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Abstract 

Aerosols are fine suspended solid or liquid particles in the atmosphere. Anthropogenic 

aerosols from industrialization and urbanization are one of the prominent parameters in the 

climate change process. Aerosol Optical Depth (AOD) is a quantitative estimate of the 

amount of aerosol present in the atmosphere. The rise in concentration of aerosols in the 

atmosphere has affected the clear sky’s visibility in most of the metropolitan cities. The 

presence of aerosols has direct and indirect effects on the climate system. The direct effect of 

AOD was to influence temperature through the absorption or scattering of radiation. The 

radiative energy balance within the atmosphere of the Earth is highly affected by the presence 

of aerosols as they are capable of scattering and absorbing the incoming solar radiation. The 

indirect effect of AOD is on the formation of cloud condensation nuclei which in turn affects 

the precipitation of a region. The current research studied the impact of AOD on precipitation 

and temperature patterns in the study area along with the quantification of parameters that 

resulted in Extreme Precipitation Events (EPEs). The AOD data from satellite and ground 

observations are the main source in studying the effect of aerosol on spatial patterns of 

precipitation and temperature in Southern India. The suitability of satellite data was evaluated 

by validating various satellite observations with the ground data. The continuous AOD data 

was validated against ground observations at Pune and Kanpur statistically and it was 

observed that Moderate Resolution Spectrometer (MODIS) was closely correlated with 

ground observations. The coefficient of determination is 0.58 for Pune station and 0.7 for 

Kanpur station. Trend in AOD was assessed for two decades over Southern India using Mann-

Kendall test and Innovative Trend Analysis method. Both the tests showed a decrease in area 

of significant trend for second decade when compared to first decade. It was observed that 

67% and 40% of area showed a significant positive trend in first- and second-decades using 

Mann-Kendall test. On the contrary, 42% and 30% of area showed a significant positive trend 

in first and second decades using Innovative Trend Analysis method. The impact of AOD on 

temperature in the study area was assessed by using Aerosol Direct Radiative Forcing 

(ADRF) method. It is a measurement utilized to comprehend the impact of cooling or 

warming up of the atmosphere. The present research examined the impact of aerosols during 

the COVID-19 pandemic by comparing them to the average from the preceding five-year 

period (2015-2019). The study was carried out on three distinct time frames: prior to 

lockdown, during lockdown, and post lockdown. It was observed that the ADRF increased in 

the pre-lockdown period of 2020 compared against the average of 2015-2019, and the other 

time scales experienced an increase in ADRF. However, a drop in temperature was noticed 
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prior to lockdown period when compared to the other two-time frames. During the pre-

lockdown period, the most notable rise in ADRF and decrease in temperature occurred in the 

tropical savanna and warm semi-arid climate regions. During lockdown, the increase in 

ADRF was seen throughout the study area, and a decrease in temperature was observed only 

in the tropical monsoon region. In the post-lockdown period, the decline in ADRF was 

accompanied by a fall in temperature in the tropical savanna region. The indirect effect of 

aerosols was assessed by correlation analysis among AOD, CF and precipitation for south 

west monsoon from 2005 to 2019  under different atmospheric stability states (K-index) over 

Southern India. The analysis was performed for light, moderate and heavy rainfall regimes. 

The low warm clouds were analysed based on cloud top pressure and cloud top temperature 

data. The impact of atmospheric stability on CF was greater than that on AOD. The results 

revealed a positive relationship between AOD and CF. This might be due to the presence of 

dispersive aerosols. The effect of atmospheric stability on development of clouds was evident 

for isolated thunderstorm state when K is between 20-25.  The effect of AOD on CF was 

significant for 20<K<25 and 25<K<30. For a better understanding on the influence of AOD 

on precipitation an exclusive study on metropolitan cities was performed in the current 

research work. The influence of AOD in causing the EPEs was quantified by analyzing the 

remotely sensed data of aerosol, cloud, and K-index and precipitation for Peninsular India's 

major cities. The last 10 days remotely sensed data before the occurrence of EPE’s event was 

analyzed. The combination of factors influencing precipitation in each city were analyzed by 

regression analysis. All the observed EPEs had intensified precipitation due to a combination 

of middle level clouds (CTP in the range of 440 hPa to 680 hPa), low AOD (0.4), with many 

thunderstorm states (K>35oC), and CTT 0oC. Other elements that contributed to the 

occurrence of EPE included low level clouds (CTP>680 hPa), an AOD in the range of 0.4–

0.6, an isolated thunderstorm state (20oC<K<25oC), and CTT>0oC. It was concluded that low 

AOD and moderate CF leads to precipitation under favorable cloud top properties.  

Keywords: Aerosol Optical Depth, Atmospheric Stability, Cloud Fraction, Cloud Top 

Pressure, Cloud Top Temperature, Low- warm clouds, Precipitation, Extreme Precipitation 

Events 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

Global and regional climate variability, which is caused by an increase in urban emission 

concentrations, is one of the main concerns in the current scenario. Airborne aerosols are 

found to be the primary reason in influencing the Earth’s radiation budget. (IPCC 2013). 

Atmospheric aerosols have attracted a lot of scientific attention due to their significant 

influence on the radiation budget, cloud microphysical characteristics, and hydrological cycle 

(Ramanathan et al. 2005). Furthermore, aerosols have the potential to impact human health 

and visibility (Guo et al.,2018,2019), which makes it crucial to accurately study properties of 

aerosols. 

The industrialization and increased mobility in major cities result in higher concentrations of 

aerosols in the atmosphere. The precipitation of high intensity and shorter duration has 

become evident in most of the metropolitan cities, leading to submergence and flooding in 

low-lying areas (Jasmine et al., 2022). Despite recent scientific advancements in numerical 

weather prediction capabilities, accurately forecasting Extreme Precipitation Events (EPE’s) 

at a regional scale and with longer lead times remains challenging due to uncertainties 

produced by various sources (Mao et al., 2018).  

1.2 Aerosol Optical Depth 

The most used relevant satellite-derived parameter is Aerosol Optical Depth (AOD), as it is 

the most easily measurable and useful parameter. According to NASA, AOD is the measure 

of aerosols (e.g., urban haze, smoke. particles, desert dust, sea salt) distributed within a 

column of air from the instrument (Earth's surface) to the Top of the Atmosphere 

(https://earthobservatory.nasa.gov). The major natural and man-made aerosol types are

https://earthobservatory.nasa.gov/
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 sulphate, nitrate, sea-salt, carbonaceous matter (organic carbon and black carbon), mineral 

dust. Out of them, sea salt, sulphates account for a significant portion of the global natural 

aerosol abundance whereas dust and soot are obtained from anthropogenic activities. 

It is a fundamental optical parameter that quantifies the extinction effect of atmospheric 

aerosols, is frequently utilized to determine the level of air pollution. Aerosols have also been 

examined in studies on atmospheric radiation balance and climate change. Aerosols are 

capable of by affecting cloud microphysical properties, optical properties, the life cycle, 

sedimentation efficiency and radiation properties, which is called the indirect radiation effect. 

As a result, aerosols have a significant effect on the water cycles, atmospheric radiation 

transmission in local, regional, and even global climate (Srivastava et al.,2017). 

The two main techniques for the long-term monitoring of aerosol properties are satellite 

remote sensing and ground-based observations. A global ground-based solar photometer 

observation network (AERONET) has been established by NASA to monitor the variability of 

atmospheric aerosols to observe its characteristics over an extended period. The space-borne 

earth observation satellites have been used to understand aerosol properties on a global scale 

which include Scanning Imaging Absorption Spectrometer for Atmospheric Cartography 

(SCIAMACHY), Ozone Monitoring Instrument (OMI), Along Track Scanning Radiometer 

(ATSR), Multiangle Imaging Spectroradiometer (MISR), Total Ozone Mapping Spectrometer 

(TOMS), Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution 

Imaging Spectro-radiometer (MODIS), UVN (UV–VISNIR) Spectrometer and Visible 

Infrared Imaging Radiometer Suite (VIIRS). 

1.3 Direct Effect of Aerosols on Climate System 

Solar radiation is a fundamental source of energy on Earth which is crucial for supporting the 

life and it drives many of the Earth’s natural systems, including weather patterns, ocean 

currents, and the water cycle. However, the human activities, such as the emission of aerosols 

into the atmosphere, have affected the quantity of solar radiation that reaches the surface. The 

distribution of solar radiation by aerosols can cause a reduction in the amount of direct 

sunlight that reaches the surface, while the absorption of radiation by aerosols can increase the 

amount of thermal energy in the atmosphere. This is one of the main reasons for 

understanding the effect of aerosols on the Earth's climate is important. Human activities have 

the potential to alter the natural systems that sustain life on Earth by reducing the amount of 

solar radiation that reaches the surface (Liu et al., 2019, https://ceres.larc.nasa.gov/).  
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In recent years, the number of anthropogenic aerosols in the atmosphere are increased 

significantly due to economic growth (Sarangi et al., 2016). These aerosols absorb and scatter 

the incoming solar radiation, which can alter the Earth's radiation budget (Srivastava et 

al.,2017, Mao et al., 2022). The impact of anthropogenic aerosols on solar radiation is of great 

importance because it affects the energy balance and hydrological cycle (Yang et al., 2018, 

Kumar et al., 2019; Sridhar et al., 2018; Valayamkunnath et al., 2018). Aerosols can influence 

the radiative flux at the Top Of the Atmosphere (TOA) and even more significantly at the 

surface, which can impact biological processes (Setti et al., 2020; Sridhar and Anderson, 

2017). While aerosols are found globally, their forcing effects are typically regional compared 

to the global forcing effects caused by greenhouse gases (GHGs) (Niyogi et al., 2007).  

There are two main effects of aerosols on the weather and climate system. The direct effect is 

that aerosols affect the Earth's radiation budget is through the direct effect of scattering and 

absorbing radiation as shown in Fig 1.1a. In contrast to scattering aerosols (sulfate, nitrate, 

etc.), which increase the Earth's albedo and decrease the amount of solar radiation that reaches 

the Earth, absorbing aerosols (black carbon, mineral dust, etc.) decrease the Earth's albedo 

and heat the atmosphere, creating a greenhouse effect close to the Earth's surface. This leads 

the Earth-atmosphere system to cool indirectly. (Rajesh et al., 2019).  

The Aerosol Direct Radiative Forcing (ADRF) is a measure of the effect of aerosols on 

radiative forcing. Generally, the global net radiative forcing due to aerosols is negative (IPCC 

2013). The most widely used methods for estimating ADRF are the Moderate Resolution 

Imaging Spectrometer (MODIS) and the Clouds and the Earth's Radiant Energy System 

(CERES) clear-sky radiation fluxes, using the SBDART model. There are uncertainties in 

these estimates due to factors such as inhomogeneity, mixing state, vertical profile of 

aerosols, and the contribution of different aerosol species to ADRF (Subba et al., 2020). 

 

Fig 1.1: a) Direct Effect of Aerosols b) Indirect Effect of Aerosols on climate (Source: IPCC 

2013)  
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1.4 Indirect Effect of Aerosols on Climate System 

The indirect effect of aerosols is to impact the behavior of the clouds and increase the 

precipitation (Kant et al., 2019). The Aerosol–Cloud Precipitation (ACP) interaction is 

usually considered as an indirect effect of atmospheric aerosols in weather and climate 

perspectives. Because aerosols function as Cloud Condensation Nuclei (CCNs), variations in 

aerosol concentration can affect how well clouds precipitate, which in turn may result in 

variations in the quantity of cloud (Kant et al., 2019). The process of convective precipitation 

is suppressed mostly by collision process that reduces the size of cloud droplets. 

Consequently, delaying in the precipitation (downdraft) occurs resulting in the freezing of 

cloud droplets and thus leading to the release of latent heat causing more persistent and 

energetic updrafts.  

Aerosols can influence cloud lifetime by influencing CCN and ice nuclei (Twomey 1977, 

Koren et al.,2010, Liu et al.,2020).  The amount of water vapor gets distributed over many 

cloud droplets in the presence of large CCN concentrations. This results in smaller sizes of 

cloud, higher albedo (Twomey 1977), and less precipitation (Rosenfeld et al., 2008). The 

water supply and activation for convective clouds with a warm base originate in the warm 

region close to the cloud base. More latent heat is released when droplet condensation 

increases, which intensifies the updraft (Dagan et al., 2015; Pinsky et al., 2013; Seiki and 

Nakajima, 2014). As smaller droplets have smaller terminal velocity, they are lifted higher 

due to updrafts (Heiblum et al., 2016; Ilan et al., 2015). According to Rosenfeld and Woodley 

(2000), smaller droplets will freeze higher in the atmosphere, releasing the freezing latent heat 

into a comparatively colder environment. 

As opposed to this, in low cloud fraction conditions, a high concentration of absorbing 

aerosols causes an aerosol semi-direct effect that inhibits cloud formation and, as a result, 

lowers surface rainfall (Ackerman et al., 2000; Koren et al., 2004; Rosenfeld, 1999). 

Accordingly, the net result of these conflicting aerosol effects on clouds is the aerosol–cloud 

associations that are observed over any given region as shown in Fig 1.1b (Koren et al., 2008; 

Rosenfeld et al., 2008). 

The impact of aerosols on cloud lifetime and precipitation were extensively studied in recent 

years (Balakrishnaiah et al., 2012). Furthermore, the type of aerosols had a strong influence 

on the forcing phenomenon. For example, carbonaceous aerosols resulted in positive forcing 

whereas the sulphate aerosols resulted in negative forcings at the top of atmosphere (Grandey 

et al., 2013). The previous studies provided controversial results based on humidity and 

stability conditions in low and polluted regions (Remer et al.,2002, Koren et al.,2005). 
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Existing conditions in the study area such as biomass burning and anthropogenic emissions 

could result in such controversial results.  

1.5 Research Motivation  

The relationship between AOD, cloud and precipitation are highly challenging due to its 

intricacy. The prominent reason to choose this topic is climate change is an ever-challenging 

issue to cope up with the sustainability in the present scenario. The sudden change in the 

climate leads to extreme conditions and it is evident that lots of research is being carried out 

to know the reasons of prime importance resulting in such extremities. For the past 20 years, 

there has been a regular occurrence of extreme precipitation that has caused havoc in 

Southern India's major cities (TOI, Mumbai, 29 Sept 2019). This has led to analyze the impact 

of AOD on precipitation and temperature so that a clear understanding on the causes for the 

occurrence of extreme precipitation events are analyzed. 

Most of the previous studies have concentrated on impact of AOD on climate system in Indo-

Gangetic plains (Lau et al.,2016, Shreshta et al.,2017, Singh et al.,2018). Although the 

Southern India has different topography and climate regions, less research is carried out on 

this area. The Southern India has experienced an increase in the temperature and sudden 

downpour of rainfall over the past two decades (IMD annual report 2019). There is a need to 

study the impact of AOD on climate system of Southern India and this has motivated us to 

choose Southern India as area of interest to perform the present research work.  

1.6 Aim and Objectives of the Study 

The aim of the present research work was to understand the effect of AOD on precipitation 

and temperature in Southern India which helps in analysing the causes for extreme 

precipitation events. Based on the aim of research work, the objectives are framed which are 

as follows: 

1. To assess the suitability of various satellite derived and model reanalysed Aerosol 

Optical Depth (AOD) products in the study area. 

2. To analyse the influence of AOD on temperature using Aerosol Direct Radiative 

Forcing. 

3. To evaluate the effect of aerosols on precipitation using atmospheric stability 

conditions. 

4. To analyse the influence of AOD in causing extreme precipitation events in 

metropolitan cities. 
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1.7 Outline of the Thesis 

This report is organized in seven chapters of this thesis report. The present chapter deals with 

Introduction of the work and formulated objectives. The review of literature is discussed in 

the Chapter 2. The methodology adapted for the entire research work and for each objective is 

discussed in Chapter 3. The results and discussions of validation and trend analysis is dealt in 

Chapter 4. The outcomes of analysis of AOD on temperature is dealt in Chapter 5. The 

Chapter 6 deals with the results corresponding to analysis of AOD on clouds and precipitation 

and the causes for the occurrence of EPE’s in metropolitan cities of Southern India. The last 

chapter of the thesis deals with summary and conclusions of the research work. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 General 

Based on the formulated objectives, the review of literature is carried out on validation of 

satellite data with ground truth data, trend analysis using Innovative Trend Analysis, AOD-

Cloud-Precipitation interactions and AOD-Radiation diagnostics. The detailed explanation of 

the reviewed literature is given in the following sections. 

2.2 Validation of Satellite and Model Re-analysis AOD with 

Observed Data 

The necessity to validate the available satellite and model re-analysis AOD products with the 

observed data is to identify the suitable AOD product useful for a given area The following 

research works support the validation analysis. 

Bibi et al. (2015) intercompared the AOD retrievals from MODIS (Moderate Resolution 

Imaging Spectroradiometer), MISR (Multi-angle Imaging Spectroradiometer), OMI (Ozone 

Measuring Instrument) and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 

Observations) and validated them against the observed data from AERONET. They have 

performed the validation process on four sites for the data from 2007-2013. They converted 

AOD to the same wavelength for inter comparison using angstrom exponent. They used 

statistics like Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Root Mean 

Bias (RMB) and expected error bound to validate the products. They concluded that MODIS 

standard retrievals were in good agreement with AERONET over bright surfaces and MISR 

retrievals were good at coastal areas. The MODIS deep blue algorithm and OMI retrievals 

were found in reasonable agreement with AERONET data. 
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 1 

Alyson and Aggarwal (2018) validated MODIS collection 6 AOD Dark Target product with 2 

combinations of Terra and Aqua platforms against two validation sites in Alaska for a period 3 

of 14 years from 2000-2014. Linear regression between MODIS AOD and AERONET AOD 4 

was performed using ordinary least squares equation. The correlation coefficient was in the 5 

range of 0.85-0.93 for different products.  MODIS datasets were found to have negative bias 6 

at both 10-km and 3-km resolutions. Finally, it was concluded that all products show validity 7 

between April to October months. 8 

Carlos et al. (2018)  reported a comparison of MODIS retrieved AOD and AE with ground 9 

observations at an installed sun photometer site in Cuba for data from 2008 to 2014. All the 10 

three MODIS products i.e Dark Target, Deep Blue, combined dark target and deep blue were 11 

compared with the photometer observations. The statistics like RMSE, MAE, Bias were used 12 

to validate the products.  13 

Vijaykumar et al. (2018) performed regression analysis between MODIS Terra and Aqua 14 

AOD, ECMWF reanalysis product and ground observations taken from AERONET station at 15 

Pune. The Terra, Aqua and reanalysis product underestimates the AOD at 550nm wavelength 16 

when compared to AERONET observations. The ECMWF overestimated the precipitable 17 

water content while others under estimated when compared to ground measured observations. 18 

Seasonal analysis shows that the MODIS AOD products are underestimated in the monsoon 19 

season while PWV values were under estimated by AERONET observations in the monsoon 20 

season. The RMSE and MAE was higher for Terra products and lower for reanalysis product. 21 

Che et al. (2019) performed long term validation of MODIS C6 and C6.1 dark target aerosol 22 

products over China using CARSNET and AERONET. The MODIS C6 and C6.1 represent 23 

the 6 and 6.1 of aerosol data by Dark Target (DT) and Deep Blue (DB) algorithms. The 24 

performance of C6 data from DT algorithm was poor in some of the land areas globally. 25 

Hence, the algorithm was improvised and C6.1 data was released.  The results showed that the 26 

C6.1 products performed better when compared to C6 products with higher correlation and 27 

lesser deviation of root mean bias from 1. The performance of C6 dark target algorithm 28 

retrievals was poor in urban areas when compared to C6.1 product. Also, there was an over 29 

estimation of AOD by 19% using C6 algorithm. The new reflectance scheme incorporated in 30 

C6.1 has less influence on AOD retrievals in China because of vegetation cover. The authors 31 

concluded that the C6.1 products performed better statistically.   32 
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Ogunjobi et al. (2019) correlated MODIS (Dark Target and Deep blue), MISR aerosol 33 

products with AERONET observations at six locations in West Africa. The Dark target 34 

product showed high correlation because of low vegetation cover while MISR product had 35 

higher correlation near oceans. The MODIS deep blue and CALIPSO retrievals were 36 

moderately correlated with ground observations. The seasonal analysis shows that the AOD 37 

was higher in December-January-February and March-April-May seasons due to North-38 

easterly winds in Sahara desert.  39 

Anoruou et al. (2022) correlated the MODIS AOD and Angstrom Exponent (AE) against the 40 

ground observations from AERONET during monsoon season over 7 sites in Italy. They used 41 

standardized anomaly and the standard deviation ratio method of analysis to address the 42 

robustness of AE for further classification of type of aerosols. The correlation was 0.95 for 43 

MODIS AOD. The AERONET and MODIS AODs' standardized anomaly records (−0.22 ± 44 

0.13) in June had a corresponding correlation of (r = 0.96). 45 

Gupta et al. (2022) compared the satellite and ground observations of AOD globally for a 46 

period of 20 years. They have used statistical measures for comparison. They have observed 47 

that all the satellite observations taken from MODIS Aqua and Terra platforms, MISR have a 48 

high spatial correlation (above 0.7) with AERONET. The observations from CALIOP 49 

overestimated the AOD across the high aerosol loaded regions.  50 

2.3 Trend Analysis Using R Statistical Software 51 

The AOD is dependent on anthropogenic emissions in a given region. With increase in 52 

urbanization, emissions might also increase. Thus, it is essential to observe trend in AOD. The 53 

following research studies discuss trend analysis on AOD and rainfall using non parametric 54 

tests. 55 

Maghrabi and Alotaibi (2018) analysed AOD at 500nm wavelength from 1999-2015 in 56 

Arabian Peninsula. Annual, monthly, seasonal and hourly trends were studied and supported 57 

by Mann-Kendall test at different significance levels. It was concluded that trend in spring 58 

season is highly significant. Similarly significant increasing trends were observed in March, 59 

April, June, and December. It was also observed that early mornings and late afternoons have 60 

increasing trend during the study time period. 61 

Caloiero et.al (2018) investigated temporal rainfall in Southern Italy with 559 rain gauges, 62 

consisting of 50 years of observed data. Trends in seasonal, annual rainfall was evaluated 63 

using graphical technique proposed by Sen called as Innovative Trend Analysis for low, 64 

medium and high values of series. In addition to that Mann-Kendall test was also performed. 65 
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The results obtained by ITA were in accordance with MK test. It was concluded that ITA 66 

method has some advantages over MK test in terms of details of evaluation for each 67 

categorical value. 68 

Alashan (2018) proposed an Innovative Trend Analysis Change Box (ITCA-CB) approach by 69 

considering quantitative changes in two halves of time series of data. ITA is used to observe 70 

monotonic increasing or decreasing trends whereas ITA-CB approach is used to detect trend 71 

in non-parallel points which are further divided into low, medium and high groups for 72 

accurate interpretations. For each half of time series, statistical minimum, average and 73 

maximum changes for each group are evaluated and box plots are created for each group. 74 

Finally, it was explained that presence of negative trend is confirmed if mean line is close to 75 

minimum change and vice versa. 76 

Caloiero et.al (2020)  performed Sen’s ITA on Calabria region of South Italy. The region was 77 

divided into five homogenous climate zones (RZ) based on principal component analysis. The 78 

first five components explained about 90% variance in the climate of the selected study area. 79 

The precipitation data in those five RZ’s were collected for the period of 90 years (1916-80 

2006). The annual trend of the rainfall anomalies showed a negative trend of the highest 81 

values. The seasonal analysis displayed a negative trend for the lowest values and a positive 82 

one for the highest values in the winter season. The results were compared with MK test and 83 

concluded that ITA is advantageous in terms of evaluating the different values of 84 

precipitation.  85 

Roudbari et.al (2020) evaluated the spatio-temporal variability and trend in AOD using 86 

MODIS onboard Terra and Aqua satellite data over Iran. The purpose of their study was to 87 

detect aerosol hotspots and identify the seasonal trend using Mann-Kendall test. There was an 88 

increasing trend in autumn season accompanied by reduced precipitation. There was a 89 

massive decreasing trend in AOD over western Iran during winter. The trends were not 90 

significant during the time period of 2003-2017.   91 

Mohammed et al. (2022) assessed the trend in AOD from MODIS over Jharkhand for a 92 

period of 18 years (2000-2017). They have used Mann-Kendall method and Sen’s slope 93 

estimator method to analyse the trend in AOD. All the major cities of the state exhibited a 94 

notable positive trend in AOD by two methods. Pre-monsoon season observations showed 95 

that Sahibganj had the highest upward trend while Gumla had the lowest. Three periods were 96 

identified in the temporal variation of aerosol trends: 2000–2005, 2006–2011, and 2011–97 

2017. These periods have exhibited a low positive trend in AOD towards west and south-west 98 

region while high trend was observed towards north-eastern border.  99 
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Yousefi et al. (2023) analysed the trends in winter AOD in Iran during 2000-2018 by least 100 

square method. The analysis revealed a significant trend over the dusty regions of Iran. The 101 

primary determinants of dust transport and atmospheric circulation patterns were wind 102 

direction and speed, which also showed a positive correlation with AOD. Winter AODs and 103 

dust emissions were linked to increased cyclones over the Middle East between 2000 and 104 

2010, which was further aided by declining trends in precipitation and relative humidity as 105 

well as rising trends in temperature over the main dust sources in Iraq and southwest Iran. In 106 

contrast, the deceasing trend in AOD was associated with increase in rainfall  and relative 107 

humidity during 2010-2018 over western part of Iran. 108 

2.4 Effect of Aerosols on Temperature 109 

Aerosols can modify the Earth’s radiation budget and create an imbalance between inward 110 

and outgoing solar radiation. This results in net heating or cooling of the atmosphere. The 111 

following section discusses a few studies that support the idea of AOD affecting the 112 

temperature. 113 

Penna et.al (2018) estimated the ADRF using MERRA-2 reanalysis products. They used two 114 

methods to calculate the ADRF. Procopio et al. (2004) developed the first method (M1), 115 

which uses AOD as a function to give ADRF via a two-degree linear equation. The equation 116 

works well in areas with a lot of vegetation, like the Amazon. The second method to calculate 117 

ADRF is using MERRA-2's net shortwave and longwave fluxes (M2). The AOD is 118 

considered in M1, but it is not included in M2, hence the Radiative Forcing (RF) by M1 and 119 

M2 are different. They have concluded that seasonal and decadal forecasting can be done with 120 

the M2. Understanding the effects of aerosols on the atmosphere requires a deeper 121 

examination of sensible and latent fluxes. 122 

Shreshta et.al (2018) have developed a multiple regression model to compute ADRF in the 123 

Indo-Gangetic basin. The MODIS AOD and water vapour products were used to develop the 124 

model and the validation was performed using AERONET data available at 10 stations in the 125 

basin. The R2 value for the developed model when performed on annual scale was 0.84 126 

whereas the seasonal scale R2 is in the range of 0.81-0.83. The stability of the developed 127 

model was tested by Jackknife method which deletes one station data at once and check the 128 

R2. Also, the model developed ADRF was compared at Karachi and Lahore with the ADRF 129 

from SBDART taken from Alam et.al (2012) and found the statistics are in accordance with 130 

SBDART.  131 

Feng et.al (2019) evaluated the effect of aerosol forcing on global temperature using satellite 132 

observations. Multiple regression analysis was performed for the framework that is designed 133 
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on the budget laws. The negative forcing was observed in North America and Western Europe 134 

whereas positive forcing was observed in South Australia. It was observed that enhancement 135 

of global warming is due to changes in aerosol forcing. Finally, it was concluded that 136 

multiyear mean of aerosol forcing has an increase of 0.005 K of surface temperature. 137 

Kumar et.al (2019) examined aerosol characteristics and short-wave radiation in New Delhi 138 

from March 2010 to June 2012. The relationship between AOD and solar radiation was 139 

observed for different sky conditions like clear sky, haze/fog, dusty and cloudy sky days. 140 

However direct radiation forcing efficiency was obtained from the slope of best fit line 141 

between mean AOD and solar radiation. It was inferred that the relative cooling was more in 142 

dusty days accompanied by enhanced AOD and reduced Angstrom exponent values.    143 

Pandey et.al (2020) studied the effect of aerosols in the Indo-Gangetic plains over the sub-144 

weekly means compared against the weekends. The weekday means are 20% higher than that 145 

of the weekend means. The cloud macro-physical properties such as cloud optical depth and 146 

liquid water path were found to decrease at a significant level. The cloud effective radius did 147 

not show a significant change due to the narrow period of dataset. The shortwave cloud 148 

radiative effect at TOA and surface was in the range of 7-10% whereas the longwave radiative 149 

effect was double that of the shortwave effect. Thus, it was concluded that aerosol loading 150 

observed over a small time period can also influence the cloud properties. 151 

Subba et.al (2020) analysed the trends in ADRF under clear sky conditions using satellite 152 

measurements over the period 2001-2017. They used CERES products to calculate ADRF 153 

under clear sky conditions. The trend was found to be decreasing at TOA and surface 154 

globally. The regional analysis shows that the atmospheric radiative forcing is decreasing in 155 

North America and Western Europe. There was a slight increasing trend in Africa and South 156 

Asia. The global distribution of AOD reveals that the loading in more in central and Eastern 157 

India, Africa. Thus, they concluded that the changes in ADRF is due to the emissions of 158 

anthropogenic aerosols. 159 

Li et.al (2023) analysed the effect of brown carbon aerosols on temperature and precipitation. 160 

Brown Carbon heating causes tropical expansion and a decrease in deep convective mass 161 

fluxes in the upper troposphere. They have observed a clear shift in cloud fraction, liquid 162 

water path and precipitation with the inclusion of brown carbon in the models. On the other 163 

hand, the inclusion of brown carbon in climate models led to increase in temperature and 164 

precipitation on a global scale but vice-versa on a regional scale.  165 

 166 
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2.5 Impact of AOD on Cloud Fraction and Precipitation 167 

Aerosols primarily act as cloud condensation nuclei and influence the cloud formations. The 168 

cloud microphysical properties are also susceptible to changes with variation in aerosol 169 

concentrations. The aerosol loading indirectly affects the precipitation efficiency because of 170 

its effect on cloud parameters. The literature related to the AOD-cloud-precipitation 171 

interactions are given below. 172 

Adesina et.al (2014) studied the impact of aerosol-cloud-precipitation interactions in major 173 

cities of South Africa using MODIS data for a period of 10 years from January 2004 to 174 

December 2013. The spatial and temporal variations of AOD were found to be less significant 175 

in most of the stations considered for analysis. Although the relationship between AOD and 176 

Angstrom Exponent was strong enough in four of the six stations considered for the analysis. 177 

Other cloud parameters like cloud effective radius, cloud fraction and cloud top temperature 178 

were found to be negatively correlated with AOD. 179 

Kang et.al (2015) evaluated the impact of aerosols on cloud formation by studying the 180 

correlation between AOD and cloud properties. Their findings showed that the AOD was high 181 

at low latitudes and vice versa over 12 major cities of China because of slant trajectories taken 182 

up by aerosol masses. The correlation between AOD and cloud fraction was low at urban 183 

regions than that of the coastal regions. Also, the CF was negatively correlated to AOD in the 184 

regions when AOD was lower than 0.3. The Cloud top temperature was also negatively 185 

correlated to the aerosol loading but the cloud effective radius was positively correlated to 186 

AOD over China. Further, the authors have concluded that the necessity of meteorological 187 

parameters in the regression analysis helps to understand the aerosol-cloud-precipitation 188 

interactions in an explicit manner.  189 

Cheng et.al (2017) analysed the aerosol-cloud-precipitation interactions in central-eastern 190 

China using MODIS collection 5 data during 2000-2012. The results of the analysis were 191 

categorized into four patterns based on correlation values. Firstly, in the region where AOD is 192 

negatively correlated to Cloud Effective Radius (CER) but CER is positively correlated to 193 

precipitation validates the indirect effects of aerosols. Secondly in the region where AOD is 194 

negatively correlated to CER and CER being negatively correlated to precipitation implies 195 

that with an increase in AOD, there will be decrease in CER and further increase in 196 

precipitation. Thirdly in the region where AOD is positively correlated to CER and CER 197 

being positively correlated to precipitation implies that with increase in AOD, CER increases 198 

and results in accumulation of moisture along with CCN. This formation will further result in 199 

downpour of rainfall. Lastly in the region where AOD is positively correlated to CER and 200 
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CER is negatively correlated to precipitation infer that CER increases with increase in AOD 201 

but there will be reduction in precipitation. Finally, the authors deduced that the interactions 202 

have varied results in southern and northern part of study area considered during different 203 

seasons. 204 

Kant et.al (2019) analysed the role of aerosols in governing the cloud properties is analysed 205 

through cloud optical depth for Odisha and Bhubaneswar during convective driven 206 

precipitation period. The probability at 95% confidence level was characterized by student’s t-207 

test technique. Aerosol-cloud-precipitation relationship was analysed by taking AOD, Cloud 208 

Optical Radius (COR), CER and rainfall into consideration. From the study it was observed 209 

that the near surface temperature is high during pre-monsoon season resulting in 210 

agglomeration of aerosols. Finally, the authors concluded that though AOD-Cloud Optical 211 

Depth (COD) variance is low in the study region, AOD-rainfall relationship was stronger. 212 

Liu et.al (2020) studied the effects of meteorological conditions on the relationship between 213 

AOD and macro-physical properties of the warm clouds over Shanghai region of China. The 214 

low warm clouds were identified based on the properties of cloud top pressure and cloud top 215 

temperature. The authors found that the AOD is negatively related to cloud fraction due to the 216 

presence of absorptive aerosols in the atmosphere. They concluded that the effect of 217 

atmospheric stability on horizontal and vertical distribution of clouds was higher than that of 218 

the aerosols. The effect of aerosols was predominant when the atmosphere was stable and vice 219 

versa. 220 

Salman et.al (2020) evaluated the aerosol-cloud-precipitation interactions over Iraq during 221 

the period 2008-2017. They used MODIS and HYSPLIT data to understand the effect of 222 

aerosols on macro-physical properties of clouds. The AOD has shown a negative correlation 223 

with COR, cloud fraction and positive correlation with CER and water vapor content. The 224 

trajectories analysed from HYSPLIT shows that the air masses are originated from west 225 

especially from Mediterranean Sea. 226 

Eirund et.al (2022) investigated the impact of aerosol concentrations on surface precipitation 227 

using Consortium for Small-scale Modeling (COSMO) model. In contrast to the impact of the 228 

microphysics scheme, simulated variations in surface precipitation in response to aerosol 229 

perturbations continue to be modest. Increased cloud water and decreased cloud ice mass are 230 

caused by elevated concentrations of Cloud Condensation Nuclei (CCN), particularly in areas 231 

with significant convective activity south of the Alps. They also observed that further 232 

downstream, these modified cloud features result in more surface precipitation. 233 
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2.6 Analysis of the Causes for Occurrence of EPE In Urban Cities 234 

There is an increasing trend in occurrence of EPE in urban cities according to the previous 235 

researchers. Some of the literature corresponding to EPE are discussed below. 236 

Gryspeerdt et.al (2014) investigated that in high-aerosol environments, there is little effect 237 

on precipitation at the time of aerosol retrieval. They found that there was an increase in 238 

precipitation from cloud in the six hours that follow, which was consistent with the 239 

invigoration hypothesis. The authors detected that the invigoration effect was temperature-240 

dependent, with CTT<0oC. They concluded that the development of precipitation in warm 241 

clouds did not change much with an increase in aerosol concentration, which indicated the 242 

importance of ice processes in reviving precipitation.  243 

Jasmine et.al (2018) confirmed the occurrence of higher altitude dust transport during heavy 244 

precipitation days and even before that, from the arid gulf region towards the Arabian Sea and 245 

near the Kerala coast, using CALIPSO aerosol vertical profiles, the OMI Absorbing Aerosol 246 

Index, and the HYSPLIT back trajectory analysis. AOD variations over the period together 247 

with changes in cloud properties such as Cloud Fraction (CF), Cloud Top Temperature 248 

(CTT), Cloud Water Liquid Water Path (CWLWP), and Cloud Condensation Nuclei (CCN) 249 

amply demonstrate the close relationship between aerosols and cloud properties over the 250 

region. 251 

Choudhary et.al (2020) studied 17 years of rainfall, AOD and meteorological conditions that 252 

resulted in high precipitation at the foothills of Himalayas. Their findings show that strong 253 

and distinct correlations were observed between high aerosol loading, high moist static energy 254 

values, and high precipitation events. They concluded that average increase in low-level moist 255 

static energy (1000–850  hPa) and the average increase in AOD is 36% resulted in high 256 

precipitation events. 257 

Wang et.al (2022) reviewed the role of atmospheric aerosols in extreme meteorological 258 

events. They have concluded that the aerosols can suppress the precipitation from low 259 

stratiform clouds and enhancing the precipitation and leading to floods in local areas due to 260 

invigoration effects. They have observed that strong convection and exceptionally heavy 261 

rainfall are produced by the orographic lifting of humid air mass under the influence of 262 

topography. 263 

 264 

 265 
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2.7 Critical Appraisal of Reviewed Literature 266 

The recent literature related to the validation of satellite, model re-analysis AOD with ground 267 

truth data, trend in AOD using MK and ITA tests, aerosol-cloud-precipitation interactions, 268 

aerosol-radiation diagnostics are discussed in this chapter. Numerous satellite derived 269 

products provide columnar AOD for any region on the surface of the Earth. The validation of 270 

products with ground network helps to recognise the suitable product for the chosen study 271 

area. Most of the reviewed literature (Humera et al.,2015, McPhetres and Aggarwal 2018, 272 

Vijaykumar et al.,2018, Cheng et al.,2019) use linear regression and statistical analysis to 273 

select the data. In the present research work, an automatic method is developed by using R 274 

statistical software to fit a regression equation between satellite and ground observed data.  275 

The trend in AOD helps to understand the accumulation in the atmosphere over the years. The 276 

trend is generally analysed by the conventional MK test. In the recent scenarios, ITA has 277 

gained importance because of its ability to ignore serial independency of the data and less 278 

importance to the distribution followed by the data. Also, the ITA has categorised the values 279 

into low, medium and high which is explicit on 1:1 plot of the data. Most of the researchers 280 

(Caloiero et al.,2020, Roudbari et al.,2020) have performed ITA on station data and have 281 

shown the trend in the form of 1:1 line plot.  282 

The aerosol-radiation diagnostics is the direct effect of aerosols in the atmosphere. Most of 283 

the preceding researches have carried out analysis on interaction of aerosol with the net 284 

radiation in the atmosphere by using ADRF under clear sky conditions. The ADRF 285 

considered in the past works was mostly from CERES atmospheric data (Feng et al., 2019, 286 

Kumar et al.,2019, Pandey et al.,2020, Subba et al.,2020). In the current research, an attempt 287 

has been made to calculate ADRF under all-sky conditions using MERRA-2 reanalysis data. 288 

Also, the effect of aerosols on temperature based on the calculated ADRF is analysed for the 289 

normal years and pristine situation obtained in the lockdown of 2020 due to COVID 290 

pandemic. 291 

The concentration and distribution of AOD is useful for analysing the effects of aerosols on 292 

the climate variables. The impact of aerosols on the formation of clouds is considered as the 293 

indirect effect of aerosols as they can act as CCN. Mere correlation analysis between AOD 294 

and cloud fraction does not help in understanding the interaction phenomenon properly 295 

(Adesina et al.,2016, Cheng et al., 2017, Kant et al., 2019). The indulgence of meteorological 296 

factors in the analysis helps to perform analysis effectively. The previous researchers have 297 

considered Water vapour and K-index as the suitable factors for correlation analysis. The 298 
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amount and vertical extent of low-level moisture in the atmosphere, along with the vertical 299 

temperature lapse rate, are the two factors that determine the thunderstorm potential measured 300 

by the K-index. In general, the likelihood of heavy rain increases with K-index values. 301 

However, heavy precipitation can occur under low moisture conditions due to a suitable 302 

lifting mechanism of unstable air.  303 

The existent research is carried out on the same lines by considering K-index as the 304 

meteorological factor for performing correlation between aerosols and cloud fraction over the 305 

cumulative years. 306 

 307 
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CHAPTER 3 

METHODOLOGY 

3.1 General 

Based on the aim and objectives of the research work, the overall methodology is proposed 

and it is explained in four parts of this chapter. The aerosols can alter the precipitation and 

temperature in each area. To study the effect of aerosols, it is required to have a satellite 

product with high resolution. The satellite and model reanalysis data are validated against the 

ground observations to identify the suitable AOD for the study area. The innovative trend 

analysis is applied for the raster data by using R statistical software. The AOD-radiation 

interactions are helpful to understand the influence of aerosols on temperature. The detailed 

study on AOD-cloud-precipitation interactions in the research was taken up in the study area. 

The influence of AOD in causing the extreme precipitation events is analysed. 

3.2 Study Area  

The current study focused on the terrestrial region of Southern India, which consists of nine 

states: Maharashtra, Orissa, Chhattisgarh, Goa, Andhra Pradesh, Telangana, Karnataka, Tamil 

Nadu, and Kerala. It has been found that the entrapment of aerosols in the atmosphere has 

increased in recent years, leading to a delay in the onset of the south-west monsoon season, 

which is a major source of rainfall in the region. Agriculture is the primary economic source 

in this region, while income from small and medium scale industries is the secondary source 

of livelihood for many people. 

 

 1 

 2 
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 3 

The terrestrial region of Southern India is situated in area of 1239 lakh ha. Nearly 40% of 4 

India’s population lives in the chosen study area. The area is bound by Indian ocean to the 5 

South, Bay of Bengal to the East, Arabian Sea to West, Vindhya and Satpura region to the 6 

North. The geography of the study area comprises Deccan Plateau, Western and Eastern 7 

ghats.  As shown in Fig 3.1, the study area is divided into five different climatic zones 8 

according to Koppen's Classification: monsoon climate (Am), tropical savanna climate (Aw), 9 

warm semi-arid climate (BSh), humid subtropical climate (Cwa), and subtropical oceanic 10 

highland climate (Cwb). The region of tropical monsoon climate (Am) has a mean 11 

temperature greater than 180C in every month of a year. In this region, the driest month has an 12 

average precipitation of less than 60mm but more than precipitation in Eq (3.1).  13 

Precipitation = 100- 
𝑇𝑜𝑡𝑎𝑙 𝐴𝑛𝑛𝑢𝑎𝑙 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 (𝑚𝑚)

25
  -(3.1) 14 

The tropical monsoon climate regions have less variations in temperature. The metropolitan 15 

city of Kochi and Goa comes under Am region. The driest month of tropical savanna climate 16 

(Aw) region experiences an average precipitation less than 60mm and also less than the 17 

precipitation in Eq (3.1). The dry season is most pronounced in tropical savanna climate 18 

region. The cities of Mumbai, Chennai and Bengaluru comes under Aw climate region. The 19 

warm semi-arid climate (BSh) sees hot to extremely hot summers and warm to cool winters. 20 

The mean annual temperature in this region is 180C. The city of Hyderabad is in BSh climate 21 

region. The humid subtropical climate (Cwa) region witnesses an average precipitation in the 22 

range of 80-165cm. The region has a mean temperature in between 00C to -30C in the coldest 23 

month and greater than 220C in the warmest month. Raipur comes under Cwa climate region. 24 

The sub-tropical oceanic highland climate (Cwb) region tend to have dry winters and wet 25 

summers (Kottek et al.,2006).  The climate zone of Coimbatore is Cwb. The Koppen’s 26 

classification is shown in the Fig 3.1.  27 
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   28 

Fig 3.1: Location map of Study Area with Koppen’s Climate Zones 29 

3.3 Data Used in the Study 30 

The data required for the current study consists of various parameters from different satellites. 31 

The spatial data consists of AOD data from Moderate Resolution Imaging Spectrometer 32 

(MODIS), Ozone Measuring Instrument (OMI), Modern Era-Retrospective Analysis for 33 

Research and Applications (MERRA-2). The multi satellite precipitation product comes from 34 

the Integrated Multi-satellitE Retrievals for Global Precipitation Mission (IMERG). The 35 

radiation fluxes used in this study are obtained from MERRA-2. The temperature data is taken 36 

from Indian Meteorological Department (IMD). The source and resolution of datasets used in 37 

the study is shown in Table 3.1. 38 

3.3.1 MODIS Data Products 39 

The datasets used for the current study are obtained from the MODerate Resolution Imaging 40 

Spectrometer (MODIS) on board Terra and Aqua Satellites. MODIS products are widely used 41 

for a variety of analyses due to their broad spectral coverage and high spatial resolution (Liu 42 

et al., 2020). The observation period constituted the monsoon season from 2005 to 2019. All 43 

three products were obtained from the NASA website. Details of the data products used in the 44 

present study are given as follows:  45 

 46 

 47 
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Table 3.1: Details about the satellite data, parameters, and spatial resolution used in this study 48 

S.No Source of AOD Parameter  Spatial 

Resolution 

1 Moderate Resolution Spectrometer (MODIS) 

Terra (MOD04_L2) 

(https://ladsweb.modaps.eosdis.nasa.gov/) 

Optical Depth 

Land and Ocean 

10kmX10km 

2 Ozone Monitoring Instrument 
(https://aura.gsfc.nasa.gov/) 

Near UV Aerosol 

Optical Depth 

1oX1o 

3 Modern Era-Retrospective Analysis for Research 

and Applications (MERRA-2) 
(https://gmao.gsfc.nasa.gov/) 

Hourly Aerosol 

Optical Depth 

0.5oX0.625o 

4 Moderate Resolution Spectrometer (MODIS) 

Terra (MOD06_L2) 

(https://ladsweb.modaps.eosdis.nasa.gov/) 

Cloud Top 

Pressure (CTP) 

1kmX1km 

5 Moderate Resolution Spectrometer (MODIS) 

Terra (MOD06_L2) 

(https://ladsweb.modaps.eosdis.nasa.gov/) 

Cloud Top 

Temperature 

(CTT) 

1kmX1km 

6 Moderate Resolution Spectrometer (MODIS) 

Terra (MOD06_L2) 

(https://ladsweb.modaps.eosdis.nasa.gov/) 

Cloud Fraction 

(CF) 

1kmX1km 

7 Moderate Resolution Spectrometer (MODIS) 

Terra (MOD07_L2) 

(https://ladsweb.modaps.eosdis.nasa.gov/) 

K-index 5kmX5km 

8 GPM IMERG Final Precipitation L3 (GPM 

3IMERGDF) 

Precipitation 10kmX10km 

9 Modern Era-Retrospective Analysis for Research 

and Applications (MERRA-2) 
(https://gmao.gsfc.nasa.gov/) 

Radiation Flux 0.5oX 0.625o 

10 IMD Temperature Data Temperature 1oX1o 

 49 

MOD04_L2: It denotes the aerosol product generated by the dark target/deep blue algorithm. 50 

The parameter used is Optical Depth Land and Ocean and the spatial resolution is 51 

10kmX10km. MODIS aerosols retrievals are based on a Look Up Table (LUT) procedure in 52 

which satellite-measured radiances are matched to pre-calculated values in the LUT and the 53 

values of the aerosol properties used to create the calculated radiances are retrieved 54 

(Vijaykumar et al., 2018). The estimated satellite radiances at 470 and 670 nm wavelengths 55 

are used to calculate AOD at 550 nm using the Angstrom exponential law. The satellite 56 

product is validated against ground truth data, and the results are satisfactory. The algorithm 57 

of MOD04_L2 product has three quality flags for obtaining AOD. The quality flag of ‘0’ 58 

indicates bad, ‘1’ indicates marginal, ‘2’ indicates good and ‘3’ indicates ‘very good’. The 59 

product used for the research has a quality flag ‘3’ for land. For retrieval in fog and cloud 60 

dominated sites, MODIS uses lookup table approach to match the fine mode fraction and 61 

coarse mode fraction of the AOD. 62 

https://ladsweb.modaps.eosdis.nasa.gov/
https://aura.gsfc.nasa.gov/
https://gmao.gsfc.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://gmao.gsfc.nasa.gov/
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MOD06_L2: It refers to cloud data. The macro-physical cloud parameters used in the study 63 

are Cloud Top Pressure (CTP), Cloud Top Temperature (CTT) and Cloud Fraction (CF). The 64 

three parameters are all measured with a spatial resolution of 1kmX1km. CTP and CTT are 65 

measured using infrared and CO2 absorption bands, respectively, whereas CF is collected 66 

using visible bands (Platnick et al., 2015).  67 

MOD07_L2: It denotes the atmospheric profile data. From this the K-index parameter data is 68 

used. It is a measure of thunderstorm potential based on vertical temperature lapse rate, lower 69 

atmosphere moisture content, and the vertical extent of the moist layer. The temperature 70 

difference between 850 hPa and 500 hPa is used to parameterize the vertical temperature 71 

lapse rate. The dew point at 850 hPa indicates the moisture content of the lower atmosphere. 72 

The vertical extent of the moist layer is represented by the difference of the 700 hPa 73 

temperature and 700 hPa dew point. This is called the 700 hPa temperature-dew point 74 

depression. The index is derived arithmetically. MODIS satellite provides K-index at 5km 75 

spatial resolution when at least 9 Fields of View (FOV) are clear (Borbas et al., 2015). The k-76 

index is shown in Eq (3.2) 77 

𝐾 = (𝑇850 − 𝑇500) + 𝑇𝑑850 − (𝑇700 − 𝑇𝑑700)    -(3.2) 78 

Where 𝑇850 is temperature at 850 hPa, 𝑇500 is temperature at 500 hPa, 𝑇700 is temperature at 79 

700 hPa, 𝑇𝑑850  is dew point temperature at 850 hPa, 𝑇𝑑700  is dew point temperature at 700 80 

hPa. 81 

3.3.2 Precipitation Data 82 

The multi satellite precipitation product comes from the Integrated Multi-satellitE Retrievals 83 

for Global Precipitation Mission (IMERG). This dataset is the GPM Level 3 IMERG Final 84 

Daily 10 km x 10 km (GPM_3IMERGDF) derived from the half-hourly GPM_3IMERGHH. 85 

The derived result represents the final estimate of daily accumulated precipitation. 86 

PrecipitationCal, also known as complete calibrated precipitation, is the parameter used in this 87 

study. It displays the daily accumulated precipitation in millimetres.  88 

3.3.3 Radiation Flux Data 89 

The radiation fluxes used in this study are obtained from the Modern-Era Retrospective 90 

analysis for Research and Applications (MERRA-2), a NASA atmospheric reanalysis that 91 

began in 1980. This reanalysis has been upgraded using the Goddard Earth Observing System 92 

Model, Version 5 (GEOS-5) data assimilation system, and has replaced the original MERRA 93 
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reanalysis (Rienecker et al., 2011). The net shortwave and longwave fluxes are found in the 94 

M2T1NXRAD_5.12.4 data set of MERRA-2, and are at a resolution of 0.5°  0.625°.  95 

3.3.4 Temperature Data 96 

High-resolution temperature datasets allow for the analysis of extreme climate conditions 97 

from the past. One such dataset is provided by the India Meteorological Department (IMD), 98 

Pune, India. The IMD operates 550 observatories where daily maximum and minimum 99 

surface air observations are recorded. These observations are then processed using Shepard's 100 

angular distance weighing algorithm and converted into 1° x 1° gridded locations. The IMD 101 

currently offers data from 1969 to 2020 (Srivatsava et al., 2009). 102 

3.3.5 AERONET 103 

The ground observations for AOD is obtained from various sun photometer sites of Aerosol 104 

Robotic Network (AERONET). It is a global ground-based network of automatic sun 105 

photometers that measure direct radiances at several wavelengths (Holben et al., 1998). AOD 106 

is obtained from direct sun measurements with an accuracy to within ±0.015 (Buchard et 107 

al.,2015). The AERONET sun photometer makes direct spectral solar radiation measurements 108 

at 440, 670, 870 and 1020 nm wavelengths. The instrument is calibrated annually to ensure 109 

accuracy in measurements. As satellite derived AOD product is obtained at 550nm 110 

wavelength, the ground observed AOD at 440 and 670 nm wavelength is interpolated using 111 

Angstrom exponent law to obtain AOD at 550 nm wavelength.  112 

3.4 Overall Methodology 113 

Present research work was to study the impact of aerosols on the precipitation and 114 

temperature on the terrestrial region of Southern India. The overall methodology is shown in 115 

the Fig 3.2. The first step of the methodology was to select a suitable satellite AOD product 116 

which helps to study the impact of aerosols in the study area. The satellite product  selected 117 

based on the statistical validation with ground observations. The second step was to find the 118 

trend in AOD for the past two decades. It was executed by the Mann-Kendall test and 119 

Innovative Trend Analysis. The lockdown period due to COVID-19 pandemic had led to a 120 

pristine situation where the emissions were minimum from the industries. Hence, the Aerosol-121 

radiation-Interactions were compared between the average of 2015-2019 and 2020 for three 122 

different timescales namely pre-lockdown (Jan 1 to Mar 23), lockdown (Mar 24 to May 31) 123 

and post-lockdown (Jun 1 to Aug 31). The fourth step was to observe the influence of 124 

aerosols on cloud fraction and precipitation for each of the instability states in the atmosphere. 125 

The Aerosol-Cloud-Precipitation analysis was performed for the past cumulative 5,10 and 15 126 
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years of data. The final step was to assess the causes for occurrence of extreme precipitation 127 

events in and around metropolitan cities.  128 

 129 

Fig 3.2: Overall Methodology for the Present Study 130 

3.5 Validation of Various Satellite Derived AOD Data with 131 

Ground Observations 132 

Aerosol Optical depth (AOD) obtained by various satellite sources namely MODIS, OMI and 133 

reanalysis dataset MERRA-2 was validated against ground data over a time period. The 134 

validation holds its own prominence in a situation when there are numerous sources of data. It 135 

is highly essential to check the suitability of data for analysis in any type of research. Global 136 

distribution of spectral AOD, inversion products, and precipitable water in diverse aerosol 137 

regimes are provided by AERONET. A wide set of ground observations are available for 138 

Pune and Kanpur over a time period of 15 years (2004-2018). Limited observations of daily 139 

data are available for Goa, Trivandrum and Visakhapatnam for 2000, 2007 and 2008 140 

respectively. Therefore, validation was carried out with Pune and Kanpur AERONET 141 
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datasets. The Fig 3.3 shows the methodology adopted for statistical validation and trend 142 

analysis. 143 

 144 

Fig 3.3: Flowchart for the methodology of validating satellite and re-analysis AOD data with 145 

ground observations 146 

The satellite AOD observations are provided at 550nm wavelength. The ground observations 147 

for AOD are provided at 440nm and 675nm wavelengths. AOD at 550nm wavelength is to be 148 

calculated using angstrom exponent from Angstrom law (Angstrom 1929) in order to validate 149 

satellite AOD as shown in the following equation (3.3).  150 

𝜏3 =  𝑒
[ln(𝜏1)−ln(

𝜆3
𝜆1
)∗𝛼]

        - (3.3) 151 

Where 𝜏3 = AOD at 550nm, 𝜏1= AOD at 440nm, 𝜆3= 550nm, 𝜆1= 440nm, α = angstrom 152 

exponent. The angstrom exponent is an important parameter that describes the spectral 153 

behaviour of the atmospheric extinction and transmission due to aerosols. The uncertainty in 154 

AE determined from MODIS satellite observations is ±0.03+20% over land.  155 

 For the present study the R code developed was used to validate MODIS, OMI and MERRA-156 

2 datasets with ground data using ‘raster’ and ‘ggplot’ packages.  Initially, satellite derived 157 

AOD product was read in R software and data was extracted on excel sheet for the required 158 

Ground observations 

(AERONET) 

Trend analysis using Innovative Trend Analysis 

on raster data 

Aerosol Optical Depth data 

Satellite / Reanalysis data 

(1. MODIS  

2.OMI 

3.MERRA-2) 

Validation of satellite, reanalysis data against 

ground data based on statistical analysis 

Trend analysis using Mann-Kendall test 

Comparison of results and assessment of 

viability of ITA on raster data 

Raster processing of validated data 
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point location along with date. A buffer zone of 5 km was created around the point location 159 

and the averaged pixel value within the buffer was considered for evaluation. Next the ground 160 

observations which are stored in excel format are read into R software along with date. The 161 

two datasets are compared using the date column to exclude no data values and a scatter plot 162 

along with coefficient of determination and correlation coefficient was obtained using R 163 

software. The R scripts used in the analysis are given in Appendix-A. 164 

The surface reflectance measures at 440nm and 670nm wavelength are given as inputs to 165 

lookup table continental algorithm to obtain AOD at 440nm and 670nm wavelengths. These 166 

two values are interpolated based on Angstrom law to obtain AOD at 550nm wavelength. 167 

MODIS data is available in GeoTiff format whereas OMI and MERRA-2 data are available in 168 

NetCDF format. The hourly observations are averaged to daily data while evaluating 169 

MERRA-2 data. There was a provision in the script to detect the outliers and remove them to 170 

improve coefficient of determination. The outliers are detected by using Mahalanobis distance 171 

concept (Ghorbani 2019). For the most parts of the Southern India, there are not many 172 

extreme events of biomass burning or dust storm (Sahu et al.,2015, Rastogi et al.,2016). 173 

Hence, in the present study the outliers detected may not represent the extreme events. In 174 

view of this Mahalanobis distance sounds to be suitable for outlier detection and removal for 175 

the current study. The Mahalanobis distance measures relative distance between two points 176 

with respect to the centroid. Mahalanobis distance is given by Eq (3.4). 177 

𝐷𝑖 =  √(𝑥𝑖 − 𝜇)𝑇𝑆−1(𝑥𝑖 − 𝜇)      - (3.4)    178 

Where 𝑥𝑖 = ith observation, µ = mean of observations, S = covariance matrix. In the present 179 

study an outlier loop was written down to detect outliers and to improve the coefficient of 180 

determination. The execution was such that the loop exits out when the coefficient of 181 

determination was more than or equal to 0.5. Also, the data was considered for further 182 

analysis only when the number of iterations for removing the outliers was less than or equal to 183 

5. In addition to coefficient of determination, statistical errors like Root Mean Square Error 184 

(RMSE), Mean Absolute Error (MAE) and Bias were also calculated for all the three products 185 

considered in the present study. RMSE is the measure of error between observed and predicted 186 

data. Mean Absolute Error is the vertical distance between data and identity line. In general, it 187 

is a measure of difference between continuous variables. Bias is defined as the difference 188 

between estimated and true observation taken from a phenomenon The statistics are given in 189 

Eq (3.5) to Eq (3.7) (Vijaykumar et al.,2018). 190 

 191 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑ (𝑦𝑖 − 𝑦𝑖̂)2

𝑛
𝑖=1      -  (3.5) 192 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖−𝑦𝑖̂|
𝑛
𝑖=1

𝑛
       -  (3.6) 193 

𝐵𝑖𝑎𝑠 =  
∑ 𝑦𝑖−𝑦𝑖̂
𝑛
𝑖=1

𝑛
      -  (3.7) 194 

Where 𝑦𝑖 = observed value from AERONET, 𝑦𝑖̂ = predicted value from satellite/ model 195 

product n = Number of observations. The files are stacked month-wise for 2000-2019 and 196 

clipped to the required region. The pixel values are multiplied by 0.001 to obtain AOD in the 197 

range of 0-1. Basic statistics like mean and standard deviation for the stacked files are 198 

calculated and written to an excel file. The Trend in AOD is calculated using non-parametric 199 

Mann-Kendall test and Innovative Trend Analysis test using R statistical software.  200 

3.6 Trend Analysis 201 

In the present study, two methods are used to perform trend analysis on AOD data. The 202 

details are given in the following section. 203 

3.6.1 Mann-Kendall Test 204 

The non-parametric MK test is a widely used statistical method for analyzing trends in time 205 

series data. The test is used to determine if there is a monotonic trend in the data, without 206 

making any assumptions about the underlying distribution of the data. The test begins by 207 

determining the S statistic given by Eq (3.8), which is a measure of the total deviation 208 

between the data points. This value is then utilized to compute the p-value, which indicates 209 

the statistical significance of the observed trend. The p-value represents the probability that 210 

the observed trend could have occurred by chance. Additionally, Sen's method is used to 211 

calculate the magnitude of the change in the ADRF data, which provides information about 212 

the rate of change in the data over time. This information can be utilized to enhance the 213 

underlying patterns in the data and make informed decisions based on the results. The Mann-214 

Kendall method does not assume any specific underlying distribution for the data, which 215 

makes it suitable for analyzing a wide range of time series data. This statistic is then used to 216 

determine whether there is a significant trend in the data (Mann 1945, Kendall 1975) 217 

represented as follows. 218 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑏 
𝑛
𝑏=𝑎+1

𝑛−1
𝑎=1 - 𝑥𝑎)     -(3.8) 219 

where 𝑥𝑏 represents the observed value at time 𝑏, while 𝑥𝑎 represents the observed value at 220 

time 𝑎. It is important to note that 𝑎 should be less than 𝑏, and 𝑛 represents the total amount 221 
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of data points in the set. The sign of the value is determined according to Eq (3.9), as 222 

proposed by Mann (1945) and Kendall (1975). 223 

𝑠𝑔𝑛(𝑥𝑏 − 𝑥𝑎) =  {

1   𝑖𝑓 (𝑥𝑏 − 𝑥𝑎) >  0

0   𝑖𝑓 (𝑥𝑏 − 𝑥𝑎) = 0

−1  𝑖𝑓(𝑥𝑏 − 𝑥𝑎) < 0

         -(3.9) 224 

The numerous trials on the test disclosed that when the number of samples is greater than 8, 225 

the S statistic conforms to normal distribution which has mean as in Eq (3.10) and variance as 226 

in Eq (3.11) (Mann 1945, Kendall 1975). 227 

                        228 

𝐸(𝑆) = 0       (3.10) 229 

𝑉𝑎𝑟(𝑆) =  
𝑛(𝑛−1)(2𝑛+5)−∑ 𝑡𝑝(𝑡𝑝−1)(2𝑡𝑝+5

𝑟
𝑖=1 )

18
                (3.11) 230 

Where 𝑖 denotes the number of measurements, 𝑟 denotes frequency of the occurrence of a 231 

specific value in the dataset and the value of 𝑡 represents the number of data points with the 232 

same value in the pth group. The 𝑍 score is used to check the statistical significance of S. The 233 

𝑍 statistic follows a normal distribution with zero mean and unit variance as shown in Eq 234 

(3.12) (Chakraborthy et al., 2011). 235 

𝑍 =

{
 
 

 
 

𝑆−1

√𝑣𝑎𝑟(𝑆)
   ; 𝑆 > 0

   0              ; 𝑆 = 0
𝑆+1

√𝑣𝑎𝑟(𝑆)
   ;  𝑆 < 0

                    -(3.12) 236 

The MK method is used to test whether there is a trend in a set of data. The hypothesis that 237 

there is no trend is denoted as null hypothesis 𝐻0 whereas the hypothesis that there is presence 238 

of trend is considered as alternative hypothesis 𝐻𝑖. The null hypothesis is rejected based on 239 

the two-tailed test. The 𝑍 test statistic value is used to test 𝐻0. If 𝑍 is negative, it elucidates a 240 

decreasing trend, and vice versa. In this study, the hypothesis is tested at a confidence level of 241 

95%. The slope of the trend in dataset is calculated by linear regression method. The Sen's 242 

slope estimator, on the other hand, is a robust non parametric trend operator that is resistant to 243 

such errors. In this study, the magnitude of the trend in time series data is estimated using 244 

Eq(3.13).  245 

𝑄𝑖 =
𝑥𝑏−𝑥𝑎

(𝑏−𝑎)
      -(3.13) 246 

The present study incorporates MK test to test the trend of 𝑄𝑖, which is the slope between data 247 

points 𝑥𝑏and 𝑥𝑎. The test was performed using the ‘spatialEco’ and ‘raster’ packages in R 248 

software (Evans et al., 2019). We specifically focused on the trend during the 2015-2019 time 249 

period, and our results were considered with 5% significance level. 250 

 251 
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3.6.2 Innovative Trend Analysis Method 252 

Innovative Trend Analysis (ITA) is a novel method to capture the trend in data irrespective of 253 

type of distribution of data. It is non-parametric in nature where the data is subdivided into 254 

two parts equally and plotted on a Cartesian coordinate scale. The approach is based on the 255 

fact that the plot of two identical time series against each other results in scatter of points 256 

along 45o line. The data is said to have a positive trend if the scatter points are above the 45o 257 

line and vice versa. R statistical software facilitates ITA using trendchange (Sandeep et 258 

al.,2019) package. The source code of ITA is designed such that trend indicator and 259 

magnitude of trend was calculated and returned as result (Sen, 2012). As ITA was applied to 260 

raster data, pixels having significant trend are obtained by p-value which was incorporated in 261 

the designed code. The trend indicator (D) is calculated using Eq (3.14) (Sen, 2012). 262 

𝐷 =
1

𝑛
 ∑

10(𝑋𝑗−𝑋𝑖)

𝜇

𝑛
𝑖=1                     -(3.14) 263 

Where Xj= data in the second half series, Xi= data in the first half series, n=length of data, 𝞵 264 

= mean of the first half series. The properties of the trend indicator are similar to Z statistic of 265 

Mann-Kendall test. In the present study significant positive and negative trends were studied 266 

from the Innovative Trend Analysis for raster data. The results are further compared to check 267 

the viability of ITA application to raster data. 268 

3.7 AOD-Radiation-Temperature Interactions 269 

The methodology adopted in this study is illustrated in Fig 3.4. The initial step is to calculate 270 

the ADRF at the Top of the Atmosphere (ADRFTOA), at the Surface (ADRFSUR), and in the 271 

atmosphere (ADRFATM) using MERRA-2 radiation flux data under all-sky conditions. The 272 

second step is to analyze the trend in ADRF over the period of 2015-2019 using the Mann-273 

Kendall analysis method. The final step is to evaluate the effect of aerosols on temperature for 274 

each Koppen's climatic zone in the study area. 275 
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 276 

Fig 3.4: Methodology adapted for understanding AOD-Radiation-Temperature Interactions 277 

3.7.1 Calculation of ADRF 278 

The ADRF calculation requires several parameters, including the Surface Net Downward 279 

Shortwave Flux (SWGNT), the Surface Net Downward Shortwave Flux assuming no aerosol 280 

(SWGNTCLN), the Surface Net Downward Longwave Flux (LWGNT), the Surface Net 281 

Downward Longwave Flux assuming no aerosol (LWGNTCLN), the TOA Net Downward 282 

Shortwave Flux (SWTNT), the TOA Net Downward Shortwave Flux assuming no aerosol 283 

(SWTNTCLN), the Upwelling Longwave Flux at TOA (LWTUP), and the Upwelling 284 

Longwave Flux at TOA assuming no aerosol (LWTUPCLN). While six of these parameters 285 

can be directly obtained from MERRA-2, the LWGNTCLN and LWTUPCLN need to be 286 

calculated. The following equations are generally used to calculate the ADRF: Eq (3.15) 287 

(ADRF at surface) and Eq (3.16) (ADRF at TOA).: 288 

𝐴𝐷𝑅𝐹𝑆𝑈𝑅 = (𝑆𝑊𝐺𝑁𝑇 + 𝐿𝑊𝐺𝑁𝑇) − (𝑆𝑊𝐺𝑁𝑇𝐶𝐿𝑁 + 𝐿𝑊𝐺𝑁𝑇𝐶𝐿𝑁) -(3.15) 289 

𝐴𝐷𝑅𝐹𝑇𝑂𝐴 = (𝑆𝑊𝑇𝑁𝑇 + 𝐿𝑊𝑇𝑈𝑃) − (𝑆𝑊𝑇𝑁𝑇𝐶𝐿𝑁 + 𝐿𝑊𝑇𝑈𝑃𝐶𝐿𝑁) -(3.16) 290 

The atmospheric ADRF (ADRFATM) was calculated by subtracting the ADRF at the surface 291 

from the ADRF at the top of the atmosphere (TOA). According to standard conventions, a 292 

positive ADRFATM warms the atmosphere while a negative ADRFATM cools it. The current 293 
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study aims to determine the missing parameters using two methods: the factored method and 294 

the difference method. The factored method involves dividing SWGNTCLN by SWGNT to 295 

obtain a factor, which was then used to calculate LWGNTCLN using Eq(3.17). The 296 

difference method, on the other hand, uses the difference between SWGNTCLN and SWGNT 297 

to calculate LWGNTCLN using Eq(3.18). 298 

𝐿𝑊𝐺𝑁𝑇𝐶𝐿𝑁 = 
𝑆𝑊𝐺𝑁𝑇𝐶𝐿𝑁

𝑆𝑊𝐺𝑁𝑇
∗ 𝐿𝑊𝐺𝑁𝑇    -(3.17) 299 

𝐿𝑊𝐺𝑁𝑇𝐶𝐿𝑁 = 𝑆𝑊𝐺𝑁𝑇𝐶𝐿𝑁 − 𝑆𝑊𝐺𝑁𝑇 + 𝐿𝑊𝐺𝑁𝑇  -(3.18) 300 

As part of the analysis, five grid points in each climate zone were considered and plotted a 301 

time series of long wave flux data for 2019, calculated using both the factored and difference 302 

methods. The grid points chosen were Goa (Am), Nanded (Aw), Hyderabad (BSh), Raipur 303 

(Cwa), and Coimbatore (Cwb). The plot showed that the factored method produced more 304 

accurate results compared to the difference method. Therefore, we used the factored method 305 

to calculate the ADRF at the surface, TOA and within atmosphere for the gridded study area. 306 

3.7.2 Effect of Aerosols on Temperature  307 

To assess the effect of aerosols on the Earth's energy balance, Kumar et.al 2019, Mao et.al 308 

2022 analysed the temperature changes caused by aerosols in each climate region of the study 309 

area. This helps in understanding the impact of aerosols on the Earth's radiation budget. The 310 

annual mean temperature and the annual average daily radiation flux (ADRF) for the year 311 

2020 and the average of the years 2015-2019 are calculated for the study area. The 312 

comparison was then made between the year 2020, which was impacted by the COVID-19 313 

pandemic, and the average of the years 2015-2019 over three time periods: the pre-lockdown 314 

period (from 1st January to 23rd March), the lockdown period (from 24th March to 31st May).  315 

and the post-lockdown period (from 1st June to 31st August).   316 

3.8 AOD-Cloud-Precipitation Interactions 317 

The methodology used to understand aerosol-cloud-precipitation interactions is shown in Fig 318 

3.5. Cloud formation begins with the activation of Cloud Condensation Nuclei (CCN). 319 

Aerosols are important in the formation of CCN. MODIS provides the aerosol index, which is 320 

calculated as the product of the angstrom exponent and the AOD. Previous research on the 321 

effect of aerosols used the aerosol index as the primary parameter. Some researchers, 322 

however, have stated that the aerosol index was not reliable over land (Kourtidis et al., 2015, 323 

Liu et al., 2020). Because the majority of the current research area is land, AOD was used as 324 

the primary parameter to characterize aerosols and study their effect on cloud formation. 325 
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Cloud parameters are used to identify low warm clouds. Low warm clouds were defined as 326 

pixels with CTP greater than 680 hPa and CTT greater than 0oC according to Liu et.al (2020). 327 

MODIS products are available in a variety of spatial resolutions. Using R statistical software, 328 

all cloud parameters were resampled to a resolution of 10km10km. The files were cropped 329 

to the required size for the study.  330 

The atmospheric stability states are classified into four categories based on the values: 331 

isolated thunderstorms (20<K<25), widely scattered thunderstorms (20<K<25), scattered 332 

thunderstorms (30<K<35), and numerous thunderstorms (K>35). Rainfall was classified into 333 

three types based on its intensity: light, moderate, and heavy (Soni et al.,2020). The effect of 334 

aerosol on macrophysical properties of clouds was investigated using linear regression slopes 335 

of AOD-CF for different atmospheric stability states The R code is scripted to identify the 336 

parametrical data corresponding to pixels with light rain and to average the corresponding 337 

cloud parameters for 11 AOD bins. AOD bins range from 0 to 1 with a 0.1. The correlation 338 

plots and trendlines are then prepared 339 

 340 

Fig 3.5: Flow chart showing the methodology adopted for AOD-Cloud-Precipitation 341 

Interactions 342 

 343 

 344 
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Also, the significance of correlation was evaluated using the p-value. If the p-value is less 345 

than 0.05, the correlation is said to be significant at 95% confidence level.  The analysis is 346 

performed for three cumulative datasets namely cumulative datasets, namely 5,10 and 15 347 

years of data. The cumulative five years indicate the dataset from 2015 to 2019, the ten years 348 

indicate the dataset from 2010 to 2019 and the fifteen years indicate dataset from 2005-2019. 349 

The cumulative periods for the analysis are considered with a goal of understanding the 350 

behaviour of AOD and CF for different atmospheric stability states as the number of samples 351 

increases. 352 

The spatial distribution of AOD for the three cumulative datasets in light, moderate and heavy 353 

rain conditions was investigated by categorising the study area into three classes based on the 354 

pixel values i.e 0-0.5 (low polluted), 0.5-1 (moderately polluted) and greater than 1 (highly 355 

polluted). Similarly, the CF was classified into three groups based on pixel values: 0.7-0.8 356 

(low), 0.8-0.9 (moderate) and 0.9-1 (high). In order to obtain a better picture of the 357 

distribution of AOD and CF, Koppen’s world climate classification was considered for the 358 

study area. The effect of AOD on CF and precipitation under different atmospheric stability 359 

states was analysed. 360 

3.9 Analysis of the Causes for Extreme Precipitation Events in 361 

and around Urban Cities 362 

To understand the impact of aerosols on precipitation on a closer note, urban cities were 363 

selected for the study. The urban areas chosen for this analysis are Mumbai, Chennai and 364 

Bengaluru from Aw, Hyderabad from BSh (Fig 3.6). The abovesaid places are chosen based 365 

on the land use and land cover map imposed over the study area. Extreme Precipitation 366 

Events (EPEs) pose a serious risk to human life, agriculture, and infrastructure by causing 367 

flash floods and landslides (Sujatha and Sridhar, 2021). With enhanced atmospheric moisture 368 

transport brought on by a warming climate, EPEs are anticipated to occur more frequently 369 

(Hamada et al., 2015; Kumar et al., 2019). 370 

The methodology used for the analysis of EPEs in metropolitan cities is depicted in Fig 3.6. 371 

EPEs are identified based on percentile calculations of precipitation data. The data was sorted 372 

in ascending order to compute percentiles, and the resulting distribution represents the 373 

frequency-intensity relationship of precipitation. The 95th percentile of precipitation was 374 

calculated using the R statistical software. This study utilizes daily GPM precipitation data 375 

from 2015 to 2021 for percentile calculations. Precipitation exceeding the 95th percentile 376 
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threshold was considered an extreme event. Extreme events are identified for the metropolitan 377 

cities of Peninsular India from 2018 to 2020.  378 

For each identified extreme event in the metropolitan cities, the data corresponding to aerosol 379 

and cloud properties for a period of 10 days prior to the event are visualized using ArcMap 380 

10.2. In the present study, we have analyzed 6 events from Mumbai, 5 events from Chennai, 5 381 

events from Hyderabad, and 2 events from Bengaluru, and the results are presented. 382 

3.9.1 Percentile Calculation 383 

The percentile helps to compare a score with other scores in the dataset, aiding in the 384 

identification of a threshold value. Data above this threshold value was considered an extreme 385 

event of precipitation. The steps involved in percentile calculation are as follows: Initially, the 386 

daily precipitation data from 2015-2021 are sorted in ascending order. The second step 387 

involves multiplying the required percentile, which is the 95th percentile for this study, with 388 

the total number of values and rounding it to the nearest integer.  389 

 390 

Fig 3.6: An Overview of the Research Approach for understanding the causes influencing the 391 

occurrence of EPE in metropolitan cities 392 

 393 
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 394 

This gives us the threshold value. In the third step, we count the values from left to right in 395 

the dataset until we reach the number obtained in the previous step. The corresponding value 396 

is the 95th percentile of the dataset. Percentile calculation was performed over raster images 397 

corresponding to the metropolitan cities. This means that each pixel covering the metropolitan 398 

city has a different 95th percentile value.  399 

3.9.2 Identification of Events 400 

The series of raster data corresponding to precipitation was aggregated to match the resolution 401 

of the AOD data. The 95th percentile values are also aggregated to the same resolution. Each 402 

cell in the daily precipitation raster was then compared to the corresponding cell in the 95th 403 

percentile of precipitation using R statistical software. If the precipitation value is greater than 404 

the 95th percentile value, the data was retained; otherwise, the pixel value is classified as 'NA' 405 

(not available). The raster was saved to a folder if more than half of the pixels covering the 406 

area contain valid data.  407 

3.9.3 Analysis of Parameters 408 

For each identified extreme event in the metropolitan cities, the aerosol data for the 10 days 409 

leading up to the event was visualized. If aerosol data was available, other parameters, namely 410 

CF, CTP, CTT, and K, are averaged for the 10 days prior to the extreme event. The analysis 411 

includes examining the distribution of cloud properties and atmospheric stability during the 412 

extreme event. Additionally, the number of pixels experiencing moderate and heavy 413 

precipitation in the area was observed. The behavior of cloud properties and atmospheric 414 

stability in these pixels was analyzed, and the combination of parameters influencing 415 

precipitation occurrence was observed for each metropolitan city. 416 

3.9.4 Multiple Regression Analysis  417 

The statistical analysis was conducted using Multiple Regression Analysis (MRA), which is a 418 

type of analysis that examines the linear relationship between a dependent variable and two or 419 

more independent variables (Zain et al., 2008). In this study, MRA is employed with 420 

precipitation as the dependent variable and AOD, CF, CTP, CTT, and K as the independent 421 

variables. The regression was performed by extracting pixel values of each variable 422 

corresponding to Extreme Precipitation Events (EPEs) for each metropolitan city. The general 423 

form of MRA is represented by Eq. (3.18): 424 

𝑦 =∝ +𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑛𝑥𝑛    (3.18) 425 
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Where y is dependent variable, ∝ is intercept, 𝑥1, 𝑥2, 𝑥3… . . 𝑥𝑛 are independent variables, 426 

𝛽1, 𝛽2, 𝛽3… . 𝛽𝑛 are coefficients 427 

3.10 Closure 428 

In this chapter, the selected study area and datasets required for the research work are 429 

discussed in the first three sections. The fourth section of the chapter deals with overall 430 

methodology of the research work. The fifth section deals with validation of satellite AOD 431 

data and model re-analysis data against the ground truth data. The trend in AOD with the 432 

conventional Mann-Kendall test and Innovative Trend Analysis (ITA) method are dealt in 433 

sixth section of the chapter, The innovativeness lies in implementation of ITA for the raster 434 

data. The methodology for AOD-radiation-temperature interactions is dealt in the seventh 435 

section of this chapter. The long wave radiation under all-sky and no aerosol condition are 436 

calculated based on the factored method which is explained in the sixth section of this 437 

chapter. The ADRF under all-sky conditions is calculated based on the methodology and the 438 

variables of 2020 are compared against the average of 2015-2019 for time periods prior to 439 

lockdown, during the lockdown and post lockdown. The eighth section of the chapter presents 440 

with the methodology to relate AOD, cloud fraction and precipitation based on K-index 441 

meteorology. The methodology for better understanding of the impact of AOD in causing 442 

EPEs in and around metropolitan cities is presented in ninth section of this chapter. The 443 

analysis is performed based on the methodology and the results corresponding to the framed 444 

objectives are presented in Chapter 4-6. 445 
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CHAPTER 4 

VALIDATION OF SATELLITE AND RE-ANALYSIS 

AOD PRODUCTS WITH GROUND OBSERVATIONS 

4.1 General 

Based on the methodology proposed in the previous chapter, following are the results 

corresponding to validation analysis. The validation holds its own prominence in a situation 

when there are numerous sources of data. It is highly essential to check the suitability of data 

for analysis in any type of research. The present chapter deals with the validation of satellite 

and re-analysis observations with ground data and trend analysis using MK-test and ITA 

method. 

4.2 Datasets for Validation 

A wide set of ground observations were available for Pune and a minor set of observations are 

available for Trivendram, Visakhapatnam and Goa in the considered study area. The 

validation of satellite and re-analysis AOD product with ground observations obtained from 

AERONET helps us to select a suitable data required for the analysis. The ground data used 

for validation is corresponding to Pune and Kanpur for a period of 15 years from 2004-

2018The validation was performed using the R Statistical software. The code facilitated the 

extraction of satellite and re-analysis product at the sun photometer location with a buffer of 

5km. The data was averaged for a day and written to the excel sheet and compared with the 

ground observations. The excel was then read in R and the columns are compared based on 

Date to exclude the days with no data. Finally, a scatter plot was prepared by comparing the 

satellite and re-analysis data with ground observations. The Coefficient of Determination is 

also shown in the plot. If the R2was less than 0.5, the outlier detection loop of the code was
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 activated and the outliers in the data are removed by Mahalnobis distance method. The data 

was filtered until the R2 is greater than 0.5. The scatterplots are shown in Fig 4.1. The loop 

was initiated thrice for the improvement in co-efficient of determination corresponding to 

Pune. Almost, 120 observations were treated to be outliers. The R2 for Kanpur is 0.7 and it is 

obtained without initiating the outlier loop. It implies that the outliers were less in Kanpur 

data. Similarly, the R2 is 0.25 and 0.58 with MERRA-2 data for Pune and Kanpur 

respectively. With the execution of loop for improvement of R2 for Pune, it was found to be

very negligible after 5 iterations, but for Kanpur the outlier loop is not initiated. The 

coefficient of determination is found to be at lower end with OMI data for both locations of 

the order of 0.33 and 0.39 even after execution of outlier loop. 

4.2.1 Statistics of Validation 

The other statistical measures evaluated to validate satellite AOD with ground AOD are Root 

Mean Square error (RMSE), Mean Absolute Error (MAE) and bias. The errors and number of 

samples that are coincident with satellite data and ground data are shown in Table 4.1. The 

RMSE, MAE and bias for validating MODIS with AERONET was found to be minimum for 

both Pune and Kanpur whereas all the errors were found to be at higher end while validating 

OMI data. From the table it is evident that MERRA-2 is statistically more reliable than OMI 

but less reliable than MODIS. Thus, it can be concluded that MOD04_L2 (Optical depth Land 

and Ocean) is a suitable product for further analysis over the study area. 

Table 4.1: Statistical errors for evaluation of MODIS, OMI, MERRA-2 with AERONET 

Parameter 

MODIS OMI MERRA-2 

Pune Kanpur Pune Kanpur Pune Kanpur 

No. of samples 

(NS) 1692 1625 902 2462 1415 3336 

Coefficient of 

determination 

(R2) 0.51 0.7 0.33 0.39 0.25 0.58 

RMSE 0.17 0.22 0.46 0.31 0.2 0.21 

MAE 0.12 0.14 0.42 0.25 0.15 0.14 

Bias 0.02 -0.08 0.42 0.23 0.1 0.08 
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a) b)  

c) d)  

e) f)  

Fig 4.1: Correlation plots of a) MODIS with AERONET for Pune b) MODIS with 

AERONET for Kanpur c) MERRA-2 with AERONET for Pune d) MERRA-2 with 

AERONET for Kanpur e) OMI with AERONET for Pune f) OMI with AERONET for 

Kanpur 
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4.3 Spatial Distribution of AOD 

The averaged observations of AOD during time period of 2000-2019 are disaggregated to 0.1o 

resolution. The spatial plot was classified into 9 classes based on the distribution to observe 

the distribution of AOD over study area. AOD observations greater than 1 are limited because 

of the cloud contamination (Chung et al., 2015). Nearly 50% of study area was found to have 

AOD between 0.24-0.42. AOD in between 0.18-0.24 which was considered as Zone 3 is 

found to hold second place in the distribution. The southern part of study area was dominated 

by lower AOD of the range of 0-0.18. Higher AOD was found to be dominant towards the 

coastal boundaries near Maharashtra and Orissa. The spatial distribution is shown in Fig 4.2. 

a) b)  

Fig 4.2: Spatial distribution of AOD over Southern India a) 2000-2009 b) 2010-2019 

4.4 Decadal Trends in Aerosol Optical Depth 

The trend in AOD was studied to know the changes over a period of 2000-2019. As aerosols 

are the anthropogenic emissions, their concentration is directly related to rate of 

industrialization (Chung et al.,2015). On a general note, the emissions have reduced due to 

implementation of remedial measures from IPCC during the period 2010-2019. In the present 

study, trend in AOD using MK-test and ITA was carried out.  
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4.4.1 Trend in MODIS AOD using Mann-Kendall Test 

The satellite observations from MODIS AOD were divided into two parts by decade. The first 

decade referred to observations from 2000-2009 and second decade referred to observations 

from 2010-2019. Annual averaged raster observations were obtained using R statistical 

software. The code was written down such that each pixel has a value that is equal to average 

of observations obtained in a particular year at that pixel. Firstly, stack of observations was 

performed and stacked data was used to calculate trend from Mann-Kendall test.  

The magnitude of trend as given by Sen’s slope was calculated at pixels with trend at 95% 

significance level. In the first decade, it was observed that there was no decrease in 

magnitude. Nearly 66.46% of study area shown increasing trend as in Fig 4.3. The magnitude 

was divided into six classes namely no change, very low positive change, low positive 

change, moderate change, high positive change, very high positive change. Several research 

studies have been carried out to investigate the AOD trend over different Indian regions using 

satellite data and ground-based observations (Banerjee et al.,2014, Ramachandran et al.,2008, 

Babu et al., 2013).  

The area of change in AOD is shown in Table 4.2. Majority of study area of the order of 374 

lakh ha has shown a moderate increase in AOD. Nearly 296 lakh ha of study area has shown a 

low positive change in AOD. In the second decade, 40.26% of study area has shown no trend. 

The magnitude for second decade was divided into eight classes namely very low negative 

change, low negative change, no change, very low positive change, low positive change, 

moderate change, high positive change, very high positive change. But significant negative 

change of the order of 0.19 lakh ha was observed in the second decade. 

Comparatively, 253.56lakh ha of study area was found to have moderate positive change in 

the second decade. The area for each classified was found to decrease in second decade with 

respect to first decade. Overall, it can be depicted that there was decrease in trend of AOD. 

between first decade and second decade in the study area. From Fig 4.2 and Fig 4.3a, 

magnitude of trend was found to be higher in regions of higher AOD. On the contrary 

magnitude of trend was maximum towards Orissa and Chattisgarh.   
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Table 4.2: Area of significant change obtained in both the tests (Lakh ha) 

Test Mann-Kendall Test ITA 

Change First Decade 

Second 

Decade First Decade 

Second 

Decade 

Very low negative change - 0.0965 - 0.0965 

Low negative change - 0.0965 - 0.0965 

Very low positive change 10.625 3.863 23.667 4.926 

Low positive change 296.65 110.507 215.605 96.790 

Moderate positive change 374.895 253.560 199.763 183.921 

High positive change 119.970 112.430 60.566 73.703 

Very high positive change 18.933 16.800 17.773 14.103 

 

 

a) b)  

Fig 4.3: Spatial Pattern of trend in AOD at 95% significance level for a) 2000-2009 b) 2010-

2019 using Mann-Kendall Test. 
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4.4.2 Trend in MODIS AOD using Innovative Trend Analysis Method 

As it was already discussed in the previous section that trend was observed on the basis of 

decade, the same dataset with annual averaged observations was considered for trend using 

Innovative Trend Analysis method (ITA). The methodology as described by Sen (2012) is to 

divide the dataset into two equal halves and thus calculate significant trend by plotting values 

on 1:1 scatter plot. In the present study, a novelty has been brought by calculating ITA on 

raster data using R statistical software which was previously confined to point/grid data. The 

first five years of a decade are considered as first half of data series and consecutive five years 

of data was considered as second half of series. The data of each pixel consists of 10 values in 

a decade which was sorted out corresponding to each series. The trend and magnitude of it 

was calculated for each pixel according to ITA methodology and written to an excel file. 

According to methodology explained by Sen (2012) trend indicator was similar to Z statistic 

of Mann-Kendall test and slope was same as Sen’s slope. The slope was categorized into eight 

classes as discussed in previous section. It was observed that 41.84% of total study area was 

showing a positive trend which was less when compared to Mann-Kendall test as in Fig 4.4. 

Most of the study area of the order of 517 lakh ha and 373 lakh ha showed a positive change 

in AOD in first and second decades respectively.  

The same process was applied for second decade which showed that 30% of the study area 

was found to have significant trend. On the contrary the significant negative change was 

observed in second decade which conforms to Mann-Kendall test. Nearly 41.84% of study 

area showed a significant positive change, out of which 215 lakh ha showed a low positive 

change which was mildly less when compared to first decade. The areas corresponding to 

each change using two different processes was shown in Table 4.2. Overall, it can be 

illustrated that trend in AOD has been reduced in the second decade when compared to first 

decade in both the methods. The decreasing trend might be due to decrease in the emissions 

by adaptation strategies of IPCC (Metz et al., 2001; Edenhofer et al., 2015). From Fig 4.2 and 

Fig 4.4a, it was evident that trend was maximum in regions of higher AOD.  
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a)  b)  

Fig 4.4: Spatial Pattern of trend in AOD at 95% significance level for a) 2000-2009 b) 2010-

2019 using ITA 

Increased aerosol concentration may have several important implications on regional climate, 

human health and hydrological cycle over the Indian subcontinent (Ramanathan et al.,2005 

Lau et al., 2006). The economy of Southern India is mostly dependent on agricultural 

production which is in turn dependent on monsoon rainfall.  Aerosol abundance strongly 

affects Indian summer monsoon rainfall through solar dimming mechanism and elevated heat 

pump mechanism (Ramanathan et al., 2005, Lau et al., 2010). The raise in concentration of 

aerosol may thus lead to climate imbalance and also affect the health of people in Southern 

India. 

 

4.5 Closure 

The validation of satellite and model re-analysis AOD data against ground observations 

showed that MODIS provides the suitable AOD data for the study area. The trend analysis 

using MK-test and ITA reveal that the trend was under estimated by ITA. The impact of AOD 

on temperature is dealt in fifth chapter.  
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CHAPTER 5 

IMPACT OF AOD ON RADIATION DIAGNOSTICS 

AND TEMPERATURE 

5.1 General 

The COVID-19 lockdown has led to a pristine situation as the emissions were minimum 

during that period. It has helped us to compare the spatial distribution of ADRF and 

temperature against the average of 2015-2019. The effect of AOD on temperature is dealt in 

the following sections. 

5.2 Calculation of Aerosol Direct Radiative Forcing 

The ADRF time series plot for all five grid points is depicted in Fig 5.1. The flux was higher 

in most of the monsoon and post-monsoon seasons for all the five chosen grid points in the 

study area. The overall flux in the year 2019 ranged from -200 W/m2 to 100 W/m2. It can be 

seen that the LWGNTCLN calculated using the factored method follows a similar pattern to 

that of the LWGNT. The location of peaks and dips in LWGNTCLN exactly matches that of 

LWGNT in all the grid points. However, while the peaks and dips of the LWGNTCLN 

calculated using the difference method align with those of the LWGNT, the disparity in the 

amount of flux appears to be significant. The data for the grid points from the five different 

climate zones show a resemblance in their time series plots. The LWGNT for Goa (Fig. 5.1a) 

was in the range of -180 to -9.5 W/m2. The LWGNTCLN by factored and difference method 

for Goa was in the range of -135 to -21 W/m2 and -188 to 115 W/m2, respectively. The 

minimum value of LWGNTCLN_d was close to LWGNT, whereas the maximum value was 

higher than that of LWGNT.
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Fig 5.1: Time series plot of LWGNT, LWGNTCLN_f, LWGNTCLN_d for a) Goa b) Nanded 

c) Hyderabad d) Raipur e) Coimbatore for the year 2019 
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The LWGNT, LWGNTCLN_f, and LWGNTCLN_d for Nanded (Fig. 5.1b) are between -153 

to -25, -254 to -10, and -175 to 101 W/m2, respectively. From Fig. 5.1b, it was evident that 

the occurrence of the dip matches for LWGNTCLN_f, but the values at those particular 

locations are lower than that of LWGNT. On the other hand, the values at peaks are near to 

that of LWGNT. The LWGNT, LWGNTCLN_f, and LWGNTCLN_d for Hyderabad (Fig. 

5.1c) are between -138 to -24, -282 to -9, and -178 to 94 W/m2, respectively. Although the 

pattern of LWGNTCLN_d matches that of the LWGNT, the flux values appear to be higher, 

and the distribution is vague when compared to that of the LWGNT. 

The values at dips are on a higher note for LWGNTCLN_f, but they are on par at peaks with 

respect to the LWGNT. The LWGNT, LWGNTCLN_f, and LWGNTCLN_d for Raipur (Fig. 

5.1d) are between -150 to -20, -196 to -7, and -173 to 102 W/m2, respectively. The pattern and 

distribution are the same as those of the other three locations. The LWGNT, LWGNTCLN_f, 

and LWGNTCLN_d for Coimbatore (Fig. 5.1e) are between -127 to -25, -165 to -14, and -

164 to 95 W/m2, respectively. The values at dip locations are lower for LWGNTCLN_f and 

LWGNTCLN_d, but the values of LWGNTCLN_f at peak locations are on par with LWGNT 

and that of LWGNTCLN_d are higher. On the whole, it can be said that LWGNTCLN 

obtained by the factored method appears to be in consonance with LWGNT. 

5.2.1 Trend in ADRF 

Over the period of 2015-2019, the trend in ADRF in the atmosphere was calculated using the 

non-parametric Mann-Kendall test as described in section 3.5.1. The magnitude of the trend at 

a 5% significance level was then determined using the Sen's slope formula, which divides the 

magnitude into four classes: very low positive change, low positive change, moderate change, 

and high change. Most of the study area exhibited a low positive change in ADRF. The areas 

experiencing very low positive change and high change were roughly equal in the monsoon 

climate. This might be due to the emissions from water bodies in different seasons of a year. 

The tropical savanna climate region showed a very low positive change, followed by 

moderate and high changes. The area with high change was more in Aw. This might be due to 

the industrial emissions in that time period.  The humid subtropical climate exhibited low and 

moderate positive changes significantly. The subtropical oceanic highland climate region 

showed only a very low positive change in the trend. The areas corresponding to these four 

classes were calculated for all five climate zones and presented in a Table 5.1. The trend in 

ADRF was depicted in Fig 5.2. 
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Fig 5.2: Spatial distribution of trend in ADRF 

Table 5.1: Area of significant change in each climate zone (in lakh hectares) 

  

Magnitude      

Very low positive 

change 

Low positive 

change 

Moderate 

change 

High 

change 

Climate  

Zone 

Am 13.42 41.30 19.07 13.90 

Aw 104.28 328.26 97.67 33.73 

BSh 64.50 166.00 38.72 - 

Cwa 9.78 74.66 49.16 0.67 

Cwb 39.78 2.20   

 

5.3 Yearly variations in the AOD, ADRF and temperature for the 

three different timescales 

The variations in the AOD, ADRF and temperature for the period of 2015-2020 over the 

timescale of pre-lockdown (Jan 1 to Mar 23), lockdown (Mar 24 to May 31) and post-

lockdown (Jun 1 to Aug 31) are shown in Fig 4.16. The error bar in the figure represents 

standard error in the parameter considered during timescale of each year.  The AOD from Jan 

1 to Mar 23, Mar 24 to May 31, Jun 1 to Aug 31 of 2018 was 0.425, 0.449 and 0.526 

respectively. The AOD in all the three timescales was found to be maximum in the year 2018 

(0.425,0.449 and 0.526) (Fig 5.3a). The average AOD in the period (2015-2019) prior to 

lockdown timescale was ~0.7 while it was ~0.6 in the year 2020. The AOD in the lockdown 
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timescale of the year 2020 has also seen a decrease by ~0.1 compared to the average of the 

past five years (2015-2019). On the contrary, a significant increase of about ~0.8 was seen in 

the post-lockdown of the year 2020 when compared to the mean of the period 2015-2019. 

Similar observations were recorded by Pandey et al.,2020. 

a)  

b)  

c)  

 

Fig 5.3: Variation of Parameters over the time period 2015-2020 in three timescales a) AOD b) ADRF 

c) Temperature (Error bar represents standard error in the parameter considered during timescale of 

each year) 
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The Fig 5.3b corresponds to the variation of ADRF over the period 2015-2020. The ADRF in 

the months of January to March of the years 2016,2017 and 2020 was almost the same and 

have the low values. The period March-May of 2017 (which is lockdown period in 2020) has 

seen a lower ADRF of -2.49 W/m2 while the higher was in the year 2020 with a value of -

1.09W/m2. This may be because of higher amount of radiation reaching the Earth’s surface 

which results in higher radiative forcing in the atmosphere. The post-lockdown timescale of 

the year 2020 has witnessed a higher ADRF of 2.34 W/m2 which was close to that of seen in 

the year 2018 (2.39W/m2). This may be due to relaxation of COVID restrictions across the 

country. Overall, it was observed that ADRF has shown an increasing trend in lockdown and 

post-lockdown period of 2015-2020 while it has shown the decreasing trend in the pre-

lockdown period.  

The Fig 5.3c shows the variation of temperature over the period 2015-2020. The temperature 

(25.96oC) in the period of January 1 to March 23 of 2016 (which is pre-lockdown of 2020) 

was found to be maximum. In the year 2019 the temperature in the periods March 24 to May 

31 (Lockdown period in the year 2020) and June 1 to August 31 (post-lockdown period in the 

year 2020) was 31.85oC and 28.49oC respectively. Those were the maximum values over a 

period of 2015-2020. The temperature was minimum in all the three timescales of 2020 when 

compared to the past five-year data. This may be due to the moderation in the COVID-19 

restrictions across the country. This is in agreement with the annual report of 2020 provided 

by the Indian Meteorological Department (https://mausam.imd.gov.in).  

5.4 COVID-19 Lockdown: Pristine situation 

The COVID-19 pandemic that began at the end of 2019 has led to a complete shutdown of 

industrial and human activities in India from March 24, 2020 to May 31, 2020. During this 

time, there was a notable decrease in the accumulation of aerosols in the atmosphere 

worldwide (Muhammed et al., 2020; Chauhan and Singh, 2020). This decrease was also seen 

in satellite data from MODIS. To understand the impact of aerosols on temperature in a 

normal situation, the average of all variables from 2015-2019 was also analysed. 

5.5 Spatial Distribution of AOD in the Atmosphere 

The spatial distribution of aerosol optical depth (AOD) in the study area is shown in Fig 5.4. 

According to research conducted by Abin et al. (2021), the aerosol loading has decreased 

during the lockdown period in the study area. In fact, about 56% of the study area saw a 

decrease in AOD during the pre-lockdown period of 2020 compared to the average from 

2015-2019. This decrease in AOD ranged from 0 to 0.43, while the increase fluctuated 

https://mausam.imd.gov.in/
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between 0 to 0.48 which was in accordance with the results exhibited by Rani et al.,2022. The 

majority of the decrease was observed in the tropical monsoon region covering Goa and the 

humid subtropical region covering cities like Chennai and Bengaluru. On the other hand, the 

increase was predominantly seen in and around cities such as Pune, Mumbai, and Hyderabad. 

Approximately 84% of the study area experienced a decrease in AOD, which ranged from 0 

to 0.56 which is in accordance with the observations made by Srivastava et al.,2021. 

 

Fig 5.4: Spatial distribution of AOD for a) Pre-lockdown b) Lockdown c) Post-lockdown time periods 

(Left: Average of 2015-2019, Middle: 2020, Right: Change) 
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During the lockdown timescale, the spatial distribution of AOD shows that 15% of the area 

saw an increase in AOD ranging from 0 to 0.43, primarily in the states of Orissa and 

Chattisgarh which was in accordance with the results given by Gaouda et al.,2022. The 

decrease in AOD was distributed in the tropical savanna and warm semi-arid climate regions, 

which includes metropolitan cities like Hyderabad, Mumbai, and Bengaluru. In the post-

lockdown timescale, there was a decrease in AOD that stretched from 0 to 0.72, while the 

increase ranged from 0 to 1.35. The distribution indicates that the decrease was observed in 

parts of the tropical savanna region with metropolitan cities like Bengaluru and Mumbai, 

while the increase was seen in parts of the humid subtropical climate region with places such 

as Raipur and Idukki. 

5.6 Spatial Distribution of ADRF in the Atmosphere 

The reduction in aerosol loading has resulted in a downfall in ADRF in the atmosphere (Abin 

et al., 2021, Subba et al.,2020). The ADRF in the atmosphere for the year 2015 was -

1.5±0.006 W/m2, and in 2019, it was -1.42±0.005 W/ m2. Over a period of five years, there 

has been an atmospheric warming of 0.08±0.001 W/ m2, which was in accordance with Rutan 

et al., 2015. The ADRF prior to the lockdown timescale in the year 2015 was -3.64±0.007 W/ 

m2, and in 2019, it was -4.10±0.008 W/ m2. However, the average ADRF (2015-2019) for 

pre-lockdown lies closer to that of 2019 with a value of -4.06±0.009 W/ m2. The ADRF was 

lower in most of the Aw region and high in the BSh region (Fig 5.5). The ADRF in the 

atmosphere during the lockdown timescale for the year 2015 was -1.74±0.009 W/ m2, and in 

2019, it was -2.09±0.006 W/ m2. The ADRF was low in the northern parts of BSh and high in 

the southern parts of the BSh region in the study area.  
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Fig 5.5: Spatial distribution of ADRF in the atmosphere for a) Pre-lockdown b) Lockdown c) Post-

lockdown time periods (Left: Average of 2015-2019, Middle: 2020, Right: Change) 

 

Atmospheric warming was observed in the post-lockdown timescale with 1.74±0.004 W/ m2 

(2015) and 1.97±0.003 W/ m2 (2019). The average ADRF in that timescale was found to be 

1.98±0.007 W/ m2. The spatial distribution shows that the lower values are towards the Am 

and Cwb regions, while higher values are in the BSh and Aw climate regions. The distribution 

might be attributed to the occurrence of monsoon precipitation and the trapping up of heat due 

to the dispersion of clouds without precipitation. The ADRF during the pre-lockdown, 

lockdown, and post-lockdown of 2020 was found to be -4.41±0.06, -1.09±0.04, and 2.34±0.02 

W/ m2, respectively. It was observed to have an atmospheric warming of approximately 0.4 

W/ m2 in the period after the lockdown of 2020 compared to the average of 2015-2019. The 

ADRF for the entire year of 2020 has shown warming of approximately 1.32 W/ m2 in the 

study area compared to the average of the past five years. This may be due to the dilution of 

aerosols in the atmosphere or the excess formation of cloud condensation nuclei. 

According to Fig 5.6, nearly 74% of the study area experienced a decrease in ADRF during 

the pre-lockdown period of 2020 compared to the average of 2015-2019. The decrease in 
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ADRF ranged from 0 to 1.7 W/m2, while the increase in the remaining 26% of the study area 

ranged from 0 to 0.83 W/m2. The decrease was more prominent in tropical savanna and warm 

semi-arid regions, such as Amravati, Medak, Adilabad, and Nagpur. In contrast, the increase 

was seen in humid regions and a part of the tropical monsoon region, including Kochi, Goa, 

Coimbatore, and Idukki.  

However, the situation changed drastically during the lockdown period. Almost 98% of the 

study area showed an increase in ADRF during the lockdown of 2020 compared to the 

average of 2015-2019. The rise in ADRF fluctuated between 0-2.32 W/m2, while the fall 

fluctuated between 0 to 0.23 W/m2. The spatial distribution of ADRF shows that the increase 

was distributed across all five climate zones of the study area, but the decrease was 

concentrated only in the small coastal part of the tropical savanna region, including Tirupati, 

Visakhapatnam, Araku, and Chennai. A part of the fall was also distributed to the humid 

subtropical region. During the post-lockdown period, nearly 93% of the study area 

experienced an increase in ADRF ranging from 0 to 1.21 W/m2, while the remaining part saw 

a decrease in ADRF ranging from 0 to 0.21 W/m2. The reduction in ADRF was seen in most 

of the western and eastern ghats, while the increase was seen in the landlocked part of the 

study area, which consists of most of the Telangana state. The decrease in the coastal parts of 

the tropical monsoon and savanna regions might be attributed to the onset of the south-west 

monsoon season.  

 

5.7 Spatial Distribution of Temperature in the Atmosphere 

Theoretically, temperature is supposed to follow the trend of ADRF. The average temperature 

in the pre-lockdown timescale of 2019 in the study area was 25.20±0.005 °C, which was 

higher than that of 2015 (24.34±0.006 °C). The increase in temperature during the lockdown 

timescale between 2015 and 2019 was ~1.3 °C, which was contrary to the context of ADRF. 

From the analysis, ADRF during the abovementioned two timescales was found to result in 

the cooling of the atmosphere, but the temperature did not follow the pattern of ADRF. This 

might be due to the formation of aerosol nuclei that support cloud formation and precipitation. 

There was a minimum uplift of temperature of the order of ~0.15 °C corresponding to an 

increase in ADRF of ~0.35W/m2 in the post-lockdown timescale of 2019 compared to 2015. 

The overall temperature was found to increase by 0.43 °C with respect to a change in ADRF 

by ~0.08W/m2 in 2019 against the dataset of 2015. 
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Fig 5.6: Spatial distribution of mean temperature for a) Pre-lockdown b) Lockdown c) Post-lockdown 

time periods (Left: Avg of 2015-2019, Middle: 2020, Right: Change) 

 

The decline in temperature by ~0.6 °C was in accordance with the decrease in ADRF in the 

period prior to the lockdown of 2020 compared to the average of 2015-2019. The temperature 

in the lockdown timescale was 31.40±0.009 °C and 30.77±0.009 °C for the average of 2015-

2019 and 2020, respectively. It shows a decrease of 0.63 °C, which was in consonance with 

the pattern of ADRF. The post-lockdown of 2020 witnessed a mild decrease in temperature by 

~0.50 °C compared against the average of 2015-2019. On the contrary, ADRF was found to 

escalate in the same timescale. The overall temperature in 2020 was 26.64±0.004 °C and in 

the average of 2015-2019 was 27.02±0.008 °C. There was a mild reduction in overall 

temperature in 2020 which might be attributed to the lockdown restrictions due to the 

COVID-19 pandemic. However, the ADRF was found to uplift by ~1.3W/m2 in 2020 

compared against the average of 2015-2019. This might be due to the entrapment of aerosols 

in the upper layers of the atmosphere. The presence of absorbing aerosols in the upper layers 
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of atmosphere leads to absorption of solar radiation which in turn warms up the atmosphere. 

The increase in radiative forcing might be attributed to such phenomenon in 2020. 

During the pre-lockdown period, about 56.7% of the study area experienced a decrease in 

temperature in 2020 compared to the average of 2015-2019 (Fig 5.6). The decrease ranged 

from 0-4.8°C, while the increase in the rest of the study area ranged from 0-4.04°C. The 

decrease was most prominent in the tropical savanna region, including major cities like 

Mumbai and Bengaluru, as well as a part of the warm semi-arid region covering Hyderabad 

and the humid subtropical region covering Raipur and Korba. Nearly 73% of the study area 

experienced a decline in temperature during lockdown in 2020 compared to the average of 

2015-2019, with a range of 0-4.38°C. The remaining part of the study area saw an increase in 

temperature ranging from 0-3.64°C. The increase was most prominent in the warm semi-arid 

region around Hyderabad and a part of the tropical monsoon region including Pune and Goa. 

Meanwhile, the decrease was most prominent in the tropical savanna region including 

Vizianagaram and Srikakulam, as well as a part of the humid subtropical region covering 

Raipur and Raigarh.  

During the post-lockdown period, an 85% decrease in temperature was observed, mainly in 

the tropical savanna and humid subtropical regions including Salem and Raipur. The 

temperature decrease ranged from 0-2.51°C, while the increase in the 15% of the study area 

ranged from 0-3.26°C. The increase was seen in parts of the tropical monsoon region 

including Uttara Kannada and Goa, the tropical savanna region including Kadapa, Khammam, 

and Warangal, and the warm semi-arid region including Nashik, Kurnool, and Mahboobnagar. 

 

        

     

5.8 Closure 

The longwave fluxes by factorial method are used to calculate ADRF in the study area. The 

AOD, ADRF and temperature of 2020 are compared against the average of 2015-2019 to 

identify the high and low changes in five climate regions of the study area. The climatic 

conditions and topography led to significant changes in ADRF and temperature in Tropical 

Savanna and Warm Semi-arid climate regions. Further, the study is extended to understand 

the effect of AOD on precipitation and also the factors causing EPEs in metropolitan cities 

which is presented in the consecutive chapter. 
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CHAPTER 6 

IMPACT OF AOD ON CLOUD FRACTION AND 

PRECIPITAION  

6.1 General 

The AOD can change the lifetime of clouds by suppression of cloud droplets or by 

invigorating the formation of CCN. The greater number of aerosols lead to smaller cloud 

droplets which in turn results in less precipitation. If the same situation is encountered with 

favourable uplift and climate conditions, it results in more precipitation. The impact of AOD 

on cloud fraction in different precipitation regimes based on the atmospheric stability 

conditions is presented in this chapter. The parameters that cause EPEs in and around 

metropolitan cities is analysed and presented in this chapter. 

6.2 Comprehensive Effect of AOD on CF 

The changes in CF for different ranges of AOD was analysed by means of equal value plots. 

The AOD data was divided into 30 bins. The data ranges from 0 to 1.5 and each bin was 

incremented by 0.05. The average of AOD and CF data corresponding to each bin was 

calculated. The data was normalised by min-max scale. Expression used for the normalisation 

of the data is as shown in equation 6.1:  

𝑋𝑛 =
(𝑋𝑖−𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛)
 , 𝑖 = 1,2,3… . .30      (6.1) 

Where 𝑋𝑛 is the normalised data, 𝑋𝑖 is the existing data, 𝑋𝑚𝑖𝑛 is the minimum value, 𝑋𝑚𝑎𝑥  is 

the maximum value. The AOD and CF are normalised by using the Eq (6.1).  The scatterplot 

of normalised data with reference line is then plotted to obtain the equal value plot between 
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AOD and CF. The reference line is the 1:1 line which is obtained by joining the 

corresponding minimum and maximum of AOD and CF. Although the equal value plots are 

prepared for each cumulative dataset of three rainfall regimes, the plots that have points closer 

to the reference line are shown in this chapter.  

The equal value plots for different rainfall regimes which possess points closer to the 

reference line are shown in the Fig 6.1. The equal value plots were better for cumulative 10-

year dataset for all the three rainfall regimes. The Fig 6.1a corresponds to the equal value plot 

of light rain regime. The scaled values of AOD have a widespread in the range of 0-1 but the 

scaled values of CF are much concentrated in the range of 0.4-0.6. The plot appears to be 

closer towards the reference line when AOD was in the range of 0.6-0.8 and CF being greater 

than 0.5. Most of the points are biased towards cloud fraction. The equal value plot of 

moderate rain regime is shown in Fig 6.1b.  

a) b)  

 

c)  

Fig 6.1: Equal Value Plots of AOD and CF for a) light rain b) moderate rain c) heavy 

rain (The orange line shows the 1:1 line) 
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The scaled values of CF are in the range of 0.2-0.4 for moderate rain regime which says that 

the vertical development of clouds does not influence the intensity of moderate rain. The plot 

showed that the points with AOD and CF in the range of 0.2-0.4 are much closer to the 

reference line and the CF appears to be staggered with increase in AOD. It was observed that 

low AOD might result in low CF and increase in AOD does not influence the formation of 

clouds for moderate rain regime. Equal value plot for heavy rainfall regime is shown in Fig 

6.1c. The cluster of points closer to the reference line has the AOD and CF in the range of 

0.2-0.6. The CF does not follow a pattern once the AOD crosses 0.6. It was difficult to assess 

the development of clouds at various ranges of AOD greater than 0.6 in moderate and heavy 

rainfall regimes. Therefore, an attempt was made in this study to understand the relationship 

between AOD and CF based on atmospheric stability. 

6.3 Observed relationship between AOD and CF based on 

atmospheric stability 

The Fig 6.2 depicts the effect of AOD on CF for cumulative monsoon data corresponding to 

light rain. The atmospheric stability conditions had a greater impact on cloud coverage in the 

region than aerosol loadings. Furthermore, as AOD increased, the CF was found to have 

reached a maximum level at various K-indices. The K-index meteorology states that there are 

higher chances of precipitation when the atmosphere is highly instable i.e. when the K-index 

is on the higher range ( https://www.weather.gov/lmk/indices). When the AOD is greater than 

one, the CF at 20oC<K<25oC was found to be the smallest for cumulative satellite 

observations. This could imply that the absorbing aerosols are in the lower layers of 

atmosphere. It could also indicate that the aerosols in the upper levels have absorbed solar 

radiation and heated up the atmosphere, thereby making the atmosphere stable (Constantino et 

al., 2013, Jing et al.,2018).  

Cloud coverage at K>35oC was found to be greater for different bins of AOD. This indicates 

that when the atmosphere is unstable, clouds that could lead to precipitation are visible. The 

effect of AOD on CF for cumulative monsoon data corresponding to moderate rain is shown 

in Fig 6.3. The cumulative 5-year data shows that there was no data corresponding to the 

scattered and widely scattered thunderstorm states. An abrupt increase in CF was observed for 

AOD greater than one which might be attributed to the presence of absorbing aerosols. 

However, the CF was found to decrease for numerous thunderstorm state (K>35) when AOD 

was greater than one for cumulative 10-year and 15-year data. This indicates that the type of 

aerosol has influenced cloud formation (Varpe et al.,2022, Takahashi et al.,2018). When 

https://www.weather.gov/lmk/indices
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compared to light rain, the CF corresponding to moderate rain followed an opposite order for 

all atmospheric stability states.  

 

Fig 6.2: The effect of AOD on CF for various atmospheric stability states associated with 

light rain a) 5-year data b) 10-year data c) 15-year data 
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Fig 6.3: The effect of AOD on CF for various atmospheric stability states corresponding to 

moderate rain a) 5-year data b) 10-year data c) 15-year data 
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Fig 6.4: The effect of AOD on CF for various atmospheric stability states associated with 

heavy rain a) 5-year data b) 10-year data c) 15-year data 
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The Fig 6.4 shows the effect of AOD on CF for cumulative datasets from heavy rain regime. 

For the cumulative 5-year dataset, it was observed that there was a drop in CF for isolated, 

widely scattered and scattered thunderstorm state in the AOD range of 0.2-0.3. On the 

contrary, the CF has a peak that corresponds to a number of thunderstorm states in the same 

range of AOD. When AOD is in the range of 0.5-1, the CF decreases for the isolated 

thunderstorm state and rises for all the other three atmospheric stability states. The CF is 

found to increase abruptly for a variety of thunderstorm states with AOD greater than one. 

The cumulative 10-year dataset revealed similar results. The analysis on cumulative 15-year 

period shows that the CF increases gradually for all the atmospheric stability states in low 

range of AOD. There was no fixed pattern in the moderate range of AOD. But, for higher 

AOD there was an increase in CF corresponding to scattered and numerous thunderstorm 

states. 

The Table 6.1 shows the correlation between AOD and CF at different K-indices for 

cumulative datasets. There is a positive significant correlation between AOD and CF 

regardless of atmospheric stability (Varpe etal.,2022, Zhang etal.,2022). Also, at higher values 

of K-index, the correlation between AOD and CF was found to be the highest for all the three 

cumulative datasets. This indicates that aerosol have an influence on the process of cloud 

development, which may result in precipitation. The table shows that the correlation between 

AOD and CF has gotten stronger as the number of samples increased, regardless of 

atmospheric stability. The correlation between AOD and CF was found to be highest and 

most significant in isolated thunderstorm states, indicating an appreciable increase in cloud 

cover in the light rain regime. The correlation was nearly identical but insignificant for 

scattered thunderstorm state and numerous thunderstorm states in light rain regime. 

Table 6.1: AOD and CF correlation coefficients for various atmospheric stability states   

K-index 

Light rain Moderate rain Heavy rain 

5 

years 

 10 

years 

 15 

years 

5 

years 

 10 

years 

 15 

years 

5 

years 

 10 

years 

 15 

years 

20<K<25 -0.35 0.669 0.653 0.878 0.200 0.703 -0.422 -0.383 -0.464 

25<K<30 0.628 0.386 0.351 - 0.540 0.476 0.764 0.596 0.662 

30<K<35 0.131 0.287 0.509 - 0.080 0.633 0.28 0.306 0.283 

K>35 0.401 0.208 0.499 -0.250 -0.711 -0.555 0.385 0.083 -0.061 

Note: Bold values indicate statistically correlated values at 5% level of significance) 
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This stipulates the vertical formation of clouds, which might or might not result in 

precipitation (Constantino et al., 2013, Liu et al., 2020). When K>35 for all cumulative 

datasets, there was a negative correlation between AOD and CF in the moderate rain regime.  

For cumulative 15-year data, the correlation was strongest and most significant for isolated 

thunderstorm states and widely scattered thunderstorm states. This indicates that the 

atmospheric stability conditions influenced cloud formation. For isolated thunderstorm states, 

the correlation between AOD and CF for heavy rain regimes was found to be negative. For all 

three cumulative datasets in the heavy rain regime, the correlation corresponding to widely 

scattered thunderstorm state was maximum and significant. For scattered and numerous 

thunderstorm states in the heavy rain regime, the correlation decreases as the time period 

increases. 

6.4 Overall effect of AOD on CF and Precipitation 

The Fig 6.5 depicts the overall effect of AOD on CF and Precipitation in the light rain regime 

for three cumulative datasets. For three cumulative datasets, it was observed that for a 

constant bin of AOD, precipitation was greater while CF falls, and vice versa. This suggests 

that AOD influences the vertical development of clouds. When AOD is greater than one, the 

maximum values of CF and precipitation have been discovered. This means that the effect of 

aerosols on clouds was dominated by the local weather conditions. Precipitation is found to be 

inversely proportional to CF in the cumulative 5-year dataset. However, as the number of 

samples increases, precipitation becomes more positively correlated with AOD. According to 

the overall analysis, precipitation was nearly statistically independent of AOD but dependent 

on CF. The correlation of precipitation with AOD was observed to be weak when compared 

to that of CF. 

The overall effect of AOD on CF and Precipitation in moderate rain regime for three 

cumulative datasets is shown in Figure 6.6. When AOD is in between 0.5 and 1, precipitation 

and CF have an inverse relationship, which meant that when precipitation is higher, CF falls. 

Precipitation and CF were found to increase when AOD was greater than one for a cumulative 

5-year dataset. The observation was, however, inverse for the cumulative 15-year dataset. 

Precipitation increased in the moderate rain regime, while CF decreased in the cumulative 5-

year and 10-year datasets before increasing in the cumulative 15-year dataset. The correlation 

of precipitation and CF with AOD was observed to be weak.  
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Fig 6.5: The overall effect of AOD on CF and precipitation for light rain a) 5-year data b) 10-

year data c) 15-year data (Regression equations for precipitation and CF are given in the 

upper and lower part of each figure, respectively) 
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Fig 6.6: The overall effect of AOD on CF and precipitation for moderate rain a) 5-year data b) 

10-year data c) 15-year data (Note: Regression equations for precipitation and CF are 

provided in the upper and lower parts of each figure, respectively) 
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Fig 6.7: The overall effect of AOD on CF and precipitation for heavy rain a) 5-year data b) 

10-year data c) 15-year data (Note: Regression equations for precipitation and CF are 

provided in the upper and lower parts of each figure, respectively) 
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Figure 6.7 depicts the overall effect of AOD on CF and precipitation in the heavy rain regime 

for three cumulative datasets. Precipitation and CF had a direct relationship over a 5-year 

period, corresponding to a low range of AOD. In the moderate and high ranges of AOD, the 

relationship has become inverse. In the cumulative 10-year period, precipitation and CF 

follow a similar pattern for low and moderate AOD ranges. However, for higher AOD, both 

parameters were discovered to have an inverse relationship. In the cumulative 15-year dataset, 

precipitation has a peak and CF has a dip for a constant bin in the moderate range of AOD. In 

the cumulative 15-year dataset, the parameters have a direct relationship for a wider range of 

AOD. The correlation of precipitation with AOD was strong when compared to that of CF. 

6.5 Spatial distribution of AOD and CF 

The Fig 6.8 depicts the distribution of AOD and CF in the study area's light rain regime. From 

Fig 4.2, the majority of the study area was classified as low polluted. Nearly 173 lakh ha of 

low-polluted land was covered by tropical savanna climate, while 107 lakh ha was covered by 

warm semi-arid climate. The cumulative 10-year and 15-year data show a similar pattern. The 

distribution of AOD increased with the number of samples collected in low-polluted areas. On 

the contrary, AOD distribution has decreased in moderately polluted areas. In the humid 

subtropical region, the AOD distribution corresponding to the low polluted region has nearly 

quadrupled, according to the Koppen climate classification. However, in the moderately 

polluted region, AOD has decreased by 50% over a 15-year period. 

Nearly 182 lakh ha of the region in tropical savanna climate had moderate CF based on 5-year 

data. Fig 6.8 shows that the majority of the low-polluted region has a tropical savanna 

climate, followed by a warm semi-arid climate. The CF, on the other hand, has a moderate to 

high distribution in the majority of tropical savanna regions, followed by warm semi-arid 

regions. Fig 6.8 shows that the majority of the low and moderately polluted regions had 

moderate CF. For a cumulative 10-year analysis, nearly 427 lakh ha of the study area was 

classified as tropical savanna climate region, followed by 220 lakh ha classified as warm 

semi-arid climate region. According to Fig 6.8, the majority of the humid subtropical and 

tropical savanna region has lower AOD. Nonetheless, some areas in the monsoon region have 

seen low and high distributions of AOD and CF, respectively. Fig 6.8 shows that the majority 

of the area has a low AOD. Overall, it can be concluded that as the number of samples 

increased, the majority of the study area exhibited AOD in the range of 0-0.5. Similarly, the 

CF was in the 0.8-0.9 range.  
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Fig 6.8: Spatial distribution of AOD and CF in the light rain regime for cumulative data a) 5-

year b) 10-year and c) 15-year 
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Fig 6.9 depicts the spatial distribution of AOD and CF in the moderate rain regime. In a 5-

year period, the majority of the tropical savanna region of 158 lakh ha experienced low 

pollution, followed by humid subtropical climate and subtropical oceanic highland climate. 

The cumulative 10-year and 15-year time periods were treated in the same manner. For all 

three cumulative time periods, moderate pollution was observed in tropical savanna climate 

and humid subtropical climate regions. Fig 6.9 also shows that the area with low pollution for 

cumulative 10-year and 15-year data has increased, while the area with moderate pollution 

has decreased significantly. The main reason for changes in AOD distribution can be 

attributed to mitigation and adaptation measures implemented by the Indian government, as 

mentioned in the IPCC climate change reports from 2001 and 2014. (Metz et al., 2001; 

Edenhofer et al., 2015) The moderate CF was nearly the same for all climate regions with 10-

year and 15-year data. 

The spatial distribution of AOD and CF in the heavy rain regime is depicted in Fig 6.10. 

Tropical savanna climate has the lowest AOD distribution across all three cumulative 

datasets, followed by subtropical oceanic highland climate. For all five climate regions 

corresponding to heavy rain, the area with moderate AOD distribution was the smallest. In the 

spatial distribution, the higher range of CF was limited. The majority of the population in the 

study area had moderate CF and low AOD. For all three cumulative datasets, the distribution 

of CF was most noticeable in the tropical savanna region, followed by the humid subtropical 

climate region. 

 

 

 

 

 

 

 

 

 

 



  

71 
 

a)      

b)     

c)   

     

Fig 6.9: Spatial distribution of AOD and CF in the moderate rain regime for Cumulative data 

a)5-year b)10-year and c)15-year 
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a)    

b)    

c)     

     

Fig 6.10: Spatial distribution of AOD and CF in the heavy rain regime for cumulative data 

a)5-year b)10-year and c)15-year 

1 
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The Table 6.2 depicts the area under each climate region corresponding to light rain for 

cumulative data analysis. For low AOD distribution, the tropical savanna climate experienced 

an 11% and 13% increase in distribution for cumulative 10 and 15-year data, respectively. 

The tropical savanna climate, on the other hand, has seen a decrease of 47% and 75% 

distribution for cumulative 10 year and 15-year data, respectively, for the moderate 

distribution of AOD. For both cumulative periods, the increase in moderate CF is on the 

higher end of the order of 35% for warm semi-arid climate. In contrast, the higher CF range 

has seen a decline of the order of 13% and 19% for cumulative 10 and 15-year data, 

respectively.  

The areal distribution of AOD and CF in the study area for moderate rain is shown in Table 

6.3. For cumulative 10-year and 15-year data, the tropical savanna climate has seen an 

increase in lower AOD of about 50% and 70%, respectively. For the same climate region, 

moderate AOD has decreased by 35% and 39%, respectively. Lower AOD has increased by 

26 percent and 42 percent for cumulative 10-year and 15-year datasets in the humid 

subtropical climate region. The moderate AOD decreased by 40% and by 55%, respectively. 

The cumulative 10-year and 15-year datasets revealed a 35 percent increase in moderate CF in 

the tropical savanna climate region. The higher end of CF, on the other hand, has declined by 

approximately 8%. The humid subtropical climate region, on the other hand, has seen a 1% 

and a 20% decrease in the cumulative 10-year and 15-year datasets, respectively.   

The Table 6.4 shows the areal distribution of AOD and CF in the study area's heavy rain 

regime. For the cumulative 10-year and 15-year datasets, the tropical savanna climate has 

seen three and five times lower AOD, respectively. For the cumulative 10-year and 15-year 

datasets, the humid subtropical climate has increased twice and nearly three times. A similar 

observation was made for the moderate distribution of AOD. Lower CF in the tropical 

savanna climate region increased by 72% over a 10-year period. Lower CF have increased by 

56% and 89% in the humid subtropical climate region, respectively. When compared to a 

cumulative 5-year dataset, moderate CF increased nearly threefold in all climate regions.   
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6.6 Analysis of Causes for Extreme Precipitation Events in Urban 

Cities of Peninsular India 

6.6.1 Mean Precipitation 

The mean precipitation during EPEs in the metropolitan cities for the years 2018, 2019, and 

2020 is depicted in Fig 6.11. Precipitation was highest in 2018 for all three cities, except for 

Mumbai. There was a decreasing trend in the magnitude of precipitation for Chennai and 

Bengaluru. However, mean precipitation was higher in 2019 for Mumbai and Hyderabad, and 

then it decreases in 2020. The increase in precipitation in 2019 in Hyderabad was also 

reflected in the increased number of EPEs in the city. The number of EPEs increased in 2019 

compared to 2018 for all three cities, except for Hyderabad. However, EPEs also increased in 

Hyderabad in 2020. Most of the EPEs in 2019 occurred during the months of July, August, 

September, and October in the selected study area. In that year, a total of 110% of the "long-

period average" (LPA), which is 880 mm, representing the national average of monsoon rains 

received in the 50 years prior to 2010, fell between June and September 2019 (Source: 

Mausam 2019). 

 

Fig 6.11: Mean Precipitation of Extreme Precipitation Events (EPEs) in the Study Area for 

the Years 2018, 2019, and 2020  
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6.6.2 Spatial Distribution Maps 

6.6.2.1 Mumbai 

The spatial distribution of precipitation, AOD, cloud properties, and the K-index is shown in 

Fig 6.12 for the selected Extreme Precipitation Events (EPEs). The precipitation map 

indicates that EPEs typically have precipitation in the range of 30-250 mm/day. All the other 

parameters in the area represent averaged values for the 10 days prior to the occurrence of the 

extreme event.  

 

Fig 6.12: Spatial Distribution of Precipitation(mm), AOD, K-index(oC), CF, CTP ( hPa) and 

CTT (oC) (Left to Right) for EPEs in Mumbai on a) May 25, 2018 b) Oct 4, 2018 c) Dec 3, 

2019 d) May 31,2020 e) June 22,2020 f) Nov 19, 2020 

For example, isolated thunderstorm conditions (20°C < K < 25°C) accompanied by AOD in 

the range of 0.2-0.6 resulted in precipitation exceeding 110 mm in Mumbai. Additionally, a 
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Cloud Top Temperature (CTT) greater than zero and a Cloud Fraction (CF) greater than 0.8 

were observed in most of the EPEs in Mumbai. The distribution also shows that scattered 

thunderstorm conditions (30°C < K < 35°C) along with AOD in the range of 0.2-0.4 led to 

precipitation levels below 30 mm/day. From Fig 6.12, it can be inferred that low-level clouds 

(CTP > 680  hPa), CTT > 0°C, AOD in the range of 0.2-0.6, and isolated thunderstorm 

conditions resulted in high precipitation levels exceeding 100 mm/day in the metropolitan 

region of Mumbai. 

6.6.2.2 Chennai  

The spatial distribution of precipitation, AOD, cloud properties, and the K-index is shown in 

Fig 6.13 for the selected EPEs. Three out of five EPEs have experienced numerous 

thunderstorm states (K > 35°C) over most of Chennai city.  

 

Fig 6.13: Spatial Distribution of Precipitation(mm), AOD, K-index(oC), CF, CTP ( hPa) and 

CTT (oC) (Left to Right) for EPEs in Chennai on a) June 11, 2018 b) Aug 20, 2018 c) Sep 20, 

2018 d) June 10,2020 e) Oct 10, 2020 
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The precipitation during those three events falls in the range of 25-85 mm per day, and AOD 

was in the range of 0.2-0.6. The CF appears to be greater than 0.9 in all the EPEs in Chennai. 

However, the CTP was low, implying that the area was covered by high-level clouds as the 

region extends toward the East coast of India. The CTT was less than zero in all five EPEs. 

But, the CTT was significantly lower in the observed three out of five EPEs that have 

experienced numerous thunderstorm states. Overall, it can be concluded that EPEs might take 

place during numerous thunderstorm states if AOD was in the range of 0.2-0.6, accompanied 

by low CTP and CTT being less than zero.  

6.6.2.3 Hyderabad 

The city of Hyderabad experienced 3, 9, and 22 EPEs in the years 2018, 2019, and 2020, 

respectively. AOD data was visualized for the 10 days prior to each event using ArcMap. If 

the data was available on those days, a stack of images was created, and the mean value was 

reported. The process of stacking and calculating the mean was carried out for both cloud and 

atmospheric products  

 

Fig 6.14: Spatial Distribution of Precipitation(mm), AOD, K-index(oC), CF, CTP ( hPa) and 

CTT (oC) (Left to Right) for EPEs in Hyderabad on a) May 03, 2018 b) June 03, 2018 c) June 

28, 2020 d) Oct 11, 2020 e) Nov 26, 2020  
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If AOD data was not available, the consecutive EPE was visualized. Consequently, 2 and 3 

events from 2018 and 2020 had the required data for analyzing the occurrence of EPE. The 

spatial distribution of precipitation, AOD, cloud properties, and the K-index for the 10 days 

prior to the EPE is shown in Fig 6.14.  

Isolated thunderstorm conditions (20°C < K < 25°C) were prevalent on May 03, 2018, and 

Nov 26, 2020, during the EPE. Among these, the precipitation was more pronounced on Nov 

26, 2020, compared to all five EPEs in Hyderabad. However, AOD in four out of five EPEs 

falls within the range of 0-0.4. Numerous thunderstorm conditions (K > 35°C) were 

predominant in two out of five EPEs, specifically on June 03 and June 28, 2020. 

Nevertheless, the precipitation during these events was less than 40mm. Considering that the 

dates mentioned coincide with the lockdown phase in India due to the COVID-19 pandemic, 

it is possible that aerosols were trapped in the upper layers of the atmosphere, leading to the 

formation of numerous small cloud droplets. Alternatively, this might also be attributed to the 

onset of the monsoon season in the metropolitan city of Hyderabad. 

Considering the EPE with the most precipitation, which occurred on Nov 26, 2020 (Fig 

6.14e), the corresponding Cloud Top Pressure (CTP) was in the range of 450-600  hPa, and 

the Cloud Top Temperature (CTT) was in the range of -35°C to -15°C. The spatial pattern 

shows that more precipitation occurred in the presence of middle-level clouds when CTP was 

in the range of 500-600  hPa and CTT was in the range of -25°C to -15°C. Higher CTP (>680  

hPa) and CTT (>0°C), accompanied by isolated thunderstorm conditions (20°C < K < 25°C), 

have resulted in lower precipitation (<30 mm), as evident from the precipitation (Fig 6.14a) 

on May 03, 2018. Additionally, lower CTP (<680  hPa) and CTT (<0°C), coupled with 

isolated thunderstorm conditions (20°C < K < 25°C) and numerous thunderstorm conditions 

(K > 35°C), have resulted in precipitation ranging from 20-30 mm (Fig 6.14b to 6.14d) in the 

city of Hyderabad. This may be attributed to the dispersion of Cloud Condensation Nuclei 

(CCN) from deep convective clouds. Thus, it can be inferred that higher CTP and lower CTT, 

along with lower Aerosol Optical Depth (AOD), may lead to higher precipitation in the 

metropolitan city of Hyderabad.  

6.6.2.4 Bengaluru 

The metropolitan city of Bengaluru experienced 14, 20, and 17 EPEs in 2018, 2019, and 

2020, respectively. Unfortunately, data was only available for two events, namely, on June 07, 

2019, and June 02, 2020. The spatial distribution of AOD, cloud properties, and the K-index 

is shown in Fig 6.15. AOD values in the range of 0.4-0.6, along with CTP (400-600  hPa) and 

CTT (<0°C), during numerous thunderstorm conditions (K > 35°C), resulted in precipitation 
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ranging from 40-60 mm, as evident from Fig 6.15a. However, low AOD (<0.4), coupled with 

low CTP (<400  hPa) and CTT approaching 0°C, led to precipitation of less than 30 mm in 

the city of Bengaluru (Fig 6.15b). Due to the limited number of EPEs available for analysis, it 

is not possible to conclusively determine the combination of parameters that result in low and 

high precipitation.  

 

 

Fig 6.15: Spatial Distribution of Precipitation(mm), AOD, K-index (oC), CF, CTP ( hPa) and 

CTT (oC) (Left to Right) for EPEs in Bengaluru on a) June 07, 2019 b) June 02, 2020. 

6.6.3 Regression Analysis 

The pixel values of each variable for every EPE in the metropolitan city were extracted to 

Excel using R Statistical software. Blank cells, which represent missing data, were removed 

prior to the analysis. The Excel file was then read, including the column names, and multiple 

linear regression analysis was performed, considering precipitation as the independent 

variable and aerosol, cloud, and atmospheric stability parameters as the dependent variables. 

The coefficients of MLR models to predict precipitation depth (in millimeters) during an EPE 

for each metropolitan city are given in Table 6.5.  

The results showed that AOD was highly significant in predicting precipitation depths during 

an EPE for Mumbai and Chennai. Assuming that all other components in the regression 

equation are constant, Chennai receives more precipitation with an increase in AOD because 

the coefficient is positive, while Mumbai receives less precipitation because the coefficient is 

negative. 
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Table 6.5: Multiple Linear Regression (MLR) models for the four metropolitan cities of 

Mumbai, Chennai, Bengaluru and Hyderabad to predict precipitation depth during an EPE  

(Significance level: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05) 

City Mumbai Chennai Bengaluru Hyderabad 

Parameter 

AOD -99 (***) 62 (***) 3.95 -15.40 

CF 6.81 115.32 -59.41(*) -21.30 

CTP 0.29 (**) -0.16 0.029(**) 0.33(***) 

CTT -0.65 2.53 (*) -0.04 -2.70(***) 

K 0.13 2.26 (***) 0.18 -0.74(**) 

Intercept -81.50 -24.11 48.04 -139.25 

 

The results showed that AOD was highly significant in predicting precipitation depths during 

an EPE for Mumbai and Chennai. Assuming that all other components in the regression 

equation are constant, Chennai receives more precipitation with an increase in AOD because 

the coefficient is positive, while Mumbai receives less precipitation because the coefficient is 

negative. This might be due to the location of the Chennai and Mumbai towards east and west 

coasts respectively. Also, the latitudinal influence might result in different behavior of 

precipitation. Additionally, the regression analysis for Chennai City showed that K and CTT 

were equally significant. Chennai's climate is nearly constant all year round because of its 

proximity to the thermal equator. Chennai's average elevation above sea level is 6.7 meters, 

making the city nearly flat. As a result, the vertical lapse rate for any EPE does not vary 

significantly, as seen by K-index map in Fig 6.11. This could be the cause of the positive and 

substantial coefficient of K-index in the regression equation for Chennai. CTP has a positive 

influence on precipitation and was found to be significant in all cities except Chennai. The 

behavior of cloud parameters was different in Mumbai and Chennai because of their location 

towards the west and east coast of peninsular India. The city of Mumbai is towards the 

windward side of the western ghat which receives precipitation from south-west monsoon 

from Arabian sea. The precipitation over the city is influenced by the maritime clouds. The 

variations in pressure at various city elevations when the monsoon arrives could potentially be 

a cause of an EPE (Chakravarty et al., 2021). The present study demonstrates that the 

coefficient of CTP for Mumbai was positive and significant, as indicated by Table 6.5.The 

cloud properties (CTP and CTT) and K-index were significant for the city of Hyderabad. 

Hyderabad's terrain is hilly, with elevations between 456 and 650 meters. Precipitation falls 

on the city due to low pressure in the Bay of Bengal and Arabian Sea. The city is situated in 
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the hilly area of the Deccan Plateau therefore, precipitation is enhanced by certain cloud 

characteristics. 

6.7 Closure 

The correlation of AOD and CF in various rainfall regimes reveal that widely scattered 

thunderstorm state influences the precipitation under favorable climate conditions. The 

analysis of factors causing EPE on metropolitan cities reveal that AOD has impact on coastal 

cities and cloud parameters have impact on other cities. The detailed summary and 

conclusions of the research work is presented in the next chapter. 



 

85 
 

 

CHAPTER 7 

SUMMARY AND CONCLUSIONS 

7.1 General 

The research work was summarized in accordance with the stated objectives in this chapter. 

The conclusions reached after the analysis for each objective are described. Additionally, the 

limitations of the current research as well as the scope for further research of the work are also 

discussed. 

7.2 Summary 

This research aims to investigate how aerosols affect temperature and precipitation in the 

Indian peninsular region by using radiation diagnostics and atmospheric stability. Using R 

statistical software, the applicability of three different types of AOD data was examined in the 

current study in relation to field observations. In addition, all statistical metrics pertaining to 

every category of satellite data are computed to choose the most promising AOD data for 

additional examination. Furthermore, trend analysis was carried out using both the 

conventional Mann-Kendall test and the novel trend analysis approach based on decadal data. 

Generally, ITA is performed on gridded data. In the current study concentrates on application 

of ITA on raster data by suitable modification in ITA code using R statistical software was 

carried out. An analysis of the factors contributing to EPE in and around Peninsular India's 

urban cities is conducted. 

The effect of atmospheric stability and AOD on the macrophysical properties of warm clouds 

in southern India is studied from 2005 to 2019. The effect of AOD on precipitation is also 

studied for cumulative 5-year, 10-year, and 15-year data for heterogenous rainfall regimes. 

The changes in cloud fraction for light, moderate and heavy rainfall regime is represented 
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using heat maps. The spatial distribution of AOD and CF in three rainfall regimes for 

cumulative 5-year, 10-year, and 15-year data is carried out.  

This study explores the changes in mean temperature due to aerosols in peninsular India over 

three different time scales. The study calculates the ADRF using the proposed factored 

method and data from the MERRA-2 radiation diagnostics. The Mann-Kendall trend analysis 

was used to investigate the trend of ADRF over time, and it was found that ADRF increased 

from 2015 to 2019, with the highest increase observed in the tropical savanna and warm semi-

arid climate regions. To examine the effect of AOD on temperature, the study analysed the 

variables for the period prior to lockdown, lockdown, and post-lockdown periods in 2020 and 

compared them to the average values from 2015 to 2019. 

The present study also analysed the potential influence of aerosol, cloud, and atmospheric 

stability properties on the occurrence of EPEs. By arranging precipitation data from 2015 to 

2021 in ascending order, the 95th percentile threshold value was determined. The 

precipitation data that exceeded the threshold value was considered as EPEs. The R Statistical 

Software was used to calculate the number of EPEs for the metropolitan areas of Bengaluru, 

Chennai, Hyderabad, and Mumbai between 2018 and 2020. The spread of AOD, cloud 

properties, and K-index for 10 days prior to the occurrence of EPEs. It was known that 

satellite AOD data might be contaminated with clouds during EPEs, so AOD greater than 1.5 

was not considered in the analysis. Overall, the present research work examined the influence 

of AOD on cloud fraction and precipitation, radiative forcing and EPEs for the Southern 

Indian region.  

7.3 Conclusions 

The important findings drawn from the research work are as follows. 

 Statistical analysis shows that MODIS Terra AOD data has highest coefficient of 

determination with less errors when compared to MERRA-2 and OMI data. 

 Trend analysis on AOD data using Mann-Kendall test (MK test) show that there was 

positive trend in two decades but the spatial distribution of trend in second data was 

highly variant when compared to first decade. 

 Trend analysis on raster data using Innovative Trend Analysis (ITA) method 

incorporates trend indicator which is equivalent to z- value in MK test. The results 

thus obtained conform to MK test and hence it can be concluded that ITA is also a 

preferable method for trend analysis on raster data. 

 The analysis on effect of AOD on temperature was studied based on the distribution of 

ADRF. The results indicated that AOD, ADRF, and mean temperature decreased in 
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the pre-lockdown period, with the largest decline occurring in the tropical savanna 

region. This indicates that aerosols have a cooling effect on the atmosphere. 

 However, the lockdown period has witnessed a decrease in AOD and mean 

temperature while ADRF increased in most of the study area. The increase in ADRF 

may be attributed to energy being trapped in the upper layers of the atmosphere. The 

same pattern was observed in the post-lockdown time scale.  

 The analysis on AOD and CF for cumulative data periods has demonstrated a 

favourable correlation between them. For cumulative 10-year data, the correlation is 

smaller, while for cumulative 15-year data, it is stronger.  

 The cumulative 10-year and 15-year data for isolated thunderstorm states show a 

substantial link between AOD and CF, even if there is a positive relationship for all 

atmospheric stability levels.  

 Over a period of five years, a substantial correlation between AOD and CF was 

observed in the widely scattered thunderstorm state. Emissive aerosols might be the 

major cause for such result. Because emissive aerosols are present in clouds, solar 

energy is reflected off them rather being absorbed. In the research location, this impact 

results in increased cloud coverage and slowed cloud droplet evaporation. 

 The distribution of AOD and CF in light rain is most visible in the tropical savanna 

region, followed by the warm semi-arid climate region, whereas in moderate rain, the 

tropical savanna climate region and the humid subtropical climate region were most 

visible.  

 The lower AOD found a threefold increase in value when compared to the cumulative 

5-year dataset in the heavy rain regime. The moderate AOD in heavy rain has 

increased by 84% and 44% for cumulative 10-year and 15-year datasets, respectively. 

 Under heavy rain, there was also a noticeable increase in low and moderate CF for the 

entire study area. The increased production of sulphate and nitrate aerosols by certain 

industries may be the cause of the rise in AOD and CF. For the various rainfall 

regimes in peninsular India, the relationship between AOD and CF was established 

with respect to atmospheric stability.  

 The spatial distribution indicated that AOD in the range of 0.2-0.6 influenced 

precipitation in Mumbai and Chennai. Furthermore, low-level clouds (CTP > 680  

hPa) with isolated thunderstorm conditions (20°C < K < 25°C) and CTT > 0°C 

enhanced precipitation in Mumbai.  

 Conversely, in Chennai, middle-level clouds (CTP < 680  hPa) with numerous 

thunderstorm conditions (K > 35°C) and CTT < 0°C intensified precipitation. This 
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difference might be attributed to the coastal and marine influences on the cities of 

Mumbai and Chennai.  

 Middle-level clouds (CTP in the range of 440  hPa to 680  hPa), along with AOD less 

than 0.3, amplified precipitation in Hyderabad. 

 A combination of middle-level clouds (CTP in the range of 440  hPa to 680  hPa), low 

AOD (<0.4), numerous thunderstorm conditions (K > 35°C), and CTT < 0°C led to 

intensified precipitation in all the observed EPEs. Low-level clouds (CTP > 680  hPa), 

AOD in the range of 0.4–0.6, isolated thunderstorm conditions (20°C < K < 25°C), 

and CTT > 0°C were other factors contributing to the occurrence of EPEs. 

 The regression analysis indicated that the spread of AOD was significant for the 

coastal cities (Mumbai and Chennai). CTP was found to be significant for three out of 

four cities, while CTT and K were significant in two out of four cities. 

 The environmental impact is on to address the mitigation measures to be taken for 

reducing the concentration of aerosols in the atmosphere. The social impact is to help 

in providing mitigation and preparedness of the individuals during the occurrence of 

EPEs.  

7.4 Research Contributions 

The following are the important research contributions from this study  

 Validation of satellite AOD against the ground observations was performed and found 

that MODIS AOD is the suitable satellite product to perform further analysis. 

 The aerosol-radiation interactions reveal that the aerosols heat up the atmosphere in 

most of the metropolitan cities and cool down towards the coastal regions. 

 The results of this study provide important information on how aerosols affect 

temperature in peninsular India over a range of time periods. The study emphasizes 

necessity to comprehend the interaction between aerosols and other climate variables 

It helps us to understand the beginning of south-west monsoon and how local weather 

patterns work. 

 The aerosol-cloud-precipitation interactions shows that the low AOD and widely 

scattered thunderstorm state can result in precipitation. 

 The list of parameters that result in EPE varies for coastal and other metropolitan 

cities. 
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7.5 Limitations of the study 

Although the research has covered major aspects of AOD affecting precipitation and 

temperature patterns in the study area, the following are the limitations in the research carried 

out. 

 The current study has utilised the three properties of cloud namely cloud fraction, 

cloud top pressure and cloud top temperature. The cloud properties like Cloud Optical 

Depth, Cloud Effective Radius may be included in the study. 

 The present research has utilised radiation diagnostics from MERRA-2. It can further 

be extended to use CERES data.  

 The current study is limited to data between 2018-2020. The regression model may be 

strengthened by extending the duration for the identification of the EPEs. Also, the 

coarse resolution of the datasets may have impact on the results significantly. 

7.6 Scope for Further Study 

The research can further be extended to carry out the following works 

 The type of aerosol that influences cloud formation and precipitation in a specific 

climatic region can be understood.  

 Analysis of aerosol-cloud-precipitation interactions can help us to better understand 

and mitigate the impacts of climate change on the region. 

 It may be possible to uncover additional reasons for the occurrence of EPEs by 

incorporating Precipitable Water Content (PWV) and cloud phase into the research to 

examine the formation of clouds with water content.  
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Appendix A 

A.1 R Code for Validation of Satellite and Model Re-Analysis AOD Data with 

Ground Observations 

library(rgdal) 

library(sp) 

library(raster) 

library(maptools) 

library(mapdata) 

library(maps) 

library(stringr) 

library(dplyr) 

library(readxl) 

library(ggplot2) 

library(ggpmisc) 

library(ggpubr) 

library(tidyverse) 

library(ncdf4) 

library(outliers) 

library(OutlierDC) 

library(OutlierDM) 

library(OutlierDetection) 

library(OutliersO3) 

library(naniar) 

setwd("D:/OMI_d_kanpur") 

files <- list.files() 

length(files) 

for ( i in 1:length(files)){ 

<- nc_open( files[i], write=FALSE, readunlim=TRUE, verbose=FALSE,  

auto_GMT=TRUE, suppress_dimvals=FALSE ) 

tmp <- paste(firststring = (str_sub(files[i], 22,25)) , secondstring = (str_sub(files[1], 

27,30))) 

x <- as.Date(tmp,format="%Y%m%d")  
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n <- ncvar_get(o,"FinalAerosolOpticalDepth500") 

j <- mean(n,na.rm=TRUE) 

l <- as.numeric(j) 

if (!is.na(l)){ 

write.table(data.frame(x,j),file="data.csv",append=TRUE,na="",sep=',',col.names=FALS

E) 

} 

nc_close(o) 

} 

f<-read.csv("data.csv", stringsAsFactors=FALSE) 

colnames(f) <- c("Num","Date","AOD") 

k<- read.csv("D:/OMI_AERONET/kanpur_500.csv") 

m <- length(count.fields("data.csv")) 

n <- length(count.fields("D:/OMI_AERONET/kanpur_500.csv"))  

if (m>n) {o<-m}else{o<-n} 

for(i in 1:o){ 

h <- match(f[i,2],k[,2]) 

if (!is.na(h)){ 

r <- k[h,3] 

write.table(data.frame(f[i,3],k[h,3]),file="new.csv",append=TRUE,na="",sep=',',col.name

s=FALSE) 

} 

} 

l <- read.csv("D:/OMI_d_kanpur/new.csv") 

colnames(l) <- c("Num","AOD_OMI","AOD_AERONET") 

m <- lm(l$AOD_OMI~l$AOD_AERONET,data=l) 

n <- summary(m)$adj.r.squared 

if (n<0.5){ 

repeat{ 

x <- l$AOD_OMI 

y <- l$AOD_AERONET 

z <- data.frame(x,y) 

k <- na.omit(z) 
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w <- maha(k) 

p <- data.frame(w$`Location of Outlier`) 

for (i in 1:length(p[,1])){ 

y <- p[i,] 

l[y,] = NA 

} 

a <- na.omit(l) 

q <- data.frame(a) 

a <- lm(l$AOD_OMI~l$AOD_AERONET,data=q,na.rm=TRUE) 

n <- summary(a)$adj.r.squared 

print(n) 

if (n >= 0.49){ 

break 

} 

} 

} 

my.formula <- y~x 

ggplot(l, aes(AOD_OMI,AOD_AERONET)) + geom_smooth(method = "lm", 

se=FALSE, color="black", formula = my.formula) + 

stat_poly_eq(formula = my.formula,  

aes(label = paste(..eq.label.., ..rr.label.., sep = "--")),  

parse = TRUE) +          

geom_point()+stat_cor(mapping = aes(AOD_OMI,AOD_AERONET), data = 

NULL, method = "pearson",label.sep = ", ", 

label.x.npc = "left", label.y.npc = "top", 

label.x = 0.02, label.y = 1.7, output.type = "expression" ) 

 

A.2 R code for Trend analysis using MK test 

library(raster) 

library(sp) 

library(spatialEco) 

setwd("D:/trend") 

files <- list.files() 
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a <- stack(files) 

result<-raster.kendall(a, tau = TRUE, intercept = TRUE,  p.value = TRUE, 

z.value = TRUE, confidence = TRUE) 

names(result) <- c("slope","intercept", "p.value","z.value","tau") 

slope <- raster(result[1]) 

tau <- raster(result[7]) 

intercept <- raster(result[2]) 

p.value <- raster(result$p.value) 

z.value <- raster(result[4]) 

writeRaster(result,file.path="D:/trend/",filename="Trend_rainfall.tif",filetype="GTiff",ov

erwrite=TRUE) 

plot(result) 

m = c(-1, 0.05, 1, 0.05, 4, 0) 

rclmat = matrix(m, ncol=3, byrow=TRUE) 

p.mask = reclassify(result$p.value, rclmat) 

fun=function(x) { x[x<1] <- NA; return(x)} 

p.mask.NA = calc(p.mask, fun) 

trend.sig = mask(result$slope, p.mask.NA) 

plot(trend.sig) 

writeRaster(trend.sig,filename="mk_sec.tif",filetype="GTiff",overwrite=TRUE) 

 

A.3 R code for Trend Analysis using ITA 

library(readxl) 

library(trend) 

library(modifiedmk) 

library(trendchange) 

library(ggplot2) 

library(basicTrendline) 

library(propagate) 

library(locfit) 

library(raster) 

library(rgdal) 
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library(sp) 

setwd("D:/pitta/phd/tphd/lockdown/Phddata/ADO/stack_yearly") 

files <- list.files() 

a <- stack("2010.tif","2011.tif","2012.tif","2013.tif","2014.tif") 

b <- stack("2015.tif","2016.tif","2017.tif","2018.tif","2019.tif") 

v <- extract(a,c(1:29714)) 

u <- extract(b,c(1:29714)) 

n <- data.frame(v,u) 

 

for (i in 1:29714){ 

fh <- sort(v[i,],na.last=TRUE) 

sh <- sort(u[i,],na.last=TRUE) 

if(!is.na(v[i,]) & !is.na(u[i,])){ 

m <- lm(sh ~fh) 

S <- (2*(mean(sh,na.rm=TRUE)-mean(fh,na.rm=TRUE)))/length(n) 

D <- mean((sh-fh)*10/mean(fh,na.rm=TRUE),na.rm=TRUE) 

ssd  <- (2*sqrt(2))*sd(n[i,],na.rm=TRUE)*sqrt(1-

cor(sh,fh,use="complete.obs"))/length(n)/sqrt(length(n)) 

CLlower95 <- 0 - 1.96*ssd 

CLupper95 <- 0 + 1.96*ssd  

write.table(data.frame(i,S,D,ssd,CLlower95,CLupper95,summary(m)$coef[1,4],summary

(m)$coef[2,4]),file="first_AOD_lockdown_mod.csv",append=TRUE,na="",sep=',',col.na

mes=FALSE) 

} 

} 

r <- raster("2000.tif") 

g <- read.csv("second_AOD_lockdown_mod.csv") 

for(i in 1:nrow(g)){ 

r[g[i,2]] <- g[i,11] 

} 

plot(r) 

s <- raster("2001.tif") 

for(i in 1:nrow(g)){ 
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s[g[i,2]] <- g[i,3] 

} 

h <- reclassify(r,cbind(9999,NA)) 

values(h) 

m = c(0, 0.05, 1, 0.05, 1, 0) 

rclmat = matrix(m, ncol=3, byrow=TRUE) 

p.mask = reclassify(h, rclmat) 

fun=function(x) { x[x<1] <- NA; return(x)} 

p.mask.NA = calc(p.mask, fun) 

trend.sig = mask(s, p.mask.NA) 

plot(trend.sig) 

writeRaster(trend.sig,filename="second_95_0.tif",filetype="GTiff",overwrite=TRUE) 

 

A.4 R code for Stack of the Database 

library(raster) 

library(sp) 

library(rgdal) 

library(maptools) 

library(mapdata) 

library(maps) 

library(stringr) 

setwd("E:/may2023/Chennai/New Folder/AOD") 

files <- list.files() 

y <- readOGR(dsn="D:/lockdown/south",layer="CH") 

h <- raster("D:/lockdown/data/year/AOD/2000.tif") 

for(i in 1:length(files)){ 

f <- raster(files[i]) 

p <- names(f) 

t <- str_sub(p,11,22) 

projection(y)=projection(f) 

f <- setMinMax(f) 

NAvalue(f) <- -9999     ## Fill values 
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j <- resample(f,h,method='bilinear')    ## Resample to AOD 

e <- crop(f,extent(y)) 

n <- mask(e,y) 

g <- 0.001000000047497451*n     ## Scaling of the data 

##h <- g-273.15 

writeRaster(g, 

file= file.path('E:/may2023/extreme_data/short/AOD', 

paste0(t,'.tif')),overwrite=TRUE) 

 

} 

setwd("E:/may2023/extreme_data/short/AOD") 

for(t in 2015001:2015365){ 

g <- list.files(pattern=as.character(t))    ## Grouping of data according to day of the year 

d <- stack(g) 

d <- setMinMax(d) 

f <- mean(d,na.rm=TRUE) 

writeRaster(f,file= file.path('E:/sep2022/site/CTP',paste0(t,'.tif')),overwrite=TRUE) 

} 

for(t in 2016365:2016366){ 

g <- list.files(pattern=as.character(t)) 

d <- stack(g) 

d <- setMinMax(d) 

f <- mean(d,na.rm=TRUE) 

writeRaster(f,file= file.path('E:/sep2022/site/CTP',paste0(t,'.tif')),overwrite=TRUE) 

} 

for(t in 2017115:2017365){ 

g <- list.files(pattern=as.character(t)) 

d <- stack(g) 

d <- setMinMax(d) 

f <- mean(d,na.rm=TRUE) 

writeRaster(f,file= file.path('E:/sep2022/site/CTP',paste0(t,'.tif')),overwrite=TRUE) 

} 
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for(t in 2018001:2018365){ 

g <- list.files(pattern=as.character(t)) 

d <- stack(g) 

d <- setMinMax(d) 

f <- mean(d,na.rm=TRUE) 

writeRaster(f,file= 

file.path('E:/may2023/extreme_data/CTP',paste0(t,'.tif')),overwrite=TRUE) 

} 

for(t in 2019305:2019336){ 

g <- list.files(pattern=as.character(t)) 

d <- stack(g) 

d <- setMinMax(d) 

f <- mean(d,na.rm=TRUE) 

writeRaster(f,file= 

file.path('E:/may2023/extreme_data/CTP',paste0(t,'.tif')),overwrite=TRUE) 

} 

for(t in 2020001:2020366){ 

g <- list.files(pattern=as.character(t)) 

d <- stack(g) 

d <- setMinMax(d) 

f <- mean(d,na.rm=TRUE) 

writeRaster(f,file= 

file.path('E:/may2023/extreme_data/CTP',paste0(t,'.tif')),overwrite=TRUE) 

} 

for(t in 2021001:2021365){ 

g <- list.files(pattern=as.character(t)) 

d <- stack(g) 

d <- setMinMax(d) 

f <- mean(d,na.rm=TRUE) 

writeRaster(f,file= 

file.path('E:/may2023/extreme_data/AOD',paste0(t,'.tif')),overwrite=TRUE) 

} 
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A.5 R code for Correlation Analysis 

library(raster) 

library(sp) 

library(rgdal) 

library(maptools) 

library(mapdata) 

library(maps) 

library(stringr) 

library(xlsx) 

library(readxl) 

library(ExcelFunctionsR) 

setwd("D:/lockdown/day_5/AOD") 

files <- list.files() 

cor <- function(x){ 

a <- raster(file.path('D:/lockdown/day_5/AOD',paste0(x,'.tif'))) 

b <- raster(file.path('D:/lockdown/day_5/CF',paste0(x,'.tif'))) 

c <- raster(file.path('D:/lockdown/day_5/CTP',paste0(x,'.tif'))) 

d <- raster(file.path('D:/lockdown/day_5/CTT',paste0(x,'.tif'))) 

e <- raster(file.path('D:/lockdown/day_5/K',paste0(x,'.tif'))) 

u <- raster(file.path('D:/lockdown/day_5/prec_conv_day',paste0(x,'.tif'))) 

f <- resample(b,a,method='bilinear') 

g <- resample(c,a,method='bilinear') 

l <- resample(d,a,method='bilinear') 

m <- resample(e,a,method='bilinear') 

v <- resample(u,a,method='bilinear') 

for ( j in 1:ncell(a)){ 

if(isTRUE(v[j]>=35.6 && v[j]<124.4)){ 

if(isTRUE (g[j]>680 && l[j]>0 && m[j]>=20)){ 

if(!is.na(a[j])==TRUE && !is.na(f[j])==TRUE) 

write.table(data.frame(x,j,a[j],f[j],g[j],l[j],m[j],v[j]),file=file.path('D:/lockdown/day/cor/h

eavy','cor_day_rain_modday19.csv'),na="",sep=",",append=TRUE,col.names=FALSE) 

} 
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} 

} 

} 

 

for (i in 489:610){ 

p <- files[i] 

q <- str_sub(p,1,7) 

cor(q) 

} 

 

A.6 R code for Identification of EPEs 

library(raster) 

library(sp) 

library(rgdal) 

library(maptools) 

library(mapdata) 

library(maps) 

library(stringr) 

library(xlsx) 

library(readxl) 

library(ExcelFunctionsR) 

setwd("E:/may2023/Hyderabad/Prec_poly") 

files <- list.files() 

a <- raster(file.path('E:/may2023/Hyderabad','ghmc_extreme.tif')) 

h <- raster("E:/may2023/Hyderabad/ghmc_2000.tif") 

heavy <- function(x){ 

b <- raster(file.path('E:/may2023/Hyderabad/Prec_poly',paste0(x,'.tif'))) 

d <- resample(b,h,method='bilinear') 

e <- resample(a,h,method='bilinear') 

for(i in 1:ncell(e)){ 

if(isTRUE((is.na(e[i])) | (d[i]< e[i]))){ 

d[i]<- NA 
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} 

} 

##writeRaster(d, 

##file= 

file.path("E:/may2023/Chennai/prec_greater95",paste0(x,'.tif')),overwrite=

TRUE) 

if(isTRUE(freq(d,value=NA)<15 | freq(d,value=NA)==15)){ 

writeRaster(d, 

file= 

file.path("E:/may2023/Hyderabad/prec_greater95_ghmc/true",paste0(x,'.tif

')),overwrite=TRUE) 

} 

} 

for (i in 1:length(files)){ 

p <- files[i] 

q <- str_sub(p,1,7) 

heavy(q) 

} 

 

A.7 R code for Data Preparation to Analyse EPEs 

library(raster) 

library(sp) 

library(rgdal) 

library(maptools) 

library(mapdata) 

library(maps) 

library(stringr) 

setwd("E:/may2023/extreme_data/CTP") 

files <- list.files() 

y <- readOGR(dsn="D:/lockdown/south",layer="ghmc_poly") 

h <- raster("E:/may2023/Hyderabad/ghmc_2000.tif") 

m <- raster("D:/lockdown/data/year/AOD/2000.tif") 

b <- raster(files[1]) 
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d <- stack(b,b,b,b,b,b,b,b,b,b) 

j <- 0 

for(i in 2018144:2018153){ 

r <- raster(file.path("E:/may2023/extreme_data/CTP",paste0(i,'.tif'))) 

##t <- resample(r,m,method='bilinear') 

##extent(t)<- extent(d) 

if(isTRUE(i==2018144)){ 

j <- 1 

}else{ 

j <- j+1 

} 

d[[j]]<- r 

} 

c <- resample(d,h,method='bilinear') 

n <- mean(c,na.rm=TRUE) 

q <- crop(n,y) 

r <- mask(q,y) 

writeRaster(r,filename="E:/may2023/Hyderabad/2018154/CTP_past10.tif",filetype="GTi

ff",overwrite=TRUE) 
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