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Abstract

A study was carried out on the hot formability and densification characteristics, microstructure
modelling, corrosion and wear resistance of Al-Cu/Al two-layered composite structure. The two-
layered samples were fabricated by powder metallurgical method with various Cu percentages in the
Al-Cu layer (Cu: 5wt. %, 10wt. %, and 15wt. %). The composites were fabricated layer by layer hot-
pressing in a steel cylindrical die at 500 °C, 550 °C and 600 °C sintering temperature for 3 h. with a
constant pressure of 400 MPa. In the interface region of 15wt. % copper, the highest value of micro-
hardness (100.6 HV) was attained at a temperature of 550 °C. In the interface region of 15wt. % copper,
the greatest level of micro-hardness (100.6 HV) was attained at a temperature of 550 degrees Celsius.
The susceptibility of corrosion increases at the interface region of the sample with addition of copper
content in Al-Cu layer and 15wt. %Cu sample observed higher susceptibility to corrosion.

The wear behaviour of Al layer, interface region and Al-10wt. %Cu layer of Al-10%Cu/Al
sample was studied. The wear rate and coefficient of friction were determined using a pin-on-disc test.
Tribological working of the two-layered composite structure was found to be affected by wear
parameters such as applied load, sliding velocity, and sliding distance. Al-10wt. %Cu layer shows better
tribological properties than pure Al and interface region. The worn surface investigation shows that
abrasion was the predominant wear mechanism occurs at Al-10wt. %Cu layer than interface region,
pure aluminium exhibit adhesion wear mechanism.

The hot formability and densification characteristics of Al-Cu/Al two-layered structured
composite with the addition of various Cu composition were studied. The samples were hot-pressed at
550 °C temperature for 45 minutes with 0.9 initial relative density (IRD) and 0.1 s strain rate. The
preforms were hot deformed at a temperature range of 150 °C — 450 °C under triaxial stress state
condition. The results revealed that (10wt. %Cu) preform achieved good cooperative deformation
behaviour between Al-Cu and Al layers at the interface region. The relationship between the process
parameters was discussed.

The hot upsetting test was used to investigate the dynamic recrystallization (DRX) behaviour
of an Al-10 weight percent Cu/Al two-layered composite structure at the interface area. In this study,
the activation energy (Q) and Zener—Hollomon parameter of Al-10wt. % Cu/Al sintered samples were
computed under a variety of deformation circumstances and IRDs, and the results were presented.
Increasing the Zener—Hollomon parameter results in a reduction in DRXd grain size, it was observed.
A series of tests were carried out between measured and anticipated DRXd grain size for a variety of
IRDs. The results revealed that the absolute and mean absolute error were 8.91 and 3.75 percent

respectively.
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Chapter 1

Introduction

1. 1. Background

The high growth in requirement of these lightweight metals alloys in nuclear power plants,
automotive, building, aerospace, marine and architecture industries, transportation and other
sectors is the main reason to conducting exhaustive investigations on these materials by
researchers. Now a days Powder Metallurgy method is preferred to conventional manufacturing
techniques like machining, forging, stamping and casting to develop engineering products to fulfil
the necessity of the above said industries. Generally, powder metallurgical method is a high
volume, inexpensive and rapid manufacturing method to develop samples and it generates samples
with accuracy, strength, high wear resistance. When the obligation for intricate and near net parts,
higher material consumption and lower energy requirement method are in demand, it is better to

choose powder metallurgical method than conventional manufacturing technique [1].

Over last decades due to non-stop growth in high-performance samples, there has been
high growth in powder metallurgical industries. Due to the existence of inherent porosity in
samples after sintering, the powder metallurgical parts are deprived of the desired mechanical
properties. Therefore, industries primarily choose high volume forming techniques such as rolling,
forging and hot deformation to lower or remove porosity. Thus, study of high volume forming of
powder metallurgical component has become a stimulating new field in metal alloy forming
industries due to its uniqueness in providing better mechanical and superior metallurgical
properties and process flexibility over other conventional manufacturing processes. Powder
metallurgical manufacturing materials are widely used as refractory metals (heating elements and
lamp filaments), cemented carbides (deep drawing dies, wire drawings, cutting tools), friction
materials (brake band and clutch liners), porous materials (filters and self-lubricating bearing),

structural materials and bio-materials in defence industries, automotive and aerospace.



1.2. Hot Upsetting and constraint of powder metallurgy preforms

Several secondary processes are needed for manufacturing powder metallurgical samples
like conventional techniques to enhance the mechanical properties while reducing or removing
porosity. Among such techniques, upset hot compaction is recognized by means of an economic
and highly influential way of refining the density and also mechanical properties [2]. The
manufacturing process is carried out by upsetting cylindrical billets between two parallel flat dies.
Hot compaction offers benefits like low material waste, better isotropic properties, fewer die
requirement and lower tooling costs over the secondary processes [3].

Hot compaction upsetting test involves exposing the material to compression either at cold
or hot working conditions. Through the hot compaction process, the material flows into the pores,
and material density increases, which improves in mechanical properties and reduce non-
uniformity of metallurgical properties. Therefore, the final product attained after hot compaction
of sintered samples is better than cast materials with equivalent chemical composition. Several
studies have been carried out by [4-6] on upset hot compaction of powder metallurgical samples
and its comparative merits. An experimental investigation was carried out by various researchers
[7-9] on hot compaction and they observed that upset hot compaction of porous materials is a
reasonable and economical method for manufacturing aircraft, automotive and machine tool

components.

Induced strain leads to consequent cross flow of metals that upset hot compaction of
sintered samples leading to fracture of metals. Therefore, the effective change in powder
metallurgical materials depends not only on material properties but also on related forming
parameters like initial relative density, aspect ratio, temperature, and friction and strain rate [10,
11]. An examination was done by Narayanasamy et.al. [12] on deformation behaviour of sintered
sample effects of parameters like initial relative density, percent content, aspect ratio and size of

particulate.
1.3. Densification behavior of powder metallurgical samples

The metal flow into pores through hot compaction of porous material increases density and
decreases the volume of material. Through hot compaction the densification of powder
metallurgical samples was explained by Narayan et.al [14] and Kim et.al. [13]. After deformation

the performance and service life of the components is determined by density. Therefore, the

2



secondary processes worked out in this present study involves hot upsetting procedure, the
intention being to minimize the issues arising from poor mechanical properties and non-
uniformities in the metallurgical properties through reducing or removing pores and brand powder
metallurgical samples for advanced applications.

1.4. Hot deformation constitutive modelling

In industries, to know the hot deformation behaviour of porous materials is essential for
manufacturers of metal forming processes because the metal deformation mechanism can be
notably influenced by hot compaction process parameters such as strain, strain rate, temperature
and porosity. As a result, the final product's microstructure and mechanical qualities vary. The
flow behavior of Al and its alloys plays a dominant role in designing developing mechanical
working processes. The material flow stress is affected by hot upsetting conditions like reinforced

material, microstructure, strain, strain rate and temperature.

A number of authors [15-17] determined constitutive equations to define the plastic flow of metals
through deformation at high temperature. The constitutive equation planned for porous materials
which take into account the effect of porosity had very limited applicability. Thus, it is also
interesting to investigate hot deformation behaviour and develop a constitutive equation to forecast
the flow stress by considering the influence of porosity and other process parameters like strain

rate, temperature etc. on deformation and densification behaviour.
1.5. Corrosion behaviour of powder metallurgical samples

Aluminium composites were taken as material for substituting conventional alloys in several
industries like automotive, sport, and aerospace because of their desirable properties. Two main
approaches normally work for large-scale manufacturing of metal matrix composites: powder
metallurgy technique and molten metal process method with the latter considered most
economical. The advantage of powder metallurgical technique is to reduce hot compaction
temperature, which gives potentially good control of the reinforcement interface. In powder
metallurgy method, powders of the metal and reinforcement phases are carefully mixed at solid
state, compacting to coarsely 80% density, degassing, joined by vacuum hot pressing and finally
by hot pressing. Potential limitations of applications of the materials relate to higher manufacturing
cost and increased corrosion susceptibility. Normally, composites need combining of materials

with notably different corrosion behaviours to offset the adverse effects on corrosion resistance
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compared to monolithic alloys. A number of researchers [18-22] carried out investigations on the
corrosion behaviour of powder metallurgical parts. The corrosion behaviour mostly depends on
the electrolyte, sintering temperature and reinforcement. The analysis was done by EIS and
potentiodynamic polarization tests in NaCl solution. The results showed key factor effects the
general corrosion in Al-4.5Cu alloy 1. Corrosion potential differences and 2. The different

corrosion rates between intermetallic particles and the Al-rich phase [23].
1.6. Wear behaviour

Despite enhanced mechanical properties of Aluminium alloys, most of these alloys suffer from
low wear resistance and hardness at high temperature. To apply appropriate lubricants between
contact surfaces is one solution to deal with the phenomenon of wear, but reduction in volume loss
and coefficient of friction may not be reached under challenging conditions, such as high pressure
and high temperature. There have been a number of initiatives to enhance the wear resistance of
aluminium alloys and this phenomenon includes introduction of perfect reinforcing materials into

alloys and surface coating applications to achieve the required engineering application.

Table 1.1 Wear resistance enhancement of aluminium alloys

Composition Wear test Conditions Motion Contact Counter Specific | Ref
(Load in N, Distance in Type part Wear
m, Velocity in Rate (10
m/s/Speed in rpm) mm?3/Nm)
Al-5wt. %Cu (29.43, 3000, 0.83/NA) Sliding pin-on-disc EN31 94.3 [86]
Al-5wt. %Cu-5 ZrB; «“ « “ 27.1 «
Al-5wt. %Cu-10 ZrB, “ « “ 27.6 «
Al-5wt. %Cu-20 ZrB; « « «“ 29.3 «
Al-4.3wt. %Cu (6-40, 10000, 1/NA) Sliding pin-on-disc Cl 50 [87]
Al-4.3wt. %Cu- 20 Al,Os «“ « « 20 «

Several researchers [24-27] carried out investigation on wear behaviour of powder metallurgical
alloys. The friction coefficient and wear behaviour were influenced by various parameters like

sliding velocity, lubrication, surface roughness, relative humidity and normal load. The parameters




which elaborate the alloys and metals tribological functioning mainly are sliding velocity and

normal load.
1.7. Modelling aspect of microstructure evolution and modelling

Sintered powder metallurgical samples have poor mechanical properties due to the
existence of porosity and therefore, to enhance the mechanical properties, powder metallurgical
parts usually experience through forming processes like extrusion, rolling, forging and hot
deformation to deduct or remove porosity [28]. As a result, the grain size or microstructures of the
samples differ continually because of the effect of deformation conditions like temperature, initial
relative density and strain rate. The final quality product can be attained by evolution of grain size
and microstructure of the product structure. The grain size and microstructure evolution happen
through hot forming process, it has high effect on hardness and strength of the desired product.
Consideration of final grain size and microstructure of the powder metallurgical samples after high
volume forming process is necessary because it regulates the service performance of components.
Nowadays, powder metallurgical components manufacturers are many in number and are
interested in optimizing the process parameters and forecasting the microstructure of the
components. A number of researchers [29-33] have investigated the microstructure and grain size
of powder metallurgical compacts. The powder metallurgical components’ microstructure
information is notably different from the corresponding cast metals the similar composition due to
porosity [34, 35]. Thus, the information about fully dense material may not be set for powder
metallurgical materials with similar composition. Dynamic recrystallization is the key mechanisms
to the microstructure and grain size to reduce material resistance force through the hot forming
process [36, 37]. The average DRX grain size of the materials measured by mathematical equation
as a function of Zener-Hollomon parameters at various deformation conditions like temperature,
strain, initial relative density and strain rate. It is necessary for designers to understand the
correlation between microstructure and deformation process parameters of all engineering
materials through the hot forming process, to obtain good quality product. VVarious researchers [38,
39] established mathematical model to show the average DRX grain size of the material in terms
of Zener-Hollomon parameters through deformation at high temperature. But, microstructure
evolution and mathematical models proposed for porous material which take into account the

effect of porosity are limited. Thus, it is interesting to investigate the mathematical model and



microstructure evolution to forecast the grain size by taking the effect of porosity and other

deformation conditions into consideration.
1.8. Applications of aluminium powder metallurgical alloys

Nowadays, aluminium metal matrix and its alloys are widely used in a wide range of engineering
applications, including aerospace and defence [45]. Powder metallurgy and related alloys are
chosen in a majority of technical applications due to their strength, better wear resistance, good
corrosion resistance, and best stiffness, among other characteristics [40]. Aluminium-copper two-
layered composites are one of the most interesting materials because they can be used in a variety
of applications without compromising electrical, thermal, or corrosion resistance. Examples of
such applications include induction cooking pans, conductive bus bars, heat exchangers for AC

liners, and more.
1. 9. Organization of the thesis

The entire thesis is presented in eight chapters including the present part which is chapter
1 and presents the introduction part of sintering, wear, and densification behaviour, and discusses
the microstructure of dynamic recrystallized grain size of aluminium powder metallurgical

composites.

Chapter 2. This chapter provides a detailed survey of literature relevant to the current
investigation. The gaps existing in the current knowledge of sintering, wear, and densification
behaviour and model in microstructure evolution of powder metallurgy preforms have been

identified.

Chapter 3. In this chapter the experimental details, which includes selection of materials,
specimen preparation, hot compression test, microstructure analysis by optical microscope and

characterization of investigated material have been discussed.

Chapter 4. This chapter provides a detailed discussion of the effect of sintering temperature
and the properties of hot-pressed Al-Cu/Al two-layered composite structure generated through

powder metallurgy.

Chapter 5. In this chapter, the wear behaviour of hot-pressed Al-10wt % Cu/Al two layered

composite structure by powder metallurgy is discussed.



Chapter 6. This chapter gives Hot-upsetting of two-layered structure powder metallurgical
Al-Cu/Al composites with a powder metallurgical structure that was used to investigate the

formability and densification behaviour.

Chapter 7. This chapter provides data pertaining to hot upsetting, microstructure modelling
of dynamically recrystallized grain size of Al-10 wt. % Cu/Al two-layered structure sintered
composite

Chapter 8. This chapter contains conclusion drawn from the current research and presents

the scope of future work.



Chapter 2

Literature Review

2. 1. Introduction

Powder metallurgy is a forming process of metal through which semi-finished or finished
outcomes are produced from missed metallic powders. The art of producing samples by pressing
powdered metal is not a new method. The older civilization experienced this technology in
prehistoric times. As a significant witness the iron pillar at Delhi, some Egyptian tools and the
articles of expensive metals produced by Incas. Modern powder metallurgy technology was
originated in the 1920s, more growth took place through the period of the 2" world war, and a
steady development period took place through the years of post war of the early 1960s. Since then,
the development of powder upsetting has expanded very rapidly, specifically for three reasons —
captive, economical processing and its unique properties. In the last few decades, the technology
of powder metallurgy has been established for making powders into specific engineering parts in
defence, aerospace, automobile, nuclear and electronic industries which have comparable
properties with conventional upsetting. Powder metallurgy is the best choice for material
utilization, fast, large volume production, best strength products, and wear resistance. The powder
metallurgy method gives more competitive than other fabrication techniques such as stamping

machining and casting.

The main steps in the powder metallurgy method are mixing powder, hot upsetting and
sintering. Sintering plays a very important role in the powder metallurgy process. The sintering
process includes merging of loosely attached powders under melting temperature. To merge the
loosely powder, die compaction method is mostly used because it is rapid and is appropriate for
large mass production. Many techniques of powder metallurgy are available: pressure assisted
sintering is most common technique which is used mostly now a days, where sintering and powder

compacting happen at once [40]. Apart from this technique many other compaction methods are



available such as frictionless isostatic pressing [41], high speed compaction [42] rotary die

pressing [43].

The preforms require sintering which is cold compacted by powder metallurgy method. In
that way some properties increase such as densification and strength while other properties change
such as corrosion and wear behaviour. An effective method of sintering needs a good control on
time and temperature parameters, otherwise it tends to a disappointing result in densification [44].
A successful sintering method involves strong bonding of loosely attached particles along with
low oxides and a perfect control on properties such as densification and dimensions so that the

finished product is effective and valid for all practical environments.

2.2. Corrosion behaviour

Al alloys have been frequently used in many fields of space technology, automobile and
so on, because of their good mechanical properties and high strength to weight ratio [45].
Furthermore, to evaluate the application of structure material, corrosion behavior is treated as an
important characteristic. Hence, a special focus has been placed on corrosion behavior of Al alloys.
Generally copper decreases resistance in general corrosion and the stress corrosion susceptibility
occurs due to particular material conditions and compositions [46]. The corrosion behaviour
mostly depends on the electrolyte, sintering temperature and reinforcement.

The electrochemical characteristics of Al-Cu (Cu: 5, 10 and 15%) alloys were observed
after immersion in NaCl and H>SOj4 solution. The effect of Al.Cu related to the dendritic arm
spacing on Al-Cu alloy’s general corrosion resistance was analyzed. With the percentage addition
of Cu content to Al-x% Cu alloy, greater susceptibility to corrosion behaviour was detected in
NaCl solution. Similar actions were carried out with H>SO4 solution [47]. The electrochemical
behaviour of Al-4.5Cu alloy was investigated, which was fabricated using casting. The analysis
was carried out by EIS and potentiodynamic polarization tests in NaCl solution. The results
showed key factor which impact general corrosion in Al-4.5Cu alloy are [1]. Corrosion potential
differences [2]. The different corrosion rates between intermetallic particles and the Al-rich phase
[46]. Infiltration (liquid phase sintering) was also used to produce Al-Cu alloy [48, 49]. A. E. Ares
et al. developed a correlation between corrosion behavior, dendritic spacing, thermal parameters,
and structures of Zn-Al alloys. It is observed that dendritic spacing increases when Al content

increases[50]The carrion resistance can be analyzed by electrochemical impedance spectroscopy



(EIS) as a principal technique [51]. The corrosion wear is directly related to the thermal properties

of the materials since as temperature increases, the corrosion resistance decreases [52].

Mustafa Acarer [53] explained that Al-Cu bi-metal (original materials formed the joint) produced
average electrical conductivity compared to Al and Cu. From the electrochemical test result, the
Al portion in Al-Cu bimetal acts as high anodic material because of its high electronegativity; thus,
the Al portion was exposed to more corrosion when compared to copper side, where the corrosion
resistance of Al, Cu and Al-Cu bimetal was 28.2, 16.8 and 24.1Qcm respectively and conductivity
was 0.350, 0.596 and 0.416 mS/cm respectively. Electrochemical tests were carried out on three
Al-Si—Cu— Mg alloy with 15% and 19% reinforced B4C before, during and after the sliding tests
by [54]. It was reported that with the addition of B4C during the sliding in 0.05M NaCl solution,
the corrosion tendency and the corrosion rate decreased. [55] investigated the exfoliation and
intergranular corrosion of Al-3.5%Cu-1.5%Li-0.22% (Sc + Zr) alloys. The exfoliation and
intergranular corrosion are caused during aging because of anodic dissolution of a precipitate-free
zone (PFZ) and age hardening phase. As aging time increases, the susceptibility to exfoliation and
intergranular corrosion increases because if aging time increases, PFZ widens and coarsens the
age-hardening phase. [46] Reported that the solidified Al.Cu under fast cooling conditions attained
a corrosion rate, which was 10-times higher than pure-Al conducted through polarization test
through 0.5 M NaCl solution at 25°C. A higher corrosion potential was exhibited by Al,Cu
particles than Al-rich phase. This implied that when compared to pure Al, Al.Cu particles are
highly susceptible to corrosion. Also, it was evident from corrosion test results that there are 2-key
factors that affect general corrosion of Al-4.5 wt.% Cu sample, these being differences in
corrosion potential and on corrosion rate between Al-rich phase and the Al>Cu (intermetallic). The
increase in %Sc and %Zr to 2xxx Al-Cu alloy causes a decrease in corrosion current density by
approximately 2-fold and reduction in pitting by 50 mV. Such improvements in the
electrochemical behavior were associated with microstructural differences caused by the addition
of Sc and Zr to the alloy. Nevertheless, no significant differences in open circuit potentials and
corrosion were observed by addition of Sc and Zr to the alloy. The addition of Sc and Zr to Al-Cu
alloy decreased damages caused by pitting. Pits were formed as trenches on Al-Cu and Al-Cu-Sc-
Zr alloys, dissolving the Al- matrix at the periphery of Al2Cu, AlxFe3-4Cu and W-phase (AIxCu5-
8ScZry) particles as summarized by [56].
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2.3. Wear Behaviour

The mechanical action between sliding faces creates deformation and material removal on
the surfaces as a result of wear, which is a process of surface interaction. Plastic deformation wear
is often referred to as dimension loss. Wear and degradation of metal surfaces are caused by plastic
deformation. The friction coefficient and wear behaviour are influenced by various parameters like
sliding velocity, lubrication, surface roughness, relative humidity and normal load. Several
investigations have been performed to find the effect of contact geometry, temperature, material,
vibration and stick-slip on coefficient of friction and wear rate [57-67]. The parameters which
determine the alloys and metals tribological functioning mainly is sliding velocity and normal load.
Pure aluminium and aluminium alloys are typically employed in applications where corrosion is a
concern. In applications where minimal friction is required, aluminium alloys are treated as
bearing material [68]. Cu alloys are used as bearing material in applications where high wear
resistance is required [69]. Al, Cu. Pb, Sn alloys are treated as steel bearing coating materials
because of their higher wear properties [70-72]. At higher load environment in several metallic
alloys with load, coefficient of friction decreases because of increased surface roughness and high
volume of wear debris [73, 74]. Because of the differences in alloys, the coefficient of friction can
either decrease or rise with increasing sliding velocity. Through the process of friction, with
increase in sliding velocity, friction also increases due to increase of adhesion pin on disc [75].
The wear test is normally carried out through sliding wear environments with pin-on-disk tests.
However a large amount of hard reinforcements normalize wear resistance, and the wear rate is
highly improved due to abrasive wear behaviour of reinforcement [76]. It is observed that the
addition of alloys such as Cu, Si, Mg and Ni can enhance the tribological and mechanical properties
of Al-Zn alloys [77-80]. Cu is a useful reinforcement addition in the direction of enhancing

tribological and mechanical properties of Al alloys [81-83].

Dewan and Mohammad observed the coefficient of friction and wear behaviour of aluminium and
copper disc using steel pin slides. Then found from the investigation that wear rate and coefficient
of friction of copper at normal load and sliding velocity are considerably lower than aluminium
[84]. An experimental investigation was carried out by Adel et.al on wear behaviour and friction
of Al-Mg-Cu alloys and Al-Mg-Cu composites with SiC particles. The study aimed to find out the
effects of copper addition as an alloy and SiC as reinforcement to Al-4Mg metal matrix. It was
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observed that the amount of loss in wear test of Al-Mg-Cu alloy decreased unceasingly up to 5%.
Also it was observed that SiC particles play an important role in enhancing wear resistance of Al-
Mg-Cu alloys [85]. An experimental investigation was carried out by Rama and Brahma Raju on
improving mechanical properties of Al-5%Cu alloy with various ZrB2 content. It was discovered
that the wear mechanisms of Al-5%Cu converted to abrasion wear and then to adhesion wear
predominantly with the addition of ZrB2. At the end of the day, it was determined that this class
of materials shown good compression strength, high hardness and reduce the wear rate. [86].
Miyajima et.al [87] investigated the influence of various reinforcements on the wear behaviour of
Al-Cu alloys produced through infiltration method and stated that the composite samples wear
behaviour depends on the type and amount of reinforcement. Wang et al. [88] concluded that at

lower loads, the composite sample wear resistance was higher and at higher loads it was lower.
2.4. Formability and Densification behaviour

The existence of porosity in powder metallurgy samples after sintering reduces the mechanical
properties. Because of reduction in mechanical properties to enhance density, the samples were
exposed to other processes, namely extrusion, forging and hot deformation; therefore, density
increase in component because of plastic deformation is represented as densification. The final
value of density fixes the ability and life of powder metallurgy samples because cracks occur and
lead to failure of the component. To produce the desired powder metallurgy samples with superior
properties without cracks, it is very important to know the forming limit of material. Formability
mostly affected by parameters such as ductility and process parameters. Therefore, the
formability behaviour of preforms was analysed until the cracks begin on the cylindrical preform
at the outer surface. The densification behaviour was affected by some parameters such as, initial
relative density, temperature, friction, deformation load, aspect ratio so on. Narayan and
Rajeshkannan [89, 90] focused on the influence of different carbide compositions with aluminium
on the stress ratio parameters, relative density and workability at various aspect ratios such as 0.4
and 0.6. It was observed that titanium carbide preforms showed good workability characteristics
and densification rate. It was found that highest densification and better workability was achieved
by aluminium-4% titanium carbide composite. A study on the workability behavior of Al-Cu
sintered preforms was carried out [91, 92]. The parameters impacting, the workability behavior of
Al, Al-3%Cu, and Al-6%Cu sintered performs in the course of cold deformation were investigated.
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Cold deformation of sintered preforms was carried out with various frictional conditions such as
no lubricant, zinc-stearate and graphite lubricant. They found that the lower (0.45) aspect ratio
composites with no lubricant achieved higher densification, better workability characteristics and
axial stresses. They also found that while the addition of copper as reinforcement to the aluminium
was possible, the copper reinforcements (3% and 6%) should not be used. [91] And [92] developed
the forming limit plots for Al-Cu preforms under various copper content and preform densities. It
was observed that at similar working conditions, with an increase of Cu content in composite, the
densification increased. Liu and Wang, [93] investigated the influence of bonding interface on
strain rate as well as deformation temperature through hot deformation of Cu/Al laminated
composites. They found that to attain interface coordination during deformation, hard copper layer
should produce higher tension on the adjacent soft aluminium layer to maximize the dislocation
slip resistance significantly. Deformation at highest temperatures tends to dynamic softening of Al
matrix, which leads to dynamic recrystallization. Ahasan et al. [94] Showed that, with the addition
of titanium bi-carbide (TiB2: 5%, 10%) to Al, changed densification significantly. The, report also
established the association between relative density and stress ratio parameters such as (gg/0,),
(0,/0m) and (orr/0,) under triaxial stress state condition. Canakci et al. [95] focused on 2-
layered structure of Al-10wt. %B4C / Al fabricated through powder metallurgy and observed the
microstructural, physical (density), and mechanical properties.

2.5. Microstructure evolution and constitutive Modelling

In the forming process, the important technological aspects are the metal and alloy both of which
are controlled by grain size, because grain size plays an important role and is closely related to the
mechanical performance and properties of the desired product. Through hot deformation Dynamic
Recrystallization (DRX) plays a key role in the microstructure and grain size control that decreases
the resistance of material [96, 97].

Hot upsetting process is an essential test in the making of engineering tools which demand
dimensional accuracy along with appropriate mechanical and microstructural properties. Thus, it
is required to study and predict materials behavior while hot upsetting [99]. Therefore, while
compression, various experiments has been carried out by [99-101] to know deformation behavior
at high temperatures. To show metals working as good and effective it is necessary to examine the

constitutive equations at different strain, strain rate and temperatures. An experimental
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investigation was done on Al 3003 alloys hot deformation behavior by Guo et al. [102] at different
strain rates and temperatures. They concluded that with temperature increase there is a decrease

in flow stress.

The flow behavior of Al and its alloys plays a dominant role in designing developing mechanical
working processes. The material flow stress was affected by hot upsetting conditions like
reinforced material, microstructure, strain, strain rate and temperature. During hot upsetting, the
forming energy and microstructure were influenced by dynamic recrystallization (DRX), work
hardening (WH) and dynamic recovery (DRV). Therefore, to show better results in metals, it is

necessary to explore flow stress, hot upsetting process and expansion of the constitutive model.

Dynamic recovery happens more than dynamic recrystallization in aluminium alloys because of
the high stacking fault energy [103]. Several constitutive type of investigations of Al alloys were
done by whole hot compression method by [104-107], and flow stress acts as a function of strain,

strain rate and temperature.

An experimental investigation was carried out by Liu et.al. [122] on hot upsetting behavior of
aluminium alloy and then stated that dynamic recrystallization (DRX) was highly sensitive to hot
upsetting temperature than to strain rate. An investigation was carried out by Wolla et.al. [108]
on the hot upsetting constitutive base of Al-4%Cu powder metallurgical preforms. The results
revealed that the flow stress is especially affected by strain rate, relative density and temperature

and the flow stress shows peak value at a particular strain value.

Basically, constitutive equations define materials behavior and are interrelated with deformation
temperature, strain rate and flow stress. To foresee the constitutive behavior in alloys and metals
several phenomenological, empirical, artificial neural network, physical and analytical patterns
have been designed [109]. High-temperature flow behaviour of aluminium alloy AA2030 was
investigated experimentally by H.R. Rezaei and colleagues using strain-dependent constitutive
models to predict the behaviour of the alloy at high temperatures. From the result it was observed
that there was a better bond between calculated and predicted results [98]. An experimental
investigation was done on Fe-36wt%Ni Invar alloy by [110] to forecast flow behavior using
Arrhenius- type equation. The results revealed that the generated constitutive equation have

consistent and unchanging capability at various temperatures to forecast material hot flow
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behavior. In the meantime, as per generated constitutive equation, Zener-Holloman parameter map

was formed and it was used to predict the amount of dynamic recrystallization.

From the past few years, many experiments has been conducted by researchers on evaluating of
grain size in alloys and metals because of the grain size effect on manufactured products
mechanical properties. Normally, the material grain size is influenced by deformation conditions
like initial microstructure, strain rate, material composition, temperature, initial relative density
and strain. During the forming process, DRX grains of materials here influenced by deformation
conditions, a phenomenon studied by some researchers [111-114]. It is important to observe the
bonding between DRcrx grains and deformation conditions, to achieve high hardness, wear
resistance and strength while hot upsetting alloys and models. An experimental investigation was
carried out by Shban and Eghbali [112] on Nb -Ti steel alloy through hot torsion method. The
results revealed that the DRcrx grains are highly impacted by hot upsetting conditions and
establishing bonding with steady strain, critical strain, Zener-Hollomon parameter and DRcrx
grain size. An investigation was carried out by Guo et al. [115] and Li.et al. [111] on the
development of microstructure and DRcrx grain size of 625 Inconel super alloy. According to the
findings, the influence of deformation temperatures on the mechanisms of nucleation of DRX is
significant, and the volume fraction and size of the DRcrx grains rise as the temperature of the
deformation increases. Some of the researchers studied the influence of deformation situations on
the DRcrx grains and microstructures of the cast material and developed an association between
Zener-Hollomon parameter and DRX grain size [112, 113, 116, 117]. The behavior of DRX grains
and microstructure of powder metallurgical sample after deformation is different from before
deformation of the sample (fully dense) [118]. Powder metallurgical sample generated through the
process of plastic deformation experienced densification hardening and geometric hardening
because of increase of flow stress and work hardening of the material [119]. Due to considerable
quantity of pores existing the powder metallurgical preforms, it was observed that the density was
distributed unevenly in powder metallurgical samples at low initial relative densities, because of
high friction between the work and the tool [120]. Thus, DRX grains, microstructure and
deformation behavior of cast material are not appropriate for porous materials developed by

powder metallurgical method with a similar chemical composition [121].
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2. 6. Gaps in the literature survey

Following a thorough review of literature, the following are some of the major limitations in the

existing literature on processing powder metallurgy parts:

There is limited literature available on the study of properties on hot-pressed Al-Cu two-
layered composite such as hardness and corrosion.

There is no literature available on the study of formability of sintered Al-Cu two-layered

composite related to its process parameters of strain rate, temperature and porosity.

The deformation behavior of sintered Al-Cu two-layered composite with various initial
relative densities at different temperature and strain rate conditions has not adequately
been explained.

Mathematical relations to predict the DRX grain size of sintered Al-Cu two-layered
composite after plastic deformation considering the effect of temperature, strain rate and

initial relative density are limited.

There is no literature available on the study of wear properties on hot-pressed Al-Cu two-

layered composite such as COF, Wear rate.

2. 7. Objectives and Scope

Based on the gaps identified from literature on the deformation of P/M components during hot

working, the following objectives were formulated. The main objectives of the thesis are:

To study the effect of sintering temperature and properties of hot-pressed Al-Cu/Al two-
layered composite structure by powder metallurgy.

To investigate Wear behaviour of hot-pressed Al-Cu/Al two-layered composite structure
by powder metallurgy.

To study the formability and densification behavior of two-layered structure powder
metallurgical hot-pressed Al-Cu/Al composites during hot-upsetting.

To model the microstructure of dynamic recrystallized grain size of two-layered structure

Al-Cu/Al composites during hot-upsetting.
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Chapter 3

Experimental Details

This chapter describes the details of experiments conducted for a) material selection, b) sample
preparation, c) corrosion test, d) wear test, e) hot upsetting test and f) metallurgical analysis by an

optical microscope.
3.1. Selection of materials

The materials chosen for the present investigations were pure aluminium (Al) powder and
copper (Cu) powder. Atomized aluminium powder (Al) of particle size 44um and purity of 99.47%
were chosen while the rest were insoluble impurities. Copper powder (Cu) of particle size 44pm
as used as reinforcement while Al had a purity of 99.99% and both were procured from SR.
Laboratories, Mumbai, India. Al alloys are commonly employed as matrix materials because of
their light weight, high elastic modulus and strength, as well as their good wear resistance [16] and
copper is one of the good reinforcements. Aluminium alloy can be enhanced by reinforcement
with other materials and heat treatment to make composite due to its lightweight which can be
loaded and heat-treated to comparatively higher level stresses at low cost [17]. By the copper
addition to aluminium, increases creep resistance and fatigue, hardness, tensile strength and

machinability [9].

Moreover, literature studies related to the deformation, densification and microstructure
evolution studies of the candidate materials are scarce. P/M processed components have superior
practical and industrial importance than corresponding wrought material of the same composition.

The aluminium and copper material properties are tabulated in Table 3.1.

Table 3.1 Properties of aluminium and copper

Parameters Al Cu
Molecular Weight (g/mol.) 26.98 63.54
Theoretical Density (g/cmq) 2.7 8.96
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Color Dark gray Red-orange metallic luster
Crystal Structure FCC FCC

Tensile Strength (MPa) 90 210

Yield Strength (MPa) 50 137

Young’s Modulus (GPa) 70 120

Shear Modulus (GPa) 26 48

3.1.1. SEM, EDAX and XRD

Aluminium and Copper particles of morphologies were examined using a scanning electron
microscope to determine their particle size and form. Aluminium and Copper powders, illustrated
in Figs. 3.1 and 3.2, respectively, aluminium particles in the combined form of semi-spherical and
elongated rod shape and copper particles as flaky shape, which are consistent with their
compositions. The morphology and Energy-Dispersive X-ray Analysis plot of as-received copper
(Cu) particles is shown in Fig. 3.3. EDAX peaks corresponding to the Cu were found in good
agreement. The microstructure of powders and hot-pressed samples were carried out using an
optical microscope and the scanning electron microscope (SEM: Tescan Vega 3 LMU). The
compositional analysis of Al-Cu two layered structure was carried out by energy dispersive
spectroscopy (EDS: Oxford Instruments). Metallographic sample preparation was done to reveal
the microstructure of hot-pressed samples. The polishing of samples was carried out using
grinding, disc polishing with silicon carbide papers up to 2000 grade and they were further polished
to mirror finish by using alumina liquid suspension. The surface of these samples was etched with
ammonia (50%) and distilled water (50%) solution for a few seconds. The microstructural
characterization of etched and fracture surface of samples were inspected with SEM-EDS (Fig. 3.4
(@)). The elemental quantification of the Cu-Al alloys was measured using the electron probe
micro-analysis (EPMA: Camebax Micro, Cameca). The phase analysis of starting, milled powders
and the sintered compacts were carried out by X-ray diffraction (XPERT-Pro, Pan Analytical),
using CuKo radiation (A=1.5405A), which was operated at 45 kV and 30 mA (Fig. 3.4 (b)). The

volume fraction of individual phases in the hot-pressed samples was estimated by the Rietveld
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analysis of XRD patterns. The XRD data were collected at a scanning rate of 0.0166 o/sec and the
patterns analyzed by X’Pert High Score software with Inorganic Crystal Structure Database
(ICSD). For dislocation density measurements, the curve was fitted after stripping the Ka2
component from the raw data using X’Pert High score software. The full width half maximum
(FWHM) values and diffraction angles of major peaks from the X-ray diffraction patterns were

considered for Williamson—Hall analysis.
3.2. Specimen preparation
3.2.1. Mixing of powders

The required mass of aluminium and copper powders (5%, 10% and 15%) was accurately
weighed using electronic mass balance (+ 0.01 mg repeatability) and mixed in a pot mill for 2 hrs.
to get a homogeneous mixture. The homogeneous powder mix has the advantage of improving
sinter-ability of the powder and making ejection of compaction easy. Fig. 3.5 shows that SEM

analysis revealed the blended Al-Cu morphology was homogenous.

~ SEM HV: 15.0 kV I I VEGA3 TESCAN
SEM MAG: 2.00 kx Det: SE

2000x Date(m/dly): 05/07118 NIT, Warangal

Fig. 3.1 SEM image of Aluminium particles
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Fig. 3.2 SEM image of Copper particles
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Fig. 3.3 EDAX analysis of Cu
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Fig. 3.4 (a) Scanning electron microscope and (b) X-ray diffraction equipment

A ¥ <
SEM HV: 15.0 kV WD: 11.96 mm

SEM MAG: 1.00 kx Det: BSE 20 pm
3 Date(m/dly). 03/07/19 NIT, Warangal

Fig. 3.5 Scanning electron microscope image of Al-Cu composition

3.2.2. Dealing out with the two-layered Al-Cu/Al samples

Sintering temperatures were maintained at 550°C for 45 minutes under 400MPa hydraulic
ram pressure in an atmosphere of (1.3x10°2 mbar), as depicted in Fig. 3.6 of the hot press (Model:
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CMM, VB Ceramic Consultants, India) which was used to consolidate Al-Cu and Al powders. At
a rate of 10 °C/min throughout the heating cycle of hot pressing, sintered samples were expelled

from H13 steel die at room temperature after the furnace had cooled.

[
. P COMPRESSION MOULDING
= e — MACHINE .
=

3 d

Fig. 3.6 Hot press equipment with vacuum pump arrangement

The samples had a diameter of 15 mm and a height of 15 mm when they were made. Weighing
balances with precision weighing capabilities were used to calculate the density of hot-pressed
samples, which were connected to the density were calculated system (Model: BSA224S-CW,
Sartorius). The samples with bulk density determined using Archimedes approach, which was
performed in accordance with ASTM B962-08. The bulk densities of several compositions were
standardised with respect to theoretical density in order to examine the densification responses of

different compositions.
3.2.3. Measuring the mechanical characteristics

Polished samples were tested for 15 seconds at 300 g force in a Vickers Micro-Hardness
Tester (Shimadzu, HMV, Japan) in accordance with ASTM E384-11el specifications. The image
of the Vickers microhardness tester is shown in Fig. 3.7. To determine the hardness of the material,

a minimum of three indentations were produced.
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Fig. 3.7 Photograph of Vickers microhardness tester

Fig. 3.8 a picture of a Universal testing machine is shown. An (Instron, Model No: 5982,
USA) Universal Testing Machine (UTM) was used to conduct the compression test for both pure
aluminium and Al-10wt. %Cu composites at a strain rate of 0.02 mm/min. During the compression
test, grease was applied to the top and bottom specimen-platen surfaces on both sides of the
specimen in order to prevent friction and wear during the test. For the compression test, a set of
cylindrical samples of diameter (d) of 10 mm and length (I) of 15 mm, and a length-to-diameter
ratio of 1.5, were manufactured, and the diameter and length measurements were used to determine
the compression strength. A minimum of two measurements were taken for the purpose of

reporting the findings of the compression test, which was performed.
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Fig. 3.8 Universal testing machine

3.2.4. \Wear behavior test

In order to determine the wear resistance of Al-Cu/Al two-layered composites, a pin-on-
disc wear test equipment was used (Ducom Bangalore, Model: TR-20). As seen in Figure 3.9, a
configuration for pin-on-disc wear testing was used (a). The specimens were ground up to 1500
grit SiC abrasive paper in order to achieve total contact with the counter body during the testing
process. Polished specimens were properly cleaned with ethanol prior to the testing procedure. The
cylindrical samples (10 mm x 15 mm) used in the wear testing were produced in advance. For each
sample, the samples with a contact area of 78.5 mm? were kept in original condition. It was
necessary to measure the initial and end weights of samples using an accurate analytical weighing

balance with a resolution of less than 0.0001 g.
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(b) Pin (010)

Load
(N) Sample holder
EN31S disc
(HRC 65)

................................................

Fig. 3.9 (a) Surface of the pin on disc and (b) Pin on disc schematic representation

The wear behavior of two-layered Al-10 %wt. Cu/Al composite was tested by using pin-
on-disc testing machine (Model: TR-20, Ducom Bangalore), parameters influencing the wear
behaviour can be adjusted such as sliding speed, distance and applied stresses. Under a sliding
velocity of 5 m/s and a maximum load of 39.2 N in conditions of dry sliding, the pin-on-disk wear
test followed ASTM G99 standards. The pin-on-disc test configuration is depicted in Fig. 3.9. The
wear test samples had a size of @10x15 mm and were manufactured in this manner. Primarily the
wear test was conducted at the end phase of Al layer and then conducted at the other end phase of
Al-Cu layer and lastly at the interface region by cutting the interface region with a wire cut
machine. For the wear test, Al-10wt %Cu/Al composite samples were polished with silicon
carbide sheets with a grit size of 1500. For the tests to be done in a temperature-controlled
environment, the experimental preforms were kept in same circumstances and were tested in same
place (room) to ensure that the environment had the least impact on wear. The composites were
polished with 400, 600, and 800 grit sandpapers in order to maintain a consistent surface roughness
throughout the samples. In order to remove any undesired particles that could interfere with wear
testing, the preforms were properly cleaned by acetone while going to test. By polishing the disc
after each trial, the average Ra (surface roughness) of the disc was maintained at 1.86 microns for
the duration of all experiments. The counter body for the wear test was an EN 31 Grade steel disc
(C: 0.90-1.20%, Si: 0.10-0.35%, Mn: 0.30-0.75%, Cr: 1.00-1.60%, S: 0.05%, and P: 0.05%) with
a hardness of 65 HRC. The trials were performed at 3(three) applied loads of 19.6 N, 29.4 N and
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39.2 N. When the weights were applied, the applied pressure was 0.5 MPa. When the weights were
greater than 39.2 N and the speeds higher, the samples were more likely to break. When the loads
were lower than 19.6 N, there was no repeatability in the testing, and the wear rates recorded at
39.2 N load deviation were approximately 50 percent higher. As a result, the minimum and
maximum loads in the investigation were established at 19.6 N and 39.2 N, respectively, and
intermediate load of 29.4 N was taken to examine the behaviour. Various sliding speeds were taken
throughout the experiment in order to investigate the wear attributes of different sliding speeds.
The tests were carried out at five different speeds: one metre per second, two metres per second,
three metres per second, four metres per second, and five metres per second. Through sliding the
preforms for 500 m, 1000 m, 1500 m, and 2000 m, the researchers were able to observe the
influence of the sliding distance on the wear rate and coefficient of friction, as well. Multiple runs
of the test were carried out, and the findings were averaged together to get the final report.

3.2.5. Corrosion measurement

Working electrodes (Al-5Cu, Al-10Cu, and Al-15Cu) were polished with emery papers up
to 2000 grit size and then completely cleaned with distilled water after which they were dried.
Corrosion experiments were carried out using a three-electrode cell glass association with Al-
Cu/Al interface as a working electrode with an exposed area of 0.7854 cm?, Ag/AgCL/1M KCI
electrode taken as a reference electrode, and a platinum spiral electrode as a counter electrode after
polishing. A neutral 3.5 mass per volume (m/v) percent NaCl solution (pH: 8.2) was used for all
electrochemical tests, which were carried out at room temperature in a stagnant and naturally
aerated solution. The electrochemical impedance spectroscopy (EIS) research and polarisation
experiments were carried out with the help of a PARSTAT 4000 Potentiostat/Galvanostat system

shown in Fig. 3.10.

26



Fig. 3.10 Photograph of the corrosion test setup. (a) Corrosion work station and (b)
corrosion test cell

Saturated calomel and hydrogen electrodes were used as reference electrodes to measure the
electro-potentials. Measurements of impedance (Z) in the frequency range 0.1 Hz to 60 kHz were
made during the polarisation studies, with a scan rate of 1 mVs!. The AC signal's amplitude was
set to 20 mV with a peak to the peak measurement system's output. For the sake of reproducibility,
all electrochemical tests were repeated at least twice. Morphology of the Al-Cu alloys outer surface
was studied using SEM-EDS after conducting electrochemical tests.

3.3 Hot deformation test
3.3.1 Formability and densification behaviuor

The initial dimensions of hot-pressed preforms such as height (H), diameter (D) were
measured and taken for initial preform density calculations. The hot-upsetting was carried out at
various deformation temperatures such as 150 °C, 250 °C, 350 °C, and 450 °C for different Cu
composition of preforms. After attaining the required temperature, the preform was soaked for 30
min before deformation. The hot upsetting process was performed between two flat dies inside a
muffle furnace (an electrical resistance type) placed on a robust bed of hydraulic machine until a
visible crack appeared at the outer surface. Seven preform samples were taken for each test and
hot deformed with an incremental compressive load. After the deformation, dimensional changes
such as final height (Hs), top contact diameter (Dx), bottom contact diameter (Dxc), bulged diameter

(Dp) of the preforms were measured using a vernier caliper.
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Al-10%Cu layer
Al-5%Cu layer
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Fig. 3.11 Photographs of performs at various Cu compositions (a) 5wt. % after deformation,
(b) 10wt. % after deformation and (c) 5wt. %, 10wt. % and 15wt. % before and after

defamation

Before and after the hot-deformation of Al-Cu/Al preforms with various compositions of
Cu (5wt. %, 10wt. %, and 15wt. %) in the Al-Cu layer are shown in Fig. 3.11(c). It is observed
from Fig. 3.11(b) that the deformation behavior in Al-Cu layer was almost equal to that of soft
pure Al layer in 10wt. % content preform than 5wt. % Cu and 15wt. % Cu content preforms. The
copper particles were fewer at the grain boundaries in Al-5wt. % Cu layer of preform, which causes
precipitation of intermetallic phases in grain boundaries. CuAl; intermetallic phase’s precipitation
at grain boundaries stopped grain movement during deformation at the interface region. Therefore,
the deformation behavior in both Al and AI-Cu layers were non-homogeneous in 5wt. % Cu
content preform, as shown in Fig. 3.11(a). The addition of 10wt. % Cu into the Al-Cu layer, lead

to intermetallic precipitations dispersed the grains into grain boundaries, which would result in an
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increase of dislocation slip with expansion continuing in Al-Cu layer with Al layer. The
deformation behavior in both Al and Al-Cu layers was homogeneous for 10wt. % Cu content

preform, as shown in Fig. 3.11(b).

3.4 Pin sample preparation

The pin samples were fabricated through powder metallurgy (P/M) technique under hot-
press condition. The purchased Cu powder was blended with the Al powder with various
percentages of copper (Cu) content (5wt. %, 10wt. % and 15wt. %) by mortar mixer to make a
homogeneous mixture. The blended powders were poured into the steel die and the compacts were
prepared under the pressure of (400 MPa) using 0.5 MN hydraulic press under various hot-pressed
conditions such as 500 °C, 550 °Cand 600 °C for 3h. Zinc stearate was used for lubrication purpose
and it is applied on the contact surfaces of dies, top and bottom punches before the compaction.
The geometry of prepared composites was (Al layer thickness: 10 mm, Al-Cu layer thickness: 5
mm and diameter: 15 mm). The schematic representation of three different types of Al-Cu/Al
composites were hot-compacted as layer after layer each in a stepwise manner with various Cu
percentages (5wt. %, 10wt. % and 15wt. %) as shown in Fig.3.12 (a). The photographs of before

and after wire cut composites across the section as shown in Fig.3.12 (b).

Al 95% + Cu 5% Before and after wire-cut samples

Al 100%

Al 90% + Cu 10%

Al 100%

Al 85% + Cu 15%

Al 100%

(@

Fig 3.12 (a) schematic representation of hot pressed two-layered composites, (b) photograph of

before and after wire-cut composite samples.
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Chapter 4

Effect of sintering temperature and properties of hot-pressed Al-Cu/Al two-

layered composite by powder metallurgy

4.1. Introduction

The present work is focusses on the study of properties like microhardness, density and
corrosion behaviour of hot pressed Al-Cu/Al two-layered composite. The properties were mostly
depend on the sintering temperature and the percentage of reinforcement added to Al-Cu layer of
the composite. Aluminium alloy can be enhanced by reinforcement with other materials and heat
treatment to make the composite lightweight and this can be loaded and heat-treated comparatively
higher level stresses at low cost. The addition of copper to aluminium, increases creep resistance
and fatigue, hardness, tensile strength and machinability. Generally copper decreases resistance
and corrosion while stress corrosion susceptibility occurs due to particular material conditions and
compositions. The Al-Cu alloys microstructure plays a dominant role in alloys corrosion and
mechanical behaviour.

Aluminium matrix was hot-pressed at 500 °C, 550 °C, and 600 °C for three hours at a
constant pressure of 400 MPa with varying percentages of Cu content (x: 5wt. percent, 10wt.
percent, and 15wt. percent) in aluminium matrix. Optical and scanning electron microscopes were
used to examine the microstructure of two-layered samples. It was found that the maximum micro-
hardness (100.6 HV) was found at 15wt. percent Cu sample interface at 550 °C. With increasing
copper content, potentiodynamic polarisation tests revealed an increase in corrosion susceptibility
of Al-Cu/Al two-layered samples at the interface. For EIS test, it was determined that the best-fit
circuit model is the one that delivers the lowest chi-square value, and that circuit model was used
as the best-fit model. The EIS results showed that a 10wt. percent Cu sample circuit had the lowest

chi-square value.
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4.2. Results and Discussion

4.2.1. Analysis of microstructure

The hot-pressed two-layered composite samples were cut vertically into two pieces using
wire-cut machine for investigating the microstructure at the interface. Initially, the surface of the
sectioned composite specimens was polished using different types of silicon carbide (SiC) emery
papers and this was followed by disk polishing to achieve mirror finish polish. The detailed
microstructures at the interface of the composite samples were analysed using the optical
microscope. It is observed from Fig. 4.1 (a-i) microstructures that bright phase was Cu content in
the dark phase of Al matrix. Also, a macroscopic interface was observed in which the compositions
of the materials were integrated into one another (marked as ‘¥ ’) as shown in Fig. 4.1. It was
found from Fig. 4.1 that the interface of the image was not at macro level in the developed
composites shown in Figs. 4.1(a), (d) and (g) and a sharp interface region was present between Al
and Al-Cu layer in the composites of 5wt. %, 10wt. % and 15wt. % of Cu as shown in Figs. 4.1(b),
(©), (&), (f), (h) and (i). However, a smooth interface region was observed in Fig. 4.1(d) between
two layers of Al-10wt. %Cu/Al composite at 550 °C compared to Figs. 4.1(a) and (g). Therefore,

the Al-10wt. %Cu/Al composite showed smooth transition interface at 550 °C.
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Fig. 4.1 Optical microstructures of Al - Cu/ Al two-layered composite samples at interface

region under different hot-pressed temperatures, (a) 500 °C, (b) 550 °C, (c) 600 °C, (d) 500
9C, (e) 550 °C, (f) 600 °C, (g) 500 °C, (h) 550 °C and (i) 600 °C
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Fig. 4.2 (a-c) shows a clear microstructure with various interfaces. There were no cracks
on interface on individual layers, indicating that the composite had good strength and produced
good results for hardness and densification. Addition of Cu percentage to Al-Cu layer increases
the number of copper particles. The change in microstructure as shown in Figs.4.5 — 4.7 can vary
the hardness of the composite samples. The SEM and EDAX analysis of hot pressed Al-10wt. %
Cu / Al composites are shown in Fig. 4.2 (d), which confirm the existence of Al-rich and Al>Cu
phases. From the Fig. 4.2 (d), it is seen that pure Al layer surface exposes a dark phase and Al-Cu
layer exposes two phases a- grey which is Al-rich phase and 6 - bright which is Al>Cu phase.

Atomic%

Element Weight%

Al K 45.26
CuK 54.74

Totals 100

Fig. 4.2 SEM-BSE microstructure images of developed composite samples for different percentages of
Cu contents in the Al matrix, (a) 5 %, (b) 10 %, (c) 15 % and (d) SEM micrographs of hot-pressed Al-
5Cu/Al composite sample with different phases marked as a-(Al rich) and 6-(Al>Cu) at interface region
and Al-Cu layer with corresponding EDAX
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4.2.2. X-ray diffraction (XRD) pattern of composites

Fig. 4.3 shows the XRD patterns of hot-pressed composite samples for different
percentages of Cu content (5wt. %, 10wt. % and 15wt. %) in the Al matrix at 600 °C. The phases
which were Al rich and Al.Cu were formed in the composite samples and the other phases are not
present in the material. Also, it is noticed that the peaks of Al contain higher diffraction intensity
and the peaks of Al.Cu contain lower diffraction intensity. The XRD pattern of hot-pressed Al-
5wt. %Cu, Al-10wt. %Cu and Al-15wt. %Cu composite samples peaks were matched from
JCPDS reference code numbers (Al:98-009-8667 and Al.Cu:98-012-1659), (Al:98-009-8667 and
Al>Cu:98-008-1747) and (Al:98-009-8667 and Al.Cu:98-01-3614) respectively.
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Fig. 4.3 XRD results of hot-pressed samples for different percentages of Cu particles in the Al
matrix at 600 °C with a pressure of 400 MPa for 3 h

4.2.3. Effect of Cu addition and sintering temperature on the density of the composites
The sintered densities of two-layered composites samples were analysed under different
working conditions. Fig. 4.4 shows the effect of Cu content on the density of the developed

composites for different compositions of Cu (5wt. %, 10wt. % and 15wt. %) in the Al matrix under
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various hot compaction conditions (500 °C, 550 °Cand 600 °C). The dwelling time and the

pressures were kept constant (3 h and 400 MPa) during the compaction.
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Fig. 4.4 Effect of hot press sintering temperature and different percentages of Cu particles in the

Al matrix on density of Al-Cu / Al two-layered composites

It is observed from Fig. 4.4 that the sintered density increases from 500 °C to 550 °C rapidly
irrespective of Cu composition. It shows a weak decreasing trend with increase in compaction
temperatures (550 °C- 600 °C). The liquid-phase formation is important in the sintering of Al
powder metallurgy samples, the samples sintered at temperatures with no liquid phase (515 °C —
545 °C) experienced minimal densification. Further increase of sintering temperature, the quantity
of liquid phase would also have increased, leading to more density in sintered samples [123].
Therefore, the highest density was achieved at 550 °C irrespective of Cu content. Also, it was
noticed that the sintered density of the developed samples varied with increase in the Cu percentage
in the composite. It is observed from Fig. 4.4 that the sintered density of composite samples
increased from 5wt. % to 10wt. % Cu and for further addition of Cu (15 wt. %) it is observed that
there was a slight increase in density because of agglomeration formation [124].

4.2.4. Vickers Microhardness
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Figs. 4.5 — 4.7 shows the effect of copper addition and sintering temperature on Vickers
microhardness of P/M composites. The hardness value in Al-Cu layer and at interface increases
from increasing Cu content irrespective of sintering temperatures. Hardness increases with
increasing the sintering temperature from 500 °C to 550 °C and it was also noticed that there was
a slight decrease in hardness with increasing temperature from 550 °C to 600 °C. The layered
composites show increment in hardness from 500 °C to 550 °C indicating the finer dispersion of
reinforcement in Al-Cu layer strengthening compositing. At higher temperatures between 550 °C
to 600 °C there was a drop in hardness value which cloud be attributed to the grain growth in
matrix [124]. The Vickers micro-hardness shown in Figs. 4.5 — 4.7 at interfacial zone was
measured to specify the consequences of intermetallic compound and chemical composition. The
micro-hardness was high at the interface region. It is evident that micro-hardness was higher at
interface region than for metal components, which was caused by changes in composition at
interfacial zone [125]. As with AI-Cu layer, the hardness value at interface increases from
increasing sintering temperature from 500 °C to 550 °C and hardness from 550 °C to 600 °C
decreases. Itis also observed that the hardness value increases in Al layer with increasing sintering

temperature.
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Fig. 4.5 Vickers micro-hardness profiles across interfacial region of (a) Al-5%Cu/Al composite

samples
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Fig. 4.6 Vickers micro-hardness profiles across interfacial region of (b) Al-10%Cu/Al composite

samples
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Fig. 4.7 Vickers micro-hardness profiles across interfacial region of (c) Al-15%Cu/Al composite

samples

4.2.5. Corrosion Behaviour
The corrosion resistance (Rcorr) was determined at the interface of a three two-layered

samples, fabricated by powder metallurgy and hot-pressed at temperature of 550 °C with 3 h
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dwelling time with different percentages of Cu content (5wt. %, 10wt. % and 15wt. %). The
prepared samples were cut into dimensions of 1 cm x 1 cm to conduct electrochemical tests for
analysing the corrosion behaviour in the interface region on an exposed area of 0.42 cm?. The
potentiodynamic polarization (PDP) experiment was conducted on the above two layered Samples
in 3.5% NaCl electrolyte with a minimum of three samples per test to ensure exactness of the tests
[126]. The typical polarization curves shown in Fig. 4.8 for the three measured composite samples
with the curve shapes almost same. The gradual increase of current density was observed at the
corrosion potential, resulting in pitting corrosion occurring on three composites at the interface
region. The anodic current density for 15wt. % Cu composite was higher than that of 5wt. %Cu
and 10wt. % Cu composites. The negative potential of 10wt. % Cu sample (990mV) was lower
than 5wt. % Cu sample (1002mV) and 15wt. % Cu sample (1084mV). The experiments suggested
that the corrosion susceptibility of 15wt. % Cu sample was higher.
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Fig. 4.8 Potentiodynamic polarization curves for Al-5wt. % Cu, Al-10wt. % Cu and Al-15wt. %

Cu two-layered composite samples measured in 3.5% NaCl
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The change in (-ve) negative potential can be associated with the difference in passive (oxide)
layer formation at the interface. From the potentiodynamic polarisation test, the measured values
are listed in Table 4.1.

Table 4.1 Parameters polarisation of two-layered composite samples measured in 3.5% NaCl
afterlhr.

Sample lcorr Ecorr Rp Corrosion rate
reference (um.cm) (mV) (W -cm?) (mpy)

Al —5Cu/ Al interface 1.41 -1002 18478 0.6074

Al —10Cu / Al interface 8.61 -990 3029.2 3.7090

Al —15Cu / Al interface 10.10 -1084 2582.2 4.3548

The corrosion rates of Al-Cu/Al (Cu: 5%, 10%, 15%) samples at interface were measured
under same conditions. The corrosion potential (Ecorr) and corrosion current density (Icorr) were
evaluated from the tafel plot for arriving at the best fitting curve. The corrosion rate was calculated
by Eq" (4.1) [127].

Corrosion rate (mmpy) = 0.0116 X I,y (4.1)

It is observed from Fig. 4.2, that increasing Cu content of Al.Cu particle also increased and
they were perfectly distributed in the matrix. The Al-rich phase enveloped the Al.Cu particles
acting as a protective layer at the interface. However, as the Cu% increases (Al.Cu fraction
increases), a higher susceptibility to corrosion was detected in NaCl solution [128]. Higher
corrosion rate was observed in Al-15wt. % Cu/Al two layered sample interface (4.35 mpy) than at
5wt. % Cu (0.60 mpy) and 10wt. % Cu (3.70 mpy) samples. The Al-5wt. % Cu/Al composite
Corrosion rate at interface was 6.69 times lower than 15wt. % Cu composite. Therefore, the Al-
5wt. % Cu/Al sample exhibit good corrosion resistance at interface.

4.2.6. Electrochemical impedance spectroscopy (EIS) and corrosion mechanisms

An electro chemical test was conducted to know whether a passive layer existed on the
surface of the composite. The EIS tests data were produced by Versa Studio software. The data
which measured the tests was imported to a software called ZSimpWin and the imported data was
executed with various circuit models. Then, it was required to find out which equivalent circuit

model provides minimum chi-square value and that circuit model was taken as best-fit circuit
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model. The Nyquist impedance plots with the equivalent circuit model used for impedance (2)

data fitting of Al-xCu/Al (x: 5wt. %, 10wt. %, and 15wt. %) composites at interface region are
shown in Figs. 4.9 (a-d).
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Fig. 4.9 Nyquist impedance plots of interfacial region of the composite samples at various hot-

pressed temperatures with different percentage of Cu content, (a) 5 %, (b) 10 %, and (c) 15 % after

1hr. immersion in stagnant 3.5% NaCl solution at room temperature. (d) Equivalent circuit models
used for impedance data fitting of 5%, 10% and 15% Cu at interface region

From Figs. 4.9 (a-c) the Nyquist impedance curves of Al-xCu/Al (x: 5wt. %, 10wt. % and
15wt. %) two layered samples are fitted with R (CR) as shown in Fig. 4.9 (d), different researchers
[129, 127, 130] suggested the same type of best-fit equivalent circuit model. It denotes randles

circuit model with a chi-square value at interfaces of Al-5%Cu/Al is 8 X 1073, Al-10%Cu/Al is 5
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X 10~%and for Al-15%Cu/Al is 10 X 103, which consists of two resistance one due to an electrolyte
or solution resistance (Rs), and the other corrosion resistance (Rcorr) and double layer capacitance
(CdI). The Nyquist plots from Figs. 4.9 (a-c) layer show only 1-capacitive semicircle, and it
denotes samples dissolution by a single path. Al-Cu/Al sample dissolution in NaCl solution leads
to fast charge, which indicate a capacitive semicircle found in higher frequency region. NaCl acts
as an electrolyte or semi-infinite medium. At the interface of Al-Cu/Al (Cu: 5%, 10%, 15%), the
electro-active species are Al, Cu and CI. The Nyquist plots for Al-5%Cu/Al at interface denote
only one capacitive loop and the diameter (D) of the loop is higher when compared with 10% and
15% samples. The low current density is specified by higher capacitive loop which means high
corrosion resistance. An examination of impedance (Rcorr : 2790Q-cm?) of the Nyquist curve
denotes the thick oxide layer on formation on the surface of the sample which denotes extreme
decrease the corrosion rate for 5% sample than for 10% and 15% samples. The EIS results for
three samples at the interface is shown in Table 4.2 after 60 min. of immersion in 3.5% NaCl
solution.

Table 4.2 Electrochemical-impedance-spectroscopy (EIS) parameters for Al — Cu / Al composites

after one hour of immersion in 3.5% NaCl solution.

Parameters Al —5Cu/ Al interface Al —10Cu / Al interface | Al—15Cu/ Al interface
Rs (Q2.cm?) 2.082 1.726 0.895
Cai (uF.cm?) 1.96 421 2.32
n 0.771 0.769 0.753
Reorr (Q2.cM?) 2790 2163 1925
x? 8X10° 5X10° 10X10°

It is observed from EIS results that film resistance (Rcorr) of Al-15%Cu/Al sample
decreased from 2790 - 1925 Q-cm?, when compared to Al-5%Cu/Al sample. The average
corrosion resistance observed at Al-10%Cu/Al compared to Al-5%Cu/Al sample and Al-
15%Cu/Al sample was 2163 Q-cm?. At the same time, the double layer capacitance of Al-
5%Cu/Al sample increased from 1.96 - 4.21x10° S-sec”n cm™. Also, the average double layer
capacitance observed in Al-15%Cu/Al sample was 2.32 x10® S-sec”n cm. High (Rcorr) value
indicates the formation of thick oxide layer on Al-5%Cu/Al sample. This protective layer lowered

further reaction of cl~ (chloride ions) on the surface of the sample. The formation of Al2O3
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protective layer and incorporation of Al ions into Cu20 layer enhanced the corrosion resistance of
Al-5%Cu/Al at the interface.

Fig. 4.10 and Fig. 4.11 represents SEM-EDAX of the surface morphology of the Al-5wt. %Cu/Al
and Al-15wt. %Cu/Al samples which were immersed in 3.5% NaCl solution for 1h. From EDAX,
it is apparent that there was chlorine (ClI) and oxygen (O) presence at Al-Cu sample surface after
immersion in NaCl (sodium chloride) solution. The microstructure of corrosion tested Al-
5%Cu/Al and Al-15%Cu/Al two layered samples can be observed in Fig. 4.10 and Fig. 4.11. The
corrosion at spectrum 1 in Fig. 4.10 (a) and Fig. 4.11 (a) indicates that light corrosion region is ‘o’
at solid solution phase and at spectrum 2 the high corrosion area is ‘0’ (intermetallic phase).
Because of the local cell formation in between those 2-phases. In a solid solution phase, there was
no preferential dissolution observed because it was treated as a cathode (electron source), where
the anodic oxidation of ‘0’ results in high dissolution of sample in chloride. Fig. 4.10 (b) and Fig.
4.11 (b) shows highly magnified images of SEM which revealed intergranular and pitting
corrosion at various areas of the 6 phase. However, the corrosion rate of Al-5wt. %Cu/Al was
lower than for Al-15wt. %Cu/Al. The SEM-EDAX of 5%Cu sample at various regions reveals the
existence of base Al and Cu along with higher amount of O2 (oxygen) (30.06-34.33 wt.%) and low
amount of CI (chlorine) (0.23 —0.31 wt.%).

The oxygen percentage was high and chlorine considerably less for Al-5%Cu/Al sample
when compared to Al-15%Cu/Al two layered sample (Fig. 4.10 and Fig. 4.11). The presence of CI
(0.41 wt. %) denotes that the corrosion rate of Al-15%Cu/Al sample was less than that of 5%
sample. And Al-15%Cu/Al sample diffusion parameter (n) from the equivalent circuit was 0.753,

which is lower than remaining two samples denotes that the reaction is inhomogeneous.
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Fig. 4.10 The SEM micrographs of (a) Al-5Cu after 1hr. immersion in 3.5% (m/v) NaCl solution,

(b) the corresponding high magnified SEM micrographs and elemental distribution measured

from various regions by EDAX
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Fig. 4.11 The SEM micrographs of (a) Al-15Cu after 1hr. immersion in 3.5% NaCl solution,
(b) the corresponding high magnified SEM micrographs and elemental distribution measured

from various regions by EDAX

In Aluminium (Al) containing composites the surface dissolution of Al leads to an additional passivation
process and Al,O; formation according to [131, 132]:
Al +4ClI" — AICls + 3¢~ (4.2)

2AICls + 3H20 — AlOs + 6H + 8ClI- (4.3)

It was suggested that the existence of CuCl,™on the sample surface leads to hydrolysis reaction
and the formation of Cu.0 [133] as given below:

2CuCly + H20 — Cu20 + 4CI- + 2H" (4.4)
Therefore, corrosion resistance in Al - wt. %Cu /Al at interface rapidly decreases in 15%Cu sample
when compared to 5%. The presence of Cu with Al leads to oxygen reduction in Al-Cu alloys.
The expected layer formation on the surface is Cu20. A fresh open surface reveals the corroding
environment after the Cu.O film breaks and dissolves into NaCl. Therefore, Al-5%Cu/Al sample
exhibits lower current density (1.41 pm.cm™) than 10%Cu and 15%Cu samples.

4.3. Chapter Summary

In this work, the relative density, microstructure and hardness of Al-xCu / Al two-layered samples

were investigated with various percentages of Copper (Cu) in Al matrix under different hot-pressed

temperatures. The main findings are reported below.

44



A two-layered Al - Cu / Al was developed successfully for different percentages (5wt. %,
10wt. % and 15wt. %) of Cu content in Al matrix at different hot-pressed temperatures
(550 °C, 575 °C and 600 °C) through P/M route.

The sintered density increases from 500 °C to 550 °C rapidly with irrespective of Cu
composition. It shows a weak decreasing trend with increase in compaction temperatures
(550 °C- 600 °C).

Therefore, the highest density was achieved at 550 °C irrespective of Cu content. The
sintered density of composite samples increases from 5wt. % to 10wt. % Cu and for further
addition of Cu (15 wt. %) it was observed to increase more in density because of
agglomeration formation.

The XRD and EDAX tests were analyzed and the results confirmed that the Al.Cu
(intermetallic compound) was present in Al-rich phase and this particle increased
proportionally with an increase in Cu content.

Hardness increases with increase in sintering temperature from 500 °C to 550 °C and it was
noticed that there was a slight decreases in hardness with increasing temperature from 550
OC to 600 °C. Composition change at interfacial zone results in micro hardness which is the

higher at interface regions thanks to component metals.

The corrosion behaviour of the two layered Al-Cu/Al sample was determined using
potentiodynamic polarization test at interface region. The negative potential of 10wt. % Cu
sample (990mV) was lower than 5wt. % Cu sample (1002mV) and 15wt. % Cu sample
(1084mV). The experiments suggested that the corrosion susceptibility of 15wt. % Cu

sample was higher.

With the addition of copper content, susceptibility to corrosion increases. It was found that
10wt. % Cu sample circuit provides minimum chi-square value. From the SEM-EDAX
analysis of the samples, it was clear that there was intergranular and pitting corrosion at

various areas of 0 phase.
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Chapter 5

Wear behaviour of hot-pressed Al-10%Cu/Al two-layered composite by

powder metallurgy

5.1. Introduction

The present work focused on the wear behavior of Al layer, Al-10wt. %Cu layer and the interface
region (along the cross section) of Al-10%Cu/Al two layered composite which is fabricated by
powder metallurgical method. Several efforts have been made out to enhance the wear resistance
of Al alloys, and this includes introduction of perfect reinforcing materials into alloys and surface
coating applications to achieve the required specific engineering application. The friction
coefficient and wear behavior are impacted by various parameters such as sliding velocity,
lubrication, surface roughness, relative humidity and normal load. Pure Al and Al alloys are mostly
used in applications where corrosion is a problem. Al alloys are treated as bearing material in
applications where lower friction is needed. The wear test is normally done on sliding wear
environments with pin-on-disk tests. However, large number of hard reinforcements normalize
wear resistance, and the wear rate is highly improved due to abrasive wear behavior of
reinforcement [134]. Cu is a useful reinforcement addition in the direction of enhancing
tribological and mechanical properties of Al alloys [135].

The wear behavior of Al layer, interface region and Al-10wt. %Cu layer of Al-10%Cu/Al
sample was studied. In terms of wear rate and the coefficient of friction of regions, the studies
were carried out using a pin-on-disc test. The effect of the wear parameters such as applied load
(19.6N, 29.4N and 39.2N), sliding velocity (1m/s,1.5m/s and 2m/s) and sliding distance (500m,
1000m, 1500m and 2000m) on the tribological performance of the two layered composite structure
was reported. Al-10wt. %Cu layer shows better tribological properties than pure Al and interface
region. The worn surface examination shows that adhesive dominant wear mechanism occurs at
Al-10wt. %Cu layer than at the interface region. Abrasive wear mechanism was observed in pure

Al layer.
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5.2. Results and Discussion

5.2.1. Vickers Microhardness

Fig. 5.1 shows the Vickers micro-hardness profiles across interfacial region of Al-10 wt.
% Cu composite. The hardness value in Al-Cu layer and at interface increases with increasing Cu
content irrespective of sintering temperatures. Hardness increases with increase in sintering
temperature from 500 °C to 550 °C and it was also noticed that there was a decrease in hardness
with increase in temperature from 550 °C to 600 °C. The layered composites show increment in
hardness from 500 °C to 550 °C, indicating the finer dispersion of reinforcement in Al-Cu layer
strengthening the compositing. At higher temperature (550 °C to 600 °C) there was a drop in
hardness attributed to grain growth in matrix. The Vickers micro-hardness shown in Fig. 5.1 at
interfacial zone was measured to specify the consequences of intermetallic compound and
chemical composition. The micro-hardness is higher at the interface region. It is evident that
micro-hardness high at interface region than at the zone of metal components, caused by the

changes in composition at the interfacial zone.
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Fig. 5.1 Vickers micro-hardness profiles across interfacial region of Al-10 wt. % Cu composite
sample
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Table 5.1 Density properties of pure Al and Al-10wt. %Cu layers

Sample name Bulk density (g/cc) | Theoretical density (g/cc) | Relative density (%)
Pure Al 2.60 2.70 96.29
Al-10%Cu 2.75 2.90 95

The densities of pure Al layer and Al-10wt. %Cu layer are shown in Table 5.1. The bulk
density and theoretical densities of pure Al were enhanced after the addition of 10wt. %Cu. The
relative density of pure Al layer and Al-10wt. %Cu is almost similar but slight decrease was
observed in Al-10wt. %Cu as some of the researchers investigated and showed the relative
density of pure Al to be 97%.

5.2.2. Compression properties

Fig. 5.2 (a) illustrates compression stress-strain plots of hot pressed pure Al and Al-10wt. % Cu
composites. The complete details of compression properties of all the composites are summarized
in Table 5.2. The compression yield strength of pure Al increased nearly by 91% with the addition
of Al-10wt. %Cu. The ultimate compression strength also increased from 552 to 761 MPa and the
compressive strain reduced from 33.9 to 25.76%. It can be understood that Al-10wt. % Cu
composite exhibits maximum strength and with low amount of strain before fracture. On the other
hand, the pure Al was characterized by low strength and very high strain than Al-10wt. % Cu. The
fractured surfaces of Al-10wt. % Cu composite after compression test are presented in Fig. 5.2 (b).
Exhibit show both intergranular and transgranular fracture. It shows having more roughness

indicating large energy spent during fracture.
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Fig. 5.2 (a) Engineering stress—engineering strain curves of the samples and (b) Al-10wt. %Cu

sample fractured surface after compression test

Table 5.2 Compression properties of pure Al and Al-10wt. %Cu composites

Sample No YS(MPa) UTS(MPa) E(MPa) El (%)
Pure Al 282 520.88 128.52 33.90
Al-10%Cu 541 761.03 142.53 25.76

5.2.3. Coefficient of friction of two-layered Al-10wt. %Cu/Al composite

Fig. 5.3 shows the sliding distance as a function of the coefficient of friction (COF)
between the composite and the counter surface. Very little variation in the coefficient of friction
was observed. There weren't any aberrant inclusions or imperfections in the composite near the
surface that may alter the coefficient of friction, as seen by this small fluctuation. The friction
coefficient of Al-10wt. % Cu layer was much lower than that of other two layers. There was a
modest increase in coefficient of friction with the sliding distance at first, before it dropped off and
remained constant throughout the entire test. The interface zone had an approximately average
coefficient of friction.

It is demonstrated in Fig. 5.4 that when the composite's sliding velocity increased, so did
the friction coefficient. The results show a comparison of friction coefficient between a pure Al
layer and one with 10wt. % Cu. The friction coefficient of Al-10wt. % Cu layer increases from
0.25 to 0.36 as the sliding velocity increases from 1 to 2 m/s in trials. In contrast, when the sliding
speed increases, the friction coefficient of Pure Al layer increases from 0.46 to 0.60. The frictional
heat generated by the asperities of two contact surfaces results in a rise in temperature at the contact
points. Increased friction is caused by increased adhesion of pin material to the disc as sliding
velocity increases [136].

As demonstrated in Fig. 5.5, the normal load has a significant effect on the friction
coefficient, and the findings provide a comparison between the friction coefficients of pure
aluminium layer and Al-10wt. %Cu layer. The results reveal that as the normal load increases from
19.6N to 39.2N, the coefficient of friction reduces from 0.71 to 0.55 and 0.64 to 0.43 for pure Al
layer and Al-10wt. %Cu layer, respectively, for pure Al layer and Al-10wt. %Cu layer,

respectively. When the contact region is subjected to normal load, the average coefficient of
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friction is the norm. The load at the composite and disc interface is lower for lower loads and
higher for higher loads so that the effect of pure Al layer and Al-10wt. %Cu layer on the friction

coefficient is smaller at lower loads than it is at higher loads.
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Fig. 5.3 The influence of sliding distance on COF of (a) pure Al layer, Interface region and
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Fig. 5.4 The influence of sliding velocity on COF of (b) pure Al layer, Interface region and
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Fig. 5.5 The influence of normal load on COF of (c) pure Al layer, Interface region and
Al-10wt. %Cu layer
5.2.4. Wear Rate

Fig. 5.6 show the weight loss plots for pure Al, interface region and Al-10wt. % Cu layer
under 39.2N applied load. It is generally believed that the contribution of hard particles to Al
results in an improvement of the base alloy to a great extent based on the result under the load the
amount of weight loss of all particles.
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Fig. 5.6 The influence of sliding distance on weight loss of (a) pure Al layer, Interface region
and Al-10wt. %Cu layer
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Fig. 5.7 The influence of sliding distance on wear rate of (a) pure Al layer and Al-10wt. %Cu
layer. The influence of normal load on wear rate of (b) pure Al layer and Al-10wt. %Cu layer

The influence of sliding distance on the wear rate of pure Al and Al-10wt. %Cu is shown
in Fig. 5.7 (a). It is observed that an increase in sliding distance from 500 to 2000 m, decreased
wear rate of pure Al layer from (10.54 - 4.69) X102 (m3/m). On the other hand, Al-10wt. %Cu
layer showed decreased wear rate from (5.11 - 1.77) X102 (m3/m). During the initial stages of
the wear test, the harder surface asperities on the sample and counter surface interacts and after a
certain distance, the harder asperities wear off, and the material flows smoothly over the counter
surface. Tt is observed from Fig. 5.7 (b) that for an increase the normal load increases from 19.6N
to 39.2N, the wear rate of Pure Al layer increases from (15.1 - 21.17) X102 (m3/m). On the other
hand, Al-10wt. %Cu layer shows increased wear rate from (8.52 - 14.75) X10? (m%/m). Because
of the increase in normal load, frictional thrust is increased and real surface area is also increased,
hence causes higher wear.
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of worn surface sliding direction, (b) SEM images of worn surface

S
Fig. 5.8 (a) SEM image
in high magnification (c) Low magnification worn surface. The corresponding EDS of worn

surface and oxide layer is also presented

In case of Al-10wt. %Cu layer and interface, the worn surfaces are characterized with an oxide
layer and moderately small amount of wear debris can be seen (Fig. 5.8 and 5.9). Small amount of
wear debris was observed on the worn surface of Al-10wt. %Cu layer as compared to interface,
which may be the variations in COF being lower than interface as shown in Fig. 5.3 - 5.5. A careful
observation at the worn surface also exposes the existence of abrasion grooves on the oxide layer
and its delamination Fig. 5.8 (b), (c) and Fig. 5.9 (b), (c). The oxide layer contains low quantity of
oxygen than the interface and a minute fraction of Fe along with base Al and Cu elements. The
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adhesion may be negligible in the wear of Al-10wt. %Cu layer due to the presence of low quantity
of Fe. A scanning electron microscopic study was carried out on the two-layered Al-10wt %Cu/Al
composite. Some samples randomly chosen and cut at different locations were used for this
purpose. The worn surfaces on completion of the wear test were also studied to determine the
mechanism of wear that had occurred. Energy dispersive X-ray spectroscopy (EDAX) analysis
was done to find the composition of the samples at different locations on the surface to check the

distribution of the components in the composite.
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Fig. 5.9 (a) SEM |mages of worn surface sliding direction (b) corresponding high

magnification (c) corresponding low magnification. The corresponding EDS of worn surface
and oxide layer is also presented
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5.2.5. Analysis of wear debris

To comprehend the wear mechanisms, additionally an analysis of the micro structure was carried
out on wear debris. The SEM micrographs of pure Al, interface region and Al-10wt. %Cu layer
wear debris after wear test were stored on the steel disk as shown Fig. 5.10 (a-c). It can be seen
from the Fig. 5.10 (a) that there was fine agglomerated wear debris for pure Al. On the other hand,
as shown in Fig. 5.10 (c) the size of the wear debris was notably flaky and coarse.

During the wear of Al-10wt. %Cu layer, due to the micro-cutting action of harder particles flaky
wear debris were developed. The big flaky debris roll or slides between the hard contacting pairs
during sliding. During wear at the interface, the debris seems to be in between agglomerated and
flaky as shown in Fig. 5.10 (b).

Scale bar 20 microns

Fig. 5.10 (a) SEM |mages of pure Al layer, (b)lterface region and (c) Al-10wt. %Cu layer
wear debris
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5.3. Chapter Summary

Within the observed range, coefficient of friction increases with increase in sliding distance
and sliding velocity after which it becomes steady for all pure Al layer, interface region
and Al-10wt. %Cu layer. Moreover, it is apparent that for identical conditions, with
increasing sliding distance and sliding velocity, Al-10wt. %Cu layer shows lower
coefficient of friction than Al and interface region.

Friction coefficient decreases with increase in normal load for all pure Al layer, interface
region and Al-10wt. %Cu layer. With increasing normal load, Al-10wt. %Cu layer shows
lower friction than Al layer and interface region.

The wear rate decreases with increase in sliding distance for pure Al layer and Al-10wt.
%Cu layer. Wear rate increases with increase in normal load for pure Al layer and Al-10wt.
%Cu layer.

A low amount of wear debris was noticed on the worn surface of Al-10wt. %Cu layer
compared to interface region, hence the fluctuations in COF were lower than at interface

region and Al layer.
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Chapter 6

Formability and densification behaviour of two-layered structure powder

metallurgical hot-pressed Al-Cu/Al composites during hot-upsetting

6. 1. Introduction

The main aim of the present work was to study the formability and densification
characteristics of the two-layered Al-Cu/Al composites with various Cu content in Al-Cu layer
prepared by powder metallurgy method. These characteristics depends on sintering temperature,
initial relative density, stress state condition, aspect ratio, and hot-compaction temperature. And
the effect of various percentages of Cu addition and different deformation temperatures on the
formability characteristics and deformation mechanism of Al-Cu/Al preforms were studied by hot
upsetting tests and microstructural observations. Aluminium is a relatively low cost, light weight
metal that can be heat treated and loaded to relatively high level of stresses, and it is one of the
most easily produced of the high performance materials, which results in low manufacturing and
maintenance costs. Automotive sector, missile technologies and aerospace industries focus on
advanced engineering materials, which led to rapid development of metal matrix composite.

An experimental investigation was performed on hot formability and densification characteristics
of AI-Cu/Al two-layered structure composites. The two-layered composites with different Cu
compositions in Al-Cu layer such as (Cu: 5wt. %, 10wt. %, and 15wt. %) were prepared using
powder metallurgy (P/M) route. The composites were hot-pressed layer by layer in a steel
cylindrical die at 550 °C temperature with 0.9 initial relative density (IRD) and 0.1 s strain rate.
The preforms were hot deformed between two flat dies with a capacity of 50-ton hydraulic press
machine at a temperature range of 150 °C — 450 °C under triaxial stress state condition. The hot-
upsetting behaviour of preforms was observed until the cracks begin on the cylindrical preform at
the outer surface. The effect of different Cu composition and various deformation temperatures on
two-layered preforms were discussed. Results revealed that (10wt. %Cu) preform achieved good

cooperative deformation behaviour between Al-Cu and Al layers at the interface region. The

57



relationship between process parameters was discussed such as the effect of axial stress (a,) and
relative density (R) on axial strain (&,) and the impact of formability stress index (8) and different
stress ratio parameters (0, /e ff,0m/0err ) ON relative density (R).

6. 2. Theoretical analysis

The hot-upsetting parameters, which are used to observe the workability and deformation
behavior through the triaxial stress state conditions, were calculated using mathematical equations.
The mathematical calculations for the aforesaid parameters stated in this paper - axial stress(a,),
axial strain (g,), formability stress index (f), hoop strain (gg), hoop stress(ay), hydrostatic
stress (o,,,) and effective stress (o,ff) are given below.

According to Abdel-Rahman and El-Sheikh, [137] axial strain(e,) and axial stress (o)

parameters of powder metallurgy compacts can be calculated from the following equations.

g, =1In (ﬂ) (6.1)

H

load
o, = o2 (6.2)

contact surface area

And the hoop strain &g is
Dy

g =& =1In (F) (6.3)

Hoop strain &g established, [138] is given below and it contains the deformed bulged diameter

(Dpy and deformed contact diameter (D) of the preform.

_ 2Df+ Dé]
g =In [ "~ (6.4)
Here, Dc represents the normal surface diameter of the deformed preform.
The stress state is given in as : [139]

_deg _ (2+R*)og— R%*(0,+20¢) (6.5)

" de;, (2+R2)o,— R%(0,+20p)
Here a denotes Poisson’s ratio, where the axial strain (£,) and relative density (R) are known

before, the hoop stress (o) was calculated using Eq". (6.5) as

Og . [ (2a+R?) ] __degg
/o, =1n | Wherea = 2, (6.6)

58



The cylindrical coordinates (g = 0,) were used to calculate hydrostatic stress as

ortog+toy, 209+0y,

m = 3 =3 (6.7)
1 2

i =2(1+22) 6.8)

(o 3 Oy
The effective stress given below, [140]

2 — (0,°+09%+0,?)— R*(0,09+090,+0,07)

O-eff - 2R2—1 (69)
Since (og = 0,) at cylindrical axisymmetric deforming operation, the Equation (6.9)
becomes

2 (0'22"'20'92)_ R2(0'20'9+0'92+0'r0'z)
Oeff = 2RZ2-1
1
_ [(0%+2042)— R*(0g2+20,0,)]2
Ocff = [ SR7Z_1 ] (6.10)

Vujovic and Shabaik, [141] proved the formability stress index experimentally from the

stress state of the spherical component (hydrostatic).

3o0m
= 6.11
vors (6.11)

As reported in Vujovic and Shabaik, [141] the formability stress index, g determines the
limit of fracture.
6. 3. Results and discussion

Figs. 6.1 — 6.3 shows the axial stress - axial strain curves of Al-Cu/Al preforms at various
deformation temperatures such as 150 °C, 250 °C, 350 °C, and 450 °C and different Cu contents in
Al-Cu layer such as 5wt. %, 10wt. % and 15wt. % at 0.1s strain rate. The Cu composition and
deformation temperature have a significant influence on the flow stress of preforms. The flow
stress increases with decreasing deformation temperature and irrespective Cu content. The flow
stress of preforms increased rapidly and obtained peak stress at lower axial strain (approximately
0.02) during the starting stage of deformation due to higher closure of pores. At low deformation
temperature (150 °C) after peak stress, the flow stress continues to increase due to work hardening.

However, with further increase in strain, it produces a large quantity of deformation heating. So
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that the mechanism of dynamic softening starts at a certain strain, then flow stress exhibits a
dropping tendency and reaches stable conditions with an increase of strain as reported by Liu and
Wang [142]. At higher deformation temperature of 450 °C, the isothermally activated process
strongly controls the hot deformation process and atomic movement so that dislocation slip
become easy. Thus, at peak flow stress, the softening mechanism is initiated. Therefore, at high
deformation temperatures, the interface constraint effect on the flow of softening aluminium layer
deteriorates a little. The hot deformation which is mainly focused on the softer Al layer, combined
with interface constraint effect, leads to low flow stress at high deformation temperature. The
effects of Cu composition are negligible in the early stage of deformation where the axial strain is
up to 0.02 (peak stress), but significant in the strain hardening phases. Therefore, the axial strain

decreases with increasing Cu content.
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Fig. 6.1 Axial stress-Axial strain curves of (a) Al-5%Cu/Al composite during hot deformation

with IRD of 90% at strain rate of 0.1 s
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Fig. 6.2 Axial stress-Axial strain curves of (b) Al-10%Cu/Al composite during hot deformation

with IRD of 90% at strain rate of 0.1 s
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Fig. 6.3 Axial stress-Axial strain curves of (c) Al-15%Cu/Al composite during hot deformation

with IRD of 90% at strain rate of 0.1 s
The relative density (R) - axial strain (g;) curves of preforms at various deformation
temperatures and different percentages of Cu content with a 0.9 relative density under triaxial
stress state condition, are shown in Figs. 6.4 - 6.6. The densification increases with an increase of
deformation temperature in preforms. Better densification is attained due to lower porosity during
deformation [143]. Therefore, the amount of densification increases with the addition of Cu
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content (up to 10wt. %) to preforms. The material flow is similar in both Al and Al-Cu layers of
preform. In the beginning, the densification rate increases steeply with increasing axial strain and
proportional to the closure of pores significantly improves the densification. The densification is
gradually decreased with increasing axial strain during the stage of 0.02 to fracture. With further
increase of axial strain, the pore size decreases and leads to fracture. It is observed from Figs 6.4 -
6.6, that densification characteristics are dissimilar for various amounts of Cu present in the
perform at different deformation temperatures. The maximum densification was attained for 10wt.
% Cu content preforms compared to 5 wt. % Cu and 15 wt. % Cu for any given axial strain. The
material flow behavior of preforms increases by the addition of Cu content (up to 10wt. %) to Al-
Cu layer by means of Cu particles which enhance the free movement in material flow from center
to periphery. Consequently, hoop stress is high 10wt. % Cu preforms. Moreover, it is found from
Fig 6.5 that highest relative density of 0.95 was attained by 10wt. % Cu preforms at 450 °C

deformation temperature.
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Fig. 6.4 Effect of axial strain () on relative density (R) of (a) Al-5%Cu/Al composite for

various temperatures under the tri-axial stress state condition.
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Fig. 6.5 Effect of axial strain (e;) on relative density (R) of (b) Al-10%Cu/Al composite for
various temperatures under the tri-axial stress state condition.
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Fig. 6.6 Effect of axial strain (ez) on relative density (R) of (c) Al-15%Cu/Al composite for

various temperatures under the tri-axial stress state condition.

The design of forming operations of Powder metallurgy components has the most
significance, and the formability stress index (5) is an important parameter, which establishes a
safe working zone for manufacturing defect-free part. Figs. 6.7 — 6.9 show the effect of different
deformation temperatures and Cu content at 5wt. %, 10wt. %, and 15wt. % on axial strain (&)

against the formability stress index (f) under triaxial stress state condition. The formability stress
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index (f) increases with increasing deformation until work hardening. With little increase of axial
strain (ez), the formability stress index (/) increased at any deformation temperature irrespective
of Cu percentage in Al-Cu layer. The formability stress index () increases along with increasing
deformation temperatures irrespective of Cu content in the Al-Cu layer. From Figs 6.7 — 6.9, it can
be seen that the fracture limit curve increases with increasing deformation temperature and is
irrespective of Cu content.

The decrease in pore size and also increase in fluidity at high deformation temperatures
causes more density in preform than at low deformation temperatures. Therefore, more formability
stress index () is attained at a high deformation temperature for any Cu content percentage in the
Al-Cu layer. With the addition of Cu content in Al-Cu layer, the fracture limit curve is moves
towards the left side. However, the early fracture occurred in Al-layer of high Cu content (15wt.
%) preform. Cluster formation occurs with increasing cu content in t Al-Cu layer, which leads to
an early fracture in Al layer of 15wt. % Cu content preform.

It was found that low formability stress index () was observed in 15wt. % Cu content
preform with reference to axial strain, at any deformation temperature. The higher formability
stress index (B) was attained in 10wt. % Cu preform at 450 °C deformation temperature and its

fracture at higher axial strain.
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Fig. 6.7 Effect of axial strain (e;) on formability stress index (B) of (a) Al-5%Cu/Al composite

for various temperatures under the tri-axial stress state condition.
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for various temperatures under the tri-axial stress state condition.

Figs. 6.10 — 6.12 show the effect of different deformation temperatures and addition of Cu

content 5wt. %, 10wt. %, and 15wt. % on relative density (R) against stress ratio parameter
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(06/0.f) Under triaxial stress state conditions. With an increase in relative density (R), the stress
ratio parameter ( g, /0, ) increases irrespective of deformation temperature and Cu percentage in
the AI-Cu layer. While increasing deformation temperature, the material flow increases from
center to outer edge. Thus high densification is achieved due to closes of pores. Therefore, with
increasing deformation temperature and relative density (R), the stress ratio parameter increases at
any Cu percentage in the Al-Cu layer. The material flow behavior of preforms increases by the
addition of Cu content (up to 10wt. %) to the Al-Cu layer, which causes Cu particles to enhance
free movement in material flow from center to outer edge, increasing the closure of pores.
Consequently, hoop stress is high in 10wt. % Cu preforms. The stress ratio parameter (o, /0.ff)
increases along with hoop stress. The high-stress ratio parameter (o, /0.s) and relative density

(R) observed in 10wt. % Cu preform at 450 °C deformation temperature.
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composite for various temperatures under the tri-axial stress state condition.
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Figs. 6.13 — 6.15 show the effect of different deformation temperatures and various Cu
content 5wt. %, 10wt. %, and 15wt. % on relative density (R) against stress ratio parameter

(0m/0esy) under triaxial stress state condition. With increasing deformation temperature and
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relative density (R), the stress ratio parameter (o, /0. s) increases at any Cu percentage in the Al-
Cu layer. With increasing Cu content, the stress ratio parameter (o, /0,f) also increases along
with relative density at any deformation temperature. Higher stress ratio parameter (g, /o.fs) and

relative density (R) were observed in 10wt. % Cu preform at 450 °C deformation temperature.
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Fig. 6.13 Effect of relative density (R) on stress ratio parameter (o,/0.ff) of (a) Al-5%Cu/Al

composite for various temperatures under the tri-axial stress state condition.

18 T T v T 1 T L) 1

Fracture limit

-
o
1

e

-
'
1

—a—150°C

—e—250°C A

—a—350°C

10 ‘ —v—450°C

090 091 092 093 094 095 096
Relative density (R)

Fig. 6.14 Effect of relative density (R) on stress ratio parameter (g, /0.sf) of (b) Al-10%Cu/Al

Stress ratio parameter (c_/c_,)
N
1

composite for various temperatures under the tri-axial stress state condition.

68



1 8 T T T T 2 T g T
()

Fracture limit -

-
(o]
1

-
F N
1

—a—150°C

—e—250°C A

—a—350°C

e ,_'._4?009

090 091 092 093 094 095 096
Relative density (R)

Fig. 6.15 Effect of relative density (R) on stress ratio parameter (g, /0, s) of () Al-15%Cu/Al

Stress ratio parameter (c_/o,,)
[N}
1

composite for various temperatures under the tri-axial stress state condition.

6.4. Chapter Summary

The hot-pressed AI-Cu/Al (Cu: 5wt. %, 10wt. % and 15wt. %) two-layered preforms were
successfully produced by P/M method to improve the workability and densification behavior. The
formability and densification of such preforms were studied during the hot upsetting process with
IRD of 0.9 and strain rate of 0.1s™, under triaxial stress state condition at different deformation
temperatures from 150-450 °C and various percentages of Cu content in Al-Cu layer. The
following conclusions are obtained for aforesaid performs with respective conditions:

e The densification of preforms increased rapidly and attained peak stress at lower axial

strain (approximately 0.02) in the starting phase of deformation due to pores decreases.

e The densification gradually decreased with increasing axial-strain from 0.02 to fracture,
causing an increase of axial deformation, decrease in pore size and finally fracture.

e The highest relative density (R) of 0.95 was attained by 10wt. %Cu performs at 450 °C
deformation-temperature.

e With the increase of axial-strain, the formability stress index (B) increased at any

deformation- temperature with the addition of Cu content in Al-Cu layer. The higher
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formability stress index was attained for 10wt. %Cu preform at 450 °C deformation-

temperature.

Both £ and R increase with increase in deformation temperature and the addition of Cu
content in Al-Cu layer. The maximum workability and relative density were obtained for
10wt. %Cu preform at 450 °C deformation-temperature.

Both stress ratio parameters (o, /0.fr,0m/0esy ) Versus relative density curves show that
workability increases with increasing deformation-temperature and the addition of 10wt.

% Cu content to Al-Cu layer.

The cooperative deformation on the interface was obtained between Al-Cu layer and Al

layer at a low deformation temperature of 150 °C for 10wt. %Cu preform.
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Chapter 7

Modelling the microstructure of the dynamically recrystallized grain size of a

Al-10 wt % Cu/Al two-layered sintered composite under hot upsetting

7. 1. Introduction

In the forming process, the important technological feature is the metal and alloy both of which
are controlled by the grain size, because grain size plays an important role and is closely related to
the mechanical performance and properties of the last product. Through hot deformation the
Dynamic Recrystallization (DRX) plays a key role for the microstructure or grain size control that
decreases the resistance of material. Under interface constraint effect, soft Al layer and hard Cu
layer coordinate with each other during the hot compression process of Cu/Al composites
materials. And the cooperative deformation capability increases with increasing stain rate and
decreasing deformation temperature.

The regulation of grain size in any technical metal is extremely critical during the hot
upsetting process. In most cases, the grain size of a material has a direct impact on the mechanical
qualities and performance of the material. AI-Cu/Al two-layered structure composite has a wide
range of uses in a variety of industries, including nuclear power, defence, and electronic
manufacturing. As a result, the purpose of the present work is to investigate the dynamic
recrystallization (DRX) behaviour of an Al-10 wt% Cu/Al two-layered structure composite at the
interface region during a hot upsetting test. Experiments were carried out on sintered Al-10 wt %
Cu/Al sintered samples by a number of initial relative density values of 80%, 85%, and 90% over
a temperature limit of 150350 °C and a strain rate range of 0.1-0.3 s. The results were compared
with theoretical predictions. An optical microscope was used to examine the DRX grain size of
Al-10 wt % Cu/Al preforms for IRDes, as well as temperatures and strain rates experienced during
the process. The activation energy and Zener—Hollomon constraint of Al-10 wt percent Cu/Al
sintered samples were computed under a variety of deformation circumstances and IRDes, and the
results are presented in this paper. In order to estimate the DRXed grain size, mathematical
representations of DRX are situated to create a role for Zener—Hollomon parameter at various IRDs
and apply it to various IRDs. It has been discovered that DRX grain size reduces as the Zener—
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Hollomon parameter is increased. A series of verification experiments were carried out between
the calculated and predicted values of DRX grain size with a variety of IRDs. The results revealed
that the absolute and mean absolute errors were 8.91 and 3.75 percent, respectively.

7.2. Results and Discussion

7.2.1. Study of Hot Flow plots

The peak flow stresses from true strain () - true stress (o) experimental values of Al-10 wt %Cu/Al
two layered sintered preforms hot deformed at different temperatures 150°C, 250°C and 350°C
with different strain rates such as 0.1 s, 0.2 stand 0.3 s for different IRD’s (Initial relative
density) such as 80%, 85% and 90% are as shown in Table 7.1. It is observed from [144, 145, 146,
147], that flow stress is remarkably sensitive to strain rates and deformation temperatures. With
increase in hot upsetting temperature and decrease in strain rate, the flow stress decreases
irrespective of initial relative densities (IRD’s). There is an increase in movement of grain
boundaries, when hot upsetting temperature increases, thereby accelerating the growth of DRX
grains [148]. In contrast, with increase in hot upsetting temperature, the vacancy due to diffusion
(diffusion rate) and dislocation due to motion (motion of dislocation rate) increases [149], it is also
observed that there is increase in the amount of DRX grains because there is adequate time to hot
upsetting a two layered preforms while lowering strain rate.

Therefore, an increase in dynamic softening enables the flow stress decrease [150]. For every
tested condition the influence of IRD is important on flow stress. Irrespective of strain rate
temperature, an increase in flow stress was observed with increase in IRD. By increasing IRD,
difficulties occur while deforming a two layered preform such as the dislocation slip because for
deforming a sample, it requires enormous amount of load, the hardness and strength of the two
layered preform also increase. When compared to low IRD, at higher IRDs, the dislocation slip
movement was lower with respect to hot upsetting load. Thus, to avoid complications through
deformation it needs an amount of high load to increase the movement of dislocation slip of the
two layered preforms. The plots of flow stress highly increase up to strain value of 0.2 and from
0.2 it is constant till the highest strain values are attained. This occurs for maintaining the dynamic
balancing between work hardening and dynamic softening stages. On low strain rate, work
hardening plans an important role to increase the dislocation slip movement density [151], and
leads to fast growth of flow stress up to 0.2. From 0.2 to high strain value the plots of flow stress

showed a steady state, where the DRX process starts through hot upsetting. After 0.2 strain value,
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increasing the strain rate leads to work hardening neutralization after when dynamic recovery takes
places which causes DRX phenomenon. From the result it is clearly observed that at high strain
values o - € plots turn out to be flat to almost zero slope.

Table 7.1 Experimental peak flow stress of Al-10%Cu/Al composite with various IRDs

IRD-80% IRD-85% IRD-90%
Def. Tem. (K) é(s? PFS stress (o) PES stress (o) PFS stress (o)

(MPa) (MPa) (MPa)
423.15 0.1 108.13 111.13 113.13
423.15 0.2 111.16 114.12 116.61
423.15 0.3 113.15 116.28 118.15
523.15 0.1 86.84 89.84 91.84
523.15 0.2 89.81 92.81 94.81
523.15 0.3 91.46 94.46 96.46
623.15 0.1 61.84 64.84 66.84
623.15 0.2 64.71 67.81 69.81
623.15 0.3 66.36 68.29 71.19

7.2.2. Computation of Activation Energy (Q) and Zener—Hollomon Parameter (Z2).

The change in DRX grain size is only determined by some deformation conditions [152].

The purpose of Zener—Hollomon parameter is to show the effect of both strain rate and temperature
[153].

7 = éexp (RQ—T) (7.1)
The strain rate (s-1), activation energy (kJ mol-1) of hot deformation, universal gas constant (8.314
J mol-1 K-1), and the absolute temperature (T) are all denoted by the symbol (K).

For finding the results of parameters of Zener—Holloman, it is good to measure the activation

energy of hot deformation. During hot deformation, Arrhenius [153, 154] -type equation is

considered to measure the activation energy. The Arrhenius equation is defined as follows:
¢ = A [sinh (ao)]™ exp (_Q) (7.2)

RT

Aimed at low stress stages (ao <0.8), sinh (ao)" = ag, and equation (7.2) can be reduced to:

73



¢=A, 0" exp (ﬁ) [ao < 0.8] (7.3)

Where A1 = Aa", (fabrication material constant)
However when aimed at high stress stages (a¢a>1.2), sinh(ac) = 0.5 exp (ac) and equation (7.2)

can be reduced to:
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Fig. 7.1 Relationship between In € — o of composite with various IRDs

Figs. 7.1 and 7.2 shows the associated diagrams of In ¢ — In o & In € — 0. By measuring the slant
average of In ¢ — o & In € — In ¢ shapes at dissimilar temperatures, the values of  and n can be
attained. Thus, the value of a = £/n is measured. Table 7.2 shows the average measures of g, a

& nintended for hot deformation of Al-10wt. % Cu/Al sintered two layered composites for various

IRDs.
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€ = A, exp(Bo) exp (g) [ac > 1.2]

¢ = A [sinh (ao)"] exp (ﬁ) [ao taking any values]

Where A, A> = A/2", and o = B/n, in this case, the values of n and S are estimated from the

constants, based on the findings of the experiments.
Taken together, Egs. (7.3) and (7.4) can be stated as Egs. (7.6) and (7.7), which are the natural

logarithms of the original equations.

Iné¢ = InA4; + nlno —
RT

Q
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Iné = InA, + fo — = (7.7)

The partial differentiation of Equations (7.6) and (7.7) can be reduced as given below because
the hot upsetting process led at persistent temperature.

dlné
- [aan]T=const (7.8)
dlné
= |— 7.9
ﬁ [ 90 Ir=const ( )
Table 7.2 Different IRDes of composite were used to calculate the values of g and n
IRD (%) B n o
80 0.233 21.21 0.0111
85 0.232 21.78 0.0108
90 0.235 20.80 0.0104

The values of flow stress and their equivalent strain rate are substituted in equations (7.8) & (7.9)
for different IRDs and temperatures and during the hot deformation of Al-10wt. % Cu/Al two
layered sintered composites activation energy (Q) at dissimilar temperatures, the strain rates and

IRDs can be attained through applying expected natural logarithm on both sides of Equation (7.5).

Iné = Anln [sinh(ao)] — = (7.10)

When the constant strain rate requirement is stated, partial differentiation of equation (7.10) yields

the result

_ dln¢ dln [sinh(ao)]
Q=R {aln [sinh(ao-)]}Tzconst { a(%) }é—conSt (7.112)

Therefore, the relationship of Iné — In[sinh(ao)] and In[sinh(ag)] — 1/T can be attained by
applying the values of temperature and flow stress at a given strain rate for different IRDs into
Equation (7.11), as shown in Figs. 7.3 and 7.4 the activation energy is measured form the slop of
Iné¢ — In[sinh(ao) and In[sinh(ao)]. Table. 7.3 denotes Al-10wt % Cu/Al two layered
composites activation energy at various deformation conditions. Mostly, the values of g, n,
activation energy has great effect by IRD. The Al-10wt % Cu/Al two layered composite’s
activation energy (Q) is more than Pure Aluminium’s self-diffusion energy is (144.3 kJ/mol) [155],

during hot deformation for various IRDs, strain rates and temperatures, because of the
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reinforcement of Copper added to Aluminium matrix (Al-Cu layer), as clearly observed form

Table. 7.3.
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Fig. 7.3 Relationship between In¢ — In[sinh(ao)] of Al-10wt % Cu/Al sample with

various IRDs
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Table 7.3 Values of Q and Z parameter with various IRDs of Al-10wt % Cu/Al composite
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Def. Tem. (K) | ¢(sY) | Q(kl/mol) | Z(sY) |Q(K/mol)| Z(sY) |Q(k]/mol)| Z(s?)
423.15 0.1 165.85 |29x10°| 168.10 |5.6x10°| 179.51 1.4 x 10%
523.15 0.1 162.79 | 1.8x10®| 165.23 |3.1x10®| 177.61 5.4 x 10'®
623.15 0.1 155.67 1.1 x 10*? 163.87 | 5.4 x 10%? 174.77 4.4 x 103
423.15 0.2 164.23 | 3.7x10°| 166.35 |6.8x10°| 177.67 1.7 x 10%
523.15 0.2 161.20 |24x10®| 16351 |4.2x10®| 175.79 7.1x 10
623.15 0.2 154.14 1.6 x 10*? 162.16 7.8 x 10% 172.98 6.3 x 105
423.15 0.3 162.43 | 3.3x10°| 16440 |59x10°| 175.62 1.4 x 10%
523.15 0.3 159.43 | 2.4x10®| 161.60 |4.1x10®| 173.76 6.7 x 106
623.15 0.3 152.45 | 1.8x102? | 160.26 |8.1x10%?| 170.98 6.4 x 10°

To estimate the Z constraint for equivalent strain rate range and different deformation temperatures

the activation energy (Q) values are substituted in equation (7.1).
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At different deformation




conditions the Zener-Hollomon constraint values of Al-10wt % Cu/Al sintered two layered
composite are shown in Table. 7.3.

7.2.3. Expansion of Microstructure Manner of Al-10wt % Cu/Al Composite

The association of Zener—Hollomon parameter and DRX grain size average can be defined as
follows [156]:

dany = AdnyZ™ ™Y (7.12)
Where dgyn - dynamically recrystallized grain size (measured at interface of the Al-10wt %
Cu/Al two layered composite) , Adyn, Ngyn— fabrication material constants.

To conclude to DRX (dayn) grain size, a mathematical model was developed using Eq. (7.12).

It is shown in Fig. 7.5. The association of dayn— Z of Al-10wt % Cu/Al two layered sample for
various IRDs was developed by appropriate form of power law in Eq. (7.12). Therefore, for
various IRDs (80%, 85%, and 90%) different mathematical models were established between
dayn—Z.

These models figure below:

for 80% IRD dgn, = 10.71 Z~000° (R?=0.907) (7.13)
for 85% IRD dgny = 14.67 27001 (R? = 0.915) (7.14)
for 90% IRD dgn, = 21.04 27001 (R? = 0.934) (7.15)

dayn as a function Z parameter shown in Fig. 7.5.
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Fig. 7.5 Relationship between Z parameters and dgyn of Al-10wt % Cu/Al composite with

various IRDs
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Fig. 7.6 Microstructure of Hot deformed Al-10wt. %Cu/Al samples with a strain rate of 0.1
st and a 90% IRD at various temperatures: (a) 150 °C, (b) 250 °C, and (c) 350 °C

10pm

Fig. 7.7 Temperature and strain rate effects on the microstructure of Al-10wt. %Cu hot
deformed samples at 90% IRD at 150 °C

The dayn is in reverse proportion to Zener-Hollomon parameter (Z), as clearly observed from the
mathematical model expressed above. As shown in Figs. 7.6 and 7.7 the dayn reduced with growth
in strain rate and decreased at hot deformation temperature. At low temperature, the DRX grain
boundaries show slow movement. Similarly, with strain rate increase, nucleation rate also
increases, therefore dayn decreases. Under other conditions, with growth in temperature and
reduction in strain rate, dayn increases. At low strain rates an increase in grain size was observed
because there was enough time available for grain growth, and the movement of DRX grain
boundaries was high when the deformation temperature was high. As per Eq. (1), with increase in
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strain rate and decrease in temperature there was an increases in Zener-Hollomon parameter.
Therefore, there was an increase of Z parameter with grain size decrease shown in Fig. 7.5. As per
the EQ" (7.1) there was a decrease in Zener-Hollomon parameter with strain rate decrease and
temperature increase. Accordingly, with decrease in Zener-Hollomon parameter grain increased.
Thus, it is clearly noticed from Figs. 7.6 and 7.7 that the DRX grain size is totally dependent the
Z parameters such as strain rate and temperature. From Table 7.4. It can be noticed that for
different initial relative densities, from the established mathematical model Equations (7.13) —
(7.15), the material constants Agyn & Ngyn values were measured.

Table 7.4 Al-10wt% Cu/Al composites yielded different values for Adyn and ndyn

IRD (%) Adyn Ndyn
80 10.71 -0.009
85 14.67 -0.011
90 21.04 -0.01

(b)
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Fig. 7.8 Microstructures of Al-10wt. %Cu hot deformed samples for 90% IRD temperature

of 350 °C at dissimilar strain rates
Table 7.5 Comparison between measured and calculated grain size of Al-10%Cu/Al composite
with various IRDs

Initial relative density = 80% Initial relative density = 85% | Initial relative density = 90%
Def. Temp Strain dm de 1) Om dm dc 6 Om dm de é Om
(K) rate (Shl) (pm) (pum) (%) (%) (um) (pm) (%) (%) (pm) (pm) (%) (%)
423 0.1 729 | 7.16 | 1.82 | 253 | 9.09 890 | 214 | 3.74 | 13.16 | 1293 | 176 | 1.78
523 0.1 8.01 | 7.81 | 2.48 10.19 | 9.91 2.78 14.69 | 14.31 | 2.56
623 0.1 8.69 8.98 | 3.31 10.95 | 11.64 | 6.31 15,53 | 156.37 | 1.04
423 0.2 7.25 7.14 | 148 | 1.64 | 8.69 8.82 155 | 159 | 12.76 | 1291 | 1.14 | 0.98
523 0.2 7.92 7.79 | 1.66 9.71 9.58 1.39 14.21 | 14.28 | 0.46
623 0.2 8.47 8.32 | 1.79 10.39 | 10.58 | 1.85 15.11 | 1531 | 1.36
423 0.3 7.15 7.30 | 207 | 1.44 | 8.59 7.82 8.91 | 3.75 | 1257 | 1293 | 2.85 2.23
523 0.3 7.64 7.79 | 1.95 8.48 8.47 0.15 13.98 | 14.28 | 2.17
623 0.3 8.13 8.11 | 0.30 9.14 8.94 2.16 15.06 | 15.31 | 1.67
1 - T - T - T - T 13 - T T - . - T
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Fig. 7.9 Correlation between calculated and measured average DRX grain size of Al-10wt
% Cu/Al sample with different IRDs

It was observed that with an increase in IRD, the value of nayn also increases. A reduction in the
value of Z constraint tends to growth in dayn. Therefore, form Fig. 7.8 it is noticed that dgyn increases
with increasing IRD. An increase in IRD of the sample before deformation, decreases the porosity,
which enables earlier diffusion of grains throughout the deformation. From Table 7.5 it is noticed
that with IRD increase, dgyn also increases. Under other conditions, when IRD decreases, dayn also
decreases. Hence, dayn is dependent on Initial Relative Density (IRD). The established
mathematical models of DRX mentioned above can be used to measure the DRXd grain size of
Al-10wt % Cu/Al sintered two layered structured composite for various IRDs

7.2.4. Confirmation of Established Mathematical Standard of Al-10wt % Cu/Al Sintered
two layered structured composite.

From Table 7.5, the measured DRXd grain sizes can be observed at different deformation
condition and IRDs for the established model. To estimate the accuracy of the established model
of Sintered Al-10wt % Cu/Al two layered structured composite, a comparison was made between
measured and calculated DRXd grains for each IRD. From Fig. 7.9 the curves between calculated
and measured dayn at different IRDs are available. The maximum dayn of dc and dm are almost near
the line of best fit. The R? values between dc and dm of dayn are said to be 0.90, 0.91 and 0.93 at
each IRD of 80%, 85%, and 90%, at which d. perfectly agreed with the dm under all deformation
conditions. Therefore, at higher IRD, the estimation capability of the established model is better.
Furthermore, the accuracy of the established mathematical model of Al-10wt % Cu/Al two layered
structured composite through hot upsetting was proven by applying absolute error-d and mean
absolute error-dm which are called standard statistical parameters. The absolute error is calculated

from the values of dayn Of dc and dm using the below equation:

o=

et dm| x 100% (7.16)

From Table 7.5, at various IRDs and deformation conditions, a complete comparison was
made between dc and dm of dayn Of sintered Al-10wt % Cu/Al two layered structured composite.
At different IRDs and at each deformation conditions, the average percentage error did not exceed
8.91% and the mean absolute error did not overdo 3.75%. Therefore, it was evident that the

mathematical representations showed improved predictive ability at high IRDs and low strain rates
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through hot deformation. Consequently, the findings show that d. (calculated result) shows better

agreement with dm results of DRX grain size. This is the evidence for the reliability and precision

of established mathematical model of Al-10wt % Cu/Al two layered structured composite at
different IRDs.
7.3. Chapter Summary

The DRX behaviour of sintered Al-10 wt percent Cu/Al two-layered structure preforms was

investigated by carrying out hot upsetting examinations for dissimilar IRDes of 80%, 85% and

90% at temperatures ranging from 150 to 350 °C and strain rates ranging from 0.1 to 0.3 s™%. The

following conclusions can be drawn:

The intercept line approach was used to determine DRXed grain size, which ranges from
2 to 36m and is reliant on the deformation circumstances and IRDs.

For sintered Al-10 wt % Cu/Al preforms, the activation energy and Zener—Hollomon
parameter were lower than the self-diffusion of pure aluminium at varied temperatures,
strain rates, and IRDes. Aluminium’s kinetic energy is 144.3 kJ/mol, which is lower than
the activation energies studied.

The DRXed grain size was calculated by constructing mathematical relationships between
dynamic recrystallization grain size and Zener—Hollomon parameter for various IRDes,
temperatures, and strain rates.

When comparing DRXed grain size to measured grain size, the average percentage error
for various IRDes and deformation scenarios was 8.91 percent, while the mean absolute
error was 3.75 percent for all conditions.

The findings of this study can be applied to the development of hot deformation regimes
for Al-10 wt percent Cu/Al preforms, which will result in the production of the needed

DRXed grain size.
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Chapter 8

Conclusions and Scope of Future work

8. 1. Conclusions

An experimental investigation was performed on microstructure modelling, corrosion and wear
resistance of Al-Cu/Al two-layered structured composite. The two-layered structured composites
having various Cu percentages in the Al-Cu layer (Cu: 5wt. %, 10wt. %, and 15wt. %) were
fabricated using the powder metallurgy (P/M) method. Two-layered samples were hot-pressed
layer by layer in a steel cylindrical die at 500 °C, 550 °C and 600 °C sintering temperature for 3 h.
with a constant pressure of 400 MPa. As part of the investigations on hot formability and
densification characteristics, the composites were hot-pressed at 550 °C temperature with 0.9
initial relative density (IRD) and 0.1 s™ strain rate at different deformation temperatures such as
150 °C, 250 °C, 350 °C and 450 °C, under triaxial stress state condition. The hot deformation
behaviour and DRX grain behaviour of hot-pressed Al-10wt%Cu/Al samples were investigated by
conducting hot upsetting tests for various IRDes of 80%, 85% and 90%, and at different
temperature range of 150 °C-350 °C and strain ranges of 0.1 s - 0.3 s!. And also, mathematical
models were developed for predicting the flow stress and grain size of the material for different

deformation conditions. The following major observations are made from the study:

e The XRD and EDAX tests were analyzed and the results confirmed that Al.Cu
(intermetallic compound) was present in Al-rich phase and this Al>Cu particle increased
proportionally with an increase in Cu content.

e Inthe interface region of 15wt. % Cu, the greatest value of micro-hardness (100.6HV) was
attained at a temperature of 550 °C.

e The corrosion behaviour of the two layered Al-Cu/Al sample developed was determined
using potentiodynamic polarization test at interface region and noticed that the negative

potential of 10wt. % Cu sample (990mV) was lower lesser than 5wt. % Cu sample
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(1002mV) and 15wt. % Cu sample (1084mV). The experiments suggested that the
corrosion susceptibility of the 15wt. % Cu sample is higher.

The susceptibility of corrosion increases with increase of Cu content in Al-Cu layer. The
10wt. % Cu sample circuit provides minimum chi-square value. From the SEM-EDAX
analysis of the samples, it was clearly observed that the intergranular and pitting corrosion
occurs at various areas of 0 phase.

The coefficient of friction increases with an increase in sliding distance and sliding
velocity, and after that it becomes steady for all pure Al layer, interface region and Al-
10%Cu layer. It is found that during friction process, the disc takes little time to stabilize
as the sliding distance and sliding velocity increase.

Friction coefficient decreases with an increase in normal load while it increases with
increase in sliding velocity for all pure Al layer, interface region and Al-10%Cu layer.
The weight loss continuously increases with increase in sliding distance for pure Al layer,
interface region and Al-10%Cu layer.

The less amount of wear debris was noticed on the worn surface of AI-10Cu layer
compared to interface region, hence, it is likely that the fluctuations in COF were lower
than fluctuations at the interface region and Al layer.

The highest relative density 0.95 was attained by 10wt. % Cu preforms at 450 °C
deformation-temperature.

With the increase of axial-strain, the formability stress index (B) increased at any
deformation- temperature with the addition of Cu content in Al-Cu layer. The higher
formability stress index was attained for 10wt. % Cu preform at 450 °C deformation-
temperature.

Both stress ratio parameters (o, /0.sr,0m/0cf ) VErsus relative density curves showed that,
the workability increases with increasing deformation-temperature and the addition of
10wt. % Cu content to Al-Cu layer.

The cooperative deformation on the interface was obtained between Al-Cu layer and Al
layer at a low deformation temperature of 150 °C for 10wt. % Cu preform.

The activation energy and Zener—Hollomon parameter of sintered Al-10 wt % Cu/Al

preforms were calculated at different temperatures, strain rates, and IRDes, and it was

87



found that activation energies were less than self-diffusion of pure aluminium (144.3
kJ/mol).

e Validation tests performed between the measured and calculated DRXed grain size
revealed that the average percentage error for various IRDes and deformation conditions
were did not exceed 8.91% and the mean absolute error did not exceed 3.75%.

8. 2. Scope of Future work

The intensive work on experimental investigation on the hot formability and densification
characteristics, microstructure modelling, corrosion and wear resistance of Al-Cu/Al two-layered

composite can be extended to various dimensions of future research work, and is given below:

e The grain size evolution and design of a model to predict grain size can be performed for
different powder materials through different forming processes for better mechanical
properties.

e The microstructure evaluation and developing a model to predicting grain size of hot-
pressed Al-Cu/Al preforms work can be performed by different forming processes
(extrusion and rolling) at high temperature.

e The plastic deformation behavior and densification of hot-pressed Al-Cu/Al preforms can
be study during extrusion processes and developing the flow stress model for the extruded
samples at elevated temperature.

e It can be the development of new functionally graded materials (FGM) from Al and Cu
powders through extrusion and P/M process.

e Investigation on damage characterization: Statistical analysis of porosity in hot-pressed
Al-Cu/Al preforms during plastic deformation can be carried out.

e The friction behavior between tool-work piece interfaces of hot-pressed Al-Cu/Al during
deformation can be studied extensively.
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