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Abstract 
 

Floods are widespread natural disasters that can severely impact communities, disrupting day-to-

day activities. Unlike other natural disasters, floods can be predicted in advance, allowing for 

preparedness measures. Forecasting flood events relies on observed precipitation as input, but 

longer lead-time forecasts require transforming quantitative precipitation forecasts obtained from 

Numerical Weather Prediction models (NWPs) into flood hydrographs using hydrological models. 

The integration of hydrological and meteorological models forms the basis of a hydro-

meteorological forecasting system. Traditional flood forecasting systems operate on deterministic 

forecast values, providing a single value for each forecast lead time. However, this approach lacks 

a conclusive estimate of forecast uncertainty, limiting its effectiveness. In response, operational 

flood forecasting systems have shifted towards the adoption of ensemble forecasts, generating 

multiple plausible future weather variables states. Ensemble flood forecasts offer probabilistic 

information that outperforms deterministic forecasts, particularly for longer lead times. Despite the 

increasing adoption of ensemble weather prediction systems, India's current flood forecasting 

systems predominantly rely on deterministic approaches and overlook the inherent uncertainties in 

flood forecasts, particularly concerning hydrologic prediction. These hydrologic uncertainties 

encompass various aspects, such as model structural uncertainty, parameter uncertainty, 

uncertainty in the spatial resolution of models, and uncertainty in estimating initial hydrologic 

conditions. It is imperative to address these uncertainties to establish a robust ensemble flood 

forecasting system that enhances flood risk management and facilitates more effective mitigation 

strategies. 

 

This thesis focuses on  developing an ensemble flood forecasting framework for the Godavari River 

Basin, incorporating hydrologic uncertainties within the forecasting process using an event-based 

conceptual model. The primary objective includes identifying the most suitable ensemble weather 

forecast products and post-processing methods for the GRB through a systematic verification 

study, facilitating the creation of a dependable ensemble flood forecasting system. Furthermore, 

the research aims to investigate the impact of model resolution on flood peak simulation by 

employing event-based semi-distributed models, thereby enhancing the accuracy of flood 

predictions. Additionally, the thesis examines the compatibility of reanalysis-based and continuous 

model-simulated soil moisture products with conceptual models and evaluates the accuracy of 

methods used for estimating initial hydrologic conditions in event-based models. By addressing 
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these objectives, the thesis contributes to the advancement of ensemble flood forecasting 

techniques, ultimately improving flood risk management strategies in the Godavari River Basin. 

  

 

The initial part of this thesis focuses on the verification study, which sheds light on critical aspects 

concerning ensemble precipitation forecast products and post-processing methods for the 

Godavari River Basin (GRB). The analysis reveals that both raw National Centers for 

Environmental Prediction (NCEP) and European Centre for Medium-Range Weather Forecasts 

(ECMWF) forecasts exhibit poor skill in capturing extreme precipitation events across all lead 

times, and the applied statistical post-processing methods prove ineffective in addressing this 

issue. These findings emphasize the necessity to enhance the underlying physics of Numerical 

Weather Prediction (NWP) models to achieve accurate forecasts of extreme precipitation events 

in the GRB. The correlation between ensemble mean and observed precipitation declines with 

increasing lead time, while the Root Mean Square Error (RME) remains unaffected by lead time 

variations. Notably, the post-processed forecasts utilizing the Quantile Regression Forest (QRF) 

method demonstrate superior performance compared to other forecast types. The ensemble mean 

of QRF post-processed NCEP and Multi-Model Ensemble (MME) forecasts outperforms 

additional forecasts  regarding correlation coefficient and RME across all subbasins and lead 

times. 

Additionally, the post-processed forecasts exhibit an improved ensemble spread-error relationship 

compared to the raw forecasts. The analysis indicates that QRF is more effective than Quantile 

Mapping (QM) in preserving the ensemble spread-error relation. Rank histograms show 

underdispersion and bias in  raw NCEP and ECMWF forecasts for all subbasins, but applying 

post-processing techniques helps mitigate these issues. Reliability diagrams suggest that the raw 

NCEP and ECMWF forecasts  are overconfident, while the post-processed forecasts perform well 

at a 1-day lead time. However, as the lead time increases, the reliability of the forecasts declines 

due to overconfidence. The Area Under the Curve (AUC) values consistently exceed 0.75 for all 

lead times and subbasins, indicating the usefulness of the forecasts. However, the discrimination 

ability of the forecasts, as measured by AUC, diminishes with lead time, indicating a higher false 

alarm rate. Comparing the performance measures employed, the raw MME forecasts exhibit better 

overall performance than the raw NCEP and ECMWF forecasts. However, both QRF post-

processed NCEP and MME forecasts demonstrate similar performance. Considering the 

computational cost, the thesis recommends utilizing 20-member QRF post-processed NCEP 

forecasts for hydrologic forecasting applications in the GRB. Furthermore, the study reveals that 
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the overall performance of NCEP and MME forecasts surpasses that of ECMWF forecasts, and 

the QRF post-processed forecasts outperform both QM post-processed and raw forecasts. The 

QRF post-processed NCEP and MME forecasts exhibit satisfactory performance in various 

subbasins, including Lower Godavari, Middle Godavari, Indravati, Manjira, and Weinganga, as 

assessed using deterministic and probabilistic measures. 

 

The second part of the thesis focuses on analyzing the impact of model resolution on the simulation 

of flood peaks using event-based semi-distributed models. The study utilizes the semi-distributed 

and semi-lumped GR4J model setup at three different spatial resolutions to simulate streamflow at 

the Jagdalpur and Wardha basins. The results of the study demonstrate very good performance of 

all models in simulating streamflow during the calibration period. The Nash-Sutcliffe Efficiency 

(NSE) values for all models exceed 0.76, indicating a high level of accuracy. Among the models, 

the semi-distributed models perform the best in both the Jagdalpur and Wardha basins. Overall, the 

discretization-based models prove effective in capturing peak flows. The validation results of the 

calibrated models during the validation period also indicate a high level of accuracy in simulating 

streamflow. The streamflow simulations obtained from the calibrated models exhibit strong 

performance based on NSE. 

Furthermore, the study evaluates the performance of the lumped and discretization-based GR4J 

models in simulating historical flood events. The median NSE values of the lumped models during 

the calibration period exceed 0.68 at both Jagdalpur and Wardha, indicating good performance. 

However, during the validation period, the median NSE values of the lumped models at Jagdalpur 

(0.56) and Wardha (0.269) indicate their limited ability to account for spatial variability. In 

contrast, the semi-distributed and semi-lumped models demonstrate strong performance in 

capturing flood peaks during calibration. The median NSE values for flood events exceed 0.84 

(calibration) and 0.71 (validation) for all semi-distributed and semi-lumped models at Jagdalpur. 

Similarly,  the median NSE values at Wardha surpass 0.79 (calibration) and 0.67 (validation). 

These results indicate the models' ability to accurately capture flood peaks in both basins.  

 

In summary, analysing model resolution's impact on flood peak simulation using event-based semi-

distributed models showcases the superiority of semi-distributed models over lumped models in 

accurately representing streamflow and flood peaks. The discretization-based models effectively 

capture peak flows and keep a balanced water budget. Notably, the difference between median 

NSE values in the calibration and validation periods for the semi-lumped models is relatively lower 

than that of the semi-distributed models, indicating efficient parameter transferability. Moreover, 
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the semi-lumped models display improved performance with increased discretization, 

underscoring their efficient parameter transferability. This study provides valuable insights into the 

performance and suitability of different model resolutions for simulating flood events in the 

Jagdalpur and Wardha basins. 

 

The third part of the thesis aims to assess the accuracy of assimilating observed Initial Hydrologic 

Conditions (IHC) and continuous model outputs into event-based rainfall-runoff models. This 

evaluation focuses on the performance of lumped and semi-distributed event-based hydrological 

models, considering the assimilation of soil moisture and streamflow data. For the lumped event-

based models, incorporating Data Assimilation (DA) using soil moisture (SM-DA) and streamflow 

(Q-DA) exhibit satisfactory performance during the calibration period, with median NSE values 

exceeding 0.5. However, the continuous simulations from the lumped models based on DA show 

lower performance. In the validation period, the lumped models based on DA do not perform 

satisfactorily, indicating poor temporal transferability. 

Conversely, the event-based and continuous lumped models utilizing Q-DA demonstrate good 

performance, as indicated by lower values of PEPF (Percent Error in Peak Flow), PBIAS (Percent 

Bias), and PETP (Percent Error in Time to Peak) when compared to other models. The results 

suggest that the predictive ability of both continuous and event-based semi-distributed models, 

incorporating soil moisture and streamflow data assimilation, significantly improves compared to 

their lumped counterparts. The event-based semi-distributed model with SM-DA exhibits the best 

performance during the calibration period, with a median NSE value of 0.82. This highlights the 

advantage of considering spatial variability in the model. However, the temporal transferability of 

the semi-distributed models in the validation period is poor. The event-based semi-distributed 

model with Q-DA performs satisfactorily, with median NSE values of 0.64 and 0.57 in the 

calibration and validation periods, respectively. 

 

Both the continuous lumped and semi-distributed models are calibrated using NSE, logNSE, Kling-

Gupta Efficiency (KGE), and Fourth root of the mean quadrupled error (R4MS4E), and the 

resulting model states are used as IHC in their corresponding event-based models. The event-based 

lumped model, calibrated based on NSE, KGE, and R4MS4E, exhibits an excellent median NSE 

value (>0.65) during the calibration period, except for the logNSEssss calibrated model. The 

(Percentage Error in Peak Flow) PEPF and (Percentage Error in Timing to Peak) PETP values 

demonstrate satisfactory performance of all lumped models in capturing flood peak magnitude and 

timing during the calibration period. In the validation period, a decline in performance is observed 
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for all models based on the selected evaluation statistics. However, the NSE values indicate 

satisfactory performance for all models during validation. In the case of semi-distributed models, 

the simulated flood hydrographs accurately represent the observed flood hydrographs. The median 

NSE values for all semi-distributed models are above 0.77 during the calibration period. Similarly, 

the performance in the validation period, based on KGE, R4MS4E, and NSE-calibrated continuous 

models, is also good (NSE > 0.65). The PEPF values remain below 30% in calibration and 

validation periods, indicating good performance in capturing observed flood magnitudes. In 

conclusion, the study demonstrates that the event-based and continuous lumped models based on 

Q-DA perform well, exhibiting lower PEPF, PBIAS, and PETP values. The performance of 

continuous and event-based semi-distributed models, incorporating soil moisture and streamflow 

data assimilation, surpasses that of their lumped counterparts in terms of NSE, PEPF, PETP, and 

PBIAS. 

 

The final part of the thesis focuses on generating ensemble flood forecasts using the calibrated 

lumped and semi-distributed GR4J models. Both raw and post-processed ensemble precipitation 

forecasts are utilized as inputs to generate ensemble streamflow forecasts. The short- and medium-

range ensemble flood forecasts are evaluated for seven historical flood events at Bamni (Wardha). 

The performance of the generated Ensemble Flood Forecasts (EFF) is deemed satisfactory for 

shorter lead times, ranging from 1 to 3 days, as indicated by PEPF and PETP values consistently 

below 30% during the calibration period of the post-processor. However, the performance of the 

post-processed forecasts deteriorates during the validation period. As the lead time increases, there 

is a noticeable discrepancy in the prediction of the timing of flood peaks.  Comparing the 

performance of the semi-distributed model-based EFF with its lumped counterparts, it is evident 

that the semi-distributed model yields better results. The semi-distributed model exhibits improved 

accuracy in predicting flood events compared to the lumped models. The findings of this study 

contribute to the understanding of ensemble flood forecasting techniques and their applicability in 

the study area. Further research and improvements in post-processing methods are recommended 

to enhance the accuracy and reliability of long-range flood forecasts. 
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Chapter 1  

Introduction 
 

1.1 From Deterministic to Probabilistic: The Evolution of Flood 

Forecasting Systems 
 

Flood is a common natural disaster worldwide that can cause catastrophic impacts on day-to-day 

operations. Unlike other natural disasters, floods can be forecast in advance as a preparedness 

measure (H. L. Cloke and Pappenberger, 2009). There are several methods to forecast flood events 

for different time scales, and many of them primarily rely on observed precipitation as input from 

the upstream of the catchment for forecasting at much shorter time scales. However, to forecast for 

longer lead time, quantitative precipitation forecasts of longer lead times obtained from Numerical 

Weather Prediction models (NWPs) are transformed into flood hydrographs by employing 

hydrological models. Hence, hydrological and meteorological models are integrated to forecast 

flood hydrographs, and the ensemble system is called a hydro-meteorological forecasting system. 

The traditional flood forecasting system often operates based on deterministic forecast value. 

Deterministic forecast systems yield a single variable value for each forecast lead time but do not 

provide a conclusive estimate of the uncertainty in the forecast, which is a major limitation. 

Therefore, most operational flood forecasting systems are shifting towards adopting ensemble 

forecasts over the past two decades. The idea of ensemble forecasting is developed in the 

atmospheric community to overcome the limitations inherent in deterministic forecasts (Jain et al., 

2018). In an ensemble weather forecast, two significant sources of uncertainty must be accounted 

for; initial condition uncertainty and model uncertainty. 

Many operational Ensemble Prediction Systems employ the Monte Carlo approach in NWPs to 

perturb the initial conditions concerning a control forecast. Generally, combinations of singular 

vectors and ensemble data assimilation methods create initial condition uncertainty(Cloke and 

Schaake, 2018). Model uncertainty is mainly represented by three schemes namely perturbed 

parameterization, stochastic parameterization and multi-model ensembles (Palmer et al., 2009). In 

contrast to single-valued deterministic forecasts, many forecast centres generate an ensemble of 10 

to 50 plausible future states of the weather variables. The probabilistic information about the 

ensemble of forecasted flood events provides an added advantage in comparison to deterministic 
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forecasts at much longer lead times scaling from short (up to 3 days) to medium (3-15 days) range 

forecasts (H. L. Cloke and Pappenberger, 2009; Cloke and Schaake, 2018; Wu et al., 2020a). The 

forecasted ensemble flood values do not result in actual probabilities as uncertainties associated 

with the forecast system are not treated thoroughly. Thus, disseminating the probabilistic forecasts 

to the end users isn't easy. Despite these challenges related to ensemble prediction systems, the 

advantages of ensemble flood forecasts over deterministic forecasts have been reported many times 

in the literature so far (Bischiniotis et al., 2019; Emerton et al., 2016; Gomez et al., 2019; Siqueira 

et al., 2020; Thiemig et al., 2015).  

 

1.2 Uncertainties in Ensemble Flood Forecasting Systems 
 

The emergence of ensemble forecasting approaches can be traced back to the discovery of the 

chaotic nature of the atmosphere by Edward Lorenz (1963). Lorenz proposed that uncertainty 

associated with the atmospheric system's inherent nonlinearity and initial conditions can be 

addressed through ensemble forecasting. Epstein (1969) accounted for the intrinsic uncertainties 

by proposing a theoretical Stochastic-Dynamic approach. However, this approach was impractical 

in operational applications as there were a plethora of model equations to be implemented with 

limited computational facilities at that time. Leith (1974) proposed the Monte Carlo framework as 

a practical implementation of Epstein’s Stochastic-Dynamic approach, representing the first 

ensemble forecasting attempt. Due to the computational constraints in the 1970s, only a few 

ensemble members were used to describe the uncertainty in initial conditions. Over the years, the 

amplification of computational power has facilitated addressing the initial condition uncertainty 

along with model structure, model dynamics and even model parameters. European Centre for 

Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental 

Prediction (NCEP) started using ensemble forecasts in 1992. The World Meteorological 

Organization (WMO), recognizing the significance of ensemble forecasting, launched a 10-year 

international program in 2003 named The Observing System Research and Predictability 

Experiment (THORPEX). The main objective of THORPEX is to accelerate the usage of ensemble 

meteorological forecasting for lead times spanning 1 day to 2 weeks. Around ten numerical weather 

prediction centres worldwide have provided their medium-range ensemble weather forecasts to 

THORPEX Interactive Grand Global Ensemble (TIGGE) database since the end of 2006. Since the 

1970s, ensemble forecasting has been used in the hydrological perspective. The United States 

National Weather Service (NWS) generated Climatological Extended Streamflow Predictions 
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(ESP) for application in reservoir and water supply operations (Day, 1985). An initiative for the 

global adoption of hydrological ensemble flood forecasting named Hydrological Ensemble 

Prediction Experiment (HEPEX) started in 2004. 

Ensemble hydro-meteorological forecasting systems are complex and embedded with various 

levels of uncertainty. A comprehensive flow chart showing multiple components of a hydro-

meteorological ensemble flood forecasting system is shown in Figure 1.1. 

 

 

 

 

Figure 1.1 Flow chart of hydro-meteorological ensemble flood forecasting system with all possible 

components. 

 

The fundamental principle of predictability for the hydro-meteorological system is twofold; 

predictability of the atmosphere that drives the hydrologic cycle and estimation of the initial 

hydrologic conditions of the watershed. The significant uncertainty contributors in the forecasting 

system are the input data, hydrological model structure, model parameters and observed data used 

for model evaluation (Wu et al., 2020a). The uncertainty in the input is addressed by generating 

the ensemble weather forecasts by perturbing the initial atmospheric conditions of the numerical 



17 
 

weather prediction models. Many operational hydro-meteorological ensemble flood forecasting 

systems do not explicitly assess the uncertainty associated with the hydrological modelling, 

typically leading to an under-dispersive forecast (Wang et al., 2009). The full range of uncertainty, 

including uncertainty involved in hydrological modelling, is not accounted for in the modelling 

chain, making it an active area of current research. 

1.3 Evaluating Ensemble Precipitation Forecasts in the 

Godavari River Basin 
 

Reliable and skilful ensemble hydrologic forecasts play a crucial role in reservoir operations, 

hydropower management, and the prediction of hydrological extremes like droughts and floods. 

However, the accuracy of such forecasts heavily relies on uncertainties associated with 

meteorological and hydrological models. Precipitation forecasts are essential among the various 

factors contributing to these uncertainties as they drive the hydrological cycle. The inherent 

uncertainty in precipitation forecasts directly impacts the quality of hydrologic forecasts. To 

address this challenge, the hydrological community has increasingly embraced ensemble 

forecasting methods to quantify uncertainties in forecasting systems. Ensemble weather forecasts 

from Numerical Weather Prediction (NWP) models provide inputs for calibrated hydrological 

models to generate ensemble streamflow forecasts. While substantial efforts have been made to 

improve NWP predictions, accurately predicting precipitation, storm intensity, and location 

remains a critical challenge (Novak et al., 2014; Ridwan Siddique et al., 2015). A systematic 

forecast verification framework is crucial to assess and quantify the skill of ensemble forecasts. 

Although numerous verification studies have been conducted worldwide for various forecasting 

systems, limited research has focused on ensemble precipitation forecasts in India's Godavari River 

Basin (GRB). Apart from the advantages of ensemble precipitation forecasts (Liu et al., 2012; Park 

et al., 2008), the raw ensemble forecasts are unsuitable as direct input for hydrological applications 

due to their inherent biases. Hence, various statistical post-processing methods are generally 

employed for spatial downscaling and correcting forecast biases regarding mean and ensemble 

spread (Hamill et al., 2004). In this regard, a systematic verification study is necessary to assist the 

hydrological community in choosing the best suitable forecasts and post-processing methods to 

develop a reliable ensemble flood forecasting system.   
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1.4 Spatial Scale and Calibration Approaches in Hydrological 

Modelling 
 

Accurate flood prediction is crucial for effectively mitigating flood impacts, and selecting an 

appropriate hydrological model plays a pivotal role in achieving accurate predictions. Hydrological 

models are categorized based on spatial scale and process description, with lumped, distributed, 

and semi-distributed models representing different spatial scales and data-driven, physics-based, 

and conceptual models reflecting various process descriptions. Among these models, conceptual 

models, known as 'grey-box' models, have gained popularity due to their simplicity and 

computational efficiency. Semi-distributed models, in particular, offer advantages by considering 

spatial heterogeneity and simulating streamflow even in areas where observed data may be limited. 

Previous studies have explored the influence of spatial variability and heterogeneity using semi-

distributed models by dividing catchments into sub-basins of approximately uniform size based on 

topography (Booij, 2005; Das et al., 2008; Lobligeois et al., 2014). However, for a semi-distributed 

conceptual model, it is desirable to maintain homogeneity within sub-basins, aligning with the 

assumptions of a lumped model. 

Additionally, a threshold exists for subdivision levels beyond which no further improvements in 

model performance can be achieved (Das et al., 2008). Balancing the finite model resolution 

obtained through landscape discretization with computational burden is essential. Although the 

implementation of event-based lumped conceptual models has been reported in previous studies, 

the impact of nested discretization and calibration strategies on the hydrologic response of event-

based conceptual models remains largely unexplored. This study aims to investigate the effects of 

varying spatial scales and calibration strategies on streamflow simulations using the modèle du 

Génie Rural à 4 paramètres Journalier (GR4J) model in the Jagdalpur and Wardha catchments in 

India, shedding light on the performance of event-based models in flood simulations under 

different conditions. 

1.5 Uncertainty in the estimation of IHC 
 

Event-based models are often preferred over continuous models within the flood modelling 

framework due to their ease of calibration and reliance on event-scale data (Tramblay et al., 2012). 

However, continuous and event-based hydrologic predictions depend on accurately simulating 

initial hydrological conditions, particularly soil moisture within the watershed. To address this 

challenge, numerous modelling efforts have focused on minimizing uncertainties associated with 

the estimation of initial hydrologic conditions, employing various predictors such as piezometric 
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levels, baseflow, antecedent discharge index, outputs from continuous models, and in situ or 

remote-sensing observables (Bahramian et al., 2021; Coustau et al., 2012; Franchini et al., 1996; 

Hegdahl et al., 2020; Huang et al., 2016; Longobardi and Villani, 2003; Meng et al., 2017). To 

reduce uncertainties associated with input data, model states, and output variables, Data 

Assimilation (DA) techniques are widely employed, optimizing the combination of observations 

and model simulations to enhance initial state estimates of hydrological models. However, the 

choice of model structure and the trade-off between input data, model complexity, and 

computational costs are critical in real-time flood forecasting applications. While fully distributed 

physics-based models offer better simulations by accounting for spatial heterogeneity, they require 

extensive data and computational resources. 

In contrast, conceptual hydrologic models' computational efficiency and simplicity (CHMs) have 

made them effective in operational streamflow forecasting. Although DA studies on CHMs have 

primarily focused on lumped versions, understanding the relevance of DA-estimated initial states 

in improving the performance of event-based conceptual hydrological models is crucial. Moreover, 

the choice of calibration metrics in scenarios where initial conditions are estimated through 

continuous models impacts the model states these models simulate. Therefore, the present study 

aims to assess the performance of a lumped and semi-distributed event-based conceptual model, 

utilizing DA-estimated initial conditions and corresponding continuous models calibrated using 

different objective functions for improved flood forecasting. 

1.6 Objectives of the study 
 

The objectives of the study are listed as follows: 

 

 Identification of the best suitable ensemble weather forecast products and post-processing 

methods over the Godavari River Basin 

 Analysing the impact of model resolution on simulation of flood peaks through event-based 

semi-distributed models. 

 Accuracy evaluation of assimilation of observed initial hydrologic states/conditions and 

IHC obtained from continuous models to initialize event-based rainfall-runoff models. 
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1.7 Contributions from the study 
 

With the understanding of different sources of uncertainties in the Ensemble Flood Forecasting 

framework, the present study is mainly designed to evaluate the hydrological uncertainties 

associated with flood prediction. Initially, the study aims to identify the most suitable ensemble 

precipitation forecast products and their statistical post-processing methods over a large river basin 

(Godavari River Basin) in India. The aim is to improve the reliability of flood forecasting by 

selecting the optimal ensemble forecast products by correcting their inherent biases through post-

processing techniques. Subsequently, the thesis examines the impact of model resolution and 

calibration strategies on the simulation of flood peaks using event-based semi-distributed 

conceptual hydrological models. The study determines the optimal finite model resolution through 

landscape discretization by comparing different spatial resolutions. The findings improve flood 

predictions by identifying the most accurate representation of streamflow and flood peaks. In 

addition, the accuracy of assimilating observed initial hydrologic states and continuous model 

outputs into event-based rainfall-runoff models was evaluated. The study focuses on lumped and 

semi-distributed event-based models and considers the assimilation of soil moisture and 

streamflow data. The findings highlight the benefits of incorporating assimilation techniques in 

improving flood event simulation. Finally, the raw and post-processed ensemble precipitation 

forecasts were forced into the calibrated lumped and semi-distributed event-based GR4J model to 

generate short and medium-range ensemble streamflow forecasts at Wardha Basin.  

 

At the very beginning, the thesis extensively evaluates the skill of ensemble precipitation forecasts 

obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the 

National Centers for Environmental Prediction (NCEP) within "The Observing System Research 

and Predictability Experiment" (THORPEX) Interactive Grand Global Ensemble (TIGGE) 

database. The evaluation is conducted over the eight subbasins of the Godavari River Basin in 

India. These forecasting systems are chosen due to their operational nature, availability of 

multiyear datasets, and ability to capture scenarios of interest to forecasters. Additionally, the study 

verifies the skill of the multi-model grand ensemble (MME) created by integrating NCEP and 

ECMWF forecasts. Two statistical post-processing methods address conditional biases in the raw 

forecasts. The verification process includes daily accumulations for various lead times (ranging 

from 1 to 15 days) in hindcast mode. Deterministic and probabilistic measures such as forecast 

error box plots, correlation coefficient, Relative Mean Error (RME), mean Continuous Ranked 

Probability Score (CRPS), spread-skill relationship, rank histograms, reliability diagram, and Area 



21 
 

under Relative Operating Characteristic Curve (AUC) are utilized to assess the skill of basin-

averaged raw and post-processed forecasts in comparison to the observed data from 2016 to 2020. 

 

Subsequently, the thesis explores the trade-offs between increasing model resolution of a 

conceptual model through a nested discretization scheme versus its capability to simulate accurate 

streamflow. The catchments are discretized iteratively by assessing the spatial heterogeneity of the 

Natural Resources Conservation Service (NRCS) Curve Number (CN) using spatial moments 

computed from the catchment outlet. Two different calibration strategies (semi-distributed and 

semi-lumped) were employed to calibrate the spatially discretized GR4J model. Lumped, semi-

lumped and semi-distributed GR4J models were used to simulate the observed streamflow at 

Jagdalpur and Wardha basins in India.  Along with a continuous model, an event-based model was 

set up in this study to evaluate the model's performance in capturing the observed flood events. A 

diagnostic performance evaluation strategy was adopted to assess the accuracy of the simulated 

streamflow in matching the different attributes of the observed hydrograph, such as high flows, 

low flows and overall water balance. In addition, the performance of event-based models is 

assessed concerning their ability to capture the timing and magnitude of their flood peaks. 

 

Further, the performance of different methods to estimate initial hydrologic conditions for event-

based rainfall-runoff modelling was assessed. The first method involves assimilating observed 

variables, including streamflow and soil moisture, using the Ensemble Kalman Filter. Root zone 

soil moisture data from the Global Land Data Assimilation System (GLDAS) is assimilated for 

soil moisture assimilation. The IHCs estimated through assimilating root zone soil moisture (SM-

DA) and streamflow (Q-DA) into the conceptual hydrological model GR4J, at both lumped and 

semi-distributed spatial resolutions, are used as the initial conditions in the event-based models. 

The second method utilizes states obtained from the continuous model, calibrated using four 

different calibration metrics. The parameters of the continuous models are automatically calibrated 

using the Genetic Algorithm and four calibration objective functions: Nash-Sutcliffe Efficiency 

(NSE), NSE of logarithmically transformed flows (logNSE), Kling-Gupta Efficiency (KGE), and 

Fourth root Mean Quadruple Error (R4MS4E). The observed flood events in the Jagdalpur 

catchment are simulated using a conceptual hydrologic model at two spatial resolutions: lumped 

and semi-distributed. To evaluate the performance of the event-based GR4J models in simulating 

observed flood hydrographs in the Jagdalpur basin, various metrics such as NSE, PETP, PEPF, and 

PBIAS are utilized.  
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The final part of the thesis focuses on generating ensemble flood forecasts (EFF) using the 

calibrated lumped and semi-distributed GR4J models. Both raw and post-processed ensemble 

precipitation forecasts are utilized as inputs to generate ensemble streamflow forecasts. The short- 

and medium-range ensemble flood forecasts are evaluated for seven historical flood events at 

Bamni (Wardha). The first four events are included in the calibration period of the post-processor, 

while the next three events fall within the validation period. The performance of semi-distributed 

model-based EFF is compared to EFF generated through its lumped counterparts. 

1.8 Outline of the thesis 
 

Within Chapter 2, a thorough literature review is conducted, focusing on crucial areas pertinent to 

the research. It investigates forecast verification studies, statistical post-processing methods, 

discretization schemes, hydrological modelling, and the estimation of Initial Hydrologic 

Conditions (IHCs). This chapter constructs a robust theoretical foundation by critically analysing 

relevant literature and providing essential contextual background for the study. 

Chapter 3 is dedicated to the verification of ensemble precipitation forecasts, with the objective of 

determining the most effective forecast products and statistical post-processing techniques to 

improve the reliability of precipitation predictions in the study area. This chapter employs a 

comprehensive evaluation and comparison approach to identify ensemble forecast products and 

post-processing methods that exhibit superior performance and accuracy in capturing the complex 

precipitation patterns and variability observed over the Godavari River Basin. 

 

Chapter 4 analyses the impact of spatial discretization and calibration strategy on event-based 

models for flood simulation. This chapter aims to assess how different levels of model resolution, 

specifically through event-based semi-distributed models, affect the simulation of flood peaks. A 

nested discretization scheme is proposed to delineate a catchment into homogeneous subbasins 

iteratively. These subbasins are then utilized to establish semi-distributed and semi-lumped 

conceptual models operating in continuous and event-based modes. 

 

Chapter 5 presents a comprehensive performance assessment of methods to estimate initial 

hydrologic conditions for event-based rainfall-runoff modelling. The objective is to evaluate the 

accuracy and effectiveness of these approaches, including the assimilation of observed variables 

and utilization of continuous model states. The assessment covers different spatial resolutions and 

includes the simulation of observed flood events in the Jagdalpur catchment. 
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Chapter 6 focuses on generating ensemble flood forecasts by forcing raw and post-processed 

ensemble precipitation forecasts as inputs into the calibrated lumped and semi-distributed GR4J 

model. The chapter examines the generation of short and medium-range ensemble flood forecasts 

for seven historical flood events at Bamni (Wardha). 

 

Chapter 7 presents the summary and conclusions of the work described in the thesis.
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Chapter 2  

Literature Review 
 

2.1 Introduction 
 

Literature related to forecast verification studies, statistical post-processing methods, discretization 

schemes, hydrological modelling, and the estimation of Initial Hydrologic Conditions (IHCs) is 

concisely reviewed in this chapter. Specifically, the literature review focuses on different forecast 

verification studies conducted globally to gain insights into the inherent biases in the forecasts, 

various statistical post-processing methods, and other forecast verification metrics. Furthermore, it 

explores the implementation of different discretization schemes to incorporate spatial variability 

of catchment characteristics and rainfall into hydrological models, as well as various studies that 

assess the performance of hydrological models considering different spatial resolutions and 

calibration strategies. Additionally, the literature review explores various techniques for estimating 

Initial Hydrologic Conditions (IHCs) and investigates data assimilation methods that assimilate 

observed variables to estimate IHCs in conceptual models. By addressing these specific topics, the 

literature review offers valuable insights into advancements, challenges, and potential areas for 

further research. 

 

2.2 Forecast Verification and Statistical Post-Processing  
 

Due to varying climatic, physiographic, hydrographic, and demographic factors across the length 

and breadth of the country, India experiences different types of flooding, including fluvial, coastal 

and urban flooding (Singh & Kumar, 2017). With a large flood-prone area and millions of hectares 

affected annually, India is one of the most flood-prone countries in the world (National Disaster 

Management Plan, 2019; Singh and Kumar, 2017). The escalating population and urbanization 

further exacerbate flood risks, emphasizing the need for timely flood risk reduction and mitigation 

measures. Flood forecasting, as a low-cost non-structural measure, is crucial in developing flood 

control measures and management strategies with limited resources. However, the accuracy of 

flood forecasts heavily relies on addressing the uncertainties associated with meteorological and 

hydrological models to improve their reliability and skillfulness for reservoir operations, 
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hydropower, and the prediction of hydrological extremes (H L Cloke and Pappenberger, 2009; 

Cloke and Schaake, 2018).  

Precipitation plays a crucial role in flood forecasting as it drives the hydrological cycle, and the 

uncertainties associated with precipitation forecasts significantly contribute to uncertainties in 

flood forecasts. Accurate precipitation forecasts are essential for generating reliable and skilful 

flood forecasts, leading to a shift towards adopting ensemble forecasts in the hydrological 

community to quantify uncertainties in forecasting systems (Cloke and Pappenberger, 2009). 

Ensemble weather forecasts, generated by Numerical Weather Prediction (NWP) models, provide 

ensemble simulations of meteorological variables such as precipitation and temperature for 

different lead times. These ensemble forecasts are then used as inputs to calibrated hydrological 

models to generate ensemble streamflow forecasts. Despite progressive efforts in improving NWP 

models, accurate prediction of precipitation, storm intensity, and location remains a critical 

challenge (Novak et al., 2014; Ridwan Siddique et al., 2015). To address this, a systematic forecast 

verification framework is crucial for monitoring, verifying, and quantifying the skill of ensemble 

forecasts obtained from NWPs. By comparing hindcasts with observations using deterministic and 

probabilistic verification measures, this framework helps assess the forecasts' quality, errors, and 

biases, providing valuable insights for policymakers, researchers, and forecast users. 

Several verification studies have been conducted globally for various forecasting systems, 

including the National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast 

System Reforecast (GEFSRv2) (Baxter et al., 2014; Brown et al., 2014; Kim et al., 2018; Ridwan 

Siddique et al., 2015) and the Short Range Ensemble Forecast (SREF) (Brown et al., 2012; Ridwan 

Siddique et al., 2015), European Centre for Medium-Range Weather Forecasts (ECMWF) (Hamill, 

2012; Leonardo and Colle, 2017; Medina et al., 2019), United Kingdom Met Office Unified Model 

(UKMO) (Anderson et al., 2019; Leonardo and Colle, 2017; Ran et al., 2018).  

Siddique et al. (2015) assessed the quality of precipitation forecasts in the Middle Atlantic Region 

of the USA, utilizing two ensemble forecasting systems, GEFSRv2 and SREF. Various verification 

metrics and conditional analysis based on precipitation amounts, basin size, forecast lead times, 

accumulation periods, and seasonality were employed to gain insights into the accuracy of these 

forecasting systems. The findings revealed that GEFSRv2 and SREF tended to overestimate light 

to moderate precipitation while underestimating heavy precipitation. Moreover, the accuracy of 

precipitation forecasts was found to vary depending on factors such as basin size and forecast lead 

times. Notably, the study emphasized the significance of accounting for predictive uncertainty in 

precipitation forecasts to enhance the accuracy of hydrologic modelling.  
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Sharma et al. (2017) examined the quality of ensemble precipitation forecasts across the eastern 

United States, with a focus on the NCEP Global Ensemble Forecast System Reforecast 

(GEFSRv2), Short Range Ensemble Forecast (SREF) system, and NCEP's forecast systems. The 

study area covered 12 NOAA/National Weather Service River Forecast Centers (RFCs), spanning 

from Maine to Florida and from the Atlantic coast to the Mississippi River. A verification strategy 

was employed, which included a common period of analysis (2012-2013) for lead times ranging 

from 1 to 3 days and a longer period (2004-2013) specifically for GEFSRv2, with lead times from 

1 to 16 days. The study found that the GEFSRv2 and SREF systems generally performed well in 

precipitation forecasts, with the GEFSRv2 demonstrating higher skill scores for longer lead times. 

However, regional and seasonal variations in forecast quality were observed, with the SREF system 

performing better in the Northeast and the GEFSRv2 performing better in the Southeast. The study 

also suggested modifying the weather forecasting systems and guidance could improve flood 

forecasts. Additionally, it was noted that statistical postprocessing techniques had the potential to 

remove systematic biases and enhance the skill and reliability of forecasts. 

 

Hamill et al. (2004) investigated on enhancing medium-range weather forecasts by integrating 

ensemble reforecasting and model output statistics (MOS) techniques. The study highlights the 

significance of statistical approaches, particularly MOS, in improving forecast accuracy by 

addressing model bias and distinguishing between predictable and unpredictable elements. Using 

retrospective forecasts from the NCEP Medium-Range Forecast (MRF) model spanning 23 years, 

the researchers demonstrate significant improvements in forecast skill by statistically adjusting 

current forecasts based on prior forecasts. The findings reveal that the adjusted forecasts 

outperformed operational forecasts, emphasizing the potential of ensemble reforecasting and 

MOS-like techniques in enhancing forecast accuracy and reliability. 

Taillardat et al. (2016) conducted a study to enhance the accuracy and reliability of ensemble 

weather forecasts through the application of Quantile Regression Forests (QRF) and Ensemble 

Model Output Statistics (EMOS). The authors proposed a statistical method that combines QRF 

models for estimating conditional quantiles and EMOS for generating calibrated probabilistic 

forecasts. Through extensive experimentation, the research demonstrated that integrating QRF and 

EMOS significantly improved forecast reliability and sharpness. The calibrated forecasts exhibited 

enhanced skill and better representation of uncertainty compared to the original ensembles.  

 

Nandita and Mishra (2021) stressed the importance of incorporating regional dimensions in flood 

forecasting infrastructure and establishing a comprehensive flood forecast and warning system. 
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They emphasized that India's higher expenditure on post-flood recovery than pre-flood mitigation 

schemes underscored the potential benefits of investing in an efficient flood early warning system. 

Further, they highlighted the current status and future requirements to strengthen the flood early 

warning systems in India. They emphasized the need to translate the ensemble weather and climate 

forecast to a Hydrologic Ensemble Prediction (HEP) system by integrating improved 

meteorological forecast, hydrologic and hydraulic modelling, data assimilation, and post-

processing. The authors also called for revamping guidelines for flood forecasting and developing 

and enhancing the ensemble forecast system, utilizing the existing ensemble precipitation forecast 

systems. They argued that the spatial and temporal resolutions and lead time should be improved 

for precipitation forecast in smaller catchments and urban areas prone to flash flooding. Overall, 

the study highlighted the importance of an integrated approach at various levels to enhance the 

operational flood forecast in India, which was essential for developing an effective flood early 

warning system. 

 

The adoption of ensemble weather prediction systems in India since 2018 has not fully addressed 

the uncertainties in flood forecasts, as the existing flood forecasting systems remain deterministic 

(Nanditha and Mishra, 2021; Teja and Umamahesh, 2020). No studies have explored ensemble 

flood forecasts in a catchment with a regional outlook in India. Therefore, as s precursory study for 

ensemble flood forecasting, verifying and quantifying the skill of raw and post-processed ensemble 

precipitation forecasts from two NWP models in the Godavari River Basin (GRB), India is 

quintessential. Further, it is also vital to assist the hydrological community in selecting the most 

suitable forecasts and post-processing methods to develop a reliable ensemble flood forecasting 

system.  

2.3 Landscape Discretization and Calibration Strategies in 

Hydrological Modelling 
 

Hydrological models are simplified representations of a real-world watershed that aims to model 

the interactions between the input meteorological forcing and catchment using distinct 

mathematical expressions (Wagener et al., 2001; Mostafaei et al., 2018; Kamamia et al., 2019). 

Hydrological models can be classified differently based on spatial scale and process description. 

In spatial-scale-based classification, the models can be divided into lumped, distributed and semi-

distributed models. Based on the process description, hydrological models can be broadly classified 

into data-driven, physics-based and conceptual models (Acero Triana et al., 2019; Ghimire et al., 

2020; Madsen, 2000; Vu Van Nghi et al., 2020). Data-driven models employ mathematical 
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equations to analyse and establish the relation between input and output time series. These models 

do not incorporate any physical process in the catchment; hence they are known as ‘black-box’ 

models. Recent advancements in computation intelligence boosted the usage of data-driven 

hydrological modelling based on machine learning and artificial neural networks (Bafitlhile and 

Li, 2019). Physics-based distributed models are based on understanding the physics of the 

processes involved in water circulation. In these models, physics-based partial differential 

equations describe the catchment processes, such as mass transfer, momentum, and energy. The 

rationale behind using physics-based distributed approaches is that by accounting for the spatial 

heterogeneity of meteorological forcing and physical features within the basin, better simulations 

can be achieved at the basin outlet. However, these models are data intensive and demand more 

computational resources. Conceptual models, also known as ‘grey-box’ models, consist of very 

few components (non-linear reservoirs), simplified representations of elements in hydrological 

system. Nonlinearities associated with the catchment responses such as determining excess rainfall, 

surface/subsurface runoff and movement of soil moisture are taken care of by the thresholds of 

different storage reservoirs.   

The utilization of conceptual-based hydrological models has been mainly amplified in the past few 

years, attributable to their simplicity and computational efficiency (Tran et al., 2018). Lumped and 

semi-distributed conceptual models are well adapted for water resources management and flood 

forecasting due to their parsimonious model structures (Perrin et al., 2001). Many studies have 

reported that calibration of lumped and semi-distributed models produces similar or higher overall 

model performance than the more complex distributed models—when evaluated at the outlet 

stations.  

Bourqui et al. (2006) analysed the impact of considering spatial variability of the catchment into 

account by dividing the basin into sub-basins on the performance of streamflow simulations. 212 

French basins were characterized using approximately 50 indices related to pedology, geology, 

morphology, and land use. The performance of lumped and semi-distributed rainfall-runoff model 

was compared using 3300 Chimaera basins (virtually aggregated from two real basins). The 

findings indicate that incorporating spatial heterogeneity showed improved performance; 

meanwhile, integrating "useful" spatial data into a lumped model can enhance its performance 

without compromising its parsimonious structure. Certain indices demonstrated correlations with 

rainfall, affirming that the semi-distributed approach is particularly advantageous for basins 

characterized by high spatial variability of precipitation. 
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Viney et al. (2005) assessed the performance of 10 hydrological models for a catchment located in 

Germany. Lumped to fully distributed models representing different levels of complexity were 

used, and they found that simpler models performed well compared to more complex models. 

However, during the less extreme validation period, some more complex models exhibit greater 

improvement in performance. 

Das et al. (2008) evaluated the performance of lumped, semi-lumped, semi-distributed and fully-

distributed models for a European mesoscale catchment. They found that semi-lumped and semi-

distributed models outperformed the lumped and fully-distributed models. They identified some 

plausible reasons for the underperformance of distributed models especially poor estimation of 

input areal precipitation through spatial interpolation techniques and parameter optimization 

ending in a local optimum due to sub-grid parameterization. The calibration procedure 

compensates for bias in the precipitation observations and other model input data in the semi-

distributed and semi-lumped model structures.  

Generally, it is expected that the performance of any numerical model, in principle, should improve 

with increasing model resolutions. But the scarcity of finer-scale spatially resolved data poses a 

significant challenge to increasing the model resolution. Hence, the characteristics of both 

distributed and lumped models can be found by opting for semi-distributed models and integrating 

sub-grid parameterization schemes in hydrologically homogenous areas.       

Organization of spatial patterns of various physical characteristics of catchment, such as soil 

characteristics, soil moisture and vegetation type, significantly influence catchment runoff. 

Splitting the landscape into hydrologically homogeneous regions is called ‘landscape 

discretization’. In congruence with the dominant hydrological processes, the topography is the 

most influential factor in the discretization process, whereas soil and vegetation are determining 

factors in the lower hierarchy (Pilz et al., 2017). However, there is no universally accepted 

definition of discretization; it typically consists of a stratification scheme of partitioning a 

hydrological basin into sub-basins, which are sequentially divided into irregularly shaped 

hydrologically uniform entities (Krysanova et al., 1998). Conceptual models should have a lower 

limit of splitting the landscapes simply because they represent average spatial behaviour (Das et 

al., 2008). However, there is a threshold of subdivision level above which no more improvements 

can be achieved (Haghnegahdar et al., 2015; Han et al., 2014; Wood et al., 1988).  It is essential to 

determine an optimum finite model resolution through landscape discretization. 
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Several methods have been developed to address the discretization issues, for which no generic 

solution has been found so far (Beven, 2006). Wood et al. (1988) investigated the scale-dependent 

nature of the variability of catchment characteristics and proposed the concept of ‘Representative 

Elementary Area (REA)’ with the assumption of an implicit continuum. They employed a modified 

version of the top model to simulate the hydrologic response of the catchment, considering both 

infiltration excess and saturation excess runoff and incorporating the spatial variability of soils, 

topography, and rainfall. The study revealed that the size of the proposed REA is predominantly 

influenced by topography. It was observed that there exists a relationship between the REA and 

catchment hydrologic responses, with the topography exerting a strong influence on the REA. 

Furthermore, the findings indicated that the length scale of rainfall plays a secondary role in 

determining the size of the REA, while increased variability in rainfall and soils between sub-

catchments contributes to enhanced variability in runoff generation. 

Another prominent discretization scheme, namely hydrological response units (HRUs), was 

introduced by Leavesley et al. (1983) for their Precipitation–Runoff Modelling System (PRMS) 

and further elaborated by Flügel (1995). HRUs are formed by unique soil, land use and slope 

combinations, which are assumed to respond similarly to input meteorological data. This scheme 

has been incorporated in many models such as SWAT (Manguerra and Engel, 1998), SWIM 

(Krysanova et al., 1998), GSFLOW (Markstrom et al., 2008) etc. However, the HRU approach 

cumulates the generated streamflow over all HRUs without representing the water flow pathways. 

Merz and Plate (2009) investigated the threshold where the effects of spatial heterogeneity decrease 

to a negligible size. 

Kouwen et al. (1993) defined grouped response units (GRUs) that involve grouping hydrologic 

response units based on similar response characteristics derived from classified land-cover maps. 

Unique model parameters are assigned to each land-cover class, reducing the need for extensive 

model calibration and facilitating the transfer of parameters across both time and space. The 

model's performance was evaluated in four watersheds in Southern Ontario, where it was initially 

calibrated for the Grand River watershed. Subsequently, the model was applied to the three other 

watersheds without requiring further calibration of the hydrologic parameters, with only the river 

roughness being adjusted.  The results degrade as the parameters are applied to the watersheds 

located in a different physiographic area and further away from the calibration watershed (Humber 

and eastern metro watersheds, respectively). 

Several methods of discretization of hydrological models have been acknowledged in multitudes 

of studies (Euser et al., 2015; González et al., 2016; Kumar et al., 2010). However, this influence 
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has been assessed extensively in grid-based models (Melsen et al., 2016; Molnar and Julien, 2000; 

Sulis et al., 2011) as it is relatively easy to change the grid resolution.  However, a systematic 

analysis of the effect of varying scales (discretization) on simulated flood response from semi-

distributed models is necessary. It is also essential to frame a computationally efficient landscape 

discretization method to determine the optimum model resolution. Further, previous studies have 

focused on event-based lumped conceptual models, but the influence of nested discretization on 

the hydrologic response of event-based models has not been thoroughly investigated. The analysis 

of streamflow response at various spatial scales and the comparison of different model 

representations contribute to the understanding of improving streamflow predictions in 

hydrological modelling to achieve greater accuracy. 

2.4 Estimation of Initial Hydrologic Conditions 
 

In addition to proper landscape discretization, the choice of hydrological models plays a crucial 

role in capturing the updating scheme of initial hydrologic conditions. Depending on their 

approach, these models can be classified as continuous or event-based. Continuous models require 

a warm-up period to minimize the impact of arbitrarily selected initial values and often rely on 

long-term continuous data, which can be challenging for operational forecasting. On the other 

hand, event-based models, widely used for flood forecasting, are easier to calibrate and only require 

data at the event scale. However, accurately simulating flood events with event-based models 

necessitates estimating the Initial Hydrologic conditions or Antecedent Wetness Conditions before 

an event (Tramblay et al., 2010). Previous studies emphasize the significance of estimating the 

antecedent wetness conditions of a catchment in event-based rainfall-runoff models to improve 

event predictions. Soil moisture, a necessary antecedent condition influencing the interaction 

between the atmosphere and land surface, strongly impacts flood magnitudes. Estimating a 

catchment's initial soil moisture states can be done through two main approaches: 1) simulating 

soil moisture using continuous rainfall-runoff modelling and 2) deriving soil moisture from 

reanalysis products/satellite-based imagery. 

 

Berthet et al. (2009) compared event-based and continuous rainfall-runoff modelling approaches 

for flood forecasting river flows over 178 French catchments. The influence of antecedent soil 

moisture over the performance of flood forecasting was evaluated, along with possible 

compensations with soil moisture updating techniques. They reported that the continuous approach 
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is the best to ensure good forecasting performances. However, assimilation of the previously 

observed flow considerably reduced the differences in performance.  

 

Tramblay et al. (2010) compared four soil moisture indicators antecedent precipitation, baseflow, 

in-situ soil moisture and soil moisture simulated from Safran–Isba–Modcou (SIM) model.  They 

calibrated the event-based SCS-CN method and found that in-situ measurement is the best among 

all, after which SIM simulated soil moisture, and logarithmic baseflow are good predictors.  

Khalki et al. (2020) compared five satellite-based soil moisture products: ESA-CCI, SMOS, 

SMOS-IC, ASCAT and ERA5 reanalysis with in-situ measurements and soil moisture simulated 

from continuous SMA model. They reported that the SMOS-IC and the ERA5 reanalysis agree 

with in-situ soil moisture and SMA model outputs. The results suggested using ERA5 reanalysis 

data available at an hourly resolution due to the quick deprecation of soil moisture after rainfall 

events in semi-arid regions.  

Beck et al. (2021) evaluated 18 contemporary global near-surface soil moisture products, including 

satellite-based products, the model simulated soil moisture with and without data assimilation. 

These datasets were compared with in-situ measurements at 5cm depth acquired from 826 sensors 

spread across the USA. They found that SMAPL3E, SMOS, AMSR2, and ASCAT are performing 

well with the L-band-based SMAPL3E.  

Zhuo and Han (2016) investigated the compatibility of satellite-based soil moisture products with 

the operational hydrologic model. The study's findings revealed that effective hydrological 

application of soil moisture data necessitates two interconnected components: 1) relevant soil 

moisture data for hydrology and 2) a compatible hydrological model structure. The authors 

recommended a comprehensive evaluation of satellite soil moisture observations in hydrological 

modelling to address these requirements. Additionally, they suggested modifying the 

representation of soil moisture in hydrological models to better align with field variations. The 

study also proposed the development of a soil moisture product tailored explicitly for hydrological 

modellings, such as a soil moisture deficit measure, to enhance the models' ability to accurately 

capture soil moisture dynamics. 

Data assimilation techniques have shown potential in enhancing the estimation of initial states in 

hydrological models by incorporating observational data to obtain the most accurate representation 

of the current model states. Various observed datasets have been utilized to update the states of 

hydrological models, including streamflows (Seo et al., 2003), soil moisture (Luca Brocca et al., 

2010), snow-covered area and snow water equivalent (Andreadis and Lettenmaier, 2006; Clark et 

al., 2006), and satellite observations of soil moisture and discharge (Andreadis et al., 2007). 
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Discharge data, in particular, is frequently assimilated as it encompasses information from all other 

hydrological states. However, due to the challenges of obtaining real-time observations, many 

studies have turned to satellite-based soil moisture for data assimilation. 

In hydrology, three main types of data assimilation methods are commonly employed: Kalman 

filters and their variants, particle filters, and variational methods. Among these alternatives, 

Kalman filters are the most widely used. The standard Kalman Filter assumes linearity in the model 

and Gaussian error statistics in the measurement process. However, the Extended Kalman Filter 

was introduced to address nonlinear dynamics, although it can become unstable when strong 

nonlinearities are present. In contrast, the Ensemble Kalman Filter (EnKF) replaces the linearized 

model with an ensemble of model realizations. A challenge in data assimilation arises from the 

time lag between the catchment state and streamflow, known as the time of concentration, 

particularly in large catchments. This means that updating the model states simultaneously as the 

discharge observations may not be physically realistic, leading to under- or over-estimation in flow 

correction at later timesteps (Mendoza et al., 2012). McMillan et al. (2013) proposed a recursive 

ensemble Kalman filter that allowed for natural lag time of catchment and showed an improvement 

in the results compared to traditional EnKF. Wanders et al. (2014) used Ensemble Kalman Filter 

to assimilate three satellite-derived soil moisture from ASCAT, AMSR-E and SMOS and discharge 

observations into the LISFLOOD model. Their study reported enhanced accuracy in flood forecasts 

when incorporating discharge observations, and further improvement was achieved by assimilation 

of satellite-based soil moisture. Consequently, for ensemble prediction systems, ensemble data 

assimilation methods like EnKF and recursive EnKF are well-suited for updating the model states.  

 

The selection of calibration metrics is crucial when estimating the initial states of event-based 

models through their continuous counterparts. This is because commonly used calibration objective 

functions tend to prioritize specific flow segments in a hydrograph, leading to a bias reflected in 

the simulated model states of continuous models (Mizukami et al., 2019). 

 

Various products are accessible for estimating the initial states of hydrological models, including 

satellite-based products and model-derived soil moisture products. However, the compatibility 

between these products and the soil moisture simulated by conceptual models raises concerns when 

attempting direct assimilation. To address this challenge, ensemble data assimilation filters such as 

EnKF are employed to update the soil moisture of conceptual models using soil moisture products.  
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2.5 Concluding remarks 
 

This chapter provides a comprehensive overview of the literature related to forecast verification 

studies, statistical post-processing methods, discretization schemes, hydrological modelling, and 

the estimation of Initial Hydrologic Conditions (IHCs). The literature review encompasses several 

critical aspects of flood forecasting and hydrological modelling, focusing on India's specific 

context of the Godavari River Basin (GRB). It begins by highlighting the limitations of 

deterministic flood forecasting systems in addressing uncertainties, particularly in the presence of 

ensemble weather prediction systems in India. The need for ensemble flood forecasts in the GRB 

is emphasized, along with the importance of verifying and quantifying the skill of raw and post-

processed ensemble precipitation forecasts from numerical weather prediction (NWP) models.  

 

The review also acknowledges the growing popularity of conceptual-based hydrological models, 

specifically lumped and semi-distributed models, due to their simplicity and computational 

efficiency. These models have shown promising results in water resources management and flood 

forecasting, often performing as well as or better than more complex distributed models, mainly 

when evaluated at outlet stations. Specifically, the semi-distributed model is considered a suitable 

compromise between the characteristics of lumped and distributed models, particularly when 

integrated with sub-grid parameterization schemes in hydrologically homogeneous areas. For 

setting up a semi-distributed model, landscape discretization or partitioning hydrological models 

into spatial units is a critical component. While various discretization methods have been explored 

in grid-based models, the literature review highlights the need for a systematic analysis of the 

impact of varying scales on simulated flood response in semi-distributed models. Additionally, a 

computationally efficient landscape discretization method is required to determine the optimal 

model resolution. The influence of nested discretization on the hydrologic response of event-based 

models is investigated in the present study.  

Further, the review underscores the significance of soil moisture as a necessary antecedent 

condition influencing flood magnitudes and the interaction between the atmosphere and land 

surface. The compatibility between satellite-based soil moisture products, model-derived soil 

moisture products, and the soil moisture simulated by conceptual models is a challenge for direct 

assimilation. To overcome this challenge, ensemble data assimilation filters, particularly the 

Ensemble Kalman Filter (EnKF), are used to update the soil moisture of conceptual models using 

reanalysis-based soil moisture products and observed streamflow. Hence, two approaches are used 

in the present study for estimating initial soil moisture states: simulating soil moisture using 
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continuous rainfall-runoff modelling and deriving soil moisture from reanalysis products or 

satellite-based imagery. 
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Chapter 3   

Forecast Verification and Statistical 

Post-processing 
 

3.1 Introduction 
 

Reliable and skilful ensemble hydrologic forecasts are needed for reservoir operations, 

hydropower and forecasting of hydrological extremes such as droughts and floods (H L Cloke and 

Pappenberger, 2009; Das et al., 2022; Madadgar et al., 2014). However, the accuracy of hydrologic 

forecasts usually depends upon the uncertainties associated with meteorological and hydrological 

models (H L Cloke and Pappenberger, 2009; Cloke and Schaake, 2018).  

Precipitation is the crucial variable of interest in hydrologic forecasting as it is the driving force in 

the hydrological cycle. The uncertainty associated with the precipitation forecasts is a significant 

contributor to the uncertainties in the hydrologic forecasts (Wu et al., 2020b). Accurate 

precipitation forecasts are pivotal for generating reliable and skilful hydrologic forecasts. Hence, 

the hydrological community is shifting towards adopting ensemble forecasts to quantify the 

uncertainties in forecasting systems. Ensemble weather forecasts for meteorological variables such 

as precipitation and temperature are simulated by different Numerical Weather Prediction (NWP) 

models for the lead times ranging from short (0-3 days) to medium range (3-15 days). The obtained 

ensemble forecasts are then inputs to the calibrated hydrological models to generate ensemble 

streamflow forecasts. 

Despite the progressive efforts in the evolution of NWPs by understanding the underlying 

atmospheric physics, accurate prediction of precipitation along with storm intensity and location 

still remains a critical challenge (Novak et al., 2014; Ridwan Siddique et al., 2015). However, a 

systematic forecast verification framework is quintessential to monitor, verify and quantify the 

skill of ensemble forecasts obtained from NWPs. The quality of the forecasts from NWPs is 

generally assessed by reconstructing retrospective forecasts for the previous period (also known 

as ‘hindcasts’) (Ratri et al., 2019). Various deterministic and probabilistic verification measures 

assess the degree of correspondence between the hindcasts and the observations. Hence, a 
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systematic forecast verification framework assists policymakers, researchers and various forecast 

users in understanding the inherent errors and biases of the forecasts (Sharma et al., 2017).  

Multitudes of verification studies spanning across the globe were reported so far for various 

forecasting systems such as National Centers for Environmental Prediction (NCEP) Global 

Ensemble Forecast System Reforecast (GEFSRv2) (Baxter et al., 2014; Brown et al., 2014; Kim 

et al., 2018; Ridwan Siddique et al., 2015) and the Short Range Ensemble Forecast (SREF) (Brown 

et al., 2012; Ridwan Siddique et al., 2015), European Centre for Medium-Range Weather Forecasts 

(ECMWF) (Hamill, 2012; Leonardo and Colle, 2017; Medina et al., 2019), United Kingdom Met 

Office Unified Model (UKMO) (Anderson et al., 2019; Leonardo and Colle, 2017; Ran et al., 

2018). Apart from the advantages of ensemble precipitation forecasts (Liu et al., 2012; Park et al., 

2008), the raw ensemble forecasts are unsuitable as direct input for hydrological applications due 

to their inherent biases. Hence, various statistical post-processing methods are generally employed 

for spatial downscaling and correction of forecast biases in terms of mean and ensemble spread 

(Hamill et al., 2004).  

Despite of the adoption of ensemble weather prediction system in India since 2018, the existing 

flood forecasting systems are still deterministic and unable to address the uncertainties in flood 

forecasts (Nanditha and Mishra, 2021; Teja and Umamahesh, 2020). No studies have been reported 

so far in India that look into the ensemble flood forecasts in a catchment with a regional outlook. 

The primary objective of this study is to verify and quantify the skill of raw and post-processed 

ensemble precipitation forecasts from two NWP models in the Godavari River Basin (GRB), India. 

The main motive behind this verification study is to assist the hydrological community in choosing 

the best suitable forecasts and post-processing method to develop a reliable ensemble flood 

forecasting system.  Verifying the forecasts is essential as GRB is often prone to floods that can 

cause devastating damage (Garg and Mishra, 2019; Rakhecha and Singh, 2017). Limited studies 

have been documented so far verifying the skill of ensemble precipitation forecasts for GRB 

(Chakraborty et al., 2021; Dube et al., 2017; Durai and Bhardwaj, 2014), and no studies have been 

reported so far comparing the skill of raw and post-processed forecasts. In this context, the 

following questions are explored and addressed: How to compare the skillfulness of various 

forecasting systems? How does the predictive skill of the ensemble precipitation forecasts fluctuate 

among and within multiple forecasting systems and quality attributes? How does the quality of 

ensemble forecasts differ over varying lead times? Does statistical post-processing of precipitation 

forecasts lead to enhanced forecasts? For this purpose, the quantitative ensemble precipitation 

forecasts from two NWP models, i.e., 50-member European Centre for Medium-Range Weather 
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Forecasts (ECMWF), 20-member National Centers for Environmental Prediction (NCEP) 

forecasts and 70-member multi-model grand ensemble (MME) were verified.  The skill of raw and 

post-processed NCEP, ECMWF and MME forecasts were verified against the observations as a 

preliminary analysis for hydrologic forecasting.  

3.2 Study Area and Datasets 

3.2.1 Study area 
 

The Godavari River Basin (GRB) is one of the largest river basins in the Indian subcontinent, with 

a catchment area of 3,13,000 km2 which is about 10% of India’s geographical area (CWC, 2018a). 

GRB lies between 73°24’ to 83°40’ East longitudes and 16°19’ to 22°34’ North latitudes (CWC 

and NRSC, 2014). The major subbasins are Manjira, Wardha, Weinganga, Godavari Upper, 

Godavari Middle, Godavari Lower, Indravati, and Pranahita. The average annual rainfall of this 

basin is about 1100mm (CWC, 2018a). However, the GRB receives 85% of its yearly rainfall 

during the South-West monsoon (June to September)  (Kulkarni et al., 2010). The location map of 

the GRB, along with its subbasins, is shown in Figure 3.1. 

 

Figure 3. 1 Location map of Godavari River Basin (GRB) and its subbasins. 
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3.2.2 Datasets 
 

Precipitation ensembles from two NWP models were obtained at a spatial resolution of 0.250 x 

0.250, from “The Observing System Research and Predictability Experiment” (THORPEX) 

Interactive Grand Global Ensemble (TIGGE) database over the study area. The skill of ensemble 

precipitation forecasts of two NWP models, i.e., NCEP, a 20-member ensemble, and ECMWF, a 

50-member ensemble, was verified in this study against precipitation records. The above NWP 

models generate forecasts up to 15-day lead-time at 6-hourly accumulations generated (or 

initiated) 4 times a day at 0-, 6-, 12-, and 18-hr time-steps. This study considers retrospective 

precipitation forecasts commenced at the 0th hour for forecast verification at varying lead times 

(1 to 15 days) for 24-hr accumulations. To assess the performance of a multi-model grand 

ensemble (MME), this study has also used a 70-member ensemble forecast by integrating NCEP 

and ECMWF forecasts. The NCEP, ECMWF and MME forecasts are collected from 2009 to 2020 

for 1-day to 15-day lead times. The selected NWP ensemble forecasts were verified against the 

observed daily precipitation data available from Indian Meteorological Department (IMD) at 0.250 

x 0.250 spatial resolution (Pai et al., 2014). The Indian Meteorological Department (IMD) dataset 

used in this study is indeed a gridded dataset, created by Pai et al. (2014). through a process 

involving weather station data and subsequent post-processing. Specifically, the dataset referred 

to as IMD4 is a high-resolution gridded rainfall dataset with a spatial resolution of 0.25° × 0.25°, 

covering a span of 110 years from 1901 to 2010. It is compiled from a comprehensive record of 

daily rainfall obtained from 6995 rain gauge stations. These stations represent the highest number 

used in such studies to date and have undergone stringent quality control measures. When 

compared to existing datasets, IMD demonstrates accurate representation of climatological and 

variability features of rainfall over India. Its higher spatial resolution and dense station coverage 

contribute to a more realistic depiction of rainfall patterns in specific regions. This data set is 

currently the highest quality collection of observations on the Indian subcontinent.  

3.3 Methodology 

3.3.1 Verification Measures 
 

A diverse pool of verification measures that include deterministic and probabilistic metrics is used 

in this study for forecast verification. Deterministic metrics assess the quality of the ensemble 
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mean, whereas probabilistic metrics evaluate the errors in the forecast probabilities. 

3.3.1.1 Deterministic metrics 

 

The linear Correlation Coefficient and Relative Mean Error (RME) are used in this study as the 

deterministic metrics to measure the match with the observed temporal dynamics and 

under/overestimation biases, respectively (Sharma et al., 2017; Ridwan Siddique et al., 2015). The 

equation of RME is given in Eq. 1. 

 𝑅𝑀𝐸 =
∑ (𝐸𝑖−𝑂𝑖)𝑛

𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

  where,  𝐸𝑖 =
1

𝑚
∑ 𝐸𝑖,𝑘

𝑚
𝑘=1     (3.1) 

where, 𝑚 is the number of ensemble members, 𝐸𝑖,𝑘  is the forecast for 𝑘𝑡ℎ member at time  𝑖, 𝑂𝑖 

denotes the corresponding observation at time  𝑖, and 𝑛 represents the total number of pairs of 

observed and forecast values. 

3.3.1.2 Probabilistic Metrics 

 

As per Murphy and Winkler (1987), the quality of ensemble forecasts is determined by analyzing 

the following attributes: reliability, sharpness, resolution, discrimination, bias, accuracy and skill. 

Probabilistic measures are generally employed to analyze the aforementioned attributes in the 

forecasts. 

3.3.1.2.1 Mean Continuous Ranked Probability Score (CRPS) 

 

The continuous ranked probability score (CRPS) is a widely used probabilistic performance 

measure of ensemble forecasts (Wilks, 2011). CRPS is a quadratic measure that evaluates the 

difference between the cumulative distribution functions (CDF) of probabilistic forecasts and 

observed values (Zamo and Naveau, 2018). CRPS is similar to the Mean Absolute Error (MAE) 

of deterministic forecasts, which can be easily interpreted. The equation of CRPS is given in Eq. 

3.2. 

CRPS = ∫ [𝐹𝐸(ℎ) −  𝐹𝑂(ℎ)]2𝑑ℎ
∞

−∞
       (3.2) 

where, 𝐹𝐸 and 𝐹𝑂 are the forecast and observed CDFs, respectively, and ℎ represents every possible 

threshold. CRPS is averaged over the total pairs of forecast and observed values to verify a set of 

forecasts. The lower the mean CRPS, the better the forecasts are.  
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3.3.1.2.2 Spread-Skill relationship 

 

In the case of an ideal ensemble forecast, the mean of the ensemble spread should be equal to the 

skill score (e.g. root mean square error (RMSE)) over the same period (Wang et al., 2013; Whitaker 

and Louche, 1998; Zhu and Toth, 2008). To assess this feature, the relationship between ensemble 

spread and skill is often investigated. In this study, RMSE is used as the skill score, and the 

standard deviation of ensemble members is used to represent the ensemble spread. RMSE and 

standard deviation are normalized with observed standard deviation to compare the skill of 

forecasts concerning a climatological value. When the skill score (RMSE) line is above and far 

from the spread line, the ensemble is considered over-confident, i.e. under dispersive. If RMSE is 

lower than ensemble spread, it indicates an under-confident (over dispersive) forecast. Ideally, 

RMSE should be equal to the ensemble spread for a forecast to be consistent and reliable. 

3.3.1.2.3 Rank Histograms 

 

Equiprobability of ensemble members is an ideal quality of ensemble forecasts. The ensemble 

members should be equally probable in principle as all perturbed initial conditions, varying physics 

and model structures could possibly be true (Bellier et al., 2017; Hamill, 2001). To check the 

equiprobability of ensemble members, rank histograms are used. They are generated by repeatedly 

accumulating the rank of the observed values concerning the ensemble forecasts sorted from 

lowest to highest. A uniform histogram is desirable, representing an equal likelihood of each 

ensemble member. Since rank histograms do not assess the resolution of forecasts, they are used 

in conjunction with other evaluation measures, such as CRPS and area under the Relative operating 

characteristic (ROC) curve, to understand more about the quality of ensemble forecasts (Hamill, 

2001). 

3.3.1.2.4 Reliability Diagrams 

 

Reliability diagrams are frequently used graphical tools to visualize the joint distribution of 

forecasts and dichotomous events (observations) to assess the reliability of probabilistic forecasts 

(Casati et al., 2008; Dube et al., 2017; Ratri et al., 2019). Quantitative precipitation forecasts are 

converted to probabilistic forecasts based on an exceedance threshold ℎ and segregated into 𝑘 bins. 

The average probability of the forecasts corresponding to the 𝑘th bin,𝐵𝑘, is given by 

𝐹̄𝐸𝑘
(ℎ) =

1

|𝐼𝑘|
∑ 𝐹𝐸𝑖𝐼𝑘

(ℎ), where 𝐼𝑘 = {𝑖 : 𝑖 ∈ 𝐵𝑘}      (3.3) 
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The corresponding average probability of the observations is given by 

𝐹̄𝑂𝑘
(ℎ) =

1

|𝐼𝑘|
∑ 𝐹𝑂𝑖𝐼𝑘

(ℎ), where 𝐹𝑂𝑖
(ℎ) = {

1,         𝑂𝑖 > ℎ;
0,    otherwise.

     (3.4) 

The forecast probabilities (𝐹̄𝐸𝑘
(ℎ)) of an event are plotted against the corresponding observed 

frequencies given forecast probability (𝐹̄𝑂𝑘
(ℎ)) for a total number of forecasts |𝐼𝑘| in each bin 𝐵𝑘. 

In this study, an exceedance threshold of 1 mm is chosen to plot reliability diagrams to assess the 

reliability of NWPs in forecasting precipitation events.  

 

3.3.1.2.5 Area under ROC curve (AUC) 

 

Relative operating characteristic (ROC) curves are the graphical representation of the trade-off 

between the fraction of hits (true alarm) and the fraction of false alarms to measure event 

discrimination (Casati et al., 2008; Gill and Buchanan, 2014; Wilks, 2011). For a given threshold 

ℎ, the hit rate and false alarm rate are given by 

 ℎ𝑖𝑡 𝑟𝑎𝑡𝑒 =
∑ 𝐼𝐸𝑖

𝑛
𝑖=1 (𝐹𝐸𝑖

(ℎ)>𝑑|𝑂𝑖>ℎ)

∑ 𝐼𝑂𝑖
𝑛
𝑖=1 (𝑂𝑖>ℎ)

,      (3.5) 

 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒 =
∑ 𝐼𝐸𝑖

𝑛
𝑖=1 (𝐹𝐸𝑖

(ℎ)>𝑑|𝑂𝑖≤ℎ)

∑ 𝐼𝑂𝑖
𝑛
𝑖=1 (𝑂𝑖≤ℎ)

     (3.6)  

where 𝑑 is the probability threshold at which the event causes some action (i.e., the forecast is 

considered an occurrence), and 𝐼 is the indicator function. The ROC curve plots a false alarm rate 

against the hit rate using a set of decreasing forecast probability threshold decreases for possible 

values of 𝑑  [0, 1]. Ideally, with decreasing forecast probability thresholds, the hit rate should 

increase faster than the false alarm rate. Area under the ROC curve (AUC) is a scalar entity that 

summarizes discrimination between events and non-events. An AUC of 0.5 indicates random 

forecasts, while an AUC value of 1 reflects perfect forecasts. The value of the AUC of a 

probabilistic forecast greater than 0.7 is considered ‘useful’, whereas the AUC above 0.8 is 

regarded as a ‘good’ prediction (Ben Bouallègue and Theis, 2014; Mullen and Buizza, 2002). A 

threshold of 1 mm is chosen in this study to compute the AUC values. 

3.3.2 Statistical post-processing Methods 
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This study used two statistical post-processing techniques to post-process the raw ensemble 

forecasts obtained from NCEP and ECMWF. The forecast data from 2009 to 2015 is used as the 

training dataset for post-processing models. The fitted models post-process the raw daily forecasts 

from 2016 to 2020. It should be noted that the forecast verification was performed from 2016 to 

2020. Quantile mapping and quantile regression forests (QRF) are both methods used in in this 

study for post-processing ensemble precipitation forecasts. Quantile mapping involves adjusting 

the forecasted distribution to match the observed distribution by fitting a transfer function, often a 

linear regression, to their cumulative distribution functions. This method assumes a linear 

relationship between forecast and observed quantiles. On the other hand, quantile regression 

forests utilize an ensemble of decision trees to estimate conditional quantiles, without assuming 

any specific distributional form. This makes QRF more flexible in capturing non-linear 

relationships between variables. Therefore, while quantile mapping is effective for linear 

relationships, QRF is particularly useful when the relationship between forecasted and observed 

quantiles is complex and non-linear. A brief description of the selected post-processing methods 

is given in the succeeding sections. 

3.3.2.1 Quantile Mapping 

 

The ensemble precipitation forecasts obtained from the NWP models comprise inherent biases due 

to the chaotic nature of atmospheric circulation and their regulating dynamic feedback 

(Christensen et al., 2001).  These biases should be corrected to improve the forecasts' quality. 

Quantile mapping, also known as ‘histogram equalization’, is a simple and most widely used bias 

correction method (Acharya et al., 2013).  In this method, the distribution function of modelled 

variable is transformed such that it matches the distribution of observed variable. Based on the 

assumption that the internal errors in the NWP models and scale relationship are time-invariant, 

the correction factor obtained during the calibration period is valid for future periods. 

Gudmundsson et al. (2012) reported that nonparametric quantile mapping performs best among 

different bias correction methods. The bias correction has been performed on each ensemble 

member of the raw ensemble forecasts at each grid point (for all 428 grids falling in Godavari 

River Basin) using Eq. (3.7), considering 2009-2015 as the calibration period. Then the correction 

factor obtained from the calibration period is used to correct the bias during the validation period. 

𝑃𝑜 = 𝐹𝑜
−1(𝐹𝑚(𝑃𝑚))         (3.7) 

where 𝑃𝑜 and 𝑃𝑚 are observed and forecasted precipitation, 𝐹𝑚 represents the cumulative 
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distribution function (CDF) of 𝑃𝑚 and 𝐹𝑜
−1

 is the inverse CDF corresponds to 𝑃𝑜.  For performing, 

non-parametric quantile mapping, the ‘qmap’ package in R has been used that can be downloaded 

from https://cran.r-project.org/web/packages/qmap/index.html.  

3.3.2.2 Quantile Regression Forests 

 

Quantile Regression Forests (QRF) is a nonparametric postprocessing method developed by 

(Meinshausen, 2006). QRF provides a nonparametric way to evaluate conditional quantiles for 

high-dimensional predictors of variables. This technique has been used for meteorological data 

such as precipitation by Bhuiyan et al. (2018) and Taillardat et al. (2016). Given a set of predictors, 

the Quantile Regression technique helps to estimate the conditional median and any quantile values 

of the response variable, whereas the classical regression techniques are helpful in estimating the 

conditional mean of a response variable. The conditional distribution function (𝐹̂(𝑦|𝑋 = 𝑥)) is 

expressed as given in Eq. (3.8) 

𝐹̂(𝑦|𝑋 = 𝑥) =  𝑃 (𝑌 ≤  𝑦|𝑋 =  𝑥) =  𝐸 (1{𝑌≤𝑦}|𝑋 =  𝑥)   (3.8) 

Where, 𝑋, 𝑌 represents the covariate and the observations of the response variable respectively, 

and 𝐸 represents the conditional mean, 𝐸 (1{𝑌≤𝑦}|𝑋 =  𝑥).  

In QRF, random forests are generated from binary regression trees called classification and 

regression trees (CART) that provide robust estimates of conditional quantiles. After building the 

random forests, a new vector of predictors and its associated leaf in each tree will be determined 

using binary splitting. This iterative binary splitting on predictors aggregates the observations 

according to their forecasts. Therefore, for every precipitation event, an ensemble of observations 

is restored to create an empirical cumulative distribution function (CDF).  The weighted average 

of the CDFs from all the trees is the final forecast, which can be used to obtain the predictive 

quantiles. The weighted mean over the observation of 1{𝑌≤𝑦} (1{𝑌≤𝑦} is a step function with a value 

of 1 when 𝑌 ≤ 𝑦 and with a value of 0 when 𝑌 > 𝑦 ) is used to estimate the conditional mean in 

Eq. (3.9). Then the conditional distribution function in Eq. (3.9) can be defined as 

𝐹̂(𝑦|𝑋 = 𝑥) = ∑ 𝑤𝑖(𝑥)1{𝑌≤𝑦}
𝑛
𝑖=1       (3.9) 

𝑤𝑖(𝑥) = 𝑘−1 ∑ 𝑤𝑖(𝑥, 𝜃𝑡)𝑘
𝑡=1        (3.10) 

where, 𝑤𝑖(𝑥) is the weight vector estimating using random forest regression, 𝑘 represents the 

number of trees, and 𝜃 is an independent and identically distributed random parameter vector that 

https://cran.r-project.org/web/packages/qmap/index.html
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determines the growth of the tree (e.g., variables that determine the split points at each node).  

The major advantage of QRF is that it not only retains the mean but also keeps all the observation 

values in the nodes to calculate the conditional distribution. The final CDF obtained from the 

weighted average CDF of all trees is bounded between the lowest and highest value of the learning 

sample and can forecast only the quantiles within these limits. The algorithm for computing the 

estimate of the conditional distribution function 𝐹̂(𝑦|𝑋 = 𝑥) can be summarized as:  

Step 1:  Grow 𝑘 trees as in random forests. The corresponding tree is denoted by 𝑇(𝜃𝑡), 𝑡 =

1, … . . , 𝑘. All the observations should be retained for every leaf of every tree.  

Step 2: For a given X = x, drop x down all trees. Compute weight 𝑤𝑖(𝑥) for every observation 𝑖 ∈

 {1, . . . , n} as an average over 𝑤𝑖(𝑥, 𝜃𝑡) 𝑡 = 1, … . . , 𝑘, as in (3.3).  

Step 3: Compute the estimate of the conditional distribution function as in Eq. (3.2) for all y ∈ 𝑅, 

using the weights from Step 2. 

For a quantile of order 𝛼, the probability of the random variable being less than 𝑦 is 𝛼, i.e. (CDF 

value for 𝑦). Thus, the quantiles are estimated by Eq. (3.4) 

 𝑄𝛼̂ = 𝑃 (𝑌 ≤  𝑦|𝑋 =  𝑥) = 𝛼       (4) 

Instead of using the raw ensemble forecasts, this method can potentially use other predictors and 

has the advantage of maintaining non-linearity. For instance, Bhuiyan et al.(2018) used global 

reanalysis precipitation and air temperature datasets along with satellite near-surface soil moisture 

and elevation datasets as predictors to post-process multiple global precipitation datasets. 

However, QRF needs a large training dataset which is a major drawback. In this study, all the 

ensemble members (20 members for NCEP forecasts and 50 members for ECMWF forecasts) were 

used as predictors for post-processing. The tree size is set to 1000 with the maximum size of 

terminal nodes as 20. In this study, the post-processing of raw forecasts using Quantile Regression 

Forests was performed using the ‘quantregForest’ package in R (Meinshausen, 2017). 

3.3.4 Results and Discussion 
 

The mean areal precipitation of ensemble forecasts (raw and post-processed NCEP and ECMWF) 

and observed precipitation from IMD over each sub-basin of the Godavari River Basin is 

computed. The skill of basin-averaged forecasts was verified against basin-averaged IMD 

precipitation records using a pool of deterministic and probabilistic evaluation measures. 
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3.3.4.1 Rank histograms 

 

Rank histograms measure the frequency of observation to fall between each pair in an ordered set 

of ensemble values. The under-dispersiveness in the ensemble forecasts leads to higher frequencies 

of the extreme ranks. Asymmetric histograms represent the bias in the forecasts, and the 

histograms should be uniform for ideal forecasts. The rank histograms of the NCEP and ECMWF 

forecasts at 1 day lead time are plotted in Figure 3.2. For brevity of plots, the rank histograms of 

MME forecasts were not plotted in this section. It can be noticed that both NCEP and ECMWF 

raw forecasts overpopulate the bins on the very left at all subbasins indicating biased and under-

dispersive forecasts. However, it should be noted that ECMWF forecasts are highly biased 

compared to NCEP forecasts. The higher frequencies on the very left side of the histograms of raw 

NCEP and ECMWF forecasts are decreasing with increasing lead time, and the frequencies on the 

very right side of the histograms were found to be increasing with increasing lead time, leading to 

U-shaped distribution (refer to Figures 3.3 and 3.4). This shows that the raw forecasts are 

becoming more under-dispersive with respect to lead time. Statistical post-processing has 

alleviated the problem of bias in the raw forecasts to some extent. The rank histograms of QRF 

post-processed forecasts were comparatively uniform than QM post-processed forecasts. The U-

shaped distribution of QM post-processed forecasts denotes that the forecasts are still under-

dispersive.  It should be noted that the rank histograms of NCEP-QRF forecasts are slightly biased 

at lower Godavari and Indravati, whereas ECMWF-QRF is biased at lower Godavari, Upper 

Godavari, Indravati and Pranahita subbasins.  
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Figure 3.2 Rank histograms of raw and post-processed National Center for Environmental 

Prediction (NCEP) and European Center for Medium-term Weather Forecasts (ECMWF) forecasts 

over all subbasins for 24 hours lead time. 
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Figure 3.3 Rank histograms of raw and post-processed National Center for Environmental 

Prediction (NCEP) and European Center for Medium-term Weather Forecasts (ECMWF) forecasts 

over all subbasins for 5-day lead time. 

 

 

 

 



50 
 

 

Figure 3.4 Rank histograms of raw and post-processed National Center for Environmental 

Prediction (NCEP) and European Center for Medium-term Weather Forecasts (ECMWF) forecasts 

over all subbasins for 15-day lead time. 

3.3.4.2 Boxplots of Forecast Error 

 

The performance evaluation measures described in the preceding section were used to assess the 

skill of raw and post-processed ensemble precipitation forecasts. The forecast error boxplots of the 

basin averaged 24 hourly accumulations of raw and post-processed (QM and QRF) forecasts of 
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NCEP and ECMWF, which are plotted against increasing amounts of observed precipitation in 

Figures 3.5 and 3.6, respectively, for 1 day (short) lead time. For brevity of plots, forecast boxplots 

of MME were excluded in this subsection. Similarly, the forecast error boxplots for higher lead 

times (5-day and 15-day lead times) were also provided in Figures 3.7 to 3.10. It can be observed 

from Figures 3.5 and 3.6 that both NCEP and ECMWF forecasts (raw and post-processed) 

constantly underestimate the extreme precipitation events in all subbasins. 

In contrast, light to moderate precipitation events (below 20 mm and above 1 mm/day) are slightly 

overestimated. However, QRF post-processed forecasts are marginally better when compared to 

that raw forecasts at all lead times for light to moderate precipitation events. In agreement with the 

results of previous studies (Ridwan Siddique et al., 2015), the raw forecasts from NWPs tend to 

underestimate extreme precipitation events due to conditional biases (i.e., the forecast error is 

correlated to the observed precipitation). The forecast boxplots at higher lead times (Figures 3.7 

to 3.10) show that the interquartile range (IQR) of boxplot of forecast errors is decreasing from 1 

to 15-day lead times and is approximately equal to that of the magnitude of observed precipitation, 

indicating the inability of NWPs to forecast extreme events at higher lead times. This shows that 

the ensemble spread is smaller at longer lead times, indicating an over-confident forecast. This is 

plausibly due to the nudging of NWPs towards climatological values (Wilks, 2006). This analysis 

suggests that further research is necessary with a target to improve the ability of NWPs to simulate 

extreme precipitation events. The ECMWF forecast errors (raw and post-processed) in Lower 

Godavari, Indravati, Manjira and Weinganga are higher at larger precipitation events when 

compared to other subbasins at all lead times. The error associated with NCEP forecasts (raw and 

post-processed) also follows a similar pattern as that of ECMWF. 

To summarize, both QM and QRF methods effectively remove the inherent biases in raw forecasts. 

However, they differ in their abilities to correct forecast spread and provide reliable forecasts. It is 

evident that the forecast error boxplots of QM-postprocessed NCEP forecasts are overly narrow at 

higher precipitation amounts indicating smaller ensemble spread. 
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Figure 3.5 Boxplots of forecast errors of raw and post-processed National Center for 

Environmental Prediction (NCEP) forecasts for 1 day lead time. The boxplot closer to zero (solid 

black line) with a smaller spread indicates a reliable and sharp forecast. 
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Figure 3.6 Boxplots of forecast errors of raw and post-processed European Center for Medium-

term Weather Forecasts (ECMWF) forecasts for 1 day lead time. The boxplot closer to zero (solid 

black line) with a smaller spread indicates a reliable and sharp forecast. 
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Figure 3.7 Boxplots of forecast errors of raw and post-processed National Center for 

Environmental Prediction (NCEP) forecasts for 5-day lead time. The boxplot closer to zero (solid 

black line) with a smaller spread indicates a reliable and sharp forecast. 
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Figure 3. 8 Boxplots of forecast errors of raw and post-processed European Center for Medium-

term Weather Forecasts (ECMWF) forecasts for 5-day lead time. The boxplot closer to zero (solid 

black line) with a smaller spread indicates a reliable and sharp forecast. 
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Figure 3.9 Boxplots of forecast errors of raw and post-processed National Center for 

Environmental Prediction (NCEP) forecasts for 15-day lead time. The boxplot closer to zero (solid 

black line) with a smaller spread indicates a reliable and sharp forecast. 
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Figure 3.10 Boxplots of forecast errors of raw and post-processed European Center for Medium-

term Weather Forecasts (ECMWF) forecasts for 15-day lead time. The boxplot closer to zero (solid 

black line) with a smaller spread indicates a reliable and sharp forecast. 
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3.3.4.3 Performance Evaluation of ensemble mean 

 

The ability of the ensemble mean to capture the temporal dynamics of observed precipitation 

events is assessed by computing the correlation coefficient. Figure 3.11 shows the correlation 

coefficient between the ensemble mean of forecasted precipitation and observed precipitation for 

lead times varying from 1 to 15 days. It can be noticed that the correlation coefficient is high at a 

lead time of 1 day and tends to decrease with an increase in lead time, denoting that forecasts are 

unable to capture the observed events at higher lead times.  Despite the fact that the correlation 

tends to decrease with forecast lead time, an increase in the correlation can be observed in NCEP 

forecasts (raw and post-processed) can be observed after a lead time of 6 days in Middle Godavari, 

Upper Godavari, Indravati, Wardha and Weinganga subbasins. Similar correlation patterns were 

observed in the study of Sharma et al. (2017), where the correlation is found to be increasing at 

higher lead times as the basin size increases. Furthermore, the basin averaging of precipitation 

plausibly alleviates the spatial forecast errors leading to improved correlation. Additionally, future 

research could investigate the impact of incorporating watershed-specific characteristics and 

topographic attributes in ensemble precipitation forecasting models to better understand and 

mitigate spatial forecast errors, potentially leading to further improvements in forecast 

performance. The correlation of raw MME forecasts is found to be higher than that of raw forecasts 

from individual NWP models, and is found to be as skillful as the post-processed forecasts. It is 

worth mentioning that the QRF post-processed forecasts were found to be better than that of their 

corresponding raw forecasts in terms of correlation coefficient in all the subbasins. However, QRF 

post-processed NCEP and MME forecasts are outperforming the remaining forecasts in all the 

subbasins. The mean of QM post-processed forecasts were found to be less correlated with the 

observed precipitation when compared with their corresponding raw forecasts. QM method can 

produce both positively (for ECMWF and MME) and negatively (for NCEP) skillful forecasts on 

the grounds that it neglects the association between the observations and raw forecasts. The skill 

of NCEP forecasts is found to be good in Indravati and Weinganga subbasins with a correlation 

greater than 0.4 event at a higher lead times (>7 days). Similarly, the correlation of ensemble mean 

(except QRF post-processed forecasts) and observed values is low at Lower Godavari, Manjira 

and Pranahita at higher lead times. 
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Figure 3.11 Correlation coefficient between the ensemble mean and observed precipitation for 

different lead times. 

To understand the under/over estimation bias of the forecasts, RME between mean of the ensemble 

forecasts and observed precipitation is computed for varying lead times ranging from 1 day to 15 

days (Figure 3.12). It can be observed that the raw forecasts are being overestimated in Upper 

Godavari and Wardha subbasins at almost all lead times due to the inherent biases. With increasing 

lead times, the post-processed ECMWF forecasts were underestimated in all subbasins. The 

NCEP-QRF forecasts were found to be less biased in all subbasins except Middle Godavari and 

Wardha subbasins. The performance of raw and post-processed MME forecasts was found to be 

satisfactory regarding RME at all the sub-basins indicating the multi-model ensembling alleviates 

the biases. The skill of post-processed ECMWF forecasts is superior in terms of RME in the 

Wardha subbasin. The superior performance of post-processed ECMWF forecasts in terms of 

Relative Mean Error (RME) in the Wardha subbasin may be attributed to several factors. It's 

possible that the ECMWF model, in its raw form, exhibits certain biases or uncertainties that are 

effectively mitigated through the post-processing technique employed. This could be related to the 

model's representation of local meteorological conditions, topographical features, or other 

dynamic factors specific to the Wardha subbasin. Additionally, the post-processing method itself 

may have been particularly effective in calibrating and refining the ECMWF forecasts in this 
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specific region. The verification results in terms of correlation coefficient, and RME were found 

to be in line with the findings of Siddique et al. (2015) and Sharma et al. (2017). 

 

Figure 3.12 RME between the ensemble mean and observed precipitation for different lead times. 

3.3.4.4 Spread-skill relationship 

 

The spread-skill relationship of the NCEP, ECMWF and MME forecasts are evaluated and plotted 

in Figure 3.13 for lead times ranging from 1 to 15 days. The skill score (RMSE in this study) 

should be equal to the mean of ensemble spread for consistent and reliable ensemble forecast. 

RMSE values higher than the spread indicates under-dispersive (over confident) forecasts and vice 

versa. From Figure 3.13, it can be noticed that NCEP, ECMWF and MME forecasts (raw and post-

processed) are under dispersive at all subbasins at all lead times. The ensemble spread of raw 

forecasts is low at smaller lead times and is increasing with increasing lead time. The ensemble 

spread of post-processed forecasts is higher than that of raw forecasts at smaller lead times 

alleviating the under-dispersion of raw forecasts. However, the spread of both raw and post-

processed forecasts converges at lead times from 11 to 15 days. 

It should be noted that the RMSE at Upper Godavari, Pranahita and Wardha subbasins are 

considerably greater (>1) than that of RMSE at remaining subbasins. It can also be observed that 

the RMSE of QM post-processed forecasts are high, indicating poor skill compared to QRF post-
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processed forecasts. A good linear relation is observed between RMSE and spread of QRF post-

processed forecasts compared to other forecasts. It shows the ability of QRF post-processed 

forecasts to preserve the spread-skill relationship. 

 

Figure 3.13 Ensemble spread-skill relationship of the National Centre for Environmental 

Prediction (NCEP) and European Centre for Medium-term Weather Forecasts (ECMWF) forecasts 

for different lead times over all subbasins. 

 

 

 

 

 

 

3.3.4.5 Continuous Ranked Probability Score (CRPS) 
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CRPS generalizes the Mean Absolute Error (MAE) to the case of probabilistic forecasts. Lesser 

the mean CRPS value, the more accurate the forecasts are. The mean CRPS value of ensemble 

forecasts for various lead times ranging from 1 day to 15 days is plotted in Figure 3.14. The general 

tendency of the mean CRPS to increase with respect to lead time. The mean CRPS value of the 

raw and QM post-processed forecasts is high at shorter lead times (1 to 3 days) at most subbasins. 

However, the mean CRPS values are low in all subbasins except Lower Godavari, Indravati and 

Weinganga. The higher values of mean CRPS and correlation coefficient in Indravati and 

Weinganga subbasins indicates that the ensemble spread is comparatively higher in comparison to 

the ensemble spread in other basins. However, the good correlation between ensemble mean and 

observations shows the skill of ensemble spread in capturing the observed events.  This problem 

of high/low ensemble spread leading to under/over confident forecasts can be alleviated by 

employing post-processing methods (Raftery et al., 2005). It can be noticed from Figure 3.14 that 

the performance efficiency in terms of CRPS has increased with the application of QRF to NCEP, 

ECMWF and MME forecasts in all subbasins. However, the MME forecasts are comparatively 

better than those from individual NWPs in all subbasins. The QRF post-processed MME and 

NCEP forecasts were more skilful in all sub-basins at all lead times. 
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Figure 3.14 Mean CRPS value of National Center for Environmental Prediction (NCEP), 

European Center for Medium-term Weather Forecasts (ECMWF) and MME forecasts as a function 

of lead time over all subbasins. 

 

 

3.3.4.6 Reliability Diagrams 

 

With the intent to evaluate the reliability of NCEP and ECMWF forecasts, reliability diagrams are 

plotted for 1 day (Figure 3.15), 5 days (Figure 3.16) and 15 days (Figure 3.17) lead times. In an 

ideal case, the curve of observed frequency for given forecast probabilities should be close to the 

diagonal. The log-transformed curves in the inset of reliability plot indicates the sharpness of the 

forecast i.e., how frequently each probability was issued. Figure 3.13 shows that the raw NCEP, 

ECMWF and MME forecast are under dispersive (overconfident) for forecast probabilities greater 

than 0.4 overall subbasins at 1 day lead time. However, it can be observed that the reliability has 

increased in the post-processed forecasts at 1 day lead time. It is also essential to notice that QM 

post-processed forecasts are slightly more reliable (closer to the diagonal line) than QRF post-

processed forecasts. However, the QM post-processed forecasts were under-confident for forecast 
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probabilities less than 0.8 for Middle Godavari, Indravati, Manjira, Wardha and Weinganga. The 

QRF post-processed forecasts are slightly over-confident for forecast probabilities less than 0.8 in 

most subbasins and are more reliable than QM post-processed forecasts for higher forecast 

probabilities (>0.8). No significant difference has been observed between the performance of 

NCEP, ECMWF and MME forecasts post-processed with the QRF method. However, it can be 

noticed from Figures 3.16 and 3.17 that the reliability of both raw and post-processed forecasts 

declines with increasing lead times. 
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Figure 3.15 Reliability diagram of National Centre for Environmental Prediction (NCEP), 

European Centre for Medium-term Weather Forecasts (ECMWF) and MME forecasts for 1 day 

lead time over all subbasins. 
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Figure 3.16 Reliability diagram of National Center for Environmental Prediction (NCEP) and 

European Center for Medium-term Weather Forecasts (ECMWF) forecasts for 5-day lead time 

over all subbasins. 
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Figure 3.17 Reliability diagram of National Center for Environmental Prediction (NCEP), 

European Center for Medium-term Weather Forecasts (ECMWF) and MME forecasts for 15-day 

lead time over all subbasins. 
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3.3.4.7 Area under ROC curve (AUC) 

 

The area under the ROC curve (AUC) is a scalar measure that quantifies the discrimination ability 

of forecasts between occurrences and non-occurrences. The ability of event discrimination of 

NCEP, ECMWF and MME forecasts in terms of area under the ROC curve (AUC) is plotted for 

different lead times across all subbasins in Figure 3.18. From the figure, it can be observed that 

AUC at all subbasins at all lead times is greater than 0.75, indicating that the forecasts are ‘useful’ 

(as mentioned in the methodology section). It can also be observed that the value of AUC is 

decreasing with increasing lead time at all subbasins. This indicates that the discrimination ability 

of forecasts declines with lead time, suggesting an increased false alarm rate. The AUC values of 

raw NCEP forecasts at 3- to 5 days lead time are deteriorating at Middle Godavari, Manjira and 

Wardha subbasins, which is efficiently alleviated by post-processing. The overall performance of 

post-processed forecasts is better than raw forecasts highlighting the potential of post-processing. 

QRF post-processed NCEP and MME forecasts outperform other forecasts at all subbasins for all 

lead times. It should also be noted that the AUC values at Manjira and Pranahita are lower than 

other subbasins. 

 

Figure 3.18 AUC values of the National Center for Environmental Prediction (NCEP), European 

Center for Medium-term Weather Forecasts (ECMWF) and MME forecasts as a function of lead 

time over all subbasins. 
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3.3.5 Summary and Conclusions 
 

In this study, the skill of ensemble precipitation forecasts from the European Centre for Medium-

Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP) 

from “The Observing System Research and Predictability Experiment” (THORPEX) Interactive 

Grand Global Ensemble (TIGGE) database is evaluated over the eight subbasins of Godavari River 

Basin, India. These two forecasting systems are preferred as they are operational, have multiyear 

datasets, and/or capture scenarios that forecasters are interested in (Sharma et al. (2017)). Along 

with them, the skill of the multi-model grand ensemble (MME) generated by integrating NCEP 

and ECMWF forecasts is also verified in this study. Two statistical post-processing methods 

emphasize the ability of post-processing methods to alleviate the conditional biases in the raw 

forecasts. The verification was conducted for daily accumulations for different lead times (1 to 15 

days) in hindcast mode. The deterministic and probabilistic measures (forecast error box plots, 

correlation coefficient, RME, mean CRPS, spread-skill relationship, rank histograms, reliability 

diagram, AUC) are employed to verify the skill of basin averaged raw and post-processed forecasts 

in comparison to the observed data during the period from 2016 to 2020. The key findings of this 

verification study are mentioned below. 

 The skill of both NCEP and ECMWF raw forecasts in capturing the observed extreme 

precipitation events is poor across all lead times and statistical post-processing also could 

not alleviate this problem. This highlights the need to develop the underlying physics of 

NWPs to accurately forecast extreme precipitation events. 

 The correlation between ensemble mean and observed precipitation declines with 

increasing lead time, whereas RME does not depend upon lead time. The ensemble mean 

of QRF post-processed NCEP and MME forecasts outperforms other forecasts regarding 

correlation coefficient and RME at all lead times in all subbasins.  

 The ensemble spread-error relationship in the post-processed forecasts is improved in 

comparison to raw forecasts. It is also found that QRF outperforms QM in preserving the 

ensemble spread-error relation. 

 The rank histograms suggest that NCEP and ECMWF raw forecasts are under-dispersive 

and biased at all subbasins. However, post-processing of raw forecasts has alleviated the 

problem of bias. 

 Based on the analysis of reliability diagrams, the raw NCEP and ECMWF forecasts tend 

to be overconfident, whereas the post-processed forecasts are performing well at 1 day lead 
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time. However, the reliability declines with increasing lead times due to overconfident 

forecasts.  

 The AUC values are greater than 0.75 at all lead times and all subbasins, showing that the 

forecasts are ‘useful’. The discrimination ability of forecasts in terms of AUC is found to 

be decreasing with lead time, indicating a higher false alarm rate. 

 The results of the analysis suggest that the performance of raw MME is comparatively 

better than raw NCEP and ECMWF forecasts in terms of the employed verification 

measures. However, the QRF post-processed NCEP and MME are performing equally 

well. Hence, keeping in mind of the computational cost, 20-member QRF post-processed 

NCEP forecasts are suggested for hydrologic forecasting applications over the present 

study area. 

 The overall performance of NCEP and MME forecasts is better than ECMWF forecasts. 

The performance of QRF post-processed forecasts is outperforming QM post-processed 

and raw forecasts. The underperformance of QM is because it does not account for the 

under/over spread in the raw forecasts, and it does not consider the correlation between 

raw forecasts and observations, leading to unreliable forecasts. 

 The performance of post-processed forecasts in Lower Godavari, Middle Godavari, 

Indravati, Manjira and Weinganga is satisfactory regarding both deterministic and 

probabilistic measures. The performance of QRF post-processed NCEP and MME 

forecasts was satisfactory at most of the subbasins for all verification measures. 

Even though the aforementioned verification results provide diagnostic information about the skill 

of ensemble precipitation forecasts, they do not give any information on how to improve the NWP 

models. More weather factors than only precipitation are needed to properly understand the 

physical and environmental factors linked to forecast errors and skill (Moore et al., 2015). In the 

future, we plan to explore and evaluate various forecasting scenarios to assess the benefits of 

integrating the outputs from different precipitation forecasting systems, hydrologic model 

structures, and hydrological post-processing techniques to potentially improve flood forecasting 

across spatiotemporal scales. 
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Chapter 4 

Impact of model resolution on 

simulation of flood peaks 
 

4.1 Introduction 
 

Flood is a common natural disaster worldwide that can cause catastrophic impacts on day-to-day 

operations (Hirabayashi et al., 2013). Unlike other natural disasters, floods can be forecast in 

advance as a preparedness measure (H. L. Cloke and Pappenberger, 2009). The hydrological and 

meteorological models are often integrated to forecast flood hydrographs, and the ensemble system 

is termed as hydro-meteorological forecasting system (Das et al., 2022). Hence, accurate 

prediction of floods through various hydrological models is the need of the hour for mitigating the 

effects of floods. This can be done by appropriately selecting hydrological model structure along 

with its spatial and temporal resolution. In general, hydrological models are mainly classified 

based on spatial-scale and process description. In spatial-scale based classification, the models can 

be divided into lumped, distributed and semi-distributed models. Based on the process description, 

hydrological models can be broadly classified into data-driven, physics-based and conceptual 

models (Acero Triana et al., 2019; Ghimire et al., 2020; Madsen, 2000). Data driven models, as 

they establish empirical relation between input and output time series, do not incorporate any 

physical process in the watershed. Physics-based distributed models are based on understanding 

of the physics of the processes involved in the water circulation, such as the transfer of mass, 

momentum, and energy. However, these models are data intensive and demand more 

computational resources. Conceptual models, also known as ‘grey-box’ models, consist of very 

few components (non-linear reservoirs) which are simplified representations of elements in a 

hydrological system. The utilization of conceptual-based hydrological models has been amplified 

to a large extent in the past few years, attributable to their simplicity and computational efficiency 

(Tran et al., 2018).  

Theoretically, the fully distributed models are generally expected to perform better than the 

lumped models. However, contradictory results were reported stating that increasing the model 

complexity might not lead to better simulations when evaluated at the outlet stations (Das et al., 
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2008; Reed et al., 2004; Viney et al., 2005). Hence, due to their parsimonious model structures, 

lumped and semi-distributed conceptual models are well adapted for water resources management 

and flood forecasting (Perrin et al., 2001). Apart from their ability to consider spatial 

heterogeneity, an important advantage of semi-distributed models is their ability to simulate 

streamflow at interior locations where observed streamflow is unavailable for model calibration 

(Khakbaz et al., 2012; Sharma and Regonda, 2021). In the semi-distributed approach, the first step 

is to divide the basin into sub-basins based on the density of the flow gauges and the second step 

consists of subdivision of the sub-basins into homogenous elements with distinct hydrologic 

responses. Generally, it is expected that the performance of any numerical model, in principle, 

should improve with increasing model resolutions. But the scarcity of finer-scale spatially resolved 

data poses a major challenge to increase the model resolution. Hence, the characteristics of both 

distributed and lumped models can be found by opting for semi-distributed models and integrating 

sub-grid parameterization schemes in hydrologically homogenous areas. 

Organization of spatial patterns of various physical characteristics of catchment, such as soil 

characteristics, soil moisture and vegetation type, into homogeneous units have a significant 

influence on catchment runoff. This process of splitting the landscape in hydrologically 

homogeneous regions is called ‘landscape discretization’. In congruence with the dominant 

hydrological processes, the topography is the most influential factor in the discretization process, 

where are soil and vegetation are determining factors in the lower hierarchy (Pilz et al., 2017). 

However, there is no universally accepted definition of discretization, it typically consists of a 

stratification scheme of partitioning a hydrological basin into sub-basins, which are sequentially 

divided into irregularly shaped hydrologically uniform entities (Krysanova et al., 1998). Several 

methods have been developed to address the discretization issues, for which no generic solution 

has been found so far (Beven, 2006). Some of the widely used watershed discretization methods 

are Representative Elementary Area (REA) (Wood et al., 1988) Wood et al. (1988),  Grouped 

Response Units (GRUs) (Kouwen et al., 1993) and Hydrological Response Units (HRUs) (Flügel, 

1995; Leavesley et al., 1983). However, these discretization schemes are not often used for 

conceptual models as REA is primarily influenced by topography, GRUs consider a range of land 

cover characteristics with uniform meteorological forcing, and the HRU approach cumulates the 

generated streamflow over all HRUs without representing the water flow pathways. 

The influence of different discretisation methods on hydrologic responses has been acknowledged 

in multitudes of studies (Caldeira et al., 2019; Euser et al., 2015; González et al., 2016; Kumar et 

al., 2010). However, this influence has been assessed extensively in grid-based models (Euser et 
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al., 2015; Melsen et al., 2016; Molnar and Julien, 2000; Sulis et al., 2011) as is it is relatively easy 

to change the grid resolution. Previous studies have investigated the role of spatial variability of 

rainfall and spatial heterogeneity of catchment on the hydrologic responses of a catchment using 

semi-distributed models by dividing the catchments into sub-basins of roughly uniform size based 

on topography (Booij, 2005; Das et al., 2008; Lobligeois et al., 2014). However, for a semi-

distributed conceptual model, it is desirable that the catchment properties of a sub-basin should be 

homogenous, satisfying the assumption of a lumped model. Further, there is a threshold of 

subdivision level above which no more improvements can be achieved (Haghnegahdar et al., 2015; 

Han et al., 2014; Wood et al., 1988). For conceptual models there should be a lower limit of 

splitting the landscapes simply because they represent spatial average behaviour (Das et al., 2008). 

Hence, finding a compromise between the optimum finite model resolution through landscape 

discretization and computational burden is quintessential. For this purpose, a nested discretization 

approach would be more appropriate, where the catchment is divided into sub-catchments only if 

there is significant landscape heterogeneity.  

In addition to proper landscape discretization, it is also important to choose among the hydrological 

models that are classified based on the updating scheme of initial hydrologic conditions. Based on 

this classification, hydrological models are divided into continuous and event-based models. In 

continuous models, a warm-up period is required to mitigate the effect of arbitrarily selected values 

of initial hydrologic conditions. These models often require long-term continuous data which is a 

major drawback in operational forecasting perspective. Event-based hydrological models are 

extensively used for operational flood forecasting purposes since they are easier to calibrate and 

require only data at the event scale. Previous studies reported the performance of event-based 

lumped conceptual models (Berthet et al., 2009; Bournas and Baltas, 2021; Kalantari et al., 2015). 

However, as per the authors’ best of knowledge, no studies have been reported so far on the 

influence of nested discretization on the hydrologic response of an event-based conceptual model. 

This study addresses the following research question: Does a nested discretization scheme lead to 

improved streamflow simulations for a semi-distributed conceptual hydrologic model? Does the 

predictive performance of a model increase with increasing model resolution (level of 

discretization)? What is the role of calibration strategies on the performance of model simulations 

at different resolutions? To address these questions, the current study attempts to analyse the effect 

of varying spatial scales (based on nested discretization) on the streamflow response simulated by 

continuous and event-based semi-distributed conceptual models. For this purpose, a conceptual 

rainfall-runoff model, modèle du Génie Rural à 4 paramètres Journalier (GR4J) has been selected. 
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The predictive performance at different spatial representations using lumped, semi-distributed and 

semi-lumped models was assessed using different performance evaluation measures. The 

performance of these models in predicting the flood hydrographs of the catchments is evaluated 

by setting up event-based models. These models are applied to the Jagdalpur and Wardha 

catchments located in India.  

4.2 Study Watersheds and Hydrometeorological Data 
 

4.2.1 Study Area 
 

The Jagdalpur and Wardha catchments were chosen as study watersheds in this study. They are 

subbasins in Godavari River Basin, India. The catchments of Jagdalpur and Wardha were 

delineated from the flood forecasting stations Jagdalpur (for Jagdalpur basin) and Bamni (for 

Wardha basin), respectively. The delineated catchments have an area of 7382 and 46282 km2 for 

Jagdalpur and Wardha, respectively. The location map of the study watershed, along with their 

Digital Elevation Map, is shown in Figure 4.1. 
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Figure 4.1 Location map of Jagdalpur and Wardha catchments with detailing of river streams, 

elevation, and flood forecasting stations. 

4.2.2  Hydrometeorological Data 
 

The daily streamflow data at Bamni (for Wardha basin) and Jagdalpur (for Jagdalpur basin) are 

available at the India-WRIS portal from 1965-2018. The observed flood events are separated from 

the streamflow data using the warning levels obtained from the appraisal report on Flood 

Forecasting and Warning Network Performance by Central Water Commission (CWC, 2018b). In 

this study, the daily gridded datasets from the India Meteorological Department (IMD) at a spatial 

resolution of 0.25ox0.25o for Precipitation and 1ox1o for maximum and minimum temperature were 

used as meteorological forcing data (Pai et al., 2014; Srivastava et al., 2009).  The elevation data 

in the form of a Shuttle Radar Topography Mission (SRTM) based Digital Elevation Model (DEM) 

with a spatial resolution of 90m was obtained to delineate the basins and extract the stream 

network.  

In this study, the Natural Resources Conservation Service (NRCS) Curve Number (CN) is used to 

assess the landscape heterogeneity. Curve Number is a empirical parameter that indicates the 

runoff response considering the soils, land use, land cover and antecedent wetness conditions. The 
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Global Gridded Curve Number dataset (GCN250), developed by Jaafar et al. (2019), is a global 

gridded curve number dataset available at a spatial resolution of 250 m × 250 m.  GCN250 dataset 

is developed using a 300 m × 300 m ESA-CCI land use land cover database and a 250 m × 250 m 

Hydrologic Soil Group (HYSOG) global soil database. GCN250 dataset has been used in 

hydrological applications such as flash flood susceptibility prediction (Ekmekcioğlu et al., 2022), 

prediction in ungauged basins (Estacio et al., 2021), rainfall-runoff modelling (Ogarekpe et al., 

2022; Rahimi et al., 2021) and satisfactory results were reported. 

4.3 Landscape Discretization 
 

Runoff generation in a catchment is highly influenced by the spatio-temporal characteristics of 

rainfall and physical features of catchments, such as topography, vegetation, and soil properties. 

A nested discretization approach is employed in this study to split the watershed into homogeneous 

spatial units. For this purpose, the watershed is divided into sub-basins based on stream gaging 

stations available in the interior locations and are again delineated into finer sub-basins based on 

topography. To assess the homogeneity of characteristics of the delineated sub-basins, Curve 

Number (CN) has been employed in this study as an indicator to address the vegetation and soil 

characteristics of the catchment. CN is a widely used conceptual parameter in the field of 

hydrology that captures the catchment physical characteristics that affect runoff generation in a 

single value. The value of CN ranges from 1–100 (a larger value indicates a higher runoff ratio). 

The value of CN is determined from NRCS lookup tables accounting for the combinations of 

various land use/land cover characteristics, four hydrological soil types (A, B, C and D), which 

are further categorized as good, fair, and poor based on their hydrological condition, and 

antecedent soil moisture (AMC) conditions (Type I - dry, Type II - moderate, Type III - wet). The 

reference CN values in the NRCS lookup tables have been extracted experimentally from rainfall 

and runoff measurements over various geographic, soil and land management conditions. 

GCN250, a global gridded curve number dataset, has been used in this study to determine the 

spatial distribution of the curve numbers in the delineated sub-basins. A set of spatial moments (δ1 

and δ2) are used to quantify the spatial heterogeneity of the CN in the sub-basins. These spatial 

moments proposed by Zoccatelli et al. (2011) are used to quantify the spatial variability of rainfall 

in previous studies (Douinot et al., 2016; Emmanuel et al., 2015; Garambois et al., 2014). These 

indices are computed as the spatial moments of a catchment characteristic (i.e., CN in this study), 
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which describes the interactions between spatial patterns of the corresponding characteristic and 

basin morphology. The equations of the spatial moments are given in Eq. 4.1 and 4.2. 

𝛿1 =
1
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1

𝐴
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          (4.1) 
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2
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∑ 𝜂𝑖)

2                       (4.2) 

where, 𝑐𝑖 is the CN value at the ith cell, C represents the cumulative value of CN over the 

catchment, 𝜂𝑖 is the flow distance from the ith cell to the catchment outlet, and N is the total number 

of catchment cells. The flow distance from each grid to the catchment outlet is determined using 

an R package called ‘riverdist’. 𝛿1 represents the distance of the centroid of the chosen spatial 

characteristic of the catchment concerning the average value of the flow distance (i.e., the 

catchment centroid). A value of 𝛿1 < 1 indicates that the chosen characteristic is closer to the outlet 

(i.e., on the downstream side of the catchment), and a value greater than 1 indicates that the 

selected spatial characteristic is on the upstream side of the catchment. 𝛿2 represents the dispersion 

of the characteristic-weighted flow distances about their mean value with respect to the dispersion 

of the flow distances. A value of 𝛿2<1 indicates that the chosen spatial characteristic is 

characterized by multimodal distribution, and a value greater than 1 indicates unimodal 

distribution. When a characteristic is uniformly distributed in the catchment, the value of 𝛿1 and 

𝛿2 will be equal to one, indicating a spatially homogenous region. The following steps are followed 

to discretize the watershed into homogeneous sub-basins:  

1) Calculation of sub-basins using a grid-based Digital Elevation Model (DEM). This step 

incorporates information about the topography of the catchment, which plays a crucial role in 

runoff generation.  

2) Computation of the spatial moments (𝛿1 and 𝛿2) of Curve Number (indicative property of 

land-use land cover and soil type) for the sub-basins. 

3) Check whether the computed spatial moments are closer to 1 with a tolerance threshold of 

Δ (i.e., 1- Δ ≥ 𝛿1, 𝛿2 ≤ 1+ Δ) in all sub-basins.  

4) Delineate the sub-basins again into finer sub-basins where the spatial moments are beyond 

the tolerance threshold 

5) Repeat steps 2 to step 4 until both the spatial moments at all the sub-basins are closer to 1 

within the tolerance threshold. Terminate the delineation process if the catchment size is below 

750 km2, which is the approximate spatial resolution of available gridded rainfall in this study.  
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The detailed flowchart describing the nested catchment discretization method using spatial 

variability indices is given in Figure 4.2.  

 

Figure 4.2 Flow chart of the proposed scheme of nested watershed discretization into homogenous 

sub-basins based on spatial moments of NRCS Curve Number. 

 

The delineation of watersheds in this study is carried out by plugging R with GRASS GIS using 

the ‘rgrass7’ package. The study watersheds were delineated for three tolerance thresholds, i.e., 

0.1, 0.075 and 0.05, denoted as Discretization levels 1, 2 and 3, respectively. These tolerance 

thresholds represent ±10%, ±7.5% and ±5% deviation from the value 1. The plots of discretized 

watersheds for three discretization levels, along with the spatial distribution of curve number, are 

shown in Figure 4.3.  
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Figure 4.3 Jagdalpur (top) and Wardha (bottom) basins discretized for three different 

discretization levels. Discretization Level 1, 2 and 3 represents that the spatial moments of the 

Curve Number are deviatingdeviate within ±10%, ±7.5% and ±5%. 

4.4 Model Setup 
 

In this study, three versions (lumped, semi-distributed and semi-lumped) of modèle du Génie Rural 

à 4 paramètres Journalier (GR4J) were used to simulate the streamflow in the two catchments. A 

brief description of the employed GR4J model structures is presented in the subsequent sections. 

4.4.1 GR4J lumped model 
 

GR4J is a lumped conceptual rainfall-runoff model developed by Perrin et al. (2003), simulates 

the streamflow at a daily time step (Pushpalatha et al., 2012). The structure of the GR4J model is 

similar to the other soil moisture accounting based conceptual models. However, it was developed 

following an empirical approach to reduce the number of parameters that should be calibrated.  
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The Net Evapotranspiration (𝐸𝑛)  and Net Precipitation (𝑃𝑛) are calculated using input 

evapotranspiration (ET) and precipitation (P) time series using Eq. 4.3 

𝑖𝑓 𝑃 > 𝐸𝑇;  𝑃𝑛 = 𝑃 − 𝐸𝑇 𝑎𝑛𝑑 𝐸𝑇𝑛 = 0     𝑒𝑙𝑠𝑒    𝑃𝑛 = 0 𝑎𝑛𝑑 𝐸𝑇𝑛 = 𝐸𝑇 − 𝑃  (4.3) 

The net precipitation 𝑃𝑛 is partitioned into two parts; 𝑃𝑠 and 𝑃𝑛 − 𝑃𝑠, where the former is allocated 

to production storage and the latter to surface runoff. The water in the production store is drained 

away as percolation (𝑃𝑝𝑒𝑟𝑐) and evapotranspiration. The summation of surface runoff and the 

percolated water is considered as total runoff (𝑃𝑟), which is routed by partitioning into two parts 

at the routing store. The first partition comprising 90% of 𝑃𝑟 is routed using Unit Hydrograph 1 

(UH 1) and a non-linear routing store. The remaining 10 % of 𝑃𝑟 is routed using Unit Hydrograph 

2 (UH 2) alone. The groundwater exchange is accounted by applying a dynamic water loss/gain 

function to both the routed partitions. GR4J is a parsimonious model consisting of four parameters, 

one for the production function (X1 - Capacity of production store) and three for the routing 

function (X2 - Groundwater Exchange Coefficient, X3 - Capacity of routing store, X4 - Time base 

of unit hydrograph).  

4.4.2 Semi-distributed GR4J 

 

In the semi-distributed version of GR4J, the streamflow at each hydrological unit (sub-basins in 

this case) is generated using GR4J by forcing the mean areal precipitation, temperature and 

evapotranspiration of the corresponding sub-basin. Muskingum routing, a channel routing method, 

is employed to route the generated streamflow to the catchment outlet using a channel routing 

method where the observed streamflow data is available. The Muskingum routing method consists 

of two parameters 𝐾 and 𝑥 that address the travel time of the hydrograph through the routing reach 

and the dimensionless weighting factor, respectively. Sequentially, the Muskingum’s 𝐾 is a 

function of wave celerity (𝐶) and the reach length (𝐿). The reach length from the outlet of each 

sub-basin to the catchment outlet is computed using ‘riverdist’ package in R by taking the stream 

network generated in GRASS GIS as input. To reduce the parameter dimensionality, the Celerity 

is assumed to be constant across all sub-basins. In the semi-distributed model structure, the model 

parameters describing the runoff generation through GR4J (4 parameters) and routing of generated 

runoff through the Muskingum method (2 parameters) are different for each sub-basin. The semi-

distributed model setup for three discretization levels is denoted as SD-1, SD-2 and SD-3, 

respectively, in the preceding sections. 
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4.4.3 Semi-lumped GR4J 
 

In a semi-lumped model, the parameters addressing the soil moisture routine are identical across 

all the sub-basins. However, it is important to note that the routing parameters vary for each sub-

basin. The input meteorological forcing (precipitation, temperature and evapotranspiration) differs 

for each sub-basin, identical to the semi-distributed model structure. The schematic representation 

of the GR4J model structure, along with the semi-distributed and semi-lumped model versions of 

GR4J, is presented in Figure 4.4. The semi-lumped model setup for three discretization levels is 

denoted as SL-1, SL-2 and SL-3, respectively, in the preceding sections. The list of parameters to 

be calibrated in the lumped, semi-lumped and semi-distributed models, along with their ranges, 

are tabulated in Table 4.1.  
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Figure 4.4 Schematic representation of GR4J lumped model structure (left) along with the semi-distributed (middle) and semi-lumped (right) versions 

of GR4J, the state variables and parameters of the model. 
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Table 4.1 List of parameters of the lumped, semi-distributed and semi-lumped versions of the 

GR4J model, along with their description and ranges. 

  Parameter Description Range 

Semi-

distributed/Semi-

lumped GR4J 

GR4J 

X1 production store capacity [mm] 1 to 1500 

X2 
Inter-catchment exchange 

coefficient [mm/day] 
-10 to 5 

X3 routing store capacity [mm] 1 to 500 

X4 
unit hydrograph time constant 

[days] 
0.5 to 4 

Muskingum 

routing 

𝐶 
Average wave celerity in the 

stream network in m/s 
0 to 5 

𝑥 Dimensionless weighting factor 0 to 0.5 

 

4.4.4 Model Calibration and Validation 
 

In this study, the meteorological forcing data is partitioned into two parts, which are used for 

calibration (1970-1980 for Jagdalpur and 1970-1984 for Wardha) and validation (1981-1993 for 

Jagdalpur and 1985-2013 for Wardha). The period from 1967-1969 is used as a warmup period 

for both basins. Along with a continuous model, an event-based model was set up in this study to 

evaluate the performance of the model in capturing the observed flood events. Event-based 

hydrological models are often preferred over continuous hydrologic models for operational flood 
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forecasting as they exclusively simulate flood events. However, there is a need to estimate the 

Initial Hydrologic conditions or Antecedent Wetness Conditions before a flood event to accurately 

simulate flood events (Tramblay et al., 2010). The initial hydrologic conditions of a catchment in 

this study are estimated by extracting the states obtained from continuous rainfall-runoff 

modelling. A total of 20 flood events were obtained for both Jagdalpur and Wardha sub-basins. 

Ten events were used to calibrate model parameters, and the model's performance was validated 

using the remaining 10 events. The schematic representation of the event-based GR4J model setup 

is presented in Figure 4.5. The parameters of both continuous and event-based models are 

automatically calibrated using Genetic Algorithm with Nash-Sutcliffe Efficiency (NSE) (Nash and 

Sutcliffe, 1970) as an objective function. A population size of 100 has been used, and the maximum 

number of generations in the genetic algorithm was fixed as 2000, i.e., 2 lakhs simulations were 

run to calibrate the model. The lumped, semi-distributed and semi-lumped models of GR4J are set 

up in the R Environment using the ‘airGR’ package (Coron et al., 2017), and the automatic 

calibration is performed using the ‘GA’ package (Scrucca, 2013). 

 

Figure 4.5 Schematic representation of Event-based GR4J model setup. 

4.5 Performance Evaluation 
 

The performance of continuous streamflow simulation generated from the calibrated GR4J model 

setup at varying spatial scales should be evaluated by a set of hydrologically relevant signature 

measures instead of classical single regression-based lumped measures (Manikanta and Vema, 

2022). Hence, a diagnostic performance evaluation strategy suggested by Yilmaz et al. (2008) is 
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chosen to evaluate the model performance in simulating the streamflow. For this purpose, multiple 

model performance evaluation measures were employed to analyse the match between distinct 

features of the observed hydrograph, such as overall water balance, peak flows and low flows.  

Five performance evaluation criteria were chosen for this purpose, namely, Percentage Bias 

(PBIAS) (Ahmadi et al., 2014), Fourth root Mean Quadruple Error (R4MS4E) (Baratti et al., 

2003), NSE of logarithmic transformed flows (logNSE) (Oudin et al., 2006), Skill Score (SS) (Raju 

et al., 2017) and Mean Absolute Error (MAE) (Jung et al., 2017). PBIAS is an indicative measure 

of over/underestimation, and a PBIAS value of zero suggests a good overall water balance. The 

performance of model simulations in matching the low and high flows is evaluated using logNSE 

and R4MS4E, respectively. The logarithmically transformed streamflow values used in logNSE 

emphasize low flows, whereas the errors raised to the power of four in R4MS4E allocate more 

weightage to the peak flows. Skill Score is a frequency domain-based metric that measures the 

match between observed and simulated histograms, i.e., Probability Density Functions (PDFs). 

This study also uses MAE to give an unbiased error estimate by allocating equal weightage to all 

the error magnitudes. The expressions for calculating R4MS4E, logNSE, PBIAS, SS and MAE 

are given in Eq. 4.4 to 4.8. 

𝑅4𝑀𝑆4𝐸 = √∑ (𝑆𝑡−𝑂𝑡)𝑇
𝑡=1

4

𝑇

4

         (4.4) 
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𝑇
         (4.7) 

𝑀𝐴𝐸 =
1

𝑇
∑ |𝑆𝑡 − 𝑂𝑡|𝑇

𝑡=1                      (4.8) 

where, 𝑆𝑡, 𝑂𝑡 represents the simulated and observed streamflow values at time 𝑡, respectively, 𝑇 

represents the number of data points, 𝑓𝑆𝑖 , 𝑓𝑂𝑖  represent the frequencies of simulated and observed 

streamflow values at the ith bin, and 𝑛𝑏 denotes the total number of bins. In this study, the 

frequency of observed and simulated data for every 5 m3/sec was computed to assess the match 

between observed and simulated streamflow frequency characteristics. Along with these five 

performance criteria, a Euclidean Distance based composite metric (ED) is also used to 
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simultaneously analyse the model's performance in achieving the five criteria. The equation of ED 

is given in Eq. 4.9 

𝐸𝐷 =  √∑ (𝑀𝑘 − 𝑀𝑘
∗)2𝐾

𝑘=1                                                                                              (4.9) 

where, 𝑀𝑘 is the kth model evaluation metric and 𝑀𝑘
∗ is the ideal value of the kth model evaluation 

metric. The ideal R4MSE, PBIAS and MAE values are 0, whereas the SS and logNSE values are 

1. To account for varying ranges of the chosen criteria, the linear sum normalization technique is 

used to rescale them for the computation of ED (Vafaei et al., 2016). 

Further, the performance of the employed event-based models in simulating the flood events is 

assessed using four performance evaluation metrics, namely, Nash Sutcliffe Efficiency (NSE), 

Percentage Error in Peak Flow (PEPF), PBIAS and Percentage Error in Timing to Peak (PETP). 

The equations to compute the criteria mentioned above are given from Eq. 4.10 to Eq. 4.12, and 

the performance rating of the employed statistics is given in Table 4.2 (Katwal et al., 2021). 

𝑁𝑆𝐸 = 1 −
∑ (𝑆𝑡−𝑂𝑡)2𝑇

𝑡=1

∑ (𝑂𝑡−𝑂̅)2𝑇
𝑡=1

                      (4.10) 

𝑃𝐸𝑃𝐹 =
𝑃𝑠𝑖𝑚−𝑃𝑜𝑏𝑠

𝑃𝑜𝑏𝑠
× 100         (4.11) 

𝑃𝐸𝑇𝑃 =
𝑇𝑠𝑖𝑚−𝑇𝑜𝑏𝑠

𝑇𝑜𝑏𝑠
× 100         (4.12) 

Table 4.2 Performance ratings of various statistics for evaluation of event-based model 

Performance evaluation measure Range Performance Rating 

NSE 

0.75–1.00 Very good 

0.65–0.75 Good 

0.50–0.65 satisfactory 

PBIAS 

< ±10 % Very good 

±10 % to ±15 % good 

±15 % to ±25 % satisfactory 
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PEPF 

<±15 % Very good 

±15 % to ±30 % good 

±30 % to ±40 % satisfactory 

PETP 

< ±10 % Very good 

±10 % to ±15 % good 

±15 % to ±30 % satisfactory 

 

4.6 Results 
 

4.6.1 Performance Assessment of continuous streamflow simulation 
 

As described in Section 4, the GR4J model simulates the streamflow at Jagdalpur and Wardha 

basins by setting up the model at four spatial resolutions (lumped and three discretization levels). 

Semi-distributed (SD-1, SD-2 and SD-3) and semi-lumped (SL-1, SL-2 and SL-3) models are 

considered parameter calibration strategies for three discretization levels, respectively. The 

parameters of the models were optimized using Genetic Algorithm for maximizing NSE. Along 

with NSE, the performance of simulated streamflow was assessed using five criteria, as mentioned 

in Section 5. The computed performance evaluation criteria and NSE at Jagdalpur and Wardha 

during the calibration period, are presented in Table 4.3. The performance of all models in 

simulating the streamflow during the calibration period is measured using NSE and is found to be 

greater than 0.76 for all models, suggesting very good simulations. When compared to the 

performance of lumped models in terms of NSE (0.779 at Jagdalpur and 0.763 at Wardha), both 

semi-distributed and semi-lumped showcased significant improvement in terms of NSE (>0.85 at 

Jagdalpur and >0.84 at Wardha). However, the performance of semi-distributed models in terms 

of NSE is found to be the highest in both Jagdalpur and Wardha basins. Interestingly, the 

performance of SD-3 is found to be the best at Jagdalpur, and SD-1 is doing well at Wardha. 

Wardha is approximately 6 times larger than Jagdalpur, and due to the finer discretization level in 

SD-3, it generally is anticipated to address the rainfall and landscape heterogeneity, thereby 
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leading to improved simulations. However, the parameter dimensionality has been significantly 

increased due to the finer discretization level, posing a challenge to the optimizer in the calibration 

process. This might be the plausible reason behind the slight underperformance of SD-3 when 

compared to SD-1 in Wardha. 

The R4MS4E value of the lumped model in Jagdalpur and Wardha is 344.87 and 1853.43 m3/sec, 

respectively, whereas the R4MS4E values of other models were less than the lumped model by 

approximately 25% at Jagdalpur and 16% at Wardha. These results show that the discretization-

based models perform well in capturing the peak flows. The logNSE values of Jagdalpur and 

Wardha for discretized models range from 0.823 to 0.908 and 0.786 to 0.873. The PBIAS values 

between ±10 % denote that the performance of all models in terms of overall water balance is very 

good. The performance of discretized models regarding Skill Score during the calibration period 

ranges from 0.685 to 0.856 for Jagdalpur and 0.628 to 0.847, respectively, showing a good match 

between observed and simulated frequencies. The MAE of discretized models ranges from 41.08 

to 43.4 m3/sec at Jagdalpur and 136.5 to 166.4 m3/sec at Wardha basins, respectively, 

comparatively lower than the MAE of lumped models. The performance evaluation metrics were 

also computed for the validation period and are tabulated in Table 4.4. The validation results in 

terms of NSE suggest that the streamflow simulation obtained from calibrated models in the 

validation period is very good. The performance of the models in terms of R4MS4E, logNSE, Skill 

Score and MAE were similar to the calibration period. An increase in the PBIAS values at Wardha 

is observed in all the models, suggesting that the models are overestimating of streamflow. 

However, the PBIAS values are satisfactory, i.e., < ±25 % at most of the models except for SD-3 

showing that ineffective calibration of SD-3 due to higher dimensionality. 
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Table 4.3 Performance Evaluation metrics computed for observed streamflow and stream 

simulated using different GR4J model setups at Jagdalpur and Wardha during the calibration 

period. The optimum values are given in bold. 

 

Discretization R4MS4E logNSE PBIAS Skill 

Score 

MAE NSE 

Jagdalpur  

Lumped 344.877 0.763 -3.126 0.681 52.377 0.779 

SD-1 238.586 0.872 -1.405 0.702 41.79 0.873 

SD-2 232.925 0.823 -1.832 0.804 43.403 0.875 

SD-3 235.398 0.868 -0.657 0.692 41.359 0.876 

SL-1 258.821 0.908 -3.676 0.856 41.086 0.85 

SL-2 237.596 0.894 -0.195 0.685 41.624 0.87 

SL-3 251.159 0.866 -0.703 0.785 42.643 0.859 

Wardha  

Lumped 1853.437 0.81 5.813 0.73 209.838 0.763 

SD-1 1360.035 0.871 3.676 0.822 136.511 0.881 

SD-2 1393.276 0.873 5.629 0.832 162.898 0.855 

SD-3 1545.398 0.802 9.815 0.629 166.41 0.841 

SL-1 1489.82 0.786 0.657 0.628 149.75 0.853 

SL-2 1531.362 0.848 0.166 0.734 150.84 0.851 

SL-3 1388.005 0.809 2.271 0.847 145.745 0.867 
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Table 4.4 Performance Evaluation metrics computed for observed streamflow and stream 

simulated using different GR4J model setups at Jagdalpur and Wardha during the validation 

period. The optimum values are given in bold. 

Discretization R4MS4E logNSE PBIAS Skill 

Score 

MAE NSE 

Jagdalpur  

Lumped 279.725 0.84 -3.391 0.783 45.315 0.791 

SD-1 224.916 0.894 4.438 0.883 41.435 0.846 

SD-2 239.445 0.819 -2.079 0.797 45.883 0.82 

SD-3 243.89 0.885 5.041 0.871 42.772 0.828 

SL-1 247.964 0.893 -1.075 0.865 41.939 0.827 

SL-2 252.526 0.878 0.457 0.676 44.175 0.81 

SL-3 222.667 0.88 1.837 0.852 42.143 0.84 

Wardha  

Lumped 2269.95 0.706 25.812 0.794 228.741 0.683 

SD-1 1509.805 0.752 24.287 0.864 177.174 0.821 

SD-2 1730.79 0.768 24.502 0.819 200.797 0.774 

SD-3 1368.304 0.673 32.411 0.655 206.86 0.804 

SL-1 1819.869 0.734 21.165 0.713 180.822 0.773 

SL-2 1877.877 0.785 19.403 0.786 180.201 0.771 

SL-3 1426.177 0.753 22.439 0.869 175.033 0.817 

 

The ability of the model to achieve the five performance criteria (R4MS4E, logNSE, PBIAS, SS 

and MAE) simultaneously is assessed by computing the Euclidean Distance (ED). The Euclidean 

distance calculated for Jagdalpur and Wardha basins during calibration and validation periods is 

shown in Figure 4.6. The figure shows that the overall performance of discretized models (except 

SD-3) in terms of ED is comparatively better than their lumped counterparts. The better ED value 

of Jagdalpur in the calibration period and the deteriorated ED value in the validation period are 

plausibly due to the overfitting of the model. Subsequently, the ED value of SD-3 at the Wardha 

basin is very high compared to other models during both calibration and validation periods 

denoting the ineffective calibration of parameters. The SD-3 model is prone to under/overfitting 

where the underfitting is due to the increased parameter dimensionality, and the overfitting is 

plausibly due to equifinality. The performance of semi-lumped models in terms of ED is 
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comparatively lower in the validation periods displaying their effective parameter transferability 

to the validation period. The percentage increase in the performance of discretized models in terms 

of ED is computed. The mean percentage decrement in the ED value of semi-distributed models 

compared to lumped models at Jagdalpur and Wardha is approximately 59% and 20%, 

respectively, during the calibration period and 3% and 25% during the validation period. For semi-

lumped models, the mean percentage decrement of ED at both stations is approximately 50% 

during calibration and 40% during validation. This shows that the performance of semi-lumped 

models in simultaneously matching different segments of the observed hydrograph is 

comparatively better than the simulation of semi-distributed models. 

 

Figure 4.6 Euclidean distance computed for five performance criteria (R4MS4E, logNSE, PBIAS, 

SS and MAE) for all the models at Jagdalpur and Wardha basins during calibration and validation 

periods. An ED value closer to zero represents better model simulations. 
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The Percent Bias computed between the observed and simulated Flow Duration Curves (FDCs) in 

high, medium and low flow segments at Jagdalpur and Wardha during calibration and validation 

periods is presented in Figure 4.7. The bias in the high flows is below 15% at both stations during 

calibration and validation periods indicating good performance of models in predicting the peak 

flows. The performance model simulations in medium flows at Jagdalpur are found to be good 

(<15) whereas at Wardha, the bias in the simulations of semi-distributed models in the validation 

period exceeds 50%. The bias in the low flows at both stations during validation is higher when 

compared to other flow segments. Further, the bias of all the models in simulating the low flows 

at Wardha is >50% indicating an overestimation of low flows during both calibration and 

validation periods. The higher bias in the low flow is attributable to the model structure of GR4J, 

as some of the previous studies have reported its weakness in simulating the low flows (Demirel 

et al., 2015; Zeng et al., 2019). 

 

Figure 4.7 Percent Bias computed between different flow segments of observed and simulated 

Flow Duration Curves at Jagdalpur and Wardha basins during calibration and validation periods. 

A Percent Bias value closer to zero represents unbiased model simulations. 
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4.6.2 Performance assessment of event-based streamflow simulation 
 

The performance of the lumped and discretization-based GR4J models to simulate historical flood 

events has been tested in this study. For assessing the performance of an event-based model, 

Berthet et al. (2009) suggested that an objective function, indicative error measures of the match 

between the magnitude and timing of peak error, and a visual comparison of the observed and 

simulated hydrographs are necessary. For this purpose, four performance evaluation measures, 

NSE (objective function), PEPF, PBIAS and PETP, were used the evaluate the model simulated 

flood response (Table 4.5). The median NSE value of lumped models during the calibration period 

is above 0.68 at both Jagdalpur and Wardha, indicating good performance. The performance of 

lumped models in the validation period regarding median NSE values at Jagdalpur (0.56) and 

Wardha (0.269) indicates their inability to account for spatial variability. 

Further, the median NSE value of the flood events during the calibration period is greater than 

0.84 (calibration) and 0.71 (validation) for all the SD and SL models at Jagdalpur, and the median 

NSE is greater than 0.79 (calibration) and 0.67 (validation) at Wardha indicating the very good 

performance of the models in capturing the flood peaks. The performance of semi-lumped models 

increases with an increase in the level of discretization at both stations during calibration and 

validation periods, with SL-3 performing the best. It is also important to note that the difference 

between median NSE values in calibration and validation periods of semi-lumped models is 

comparatively lower than the semi-distributed models indicating an efficient parameter 

transferability. The PEPF, PBIAS, and PETP values of the SD and SL models vary between -0.8 

to 12.5%, -3.2 to 7.5% and -3.9 to 1.8%, respectively, during the calibration period at both stations. 

These values indicate very good performance of the discretization-based models in capturing the 

magnitude, timing and volume of flood during the calibration period. A decline in these 

performance statistics has been observed at Wardha, but most of the models are well within 

acceptable limits. 
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Table 4.5 Median values of performance evaluation metrics computed for the flood events 

simulated using different event-based GR4J model setups at Jagdalpur and Wardha during 

Calibration and Validation periods. The optimum values are given in bold. 

Discretization NSE PEPF PBIAS PETP NSE PEPF PBIAS PETP 

Jagdalpur 

 Calibration Validation 

Lumped 0.7 -26.7 5.5 -3.9 0.568 -26.6 -3 6.3 

SD-1 0.91 -3.3 0.4 -2.5 0.772 -13.2 -8.7 3.7 

SD-2 0.85 -12.5 3.9 -1.2 0.743 -18.8 -4.8 2 

SD-3 0.887 -0.8 1.9 1.8 0.731 -12.3 -2.9 5.1 

SL-1 0.845 -7.8 -3.2 -2.9 0.714 -19.7 -4.9 1.3 

SL-2 0.893 -9.2 -2.1 -3.9 0.748 -17.1 -6.5 7.5 

SL-3 0.898 -7.9 -0.1 -2.5 0.818 -7.7 -2.2 0.4 

Wardha 

 Calibration Validation 

Lumped 0.687 2.7 2.6 -0.7 0.269 58.4 23.9 -3.6 

SD-1 0.843 -8.2 3.8 -6.7 0.782 25.3 23.9 1.4 

SD-2 0.821 -11.6 7.5 -0.9 0.701 31.5 27.8 0 

SD-3 0.794 -12.6 6.8 -3.7 0.714 26.6 29.5 -0.7 

SL-1 0.793 -9.9 4.6 -0.6 0.72 34.8 25.7 -0.7 

SL-2 0.796 -12.3 7.2 -0.9 0.676 28.2 30.1 -1.4 

SL-3 0.816 -10.3 6.1 -2.2 0.821 20.1 22.7 -2.1 

 

A visual inspection of the observed and simulated flood hydrographs is necessary to gain more 

insights into the ability of the models to simulate the streamflow. The observed and simulated 

flood hydrographs at Wardha during calibration and validation are presented in Figures 4.8 and 

Figure 4.9, respectively; the flood hydrographs for Jagdalpur for calibration and validation periods 

are plotted in Figures 4.10 and  4.11, respectively. The spatial moment 𝛿1 of precipitation for each 

flood event is computed and presented along with the flood hydrographs to understand the role of 

rainfall spatial variability on the performance of the models. Figure 4.8 shows that the SD and SL 

models are more efficient in capturing the magnitude and timing of flood peaks compared to their 

lumped counterparts. The deterioration in the ability of lumped models to capture the timing of 
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flood peaks can be mainly attributed to rainfall spatial variability. The spatial variability of rainfall 

was measured using 𝛿1 is less than 0.8 during Events 5 and 8, where the lumped model failed to 

capture the timing of the peak. To further understand this, the spatial distribution of rainfall is 

plotted in Figure 4.12, along with the computed spatial moment 𝛿1 of rainfall for each day during 

the flood event. It can be observed that in Event Number 5, the 𝛿1 values before the flood peaks 

are below 0.8 with a magnitude greater than 60 mm, indicating that the rainfall is highly 

concentrated towards the downstream side (closer to the catchment outlet). This highly 

concentrated storm at the downstream side of the catchment leads to reduced lag time while routing 

the flood wave. The better performance of SD and SL models can be attributed to their ability to 

account for rainfall spatial variability. 

 

Figure 4.8 Observed and simulated flood hydrographs for selected flood events at Wardha during 

the calibration period, along with the computed spatial moment δ_1 of rainfall for each day during 

the flood events. 
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Figure 4.9 Observed and simulated flood hydrographs for selected flood events at Wardha during 

validation period along with the computed spatial moment 𝛿1 of rainfall for each day during the 

flood events. (SD represents semi-distributed and SL represented semi-lumped models; 1, 2 and 3 

represents discretization level 1, 2 and 3) 
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Figure 4.10 Observed and simulated flood hydrographs for selected flood events at Jagdalpur 

during calibration period along with the computed spatial moment 𝛿1 of rainfall for each day 

during the flood events. (SD represents semi-distributed and SL represented semi-lumped models; 

1, 2 and 3 represents discretization level 1, 2 and 3) 
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Figure 4.11 Observed and simulated flood hydrographs for selected flood events at Jagdalpur 

during validation period along with the computed spatial moment 𝛿1 of rainfall for each day during 

the flood events. (SD represents semi-distributed and SL represented semi-lumped models; 1, 2 

and 3 represents discretization level 1, 2 and 3) 
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Figure 4.12 Spatial plots of rainfall for each day during Event-5 for Wardha during calibration. 

The observed and simulated hydrographs were plotted at the bottom right. (δ_1 represents the 

spatial moment computed for rainfall on each day. 

4.7 Discussion 
 

This study tested the influence of a nested landscape discretization scheme on the 

performance of a conceptual hydrological model GR4J in simulating the streamflow at two 

catchments. Lumped, semi-lumped and semi-distributed GR4J models were set up for various 

discretization levels. The performance of the simulated streamflow in matching the observed peak 

flows, low flows and water balance components is assessed by employing different performance 

evaluation criteria facilitating diagnostic evaluation. The results of the analysis show that the semi-

distributed and semi-lumped models outperformed the lumped models in continuous and event-

based simulations. The increment in the performance of the model set up at a finer discretization 
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level (level 3 in this study) is not significant as the model set up at discretization level 1. This 

analysis suggests that higher model resolution forced with finely resolved input data does not 

intrinsically enhance the model performance unless the input information is enhanced through 

finer spatial resolution datasets. The better performance of semi-distributed and semi-lumped 

models can be attributed to the landscape discretization based on the information about catchment 

physical characteristics (topography and CN) might help in the determination of model 

parameters. Another plausibility is that the parameters might have compensated the bias in the 

input meteorological forcing by calibration procedure, leading to better streamflow simulations 

(Brath et al., 2004). However, at model resolutions finer than the spatial resolution of the input 

meteorological forcing datasets, the error in representing spatial variability of meteorological data 

dominates the bias compensation in the input variables by the calibration procedure (Das et al., 

2008). Moreover, it is also highly challenging to calibrate the model at finer resolutions due to 

increased degrees of freedom in the parameter sampling space and their underlying interactions.  

Theoretically, SD-3 is expected to outperform the other models, whereas the increase in 

the model complexity (170 sub-basins) resulted in increase in the number of parameters to be 

calibrated. The optimising algorithm requires a lot of computational effort to reach a global 

optimal value when the dimension of parameter search space is high. Hence, it often results in 

local optimal values. Moreover, the uncertainty in the model prediction is increased in finer scale 

semi-distributed model (SD-3) due to the interaction between the resolution of input data and the 

conceptually lumped model structure of GR4J. Furthermore, the discrepancies between the 

performance of SD-3 between calibration and validation periods are also plausibly due to 

overfitting and uncertainties in the channel characteristics (Khakbaz et al., 2012). Reducing the 

parameter sample space by constraining the soil moisture accounting parameters in the semi-

lumped model structure has addressed these issues to some extent (Jehn et al., 2019). Hence, the 
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performance drop in the semi-lumped models during the validation period is comparatively 

smaller than in the semi-distributed models. 

The major advantage of using a coarser resolution model (SD-1 and SL-1) is that the 

calibration budget at Wardha, which is a large basin, is approximately 153% low when compared 

to models setup for discretization level-2 (SD-2 and SL-2) and 1636% lower than models setup 

for discretization level-3 (SD-3 and SL-3). However, a lumped model still gives acceptable results 

with a computational effort of approximately 40 % less than the SD-1 and SL-1 models. The 

computational advantage of the lumped model should be used efficiently by the seamless 

integration of rainfall spatial variability in its model structure (Zhou et al., 2021). Introducing the 

rainfall spatial variability as a parameter into the conceptual model to improve the model 

simulations should be investigated in future studies. Further, there is a need to test the proposed 

discretization scheme using multiple model structures and multiple calibration objective functions 

on large and diversified catchment sets to obtain more detailed insights.  

4.8 Conclusions 
 

This study explored the trade-offs between a nested discretization scheme and the streamflow 

simulated by a conceptual hydrological model. The catchments are discretized iteratively by 

assessing the spatial heterogeneity of the NRCS Curve Number using spatial moments computed 

from the catchment outlet. Lumped, semi-lumped and semi-distributed GR4J models were used 

to simulate the observed streamflow at Jagdalpur and Wardha basins in India. The results of the 

study suggest that the performance of semi-distributed and semi-lumped models was improved 

compared to lumped models in capturing the low flows, high flows and water balance components. 

The ability of models to capture the observed flood events through an event-based model setup is 

assessed, and similar results were obtained as the continuous simulation. The performance of semi-

lumped models was found to be increasing with respect to the discretization level attributable to 
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its calibration strategy by constraining the soil moisture accounting parameters. This study 

concludes that a finer and more complex model leads to enhanced simulations when calibrated 

long enough. However, increased model resolution might not get translated as improved 

simulations or only provide marginally better performance at the cost of exponentially increased 

computational budgets. However, it is the modeller’s responsibility to optimally choose between 

the model complexity and model performance at cheaper computational efforts.  
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Chapter 5  

Accuracy evaluation of IHC estimation 

methods 
 

5.1 Introduction 
 

Flood is one of the most destructive natural disasters worldwide that can cause catastrophic 

impacts on day-to-day operations (Alfieri et al., 2017; Manohar Reddy and Ray, 2023). Real-time 

flood forecasting systems with sufficient lead time are considered as the most efficient and 

effective way to mitigate flood risk (Yatheendradas et al., 2008).  Flood forecasting based on 

integrating meteorological and hydrological models has shown marked better improvement in 

recent times due to the advancements in computational power, remote sensing based observations, 

and an improved understanding of hydrological processes  (Das et al., 2022). In the context of a 

flood modelling framework, event-based models are often considered as the sound alternatives to 

the continuous models as they are easier to calibrate and requires only data at the event scale 

(Tramblay et al., 2012). However, the efficiency of the both continuous and event-based 

hydrologic predictions, irrespective of the model structure, is highly influenced by optimal 

simulation of model states/initial hydrological conditions (IHC) (often considered as soil moisture) 

within the modelled watershed (Crow and Ryu, 2009; Loizu et al., 2018). Consequently, 

multitudes of modelling efforts have been reported so far on the accurate estimation of the 

magnitude of floods, particularly on minimizing the uncertainties associated with the estimation 

of initial hydrologic conditions (Alvarez-Garreton et al., 2014, 2015, Berthet et al., 2009, Brocca 

et al., 2008, 2009, 2010, Tramblay et al., 2010). 

In general, a separate method is needed to estimate the initial states of the event-based models are 

separately calculated by establishing relationships between IHC and external predictors. For 

instance, the Antecedent Precipitation Index (API), computed by cumulating rainfall values of 

preceding days, is often used as a predictor in models based on the Soil Conservation Service 

Curve Number method (SCS–CN). Various predictors have been reported so far in the literature 

to accurately estimate the IHC for event-based models,  such as  Piezometric levels (Coustau et 

al., 2012), Baseflow (Franchini et al., 1996; Longobardi and Villani, 2003), Antecedent Discharge 
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Index (Tramblay et al., 2012), outputs from continuous models (Hegdahl et al., 2020; Huang et al., 

2016; Yao et al., 2019) and in situ or remote-sensing based observables (Bahramian et al., 2021; 

Meng et al., 2017). Real-time measurements or climatology-based values can be used to update if 

the simulated model states reliably represent the observable model states (Berthet et al., 2009). 

Moreover, it is also worth noting that the relationship between the model states and the external 

predictors is determined by the model structure and uncertainty in the input data.  

Data Assimilation (DA) techniques are widely employed to reduce the uncertainties associated 

with inputs, model states and output variables (McLaughlin, 2002). DA updates the model states 

by optimally combining the information from observations and model simulations, leading to 

improved estimates of initial states of a hydrological model (Sun et al., 2016).  Observed datasets 

used to update the states of a hydrological model include streamflow (Seo et al., 2003), soil 

moisture (Luca Brocca et al., 2010), snow-covered area and snow water equivalent (Andreadis and 

Lettenmaier, 2006; Clark et al., 2006), and satellite observations of soil moisture and discharge 

(Andreadis et al., 2007). Discharge data is the most frequently assimilated variable since it contains 

the collective information of all other hydrological states (Clark et al., 2008). However, due to the 

difficulty in obtaining observations in real-time, many studies have used satellite-based soil 

moisture for data assimilation (Abbaszadeh et al., 2020; Alvarez-Garreton et al., 2015; Baguis and 

Roulin, 2017). In most DA studies, soil moisture observations are rescaled into the model space 

before assimilation, which influences the assimilation efficiency (Crow and Reichle, 2008; Crow 

and Van Loon, 2006). For instance, a poor rescaling method coupled with incorrect assumptions 

of the observational and model structural errors deteriorates the performance of DA (Tugrul 

Yilmaz and Crow, 2013).  

A recent study by Nayak et al. (2021) showed that the efficiency of DA in reliable simulation of 

streamflow depends on the model structure. Various model structures are available based on runoff 

generation mechanisms such as physics-based, conceptual and data-driven, and based on the 

spatial resolution of models such as lumped, semi-distributed and distributed. However, in real-

time operational applications, a trade-off between input data, model structural complexities and 

computation costs is necessary to issue reliable and timely flood warnings (Butts et al., 2004). 

Although physics-based fully distributed models account for the spatial heterogeneity of 

meteorological forcing and physical features within the basin leading to better simulations, they 

are data intensive and demand more computational resources (Young, 2002). On the contrary, the 

utilization of conceptual hydrologic models (CHMs) in operational streamflow forecasting has 

been amplified over the past few years due to their computational efficiency and simplicity, 
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proving their effectiveness in streamflow forecasting (Hapuarachchi et al., 2011). Many of the DA 

studies were reported on the lumped versions of conceptual hydrological models, and only a few 

were reported on the semi-distributed continuous model (Alvarez-Garreton et al., 2015, 2014; 

Berthet et al., 2009; Loizu et al., 2018; Pathiraja et al., 2012). Previous studies reported that 

accounting for spatial variability in CHMs enhances the model simulations (Das et al., 2008; De 

Lavenne et al., 2016). Hence, it is essential to understand the relevance of DA-estimated initial 

states in improving the performance of an event-based conceptual hydrological model. 

In the scenarios where the initial states for event-based models are estimated through their 

continuous counterparts, the choice of calibration metrics plays a key role. This is due to the fact 

that the commonly used calibration objective functions have the tendency to emphasize particular 

flow segments of a hydrograph, and this bias will get translated into the model states simulated by 

the continuous models (Mizukami et al., 2019). Hence, this study is intended to assess the 

performance of a lumped and semi-distributed event-based conceptual model with initial 

conditions estimated using DA and their continuous counterparts corresponding continuous 

models calibrated using different calibration objective functions.  

5.2 Study Area and Hydrometeorological Data 
 

5.2.1 Study Area 
 

The Jagdalpur catchment, a subbasin of the Godavari River Basin in India, is chosen as the study 

watershed in this study. The catchment of Jagdalpur was delineated from the flood forecasting 

stations at Jagdalpur, resulting in a catchment area of 7382 km2. Figure 5.1 illustrates the location 

map of the study watershed, including its elevation and the stream network. 
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Figure 5. 1 Location map of Jagdalpur watershed with detailing of stream network and elevation. 

5.2.2 Hydrometeorological Data 
 

The daily streamflow data at Jagdalpur is available at the India-WRIS portal from 1965-2018. The 

observed flood events are separated from the streamflow data using the warning level obtained 

from the Central Water Commission appraisal report on Flood Forecasting and Warning Network 

Performance (CWC, 2018b). In this study, the daily gridded meteorological forcing datasets are 

obtained from India Meteorological Department (IMD) at a spatial resolution of 0.25ox0.25o 

(precipitation) and 1ox1o (minimum and maximum temperature) (Pai et al., 2014; Srivastava et al., 

2009). For assimilation of soil moisture, root zone soil moisture is obtained from the Global Land 

Data Assimilation System (GLDAS), Catchment Land Surface Model, V2.0, where the data is 

available from 1948 to 2014. 

5.3 Methodology 
 

5.3.1 Hydrological model 
 

In this study, two versions (lumped and semi-distributed) of modèle du Génie Rural à 4 paramètres 

Journalier (GR4J) were used to simulate the flood events at Jagdalpur. GR4J, originally developed 

by Perrin et al. (2003),  is a soil moisture accounting-based daily lumped conceptual rainfall-runoff 
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model with four parameters to be calibrated. The semi-distributed version of GR4J utilizes the 

lumped model to simulate streamflow at each sub-basin, using mean areal precipitation, 

evapotranspiration, and temperature. The Muskingum routing method is then used to route the 

simulated streamflow from each sub-basin outlet to the catchment outlet. This requires two 

parameters, 𝐾 and 𝑥, where 𝐾 is determined by the reach length (𝐿) and wave celerity (𝐶), and 𝑥 

is a dimensionless weighting factor. The wave celerity is considered constant across all sub-basins 

to reduce parameter dimensionality. The study area is divided into four sub-basins, and a total of 

21 parameters (four parameters for each sub-basin and one constant for wave celerity) must be 

optimized. The parameters to be optimized were tabulated in Table 5.1. Figure 5.2 provides a 

schematic representation of the lumped and semi-distributed versions of the GR4J model.   

 

Figure 5. 2 Schematic representation of lumped GR4J model structure (left) along with the semi-

distributed version of GR4J (right), the state variables and parameters of the model. 
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Table 5.1 Description and ranges of parameters to be calibrated in the lumped and semi-distributed 

versions of the GR4J model. 

  Parameter Description Range 

Semi-

distributed 

GR4J 

GR4J 

X1 
production reservoir capacity 

[mm] 
1 to 1500 

X2 
Inter-catchment exchange 

coefficient [mm/day] 
-10 to 5 

X3 routing store capacity [mm] 1 to 500 

X4 
unit hydrograph time constant 

[days] 
0.5 to 4 

Muskingum 

routing 

𝐶 
Average wave celerity in the 

stream network in m/s 
0 to 5 

𝑥 Dimensionless weighting factor 0 to 0.5 

     

 

5.3.2 Implementation of Data Assimilation 

 

5.3.2.1 Ensemble Kalman Filter (EnKF) 

 

A background matrix (𝑋𝑏) of dimensions 𝑛𝑠𝑡𝑎𝑡𝑒 × 𝑛𝑒𝑛𝑠 is defined in Eq. (5.1), in which  𝑛𝑠𝑡𝑎𝑡𝑒 

represents the number of state variables of the hydrological model and 𝑛𝑒𝑛𝑠 denotes the number 

of ensemble members. 

𝑋𝑏 = (𝑥1
𝑏, … … , 𝑥𝑒𝑛𝑠

𝑏 )         (5.1) 

where,  𝑥1
𝑏, … … , 𝑥𝑒𝑛𝑠

𝑏  represents the model state vectors for each ensemble member in 𝑛𝑒𝑛𝑠 before 

updating the states. The ensemble mean is the given by Eq. (5.2) 

𝑥̅𝑏 =
1

𝑛𝑒𝑛𝑠
∑ 𝑥𝑖

𝑏𝑛𝑒𝑛𝑠
𝑖=1          (5.2) 

The anomaly for the ith ensemble member is computed as 𝑥′𝑖
𝑏 = 𝑥𝑖

𝑏 − 𝑥̅𝑖
𝑏, and the ensemble of 

anomalies (𝑋′𝑏) is computed as given in Eq. (5.3) 

𝑋′𝑏 = (𝑥1
′𝑏, … … , 𝑥𝑒𝑛𝑠

′𝑏 )         (5.3) 
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The ensemble anomalies are used to estimate the model error covariance using Eq. (5.4)  

𝑃𝑏 =
1

𝑛𝑒𝑛𝑠−1
𝑋′𝑏𝑋𝑏 𝑇

         (5.4) 

The equation to update the model states using the model error covariance is given in Eq. (5.5) 

𝑥𝑖
𝑎 = 𝑥𝑖

𝑏 + 𝐾(𝑦𝑖 − 𝐻𝑥𝑖
𝑏)                    (5.5) 

where, 𝐾 = 𝑃𝑏𝐻𝑇(𝐻𝑃𝑏𝐻𝑇 + 𝑅)−1 

In Eq. (5.5), 𝑥𝑖
𝑎 represents the analysis of model states posterior to the update, 𝐻 is an operator to 

covert model states to the observational space with dimensions 𝑛𝑜𝑏𝑠 × 𝑛𝑠𝑡𝑎𝑡𝑒,  𝑦𝑖  represents the 

vector of observations with dimensions 𝑛𝑜𝑏𝑠 × 1 (𝑛𝑜𝑏𝑠 denotes the number of observations), 𝐾 

represents the Kalman gain, and 𝑅 is the observation error covariance matrix with dimensions 

𝑛𝑜𝑏𝑠 × 𝑛𝑜𝑏𝑠. It should be noted that each ensemble member is updated individually using Eq. 

(5.5). In general, in the implementation of EnKF, each of the 𝑛𝑒𝑛𝑠 ensemble members is updated 

using 𝑛𝑒𝑛𝑠 vectors of observations. The 𝑛𝑜𝑏𝑠 values of 𝑦𝑖 for each ensemble member are used to 

generate 𝑛𝑒𝑛𝑠 vectors of observations by sampling from a distribution with observations as mean 

and 𝑅 as a variance.  

5.3.2.2 Bias correction of the GLDAS root zone soil moisture data 

 

The model simulated soil moisture is commonly utilized to correct the bias in GLDAS root zone 

soil moisture before assimilation, given that both datasets do not accurately represent the true 

conditions. To address this, a straightforward mean-variance approach is employed, which 

demonstrates comparable performance to more intricate techniques. The simulated soil moisture 

is used to correct the raw values of GLDAS root zone soil moisture using Eq. (5.6). 

𝑆𝑀𝑐 = 𝑆𝑀𝑠
̅̅ ̅̅ ̅ + (𝑆𝑀𝑜 − 𝑆𝑀𝑜

̅̅ ̅̅ ̅̅ )
𝜎𝑠

𝜎𝑜
        (5.6) 

where 𝑆𝑀𝑐 denotes bias-corrected root zone soil moisture, 𝑆𝑀𝑠
̅̅ ̅̅ ̅ and 𝑆𝑀𝑜

̅̅ ̅̅ ̅̅  represents the average 

value of simulated soil moisture and GLDAS root zone soil moisture, respectively, and  𝜎𝑠 and 𝜎𝑜 

are their respective standard deviations. 

5.3.2.3. Forecast error 

 

  To address input uncertainty, meteorological datasets such as precipitation and 

evapotranspiration are stochastically perturbed. To achieve this, Clark et al. (2008) recommends 
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perturbing daily meteorological observations using multiplicative stochastic noise at each time 

step. A first-order autoregressive model is employed to ensure temporal correlation of time-variant 

forcings and physical consistency. To generate 100 ensemble meteorological forcing datasets, a 

temporal decorrelation length of one day and two days were used for rainfall and 

evapotranspiration, respectively, with a fractional error parameter set to 0.65. For a more detailed 

explanation of the perturbation method, please refer to Clark et al. (2008).  

5.3.2.4. Observation error  

 

In addition to ensuring an optimal ensemble spread to represent the model uncertainties, it also 

important to estimate the observation error for enhanced assimilation. In this study, a normally 

distributed random noise with zero mean and variance of  𝜎𝑜𝑏𝑠
2. The random noise is formulated 

as a function of observations, as given in Eq 5.7. 

 𝜎𝑜𝑏𝑠
2 = (𝜀𝑜𝑏𝑠 𝑂𝑏𝑠)2        (5.7) 

Following the study by Piazzi et al. (2021), the error parameter 𝜀𝑜𝑏𝑠 was set to 0.1.  To prevent 

underestimation of error variances at lower values of observations, the minimum threshold for 

defining the error variance was assumed to be the 10th percentile value of observations (𝑂𝑏𝑠10). 

Following Thirel et al. (2010), the variance is evaluated proportionally to 𝑂𝑏𝑠10
2
 for observed 

values below 𝑂𝑏𝑠10.  

5.3.3 Model Calibration and Validation 
 

In this study, the lumped and semi-distributed GR4J model is calibrated from 1970-1980 and 

validated from 1981-1993, with a warmup period from 1967-1969. The IHC/initial model states 

to initiate the event-based GR4J models are obtained from their corresponding calibrated 

continuous models. To calibrate the continuous models, four calibration objective functions were 

used, namely, Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970), NSE of logarithmic 

transformed flows (logNSE) (Oudin et al., 2006), Kling-Gupta Efficiency (KGE) (Gupta et al., 

2009), and Fourth root Mean Quadruple Error (R4MS4E) (Baratti et al., 2003). The equations for 

the chosen calibration objective functions are given in Eq. (5.8) to Eq. (5.11) 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑠,𝑡−𝑄𝑜,𝑡)

2𝑇
𝑡=1

∑ (𝑄𝑜,𝑡−𝑄𝑜,𝑡̅̅ ̅̅ ̅̅ )
2𝑇

𝑡=1

                      (5.8) 
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𝑙𝑜𝑔𝑁𝑆𝐸 = 1 −
∑ (ln (𝑄𝑠,𝑡)−ln (𝑄𝑜,𝑡)))

2𝑇
𝑡=1

∑ (ln (𝑄𝑜,𝑡)−ln (𝑄𝑜,𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2𝑇

𝑡=1

                     (5.9) 

𝐾𝐺𝐸 = 1 − √(1 − 𝑟)2 + (1 −
𝜎𝑠

𝜎𝑜
)

2

+ (1 −
𝜇𝑠

𝜇𝑜
)

2

                      (5.10) 

𝑅4𝑀𝑆4𝐸 = √∑ (𝑄𝑠,𝑡−𝑄𝑜,𝑡)𝑇
𝑡=1

4

𝑇

4

                       (5.11) 

where, 𝑄𝑠,𝑡, 𝑄𝑜,𝑡 denotes simulated and observed discharge values at time t, respectively, and 𝑇 

denotes to total number of values, 𝜎𝑠 and 𝜎𝑜 𝜎𝑠 and 𝜎𝑜 represents the standard deviations of 

simulated and observed values, respectively, and 𝜇𝑠 and 𝜇𝑜 represents the mean value of simulated 

and observed streamflow. 

A total of 20 flood events were identified using the flood warning level, with 10 events used for 

calibration and the other 10 for validation. The parameters of the event-based models are 

automatically calibrated using Genetic Algorithm with NSE as an objective function. For both 

continuous and event-based models, the population size is set as 100 for a maximum of 2000 

generations, i.e., 2 lakh simulations were performed in the calibration of models. A detailed flow 

chart demonstrating the methodology adopted in this study is given in Figure 5.3. 
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Figure 5.3 Flow chart demonstrating the detailed methodology adopted to evaluate the performance of event-based models under different schemes 

of estimating Initial Hydrologic Condition.
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5.3.4 Performance Evaluation 
 

A set of hydrologically relevant performance evaluation metrics are employed in lieu of a single 

traditional lumped measures to assess the accuracy of simulated hydrographs at all flow segments 

of the observed hydrograph (Manikanta and Vema, 2022; Yilmaz et al., 2008). Four evaluation 

metrics, namely Fourth root Mean Quadruple Error (R4MS4E), NSE of logarithmically 

transformed flows (logNSE), Percentage Bias (PBIAS), and Skill Score (SS), were employed to 

assess the agreement between observed and simulated hydrographs in terms of peak flow, low 

flow, water balance, and flow frequencies, respectively. The equations to compute the values of 

PBIAS and SS are given in Eq. (5.12) to Eq. (5.13). 

𝑃𝐵𝐼𝐴𝑆 =
∑ 𝑄𝑠,𝑡−𝑄𝑜,𝑡

𝑇
𝑡=1

∑ 𝑄𝑜,𝑡
𝑇
𝑡=1

× 100        (5.12) 

𝑆𝑆 =
∑ min (𝑓𝑄𝑠,𝑖

,𝑓𝑄𝑜,𝑖
)𝑛𝑏

𝑖=1

𝑇
                      (5.13) 

where, 𝑓𝑄𝑠,𝑖
, 𝑓𝑄𝑜,𝑖

 are the frequency values of simulated and observed discharge values at the ith bin, 

respectively, and 𝑛𝑏 represents the total number of bins. In this study, a bin size of 5 m3/sec was 

used to compare the frequency distributions of observed and simulated streamflow.  

The performance of the event-based models in simulating the observed flood hydrographs is 

evaluated using four metrics, namely, Percentage Error in Peak Flow (PEPF), Percentage Error in 

Timing to Peak (PETP), PBIAS and Nash Sutcliffe Efficiency (NSE) given from Eq. 5.14 to Eq. 

5.15. In addition, the indicative performance ratings of the chosen metrics are shown in Table 5.2 

(Katwal et al., 2021). 

𝑃𝐸𝑃𝐹 =
𝑃𝑠𝑖𝑚−𝑃𝑜𝑏𝑠

𝑃𝑜𝑏𝑠
× 100        (5.14) 

𝑃𝐸𝑇𝑃 =
𝑇𝑠𝑖𝑚−𝑇𝑜𝑏𝑠

𝑇𝑜𝑏𝑠
× 100        (5.15) 

where, 𝑃𝑠𝑖𝑚 , 𝑃𝑜𝑏𝑠 denotes simulated and observed flood peaks and 𝑇𝑠𝑖𝑚 , 𝑇𝑜𝑏𝑠 denotes the time 

taken to simulated and observed flood peaks. 
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Table 5.2 Indicative performance ratings of the statistics employed for evaluation of the event-

based model 

Performance evaluation 

measure 
Range Performance Rating 

NSE 

0.75–1.00 Very good 

0.65–0.75 good 

0.50–0.65 satisfactory 

PBIAS 

< ±10 % Very good 

±10 % to ±15 % good 

±15 % to ±25 % satisfactory 

PEPF 

<±15 % Very good 

±15 % to ±30 % good 

±30 % to ±40 % satisfactory 

PETP 

< ±10 % Very good 

±10 % to ±15 % good 

±15 % to ±30 % satisfactory 

 

5.4 Results 
 

5.4.1 Performance evaluation of continuous streamflow simulation 
 

The accuracy of the streamflow simulated by the continuous lumped and semi-distributed GR4J 

models is evaluated using a set of metrics as described in Section 3.4. The performance evaluation 

metrics for the calibration and validation periods are tabulated in Table 5.3 and Table 5.4, 

respectively. Table 5.3 shows that the performance of the R4MS4E calibrated lumped GR4J model 

is good at simulating the peak flow values. Higher values of logNSE and Skill Score of the lumped 
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GR4J model with streamflow assimilation indicate its better performance in terms of matching the 

observed flow frequencies and also in terms of simulating the low flows. The PBIAS of KGE 

calibrated lumped model is found to be low attributable to the bias factor (
𝜇𝑠

𝜇𝑜
) in the formulation 

of KGE. Further the PBIAS values of R4MS4E calibrated model shows its overestimation bias 

whereas other models are slightly underestimating the flows (< -10%). In the case of semi-

distributed GR4J, a significant improvement is observed in both open-loop (without assimilation) 

and assimilated models in terms of the all the chosen evaluation criteria. The R4MS4E values in 

semi-distributed GR4J model were reduced on an average of 18.9% in all models when compared 

to their lumper counterparts. The PBIAS values of streamflow and soil moisture assimilated 

models along with NSE and KGE calibrated open-loop models were found to be less than ±5%, 

whereas logNSE an R4MS4E calibrated models were found to be underestimating and 

overestimating the flows, respectively. It can also be noticed the performance of KGE calibrated 

models in terms of logNSE and Skill Score is low (-0.07 and 0.45), showing its inability to capture 

the low flows. 

In summary, the performance of the semi-distributed GR4J model with soil moisture assimilation 

is poor in the continuous streamflow simulation. The semi-distributed GR4J model with 

streamflow assimilation and model calibrated with NSE, logNSE and KGE performs well 

regarding chosen evaluation criteria in the calibration period.  Similar performance can be 

observed in the validation period for both lumped and semi-distributed GR4J models (Table 5.4). 

This indicates better transferability of the calibrated parameters and better assimilation efficiency 

in the validation period. 
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Table 5.3 Performance Evaluation metrics computed for observed streamflow and ensemble mean 

of streamflow simulated using lumped and semi-distributed GR4J model setups with and without 

data assimilation during the calibration period. 

 R4MS4E logNSE Skill Score PBIAS 

 Lumped GR4J 

Soil Moisture 

Assimilation 
543.47 -0.75 0.65 -12.12 

Streamflow 

Assimilation 
407.5 0.9 0.89 -10.61 

NSE calibrated 345.23 0.74 0.67 -3.08 

KGE calibrated 360.22 0.66 0.63 -0.7 

logNSE calibrated 402.33 0.87 0.79 -11.79 

R4MS4E calibrated 312.36 0.7 0.78 40.22 

 Semi-Distributed GR4J 

Soil Moisture 

Assimilation 
426.07 0.06 0.64 5.15 

Streamflow 

Assimilation 
340.38 0.92 0.85 4.55 

NSE calibrated 238.59 0.87 0.66 -1.41 

KGE calibrated 291.23 -0.07 0.45 -0.73 

logNSE calibrated 380.12 0.91 0.86 -22.58 

R4MS4E calibrated 251.94 0.73 0.66 29.05 
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Table 5.4 Performance Evaluation metrics computed for observed streamflow and ensemble mean 

of streamflow simulated using lumped and semi-distributed GR4J model setups with and without 

data assimilation during the validation period. 

 

 R4MS4E logNSE Skill Score PBIAS 

 Lumped GR4J 

Soil Moisture 

Assimilation 438.33 -0.86 0.69 -14.73 

Streamflow 

Assimilation 337.84 0.9 0.91 -10.7 

NSE calibrated 280 0.83 0.77 -3.34 

KGE calibrated 325.5 0.78 0.73 -0.94 

logNSE calibrated 363.18 0.85 0.86 -10.24 

R4MS4E calibrated 256.75 0.6 0.66 45.7 

 Semi-Distributed GR4J 

Soil Moisture 

Assimilation 341.77 0.36 0.69 17.03 

Streamflow 

Assimilation 286.17 0.92 0.87 4.75 

NSE calibrated 224.92 0.89 0.84 4.44 

KGE calibrated 316.53 0.36 0.53 2.67 

logNSE calibrated 368.96 0.89 0.75 -22.05 

R4MS4E calibrated 253.09 0.59 0.53 35.62 

 

 

5.4.2 Performance Evaluation of event-based models 
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In this study, the performance of the lumped and semi-distributed GR4J models in simulating the 

historical flood events using the IHC estimated from different methods (through data assimilation 

and continuous models) has been tested. Berthet et al. (2009) suggested that, for evaluating the 

predictive performance of event-based models, careful selection of evaluation criteria is essential 

which emphasize on match between the magnitude, volume and timing observed and simulated 

flood hydrographs.  In addition to quantitative measures, a visual inspection on the match between 

observed and simulated flood hydrographs is necessary. Accordingly, four quantitative 

performance assessment metrics were selected namely, NSE (objective function), Percentage Error 

in Peak Flow (PEPF), PBIAS and Percentage Error in Timing to Peak (PETP) to evaluate the 

simulated flood response.  

5.4.2.1 Performance of event-based models using IHC obtained through DA 
 

The above statistics are computed for both lumped and semi-distributed event-based models, with 

IHC estimated by assimilating soil moisture and streamflow (Table 5.5). Table 5.5 calculates the 

statistics for each flood event using the observed flow and ensemble mean of simulations. The 

median value of the statistics computed for the events used for calibration and validation periods 

separately are given in Table 5.5. The median NSE value of the event-based lumped model based 

on soil moisture-based data assimilation (SM-DA) and streamflow-based data assimilation (Q-

DA) is higher than 0.5 in the calibration period, indicating satisfactory performance. However, the 

performance of continuous simulations from the lumped model based on SM-DA and Q-DA in 

simulating the flood hydrographs during the calibration period is found to be low (median NSE < 

0.4). In the validation period, the performance of all the lumped models based on DA is not 

satisfactory in terms of median NSE value (< 0.5). Additionally, the median NSE values in the 

validation period suggest that the temporal transferability of the calibrated parameters is poor, 

leading to poor simulations. 

In summary, the performance of both continuous and event-based lumped models based on Q-DA 

is found to be satisfactory, with lower PEPF, PBIAS, and PETP indicating satisfactory 

performance compared to other models. The simulated flood hydrographs obtained from the event-

based and continuous lumped models with SM-DA and Q-DA during the calibration period are 

plotted for calibration and validation periods in Figure 5.4 and Figure 5.5, respectively, along with 

the observed values. The figure shows that the ensemble spread of the simulations from the 

continuous models is higher than that of their event-based counterparts. This indicates that 

updating the model states continuously by assimilation preserves the spread induced through 
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perturbation. In contrast, despite the ensemble of IHCs used in event-based models, the spread in 

the event-based simulations is lower than that of their continuous counterparts. Furthermore, the 

ensemble spread of SM-DA-based simulations is higher than that of Q-DA-based simulations.  

 Table 5.5 Median values of performance evaluation metrics computed for the flood events 

simulated using lumped and semi-distributed event-based GR4J model setups with data 

assimilation at Jagdalpur during calibration and validation periods. 

Assimilation 

Variable 

NSE PEPF PBIAS PETP NSE PEPF PBIAS PETP 

Lumped 

 Calibration Validation 

SM-EVT 
0.56 -29.37 -12.5 -19.46 0.28 -48.58 0 -34.94 

Q-EVT 
0.6 -22.64 -6.25 -16 0.39 -37.91 0 -29.96 

SM-CONT 

-0.04 -59.45 -16.67 -46.8 

-

0.95 -77.94 -15.48 -67.82 

Q-CONT 
0.39 -47.16 0 -18.13 0.46 -44.63 0 -14.93 

Discretized 

 Calibration Validation 

SM-EVT 
0.82 -4.45 0 -6.25 0.44 -39.93 0 -23.54 

Q-EVT 
0.64 -14.7 0 -14.13 0.57 -26.33 0 -27.16 

SM-CONT 
0.41 -46.92 0 -19.54 0.3 -50.83 0 -25.56 

Q-CONT 
0.42 -14.3 14.29 12.04 0.38 -16.66 15.48 9.47 
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Figure 5. 4 Simulated flood hydrographs by the continuous and event-based lumped model based 

on Soil Moisture (SM) and streamflow data assimilation. Observed flood hydrographs were also 

plotted for the selected flood events at Jagdalpur during calibration period. 
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Figure 5. 5 Simulated flood hydrographs by the continuous and event-based lumped model based 

on Soil Moisture (SM) and streamflow data assimilation. Observed flood hydrographs were also 

plotted for the selected flood events at Jagdalpur during validation period. 

A significant improvement has been observed in the predictive ability of both continuous and 

event-based semi-distributed based GR4J based on SM-DA and Q-DA than their lumped 

counterparts in terms of NSE, PEPF, PETP and PBIAS. During the calibration period, the event-

based semi-distributed model with SM-DA showed the highest performance, with a median NSE 

value of 0.82. This highlights the advantage of incorporating spatial variability in the model. 

However, similar to lumped models, the temporal transferability of the semi-distributed models in 

the validation period was poor. Nevertheless, the event-based semi-distributed model with Q-DA 

demonstrated satisfactory performance with median NSE values of 0.64 and 0.57 in calibration 

and validation periods, respectively. Compared to lumped models, the semi-distributed models 

exhibited better PETP values, indicating a more accurate capture of the timing to peak. 
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Additionally, the PEPF and PBIAS values of the semi-distributed models were relatively lower 

than those of the lumped models. The flood hydrographs generated from the semi-distributed 

models during the calibration period and validation period were presented in Figure 5.6 and Figure 

5.7, respectively. The ensemble spread of the semi-distributed model simulations was lower than 

that of the lumped models, plausibly due to accounting for spatial heterogeneity. The calibration 

process may have also compensated for biases in the soil moisture, leading to improved 

performance of SM-DA in the semi-distributed models.  

 

Figure 5.6 Simulated flood hydrographs by the continuous and event-based semi-distributed 

model based on Soil Moisture (SM) and streamflow data assimilation. Observed flood 

hydrographs were also plotted for the selected flood events at Jagdalpur during calibration. 
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Figure 5.7 Simulated flood hydrographs by the continuous and event-based semi-distributed 

model based on Soil Moisture (SM) and streamflow data assimilation. Observed flood 

hydrographs were also plotted for the selected flood events at Jagdalpur during validation.  
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5.4.3 Performance of event-based models using IHC obtained through 

continuous models calibrated with different objective functions 

 

The continuous lumped and semi-distributed models were calibrated using NSE, logNSE, KGE, 

and R4MS4E. The resulting model states were utilized as initial hydrological conditions (IHCs) 

for their respective event-based models. The performance assessment statistics of these event-

based models are provided in Table 5.6. The median NSE values of the event-based lumped models 

calibrated using NSE, KGE, and R4MS4E in the calibration period were good (> 0.65), except for 

the logNSE calibrated model. The PEPF (< 30%) and PETP values indicate that the performance 

of all the lumped models in capturing the magnitude and timing of flood peaks was satisfactory 

during the calibration period. The KGE-calibrated lumped event-based model performed best in 

capturing the flood peak in both calibration and validation periods. However, a decline in the 

performance of all the models in terms of the chosen evaluation statistics was observed during the 

validation period. Nevertheless, the performance of all the models during the validation period 

regarding NSE values was satisfactory (>0.5). The flood hydrographs observed and simulated 

during the calibration period and validation period are presented in Figure 5.8 and Figure 5.9, 

respectively. The figure shows that all the simulated flood hydrographs are approximately parallel, 

and their disposition highly depends on the IHC. This similarity in performance of all the event-

based lumped models coupled with continuous models calibrated using different metrics is due to 

their reliance on the same IHC.  
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Table 5.6 Median values of performance evaluation metrics computed for the flood events 

simulated using lumped and semi-distributed event-based GR4J model setups calibrated using 

multiple objective functions at Jagdalpur during calibration and validation periods. 

 

Calibration 

Objective 

Function 

NSE PEPF PBIAS PETP NSE PEPF PBIAS PETP 

Lumped 

 Calibration Validation 

KGE 

0.69 -25.65 0 9.34 0.55 -24.72 0 5.33 

R4MS4E 

0.67 -25.96 0 -2.61 0.55 -25.58 0 -0.35 

LogNSE 

0.49 -30.63 0 -12.57 0.51 -30.1 0 -14.15 

NSE 

0.7 -26.57 0 5.58 0.57 -26.43 0 -2.86 

Discretized 

 Calibration Validation 

KGE 

0.85 2.99 0 4.23 0.65 -12.88 0 -2.27 

R4MS4E 

0.79 -13.67 0 3.86 0.68 -23.32 0 -10.03 

LogNSE 

0.77 -11.36 0 2.57 0.56 -24.83 0 -8.42 

NSE 

0.91 -3.25 0 0.44 0.77 -13.21 0 -8.73 
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Figure 5.8 Observed and simulated flood hydrographs from the event-based lumped model at 

Jagdalpur for selected flood events during the calibration period. 
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Figure 5.9 Observed and simulated flood hydrographs from the event-based lumped model at 

Jagdalpur for selected flood events during the validation period. 
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In the case of semi-distributed models, the simulated flood hydrographs accurately represent the 

observed flood hydrographs. During the calibration period, the median NSE value of all semi-

distributed models exceeds 0.77, indicating good performance. Moreover, the semi-distributed 

model based on KGE, R4MS4E, and NSE-calibrated continuous models demonstrated good 

performance in the validation period (NSE > 0.65). The PEPF values are below 30% in both 

calibration and validation periods, indicating that the models can capture the observed flood 

magnitudes effectively. The observed and simulated hydrographs for the semi-distributed event-

based model coupled with multiple calibrated continuous models are shown for both calibration 

and validation periods in Figure 5.10 and Figure 5.11, respectively. Unlike the lumped models, the 

simulated hydrographs for the semi-distributed models are not parallel because of the unique 

parametrization of each sub-basin and channel routing. Moreover, the simulated hydrographs are 

capable of capturing the observed peaks during most of the events in the calibration period. 

However, in the validation period, a slight underestimation bias is present in all semi-distributed 

models. 

 

Figure 5.10 Observed and simulated flood hydrographs from the event-based semi-distributed 

model at Jagdalpur for selected flood events during the calibration period. 
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Figure 5.11 Observed and simulated flood hydrographs from the event-based semi-distributed 

model at Jagdalpur for selected flood events during the validation period. 
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5.5 Summary and Conclusions 
 

This study evaluates the performance of event-based models based on the Initial Hydrologic 

Conditions (IHC)/model states using different methods. The current study on event-based models 

led to the following insights: 

i. Streamflow Assimilation (Q-DA) in both lumped and semi-distributed models led to 

improved simulations at the catchment outlet during both calibration and validation periods. 

In contrast, assimilating soil moisture (SM-DA) did not enhance continuous streamflow 

simulations in the lumped model, but showed a slight improvement in the semi-distributed 

model. 

ii. Semi-distributed model resulted in enhanced streamflow simulation in both SM-DA and Q-

DA when compared to their lumped counterparts. This result is in line with the findings of 

Alvarez-Garetton et al. (2015). 

iii. Compared to simulations produced by continuous models with DA, the ensemble spread of 

simulations generated from the event-based model using IHCs obtained through DA is lower. 

However, simulations based on SM-DA have a higher ensemble spread than those based on 

Q-DA. 

iv. In event-based models with initial conditions generated through assimilation, SM-DA based 

semi-distributed model performed exceptionally well in the calibration period exploiting the 

advantage of the model spatial resolution. 

v. The event-based semi-distributed GR4J initialised by the IHCs extracted from the 

corresponding NSE calibrated continuous model is found to be outperforming other models 

in terms of capturing the magnitude, timing and volume of observed flood events. 

vi. In conclusion, the findings suggest the potential benefits of assimilating streamflow and 

employing a semi-distributed model structure. However, limitations such as overfitting of 

parameters and uncertainties in channel characteristics may affect model performance (Jehn 

et al., 2019; Khakbaz et al., 2012). Future research can explore the integration of the rainfall 

spatial variability in a lumped model to exploit its computational advantage (Zhou et al., 

2021). Additionally, further investigation is needed to evaluate the efficiency of combined 

assimilation of soil moisture in IHC estimation and to assess the suitability of EnKF for 

assimilation in various hydrological models. Overall, this study provides valuable insights for 
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practical applications and calls for large sample investigations using multiple model structures 

(Gupta et al., 2014).   
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Chapter6   

Generation of Ensemble Flood 

Forecasts 
 

6.1 Introduction 
 

Over the past few decades, numerous unexpected natural disasters have occurred, and floods, in 

particular, have been recognized as highly unpredictable events that can cause devastation to both 

human and animal lives and properties (Alfieri et al., 2017). Predicting the timing and frequency 

of severe hydrometeorological events that lead to flooding is challenging. To minimize human 

casualties and property damage, early warning systems and flood mitigation measures rely on 

accurate estimations of runoff volume and flood peaks. To effectively plan and manage water 

resources sustainably, a comprehensive understanding of the factors influencing surface runoff in 

catchment areas is essential. 

 

Simulating rainfall and runoff to comprehend the hydrologic response of a region has long been 

established as a reliable method. Rainfall-runoff models are commonly used to predict floods, 

measure water levels under different conditions, and provide flood forecasts. Various factors, such 

as land use, slope, vegetation, and storm attributes, including rainfall duration, volume, and 

intensity, play significant roles in determining the amount of surface runoff. During emergencies 

caused by heavy rainfall, decision-makers heavily rely on accurate predictions. Precipitation data 

is crucial for flood forecasting, with two key factors influencing its effectiveness: accuracy and 

lead time. The lead time of flood forecasts can be enhanced by using precipitation forecasts 

obtained from numerical weather prediction (NWP) models. NWPs facilitate the collection of 

valuable flood-related information and enable the dissemination of early flood warnings. 

Forecasters are transitioning from deterministic to ensemble forecasts to address the uncertainties 

in meteorological and hydrological systems. A deterministic forecast can be transformed into a 

fully probabilistic ensemble by considering uncertain boundary conditions and incorporating data 

assimilation techniques. This shift in approach is particularly relevant for precipitation and runoff 

forecasting, introducing a novel way of conducting these predictions. 
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An interactive grand global ensemble system has been developed to account for the uncertainties 

in projections from multiple global models. The International Grand Global Ensemble (TIGGE) 

initiative collects and analyzes prediction data from major forecasting centres worldwide. By 

combining various sources of uncertainty, the TIGGE ensemble prediction generates a probability 

distribution that provides valuable insights for decision-making. When the ECMWF (European 

Centre for Medium-Range Weather Forecasts) and the NCEP (National Centers for Environmental 

Prediction) initially developed ensemble predictions in 1992, they were extensively used in inflow 

forecasts due to their reliance on a wide range of models. The application of meteorological 

predictions, particularly in flood forecasting, has proven beneficial. Ensemble predictions, which 

involve generating multiple forecasts using different physical parameterizations and initial 

conditions, have significantly improved meteorological forecasts. The TIGGE (The International 

Grand Global Ensemble) project serves another purpose: establishing an early warning system 

based on operational medium-range ensemble predictions from various numerical weather centres 

such as the ECMWF, UKMO, and NCEP.  

 

NWP models' Quantitative Precipitation Forecasts (QPF) are crucial inputs for hydrological 

models when estimating streamflow. Uncertainty in QPF arises from inaccuracies in initial 

conditions, approximations of atmospheric processes, and the NWP model's overall predictive 

ability. Given that streamflow estimates heavily influence decision support for water infrastructure 

management, flood and drought warnings, and reservoir operations, there is a growing interest in 

probabilistic forecasts that can estimate the likelihood of future weather events. Post-processing 

techniques based on statistical models have been developed to improve the validity of QPFs, 

whether deterministic or ensemble, for estimating streamflow. These techniques leverage the 

relationship between observations and NWP forecasts, estimate model parameters using historical 

data, and generate post-processed ensemble forecasts for the future. 

 

With over 5,500 major dams, India requires accurate inflow projections for effective flood damage 

reduction. The Central Water Commission (CWC) currently provides inflow projections for over 

150 locations in India, but expanding this coverage to include all major and minor dams and key 

cities is necessary. Improving the flood forecasting system in India is essential to provide accurate 

predictions at critical locations and sites. Specifically, it is also important to generate and verify 

ensemble flood forecasts over the Godavari River basin as it is often prone to floods that can cause 

devastating damages (Garg and Mishra, 2019; Rakhecha and Singh, 2017). The increasing 

frequency and severity of extreme precipitation events, including cloud bursts, emphasize the need 
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for ensemble predictions in flood forecasting. This study aims to develop an atmospheric-

hydrologic flood forecasting model over the Wardha basin (a sub-basin of Godavari River Basin) 

by forcing quantitative precipitation forecasts obtained from ECMWF into calibrated hydrological 

models for short and medium range lead times.  

6.2 Results 
 

The raw and post-processed (using Quantile Regression Forests (QRF)) ensemble precipitation 

forecasts were forced into the calibrated lumped and semi-distributed GR4J model to generate 

ensemble streamflow forecasts. Short and medium-range ensemble flood forecasts were developed 

for seven historical flood events at Bamni (Wardha), where the first four events fall under the 

calibration period of the post-processor, and the following three events fall under the validation 

period of the post-processor. The IHC of the event-based models are initialized using the outputs 

from their respective continuous models.  

The generated ensemble flood forecasts were plotted against the observed discharge values for the 

events during calibration and validation periods of the post-processor in Figures 6.1 and 6.2, 

respectively. The figures show a discrepancy between the observed and simulated flood peaks 

obtained from the raw forecasts in both the calibration and validation periods. Additionally, the 

ensemble spread appears to be smaller. The flood forecasts generated by the QRF in the post-

processor exhibit good performance during the calibration period, accurately capturing the 

magnitude and timing of the observed flood peaks. However, this improved performance does not 

extend to the validation period, as the QRF-based flood forecasts underestimate the observed flood 

peaks. During the validation period, there is still a mismatch between the peaks of the raw flood 

forecasts and the observed flood peaks. However, regarding the magnitude of the flood peak, the 

raw flood forecasts perform reasonably well compared to the post-processed forecasts. Regarding 

the hydrological model, semi-distributed models outperform lumped models in both the calibration 

and validation periods. 
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Figure 6.1 Ensemble flood forecasts generated by forcing raw and post-processed ensemble 

precipitation forecasts into the lumped and semi-distributed GR4J model along observed discharge 

(black). 
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Figure 6.2 Ensemble flood forecasts generated by forcing raw and post-processed ensemble 

precipitation forecasts into the lumped and semi-distributed GR4J model along observed discharge 

(black). 
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Moreover, the performance of the EFF is evaluated using the Nash Sutcliffe Efficiency (NSE) and 

mean Continuous Ranked Probability Score (CRPS) as performance evaluation measures. Figures 

6.3 and 6.4 illustrate the mean CRPS and maximum NSE of the ensemble members plotted against 

lead times during the calibration and validation periods of the post-processor, respectively. Based 

on Figure 6.3, it is evident that the EFF performs satisfactorily in terms of both NSE and mean 

CRPS during the calibration period. The EFF, based on the QRF+semi-distributed model, exhibits 

good performance with an NSE>0.5 and mean CRPS<1700 m3/s at all lead times. However, the 

performance during the validation period is unsatisfactory, with an NSE<0.5. Additionally, the 

performance of the generated EFF is found to be satisfactory at shorter lead times, specifically 1 

to 3 days, with Percentage Error in Peak Flow (PEPF), Percentage Error in Volume (PEV), and 

Percentage Error in Timing to Peak (PETP) < 30% in most cases during the calibration period of 

the post-processor. However, the performance of the post-processed forecasts is poor during the 

validation period, and as the lead time increases, there is a discrepancy in predicting the timing of 

flood peaks. This result is in line with the results of Patel and Yadav (2022) for the Sabarmati 

River basin. The results suggest that the performance of semi-distributed model-based EFF is 

found to be better in comparison to its lumped counterparts.   
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Figure 6.3 NSE and mean CRPS values of ensemble flood forecasts with varying lead times during 

the calibration period of the post-processor. 
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Figure 6.4 NSE and mean CRPS values of ensemble flood forecasts with varying lead times during 

the validation period of the post-processor. 

6.3 Conclusions 
 

The present study utilized raw and post-processed ensemble precipitation forecasts, incorporating 

Quantile Regression Forests (QRF), to generate ensemble streamflow forecasts using the lumped 

and semi-distributed GR4J models. The following conclusions were drawn from the study: 

 

 The ensemble spread of raw forecasts was smaller, but post-processing techniques 

successfully addressed this issue by increasing the spread of the Ensemble Flood Forecasts 

(EFF). 

 During the calibration period, the post-processed flood forecasts, utilizing QRF, exhibited 

improved performance by accurately capturing both the magnitude and timing of observed 

flood peaks. However, this improved performance did not carry over to the validation 

period, as the QRF-based forecasts underestimated the observed flood peaks. 

 Despite a mismatch between the peaks of the raw flood forecasts and the observed flood 

peaks during the validation period, the raw forecasts performed reasonably well in terms 

of the magnitude of the flood peak when compared to the post-processed forecasts. 
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 The semi-distributed models outperformed the lumped models in both the calibration and 

validation periods of the hydrological model, demonstrating the superiority of the semi-

distributed approach. 

 The EFF based on the QRF+semi-distributed model exhibited satisfactory performance 

during the calibration period, with NSE>0.5 and mean CRPS<1700 m3/s at all lead times. 

However, the performance during the validation period was unsatisfactory, with NSE<0.5, 

indicating the need for further improvements. 

 The generated EFF showed satisfactory performance at shorter lead times (1 to 3 days) 

during the calibration period, as indicated by Percentage Error in Peak Flow (PEPF), 

Percentage Error in Volume (PEV), and Percentage Error in Timing to Peak (PETP) < 30% 

in most cases. 

 However, the post-processed forecasts performed poorly during the validation period, and 

as the lead time increased, there was a discrepancy in predicting the timing of flood peaks, 

suggesting a limitation in long-term forecast accuracy. 
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Chapter 7    

Summary 
 

7.1 Summary 
 

This thesis aims to address key research gaps in ensemble flood forecasting for the Godavari River 

Basin (GRB) in India. The study focuses on developing an ensemble flood forecasting framework 

for the GRB by identifying the best ensemble weather forecast products and post-processing 

methods, analyzing the impact of model resolution on flood peak simulation using event-based 

semi-distributed models, and evaluating the accuracy of assimilating observed initial hydrologic 

states/conditions and soil moisture data into event-based rainfall-runoff models. The research aims 

to improve flood predictions and enhance flood risk management strategies by incorporating 

hydrologic uncertainties, determining optimal model resolution, and integrating real-time 

observational data. The following paragraphs give a summary and conclusions of the study 

presented in the thesis. 

 The findings of this study reveal that both NCEP and ECMWF raw forecasts exhibit poor 

skill in capturing observed extreme precipitation events across all lead times, and statistical 

post-processing methods are unable to alleviate this issue. This highlights the need for 

further development of the underlying physics of Numerical Weather Prediction (NWP) 

models to improve the accuracy of forecasting extreme precipitation events. The 

correlation between ensemble mean and observed precipitation decreases with increasing 

lead time, while the Root Mean Squared Error (RME) does not depend on lead time. The 

ensemble mean of post-processed NCEP and MME forecasts using Quantile Regression 

Forest (QRF) outperform other forecasts in terms of correlation coefficient and RME in all 

subbasins and at all lead times. The post-processed forecasts also exhibit an improved 

ensemble spread-error relationship compared to the raw forecasts. QRF outperforms 

Quantile Mapping (QM) in preserving the ensemble spread-error relation. Rank histograms 

indicate that both NCEP and ECMWF raw forecasts are under-dispersive and biased in all 

subbasins, but post-processing mitigates the bias issue. Reliability diagrams show that raw 

NCEP and ECMWF forecasts tend to be overconfident, while post-processed forecasts 

perform well at a 1-day lead time but exhibit declining reliability with increasing lead 
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times. The Area Under the Curve (AUC) values, indicating forecast usefulness, are found 

to be greater than 0.75 at all lead times and subbasins. However, the discrimination ability 

of the forecasts, as measured by AUC, decreases with lead time, indicating a higher false 

alarm rate. Comparatively, the performance of raw MME forecasts is better than raw NCEP 

and ECMWF forecasts, but the QRF post-processed NCEP and MME forecasts perform 

equally well. Considering computational costs, a 20-member QRF post-processed NCEP 

forecast ensemble is recommended for hydrologic forecasting applications in the study 

area. Overall, the performance of NCEP and MME forecasts surpasses that of ECMWF 

forecasts, and QRF post-processed forecasts outperform both QM post-processed and raw 

forecasts. The satisfactory performance of QRF post-processed NCEP and MME forecasts 

is observed in Lower Godavari, Middle Godavari, Indravati, Manjira, and Weinganga 

subbasins for both deterministic and probabilistic measures. 

 This thesis investigated the trade-offs associated with a nested discretization scheme and 

the simulated streamflow by a conceptual hydrological model. Comparative analysis with 

continuous lumped models revealed that both semi-distributed and semi-lumped 

approaches exhibited substantial improvements in terms of Nash-Sutcliffe Efficiency 

(NSE), with values surpassing 0.85 at Jagdalpur and exceeding 0.84 at Wardha, while the 

lumped models achieved NSE values of 0.779 at Jagdalpur and 0.763 at Wardha. However, 

it was observed that semi-distributed models at finer discretization levels could encounter 

challenges during optimization, as they may become trapped in local optima due to a higher 

number of parameters requiring optimization. Consequently, the calibrated SD-3 

parameters demonstrated slightly inferior performance during the validation period, with 

NSE values of 0.78 and 0.71 for SD1 and SD3, respectively, at Wardha. The semi-

distributed and semi-lumped models showcased enhanced capabilities in capturing low 

flows, high flows, and water balance components compared to lumped models. In the case 

of semi-lumped models, performance increased with higher levels of discretization, as 

evidenced by NSE values of 0.72 and 0.82 for SL1 and SL3, respectively, during the 

validation period at Wardha. However, the performance gains associated with finer 

discretization levels (specifically level 3 in this study) were not significantly superior to 

those achieved by models at discretization level 1. These findings indicate that elevating 

model resolution with finely resolved input data does not inherently enhance model 

performance unless the input information is improved through the utilization of finer 

spatial resolution datasets. 
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 The accuracy of different methods to estimate the Initial Hydrologic Conditions of the 

event-based hydrological models was assessed. The application of Streamflow 

Assimilation (Q-DA) in both lumped and semi-distributed models yielded improved 

simulations at the catchment outlet during both calibration and validation periods. 

However, assimilating soil moisture (SM-DA) did not significantly enhance continuous 

streamflow simulations in the lumped model, whereas a slight improvement was observed 

in the semi-distributed model. Notably, the semi-distributed model demonstrated superior 

streamflow simulation performance in both SM-DA and Q-DA compared to the lumped 

models. When compared to continuous models with data assimilation (DA), the event-

based model utilizing Initial Hydrological Conditions (IHCs) obtained through DA 

exhibited a lower ensemble spread in simulations. However, simulations based on SM-DA 

exhibited a higher ensemble spread compared to those based on Q-DA. In event-based 

models employing assimilated initial conditions, the semi-distributed model with SM-DA 

excelled during the calibration period, capitalizing on the advantages of its spatial 

resolution. Furthermore, the event-based semi-distributed GR4J model initialized by the 

IHCs extracted from the corresponding Nash-Sutcliffe Efficiency (NSE) calibrated 

continuous model outperformed other models in accurately capturing the magnitude, 

timing, and volume of observed flood events. 

 Finally, Ensemble Flood Forecasts were generated by forcing quantitative precipitation 

forecasts obtained from NWPs into a calibrated hydrological model. The ensemble spread 

of raw forecasts was initially narrower, but post-processing techniques effectively 

addressed this issue by increasing the spread of the Ensemble Flood Forecasts (EFF). 

During the calibration period, the post-processed flood forecasts utilizing the Quantile 

Random Forest (QRF) method displayed improved performance by accurately capturing 

both the magnitude and timing of observed flood peaks. However, this improved 

performance did not extend to the validation period, as the QRF-based forecasts 

underestimated the observed flood peaks. Despite a discrepancy in peak timing between 

the raw flood forecasts and the observed peaks during validation, the raw forecasts 

performed reasonably well in terms of peak magnitude when compared to the post-

processed forecasts. In terms of the hydrological model, the semi-distributed approach 

outperformed the lumped models in both the calibration and validation periods, showcasing 

its superiority. The EFF based on the QRF+semi-distributed model exhibited satisfactory 

performance during the calibration period, with Nash-Sutcliffe Efficiency (NSE) greater 
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than 0.5 and mean Continuous Ranked Probability Score (CRPS) less than 1700 m3/s at 

all lead times. However, the performance during the validation period fell below 

satisfactory levels, with NSE less than 0.5, indicating the need for further improvements. 

The generated EFF demonstrated satisfactory performance at shorter lead times (1 to 3 

days) during calibration, with Percentage Error in Peak Flow (PEPF), Percentage Error in 

Volume (PEV), and Percentage Error in Timing to Peak (PETP) consistently below 30% 

in most cases. However, the post-processed forecasts performed poorly during the 

validation period, and as the lead time increased, there was a discrepancy in predicting the 

timing of flood peaks, highlighting a limitation in long-term forecast accuracy. 

 

7.2 Future Scope 
 

 The present work is mainly based on conceptual hydrologic models. However, utilization 

of process-based fully distributed models such as VIC, SWAT and HEC-HMS might give 

more reliable simulations as they address the spatial heterogeneity of both catchment 

characteristics and rainfall as well. 

 The work was carried out with data of available spatial and temporal resolution. Finer 

resolution data would have given better results. Particularly, hourly meteorological forcing 

is essential in flood modelling. 

 Root zone soil moisture from a single source (reanalysis product) has been used in this 

study. Assessing the suitability of different satellite-based soil moisture products is 

necessary for detailed understanding of the assimilation efficiency of models. 

 The computational advantage of lumped models should be exploited by integrating the 

rainfall spatial variability to increase the model efficiency during anomalistic rainfall 

events. 

 The influence of increasing model resolution on the performance of the model in capturing 

the observed flood events through assimilation of streamflow/soil moisture should be 

investigated. 

 The trade-offs between model structure, spatial resolution and assimilation variable in 

assimilation efficiency is reserved for future research. 
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