and genes will be programmed to look for space, hyperparameters, and values.

The fitness value will calculate and evaluate performance. On chromosomes, selection,

cross-over, and mutation will be utilized to create a new generation and assess perfor-

mance. These steps will be repeated until the best hyperparameters are found. Particle

swarm optimization is another evolutionary optimization technique. Particle swarm opti-

mization is less difficult to implement than the Genetic approach. It works by allowing a

group of particles to move semi-randomly around the search space [13].

3.1.3 Outlier Removal using IQR

IQR is a data processing method used to remove outliers. By dividing a rank-ordered

dataset into four equal portions, or quartiles, it calculates dispersion [85]. The middle

values in the first and second halves of the rank-ordered dataset, respectively, are desig-

nated by the letters Q1, Q2, and Q3, while the median value for the entire set is denoted

by Q2. Then, Q3−Q1 is equal to IQR. Here, data instances outside of the normal range

(Q1−(1.5∗IQR) or Q3+(1.5∗IQR) are considered outliers.
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3.1.4 Particle Swarm Optimization (PSO)

PSO was developed from the study of bird migration and foraging behavior by Eberhart

and Kennedy near the end of the twentieth century [86]. Each member of the group has

a unique perceptual capacity, which allows them to recognize the best local and global

individual locations and change their next behavior accordingly. Individuals are treated as

particles in a multi-dimensional search space in the method, with each particle representing

a potential solution to the optimization issue. The particle characteristics are described

using three factors: location, velocity, and fitness value. The fitness function determines

the fitness value. The particle modifies its traveling direction and distance independently

based on the ideal global fitness value, iterative arriving at the best option. we are using

velocity and position updates for every iteration based on that it computes the personal best

and global best and up to termination condition met or no of iterations. It takes a group

of candidate solutions and uses a position-velocity updating approach to try to select the

optimal one. Uses a star topology in which each particle is drawn to the best-performing

particle. The position update can be defined as:

yi(t+ 1) = yi(t) + vi(t+ 1) (3.1)

where yi(t) is position value at time t vi(t+ 1 is velocity at time t+1 The velocity update

rule

vij(t+ 1) = w ∗ vij(t) + c1r1j(t) ∗ [yij(t)− xij(t)]

+c2r2j(t) ∗ [ŷj(t)− xij(t)]
(3.2)

Here, c1 and c2 are the cognitive and social parameters respectively. They choose be-

tween two options for particle behavior: (1) pursue its own best or (2) follow the swarm’s
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global best position. Overall, this determines whether the swarm is explorative or exploita-

tive. In addition, the swarm’s inertia is controlled by the parameter w.

3.1.5 Support Vector Machine (SVM)

SVM is a popular statistical-based supervised machine learning technique. It is used for

regression and classification tasks [87]. It was developed in 1995 by Cortes and Vapnik to

improve class separation and reduce prediction error. SVM is well known for working with

both linear and non-linear data and is highly good at overcoming dimensionality-related

problems [88]. It works well with short datasets and high-dimensional feature spaces in

particular. SVM divides training samples into distinct classes when dealing with linear

data by locating a hyperplane with the greatest margin. Additionally, it establishes the

maximum separation between the support vectors or nearest points to the margin edge,

and the hyperplane with n-1 dimensions [89]. The mathematical formula for maximizing

the margin is represented by equation (1), which signifies the weight vector, the input

vector, and the bias [90]. Using some kernel functions and the kernel trick, SVM uses

a kernel-based approach to cope with non-linear data, locating the optimum hyperplane

to linearly segregate data [91]. The list of Kernel functions that were looked through in

this study to identify the best is shown below [89]. The linear kernel function is shown in

equation (2), where c is a constant.

3.1.6 K-Nearest Neighbor (K-NN)

KNN is a non-parametric supervised machine learning technique. It was created in the

early 1950s and later expanded by Thomas Cover [92]. As it uses the entire dataset to

categorize the unlabeled data points by assigning them to the closest class based on the

distance measurement, K-NN is regarded as a lazy learner technique. The distances that
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were looked for in this study to determine the best outcomes are listed below. The formu-

las for computing the Euclidean distance, Minkowski distance, and Manhattan distance,

respectively, are represented by equations (6), (7), and (8), where k stands for the total

number of neighbors and p is any real value [93].Euclidean distance: K-NN begins by

scouring the whole training dataset in search of (K) neighbors that have the shortest path

between the target point and the data points. The new data is then classified using the

neighborhood’s data points’ majority voting results.

3.1.7 Decision Tree (DT)

DT is a popular supervised machine learning approach for both classification and regres-

sion problems. Although the concept of a DT has been around since the late 1950s, it only

really gained traction in 1986 when Quinlan put up the idea of trees with numerous re-

sponses [94]. It is renowned for having a structure like a tree that is simple to understand

when visualized as a tree. Leaf nodes and internal nodes make up DT. The leaf nodes

denote the resultant class, but the internal nodes signify a test over an attribute and have

numerous branches reflecting the test outcome. The best quality features are selected using

a hierarchical or statistical approach, and DT is built using a recursive divide-and-conquer

strategy [95].

3.1.8 Multi Layer Perceptron (MLP)

MLP is a feed-forward network with gradient descent as a back propagation algorithm. It

reduces loss function and maximizes performance. Unlike perceptron, MLP has more than

one layer. The input layer just translates the input, whereas the hidden and output layer

compute the weighted sum of inputs and their associated weights, plus the bias of that

neuron [96]. Bagging is an ensemble approach that was introduced by Breiman in 1996
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[6]. It employs a bootstrapping technique to create a diverse subset of training datasets,

as it lessens the variance. Then, these subsets are trained in parallel by multiple weak

learners. Afterward, the outcome of each learner is aggregated using soft or hard voting,

depending on the task type.

Figure 3.1: Basic stacking approach

3.1.9 Stacking

Stacking is another ensemble framework where a new classifier combines several distinct

predictions from base learners to classify the unseen sample. It was first presented by

Wolpert in 1992 to completely minimize bias and variance, which increases predictive

accuracy [7]. There are two layers in the stacking structure [97]. The first layer consists of

many base learners, while the second layer acts like a combiner and meta-learner. Basic

stacking in Fig. 3.1 and extended (3-level) stacking in Fig. 3.2 are shown.
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3.2 Methodology

In our proposed work, we have

1. performed preprocessing of the dataset, removed outliers and missing values, and

scaled the data.

2. model selection using 10-FCV. The proposed hybrid model consists of ADASYN

oversampling and a 3-level stacking approach with a PSO-optimized SVM meta-

model.

3. designed a three-layer stacking framework with KNN, DT, SVM, MLP, and LR in

layer 0, bagged DT, KNN, and LR in layer 1, and optimized SVM in layer 2.

4. optimized SVM hyperparameters using PSO with novel fitness function. Finally,

statistical analysis with a paired T-test was performed to test the significance of the

proposed model with base-level classifiers.

The proposed model is shown in Fig. 3.3. The 3-level proposed model is described in the

section.

Initially, the data set will be pre-processed using IQR. Then, the dataset underwent

further experiments to determine the best oversampling technique for class balance.

3.2.1 Architecture of the proposed ensemble

An extended version of the two-layer stacking ensemble has been proposed to investigate

whether stacking increases prediction model accuracy. The proposed stacked generaliza-

tion is made up of three layers: (1) base classification, (2) meta classification 1, and (3)

meta classification 2. To obtain the layer 2 meta-models, the proposed stacking classifier
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Figure 3.2: 3-level stacking approach

utilized five (5) base classifiers, all of which were trained using three (3) selected meta-

classifiers. The three (3) meta-models formed by each meta-classifier were transmitted to

the next layer, which produced the final prediction model with a single meta-classifier.

Figure 3.3: Proposed Novel Stacking Approach

In layer 0 base models used extended stacking (3-levels) classifier employs the LR,

KNN, DT, SVM, and MLP algorithms. Because these ML models were chosen using

44



CHAPTER 3. A NOVEL STACKING FRAMEWORK WITH PSO OPTIMIZED SVM FOR EFFECTIVE DISEASE CLASSIFICATION Section 3.2

10-FCV. Individual classifiers create prediction models with varying degrees of accuracy.

Layer 1’s output prediction models were used as layer 2’s inputs.

Layer 2 meta-classifiers include LR, KNN, and bagged DT classifiers. The choice of

a meta-classifier should be based on the prediction job, and as of this writing, the meta-

learners have opted to produce the layer 2 output [98]. SVM was used as the proposed

procedure’s layer 3 meta-classifier. The selection of distinct algorithms is motivated by

the fact that they take fundamentally varied approaches to model generation and focus on

data in different ways to make a meaningful contribution to ensemble implementation. On

a single dataset S, different learning algorithms L1, L2,..., LN are applied to examples sk

=(xk, yk), i.e., pairs of feature vectors (xk) and their classifications. (yk). The first layer

generates the basis classifiers C1, C2,..., and CN , where Ck = Lk. Meta-level classifiers

are trained in the second layer to aggregate the outputs of base-level classifiers.

3.2.2 Stacking Framework

A novel three-level stacking framework is proposed. In the proposed framework there are

three levels. A novel stacking framework is introduced, featuring three levels. Within this

proposed framework, the terms "layer" and "level" are interchangeably used, conveying a

synonymous meaning in the context of this three-level stacking approach.

1. In level 0, LR, KNN, DT, SVM, and MLP classifiers are used.

2. In level 1, bagging DT, KNN, and LR classifiers are used.

3. In level 2, an optimized SVM is used. Here, the SVM parameters are optimized

using PSO with a novel fitness function.

The choice of classifiers in each layer was based on a combination of factors, including

their individual strengths in capturing different aspects of the data, diversity in learning
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algorithms, and empirical performance in preliminary experiments. We selected classifiers

known for their diverse modeling approaches, such as KNN, LR, MLP, DT, and SVM, to

ensure a comprehensive exploration of the feature space. While Naïve Bayes could have

been considered, its assumption of feature independence might not align well with the

data characteristics. As for the specific numbers (5 in the first layer and 3 in the second),

we aimed for a balance between model complexity and computational efficiency, ensuring

sufficient diversity without overwhelming computational resources.

3.2.3 Multi-level stacking appraoch

To enhance the performance of the level 2 stacking approach (level-0 base models and

level-1 meta models) the number of levels. In our proposed model total of 3 levels (level-0

base models,level-1 meta classifiers,level-2 meta classifiers). In our proposed approach

we have selected the best-performing models from a pool of ML algorithms such as LR,

KNN, DT, MLP, SVM, NB, and RC. From the pool NB and RC are not selected because

the cross-validation score is less. The selected models are considered base models and

have undergone for stacking approach. Stacking performance may degrade if we do not

do a proper configuration of ensemble classifiers. To avoid overfitting we have used 10-

FCV to generate predictions of base models. All base models’ probabilistic outcomes and

original class labels become auxiliary datasets for training the meta-classifiers of layer

2. In a similar way meta classifiers layer-1 will use 10-FCV and generate probabilistic

outcomes here one more auxiliary dataset will be generated and used for the training of the

level-2 meta classifier. Here level-1 and level-1 depending on previous layers will predict

in similar ways but level-1 and level-2 classifiers are entirely different. Here selected

meta classifiers used in level-1 are LR, KNN, and bagging DT. Meta classifiers in level 1

will train with all base classifiers. Meta classifiers in level 2 will train based on the meta

46



CHAPTER 3. A NOVEL STACKING FRAMEWORK WITH PSO OPTIMIZED SVM FOR EFFECTIVE DISEASE CLASSIFICATION Section 3.2

classifier’s level-1 predictions. so the last level meta classifier is used as SVM.SVM is so

efficient non-linear algorithm that can classify samples efficiently. Through evolutionary

search, SVM parameters are optimized using particle swarm optimization.PSO is a bio-

inspired optimal search algorithm. Unlike other optimization algorithms, it required only

an objective function and few hyperparameters compared to GA. It is not dependent on

the gradient or any differential form of the objective.

The decision to store the AUC if it’s the best during the training phase is based on the

distinction between hyper parameter optimization using PSO and best hyper parameters

of SVM used for test the model generalization ability. While PSO optimizes hyper pa-

rameters to enhance the model’s generalization ability on validation data level2, the final

assessment of model performance is conducted on completely unseen test data. Therefore,

even though the hyper parameters were optimized using PSO, we still need to evaluate the

model’s performance on the test data to ensure its robustness and generalizability.

3.2.4 SVM hyperparameter tuning using PSO

SVM is used as a binary classifier that is used to determine classes from diseased data.

SVM with a kernel function is used to improve classification performance whenever data

is not linearly separable. The proposed model uses non-linear SVM with Radial Basis

Function (RBF) as kernel function which is given in Eq. 3.3.

k(y, yi) =
exp− ||y − yi||2

2σ2

γ =
1

2σ2

(3.3)
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Data: Training dataset D, Number of Folds K
Result: Optimized three-level stacking ensemble with PSO-optimized SVM
Initialize empty lists M0, M1, M2 to store base models;
Initialize empty list AUCbest to store best AUC;
for i← 1 to K do

Dtrain, Dval ← Split D into training and validation sets for fold i;
Train base models (LR, KNN, SVM, DT, MLP) on Dtrain;
Pbase ← Predict probabilities on Dval using base models;
Append Pbase to auxiliary dataset Dlevel1;
Train base models (LR, KNN, Bagging DT) on Dlevel1;
Plevel1 ← Predict probabilities on Dval using level 1 models;
Append Plevel1 to auxiliary dataset Dlevel2;

end
Use PSO to optimize hyperparameters C and γ for SVM on Dlevel2;
Cbest ← Best optimized C from PSO;
γbest ← Best optimized γ from PSO;
Train SVM with Cbest and γbest on Dlevel2;
for i← 1 to K do

Dtest ← Test data for fold i;
Pbase ← Predict probabilities on Dtest using base models;
Plevel1 ← Predict probabilities on Dtest using level 1 models;
Plevel2 ← Predict probabilities on Dtest using the level 2 SVM model with Cbest

and γbest;
Compute AUC for Plevel2 and store in AUCbest if it’s the best;

end
return Best hyperparameters Cbest and γbest, as well as the trained three-level
stacking ensemble with PSO-optimized SVM;

Algorithm 1: Three-Level Stacking with PSO-Optimized SVM
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To get the best hyperplane SVM tries to optimize the objective function which is given in

Eq. 3.4.

Minimize = J(w, d, η) =
1

2
∥w∥2 + cΣN

i=1ηi (3.4)

subject to xi(w
Tyi + d) ≥ 1− ηi

Where, σ is variance,

||y − yi|| is the L2-norm.

There are two hyperparameters in Eq. 3.3 and Eq. 3.4. To achieve enhanced SVM

performance, we have to fine-tune kernel function parameters (γ) as well as a soft margin

(c). We are proposing PSO for this purpose as PSO converges very fast and quickly moves

from exploration to exploitation than other bio-inspired approaches. The Algorithm 1 will

describe how PSO is used for SVM hyperparameters tuning.

The parameters of the Level2 SVM were determined through a systematic approach

that involved grid search coupled with cross-validation. In this process, we defined a

grid of parameter combinations, including values for hyper parameters such as C and γ.

Subsequently, we performed cross-validation on the auxiliary dataset level2 to evaluate

the performance of each parameter combination. The parameter combination that yielded

the highest performance, as measured by a suitable metric (e.g., AUC), was selected as

the optimal choice for training the Level 2 SVM model. While PSO was not utilized in

this specific step, the grid search technique allowed us to efficiently explore the parameter

space and identify an effective configuration for the SVM model.
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3.2.5 Fitness function for PSO

We have proposed a novel fitness function that optimizes SVM hyperparameters. The

function is devised for imbalanced data by considering AUC, F1-score, and G-measure.

For better SVM performance on imbalanced data, the fitness function needs to be maxi-

mized.

Fitnessfunction(f) = argmaxAUC (3.5)

3.3 Experiments

This section describes the datasets, noise levels, and evaluation metrics employed to assess

the proposed model. The qualitative and quantitative results of the proposed model are

then compared with the existing models.

The HP Compaq Intel(R) Core(TM) i7-1065G7 CPU and 8 GB RAM were used in this

experiment. All the modules in the proposed methodology and results analysis are carried

out using Python and the sklearn library. The HP Compaq Intel(R) Core(TM) i7-1065G7

CPU and 8 GB RAM were used in this experiment. All the modules in the proposed

methodology and results analysis are carried out using Python and the sklearn library.

3.3.1 Datasets

Various bench-marked disease data sets are used to evaluate the performance of the pro-

posed model from the UCI repository [99]. Those are

1. Pima Indian Diabetes dataset (PID)

2. Statlog Heart Data (SHD)
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3. Chronic Kidney Disease (CKD)

4. Wisconsin Breast cancer (WBC)

and the description of datasets shown in Table. 3.1

S. No Data set name #patterns #features #patterns in -ve class #patterns in +ve class
1 Pima Indian Diabetes (PID) 768 8 500 268
2 Statlog Heart Data (SHD) 270 13 150 120
3 Chronic Kidney Disease(CKD) 400 24 150 250
4 Wisconsin Breast Cancer (WBC) 569 32 357 212

Table 3.1: Datasets used in this study

3.3.2 Data set pre-processing

All the disease datasets are processed before the construction of the proposed ensemble

model. In the pre-processing following steps are carried

1. replaced zero values with a median.

2. checked numerical columns, binary columns with 2 values, and columns with more

than 2 values.

3. label encoding of binary columns.

4. multi-value columns are duplicated.

5. scaling numerical columns with a standard scalar.

6. dropping original values merging scaled values for numerical columns.

7. outlier removal with IQR
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3.3.2.1 Outliers removal with IQR

Finally, IQR is applied to remove the outliers from the disease dataset. IQR is applied

with two thresholds namely Q1 = 0.25 and Q3 = 0.90 where Q1 is a threshold used in

quartile1 and Q3 is a threshold used in quartile3. Data samples whose values are below

Q1 and above Q3 are considered as outliers. Once the outliers are identified these outliers

are replaced by low − limt if sample value < Q1 else replaced with up− limt if sample

value > Q3. The low − limt and up− limt are calculated using Eq. 3.6.

up− limit = Q3 + 1.5 ∗ IQR

low − limit = Q1− 1.5 ∗ IQR
(3.6)

Where, IQR = Q3-Q1.

3.3.3 Performance Measures

To evaluate the performance of the proposed model various performance measures such as

accuracy, sensitivity, specificity, G-measure, Precision, Recall, and F-measure are chosen.

These measures are obtained from the confusion matrix which is given in Table 3.2. These

measures are defined as follows:

Predicted
Diseased Healthy

Actual Diseased TP FN

Healthy FP TN

Table 3.2: Confusion matrix

Accuracy =
TP + TN

TP + TN + FP + FN
(3.7)
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Specificity =
TN

TN + FP
(3.8)

G−measure =
√

specificity∗sensitivity (3.9)

Precision =
TP

TP + FP
(3.10)

F −measure = 2 ∗ (Precision ∗Recall)

(Precision+Recall)
(3.11)

False Positive Rate(FPR) =
FP

FP + TN
(3.12)

True Positive Rate(TPR) =
TP

TP + FN
(3.13)

Where,

• TP represents the disease-positive class that the classifier has classified as disease-

positive.

• TN represents the disease-negative class that the classifier has observed as disease-

negative.

• FP represents the disease-negative class that the classifier has categorized as disease-

positive and

• FN represents the disease-positive class that the classifier has classified as disease-

negative.

• The ROC-AUC is a graph that depicts the relationship between the TPR and FPR,

indicating the TPR that we can expect for a certain trade-off with the FPR.

• The Area Under the ROC curve (AUC) score, which means that the resulting score

measures the model’s ability to properly predict the disease classes.
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Dataset Classifier Mean AUC Standard Deviation

PID

LR 0.907 0.015
KNN 0.925 0.012
DT 0.852 0.018

MLP 0.900 0.014
NB 0.841 0.021
RC 0.820 0.017

SHD

LR 0.890 0.013
KNN 0.910 0.016
DT 0.842 0.017

MLP 0.882 0.011
NB 0.834 0.019
RC 0.821 0.015

CKD

LR 0.921 0.014
KNN 0.901 0.017
DT 0.852 0.016

MLP 0.891 0.013
NB 0.845 0.020
RC 0.842 0.015

WBC

LR 0.884 0.012
KNN 0.879 0.011
DT 0.868 0.014

MLP 0.866 0.013
NB 0.851 0.016
RC 0.849 0.015

Table 3.3: Model selection with 10-FCV including mean and standard deviation of AUC

S.no Hyper parameter search space

1

’hidden_layer_sizes’: [(10,30,10),(20,)],
’activation’: [’tanh’, ’relu’],

’solver’: [’sgd’, ’adam’],
’alpha’: [0.0001, 0.05],

’learning_rate’: [’constant’,’adaptive’]

Table 3.4: Hyper parameter search space used for fine tune MLP using grid search
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Dataset LR KNN SVM DT MLP Bagging DT

PID C=0.01 #neighbours = 11
C =50

gamma =0.001
kernel = RBF

SC = Gini
Depth =6

activation=tanh, Alpha = 0.005
Hidden layer sizes: 10, 30, 10 #est =500

SHD C=0.01 #neighbours = 5
C =100

gamma =0.001
kernel = RBF

SC = Gini
Depth =5

activation=tanh, Alpha = 0.005
Hidden layer sizes: 20, #est =1000

CKD C=0.001 #neighbours = 13
C =100

gamma =0.001
kernel = RBF

SC = Gini
Depth =5

activation=tanh, Alpha = 0.005
Hidden layer sizes: 10, 30, 10 #est =100

WBC C=0.001 #neighbours = 11
C =50

gamma =0.01
kernel = RBF

SC = Gini
Depth =6

activation=tanh, Alpha = 0.005
Hidden layer sizes: 20, #est =500

C Regularization Parameter gamma RBF kernel coefficient Alpha Learning rate
SC Splitting Criteria Depth Maximum depth of DT
RBF Radial Basis Function est no of estimators

Table 3.5: Optimized hyperparameters values of selected classifiers

Dataset Classifier Without sampling With sampling
SMOTE BSMOTE ADASYN ROS

PID

KNN 81.23 84.56 85.23 85.88 82.96
SVM 83.21 85.96 83.28 86.59 82.20
LR 78.60 81.23 82.59 82.23 79.10
DT 84.60 85.23 84.50 85.98 80.58

MLP 85.10 86.10 82.21 85.23 81.23

SHD

KNN 82.23 83.56 84.23 84.88 82.96
SVM 84.21 86.96 83.28 87.59 83.20
LR 79.60 83.23 85.59 83.23 76.10
DT 83.60 84.23 85.50 86.98 84.58

MLP 84.10 85.10 83.21 85.23 81.23

CKD

KNN 85.23 86.56 84.23 87.88 81.96
SVM 84.21 83.90 84.38 87.70 84.20
LR 79.60 83.23 84.59 78.23 76.10
DT 86.60 87.23 85.50 88.98 83.58

MLP 86.10 87.10 84.21 84.23 80.23

WBC

KNN 85.23 88.56 89.23 84.88 86.96
SVM 85.21 86.96 84.28 87.59 83.20
LR 79.60 79.23 84.59 83.23 81.10
DT 85.60 82.23 83.50 86.98 82.58

MLP 86.10 87.10 83.21 88.23 83.23

Table 3.6: Performance comparison of various oversampling techniques over disease
datasets w.r.t AUC
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3.4 Experimental Results

In this section, a comprehensive analysis of the results obtained during the evolutionary

process is presented.

Dataset C1 C2 w γ C
PID 1.4962 1.4962 0.72984 1.8190 3.38
SHD 1.4962 1.4962 0.72984 8.562 3.245
CKD 1.4962 1.4962 0.72984 5.623 1.235
WBC 1.4962 1.4962 0.72984 8.562 4.256
Swarm size(Np) 20
iterations(T) 100
C1 Cognitive constant
C2 Social constant
ω Inertia weight
γ kernel parameter
C Penalty parameter

Table 3.7: SVM parameter tuning using PSO

Dataset Meta Layer Classifier Accuracy (%) AUC (%) Sensitivity (%) Specificity (%) F1-Measure (%) Precision (%) G-Measure (%)

PID

layer-1 LR 79.69 79.65 69.70 92.50 75.89 76.90 75.50
layer-1 KNN 83.86 84.99 74.50 91.35 76.47 79.40 73.50
layer-1 bagging DT 87.80 90.68 79.68 89.25 85.10 88.63 87.50
layer-2 SVM 89.80 93.54 74.07 94.00 85.10 92.73 86.06

SHD

layer-1 LR 85.46 84.80 83.61 87.23 83.65 85.52 83.61
layer-1 KNN 88.23 85.62 78.51 89.65 87.23 86.32 98.31
layer-1 bagging DT 88.24 92.54 83.65 90.21 91.62 91.52 89.58
layer-2 SVM 91.54 92.03 82.60 91.68 87.65 93.57 88.58

CKD

layer-1 LR 83.54 84.67 79.67 89.50 79.89 76.50 85.61
layer-1 KNN 74.67 78.30 68.72 89.23 76.58 77.32 79.50
layer-1 bagging DT 88.65 91.52 79.54 91.32 92.58 92.62 93.67
layer-2 SVM 94.05 95.62 84.76 93.54 87.65 93.54 88.98

WBC

layer-1 LR 86.78 87.60 82.63 89.52 83.65 83.58 84.67
layer-1 KNN 91.58 89.64 78.67 92.56 87.65 96.78 87.37
layer-1 bagging DT 91.65 89.56 76.72 73.52 86.54 95.78 88.52
layer-2 SVM 97.08 96.50 94.29 98.76 96.22 96.73 89.60

Table 3.8: Performance of with meta classifiers in layer-1 and layer-2 on various data sets

Further AUC is a proper measure when the dataset is imbalanced. ROC-AUC is a

graph showing the performance of a classification model at all classification thresholds. It
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Dataset Classifier Accuracy AUC Sensitivity F1-score Precision time(sec)

PID

LR 74.02 86.40 81.48 68.75 59.25 0.14
KNN 85.06 88.30 88.88 80.67 73.84 0.18
DT 85.71 88.90 90.74 81.66 74.24 0.22
MLP 82.46 87.38 77.77 75.67 73.68 24.36
SVM 87.66 93.10 92.59 84.03 76.92 0.29
Bagging DT 85.06 90.80 73.84 80.67 73.84 128.37
Stacking(Level-1 with LR as meta model) 85.71 90.90 83.33 80.35 77.58 436.54
Stacking(Level-1 with KNN as meta model) 85.71 90.90 83.33 80.35 77.58 523.15
Stacking(Level-1 with Bagging DT as meta model ) 86.36 92.80 85.18 81.41 77.96 456.32
Stacking(Level-2 SVM ) 87.69 92.56 77.77 75.67 73.68 513.25
Stacking(Level-2 with with PSO Optimized SVM) 89.80 93.54 74.07 85.10 92.73 528.45

SHD

LR 76.02 84.40 83.48 78.75 65.25 0.25
KNN 86.06 86.30 84.88 83.67 78.84 0.14
DT 84.71 86.90 89.74 83.66 79.24 0.16
MLP 85.46 88.38 78.77 77.67 82.68 22.35
SVM 86.66 90.10 88.59 83.03 79.92 0.27
Bagging DT 87.06 91.80 75.84 84.67 76.84 32.56
Stacking(Level-1 with LR as meta model) 82.71 89.90 86.33 83.35 79.58 412.23
Stacking(Level-1 with KNN as meta model) 84.71 86.90 88.33 84.35 83.58 524.23
Stacking(Level-1 with Bagging DT as meta model ) 88.36 91.80 86.18 84.41 78.96 465.32
Stacking(Level-2 SVM ) 88.69 90.56 76.77 74.67 75.68 472.363
Stacking(Level-2 with with PSO Optimized SVM) 91.54 92.03 82.60 87.65 93.57 521.36

CKD

LR 76.02 87.40 84.48 76.75 65.25 0.12
KNN 84.06 86.30 87.88 82.67 78.84 0.16
DT 84.71 89.90 89.74 85.66 76.24 0.18
MLP 84.46 86.38 82.77 78.67 77.68 34.62
SVM 89.66 90.10 92.59 85.03 79.92 0.25
Bagging DT 88.06 92.80 85.84 84.67 84.84 38.24
Stacking(Level-1 with LR as meta model) 86.71 92.90 85.33 84.35 82.58 421.23
Stacking(Level-1 with KNN as meta model) 87.71 84.90 86.33 84.35 84.58 435.26
Stacking(Level-1 with Bagging DT as meta model ) 88.36 91.80 84.18 83.41 82.96 475.21
Stacking(Level-2 SVM ) 89.69 91.56 84.77 88.67 88.32 485.26
Stacking(Level-2 with with PSO Optimized SVM) 94.05 95.62 84.76 87.65 93.54 523.21

WBC

LR 79.02 87.40 86.48 78.75 79.25 0.14
KNN 87.06 86.30 89.88 89.67 78.84 0.18
DT 87.71 86.90 89.74 85.66 77.24 0.14
MLP 84.46 88.38 76.77 84.67 85.68 34.65
SVM 89.66 91.10 94.59 88.03 87.92 0.23
Bagging DT 89.06 93.80 88.84 86.67 88.84 0.28
Stacking(Level-1 with LR as meta-model) 87.71 92.90 85.33 86.35 78.58 436.87
Stacking(Level-1 with KNN as meta-model) 86.71 92.90 86.33 87.35 83.58 485.22
Stacking(Level-1 with Bagging DT as meta-model ) 88.36 90.80 87.18 813.41 86.96 483.32
Stacking(Level-2 SVM ) 88.69 91.56 82.77 84.67 84.68 476.23
Stacking(Level-2 with with PSO Optimized SVM) 97.08 96.50 94.29 96.22 96.73 501.66

Table 3.9: Comparison of the proposed model with individual models
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Dataset Accuracy(% ) AUC(% ) Sensitivity(%) Specificity(%) F-measure (% )
PID 89.80 93.54 74.07% 94.00 85.10
SHD 91.54 92.03 82.60 91.68 87.65
CKD 94.05 95.62 84.76 93.54 87.65
WBC 97.08 96.50 94.29 98.76 96.22

Table 3.10: Proposed model performance on PID, SHD, CKD, and WBC datasets

Dataset Classifiers Accuracy (%) AUC (%) Sensitivity (%) Specificity (%) Yr. Ref.

PID

Stacking(LR) 76.10 83.80 87.10 55.90 2019 [64]
Adaboost (DS) 75.00 81.00 84.90 56.60 2019 [64]
Bagging (4.5) 75.40 82.50 85.50 56.50 2019 [64]
Adaboost (C4.5) 72.50 78.00 80.40 57.80 2019 [64]
Bagging (L-SVM) 76.40 81.30 88.90 54.10 2019 [64]
Bagging (RBF-SVM) 68.10 73.40 86.70 33.30 2019 [64]
Majority Voting(MV) 76.20 72.10 88.70 53.20 2019 [64]
Bagging (Poly-SVM) 76.20 81.10 88.20 53.90 2019 [64]
Stacking(NSGA-II) 83.80 85.90 96.10 79.10 2019 [64]
Bagging (REP) 75.80 83.20 83.70 61.10 2019 [64]
Random Subspace Method (RSM) 75.30 82.70 86.90 54.20 2019 [64]
Random Forest 76.30 83.90 84.60 60.30 2019 [64]
Stacking 68.80 66.50 74.20 58.70 2019 [64]
Dia-Net 90.87 - 95.74 83.15 2020 [100]
soft-voting 80.90 79.08 70.69 78.40 2021 [67]
AdaBoost 74.98 75.32 68.25 60.13 2021 [67]
Bagging 70.11 74.89 68.75 - 2021 [67]
GradientBoost 71.89 75.32 48.75 - 2021 [67]
XGBoost 69.01 75.75 67.50 - 2021 [67]
CatBoost 74.56 75.32 65.00 - 2021 [67]
Proposed Approach 89.80 93.54 74.07 94.00 This study

SHD

Stacking ensemble 92.34 92.28 93.49 91.07 2022 [9]
Random Forest 90.21 89.97 95.12 84.82 2022 [9]
Extra Tree Classifier 90.93 90.45 94.30 86.60 2022 [9]
XGB 91.91 91.79 94.30 89.28 2022 [9]
Adaboost 83.40 83.14 88.61 77.67 2022 [9]
GBM 84.25 83.96 90.24 77.67 2022 [9]
Proposed Approach 91.54 92.03 82.60 91.68 This study

CKD
Extra Tree Classifier 94.00 - 96.00 91.00 2021 [72]
Random Tree 91.43 96.10 94.00 - 2021 [72]
Proposed Approach 94.05 95.62 84.76 93.54 This study

WBC

RF 96.00 96.00 95.00 96.00 2021 [101]
Xgboost 97.00 97.00 95.00 99.00 2021 [101]
Gradient Boosting 93.00 98.00 93.00 94.00 2021 [101]
Proposed Approach 97.08 96.50 94.29 98.76 This study

Table 3.11: Comparison between SOTA ensemble models and proposed model on various
datasets
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Dataset Classifier Accuracy (%) AUC (%) Sensitivity (%) Precision (%) F1 Score (%) Yr. Ref.

PID

SM rule miner 89.87 - 94.60 - - 2017 [22]
RST-BAT miner 85.33 - 92.6 - - 2018 [24]
LR 75.1 - 71.0 68.90 69.90 2021 [102]
DT 66.80 - 71.1 63.0 75.1 2021 [102]
MLP 77.20 - 52.50 68.2 59.00 2021 [62]
NB 72.69 - 66.10 75.90 70.70 2021 [103]
SVM 74.10 74.08 71.20 75.40 73.20 2021 [103]
KNN 71.92 66.31 61.25 58.33 59.75 2021 [67]
DT 85.98 85.11 - 82.12 90.32 2022 [104]
DCN 86.29 91.20 84.2 81.90 - 2022 [105]
C4.5 75.10 79.26 82.90 71.60 76.80 2022 [103]
Proposed Approach 89.90 93.54 88.65 89.65 87.51 This study

SHD

LR 84.07 90.10 83.58 85.06 83.80 2023 [66]
LDA 84.07 90.60 83.58 85.04 83.80 2023 [66]
SVM 83.70 90.30 83.08 84.92 83.40 2023 [66]
MLP 84.25 84.00 89.43 82.08 85.60 2022 [9]
KNN 80.85 80.54 86.99 78.67 82.62 2022 [9]
CART 84.25 84.12 86.99 83.59 85.25 2022 [9]
Proposed Approach 94.56 92.22 93.56 90.65 94.89 This study

CKD
LR 71.71 78.40 98.60 56.48 71.80 2021 [72]
KNN 64.39 66.50 96.00 59.01 73.09 2021 [72]
Proposed Approach 94.05 93.86 95.13 92.26 94.53 This study

WBC

LR 95.62 - 95.84 97.19 96.50 2021 [106]
SVM 97.18 - 95.84 97.18 96.50 2021 [106]
KNN 92.98 - 91.67 97.06 94.29 2021 [106]
DT 91.00 - 91.00 91.00 91.00 2021 [106]
DT 91.00 89.00 88.00 91.00 91.00 2021 [101]
GNB 94.00 94.00 93.00 94.00 94.00 2021 [101]
SVM Linear 97.00 97.00 91.68 97.00 97.00 2021 [101]
SVM RBF 97.00 96.00 93.00 96.00 96.00 2021 [101]
Proposed Approach 97.08 95.50 96.29 89.96 96.22 This study

Table 3.12: Comparison between SOTA non ensemble models and proposed model
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plots TPR on the x-axis and FPR on the y-axis at different classification thresholds.

Dataset LR vs stack KNN vs stack SVM vs stack DT vs stack MLP vs stack
PID 0.021 0.010 0.0221 0.002 0.003
SHD 0.002 0.002 0.0393 0.021 0.0045
CKD 0.038 0.0032 0.031 0.028 0.026
WBC 0.024 0.003 0.038 0.012 0.025

Table 3.13: Statistical analysis of the performance of base class and proposed stacking
model (p<0.05)

3.4.1 Results analysis

The above-pre-processed disease datasets are partitioned into training datasets and test

datasets. There are plenty of ML-based classifiers, but not all of them may give better

predictive performance, so for selecting classifiers, we have used 10-FCV of LR, KNN,

DT, SVM, MLP, NB, and RC.Out of those, the NB and RC classifiers have poor predictive

performance and are not selected in most of the datasets. So we have removed the NB

and RC classifiers for further processing. Model selection is shown in Table 3.3. Class-

imbalanced disease datasets will affect the classifier performance as the training dataset

undergoes various oversampling techniques such as SMOTE, BSMOTE, ADASYN, and

ROS. This over-sampled training dataset is used to fine tune hyperparameters of various

classifiers using grid search on PID, CKD,WBC and SHD datasets. The fine tuned hyper-

parameters are shown in Table 3.5. Hyperparameter search space also provided is shown

in Table 3.14.

The results of various oversampling techniques are shown in Table 3.6 and the best

results are highlighted. From the table, it is observed that ADASYN outperforms the

majority of the classifiers in the majority of disease datasets in terms of the AUC mea-

sure, which is the right measure for imbalanced datasets. Hence, we have considered the
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S.no Hyper parameter search space

1

’hidden_layer_sizes’: [(10,30,10),(20,)],
’activation’: [’tanh’, ’relu’],

’solver’: [’sgd’, ’adam’],
’alpha’: [0.0001, 0.05],

’learning_rate’: [’constant’,’adaptive’]

Table 3.14: MLP search space using grid search

ADASYN oversampling technique for further processing.

After applying the ADASYN oversampling technique to the disease dataset, class la-

bels are balanced. This balanced data set is partitioned into 10-fold cross-validation (10-

FCV). Next, this balanced dataset is used for training the proposed stacking framework.

The proposed stacking framework consists of three layers. Using 10-FCV in each fold

level, one learner is trained with nine folds and validated with the remaining one fold

This process will repeat for all base models. Probabilistic predictions of the 10-fold cross-

validation along with a true class label will form meta-features in the auxiliary dataset. All

the base models LR, KNN, SVM, DT, and MLP in level 1, along with three meta-models

LR, KNN, and bagged DT in level 2, were trained using generated meta-features from the

auxiliary dataset. Similar to the base models, meta-models will also generate probabilistic

predictions using 10-fold cross-validation from a new auxiliary dataset generated in the

previous layer. All the probabilistic features, along with the original class label, form a

new auxiliary dataset for final meta-model training. Using the new auxiliary dataset, the

final meta-model will be trained. Once the meta-model is trained, all the base classifiers

will undergo training with the entire training data. Final predictions with text data. The

last-level meta-model combines the predictions, and it will give the outcome of diseased

or not diseased. Here, level-1 and level-2 parameters are optimized with grid search, and

level-3 is optimized with SVM.
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The PSO itself has some hyperparameters, and these parameters are chosen per the

construction coefficient method discussed in PSO Parameter Selection. Next, this fine-

tuned PSO is applied to optimize the SVM parameters with a novel fitness function in Eq.

3.5. The fine-tuned hyperparameters of both SVM and PSO are given in Table. 3.7. The

optimization of SVM parameters C and γ using PSO is given in Algorithm 1.

3.4.2 PSO parameter selection

The PSO has a cognitive constant (c1), social constant (c2), inertia weight (ω), swarm

size, and maximum iterations for termination control parameters. The c1, c2, and w are

fine-tuned as per the construction coefficient method [107]. This method helps to prevent

explosions and also helps particles converge to an optimal solution. The following formula

and inequalities are used to fine-tune c1, c2, and ω values.

χ =
2K

|2− ϕ−
√

ϕ2 − 4ϕ|
(3.14)

such that 0 ≤ K ≤ 1

ϕ = ϕ1 + ϕ2 > 4

ω = χ, c1 = χϕ1, c2 = χϕ2

By using this method in our proposed work and from Equation Eq. 3.14 we have fine-

tuned K=1, Φ1 = 2.05, and ϕ2 = 2.05. And remaining parameters’ swarm size is 20 and

the max iteration is 100.

3.4.3 Comparative analysis

Proposed model is compared with meta models in layer 2 and layer 3, and results are

shown in Table 3.8, and the best values are highlighted.
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Our proposed model, which leverages PSO (Particle Swarm Optimization) to optimize

SVM (Support Vector Machine), demonstrates superior performance compared to indi-

vidual models and meta-models. Specifically, our approach outperforms other models in

terms of accuracy, robustness, and overall effectiveness. The integration of PSO opti-

mization with SVM contributes to enhanced predictive capabilities, making our proposed

model a compelling choice for addressing complex tasks and yielding superior results

when compared to individual classifiers and also other meta models our proposed PSO op-

timized SVM in level-2 is giving best results comparing with others and results are shown

in Table 3.9 and best results are highlighted.

The table shows that the proposed model performs better in terms of accuracy, AUC,

F-measure, and precision. The proposed model overall results w.r.t disease datasets is

shown and the best results are highlighted in Table 3.10.

Further, the proposed model is compared with the State-Of-The-Art (SOTA) ensemble

models in the literature. These results are shown in Table 3.11 and the best results are

highlighted. The table shows that the proposed model performs better than other SOTA

ensemble models in terms of Accuracy, AUC, and Specificity.

Further, the proposed model is compared with the SOTA non-ensemble models in the

literature. These results are shown in Table 3.12 and the best results are highlighted.

The table shows that the proposed model performs better than other SOTA non-ensemble

models in terms of accuracy, AUC, and precision.

3.4.4 Validating the performance of the proposed ensemble

Using 10-FCV, the statistical significance of the difference between individual base classi-

fiers and the ensemble’s final prediction model is evaluated using a paired t-test technique

with a significance level of 95%.
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By generating a null and alternative hypothesis, the statistical significance of the dif-

ference in prediction accuracy between the proposed staking ensemble and the individual

algorithms is determined.

• The null hypothesis (H0) assumed that both models performed equally well.

• Alternative hypothesis (H1) assumed that the models performed differently.

The following are the hypotheses developed for comparing the proposed stacking ensem-

ble and the LR algorithm: H0: There is no difference between the proposed stacking

ensemble and the LR classifier in terms of performance.

In this manner, the null and alternative hypotheses for all algorithms for whole datasets

were created, and they were tested using the Python-supported paired t-test module. Ta-

ble. 3.13 shows that data sets all had p-values less than 0.05. This suggests that the null

hypothesis may be rejected, and statistically convincing evidence has been provided that

LR and the proposed stacking ensemble perform differently.

The hypothesis test is repeated for the remaining pairs. The KNN and the proposed

stacking model are then selected for the paired t-test. The results reveal that there is a

substantial difference between the performance of the KNN algorithm and the novel stack

with a 95% confidence level.

When a single dataset does not match the criterion and the other’s p-values are less

than the significant threshold value, the DT and stack pair work in the same way. As a re-

sult, this demonstrates that there is a discernible difference between the selected algorithm

pair in terms of prediction accuracy. The p-values for SVM and the suggested stacking en-

semble were examined, and all datasets were found to be significant at the 0.05 level. As

a result, it is possible to deduce that the SVM and the stacking ensemble perform differ-

ently. To begin the t-test, the DT and stacking ensemble are coupled. The null hypothesis

was rejected with 95% certainty, implying that these algorithms performed differently in
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prediction tasks. Finally, the p-value analysis was performed on the last two algorithm

pairs. The null hypothesis was rejected with 95% confidence based on the findings of the

paired t-test, and the alternative hypothesis was accepted by demonstrating that there is a

substantial difference between their performances.

The primary goal of this study is to determine whether there is any utility in adding

layers to the proposed stacking ensemble. The significance level of accuracy between

the layer 1 output and the layer 2 stack is obviously below the threshold (0.05) for all

datasets. This indicates that there is a discernible difference between them, and hence the

null hypothesis was rejected.

As a result, it may be stated that there is a difference in their forecast accuracies.

The null hypothesis was rejected again, whereas the alternative hypothesis was accepted.

The paired t-test significant values were less than the cutoff (0.05). As a result, the null

hypothesis was rejected and the alternative hypothesis was accepted due to a significant

difference between them.

Finally, the last two pairs were applied to the paired t-test, and the null hypothesis

was rejected while the alternative hypothesis was accepted because the significant values

for all of the test datasets were less than 0.05. These statistical numbers demonstrate that

dividing the stack generalization into three layers can result in significant and obvious

accurate prediction results for any machine learning application.

Statistical test is performed on proposed method and other SOTA models with p is less

than 0.05. From this test we can say that proposed model significantly differ with other

SOTA models.
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3.5 Discussion

The following research questions are addressed with the proposed stacking approach.

RQ1. Can we improve predictive performance with an oversampling and ensemble ap-

proach?

In the proposed approach used hybrid model with ADASYN oversampling and a stacked

ensemble. It gives a significant performance concerning various performance measures

such as AUC, F-measure, sensitivity, and specificity balancing with ADASYN, and im-

proving the model performance with 3-level stacking will significantly improve the overall

performance of the model.

RQ2. Extended stacking approach(Multi-level) is better in prediction than the basic stack-

ing approach?

In the basic stacking approach base models and one meta-model. In stacking choosing

the best configuration of base models as well as meta-models is very crucial otherwise the

model will degrade the performance of the individual classifier. The extended stacking ap-

proach will always improve performance than basic stacking unless the best configuration

and hyperparameters of the classifiers used.

RQ 3. Does the final Meta-model parameter?

Does optimization make any improvement in overall performance?

In 3-level stacking, final meta-model selection and parameter optimization are very impor-

tant. Many parameter optimization techniques exist, but meta-heuristic optimization such

as PSO will optimize efficiently.

RQ 4. How does the proposed model have more significance than other base-level mod-

els?

We can evaluate our proposed model performance with the statistical analysis we have

done in the statistically paired T-test majority of the classifiers on various datasets signifi-
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cantly differ with p-value (<0.05) with a 95% confidence level.

Carefully choosing base classifiers and parameter optimization with evolutionary al-

gorithms will significantly improve stacking model performance. Large datasets will take

a lot of computation time so we need high-power computing resources to deal with multi-

level stacking.

Oversampling sample techniques may reduce performance due to noise while generat-

ing synthetic data we can be cautious about borderline samples to improve the predictive

model performance.

3.5.1 Summary

The summary of this chapter is enhancing disease diagnosis performance through the intro-

duction of a three-level stacking framework. This framework is applied to a pre-processed

dataset, which underwent outlier removal using the IQR method and addressed class im-

balance using ADASYN. The resultant pre-processed dataset becomes the basis for train-

ing the proposed three-level stacking model.

The stacking framework involves three levels: Level 0 learners (including LR, KNN,

SVM, DT, KNN, and MLP), Level 1 learners (comprising Bagged DT, KNN, and LR), and

a Level 2 learner (SVM). The optimization of these learners is achieved using techniques

like grid search for Levels 0 and 1, and PSO for Level 2.

To validate the effectiveness of the proposed model, experiments are conducted on var-

ious datasets such as PID, SHD, CHD, CKD, and WBC. The proposed model is compared

against different combinations of base learners and consistently shows superior perfor-

mance across various performance metrics.

Furthermore, a comparison is made between the proposed model and State-of-The-Art

(SOTA) ensemble and non-ensemble methods. The proposed model outperforms these
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models in terms of AUC and accuracy across all datasets. This demonstrates its superiority

in diagnostic accuracy.

To establish the robustness of the proposed model, a paired statistical t-test is per-

formed. The results of this test confirm that the proposed model significantly outperforms

all base-level models, providing additional evidence of its effectiveness in disease diagno-

sis.

In summary, the chapter introduces a novel three-level stacking framework for disease

diagnosis. It employs optimized Level 0 and Level 1 learners, along with a Level 2 SVM

optimized using a fitness function. Experimental results across various datasets show that

the proposed model consistently outperforms other models, including SOTA methods, in

terms of diagnostic accuracy and AUC. The statistical t-test further validates the significant

improvement offered by the proposed model over individual base-level models.
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Chapter 4

A Novel Diversity-based Ensemble

Approach with Genetic Algorithm for

Effective Disease Diagnosis

This chapter introduced a novel diversity-based evolutionary ensemble framework. This

framework aims to address the limitations of conventional ensemble methods by focusing

on the selection of diverse base classifiers. To achieve this, a GA strategically chooses

base classifiers that offer complementary insights into the data. This approach inherently

extends the multi-level stacking concept introduced in (Chapter 3), by expanding the no-

tion of model diversity to enhance the ensemble’s overall performance.

Chapter Organization: The proposed methodology is presented in section 4.1. The

experimental results are provided in section 4.2. Lastly, section 4.3 presents the summary

of the work.
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4.1 Proposed Method for diversity based ensemble ap-

proach

In this section, a novel diversity-based evolutionary ensemble framework with a GA is

proposed.

To improve the disease diagnosis performance in this work a novel framework is pro-

posed. The proposed model is shown in Fig. 4.1. In the proposed framework

1. Datasets are pre-processed.

2. Grid search has been used for hyperparameter tuning of individual classifiers.

3. Twenty base learns are created by performing bootstrapping over LR, DT, SVM, and

KNN classifiers.

4. GA is applied to finding the optimal ensemble.

5. A novel fitness function is proposed for GA.

After prepossessing of dataset performed hyperparameter tuning of LR, SVM, KNN,

and DT using grid search.

The selection of 20 base learners in our proposed diversity-based ensemble approach

using GA was not arbitrary but rather based on a deliberate strategy aimed at maximiz-

ing diversity and exploring a wide range of classifier combinations. By training each of

the five bootstrapped bags on four base learners (LR, DT, SVM, and KNN), we aimed to

introduce diversity in the ensemble through the incorporation of classifiers with different

modeling approaches and characteristics. The choice of LR, DT, SVM, and KNN as base

learners was motivated by their popularity, diverse modeling techniques, and complemen-

tary strengths in capturing different aspects of the data. Moreover, these classifiers have
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been widely used in the literature for disease diagnosis tasks, making them suitable can-

didates for our ensemble approach. The resulting ensemble of 20 base learners allows for

a rich diversity of classifier combinations, which can potentially enhance the ensemble’s

robustness and generalization ability. By applying GA for the selection of the best en-

semble from these base learners, we aim to exploit the diversity inherent in the ensemble

candidates and identify the optimal combination of classifiers for disease diagnosis.

Figure 4.1: Proposed diversity-based ensemble approach using GA
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4.1.1 Proposed diversity-based approach using GA

Initially, the data set is pre-processed by handling missing values and outliers. Then such

a prepossessed dataset is randomly divided into two disjoint sets in a 90:10 ratio. The

90% data makes a training dataset and is used for hyperparameter tuning of individual

classifiers. The remaining 10% of data constitutes a test dataset and is used for testing

purposes to estimate the generalization capability of the selected model.

Data: Initialize population of candidate solutions
Result: The best chromosome with a maximum fitness value
ps population size;
nf number of features;
cp cross over probability;
mp mutation probability;
ng number of generations;
Function_GA(ps,nf ,cp,mp,ng)
while stop condition is false do

Compute the fitness of population using Algorithm 4;
Selection of parents;
With a crossover probability pc, perform crossover;
With a mutation probability pm, perform mutation;
Using crossover rate and mutation rate, generate new solutions;
If their fitness increases, then accept the new solutions;
Select the current best for new generations;
Update new solutions;

end
return the best chromosome with maximum fitness value (used for testing the
proposed model)

Algorithm 3: GA function definition

Next, the training data set is partitioned as per 5-fold cross-validation (5-FCV). The 5-

FCV generates the five bootstrapped bags, which represent five diverse training datasets.

Each of these training datasets is trained on four base learners namely LR, DT, SVM,

and KNN. This leads to the creation of 20 base learners. Further, GA is applied for the
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selection of the best ensemble out of 20 base learners. Moreover, a novel fitness function is

proposed for the selection of the best ensemble. How GA is applied for the selection of the

best ensemble is discussed in Algorithm 2. The encoding schema of the GA chromosome

is shown in Fig. 4.2. Fig 4.1 depicts the proposed model in which the learning process is

shown for ensemble candidate selection using the proposed GA.

In algorithm 4, with a chromosome size of 20 and i denoting the chromosome index,

the fitness of a proposed ensemble model is computed. Optimal and diverse classifiers are

then chosen based on this fitness.The process involves two distinct genetic algorithm (GA)

operations. Initially, there is a function call for data bag selection with GA, picking from

a set of five available data bags. Subsequently, another GA-based function is invoked for

classifier selection, making a choice from a pool of 20 classifiers. Following the sequential

selection of data bags and classifiers, the algorithm proceeds to estimate the performance,

measured in terms of accuracy, of the chosen classifiers with respect to the selected data

bags.

4.1.2 Diversity based classifier selection

5-FCV is used to divide the training set into 5 equal parts. In this case, 5-FCV produces five

bootstrapped bags, which stand for five different training sets. On each of these training

sets, four base learners are used with hyperparameters that are optimized in respective

bootstrapped bags that lead to 20 different models. Here, the validation set is used to

assess each chromosome’s fitness to respective bootstrapped bags to determine the best

ensemble, and test data is utilized to assess the effectiveness of the proposed ensemble

model.

Evaluation of an ensemble’s diversity, which reveals the disparities between the learn-

ers, is not a deciding factor in how effective it is; rather, taught learners should be as
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Function Function_fitness_score(population){
i← 0;
while i < 20 do

Function_Classifier_Selection (i);
Function_Data_Bag_Selection (i);
Find the ensemble score using Eq.4.1 and Eq.4.2
Function call for ensemble score calculation
i← i+ 1;

end
}
Function Function_Classifier_Selection(i){

if (i mod 4) == 0 then
Select LR;

end
if (i mod 4) == 1 then

Select KNN;
end
if (i mod 4) == 2 then

Select SVM;
end
if (i mod 4) == 3 then

Select DT;
end

}
Function Function_Data_Bag_Selection(i){

if i ≤ 3 then
Select bag D1;

end
if 4 ≤ i ≤ 7 then

Select bag D2;
end
if 8 ≤ i ≤ 11 then

Select bag D3;
end
if 12 ≤ i ≤ 15 then

Select bag D4;
end
if 16 ≤ i ≤ 19 then

Select bag D5;
end

}
Algorithm 4: Estimation of fitness value
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diverse as possible. The various training subsets produced by the 5-FCV result in a variety

of base learners. Since diversity is achieved by taking advantage of different learners’ bi-

ases, selecting the best learners is an important factor in the effectiveness of the ensemble

strategy.

4.1.3 Chromosome representation

In this GA is used to select the best candidate ensemble that maximizes the overall per-

formance. In the proposed approach GA chromosome is encoded as a bit string with five

groups(bag) with four bits each where each bit is associated with a binary value of 0 or

1. Where binary values 0 and 1 in chromosome represent whether the respective learner

is selected or not w.r.t. the learner bag. Therefore, to represent 20 base learners a chro-

mosome of size 20 is used in our proposed approach. A random chromosome is shown in

Fig. 4.2 which consists of nine 1’s. According to this figure, LR is selected from bag-1,

LR, KNN from bag-2, LR from bag-3, LR, DT from bag-4, and LR, SVM, and DT from

bag-5 are selected for the ensemble.

Figure 4.2: Structure of the chromosome in the proposed method
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The random chromosome of GA From Fig. 4.2 consists of nine classifiers selected

w.r.t. various data bags as pairs of data bags and classifiers such as (D1, C1), (D2, C5), (D2, C6),

etc are LR Classifier selected concerning data bag-1 (D1), LR Classifier selected concern-

ing data bag-2 (D2) and KNN Classifier selected concerning data bag-3(D3), etc upto 11

random classifiers selected as shown in Fig. 4.2.

4.1.4 GA-based model selection

Diversity is a key concept in ensemble learning, and it refers to the idea that individual

model predictions in an ensemble should be as dissimilar as possible. This is because dif-

ferent models are more likely to make different types of errors. To improve the predictive

performance of disease diagnosis, it is essential to select an efficient ensemble model from

diverse learners. Hence, GA based technique is used to select the best ensemble using the

evolutionary search process. Natural selection and genetics are the foundations of GA. It

is commonly used to find ideal or nearly ideal solutions to difficult problems that would

otherwise take a lifetime to solve. In the GA process, each chromosome acts as an en-

coded solution in the search space. To search optimal candidate ensemble solution from

20 learners GA is applied with a novel fitness function. This problem is formulated with

chromosome size 20 followed by population initialization and evaluating fitness function

along with the genetic operators for exploration of search space. The same is explained in

the Algorithm 2 and Algorithm 4.

4.1.5 Novel fitness function

In our proposed approach a novel fitness function is used. It is given in Eq. 4.1 and Eq.

4.2

Fitnessfunction(f) =

∑b
j=0ES(Bj)

Nb

(4.1)
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ES(Bi) = MVC

(
4j+3∑
i=4j

(Bj, Ci)

)
(4.2)

Where,

Nb is the number of active bags,

Bj is the jth selected bag,

Ci is the ith selected classifier,

ES(Bj) is the ensemble score of jth selected data bag,

MVC is the majority voting on all selected Cis in Bj .

Here the fitness function will be computed mean ensemble score of optimal chromosomes

in the evolutionary search process. Fitness is evaluated based on the mean of individual

data bag ensemble score. The ensemble score of the individual data bag is obtained by

applying majority voting on selected classifiers in the respective data bag. For better en-

semble selection fitness function needs to be maximized.

4.2 Experimental Results

4.2.1 Experimental setup

The HP Compaq Intel(R) Core(TM) i7-1065G7 CPU and 8 GB RAM were used in this

experiment. All the modules in the proposed methodology and results analysis are carried

out using Python and the sklearn library. All the datasets used in this study is already

described in chapter 3. shown in Table 3.1.
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4.2.2 Performance Measures

To evaluate the performance of the proposed model various performance measures such as

accuracy, sensitivity, specificity, G-measure, Precision, Recall, and F1-score are chosen.

These measures are already explained in chapter 3.

Dataset Classifier Accuracy (%) AUC (%) Sensitivity (%) Specificity (%) F1-Measure (%) Precision (%) G-Measure (%)

PID

LR 76.62 70.07 48.14 92.00 60.86 73.68 68.31
KNN 81.81 78.33 66.66 90.00 72.00 78.26 77.45
SVM 84.41 82.88 77.77 88.00 77.77 77.77 82.73
DT 90.90 87.03 74.07 94.00 85.10 96.73 86.06

CKD

LR 82.41 82.88 77.77 86.00 77.77 77.77 82.73
KNN 73.75 77.00 64.00 90.00 75.29 96.07 75.89
SVM 84.41 83.74 81.48 86.00 87.37 84.90 81.24
DT 87.01 84.48 77.77 92.00 99.00 98.03 98.31

SHD

LR 84.41 83.74 81.48 86.00 87.37 84.90 81.24
KNN 87.01 84.48 77.77 92.00 99.00 98.03 98.31
SVM 90.90 87.03 74.07 94.00 85.10 96.73 86.06
DT 98.00 95.66 98.00 93.33 97.02 96.07 95.63

WBC

LR 84.41 82.88 77.77 88.00 77.77 77.77 82.73
KNN 90.90 87.03 74.07 94.00 85.10 96.73 86.06
SVM 98.00 95.66 98.00 93.33 97.02 96.07 95.63
DT 90.90 87.03 74.07 94.00 85.10 96.73 86.06

Table 4.1: Performance of various classifiers on various data sets before applying the
proposed model

4.2.3 Results analysis

Initially, the four disease datasets are pre-processed and split into training sets and testing

sets with 90% and 10% of data samples respectively. Then we have evaluated the perfor-

mance of the individual classifier performance before applying in the proposed ensemble

model the results are tabulated and it is hown in Table 4.1. To further enhance the in-

dividual classifier performance fine-tuned hyperparameters of LR, KNN, SVM, and DT

classifiers using grid search. The results are tabulated and shown in Table 4.2.

The further training set is partitioned into 5 equal parts using 5-FCV. The 5-FCV gen-

erates 5 bootstrapped bags namely D1, D2, D3, D4, and D5 which represent five diverse

data sets. However, diversity is taken into consideration at the time of classifier pool gen-
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Dataset LR KNN SVM DT

PID C=0.01 #neighbours = 11
C =50

gamma =0.001
kernel = RBF

SC = Gini
Depth =6

CKD C=0.001 #neighbours = 13
C =100

gamma =0.001
kernel = RBF

SC = Gini
Depth =5

SHD C=0.01 #neighbours = 5
C =100

gamma =0.001
kernel = RBF

SC = Gini
Depth =5

WBC C=0.001 #neighbours = 11
C =50

gamma =0.01
kernel = RBF

SC = Gini
Depth =6

C Regularization Parameter gamma RBF kernel coefficient
SC Splitting Criteria Depth Maximum depth of DT

RBF Radial Basis Function

Table 4.2: Hyper parameters of various classifiers over various datasets

Dataset Classifier D1 D2 D3 D4 D5

PID

LR C = 1 C = 1 C = 0.1 C = 0.1 C = 0.01
KNN # Neighbours = 19 # Neighbours = 7 # Neighbours = 15 # Neighbours = 13 # Neighbours = 11

SVM
C = 100

Kernel = RBF
Gamma = 0.01

C = 10
Kernel = RBF
Gamma = 0.01

C = 1
Kernel = RBF
Gamma = 0.01

C = 100
Kernel = RBF
Gamma = 0.01

C = 50
Kernel = RBF

Gamma = 0.001

DT
SC = GINI Index

Depth = 2
Min # samples in leaf = 5

SC = GINI Index
Depth = 2

Min # samples in leaf = 5

SC = GINI Index
Depth = 2

Min # samples in leaf = 5

SC = GINI Index
Depth = 2

Min # samples in leaf = 5

SC = GINI Index
Depth = 2

Min # samples in leaf = 5

CKD

LR C = 10 C = 0.01 C = 100 C = 0.1 C = 100
KNN # Neighbours = 13 # Neighbours = 11 # Neighbours = 3 # Neighbours = 5 # Neighbours = 5

SVM
C = 100

Kernel = RBF
Gamma = 0.001

C = 100
Kernel = RBF

Gamma = 0.001

C = 100
Kernel = RBF

Gamma = 0.001

C = 100
Kernel = RBF

Gamma = 0.001

C = 100
Kernel = RBF
Gamma = 0.01

DT
SC = GINI Index

Depth = 2
Min # samples in leaf = 5

SC = GINI Index
Depth = 2

Min # samples in leaf = 5

SC = GINI Index
Depth = 2

Min # samples in leaf = 5

SC = GINI Index
Depth = 2

Min # samples in leaf = 10

SC = GINI Index
Depth = 10

Min # samples in leaf = 20

SHD

LR C = 100 C = 100 C = 1.0 C = 100 C = 100
KNN # Neighbours = 3 # Neighbours = 13 # Neighbours = 3 # Neighbours = 1 # Neighbours = 3

SVM
C = 100

Kernel = RBF
Gamma = 0.001

C = 100
Kernel = RBF
Gamma = 0.01

C = 10
Kernel = RBF

Gamma = 0.001

C = 100
Kernel = RBF
Gamma = 0.01

C = 100
Kernel = RBF
Gamma = 0.01

DT
SC = GINI Index

Depth = 2
Min # samples in leaf = 5

SC = GINI Index
Depth = 2

Min # samples in leaf = 5

SC = GINI Index
Depth = 2

Min # samples in leaf = 5

SC = GINI Index
Depth = 2

Min # samples in leaf = 5

SC = GINI Index
Depth = 2

Min # samples in leaf = 5

WBC

LR C = 0.1 C = 100 C = 0.1 C = 10 C=100
KNN # Neighbours = 1 # Neighbours = 9 # Neighbours = 1 # Neighbours = 5 # Neighbours = 7

SVM
C = 100

Kernel = RBF
Gamma = 0.001

C = 10
Kernel = RBF

Gamma = 0.001

C = 100
Kernel = RBF
Gamma = 0.01

C = 100
Kernel = RBF

Gamma = 0.001

C = 100
Kernel = RBF
Gamma = 0.01

DT
SC = GINI Index

Depth = 2
Min # samples in leaf = 5

SC = GINI Index
Depth = 2

Min # samples in leaf = 5

SC = GINI Index
Depth = 2

Min # samples in leaf = 5

SC = GINI Index
Depth = 2

Min # samples in leaf = 5

SC = GINI Index
Depth = 2

Min # samples in leaf = 5
C Regularization Parameter gamma RBF kernel coefficient

SC Splitting Criteria Depth Max depth of DT
RBF Radial Basis Function

Table 4.3: Hyper parameters of various classifiers over data bags of various datasets
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eration. Then each of these bootstrapped bags is split into training and validation sets in

a 90:10 ratio. These five training datasets are applied to four base learners such as LR,

KNN, SVM, and DT, and created twenty diverse base learners. These four base learners

are fine-tuned on five diversed data bags using grid search. These fine-tuned hyperparam-

eter values are shown in Table 4.3. These fine-tuned models are tested on the respective

validation dataset. These results on four datasets namely PID, CKD, SHD, and WBC are

shown in Table 4.4 and and also computed the average performance of all the classifiers

with respect to the data bags and compared the performance of individual classifiers with-

out a bootstrapped approach. Performance with respect to data bags is better compared to

individual classifier performance. Further, we have applied an ensemble approach using a

GA for up to 20 runs(20 experiments) and we have considered the average performance of

20 runs (20 experiments). we have evaluated the same for all four bench-marked datasets.

The selection of 20 runs for the genetic algorithm (GA) in our study was based on

several considerations. Firstly, it aligns with common practices in the literature regarding

the application of genetic algorithms for optimization tasks. Prior research, such as the

work by Singh et al. has demonstrated the effectiveness of using multiple runs of GA to

enhance the performance of optimization algorithms for disease diagnosis.

Additionally, we conducted preliminary experiments to assess the convergence behav-

ior and stability of the GA across different numbers of runs. Through these experiments,

we observed that 20 runs provided a balance between computational efficiency and result

stability. Further increasing the number of runs did not significantly improve the perfor-

mance metrics while substantially increasing computational costs.

Regarding the sensitivity of the results to this choice, we performed sensitivity analysis

by varying the number of GA runs and evaluating the resulting performance metrics. Our

findings indicated that while there were minor fluctuations in performance metrics with

variations in the number of runs, the overall trends and conclusions remained consistent.
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Dataset Classifier Data Accuracy (%) AUC (%) Sensitivity (%) Specificity (%) F1 Score (%) Precision (%) G-measure (%)

PID

LR

D1 76.62 73.48 62.96 84.00 65.38 68.00 72.72
D2 76.62 72.62 59.25 86.00 63.99 69.56 71.38
D3 66.66 74.33 66.66 82.00 66.66 66.66 73.93
D4 72.72 67.07 48.14 86.00 55.31 65.00 64.34
D5 79.22 75.48 62.96 88.00 68.00 73.91 74.43
Avg 74.36 72.59 59.99 85.20 63.86 68.62 71.36

KNN

D1 92.20 89.74 81.48 98.00 88.00 95.65 89.35
D2 85.71 83.03 74.07 92.00 78.43 83.33 82.55
D3 88.31 88.31 81.48 92.00 83.01 84.61 86.58
D4 80.51 73.07 48.14 98.00 63.41 92.65 68.69
D5 88.31 84.18 70.37 98.00 80.85 95.00 70.37
Avg 87.08 83.66 71.10 95.60 78.74 90.24 79.50

SVM

D1 85.71 85.55 85.18 86.00 80.70 76.66 85.59
D2 80.51 76.48 62.96 90.00 69.38 77.27 75.27
D3 77.92 72.77 55.55 90.00 63.82 75.00 70.71
D4 80.51 77.33 66.66 88.00 70.58 75.00 76.59
D5 79.22 73.77 55.55 92.00 65.21 78.94 71.49
Avg 80.77 77.18 65.18 89.20 69.93 76.57 75.93

DT

D1 90.90 90.44 88.88 92.00 87.27 85.71 90.43
D2 89.61 89.44 88.88} 90.00 85.71 82.75 89.44
D3 92.20 89.74 81.48 98.00 88.00 95.65 89.35
D4 90.90 88.74 81.48 96.00 86.27 91.66 88.44
D5 90.90 90.44 88.88 92.00 87.27 85.71 90.43
Avg 90.90 89.76 85.92 93.60 86.90 88.29 89.61

CKD

LR

D1 92.50 90.66 98.00 83.33 94.23 90.74 90.36
D2 92.50 92.66 92.00 93.33 93.87 9583 92.66
D3 96.25 95.66 98.00 93.33 97.02 96.07 95.63
D4 91.25 89.66 96.00 83.33 93.20 90.56 89.44
D5 72.72 67.07 48.14 86.00 55.31 65.00 64.34
Avg 89.04 87.14 86.42 87.86 86.72 87.64 86.48

KNN

D1 65.00 62.00 74.00 50.00 72.54 71.15 60.82
D2 65.00 58.66 84.00 33.33 75.00 67.74 52.91
D3 71.25 69.00 78.00 60.00 77.22 76.47 68.41
D4 66.25 64.33 72.00 56.66 72.72 73.46 63.87
D5 66.25 69.00 58.00 80.00 68.23 82.65 68.11
Avg 66.75 64.59 73.20 55.99 73.14 74.29 62.82

SVM

D1 71.25 62.33 98.00 26.66 80.99 69.04 51.12
D2 67.50 58.00 96.00 20.00 78.68 66.66 43.81
D3 70.00 62.00 94.00 30.00 79.66 69.11 53.10
D4 63.75 53.00 96.00 10.00 76.79 64.00 30.98
D5 66.25 59.00 88.00 30.00 76.52 67.89 51.38
Avg 67.75 58.86 94.40 23.33 78.52 67.34 46.07

DT

D1 91.25 89.66 96.00 83.33 93.20 90.56 89.44
D2 91.25 89.66 96.00 83.33 93.20 90.56 89.44
D3 91.25 91.00 92.00 90.00 92.92 93.87 90.99
D4 92.50 92.66 92.00 93.33 93.87 95.83 92.66
D5 92.50 92.00 94.00 90.00 95.83 94.00 91.97
Avg 91.75 90.99 94.00 87.99 93.80 92.96 90.90

Table 4.4: Performance of classifiers over various datasets w.r.t. data bags (Continued)
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Dataset Classifier Data Accuracy (%) AUC (%) Sensitivity (%) Specificity (%) F1 Score (%) Precision (%) G-measure (%)

SHD

LR

D1 96.29 95.83 91.66 98.99 95.65 96.28 95.74
D2 92.50 92.66 92.00 93.33 93.87 95.83 92.66
D3 92.59 92.08 87.50 96.66 91.30 95.45 91.96
D4 87.03 87.91 95.83 80.00 86.79 79.31 87.55
D5 94.44 94.58 95.83 93.33 93.87 92.00 94.57
Avg 92.57 92.61 92.56 92.46 92.29 91.77 92.49

KNN

D1 88.88 95.83 91.66 96.66 86.36 95.00 87.48
D2 87.03 86.24 79.16 93.33 84.44 90.47 85.95
D3 90.74 90.00 83.33 96.66 88.88 95.23 89.75
D4 94.44 94.16 91.66 96.66 93.61 95.65 94.13
D5 85.18 85.41 87.50 83.33 84.00 80.76 85.39
Avg 89.25 90.32 86.66 93.32 87.45 91.42 88.54

SVM

D1 94.44 94.16 91.66 96.66 93.61 95.65 94.13
D2 94.44 94.16 91.66 96.66 93.61 95.65 94.13
D3 87.03 86.24 79.16 93.33 84.44 90.47 85.95
D4 90.74 91.25 95.85 86.66 90.19 85.18 91.13
D5 98.14 98.33 79.16 96.66 97.95 96.00 98.31
Avg 92.95 92.82 87.49 93.99 91.96 92.59 92.73

DT

D1 92.50 90.66 98.00 83.33 94.23 90.74 90.36
D2 92.50 92.66 92.00 93.33 93.87 95.83 92.66
D3 96.25 95.66 98.00 93.33 97.02 96.07 95.63
D4 91.25 89.66 96.00 83.33 93.20 90.56 89.44
D5 72.72 67.07 48.14 86.00 55.31 65.00 64.34
Avg 89.04 87.14 86.42 87.86 86.72 87.64 86.48

WBC

LR

D1 94.73 94.84 95.23 94.44 93.02 90.90 94.84
D2 98.24 98.61 85.71 97.22 92.30 89.67 93.43
D3 88.88 95.83 91.66 96.66 86.36 95.00 87.48
D4 87.03 86.24 79.16 93.33 84.44 90.47 85.95
D5 90.74 90.00 83.33 96.66 88.88 95.23 89.75
Avg 91.92 93.10 87.01 95.66 89.00 92.25 90.29

KNN

D1 92.98 93.45 95.23 91.66 90.90 86.95 93.43
D2 94.73 92.85 85.71 97.22 92.30 90.90 92.58
D3 89.43 87.69 80.95 94.44 85.00 89.47 87.43
D4 98.24 98.61 85.95 97.22 97.67 95.45 98.60
D5 94.73 95.23 90.47 97.28 95.00 90.90 94.84
Avg 94.02 93.56 87.66 95.56 92.17 90.73 93.37

SVM

D1 96.49 96.23 95.23 97.22 95.23 95.23 96.22
D2 98.24 97.61 95.23 96.20 97.56 96.00 97.59
D3 96.49 95.23 90.47 93.30 95.00 92.00 95.11
D4 94.73 92.85 80.95 94.44 85.00 89.47 87.43
D5 92.48 93.45 95.23 91.66 90.90 86.95 93.43
Avg 95.68 95.07 91.42 94.56 92.73 91.93 93.95

DT

D1 88.88 95.83 91.66 94.44 93.02 90.00 94.37
D2 87.03 86.24 79.16 97.22 92.30 89.67 93.43
D3 90.74 90.00 96.20 94.44 85.00 95.00 87.47
D4 94.44 94.16 93.30 97.22 97.67 94.36 88.60
D5 85.18 85.41 90.47 97.28 95.00 96.87 89.23
Avg 89.25 90.32 90.15 96.12 92.59 93.18 90.62

Table 4.4: Performance of classifiers over various datasets w.r.t. data bags
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Thus, while the choice of 20 runs was somewhat arbitrary, our results demonstrate that

the conclusions drawn from the study are robust and not overly sensitive to this specific

parameter.

Parameter Value
Maximum no of iterations 100

Cross over rate 0.90
Population size 100
Mutation rate 0.002

Number of runs 20

Table 4.5: Fine-tuned parameters used in genetic algorithm

Figures 4.3-4.5 correspond to PID dataset but the analysis in the thesis was conducted

using a total of four datasets. However, the conclusions drawn from the analysis are appli-

cable to all datasets used in the study.

4.2.4 GA parameter optimization

GA parameters such as cross-over rate, mutation rate, population size, and the number of

generations will impact the model’s performance. GA parameters will vary from problem

to problem. So tuning of parameters is required to improve the performance of the model.

In the literature, the range of GA parameters used crossover rate, mutation rate, and pop-

ulation size are (0.6-0.9),(0.001-0.005), and (50-100) respectively. We have fine-tuned the

crossover rate of various values 0.6,0.7,0.8 and 0.9 with different values of mutation rate.

we have selected the crossover rate of 0.9 and the mutation rate is 0.002 with the best

fitness value as shown in Fig.4.3.

we have evaluated the fitness of the model with various values of population size within

the range of (50-100) and we are getting the best fitness value with a population size of 100.

It is shown in Fig.4.4. We have to run the algorithm up to a certain number of generations
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for convergence. In our proposed approach we have used up to 100 generations for a single

run(single experiments)(experiment). It converged at 80 generations. It is shown in Fig.

4.5.

Next, GA is applied for ensemble selection in which the fitness of the candidate chro-

mosome is evaluated. The size of the chromosome is 20 which represents 20 base learners.

This GA searches fittest candidate chromosomes over all generations until convergence of

population is reached. Here training dataset is utilized to evaluate the fitness of each chro-

mosome for identifying the optimal ensemble.

Figure 4.3: Fine tuning of mutation and cross-over rate on PID dataset

For better ensemble selection fitness function needs to be maximized. To find the

optimal ensemble the GA parameters are fine-tuned using grid search. These values are

shown in Table 4.5. After fine-tuning GA parameters, It experiments for twenty runs on a

given dataset.

The further improvement we have applied an ensemble approach using a genetic algo-

rithm for up to 20 runs considered the average performance of 20 runs and evaluated the
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Figure 4.4: Fine tuning of population size on PID dataset

same for all four bench-marked datasets. Each run of GA outputs the best ensemble that

maximizes the fitness function and that best chromosome which maximizes the fitness.

Summary of all the datasets with performance measures shown in Table??

This chromosome it signifies selected diversed classifiers from the five diversed datasets.

This fittest chromosome will undergone for testing to evaluate the proposed model perfor-

mance. These test results for each run of GA on PID, CKD, SHD, and WBC are shown

in Table 4.6, Table 4.7, Table 4.8 and Table 4.9 respectively. These tables also present

the average performance over 20 runs of GA in terms of ensemble complexity, accuracy,

AUC, sensitivity, specificity, and F-measure. Where the ensemble complexity represents

the number of classifiers selected out of 20 base learners. The average testing performance

of the proposed model on PID, CKD, SHD, and WBC datasets is shown in Table. 4.10
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Figure 4.5: Fine tuning of number of generations on PID dataset

Number of runs Complexity of ensemble Test results
Accuracy (%) AUC (%) Sensitivity (%) Specificity (%) F1 Score (%)

1 5 90.90 89.51 82.18 94.00 86.97
2 9 92.53 90.41 83.33 97.50 88.48
3 10 91.88 89.04 79.62 98.50 86.68
4 11 93.18 91.12 84.25 98.00 89.5
5 13 92.20 89.74 81.48 98.00 87.65
6 7 91.55 88.81 79.62 98.00 86.65
7 9 87.66 83.25 68.51 98.00 78.84
8 5 88.63 84.64 71.29 98.00 80.48
9 8 90.25 88.24 81.48 95.00 85.17

10 8 91.77 91.11 88.88 93.33 88.75
11 6 89.61 87.52 80.55 94.50 84.01
12 8 88.96 86.60 78.70 94.50 82.89
13 7 89.93 87.77 80.55 95.00 84.42
14 8 92.20 91.23 87.96 84.50 89.11
15 9 93.83 91.81 86.11 98.00 90.62
16 10 91.68 89.00 80.00 98.00 86.45
17 11 90.90 87.71 77.03 98.4 84.08
18 10 90.25 86.74 75.00 98.5 82.55
19 11 90.90 87.71 77.03 98.4 84.08
20 9 92.53 90.41 83.33 97.50 88.48

Min 5 87.66 83.25 68.51 84.5 78.84
Median 9 91.225 88.905 80.55 98 86.55

Max 13 93.83 91.81 88.88 98.5 90.62
Average 8 90.91 88.38 79.81 95.82 85.51

Table 4.6: Test results of proposed model with 20 runs on PID dataset

86



CHAPTER 4. A NOVEL DIVERSITY-BASED ENSEMBLE APPROACH WITH GENETIC ALGORITHM FOR EFFECTIVE DISEASE DIAGNOSIS Section 4.2

Number of runs Complexity of ensemble Test results
Accuracy (%) AUC (%) Sensitivity (%) Specificity (%) F1 Score (%)

1 14 99.37 99.33 99.50 99.16 99.49
2 13 98.75 98.50 99.50 97.50 99.00
3 12 99.06 99.08 99.00 99.16 99.24
4 11 98.83 98.74 98.41 99.07 98.41
5 10 99.37 99.33 99.50 99.16 99.49
6 10 99.37 99.33 99.50 99.16 99.49
7 7 94.75 93.93 97.19 90.66 95.88
8 5 97.54 97.26 96.19 98.33 96.63
9 8 94.50 93.46 97.60 89.33 95.69

10 9 96.00 95.46 97.60 93.33 96.82
11 13 99.56 99.40 98.80 99.16 99.39
12 10 96.50 95.59 99.20 91.99 97.28
13 9 96.00 95.46 97.60 93.33 96.82
14 8 96.00 95.46 97.60 93.33 96.82
15 7 91.50 91.86 90.39 93.33 92.45
16 6 91.99 91.99 91.99 91.99 92.91
17 7 92.50 92.66 91.99 93.33 93.30
18 9 93.00 93.33 91.99 94.66 93.70
19 10 93.24 93.53 92.40 94.66 93.90
20 9 93.24 93.53 92.40 94.66 93.90

Min 5 91.50 91.86 90.39 89.33 92.45
Median 9 96.00 95.46 97.60 94.66 96.82

Max 14 99.56 99.40 99.50 99.16 99.49
Average 9.35 96.05 95.86 96.13 95.26 96.53

Table 4.7: Test results of proposed model with 20 runs on CKD data set.

Number of runs Complexity of ensemble Test results
Accuracy (%) AUC (%) Sensitivity (%) Specificity (%) F1 Score (%)

1 5 98.83 98.74 98.41 99.07 98.41
2 9 99.07 98.95 97.91 100.00 98.91
3 10 97.22 96.87 93.75 100.00 96.64
4 9 96.29 96.00 93.33 98.66 95.49
5 12 97.89 97.14 94.28 100.00 96.80
6 11 99.25 99.16 98.33 100.00 99.13
7 11 97.89 97.14 94.28 100.00 96.80
8 12 97.77 97.50 95.00 100.00 97.31
9 11 95.55 95.00 90.00 100.00 94.45

10 15 99.29 99.04 98.09 100.00 99.02
11 10 96.29 95.83 91.66 100.00 95.23
12 9 95.37 94.79 89.58 100.00 94.15
13 10 96.29 95.83 91.66 100.00 95.32
14 11 97.77 97.50 95.00 100.00 97.14
15 12 97.77 97.50 95.00 100.00 97.14
16 13 97.77 97.50 95.00 100.00 97.14
17 12 97.77 97.50 95.00 100.00 97.14
18 10 97.03 96.66 93.33 100.00 96.27
19 11 99.25 99.16 98.33 100.00 99.13
20 10 97.03 96.66 93.33 100.00 96.27

Min 5 95.37 94.79 89.58 98.66 94.15
Median 11 97.77 97.32 94.64 100 96.97

Max 15 99.29 99.16 98.41 100 99.13
Average 10.65 97.56 97.22 94.56 99.88 96.89

Table 4.8: Test results of the proposed model with 20 runs on SHD data set
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Number of runs Complexity of ensemble Test results
Accuracy (%) AUC (%) Sensitivity (%) Specificity (%) F1 Score (%)

1 5 98.20 98.16 98.00 99.16 98.52
2 8 99.12 99.05 98.80 99.30 98.80
3 10 97.54 96.86 94.28 99.44 96.34
4 6 98.83 98.74 98.41 99.07 98.41
5 12 97.89 97.14 94.28 100.00 96.80
6 11 97.89 97.14 94.28 100.00 96.80
7 14 97.89 97.14 94.28 100.00 96.80
8 5 97.54 97.26 96.19 98.33 96.63
9 10 93.33 90.95 81.90 100.00 89.63

10 15 99.29 99.04 98.09 100.00 99.02
11 13 99.56 99.40 98.80 100.00 99.39
12 12 98.24 97.61 95.23 100.00 97.40
13 14 99.29 99.04 98.09 100.00 99.02
14 12 96.49 95.23 90.47 100.00 94.70
15 14 99.29 99.04 98.09 100.00 99.02
16 10 99.64 99.52 99.04 100.00 99.51
17 7 99.12 98.80 97.61 100.00 98.75
18 9 97.54 96.66 93.33 100.00 96.29
19 10 97.54 96.66 93.33 100.00 96.29
20 11 97.54 96.66 93.33 100.00 96.29

Min 5 93.33 90.95 81.9 98.33 89.63
Median 10.5 98.045 97.435 95.71 100 97.1

Max 15 99.64 99.52 99.04 100 99.51
Average 10.4 98.08 97.50 95.29 99.76 97.22

Table 4.9: Test results of proposed model with 20 runs on WBC data set

Dataset Accuracy(% ) AUC(% ) Sensitivity(%) Specificity(%) F1 Score(% )
PID 90.91 88.38 79.81% 95.82 85.51

CKD 96.05 95.86 96.13 95.26 96.53
SHD 97.56 97.22 94.56 99.88 96.89
WBC 98.08 97.50 95.29 99.76 97.22

Table 4.10: Proposed model performance on PID, CKD, SHD and WBC datasets over 20
runs
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Dataset Classifiers Accuracy (%) AUC (%) Sensitivity (%) Specificity (%) Reference

PID

Stacking(LR) 76.10 83.80 87.10 55.90 2019 [64]
Adaboost (DS) 75.00 81.00 84.90 56.60 2019 [64]
Bagging (4.5) 75.40 82.50 85.50 56.50 2019 [64]
Adaboost (C4.5) 72.50 78.00 80.40 57.80 2019 [64]
Bagging (L-SVM) 76.40 81.30 88.90 54.10 2019 [64]
Bagging (RBF-SVM) 68.10 73.40 86.70 33.30 2019 [64]
Majority Voting(MV) 76.20 72.10 88.70 53.20 2019 [64]
Bagging (Poly-SVM) 76.20 81.10 88.20 53.90 2019 [64]
Stacking(NSGA-II) 83.80 85.90 96.10 79.10 2019 [64]
Bagging (REP) 75.80 83.20 83.70 61.10 2019 [64]
Random Subspace Method (RSM) 75.30 82.70 86.90 54.20 2019 [64]
Random Forest 76.30 83.90 84.60 60.30 2019 [64]
Stacking 68.80 66.50 74.20 58.70 2019 [64]
Dia-Net 90.87 - 95.74 83.15 2020 [100]
soft-voting 80.90 79.08 70.69 78.40 2021 [67]
AdaBoost 74.98 75.32 68.25 60.13 2021 [67]
Bagging 70.11 74.89 68.75 - 2021 [67]
GradientBoost 71.89 75.32 48.75 - 2021 [67]
XGBoost 69.01 75.75 67.50 - 2021 [67]
CatBoost 74.56 75.32 65.00 - 2021 [67]
Proposed Approach 90.91 88.38 79.81 95.82 This study

CKD
Extra Tree Classifier 94.00 - 96.00 91.00 2021 [72]
Random Tree 91.43 96.10 94.00 - 2021 [72]
Proposed Approach 96.05 95.86 96.13 95.26 This study

SHD

Stacking ensemble 92.34 92.28 93.49 91.07 2022 [9]
Random Forest 90.21 89.97 95.12 84.82 2022 [9]
Extra Tree Classifier 90.93 90.45 94.30 86.60 2022 [9]
XGB 91.91 91.79 94.30 89.28 2022 [9]
Adaboost 83.40 83.14 88.61 77.67 2022 [9]
GBM 84.25 83.96 90.24 77.67 2022 [9]
Proposed Approach 97.56 97.22 94.56 99.88 This study

WBC

RF 96.00 96.00 95.00 96.00 2021 [101]
Xgboost 97.00 97.00 95.00 99.00 2021 [101]
Gradient Boosting 93.00 98.00 93.00 94.00 2021 [101]
Proposed Approach 98.08 97.50 95.29 99.76 This study

Table 4.11: Comparison between SOTA ensemble models and proposed model on various
datasets
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Dataset Classifier Accuracy (%) AUC (%) Sensitivity (%) Precision (%) F1 Score (%) Ref.

PID

SM rule miner 89.87 - 94.60 - - 2017 [22]
RST-BAT miner 85.33 - 92.6 - - 2018 [24]
LR 75.1 - 71.0 68.90 69.90 2021 [102]
DT 66.80 - 71.1 63.0 75.1 2021 [102]
MLP 77.20 - 52.50 68.2 59.00 2021 [62]
NB 72.69 - 66.10 75.90 70.70 2021 [103]
SVM 74.10 74.08 71.20 75.40 73.20 2021 [103]
KNN 71.92 66.31 61.25 58.33 59.75 2021 [67]
DT 85.98 85.11 - 82.12 90.32 2022 [104]
DCN 86.29 91.20 84.2 81.90 - 2022 [105]
C4.5 75.10 79.26 82.90 71.60 76.80 2022 [103]
Proposed Approach 90.91 88.38 79.81 95.82 85.51 This study

CKD
LR 71.71 78.40 98.60 56.48 71.80 2021 [72]
KNN 64.39 66.50 96.00 59.01 73.09 2021 [72]
Proposed Approach 96.05 95.86 96.13 95.26 96.53 This study

SHD

LR 84.07 90.10 83.58 85.06 83.80 2023 [66]
LDA 84.07 90.60 83.58 85.04 83.80 2023 [66]
SVM 83.70 90.30 83.08 84.92 83.40 2023 [66]
MLP 84.25 84.00 89.43 82.08 85.60 2022 [9]
KNN 80.85 80.54 86.99 78.67 82.62 2022 [9]
CART 84.25 84.12 86.99 83.59 85.25 2022 [9]
Proposed Approach 97.56 97.22 94.56 96.30 96.89 This study

WBC

LR 95.62 - 95.84 97.19 96.50 2021 [106]
SVM 97.18 - 95.84 97.18 96.50 2021 [106]
KNN 92.98 - 91.67 97.06 94.29 2021 [106]
DT 91.00 - 91.00 91.00 91.00 2021 [106]
DT 91.00 89.00 88.00 91.00 91.00 2021 [101]
GNB 94.00 94.00 93.00 94.00 94.00 2021 [101]
SVM Linear 97.00 97.00 \textbf{98.00} 97.00 97.00 2021 [101]
SVM RBF 97.00 96.00 93.00 96.00 96.00 2021 [101]
Proposed Approach 98.08 97.50 95.29 96.30 96.89 This study

Table 4.12: Comparison between SOTA models and proposed model on various datasets
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4.2.5 Comparative analysis

Our proposed model is compared with SOTA ensemble methods. These results are shown

in Table 4.11 and the best results are highlighted. It is observed from table results that

the proposed method achieved the best compared to SOTA models in terms of various

performance measures such as accuracy, AUC, sensitivity, specificity, F measure and G

measure. Finally, the proposed model is compared with SOTA non-ensemble models.

These experimental results are shown in Table 4.12 and the best results are highlighted.

From the Table the results it is inferred that the proposed model outperformed comparing

with non-ensemble models.

4.3 Summary

The study aimed to enhance the performance of disease classification models through a

multi-step approach. Initially, various individual classifiers were evaluated across different

disease datasets. To improve model performance, bootstrapped aggregation was applied to

the training set. Furthermore, individual classifier performance was assessed concerning

data bags, which led to the adoption of an ensemble approach using a GA. A novel fitness

function was introduced to compute the fitness of ensemble candidates. Four classifiers,

namely LR, KNN, SVM, and DT, were utilized with optimized hyperparameters deter-

mined by grid search.

In the experimentation phase, a 5-FCV technique was employed on the training dataset,

with GA employed as an evolutionary search to identify optimal ensemble configurations

comprising 20 learners trained on bootstrapped data. The fitness of each chromosome in

GA was evaluated using the validation set within the 5-FCV framework. Model perfor-

mance was assessed using metrics such as Precision, Recall, Accuracy, AUC, Specificity,
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and G-measure.

The robustness of the proposed model was assessed across various disease datasets,

including PID, CKD, SHD, and WBC. The performance of the proposed model was com-

pared against state-of-the-art ensemble and non-ensemble models. Impressively, the pro-

posed model exhibited superior Precision, Accuracy, and Specificity, suggesting its effec-

tiveness in disease diagnosis. The model’s performance was consistently promising across

all tested datasets, suggesting its generalizability. In conclusion, the study recommends

the adoption of the proposed model for disease diagnosis due to its notable performance

improvements over existing approaches.
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Chapter 5

Enhancing Disease Diagnosis Accuracy

and Diversity through BA-TLBO

Optimized Ensemble Learning

This chapter proposed a Bagging Approach with a Teaching-Learning-Based Optimiza-

tion (BA-TLBO) for ensemble optimization in disease diagnosis. While ensemble learning

shows promising results for disease diagnosis, the task of optimizing ensemble configu-

ration to achieve a delicate balance between accuracy and diversity remains challenging.

The diversity-based ensemble framework proposed in chapter 4 marks an important step

towards addressing this challenge by selecting diverse base classifiers. However, the en-

semble optimization process involves further intricacies.

To extend the groundwork laid in chapter 4, we introduced the Bagging Approach

with Teaching-Learning-Based Optimization (BA-TLBO) it aims to optimize the ensemble

configuration by incorporating a novel fitness function that considers both mean accuracy

and mean diversity. By doing so, we not only address the challenge of base classifier
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selection as in chapter 4 but also introduce a mechanism for evaluating the performance of

different ensemble combinations.

Furthermore, the BA-TLBO algorithm introduces dynamic weight updation and bag

size adjustment over iterations. This dynamic adaptation helps strike a balance between

exploration and exploitation, allowing the optimization process to navigate the search

space more effectively. The iterative process of selecting and replacing bags in the en-

semble extends the concept of diversification introduced in 4 to achieve a more balanced

and optimized ensemble configuration.

Chapter Organization: Section 5.1 provides the Preliminaries. The proposed method-

ology is presented in Section 5.2. The experimental results are provided in Section 5.3. A

summary of the work is described in Section 5.4.

5.1 Preliminaries

In this section, the overview of the preliminaries, including various diversity measures,

such as Hamming distance, Entropy, Bhattacharya Distance, and Q -statistics which are

relevant to the proposed method is discussed.

5.1.1 Various diversity measures used in the evaluation of proposed

model

Classifier combination is thought to be complicated by the diversity of the classifiers on a

team. Nevertheless, because there isn’t a widely agreed-upon formal definition, assessing

diversity is not simple [108]. Kuncheva et al. [109] described the diversity measures and

relation with accuracy [110], [111]. Hamming distance is used to measure the dissimilar-

ity between two binary strings and is commonly employed in ensemble methods to assess

94



CHAPTER 5. ENHANCING DISEASE DIAGNOSIS ACCURACY AND DIVERSITY THROUGH BA-TLBO OPTIMIZED ENSEMBLE LEARNING Section 5.1

diversity among the model’s predictions. Entropy quantifies the uncertainty in a probabil-

ity distribution and is used as a diversity measure in ensembles to evaluate the variability

of the model’s predictions. Bhattacharyya distance calculates the similarity between two

probability distributions and is utilized in ensemble learning to gauge the agreement or

complementary among individual models. The Q statistic measures the level of agreement

among the model’s predictions in an ensemble, helping to select diverse models and im-

prove the ensemble’s performance by reducing overfitting and capturing a wider range of

patterns.

5.1.1.1 Hamming distance

The Hamming distance is a valuable diversity measure widely used in ensemble methods

to assess the variability and complementary among individual models [112]. In the con-

text of ensembles, where multiple models are combined to make predictions, diversity is

a crucial factor that affects the overall performance. The Hamming distance is calculated

by comparing the predictions of each model in the ensemble for a given set of instances.

It quantifies the number of positions at which two predictions differ, resulting in a single

numerical value that represents the dissimilarity between the two models. High Hamming

distance indicates significant diversity, suggesting that the models in the ensemble are

making distinct predictions, enhancing the ensemble’s ability to capture a wide range of

patterns and making it more robust and accurate. By promoting diverse model behaviors,

the Hamming distance contributes to reducing overfitting and increasing the generalization

power of the ensemble, ultimately leading to improved performance and reliable predic-

tions across different scenarios.

Let M1 and M2 be two classifiers with predictions y1 and y2, respectively. The Ham-

ming distance between the two classifiers can be computed as follows:
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Hamming distance =
1

N

N∑
i=1

δ(y1[i],y2[i]) (5.1)

where N is the number of instances in the dataset, and δ(y1[i],y2[i]) is the Kronecker

delta function, which equals 1 if y1[i] is not equal to y2[i] (i.e., there is a difference in

predictions for instance i) and 0 otherwise.

5.1.1.2 Entropy

Entropy is a popular diversity measure used in ensemble learning to quantify the uncer-

tainty or variability among the predictions of individual models [113]. In the context of

ensembles, which combine multiple models to make collective predictions, entropy serves

as an information-theoretic metric that reflects the unpredictability of the ensemble’s out-

put. It is calculated by considering the probability distribution of class labels across the

ensemble’s predictions [114]. A higher entropy value indicates greater diversity, imply-

ing that the individual models within the ensemble have dissimilar behaviors, covering a

broader range of patterns and making the ensemble more robust. Conversely, lower en-

tropy suggests more agreement among the models, potentially leading to overfitting or re-

duced generalization. By utilizing entropy as a diversity measure, ensemble algorithms can

dynamically adjust the combination of models to strike a balance between exploration and

exploitation, effectively enhancing the ensemble’s performance and adaptability to various

scenarios. Moreover, entropy-based diversity measures provide insights into the ensem-

ble’s collective decision-making process, aiding model selection and refinement strategies,

and further reinforcing the reliability of the ensemble’s predictions in real-world applica-

tions [115].

Let M1,M2, . . . ,MN be N classifiers in an ensemble, and let pij be the probability of

classifier Mi predicting class j for a given instance. The entropy of the ensemble can be
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calculated as:

Entropy = −
N∑
i=1

C∑
j=1

pij log pij (5.2)

where C is the number of classes. The entropy measures the uncertainty or infor-

mation content in the ensemble’s predictions. A higher entropy value indicates greater

diversity among the classifiers, suggesting that they have different preferences for classi-

fying instances. This diversity can lead to improved ensemble performance by capturing a

wider range of patterns and reducing overfitting. On the other hand, a lower entropy value

indicates more agreement among the classifiers, potentially leading to reduced ensemble

performance. Therefore, entropy serves as a valuable metric for assessing the diversity

and adaptability of ensembles in machine-learning applications.

5.1.1.3 Bhattacharya Distance

The Bhattacharyya distance [116] is a meaningful diversity measure frequently employed

in ensemble learning to assess the dissimilarity and complementary among individual

models within an ensemble. In the context of ensembles, where multiple models are com-

bined to make collective predictions, the Bhattacharyya distance [117] is calculated by

measuring the similarity of the probability distributions of class labels across the predic-

tions of each model. A lower Bhattacharyya distance implies greater diversity, suggest-

ing that the individual models in the ensemble have distinct decision boundaries and are

specialized in different regions of the feature space. This diversity enhances the ensem-

ble’s ability to capture a wide array of patterns, leading to improved generalization and

robustness. By promoting diverse model behaviors, the Bhattacharyya distance [118] con-

tributes to minimizing the risk of overfitting and mitigating the impact of individual model

weaknesses, thus increasing the ensemble’s overall performance. Its incorporation into
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ensemble approaches allows for effective model selection and combination, enabling the

ensemble to produce more accurate and reliable predictions across diverse and challenging

real-world scenarios.

Let M1,M2, . . . ,MN be N classifiers in an ensemble, and let pij and qij be the prob-

ability of classifier Mi and Mj predicting class j for a given instance, respectively. The

Bhattacharyya distance between classifiers Mi and Mj can be calculated as:

Bhattacharyya distance(Mi,Mj) = − log

(
C∑

j=1

√
pijqij

)
(5.3)

where C is the number of classes. The Bhattacharyya distance measures the similar-

ity of the probability distributions of class labels across the predictions of two individual

classifiers. A lower Bhattacharyya distance value indicates greater diversity between the

classifiers, meaning they have distinct decision boundaries and offer complementary infor-

mation. In ensemble learning, by selecting classifiers with significant Bhattacharyya dis-

tance values, we can form a diverse and well-performing ensemble that captures a broader

range of patterns and achieves improved generalization compared to using similar models.

5.1.1.4 Q Statistic

The Q statistic [119], also known as the Q index or the inter-rater agreement index, is

a valuable diversity measure widely utilized in ensemble learning to assess the level of

agreement or disagreement among the predictions of individual models within an ensem-

ble [120] [121]. In the context of ensembles, where multiple models are combined to

make collective predictions, the Q statistic is calculated by comparing the predicted class

labels of each model for a given set of instances. It represents the proportion of instances

for which all models in the ensemble agree on the same prediction. A higher Q statistic

indicates greater diversity, implying that the individual models within the ensemble have
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different perspectives and decision boundaries, leading to a diverse range of predictions.

This diversity enhances the ensemble’s capacity to capture complex patterns and reduces

the risk of overfitting. On the other hand, a lower Q statistic suggests more agreement

among the models, which might lead to decreased ensemble diversity and potential per-

formance degradation. By incorporating the Q statistic as a diversity measure, ensemble

methods can effectively balance model consensus and variability, resulting in improved

ensemble performance and robust predictions across various real-world scenarios. Fur-

thermore, the Q statistic aids in identifying and selecting complementary models, enhanc-

ing the ensemble’s predictive accuracy and overall reliability. The Q statistic is a diversity

measure that quantifies the level of agreement among the predictions of individual models

within an ensemble. It is defined as the proportion of instances for which all models in the

ensemble agree on the same prediction. The equation for calculating the Q statistic for an

ensemble of N classifiers is as follows:

Q =
1

N

N∑
i=1

1

L

L∑
j=1

δ(yi[j],mode(y1[j],y2[j], . . . ,yN [j])) (5.4)

where L is the number of instances in the dataset, yi[j] represents the predicted class

label of classifier Mi for instance j, and δ(a, b) is the Kronecker delta function, which

equals 1 if a is equal to b, and 0 otherwise. The mode function returns the most frequent

class label among the predictions of all classifiers for a given instance. The Q statistic

ranges from 0 to 1, with 0 indicating no agreement and 1 indicating complete agreement

among the models’ predictions. A higher Q value suggests greater diversity in the en-

semble, reflecting that the individual models have different decision boundaries and offer

complementary information, which can lead to improved ensemble performance and gen-

eralization.
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5.2 Proposed Methodology

proposed approach using BA-TLBO Optimization is inspired by traditional TLBO pro-

posed by Rao et al. [51]. In this study, TLBO integrates an bagging approach and opti-

mizes the bags for effective disease diagnosis and also strikes the balance between accu-

racy and diversity. As per best knowledge, it is the first time using the TLBO-based bag

optimization and ensemble integration for effective disease diagnosis and it balances the

accuracy and diversity simultaneously. BA-TLBO is used for bagging optimization and

the proposed model is shown in Fig. 5.1. In previous studies, most bag’s content and

size are static and it creates a fixed number of bags with fixed instances, often randomly

sampled from the training data. This lack of adaptability means that the ensemble’s com-

position remains constant regardless of changes in the data distribution or the performance

of individual models. In dynamic bagging, bags are updated iteratively, allowing the en-

semble to adapt to changes and potentially improve over time. In static bagging, certain

instances in the dataset may be left out or underrepresented in the bags, resulting in the

underutilization of potentially informative data points. Dynamic bagging can actively in-

corporate different instances into bags during the optimization process, ensuring a more

comprehensive coverage of the data. Static bagging might lead to an ensemble composed

of similar or redundant base models. This limits the diversity of predictions and might

result in sub-optimal performance. Dynamic bagging, on the other hand, can optimize the

composition of the ensemble by replacing under performing models with more effective

ones. The above-mentioned reasons introduced a dynamic bagging approach and also it

introduced adaptivity.

The proposed approach followed the steps

1. Data Splitting: The input dataset is divided into training and test sets using a stan-

dard approach. The training set will be used for ensemble optimization, while the
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Figure 5.1: Proposed Model
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test set will be used for evaluating the performance of the optimized ensemble.

2. Ensemble Construction: The proposed methodology aims to construct an opti-

mized ensemble of classifiers by leveraging the BA-TLBO algorithm that facilitates

the selection and updating of bags of classifiers to create an ensemble with high ac-

curacy and diversity.

3. Bag Initialization: The optimization process starts by initializing a set of bags ran-

domly. Each bag represents a potential ensemble configuration, and the number of

bags is predefined in our approach using 5 bags and 10 bags. The size of each bag is

randomly determined within a specified range, ensuring variability in the ensemble.

4. BA-TLBO Optimization: The TLBO algorithm is employed to iteratively optimize

the ensemble by selecting and updating bags of classifiers. The optimization process

consists of the following steps:

(a) Training and Evaluation: For each bag in the optimization process, the clas-

sifiers within the bag are trained using the instances in the training set. The

performance of each bag is evaluated using 5-fold cross-validation with classi-

fiers such as LR, SVM, DT, and KNN using accuracy and diversity metrics.

(b) Disagreement Calculation: The predicted labels of the classifiers within each

bag are used to calculate the disagreement matrix. This matrix represents the

diversity among the classifiers in a bag and is typically based on a distance

metric such as Hamming distance.

(c) Fitness Calculation: The fitness of each bag is computed by considering both

accuracy and diversity. A higher fitness value indicates a better-performing

bag. The fitness is typically calculated with the fitness function which is dy-

namic weights of accuracy and diversity.

102



CHAPTER 5. ENHANCING DISEASE DIAGNOSIS ACCURACY AND DIVERSITY THROUGH BA-TLBO OPTIMIZED ENSEMBLE LEARNING Section 5.2

(d) Replacement of the Worst Bag: The bag with the worst performance (lowest

fitness) is identified, and it is replaced with a new bag randomly sampled from

the dataset. The size of the new bag is randomly determined within the speci-

fied range. This replacement operation promotes exploration and convergence

towards better ensemble configurations.

(e) Iterative Optimization: The above steps are repeated for a predefined number

of iterations, allowing the TLBO algorithm to explore and refine the ensemble

configuration. The iterative optimization process aims to identify bags with

high accuracy and diversity, leading to an optimized ensemble.

5. Optimal Ensemble: After the TLBO optimization process, the algorithm returns

the set of optimized bags, representing the final ensemble configuration. Each bag

contains the indices of instances in the training set corresponding to the selected

classifiers for that bag.

6. Ensemble Predictions: The optimized bags are ensemble configurations used for

prediction on test data. The predictions of each classifier for the test dataset are

stored in an ensemble prediction matrix.

7. Majority Voting: The ensemble predictions are obtained by performing majority

voting. For each instance in the test dataset, the class label with the most votes

among the classifiers in the ensemble is selected as the final prediction.

8. Evaluation Metrics: The performance of the optimized ensemble is evaluated using

various evaluation metrics, including accuracy, area under the ROC curve (AUC),

precision, recall (sensitivity), and F1-measure. These metrics provide a comprehen-

sive assessment of the ensemble’s predictive capabilities
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The proposed methodology leverages the BA-TLBO algorithm to construct an opti-

mized ensemble of classifiers with high accuracy and diversity. By combining the strengths

of individual classifiers, the ensemble can improve prediction performance and capture

different aspects of the underlying data distribution. The experimental results and eval-

uation metrics demonstrate the effectiveness of the proposed approach in constructing a

high-performing ensemble.

The term "bags" in the context of our methodology may have been inadvertently con-

flated with the concept of ensemble classifiers, leading to ambiguity. To clarify, in the con-

text of our algorithm, "bags" refer specifically to collections of randomly selected samples

from the dataset, rather than ensembles of classifiers. Each bag represents a subset of the

training data, and the optimization process aims to iteratively select and update these bags

to construct an optimized ensemble of classifiers. The provided algorithms, particularly

Algorithm 5, outline the process of TLBO optimization for bagging classifiers, where the

focus is on selecting and updating bags of data samples rather than classifiers themselves.

This optimization process involves iteratively evaluating the fitness of each bag based on

its accuracy and diversity, as calculated using Algorithm 6. Subsequently, in the teaching

and learning phases of the TLBO algorithm (as depicted in Algorithm 5), bags are replaced

or updated based on their performance relative to others in the ensemble. To further em-

phasize this distinction and clarify any confusion, we will ensure that the terminology used

throughout the methodology accurately reflects the role of bags as collections of data sam-

ples rather than classifiers themselves.
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5.2.1 Novel Fitness Function

A novel fitness function is applied in our proposed technique. It is given in Eq. 5.5

F = α ∗Bma + β ∗Bmd (5.5)

Where,

Bma represents the mean accuracies of bag Bmd represents the mean diversities of bag

computed pairwise dissimilarity measure using the hamming distance between pairwise

classifiers. α and β controlling parameters of accuracies and diversity. Here α + β =1. F

is the fitness function it will compute based on mean accuracies and diversities of bags.

The fitness function calculates the overall fitness value F by summing the mean ac-

curacies and diversities with suitable α and β. By maximizing this fitness function, aim

to maximize the accuracy and diversity of every individual bag. The fitness function is

designed to evaluate the performance of bags and identify the best and worst bags in every

iteration of TLBO. To calculate the ensemble score, majority voting is applied to the di-

verse classifiers within each data bag. The goal is to maximize the fitness value, indicating

optimal bag selection.

5.2.2 Dynamic weight updation

Initially, accuracy weight and diversity weights are assigned to 0.5 to give equal preference

in computing fitness over the iterations the weights will update dynamically. The dynamic

weight update aims to find a balance between accuracy and diversity that is conducive to

the optimal performance of the ensemble in disease diagnosis. The procedure of dynamic

weight updation is explained in Algorithm 7.

When accuracy is deemed more important the algorithm increases the weight assigned
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Input : Classifiers,num_of_bags, min_bag_size, max_bag_size
Output: optimal_bags: Optimized bags (ensembles)

Initialization: Generate random bags B with size N and bag size within the
range [min_bag_size,max_bag_size];

TLBO Optimization: for iteration in range(T ) do
Evaluate the fitness of each bag in B using algorithm 2;
Sort bags in ascending order of fitness;

Teaching Phase: for each bag b in B do
if b is the worst bag then

Generate a new bag b′ by randomly sampling a subset from the dataset
with size within the range [min_bag_size,max_bag_size];

Replace the worst bag b with the new bag b′;
end

end

Learning Phase: for each bag b in B do
if b is not the best bag then

Generate a new bag b′ by randomly sampling a subset from the dataset
with size within the range [min_bag_size,max_bag_size];

Replace b with b′ with a certain probability;
end

end
end

Return the optimal bags: return B;
Algorithm 5: TLBO Optimization for Bagging Classifiers
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Input : accuracies, diversities,accuracy_weight, diversity_weight
Output: fitness

Function CalculateFitness(accuracies, diversities, accuracy_weight,
diversity_weight):

/* Initialize variables */
fitness← 0;
n← length of accuracies;
mean_accuracy ← 1

n

∑n
i=1 accuracies[i];

mean_diversity ← 1
n

∑n
i=1 diversities[i];

/* Calculate fitness value */
fitness←
accuracy_weight×mean_accuracy+diversity_weight×mean_diversity;
weight optimization with Algorithm 3

return fitness
Algorithm 6: Fitness Function Computation

Data: List of accuracies, list of diversities, best bag index , worst bag index,
accuracy weight , diversity weight diversity_weight

if accuracies[worst_bag_index] < accuracies[best_bag_index] then
accuracy_weight← accuracy_weight− 0.1;

end
else

accuracy_weight← accuracy_weight+ 0.1;
end
if diversities[worst_bag_index] < diversities[best_bag_index] then

diversity_weight← diversity_weight− 0.1;
end
else

diversity_weight← diversity_weight+ 0.1;
end
return accuracy_weight, diversity_weight;

Algorithm 7: Dynamic Weight Optimization

107



CHAPTER 5. ENHANCING DISEASE DIAGNOSIS ACCURACY AND DIVERSITY THROUGH BA-TLBO OPTIMIZED ENSEMBLE LEARNING Section 5.3

to accuracy and reduces the weight assigned to diversity. This adjustment indicates that

the ensemble is currently focusing on improving its accuracy to more precise predictions.

When diversity is considered more important the algorithm increases the weight assigned

to diversity and decreases the weight assigned to accuracy. This suggests that the ensem-

ble is prioritizing a wider range of predictions to ensure robustness and coverage across

various scenarios. Overall, these dynamic weight updates help the ensemble algorithm

adapt its optimization strategy based on the relative importance of accuracy and diversity

at different points during the optimization process. This adaptability enables the ensemble

to strike an effective balance between accurate predictions and diverse perspectives, ulti-

mately leading to improved performance in disease diagnosis.

To evaluate the effectiveness of the proposed model several p measures of performance

were selected, including G-measure, precision, recall, and F-measure, accuracy, sensitiv-

ity, and specificity. These measures are discussed already in chapter 3.

5.2.3 Replacement of worst bag

Replace the worst bag (with index worst_bag_index) with a new bag generated by

random sampling from the dataset. if optimization with respect to the best bag we need

to replace the best bag (with index best_bag_index) with a new bag generated by

random sampling from the dataset.

Classifier Search space
LR ’C’: [0.1,0.01, 1.0, 10,100]
KNN ’n_neighbors’: [3, 5, 7,9,11,13]
SVM ’C’: [0.1, 1, 10,50,100], ’kernel’: [’linear’, ’rbf’]
DT ’max_depth’: [None, 5, 10]

Table 5.1: Search Space for hyperparameter optimization on PID, SHD, WBC, and SLC
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Dataset LR KNN SVM DT

PID C=0.01 #neighbours = 11
C =50

gamma =0.001
kernel = RBF

SC = Gini
Depth =6

SLC C=0.001 #neighbours = 13
C =100

gamma =0.001
kernel = RBF

SC = Gini
Depth =5

SHD C=0.01 #neighbours = 5
C =100

gamma =0.001
kernel = RBF

SC = Gini
Depth =5

WBC C=0.001 #neighbours = 11
C =50

gamma =0.01
kernel = RBF

SC = Gini
Depth =6

C Regularization Parameter gamma RBF kernel coefficient
SC Splitting Criteria Depth Maximum depth of DT

RBF Radial Basis Function

Table 5.2: Hyper parameters of various classifiers over various datasets

5.3 Experimental Results

The proposed experimental setup uses Python and the Anaconda distribution to implement

the BA-TLBO algorithm for ensemble classifier selection. The Anaconda environment

provides a convenient platform for managing the required packages and dependencies.

The result analysis for the PID, SHD, SLC, and WBC datasets will depend on the

specific implementation and experimental setup. However, provide a general outline of

how you can analyze the results obtained from these datasets.

5.3.1 Results analysis

After preprocessing the disease datasets were split into training and testing sets with 80%

and 20% respectively. 80% training dataset is used for training the proposed model and

20% is unseen data only used for final testing of the proposed model.

To further improve the accuracy and maintain the diversity, proposed BA-TLBO-based
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optimization in ensemble learning. The proposed approach is inspired by traditional TLBO

and adopted in the ensemble optimization process and base models hyperparameters are

optimized with a grid search approach using search space shown in Table 5.1. The fine

tuned hyperparameters using grid search are shown in Table 5.2. The experimental pro-

cess involves data splitting into training and test sets, defining the classifiers and their

hyperparameter grids, implementing the BA-TLBO optimization to obtain the optimized

bags, making ensemble predictions using the optimized bags, and evaluating the ensem-

ble’s performance using various metrics such as accuracy, AUC, precision, recall, and

F1-measure. This study used four benchmark disease datasets such as PID, SLC, SHD,

and WBC datasets.

Further individual classifiers performance is evaluated using 5-FCV these results are

shown in Table 5.3. All these classifiers are evaluated in terms of Accuracy, AUC, Sensi-

tivity, and Specificity and best results are highlighted.

The proposed model is described in Algorithm 5. In the proposed approach training

data is split into bags (5 bags and 10 bags) and used dynamic bag size within the range

of (S/2, S) where S is the training data size. The advantages of using dynamic bag size

are enhanced diversity, adaptability, overfitting mitigation, exploration and exploitation

balance, efficient resource utilization, and reduced sensitivity to hyperparameters. Once

splitting into varied-size bags all those bags underwent for BA-TLBO optimization process

in the ensemble. All the bags will optimize iteratively up to a certain number of iterations

or termination criteria reached. The accuracy of the bag is computed using Five-Fold

cross-validation (5-FCV). Once the classifiers predict the labels then pairwise diversity as

the hamming distance is used in the proposed model. Mean accuracy and diversity are

used in the optimization process. Fitness evaluation is described in Algorithm 6. Fitness

evaluation is performed using Eq. 5.5.

The weights such as Accuracy weight and Diversity weights initialized at 0.5 each to
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Dataset Classifier Accuracy AUC Sensitivity Specificity

PID

LR 0.778 0.736 0.597 0.876
KNN 0.811 0.793 0.735 0.852
SVM 0.837 0.814 0.738 0.890
DT 0.877 0.867 0.832 0.902

WBC

LR 0.945 0.976 0.962 0.991
KNN 0.964 0.958 0.934 0.983
SVM 0.973 0.970 0.957 0.983
DT 0.917 0.916 0.910 0.921

SHD

LR 0.863 0.8567 0.800 0.880
KNN 0.833 0.8300 0.0800 0.8750
SVM 0.8370 0.8325 0.791 0.8375
DT 0.7370 0.7292 0.658 0.883

SLC

LR 0.928 0.783 0.977 0.589
KNN 0.906 0.759 0.955 0.564
SVM 0.919 0.800 0.959 0.641
DT 0.873 0.730 0.922 0.538

Table 5.3: 5-FCV Performance of various classifiers

give equal preference to both accuracy and diversity. During the optimization process,

the weights update dynamically based on the accuracy and diversity of the previous it-

erations. If accuracy is higher than diversity then accuracy weight increased 10% and

diversity decreased 10% and vice versa. Dynamic weight optimization is described in

Algorithm 7 These dynamic weights can help the model to balance between exploration

and exploitation. In every iteration the fitness of all bags is computed based on fitness

function after that all fitness values are sorted and identify low fitness value index will

represent a poor-performing bag in the ensemble. The proposed study optimized the worst

bag. The idea behind optimizing the worst bag in each iteration is to focus on improving

the weakest component of the ensemble. By continually updating the worst-performing

bag, the algorithm aims to gradually enhance the overall ensemble’s performance by ad-

dressing its weakest. The advantage is a progressive improvement, diversity maintenance,
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adaptation, enhanced robustness, and exploration-exploitation balance. For a better un-

derstanding purpose analyzed the results with best bag optimization and observed the best

bag optimization such as rapid convergence, limited exploration, over fitting risk, lack of

adaptability, dependence on initial conditions, and neglecting weaker components.

In the proposed approach diversity measure is used as Hamming distance in ensemble

learning, quantifies the dissimilarity or differences between the predictions of individual

base learners (classifiers) within an ensemble. It measures how often two classifiers pro-

duce different predictions for the same instance.

The proposed model is evaluated on four benchmark disease datasets such as PID,

SHD, WBC, and SLC. A wide variety of experiments was performed using the proposed

model with 5 bags and 10 bags as well as worst bag optimization (Proposed) and best

bag optimization for analysis purposes. In addition to Hamming distance as a diversity

measure analyzed other diversity measures in the literature such as Entropy, Bhattacharya

distance, and Q statistics diversity measures are computed using Eq. 5.1, Eq. 5.2, Eq. 5.3

and Eq. 5.4. And also computed accuracy, diversity, fitness, accuracy weight, and diversity

weight all these optimized results over the 100 iterations. The results of these diversity

measures are tabulated every 20 iterations and observed BA-TLBO convergence. And also

observed with these results how BA-TLBO reached global optimal over the iterations and

also observed worst bag and best bag optimizations with 5 bags and 10 bags and with all

diversity measures. Results are shown in Table 5.4 from these tables, BA-TLBO reaches

global optimal with worst bag and gradual convergence and it focuses on weak component

and other side best bag quick convergence and most of the cases overfitting. So from these

analyses worst bag optimization is more robust and gradual increase of fitness over the

iterations. similar way analyzed PID, SHD, WBC, and SLC disease datasets.

Finally, test results are shown in Table 5.5. The test results showed effective perfor-

mance with the hamming distance measure compared to other diversity measures. In most

112



CHAPTER 5. ENHANCING DISEASE DIAGNOSIS ACCURACY AND DIVERSITY THROUGH BA-TLBO OPTIMIZED ENSEMBLE LEARNING Section 5.3

cases, bag size 5 is optimal performance than bag size 10. The table observed that the

proposed model with the worst bag optimization gave a superior performance on PID with

10 bags and hamming distance as diversity measure giving the highest accuracy as 0.945,

SHD with 5 bags giving the highest accuracy of 0.944, WBC with 5 bags giving highest

accuracy is 0.982 and finally, SLC with 5 bags giving highest accuracy which is 0.951. In

the proposed approach with dynamic bag size proposed model gives adaptive results and

robustness. Dynamic weight optimization improves significantly and also balances the ac-

curacy and diversity with optimized ensemble configuration for better predictions on test

data. And also analyzed best bag optimization performance with quick convergence and

overfitting conditions arise due to focusing more on the best fitness bag and ignoring the

weak bag.

Iter OB NB DM Accuracy Diversity Fitness AW DW

PID

Worst bag

5 Hamming 0.974 0.178 0.975 0.763 0.237

10 Hamming 0.973 0.113 0.971 0.763 0.237

5 Entropy 0.927 0.924 6.171 0.991 0.009

10 Entropy 0.982 0.935 6.19 0.909 0.091

5 Bhattacharya 0.921 0.935 0.936 0.775 0.225

10 Bhattacharya 0.976 0.124 0.983 0.993 0.007

5 Q Statistics 0.921 0.965 0.930 0.851 0.149

10 Q Statistics 0.915 0.924 0.942 0.915 0.085

Best bag

5 Hamming 0.983 0.092 0.971 0.919 0.081

10 Hamming 0.969 0.163 0.971 0.882 0.118

5 Entropy 0.943 0.923 0.930 0.992 0.008

10 Entropy 0.935 0.933 0.912 0.786 0.214

5 Bhattacharya 0.976 0.124 0.983 0.835 0.165
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Iter OB NB DM Accuracy Diversity Fitness AW DW

10 Bhattacharya 0.976 0.086 0.977 0.934 0.066

5 Q Statistics 0.910 0.925 0.930 0.763 0.237

10 Q Statistics 0.916 0.925 0.910 0.991 0.009

SHD

Worst bag

5 Hamming 0.962 0.129 0.978 0.999 0.019

10 Hamming 0.974 0.077 0.981 0.850 0.150

5 Entropy 0.925 0.898 0.854 0.850 0.150

10 Entropy 0.993 0.896 0.865 0.192 0.999

5 Bhattacharya 0.968 0.234 0.967 0.999 0.001

10 Bhattacharya 0.912 0.924 0.982 0.999 0.019

5 Q Statistics 0.925 0.935 0.940 0.875 0.125

10 Q Statistics 0.930 0.925 0.925 0.935 0.065

Best bag

5 Hamming 0.924 0.140 0.970 0.999 0.001

10 Hamming 0.911 0.310 0.983 0.999 0.019

5 Entropy 0.921 0.942 6.85 0.925 0.075

10 Entropy 0.930 0.945 6.54 0.935 0.065

5 Bhattacharya 0.974 0.045 0.969 0.999 0.001

10 Bhattacharya 0.914 0.965 0.990 0.999 0.001

5 Q Statistics 0.930 0.924 0.910 0.785 0.215

10 Q Statistics 0.965 0.930 0.852 0.925 0.075

WBC

Worst bag

5 Hamming 0.994 0.028 0.995 0.999 0.019

10 Hamming 0.996 0.02 0.993 0.999 0.019

5 Entropy 0.924 0.789 0.899 0.992 0.008

10 Entropy 0.910 0.856 0.878 0.994 0.924

5 Bhattacharya 0.965 0.511 0.999 0.999 0.021
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Iter OB NB DM Accuracy Diversity Fitness AW DW

10 Bhattacharya 0.997 0.032 0.905 0.917 0.082

5 Q Statistics 0.965 0.689 0.992 0.865 0.135

10 Q Statistics 0.935 0.622 0.994 0.999 0.019

Best bag

5 Hamming 0.995 0.020 0.995 0.999 0.019

10 Hamming 0.996 0.033 0.994 0.999 0.019

5 Entropy 0.991 0.896 0.865 0.984 0.016

10 Entropy 0.982 0.864 0.587 0.925 0.075

5 Bhattacharya 0.981 0.921 0.897 0.900 0.100

10 Bhattacharya 0.997 0.023 0.904 0.917 0.082

5 Q Statistics 0.954 0.072 0.910 0.918 0.192

10 Q Statistics 0.979 0.070 0.904 0.019 0.999

Table 5.4: Performance evaluation of proposed model on PID, SHD and WBC here
AW = Accuracy_Weight and DW = Diversity_Weight

DS OB #bags DM Acc AUC Sen Spe Pre FM GM

PID

Worst

5 Ham 0.935 0.902 0.854 0.949 0.903 0.878 0.900

10 Ham 0.945 0.904 0.909 0.898 0.833 0.869 0.904

5 Ent 0.909 0.884 0.800 0.969 0.936 0.862 0.880

10 Ent 0.909 0.905 0.890 0.919 0.859 0.875 0.904

5 BC 0.905 0.894 0.904 0.902 0.899 0.906 0.884

10 BC 0.922 0.919 0.909 0.929 0.877 0.892 0.919

5 QStat 0.844 0.907 0.899 0.865 0.910 0.924 0.912

10 QStat 0.890 0.912 0.875 0.924 0.911 0.824 0.916

Best

5 Ham 0.922 0.919 0.909 0.929 0.877 0.892 0.919

10 Ham 0.902 0.895 0.872 0.919 0.857 0.864 0.895
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DS OB #bags DM Acc AUC Sen Spe Pre FM GM

5 Ent 0.902 0.911 0.872 0.949 0.905 0.888 0.910

10 Ent 0.915 0.920 0.865 0.931 0.875 0.872 0.931

5 BC 0.910 0.919 0.909 0.929 0.877 0.892 0.919

10 BC 0.922 0.919 0.909 0.929 0.877 0.892 0.919

5 QStat 0.845 0.824 0.798 0.855 0.780 0.867 0.874

10 QStat 0.831 0.804 0.709 0.898 0.795 0.750 0.798

SHD

Worst

5 Ham 0.944 0.928 0.857 0.965 0.920 0.923 0.925

10 Ham 0.934 0.883 0.857 0.909 0.857 0.857 0.882

5 Ent 0.925 0.922 0.904 0.939 0.904 0.904 0.921

10 Ent 0.922 0.910 0.915 0.936 0.915 0.921 0.910

5 BC 0.924 0.910 0.856 0.925 0.945 0.911 0.935

10 BC 0.925 0.904 0.809 0.965 0.930 0.894 0.899

5 QStat 0.910 0.924 0.895 0.832 0.836 0.844 0.895

10 QStat 0.913 0.922 0.845 0.899 0.866 0.898 0.911

Best

5 Ham 0.925 0.904 0.809 0.924 0.931 0.894 0.899

10 Ham 0.981 0.984 0.916 0.969 0.954 0.976 0.984

5 Ent 0.898 0.863 0.877 0.910 0.920 0.924 0.856

10 Ent 0.895 0.894 0.888 0.912 0.916 0.924 0.934

5 BC 0.925 0.904 0.809 0.934 0.934 0.894 0.899

10 BC 0.925 0.904 0.809 0.924 0.935 0.894 0.899

5 QStat 0.854 0.836 0.865 0.841 0.865 0.921 0.932

10 QStat 0.865 0.878 0.869 0.876 0.892 0.910 0.924

WBC

Worst

5 Ham 0.982 0.976 0.953 0.965 0.920 0.976 0.976

10 Ham 0.973 0.969 0.953 0.985 0.976 0.964 0.969

5 Ent 0.952 0.923 0.850 0.910 0.920 0.928 0.914

10 Ent 0.928 0.917 0.865 0.928 0.931 0.962 0.938
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DS OB #bags DM Acc AUC Sen Spe Pre FM GM

5 BC 0.975 0.960 0.950 0.972 0.926 0.945 0.945

10 BC 0.938 0.915 0.878 0.923 0.965 0.975 0.928

5 QStat 0.981 0.927 0.899 0.875 0.867 0.927 0.914

10 QStat 0.982 0.976 0.953 0.921 0.928 0.976 0.976

Best

5 Ham 0.973 0.965 0.930 0.965 0.972 0.964 0.974

10 Ham 0.973 0.974 0.976 0.971 0.954 0.965 0.974

5 Ent 0.971 0.938 0.965 0.987 0.932 0.974 0.911

10 Ent 0.935 0.924 0.974 0.921 0.974 0.938 0.961

5 BC 0.938 0.941 0.927 0.945 0.928 0.945 0.930

10 BC 0.964 0.958 0.930 0.985 0.975 0.952 0.957

5 QStat 0.927 0.911 0.878 0.859 0.899 0.845 0.865

10 QStat 0.941 0.969 0.953 0.985 0.976 0.964 0.969

SLC

Worst

5 Ham 0.887 0.775 0.925 0.625 0.943 0.934 0.760

10 Ham 0.951 0.8125 0.927 0.625 0.947 0.972 0.790

5 Ent 0.930 0.921 0.865 0.911 0.928 0.937 0.931

10 Ent 0.921 0.927 0.899 0.879 0.874 0.921 0.930

5 BC 0.890 0.668 0.962 0.375 0.912 0.936 0.600

10 BC 0.901 0.668 0.962 0.375 0.9122 0.936 0.600

5 QStat 0.912 0.914 0.899 0.916 0.911 0.856 0.896

10 QStat 0.915 0.918 0.875 0.896 0.845 0.875 0.895

Best

5 Ham 0.925 0.740 0.981 0.50 0.929 0.954 0.700

10 Ham 0.903 0.731 0.962 0.50 0.928 0.945 0.693

5 Ent 0.925 0.963 0.978 0.862 0.874 0.896 0.910

10 Ent 0.912 0.930 0.865 0.912 0.925 0.930 0.926

5 BC 0.912 0.668 0.962 0.375 0.912 0.936 0.921

10 BC 0.920 0.668 0.962 0.375 0.912 0.936 0.921
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DS OB #bags DM Acc AUC Sen Spe Pre FM GM

5 QStat 0.915 0.937 0.936 0.937 0.918 0.945 0.910

10 QStat 0.921 0.935 0.897 0.924 0.935 0.927 0.910

Table 5.5: Performance evaluation of proposed model on PID, SHD, WBC, and SLC

5.3.2 Comparative Analysis

Results were analyzed with various diversity measures such as Entropy, Bhattacharya dis-

tance, and Q-statistics in addition to hamming distance. In the majority of the cases, ham-

ming distance diversity measures give better fitness than other diversity measures such

as Entropy, Bhattacharya distance, and q statistics. Hamming distance-based diversity

measures give superior performance with 5 bags and 10 bags. Analyzed worst bag per-

formance and best bag optimization performance on all the disease datasets and results

are plotted and shown in Fig 5.2 and highlighted the convergence point. From this figure

plotted analysis of four disease datasets with worst bag and best bag optimizations in eight

subplots from Fig. a-h. Subplot results are Fig a and Fig b analyzed the worst bag and best

bag fitness with bag sizes 5 and 10 respectively on the WBC dataset and observed that the

worst bag gradually converged over the iterations at 0.995 as the fitness value. Fig c and

Fig d analyzed the worst bag and best bag fitness with bag sizes 5 and 10 respectively on

the SHD dataset and observed that the worst bag converged optimal value with bag size

10 compared to bag size 5. Fig e and Fig f analyzed the worst bag and best bag fitness

with bag sizes 5 and 10 respectively on the PID dataset and observed that the worst bag

converged optimal value with bag size 10 compared to bag size 5 and also observed that

worst bag convergence at 100th iteration and with 0.984. Fig g and Fig h analyzed the

worst bag and best bag fitness with bag sizes 5 and 10 respectively on the SLC dataset

and observed that the worst bag converged optimal value with bag size 10 compared to
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bag size 5 and also observed that the worst bag convergence at 0.974. Overall most of

the datasets with bag size 10 convergence take more iterations compared to bag size 5.

Worst bag optimization with bag size 10 convergence is optimally compared to bag size 5.

And also analyzed the accuracies of various diversity measures such as hamming, entropy,

Bhattacharya distance, and Q statistics and visualized with bar plots results are shown in

Fig 5.3.

In the observation majority of the cases, the Hamming distance diversity measure out-

performs compared to other diversity measures. All these results are plotted for four dis-

ease datasets of the worst and best bag compared with 5 bags and 10 bags with eight plots.

All the plots are shown from Fig. 5.3 a-h and explained Figures a and b are the worst

bag and best bag accuracies over various diversity measures such as Hamming, Entropy,

Bhattacharya, and Q statistics of bag sizes 5 and 10 on the PID dataset from this Proposed

model with Hamming distance diversity measure with 10 bags giving superior perfor-

mance over 5 and also in other measures bag size 10 giving better performance compare

to 5 bags. Figures c and d are the worst bag and best bag accuracies over various diversity

measures such as Hamming, Entropy, Bhattacharya, and Q statistics of bag sizes 5 and 10

on the SHD dataset from this Proposed model with Hamming distance diversity measure

with 5 bags giving superior performance over 10 and also in other measures bag size 5 and

10 giving an almost equal performance with worst bag and with best bag size 10 is giving

a superior performance with hamming distance with other measures performing almost

equal performance. Figures e and f are the worst bags and best bag accuracies over vari-

ous diversity measures such as Hamming, Entropy, Bhattacharya, and Q statistics of bag

sizes 5 and 10 on the WBC dataset from this Proposed model with Hamming distance and

Q statistics diversity measure with the worst bag with a size 5 bags giving superior perfor-

mance over 10 and also in with best bag hamming measure both 5 and 10 bag size giving

equal performance and remaining measures Entropy with bag size 5 and Bhattacharya
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with bag size 10 giving better performance. Figures g and h are the worst bags and best

bag accuracies over various diversity measures such as Hamming, Entropy, Bhattacharya,

and Q statistics of bag sizes 5 and 10 on the WBC dataset from this Proposed model with

worst bag Hamming distance with bag size 5 is poor performance compared to bag size

10. Next entropy gives a better performance with 5 bags and with the best bag hamming

and entropy giving equal performance with bag size 5.

Finally compared the proposed model performance with SOTA ensemble and non-

ensemble models in terms of accuracy, AUC, Sensitivity, Specificity, Precision, F mea-

sure, and G measure. The proposed model with worst bag optimization with 10 bags and

5 bags of hamming distance gives effective performance compared to the other diversity

measures. The proposed model is compared with SOTA ensemble models and results are

shown in Table 5.6 and the best results are highlighted. From this PID with 5 bags sensi-

tivity is Superior compared to SOTA and the proposed model with 10 bags. And proposed

model with 10 bags gives the highest accuracy and AUC compared to SOTA models and

the proposed model with 5 bags. Similarly, the SHD dataset gives giving highest Accu-

racy, AUC, and Specificity with 5 bags compared to SOTA and the proposed model with

10 bags. On the WBC dataset proposed model with 5 bags gives the highest Accuracy,

AUC, and Sensitivity, and with 10 bags highest sensitivity. The SLC dataset compared

with 5 bags gives the highest performance in terms of Accuracy, AUC, Sensitivity, and

specificity. The proposed model is compared with SOTA non-ensemble models and re-

sults are shown in Table 5.7 and the best results are highlighted. From this table observed

that PID with 5 bags highest precision and with 10 bags highest Accuracy and AUC. Simi-

larly, SHD with 5 bags achieved the highest Accuracy, AUC, Precision, and F1. WBC with

5 bags achieved the Highest Accuracy, AUC, and F1 with 10 bags the highest precision.

Finally observed SLC data with 10 bags achieved the highest Accuracy, AUC, Sensitivity,

Precision, and F1. All the best results are highlighted.
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Figure 5.2: Convergence of worst bag vs best bag
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Figure 5.3: Accuracy comparison of the worst bag and best bag with various diversity
measures
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• Interpretation: Compare the calculated p-value with the chosen significance level.

If the p-value is less than the significance level, reject the null hypothesis and con-

clude that there is a significant difference in performance between the methods. If

the p-value is greater than the significance level, fail to reject the null hypothesis and

conclude that there is no significant difference.

• Repeat for Each Dataset: Repeat the paired t-test analysis for each dataset, consid-

ering the specific performance metric chosen in step 2.

• Results of T-test: Summarized the results of the paired T-test for each dataset. Re-

port the calculated t-values, degrees of freedom, p-values, and the decision regarding

the null hypothesis. Provided a conclusion on whether the optimized ensemble ex-

hibits a statistically significant difference in performance compared to the individual

classifiers or baseline ensemble methods for each dataset.

Utilized statistical software or Python libraries (such as SciPy) to conduct the paired

T-test. These libraries provide functions to calculate the t-value, degrees of freedom, and

p-value. Calculated the t-value and p-value using the paired t-test function or module

in the statistical software or Python libraries. The t-value represents the magnitude of

the difference between the means of the paired samples, while the p-value indicates the

probability of obtaining the observed difference if the null hypothesis is true.

By conducting paired T-tests, you can assess the statistical significance of the perfor-

mance differences between the optimized ensemble and the other methods on the four

datasets. This analysis provides valuable insights into the effectiveness of the proposed

approach and its superiority.
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5.3.3 Discussion

In the proposed study major focus is the impact of accuracy and diversity and the ad-

vantage of balancing the accuracy and diversity over the iterations and dynamic weight

optimization in bagging optimization. As per our best knowledge, nobody attempted the

optimization of bags using a TLBO-based approach and balances the accuracy and diver-

sity with novel fitness functions. Our study used dynamic bag size over the optimization

process with this every iteration bag contents were updated adaptive with diverse solutions

and improved worst bag fitness gradually and also balanced the accuracy and diversity for

an effective ensemble. With BA-TLBO results being diverse and reaching global optimal

and also with optimal bags test performance of the proposed model is so effective in the

disease diagnosis.

To evaluate the robustness of the proposed model the performance with four bench-

mark disease datasets such as PID, SHD, WBC, and SLC. The proposed model has im-

proved the performance of class-imbalanced datasets as well.

This study evaluated various diversity measures such as hamming distance, Bhat-

tacharya distance, entropy, and Q statistics. In the majority of cases, a proposed model

with hamming distance as a diversity measure gives superior performance with 10 bags

and promising results with 5 bags. And also evaluated the proposed model with worst bag

optimization over the iterations analyzed the performance of best bag optimization and

also analyzed the convergence nature of best and worst bags with respect to bag sizes 5

and 10. The worst bag converges gradually but the best bag converges quickly and mostly

abruptly. With the best bag optimization, there is the possibility of overfitting risk and the

possibility of less diverse solutions so we considered the worst bag optimization over the

iterations giving the best diverse solutions in the ensemble. And also analyzed the worst

and best bag accuracies with respect to four diversity measures in the analysis proposed
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model with hamming distance as diversity measure with bag size is 10 is giving superior

performance over other diversity measures.

Overall proposed model of worst bag optimization with hamming distance diversity

measure with 10 bags is giving superior performance and with 5 bags giving promising

results.

Dataset Classifier/Model Accuracy AUC Sensitivity Specificity Yr. Ref.

PID

Stacking(LR) 0.761 0.838 0.871 0.559 2019 [64]
Majority Voting(MV) 0.762 0.721 0.887 0.532 2019 [64]
Bagging (Poly-SVM) 0.762 0.811 0.882 0.539 2019 [64]
Stacking(NSGA-II) 0.838 0.859 0.961 0.791 2019 [64]
Bagging (REP) 0.758 0.832 0.837 0.611 2019 [64]
Random Subspace Method (RSM) 0.753 0.827 0.869 0.542 2019 [64]
Random Forest 0.763 0.839 0.846 0.603 2019 [64]
Stacking 0.688 0.665 0.742 0.587 2019 [64]
Dia-Net 0.908 - 0.957 0.831 2020 [100]
soft-voting 0.809 0.790 0.706 0.784 2021 [67]
AdaBoost 0.749 0.753 0.682 0.601 2021 [67]
Bagging 0.701 0.748 0.687 - 2021 [67]
GradientBoost 0.718 0.753 0.487 - 2021 [67]
XGBoost 0.69 0.75 0.675 - 2021 [67]
CatBoost 0.745 0.753 0.65 - 2021 [67]
Adaboost (DS) 0.750 0.810 0.849 0.566 2019 [64]
Bagging (4.5) 0.754 0.825 0.855 0.565 2019 [64]
Adaboost (C4.5) 0.725 0.78 0.804 0.578 2019 [64]
Bagging (L-SVM) 0.764 0.813 0.889 0.541 2019 [64]
Bagging (RBF-SVM) 0.681 0.734 0.867 0.333 2019 [64]
Proposed Approach (Hamming (5 bags) 0.935 0.902 0.854 0.949 This study
Proposed Approach (Hamming 10 bags) 0.945 0.904 0.909 0.898 This study

SHD

Stacking ensemble 0.923 0.922 0.934 0.910 2022 [9]
Adaboost 0.834 0.831 0.886 0.776 2022 [9]
GBM 0.842 0.839 0.902 0.776 2022 [9]
Random Forest 0.902 0.899 0.951 0.848 2022 [9]
Extra Tree Classifier 0.909 0.904 0.943 0.866 2022 [9]
XGB 0.919 0.917 0.943 0.892 2022 [9]
Proposed Approach (Hamming 5 bags) 0.944 0.928 0.857 0.965 This study
Proposed Approach (Hamming 10 bags) 0.934 0.883 0.857 0.909 This study

WBC

RF 0.960 0.960 0.950 0.960 2021 [101]
Gradient Boosting 0.930 0.980 0.930 0.940 2021 [101]
Xgboost 0.970 0.970 0.950 0.990 2021 [101]
Proposed Approach (Hamming 5 bags) 0.982 0.976 0.953 0.965 This study
Proposed Approach (Hamming 10 bags) 0.973 0.969 0.953 0.985 This study

SLC
Proposed Approach (SLC) (Hamming 5 bags) 0.887 0.715 0.925 0.625 This study
Proposed Approach (SLC) ( Hamming 10 bags) 0.951 0.812 0.927 0.898 This study

Table 5.6: Proposed model comparison between SOTA ensemble models on PID, SHD,
WBC, and SLC datasets
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Dataset Classifier/Model Accuracy AUC Sensitivity Precision F1 Yr. Ref.

PID

SM rule miner 0.898 - 0.946 - - 2017 [22]
MLP 0.772 - 0.525 0.682 0.590 2021 [62]
NB 0.726 - 0.661 0.759 0.707 2021 [103]
SVM 0.741 0.740 0.712 0.754 0.732 2021 [103]
KNN 0.719 0.663 0.612 0.583 0.597 2021 [67]
DT 0.859 0.851 - 0.822 0.903 2022 [104]
DCN 0.862 0.912 0.842 0.819 - 2022 [105]
C4.5 0.751 0.792 0.829 0.716 0.768 2022 [103]
RST-BAT miner 0.853 - 0.926 - - 2018 [24]
LR 0.751 - 0.710 0.689 0.699 2021 [102]
DT 0.668 - 0.711 0.630 0.751 2021 [102]
Proposed Approach (Hamming (5 bags) 0.935 0.902 0.854 0.903 0.878 This study
Proposed Approach (Hamming 10 bags) 0.945 0.904 0.909 0.833 0.869 This study
KNN 0.643 0.665 0.960 0.590 0.730 2021 [72]

SHD

LR 0.840 0.901 0.835 0.850 0.838 2023 [66]
MLP 0.842 0.840 0.894 0.820 0.856 2022 [9]
KNN 0.808 0.805 0.869 0.786 0.826 2022 [9]
CART 0.842 0.841 0.869 0.835 0.852 2022 [9]
LDA 0.840 0.906 0.835 0.850 0.838 2023 [66]
SVM 0.837 0.903 0.838 0.849 0.834 2023 [66]
Proposed Approach (Hamming 5 bags) 0.944 0.928 0.857 0.920 0.923 This study
Proposed Approach (Hamming 10 bags) 0.934 0.883 0.857 0.879 0.892 This study

WBC

LR 0.956 - 0.958 0.971 0.965 2021 [106]
DT 0.910 - 0.910 0.910 0.910 2021 [106]
DT 0.910 0.890 0.890 0.910 0.910 2021 [101]
GNB 0.940 0.940 0.930 0.940 0.940 2021 [101]
SVM Linear 0.970 0.970 0.980 0.970 0.970 2021 [101]
SVM RBF 0.970 0.960 0.930 0.960 0.960 2021 [101]
SVM 0.971 - 0.958 0.971 0.965 2021 [106]
KNN 0.928 - 0.9167 0.970 0.942 2021 [106]
Proposed Approach (Hamming 5 bags) 0.982 0.976 0.953 0.920 0.976 This study
Proposed Approach (Hamming 10 bags) 0.973 0.969 0.953 0.976 0.964 This study

SLC
Proposed Approach (Hamming 5 bags) 0.887 0.715 0.925 0.943 0.934 This study
Proposed Approach (Hamming 10 bags) 0.951 0.912 0.927 0.947 0.972 This study

Table 5.7: Proposed model comparison with the non-ensemble model on PID, SHD,
WBC, and SLC datasets
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5.4 Summary

This chapter introduces a novel ensemble construction approach called BA-TLBO, which

shows promising outcomes when applied to the PID, SHD, SLC, and WBC datasets.

Through experimental analysis, it becomes evident that the optimized ensemble generated

by BA-TLBO surpasses the performance of individual classifiers as well as other baseline

ensemble methods. The research introduces an innovative fitness function that effectively

balances accuracy and diversity, contributing to strong exploration and exploitation capa-

bilities within the BA-TLBO optimization process.

A distinctive feature of the proposed model is its dynamic adjustment of accuracy and

diversity weights, rendering it adaptable and robust. Diverse diversity measures such as

Hamming, Bhattacharya, Entropy, and Q statistics were examined, among which the Ham-

ming distance-based measure displayed superior performance. Additionally, the study in-

vestigated worst bag optimization in comparison to best bag optimization. The findings

indicated that while the best bag approach might lead to overfitting risk and insufficient

emphasis on weaker components, the worst bag optimization approach offers a more ef-

fective solution.

Overall, the BA-TLBO ensemble approach proves its potential to enhance predictive

performance and produce reliable predictions across diverse datasets. Future research di-

rections could encompass the inclusion of more classifiers, refining the optimization algo-

rithm, or exploring alternative optimization techniques to further elevate ensemble perfor-

mance.
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Chapter 6

Nested Genetic Algorithm-based

Classifier Selection and Placement in

Multi-Level Ensemble Framework for

Effective Disease Diagnosis

In the previous chapter 5 emphasizes the optimization of ensemble configurations for dis-

ease diagnosis, it’s important to consider the broader context of ensemble design chal-

lenges. Effective disease diagnosis remains a formidable hurdle due to the complexities

inherent in disease mechanisms. Despite the advancements achieved through ensemble-

based ML models, selecting and arranging classifiers within multi-level ensembles presents

intricate challenges.

Building on the dynamic ensemble optimization framework introduced in chapter 5,

proposed a dynamic three-level ensemble framework in chapter 6. This framework takes

the optimization process a step further by addressing the intricate process of selecting
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classifiers and placing them within the ensemble framework. The introduction of a nested

GA and a novel fitness function enhances the ensemble design process by optimizing both

classifier selection and positioning.

This extension from optimizing ensemble configurations in chapter 5 to addressing

the complexities of classifier selection and placement in chapter 6 underscores the evo-

lution of research. It showcases a comprehensive approach to ensemble-based disease

diagnosis, progressing from addressing the nuances of classifier diversity and configura-

tion optimization to resolving challenges in the strategic design of multi-level ensemble

frameworks. By sequentially building upon each objective, your thesis delivers a cohesive

narrative that encapsulates the journey from conceptualization to the development of ad-

vanced solutions for accurate and effective disease diagnosis. The work from chapter 5 is

extended by introducing a multilevel ensemble framework optimal placement of classifiers

and their selection using nested GA.

Chapter Organization: Section 6.1 provides the Preliminaries. The proposed method-

ology is presented in section 6.2. The experimental results and analysis are provided in

section 6.3. A summary of the chapter is described in section 6.4.

6.1 Preliminaries

This section offers an overview of the background knowledge of various classifiers used

in the proposed approach.

6.1.1 K-Nearest Neighbor (KNN)

According to the [122] and [123] kNN algorithm computes each training sample and each

test sample distance in the dataset and returns the different k values that are closest and
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computational complexity is O(nd) where n and d are the sizes of the training dataset

and the dimensionality. According to the [92] KNN is a non-parametric algorithm and it

categorizes data points that are unlabeled.

6.1.2 Decision Tree (DT)

In accordance [124], learning a DT from a set of instances. If every instance belongs to the

same class, the tree is represented by a leaf with the name of that class. If not, a test that

is chosen distinct results for at least two of the cases; the instances are then divided based

on this result. The root of the tree is a node that identifies the test, and the proper subtree

for each outcome is obtained by repeating the algorithm on the subset of cases with that

outcome.

6.1.3 Logistic Regression (LR)

According to the [125] LR is the simplest algorithm for classification. The sigmoid func-

tion converts a predicted real value into a between 0 and 1 of probability values ’1’.

Q(z) =
1

1 + e−z
(6.1)

Where Q(z) is the estimation of the probability function as shown in Eq. 6.1.

6.1.4 Random Forest (RF)

According to the [126] Ensemble classifier family of Random Forest, It creates many trees

and applies the technique of bootstrap of training data to each tree. Each tree in the forest
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receives procedure input prior to casting a vote for a particular class in the classification

process. Finally, the class with the most votes is selected by the RF.

6.1.5 Ridge Classifier (RC)

According to the [127] Ridge regression method, converts the label data to [-1, 1], and

using the regression method solves the problem. The class with the highest prediction

value is chosen as the target class. For multiclass data, multiple output regression is used

and a demonstration of the ridge classifier is given in sklearn documentation.

6.1.6 Gradient Boosting Classifier (GBC)

According to the [128] GBC is a significant benefit in a variety of practical applications.

They are highly adaptable such as learning about different loss functions. The gradient

boosting methods, with a strong emphasis on modeling machine learning aspects.

6.1.7 Extreme Gradient Boosting Classifier (XGB)

According to the [129] A popular and powerful machine learning technique is tree boost-

ing. Data scientists use the tree-boosting system XGBoost to solve cutting-edge machine-

learning problems.

6.1.8 Gaussian Naive-Bayes (GNB)

According to the [130] the GNB classifier uses the Bayes theorem using the probabilistic

classifier. Using supervised learning and used in challenging real-world scenarios this

classifier can be effectively learned.
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6.1.9 Support Vector Machine (SVM)

Vapnik developed SVM for the classification of kernel-based machine learning models.

According to the [131] [132] SVM is a popular ML-based supervised learning algorithm.

[90] proposed the mathematical formula for maximizing the margin is shown in Eq. 6.2,

which signifies the bias, input vector, and weight vector. In Eq. 6.3 shown linear kernel

function where c is a constant.

k(y, yi) =
exp− ||y − yi||2

2σ2

γ =
1

2σ2

(6.2)

The equation of soft margin is followed as Eq. 6.3

Minimize = J(w, d, η) =
1

2
∥w∥2 + cΣN

i=1ηi (6.3)

subject to xi(w
Tyi + d) ≥ 1− ηi

Where, ||y − yi|| (L2-norm) of the Euclidean distance between two points y and yi σ is

variance,

6.1.10 Stochastic Gradient Descent (SGDC)

According to [133] [134] [135] [136] [137] Fitting linear regressors and classifiers to con-

vex loss functions, such as (linear) SVM and Logistic Regression, is done with SGDC.
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6.1.11 Bagging Classifier (BC)

Leo Breiman proposed the bagging classifier as an ensemble technique in 1994 [31] [138]

[124].

6.2 Proposed Methodology

In this work, a dynamic three-level ensemble framework is proposed. The proposed model

has

Figure 6.1: Proposed nested GA model
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1. A three-level dynamic ensemble framework is proposed.

(a) level-1 has three base classifiers C0, C1, C2.

(b) level-2 has two classifiers C4, C5 along with level-1 (ES1) output.

(c) level-3 has two classifiers C6, C7 along with level-2 (ES2) output.

(d) final output is given by ensemble score of level-3 (ES3).

2. A total of the best seven classifiers and their positions are chosen from eleven classi-

fiers using a nested GA. Outer GA selects the best classifiers out of eleven classifiers

and inner GA optimizes the positions of classifiers in the ensemble framework.

3. A new fitness function is proposed to find the best solution.

In this, a three-level dynamic ensemble framework is proposed and it is shown in Fig.

6.1. According to the figure at each level, three classifiers are ensembled. So in total seven

classifiers are required. A nested GA is employed for classifier selection and its placement

in a three-level ensemble framework. Outer GA is used to find the best seven classifiers

and inner GA finds the best positions for selected classifiers.

The proposed model selects 7 classifiers out of 11 but there are
(
11
7

)
7! ways. It is

challenging to search for the 7 best classifiers and their positions that maximize the three-

level ensemble framework. In this, a nested GA is used for this challenging task. GA is a

very popular meta-heuristic evolutionary algorithm and it will better search over traditional

optimization algorithms.

6.2.1 Multi Level Ensemble Framework

Classifier positions in the proposed framework are shown in Fig. 6.2. According to the

figure C0, C1, C2 classifiers are in level-1 and C3 and C4 are in Level-2 and C5 and C6 are
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Figure 6.2: Three-level ensemble model

in level-3. Finally, level-3 gives the final outcome (Ensemble 3). Where Ensemble 1 and

Ensemble 2 are the ensemble outputs of level-1 and level-2 respectively.

6.2.2 Encoding Mechanism

The main objective of the proposed model is to select seven classifiers from the pool of

eleven classifiers for a three-level ensemble framework. To solve this optimization prob-

lem firstly eleven classifiers are encoded in binary chromosome format. Initially, a random

population is generated and each of these individuals in the population is evaluated for fit-

ness based on the classifier mapping and its positions. The mapping function converts

eleven size chromosomes into seven size chromosomes. These selected classifiers are

passed to the inner GA to compute their best positions in a three-level ensemble frame-

work.

The inner GA takes selected classifiers as input and generates the initial population.
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Figure 6.3: Schematic diagram of nested GA

Figure 6.4: Classifier position optimization
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These populations are encoded in the form of positional chromosomes, where ’x’ entry

at the mth position in the chromosome represents the classifier is at xth number must be

present at the mth position in the three-level ensemble framework. Both inner GA and

outer GA select parents based on the best fitness score. These selected parents undergo

crossover and mutation operations to generate next-generation offspring. This process

is repeated up to a maximum number of iterations. At each iteration best classifiers are

selected by outer GA and their positions are optimized using inner GA.

Data: a population of candidate solutions
Result: maximum fitness value according to classifier positions
ps: population size;
cp: crossover probability;
mp: mutation probability;
ng: generations for stopping;
Function_GA(ps, cp, mp, ng)
while stop condition is false do

Evaluate the fitness using Eq. 6.4
Parents selection;
Crossover probability pc perform crossover;
Mutation probability pm perform mutation;
Generation of the new solution with crossover probability and mutation
probability;

If new fitness is better than the previous, then accept the new solutions;
Select the current best for new generations;
Update new solution;

end
return the best fitness value-based classifier positions;

Algorithm 9: Classifier position optimization of 3-level ensemble framework using
GA

6.2.2.1 GA-based Model Selection

In the multi-level ensemble approach, the proposed approach encoded the chromosome as

a string of positions and the size is eleven. For example, the chromosome is [1, 1, 1, 0,
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0, 1, 1, 0, 0, 1, 1] this chromosome is mapped to classifiers. This classifier list is passed

to inner GA to get their best positions that maximize the framework performance. The

same thing is shown in Fig. 6.3. In Fig, 6.4 classifier positions before applying inner GA

and after applying inner GA are shown. Here classifier positions are used as 0,1,2...6 and

optimized classifier position using GA. The same is shown in Algorithm 8.

6.2.3 Novel Fitness Function

The proposed GA for optimizing classifier selection and its position uses a novel fitness

function for best results. It is computed using a three-level ensemble framework and it

computes the fitness of all the chromosomes in the population. The proposed novel fitness

function is given in Eq. 6.4.

Fitness score =

 ES(C1, C2, C3), if i = 1

ES(C2i, Si−1, C2i+1), if i > 1

(6.4)

where, Si is level i Ensemble Score (ES), here i = 2,3....

ES is the ensemble score obtained using majority voting.

6.3 Experimental Results

6.3.1 Experimental setup

The Intel(R) Core(TM) i3-6006U CPU @ 2.00GHz processor and 4GB RAM was used in

this experiment. The proposed methodology’s modules and results analysis are carried out

using Python and the Anaconda distribution 23.1.0 version used in the experiment.
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Dataset LR GBC RF RC SVC XGB KNN

PID
C = 0.01

Solver = liblinear

0.1
Depth = 9

Estimators = 1000

SC = Gini
Depth =6 Alpha = 0.01

C =100
gamma =0.01
kernel = RBF

Depth = 17
metric = minkowski

neighbors = 5
weights = uniform

WBC
C = 0.01

Solver = liblinear

0.01
Depth = 7

Estimators = 100

SC = Gini
Depth =8 Alpha = 0.01

C =100
gamma =0.1
kernel = RBF

Depth = 11
metric = minkowski

neighbors = 9
weights = uniform

CKD
C = 0.01

Solver = liblinear

0.1
Depth = 9

Estimators = 100

SC = Gini
Depth =8 Alpha = 0.1

C =100
gamma =0.1
kernel = RBF

Depth = 16
metric = minkowski

neighbors = 4
weights = uniform

SHD
C = 0.01

Solver = liblinear

0.1
Depth = 9

Estimators = 500

SC = Gini
Depth =8 Alpha = 0.01

C =100
gamma =0.01
kernel = RBF

Depth = 12
metric = minkowski

neighbors = 7
weights = uniform

Table 6.1: Hyper parameters of various classifiers over various datasets

Figure 6.5: Cross over vs fitness score
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Figure 6.6: Mutation vs. fitness score

Parameter Value
Maximum no of iterations 50
Crossover probability (cp) 0.80
Population size (ps) 10
Mutation probability (mp) 0.02

Table 6.2: Fine-tuned parameters used in GA for classifier placement

Dataset LR GNB KNN DT SVM SGDC RC RF BC GBC XGB
PID 0.776 0.760 0.808 0.839 0.845 0.743 0.781 0.865 0.872 0.887 0.871

WBC 0.885 0.882 0.894 0.921 0.923 0.921 0.900 0.920 0.924 0.921 0.931
CKD 0.900 0.905 0.732 0.921 0.625 0.890 0.934 0.987 0.975 0.947 0.985
SHD 0.852 0.858 0.854 0.864 0.875 0.884 0.875 0.872 0.912 0.921 0.925

Table 6.3: Accuracy score of classifiers on various disease data sets using 10-FCV
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Figure 6.7: Population size Vs fitness score

6.3.2 Results

The preprocessed datasets are split into 80:20 ratio to constitute train and test datasets

respectively. Our proposed model considered 11 classifiers: RF, XGB, LR, RC, GBC,

SVC, GNB, KNN, DT, SGDC, and BC. Grid search is used to fine-tune these classifiers

for improved performance and displays these hyperparameter values and it is shown in

Table. 6.1.

Next, nested GA is used to identify the best classifiers and their positions in the three-

level ensemble framework. The outer GA selects the best classifiers and the inner GA

produces the best positions for selected classifiers. GA-based hyperparameters will impact

the solution. Hence, fine-tuning GA parameters will significantly improve the solution of

the model-tuned values tabulated in Table. 6.2. In Table. 6.3 accuracy of the 11 classifiers
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Figure 6.8: AUC of the proposed model with the base model on PID data

Figure 6.9: Comparison of Level-1,Level-2 with Proposed model on PID
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Figure 6.10: AUC of the proposed model with the base models on WBC

Figure 6.11: Comparison of level1, level 2 with proposed model on WBC
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Dataset Ensemble Level Accuracy AUC Precision Recall Specificity F1 score G Measure

PID
1 0.895 0.935 0.717 0.532 0.90 0.611 0.692
2 0.906 0.934 0.835 0.903 0.915 0.868 0.909
3 0.927 0.940 0.875 0.903 0.938 0.888 0.920

WBC
1 0.960 0.995 0.975 0.928 0.980 0.950 0.952
2 0.960 0.997 0.975 0.930 0.985 0.952 0.957
3 0.964 0.997 1.00 0.906 1.00 0.951 0.952

CKD
1 0.972 0.935 1.0 0.980 1.0 0.989 0.989
2 0.937 0.934 0.900 1.0 0.833 0.952 0.912
3 0.987 0.940 1.0 0.980 1.0 0.989 0.989

SHD
1 0.890 0.921 0.914 0.931 0.874 0.912 0.922
2 0.900 0.910 0.921 0.930 0.894 0.900 0.910
3 0.920 0.931 0.925 0.944 0.965 0.918 0.911

Table 6.4: Level-wise performance comparison of three level ensemble

Dataset Accuracy(% ) AUC(% ) Precision(%) Recall(%) F1 Score(% ) G-Measure(%)
PID 0.927 0.945 0.875 0.903 0.888 0.920

WBC 0.964 0.997 1.00 0.906 0.951 0.952
CKD 0.987 0.940 1.00 0.980 0.989 0.989
SHD 0.920 0.931 0.925 0.944 0.918 0.911

Table 6.5: Proposed model performance

on four disease datasets is evaluated before applying our proposed model. These results

are shown in the table and the best results are highlighted. From the table, it is observed

that most of the classifier’s performance is good in one or two disease datasets and the

majority of the dataset’s classifiers’ performance is poor Also ensemble-based classifiers

RF, BC, GBC, and XGB performance is competitive in a few datasets.

To fine-tune crossover, mutation, and population size a sensitivity analysis is carried

out and these plots are shown in Fig. 6.5, Fig. 6.6, Fig. 6.7.

Nested GA is used to determine the top seven classifiers and their positions among

eleven classifiers. The proposed model’s performance on various datasets is demonstrated

in Table 6.4. The accuracy, AUC, precision, recall, specificity, F1 score, and G-measure

of these outcomes are compared.
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Dataset Classifiers Accuracy (% ) AUC (% ) Sensitivity (% ) Specificity (% ) Yr. Ref.

PID

Stacking(LR) 76.10 83.80 87.10 55.90 2019 [64]
Majority Voting(MV) 76.20 72.10 88.70 53.20 2019 [64]
Bagging (Poly-SVM) 76.20 81.10 88.20 53.90 2019 [64]
Random Forest 76.30 83.90 84.60 60.30 2019 [64]
Stacking 68.80 66.50 74.20 58.70 2019 [64]
soft-voting 80.90 79.00 70.60 78.40 2021 [67]
Bagging 70.10 74.80 68.70 - 2021 [67]
Bagging (4.5) 75.40 82.50 85.50 56.50 2019 [64]
Adaboost (C4.5) 72.50 78.00 80.40 57.80 2019 [64]
Bagging (L-SVM) 76.40 81.30 88.90 54.10 2019 [64]
Bagging (RBF-SVM) 68.10 73.40 86.70 33.30 2019 [64]
Modified Bee 90.70 91.60 80.90 96.90 2022 [139]
Ensemble selection 70.30 68.80 61.90 75.70 2016 [140]
Proposed Approach 94.90 94.00 90.30 93.80 This study

CKD
Extra Tree Classifier 94.00 - 96.00 91.00 2021 [72]
Random Tree 91.43 96.10 94.00 - 2021 [72]
Proposed Approach 98.70 94.00 98.00 97.00 This study

SHD

Stacking ensemble 92.30 92.20 93.40 91.00 2022 [9]
Adaboost 83.40 83.10 88.60 77.60 2022 [9]
Random Forest 90.20 89.90 95.10 84.80 2022 [9]
Extra Tree Classifier 90.90 90.40 94.30 86.60 2022 [9]
Modified Bee 95.60 99.50 95.30 95.70 2022 [139]
Ensemble selection 89.40 89.70 90.60 88.70 2016 [140]
Proposed Approach 95.10 93.10 94.40 96.50 This study

WBC

RF 96.00 96.00 95.00 96.00 2021 [101]
Gradient Boosting 93.00 98.00 93.00 94.00 2021 [101]
Xgboost 97.00 97.00 95.00 97.00 2021 [101]
Ensemble based BA 95.60 99.50 95.30 95.70 2022 [139]
Ensemble selection 89.40 89.70 90.60 88.70 2016 [140]
Proposed Approach 97.80 97.70 90.60 98.80 This study

Table 6.6: Comparison between SOTA ensemble models and proposed model
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Dataset Classifier Accuracy (%) AUC (%) Sensitivity (%) Precision (%) F-measure (%) Yr. Ref.

PID

SM rule miner 89.87 - 84.60 - - 2017 [22]
RST-BAT miner 85.33 - 92.6 - - 2018 [24]
LR 75.1 - 71.0 68.90 69.90 2021 [102]
DT 66.80 - 71.1 63.0 75.1 2021 [102]
MLP 77.20 - 52.50 68.2 59.00 2021 [62]
NB 72.69 - 66.10 75.90 70.70 2021 [103]
SVM 74.10 74.08 71.20 75.40 73.20 2021 [103]
KNN 71.92 66.31 61.25 58.33 59.75 2021 [67]
DT 85.98 85.11 - 82.12 80.32 2022 [104]
DCN 86.29 91.20 84.2 81.90 - 2022 [105]
Proposed Approach 94.90 94.00 90.30 87.50 88.80 This study

CKD
LR 71.71 78.40 88.60 56.48 71.80 2021 [72]
KNN 64.39 66.50 96.00 59.01 73.09 2021 [72]
Proposed Approach 98.70 94.00 98.00 97.32 98.90 This study

SHD

LR 84.07 90.10 83.58 85.06 83.80 2023 [66]
SVM 83.70 90.30 83.08 84.92 83.40 2023 [66]
MLP 84.25 84.00 89.43 82.08 85.60 2022 [9]
KNN 80.85 80.54 86.99 78.67 82.62 2022 [9]
Proposed Approach 95.10 93.10 94.40 92.50 91.80 This study

WBC

DT 91.00 - 91.00 91.00 91.00 2021 [106]
DT 91.00 89.00 88.00 91.00 91.00 2021 [101]
GNB 94.00 94.00 93.00 94.00 94.00 2021 [101]
SVM Linear 97.00 97.00 88.00 97.00 97.00 2021 [101]
SVM RBF 97.00 96.00 93.00 96.00 96.00 2021 [101]
Proposed Approach 97.80 97.70 90.60 97.32 95.10 This study

Table 6.7: Comparison between SOTA non ensemble models and proposed model

6.3.3 Ablation study

On 4 disease data sets, the performance of the proposed model with one, two, and three

levels was evaluated. Our proposed technique with three levels evaluated and from the

results our proposed model performance is superior comparison with Level-1 and Level-2.

6.3.4 Receiver Operating Characteristic-Area Under Curve (ROC-

AUC)

The most crucial evaluation statistic to use when assessing the effectiveness of any classi-

fication model is ROC-AUC. The AUC-ROC curve is a performance indicator for classi-

fication issues at various threshold levels. AUC is a measure of separability, and ROC is

a probability curve. It reveals how well the model can differentiate between classes. The

model with a higher AUC is better at classifying positive classes as positive and negative
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classes as negative. By analogy, the higher the AUC, the more effective the model is at

distinguishing between patients with the condition and those who do not. On the ROC

curve, TPR is plotted against FPR, with FPR on the x-axis and TPR on the y-axis.

A full explanation of sensitivity, specificity, and FPR will be provided via the ROC-

AUC curve. The relationship between specificity and sensitivity is inverse. Therefore,

Specificity declines when Sensitivity rises, and vice versa. As a result of getting more

positive values when the threshold is lowered, the sensitivity increases while the speci-

ficity decreases. Similarly to, increasing the threshold results in more negative values and

increased specificity at the expense of decreased sensitivity. FPR is 1 - specificity. Thus,

increasing TPR also raises FPR, and vice versa.

Sensitivity and specificity analysis is crucial, especially when diagnosing diseases, as

both of these performance trade-offs are necessary for efficient illness diagnosis. Hence,

the ROC-AUC of the proposed model has measured w.r.t. base classifiers. These results

for PID, HDD, and WBC datasets are shown in Fig. 6.8, Fig. 6.9, Fig. 6.10, and Fig. 6.11.

From these figures, it is observed that the proposed model outperformed in terms of AUC

among base models. Further, results on the remaining datasets are tabulated in Table 6.5.

Further, the level-wise performance of the proposed model in terms of AUC is mea-

sured on PID, and WBC datasets. These performance plots are shown in Fig. 6.9, and Fig.

6.11 respectively.

Our proposed model has been thoroughly evaluated against state-of-the-art (SOTA)

ensemble and non-ensemble models. The comparative analysis revealed that our proposed

model consistently outperformed both the SOTA ensemble and non-ensemble models. The

detailed results can be found in Table 6.6 and Table 6.7 respectively.
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6.3.5 Discussion

Our proposed 3-level ensemble model selected the best seven classifiers out of eleven

classifiers and also optimized the positions of the 3-level ensemble model. To evaluate

the stability of the model tested on 4 benchmark disease datasets from UCI and Kaggle

repositories. In the proposed 3-level ensemble model chosen optimal classifiers were along

with their positions. There are plenty of ways to choose classifiers according to their

positions. It is a tedious task to choose the best combinations. To address this a GA-based

approach with fine-tuned GA parameters such as crossover rate, mutation, and population

size based on the novel fitness function shown in Eq. 6.4. Fine-tuning of parameters in

GA is problem-specific so fine-tuning based on the problem will significantly improve

the performance and also convergence effectively. In our proposed model a crossover

probability is 0.80, the mutation probability is 0.02, the population size is 10, and the

maximum number of iterations is 50.

The proposed model used 3 levels for the best solution and was analyzed level-wise.

In the majority of the datasets, our proposed approach performance gradually increased by

levels. In terms of various performance measures such as accuracy, AUC, precision, recall,

specificity, F1 score, and G-measure. Most all the datasets in terms of accuracy, AUC, and

precision are significantly improved with three levels whereas recall, specificity, F1 score,

and G measure moderate improvements and also observed that SLC dataset accuracy and

G-measure are very poor compared to the other datasets performance because SLC is

severely imbalanced compare to other datasets so to improve the performance in SLC

should apply oversampling techniques.

A notable thing about our proposed model is that its performance is superior even

without feature selection.

Firstly, it’s essential to acknowledge that the pursuit of marginal improvements is
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a common challenge in machine learning based research, especially when dealing with

datasets where the underlying patterns are already well captured by simpler models like

logistic regression or SVM. In such scenarios, the primary objective shifts from achieving

significant performance gains to exploring the limits of model complexity and its poten-

tial to extract nuanced patterns or handle more intricate datasets. Therefore, while the

observed improvements may seem minimal, the significance lies in the exploration of a

novel framework that integrates diverse classifiers and employs sophisticated optimization

techniques, such as nested genetic algorithms, to refine classifier composition and posi-

tioning. Additionally, it’s worth noting that the evaluation metrics used in the study, such

as accuracy significantly improved in PID dataset.

We acknowledge the instances where other methods, such as Ensemble based BA and

Modified Bee, outperform our proposed method in terms of AUC and accuracy, respec-

tively. These findings prompt a closer examination of our approach’s limitations and po-

tential areas for improvement. Factors such as algorithmic design choices and dataset char-

acteristics may have influenced the observed performance differences. We are committed

to addressing these discrepancies transparently and are exploring avenues for enhancing

our method’s effectiveness, including refining parameter tuning strategies and conducting

further experimentation on diverse datasets. Your feedback is invaluable, and we are dedi-

cated to ensuring the rigor and quality of our research findings moving forward. And also,

in our proposed nested GA giving significant improvement in PID dataset and also effec-

tively useful classifier selection and placement effectively. Overall proposed nested GA is

useful in dynamic ensemble approaches in other domain also in addition to the health acre

domain.
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6.4 Summary

In this chapter, a dynamic three-level ensemble framework is introduced and thoroughly

evaluated. The proposed framework leverages the power of nested GA to optimize both

classifier selection and their positions within the three-level ensemble structure. The outer

GA is responsible for identifying the most suitable classifiers, while the inner GA fine-

tunes their arrangement in the ensemble. This optimization process is guided by a novel

fitness function developed to yield improved solutions.

Within this framework, eleven diverse classifiers are considered, and a subset of seven

classifiers is strategically chosen based on the maximization of the novel fitness function.

The performance of the proposed model is extensively compared against state-of-the-art

ensemble and non-ensemble models. The evaluation encompasses a range of metrics in-

cluding accuracy, AUC, precision, recall, specificity, and G-measure. Notably, the pro-

posed approach consistently outperforms the alternative models across these metrics, es-

tablishing its superiority in terms of predictive accuracy and robustness.

This work not only advances medical diagnostics through the introduction of a sophis-

ticated ensemble framework but also underscores the pivotal role of ensemble methods in

harnessing the collective predictive capabilities of diverse classifiers. Through compre-

hensive evaluations and comparisons, this research underscores the potential for improved

disease diagnosis and highlights the merits of ensemble-based approaches in the realm of

medical decision-making.
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Chapter 7

Conclusion and Future Scope

This chapter presents the summary of the contributions of this thesis, the conclusion of

each objective, and the future scope of research for further direction of this thesis is pre-

sented.

7.1 Conclusions

This thesis presents a comprehensive exploration of disease diagnosis through innovative

ensemble frameworks. Beginning with a three-level stacking approach enhanced by di-

verse preprocessing techniques and advanced optimization methods, the work showcases

consistent outperformance across various disease datasets. Building upon this success,

subsequent chapters refine the ensemble strategies, addressing limitations in computation

time and diversity while introducing novel fitness functions and optimization techniques.

The culmination is a dynamic three-level ensemble framework, honed using nested GA

and a novel fitness function, delivering exceptional accuracy, AUC, precision, recall, speci-

ficity, and G-measure results. Rigorous comparisons against state-of-the-art ensemble and

non-ensemble models, supported by robust statistical analyses, firmly establish the pro-
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posed models as superior choices for disease diagnosis. In chapter 1 discussed introduc-

tion of the thesis and In chapter 2 Related work of thesis.

In chapter 3, In order to improve the disease diagnosis performance, a three-level stack-

ing framework is proposed. In this stacking framework, level 0 learners (LR, KNN, SVM,

DT, KNN, and MLP) and level 1 learners (Bagged DT, KNN, and LR) are optimized using

grid search. The level 2 learner i.e., SVM is optimized with PSO. The proposed model

experimented on PID, SHD, CHD, CKD, and WBC datasets. The proposed model is com-

pared with different combinations of base learners and outperformed in terms of all the

performance measures. Further, the proposed model is compared with SOTA ensemble

and non-ensemble methods in terms of accuracy, AUC, specificity, and precision and it

outperformed all the models in terms of AUC and accuracy on all the datasets. Finally,

to prove the robustness of the proposed model a paired statistical t-test is performed. The

statistical test proved that the proposed model significantly differs from all the base-level

models.

In chapter 4, In the previous chapter (from chapter 3) stacking framework gives promis-

ing results but has limitations of taking more computation time and also needs to improve

the diversity. In this study, we have evaluated the performance of the individual classifiers

on various types of disease datasets. To improve the performance of the models we have

performed bootstrapped aggregation of the training set and evaluated the performance of

individual classifiers w.r.t to data bag to further improve the version we have used an en-

semble approach using genetic algorithm and computed fitness using the proposed novel

fitness function. In our proposed approach we have used 4 classifiers such as LR, KNN,

SVM, and DT with fine-tuned hyperparameters using grid search. Further, 5-FCV was ap-

plied on the training part and divided into 5 folds and applied GA as an evolutionary search

for optimal ensemble candidates of 20 learners trained on the bootstrapped data. Using 5-

FCV the validation set is used to evaluate the fitness of each chromosome. Finally, we have
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tested the model performance in terms of Precision, Recall, Accuracy, AUC, Specificity,

and G-measure. To test the robustness of the model we have tested the model with PID,

CKD, SHD, and WBC datasets. we have also compared our model with state-of-the-art

ensemble models and state-of-the-art non-ensemble models. Our model is giving superior

performance in terms of precision, Accuracy, and Specificity. To evaluate the model per-

formance we have tested with four other disease datasets. In all the datasets our proposed

model is giving promising results. So our proposed model is recommended for use in dis-

ease diagnosis.

In chapter 5, the proposed BA-TLBO approach gives promising results in constructing

optimized ensembles across the PID, SHD, SLC, and WBC datasets. The experimental

analysis demonstrates that the optimized ensemble exhibits improved performance com-

pared to individual classifiers and potentially other baseline ensemble methods. In the

proposed study we have introduced a novel fitness function that balances accuracy and

diversity and gives good exploration and exploitation in the BA-TLBO optimization pro-

cess. And also dynamically updated the accuracy and diversity weight, making the pro-

posed model adaptable and robust. And also analyzed various diversity measures such as

Hamming, Bhattacharya, Entropy, and Q statistics out of these Hamming distance-based

diversity measure performance is superior compared to others. And also analyzed the

worst bag optimization and compared it with the best bag optimization and observed that

with the best bag possibility of overfitting risk and not focused weak component in the

ensemble. so finally hamming distance-based diversity and worst bag-based optimization

will give effective results in disease diagnosis. so it is recommendable to use hamming

distance-based diversity with BA-TLBO-based worst bag optimization. Further research

could focus on exploring additional classifiers, enhancing the optimization algorithm, or

considering other optimization techniques to improve ensemble performance.

In chapter 6, a dynamic three-level ensemble framework is proposed. All these disease

153



CHAPTER 7. CONCLUSION AND FUTURE SCOPE Section 7.2

datasets have undergone the pre-processing stage. After the pre-processing stage, nested

GA is employed to optimize the classifiers and their positions in the proposed three-level

ensemble framework. Outer GA selects the best classifiers and inner GA is used to opti-

mize the selected classifiers’ positions in the framework. Further, proposed a novel fitness

function for a better solution. Our approach used eleven classifiers and chose seven clas-

sifiers by maximizing the novel fitness function.

The performance of the proposed model is compared with SOTA ensemble and non-

ensemble models, and the proposed approach gave better results in terms of accuracy,

AUC, precision, recall, specificity, and G-measure. Next, ROC-AUC analysis is carried

out. Further, sensitivity and specificity analysis of the proposed model on the top 5 per-

formed disease datasets is carried out. In terms of sensitivity and specificity, our proposed

model performance is superior when compared with SOTA ensemble and non-ensemble

models.

Overall, this work not only advances the field of medical diagnostics but also highlights

the significance of ensemble approaches in harnessing the predictive power of multiple

classifiers.

7.2 Future Scope

The future scope for the proposed design and development of ensemble approaches for

disease diagnosis can be further extended in the following directions.

• Integration of Advanced Classifiers: Incorporating emerging machine learning al-

gorithms, such as deep learning models or hybrid algorithms, could potentially lead

to even higher predictive performance, enabling the framework to capture intricate

patterns in complex medical data.
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• Robustness and Generalization: While the proposed ensemble frameworks exhibit

remarkable results, validating their performance on larger and more diverse datasets,

including real-world clinical data, will bolster the generalization capabilities and

real-world applicability of the models.

• Interpretable Ensembles: Developing techniques to interpret and visualize the de-

cisions made by the ensemble models could offer valuable insights to medical prac-

titioners, increasing the trustworthiness and adoption of the models in clinical set-

tings.

• Transfer Learning: Investigating transfer learning techniques to leverage knowl-

edge from related medical domains could expedite model development and enhance

performance, especially when faced with limited labeled data in certain diseases.

• Real-Time Diagnosis: Adapting the ensemble frameworks for real-time diagnosis,

potentially on edge devices, can drastically reduce decision time and facilitate swift

medical interventions.

By delving into these future directions, the work can continue to push the boundaries

of disease diagnosis using ensemble methods, contributing to both the academic under-

standing and practical application of machine learning in the medical domain.
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