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ABSTARCT 

Natural resources like water have a direct or indirect impact on the ecological and 

socioeconomic development of a region. In a given location, variations in the land cover, 

weather, geology, morphological factors such as basin slope and topography, climate change 

and human activity all contribute to changes in the water budget both spatially and temporally. 

A worldwide phenomenon, climate change affects different regions to differing degrees. The 

assessment of climate change effects across a river basin has become essential for effective 

water resource management due to the accelerating rate of climate change. With this climate 

change, the changes in Land Use Land Cover (LULC) over a long period in a regional scale is 

also plays a key role for the availability of water resources. Several Global Climate Models 

(GCMs) have been generated to forecast the earth's climate in a variety of conceivable futures. 

GCMs are numerical simulations of distinct physical processes that reflect the seas, land 

surface, atmosphere, cryosphere and among other components of the global climate system. 

Policymakers can create recommendations and mitigation plans by using the future climate 

projections to comprehend the possible effects of climate change. However, the direct use 

GCMs for the climate change projections in a regional scale may lead to large uncertainty in 

the results due to their larger spatial resolution. And performance of GCMs are region specific 

due their coarser resolution, structure, parameterization, boundary conditions and so on. The 

GCMs are need to be bias corrected and selection of suitable GCMs are necessary before using 

in the regional scale climate change studies. The need for water is growing worldwide due to 

population growth and the expansion of cities, industries and agriculture, all of which are 

causing a decline in the amount of freshwater resources available. Consequently, it is necessary 

to look into the hydrological changes linked to climate change in order to secure water 

availability and promote sustainable development, particularly in an agricultural nation like 

India. 

In this study, the GCMs of Coupled Modelled Intercomparison Project 6 (CMIP6) phase 

repositories are considered for climate change projections in a river basin. This study used Tier-

1 Shared-Socioeconomic Pathways (SSPs) scenarios that include SSP1-2.6, SSP2-4.5, SSP3-

7.0 and SSP5-8.5 to provide a full range of forcing targets similar in both magnitude and 

distribution to the RCPs used in CMIP5. In the present work the comprehensive analysis of 

climate change and their extremes in a river basin is analysed using Multi Model Ensemble 

(MME) of CMIP6-GCMs.  
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Initial phase of research work is devoted to investigate the subjectivity involved in the ranking 

of CMIP6-GCMs using maximum and minimum temperature (Tmax and Tmin) across India. 

Different ranking procedures are employed, encompassing a variety of components in the 

process, such as model evaluation criteria, criteria weight allocation methods, Multi-Criteria 

Decision Making (MCDM) techniques and reference gridded datasets. The effect of each 

individual component on the ranking pattern is systematically analysed and the spatial 

distribution of grids with same ranking patterns across all the combinations are considered as 

grids with same ranking. The performance of best performing GCMs are attributed to 

homogenous climatic zones of India and its corresponding topological features. An ensemble 

of frequently performing top five GCMs among 16 different ranking procedures are extracted 

for each climate zone as the most suitable set of GCMs. 

The second part of the study work, focused on climate change impact on a river basin in India. 

The Krishna River Basin (KRB), which is heavily exploited and extremely vulnerable to 

climate change, was studied to assess the effects of climate change under several forcing 

scenarios. The concept of Symmetric Uncertainty (SU) is employed on monthly scale to select 

the top five GCMs. Reliability Ensemble Averaging (REA) approach is used to allocate the 

weights of selected GCMs to analyse the spatio-temporal analysis of precipitation variation 

across the KRB. The MME mean of the chosen GCMs showed significant changes in 

precipitation projection that occurs for a far future period (2071–2100) over the KRB. The 

projection changes of precipitation range from -36.72 to 83.05% and -37.68 to 95.75% for the 

annual and monsoon periods, respectively, for various SSPs. Monsoon climate projections 

show higher changes compared with the annual climate projections, which reveals that 

precipitation concentration is more during the monsoon period over the KRB.  

This study draws attention to the better comprehension of spatio-temporal analysis of climate 

changes based on precipitation extremes and projection of future streamflow for efficient 

management of water resources in KRB. Grid-wise trend analysis reveals that there are more 

number of decreasing trends in extreme precipitation indices than increasing trends for the 

observed period 1973-2003. It is observed that the percentage contributions of maximum one-

day (RX1day) and five-day (RX5day) precipitation indices to the annual total precipitation 

indices are more important. It is found that in future periods, the precipitation extremes based 

on Expert Team of Climate Change Detection Indices (ETCCDI) are expected to increase. The 

projection of future streamflow in the KRB is done using a Support Vector Machine (SVM) 
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and is expected to increase under different SSPs. These precipitation extremes may increase 

the chance of hydrological calamities in the future across the basin. 

This study assesses the impacts of climate change on the water balance of KRB in India. A 

frequency-based metric, known as SU, is used to select the top 50% of GCMs from a pool of 

eighteen CMIP6-GCMs for hydrological modelling. The impact of climate change is projected 

for three future time frames: Near Future (NF: 2026-2050), Mid Future (MF: 2051-2075) and 

Far Future (FF: 2076-2100) using four scenarios from SSPs: SSP1-2.6, SSP2-4.5, SSP3-7.0 

and SSP5-8.5. Soil and Water Assessment Tool (SWAT) model is used to simulate climate 

change impact on historical and future periods in the basin. The SWAT model was calibrated 

and validated using the Sequential Uncertainty Fitting (SUFI-2) technique of the SWAT 

calibration and uncertainty programme (SWAT-CUP). The results show a significant increase 

in the annual average precipitation, surface runoff, water yield and streamflow in the future 

under all SSP scenarios. The increase in the projected annual average precipitation is ranged 

from 12% to 54% for four SSP scenarios compared to the historical ensemble average. The 

ensemble average of Indian Summer Monsoon Rainfall (ISMR) precipitation is projected to 

increase in the range of 13.7% to 55% for the future period compared to historical GCMs 

ensemble average of baseline period. The highest precipitation, water yield, surface runoff and 

streamflow are projected to increase 54%, 125%, 124% and 114.5% respectively in FF under 

SSP5-8.5 scenario compared to ensemble average of baseline period. Precipitation change has 

a significant influence on future streamflow, with projections showing a potential increase of 

31 to 114.5%.  Future periods show a shift in the monthly peak flows as compared to the 

baseline period. More availability of water in the future in the KRB can be effectively used for 

various water management works. 

In this research work the combined impact of climate and LULC change over Tungabhadra 

River Basin (TRB) was analysed. TRB is one of the major tributary of KRB, which is very 

essential water resource for the Karnataka state in India. The developed future land use dataset 

based on SSP-RCP framework for the years 2015 to 2100 is used in this investigation. The 

LULC for the base year 2015 and future periods under two SSP scenarios, SSP1-2,6 and SSP5-

8.5 are forced for the hydrological SWAT model. In the calibration period, both coefficient of 

determination (R2) and Nash Sutcliff Coefficient (NSE) is obtained as 0.75 and for the 

validation period these values are obtained as 0.72 and 0.7 respectively. The simulated major 

land use classes are identified in Tungabhadra basin as water (1.41%), built-up (0.23%), 

cropland (76.23%), barren land (9.3%), forests (12.8%) and grassland (0.04%) as per the LULC 
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of the year 2015. The grass land and barren land is totally converted to cropland in the future 

under SSP585 scenario where as in case of SSP1-2.6 scenario only barren land totally 

converted to cropland. The grassland is projected to decrease from 8.37% to 1.61%, a reduction 

of 6.76% in the FF under SSP1-2.6 scenario. The urbanization and cropland are projected to 

extend up to 0.59% and 87.88% respectively under SSP5-8.5 scenario till 2100. There is no 

significant change in the forest cover under SSP1-2.6 scenario but under SSP5-8.5 it has shown 

small decline by 2.92% in the future. By the end of the twenty-first century, the ensemble mean 

temperature is predicted to increase by 1.56 oC and 4.65 oC, respectively, under the SSP1-2.6 

and SSP5-8.5 scenarios. The results show that the WBC such as Surface runoff (SurQ), 

Groundwater (GWq), and Water Yield (WY) are also following the significant increasing trend 

with the precipitation. Peak streamflow for all the GCMs are varying between months of 

August and September under both SSP scenarios. 

The findings of this study on the Krishna River's climate change impact can be utilised to create 

appropriate adaptation plans for the management of these basins' water resources. The research 

work's methodology can be applied to various river basins in India and around the globe. 

Keywords: GCM, Performance metrics, MCDM techniques, River basin, Symmetric 

Uncertainty, Climate Change Impacts, LULC, WBC and Stremflow 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

India is a historic, tropical nation where the primary industry is agriculture, which requires 

abundant water to flourish. The primary water sources for home and agricultural usage are 

groundwater from open wells and surface water from streams, rivers, lakes and man-made 

ponds to a large extent. The Himalayas are the source of several rivers in the country's north, 

which deposit a lot of gravel and alluvium as sediments in the northern plains. The region is 

extremely fruitful because to the good temperature and sufficient water supply in the Ganges 

and Indus plains, which are dominated by alluvium deposits. The Deccan plateau and central 

islands of the peninsula are home to the Narmada, Tapti, Mahanadi, Godavari, Krishna and 

Kaveri rivers, which are the primary water sources in the area. Groundwater is regarded as a 

primary supply for household and irrigation needs. A water demand is the amount of water 

needed to meet a particular need. The amount of water needed for crops, percolation losses, 

canal seepage and evaporation all count towards the agricultural water demand. The availability 

of water in India, a developing country, undergoes spatial and seasonal variations that impact 

societal development. Geographical factors like land use, vegetation and topography further 

contribute to this dynamic situation. Over the last century, the surge in population and the 

expansion of economic activities have significantly escalated water usage in many regions 

across the world. The key element in the water cycle, streamflow, is intricately linked to 

meteorological factors such as precipitation intensity, amount and duration, temperature, 

evapotranspiration and relative humidity. 

Climate refers to the long-term fluctuations in a region's temperature, humidity, air pressure, 

wind, precipitation and other meteorological factors. Location, air pressure, mountain barriers, 

height, continental position, ocean currents, wind belts, storms and human activity are the 

variables that determine climate. The monsoon climate condition dominates the climatic zones 

of India. In India, the distribution of monsoon precipitation varies greatly in terms of both time 

and space (Kripalani et al., 2007). Two primary factors that impact climate conditions are 

temperature and precipitation. In this regard, it is anticipated that by 2050, the annual mean 

surface temperature will have increased by 3.5 to 5.5°C overall, the winter season will have 

warmed and the amount of precipitation in central India would have decreased by roughly 10 

to 20% which effects the hydrological process (Mall et al., 2006). The South-West monsoon 
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brings India its highest rainfall between June and September. On the other hand, the North-

East monsoon, which occurs between October and November, primarily affects the state of 

Tamilnadu in south India.  

1.2 Studies on Climate Change 

The Intergovernmental Panel on Climate Change (IPCC) defines climate change as a shift in 

the parameters' mean and/or variability over time brought on by both natural and human 

activity. According to the IPCC (2021), there has been an increase in the frequency of extreme 

weather occurrences, including powerful heat waves, intense hot extremes, extreme 

precipitation, floods and droughts in agriculture conditions. The IPCC AR5 study revealed an 

unparalleled increase in the earth's surface temperature in the past few decades, leading to 

significant adverse effects on climate parameters, as well as the biological, chemical and 

hydrological cycles worldwide. A substantial increasing trend has been noticed in the global 

temperature owing to the accelerating concentration of Green House Gases (GHG) in the 

atmosphere and it is expected to increase by 1.8 to 4 oC by the end of the 21st century as per 5th 

Assessment Report (AR5) of (IPCC, 2013). Due to these effects the changes are expected in 

the availability of water and associated climate extremes, such as floods and droughts in river 

basins, as a result of fluctuations in the climatological parameters. 

Climate models are instruments for determining how future natural processes and human 

activity can impact a region's ecosystem. There are two types of tools for the assessment of 

climate change studies i.e., Global Climate Models (GCMs) and Regional Climate Models 

(RCMs). GCMs are numerical models that mimic various physical processes that represent 

different components of the global climate system such as atmosphere, land surface, oceans 

and cryosphere (Gouda et al., 2018). Gaps exist between the spatial and temporal realisation of 

hydrological features and GCMs, making it impossible for GCMs to accurately mimic hydro-

meteorological processes at a finer scale. The resolution of GCMs is too coarse to be used as 

an input for studies on climate change and the raw outputs from GCMs are frequently biased 

with systematic errors when compared to the observed parameters. The future climate 

projections enables the policymakers to understand the potential impacts of climate change and 

to form recommendations and mitigation measures (Nashwan & Shahid, 2019). However, the 

performance of a climate model is region specific due to the uncertainties attributable to the 

model structure, parametrization, calibration and so on (IPCC, 2013; Mcsweeney & Jones, 

2016). Due to these uncertainties, increasing attention has been given to the ranking of GCMs 
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in simulating the present climate (Kamworapan & Surussavadee, 2019; Khayyun et al., 2020; 

Raju et al., 2017; Singh et al., 2015). 

IPCC continuously releasing many GCMs based on the greenhouse gas emission scenarios as 

mentioned in the various Assessment Report (AR) from 1992 to 2018. The 5th AR of IPCC 

generated Representative Concentration Pathways (RCPs) to illustrate the various stages of 

greenhouse gas emissions as well as additional radiative forcings that could have an impact in 

the future. There are four routes (2.6, 4.5, 6.0 and 8.5 watt/m2) that cover a broad range of 

forcing, but they lack any socioeconomic "narratives." The Shared Socio-economic Pathways 

(SSPs), based on five narratives that depict major socio-economic patterns that might affect 

society in the future, are developed by the IPCC 6th Assessment Report (AR6) to connect a 

wide range of research communities, including those involved in climate change mitigation 

and adaptation activities. SSP1-2.6, which represents the low end of the range of future forcing 

pathways with 2.6 W/m2 radiative forcing, SSP2-4.5, which represents the medium end of the 

range of future pathways with 4.5 W/m2 radiative forcing, SSP3-7.0, which represents the 

medium to high end of the range of future forcing pathways with 7.0 W/m2 radiative forcing 

and SSP5-8.5, which represents the high end of the range of future pathways with 8.5 W/m2 

radiative forcing, are the four SSPs. The SSPs took into account the likely concentration of 

greenhouse gases assuming changes in the population, GDP, GDP growth, educational 

attainment and land use land cover, as well as the climate mitigation measures from the 

ScenarioMIP. SSPs are incorporated into the CMIP6 models, enabling improved future effect 

assessments through improved parametrization. Using Integrated Assessment Models (IAMs) 

based on both SSPs and RCPs, these climate projections taking into account new emission and 

land use scenarios are created (O’Neill et al., 2016). 

1.3  Ranking of GCMs 

Generally, a set of suitable GCMs will be preferred from the large pool of GCMs for the area 

of interest for performing climate change impact studies by excluding those that have a greater 

degree of uncertainty (Khan et al., 2018; Lutz et al., 2016). Many studies on ranking of GCMs 

are reported in India are based on Couple Model Intercomparison Project phase 3 (CMIP3: 

Anandhi & Nanjundiah, 2015) and phase 5 (CMIP5: Das et al., 2018; Raju et al., 2017). The 

performance of a climate model is generally assessed by comparing its historical simulation 

with a reference dataset. It is quite a challenging due to ambiguity in the selection of model 

evaluation metrics and the reference gridded dataset. Quality of the observed data, spatial 
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distribution of gauges and varied interpolation techniques employed in the generation of 

reference gridded datasets is also a source of uncertainty (Khan et al., 2018). Several model 

evaluation measures have been utilized to analyse the climate models in matching the observed 

climate variables (Gleckler et al., 2008; Johnson & Sharma, 2009a; Knutti et al., 2010). An 

array of metrics were used for the variables of interest for validation. Model evaluation 

measures were segregated into two categories, namely time-domain and frequency-domain 

based metrics (Rathinasamy et al., 2014). The time-domain category metric such as coefficient 

of determination, Nash Sutcliff Coefficient (NSE), Root Mean Square Error (RMSE), Fourth 

Root Mean Square Error (R4MS4E), Kling Gupta Efficiency (KGE) etc. consolidate the error 

at each time step into a singular metric. The majority of these metrics are highly susceptible to 

extreme events and outliers. The second category evaluates the similarity between the 

frequency distributions of observed and simulated variables in order to assess the goodness of 

fit. This overcomes previous limitations and allows for a more comprehensive assessment of 

the match between observed and simulated data. Some of the studies used these frequency 

domain metrics such as Skill Score (SS: Perkins et al., 2007), Brier Score (BS: Ruan et al., 

2018), Symmetric Uncertainty (SU: Khan et al., 2018; Salman et al., 2018) in the climate model 

selection.  The major drawback of these metrics is that the loss of timing information about the 

error terms. Therefore, every performance evaluation metric has its own strengths and 

weaknesses and there is no universally accepted model evaluation metric that serves all intents 

and purposes (McMahon et al., 2015). To address these issues, Multicriteria Decision Making 

(MCDM) techniques were employed to aggregate multiple performance indicators into a single 

measure. 

1.4 Climate Change on Precipitation 

Climate change is a multidimensional complex global phenomenon leading to hydro-

climatological extreme events, thereby motivating the research community to study it since the 

past few decades (Ahmed et al., 2019; Cameron, 2011; Sheffield & Wood, 2008). Precipitation 

is a key climate variable that can influence the characteristics of hydrological cycle and 

ecological system of a catchments. The changes in precipitation can affect many sectors, 

including agriculture, hydrological cycle, environment, health and power. Evidence from 

science indicates that warmer climates cause changes in precipitation patterns and global 

warming is predicted to increase the frequency of extreme precipitation. Therefore, it is very 

important to know the spatio-temporal analysis of precipitation over a catchment. Generally, 

the atmospheric conditions of semi-arid regions are sensitive to the variability of regional 
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climate, especially for precipitation (Gong et al., 2004; Xing & Wang, 2017; Ye & Chen, 1992). 

Sometimes, even a slight deficit in rainfall can cause heavy drought, affecting agricultural 

plants specifically during summertime. Generally, the selected GCMs are employed to develop 

the Multi Model Ensemble (MME) mean, which can strengthen the prediction reliability by 

using information from the variable of interest (Knutti et al., 2010). Future fluctuations in 

rainfall in a river basin can be better understood by looking at the spatial distribution of the 

rainfall changes. 

1.5 Climate Extremes 

Climate extremes especially changes in precipitation extremes is expected to become a major 

issue affecting flood hazards and hydrological regimes in the upcoming decades. Climate 

extremes are getting an increased attention due to their explosive impacts on climate change 

(Klein Tank et al., 2006). High intensity or excessive precipitation often becomes hazardous 

(Choi et al., 2014). Krishnamurthy et al., (2009) have found that a significant increased trend 

in extreme precipitation over India. The climate extremes associated with heavy multi-day 

precipitation is the main cause of floods, soil erosion and landslides in river channels (Mishra, 

2022; Talchabhadel et al., 2018). One of the most populous and developing nations in the 

world, India depends heavily on the summer monsoon precipitation, which is sensitive to 

climate change (Kitoh et al., 2013; Mohan & Rajeevan, 2017). Moreover, the projected 

increased temperature along with heavy precipitation extremes in summer monsoon periods 

are likely to lead for the occurring of floods in Indian River Basins (IRBs). The extremely 

heavy precipitation which is influencing the Indian economy and putting enormous pressure 

on millions of people across the India region (Ghosh, 2010; Kothawale et al., 2010; Rajeevan 

et al., 2006; Roy & Balling, 2004). The effects of a number of extreme precipitation events that 

have happened in recent decades on infrastructure and society make them noteworthy. For 

example, the extreme precipitation event of 940bmm in 18 hrs that has occurred in Mombai on 

July 2005 resulted in flooding caused around 1200 deaths along with effecting millions of 

people. Furthermore, in November 2015, 483 mm of precipitation fell on Chennai in 48 hours, 

causing a disastrous loss of almost $3 billion in economic value (Gupta & Nair, 2011). Apart 

from localised flooding, which is primarily brought on by excessive precipitation, additional 

factors related to watershed characteristics and extreme precipitation may also contribute to 

flooding at the river basin scale. More recently, around 440 individuals lost their lives as a 

result of extensive flooding brought on by excessive precipitation in August 2018 in Kerala 

and initial assessment of economic damage surpasses $3 billion (Mishra et al., 2018). The 
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warming climate in India is expected to increase the likelihood of both extreme precipitation 

events and flooding increasing the risk of financial loss and infrastructure damage (Mukherjee 

et al., 2018). According to research by Dottori et al., (2018) a 1.5 °C rise in the global mean 

temperature above preindustrial levels may result in a 70–80% increase in human casualties 

from flooding, with South Asia being at higher risk. Analysing precipitation extreme indices is 

crucial for understanding the future climate of a region, especially for areas developing 

countries like India. 

1.6 Climate Change Impact on Hydrological Modelling  

A portion of the hydrologic cycle is conceptually and simplistically represented by hydrologic 

models. These replicate every aspect of the natural flow of water, including stream flow, 

evapotranspiration and evaporation, soil moisture, groundwater recharge, sediment transport, 

microbe development in water bodies and sediment transport, etc. Both spatial and temporal 

derivatives are involved in the hydrologic processes. Depending on whether they take space 

derivatives into account (lumped) or not (distributed), the hydrologic models fall into one of 

two categories. Semi-distributed models are categorised based on the presumption that certain 

processes account for spatial variances. Most of these hydrological models will provide 

hydrograph with peak values at a specified location of a catchment. The efficiency with which 

the assumptions and procedures used to estimate various hydrological components account for 

the applied approaches on spatial scales determines which hydrological model is best. 

Typically, hydrologic models function at the watershed or river basin scale. They serve a broad 

purpose in providing knowledge on numerous issues pertaining to water resources and 

hydrologic extremes at the watershed scales. The inputs needed for utilising hydrologic 

fashions vary according on the purpose of the models construction. The inputs for a river float 

simulation version include precipitation, catchment parameters (such as soil type, catchment 

slope, plant life type, land use type, temperature, solar radiation, groundwater contribution and 

so on. This kind of model typically produces river flow at a location at a specific point in time 

(a day, a week, or a month), as well as soil moisture and evapotranspiration throughout the 

duration. This type of model thus yields valuable data for determining the effects of changes 

in climate and land use. 

1.7 Impact of Climate and LULC Change on Hydrology 

Natural resources, such land and water, are the primary drivers of the nation’s economic growth 

as well as the development of human and environmental services. However, because of the 
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rapid growing of human population, urbanisation and industry are putting enormous demand 

on these resources. The amount of rainfall and temperature variations have a significant impact 

on streamflow and the availability of water. Therefore, assessing the effects of climate change 

on streamflow and water balance patterns will be useful in developing and overseeing the water 

resources system in an effective manner. Over the past century, comprehensive climate 

observations at both regional and global scales have revealed a significant increase in extreme 

climate events, marked by alterations in temperature, precipitation patterns and energy levels. 

These changes have directly impacted hydrological processes, leading to consequential effects 

on local and regional water resources. Therefore, the evaluation of water resource availability 

in light of climate change at both regional and global levels has been a significant topic of 

interest to the hydrologic research community in recent years. Worldwide, numerous studies 

have been reported that the impact of climate change on watershed hydrology (Chen et al., 

2020; Givati et al., 2019; Reshmidevi et al., 2018; Wang et al., 2016). For instance, the impacts 

of climate change on runoff in the Upper Jordan basin were evaluated by Givati et al., (2019), 

they reported a significant 44% decline in streamflow under the RCP8.5 scenario. Moreover, 

these studies collectively contribute to our knowledge of the diverse influence of climate 

change on watershed hydrology across different geographical regions. 

Both changes such as climate change and changes in both climate and land use have a major 

influence on the hydrological processes in the watershed (Pandey et al., 2021). Recent years 

some of the studies are focused on coupled effect of future climate and LULC changes on a 

catchment scale (Ahiablame et al., 2017; Woldesenbet et al., 2018). For instance, the future 

response of streamflow in the region is expected to intensify due to combined change of climate 

and land use, resulting in a potential increase of 13 to 60% (Ahiablame et al., 2017).. Assessing 

the impacts of future climate and LULC changes on rivers and water resources is essential for 

effective water resource management in developing countries like India. 

1.8 Motivation for Research and Problem Formulation 

Climate change alters the global water cycle by changing the temperature, precipitation and its 

spatiotemporal distribution. These modifications have an impact on the regional water budget 

and the biotic environment (IPCC, 2013). The risks that could arise from the 1.5 oC increase in 

temperature over pre-industrial levels are described in the IPCC Special Report (IPCC, 2018). 

When temperatures rise and precipitation patterns shift, it can have a negative impact on 

streamflow, soil moisture, water availability, the frequency of floods and droughts. 
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Fluctuations in LULC throughout a catchment can disrupt the hydrological cycle and cause 

droughts and floods when combined with climate change. To manage the water resource 

effectively, particularly developing countries like India, it is essential to study and analyse the 

isolated and coupled effect of changes in future climate and LULC on the water availability of 

a catchment with reduced uncertainty. 

A thorough study of the literature (given in chapter 2) found that numerous studies have been 

conducted with success in the literature to examine the impact of changing climates on the 

hydrology of various rivers and watersheds in various aspects. Several CMIP phases GCMs 

have been used throughout India to evaluate and quantify future forecasts of the water 

resources. Various types of uncertainties associated with impact of climate change on a 

watershed scale and choice of GCMs is most important one (Crosbie et al., 2011). However 

the GCM performance is region specific and depends on many factors such as, performance 

indices, reference gridded dataset, weighting techniques and MCDM methods. But it is 

necessary to investigate the subjectivity of GCM ranking and careful selection of GCMs are 

necessary for climate change impact studies. CMIP6 has an improvised parameterisation that 

can efficiently model climate projections (Eyring et al., 2016).  A study by (Gusain et al., 2020) 

showed that CMIP6 GCMs are more efficient compared to CMIP5 GCMs in simulating the 

Indian summer monsoon. 

Based on above research studies. It has been exposed that, as water demand rises in tandem 

with an increase in the spatial and temporal fluctuations of water availability, the need for 

basin-level research on the impact of climate change has grown to analyse the availability of 

water resources, water quality, etc., in different rivers of India. Furthermore, research must be 

done to determine how the changing LULC and climate change may affect ecosystems and 

water resources. Only few studies have completed successfully across IRBs on climate change 

impact on water resources of a catchment in various aspects using CMIP6 based climate models 

by selecting the GCMs. Many studies have not considered ensemble of GCMs. Based on above 

research studies it is noticed that to investigate the climate change impact on water resources 

of various catchment using latest AR6 climate change scenarios. For that it necessary to 

understand the ranking behaviour of the GCM based different factors. Hence, this study an 

attempt to comprehensive analysis of GCMs ranking procedures, climate and LULC changes 

impact on water resources of watershed for effective water management and mitigation studies. 
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1.9 Scope and Objectives of the Study 

The main aim of the research is to understand the impact of climate change in the Krishna River 

Basin (KRB) in India. The broad idea is to systematically investigate the subjectivity involved 

in the ranking of GCMs, selection of GCMs over KRB and using of these GCMs for the further 

climate change impact assessment. Additionally, a coupled approach is utilized to simulate the 

impact of both land use dynamics and climate change scenarios on hydrological responses in 

the KRB. This methodology allows for a comprehensive knowledge of the effects of both 

climate and land use changes on the region. The prime objective of the study has been 

distributed into the subsequent minor objectives. 

i. To analyse the role of subjectivity on ranking patterns of CMIP6 GCMs. 

ii. To choose the CMIP6 GCMs for projections of spatio-temporal variations in 

precipitation over KRB. 

iii. To assess the changes in projected extreme precipitation indices in KRB using 

selected CMIP6 GCMs. 

iv. To evaluate the effects of climate change on WBC in KRB through the use of a 

CMIP6 GCM ensemble. 

v. To assess the coupled impact of future climate and LULC changes on WBC over 

Tungabhadra River Sub-Basin (TRB) in KRB. 

1.10 Research Gaps Identified 

Based on the literature study, the following Gaps were identified: 

i. There is no universally accepted ranking procedure to address the region-specific 

performance of climate models. Hence, the ranking procedure is prone to subjectivity. 

No study had been reported so far in the literature to address the influence of 

subjectivity on ranking patterns of climate models. 

ii. A set of best performing GCMs is necessary for generating the MME to study the 

impact of climate change. And no study was conducted on CMIP6 based climate 

models for assessing the suitability of GCMs over Indian River Basins for climate 

change impact studies especially for KRB. 

iii. Very meagre studies were conducted on analysis of extreme precipitation indices due 

to climate change in KRB using CMIP5 GCMs especially using CMIP6 GCMs.  
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iv. No study had been reported so far to assess the impact of climate change in KRB using 

CMIP6 GCM outputs. 

v. Very meagre studies were conducted on coupled effects of future climate and LULC 

changes over Indian River Basins especially for KRB. 

1.11 Organisation of Thesis 

Chapter 1 begins with an introduction to the study problem and a discussion of its importance 

and set up the objectives of the study. A detailed review about GCM ranking procedures, the 

selection of GCMs for climate change impact studies, rainfall-runoff modelling approaches 

and climate and LULC change impact studies are presented in chapter 2. 

In Chapter 3, the methods pertaining to the GCM ranking procedure, hydrological modelling 

and the combined effects of climate and LULC change on hydrology are presented. 

Additionally, this Chapter includes a description of the study area as well as the data required 

and accessible for the study area. 

Chapter 4 describes the results of the various objectives performed in the research works such 

as GCM ranking subjectivity across India, selection of GCMs for KRB to assess the climate 

extremes and impact of climate and LULC changes for future periods for efficient management 

of water resources. 

Chapter 5 presents the summary of the study, the conclusions arrived, recommendation from 

the study and suggestions for further research activities. This Chapter also reports the 

contribution from this study. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 General 

Climate change impacts the hydrological cycle, agricultural output, sea levels and sea surface 

temperature patterns. In India the increased frequency and severity of extreme events like 

droughts and floods can be linked to shifts in global climate patterns (IPCC, 2013).  Around 

70% of the country's precipitation comes from the monsoon, making it highly dependent on 

this seasonal pattern. This reliance on monsoon rains leaves the country vulnerable to changes 

in precipitation patterns. According to a 2018 report by Niti Aayog, groundwater wells are 

depleting and approximately 50% of India's population is experiencing a severe water shortage. 

The droughts of 2016 had a significant impact, affecting millions of people and causing 

substantial economic losses. Moreover, between 1950 and 2015, floods have affected an 

estimated 825 million individuals. During this period, the frequency of flood events in central 

India has tripled (Kumar et al., 2021; Mishra, 2020). These findings underscore the pressing 

need to incorporate assessments of climate variability and land use changes to improve the 

accuracy of predictions regarding water availability. In India, there are 19 major river basins, 

as reported by (Amarasinghe et al., 2005, 2007). Their findings indicate that water demand is 

influenced by several factors, including future growth in domestic, industrial, environmental 

water demand, as well as internal and international trade. Within the 19 basins in India, the 

Krishna River stands out as a water-scarce river where 20-40% of irrigation relies heavily on 

groundwater. The level of development in this basin exceeds 60%, resulting in an anticipated 

depletion of water resources by 50-75% by the year 2050. Due to these concerns, the Krishna 

river basin has been chosen as a focal area for evaluating water availability under various 

climate change scenarios. moreover, most of the Krishna river basin is semi-arid in nature and 

experiencing high vunerability to even small cliamte change. Hence, it is necesaary to 

understand the climate change impact on hydrology of KRB in comprensive manner.  

For longterm projectictions of the water avaialbility the Intergovernmental Panel on Climate 

Change (IPCC) is continuously putting progressive efforts to understand the climate change 

behaviour from the past century and releasing different Coupled Modelled Intercomparison 

Project (CMIP), Assessment Reports (AR) which provides various types of Global Climate 
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Models (GCMs). Studies on the effects of climate change heavily rely on the examination and 

selection of climate models. 

2.2 Global Climate Models (GCMs) 

Global Climate Models (GCMs), as physically-based models, are widely regarded as reliable 

and practical tools for forecasting changes in atmospheric variables within the context of 

climate change scenarios. These models encompass the dynamics of both the atmosphere and 

the oceans (Ghosh & Mujumdar, 2008). GCM projections, while well-suited for continental 

and hemispherical scales, often lack the finer resolution needed for regional impact analysis, 

particularly when examining changes in extreme events (Fowler et al., 2007). This limitation 

is due to their high spatial resolution, typically around 100-250 km. To overcome this challenge 

and assess the impact of climate change at a regional level, it is necessary to link large-scale 

climate variables to hydrologic variables at a finer scale. Downscaling methods are commonly 

employed to derive local to regional scale information from these large-scale climate 

projections. These methods can be broadly categorized as dynamic or statistical. Dynamic 

downscaling involves generating finer resolution output based on atmospheric physics over a 

specific region, using GCMs boundary conditions (Teutschbein & Seibert, 2012). On the other 

hand, statistical downscaling methods establish empirical relationships between GCM outputs 

and observed climate data (Fan et al., 2021). By employing these downscaling techniques, 

researchers can bridge the gap between large-scale climate projections and the finer resolution 

needed for regional impact studies, thus enabling a more comprehensive analysis of climate 

change impacts on local and regional hydrology. 

Giorgi & Mearns (1991) compared the empirical and GCM nested limited area modelling 

techniques and discussed the advantages, disadvantages, limitations and variability of their use. 

They observed that, though GCMs are capable of encompassing the wide range of climate 

variability and atmospheric phenomenon, they are complex and expensive. Here some of the 

statistical downscaling literature across the globe were discussed. 

Statistical downscaling, unlike the computationally intensive dynamical downscaling, offers a 

simpler approach by developing empirical connection between local climate and GCM climate 

variables. These relationships do not involve the complex mass and energy exchange between 

the land and atmosphere. The statistical downscaling methods can be grouped into weather 

generators, transfer function and weather typing, each with its own approach to linking large-

scale and local-scale climate data (Ghosh & Mujumdar, 2008). 
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Lin et al., (2017) used the KNN algorithm to develop a novel spatio-temporal downscaling 

method for hourly rainfall data. Tabari et al., (2021) compared four statistical downscaling 

techniques such as Change Factor of Mean (CFM), Bias correction (BC), an event-based 

Weather Generator (WG)  and Quantile Perturbation (QP) to assess the impact of climate 

alteration on drought in the future (2071-2100) compared to a baseline period (1971-2000) for 

the Uccle region of Belgium. The study used ensemble CMIP6-GCMs for downscaling, 

considering four future scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. Among these 

methods, the QP technique demonstrated superior performance in replicating the amplitude 

and monthly pattern of the reported drought indicators. 

2.3 Bias Correction Techniques 

Systematic model errors in GCMs or RCMs can result in inherent biases, stemming from 

imperfect conceptualization, discretisation and spatial averaging within grid cells. These biases 

are not limited to precipitation but also extend to temperature (Ines & Hansen, 2006). Common 

biases include an overabundance of wet days with low-intensity rainfall, inaccurate predictions 

of extreme temperatures, general over or underestimation of precipitation and improper 

seasonal fluctuations in rainfall (Teutschbein & Seibert, 2012). To address these biases, various 

bias correction approaches have been established for downscaling climate variables from both 

GCMs and RCMs (Chen et al., 2011; Chen et al., 2019; Mishra et al., 2020). These strategies 

vary from straightforward scaling methods to more intricate ones that use weather generators 

or probability mapping. 

These possible biases make GCM simulations difficult to apply, even if their usage in 

hydrological impact assessments due to climate change is growing. Before being employed in 

impact studies, the output of climate models is frequently pre-processed using bias correction 

techniques (Ngai et al., 2017; Piani et al., 2010; Wood et al., 2004). 

2.4 GCM Ranking Procedure 

Progressive efforts have been documented to evaluate the GCMs performance of ever since 

their development (Xu, 1999) for climate change impact studies. Different studies are used 

various types of metrics for ranking of GCMs. 

Perkins et al., (2007) assessed daily precipitation, minimum and maximum temperature 

simulations for 12 Australian locations using the fourth AR of the IPCC coupled climate 
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models. Probability density functions were employed in the assessment to gauge how well the 

models represented the observed data. 

Fu et al., (2013) evaluated the effectiveness of GCMs at the regional level using a multi-criteria 

score-based approach based on Relative Error (RE), Normalised Root Mean Squared Error 

(NRMSE), Brier Score (BS), Skill Score (SS), Correlation Coefficient (CC), Mann-Kendall 

test Z and Trend magnitude. Applying it to 25 GCM simulations of monthly air temperature, 

Mean Sea Level Pressure (MSLP) and annual precipitation in south-eastern Australia during 

period of 1960 to 2000. They revealed that GCMs generally simulate the temperature more 

accurately than MSLP and monthly rainfall.  

Raju & Kumar (2014) used five performance indicators namely, Correlation Coefficient (CC), 

NRMSE, Absolute Normalised Mean Bias Error (ANMB), Average Absolute Relative Error 

(AARE) and SS to assess 11 GCMs for India that included 73 2.5° x 2.5° grid locations in 

terms of precipitation. The weights of each indicator were computed using the entropy 

technique. The GCMs were ranked using the Preference Ranking Organisation Method of 

Enrichment Evaluation (PROMETHEE-2) and Multi Criteria Decision-Making (MCDM) 

methods. Additionally, they stated that the suggested methodology can be expanded to rate 

GCMs for additional locations. 

Anandhi & Nanjundiah (2015) evaluated the 19 CMIP3 GCMs for India in order to simulate 

daily rainfall using SS. The assessment is carried out on a 2.5° x 2.5° grid and contrasted with 

the gridded dataset from the Indian Meteorological Department (IMD). They came to the 

conclusion that no GCM is operating effectively in India. 

Jena et al., (2015) evaluated the performance of CMIP5 GCMs for precipitation in India using 

CC. They revealed that some models, like HadGEM2-AO and MIROC-ESM-CHEM, perform 

well for the summer monsoon while, for winter monsoon MPI-ESM-LR, MRI-CGCM3 and 

INM-CM4 performing well. 

Raju & Nagesh Kumar (2015) evaluated the 11 GCMs for India in a different study by 

employing SS as the temperature performance metric. The GCMs were ranked using the 

MCDM technique, Technique for Order Preference by Similarity to an Ideal Solution 

(TOPSIS). It was determined that the combination of GFDL2.0, MIROC3, GFDL2.1, BCCR-

BCCM2.0, HadCM3, INGV-ECHAM4 were better for India. 
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Sarthi et al., 2016 assessed 34 CMIP5-GCMs for their performance in simulating the Indian 

summer monsoon using Taylor diagrams and indicators such as CC, SS and RMSE. MPI-ESM-

MR, CESM1(BGC), CESM1(CAM5), CESM1 (WACCM), BCC-CSM1.1(m) and CCSM4 

models were effectively simulated precipitation patterns. 

Ahmadalipour et al., (2017) evaluated 20 GCMs performance over the Columbia River Basin 

(CRB) in the Pacific Northwest of the United States using data from the CMIP5 dataset. They 

evaluated the models using a statistical multicriteria method that included univariate and 

multivariate techniques. The univariate techniques included mean, coefficient of variation, 

standard deviation, relative change, Mann-Kendall test, and Kolmogorov-Smirnov test (KS-

test). In order to assess the dependability and character of the models at a regional level, the 

study was done using unprocessed GCM data for temperature and precipitation climatic 

variables for the years 1970 to 2000, prior to bias adjustment. Using observational gridded data 

on multiple temporal scales like daily, monthly and seasonal. They graded each GCM 

according to how well it performed. The statistical qualities they took into consideration when 

ranking the GCMs, as well as the advantages and disadvantages of each approach, were 

revealed by their findings. Furthermore, various sets of gridded observational datasets in the 

region with the raw GCM simulations. 

Raju et al., (2017) evaluated 36 CMIP5-based GCMs were assessed to evaluate their 

performance in simulating maximum and minimum temperatures for India across 40 grid 

points using CC, NRMSE and SS. Compromise programming (CP), a distance-based decision-

making technique, was employed to rank the GCMs. A group decision-making approach was 

used to aggregate individual grid point rankings and an ensemble approach was suggested as a 

simple but effective method. Top 3 GCMs were provided for major river basin in the India. 

Khan et al., (2018) used SU as the primary indicator to evaluate 31 GCMs from CMIP5 for 

precipitation, minimum and maximum temperature in Pakistan. They identified six top-ranked 

GCMs were MIROC5, HadGEM2-ES, HadGEM2-CC, CMCC-CM, CESM1(BGC) and 

ACCESS1.3. These models were suggested for inclusion in Multi Model Ensemble (MME). 

Abbasian et al., (2019) used Climatic Research Unit (CRU) records from 1901–2005 to assess 

the effectiveness of 37 CMIP5-GCMs in simulating temperature and precipitation over Iran. 

The evaluation process uses six performance measures: Sen's slope estimator, mean bias, 

RMSE, linear correlation coefficient (r), Nash-Sutcliffe efficiency (NSE), Kolmogorov- KS 

and the Taylor diagram. Based on every data at seasonal and annual time scales, the GCMs are 
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ranked. The findings show that most GCMs can accurately predict annual and seasonal 

temperatures over Iran. 

Ahmed et al., (2019) evaluated 20 CMIP5-GCMs for precipitation across Pakistan using spatial 

indicators including Cramer's V, Fractional Skill Score (FSS), Goodman–Kruskal’s lambda, 

Kling–Gupta Efficiency (KGE) and Mapcurves. For multi-model ensemble (MME), they 

employed GFDL-ESM2G, GFDL-CM3, CESM1(CAM5) and NorESM1-M, with a preference 

for the RF-based MME. Random Forest (RF) was used in the MME process. 

Nashwan & Shahid (2019) Proposed a methodology for choosing GCMs based on their 

capacity to replicate spatial patterns for different climate variables. GCMs to replicate annual 

regional patterns of maximum and minimum temperatures as well as rainfall depth was 

evaluated using the Kling-Gupta efficiency (KGE). 

Using six climate variables Pandey et al., (2019) evaluated the performance of 24 CMIP5-

GCMs for the Upper Narmada river basin (UNB), India. They used metrics including SS, 

RMSE and Total Index (TI) for their assessment. MIROC5, CNRM-CM5 and MPI-ESM-LR 

were found to be appropriate models among these GCMs. 

The CMIP5 GCMs for the rainfall over Egypt were assessed by Shiru et al., (2019) using the 

MCDM technique, which is based on markers for precipitation projection such as entropy gain 

gain ratio  and SU. The goal of the study approach is to create a Multi Model MME comprising 

the top four GCMs in order to decrease uncertainty in precipitation projections.  

Homsi et al., (2020) projected potential changes in precipitation for Syria due to climate 

change. It uses the SU) and MCDA methods to select the best CMIP5 GCMs for precipitation 

projections. The study projects annual precipitation changes to decrease by -30 to -85.2% for 

RCPs 4.5, 6.0 and 8.5 scenarios. 

2.5 Climate Extremes Effects 

Climate extremes are garnering increased attention due to their explosive impacts on climate 

change worldwide (Agarwal et al., 2014; Goyal, 2014; Z. Guo et al., 2014; Meehl et al., 2005). 

Among the vital climate components, precipitation plays a crucial role in affecting economic 

growth, as well as agricultural and industrial development activities. The precipitation extremes 

associated with heavy multi-day precipitation are the primary cause of floods, soil erosion and 

landslides in large river channels, significantly impacting the environment, society and 

economy (Nanditha & Mishra, 2022; Talchabhadel et al., 2018; Trenberth et al., 2011; van Pelt 



17 
 

et al., 2015). The sixth Assessment Report of the Intergovernmental Panel on Climate Change 

(IPCC) (AR6) has documented an increase in the observed global mean surface temperature of 

1.09 oC from 2011 to 2020 compared to the pre-industrial revolution era, highlighting the long-

term impact of changes in precipitation distribution (Gouda et al., 2018; Masson-Delmotte et 

al., 2021). 

According to Mirza (2003) analysis, developing nations are especially vulnerable to the effects 

of extreme weather and climate change is predicted to make matters worse. These nations' 

ability to adapt to climate change will rely on the development models they choose and their 

current level of adaptability. They also reported that the developing countries' long-term 

sustainable development strategies must incorporate disaster management, adaptation and 

susceptibility to extreme weather occurrences. 

Roy & Balling (2004) used seven different indices: total precipitation, largest 1, 5 and 30-day 

totals, and the number of daily events that exceeded the 90th, 95th and 97.5th percentiles of all 

precipitation at each station in India between 1910 and 2000 to quantify extreme precipitation 

events. A significant rising trend was seen in 114 out of 903 time series (seven variables for 

129 stations), whereas a significant downward trend was seen in 61 of them; an upward trend 

was seen in 61% of the time series. The network-wide standard regression coefficients, which 

show the trend's strength and direction, have a high degree of correlation. 

Klein Tank et al., (2006) used data from 116 meteorological stations to evaluate daily 

precipitation and temperature extremes in central and south Asia from 1961 to 2000. They 

came to the conclusion that because of inconsistent spatial trend coherence and varying 

negative and positive at various stations, the majority of regional indices of wet extremes for 

precipitation exhibit little variation.  

Rajeevan et al., (2008) evaluated the variability and long-term trends of extreme precipitation 

occurrences over central India for 104 years from 1901–2004. There are statistically significant 

long-term trends of 6% per decade combined with large inter-annual and inter-decadal 

variability in the frequency of intense rainfall events. Sea Surface Temperature (SST) changes 

over the tropical Indian Ocean are responsible for these variations and trends, according to a 

detailed research. 

Deshpande et al., (2016) examined the daily time-series changes in extreme rainfall and 

temperature characteristics of major river basins of India using high-resolution gridded daily 

rainfall data from 1951 to 2014 and temperature data from 1951 to 2013. During the southwest 
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monsoon season (JJAS), they used a rainfall threshold of 10 cm. We used 40 °C as the 

summertime maximum (MAM) and 10 °C as the wintertime minimum (DJF) as our thresholds 

for extreme temperature events. In all river basins, an increase in the number of days without 

rain during the monsoon season has been seen, with the exception of certain regions in the 

Krishna and Peninsular river basins. 

Dubey & Sharma (2018) examined 19 extreme daily precipitation, maximum and miimum 

temperatures to analyse present and future climate change in the Banas river basin of Rajasthan, 

India. Utilising ensemble data from three RCMs, CNRM-CM5, CCSM4 and MPI-ESM-LR for 

historical data from 1971 to 2013 and future forecasts from 2021 to 2050 are used. During these 

historical periods, there is a significant decline in total annual precipitation (PRCPTOT). It is 

anticipated that the increasing trend in the Consecutive Dry Days (CDD) index would persist 

in the future. The indices of R10 mm and R20 mm were exhibited a decreasing trend.  

The combined effects of high rainfall and reservoir storage on Kerala floods and climate change 

were examined by Mishra et al. (2018). They stated that severe flooding struck Kerala, India 

in August 2018, affecting millions of people and resulting in more than 400 fatalities. Kerala 

saw rainfall that was 53% over average. For 1, 2 and 3-day durations, the extreme rainfall 

events that occurred in August 2018 had return periods of 75, 200 and 100 years respectively. 

By August 8, 2018, six of Kerala's seven major reservoirs were operating at over 90% capacity 

prior to the intense rainfall. Furthermore, the watershed areas upstream of the three major 

reservoirs (Idukki, Kakki and Periyar) had significant rainfall episodes spanning one to fifteen 

days, with return durations reaching 500 years.  

Mukherjee et al., (2018) evaluated the extreme precipitation events in India under 

anthropogenic warming using CMIP5 GCMs. They stated that increased anthropogenic 

warming has led to a rise in the frequency of extreme precipitation occurrences. Moreover, 

with human warming, our forecasts indicate a significant increase (10–30%) in 1 to 5 day 

precipitation maxima at 5 to 500 year return periods. By end of the 21st century, southern and 

central India are predicted to see much more precipitation extremes on average under the RCP 

8.5 scenario. 

Ali et al., (2019) evaluated the flood risk on the Indian subcontinent, they discovered that, 

between 1966 and 2005, the most of the IRBs had an increase in precipitation extremes 

occurrences. However, these trends were largely not statistically significant at the 5% level. 

However, for the downscaled and bias-corrected the CMIP5 and the Noah-MP model, the 
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historic and future climate predictions shown a considerable rise in the frequency of both single 

and multi-day extreme precipitation and flood events across the region in the future.. 

Talchabhadel et al., (2021) assessed the precipitation extremes in the West Rapti River basin 

(WRRB) of Nepal from 1986 to 2015 using 11 ETCCDI indices. For future projections, they 

used data from three periods and five climate models from the CMIP5 under two RCPs 4.5 and 

8.5. Using the Mann-Kendall test and Theil-Sen's slope technique, they conducted a study and 

revealed that severe precipitation indices associated with very wet days, extremely wet days, 

maximum 1-day and 5-day precipitation are anticipated to increase drastically in the future.. It 

was also discovered that a significant indicator of extreme precipitation is the percentage of 

maximum 1-day and 5-day precipitation that contributes to total annual precipitation. The 

anticipated increase in rainfall extremes raises concerns about the potential for more frequent 

hydrological disasters in the WRRB. 

Chaubey et al., (2022) analysed the Spatio-temporal analysis in extreme rainfall events over 

IRBs. They revealed that a notable shift in extreme rainfall events from north-eastern IRBs 

towards the western IRBs during the period from 1981-2019. Within the IRBs, there are 

regional differences in the annual maximum rainfall for the 10, 30, and 100 year return levels, 

they reported statistically significant increasing trends. Furthermore, it is concluded that a 

shifting and increasing pattern (15% to 58.74%) in extreme rainfall events during wet and dry 

conditions over the west-flowing river basins in the past decades of the 20th and the present 21st 

century. 

In order to assess the moisture conditions and precipitation features before to high flow events 

Nanditha & Mishra (2022) developed a novel framework. By comparing observed and 

predicted future climates, their analysis seeks to quantify the likelihood of flood driver 

occurrences and their relationship with peak flood magnitudes in IRBs. The main cause of 

floods in both the observed and predicted future climates, they discovered, is multiday 

precipitation, which acts as a stand-in for heavy precipitation on moist soil conditions. 

Remarkably, the findings suggest that in bigger river basins, multiday precipitation plays a 

more important role in driving floods than extreme soil moisture levels, whereas in smaller 

river basins, extreme precipitation plays a more significant role in controlling flooding. High 

flow days, days with heavy precipitation and days with several days of precipitation are 

expected to increase significantly. 
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2.6 Hydrological Modelling and Impact Studies 

Anthropogenic activities have significantly altered the global climate, posing threats to regional 

natural resources. Climate change impacts various sectors such as agriculture, environment, 

water availability, ecosystems and socio-economics. The IPCC AR5 highlighted a rapid global 

temperature rise, which will affect climatic, ecological, chemical and hydrological processes 

globally. These changes are expected to influence water availability and related climatic 

extremes in river basins, particularly in countries like India with significant agricultural 

reliance (Nilawar & Waikar, 2019). Simulating hydrological responses based on climate 

conditions is crucial for understanding hydrological phenomena. This approach provides 

insights into the spatio-temporal changes of hydrological variables and their future interplay 

with climate. By employing water balance modelling, a qualitative assessment of changes in 

water resources can be conducted considering both climate and human interventions. 

Hydrological models are valuable tools to assess the impact of climate change, as they can 

simulate probable changes in streamflow for specific river basins. Climate and LULC changes 

are key factors affecting hydrological regimes. Accurately quantifying their effects on 

streamflow within a watershed is essential, given the diverse range of impacts. 

Based on the model's capacity to conceptualise input variables with the catchment features, 

such as LULC, soil type, slope, etc., conceptual hydrological models are generally divided into 

three types: semi-distributed, lumped and deterministic. Hydrological models that are spatially 

distributed and physically based cannot only evaluate the geographical fluctuation of 

hydrological parameters but also make the simulation of external flows and state variables 

easier. Numerous studies were conducted to evaluate the climate change impact on streamflow. 

These studies included the Variable Infiltration Capacity (VIC) model (Liang et al., 1994), 

Hydrologiska Byråns Vattenbalansavdelning (HBV) model (Bergström, 2006) and MIKE 11 

(Gaur et al., 2021). The following sections evaluate many hydrologic models and their 

applicability to impact studies: 

Chien et al., (2013) used a combination of hydrologic models and GCM forecasts to model the 

possible effects of a river basin. They used multi-site calibration and validation using SWAT 

to show the temporal and spatial fluctuations of the future stream flow. In all the watersheds, 

future predictions indicate a decrease in the variability of streamflow, both annually and intra 

annually. The study's findings offer fundamental information for creating adaptation plans 

intended to lessen the effects of climate change on aquatic ecosystems and resources. 
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Li et al., (2014) investigated the impact of climate change on streamflow patterns in the 

Yarlung Tsangpo river (YTR) basin, a region with significant hydro-meteorological influence 

on southern and eastern Asia. They employed two hydrological models, SIMHYD and GR4J, 

to analyse monthly and annual streamflow patterns at the watershed scale. Additionally, the 

study analysed the basin's hydro-meteorology using outputs from 20 GCMs. Their findings 

suggested an increase in mean annual precipitation and runoff across the region in the future. 

Specifically, the middle reaches of the YTR and its two tributaries exhibited increasing 

tendencies in streamflow. 

Meenu et al., (2013) studied how climate change is affecting the hydrology of the Tunga-

Bhadra River Basin (TRB) in India. Prior to hydrological modelling, they initially used a linear 

regression-based statistical downscaling model (SDSM) to downscale daily precipitation, 

maximum and minimum temperature. The Hadley Centre Coupled Model version 3 under A2 

and B2 scenarios provided the large-scale climate variables for the three future periods (2021–

2040, 2041–2070 and 2071–2099) that were used in the forecasts. The authors used the 

Hydrologic Modelling System version 3.4 (HEC-HMS 3.4) from the Hydrologic Engineering 

Centre to evaluate the possible climate change impacts over TRB. In all scenarios, their 

assessment of the water balance under climate change revealed a rise in runoff and rainfall 

together with a decline in the rate of real evapotranspiration loss. 

Narsimlu et al., (2013) used the SWAT model to study how climate change is affecting the 

water resources in the upper Sind river basin, India. They used measures such the p-factor, d-

factor, NSE and R2 to evaluate the model's correctness. The results of the study showed that 

average streamflow rose along with surface runoff and base flow towards the end of the 

century.  

Pankaj & Asis (2013) used the HEC-HMS model, attempted to evaluate the river runoff in the 

flood-prone systems of India's Eastern and North Eastern river basins. For the A2, A1B and B2 

scenarios, the study was conducted using continuous time slices data for the years 2010–2040, 

2041–2070, based on the PRECIS model with the baseline years 1961–1990 without the 

sulphur cycle. A2 and B2 scenarios are more vulnerable than A1B scenario, according to the 

river runoff of the three scenarios' climate vulnerable scale. Water sequestration by predicted 

water availability, water footprint, green water availability and virtual water availability were 

all analysed. 
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Kulkarni et al., (2014) used RCM (PRECIS) data in SWAT to study potential changes in the 

water balance components of the Krishna river basin, India. Without altering the LULC data, 

the simulations were run for the control and two future scenarios. The findings indicate that 

there will be an increase in surface runoff, base flow and annual discharge in comparison to 

the current situation. This study's shortcoming stemmed from the fact that model simulations 

were run with the same LULC while accounting for potential future climate changes. 

Abbaspour et al., (2015) did a work to create and improve the SWAT hydrological model in 

order to examine the various aspects of managing water resources in light of climate change. 

The model provided a thorough and in-depth investigation of system behaviour by simulating 

several water resource components at monthly time intervals. This involved applying large-

scale, high-resolution water resource models in both physically based and data-driven 

simulations. The paper offered a comprehensive explanation of the methods utilised for 

modelling uncertainty, the calibration procedure and the availability of data. 

Zhang et al., (2016) evaluated the streamflow regime in the China's Xin river basin by 

integrating SWAT and SDSM. Under three RCPs, the effects of climate change were examined 

using downscaled GCMs (BCC-CSM1.1, CanESM2 and NorESM1-M). According to the 

study, the hydrological characteristics on a yearly, daily and monthly basis were accurately 

represented by the SWAT model. It was demonstrated that even while rising temperatures are 

predicted in the future, estimates of precipitation will be more imprecise and differ significantly 

between GCMs under various RCPs. 

Chanapathi et al., (2018) used the SWAT model to assess how climate change may affect the 

water balance components of the semi-arid Krishna river basin in Peninsular India. A shift in 

the maximum amount of long-term mean Indian Summer Monsoon Rainfall (ISMR) and 

surface runoff, an increasing trend in rainfall during October and November and some extreme 

rainfall events outside of the monsoon season were among the insights observed from the 

analysis. According to one of the climate models (CNRM-CM5), there would be mild drought 

episodes in 25% of cases, excessive rainfall in 7% of cases (> 25%) and extreme rainfall in 5% 

of cases (> 50%). 

Das & Nanduri (2018) evaluated the effects of streamflows over the Wainganga river basin 

due to climate change using the VIC model. Utilising REA, uncertainties related to bias 

corrected GCMs were addressed. Using the Metropolis-Hastings method and Bayesian 

analysis, associated uncertainties in flood return levels were simulated while taking anticipated 
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streamflows into account. Moreover, as the forcings of climate change shift from RCP4.5 to 

RCP8.5, uncertainty rises. The temporal fluctuation of uncertainty was taken into 

consideration, suggesting that future scenarios are likely to see an increase in the uncertainty 

of the anticipated return levels. 

The climate change impact on a catchment water balance using Multi Model Ensemble (MME) 

of five CMIP5 GCMs on Malaprabha river basin India is assessed by Reshmidevi et al., (2018) 

using SAWT model and reported that irrigation demand is projected to increase by 18.5% due 

to rise in temperature and evapotranspiration in the future. 

Bhatta et al., (2019) measured how climate change affected the Tamor River Basin's water 

balance in Nepal's eastern Himalayas. The evaluation of SWAT's response involved varying 

the quantity of sub-basins, HRUs and elevation bands. An ensemble of five linearly bias 

corrected CMIP5-GCMs and four RCMs under both RCP4.5 and RCP8.5 was used to estimate 

the future climate over three distinct time frames, namely the 2030s, 2060s and 2080s. This 

data was then utilised as input SWAT for simulating future streamflows at the watershed scale. 

According to observations, the latter part of the twenty-first century may see streamflow 

reductions of more than 8.5% under RCP8.5 scenarios. 

Bisht et al., (2020) examined the effects of climate change on the streamflow regime of the 

Mahanadi river basin while taking into account the projected and bias-corrected climatic 

scenarios of nine GCMs that were produced from CMIP5 models. The Hirakud and Mundali 

gauging sites used Integrated MIKE 11 NAM-HD prior to creating the streamflow regimes for 

the upcoming timeframe. The predicted ensemble mean of the simulated streamflow from 

various GCMs was used to analyse the streamflow. The mean monthly streamflow for 

anticipated warming scenarios exhibited increasing tendencies between 2070 and 2099, 

according to the data. By the end of the twenty-first century, daily high flows likewise 

demonstrated an increasing tendency in both amplitude and frequency, while low flow 

occurrences were found to be drastically declining under future climatic scenarios. 

Guo et al., (2020) developed an integrated framework to assess the combined impacts of land 

use/cover and climate variations on streamflow in the Xinanjiang basin, East China. They 

evaluated the uncertainties using five bias-corrected and downscaled GCM forecasts under 

three different RCPs. Additionally, they predicted three land use/cover change scenarios based 

on Cellular Automata - Markov (CA-Markov) modelling, representing different trade-offs 

between ecological protection (EP) and urban development (UD). These scenarios were input 
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into SWAT to analyse the combined and isolated impacts of land use/cover and climate on 

streamflow. The study found that projected streamflow changes due to land use/cover differed 

from those solely due to climate change. However, the study suggested that land use/cover 

changes had a greater influence on streamflow patterns compared to climate change, potentially 

mitigating the impact of land use/cover change. 

Sinha et al., (2020) assessed the individual and combined effects of projected LULC and 

climate change on the Kadalundi river basin in the Western Ghats of India using SWAT model. 

Using CMIP5 RCMs, Land Change Modeller (LCM) was used to predict the LULC scenarios 

for 2030 and 2050. The results showed that between 2000 and 2050, there will be a decrease 

in the amount of forest cover, an increase in grassland and agricultural output and a rise in 

mean annual surface runoff in metropolitan areas. Concerning the potential for climate change 

The assessment indicates that in the near, mid and long terms, mean annual surface runoff 

would decline under both RCP 4.5 and 8.5, with RCP 8.5 implying harsher conditions than 

RCP 4.5. The combined effects of LULC and climate change pointed to a trend towards less 

surface runoff in the near and medium term. Furthermore, the projected outcomes indicate that 

surface runoff will be higher in the summer and winter in both RCP scenarios, with a 

substantially different pattern during the monsoon season. According to the combined effect 

estimate, surface runoff would decline under RCP 4.5 and 8.5 more swiftly in the near future 

than it would in the mid-term. 

Pandey et al., (2021) evaluated combined impact of climate and LULC change on the WBC of 

Upper Narmada Basin, India. The top-performing climate models GFDL-ESM2G, IPSL-

CM5A-MR, CNRM-CM5, MPI-ESM-LR and GFDL-ESM-5) at the regional level were 

chosen using a grading system. To simulate hydrological reactions, these models were then 

combined with a semi-distributed SWAT hydrological model. The calibrated model was 

integrated with land use scenarios from the past (1990, 2000, 2010 and 2020) and the future 

(2030) to assess the hydrological sensitivity to land use change. With an estimated increase in 

annual mean temperature of 1.79°C and 3.57°C under RCP 4.5 and RCP 8.5 scenarios, 

respectively and the results point to increased precipitation in the late 21st century. In the basin, 

annual and monsoon flows are predicted to rise in the 2050s (2041–2070) and 2080s (2071–

2100). In order to assess the hydrological sensitivity of the basin to changing climatic 

circumstances, the study also established correlations between climate variables and elements 

of the water budget. 
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Sadhwani et al., (2023) examined how the water balance components of the Periyar river basin, 

India would be affected by future climatic and LULC changes. Future LULC maps, which are 

predicted to be created in 2030, 2050, 2075 and 2100, indicate a decrease in forest and 

plantation lands and an increase in urbanisation and farmland. In evaluating the long-term 

effects of climate change, the research considers an ensemble of five GCMS with RCP 4.5 and 

RCP 8.5 scenarios. According to the results, in the near (2041–2040) and mid (2041–2070) 

futures, climate change is expected to have a bigger influence than LULC change; in the distant 

(2071–2100) future, however, the opposite is true. The findings offer insightful information 

about temporal and spatial fluctuations in hydrological components, which can help with 

decisions about soil permeability, agricultural water demand, irrigation, groundwater recharge 

and integrated water resource management. The modelling approach developed for this study 

can be used for comparable assessments with the goal of managing water resources and the 

environment in other humid tropical river basins. 

2.7 Research Gaps Identified From Literature and Summary 

Climate change is an important factor to consider when assessing its impact on the hydrological 

components of a river basin. The planning and management of water resources rely on accurate 

simulations of future climate and flow using hydrological models. So climate change impact 

depends up on  

1) Availability GCM data 

2) Selection of suitable GCMs 

3) Selection of Hydrological Model 

4) Uncertainty modelling of climate data and hydrological model  

5) Climate and LULC change impact on hydrology for future scenarios 

From literature it is observed that the GCM selection uncertainty is reduced using GCM 

ranking in simulating the different climate variables is prone to subjectivity. And the GCM the 

evaluation metrics can be categorised into two types such as time domain and frequency 

domain metrics. Every performance evaluation metric has its own strengths and weaknesses 

and there is no universally accepted model evaluation metric that serves all intents and purposes 

(McMahon et al., 2015). Various types of performance metrics were used in ranking of GCMs 

for climate change impact studies across the globe. Efficient and appropriate metrics that 

represent distinct properties should be chosen as criteria which makes GCM ranking purely 
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subjective (Randall et al., 2007; Tebaldi & Knutti, 2007). The ranking of newly evolved CMIP6 

GCMs across the IRBs for further climate change impacts studies are necessary. 

The climate models have a variety of biases, according to literature on climate change and the 

MME method. These biases must be further rectified using appropriate bias correction 

procedures. The climate models are related with a number of sources of uncertainty and it is 

essential to reduce these uncertainties by taking into account an appropriate weightage average 

technique. 

The climate extremes are getting increased from the last century. Especially IRBs becoming 

more vulnerable to even small changes in climate variables. Numerous studies from literature 

reported that the IRBs are frequently experiencing floods and droughts due to these changes in 

climate extremes. The analysis of these climate extremes especially precipitation extremes in 

IRBs for future scenarios using new projections of CMIP6 GCMs are needed. 

Hydrological modelling has become an essential component of climate change assessment, 

which takes into account a region's physical characteristics, according to the literature on the 

subject. It is therefore possible to simulate the water balance components and streamflow using 

physically based hydrological models that include high resolution meteorological data. The 

SWAT model was developed as a physically distributed model that can simulate different 

hydrological parameters effectively and maintaining the characteristics of the basin through the 

use of the SUFI-2 algorithm for uncertainty modelling and sensitive analysis. However most 

of these studies were considered different CMIP phase GCMs by considering single or multiple 

GCMs randomly and not considered the water storage structures in hydrological modelling. 

Limited studies were conducted based CMIP6-GCMs across different basins for the climate 

change impact, especially IRBs. The coupled impact of future LULC and climate change will 

provides the clear idea about the future projections of water balance components along with 

streamflow. In recent years some of the studies were conducted the combined the impact of 

climate and LULC change in the IRBs by predicting the future LULC using different 

techniques. 
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CHAPTER 3 

METHODOLOGY 

3.1 General 

In the present chapter the overall methodology of research work is explained. The various 

datasets required for GCMs ranking subjectivity across India and climate change impact in 

Krishna River Basin are presented. In the first phase this study aims to explore the of 

subjectivity on GCMs rankings, particularly focusing on the past performance of GCMs from 

the CMIP6 phase in replicating maximum and minimum temperatures across India. Different 

ranking procedures are employed, encompassing a variety of components in the process, such 

as model evaluation criteria, criteria weight allocation methods, MCDM techniques and 

reference gridded datasets The grids with invariant rakings are find out and the top five GCMs 

are provided for each climate zone in India. In second phase, the concept of SU technique is 

employed to select the top five GCMs to analyse the spatio-temporal analysis of the 

precipitation over KRB. The empirical quantile mapping method was utilised to eliminate the 

biases present in the climate projections. Using the Reliability Ensemble Averaging (REA) 

technique, the MME mean of projections was produced and the spatiotemporal variations in 

precipitation under various SSPs are examined. In the third phase the selected top five GCMs 

used to analyse eleven (11) Expert Team on Climate Change Detection and Indices (ETCCDI) 

precipitation extremes indices and four seasonal precipitation indices across the KRB.  In the 

fourth phase, the study explores the climate change impacts on the WBC of KRB for three 

future periods using SWAT model. To improve the model performance and reduce the 

uncertainty in the output, 13 major reservoirs were considered based on the data availability 

from Central Water Commission (CWC) for setting up the model. The selected GCMs under 

four scenarios such as SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 are used to find the impact 

future climate change in precipitation, surface runoff, water yield, evapotranspiration and 

streamflow in the KRB using top 50% GCMs from eighteen (18) GCMs. In the fifth phase, this 

the study incorporated future LULC from 1-km future global LULC (Chen et al., 2022) datasets 

along with the selected GCMs in the SWAT model in the Tungabhadra River Basin (TRB) a 

major tributary of the KRB. A large portion of Karnataka depends on the TRB for water supply, 

irrigation and hydropower production. Therefore, it is crucial to evaluate how future LULC 

changes will interact with the basin's shifting climate scenarios. The overall proposed 
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methodology of research work is represented in Figure 3.1 and Figure 3.2 represents the 

methodology for the 1st objective of in GCM ranking across India. 

 

Figure 3.1 Overall Methodology of research work 
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Figure 3.2 Proposed methodology to rank GCMs using various combinations 
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3.2 Study Area 

3.2.1 General 

Two study areas are considered in the proposed methodology. To meet the 1st objective i.e., for 

the analysis of subjectivity involved in ranking of the CMIP6-GCMs the country India is used. 

And for the 2nd, 3rd and 4th objectives i.e., for the comprehensive analysis of climate change 

impact on WBC in various aspects the whole KRB was used. Finally, to meet the 5th objective 

i.e., to investigate the coupled impact future climate and LULC change the TRB which is major 

tributary of KRB is used. 

3.2.2 India  

India is a tropical monsoon country that lies between 6°44'N to 35°30'N latitude and 68°7'E to 

97°25'E longitude with a geographical area of 3,287,263 km2. Large range of weather 

conditions exists in India making generalizations really difficult. To facilitate generalizations, 

the study area is delineated into eight major homogenous climatic regions by employing 

Koppen-Geiger climate classification as shown in Figure 3.3. 

3.2.3 Krishna River Basin  

The Krishna River Basin (KRB) is the fifth largest river basin in the Indian subcontinent and 

one of the most significant. The KRB covering a geographical area of about 2, 59,000 km2 

(almost 8% of the total geography of India) is the second (2nd) largest river basin in peninsular 

India between 73°20' and 81°E longitude 13°5'–19°24'N latitude. The Krishna river originates 

in the Western Ghats near Mahabaleshwar in the state of Maharashtra and extends in 

Karnataka, Telangana and Andhra Pradesh states with a total length of 1400 km and finally 

flows into the Bay of Bengal. It has a number of tributaries, with Bhima, Musi and Munneru 

joining the primary tributaries on the left and Ghatprabha, Malprabha and Tungabadhra joining 

on the right. The KRB is divided into seven subbasins: Tungabadhra Upper and Lower, Bhima 

Upper, Bhima Lower, Krishna Upper, Krishna Middle and Krishna Lower. The majority of the 

basin is composed of level land with a semi-arid climate (Koppen Classification), with the 

southwest monsoon rains accounting for about 90% of the total precipitation. Between 1985 

and 2014, the basin's average annual precipitation varied from 403 mm in the south-east to 

3,108 mm in the south-west, with an average of 960 mm, as illustrated in Figure 3.4. The basin's 

average lowest and maximum temperatures are 20.73˚C and 32.2˚C respectively. There are 

about 47 hydro-meteorological stations in the basin and streamflow has been observed to be 
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more on August to November and less in March to May. Fourteen land use categories are 

present across the KRB with the 76% of agriculture land is dominating. Five soil classifications 

are observed in KRB with main types of soil are laterite soils, salty and alkaline soils, mixed 

soils, red soils, alluvium and black soils. According to the 2011 census, there were 74.2 million 

people living in the basin and over 68% of the people are rural dwellers who rely mostly on 

agriculture for their living (Sarma et al., 2011). Population growth causes a significant demand 

for water for industrial and residential uses, placing stress on the basin's water resources. The 

large-scale water rights projects that have been created in every state cause disputes between 

states. The basin is experiencing water stress as a result of using more water than is available 

(Biggs et al., 2007). Additionally, they contend that in order to formulate a policy for the 

allocation of water for future usage, it is imperative to evaluate the monthly variations in 

climate factors and their impact on runoff. The semi-arid condition of the KRB and its 

impending physical water scarcity make it extremely vulnerable to fluctuations in the climate, 

particularly when it comes to precipitation. (WWAP, 2012). The Tunga (147 km) and Bhadra 

(178 km) rivers converge to form the Tungabhadra River, which is the principal tributary of 

the Krishna River. At an altitude of 1,198 meters above mean sea level (MSL), in 

Varahaparvatha highlands of the Western Ghats, these rivers originate separately from 

Gangamoola. They eventually combine to form the Tungabhadra River, which originates in the 

“Shivamogga” district. The interstate multipurpose project called the Tungabhadra dam is 

situated near Hosapete in Munirabad, in the “Koppala” district of Karnataka state. The TRB 

spans 13°8'60 N to 16°13'35 N latitude and 74°46'52 E to 78°01'29 E longitude. The region is 

vital to the whole hydrology, with a catchment area of 63,916 km2 up to its mantralyam gauge 

point and converging in the Krishna River at Bavapuram. The southwest monsoon is major 

water resource for the TRB with the annual average precipitation is about 1100 mm (Bisht et 

al., 2018). The location map of the study area considered to meet the all the objectives is shown 

in Figure 3.3. 

3.3 Data used in the study 

The various sources and their data types that are required for the investigation are included in 

this section. The data includes Indian Meteorological Department (IMD), Climate Prediction 

Centre (CPC) data, CMIP6-GCMs, as well as geographical data such as soil maps, Digital 

Elevation Models (DEMs) and maps of LULC. These are explained in the sections that follow. 
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Figure 3.3 Location map of the Study area 
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Figure 3.4 Geographical distribution of precipitation over KRB for mean Annual (left), 

Monsoon (middle) and Pre-monsoon (right) prepared from IMD data for 1985-2014 

3.3.1 Indian Meteorological Department (IMD) data 

In India, the hydro-meteorological stations are maintained by CWC. Daily gridded 

precipitation of 0.25o X 0.25o, minimum and maximum temperature of 0.5o X 0.5o are obtained 

from Indian Metrological Department (IMD; https://www.imdpune.gov.in/). The precipitation 

dataset has no missing values and developed from 6,955-gauging stations distributed all over 

India (Pai et al., 2014). And this data is performed better than other global gridded datasets 

such as National Centres for Environment Predictors (NCEP), Coordinated Regional Climate 

Downscaling Experiment (CORDEX) and Global Precipitation Climatology Project (GPCP) 

(Bandyopadhyay et al., 2018). 

3.3.2 CMIP6-GCM data 

Daily precipitation, maximum and minimum temperature data from GCMs of CMIP6 phase 

repositories are considered in this study to meet the objectives. This study used Tier-1 SSPs 

scenarios, which comprise SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, to offer a complete 

set of forcing objectives that are comparable to the RCPs used in CMIP5 in terms of both 

amplitude and dispersion. (Gidden et al., 2019) as shown in Table 3.1. Various GCMs 

downloaded based on their availability for different objectives. The GCMs data can be accessed 

from Earth System Grid Federation (ESGF) portal (https:/esgf-node.llnl.gov/search/cmip6). 

3.3.3 Hydrological data 

Daily streamflow data for six gauging stations such as Mantralayam, T.Ramapuram, Yadagir, 

Keesara, Dameracherla, Vijayawada (mouth of KRB) were obtained CWC for the period 1970 

IMD;%20https:/www.imdpune.gov.in/).
(https:/esgf-node.llnl.gov/search/cmip6).
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to 2010. The information regarding monthly storage, volume, area, effective and gross storage 

capacity of the hydraulic structures and spillway designed capacities are downloaded from 

Water Resources Information System (WRIS-India) (https://indiawris.gov.in/wris/). 

3.3.4 Geo-Spatial data 

The primary geo-spatial datasets utilised as input for the SWAT model include soil, slope, 

LULC and DEM maps. A 30 m spatial resolution of DEM available form Shuttle Radar 

Topography Mission (SRTM) is used to delineate KRB and TRB. The required LULC of water 

base land use data contains crop specific digital layers of 400 m resolution, suitable for use in 

GIS is taken from water base (http://www.waterbase.org/) and digital soil map is taken from 

Food and Agriculture Organization (FAO), with a scale of 1:5,000,00 for KRB. The future 

LULC maps under SSP-RCP scenario for the respected three future time periods i.e., 2040, 

2065 and 2090 were extracted and is forced along with future climate data for the hydrological 

modelling of TRB (Chen et al., 2022). All these spatial maps represent heterogeneity of the 

catchment and are converted into required projected coordinate system. The DEM, LULC and 

soil maps for the KRB and TRB are shown in Figure 3.5. 

 

Figure 3.5 DEM, LULC and soil maps for Krishna and Tungabhadra river basins 

 

https://indiawris.gov.in/wris/
http://www.waterbase.org/
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Table 3.1 CMIP6 climate models and their sources used to meet all the objectives in this study 

S.NO GCM Name Model Source 
Resolution 

(Lat. X Lon.) 

Objec

tive-1 

Objec

tive-2 

Objectives

3,4,5 

1 
ACCESS-

CM2 

Commonwealth Scientific and Industrial 

Research Organisation, Australia 
1.25o X 1.875o 

   

2 
ACCESS-

ESM1-5 

Commonwealth Scientific and Industrial 

Research Organisation, Australia 
1.25o X 1.875o 

   

3 
AWI-CM1-1-

MR 

Alfred Wegener Institute, Helmholtz 

Centre for Polar and Marine Research, 

Germany 

0.94o X 0.94o 
   

4 BCC_CSM2-

MR 
Beijing Climate Center, China 1.12o X 1.13o 

   

5 BCC_ESM1 Beijing Climate Center, China 1.12o X 1.13o    

 

6 
CanESM5 

National Center for Atmospheric 

Research, Climate and Global Dynamics 

Laboratory, USA 

2.79o X 2.81o 
   

7 CESM2 

National Center for Atmospheric 

Research, Climate and Global Dynamics 

Laboratory, USA 

0.94o X 1.25o 
   

8 CESM2-

WACCM 

National Center for Atmospheric 

Research, Climate and Global Dynamics 

Laboratory, USA 

0.94o X 1.25o 
   

9 EC-EARTH3 

EC-EARTH consortium published at 

Irish Centre for High-End Computing, 

Netherlands /Ireland 

0.7o X 0.7o 
   

10 EC-EARTH3-

Veg 

EC-EARTH consortium published at 

Irish Centre for High-End Computing, 

Netherlands /Ireland 

0.7o X 0.7o 
   

11 FGOALS-f3-L Beijing Climate Center, China 1o X 1.3o    

12 GFDL-CM4 
NOAA Geophysical Fluid Dynamics 

Laboratory, USA 
1o X 1.25o 

   

13 GFDL-ESM4 NOAA Geophysical Fluid Dynamics 

Laboratory, USA 
1o X 1.25o    

14 GISS-E2-1-G NASA/GISS Goddard Institute for Space 

Studies, USA 
2o X 2.5o 

   

15 IITM 
Centre for Climate Change Research, 

Indian Institute of Tropical Meteorology 

Pune, Maharashtra, India 

1.88o X 1.88o 
   

16 INM-CM4-8 
Institute for Numerical Mathematics, 

Russia 
1.5o X 2o 

   

17 INM-CM5-0 
Institute for Numerical Mathematics, 

Russia 
1.5o X 2o    

18 IPSL-CM6A-

LR 
Institute Pierre Simon Laplace, France 1.27o X 2.5o 

   

19 MIROC6 
Atmosphere and Ocean Research 

Institute, University of Tokyo, Japan 
1.4o X 1.4o    

20 MPI-ESM-1-

2-HAM 

Max Planck Institute for Meteorology, 

Germany 

1.87o X 1.88o 

 
   

21 MPI-ESM1-2-

HR 

Max Planck Institute for Meteorology, 

Germany 
0.94o X 0.94o    

22 MPI-ESM1-2-

LR 

Max Planck Institute for Meteorology, 

Germany 
1.85o X 1.88o 

   

23 MRI-ESM2-0 
Meteorological Research Institute, 

Japan 
1.12o X 1.13o    

24 NESM3 
Nanjing University of Information 

Science and Technology, China 
1.87o X 1.88o 

   

25 NorCPM1 
Center for International Climate and 

Environmental Research, Norway 
1.89o X 2.5o 

   
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26 NorESM2-LM 
Center for International Climate and 

Environmental Research, Norway 
1.89o X 2.5o 

   

27 NorESM2-

MM 

Center for International Climate and 

Environmental Research, Norway 
0.94o X 1.25o 

   

28 SAM0-

UNICON 

Seoul National University, Republic of 

Korea 
0.94o X 1.250 

   

 

3.4 Procedure Involved in Subjectivity of GCM Rankings  

Two gridded datasets from IMD and CPC are used as reference datasets to evaluate CMIP6 

models for India study area. Based on the availability of the Tmax and Tmin data at daily temporal 

resolution for a longer period, the selection of these datasets are made. IMD gridded dataset is 

obtained at a spatial resolution of 0.5o x 0.5o, whereas the CPC dataset is developed using 

30,000 stations data (Xie et al., 2010) for the same spatial resolution. In order to rank these 24 

GCMs , they are re-gridded to a common spatial resolution raging from 2oX2o to 3oX3o (Ahmed 

, et al., 2019; Jiang et al., 2019; Johnson & Sharma, 2009; Khan et al., 2018; Lutz et al., 2016; 

Noor et al., 2019; Salman et al., 2018; Raju et al., 2017; Raju & Kumar, 2015; Woldemeskel 

et al., 2014). To regrid the data to the spatial resolution of reference gridded datasets (Hassan 

et al., 2020; Pour, Shahid, & Chung, 2018; Tiwari et al., 2014), all the acquired GCMs are 

regridded to a spatial resolution of 0.5ox0.5o using bilinear interpolation. Six indicators, 

namely, NSE, KGE, MAE, Fourth Root Mean Quadrupled Error (R4MS4E), BD and SU are 

considered among the numerous performance indicators available. Two sets of criteria are 

prepared with each set consisting of three chosen model evaluation metrics. NSE, MAE and 

BD are enveloped as first set of criteria and KGE, R4MS4E and SU are fixed as the second set 

of criteria. The first metric in each set will be a dimensionless coefficient that assess the 

strength of linear dependence between modelled and observed values with accepted standards. 

NSE and KGE are chosen for this purpose as they are globally accepted and extensively used 

for model evaluation. The second metric in each set will be based on residual error between 

observed and simulated time series in respective variables. MAE and R4MS4E are selected for 

this purpose, where the former allocates equal weights to all the residual errors and the latter 

allocates higher weights to the errors with higher magnitudes due to a higher power function 

used in it. MAE yields information about overall match between observed and simulated 

variables, whereas R4MS4E informs the match between extreme events. The third metric is a 

frequency-domain based metric and BD and SU are employed in it. BD measures the closeness 

between the Probability Density Functions (PDFs) of the simulated and observed values, while 

SU is computed based on information entropies of the observed and simulated data in SET-2. 
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The amount of common information entropies between two time series are quantified using 

Mutual Information (MI). SU normalizes the MI in order to overcome the biasedness of MI 

with higher number of values. The formulation of all the six metrics are tabulated in Table 3.2 

Table 3.2 Model performance evaluation metrics with respective equations, range and ideal 

values 

S.No 

Performance 

Evaluation 

Metric 

Equation Range 
Ideal 

value 

1 Nash Sutcliff 

Efficiency (NSE) 
1 − 

∑ (𝑃𝑖 − 𝑂𝑖)
2𝑛

𝑖=1

∑ (𝑂𝑖  −  𝑂̅𝑖)
𝑛
𝑖=1

 -∞ to 1 1 

2 Bhattacharyya 

Distance (BD) 
−𝑙𝑛 (∑√𝑓𝑃𝑖𝑓𝑂𝑖

𝑛𝑏

𝑖=1

) 0 to ∞ 0 

3 Mean Absolute 

Error (MAE) 

∑ |(𝑂𝑖 − 𝑃𝑖)|
𝑛
𝑖=1

𝑛
 0 to ∞ 0 

4 
Fourth Root Mean 

Quadrupled Error 

(R4MS4E) 

√
∑ (𝑃𝑖 − 𝑂𝑖)
𝑛
𝑖=1

4

𝑛

4

 0 to ∞ 0 

5 Kling Gupta 

Efficiency (KGE) 
1 − √(𝑟 − 1)2 + (

µ𝑠𝑖𝑚

µ𝑜𝑏𝑠
− 1)2 + (

𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
− 1)2  -∞ to ∞ 0 

6 Symmetric 

Uncertainty (SU) 

2 
𝑀𝐼 (𝑂𝑖 , 𝑃𝑖)

𝐻(𝑂𝑖) + 𝐻(𝑃𝑖)
;  

𝑀𝐼 (𝑂𝑖 , 𝑃𝑖) =  ∑𝑝(𝑂𝑖 , 𝑃𝑖) 𝑙𝑜𝑔
𝑝(𝑂𝑖 , 𝑃𝑖)

𝑝(𝑂𝑖) . 𝑝(𝑃𝑖)

𝑛𝑏

𝑖=1

 

0 to 1 1 

Where, 𝑃𝑖, 𝑂𝑖 represent the GCM predicted and reference (observed) values at ith time 

respectively; 𝑂̅𝑖represents the mean of reference value and n represents the number of data 

points. f𝑝, f𝑜 represent the probabilities calculated from the frequencies of predicted and 

reference values at a given bin respectively and “nb” represents the total number of bins chosen 

to study the match between PDF’s observed and simulated values. 𝐻(𝑂𝑖),𝐻(𝑃𝑖) represent 

entropies of observed and predicted values respectively. p(𝑂𝑖), p(𝑃𝑖) represent observed and 

simulated probabilities at ith bin respectively and p(𝑂𝑖, 𝑃𝑖) represents the joint probability. 

3.4.1 Payoff Matrix 

A payoff Matrix (M) is generated at each grid with GCMs as rows and performance criteria 

representing columns. The payoff matrix may have a range of values and are brought to a 



38 
 

common range, i.e. 0 to 1, by linear sum normalization technique. The normalized element of 

a payoff matrix Nij is given in Eqn. 3.1. 

𝑁𝑖𝑗 = 
𝑀𝑖𝑗

∑ 𝑀𝑖𝑗
𝐺
𝑖=1

          (3.1) 

Where 𝑀𝑖𝑗 is the value of jth model evaluation metric of ith GCM and G is the total number of 

GCMs. 

3.4.2 Objective Weights of Criteria 

Two objective weighting methods are employed namely Entropy method and Criteria 

Importance Through Intercriteria Correlation (CRITIC) method. Entropy method is based on 

the concept of entropy which measures the uncertainty in the context of probability theory; 

larger the entropy lesser the information quantity. The linear sum normalization is opted so that 

all the normalized values in each column acts a probabilities. By measuring the relative 

intensities of criteria, weights are allocated. The weights for each criteria are calculated using 

Eqns. 3.2 to 3.4. 

𝐸𝑗 = −
1

𝐺
∑ 𝑁𝑖𝑗 𝑙𝑜𝑔𝑒 𝑁𝑖𝑗
𝐺
𝑗=1         (3.2) 

𝑑𝑗 = 1 − 𝐸𝑗          (3.3) 

𝑤𝑗 = 
𝑑𝑗

∑ 𝑑𝑗
𝐽
𝑗=1

          (3.4) 

Where, 𝐸𝑗, 𝑑𝑗, 𝑤𝑗 are respectively entropy, divergence and weight of jth indicator; and J is total 

number of criteria in the payoff matrix. 

As Entropy method uses logarithmic transforms to compute weights of each criteria, negative 

values should be avoided. For instance, logarithm transform function in entropy fails when the 

values of NSE or KGE are less than or equal to zero. Hence, to resolve this issue, 1-NSE and 

1-KGE are used in the payoff matrix to avoid negative values and facilitate the computation of 

criteria weightage through entropy method. Instead of using SU, 1-SU is tabulated in the payoff 

matrix to make the ideal solution of both sets to (0,0,0). In CRITIC method the values of payoff 

matrix 𝑀𝑖𝑗 are transformed to the interval [0, 1] based on the concept of ideal point. The 
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transformed value 𝐶𝑖𝑗, the quantity of information (𝑄𝑗) and the objective weights (𝑤𝑗) of each 

criteria are computed using Eqns 3.5 to 3.7. 

𝐶𝑖𝑗 =
𝑀𝑖𝑗−𝑀𝑗

∗∗

𝑀𝑗
∗−𝑀𝑗

∗∗           (3.5) 

𝑄𝑗 = 𝜎𝑗 ∗ ∑ (1 − 𝑟𝑗𝑘)
𝐽
𝑘=1         (3.6) 

𝑤𝑗 = 
𝑄𝑗

∑ 𝑄𝑗
𝐽
𝑗=1

          (3.7)  

Where, 𝑀𝑗
∗, 𝑀𝑗

∗∗ represent the ideal and anti-ideal values of jth criteria of payoff matrix 

respectively. Standard deviation of each column (𝜎𝑗) is computed which indicates the contrast 

intensity of each criterion. A symmetric matrix (𝐽 × 𝐽) with element 𝑟𝑗𝑘 is formulated, where 

the value of 𝑟𝑗𝑘 is linear correlation coefficient between jth column and kth column.  

3.4.3 MCDM Techniques 

Two MCDM techniques, TOPSIS and CP are preferred among several MCDM techniques. 

TOPSIS method determines the alternative with shortest distance to ideal and longest distance 

to anti-ideal solutions. CP ranks the conflicting alternatives by an acceptable compromise 

formula.  

3.4.3.1 Fuzzy TOPSIS (FTOPSIS) 

FTOPSIS has an added advantage due to its potential to address imprecision induced by 

interpolation techniques in the calculated metrics and Triangular membership function for 

criteria are adopted in this study. The membership function of 𝑁𝑖𝑗 (normalised performance 

criteria), their ideal (𝑁𝑗
∗) and anti-ideal (𝑁𝑗

∗∗) are defined as 𝑁̃𝑖𝑗(𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗), 𝑁̃𝑗
∗
(𝑥𝑗

∗, 𝑦𝑗
∗, 𝑧𝑗

∗) 

and 𝑁̃𝑗
∗∗

(𝑥𝑗
∗∗, 𝑦𝑗

∗∗, 𝑧𝑗
∗∗) respectively; where x, y and z represent lower, middile and upper 

values of the triangular membership function. The spread of the triangle is equally distributed 

on either sides and the spread is determined as min{(1 − 𝑚𝑎𝑥(𝑁𝑗),𝑚𝑖𝑛(𝑁𝑗)}. The proximity 

of an alternative (i) from the Fuzzy Positive Ideal Solution {FPIS(0,0,0)} and Fuzzy Negative 

Ideal Solution {FNIS(1,1,1)} are represented by 𝐷𝑆𝑖
+and 𝐷𝑆𝑖

− respectively. Relative closeness 

(𝐶𝑅𝑖) of each alternative is calculated using Eqns. 3.8 to 3.10 and higher 𝐶𝑅𝑖 values are 

preferred.  
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𝐷𝑆𝑖
+ = ∑ 𝑤𝑗 × 𝑑(𝑁̃𝑖𝑗, 𝑁̃𝑗

∗
) = ∑ 𝑤𝑗 ×

√(𝑥𝑖𝑗− 𝑥𝑗
∗)
2
+(𝑦𝑖𝑗− 𝑦𝑗

∗)2+(𝑧𝑖𝑗− 𝑧𝑗
∗)2

3

𝐽
𝑗=1

𝐽
𝑗=1   (3.8) 

𝐷𝑆𝑖
− = ∑ 𝑤𝑗 × 𝑑(𝑁̃𝑖𝑗, 𝑁̃𝑗

∗∗
) = ∑ 𝑤𝑗 ×

√(𝑥𝑖𝑗− 𝑥𝑗
∗∗)

2
+(𝑦𝑖𝑗− 𝑦𝑗

∗∗)2+(𝑧𝑖𝑗− 𝑧𝑗
∗∗)2

3

𝐽
𝑗=1

𝐽
𝑗=1   (3.9) 

𝐶𝑅𝑖 = 
𝐷𝑆𝑖

−

(𝐷𝑆𝑖
−+𝐷𝑆𝑖

+)
         (3.10) 

3.4.3.2 Compromise Programming (CP) 

Compromise Programming (CP) is a distance based MCDM technique that aggregates multiple 

criteria into a distance metric called 𝐿𝑝 and identifies the solution that has minimal distance 

from the ideal solution and is computed using Eqn. 3.11. 

𝐿𝑝(𝑖) = [∑ 𝑤𝑗|𝑁𝑗
∗ − 𝑁𝑗(𝑖)|

𝑝𝐽
𝑗=1 ]

1

𝑝                   (3.11) 

Where,   𝑁𝑗(𝑖)is the normalized value of indicator j for ith GCM , 𝑁𝑗
∗ is the normalized ideal 

value of indicator j, 𝑤𝑗 is weight assigned to indicator j and p is parameter (1 for linear and 2 

for squared Euclidean distance). The GCM with lower Lp metric value is as the most prefered 

one. The proposed methodology to rank GCMs is dipicted in Figure 3.2. 

3.5 Precipitation Projection across KRB 

The procedure involving the selection of GCMs and spatiotemporal projections of the 

precipitation changes are outlined below.   

Precipitation simulations of 21 GCMs are re-gridded to reference dataset of IMD spatial 

resolution at 0.25o x 0.25o using bilinear interpolation technique and bias corrected using 

quantile mapping method. 

2. The performance of 21 GCMs is evaluated against IMD as reference data by applying SU at 

348 grid points covering KRB, for the period of 1951-2014. 

3. GCM rankings are estimated based on the aggregated score at all grids obtained using pattern 

of ranking scores using MCDA over KRB. 
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4. Top five GCMs were selected based on the aggregated score and future precipitation 

simulations for different SSPs are bias corrected using same quantile method. 

5. Development of MME of top five GCMs using REA method to reduce the uncertainty in 

projections. 

6. Evaluation of spatiotemporal changes of precipitation over KRB during 2015-2040, 2041- 

2070 and 2071-2100.  

The procedure used for the section of GCMs using SU is given below 

3.5.1 Quantile Mapping Bias Correction 

However, GCMs are extracted and re-gridded to the spatial resolution of observed dataset of 

0.25o x 0.25o, there will be bias in the extreme events. Hence this bias should be corrected 

before GCM performance assessment for better matching of simulations with the observed 

dataset. In present study a non-parametric Quantile Mapping (QM) method (Cannon, 2016; 

Cannon et al., 2015; Gudmundsson et al., 2012) is employed to remove the bias in each month 

of GCMs. QM technique adopts the Cumulative Distribution Function (CDF) of simulated data 

to that of observed data. The transformed function for correcting the bias in simulated data is 

shown in eqn. 3.12. 

𝑅𝑜 = 𝐹𝑜
−1(𝐹𝑚(𝑅𝑚))         (3.12) 

Where, 𝑅𝑚 and 𝑅𝑜 are the modelled and observed rainfall, 𝐹𝑚 denotes CDF of 𝑅𝑚 and 𝐹𝑜
−1 

denotes the inverse CDF (quantile function) corresponding to 𝑅𝑜. The empirical CDF of 

simulated and observed data is estimated and is applied for simulated GCM data. Figure 3.6 

displays the quantile plot that compares the precipitation data of a grid point that has been 

before and after bias corrected. For every climate model at 348 grid points, the same bias 

correction process is used. 

 

Figure 3.6 Quantile Mapping bias correction of a grid point in KRB 
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3.5.2 Symmetric Uncertainty (SU) for Selection of GCMs 

The selection of relevant GCMs for climate studies becoming major challenge in projecting 

the climate. SU is an information entropy theoretical filter-based method which is computes 

similarity between the observed and simulated time series in terms of MI entropies. If P(A) and 

P(B) denotes the Probability Density Functions (PDF) of observed and simulated variables, the 

joint PDF will be P(A,B) then the  MI between A and B can be quantified as Eqn. 3.13. 

𝑀𝐼(𝐴; 𝐵) =  ∑𝑃(𝐴, 𝐵) 𝑙𝑜𝑔
𝑃(𝐴,𝐵)

𝑃(𝐴) .𝑃(𝐵)
             (3.13) 

From the properties of MI, it can be written as differences in the sum of individual entropies 

and joint entropy using Eqn. 3.14. 

𝑀𝐼(𝐴; 𝐵) = 𝐻(𝐴) + 𝐻(𝐵) − 𝐻(𝐴, 𝐵)                  (3.14) 

Where, 𝐻(𝐴), 𝐻(𝐵) 𝑎𝑛𝑑 𝐻(𝐴, 𝐵),  represents entropies of A, B and joint entropy of A, B, 

respectively. 

The SU can overcome the drawback of the MI which is biased to higher number of values by 

normalising the MI with the entropies of two variables is given in Eqn. 3.15. Therefore, SU is 

an unbiased estimation of similarity between two time series with the range between 0 to 1. 

Furthermore, without requiring knowledge of the nature of the underlying distributions and 

conditional dependencies, the SU offers a generic measure that connects dependent and 

independent variables. Additionally, SU performs well when selecting features from large 

datasets. When rating GCMs, the SU filter is a helpful alternative to using traditional statistical 

criteria like coefficient of determination and normalised root mean square error. (Homsi et al., 

2020; Pour et al., 2018; Press et al., 1996; Salman et al., 2018; Wu & Zhang, 2004). 

𝑆𝑈 = 2 × 
𝑀𝐼(𝐴;𝐵)

𝐻(𝐴)+𝐻(𝐵)
                                                                                        (3.15) 

The SU between two variables is 0 means no agreement between two random variables and 

this occurs if and only if the two variables are statistically independent. If the SU value is 1 

means perfect agreement between two variables (Shreem et al., 2016). 
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3.5.3 GCMS Ranking Using MCDM 

Aggregation of information from different sources using MCDM is found to efficient in 

selecting the alternatives (Raju et al., 2017; Salman et al., 2019). At a single grid point ranking 

of GCM can be assessed easily. When multiple grids involve it is difficult to select the GCMs, 

because of distinct results will be given by GCMs at different grid points. MCDM techniques 

will be effectively used to overcome this complexity and used for GCMs ranking for KRB. The 

following steps involved in the MCDM technique. 

i) GCMs are ranked 1st 2nd 3rd etc. at each grid point using score obtained by using SU. ii) 

Specified weight (𝑤𝑖) is given to each GCM such way that inverse weight is applied to ranking 

of GCMs. iii) the frequency(𝐹𝑟𝑖) of each GCMs for each rank was calculated. And Total 

Ranking Weight (TRS) of each GCM calculated using MCDM given in Eqn. 3.16 

𝑇𝑅𝑊 = ∑ 𝐹𝑟𝑖 ∗  𝑤𝑖
5
𝑖=1         (3.16) 

iv) The GCMs final ranking was find out by sorting the Total Ranking Weight (TRW) in 

descending order. In the present study the GCMs rankings up to 5th position in each grid only 

considered and remaining are ignored because it is assumed that they cannot simulate the 

precipitation well at that grid point. 

3.5.4 Reliability Ensemble Averaging (REA) 

With more number of GCMs the projections will vary from one GCM to other because of 

structural differences (Sachindra et al., 2014). The Multi-model Ensemble Mean (MME) will 

reduce the uncertainty involved in the individual GCM and can enhance  accuracy of 

projections (Iqbal et al., 2020; Pour, Shahid, Chung, et al., 2018; Tebaldi & Knutti, 2007; H. 

Zhang & Huang, 2013). Generally MME approaches are divided in to two types. (i) Simple 

Ensemble average (SEM) and (ii) Weighted Ensemble Method (WEM). Equal weightage is 

allotted to each GCM in SEM whereas, in WEM the weights are allocated by based on 

historical relationship between observations and GCMs (Sanchez-Gomez et al., 2009). REA 

method is used to find the weights of the selected five GCMs and projections of different SSP 

scenarios. REA can be used to quantify uncertainty of multiple GCMs prior to hydrological 

modelling that reduces the vagueness of using projections of multi models (Chandra et al., 

2015). REA method incorporates two reliability criteria to assign weights to GCMs such as 

“model performance” where the capability of the model to capture the original data series and 

“model convergence” where model simulation is converging to a specified forcing scenario. 
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Procedure involved in REA method to get the weighted GCM projection time series is as 

follows: 

1. The RMSE is estimated by considering Cumulative Distribution Function (CDF) 

deviations for the observed precipitation and all the GCM simulations for control time 

period. The inverse of the RMSE values are treated as weight proportionality and 

weighted sum across all the GCMs is equal to 1.The higher weights assigned to best 

performing GCMs. The initial weight of GCMs computed using Eqn. 3.17. 

𝑊𝑖 = 
1
𝑅𝑀𝑆𝐸𝑖
⁄

∑ 1
𝑅𝑀𝑆𝐸𝑖
⁄𝑛

𝑖=1

               𝑖 = 1,2,3, ………… . , 𝑛                      (3.17)

       

2. The weights which are obtained through the model performance criteria treated as 

initial weights which can be used for performing respective GCM model convergence. 

3. The weighted mean CDF (𝐶𝐷𝐹𝑀
𝐹) for future scenario is estimated by multiplying the 

corresponding initial weight(𝑊𝑖) with CDF of the future simulation of ith  GCM (𝐶𝐷𝐹𝑖
𝐹) 

using Eqn.3.18. 

              𝐶𝐷𝐹𝑀
𝐹 = ∑ 𝑊𝑖 ∗  𝐶𝐷𝐹𝑖

𝐹𝑛
𝑖=1        (3.18) 

4.  Now, RMSE will be computed between CDF of individual GCMs projections and 

future weighted mean CDF. 

5. Next, the mean of the inverse of RMSE estimated using steps 1 and 4 is averaged, 

therefore the new weights are allocated to GCMs proportionally used, such that the new 

weights sum will become 1 for all the GCMs. 

6. To satisfy the model convergence conditions, repeat steps 2 through 5 until the old 

weight and the new weight are equal. 

The procedure which is explained above is applied at 348 grid points over the KRB for the 

variable rainfall and the final weights obtained are multiplied with respective scenario in a grid 

therefore the summation of the weighted values will be considered as ensemble average for 

that specified grid. 

The spatiotemporal variations of rainfall was evaluated from the MME precipitation 

projections and analysed near future 2015 – 2040, against historical period 1989-2014, mid 

future (2041 – 2070) and end future (2071-2100) against 1985- 2014 to find changes in the 

KRB. 
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3.6 Precipitation Extremes Calculation 

To meet this objective the top five GCMs were considered based on daily data after applying 

SU concept as mentioned in the section 3.5.2 and 3.5.3. The present study used eleven (11) 

ETCCDI extreme precipitation indices (TOTPR, R95P, R99P, RX1day, RX5day, R10, R20, 

R50, CWD, CDD and SDII) which are widely used across the globe (Alsarmi & Washington, 

2014; John et al., 2022; X. Zhang et al., 2011) and four seasonal precipitation indices (Winter, 

Post-monsoon, Monsoon, Pre-monsoon) whose definitions are presented in Table 3.3. 

Table 3.3 Extreme precipitation indices and seasonal precipitation indices and their 

definitions (PP = Precipitation). 
Name of Indice Index Definitions Units 

 Total annual-wet day PP TOTPR daily PP sum > 1.0mm mm 

very heavy wet days R95p Total annual PP when PP > 95th percentile mm 

extremely wet days R99p Annual total PPR when PP> 99th percentile mm 

Max 1-day PP RX1day Yearly maximum 1-day PP mm 

Max 5-day PP RX5day Yearly maximum consecutive 5-day PP mm 

Count of  slightly heavy PP days R10 Annual number of days where PP ≥ 10 mm Days 

Count of heavy PP days R20 Annual number of days where PP ≥ 20 mm Days 

Count of very heavy PP days R50 Annual number of days where PP ≥ 50 mm Days 

Consecutive Wet Days CWD Maximum count of consecutive days with 

PP ≥1 mm 

Days 

Consecutive Dry Days CDD Maximum number of consecutive days 

with PP < 1 mm 

Days 

Simple Daily Intensity Index SDII Total annual PP divided by the number of 

wet days (PP ≥ 1.0 mm) in the year 

mm/day 

Total winter PP Winter Total winter PP in wet days mm 

Total post-monsoon PP Post-monsoon Total post-monsoon PP in wet days mm 

Total monsoon PP Monsoon Total monsoon PP in wet days mm 

Total pre-monsoon PP Pre-monsoon Total pre-monsoon PP in wet days mm 

 

3.6.1 Trend Analysis 

Non-parametric Mann-Kendall (MK) test (Kendall 1975; Mann 1945) is employed to analyse 

the temporal trends of precipitation extremes in the KRB for the IMD observed period (1973-

2003). The MK test is independent, not effected by outliers and missing data to detect the trend 

in variables such as precipitation, temperature and streamflow. (Longobardi and Villani 2010; 

Asfaw et al. 2018; Ali et al. 2019). The slope of the trend line was determined using Sen’s 

method (Sen, 1968; Theil, 1992) at a 5% level of significance. The MK statistic (S) indicates 
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the direction of the trend and is computed as       

    

                                                                    S =∑ ∑ sgn(tj − ti)

r

j=i+1

r−1

i=1

                                          (3.19) 

 

Where, tj and ti refers to observations with j > i and r is the length of the dataset            

                                                  sgn(tj − ti) = {

1     if  (tj − ti) > 0

0     if  (tj − ti) = 0

−1     if  (tj − ti) < 0

                                     (3.20) 

 

In the case of large datasets (r > 10), MK statistic (S) is approximately normally distributed 

with mean zero and variance σs is given by 

 

                                              σs =
t(t − 1)(2t + 5) − ∑ oi(oi − 1)(2oi + 5)

x
i=1

18
                  (3.21) 

 

Where, x = count of tied groups, oi denotes the number of tied data of extent i, tied group 

represents a set of data with the same value.  

The standard normal test statistic Zs is estimated as: 

 

                                              Zs =

{
 
 

 
 
S − 1

√σs
   if  S > 0

0            if  S = 0
S + 1

√σs
   if  S < 0

                                                                   (3.22) 

 

Negative and positive values of Zs indicates decreasing and increasing trends respectively. 

The slope estimator of the trend (Q) is computed using Theil–Sen Approach (TSA) as follows 

 

                                                    Q =  
(tj−ti)

(j−i)
    For j>i                                                            (3.23) 

 

Sen's slope (Y) is computed from the median of the slope as  

Sen (Y) = Median (Q) 
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3.6.2 Correlation Analysis  

The daily discharge data at Vijayawada gauge station, the terminal outlet of the KRB 

downstream is used in this study. Daily discharge data available from 1973-2003 is used to 

compute Average Annual Daily Discharge (AADD) and Maximum Annual Daily Discharge 

(MADD). Pearson correlation coefficient (r) is used to analyse the association between the 

discharge with extreme precipitation indices and among the extremes in the KRB. The Support 

Vector Machine (SVM) regression is developed between Annual TOTal PRecipitation 

(TOTPR) and (AADD) to predict the future streamflow. For the detailed methodology of this 

SVM technique, the readers can refer to (Ghosh and Mujumdar 2008; Ghosh 2010). Finally the 

spatial distribution of the future precipitation extremes were analysed. 

3.7 Hydrological Model Set Up 

Among the availble18 CMIP6-GCMs, SU is used to identify the top 50% of GCMs for 

hydrological modelling. For the current investigation, SWAT has been selected to simulate the 

hydrological fluxes of TRB and KRB. The SWAT model has the capability to simulate the 

impacts of the long term climate and LULC variations on the hydrology in the large complex 

catchments (Arnold et al., 2012; Neitsch et al., 2011;  Wang et al., 2008). SWAT model divides 

the entire catchment into sub-catchments, based on topography and then segregates into 

Hydrological Response Units (HRUs) using the unique combinations of slope, LULC and soil 

classes. The HRUs are split vertically divided into various control volumes, such as surface 

layer, root zone, shallow aquifer and deep aquifer. By using climate data and LULC patterns, 

SWAT model can estimate anticipated watershed scenarios. Moreover, it has the ability to 

evaluate streamflow variability by taking into account forecasted climate variables for the 

future. Two sub-basins such as KRB and TRB are considered for the SWAT application of 

hydrological modelling. KRB is used for the climate change impact assessment of WBC for 

four SSP scenarios namely, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. The TRB is used for 

the investigation of the coupled impact of future climate and LULC for two SSP scenarios 

namely, SSP1-2.6 and SSP5-8.5. The entire KRB is divided into 85 sub-basins after delineation 

process and 5% overlap of LULC, soil and slope is provided to define HRUs resulting into 

1490 HRUs as shown in Figure 3.7. The water storage structures in any basin will significantly 

influence the performance of the model which shows impact on the WBC (Chanapathi & 

Thatikonda, 2020; Sahoo et al., 2018). To improve the model performance and reduce the 

uncertainty in the output, thirteen (13) major reservoirs such as Bhadra, Tungabhadra, 
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Nagarjunasagar, Srisailam, Almatti, Koyana, Narayanapura, P.D. Jurala, Ujjaini, Malaprabha, 

Pulichintala, Hidkal and Vaanivilas are considered based on the data availability from CWC 

for setting up the model. Various details of reservoirs are provided such as, area, volume, 

principal, gross storage, live capacity, principle volume, emergency, principle surface area, 

design flood, maximum, minimum monthly outflows, target storage capacities and 

consumptive storages. The model set observed data for thirty-four years (1970-2003) was 

considered for the calibrating and validating the SWAT model. The first 3 years (1970-1972) 

data is taken as warmup period. Using the Sequential Uncertainty Fitting (SUFI-2) technique 

in the SWAT-CUP, the SWAT model is validated and calibrated (Abbaspour et al., 2015). Prior 

to calibration, the sensitivity of the model parameters influencing streamflow is estimated in 

the SWAT-CUP. The p-values and t-stat values are used to identify the sensitive parameters, 

which can influence the model output. Smaller p-values with larger t-stat represents higher 

sensitivity for the optimization function and thus the observed variable i.e., discharge. Relative 

significance is represented by t-stat, while p-value represents the significance of sensitivity 

(Sinha et al., 2020).  

The TRB is split into 25 sub-basins after the SWAT delineation of the basin. The sub-basin 

discretization for the SWAT model is shown in Figure 3.8. The model was simulated from 

1978-2010, with first 3 years considered as warmup period. The 20 year period from 1981 to 

2000 is used to calibrate the model and remaining 10 year period from 2001 to 2010 is used to 

validate the model using SUFI-2 algorithm in the SWAT-CUP. 
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Figure 3.7 Geographical location along with model set up of KRB 

 

Figure 3.8 Soil map and watershed delineation of the TRB 

3.7.1 LULC change under SSP-RCP scenarios 

The future LULC maps under SSP-RCP scenario for the respected three future time periods i.e 

2040, 2065 and 2090 are extracted and is forced along with future climate data for the 

hydrological modelling. 
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3.8 Summary 

This chapter describes the quantitative and qualitative assessment on climate and LULC change 

impact on the KRB. Sensitivity analysis of GCM rankings were analysed using different 

ranking procedures. A popular method called SU is employed at each grid location to select 

suitable GCMs for projecting the climate change impact study. Spatio-temporal variation 

precipitation extreme indices were analysed across KRB. SWAT model is used to find the 

temporal variation of WBC along with streamflow using top 9 GCMs and their ensemble in 

KRB and TRB.  
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

4.1 General 

Approaches to fulfil the goals of the research outlined in Chapter 3 are implemented in the 

research domain. This chapter provides an overview of the findings related to the study's 

several goals. The first objective applies to all of India, as was previously discussed, whereas 

objectives 2, 3 and 4 are applicable to KRB and the fifth objective is applicable to TRB. A 

comprehensive explanation follows the presentation of the results in the form of tables, graphs 

and box plots. 

4.2 Ranking of CMIP6-GCMs for Tmax and Tmin 

The main aim of this study is to systematically analyse the uncertainties in the selection of 

climate models. For this purpose, various combinations are employed by changing MCDM 

techniques (FTOPSIS and CP), performance evaluation metrics (NSE, MAE, BD, KGE, 

R4MS4E and SU), weightage allocation methods (Entropy and CRITIC) and reference gridded 

datasets (IMD and CPC gridded datasets). For each variable namely, Tmax and Tmin the skill of 

CMIP6 based GCMs in replicating the reference values is evaluated using 16 combinations. 

The variability of ranking patterns is assessed by keeping same reference dataset with different 

evaluation methods (MCDM techniques, performance evaluation metrics and criteria 

weighting methods). 

4.2.1 Ranking pattern with IMD dataset 

The spatial ranking patterns of Tmax and Tmin are plotted in Figure 4.1 and 4.2 with IMD 

reference dataset. With the spatial distribution of top ranked GCMs, it can be observed that the 

GCM rankings are invariant at some of the grids irrespective of the evaluation methods. The 

number of grids with invariant ranking patterns using 8 different ranking procedures with IMD 

as reference dataset for Tmax and Tmin are 455 and 280 respectively. It can also be noticed that 

the scatter in spatial ranking patterns of Tmin are high in comparison to that of Tmax. The grids 

with stable performance of GCMs in simulating Tmax and Tmin across all the chosen evaluation 

methods are identified and plotted in Figure 4.3. 
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Figure 4.1 Gridwise ranking of GCMs for Maximum Temperature (Tmax) for IMD 

 

 

Figure 4.2 Gridwise ranking of GCMs for Minimum Temperature (Tmin) for IMD 
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Figure 4.3 Spatial distribution of GCMs with constant ranking patterns using 8 different 

ranking procedures for IMD, Tmax (left) and Tmin (right) dataset 

 

The stable performance of GCMs at those grids is attributed to homogenous climatic zones 

which are delineated using Koppen-Geiger climate classification. As the temperature depends 

upon the geographical and topographical features, such as latitude and elevation of the location, 

the performance of GCM is also attributed to the elevation and latitude. To facilitate this, the 

whole study area is classified into low (0-20th percentile), medium (20-80th percentile) and high 

(80-100th percentile) elevation zones. From Figure 4.1 for Tmax, it can be noticed that 

NorESM2-MM is performing well in all parts of BSh, BWh zones which are arid and Cwa with 

warm temperatures at all elevation zones. MPI-ESM1-2-HAM is performing well in the low 

elevation zones of Aw, with high summer temperatures near Tropic of Cancer, and Cwa zone. 

ACCESS-CM2 is reasonably good in the low elevation zones of Aw in the southern parts of 

India. NorESM2-MM is performing well in the medium range elevation zones of Aw. For Tmin, 

the following conclusions are drawn. EC-Earth3- Veg is performing well in the high elevation 

zones of Aw, BSh and Cwa. The performance of AWI-CM-1-1-MR is found to be good in low 

elevation zones of Cwa and NorCPM1 is performing well in the low elevation zones of Aw. In 

the medium range elevation zones of Cwa and Aw, MIROC6 is found to be performing well. 
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In the high and medium range elevation zones of BSh and BWh, MPI-ESM-1-2-HAM is 

reasonably good. 

4.2.2 Ranking patterns with CPC Dataset 

Grid wise ranking patterns of Tmax and Tmin for CPC reference dataset are shown in Figure 4.4 

and 4.5. The number of grids with constant ranking patterns using 8 different ranking 

procedures with CPC as reference dataset for Tmax  and Tmin are 314 and 201 respectively. The 

grids with stable performance of GCMs in simulating Tmax and Tmin across all the chosen 

evaluation methods are identified and plotted in Figure 4.6. 

 

  

Figure 4.4 Gridwise ranking of GCMs for Maximum Temperature (Tmax) for CPC 
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 Figure 4.5 Gridwise ranking of GCMs for Minimum Temperature (Tmin) for CPC 

 

Figure 4.6 Spatial distribution of GCMs with constant ranking patterns using 8 different 

ranking procedures for CPC, Tmax (left) and Tmin (right) dataset 
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By seeing the spatial distribution of top ranked GCMs for Tmax, it can be observed that except 

in high elevation zones of BSh and Aw, the ranking patterns are approximately similar to the 

ranking patterns obtained with IMD as reference dataset. For Tmin, it can be observed that the 

ranking of GCMs with CPC dataset are highly scattered while rankings with IMD dataset are 

clustered. This shows the significance of reference dataset in ranking procedure. 

4.2.3 Sensitivity Analysis of Ranking Patterns 

The sensitivity of ranking patterns to each individual components of ranking procedure 

(MCDM technique, input criteria, weighting technique and reference gridded dataset) is studied 

to understand the significance of each component.  For example, the effect of MCDM 

technique on ranking procedure is analysed by just altering the MCDM technique (FTOPSIS 

and CP) alone with all the other components unaltered. Similarly, the impact of every single 

component on the ranking patterns is analysed by counting the number of grids with invariant 

rankings which are tabulated in Table 4.1. 

The number of grids with invariant ranking patterns due to alteration of reference gridded 

datasets is less than 600 for Tmax and less than 400 for Tmin. The ranking patterns are sensitive 

to reference datasets and accounts for nearly 50% changes in the ranking patterns. Therefore, 

the reference dataset has a substantial influence on the ranking of GCMs. Even the remaining 

three components effect the ranking, but they are mutually dependent on each other. 

The effect of input criteria is investigated by changing the two sets of criteria. The metrics 

enveloped in two sets of criteria vary highly and represent the match between various properties 

of the simulated dataset to that of observed dataset. By observing the number of invariant grids, 

there is significant change in the ranking pattern except for the combination of CP with CRITIC 

weighting method where the number of invariant grids are ranging from 921 and 897 for Tmax 

and Tmin. This is due to the fact that CRITIC weighting method considers inter-criteria 

correlation along with intra-criteria variability, whereas Entropy method completely depends 

upon the latter. As the SET-2 criteria consists of two highly varying metrics KGE and R4MS4E 

in comparison to SU, the weights allocation through Entropy method gets biased to the criteria 

with high variability whereas CRITIC weighting method yields weights that are unbiased to 

variability. The grids with invariant ranking for combination of FTOPSIS with CRITIC 

weighting method are ranging from 494 to 609 for Tmax and for Tmin from 419 to 490 which are 

comparatively less to the combination of CP with CRITIC.  
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The effect of weighting technique highly depends upon the differences between the variability 

of the input criteria. The number of grids with constant ranking patterns are ranging from 695 

to 852 for Tmax and for Tmin the range is from 582 to 744. It indicates that there is a decrease in 

the number of grids with constant rankings out of 946 girds due to the weighting techniques 

(see Table 4.1). It can also be observed that the number of rank invariant grids decrease from 

SET-1 to SET-2. As a result of bounded range, the variability in SU is comparatively lower 

than that of other metrics and this influences entropy method to assign more weights to the 

highly varying criteria. 

The influence of MDCM technique on the ranking is mainly dependent upon the input criteria. 

From Table 4.1, the number of rank invariant grids for SET-1 are varying from 882 to 930 and 

for SET-2 the number of grids are ranging from 404 to 597. From this it can be inferred that 

the rankings change greatly with SET-2 compared to that of SET-1. This is attributed to the 

spread of triangular fuzzy numbers in FTOPSIS methodology. Since the allocation of spread 

depends upon the variability of input criteria, the rankings vary highly with SET-2. The low 

variability of SU due to its bounded range distributes the spread among the criteria in SET-2 

disproportionately in FTOPSIS method. However, the spread is more or less uniform in SET -

1, thereby yielding a similar ranking pattern to that of CP. Hence, allocation spread in the fuzzy 

MCDM techniques is also important in ranking of GCMs. 
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Table 4.1 Grids with invariant rankings for each individual component with the combinations 

Input Criteria Weighting Technique Reference Gridded Dataset MCDM Technique 

Combination 
No of Grids 

Combination 
No of Grids 

Combination 
No of Grids 

Combination 
No of Grids 

Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin 

FT+ENT+IMD+SET1 

FT+ENT+IMD+SET2 
540 350 

FT +IMD+SET1+ENT  

FT+IMD+SET1+ CTW 
841 744 

FT+ENT +SET1+IMD 

FT+ENT +SET1+CPC 
484 277 

ENT+IMD+SET1+ FT 

ENT+IMD+SET1+ CP 
930 904 

FT+ENT+CPC+SET1 

FT+ENT+CPC+SET2 
431 320 

FT +IMD+SET2 +ENT 

FT+IMD+SET2+ CTW 
772 703 

FT+ENT +SET2+IMD 

FT+ENT +SET2+CPC 
485 361 

ENT+IMD+SET2+ FT 

ENT+IMD+SET2+ CP 
597 463 

FT+CTW+IMD+SET1 

FT+CTW+IMD+SET2 
609 490 

FT +CPC+SET1 +ENT 

FT+CPC+SET1+ CTW 
764 697 

FT+ CTW+SET1+IMD 

FT+ CTW+SET1+CPC 
541 333 

ENT+CPC+SET1+ FT 

ENT+CPC+SET1+ CP 
916 899 

FT+CTW+CPC+SET1 

FT+CTW+CPC+SET2 
494 419 

FT +CPC+SET2 +ENT 

FT+CPC+SET2+ CTW 
726 698 

FT+ CTW+SET2+IMD 

FT+CTW+SET2+CPC 
489 398 

ENT+CPC+SET2+ FT 

ENT+CPC+SET2+ CP 
550 416 

CP+ENT+IMD+SET1 

CP+ENT+IMD+SET2 
670 529 

CP +IMD+SET1+ENT 

CP+IMD+SET1+CTW 
852 744 

CP+ENT +SET1+IMD 

CP+ENT +SET1+CPC 
488 278 

CTW +IMD+SET1+FT 

CTW +IMD+SET1+CP 
915 884 

CP+ENT+CPC+SET1 

CP+ENT+CPC+SET2 
559 426 

CP +IMD+SET2+ENT 

CP+IMD+SET2+CTW 
743 655 

CP+ENT +SET2+IMD 

CP+ENT +SET2+CPC 
568 396 

CTW +IMD+SET2+FT 

CTW +IMD+SET2+CP 
593 454 

CP+CTW+IMD+SET1 

CP+CTW+IMD+SET2 
921 897 

CP +CPC+SET1 +ENT 

CP+CPC+SET1+ CTW 
769 688 

CP+ CTW+SET1+IMD 

CP+ CTW+SET1+CPC 
519 323 

CTW +CPC+SET1+FT 

CTW +CPC+SET1+CP 
890 882 

CP+CTW+CPC+SET1 

CP+CTW+CPC+SET2 
919 905 

CP +CPC+SET2 +ENT 

CP+CPC+SET2+ CTW 
695 582 

CP+ CTW+SET2+IMD 

CP+ CTW+SET2+CPC 
516 319 

CTW +CPC+SET2+FT 

CTW +CPC+SET2+CP 
476 404 
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Since, a single GCM could not address the uncertainty in the future climate prediction, 

ensemble of top five GCMs are selected that are most frequently performing well among the 

16 methods are given as the best suitable GCMs for each climate zone (see Table 4.2). 

Table 4.2 Ensemble of GCMs for each climate zone over India 

 

S No 

Koppen – Geiger 

climate zone 

Classification 

Top five ranked GCMs 

Tmax Tmin 

 

1 
Am 

EC-Earth3-Veg, EC-Earth3, SAM0-

UNICON, CanESM5, BCC-ESM1 

MPI-ESM1-2-HR, AWI-CM-1-1-MR, 

EC-Earth3-Veg, EC-Earth3, GFDL-ESM4 

 

2 
Aw 

NorESM2-MM, NorESM2-LM, EC-

Earth3, EC-Earth3-Veg, NorCPM1 

NorCPM1, EC-Earth3, EC-Earth3-Veg, 

SAM0-UNICON, BCC-CSM2-MR 

 

3 
BSh 

NorESM2-MM, EC-Earth3-Veg, 

NorESM2-LM, EC-Earth3, 

INM-CM5-0 

EC-Earth3-Veg, EC-Earth3, MPI-ESM-1-

2-HAM, SAM0-UNICON, NorCPM1 

 

4 
BWh 

NorESM2-MM, INM-CM4-8, EC-

Earth3-Veg, INM-CM5-0, NorESM2-

LM 

MPI-ESM-1-2-HAM, SAM0-UNICON, 

AWI-CM-1-1-MR, NorCPM1, NorESM2-

MM 

5 Bwk 

BCC-ESM1, INM-CM4-8, NorESM2-

LM, INM-CM5-0, NorCPM1 

INM-CM4-8, NorESM2-LM, INM-CM5-

0, ACCESS-ESM1-5, NorCPM1 

 

6 
Cwa 

NorESM2-MM, EC-Earth3-Veg, EC-

Earth3, NorCPM1, NorESM2-LM 

EC-Earth3-Veg, EC-Earth3, AWI-CM-1-

1-MR, SAM0-UNICON, NorCPM1 

 

7 
Cwb 

ACCESS-CM2, NorESM2-MM, EC-

Earth3-Veg, EC-Earth3, NorESM2-LM 

MRI-ESM2-0, AWI-CM-1-1-MR, 

NorCPM1, ACCESS-ESM1-5, MIROC6 

 

8 
Dsb 

ACCESS-CM2, BCC-ESM1, INM-

CM5-0, AWI-CM-1-1-MR, IPSL-

CM6A-LR 

ACCESS-CM2, BCC-ESM1, EC-Earth3-

Veg, ACCESS-ESM1-5, EC-Earth3 

 

4.2.4 Conclusions 

Ranking of GCMs are highly dependent upon the chosen reference gridded dataset. Selection 

of input criteria to evaluate the model performance plays a key role in ranking of GCMs. The 

weights allocated to the criteria and the final aggregated outputs from MCDM techniques is 

highly dependent upon the chosen evaluation metrics. The variability of metrics is driving 

factor for allocation of weights in weighting techniques and distribution of spread in fuzzy 

MCDM techniques. An ensemble of most frequently performing GCMs are extracted for each 

climate zone as the most suitable set of GCMs for the corresponding climate zone and these 

GCMs can be used for the downscaling for further climate impact studies. 
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4.3 Projections of Precipitation in the KRB 

The KRB is classified into three major climate zones as per Koppen-Geiger climate 

classification. The whole KRB is divided into three major elevation zones such as low (-8m to 

356.7m), medium (356.8m to 609.7m) and high (609.8m to 1890m) using ArcMap 

classification for the analysis of results as shown Figure 4.7. The concept SU is applied to rank 

the GCMs at 348 grid points over the entire KRB. The spatial distribution of the 1st, 2nd and 3rd 

ranked GCMs in KRB is shown in Figure 4.8. 

 

Figure 4.7 KRB with different climate classification zones 

 

Figure 4.8 The spatial ranking positions of GCMs at 1st, 2nd and 3rd place using SU over KRB 

gird locations for precipitation
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From the figure of 1st ranked GCMs it is revealed that most of the grid points of medium and 

higher elevations zones in the BSh, Aw and Am climate zones BCC-CSM2-MR is the best 

ranked GCM followed by IPSL-CM6A-LR in lower elevation zone in Aw and BSh zones, 

MIROC6 is performing well in medium elevation zone in the central part of the BSh zone. And 

at higher elevation zone in southern part in BSh, Aw and Am zones at some grid points GFDL-

CM4 and CESM2 performing well. From 2nd ranking positions INM-CM5-0, MIROC6 and 

MPI-ESM1-2-LR performing well in lower elevation of Aw zone. In the medium elevation of 

BSh zone of central part of the region INM-CM5-0, BCC-CSM2-MR, IPSL-CM6A-LR and 

MIROC6 is performing well and at higher elevation zones of northwest region MPI-ESM1-2-

HR and MIROC6 are best performing GCMs. And at higher elevation zones in southern part 

there will be mixed results in best performing GCMs. From 3rd ranking positions it can observed 

that INM-CM5-0, MPI-ESM1-2-HR, BCC-CSM2-MR, IPSL-CM6A-LR and MIROC6 are 

best GCMs, performing well at most of the grids in different elevation zones of climate zones 

of the study area. Finally, BCC-CSM2-MR, IPSL-CM6A-LR, MIROC6, INM-CM5-0 and 

MPI-ESM1-2-HR chosen as top five GCMs over the entire study area after applying the 

MCDM technique as discussed in methodology. The Total Ranking Weight using MCDM 

technique and ranks obtained from different GCMs for precipitation is shown in Figure 4.9. 

 

 

Figure 4.9 Histogram of Total Ranking Weight and final ranking positions of models used 
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4.3.1 Generation of Multi Model Ensemble (MME) 

The MME average of bias corrected precipitation at each grid was developed by using REA 

method for the selected top five GCMs, for estimating the future possible variations in 

precipitation over KRB. As there is no regulation to choose the number of GCMs, the top5 

GCMs are selected to develop the MME for each SSPs. The ability of REA method to develop 

MME was assessed by scatter plots of observed spatially averaged monthly rainfall, with 

individual and MME of GCMs for period 1985-2014 shown in Figure 4.10. the scatter plots 

shows that the individual GCMs and MME average of GCMs shows satisfactory alignment 

with the 45-degree line and compared to individual GCMs, MME mean shows better alignment 

with correlation coefficient 0.605 which is means that MME mean can improve accuracy in 

precipitation projections by reduce the uncertainty associated in the individual GCMs. 

  

Figure 4.10 Scatter plot of IMD and individual GCMs and REA estimated MME mean 

rainfall averaged over KRB for the period 1985–2014 
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The performance of the REA based MME mean was evaluated against the observed 

precipitation for 1985-2014. Three statistical parameters namely NRMSE, Percentage bias 

(Pbias) and index of agreement (MD) are calculated at all the grid points and the getting results 

are represented in boxplots shown in Figure 4.11. It is revealed from the box plots that the 

median of the MME shows satisfactory improvement with the interquartile range compared to 

selected individual GCMs for the all the statistics. 

 

Figure 4.11 Boxplot displaying statistical metrics derived at various grid positions for 

individual GCM precipitation and MME mean precipitation in relation to IMD precipitation 

 

4.3.2 Changes in Annual Precipitation 

The future annual precipitation changes (%) over KRB for three future periods, namely near 

future (2015-2040), mid future (2041-2070) and end future (2071-2100) were assessed using 

MME against observed precipitation of 1989-2014 for near future 1985-2014 for rest of the 

period for four SSP scenarios. The projected precipitation for different periods at all grids 

points of climate zones were averaged to find out the changes in the precipitation of the region. 

The projected rainfall is increasing and decreasing in future periods for all SSPs in most regions 

of KRB. The changes in future precipitation and uncertainty levels were estimated using MME 

mean and 95% confidence interval band shown in Figure 4.12. It is found that the variation in 

precipitation changes from zone to zone and period to period under all SSPs. The more changes 

were occurred in the end period (2071-2100) under SSP5-8.5 followed by other all SSPs. The 

highest levels of uncertainties were found in Am climate zone which is covering only 10 grids 

in the entire study area under all SSP scenarios. Under various SSPs, for future periods, the 
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upper band of uncertainty level was greater than zero while the lower band is lower than zero. 

At a 95% confidence level, this shows a rise and reduction in precipitation for KRB's various 

SSPs.  

 

Figure 4.12 Variations (%) in the annual mean precipitation in four SSP scenarios and three 

future periods in various KRB regions at a 95% confidence level 

For clear understanding the changes in annual precipitation the spatial plots were drawn shown 

in figure 4.13. The change in annual rainfall is gradually increasing and decreasing in ranging 

from 38.97% to -36.72% during near period (2015 - 2040), 45.24% to -31.61% during mid 

period (2041-2070) and 83.05% to -30.63% in the end period (2071-2100) for different SSPs. 

The maximum increase in the rainfall found to be 83.05%, in the end period at higher elevation 

part in BSh and Aw climate zones and higher decrease of -36.7% found to be in near period in 

higher elevation of Aw and Am climate zones under SSP5-8.5 respectively. It can be observed 

from the figure that most of the grid points in the BSh climate zone the change in projections 

is ranging from -20% to 20% and few grids it is up to 40% during near and mid periods for all 

SSPs except SSP1-2.6. But in the SSP1-2.6 at most of grids the change in projection is in the 

range of -20% to 60% during near period. The major changes in the projections were occurred 

during end period such a way there is a decrease in the rainfall from -31% to -20% in the lower 

elevations os Aw and medium elevations of BSh climate zone and the increase in the rainfall 

is in the range of 0 to 20% in medium elevations of Aw and BSh zones under SSP1-2.6 and for 

SSP2-4.5 there is increase in rainfall from 0 to 60% in the BSh zone. For SSP3-7.0 and SSP5-

8.5 similar kind of results were obtained for end period. Most of the grids in medium elevations 
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the precipitation increasing from 0 to 60% but in higher elevations it is expected increase up to 

83%.  

 

Figure 4.13 Change (%) in annual average precipitation in KRB for different SSPs for three 

future periods, 2015-2040, 2041-2010 and 2071-2100 

 

4.3.3 Changes in Seasonal Precipitation 

As seen in Figure 4.14, the precipitation estimates for each month across all climate zone grid 

points are averaged to evaluate variations in the seasonal precipitation projections. From the 

figure it clearly understanding that monsoon period (June-October) is more influencing 

comparing to other months and future precipitation is underestimating the observed 

precipitation under all SSPs. As monsoon period is dominating for the occurrence of 

precipitation (80%) for the study area, the future changes in monsoon period only discussed. 

The spatial distribution of changes in rainfall for monsoon period for different SSPs were 

shown in Figure 4.15. There is a significant change in the rainfall is occurred in different 

climate zones. There is similar kind of trend in the results occurred in monsoon rainfall 

projections compared to annual change but increasing rate more at some grid points in the BSh 

climate zone. The projected changes in the monsoon rainfall are in the range of -37.68% to 



66 
 

64.56% during near period, -36.72% to 70.73% during mid period, -37.42% to 95.75% during 

end period. The most increase 95.75% and decrease 37.66% in projected rainfall occurred in 

the higher elevation zones of BSh and Aw zones under SSP5-8.5, SSP2-4.5 respectively. The 

major increases were occurred in the end period under SSP5-8.5 compared to near and mid 

period and all other SSPs. SSP2-4.5 and SSP1-2.6 shown more influence in the future 

projections as there is increment up to 80% in most of the grids except end period. And there 

is a similar kind of increment up to 80% for near period under three future scenarios except 

SSP5-8.5.  

 

Figure 4.14 Projected monthly rainfall changes (%) at different climate zones in KRB for 

three future periods 
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Figure 4.15 Change (%) in average monsoon precipitation in KRB for different SSPs for 

three future periods, 2015-2040, 2041-2010 and 2071-2100 

 

The major changes either increasing or decreasing were occurring in the BSh and Aw climate 

zones at medium and higher elevations as the topography influencing the study area and most 

part of the study area also covering with the BSh and Aw zones. 

4.3.4 Discussions 

The study over KRB is most significant due to its semi-arid nature and vulnerable to climate 

change, owing to uneven distribution of precipitation. Generally, GCMs are developed to 

project the climate variables at global scales, so they show huge uncertainty for climate 

simulations over various regions. According to earlier research, using appropriate GCMs can 

help to lower the uncertainty in climate change estimates (Raju & Nagesh Kumar, 2014). The 

GCMs in this study were chosen using SU, which has been shown to be the most reliable 

technique for doing so in comparison to the several traditional statistical performance matrices 

that have been used in recent years to choose GCMs (Pour et al., 2018; Salman et al., 2018; 

Shiru et al., 2019).  
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The GCMs which are selected as most skillful for this study can be compared with the previous 

studies. (Raju & Kumar, 2015) used TOPSIS method for ranking of GCMs over the country 

India and KRB. From their results, they ranked MIROC3 and BCCR as top ranked GCMs in 

KRB. Similar kind of results was found in this study in such a way that the same family GCMs 

are in the top five. (Babar et al., 2015) found that MIROC5 is the best GCM for precipitation 

projection of India for annual precipitation. The list of the top 5 GCMs for the current study 

also includes MIROC5, which was determined to be the best GCM for projecting precipitation 

in India. Using SS, Taylor diagrams and traditional statistical criteria, (Sarthi et al., 2016) 

determined that, out of 34 GCMs, BCCCSM1.1(m) was the most suitable GCM for projecting 

precipitation in India. Additionally, the top GCM in the current study is the same family group 

GCM, BCC-CSM2-MR.The projection of MME shows that there is an uneven distribution of 

precipitation throughout the basin under four SSP scenarios for future slices. The results of 

MME mean projections can be compared with the previous studies. From Figures 4.13 and 

4.15, the future projections revealed that there is a probability of water scarcity and getting of 

drought in the future at some of the grid locations of semi-arid BSh climate zone under four 

SSPs except SSP5-8.5 scenario for the far future. This is due to the reduction of precipitation 

which agrees with the previous study (Gosain et al., 2006). As per (Kulkarni et al., 2014) who 

considered only one SRES scenario, the annual precipitation follows for the mid future (20141-

2070), follows an increasing trend which is true for some grids in the present study. But for the 

SSP5-8.5 scenario it can be found the increasing trend in the far period which agrees with past 

studies (Mishra & Lilhare, 2016). 

4.3.5 Conclusions 

The objective of the current study was to select the most skillful GCMs for projecting the 

precipitation over KRB using information based selection method namely SU. 21 (See Table 

3.1, Objective 2) GCMs from CMIP6 phase which have precipitation projections for four SSP 

scenarios are used to select the suitable GCM ensembles over KRB. And the selected top five 

GCMs are used to generate the MME using the REA method over KRB. The performance of 

the MME was assessed using statistical matrices such as correlation coefficient, NRMSE, Pbias 

and MD. The REA method was used to compute MME mean. Following are specific 

conclusions of the study. 

The study area was classified into three major homogeneous climate zones as per Koppen 

classification for facilitating the realizations. BCC-CSM2-MR, IPSL-CM6A-LR, MIROC6, 
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INM-CM5-0 and MPI-ESM1-2-HR are selected as the top five GCMs over the entire study 

area based on their skill in mimicking the observed precipitation. The selected GCMs are found 

to be matched with obtained GCMs in the previous studies over Indian regions or river basins 

which conforms to the suitability of SU for GCM ranking. The major changes in precipitation 

projections occurred in the far future compared to the rest period under different SSP scenarios. 

The precipitation projections are increasing up to 83% in the higher elevation zone of the 

northwest region in the BSh climate zone at few grid points under SSP3-7.0 and SSP5-8.5 

during the far future. Most of the decrease in projections is up to -36% occurred in the coastal 

region of the southeast region in BSh climate zone under SSP1-2.6 during far future. Seasonal 

projection changes show more increment in the near, mid future up to 80% and end future up 

to 100% at few grids in higher elevations of BSh zone. Particularly, the SSP5-8.5 shows more 

homogeneous precipitation variation and increasing trend for both annual and seasonal periods 

during the far future. It is revealed from the results that the higher increase in MME 

precipitation in the monsoon period compared to the annual period would be indicating that the 

precipitation in KRB is more concentrated in monsoon season or ISMR period. 

4.4 Climate Extremes Analysis in KRB 

4.4.1 GCMs Selection 

The TRW of the 18 considered GCMs (See Table 3.1 from Objective 3,4 and 5) is shown in 

Figure 4.16. As mentioned above, the performance of the GCMs was evaluated in all the 348 

grids within the KRB using SU. The spatial distribution of the best performing GCMs from 

rank 1 to rank 5 is shown in Figure 4.17. For the 1st rank, the GCM MPI-ESM1-2HR performed 

best in 50% of the grids i.e. 165 in terms of the SU value. The output of the MPI-ESM1-2-LR 

was observed to be best in 60 grid points and was ranked 2. Similarly, the maximum number 

of grids from a single GCM for rank 3, 4 and 5 were EC-Earth3, NorESM2-LM and GFDL-

ESM4. From Figure 4.17 it is evident that as the rank of the GCM is increasing the performance 

of different GCMs was observed to be comparable resulting in wide variation. The ranking of 

each of the GCM was computed based on the frequency of occurrence of each GCM from rank 

1 to rank 5 and is computed as the TRW. Based on the results, top five (5) suitable GCMs: 

MPI-ESM1-2-HR, MPI-ESM1-2-LR, GFDL-ESM4, NorESM2-LM, EC-Earth3-Veg, were 

considered for further analysis.  
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Figure 4.16 Ranking of each GCM based Total Ranking Weight (TRW) 

 

 

Figure 4.17 Spatial distribution of the top ranked GCMs 

The spatial distribution of different average annual precipitation extremes during the baseline 

period (1973-2003) is shown in Figure 4.18. It is observed that the spatial distribution of 

Consecutive Dry Days (CDD) ranges from 65 to 147 days. The spell of CDD is more in the 

northwest region (147 days) compared to the northeast region of the basin. The type of CDD 

depends on the spatial distribution of the precipitation over the basin. Whereas the spatial 

distribution of Consecutive Wet Days (CWD) varies from 5 to 47 days, which is more in the 

western region, the remaining portion of the central and eastern regions are covered by the low 

length of CWD.  
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Figure 4.18 Average annual spatial distribution of precipitation extremes during baseline 

period (1973-2003) in the KRB 

 

Spatial distribution of ToTal annual-wet day PRecipitation (TOTPR), count of slightly heavy 

precipitation days (R10), count of heavy precipitation days (R20) and count of very heavy 

precipitation days (R50) are congruous to the drier valley in the basin especially central part of 

the basin due to its semi-arid nature. Even though the mean annual TOTPR ranges from 426 

mm to 3018 mm, the annual average of the basin is about 735 mm indicating the precipitation 

importance. The mean annual R10, R20 and R50 are about 22, 10 and 2 days respectively. 

Interestingly, R50 is showing quite a different pattern from its spatial distribution compared to 

TOTPR, R10 and R20. Moreover, RX5day, R95p and R99p are almost congruous with the 

TOTPR, R10 and R20 and the spatial distribution of the Simple Daily Intensity Index (SDII) 

is congruous with RX1day. The average annual values of very heavy wet days (R95p) and 

extremely wet days (R99p) are 189 mm and 61 mm across the basin and lower values are 

observed in the central part of the eastern region. A similar tendency is observed in RX1day 

and RX5day. The average annual values of RX1day and RX5day are 68 mm and 132 mm 

respectively with spatial standard deviations of 15 mm and 48 mm. The ratios of RX1day and 

RX5day up on TOTPR provide precise information on precipitation extremes on annual 

average precipitation (Talchabhadel et al., 2018). 

The mean annual ratio of RX1day/TOTPR is about 9.7%, ranging from 4 to 16%. Similarly, 

the annual average value of RX5day/TOTPR is found to be 18.5% and spatial distribution 
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varies from 12 to 24% (Figure 4.19). From this analysis, it can be understood that on average 

9.7% of total annual precipitation can occur in a single day and 18.5% in 5 consecutive days. 

On average, the percentage contribution of maximum RX1day and RX5day is about 10-11% 

and 17-21% of TOTPR respectively in the central part of the basin. Inter annual variations of 

these indices determine more precise information on precipitation extremes occurrences. For 

finding the flood warning thresholds in the catchment, R95p, R99p, RX1day, RX5day and 

information from the ratios of indices are necessary. The spatial distribution of mean annual 

SDII varies from 8 mm/day to 19 mm/day from the high to low elevation region of the KRB 

and the mean value is about 10 mm/day. From the spatial pattern of both SDII and TOTOPR, 

it can be seen that at higher elevations the TOTPR and number of heavy rainy days occurrences 

are more and SDII is also more. Similarly, at medium and low elevations both TOTPR and the 

number of heavy rainy days occurrences are less and SDII was also less. 

 

 

Figure 4.19 Precipitation percentage contributions of RX1day and RX5day to TOTPR during 

baseline period (1973-2003) in the KRB 

4.4.2 Trend Analysis 

The grid-wise trends such as decreasing, increasing and no trend conditions of extreme 

precipitation indices are analysed at a 5% significant level for the baseline period (1973-2003) 

as shown in Figure 4.20 and their spatial pattern is presented in Figure 4.21 respectively. Figure 

4.21 shows that except for grids with no trend condition, all the grids are exhibiting mixed 

trend conditions of decreasing and increasing for all the extreme precipitation indices.  
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Figure 4.20 Number of grid points exhibiting different trends for ETCCDI indices 

 

 

Figure 4.21 Grid-wise trend analysis for different extreme indices in the KRB during baseline 

period 

In the case of CDD, only 5 grids have shown no trend, 10 grids have shown a significant 

increasing trend at high elevations, 27 grids have shown a significantly decreasing trend at 
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lower elevations and the remaining 306 grids have exhibited both insignificant increasing and 

decreasing trends. In contrast, CWD shows decreasing trends in the central region of the basin 

and only 5 grid points have shown a significant increasing trend in the southern part of the 

basin. RX5day shows 8 grid points with a significantly increasing trend, 27 grid points have 

shown a significant decreasing trend, 12 grid points have shown no trend and the remaining 

grid points exhibited an insignificant decreasing trend (191 grid points) followed by an 

insignificant increasing trend (111 grid points). It can be observed that TOTPR shows only one 

grid point as a significant increasing trend and most of the grid points exhibited decreasing 

trends. A similar pattern is observed for R10, R20 and R50. In the case of R95p and R99p, 

insignificant decreasing trends can be observed at 208 and 177 grid locations respectively 

compared to other trend conditions. In all the extreme precipitation indices, few grid points 

have shown no trend conditions and most of the grid points exhibit a decreasing trend compared 

to an increasing trend. In the case of SDII, it can be observed that mixed conditions of 

decreasing and increasing trends and only 17 grid points have shown a significant increasing 

trend. 

4.4.3 Correlation Analysis 

The Pearson correlation coefficient (r) is used to compute the association between the discharge 

and extreme precipitation indices and amongst the extreme indices using IMD data for the 

baseline period (1973-2003) is shown in Figure 4.22. It can be found that CDD is very weakly 

and negatively correlated with the other extreme indices due to its drier tendency with rising 

values. CWD has displayed a moderate correlation with TOTPR, R10, R20, R50, RX5day (0.61 

- 0.64) and has shown a lower correlation with R95p, R99p, RX1day and SDII (0.21 - 0.47). 

TOTPR has shown a good correlation with other indices especially, it has a very strong 

correlation with R10, R20 and R50 (0.9 - 0.99). And it has a good correlation with very heavy 

precipitation indices RX1day (0.65), RX5day (0.68) and R99p (0.71) inferring that heavy 

precipitation may guarantee more precipitation in a year. It can be seen that R10 and R20 are 

moderate to well correlated (0.55 - 0.68) with RX1day, RX5day and R99p which supports that 

a slightly heavy precipitation increase has a good association with the existence of very heavy 

and extreme precipitation. Apart from TOTPR, R50 also has a very strong correlation with 

RX1day, RX5day R99p and SDII (0.82 - 0.9). On account of seasonal precipitation, only the 

monsoon season has shown good association with all precipitation extremes excluding CDD. 

In addition to this, the seasonal precipitation correlations among themselves are also weak. 
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The strong correlation of AADD can be seen with TOTPR, R10, R20 and R50 (0.7 to 0.75) but 

a moderate correlation is observed with the heavy extreme indices R99p (0.56), RX5day (0.57) 

and monsoon precipitation (0.65). A similar kind of pattern can be observed with MADD. The 

remaining indices showed a weak correlation with AADD. 

 

 

Figure 4.22 Correlation between precipitation extremes and AADD and MADD 

4.4.4 Analysis of Inter-annual Variation 

Analysis of the variation in extreme precipitation indices including seasonal precipitation and 

the inter-annual anomalies are computed across the basin and shown in Figure 4.23 (a) to (f). 

The absolute ratios (in percentage) of RX1day/TOTPR and RX5day/TOTPR are represented 

by Figure 4.23 (g). Inter-annual fluctuations of extreme indices are similar to slight alterations 

in the magnitude. Heavy precipitation intensity indices RX1Day, RX5Day, R95p and R99p are 

exhibiting similar patterns of fluctuations in the basin. These indices have more positive 
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fluctuations which indicates that the rainfall concentrating in less no of days which may be 

aggregated to flash floods in the basin. 

R99p is the total precipitation on the days having more precipitation than 99th percentile of 

observed period. The R99p values in 1975 and 1983 are 87.63 mm and 99.76 mm respectively. 

The highest value of R99p is observed 1983 may lead to highest peak flow in 1983 (20,711 

m3/s) than 1975 (18,512 m3/s). 

 

 

Figure 4.23 Anomalies of the different precipitation extremes in the KRB. ((g) represents the 

absolute ratios in percentage 

So, it can be referred from the analysis that the heavy precipitation is more during that year 

where the magnitudes of fluctuations are greater. The percentage contributions of RX1day and 

RX5day to TOTPR were about 7.6% and 15% respectively in the year 1998. The percentage 

contributions of RX5day is highest (21.83%) in 1989 and the peak flow is about 17,617 m3/s. 

This information is useful in the design of drainage network facilities and stream advancement 

works because the lower-lying regions are inclined to flooding and immersion issues. 

The fluctuations of CDD and CWD are opposite and CWD has more increasing fluctuations 

compared to CDD which results in the accumulation of a high amount of precipitation in the 

basin. The fluctuations of TOTPR, R10, R20, R50, Monsoon and SDII follow similar kinds of 
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trends in each year. The precise information of variability in precipitation extremes including 

seasonal precipitation may act as useful data to various stakeholders.  

4.4.5 Future Changes in Extremes Precipitation Indices 

Four future warming precipitation scenarios namely, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-

8.5 of CMIP6-based GCMs in two future time frames are used in the present study. These two 

future frames such as Near Future (NF: 2025-55) and Far Future (FF: 2065-95) extreme 

precipitation fluctuations are shown in Figures 4.24 to 4.27. The uncertainty variability ranges 

are more in FF compared to NF and slightly higher in magnitude for high warming scenarios 

of SSP3-7.0 and SSP5-8.5 compared to other scenarios. The MME average of selected GCMs 

shows a significant increase in all extreme precipitation indices compared to the baseline period 

under all SSP scenarios. It can be observed that under SSP5-8.5, the MME average shows a 

higher increase for FF compared to other SSPs. Figure 4.28 depicts the relative change of MME 

averages of selected climate models for future periods. The relative change magnitude is 

anticipated to increment more in future phases (FF > NF) but the extent of change is not 

substantial. The MME average of CWD and R50 are expected to be doubled with respect 

observed period, especially in the FF. The heavy extreme precipitation indices such as R99p, 

R95p, RX5day and RX1day are significantly increasing along with other precipitation 

extremes indices. R95p and RX5day are increased slightly more in magnitude compared to 

R99p and RX1day respectively. Significant increment can be seen in annual TOTPR, but low 

in magnitude compared to heavy extreme indices. The SSP5-8.5 scenario shows significant 

changes under FF compared to other scenarios for all the extreme indices.  
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Figure 4.24 Comparison of inter-annual variation of precipitation extremes for NF and FF 

847 under SSP1-2.6 (Shaded region represents the ranges of selected climate models and 

solid line represents the MME average of the GCMs) with the baseline period 
 

 

 

Figure 4.25 Comparison of inter-annual precipitation extremes variations in the NF, FF 

period under SSP2-4.5 with the baseline period 
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Figure 4.26 Comparison of inter-annual precipitation extremes variations in the NF, FF 

period under SSP3-7.0 with the baseline period 
 

 

Figure 4.27 Comparison of inter-annual precipitation extremes variations in the NF, FF 

period under SSP5-8.5 with the baseline period 
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Figure 4.28 Relative changes (in percentage) of precipitation extremes of MME mean with 

respect to base period 

The spatial distribution of relative change under SSP5-8.5 under FF is shown in Figure 4.29. It 

is observed that R95p and R99p are showing similar trends of increment in magnitude. 

Compared to RX1day, RX5day increment magnitudes are greater, TOTPR and R20 are more 

or less following the same trends of increments. R50 and CWD almost doubled in magnitude 

at most of the grids. Other scenarios also followed similar trends with SSP5-8.5, but less in 

magnitude. Few gird locations showed a decrement in the extreme indices but these are very 

less in number. 



81 
 

 

Figure 4.29 Spatial distribution of relative changes in extreme indices under SSP5-8.5 

scenario for FF (2065-2095) 

 

4.4.6 Projected Changes in Future Discharge 

 
The present study used SVM regression to quantify the future AADD by establishing the 

relationship between TOTPR and AADD. The calibration period (1973-1996) is considered in 

the training for SVM regression and the remaining period from 1997-2003 is taken for testing 

(validation). The values of coefficient of determination (R2) and Nash Sutcliff Efficiency 

(NSE) for training and testing periods are observed as (1, 1) and (0.8, 0.71) respectively and 

this shows a very good performance. The values of SVM parameters C, 𝛾 and ɛ are obtained 

as 64, 0.0001 and 0.0001 respectively. The observed AADD between 2000 and 2003 is low 

when compared to the rest period. The TOTPR for these years was observed as low compared 

to the rest period, which might be the reason for the low discharges between 2000 and 2003. 

The variation of simulated AADD of selected GCMs and their ensemble for the baseline 

scenario (1973-2003) using SVM regression is shown in Figure 4.30.  
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Figure 4.30. Comparison of AADD of observed and historical climate models and their MME 

average in the baseline period 1973-2003 

It can be observed that the maximum range of simulated AADD under selected GCMs is more 

compared to the observed AADD except in the year 1994. The maximum peak of 3540 m3/s 

can be observed in the year 1996 which is 122% higher than the highest peak of observed 

streamflow (1545 m3/s). The minimum range of simulated AADD under selected GCMs is 

almost less compared to the observed AADD. The MME of the simulated historical streamflow 

is higher than the observed streamflow in the same period suggesting that there is the 

probability of increasing in the future streamflow. The overall average of MME streamflow 

during the period 1973-2003 is observed as 1131 m3/s which is 61.11% more compared to the 

observed streamflow average (702 m3/s) in the same period.  Figure 4.31 depicts an inter-

annual variation of AADD under four SSP scenarios over future periods. The results depict 

that the MME of future streamflow is expected to increase significantly in the future periods 

compared baseline period under all SSP scenarios. In the SSP1-2.6 and SSP2-4.5 scenarios, 

the increasing range of streamflow almost follows a similar pattern during the NF and FF. For 

the NF under SSP1-2.6 and SSP2-4.5, the highest average streamflow of 2190 m3/s and 2075 

m3/s are observed in the years 2027 and 2033 respectively.  
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Figure 4.31 Variations of inter-annual AADD estimated from TOTPR of selected climate 

models and their MME under four SSP scenarios 

The maximum shifts in streamflow are observed in the FF under SSP3-7.0 and SSP5-85 

scenarios compared to NF. The maximum MME average streamflow of 2588 m3/s and 2694 

m3/s is observed in the years 2090 and 2089 for the far future under SSP3-7.0 and SSP5-8.5 

respectively. It can be observed that the average MME streamflow of all four scenarios is higher 

than the AADD streamflow (702 m3/s) during the baseline period 1973-2003 and the increase 

is in the range of 98.78% to 183.33%. These results infer that the more availability of water 

and the probability of occurring of floods in the future period in the KRB. 

4.4.7 Conclusions 

A systematic investigation spatio-temporal analysis of various extreme precipitation indices in 

KRB, India is done for a baseline period of 31 years (1973–2003) and two future frames of 

Near Future (NF: 2025–2055) and Far Future (FF: 2065-2095) under four CMIP6 based 

projected climate scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. A larger number 

of grid points exhibited decreasing trends (insignificant and significant) followed by increasing 

(insignificant) trends and a very small number of grid points experienced positive significant 

trends for extreme precipitation indices across the basin. RX1day and RX5day are major 

extreme precipitation indices and the mean annual contributions are 9.7% and 18.5% 
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respectively in the baseline period. It is found that the MME average of extreme precipitation 

indices is predicted to increase over the future periods. Particularly, in the FF the magnitude of 

increase is greater under all SSP scenarios over the basin. The heavy extreme precipitation 

indices R95p and R99p are increased to about 74%, RX1day and RX5day are increased to 49% 

and 73% respectively in the FF under the high warm SSP5-8.5 scenario. The MME average 

streamflow is projected to increase in the future under all scenarios but slightly more in the 

order of magnitude under SSP3-7.0 and SSP5-8.5 compared to other scenarios. 

4.5 SWAT Application for Hydrological Modelling in KRB 

To meet this objective, SU is used to select the top 50% of GCMs from a pool of 18 CMIP6 

GCMs for hydrological modelling using TRW from Figure 4.16. Top nine (9) suitable GCMs: 

MPI-ESM1-2-HR, MPI-ESM1-2-LR, GFDL-ESM4, NorESM2-LM, EC-Earth3-Veg, BCC-

CSM2-MR, EC-Earth3, IPSL-CM6A-LR, NorESM2-MM, were considered for further 

analysis.  

4.5.1 SWAT Model Performance Evaluation 

The SWAT model was calibrated and validated at monthly step using the observed discharge 

at six outlet stations. The sub-basin discretization for the SWAT model along with the locations 

of reservoirs, gauge points is shown in Figure 3.5. The model was simulated from 1970-2003, 

with first 3 years considered as warm-up period. The calibration of the model was performed 

for 21 years i.e. 1973-1993 and validation for 10 years i.e. 1994-2003 using SUFI-2 algorithm 

in the SWATCUP. Based on the past studies, 12 parameters that influenced the streamflow 

were selected for the calibration (Table 4.3).  
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Table 4.3 Calibrated Parameters of SWAT model 

Parameter Range Fitted value 

R__CN2.mgt -0.1  to 0.1 -0.0946 

V__ALPHA_BF.gw 0.2 to 0.8 0.7526 

A__GW_DELAY.gw -30  to 90 -21.960001 

A__GWQMN.gw -1000 to 1000 250 

R__SOL_AWC().sol -0.1  to 0.1 -0.009 

A__REVAPMN.gw -750  to 750 -154.5 

A__RCHRG_DP.gw -0.05 to  0.05 0.0175 

V__GW_REVAP.gw 0.02  to 0.2 0.0569 

V__CH_N2.rte 0  to 0.2 0.0146 

V__CH_K2.rte 0 to  100 81.900002 

R__OV_N.hru -0.2 to  0.2 0.1532 

V__ESCO.hru 0 to  0.8 0.1576 

 

Among these parameters, nine (9) parameters, i.e. CN2, GWQMN, ESCO, SOL_AWC, 

CH_N2, REVAPMN, GW_DELAY, CH_K2 and GW_REVAP, are identified as most 

sensitive parameters after 500 iterations. The performance of the model during calibration and 

validation was assessed using the Nash Sutcliff Efficiency (NSE) and coefficient of 

determination (R2). A similar R2 and NSE value of 0.79 was obtained during calibration period, 

which is considered as good as per the suggestions given in Moriasi et al. (2015). For the 

validation period the R2 and NSE values of 0.65 and 0.64 were obtained, which is considered 

as satisfactory. The good performance of the model during the calibration and validation 

periods is also observed between the close match in the simulated and observed hydrographs 

as shown in Figure 4.32. 
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Figure 4.32 Depiction of simulated and observed streamflow for calibration and validation 

period 

The performance of the model was also compared using other statistical performance measures 

such as PBIAS, p-factor and r-factor as shown in Table 4.4.  

Table 4.4 Performance evaluation values for calibration and validation at Vijayawada gauge 

station for monthly simulations. 

Parameter Calibration Validation 

NSE 0.79 0.65 

R2 0.79 0.64 

PBIAS -0.9 -11.5 

p-factor 0.62 0.57 

r-factor 1.06 1.29 

 

The p-factor represents the percentage of observed data bracketed by the 95PPU and varies 

from 0 to 1. For the streamflow the P-factor value > 0.7 is considered as good. The r-factor 

indicates the width of the 95PPU band and value < 1.5 is considered as desirable. In the present 

study, the P-factor and R-factor at Vijayawada gauge station are observed as 0.62 and 1.06 

respectively and are considered as satisfactory (Abbaspour et al., 2015). The negative values 

of the PBIAS in both calibration and validation periods indicate that model has under predicted 

the streamflow as compared to the observed flow. The calibrated and validated model was also 

evaluated at other gauging locations as shown in Table 4.5 and Figure 4.33.  
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Table 4.5 Performance evaluation values for calibration and validation at different stations 

Sub-basin (station 

no) 

Calibration Validation 
PBIAS 

p-

factor 

r-

factor R2 NSE R2 NSE 

Mantralayam (66) 0.80 0.78 0.70 0.68 16.8 0.63 0.88 

T.Ramapuram (72) 

 
0.67 0.57 0.65 0.58 16.3 0.73 1.37 

Yadagir (33) 0.78 0.77 0.67 0.67 6.8 0.8 0.82 

Keesara (32) 0.86 0.84 0.61 0.58 2.7 0.77 1.10 

Dameracherla (29) 0.54 0.53 0.63 0.45 9.2 0.65 1.9 

 

Figure 4.33 Depiction of simulated and observed streamflow for calibration and validation 

period at different gauge stations 

The high values of NSE, R2 and PBIAS at different gauging locations across the KRB suggest 

that the model is spatially performing well. The good performance of the calibrated model 

suggests that the model is able to capture the spatial and temporal variability of the hydrological 

processes properly within the basin.  
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4.5.2 Climate Change Impact on WBC in KRB 

The impact of climate change on the hydrology of the KRB is assessed using the selected 9 

GCMs for the four scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. The analysis was 

performed for three future time periods i.e. Near Future (NF: 2026-2050), Mid Future (MF: 

2051-2075) and Far Future (FF: 2076-2100). The impact of climate change on the water 

balance components, i.e. precipitation, evapotranspiration, surface runoff, water yield and 

streamflow at the watershed outlet was assessed.  The historical simulations of each of the 

GCMs were forced through the SWAT model to obtain the historical output and is considered 

as the baseline for assessing the impacts of climate change for each GCM (Figures. 4.34 to 

4.37). A comparison is also made between the WBC simulations obtained from historical GCM 

and the observed IMD data for the baseline period i.e. 1973-2003. The uncertainty in the future 

projections is evident from the difference in the projected values from different GCMs as 

shown in Figures 4.34 to 4.37. During the baseline period 1973-2003, the average annual 

precipitation projections for the historical GCMs are ranged from 713 mm to 796 mm, 

compared to the observed precipitation value of 697 mm. Among the 9 GCMs, MPI-ESM1-2-

HR, EC-EARTH3, EC-EARTH3-Veg models were observed to have less deviation with 

observed precipitation in the baseline period whereas, NorESM2-LM, NorESM2-MM models 

are exhibiting maximum variation compared to other GCMs (see Figure 4.34).  

The future projection of precipitation for four SSP scenarios are significantly increasing for 

each GCM compared to historical GCM, except for MPI-ESM1-2-HR and MPI-ESM1-2-LR. 

In comparison to the historical period, the EC-EARTH3, EC-EARTH3-Veg models show the 

highest range in projected precipitation change under all SSP scenarios. It is also observed that 

the future precipitation increases from NF to FF under all scenarios for all GCM. To understand 

the variation of precipitation for each GCM, the annual average precipitation changes of the 

historical period for each GCM with respect to observed IMD data was analysed and is 

provided in the Table 4.6. Similarly, the percentage changes in the projections of precipitation 

of each GCM with respect to same GCM in the future is provided in Table 4.7. 
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Figure 4.34 Average annual precipitation under different SSP scenarios in comparison with observed IMD data 
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Figure 4.35 Average annual surface runoff under different SSP scenarios in comparison with observed IMD data 
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Figure 4.36 Average annual water yield under different SSP scenarios in comparison with observed IMD data 



92 
 

 

Figure 4.37 Average annual streamflow under different SSP scenarios in comparison with observed IMD data 
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Table 4.6 Comparison of WBC for 9 GCMs and the observed data during the baseline period 

(1973-2003) for annual period 

Scenario 
Precipitation 

(mm) 
ET (mm) 

Water 

Yield 

(mm) 

Surface 

Runoff (mm) 

Streamflow 

(m3/sec) 

IMD 697 519 119 82 702 

BCC_CSM2-MR 767.5 (10.1) 456 (-12.1) 231.3 (94) 146.4 (78) 1674 (138) 

EC-EARTH3 739.1 (6.04) 409.5 (-21) 246.7 (107) 143.9 (75) 1708.5 (143) 

EC-EARTH3-Veg 771.1 (10.63) 409.5 (-21) 277.2 (132) 155.3 (89) 2033 (189) 

GFDL-ESM4 768 (10.18) 396.9 (-23) 285.9 (140) 162.7 (98) 2110.3 (200) 

IPSL-CM6A-LR 778 (11.6) 414.6 (-20) 282.3 (137) 181.7 (121) 2077.7 (196) 

MPI-ESM1-2-HR 712.8 (2.3) 402.7 (-22) 226.7 (90) 122.3 (49) 1633.5 (132) 

MPI-ESM1-2-LR 794.6 (14) 416 (-19) 293.2 (146) 165.2 (101) 2125.6 (202) 

NorESM2-LM 819.3 (17.5) 408.9 (-21) 325.9 (173) 190.6 (132) 2380.7 (239) 

NorESM2-MM 795.5 (14) 441.6 (-15) 271.2 (127) 154.3 (88) 1986.8 (183) 

MME 771.8 (10.7) 417.3 (-19) 271.1 (127) 158 (92)  1970 (180) 

The value in the brackets represents percentage change. 

The variation in projections of the annual average precipitation compared to historical GCMs 

are in the range of -5.7% for MPI-ESM1-2-LR to 100.9% for EC-EARTH3 in the future under 

SSP2-4.5 and SSP5-8.5 respectively.  NorESM2-LM and NorESM2-MM models are 

projecting more precipitation in the future compared to other historical GCMs projections 

under all SSP scenarios except SSP5-8.5 in the FF. In the FF, EC-EARTH3-Veg model is 

projecting highest precipitation compared to historical period. The surface runoff and water 

yield components are also following similar increasing patterns with the precipitation under all 

GCMs in the historical period. The annual MME average of surface runoff and water yield are 

projected to increase up to 92% and 127% respectively in comparison to historical period. The 

significant rise in water yield and surface runoff has led to a corresponding increase in 

streamflow across all GCMs. The comparison of surface runoff, water yield and streamflow 

between each GCM for the future periods under four SSP scenarios is also computed.  
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Table 4.7 Comparison of annual average historical precipitation of 9 GCMs with respect to 

same GCM for the future period scenarios (GCM 1 to 9 represents, BCC-CSM2-MR, EC-

Earth3, EC-Earth3-Veg, GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MPI-ESM1-2-

LR, NorESM2-LM and NorESM2-MM respectively). 

GCM 1 2 3 4 5 6 7 8 9 

Historical 

PR (mm) 

767.5 739.1 771.1 768 778 712.8 794.6 794.6 795.5 

SSP1-2.6 

(NF) 

856.3 

(11.6) 

949.6 

(28.5) 

789 

(2.3) 

941.5 

(22.6) 

885.6 

(13.8) 

759 

(6.5) 

804 

(1.3) 

1235.9 

(55.5) 

905.3 

(13.8) 

SSP1-2.6 

(MF) 

923.5 

(20.3) 

905.2 

(22.5) 

761.3 

(-1.3)) 

898.7 

(17) 

885.8 

(13.9) 

701.3 

(-1.6) 

808.9 

(1.8) 

1133 

(42.6) 

1059 

(33.1) 

SSP1-2.6 

(FF) 

826.6 

(7.7) 

1034.8 

(40) 

885.6 

(14.8) 

904.7 

(17.8) 

915.6 

(17.7) 

721.7 

(1.2) 

767 

(-3.47) 

1129.9 

(42.2) 

1012.7 

(27.3) 

SSP2-4.5 

(NF) 

873.4 

(13.8) 

930.4 

(25.9) 

769.8 

(-0.2) 

921.9 

(20) 

836.9 

(7.6) 

655.8 

(-8) 

788 

(-0.83) 

1055.8 

(32.9) 

956 

(20.2) 

SSP2-4.5 

(MF) 

890.59 

(16) 

989 

(33.9) 

988.8 

(28.2) 

1007 

(31.1) 

1016 

(30.6) 

728.9 

(2.3) 

814.7 

(2.5) 

1119.8 

(40.9) 

1021.5 

(28.4) 

SSP2-4.5 

(FF) 

885.3 

(15.3) 

1027.6 

(39) 

1021 

(32.4) 

1015 

(32.2) 

960.7 

(23.5) 

762.6 

(7) 

748.7 

(-5.7) 

1221.8 

(53.8) 

1099 

(38.2) 

SSP3-7.0 

(NF) 

857.6 

(11.7) 

1007 

(36.2) 

786.6 

(2) 

893 

(16.3) 

848.3 

(9) 

727.5 

(2.1) 

854 

(7.4) 

1051.9 

(32.4) 

960 

(20.7) 

SSP3-7.0 

(MF) 

863.5 

(12.5) 

1147.8 

(55.2) 

 

965.6 

(25.2) 

981 

(27.7) 

914 

(17.5) 

703 

(-1.4) 

866.9 

(9) 

1059 

(33.3) 

 

1061 

(33.4) 

 

SSP3-7.0 

(FF) 

856.5 

(11.6) 

1435.4 

(94.2) 

1250.6 

(62.2) 

1081.5 

(40.8) 

1092 

(40.4) 

813 

(14.1) 

986 

(24) 

1182 

(48.8) 

1146.6 

(44.1) 

SSP5-8.5 

(NF) 

758.3 

(-1.2) 

961.9 

(30.1) 

843.2 

(9.4) 

902.4 

(17.5) 

881.5 

(13.3) 

655.7 

(-8) 

781.2 

(-1.68) 

1156.8 

(45.6) 

996.9 

(25.3) 

SSP5-8.5 

(MF) 

825.8 

(7.6) 

1164.2 

(57.5) 

1065.5 

(38.2) 

1000.8 

(30.3) 

1135.8 

(46) 

751.2 

(5.4) 

839.2 

(5.61) 

1110.3 

(39.7) 

1006.9 

(26.6) 

SSP5-8.5 

(FF) 

1033 

(34.6) 

1484.6 

(100.9) 

1429 

(85.3) 

1169.4 

(52.3) 

1415.6 

(82) 

888.6 

(24.7) 

1036.6 

(30.45) 

1156 

(45.5) 

1066.5 

(34.1) 

The values in the brackets represents percentage change in the (PR= precipitation). 

A comparison of the future projected precipitation from all GCM’s with the historical GCM 

observed precipitation indicates that the mean precipitation in the basin is increasing in most 

of the future scenarios. Only few years in all the GCM simulations have shown lower 

precipitation as compared to the historical GCM precipitation within the basin. It is also 

observed that the variability in the future projected mean annual precipitation is increasing as 

evident from the box plots of Figure 4.34. The MPI-ESM1-2-HR and MPI-ESM1-2-LR GCMs 

are predicting less increment in the future compared to other GCMs, which occupied 1st and 
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2nd rank in GCM ranking. It can be seen that NorESM2-LM and NorESM2-MM are 

overestimating the higher extremes and underestimating the lower extremes. Although 

NorESM2-LM got 4th rank in GCM ranking, it showed more extremes compared to other 

GCMs in all periods except FF under SSP5-8.5. This could be due to the inherent fundamental 

uncertainties in the climate change projection of GCMs (Li & Jin, 2017; Ndhlovu & Woyessa, 

2020). The Ec-Earth3 and Ec-Earth3-Veg outputs are predicting more precipitation in FF under 

SSP5-8.5. In the FF the precipitation magnitude increase is more compared to NF and MF 

under SSP3-7.0 and SSP5-8.5. The high variability in the precipitation for the future projected 

GCM’s suggest that the basin is going to experience climate extremes more frequently in the 

future. The increase in the total projected precipitation is also evident from the multi-model 

ensemble average value for the three future periods. The prediction bounds and percentage 

changes in the future projections is evident from the difference in the projected values from 

different GCMs (see Table 4.8 and 4.9).  

Table 4.8. Impact of climate change on the annual average WBC for KRB with uncertainty 

bounds 

 
Precipitation 

(mm) 
ET (mm) 

Water Yield 

(mm) 

Surface Runoff 

(mm) 

Streamflow 

(m3/sec) 

IMD 697 519 119 82 702 

GCM 

historical 

(MME 

Average) 

771.8 417.3 271.1 158 1970 

SSP1-2.6 

(NF) 
909 (309-2228) 437 (260-630) 385 (30-1633) 216 (14-843) 2733 (370-8001) 

SSP1-2.6 

(MF) 
899 (300-1985) 440 (269-590) 378 (23-1337) 212 (11-708) 2750 (55-7246) 

SSP1-2.6 

(FF) 
910 (247-1984) 448 (252-664) 382 (16-1320) 211 (6-678) 2767 (31- 6839) 

SSP2-4.5 

(NF) 
865 (328-1814) 434 (293-610) 353 (23-1994) 200 (13-657) 2576 (81-6658) 

SSP2-4.5 

(MF) 
953 (310-1901) 449 (267-637) 422 (23-1300) 240 (4-751) 3081 (136-6672) 

SSP2-4.5 

(FF) 
971 (366-2205) 453 (317-583) 436 (43-1657) 246 (23-964) 3163 (188-8220) 

SSP3-7.0 

(NF) 
887 (223-1882) 437(215-575) 371 (16-1281) 210 (8-709) 2718 (246-6890) 

SSP3-7.0 

(MF) 
951 (411-2026) 451 (316-645) 419 (44-1389) 242 (25-787) 3072 (190-7796) 

SSP3-7.0 

(FF) 
1094 (209-2050) 479 (209-686) 532 (25-1507) 308 (7-819) 3762 (500-7861) 

SSP5-8.5 

(NF) 
882 (280-1861) 438 (254-595) 364 (18-1314) 205 (8-683) 2592 (90-6285) 

SSP5-8.5 

(MF) 
989 (183-1898) 460 (185-644) 446 (21-1181) 255 (9-726) 3210 (156-6920) 

SSP5-8.5 

(FF) 
1187 (194-2570) 491 (190-677) 609 (23-2004) 354 (8-1450) 4226 (648-9418) 

* The average annual value along with prediction bounds in brackets (minimum and maximum) 

of considered GCMs 
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The ensemble mean of projected annual precipitation is projected to increase by 24.1% to 

70.3% in future time frames, when compared to the observed IMD data in the baseline period.  

The maximum average annual precipitation is predicted to rise by 30.56%, 39.31%, 56.96% 

and 70.30% by the end of the 21st century under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, 

respectively in comparison to the observed IMD data in the baseline period.   

Table 4.9 Effect of climate change on the WBC of the KRB (The value in the bracket 

represents relative change between the GCM historical ensemble average and future 

scenarios). 

 
Precipitation 

(mm) 
ET (mm) 

Water Yield 

(mm) 

Surface Runoff 

(mm) 

Streamflow 

(m3/sec) 

GCM historical 

(MME Average) 
771.8 417.3 271.1 158 1970 

SSP1-2.6 (NF) 909 (17.7) 437 (4.7) 385 (42) 216 (36.7) 2733 (38.7) 

SSP1-2.6 (MF) 899 (16.5) 440 (5.4) 378 (39.4) 212 (34.2) 2750 (39.5) 

SSP1-2.6 (FF) 910 (17.9) 448 (7.3) 382 (40.9) 211 (33.5) 2767 (40.5) 

SSP2-4.5 (NF) 865 (12.1) 434 (4) 353 (30.2) 200 (27) 2576 (31) 

SSP2-4.5 (MF) 953 (23.5) 449 (7.6) 422 (55.6) 240 (52) 3081 (56) 

SSP2-4.5 (FF) 971 (25.8) 453 (9.3) 436 (60.8) 246 (55.7) 3163 (61) 

SSP3-7.0 (NF) 887 (15) 437(4.7) 371 (36.8) 210 (33) 2718 (38) 

SSP3-7.0 (MF) 951 (23.2) 451 (8) 419 (54.5) 242 (53.2) 3072 (56) 

SSP3-7.0 (FF) 1094 (41.7) 479 (14.8) 532 (96.2) 308 (95) 3762 (91) 

SSP5-8.5 (NF) 882 (14.3) 438 (4.9) 364 (34.3) 205 (29.7) 2592 (35) 

SSP5-8.5 (MF) 989 (28.2) 460 (10.2) 446 (64.5) 255 (61.4) 3210 (63) 

SSP5-8.5 (FF) 1187 (54) 491 (18) 609 (125) 354 (124) 4226 (114.5) 

 

The increased precipitation in the historical GCMs compared to the observed data is translated 

to other water balance components such as water yield, surface runoff and streamflow at the 

catchment outlet. Similarly, the future scenarios of all GCMs are also following similar kind 

increasing trend in WBC as in the case of historical GCMs.  The water yield, surface runoff 
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and streamflow showed increase for the years in which rainfall is increasing while it is lower 

than the GCM historical in few years. The increase in the surface runoff, water yield and 

streamflow at the outlet follows similar trend to the precipitation data. Precipitation change has 

a significant influence on future streamflow, with projections showing a potential increase of 

31 to 114.5%. The maximum ensemble mean changes in average annual streamflow is 

projected to increase 40.5%, 61%, 91% and 114.5% under SSP1-2.6, SSP2-4.5, SSP3-7.0 and 

SSP5-8.5 respectively, compared to GCM historical ensemble average of baseline period by 

the end of 21st century. The variation of mean annual future streamflow shows significantly 

increasing trends from NF to FF under all SSPs (Figure 4.37) compared to baseline period of 

historical GCMs. Among the four SSP scenarios the higher increase in projected streamflow is 

projected to occur under SSP3-7.0 and SSP5-8.5 compared to historical GCM streamflow of 

the baseline period.  In the NF and MF, NorESM1-2-LM is predicting more future streamflow 

under SSP1-2.6 and SSP2-4.5. For the scenarios of SSP3-7.0 and SSP5-8.5, the maximum 

average streamflow values are observed for EC-EARTH3 output during the MF. The FF is 

experiencing higher magnitudes of streamflow, especially under SSP5-8.5 scenario compared 

other periods. It is also observed that the maximum flow of 8856 m3/sec has occurred in the FF 

under SSP5-8.5 scenario for EC-EARHT3 GCM output, which is 1.96 times the maximum 

flow value (4500 m3/sec) of the GCM historical. Whereas, the peak flow of ensemble average 

is predicted in the future as 5381 m3/sec which is 2 times the peak flow (2692.7 m3/sec) of 

ensemble average during baseline period. The highest precipitation, water yield, surface runoff 

and streamflow are projected to increase 54%, 125%, 124% and 114.5% respectively in FF 

under SSP5-8.5 scenario compared to ensemble average of baseline period. The higher increase 

in the water yield, surface runoff and streamflow components as compared to the precipitation 

may suggest that the precipitation is increasing during the monsoon period leading to saturated 

conditions resulting in higher runoff generation. The percentage increase in the ET is observed 

to be in general less for the future periods as compared to the other WBC. The ET is projected 

to increase in the range of 4% to 18% for the future periods under different SSP scenarios 

compared to ensemble average. One of the reasons for the lower ET increase is that although 

the future rise in temperature may accelerate evapotranspiration but, increased CO2 

concentration and increased humidity (caused by increased rainfall intensity) may inhibit 

transpiration by altering leaf stomata, potentially offsetting the increased rate of 

evapotranspiration, which is also reported in other studies (Chanapathi et al., 2018; Snyder et 

al., 2011). The lower ET demand in the future period combined with the higher precipitation 

is leading to higher runoff generation from the basin. The percentage change of WBC is 
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continuously increasing from NF to FF under all scenarios except for SSP1-2.6. In case of 

SSP1-2.6 the percentage change of WBC (except streamflow) is more compared to MF and 

FF. 

The relative change calculated between the GCM historical ensemble average and future 

GCMs ensemble average is applied to IMD observed values of baseline period to obtain the 

expected future water balance components (see Table 4.10). The average annual precipitation 

is expected to increase in the range of 781 mm to 1072 mm for future period under different 

SSP scenarios based on IMD data. In a similar way, future predictions indicate that surface 

runoff, water yield, evapotranspiration and streamflow are ranging from 104 to 184 mm, 155 

to 268 mm, 540 to 610 mm and 920 to1506 m3/sec respectively for different scenarios. 

Table 4.10 The expected absolute values for the annual period due to climate change impact 

(The values in the brackets represents the +/-1 standard deviation values of expected absolute 

values). 

 
Precipitation 

(mm) 
ET (mm) 

Water Yield 

(mm) 

Surface Runoff 

(mm) 

Streamflow 

(m3/sec) 

IMD 697 519 119 82 702 

GCM historical 

(MME Average) 
771.8 417.3 271.1 158 1970 

SSP1-2.6 (NF) 820 (737.8902) 543 (517-569) 169 (136-202) 112 (87-136) 974 (844-1103) 

SSP1-2.6 (MF) 812 (735-889) 547 (521-572) 166 (135-197) 110 (89-130) 980 (865-1094) 

SSP1-2.6 (FF) 822 (751-893) 557 (532-582) 168 (137-199) 109 (90-128) 986 (852-1119) 

SSP2-4.5 (NF) 781 (713-849) 540 (525-555) 155 (127-183) 104 (85-122) 920 (795-1044) 

SSP2-4.5 (MF) 861 (794-928) 558 (532-584) 185 (160-210) 125 (105-144) 1095 (996-1193) 

SSP2-4.5 (FF) 877 (803-950) 567 (549-585) 191 (157-224) 128 (104-151) 1130 (1015-1244) 

SSP3-7.0 (NF) 802 (729-875) 543 (522-564) 163 (133-192) 109 (90-128) 969 (854-1083) 

SSP3-7.0 (MF) 859 (786-931) 561 (533-588) 184 (154-214) 126 (107-144) 1095 (968-1221) 

SSP3-7.0 (FF) 988 (887-1088) 596 (567-625) 233 (190-275) 160 (131-189) 1341 (1197-1485) 

SSP5-8.5 (NF) 797 (725-868) 544 (525-562) 160 (132-187) 106 (88-123) 948 (837-1056) 

SSP5-8.5 (MF) 894 (799-988) 572 (538-606) 196 (160-232) 132 (105-158) 1144 (1006-1281) 

SSP5-8.5 (FF) 1072 (933-1211) 610 (578-642) 268 (210-325) 184 (140-228) 1506 (1321-1691) 
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4.5.3 Climate Change Impact on ISMR Season in KRB 

A further analysis was performed to evaluate the climate change impacts during the Indian 

Summer Monsoon Rainfall (ISMR: from June-October) period. The prediction ranges of 

various GCMs and their ensemble average is compared with GCM historical baseline period 

are given in Table 4.11 and 4.12 respectively.  

Table 4.11 Impact of climate change on the WBC for KRB with prediction bounds for annual 

average ISMR 

 
Precipitation 

(mm) 
ET (mm) 

Water Yield 

(mm) 

Surface 

Runoff (mm) 

Streamflow 

(m3/sec) 
IMD  600 366 110 79 1659 

GCM 

historical 
724 314 259 156 4026 

SSP1-2.6 

(NF) 
857 (186-2148) 329 (155-476) 369 (22-1569) 213 (13-834) 5268 (830 -16592) 

SSP1-2.6 

(MF) 
849 (251-1875) 330 (191-429) 362 (20-1280) 209 (10-707) 5271 (87-14667) 

SSP1-2.6 

(FF) 
862 (220-1811) 336 (176-434) 364 (12-1231) 209 (6-678) 5316 (30- 13401) 

SSP2-4.5 

(NF) 
823 (289-1742) 328 (205-428) 337 (19-1102) 197 (12-617) 4929 (149-12337) 

SSP2-4.5 

(MF) 
907 (129-1846) 334 (116-443) 403 (11-1263) 236 (3-751) 5815 (235-13254) 

SSP2-4.5 

(FF) 
928 (311-2187) 341 (196-464) 418 (40-1588) 243 (23-963) 6062 (407-16467) 

SSP3-7.0 

(NF) 
848 (167-1873) 333(149-435) 357 (12-1231) 208 (7-709) 5221 (536-14045) 

SSP3-7.0 

(MF) 
898 (347-1887) 336 (238-457) 397 (40-1303) 238 (25-760) 5805 (350-15315) 

SSP3-7.0 

(FF) 
1037 (184-1986) 354 (151-459) 505 (16-1474) 303 (7-819) 7155 (828-16236) 

SSP5-8.5 

(NF) 
836 (215-1847) 328 (181-431) 348 (13-1273) 202 (7-683) 4966 (135-12667) 

SSP5-8.5 

(MF) 
937 (137-1745) 338 (114-438) 423 (16-1114) 251 (9-718) 6083 (222-12958) 

SSP5-8.5 

(FF) 
1123 (130-2569) 356 (105-453) 576 (9-1980) 347 (4-1450) 8009 (1323-20382) 
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Table 4.12 Percentage deviation (in brackets) of WBC due to climate change over KRB for 

ISMR season 

 
Precipitation 

(mm) 
ET (mm) 

Water Yield 

(mm) 

Surface 

Runoff (mm) 

Streamflow 

(m3/sec) 
GCM 

historical 
724 314 259 156 4026 

SSP1-2.6 

(NF) 
857 (18.4) 329 (4.8) 369 (42.5) 213 (36.5) 5268 (30.8) 

SSP1-2.6 

(MF) 
849 (17.3) 330 (5.1) 362 (39.7) 209 (34) 5271 (31) 

SSP1-2.6 

(FF) 
862 (19) 336 (7) 364 (40.5) 209 (34) 5316 (32) 

SSP2-4.5 

(NF) 
823 (13.7) 328 (4.5) 337 (30) 197 (26.3) 4929 (22.5) 

SSP2-4.5 

(MF) 
907 (25.3) 334 (6.5) 403 (55.6) 236 (51.3) 5815 (44.2) 

SSP2-4.5 

(FF) 
928 (28.3) 341 (8.6) 418 (61.4) 243 (55.8) 6062 (50.6) 

SSP3-7.0 

(NF) 
848 (17)        333 (6) 357 (37.8) 208 (33.33) 5221 (30) 

SSP3-7.0 

(MF) 
898 (24) 336 (7) 397 (53.3) 238 (52.5) 5805 (44.2) 

SSP3-7.0 

(FF) 
1037 (43) 354 (12.7) 505 (95) 303 (94) 7155 (77.7) 

SSP5-8.5 

(NF) 
836 (15.5) 328 (4.5) 348 (34.4) 202 (29.5) 4966 (23) 

SSP5-8.5 

(MF) 
937 (29.5) 338 (7.6) 423 (63.3) 251 (61) 6083 (51.1) 

SSP5-8.5 

(FF) 
1123 (55) 356 (13.4) 576 (122.4) 347 (122) 8009 (99) 

It can be found that nearly 90% of the climate change impact on WBC is occurring in the ISMR 

period. Mainly this study focused on precipitation, water yield and surface runoff. It can be 

observed that significant variations in the all WBC from the prediction bound values. The 

ensemble mean of precipitation is varying from minimum of 129 mm (under GCM: NorESM1-

LM) to maximum of 2569 mm (under GCM: IPSL-CM6A-LR) in the future (Table 4.11). From 

the ensemble average it can be observed that in the near future almost all the scenarios showed 

similar kind of increase in the precipitation. The ensemble average of ISMR precipitation is 

projected to increase in the range of 13.7% to 55% for the future period compared to historical 

GCM ensemble average of baseline period. The maximum increase in the ensemble average 

precipitation in the percentages are observed as 19, 28.3, 43 and 55 respectively in the far future 

under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. The increases in precipitation is larger 

under SSP5-8.5 and SSP3-7.0 compared to the other scenarios. The direct response of water 

yield and surface runoff to the precipitation are also followed same trend with the precipitation. 

The surface runoff and water yield components are projected to increase up to 175 mm and 245 

mm for ISMR period, 184 mm and 268 mm for the annual period respectively and by the end 
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of 21st century under SSP 5-8.5 scenario after applying the relative percentage of GCMs to the 

IMD observed values shown in Table 4.13. 

Table 4.13 The expected absolute values for the annual ISMR period due to climate change 

impact (The values in the brackets represents the +/-1 standard deviation values of expected 

absolute values). 

 
Precipitation 

(mm) 
ET (mm) 

Water Yield 

(mm) 

Surface 

Runoff (mm) 

Streamflow 

(m3/sec) 
IMD 600 366 110 79 1659 

GCM 

historical 
724 314 259 156 4026 

SSP1-2.6 

(NF) 
710 (633-786) 

383 (366-400) 157 (125-188) 108 (84-132) 2170 (1093-3247) 

SSP1-2.6 

(MF) 
704 (639-768) 

385 (369-401) 154 (125-183) 106 (86-125) 2173(1120-3226) 

SSP1-2.6 

(FF) 
714 (648-780) 

392 (376-407) 155 (125-184) 106 (88-124) 2190 (1139-3241) 

SSP2-4.5 

(NF) 
682 (620-744) 

382 (370-394) 143 (117-169) 100 (82-118) 2032 (1043-3020) 

SSP2-4.5 

(MF) 
752 (690-814) 

390 (372-407) 171 (147-199) 119 (100-138) 2392(1286-3497) 

SSP2-4.5 

(FF) 
770 (702-837) 

397 (384-409) 177 (145-209) 123 (100-146) 2498 (1388-3607) 

SSP3-7.0 

(NF) 
702 (636-768) 

388 (374-401) 151 (123-179) 105 (86-123) 2156 (1175-3136) 

SSP3-7.0 

(MF) 
744 (682-805) 

392 (373-410) 168 (141-195) 120 (102-137) 2392 (1353-3430) 

SSP3-7.0 

(FF) 
858 (764-951) 

412 (394-429) 214 (173-254) 153 (124-181) 2948 (1707-4189) 

SSP5-8.5 

(NF) 
693 (627-758) 

382 (369-394) 148 (122-174) 102(85-119) 2040 (1039-3041) 

SSP5-8.5 

(MF) 
777 (688-865) 

394 (370-418) 179 (144-214) 127 (100-153) 2507 (1391-3623) 

SSP5-8.5 

(FF) 
930 (810-1049) 

415 (391-438) 245 (192-297) 175 (133-216) 3301 (1844-4757) 

Almost 95% of the annual surface runoff and 92% of annual water yield are occurring during 

the ISMR period. This is due to a higher occurrence of precipitation during the monsoon period. 

Generally, the rise in the WBC may indicating that excessive availability of water and high 

groundwater storage. The streamflow is expected to increase significantly in the future under 

all the scenarios. The individual streamflow for one of the GCM is projected to increase 

maximum up to 20,382 m3/sec under SSP5-8.5 scenario in the FF period. The selected SSP 

scenarios showed an increase in surface runoff, water yield and streamflow as a result of 

increasing rainfall.  The evapotranspiration is also followed an increasing trend but lesser 

increase compared with the other WBC under all SSP scenarios. These results were similar to 

those reported in earlier studies (Chanapathi et al., 2018; Kulkarni et al.,, 2014). The ensemble 

mean of ISMR future streamflow is ranging from 4929 m3/sec to 8009 m3/sec under different 

SSP scenarios, which is 22.5% to 99% more compared to the historical GCM ensemble 
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average. The results suggest that more water will be available in the basin in the future period 

and the basin may experience more floods.  

4.5.4 Climate Change Impact on Mean Monthly Flows 

The impact of climate change is also assessed by comparing the mean monthly streamflow for 

the future periods with the baseline period as shown in Figure 4.38. It is clearly observed that 

compared to baseline period, the future streamflow is significantly higher (especially higher 

variations from June-October) under all scenarios. During the NF period, the output of 

NorESM2-LM GCM is projecting higher magnitude of streamflow compared to the other GCM 

outputs under four SSP scenarios. It is observed that the maximum flow value of 13,213 m3/sec 

in the August month for SSP1-2.6 scenario. For the MF period, EC-EARTH3 output is 

projecting higher magnitude of streamflow under SSP3-7.0 scenario with streamflow value 

about 13,102 m3/sec in the August month. Likewise, In the FF period, EC-EARTH3-VEG 

shows large magnitude of streamflow under SSP5-8.5 scenario with peak flow of 15,166 m3/sec 

in the September month.  

It can be observed that there is a shift in the occurrence of peak flow value in the future period 

compared to observed period 1973-2003. In the observed period, the highest recorded flow rate 

was 2540 m3/sec, which took place during the month of August. But in the case of future 

periods the Peak flow values for most of the individual GCMs and MME average is observed 

in the month of September. For the EC-EARTH3 model, the peak flow value is projected to 

occur in the month of October in FF under SSP5-8.5 scenario. This shift in peak streamflow in 

future periods compared to the observed period can be related to the extension of ISMR even 

up to October month, resulting in an increase in surface runoff. This significant surface runoff 

in September and October has a negative impact on the Kharif crops in the KRB since most of 

the crops are in the harvesting stage, particularly rice, maize and cotton. It can be observed that 

the streamflow increment is more in MF and FF than NF under all SSP scenarios except SSP1-

2.6 scenario. Under the SSP1-2.6 scenario, the highest MME average streamflow in the NF is 

predicted to rise about 3.17 times (i.e., 7942 m3/sec) in comparison to the historical period (i.e., 

2540 m3/sec). Likewise, the projected increases in maximum MME average streamflow during 

the MF and FF under SSP5-8.5 are estimated to be 3.52 times (8835.9 m3/sec) and 4.38 times 

(10,973 m3/sec) respectively, compared to the baseline period. These findings align with 

previous studies by (Chanapathi & Thatikonda, 2020; Nikam et al., 2018). 
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Figure 4.38 Simulated mean monthly streamflow under different SSP scenarios in the future 

periods 

4.5.5 Discussion 

The research on the KRB is of utmost importance due to its semi-arid environment and 

susceptibility to climate change, resulting from an uneven spread of rainfall. Previous research 

has suggested that choosing appropriate GCMs can help to decrease uncertainties in climate 

change projections (McSweeney et al., 2015; K S Raju & Nagesh kumar D, 2014). The selected 

GCMs using SU technique is agreeing of the previous studies of different CMIP phases over 

the KRB. The NorESM, BCCCSM1.1 (m) family GCM ranked top in evaluating the Indian 

Summer Monsoon (ISM) rainfall (Babar et al., 2015; Sarthi et al., 2016). The GFDL and BCCR 

family GCMs were ranked top in the KRB in evaluating the precipitation in the KRB (Raju & 

Nagesh Kumar, 2015) and IPSL family is performing well for the temperature over India (Raju 

& Nagesh Kumar, 2016). The same family GCMs are ranked in the top 50% in the present 

study. However, for the CMIP6 phase climate models, MPI family is performing well 

compared to other GCMs, which is agreeing with the peninsular India (Anandhi & Nanjundiah, 
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2015). Therefore, selected top 50% GCMs are utilized to compel the hydrologic SWAT model. 

The average annual precipitation of MME average along with individual GCM is significantly 

increasing from IMD precipitation in all three future periods in contrast to the previous study 

reported that in the NF the precipitation projections are decreasing using the GHG (Gosain et 

al., 2006), CNRM-CM5, GFDL-ESM2M  GCM output (Chanapathi & Thatikonda, 2020).  

The increase in the precipitation resulted in the increase of other WBC such as surface runoff, 

water yield, streamflow and decrease in the evapotranspiration in the future can be observed in 

the present study. The results are in confirmation to the previous studies (Chanapathi & 

Thatikonda, 2020; Kulkarni BD, 2014; Kundu et al., 2017; Nikam et al., 2018). For example, 

the maximum amount of annual average precipitation, was projected to increase about 33.4% 

under CNRM-CM5 output in FF under high emission RCP 8.5 scenario (Chanapathi & 

Thatikonda, 2020) compared to baseline period whereas, in the present study MME average is 

projected to rise about 54% in FF under SSP5-8.5 scenario. Ensemble average precipitation 

was projected to increase up to 1073 mm under RCP8.5 scenario whereas, in the present study 

it is projected to increase up to 1187 mm under SSP5-8.5 scenario in the FF. Similarly, the 

ensemble average values of water yield, surface runoff and streamflow were projected to 

increase up to 499 mm, 459 mm and 6021 m3/s whereas, in the current study they are projected 

to rise up to 609 mm, 354 mm and 4226 m3/s in the FF respectively. The lower increase of the 

streamflow and surface runoff could be attributed to the incorporation of the reservoir system 

within the SWAT model. The results of the study suggest that future policies for cropping 

pattern, cropping period and reservoir operation must be updated for sustainable water 

management within the basin. 

4.5.6 Conclusions 

This study examines the impacts of climate change on the water balance components and 

hydrology of the Krishna River Basin for three future time frames.Tier-1 scenarios, SSP1-2.6, 

SSP2-4.5, SSP3-7.0 and SSP5-8.5, which are similar in magnitude and distribution to the RCPs 

in CMIP 5 were used in the current study. The selected top 50% GCMs future scenarios are 

forced as input to the well calibrated and validated distributed hydrological model (SWAT) to 

simulate the WBC and streamflow. 

The MPI-ESM1-2-HR and MPI-ESM1-2-LR GCMs closely match observed precipitation data 

during the baseline period, with no significant changes expected in the future except under the 
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SSP5-8.5 scenario during the FF period. The outputs of NorESM2-LM and NorESM2-MM 

GCMs consistently showed an overestimation of future precipitation across all SSP scenarios 

except in the FF under SSP5-8.5 scenario. It is observed that the ensemble mean of projected 

mean annual precipitation has significantly increased in the range of 12 to 54% in the future 

periods under different SSP scenarios compared to GCM ensemble. The fluctuation of these 

predicted precipitation levels will likely have a significant impact on other water balance 

components in the basin The ensemble average of annual surface runoff and water yield is 

projected to increase from 27% to 124% and 30% to 125%, respectively, under different SSP 

scenarios for future periods. The future streamflow is significantly impacted by changes in 

future precipitation and the annual MME average is projected to increase from 31 to 114.5% 

from NF to FF under four SSP scenarios. The ensemble mean of future flows occurred mostly 

in the month of September and the increase in flows can also be observed even in the months 

of October and November due to monsoon extension. This shows the adverse effects on Kharif 

crops as they are under harvesting stage. So, the policymakers can make the decisions on 

cropping patterns and cultivation for better agricultural productivity. Future streamflow is 

significantly impacted by the large increases in precipitation, surface runoff and water yield, 

which may result in major flood events in the KRB. During the monsoon period the maximum 

peak flows are observed compared to non-monsoon period. It is found that the MPI-ESM1-2-

HR model will not experience any extreme flow occurrences in the future. The maximum 

number of streamflow extremes can be observed for NorESM2-LM and IPSL-CM6A-LR 

outputs. 

4.6 Coupled Impact of Climate and LULC Change on WBC of TRB 

In India, the changes in LULC and climate are posing threats to water supply and triggering 

natural disasters like floods and droughts (Singh et al., 2019; Sinha & Eldho, 2018) . The 

country heavily relies on monsoon precipitation (about 70%), making it vulnerable to changing 

precipitation patterns. According to the 2018 Niti Aayog report, groundwater wells are 

disappearing and 50% of India's population suffers from a severe water deficit. Droughts in 

2016 affected millions, resulting in substantial economic losses. Additionally, between 1950 

and 2015, floods have impacted approximately 825 million individuals. Furthermore, the 

frequency of flood events in central India has tripled during this time frame (Kumar et al., 2021; 

Mishra, 2020). Therefore, it is emphasizing the urgent need to integrate climate variability and 

land use change assessments for accurate water availability predictions. 
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The hydrologic cycle's parameters are significantly impacted by both LULC and climate 

change, which must be taken into consideration when making decisions on how best to use and 

manage water resources going forward. For the purpose of managing water resources, 

variations in water balance components such as evapotranspiration, base flow, surface and 

subsurface runoff regionally and temporally are crucial. Based on these changes, a number of 

fields have evolved, including irrigation system design and management, hydrologic water 

balance, crop yield simulation, planning and management of water resources and water loss 

optimisation through improved agricultural water use. 

The Tunga (147 km) and Bhadra (178 km) rivers converge to form the Tungabhadra River, 

which is the principal tributary of the Krishna River is used to investigate the coupled impact 

of climate and LULC change WBC. 

4.6.1 SWAT Performance on TRB Hydrological Modelling 

The long-term climatic and LULC effects on the hydrology of large complex catchments can 

be simulated by the SWAT model (Bae et al., 2011; S. Wang et al., 2008). The SWAT model 

uses different combinations of slope, LULC and soil classes to divide the entire catchment into 

sub-catchments based on topography, which are then classified into Hydrological Response 

Units (HRUs) (Abbaspour et al., 2015). By using climate data and LULC patterns, SWAT 

models can estimate anticipated watershed scenarios. Moreover, it has the ability to evaluate 

streamflow variability by taking into account forecasted climate variables and LULC change 

for the future. The monthly discharge recorded at the Mantralayam outlet is utilised to calibrate 

and validate the SWAT model. The model was simulated from 1978-2010, with first 3 years 

considered as warmup period. The 20 year period from 1981 to 2000 is used to calibrate the 

model and remaining 10 year period from 2001 to 2010 is used to validate the model using 

SUFI-2 algorithm in the SWAT-CUP. Based on the past studies, 13 parameters that influenced 

the streamflow were selected for the calibration (Table 4.14). Among these parameters, 8 

parameters, i.e. CN2, SOL_AWC, GWQMN, ESCO, ALPHA_BF.gw, GW_REVAP.gw, 

CH_K2 and CH_N2 are identified as most sensitive parameters after 500 iterations. NSE abd 

R2 are used to evaluate the model performance during calibration and validation. Both the R2 

and NSE value of 0.75 is attained in the calibration period, which is regarded as very good  
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(Moriasi et al., 2007). During the validation period a very good R2 and NSE values of 0.72 and 

0.70 are obtained respectively. The observed and simulated discharge values using SWAT-

CUP is shown in Figure 4.39.  

 

Figure 4.39 Correlation between simulated and observed discharge 

Other statistical performance metrics, including PBIAS, p-factor and r-factor are also used to 

compare the model's performance as shown in Table 4.15. The negative PBIAS values are 

suggesting that the streamflow has been underestimated by the model compared to the observed 

flow. The calibrated model strong performance indicates that it can accurately represent the 

temporal and geographical variability of the hydrological processes occurring within the 

catchment.  

Table 4.14 Calibrated parameters used in the present study for the SWAT model 

Parameter Range Fitted value 

R_CN2.mgt -0.3 to 0.01 -0.1366 

A_GWQMN.gw -600 to 1645 416.98 

A_GW_DELAY.gw -30 to 100 4.5 

V_ALPHA_BF.gw 0 to 0.14 0.12754 

R_SOL_AWC().sol -0.1 to 0.1 -0.0874 

A_REVAPMN.gw -750 to 750 -379.5 

A_RCHRG_DP.gw -0.05 to 0.05 -0.0403 

V_GW_REVAP.gw 0.02 to 0.2 0.0569 

R_OV_N.hru -0.2 to 0.2 -0.0708 

V_CH_K2.rte 10 to 100 20.53 

V_ESCO.hru 0 to 0.5 0.01 

V_CH_N2.rte 0.1 to 0.3 0.1266 

V_CANMX.hru 0 to 20 9.7 
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Table 4.15 Performance evaluation at Mantralayam discharge location 

Parameter Calibration Validation 

NSE 0.75 0.72 

R2 0.75 0.70 

PBIAS -3.8 -18.3 

p-factor 0.87 0.74 

r-factor 1.3 1.6 

 

Using the chosen nine GCMs and projected LULC for the years 2040, 2065 and 2090 under 

the SSP1-2.6 and SSP5-8.5 scenarios, are employed to assess the coupled impact on the 

hydrology of the TRB. The analysis is carried out for three future time frames namely, Near 

Future (NF: 2026–2050), Mid Future (MF: 2051–2075) and Far Future (FF: 2076-2100). 

4.6.2 LULC Change under SSP-RCP Scenarios 

The future LULC maps under SSP-RCP scenario for the respected three future time periods i.e 

2040, 2065 and 2090 were extracted and is forced along with future climate data for the 

hydrological modelling. Figure 4.40 depicts the LULC variation under different SSP scenarios 

along with base year map. The simulated major land use classes were identified in Tungabhadra 

basin as water (1.41%), built-up (0.23%), cropland (77.01%), barren land (0.04%), forests 

(12.94%) and grassland (8.37%) as per the LULC of the year 2015. To quantitatively assess 

the accuracy of land simulation, three widely employed indicators namely Kappa coefficient, 

Overall Accuracy (OA) and Figure of Merit (FoM) were employed. The obtained values for 

India were 0.918, 0.959 and 0.093 for the Kappa coefficient, OA and FoM respectively. Table 

4.16 shows the spatial coverage of each LULC class in the TRB. 
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Figure 4.40 LULC fluctuation for three future periods under both SSP1-2.6 and SSP5-8.5 

scenarios in comparison to the base year map (2015) 

Table 4.16 LULC variation from 2015 to 2100 in percent change 

Year 
LULC class and change in percentage (%) 

Water Forest Barren land Grass land Cropland Built-up 

2015 1.41% 12.94% 0.04% 8.37% 77.01% 0.23% 

SSP1-2.6 

2040 1.4 (-0.01%) 13.06 (+0.12%) (0%) 6.69 (-1.68%) 78.44 (+1.43%) 0.41 (+0.18%) 

2065 1.4 (-0.01%) 12.91 (-0.03%) (0%) 4.7 (-3.67%) 80.48 (+3.47%) 0.51 (+0.28%) 

2090 1.4 (-0.01%) 12.84 (-0.1%) (0%) 1.61 (-6.76%) 83.63 (+6.62%) 0.51 (+0.28%) 

SSP5-8.5 

2040 1.41 (0 %) 10.02 (-2.92%) (0%) (0%) 87.07 (+10.06%) 0.5 (+0.27%) 

2065 1.41 (0 %) 10.12 (-2.82%) (0%) (0%) 87.88 (+10.87%) 0.59 (+0.36%) 

2090 1.41 (0 %) 10.12 (-2.82%) (0%) (0%) 87.88 (+10.87%) 0.59 (+0.36%) 

It can be observed that some significant changes were found in future LULC for the two SSP 

scenarios. The grass land and barren land is totally converted to cropland in the future under 

SSP585 scenario where as in case of SSP1-2.6 scenario only barren land totally converted to 

cropland. The grassland is projected to change from 8.37% to 1.61% in the FF under SSP1-2.6 
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scenario indicating a decrease of 6.76%. The urbanization and cropland are projected to extend 

up to 0.59% and 87.88% respectively under SSP5-8.5 scenario till 2100. There is no significant 

change in the forest cover under SSP1-2.6 scenario but under SSP5-8.5 it has shown small 

decline by 2.92% in the future. It can be concluded from this analysis is that these small changes 

in future can affect the streamflow and other WBC. These findings contribute to a better 

comprehension of the evolving dynamics within the river basin, thereby offering valuable 

insights for strategic planning and effective management. 

4.6.3 Projections of WBCs 

The annual mean temperature and precipitation for the twenty-first century are projected using 

an ensemble of models from nine GCMs. A comparison of the ensemble variability in mean 

precipitation and temperature for the future period under the SSP1-2.6 and SSP5-8.5 scenarios 

is shown in Figure 4.41 and 4.42 respectively. 

 

Figure 4.41 Projected annual precipitation variability under scenarios SSP1-2.6 and SSP5-8.5 

 

Figure 4.42 Projected mean annual temperature variability under scenarios SSP1-2.6 and 

SSP5-8.5 
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It can observed that an increase in the projected annual precipitation under both the scenarios 

in the future compared to baseline period. The magnitude of increase in precipitation is more 

in SSP5-8.5 scenario compared to SSP1-2.6 scenario. The more uncertainty range of future 

precipitation can be observed in the NF and MF compared to FF under SSP1-2.6 scenario. But 

for the SSP5-8.5 scenario, the uncertainty range is more for FF compared to NF and MF. Figure 

4.42 depicts that there is significant linear increment in the mean temperature of ensemble 

average under both the scenario compared to baseline period. The uncertainty range of mean 

temperature is more for mid and far future compared to near future under SSP1-2.6 scenario, 

but in case of SSP5-8.5 scenario clear linearly increasing trend for all the future period. By the 

end of the 21st century, the ensemble mean temperature is predicted to increase by 1.56 oC and 

4.65 oC, respectively, under the SSP1-2.6 and SSP5-8.5 scenarios. The relative change of 

annual precipitation for 9 GCMs under both SSP1-2.6 and SSP5-8.5 scenarios is shown in 

Figure 4.43. It is noticed that the precipitation is projected to increase up to 61% for the 

NorESM2-LM output in the NF under SSP1-2.6 scenario. Similarly, it is observed that the 

precipitation is projected to rise up to 92% under SSP5-8.5 scenario for the FF. MPI-ESM1-2-

HR is projected to decrease precipitation under SSP1-2.6 scenario in three future periods and 

about 20.6% decrement can be observed in NF under SSP5-8.5 scenario. 

 

Figure 4.43 Relative change in the average annual precipitation in the future periods 

A comparison of the future projected precipitation from all GCM’s with the historical observed 

precipitation indicates that the mean precipitation in the basin is increasing in most of the future 

scenarios. Only few years in all the GCM simulations have shown lower precipitation as 

compared to the historical precipitation within the basin. It is also observed that the variability 
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in the future projected mean annual precipitation is increasing as evident from the box plots of 

Figure 4.44. 

 

Figure 4.44 Mean annual precipitation variation under different GCMs compared to IMD 

data 

In comparison to the baseline period, the ensemble mean of precipitation is predicted to 

increase by 19.08% to 20.86% and 19.97% to 55.59% under the SSP1-2.6 and SSP5-8.5 

scenarios respectively. The high variability in the precipitation for the future projected GCM’s 

suggest that the basin is going to experience climate extremes more frequently in the future. 

The increase in the total projected precipitation is also evident from the MME average value 

for the three future periods. The prediction ranges of various GCMs and their ensemble average 

of annual WBC is compared with baseline period is given in Table 4.17. 
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Table 4.17 Climate and LULC impact on the WBC for TRB with prediction bounds 

 
Precipitation 

(mm) 
ET (mm) 

Water Yield 

(mm) 

Surface 

Runoff (mm) 

Soil 

moisture 

(mm) 

 

Groundwater 

(mm) 

IMD 671 420 150 116 83 28 

SSP1-2.6 

(NF) 
811 (228-2297) 349 (223-454) 277 (29-1546) 207 (16-1032) 83 (40-122) 61 (10-493) 

SSP1-2.6 

(MF) 
799 (253-2177) 349 (203-479) 270 (31-1258) 201 (17-838) 83 (29-135) 60 (11-428) 

SSP1-2.6 

(FF) 
811 (259-1802) 356 (250-548) 270 (35-1113) 200 (17-675) 83 (30-116) 61 (12-478) 

SSP5-8.5 

(NF) 
805 (245-2041) 350 (245-476) 273 (27-1253) 207 (11-954) 84 (36-121) 60 (10-387) 

SSP5-8.5 

(MF) 
888 (218-1992) 362 (231-507) 325 (31-1058) 242 (16-874) 87 (22-117) 73 (7-391) 

SSP5-8.5 

(FF) 
1044 (205-2524) 384 (231-523) 435 (28-1830) 323 (13-1389) 88 (36-121) 102 (6-422) 

 

The results show that the WBC such as SurQ, GWq and WY are also following the significant 

increasing trend with the precipitation. Both surface runoff and groundwater recharge are 

included in water yield and the greater increase in water yield is attributable to the rise in both. 

This could be mostly due to anticipated increases in precipitation along with increased 

urbanisation, cropland and decreased forest cover. Similarly, the increasing trend of WBC is 

projected in some of the studies under different RCP4.5 and RCP8.5 scenarios in Krishna River 

Basin (Chanapathi et al., 2018; Mishra & Lilhare, 2016). Regardless of increase in 

precipitation, ET is projected to decrease under all scenarios in the future periods but the 

reduction percentage of ET is negligible compared to the other WBC. Surface properties, such 

as variations in Curve Number (CN) values and evapotranspiration properties, are impacted by 

changes in LULC. The decrease in the forest cover in the future might be the reason to reduce 

the ET (Getachew et al., 2021). The similar results are observed for ET under CMIP3 and 

CMIP5 GCMs (Chanapathi et al., 2018; Reshmidevi et al., 2018). It is observed that the 

ensemble mean of SW shows no variation compared to baseline period under SSP1-2.6 

scenario for the future periods. Although the ensemble mean of SW has shown some variation 

compared baseline period under SSP5-8.5 scenario which is almost negligible but as per GCM 

wise the some significant variation can be observed. Simulated WBC of 9 climate models and 

their ensemble mean are compared with the baseline period (1980-2010) shown in Figure 4.45a 

to 4.45e. It can be observed from the figure that NorESM2-LM is projected to increase more 

compared to other GCMs in under all WBC except ET in NF and MF under both the scenarios. 

IPSL-CM6A-LR output shows more variations in the WBC in the FF under both the scenario. 

The highest annual surface runoff and water yield increase of 309.5% and 328% is projected 
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respectively under SSP5-8.5 in the FF under IPSL-CM6A-LR. The maximum groundwater 

increase about 446% is projected for SSP1-2.6 scenario in the NF under NorESM2-LM. MPI-

ESM1-2-HR shows very less variation in all the WBC for the future periods. MPI-ESM1-2-

HR is projected to decrease the WBC in all the future periods except FF under SSP5-8.5. In 

the SSP1-2.6 scenario, the ensemble mean of ET decreases by -16.1%, -16.2% and -14.6% in 

the near, mid and far future situations, whereas in the SSP5-8.5 scenarios, it decreases by -

16%, -12.9% and -7.7% respectively. In contrast, groundwater recharge is predicted to rise in 

the range of 115.6% to 265% in the future, whereas surface runoff and water yield of the 

ensemble mean are predicted to increase in the very identical ranges of 72.7% to 178.8% and 

80% to 189.5%, respectively. Similarly, a rise in soil moisture of 0.5% to 7% is anticipated in 

the future. The slight rise in soil moisture may be associated with future farmland expansion, 

which may enhance the soil's porosity and water-holding ability (Sadhwani et al., 2023). 
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Figure 4.45 Simulated mean annual WBC comparison i.e., (a) Surface runoff (SurQ), (b) 

Water Yield (WY), (c) Groundwater (GWq), (d) Evapotranspiration (ET) and Soil moisture 

(SW) with reference to baseline (1980–2010) due to combined impact of climate and LULC 

change 

4.6.4 Seasonal Flow Variation under both Climate and LULC Change 

Future streamflow has been compared at monthly scale using ensemble of 9 climate models 

under both the scenarios using the boxplots shown in Figure 4.46. It can be observed that 

nominal change in future streamflow in the dry period from January to May for both emission 

scenarios. However, during the Indian Summer Monsoon Rainfall (ISMR) season (June to 

October) the significant change can be observed in streamflow in the future under both the 

scenarios. Moreover, peak streamflow for all the GCMs are varying between months of August 

and September under both SSP scenarios. The peak streamflow of 2515.14 m3/sec, 2400 m3/sec 
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and 2444 m3/sec has projected to occur in the month of August in NF, MF and in the month of 

September in the FF respectively under SSP1-2.6 scenario. Similarly, under the SSP5-8.5 

scenario, the peak streamflow of 2296.85 m3/sec is predicted to occur in the NF in September, 

while the peaks of 2652.2 m3/sec and 4379.52 m3/sec are predicted to occur in the MF and FF 

in August. The highest streamflow of 4379.52 m3/sec in the FF under SSP5-8.5 scenario is 2.6 

times compared to observed period inferring the probability of more water arability and 

occurring of floods. Since low-lying areas are vulnerable to floods and inundation issues, all 

of this information is helpful in the design of drainage systems and river development projects. 

Figure 4.46 Streamflow variation at month scale for the IMD period (1981–2010) and the 

future period (2026 to 2100) for both SSP1-2.6 and SSP5-8.5 scenarios due to combined 

impact of climate and LULC change 
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4.6.5 Conclusions 

India's semi-arid regions face escalating vulnerability as population growth drives persistent 

over-exploitation of natural resources. This is demonstrated by the increase in cropland area, 

which has been achieved at the cost of deforestation and subsequent urban development. The 

current study looks into how the hydrological components in the Tungabhadra River Basin, 

India, might react to changes in the combined effects of climate change and LULC patterns. 

The future LULC maps under SSP-RCP scenario for the respected three future time frames i.e., 

2040, 2065 and 2090 were used and is forced along with future climate data of two SSP 

scenarios that indicates the most optimistic SSP1-2.6 and pessimistic SSP5-8.5 projections of 

the future climate to hydrological model. Following are the key findings of the study. 

Under both scenarios, it is expected that precipitation and temperature will continue to increase 

in the future. The ensemble mean temperature is projected to rise by 1.56 oC and 4.65 oC under 

SSP1-2.6 and SSP5-8.5 scenarios respectively by the end of 21st century.  The ensemble mean 

precipitation is projected to increase in the range of 19.07% to 55.67% towards end of 21st 

century. The findings indicate a future scenario characterized by expanded cropland and 

urbanization, coupled with a reduction in forest cover, grassland and barren land. The TRB 

may have more water availability in the future due to the combined effects of climate change 

and land use variation. The water yield and surface runoff ensemble mean is projected to 

increase in the nearly same range of 80% to 189.5% and 72.7% to 178.8% respectively in the 

future. The groundwater recharge is expected to rise in the future, possibly by 115.6% to 265%, 

as a result of the decrease in ET. 

4.7 Closure  

In this chapter the results and some of the key findings for each objective is described in 

detailed manner. The comprehensive analysis of sensitivity of GCMs rankings, climate change 

impact in various aspects in the KRB and combined impact of climate and LULC change on 

WBC in the TRB is investigated.  
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CHAPTER5 

 

SUMMARY AND CONCLUSIONS 
5.1 Summary 

The hydrological cycle, patterns of sea level and surface temperature and agricultural 

productivity are all impacted by climate change. Global climate pattern changes may have an 

impact on the severity, frequency and frequency of extreme events such as droughts and floods 

(IPCC, 2013). The current study project simulates the effects of climate change for the Krishna 

and Tungabhadra river basins in both the present and the future. However, for future 

projections of various water balance components investigation, GCMs are necessary. The 

CMIP6 GCMs are an improvised versions of CMIP5 GCMs in simulating climate variables. 

Generally the ranking of GCMs are prone to subjectivity. So, the GCMs subjectivity is analysed 

in India as a case study in first phase of research. The skill of CMIP6 based GCMs in replicating 

the Tmax and Tmin across India is evaluated using various combinations of input criteria, MCDM 

techniques, weighting methods and reference gridded datasets. Two sets of input criteria were 

used in this study that consists of three model evaluation metrics in each set. NSE, MAE, BD, 

KGE, R4MS4E and SU were used as input criteria. The metrics are chosen in such a way that 

they differ in capturing distinctive characteristics of dataset. Two MCDM techniques namely 

FTOPSIS and CP are chosen where both differ in the aggregation of multiple criteria. Entropy 

and CRITIC weight methods were chosen for weightage allocation. IMD and CPC gridded 

datasets were used as reference datasets. Various combinations of these alternatives were used 

to rank the performance of GCMs. These combinations address the uncertainty in the ranking 

of GCMs due to subjectivity involved in choosing the components of ranking procedures. 

For the climate change impact in the KRB, the symmetric uncertainty concept is employed to 

screen the top CMIP6-GCMs available GCMs to reduce the GCM selection uncertainty. The 

precipitation of CMIP6-GCMs are re-gridded by employing bilinear interpolation technique to 

a resolution of 0.25° in order to guarantee compatibility with IMD data. Initially, the 

precipitation outputs from various GCMs were bias corrected using empirical quantile mapping 

and ranking was done on monthly basis. Top five GCMs were selected based on total ranking 

weight obtained for each GCM. Uncertainty of the climate model data is reduced using REA 

to develop the MME. Spatio-temporal analysis of precipitation across the KRB is investigated 

using this MME. It is observed that most of the grid location exhibited increase in the 
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precipitation for annual and ISMR periods. The decrease in the precipitation is projected in the 

middle Krishna basin grid locations as most of the middle Krishna basin is semi-arid in nature. 

It is noticed that very limited studies were conducted in the KRB on the climate extreme point 

of view using different CMIP phase GCMs. So, in this study the spatio-temporal analysis of 

precipitation extremes were analysed for present and two future periods under four SSP 

scenario. This top five GMCs were selected out of 18 CMIP6 GCMs. However the ranking of 

GCMs are varying based on the daily and monthly data sets. Eleven (11) ETCCDI precipitation 

extreme indices are considered which are sufficient to understand extreme events behaviour in 

a basin. The correlation between the annual average daily discharge and precipitation extremes 

were analysed to know the impact of which extreme indices influencing more on discharge. 

However, in a basin wise the total precipitation indice most important as a major water 

resource. The good correlation is observed between the discharge and total precipitation, so an 

attempt is made to predict the future streamflow using simple nonlinear regression equation is 

known as support vector regression. However for the extreme event analysis the event based 

hydrological modelling will provide results with lesser uncertainty, but it is time complex and 

need lot of input data. The statistical models are simple, takes lesser time and need less input 

data in predicting any climate variable or streamflow. The established relationship between the 

discharge and total precipitation for historical period is employed for future streamflow 

prediction. This spatio-temporal analyse extremes in the KRB provide a valuable information 

for the policymakers. 

For climate change impact on the water balance components in the KRB, top 50% best 

performed GCMs (nine) are considered. Multi-site calibration and validation of SWAT model 

has been carried out Krishna river basin to find the spatial performance of the hydrological 

model. The nine bias corrected GCMs were forced to calibrated and validated hydrological 

model. The water balance components and streamflow availability is investigated for 9 

historical GCMs for the baseline period 1973-2003 and for three future periods of their four 

SSP scenarios. The streamflow and water balance components are investigated at monthly and 

annual scale due to climate change. The far future showed more significant projected changes 

in streamflow and water balance components across the basin based on the 9 GCMs their 

simple ensemble average. The prediction bounds of minimum and maximum values of all 

considered GCMs are also shown to know the lower and higher extremes of different water 

balance components. The mean monthly flows of all 9 GCMs and their ensemble are projected 
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to increase in the future. Especially, the ISMR season shown a high increase in the streamflow 

variations. 

An attempt is made to investigate the coupled impact of the climate and LULC change in the 

Tungabhadra river basin for the three future periods. Two Shared Socioeconomic Pathways 

(SSPs) scenarios namely, SSP1-2.6 and SSP5-8.5 are especially chosen to reflect the most 

optimistic and pessimistic future climate estimates. The Scenario Model Intercomparison 

Project defined these SSPs, which integrate different trajectories of greenhouse gas emissions 

with alternate scenarios of societal expansion in the absence of climate change (O’Neill et al., 

2016). According to (Riahi et al., 2017) SSP1 presents an optimistic trajectory for human 

growth that includes substantial investments in health and education, whereas SSP5 depicts a 

gloomy society that relies heavily on energy. By the end of the 21st century, the forcing 

scenarios of both SSP1-2.6 and SSP5-8.5 are intended to stabilise at 2.6 and 8.5 W/m2, 

respectively. The future LULC maps under SSP-RCP scenario for the respected three future 

time periods i.e., 2040, 2065 and 2090 were extracted (Chen 2022) and is forced along with 

future climate data for the hydrological modelling. A good coefficient determination and Nash 

Sutcliff Efficiency were observed represents that the SWAT model is performing well in 

simulating the streamflow. The variability in the future projected mean annual surface runoff, 

groundwater, soil moisture, evapotranspiration, water yield and monthly streamflow were 

projected using calibrated and validated SWAT model. 

5.2 Conclusions 

The following conclusions are arrived based on the study.  

 Ranking of GCMs are highly dependent upon the chosen reference gridded dataset. 

Selection of input criteria to evaluate the model performance plays a key role in ranking 

of GCMs. The weights allocated to the criteria and the final aggregated outputs from 

MCDM techniques is highly dependent upon the chosen evaluation metrics.  

 At some locations, the ranking pattern of GCMs is not affected by any of the component 

involved in the ranking procedure across India and hence can be chosen as the best 

performing GCM irrespective of the subjective decisions. An ensemble of most 

frequently performing GCMs for maximum and minimum temperatures are extracted 

for each climate zone as the most suitable set of GCMs for the corresponding climate 
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zone and these GCMs can be used for the downscaling for further climate impact 

studies. The IMD dataset was used for the further climate change impact assessment 

study in the KRB. 

 The ability of GCMs to reproduce the observed precipitation on monthly base data is 

ranked using the concept of SU. BCC-CSM2-MR, IPSL-CM6A-LR, MIROC6, INM-

CM5-0 and MPI-ESM1-2-HR, which were the most preferable GCMs for projecting 

the precipitation in the KRB. 

 The REA method was used to develop the MME for the projection of precipitation 

using above mentioned five GCMs. The results revealed that there is an increase in 

annual precipitation in almost the entire study area (except 11 grid points) in the far 

future under the SSP5-8.5 scenario. 

 The declination in precipitation projections in the near future can be observed in the 

range of 56% (192 grid points) to 81% (283 grid points) in the KRB for REA based 

ensmble, especially in the BSh climate zone under different SSP scenarios. This result 

suggests the vulnerability of the study area to droughts in the near future in those 

locations due to the reduction in the precipitation projections based on REA ensemble 

average. 

 SSP5-8.5 shows an increase in precipitation over most of the grids in the basin in the 

far future. In contrast to the annual precipitation trends projected by the MME, the 

seasonal precipitation increases in the near future, showing that the precipitation 

patterns will get intensified in the future over the KRB. 

 The same SU concept is employed to screen the suitable GCMs using daily datasets of 

IMD and GCMs. Based on the results, top nine (9) i.e., 50% of 18 suitable GCMs: MPI-

ESM1-2-HR, MPI-ESM1-2-LR, GFDL-ESM4, NorESM2-LM, EC-Earth3-Veg, BCC-

CSM2-MR, EC-Earth3, IPSL-CM6A-LR and NorESM2-MM. However it is observed 

that the ranking of the GCMs are varying based on temporal resolution of the data also. 

 The top five GCMs such as MPI-ESM1-2-HR, MPI-ESM1-2-LR, GFDL-ESM4, 

NorESM2-LM and EC-Earth3-Veg are used to analyse the precipitation extremes in the 

KRB. 
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 A larger number of grid points exhibited decreasing trends (insignificant and 

significant) followed by increasing (insignificant) trends and a very small number of 

grid points experienced positive significant trends for extreme precipitation indices 

across the basin for the baseline period (1973-2003). 

 RX1day and RX5day are major extreme precipitation indices and the mean annual 

contributions are 9.7% and 18.5% respectively in the baseline period. Heavy 

precipitation intensity indices RX1day, RX5day, R95p and R99p have exhibited 

positive fluctuations which indicate most of the rainfall is concentrated in less number 

of days which may aggregate to flash floods. 

 It is found that the MME average of extreme precipitation indices is predicted to 

increase over the future periods. Particularly, in the FF the magnitude of increase is 

greater under all SSP scenarios over the basin. 

 The heavy extreme precipitation indices both R95p and R99p are increased to nearly 

same value about 74% and RX1day and RX5day are increased to 49% and 73% 

respectively in the FF under the high warm SSP5-8.5 scenario. 

 The SVM based streamflow shows that, the SSP1-2.6 and SSP2-4.5 scenarios are 

expected to follow similar increasing streamflow patterns and the maximum average 

streamflow is observed as 2190 m3/s in the year 2027 under SSP1-2.6 in the NF. 

 The SVM based streamflow shows that the highest MME average streamflow for FF 

under SSP5-8.5 was 2694 m3/s in the year 2089. The prediction bound of maximum 

flow value is projected to reach up to 3591 m3/s in FF under the SSP5-8.5 scenario. 

This study, in conclusion, establishes that the discharges will increase with increased 

precipitation extremes causing frequent hydrological disasters in the Krishna River 

Basin in the future. 

 The climate impact on the water balance components and streamflow of the KRB was 

analysed using top 9 GCMs for historical and future periods. 

 The MPI-ESM1-2-HR and MPI-ESM1-2-LR GCMs closely match observed 

precipitation data during the baseline period, with no significant changes expected in 

the future except under the SSP5-8.5 scenario during the FF period. 
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 The outputs of NorESM2-LM and NorESM2-MM GCMs consistently showed an 

overestimation of future precipitation across all SSP scenarios except in the FF under 

SSP5-8.5 scenario. 

 It is observed that the ensemble mean of projected mean annual precipitation has 

significantly increased in the range of 12.07% to 53.79% in the future periods under 

different SSP scenarios compared to GCM ensemble. 

 The fluctuation of these predicted precipitation levels will likely have a significant 

impact on other water balance components in the basin. The ensemble average of 

annual surface runoff and water yield is projected to increase from 27% to 124% and 

30% to 125%, respectively, under different SSP scenarios for future periods. 

 With the increase in precipitation, ET is also projected to increase under all scenarios 

in the future periods but the increase percentage of ET is less compared to baseline 

period ET and the other WBC in the future. 

 The future streamflow is significantly impacted by changes in future precipitation and 

the annual MME average is projected to increase from 31 to 114.5% from NF to FF 

under four SSP scenarios. 

 The ensemble mean of future flows occurred mostly in the month of September and the 

increase in flows can also be observed even in the months of October and November 

due to monsoon extension. This shows the adverse effects on Kharif crops as they are 

under harvesting stage. 

 The current study looks into how the hydrological components in the Tungabhadra river 

basin, India, might react to changes in the combined effects of climate change and 

LULC patterns for future periods under SSP1-2.6 and SSP5-8.5 scenarios. 

 Under both scenarios, it is expected that precipitation and temperature will continue to 

increase in the future. The ensemble mean temperature is projected to rise by 1.56 oC 

and 4.65 oC under SSP1-2.6 and SSP5-8.5 scenarios respectively by the end of 21st 

century compared to IMD baseline period 1978-2010 

 The ensemble mean precipitation is projected to increase in the range of 19.07% to 

55.67% towards end of 21st century compare to observed period. 
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 The findings indicate a future scenario characterized by expanded cropland and 

urbanization, coupled with a reduction in forest cover, grassland and barren land. 

 The water yield and surface runoff ensemble mean is projected to increase in the nearly 

same range of 80% to 189.5% and 72.7% to 178.8% respectively in the future. The 

groundwater recharge is expected to rise in the future, possibly by 115.6% to 265%, as 

a result of the decrease in ET. 

 Future streamflow in TRB is expected to rise significantly during the ISMR season with 

the other WBC, which may damage kharif crops and cause floods.  The highest 

streamflow of MME is observed as 4379.52 m3/sec in the FF under SSP5-8.5 scenario 

which is 2.6 times compared to observed period inferring the probability of more water 

arability and occurring of floods. 

 Therefore, it may be concluded that the more water availability chances in the KRB and 

TRB under different CMIP6 climate change projections and also has the probability of 

occurring of floods in the future periods. As a result, this knowledge is highly helpful 

for sustainable development and improved planning and management of water 

resources. 

5.3 Contributions from the Research 

The current study has made the following significant contributions to research: 

The present study explores the various GCMs ranking patterns based on the subjectivity 

for temperature and made some important conclusions to reader that which parameters will 

affect the ranking patterns more. And provided top five ensemble for maximum and 

minimum temperature across different climate zones of India. These GCMs can be used 

directly for the further climate change studies. 

This study comprehensively investigated the climate change impact on water resources of 

the Krishna river basin. This study tried an attempt to reduce the GCM selection uncertainty 

in climate change impact study in the KRB.  The precipitation is projected using REA based 

ensemble to tackle the GCM uncertainty under four SSP scenarios (SSP1-2.6, SSP2-4.5, 

SSP3-7.0 and SSP5-8.5). The precipitation extremes are also projected to know the impact 

of extreme indices across the basin for the future periods. 
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Furthermore, a semi-distributed hydrological model called SWAT model is used to project 

the water balance components along with streamflow (hydrological process) of the Krishna 

and Tungabhadra river basins. The prediction bounds projected water balance components 

and streamflow of the 9 GCMs and MME average are presented in the current study. This 

study results offer valuable insights, enhancing comprehension and regarding water 

availability in the spatially diverse KRB and TRB under anticipated future scenarios. 

5.4 Limitations of the Study  

 LULC is assumed to be constant during SWAT simulations for periods of 2025-2100 

in the KRB. This indicates that the climate is the only factor influencing the water 

balance components and streamflow variability during future scenarios. The combined 

impact of LULC and climate could give a better knowledge about the hydrological 

processes in the entire KRB. 

 The work is carried out with data of available resolution. Finer resolution data would 

have given better results. 

 Even though the hydrological model is calibrated and validated, the uncertainty may 

still exist which can be reduced to some extent by employing ensemble of different 

hydrological models. 

5.5 Scope of Further Studies 

Based on research findings, the scope of future studies are identified as: 

 Other than REA method, any other weighting technique method can be used for 

development of MME for climate impact studies. 

 The coupled effect of future climate and LULC change analysis can be carried out for 

other sub-basins in the KRB.  

 The event based rainfall-runoff model can be used for better simulations of water 

budget components and hydrological extremes. 

 Ensemble of different hydrological models can be used in simulating the hydrological 

process to reduce the uncertainty in the future projections. 
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