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CHAPTER-I

A review on Multicomponent Reactions and its Applications in the

Synthesis of Biologically Active Heterocyclic Compounds

Biologically active
complex molecules




1.1. Introduction

Multi-component reactions are known as a group of chemical transformations in which the
rapid assembly of polysubstituted systems occurs without isolation of undesirable
intermediates and most of the atoms participate in the newly formed bonds that lead to get
target compound with high percentage of the yield in a single reaction step and shorter reaction
time. The main aim of MCRs is for the development of heterocyclic compounds,* cycloaddition
reactions,? natural products,® and generate a carbon-carbon bonds.* These reactions are
classified as 3CC, 4CC, 5CC etc., Many of the MCRs products are used as a drugs in
pharmaceutical industries and these compounds are biologically active. Due to this the MCRs
have attained a crucial importance even in late 20" century. The factors such as solvent,
temperature, catalyst, concentration, type of functional groups and starting material are

particularly important for development and discovery of novel MCRs.
History of MCRs

The organo-chemical reactions and their products were documented over 4.6 million years ago.
The Miller experiment has illustrated that the chemical compounds in nature are formed not
only by the conventional chemical reaction of two components but also a variety of MCRs
products are formed.®> The Strecker three-component reaction is a first MCRs introduced in
1850. Examples for MCRs are 1. Laurent and Gerhardt reaction, 2. Hantzsch dihydropyridine
synthesis, 3. Hantzsch pyrrole synthesis, 4. Radziszewski imidazole synthesis, 5. Biginelli
dihydro pyrimidine synthesis,®. Gewald thiophene synthesis, 6. Assinger thiazole synthesis, 7.
Bucherer-Bergs 4CC reaction, 7. Mannich reaction, 8. Passerini a-acyloxycarbamide synthesis,

9. Ugi 4CC reaction, 10. Groebke-Blackburn-Bienayme imidazole 3CC reaction.
Name reactions on MCRs.
Laurent and Gerhardt reaction

In 1838 Laurent and Gerhardt’ introduced the first MCR product of benzoyl azotide from the
reaction of two equivalents of benzaldehyde and hydrogen cyanide, ammonia. In which 2-
amino phenyl acetonitrile was first generated and then reaction with another equivalent of

benzaldehyde to form a Schiff base products la.



Scheme-1.0

JU + NH, +  HCN

Strecker amino acid synthesis. &

Formally in 1850 Strecker established a modern MCR for the synthesis of a—amino acids in
which initially NH4CI dissociate to generate ammonia after aldehyde (aromatic or aliphatic)
reaction with hydrogen cyanide, ammonia followed by hydrolysis to form a a-amino acid
Scheme-1.1.

)J\ NH,CI NHZO
PR”H * HON T pp
H* H,0
OH

Radziszewski imidazole reaction. °

The four component condensation reaction of 1,2-diketones with ammonia, formalin and

primary amine to afford substituted five membered Imidazoles heterocycles (Scheme-1.2)

Scheme-1.2
R3
OXL(O o RL_N
+ NH NH
R‘l R2 H)J\H + 3 + R3 2 > | />
rZ2 N

Hantzsch dihydropyridine synthesis °

In 1881 the German chemist Arthur Rudolf Hantzsch established a cyclized product of
dihydropyridine. In this reaction two equivalents of ethyl acetoacetate were condensed with

aldehyde and ammonium acetate to form a dihydropyridine shown in Scheme-1.3

Scheme-1.3
H H
O \ﬂ/ O Oy H O
O H,O
EtO + OEt —— 3 EtO OEt
reflux, 1 hr | |
(@] O N
H
NH,OAc




Hantzsch pyrrole reaction. !

Arthur Rudolf Hantzsch developed synthesis of an aromatic nitrogen containing five-
membered heterocyclic compound from the reaction of active methylene compound (5-

ketoester) and a-halo ester with primary amine has shown in scheme-1.4

Scheme-1.4
O O
O O o O EtO OEt
NH
Mo/\ + R1MO/\ ¥ RZ? 1/ )
Cl RUON
R2

Asinger reaction. 12

In 1956 Friedrich Asinger reported a four component MCR of 3-thiazolines. In this reaction a-
halogenated carbonyl compounds were reacted with NaSH (sodium hydrogensulphide) and
insitu generated thiols, ammonia and another mole of carbonyl compound to form a thiazoline

shown in scheme-1.5

Scheme-1.5
X , o) R1
R1Jﬁ‘rR + NaSH + 3JJ\ 4 + NH3 —_— S R3
R R /2\
o] RNy
R4
X SH
R? R2
R1J\[f + NaSH —— R1J\[(
o)
Thiol

Gewald thiophene synthesis. 3

Karl Gewald et al reported a sulfur (Sg) involved three component condensation reaction. The
reaction between o-methylene carbonyl compound and ethyl cyano acetate, elemental sulfur in

presence of base to generate a five membered heterocyclic compound thiophene (scheme-1.6)



Scheme-1.6

T R? OEt
R2
R’ lk/ + EtOY\CN + 88 / \

o) R™ N~ NH,

Grieco 3CC reaction. 14

Paul Grieco established a three component reaction in 1985. The reaction consists of
condensation of aldehyde with aromatic amine and cyclopentadiene (electron rich alkene) to
give a cyclised six membered product containing nitrogen atom in presence of Lewis acid or

trifluoro acetic acid scheme-1.7

Scheme-1.7
NH,
0
)]\ @ N @ Yb(OTf)3
R” "H + >
CH4CN

Betti three component reaction. 1°

Mario Betti introduced a three component reaction in1900. In this reaction Phenol on reaction
with aldehydes and aromatic primary amines (aniline) to afford a a-amino benzyl phenol.
(Scheme-1.8)

Scheme-1.8

Br\
NH OH

OH NH,
(o]
© + R)J\H + @ e R)\©

a-aminobenzylphenol

Povarov quinoline synthesis;

The synthesis consists of quinoline based molecules by using aniline, benzaldehyde to generate
imine compound, then reaction with electron rich alkenes (enol ether or enamine) in presence

of Lewis acid BFs (activate the imine) scheme-1.9



Scheme-1.9

+ + —_— _
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Mannich reaction. 7

Amino methylation of active methylene carbonyl compounds, formaldehyde and primary or
secondary amines to form a C-C single bond in a one-pot three component condensation
process have shown in scheme-1.10

Scheme-1.10

R'" RS

R? ) 3 R* |
! + + R —_— N. R4
N )J\ R?2 C

R'" "H

H H (@) H2 o

Ugi reaction. 18

Ivar Karl Ugi in 1959 has developed the isocyanide involved one-pot four component
condensation reaction. In which the reaction between aldehyde, ketone, carboxylic acid and

isocyanide to produce a bis-amide (peptide bond). Schame-1.11

Scheme-1.11
O Rt R2
0o R H
I+ geNHz + L4COOH 4 LoNC N R4JJ\N>SfN\R5
1 2
R R \
R® O

Orru imidazole synthesis-

Orru et al introduced an efficient modern one-pot MCRs for the synthesis of imidazoles.
Condensation of aldehydes, primary amines and active methylene containing isocyanides lead
to the formation of an imidazole represented in scheme-1.12

Scheme-1.12

|$2

o) NC 1 N

R

NH,  + g {]

R»]JJ\H + R2 R3 —_— N

/
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1.2. Classification of MCRs.

Multi-component reactions are classified depending on the number of reactants participated
during the reaction time into three component, four component, five component etc., MCRs
are mainly devided in to type-1, type-1I, type-111 and their sub classes A and B.® These are i.)

Imine based multicomponent reactions. ii) Isocyanide based multicomponent reactions

Type-l1A: In this type of MCRs products were not to be isolated and all the reactants and

products are involved in mobile equilibria.

Type-IB: In this separation of products was possible, with only intermediates and starting
materials participating in the equilibrium.

Type-11A: Type-IA & IB intermediates irreversibly react to form a multifunctional
components and heterocyclic product formed with irreversibly. In which every adduct becomes
a part of heterocyclic compound finally total no. of chemical bonds constant.

Type-11B: The isocyanide based MCRs are examples for type-11B. In this type of MCRs type-
I1A intermediate reaction with 1B the final product formed irreversibly with another adduct and
in which the number of chemical bonds have been increased

Type-111I: In this type of MCRs one product is formed by all sub reactions comprising
irreversible steps.

0
R1JJ\R2 +HX +R® -NH-R* (3) RI;E? R2

1 2 D A

+R%-COOH (2A)

Q_
P-3CR oS/ +4U-4CR
+R-NC (4) L

R 2 TR R
R RS Kk R. N
R2 R NTX N
HO N R4 R X
RO
g 4CR| *YZ
(o)
l Heterocyclic Final product
product
12
JOJ\ R1R2 - 1
N
R® ~O
H
(o]

10




1.3. Different methods involved in MCRs

A variety of techniques have been used for the development of MCR reactions, over
conventional method to ease of handling the reaction i.e minimization of time, purification of
compound, improve percentage Yield, reduce by-products and minimize cost-effective

chemicals.
Microwave assisted MCRs

The MCR reaction in combined with microwave method dramatically helpful to reduce the
chemical wastage, require time for completion of the reaction is decreases. The microwave
method is well-known process for the synthesis of heterocyclic ring containing natural
products. Pyrazine [2,1-b] quinazoline-3,6-dione basic moiety were synthesized by the reaction
of 2-amino benzoic acid with amino acid esters and Boc-amino acids to give
pyrazinoquinazoline heterocyclic molecule. When the change of R? functional group If R =
H; Glyantrypine, R! = Me; Fumiquinazoline F and R! = i-Pr; Fiscaline B are the biologically

active natural products?® shown in scheme-1.13.

Scheme-1.13

H
N
1 SO
R 0

o g
~~,,-Boc . o)
OH HOOC H N/Y
. — NH
NH, CO,Me N

R‘l

{ NHyHC

H
M.W one-pot reaction if R1 = H; Glyantrypine
R' = Me; Fumiquinazoline F
R' = i-Pr; Fiscalin B

Jiang et al 2! developed the Groebke-Blackburn-Bienayme type multi-component reaction
under microwave irradiation for the construction of five-member heterocyclics. The reaction
of imidines with isocyanides and aldehydes catalyzed by scandium triflate in MeOH to afford

a fused 3-amino imidazole as represented in scheme-1.14



Scheme-1.14

R “H
+
NH2 MeOH N\gi
MW 2NH
R2-NC R

Tamaddon et al ?? synthesized the MCR microwave employing one-pot four component
cyclocondensation reaction of aromatic aldehydes, acetophenones, malanonitrile and
ammonium acetate or ammonium carbonate in the presence of DCGC (0.1 mol%) as a catalyst
in water under reflux condition for 1 h to form a Hantzsch product of 2-amino-4,6-

diphenylnicotinonitrile with 96% of the yield which has shown in Scheme-1.15.

CHO
N

Isva " g
= DCGS catalyst —

Solvent N Y/

(0.5 mL)
NG NCN NHg(r)AC

(NH4)2CO3

Scheme-1.15.

Aqgueous medium MCRs.

The MCR reactions were carried out by using water as a solvent, offers many advantages. It is
a green solvent and increase the rate and efficiency of the reaction compared with organic
solvent. After completion of the reaction water is removed by simple filtration, final products
were formed in crystalline solids. Ugi was the first to introduce higher order complex MCR
architectures. In this regard water assisted as a solvent for pseudo eight component synthesis
of pyranopyrazole-substituted 4H-chromene complex molecule. This was synthesized by
condensation of two equivalents of hydrazine hydrate, 2 equivalents of ethyl acetoacetate, two
equivalents of malanonitrile and 2 equivalents of 2-hydroxy-5-methylisopthalaldehyde in one-
pot using water as a solvent and add 10 mol% of base piperidine, stir for 5 minutes to produce

a complex structure molecule 2 shown in scheme-1.16.



Scheme-1.16

Q o HN—N
2 NH,.NH, 2 ot N \
+ Water r.t - ’

CHO Piperidine. 5min o

PN
2 NC” "CN 2 < CN
OH HN _ ’

CHO N 0) NH,

Solid phase MCRs

The solid phase MCR reactions are important for the preparation of a library of chemical
entities. In this MCR method different polymer resins are used for the preparation of peptides.
In which the dipeptide has been synthesized through Petasis reaction followed by Ugi 4CC.
Initially the preparation of a-amino acid by tandem Petasis reaction of secondary amine,
boronic acid and glyoxylic aid in DCM 48 h to give a tertiary a-amino acid. This was carried
out in solution phase. And the Petasis products were subjected to Ugi 4CC reaction in presence

of free amine Rink linker to afford a dipeptide. This step was carried out in solid phase as

shown in Scheme-1.17 %

Scheme-1.17
H
r1NR2 R3-(BOH), )
DCM v
+ 5 1N\|/COOH
48h
o) R3
J\H/OH 4
H Petasis product
o)
R2
|
N._ _COOH R*-CHO
RT Y7 RZ O R
R3 TFA/DCM N N
1 “p5
—> R N R
* TiPS 3 H
2 R*-NC Dipeptide
L = Rink linker




Ultra sonic assisted MCRs.

Babu et al 2° reported the spiro heterocycles (Scheme-1.18) using Ultrasonic assisted MCR
method. The mixture of L-proline and isatin was condensed in presence of acetonitrile to form
aazomethine ylied. The generated ylied subsequently undergo cyclocondensation reaction with
2-o0x0-2-phenylethylidene) indolin-2-one to achieved a spiro heterocyclic molecule with good

percentage of the yield.

Scheme-1.18

ACN 0 <

—_— TN
N\ S
l}l O

H

Banarjee %P developed the ultrasonic assisted synthesis of substituted aromatic aldehydes. 1,3
cyclohexanone and 2-amino benzimidazole in presence of isopropanol. Which was represented

in scheme-1.19.

Scheme-1.19

O OH
(@) (0] N Ultrasonic
R N + U i W@: \>—NH2 irradiation
= AN
R2

1.4. Applications of MCRs
MCRs involved in natural product synthesis.

MCRs are used in different fields of chemistry. In this context the natural products have placed
an important role in the medicinal chemistry field. MCRs are essential for the synthesis of
various natural products. In this method quantitative yields were obtained and easy to isolate
the final products in pure form. Many of the polycyclic indenopyridine alkaloid derivatives are

biologically active natural products. The synthetic protocol of the indenopyridone

10



aldehydes and amino heterocycles or aniline to afford polycyclic heteroaromatic molecule
(Scheme-1.20). The following indenopyridazine B and indenopyrazole A are identified as
cyclin-dependent kinase inhibitors?®?. And indenopyridazone B is monoamine oxidase
inhibitor.?% Further the multiple activity of indenopyridine C to act as a calcium modulating
activity, 2°¢ cytotoxic 2’ and the lastly the NSC 314622 is an important compound for the

development of anticancer agent Topoisomerase-1. 28

Scheme-1.20
0 o QR
JJ\ AcOH/Ethylene glycol
+ R1 H + Ql ’ / \
NH, N
O

NSC 314622
Anticancer agent

The conjugate cycloaddition of cyclic enones followed by electrophilic trapping to form a
enolate is useful for the development of natural product alkaloid 2°% 2%0-2%¢gych as trans jasmine,
indanomycin, podophyllotoxin, incarvilline, magnoshinine. This group of alkaloids show

various biological activities 302 300,

11



Scheme-1.21

-CH

(-) incarvilline (R=H)

"\=/  Hooc

COOH
Trans Jasmone

OH
o -
< o
° (
O
MeO OMe
OMe
OMe
Podophyllotoxin Magnishine

Synthesis of Bacillamide C natural product.

Wang et al *! reported the natural product Bacillamide C. The one-pot four component reaction
between substituted isocyanides, aldehydes, 2,4-dimethoxy benzyl amine and thioacetic acid
in presence of methanol to generate a thiazole compound. Muraymycin D2 in a single step.
Subsequently the removal of di methoxy group and TBD mediated amide bond formed to

afford a target product Bacillamide C explain in scheme-1.22.

12



Scheme-1.22

I
Me0,C~ “NC )J\H MeO,C N
27»\(
U-4CR
+ _— 5 S N_ O
MeOH, RT
OMe
o) MeO
NH
? )J\SH Muraymycin D,
MeO
OMe
\TFA 80 °C
MeO,C
i Iy
{ i o~
H S 0
H N TBD HN\.{
/ )\( THF 80 °C
S
HN\<O
(\N/j Bacillamine C
N/)\N
H
TBD

Synthesis of quinoline alkaloids

El-Saghier et al 3 developed the quinine based alkaloids via MCRs approach. The quinoline
compound 5 has been synthesized from Skrup synthesis by the reaction aromatic aldehydes,
resorcinol, P-cyanoester and aromatic aliphatic amines in the presence of solvent free
conditions. These derivatives of aminoquine and N-tertiary butyl isoquine (GSK 369796) and

quinine are showing antimalarial activity having quinoline moiety 333435 Scheme 1.23
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Scheme-1.23

R
O+_H N,
HO OH o |

= =
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X o) —_— A~
R o]

CN

HO OH

0" CH,COONH,

/~NEtR H

HN : HN OH HO HN
X X MeO N
= = _
Cl N Cl N N

R = Etisoquine

Amodi aquine Quinine

GSK (369796) R = t-butyl, N-butyl isoquine

MCRs involved in drugs

Multi-component reactions are also efficiently used for the synthesis of biologically active drug
molecules. In the MCRs method the yield of the final product is increased compared to
conventional method. Concise synthesis of an important antiviral drug Molnupiravir using one-
pot process %2 from cytidine. The reaction of cytidine in presence of DMF-DMA in pyridine
in which the selective protection of 2', 3'-dihydroxyls and primary amine group of cytidine,
after protection of hydroxy group with iso-butyric anhydride further deprotect the diol group
to achieve a Molnupiravir with good percentage of yield 61%. Molnupiravir is useful for
examine anti-SARS-CoV?2 effect by lethal mutation® %6 ¢ Scheme-1.24
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Scheme-1.24
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N
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HsC /‘<;r
CHj HG OH
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GBB (Groebke-Blackburn-Bienayme) Reaction used in drug discovery

The above reaction is used to evaluate therapeutic bridgehead nitrogen containing fused
imidazoles by the reaction of aldehydes, isocyanides, amidines to produce a building blocks of

imidazopyridines and imidazopyrazines *” as shown in scheme-1.25a

Baviskar et al ® reported the fused imidazopyridines and imidazopyrazine 2, and
imidazopyrazole-3,4 motifs using GBB reaction and evaluated their anticancer activity against

brest cancer and kidney cancer activity. Scheme-1.25b

Scheme-1.25a

cl )
NC HN—T\ / R
AN Cl
+ —_— 2 _ — R2
N H MeOH H
NH, R
Scheme-1.25b
HOOC

NN N NZ NN h/NH
> )—COOH >—< >*C| e () =
CNr/ N N7/ c N,N\%\@m
HN\é NH NH, HN
K2 3 4

Imidazopyridine ) ) Imidazopyrazole
Imidazopyrazine

1
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Synthesis of biologically active antibiotic B-lactum analogues using MCRSs process

Weber * has developed the MCR synthesis of biologically active B-lactum derivatives by the
reaction of amino acid, aldehyde and isocyanide, dinitrogen tetroxide to form a carboxylic acid

derivative nocardicine, it is an antibiotic agent.*°

Scheme-1.26
O H
o U-4CR HO
HO)J\/NHZ + E\j + NC > ?N\(O
O N,O,4/NaOAC/CHCl3 1) COODPM
B- lactum

_OH OH
LK
N
(0]
HO o o) COOH

Nocardicine analogue
Antibiotic

Synthesis of calcium channel blocking agent Nefidepine via Biginelli reaction.

Guisnet *2has carried out the synthesis of 4-aryl dihydropyridine via one-pot three component
process. In this condensation of two equivalents of B-keto ester with aldehydes to afford a 4-
aryl dihydropyridine-3,5-dicarboxilic acid ester named as Nefidepine. It is a first medicinal

MCRs product can advantageously use for calcium antagonist 4*®

Scheme-1.27
NO,
CHO NO,
MeOH EtO,C CO,Et
MeO,C CO,Me — ||
L, A 'y
H
HsC™ ~O O~ CHj;
Nefidipine
NH,
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Synthesis of anticancer drugs via MCR approach

Synthesis of anticancer agent Tubugis by a multicomponent method was reported by pando et

al.*? It is commonly used in medicinal and combinatorial chemistry. The Tubugis synthetic

protocol involves Ugi-Nenajdenko, Passerini-Domling MCR and Ugi-MCR reactions as shown

in scheme-1.28.

Scheme-1.28
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~ (6] OAC
: “ N o
T/\n/ - N » /\/7,,/(
0 . Kfo s/ HN
HN._,
R OH
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Passerini- Domling MCR
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O
O
BoCHN H

NC

—

EtO,C /

—

Tubivaline

Recent literature reports of biologically active MCR products.

Yakaiah et al *® published the pyrazolo-oxothiazolodine via a one-pot synthesis of substituted

chalcones, thiosemicarbazide and diethyl acetylene dicarboxilate under EtOH/ NaOH. These

thiazolo-pyrazole derivatives were acted as a antiproliferative agents against human lung

cancer. (Scheme-1.29)
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Scheme-1.29

Reddy et al ** have developed the one-pot five component protocol for the synthesis of 1,4-
dihydropyrano pyrazoles by the reaction of chloromethyl acetoacetate, malanonitrile, phenyl
hydrazine and aromatic aldehydes and 5-phenyl oxadiazoles 2-thiol in presence of EtOH. The
final compounds were screened for their biological activity and they have shown antioxidant

property. (Scheme-1.30)

Scheme-1.30

6 O NC” CN

cl \)J\/U\O/\

(@) H K-10
H + >
©/N\NH2 | N EtOH/H,0
/\/
R

Y Antioxidant
| /
N~N C

Barreca et al- *® synthesized the thiazole heterocyclic containing scaffolds. The reaction

between aniline and thioglycolic acid aromatic aldehydes in toluene under reflux for 2 hours
to give a thiazole compound. Further these compounds were screened for their antiviral activity

and these type of moieties exhibiting promising anti HIV activity. (Scheme-1.31)

Scheme-1.31

R
S
©/NH2 o Toulent /]/i
H N
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AntiHIV activity
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Batey “ has synthesized the biologically active secondary amine product by using a reaction
between secondary amine, paraformaldehyde and E- boronic acid in dioxane. In this reaction
formation of C-N bond takes place. The reactions have first reported by Petasis. This is also
known as Petasis borono-Mannich reaction. The analogues of this type of derivative Naftifine

exhibiting potent antifungal activity shown in scheme-1.32.

Scheme-1.32
R (CH50), , Dioxane R2
| 90 °C 10min. N RS
R2 - R ~xX
R\ -BOH)

GHs
N

antifungal agent naftifine

Habashita et al *’ synthesized the spirodiketopiperazine compounds through Ugi-4CC
approach. The spirodiketopiperazine antagonists were used for the treatment of anti HIV.*
(Scheme-1.33)

Scheme-1.33
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O 4

AntiHIV agent

Radwan et al *° efficiently synthesized the tetrazolopyrimidine-6-carbonitrile via a one-pot

multi-component condensation of various aldehyde, tetrazole-5- amine and 3-cyano indole in

19



the presence of DMF/EtzN at 120 °C for 10 h to produce a fused tetrazolopyrimidine-6-

carbonitrile (Scheme-1.34). These moieties have shown predominant cytotoxic activity. *°

Scheme-1.34
NC O R
CN
0 N-N DMF =
A, e W
YN NH, * / o ; y
R H N 2 1200c10n N A~ ¢
N N NH
H EtsN

Cao et al °! developed the schistosomiasis drug praziquantel which is having a isoquinoline
structure. The one-pot four component condensation of paraformaldehyde, (2-isocyanoethyl)
benzene, cyclohexyl carboxylic acid and 2,2dimethoxy ethyl amine followed by Pictet-

Spengler reaction to give a praziguantel as shown in scheme-1.35.

Scheme-1.35
NC CH,O m o)
. MeOH, rt o Pictet-Spengler ©?
- N
OMe ?)/\
e

T
UCOOH Hsz e )\O O )\O

Praziquantel

1.5. 1,2,4-triazoles

Five-membered ring bearing nitrogen atoms at 1,2,4 positions is calld as symmetrical triazole.
These are occupied an important role in pharmaceutical industry, substituted 1,2,4 triazole
compounds are exhibiting good biological activity. Many of the anticancer, antiviral,
antifungal, antidepressants and antianalgesic drugs having a 1,2,4-triazole moiety the Fig-2
showing regularly using triazole ring containing drugs. The vorozole, letrozole, anastrozole are
the examples for triazole involved anticancer drugs®® and viramidine, ribavirin, temsavir,
doravirin % are the examples for antiviral triazole comprising drugs. 54 ® Paclobutranol,
fluconazole, voriconazole are the antifungal drugs °° and triazolam, alprazolam, estrazolam are

the diazepam ring skeleton triazole containing antidepressant drugs .
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Antifungal

Fig-2. Pharmaceutically active triazole ring containing drug molecules.

Biological applications of 1,2,4-Triazole scaffold.

Guijjar et al ®' carried out the synthesis of the fused triazolopyrimidine moiety and evaluated
for their antimalarial activity (Fig. 1.1). These compounds were screened against for human,

plasmodium falciparum enzymes and also evaluated against for plasmodium falciparum 3D7
cells, and good results were obtained.
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Fig. 1.1

Franklim et al ®® reported the synthesis of antifungal agent Posaconazole [Fig 1.2], this has

shown broad panel of antifungal activity and it is currently entering into phase-11 clinical trials.

S o

\‘/\N%N{ >—N N4< >—o
OH N/ _/ AW
H

Posaconazole
Antifungal

Fig.1.2  f

Zhou et al *° developed the triazolone substituted compound (Fig. 1.3) in which the triazolone

ring linked to piperazine. It exhibits promising in-vitro antifungal activity against candida

albicanes and candida parapsilosis activity. The nitro substituted compound (R = NO2) showed

good activity with MICgo values are 0.00024, 0.0039 pg/mL.

Fig. 1.3

Candida albicanes/ Candida parapsilosis activity

Patel et al ® reported good antitubercular activity for the following compound-2. It was

synthesized by the reaction of 2,5 di substituted oxadiazoles, and 2-hydrazino 1,3-

benzothiazole. The 1,2,4-triazole having the pyridine ring substitution and substituted 4-amino

benzothiazole moiety has shown remarkable antituberculosis activity against tested

Staphylococcus aureus MTCC 96 Gram +Ve bacteria and Escherichia coli MTCC 443 Gram

—Ve bacteria.
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Scheme-1.36

N—N \H J N
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N= CH3 S Iy CHs
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-

Havaldar et al 512 reported the substituted triazole compound possessing antifungal activity

and antimalarial activity (Fig 1.4). If R = H, R? = NO; exhibit their good activity against
aspergillus niger and if R, R? = F showing antimicrobial activity against plasmodium

falciparum strain. And also 1,2,4-triazoles are valuable biologically active compounds 6

Antifungal activity
Fig. 1.4

Nikalje et al ®2 synthesized the triazolo imidazole compound and tested for its antibacterial
activity against Streptococcus pneumonia (Gram +Ve), Escherichia coli (Gram —Ve) strains

compared with Ampicillin which was taken as a standard reference drug.

Scheme-1.37
® g ®
I\ H
5 * HOOC/QN)\NHz * —_— \N
> “ (0
N
AN"Ncoom

Holla et al % reported the target compounds (Scheme-1.38) by the condensation of amino
mercapto 1,2,4 triazole and substituted aldehydes in EtOH, dioxane to form a Schiff bases then
amino methylation takes place with different secondary amines by following Mannich reaction.
The final compounds were screened for their anticancer activity against various cancer cell
lines.
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Scheme-1.38
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Liao et al % developed the neuroprotective agent 1,3,5-tri substituted 1,2,4-triazole. Due to its
higher bioavailability the compound exhibits promising neuroprotective activity to treat

ischemic stock (Fig. 1.5).

Fig. 1.5

Karabanovich et al ® reported the synthesis of following 1,2,4-triazole derivative (Fig. 1.6).
The antimycobacterial activity of the compound was screened against the standard M.

tuberculosis Hz7Rv  strain  and  nontuberculous Mycobacterium  avium, Mycobacterium

kansasi strains.
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Maddila et al ®® carried out the synthesis of triazolothiazoles through a one-pot process by

reaction of aromatic acids with triazole having free amino and mercapto groups in presence of

POCIs to generate a fused triazolothiazole heterocyclic moiety (Scheme-1.39). Further these

compounds were screened for their anti-inflammatory activity against standard reference drug

indomethacin.

Scheme-1.39
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; 2
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Wang et al % reported the analogues of ciprofloxacin-triazole derivative (Fig. 1.7) and

screened for their antibacterial activity against bacterial strains such as S. aureus, M. luteus, B.

subtilis, B. proteus, E. coli. The tested compounds exhibited high inhibitory against Gram +Ve
and Gram —Ve bacteria with the range of MIC values 0.25 — 32 pg/mL.

F
N
AN
F
NH
Fig. 1.7
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Turan-zitouni et al % reported of the synthesis the antipyrene structured compound (Fig. 1.8)
and tested for their antinociceptive activity. The obtained results are in higher as activity

compared to dipyrone drug. The greater maximum possibility effective (MPE%) values were

found.
H4C
ol \\N y 7
Vand Y \ /N’@
(0] N—-N S N
H3C \CH3
Fig. 1.8

Mustafa et al % published the antitubline and antiproliferative activity for the compound
(Fig.1.9). These are analogues of natural product combretastatin. The cytotoxicity of the
compound was tested using MTT assay with Hep2 and HL-60 human cancer cell lines. The

obtained ICso values were greater than that of carbonic anhydrase 4 (CA4) in HepG2 cells.

O/
O\
N e
X o)
\
F‘@N%N/N
Fig. 1.9 0\

Sreenu et al " reported the synthesis of the bis (Coumarinyl trizolothiadiazinyl) ethane (Fig.
1.10) in a multi-component process by reaction of thiocarbohydrazide, tartaric acid and 3(2-
bromo acetyl) coumarin in presence of EtOH. These compounds were tested for their broad
antiviral activity by using different cell cultures. The obtained ECsg values are high compared

with standard drugs.

Fig. 1.10
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coumarins (Fig. 1.11). In this reaction condensation of various carboxylic acids,
thiocarbohydrazide and 3(2-bromo acetyl) coumarin under solvent free conditions. The
compounds were screened for their antimicrobial activity against Gram +Ve, Gram —Ve

bacterial strains. The obtained MIC pg/mL are good compared to the standard reference.

0
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S
0
0

\
N

=

Fig. 1.11

Ashid et al % synthesized a series of triazolothiazole compound (Fig. 1.12) and screened for
their antimicrobial and antifungal activity against Bacillus subtilis, Klebsiella pneumoniae,
Escherichia coli, Proteus mirabilis bacterial strains and Aspergillus Fumigatus and Candida

albicanes are antifungal strains. Ciprofloxacin and Flucanazole as a reference drugs.
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N \/\/< e
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0
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Fig. 1.12

1.6. PRESENT WORK.

The above overview shows that the multicomponent reactions have gained particular
importance due to the development of high-throughput screening methods that allowed for the
rapid identification of potential therapeutic medications among large collection of organic
molecules. For this, it is essential to develop new methods to synthesize organic compounds.
The techniques that would enable quick access to highly potent libraries of compounds were
most popular for MC reactions, making them ideal for this concept. In general, conventional
process involves loss of large amount of compounds and also required significant amount of

solvents during purification, isolation of intermediates and it is time taking process.
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production of pharmaceutical compounds. In this context the multicomponent approaches are
environmentally safe to design chemical compounds and they reduce isolation of intermediates.
They are helpful to increase in the yield of final products and in these reactions more number

of chemical bonds are formed in a single step.

In this research work we desire to develop fused, unfused new heterocyclic compounds which
follow MCR (multicomponent reaction) method. And synthesized compounds were evaluated

for their biological activity.
Need for the present study.

Owing to the biological significance of the chemical moieties in the organic compounds, the
synthesis of compounds embedded with this scaffold has been gaining interest. In this regard,
in the present research work, it was anticipated to synthesize a newer series of 1,2,4-triazoles,
fused[3,2-b][1,2,4]triazoles, [1,2,4]triazolo[1,5-a]pyrimidine-7-(4H)-ones and [1,2,4] triazolo

[3,4-b][1,3,4]-6-amino thiadiazines which would exhibit biological properties.
Scope of the work.

a) To synthesize an efficient methodologies using MCR approach.

b) To synthesize prominent and diversified organic compounds, embedded with
biologically active scaffolds.

c) To organize biological activity studies such as anticancer, antiviral, antibacterial, DNA

binding properties.
Preparation of Starting materials.

1). The dipotassium cyanodithioimidocarbonate salt (1) has prepared based on the literature
procedure” in which the cyanamide on reaction with carbon disulphide in ethanolic potassium

hydroxide under one-pot process to form a yellow color compound-1

_N SK*
EtOH/KOH o~ Nx
RT 1 S-K+

H,N—-CN  + CS;

2). 1,2,4-triazole compound-3 has been prepared according to literature reports. In this the
dipotassium cyanodithioimidocarbonate salt (1) was reacted with hydrazine hydrate (2) in
presence of acetic acid at RT to produce a white color solid compound 5-amino-4H-1,2,4-

triazole-3-thiol.
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N SK* AcOH/RT
NC® S H,N=NH, H,0 =200, /N

3). 4-Amino-5-hydrazienyl-4H-1,2,4-triazole-3-thiol was prepared by using literature

procedure.’

s N—N
H,0, HCI N )
PS + 2. NHpNHyH,0 ———s  F2NO Y
HN™ “NH, pH 6.5 N N SH
NH,
1 2 3a

Aims and objectives of the work.

From the preceding review, MCRs are important for the synthesis of new heterocyclic
compounds. MCRs provide rapid access to high quality compound libraries. MCRs ideally
suited the new demand, and this in turn fueled more interest in the earlier developed reactions

and in the invention of similar or fundamentally new ones.

1. To develop an efficient, environmentally benign facile methods for the synthesis of
biologically potent molecules.

2. Evaluation of pharmacological activities of the newly synthesized heterocyclic
compounds.

3. To develop facile, efficient eco-friendly synthetic methods for the preparation of
different heterocyclic motifs.

4. To characterize the synthesized compounds using FT-IR, *H NMR, *C NMR, HRMS

spectroscopic techniques.

The present research work briefly covers the synthesis of nitrogen and sulfur heterocyclic
compounds and their biological activity studies. The present work is divided into seven

chapters.

CHAPTER-I: A Review on Multicomponent Reactions and its Applications in the Synthesis

of Biologically Active Heterocyclic Compounds.

CHAPTER-II: A facile one-pot four component synthesis of thio alkyl/aryl/benzyl 1,2,4-
triazolo isoindoline-1,3-diones, and their biological evaluation, molecular docking studies and

DFT calculations
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X =Br, H

CHAPTER-III: One-pot three component synthesis of fused [3,2-b] [1,2,4] triazolothiazole

isoindolines and Schiff bases, characterization and targeting glioma in-vitro anticancer activity,

molecular docking study

Scheme-2.1
R
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_ t -
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H R | o
X
X | o
1 2 3 X 4a-n
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R'=H, Cl
X =H, Brand X' = H, NO,, Br
Scheme-2.2
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CHAPTER-IV: Synthesis of novel thioalkylated triazolothiazoles and their promising in-vitro

antiviral activity

N

=N Br I
I\ * + EtOH/DMF \
HZN/QN)\SH * ) —5 3 NAN)\S
R — Il| R
R
5
R2

Reflux 80 °C

R =NO,, CN, Br, H
R'=H,Cl,
R2 = H, Br, OMe, Ph, Cl, NO,, CN, CHg

CHAPTER-V: This chapter consists of section-A and section- B

Section-A: Describes the novel one-pot four component synthesis of 1,2,4-triazolo[1,5-a]

pyrimidines, and their in-vitro anticancer evaluation and molecular docking studies

Scheme-4.1
O CHO
R2
1 N 2 AcOH/Piperidine
90°C
I
H2N/<N)\SH ‘R—Br
H
3 4 5a-w
R = 4-Bromo phenacyl, 4-Methoxy phenacyl, 4-Bromo phenacyl,
4-Chloro phenacyl, Simple phenacyl, 4-Methyl phenacyl
4-Nitro benzyl, 4-Bromo benzyl. R = NO,, CI, CN, Br. R? = H, ClI,
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Section-B: Describes the synthesis of new thioalkylated triazolopyrimidinones, sulfones and
their biological activity

Scheme-4.2

0
N—N Os_ OEt N R
[\ AcOH/NaOAc N~ /
HzN/4 Psh cH, *  RBr o | )Q\>—S
3 90 °C N
HaC N

4
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R = 4-Bromo phenacyl, 4-Fluoro phenacyl, 4-Chloro phenacyl
4-phenyl phenacyl, 4-Nitro phenacyl, 4-Methoxy
phenacyl, 4-Cyano phenacyl and 3-(2-acetyl) coumarin,
8-bromo-6- methoxy 3-(2-acetyl) coumarin and Benzyl,
4-Nitro benzyl, 4-methyl benzyl, 4-Cyano benzyl,
4-Bromo benzyl.

Scheme-4.2b:
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CHAPTER-VI: Novel one-pot synthesis, characterization, DNA binding studies of fused

[1,2,4] triazolo [3,4-b][1,3,4] 6-aminothiadiazines and their hydrazineylidene indolin-2-ones,
Schiff bases

Scheme-6.0
N=N Ho EtOH/EN R N=N
HoN, /4 »\ + R-CHO + Br—CC=N —— %1, \éN\N/« »\
H N SH H I}] S
|
NH, Nﬁ)
1 2 3 4
NH

N

R = 4-Nitro phenyl, 3,4-Di methoxy phenacyl,

4-Fluoro phenacyl, 2-Hydroxy-3-methoxy phenyl,

2,4-Di chloro phenyl, 4-Bromo phenyl, 2-OH, 4-Nitro pheny],
phenyl, 4-CN phenyl.
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Scheme-6.1
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CHAPTER-VII: Novel one-pot synthesis of imidazo[2,1-b][1,2,4]triazoles, 1,2,4-triazolo

iminoindoline-2-ones and their in-vitro antibacterial activity, B-DNA study

Scheme-7.1
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o
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H2N H SH R R1 85°C,9h N>\S R
H
1 2 3 4 a-j
R = Br, NO,, Me, CN
R' = H, Br, Me, OMe, Cl, Ph
Scheme-7.2
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2.1. Introduction

Nitrogen containing heterocyclic systems have widespread applications in the field of both
synthetic and medicinal chemistry. In addition to that phthalimide (isoindoline) also known to have
significant biological activities. It is used as a precursor for the synthesis azo dyes, anthranilic acid,
and saccharin. And also these phthalimide compounds were known to develop various N-alkylated
substrates, for the construction of a novel heterocyclic compounds for example Click Chemistry.
Maleimide, succinamide and phthalimides are having a five membered ring nitrogen atom flanked
by two carbonyl groups these are also known as cyclic imides. The cyclic imides were able to
produce intramolecular aldol condensation through the formation of C-C bond and C-N bond. In
general, the phthalimide (isoindoline) ring is prepared by the reaction between phthalic anhydride
and various aliphatic or aromatic primary amines in presence of suitable solvent 1. The basic core
structure of the cyclic imides is having the CO-N(R)-CO unit, and these are hydrophobic, neutral
in nature. The phthalimide ring containing compounds contains various biological activities?®.
And many of them are used in drugs, one of the best example, the thalidomide is a drug containing
isoindoline heterocyclic system and it exists in two enantiomeric forms. (S) enantiomer is
teratogenic in nature while (R) enantiomer is a sedative drug. The R form prevents the birth defect
in pregnant women’s. Many of the marine natural products contain isoindoline structural
component 4. The Fig.1 explains the biologically active phthalimide ring containing drug
molecules >1°. Isoindoline-1,3-diones exhibit various biological activities such as antifungal **,
anti-inflammatory 23, anticancer 14°, antimicrobial 1°, antibacterial 7, activity, anticonvulsant *&,
cyclooxygenase inhibitor *°, anticholinesterase activity %, antialzheimer’s activity 2! etc. For
instance, isoindoline-1,3-dione moiety attached with 1,2,4-Triazole rings are find much attention
in the medicinal, and pharmaceutical industry 223, And also the isoindoline ring connected to the
substituted sulfone functional group their activity significantly has been increased 24%°, Owing to
the importance of phthalimide and its derivatives in pharmacology, a new synthetic protocols to

synthesize this moiety dragged considerable attention in the field of organic chemistry.
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Fig.1. The biologically active drug molecules having substituted phthalimide ring.

The literature reports of phthalimides synthesis

Chorell and co-worker?® have reported the one-pot synthesis of a series of 2-substituted
phthalimides from phthalic acid. In this reaction the condensation of phthalic acid with para-
substituted benzoic acid using AcOH or pyridine under microwave irradiation at 150-180 °C leads
to produce substituted phthalimides (Scheme-1.1).

Scheme-1.1

Os__OH
O
R COOH AcOH or Pyridine
+ > N COOH
COOH MW, 150-180 °C
NH, 30 min o

Philoppes and co-worker 27 described an efficient synthesis of the PPA cyclization reaction of
ortho-amino phenol with para-amino benzoic acid at 222 °C to obtain a 2-phenyl benzoxazole or
2-phenyl thiazole followed by condensation with phthalic anhydride to achieve a phthalimide
derivative. These compounds are exhibiting good antitumor activity in MCF-7cancer cell lines
(Scheme-1.2).
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Scheme-1.2

Cx

XH

NH,

O

COOH R

NH,

(" — OO X -G

Nagarajan et al 2 efficiently synthesized the benzo thiazole substituted isoindolines by the
reaction of phthalic anhydride with 2-aminobenzothiazole in presence of ionic liquid [bomim]PF6
at 110 °C for 4 hours to afford the good vyield of the product. And these compounds have been

found to have anti-angiogenic activity (Scheme-1.3)

Scheme-1.3
0 o)
N .
[bmim]PF6 N
O + HN—Y - - 5 N—
CLp + CL<10
O o)

Antunes et al?® developed the microwave assisted synthesis of phthalimide oxadiazole derivatives.
The condensation reaction of phthalic anhydride with amino acid (glycine) in the absence of
solvent to form N-phthaloyl glycine then followed by reaction with oxime under DCC/DMF to
produce the oxime of ester. After cyclization to obtained the phthalimide oxadiazoles. These

derivatives have shown antianalgesic activity (Scheme-1.4)

Scheme-1.4
0 0
MW COOH Ar_ _NH
OH . 2
[j:lé N —Somin. I f + N
o OH
0 e}
X
/s DME, rt
\ P DCC
X = H, 0-CH;, m-CH;, p-CH NH
) 3 3> 3 \[\j O O /N:<
Heat ) Ar

- N

40



Chapter Il

Lima et al ® published a functionalized phthalimide derivative in which the reaction of phthalic
anhydride with p-amino benzoic acid in acetic acid under reflux condition to generate a isoindoline
benzoic acid then reaction with SOCI> in DMF under reflux condition to give a piperazine
substituted phthalimide compounds. These derivatives have shown anti-inflammatory activity has
shown in Scheme-1.5.

Scheme-1.5

X =0, S, NH, N-CH;, N-Ph

Capitosti et al established a series of phthalimides.®! In this the reaction phthalic anhydride with
primary amines in glacial acetic acid under reflux for 3 h to obtain a phthalimide derivatives
(Scheme-1.6). These analogue compounds demonstrated angiogenesis and prostate cancer activity.
Scheme-1.6

3 R
NH2 o ¢ N
AcOH —
N n
Reflux 3h
(@]

= 4-CH, 2-CHj, 3-CH,, 4-CH3, 2-Cl,
3-Cl, 4-Cl, 3,4-Cl

0
[ j: :; ACOH [ Ié
N
©:l<‘< Reflux n
0]

Rani et al ® reported microwave synthesis of 4-amino quinoline phthalimides by the reaction of

substituted phthalic anhydrides with 4-aminoquinolines in DMSO which lead to produce a
quinoline substituted phthalimides. These molecules have displayed promising anti-plasmoidal

activity (Scheme-1.6)
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Scheme-1.7
HN " I 'NH, 0 __
A HN N
A DMSO X
R—g AP " -~ R N—Uin \_4
Cl N/ MW 160 °C
o)
Cl

Huang et al ** published the isoindoline ring containing final compounds. Benzoxazinone on
reaction with HNO3 followed by N-alkylation then NO2 group has been reduced by Fe/AcOH to

afford a primary amine compounds. This on, further reaction with phthalic anhydride to produce

a phthalimide derivatives 5. These compounds were exhibited promising herbicidal activity.

Scheme-1.8

R' o

OJ/:N
H

F

__HNOg
H,SO,

@“ﬁgm

COOR2

NO
J/: Iji 2 Br-CR3R*COOR2 I Ij

COOR2
3

Fe
AcOH

Neumann et al 3* synthesized one-pot protocol for the synthesis of cyclohexane substituted

phthalimide derivatives via hetero Diels-Alder cycloaddition reaction of acetamide, two

equivalents of active methylene containing aldehydes with maleimide in presence of pTSA/AC20

to produce a phthalimide analogue compounds with good yield 90-92% shown in scheme-1.9.
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Scheme-1.9
0
o RZJJ\NH o
i i -R3 TSA R
5 RQJ\H + RZJJ\NHZ + || N-R ZCT, N—R3
O R! (0]

Jacobi Von Wangelin et al * reported an efficient one-pot protocol for phthalimide derivatives
by reacting chiral amides and chiral o, B unsaturated aldehydes with maleimide in presence of
TSA/AC:0 at 120-140°C. (Scheme-1.10).

Scheme-1.10
M
-, "NH
[ H o H ‘/Z)
| NH T a, B unsaturated TSA, AC,0 w "
+ NH, + aldehyde NMP w,,\<
120-140 °C
O o]

Strubing et al % developed the multicomponent synthesis of carbon-heterocyclic imides by the

reaction of amido ester, o, B unsaturated aldehydes with maleimide in presence of (dipolar aprotic
solvent) NMP at 140 °C. Which has shown in scheme-1.11
Scheme-1.11

/O _TSA,AC,0 _
NMP

120-140 °C

Santos et al 3 synthesized substitute sulfonamides the condensation of phthalic anhydride with

different substituted sulfonamide’s in acetic acid at reflux to produce a phenyl sulfonamide
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substituted phthalimide compounds (Scheme-1.12). And these derivatives have identified as

antimycobacterium tuberculosis activity.

Scheme-1.12

0 NH,
Acetic acid O
o + ___reflux @g
I
(0]

O O:?:O

R

Singh et al % developed the synthesis of bromo alkyl isatins. These were synthesized through the
reaction of isatin with di bromo alkane in NaH/DMF to form a N-alkyl isatin then subsequent
reaction with potassium phthalimide in DMF at 60 °C (Scheme-1.13). These substrates have shown
cytotoxic activity.

Scheme-1.13

e} 0]

o + NaH o N 0O
N Br/ﬁ?Br DMF N 0 (L)\
H A, DMF N

Br 60 °C
o]

Sladowska et al *° developed pyrrolo pyridine 1,3-diones by reaction with epichloro hydride in
potassium carbonate to form a N-2,3-epoxy propyl derivative then treated with N-alkyl piperazine
in presence of EtOH/NaOEt to produce a target product with good yields. And these compounds
show pharmacophore properties (Scheme-1.14).

Scheme-1.14

o}

O pr—
O HO —
Me H Me HN N/Q /\
T e c’ KoCOs | T WY T N IR Vel f"‘\ N
N2 *ocl \<g N~ - - N‘ P N R
o) o ©
R

o} o o)

R R
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El-Azab et al *° synthesized a series of phenyl isoindoline-5-carbaximido benzoic acid from
trimellitic anhydride reaction with anthranilic acid in presence of DCM at rt initially to generate a
1,3-dihydro iso benzo furan-5-carboxamide benzoic acid. These compounds on further reaction
with different primary amines in AcCOH/NaOAc under reflux condition to give the title compounds
(Scheme-1.15).

Scheme-1.15
COOH i 7 ;_
L Cl o DCM
X COOH
NH, *
o)

= R-NH
o) (0] :_X 2
N AcOH/AcONa
R-N
H COOH Reflux

Angeli et al * published tetra hydro benzophenanthrolines and dihydro pyrrole isoindole dual

sulfonamides by using the reaction of polycyclic 1,3-diones with benzene sulfonamide to generate
cyclic imides. These moieties show carbonic anhydrase inhibitory activity. (Scheme-1.16).
Scheme-1.16

o (0]

H,NO,S Reflux 4 Y
H,oNO,S SO,NH,

fe) O

(D
y ( nN N n
HNO,S Reflux O S
(0]

H,NO,S SOzNH,

Li et al #? synthesized quinazoline derivatives the cycloaddition reaction of methyleneindolinone

with isocyanide in the presence of boron trifluoride etherate (BF3.OEt3) under heating condition.
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Scheme-1.17
o-R?
© ) NC :
BF3.Et,0 Me
=i AN Me Me 3-El
[ ) .
Z N THF
Heat

Srivastava et al *® efficiently developed diacetyl-2,3-di deoxy-a-D erythro-hex-2-enopyranoside
compound by condensation of N-hydroxy methyl phthalimide with pyranose substrate in presence
of benzene/BF3.0Et; at RT by Ferriers method. Then the double bond of sugar was reduced with
Pd/H: to give saturated derivative with good yield. These compounds active against hypolipidemic
activity shown in schemel.18.

Scheme-1.18

OAC

CAQ
' PdH,  CAO,,

B —

EtOAC

OAC
o)
0
N—CH,-OH CAOQ' / Benzene
o) CAO

Sena et al * reported the reaction of phthalic anhydride with amino 1,2,4-triazole under reflux
condition in presence of acetic acid. Overall in this initially ring opening reaction take place then
cyclization leads to afford a 1,2,4-triazolo phthalimide derivative with high percentage of yield.
Scheme-1.19

P N-N i IN\> i N—-N
- AcOH -
o * H2N/< » H H N/<Nj
N Reflux N
COOH S
0
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Assis et al *° developed the reaction of potassium phthalimide with propargyl bromide in the
presence of DMF/rt to generate N-propargyl phthalimide. This compound further involves in click
reaction with N-azido alkyl phthalimides in presence of Cul to form a bis-phthalimide 1,2,3-

triazole shown in scheme-1.20.

Scheme-1.20
0 0 0
Br\/\ —
N an
N K* N + N
DMF/ 24h Ny
o) o o
CH,Cl,/Et;N
Cul/RT/12h
/N\
0o N N\ o
Dy
N 0
0

Wang et al * reported the synthesis of 2-N-phthalimido 5-sulfonyl 1,3,4-thiadiazoles. The
condensation of thiourea and carbon disulfide under reflux with KOH/EtOH at 70 -75 °C to
produce a five membered cyclized intermediate 1,3,4-thiadiazole, the free NH2 and SH functional
groups on compound further reaction with alkyl halides and phthalicanhydride to form the
corresponding compound-2. Furthermore, the sulphide group converted into sulfone by using H20-

in the presence of acetic acid at 60 °C. These derivatives have shown anticancer activity. (Scheme-

1.21)
Scheme-1.21
0
S N—N N—N
Py _KOH___ ) |, EtOHMNaOH N R, o
H,N” NH,  CS,/EtOH HiN"Ng~~gH  *+ RX HoNTNg7 s
70-75 °C 1 o}

o O N=N AcOH
N—N o\ R' Reflux
e e s J
NT>s” TS~RI AcOH 60 °C
ol o 2
o
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Mane et al *’ reported a series of new anticancer compounds acridine derivatives through the one-
pot reaction of 9-chloroacridine, benzene-1,4-diamine and phthalic anhydride in presence of
methanol and acetic acid at 110 °C has shown in scheme-1.22.

Scheme-1.22

Cl 0
NH MeOH, 70 °C
X 2 AN
+ + 0]
Pz Reflux _
N H,N N
0]

AcOH/110 °C

2.2. Present work

Dipotassium cyanodithioimidocarbonate salt (1) was prepared by the reaction of carbon
disulphide, cyanamide in ethanol/KOH and stirred at rt for 24 h to form a yellow color solid
product (1) “¢4°. And phthalic anhydride, alkyl halides, phenacyl bromides were purchased form
chemical suppliers.

Synthesis of thioalkyl 1,2,4-triazolo isoindoline-1,3-diones. (Scheme-1)
Alkyl/aralkyl/phenacyl thiotriazolyl isoindoline-1,3-diones were synthesized by the reaction of
dipotassium cyanodithioimidocarbonate (1) salt with hydrazine hydrate (2), phthalic anhydride (3)
and alkyl/aralkyl/phenacyl bromides (4) using acetic acid and sodium acetate via a one-pot four-

component synthesis. The good yields of the products were obtained in a short period of time.

Scheme-1: Synthesis of alkyl 1,2,4-triazolo isoindolines.

-t
NC'N\ SK H2N_NH2H20
SK*
1 2 x 9 N-N
AcOH /NaOAc X N/QN»\S'R
X 0 ' . S
X / 80°C,12h X o)
o) X
X R=Br 5(a-t)
X 0]
3 4 X =H, Br
R = Benzyl/ alkyl, allyl/ phenacyl

Reaction conditions: AcOH/NaOAc at 80 °C for 12 h under multicomponent process.
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2.2.1 Results and discussion:

Keeping in view of the biological importance of phthalimides and triazoles we became interested
in exploring these motifs for their biological activity by attaching simple thioether linkage at the
C> position of 1,2,4-triazole. The target compounds (Scheme-1) were synthesized by a four-
component one-pot synthesis involving condensation of dipotassium cyanodithioimidocarbonate
salt (1), hydrazine hydrate (2), phthalic anhydride (3) followed by the addition of
alkyl/aralkyl/phenacyl halides (4) in AcOH/NaOAc at 80 °C. The uniqueness of this reaction is
that without isolation of potential Intermediate-1, we have carried out the reaction. In order to

reduce the number of steps and the reaction time for the formation of 5 a-t.

Scheme-1: Method-1 Outline schematic representation of final compounds (5 a-t).

e N
SK H AcOH/NaOAc

O + R-Br

N SK N=N N—N

NC™ Sy + NHyNH,H,0 _ACOH _ H2N/< . x 30 N—4
rt
Not isolated 80 °C
1
R = 4-Nitrophenacyl, 4-Phenyl phenacyl

4-Fluoro phenacyl, 4- Bromo phenacyl,
Phenacyl, 4-Methoxy phenacyl
4-Methyl phenacyl, Benzyl, 4-Nitro benzyl,
Allyl, n-Butyl, n-Heptyl

X =Br, H

Reaction conditions: 1 (1.0 mmol), 2 (1.5 mmol), 3 (1.0 mmol), 4 (1.0 mmol) was taken in
AcOH/NaOAc heat at 80 °C for 12 h.

Method-I: The final compounds 5a-t can also be synthesized by an alternative procedure (Method-
I1) involving condensation of 1 and 2 in presence of acetic acid to give an intermediate | (Isolated).
This is further reacted with alkyl/aralkyl/phenacyl bromides and phthalic anhydride using acetic
acid and NaOAc to give a final compounds 5a-t. In this one-pot three-component condensation
reaction yield of the products was less (70%) compared to that by Method-1. Compounds obtained
by both methods were found to be identical by their mixed m.p measurements, Co-TLC and
superimposable IR spectra. In the present study out of two methods, we have followed Method-I
for the synthesis of 5 a-t. This is due to its formation of high yields, and short reaction time.
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Scheme-2: Method-11 represents the reaction was carried out without isolation of Intermediate-I

_N__SK*
o + NHyNHyH,0 _AcOH _ HZN/( x 3 0 \/@(&N/< )\ R
t

. -
SK AcOH/NaOAc

I 80 °C
1 2

X =H, Br
R = Alkyl/aralkyl/phenacyl

Scheme-2: Method-I1 explains one-pot four-component synthesis.

The optimization of the reaction was carried out for compound 5j (Table-2) in methanol, ethanol
and acetic acid in this conditions the yields are low. On the other hand, when toluene was used as
solvent there is no reaction even at 60 °C. Whereas acetic acid in ethanol, acetic acid in HCI were
used, there is no appreciable change in the yield of the product. Finally, we have carried out the
reaction with 1.0 mmol of sodium acetate in acetic acid. Fortunately, high yield of the product was
obtained with 85% vyield at 80 °C.

Table 1 The optimization reaction conditions®. Solvent and catalyst screening for the one-pot

four component synthesis using sodium acetate as a catalyst.

Entry Solvent Catalyst Temp (°C) Time (h)  Yield (%0)°
1. MeOH - 60 12 12
2 EtOH - 60 12 18
3 AcOH - 60 12 20
4 Toluene - 60 12 n.ré
5. AcOH HCI 70 14 30
6 AcOH EtOH 70 14 39
7 AcOH NaOAc(0.5 mmol) 65 14 50
8 AcOH NaOAc (0.1 mmol) 70 14 80
9 AcOH NaOAc(1.5 mmol) 80 12 854

[BIReaction conditions: 1 (1.0 mmol), 2 (1.0 mmol), 3 (1.0 mmol), 4 (1.0 mmol). PlPercentage
yield of the product. IIn. r = no reaction. [/AcOH/NaOAc (1.5 mmol) at 80 °C for 12 h to get 85%
yield.
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Therefore, among the screened solvents, used catalysts, and conditions AcOH and NaOAc under

reflux gave desired product with 85% vyield in 12 hours. The optimized conditions of the title

compound 5j as shown in Table-1.

After getting the optimal conditions we confirmed sodium acetate as the best catalyst in acetic

acid, by using optimization conditions we have generalized this method and the scope of this

reaction has been extended to other phenacyl bromides, alkyl, allyl and benzyl bromides to acquire

the final compounds (5 a-t) in good yields with the above mentioned enthusiastic results as an

incitement and considering the significance of this methodology, it was delineated to synthesize

the products with various substituents. The variation in the yields of the final products probably

due to the electronic factors.

Table 2: Substrate scope of alkyl/aralkyl/phenacyl thiotriazolyl isoindoline-1,3-diones (5a-t).

Product
5a

5b

5c

5d

5e

5f
59

5h

i
5

5k

5

5m
5n
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H
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op Br H3;C—(CH,),-CH,~ 11 80
5q Br P 10 85
5r H O,?i 14 82
5s Br H;C—(CH,)5-CH,- 10 81
5t H H;C—(CH,)5-CHy- 15 81

Table-2. Shows the synthesized derivatives with their yields and conditions.

Further, we have derivatized the sulfide compound into sulfones with the use of oxidizing reagent
H20.. In this context, we have converted the sulfide compound 5r (scheme-1) into sulfone 6a with
H20> in acetic acid/EtOH reaction medium. The structure 6a was confirmed by its spectral data.
(IR, *H-NMR, C-NMR, Mass spectrum). In the proton NMR spectrum of compound 6a, the
sulfone attached methylene (SO>-CH>) two protons appeared as a singlet in the downfield

compared with the corresponding thioether attached methylene (S-CH>) protons.

Scheme-3: Synthesis of sulfone by one-pot three-component condensation reaction.

O AcOH, 0 N—N
/E—Rj)\ Br H,0, (4.0 euivalents) N— W //O\/©/
HoN SH * * o N g
O,N 60°C3h 3
o
I 6a

NO,

Reaction conditions: 1 (1.0 mmol), 4-nitro benzyl bromide (1.0 mmol), Phthalic anhydride (1.0
mmol), H20. was taken (4.0 mmol) in EtOH/AcOH heat at 60 °C.

2.2.2 In-vitro cytotoxic activity:

The cytotoxicity study has been carried out using HeLa cell lines and are expressed MTT assay >°.
Among the tested compounds the three compounds 5m, 5p, 5r were displayed a notable
cytotoxicity in HeLa cell line. In the present study, we have observed that the treatment of the
HeLa cancer cell lines with isoindoline series of compounds at different concentrations by taking
100uL has a control. The obtained results from cytotoxic tests against HeLa cell line indicated that
all the three compounds 5m, 5p, 5r exhibited significant cytotoxic effects in comparison with the

control. Although significant changes between different compounds in the same concentrations
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were not observed (5m, 5p, 5r), in compounds 5m, 5p and 5r at the highest tested concentrations

demonstrated mild cytotoxic effects in Hela cell line has shown in the Fig.2.

Cytotoxicity assay

120

100
= 80
> m5M

60
2 m sp
g 40 5R
Z 20
(o]
O 0 I
Control 500 uM 100 uM 10uM 0.1uMm

Concentration (uM / mL)

Fig.2: Cytotoxic assay of the compounds 5m, 5p, 5r at different concentrations

Table-3: Effects of synthesized compounds 5m, 5p, 5r proliferation was determined using

MTT assay.
Compound | Control | 100uM | 10pM | 1pM | 0.1pM | ICsopM
5m 100uM | 67.65 | 34.33 | 16.64 | 844 | 102.7059
5p 100uM | 72556 | 4567 | 2877 | 7.89 | 680517
5r 100uM 1 5677 | 2423 | 16.84 | 11.76 | 206.875
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Inhibition (%)

Concentration / Log score
Fig.3: Represents the inhibition coefficient of the 5m, 5p, 5r molecules in HeLa cell lines.

2.2.3 Molecular Docking Studies.

In silco studies revealed that, all the synthesized compounds displayed an excellent binding
energies towards the receptor active sites. Molecular docking results were identified on the basis
of ideal interacted ligands were examined based on the highest ligand binding poses were
identified using the high docking score °. Among all the compounds 5m, 5p, 5r displayed good
docking scores. The number of H-bonds, hydrophobic interactions at receptor site of 5m, 5p, 5r
compounds shown in Fig. 4. The Table-4 represents the docking energy, interacting atoms and
Hydrogen bond distance.

Compound 5m Compound 5p
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Compound 5r

Fig.4 Molecular interactions of the receptor with ligands 5m, 5p, 5r

Table-4 Docking energy values with different interacting atoms and ligands.

Analo Receptor(4GG5) Ligand H-bond Docking energy
g (Interacting atoms) (atoms) Distance (A) (Kcal/mol)

Tyr 1230-NH 0] 3.09

oa Arg 1208-NE 0] 3.02 -74.652
Asn 1209-NE 0] 3.15

tb Asn 1167-ND2 0] 2.64 80.657

Asp 1164-0OD1 NH 3.10 o

5¢c Arg 1208-0 NH 2.89 -83.986

54 Asp 1222-N ) 3.10 76.154
Asn 1209-0OD1 NH 3.61
Asn 1209-0 NH 2.92

5e -79.785
Asp 1222-N O 3.12

- Met 1160-NH O 3.10 -80.863

Pro 1158-0 NH 3.29 -79.851
Asp 1204-OD1 NH 2.65

-83.192
> Asp 1228-0 NH 3.00
Met 1160-N 0] 3.10

oh Pro 1158-O NH 3.25 75804
. Asp 1222-N 0] 2.79

o Ala 1226-0 NH 3.56 -8l.4z1
. Asp 1204-0OD2 NH 2.53

-80.97
°) Asp 1222-0D2 NH 2.86 80.970
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Arg 1227-NE 0 3.18
Asp 1222-N 0 2.82

oK Arg 1208-0 NH 3.57 7o.214
Asp 1222-N ) 2.80

ol Arg 1208-0 NH 3.11 82.385
Asp 1228-0 NH 2.56

om Asp 1222-0D2 NH 2.76 86.214

5n Asn 1209-0OD1 NH 3.00 -76.500

50 Arg 1208-0 NH 3.07 -80.896
Asn 1209-0OD1 NH 2.64

5p Asn 1209-0OD1 OD1 2.81 -83.564
Arg 1208-NE @) 2.95

5q Asn 1209-0D1 NH 2.86 -82.645
Asn 1167-ND2 0 2.60

5r Asn 1209-0OD1 NH 2.75 -85.502
Arg 1208-NE 0 2.97

5s Asn 1209-0D1 NH 2.86 -82.645

Table-4: Docking energy values of the ligand atoms with amino acid residues.

2.2.4 DFT Calculations:

The geometries of various reactants, intermediates (IMs), transition structures (TSs), and products
were fully optimized without any geometrical/symmetrical constraints using density functional
theory (DFT) based Becke’s three parameter hybrid exchange functional and Lee—Yang—Parr
correlation functional (B3LYP) employing the 6-31G* basis set %> 53, The stationary points on
potential energy surface were characterized as local minima by the frequency calculations at the
same level of theory. The TSs were confirmed by the existence of a characteristic single imaginary
frequency. All the thermodynamic parameters were calculated in the gas phase at 298.15 K
temperature and 1 atm pressure. All the calculations were performed using the Gaussian16 suite
of programs. >

The proposed mechanism of the formation of 5(a-t) from I and 3 is shown in below. The same
mechanism is investigated using density functional theory based calculation to probe the energetics

of formation of product.
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Plausible reaction mechanism (Fig. 5a) for the synthesis of title compounds. (5 a-t)

O®H

0 (0"
CH,COOH [
0 —2 % )
Reflux
0 0

M2
O NN o6
/N
@V%N*SH NaOAC
H
0 P

Q4 NN
L D q
¢ g B N
-H,0 o \%

Fig. 5a: mechanism of the reaction

It can be noted from the proposed mechanism that the intermediate 1M3 is vital in the process of

product formation. Therefore, the relative energy of formation of IM3 was analyzed exclusively.

The relative energy profile for the formation of intermediate IM3 from | and 3 via various

intermediates are shown in Fig.5. The same figure also presents the optimized geometries of

various TSs. Optimized geometries of reactants and various intermediates are provided in

electronic supplementary information along with important geometrical parameters.
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Fig.5: Relative energy profile of step-1 i.e. formation IM3 from reactants | and 3.
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This reaction involves a two-step process/mechanism for the completion of the reaction. In the
first step of the reaction, the lone pair of N-atom of 5-amino-4H-1,2,4-triazole 3-thiol reacts with
one of the carbonyl carbon of the phthalic anhydride in the presence of acetic acid give raise to the
first intermediate (IM1) having an energy of 2.34 kcal/mol. The bond distance between N of 5-
amino-4H-1,2,4-triazole-3-thiol and a carbonyl carbon atom of the phthalic anhydride is found to
be 1.42 A. The ring opening in IM1 leads to the form intermediate state (IM2). The calculated
energy barrier for the proton rearranging is 25.18 kcal/mol. Comparative analysis of relative
energies clearly indicates that the IM2 is energetically more stable than that of reactants. Typically,
the calculated relative energy of IM2 is -8.77 kcal/mol. The active intermediate (IM3) formed via
dehydration of IM2. Calculated relative energy of TS3 and IM3 are 34.70 and 2.92 kcal/mol,
respectively. As mentioned, the IM3 involves in the second step of reaction to form a product.
The IM3 reacts with different alkyl bromides to yield the products. The potential energy profile of
the formation of a product from IM3-Br, is given in Fig.6. The geometries of transition state and
products are also shown in the same. It can be noted from the same figure that the relative energy
of formation of TS needs 24.4 kcal/mol energy. Furthermore, the product 5k is energetically more
stable when compared with the IM3-Bra.
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Fig.6: Relative energy profile of formation of (A) 5k and (B) 5g.

Comparative analysis of the energetics of formation of 5k and 5g. This clearly indicates the

energetic stability of 5k. Indeed, the energetics obtained using DFT calculations are clearly akin
with that of experimental yield.
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2.3. Conclusions

We have developed a novel substituted 1,2,4-triazolo isoindolines containing thioether linkages
with a Gabriel phthalimide reaction by using multicomponent approach. The MCR reactions have
several advantages, such as no need of drastic reaction conditions, easy work-up procedure, no
application of column chromatography for purification of the compounds and products were
obtained in a good yield. The newly synthesized compounds were evaluated for them in-vitro
anticancer activity against Hela cell lines. The compounds 5m, 5p, 5r have shown potent cytotoxic
activity. Molecular docking studies and DFT calculations were carried out. The docking analysis

for synthesized compounds were showing good binding interaction with amino acid residues.

2.4. Experimental

2.4 a. General procedure for the synthesis of 2-(5-((2-oxo/alkyl-2-phenylethyl) thio)-4H-1,2,4-
triazol-3-yl) isoindoline-1,3-dione. (5a-t). Method-1

Dipotassium cyanodithioimidocarbonate salt [1] (1.0 mmol) was taken in 5ml of acetic acid and
then dropwise addition of hydrazine hydrate [2] (1.5 mmol) was carried out with stirring at rt for
24 hrs to form a white color solid 5-amino-4H-1,2,4-triazole-3-thiol (I). without isolation of this
intermediate phthalic anhydride [3] (1.0 mmol) was added, and refluxed for 8-10 h. Then
alkyl/aralkyl/phenacyl bromides (1.0 mmol) and NaOAc (1.0 mmol) were added and refluxed for
4-5 h, by monitoring the TLC. After completion of the reaction, the reaction mixture was poured
into ice cold water. Solid separated was filtered and recrystallized from ethanol.

2.4 b. Synthesis of 2-(5-((2-oxo/alkyl-2-phenylethyl) thio)-4H-1,2,4-triazol-3-yl) isoindoline-1,3-
dione. (5a-t). Method-II

Dipotassium cyanodithioimidocarbonate salt [1] (1.0 mmol) was taken in 5ml of acetic acid and
then dropwise addition of hydrazine hydrate [2] (1.5 mmol) was carried out stirring at rt for 24 hrs
to form a white color solid 5-amino-4H-1,2,4-triazole-3-thiol (1). The compound I was isolated
and recrystallized from ethanol. The isolated intermediate I (1.0 mmol) was reacted with phthalic
anhydride [3] (1.0 mmol) in presence of acetic acid solvent under reflux for 8-10 h. Then
alkyl/phenacyl bromides (1.0 mmol) and NaOAc (1.0 mmol) were added and refluxed for another
4-5 h, by monitoring the TLC. After completion of the reaction, the reaction mixture was poured

into ice cold water. Solid separated was filtered, recrystallized with ethanol.
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2.4 c. Synthesis of 2-(5-((4-nitrobenzyl)-4H-1,2,4-triazol-3-yl) isoindoline-1,3-dione. (6a)

A mixture of 5-amino-4H-1,2,4-triazole-3-thiol (I) (1 mmol) and p-NO. benzyl bromide (1.0
mmol) was taken in EtOH (1mL) and refluxed for 2 hours by monitoring TLC. After completion
of the reaction, ethanol was evaporated and then 3 mL of acetic acid, phthalic anhydride was added
(2.0 mmol) and refluxed for another 5-6 hours followed by addition of H20. (4.0 mmol). The
reaction was further refluxed for 2-3 hours. After completion of the reaction as checked by TLC
the solid separated was filtered and washed with water and recrystallized from methanol.

2.4 d. Experimental procedure for cytotoxic activity.

The test samples were dissolved in distilled dimethyl sulphoxide (DMSQO) and maintained a
medium to get a stock solution of 1 mg/mL concentration. The cytotoxicity assays were carried
out on 96 well microtitre plates containing 10,000 cells/well. Medium containing different
concentrations of the test compounds were added after 24 h of partial monolayer cell formation.
Control cells were incubated in a culture medium without test compounds. The microtitre plates
were incubated at 370 °C in a humidified incubator with 5% CO; for 72 h. After incubation for 72
h, 20uL of MTT solution (2mg/mL in PBS) was added to the plates and was further incubated for
4 h at 37 °C. MTT-formazon crystals formed were dissolved in 100 puL of DMSO and the optical
density was read with a microtitre plate reader (Biorad) at 570nm. To perceive growth inhibition
by the series of compounds, cells were seeded onto 96-well plates at a density of 5x10%/well before
compound treatment. Cytotoxicity of the series of compounds in a variety of cell lines was
determined using the MTT assay after incubation of cells with these compounds at various
concentrations for 3 days. The concentration of 50% inhibition of cell growth (ICso) was
determined by interpolation of the dose-response curves.

2.4 e. Experimental procedure for molecular docking

All the synthesized chemical (ligand) compounds of thio alkylated 1,2,4-triazole isoindoline-1,3-
diones were drawn 2D models using Chemdraw software and converted into 3D structures using
Open Babel GUI version 2.3.2 (Open Bable GUI; Chris Morley, USA). Molecular energy was
minimized using the Energy minimization module of Maestro Tool (Schrodinger software) under
the CHARMM force field. The Crystal structure of c-Met in the complex was retrieved from
Protein Data Bank (PDB ID: 4GG5.pdb). The structure preparation and correction of protein were
performed using the protein preparation suite. The target protein file was prepared by removing
the structural water molecule, heteroatoms, and co-factors by leaving only the residues associated
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with protein by using protein preparation suite (wizard) tool was used to prepare target protein file
addition of polar hydrogens to the macromolecule, an essential step to correct the calculation of
partial charge by keeping all other values as default. Further grid was prepared and used for
molecular docking was performed using Glide docking module and obtained results were

scrutinized based on highest dock score and number of H-bonds by visualizing in Pymol.
2.5. Characterization data of synthesized compounds (5a-t)

2-(5-((2-(4-Nitrophenyl)-2-oxoethyl)thio)-4H-1,2,4-triazol-3-yl)isoindoline-1,3-dione(5a):
Yellow solid; yield 85%; mp: 218-219 °C; IR (KBr) cm™: Q /sz ﬁNO
3229 (NH), 1790 (C=0), 1727 (C=0), 1704 (C=0), 1600 A E S 5

(C=N), 1527 (NO2 asymmetric), 1320 (NOz symmetric); :H- o

NMR (400MHz, DMSO-ds, 6 ppm): 5.06 (s, 2H, S-CH>), 7.94-8.02 (m, 4H, Ar-H), 8.25 (d, J =
8.4 Hz, 2H, Ar-H), 8.37 (d, J = 8.4 Hz, 2H, Ar-H), 14.57 (brs, 1H, NH); **C-NMR (100 MHz,
DMSO-de, & ppm):19.0, 124.3, 124.5, 130.3, 131.4, 135.8, 140.4, 150.6, 166.2, 193.0; (ESI-
HRMS) (m/z): [M+H]* 410.0558 Anal. Calcd for C1sH11NsOsS: C, 52.81; H, 2.71; N, 17.11; S,
7.83. Found: C, 52.85; H, 2.75; N, 17.14; S, 7.86.

2-(5-((2-([1,1-Biphenyl]-4-yl)-2-oxoethyl)thio)-4H-1,2,4-triazol-3-yl)isoindoline-1,3-dione
(5b): White solid; yield 89%; mp: 230-231 °C; IR (KBr) cm’

Ph
O N-N
113061 (NH), 2908 (C-H), 1797 (C=0), 1733 (C=0), 1693 L »\sﬁ(@
o)

(C=0), 1601 (C=N); 'H NMR (400MHz, DMSO-ds, 5 ppm):
5.07 (s, 2H, S-CHy), 7.42-7.53 (m, 4H), 7.76 (d, J = 7.6Hz, 2H), 7.86 (d, J = 8Hz, 2H), 7.96-8.00
(m, 3H,), 8.11(d, J = 8Hz, 2H),14.56 (brs, 1H, NH); 3C-NMR (100 MHz, DMSO-ds, § ppm): 23.0,
1245, 127.4, 127.5, 129.0, 129.5, 129.6, 131.4, 134.4, 135.8, 139.2, 145.6, 150.6, 153.3, 166.4,
193.0; (ESI-HRMS) (m/z): [M+H]* 441.1015; Anal. Calcd for C2sH16N4OsS: C, 65.44; H, 3.66;
N, 12.72; S, 7.28. Found: C, 65.49; H, 3.62; N, 12.75; S, 7.24.

2-(5-((2-(4-Fluorophenyl)-2-oxoethyl)thio)-4H-1,2,4-triazol-3-yl)isoindoline-1,3-dione (5¢):
White solid; yield 80%; mp: 225-226 °C; IR (KBr) cm™: 3335 (NH), 2914 (C-H), 1794 (C=0),
1768 (C=0), 1680 (C=0), 1542 (C=N); *H-NMR (400MHz, DMSO-ds, 5 ppm): 5.01 (s, 2H, S-
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CHy), 7.39 (t, J = 8.8 Hz, 2H), 7.95-8.00 (m, 2H), 8.10-8.13

F
(m, 2H), 8.13 - 8.10 (m, 2H), 14.53 (brs, 1H, NH); *C-NMR 2 /z—"\j\ ﬁ(©/
3 :N N
d o]
0

(100 MHz, DMSO-ds, & ppm): 21.4, 116.2, 116.4, 124.5,
131.3, 131.9, 132.0, 132.3, 135.9, 164.5, 166.3, 172.6,
167.0, 192.1; (ESI-HRMS) (m/z): [M+H]* 383.0612; Anal. Calcd for C1sH1:FN4OsS: C, 56.54;
H, 2.90; N, 14.65; S, 8.38. Found: C, 56.57; H, 2.93; N, 14.69; S, 8.34.

2-(5-((2-(4-Bromophenyl)-2-oxoethyl) thio)-4H-1,2,4-triazol-3-yl)isoindoline-1,3-dione (5d):
Orange solid; yield 88%; mp: 209-210 °C; IR (KBr) cm™: 3277

Br
(NH), 3066 (C-H), 1796 (C=0), 1734 (C=0), 1701 (C=0), 0 N/Z_r\\j)\sﬁ(@
N
< Q b o
(6]

1564 (C=N); *H-NMR (400MHz, DMSO-ds, & ppm) : 5.00 (s,

2H, S-CH>), 7.78 (d, J = 8.4 Hz, 2H),7.94-7.96 (m, 4H), 8.00

(d, J = 2.4 Hz, 2H), 14.53 (brs, 1H, NH); **C-NMR (100 MHz, DMSO-ds, 5 ppm): 21.5, 121.7,
128.4, 130.8, 130.8, 131.1, 132.2, 132.3, 132.3, 134.6, 137.6, 152.6, 162.2, 192.7; (ESI-HRMS)
(m/z): [M+H]* 442.9811; Anal. Calcd for C1sH11BrNsOsS: C, 48.77; H, 2.50; N, 12.64; S, 7.23.
Found: C, 48.74; H, 2.53; N, 12.60; S, 7.27.

2-(5-((2-Oxo-2-phenylethyl)thio)-4H-1,2,4-triazol-3-yl)isoindoline-1,3-dione (5e):
Light yellow solid; yield 89%; mp: 205-206 °C; IR (KBr) cm™: 3064 (NH), 2914 (C-H), 1794

(C=0),1735 (C=0), 1698 (C=0), 1567 (C=N); H-NMR SN
L s
i 0
[6)

(400MHz, DMSO-dg, & ppm): 5.02 (s, 2H, S-CHy), 7.28-7.41
(m, 5H), 7.98-8.03 (m, 4H); 14.53 (brs, 1H, NH); *C-NMR
(100 MHz, DMSO-ds, 6 ppm): 27.7, 124.5, 128.8, 129.3, 131.3, 134.3, 135.5, 135.9, 154.3, 166.3,
193.5; (ESI-HRMS) (m/z): [M+H]" 365.0707; Anal. Calcd for C1gH12N403S: C,59.33; H, 3.32; N,
15.38; S, 8.80. Found: C, 59.30; H, 3.35; N, 15.35; S, 8.84.

2-(5-(Butylthio)-4H-1,2,4-triazol-3-yl)isoindoline-1,3-dione (5f): White solid; yield 81%; mp:
230-231 °C; IR (KBr) cm: 3098 (NH), 2954 (C-H),1743 (C=0), 0 nen

1714 (C=0): 1619 (C=N); *H-NMR (400MHz, DMSO-ds, 5 ppm): N*N%SM
0.93 (t, J = 7.4 Hz, 3H), 1.44 -1.48 (m, 2H), 1.69 (t, 2H), 3.18 (t, o

J=7.0 Hz, 2H), 7.91-8.02 (m, 4H), 14.33 (brs, 1H, NH); 3C-NMR (100 MHz, DMSO-ds, 5 ppm):
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13.8,21.4, 31.6, 124.5, 131.4, 135.8, 150.4, 165.9; (ESI-HRMS) (m/z): [M+H]* 303.0906; Anal.
Calcd for C14H14N405S: C, 55.62; H, 4.67; N, 18.53; S, 10.60. Found: C, 55.65; H, 4.70; N, 18.49;
S, 10.63.

2-(5-(Benzylthio)-4H-1,2,4-triazol-3-yl)isoindoline-1,3-dione (59):
White solid; yield 84%; mp: 210-211 °C; IR (KBr) cm™: 2930 (NH),
2886 (C-H), 1743 (C=0), 1714 (C=0), 1600 (C=N): H-NMR doﬂ A’f:\‘%s
(400MHz, DMSO-ds, 6 ppm): 4.46 (s, 2H, S-CH>), 7.28-7.41 (m, . H /\©
5H), 7.98-8.03 (m, 4H), 14.57 (brs, 1H, NH); **C-NMR (100 MHz, DMSO-ds, ppm): 35.5 (C3),
123.9 (C12 & Ci5), 124.0 (C7), 124.5 (C5 & Co), 130.3 (Cs & Cs), 130.7 (C11 & Cy¢), 131.4 (C13 &
Cu4), 135.9 (Cs), 145.9 (Cy), 147.2 (C1), 166.2 (C10 & C17); (ESI-HRMS) (m/z): [M+H]* 337.1552;

Anal. Calcd for C17H12N4O2S: C, 60.70; H, 3.60; N, 16.66; S, 9.53. Found: C, 60.73; H, 3.57; N,
16.70; S, 9.50.

4,5,6,7-Tetrabromo-2-(5-((4-nitrobenzyl)thio)-4H-1,2,4-triazol-3-yl)isoindoline-1,3-dione
(5h): Yellow solid; yield 90%; mp: 207-208 °C; IR (KBr)
cm’: 3115 (NH), 2850 (C-H), 1744 (C=0), 1698 (C=0), Br A »\S/\Q\
N
NO

1598 (C=N), 1518 (NO» asymmetric), 1343 o H

(NOzsymmetric); *H-NMR (400MHz, CDCls+DMSO-ds, %" Br

8 ppm): 4.51 (s, 2H, S-CHy), 7.63 (d, J = 6.8 Hz, 2H), 8.13 (d, J = 8.4 Hz, 2H), 14.49 (brs, 1H,
NH): 2C-NMR (100MHz, DMSO-ds, 5 ppm): 35.7, 121.8, 124.0, 130.6, 131.2, 137.6, 145.8,
147.2, 162.2; (ESI-HRMS) (m/z): [M+H]* 693.7025; Anal. Calcd for C17H7BraNsO4S: C, 29.30;
H, 1.01; N, 10.05; S, 4.60. Found: C, 29.33; H, 1.05; N, 10.09; S, 4.64.

2-(5-(Allylthio)-4H-1,2,4-triazol-3-yl)isoindoline-1,3-dione  (5i):
White solid; yield 86%; mp: 224-225 °C; IR (KBr) cm™: 3084 (NH),
2925 (C-H stretch), 1743 (C=0), 1714 (C=0), 1535 (C=N), 1503
(C=C); 'H-NMR (400 MHz, DMSO-ds, 5 ppm): 3.84 (d, J = 6.8 Hz,
2H), 5.12 (d, J = 10.0 Hz, 1H), 5.28 (d, J = 17.2 Hz, 1H), 5.88-5.98 (m, 1H), 7.95-8.02 (m, 4H),
14.56 (brs, 1H, NH); **C-NMR (100 MHz, DMSO-dg, 5 ppm): 35.1, 119.2, 124.5, 131.4, 133.4,

(0] N—’\\l
/
N/(N)\S/\/
|

H
0o
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135.8, 150.8, 152.6, 166.4; (ESI-HRMS) (m/z): [M+H]* 287.1379; Anal. Calcd for C13H10N4O>S:
C, 54.54; H, 3.52; N, 19.57; S, 11.20. Found: C, 54.50; H, 3.55; N, 19.54; S, 11.23.

2-(5-((2-(4-Methoxyphenyl)-2-oxoethyl)thio)-4H-1,2,4-triazol-3-yl)isoindoline-1,3-dione
(5j): White solid; yield 85%; mp: 222-223 °C; IR (KBr) cm’
13442 (NH), 1795 (C=0), 1733 (C=0), 1698 (C=0), 1572 2 /zfrg)\ ﬁome
(C=N); 'H-NMR (400MHz, DMSO-ds, 5 ppm): 3.85 (s, 3H, LN >

OCHs), 4.96 (s, 2H, S-CHy), 7.07 (d, J = 8.8 Hz, 2H, ArH), 2

7.95-8.02 (m, 6H, ArH); 14.53 (brs, 1H, NH); *C-NMR (100MHz, DMSO-ds, & ppm): 26.3, 56.0,
114.5,124.5,128.4,131.3, 131.4,135.8, 150.7, 164.1, 166.4, 191.7; (ESI-HRMS) (m/z): [M+H]*
395.0817; Anal. Calcd for C19H14N4O4S: C, 57.86; H, 3.58; N, 14.21; S, 8.13. Found: C, 57.90; H,

3.55; N, 14.24; S, 8.16.

4,5,6,7-Tetrabromo-2-(5-((2-(4-nitrophenyl)-2-oxoethyl)thio)-4H-1,2,4-triazol-3-
yl)isoindoline-1,3-dione (5k): Yellow solid; yield 91%;

mp: 255-256 °C; IR (KBr) cm™: 3342 (NH), 2925 (C-H L9 New NO:
stretch), 1743 (C=0), 1693 (C=0), 1583 (C=N), 1527 | &Q/QN\ Sﬁo(@

(NO, asymmetric), 1342 (NOz symmetric); 'H-NMR "

(400MHz, DMSO-ds, 6 ppm): 5.07 (s, 2H, S-CH>),

8.25(d, J=8.8 Hz, 2H), 8.37 (d, J = 8.4 Hz, 2H), 14.62 (brs, 1H, NH); **C-NMR (100MHz, DMSO-
de, 6 ppm): 16.3, 121.7,122.0, 124.3, 130.2, 130.7, 130.9, 131.1, 136.7, 137.7, 150.5, 162.1, 166.4,

192.9; (ESI-HRMS) (m/z): [M+H]" 721.6986; Anal. Calcd for C1gH7BrsNsOsS: C, 29.82; H, 0.97;
N, 9.66; S, 4.42. Found: C, 29.86; H, 0.93; N, 9.43; S, 4.45.

(0]
Br Br

2-(5-(Benzylthio)-4H-1,2,4-triazol-3-yl)-4,5,6,7-tetrabromoisoindoline-1,3-dione(5l):
Yellow solid; yield 90%; mp: 215-216 °C; IR (KBr) cm™: 3132
(NH), 2933 (C-H stretch), 1779 (C=0), 1741 (C=0), 1550 g O /Z_h\l%

(C=N), 663 (C-Br stretch); *H-NMR (400MHz, DMSO-ds, § |&r A E S@
ppm): 4.45 (s, 2H, S-CHy), 7.27 — 7.39 (m, 5H, Ar-H), 1461 | & . ©

(brs, 1H, NH); *C-NMR (100MHz, DMSO-ds, § ppm): 21.5, 121.7, 128.0, 129.0, 129.3, 131.2,
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137.3, 137.6, 150.4, 152.9, 162.3, 172.4; (ESI-HRMS) (m/z): [M+H]" 650.7170; Anal. Calcd for
C17HsBraN4O,S: C, 31.32; H, 1.24; N, 8.59; S, 4.92. Found: C, 31.35; H, 1.26; N, 8.62; S, 4.95.

2-(5-(Allylthio)-4H-1,2,4-triazol-3-yl)-4,5,6,7-tetrabromoisoindoline-1,3-dione (5m):
Yellow solid; yield 88%; mp: 296-297 °C; IR (KBr) cm™: 3107
(NH), 2926 (C-H stretch), 1782 (C=0), 1741 (C=0), 1693 B 5 /z—rﬂ o
(C=0), 1551 (C=N), 1500 (C=C); 'H-NMR (400MHz, CDCl; Br\&ﬁ E °
+DMSO-ds, 5 ppm): 3.81 (d, J = 6.8 Hz, 2H, CH). 5.12 (d, I = | &’ &

10.0 Hz, 1H), 5.27 (d, J = 17.2 Hz, 1H), 5.88-5.98 (m, 1H), 14.37 (brs, 1H, NH); 3C-NMR
(100MHz, DMSO-ds, & ppm): 35.1, 119.2, 121.7, 131.2, 133.4, 137.6, 150.7, 162.3; (ESI-HRMS)
(m/z): [M+H]* 598.7012; Anal. Calcd for C13HsBrsN4O,S: C, 25.94; H, 1.00; N, 9.31; S, 5.33.
Found: C, 25.91; H,1.04; N, 9.34; S, 5.30

4,5,6,7-Tetrabromo-2-(5-((2-(4-methoxyphenyl)-2-oxoethyl)thio)-4H-1,2,4-triazol-3-
yl)isoindoline-1,3-dione (5n): Yellow solid; vyield

OMe
87%; mp: 254-255 °C; IR (KBr) cm™: 3098 (NH), 2906 | &r ONJ—N Sﬁ
N
Br I

(C-H), 1742 (C=0), 1658 (C=0), 1594 (C=N); H- b o)

NMR (400MHz, DMSO-ds, 6 ppm): 3.85 (s, 3H, [ B  &r

OCHz3), 4.97 (s, 2H, S-CH>), 7.08 (d, J = 8.8 Hz, 2H), 8.00 (d, J = 8.8 Hz, 2H), 14.59 (brs, 1H,
NH): 13C-NMR (100MHz, DMSO-ds, 8 ppm): 26.5, 56.0, 114.5, 121.7, 128.3, 131.0, 131.3, 137.6,
162.2, 164.1, 191.6; (ESI-HRMS) (m/z): [M+Na]* 730.7029; Anal. Calcd for C19H10BraN4NaO.S:
C,32.14; H,1.42; N, 7.89; S, 4.52. Found: C, 32.15; H, 1.45; N, 7.85; S, 4.55.

(0]

4,5,6,7-Tetrabromo-2-(5-((2-(4-bromophenyl)-2-oxoethyl)thio)-4H-1,2,4-triazol-3-yl)
isoindoline-1,3-dione (50): Yellow solid; yield 92%;

Br
mp: 334-335 °C; IR (KBr) cm': 3324 (NH), 2964 (C-H), | & 1 R Sﬁ
)):(( NT N
Br I

1783 (C=0), 1743 (C=0), 1683 (C=0), 1584 (C=N); 'H- R o

NMR (400MHz, DMSO-ds, 3 ppm): 5.00 (s, 2H, S-CH2), | 8" &r

7.78 (d, J = 8.4 Hz, 2H), 7.95 (d, J = 8.4 Hz, 2H), 14.60 (brs, 1H, NH); 3C-NMR (100MH_,
DMSO-ds, 3 ppm): 21.5, 121.7, 128.4, 130.8, 130.8, 131.1, 132.2, 132.3, 134.6, 137.6, 162.2,

(0]
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192.7; (ESI-HRMS) (m/z) : [M+H]" 756.6221; Anal. Calcd for C1sH7BrsN4OsS: C, 28.49; H, 0.93;
N, 7.38; S, 4.22. Found: C, 28.45; H, 0.97; N, 7.34; S, 4.26.
4,5,6,7-Tetrabromo-2-(5-(butylthio)-4H-1,2,4-triazol-3-yl)isoindoline-1,3-dione(5p):

White solid; yield 80%; mp: 256-257 °C; IR (KBr) cm™: 3320

1 - ’ = ’ = 1 = 1 - Br -
(NH), 3100 (C-H), 1789 (C=0), 1737 (C=0), 1612 (C=N); 'H O NN
? ::N/(N»\S/\/\
Br I

NMR (400MHz, DMSO-ds, 5 ppm): 0.88 (t, J = 7.2 Hz, 3H),

1.37-1.42 (m, 2H),1.60-1.66 (m, 2H), 3.18 (t, J = 7.0 Hz, 2H), | &’ &,
14.55 (brs, 1H, NH); *C-NMR (100MHz, DMSO-ds, & ppm): 13.8, 21.4, 31.5, 32.0, 121.7, 122.1,
131.0, 131.2, 136.5, 137.6, 162.3, 166.3; (ESI-HRMS) (m/z): [M+H]* 614.7330; Anal. Calcd for
C1H10BrsN40,S: C, 27.21: H, 1.63; N, 9.07; S, 5.19. Found: C, 27.25; H, 1.66; N, 9.04; S, 5.15.

H
6}

4,5,6,7-Tetrabromo-2-(5-((2-oxo-2-(p-tolyl)thio)-4H-1,2,4-triazol-3-yl)isoindoline-1,3-dione
(59): Yellow solid; yield 85%; mp: 264-265 °C; IR

CHj
(KBr) cm™: 3330 (NH), 2972 (C-H), 1780 (C=0), 1742 | ®r ON ra Sﬁ
N
Br |

(C=0), 1677 (C=0), 1602 (C=N); *H-NMR (400MHz, Y o)

DMSO-ds, 6 ppm): 2.38 (s, 3H, CHa), 4.99 (s, 2H, S- | B" &

CHy), 7.36 (d, J = 8.0 Hz, 2H), 7.92 (d, J = 8.0 Hz, 2H), 14.67 (brs, 1H, NH); *C-NMR (100MHz,
DMSO-ds, 6 ppm): 21.6, 79.4,121.7,128.8, 128.9, 129.7, 129.8, 131.0, 132.9, 137.6, 145.0, 162.2,
192.8; (ESI-HRMS) (m/z): [M+H]" 690.8; Anal. Calcd for C1gH10BraN4OsS: C, 32.88; H, 1.45; N,
8.07; S, 4.62. Found: C, 32.85; H, 1.48; N, 8.03; S, 4.58.

0]

2-(5-((4-Nitrobenzyl)thio)-4H-1,2,4-triazol-3-yl)isoindoline-1,3-dione (5r):
Yellow solid; yield 82%; mp: 257-258 °C; IR (KBr) cm™: 3200
(NH), 2945 (C-H), 1727 (C=0), 1673 (C=0), 1600 (C=N), 1526 i N/Z_'&S

(NO2 asymmetric), 1320 (NO, symmetric); *H-NMR (400 MHz, d&o E /\@Noz
CDCI3+DMSO-dg, & ppm): 4.49 (s, 2H, S-CH»), 7.63 (d, J = 8.4
Hz, 2H), 7.90 -7.98 (m, 4H), 8.13 (d, J = 8.4 Hz, 2H), 14.32 (brs, 1H, NH); 13C-NMR (100MHz,
DMSO-ds, & ppm): 35.5, 123.9, 124.0, 124.5, 130.6, 131.4, 135.9, 145.9, 147.2, 166.2; (ESI-

HRMS) (m/z): [M+H]" 382.0612; Anal. Calcd for C17H11NsO4S: C, 53.54; H, 2.91; N, 18.36; S,
8.41. Found: C, 53.51; H, 2.95; N, 18.32; S, 8.45.
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4,5,6,7-Tetrabromo-2-(5-(heptylthio)-4H-1,2,4-triazol-3-yl)isoindoline-1,3-dione(5s): Yellow
solid; yield 81%; mp: 259-260 °C; IR (KBr) cm™: 3324

(NH), 2925 (C-H), 1742 (C=0), 1693 (C=0) 1583 (C=N); B O% N j_&sw
Br N

'H-NMR (400 MHz, DMSO-ds, & ppm): 0.85 (t, J = 6.2 Hz, b
3H), 1.25-1.37 (m, 6H), 1.64-1.67 (m, 2H), 2.08 (m, 2H), LB &r

3.17 (t, J = 7.2 Hz, 2H), 14.58 (brs, 1H, NH); *C-NMR (100MHz, DMSO-ds, 5 ppm): 14.3, 22.4,
28.2,28.5,29.5,31.5,79.6,121.7,131.2, 137.6, 150.9, 162.4, 165.9; (ESI-HRMS) (m/z): [M+H]*
656.7829; Anal. Calcd for C17H16BraN4O>S: C, 30.94; H, 2.44; N, 8.49; S, 4.86. Found: C, 30.90;

H, 2.41; N, 8.45; S, 4.82.

O

2-(5-(Heptylthio)-4H-1,2,4-triazol-3-yl)isoindoline-1,3-dione (5t): White solid; yield 81%; mp:
230-231 °C; IR (KBr) cm™: 2925 (NH), 2872 (C-H), 1743

(0] _
(C=0), 1714 (C=0), 1534 (C=N); 'H-NMR (400 MHz, &NJNN\%SWW
R
(6]

CDCls+DMSO-ds, 5 ppm) :0.87 (s, 3H), 1.28-1.41 (m, 8H),
1.71 (t, J = 6.8 Hz, 2H), 3.17 (t, J = 5.2 Hz, 2H), 7.88-7.96
(m, 4H), 14.22 (brs, 1H, NH); 3C-NMR (100MHz, DMSO-ds & ppm): 14.3 (Cq), 22.4 (Cs), 28.2
(Cs), 28.5 (Ce), 29.5 (C4), 31.5 (Cy), 32.3 (C3), 124.5 (C12 & Cu4), 131.4 C11 & Cy6), 135.8 (C13 &
Cis), 150.8 (Cz), 153.5 (C1), 166.5 (C10& C17); (ESI-HRMS) (m/z): [M+H]* 345.2272; Anal. Calcd
for C17H20N402S: C, 59.28; H, 5.85; N, 16.27; S, 9.31. Found: C, 59.25; H, 5.82; N, 16.23; S, 9.34.

2-(5-(Benzylsulfonyl)-4H-1,2,4-triazol-3-yl)isoindoline-1,3-dione: (6a)
White solid; yield 84%; mp:242-243 °C; IR (KBr) cm™: 3075 o W o
(NH), 2928 (C-H), 1734 (C=0), 1692 (C=0),1595 (C=N), @X&ﬁﬁ

1574 (NO2 asymmetric), 1348 (NO2 symmetric), 1316 (SO2); o Ho© NO,
'H-NMR (400 MHz, DMSO-ds, 5 ppm): 5.06 (s, 2H, S-CHy),
7.63-7.65 (m, 2H), 7.67-7.75 (m, 3H), 7.98-8.00 (m, 1H), 8.29 (d, J = 8.8 Hz, 2H), 12.44 (brs, 1H,
NH); $3C-NMR (100MHz, DMSO-ds, 5 ppm): 60.1, 124.8, 128.3, 128.9, 129.2, 131.1, 131.6,

133.2, 133.8, 136.2, 165.2, 166.7; (ESI) +Ve, (m/z): 413.98; Anal. Calcd for C17H11N5s06S: C,
49.40; H, 2.68; N, 16.94; S, 7.76. Found: C, 49.44; H, 2.72; N, 16.90; S, 7.72.
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2.6. Copies of the spectral data.

'H NMR Spectrum of compound 5a (DMSO-ds 400 MHz)
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Mass Spectrum of compound 5a

'H NMR Spectrum of compound 5b (DMSO-ds 400 MHz)
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13C NMR Spectrum of compound 5b (DMSO-ds 100 MHz)
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'H NMR Spectrum of compound 5¢ (DMSO-ds 400 MHz)
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Mass Spectrum of compound 5¢
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13C NMR Spectrum of compound 5d (DMSO-ds 100 MHz)
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'H NMR Spectrum of compound 5e (DMSO-ds 400 MHz)
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Mass Spectrum of compound 5e
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13C NMR Spectrum of compound 5f (DMSO-ds 100 MHz)
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'H NMR Spectrum of compound 5g (DMSO-ds 400 MHz)
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Mass Spectrum of compound 5g
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13C NMR Spectrum of compound 5h (DMSO-ds 100 MHz)
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'H NMR Spectrum of compound 5i (DMSO-ds 400 MHz)
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Mass Spectrum of compound 5i
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13C NMR Spectrum of compound 5

(DMSO-ds 100 MHz)
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'H NMR Spectrum of compound 5k (DMSO-ds 400 MHz)
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Mass Spectrum of compound 5k
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13C NMR Spectrum of compound 51 (DMSO-ds 100 MHz)
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'H NMR Spectrum of compound 5m (DMSO+CDClz 400 MHz)
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Mass Spectrum of compound 5m
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13C NMR Spectrum of compound 5n (DMSO-ds 100 MHz)
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'H NMR Spectrum of compound 50 (DMSO-ds 400 MHz)
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Mass Spectrum of compound 50
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13C NMR Spectrum of compound 5p (DMSO-ds 100 MHz)
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'H NMR Spectrum of compound 5q (DMSO-ds 400 MHz)
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Mass Spectrum of compound 5q
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13C NMR Spectrum of compound 5r (DMSO-ds 100 MHz)
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'H NMR Spectrum of compound 5s (DMSO-ds 400 MHz)
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Mass Spectrum of compound 5s
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13C NMR Spectrum of compound 5t (DMSO-ds 100 MHz)
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Mass spectrum of compound 6a
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One-pot three component synthesis of fused [3,2-b] [1,2,4]-triazolo-
thiazole isoindolines and Schiff bases, characterization and target-

ing glioma in-vitro anticancer activity, molecular docking study.
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Chapter III

3.1 Introduction.

The phthalimide (isoindoline) ring has been identified as most important scaffold in synthetic
organic chemistry and in which nitrogen atom flanked by two carbonyl groups (-CO-N(R)-CO-
).! The N-substituted cyclic imides has emerged as a promising moiety in the medicinal chem-
istry field due to its wide spectrum of therapeutic effects.>® Furthermore, the N-substituted
imines (Schiff bases), compounds having a general core structure is R-N=CH-R. and these
were show the wide range of applications in organic synthesis. Moreover, the Schiff bases are
an important intermediate for the development of various heterocyclic compounds such as im-
idazoles, thiazoles, oxazoles etc., For example GBB reaction is extensively used for the syn-
thesis of bicyclic imidazoles from substituted Schiff bases. And also these were just as im-

portant in terms of pharmacological properties.”®

The five membered ring N-bridged heterocyclic compounds are acquired as a biologically ac-
tive scaffolds. Fused heterocyclic compounds with N and S heteroatoms have attracted a lot of
interest in the field of medicinal chemistry.!® The possible existing types of five membered
ring fused heterocyclic systems are [3,2-b][1,2,4]-triazolothiazoles, [2,1-b][1,3,4]-thiadiazole,
imidazo[1,2-b][1,2,4]-triazoles.!” The antitumor properties of the 2-amino-1,3,4-thiadiazole
skeletons are well recognized'®, and its fused systems with the imidazo [3,2-b][1,2,4]-triazole
ring systems are likewise known to possess remarkable anticancer activities.!” Further, tria-

zolothiazoles exhibit well known applications in medicinal chemistry research some of them

1’20 1’22 23-24

have antibacterial,?® anti-inflammatory, ! antifungal,?* analgesic and anticancer * and an-

tiviral 2° activities. Hybrid molecules created by combining distinct pharmacophores could

lead to compounds with interesting biological properties.

Compounds 1 and 2 Fig.1 were found to exhibit potent anticancer activity after a nitrogen
containing heterocyclic system has introduced into the isoindoline-1,3-diones.?’*® Fluorine
substituted compound 3 Fig.1 demonstrates significant prostate cancer activity, 2 and com-
pound 4 Fig.1 is identified as potential antitumor agent inhibiting cyclin dependent kinase. *°
In the Fig.1 the compounds from 5-10 was showing antimicrobial and antibacterial, anticancer

activities. 3!
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Fig.1. Explains similar reported anticancer compounds.
Literature reports of isoindolines, fused five membered heterocyclics, Schiff bases.

Abu-Hashem et al *® reported the reaction of phthalic anhydride containing bicyclic compound
with hydroxyl amine hydrochloride to produce a derivative of oxime substrate. This on reaction
with 1,3 di bromo propane in DMF/TEA gave a bromo N-alkyl phthalimide. This free alkyl
group again reaction with N-phenyl piparazine leads to form a corresponding phthalimide sub-
stituted phenyl piparazine-1-yl propyl compound. These compounds show good anti-inflam-

matory activity.

Scheme-1.1

Br
H,N-OH.HC| B
or B
Pyridine.HCI DMF/TEA N
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Oliveira et al * published the synthesis of compound 2. In this phthalimide ring substituted
1,3 thiazoles were prepared initially by the reaction of phthalic anhydride with thiosemicarba-
zide in DMF reflux to give a phthalimide attached thiourea intermediate. This on reaction with
2-bromo acetophenone to produce isoindoline thiazole compound (1). The intermediate on re-
action with 3-chloro acetyl acetone and thiosemicarbazide, phenacyl bromide to obtained a
compound 2. The final compounds thiazole substituted isoindoline derivatives have shown po-

tent anticancer activity shown in scheme-1.2.

Scheme-1.2
o+ DMF N_NE_NHZ Ph.CO.CH,.Br »—NH
H,N™ "NH  reflux —_— N—-N
! Propanol/NaOAc
0 NH, o o
Ph
NaOAc/
Propanone )Nl\\
N

Cl © N7 S
H
O S O S
. -NH;
)—NH ) HNTON )—NH
N—N —_ N—N
ii) Ph.CO.CH,.Br

o iii. Ethanol o) 2

Alaa et al * developed the DPPoX promoted synthesis of N-benzyl phthalimide form the re-
action of phthalimide or phthalic anhydride and benzyl amine in CH3zCN by using equal amount
of DPPoX and EtsN at 40 "C to obtain a corresponding substituted phthalimides. In this reaction
when they used primary amines the yield of the product was increased when compared to sec-
ondary amines (scheme-1.13). And these compounds have exhibit promising anticancer activ-

ity.

Scheme-1.3

; 38
BnNH.,, Et;N
X 23, N

DPPoX (1.5 eq)
0 40 °C, MeCN O

X=0,NH
DPPoX = Di phenyl-2-oxo-3-oxazolinyl phosphonate
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Hassanzadeh et al % reported a reaction of 3-nitro phthalic acid with urea in presence of eth-
ylene glycol mono methyl ether under reflux to afford an yellow solid 3-nitro phthalimide with

notable yield. Further this exhibit antianxiety activity (Scheme-1.4)

Scheme-1.4
0]
COOH j\
* HNTONH, T NH
COOH
NO o
2 Urea NO,
3-Nitro phthalic
acid

Barbary et al *° published the reaction of 4-amino-5-phenyl 1,2,4-triazole-3-thiol with N-car-
boxylic acid isoindoline in the presence of POCIz at reflux to generate a fused triazolothiazole
phthalimide heterocyclic compounds (Scheme-1.5). These compounds posess potent antiviral
activity.

Scheme-1.5

O O N—N
N_
) g\ jOH POCI, [ XNg 0
SH + N — N
[[ ] N -
| R A N
NH, L N
R
0

Agarwal et al ! reported a one-pot synthesis of fused thiazolo [3,2-b][1,2,4]triazole via the

reaction of 1-phenyl 1,3-butane dione with NBS and 5-phenyl triazole-3-thiol under
AcOH/H,2SO; at reflux temperature to obtain a fused triazolothiazole moiety (4) with good
yield.(Scheme-1.6)

Scheme-1.6
0
O © 0O © N=N CHs
NBS A AcOH/H,SO, “N
e 2 o Qe O 4
Br H N S
1 2 3 4
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Jag Mohan #? reported the condensation reaction of 5-mercapto-3-[p-(t-butyl phenyl)] s-tria-
zole with 2-halo aceto phenone in presence of ethanol under reflux condition for 3 h initially
to produce the un-cyclized thioalkylated compound. This was subsequently cyclization with
strong acid (PPA) to give thiazolo [3,2-b]-s-triazole. The final compounds were tested for their
antimicrobial activity against gram-negative bacteria E. coli. and gram-positive bacteria S. au-
reus. (Scheme-1.17)

Scheme-1.17
Ethanol [:::]//u\v/ é i
H NH reflux reflux
- 2
" N N 4
S /
1 H 5 SH

Liu et al “*reported reaction of acetophenone with HTIB [(hydroxy(tosyloxy)iodo] benzene in
CAN to yield a-tosyloxy acetophenone. This again on reaction with arene carbaldehyde thio-
semicarbazone gave Schiff base. And this compound on cyclization with PSDIB (poly[(4-di-

acetoxyiodo)-styrene] to form fused triazolothiazole heterocyclic derivative. (Scheme-1.8)

Scheme-1.8

O

©)J\CH3

HTIB

.

Reflux

0O

©)J\/0Ts

Ar.CH=NNHCSNH,

EtOH
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Slivka et al * published the one-pot three component reaction between 5-aryl 1,2,4-triazole-3-
thiol with chloroacetic acid and different aldehydes in presence of AcOH at reflux to form a 5-
arylidene substituted fused [3,2-b][1,2,4]triazoles. Many of these substrates were possess good

biological activity.

Scheme-1.9
o R
N=N i) CI-CH,-COOH \ N)S%
I\ - -
R1/<N)\SH ii) R-CHO R1,( s
H AcOH/reflux N

Amorim et al *° developed the synthesis of Schiff bases from 4-phenyl 2-amino thiazoles. In
which initially the acetophenone was reacted with thiourea in presence of I, under reflux to
form a 4-aryl -2-amino thiazole followed by reaction with aromatic/heteroaromatic aldehydes
in presence of EtOH/piperidine at reflux to produce a thiazole substituted Schiff bases. These

have been explored as potential biological properties such as antimicrobial, anticancer etc.

Scheme-1.10
0] S
P OH
CHs HoN NH, N
l,, reflux s~ "NH, reflux Z
EtOH/Piperidine

Pignatello et al *® reported the synthesis of fused thiazolo[3,2-b][1,2,4]-triazole derivatives.
These were synthesized by the reaction between 5-alkyl-4H-1,2,4-triazole-3-thiol and a-halo-
genated ketones such as 2-bromo acetophenone, 2-chloro aceto acetate, chloro acetone in meth-
anol under reflux to develop a thioalkylated product which were subjected to cyclization reac-
tion with POCI3 to obtained a bicyclic thiazolotriazole moiety. These compounds were associ-

ated with good anti-inflammatory, antibacterial, analgesic activities. (Scheme-1.11)

Scheme-1.11
Ph
N-N EtOH Ph POCy )w
/ - -
R/(N Ph)J\/Br KOH /4 )\S/\« /L/\j ¥
H reflux R N/)_S
1 2 3 4
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Alegaon et al *’ published the synthesis of imidazo fused 1,3,4 thiadiazoles. reaction between
trifluoro acetic anhydride and thiosemicarbazide to give a 2-trifluoromethyl-5-amino thiadia-
zole. This was subjected to cyclization with phenacyl bromide under microwave irradiation
followed by Vilsmeiere-Haack formylation to generate a formyl substituted fused heterocyclic
compound and then subsequent reaction with thiadiazolidine-2,4-dione gave a thiazole deriva-

tive. These substrates were demonstrate promising antitubercular activity. (Scheme-1.12)

Scheme-1.12

Br

9 /§/©
H R— /
N_ _NH N—N Z N-N" XX _7R
(CF3C0O)0  *+  H,N™ 2 I\ - ;A\
\ﬂ/ F3C/<S)\NH2 MW F3C/ks )—N
1 2

Vilsmeiere-Haack

0 formylation
HN
O:\/ H
SN _— Oy _H
h Thiazolidine =
— el -di LI
/z N_\N N\ R _ 2,4-dione NN R
)= I\—
FaC™ g Fsc/ks N
4a

Fascio et al *® describe the reaction between phenacyl bromides with thiourea in DMF to gen-
erate a 2-amino-4-arylthiazoles. These were subject to cyclization with chloro acetic acid to
obtained a imidazothiazole derivative. These compounds exhibit broad spectrum of biological

activities. (Scheme-1.13)

Scheme-1.13

0]

‘ I3 0
Br cl
©)v . H N)J\N,NHz DMF/rt N HO - y\\
2 —_— N
H | H—NHz ACONa/AcOH D
s
s

Sarchahi et al * developed an efficient isocyanide based one-pot three component synthesis
of fused imidazo[2,1-b][1,3,4]-thiadiazoles by the reaction of 5-triflouromethyl 2-amino thia-
diazole with aromatic aldehydes, phenyl isocyanide in the presence of solvent free conditions
at 110°C. (Scheme-1.14)
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Scheme-1.14

R

/C\j

HNT N

(3 @A o e A )
“NTN

3 S FSC/< ):N

110 °C S

Holota et al *° published thiazolo[3,2-b][1,2,4]-triazole-6-ones by a one-pot three component
reaction of 4H-1,2,4-triazole-3-thiol, chloro acetic acid and various substituted aldehydes in
AcOH/NaOACc/AC:0. (Scheme-1.15)

Scheme-1.15
(0] AcOH Q
I\ Cl + | A\
QN)\SH e oy \_0 AcONa QN/)—S ’
H © 0
1 2 3

2-Mercapto 1,2,4-triazole (1) has been synthesized by condensation of thiosemicarbazide, var-
ious acid chlorides in Pyridine/NaOMe/MeOH/HCI. The compound 1 was reaction with diaryl
bromo ketone in EtOH under reflux then subsequently cyclization with PPA to afford a fused
[3,2-b][1,2,4]-triazolothiazoles (Scheme-1.16). These compounds posess potent COX-2 en-

zyme inhibitors °2.

Scheme-1.16
i o) 1. Pyridine NN
HN" N R)J\Cl 2. NaOMe/MeOH R/<N sH
3. HCI N
1
Ph
/Eiw)\ O EtOH N " PPA N/\S’Ph
+ t y
R SH i — g A Ph — R—*< /L
” Br~ “Ph Reflux R N)\S Xylene S
H 140 °C
1 2 3 4
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3.2. Present work

3.2.1 Chemistry

The molecular hybridization is a new research topic in drug design and development of new
hybrid core by combination of two or more pharmacophore moieties to generate enhanced af-
finity, efficiency, and decrease side effects, when compared to parental drug. Moreover, this
approach can outcome result in compounds presenting modified selectivity profile, changed

dual modes of action and reduce side effects.

Inspired by biological activities of substituted thiazolo[3,2-b][1,2,4]-triazol-2-yl systems, we
decided to synthesize target molecules and evaluated their anticancer properties. In a multi-
component approach, 5-amino-4H-1,2,4-triazole-3-thiol (1) was reacted with phenacyl bro-
mide (2) and phthalic anhydride (3), to produce novel bicyclic triazolothiazole isoindoline
moieties 4 a-n (Scheme-1). On the other hand, when compound (1) reacted with various
phenacyl bromides (2) and different aromatic aldehydes (5) to give triazolothiazole Schiff bases
6 a-1 (Scheme-2)

Schematic representation of triazolothiazole isoindolines. Scheme-1& Scheme-2

o 0O
/2_’:])\ + Br . ) EtOH/HCI 1 DI—N o
H 80°C,10h N
@)
1 O
Scheme-1 4a
O+ _H
0O
N=N N—NTR
/N Br
HZN/(N)\SH + " EtOH/HCI sy g
H 80°C, 10 h N
6a
Scheme-2

112



Chapter III

Table-1. Optimization study of the Scheme-1&2 for 4a and 6a compounds
S.no Solvent Catalyst(mol%) Temp (°C)  Time (h)  Yield(%)"

1 EtOH - rt 10 20
2 AcOH - 60 8 n.r
3 DMF - 60 8 n.r
4 DMF K2COs3 90 8 10
5 MeOH HCI 60 8 22
6 EtOH - 60 8 40
7 EtOH pTSA 80 9 35
8 EtOH HCI(0.3) 70 10 60[°]
9 EtOH HCI(0.5) 80 12 90l
10 EtOH POClI3(1.0) 80 10 65

Reaction conditions: Amino mercapto-1,2,4-triazole 1 (1 mmol), phenacyl bromide (1 mmol),
phthalic anhydride (1 mmol) and p-nitro benzaldehyde (1 mmol), catalyst (5 mol%), ethanol
solvent (4 mL), 12 h.

[el1solated yield: P'Hydrochloric acid (0.3 mol%); IHydrochloric acid (0.5 mol%) used; n.r =
No reaction.

The reaction was optimized for scheme-1 and 2 in different solvents with change of catalysts
and temperature at different time intervals. The high percentage of yields was obtained in EtOH

in HC1 5 mol% at 80 °C for 12 hrs.(Table-1)

The mechanism of the formation of final compounds was explained for scheme-1 and 2. The
bromine atom of phenacyl bromide were replaced by more nucleophilic thiol group of 1 to give
corresponding phenacyl thio compounds. the reaction proceeds through SN? type mechanism.
This undergo acid catalysed ring closure to give 6-phenyl thiazolo[3,2-b][1,2,4]-triazol-2-
amine. Which on further condensation with phthalicanhydride 3, aromatic aldehyde 5 to give
a fused triazolothiazole isoindoline and Schiff base products. The speciality of this reaction is
two C-N, one C-S bonds are formed at a time (4a-n) and also C=N, C-S, N-C bonds are formed
(6a-1)
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Scheme-1: Derivatized fused isoindoline-1,3-dione thiazolo-1,2,4-triazoles:
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Reaction conditions: Amino mercapto-1,2,4-triazole 1 (1 mmol), phenacyl bromides 2 (1
mmol), phthalic anhydrides 3 (1 mmol) EtOH in HCI 5 (mol%) 80 °C.

Scheme 2: Synthesized derivatives of fused triazolothiazole Schiff bases:

1
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NC P
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6b (8 h, 85%)

Reaction conditions: Amino mercapto-1,2,4-triazole 1 (1 mmol), a-halo acetophenones 2 (1
mmol), aromatic aldehydes 5 (1 mmol) EtOH in HCI 5 (mol%) 80 °C.

All the new compound structures were characterized by physical and spectral data such as m.ps,
FT-IR, *H NMR, *C NMR, HRMS and C, H, N elemental analysis. The IR spectra of the
compounds 4a-n and 6a-1, the thiazole ring alkene C-H stretching vibrational frequency appears
between 2900-3100 cm™, isoindoline ring C=0 stretching frequency is at 1740-1750 cm™,
Schiff base C-H stretching vibrational frequency appears at 1590-1600 cm™, NO2 group un-
symmetric and symmetric stretching frequencies appear at 1313-1540 cm™, OCHj3 group vi-
brational frequency appears at 1030-1040 cm™. In the 'H NMR spectra of the compound the
characteristic thiazole ring containing C-H proton appears a singlet at 7.90-8.00 & ppm, Imine
(-N=CH-) singlet proton appears at 9.33-10.31 6 ppm, aromatic protons appear at 7.30-8.45 5
ppm. In 13C NMR spectra of compounds 4a-n the thiazole ring C-H carbons appears at 109-
114 6 ppm, isoindoline ring imide carbonyl carbons at 166-168 6 ppm, triazole ring carbons
appears at 150-160 6 ppm, aromatic carbons represent at 120-140 & ppm and O-CHs carbons
show between 50-60 dppm. The imine carbon resonances showed at 165-170 & ppm. Mass
spectra of all the compounds calculated mass matched with the found mass [M+H]"*. Further,
the compound 4e structure was confirmed with a single crystal X-ray diffraction study. The
crystal system is Triclinic (r.m.s deviation = 0.003 A°) and twisted from C17---C16---O3---
C19, C15---C16---03---C19. (CCDC No. 2171369). The geometric parameters of the crystal

data is given in supplementary information.
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Fig. 2. The ORTEP diagram for single crystal data of the compound 4e.

Table-2: Single crystal data of the compound 4e

Identification Code Compound 4e
Empirical formula C19H12N4O3S
Formula weight 376.3900

Temperature/K 271 K
Crystal system Triclinic
Space group P-1
Unit cell dimensions
a/A 8.3955(3)
b/A 11.2273(3)
c/A 12.1153(3)
a/° 76.322(2)
B/ 78.263(2)
v/° 79.632(3)
Volume 1075.90(6)
Z 2
Dealc Mg/m?® 1.162
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1

- wmm* 0174 ]
F(000) 388.0
20 range for data collection/° 25.027
-9<h<9
Index ranges -13<k<13
-14<1<14
Data/restraints/parameters 245
Goodness-of-fit on F2 1.099
Final R indexes [[>=2c ()] 3782
Final R indexes [all data] 3050
CCDC 2171369

Table-2: Single crystal X-ray crystal structure data of compound 4e.

3.2.2. Anticancer activity.

We initially evaluated the cytotoxic effects of the target hybrid compounds on C6 rat and LN18

human glioblastoma cell lines at different doses. The cell survival was analyzed using MTT

[3-(4,5dimetylthiazol-2-yl)-2,5-diphenyl-tetrazolim bromide] assay. As represented in Table.2

and Fig.3 all the compounds have shown dose dependent inhibition. The best inhibitory effect

was shown by compound 4l, 4g in the first series and 6¢ and 6i amongst the second series in

both cell lines. Compounds 4l and 6i were not completely soluble in DMSO hence we have

selected 4g and 6i for further studies

Table-3. ICso values of the scheme-1 and scheme-2 series compounds.

Scheme-1
Code
4a
4b
4c
4d

ICso (M) ICso (uM)
Cé LN18
>50 >50
>50 >50
>50 >50
>50 >50

Scheme-2

Code

6a
6b
6¢
6d

ICso (uM)
Cé
>50
> 50

22.40 £0.35
40.78 +£0.71

ICso (uM)
LN18
>50
>50
23.69 +£0.19
39.18£0.40
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4e
4f
4g
4h
4i
4
4k
41
4m

4n

38.2+0.42
28.15+0.78
8.091+0.43
38.32+0.82
29.84+0.83
20.73+0.52
22.06+0.66
5.791-0.64
29.12+0.54
39.91+0.83

41.14+0.29
33.17+0.54
12.68+0.17
44.49+0.28
31.89+0.26
25.67+0.16
25.19+0.35
8.97-0.24
35.78+0.43
44.414+0.83

6e
6f
6g
6h
6i
6j
6k
6l

36.58 £0.52
7.564 +£1.11
28.32 £0.52
56.88 £0.71
8.74 £0.68
41.84 +0.93
37.28 £1.40
19.22 £0.68

Chapter III

41.35+£0.14
21.51+0.36
35.99+0.43
52.48+0.24
12.56+0.21
44.79+0.31
39.69+0.40
29.77+0.35

Table-3. ICso values of the scheme-1&2 compounds in C6-rat and LN18 glioma cell lines
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Fig.3. In-vitro anti-cytotoxic activity of the compounds at different mentioned concentrations

in C6 rat and LN18 human GBM cell lines (n=3, one representative experiment is shown).

3.2.2A. Cytotoxic anti-migratory efficacy and colony forming ability of compounds in gli-

oma cells.

To further understand the cytotoxic effect of the synthesised compounds on GBM cell lines,
we treated the cells with various doses of the compounds and measured cell growth, prolifera-
tion and migration. TMZ-treated cells were used to compare the efficacy of the novel com-
pounds against the GBM cells. The treatment with 4g and 61 significantly mitigated the prolif-
eration of C6 and LN18 cells as compared to the vehicle treated or TMZ treated cells (Fig. 4).

The respective treatments also increased the cytotoxicity in the C6 and LN18 GBM cells in a
concentration dependent manner and hence resulted in significant reduction in the colony form-
ing ability of cells from a single cell The graphical representation demonstrates the colony

forming ability of cells at respective treatments was shown in (Fig. 5).
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Fig.4. Cell viability was analysed using MTT at indicated time points with TMZ treatment and
with mentioned compounds in order to analyse anti-proliferative effect (n=3, one representative
experiment is shown). Statistical data of the experiments is shown as mean + sem * p < 0.05,

% p < 0.01.
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Fig.5. Clonogenic assay. Respective treatment of the compounds significantly reduces the col-
ony forming ability of the glioma cells. The cells were treated for 48 hours and cultured under
optimal conditions to analyse the colony forming abilities at different treatment concentrations
(n=3, one representative experiment is shown.

The wound healing assay demonstrates the ability of the cells to migrate after creating a scratch
wound in the confluent bed of cells. The migration ability of cells treated with 4g and 61 was
inhibited as shown in wound healing assay. Vehicle treated cells has the highest rate of migra-
tion in C6 cells (21.95uM/hr and 24.46uM/hr) compared to 100uM treatment (8.96uM/hr and
13.02uM/hr) and in LN18 cells (14.36uM/hr and 15.04puM/hr) compared to (1.44uM/hr and
3.51 uM/hr) with 4g and 6i treatment respectively (Fig.6). This shows that the rate of prolifer-

ation in the control cells is significantly more as compared to the 4g and 6i treated cells.
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Fig. 6. Treatment leads to mitigation of proliferation in glioma cells. Wound healing scratch
assay in vehicle treated (DMSO) and cells treated with 10uM, 50uM and 100uM of indicated
compounds (n=3, one representative experiment is shown)

3.2.2B. Cell cycle arrest.

We analyzed the effect of most active compounds, 4g and 61 on cell cycle in the GBM cell lines
(Fig.7). Treatment of the cells with 10uM concentration of compound 6i increased the cell
population in sub-G1 phase (66.5% and 50%) compared to 60% and 44% in the control C6 and
LN18 GBM cells respectively. Whereas the 4g treatment at 10uM resulted in the arrest of cells
in G2-M phase of the cell cycle (31.9% and 54.9%) compared to 19.3% and 39.4% in the
control C6 and LN18 GBM cells respectively. This indicates that cells were arrested at G1
phase by 61 and G2-M phase by 4g confirming that cell cycle arrest is one of the mechanisms
by which the compounds are inhibiting the cell proliferation. Furthermore, treatment with
higher concentrations (50uM and 100uM) of the respective compounds resulted in a significant
increase in the population of cells in the sub-G1 phase indicating cells are undergoing apopto-
sis. Apoptotic cells were observed in approximately 35% and 47% of 61 and 4g-treated C6 and
LN18 GBM cells, respectively, compared to 2-7 percent in control C6 and LN18 GBM cells.
Apoptosis plays a crucial role in the elimination of mutated and hyper-proliferating neoplastic
cells and hence considered as a protective mechanism against cancer progression. It has been

also reported as the process of significant cell death after cytotoxic drug treatment in various
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types of cancers.” Our results show that the compounds induce apoptosis in a dose dependent

manner in C6 and LN18 GBM Cell lines.
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Fig-7. Treatment leads to the modulation of cell cycle distribution. Cell cycle analysis display-
ing different phases of cell cycle in C6 and LN18 cells in vehicle treated (DMSO) and cells
treated with 10uM, 50uM and 100uM of indicated compounds (n=3, one representative exper-

iment is shown).

3.2.2C. Targets ERK, AKT and UPR pathway.

We subsequently investigated its involvement in the cancer associated ERK and AKT signal-
ling pathways. Both compounds 61 (Fig. 8A) and 4g (Fig. 8B) reduced phosphorylation of ERK
and AKT (Thr 308 and Ser 473) in a concentration dependent manner as compared to vehicle
(DMSO) treated cells. Interestingly, we also found that the treatment resulted in the reduction
in expression of the unfolded protein response sensory protein, IRE1 and its downstream pro-
tein spliced XBP1 which ultimately leads to increased apoptosis as seen by enhanced Bax ex-

pression in Fig. 8A and 8B.

4g and 61 are able to regulate the survival by modulating the expression of one of the endoplas-
mic reticulum (ER) resident sensors, Inositol requiring enzyme 1(IRE-1), which is involved in

the unfolded protein response, attenuating protein translation and enhancing protein folding
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and quality control which leads to the increased clearance capacity of ER.>* 3% IRE1 overex-
pression leads to the survival of cancer cells, predominantly mediating by its RNase activity
through non-conventional splicing of X-box binding protein (sXBP1) mRNA and ultimately
regulating pro-apoptotic pathways.>® Phosphorylation of ERK leads to its activation which is
associated with cell survival and proliferation. ERK1/2 also regulates AKT activity. We ob-
served significant downregulation in the pERK and pAKT levels that represents that ERK ac-
tivation was reversed by 6g and 4i treatment leading to cell death. IRE1 is a conserved ER
stress sensor. IRE1 phosphorylation leads to nonconventional splicing of the mRNA, encoding
XBP-1, leading to the expression of XBP1 spliced (XBP1s), a potent transcription factor.
Higher IRE1/XBP1lactivity results in tumor progression and aggressiveness in most cancers
such as leukemia, GBM, myeloma, renal and breast cancers and has been associated with poor
prognosis. XBP1 also promotes tumor invasion and drug resistance in cancer. We observed
significant downregulation in IRE1/XBP1 expression with respective treatments of 4g and 61
in C6 and LN18 cell lines, which suggests that the treatments resulted in reduction of ER stress

and hence can help in mitigating gliomagenesis.
The downstream regulator of the MEK/ERK or PI3K/AKT signalling pathways is GSK-3p.°’

Inhibition of ERK or AKT causes GSK-3 to remain in an inhibited state, resulting in the inter-

action of GSK-3 and SNAIL ® and hence GSK-3B was chosen for docking studies.

Compound 4g

Relative expression (GOI/GAPDH)

Relative expression (GOI/GAPDH)
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Fig.8 A, B. Treatment modulated the activity of glioma-associated signalling pathways. West-
ern blot of pERK, ERK, pAKT (Thr 308 and Ser 473), AKT, pIRE1, IRE1, XBP1s in vehicle
treated (DMSO) and cells treated with 10uM, 50uM and 100uM of indicated compounds.
GAPDH serves as the loading control (n=3, one representative experiment is shown).

3.3. Molecular docking study.

Molecular docking studies were done by GSK-3B inhibitor complexed with the inhibitor
6QH4001 protein retrieved from the protein data bank with PDB ID: SK5N.*’

The binding site interactions of GSK-3 enzyme have been determined for both the standard
drug temozolamide and two series of compounds. Temozolamide has shown 2 polar hydrogen
bond interactions with Val 135 amino acid as shown in Fig.9 with a dock score of -
5.158Kcals/mole and binding free energy of -40.294 Kcals/mole respectively. This indicates
that the synthesized compounds have higher affinity towards the receptor with good dock
scores and binding energies which are higher than temozolamide. 6i exhibited one polar hy-
drogen bond interaction with Val135 and oxygen of nitro group attached to benzene ring, one
hydrophobic interaction with Lys85 and nitrogen of triazole ring the dock score -6.432
Kcals/mole binding energy of -60.185 Kcals/mole and also exhibited additional n-n stacking
interaction with Phe 67 of benzene ring (Fig.11). Whereas, 4g shows hydrogen bond interaction
with carbonyl of isoindoline and Thr138, one hydrogen bond interaction with triazolothiazole
with Argl41. The p-bromo phenyl group is entrenched in the hydrophobic cavity with a dock
score of -4.711 Kcals/mole and binding energy of -74.621 Kcals/mole which are higher than
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that of the standard molecule(Fig-10). Both 4g, 6i interacted with amino acid residue by one
hydrophobic interaction at the active site of target protein i.e., with the carbonyl oxygen of
isoindoline ring and amino acid residue of Thr138. There by we can conclude that these com-

pounds may serve as good inhibitors towards glioma.
Structure Activity Relationship (SAR)

with a molar volume of 154.7 cm?®, while the bromophenyl group having a molar volume of
105.6 cm’. In the series 1 (4a-4n) it is observed that the presence of the hydrophobic phenyl
group attached to fused thiazole ring has a greater impact on the dock score. The molecule 41
having a biphenyl substitution showed a highest biological activity with ICso value of 5.791
uM with dock score of -5.134 Kcal/mol and binding free energy (MM-GBSA) of -76.414
Kcal/mol. The bromo substituted phenyl group on the thiazolotriazole (4g) having a ICso value
of 8.091 uM, show a dock score of -4.711 Kcal/mol and MM-GBSA value of -74.621 Kcal/mol.
This comparison shows that the hydrophobic moiety biphenyl is entrenching deep into the hy-
drophobic cavity.

The activity of molecules 4h and 41 having tetrabromophenyl substitution on isoindoline dione
ring showed lower ICso values of 40.88 and 38.32 uM respectively suggesting that the tetra-
bromo substitution reduces the activity of compounds although they had biphenyl and bromo
phenyl substitution on the azole ring. When the electron donating groups is present at para
position on the phenyl group like methyl or methoxy the biological activity reduced consider-
ably and the ICso values are 38.2 and 28.15 uM respectively, accordingly the docking score and
MM/GBSA values reduced, binding energy values suggest that the compound 4g and 41 are in
correlation with the biological activity results and also implies that the 2,4-dichloro substitution
on the phenyl attached to the thiazole ring of the thiazolotriazole showed reduced biological
activity and reduced dock score (-4.852 kcal/mol) due to steric clash.

In series-2 (6a-61) 6-phenylmethylidine [1,3] thiazolo [1,2,4] triazol-2-imine it is observed that
the chloro substitution at the 4™ position on the 6-phenylmethylidene (6¢) and on the same
molecule when a nitro group was substituted at the 4™ positon of the phenyl attached to the
thiazole ring (61) show good biological activity with the ICso value of 22.40 and 8.74 uM re-
spectively. These compounds have shown dock score of -6.739 and -6.432 kcal/mol respec-

tively and MM/GBSA values of -63.049 and -60.185 kcal/mol respectively.
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Fig.9. 2D & 3D ligand interaction diagrams of the standard drug temozolamide showing two
polar hydrogen bond interactions with Val. 135.

Fig. 10. 2D & 3D ligand interaction diagrams of molecule 4g from the scheme-1 showing a
hydrogen bond interaction with carbonyl of isoindoline dione and Thr138, one hydrogen bond
interaction with triazolothiazole with Arg 141. The p-bromophenyl group is entrenched in the
hydrophobic cavity.

Fig. 11. 2D & 3D ligand interaction diagrams of molecule 61 from the scheme-2 showing one
polar hydrogen bond interaction with Val 135, one hydrophobic interaction with Lys 85 and
one n-n stacking interaction with Phe 67.
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The compound 6f has shown an ICsg value of 7.564 with dock score of -6.575 and MM/GBSA
values -68.125 kcal/mol. This implies that the substitution of methoxy group on 4th position

respectively has improved the activity and also it is in compliance with the MM/GBSA values.

Table.3. Dock scores and binding free energies for the synthesized compounds of scheme 1

and 2
Scheme-1 docking Prime Scheme-2 docking Prime
Code score MMGBSA Code score MMGBSA
DG bind DG bind
4a -5.211 -58.152 6a -5.236 -62.935
4b -5.282 -59.542 6b -5.304 -62.952
4c -4.869 -74.907 6¢ -6.739 -63.049
4d -5.640 -60.604 6d -7.185 -70.858
4e -5.089 -63.727 6e -6.105 -57.904
4f -5.135 -70.974 6f -6.575 -68.125
4q -4.711 -74.621 69 -7.010 -71.038
4h -5.120 -59.867 6h -5.429 -61.660
4i -6.826 -74.908 6i -6.432 -60.185
4 -4.852 -82.402 6j -6.501 -75.854
4k -5.678 -71.704 6k -5.026 -65.166
41 -5.134 -76.414 6l -5.243 -68.366
4m -5.608 -79.199 STD TMZ -5.158 -40.294
4n -5.887 -64.819
STD TMZ -5.158 -40.294

Table.4. Qikprop values of scheme 1 and scheme 2 synthesized compounds. For scheme-1

Code MW QPlog QPlogS QPP- QPlog QPPMDC % Human

Po/w Caco BB K Oral Ab-
sorption
4a 346.363 3.16 -4.803 743.215  -0.45 734.657 96.836
4b 364.353 3401  -5.179 744.125 -0.345 1331.795 100
4c 380.808  3.667 -5.572 744.078 -0.301 1816.977 100
4d 391.36 2.405 -4.84 88.962  -1.526 74.065 75.915
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de
Af
49
4h
4i
4
4k
4
4dm
4n
TMZ

376.389
360.389
425.259
391.36
661.947
415.253
421.386
422.46
467.458
409.351
194.152

For scheme-2

Code

6a
6b
6c
6d
6e
6f
69
6h
6i
6j
6k
6l
TMZ

MW  QPlogPo QPlogS

349.366
383.265
338.814
373.259
365.366
403.281
387.286
347.369
383.811
418.256
367.357
383.811
194.152

3.223
3.486
3.746
2.53
5.231
4.106
2.592
4.833
4.203
2.797
-1.21

/W[a]

3.721
5.062
4.983
5.418
3.196
6.661
5.744
3.875
4.228
4.67
3.961
4.227
-1.21

-4.959
-5.415
-5.692
-4.773
-7.535
-6.186
-4.933
-6.931
-6.901
-5.259
-1.382

[o]

-5.295
-6.148
-6.028
-6.594
-5.34
-8.168
-7.205
-6.408
-6.066
-6.681
-5.671
-6.065
-1.382

743.573
743.043
744.182
134.879
1064.431
748.415
134.007
743.615
134.943
133.823
58.452

QPP-
Cacol

417.772
3494.863
3494.753
3518.345

155.185
3493.778
3518.031

725.375

417.692

428.736

417.841

417.83
58.452

-0.543
-0.485
-0.292
-1.322
0.243
-0.173
-1.439
-0.626
-1.572
-1.255
-1.405

QPlog
BB

-1.03
0.223
0.212
0.361
-1.567
0.106
0.348
-0.676
-0.886
-0.752
-0.927
-0.886
-1.405

735.041
734.474
1953.93
116.135
10000
3735.515
115.324
735.086
116.195
208.472
22.983

QPPMDC

Klel

394.151
10000
9667.967
10000
135.141
9665.054
10000
1295.502
973.1
2047.939
713.692
973.732
22.983

100
100
100
79.881
85.838
100
80.194
100
89.681
81.382
51.486

% Human
Oral Ab-
sorptionlf]
95.643
100
100
100
84.873
100
100
100
100
100
100
100
51.486

el QPlogPo/w Predicted octanol/water partition coefficient (Acceptable range-2.0 to 6.5).

[l QPlogS (aqueous solubility) (Acceptable range -6.5 to 0.5).

[l QPPCaco cell permeability (Acceptable range <25 is poor and >80% is high).
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[4- QPlogBB Predicted Blood Brain Barrier permeability (Acceptable range-3 to 1.2)
[} QPPMDCK (Acceptable range <25 is poor and >80% is high).

[ %5HOA: Percentage of human oral absorption (Acceptable range: <25 is poor and >80% is
high).

3.4. Conclusions:

In conclusion, we have developed a one-pot synthesis of [3,2-b][1,2,4]triazolothiazole isoin-
dolines and Schiff bases by using a multi-component approach. These compounds show anti-
proliferative effect, anti-migratory effect and cell cycle arrest in a dose dependent manner in
C6 and LN18 GBM cell lines by modulating MAP kinase pathway. The molecular docking
studies demonstrate that 4g and 61 were more effective in binding with GSK-3f and were in

agreement with in-vitro results.
3.5. Experimental.

All the chemicals were purchased from commercially available sources i.e. Sigma Aldrich,
TCI, Spectrochem, Finar and used without further purification. The solvents were purchased
from Sigma Aldrich, TCI and stored over a molecular sieve prior to use. Progress of the reaction
was monitored with Thin Layer Chromatography (TLC) using aluminium-foil backed silica gel
plates. FT-IR spectra were recorded on a Perkin Elmer spectrometer using KBr disc and values
were represented in cm™. "H NMR spectra were recorded on Bruker’s AVANCE 400 MHz
spectrometer using DMSO-ds as a solvent and Tetra methyl silane (TMS) as an internal stand-
ard reference. The abbreviations were used to explain the splitting pattern; s = singlet, d =
doublet, t = triplet, q = quartet and coupling constant (J) units expressed in Hz. '*C NMR spec-
tra recorded on Bruker’s AVANCE 100 MHz spectrometer and it is fully decoupled with broad
band proton decoupling the chemical shifts values (8) were represented in ppm with reference
to the centre line of a triplet at 77.16 ppm for chloroform-ds and septet at 39.52 ppm for DMSO-
ds. SMP30 (Stuart, Staffordshire, UK) apparatus was used for identification of Melting points
and are uncorrected. Molecular mass of the compounds was confirmed with HRMS (ESI-TOF)
Agilent technologies. The purity of the compounds >90 percent was checked by elemental

analysis.
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3.5.1. General procedure for the synthesis of 2-(6-phenylthiazolo[3,2-b][1,2,4]triazol-2-yl)
isoindoline-1,3-diones (4a-n).

A mixture of 5-amino-4H-1,2,4-triazol-3-thiol 1 (1 mmol), substituted phenacyl bromide 2 (1
mmol) and 2 drops of concentrated hydrochloric acid in ethanol (3 mL) was stirred at room
temperature for 1 h and then reaction mixture was refluxed at 80 °C for 7 h. After consumption
of the reactant’s phthalic anhydride 3 (1 mmol) was added to the same reaction mixture and
refluxed for additional 4 h. After completion of the reactants the reaction mixture was cooled
and neutralized with 5 % aqueous NaHCO3 solution, solid product was filtered, dried and

recrystalized from ethanol.

3.5.2. General procedure for the synthesis of 1-phenyl-N-(6-phenylthiazolo[3,2-b][1,2,4]tri-
azol-2-yl)methanimine (6 a-l).

A mixture of 5-amino-4H-1,2,4-triazol-3-thiol 1 (1 mmol), substituted phenacyl bromide 2 (1
mmol) and 2 drops of concentrated hydrochloric acid in ethanol (3 mL) was stirred at room
temperature for 1 h and then the reaction mixture was refluxed at 80 °C for 7 h. After con-
sumption of the reactant’s substituted aromatic aldehyde 5 (1 mmol) was added to the same
reaction mixture and refluxed for additional 3 h. After completion of the reactants, the reaction
mixture was cooled and neutralized with 5 % aqueous NaHCO3 solution, solid product was

filtered, dried and recrystalized from ethanol

3.5.3. Cell culture and reagents.

Rat glioma cell lines C6 and LN18 were cultured in Dulbecco’s Modified Eagles Medium
(DMEM) media, supplemented with 10% heat inactivated fetal bovine serum (Gibco, NY,
USA). Antibiotics such as penicillin (100 [U/mL) and streptomycin (100 mg/mL) were supple-

mented. The cells were maintained at 37 °C and humidified atmosphere in 5% CO; incubator.
3.5.4. Cell viability assay.

Cell viability was determined by MTT assay wherein live cells reduce yellow MTT to formazon
crystals. For C6 and LN18 cell lines, 5,000 and 7,500 cells respectively were plated in distinct
96 wells plates followed by the drug treatment. Cell viability was assessed by incubating the
cells in methyl thiazole tetrazolium (MTT, 5 mg/mL; Sigma Aldrich, Taufkirchen, Germany)
for 4 h at 37 °C, the formazan crystals thus formed were solubilized in DMSO and absorbance

was measured at 570 nm.
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3.5.5. Cell proliferation assay.

Cell proliferation was analysed using MTT assay. For C6 and LN18 cell lines, 2,500 and 5,000
cells respectively were plated at a density of 1 X 104 cells/ well in distinct 96 wells plates.
The cells were incubated overnight followed by the drug treatment for 48 hours. 10 uL of MTT
(5mg/mL) was added at different time points i.e., 24 hours, 48 hours, 72 hours, 96 hours and
108 hours. The cells were further incubated for 4 hours at 37 °C. DMSO was added to dissolve
the formazon crystals and the absorbance was taken at 570 nm. We also used FDA approved
chemotherapeutic agent for glioma, Temozolomide (TMZ) as a control for our experiments to

compare the efficacy of the potential anti-cancerous compounds.
3.5.6. Wound healing assay.

For wound healing assay, 6 wells plates were used. 3x105 cells of both C6 and LN 18 cell lines
were plated in each well. The cells were incubated overnight so that they adhere the surface
and form a monolayer. When the cells were 80% confluent, the monolayer was scratched with
the help of autoclaved 200ul microtip. This was followed by capturing images at distinct time
points of 0 hour, 24 hours, 48 hours for C6 cell line and additionally 72 hours for LN18 cell
line. The captured images were compared to quantify the rate of migration of the cells after the

wound.
3.5.7. Clonogenic assay.

To determine clonogenic survival, were seeded in 6-well plate (C6: 500 cells/well and LN18:
1000 cells/well). The cells were treated with respective drugs at different concentrations for 48
hours and further cells were supplemented with fresh complete media. The cells were incubated
at optimal conditions post treatment unless the colonies were seen in the cultures. The cells
were washed with 1x PBS, further the colonies were stained with 0.5% crystal violet for 10
min. Further, the cells were washed with water to remove the excess stain and imaged for anal-
ysis.

3.5.8. Western blotting.

Protein concentrations were determined and quantified by Bradford assay reagent (Sigma,
USA). 30ug of protein samples were subjected for 10% SDS-PAGE and electro-transferred
onto the nitrocellulose membrane. Membrane was blocked for 1 h at room temperature using
5% skimmed milk and was incubated overnight at 4 °C with primary antibodies (1:1000)
against respective antibodies: pERK, pAKT (Thr 308 and Ser 473), AKT (Cell Signaling Tech-
nology Europe, Frankfurt/Main, Germany), ERK (Santa Cruz Biotechnology, Dallas, TX,
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USA), pIRE, IRE, XBP1 (Abcam, Cambridge, UK). After washing, the membranes were incu-
bated with HRP-conjugated secondary antibodies (1:2000) and blots were developed using lu-

minescence detection reagents (Thermo scientific, USA).
3.5.9. Cell cycle analysis.

The cells were plated in 60 mm plate and were allowed to adhere for 24 hours. Drug treatment
was given to the cells for 48 hours. Trypsinization of the cells was done to obtain single cell
suspension. The cells were centrifuged at 2000 rpm for 5 mins. The pelleted cells were fixed
using 70% ethanol with gentle vortexing and were transferred to -20 °C for overnight. The cells
were centrifuged, ethanol was discarded and the pelleted cells were washed with PBS thrice to
remove the ethanol completely. Followed by PI staining (PI) mixture (50 pg/mL PI, 1% triton-
X-100, 50 pg/mL RNase A) and incubated for 30 mins in the dark at room temperature. The
cells were washed and resuspended with PBS. Then, Pl-stained cells were subjected to flow
cytometry using a FACS Calibur (BD Biosciences). Cell cycle parameters were analysed using

Flowjo software.
3.5.10. Statistical analysis.

Statistical analysis was performed using GraphPad Prism 9.0 (GraphPad Software Inc., CA,
USA). The representative experimental data shown is repeated at least three times unless men-
tioned otherwise. The statistical analysis was performed using multiple pairwise comparisons
for in vitro data. The statistical significance between two groups was evaluated using Student
t test. The results are represented as mean + standard error mean (SEM). p-values of <0.05 are
considered as statistically significant (ns: not significant; * p <0.05, ** p <0.01, *** p <0.001,

k% p < 0.0001).

3.5.11. Docking Analysis.

3.5.11a. Ligand preparation: All the structures of the derivatives, the standard Temozolamide
were sketched in chemsketch and imported into the Maestro build panel of Schrodinger suite.
They were converted to three-dimensional structures and prepared using Ligprep module. This
generated all possible states at a physiological pH range 7 + 2 and produces lowest potential
energy conformer of the ligand using an OPLS 2005 force field. All these ligands post prepa-

ration was used for molecular docking studies

3.5.11b. Protein preparation: In this current studies, GSK-3 inhibitor complexed with the
inhibitor 6QH4001 protein has been retrieved from the protein data bank with PDB ID: SK5N.

134



Chapter III

Protein preparation wizard module of Schrodinger Suite was used to prepare the protein. Hy-
drogens were added, the hetero atoms and water molecules were deleted from the crystal struc-

ture. The complex was minimized to relieve steric clashes using the OPLS 2005 force field.

3.5.11c. Molecular docking: A set of derivatives synthesized were taken and constructed using
Maestro build panel and prepared by Ligprep application in the Schrodinger 2010 suite. GLIDE
5.6 (Glide, Version 5.6. New York, NY) was used for molecular docking studies. The Grid was
generated at ligand binding region of the SK5N and receptor van der Waals scaling for the
nonpolar atoms was set to 0.9 and ligand molecule was picked so that it could be excluded
from grid generation. The molecular docking of all the derivatives into the generated grid was
performed by using the extra precision (XP) docking mode. The dimensions of the grid box
were set to 10 A x 10 A x 10 A. In initial phase of docking, 5000 poses per ligand were taken
out of which top 800 poses per ligand were passed on for energy minimization. During energy
minimization, the maximum number of minimization steps were set to 100, and distance-de-

pendent dielectric constant was set to 2.0

3.6. Characterization data of the synthesized compounds
SCHEME-1

2-(6-Phenylthiazolo[3,2-b][1,2,4]triazol-2-yl)isoindoline-1,3-dione (4a): White solid; yield
80%; mp: 220-221°C; IR (KBr) cm™: 3119 (alkene C-H), 1747 (imide
C=0); 'H NMR (400 MHz, DMSO-ds) 6 (ppm): 7.53-7.59 (m, 3H),

7.98-8.00 (m, 2H), 8.05-8.07 (m, 2H), 8.10 (s, 1H), 8.19 (d, J = 6.8 Hz, it /E‘/N)_S
2H); BC{H}INMR (100MHz, DMSO-ds) & (ppm): 111.9, 124.6, 126.8, @
127.6, 129.5, 130.4, 131.4, 132.4, 136.0, 153.4, 157.2, 166.3; HRMS
(ESI-TOF) (m/z): Calculated for C1gH10N4O2S [M+H]" 347.0597; found 347.0603. C, H, N
Analysis: Calculated C, 62.42; H, 2.91; N, 16.18; found: C, 62.46; H, 2.95; N, 16.22.

N\
(6]

2-(6-(4-Fluorophenyl) thiazolo[3,2-b] [1,2,4] triazol-2-yl) isoindoline-1,3-dione (4b): White
solid; Yield 82%; m.p: 238-239 °C; IR (KBr) cm™: 3110 (alkene C- F
H), 1747 (imide C=0), 1076 (C-F); *H NMR (400 MHz, DMSO-ds)
o (ppm): 7.45 (t, J = 8.8 Hz, 2H), 7.98 - 8.00 (m, 2H), 8.05-8.07 (m, .
.13 L NN
2H), 8.09 (s, 1H), 8.23-8.27 (m, 2H); “C{H}NMR (100MHg, iN/QN/)_S
\
(6]

DMSO-ds) & (ppm): 111.8, 116.4, 116.7, 124.3, 124.6, 129.2, 129.3,
131.4, 1359, 153.4, 157.2, 161.9, 166.3; HRMS (ESI-TOF) (m/z): Calculated for
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C18H9FN402S [M+H]* 365.0503; found 365.0505. C, H, N Analysis: Calculated C, 59.34; H,
2.49; N, 15.38; found: C, 59.30; H, 2.52; H, 15.35.

2-(6-(4-Cholrophenyl) thiazolo[3,2-b] [1,2,4] triazol-2-yl) isoindoline-1,3-dione (4c): White
solid; Yield 79%; mp: 279-280 °C; IR (KBr) cm™: 3118 (alkene C-H),
1746 (imide C=0), 628 (C-Cl); 'H NMR (400 MHz, DMSO-dg) ¢
(ppm): 7.67 (d, J = 8.8Hz, 2H), 8.00-7.98 (m, 2H), 8.05-8.07 (m, 2H),
8.17 (s, 1H), 8.23 (d, J = 8.8 Hz, 2H); ¥*C{H}NMR (100MHz, DMSO- Q /E—L\J)_\S
de) 0 (ppm): 112.6, 124.5, 124.7, 128.2, 128.5, 129.2, 129.4, 129.5, m N
130.7,131.3, 135.9, 136.0, 166.3; HRMS (ESI-TOF) (m/z): Calculated °
for C1sH9CIN4O2S [M+H]* 381.0208; found 381.0206. C, H, N Analysis: Calculated C, 56.77;
H, 2.38; N, 14.71; found: C, 56.80. H; 2.35; N, 14.76.

Cl

2-(6-(4-Methoxyphenyl) thiazolo[3,2-b] [1,2,4] triazol-2-yl)-4-nitroisoindoline-1,3-dione
(4d): Yellow solid; Yield 85%; m.p: 220-221 °C; IR (KBr) cm™: 3124
(alkene C-H), 1723 (imide C=0), 1517, 1338 (NO), 1116 (C-O-C); H
NMR (400 MHz, DMSO-ds) J (ppm): 3.83 (s, OCHg, 3H), 7.07-7.15 (m,

(6] —
4H), 7.37 (s, 1H), 8.13 (d, J = 8.8 Hz, 3H); BC{HINMR (100MHz, .f e
N

OMe

DMSO-ds) ¢ (ppm): 57.7, 103.2, 106.9, 114.6, 114.7, 120.6, 121.1,
128.1, 128.3, 132.0, 132.1, 155.7, 160.4, 160.6, 168.6; HRMS (ESI- NO,
TOF) (m/z): Calculated for C19H11NsOsS [M+H]* 422.0561; found 422.0567. C, H, N Analy-
sis: Calculated C, 54.16; H, 2.63; N, 16.62; O; found: C, 54.13; H, 2.67; N, 16.66.

2-(6-(4-Methoxyphenyl) thiazolo[3,2-b] [1,2,4] triazol-2-yl) isoindoline-1,3-dione (4e): Light
yellow solid; Yield 90 %; m.p: 237-238 °C; IR (KBr) cm™: 3119 (alkene OMe
C-H), 1747 (imide C=0), 1036 (C-O-C); *H NMR (400 MHz, DMSO-
de) 6 (ppm): 3.84 (s, OCHs, 3H), 7.14 (d, J = 8.8 Hz, 2H), 7.94 (s, 1H),
7.98 -8.00 (m, 2H), 8.05-8.07 (m, 2H), 8.13 (d, J = 8.8 Hz, 2H); @4 o
BC{HINMR (100MHz, DMSO-ds) 6 (ppm): 55.8, 109.5, 114.9, 120.1,

124.6, 128.3, 128.4, 131.4, 132.3, 135.9, 153.3, 157.1, 160.8, 166.3;
HRMS (ESI-TOF) (m/z): Calculated for C19H12N4O3S [M+H]" 377.0703; found 377.0711. C,
H, N Analysis: Calculated C, 60.63; H, 3.21; N, 14.89; found: C, 60.67; H, 3.26; N, 14.85.

N\
(6]
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2-(6-(p-Tolyl) thiazolo[3,2-b] [1,2,4] triazol-2-yl) isoindoline-1,3-dione (4f): Light yellow
solid; Yield 88%; m.p: 242-243 °C; IR (KBr) cm™: 3107 (alkene C-H), CH,
1742 (imide C=0); 'H NMR (400 MHz, DMSO-ds) 6 (ppm): 3.83 (s,
3H), 7.14 (d, J = 9.2 Hz, 2H), 7.94 (s, 1H), 7.97-7.99 (m, 2H), 8.05-8.07 oA
(m, 2H), 8.11-8.14 (m, 2H); BC{HINMR (100MHz, DMSO-ds) § d&j/« 2—s
(ppm): 23.8, 109.5, 114.8, 120.1, 124.6, 128.3, 128.4, 131.4, 132.3,

135.9, 153.3, 157.1, 160.8, 166.3; HRMS (ESI-TOF) (m/z): Calculated

for C19H12N40.S [M+H]" 361.0754; found 361.0971. C, H, N Analysis: Calculated C, 63.32;
H, 3.36; N, 15.55; found: C, 63.36; H, 3.32; N, 15.59.

2-(6-(4-Bromophenyl) thiazolo[3,2-b] [1,2,4] triazol-2-yl) isoindo-
line-1,3-dione (49): Light yellow solid; Yield 89%; m.p: 278-279 °C;
IR (KBr) cm™: 3099 (alkene C-H), 1745 (imide C=0), 531 (C-Br); 'H
o -
NMR (400 MHz, DMSO-ds) J (ppm): 7.81 (d, J = 8.8 Hz, 2H), 7.98- 1 /g /N)_\S

Br

8.00 (m, 2H), 8.05-8.07 (m, 2H), 8.16 (d, J = 8.4 Hz, 2H), 8.18 (s, 1H);
BC{H}NMR (100MHz, DMSO-dg) § (ppm): 112.3, 123.7, 1245,
127.0, 128.6, 128.8, 131.6, 132.3, 132.4, 135.9, 153.8, 157.3, 166.1; HRMS (ESI-TOF) (m/z):
Calculated for C1gHoBrN4O2S [M+H]" 424.9702; found 424.9704. C, H, N Analysis: Calcu-
lated C, 50.84; H, 2.13; N, 13.17; found: C, 50.88; H, 2.16; N, 13.13.

\
O

4,5,6,7-Tetrabromo-2-(6-phenylthiazolo[3,2-b][1,2,4]triazol-2-yl)isoindoline-1,3-dione (4h):
Yellow solid; Yield 88%; m.p: 313-314 °C; IR (KBr) cm™: 3120
(alkene C-H), 1738 (imide C=0), 664 (C-Br); *H NMR (400 MHz,
DMSO-ds) d (ppm): 7.55-7.62 (m, 3H), 8.11 (s, 1H), 822 (d,J = | & ¢ /E_S—\s
7.2 Hz, 2H); BC{H}NMR (L00MHz, DMSO-ds) & (ppm): 112.1, Brm N
121.8,126.8,127.6,128.8,129.5,130.4, 131.2, 132.4,137.7,152.9, | sr ©

157.2, 162.2; HRMS (ESI-TOF) (m/z): Calculated for
Ci1sH6BraN4O,S [M+H]* 658.7018; found 660.7020(M*?). C, H, N Analysis: Calculated C,
32.66; H, 0.91; N, 8.46; found: C, 32.62; H, 0.95; N, 8.42.

Br
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2-(6-(2,4-Dichlorophenyl)thiazolo[3,2-b][1,2,4]triazol-2-yl)isoindoline-1,3-dione (4i): Light
brown solid; Yield 84%; m.p: 224-225 °C; IR (KBr) cm™: 3117 (al-
kene C-H), 1748 (imide C=0), 707 (C-Cl); 'H NMR (400 MHz,
DMSO-ds) J (ppm): 7.88 (d, J = 8.4 Hz, 1H),7.98-8.00 (m, 2H), 8.05- Ci
8.07 (m, 2H), 8.23 (d, J = 8.4 Hz, 1H), 8.31 (s, 1H), 8.50 (s, 1H); It /2/“5_\8
BC{HINMR (100MHz, DMSO-ds) 6 (ppm): 114.1, 124.6, 126.8, LN
128.1,128.3, 130.3, 131.4, 131.7, 132.3, 132.8, 136.0, 153.5, 157.2,
166.2; HRMS (ESI-TOF) (m/z): Calculated for C1sHsCI2N402S [M+H]* 414.9818; found
414.9823. C, H, N Analysis: Calculated C, 52.06; H, 1.94; N, 13.49; found: C, 52.10; H, 1.92;
N, 13.52.

Cl

\
0]

2-(6-(4-Nitrophenyl) thiazolo[3,2-b] [1,2,4] triazol-2-yl) isoindoline-1,3-dione (4j):

Yellow solid; Yield 85%; m.p: 270-271 °C; IR (KBr) cm™: 3107 (al- NG

kene C-H), 1748 (imide C=0), 1525, 1347 (NO2); *H NMR (400
MHz, DMSO-de) J (ppm): 7.99-8.01 (m, 2H), 8.06-8.08 (m, 2H), 8.31 O N-n
(s, 1H), 8.45 (d, J = 1.6 Hz, 2H), 8.50-8.52 (m, 2H); BC{H}INMR @/«N/)_S
(100MHz, DMSO-ds) ¢ (ppm): 109.8, 116.2, 124.5, 124.7, 127.4, o

127.8, 130.5, 131.4, 133.5, 134.4, 136.0, 156.0, 157.4, 166.2; HRMS (ESI-TOF) (m/z): Calcu-
lated for C1sHgNsO4S [M+H]* 392.0448; found 392.0455. C, H, N Analysis: Calculated C,
55.24; H, 2.32; N, 17.90; found: C,55.20; H, 2.36; N, 17.94.

2-(6-([1,1'-Bipheny]-4-yDthiazolo[3,2-b]1,2,4]triazol-2-yl)-4-nitroisoindoline-1,3-dione
(4k): Yellow solid; yield 88%; m.p: 198-199 °C; IR (KBr) cm™:
3030 (alkene C-H), 1741 (imide C=0), 1527, 1346 (NO.); H
NMR (400 MHz, DMSO-ds,) 6 (ppm): 7.49-7.51 (m, 3H), 7.61

= = Q N—N
(s, 1H), 7.77 (d, J = 7.2 Hz, 3H), 7.85 (d, J = 8.4 Hz, 2H), 7.91 AT

Ph

(d, J = 9.6 Hz, 2H), 8.29-8.31 (m, 2H); 3C{H}NMR (100MH,
DMSO-dg) § (ppm): 105.4, 109.2, 127.0, 127.1, 127.2, 127.3, NO,
127.4,127.5, 128.3, 128.4, 129.5, 131.8, 139.6, 141.2, 155.9, 168.8; HRMS (ESI-TOF) (m/z):
Calculated for C24H13Ns04S [M+H]* 468.076; found 468.0763. C, H, N Analysis: Calculated
C, 61.67; H, 2.80; N, 14.98; found: C, 61.70; H, 2.84; N, 14.95.
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2-(6-([1,1'-Biphenyl]-4-yDthiazolo[3,2-b] [1,2,4] triazol-2-yl) isoindoline-1,3-dione (41):
Light yellow solid; Yield 90%; m.p: 198-199 °C; IR (KBr) cm™: 3108 =
(alkene C-H), 1745 (imide C=0); 'H NMR (400 MHz, DMSO-ds) ¢
(ppm): 7.49-7.53 (m, 3H), 7.77 (d, J = 7.2 Hz, 2H), 7.90 (d, J = 8.8
0 N
Hz, 2H),7.98-8.00 (m, 2H), 8.06-8.08 (m, 2H), 8.17 (s, 1H), 8.30 (d, \ N

) (m, 2H) (m, 2H), 8.17 (s, 1H), 8.30 ( f L3-8

\

(6]

J = 8.8 Hz, 2H); BC{H}NMR (100MHz, DMSO-ds) 6 (ppm): 111.8,
124.6, 126.6, 127.0, 127.1, 127.3, 127.6, 128.5, 129.5, 131.4, 132.1,
136.0, 139.4, 141.8, 153.4, 157.2, 166.3; HRMS (ESI-TOF) (m/z): Calculated for C24H14N4O,S
[M+H]* 423.0910; found 423.0913. C, H, N Analysis: Calculated C, 68.23; H, 3.34; N, 13.26;
found: C, 68.20; H, 3.36; N, 13.29.

4-Nitro-2-(6-phenylthiazolo[3,2-b] [1,2,4] triazol-2-yl) isoindoline-1,3-dione(4m):

Light Yellow solid; Yield 78%; m.p: 215-216 °C; IR (KBr) cm™: 3050
(alkene C-H), 1741 (imide C=0), 1541, 1358 (NO2); *H NMR (400
MHz, DMSO-ds) J (ppm): 7.53-7.59 (m, 3H), 8.11 (s, 1H), 8.18 (d, J it /2;-5_\3
= 8.0 Hz, 3H), 8.33 (d, J = 7.2 Hz, 1H), 8. 42 (d, J = 8.0 Hz, 1H); @
3C{H} NMR (100MHz, DMSO-ds) & (ppm): 106.4, 126.6, 127.8, NO,

128.2, 129.3, 130.1, 130.9, 132.5, 135.8, 146.1, 156.3, 166.8, 167.6; HRMS (ESI-TOF) (m/z):
Calculated for C1gHgNs04S [M+H]* 392.0448; found 392.0448. C, H, N Analysis: Calculated
C, 55.24; H, 2.32; N, 17.90; found: C, 55.28; H; 2.35; N, 17.93.

2-(6-(4-fluorophenyl)thiazolo[3,2-b][1,2,4]triazol-2-yl)-4-nitroisoindoline-1,3-dione(4n):
Yellow solid; Yield 81%; m.p: 220-221 °C; IR (KBr) cm™: 3107 (alkene F
C-H), 1742 (imide C=0), 1541, 1357 (NO) 1100 (C-F); *H NMR (400
MHz, DMSO-ds) 6 (ppm): 7.42-7.45 (m, 2H), 8.10 (s, 1H), 8.16 (t, J = 0N
8.0 Hz, 1H), 8.24-8.26 (m, 2H), 8.32 (d, J = 7.2 Hz, 1H), 8.41 (d, J =8 ‘ N Ps
Hz, 1H); BC{H}NMR (100MHz, DMSO-ds) § (ppm): 112.0, 116.4, @

116.7, 123.3, 128.3, 129.3, 129.7, 131.4, 133.5, 137.4, 145.2, 152.9,
157.2, 161.7, 164.3; HRMS (ESI-TOF) (m/z): Calculated for C1sHsFNs04S [M+H]* 410.0354;
found 410.0354. C, H, N Analysis: Calculated C, 52.81; H, 1.97; N, 17.11; found: C, 52.85; H,
1.94; N, 17.14.

O
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6.1. SCHEME-2

(E)-1-(4-Nitrophenyl)-N-(6-phenylthiazolo[3,2-b][1,2,4]triazol-2-yl)methanimine(6a): Yel-
low solid; Yield 83%; m.p: 195-196 °C; IR (KBr) cm™: 2929 (al-
kene C-H), 1610 (imine), 1534, 1313 (NO2); *H NMR (400 MHz,
DMSO-ds) & (ppm): 7.58-7.62 (m, 3H), 7.95 (s, 1H), 8.23-8.25 (m, - i‘;f%\s
2H), 8.30-8.34 (m, 2H), 8.38-8.40 (m, 2H), 9.49 (s, 1H); ozNg
BC{HINMR (100MHz, DMSO-ds) 6 (ppm): 106.0, 124.5, 126.6,

128.1,129.3, 130.1, 131.0, 132.3, 140.2, 151.0, 156.2, 168.0; HRMS (ESI-TOF) (m/z): Calcu-
lated for C17H11Ns0.S [M+H]* 350.0706; found 350.0725. C, H, N Analysis: Calculated C,
58.44; H, 3.17; N, 20.05; found: C, 58.40; H, 3.20; N, 20.09.

(E)-1-(4-Bromophenyl)-N-(6-phenylthiazolo[3,2-b][1,2,4]triazol-2-yl)methanimine(6b):
White solid; Yield 85%; m.p: 189-190 °C; IR (KBr) cm™: 3044
(alkene C-H), 1618 (imine), 597 (C-Br); *H NMR (400 MHz,
DMSO-ds) 6 (ppm): 7.53-7.60 (m, 4H), 7.78-7.85 (m, 2H), 7.94 NN
(s, 1H), 8.03 (d, J = 8.4 Hz, 1H), 8.20 (d, J = 7.6 Hz, 1H), 8.25 QA P
(d, J = 7.2 Hz, 1H), 9.35 (s, 1H); ®*C{HINMR (100MH_, -
DMSO-ds) 6 (ppm): 109.2, 126.5, 126.7,128.1, 129.2, 129.3, 130.1, 131.7,132.2, 132.7, 155.9,
160.2, 168.7; HRMS (ESI-TOF) (m/z): Calculated for C17H11BrN4S [M+H]" 382.9961; found
382.9967. C, H, N Analysis: Calculated C, 53.28; H, 2.89; N, 14.62; found: C, 53.25; H, 2.85;
N, 14.65.

(E)-1-(4-Chlorophenyl)-N-(6-phenylthiazolo[3,2-b][1,2,4]triazol-2-yl)methanimine(6c¢):
White solid; Yield 91%; m.p: 212-213 °C; IR (KBr) cm™: 3102 (al-
kene C-H), 1681 (imine), 727 (C-Cl); *H NMR (400 MHz, DMSO-
de) 0 (ppm): 7.50-7.66 (m, 5H), 7.84 (s, 1H), 8.09-8.25 (m, 4H), \N/E‘S—\S
10.69 (s, 1H); BC{H}NMR (100 MHz, DMSO-ds) 6 (ppm): 109.2, mg N
126.5,126.7,128.1,129.2,129.3,129.7, 129.8, 130.1, 131.6, 132.2,
155.9, 160.2, 168.8; HRMS (ESI-TOF) (m/z): Calculated for C17H11CIN4S [M+H]" 339.0466;
found 339.0470. C, H, N Analysis: Calculated C, 60.27; H, 3.27; N, 16.54; found: C, 60.30; H,
3.24; N, 16.50.
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(E)-1-(2,4-Dichlorophenyl)-N-(6-phenylthiazolo[3,2-b][1,2,4]triazol-2-yl)methanimine

(6d): White solid; Yield 93%; m.p: 192-193 °C; IR (KBr) cm™:

3100 alkene C-H), 1677 (imine), 727 (C-Cl); *H NMR (400 MHz,

DMSO-dg) 6 (ppm): 7.55-7.58 (m, 2H), 7.84 (s, 1H), 7.95 (s, 1H), ﬁjﬁ
Cl

8.18-8.24 (m, 4H), 8.29 (d, J = 84 Hz, 1H), 9.64 (s, 1H); N
BC{H}NMR (100MHz, DMSO-dg) ¢ (ppm): 109.2, 126.5, 128.0,
128.7,129.2, 129.3, 129.7, 130.1, 130.7, 131.5, 132.2, 160.4, 168.7; HRMS (ESI-TOF) (m/z):
Calculated for C17H10CI2N4S [M+H]" 373.0076; found 373.0087. C, H, N Analysis: Calculated

C, 54.70; H, 2.70; N, 15.01; found: C, 54.73; H, 2.74; N, 15.05.

(E)-5-Nitro-2-((6-phenylthiazolo[3,2-b][1,2,4]triazol-2-yl)imino)methyl)phenol (6e): Yellow
solid; Yield 81%; m.p: 203-204 °C; IR (KBr) cm™: 3074 (alkene
C-H), 1610 (imine), 1527, 1339 (NOz); *H NMR (400 MHz,
- . = - OH N=N"
DMSO-ds) d (ppm): 7.20 (d, J = 9.2 Hz, 1H), 7.54-7.62 (m, 5H), @ANXN%S
O,N

7.95 (s, 1H), 8.24 (d, J = 7.6 Hz, 2H), 8.87 (s, 1H), 9.67 (s, 1H);
BC{H}INMR (100MHz, DMSO-ds) & (ppm): 105.4, 118.8, 122.5,
125.0, 126.5, 126.7, 128.5, 129.2, 129.3, 129.8, 131.1, 140.2, 166.0; HRMS (ESI-TOF) (m/z):
Calculated for C17H11N503S [M+H]* 366.0655; found 366.0660. C, H, N Analysis: Calculated
C, 55.89; H, 3.03; N, 19.17; found: C, 55.85; H, 3.07; N, 19.20.

2

(E)-1-(2,4-Dichlorophenyl)-N-(6-(4-methoxyphenyl)thia-
zolo[3,2-b][1,2,4]triazol-2-yl) methanimine (6f): White solid;
Yield 90%; m.p: 220-221°C; IR (KBr) cm™: 3119 (alkene C-H),
1620 (imine), 729 (C-Cl), 1257 (O-CHs); *H NMR (400 MHz, cl NERVEN
DMSO-ds) § (ppm): 3.85 (s, 3H), 7.13-7.15 (m, 2H), 7.67 (s, 1H), @A NNy
7.78 (s, 1H), 8.13-8.18 (m, 4H), 9.62 (s, 1H); 3C{H} NMR “
(100MHz, DMSO-ds) 6 (ppm): 79.6, 109.5, 125.2, 126.6, 128.7, 129.9, 130.1, 131.2, 132.3,
137.2, 138.3, 139.8, 160.2, 169.2; HRMS (ESI-TOF) m/z: Calculated for CigsH12CI2N4OS
[M+H]* 403.0182; found 403.0191. C, H, N, Analysis: Calculated C, 53.61; H, 3.00; N, 13.89;
found: C, 53.64; H, 2.97; N, 13.86.

OMe)
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(E)-1-(2,4-Dichlorophenyl)-N-(6-(p-tolyl)thiazolo[3,2-b][1,2,4]triazol-2-yl)methanimine

(6g): Whit solid; Yield 89%; m.p: 218-219 °C; IR (KBr) cm™:
2920 (alkene C-H), 1615 (imine), 727 (C-Cl); 'H NMR (400
MHz, DMSO-ds) & (ppm): 2.39 (s, 3H), 7.37 (d, J = 8.4 Hz, 2H),
7.67 (s, 1H), 7.73 (d, J = 2.4 Hz, 1H), 7.77 (s, 1H), 8.09 (d, J =
8.4 Hz, 2H), 8.26 (d, J = 8.4 Hz, 1H), 9.60 (s, 1H); *C{H}NMR

(100MHz, DMSO-dg) 3 (ppm): 23.8, 106.9, 108.2, 114.7, 114.8,

120.6, 128.3, 128.4, 128.8, 130.2, 132.1, 138.4, 160.3, 160.7, 169.2; HRMS (ESI-TOF) m/z:
Calculated for C1gH12CIloN4S [M+H]* 387.0232; found 387.0241. C, H, N analysis: Calculated

C, 55.82; H, 3.12; N, 14.47; found: C, 55.86; H, 3.15; N, 14.44.

(E)-4-(((6-(4-Fluorophenyl)thiazolo[3,2-b][1,2,4]triazol-2-yl)imino)methyl)benzonitrile

(6h): White solid; Yield 79%; m.p: 240-241 °C; IR (KBr) cm™:
3106 (alkene C-H), 1611 (imine), 1018 (C-F); *H NMR (400
MHz, DMSO-ds) 6 (ppm) : 7.40-7.45 (m, 4H), 7.83 (s, 1H), 8.24-
8.31 (m, 4H), 10.70 (s, 1H); BC{H}NMR (100MHz, DMSO-ds) 6
(ppm): 109.1, 116.3, 116.5, 124.66, 124.69, 129.10, 129.18,

F B

NN
~

/@ANJN%S

131.3, 155.9, 160.2, 161.8, 164.2; HRMS (ESI-TOF) m/z: Calculated for C1gH1oFNsS [M+H]*
348.0714; found 348.0929. C, H, N Analysis: Calculated C, 62.24; H, 2.90; N, 20.16; found:

C, 62.20; H, 2.87; N, 20.20.

(E)-1-(4-Chlorophenyl)-N-(6-(4-nitrophenylthiazolo[3,2-

b][1,2,4] triazol-2-yl)methanimine (6i): White solid; Yield 89%;
m.p: 233-234 °C; IR (KBr) cm™: 3074 (alkene C-H), 1616
(imine), 1545, 1344 (NOy), 729 (C-Cl); *"H NMR (400 MHz,
DMSO-ds) 6 (ppm): 7.64 (d, J = 8.4 Hz, 2H), 8.09 (d, J = 8.4 Hz,

mNJN%S

NO,

NN
~

2H), 8.28 (s, 1H), 8.40-8.42 (m, 2H), 8.49-8.52 (m, 1H), 8.55-8.58 (m, 1H), 9.36 (s, 1H);
BC{HINMR (100MHz, DMSO-ds) 6 (ppm): 109.8, 124.5, 124.6, 127.3, 127.5, 129.8, 130.11,
131.6, 134.4, 147.6, 147.8, 156.0, 168.9; HRMS (ESI-TOF) (m/z): Calculated for
C17H10CINsO2S [M+H]* 384.0316; found 384.0328. C, H, N Analysis: Calculated C, 53.20; H,

2.63; N, 18.25; found: C, 53.24; H, 2.67; N, 18.29.
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(E)-N-(6-(2,4-dichlorophenyl)thiazolo[3,2-b][1,2,4]triazol-2-yl)-1-(4-nitrophenyl)
methanimine (6j): Yellow solid; Yield 87%; m.p: 230-231°C; IR o)
(KBr) cm™: 3098 (alkene C-H), 1621 (imine), 1520, 1344 (NO,),
730 (C-Cl); 'H NMR (400 MHz, DMSO-de) 6 (ppm): 7.77-7.85 (m, A
2H), 8.06 (s, 1H), 8.17-8.22 (m, 2H), 8.34-8.43 (m, 2H), 8.54-8.55 QAN/(N/%S
(m, 1H), 10.75 (s, 1H); B*C{HINMR (100MHz, DMSO-ds) J (ppm): (o=
107.3,111.1,124.4,126.3,127.6,127.8, 128.6, 130.8, 131.3, 131.8, 155.7, 168.5; HRMS (ESI-
TOF) (m/z): Calculated for C17HoCl2N502S [M+H]* 417.9927; found 417.3179. C, H, N Anal-
ysis: Calculated C, 48.82; H, 2.17; N, 16.74; found: C, 48.85; H, 2.21; N, 16.73.

Cl

o

2

(E)-N-(6-(4-Fluorophenyl)thiazolo[3,2-b][1,2,4]triazol-2-yl)-1-(4-nitrphenyl)methanimine
(6k): Yellow solid; Yield 80%; m.p: 198-199 °C; IR (KBr) cm™: F
3072 (alkene C-H), 1675 (imine), 1505, 1325 (NOy), 1163 (C-
F); *H NMR (400 MHz, DMSO-ds) J (ppm): 7.42-7.45 (m, 2H),
7.83 (s, 1H), 8.31-8.34 (m, 4H), 8.38-8.40 (m, 2H), 9.49 (s, 1H); QAN/QN%S
BC{HINMR (100MHz, DMSO-ds) ¢ (ppm): 109.1, 116.3, (N

116.5, 1245, 124.7, 128.9, 129.0, 129.1, 130.8, 131.1, 131.2, 140.5, 155.8, 164.2, 168.8;
HRMS (ESI-TOF) (m/z): Calculated for C17H10FN5sO2S [M+H]" 368.0612; found 368.0614. C,
H, N Analysis: Calculated C, 55.58; H, 2.74; N, 19.06; found: C, 55.54; H, 2.77; N, 19.03.

(E)-N-(6-(4-Chlorophenyl)thiazolo[3,2-b][1,2,4]triazol-2-yl)-1-(4-nitrophenyl)methanimine
(61): Yellow solid: Yield 88%; m.p: 211-212 °C; IR (KBr) cm™:
3074 (alkene C-H), 1614 (imine), 1520, 1344 (NO,), 730 (C-Cl);
'H NMR (400 MHz, DMSO-ds) J (ppm): 7.64-7.67 (m, 2H), 7.92

(s, 1H), 8.22-8.25 (m, 2H), 8.29-8.38 (m, 4H), 9.49 (s, 1H); /@ANKI/:/N%\S
BC{H}INMR (100MHz, DMSO-ds) 6 (ppm): 106.1, 110.0, 124.7, |0,

126.9, 128.2, 128.3, 129.2, 129.4, 131.0, 140.4, 151.0, 155.9, 168.8; HRMS (ESI-TOF) (m/z):
Calculated for C17H10CINsO2S [M+H]" 384.0316; found 384.0322. C, H, N Analysis: Calcu-
lated C, 53.20; H, 2.63; N, 18.25; found: C, 53.23; H, 2.60; N, 18.22.

Cl
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3.7. Copies of spectral data. (SCHEME-1)

'H NMR spectrum of compound 4a. (DMSO-ds) 400 MHz
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Mass spectrum of compound 4a
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13C NMR spectrum of compound 4b. (DMSO-ds) 100MHz
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'H NMR spectrum of compound 4c. (DMSO-ds) 400MHz
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Mass spectrum of compound 4c
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13C NMR spectrum of compound 4d. (DMSO-ds) 100 MHz
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'H NMR spectrum of compound 4e. (DMSO-ds) 400 MHz
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Mass spectrum of compound 4e.
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13C NMR spectrum of compound 4f. (DMSO-ds) 100 MHz
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'H NMR spectrum of compound 4g (DMSO-dg) 400 MHz
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Mass spectrum of compound 4g
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13C NMR spectrum of compound 4h. (DMSO-ds) 100 MHz
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'H NMR spectrum of compound 4i. (DMSO-ds) 400 MHz
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Mass spectrum of compound 4i
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13C NMR spectrum of compound 4j. (DMSO-ds) 100 MHz
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'H NMR spectrum of compound 4k. (DMSO-ds) 400 MHz
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Mass spectrum of compound 4k
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13C NMR spectrum of compound 4l. (DMSO-ds) 100 MHz

-
o

166, 27;

—157.29
153.45

T T T T T T
200 190 180 170 160 150 140 130 120 110 100 9% 30
& (ppm)

Mass spectrum of compound 4l

10 5 |*+ES! Scan (rt 0.248 min) Frag=175.0v 30.11.2021-39.d
1.05

14

0951 O

0.9

10.85
4230913

0.8+

[0} N-NTY
0.75
LA
N
0.7 al
—~/ 0o

10.65

06

10.55

0.5

10.45

0.4+

10.35

0.3

025+

0.2

0.154
4173157

431.3303

4411014

46246446546341'041'24i441'(§10u4ia4é04é242'442'642'34504:;24544554334404-&24&4

161



Chapter III

'H NMR spectrum of compound 4m. (DMSO-ds) 400 MHz
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Mass spectrum of compound 4m
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13C NMR spectrum of compound 4n. (DMSO-ds) 100 MHz
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Scheme-2
H NMR spectrum of compound 6a. (DMSO-ds) 400 MHz
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Mass spectrum of compound 6a
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13C NMR spectrum of compound 6b. (DMSO-ds) 100 MHz
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'H NMR spectrum of compound 6¢. (DMSO-ds) 400 MHz
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Mass spectrum of compound 6¢

'H NMR spectrum of compound 6d. (DMSO-ds) 400 MHz
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13C NMR spectrum of compound 6d. (DMSO-ds) 100 MHz
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'H NMR spectrum of compound 6e. (DMSO-ds) 400 MHz
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Mass spectrum of compound 6e

IH NMR spectrum of compound 6f. (DMSO-dg) 400 MHz
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13C NMR spectrum of compound 6f. (DMSO-ds) 100 MHz
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'H NMR spectrum of compound 6g. (DMSO-ds) 400 MHz
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Mass spectrum of compound 69
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13C NMR spectru

m of compound 6h. (DMSO-ds) 100 MHz

Mass spectrum of compound 6h
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'H NMR spectrum of compound 6i. (DMSO-ds) 400 MHz
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Mass spectrum of compound 6i
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13C NMR spectrum of compound 6j. (DMSO-ds) 100 MHz
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'H NMR spectrum of compound 6k. (DMSO-ds) 400 MHz
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Mass spectrum of compound 6k
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13C NMR spectrum of compound 6l. (DMSO-ds) 100 MHz
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CHAPTER-IV

Synthesis of novel thioalkylated triazolothiazoles and their
promising in-vitro antiviral activity

R = Br, NO,, CN, Me
R'=H, CI, Br, Me, OMe, Ph, CN




Chapter IV

4.1. Introduction

Hantzsch thiazole method is used for the construction of simple thiazoles®. In the thiazole ring
S atom is having the delocalized lone pair of electrons and it satisfies Huckel (4n+2) rule.
Therefore, the thiazole moiety is an aromatic compound in which five membered ring contains
two hetero atoms (S, N) it is possible to exist two isomeric structures i.e. 1,3-thiazole and 1,2
thiazole (isothiazole) The presence of acidic proton at C, position of 1,3-thiazole ring feasible
to develop the new chemical entities such as formation of C-C, bond and ring cyclization
reactions % 3. And the 1,3-thiazoles have tremendous biological applications. The thiazolium
salts are well known important catalysts in organic reactions to make the variety of the

compounds®.

4__\3

)

5 s
1

N

Isomeric structures of thiazole molecule

N pr—
[;» \N,S

1,3-thiazole 1,2-thiazole

Possible resonance structures of thiazole

N © Q _ —
[Sj@: [E) — [ — () — (SN@
' S ® ® ®

The broad biological activity of thiazoles are used in many of the pharmaceutically active drug
molecules to cure various diseases. Some of the biologically active thiazole containing drugs
are the Penicillin is an antibiotic,® ritonavir is antiviral drug,® sulfathiazole is antibacterial
drug,” abafungin is antifungal drug,® triazofurin, belomycin are the anticancer drugs.® *
Thiazole moiety is an essential heterocyclic core unit for the development of biologically active

molecules.!* Many of the thiazole containing molecules possesses various biological activities
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such as antimalarial,*? antiviral,***® anticancer,*® 162 FabH inhibitors,!” antimicrobial,*® 18 anti-
inflammatory,® anticytostatic agents,?° antimiscellaneous properties,?> CNS active agents,??

and antihypertensive. 2

In particular, the thiazole 2-imine derivatives have received a lot of attention in medicinal
chemistry because these substances display drug-like properties and most of them are
extensively used in the pharmaceutical industry and natural products.?+3

1,2,4-triazole moiety associated with a thiazole heterocyclic ring has been identified as
potential biological activity molecule.® Thio alkylated triazolothiazole 2-imines are mainly
used in the medicinal and pharmaceutical field and possess antiviral,®® anticandidal,® and
antituberculosis activity®® among others. Fig.1 describes the different bioactive thiazoles and

triazolothiazole motifs.36-44

B R3 R®
N/)\NA(S HO R?
/ HN-R ~N
N S}// | )\ R4
@ | R ONT N
N S
2. Neuroprotective activity o
1. Anticytotoxic R N—N 3. Anti HIV
Cl « \
-
OH g N o
F N—
0 N \
! 0 F N O(F:'/Q %S/\( N.___R!
S i ; N HN\</
DA R? HC RS J
NG F S
S H
. F 5. Anti Hepatotoxic 6. Antimicrobial
4, Antihepatitis N
-
N D o
H N
NN HaC
N ‘ S - L, OTBSN:N N\ N
B = N="ho ‘fs
S N F N
H NC NS F R2 :
\ o R
7. Antitubercular S 8. Ravuconaole 9. Antitumor
R antifungal

Fig.1. Biologically active thiazoles and triazolothiazole heterocyclic molecules.
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Following are the literature reports of thiazoles.

2-amino pyrimidines on reaction with phenyl isothiocyanates in EtOH initially to afford a
thiourea derivative then it was treated various 2-halo acetophenones in same reaction to form
a five membered heterocyclic compounds thiazoles. The final products were screened for their
antiviral activity and most of the compounds were exhibited good viral activity.*® (Scheme-1.1)

Scheme-1.1
0
E\ ; EtOH E\N i EtOH E\ )
R'™-NCS _— =, _EOR 3
N/)\NHZ + N/)\NJ\N’R1 +RS N/)\N//Ll}l R
H H R =Y R2

Vicini et al * reported the synthesis of 2(thiazol-2-yl imino (thiazolidine-4-ones by the reaction
of 2-amino thiazole with chloroacetyl chloride in presence of DMF and reflux to produce the
2-halo N-acetyl compound. This again on reaction with ammonium thiocyanate in EtOH under
reflux resulted in the formation of triazolyl thiazolidinone. These on further reaction with
various aldehydes in presence of a mixture of AcOH/NaOAc to obtain final compounds.
(Scheme-1.2)

Scheme-1.2

O

o HNJS

N
N CI.CO.CH,.CI (N Cl NH,SCN [\ p R-CgH,-CHO N
S DMF/RT s H EtOH/reflux AcOH/NaOAC S

Reflux

Jawale et al *” published an efficient route for the applications of thiazole substrates in organic
synthesis by using cationic liquids. The Knovenagal condensation reaction between aldehydes
and 2,4 thiazolidinones in presence of ionic liquid to develop the 5-arylidine-2,4-thiazolidines
leading to the formation of C-C double bond. (Scheme-1.3)

Scheme-1.3

(@] Br Br
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Heravi et al * synthesized a series of thiazole-2-imines with good percentage of yield in a
short period of time by a one-pot three component reaction of a-bromo acetophenone,
aromatic/aliphatic primary amines and phenyl isothiocyanates in EtOH/EtsN at reflux
condition. (Scheme-1.4)

Scheme-1.4

R!
Q : N
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R3 R Reflux —

Sondhi et al *° reported the synthesis of acridine 9-substituted thiazole 2-imine derivatives by
the reaction of 9-chloro acridine with thiazole imine compound (2) in presence of methanol at
reflux to afford a nucleophilic addition product (3). The final compounds were tested for their

anti-inflammatory, kinase inhibitory and analgesic activity. (Scheme-1.5)

Scheme-1.5
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Kimpe et al °° developed an unambiguous synthesis of 2-amino 4-thiazolines form the reaction
of 2-bromo 1-phenyl propanone with thiourea in EtOH at reflux temperature to give the 2-
amino thiazole. This have been reaction with alkyl halide (Me-I) in the same solvent to give
new N-alkyl 2-imino thiazole. (Scheme-1.6)
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Scheme-1.6
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Saeed et al ® reported the synthesis of thiazole ring containing benzimidazoles by

condensation of the carbonyl compounds such as 2-bromo acetone cyclocondensation reaction
with thiourea derivative of compound 1 in presence of EtsN under microwave conditions to

give a thiazole ring containing benzamide compound 2 shown in scheme-1.7.

Scheme-1.7

R2
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3-Aryl-4-formyl sydnones on reaction with N-substituted thiosemicarbazone in presence of
ethanol/NaOAc/AcOH to make a thiourea substituted sydnone derivatives 1 and 2. Which were
subsequently reaction with chloro ethyl acetate or a-halo acetophenone in ethanol to afford a
corresponding thiazoles. These derivatives were shown antioxidant activity.>? (Scheme-1.8)

Scheme-1.8
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The multicomponent reaction of acetyl thiazole compound 1 with thiosemicarbazide and

appropriate hydrazonyl chloride in the presence of EtsN/dioxane at reflux temperature to
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produce the corresponding aryl hydrazothiazolones. These final substrates were demonstrated

as promising anticancer activity.>® (Scheme-1.9)

Scheme-1.9
@\/ " CHj 9] " /@ Et;N/Dioxane l>l \ CH
~ R —— 3
N, AMC'“ ey SR
N" s * a M H N~
le} NH
| X s
_NH, % -N
NN Hee N

The combinatorial four component synthesis of 2,4-isubstituted thiazole derivatives by the
reaction of B-dimethyl amino a-iso acrylate, thioglycolic acid, various aldehydes and benzyl

amines. The final products were formed with good yield.>* (Scheme-1.10)

Scheme-1.10

0]

e .
\[ CHs HO™ “SH o}
N~ .
| MeO N Pri
S N-A

Bn-NH, Pri-CHO Bn

MGOQC

C

Wichmann et al > reported one-pot Biginelli type reaction of 1,3-di carbonyl compound,
thiourea and aldehydes in AcOH at reflux conditions. Then followed by reaction with bromo-
1- phenacylated aldehyde in CH3CN to produce thiazole product 2. The pyrimidine attached

thiazole entities shows metabotropic glutamate receptor antagonist properties. (Scheme-1.11)

Scheme-1.11
R R2 il R' O
YU R O X cHO
0O O 0 R4 N R?
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S '/ Reflux S N
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Shiran et al *® published the synthesis of bis-thiazole compounds form the reaction of different

isocyanides with 1,3-diamino benzene in EtOH under heating for 30 min to form a respective
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1,3-di substituted di thiourea derivatives. This on further reaction with 2-bromo acetophenone

to produce the corresponding bis thiazole. These exhibit antibacterial activity. (Scheme-1.12)

Scheme-1.12

R Ph
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Childers et al ®" developed a one-pot synthesis of various 5-amino-4-carboxamide thiazoles
via a one-pot multi-component approach by the combination of various aldehydes and 2-
amino-2-cyano acetamide and Sg elemental sulfur in presence of basic conditions shown in

scheme-1.13.

Scheme-1.13
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Pfeiffer et al > reported the synthesis of N-5-diphenyl-6H-1,3,4-thiadiazin-2-amine from a-
bromo acetophenone and 4-phenyl thiosemicarbazide in EtOH. Later on this compound was
treated with con. HCI to give a 2-hydrazono-3,4-diphenyl-2,3-dihydro thiazole represented in

schemr-1.14.

Scheme-1.14
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LV et al > reported the reaction of substituted aromatic aldehydes with thiosemicarbazide, 2-
bromo acetophenones in presence of acetic acid/propanol to afford a substituted thiazole

compound with good yields. The final compounds have shown potential antibacterial activity.

Scheme-1.15
R2 S R2 o}
R? R! JLNH,  Re R Br
H2N N S +
___H
R* CHO  Propanol R4 /N\NJ\NH2 RS
AcOH H R5

Gombha et al ®° synthesized the thiazole ring substituted compounds via a one-pot synthesis of
3-acetyl coumarin, thiosemicarbazide and hydrazonyl halide in dioxane/EtsN under Ultra
sonification condition. On the other hand, the final compound can be prepared by the reaction
of thiosemicarbazone of 3-acetyl coumarin with 2-bromo acetophenones followed by
condensation with aryl diazonium halides in dioxane. These compounds have shown cytotoxic
activity. (Scheme-1.16)

Scheme-1.16
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Mamidala et al ®* reported the pseudo three component synthesis of thiocarbohydrazide,
aromatic aldehydes and 3-(2-bromo acetyl) coumarins in EtOH/AcOH under, microwave
irradiation to give a thiazole derivatives with good yield. These compounds have shown good
antibacterial activity. (Scheme-1.17)

Scheme-1.17
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Scheme-1.18

Sujatha et al ®2 carried out the multi-component synthesis of thiazoles by the condensation of
aromatic amines, 3-chloro acetyl acetone, thiosemicarbazide, ammonium thiocyanate and di

alkyl (Me, Et) acetylene di carboxylate in polyethylene glycol-400. (Scheme-1.18)
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4.2. Present work.

In view of these observations and in continuation of our current work interest in the synthesis
of thiazole heterocycles for biological evaluations®?8. We have made an attempt to design and

synthesis of new molecules with better antiviral properties as depicted in the following fig. A.
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H
Fragment of R3 \
thiazole Back bone of
i 1,2,4-triazole

The present work was planned to synthesize some new thiazole derivatives bearing 1,2,4-

triazole moiety. The newly synthesized compounds were investigated as antiviral agents.
4.2.1. Synthesis of 1,2,4-triazolothiazoles.

An efficient novel four component synthesis of 3-(5-(benzylthio)-4H-1,2,4-triazol-3-yl)-N,4-
diphenylthiazol-2(3H)-imines was carried out by a one-pot multicomponent approach.
Schematic representation of target compounds is depicted in scheme-1. The reaction of 5-
amino-4H-1,2,4-triazole-3-thiol (1) with benzyl bromides (2) phenyl isothiocyanates (3) and
2-bromo acetophenones (4) using ethanol and DMF (8:2) gave novel target triazolothiazoles

(5).

Scheme-1: Outline schematic representation of triazolothiazole synthesis.

R2

=N 1 ESN
3. © e AW
Refluxat85 °C | R!

4
5a-s

R'=NO,, Br, CN: RZ = H, CI
R3 = H,CI, Br, CN, NO,, OMe, Ph

4.2.2. Results and discussion.

The one-pot four component synthesis of triazolothiazole (5) can be achieved by the reaction
of 1 with p-substituted benzyl bromides to form a thiobenzylated compound, then further
reaction with phenylisothiocyanate and various 2-bromo acetophenones in EtOH/DMF at
reflux temperature produced the corresponding (Z)-3-(5-(benzylthio)-4H-1,2,4-triazol-3-yl)-
N,4-diphenylthiazol-2(3H)-imines with good yields.

In the optimization study the reaction was initially carried out between 5-amino-4H-[1,2,4]-
triazole-3-thiol (1), benzyl bromide (2), phenylisothiocyanate (3), and simple phenacylbromide
using various solvents such as methanol, AcOH, EtOH, DMF (Table-1 entries 1-4). In this
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preliminary study it was found that in EtOH (Table-1 entry 3) the product has been formed to
some extent. Further we have tried to improve yield of the product by introducing a mixture of
solvents at different time intervals by varying the temperature (Table-1 entries 5-12). Out of
the screened solvents (entries 5-12) EtOH + DMF (entry12) at 60 °C for 10 h produced good
yield of the product. When gradually the temperature has been increased to 85 °C and time was
maintained for 9h the maximum vyield of the product was obtained (entry 14). Therefore, the

optimized conditions for the formation of the product was 85 °C for 9 h with 90% yield. The

L,

| NN

EtOH/DMFE _ g N/«N»\S/\Q\
A — Br

optimization conditions were summarized in Table-1

7
HZN/QN)\SH
|

/©/\Br
Br
H

+ O

Table-1: The optimization conditions[a].

T

S No Solvent Temp Time Yield
°C) (h) (%6)°
1 MeOH 60 10 12
2 AcOH 60 12 n.re
3 EtOH 60 8 20
4 DMF 60 9 trace
5 EtOH + AcOH(8:2) 70 10 n.r
6. EtOH + HCI(8:2) 70 13 10
7 EtOH + EtsN(8:2) 70 11 25
8 AcOH + Piperidine(8:2) 70 11 15
9 DMSO + EtOH(8:2) 70 15 n.r
10 AcOH + DMF(8:2) 70 10 22
11 EtOH + ag. KOH (0.1N) 70 8 14
12 EtOH + DMF(8:2) 60 9 65
13 EtOH + DMF(8:2) 70 9 73
14 EtOH + DMF(8:2) 85 9 90¢
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[{Reaction conditions: Amino mercapto 1,2,4 triazole (1) (1 mmol), p-bromo benzyl bromide
(2) (2 mmol), phenyl isothiocyanate (3) (1 mmol), phenacyl bromide (4) (1 mmol) using
different mixture of solvents and temperatures, time. °Yield of the product; °n.r = no reaction;
985 °C for 9 hours EtOH + DMF, 90%.

HN/« )\ E::;H @ /4 \ EtOH/DMF
2 r

Br

Fig.2. The plausible mechanism for the formation of compounds 5a-s.

Plausible mechanism for the formation of compound 5 is depicted in Fig.2. The molecule 1 has
both amino and thiol reacting functional groups in which the more nucleophilic thiol group
(Soft nucleophile) attacks on bromine atom of benzyl bromide (soft electrophilic centre) to
form a thioalkylated product which follows SN* reaction mechanism with the elimination of
HBr. Then the free amino (NH2) group lone pair electrons attacks on the carbon atom of phenyl
isothiocyanate to build a phenyl thiourea intermediate A. Subsequently the thiol group of A
displaces the bromine of 2-bromoacetophenone to give intermediate B followed by
intramolecular cyclocondensation reaction through the elimination of water molecule to
produce a thiazole five membered heterocyclic ring. The advantage of this reaction is that there

is a simultaneous formation of two C-N and one C-S bonds.
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Table-2. One-pot four component synthesis of triazolo thiazole substrate scope.
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Reaction conditions: 5-amino-4H-1,2,4-triazolo-3-thiol 1 (1 mmol), benzyl bromides 2 (1
mmol), Phenylisothiocyanates 3 (1 mmol), Phenacylbromides 4 (1 mmol), in EtOH + DMF
refluxed at 85 °C.

Under the optimized reaction conditions, a study on the substrate scope was carried out and the
results were presented in the Table-2. It can be seen from the reaction that a wide range of
phenacyl bromides and aryl isothiocyanates are most suitable for this 4 component reaction.
Phenacyl bromides and benzyl bromides tethered with both electron withdrawing and electron
donating substrates gave the desired products. In general, when we employed electron
withdrawing groups on phenacylbromide and benzyl bromide the yields were higher compared
to electron withdrawing groups. The p-OCHz and biphenyl substituted derivatives 50, 5d, 5s
has shown high yield of the product.

The structures of the newly synthesised compounds (5a-s) were established by their physical
and analytical data. The IR spectra of the compounds 5a-s showed the presence of amine (N-
H), alkene C-H, imine (C=N), nitro (NO), ether (C-O-C), and halo (C-ClI, C-Br) functional
groups in the range of 3300 — 3421 cm™, 3021-3105 cm™, 1600-1640 cm™, NO2 (asymmetric
1530-1544 cm 1, symmetric 1320-1350 cm™), 1100-1250 cm™, and 680-721 cm™ respectively.
The proton NMR spectra of the thio alkylated methylene two protons appear as a singlet in the
range of 4.42-4.49 & ppm, the newly formed characteristic aromatic thiazole ring one singlet
proton appears in the range of 5.44 —7.77 6 ppm and also the methoxy protons appear in the
range of 3.60-3.69 & ppm, whereas the triazole ring N-H singlet proton appears in the range of
12.95-13.06 & ppm. All aromatic protons appear in the range of 7.10-8.18 6 ppm. Further, the
carbon NMR spectra of 5a-s the characteristic thiazole ring alkene carbon appears at 102.9-
104.9 & ppm, the thiazole ring imine carbon appears in the range of 160.0-165.4 6 ppm, -S-
CHz>- carbon appears in the range of 34.44-35.89 & ppm, while the aromatic carbons appear at
120.5-158.9 & ppm. Molecular mass of all the compounds were matched with their [M+H]" ion

peaks
4.3. Antiviral activity.

3-(5-(benzylthio)-4H-1,2,4-triazol-3-yl)-N,4-diphenylthiazol-2(3H)-imines were tested for
their potential antiviral activity in various host cell cultures. Their activity has been compared
to that of standard antiviral drugs. (AMD3100, Remdesivir, Ribavirin, Zanamivir,
Rimantadine, Acyclovir, DS-10,000). The MT-4 CD4" T cell culture was used to evaluate the

compounds against human immune deficient virus (HIV) The virus-induced cytopathogenic
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effect (CPE) was measured colorimetrically AMD3100 was used as a reference drug. The
compounds_5a_and_5i_exhibited_potent_activity against_both_HIV-1(NL4.3 strain) and HIV-2
(ROD strain). Seven other derivatives 5c, 5e, 5f, 5k, 50, 5q, 5r showed promising selective
anti HIV-2 activity with ECso values below 10 puM. The summary of 50% cytotoxic
concentration (CCso) and 50% effective concentration (ECso) values are represented in Table-
3.

Table-3. ECso* and CCso” values of the compounds tested against HIV replication in MT-4
CD4" T cell line

Compound Cellular toxicity HIV-1 HIV-2
NL4.3 ROD
CCso (M) ECso (LM) ECso (UM)
5a >100 6.8 24.3
5b >100 >100 11
o€ >100 >100 2.7
5d 58.9 >58.9 >58.9
oe >100 >100 9.4
5f >100 >100 7.8
50 >100 >100 15.5
5h >100 >100 61.7
5i >100 3.7 21.3
5j >100 >100 >100
5k >100 >100 1.8
51 44.7 >44.7 >44.7
5m 46.3 >46.3 >46.3
on 44.9 >44.9 >44.9
50 >100 >100 8.5
5p >100 >100 >100
5Q >100 >100 2.2
5r >100 >100 5.1
5s >100 >100 72.4
Reference CCso (ng/mL) ECso (ng/mL) ECso (ng/mL)
compound
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AMD3100 >10000 9.9 3.9

% ECso: 50% Inhibitory concentration or compound concentration required to inhibit HIV-
induced cytopathogenic effects by 50% in MT-4 cell line.

b CCso: 50% Cytotoxic concentration of the compounds also evaluated in the MT-4 cell line.

In addition to HIV, we also evaluate the whole set of newly synthesized derivatives (5a-s)
against a broad set of viruses. Human coronaviruses 229E and OC43, as well as herpes simplex
virus type 1 (HSV-1 strain KOS) were tested using HEL 299 cell cultures. Here remdesivir was
used as a reference drug for human coronavirus and acyclovir and dextran sulphate (MW
10,000) were included as reference compounds for HSV-1. 5h exhibited weak but selective
activity against HCoV-OC43. Unfortunately, the tested compounds proved inactive against
HCoV-229E and HSV-1 virus. All experimental ECsp and CCso values are summarised in
Table-4.

Table-4: Cytotoxicity and antiviral activity of the compounds in HEL 299 cell culture

ECso® (uM)
Cytotoxicity® Human
Human ) Herpes
Compound ) coronavirus | )
coronavirus simplex virus-
CCso (uM) (0OC43)

(229E) 1 (KOS)
5a 50 >50 >50 >50
5b 50 >50 >50 >50
5¢c 47.3 >50 >50 >50
5d 50 >50 >50 >50
Se >50 >50 >50 >50
5f >50 >50 >50 >50
59 >50 >50 >50 >50
5h >50 >50 43.3 >50
5i >50 >50 >50 >50
5] >50 >50 >50 >50
5k >50 >50 >50 >50
51 >50 >50 >50 >50
5m >50 >50 >50 >50
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5n 374 >50 >50 >50
50 25.6 >50 >50 >50
5p >50 >50 >50 >50
5q >50 >50 >50 >50
5r >50 >50 >50 >50
5s >50 >50 >50 >50
Remdesivir >10 0.16 0.12 -
Acyclovir >100 - - 0.7
DS-10,000 >100 - - 0.4

* CCso: 50% Cytotoxic concentration of the compound evaluated in HEL 299 cell culture

" ECso: 50% Effective concentration or compound concentration required to inhibit human
coronavirus and herpes simplex virus-1 induced cytopathogenic effect by 50% in HEL 299 cell

culture.

The human hepatoma cell line Hep3B was used to test against human coronavirus NL63, Zika

virus (strain mr766) and yellow fever virus (vaccine strain 17D). Remdesivir and ribavirin are

included as reference compounds. Among the tested compounds derivative 5k showed mild

activity against human coronavirus NL63 (ECso 49.1 pM). Compound 5f displayed promising

activity against the replication of Zika virus, with an average ECso value of 9.3 uM. All

compounds (5a-s) were inactive against yellow fever virus. The summarized ECso and CCsg

values are shown in Table-5.

Table-5: Cytotoxicity and antiviral activity of the compounds in Hep3B cell culture.

ECso® (uM)
o Human ) )
Cytotoxicity? ) Zika virus
Compound coronavirus Yellow fever
CCso (uM) mr766 ]
NL63 virus 17D
5a >50 >50 >50 >50
5b 8.1 >50 >50 >50
5¢C 34.3 >50 >50 >50
5d 20.7 >50 >50 >50
Se 36.9 >50 >50 >50
5f >50 >50 9.3 >50
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5g 34.1 >50 >50 >50

5h 24.6 >50 >50 >50

5i >50 >50 >50 >50

5j 39.1 >50 >50 >50

5k >50 49.1 >50 >50

51 >50 >50 >50 >50

sm >50 >50 >50 >50

5n 20.8 >50 >50 >50

50 13.7 >50 >50 >50

5p 9 >50 >50 >50

5q >50 >50 >50 >50

5r 26.5 >50 >50 >50

5s >50 ?50 >50 >50
AMD3100 >50 >50 >50 >50
Remdesivir >10 0.28 2.85 1.1
Ribavirin 143.1 - 49.1 89.4

& Cytotoxic concentration (50%) determined by measuring the cell viability with colorimetric
formazan-based MTS assay.

°50% Effective concentration or compound concentration required to inhibit virus induced

cytopathogenic effect by 50% in Hep3B cell culture.

Lastly, we also tested the compounds against three subtypes of influenza virus (HIN1, H3N2

and B) and respiratory syncytial virus (RSV A strain Long) using MDCK and Hep2 cell

cultures, respectively. Standard reference drugs remdesivir, ribavirin, zanamivir, rimantadine,

and DS-10,000 were included as positive controls. Unfortunately, the derivatives 5a-s did not

show any activity against influenza viruses or respiratory syncytial virus in these host cell lines.

ECso and CCsp values are represented in Table-6.

Table-6: Cytotoxicity (CCso) and antiviral activity (ECso) of the compounds in MDCK and

Hep2 cell cultures.
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Cytotoxicity? CCso

ECso” (M)
(nM)
Compound Influenza | Influenza | Influenza RSV A
MDCK | Hep2 HiN1 HaN2 B Long
MDCK MDCK MDCK Hep2
5a >50 >50 >50 >50 >50 >50
5b >50 >50 >50 >50 >50 >50
5C >50 441 >50 >50 >50 >50
5d 29 >50 >50 >50 >50 >50
5e >50 >50 >50 >50 >50 >50
5f >50 >50 >50 >50 >50 >50
5¢ >50 >50 >50 >50 >50 >50
5h 17 20.1 >50 >50 >50 >50
5i >50 >50 >50 >50 >50 >50
5j >50 >50 >50 >50 >50 >50
5k 1.12 >50 >50 >50 >50 >50
5l >50 >50 >50 >50 >50 >50
5m >50 >50 >50 >50 >50 >50
5n 20.8 19.2 >50 >50 >50 >50
50 23.3 28 >50 >50 >50 >50
5p >50 >50 >50 >50 >50 >50
5q >50 >50 >50 >50 >50 >50
5r >50 >50 >50 >50 >50 >50
5s >50 >50 >50 >50 >50 >50
Remdesivir - >10 - - - 0.08
Ribavirin 98.2 98.3 8.2 11.1 8.4 6.8
Zanamivir >100 - 0.15 0.15 0.10 -
Rimantadin
. >100 - 0.02 0.09 >100 -
DS-10,000 - >100 - - - 0.07

“50% cytotoxic concentration of the compound evaluated in MDCK and Hep2 cell cultures

® Required to reduce virus induced cytopathicity by 50%.
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4.4. Structure-based molecular docking

The X-ray crystallographic structure of HIV-1 reverse transcriptase (PDB: 4h4m) was
considered as the receptor protein en route to analyse the bio-activity of 5a and 5i. The docked
pose of these compounds along with the interacting amino acids at the active site of the receptor
protein are depicted in Fig.3. The calculated binding affinity value for both the compounds is
-8.3 kcal/mol which may be attributed due to analogy in the structures of the two compounds.
Both the compounds show hydrogen bonding interactions with ILE180 at the active site of the
protein. The compound 5a shows hydrophobic interactions with TRP88, PRO95, GLN161,
LEU168, ALA172, TYR181, and GLN182 whereas 5i interacts with PRO95, ALA172, and
TYR181.

Fig. 3. The docked pose and the interacting amino acids, compound 5a and compound 5i at the
active site of HIV-1 reverse transcriptase (4h4m).

The compound 5k was analysed for the anti-HIV-2 activity using the crystal structure of HIV-
2 reverse transcriptase (PDB: 1mu2) as a receptor protein. The docked pose of the compound
at the active site along with the interacting amino acids is displayed in Fig. 4. The 5k shows
hydrogen bonding interactions with the TRP266 and hydrophobic interactions with GLN269,
THR328, LYS340, LEU421, and VAL422. Further, the calculated binding affinity value of 5k

is found to be -8.0 kcal/mol.
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Fig. 4. The docked pose and the interacting amino acids, compound 5k at the active site of
HIV-2 reverse transcriptase (1mu2),

The X-ray crystal structure of Zika NS2B-NS3 protease (6150) was used to study the anti
Zikavirus activity of the compound 5f. Fig.5 depicts the docked pose of the compound 5f at
the active site of the protein. It has been observed that the compound shows hydrogen bonding
with ASN152 and hydrophobic interactions with GLN74, ALA88, TRP89, ILE123, THR166,
LYS169, and ARG170. The calculated binding affinity value of the compound 5f at the active
site of the Zika NS2B-NS3 protease is -7.9 kcal/mol.

Fig.5. Compound 5f at the active site of Zika NS2B-NS3 protease (6150).

The anti-SARS-CoV-2 properties were studied for the compounds 5h and 5k using the
crystallographic structure of COVID-19 main protease (PDB: 6lu7) as the receptor protein.
Both these compounds have the same binding affinity of -8.5 kcal/mol at the active site which
may be due to the similarity in their structures. The best docking pose of these compounds
along with the interacting amino acids at the active site of the protein are presented in Fig.6
The compound 5h show hydrophobic interactions with MET49, GLY 143, HIS164, MET165,
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GLU166, which ASP187 while 5k interacts with THR25, HIS41, MET49, GLY 143, HIS164,
MET165, GLU166, and ASP187 residues of the protein. These results demonstrate that the
compounds 5h and 5k could serves as a potential candidate against SARS-CoV-2 main

protease.

Fig 6. The docked pose and the interacting amino acids, compound 5h and compound 5k at the
active site of COVID-19 main protease (PDB: 6lu7).

To further shed light on the binding affinity of other compound for its anti-viral activities, the
molecular docking simulations were also performed for compound 5p. The calculated binding
affinity of compound 5p is -6.6, -6.8, -7.6, and -7.9 kcal/mol with the COVID-19 main protease,
Zika NS2B-NS3 protease, HIV-1 reverse transcriptase, and HIV-2 reverse transcriptase,
respectively. It has been noticed that the compound shows lower affinity and thus less effective
as anti-SARS-CoV-2 and anti-Zika virus agent. However, the calculated binding score for HIV
proteins are higher and comparatively closer to the best compounds. This may be mainly
attributed due to the marginal structural variation and these derivatives may be well-suited as

an anti-HIV agent.

The N-atom of triazole ring in compound 5p shows the hydrogen bonding interaction with
GLN110 (2.16 A), Br atom shows halogen bonding with ARG105 (3.97 A) of the COVID-19
main protease. The C atoms in phenyl ring shows hydrophobic interactions with ILE106 (3.69
A), GLN107 (3.60 A), ILE249 (3.72 A), PRO293 (3.87A), and PHE294 (3.69 A). The C atoms
of the phenyl ring shows hydrophobic interactions with GLN74 (3.54 A), LEU78 (3.71 A),
ALAB88 (3.90 A), TRP89 (3.26 A), ILE123 (3.02 A), ILE165 (3.55 A), and GLN167 (3.52 A)
of the Zika NS2B-NS3 protease. The bromo-phenyl ring shows z-stacking interactions with
the TYR319 (5.27 A) and C atoms of the phenyl rings shows hydrophobic interactions with
ALA101 (3.84 A), HIS317 (3.85 A), LEU348 (3.81) A), and TRP382 (3.45 A) residues of the
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HIV-2 reverse transcriptase. The N atom of N-ring shows hydrogen bonding with the GLN91
(2.28 A), benzyl group shows n-stacking interactions with the TYR181 (3.76 A), and Br atoms
show halogen bonding interaction with HIS96 (3.38 A). Mostly, the C atoms in the phenyl ring
shows hydrophobic interactions with the PRO95 (3.62 A), LEU100 (3.67 A), GLN161 (3.73
A), and GLN182 (3.73 A) residues of the HIV-1 reverse transcriptase.

4.5. Conclusions:

The synthesis of novel thioalkylated triazolothiazoles 5a-s was carriedout by a one-pot four
component method using easily available starting materials. Compounds 5a-s were screened
against a broad panel of viruses, such as HIV-1, HIV-2, coronavirus, Zika virus, RSV,
influenza virus and yellow fever virus by using different host cell lines. Two newly synthesized
derivatives possess potent activity against both HIV-1 and HIV-2, and seven others were
selectively active against HIV-2. Of these, 5f also displayed promising activity against Zika
virus. The two compounds 5k (Table-5) 5h (Table-4) show moderate active against corona
virus. All presented data show that these novel compounds are promising candidates for further

optimization in order to developed promising antiviral agents.

4.6. Experimental:
4.6.1. Chemistry

All the starting materials and solvents were used i.e., Merk, Spectrochem, TCI, Finar,
and used without purification. The solvents were stored in 4A° molecular sieves. The progress
of the reaction was monitored by thin layer chromatography (TLC) with silica gel coated
aluminium foil plates (E. Merck, Mumbai, India) using ethyl acetate and n-hexane (3:7) ratio.
The compounds' melting points were checked with the Stuart Staffordshire, UK (SMP30)
instrument and are uncorrected. A Perkin EImer spectrometer was used to record FT-IR spectra,
KBr was used as a standard reference compound, and values were given in cm™. *H NMR
spectra were recorded on a BRUCKER 400 MHz spectrophotometer, TMS was used as an
internal standard reference compound and DMSO-ds was used as a solvent. The splitting
pattern of the protons was represented on s = singlet, d = doublet, t = triplet, q = quartet, m =
multiplet, and chemical shift values () were expressed in ppm reference to quintet for DMSO-
ds at 2.5 ppm, triplet for CDClz at 7.26 ppm, and coupling constant units (J) were represented
with Hz. Broad band proton decoupled carbon NMR spectra was recorded on the BRUCKER
100 MHz spectrophotometer and chemical shift values were shown on 6 ppm. The peak appears

as a septet for DMSO-ds at 39.7 ppm and a triplet for CDCl3 solvent at 77.16. The Carlo Erba
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EA 1108 instrument was used for C, H, N elemental analysis. Mass spectrum (HRMS) were

recorded on the Agilent Technologies Instrument ESI (+Ve mode).

4.6.2. Antiviral assays

Antiviral assays were performed towards Herpes simplex virus-1 (HSV-1 KOS), and human
coronavirus (HCoV-229E and -OC43) in HEL 299 cell cultures, respiratory syncytial virus A
in Hep-2 cells, yellow fever virus, Zika virus and human coronavirus (HCoV-NL63) in Hep3B
cell cultures and influenza A/HIN1 (A/Ned/378/05), influenza A/H3N2 (A/HKI/7/87),
influenza B (B/Ned/537/05) in MDCK cell cultures. On the day of the infection, growth
medium was aspirated and replaced by serial dilutions of the test compounds. The virus was
then added to each well, diluted to obtain a viral input of 100 CCIDso (CCIDsp being the virus
dose that is able to infect 50% of the cell cultures). Mock-treated cell cultures receiving solely
the test compounds were included on each cell line, to determine the cytotoxicity of the test
compounds. After 3 to 7 days of incubation, the virus-induced cytopathogenic effect (CPE)
was measured colorimetrically by the formazan-based 3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium  (MTS) cell viability assay
(CellTiter 96 AQueous One Solution Cell Proliferation Assay from Promega, Madison, WI),
and the antiviral activity was expressed as the 50% effective concentration (ECsp). In parallel,
the 50% cytotoxic concentration (CCso) of the compounds was derived from the mock-infected
cells. The activities were compared with the activities of reference antiviral drugs: AMD3100,
remdesivir, ribavirin, zanamivir, rimantadine, acyclovir and Dextran sulfate (DS-10,000).
The anti-HIV-1 and anti-HIV-2 activity of each compound were evaluated in MT-4 CD4" T
cell cultures was determined by a tetrazolium-based colorimetric assay. Briefly, 3-fold
dilutions of various test compounds were added in a 96-well plate and preincubated for 20 min
at 37°C with MT-4 cells (1x108 cells/ml). Next, various concentrations of virus, HIV-1 NL4.3
and HIV-2 ROD were given depending on the TCIDsg of the virus stock. Five days’ post-
infection, cytopathic effects (CPE) were scored microscopically and antiviral activity was
measured by MTS/PES using a Spectramax 96-well plate reader (Molecular Devices) as

described previously 2.

4.6.3. Docking study.
In silico molecular docking simulations were performed for the synthesized compounds that
have exhibited the best antiviral properties in the biological activity analysis. The molecular

docking simulations were carried out using Auto Dock Vina with an effectiveness value of 16
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% The receptor viral proteins were obtained from the protein data bank; the bound ligand and

water molecules were removed, and the polar hydrogens were added to facilitate docking

4.6a. General procedure for the synthesis of thiobenzyl 1,2,4-triazole phenyiimino thiazoles
5-Amino-4-1,2,4-triazole-3-thiol (1 mmol), p-bromo benzyl bromide (1 mmol),
Phenylisothiocyanate (1 mmol) and phenacyl bromide (1 mmol) were taken in ethanol 4mL
and added 1 mL of DMF and refluxed for 9 hours at 85 °C. After completion of the reaction
(check by the TLC) the reaction mixture was poured in to ice water. The white color solid was

isolated and recrystalized from 5-8 mL ethanol.

4.7. Characterization data of synthesized compounds.
(2)-4-(4-Bromophenyl)-N-(4-chlorophenyl)-3-(5-((4-nitrobenzyl)thio)-4H-1,2,4-triazol-
3yDthiazol-2(3H)-imine 5a

White solid; Yield 80%; mp: 237-238 °C; IR (KBr) cm™:

3403 (N-H), 3034 (Alkene C-H), 1598 (Imine C=N), CI\@\

1540, 1344 (Unsymmetric, Symmetric NOz); *H NMR . I i}—y)\

(400 MHz, DMSO-ds) & (ppm): 4.48 (s, 2H), 6.96 (s, 1H), 0 S/\©\Noz
7.16 (d, J = 8.5 Hz, 2H), 7.26 — 7.27 (m, 1H), 7.43 (d, J =

5.7 Hz, 2H), 7.50 (d, J = 8.5 Hz, 2H), 7.61 (s, 1H), 7.70 Br

(d, J =8.7 Hz, 2H), 8.17 (d, J = 8.7 Hz, 2H), 13.09 (s, 1H); *C{*H}NMR (100MHz, DMSO-
de) 0 (ppm): 34.33, 104.94, 122.35, 123.52, 128.12, 128.89, 129.53, 129.63, 130.02, 130.76,
130.93, 131.35, 133.27, 137.15, 138.55, 146.51, 147.24, 155.12, 157.75, 164.50. HRMS (ESI-
TOF) (m/z): Calculated for C24H16BrCINsO2S. [M+H]" 598.9726; found 598.9727; C, H, N
Analysis calculated C, 48.05, H, 2.69, N, 14.01; found; C, 48.09, H, 2.71, N, 14.05.

(2)-4-(((5-(4-Bromophenyl)-2-(phenylimino)thiazol-3(2H)-yl)-4H-1,2,4-triazol-3-
yl)methyl)benzonitrile 5b

White solid; Yield 81%; mp: 240-241 °C; IR (KBr) cm™:
3387 (N-H), 3066 (Alkene C-H), 2225 (CN), 1601 (Imine ©\
C=N), 691 (C-Br);*H NMR (400 MHz, DMSO-d) & (ppm): | A 1 »\S/\Q
4.42 (s, 2H), 6.95 (s, 1H), 7.11 (d, J = 8.5 Hz, 2H), 7.30 — CN
7.33 (m, 2H), 7.37-7.45 (m, 5H), 7.61 (d, J = 8.3 Hz, 2H),
7.77 (d, J = 8.3 Hz, 2H), 13.04 (s, 1H); BC{'*H} NMR Br
(100MHz, DMSO-ds) 6 (ppm): 35.48, 104.91, 110.37, 119.09, 122.53, 128.95, 129.58, 129.65,
130.17, 130.48, 131.61, 132.62, 137.94, 137.99, 145.34, 164.34. HRMS (ESI-TOF) (m/z):
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Calculated for C2sH17BrNeS2 [M+H]" 545.0217; found 545.0219; C, H, N Analysis calculated
C, 55.05, H, 3.14, N, 15.41; found; C, 55.09, H,3.17, N,15.45.

(2)-4-(((5-(4-Methoxyphenyl)-2-(phenylimino)thiazol-3(2H)-yl)-4H-1,2,4-triazol-3-
yl)methyl)benzonitrile 5¢

White solid; Yield 83%; mp: 233-234 °C; IR (KBr) cm™: 3210
(N-H), 3021 (Alkene C-H), 2219 (CN), 1601 (Imine C=N), 1210 @\N

(O-CHs); *H NMR (400 MHz, DMSO-ds) & (ppm): 3.68 (s, 3H), | s w4, SAQCN
4.42 (s, 2H), 6.77 (s, 1H), 6.79 (s, 2H), 7.08 (d, J = 8.9 Hz, 2H),
7.28 — 7.40 (m, 5H), 7.61 (d, J = 8.3 Hz, 2H), 7.76 (d, J = 8.4 OMe )
Hz, 2H), 13.00 (s, 1H); BC{*H} NMR (100MHz, DMSO-ds) § (ppm): 35.03, 55.58, 103.39,
110.17, 114,07, 119.40, 123.34, 128.94, 129.60, 129.74, 130.21, 130.65, 132.74, 138.07,
139.01, 145.54, 155.50, 158.41, 159.75, 165.07. HRMS (ESI-TOF) (m/z): Calculated for
C26H20N6OS, [M+H]" 497.1218; found 497.1221; C, H, N Analysis calculated C, 62.88, H,
4.06, N, 16.92; found; C, 62.87, H,4.08, N,16.88.

(2)-4-([1,1™-Biphenyl]-4-yl)-3-(5-((4-nitrobenzyl)thio)-4H-1,2,4-triazol-3-yl)-N-
phenylthiazol-2(3H)-imine 5d

White solid; Yield 90%; mp: 251-252 °C; IR (KBr) cm™: 3040 @\

(N-H), 3040 (Alkene C-H), 1621 (Imine C=N), 1560, 1343 (NO> NNy
Unsymmetric, Symmetric); *H NMR (400 MHz, DMSO-de) & S—N/«E»\S/\Q\Noz
(ppm): 4.49 (s, 2H), 6.96 (s, 1H), 7.25 (d, J =8.5 Hz, 2H), 7.35- Q

7.36 (m, 4H), 7.41 — 7.45 m, 4H), 7.55 (d, J = 8.5 Hz, 2H), 7.62 Q

(d, J =7.1Hz, 2H), 7.70 (d, J = 8.8 Hz, 2H), 8.17 (d, J = 8.8 Hz,
2H), 13.05 (s, 1H); “C{*H}NMR (100MHz, DMSO-ds) ¢ (ppm): 34.79, 104.68, 123.94,
126.74, 127.00, 128.30, 129.06, 129.45, 129.68, 130.07, 130.44, 137.99, 138.78, 139.31,
140.44, 146.92, 147.68, 165.07. HRMS (ESI-TOF) (m/z): Calculated for CsoH22NsO2S>
[M+H]* 563.1324; found 563.1327; C, H, N Analysis calculated C, 64.04, H, 3.94, N, 14.94;
found; C, 64.08, H,3.98, N,14.90.
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(2)-4-(4-Bromophenyl)-3-(5-((4-nitrobenzyl)thio)-4H-1,2,4-triazol-3-yl)-N-phenylthiazol-
2(3H)-imine 5e

White solid; Yield 81%; mp: 253-254 °C; IR (KBr) cm™: 3201
(N-H), 3006 (Alkene C-H), 1605 (Imine C=N), 1540, 1345 ©\'N -
(Unsymmetric, Symmetric NO2), 684 (C-Br); H NMR (400 S/_kN . S/\©\N02
MHz, DMSO-dg) 0 (ppm): 4.48 (s, 2H), 6.96 (s, 1H), 7.12 (d, J
=8.8 Hz, 2H), 7.32 (d, J = 6.8 Hz, 2H), 7.40-7.46 (m, 3H), 7.64 | Br
(d,J=8.4Hz, 1H), 7.70 (d, J = 8.8 Hz, 1H), 7.81 (d, J = 8.8 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H),
8.17 (d, J = 8.4 Hz, 2H), 13.05 (s, 1H); *C{*H}NMR (100MHz, DMSO-ds) 5 (ppm): 34.78,
105.09, 122.57, 123.94, 129.12, 129.65, 129.71, 130.44, 131.23, 131.65, 132.42, 137.72,
137.94, 146.93, 146.66, 157.77, 164.95. HRMS (ESI-TOF) (m/z): Calculated for
C24H17BrNs02S, [M+H]" 565.0116; found 565.0124; C, H, N Analysis calculated C, 50.98, H,
3.03, N, 14.86; found; C, 50.95, 3.07, N, 14.88.

(2)-4-(4-Chlorophenyl)-3-(5-((4-nitrobenzyl)thio)-4H-1,2,4-triazol-3-yl)-N-phenylthiazol-
2(3H)-imine 5f

White solid; Yield 79%; mp: 238-239 °C; IR (KBr) cm™: 3420
(N-H), 3105 (Alkene C-H), 1584 (Imine C=N), 1542, 1347 ©\N

(Unsymmetric, Symmetric NO), 697 (C-Cl); *H NMR (400 S%NJ;S\SAQ\N
MHz, DMSO-ds) J (ppm): 4.48 (s, 2H), 6.95 (s, 1H), 7.18 (d, J ¢

= 8.4 Hz, 2H), 7.30-7.35 (m, 5H), 7.41 (d, J = 7.6 Hz, 2H), 7.70 | i
(d, J=8.4 Hz, 2H), 8.16 (d, J = 8.4 Hz, 2H), 13.05 (s, 1H); *C{*H} NMR (100MHz, DMSO-
de) 0 (ppm): 34.75, 105.12, 123.94, 128.73, 129.11, 129.66, 129.70, 129.94, 130.44, 131.03,
133.89, 137.74, 137.89, 146.93, 147.70, 155.46, 158.33, 164.96. HRMS (ESI-TOF) (m/z):
Calculated for C24Hi17CINsO2S, [M+H]" 521.0621; found 521.0626; C, H, N Analysis
calculated C, 55.33, H, 3.29, N, 16.13; found; C,55.30, H, 3.26, N,16.17.

(2)-N-(4-Chlorophenyl)-3-(5-((4-nitrobenzyl)thio)-4H-1,2,4-triazol-3-yl)-4-phenylthiazol-
2(3H)-imine 5¢

White solid; Yield 79%; mp: 231-232 °C; IR (KBr) cm™:
3370 (N-H), 3033 (Alkene C-H), 1559 (Imine C=N), 1522, \©\N

1347 (Unsymmetric, Symmetric NO3), 780 (C-Cl); *H NMR s/'_kN/E;"q)\s/\Q
(400 MHz, DMSO-ds) & (ppm): 4.48 (s, 2H), 6.90 (s, 1H), '
7.19-7.21 (m, 2H), 7.27 — 7.29 (m, 4H), 7.40 — 7.41 (m, 2H),
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7.55-7.56 (m, 1H), 7.70 (d, J = 8.8 Hz, 2H), 8.17 (d, J = 8.8 Hz, 2H), 13.07 (s, 1H); *C{*H}
NMR (100MHz, DMSO-ds) ¢ (ppm): 34.77, 107.78, 123.92, 128.42, 128.58, 128.76, 129.31,
129.46, 129.86, 130.37, 130.43, 131.06, 131.29, 133.61, 133.85, 136.72, 137.03, 138.76,
139.17, 146.93, 147.58, 155.63, 158.06, 164.85. HRMS (ESI-TOF) (m/z): Calculated for
C24H17CIN6O2S2 [M+H]* 521.0621; found 521.0623; C, H, N Analysis calculated C, 55.33, H,
3.29, N, 16.13; found; C, 55.36, H, 3.31, N, 16.16.

(2)-3-(5-((4-Nitrobenzyl)thio)-4H-1,2,4-triazol-3-yl)-N-phenyl-4-(p-tolyl)thiazol-2(3H)-
imine 5h

White solid; Yield 80%; mp: 234-235 °C; IR (KBr) cm™: 3422
(N-H), 3045 (Alkene C-H), 1601 (Imine C=N), 1542, 1347 ©\/'Nk N
(Unsymmetric, Symmetric NO2); *H NMR (400 MHz, DMSO- s\_g»\s/\@mz

de) 6 (ppm): 2.21 (s, 3H), 4.47 (s, 2H), 6.83 (s, 1H), 7.04 (s, 4H),
7.28-7.39 (m, 5H), 7.69 (d, J = 8.7 Hz, 2H), 8.16 (d, J = 8.8 Hz, Me
2H), 13.01 (s, 1H); *C{*H} NMR (100MHz, DMSO-ds) J (ppm): 21.15, 34.74, 103.94, 123.96,
128.23, 128.96, 129.08, 129.23, 129.60, 129.70, 130.45, 138.03, 138.58, 139.19, 146.94,
147.74, 155.41, 158.40, 165.10. HRMS (ESI-TOF) (m/z): Calculated for CasHaoNsO2S2
[M+H]* 501.1167; found 501.1168; C, H, N Analysis calculated C, 59.98, H, 4.03, N, 16.79;
found; C, 59.65, H, 4.07, N, 16.76.

(Z)-N-(4-Chlorophenyl)-3-(5-((4-nitrobenzyl)thio)-4H-

Cl
1,2,4-triazol-3-yl)-4-(4-nitrophenyl)thiazol-2(3H)-imine @N
5iYellow solid; Yield 83%; mp: 225-226 °C; IR (KBr) cm™: s,/'kNi’:Rl S/\@
3401 (N-H), 3058 (Alkene C-H), 1598 (Imine C=N), 1536, Eb"* e
1348 (Unsymmetric, Symmetric NO,) 702 (C-Cl); *H NMR N,

(400 MHz, DMSO-ds) ¢ (ppm): 4.49 (s, 2H), 7.17 (s, 1H), 7.43 — 7.49 (m, 4H), 7.65-7.71 (m,
4H), 8.13-8.18 (m, 4H), 13.14 (s, 1H); BC{*H} NMR (100MHz, DMSO-ds) & (ppm): 34.76,
107.76, 123.91, 123.95, 128.45, 129.45, 129.91, 130.39, 130.44, 131.28, 133.82, '136.73,
137.06, 138.81, 146.95, 147.60, 155.61, 158.06, 164.83. HRMS (ESI-TOF) (m/z): Calculated
for C24H16CIN704S, [M+H]" 566.0472; found 566.0478; C, H, N Analysis calculated C, 50.93,
H, 2.85, N, 17.32; found; C, 5.93, H, 2.88, N,17.39.
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(2)-3-(5-((4-Nitrobenzyl)thio)-4H-1,2,4-triazol-3-yl)-4-(4-nitrophenyl)-N-phenylthiazol-
2(3H)-imine 5j

Yellow solid; Yield 82%; mp: 221-222 °C; IR (KBr) cm™: 3401
(N-H), 3033 (Alkene C-H), 1604 (Imine C=N), 1541, 1347 ©\N

(Unsymmetric, Symmetric NO2); *H NMR (400 MHz, DMSO- sJ'_\Ni;‘LsA@
ds) 8 (ppm): 4.53 (s, 2H), 7.22 (s, 1H), 7.40-7.42 (m, 2H), 7.47- 4 .
7.50 (m, 5H), 7.75 (d, J = 8.8 Hz, 2H), 8.14 (d, J = 8.9 Hz, 2H), | NO, ]
8.22 (d, J = 8.8 Hz, 2H), 13.10 (s, 1H); **C{*H} NMR (100MHz, DMSO-ds) 6 (ppm): 34.79,
107.54, 123.77, 123.93, 129.27, 129.55, 129.83, 130.25, 130.44, 137.08, 137.28, 137.53,
146.93, 147.44, 147.59, 158.45, 164.82. HRMS (ESI-TOF) (m/z): Calculated for C24H17N704S2
[M+H]* 532.0861; found 532.0867; C, H, N Analysis calculated C, 54.23, H, 3.22, N, 18.45;
found; C,54.26, H, 3.27, N, 18.48.

(2)-4-(4-Methoxyphenyl)-3-(5-((4-nitrobenzyl)thio)-4H-1,2,4-triazol-3-yl)-N-phenylthiazol-
2(3H)-imine 5k

White solid; Yield 85%; mp: 247-248 °C; IR (KBr) cm™: 3204
(N-H), 3131 (Alkene C-H), 1589 (Imine C=N), 1540, 1348 ©\N

(Unsymmetric, Symmetric NO2), 1180 (O-CHs); *H NMR (400 S/'_kn ”:"q S/\©\NO
MHz, DMSO-de) ¢ (ppm): 3.69 (s, 3H), 4.48 (s, 2H), 6.77 (s, ¢ 2
1H), 6.79 (s, 2H), 7.08 (d, J = 8.8 Hz, 2H), 7.28 — 7.30 (m, 2H), OMe
7.34—7.41 (m, 3H), 7.70 (d, J = 8.8 Hz, 2H), 8.17 (d, J = 8.8 Hz, 2H), 13.01 (s, 1H); *C{*H}
NMR (100MHz, DMSO-ds) ¢ (ppm): 34.75, 55.58, 103.35, 114.07, 123.33, 123.95, 128.94,
129.60, 129.73, 130.45, 130.64, 138.07, 139.00, 146.93, 147.73, 155.40, 158.48, 159.75,
165.07. HRMS (ESI-TOF) (m/z): Calculated for CsH20NeO3S2 [M+H]" 517.1116; found
517.1116; C, H, N Analysis calculated C, 58.13, H, 3.90, N, 16.27; found; C, 58.17, H, 3.94,
N, 1631.

(2)-3-(5-((4-Nitrobenzyl)thio)-4H-1,2,4-triazol-3-yl)-N,4-diphenylthiazol-2(3H)-imine 5l
Light yellow solid; Yield 82%; mp: 246-247 °C; IR (KBr) cm™:
3403 (N-H), 3025 (Alkene C-H), 1615 (Imine C=N); *H NMR ©\N

(400 MHz, DMSO-ds) 0 (ppm): 4.48 (s, 2H), 6.44 (s, 1H), 6.89- S/'_k /E;w)\s/\@m
6.92 (m, 5H), 7.00-7.03(m, 2H), 7.35-7.39 (m, 5H), 8.17 (d, J = ’ 2
8.8 Hz, 2H), 13.04 (s, 1H); **C{*H} NMR (100MHz, DMSO-ds)
o (ppm): 34.75, 104.47, 121.44, 123.41, 123.95, 128.08, 128.61, 128.70, 129.28, 129.51,
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130.00, 130.45, 131.61, 138.35, 139.63, 146.93, 147.73, 151.86, 155.44, 158.40, 159.88,
165.08. HRMS (ESI-TOF) (m/z): Calculated for C24H1sNsO2S, [M+H]" 487.1011; found
487.1017; C, H, N Analysis calculated C, 59.24, H, 3.73, N, 17.27; found; C,59.27, H, 3.76,
N,17.30.

(2)-3-(5-((4-Bromobenzyl)thio)-4H-1,2,4-triazol-3-yl)-4-(4-bromophenyl)-N-phenylthiazol-
2(3H)-imine 5m

White solid; Yield 88%; mp: 229-230 °C; IR (KBr) cm™: 3421
(N-H), 3037 (alkene C-H), 1600 (C=N), 696 (C-Br); *H NMR ©\

,N N—N

(400 MHz, DMSO-ds) § (ppm): 4.32 (s, 2H), 6.95 (s, 1H), 7.11 s ’,ﬂ‘ s/\@ﬁ
(d, J=8.5Hz, 2H), 7.32 (d, J = 7.0 Hz, 2H), 7.35 — 7.38 (m, 3H), g

7.41(d, J = 7.6 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 7.49 (d, J = 8.4 -

Hz, 2H), 13.02 (s, 1H); *C{*H}NMR (100MHz, DMSO-ds) 6 (ppm): 34.75, 105.14, 120.54,
122.56, 129.10, 129.69, 130.33, 131.25, 131.44, 131.65, 137.77, 137.93, 138.88, 155.83,
158.26, 164.91. HRMS (ESI-TOF) (m/z): Calculated for C24H17Br2NsS; [M+H]* 597.9371;
found 597.9364; found C, H, N Analysis calculated C, 48.10, H, 2.86, N, 11.68; found; C,

48.14, H, 289, N,11.65.

(2)-3-(5-((4-Bromobenzyl)thio)-4H-1,2,4-triazol-3-yl)-4-(4-nitrophenyl)-N-phenylthiazol-
2(3H)-imine 5n

White solid; Yield 83%; mp: 222-223 °C; IR (KBr) cm™: 3308
(N-H), 3054 (Alkene C-H), 1605 (Imine C=N), 1544, 1340 @N )
(Unsymmetric, Symmetric NO2) 985 (C-Br); 'H NMR (400 S,_N/Q
MHz, DMSO-ds) 6 (ppm): 4.33 (s, 2H), 7.16 (s, 1H), 7.35 - 7.38
(m, 5H), 7.41 — 7.45 (m, 4H), 7.48 — 7.50 (m, 2H), 8.07 — 8.10
(m, 2H), 13.06 (s, 1H); *C{*H} NMR (100MHz, DMSO-ds) 6 (ppm): 34.80, 107.58, 120.57,
123.78, 124,52, 129.23, 129.61, 129.81, 130.26, 131.44, 131.68, 131.85, 131.91, 137.07,
137.34, 137.61, 138.82, 147.50, 164.75. HRMS (ESI-TOF) (m/z): Calculated for
C24H17BrNs02S, [M+H]" 565.0116; found 565.0121; C, H, N Analysis calculated C, 50.98, H,

3.03, N, 14.86; found; C, 50.95, H, 3.07, N,14.85.

\
H
N

N

»\3/\©\
Br

0, J

(2)-3-(5-((4-Bromobenzythio)-4H-1,2,4-triazol-3-yl)-4-(4-methoxyphenyl)-N-phenylthia
zol-2(3H)-imine 50

White solid; Yield 90%; mp: 252-253 °C; IR (KBr) cm™: 3402 (N-H), 3012 (Alkene C-H),
1599 (Imine C=N), 1145 (O-CHs), 698 (C-Br); H NMR (400 MHz, DMSO-ds) J (ppm): 3.69
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(s, 3H), 4.33 (5, 2H), 5.44 (s, 1H), 6.77-6.80 (m, 3H), 7.07 — 7.11 (m, 3H), 7.29 — 7.31 (m, 2H),
7.37-7.41 (m, 3H), 7.47 — 7.50 (m, 2H), 12.98 (s, 1H); BC{H} @ ]

N
NMR (100MHz, DMSO-ds) & (ppm): 34.75, 55.58, 103.40, | _ /'_kN 2 /\Q
114.07, 114,57, 129.60, 129.74, 130.64, 130.88, 131.45, 131.64, Br
131.68, 138.09, 138.53, 138.92, 155.29, 155.78, 157.77, 158.36,
159.74, 164.09, 165.03. HRMS (ESI-TOF) (m/2): Calculated for
CasH20BrNsOS; [M+H]* 550.0371; found 550.0374; C, H, N Analysis calculated C, 54.55, H,
3.66, N, 12.72: found: C, 54.59, H,3.69, N,12.76.

OMe

(2)-3-(5-((4-Bromobenzyl)thio)-4H-1,2,4-triazol-3-yl)-N-phenyl-4-(p-tolyl)thiazol-2(3H)-
imine. 5p

White solid; Yield 89%; mp: 239-240 °C; IR (KBr) cm™: 3401
(N-H), 3034 (Alkene C-H), 1593 (Imine C=N);'H NMR (400 ©\N

MHz, DMSO-ds) J (ppm): 2.22 (s, 3H), 4.33 (s, H), 6.83 (s, 1H), s'_N 7,;"“ S/\©\Br
7.29 — 7.31 (m, 3H), 7.37 — 7.41 (m, 6H), 7.46 — 7.50 (m, 4H), !

12.99 (s, 1H); ¥C{*H} NMR (100MHz, DMSO-ds) J (ppm): CH,

21.15, 34.76, 103.94, 120.54, 128.25, 128.62, 128.94, 129.07, 129.23, 129.59, 129.71, 129.87,
134.45, 131.68, 138.05, 138.57, 138.90, 139.16, 155.78, 158.34. HRMS (ESI-TOF) (m/z):
Calculated for C2sH20BrNsS, [M+H]" 534.0421; found 534.0433. C, H, N Analysis calculated

C, 56.18, H, 3.77, N, 13.10; found; C, 56.15, H, 3.75, N, 13.14.

(2)-4-(((5-(2-(Phenylimino)-4-(p-tolyl)thiazol-3(2H)-yl)-4H-  _
1,2,4-triazol-3-yl) thio) methyl) benzonitrile 5q. White solid,; ©\N

Yield 81%; mp: 244-245 °C; IR (KBr) cm™: 3161 (N-H), 3021 SJ_\N/&:T)\S/\Q\
(Alkene C-H), 2240 (CN), 1589 (Imine C=N); *H NMR (400 4 -
MHz, DMSO-ds) ¢ (ppm): 2.21 (s, 3H), 4.42 (s, 2H), 6.83 (s, We ]
1H), 7.03 (s, 4H), 7.28 — 7.30 (m, 2H), 7.33 -7.40 (m, 3H), 7.61 (d, J = 8.4 Hz, 2H), 7.76 (d, J
= 8.4 Hz, 2H), 13.02 (s, 1H); ¥C{*H} NMR (100MHz, DMSO-ds) J (ppm): 21.15, 35.06,
103.91, 110.18, 119.29, 128.24, 128.95, 129.08, 129.23, 129.60, 129.71, 130.21, 132.72,
138.04, 138.58, 139.19, 145.51, 165.03. HRMS (ESI-TOF) (m/z): Calculated for C2sH20NsS:2
[M+H]* 481.1269; found 481.1262; C, H, N Analysis calculated C, 64.98, H, 4.19, N, 17.49;
found; C, 64.94, H, 4.15,N, 17.53.
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Z)-3-(5-((4-Nitrobenzylthio)-4H-1,2,4-triazol-3-yl)-2-(phenylimino)-2,3-dihydrothiazol-4-
yhbenzonitrile 5r

White solid; Yield 85%; mp: 237-238 °C; IR (KBr) cm™: 3402 @
(N-H), 3035 (Alkene C-H), 2221 (CN), 1594 (Imine C=N), NN
1544, 1341 (Unsymmetric, Symmetric NO2); *H NMR (400 S—NAE*S/\Q\NOZ
MHz, DMSO-ds) o (ppm): 4.48 (s, 2H), 7.11 (s, 1H), 7.34-
7.37 (m, 4H), 7.42 (d, J = 7.6 Hz, 2H), 7.69-7.7.74 (m, 4H), cN
8.05 (d, J = 8.3 Hz, 1H), 8.17 (d, J = 8.7 Hz, 2H), 13.14 (s, 1H); ¥C{*H} NMR (100MHz,
DMSO-ds) ¢ (ppm): 34.76, 106.97, 111.54, 118.74, 123.96, 128.78, 129.21, 129.61, 129.77,
129.89, 130.45, 132.58, 133.26, 135.52, 137.45, 137.61, 146.94, 147.64, 155.27, 158.36,
164.81. HRMS (ESI-TOF) (m/z): Calculated for CsH17N702S, [M+H]" 512.5858; found
512.0976; C, H, N Analysis calculated C, 58.70, H, 3.35, N, 19.17; found; C, 58.71, H,3.38,
N, 19.16

N

Z)-3-(5-((4-Bromobenzyl)thio)-4H-1,2,4-triazol-3-yl)-N,4-diphenylthiazol-2(3H)-imine. 5s
White solid; Yield 90%; mp: 232-233 °C; IR (KBr) cm™: 3385

(N-H), 3032 (Alkene C-H), 1589 (Imine C=N), 749 (C-Br): 'H ©\ N
NMR (400 MHz, DMSO-ds) ¢ (ppm): 4.33 (s, 2H), 6.89 (s, 1H), S_N/«ﬁ:»\s/\@\&
7.15-7.17 (m, 2H), 7.24 (d, J = 6.6 Hz, 3H), 7.30-7.33 (m,3H), L%j

7.37-7.40 (m, 4H), 7.49 (d, J = 8.4 Hz, 2H), 13.00 (s, 1H);
13C{*H} NMR (100MHz, DMSO-ds) J (ppm): 34.80, 107.58, 120.57, 123.78, 124.52, 129.23,
129.61, 129.81, 130.26, 131.44, 131.68, 137.07, 137.34, 137.61, 138.82, 147.50, 164.34.
HRMS (ESI-TOF) (m/z): Calculated for C24H18BrNsS, [M+H]" 520.0265; found 520.0272; C,
H, N Analysis calculated C, 55.39, H, 3.49, N, 13.46; found;C,55.42, H, 3.52, N,13.43.
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4.8. Copies of spectral data
'H NMR spectrum of compound (DMSO-ds) 5a (400 MHz)
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Mass spectrum of compound 5a
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Chapter IV

13C NMR spectrum of compound (DMSO ds) 5b (100 MHz)
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Chapter IV

'H NMR spectrum of compound (DMSO-ds) 5¢ (400 MHz)
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Chapter IV

Mass spectrum of compound 5¢
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Chapter IV

13C NMR spectrum of compound (DMSO-ds) 5d (100 MHz)
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Chapter IV

'H NMR spectrum of compound (DMSO-ds) 5e (400 MHz)
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Chapter IV

Mass spectrum of compound 5e
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Chapter IV

13C NMR spectrum of compound (DMSO-ds) 5f (100 MHz)
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Chapter IV

'H NMR spectrum of compound (DMSO-ds) 59 (100 MHz)
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Chapter IV

Mass spectrum of compound 5¢g
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Chapter IV

13C NMR spectrum of compound (DMSO-ds) 5h (100 MHz)
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Chapter IV
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Chapter IV

Mass spectrum of compound 5i

H NMR spectrum of compound (DMSO-ds) 5j (400 MHz)
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Chapter IV

13C NMR spectrum of compound (DMSO-ds) 5j (100 MHz)
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Chapter IV

'H NMR spectrum of compound 5k (DMSO-ds) (400 MHz)
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Chapter IV

Mass spectrum of compound 5k
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Chapter IV
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Chapter 1V

'H NMR spectrum of compound 5m (DMSO-ds) (400 MHz)
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Chapter IV

Mass spectrum of compound 5m
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Chapter IV

13C NMR spectrum of compound 5n (DMSO-ds)
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Chapter IV

'H NMR spectrum of compound 50 (DMSO-ds) (400 MHz)
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Chapter 1V

Mass spectrum of compound 50
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Chapter IV

13C NMR spectrum of compound 5p (DMSO-ds) (100 MHz)
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Chapter IV

'H NMR spectrum of compound 5¢q (DMSO-ds) (400 MHz)
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Chapter IV

Mass spectrum of compound 5q
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Chapter IV

13C NMR spectrum of compound 5r (DMSO-ds) (100 MHz)
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Chapter 1V

'H NMR spectrum of compound 5s (DMSO-ds) (400 MHz)
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Chapter IV

Mass spectrum of compound 5s
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Novel one-pot four component synthesis of 1,2,4-triazolo[1,5-a]

pyrimidines, and their in-vitro anticancer evaluation, molecular

docking studies

One-pot Protocol
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5A.1.Introduction

1,2,4-triazolo[1,5-a] pyrimidine (TP) bicyclic N-heteroarenes belong to an interesting class of
fused heterocyclic systems with 10-x electrons aromatic ring. Which are composed of electron
excess five membered triazole ring (6-x electron) fused to an electron deficient six membered
pyrimidine ring (4-  electron) 12, Depending on the structural alignment [1,5-¢], [4,3-c], [4,3-
a], [1,5-a] isomers are possible for TP heterocyclic rings. Among these the 1,2,4-triazol[1,5-
a] pyrimidines have well established applications in agriculture, and medicinal chemistry 2.
When many heterocyclic rings combine into a single structure, the molecules exhibit potential
therapeutic prospects (2) For instance Trapidil (Fig-1) is used for the treatment of kidney,
coronary heart and liver diseases as well as an antiplatelet agent and vasodilator. Recently, it
has been utilised in the treatment of cancer and neurological disorders *. the biologically active
triazolopyrimidine containing moieties are shown in Fig-1°. the trifluoro methyl substituted
compound 7 shows promising antiparasitic activity °. And the compound 8 exhibits

antitubercular activity as it is having phenyl group ortho to pyrimidine ring ’.

In the field of pharmaceutical and medical chemistry, 1,2,4-triazolo[1,5-a] pyrimidines with
fused N and S hetero atoms have a diverse range of pharmacological applications 8. The
antitumor properties of 1,2,4-triazolo[1,5-a] pyrimidines are well recognized ¢ and are
associated with [4,3-a], [4,3-c], [1,5-C] systems %21, A large number of TPs also exhibit
antiviral %, anti-Alzheimer’s 2, antiCNS activity 24, antibacterial %, antioxidant 2°, antimalarial

27 antifungal 28, antidiabetic 2°, activity and as agrochemical agents .

CFa 0 / NH '\1‘ >\/<

N 30* ~(CHg)3-NH-CHj
ARINEEN
¢ /’J\l\ N\ X
NT N/ N

Anticancer Anticancer

Trapidil TTI-273

; 2 3 4

O\
CF3 /\/©/
o) j)j\H N\N SN /@ HN
/ e SO,NHCH
oy GA Pl s
/
NS _
N N)N/Ph N N)\N/

H o N=N N /l\

Anticancer Anticancer Antiparasitic activity Antitubercular activity
5 6 7 8

Fig-1 Similar type of fused triazolo pyrimidine moieties.
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Literature reports:

Sagar et al 3! published an efficient one-pot stereo divergent drug like carbohydrate 1,2,4-
triazolo[1,5-a] pyrimidines, pyrazolo[1,5-a] pyrimidine from the reaction of 2C-formyl glucal
and 3-amino-1,2,4-triazole, 3-aminopyrazoles under microwave irradiation by using AcOH at
110 °C. (Scheme-1.1)

Scheme-1.1
OBn
OH OB
BnO,, N-NH MW BnO S
I HZN_</J AcOH NN
X c : )\\>
Bno” N 110 °C OBn & ~=x
CHO
X = CH, N

Shaaban et al 32 developed the sulfonated compound 3. The compound 3 was obtained form
(1-aryl-2-(phenyl) sulfonyl) ethanone and 3-amino 1,2,4-triazole in the presence of triethyl
ortho formate and piperidine. Further, these derivatives were screened against for colon tumor

anticancer activity. (Scheme-1.2)

Scheme-1.2
R
(ONNe!
g-Ph N—NH CH(OEt); Q

Yoot U~y = oS N
N 2 Piperidine Ph 6 2\ \>
R \N)*N

3

Stepaniuk et al 3 established the one-pot synthesis of fused triazolopyrimidine heterocyclic
compound. In this 2-pyrene 3-carboxylate on reaction with pyrazole amine or triazole-2-amine
compound-2 in ethanol under reflux for 36 h to give the corresponding bicyclic triazolo

pyrimidines-4 or pyrazoles. (Scheme-1.3)
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Scheme-1.3
O Y—X\
Y=X  EtOH, reflux [N
Y e
0] H Z > COOEt
)3
HO

Fischer 34 reported the linear triazolo quinazoline heterocyclic compound-6. In this reaction
the combination of di amino quinazolone 4-one (5) on reaction with substituted aromatic
aldehydes to generate imine derivative-3, after cyclization reaction with AcOH/NaOAc a

triazolo pyrimidinone compound-5 with high yield. (Scheme-1.4)

Scheme-1.4
,N
_NH AcOH N
N, _80°C _ Ns
2 .Ph e /
N N~ AcONa
CHO i
5 2 3

Hassane et al *® carried out the one-pot three component synthesis of ferrierite zeolite catalytic
mediated pyrimido [1,2-a] benzimidazole 1,2,4-triazolo[1,5-a] pyrimidines (7). Condensation
of acetophenone, aromatic aldehydes and 2-amino benzimidazole or 2-amino-1,2,4-triazole by
using catalytic amount of H-FER zeolite catalyst in presence of water under reflux to obtain

the title compounds. (Scheme-1.5)

Scheme-1.5
N N—N
S—NH, /N Ar
O 0 £ o v
/A HFERZeoite AT CHs T A 1 FER Zeolite </J\
Ar
2 H

Gol et al % synthesized the 1,2,4-triazolo[1,5-a] pyrimidine systems by the reaction of 2-
benzylidine malanonitrile and 1H-pyrazolo 5-amine or triazole 2-amine by using DBU as a
base and water as a solvent under heating to generate a corresponding pyrimidine compound 8

with good yield. (Scheme-1.6)
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Scheme-1.6
N NH,
SN HN—N NC

" \ DBU/Water Z>N-N

. \
(0 s Sas

Ar” N7 N

2-benzylidene malonitrie x=CH, N 8

Bhatt et al *” developed pyrazole substituted triazolo pyrimidine type derivatives (9) via one-
pot multi-component process. In this they have condensed pyrazole carbaldehyde, triazole
amine and pyridine-2-yl-3-oxobutanamide in DMF at reflux to yield the final compounds-9.
Furthermore, these final substrates were evaluated for their antitubercular activity. (Scheme-
1.7)

Scheme-1.7

Salgado et al 8 reported the microwave irradiation reaction of 2-hydrazineylpyrimidine with
various substituted aromatic aldehydes to produce the corresponding N-benzylidene-N-

pyrimidin-2-yl hydrazine on Dimroth rearrangement give compounds 10. (Scheme-1.8)

Scheme-1.8
NH, 0
I H N N
N NH N N. = 4 ="\
A X H A N X oxidation Y N
. O (e =
/N /\/ /N /\/
R R
73
7\
N R
2 YN - Dimeroth
S N\N/ \ '/\R rearragement
10
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Pogaku et al *° reported the one-pot three component condensation of triazole based substituted
pyrazole carbaldehyde with aromatic aldehydes and 1,2,4-triazole amine in presence of
DMF/Piperidine at reflux temperature to generate a triazolopyrimidines-11 with notable yields.

And these compounds have shown antidiabetic activity. (Scheme-1.9)

Scheme-1.9

%ﬁ\ O)‘\ ' k )\ 2 Plpen'(::hn

Singh et al *° developed the one-pot three component condensation of malanonitrile, aromatic

aldehydes and 1,2,4-triazole 3-amine in boronic acid as a catalyst in aqueous miscellaneous

medium. The products are triazolo pyrimidines (12) with good yields. (Scheme-1.10)

Scheme-1.10
(@) H
N—N
|\
; L L) "o |
CN N NH 2 = NH2
H
R, CN
R1
12

Deninno et al 4! established a one-pot protocol for the construction of triazolopyrimidine
heterocyclic compounds-13 by the reaction of 4-cyano triazolo-5-amine with different
substituted cyanides in presence of HCI/Dioxane. These compounds have exhibited

antidiabetic activity. (Scheme-1.11)

Scheme-1.11
NC NH»>
/ '\\‘N R-CN )N\/ | N‘N
H2N - . . N ’
N HCI in dioxane
N R™N" N
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Huang et al #? synthesized the triazolo pyrimidines (14) by the reaction of 4-aza androstane-3,
17-dione (or) DHEA dehydro epiandrosterone with different aromatic aldehydes in KF/AI,O3
to produce the corresponding aldol products. Further, these intermediate on reaction with
traizole amine in presence of t-BuOK/n-BuOH at reflux gave a triazolopyrimidine compounds-

14. The final compounds have screened for their anti-inflammatory activity. (Scheme-1.12)

Scheme-1.12

KF/Al,.O5/ EtOH
Reflux

gt@

Said et al *® published the synthesis of triazolo pyrimidones-15. Cyclo condensation of EAA,
thiourea in the presence of NaOEt to result the 6-methyl thio uracil. Subsequently this
compound on reaction with hydrazonyl chloride in dioxane and EtsN yields thioalkylated
compound 15. This undergoes Smiles rearrangement to produce the final compound-16. These

molecules have shown good anticancer activity. (Scheme-1.13)

Scheme-1.13.
(0]
Q 0 i NaOEt o) Cl\ t
M~ NN, ——— | N +\/\H)\N/
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-0
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Krishnaraj et al * synthesized the triazolo[4,3-a] pyrimidines-17 by the reaction of 1,2,4-
triazole amine with 2,3 dihalo-4-enoic acid (unsaturated acid) under EtOH/NaOAc at reflux
temperature. The final compounds were subjected for their antibacterial activity against E. coli,
and S. aureus. (Scheme-1.14)

Scheme-1.14
X ._COOH «
N-N | CH;COONa
/N + H R—
R/<N)\NH2 XJV\[( EtOH _< J\
H 0 reflux, 12h
17

Kumar et al * reported the condensation of 2,6-di methyl 4-hydrazino pyrimidine with
aromatic aldehydes in presence of EtOH to form Schiff bases. compound 2. These on oxidative
cyclocondensation reaction in presence of IBD/DCM to give a 1,2,4-triazole[4,3-c]
pyrimidines (18). The final derivatives possess antibacterial activity against B. subtilis is Gram

+Ve bacteria and E. coli is Gram —Ve bacteria.

Scheme-15.
Ar H
i
“NH
r\ Ar—CHO | NN IBD/DCM >\A
=
18
Pyrimidinyl hydrazone

Mohamed et al “ established a one-pot three component reaction of 3-amino-5-phenyl
triazolo-4-propanoic acid with aldehydes, acetyl acetone (or) ethyl acetoacetate to produce the
corresponding bicyclic triazolopyrimidine molecules 19 and 20. These were evaluated for their

antibacterial activity by using Cephalothin, Chloramphenicol used as reference drugs.
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Scheme-16

\ COOCH;
OH R2
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5A.2. Present work.

Earlier mentioned literature reports reveal that the triazolo pyrimidine derivatives are
significant entities in pharmaceutical industry and used as a drugs for curing diseases. In view
of biological importance of TPs in the present work we have developed a new class of
thioalkylated (benzyl/phenacyl) 1,2,4-triazolo[1,5-a] pyrimidine analogues under
multicomponent approach.

5A.2.1. Synthesis: Method-1

In the method-1 the reaction of 5-amino-4H-1,2,4-triazole-3-thiol with 4-methoxy phenacyl

bromide in ethanol at 80 °C for 6 h to give intermediate compound 1a.

Scheme-1: method-1. Synthesis of fused triazolopyrimidines.

(0]

%
(e}
=}
N

Br a

N-N . /z-'\\ﬁ\ 0
/ \ —_—
H2N/<N SH \1e0 HN" N~ S
H H
1a CN

OMe

Step-2
AcOH/
: ii O’ / \ S/é Plperldlne ‘ /L%Sﬁéb

Reaction conditions: (a). Ethanol 60 °C, (b). AcOH/ Piperidine at 90 °C
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In this reaction the more nucleophilic thiol group displaces the bromine atom of 4-methoxy
phenacyl bromide to give thioalkylated compound instead of N-alkylated product. This is due
to more nucleophilicity of thiol group. In step-2 the reaction of 1,3-indane dione with 4-cyano
benzaldehyde in presence of AcOH/piperidine under reflux conditions gave an intermediate
1b. To the 1b the first product 1a was added and again refluxed for 7-8 h, where the yellow
solid product was formed with 65 percentage yield. The synthetic protocol is depicted in

Scheme-1.
Method-2: Schematic representation of thioalkylated triazolopyrimidines.

Alternative synthesis to method-1 is method-2. In this process we have carried out 4CC reaction
between 1,3-indane dione, p-cyano benzaldehyde, 5-amino-4H-1,2,4-triazolo-3-thiol and p-
methoxy phenacyl bromide in acetic acid/piperidine (4:1) at 90 °C. In this reaction there is
simultaneous formation of two nitrogen-carbon bonds, one C-C and one C-S bonds. In this
method-2 the high % of yield of the products were formed in a short reaction time compare to
method-1. We followed the method-2 for the synthesis of final compounds. The outline

schematic representation of one-pot four component process is shown in scheme-2.

Scheme-2
NO,
CHO (o}
! © P ) o O o
+ + h N/«N»\SH + AcOH/Piperidine NN
2 Br ° - %S
: \ﬁo o, H 90°C, 12 h O‘ H/LN
1 2 3 4 5a-w Br
Table -1: Optimization conditions for the synthesized compoundsf!
S.No Solvent Temp (°C) | Time (h) | Yield (%)
1 CH3CN 65 8 n.r
2 EtOH 65 8 8
3 MeOH 65 8 n.r
4 AcOH 65 8 15
5 DMF 70 10 10
6 EtOH+ EtsN (4:1) 75 10 20
7 EtOH+ HCI (4:1) 80 10 15
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8 ACOH+ H,S0s (4:1) 80 10 20
9 DMF+ EtOH (4:1) 90 12 25
10 AcOH+ Piperidine (4:1) 80 11 40(cl
11 AcOH +Piperidine (4:1) 80 14 60L]
12 AcOH +Piperidine(4:1) 80 16 95tel

[AlReaction conditions: 1,3 indane dione (1 mmol), 4-cyano benzaldehyde aldehyde (1 mmol),
5-amino-4H-1,2,4-triazole-3-thiol (1 mmol), 4-Ome phenacyl bromide (1 mmol) taken in
solvent AcOH, Piperidine (4:1). Plisolated yield, [JACOH + piperidine, [/ACOH + piperidine,
[l ACOH + piperidine at 90 °C for 16 h. n.r = no reaction.

We have carried out the optimization study of the reaction by changing of mixture of solvents,
and temperature at different time intervals. Firstly, we have examined the reaction using
CH3CN, EtOH, MeOH, AcOH, DMF at constant temperature and time as shown inTable-1,
entry 1-5. Based on this preliminary observation it was found that the reaction proceeds in
AcOH smoothly. Further, we tried to improve the yield of the product by addition of mixture
of solvents (Table-1 entry 6-10). Among all the tested solvents AcOH with piperidine (4:1) at
65 °C gave 40 percentage yield of the product. The optimum yield 90% of the product was
formed at 90 °C for 16 h (entry 12). Therefore, the optimization conditions of the reaction is
AcOH/piperidine (4:1) at 90°C for 16 h, to get the 95% yield of the product. The screened

conditions were summarised in Table-1

The newly synthesized compounds structures (5a-w) were confirmed by their IR, 'H NMR,
13C NMR, HRMS. In the IR spectra pyrimidine ring N-H appears as a broad peak at 3103 -
3181 cm™. Alkane C-H stretching frequency is at 3057-3075 cm, nitrile frequency is at 2210
cm 1, carbonyl stretching frequency appear at 1670-1730 cm™, NO2 group asymmetric,
symmetric stretching vibrational frequencies appears at 1518, 1347 cm™, C-O-C (ether group)
stretching frequency at 1050-1270 cm™. In the *H NMR spectrum the compound 5¢ OCHs
group three hydrogens appears as a singlet at 3.86 ¢ ppm, thioalkylated CH> protons appears
as a quartet at 4.61-4.73 ¢ ppm. The characteristic newly formed pyrimidine ring alkane C-H
one singlet proton appear at 6.39 ¢ ppm. The protons from 7.03-7.93 6 ppm correspond to
aromatic and the N-H proton appears at 12.62 6 ppm. In the *C NMR spectrum of compound
5e sulphur attached CH> carbon appear at 38.8 6 ppm, O-CHz carbon appears at 56.0 6 ppm,
pyrimidine ring characteristic tertiary carbon appear at 58.3 6 ppm, the carbonyl carbons appear

at 188.9 and 192.1 6 ppm respectively.
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Table-2 synthesized derivatives

o CHO
R2 N=N Br
/« \ . AcOH/Piperidine
+ T H,NTNY TSH R® e ——
H 90°C
(0] R

NO,
0
o
N-N
c: \»s AT
O~y
H
5a. 10 h, 91% 5b.9 h, 90% 5d. 11 h, 90%

Br

IN\}\@Q

5h 10 h, 90%

51.9 h, 93%
Cl

I"\Hﬂm

5p 10 h, 89%

5t.9 h, 93%

N
O
H

Y o,
5u. 10 h, 90% 5v. 11 h, 95% 5W 10 h, 92%

Reaction conditions: 1,3 indane dione (1 mmol), aromatic aldehydes (1 mmol), 5-amino-4H-
1,2,4-triazole-3-thiol (1 mmol), phenacyl bromides (1 mmol) was taken in AcOH/Piperidine
under reflux at 90 °C.
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The carbons from 102.7-163.8 ¢ ppm indicate aromatic carbons. Furthermore, the compound
5e has also by confirmed by heteronuclear single quantum coherence (HSQC) spectrum. The
!H NMR of thioalkylated quartet CH, protons correlated with 38.8 6 ppm peak of *C NMR
and the *H NMR spectrum of pyrimidine ring tertiary carbon attached singlet proton (6.39 ¢
ppm) has correlates with **C NMR spectrum of 58.5 6 ppm peak and also in the 'H NMR
spectrum the methoxy protons correlates with **C NMR of 56.0 peak. Based on these findings,
we have confirmed 58.5 ¢ ppm (:*C NMR) peak corresponds to pyrimidine ring tertiary carbon.
(spectra are available in supplementary data). All the final compounds structures were
confirmed with their HRMS (+Ve mode) spectra.

The plausible mechanism for the formation of final compounds was established. The
Knovenagal condensation reaction between 1,3-indane dione and aromatic aldehydes takes
place to form a, B unsaturated ketone (1b) with the elimination of water molecule to produce a
C=C. Further the intermediate 1b involves cyclocondensation reaction with 5-amino-4H-1,2,4-
triazole-3-thiol to generate a triazolopyrimidine six membered ring product via Biginelli
reaction with the elimination of water molecule. In this step initially the triazole amine was
condensed with carbonyl group of 1b. This if followed by ring closure. Later the free SH group
of triazole participate in nucleophilic substitution reaction with phenacyl bromides with the
elimination of HBr. Presence of electron-donating substituents in p-position of the phenacyl
moiety to affords a good percentage yield of the product (94-95%).
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®
OHQ_H
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0 NO,
NO,
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? H N 0 H N % -H0
‘ - > ~her ‘ I R
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O N)QN> /_b -HBr Q N/L\NFS&/ 5
H H

Fig-2. Plausible mechanism for the formation of compounds (5a-w).
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5A.2.2 MTT Assay

A colorimetric technique called the MTT Cell Viability assay is used to measure the metabolic
activity of cells. Living cells transform the yellow tetrazole, MTT into the purple formazan.
This transformation of tetrazolium salts into coloured formazan happens only by living
(metabolically active) cells but not by dead cells. As a result, tetrazolium salt-based
colorimetric tests can detect only live cells. These metabolic activity assays are widely
employed to detect drug-induced cytotoxicity or cell necrosis since a cytotoxic substance
would decrease the rate of tetrazolium salt cleavage by a population of cells. Cells that divide
quickly, such as cancer cells, have high rates of MTT decrease .

Principle

Numerous in vitro tests are based on measurements of cell viability and proliferation. The MTT
assay is one of them and was first described by Mosmann in 1983. The MTT, which is 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, is based on the ability of a
mitochondrial dehydrogenase enzyme from viable cells to cleave the tetrazolium rings of the
pale yellow MTT and form a dark blue formazan crystal that is largely impermeable to cell
membranes, leading to its accumulation within healthy cells. By using spectrophotometric
techniques, the resulting intracellular purple formazan can be solubilized and measured. The
insoluble purple formazan result is converted into a coloured solution by adding a solubilization
solution, which is typically either dimethyl sulfoxide, an acidified ethanol solution, or a
solution of the detergent sodium dodecyl sulfate in diluted hydrochloric acid that is added to
dissolve the insoluble purple formazan product into a colored solution. Now the colour can be
measured using a simple colorimetric assay at a specific wavelength (often between 500 and
600 nm). A multiwell scanning spectrophotometer (ELISA reader) can be used to read the
data. The MTT assay tracks how quickly cells divide and, in the contrary, when metabolic

processes cause reduction in cell viablity.

N:N>_© Mitochondrial Reductase HN—N\>/®
N=

N -

e o

3-(4,5-dimthylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (E,Z)-5-(4,5-dimethylthiazol-2-y1)-1,3-
(MMT) diphenylformazan

(Formazan)
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In-Vitro Anticancer activity

Preliminary investigations were done by screening the compounds for anti-cancer activity on
breast cancer cell line (human MCF-7) and immortal glioma cell line LN18. All the compounds
were evaluated for their anti-proliferative activity by performing tetrazolium reduction. This
assay provides a quantitative measure of the number of cells with metabolically active
mitochondria and is based on the reduction of a tetrazolium bromide salt, MTT [3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]. The cells were treated with different
concentrations of compound and cell viability was measured. Since the compounds were
dissolved in DMSO, cells treated with DMSO alone served as vehicle control. Drug dose-
response curves were plotted after calculating survival fraction. The results were analyzed for
the survival of the glioma cells survival against the final concentration. All treatments were
performed in triplicate and results expressed as mean + S.D. For each compound, six
concentrations were used for treatment (DMSO, 5 uM, 10 puM, 50 uM, 100 uM and 200 pM).
Analysis of data showed that the compounds showed ICsp values less than 10 uM in MCF cell
lines (Table-3) These cells show more sensitivity towards these series as compared to LN18
cells (Table-4). 13 compounds significantly diminished the cell viability over time in a dose
dependent manner. Percent survival (Fig-3) of MCF 7 and LN18 (Fig-4) cells were plotted to
indicate the contrast survival of untreated cells with other drug concentrations for each

compound.

Table-3. ICso values of the compounds 5a-w

Compound MCF-7 Cells I1Cso Compound | MCF-7 Cells 1Cso Value

code Value (uM) code (UM)
5a >100 5m 4.18
5b 3.3 5n >100
5c >100 50 2.7
5d >100 5p 3.38
5e 9.03 5q >100
5f 3.46 5r >100
59 4.2 5s 4.33
5h >100 5t 4.62
5i 3.84 5u >100
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5j 2.7 5v >100
5k 6.16 5w >100
51 3.92

Table 3. ICso values (in uM) of different compounds in MCF-7 breast cancer cell line
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Fig-3. Bar graph showing the percent survival of MCF-7 cells upon treatment of different
compounds at different concentrations (Vehicle control, 5uM, 10uM, 50uM, 100uM, 200uM).
DMSO treated cells show 100% viability. Other concentrations show comparative percentage

of cell survival.

Table-4. 1Cso values of the compounds 5a-w in LN18 cell lines

Compound LN18 Cells ICso Compound LN18 Cells ICso
code Value (uM) code Value (UM)

5a 5m
>100 36.34

5b 5n
13.77 50.55

5c 50
>100 25.33

5d 5p
>100 14.45

5e =l
9.3 >100

5f 5r
20.98 >100
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59 5s
7.51 16.69
5h 5t
>100 14,72
5i 5u
49.48 >100
5j 5v
6.5 >100
5k 5w
20.53 >100
5
10.39
Table 4. 1Cso values (in pM) of different compounds in LN18 human patient derived glioma
cell line.
LN 18
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Fig.4. Bar graph showing the percent survival of LN18 cells upon treatment of different
compounds at different concentrations (Vehicle control, 5uM, 10uM, 50uM, 100uM, 200uM).
DMSO treated cells show 100% viability. Other concentrations show comparative percentage

of cell survival.
5A.2.3 Molecular docking results

En route to forecast the anticancer activity of the synthesized compounds, in silico molecular
docking simulations of compound 5g have also been performed in the present report. The X-
ray crystallographic structure of Bax (PDB ID: 4S00), BCL-2 (PDB ID:2W3L), Caspase 3
(PDB ID: 519B), Caspase 8 (PDB ID: 1QDU), Cyt ¢ (PDB ID: 1HRC), p53 (PDB ID: 20CJ),
and PARP (PDB ID: 618M) proteins obtained from the protein data bank were considered for

the study. The bound ligands and water molecules were removed and polar hydrogen were
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added in the proteins prior to the molecular docking simulations. The simulations were
performed employing the Auto Dock Vina software! and the anticancer activity is predicted
based on the magnitude of binding affinity values and interacting amino acid residues at the
active site of the receptor protein. The reproducibility of the docking pose at the active site of
the receptor proteins were also assured with the root mean square deviation (RMSD) estimated

between two docked poses.*®

Fig.5 displays docked pose of the compound 5g along with the interacting amino acids at the
active site of Bax and PARP proteins and surface view of the protein with two overlapping
conformers of the compound 5g. The calculated binding affinity values, RMSD, interacting
amino acid residues for 5g with all the considered proteins are systematically tabulated in
Table 5.

(© (d)
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Fig.5. (a) The complex of protein (Bax) with compound 59 illustrating the interacting amino
acid residues, (b) Overlapping docked poses of compound 5g at the binding site of Bax, (c)
The complex of protein (PARP) with compound 5g illustrating the interacting amino acid
residues, (b) Overlapping docked poses of compound 5g at the binding site of PARP, (e) The
2D display of the interacting amino acids of compound 5g at the binding site of Bax protein,
and (f) The 2D display of the interacting amino acids of compound 5g at the binding site of
PARP protein.

The calculated magnitude of binding affinity (-10.8 kcal/mol) for compound 5g is found to be
the highest with PARP protein. Close analysis of the PARP-5g complex reveals the
hydrophobic interactions with VAL762, GLN763, TYR896, ALA898, and GLU988 amino
acid residues at the binding site. However, no hydrogen bonding interactions have been
between 5g and PARP has been noticed. Thus, outcomes of the docking simulations
exclusively emphasize that the compound 5g shows high affinity towards PARP protein based
on the binding affinity values and the nature of interaction between 5g at the binding site is

mostly hydrophobic.

Furthermore, the compound 5g also shows good binding affinities with the Caspase 3 (-9.4
kcal/mol) and displays hydrogen bonding interaction with HIS121, CYS163, and ARG207 and
hydrophobic interactions with THR62, GLU123, PHE128, TYR204, TRP206, PHE256. The
compound 5g have the binding affinity of -8.8 kcal/mol with BCL-2 and shows hydrogen
bonding interaction with SER75 and hydrophobic interactions with ASP62, PHE71, ALA72,
VAL115, TYR161. Moreover, 5g binds with Bax protein with a binding affinity of -8.6
kcal/mol showing hydrogen bonding interactions with GLU41, LEU47 and hydrophobic
interactions with PRO43, LEU45, ALA46, ILE133, and ASN106.
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To ensure the reproducibility of the docking poses at the binding site of all the studied receptor
proteins, the docking simulation was reperformed. The RMSD between two docked
conformers of 5¢g is calculated and the results are provided in Table 5. It is evident from the
table that the RMSD between two docked conformers is very small and ranges within 0.408 to
1.626. These RMSD value advocates the reproducibility of the docking poses and can be clearly
visualized from the overlapping conformers of the compound 5g at the binding site of Bax and
PARP proteins depicted in Fig.4. Therefore, the outcomes of the molecular docking
simulations exclusively emphasize that the synthesized compound 5g could be considered as a

potential anticancer agent.
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Table 5. Binding Affinity, RMSD Between Two Docked Conformers of the Compounds 5g and Interacting Amino Acid Residues at the

binding Site of the Various Proteins Considered in the Present Study.

Binding
Protein affinity RMSD Interacting Amino Acids (Distance in A)
(kcal/mol)
Hydrogen bonding Hydrophobic Interaction
Bax -8.6 0.933  GLU41 (1.91), LEU4T (2.34) PRO43 (3.60), LEU45 (3.78), ALA46 (4.00), ILE133 (Pi-sigma, 3.58),
ASN106 (Halogen bond, 3.47)
BCL-2 -8.8 0.488  SERT75 (2.26) ASP62 (3.57), PHET71 (3.49), ALA72 (3.68) VAL115 (3.07), TYR161
(4.75)
Caspase3 -9.4 1.115  HIS121 (1.93), CYS163 (Pi-Donor, 5.66), THR62 (3.80), GLU123 (Pi-Anion, 3.61), PHE128 (3.75), TYR204 (Pi-
ARG207 (1.80) Pi Stacked, 3.41), TRP206 (Pi-Pi Stacked, 3.70), PHE256 (3.42),
Caspase8 -8.5 0.986  HIS237 (3.67), ARG341 (2.21) ARG177 (3.55), TYR244 (3.75), TYR290 (3.61), HIS237 (Pi-Pi
Stacked, 5.30), TYR290 (Halogen Bond, 3.40), TYR340 (Pi-Pi Stacked,
4.82)
Cytc -6.3 0.408  ALA15 (3.28), LYS7 (Carbon Hydrogen PHE10 (3.68), VAL11 (Pi-Sigma, 3.72), GLU21 (Pi-Anion, 6.01),
Bond, 4.46), LYS27 (2.42) TYR97 (Halogen Bond, 3.59)
p53 -6.9 1.626  GLN100 (2.32), THR102 (3.21), SER269 LEU111 (3.41), LEU252 (3.62), ASN268 (3.95), GLU271 (3.61)
(3.00)
PARP -10.8 0.581 - VALT762 (Pi-Alkyl, 3.66), GLN763 (3.92), TYR896 (3.65), ALA898

(3.74), TYR907 (Pi-Pi Stacked, 3.86), GLU988 (3.98)
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5A.3 Conclusions:

In summary, we have synthesized the final compounds in a multicomponent process. In which
one pot-four component reaction between 1,3-indane dione, aromatic aldehydes, 5-amino-4H-
1,2,4-triazole-3-thiol, and various phenacyl bromides were reacted to produce high yield of
product fusedl,2,4-triazolopyrimidinones (5a-w) in a short period of time. The advantages of
MCRs method is an economical, broad substrate and ecofriendly synthesis. The final
compounds structures were confirmed by their spectral data. All the synthesized compounds
(5a-w) were screened against in-vitro antibreast cancer activity with the help of LN18 and
MCEF-7cell lines. Molecular docking simulation was also carried out for all the synthesized

compounds.
5A.4 Experimental:

The starting materials were commercially purchased form Sigma-Aldrich, Alfa Aesar, TCI,
Spectrochem and used without additional purification. The solvents were purchased from
Finar, Merck and stored over a 4 A molecular sieves. The progress of the reaction was checked
with Thin-layer chromatography (TLC) on silica gel coated aluminium plates using ethyl
acetate and n-hexane (2:8) ratio. The FI-IR spectra were recorded on Perkin Elmer
spectrometer using solid KBr disk and values were expressed in cm. Proton NMR spectra was
recorded on Bruker AVANCE 400 MHz spectrometer with the use of DMSO-ds solvent and
TMS (Tetra methyl silane) as an internal reference standard compound. The abbreviations were
used to explain the splitting pattern; s = singlet, d = doublet, t = triplet, m = multiplet, q =
quartet, and the chemical shift (6) were expressed in ppm reference to centre line of quintet at
2.5 ppm for DMSO-de and triplet at 7.26 ppm for CDCls solvent, coupling constant (J) units
represented in Hz. Carbon NMR spectra was recorded on Bruker AVANCE 100 MHz
spectrometer and chemical shift (o) values were represented in ppm and it is fully broad bond
decoupled proton NMR spectra. Melting points of the compounds were checked with Stuart
Staffordshire, UK (SMP30) Instrument and were uncorrected. The molecular mass of the

compounds was checked with HRMS (ESI +Ve mode) Agilent Technologies Instrument.
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5A.4.1 General procedure for the synthesis of thioalkylated fused triazolopyrimidines (5a-

w)

A mixture of 1,3-Indane dione (1 mmol) 4-nitro aromatic aldehyde (1 mmol) in the presence
of AcOH (4 mL) was an added catalytic amount of piperidine (10 mol%), refluxed for 30
minutes. After consumption of the reaction 5-amino-4H-1,2,4-triazole-3-thiol and the reaction
mixture was continued to reflux for another 5-6 hours (vide TLC) and then added p-bromo
phenacyl bromides under same solvent conditions and refluxed for another 4 hours. After
completion of the reaction (vide TLC) the crystalline solid product was filtered and washed

with water and recrystalized from methanol.
5A.5 Characterization data of synthesized compounds (5a-w)

10-(4-Bromophenyl)-2-((2-(4-bromophenyl)-2-oxoethyl) thio)-4,10-dihydro-9H-indeno[1,2-
d][1,2,4]triazolo[1,5-a]pyrimidin-9-one. (5a)

Yellow solid; Yield 91%; mp: 263-264 °C; IR (KBr) cm™: 3173
(N-H), 3069 (alkane C-H), 1701, 1685 (C=0), 766 (C-Br);*H
NMR (400 MHz, DMSO-ds) & (ppm) : 4.69 (g, J = 168 Hz, | L ﬂ
2H), 6.26 (s, 1H), 7.24 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 6.8 Hz, Q‘ H*\N\H 0

1H), 7.48 — 7.51 (m, 3H), 7.67 (d, J = 7.2 Hz, 1H), 7.74 (d, J = 8.8 Hz, 2H), 7.83-7.87 (m, 2H),
8.44 (d, J = 8.8 Hz, 1H), 12.54 (s, 1H): 3C NMR (100MHz, DMSO-ds) 5 (ppm): 38.9, 58.2,
103.1,120.6, 121.4, 122.0, 126.6, 128.1, 130.2, 130.7, 131.8, 132.2, 132.7, 133.7, 135.0, 135.7,
139.2, 1484, 154.7, 1584, 189.0, 193.3. HRMS (ESI-TOF) (m/z): Calculated for
CasH1sBr2N4O2S [M+H]" 606.9439; found 606.9430.

2-((2-(4-Methoxyphenyl)-2-oxoethyl) thio)-10-(4-nitrophenyl)-4,10-dihydro-9H-indeno[1,2-
d][1,2,4]triazolo[1,5-a]pyrimidin-9-one (5b).

Yellow solid; yield 90%; mp: 234-235°C; IR (KBr) cm™: 3177

(N-H), 3069 (alkane C-H), 1689, 1676 (C=0), 1518, 1310
(NOy), 1277 (C-O-C); *H NMR (400 MHz, DMSO-ds) 5 (ppm): ) ﬁ
Cl s

3.85 (s, 3H), 4.66 (q, J = 16.8 Hz, 2H), 6.46 (s, 1H), 7.02 (d, J
= 8.8 Hz, 2H), 7.58 (d, J = 8.8 Hz, 2H), 7.91 (d, J = 8.8 Hz,
2H), 8.15 (d, J = 8.8 Hz, 2H), 8.35 (d, J = 8.8 Hz, 2H), 8.60 (d, J = 8.8 Hz, 2H), 12.66 (s, 1H);
13C NMR (100MHz, DMSO-ds) 6 (ppm): 38.8, 56.0, 58.2, 102.6, 114.3, 123.8, 129.4, 131.1,
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132.8,134.6,136.7, 139.0, 140.2, 142.0, 142.6, 147.7, 149.3, 154.9, 159.0, 163.8, 188.6, 192.1.
HRMS (ESI-TOF) (m/z): Calculated for C27H10Ns0sS [M+H]" 526.1180; found 526.1155.

2-((2-(4-Bromophenyl)-2-oxoethyl) thio)-10-(2,4-dichlorophenyl)-4,10-dihydro-9H-indeno
[1,2-d][1,2,4]triazolo[1,5-a]pyrimidin-9-one. (5¢)

Yellow solid; Yield 88%; mp: 215-216 °C; IR (KBr) cm™: 3173 (N-
H), 3070 (alkane C-H), 1729, 1691 (C=0), 733 (C-CI), 702 (C-Br);
IH NMR (400 MHz, DMSO-ds) J (ppm): 4.68 (g, J = 17.2, Hz, 2H),
6.56 (s, 1H), 7.30 (d, J = 6.8 Hz, 1H), 7.61 — 7.64 (m, 2H), 7.74 (d,
J=8.8Hz, 2H), 7.83 - 7.85 (m, 4H), 8.56 (d, J = 8.4 Hz, 2H), 12.62
(s, 1H); 3C NMR (100MHz, DMSO-ds) § (ppm): 38.9, 61.3, 123.8, 127.7, 129.6, 129.8, 130.6,
132.1,132.2,134.9,136.6, 136.8, 137.1, 137.9, 138.1, 140.2, 142.5, 188.3, 189.1. HRMS (ESI-
TOF) (m/z): Calculated for C26H15BrCl2N4O2S [M+H]" 596.9554; found 596.9549.

Br

2-((2-(4-Bromophenyl)-2-oxoethyl) thio)-10-(4-chlorophenyl)-4,10-dihydro-9H-indeno[1,2-
d][1,2,4]triazolo[1,5-a]pyrimidin-9-one (5d).

Yellow solid; Yield 90%; mp: 260-261°C; IR (KBr) cm™: 3171

(N-H), 3068 (alkane C-H), 1701, 1685 (C=0), 765 (C-Cl), 710
(C-Br); 'H NMR (400 MHz, DMSO-ds) & (ppm): 4.70 (g, J =

-N
17.0, Hz, 2H), 6.28 (s, 1H), 7.29 — 7.38 (m, 6H), 7.42 (d, J = 7.2 .I ) \%S

Hz, 1H), 7.67 (d, J = 7.2 Hz, 1H), 7.74 (d, J = 8.8 Hz, 2H), 7.86
(d, J = 8.4 Hz, 2H). 12.55 (s, 1H); 1*C NMR (100MHz, DMSO-ds) & (ppm): 39.0, 58.3, 103.2,
120.6,121.4,128.1, 128.8, 129.9, 130.7, 131.4, 132.2, 132.7, 133.4, 133.7, 135.0, 135.7, 138.8,
148.4, 154.7, 158.4, 189.0, 193.3. HRMS (ESI-TOF) (m/z): Calculated for CosH16BrCIN4O2S
[M+H]* 562.9944; found 562.9936.

4-(2-((2-(4-Methoxyphenyl)-2-oxoethyl) thio)-9-o0x0-9,10-dihydro-4H-indeno[1,2-d][1,2,4]
triazolo[1,5-a]pyrimidin-10-yl)Benzonitrile (5e).

Yellow solid; Yield 94%; mp: 230-231 °C; IR (KBr) cm™: 31
10 (N-H), 3098 (alkane C-H), 1735, 1690 (C=0), 1251 (C-O- O

C); *H NMR (400 MHz, DMSO-dg) J (ppm): 3.86 (s, 3H), 4.67 | 9

(9, J=16.8 Hz, 2H), 6.39 (s, 1H), 7.04 (d, J = 8.8 Hz, 2H), 7.32 O. HAN\%S °
(d,J=6.8Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.49 — 7.51 (m, 3H),

7.68 (d, J = 7.2 Hz, 1H), 7.78 (d, J = 8.4 Hz, 2H), 7.92 (d, J = 8.8 Hz, 2H), 12.62 (s, 1H); 3C

OMe
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NMR (100MHz, DMSO-ds) J (ppm): 38.8,56.0, 58.5, 102.7, 111.5, 114.4, 119.0, 120.7, 121.5,
128.8,129.0, 131.1, 131.5,132.8, 133.0, 133.7, 135.6, 144.9, 148.5, 154.9, 158.9, 163.8, 188.9,
192.1. HRMS (ESI-TOF) (m/z): Calculated for CzsH1oNsO3S [M+H]* 506.1287; found
506.1275.

2-((2-(4-Chlorophenyl)-2-oxoethyl) thio)-10-(2,4-dichlorophenyl)-4,10-dihydro-9H-indeno
[1,2-d][1,2,4]triazolo[1,5-a]pyrimidin-9-one (5f)

Yellow solid; Yield 85%; mp: 218-219 °C; IR (KBr) cm™: 3177
(N-H), 3074 (alkane C-H), 1729, 1692 (C=0), 733 (C-Cl); 'H NMR
(400 MHz, DMSO-ds) o (ppm): 4.67 (g, J = 16.8, Hz, 2H), 6.55 (s,
1H), 7.37-7.42 (m, 2H), 7.57-7.60 (m, 2H), 7.91 (d, J = 8.4 Hz, 2H),
7.97 — 7.99 (m, 4H), 8.55 (d, J = 8.4 Hz, 1H), 12.64 (s, 1H); *C
NMR (100MHz, DMSO-dg) ¢ (ppm): 38.7, 63.7, 109.6, 123.7, 127.7, 129.3, 129.6, 129.7,
130.5, 132.0, 134.9, 136.7, 136.8, 137.0, 138.1, 140.1, 140.4, 142.5, 157.8, 188.3, 189.2.
HRMS (ESI-TOF) (m/z): Calculated for C2eHisBrCIlsN4O>S [M+H]* 553.0059; found
553.00609.

Cl

10-(2,4-Dichlorophenyl)-2-((2-oxo-2-phenylethyl) thio)-4,10-dihydro-9H-indeno[1,2-d]
[1,2,4] triazolo[1,5-a] pyrimidin-9-one (5g)

Yellow solid; Yield 89%; mp: 218-219 °C; IR (KBr) cm™: 3181
(N-H), 3070 (alkane C-H), 1730, 1691 (C=0), 733 (C-Cl); H
NMR (400 MHz, DMSO-ds) J (ppm): 4.72 (g, J = 16.8, Hz, 2H),
6.57 (s, 1H), 7.53 — 7.54 (m, 3H), 7.61 (d, J = 2.0 Hz, 1H), 7.66
(d, = 7.2 Hz, 2H), 7.84 (d, J = 2.4 Hz, 2H), 8.57 (d, J = 8.4 Hz,
4H), 12.62 (s, 1H); *C NMR (100MHz, DMSO-ds) J (ppm): 39.1, 62.8, 101.5, 120.6, 121.4,
123.8, 127.7, 128.6, 129.1, 1315, 132.1, 132.7, 133.9, 134.9, 136.0, 136.6, 136.8, 137.0,
138.1, 155.3, 158.7, 189.1, 193.8. HRMS (ESI-TOF) (m/z): Calculated for
C26H16BrCloN4NaO,S™ [M+H]* 541.0271; found 541.0271.
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10-(4-Bromophenyl)-2-((2-oxo-2-phenylethyl) thio)-4,10-dihydro-9H-indeno[1,2-d][1,2,4]
triazolo[1,5-a]pyrimidin-9-one (5h)

Yellow solid; Yield 90%; mp: 290-291 °C; IR (KBr) cm™: 3169 —
(N-H), 3062 (alkane C-H), 1700, 1686 (C=0), 707 (C-Br); H

NMR (400 MHz, DM SO-ds)  (ppm): 4.74 (g, J = 17.0 Hz, 2H), A - h(@
6.28 (s, 1H), 7.25 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 6.8 Hz, 1H), O. HAN\*S b

7.41 (t, J = 7.4 Hz, 1H), 7.49-7.55 (m 5H), 7.67 (d, J = 6.4 Hz,

2H), 7.95 (d, J = 7.2 Hz, 2H), 12.55 (s, 1H); **C NMR (100MHz, DMSO-dg) J (ppm): 39.2,
58.3,103.1, 120.6, 121.4, 122.0, 128.7, 129.2, 130.2, 131.4, 131.8, 132.7, 133.7, 134.0, 135.7,

136.0, 139.2, 148.4, 154.7, 158.5, 189.0, 193.9. HRMS (ESI-TOF) (m/z): Calculated for
C26H17BrN4O2S [M+H]*529.0334; found 529.0331.

10-(4-Chlorophenyl)-2-((4-nitrobenzyl) thio)-4,10-dihydro-9H-indeno[1,2-d][1,2,4]triazolo
[1,5-a]pyrimidin-9-one (5i)

Orange solid; Yield 90%; mp: 250-251 °C; IR (KBr) cm™: )
3135 (N-H), 3071 (alkane C-H), 1690 (C=0), 1562, 1343
(NOy), 763 (C-Cl); 'H NMR (400 MHz, DMSO-ds) 6 (ppm):
4.36 (g, J = 14.0 Hz, 2H), 6.34 (s, 1H), 7.34 — 7.42 (m, 6H),
7.49-7.52 (m, 3H), 7.69 (d, J = 7.2 Hz, 1H), 8.03 (d, J = 8.4
Hz, 2H), 12.58 (s, 1H); 1°C NMR (100MHz, DMSO-ds) 6 (ppm): 33.5, 57.8, 102.7, 120.1,
121.0,123.2,128.4,129.5,129.9, 131.0, 132.3, 133.6, 133.2, 135.3, 138.4, 146.3, 148.1, 154.3,
157.4, 188.5. HRMS (ESI-TOF) (m/z): Calculated for CzsH1sCINsO3S [M+H]* 502.0740;
found 502.0730.

2-((4-Nitrobenzyl)  thio)-10-(4-nitrophenyl)-4,10-dihydro-9H-indeno[1,2-d][1,2,4]triazolo
[1,5-a]pyrimidin-9-one (5))

Orange solid; Yield 88%; mp: 221-222 °C; IR (KBr) cm™:
3160 (N-H), 3069 (alkane C-H), 1689 (C=0), 1574, 1347
(NO2): 'H NMR (400 MHz, DMSO-ds) & (ppm): 4.36 (g, J =
14.2 Hz, 2H), 6.51 (s, 1H), 7.34 (d, J = 6.8 Hz, 1H), 7.43 (t,
J=7.4Hz, 1H), 7.50-7.53 (m, 3H), 7.62 (d, J = 8.8 Hz, 2H),
7.71(d, 3 = 7.2 Hz, 1H), 8.01 (d, J = 8.8 Hz, 2H), 8.20 (d, J = 8.8 Hz, 2H), 12.69 (s, 1H); 2*C
NMR (100MHz, DMSO-ds) 6 (ppm): 34.4, 58.2, 102.7, 120.7, 121.5, 123.6, 123.9, 124.1,
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129.5,130.4, 131.6, 132.8, 133.7, 134.6, 135.6, 146.6, 146.8, 147.8, 148.8, 155.0, 158.2, 188.9:
HRMS (ESI-TOF) (m/z): Calculated C2sH1sNsOsS [M+H]* 513.0981; found 513.0978.

2-((4-Bromobenzyl) thio)-10-(4-nitrophenyl)-4,10-dihydro-9H-indeno[1,2-d][1,2,4]triazolo
[1,5-a]pyrimidin-9-one (5K)

Orange solid; Yield 90%; mp: 201-202 °C; IR (KBr) cm™: 3114

NO,

(N-H), 3069 (alkane C-H), 1689 (C=0), 1574, 1347 (NO2), 713 O

(C-Br); *H NMR (400 MHz, DMSO-dg) 6 (ppm): 4.21 (q, J = 9

12.4 Hz, 2H), 6.51 (s, 1H), 7.21 (d, J = 8.4 Hz, 2H), 7.32 — 7.36 O. P
H

(m, 3H), 7.63 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 7.2 Hz, 1H), 8.21

(d, J = 8.8 Hz, 2H), 8.36 (d, J = 8.8 Hz, 1H), 8.61 (d, J = 8.8 Hz, 1H), 12.69 (s, 1H); 13C NMR
(100MHz, DMSO-ds) 0 (ppm): 34.4, 58.2, 102.7, 120.7, 121.5, 123.8, 124.1, 129.5, 131.4,
132.8, 133.7, 134.6, 135.6, 137.9, 140.2, 142.0, 146.8, 147.8, 148.7, 155.0, 158.6, 188.9:
HRMS (ESI-TOF) (m/z): Calculated C25H16BrNsOsS [M+H]" 546.0235; found 546.0245.

10-(4-Nitrophenyl)-2-((2-oxo-2-(p-tolyl) ethyl) thio)-4,10-dihydro-9H-indeno[1,2-d][1,2,4]
triazolo[1,5-a]pyrimidin-9-one (5I)

Yellow solid; Yield 93%; mp: 248-249 °C; IR (KBr) cm™: 3169
(N-H), 3074 (alkane C-H), 1731, 1688 (C=0), 1518, 1347
(NO2); *H NMR (400 MHz, DMSO-ds) J (ppm): 2.38 (s, 3H), N
4.69 (q,J = 17.0 Hz, 2H), 6.46 (s, 1H), 7.32 (t, J = 7.2 Hz, 3H), Q. \H

7.58 (d, J=8.8 Hz, 2H),7.69 (d, J = 7.2 Hz, 1H), 7.83 (d, J = 8.0 Hz, 2H), 8.15 (d, J = 8.8 Hz,
2H), 8.36 (d, J = 8.8 Hz, 1H), 8.61 (d, J = 8.8 Hz, 1H), 12.65 (s,1H); *C NMR (100MHz,
DMSO-ds) o (ppm): 21.6, 39.0, 58.2, 102.6, 120.7, 121.5, 123.9, 124.1, 128.8, 129.4, 129.7,
131.5,133.4,133.7,134.6, 135.6, 136.8, 142.0, 144.5, 146.7, 147.7, 148.5, 154.9, 158.9, 188.9,
193.3: HRMS (ESI-TOF) (m/z): Calculated C27H190Ns04S [M+H]" 510.1236; found 510.1235.

10-(2,4-Dichlorophenyl)-2-((2-oxo-2-(p-tolyl) ethyl) thio)-4,10-dihydro-9H-indeno[1,2-d]
[1,2,4] triazolo[1,5-a] pyrimidin-9-one (5m)

Yellow solid; Yield 89%; mp: 223-224 °C; IR (KBr) cm™: 3173
(N-H), 3074 (alkane C-H), 1729, 1691 (C=0), 733 (C-Cl); *H
NMR (400 MHz, DMSO-ds) & (ppm): 2.39 (s, 3H), 4.68 (q, J =
16.8 Hz, 2H), 6.58 (s, 1H), 7.32 (d, J = 7.6 Hz, 2H), 7.4 1 (t, J =
7.8 Hz, 2H), 7.62 (d, J = 6.8 Hz, 2H), 7.81 — 7.85 (m, 3H), 8.56
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(d, J = 8.4 Hz, 2H), 12.62 (s, 1H); *C NMR (100MHz, DMSO-ds)  (ppm): 21.2, 38.5, 60.5,
120.1,121.0, 123.3, 127.2, 128.3, 131.6, 132.3, 134.4, 135.1, 136.2, 136.3, 136.6, 137.4, 137.6,
139.7,142.1,143.9, 154.8, 188.7, 192.9: HRMS (ESI-TOF) (m/z): Calculated C27H16CIaN4O2S
[M+H]* 533.0606; found 533.0593.

10-(4-Bromophenyl)-2-((2-(4-methoxyphenyl)-2-oxoethyl)  thio)-4,10-dihydro-9H-indeno
[1,2-d][1,2,4]triazolo[1,5-a]pyrimidin-9-one (5n)

Yellow solid; Yield 93%; mp: 198-199 °C; IR (KBr) cm™: -

3177 (N-H), 3086 (alkane C-H), 1725, 1692 (C=0), 1185 (C- O

0-C), 735 (C-Br);'"H NMR (4 00 MHz, DMSO-ds) 6 (ppm): Q -

3.86 (s, 3H), 4.67 (q, J = 16.8 Hz, 2H), 6.28 (s, 1H), 7.05 (d, J O. H*\“\H ©

= 9.2 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz,

2H), 7.78 (d, J = 8.4 Hz, 4H), 8.43 (d, J = 8.8 Hz, 2H), 12.56 (s, 1H); 1°C NMR (100MHz,
DMSO-ds) J (ppm): 38.9, 56.1, 58.3, 103.1, 114.4, 123.6, 123.7, 127.6, 130.2, 130.4, 131.1,
131.8,132.3,132.4, 135.9, 136.4, 136.5, 140.0, 142.4, 144.3, 189.0, 189.6: HRMS (ESI-TOF)
(m/z): Calculated C27H19BrN4O3S [M+H]" 559.0439; found 559.0452.

OMe

10-(4-Bromophenyl)-2-((2-oxo-2-(p-tolyl) ethyl) thio)-4,10-dihydro-9H-indeno[1,2-d][1,2,4]

triazolo[1,5-a]pyrimidin-9-one (50)

Yellow solid; Yield 91%; mp: 278-289 °C; IR (KBr) cm™: 3165
(N-H), 3057 (alkane C-H), 1698, 1684 (C=0), 736 (C-Br); *H 0

NMR (400 MHz, DMSO-ds) d (ppm): 2.39 (s, 3H), 4.69 (g, J= | ©

17.0 Hz, 2H), 6.27 (s, 1H), 7.25 (d, J = 8.4 Hz, 2H), 7.32 - 7.34 O. H*\N\H °
(m, 3H), 7.49 — 7.51 (m, 3H), 7.67 (d, J = 7.2 Hz, 1H), 7.84 (d, J

= 8.0 Hz, 2H), 12.55 (s, 1H); 23C NMR (100MHz, DMSO-ds) 3 (ppm): 21.6, 39.0, 58.3, 103.1,
120.6,121.4,122.0,128.8,129.7,130.2, 131.4, 131.8, 132.7,133.4,135.7, 139.2, 144.4, 148.3,
154.7, 158.6, 189.0, 193.4: HRMS (ESI-TOF) (m/2): Calculated Ca7H1BrN4O2S [M+H]*
543.0490; found 543.0495.

Me

2-((4-Bromobenzyl)thio)-10-(4-chlorophenyl)-4,10-dihydro-9H-indeno[1,2-d][1,2,4]triazolo
[1,5-a]pyrimidin-9-one (5p)

Orange solid; Yield 89%; mp: 221-222 °C; IR (KBr) cm™: 3179 (N-H), 3065 (alkane C-H),
1695 (C=0), 744 (C-Cl), 708 (C-Br);, DMSO-tH N MR (400 MHz ds) & (ppm): 4.20 (g, J =
13.6 Hz, 2H), 6.34 (s, 1H), 7.20 (d, J = 8.4 Hz, 2H), 7.33-7.35 (m, 6H), 7.40-7.43 (m, 3H),
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7.70 (d, J = 7.2 Hz, 1H), 12.58 (s, 1H); *C NMR (100MH_, G

DMSO-de) & (ppm): 34.4, 58.3, 103.2, 120.6, 1215, 128.9, ®

130.0, 1315, 132.7, 133.4, 133.7, 135.7, 138.0, 139.0, 1485, | 3 L n < e
154.7, 158.3, 172.4, 189.0: HRMS (ESI-TOF) (m/2): Calculated Q. v 7
CasH1sBrCIN4OS [M+H]* 534.9995; found 534.9965.

4-(2-((2-(4-Bromophenyl)-2-oxoethyl)thio)-9-0x0-9,10-dihydro-4H-indeno[1,2-d][1,2,4]
triazolo[1,5-a]pyrimidin-10-yl)Benzonitrile (5q)

Yellow solid; Yield 95%; mp: 240-241°C; IR (KBr) cm™: 3113
(N-H), 3089 (alkane C-H), 2209 (CN), 1723, 1672 (C=0), 744
(C-Br); *H NMR (400 MH z dg) 6 (ppm): 4.69 (g, J = 17.0 Hz, N
2H), 6.38 (s, 1H), 7.32 (d, J = 7.2 Hz, 1H), 7.41 (t, J = 7.4 Hz, Q. \H

1H), 7.47-7.52 (m, 3H), 7.68 (d, J = 7.2 Hz, 1H), 7.72-7.78 (m, 4H), 7.86 (d, J = 8.8 Hz, 2H),
12.60 (s, 1H); *C NMR (100MHz, DMSO-ds) ¢ (ppm): 39.0, 58.5, 102.7, 111.5, 118.9, 120.7,
121.5,128.1,129.0,130.7,131.5,132.2,132.8, 132.9, 133.7, 135.0, 135.6, 144.9, 148.6, 154.9,
158.6, 188.9, 193.3. HRMS (ESI-TOF) (m/z): Calculated C27H16BrNsO,S [M+H]* 554.0286;
found 554.0290.

10-(4-Bromophenyl)-2-((2-(4-chlorophenyl)-2-oxoethyl)thio)-4,10-dihydro-9H-indeno[1,2-
d] [1,2,4]triazolo[1,5-a]pyrimidin-9-one (5r)

Yellow solid; Yield 90%; mp: 228-229°C; IR (KBr) cm™: 3127
(N-H), 3012 (alkane C-H), 1733, 1662 (C=0), 789 (C-Cl), 744
(C-Br); *H NMR (400 MHz dg) 6 (ppm): 4.69 (g, J = 16.8 Hz,
2H), 6.26 (s, 1H), 7.23 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 6.8 Hz, Q.
1H), 7.40 (t, J = 7.8 Hz, 1H), 7.47-7.50 (m, 3H), 7.59 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 7.2 Hz,
1H), 7.94 (d, J = 8.8 Hz, 2H), 12.54 (s, 1H); **C NMR (100MHz, DMSO-dg) ¢ (ppm): 39.0,
58.4,103.1, 120.6, 121.4, 122.0, 129.3, 130.2, 130.6, 131.4, 131.8, 132.7, 133.7, 134.7, 135.7,
138.9, 139.2, 148.4, 154.7, 158.4, 189.0, 193.1. HRMS (ESI-TOF) (m/z): Calculated
C26H16BrCIN4O,S [M+H]* 562.9944; found 562.9935.

N’N\%s
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4-(9-Ox0-2-((2-0x0-2-(p-tolyl) ethyl)thio)-9,10-dihydro-4H-indeno[1,2-d][1,2,4]triazolo[1,5-
a]pyrimidin-10-yl)Benzonitrile (5s)
Yellow solid; Yield 95%; mp: 251-252 °C; IR (KBr) cm™: 3145

(N-H), 3098 (alkane C-H), 2198 (CN), 1714, 1684 (C=0); H
NMR (400 MHz ds) J (ppm): 2.39 (s, 3H), 4.69 (q, J = 16.8 Hz, 9 N @
e

2H), 6.38 (s, 1H), 7.31-7.33 (m, 3H), 7.40 (t, J = 7.4 Hz, 1H),

7.47-7.50 (m, 3H), 7.67 (d, J = 7.2 Hz, 1H), 7.77 (d, J = 8.4 Hz,

2H), 7.83 (d, J = 8.0 Hz, 2H), 12.61 (s, 1H); 3C NMR (100MHz, DMSO-ds) J (ppm): 21.6,
39.0, 58.5, 102.7, 111.5, 119.0, 120.7, 121.5, 128.8, 129.0, 129.7, 131.5, 132.7, 132.9, 133.4,
133.7, 135.6, 144.4, 1449, 148.5, 154.9, 158.8, 188.9, 193.3. HRMS (ESI-TOF) (m/2):
Calculated C2gH19Ns02S [M+H]" 490.1337; found 490.1332.

2-((2-(4-Chlorophenyl)-2-oxoethyl)  thio)-10-(4-nitrophenyl)-4,10-dihydro-9H-indeno[1,2-
d][1,2,4]triazolo[1,5-a]pyrimidin-9-one (5t)

Yellow solid; Yield 93%; mp: 236-237 °C; IR (KBr) cm™: 3172
(N-H), 3012 (alkane C-H), 1728, 1653 (C=0), 1340, 1532 (NO2),
785 (C-Cl); *H NMR (400 MHz dg) § (ppm): 4.70 (g, J = 16.8 N
Hz, 2H), 6.45 (s, 1H), 7.32 (d, J=6.8 Hz, 1 H), 7.41 (t, J = 7.8 O. \%S

Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.56-7.58 (m, 4H), 7.69 (d, J = 7.2 Hz, 1H), 7.93 (d, J = 8.8
Hz, 2H), 8.15 (d, J = 8.8 Hz, 2H), 12.65 (s, 1H); 3C NMR (100MHz, DMSO-ds) 6 (ppm): 38.9,
58.2,102.6, 120.7, 121.5, 124.0, 129.2, 129.4, 130.6, 131.5, 132.8, 133.7, 134.6, 135.6, 138.9,
146.6, 147.8, 148.6, 154.9, 158.7, 188.9, 193.0. HRMS (ESI-TOF) (m/z): Calculated for
C26H16CIN504S [M+H]* 530.069; found 530.0669.

10-(4-nitrophenyl)-2-((2-oxo-2-phenylethyl)thio)-4,10-dihydro-9H-indeno[1,2-d][1,2,4]
triazolo[1,5-a]pyrimidin-9-one (5u)
Yellow solid; Yield 90%; mp: 265-266 °C; IR (KBr) cm™: 3194

(N-H), 3010 (alkane C-H), 1745, 1679 (C=0), 1318, 1504
(NO2); *H NMR (400 MHz ds) J (ppm): 4.73(q, J = 17.0 Hz,2H), /_p
Y
: \%s

6.45 (s, 1H), 7.32 (d, J = 6.8 Hz, 1H), 7.41 (t, J = 7.4 Hz, 1H),
7.50-7.53 (m, 3H), 7.58 (d, J = 8.8 Hz, 2H), 7.64-7.69 (m, 2H),
7.93 (d, J = 7.2 Hz, 2H), 8.15 (d, J = 8.8 Hz, 2H), 12.65 (s, 1H): 13C NMR (100MH_z, DMSO-
de) d (ppm): 39.1, 58.2, 102.6, 120.7, 121.5, 124.1, 128.7, 129.1, 129.4, 131.5, 132.8, 133.7,
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134.0, 135.6, 135.9, 146.7, 147.8, 148.6, 155.0, 158.9, 188.9, 193.8; HRMS (ESI-TOF) (m/z):
Calculated for C26H17N504S [M+H]" 496.1074; found 496.4142.

10-(2,4-Dichlorophenyl)-2-((2-(4-methoxyphenyl)-2-oxoethyl)thio)-4,10-dihydro-9H-
indeno[1,2-d][1,2,4]triazolo[1,5-a]pyrimidin-9-one (5v)

Yellow solid; Yield 95%; mp: 224-225 °C; IR (KBr) cm™:
3103 (N-H), 3070 (alkane C-H), 1729, 1692 (C=0), 1289 (C-
0-C), 733 (C-CI); 'H NMR (400 MHz, DMSO-de) & (ppm):
3.86 (s, 3H), 4.66 (q, J = 16.8 Hz, 2H), 6.59 (s, 1H), 7.03 (d, J
= 8.8 Hz, 2H), 7.30 (d, J = 6.8 Hz, 1H), 7.41 (t, J = 7.4 Hz, 2H), 7.48-7.52 (m, 2H), 7.55 (d,
J=2.4Hz, 1H), 7.67 (d,J = 7.2 Hz, 1H), 7.91 (d, J = 8.8 Hz, 2H), 12.63 (s, 1H); 3C NMR
(100MHz, DMSO-ds) 0 (ppm): 38.8, 56.0, 114.4, 123.8, 127.7, 129.6, 129.8, 131.0, 132.1,
134.9, 136.6, 136.8, 137.0, 137.9, 138.1, 140.2, 142.5, 188.3, 189.1. HRMS (ESI-TOF) (m/z):
Calculated for C27H18BrCIoN4O3S [M+H]* 549.0555; found 549.0556.

OCHs

10-(4-Chlorophenyl)-2-((2-oxo-2-phenylethyl)thio)-4, 10-dihydro-9H-indeno[1,2-d][1,2,4]
triazolo[1,5-a]pyrimidin-9-one (5w)

Yellow solid; Yield 92%; mp: 245-246 °C; IR (KBr) cm™: 3173
(N-H), 3068 (alkane C-H), 1703, 1686 (C=0), 746 (C-CI); ‘H O
NMR (400 MHz de) 0 (p pm): 4.74 (q, J = 17.0 Hz, 2H), 6.29 (s, ? o ﬁp
1H), 7.31-7.35 (m, 5H), 7.47 — 7.56 (m, 4H), 7.67 (d, J = 6.8 Hz, O. s ©
2H), 7.95 (d, J = 7.2 Hz, 2H), 12.55 (s, 1H); 3C NMR (100MHz,

DMSO-ds) 6 (ppm): 39.2, 58.3, 103.2, 120.6, 121.4, 128.7, 128.9, 129.2, 129.9, 131.4, 132.7,
133.4,133.7,134.0, 135.7, 136.0, 138.8, 148.3, 154.8, 158.6, 189.0, 193.9: HRMS (ESI-TOF)
(m/z): Calculated C26H17CIN4O2S [M+H]* 485.0839; found 485.0844.
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5A.6 Copies of spectral data
H NMR spectrum of compound 5a (DMSO-ds) 400 MHz
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Mass spectrum of compound 5a
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13C NMR spectrum of compound 5b (DMSO-dg) 100 MHz
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IH NMR spectrum of compound 5¢ (DMSO-ds) 400 MHz
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Mass spectrum of compound 5¢
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13C NMR spectrum of compound 5d (DMSO-dg) 100 MHz
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IH NMR spectrum of compound 5e (DMSO-ds) 400 MHz
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Mass spectrum of compound 5e
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HSQC spectrum of compound 5e (DMSO- de)
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IH NMR spectrum of compound 5f (DMSO- ds) 400 MHz
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Mass spectrum of compound 5f
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13C NMR spectrum of compound 5g (DMSO- dg) 100 MHz
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IH NMR spectrum of compound 5h (DMSO- ds) 400 MHz
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Mass spectrum of compound 5h
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13C NMR spectrum of compound 5i (DMSO- dg) 100 MHz
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IH NMR spectrum of compound 5j (DMSO- dg) 400 MHz
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Mass spectrum of compound 5j

10 4 |+ES! Scan (1 0258 min) Frag=175.0v 20.012022-3.
484 s NO2
461
44 O 5j
424 o H /—@No
44 N,N 2
»—s
381 O. /}QN% 5350801
N
361 H
.
341
321
3_
281
261
24
221
2_
18
161
14
12 513.0078
1_
081
06] 4433316 4573548 4733453 4873607 501.3733 5613908 5754153
440 450 460 470 480 490 500 510 520 530 540 550 560 570 580
Counts vs. Mass-o-Charge (m/z)
'H NMR spectrum of compound 5k (DMSO- ds) 400 MHz
; O 00 00 W u N (=] O N g o
i TR Ao & e o So ==
N | 32
NO2 ] |
O 5k | ‘| .‘
| |
Q H | |'| Il I
N—N Br | | ‘ | |
‘ )\ \>fs | ‘ | | |
Oy
H
]
1
1
1| 1
]
| |
| o
— = (=)
[ = o
f=] — 3
T T T T T T T T T T T T T T T T T T
140 135 130 125 120 115 11.0 105 100 85 90 85 80 7.5 70 65 60 55 S50 45 40 35 30 25 20 15 10 05
& (ppm)

297



Chapter VA

13C NMR spectrum of compound 5k (DMSO- ds) 100 MHz
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IH NMR spectrum of compound 51 (DMSO- ds) 400 MHz
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Mass spectrum of compound 5I
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13C NMR spectrum of compound 5m (DMSO- ds) 100 MHz
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IH NMR spectrum of compound 5n (DMSO- ds) 400 MHz
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Mass spectrum of compound 5n
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13C NMR spectrum of compound 50 (DMSO- dg) 100 MHz
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IH NMR spectrum of compound 5p (DMSO- dg) 400 MHz
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Mass spectrum of compound 5p
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13C NMR spectrum of compound 5¢ (D

MSO- ds) 100 MHz
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H NMR spectrum of compound 5r (DMSO- ds) 400 MHz
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Mass spectrum of compound 5r
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13C NMR spectrum of compound 5s (DMSO- ds) 100 MHz
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IH NMR spectrum of compound 5t (DMSO- ds) 400 MHz
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Mass spectrum of compound 5t
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13C NMR spectrum of compound 5u (DMSO- ds) 100 MHz
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IH NMR spectrum of compound 5v (DMSO- dg) 400 MHz
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Mass spectra of compound 5v
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13C NMR spectrum of compound 5w (DMSO- ds) 100 MHz
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CHAPTER-V
SECTION-B

Synthesis of novel thioalkylated triazolopyrimidinones, sulfones and

their biological activity

/ 3 Component synthesis
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Chapter VB

5B.1 Introduction

Over the past few years we have seen variety of viral diseases in people throughout the world
including Ebola virus in Africa®, Zikavirus spread in America 2 and recently COVID-2019
pandemic®. The prevention of antiviral infections is a major challenge in research because the
ability of the viruses to mutate within the genome of existing one . Namely the viruses are two
types DNA and RNA viruses. Herpus simplex virus, Small pox virus, Adenovirus falls under
DNA and coronavirus, HIV, Zika virus, Ebola virus, RSV-1 has RNA containing viruses >
Evaluation of antiviral resistance has led to continued interest in design of innovative antiviral

medications.

Two heterocyclic rings within the molecule such as five membered triazole comprised with six
membered pyrimidine ring containing compounds are attracted great attention in synthetic
point of view and also these were shows significance biological activities then unfused
heterocyclic moieties -1°. Triazolo pyrimidinone (TP) scaffold can be synthesized by using
Biginelli reaction to make a wide variety of structural isomers ! among the possible isomers
of fused triazolopyrimidines the 1,2,4-triazolo [1,5-a] pyrimidine system exhibits broad range
of medicinal applications such as anticancer 2, antiviral 3, antioxidant 4, antimalarial °,
antiasthma ®, antimicrobial -8, cardiovascular agents *°, Herbicidal 2°. Furthermore, sulfones
also play a key role in synthetic organic chemistry because of these functional groups have
various biological applications. 2222 Apart from these the sulfone group bound to triazole or
pyrimidine ring their biological efficiency are increased. -2 Some of the similar bioactive

compounds 2732 have shown in Fig.1.

N~
NT
1 N-N 0 HO -
CHj Y Vi \it
</ /k ch () 0 N
3
=
L @ N
Ametoctradin , , R Filibivir
Fungicidé Antibacterial “ Antihepatitis C virus
N=
Vo H,N =) F
H NN
ISN NN OH
H2N J 7? o)
@x o
OH
Sulfamethazine Adenosine antagonlst ch;{S;?qtc);zf

Fig-1. Relative biologically active drug molecules.
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In view of the importance of triazolopyrimidines and sulfones and in continuation of our earlier
work we have developed thiophenacyl 1,2,4-triazolopyrimidinones and 2-(benzyl sulfonyl)-5-
methyl [1,2,4]-triazolo[1,5-a] pyrimidin-7(4H)-ones and screened against for antiviral and
antibacterial activity. These two series of compounds were synthesized by using multi-
component approach. The advantages of MCR method is more reliable than conventional
methodology. In which the products are formed with high percentage of yield and lessening of

the reaction time. 3336

5B.2 Present work
5B.2.1. Chemistry

Keeping in view of the importance of triazolo pyrimidinones and continuous of efforts we have
development a new series of triazolo pyrimidinones. These compounds were synthesized by a
one-pot three component condensation of 5-amino-4H-1,2 4-triazol-3-thiol, S-ketoester and
various phenacyl bromides in the presence of a mixture of AcOH/NaOAc leading to the
formation of a novel thioalkyl (phenacyl/3-2-bromoacetyl coumarin) triazolopyrimidinones
with notable yields. (Sheme-1). The final compound structures were confirmed by their
spectral analysis such as IR, *H NMR, *C NMR, HRMS.

Scheme-1
o 0
o-CaH Br -N
/ \ 2'1s AcOH/NaOAc f‘\)N\ Vs
H2N “Heat 85-90 °C HaC™ N =N
H
43 Br

Optimization of the reaction.

S.No Solvent Catalyst (mol %) Time (h) Temp (°C) Yield (%)?
1 AcOH - 10 60 15
2 MeOH - 10 60 10
3 CH3CN - 10 70 n.r
4 DMF - 10 70 n.r
5 EtOH HCI (0.1 N) 10 60 n.r
6 DMF K2CO3 (5) 12 80 n.r
7 AcOH Piperidine (3) 10 90 18
8 AcOH NaOAc (5) 15 90 40
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9 AcOH NaOAc (10) 15 90 70
10 AcOH NaOAc (15) 15 90 92°

Reaction conditions: 5-amino-4H-1,2,4-traizole-3-thiol (1 mmol), ethyl acetoacetate (1
mmol), phenacylbromide (1 mmol) in AcOH/NaOAc; @ Yield of the product, ®n.r = no reaction,
©92% vyield at 90 °C for 15 h.

In the optimization study of the reaction firstly the 5-amino-4H-1,2,4-triazol-3-thiol was
allowed to reaction with ethyl acetoacetate and 4-bromo phenacyl bromide in acetic acid under
heating at 60 °C for 10 h to get the expected product (4a) with 15% vyield. Further, we have
tried by changing of the solvents and conditions. Such as MeOH, CH3CN, DMF solvents
without addition of any bases at variable temperatures (Table-1 entry 2-4) in this conditions
we did not get the product. In EtOH + HCI (0.1 N), DMF +K>CO3 (5 mol%) in this conditions
also product not formed (entry 5-6). Based on the preliminary observation (entry 1-6) the
reaction is moving in AcOH. Further, our delight to improve the yield we have screened the
reaction in AcOH with the addition of catalysts i.e., pyridine (3 mol%) and NaOAc (5 mol%,
10 mol%, 15 mol%) (Table-1 entry 7-10). Among these conditions AcOH + NaOAc (15 mol
%) for 15 h at 90 °C to get the 92% yield of the product. (Table-1)

Synthesized derivatives.

(0]

_ C,H
N—N ~2ts AcOH/NaOA
Vs . ﬁo . RBr AcOH/NaOAc /L \%S
HoN N SH Heat85 90 °C HaC
H

07 “CH,4
1 2 3
N/N N/N
x s x s S * Ns
4a.90%, 18 h 4b. 83%, 17 h 4c.81%,19 h 4d. 92%, 20 h Q
ﬁ o (o]
N F -N o]
o0 - ﬁ s A
A HsC ”/L\N &
4e.82%,17 h 4. 80%, 20 h 4g 80%, 16 h F 4h.92%, 18 h
0
O 4 ﬁ é
S N
N/]QN 2% /]\ >—s
H
4i. 84%, 19 h 4j.88%,17 h CN
MeO

Reaction conditions: 1 (1 mmol), 2 (1 mmol), 3 (Immol) mixture taken in AcCOH/NaOAc,
reflux at 90 °C.
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By using the optimized conditions of thio alkyl triazolopyrimidinones we checked the substrate
scope of the reaction by changing the various para substituted phenacyl bromides and 3(2-
bromo acetyl) coumarins. Phenacylbromides having both electron donating and electron
withdrawing substituents at p-position have good effect on the yield of the product. Electron
donating groups at para position gave good yields of the products when compared with electron
withdrawing groups on para position of phenacyl bromides. And also 3-(2-bromo acetyl)

coumarin derivatives produced good yields (>90%) in a shorter period of reaction time

Scheme-11

In this scheme-Il the 5-amino-4H-1,2,4-triazole-3-thiol was cyclocondensation with ethyl
acetoacetate in presence of acetic acid under reflux conditions (90 °C) for 14-15 h lead to
formation of a bicyclic triazolothiazole heterocyclic compound. Then we have added fused
NaOAc and substituted benzyl bromides and refluxed for 4-5h to form a thiobenzylated triazolo
pyrimidinones (5a) with good yield. The isolated sulphide compound 5a was further converted
in to sulfones by oxidation with hydrogen peroxide in acetic acid at 60-65 °C for 4-5 h. The
formation of sulfonated compound 6a was depicted in scheme-1l1. And 6a structure was
confirmed with FT-IR, *H NMR, 3C NMR and HRMS, spectral analysis. The proton NMR
spectrum of 6a sulfonated attached methylene two protons appear as singlet in the range of 4.5
-5.2 dppm. And triazolo pyrimidinone ring C-H singlet proton appears at down filed compared
with sulphide compound 5a due to the electron withdrawing nature of the SO2 group. (see
supplementary file for copies of spectral data). Based on these findings the compound 6a was
confirmed

All the synthesized compounds structures (Scheme-1 and Scheme-11) were confirmed by their
spectral data. The IR spectra of Scheme-I and scheme-11 indicate the presence of amine, alkene,
nitrile, lactone, lactam, carbonyl, nitro, and sulfone, halogen functional groups. The stretching
frequency of (N-H) is observed at 3240-3425 cm™, (alkene C-H) 2825-2965 cm™, (CN) 2190-
2285 cm?, (lactone C=0) 1710 — 1733 cm, (C=0)1620-1634 cm™, (N-CO) 1605 -1614 cm™,
NO2 (Unsymmetric 1520-1545 cm™, Symmetric 1315- 1340 cm™), and SOz 1295 — 1325 cm
1 and C-X 690-895 cm™ respectively.

Scheme-11: Schematic representation of compound 6a synthesis.
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Reaction conditions: 5-amino-4H-1,2,4-triazole-3-thiol (1 mmol), EAA (1 mmol), p-
substituted benzyl bromides (1 mmol) were taken in AcOH/NaOAc, and refluxed at 90 °C for
15 h. After 5a (1 mmol), H202 (2 mmol) were taken in AcOH and heat at 60-65 °C to form 6a.

In the 'H NMR spectra the methyl singlet protons appear at 2.27-2.37 Sppm, thioalkylated CH:
singlet protons appears at 4.80-4.98 5ppm, the characteristic pyrimidinone ring alkene C-H one
singlet proton appear at 5.79-6.05 dppm, aromatic protons are appeared in the range of 7.25-
8.28 dppm, N-H singlet proton is shown at 13.15- 13.36 dppm. Proton decoupled *C NMR
spectra of methyl carbon appear at 18.8-19.1 dppm, S-CH> carbon appear at 37-46 dppm, the
pyrimidinone ring alkene C-H carbon is shown at 98.1-99.2 dppm, while the remaining all
aromatic carbons are appears in between 115- 159.0 dppm and imide carbonyl is shown at
160.0-162.2, carbonyl carbon has represented at 190-192.06ppm. Molecular mass of all the

compounds were matched with their [M+H]" ion peak.
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5B.2.2. Antiviral activity

The Scheme-I compounds were screened for their broad panel of antiviral activity by using
various cell cultures. The HIV-1 and HIV-2 viral activity was carried out using MT-4 CD4* T
cell lines and AMD3100 was takes as a standard reference drug. The Human corona virus
activity was screened with the use of HELL299, Hep-3p cell culture and their activity have
been compared with standard drugs Remdesivir, Ribavirin. The anti Zika virus activity and
anti-influenza virus activity, anti Herpus Simplex Virus activity-1 and Yellow fever virus,
Respiratory syncytial virus (RSV) activity was carried out using Hep-3p, MDCK, HEL299.
The activity has been compared to that of reference antiviral drugs i.e., Ribavirin, Zanamivir,
Rimantadine, Acyclovir, DS-10,000. All the screened compounds their activity were
represented table-2 and 3. Among the tested compounds the compound active against Human

corona virus and the compound 4i exhibited promising anti HIV-1 activity.

325



Table-2 Broad panel of antiviral activity results in various cell culture

Chapter VB

Antiviral activity (ECso)” pM
>No Cytotoxicity(CCso)* ptM Human corona virus : vellow Zika
(HCoV) Influenza virus RSV | HSV-1 fgver virus
virus
229E | OC43 | NL63 | HIN1 HgN B Along | KOS 17D Mr766
o = X N
% : é 2 % % = MDCK =1 3 Z 2
w w = T m = =
T T T
4a >50 >50 >50 >50 >50 >50 >50 >50 | >50 | >50 >50 >50 >50 >50
4b >50 >50 >50 >50 >50 >50 >50 >50 | >50 | >50 >50 >50 >50 >50
4c >50 >50 >50 >50 >50 >50 >50 >50 | >50 | >50 >50 >50 >50 >50
4d >50 >50 28 35.2 >50 >50 >50 >50 >50 | >50 >50 >50 >50 >50
4e >50 >50 >50 >50 >50 >50 >50 >50 | >50 | >50 >50 >50 >50 >50
4f >50 >50 27.7 >50 >50 4.7 >50 >50 >50 | >50 >50 >50 >50 >50
4q >50 >50 >50 >50 >50 >50 >50 >50 >50 | >50 >50 >50 >50 >50
4h >50 >50 >50 >50 >50 >50 >50 >50 >50 | >50 >50 >50 >50 >50
4i 85.2 43.4 34 135 >50 >50 >50 >50 | >50 | >50 >50 >50 >50 >50
4 >50 >50 >50 >50 >50 >50 >50 >50 >50 | >50 >50 >50 >50 >50
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Standard reference drugs used
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A | >10 | >10 - >10 | 016 | 012 | 028 | - - - | 008 - 1.1 2.8
B - 1431 | 982 | 983 - - - 82 |111| 84 | 68 - 89.4 49.1
C - - >100 - - - - | 015 [015] 010 | - - - -
D - - >100 - - - - 002 [009]>100 | - - - -
E | >100 - - - - - - - - - 0.7 - -
F | >100 - - >100 007 | 04

A = Remdesivir, B = Ribavirin, C = Zanamivir, D = Rimantadine, E = Acyclovir, F = DS-10,000;

& Cytotoxic concentration (50%) of the compound evaluated in Hel299, Hep3p, MDCK, Hep2 cell culture

509 Effective concentration or compound concentration required to inhibit virus induced cytopathogenic effect by 50% in various cell culture.

327




Chapter VB

Table-3. ECso*and CCso” values of the compounds tested against HIV replication in MT-4

CD4" T cell line
Compound Cellular toxicity HIV-1 HIV-2
NL4.3 ROD
CCso (UM) ECso (UM) ECso (UM)

4a >100 >100 >100

4b >100 >100 >100

4c >100 >100 >100

4d >100 >100 >100

de >100 >100 >100

Af >100 >100 >100

49 >54.0 >54.0 540

4h >100 >100 >100

4i 43.7 8.8 >43.7

4j >100 >100 >100
Reference

compound CCso (ng/mL) ECso (ng/mL) ECso (ng/mL)

AMD3100

# ECso: 50% Inhibitory concentration or compound concentration required to inhibit HIV-
induced cytopathogenic effects by 50% in MT-4 cell line.
b CCso: 50% Cytotoxic concentration of the compounds also evaluated in the MT-4 cell line.

The MT-4 CD4* T cell culture was used to evaluate the compounds against human immune

deficient virus (HIV) The virus-induced cytopathogenic effect (CPE) was measured

colorimetrically, AMD3100 was used as a reference drug. Among the tested derivatives the

compound 4k is promising activity against HIV-1(NL 4.3 strain). And also the compounds

were tested for against Zikavirus, Herpus simplex virus-1, Human corona virus, yellow fever

virus, RSV virus, Influenza virus with respective cell culture medium. Among the all screened

compounds with different strains the compound 4g is potent activity against HCoV (Human

corona virus) the average experimental-1, experimental-2 ECso value is 4.7 uM by using HEL

299 cell line. And the compound 4k has showed promising activity against HIV-1 the ECso

value is 8.8 uM. The used cell cultures, strains and compounds ECso and cytotoxic (CCso)

values were summarized in table-2 and 3.
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5B.3. Conclusions:

In the conclusion section the Scheme-I thiophenacylated triazolopyrimidinones were
successfully synthesized via a one-pot multicomponent process. The choosen multicomponent
method has some advantages in which product was formed with high percentage of the yield,
reaction completed in single step, and the reaction take less time to complete. Further, the 4a-
J compounds were screened for their broad panel of in-vitro antiviral activity in various cell
culture medium. The compounds 4f has shown human corona virus activity (ECso4.7 pM) and
4h exhibited anti HIV-1 activity (ECso 8.8 uM) in respective cell culture. Furthermore, the

scheme-11 sulphonated compounds also successfully synthesized by using MCRs method.
5B.4.Experimental.
5B.4.1. Chemistry

All the starting materials were commercially purchased from chemical sources and used
without further purification. The completion of the reaction was checked with TLC coated with
silica gel aluminium foil plates by using ethyl acetate and n-hexane (3:7). The melting points
of the compounds were checked with Stuart Staffordshire, UK (SMP30) instrument. The
Perkin-Elmer spectrophotometer is used for record IR and KBR as a reference, the units were
represented in cm™. Proton NMR spectra have been recording on BRUKER-400MHz
spectrophotometer and TMS as a standard reference compound, the chemical shift values were
represented in dppm. And the coupling constant (J) values represented in HZ. The proton
decoupled *C NMR spectra was recorded by using BRUCKER-100MHz spectrophotometer
and the chemical shift values expressed in dppm. The mass spectrum (HRMS) were recorded

on the Agilent Technologies Instrument ESI (+Ve mode).

5B.4.2. Antiviral assay.

Antiviral assays were performed towards herpes simplex virus-1 (HSV-1 KOS), and human
coronavirus (HCoV-229E and -OC43) in HEL 299 cell cultures, yellow fever virus, respiratory
syncytial virus A in Hep-2 cells, Zika virus and human coronavirus (HCoV-NL63) in Hep3B
cell cultures and influenza A/HIN1 (A/Ned/378/05), influenza B (B/Ned/537/05) in MDCK
cell cultures, influenza A/H3N2 (A/HK/7/87). On the day of the infection, growth medium was
aspirated and replaced by serial dilutions of the test compounds. The virus was then added to
each well, diluted to obtain a viral input of 100 CCIDsg (CCIDsp being the virus dose that is
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able to infect 50% of the cell cultures). Mock-treated cell cultures receiving solely the test
compounds were included on each cell line, to determine the cytotoxicity of the test
compounds. After 3 to 7 days of incubation, the (CPE) virus-induced cytopathogenic effect
was measured colorimetrically by the formazan-based 3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cell viability assay
(CellTiter 96 AQueous One Solution Cell Proliferation Assay from Promega, Madison, WI),
and the antiviral activity was expressed as the (ECso) 50% effective concentration. In parallel,
the (CCso) 50% cytotoxic concentration of the compounds was derived from the mock-infected
cells. The activities were compared with the activities of reference antiviral drugs. AMD3100,
ribavirin, remdesivir, acyclovir, zanamivir, rimantadine and dextran sulfate (DS-10,000).

The anti-HIV-2 and anti-HIV-1 activity of each compound were evaluated in MT-4 CD4* T
cell cultures was determined by a tetrazolium-based colorimetric assay. Briefly, 3-fold
dilutions of various test compounds were added in a 96-well plate and preincubated for 20 min
at 37°C with MT-4 cells (1x108 cells/ml). Next, various concentrations of virus, HIV-1 NL4.3
and HIV-2 ROD were given depending on the TCIDsp of the virus stock. Five days’ post-
infection, (CPE) cytopathic effects were scored microscopically and antiviral activity was
measured by MTS/PES using a Spectramax 96-well plate reader (Molecular Devices) as

described previously.*’

4. General procedure for the synthesis of thiophenacyl/3-acetyl-2H-chromene-2-one 1,2,4-
triazolopyrimidinones.5a

A mixture of 5-Amino-4H-1,2 4-triazolo-3-thiol (1 mmol), ethylacetoacetate (1 mmol),
phenacyl bromide/3-(2-bromo acetyl)-2H-chromen-2-one (1 mmol) was taken in acetic acid
and added 20 mole percentage of NaOAc refluxed for 20 h then we checked the TLC After
completion of the reaction the reaction mixture was poured into ice cold water the white colour
solid product was isolated and recrystalized from methanol. 90% of the pure product was

formed.

General procedure for the synthesis 2-(benzylsulfonyl)-5-methyl-[1,2,4]triazolo[1,5-a]
pyrimidin-7(4H)-one. 6a

A mixture of 5-Amino-4H-1,2,4-triazolo-3-thiol (1 mmol), benzyl bromide (1 mmol)
ethylacetoacetate (1 mmol) was taken in acetic acid and 20 mole percentage of NaOAc was
added then refluxed for 20 h after checking the TLC and after completion of the reaction

mixture poured into ice water the white crystalline product was isolated and dried. The isolated
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product (1 mmol) was taken in acetic acid and H202 (2.0 mmol) was added and heated at 60

°C for 4-5 h, the white solid was filtered and wash with water.

5B.5. Characterization data of synthesized compounds

2-((2-(4-Bromophenyl)-2-oxoethyl)thio)-5-methyl-[1,2,4]-triazolo[1,5-a] pyrimidin-7(4H)-
one 4a

White solid; Yield 90%; mp: 250-251 °C; IR (KBr) cm™: 3288 (N- 0 o
H), 2904 (alkene C-H), 1706 (C=0), 1682 (Imide C=0), 665 (C-Br); ﬁi\:\ys%
IH NMR (400 MHz, DMSO-d) & (ppm): 2.33 (s, 3H), 4.95 (s, 2H), | * g
5.85 (s, 1H), 7.84 (d, J = 8.7 Hz, 2H), 8.04 (d, J = 8.6 Hz, 2H), 13.27 (s, 1H); ®C{H} NMR
(100 MHz, DMSO-ds) ¢ (ppm): 18.9, 41.9, 99.0, 128.3, 130.8, 132.33, 132.39, 134.91, 151.32,
151.54, 155.33, 162.11, 193.09: HRMS (ESI-TOF) (m/z): Calculated for C14H11BrN4O2S
[M+H]" 378.98364; found 378.9818

2-((2-(4-Fluorophenyl)-2-oxoethyl)thio)-5-methyl-[1,2,4]-triazolo[1,5-a]pyrimidin-7(4H)-
one 4b.

White solid; Yield 83%; mp: 255-256 °C; IR (KBr) cm™: 3509 (N-H), 5 5
2910 (alkene C-H), 1721 (C=0), 1590 (Imide C=0), 833 (C-F); 'H ﬁlN\fs%
NMR (400 MHz, DMSO-ds) o (ppm): 2.27 (s, 3H), 4.93 (s, 2H), 5.79 N

(s, 1H), 7.40 (t, J = 8.8 Hz, 2H), 8.14 (m, 2H), 13.15 (s, 1H); *C{H} ;
NMR (100 MHz, DMSO-ds) § (ppm): 18.9, 42.1, 99.0, 116.2, 116.4, 131.8, 151.2, 151.5,
155.2, 162.1, 164.4, 166.9, 192.3: HRMS (ESI-TOF) (m/z): Calculated for C1aH11FN4O2S
[M+H]* 319.0665; found 319.0673

2-((2-(4-Chlorophenyl)-2-oxoethyl)thio)-5-methyl-[1,2,4]-triazolo[1,5-a]pyrimidin-7(4H)-
one 4c.

White solid; Yield 81%; mp: 249-250 °C; IR (KBr) cm™: 3288 (N-H), 5
2906 (alkene C-H), 1701 (C=0), 1680 (Imide C=0) 732 (C-Cl); H ﬁl:"\%
NMR (400 MHz, DMSO-ds) 6 (ppm): 2.27 (s, 3H), 4.92 (s, 2H), 5.79 N
(s, 1H), 7.64 (d, J = 8.4 Hz, 2H), 8.06 (d, J = 8.4 Hz, 2H), 13.15 (s,

1H); 3C{H} NMR (100 MHz, DMSO-ds) 6 (ppm): 18.9, 42.7, 99.0, 129.4, 130.7, 134.6, 139.0,
151.2, 151.5, 155.2, 162.0, 192.8: HRMS (ESI-TOF) (m/z): Calculated for C14H11CIN4O2S
[M+H]" 335.0369; found 335.0376.

[o]
S

q

Cl
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2-((2-([1,1'-Biphenyl]-4-yl)-2-oxoethyl)thio)-5-methyl-[1,2,4]-triazolo[1,5-a]pyrimidin-
7(4H)-one 4d

White solid; Yield 92%; mp: 260-261 °C; IR (KBr) cm™: 3403 (N-H), 5
2905 (alkene C-H), 1712 (C=0), 1602 (Imide C=0); *H NMR (400 ﬁf‘\%
MHz, DMSO-ds) & (ppm): 2.28 (s, 3H), 4.98 (s, 2H), 5.80 (s, 1H), | N
7.44 - 7.46 (m, 1H), 7.50 - 7.52 (m, 2H), 7.76 - 7.79 (m, 2H), 7.88

(d, J=8.5Hz, 2H), 8.14 (d, J = 8.4 Hz, 2H), 13.16 (s, 1H); *C{H} NMR (100 MHz, DMSO-
de) 0 (ppm): 18.9, 43.2, 99.0, 127.5, 128.9, 129.5, 134.7, 39.2, 145.4, 151.1, 151.5, 155.2,
162.2, 193.1: HRMS (ESI-TOF) (m/z): Calculated for C20H16N4O2S [M+H]* 377.1072; found
377.1065

(o]
S

gs

Ph

5-Methyl-2-((2-(4-nitrophenyl)-2-oxoethyl)thio)-[1,2,4]-triazolo[1,5-a]pyrimidin-7(4H)-one
4e.

Light yellow solid; Yield 82%; mp: 258-259 °C; IR (KBr) cm™: 3514
o o
(N-H), 2914 (alkene C-H), 1709 (C=0), 1682 (Imide C=0), NO2 ﬁ”/N\ys
N)QN
H
N

(1524 Unsymmetric, 1345 symmetric); 'H NMR (400 MHz, DMSO-
de) 0 (ppm): 2.27 (s, 3H), 4.99 (s, 2H), 5.79 (s, 1H), 8.28 (d, J = 8.9
Hz, 2H), 8.38 (d, J = 8.9 Hz, 2H), 13.16 (s, 1H); ®C{H} NMR (100 MHz, DMSO-ds) 6 (ppm):
18.9, 42.4, 99.0, 124.3, 130.2, 140.6, 150.5, 151.2, 151.5, 155.2, 161.9, 193.2: HRMS (ESI-
TOF) (m/z): Calculated for C14H11Ns04S [M+H]* 346.061; found 346.0620.

0,

2-((2-(2,4-Dichlorophenyl)-2-oxoethyl)thio)-5-methyl-[1,2,4]-triazolo[1,5-a] pyrimidin-
7(4H)-one 4f

White solid; Yield 80%; mp: 247-248 °C; IR (KBr) cm™: 3214 (N-H), 5 5
2910 (alkene C-H), 1688 (C=0), 1684 (Imide C=0), 707 (C-Cl); *H ﬁl”\%sﬁé:g'
NMR (400 MHz, DMSO-ds) 0 (ppm): 2.28 (s, 3H), 4.93 (s, 2H), 5.80 N

(s, 1H), 7.84 — 7.86 (m, 2H), 8.27 (d, J = 2.0 Hz, 1H), 13.16 (s, 1H);

13C{H} NMR (100 MHz, DMSO-ds) 6 (ppm): 18.9, 46.5, 99.0, 128.8, 130.7, 131.6, 136.1,
151.5, 155.2, 161.9, 192.2: HRMS (ESI-TOF) (m/z): Calculated for C14H10Cl2N402S [M+H]*
368.998 found 368.9971

Cl
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2-((2-(2,4-Difluorophenyl)-2-oxoethyl)thio)-5-methyl-[1,2,4]-triazolo[1,5-a]pyrimidin-
7(4H)-one 4g

White solid; Yield 80%; mp: 240-241 °C; IR (KBr) cm™: 3402 (N-H), 5 -
2910 (alkene C-H), 1721 (C=0), 1689 (Imide C=0), 833 (C-F); 'H )\AIN\H%
NMR (400 MHz, DMSO-ds) 6 (ppm): 2.27 (s, 3H), 4.81 (s, 2H),5.79 | § "

(s, 1H), 7.25 — 7.30 (m, 1H), 7.45 -7.51 (m, 1H), 7.98 — 8.0 (m, 1H),

13.31 (s, 1H):; *C{H} NMR (100 MHz, DMSO-ds) & (ppm): 19.0, 42.7, 98.9,105.7, 113.1,
133.3, 151.4, 151.7, 155.3, 162.1, 190.4: HRMS (ESI-TOF) (m/z): Calculated for
C14H10F2N402S [M+H]* 337.0571; found 337.0570

5-Methyl-2-((2-0x0-2-(2-0x0-2H-chromen-3-yl)ethyl)thio)-[1,2,4]-triazolo[1,5-a]pyrimidin-
7(4H)-one 4h

Light brown solid; Yield 92%; mp: 265-266 °C; IR (KBr) cm™: 3623 o

(N-H), 2909 (alkene CH), 1702 (C=0), 1603 (lactone C=0), 1555 | I“\%s@
(Imide C=0), 1172 (C-O-C) ; *H NMR (400 MHz, DMSO-ds) J (ppm): H

2.28 (s, 3H), 4.86 (s, 2H), 5.80 (s, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.52 (d,
J=8.3Hz, 1H), 7.79 (t, J = 7.8 Hz, 1H), 8.00 (d, J = 7.7 Hz, 1H), 8.81 (s, 1H), 13.19 (s, 1H);
13C{H} NMR (100 MHz, DMSO-ds) ¢ (ppm): 18.9, 42.5, 99.0, 116.7, 118.5, 123.6, 125.6,
131.4,135.4, 148.7, 151.2, 151.5, 155.1, 155.2, 158.9, 162.0, 191.4: HRMS (ESI-TOF) (m/z):
Calculated for C17H12N404S [M+H]" 369.0657; found 369.0660

2-((2-(8-Bromo-6-methoxy-2-o0x0-2H-chromen-3-yl)-2-oxoethyl)thio)-5-methyl-[1,2,4]-
triazolo[1,5-a]pyrimidin-7(4H)-one 4i

Light brown solid; Yield 84%; mp: 260-261 °C; IR (KBr) cm™: o
3341 (N-H), 2937 (alkene C-H), 1731 (C=0), 1695 (lactone ﬁf\*s ) 2
C=0), 1634 (Imide C=0), 1239 (C-O-C), 731 (C-Br): 'H NMR | " °
(400 MHz, DMSO-ds) 6 (ppm): 1.96 (s, 3H), 3.99 (s, 3H), 4.60 (s, MeG
2H), 5.85 (s, 1H), 7.50-7.51 (m, 1H), 7.54-7.56 (m, 1H), 8.73 (s, 1H), 11.98 (s, 1H); HRMS
(ESI-TOF) (m/z): Calculated for C1gH13BrN4OsS [M+H]" 476.9768; found 476.9741.

Br

4-(2-((5-Methyl-7-oxo0-4,7-dihydro-[1,2,4]-triazolo[1,5-a]pyrimidin-2-yl)thio)acetyl)
benzonitrile 4]

White solid; Yield 88%; mp: 231-232 °C; IR (KBr) cm™: 3531 (N-H), S
2914 (alkene C-H), 2228 (CN), 1705 (C=0), 1682 (Imide C=0); *H )\)IN\H o

NMR (400 MHz, DMSO-de) & (ppm): 2.27 (s, 3H), 4.95 (s, 2H), 5.79 [ % " 6
(s, 1H), 8.05 (d, J = 8.4 Hz, 2H), 8.19 (d, J = 8.4 Hz, 2H), 13.15 (s, e
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1H); B¥C{H} NMR (100 MHz, DMSO-ds) J (ppm): 18.9, 37.1, 99.0, 115.9, 118.5, 129.4, 133.3,
139.1, 151.2, 151.5, 155.2, 161.9, 193.3: HRMS (ESI-TOF) (m/z): Calculated for C1sH11N502S
[M+H]* 326.0711; found 326.0722.

2-(Benzylsulfonyl)-5-methyl-[1,2,4]-triazolo[1,5-a]pyrimidin-7(4H)-one. 6a
White solid; Yield 82%; mp: 238-239 °C; IR (KBr) cm™: 3070 (N-H), )
2824 (Alkene C-H), 1698 (pyrimidine C=0), 1333 (SO,); *H NMR ﬁl"\%g
(400 MHz, DMSO-dg) J (ppm): 2.37 (s, 3H), 4.89 (s, 2H), 6.01 (s, 1H), N ob
7.37 —7.32 (m, 5H), 13.66 (s, 1H); *C{H} NMR (100 MHz, DMSO-ds) 6 (ppm): 19.3, 59.8,
99.8, 127.4, 128.9, 129.2, 130.9, 131.8, 151.8, 153.5, 155.7, 160.9: HRMS (ESI-TOF) (m/z):
Calculated for C13H12N4OsS [M+H]* 305.0708; found 305.0707

5-Methyl-2-((4-nitrobenzyl)sulfonyl)-[1,2,4]-triazolo[1,5-a]pyrimidin-7(4H)-one. 6b

White solid; Yield 82%; mp: 235-236 °C; IR (KBr) cm™: 3377 (N- 5
H), 2968 (Alkene C-H), 1626 (pyrimidine C=0), NO2 (1566 | | /L;N\H:
Unsymmetric, 1348 symmetric), 1317 (SO2); *H NMR (400 MHz, | % °b
DMSO-ds) J (ppm): 2.36 (s, 3H), 5.14 (s, 2H), 6.01 (s, 1H), 7.61 (d, NO,
J=8.8 Hz, 2H), 8.21 (d, J = 8.8 Hz, 2H), 13.63 (s, 1H); *C{H} NMR (100 MHz, DMSO-ds)
o (ppm): 19.4,59.2,99.7, 123.9, 133.0, 134.3, 148.2, 151.9, 155.2, 156.7, 160.6: HRMS (ESI-
TOF) (m/z): Calculated for C13H1:1NsOsS [M+H]" 349.0481; found 350.0559

5-Methyl-2-((4-methylbenzyl)sulfonyl)-[1,2,4]-triazolo[1,5-a]pyrimidin-7(4H)-one. 6¢

2980 (alkene C-H), 1582 (pyrimidine C=0), 1332 (SO,); *H NMR (400 i

MHz, DMSO-ds) 6 (ppm): 2.13 (s, 3H), 2.27 (s, 3H), 4.67 (s, 2H), 7.10- b
7.15 (m, 4H), 11.87 (s, 1H), 14.25 (s, 1H); *C{H} NMR (100 MHz, =
DMSO-ds) 6 (ppm): 21.1, 23.2, 59.6, 102.1, 124.7, 129.5, 131.4, 138.5, 150.1, 157.9, 170.0:
HRMS (ESI-TOF) (m/z): Calculated for C14H14N4O3S [M+H]* 319.0865; found 319.0672

White solid; Yield 85%; mp: 231-232 °C; IR (KBr) cm™: 3254 (N-H), it
NN
/ﬁ:/]QN%
H

4-(((5-Methyl-7-oxo-4,7-dihydro-[1,2,4]-triazolo[1,5-a]pyrimidin-2-yl)sulfonyl) methyl)
Benzonitrile. 6d

White solid; Yield 88%; mp: 230-231 °C; IR (KBr) cm: 3531 (N-H), 5

2914 (alkene C-H), 2228 (CN), 1682 (pyrimidine C=0), 1294 (SO,); ﬁi\:\yg

!H NMR (400 MHz, DMSO-ds) 6 (ppm):2.14 (s, 3H), 4.59 (S, 3H), 7.44 N ob
(d, J = 8.3 Hz, 2H), 7.80 (d, J = 8.3 Hz, 2H), 11.83 (s, 1H), 14.04 (s, N

1H); C{H} NMR (100 MHz, DMSO-ds) & (ppm): 23.2, 58.0, 99.8, 111.2, 119.0, 131.8, 132.5,

334
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132.7, 136.5, 169.7; HRMS (ESI-TOF) (m/z): Calculated for C14H11NsOsS [M+H]* 330.1661;
found 330.0672

2-((4-Bromobenzyl)sulfonyl)-5-methyl-[1,2,4]-triazolo[1,5-a]pyrimidin-7(4H)-one. 6e
White solid; Yield 89%; mp: 238-239 °C; IR (KBr) cm™: 3070 (N-H),
2894 (alkene C-H), 1625 (pyrimidine C=0), 1337 (SO2), 675 (C-Br); /ELIN\*(S)

'H NMR (400 MHz, DMSO-ds) 6 (ppm): 2.36 (s, 3H), 4.91 (s, 2H), NN b
6.01 (s, 1H), 7.56 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.5 Hz, 2H),13.61 (s, Br
1H); HRMS (ESI-TOF) (m/z): Calculated for Ci3H11BrN4OsS [M+H]" 382.9813; found
382.9801

5B.6. Spectral data

IH NMR spectrum of compound 4a (DMSO-ds 400 MHz) (SCHEME-I)
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13C NMR spectrum of compound 4a (DMSO-ds

100 MHz)
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H NMR Spectrum of compound 4b (DMSO-ds 400 MHz)
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HRMS spectrum of compound 4b

'H NMR Spectrum of compound 4¢ (DMSO-ds 400 MHz)
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13C NMR Spectrum of compound 4c (DMSO-ds 100 MHz)
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H NMR Spectrum of compound 4d (DMSO-ds 400 MHz)
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HRMS spectrum of compound 4d
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13C NMR Spectrum of compound 4e (DMSO-ds 100 MHz)
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'H NMR Spectrum of compound 4f (DMSO-ds 400 MHz)
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HRMS spectrum of compound 4f
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13C NMR spectrum of compound 4g (DMSO-ds 100 MHz)
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'H NMR Spectrum of compound 4h (DMSO-ds 400 MHz)
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HRMS spectrum of compound 4h
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HRMS spectrum of compound 4i
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13C NMR Spectrum of compound 4j (DMSO-ds 100 MHz)
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SCHEME-II (SULFONEYS)

'H NMR Spectrum of compound 6a (DMSO-ds 400 MHz)
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HRMS spectrum of compound 6a
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13C NMR Spectrum of compound 6b(DMSO-ds 100 MHz)
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H NMR Spectrum of compound 6¢ (DMSO-ds 400 MHz)
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HRMS Spectrum of compound 6¢

0254

+ESI Scan (- 0.254 min) Frag=175.0V 19.10.2020-28.d

319.0672

o
H/L 0

CH,

82

3184

186 3188

319

3192 3194

Counts vs. Mass-o-Charge (mfz)

H NMR Spectrum of compound 6d (DMSO-ds 400 MHz)

14,045

| U A

11.833

iy

CN

F7.810
7789
7,449
7429

<

3196

4,594

0,86—=

3198

—2.143

16

15

= 10.80—

13

1

[X]

354



Chapter VB

13C NMR Spectrum of compound 6d (DMSO-ds 100 MHz)
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H NMR spectrum of compound 6e (DMSO-ds 400 MHz)
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Novel one-pot synthesis, characterization, DNA binding studies of
fused [1,2,4]-triazolo [3,4-b][1,3,4] 6-aminothiadiazines and their

hydrazineylidene indolin-2-ones, Schiff bases
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Chapter VI

6.1 Introduction

Hetero aromatic moieties comprising nitrogen and sulphur atoms have significant role in the
realm of heterocyclic chemistry over oxygen hetero atom?. Literature reports also reveals that
the sulphur and nitrogen containing heteroatoms exhibit broad spectrum of biological and
medicinal applications %3, Due to various structural and biological activities of these thiadiazine
unit, researchers have interested to elaborate a novel triazolothiadiazines by using various
methods®. Thiol and amino functional groups are interestingly involved in the synthesis of
triazolothiadiazoles®, triazolothiadiazines®, thiadiazipines’. Specially the triazolothiadiazines
have potential applications in medicinal and pharmaceutical industry 81°. The possible isomeric
structures for triazolothiadiazines are 1,2,4-triazolo [5,1-b][1,3,5]thiadiazine, 1,2,4-
triazolo[3,4-b][1,3,4] thiadiazine, 1,2,4-triazolo [5,1-b][1,3,4] thiadiazine, 1,2,4-triazolo[1,5-
c][1,3,5]thiadiazines'!. Among these 1,2,4-triazolo[3,4-b][1,3,4]thiadiazines were found to
have a wide range of therapeutic and biological uses'?!4. These moieties have ability to show
hydrogen bond donating and accepting characteristics and this core makes as précised

pharmacophore for the interaction of target proteins 1°17,

Triazolothiadiazines have shown promising biological activities such as antiviral 28,
antioxidant °, anti-inflamatory ?°, antibacterial 2%, anticancer 22, antihelminthic 2, anticandidal
24 antitubercular 2°, antimicrobial®® etc. Fig.1 shows the biologically active triazolothiadiazine
molecules. The phenyl substituted thiadiazine compound-1 demonstrate anticancer activity 27,
the ester functional group containing fused thiadiazine compound 2 is having a potent
antibacterial agent 28, The pyridine ring attached triazole moiety compound 7 shows
antileishmanial activity 2°, and the compounds 3,4,5,6,8 exhibit various biologically activities
3034 'In the present research work by considering the importance of triazolothiadiazines we
were specially choosen for the synthesis of new pharmacologically active triazolothiadiazine
heterocyclic compounds through multicomponent approach. The advantages of this method in
which most of the atoms participated in newly formed bonds and these reactions are atom

economic, good substrate scope, required time for the completion of the reaction is less > 3¢,
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Fig.1. Reported biologically active thiadiazine compounds.
Furthermore, the isatin derivatives have outstanding building block in organic synthesis. six-
membered triazolothiadiazine is linked to isatin or Schiff base the biological activity of such

molecules increases *'.
Literature reports of 1,2,4-triazolothiadiazines

Kharamchikhin et al * reported a one-pot protocol for the development of 3-R-7(phenyl
methylene)-s-triazolo[3,4-b][1,3,4]thiadiazine-3 which has depicted in scheme-1.1. 2-Bromo-
3-phenyl acryl aldehyde was condensed with mercapto amino 1,2,4-triazole compound 2 to

give an expected product 3 with high yield. These substrates have shown antiviral activity.

Scheme-1.1
CHO N—N N—N
+ —_—
Br R ,\Il)\SH R N S
NH2 Nx N
1 2 3
3-Phenyl-2-bromo propynal

Shehry et al % reported the synthesis of 1,2,4-triazolothiadiazole 1,2,3 final compounds from
the reaction of mercapto amino triazole-1with phenacyl bromides, chloroacetic acid and 2-
bromo-1,3-diphenyl prop-2-en-1-ones under suitable reaction conditions was represented in
scheme-1.2. Further these derivatives were tested for their anti-inflammatory activity.
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Scheme-1.2
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XU et al *° reported an efficient step wise protocol for the synthesis of 3,6 diphenyl fused-7H-
[1,2,4]-triazolo [3,4-b] [1,3,4] thiadiazines-3 was shown in scheme-3. In this initially benzoic
acid converts into ester then converts into benzo hydrazide. This is on reaction with CS; to
form a carbodithioate-1 again cyclocondensation reaction takes place and subsequently

reaction with 2-halo aceto phenone to obtain bridged heterocyclic system-3. (Scheme-1.3).

Scheme-1.3
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Jin et al %! reported the synthesis of the dihydro furan 2(3H)-one, by the condensation of
thiocarbohydrazide and y-butyro lactone under in pyridine and reflux for 6 h. The white color
compound 4-amino-3-(3-hydroxy propyl)-5-mercapto-1,2,4-triazole was separate and then
treated with appropriate 2-bromo acetophenones in ethanol to produce a 3,6 di substituted
1,2,4-triazolo[3,4-b][1,3,4]thiadiazole-4. These were promising inhibitory activity on the
growth of radish, wheat seeds. (Scheme-1.4)
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Sheme-1.4
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Singh et al #? reported that ketones on oxidation reaction with [hydroxy(tosyloxy)iodo]
benzene to form an intermediate o-tosyloxy ketones these on subsequently reaction with 4-
amino-5-mercapto-1,2,4-triazole in presence of CH3CN at reflux temperature to form

triazolothiadiazine final compound. (Scheme-1.5)

Scheme-1.5
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Xiong et al * developed the reaction of 4-amino-5-mercapto-3-(D-gluco-pentitol-1-yl)-1,2,4-
triazole-1 and 2-bromo acetophenone in the presence of ethanol and reflux for 3 h to generate
a 6-aryl-3-(D-glucopentitol-1-yl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazines-2. (Scheme-1.6)

Scheme-1.6
HHOHH 0 HHOHH pN_
=N Ethanol N
OHOHH OH N7 gy OHOHH OH N7 %g
H,N Ny
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Foroughifar et al 4 published the two-step process for the synthesis of 1,2,4-
triazolothiadiazole carboxylate compound-3. In this first step the aromatic aldehydes on
reaction with mercapto amino 1,2,4-triazole-1 in the presence of acetic acid to form a Schiff
base derivative-2. This on further cyclization with chloro ethyl acetate in dry THF/NaH to
obtain the desired products. (Scheme-1.7)

Scheme-1.7
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X H C 7 \
Ar SH + — P OEt
N |,\/ Ar N SH + c|/\n/
1 2
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5 ) ©
A
R

Al-Etaibi et al #° developed base catalysed intramolecular C-C bond formation reaction of 3-
alkyl-4-amino-5-mercapto triazole compound-1 on reaction with aromatic aldehydes in acetic
acid/NaOAc to give a Schiff base-2. Then it is on condensation with 2-halo acetophenone (or)
ethyl bromo acetate under ethanol/EtsN exclusively to produce a stereo selective product trans-
6,7-dihydro-5H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazole-4-ones. (Scheme-1.8)

Scheme-1.8.
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Ji et al “ announciated the synthesis spiro oxindoles based [1,2,4]-triazolo[3,4-
b][1,3,4]thiadiazoles form the reaction between isatin and mercapto triazole amine in the
presence of pTSA/CH3OH at reflux to form an intermediate-1. This was subsequently reaction
with a-halo ketones in MeOH/Et:N under reflux to generate spiro oxindole substituted
triazolothiadiazine-2. And this substrate was exhibited anticancer activity against DU145,
EC109, MGC803, MCF-7 cell lines. (Scheme-1.9)

Scheme-1.9
H
o . N ° 0
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El Shery et al * published the 4-amino-5-(furan-2-yl)-4H-1,2 4-triazole-3-thiol with 2-bromo
acetophenones in presence of dry. EtOH to give a 3-(furan-2-yl)-6-phenyl-7H-[1,2,4]-
triazolo[3,4-b][1,3,4]thiadiazines. And these compounds were evaluated for their antimicrobial

activity against staphylococcus epidermidis and Staphylococcus aureus. (Scheme-1.10)

Scheme-1.10
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Prasad et al 4’ reported the synthesis of 3-aryloxy alkyl-6-aryl-7H-s-triazolo[3,4-
b][1,3,4]thiadiazine-5 in a single step by the reaction of aryloxy alkyl carboxylic acid-1,
thiocarbohydrazide mixture heated on mantle at 160-170 °C for 1h to form a triazole
compound-2. This was again on reaction with a-bromo acetophenone in the presence of ethanol
under heating to produce a triazolothiadiazole-3. Additionally, these has been screened for their

anti-inflammatory and analgesic activity. (Scheme-1.11)

Scheme-1.11
-N o)
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Bhat et al 8 reported the synthesis of triazolo thiadiazine derivative-4 starting from the reaction
of isonicotinohydrazide with CS,/KOH and subsequent condensation with hydrazine hydrate
to obtained the corresponding triazole derivative-3. This was on further reaction with aryl
hydrazonyl chloride in EtOH/EtsN to generate final compound-4. The in-vitro anticandidal
activity of these compounds was screened with reference to ketoconazole standard drug.

Scheme-1.12
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Mohan et al *° developed numerous substituted bridgehead nitrogen heterocyclic systems with
aid of the using of 3-alkyl-4-amino-5-mercapto 1,2,4-triazole. The designed substrates and

conditions has shown in scheme-1.13.

Scheme-13
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Yanchenko et al > reported the bridged nitrogen heterocyclic triazolothiadiazoles. By the

reaction of 3-aklyl-4-amino-5-mercapto compound with various 2-halo acetophenones in
presence of EtOH at reflux temperature. These derivatives were tested for their anticancer
activity. (Scheme-1.14)

Scheme-1.14.
0
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Marathe et al > published the condensation of 4-amino-5-(arylamino)-4H-1,2,4-triazole-3-
thiol-1 with a-bromo acetophenones in presence of DMF/K2COz by using catalytic amount of
p-TsOH under reflux to give the corresponding substituted triazolothiadiazole with good
yields. (Scheme-1.15)
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Scheme-15
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Jilloju et al > published a one-pot multi-component synthesis of triazolothiadiazines-4 by the

reaction of 5-hydrazino-3-mercapto-4-amino-1,2,4-triazole, acetyl acetone, aromatic
aldehydes and different phenacyl bromides under EtOH/EtsN reflux condition to produce the
90% yield shown in scheme-16. Later these compounds were screened for their promising anti-

coronavirus activity. (Scheme-1.16)

Scheme-1.16
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Et3N, reflux
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Kalinina et al * reported the synthesis of spirocyclic 6,7-dihydro-5H-[1,2,4] triazolo[5,1-
b][1,3,4]thiadiazines via Dimroth rearrangement of hydrazone substituted 1,2,3-thiadiazolyl
compound-1 with different bromo acetophenones in EtOH/EtsN. These derivatives possess

antiproliferative activity. (Scheme-1.17)

Scheme-1.17.
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Abdel-Wahab et al > published the pseudo multicomponent synthesis of 1,2-bis(6-phenyl-
7H-[1,2,4]-triazolo [3,4-b][1,3,4]thiadiazin-3-yl)ethane-1b by the reaction of la with 2
equivalents of a-bromo acetophenone under reflux in EtOH/EtsN. Whereas the 3a was
synthesized from the cyclocondensation of 1R, 2S 1,2-bis (4-amino-5-mercapto-4H-1,2,4-
triazole-3yl) with 2 equivalents of phenacyl bromide in EtOH/Et3N. (Scheme-1.18)

Scheme-1.18
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Bhatt et al % published the one-pot expenditious green protocol for the preparation of
triazolothiadiazines by microwave irradiation of substituted 4-amino-3-mercapto triazole and
2-bromo acetophenones in presence of reusable catalyst i.e., DABCO, EtOH to form desired
product 3-benzyl substituted triazolothiadiazoles These compounds have shown moderate

antimicrobial activity. (Scheme-1.19)

Scheme-1.19
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6.2. Present work

Various methods have been applied previously for the synthesis of [1,2,4]-triazolo[3,4-b]
[1,3,4] thiadiazines which paved us the way to synthesize the title compounds. In view of the
literature and inspired by the environmentally benign synthesis of triazolothiadiazines we have
taken up the synthesis of title compounds. In the present research work we have synthesized 1-
((6-amino-7H- [1,2,4]-triazolo [3,4-b][1,3,4]thiadiazin-3-yl)amino-2H-benzo[d]imidazol-2-
one (scheme-2) and 3-(2-benzylidenehydrazineyl)-7H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazin-

6-amine (scheme-1) by multicomponent process.
6.2.1 Synthesis

Condensation of 4-amino-5-hydrazinyl-4H-1,2,4-triazole-3-thiol (1), substituted isatins and
aromatic aldehydes (2), bromo acetonitrile (3) in ethanol and catalytic amount of triethyl amine
at 90 °C to give the desired product with high yield. The different N-substituted isatins have
been prepared by the reaction of isatin and various benzyl, alkyl halides (R-X) in the presence
of DMF/K2CO3 at room temperature.

Schematic  representation of triazolothiadiazine imines and triazolothiadiazine

hydrazineylidene indoline-2-ones.
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The optimization of the reaction was conducted by the variation of solvents with the change of
catalysts and temperature at different time intervals. In the initial screening we have carried out
the reaction by using MeOH, DMF, AcOH, EtOH and PEG-400 (Table-1 entry 1-5). In EtOH

some amount of the product was obtained (entry-3). Moreover, the reaction has carried out in
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ethanol by changing different bases and different temperatures, at different time intervals.
Among these screened conditions (Table-1 entry 6-11) good percentage of the yield 91% was
produced in EtOH/EtsN. Hence, the optimized condition of the reaction is EtOH, EtsN (10
mol%) at 90 °C for 8 h.

Table-1: Optimization of the reaction conditions for compound 4a.

Base o . . o[l
S.No Solvent (mol%) Temp (°C) | Time (h) | Yield (%)
1 MeOH - 65 8 n.d
2 AcOH - 65 8 10
3 EtOH - 65 7 20
4 PEG 400 65 9 n.d
5 DMF K2CO3(3) 65 10 n.d
6 AcOH NaOAC (3) 65 8 15
7 EtOH DMF(3) 90 10 15
8 EtOH KOH(6) 80 9 12
9 EtOH EtsN (3) 70 8 55(0]
10 EtOH EtsN (5) 75 8 771
11 EtOH EtsN(10) 80 8 g2l
12 EtOH EtsN(10) 90 8 91l

Reaction conditions:1 (1 mmol), 2 (1 mmol),3 (1 mmol), Base (10 mol%), Ethanol (3mL),
[@solated yield, PIEtsN (3 mol%), FIEtsN (5 mol%), MEtsN (10 mol%), FIEtsN (10 mol% for
9h). n. d = not detected.

The plausible mechanism for the formation of product (4), was explained. Initially 4-amino-5-
hydrazinyl-4H-1,2,4-triazole-3-thiol (1) reacts with isatins or aromatic aldehydes resulting in
the formation of therefore, the regeoselective product 4-amino 5-benzylidenehydrazineyl 3-
thiol or hydrazono derivative of isatin. In which the more nucleophilic hydrazino group of
compound-1 readily reacts with electrophilic carbonyl carbon to produce Schiff bases. Further,
the attack of more nucleophilic thiol group on bromo acetonitrile to produce a thioalkylated
derivative over N-alkylated product, subsequent cyclization reaction with free N-amino group
of 1 leads to six membered ring product [1,2,4]-traizole [1,3,4] thiadiazine imines with good

yields. In this reaction simultaneously one C-S, two C-N bonds were formed.

The synthesized final compounds structures were fully characterized by their analytical and
spectral data such as FT-IR, 'H NMR, *C NMR, and HRMS spectra. In the IR spectra of
thiadiazine ring NH: peak appears at 3230-3351 cm™, hydrazono group attached N-H peak at
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3098-3115 cm, isatin ring N-H stretching frequency appears at 3015-3127 cm?, isatin
carbonyl stretching frequency appears at 1621-1681 cm™, NO; symmetric, asymmetric
stretching frequency is at 1344, 1514 cm™. The 'H NMR spectra of thiadiazine ring CH> two
protons appeared as singlet at 4.30 & ppm. NH2 two protons appeared as broad singlet peak at
6.12 6 ppm, aromatic ring protons appeared at 6.98 — 9.25 6 ppm, hydrazono group N-H
appeared as broad singlet at 10.13-11.05 6 ppm, oxindole ring N-H singlet proton is appeared
as singlet at 13.89 § ppm. In the proton decoupled 3C NMR of thiadiazine ring CH: carbon
appeared at 16.10 6 ppm, the thiadiazine ring NH> attached carbon showed at 148.50 & ppm
oxindoles hydrazone carbon appeared at 166.83 & ppm, molecular mass of all the compounds

were matched with their [M+H]" ion peaks.

Scheme-1:
2
R! R
3
RZ 0O R
N-N R2 Hy EtOH/Et;N N—N
HoN + H 4+ Br—C-C=N ————3%5 /N‘N/4 P
NH, N
1 2 3 4 NH,
R' = NO,, OMe, F, Cl, Br, CF3, CN
R2=H, OMe
R3 = OH, CI, H,
O,N MeO OMe E OMe
OH
N—N N—N N—N N—-N
=N_ =N_ =N_ =N_ s\
il TR il - e
N Nﬁ) Na N
NH, NH, NH, NH,
4a, 88%, 10 h 4b, 80%,11 h 4c, 82%,9 h 4d, 88%, 10 h
Cl Br O,N NC
Z (CI Z Z Q/OH Z: Z
N—N N—N N—N N—N
=N, A =N, A N =N, A
N w)\s N w)\s HKN)\S N w)\s
N Nﬁ) Nﬁ) Nﬁ)
NH, NH, NH, NH;
4e, 80%, 10 4f, 88%,9 h 49,90%, 10 h 4h,87%,12 h

Reaction conditions: 1,2,4-triazole 1 (1 mmol), aldehyde 2 (1 mmol), Bromo acetonitrile 3 (1
mmol), EtOH/EtzN.
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Scheme-2
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Reaction conditions: 1 (1 mmol), 2a (1 mmol), 3 (1 mmol). EtOH/Et3N.
6.2.2. DNA binding study.

Electronic absorption spectroscopic studies:

Electronic absorption study is one of the most reliable techniques to examine the binding
affinity and binding mode of metal complexes with CT-DNA.5"*8 In this study, absorption
titration concentration of CT-DNA is kept constant while the concentration of compound is
varied. Absorption spectra of 51, 5m, 50, 5r and 5s are shown in Fig-2. Upon increasing
concentration of CT-DNA to the synthesized compounds, absorbance decreased
(hypochromism) and wavelength shifted towards long wavelength (red shift) due to a strong

stacking interaction between the aromatic chromophore of the compounds and the adjacent
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base pairs of DNA.>® The extent of the hypochromism commonly parallels with the
intercalative binding strength. The electronic absorption spectra of 5l (437 nm), 5m (363 nm),
5s (444 nm), 5r (441 nm) and 50 (427 nm) show intense absorption bands. While measuring
the absorption spectra, a proper amount of CT-DNA was added to both compound solution and
the reference solution to eliminate the absorbance of CTDNA itself. From the absorption

titration data, the binding constant (Kb) was determined using following equation.
[DNA]/(ea — ef) = [DNA]/(eb — €f) + 1/Kb(eb — &f)

Here, Kb is the binding constant, [DNA] is the concentration of DNA in the base pairs, €a is
apparent coefficient equal to Aobsd/[compound], &f and eb correspond to the extinction
coefficients of the free and fully bound forms of the compounds, respectively. In plots of
[DNA]/ (ea — ef) versus [DNA], Kb is given by the ratio of slope to the intercept and shown in
Table-2. The adsorption results reveal that out of 20 synthesized analogues 5 compounds
showed greater binding affinity with CT-DNA.

Table-2: Intrinsic binding constant (Kb) of the compounds 51, 5m, 50, 5r, 5s

Compound code Kb
51 2.1548 x 10* M
5m 2.36.3x10* M
50 6.3406 x 10* M
5r 8.9742 x 10° M
5s 7.878 x 10° M
Compound-5lI
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Compound-50
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Fig-2. Absorption spectra of synthesized compounds 51, 5m, 5s, 5r, 50 in tris HCI / NaCl buffer
5 mM Tris—HCI; 50 mM NaCl, pH 7.1 on addition of increasing concentration of CT-DNA.
Arrow shows decrease in the absorbance upon increasing amounts of CT-DNA.

Conditions: [DNA] = 10-100 uM, [Compounds] = 0-100 uM

6.2.3. Molecular Docking Studies:

Using molecular docking studies, the best DNA intercalated compounds were assessed for their
DNA binding affinity, which is a potent computational analysis tool in bio-informatics. The B-
form DNA sequence d(CGCGAATTCGCG)2 from the protein databank with PDB ID 1bna
was retrieved.®® The DNA and ligand molecules' files were provided using the Flare molecular
docking program with default settings. The macromolecule was prepared using the protein
preparation wizard and the ligands were minimized by using XED force field. The docked
poses were generated by the docking program, and the binding mode with the lowest atomic
energy conformation was chosen. The 3D and 2D interactions was generated by using the Flare

Cresset visualizer.’*

The five best DNA intercalated compounds, 51, 5m, 50, 5r, and 5s, performed molecular
docking studies on the X-ray crystal structure of a B-DNA dodecamer with a resolution of 1.9
A (PDB ID: 1BNA). Through the use of molecular docking analysis, we gained a better
understanding of how the reported fleximers compounds binds to the two DNA strands. The
docked compounds preferably bound to the minor groove of the DNA due to their narrow
structure, electrostatic properties, and reduced steric repulsions. The binding affinity (LFdG)

for the docked compounds was found to be in the range of -6.89 to -7.90 kcal/mol, and the LF

375



Chapter VI

Rank score ranged from -6.75 to -9.48. The docking scores and interactions are given in Table-
1. Among all the docked compounds, compound 50, bearing 5-nitroindole at the hydrophilic
end, displayed the LF Rank score of -9.49 and LF dG of -6.90 kcal/mol. As shown in Figure-
1, 50 has intercalated with DNA and exhibits interactions with DT7, DT19, DC21, and DA5
residues. Similarly, compound 5I, bearing 5-methyl indole, displayed the LF Rank score of -
9.98 and LF dG of -7.07 kcal/mol. Compound 5I exhibits interactions with DT7, DT19, DA5,
DC21, and DT20 (Fig-3).

Table-2: Molecular Docking studies of Best compounds with B-DNA dodecamer (PDB
ID: 1bna)

LF

Title LF Rank Score LFdG LF LE Interactions
VSscore
50 -9.49 -6.90 -7.32 -0.28 DT7,DT19, DC21, DA5
DC21, DT7, DT7, DA1S,
5m -7.96 -7.91 -8.11 -0.33 DT19, DA5
DT7, DT19, DA5, DC21,
51 -9.98 -7.07 -7.97 -0.31 DT20
5r -7.05 -5.62 -6.48 -0.19 DC3, DASI:’)ngl’ DT20,
DC3, DA5, DC21, DG4,
5s -6.75 -6.11 -6.94 -0.20 DT20, DC3, DG4, DT20
Compound-5lI
—y : L
,< \ i
)
—N
_—NH

Fig-3: Docking interaction of compound 51 with B-DNA dodecamer (PDB ID: 1bna)
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Fig-4: Docking interaction of compound 5m with B-DNA dodecamer (PDB ID: 1bna)

Compound-50

oot
B2
"1e|7c'
B2
N—
,< \ I ,
NN
90T / H
B1 —
- —NH
."72T\',‘ ’ \
\ / o

Fig-5: Docking interaction of compound 50 with B-DNA dodecamer (PDB ID: 1bna)
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Compound-5r

Fig-6: Docking interaction of compound 5r with B-DNA dodecamer (PDB ID: 1bna)

Compound-5s

Fig-7: Docking interaction of compound 5s with B-DNA dodecamer (PDB ID: 1bna)
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6.3. Conclusions.

The synthesis of 1,2,4-triazolo [3,4-b][1,3,4] 6-aminothiadiazines and their hydrazineylidene
indolin-2-ones, Schiff bases were synthesized by using multicomponent process. The
advantages of the present method are high yields of the products, good substrate scope of the
reaction and environmentally benign. All the synthesized compounds were studied for
electronic absorption spectra. Among these the compounds 5I, 5m, 50, 5r, 5s have shown
greater binding affinity with CT-DNA. Molecular docking results were also revealed that the

compounds 5I, 5m, 50, 5r, 5s having good binding interactions with respect to amino acids.

6.4. Experimental:

The required chemicals were procured from chemical suppliers i.e Merk, Alfa acer, TCI,
Spectrochem and used without purification. The solvents were procured from Finar, Aldrich
chemical suppliers and stored over a 4 A molecular sieves. The progress of the reaction was
monitored by using Silica gel-coated aluminium TLC plates using ethyl acetate, n-hexane (2:8
ratio). Melting points of the compounds were checked with Stuart Staffordshire, UK (SMP30)
Instrument and are uncorrected. The FT-IR Spectra of the compounds were recorded on Perkin
Elmer spectrometer using KBr disk and values were represented by cm™. The proton NMR
spectra of the compounds were recorded on Brucker AVANCE 400 MHz spectrophotometer
using DMSO-ds solvent (centered at 2.5 6 ppm quintet) and Chemical shift values were
represented by & ppm. TMS was taken as the internal standard reference compound (0 & ppm).
The notations used for splitting pattern of the protons was shown with s = singlet, d = doublet,
t = triplet, g = quartet, m = multiplet. The coupling constant values were expressed in Hz.
Proton decoupled 3C NMR spectra were recorded on Brucker 100 MHz spectrophotometer
using DMSO-ds solvent. And the peak appeared septet centered at 39.52 6 ppm. ESI-HRMS
spectra were recorded for all the final compounds by using Agilent Technology Instrument

made in Japan.
6.4.1 Preparation of DNA solution

The UV-Vis titration experiments were performed by maintaining a constant concentration of
the synthesized compounds at 10 uM throughout experiment (5 mM Tris-HCI/50 mM NaCl
buffer at pH 7.4). The ratio of 1.8-1.9 of UV absorbance at 260 and 280 nm was given by CT-
DNA in tris HCI-NaCl buffer solution, indicating that the DNA was sufficiently free of protein.
%2 The concentration of the source DNA is 1 mg/mL. We determined the concentration of CT-

DNA stock solution by employing a molar absorptivity (6600 Mtcm™) at A260 nm, after 1:30
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dilution of source DNA with 5 mM Tris-HCI/50 mM NaCl buffer at pH = 7.2. ° Thus, the
concentration of the source DNA (1 mg/mL) is estimated to be 5700 uM. In experiments, the
concentration of CT-DNA was varied between 0-10 uM keeping the total volume of the
reaction mixture constant (3 mL). After each addition of CT-DNA to the synthesized
compounds, the resulting solution was allowed to equilibrate at 25 °C for 5 min followed by
recording of absorption spectrum. The binding constants (Kb) were calculated from the
spectroscopic titration data by the plot between [DNA] / (sa — £f) and [DNA]. *

6.4.2 General procedure for the synthesis of 3-(2-(6-amino-7H-[1,2,4]-triazolo[3,4-
b][1,3,4]thiadiazin-3 yl)hydrazineylidene)indolin-2-ones and imines.

A mixture of 4-amino-5-hydrazinyl-4H-1,2,4-triazole-3-thiol (1 mmol), isatin or aromatic
aldehyde (1 mmol), bromo acetonitrile (1 mmol) was taken in ethanol and 10 mol% of triethyl
amine, the reaction mixture was refluxed for 8 hours. After completion of the reaction was

checked by TLC, the yellow solid product was filtered and recrystalized with ethanol.
6.4.2a General Procedure for the preparation of N-benzylindoline-2,3-dione.

A mixture of benzyl bromide (1 mmol) and isatin (1 mmol) was taken in DMF 2mL solvent,
potassium carbonate (1 mmol) was added and stirred for 12 h at room temperature After
completion of the reaction the reaction mixture was poured in to ice cold water and solid

separated was filtered.
6.4.2b General procedure for the preparation of 1-methylindoline-2,3-dione

The isatin (1 mmol) was taken in 50 mL of round bottom flask, added 3 mL acetone solvent
and kept in ice bath then methyl iodide (1 mmol) was added and stirred at room temperature
for overnight. After completion of the reaction (as checked by TLC) the reaction mixture was

poured in to ice cold water and the solid product obtained was filtered.
6.5. characterization data of synthesized compounds

(E)-3-(2-(4-nitrobenzylidene)hydrazineyl)-7H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazin-6-

amine: 4a. Yellow solid; Yield 88%; mp: 252-253 °C; IR (KBr) OZNQ
cm™: 3263 (NHy), 3117, (NH), 1611 (schiff base)), 1513,1339 /N\Ni';&s
H |
(NO2); *H NMR (400 MHz, DMSO-ds) & (ppm): 4.23 (s, 2H), 5.92 N%
NH,

(s, 2H broad), 7.93 (d, J = 8.4 Hz, 2H), 8.25 (d, J = 8.4 Hz, 2H),
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8.35 (s, 1H), 11.20 (s, 1H); 3C NMR (100MHz, DMSO-dg) & (ppm): 17.31, 118.00, 124.43,
12750, 140.45, 141.92, 146,13, 147.40, 153.94. HRMS (ESI-TOF) (m/z): Calculated for
C11H10NsO2S [M+H]* 319.0725; found 319.0726.

(E)-3-(2-(3,4-dimethoxybenzylidene)hydrazineyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin

-6-amine: 4b. Yellow solid; Yield 80%; mp: 240-241 °C; IR (KBr) [y,.o OMe

cmt: 3301 (NH;), 3100 (NH), 1623 (schiff base), 1106 (C-O-C); *H .
NMR (400 MHz, DMSO-ds)  (ppm): 3.78 (s, 3H), 3.80 (s, 3H), 4.22 /N‘H”\/r,«*s
(s, 2H), 5.84 (s, 2H broad), 6.98 (d, J = 8.4 Hz, 1H), 7.13 (dd, J = "ﬁ

8.3, 1.8 Hz, 1H), 7.31 (s, 1H), 8.15 (s, 1H), § 10.51 (s, 1H); *C NMR (100MHz, DMSO-ds) 6
(ppm): 17.3,55.93, 55.99, 108.5, 111.9, 118.0, 121.1, 128.1, 145.3, 149.4, 150.3, 154.7. HRMS
(ESI-TOF) (m/z): Calculated for C13H1sN702S [M+H]* 334.1086; found 334.1086.

(E)-3-(2-(4-fluorobenzylidene)hydrazineyl)-7H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazin-6-
amine: 4c.Yellow solid; Yield 82%; mp: 235-236 °C; IR (KBr) cm™: f
3342 (NHy), 3119( NH), 1615 (schiff base), 813 (C-F); *H NMR (400 QN N-N

N 7\
MHz, DMSO-ds) J (ppm): 4.31 (s, 2H), 7.25 (t, J = 8.8 Hz, 2H), 7.37 (4, H*m)j
J = 8.8 Hz, 2H), 8.32 (s, 2H broad), 10.03 (s, 1H), 12.70 (s, 1H): *C NH,

NMR (100MHz, DMSO-ds) 0 (ppm): 17.26, 118.04, 126.03, 127.28, 127.68, 139.76, 145.89,
148.46, 154.17. HRMS (ESI-TOF) (m/z): Calculated for C11H10 FN7S [M+H]* 292.0798; found
292.0780.

(E)-2-((2-(6-amino-7H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazin-3-yl)hydrazineylidene)methy
1)-6-methoxyphenol: 4d. Yellow solid; Yield 88%; mp: 237-238 °C; IR oMe
(KBr) cm™: 3512 (OH), 3313 (NH2), 3010 (NH), 1624 (schiff base), Q’“ -
1104 (C-0-C); *H NMR (400 MHz, DMSO-ds) o (ppm): 3.80 (s, 3H), A
4.20 (s, 2H), 5.84 (s, 2H), 6.82 (t, J = 7.9 Hz, 2H), 7.10 (d, J = 7.3 Hz,
1H), 8.47 (s, 1H), 10.45 (s, 1H), 12.99 (s, 1H); 3C NMR (100MH_z,
DMSO-ds) 6 (ppm): 17.66, 56.25, 113.31, 113.65, 117.95, 119.57, 119.97, 120.88, 146.52,
148.26, 154.47, 165.12. HRMS (ESI-TOF) (m/z): Calculated for Ci2Hi3N702S [M+H]*
320.0929; found 320.0928.

(E)-3-(2-(2,4-dichlorobenzylidene)hydrazineyl)-7H-[1,2,4]- <
triazolo[3,4-b][1,3,4]thiadiazin-6-amine: 4e.Yellow solid; Yield \qc'
N

N
80%:; mp: 241-242 °C: IR (KBr) cm%: 3310 (NH2), 3095 (NH), -t
1602 (schiff base), 716 (C-CI); H NMR (400 MHz, DMSO-ds) o

=N
PN

S

r‘ll S
N

NH

N
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(ppm): 4.24 (s, 2H), 5.88 (s, 2H), 7.47 (m, 1H), 7.66 (d, J = 2.1 Hz, 1H), 8.04 (d, J = 8.6 Hz,
1H), 8.60 (s, 1H), 11.22 (s, 1H); *C NMR (100MHz, DMSO-ds) & (ppm): 17.32, 117.96,
128.21, 129.56, 131.67, 133.22, 134.35, 138.47, 146.05, 154.30. HRMS (ESI-TOF) (m/z):
Calculated for C12H13N702S [M+H]* 342.0095; found 342.0089.

(E)-3-(2-(4-bromobenzylidene)hydrazineyl)-7H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazin-6-
amine: 4f.Yellow solid; Yield 88%; mp: 234-235 °C; IR (KBr) cm™:
3317 (NH>), 3100 (NH), 1612 (schiff base), 697 (C-Br); *H NMR (400 QN\ -
MHz, DMSO-dg) J (ppm): 4.28 (s, 2H), 6.00 (s, 2H), 7.59 (d, J =9.6 H%E)\s
Hz, 1H), 7.62-7.65 (m, 2H), 7.71 (d, J = 8.8Hz, 1H), 8.27 (s, 1H), 10.79 f
(s, 1H); °C NMR (100MHz, DMSO-ds)  (ppm): 17.43, 117.78, 123.32, 128.71, 129.16,
132.20, 134.02, 134.45, 149.97, 153.22, 164.96. HRMS (ESI-TOF) (m/z): Calculated for
C11H10 BrN7S [M+H]* 351.9980; found 351.9977. C, H, N Analysis:

H

N

(E)-2-((2-(6-amino-7H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazin-3-yl)hydrazineylidene)meth

yl)-5-nitrophenol: 4g.Yellow solid; Yield 90%; mp: 244-245 °C; IR [on

(KBr) cm. 3354 (OH), 3273 (NH_), 3079 (NH), 1623 (schiff base), Q’: o
1574, 1399 (NO2); *H NMR (400 MHz, DMSO-ds) 6 (ppm): 4.22 (s, N N
2H), 5.85 (s, 2H), 7.08 (d, J = 9.1 Hz, 2H), 8.08-8.11 (m, 1H), 8.52 NH,

(d, J=2.8 Hz, 1H), 8.55 (s, 1H), 11.94 (s, 1H); **C NMR (100MHz, DMSO-ds) J (ppm): 17.50,
117.25,117.94, 121.21, 123.57, 124.41, 125.95, 127.49, 140.45, 147.38, 162.26. HRMS (ESI-
TOF) (m/z): Calculated for C12H13N702S [M+H]* 335.0675; found 335.0671.

(E)-4-((2-(6-amino-7H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazin-3- NC
yhhydrazineylidene)meth yl)Benzonitrile: 4h. Yellow solid; Yield QN\ N-N
87%; mp: 243-244 °C; IR (KBr) cm™. 3362 (NH2), 3288 (NH), 2223 N
(CN), 1624 (schiff base); *H NMR (400 MHz, DMSO-ds) 6 (ppm): NH,
4.15 (s, 2H), 5.82 (s, 2H), 7.86 — 7.79 (m, 4H), 8.21 (s, 1H), 12.98 (s, 1H); °C NMR (100MHz,
DMSO-ds) ¢ (ppm): 17.35, 111.07, 117.94, 119.39, 127.39, 133.02, 146.02, 154.43, 157.45.
HRMS (ESI-TOF) (m/z): Calculated for C12H10NgS [M+H]" 299.0827; found 299.0821.

(E)-3-(2-(6-amino-7H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazin-3-
yhhydrazineylidene)indolin-2-one: 5j. Yellow solid; Yield 90%; mp:
Qz/m
HN H
o

\
N)\S

N
|
N ﬁ/
N

H

232-233 °C; IR (KBr) cm™ 3351(NH;), 3115 (NH), 3057 (lactam ring : /2
NH), 2973, 1642 (lactam ring C=0), 1616 (N=C); *H NMR (400 MHz,
DMSO-ds) 6 (ppm): 4.26 (s, 2H), 6.11 (s, 2H), 6.96 (d, J = 7.6 Hz, 1H),

N
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7.10 (t, = 7.6 Hz, 1H), 7.34 (t, J = 8.2 Hz, 1H), 7.56 (d, J = 7.6 Hz, 1H), 11.23 (s, 1H), 12.87
(s, 1H); 3C NMR (100MHz, DMSO-ds) & (ppm): 17.90, 109.55, 120.36, 121.58, 122.88,
127.18, 129.43, 130.69, 147.63, 158.85, 163.54, 166.69. HRMS (ESI-TOF) (m/z): Calculated
for C12H10Ng OS [M+H]* 315.0776; found 315.0778.

(E)-3-(2-(6-amino-7H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazin-3-yl)hydrazineylidene)-5-
chloroindolin-2-one: 5k. Yellow solid; Yield 89%; mp: 239-240 °C; IR [ ci

(KBr) cm™ : 3310 (NH), 3151 (NH), 3010 (lactam ring NH), 1620 %N
(lactam ring C=0), 1611 (N=C), 789 (C-Cl); 'H NMR (400 MHz, |HN N
DMSO-ds) o (ppm): 4.29 (s, 2H), 6.07 (s, 2H), 6.82 (d, J = 8.2 Hz, 1H), NH,
7.21 (dd, J = 8.2, 2.3 Hz, 1H), 8.52 (s, 1H), 10.44 (s, 1H), 13.63 (s, 1H); *C NMR (100MHz,
DMSO-ds) ¢ (ppm): 16.00, 110.93, 117.73, 119.92, 125.59, 125.96, 128.63, 137.15, 140.10,
148.10, 159.13, 166.53. HRMS (ESI-TOF) (m/z): Calculated for CioHg CINg OS [M+H]*
349.0387; found 349.0380.

(E)-3-(2-(6-amino-7H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazin-3-yl)hydrazineylidene)-5-
methylindolin-2-one: 51. Yellow solid; Yield 90%; mp: 244-245 °C; IR [ we

(KBr) cm™ . 3347 (NH), 3116 (NH), 3002 (lactam ring NH), 1620 N /2 E\
(lactam ring (C=0), 1615 (N=C), *H NMR (400 MHz, DMSO-dg) § | HN g N ) V
(ppm): 2.31 (s, 3H), 4.25 (s, 2H), 6.09 (s, 2H), 6.84 (d, J = 7.9 Hz, 1H), NH
7.14(d,J=7.9 Hz, 1H), 7.38 (s, 1H), 11.09 (s, 1H), 12.84 (s, 1H); *C NMR (100MHz, DMSO-
ds) 0 (ppm): “17.91, 21.36, 111.15, 120.74, 127.75, 131.88, 133.33, 139.30, 146.54, 147.54,
153.14, 163.63. HRMS (ESI-TOF) (m/z): Calculated for CisHi2 Ng OS [M+H]" 329.0933;
found 329.0931.

S

N

(E)-3-(2-(6-amino-7H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazin-3- —
yhhydrazineylidene)-5-metho xyindolin-2-one: 5m. Yellow solid; %
H

N NN
—N 7\
N H*pl;)\s
o ﬁ)
N

H

Yield 89%; mp: 234-235 °C; IR (KBr) cm™*. 3397 (NH.), 3213 (NH),
3015 (lactam ring NH), 1626 (lactam ring (C=0), 1597 (N=C), 1128
(C-O-C); 'H NMR (400 MHz, DMSO-ds) 6 (ppm): 3.77 (s, 3H), 4.26
(s, 2H), 6.11 (s, 2H), 6.87 (d, J = 8.4 Hz, 1H), 6.91 (d, J = 2.5 Hz, 1H), 7.12 (d, J = 2.5 Hz,
1H), 11.03 (s, 1H), 12.91 (s, 1H); **C NMR (100MHz, DMSO-ds) ¢ (ppm): 19.00, 55.87,
105.35, 109.90, 113.16, 119.41, 135.39, 139.22, 147.73, 154.82, 155.77, 166.87. HRMS (ESI-
TOF) (m/z): Calculated for C13H12NgO2S [M+H]" 345.0882; found 345.0885.

N
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(E)-3-(2-(6-amino-7H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazin-3-yl)hydrazineylidene)-1-

benzyl-5-methylindolin-2-one :5n

Yellow solid; Yield 84%; mp: 223-224 °C; IR (KBr) cm™. 3359 (NH>), i
3184 (NH), 1619 (lactam C=0), 1572 (N=C); 'H NMR (400 MHz, %
N

N-N
DMSO-ds) 6 (ppm): 2.31 (s, 3H), 4.28 (s, 2H), 5.01 (s, 2H), 6.15 (s, 2H), /"‘H%N)\S
6.98 (d, J = 8.0 Hz, 1H), 7.15 (d, J = 8.0 Hz, 1H), 7.32 — 7.37 (m, 5H), b° "Y
NH,

7.45 (s, 1H), 12.82 (s, 1H); 3C NMR (100MHz, DMSO-ds) J (ppm):
21.03, 21.31, 42.95, 110.51, 117.92, 120.68, 127.61, 127.84, 128.06, 129.05, 129.20, 136.47,
137.64, 139.64, 146.74, 147.78, 153.04, 161.67. HRMS (ESI-TOF) (m/z): Calculated for
CaoH1s NsOS [M+H]* 419.1402; found 419.1411.

(E)-3-(2-(6-amino-7H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazin-3-yl)hydrazineylidene)-5-
nitro indolin-2-one: 50. Yellow solid; Yield 92%; mp: 232-233 °C; IR [ o,

(KBr) cm™. 3377 (NH2),3045 (NH), 2994 (lactam ring NH),1623
(lactam ring C=0), 1590 (N=C), 1516, 1336 (NO2); *H NMR (400 MHz, | un N " Ns
DMSO-ds) d (ppm): 4.30 (s, 2H), 6.12 (s, 2H), 7.00 (d, J = 8.6 Hz, 1H), NH,
8.14 (dd, J = 8.6, 2.5 Hz, 1H), 9.25 (d, J = 2.4 Hz, 1H), 11.02 (s, 1H), 13.89(s, 1H); *C NMR
(100MHz, DMSO-ds) ¢ (ppm): 16.10, 109.56, 117.71, 118.55, 121.19, 125.59, 135.66, 142.24,
146.70, 148.50, 159.12, 166.83. HRMS (ESI-TOF) (m/z): Calculated for Ci2Hg BrNsOS
[M+H]" 360.0627; found 360.0626.

(E)-3-(2-(6-amino-7H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazin-3-
yl)hydrazineylidene)-5-iodoindolin-2-one: 5p.Yellow solid; Yield 89%; |

mp: 240-241 °C; IR (KBr) cm™. 3325 (NH.), 3113 (NH), 3015 (lactam %’*HJNE\S
ring NH), 1630 (lactam ring C=0), 1593 (N=C), 590 (C-I); *H NMR ° "‘3/
(400 MHz, DMSO-de) & (ppm): 4.28 (s, 2H), 6.06 (s, 2H), 6.67 (d, J = =
8.1 Hz, 1H), 7.50 (dd, J = 8.1, 1.8 Hz, 1H), 8.80 (s, 1H), 10.42 (s, 1H), 13.56 (s, 1H); 13°C NMR
(100MHz, DMSO-ds) 6 (ppm): 16.01, 112.02, 117.74, 120.94, 134.25, 137.36, 140.94, 148.05,
159.06, 166.04. HRMS (ESI-TOF) (m/z): Calculated for Ci2Hg INsOS [M+H]* 440.9743;
found 440.9760.

N
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(E)-3-(2-(6-amino-7H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazin-3-yl)hydrazineylidene)-5-
fluoro indolin-2-one: 5g. Yellow solid; Yield 91%; mp: 243-244 °C; IR .
(KBr) cm™. 3361 (NH2), 3058 (NH), 2937 (lactam ring NH), 1630 (lactam
%Nﬁix
o

ring C=0), 1600 (N=C), 787 (C-F); *H NMR (400 MHz, DMSO-ds) & NN
(ppm): 4.26 (s, 2H), 6.12 (s, 2H), 7.17 (t, J = 9.0 Hz, 1H), 7.38 (dd, J = “‘ﬁ
8.1, 2.4 Hz, 1H), 8.33 (d, J = 8.9 Hz, 1H), 10.33 (5, 1H), 11.24 (s, 1H); 1*C

NMR (100MHz, DMSO-ds) d (ppm): 15.97, 110.00, 113.58, 115.11, 117.74, 119.32, 137.73,
147.97, 156.84, 158.98, 166.80. HRMS (ESI-TOF) (m/z): Calculated for C12Ho FNgOS [M+H]*
333.0718; found 333.0715.

S

N

(E)-3-(2-(6-amino-7H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazin-3-yl)hydrazineylidene)-1-
benz ylindolin-2-one: 5r. Yellow solid; Yield 92%; mp: 243-244 °C; IR
(KBr) cm?. 3313 (NH), 3193 (NH), 1615 (lactam ring C=0), 1574 %N\NJ_E\
(C=N); *H NMR (400 MHz, DMSO-ds) 6 (ppm): 4.276(s, 2H), 5.03 (s, % " :ﬁj
2H), 6.14 (s, 2H), 7.08 — 7.16(m, 2H), 7.29— 7.37 (m, 6H), 7.62 (d, J = 7.3 b Nz
Hz, 1H), 12.82 (s, 1H); 1*C NMR (100MHz, DMSO-ds) J (ppm): 17.84, 42.80, 108.75, 110.70,
122.27, 127.64, 127.89, 129.09, 129.23, 137.59, 147.83, 153.01, 165.32. HRMS (ESI-TOF)

m/z): Calculated for C19H16 NsOS [M+H]* 405.1246; found 405.1248.
(

(E)-3-(2-(6-amino-7H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazin-3- cl
yhhydrazineylidene)-1-benz yl-5-chloroindolin-2-one 5s.Yellow solid,; %N\ J E\
Yield 88%; mp: 250-251 °C; IR (KBr) cm1. 3317 (NHz), 3190 (NH), | N Y N “I‘ﬁ)
1610 (lactam ring C=0), 1594 (N=C), 752 (Cl); 'H NMR (400 MHz, NH,
DMSO-ds) 0 (ppm): 4.29 (s, 2H), 4.99 (s, 2H), 6.17 (s, 2H), 7.12 (d, J =

8.5Hz, 1H), 7.31-7.33 (m, 4H), 7.35-7.37 (m, 3H), 12.81 (s, 1H); *C NMR (100MHz, DMSO-
de) 0 (ppm): 19.02, 42.86, 110.13, 117.74, 119.32, 125.83, 126.41, 127.60, 127.79, 128.34,
129.13, 135.93, 137.30, 140.09, 148.36, 159.12, 165.07. HRMS (ESI-TOF) (m/z): Calculated
for C19H15 CINsOS [M+H]* 439.0856; found 439.0867.

N® S

(E)-3-(2-(6-amino-7H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazin-3-yl)hydrazineylidene)-5-
chloro-1-methylindolin-2-one 5t.

Yellow solid; Yield 85%; mp: 233-234 °C; IR (KBr) cm™. 3372 (NH>),
3012 (NH), 1623 (lactam ring C=0), 1611 (N=C), 696 (CI), 'H NMR

(400 MHz, DMSO-de) 3 (ppm): 3.26 (s, 3H), 4.28 (s, 2H), 6.15 (5, 2H), | | “y
7.19 (d, J =8.4 Hz, 1H), 7.45 - 7.47 (m, 1H), 7.59 (d, J = 1.9 Hz, 1H),

=z
=
S
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12.80 (s, 1H); °C NMR (100MHz, DMSO-dg) 6 (ppm): 15.99, 26.26, 109.56, 117.74, 119.06,
125.77, 126.20, 128.47, 136.38, 141.25, 148.19, 159.09, 164.96. HRMS (ESI-TOF) (m/z):
Calculated for C13H11 CINgOS [M+H]" 363.0543; found 363.0553.

6.6. Copies of spectral data *H NMR, *C NMR, HRMS of synthesized
compounds.

'H NMR spectrum of compound 4a (DMSO-ds) 400 MHz
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13C NMR spectrum of compound 4a (DMSO-ds) 100 MHz
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H NMR spectrum of compound 4b (DMSO-dg) 400 MHz
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Mass spectrum of compound 4b
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'H NMR spectrum of compound 4c (DMSO-ds) 400 MHz
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13C NMR spectrum of compound 4¢c (DMSO-dgs) 100 MHz
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IH NMR Spectrum of compound 4d (DMSO-ds) 400 MHz
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Mass spectrum of compound 4d
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'H NMR spectrum of compound 4e (DMSO-ds) 400 MHz
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13C NMR spectrum of compound 4e (DMSO-ds) 100 MHz
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'H NMR Spectrum of compound 4f (DMSO-ds) 400 MHz
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MASS Spectrum of compound 4f

'H NMR Spectrum of compound 4g (DMSO-ds) 400 MHz
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13C NMR spectrum of compound 4g (DMSO-ds) 100 MHz
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'H NMR Spectrum of compound 4h (DMSO-ds) 400 MHz
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Mass spectrum of compound 4h
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13C NMR Spectrum of compound 5j (DMSO-dg) 100 MHz
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H NMR Spectrum of compound 5k (DMSO-ds) 400 MHz
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Chapter VI

Mass Spectrum of compound 5k

'H NMR Spectrum of compound 51 (DMSO-ds) 400 MHz
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13C NMR spectrum of compound 51 (DMSO-ds) 100 MHz
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H NMR Spectrum of compound 5m (DMSO-ds) 400 MHz
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Chapter VI

Mass spectrum of compound 5m

1H NMR spectrum of compound 5n (DMSO-ds) 400 MHz
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13C NMR spectrum of compound 5n (DMSO-ds) 100 MHz
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H NMR Spectrum of compound 50 (DMSO-ds) 400 MHz
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Mass spectrum of compound 50
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13C NMR spectrum of compound 5p (DMSO-ds) 100 MHz
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IH NMR spectrum of compound 5q (DMSO-ds) 400 MHz
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Mass spectrum of 5q
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13C NMR spectrum of compound 5r (DMSO-dg) 100 MHz
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H NMR spectrum of compound 5s (DMSO-ds) 400 MHz
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Mass spectrum of compound 5s
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13C NMR spectrum of compound 5t. (DMSO-ds) 100 MHz
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Chapter VII

7.1 Introduction

The 1,2,4-triazole moiety has received special attention for the development of various
heterocyclic systems,® while the 4H-1,2,4-triazole moiety is having free amino functional
group at third position of triazole ring which enhance the possibility to develop variety of fused,
unfused five and six membered heterocyclic compounds such as imidazole’s, pyrimidines,
thiazoles, pyridines.?® Furthermore, the primary amines are helpful for the development of
Schiff bases and Mannich bases, which are significant intermediates in organic synthesis.'° The
literature study reveals that the imine core moiety containing compounds are particular
importance in medicinal chemistry, and exhibits potential biological activities. And also

oxindoline substituted imines are showing potent pharmacological activities.!1

Further, the imidazole heterocyclic compounds having two nitrogen atoms located at the 1,3
positions of five membered ring. The presence of active C> hydrogen of imidazole nucleus
allows it to C» functionalization reactions to build a C-C, C-N bonds, which show promising
biological applications.'>*° Moreover, the 1,2,4-triazole moiety fused with imidazole nucleus
such type of bicyclic five membered heterocyclic compounds demonstrates its phenomenal
biological applications.?° The possible isomeric structures of bicyclic 1,2,4-triazoloimidazoles
are  [2,1-c][1,2,4], [2,1-b][1,2,4], [5,1-c][1,2,4].2*** Among these [2,1-b][1,2,4]
triazoloimidazoles have much importance in medicinal chemistry, pharmaceutical industry.?
Fig.1 represents biologically active imidazoles, imino oxindolines and bicyclic
triazoloimidazoles.’®® The [2,1-b] imidazole compound 9 displayed potential anticancer
properties®* and also the imino oxindoline substituted molecule 2 and 5 demonstrates their good

antibacterial activity.®®

Keeping all the above findings and the importance of fused imidazoles, iminoindoline-2-ones
in the present work the choosen starting material was choosen in such a way that it has both
the co-ordinating groups of amine and thiol, functional groups which may facilitate to
synthesize a different kinds of substrates. The 2-(benzylthio)-6-phenyl-4H-imidazo[1,2-
b][1,2,4]-triazoles and 3-((5-(benzylthio)-4H-1,2,4-triazol-3-yl)imino)indolin-2-ones have
been synthesized by using multi-component method. The present method has several
advantages over conventional methodology. In this MCRs method high yield of the products
were produced and possible to reduce the number of reaction steps, the reaction has completed

in a short period of time.36%7
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Fig.1. Reported biologically active imidazoles and mannich base compounds.

Literature reports

Hassan et al ® reported the solvent free protocol for the synthesis of either fused or unfused

imidazole molecules 2 and 4. In which the 1-acetyl-5-isobutyl-2-thioxoimidazolidin-4-(3H)-

one (1) was cyclocondensed with thiocarbohydrazide to afford a bicyclic 2-iminoimidazoline

compound-2. Whereas the 1-acetyl-5-isobutyl-2-thioxoimidazolidin-4-(3H)-one (1) on fusion

with 1H-1,2,4-triazole-3,5-diamine to produce the corresponding compound-3. And also these

derivatives have shown antiviral activity. (Scheme-1)
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Farooa et al *° published the fused 1,2,4-triazoloimidazole 5-carboxylic acid compound by the
reaction of 3-bromo-5-methyl-1H-1,2,4-triazole and aziridines-1-carboxylate via various
functional group interconversions and cycloaddition reaction which leads to produce target
compound. (Scheme-2)

Scheme-2
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Pavlov et al “° synthesized the biologically active fused triazolo imidazole compound-1 by the
reaction of 5-substituted nitro furfural and 2-phenyl-5-oxazolone in presence of
isopropanol/EtsN to give the 2-phenyl-4-(5-nitro-2-furfurylidene)-5-oxazolone. The final
compounds exhibit antimicrobial activity. (Scheme-3)

Scheme-3
R
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Sadek et al 4! reported the microwave irradiation of 3-amino-4H-1,2,4-triazole, aromatic
aldehyde and phenacyl cyanide in pyridine to generate the corresponding bicyclic 5-amino

1,2,4-triazolo imidazole compound-4 with good yield. (Scheme-4)

421




Chapter VII

Scheme-4
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Allouche et al *? developed the one-pot reaction of triazole amine compound-1 with substitute
a-bromo ester in THF/NaH to form bridgehead nitrogen containing imidazole molecule-2. On
the other hand the triazole compound-1 cyclocondensation with oxalyl chloride in
DCM/pyridine resulted to produce the imidazo[2,1-c][1,2,4]-triazol-5,6-dione compound-3
with high yield. (Scheme-5)

Scheme-5
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3 1 2
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Huang et al *® reported the isocyanide based one-pot three component cyclo condensation
reaction of 1,2,4-triazole amine with different types of aromatic aldehydes and tertiary butyl
isocyanide in MeOH/HCIO4 to form bicyclic 1,2,4-triazolo imidazole final compound-4 have

shown in scheme-6.

Scheme-6
HN/t—Bu
[/\j—N , c MeOH HN\N/\yR2
R1/<N»\NH2 + R?-CHO + tBuN HCIO, R1’<\N)\NH
I‘l-| 2 3 4

Driowya et al * developed an efficient one-pot method for the synthesis of 5-imino
imidazo[1,2-a] imidazoles. In which the 2-amino imidazole 4- carboxylate with substituted
isocyanides and aldehydes in PEG-400 and ZrCls was used as a catalyst. (Scheme-7)
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Scheme-7
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Aouali et al ®° synthesized the fused 1,2,4-triazolo imidazole heterocyclic molecule-4 from the
reaction of 5-amino-1,2,4-triazole, substituted isocyanide and aldehyde in presence of Sc(0Tf)3
in DMF. And also these substrates have been evaluated for antioxidant antimicrobial activity

this were shown in scheme-8.

Scheme-8
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Ain et al ® reported the reaction of 4-amino 3-mercapto triazole with isatin under ethanol reflux
conditions to give the 3-((3-mercapto-5-phenyl-4H-1,2,4-triazol-4-yl) imino) indolin-2-one
molecule-3 with high yields. These compounds were shown good antifungal and antibacterial
activities. (Scheme-9)
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Prakash and co-worker 4 reported the Ciprofloxacin methylene isatin compound-4
incorporating with various aromatic aldehydes in EtOH/AcOH to afford the Mannich base of
isatin containing Schiff base compounds-5. These compounds have shown good antibacterial
activity against Gram +ve and Gram —ve bacteria. (Scheme-10)

Scheme-10
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Jamil et al ®® synthesized a series of 1,2,4-triazole hydrazones by the reaction of 2-amino 1,2,4-
triazole with aryl carbonyl derivatives in presence of EtOH/AcOH. Further these substrates

tested for their B-glucuronidase inhibitor activity. (Scheme-11)
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Murthy et al *° synthesized the reaction of phenyl acetic acid with thiocarbohydrazide to form
a benzyl-1,2,4-triazole-3-thiol-2. This was subsequently reacted with isatin in MeOH/H2SO4
leads to generate 1,2,4-triazole based Mannich product of isatin derivative-4. (Scheme-12)
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7.2. Present work

Keeping in view of the pharmacological importance of imidazo[2,1-b][1,2,4]triazoles, 1,2,4-
triazoloimino indoline-2-ones and in continuation of our research programme on the addition
of new series of bioactive heterocycles here in we are reporting the synthesis of thiobenzylated
fused 1,2,4-triazolo imidazoles, 1,2,4-triazolo imino indoline 2-ones and their molecular
docking studies and in-vitro antibacterial activity.

Synthesis of thiobenzylated bicyclic imidazo[2,1-b][1,2,4]-triazoles (4a-j) compounds were
synthesized by one-pot three component condensation reaction of 5-amino-4H-1,2,4-triazole-
3-thiol 1 (1.0 mmol), p-bromo benzyl bromide 2 (1.0 mmol), phenacyl bromide 3 (1.0 mmol),
in the presence of ethanol, fused Na>COs as a base affording the corresponding desired products
(4a-j) in a single step which have been shown in Scheme-1. Further, the scheme-2
thiobenzylated 1,2,4-triazolo iminoindoline 2-ones were synthesized by the reaction of 5-
amino-4H-1,2,4-triazolo-3-thiol 1 (1.0 mmol), p-bromo benzyl bromide 2 (1.0 mmol), isatin
3a (1.0 mmol) taken in EtOH/Na,COs and refluxed at 85 °C for 9 h to produce the
corresponding target compounds 5a-i. The optimization conditions for both the schemes are

similar and represented in Table-1
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Scheme-1. Schematic representation scheme-1
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Scheme-2. Schematic representation scheme-2
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Table-1. Optimization study of the reaction conditions of scheme-1 &2[?,

S.no. Solvent Acid/base Temp (°C) | Time (h) Yield (%)
(Equiv)

1 CHsCN - 60 10 n.r
2 MeOH - 60 10 n.r
3 EtOH - 60 10 n.r
4 DMF K2CO:s (2) 80 10 10
5 AcOH NaOAc (2) 80 10 12
6 AcOH H2S04 (0.1N) 80 12 n.r
7 EtOH K2COs (2.5) 80 10 15
8 EtOH HCI (0.1N) 80 10 n.r
9 EtOH Na2COs (1) 80 9 35
10 EtOH Na,COs (1.5) 80 9 80

11 EtOH Na2COs (2) 85 9 89 (Scheme-1

92 (Scheme-2)

[AIReaction conditions: Scheme-1. 5-amino-4H-1,2,4-triazolo-3-thiol (1.0 mmol), p-bromo
benzyl bromide (1.0 mmol), phenacyl bromide (1.0 mmol) taken in EtOH/Na,COs reflux at 85
°C for 9 h to produce 89% yield. ! Yield of the isolated product. n.r = no reaction. Scheme-
2. 5-amino-4H-1,2,4-triazolo-3-thiol (1.0 mmol), p-bromo benzyl bromide (1.0 mmol), isatin
(1.0 mmol) taken in EtOH/Na>COs reflux at 85 °C reflux at 85 °C for 9 h give 92 % vyield.
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The optimization study has been carried out for compound 4e in scheme-1 and compound 5i
for scheme-2. In firstly we have carried out the reaction in ACN, MeOH, EtOH (entry 1-3) by
using this conditions the formation of product was not observed. On the other hand, we have
tested in DMF, AcOH, EtOH by changing the acids and bases (entry 4-9). Among these tested
solvents and bases/acids EtOH by using of fused Na,COs (1 equiv) some amount of the product
was extended at 80 °C. Further, our delight to improve the yield of the product by applying 2
equivalents of fused Na>COz and increase temperature good yield was formed at 85 °C for 9 h
(entry 11).

Table-2a. Derivatization of fused triazolo imidazoles (scheme-1 4a-j)

R2

N—
/4 g Jij)b _EtOHINa,CO3 . /NN
HeN 85°C HN/J\\N>\S R'
4 a-j

R' = Br, NO,, CN, CH,
R? =H, Br, OMe, Me, CI, Ph

Br Br H;C

AONN /NN /NN />N-N
HN’J\\N>\S CN HN’J\\N>\S Br HN’J\\N>\S NO, HNJ\\N%S/\QBr
4a.85%,9h 4b. 84%, 8 h 4c.82%, 9 h 4d. 88%, 8 h
MeO cl Br

NN /\@ N\ ZON-N Vi
N-N
> \ \ 3
HN’J\\N%S Br HN’J\\N%S/\@E" HN’J\\NXS/\QBr HN’&N>\S/\©\CH3
4e.85%,9h 4f.89%,9 h 49.87%,7 h 4h. 88%, 8 h
HsC Ph

HN’J\\N S NO, HN’J\\N>\S/\©\Br

4i.88% 9 h 4j.89%,9 h

Reaction conditions: 5-amino-4H-1,2,4-triazole-3-thiol 1 (1.0 mmol), p-substituted benzyl
bromides 2 (1.0 mmol), p-substituted phenacyl bromides 3 (1.0 mmol) were taken in 2 mL
ethanol/Na>COs refluxed at 85 °C.
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Table-2b: Substrate scope of the Scheme-2 reaction (5 a-i)

N.
R® S~
/4 ©/\ w _EtOH/Na,CO;3 HN/kN
H,N 85°C RS /
5 a-i o

N
H
R? = Br, NO,, CN
4=cl, 1, Br, Me, OMe, F,H

H
5a. 88%, 8 h 5b. 84%, 7h 5c. 86%, 8h
N. Noy
NC\Q\/S\( N . g \</ Br\©\/s\</
HN—L
N /
/
- 7©E¥ 7@@
N
H
5d. 89%, 9 h 5. 92%, 9 h

5e. 85%,10 h
N

N. N. Br s—~ N
T W S W @ St
HN—L HN N
N N /
MeO J Br J ©j8:0
o 0] N
N N H

59. QOOA), 10 h 5h- 91%, 7 h 5i- 920/0, 9 h

Reaction conditions: 5-amino-4H-1,2,4-triazole-3-thiol 1 (1.0 mmol), p-substituted benzyl

bromides 2 (1.0 mmol), 5-substituted isatins 3a (1.0 mmol) mixture was taken in 2 mL
EtOH/Na,COs3 and reflux at 85 °C.

Thus, the optimization conditions of the reaction for scheme-1 is triazole amine compound 1
(2.0 mmol), p- bromo benzyl bromide 2 (1.0 mmol), phenacyl bromide 3 (1.0 mmol) and for
scheme-2, 1,2,4-triazole amine compound 1 (1.0 mmol), p-benzyl bromide 2 (1.0 mmol), isatin
4 (1.0 mmol) in 2 mL of EtOH /Na>COs (2 equiv.) at 85 °C for 9 h. 89% product was formed

in scheme-1 and 92% product was produced in scheme-2 as shown in Table-1.
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By using the optimization conditions, we have explored the substrate scope and generality of
the reaction with various substituted phenacyl bromides, benzyl bromides and isatins (Table-
2a, b). Electron donating substituents on benzene ring such as -OCHs, Me, Br, groups increases
the yield of the product (Table-2a. Scheme-1). Whereas electron withdrawing p-nitro group
in phenacyl bromide did not offer the cyclization product even by the addition of excess amount
of base. In the scheme-1 one C-S bond and two C-N bonds were formed simultaneously. In the
case of scheme-2 -OCHs, Me, F substituted isatin compounds have been produced with high
yield (Table-2b. Scheme-2). Unfortunately, in scheme-2 when we put the reaction with p-nitro
benzyl bromide and methyl isatin the reaction was not moved. The main advantage of this
reaction is that the products were formed in a single step with high yields, scheme-1 and 2

follows similar reactions conditions.

In scheme-1, scheme-2 the final compound structures were confirmed by analytical and
spectral studies i.e IR, *H NMR, *C{H}NMR, and HRMS. In the IR spectra for the compounds
in scheme-1 the imidazole ring N-H stretching was appeared at 3100-3200 cm™, and the
characteristic imidazole alkene C-H stretching shows at 2890-2980 cm™, CN stretching
frequency appear at 2200-2230 cm™, NO, unsymmetric stretching at 1530-1540 cm™ and
symmetric NO; stretching appear at 1330-1340 cm, C-O-C stretching frequency observed at
1150-1250 cm™t, C-Br stretching appear at 712-790 cm™. For scheme-2 compounds the triazole
ring N-H stretching appear at 3200-3300 cm™, oxindoline ring N-H stretching frequency was
observed at 3100-3190 cm™, and C=N stretching was shown at 1520-1560 cm. In the proton
NMR spectra S-CH2 protons appeared as singlet at 4.20-4.95 &6 ppm. The characteristic
imidazole ring C-H proton was observed as a singlet at 7.90 — 8.25 6 ppm and the imidazole
ring N-H proton appear at 12.10-12.90 6 ppm. In scheme-2 the triazole N-H proton was
observed at 11.90 -12.30 & ppm and isatin N-H proton appeared at 10.20-11.15 & ppm. In the
13C NMR spectra the characteristic imidazole alkene C-H carbon shows at 105-110 & ppm. S-
CHa carbon appeared at 33.0-35.2 6 ppm. Isatin C=0 carbon shows at 160-165.0 6 ppm. O-
CHa carbon appear at 58.0-59.2 & ppm. The HRMS spectra of all the compounds molecular
masses matched with [M+H]" ion peak.
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7.2.1. Antibacterial assay.

The In-vitro antibacterial activity of both the synthesized compounds bicyclic thiobenzyl 1,2,4-
triazolo imidazoles (scheme-1) and thiobenzyl 1,2,4-triazolo iminoindolines (scheme-2) were
screened against Gram negative bacteria Escherichia coli (ATCC-25922) and Gram positive
bacteria Bacillus subtilis (ATCC-9372). And results are indicated that the tested compounds in
both the series haven’t shown any significant activity against E. coli at any applied
concentration. However, the scheme-2 compounds exhibited potent antibacterial activity
against B. subtilis, (Gram +ve) with the potency being proportional to the size of the zone of
inhibition (ZOIl). Streptomycin displayed the maximum ZOIl (14 mm), while dimethyl
sulfoxide (DMSO) didn’t produce any detectable ZOl. Among the screened compounds, the
compound 5f have shown the highest ZOI (11 mm), while 5i displayed the lowest ZOI (7 mm).
These findings are presented in Table 3 and Fig.2.

Table-3. The in-vitro antibacterial activity of the compounds against Gram-positive B. subtilis

Plate compound concentration (ug) Z0OIl (mm)
A 5a 200 10
5a 20 8
5a 2 8
5b 200 9
B 5b 20 6
5b 2 9
5c 200 8
5c 20 5
5c 2 5
C 5d 200 10
5d 20 8
5d 2 0
5e 200 9
5e 20 8
D 5e 2 6
5f 200 11
5f 20 8
5f 2 5
5g 200 9
E 5g 20 8
5g 2 6
5h 200 8
5h 20 8
5h 2 8
F 5i 200 7
5i 20 6
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5i 2 0
DMSO 0
Streptomycin 14

Table-3: Antibacterial assay zone of inhibition results of scheme-2 (5a-i) compounds with
three different concentrations (pug).

The minimum concentration of antibacterial agent required for the inhibition of bacterial
growth is calld MIC (minimum inhibition concentration). The MIC values of the scheme-2

were represented in Table-4 compared with standard (Streptomycin) drug.

Table-4 Minimum Inhibitory concentration (mg/ mL) of compounds.

Concentration ZOl
Compound (ug) (mm) MIC (mg/mL)
5a 2 8 0.1
5b 2 9 0.1
5¢c 2 5 0.1
5d 20 8 1.0
5e 2 6 0.1
5f 2 5 0.1
59 2 6 0.1
5h 2 8 0.1
5i 20 6 1.0

MIC (mg/mL) values of the scheme-2 (5a-i series) of compounds.

Fig.2. Disc diffusion method antibacterial assay of the compounds against Gram-positive B.
subtilis.
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7.2.2. Docking compounds to B-DNA

Molecular Docking studies was carried out for the scheme-1&2 series of compounds with the
DNA. Compounds that bind to either DNA or RNA can be used for repression of replication
or transcription and hence explored widely in antibacterial or anticancer studies. DNA structure
is comprised of stacks of nucleotide bases and sugar phosphate backbone. The DNA binding
compounds could either bind at the minor or major groove of the double stranded molecule,
they could intercalate between two nucleotide stacks or the binding could also be non-specific
and electrostatic in nature®. We performed blind docking of the ten compounds of scheme-1
and nine from scheme-2 to the DNA. The crystal structure of B-DNA (1BNA) was obtained
from the protein data bank (PDB). The compounds were then docked one by one using Auto
dock 4.0 (details under materials and methods). The binding energies are given in Table 5 and
Table 5a. The highest binding energy of scheme-1 was found to be 4j (-12.95 kcal/mol) and
that of scheme-2 was found to be 5¢ (-10.59 kcal/mol) respectively. Interestingly, all the docked
complexes of the scheme-1&2 series preferred being bound at the minor groove of DNA (Fig.3
(a) and (b)).

4j 5c

Fig. 3. Binding of B-DNA with (a) 4j and (b) 5¢ which show the highest binding energies of
12.95kcal/mol and -10.59 kcal/mol respectively.
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It was found that both the highest binding interactions occurred at the central part of the DNA
molecule. Compound 4 makes large number of non-bonded interactions. The DNA residues 4-
9 and 18-22 interact with the compound 4j. The compound 5c¢ shows one H-bonded interaction
with the DNA residue number 6 where the N4 from the compound interacts with the oxygen
molecule (O2’) of Adenine 6 nitrogenous base. The binding energies of scheme-2 with the
DNA was found to be consistently lower than scheme-1. In both cases, the binding of the
compounds was with the nitrogenous base alone and no intercation with the sugar phosphate
backbone could be observed (Fig. 4 (a) and (b)).
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Figure-4. Interaction of residues of B-DNA with (a) 4j and (b) 5c. H-bonds are shown as green
dotted lines and non-polar interactions are shows as rays of red lines arising from the residues.
All atoms are colored as per CPK.

Table 5. Docking energies of scheme-1 with B-DNA

Serial No. Compound Docking Energy
1 4a -11.2
2 4b -11.82
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3 4c -11.75
4 4d -11.54
5 4e -10.74
6 4f -12.01
7 4g -11.78
8 4h -12.22
9 4i -11.14
10 4 -12.95

Table 5a. Docking energies of scheme-2 with B-DNA

Serial No. Compound Docking Energy
1 Sa -10.25
2 5b -10.12
3 5C -10.59
4 5d -9.92
5 5e 9.4
6 5f -9.81
7 59 -9.85
8 5h -9.73
9 5i -10.55

Apart from the ability of the compounds to bind to the DNA molecule, we also checked the
propensity of the prepared molecules to bind to other potential proteins and enzymes so that
these molecules could be further explored for their drug-like properties. We found that 4j
compounds were capable of binding to GPCRs, membrane receptors and nuclear receptors and
also to enzymes like kinases, transferases and phosphodiesterase’s. However, we found that
compound 5c¢ has a very good potential of binding to enzymes including kinases (53.3% and
oxidoreductases (26.7%) apart from binding to phosphodiesterase’s and other enzymes. Its
ability to bind to GPCRs is very less (~6.7%). Since, most of the compounds of the series have

similar chemical backbone, comparable binding affinities are expected from other compounds
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of the series with the protein receptors and enzymes. Hence, 2-(benzylthio)-6-phenyl-4H-
imidazo[1,2-b][1,2,4]-triazoles and benzylthio-4H-1,2,4-triazolo  iminoimdoline-2-ones

compounds could be further explored in the drug discovery studies.
7.3. Conclusions.

The synthesis of scheme-1 and scheme-2 final compounds were carried out in a one-pot three
component process. Furthermore, the similar optimization reaction conditions we were used
for both the schemes. The Scheme-1 and scheme-2 series of compounds were screened for their
antibacterial activity against E. coli and B. subtilis by using Streptomycin as reference drug.
The 5 a-i series of compounds have shown their good MIC values against B. subtilis (Gram
+Ve). The B-DNA binding studies are also carried out for all the scheme-1, scheme-2

compounds. Among these the 4j, 5¢c exhibit good binding interactions with amino acid residues.

7.4. Experimental.

7.4.1. Chemistry.

The required chemicals, and solvents for the synthesis of final compounds in Scheme-1 and
scheme-2 were sought from chemical suppliers i.e., Merk, Spectrochem, TCI, Finar. The
completion of the reaction was checked by using silica gel coated aluminium foil plates (TCL)
in ethyl acetate, n-hexane (8:2). Stuart Staffordshire, UK (SMP30) instrument was used to
check m.p and are uncorrected. FT-IR spectra were recorded by using Perkin Elmer
spectrometer with reference to KBr and values were represented in cm™. BRUKER 400 MHz
spectrophotometer was used to record *H NMR spectra, with respect to standard internal
reference compound TMS. The chemical shift values were represented in 6 ppm, and coupling
constant (J) values were indicated by Hz. Proton decoupled *C{H}NMR spectra were
recorded by using BRUKER 100 MHz spectrophotometer with respect to TMS as internal
standard reference compound and chemical shift values were shown in & ppm. Mass spectra

(HRMS) were recorded on the Agilent Technologies Instrument ESI (+Ve mode).
7.4.2 Antibacterial activity.

The in-vitro antibacterial activity of the compounds was evaluated against Gram negative
Escherichia coli (E. coli) and Gram Positive Bacillus subtilis (B. subtilis) bacteria using the
standard disc diffusion method.>® The compounds were dissolved in dimethyl sulfoxide
(DMSO) to prepare three different final concentrations of 200 mg/mL, 20 mg/mL, and 2

mg/mL. 10 pL of each dilution was loaded onto sterile Whatman-1 filter paper discs with a
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diameter of 5 mm and allowed to dry °2. DMSO and Streptomycin (200mg/mL) were taken as
negative and positive controls respectively. 100 pL of freshly grown overnight bacterial
cultures were spread onto sterile nutrient agar plates, and the compound-impregnated paper
discs were placed on top of the plates. The plates were incubated at 37 °C for 24 hours. The

size (in mm) of the zone of inhibition (ZOI) surrounding the disc was measured and recorded.

General procedure for the synthesis of scheme-1 compounds (4 a-j).

A mixture of 5-amino-4H-1,2,4-triazole-3-thiol 1 (1.0 mmol), p-bromo benzyl bromide 2 (1.0
mmol), phenacyl bromide 3 (1.0 mmol) was taken in a 50 mL round bottom flask and added 2
mL of ethanol and 2 equivalents of fused Na,COs, refluxed at 85 °C for 9 h. Completion of the
reaction was checked by TLC and the reaction mixture was poured in to ice cold water, the
white color solid separated was filtered, dried and the compound was recrystalized from

ethanol.
General procedure for synthesis of scheme-2 compounds (5 a-i).

A mixture of 5-amino-4H-1,2,4-triazole-3-thiol 1 (1.0 mmol), p-bromo benzyl bromide 2 (1.0
mmol), isatin 3a (1.0 mmol) was taken in a 50 mL round bottom flask and added 2 mL of
ethanol and 2 equivalents of fused Na>COs, refluxed at 85 °C for 9 h. Completion of the
reaction was checked by TLC and the reaction mixture was cooled and poured in to ice cold
water, the light yellow color solid separated was filtered and recrystalized from ethanol.

7.5. SCHEME-1. Characterization data of synthesized compounds
4-(((6-Phenyl-4H-imidazo[1,2-b][1,2,4]-triazol-2-yl)thio)methyl)Benzonitrile. 4a

White solid; yield 85%; mp. 213°C; IR (KBr) cm™: 3391 (N-
H), 3128 (alkene C-H), 2220 (CN), 1605 (C=N), 764 (C-Br):
'H NMR (40 0 MHz, DMSO-dg) & ppm; 4.42 (s, 2H), 7.44- ;”\%sz{”
7.50 (m, 5H), 7.73 (d, J = 7.4 Hz, 2H), 7.81 (d, J = 8.2 Hz, H

2H), 8.20 (s, 1H), 12.57 (s, 1H), BC{H}NMR (L00MHz, DMSO-ds) & ppm; 35.3, 104.2, 124.8,
128.0, 128.5, 129.1, 129.5, 129.8, 130.6, 133.6, 142.1, 151.6, 161.6, 168.1: HRMS (ESI) (m/2)
Calculated for C1sH13NsS [M+H]* 332.0970; found 332.0969.
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2-((4-Bromobenzyl)thio)-6-(4-bromophenyl)-4H-imidazo[1,2-b][1,2,4]-triazole. 4b

White solid; yield 84%; mp. 230 °C; IR (K Br) cm™: 3370 (N-H),
3156 (Alkene C-H), 1603 (C-Br), 743 (C-Br): 'H NMR (400
MHz, DMSO-ds) & ppm; 4.19 (s, 2H), 7.33 (d, J = 8.4 Hz, 2H), R O .
7.48 (d, J = 8.1 Hz, 2H), 7.81 (d, J = 8.6 Hz, 2H), 7.95 (d, J = 8.6 W

Hz, 2H), 8.25 (s, 1H), 12.60 (s, 1H), *C{H} NMR (100MHz,
DMSO-ds) & ppm; 34.5, 104.8, 120.6, 121.4, 126.7, 128.5, 130.5, 131.4, 131.6, 132.4, 134.0,
138.5, 151.6, 155.4, 157.7: HRMS (ESI) (m/z) Calculated for C17H12BraNsS [M+H]* 462.9227;
found 462.9224.

Br

H

6-(4-Bromophenyl)-2-((4-nitrobenzyl)thio)-4H-imidazo[1,2-b][1,2,4]-triazole .4c

White solid; yield 82%; mp. 212 °C; IR (KBr) cm™: 3371 (N-
H), 3160 (Alkene C-H), 1602 (C=N), 1591, 1346 (NO:
Unsymmetric, Symmetric), 746 (C- Br): *H NMR (400 MHz, N C N?'
DMSO-ds) 6 ppm; 4.34 (s, 2H), 7.64 (d, J = 8.8 Hz, 2H), 7.70 \N\%S ©°
(d, J=8.8 Hz, 2H), 7.81 (d, J = 8.6 Hz, 2H), 7.95 (d, J = 6.7 Hz,

2H), 8.25 (s, 1H), 12.64 (s, 1H), 3C{H} NMR (100MHz, DMSO-ds) 8 ppm; 34.4, 104.4, 123.9,
126.7, 130.4, 130.5, 132.4, 133.9, 147.3, 151.6, 155.0, 157.8: HRMS (ESI) (m/z) Calculated
for C17H12BrNsO2S [M+H]* 429.9973; found 429.9962.

H

2-((4-Bromobenzyl)thio)-6-(p-tolyl)-4H-imidazo[1,2-b][1,2,4]-triazole. 4d

White solid; yield 88%; mp. 217 °C; IR (KBr) cm™: 3362 (N-
H), 3140 (Alkene C-H), 1601 (C=N), 732 (C-Br): H NMR (400
MHz, DMSO-ds) & ppm; 2.33 (s, 3H), 4.35 (s, 2H), 7.27 (d, J = R C N
s
N

H,C

8.0 Hz, 2H), 7.37 — 7.39 (m, 2H), 7.48 — 7.50 (m, 2H), 7.62 (d,
J = 8.2 Hz, 2H), 8.11 (s, 1H),12.46 (s, 1H), BC{HINMR
(100MHz, DMSO-dg) 6 ppm; 21.7, 34.9, 103.6, 120.6, 124.7, 126.9, 128.6, 130.0, 131.4, 131.6,
138.0, “151.3, 157.7, 161.3: HRMS (ESI) (m/z) Calculated for C1sH1sBrNsS [M+H]* 399.0279;
found 399.0274.

H
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2-((4-Bromobenzyl)thio)-6-phenyl-4H-imidazo[1,2-b][1,2,4]-triazole. 4e

White solid; yield 89%; mp. 231°C; IR (KBr) cm™: 3120 (N-H),
2957 (C-H), 1584 (C=N), 783 (C-Br); 'H NMR (400 MHz,
DMSO-ds) & ppm; 4.39 (s, 2H), 7.43 (d, J = 8.5 Hz, 2H), 7.49 — ;”\%Sﬁ@ Br
N

7.55 (m, 5H), 7.77 (d, J = 7.4 Hz, 2H), 8.20 (s, 1H), 12.60 (s, L__H

1H), C{H} NMR (100MHz, DMSO-ds) & ppm; 34.9, 104.2, 120.6, 124.7, 128.5, 129.4, 129.7,
130.6, 131.4, 131.6, 138.4, 151.5, 161.5: HRMS (ESI) (m/z) Calculated for C17H13BrN4S
[M+H]* 385.0122; found 385.0122.

2-((4-Bromobenzyl)thio)-6-(4-methoxyphenyl)-4H-imidazo[1,2-b][1,2,4]-triazole. 4f

White solid; yield 89%; mp. 221°C; IR (KBr) cm™: 3367 (N- |0
H), 3134 (Alkene C-H), 1601 (C=N), 1192 (C-O-C), 734 (C-
Br): *H NMR (400 MHz, DMSO-ds)  ppm; 3.79 (s, 3H), 4.34 /N%Sﬁ@sr

\

~

(s, 2H), 7.03 (d, J = 8.9 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), Ro=n
7.50 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 8.8 Hz, 2H), 8.03 (s, 1H), 12.41 (s, 1H), BC{H}NMR
(100MHz, DMSO-ds) & ppm; 35.0, 55.7, 102.9, 114.9, 120.5, 122.0, 126.4, 130.8, 130.9, 131.4,
131.6, 138.3, 151.2, 159.6, 160.9: HRMS (ESI) (m/z) Calculated for C1gH1sBrNsOS [M+H]*
415.0228; found 415.0253,

2-((4-Bromobenzyl)thio)-6-(4-chlorophenyl)-4H-imidazo[1,2-b][1,2,4]-triazole. 4g

White solid; yield 87%; mp. 241°C; IR (KBr) cm™: 3247 (N- g
H),3103 (Alkene C-H), 1604 (C=N), 795 (C-Cl), 701 (C-Br): 'H
NMR (400 MHz, DMSO-ds) 5 ppm; 4.19 (s, 2H), 7.33 (d, J = 8.4 " O 5
Hz, 1H), 7.39 (d, J = 8.4 Hz, 1H), 7.48 (d, J = 8.1 Hz, 2H), 7.67 \N\%S

(d, J= 8.6 Hz 2H), 7.75 (d, J = 8.6 Hz, 1H), 8.24 (s, 1H), 12.61 -

(s, 1H); BC{HINMR (100MHz, DMSO-ds) & ppm; 34.5, 104.5, 120.6, 126.5, 129.4, 130.4,
131.4, 131.6, 133.4, 138.2, 139.3, 155.1, 157.5, 161.7: HRMS (ESI) (m/z) Calculated for
C17H12BrCINgS [M+H]+ 418.9733; found 418.9746.

6-(4-Bromophenyl)-2-((4-methylbenzyl)thio)-4H-imidazo[1,2-b][1,2,4]-triazole. ~ 4hWhite
solid; yield 88%; mp. 220 °C; IR (KBr) cm': 3104 (Alkene C- |®"
H), 1604 (C=N), 723 (C-Br): *H NMR (400 MHz, DMSO-ds) &
ppm; 2.27 (s, 3H), 4.18 (s, 2H), 7.10 (d, J = 8Hz, 2H), 7.24 (d, :N\%S/—Q’C”s
J=7.9Hz, 2H), 7.68 (s, H), 7.81 (d, J = 8.5 Hz, 2H), 7.95 (d, J Ho
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= 8.5 Hz, 2H), 12.59 (s, 1H); *C{H}NMR (100MHz, DMSO-ds) & ppm; 21.7, 34.4, 124.7,
126.9, 128.6, 129.8, 130.0, 130.8, 131.4, 131.6, 138.4, 144.8, 155.3, 157.7, 161.3: HRMS (ESI)
(m/z) Calculated for C1gH15BrNsS [M+H]+ 399.0279; found 399.0286.

2-((4-Nitrobenzyl)thio)-6-(p-tolyl)-4H-imidazo[1,2-b][1,2,4]-triazole. 4i

White solid; yield 88%; mp. 215 °C; IR (KBr) cm™: 3361 (N-
H), 3039 (Alkene C-H), 1605 (C=N), 1540, 1345 (NO:
Unsymmetric, Symmetric): *H NMR (400 MHz, DMSO-ds) & N /_Q’NI\?-
ppm; 2.27 (s, 3H), 4.18 (s, 2H), 7.10 (d, J = 8Hz, 2H), 7.24 (d, e °
J=7.9Hz, 2H), 7.68 (s, H), 7.81(d, J = 8.5 Hz, 2H), 7.95 (d,

J = 8.5 Hz, 2H), 12.59 (s, 1H); 3C{H}INMR (L00MHz, DMSO-ds) 5 ppm; 21.2, 34.9, 103.6,
123.9, 124.7, 128.6, 129.8, 130.0, 130.4, 131.3, 131.6, 146.9, 147.2, 151.3, 160.8 : HRMS
(ESI) (m/z) Calculated for C1gH15BrN4S [M+H]+ 366.1019; found 366.1029.

H

6-([1,1'-Biphenyl]-4-yl)-2-((4-bromobenzyl)thio)-4H-imidazo[1,2-b][1,2,4]-triazole. 4]

White solid; yield 89%; mp. 222 °C; IR (KBr) cm™: 3324 (N-
H), 3105 (Alkene C-H), 1607 (C=N), 724 (C-Br): *H NMR O
(400 MHz, DMSO-ds) & ppm; 4.20 (s, 2H), 7.33 (d, J = 8.4 Hz, Q

1H), 7.40 (d, J = 8.5 Hz, 2H), 7.47 (s, 1H), 7.49 (d, J = 0.9 - @Br
Hz, 2H), 7.51 (d, J = 2.1 Hz, 1H), 7.74 (s, 1H), 7.78-7.79 (m, S

2H), 7.83 (d, J = 8.6 Hz, 1H), 7.90 (d, J = 8.5 Hz, 2H), 8.25 :

(s, 1H), 12.61 (s, 1H); BC{H}NMR (100MHz, DMSO-ds) & ppm; 34.4, 104.3, 125.2, 127.0,
127.4, 127.5, 127.6, 129.2, 129.4, 129.6, 131.4, 131.6, 131.7, 133.8, 145.6, 155.4, 157.7 :
HRMS (ESI) (m/z) Calculated for C23H17BrN4S [M+H]+ 461.0440; found 461.0454.

7.5.1. SCHEME-2.

(E)-3-((5-((4-Bromobenzyl)thio)-4H-1,2,4-triazol-3-yl)imino)-6-chloroindolin-2-one. 5a
Yellow solid; yield 88%; mp. 210 °C; IR (KBr) cm™: 3379
(Triazole N-H), 3092 (Oxindole ring N-H), 1619 (Imide C=0), BrO\/SK/NjZ
1584 (C=N): 'H NMR (400 MHz, DMSO-ds) & ppm; 4.39 (s, 2H), /

6.88 (d, J = 8.2 Hz, 1H), 7.41 — 7.34 (m, 4H), 7.46 (d, J = 7.6 Hz, o
2H), 9.83 (5, 1H), 10.82 (s, 1H); *C{H}NMR (100MHz, DMSO-
de) & ppm; 35.4, 111.8, 120.2, 120.3, 125.7, 129.5, 131.3, 131.6, 131.8, 139.3, 142.0, 144.4,
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158.3, 165.1, 166.7: HRMS (ESI) (m/z) Calculated for C17H11BrCINsOS [M+H]"447.9634;
found 447.9632.

(E)-3-((5-((4-Bromobenzythio)-4H-1,2,4-triazol-3-yl)imino)-6-iodoindolin-2-one. 5b

Light yellow solid; yield 84%; mp. 220 °C; IR (KBr) cm™: 3335 y
(Triazole N-H), 3089 (Oxindole ring N-H), 1721 (Imide C=0), BrO\/Sml
1601 (C=N), 709 (C-Br), 631 (C-1): *H NMR (400 MHz, DMSO- /Cf’gz
de) & ppm; 4.43 (s, 2H), 6.74 (d, J =8.1 Hz, 1H), 7.39 (d, J = 8.3 [ N °
Hz, 2H), 7.47 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 8.1 Hz, 1H), 10.01 (s, 1H), 10.85 (s, 1H);
BC{HINMR (100MHz, DMSO-ds) § ppm; 35.6, 84.8, 113.0, 120.4, 120.9, 131.4, 131.6, 138.1,
138.8, 140.9, 145.7, 158.1, 165.8: HRMS (ESI) (m/z) Calculated for C17H11BrINsOS [M+H]*
539.8990; found; 539.8981.

(E)-4-(((5-((6-Bromo-2-oxoindolin-3-ylidene)amino)-4H-1,2,4-triazol-3-yl)thio)methyl)

Benzonitrile. 5¢

Light brown solid; yield 86%; mp. 219 °C; IR (KBr) cm™: 3170 = N
(Triazole N-H), 3092 (Oxindole ring N-H), 2228 (CN), 1701 \©\/Smiz
(Imide C=0), 1576 (C=N), 709 (C-Br): 'H NMR (400 MHz, /Cf’g:
DMSO-ds) 6 ppm; 4.49 (s, 2H), 6.83 (s, 1H), 7.80 — 7.48 (m, 6H), Br N °
9.83 (s, 1H), 10.83 (s, 1H); BC{H}INMR (100MHz, DMSO-dg) & ppm; 35.6, 110.0, 112.5,
113.5,119.3,120.4, 130.1, 132.3, 132.7, 135.1, 145.2, 145.7, 157.9, 166.2: HRMS (ESI) (m/z)
Calculated for C1gH11BrNeOS [M+H]" 438.9976; found 438.9971.

(E)-4-(((5-((2-Oxoindolin-3-ylidene)amino)-4H-1,2,4-triazol-3-yl)thio)methyl)Benzonitrile.
5d

Light yellow solid; yield 89%; mp. 216 °C; IR (KBr) cm™:
3204 (Triazole N-H), 3092 (Oxindole ring N-H), 2209 (CN), Nz\@\/s H/N\/N
1698 (Imide C=0), 1601 (C=N): *H NMR (400 MHz, DMSO- /
de) & ppm; 4.42 (s, 2H), 6.83 (d, J = 7.7 Hz, 1 H), 6.88 — 6.92 m
(m, 1H), 7.30 (t, J = 8.2 Hz, 1H), 7.61 (d, J = 8.3 Hz, 2H), :
7.73 (d, J = 8.3 Hz, 3H), 9.38 (s, 1H), 10.61 (s, 1H); C{HINMR (100MHz, DMSO-ds) &
ppm; 35.7,109.8, 110.3, 118.9, 119.3, 121.6, 129.7, 130.1, 132.5, 132.7, 146.3, 156.9, 166.7:
HRMS (ESI) (m/z) Calculated for C1sH12NsOS [M+H]* 361.0871; found 361.0872.
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(E)-3-((5-((4-Bromobenzyl)thio)-4H-1,2,4-triazol-3-yl)imino)-6-fluoroindolin-2-one. 5e

Light yellow solid; yield 85%; mp. 226 °C; IR (KBr) cm™: 3345 M
(Triazole N-H), 3059 (Oxindole ring N-H), 1701 (Imide C=0), Br@ ?IAN
1603 (C=N), 809 (C-F), 723 (C-Br): *H NMR (400 MHz, DMSO- /Cflgzo
de) 6 ppm; 4.36 (s, 2H), 6.85 (s, 1H), 7.18 (td, J = 8.8, 2.8 Hz, 1H), F N
7.37 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 9.48 (s, 1H), 10.71 (s, 1H); *C{H}NMR
(100MHz, DMSO-ds) 6 ppm; 35.3, 111.0, 111.1, 116.8, 118.8, 119.5, 120.3, 131.3, 131.5,
139.3, 142.2, 156.5, 157.9, 158.8, 164.7, 166.9: HRMS (ESI) (m/z) Calculated for
C17H11BrFNsOS [M+H]"431.9930; found 431.9924.

(E)-3-((5-((4-Bromobenzyhthio)-4H-1,2,4-triazol-3-yl)imino)-6-methylindolin-2-one. 5f

Yel-low solid; yield 92%;- mp. 2-15 °C; IR (KBr) c-m L ?:295 N S\</N\/N
(Triazole N-H), 3098 (Oxindole ring N-H), 1695 (Imide C=0), CP il
1603 (C=N), 721 (C-Br): *H NMR (400 MHz, DMSO-ds) & ppm: m°
16 (s, 3H), 4.39 (s, 2H), 7.31 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.5 N
Hz, 2H), 7.45-7.48 (m, 3H), 9.18 (s, 1H),10.62 (s, 1H); 3C{HINMR (100MHz, DMSO-ds) &
ppm; 21.1, 35.4, 110.3, 112.5, 118.6, 120.4, 125.2, 130.2, 130.3, 131.3, 131.62, 131.65, 139.1,
144.2, 166.4: HRMS (ESI) (m/z) Calculated for CigH14BrNsOS [M+H]"428.0180; found
428.0185.

(E)-6-Methoxy-3-((5-((4-nitrobenzyl)thio)-4H-1,2,4-triazol-3-yl)imino)indolin-2-one. 5g

Yellow solid; yield 90%; mp. 231 °C; IR (KBr) cm™: 3345 o .
(Triazole N-H), 3024 (Oxindole ring N-H), 1701 (Imide C=0), | ()" I
1604 (C=N), 1540, 1345 (NO2 Unsymmetric, Symmetric), 1194 /CE’L
(C-0-C); H NMR (400 MHz, DMSO-ds) & ppm 3.70 (s, 3H), ~o N °
4.48 (s, 2H), 6.76 (d, J = 8.4 Hz, 1H), 6.90-6.93 (m, 1H), 7.67 (d, J = 8.8 Hz, 2H), 8.13 (d, J =
8.8 Hz, 3H), 9.32 (s, 1H), 10.46 (s, 1H), BC{H}INMR (100MHz, DMSO-ds) & ppm; 35.4, 55.9,
110.6,116.1, 118.0, 119.5, 123.8, 130.3, 139.6, 146.7, 148.4, 154.7, 156.7, 166.9: HRMS (ESI)
(m/z) Calculated for C1gH14NeO4S [M+H]+ 411.0875; found 411.0870.
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(E)-6-Bromo-3-((5-((4-bromobenzyl)thio)-4H-1,2,4-triazol-3-yl)imino)indolin-2-one. 5h

Yellow solid; yield 91%; mp. 229 °C; IR (KBr) cm™: 3302 -
(Triazole N-H), 3045 (Oxindole ring N-H), 1701 (Imide C=0), Br@Smﬁ
1609 (C=N), 721 (C-Br): 'H NMR (400 MHz, DMSO-ds) & ppm QE(F
5 10.70 (s, 1H), 9.25 (s, 1H), 7.47 (d, J = 8.4 Hz, 2H), 7.38 (d, J Br N
= 8.4 Hz, 2H), 7.32 (d, J = 6.6 Hz, 1H), 6.92 (t, J = 7. 5 Hz, 1H), 6.85 (d, J = 7.7 Hz, 1H), 4.35
(s, 2H). BC{H}NMR (100MHz, DMSO-ds) 5 ppm; 35.3, 113.6, 113.7, 119.1, 120.9, 131.4,
131.9, 132.7, 137.5, 138.1, 147.5, 164.5: HRMS (ESI) (m/2) Calculated for C17H11Br2NsOS
[M+H]* 491.9129: found; 491.9122,

(E)-3-((5-((4-Bromobenzythio)-4H-1,2,4-triazol-3-yl)imino)indolin-2-one. 5i

Brown solid; yield 92%; mp. 214 °C; IR (KBr) cm™: 3302 N
(Triazole N-H), 3024 (Oxindole ring N-H), 1698 ( Imide C=0), Br\@\/sm ’NN
1609 (C=N), 721 (C-Br): *H NMR (400 MHz, DMSO-ds) & ppm CE’QFO
4.35 (s, 2H), 6.85 (d, J = 7.7 Hz, 1H), 6.90 - 6.94 (m, 1H), 7.30 — N
7.35 (m, 2H), 7.37 (d, J = 11.6 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 9.20 (d, J = 7.7 Hz, 1H),
10.70 (s, 1H), 3C{H}NMR (100MHz, DMSO-ds) & ppm;35.4, 110.6, 118.5, 120.3, 121.8,
129.7, 131.3, 131.5, 133.4, 139.2, 146.4, 157.3, 166.3 : HRMS (ESI) (m/z) Calculated for
C17H12BrNsOS [M+H]" 414.0024; found; 414.0021.
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7.6. Copies of spectral data.

'H NMR spectrum of compound 4a (DMSO-ds, 400 MHz) [SCHEME-1]
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Mass spectrum of compound 4a
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13C NMR spectrum of compound 4b (DMSO-dgs, 100 MHz)
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H NMR spectrum of compound 4c (DMSO-ds, 400 MHz)
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Mass spectrum of compound 4c
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13C NMR spectrum of compound 4d (DMSO-dgs, 100 MHz)
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H NMR spectrum of compound 4e (DMSO-ds, 400 MHz)
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Mass spectrum of compound 4e
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13C NMR spectrum of compound 4f (DMSO-ds, 100 MHz)
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H NMR spectrum of compound 4g (DMSO-ds, 400 MHz)
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Mass spectrum of compound 4g
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13C NMR spectrum of compound 4h (DMSO-dgs, 100 MHz)
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IH NMR spectrum of compound 4i (DMSO-dg, 400 MHz)
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Mass spectrum of compound 4i
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13C NMR spectrum of compound 4j (DMSO-dg, 100 MHz)
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SCHEME-2
'H NMR spectrum of compound 5a (DMSO-ds, 400 MHz)
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Mass spectrum of compound 5a
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13C NMR spectrum of compound 5b (DMSO-dg, 100 MHz)
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H NMR spectrum of compound 5¢ (DMSO-ds, 400 MHz)
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Mass spectrum of compound 5c¢
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13C NMR spectrum of compound 5d (DMSO-dg, 100 MHz)
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H NMR spectrum of compound 5e (DMSO-ds, 400 MHz)
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Mass spectrum of compound 5e

'H NMR spectrum of compound 5f (DMSO-ds, 400 MHz)
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13C NMR spectrum of compound 5f (DMSO-ds, 100 MHz)
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Chapter VII

H NMR spectrum of compound 5g (DMSO-ds, 400 MHz)
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Mass spectrum of compound 5¢g
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13C NMR spectrum of compound 5h (DMSO-dg, 100 MHz)
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IH NMR spectrum of compound 5i (DMSO-dg, 400 MHz)
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Mass spectrum of compound 5i
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Summary

CHAPTER-I

A review on Multicomponent Reactions and its Applications in the Synthesis

of Biologically Active Heterocyclic Compounds

This chapter deals with the introduction to multicomponent reactions. These type of reactions
are known as a group of chemical transformations by the rapid assembly of polysubstituted
systems which occur without isolation of undesirable intermediates and most of the atoms
participate in the newly formed bonds that lead to generate target compound with high
percentage of the yield in a single reaction step and shorter reaction time °. These reactions
are useful for the development of C-C, C-N, C-S bonds through single step chemical
transformation °, synthesis of various six membered and five membered heterocyclic
compounds such as thiazoles, triazoles, pyrimidines, pyridines, pyrazoles via 3CC, 4CC, 5CC
reactions and their medicinal applications in pharmaceutical industries "°. And also chapter-1
discuss about different types of methods that are involving in multicomponent reactions such
as solid phase MCRs, water medium MCRs °, ultrasonic assisted MCRs, microwave assisted
MCRs, and other types of multicomponent reactions, in the synthesis of natural products
Moreover, this chapter also describes the brief introduction of 4H-1,2,4-triazole heterocyclic
molecules for the synthesis of fused/unfused five and six membered N, S heterocyclic moieties

which are relevant for the synthesis of pharmacologically active drugs ***2.
The main aims and objectives of the research work

» To develop operationally easy and efficient and straight forward protocol for the

production of bicyclic heterocyclics, isoindolines and schiff bases.

The aforementioned importance of triazoles here in we synthesized various fused/unfused 4H-
1,2,4-triazole based heterocyclic compounds, in the part of this study thioalkylated triazolo
isoindolines (phthalimides), fused [3,2-b] [1,2,4]-triazolothiazole isoindolines and schiff bases,
triazolothiazoles, [1,2,4]-triazolo[1,5-a]pyrimidines, [1,2,4]-triazolo[1,5-a]pyrimidinones and
their sulfones, [1,2,4]-triazolo[3,4-b[1,3,4]thiadiazoles, bicyclic 1,2,4-triazoloimidazoles,

imines, schiff bases by using multicomponent reactions.

The required starting materials like 5-amino-4H-1,2,4-triazole-3-thiol*4, 3-acetyl coumarins®®,
3(2-bromo acetyl) coumarins'® and 4-amino-5-hydrazineyl-4H-1,2 4-triazole-3-thiol'’ were
synthesized by using literature methods. The objectives of the present work are mentioned and

outline of the work carried out in the present investigation are presented.
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CHAPTER-II

A facile one-pot four component synthesis of thio alkyl/aryl/benzyl 1,2,4-
triazolo isoindoline-1,3-diones, and their In-vitro cytotoxic activity,

molecular docking studies, and DFT calculations

This chapter deals with the synthesis of title compounds (5) by the reaction of dipotassium
cyanodithioimidocarbonate salt with hydrazine hydrate, phthalic anhydride and
alkyl/aralkyl/phenacyl bromides using acetic acid and sodium acetate via a one-pot four-
component synthesis (method-1). Alternatively, the same final products were also synthesized
by the reaction of dipotassium cyanodithioimidocarbonate salt with hydrazine hydrate in
presence of acetic acid to give intermediate 5-amino-4H-1,2,4-triazole-3-thiol [1]. (method-2)
This compound was further reacted with phthalic anhydride, followed by a reaction with

alkyl/aralkyl/phenacyl bromides to give the title compounds. Scheme-1.

Scheme-1 (method-1)

X o
X
O + R-Br X O \
) N-N X ~N
_N S'K* 7
NG + NH,.NH,.H,0 _,A‘:;H HZN/QN}KSH x 30 4 X N/<N\ R
- +
K H AcOH/NaOAc x X
Not isolated 80 °C X
1 2 5

R = 4-Nitrophenacyl, 4-Phenyl phenacyl
4-Fluoro phenacyl, 4- Bromo phenacyl,
Phenacyl, 4-Methoxy phenacyl
4-Methyl phenacyl, Benzyl, 4-Nitro benzyl,
Allyl, n-Butyl, n-Heptyl

X=Br, H
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Br

9 N-N Noz o N-N
&MN*S &N/KN%S & s & oy »S
H ° H
o o

5a. 85%, 15 h 5b. 89%, 16 h 5¢ .80%, 13 h 5d. 88%, 14 h
2 N-N O NN 9 NN B /z"f}\
|
@XN)\S dzi’q%s/\/\ dg/('q)\s/\(j Br&{u N s/\@\
| o | | H NO.
o o M o " o z
Br Br
5e.89%,14 h 5f. 81%, 15 h 59.84%,13 h 5h. 90%, 10 h
o 5‘4‘\1 o N-N /4 )\ @ /Q )\S
%NAN)\S/\/ N/«N»\S s /\@
! I
o M (:j go H
5i.86%, 15 h 5j.90%, 12 h 5k. 91%, 10 h 51.90%, 10 h
5m. 88%, 11 h 5n.87%,10 h 50.92%,10 h 5p. 80%, 11 h
o CH,
N—N (o] _
Br N—-N [o] _
I\ R Br N-N O N-N
Br NJ\N)\ST)(O N/(N)\S/\@ NAN)\S/%HH N/QN>\S/C7H15
|
o H o H NO, Br . Ill ll‘
Br Br Br S (o]
5q9.85%, 10 h 5r. 82%, 14 h
55. 8106,10'-. 5t- 810/0, 15h

Reaction conditions: 1 (1.0 mmol), 2 (1.5 mmol), 3 (1.0 mmol), 4 (1.0 mmol) was taken in
AcOH/NaOAc

Method-2.
X o0
X /i
O + R-Br
* o x O
NUSK' AcOH N-N X 4 L N-N
NCTSY" ™+ NHyNH,H,0 . HzN’QN»\SH 3 - ¥ N—QND\S‘R
S’K I AcOH /NaOAc -
0 O
1 ) 1 80°C x* 1
X =H, Br

R = Alkyl/aralkyl/phenacyl

In the method-1 high yields of the products were obtained over method-2. In this chapter total
20 different final products were synthesized and all the new synthesized compound structures
were confirmed by their spectral studies (FT-IR, *H-NMR, *C-NMR, HRMS).

In-vitro cytotoxic assay. The in-vitro cytotoxic study was carriedout for all the synthesized

compounds using HelLa cell lines. Among the screened compounds the 5m, 5p, 5r has shown

good cytotoxic activity.
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Molecular_docking study. In silco studies revealed that, all the synthesized compounds

displayed excellent binding energies towards the receptor active sites. Molecular docking
results were identified based on the ideal interacted ligands with protiene residues. The final
compounds were drawn 2D models using Chemdraw software and converted into 3D structures
using Open Babel GUI version 2.3.2 (Open Bable GUI; Chris Morley, USA). Molecular energy
was minimized using the Energy minimization module of Maestro Tool (Schrodinger software)
under the CHARMM force field. The Crystal structure of c-Met in the complex was retrieved
from Protein Data Bank (PDB ID: 4GG5.pdb).

DET calculations. The mechanism of the reaction was proposed using the density functional

theory based to probe the energetics for formation of product. This study was useful for
calculation of energy required for formation of various intermediates IM1(2.34), IM2(-8.77),
IM3(2.92) and transition states TS1(43.23), TS2(22.84), TS3(34.70) throughout the reaction

mechanism.

CHAPTER-III

One-pot three component synthesis of fused [3,2-b] [1,2,4]-triazolothiazole
isoindolines and Schiff bases, characterization and targeting glioma in-vitro

anticancer activity, molecular docking study.

This chapter describes the synthesis of a new series of fused triazolothiazole scaffolds bearing
isoindoline and Schiff base moieties through multi-component approach, in which the 5-amino-
4H-1,2,4-triazole-3-thiol (1) was reacted with phenacyl bromides (2) and phthalic anhydride
(3), in the presence of EtOH/HCI to produce novel bicyclic triazolothiazole isoindoline
moieties 4 a-n (Scheme-2). On the other hand, when compound (1) was reacted with various
phenacyl bromides (2) and different aromatic aldehydes (5) in EtOH/HCI to give
triazolothiazole Schiff bases 6 a-l1 (Scheme-2.1). And all the compounds were evaluated their

for antitumor activity.
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Scheme-2
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Reaction conditions: Amino mercapto-1,2,4-triazole 1 (1 mmol), Phenacyl bromide 2 (1
mmol), Phthalic anhydride 3 (1 mmol) EtOH in HCI 5 (mol%) 80 °C.

In this scheme-2 we have synthesized 14 new derivatives 4 a-n and the structures of final
compounds were confirmed by their IR, *H NMR, *C NMR, HRMS. And also the compound
4e was confirmed with single crystal data. It is a triclinic system, space group p-1, CCDC.
2171369
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Fig. 1. The ORTEP diagram for single crystal data of the compound 4e
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Scheme-2.1
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Reaction conditions: Amino mercapto-1,2,4-triazole 1 (1 mmol), a-halo acetophenone 2 (1

mmol), aromatic aldehyde 5 (1 mmol) EtOH in HCI 5 (mol%) 80 °C.

In vitro anticancer activity assay: All the scheme-2 & scheme-2.1 derivatives were screened

for in-vitro brain cancer activity using C6 rat and LN18 human glioblastoma cell lines at
different doses and temozolamide was takes as a standard drug. Both the series of compounds
have shown good ICso values and the MAP kinase pathway studies were also carriedout for

compounds 4g, 6i.

Table.1 ICso values of the scheme-2 and scheme-2.1 series of compounds.

Scheme-1 ICso (uM) ICs0 (uM) = Scheme-2 ICso (uM) ICs0 (uM)
Code C6 LN18 Code C6 LN18
4a >50 >50 6a >50 >50
4b >50 >50 6b > 50 >50
4c >50 >50 6¢ 22.40 +0.35 23.69+0.19
4d >50 >50 6d 40.78 £0.71 39.18 £ 0.40
4e 38.2+0.42 41.14+0.29 6e 36.58 £0.52 41.35+0.14
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41 28.15+0.78 | 33.17+0.54 6f 7.564 +1.11 21.51+0.36
4g 8.091+0.43 12.68+0.17 6g 28.32 £0.52 35.99+0.43
4h 38.32+0.82 | 44.49+0.28 6h 56.88 £0.71 52.48+0.24
4i 29.84+0.83 | 31.89+0.26 61 8.74 £0.68 12.56+0.21
4j 20.73£0.52 | 25.67+0.16 6] 41.84 +0.93 44.79+0.31
4k 22.06+0.66 = 25.19+0.35 6k 37.28 £1.40 39.69+0.40
41 5.791-0.64 8.97-0.24 6l 19.22 £0.68 29.77+£0.35
4m 29.12+0.54 = 35.78+0.43

4n 39.91+0.83 = 44.41+0.83

Table-1. ICso values of the synthesized compounds in C6 and LN18 human glioma cell lines

Molecular_docking study: Scheme-2 and 2.1 compounds molecular docking studies were

done by GSK-3p inhibitor complexed with the inhibitor 6QH4001 protein retrieved from the
protein data bank with PDB ID: 5K5N.

CHAPTER-IV

Synthesis of novel thioalkylated triazolothiazoles and their promising in-
vitro antiviral activity

An efficient novel four component protocol for the synthesis of 3-(5-(benzylthio)-4H-1,2,4-
triazol-3-yl)-N,4-diphenylthiazol-2(3H)-imines was carried out by one-pot multicomponent
approach. The reaction of 5-amino-4H-1,2,4-triazole-3-thiol (1) with benzyl bromides (2)

phenyl isothiocyanates (3) and 2-bromo acetophenones (4) in presence of ethanol and DMF
(8:2) gave the novel target triazolothiazoles (5). The schematic representation is depicted in

scheme-3
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Scheme-3.
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Reaction conditions: 1 (1 mmol), 2 (1 mmol), 3 (1 mmol), 4 (1 mmol), in presence of EtOH

+ DMF under reflux condition.
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In this chapter we have synthesized novel compounds 19 5 a-s by using various phenacyl
bromides, benzyl bromides, phenylisothiocyanates and further these compounds structures
were confirmed by their IR, 'H NMR, ¥*C NMR, HRMS.

In-vitro antiviral assay: The final compounds were screened for their broad panel of in-vitro
antiviral activity. Their activity has been compared with that of standard antiviral drugs. Such
as (AMD3100, Remdesivir, Ribavirin, Zanamivir, Rimantadine, Acyclovir, DS-10,000). The
MT-4 CD4* T cell culture was used to evaluate the compounds against human immune
deficient virus (HIV) The virus-induced cytopathogenic effect (CPE) was measured
colorimetrically AMD3100 was used as a reference drug. The compounds 5a exhibited potent
activity against both HIV-1 6.8 uM (NL4.3 strain) and HIV-2 24.3 uM (ROD strain). and 5i
3.7 uM (NLA4.3 strain) and 21.3 uM (ROD strain).

we have also evaluated the whole set of newly synthesized derivatives (5a-s) against a broad
set of viruses. Human coronaviruses 229E and OC43, as well as Herpes simplex virus type 1
(HSV-1 strain KOS) were tested using HEL 299 cell cultures. Here, Remdesivir was used as a
reference drug for human coronavirus and Acyclovir and Dextran sulphate (MW 10,000) were
included as reference compounds for HSV-1. 5h exhibited weak but selective activity against
HCoV-0OC43. The ECsp value of compound 5h against human corona virus is 43.3 uM.

Compound 5f displayed promising activity against the replication of Zika virus, with an

average ECsp value of 9.3 uM against mr766 cell lines.

Lastly, we have also tested the synthesized compounds against three subtypes of influenza virus
(HzN1, H3N2 and B) and respiratory syncytial virus (RSV A strain Long) using MDCK and

Hep2 cell cultures respectively unfortunately, they didn’t show activity against these viruses.

CHAPTER-V SECTION-A

Novel one-pot four component synthesis of 1,2,4-triazolo[1,5-a] pyrimidines,

and their in-vitro anticancer evaluation, molecular docking studies

In this explains the one-pot four component synthesis of 2-((2-oxo-2-phenylethyl/benzyl) thio)-
10-phenyl-4,10-dihydro-9H-indeno[1,2-d] [1,2,4]-triazolo[1,5-a] pyrimidin-9-ones by the
reaction of 1,3-indane dione, aromatic aldehyde, 5-amino-4H-1,2 4-triazol-3-thiol and
phenacyl bromides using acetic acid and a catalytic amount of piperidine at 90 °C for 13 h to

obtained with high yields of the products. (scheme-4)
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Scheme-4

o CHO o
@é R? N=N Q)K/Br AcOH/Piperidi 2

I\ C! Iperidine
+ + /k )\ + _
H,N SH : N
= N R® 9°C )—s
O R
1 2 3 4 R®

5d. 11 h, 90%
Br

5h 10 h, 90%

5.9 h, 93%
Cl

I”\Hﬂsr

5p 10 h, 89%

5t. 9 h, 93%

H
5u. 10 h, 90%

Reaction conditions: 1,3 indane dione (1 mmol), aromatic aldehydes (1 mmol), 5-amino-4H-
1,2,4-triazole-3-thiol (1 mmol), phenacyl bromides (1 mmol) was taken in AcOH/Piperidine
under reflux at 90 °C.

In this scheme-1 we have synthesized 23 different substrates and all the synthesized compounds
structures were confirmed with their spectral analysis. i.e. IR, *H NMR, 3C NMR and Mass.

5v. 11 h, 95% 5w. 10 h, 92%
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In-vitro_anticancer_activity: The compounds were screened for their in-vitro anticancer

activity by using LN18, MCF-7 brest cancer cell lines The compounds 5g and 5h showed best
activity against brest cancer with the ICsp values are 3.8 and 2.7 puM respectively. For
compound 5g using LN18 cell lines the 1Cs values was found to be 7.51 uM while for 5h the
value was found to be 6.5 uM using MCF-7 cell lines.

Table-3: ICso values of the tested scheme-4 compounds against brest cancer

Code LN18 (ICso pM) MCF-7 (ICso pM)
5b 3.3 13.77
5d 9.03 9.3
Se 3.46 20.98
5f 4.2 49.48
5g 3.8 7.51
5h 2.7 6.5
5i 6.16 20.53
5] 3.92 10.39
5m 4.18 36.34
5n Interrupted 50.55
50 2.73 25.33
5p 3.3 14.45
5s 4.33 16.69
ot 4.6 14.72

SECTION-VB

Synthesis of novel thioalkylated triazolopyrimidinones, sulfones and their
biological activity

In this discussed one-pot three component synthesis of thioalkylated 1,2,4-triazlopyrimidines,

sulfones and its biological activity.

Fused triazolopyrimidinones were synthesized via a one-pot three component condensation of
5-amino-4H-1,2,4-triazol-3-thiol, B-ketoester and various 2-bromo acetophenones, 3(2-bromo

acetyl) coumarins, different benzyl bromides in the presence of a mixture of AcOH and NaOAc
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lead to produce a novel thioalkyl (phenacyl/3-(2-bromoacetyl) coumarin/benzyl)

triazolopyrimidinones with notable yields. (Sheme-5).

Scheme-5
| 0 ]
| N 5% AcOH/NaOA NN R
/N c aOAc /
L sk s CHy * RBr — = N
| N 3 90 °C N |
I H H3;C N I
| S 3 " |
I 1 2 4 I
I R = 4-Bromo phenacyl, 4-Fluoro phenacyl, 4-Chloro phenacyII
1 4-phenyl phenacyl, 4-Nitro phenacyl, 4-Methoxy 1
I phenacyl, 4-Cyano phenacyl and 3-(2-acetyl) coumarin, I
I 8-bromo-6- methoxy 3-(2-acetyl) coumarin and Benzyl, I
1 4-Nitro benzyl, 4-methyl benzyl, 4-Cyano benzyl, 1
. dBomobenzyl.
o o o o] 0 0 o [o]
_N -N -N
N N N -N
| \>7S rL \%S rL = \%S )
N)QN N)QN N)\N ‘ /]QN>*S
H H H N
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9 (o] o
(s - g e Lo e
/}Q ‘ N—§ N~ Y N~ N
= S
v . [ L) X
H N N
NO, el H
4e. 82%,17 h 4f. 80%, 20 h 49g. 80%, 16 h F 4h. 92%, 18 h
0 o
‘ N,N% o] o o
>—s
s -N
NN (e [ )
H N)QN
Br H
4i.84%,19 h MeO 4j.88%,17 h CN

Reaction conditions: 1 (1 mmol), 2 (1 mmol), 3 (Immol) mixture in AcOH/NaOAc reflux at
90 °C.

The synthesized final compounds (4a-1) were characterized by IR, *H NMR, *C NMR, HRMS
Scheme-5.1

In this scheme the above scheme-5 sulphide compounds such as 2-(substituted benzylthio)-5-
methyl-[1,2,4]-triazolo[1,5-a]pyrimidin-7(4H)-ones were converted in to their sulfones using
hydrogen peroxide in acetic acid at 60-65 °C. lead to produce the corresponding sulfone
derivatives 6a-e. The synthesis of sulfone compounds has depicted in scheme-5.1
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Scheme-5.1
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Reaction conditions: Para-substituted thiobenzyl 1,2,4-triazolo pyrimidinone (1 mmol), H20>
(3 mmol), taken in AcOH heat at 65 °C.

The above synthesized final compounds in scheme-5, scheme-5.1 compounds have been
confirmed by their spectral analysis such as FT-IR, *H NMR, **C NMR, HRMS.

Biological activity:

Further the scheme-5 compounds (4a-j) have screened for their broad panel of antiviral activity
using different cell lines. The antiviral potency of the compounds was compared with standard
reference antiviral drugs (AMD3100, Remdesivir, Ribavirin, Zanamivir, Rimantadine,
Acyclovir, DS-10,000). The MT-4 CD+4 cell culture was used for anti HIV-1 and the
compound 4k has shown significant activity against HIV-1 the ECsp value is 8.8 uM. And also
among all the screened compounds the compound 4g exhibits promising HCoV (Human
Corona virus) activity by using HEL 299 cell line the ECsg value is 4.7 uM. And also further
both the scheme-5 & scheme-5.1 compounds were screened for their antimicrobial activity

with respective to gram —VVe and gram +Ve bacterial strains.
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CHAPTER -VI

Novel one-pot synthesis, characterization, DNA binding studies of fused
[1,2,4]-triazolo [3,4-b][1,3,4] 6-aminothiadiazines and their

hydrazineylidene indolin-2-ones, Schiff bases

This chapter describes an efficient one-pot synthesis of fused [1,2,4]-triazolo[3,4-b][1,3,4] 6-
aminothiadiazoles and their hydrazineylidene indolin-2-ones, Schiff bases. These compounds
were synthesized by the reaction of 4-amino-5-hydrazinyl-4H-1,2,4-triazolo-3-thiol with
different substituted isatins /aromatic aldehydes in presence of ethanol to gives Schiff bases
and imines. These on cyclocondensation reaction with bromo acetonitrile and catalytic amount

of EtaN to afford fused heterocyclic compounds 6-aminothiadiazoles with high yields.

Scheme-6

T e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e I
_ H R N=N

EtOH/Et;N
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H N SH H [}] S

|
NH, N
1 2 3 4

R = 4-Nitro phenyl, 3,4-Di methoxy phenacyl,

4-Fluoro phenacyl, 2-Hydroxy-3-methoxy phenyl,

2,4-Di chloro phenyl, 4-Bromo phenyl, 2-OH, 4-Nitro phenyl,
phenyl, 4-CN phenyl.

Substrate scope of the reaction.
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O:N MeO, © F
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H N)\S N [}j S H l}l s H ’}1)\8
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NH, NH, NH, NH,
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cl Br O,N NC
Cl OH
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H l}l S H l}l S H '}l S H [}] S
Nﬁ) Ny N ﬁ)
NH, NH, NH, NH,
4e, 80%, 10 4f, 88%,9 h 49,90%, 10 h 4h, 87%,12h

Reaction conditions: 1,2,4-triazole 1 (1 mmol), aldehyde 2 (1 mmol), Bromo acetonitrile 3
(2 mmol), EtOH/Et3N.
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Scheme-6.1
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Reaction conditions: 1,2,4-triazole 1 (1 mmol), Isatin 2 (1 mmol), Bromo acetonitrile 3 (1
mmol). EtOH/EtzN.

All the synthesized compounds were characterized by IR, *H NMR, *C NMR, HRMS. And
also DNA binding studies, molecular docking simulations were carriedout for all the

compounds.

CHAPTER-VII

Novel one-pot synthesis of imidazo[2,1-b][1,2,4]-triazoles, 1,2,4-triazolo
iminoindoline-2-ones and their in-vitro antibacterial activity, B-DNA study
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This chapter deals with the one-pot synthesis of fused[2,1-b][1,2,4]-triazoles and thioalkylated
1,2,4-triazolo oxindolines.

R1
o)
/Z"N Br B EtOHINa,CO /NN
e /©/\ + EtOH/Na,CO, N~
\
H,N H SH R R 85°C,9h /N/L\N%S R
H
1 2 3 4 a-j

R = Br, NO,, Me, CN
R'=H, Br, Me, OMe, CI, Ph

Br Br H;C

7 N—"{ 7 N—"{ Z N"‘{
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4a.85%, 9 h 4b.84%, 8 h 4c. 82%, 9 h 4d.88%, 8 h
MeO cl Br
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HC Ph
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4i.88% 9 h 4j.89%,9 h

Reaction conditions: 1 (1 mmol), 2 (1 mmol), 3 (1 mmol) were taken in 2 mL Ethanol/Na>CO3
refluxed at 85 °C for 9 h to produce 89% of the yield of the products.

Scheme7.1
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Reaction conditions: 1 (1 mmol), 2 (1 mmol), 3a (1 mmol) mixture was taken in 2 mL
EtOH/Na.,COs and reflux at 85 °C for 9 h. 92% yield was obtained.

In this the reaction of 5-amino-4H-1,2,4-triazole-3-thiol with substituted benzyl bromides, and
various phenacyl bromides using EtOH/Na>COs under reflux temperature to afford the
corresponding bicyclic thiobenzylated triazolo imidazole heterocyclic compounds with good
yields (Scheme-7). On the other hand, the condensation of 5-amino-4H-1,2,4-triazole-3-thiol
with different substituted isatins, benzyl bromides in presence of similar reaction conditions
such as EtOH/Na>CO3 lead to the thiobenzylated 1,2,4-triazolo oxindolines with high yields.
(Scheme-7.1)

All the new synthesized derivatives of scheme-7 and scheme-7.1 structures have confirmed by
their spectral analysis FT-IR, *H NMR, *C NMR and HRMS. Moreover, all the derivatives of
the scheme-7 & 7.1 were screened for antibacterial activity and B-DNA binding studies. The
scheme-7.1 compounds has shown good antibacterial activity against streptomycin Gram +Ve

bacteria.
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ABSTRACT ARTICLE HISTORY
Alkyl/aralkyl/phenacyl thiotriazolyl isoindoline-1,3-diones were synthesized Received 10 October 2021
by the reaction of dipotassium cyanodithioimidocarbonate salt with hydra- Accepted 9 February 2022

zine hydrate, phthalic anhydride and alkyl/aralkyl/phenacyl bromides using
acetic acid and sodium acetate via a one-pot four-component synthesis.
Alternatively, the same final products were also synthesized by the reaction
of dipotassium cyanodithioimidocarbonate salt with hydrazine hydrate in
presence of acetic acid to give intermediate 5-amino-4H-1,24-triazole-3-
thiol [l]. This compound was further reacted with phthalic anhydride, fol-
lowed by a reaction with alkyl/aralkyl/phenacyl bromides to give the title
compounds in a two-step process. In this method, the yields are less com-
pared to one-pot four-component synthesis. All the newly synthesized
compounds were characterized by their spectral studies (FTIR, TH-NMR,
*C-NMR, Mass). Further, the synthesized compounds were screened for
their in-vitro anticancer activity. Compounds 5m, 5p, 5r showed good
cytotoxic assay against Hela cancer cell lines. Furthermore, compounds
5(a-t) were subjected to their docking analysis and DFT calculations.
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Isoindoline; Sulfone; Anti-
cancer activity; Docking;
DFT calculations
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Keywords:

Fused heterocycles
Apoptosis

MAP kinase pathway
X-ray crystal data

Glioma is aggressive malignant tumor with limited therapeutic interventions. Herein we report the synthesis of
fused bicyelic 1,2,4-triazolothiazoles by a one-pot multi-component approach and their activity against C6 rat
and LN18 human glioma cell lines. The target compounds 2-(6-phenylthiazolo[3,2-b][1,2,4]triazol-2-y1)
isoindoline-1,3-diones and (E)-1-phenyl-N-(6-phenylthiazolo[3,2-b][1,2,4]triazol-2-yl) methanimines were ob-
tained by the reaction of 5-amino-4H-1,2,4-triazole-3-thiol with substituted phenacyl bromide, phthalic anhy-

dride, and different aromatic aldehydes in EtOH/HCl under reflux conditions. In C6 rat glioma cell lines,
compounds 4g and 6i showed good cytotoxic activity with IC5, values of 8.09 and 8.74 pM, respectively,
resulting in G1 and G2-M phase arrest of the cell cycle and activation of apoptosis by modulating phosphory-

lation of ERK and AKT pathway.

Glioma is the most aggressive primary brain tumor with few treat-
ment options and dismal prognosis. While standard treatment ineludes
complete surgical resection followed by chemo-radiotherapy, recent
scientific advances have led to the consideration of novel approaches
like immunotherapy, gene therapy, altered signal transduction, and
angiogenesis.' Despite all the available treatments, recurrence of GBM
and drug resistance are its limitations and the reason for small median
survival rate.” Hence, comprehensive analysis is required for a better
understanding of this fatal disease. Genomie profiling of various tumors
has revealed aberrant mutations in Mitogen-activated protein-kinase
(MAPK) and associated pathways. such as AKT/mTOR pathway.™"
Overactivation of MAPK/ERK pathway promotes cell proliferation and
subsequent phosphorylation of downstream substrates which can be
related to tumor formation.” Elevated ERK expression has been detected
in some of the commeon human cancers like ovarian, breast, brain and
lung. But inhibition of ERI/MAPK path can significantly decrease the
survival of tumor-forming cells and promote apoptosis.”® MAPK and
associated signaling pathways can lead to a response through ER stress
signaling pathway.” Therefore, in this study we evaluated the in vitro
activity of the synthesized triazolothiazoles against glioma cell lines as

* Corresponding authors.

well as their mode of action.

The N-substituted imines and isoindolines have been identified as
one of the most important scaffolds with R-CH = N-R, —~CO-N{R}-CO-
structures. The isoindoline unit makes them hydrophobie, neutral and
can easily crass biological membranes.® '

Because of their good biological activity, fused heterocyclic com-
pounds with N and S have attracted a lot of interest in the field of me-
dicinal chemistry.'"'® The antitumor properties of the 2-amino-1,3,4-
thiadiazole skeleton are well recognized, and its fused systems with
the imidazo [3,2-b][1,2,4] triazole ring system are likewise known to
possess remarkable anticancer activities.'”"'® Hybrid molecules ereated
by eombining distinet pharmacophores could lead to compounds with
interesting biological characteristics. Fig. 1 shows similar reported
anticancer moieties.'” %

Motivated by these findings and in continuation of our research in
the synthesis of various bioactive heterocyclic units™>* we have syn-
thesized a series of fused triazolothiazole scaffolds bearing isoindoline
and schiff base moieties and evaluated their activity against C6 rat and
LN18 human glioma cell lines.

The target compounds were synthesized by a multi-component

E-mail addresses: prakash@uohyd.ac.in (P.P. Babu), vrajesw@nitw.ac.in (R.R. Vedula).
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A novel series of 1,2,4-triazolothiazoles were efficiently synthesized by the reaction of 5-amino-4H-1,2,4-triazol-
3-thiol, benzyl bromides, phenyl isothiocyanates and phenacyl bromides under one-pot process in the presence of
EtOH/DMF. The products were obtained in pure form with high yields. All the newly synthesized compound
structures were confirmed by spectral analysis i.e. IR, '"H NMR, '3C NMR and HRMS. All the synthesized de-

rivatives were screened against a broad panel of viruses. Among them, two derivatives (5a and 5i) were capable
of inhibiting both HIV-1 and HIV-2 replication in MT-4 cells, while seven other compounds showed selectivity
towards HIV-2. Moreover, compound 5f has showed promising activity against the replication of Zika virus.
Further, molecular docking studies were performed for the most active compounds.

1. Introduction

The past few years we have seen the emergence of several viral in-
fections, including outbreaks of the Ebola virus in Africa, the Zika virus
spreading across the Americas, and coronavirus disease 2019 (COVID-
19), a pandemic caused by the novel coronavirus, severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2), in people around the
world [1]. Viruses can be classified by the type of viral genome they
possess, namely DNA or RNA viruses. The DNA containing viruses
include Herpes simplex wvirus -1 (HSV-1), Herpes simplex virus-2
(HS5V-2), Adenoviruses, Smallpox viruses, Papillomaviruses [2]. The
vast majority of viruses however have RNA genomes, and respiratory
syneytial virus (RSV), parainfluenza virus-3, Zika virus, Ebola virus,
Coronavirus, and HIV are among the most significant RNA viruses [3].
Respiratory syncytial virus is a major cause of respiratory illness, mainly
in young children [4]. Zika virus is transmitted primarily by Aedes
mosquitoes. Symptoms are generally mild, but there is an increased risk
of neurologic complications such as Guillain-Barre syndrome or brain
damage [5]. HIV is the virus that causes the chronic, potentially
life-threatening acquired immunodeficiency syndrome (AIDS). This
virus contains an RNA genome but passes through a DNA intermediate
during its infection cyele [6]. HIV can be treated with antiretroviral
medicines, but a combination of drugs is mostly used because the virus

* Corresponding author.
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can quickly adapt and become resistant [7]. Evaluation of antiviral
resistance has led to continued interest in design of innovative antiviral
drugs, that are efficacious against various circulating resistant strains,
have fewer side effects and high therapeutic efficiency.

Hantzsch thiazole method is used for the construction of simple
thiazoles. The thiazole moiety is an important heterocyclic core unit for
the development of biologically active molecules [Sa, 8b]. In particular,
the thiazole 2-imine derivatives have received a lot of attention in me-
dicinal chemistry because these substances display drug-like properties
and most of them are extensively used in the pharmaceutical industry
and natural products [9-17]. Recent literature reveals that 1,2,4-tria-
zoles are also important heterocyelie compounds in drug discovery
and biological applications [13,19]. In the present study the chosen 1,2,
4-triazole has both NHz2 and SH functional groups which are extremely
straightforward to build novel triazolothiazole moieties. The 1,2,4-tria-
zol ring structure possesses anticancer [20], antiviral [21], antifungal
[22], antimicrobial [23], antioxidant [24], antibacterial [25] and anti-
proliferative activities [26], and is also used in agricultural industry
[27]. Recently potent biological activity was reported for 1,2.4-triazole
associated with a thiazole heterocyelic ring [28]. Thio alkylated tri-
azolothiazole 2-imines were mainly used in the medicinal and phar-
maceutical field and possess antiviral [29], anticandidal [30]- and
antituberculosis activity [31], Anti-inflammatory [32] among others.
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