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Abstract

Floods are widespread natural disasters that can severely impact communities, disrupting day-to-
day activities. Unlike other natural disasters, floods can be predicted in advance, allowing for
preparedness measures. Forecasting flood events relies on observed precipitation as input, but
longer lead-time forecasts require transforming quantitative precipitation forecasts obtained from
Numerical Weather Prediction models (NWPs) into flood hydrographs using hydrological models.
The integration of hydrological and meteorological models forms the basis of a hydro-
meteorological forecasting system. Traditional flood forecasting systems operate on deterministic
forecast values, providing a single value for each forecast lead time. However, this approach lacks
a conclusive estimate of forecast uncertainty, limiting its effectiveness. In response, operational
flood forecasting systems have shifted towards the adoption of ensemble forecasts, generating
multiple plausible future weather variables states. Ensemble flood forecasts offer probabilistic
information that outperforms deterministic forecasts, particularly for longer lead times. Despite the
increasing adoption of ensemble weather prediction systems, India's current flood forecasting
systems predominantly rely on deterministic approaches and overlook the inherent uncertainties in
flood forecasts, particularly concerning hydrologic prediction. These hydrologic uncertainties
encompass Vvarious aspects, such as model structural uncertainty, parameter uncertainty,
uncertainty in the spatial resolution of models, and uncertainty in estimating initial hydrologic
conditions. It is imperative to address these uncertainties to establish a robust ensemble flood
forecasting system that enhances flood risk management and facilitates more effective mitigation

strategies.

This thesis focuses on developing an ensemble flood forecasting framework for the Godavari River
Basin, incorporating hydrologic uncertainties within the forecasting process using an event-based
conceptual model. The primary objective includes identifying the most suitable ensemble weather
forecast products and post-processing methods for the GRB through a systematic verification
study, facilitating the creation of a dependable ensemble flood forecasting system. Furthermore,
the research aims to investigate the impact of model resolution on flood peak simulation by
employing event-based semi-distributed models, thereby enhancing the accuracy of flood
predictions. Additionally, the thesis examines the compatibility of reanalysis-based and continuous
model-simulated soil moisture products with conceptual models and evaluates the accuracy of
methods used for estimating initial hydrologic conditions in event-based models. By addressing
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these objectives, the thesis contributes to the advancement of ensemble flood forecasting
techniques, ultimately improving flood risk management strategies in the Godavari River Basin.

The initial part of this thesis focuses on the verification study, which sheds light on critical aspects
concerning ensemble precipitation forecast products and post-processing methods for the
Godavari River Basin (GRB). The analysis reveals that both raw National Centers for
Environmental Prediction (NCEP) and European Centre for Medium-Range Weather Forecasts
(ECMWEF) forecasts exhibit poor skill in capturing extreme precipitation events across all lead
times, and the applied statistical post-processing methods prove ineffective in addressing this
issue. These findings emphasize the necessity to enhance the underlying physics of Numerical
Weather Prediction (NWP) models to achieve accurate forecasts of extreme precipitation events
in the GRB. The correlation between ensemble mean and observed precipitation declines with
increasing lead time, while the Root Mean Square Error (RME) remains unaffected by lead time
variations. Notably, the post-processed forecasts utilizing the Quantile Regression Forest (QRF)
method demonstrate superior performance compared to other forecast types. The ensemble mean
of QRF post-processed NCEP and Multi-Model Ensemble (MME) forecasts outperforms
additional forecasts regarding correlation coefficient and RME across all subbasins and lead
times.

Additionally, the post-processed forecasts exhibit an improved ensemble spread-error relationship
compared to the raw forecasts. The analysis indicates that QRF is more effective than Quantile
Mapping (QM) in preserving the ensemble spread-error relation. Rank histograms show
underdispersion and bias in raw NCEP and ECMWEF forecasts for all subbasins, but applying
post-processing techniques helps mitigate these issues. Reliability diagrams suggest that the raw
NCEP and ECMWEF forecasts are overconfident, while the post-processed forecasts perform well
at a 1-day lead time. However, as the lead time increases, the reliability of the forecasts declines
due to overconfidence. The Area Under the Curve (AUC) values consistently exceed 0.75 for all
lead times and subbasins, indicating the usefulness of the forecasts. However, the discrimination
ability of the forecasts, as measured by AUC, diminishes with lead time, indicating a higher false
alarm rate. Comparing the performance measures employed, the raw MME forecasts exhibit better
overall performance than the raw NCEP and ECMWEF forecasts. However, both QRF post-
processed NCEP and MME forecasts demonstrate similar performance. Considering the
computational cost, the thesis recommends utilizing 20-member QRF post-processed NCEP
forecasts for hydrologic forecasting applications in the GRB. Furthermore, the study reveals that
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the overall performance of NCEP and MME forecasts surpasses that of ECMWF forecasts, and
the QRF post-processed forecasts outperform both QM post-processed and raw forecasts. The
QRF post-processed NCEP and MME forecasts exhibit satisfactory performance in various
subbasins, including Lower Godavari, Middle Godavari, Indravati, Manjira, and Weinganga, as

assessed using deterministic and probabilistic measures.

The second part of the thesis focuses on analyzing the impact of model resolution on the simulation
of flood peaks using event-based semi-distributed models. The study utilizes the semi-distributed
and semi-lumped GR4J model setup at three different spatial resolutions to simulate streamflow at
the Jagdalpur and Wardha basins. The results of the study demonstrate very good performance of
all models in simulating streamflow during the calibration period. The Nash-Sutcliffe Efficiency
(NSE) values for all models exceed 0.76, indicating a high level of accuracy. Among the models,
the semi-distributed models perform the best in both the Jagdalpur and Wardha basins. Overall, the
discretization-based models prove effective in capturing peak flows. The validation results of the
calibrated models during the validation period also indicate a high level of accuracy in simulating
streamflow. The streamflow simulations obtained from the calibrated models exhibit strong
performance based on NSE.

Furthermore, the study evaluates the performance of the lumped and discretization-based GR4J
models in simulating historical flood events. The median NSE values of the lumped models during
the calibration period exceed 0.68 at both Jagdalpur and Wardha, indicating good performance.
However, during the validation period, the median NSE values of the lumped models at Jagdalpur
(0.56) and Wardha (0.269) indicate their limited ability to account for spatial variability. In
contrast, the semi-distributed and semi-lumped models demonstrate strong performance in
capturing flood peaks during calibration. The median NSE values for flood events exceed 0.84
(calibration) and 0.71 (validation) for all semi-distributed and semi-lumped models at Jagdalpur.
Similarly, the median NSE values at Wardha surpass 0.79 (calibration) and 0.67 (validation).

These results indicate the models' ability to accurately capture flood peaks in both basins.

In summary, analysing model resolution's impact on flood peak simulation using event-based semi-

distributed models showcases the superiority of semi-distributed models over lumped models in

accurately representing streamflow and flood peaks. The discretization-based models effectively

capture peak flows and keep a balanced water budget. Notably, the difference between median

NSE values in the calibration and validation periods for the semi-lumped models is relatively lower

than that of the semi-distributed models, indicating efficient parameter transferability. Moreover,
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the semi-lumped models display improved performance with increased discretization,
underscoring their efficient parameter transferability. This study provides valuable insights into the
performance and suitability of different model resolutions for simulating flood events in the
Jagdalpur and Wardha basins.

The third part of the thesis aims to assess the accuracy of assimilating observed Initial Hydrologic
Conditions (IHC) and continuous model outputs into event-based rainfall-runoff models. This
evaluation focuses on the performance of lumped and semi-distributed event-based hydrological
models, considering the assimilation of soil moisture and streamflow data. For the lumped event-
based models, incorporating Data Assimilation (DA) using soil moisture (SM-DA) and streamflow
(Q-DA) exhibit satisfactory performance during the calibration period, with median NSE values
exceeding 0.5. However, the continuous simulations from the lumped models based on DA show
lower performance. In the validation period, the lumped models based on DA do not perform
satisfactorily, indicating poor temporal transferability.

Conversely, the event-based and continuous lumped models utilizing Q-DA demonstrate good
performance, as indicated by lower values of PEPF (Percent Error in Peak Flow), PBIAS (Percent
Bias), and PETP (Percent Error in Time to Peak) when compared to other models. The results
suggest that the predictive ability of both continuous and event-based semi-distributed models,
incorporating soil moisture and streamflow data assimilation, significantly improves compared to
their lumped counterparts. The event-based semi-distributed model with SM-DA exhibits the best
performance during the calibration period, with a median NSE value of 0.82. This highlights the
advantage of considering spatial variability in the model. However, the temporal transferability of
the semi-distributed models in the validation period is poor. The event-based semi-distributed
model with Q-DA performs satisfactorily, with median NSE values of 0.64 and 0.57 in the

calibration and validation periods, respectively.

Both the continuous lumped and semi-distributed models are calibrated using NSE, logNSE, Kling-
Gupta Efficiency (KGE), and Fourth root of the mean quadrupled error (R4MS4E), and the
resulting model states are used as IHC in their corresponding event-based models. The event-based
lumped model, calibrated based on NSE, KGE, and R4AMSAE, exhibits an excellent median NSE
value (>0.65) during the calibration period, except for the logNSEssss calibrated model. The
(Percentage Error in Peak Flow) PEPF and (Percentage Error in Timing to Peak) PETP values
demonstrate satisfactory performance of all lumped models in capturing flood peak magnitude and
timing during the calibration period. In the validation period, a decline in performance is observed
4



for all models based on the selected evaluation statistics. However, the NSE values indicate
satisfactory performance for all models during validation. In the case of semi-distributed models,
the simulated flood hydrographs accurately represent the observed flood hydrographs. The median
NSE values for all semi-distributed models are above 0.77 during the calibration period. Similarly,
the performance in the validation period, based on KGE, R4AMS4E, and NSE-calibrated continuous
models, is also good (NSE > 0.65). The PEPF values remain below 30% in calibration and
validation periods, indicating good performance in capturing observed flood magnitudes. In
conclusion, the study demonstrates that the event-based and continuous lumped models based on
Q-DA perform well, exhibiting lower PEPF, PBIAS, and PETP values. The performance of
continuous and event-based semi-distributed models, incorporating soil moisture and streamflow
data assimilation, surpasses that of their lumped counterparts in terms of NSE, PEPF, PETP, and
PBIAS.

The final part of the thesis focuses on generating ensemble flood forecasts using the calibrated
lumped and semi-distributed GR4J models. Both raw and post-processed ensemble precipitation
forecasts are utilized as inputs to generate ensemble streamflow forecasts. The short- and medium-
range ensemble flood forecasts are evaluated for seven historical flood events at Bamni (Wardha).
The performance of the generated Ensemble Flood Forecasts (EFF) is deemed satisfactory for
shorter lead times, ranging from 1 to 3 days, as indicated by PEPF and PETP values consistently
below 30% during the calibration period of the post-processor. However, the performance of the
post-processed forecasts deteriorates during the validation period. As the lead time increases, there
is a noticeable discrepancy in the prediction of the timing of flood peaks. Comparing the
performance of the semi-distributed model-based EFF with its lumped counterparts, it is evident
that the semi-distributed model yields better results. The semi-distributed model exhibits improved
accuracy in predicting flood events compared to the lumped models. The findings of this study
contribute to the understanding of ensemble flood forecasting techniques and their applicability in
the study area. Further research and improvements in post-processing methods are recommended

to enhance the accuracy and reliability of long-range flood forecasts.
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Chapter 1

Introduction

1.1 From Deterministic to Probabilistic: The Evolution of Flood
Forecasting Systems

Flood is a common natural disaster worldwide that can cause catastrophic impacts on day-to-day
operations. Unlike other natural disasters, floods can be forecast in advance as a preparedness
measure (H. L. Cloke and Pappenberger, 2009). There are several methods to forecast flood events
for different time scales, and many of them primarily rely on observed precipitation as input from
the upstream of the catchment for forecasting at much shorter time scales. However, to forecast for
longer lead time, quantitative precipitation forecasts of longer lead times obtained from Numerical
Weather Prediction models (NWPs) are transformed into flood hydrographs by employing
hydrological models. Hence, hydrological and meteorological models are integrated to forecast
flood hydrographs, and the ensemble system is called a hydro-meteorological forecasting system.
The traditional flood forecasting system often operates based on deterministic forecast value.
Deterministic forecast systems yield a single variable value for each forecast lead time but do not
provide a conclusive estimate of the uncertainty in the forecast, which is a major limitation.
Therefore, most operational flood forecasting systems are shifting towards adopting ensemble
forecasts over the past two decades. The idea of ensemble forecasting is developed in the
atmospheric community to overcome the limitations inherent in deterministic forecasts (Jain et al.,
2018). In an ensemble weather forecast, two significant sources of uncertainty must be accounted

for; initial condition uncertainty and model uncertainty.

Many operational Ensemble Prediction Systems employ the Monte Carlo approach in NWPs to
perturb the initial conditions concerning a control forecast. Generally, combinations of singular
vectors and ensemble data assimilation methods create initial condition uncertainty(Cloke and
Schaake, 2018). Model uncertainty is mainly represented by three schemes namely perturbed
parameterization, stochastic parameterization and multi-model ensembles (Palmer et al., 2009). In
contrast to single-valued deterministic forecasts, many forecast centres generate an ensemble of 10
to 50 plausible future states of the weather variables. The probabilistic information about the

ensemble of forecasted flood events provides an added advantage in comparison to deterministic
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forecasts at much longer lead times scaling from short (up to 3 days) to medium (3-15 days) range
forecasts (H. L. Cloke and Pappenberger, 2009; Cloke and Schaake, 2018; Wu et al., 2020a). The
forecasted ensemble flood values do not result in actual probabilities as uncertainties associated
with the forecast system are not treated thoroughly. Thus, disseminating the probabilistic forecasts
to the end users isn't easy. Despite these challenges related to ensemble prediction systems, the
advantages of ensemble flood forecasts over deterministic forecasts have been reported many times
in the literature so far (Bischiniotis et al., 2019; Emerton et al., 2016; Gomez et al., 2019; Siqueira
et al., 2020; Thiemig et al., 2015).

1.2 Uncertainties in Ensemble Flood Forecasting Systems

The emergence of ensemble forecasting approaches can be traced back to the discovery of the
chaotic nature of the atmosphere by Edward Lorenz (1963). Lorenz proposed that uncertainty
associated with the atmospheric system's inherent nonlinearity and initial conditions can be
addressed through ensemble forecasting. Epstein (1969) accounted for the intrinsic uncertainties
by proposing a theoretical Stochastic-Dynamic approach. However, this approach was impractical
in operational applications as there were a plethora of model equations to be implemented with
limited computational facilities at that time. Leith (1974) proposed the Monte Carlo framework as
a practical implementation of Epstein’s Stochastic-Dynamic approach, representing the first
ensemble forecasting attempt. Due to the computational constraints in the 1970s, only a few
ensemble members were used to describe the uncertainty in initial conditions. Over the years, the
amplification of computational power has facilitated addressing the initial condition uncertainty
along with model structure, model dynamics and even model parameters. European Centre for
Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental
Prediction (NCEP) started using ensemble forecasts in 1992. The World Meteorological
Organization (WMO), recognizing the significance of ensemble forecasting, launched a 10-year
international program in 2003 named The Observing System Research and Predictability
Experiment (THORPEX). The main objective of THORPEX is to accelerate the usage of ensemble
meteorological forecasting for lead times spanning 1 day to 2 weeks. Around ten numerical weather
prediction centres worldwide have provided their medium-range ensemble weather forecasts to
THORPEX Interactive Grand Global Ensemble (TIGGE) database since the end of 2006. Since the
1970s, ensemble forecasting has been used in the hydrological perspective. The United States

National Weather Service (NWS) generated Climatological Extended Streamflow Predictions
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(ESP) for application in reservoir and water supply operations (Day, 1985). An initiative for the
global adoption of hydrological ensemble flood forecasting named Hydrological Ensemble
Prediction Experiment (HEPEX) started in 2004.

Ensemble hydro-meteorological forecasting systems are complex and embedded with various
levels of uncertainty. A comprehensive flow chart showing multiple components of a hydro-
meteorological ensemble flood forecasting system is shown in Figure 1.1.
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Figure 1.1 Flow chart of hydro-meteorological ensemble flood forecasting system with all possible

components.

The fundamental principle of predictability for the hydro-meteorological system is twofold:;
predictability of the atmosphere that drives the hydrologic cycle and estimation of the initial
hydrologic conditions of the watershed. The significant uncertainty contributors in the forecasting
system are the input data, hydrological model structure, model parameters and observed data used
for model evaluation (Wu et al., 2020a). The uncertainty in the input is addressed by generating

the ensemble weather forecasts by perturbing the initial atmospheric conditions of the numerical
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weather prediction models. Many operational hydro-meteorological ensemble flood forecasting
systems do not explicitly assess the uncertainty associated with the hydrological modelling,
typically leading to an under-dispersive forecast (Wang et al., 2009). The full range of uncertainty,
including uncertainty involved in hydrological modelling, is not accounted for in the modelling

chain, making it an active area of current research.

1.3 Evaluating Ensemble Precipitation Forecasts in the
Godavari River Basin

Reliable and skilful ensemble hydrologic forecasts play a crucial role in reservoir operations,
hydropower management, and the prediction of hydrological extremes like droughts and floods.
However, the accuracy of such forecasts heavily relies on uncertainties associated with
meteorological and hydrological models. Precipitation forecasts are essential among the various
factors contributing to these uncertainties as they drive the hydrological cycle. The inherent
uncertainty in precipitation forecasts directly impacts the quality of hydrologic forecasts. To
address this challenge, the hydrological community has increasingly embraced ensemble
forecasting methods to quantify uncertainties in forecasting systems. Ensemble weather forecasts
from Numerical Weather Prediction (NWP) models provide inputs for calibrated hydrological
models to generate ensemble streamflow forecasts. While substantial efforts have been made to
improve NWP predictions, accurately predicting precipitation, storm intensity, and location
remains a critical challenge (Novak et al., 2014; Ridwan Siddique et al., 2015). A systematic
forecast verification framework is crucial to assess and quantify the skill of ensemble forecasts.
Although numerous verification studies have been conducted worldwide for various forecasting
systems, limited research has focused on ensemble precipitation forecasts in India's Godavari River
Basin (GRB). Apart from the advantages of ensemble precipitation forecasts (Liu et al., 2012; Park
et al., 2008), the raw ensemble forecasts are unsuitable as direct input for hydrological applications
due to their inherent biases. Hence, various statistical post-processing methods are generally
employed for spatial downscaling and correcting forecast biases regarding mean and ensemble
spread (Hamill et al., 2004). In this regard, a systematic verification study is necessary to assist the
hydrological community in choosing the best suitable forecasts and post-processing methods to

develop a reliable ensemble flood forecasting system.
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1.4 Spatial Scale and Calibration Approaches in Hydrological
Modelling

Accurate flood prediction is crucial for effectively mitigating flood impacts, and selecting an
appropriate hydrological model plays a pivotal role in achieving accurate predictions. Hydrological
models are categorized based on spatial scale and process description, with lumped, distributed,
and semi-distributed models representing different spatial scales and data-driven, physics-based,
and conceptual models reflecting various process descriptions. Among these models, conceptual
models, known as 'grey-box' models, have gained popularity due to their simplicity and
computational efficiency. Semi-distributed models, in particular, offer advantages by considering
spatial heterogeneity and simulating streamflow even in areas where observed data may be limited.
Previous studies have explored the influence of spatial variability and heterogeneity using semi-
distributed models by dividing catchments into sub-basins of approximately uniform size based on
topography (Booij, 2005; Das et al., 2008; Lobligeois et al., 2014). However, for a semi-distributed
conceptual model, it is desirable to maintain homogeneity within sub-basins, aligning with the
assumptions of a lumped model.

Additionally, a threshold exists for subdivision levels beyond which no further improvements in
model performance can be achieved (Das et al., 2008). Balancing the finite model resolution
obtained through landscape discretization with computational burden is essential. Although the
implementation of event-based lumped conceptual models has been reported in previous studies,
the impact of nested discretization and calibration strategies on the hydrologic response of event-
based conceptual models remains largely unexplored. This study aims to investigate the effects of
varying spatial scales and calibration strategies on streamflow simulations using the modéle du
Génie Rural a 4 paramétres Journalier (GR4J) model in the Jagdalpur and Wardha catchments in
India, shedding light on the performance of event-based models in flood simulations under

different conditions.

1.5 Uncertainty in the estimation of IHC

Event-based models are often preferred over continuous models within the flood modelling
framework due to their ease of calibration and reliance on event-scale data (Tramblay et al., 2012).
However, continuous and event-based hydrologic predictions depend on accurately simulating
initial hydrological conditions, particularly soil moisture within the watershed. To address this
challenge, numerous modelling efforts have focused on minimizing uncertainties associated with

the estimation of initial hydrologic conditions, employing various predictors such as piezometric
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levels, baseflow, antecedent discharge index, outputs from continuous models, and in situ or
remote-sensing observables (Bahramian et al., 2021; Coustau et al., 2012; Franchini et al., 1996;
Hegdahl et al., 2020; Huang et al., 2016; Longobardi and Villani, 2003; Meng et al., 2017). To
reduce uncertainties associated with input data, model states, and output variables, Data
Assimilation (DA) techniques are widely employed, optimizing the combination of observations
and model simulations to enhance initial state estimates of hydrological models. However, the
choice of model structure and the trade-off between input data, model complexity, and
computational costs are critical in real-time flood forecasting applications. While fully distributed
physics-based models offer better simulations by accounting for spatial heterogeneity, they require
extensive data and computational resources.

In contrast, conceptual hydrologic models' computational efficiency and simplicity (CHMs) have
made them effective in operational streamflow forecasting. Although DA studies on CHMs have
primarily focused on lumped versions, understanding the relevance of DA-estimated initial states
in improving the performance of event-based conceptual hydrological models is crucial. Moreover,
the choice of calibration metrics in scenarios where initial conditions are estimated through
continuous models impacts the model states these models simulate. Therefore, the present study
aims to assess the performance of a lumped and semi-distributed event-based conceptual model,
utilizing DA-estimated initial conditions and corresponding continuous models calibrated using

different objective functions for improved flood forecasting.

1.6 Objectives of the study

The objectives of the study are listed as follows:

e ldentification of the best suitable ensemble weather forecast products and post-processing
methods over the Godavari River Basin

e Analysing the impact of model resolution on simulation of flood peaks through event-based
semi-distributed models.

e Accuracy evaluation of assimilation of observed initial hydrologic states/conditions and

IHC obtained from continuous models to initialize event-based rainfall-runoff models.
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1.7 Contributions from the study

With the understanding of different sources of uncertainties in the Ensemble Flood Forecasting
framework, the presentstudy is mainly designed to evaluate the hydrological uncertainties
associated with flood prediction. Initially, the study aims to identify the most suitable ensemble
precipitation forecast products and their statistical post-processing methods over a large river basin
(Godavari River Basin) in India. The aim is to improve the reliability of flood forecasting by
selecting the optimal ensemble forecast products by correcting their inherent biases through post-
processing techniques. Subsequently, the thesis examines the impact of model resolution and
calibration strategies on the simulation of flood peaks using event-based semi-distributed
conceptual hydrological models. The study determines the optimal finite model resolution through
landscape discretization by comparing different spatial resolutions. The findings improve flood
predictions by identifying the most accurate representation of streamflow and flood peaks. In
addition, the accuracy of assimilating observed initial hydrologic states and continuous model
outputs into event-based rainfall-runoff models was evaluated. The study focuses on lumped and
semi-distributed event-based models and considers the assimilation of soil moisture and
streamflow data. The findings highlight the benefits of incorporating assimilation techniques in
improving flood event simulation. Finally, the raw and post-processed ensemble precipitation
forecasts were forced into the calibrated lumped and semi-distributed event-based GR4J model to

generate short and medium-range ensemble streamflow forecasts at Wardha Basin.

At the very beginning, the thesis extensively evaluates the skill of ensemble precipitation forecasts
obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the
National Centers for Environmental Prediction (NCEP) within "The Observing System Research
and Predictability Experiment” (THORPEX) Interactive Grand Global Ensemble (TIGGE)
database. The evaluation is conducted over the eight subbasins of the Godavari River Basin in
India. These forecasting systems are chosen due to their operational nature, availability of
multiyear datasets, and ability to capture scenarios of interest to forecasters. Additionally, the study
verifies the skill of the multi-model grand ensemble (MME) created by integrating NCEP and
ECMWF forecasts. Two statistical post-processing methods address conditional biases in the raw
forecasts. The verification process includes daily accumulations for various lead times (ranging
from 1 to 15 days) in hindcast mode. Deterministic and probabilistic measures such as forecast
error box plots, correlation coefficient, Relative Mean Error (RME), mean Continuous Ranked

Probability Score (CRPS), spread-skill relationship, rank histograms, reliability diagram, and Area
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under Relative Operating Characteristic Curve (AUC) are utilized to assess the skill of basin-
averaged raw and post-processed forecasts in comparison to the observed data from 2016 to 2020.

Subsequently, the thesis explores the trade-offs between increasing model resolution of a
conceptual model through a nested discretization scheme versus its capability to simulate accurate
streamflow. The catchments are discretized iteratively by assessing the spatial heterogeneity of the
Natural Resources Conservation Service (NRCS) Curve Number (CN) using spatial moments
computed from the catchment outlet. Two different calibration strategies (semi-distributed and
semi-lumped) were employed to calibrate the spatially discretized GR4J model. Lumped, semi-
lumped and semi-distributed GR4J models were used to simulate the observed streamflow at
Jagdalpur and Wardha basins in India. Along with a continuous model, an event-based model was
set up in this study to evaluate the model's performance in capturing the observed flood events. A
diagnostic performance evaluation strategy was adopted to assess the accuracy of the simulated
streamflow in matching the different attributes of the observed hydrograph, such as high flows,
low flows and overall water balance. In addition, the performance of event-based models is

assessed concerning their ability to capture the timing and magnitude of their flood peaks.

Further, the performance of different methods to estimate initial hydrologic conditions for event-
based rainfall-runoff modelling was assessed. The first method involves assimilating observed
variables, including streamflow and soil moisture, using the Ensemble Kalman Filter. Root zone
soil moisture data from the Global Land Data Assimilation System (GLDAS) is assimilated for
soil moisture assimilation. The IHCs estimated through assimilating root zone soil moisture (SM-
DA) and streamflow (Q-DA) into the conceptual hydrological model GR4J, at both lumped and
semi-distributed spatial resolutions, are used as the initial conditions in the event-based models.
The second method utilizes states obtained from the continuous model, calibrated using four
different calibration metrics. The parameters of the continuous models are automatically calibrated
using the Genetic Algorithm and four calibration objective functions: Nash-Sutcliffe Efficiency
(NSE), NSE of logarithmically transformed flows (logNSE), Kling-Gupta Efficiency (KGE), and
Fourth root Mean Quadruple Error (R4AMSA4E). The observed flood events in the Jagdalpur
catchment are simulated using a conceptual hydrologic model at two spatial resolutions: lumped
and semi-distributed. To evaluate the performance of the event-based GR4J models in simulating
observed flood hydrographs in the Jagdalpur basin, various metrics such as NSE, PETP, PEPF, and
PBIAS are utilized.
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The final part of the thesis focuses on generating ensemble flood forecasts (EFF) using the
calibrated lumped and semi-distributed GR4J models. Both raw and post-processed ensemble
precipitation forecasts are utilized as inputs to generate ensemble streamflow forecasts. The short-
and medium-range ensemble flood forecasts are evaluated for seven historical flood events at
Bamni (Wardha). The first four events are included in the calibration period of the post-processor,
while the next three events fall within the validation period. The performance of semi-distributed

model-based EFF is compared to EFF generated through its lumped counterparts.

1.8 Outline of the thesis

Within Chapter 2, a thorough literature review is conducted, focusing on crucial areas pertinent to
the research. It investigates forecast verification studies, statistical post-processing methods,
discretization schemes, hydrological modelling, and the estimation of Initial Hydrologic
Conditions (IHCs). This chapter constructs a robust theoretical foundation by critically analysing
relevant literature and providing essential contextual background for the study.

Chapter 3 is dedicated to the verification of ensemble precipitation forecasts, with the objective of
determining the most effective forecast products and statistical post-processing techniques to
improve the reliability of precipitation predictions in the study area. This chapter employs a
comprehensive evaluation and comparison approach to identify ensemble forecast products and
post-processing methods that exhibit superior performance and accuracy in capturing the complex

precipitation patterns and variability observed over the Godavari River Basin.

Chapter 4 analyses the impact of spatial discretization and calibration strategy on event-based
models for flood simulation. This chapter aims to assess how different levels of model resolution,
specifically through event-based semi-distributed models, affect the simulation of flood peaks. A
nested discretization scheme is proposed to delineate a catchment into homogeneous subbasins
iteratively. These subbasins are then utilized to establish semi-distributed and semi-lumped

conceptual models operating in continuous and event-based modes.

Chapter 5 presents a comprehensive performance assessment of methods to estimate initial
hydrologic conditions for event-based rainfall-runoff modelling. The objective is to evaluate the
accuracy and effectiveness of these approaches, including the assimilation of observed variables
and utilization of continuous model states. The assessment covers different spatial resolutions and

includes the simulation of observed flood events in the Jagdalpur catchment.
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Chapter 6 focuses on generating ensemble flood forecasts by forcing raw and post-processed
ensemble precipitation forecasts as inputs into the calibrated lumped and semi-distributed GR4J
model. The chapter examines the generation of short and medium-range ensemble flood forecasts

for seven historical flood events at Bamni (Wardha).

Chapter 7 presents the summary and conclusions of the work described in the thesis.
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Chapter 2
Literature Review

2.1 Introduction

Literature related to forecast verification studies, statistical post-processing methods, discretization
schemes, hydrological modelling, and the estimation of Initial Hydrologic Conditions (IHCs) is
concisely reviewed in this chapter. Specifically, the literature review focuses on different forecast
verification studies conducted globally to gain insights into the inherent biases in the forecasts,
various statistical post-processing methods, and other forecast verification metrics. Furthermore, it
explores the implementation of different discretization schemes to incorporate spatial variability
of catchment characteristics and rainfall into hydrological models, as well as various studies that
assess the performance of hydrological models considering different spatial resolutions and
calibration strategies. Additionally, the literature review explores various techniques for estimating
Initial Hydrologic Conditions (IHCs) and investigates data assimilation methods that assimilate
observed variables to estimate IHCs in conceptual models. By addressing these specific topics, the
literature review offers valuable insights into advancements, challenges, and potential areas for

further research.

2.2 Forecast Verification and Statistical Post-Processing

Due to varying climatic, physiographic, hydrographic, and demographic factors across the length
and breadth of the country, India experiences different types of flooding, including fluvial, coastal
and urban flooding (Singh & Kumar, 2017). With a large flood-prone area and millions of hectares
affected annually, India is one of the most flood-prone countries in the world (National Disaster
Management Plan, 2019; Singh and Kumar, 2017). The escalating population and urbanization
further exacerbate flood risks, emphasizing the need for timely flood risk reduction and mitigation
measures. Flood forecasting, as a low-cost non-structural measure, is crucial in developing flood
control measures and management strategies with limited resources. However, the accuracy of
flood forecasts heavily relies on addressing the uncertainties associated with meteorological and

hydrological models to improve their reliability and skillfulness for reservoir operations,
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hydropower, and the prediction of hydrological extremes (H L Cloke and Pappenberger, 2009;
Cloke and Schaake, 2018).

Precipitation plays a crucial role in flood forecasting as it drives the hydrological cycle, and the
uncertainties associated with precipitation forecasts significantly contribute to uncertainties in
flood forecasts. Accurate precipitation forecasts are essential for generating reliable and skilful
flood forecasts, leading to a shift towards adopting ensemble forecasts in the hydrological
community to quantify uncertainties in forecasting systems (Cloke and Pappenberger, 2009).
Ensemble weather forecasts, generated by Numerical Weather Prediction (NWP) models, provide
ensemble simulations of meteorological variables such as precipitation and temperature for
different lead times. These ensemble forecasts are then used as inputs to calibrated hydrological
models to generate ensemble streamflow forecasts. Despite progressive efforts in improving NWP
models, accurate prediction of precipitation, storm intensity, and location remains a critical
challenge (Novak et al., 2014; Ridwan Siddique et al., 2015). To address this, a systematic forecast
verification framework is crucial for monitoring, verifying, and quantifying the skill of ensemble
forecasts obtained from NWPs. By comparing hindcasts with observations using deterministic and
probabilistic verification measures, this framework helps assess the forecasts' quality, errors, and
biases, providing valuable insights for policymakers, researchers, and forecast users.

Several verification studies have been conducted globally for various forecasting systems,
including the National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast
System Reforecast (GEFSRv2) (Baxter et al., 2014; Brown et al., 2014; Kim et al., 2018; Ridwan
Siddique et al., 2015) and the Short Range Ensemble Forecast (SREF) (Brown et al., 2012; Ridwan
Siddique et al., 2015), European Centre for Medium-Range Weather Forecasts (ECMWF) (Hamill,
2012; Leonardo and Colle, 2017; Medina et al., 2019), United Kingdom Met Office Unified Model
(UKMO) (Anderson et al., 2019; Leonardo and Colle, 2017; Ran et al., 2018).

Siddique et al. (2015) assessed the quality of precipitation forecasts in the Middle Atlantic Region
of the USA, utilizing two ensemble forecasting systems, GEFSRv2 and SREF. Various verification
metrics and conditional analysis based on precipitation amounts, basin size, forecast lead times,
accumulation periods, and seasonality were employed to gain insights into the accuracy of these
forecasting systems. The findings revealed that GEFSRv2 and SREF tended to overestimate light
to moderate precipitation while underestimating heavy precipitation. Moreover, the accuracy of
precipitation forecasts was found to vary depending on factors such as basin size and forecast lead
times. Notably, the study emphasized the significance of accounting for predictive uncertainty in

precipitation forecasts to enhance the accuracy of hydrologic modelling.
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Sharma et al. (2017) examined the quality of ensemble precipitation forecasts across the eastern
United States, with a focus on the NCEP Global Ensemble Forecast System Reforecast
(GEFSRv2), Short Range Ensemble Forecast (SREF) system, and NCEP's forecast systems. The
study area covered 12 NOAA/National Weather Service River Forecast Centers (RFCs), spanning
from Maine to Florida and from the Atlantic coast to the Mississippi River. A verification strategy
was employed, which included a common period of analysis (2012-2013) for lead times ranging
from 1 to 3 days and a longer period (2004-2013) specifically for GEFSRv2, with lead times from
1 to 16 days. The study found that the GEFSRv2 and SREF systems generally performed well in
precipitation forecasts, with the GEFSRv2 demonstrating higher skill scores for longer lead times.
However, regional and seasonal variations in forecast quality were observed, with the SREF system
performing better in the Northeast and the GEFSRv2 performing better in the Southeast. The study
also suggested modifying the weather forecasting systems and guidance could improve flood
forecasts. Additionally, it was noted that statistical postprocessing techniques had the potential to
remove systematic biases and enhance the skill and reliability of forecasts.

Hamill et al. (2004) investigated on enhancing medium-range weather forecasts by integrating
ensemble reforecasting and model output statistics (MOS) techniques. The study highlights the
significance of statistical approaches, particularly MQOS, in improving forecast accuracy by
addressing model bias and distinguishing between predictable and unpredictable elements. Using
retrospective forecasts from the NCEP Medium-Range Forecast (MRF) model spanning 23 years,
the researchers demonstrate significant improvements in forecast skill by statistically adjusting
current forecasts based on prior forecasts. The findings reveal that the adjusted forecasts
outperformed operational forecasts, emphasizing the potential of ensemble reforecasting and
MOS-like technigues in enhancing forecast accuracy and reliability.

Taillardat et al. (2016) conducted a study to enhance the accuracy and reliability of ensemble
weather forecasts through the application of Quantile Regression Forests (QRF) and Ensemble
Model Output Statistics (EMOS). The authors proposed a statistical method that combines QRF
models for estimating conditional quantiles and EMOS for generating calibrated probabilistic
forecasts. Through extensive experimentation, the research demonstrated that integrating QRF and
EMOS significantly improved forecast reliability and sharpness. The calibrated forecasts exhibited

enhanced skill and better representation of uncertainty compared to the original ensembles.

Nandita and Mishra (2021) stressed the importance of incorporating regional dimensions in flood
forecasting infrastructure and establishing a comprehensive flood forecast and warning system.
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They emphasized that India's higher expenditure on post-flood recovery than pre-flood mitigation
schemes underscored the potential benefits of investing in an efficient flood early warning system.
Further, they highlighted the current status and future requirements to strengthen the flood early
warning systems in India. They emphasized the need to translate the ensemble weather and climate
forecast to a Hydrologic Ensemble Prediction (HEP) system by integrating improved
meteorological forecast, hydrologic and hydraulic modelling, data assimilation, and post-
processing. The authors also called for revamping guidelines for flood forecasting and developing
and enhancing the ensemble forecast system, utilizing the existing ensemble precipitation forecast
systems. They argued that the spatial and temporal resolutions and lead time should be improved
for precipitation forecast in smaller catchments and urban areas prone to flash flooding. Overall,
the study highlighted the importance of an integrated approach at various levels to enhance the
operational flood forecast in India, which was essential for developing an effective flood early

warning system.

The adoption of ensemble weather prediction systems in India since 2018 has not fully addressed
the uncertainties in flood forecasts, as the existing flood forecasting systems remain deterministic
(Nanditha and Mishra, 2021; Teja and Umamahesh, 2020). No studies have explored ensemble
flood forecasts in a catchment with a regional outlook in India. Therefore, as s precursory study for
ensemble flood forecasting, verifying and quantifying the skill of raw and post-processed ensemble
precipitation forecasts from two NWP models in the Godavari River Basin (GRB), India is
quintessential. Further, it is also vital to assist the hydrological community in selecting the most
suitable forecasts and post-processing methods to develop a reliable ensemble flood forecasting

system.

2.3 Landscape Discretization and Calibration Strategies in
Hydrological Modelling

Hydrological models are simplified representations of a real-world watershed that aims to model
the interactions between the input meteorological forcing and catchment using distinct
mathematical expressions (Wagener et al., 2001; Mostafaei et al., 2018; Kamamia et al., 2019).
Hydrological models can be classified differently based on spatial scale and process description.
In spatial-scale-based classification, the models can be divided into lumped, distributed and semi-
distributed models. Based on the process description, hydrological models can be broadly classified
into data-driven, physics-based and conceptual models (Acero Triana et al., 2019; Ghimire et al.,

2020; Madsen, 2000; Vu Van Nghi et al., 2020). Data-driven models employ mathematical
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equations to analyse and establish the relation between input and output time series. These models
do not incorporate any physical process in the catchment; hence they are known as ‘black-box’
models. Recent advancements in computation intelligence boosted the usage of data-driven
hydrological modelling based on machine learning and artificial neural networks (Bafitlhile and
Li, 2019). Physics-based distributed models are based on understanding the physics of the
processes involved in water circulation. In these models, physics-based partial differential
equations describe the catchment processes, such as mass transfer, momentum, and energy. The
rationale behind using physics-based distributed approaches is that by accounting for the spatial
heterogeneity of meteorological forcing and physical features within the basin, better simulations
can be achieved at the basin outlet. However, these models are data intensive and demand more
computational resources. Conceptual models, also known as ‘grey-box’ models, consist of very
few components (non-linear reservoirs), simplified representations of elements in hydrological
system. Nonlinearities associated with the catchment responses such as determining excess rainfall,
surface/subsurface runoff and movement of soil moisture are taken care of by the thresholds of

different storage reservoirs.

The utilization of conceptual-based hydrological models has been mainly amplified in the past few
years, attributable to their simplicity and computational efficiency (Tran et al., 2018). Lumped and
semi-distributed conceptual models are well adapted for water resources management and flood
forecasting due to their parsimonious model structures (Perrin et al., 2001). Many studies have
reported that calibration of lumped and semi-distributed models produces similar or higher overall
model performance than the more complex distributed models—when evaluated at the outlet

stations.

Bourqui et al. (2006) analysed the impact of considering spatial variability of the catchment into
account by dividing the basin into sub-basins on the performance of streamflow simulations. 212
French basins were characterized using approximately 50 indices related to pedology, geology,
morphology, and land use. The performance of lumped and semi-distributed rainfall-runoff model
was compared using 3300 Chimaera basins (virtually aggregated from two real basins). The
findings indicate that incorporating spatial heterogeneity showed improved performance;
meanwhile, integrating "useful” spatial data into a lumped model can enhance its performance
without compromising its parsimonious structure. Certain indices demonstrated correlations with
rainfall, affirming that the semi-distributed approach is particularly advantageous for basins

characterized by high spatial variability of precipitation.
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Viney et al. (2005) assessed the performance of 10 hydrological models for a catchment located in
Germany. Lumped to fully distributed models representing different levels of complexity were
used, and they found that simpler models performed well compared to more complex models.
However, during the less extreme validation period, some more complex models exhibit greater

improvement in performance.

Das et al. (2008) evaluated the performance of lumped, semi-lumped, semi-distributed and fully-
distributed models for a European mesoscale catchment. They found that semi-lumped and semi-
distributed models outperformed the lumped and fully-distributed models. They identified some
plausible reasons for the underperformance of distributed models especially poor estimation of
input areal precipitation through spatial interpolation techniques and parameter optimization
ending in a local optimum due to sub-grid parameterization. The calibration procedure
compensates for bias in the precipitation observations and other model input data in the semi-

distributed and semi-lumped model structures.

Generally, it is expected that the performance of any numerical model, in principle, should improve
with increasing model resolutions. But the scarcity of finer-scale spatially resolved data poses a
significant challenge to increasing the model resolution. Hence, the characteristics of both
distributed and lumped models can be found by opting for semi-distributed models and integrating

sub-grid parameterization schemes in hydrologically homogenous areas.

Organization of spatial patterns of various physical characteristics of catchment, such as soil
characteristics, soil moisture and vegetation type, significantly influence catchment runoff.
Splitting the landscape into hydrologically homogeneous regions is called ‘landscape
discretization’. In congruence with the dominant hydrological processes, the topography is the
most influential factor in the discretization process, whereas soil and vegetation are determining
factors in the lower hierarchy (Pilz et al., 2017). However, there is no universally accepted
definition of discretization; it typically consists of a stratification scheme of partitioning a
hydrological basin into sub-basins, which are sequentially divided into irregularly shaped
hydrologically uniform entities (Krysanova et al., 1998). Conceptual models should have a lower
limit of splitting the landscapes simply because they represent average spatial behaviour (Das et
al., 2008). However, there is a threshold of subdivision level above which no more improvements
can be achieved (Haghnegahdar et al., 2015; Han et al., 2014; Wood et al., 1988). It is essential to

determine an optimum finite model resolution through landscape discretization.
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Several methods have been developed to address the discretization issues, for which no generic
solution has been found so far (Beven, 2006). Wood et al. (1988) investigated the scale-dependent
nature of the variability of catchment characteristics and proposed the concept of ‘Representative
Elementary Area (REA)’ with the assumption of an implicit continuum. They employed a modified
version of the top model to simulate the hydrologic response of the catchment, considering both
infiltration excess and saturation excess runoff and incorporating the spatial variability of soils,
topography, and rainfall. The study revealed that the size of the proposed REA is predominantly
influenced by topography. It was observed that there exists a relationship between the REA and
catchment hydrologic responses, with the topography exerting a strong influence on the REA.
Furthermore, the findings indicated that the length scale of rainfall plays a secondary role in
determining the size of the REA, while increased variability in rainfall and soils between sub-

catchments contributes to enhanced variability in runoff generation.

Another prominent discretization scheme, namely hydrological response units (HRUs), was
introduced by Leavesley et al. (1983) for their Precipitation—-Runoff Modelling System (PRMS)
and further elaborated by Fligel (1995). HRUs are formed by unique soil, land use and slope
combinations, which are assumed to respond similarly to input meteorological data. This scheme
has been incorporated in many models such as SWAT (Manguerra and Engel, 1998), SWIM
(Krysanova et al., 1998), GSFLOW (Markstrom et al., 2008) etc. However, the HRU approach
cumulates the generated streamflow over all HRUs without representing the water flow pathways.
Merz and Plate (2009) investigated the threshold where the effects of spatial heterogeneity decrease

to a negligible size.

Kouwen et al. (1993) defined grouped response units (GRUSs) that involve grouping hydrologic
response units based on similar response characteristics derived from classified land-cover maps.
Unique model parameters are assigned to each land-cover class, reducing the need for extensive
model calibration and facilitating the transfer of parameters across both time and space. The
model's performance was evaluated in four watersheds in Southern Ontario, where it was initially
calibrated for the Grand River watershed. Subsequently, the model was applied to the three other
watersheds without requiring further calibration of the hydrologic parameters, with only the river
roughness being adjusted. The results degrade as the parameters are applied to the watersheds
located in a different physiographic area and further away from the calibration watershed (Humber

and eastern metro watersheds, respectively).

Several methods of discretization of hydrological models have been acknowledged in multitudes

of studies (Euser et al., 2015; Gonzélez et al., 2016; Kumar et al., 2010). However, this influence
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has been assessed extensively in grid-based models (Melsen et al., 2016; Molnar and Julien, 2000;
Sulis et al., 2011) as it is relatively easy to change the grid resolution. However, a systematic
analysis of the effect of varying scales (discretization) on simulated flood response from semi-
distributed models is necessary. It is also essential to frame a computationally efficient landscape
discretization method to determine the optimum model resolution. Further, previous studies have
focused on event-based lumped conceptual models, but the influence of nested discretization on
the hydrologic response of event-based models has not been thoroughly investigated. The analysis
of streamflow response at various spatial scales and the comparison of different model
representations contribute to the understanding of improving streamflow predictions in

hydrological modelling to achieve greater accuracy.

2.4 Estimation of Initial Hydrologic Conditions

In addition to proper landscape discretization, the choice of hydrological models plays a crucial
role in capturing the updating scheme of initial hydrologic conditions. Depending on their
approach, these models can be classified as continuous or event-based. Continuous models require
a warm-up period to minimize the impact of arbitrarily selected initial values and often rely on
long-term continuous data, which can be challenging for operational forecasting. On the other
hand, event-based models, widely used for flood forecasting, are easier to calibrate and only require
data at the event scale. However, accurately simulating flood events with event-based models
necessitates estimating the Initial Hydrologic conditions or Antecedent Wetness Conditions before
an event (Tramblay et al., 2010). Previous studies emphasize the significance of estimating the
antecedent wetness conditions of a catchment in event-based rainfall-runoff models to improve
event predictions. Soil moisture, a necessary antecedent condition influencing the interaction
between the atmosphere and land surface, strongly impacts flood magnitudes. Estimating a
catchment's initial soil moisture states can be done through two main approaches: 1) simulating
soil moisture using continuous rainfall-runoff modelling and 2) deriving soil moisture from

reanalysis products/satellite-based imagery.

Berthet et al. (2009) compared event-based and continuous rainfall-runoff modelling approaches
for flood forecasting river flows over 178 French catchments. The influence of antecedent soil
moisture over the performance of flood forecasting was evaluated, along with possible

compensations with soil moisture updating techniques. They reported that the continuous approach
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is the best to ensure good forecasting performances. However, assimilation of the previously
observed flow considerably reduced the differences in performance.

Tramblay et al. (2010) compared four soil moisture indicators antecedent precipitation, baseflow,
in-situ soil moisture and soil moisture simulated from Safran—Isba—Modcou (SIM) model. They
calibrated the event-based SCS-CN method and found that in-situ measurement is the best among
all, after which SIM simulated soil moisture, and logarithmic baseflow are good predictors.
Khalki et al. (2020) compared five satellite-based soil moisture products: ESA-CCI, SMOS,
SMOS-IC, ASCAT and ERAS reanalysis with in-situ measurements and soil moisture simulated
from continuous SMA model. They reported that the SMOS-IC and the ERA5 reanalysis agree
with in-situ soil moisture and SMA model outputs. The results suggested using ERA5 reanalysis
data available at an hourly resolution due to the quick deprecation of soil moisture after rainfall
events in semi-arid regions.
Beck et al. (2021) evaluated 18 contemporary global near-surface soil moisture products, including
satellite-based products, the model simulated soil moisture with and without data assimilation.
These datasets were compared with in-situ measurements at 5cm depth acquired from 826 sensors
spread across the USA. They found that SMAPL3E, SMOS, AMSR2, and ASCAT are performing
well with the L-band-based SMAPL3E.
Zhuo and Han (2016) investigated the compatibility of satellite-based soil moisture products with
the operational hydrologic model. The study's findings revealed that effective hydrological
application of soil moisture data necessitates two interconnected components: 1) relevant soil
moisture data for hydrology and 2) a compatible hydrological model structure. The authors
recommended a comprehensive evaluation of satellite soil moisture observations in hydrological
modelling to address these requirements. Additionally, they suggested modifying the
representation of soil moisture in hydrological models to better align with field variations. The
study also proposed the development of a soil moisture product tailored explicitly for hydrological
modellings, such as a soil moisture deficit measure, to enhance the models' ability to accurately
capture soil moisture dynamics.
Data assimilation techniques have shown potential in enhancing the estimation of initial states in
hydrological models by incorporating observational data to obtain the most accurate representation
of the current model states. Various observed datasets have been utilized to update the states of
hydrological models, including streamflows (Seo et al., 2003), soil moisture (Luca Brocca et al.,
2010), snow-covered area and snow water equivalent (Andreadis and Lettenmaier, 2006; Clark et
al., 2006), and satellite observations of soil moisture and discharge (Andreadis et al., 2007).
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Discharge data, in particular, is frequently assimilated as it encompasses information from all other
hydrological states. However, due to the challenges of obtaining real-time observations, many
studies have turned to satellite-based soil moisture for data assimilation.

In hydrology, three main types of data assimilation methods are commonly employed: Kalman
filters and their variants, particle filters, and variational methods. Among these alternatives,
Kalman filters are the most widely used. The standard Kalman Filter assumes linearity in the model
and Gaussian error statistics in the measurement process. However, the Extended Kalman Filter
was introduced to address nonlinear dynamics, although it can become unstable when strong
nonlinearities are present. In contrast, the Ensemble Kalman Filter (EnKF) replaces the linearized
model with an ensemble of model realizations. A challenge in data assimilation arises from the
time lag between the catchment state and streamflow, known as the time of concentration,
particularly in large catchments. This means that updating the model states simultaneously as the
discharge observations may not be physically realistic, leading to under- or over-estimation in flow
correction at later timesteps (Mendoza et al., 2012). McMillan et al. (2013) proposed a recursive
ensemble Kalman filter that allowed for natural lag time of catchment and showed an improvement
in the results compared to traditional EnKF. Wanders et al. (2014) used Ensemble Kalman Filter
to assimilate three satellite-derived soil moisture from ASCAT, AMSR-E and SMOS and discharge
observations into the LISFLOOD model. Their study reported enhanced accuracy in flood forecasts
when incorporating discharge observations, and further improvement was achieved by assimilation
of satellite-based soil moisture. Consequently, for ensemble prediction systems, ensemble data

assimilation methods like EnKF and recursive EnKF are well-suited for updating the model states.

The selection of calibration metrics is crucial when estimating the initial states of event-based
models through their continuous counterparts. This is because commonly used calibration objective
functions tend to prioritize specific flow segments in a hydrograph, leading to a bias reflected in

the simulated model states of continuous models (Mizukami et al., 2019).

Various products are accessible for estimating the initial states of hydrological models, including
satellite-based products and model-derived soil moisture products. However, the compatibility
between these products and the soil moisture simulated by conceptual models raises concerns when
attempting direct assimilation. To address this challenge, ensemble data assimilation filters such as

EnKF are employed to update the soil moisture of conceptual models using soil moisture products.
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2.5 Concluding remarks

This chapter provides a comprehensive overview of the literature related to forecast verification
studies, statistical post-processing methods, discretization schemes, hydrological modelling, and
the estimation of Initial Hydrologic Conditions (IHCs). The literature review encompasses several
critical aspects of flood forecasting and hydrological modelling, focusing on India's specific
context of the Godavari River Basin (GRB). It begins by highlighting the limitations of
deterministic flood forecasting systems in addressing uncertainties, particularly in the presence of
ensemble weather prediction systems in India. The need for ensemble flood forecasts in the GRB
IS emphasized, along with the importance of verifying and quantifying the skill of raw and post-

processed ensemble precipitation forecasts from numerical weather prediction (NWP) models.

The review also acknowledges the growing popularity of conceptual-based hydrological models,
specifically lumped and semi-distributed models, due to their simplicity and computational
efficiency. These models have shown promising results in water resources management and flood
forecasting, often performing as well as or better than more complex distributed models, mainly
when evaluated at outlet stations. Specifically, the semi-distributed model is considered a suitable
compromise between the characteristics of lumped and distributed models, particularly when
integrated with sub-grid parameterization schemes in hydrologically homogeneous areas. For
setting up a semi-distributed model, landscape discretization or partitioning hydrological models
into spatial units is a critical component. While various discretization methods have been explored
in grid-based models, the literature review highlights the need for a systematic analysis of the
impact of varying scales on simulated flood response in semi-distributed models. Additionally, a
computationally efficient landscape discretization method is required to determine the optimal
model resolution. The influence of nested discretization on the hydrologic response of event-based
models is investigated in the present study.

Further, the review underscores the significance of soil moisture as a necessary antecedent
condition influencing flood magnitudes and the interaction between the atmosphere and land
surface. The compatibility between satellite-based soil moisture products, model-derived soil
moisture products, and the soil moisture simulated by conceptual models is a challenge for direct
assimilation. To overcome this challenge, ensemble data assimilation filters, particularly the
Ensemble Kalman Filter (EnKF), are used to update the soil moisture of conceptual models using
reanalysis-based soil moisture products and observed streamflow. Hence, two approaches are used

in the present study for estimating initial soil moisture states: simulating soil moisture using

35



continuous rainfall-runoff modelling and deriving soil moisture from reanalysis products or

satellite-based imagery.
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Chapter 3

Forecast Verification and Statistical
Post-processing

3.1 Introduction

Reliable and skilful ensemble hydrologic forecasts are needed for reservoir operations,
hydropower and forecasting of hydrological extremes such as droughts and floods (H L Cloke and
Pappenberger, 2009; Das et al., 2022; Madadgar et al., 2014). However, the accuracy of hydrologic
forecasts usually depends upon the uncertainties associated with meteorological and hydrological
models (H L Cloke and Pappenberger, 2009; Cloke and Schaake, 2018).

Precipitation is the crucial variable of interest in hydrologic forecasting as it is the driving force in
the hydrological cycle. The uncertainty associated with the precipitation forecasts is a significant
contributor to the uncertainties in the hydrologic forecasts (Wu et al.,, 2020b). Accurate
precipitation forecasts are pivotal for generating reliable and skilful hydrologic forecasts. Hence,
the hydrological community is shifting towards adopting ensemble forecasts to quantify the
uncertainties in forecasting systems. Ensemble weather forecasts for meteorological variables such
as precipitation and temperature are simulated by different Numerical Weather Prediction (NWP)
models for the lead times ranging from short (0-3 days) to medium range (3-15 days). The obtained
ensemble forecasts are then inputs to the calibrated hydrological models to generate ensemble

streamflow forecasts.

Despite the progressive efforts in the evolution of NWPs by understanding the underlying
atmospheric physics, accurate prediction of precipitation along with storm intensity and location
still remains a critical challenge (Novak et al., 2014; Ridwan Siddique et al., 2015). However, a
systematic forecast verification framework is quintessential to monitor, verify and quantify the
skill of ensemble forecasts obtained from NWPs. The quality of the forecasts from NWPs is
generally assessed by reconstructing retrospective forecasts for the previous period (also known
as ‘hindcasts’) (Ratri et al., 2019). Various deterministic and probabilistic verification measures

assess the degree of correspondence between the hindcasts and the observations. Hence, a
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systematic forecast verification framework assists policymakers, researchers and various forecast

users in understanding the inherent errors and biases of the forecasts (Sharma et al., 2017).

Multitudes of verification studies spanning across the globe were reported so far for various
forecasting systems such as National Centers for Environmental Prediction (NCEP) Global
Ensemble Forecast System Reforecast (GEFSRv2) (Baxter et al., 2014; Brown et al., 2014; Kim
etal., 2018; Ridwan Siddique et al., 2015) and the Short Range Ensemble Forecast (SREF) (Brown
et al., 2012; Ridwan Siddique et al., 2015), European Centre for Medium-Range Weather Forecasts
(ECMWEF) (Hamill, 2012; Leonardo and Colle, 2017; Medina et al., 2019), United Kingdom Met
Office Unified Model (UKMO) (Anderson et al., 2019; Leonardo and Colle, 2017; Ran et al.,
2018). Apart from the advantages of ensemble precipitation forecasts (Liu et al., 2012; Park et al.,
2008), the raw ensemble forecasts are unsuitable as direct input for hydrological applications due
to their inherent biases. Hence, various statistical post-processing methods are generally employed
for spatial downscaling and correction of forecast biases in terms of mean and ensemble spread
(Hamill et al., 2004).

Despite of the adoption of ensemble weather prediction system in India since 2018, the existing
flood forecasting systems are still deterministic and unable to address the uncertainties in flood
forecasts (Nanditha and Mishra, 2021; Teja and Umamahesh, 2020). No studies have been reported
so far in India that look into the ensemble flood forecasts in a catchment with a regional outlook.
The primary objective of this study is to verify and quantify the skill of raw and post-processed
ensemble precipitation forecasts from two NWP models in the Godavari River Basin (GRB), India.
The main motive behind this verification study is to assist the hydrological community in choosing
the best suitable forecasts and post-processing method to develop a reliable ensemble flood
forecasting system. Verifying the forecasts is essential as GRB is often prone to floods that can
cause devastating damage (Garg and Mishra, 2019; Rakhecha and Singh, 2017). Limited studies
have been documented so far verifying the skill of ensemble precipitation forecasts for GRB
(Chakraborty et al., 2021; Dube et al., 2017; Durai and Bhardwaj, 2014), and no studies have been
reported so far comparing the skill of raw and post-processed forecasts. In this context, the
following questions are explored and addressed: How to compare the skillfulness of various
forecasting systems? How does the predictive skill of the ensemble precipitation forecasts fluctuate
among and within multiple forecasting systems and quality attributes? How does the quality of
ensemble forecasts differ over varying lead times? Does statistical post-processing of precipitation
forecasts lead to enhanced forecasts? For this purpose, the quantitative ensemble precipitation

forecasts from two NWP models, i.e., 50-member European Centre for Medium-Range Weather
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Forecasts (ECMWF), 20-member National Centers for Environmental Prediction (NCEP)
forecasts and 70-member multi-model grand ensemble (MME) were verified. The skill of raw and
post-processed NCEP, ECMWF and MME forecasts were verified against the observations as a

preliminary analysis for hydrologic forecasting.

3.2 Study Area and Datasets
3.2.1 Study area

The Godavari River Basin (GRB) is one of the largest river basins in the Indian subcontinent, with
a catchment area of 3,13,000 km? which is about 10% of India’s geographical area (CWC, 2018a).
GRB lies between 73°24” to 83°40’ East longitudes and 16°19’ to 22°34° North latitudes (CWC
and NRSC, 2014). The major subbasins are Manjira, Wardha, Weinganga, Godavari Upper,
Godavari Middle, Godavari Lower, Indravati, and Pranahita. The average annual rainfall of this
basin is about 1100mm (CWC, 2018a). However, the GRB receives 85% of its yearly rainfall
during the South-West monsoon (June to September) (Kulkarni et al., 2010). The location map of

the GRB, along with its subbasins, is shown in Figure 3.1.
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Figure 3. 1 Location map of Godavari River Basin (GRB) and its subbasins.
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3.2.2 Datasets

Precipitation ensembles from two NWP models were obtained at a spatial resolution of 0.25° x
0.25% from “The Observing System Research and Predictability Experiment” (THORPEX)
Interactive Grand Global Ensemble (TIGGE) database over the study area. The skill of ensemble
precipitation forecasts of two NWP models, i.e., NCEP, a 20-member ensemble, and ECMWEF, a
50-member ensemble, was verified in this study against precipitation records. The above NWP
models generate forecasts up to 15-day lead-time at 6-hourly accumulations generated (or
initiated) 4 times a day at 0-, 6-, 12-, and 18-hr time-steps. This study considers retrospective
precipitation forecasts commenced at the Oth hour for forecast verification at varying lead times
(1 to 15 days) for 24-hr accumulations. To assess the performance of a multi-model grand
ensemble (MME), this study has also used a 70-member ensemble forecast by integrating NCEP
and ECMWEF forecasts. The NCEP, ECMWF and MME forecasts are collected from 2009 to 2020
for 1-day to 15-day lead times. The selected NWP ensemble forecasts were verified against the
observed daily precipitation data available from Indian Meteorological Department (IMD) at 0.25°
x 0.25° spatial resolution (Pai et al., 2014). The Indian Meteorological Department (IMD) dataset
used in this study is indeed a gridded dataset, created by Pai et al. (2014). through a process
involving weather station data and subsequent post-processing. Specifically, the dataset referred
to as IMD4 is a high-resolution gridded rainfall dataset with a spatial resolution of 0.25° x 0.25°,
covering a span of 110 years from 1901 to 2010. It is compiled from a comprehensive record of
daily rainfall obtained from 6995 rain gauge stations. These stations represent the highest number
used in such studies to date and have undergone stringent quality control measures. When
compared to existing datasets, IMD demonstrates accurate representation of climatological and
variability features of rainfall over India. Its higher spatial resolution and dense station coverage
contribute to a more realistic depiction of rainfall patterns in specific regions. This data set is

currently the highest quality collection of observations on the Indian subcontinent.

3.3 Methodology

3.3.1 Verification Measures

A diverse pool of verification measures that include deterministic and probabilistic metrics is used

in this study for forecast verification. Deterministic metrics assess the quality of the ensemble
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mean, whereas probabilistic metrics evaluate the errors in the forecast probabilities.

3.3.1.1 Deterministic metrics

The linear Correlation Coefficient and Relative Mean Error (RME) are used in this study as the
deterministic metrics to measure the match with the observed temporal dynamics and
under/overestimation biases, respectively (Sharma et al., 2017; Ridwan Siddique et al., 2015). The
equation of RME is given in Eq. 1.

Z?:l(gi_oi)

RME =
Z?:l Oi

where, E; = — 3, Ey (3.1)

where, m is the number of ensemble members, E; ; is the forecast for k** member at time i, O;
denotes the corresponding observation at time i, and n represents the total number of pairs of

observed and forecast values.

3.3.1.2 Probabilistic Metrics

As per Murphy and Winkler (1987), the quality of ensemble forecasts is determined by analyzing
the following attributes: reliability, sharpness, resolution, discrimination, bias, accuracy and skill.
Probabilistic measures are generally employed to analyze the aforementioned attributes in the

forecasts.

3.3.1.2.1 Mean Continuous Ranked Probability Score (CRPS)

The continuous ranked probability score (CRPS) is a widely used probabilistic performance
measure of ensemble forecasts (Wilks, 2011). CRPS is a quadratic measure that evaluates the
difference between the cumulative distribution functions (CDF) of probabilistic forecasts and
observed values (Zamo and Naveau, 2018). CRPS is similar to the Mean Absolute Error (MAE)
of deterministic forecasts, which can be easily interpreted. The equation of CRPS is given in Eq.
3.2.

CRPS = [ [Fg(h) — Fo()]*dh (32)

where, F and F,, are the forecast and observed CDFs, respectively, and h represents every possible
threshold. CRPS is averaged over the total pairs of forecast and observed values to verify a set of

forecasts. The lower the mean CRPS, the better the forecasts are.
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3.3.1.2.2 Spread-Skill relationship

In the case of an ideal ensemble forecast, the mean of the ensemble spread should be equal to the
skill score (e.g. root mean square error (RMSE)) over the same period (Wang et al., 2013; Whitaker
and Louche, 1998; Zhu and Toth, 2008). To assess this feature, the relationship between ensemble
spread and skill is often investigated. In this study, RMSE is used as the skill score, and the
standard deviation of ensemble members is used to represent the ensemble spread. RMSE and
standard deviation are normalized with observed standard deviation to compare the skill of
forecasts concerning a climatological value. When the skill score (RMSE) line is above and far
from the spread line, the ensemble is considered over-confident, i.e. under dispersive. If RMSE is
lower than ensemble spread, it indicates an under-confident (over dispersive) forecast. ldeally,

RMSE should be equal to the ensemble spread for a forecast to be consistent and reliable.

3.3.1.2.3 Rank Histograms

Equiprobability of ensemble members is an ideal quality of ensemble forecasts. The ensemble
members should be equally probable in principle as all perturbed initial conditions, varying physics
and model structures could possibly be true (Bellier et al., 2017; Hamill, 2001). To check the
equiprobability of ensemble members, rank histograms are used. They are generated by repeatedly
accumulating the rank of the observed values concerning the ensemble forecasts sorted from
lowest to highest. A uniform histogram is desirable, representing an equal likelihood of each
ensemble member. Since rank histograms do not assess the resolution of forecasts, they are used
in conjunction with other evaluation measures, such as CRPS and area under the Relative operating
characteristic (ROC) curve, to understand more about the quality of ensemble forecasts (Hamill,
2001).

3.3.1.2.4 Reliability Diagrams

Reliability diagrams are frequently used graphical tools to visualize the joint distribution of
forecasts and dichotomous events (observations) to assess the reliability of probabilistic forecasts
(Casati et al., 2008; Dube et al., 2017; Ratri et al., 2019). Quantitative precipitation forecasts are
converted to probabilistic forecasts based on an exceedance threshold h and segregated into k bins.

The average probability of the forecasts corresponding to the kth bin, B, is given by

Fg (R) = ﬁz,k Fg, (R), where I, = {i:i € B} (3.3)
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The corresponding average probability of the observations is given by

1, Oi > h;

_ _ 1 —
Fo,(h) = el 2, Fo; (h), where Fo, (h) {0, otherwise.

(3.4)

The forecast probabilities (FEk(h)) of an event are plotted against the corresponding observed
frequencies given forecast probability (Fok (h)) for a total number of forecasts |1, | in each bin By,.

In this study, an exceedance threshold of 1 mm is chosen to plot reliability diagrams to assess the
reliability of NWPs in forecasting precipitation events.

3.3.1.2.5 Area under ROC curve (AUC)

Relative operating characteristic (ROC) curves are the graphical representation of the trade-off
between the fraction of hits (true alarm) and the fraction of false alarms to measure event
discrimination (Casati et al., 2008; Gill and Buchanan, 2014; Wilks, 2011). For a given threshold
h, the hit rate and false alarm rate are given by

i1 1E;(Fg;(h)>d|0;>h)
Ziz110;(0i>h)

hit rate = , (3.5

i1 1E,(Fg;(h)>d|0;sh)
Yiz110;(0ish)

false alarm rate = (3.6)

where d is the probability threshold at which the event causes some action (i.e., the forecast is
considered an occurrence), and I is the indicator function. The ROC curve plots a false alarm rate
against the hit rate using a set of decreasing forecast probability threshold decreases for possible
values of d [0, 1]. Ideally, with decreasing forecast probability thresholds, the hit rate should
increase faster than the false alarm rate. Area under the ROC curve (AUC) is a scalar entity that
summarizes discrimination between events and non-events. An AUC of 0.5 indicates random
forecasts, while an AUC value of 1 reflects perfect forecasts. The value of the AUC of a
probabilistic forecast greater than 0.7 is considered ‘useful’, whereas the AUC above 0.8 is
regarded as a ‘good’ prediction (Ben Bouallégue and Theis, 2014; Mullen and Buizza, 2002). A

threshold of 1 mm is chosen in this study to compute the AUC values.

3.3.2 Statistical post-processing Methods
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This study used two statistical post-processing techniques to post-process the raw ensemble
forecasts obtained from NCEP and ECMWEF. The forecast data from 2009 to 2015 is used as the
training dataset for post-processing models. The fitted models post-process the raw daily forecasts
from 2016 to 2020. It should be noted that the forecast verification was performed from 2016 to
2020. Quantile mapping and quantile regression forests (QRF) are both methods used in in this
study for post-processing ensemble precipitation forecasts. Quantile mapping involves adjusting
the forecasted distribution to match the observed distribution by fitting a transfer function, often a
linear regression, to their cumulative distribution functions. This method assumes a linear
relationship between forecast and observed quantiles. On the other hand, quantile regression
forests utilize an ensemble of decision trees to estimate conditional quantiles, without assuming
any specific distributional form. This makes QRF more flexible in capturing non-linear
relationships between variables. Therefore, while quantile mapping is effective for linear
relationships, QRF is particularly useful when the relationship between forecasted and observed
quantiles is complex and non-linear. A brief description of the selected post-processing methods

is given in the succeeding sections.

3.3.2.1 Quantile Mapping

The ensemble precipitation forecasts obtained from the NWP models comprise inherent biases due
to the chaotic nature of atmospheric circulation and their regulating dynamic feedback
(Christensen et al., 2001). These biases should be corrected to improve the forecasts' quality.
Quantile mapping, also known as ‘histogram equalization’, is a simple and most widely used bias
correction method (Acharya et al., 2013). In this method, the distribution function of modelled
variable is transformed such that it matches the distribution of observed variable. Based on the
assumption that the internal errors in the NWP models and scale relationship are time-invariant,
the correction factor obtained during the calibration period is valid for future periods.
Gudmundsson et al. (2012) reported that nonparametric quantile mapping performs best among
different bias correction methods. The bias correction has been performed on each ensemble
member of the raw ensemble forecasts at each grid point (for all 428 grids falling in Godavari
River Basin) using Eqg. (3.7), considering 2009-2015 as the calibration period. Then the correction

factor obtained from the calibration period is used to correct the bias during the validation period.
F, = Fo_l(Fm(Pm)) (3-7)

where P, and P, are observed and forecasted precipitation, E, represents the cumulative
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distribution function (CDF) of P,, and F, ™" is the inverse CDF corresponds to P,. For performing,
non-parametric quantile mapping, the ‘qgmap’ package in R has been used that can be downloaded

from https://cran.r-project.org/web/packages/gmap/index.html.

3.3.2.2 Quantile Regression Forests

Quantile Regression Forests (QRF) is a nonparametric postprocessing method developed by
(Meinshausen, 2006). QRF provides a nonparametric way to evaluate conditional quantiles for
high-dimensional predictors of variables. This technique has been used for meteorological data
such as precipitation by Bhuiyan et al. (2018) and Taillardat et al. (2016). Given a set of predictors,
the Quantile Regression technique helps to estimate the conditional median and any quantile values
of the response variable, whereas the classical regression techniques are helpful in estimating the
conditional mean of a response variable. The conditional distribution function (F(y|X = x)) is

expressed as given in Eqg. (3.8)
FOylX=x)=P({ < ylX = x) = E (1yeylX = x) (3.8)

Where, X,Y represents the covariate and the observations of the response variable respectively,

and E represents the conditional mean, E (1y<y|X = x).

In QRF, random forests are generated from binary regression trees called classification and
regression trees (CART) that provide robust estimates of conditional quantiles. After building the
random forests, a new vector of predictors and its associated leaf in each tree will be determined
using binary splitting. This iterative binary splitting on predictors aggregates the observations
according to their forecasts. Therefore, for every precipitation event, an ensemble of observations
is restored to create an empirical cumulative distribution function (CDF). The weighted average
of the CDFs from all the trees is the final forecast, which can be used to obtain the predictive

quantiles. The weighted mean over the observation of 1y, (1;y<,; is a step function with a value

of 1 when'Y < y and with a value of 0 when Y > y ) is used to estimate the conditional mean in

Eq. (3.9). Then the conditional distribution function in Eq. (3.9) can be defined as
FiylX =x) =X wi(0)1yey (3.9)
w;(x) = k7t Yk wi(x, 8, (3.10)

where, w;(x) is the weight vector estimating using random forest regression, k represents the

number of trees, and 8 is an independent and identically distributed random parameter vector that
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determines the growth of the tree (e.g., variables that determine the split points at each node).

The major advantage of QRF is that it not only retains the mean but also keeps all the observation
values in the nodes to calculate the conditional distribution. The final CDF obtained from the
weighted average CDF of all trees is bounded between the lowest and highest value of the learning
sample and can forecast only the quantiles within these limits. The algorithm for computing the

estimate of the conditional distribution function F(y|X = x) can be summarized as:

Step 1: Grow k trees as in random forests. The corresponding tree is denoted by T(6,),t =

1, ....., k. All the observations should be retained for every leaf of every tree.

Step 2: For a given X = x, drop x down all trees. Compute weight w; (x) for every observation i €

{1,...,n} as an average over w;(x,6,) t = 1, .....,k, as in (3.3).

Step 3: Compute the estimate of the conditional distribution function as in Eq. (3.2) for all y € R,

using the weights from Step 2.

For a quantile of order «, the probability of the random variable being less than y is «, i.e. (CDF

value for y). Thus, the quantiles are estimated by Eq. (3.4)
Q=P <ylX =x)=a (4)

Instead of using the raw ensemble forecasts, this method can potentially use other predictors and
has the advantage of maintaining non-linearity. For instance, Bhuiyan et al.(2018) used global
reanalysis precipitation and air temperature datasets along with satellite near-surface soil moisture
and elevation datasets as predictors to post-process multiple global precipitation datasets.
However, QRF needs a large training dataset which is a major drawback. In this study, all the
ensemble members (20 members for NCEP forecasts and 50 members for ECMWF forecasts) were
used as predictors for post-processing. The tree size is set to 1000 with the maximum size of
terminal nodes as 20. In this study, the post-processing of raw forecasts using Quantile Regression

Forests was performed using the ‘quantregForest’ package in R (Meinshausen, 2017).

3.3.4 Results and Discussion

The mean areal precipitation of ensemble forecasts (raw and post-processed NCEP and ECMWF)
and observed precipitation from IMD over each sub-basin of the Godavari River Basin is
computed. The skill of basin-averaged forecasts was verified against basin-averaged IMD

precipitation records using a pool of deterministic and probabilistic evaluation measures.
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3.3.4.1 Rank histograms

Rank histograms measure the frequency of observation to fall between each pair in an ordered set
of ensemble values. The under-dispersiveness in the ensemble forecasts leads to higher frequencies
of the extreme ranks. Asymmetric histograms represent the bias in the forecasts, and the
histograms should be uniform for ideal forecasts. The rank histograms of the NCEP and ECMWF
forecasts at 1 day lead time are plotted in Figure 3.2. For brevity of plots, the rank histograms of
MME forecasts were not plotted in this section. It can be noticed that both NCEP and ECMWF
raw forecasts overpopulate the bins on the very left at all subbasins indicating biased and under-
dispersive forecasts. However, it should be noted that ECMWEF forecasts are highly biased
compared to NCEP forecasts. The higher frequencies on the very left side of the histograms of raw
NCEP and ECMWEF forecasts are decreasing with increasing lead time, and the frequencies on the
very right side of the histograms were found to be increasing with increasing lead time, leading to
U-shaped distribution (refer to Figures 3.3 and 3.4). This shows that the raw forecasts are
becoming more under-dispersive with respect to lead time. Statistical post-processing has
alleviated the problem of bias in the raw forecasts to some extent. The rank histograms of QRF
post-processed forecasts were comparatively uniform than QM post-processed forecasts. The U-
shaped distribution of QM post-processed forecasts denotes that the forecasts are still under-
dispersive. It should be noted that the rank histograms of NCEP-QRF forecasts are slightly biased
at lower Godavari and Indravati, whereas ECMWF-QRF is biased at lower Godavari, Upper

Godavari, Indravati and Pranahita subbasins.
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Figure 3.2 Rank histograms of raw and post-processed National Center for Environmental
Prediction (NCEP) and European Center for Medium-term Weather Forecasts (ECMWF) forecasts
over all subbasins for 24 hours lead time.
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Figure 3.3 Rank histograms of raw and post-processed National Center for Environmental
Prediction (NCEP) and European Center for Medium-term Weather Forecasts (ECMWF) forecasts

over all subbasins for 5-day lead time.
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3.3.4.2 Boxplots of Forecast Error

The performance evaluation measures described in the preceding section were used to assess the
skill of raw and post-processed ensemble precipitation forecasts. The forecast error boxplots of the
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NCEP and ECMWEF, which are plotted against increasing amounts of observed precipitation in
Figures 3.5 and 3.6, respectively, for 1 day (short) lead time. For brevity of plots, forecast boxplots
of MME were excluded in this subsection. Similarly, the forecast error boxplots for higher lead
times (5-day and 15-day lead times) were also provided in Figures 3.7 to 3.10. It can be observed
from Figures 3.5 and 3.6 that both NCEP and ECMWEF forecasts (raw and post-processed)

constantly underestimate the extreme precipitation events in all subbasins.

In contrast, light to moderate precipitation events (below 20 mm and above 1 mm/day) are slightly
overestimated. However, QRF post-processed forecasts are marginally better when compared to
that raw forecasts at all lead times for light to moderate precipitation events. In agreement with the
results of previous studies (Ridwan Siddique et al., 2015), the raw forecasts from NWPs tend to
underestimate extreme precipitation events due to conditional biases (i.e., the forecast error is
correlated to the observed precipitation). The forecast boxplots at higher lead times (Figures 3.7
to 3.10) show that the interquartile range (IQR) of boxplot of forecast errors is decreasing from 1
to 15-day lead times and is approximately equal to that of the magnitude of observed precipitation,
indicating the inability of NWPs to forecast extreme events at higher lead times. This shows that
the ensemble spread is smaller at longer lead times, indicating an over-confident forecast. This is
plausibly due to the nudging of NWPs towards climatological values (Wilks, 2006). This analysis
suggests that further research is necessary with a target to improve the ability of NWPs to simulate
extreme precipitation events. The ECMWF forecast errors (raw and post-processed) in Lower
Godavari, Indravati, Manjira and Weinganga are higher at larger precipitation events when
compared to other subbasins at all lead times. The error associated with NCEP forecasts (raw and

post-processed) also follows a similar pattern as that of ECMWF.

To summarize, both QM and QRF methods effectively remove the inherent biases in raw forecasts.
However, they differ in their abilities to correct forecast spread and provide reliable forecasts. It is
evident that the forecast error boxplots of QM-postprocessed NCEP forecasts are overly narrow at

higher precipitation amounts indicating smaller ensemble spread.
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Forecast-Observed Precipitation in mm/day
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Figure 3.5 Boxplots of forecast errors of raw and post-processed National Center for
Environmental Prediction (NCEP) forecasts for 1 day lead time. The boxplot closer to zero (solid

black line) with a smaller spread indicates a reliable and sharp forecast.
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Forecast-Observed Precipitation in mm/day

Figure 3.6 Boxplots of forecast errors of raw and post-processed European Center for Medium-

term Weather Forecasts (ECMWF) forecasts for 1 day lead time. The boxplot closer to zero (solid
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black line) with a smaller spread indicates a reliable and sharp forecast.
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Figure 3.7 Boxplots of forecast errors of raw and post-processed National Center for
Environmental Prediction (NCEP) forecasts for 5-day lead time. The boxplot closer to zero (solid

black line) with a smaller spread indicates a reliable and sharp forecast.

54



Lower Godavari Middle Godavari Upper Godavari Indravati
200 200 + 200 200

= o%
T e
o c - )
z “ -100 = te
-200 2001 -200 -200
o o S 9 © o 2 9 © g ©c o 2 g 2 g ©c g g 2 2 g
8 8 8 & 8 8 8 8 &8 8 8 8 8 8 8 8 8 8
200 2001 200 200

= kY
&) 8¢ -
" -
-200 200 -200 -200
o o s o s & o & o g 6 & © 9 9 o 6 o & o o o
3 8 8 & ¢ 8 8 8 & ¢ 8 8 8 8 8 8 8 R§
200 200 200 200
100 100 100 100

QRF
I
A

-100 = |00 T 4 100 R T ez
-200 -200 -200 -200
= & & 8§ ° & ¢ 8 8 8 ° &% % 8 8 &8 ° 8 8 8% 8 &
2 e 2 = e & |8 &
Manjira Pranahita Wardha Weinganga

200 200+ 200 200

Forecast-Observed Precipitation in mm/day
Raw

200

=
O
]
200 200 200 200 ;
© o @ g o o S o © © o o S o o 2 o o s o 2 g =
& 8 8 8 8 & 2 8 8 8 & % 8 8 8 8 8 8 8
200 200 200 200
1004 100 100 100
W ] . 5
¥ ° %‘i& 0 % 0 %&5\ 0 =
154 == iz S A =g,
-100 1 ~ -100 -100 -100 1 =5
.
-200 -200 -200 -200 ®
S o o o o o 5 & o 9 & o S o © o o o 6 & o & o
& 8 8 &8 8 ] ¢ 8 8 8 & 8 8 8 8 8 8 8 8

Observed Precipitation in mm/day

Figure 3. 8 Boxplots of forecast errors of raw and post-processed European Center for Medium-
term Weather Forecasts (ECMWF) forecasts for 5-day lead time. The boxplot closer to zero (solid

black line) with a smaller spread indicates a reliable and sharp forecast.
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Figure 3.9 Boxplots of
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forecast errors of raw and post-processed National Center for

Environmental Prediction (NCEP) forecasts for 15-day lead time. The boxplot closer to zero (solid

black line) with a smaller spread indicates a reliable and sharp forecast.
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Figure 3.10 Boxplots of forecast errors of raw and post-processed European Center for Medium-
term Weather Forecasts (ECMWF) forecasts for 15-day lead time. The boxplot closer to zero (solid

black line) with a smaller spread indicates a reliable and sharp forecast.
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3.3.4.3 Performance Evaluation of ensemble mean

The ability of the ensemble mean to capture the temporal dynamics of observed precipitation
events is assessed by computing the correlation coefficient. Figure 3.11 shows the correlation
coefficient between the ensemble mean of forecasted precipitation and observed precipitation for
lead times varying from 1 to 15 days. It can be noticed that the correlation coefficient is high at a
lead time of 1 day and tends to decrease with an increase in lead time, denoting that forecasts are
unable to capture the observed events at higher lead times. Despite the fact that the correlation
tends to decrease with forecast lead time, an increase in the correlation can be observed in NCEP
forecasts (raw and post-processed) can be observed after a lead time of 6 days in Middle Godavari,
Upper Godavari, Indravati, Wardha and Weinganga subbasins. Similar correlation patterns were
observed in the study of Sharma et al. (2017), where the correlation is found to be increasing at
higher lead times as the basin size increases. Furthermore, the basin averaging of precipitation
plausibly alleviates the spatial forecast errors leading to improved correlation. Additionally, future
research could investigate the impact of incorporating watershed-specific characteristics and
topographic attributes in ensemble precipitation forecasting models to better understand and
mitigate spatial forecast errors, potentially leading to further improvements in forecast
performance. The correlation of raw MME forecasts is found to be higher than that of raw forecasts
from individual NWP models, and is found to be as skillful as the post-processed forecasts. It is
worth mentioning that the QRF post-processed forecasts were found to be better than that of their
corresponding raw forecasts in terms of correlation coefficient in all the subbasins. However, QRF
post-processed NCEP and MME forecasts are outperforming the remaining forecasts in all the
subbasins. The mean of QM post-processed forecasts were found to be less correlated with the
observed precipitation when compared with their corresponding raw forecasts. QM method can
produce both positively (for ECMWF and MME) and negatively (for NCEP) skillful forecasts on
the grounds that it neglects the association between the observations and raw forecasts. The skill
of NCEP forecasts is found to be good in Indravati and Weinganga subbasins with a correlation
greater than 0.4 event at a higher lead times (>7 days). Similarly, the correlation of ensemble mean
(except QRF post-processed forecasts) and observed values is low at Lower Godavari, Manjira

and Pranahita at higher lead times.
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Figure 3.11 Correlation coefficient between the ensemble mean and observed precipitation for

different lead times.

To understand the under/over estimation bias of the forecasts, RME between mean of the ensemble
forecasts and observed precipitation is computed for varying lead times ranging from 1 day to 15
days (Figure 3.12). It can be observed that the raw forecasts are being overestimated in Upper
Godavari and Wardha subbasins at almost all lead times due to the inherent biases. With increasing
lead times, the post-processed ECMWEF forecasts were underestimated in all subbasins. The
NCEP-QRF forecasts were found to be less biased in all subbasins except Middle Godavari and
Wardha subbasins. The performance of raw and post-processed MME forecasts was found to be
satisfactory regarding RME at all the sub-basins indicating the multi-model ensembling alleviates
the biases. The skill of post-processed ECMWF forecasts is superior in terms of RME in the
Wardha subbasin. The superior performance of post-processed ECMWF forecasts in terms of
Relative Mean Error (RME) in the Wardha subbasin may be attributed to several factors. It's
possible that the ECMWF model, in its raw form, exhibits certain biases or uncertainties that are
effectively mitigated through the post-processing technique employed. This could be related to the
model's representation of local meteorological conditions, topographical features, or other
dynamic factors specific to the Wardha subbasin. Additionally, the post-processing method itself

may have been particularly effective in calibrating and refining the ECMWEF forecasts in this
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specific region. The verification results in terms of correlation coefficient, and RME were found
to be in line with the findings of Siddique et al. (2015) and Sharma et al. (2017).
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Figure 3.12 RME between the ensemble mean and observed precipitation for different lead times.

3.3.4.4 Spread-skill relationship

The spread-skill relationship of the NCEP, ECMWF and MME forecasts are evaluated and plotted
in Figure 3.13 for lead times ranging from 1 to 15 days. The skill score (RMSE in this study)
should be equal to the mean of ensemble spread for consistent and reliable ensemble forecast.
RMSE values higher than the spread indicates under-dispersive (over confident) forecasts and vice
versa. From Figure 3.13, it can be noticed that NCEP, ECMWF and MME forecasts (raw and post-
processed) are under dispersive at all subbasins at all lead times. The ensemble spread of raw
forecasts is low at smaller lead times and is increasing with increasing lead time. The ensemble
spread of post-processed forecasts is higher than that of raw forecasts at smaller lead times
alleviating the under-dispersion of raw forecasts. However, the spread of both raw and post-

processed forecasts converges at lead times from 11 to 15 days.

It should be noted that the RMSE at Upper Godavari, Pranahita and Wardha subbasins are
considerably greater (>1) than that of RMSE at remaining subbasins. It can also be observed that

the RMSE of QM post-processed forecasts are high, indicating poor skill compared to QRF post-
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processed forecasts. A good linear relation is observed between RMSE and spread of QRF post-
processed forecasts compared to other forecasts. It shows the ability of QRF post-processed

forecasts to preserve the spread-skill relationship.
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Figure 3.13 Ensemble spread-skill relationship of the National Centre for Environmental
Prediction (NCEP) and European Centre for Medium-term Weather Forecasts (ECMWF) forecasts

for different lead times over all subbasins.

3.3.4.5 Continuous Ranked Probability Score (CRPS)
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CRPS generalizes the Mean Absolute Error (MAE) to the case of probabilistic forecasts. Lesser
the mean CRPS value, the more accurate the forecasts are. The mean CRPS value of ensemble
forecasts for various lead times ranging from 1 day to 15 days is plotted in Figure 3.14. The general
tendency of the mean CRPS to increase with respect to lead time. The mean CRPS value of the
raw and QM post-processed forecasts is high at shorter lead times (1 to 3 days) at most subbasins.
However, the mean CRPS values are low in all subbasins except Lower Godavari, Indravati and
Weinganga. The higher values of mean CRPS and correlation coefficient in Indravati and
Weinganga subbasins indicates that the ensemble spread is comparatively higher in comparison to
the ensemble spread in other basins. However, the good correlation between ensemble mean and
observations shows the skill of ensemble spread in capturing the observed events. This problem
of high/low ensemble spread leading to under/over confident forecasts can be alleviated by
employing post-processing methods (Raftery et al., 2005). It can be noticed from Figure 3.14 that
the performance efficiency in terms of CRPS has increased with the application of QRF to NCEP,
ECMWEF and MME forecasts in all subbasins. However, the MME forecasts are comparatively
better than those from individual NWPs in all subbasins. The QRF post-processed MME and

NCEP forecasts were more skilful in all sub-basins at all lead times.
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Figure 3.14 Mean CRPS value of National Center for Environmental Prediction (NCEP),
European Center for Medium-term Weather Forecasts (ECMWF) and MME forecasts as a function

of lead time over all subbasins.

3.3.4.6 Reliability Diagrams

With the intent to evaluate the reliability of NCEP and ECMWEF forecasts, reliability diagrams are
plotted for 1 day (Figure 3.15), 5 days (Figure 3.16) and 15 days (Figure 3.17) lead times. In an
ideal case, the curve of observed frequency for given forecast probabilities should be close to the
diagonal. The log-transformed curves in the inset of reliability plot indicates the sharpness of the
forecast i.e., how frequently each probability was issued. Figure 3.13 shows that the raw NCEP,
ECMWF and MME forecast are under dispersive (overconfident) for forecast probabilities greater
than 0.4 overall subbasins at 1 day lead time. However, it can be observed that the reliability has
increased in the post-processed forecasts at 1 day lead time. It is also essential to notice that QM
post-processed forecasts are slightly more reliable (closer to the diagonal line) than QRF post-

processed forecasts. However, the QM post-processed forecasts were under-confident for forecast
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probabilities less than 0.8 for Middle Godavari, Indravati, Manjira, Wardha and Weinganga. The
QRF post-processed forecasts are slightly over-confident for forecast probabilities less than 0.8 in
most subbasins and are more reliable than QM post-processed forecasts for higher forecast
probabilities (>0.8). No significant difference has been observed between the performance of
NCEP, ECMWF and MME forecasts post-processed with the QRF method. However, it can be
noticed from Figures 3.16 and 3.17 that the reliability of both raw and post-processed forecasts

declines with increasing lead times.
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Figure 3.15 Reliability diagram of National Centre for Environmental Prediction (NCEP),
European Centre for Medium-term Weather Forecasts (ECMWF) and MME forecasts for 1 day

lead time over all subbasins.
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Figure 3.16 Reliability diagram of National Center for Environmental Prediction (NCEP) and

European Center for Medium-term Weather Forecasts (ECMWF) forecasts for 5-day lead time

over all subbasins.
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Figure 3.17 Reliability diagram of National Center for Environmental Prediction (NCEP),
European Center for Medium-term Weather Forecasts (ECMWF) and MME forecasts for 15-day

lead time over all subbasins.
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3.3.4.7 Area under ROC curve (AUC)

The area under the ROC curve (AUC) is a scalar measure that quantifies the discrimination ability
of forecasts between occurrences and non-occurrences. The ability of event discrimination of
NCEP, ECMWF and MME forecasts in terms of area under the ROC curve (AUC) is plotted for
different lead times across all subbasins in Figure 3.18. From the figure, it can be observed that
AUC at all subbasins at all lead times is greater than 0.75, indicating that the forecasts are ‘useful’
(as mentioned in the methodology section). It can also be observed that the value of AUC is
decreasing with increasing lead time at all subbasins. This indicates that the discrimination ability
of forecasts declines with lead time, suggesting an increased false alarm rate. The AUC values of
raw NCEP forecasts at 3- to 5 days lead time are deteriorating at Middle Godavari, Manjira and
Wardha subbasins, which is efficiently alleviated by post-processing. The overall performance of
post-processed forecasts is better than raw forecasts highlighting the potential of post-processing.
QRF post-processed NCEP and MME forecasts outperform other forecasts at all subbasins for all
lead times. It should also be noted that the AUC values at Manjira and Pranahita are lower than

other subbasins.
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Figure 3.18 AUC values of the National Center for Environmental Prediction (NCEP), European
Center for Medium-term Weather Forecasts (ECMWF) and MME forecasts as a function of lead

time over all subbasins.

68



3.3.5 Summary and Conclusions

In this study, the skill of ensemble precipitation forecasts from the European Centre for Medium-
Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP)
from “The Observing System Research and Predictability Experiment” (THORPEX) Interactive
Grand Global Ensemble (TIGGE) database is evaluated over the eight subbasins of Godavari River
Basin, India. These two forecasting systems are preferred as they are operational, have multiyear
datasets, and/or capture scenarios that forecasters are interested in (Sharma et al. (2017)). Along
with them, the skill of the multi-model grand ensemble (MME) generated by integrating NCEP
and ECMWEF forecasts is also verified in this study. Two statistical post-processing methods
emphasize the ability of post-processing methods to alleviate the conditional biases in the raw
forecasts. The verification was conducted for daily accumulations for different lead times (1 to 15
days) in hindcast mode. The deterministic and probabilistic measures (forecast error box plots,
correlation coefficient, RME, mean CRPS, spread-skill relationship, rank histograms, reliability
diagram, AUC) are employed to verify the skill of basin averaged raw and post-processed forecasts
in comparison to the observed data during the period from 2016 to 2020. The key findings of this

verification study are mentioned below.

e The skill of both NCEP and ECMWEF raw forecasts in capturing the observed extreme
precipitation events is poor across all lead times and statistical post-processing also could
not alleviate this problem. This highlights the need to develop the underlying physics of
NWPs to accurately forecast extreme precipitation events.

e The correlation between ensemble mean and observed precipitation declines with
increasing lead time, whereas RME does not depend upon lead time. The ensemble mean
of QRF post-processed NCEP and MME forecasts outperforms other forecasts regarding
correlation coefficient and RME at all lead times in all subbasins.

e The ensemble spread-error relationship in the post-processed forecasts is improved in
comparison to raw forecasts. It is also found that QRF outperforms QM in preserving the
ensemble spread-error relation.

e The rank histograms suggest that NCEP and ECMWF raw forecasts are under-dispersive
and biased at all subbasins. However, post-processing of raw forecasts has alleviated the
problem of bias.

e Based on the analysis of reliability diagrams, the raw NCEP and ECMWF forecasts tend

to be overconfident, whereas the post-processed forecasts are performing well at 1 day lead
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time. However, the reliability declines with increasing lead times due to overconfident
forecasts.

e The AUC values are greater than 0.75 at all lead times and all subbasins, showing that the
forecasts are ‘useful’. The discrimination ability of forecasts in terms of AUC is found to
be decreasing with lead time, indicating a higher false alarm rate.

e The results of the analysis suggest that the performance of raw MME is comparatively
better than raw NCEP and ECMWEF forecasts in terms of the employed verification
measures. However, the QRF post-processed NCEP and MME are performing equally
well. Hence, keeping in mind of the computational cost, 20-member QRF post-processed
NCEP forecasts are suggested for hydrologic forecasting applications over the present
study area.

e The overall performance of NCEP and MME forecasts is better than ECMWF forecasts.
The performance of QRF post-processed forecasts is outperforming QM post-processed
and raw forecasts. The underperformance of QM is because it does not account for the
under/over spread in the raw forecasts, and it does not consider the correlation between
raw forecasts and observations, leading to unreliable forecasts.

e The performance of post-processed forecasts in Lower Godavari, Middle Godavari,
Indravati, Manjira and Weinganga is satisfactory regarding both deterministic and
probabilistic measures. The performance of QRF post-processed NCEP and MME

forecasts was satisfactory at most of the subbasins for all verification measures.

Even though the aforementioned verification results provide diagnostic information about the skill
of ensemble precipitation forecasts, they do not give any information on how to improve the NWP
models. More weather factors than only precipitation are needed to properly understand the
physical and environmental factors linked to forecast errors and skill (Moore et al., 2015). In the
future, we plan to explore and evaluate various forecasting scenarios to assess the benefits of
integrating the outputs from different precipitation forecasting systems, hydrologic model
structures, and hydrological post-processing techniques to potentially improve flood forecasting

across spatiotemporal scales.
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Chapter 4

Impact of model resolution on
simulation of flood peaks

4.1 Introduction

Flood is a common natural disaster worldwide that can cause catastrophic impacts on day-to-day
operations (Hirabayashi et al., 2013). Unlike other natural disasters, floods can be forecast in
advance as a preparedness measure (H. L. Cloke and Pappenberger, 2009). The hydrological and
meteorological models are often integrated to forecast flood hydrographs, and the ensemble system
is termed as hydro-meteorological forecasting system (Das et al., 2022). Hence, accurate
prediction of floods through various hydrological models is the need of the hour for mitigating the
effects of floods. This can be done by appropriately selecting hydrological model structure along
with its spatial and temporal resolution. In general, hydrological models are mainly classified
based on spatial-scale and process description. In spatial-scale based classification, the models can
be divided into lumped, distributed and semi-distributed models. Based on the process description,
hydrological models can be broadly classified into data-driven, physics-based and conceptual
models (Acero Triana et al., 2019; Ghimire et al., 2020; Madsen, 2000). Data driven models, as
they establish empirical relation between input and output time series, do not incorporate any
physical process in the watershed. Physics-based distributed models are based on understanding
of the physics of the processes involved in the water circulation, such as the transfer of mass,
momentum, and energy. However, these models are data intensive and demand more
computational resources. Conceptual models, also known as ‘grey-box’ models, consist of very
few components (non-linear reservoirs) which are simplified representations of elements in a
hydrological system. The utilization of conceptual-based hydrological models has been amplified
to a large extent in the past few years, attributable to their simplicity and computational efficiency
(Tran et al., 2018).

Theoretically, the fully distributed models are generally expected to perform better than the
lumped models. However, contradictory results were reported stating that increasing the model

complexity might not lead to better simulations when evaluated at the outlet stations (Das et al.,
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2008; Reed et al., 2004; Viney et al., 2005). Hence, due to their parsimonious model structures,
lumped and semi-distributed conceptual models are well adapted for water resources management
and flood forecasting (Perrin et al., 2001). Apart from their ability to consider spatial
heterogeneity, an important advantage of semi-distributed models is their ability to simulate
streamflow at interior locations where observed streamflow is unavailable for model calibration
(Khakbaz et al., 2012; Sharma and Regonda, 2021). In the semi-distributed approach, the first step
is to divide the basin into sub-basins based on the density of the flow gauges and the second step
consists of subdivision of the sub-basins into homogenous elements with distinct hydrologic
responses. Generally, it is expected that the performance of any numerical model, in principle,
should improve with increasing model resolutions. But the scarcity of finer-scale spatially resolved
data poses a major challenge to increase the model resolution. Hence, the characteristics of both
distributed and lumped models can be found by opting for semi-distributed models and integrating

sub-grid parameterization schemes in hydrologically homogenous areas.

Organization of spatial patterns of various physical characteristics of catchment, such as soil
characteristics, soil moisture and vegetation type, into homogeneous units have a significant
influence on catchment runoff. This process of splitting the landscape in hydrologically
homogeneous regions is called ‘landscape discretization’. In congruence with the dominant
hydrological processes, the topography is the most influential factor in the discretization process,
where are soil and vegetation are determining factors in the lower hierarchy (Pilz et al., 2017).
However, there is no universally accepted definition of discretization, it typically consists of a
stratification scheme of partitioning a hydrological basin into sub-basins, which are sequentially
divided into irregularly shaped hydrologically uniform entities (Krysanova et al., 1998). Several
methods have been developed to address the discretization issues, for which no generic solution
has been found so far (Beven, 2006). Some of the widely used watershed discretization methods
are Representative Elementary Area (REA) (Wood et al., 1988) Wood et al. (1988), Grouped
Response Units (GRUSs) (Kouwen et al., 1993) and Hydrological Response Units (HRUs) (Fllgel,
1995; Leavesley et al., 1983). However, these discretization schemes are not often used for
conceptual models as REA is primarily influenced by topography, GRUs consider a range of land
cover characteristics with uniform meteorological forcing, and the HRU approach cumulates the

generated streamflow over all HRUs without representing the water flow pathways.

The influence of different discretisation methods on hydrologic responses has been acknowledged
in multitudes of studies (Caldeira et al., 2019; Euser et al., 2015; Gonzalez et al., 2016; Kumar et

al., 2010). However, this influence has been assessed extensively in grid-based models (Euser et
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al., 2015; Melsen et al., 2016; Molnar and Julien, 2000; Sulis et al., 2011) as is it is relatively easy
to change the grid resolution. Previous studies have investigated the role of spatial variability of
rainfall and spatial heterogeneity of catchment on the hydrologic responses of a catchment using
semi-distributed models by dividing the catchments into sub-basins of roughly uniform size based
on topography (Booij, 2005; Das et al., 2008; Lobligeois et al., 2014). However, for a semi-
distributed conceptual model, it is desirable that the catchment properties of a sub-basin should be
homogenous, satisfying the assumption of a lumped model. Further, there is a threshold of
subdivision level above which no more improvements can be achieved (Haghnegahdar et al., 2015;
Han et al., 2014; Wood et al., 1988). For conceptual models there should be a lower limit of
splitting the landscapes simply because they represent spatial average behaviour (Das et al., 2008).
Hence, finding a compromise between the optimum finite model resolution through landscape
discretization and computational burden is quintessential. For this purpose, a nested discretization
approach would be more appropriate, where the catchment is divided into sub-catchments only if

there is significant landscape heterogeneity.

In addition to proper landscape discretization, it is also important to choose among the hydrological
models that are classified based on the updating scheme of initial hydrologic conditions. Based on
this classification, hydrological models are divided into continuous and event-based models. In
continuous models, a warm-up period is required to mitigate the effect of arbitrarily selected values
of initial hydrologic conditions. These models often require long-term continuous data which is a
major drawback in operational forecasting perspective. Event-based hydrological models are
extensively used for operational flood forecasting purposes since they are easier to calibrate and
require only data at the event scale. Previous studies reported the performance of event-based
lumped conceptual models (Berthet et al., 2009; Bournas and Baltas, 2021; Kalantari et al., 2015).
However, as per the authors’ best of knowledge, no studies have been reported so far on the

influence of nested discretization on the hydrologic response of an event-based conceptual model.

This study addresses the following research question: Does a nested discretization scheme lead to
improved streamflow simulations for a semi-distributed conceptual hydrologic model? Does the
predictive performance of a model increase with increasing model resolution (level of
discretization)? What is the role of calibration strategies on the performance of model simulations
at different resolutions? To address these questions, the current study attempts to analyse the effect
of varying spatial scales (based on nested discretization) on the streamflow response simulated by
continuous and event-based semi-distributed conceptual models. For this purpose, a conceptual

rainfall-runoff model, modéle du Génie Rural a 4 parametres Journalier (GR4J) has been selected.
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The predictive performance at different spatial representations using lumped, semi-distributed and
semi-lumped models was assessed using different performance evaluation measures. The
performance of these models in predicting the flood hydrographs of the catchments is evaluated
by setting up event-based models. These models are applied to the Jagdalpur and Wardha
catchments located in India.

4.2 Study Watersheds and Hydrometeorological Data

4.2.1 Study Area

The Jagdalpur and Wardha catchments were chosen as study watersheds in this study. They are
subbasins in Godavari River Basin, India. The catchments of Jagdalpur and Wardha were
delineated from the flood forecasting stations Jagdalpur (for Jagdalpur basin) and Bamni (for
Wardha basin), respectively. The delineated catchments have an area of 7382 and 46282 km? for
Jagdalpur and Wardha, respectively. The location map of the study watershed, along with their

Digital Elevation Map, is shown in Figure 4.1.
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Figure 4.1 Location map of Jagdalpur and Wardha catchments with detailing of river streams,

elevation, and flood forecasting stations.

4.2.2 Hydrometeorological Data

The daily streamflow data at Bamni (for Wardha basin) and Jagdalpur (for Jagdalpur basin) are
available at the India-WRIS portal from 1965-2018. The observed flood events are separated from
the streamflow data using the warning levels obtained from the appraisal report on Flood
Forecasting and Warning Network Performance by Central Water Commission (CWC, 2018b). In
this study, the daily gridded datasets from the India Meteorological Department (IMD) at a spatial
resolution of 0.25°x0.25° for Precipitation and 1°x1° for maximum and minimum temperature were
used as meteorological forcing data (Pai et al., 2014; Srivastava et al., 2009). The elevation data
in the form of a Shuttle Radar Topography Mission (SRTM) based Digital Elevation Model (DEM)
with a spatial resolution of 90m was obtained to delineate the basins and extract the stream

network.

In this study, the Natural Resources Conservation Service (NRCS) Curve Number (CN) is used to
assess the landscape heterogeneity. Curve Number is a empirical parameter that indicates the

runoff response considering the soils, land use, land cover and antecedent wetness conditions. The
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Global Gridded Curve Number dataset (GCN250), developed by Jaafar et al. (2019), is a global
gridded curve number dataset available at a spatial resolution of 250 m x 250 m. GCN250 dataset
is developed using a 300 m x 300 m ESA-CCI land use land cover database and a 250 m x 250 m
Hydrologic Soil Group (HYSOG) global soil database. GCN250 dataset has been used in
hydrological applications such as flash flood susceptibility prediction (Ekmekcioglu et al., 2022),
prediction in ungauged basins (Estacio et al., 2021), rainfall-runoff modelling (Ogarekpe et al.,

2022; Rahimi et al., 2021) and satisfactory results were reported.

4.3 Landscape Discretization

Runoff generation in a catchment is highly influenced by the spatio-temporal characteristics of
rainfall and physical features of catchments, such as topography, vegetation, and soil properties.
A nested discretization approach is employed in this study to split the watershed into homogeneous
spatial units. For this purpose, the watershed is divided into sub-basins based on stream gaging
stations available in the interior locations and are again delineated into finer sub-basins based on
topography. To assess the homogeneity of characteristics of the delineated sub-basins, Curve
Number (CN) has been employed in this study as an indicator to address the vegetation and soil
characteristics of the catchment. CN is a widely used conceptual parameter in the field of
hydrology that captures the catchment physical characteristics that affect runoff generation in a
single value. The value of CN ranges from 1-100 (a larger value indicates a higher runoff ratio).
The value of CN is determined from NRCS lookup tables accounting for the combinations of
various land use/land cover characteristics, four hydrological soil types (A, B, C and D), which
are further categorized as good, fair, and poor based on their hydrological condition, and
antecedent soil moisture (AMC) conditions (Type | - dry, Type Il - moderate, Type Il - wet). The
reference CN values in the NRCS lookup tables have been extracted experimentally from rainfall

and runoff measurements over various geographic, soil and land management conditions.

GCN250, a global gridded curve number dataset, has been used in this study to determine the
spatial distribution of the curve numbers in the delineated sub-basins. A set of spatial moments (81
and &) are used to quantify the spatial heterogeneity of the CN in the sub-basins. These spatial
moments proposed by Zoccatelli et al. (2011) are used to quantify the spatial variability of rainfall
in previous studies (Douinot et al., 2016; Emmanuel et al., 2015; Garambois et al., 2014). These

indices are computed as the spatial moments of a catchment characteristic (i.e., CN in this study),
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which describes the interactions between spatial patterns of the corresponding characteristic and

basin morphology. The equations of the spatial moments are given in Eq. 4.1 and 4.2.

Sy
8, = G—— 4.1
1 %Zm (4.1)
lZCiTh-Z—(lZCiﬂi)z
6, = £ € 4.2)

Lynt-(ixm)
where, ¢; is the CN value at the i cell, C represents the cumulative value of CN over the
catchment, n; is the flow distance from the i" cell to the catchment outlet, and N is the total number
of catchment cells. The flow distance from each grid to the catchment outlet is determined using
an R package called ‘riverdist’. §; represents the distance of the centroid of the chosen spatial
characteristic of the catchment concerning the average value of the flow distance (i.e., the
catchment centroid). A value of §; < 1 indicates that the chosen characteristic is closer to the outlet
(i.e., on the downstream side of the catchment), and a value greater than 1 indicates that the
selected spatial characteristic is on the upstream side of the catchment. &, represents the dispersion
of the characteristic-weighted flow distances about their mean value with respect to the dispersion
of the flow distances. A value of §,<1 indicates that the chosen spatial characteristic is
characterized by multimodal distribution, and a value greater than 1 indicates unimodal
distribution. When a characteristic is uniformly distributed in the catchment, the value of §; and
&, will be equal to one, indicating a spatially homogenous region. The following steps are followed

to discretize the watershed into homogeneous sub-basins:

1) Calculation of sub-basins using a grid-based Digital Elevation Model (DEM). This step
incorporates information about the topography of the catchment, which plays a crucial role in
runoff generation.

2) Computation of the spatial moments (8, and &,) of Curve Number (indicative property of
land-use land cover and soil type) for the sub-basins.

3) Check whether the computed spatial moments are closer to 1 with a tolerance threshold of
A (i.e., 1- A > 8,6, < 1+ A) in all sub-basins.

4) Delineate the sub-basins again into finer sub-basins where the spatial moments are beyond
the tolerance threshold

5) Repeat steps 2 to step 4 until both the spatial moments at all the sub-basins are closer to 1
within the tolerance threshold. Terminate the delineation process if the catchment size is below

750 km? which is the approximate spatial resolution of available gridded rainfall in this study.
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The detailed flowchart describing the nested catchment discretization method using spatial
variability indices is given in Figure 4.2.
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Figure 4.2 Flow chart of the proposed scheme of nested watershed discretization into homogenous

sub-basins based on spatial moments of NRCS Curve Number.

The delineation of watersheds in this study is carried out by plugging R with GRASS GIS using
the ‘rgrass7’ package. The study watersheds were delineated for three tolerance thresholds, i.e.,
0.1, 0.075 and 0.05, denoted as Discretization levels 1, 2 and 3, respectively. These tolerance
thresholds represent +10%, +7.5% and £5% deviation from the value 1. The plots of discretized
watersheds for three discretization levels, along with the spatial distribution of curve number, are

shown in Figure 4.3.
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Figure 4.3 Jagdalpur (top) and Wardha (bottom) basins discretized for three different
discretization levels. Discretization Level 1, 2 and 3 represents that the spatial moments of the

Curve Number are deviatingdeviate within £10%, £7.5% and +5%.

4.4 Model Setup

In this study, three versions (lumped, semi-distributed and semi-lumped) of modéle du Génie Rural
a 4 paramétres Journalier (GR4J) were used to simulate the streamflow in the two catchments. A

brief description of the employed GR4J model structures is presented in the subsequent sections.

4.4.1 GR4J lumped model

GR4J is a lumped conceptual rainfall-runoff model developed by Perrin et al. (2003), simulates
the streamflow at a daily time step (Pushpalatha et al., 2012). The structure of the GR4J model is
similar to the other soil moisture accounting based conceptual models. However, it was developed

following an empirical approach to reduce the number of parameters that should be calibrated.
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The Net Evapotranspiration (E,) and Net Precipitation (B,) are calculated using input
evapotranspiration (ET) and precipitation (P) time series using Eq. 4.3

if P>ET; Pb,=P—ETand ET,, =0 else P,=0andET, =ET—P (4.3)

The net precipitation B, is partitioned into two parts; P; and B, — P;, where the former is allocated
to production storage and the latter to surface runoff. The water in the production store is drained
away as percolation (B,.,.) and evapotranspiration. The summation of surface runoff and the
percolated water is considered as total runoff (B.), which is routed by partitioning into two parts
at the routing store. The first partition comprising 90% of B. is routed using Unit Hydrograph 1
(UH 1) and a non-linear routing store. The remaining 10 % of B. is routed using Unit Hydrograph
2 (UH 2) alone. The groundwater exchange is accounted by applying a dynamic water loss/gain
function to both the routed partitions. GR4J is a parsimonious model consisting of four parameters,
one for the production function (X1 - Capacity of production store) and three for the routing
function (X2 - Groundwater Exchange Coefficient, X3 - Capacity of routing store, X4 - Time base

of unit hydrograph).

4.4.2 Semi-distributed GR4J

In the semi-distributed version of GR4J, the streamflow at each hydrological unit (sub-basins in
this case) is generated using GR4J by forcing the mean areal precipitation, temperature and
evapotranspiration of the corresponding sub-basin. Muskingum routing, a channel routing method,
is employed to route the generated streamflow to the catchment outlet using a channel routing
method where the observed streamflow data is available. The Muskingum routing method consists
of two parameters K and x that address the travel time of the hydrograph through the routing reach
and the dimensionless weighting factor, respectively. Sequentially, the Muskingum’s K is a
function of wave celerity (C) and the reach length (L). The reach length from the outlet of each
sub-basin to the catchment outlet is computed using ‘riverdist’ package in R by taking the stream
network generated in GRASS GIS as input. To reduce the parameter dimensionality, the Celerity
is assumed to be constant across all sub-basins. In the semi-distributed model structure, the model
parameters describing the runoff generation through GR4J (4 parameters) and routing of generated
runoff through the Muskingum method (2 parameters) are different for each sub-basin. The semi-
distributed model setup for three discretization levels is denoted as SD-1, SD-2 and SD-3,

respectively, in the preceding sections.
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4.4.3 Semi-lumped GR4J

In a semi-lumped model, the parameters addressing the soil moisture routine are identical across
all the sub-basins. However, it is important to note that the routing parameters vary for each sub-
basin. The input meteorological forcing (precipitation, temperature and evapotranspiration) differs
for each sub-basin, identical to the semi-distributed model structure. The schematic representation
of the GR4J model structure, along with the semi-distributed and semi-lumped model versions of
GRA4J, is presented in Figure 4.4. The semi-lumped model setup for three discretization levels is
denoted as SL-1, SL-2 and SL-3, respectively, in the preceding sections. The list of parameters to
be calibrated in the lumped, semi-lumped and semi-distributed models, along with their ranges,
are tabulated in Table 4.1.
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Figure 4.4 Schematic representation of GR4J lumped model structure (left) along with the semi-distributed (middle) and semi-lumped (right) versions

of GRA4J, the state variables and parameters of the model.
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Table 4.1 List of parameters of the lumped, semi-distributed and semi-lumped versions of the
GR4J model, along with their description and ranges.

Parameter | Description Range
X1 production store capacity [mm] 1 to 1500
Inter-catchment exchange
X2 o -10to 5
coefficient [mm/day]
GR4J
X3 routing store capacity [mm] 1to 500
Semi-
distributed/Semi-
unit hydrograph time constant
lumped GR4J X4 0.5t04
[days]
Average wave celerity in the
C ) Oto5
Muskingum stream network in m/s
routing
x Dimensionless weighting factor 0to 0.5

4.4.4 Model Calibration and Validation

In this study, the meteorological forcing data is partitioned into two parts, which are used for
calibration (1970-1980 for Jagdalpur and 1970-1984 for Wardha) and validation (1981-1993 for
Jagdalpur and 1985-2013 for Wardha). The period from 1967-1969 is used as a warmup period
for both basins. Along with a continuous model, an event-based model was set up in this study to
evaluate the performance of the model in capturing the observed flood events. Event-based

hydrological models are often preferred over continuous hydrologic models for operational flood
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forecasting as they exclusively simulate flood events. However, there is a need to estimate the
Initial Hydrologic conditions or Antecedent Wetness Conditions before a flood event to accurately
simulate flood events (Tramblay et al., 2010). The initial hydrologic conditions of a catchment in
this study are estimated by extracting the states obtained from continuous rainfall-runoff
modelling. A total of 20 flood events were obtained for both Jagdalpur and Wardha sub-basins.
Ten events were used to calibrate model parameters, and the model's performance was validated
using the remaining 10 events. The schematic representation of the event-based GR4J model setup
is presented in Figure 4.5. The parameters of both continuous and event-based models are
automatically calibrated using Genetic Algorithm with Nash-Sutcliffe Efficiency (NSE) (Nash and
Sutcliffe, 1970) as an objective function. A population size of 100 has been used, and the maximum
number of generations in the genetic algorithm was fixed as 2000, i.e., 2 lakhs simulations were
run to calibrate the model. The lumped, semi-distributed and semi-lumped models of GR4J are set
up in the R Environment using the ‘airGR’ package (Coron et al., 2017), and the automatic
calibration is performed using the ‘GA’ package (Scrucca, 2013).

Model states obtained from
continuous simulation

Rainfall and PET during
PET  Rainfall | water level in flood events
l l Production Store l

Calibrated GR4J —
Events

Event-based GRAJ _,{ Simulated Flood ]

Water level in
Routing Store

Figure 4.5 Schematic representation of Event-based GR4J model setup.

4.5 Performance Evaluation

The performance of continuous streamflow simulation generated from the calibrated GR4J model
setup at varying spatial scales should be evaluated by a set of hydrologically relevant signature
measures instead of classical single regression-based lumped measures (Manikanta and Vema,

2022). Hence, a diagnostic performance evaluation strategy suggested by Yilmaz et al. (2008) is
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chosen to evaluate the model performance in simulating the streamflow. For this purpose, multiple
model performance evaluation measures were employed to analyse the match between distinct
features of the observed hydrograph, such as overall water balance, peak flows and low flows.
Five performance evaluation criteria were chosen for this purpose, namely, Percentage Bias
(PBIAS) (Ahmadi et al., 2014), Fourth root Mean Quadruple Error (R4MSAE) (Baratti et al.,
2003), NSE of logarithmic transformed flows (logNSE) (Oudin et al., 2006), Skill Score (SS) (Raju
et al., 2017) and Mean Absolute Error (MAE) (Jung et al., 2017). PBIAS is an indicative measure
of over/underestimation, and a PBIAS value of zero suggests a good overall water balance. The
performance of model simulations in matching the low and high flows is evaluated using logNSE
and R4MSA4E, respectively. The logarithmically transformed streamflow values used in logNSE
emphasize low flows, whereas the errors raised to the power of four in R4AMS4E allocate more
weightage to the peak flows. Skill Score is a frequency domain-based metric that measures the
match between observed and simulated histograms, i.e., Probability Density Functions (PDFs).
This study also uses MAE to give an unbiased error estimate by allocating equal weightage to all
the error magnitudes. The expressions for calculating R4MSA4E, logNSE, PBIAS, SS and MAE
are given in Eq. 4.4 to 4.8.

4 |vT _na?
RAMSAE = Bz (4.4)

ST, (In(sp)-In(0p))*

logNSE =1 — ne 45
J Z?=1(ln(0)t—ln(0))z (4.5)
T —_—
PBIAS = £52%% x 100 (4.6)
2=10t
nb i . .
SS = Zi=1 m“:lr(fslzfol) 47)
MAE = % t=11S¢ — 0| (4.8)

where, S;, O, represents the simulated and observed streamflow values at time ¢, respectively, T
represents the number of data points, fs;, fo; represent the frequencies of simulated and observed
streamflow values at the i bin, and nb denotes the total number of bins. In this study, the
frequency of observed and simulated data for every 5 m3/sec was computed to assess the match
between observed and simulated streamflow frequency characteristics. Along with these five

performance criteria, a Euclidean Distance based composite metric (ED) is also used to
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simultaneously analyse the model's performance in achieving the five criteria. The equation of ED

is given in Eq. 4.9

ED = Xi_ (M — M)? (4.9

where, M, is the kth model evaluation metric and M;, is the ideal value of the k™ model evaluation
metric. The ideal RAMSE, PBIAS and MAE values are 0, whereas the SS and logNSE values are
1. To account for varying ranges of the chosen criteria, the linear sum normalization technique is

used to rescale them for the computation of ED (Vafaei et al., 2016).

Further, the performance of the employed event-based models in simulating the flood events is
assessed using four performance evaluation metrics, namely, Nash Sutcliffe Efficiency (NSE),
Percentage Error in Peak Flow (PEPF), PBIAS and Percentage Error in Timing to Peak (PETP).
The equations to compute the criteria mentioned above are given from Eq. 4.10 to Eqg. 4.12, and

the performance rating of the employed statistics is given in Table 4.2 (Katwal et al., 2021).

_ 1 _ Zi=a(Se-00)®
NSE =1 SN (4.10)
Psim_Pobs
PEPF = ——bs » 100 (4.11)
obs
PETP = Lsim=Tobs y 100 (4.12)

obs

Table 4.2 Performance ratings of various statistics for evaluation of event-based model

Performance evaluation measure Range Performance Rating
0.75-1.00 Very good

NSE 0.65-0.75 Good
0.50-0.65 satisfactory
<*10% Very good

PBIAS +10 % to +15 % good
+15 % to +25 % satisfactory
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<+15 % Very good
PEPF 15 % to £30 % good
+30 % to +40 % satisfactory
<+10 % Very good
PETP +10 % to £15 % good
115 % to 30 % satisfactory
4.6 Results

4.6.1 Performance Assessment of continuous streamflow simulation

As described in Section 4, the GR4J model simulates the streamflow at Jagdalpur and Wardha
basins by setting up the model at four spatial resolutions (lumped and three discretization levels).
Semi-distributed (SD-1, SD-2 and SD-3) and semi-lumped (SL-1, SL-2 and SL-3) models are
considered parameter calibration strategies for three discretization levels, respectively. The
parameters of the models were optimized using Genetic Algorithm for maximizing NSE. Along
with NSE, the performance of simulated streamflow was assessed using five criteria, as mentioned
in Section 5. The computed performance evaluation criteria and NSE at Jagdalpur and Wardha
during the calibration period, are presented in Table 4.3. The performance of all models in
simulating the streamflow during the calibration period is measured using NSE and is found to be
greater than 0.76 for all models, suggesting very good simulations. When compared to the
performance of lumped models in terms of NSE (0.779 at Jagdalpur and 0.763 at Wardha), both
semi-distributed and semi-lumped showcased significant improvement in terms of NSE (>0.85 at
Jagdalpur and >0.84 at Wardha). However, the performance of semi-distributed models in terms
of NSE is found to be the highest in both Jagdalpur and Wardha basins. Interestingly, the
performance of SD-3 is found to be the best at Jagdalpur, and SD-1 is doing well at Wardha.
Wardha is approximately 6 times larger than Jagdalpur, and due to the finer discretization level in

SD-3, it generally is anticipated to address the rainfall and landscape heterogeneity, thereby
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leading to improved simulations. However, the parameter dimensionality has been significantly
increased due to the finer discretization level, posing a challenge to the optimizer in the calibration
process. This might be the plausible reason behind the slight underperformance of SD-3 when

compared to SD-1 in Wardha.

The R4AMSAE value of the lumped model in Jagdalpur and Wardha is 344.87 and 1853.43 m®/sec,
respectively, whereas the R4AMSA4E values of other models were less than the lumped model by
approximately 25% at Jagdalpur and 16% at Wardha. These results show that the discretization-
based models perform well in capturing the peak flows. The logNSE values of Jagdalpur and
Wardha for discretized models range from 0.823 to 0.908 and 0.786 to 0.873. The PBIAS values
between +10 % denote that the performance of all models in terms of overall water balance is very
good. The performance of discretized models regarding Skill Score during the calibration period
ranges from 0.685 to 0.856 for Jagdalpur and 0.628 to 0.847, respectively, showing a good match
between observed and simulated frequencies. The MAE of discretized models ranges from 41.08
to 43.4 m3/sec at Jagdalpur and 136.5 to 166.4 m3/sec at Wardha basins, respectively,
comparatively lower than the MAE of lumped models. The performance evaluation metrics were
also computed for the validation period and are tabulated in Table 4.4. The validation results in
terms of NSE suggest that the streamflow simulation obtained from calibrated models in the
validation period is very good. The performance of the models in terms of RAMSA4E, logNSE, Skill
Score and MAE were similar to the calibration period. An increase in the PBIAS values at Wardha
is observed in all the models, suggesting that the models are overestimating of streamflow.
However, the PBIAS values are satisfactory, i.e., < £25 % at most of the models except for SD-3

showing that ineffective calibration of SD-3 due to higher dimensionality.
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Table 4.3 Performance Evaluation metrics computed for observed streamflow and stream
simulated using different GR4J model setups at Jagdalpur and Wardha during the calibration

period. The optimum values are given in bold.

Discretization R4MS4E  logNSE PBIAS Skill MAE NSE
Score
Jagdalpur
Lumped 344.877 0.763 -3.126 0.681 52.377 0.779
SD-1 238.586 0.872 -1.405 0.702 41.79 0.873
SD-2 232.925 0.823 -1.832 0.804 43.403 0.875
SD-3 235.398 0.868 -0.657 0.692 41.359 0.876
SL-1 258.821 0.908 -3.676 0.856 41.086 0.85
SL-2 237.596 0.894 -0.195 0.685 41.624 0.87
SL-3 251.159 0.866 -0.703 0.785 42.643 0.859
Wardha
Lumped 1853.437 0.81 5.813 0.73 209.838 0.763
SD-1 1360.035 0.871 3.676 0.822 136.511 0.881
SD-2 1393.276 0.873 5.629 0.832 162.898 0.855
SD-3 1545.398 0.802 9.815 0.629 166.41 0.841
SL-1 1489.82 0.786 0.657 0.628 149.75 0.853
SL-2 1531.362 0.848 0.166 0.734 150.84 0.851
SL-3 1388.005 0.809 2.271 0.847 145.745 0.867
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Table 4.4 Performance Evaluation metrics computed for observed streamflow and stream
simulated using different GR4J model setups at Jagdalpur and Wardha during the validation
period. The optimum values are given in bold.

Discretization R4MS4E  logNSE PBIAS Skill MAE NSE
Score
Jagdalpur
Lumped 279.725 0.84 -3.391 0.783 45.315 0.791
SD-1 224916 0.894 4.438 0.883 41.435 0.846
SD-2 239.445 0.819 -2.079 0.797 45.883 0.82
SD-3 243.89 0.885 5.041 0.871 42.772 0.828
SL-1 247.964 0.893 -1.075 0.865 41.939 0.827
SL-2 252.526 0.878 0.457 0.676 44.175 0.81
SL-3 222.667 0.88 1.837 0.852 42.143 0.84
Wardha
Lumped 2269.95 0.706 25.812 0.794 228.741 0.683
SD-1 1509.805 0.752 24.287 0.864 177.174 0.821
SD-2 1730.79 0.768 24.502 0.819 200.797 0.774
SD-3 1368.304 0.673 32.411 0.655 206.86 0.804
SL-1 1819.869 0.734 21.165 0.713 180.822 0.773
SL-2 1877.877 0.785 19.403 0.786 180.201 0.771
SL-3 1426.177 0.753 22.439 0.869 175.033 0.817

The ability of the model to achieve the five performance criteria (RAMSA4E, logNSE, PBIAS, SS
and MAE) simultaneously is assessed by computing the Euclidean Distance (ED). The Euclidean
distance calculated for Jagdalpur and Wardha basins during calibration and validation periods is
shown in Figure 4.6. The figure shows that the overall performance of discretized models (except
SD-3) in terms of ED is comparatively better than their lumped counterparts. The better ED value
of Jagdalpur in the calibration period and the deteriorated ED value in the validation period are
plausibly due to the overfitting of the model. Subsequently, the ED value of SD-3 at the Wardha
basin is very high compared to other models during both calibration and validation periods
denoting the ineffective calibration of parameters. The SD-3 model is prone to under/overfitting
where the underfitting is due to the increased parameter dimensionality, and the overfitting is

plausibly due to equifinality. The performance of semi-lumped models in terms of ED is
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comparatively lower in the validation periods displaying their effective parameter transferability
to the validation period. The percentage increase in the performance of discretized models in terms
of ED is computed. The mean percentage decrement in the ED value of semi-distributed models
compared to lumped models at Jagdalpur and Wardha is approximately 59% and 20%,
respectively, during the calibration period and 3% and 25% during the validation period. For semi-
lumped models, the mean percentage decrement of ED at both stations is approximately 50%
during calibration and 40% during validation. This shows that the performance of semi-lumped
models in simultaneously matching different segments of the observed hydrograph is
comparatively better than the simulation of semi-distributed models.
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Figure 4.6 Euclidean distance computed for five performance criteria (RAMS4E, logNSE, PBIAS,
SS and MAE) for all the models at Jagdalpur and Wardha basins during calibration and validation

periods. An ED value closer to zero represents better model simulations.
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The Percent Bias computed between the observed and simulated Flow Duration Curves (FDCs) in
high, medium and low flow segments at Jagdalpur and Wardha during calibration and validation
periods is presented in Figure 4.7. The bias in the high flows is below 15% at both stations during
calibration and validation periods indicating good performance of models in predicting the peak
flows. The performance model simulations in medium flows at Jagdalpur are found to be good
(<15) whereas at Wardha, the bias in the simulations of semi-distributed models in the validation
period exceeds 50%. The bias in the low flows at both stations during validation is higher when
compared to other flow segments. Further, the bias of all the models in simulating the low flows
at Wardha is >50% indicating an overestimation of low flows during both calibration and
validation periods. The higher bias in the low flow is attributable to the model structure of GR4J,
as some of the previous studies have reported its weakness in simulating the low flows (Demirel
et al., 2015; Zeng et al., 2019).
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Figure 4.7 Percent Bias computed between different flow segments of observed and simulated
Flow Duration Curves at Jagdalpur and Wardha basins during calibration and validation periods.

A Percent Bias value closer to zero represents unbiased model simulations.
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4.6.2 Performance assessment of event-based streamflow simulation

The performance of the lumped and discretization-based GR4J models to simulate historical flood
events has been tested in this study. For assessing the performance of an event-based model,
Berthet et al. (2009) suggested that an objective function, indicative error measures of the match
between the magnitude and timing of peak error, and a visual comparison of the observed and
simulated hydrographs are necessary. For this purpose, four performance evaluation measures,
NSE (objective function), PEPF, PBIAS and PETP, were used the evaluate the model simulated
flood response (Table 4.5). The median NSE value of lumped models during the calibration period
is above 0.68 at both Jagdalpur and Wardha, indicating good performance. The performance of
lumped models in the validation period regarding median NSE values at Jagdalpur (0.56) and

Wardha (0.269) indicates their inability to account for spatial variability.

Further, the median NSE value of the flood events during the calibration period is greater than
0.84 (calibration) and 0.71 (validation) for all the SD and SL models at Jagdalpur, and the median
NSE is greater than 0.79 (calibration) and 0.67 (validation) at Wardha indicating the very good
performance of the models in capturing the flood peaks. The performance of semi-lumped models
increases with an increase in the level of discretization at both stations during calibration and
validation periods, with SL-3 performing the best. It is also important to note that the difference
between median NSE values in calibration and validation periods of semi-lumped models is
comparatively lower than the semi-distributed models indicating an efficient parameter
transferability. The PEPF, PBIAS, and PETP values of the SD and SL models vary between -0.8
to 12.5%, -3.2to 7.5% and -3.9 to 1.8%, respectively, during the calibration period at both stations.
These values indicate very good performance of the discretization-based models in capturing the
magnitude, timing and volume of flood during the calibration period. A decline in these
performance statistics has been observed at Wardha, but most of the models are well within

acceptable limits.
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Table 4.5 Median values of performance evaluation metrics computed for the flood events
simulated using different event-based GR4J model setups at Jagdalpur and Wardha during
Calibration and Validation periods. The optimum values are given in bold.

Discretization NSE PEPF PBIAS PETP | NSE PEPF PBIAS PETP
Jagdalpur

Calibration Validation
Lumped 0.7 -26.7 55 -3.9 0.568 -26.6 -3 6.3
SD-1 0.91 -3.3 0.4 -2.5 0.772 -13.2 -8.7 3.7
SD-2 0.85 -12.5 3.9 -1.2 0.743 -18.8 -4.8 2
SD-3 0.887 -0.8 1.9 1.8 0.731 -12.3 -2.9 5.1
SL-1 0.845 -7.8 -3.2 -2.9 0.714 -19.7 -4.9 1.3
SL-2 0.893 -9.2 -2.1 -3.9 0.748 -17.1 -6.5 7.5
SL-3 0.898 -7.9 -0.1 -2.5 0.818 -7.7 -2.2 0.4
Wardha

Calibration Validation
Lumped 0.687 2.7 2.6 -0.7 0.269 58.4 23.9 -3.6
SD-1 0.843 -8.2 3.8 -6.7 0.782 25.3 23.9 1.4
SD-2 0.821 -11.6 7.5 -0.9 0.701 315 27.8 0
SD-3 0.794 -12.6 6.8 -3.7 0.714 26.6 29.5 -0.7
SL-1 0.793 -9.9 4.6 -0.6 0.72 348 25.7 -0.7
SL-2 0.796 -12.3 7.2 -0.9 0.676 28.2 30.1 -1.4
SL-3 0.816 -10.3 6.1 -2.2 0.821 20.1 22.7 -2.1

A visual inspection of the observed and simulated flood hydrographs is necessary to gain more
insights into the ability of the models to simulate the streamflow. The observed and simulated
flood hydrographs at Wardha during calibration and validation are presented in Figures 4.8 and
Figure 4.9, respectively; the flood hydrographs for Jagdalpur for calibration and validation periods
are plotted in Figures 4.10 and 4.11, respectively. The spatial moment &, of precipitation for each
flood event is computed and presented along with the flood hydrographs to understand the role of
rainfall spatial variability on the performance of the models. Figure 4.8 shows that the SD and SL
models are more efficient in capturing the magnitude and timing of flood peaks compared to their

lumped counterparts. The deterioration in the ability of lumped models to capture the timing of
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flood peaks can be mainly attributed to rainfall spatial variability. The spatial variability of rainfall
was measured using &; is less than 0.8 during Events 5 and 8, where the lumped model failed to
capture the timing of the peak. To further understand this, the spatial distribution of rainfall is
plotted in Figure 4.12, along with the computed spatial moment §, of rainfall for each day during
the flood event. It can be observed that in Event Number 5, the §, values before the flood peaks
are below 0.8 with a magnitude greater than 60 mm, indicating that the rainfall is highly
concentrated towards the downstream side (closer to the catchment outlet). This highly
concentrated storm at the downstream side of the catchment leads to reduced lag time while routing
the flood wave. The better performance of SD and SL models can be attributed to their ability to

account for rainfall spatial variability.
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Figure 4.8 Observed and simulated flood hydrographs for selected flood events at Wardha during

the calibration period, along with the computed spatial moment § 1 of rainfall for each day during

the flood events.
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Figure 4.12 Spatial plots of rainfall for each day during Event-5 for Wardha during calibration.
The observed and simulated hydrographs were plotted at the bottom right. (5 1 represents the

spatial moment computed for rainfall on each day.

4.7 Discussion

This study tested the influence of a nested landscape discretization scheme on the
performance of a conceptual hydrological model GR4J in simulating the streamflow at two
catchments. Lumped, semi-lumped and semi-distributed GR4J models were set up for various
discretization levels. The performance of the simulated streamflow in matching the observed peak
flows, low flows and water balance components is assessed by employing different performance
evaluation criteria facilitating diagnostic evaluation. The results of the analysis show that the semi-
distributed and semi-lumped models outperformed the lumped models in continuous and event-

based simulations. The increment in the performance of the model set up at a finer discretization
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level (level 3 in this study) is not significant as the model set up at discretization level 1. This
analysis suggests that higher model resolution forced with finely resolved input data does not
intrinsically enhance the model performance unless the input information is enhanced through
finer spatial resolution datasets. The better performance of semi-distributed and semi-lumped
models can be attributed to the landscape discretization based on the information about catchment
physical characteristics (topography and CN) might help in the determination of model
parameters. Another plausibility is that the parameters might have compensated the bias in the
input meteorological forcing by calibration procedure, leading to better streamflow simulations
(Brath et al., 2004). However, at model resolutions finer than the spatial resolution of the input
meteorological forcing datasets, the error in representing spatial variability of meteorological data
dominates the bias compensation in the input variables by the calibration procedure (Das et al.,
2008). Moreover, it is also highly challenging to calibrate the model at finer resolutions due to

increased degrees of freedom in the parameter sampling space and their underlying interactions.

Theoretically, SD-3 is expected to outperform the other models, whereas the increase in
the model complexity (170 sub-basins) resulted in increase in the number of parameters to be
calibrated. The optimising algorithm requires a lot of computational effort to reach a global
optimal value when the dimension of parameter search space is high. Hence, it often results in
local optimal values. Moreover, the uncertainty in the model prediction is increased in finer scale
semi-distributed model (SD-3) due to the interaction between the resolution of input data and the
conceptually lumped model structure of GR4J. Furthermore, the discrepancies between the
performance of SD-3 between calibration and validation periods are also plausibly due to
overfitting and uncertainties in the channel characteristics (Khakbaz et al., 2012). Reducing the
parameter sample space by constraining the soil moisture accounting parameters in the semi-

lumped model structure has addressed these issues to some extent (Jehn et al., 2019). Hence, the
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performance drop in the semi-lumped models during the validation period is comparatively

smaller than in the semi-distributed models.

The major advantage of using a coarser resolution model (SD-1 and SL-1) is that the
calibration budget at Wardha, which is a large basin, is approximately 153% low when compared
to models setup for discretization level-2 (SD-2 and SL-2) and 1636% lower than models setup
for discretization level-3 (SD-3 and SL-3). However, a lumped model still gives acceptable results
with a computational effort of approximately 40 % less than the SD-1 and SL-1 models. The
computational advantage of the lumped model should be used efficiently by the seamless
integration of rainfall spatial variability in its model structure (Zhou et al., 2021). Introducing the
rainfall spatial variability as a parameter into the conceptual model to improve the model
simulations should be investigated in future studies. Further, there is a need to test the proposed
discretization scheme using multiple model structures and multiple calibration objective functions

on large and diversified catchment sets to obtain more detailed insights.

4.8 Conclusions

This study explored the trade-offs between a nested discretization scheme and the streamflow
simulated by a conceptual hydrological model. The catchments are discretized iteratively by
assessing the spatial heterogeneity of the NRCS Curve Number using spatial moments computed
from the catchment outlet. Lumped, semi-lumped and semi-distributed GR4J models were used
to simulate the observed streamflow at Jagdalpur and Wardha basins in India. The results of the
study suggest that the performance of semi-distributed and semi-lumped models was improved
compared to lumped models in capturing the low flows, high flows and water balance components.
The ability of models to capture the observed flood events through an event-based model setup is
assessed, and similar results were obtained as the continuous simulation. The performance of semi-

lumped models was found to be increasing with respect to the discretization level attributable to
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its calibration strategy by constraining the soil moisture accounting parameters. This study
concludes that a finer and more complex model leads to enhanced simulations when calibrated
long enough. However, increased model resolution might not get translated as improved
simulations or only provide marginally better performance at the cost of exponentially increased
computational budgets. However, it is the modeller’s responsibility to optimally choose between

the model complexity and model performance at cheaper computational efforts.
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Chapter 5

Accuracy evaluation of IHC estimation
methods

5.1 Introduction

Flood is one of the most destructive natural disasters worldwide that can cause catastrophic
impacts on day-to-day operations (Alfieri et al., 2017; Manohar Reddy and Ray, 2023). Real-time
flood forecasting systems with sufficient lead time are considered as the most efficient and
effective way to mitigate flood risk (Yatheendradas et al., 2008). Flood forecasting based on
integrating meteorological and hydrological models has shown marked better improvement in
recent times due to the advancements in computational power, remote sensing based observations,
and an improved understanding of hydrological processes (Das et al., 2022). In the context of a
flood modelling framework, event-based models are often considered as the sound alternatives to
the continuous models as they are easier to calibrate and requires only data at the event scale
(Tramblay et al., 2012). However, the efficiency of the both continuous and event-based
hydrologic predictions, irrespective of the model structure, is highly influenced by optimal
simulation of model states/initial hydrological conditions (IHC) (often considered as soil moisture)
within the modelled watershed (Crow and Ryu, 2009; Loizu et al., 2018). Consequently,
multitudes of modelling efforts have been reported so far on the accurate estimation of the
magnitude of floods, particularly on minimizing the uncertainties associated with the estimation
of initial hydrologic conditions (Alvarez-Garreton et al., 2014, 2015, Berthet et al., 2009, Brocca
et al., 2008, 2009, 2010, Tramblay et al., 2010).

In general, a separate method is needed to estimate the initial states of the event-based models are
separately calculated by establishing relationships between IHC and external predictors. For
instance, the Antecedent Precipitation Index (API), computed by cumulating rainfall values of
preceding days, is often used as a predictor in models based on the Soil Conservation Service
Curve Number method (SCS—CN). Various predictors have been reported so far in the literature
to accurately estimate the IHC for event-based models, such as Piezometric levels (Coustau et
al., 2012), Baseflow (Franchini et al., 1996; Longobardi and Villani, 2003), Antecedent Discharge
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Index (Tramblay et al., 2012), outputs from continuous models (Hegdahl et al., 2020; Huang et al.,
2016; Yao et al., 2019) and in situ or remote-sensing based observables (Bahramian et al., 2021;
Meng et al., 2017). Real-time measurements or climatology-based values can be used to update if
the simulated model states reliably represent the observable model states (Berthet et al., 2009).
Moreover, it is also worth noting that the relationship between the model states and the external

predictors is determined by the model structure and uncertainty in the input data.

Data Assimilation (DA) techniques are widely employed to reduce the uncertainties associated
with inputs, model states and output variables (McLaughlin, 2002). DA updates the model states
by optimally combining the information from observations and model simulations, leading to
improved estimates of initial states of a hydrological model (Sun et al., 2016). Observed datasets
used to update the states of a hydrological model include streamflow (Seo et al., 2003), soil
moisture (Luca Brocca et al., 2010), snow-covered area and snow water equivalent (Andreadis and
Lettenmaier, 2006; Clark et al., 2006), and satellite observations of soil moisture and discharge
(Andreadis et al., 2007). Discharge data is the most frequently assimilated variable since it contains
the collective information of all other hydrological states (Clark et al., 2008). However, due to the
difficulty in obtaining observations in real-time, many studies have used satellite-based soil
moisture for data assimilation (Abbaszadeh et al., 2020; Alvarez-Garreton et al., 2015; Baguis and
Roulin, 2017). In most DA studies, soil moisture observations are rescaled into the model space
before assimilation, which influences the assimilation efficiency (Crow and Reichle, 2008; Crow
and Van Loon, 2006). For instance, a poor rescaling method coupled with incorrect assumptions
of the observational and model structural errors deteriorates the performance of DA (Tugrul
Yilmaz and Crow, 2013).

A recent study by Nayak et al. (2021) showed that the efficiency of DA in reliable simulation of
streamflow depends on the model structure. VVarious model structures are available based on runoff
generation mechanisms such as physics-based, conceptual and data-driven, and based on the
spatial resolution of models such as lumped, semi-distributed and distributed. However, in real-
time operational applications, a trade-off between input data, model structural complexities and
computation costs is necessary to issue reliable and timely flood warnings (Butts et al., 2004).
Although physics-based fully distributed models account for the spatial heterogeneity of
meteorological forcing and physical features within the basin leading to better simulations, they
are data intensive and demand more computational resources (Young, 2002). On the contrary, the
utilization of conceptual hydrologic models (CHMs) in operational streamflow forecasting has

been amplified over the past few years due to their computational efficiency and simplicity,
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proving their effectiveness in streamflow forecasting (Hapuarachchi et al., 2011). Many of the DA
studies were reported on the lumped versions of conceptual hydrological models, and only a few
were reported on the semi-distributed continuous model (Alvarez-Garreton et al., 2015, 2014;
Berthet et al., 2009; Loizu et al., 2018; Pathiraja et al., 2012). Previous studies reported that
accounting for spatial variability in CHMs enhances the model simulations (Das et al., 2008; De
Lavenne et al., 2016). Hence, it is essential to understand the relevance of DA-estimated initial

states in improving the performance of an event-based conceptual hydrological model.

In the scenarios where the initial states for event-based models are estimated through their
continuous counterparts, the choice of calibration metrics plays a key role. This is due to the fact
that the commonly used calibration objective functions have the tendency to emphasize particular
flow segments of a hydrograph, and this bias will get translated into the model states simulated by
the continuous models (Mizukami et al., 2019). Hence, this study is intended to assess the
performance of a lumped and semi-distributed event-based conceptual model with initial
conditions estimated using DA and their continuous counterparts corresponding continuous

models calibrated using different calibration objective functions.

5.2 Study Area and Hydrometeorological Data

5.2.1 Study Area

The Jagdalpur catchment, a subbasin of the Godavari River Basin in India, is chosen as the study
watershed in this study. The catchment of Jagdalpur was delineated from the flood forecasting
stations at Jagdalpur, resulting in a catchment area of 7382 km?. Figure 5.1 illustrates the location

map of the study watershed, including its elevation and the stream network.
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Figure 5. 1 Location map of Jagdalpur watershed with detailing of stream network and elevation.

5.2.2 Hydrometeorological Data

The daily streamflow data at Jagdalpur is available at the India-WRIS portal from 1965-2018. The
observed flood events are separated from the streamflow data using the warning level obtained
from the Central Water Commission appraisal report on Flood Forecasting and Warning Network
Performance (CWC, 2018b). In this study, the daily gridded meteorological forcing datasets are
obtained from India Meteorological Department (IMD) at a spatial resolution of 0.25°x0.25°
(precipitation) and 1°x1° (minimum and maximum temperature) (Pai et al., 2014; Srivastava et al.,
2009). For assimilation of soil moisture, root zone soil moisture is obtained from the Global Land
Data Assimilation System (GLDAS), Catchment Land Surface Model, V2.0, where the data is
available from 1948 to 2014.

5.3 Methodology

5.3.1 Hydrological model

In this study, two versions (lumped and semi-distributed) of modele du Génie Rural a 4 paramétres
Journalier (GR4J) were used to simulate the flood events at Jagdalpur. GR4J, originally developed

by Perrin et al. (2003), is a soil moisture accounting-based daily lumped conceptual rainfall-runoff

106



model with four parameters to be calibrated. The semi-distributed version of GR4J utilizes the
lumped model to simulate streamflow at each sub-basin, using mean areal precipitation,
evapotranspiration, and temperature. The Muskingum routing method is then used to route the
simulated streamflow from each sub-basin outlet to the catchment outlet. This requires two
parameters, K and x, where K is determined by the reach length (L) and wave celerity (C), and x
is a dimensionless weighting factor. The wave celerity is considered constant across all sub-basins
to reduce parameter dimensionality. The study area is divided into four sub-basins, and a total of
21 parameters (four parameters for each sub-basin and one constant for wave celerity) must be
optimized. The parameters to be optimized were tabulated in Table 5.1. Figure 5.2 provides a

schematic representation of the lumped and semi-distributed versions of the GR4J model.

Schematic Representation of GR4) model Semi-distributed version of GR4J
(7YY
B P
\T/- P)
Es Ps Pn-Ps
: I [ |
i
§aXy
Perc——Fr
90% of Pr 10 % of Pr
UH1 UH2
X 2Xy,
» J 1
E X3I = F(Xg)QI//' F(X;3)
= A Jagdalpur Outlet
Q.'ﬁ—qd Parameters
(Q\I X, j - Capacity of the production soil (SMA) store (mm) of j" catchment
~ X;j - Water exchange coefficient (mm) of jt catchment
States X3 - Capacity of the routing store (mm) of jth catchment
R - Water content in the routing store X,4j - Time parameter (days) for unit hydrographs of jt" catchment
S - Water content in the production store X; - wedge storage of of j* catchment

C - Celerity of water in m/s

Figure 5. 2 Schematic representation of lumped GR4J model structure (left) along with the semi-

distributed version of GR4J (right), the state variables and parameters of the model.
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Table 5.1 Description and ranges of parameters to be calibrated in the lumped and semi-distributed

versions of the GR4J model.

Parameter | Description Range
production reservoir capacity
X1 1to0 1500
[mm]
Inter-catchment exchange
X2 o -10to 5
GR4J coefficient [mm/day]
Semi- . .
X3 routing store capacity [mm] 1to 500
distributed : .
unit hydrograph time constant
GR4J X4 0.5t04
[days]
_ Average wave celerity in the
Muskingum C 0to5

) stream network in m/s
routing

X Dimensionless weighting factor | 0to 0.5

5.3.2 Implementation of Data Assimilation
5.3.2.1 Ensemble Kalman Filter (EnKF)

A background matrix (X?) of dimensions nstate X nens is defined in Eq. (5.1), in which nstate
represents the number of state variables of the hydrological model and nens denotes the number

of ensemble members.
Xb = (xb, ..., xL, (5.1)

where, x?, ... ,xL . represents the model state vectors for each ensemble member in nens before

updating the states. The ensemble mean is the given by Eqg. (5.2)

=p _ _1 b
X7 = —— N X (5.2)

The anomaly for the i ensemble member is computed as x'? = x? — x?, and the ensemble of

anomalies (X'?) is computed as given in Eq. (5.3)

X = (xP, ..., xk (5.3)
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The ensemble anomalies are used to estimate the model error covariance using Eq. (5.4)

pb = ——x'bxb" (5.4)

nens—1

The equation to update the model states using the model error covariance is given in Eq. (5.5)
x* = x? + K(y; — Hx?) (5.5)
where, K = PPHT (HPPHT + R)™!

In Eqg. (5.5), x{* represents the analysis of model states posterior to the update, H is an operator to
covert model states to the observational space with dimensions nobs X nstate, y; represents the
vector of observations with dimensions nobs X 1 (nobs denotes the number of observations), K
represents the Kalman gain, and R is the observation error covariance matrix with dimensions
nobs X nobs. It should be noted that each ensemble member is updated individually using Eqg.
(5.5). In general, in the implementation of EnKF, each of the nens ensemble members is updated
using nens vectors of observations. The nobs values of y; for each ensemble member are used to
generate nens vectors of observations by sampling from a distribution with observations as mean

and R as a variance.

5.3.2.2 Bias correction of the GLDAS root zone soil moisture data

The model simulated soil moisture is commonly utilized to correct the bias in GLDAS root zone
soil moisture before assimilation, given that both datasets do not accurately represent the true
conditions. To address this, a straightforward mean-variance approach is employed, which
demonstrates comparable performance to more intricate techniques. The simulated soil moisture

is used to correct the raw values of GLDAS root zone soil moisture using Eq. (5.6).
SM, = SM, + (SM, — SM, Z— (5.6)

where SM,. denotes bias-corrected root zone soil moisture, SM; and SM,, represents the average
value of simulated soil moisture and GLDAS root zone soil moisture, respectively, and o, and g,

are their respective standard deviations.

5.3.2.3. Forecast error

To address input uncertainty, meteorological datasets such as precipitation and

evapotranspiration are stochastically perturbed. To achieve this, Clark et al. (2008) recommends
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perturbing daily meteorological observations using multiplicative stochastic noise at each time
step. A first-order autoregressive model is employed to ensure temporal correlation of time-variant
forcings and physical consistency. To generate 100 ensemble meteorological forcing datasets, a
temporal decorrelation length of one day and two days were used for rainfall and
evapotranspiration, respectively, with a fractional error parameter set to 0.65. For a more detailed

explanation of the perturbation method, please refer to Clark et al. (2008).

5.3.2.4. Observation error

In addition to ensuring an optimal ensemble spread to represent the model uncertainties, it also
important to estimate the observation error for enhanced assimilation. In this study, a normally
distributed random noise with zero mean and variance of o,,¢2. The random noise is formulated

as a function of observations, as given in Eq 5.7.
Uobsz = (€obs Obs)z (5.7)

Following the study by Piazzi et al. (2021), the error parameter ¢,,, was set to 0.1. To prevent
underestimation of error variances at lower values of observations, the minimum threshold for
defining the error variance was assumed to be the 10" percentile value of observations (0Obs;,).
Following Thirel et al. (2010), the variance is evaluated proportionally to Obs,,> for observed

values below Obs,,.

5.3.3 Model Calibration and Validation

In this study, the lumped and semi-distributed GR4J model is calibrated from 1970-1980 and
validated from 1981-1993, with a warmup period from 1967-1969. The IHC/initial model states
to initiate the event-based GR4J models are obtained from their corresponding calibrated
continuous models. To calibrate the continuous models, four calibration objective functions were
used, namely, Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970), NSE of logarithmic
transformed flows (logNSE) (Oudin et al., 2006), Kling-Gupta Efficiency (KGE) (Gupta et al.,
2009), and Fourth root Mean Quadruple Error (RAMSAE) (Baratti et al., 2003). The equations for

the chosen calibration objective functions are given in Eq. (5.8) to Eqg. (5.11)

Yo (Qs,t= Qo t)z
NSE = 1= 0 o7 5.8
Y11 (Qot=Tor)” (5.8)
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ST 1 (In(Qs ) -In(Qo,1)))”
logNSE =1 — . . 5.9
g 2?:1(1n(Qo,t)_ln(Qo,t))2 ( )

KGE=1—\[(1—1‘)2+( —5—2)2+(1—&)2 (5.10)

Ho

4|1 _ 4
RaMSaE = | Zea(@r®d) (5.11)

where, Qs ., Q,, denotes simulated and observed discharge values at time t, respectively, and T
denotes to total number of values, o, and o, o, and g, represents the standard deviations of
simulated and observed values, respectively, and u, and u, represents the mean value of simulated

and observed streamflow.

A total of 20 flood events were identified using the flood warning level, with 10 events used for
calibration and the other 10 for validation. The parameters of the event-based models are
automatically calibrated using Genetic Algorithm with NSE as an objective function. For both
continuous and event-based models, the population size is set as 100 for a maximum of 2000
generations, i.e., 2 lakh simulations were performed in the calibration of models. A detailed flow

chart demonstrating the methodology adopted in this study is given in Figure 5.3.
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Figure 5.3 Flow chart demonstrating the detailed methodology adopted to evaluate the performance of event-based models under different schemes

of estimating Initial Hydrologic Condition.
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5.3.4 Performance Evaluation

A set of hydrologically relevant performance evaluation metrics are employed in lieu of a single
traditional lumped measures to assess the accuracy of simulated hydrographs at all flow segments
of the observed hydrograph (Manikanta and Vema, 2022; Yilmaz et al., 2008). Four evaluation
metrics, namely Fourth root Mean Quadruple Error (R4AMS4E), NSE of logarithmically
transformed flows (logNSE), Percentage Bias (PBIAS), and Skill Score (SS), were employed to
assess the agreement between observed and simulated hydrographs in terms of peak flow, low
flow, water balance, and flow frequencies, respectively. The equations to compute the values of
PBIAS and SS are given in Eqg. (5.12) to Eq. (5.13).

T _
PBIAS = % x 100 (5.12)

t=1 Qo,t

_ IR min(fo . f, )
T

SS

(5.13)

where, fo_., fo,, are the frequency values of simulated and observed discharge values at the i bin,

respectively, and nb represents the total number of bins. In this study, a bin size of 5 m*/sec was

used to compare the frequency distributions of observed and simulated streamflow.

The performance of the event-based models in simulating the observed flood hydrographs is
evaluated using four metrics, namely, Percentage Error in Peak Flow (PEPF), Percentage Error in
Timing to Peak (PETP), PBIAS and Nash Sutcliffe Efficiency (NSE) given from Eq. 5.14 to Eq.
5.15. In addition, the indicative performance ratings of the chosen metrics are shown in Table 5.2
(Katwal et al., 2021).

PEPF = Zsim=Pobs 5 10 (5.14)

obs

PETP = Lsim=Tobs y 100 (5.15)

obs

where, P, P,ps denotes simulated and observed flood peaks and Tg;,,, T,ps denotes the time

taken to simulated and observed flood peaks.
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Table 5.2 Indicative performance ratings of the statistics employed for evaluation of the event-

based model

Performance evaluation

Range Performance Rating
measure

0.75-1.00 Very good
NSE 0.65-0.75 good

0.50-0.65 satisfactory

<+10 % Very good
PBIAS +10 % to £15 % good

+15 % to 25 % satisfactory

<+15 % Very good
PEPF +15 % to £30 % good

+30 % to +40 % satisfactory

<+10% Very good
PETP +10 % to £15 % good

+15 % to £30 % satisfactory

5.4 Results

5.4.1 Performance evaluation of continuous streamflow simulation

The accuracy of the streamflow simulated by the continuous lumped and semi-distributed GR4J

models is evaluated using a set of metrics as described in Section 3.4. The performance evaluation

metrics for the calibration and validation periods are tabulated in Table 5.3 and Table 5.4,

respectively. Table 5.3 shows that the performance of the R4AMSAE calibrated lumped GR4J model

is good at simulating the peak flow values. Higher values of logNSE and Skill Score of the lumped
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GR4J model with streamflow assimilation indicate its better performance in terms of matching the
observed flow frequencies and also in terms of simulating the low flows. The PBIAS of KGE

calibrated lumped model is found to be low attributable to the bias factor (Z—S) in the formulation
o

of KGE. Further the PBIAS values of R4AMSA4E calibrated model shows its overestimation bias
whereas other models are slightly underestimating the flows (< -10%). In the case of semi-
distributed GR4J, a significant improvement is observed in both open-loop (without assimilation)
and assimilated models in terms of the all the chosen evaluation criteria. The RAMSAE values in
semi-distributed GR4J model were reduced on an average of 18.9% in all models when compared
to their lumper counterparts. The PBIAS values of streamflow and soil moisture assimilated
models along with NSE and KGE calibrated open-loop models were found to be less than 5%,
whereas IogNSE an R4MSA4E calibrated models were found to be underestimating and
overestimating the flows, respectively. It can also be noticed the performance of KGE calibrated
models in terms of logNSE and Skill Score is low (-0.07 and 0.45), showing its inability to capture

the low flows.

In summary, the performance of the semi-distributed GR4J model with soil moisture assimilation
is poor in the continuous streamflow simulation. The semi-distributed GR4J model with
streamflow assimilation and model calibrated with NSE, logNSE and KGE performs well
regarding chosen evaluation criteria in the calibration period. Similar performance can be
observed in the validation period for both lumped and semi-distributed GR4J models (Table 5.4).
This indicates better transferability of the calibrated parameters and better assimilation efficiency

in the validation period.
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Table 5.3 Performance Evaluation metrics computed for observed streamflow and ensemble mean

of streamflow simulated using lumped and semi-distributed GR4J model setups with and without

data assimilation during the calibration period.

R4MS4E logNSE Skill Score PBIAS
Lumped GR4J
Soil Moisture
o 543.47 -0.75 0.65 -12.12
Assimilation
Streamflow
o 407.5 0.9 0.89 -10.61
Assimilation
NSE calibrated 345.23 0.74 0.67 -3.08
KGE calibrated 360.22 0.66 0.63 -0.7
logNSE calibrated 402.33 0.87 0.79 -11.79
RAMSA4E calibrated 312.36 0.7 0.78 40.22
Semi-Distributed GR4J
Soil Moisture
o 426.07 0.06 0.64 5.15
Assimilation
Streamflow
o 340.38 0.92 0.85 4.55
Assimilation
NSE calibrated 238.59 0.87 0.66 -1.41
KGE calibrated 291.23 -0.07 0.45 -0.73
logNSE calibrated 380.12 0.91 0.86 -22.58
R4AMSA4E calibrated 251.94 0.73 0.66 29.05
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Table 5.4 Performance Evaluation metrics computed for observed streamflow and ensemble mean

of streamflow simulated using lumped and semi-distributed GR4J model setups with and without

data assimilation during the validation period.

R4MS4E logNSE Skill Score PBIAS
Lumped GR4J
Soil Moisture
Assimilation 438.33 -0.86 0.69 -14.73
Streamflow
Assimilation 337.84 0.9 0.91 -10.7
NSE calibrated 280 0.83 0.77 -3.34
KGE calibrated 325.5 0.78 0.73 -0.94
logNSE calibrated 363,18 0.85 0.86 -10.24
R4AMSAE calibrated 956 75 0.6 0.66 45.7
Semi-Distributed GR4J
Soil Moisture
Assimilation 341.77 0.36 0.69 17.03
Streamflow
Assimilation 286.17 0.92 0.87 4,75
NSE calibrated 224.92 0.89 0.84 4.44
KGE calibrated 316.53 0.36 0.53 2.67
logNSE calibrated 368,96 0.89 0.75 -22.05
RAMSAE calibrated 253 09 0.59 0.53 35.62

5.4.2 Performance Evaluation of event-based models
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In this study, the performance of the lumped and semi-distributed GR4J models in simulating the
historical flood events using the IHC estimated from different methods (through data assimilation
and continuous models) has been tested. Berthet et al. (2009) suggested that, for evaluating the
predictive performance of event-based models, careful selection of evaluation criteria is essential
which emphasize on match between the magnitude, volume and timing observed and simulated
flood hydrographs. In addition to quantitative measures, a visual inspection on the match between
observed and simulated flood hydrographs is necessary. Accordingly, four quantitative
performance assessment metrics were selected namely, NSE (objective function), Percentage Error
in Peak Flow (PEPF), PBIAS and Percentage Error in Timing to Peak (PETP) to evaluate the

simulated flood response.

5.4.2.1 Performance of event-based models using IHC obtained through DA

The above statistics are computed for both lumped and semi-distributed event-based models, with
IHC estimated by assimilating soil moisture and streamflow (Table 5.5). Table 5.5 calculates the
statistics for each flood event using the observed flow and ensemble mean of simulations. The
median value of the statistics computed for the events used for calibration and validation periods
separately are given in Table 5.5. The median NSE value of the event-based lumped model based
on soil moisture-based data assimilation (SM-DA) and streamflow-based data assimilation (Q-
DA) is higher than 0.5 in the calibration period, indicating satisfactory performance. However, the
performance of continuous simulations from the lumped model based on SM-DA and Q-DA in
simulating the flood hydrographs during the calibration period is found to be low (median NSE <
0.4). In the validation period, the performance of all the lumped models based on DA is not
satisfactory in terms of median NSE value (< 0.5). Additionally, the median NSE values in the
validation period suggest that the temporal transferability of the calibrated parameters is poor,

leading to poor simulations.

In summary, the performance of both continuous and event-based lumped models based on Q-DA
is found to be satisfactory, with lower PEPF, PBIAS, and PETP indicating satisfactory
performance compared to other models. The simulated flood hydrographs obtained from the event-
based and continuous lumped models with SM-DA and Q-DA during the calibration period are
plotted for calibration and validation periods in Figure 5.4 and Figure 5.5, respectively, along with
the observed values. The figure shows that the ensemble spread of the simulations from the
continuous models is higher than that of their event-based counterparts. This indicates that

updating the model states continuously by assimilation preserves the spread induced through
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perturbation. In contrast, despite the ensemble of IHCs used in event-based models, the spread in
the event-based simulations is lower than that of their continuous counterparts. Furthermore, the

ensemble spread of SM-DA-based simulations is higher than that of Q-DA-based simulations.

Table 5.5 Median values of performance evaluation metrics computed for the flood events
simulated using lumped and semi-distributed event-based GR4J model setups with data

assimilation at Jagdalpur during calibration and validation periods.

Assimilation NSE PEPF PBIAS PETP | NSE PEPF PBIAS PETP
Variable
Lumped

Calibration Validation
SM-EVT 0.56 -29.37 -125 -19.46 {0.28 -4858 O -34.94
Q-EVT 0.6 -22.64 -6.25 -16 039 -3791 O -29.96
SM-CONT -

-0.04 -59.45 -16.67 -46.8 095 -77.94 -1548 -67.82
Q-CONT 0.39 4716 0 -18.13 {0.46 -4463 O -14.93
Discretized

Calibration Validation
SM-EVT 0.82 -4.45 0 -6.25 044 -3993 0 -23.54
Q-EVT 0.64 -14.7 0 -14.13 {057 -2633 0 -27.16
SM-CONT 0.41 -4692 0 -1954 {03 -5083 O -25.56
Q-CONT 0.42 -14.3 1429 12.04 0.38 -16.66 15.48 9.47
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Figure 5. 4 Simulated flood hydrographs by the continuous and event-based lumped model based
on Soil Moisture (SM) and streamflow data assimilation. Observed flood hydrographs were also

plotted for the selected flood events at Jagdalpur during calibration period.
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Figure 5. 5 Simulated flood hydrographs by the continuous and event-based lumped model based
on Soil Moisture (SM) and streamflow data assimilation. Observed flood hydrographs were also

plotted for the selected flood events at Jagdalpur during validation period.

A significant improvement has been observed in the predictive ability of both continuous and
event-based semi-distributed based GR4J based on SM-DA and Q-DA than their lumped
counterparts in terms of NSE, PEPF, PETP and PBIAS. During the calibration period, the event-
based semi-distributed model with SM-DA showed the highest performance, with a median NSE
value of 0.82. This highlights the advantage of incorporating spatial variability in the model.
However, similar to lumped models, the temporal transferability of the semi-distributed models in
the validation period was poor. Nevertheless, the event-based semi-distributed model with Q-DA
demonstrated satisfactory performance with median NSE values of 0.64 and 0.57 in calibration
and validation periods, respectively. Compared to lumped models, the semi-distributed models

exhibited better PETP values, indicating a more accurate capture of the timing to peak.
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Additionally, the PEPF and PBIAS values of the semi-distributed models were relatively lower
than those of the lumped models. The flood hydrographs generated from the semi-distributed
models during the calibration period and validation period were presented in Figure 5.6 and Figure
5.7, respectively. The ensemble spread of the semi-distributed model simulations was lower than
that of the lumped models, plausibly due to accounting for spatial heterogeneity. The calibration
process may have also compensated for biases in the soil moisture, leading to improved

performance of SM-DA in the semi-distributed models.

Discharge in cumecs

Figure 5.6 Simulated flood hydrographs by the continuous and event-based semi-distributed

model based on Soil Moisture (SM) and streamflow data assimilation. Observed flood
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Figure 5.7 Simulated flood hydrographs by the continuous and event-based semi-distributed
model based on Soil Moisture (SM) and streamflow data assimilation. Observed flood

hydrographs were also plotted for the selected flood events at Jagdalpur during validation.
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5.4.3 Performance of event-based models using IHC obtained through
continuous models calibrated with different objective functions

The continuous lumped and semi-distributed models were calibrated using NSE, logNSE, KGE,
and RAMS4E. The resulting model states were utilized as initial hydrological conditions (IHCs)
for their respective event-based models. The performance assessment statistics of these event-
based models are provided in Table 5.6. The median NSE values of the event-based lumped models
calibrated using NSE, KGE, and R4MSA4E in the calibration period were good (> 0.65), except for
the logNSE calibrated model. The PEPF (< 30%) and PETP values indicate that the performance
of all the lumped models in capturing the magnitude and timing of flood peaks was satisfactory
during the calibration period. The KGE-calibrated lumped event-based model performed best in
capturing the flood peak in both calibration and validation periods. However, a decline in the
performance of all the models in terms of the chosen evaluation statistics was observed during the
validation period. Nevertheless, the performance of all the models during the validation period
regarding NSE values was satisfactory (>0.5). The flood hydrographs observed and simulated
during the calibration period and validation period are presented in Figure 5.8 and Figure 5.9,
respectively. The figure shows that all the simulated flood hydrographs are approximately parallel,
and their disposition highly depends on the IHC. This similarity in performance of all the event-
based lumped models coupled with continuous models calibrated using different metrics is due to

their reliance on the same IHC.
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Table 5.6 Median values of performance evaluation metrics computed for the flood events

simulated using lumped and semi-distributed event-based GR4J model setups calibrated using

multiple objective functions at Jagdalpur during calibration and validation periods.

Calibration NSE PEPF PBIAS PETP NSE PEPF PBIAS PETP
Objective
Function
Lumped

Calibration Validation
KGE

0.69 -25.65 0 9.34 055 -24.72 5.33
R4AMS4E

0.67 -25.96 0 -2.61 0.55 -25.58 -0.35
LogNSE

0.49 -30.63 0 -12.57 0.51 -30.1 -14.15
NSE

0.7 -26.57 0 5.58 057 -26.43 -2.86
Discretized

Calibration Validation
KGE

0.85 2.99 0 4.23 0.65 -12.88 -2.27
R4AMS4E

0.79 -13.67 0 3.86 0.68 -23.32 -10.03
LogNSE

0.77 -11.36 0 2.57 0.56 -24.83 -8.42
NSE

0.91 -3.25 0 0.44 0.77 -13.21 -8.73
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Figure 5.8 Observed and simulated flood hydrographs from the event-based lumped model at

Jagdalpur for selected flood events during the calibration period.
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Figure 5.9 Observed and simulated flood hydrographs from the event-based lumped model at

Jagdalpur for selected flood events during the validation period.
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In the case of semi-distributed models, the simulated flood hydrographs accurately represent the
observed flood hydrographs. During the calibration period, the median NSE value of all semi-
distributed models exceeds 0.77, indicating good performance. Moreover, the semi-distributed
model based on KGE, R4MS4E, and NSE-calibrated continuous models demonstrated good
performance in the validation period (NSE > 0.65). The PEPF values are below 30% in both
calibration and validation periods, indicating that the models can capture the observed flood
magnitudes effectively. The observed and simulated hydrographs for the semi-distributed event-
based model coupled with multiple calibrated continuous models are shown for both calibration
and validation periods in Figure 5.10 and Figure 5.11, respectively. Unlike the lumped models, the
simulated hydrographs for the semi-distributed models are not parallel because of the unique
parametrization of each sub-basin and channel routing. Moreover, the simulated hydrographs are
capable of capturing the observed peaks during most of the events in the calibration period.

However, in the validation period, a slight underestimation bias is present in all semi-distributed
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Figure 5.10 Observed and simulated flood hydrographs from the event-based semi-distributed

model at Jagdalpur for selected flood events during the calibration period.
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Figure 5.11 Observed and simulated flood hydrographs from the event-based semi-distributed

model at Jagdalpur for selected flood events during the validation period.
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5.5 Summary and Conclusions

This study evaluates the performance of event-based models based on the Initial Hydrologic
Conditions (IHC)/model states using different methods. The current study on event-based models

led to the following insights:

Streamflow Assimilation (Q-DA) in both lumped and semi-distributed models led to
improved simulations at the catchment outlet during both calibration and validation periods.
In contrast, assimilating soil moisture (SM-DA) did not enhance continuous streamflow
simulations in the lumped model, but showed a slight improvement in the semi-distributed
model.

Semi-distributed model resulted in enhanced streamflow simulation in both SM-DA and Q-
DA when compared to their lumped counterparts. This result is in line with the findings of
Alvarez-Garetton et al. (2015).

Compared to simulations produced by continuous models with DA, the ensemble spread of
simulations generated from the event-based model using IHCs obtained through DA is lower.
However, simulations based on SM-DA have a higher ensemble spread than those based on
Q-DA.

iv.  Inevent-based models with initial conditions generated through assimilation, SM-DA based

semi-distributed model performed exceptionally well in the calibration period exploiting the

advantage of the model spatial resolution.

v. The event-based semi-distributed GR4J initialised by the IHCs extracted from the

Vi.

corresponding NSE calibrated continuous model is found to be outperforming other models
in terms of capturing the magnitude, timing and volume of observed flood events.

In conclusion, the findings suggest the potential benefits of assimilating streamflow and
employing a semi-distributed model structure. However, limitations such as overfitting of
parameters and uncertainties in channel characteristics may affect model performance (Jehn
et al., 2019; Khakbaz et al., 2012). Future research can explore the integration of the rainfall
spatial variability in a lumped model to exploit its computational advantage (Zhou et al.,
2021). Additionally, further investigation is needed to evaluate the efficiency of combined
assimilation of soil moisture in IHC estimation and to assess the suitability of EnKF for

assimilation in various hydrological models. Overall, this study provides valuable insights for
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practical applications and calls for large sample investigations using multiple model structures
(Guptaet al., 2014).
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Chapter6

Generation of Ensemble Flood
Forecasts

6.1 Introduction

Over the past few decades, numerous unexpected natural disasters have occurred, and floods, in
particular, have been recognized as highly unpredictable events that can cause devastation to both
human and animal lives and properties (Alfieri et al., 2017). Predicting the timing and frequency
of severe hydrometeorological events that lead to flooding is challenging. To minimize human
casualties and property damage, early warning systems and flood mitigation measures rely on
accurate estimations of runoff volume and flood peaks. To effectively plan and manage water
resources sustainably, a comprehensive understanding of the factors influencing surface runoff in

catchment areas is essential.

Simulating rainfall and runoff to comprehend the hydrologic response of a region has long been
established as a reliable method. Rainfall-runoff models are commonly used to predict floods,
measure water levels under different conditions, and provide flood forecasts. Various factors, such
as land use, slope, vegetation, and storm attributes, including rainfall duration, volume, and
intensity, play significant roles in determining the amount of surface runoff. During emergencies
caused by heavy rainfall, decision-makers heavily rely on accurate predictions. Precipitation data
is crucial for flood forecasting, with two key factors influencing its effectiveness: accuracy and
lead time. The lead time of flood forecasts can be enhanced by using precipitation forecasts
obtained from numerical weather prediction (NWP) models. NWPs facilitate the collection of
valuable flood-related information and enable the dissemination of early flood warnings.
Forecasters are transitioning from deterministic to ensemble forecasts to address the uncertainties
in meteorological and hydrological systems. A deterministic forecast can be transformed into a
fully probabilistic ensemble by considering uncertain boundary conditions and incorporating data
assimilation techniques. This shift in approach is particularly relevant for precipitation and runoff

forecasting, introducing a novel way of conducting these predictions.
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An interactive grand global ensemble system has been developed to account for the uncertainties
in projections from multiple global models. The International Grand Global Ensemble (TIGGE)
initiative collects and analyzes prediction data from major forecasting centres worldwide. By
combining various sources of uncertainty, the TIGGE ensemble prediction generates a probability
distribution that provides valuable insights for decision-making. When the ECMWF (European
Centre for Medium-Range Weather Forecasts) and the NCEP (National Centers for Environmental
Prediction) initially developed ensemble predictions in 1992, they were extensively used in inflow
forecasts due to their reliance on a wide range of models. The application of meteorological
predictions, particularly in flood forecasting, has proven beneficial. Ensemble predictions, which
involve generating multiple forecasts using different physical parameterizations and initial
conditions, have significantly improved meteorological forecasts. The TIGGE (The International
Grand Global Ensemble) project serves another purpose: establishing an early warning system
based on operational medium-range ensemble predictions from various numerical weather centres
such as the ECMWF, UKMO, and NCEP.

NWP models' Quantitative Precipitation Forecasts (QPF) are crucial inputs for hydrological
models when estimating streamflow. Uncertainty in QPF arises from inaccuracies in initial
conditions, approximations of atmospheric processes, and the NWP model's overall predictive
ability. Given that streamflow estimates heavily influence decision support for water infrastructure
management, flood and drought warnings, and reservoir operations, there is a growing interest in
probabilistic forecasts that can estimate the likelihood of future weather events. Post-processing
techniques based on statistical models have been developed to improve the validity of QPFs,
whether deterministic or ensemble, for estimating streamflow. These techniques leverage the
relationship between observations and NWP forecasts, estimate model parameters using historical

data, and generate post-processed ensemble forecasts for the future.

With over 5,500 major dams, India requires accurate inflow projections for effective flood damage
reduction. The Central Water Commission (CWC) currently provides inflow projections for over
150 locations in India, but expanding this coverage to include all major and minor dams and key
cities is necessary. Improving the flood forecasting system in India is essential to provide accurate
predictions at critical locations and sites. Specifically, it is also important to generate and verify
ensemble flood forecasts over the Godavari River basin as it is often prone to floods that can cause
devastating damages (Garg and Mishra, 2019; Rakhecha and Singh, 2017). The increasing

frequency and severity of extreme precipitation events, including cloud bursts, emphasize the need
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for ensemble predictions in flood forecasting. This study aims to develop an atmospheric-
hydrologic flood forecasting model over the Wardha basin (a sub-basin of Godavari River Basin)
by forcing quantitative precipitation forecasts obtained from ECMWEF into calibrated hydrological

models for short and medium range lead times.

6.2 Results

The raw and post-processed (using Quantile Regression Forests (QRF)) ensemble precipitation
forecasts were forced into the calibrated lumped and semi-distributed GR4J model to generate
ensemble streamflow forecasts. Short and medium-range ensemble flood forecasts were developed
for seven historical flood events at Bamni (Wardha), where the first four events fall under the
calibration period of the post-processor, and the following three events fall under the validation
period of the post-processor. The IHC of the event-based models are initialized using the outputs
from their respective continuous models.

The generated ensemble flood forecasts were plotted against the observed discharge values for the
events during calibration and validation periods of the post-processor in Figures 6.1 and 6.2,
respectively. The figures show a discrepancy between the observed and simulated flood peaks
obtained from the raw forecasts in both the calibration and validation periods. Additionally, the
ensemble spread appears to be smaller. The flood forecasts generated by the QRF in the post-
processor exhibit good performance during the calibration period, accurately capturing the
magnitude and timing of the observed flood peaks. However, this improved performance does not
extend to the validation period, as the QRF-based flood forecasts underestimate the observed flood
peaks. During the validation period, there is still a mismatch between the peaks of the raw flood
forecasts and the observed flood peaks. However, regarding the magnitude of the flood peak, the
raw flood forecasts perform reasonably well compared to the post-processed forecasts. Regarding
the hydrological model, semi-distributed models outperform lumped models in both the calibration

and validation periods.
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Figure 6.1 Ensemble flood forecasts generated by forcing raw and post-processed ensemble
precipitation forecasts into the lumped and semi-distributed GR4J model along observed discharge
(black).
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Figure 6.2 Ensemble flood forecasts generated by forcing raw and post-processed ensemble
precipitation forecasts into the lumped and semi-distributed GR4J model along observed discharge
(black).
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Moreover, the performance of the EFF is evaluated using the Nash Sutcliffe Efficiency (NSE) and
mean Continuous Ranked Probability Score (CRPS) as performance evaluation measures. Figures
6.3 and 6.4 illustrate the mean CRPS and maximum NSE of the ensemble members plotted against
lead times during the calibration and validation periods of the post-processor, respectively. Based
on Figure 6.3, it is evident that the EFF performs satisfactorily in terms of both NSE and mean
CRPS during the calibration period. The EFF, based on the QRF+semi-distributed model, exhibits
good performance with an NSE>0.5 and mean CRPS<1700 m®/s at all lead times. However, the
performance during the validation period is unsatisfactory, with an NSE<0.5. Additionally, the
performance of the generated EFF is found to be satisfactory at shorter lead times, specifically 1
to 3 days, with Percentage Error in Peak Flow (PEPF), Percentage Error in Volume (PEV), and
Percentage Error in Timing to Peak (PETP) < 30% in most cases during the calibration period of
the post-processor. However, the performance of the post-processed forecasts is poor during the
validation period, and as the lead time increases, there is a discrepancy in predicting the timing of
flood peaks. This result is in line with the results of Patel and Yadav (2022) for the Sabarmati
River basin. The results suggest that the performance of semi-distributed model-based EFF is

found to be better in comparison to its lumped counterparts.
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Figure 6.3 NSE and mean CRPS values of ensemble flood forecasts with varying lead times during

the calibration period of the post-processor.
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Figure 6.4 NSE and mean CRPS values of ensemble flood forecasts with varying lead times during

the validation period of the post-processor.

6.3 Conclusions

The present study utilized raw and post-processed ensemble precipitation forecasts, incorporating
Quantile Regression Forests (QRF), to generate ensemble streamflow forecasts using the lumped

and semi-distributed GR4J models. The following conclusions were drawn from the study:

e The ensemble spread of raw forecasts was smaller, but post-processing techniques
successfully addressed this issue by increasing the spread of the Ensemble Flood Forecasts
(EFF).

e During the calibration period, the post-processed flood forecasts, utilizing QRF, exhibited
improved performance by accurately capturing both the magnitude and timing of observed
flood peaks. However, this improved performance did not carry over to the validation
period, as the QRF-based forecasts underestimated the observed flood peaks.

e Despite a mismatch between the peaks of the raw flood forecasts and the observed flood
peaks during the validation period, the raw forecasts performed reasonably well in terms

of the magnitude of the flood peak when compared to the post-processed forecasts.
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The semi-distributed models outperformed the lumped models in both the calibration and
validation periods of the hydrological model, demonstrating the superiority of the semi-
distributed approach.

The EFF based on the QRF+semi-distributed model exhibited satisfactory performance
during the calibration period, with NSE>0.5 and mean CRPS<1700 m3/s at all lead times.
However, the performance during the validation period was unsatisfactory, with NSE<O0.5,
indicating the need for further improvements.

The generated EFF showed satisfactory performance at shorter lead times (1 to 3 days)
during the calibration period, as indicated by Percentage Error in Peak Flow (PEPF),
Percentage Error in Volume (PEV), and Percentage Error in Timing to Peak (PETP) < 30%
in most cases.

However, the post-processed forecasts performed poorly during the validation period, and
as the lead time increased, there was a discrepancy in predicting the timing of flood peaks,

suggesting a limitation in long-term forecast accuracy.
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Chapter 7
Summary

7.1 Summary

This thesis aims to address key research gaps in ensemble flood forecasting for the Godavari River
Basin (GRB) in India. The study focuses on developing an ensemble flood forecasting framework
for the GRB by identifying the best ensemble weather forecast products and post-processing
methods, analyzing the impact of model resolution on flood peak simulation using event-based
semi-distributed models, and evaluating the accuracy of assimilating observed initial hydrologic
states/conditions and soil moisture data into event-based rainfall-runoff models. The research aims
to improve flood predictions and enhance flood risk management strategies by incorporating
hydrologic uncertainties, determining optimal model resolution, and integrating real-time
observational data. The following paragraphs give a summary and conclusions of the study

presented in the thesis.

e The findings of this study reveal that both NCEP and ECMWF raw forecasts exhibit poor
skill in capturing observed extreme precipitation events across all lead times, and statistical
post-processing methods are unable to alleviate this issue. This highlights the need for
further development of the underlying physics of Numerical Weather Prediction (NWP)
models to improve the accuracy of forecasting extreme precipitation events. The
correlation between ensemble mean and observed precipitation decreases with increasing
lead time, while the Root Mean Squared Error (RME) does not depend on lead time. The
ensemble mean of post-processed NCEP and MME forecasts using Quantile Regression
Forest (QRF) outperform other forecasts in terms of correlation coefficient and RME in all
subbasins and at all lead times. The post-processed forecasts also exhibit an improved
ensemble spread-error relationship compared to the raw forecasts. QRF outperforms
Quantile Mapping (QM) in preserving the ensemble spread-error relation. Rank histograms
indicate that both NCEP and ECMWF raw forecasts are under-dispersive and biased in all
subbasins, but post-processing mitigates the bias issue. Reliability diagrams show that raw
NCEP and ECMWF forecasts tend to be overconfident, while post-processed forecasts

perform well at a 1-day lead time but exhibit declining reliability with increasing lead
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times. The Area Under the Curve (AUC) values, indicating forecast usefulness, are found
to be greater than 0.75 at all lead times and subbasins. However, the discrimination ability
of the forecasts, as measured by AUC, decreases with lead time, indicating a higher false
alarm rate. Comparatively, the performance of raw MME forecasts is better than raw NCEP
and ECMWEF forecasts, but the QRF post-processed NCEP and MME forecasts perform
equally well. Considering computational costs, a 20-member QRF post-processed NCEP
forecast ensemble is recommended for hydrologic forecasting applications in the study
area. Overall, the performance of NCEP and MME forecasts surpasses that of ECMWF
forecasts, and QRF post-processed forecasts outperform both QM post-processed and raw
forecasts. The satisfactory performance of QRF post-processed NCEP and MME forecasts
is observed in Lower Godavari, Middle Godavari, Indravati, Manjira, and Weinganga
subbasins for both deterministic and probabilistic measures.

This thesis investigated the trade-offs associated with a nested discretization scheme and
the simulated streamflow by a conceptual hydrological model. Comparative analysis with
continuous lumped models revealed that both semi-distributed and semi-lumped
approaches exhibited substantial improvements in terms of Nash-Sutcliffe Efficiency
(NSE), with values surpassing 0.85 at Jagdalpur and exceeding 0.84 at Wardha, while the
lumped models achieved NSE values of 0.779 at Jagdalpur and 0.763 at Wardha. However,
it was observed that semi-distributed models at finer discretization levels could encounter
challenges during optimization, as they may become trapped in local optima due to a higher
number of parameters requiring optimization. Consequently, the calibrated SD-3
parameters demonstrated slightly inferior performance during the validation period, with
NSE values of 0.78 and 0.71 for SD1 and SD3, respectively, at Wardha. The semi-
distributed and semi-lumped models showcased enhanced capabilities in capturing low
flows, high flows, and water balance components compared to lumped models. In the case
of semi-lumped models, performance increased with higher levels of discretization, as
evidenced by NSE values of 0.72 and 0.82 for SL1 and SL3, respectively, during the
validation period at Wardha. However, the performance gains associated with finer
discretization levels (specifically level 3 in this study) were not significantly superior to
those achieved by models at discretization level 1. These findings indicate that elevating
model resolution with finely resolved input data does not inherently enhance model
performance unless the input information is improved through the utilization of finer

spatial resolution datasets.
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The accuracy of different methods to estimate the Initial Hydrologic Conditions of the
event-based hydrological models was assessed. The application of Streamflow
Assimilation (Q-DA) in both lumped and semi-distributed models yielded improved
simulations at the catchment outlet during both calibration and validation periods.
However, assimilating soil moisture (SM-DA) did not significantly enhance continuous
streamflow simulations in the lumped model, whereas a slight improvement was observed
in the semi-distributed model. Notably, the semi-distributed model demonstrated superior
streamflow simulation performance in both SM-DA and Q-DA compared to the lumped
models. When compared to continuous models with data assimilation (DA), the event-
based model utilizing Initial Hydrological Conditions (IHCs) obtained through DA
exhibited a lower ensemble spread in simulations. However, simulations based on SM-DA
exhibited a higher ensemble spread compared to those based on Q-DA. In event-based
models employing assimilated initial conditions, the semi-distributed model with SM-DA
excelled during the calibration period, capitalizing on the advantages of its spatial
resolution. Furthermore, the event-based semi-distributed GR4J model initialized by the
IHCs extracted from the corresponding Nash-Sutcliffe Efficiency (NSE) calibrated
continuous model outperformed other models in accurately capturing the magnitude,
timing, and volume of observed flood events.

Finally, Ensemble Flood Forecasts were generated by forcing quantitative precipitation
forecasts obtained from NWPs into a calibrated hydrological model. The ensemble spread
of raw forecasts was initially narrower, but post-processing techniques effectively
addressed this issue by increasing the spread of the Ensemble Flood Forecasts (EFF).
During the calibration period, the post-processed flood forecasts utilizing the Quantile
Random Forest (QRF) method displayed improved performance by accurately capturing
both the magnitude and timing of observed flood peaks. However, this improved
performance did not extend to the validation period, as the QRF-based forecasts
underestimated the observed flood peaks. Despite a discrepancy in peak timing between
the raw flood forecasts and the observed peaks during validation, the raw forecasts
performed reasonably well in terms of peak magnitude when compared to the post-
processed forecasts. In terms of the hydrological model, the semi-distributed approach
outperformed the lumped models in both the calibration and validation periods, showcasing
its superiority. The EFF based on the QRF+semi-distributed model exhibited satisfactory

performance during the calibration period, with Nash-Sutcliffe Efficiency (NSE) greater
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than 0.5 and mean Continuous Ranked Probability Score (CRPS) less than 1700 m3/s at
all lead times. However, the performance during the validation period fell below
satisfactory levels, with NSE less than 0.5, indicating the need for further improvements.
The generated EFF demonstrated satisfactory performance at shorter lead times (1 to 3
days) during calibration, with Percentage Error in Peak Flow (PEPF), Percentage Error in
Volume (PEV), and Percentage Error in Timing to Peak (PETP) consistently below 30%
in most cases. However, the post-processed forecasts performed poorly during the
validation period, and as the lead time increased, there was a discrepancy in predicting the

timing of flood peaks, highlighting a limitation in long-term forecast accuracy.

7.2 Future Scope

e The present work is mainly based on conceptual hydrologic models. However, utilization
of process-based fully distributed models such as VIC, SWAT and HEC-HMS might give
more reliable simulations as they address the spatial heterogeneity of both catchment
characteristics and rainfall as well.

e The work was carried out with data of available spatial and temporal resolution. Finer
resolution data would have given better results. Particularly, hourly meteorological forcing
is essential in flood modelling.

e Root zone soil moisture from a single source (reanalysis product) has been used in this
study. Assessing the suitability of different satellite-based soil moisture products is
necessary for detailed understanding of the assimilation efficiency of models.

e The computational advantage of lumped models should be exploited by integrating the
rainfall spatial variability to increase the model efficiency during anomalistic rainfall
events.

e The influence of increasing model resolution on the performance of the model in capturing
the observed flood events through assimilation of streamflow/soil moisture should be
investigated.

e The trade-offs between model structure, spatial resolution and assimilation variable in

assimilation efficiency is reserved for future research.
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