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SUMMARY

Classifying lower-grade gliomas (LGGs) and glioblastoma multiforme (GBM) is a
crucial step for accurate therapeutic intervention. The histopathological classification of
various subtypes of LGG and GBM suffers from intraobserver and interobserver variability,
leading to inaccurate classification and greater risk to patient health. Accurate diagnosis of
glioma subtypes and identification of specific molecular features are crucial for clinicians for
systematic treatment. The efficient machine learning and deep learning-based classification
frameworks were designed to diagnose subtypes and grades of glioma using transcriptome
and methylome data. The frameworks achieved >90% accuracy in diagnosing the subtypes.
To evaluate the biological and clinical applicability of the classification, weighted gene
correlation network analysis, co-expression, gene set enrichment, and survival analysis of
the feature genes were performed, and subtype-specific prognostic biomarkers were
identified. Furthermore, a biologically and clinically interpretable deep learning-based model
was developed by integrating transcriptome and methylome data using an autoencoder for
glioma subtype classification. The method of precision therapy is more expansive than just
subtype classification, and the accurate selection of drugs is a major challenge. The poor
prognosis of glioma patients brought attention to the need for effective therapeutic
approaches for precision therapy. Here, algorithms relying on network medicine and artificial
intelligence were deployed to design the framework for subtype-specific target identification
and drug response prediction in glioma. Subtype-specific disease modules in each subtype
of glioma were identified by utilizing a network-based approach, and drugs for which the
disease module has a target gene were identified. However, the efficacy of anti-cancer drugs
depends on the molecular profile of the cancer and varies among cancer patients due to
intratumor heterogeneity. To overcome this limitation, the present thesis designed an Al-
based drug response prediction model for different subtypes of glioma. Results showed that
subtypes of gliomas respond differently to the drug, highlighting the importance of subtype-
specific drug response prediction. Overall, the thesis shows how personalized therapies may
be developed using Al models based on genomic data, which can result in cancer-specific

treatments and better patient care.
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Chapter 1: Introduction

Brain cancer is a destructive complex genomic disease with a low survival rate. It arises
from an accumulation of genetic and epigenetic changes in somatic cells. Although brain cancer
comprises only 2% of all human cancer, the treatment of brain cancer is challenging due to
molecular heterogeneity and late diagnosis, which leads to an increase in the mortality rate L.
The latest WHO documentation indicates over 100 distinct forms of brain tumors 2. The most
common form of brain tumor is gliomas, a category of primary brain tumors that arise from
glial cells in the Central Nervous System (CNS), are highly heterogeneous, and exhibit a wide
range of morphological, molecular, and clinical characteristics. This heterogeneity poses
significant challenges to the diagnosis, treatment, and prognosis of gliomas 3. Accurately
classifying Gliomas type and grade is vital to improving brain cancer patients' prognosis. Due
to the enormous complexity at the molecular level, the critical molecular driver of glioma is
poorly understood. Gliomas are the most prevalent type of brain tumor, accounting for
approximately 33% of all cases. Gliomas are classified based on histologic types and
malignancy grades. Most gliomas are infiltrative and diffuse gliomas 4. Gliomas are classified
according to how rapidly or slowly the cells divide. Slower-growing gliomas are known as
lower-grade glioma (LGG), whereas more aggressive or rapidly-growing gliomas are named
glioblastoma multiforme (GBM). LGG occurs more frequently in younger people, whereas
GBM is more common in older patients. The LGG is a grade Il and Il tumor with three
subtypes: astrocytoma, oligoastrocytoma, and oligodendroglioma. Astrocytomas arise from
astrocytes, and oligodendrogliomas arise from oligodendrocytes, whereas oligoastrocytomas
are mixed glioma, including oligodendroglioma and astrocytoma cells. Therefore, the
pathological classification of oligoastrocytoma remains controversial due to its resemblance to
both subtypes °. Some of these LGG turn into GBM, the grade IV tumor, but others stay in this
stage for a long time 87. Glioblastoma (GBM) is characterised by its significant invasiveness
and is recognised as the most lethal form of brain tumour in the adult population. Similarly,

there are three subtypes of GBM, i.e., classical, proneural, and mesenchymal &

The prognosis for patients with GBM is poor, and median survival is 12 months °. The
molecular mechanisms of GBM tumorigenesis is unknown. This leads to ineffective therapeutic
intervention, and many patients relapse. However, with the current treatment options for both

LGG and GBM, i.e., surgery, radiotherapy, and chemotherapy, patient life expectancy can be
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increased, but these are not curative. Understanding the molecular features and identification
of LGG and GBM subtypes is crucial to find the remedial solution. Due to distinct molecular
characteristics, the subtypes of glioma have different clinical outcomes and responses to
treatment, highlighting the importance of personalized medicine for brain cancer treatment °.
To find the curative solution, understanding the molecular features and identification of glioma
subtypes is crucial. Therefore, there is an urgent need to identify the subtype-specific molecular
marker for personalized therapy. Each of the subtypes of LGG and GBM has distinct molecular
features, and they can be classified using genomics, epigenomics, and mutational profiles for
clinical diagnosis. The rapid progress in high throughput genomics technology has resulted in
the generation of a substantial volume of data pertaining to various molecular layers that can

be used to detect features and find genomic connections between them.

Brain tumors

Primary brain Secondary brain
tumors tumors
B 1
Slow growmg Rapidly growmg
cells celis
Grade1 Grade2 Grade3 | Grade4
(LGG) (LGG) (LGG) (HGG)

Figure 1.1: Division of glioma based on slow growing and rapidly growing cells. Lower grade
glioma (LGG) comes under in slow growing glioma and high-grade glioma (HGG) comes

under the rapidly growing glioma.

Data from sequencing experiments reveal that cancer initiation, progression, and
maintenance are caused by perturbations in multiple genomics, epigenomics, and mutational
factors. Gene expression and methylation are strongly interlinked processes; methylation levels
in promoter regions influence gene expression by regulating transcription factor binding *
Similarly, gene expression and mutations are closely interconnected processes; mutations have

the ability to modify gene expression within a protein coding sequence, hence impacting the
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functionality of the protein and disrupting cellular pathways. Therefore, classification using
multiple omics data, i.e., transcriptome, methylome, and mutation data can provide optimal
features for the clinical diagnosis of cancer subtypes. Analysis of high-throughput omics data
from different molecular layers can decipher the link between molecular signatures and cancer
phenotype. Indeed, multi-omics data integration can elucidate how the molecular alterations at
different layers contribute to disease formation and provide a global view of the molecular
signature of disease. The biologically relevant diagnostic model can be developed by
integrating gene expression, methylation, and mutation data because these data are biologically
interlinked. Therefore, integration of multi-omics is essential to develop efficient Al-based

diagnostic tools for accurate classification of cancer subtypes.

The method of precision therapy is more expansive than just subtype classification, and the
accurate selection of drugs is a major challenge. However, anti-cancer drugs frequently do not
work effectively. Molecular heterogeneity is a major contributor to cancer drug resistance, as it
can create subpopulations of cancer cells with different mutations or molecular characteristics
that allow them to survive even in the presence of the drug *>*3. Hence, cancer patients with the
same pathological conditions differ greatly in treatments. Therefore, the prediction of drug
response, i.e., resistance or sensitivity, is essential for improving the efficacy of chemotherapy.
Both accurate subtyping and drug response prediction model are crucial for the precision
therapy of glioma. A DL-based model can improve the overall precision and efficacy of
diagnostic processes using large-scale omics data. However, it is essential to design a
biologically and clinically relevant Al-based diagnostic model to increase the reliability of
diagnosis. In the present thesis, an Al-based diagnostic tool and drug response prediction model

was developed for the precision therapy of glioma.

In this thesis, our focus has been directed towards the utilisation of artificial intelligence
(Al), specifically machine learning (ML) and deep learning (DL) algorithms, to analyse data.
These algorithms dive into the data, finding patterns, extracting a relationship between complex
features discovering properties in genomics data such as transcriptome, methylome, and
mutational data that the human brain cannot perceive. Al integration in brain cancer care could
enhance brain cancer diagnosis and prognosis, stimulating the drug discovery and the
development of effective therapies, aid clinical decision-making, and result in better health
outcomes. Next, developed a biological interpretable model for glioma subtype classification

and identify subtype-specific biomarkers of glioma. Further, a framework was developed by
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combining network medicine and Al-based approaches to systematically integrate omics data
to identify subtype-specific disease modules for precision therapy of glioma and drug response
prediction models. Therefore, this thesis aims to contribute a novel perspective on enhancing
the accuracy of cancer diagnosis, prognosis, and treatment with the help of Al.

Organization of the Thesis

The thesis presents the work in seven chapters, and the following section gives the outline.

Chapter 1: Presents a general introduction to brain cancer: presents diagnosing methods of
brain cancer, data integration of different molecular levels of genomics in glioma, and precision

therapy of glioma.

Chapter 2: Presents literature review on brain cancer classification, genomic alternations in
brain cancer such as gene expression data, mutational profiles, DNA methylation data. Artificial
intelligence techniques in cancer classification. Artificial intelligence techniques in genomics
data types and Integration of genomic data for brain cancer classification. Cancer classification
by utilizing machine learning and deep learning methods are also discussed, and finally, the
Aim of the Work is enlisted. This chapter underlines gaps in the present knowledge and the

objectives framed for the present study.

Chapter 3: Presents a detailed description of the Development of a machine learning-based
framework for subtyping and grading of lower-grade glioma (LGG) using transcriptome data
and the identification of biomarkers (objective 1). An efficient machine learning-based
classification framework to diagnose LGG subtypes and grades using transcriptome data is
presented. The development of an integrated feature selection method based on correlation and
support vector machine (SVM) recursive feature elimination was done. Then machine learning
models, i.e., Support Vector Machine (SVM) k-nearest neighbors (kNN), Gaussian Nave Bayes
(GNB), Decision Tree (DT), and Random Forest (RF), were developed. This chapter also shows
a 6-class classification model to predict grades and subtypes simultaneously. Furthermore,
several predictive biomarkers using co-expression, gene set enrichment, and survival analysis

were identified.

Chapter 4: Presents a detailed description of the Development of Deep learning and machine
learning frameworks based on genomic data for subtyping glioblastoma multiforme (GBM) and
identification of biomarkers (objective 2). In this chapter, a biologically interpretable and highly

efficient deep learning framework based on a convolutional neural network for subtype
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identification was developed. The classifiers were generated from high-throughput data at
different molecular levels, i.e., transcriptome and methylome. An integrated subsystem of
transcriptome and methylome data was also used to build the biologically relevant model.
Furthermore, to evaluate the biological and clinical applicability of the classification, weighted
gene correlation network analysis was performed, gene set enrichment, and survival analysis of

the feature genes.

Chapter 5: Presents a detailed description of the Implementation of a deep learning embedding
system for multi-omics data integration for the subtyping of Glioma (objective 3). Here, the
transcriptome and methylome data of glioma patients were preprocessed, and differentially
expressed features from both datasets were identified. Subsequently, a Cox regression analysis
was performed to determine the genes and CpGs associated with survival. Gene set enrichment
analysis was carried out to examine the biological significance of the features. Further, CpG
and gene pairs were mapped based on the promoter region. The methylation and gene
expression levels of these mapped CpGs and genes were embedded in a lower-dimensional
space with an autoencoder. Next, ANN and CNN were used to classify subtypes using the latent
features from embedding space. This chapter shows that multi-omics data integration performed
better than mono-omics data for subtype classification.

Chapter 6: Presents a detailed description of the Identification of subtype-specific disease
modules and development of drug response prediction models by combining network medicine
and Al-based approaches (objective 4). The algorithms relying on network medicine and
artificial intelligence were deployed to design the framework for subtype-specific target
identification and drug response prediction in glioma. The driver mutations that were
differentially expressed in each subtype of lower-grade glioma and glioblastoma multiforme
were identified. Differentially expressed driver mutations were subjected to subtype-specific
disease module identification. The drugs from the drug bank database were retrieved to target
these disease modules. Next, a deep-learning-based drug response prediction framework was

developed using the experimental drug screening data.

Chapter 7: Presents the conclusions drawn from the results. Potential future work and the scope

of this work are also summarized.
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2.1 Brain cancer epidemiology

Brain tumors are relatively rare but deadly cancers that preferentially arise in the cerebral
hemispheres of the central nervous system (CNS). According to the 2021 report by the World
Health Organisation (WHO), the death rate of central nervous system (CNS) brain cancer
exhibits the highest prevalence in Asia (https://gco.iarc.fr/). The 2020 global cancer statistics
show that the number of new cases of brain cancer worldwide is about 308,102. The number of
brain cancer deaths is 251,329 accounting for 2.8% of the total new cancer deaths 4. The
mortality rate among male brain cancer patients is 138,277, representing 3.2% of the overall
new cancer-related deaths. Similarly, the mortality rate among female brain cancer patients is
113,052, accounting for 2.4% of the total new cancer-related deaths. The number of new
patients with brain cancer in India is 31.5k, and the number of deaths is 26.7K, accounting for
43.9% and 48.6% of global cases, respectively. The mortality rate of brain cancer is relatively
high because most patients are already at an advanced stage when they are detected. Therefore,
finding effective biomarkers of early brain cancer is a vital way to reduce the high mortality
rate of brain cancer. It is difficult to cure brain cancer because of its protected location.
Nowadays, brain tumors can only partially cure by surgery, radiation, chemotherapy, and
targeted therapy, having the risk of long-term patient morbidity. For targeted therapy, cancer
grading is essential, as a cancer diagnosis is highly invasive, time-consuming, and expensive.
There is a requirement for the development of affordable, and effective technologies for
classifying and grading brain cancer and the advancement of targeted therapeutics involves the
utilisation of molecularly targeted drugs that specifically target the cellular alterations
responsible for the transformation of normal cells into cancerous cells, by which cancer should
be detected at the earliest stage, so that many lives can be saved. However, when cancer is

advanced, and the chances of survival are minimal, treatment becomes quite challenging.

2.2 Classification of brain cancer

Brain tumors can be classified either benign or malignant. Benign brain tumor cells have
defined borders, seldom spread to nearby healthy cells, and develop slowly. Malignant brain
tumor cells readily attack nearby cells, have hazy borders, and develop quickly. There are exist
various forms of brain tumours, including choroid plexus tumours, embryonal tumours,
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meningiomas, gliomas, and pituitary tumours. Glioma is the most prevalent type of brain
tumour among all patients 1. According to the growth rate of cancer cells, brain cancer can be
classified into different grades, varying growth rates from low aggressive metastasis to high
aggressive metastasis grade, i.e., low-grade glioma (LGG) and high-grade glioma (HGG).
Grade I, I, and 111 come under the LGG, and Grade IV comes under the HGG, i.e., glioblastoma
multiforme (GBM). The LGG are classified as astrocytoma, oligodendroglioma, and
oligoastrocytoma. Astrocytomas arise from astrocytes, and oligodendrogliomas arise from
oligodendrocytes, whereas oligoastrocytomas are mixed glioma, including oligodendroglioma
and astrocytoma cells. Therefore, the pathological classification of oligoastrocytoma remains
controversial due to its resemblance to both subtypes °. However, several attempts have been
made to classify the oligoastrocytoma subtypes based on the genetic profile of individual
markers 1. GBM could be classified into four subtypes based on transcriptional features, i.e.,
classical, neural, proneural, and mesenchymal. However, recent findings suggest that the neural
subtype probably arises due to the contamination of normal neuronal tissue tumor margins 8.
Therefore, GBM is currently classified into three subtypes. Histopathological-based diagnosis
is the most common method for subtype identification. However, it often leads to inaccurate
classification of subtypes due to inter-observer variability 8. Accurate pathological subtype
diagnosis is pivotal for optimal patient management. Because glioma subtypes are
histologically and genetically heterogeneous, they differ in gene expression, mutation, and
epigenetic states, which lead to different therapeutic response and clinical outcome %%,

2.3 Genomic alterations in brain cancer

A series of genetic abnormalities affect brain cancer at a molecular level, and impact
signaling cascades that lead to the cancer initiation. The onset of brain cancer is triggered by
modifications in the genome or DNA sequence, which disrupt the expression of genes, cell
proliferation, and cellular behaviour. These alterations in gene sequences lead to the
uncontrolled growth of cells. The anomalies include alterations in gene expression, DNA
mutations, and variations in genome methylation profiles. Gene Expression data is primarily
generated by two high throughput methods: RNA-sequencing (RNA-seq) and microarray.
These techniques are efficient in capturing the genome-wide gene expression level. Cancer is a
multifactorial disorder; therefore, studying all genes' expressions helps identify the critical
player associated with cancer formation. Gene expression refers to the mRNA level for
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particular genes at a given time point in the cells. Therefore, alteration of mMRNA expression
causes the change in protein level, thereby affecting the normal operations of the cells. Change
of gene expression is a genome-level alteration in cancer; such alterations cause changes in
cellular functions, resulting in a disease phenotype (Figure 2.1). Capturing such alteration from
high dimensional gene expression data will aid in identifying the disease-causing gene and
subsequently facilitate the discovery of novel biomarkers 2?2, Furthermore, it is essential to
track gene expression patterns to monitor the cancer progression from lower to a higher stage
or understand the effectiveness of therapies 2*-%°. This type of investigation required multiple

comparisons of data from different time points.

Genomics data types Alterations in Affect in cancer
Genomics data types patients
* N Up & down
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regulated genes

_ | ¥a ' N // »  Cancer specific
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Figure 2.1: Overview of genomics alternations in brain cancer.

Altered expression of genes such as epidermal growth factor (EGF) 26, platelet-derived
growth factor (PDGF) 27, vascular endothelial growth factor (VEGF) % and their receptor
involved in the development of cancer progression. Several other genes are involved in brain
tumors that exhibit irregular expression or have genetic changes have been discovered recently,

including chromosomal irregularities of 1p19q have been reported in the oligodendroglioma °.

The analysis of microarray data from various studies has revealed the presence of unique
molecular profiles in high grade and low-grade glioma. The implementation of microarray
technology enables the concurrent examination of alterations in the expression of numerous
genes, hence facilitating the identification of gene sets that has the potential to predict glioma
30 Differentially expressed genes (DEGs) have been found to be linked with the grade of
tumours and the patient prognosis of glioma 3. A comparison was conducted on 45 astrocytic

tumours, consisting of 21 glioblastomas (GBMs) and 19 pilocytic astrocytomas. Through the
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examination of a set of 360 genes, a distinct molecular signature was identified, enabling
differentiation between GBMs and pilocytic astrocytomas 2. The prognosis of IDH-mutant
astrocytoma grade 11 to 1V was found to be inversely correlated with the high expression of
several specific genes. These genes include HOTAIRM1 ¥, MCM6 3, IRX1 **, and MPC2 %,

Several prior research have been conducted on bioinformatics analyses to examine the
expression patterns of genes that are differentially expressed (DEGs) in patients with
glioblastoma (GBM). These studies have also explored the functions of these DEGs in various
pathways, molecular activities, and biological processes. Zou et al 2019, analysed the
microarray data and reported that CDK1, BUB1B, NDC80, NCAPG, BUB1, CCNB1, TOP2A,
DLGAP5, ASPM and MELK were significantly associated with carcinogenesis and the
development of GBM *7.

Another most reported genetic alternations are mutations in glioma. Mutations in the coding
genes alter the expression of MRNA; subsequently, proteins participate in the various biological
processes inside the cells. Genetic mutations alter proteins in manners that induce the
transformation of normal cells into malignant cells. A combination of mutated genes determines
the deadliness of cancer (Figure 2.1). Several mutations in cancer contribute to the
heterogeneity and complexity of the disease. Mutations greatly vary between the patients of the
same cancer and pose a daunting obstacle to cancer treatment 3. There are two types of
mutations in cancer, driver mutations and passenger mutations. The driver mutations participate
in uncontrolled cell growth, whereas passenger mutations usually do not involve oncogenesis.
Driver mutations in the gene affect the protein structure and perturb normal biological
processes. Mutation (driver mutations) in the tumor suppressor genes or oncogene can
transform normal cells into cancer cells. Due to advancements in high throughput sequencing
technologies, a large amount of tumor data has been generated that provide an opportunity to
combine the gene mutations data and phenotypic information of cancer patients. However, the
relationship between these mutations and clinical symptoms is still not revealed, this creates an

obstacle to designing genomic medicine.

It has been determined that the primary genetic causes of gliomas are mutations in the
isocitrate dehydrogenase (IDH) 1/2 enzymes 3%, In astrocytoma and oligodendroglioma IDH
gene and PTEN mutations are frequently mutated and identified as a molecular marker in
glioma *. The IDH1 gene is of great interest due to its association with alterations shown in

both glioblastoma and low-grade gliomas. These mutations have been found in over 70% of
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cases, encompassing the whole protein coding genes 44

. Genomic DNA samples, obtained
from both tumour and normal tissues of glioma, were subjected to whole mutational data in
order to determine the prevalent mutations in genes EGFR, ERBB2, IDH1, NF1, PIK3CA,
PIK3R1, PTEN, PTPRD, RB1, and TP53 #’. From the literature, it is observed that mutations
in PI3K are novel prognostic markers in gliomas “8. Mutations in FUBP1 and CIC are shown
in astrocytomas oligoastrocytomas, and oligodendrogliomas “°. ATRX 0, CDKN2A/B °1:52,
EGFR °3* BRAF *°, H3 histone, family 3A (H3F3A) mutations *° are reported in astrocytoma.
Similarly, TERT promoter mutation was observed in oligodendroglioma ®’. Frequent mutations
in some genes, such as TP53 and PTEN, have been observed in glioblastoma. However, it has
been shown that these mutations do not significantly impact on prognosis 8%, The most
commonly observed mutations in glioblastoma (GBM) subtypes are alterations in
neurofibromin 1 (NF1), as well as epidermal growth factor receptor (EGFR) mutations °3.
Additionally, frequently observed genetic alterations in GBM include mutations in PIK3R1,
PIK3CA, RB1, and IDHL1, as reported in the data obtained from The Cancer Genome Atlas
(TCGA) . The presence of TERT promoter mutation has also been reported in glioblastoma
multiforme (GBM) °’. Multiple molecular markers are commonly observed in different
subtypes of glioblastoma (GBM). For example, in the classical subtype, molecular markers such
as PTEN, CHKNZ2, PDGFRA, TP53, and EGFR are frequently identified. In the mesenchymal
subtype, NF-kB, NF1, PTEN, and in the proneural subtype, TP53, PI3K, IDH1, PDGFRA, and
EGFR are commonly observed molecular markers ®. Mutations occurring in these genes result
in the activation of the PI3K/Akt and Ras/MAPK signalling pathways, hence presenting

potential targets for therapeutic intervention 52,

Genome-wide association studies (GWASs) have additionally demonstrated that the
heritable risk of glioma is influenced by common genetic variations. GWASs have successfully
identified single-nucleotide polymorphisms (SNPs) at eight specific loci that have been found
to influence glioma risk. These loci include 3926.2 (near TERC), 5p15.33 (near TERT), 7p11.2
(near EGFR), 8g24.21 (near CCDC26), 9p21.3 (near CDKN2A/CDKN2B), 11g23.3 (near
PHLDB1), 17p13.1 (TP53), and 20013.33 (near RTEL1) ¢, Kinnersley, B., et al., 2015
identified the risk loci for glioblastoma (GBM) at 12923.33 (rs3851634, near POLR3B) and
non-GBM at 10925.2 (rs11196067, near VTI1A), 11923.2 (rs648044, near ZBTB16), 12g21.2
(rs12230172) and 15024.2 (rs1801591, near ETFA) by using 1,490 cases and 1,723 controls 8.
The genes influenced by the risk single nucleotide polymorphisms (SNPs) that we have
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identified is anticipated to result in enhanced understanding of the pathogenesis of this
particular malignancy. GWASs have identified several genetic variants that are associated with
glioma. These genetic variations have an impact on the DNA methylation levels of genes in
close proximity and have a role in the susceptibility to cancer.

One of the most often observed genetic alterations in glioma is the changes the DNA
methylation patterns. DNA methylation is a biological process that involves the addition of
methyl groups to the DNA molecule without affecting the sequence. The level of DNA
methylation can affect gene expression. When DNA methylation occurs at the promoter regions
of a gene (also known as hypermethylation), it usually suppresses gene transcription and
subsequently lowers gene expression levels . Whereas a decrease in methylation level, known
as hypomethylation, can elevate the gene expression level. Cancer pathogenesis is often caused
by hypermethylation of tumor-suppressive genes and hypomethylation of oncogenes.
Therefore, the methylation level of the promoter region is recently established as a promising
biomarker in cancer (Figure 2.1). Methylation level not only influences the gene expression but
also contributes to several other critical processes, such as X-chromosome inactivation,

including genomic imprinting.

The MGMT, is a prominent epigenetic biomarker in glioma and its alterations play a central
role in classification, treatment, and survival outcomes °. Wang et al. (2016) performed an
analysis on three prognostic genes, specifically formyl peptide receptor 3, IKBKB interacting
protein, and S100 calcium binding protein A9. These genes were selected from the
comprehensive mMRNA expression profile of the Chinese Glioma Genome Atlas (CGGA) and
the RNAseq data obtained from The Cancer Genome Atlas (TCGA). They have conducted both
univariate and multivariate Cox regression analyses on the entire genome mRNA expression in
order to forecast the survival outcomes of patients with comparable MGMT methylation status.
The expression of the three genes exhibits variation between glioblastoma multiforme (GBM)
samples and non-cancerous tissues, and all three genes possess prognostic significance. The
concurrent presence of these three genes holds predictive significance for individuals diagnosed
with MGMT promoter-methylated glioblastomas "*. DNA methylation may cause somatic
mutations in driver genes, which would activate carcinogenesis. Additionally, DNA
methylation can be utilized to categorise the molecular subtypes of glioma and might be more
useful than gene expression changes. It has been determined that changes in epigenetic regulator

genes are the primary cause of particular glioma subtypes with distinctive clinical
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characteristics 2. In the case of lower grade glioma, IDH1 or IDH2 mutations are associated
with a specific pattern of DNA methylation while histone 3 mutations are commonly observed
in paediatric high grade gliomas. These mutations are often accompanied by distinct DNA
methylation patterns 3.

Here we have observed that the glioma subtypes of glioblastoma multiforme (GBM) and
lower-grade glioma (LGG) have distinct genetic alterations. The utilisation of integrated
analysis of genetic changes across many molecular levels can be employed to find the cause of
cancer. The emergence of the big-data in the field of cancer genomics can be attributed to the
widespread accessibility of genetic information facilitated by next-generation sequencing
technology. The advancement of high-throughput genomics technologies, the size of genomics
data is increasing exponentially. Simple statistical tests are inadequate for analyzing high-
dimensional genome-wide data. The utilisation of artificial intelligence (Al) methodologies,
including machine learning, and deep learning, is increasingly being employed to address the
issues of scalability and high dimensionality of data. Currently, artificial intelligence (Al) is

extensively employed for the purpose of cancer classification.

2.4 Artificial intelligence methods in cancer classification
Machine learning (ML) and deep learning (DL) is a subfield of artificial intelligence (Al)

that involves the utilization of algorithms to acquire knowledge from datasets through training.
These algorithms then utilize the acquired knowledge to draw inferences about outcomes based
on the patterns and rules identified during the training process. ML, and DL algorithms and
statistical modeling tasks have been found to enhance the efficiency and speed of processing
complicated datasets in the field of cancer research. Due to the vast array of genomes data, the
manual and rule-based analysis of such data poses significant challenges. Consequently, ML
and DL approaches have gained prominence in this field, as they possess the capability to
effectively handle the complexity inherent in genomics data and offer ease of implementation.
Machine learning algorithms are employed to identify the grades and subtypes of the cancer.
Classification is a form of supervised machine learning in which a model endeavors to
accurately predict the appropriate label for a given set of input data. For example, in cancer
subtype classification, models are trained on the training data (cancer samples) and predict the
accurate output on the test data (new cancer samples or unseen data). In the figure 2.2

classification models are built on cancer samples used as a training data and new unseen cancer
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samples are taken for model prediction. The aim of ML algorithms are to categorize the samples
into different cancer subtypes. The models are able to predict the given samples are belong to

which subtypes of cancer.

Cancer samples

l

Training dataset
Predicted
l samples
| Cancer 7
Model | subtype 1

—>» | prediction on
__ testdata

Classification

) ‘ model

| Cancer
| subtype 2

New cancer
samples

Figure 2.2: Demonstration of ML based models for cancer subtype classification.

There are two types of machine learning algorithms as: Un-supervised, and Supervised
learnings. Unsupervised machine learning does not require the output label during the training
phase. These algorithms possess the capability to identify similarities, and differences within a
dataset. Principal Component Analysis (PCA), is an unsupervised technique that are well-suited
for tasks such as dimensionality reduction and clustering analysis. These unsupervised machine
learning techniques are unable to classify the cancer data. Therefore, the supervised machine
learning techniques was used to efficiently classify the cancer grades and subtypes. Supervised
machine learning refers to a type of learning algorithm that requires the availability of output
labels during the training phase. This provision of labels enables the algorithm to discern and
categorize data accurately, or make predictions based on the given labels. For instance, in the
context of a cancer classification problem, the algorithm would require the labels ‘cancer' and
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'non-cancer' to effectively carry out its classification task. Several examples of supervised
machine learning algorithms include Support Vector Machines (SVM), k-Nearest Neighbors
(KNN), Naive Bayes (NB), Decision Trees (DT), Random Forest (RF), Logistic Regression
(LR), and others. A brief description of each algorithm is provided here. SVM uses support
vectors that separate data points in different hyperplanes 4. SVM selects optimal hyperplanes
for classification. In SVM, the hyperparameters were tuned i.e., regularization parameter c (c =
10), and applied a linear kernel to achieve higher accuracy. K-nearest neighbors (KNN) is a
non-parametric method, and it utilizes neighboring elements that are trained to measure the
accuracy of classification. KNN has two phases: the first is finding the nearest neighbors, and
the second is assigning the class of a new sample using those neighbors by the majority vote
rule ™7, Gaussian Naive Bayes is a probabilistic machine learning classifier based on the Bayes
theorem. It assumes that the data from each label is drawn from a simple Gaussian distribution
and considers all the features are independent ”’. In Decision Tree, the main aim is to create a
model that predicts the value of a target variable by learning simple decision rules. The decision
tree is constructed by repeatedly splitting a node into two child nodes, beginning from the root
node containing the whole learning sample. Random forest is an ensemble technique used for
classification by several estimators (decision trees). A logistic regression classifier predicts the
response based on one or more predictor variables. It measures the relationship between the
categorical dependent variable and one or more independent variables by estimating

probabilities using a logistic function.

DL are also divided into supervised and unsupervised learning techniques. Supervised deep
learning techniques include Convolutional neural networks (CNN) and artificial neural
networks (ANN), whereas unsupervised learning includes tsne and autoencoders. Unsupervised
deep neural networks and autoencoders are successfully applied for model building in cancer
genomics. Autoencoders are most recent and widely used in the DL. It is feed-forward neural
network where input is the same as the output ®"°. Autoencoders are used for analyzing
transcriptomic, methylomic and mutational cancer data 8. Conversely, supervised deep
learning techniques ie., ANNSs, which imitate the human brain, are feed-forward neural
networks. ANNSs are represented by a weighted, directed graph connecting inputs to a series of
interconnected “hidden” layers that are composed of multiple nodes called “neurons,” that are
in turn connected to an output layer 8. ANNs are trained to recognize and categorize complex
patterns. There are one input layer, one output layer and one hidden layer in the network. The

hidden layers lies between the input and output layers. Similarly, CNN's are fully connected
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networks, i.e., each neuron in a layer is directly connected to all neurons of the next layer.
CNN's have a kernel that convolves the input to extract localized features and aggregate those
using a pooling layer, enabling the model to extract features at all levels 8. Therefore, it is
efficient in extracting the relevant features from multidimensional data. These ML and DL
learning approaches are used in abundance for cancer diagnosis and prognosis prediction
(Figure 2.3).

Autoencoder
Cancer & Healthy Genomics data types (data integration)
Samples

Bottleneck

Encoder ‘ ‘ ‘ Decoder

e Cancer samples
~——~"-@—> Healthy samples

DL models

Figure 2.3: Demonstration of DL based models for data integration and cancer classification.

2.5 Artificial intelligence in genomics data types for cancer

classification

2.5.1 Gene Expression Data for cancer classification

Several machine learning and deep learning techniques are applied to investigate cancer
causing factors and help to cancer prediction and classification using gene expression data. The
utilisation of machine learning (ML) approaches for cancer classification based on genomic
data is driven by two key factors: cancer heterogeneity and the availability of various cancer
genomic data. Machine learning models are utilised in the study of gene expression data to

efficiently predict cancer categorization and diagnosis. Some unsupervised ML algorithms such
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as Grouping Genetic Algorithm (GGA) and Bayesian latent (clustering algorithm) were used
for multiclass cancer classification of gene expression RNA-Seq data 88, In comparison to
other machine learning algorithms, SVM exhibits a high degree of efficacy to find hidden
patterns inside complex datasets %. SVM was incorporated to analyse the gene expression
profiles of leukemia, gastric cancer, colon cancer, lung cancer, and prostate cancer samples for
cancer classification 8-%°, Other machine learning models such as KNN were also used in the
cancer classification and prediction of biomarkers by employing gene expression data that leads
to improvement in the prognosis and treatment of cancer *°. Random forest was used to classify
lung cancer and esophageal squamous cell carcinoma %92, Su, Y., et al. 2022 reported that
random forest classifier was used to diagnose the colon cancer staging I, Il, 1l and IV and
predicted average accuracy of 99.81% and eight genes were selected as biomarkers such as
GCNT2, GLDN, SULT1B1, UGT2B15, PTGDR2, GPR15, BMP5 and CPT2 %,
Maniruzzaman, M., et al, 2019 developed a method of Statistical analysis of machine learning
for classification of colon microarray gene expression data. They have used four statistical tests
such as Wilcoxon sign rank sum (WCSRS), t-test, Kruskal-Wallis (KW) and F-test to identify
the differential genes based on p-value. Further, identified differential expressed genes were
employed in the ML models such as naive Bayes (NB), support vector machine (SVM), linear
discriminant analysis (LDA), Gaussian process classification (GPC), artificial neural network
(ANN), quadratic discriminant analysis (QDA), decision tree (DT), random forest (RF), logistic
regression (LR), and Adaboost (AB), to the classification of colon cancer. The mean accuracy
of the machine learning system, encompassing all four statistical tests and all ten classifiers,
was found to be 90.50% **. Kori, M. et al. 2022 applied CatBoost, Random forest, Decision
Tree, KNN, Gradient boosting, MLP, LGBM, and XGB, classifier to classify gastric cancer
into normal and cancer patients using microarray gene expression data in order to identify the
novel biomarkers. The classification accuracy of eight ML models ranged from 92.6% to
89.4%. They have identified several novel biomarkers such as AES, CEBPZ, GRK6, HPGDS,
SKIL, and SP3 for gastric cancer (GC), both in terms of diagnosis and prognosis &. WU et al.
2019 proposed a maximum information coefficient binary quantum particle swarm
optimization (MIC- BQPSO) on SVM classifier method for brain cancer classification and
achieved a classification accuracy of 74.64% %. Salem et al. 2017, developed a methodology
that involved the utilization of the Information Gain (IG) technique for feature selection.
Following this, the researchers deployed the Genetic Algorithm (GA) to perform feature

reduction. Subsequently, they employed Genetic Programming (GP) to classify various types

18



Chapter 2 Review of Literature

of cancer, including brain cancer, into distinct categories of cancer and normal samples. The
results of their analysis yielded a prediction accuracy of 86.67% 6. The DL-based method
outperformed the traditional statistical techniques. Yuan et al, 2020 reported the use of
unsupervised deep autoencoder to extract features from high dimensional transcriptomic
data. They implemented the supervised classifier, DeepC, using the extracted features to
distinguish normal samples of different tissue origins. The authors have successfully diagnosed
tumors in Pan-cancer with an accuracy of 90% or tissue-specific cancer with an average
accuracy of 94% °’. Shah et al. have employed a hybrid deep learning model based on Laplacian
Score and CNN (LS-CNN) to classify brain cancer using the microarray gene expression data.
They have shown that the LS-CNN model (average accuracy = 97%) outperformed the
traditional machine learning model in terms of accuracy *8. Mohammed et al. (2021) proposed
a novel stacking ensemble deep learning approach utilizing a one-dimensional convolutional
neural network (1D-CNN). The objective of their research was to conduct a multi-class
classification of five prevalent cancers in women, including breast, lung, colorectal, thyroid,
and ovarian, using RNA-seq data. The researchers employed the least absolute shrinkage and
selection operator (LASSO) as a technique for selecting features. The researchers conducted a
comparative analysis of the outcomes of the newly proposed model, with and without LASSO,
with the outcomes of the single 1D-CNN and several machine learning approaches. The
findings indicate that the proposed model with LASSO and without LASSO exhibit superior
performance in comparison to alternative classifiers. The utilization of a one-dimensional
convolutional neural network (LD-CNN) in conjunction with the least absolute shrinkage and
selection operator (LASSO) yielded a prediction accuracy of 99.22%. In contrast, when LASSO
was not employed, the prediction accuracy was somewhat lower at 98.06% . Rezaee et al.
(2022) proposed a novel approach that employs ensemble learning in conjunction with deep
neural network (DNN) for the purpose of classifying three distinct forms of cancer, namely
diffuse large cell lymphoma, leukemia, and prostate cancer. The prediction accuracies obtained
were 97.51%, 99.6%, and 96.34%, respectively. Moreover, the researchers confirmed the
model's generalizability by assessing its performance on brain tissue lesions associated with
multiple sclerosis 1%°. Almarzouki (2022) proposed a novel approach known as the Avrtificial
Bee Colony (ABC) technique for the purpose of feature selection. This strategy was employed
in conjunction with Convolutional Neural Networks (CNNs) to classify gene expression data

from kidney, brain, and lung tissues into cancerous and normal states. To achieve this, the
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researchers combined all available datasets. The Convolutional Neural Network demonstrates
a high level of accuracy, i.e, 96.43% 01,

Further, several other deep learning models have been developed to predict the regulation of
the gene expression, such as DEcode, which can predict the differential gene expression based
on binding sites on RNAs and promoters 12, Similarly, Deepdiff and DeepChrome predict the
gene expression from histone modifications 1931%4, These DL-based tools can be explored for
the diagnosis of cancer. Furthermore, it was observed that unsupervised DL was also
implemented to generate the gene expression cluster in brain cancer and has been used to

improve the model accuracy 1%,

2.5.2 Mutational data for cancer classification

In several studies, artificial intelligence and machine learning have been successfully
employed to draw the relationship between cancer mutations and clinical symptoms 106107,
including driver gene identification %1% drug development %°, and precision oncology .
However, challenges such as high data sparsity, and short sample size, are roadblocks for
superior classification performance using the mutation-related genomic data in cancer. Somatic
mutations provide us a great opportunity to investigate cancer classification using machine
learning. Gene mutation profiles are used to classify, characterize and predict the subgroups of
cancers. In breast cancer patients, somatic mutation profiles were used to classify the subgroup
using machine learning methods such as Random Forest (RF), Support Vector Machine (SVM),
C4.5, Naive Bayes, and k-Nearest Neighbor (KNN). Among all classifier performances RF
outperformed and achieved the average prediction accuracy of 70.86% than the other machine
learning models 2. In another case of breast cancer, machine learning methods such as naive
bayes and KNN were used to classify the breast cancer patients and healthy patients. The K-
nearest neighbors (KNN) algorithm had the highest classification accuracy, with a rate of
97.51%, while the Naive Bayes (NB) classifier displayed a classification accuracy of 96.19%
113 Furthermore, Li, Y. et al, (2020), proposed an ensemble machine learning model including
five classifiers for cancer classification of fourteen types of cancer utilizing mutation data. They
achieved an overall accuracy of 71.46% !4, Chen et al. investigated the distribution of
1,760,846 somatic mutations observed in 230,255 cancer patients. They have employed a
Support Vector Machine (SVM) approach to analyze these mutations in conjunction with gene
function information, in 17 types of cancer including glioma. They conducted a multiclass
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classification experiment employing the gene symbol, somatic mutation, chromosome, and
gene functional pathway. The prediction performance of primary sites in terms of accuracy was
reached to 57% by using genes as features, by including the genes, mutation and chromosome
information, it was improved to 62% %°. Similarly, a machine learning model was developed
for distinguishing between driver and passenger mutations in GBM using sequence based
features and physiochemical properties, named GBMDriver; showed accuracy of 73.59% and
AUC score of 0.82. The accuracy was 81. 99% and AUC was 0.87 on 10-fold cross validation.
By this method driver mutations in glioblastoma are prioritized and therapeutic targets are

identified 1.

Palazzo, M., et al (2019) developed a pipeline based on an unsupervised deep learning
method known as autoencoder. This pipeline aims to uncover concealed patterns within lower
dimensional space using somatic mutation data derived from a diverse range of 40 tumor types
and subtypes. In order to assess the effectiveness of the acquired somatic mutation embedding,
a combination of kernel learning and hierarchical cluster analysis was employed. This approach
yielded an accuracy rate exceeding 75% across various types of cancer, with the exception of
stomach, colorectal, and liver malignancies *’. Furthermore, DNN-Boost model was also
developed to classify the tumor and normal samples by employing mutation data 8. Yuan et
al., developed DeepGene, an advanced cancer type classifier based on deep learning and DNA
point mutation data. DeepGene was designed to extract the critical features between
combinatorial point mutations and cancer types *°. Furthermore, Zeng et al., proposed deep
learning-based model DeepCues that utilizes CNN to find features from DNA sequencing data
for cancer classification. DeepCues uses whole-exome sequencing, germline variants, and
somatic mutations, including insertions and deletions, for feature extraction and classification.

The overall accuracy of DeepCues is 77.6% *°.

2.5.3 DNA methylation data for cancer classification

The investigation of methylation patterns assumes a crucial role in comprehending the
progression of diseases. Therefore, methylome data is used in cancer classification and
diagnosis 1%, Several machine learning approaches are developed to accurately classify the
cancers such as lung cancer 22, breast cancer 2%, and head and neck squamous cell cancers
(HNSCs) *?* by utilizing DNA methylation data. Ren, J., etal, (2022) utilized DNA methylation
data to identify potential biomarkers in different subtypes of sarcoma. They employed an
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unsupervised machine learning algorithm, specifically boruta, for feature filtration. This was
followed by the use of LASSO, Light Gradient Boosting Machine (GBM), and Monte Carlo
Feature Selection (MCFS) for feature selection. To develop a classification model, they
employed supervised machine learning methods including decision trees (DT) and random
forests (RF). The random forest (RF) model demonstrated superior predictive accuracy
compared to the decision tree (DT) model. The prediction accuracies of LASSO with RF, Light
GBM with RF, and MCFS with RF were found to be 98.70%, 99.10%, and 98.70% respectively.
The present study employed a specific approach to identify biomarkers that exhibit gene
expression patterns derived from the annotation of methylation site features that are strongly
connected. Notably, the genes PRKAR1B, INPP5A, and GLI3 were found to be associated with
these biomarkers. They were found to be linked with sarcoma 1%, Cai, Z.,(2015) developed a
ML based method to classify the lung cancers types into small cell lung cancer (SCLC), lung
adenocarcinoma (LADC), and squamous cell lung cancer (SQCLC) using DNA methylation
data. RF and Maximum Relevancy and Minimum Redundancy (mMRMR) were used to classify
LADC, SQCLC and SCLC and achieved a prediction accuracy of 86.54% *2°. Moreover, ML
models such as XGBoost, SVM, RF, NB and KNN were employed to classify the different
types of cancers by employing DNA methylation data *?’. These studies have contributed novel
perspectives on cancer detection from an epigenetic standpoint, and may lead to personalized
and therapeutic approaches. Interestingly, survival of the patients were also predicted by the
machine learning models in different types of cancer by DNA methylation data 128,

Eissa et al. (2022) constructed a deep neural network (DNN) model based on DNA
methylation data for the purpose of classifying various types of cancer, including Breast Cancer
(BRCA), Ovary Cancer (OV), Stomach Cancer (STOMACH), Colon Cancer (COAD), Kidney
Cancer (KIRC), Liver Cancer (LIHC), Lung Cancer (LUSC), Prostate Cancer (PRAD), and
Thyroid cancer (THCA). The classification was based on DNA methylation data obtained from
the TCGA database. The system that was developed also shown exceptional performance in
terms of receiver operating characteristic area under the curve (ROC AUC) values, ranging
from 0.85 to 0.89 *?°. A few studies have attempted to uncover DNA methylation indicators
that can be used to diagnose various cancer types using deep learning techniques such as
MethyINet 3%, MRCNN **!, deep neural network (DNN) %2 and deep autoencoder 3.
DeepCpG is another CNN-based approach for predicting methylation states and has accurately
identified the changes in methylation levels **. A DNA methylation-based cancer classification
tool, MethPed *° was developed for pediatric brain tumors. The present methylome data
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consists of more than 800000 CpG sites; therefore, extracting the relevant features is
challenging. Further, exploration of DL algorithms and methylation data may contribute to
understanding the complex mechanism of gene regulation to identify the brain cancer-specific
markers. The above literature showed that DNA methylation data have a potential to serve as a

biomarker for several cancers.

It is observed that artificial intelligence techniques are used for cancer classification using
genomics data. Apart from cancer classification, molecular subtyping of cancer is also

important step towards the personalized therapy.

2.6 Al in cancer subtype classification

The precise identification of the specific subtype of cancer is of utmost importance in order
to get an accurate diagnosis and effective therapy for patients. This is because the cancer
subtype plays a critical role in improving clinical outcomes. Many human cancers have multiple
subtypes with unigque molecular signatures, and these subtypes also show different prognosis
and treatment responses. Choi, J.M., et al. 2023 proposed a semi-supervised method for
classifying breast cancer subtypes using DNA methylation profiles. The accuracy of the subtype
classification was determined to be 82.3% **°. Yuan, F., et al, 2020 applied ML algorithms such
as SVM and RF on lung cancer data to classify the subtypes of lung cancer into Lung
adenocarcinoma (LUAD) and lung squamous cell cancer (LUSC) by employing the gene
expression profiles. They observed that SVM outperformed RF to classify the lung cancer
subtypes; and achieved classification accuracy of 96.7% **’. Similarly, DL-based methods were
employed for the classification of lung cancer subtypes. For example, XGBoost algorithm was
used to classify the subtypes of lung cancer into LUAD and LUSC using gene expression data.
The models showed excellent subtype classification accuracy of 97.1% %8, Tao, M., et al, 2019
applied Multiple Kernel Learning (MKL) on breast cancer to classify the breast cancer subtypes
using gene expression, methylation and copy number data. They obtained a classification
accuracy of 79.8% 3. Shen, J., 2022 introduced a novel methodology that integrates a
convolutional neural network (CNN) with a bidirectional gated recurrent unit (BiGRU) as a
deep learning strategy named DCGN. This approach was used to classify the cancer subtypes
of breast cancer and bladder cancer using high dimensional gene expression data. They

compared the DCGN performance with seven other methods and DCGN outperformed among
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all. The DCGN showed the subtype classification accuracy in breast cancer was 96% and in

bladder cancer 95.5% 149,

It is observed that there are only few reports are available for subtype classification of
cancers using genomics data. Based on whole genomics data, cancer subtyping studies is carried
out and demonstrated that it is efficient approach for dissecting cancer heretogeneity. The
advent and swift progress of high-throughput sequencing technologies, including next-
generation sequencing technology, RNA sequencing (RNA-seq), DNA methylation arrays, and
a lots of mutations in entire genome, have facilitated the exploration of disease mechanisms at
the genome, transcriptome, epigenome and mutational levels. However, the use of single omic
data is limited to examining only one component of omics data, and it lacks the ability to
elucidate the intricate relationships among genetic alterations, such as mutations, gene
expression, and methylation. On the other hand, the integration of multi-omics data from
different genomic levels provides a more extensive comprehension of intricate disease
modifications and helps to understand the cancer initiation, facilitating cancer detection, and

improved therapy strategies.

2.7 Integration of genomic data for cancer classification

To predict cancer from single-omics data such as genome, transcriptome, methylome or
mutational data are widely used. However, these single layers of genomics data individually do
not explain every aspect of cancer. Although integration of all genomics layer interaction
collectively explains the complex relationships between molecular layers that leads to cancer.
With only a single type of omics data, tumour occurrence and development cannot be
effectively predicted. Accurate multi-omics integration techniques are required to combine data
from diverse patients because multi-omics data typically come from entirely distinct sources.
Consequently, a pressing issue in precision medicine is how to rationally integrate the current

chaotic multi-group data to increase the accuracy of disease diagnosis.

Genomics data from different molecular levels are linked to one another. Such as, mutation
changes the mMRNA expression level of the genes or methylation level in the promoter region
determines the depleted or elevated expression of the genes. Therefore, recently researchers
have tried to integrate multiple genomics data or multi-omics data to develop powerful ML and

DL-based tools. Moreover, to capture crucial cellular mechanisms or interactions between
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biomolecules, it is essential to analyze the multi-omics data, which can facilitate the discovery
of the new diagnosis and therapeutic approach for cancer treatment. In order to find the new
patterns in cancer patients, multi-omics data was used by employing machine learning methods
141 Many multi-omics integration studies for various cancers have been conducted in recent
years. However, in the field of diagnosis of brain cancer, there are very few studies on multi-
omics integration. Yang et al. (2019) proposed a novel approach for data integration and cancer
subtyping, specifically targeting seven forms of cancer, including GBM. The approach is based
on a Random Walk based cluster ensemble (RWCE) method that incorporates mRNA, miRNA,
and methylation data. This study provides evidence that it possesses the capacity to identify

subtypes that hold clinical and biological relevance 4.

Recently a deep neural network (DNN) learning model was proposed to effectively integrate
the omics datasets of copy number alteration and gene expression data. The objective of this
integration was to accurately predict the molecular subtypes of breast cancer. The researchers
showed that an integrative deep learning model provided good prediction accuracy. The study
demonstrated an accuracy rate of 79.2% %3, Furthermore, another multimodal DL tool,
MultiSurv, was designed to estimate the long-term survival prediction of cancer patients 144,
MultiSurv integrates clinical, imaging, and multi-omics data (mMRNA, miRNA, DNA
methylation, CNA data) to predict patient survival with high accuracy. Zhang et al. designed a
multi-view multi-task deep learning framework, OmiEmbed, to integrate the high dimensional
multi-omics data. OmiEmbed can be used for demographic and clinical feature reconstruction
and survival prediction *°. The authors also explained that OmiEmbed could facilitate accurate
and personalized treatment for cancer. This evidence shows that implementing a deep learning-
based framework for integrating and analyzing the various omics data could revolutionize the

clinical diagnosis of cancer.

Autoencoders are used for data integration of multi-omics data to identify disease states and
cancer subtyping. Subtype identification is a challenging task, therefore identifying the
particular patient subgroup necessitates the integration of multi-omics data. Two patient
subgroups with significant survival differences have been found using supervised and
unsupervised learning on transcriptomics, and DNA methylation data of hepatocellular
carcinoma (HCC) 146, Xu et al, 2019 proposed a hierarchical integration approach called HI-
DFNForest, which utilises deep flexible neural forest data to effectively integrate multi-omics

data for the purpose of cancer subtype classification. The researchers employed a Stacked
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Autoencoder (SAE) technique to extract meaningful features, followed by the utilisation of a
Deep Flexible Neural Forest (DFNForest) model for the classification of patients into breast
cancer subtypes using data sets obtained from TCGA. This integration involved the
incorporation of gene expression, miIRNA expression, and DNA methylation data. The
integration of multi-omics data of breast cancer demonstrated favourable predictive accuracy,

with percentages of 84.6% 4.

Artificial intelligence can effectively manage high-dimensional genome-wide data and
discern concealed patterns that may not be noticeable in individual genetic data. This integration
aims to convert large datasets into clinically actionable knowledge, thereby serving as the basis

for precision medicine.

2.8 Artificial intelligence and personalized medicine

Precision medicine is a method to develop personalized care for patients based on an
individual patient's molecular profile. The approaches in precision medicine are designed to
investigate the relationship between genomic alteration and its contribution to the risk of
developing specific cancer or its effect on treatment. Inter- and intra-tumor heterogeneity causes
the genotypic differences between patients, showing the necessity of personalized medicine for
effective treatment. Due to the abundance of available data and high-throughput experimental
techniques, DL can revolutionize decision support systems in oncology and decipher the hidden

phenotypic and genotype patterns, as well as their correlations.

The deepProfile, a DL-based framework uses the unlabeled gene expression data to predict
the complex disease phenotype. deepProfile can be implemented on gene expression data from
brain cancer to find the phenotype-genotype relationship for personalized treatment 148, The
differences in Drug response occur due to inter-and intra-tumor heterogeneity. A deep
variational autoencoder (VAE) model was demonstrated to predict the accurate drug response
with higher efficiency with these heterogeneous data. In addition, the authors identified
molecular features associated with drug response in 33 cancer types, including the brain 4°.
Identifying the genotype to phenotype relationship is a crucial step to finding the molecular
signature of the disease. GenNet, a deep learning framework, can predict phenotypes from
genetic variants 0, Another biologically interpretable tool Varmole *** embeds multi-omics

networks data into a deep neural network framework and prioritizes variants, genes, and
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regulatory linkages, subsequently predicting genotype to phenotype relationships. For complex
diseases like brain cancer, personalized medicine based on individual molecular signatures is
essential for targeted therapy. Furthermore, to avoid the adverse effects of drugs and to increase
the life expectancy of brain cancer patients, a DL-based support system will be most desirable
in modern medicine. The utilisation of artificial intelligence (Al) presents an opportunity to
leverage genomic information across many molecular layers. This has the potential to facilitate
prognostic predictions regarding patient outcomes, including the probability of a positive

response to a cancer treatment intervention.

2.9 Integration of multi-omics data for Drug Development

The integration of multi-omics data, which encompasses information on biomolecules from
several levels, has great promise in facilitating a comprehensive and systematic understanding
of complicated biological processes. Argelaguet, R., et al., 2018 introduced a computational
approach called Multi-Omics Factor Analysis (MOFA) to identify hidden components within a
multi-omics dataset that capture both biological and technical sources of variability 2.
Integrated approaches aid in the evaluation of the transfer of information between different
omics levels, hence facilitating the connection between genotype and phenotype. There are
exists substantial evidence indicating that modifications in the genomes of cancer cells can
significantly impact the efficacy of anticancer treatments in clinical settings. There are various
cases in which genetic variations have been utilised as molecular biomarkers to identify
individuals who are most likely to derive therapeutic advantages from a specific treatment. The
utilisation of integrative analyses that effectively synthesise and establish connections between
molecular data and treatment sensitivity is of utmost importance in order to comprehensively
capture the intricate biological complexity that underlies precision medicine. The primary
objective of precision medicine is to administer the right drug to the right patient at the right
time. Different patients respond differently for the same drug due to intratumor heterogeneity.
The main challenge in the field of oncology research is the prediction of individual response
for different treatments. To overcome this problem, Al based techniques are widely used.
Avrtificial intelligence-based discovery has gained attention recently since it drastically cuts the
time and money needed to produce novel drugs. To identify drug response on cancer to
therapies based on molecular profiles of multi-omics data, deep learning models can be used,
this can lead to profiling of the modern era of precision medicine and yield the clinical

27



Chapter 2 Review of Literature

relevance. Chiu et al. 2019 introduced a pair of deep neural networks, wherein one network was
designed to handle gene expression data and the other network was tailored for gene mutation
data. Subsequently, the two networks were integrated to collectively forecast drug response %3,
Wang, C., etal., 2021 developed deep neural network architecture to integrate the multi-omics
data encompassing gene expressions, copy number variations, gene mutations, reverse phase
protein array expressions, and metabolomics expressions from cancer cell lines data available
in CCLE and GDSC. They employed a graph embedding layer to incorporate the interactome
data and attention layer to combine different omics features and achieved the drug response
prediction accuracy was 98% 4. Almutiri et al. (2023) proposed a novel methodology that
integrates Bayesian Ridge Regression (BRR) with Deep Forest. The BRR method was
employed for the purpose of integrating several omics datasets, while the DF approach was
utilised for drug response prediction. The Cancer Cell Line Encyclopaedia (CCLE) dataset was
utilised to integrate gene expression, copy number variation, and single nucleotide variation.
The evaluation criteria employed in this study included Root Mean Square Error (RMSE),
Pearson Correlation Coefficient (PCC), and the coefficient of determination (R2). The model
obtained an RMSE value of 0.175, a PCC value of 0.842, and an R2 value of 0.708 **°. Malik
et al. (2021) introduced a comprehensive methodology that integrates multi-omics data
including copy number variation (CNV), mutation, methylation, miRNA, RNA, and protein
expression. To accurately assess the survival outcomes and medication responsiveness in
individuals diagnosed with breast cancer. The Neighbourhood Component Analysis (NCA)
algorithm, which is a supervised feature selection method, was utilised to identify pertinent
features from multi-omics datasets obtained from The Cancer Genome Atlas (TCGA) and
Genomics of Drug Sensitivity in Cancer (GDSC) databases. The survival prediction framework
shown a high level of effectiveness in classifying patients into risk subtypes, with an accuracy
rate of 94% 1, Recently several other are also avalaible such as MOLI 7, AGMI %8 and
DrDimont **° for drug response prediction. These computational models of drug sensitivity
prediction help to aid in the selection and prioritization of candidate compounds for pre-clinical

research.

It has been observed that none of the reports presented thus far provide information on the
subtype-specific drugs for the treatment of glioma. Through the integration of multi-omics data
with pre-existing knowledge of molecular interactions, artificial intelligence (Al) has the
capability to identify potential drug targets that play a critical role in the advancement of cancer

and can be potentially influenced by therapeutic treatments. For the advancement of precision
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medicine and the development of tailored cancer treatment, individualized medication response
prediction is essential. Large-scale multi-omics profiles provide unprecedented opportunities

for precision cancer therapy.

Lacunas

Brain cancer classification was done by histopathological methods that suffer from
intraobserver and interobserver variability ¢, which causes poor clinical outcomes. Introducing
genetic markers (WHO classification, 2016), such as a mutation in either the Isocitrate
dehydrogenase IDH1 or IDH2 gene and co-deletion of 1p and 199 chromosomes, provides more
persistent diagnosis options and better clinical management . IDH1 mutation and 1p/19q co-
deletion are diagnostically and prognostically significant. However, this may not always
provide accurate classification, as IDH mutation was reported in all types of LGGs 6.
Therefore, 1p/19q co-deletion testing may lead to a false positive (FP) result 152, Alternatively,
imaging techniques, such as magnetic resonance spectroscopy and positron emission
tomography, are used for grading the LGG 3. However, these techniques do not provide the
genetic basis of cancer grade. Consequently, several studies suggest the requirement of
additional clinical variables to increase the sensitivity of current treatment %4, Most of the
research papers have reported Al-based binary classification methods to classify cancer and
healthy samples using image data or mono omics data (i.e., gene expression). None of the
reports shows the subtyping of brain cancer with multi-omics data till now. As previously
mentioned, LGG can be classified into three subtypes: astrocytoma, oligoastrocytoma, and
oligodendroglioma, of grade 2 and grade 3. Similary, GBM has three distinct subtypes, namely
classical, mesenchymal, and proneural. To yet, the classification of grade and subtype based on
genomes data has not been undertaken. To date, there has been a lack of grade and subtype-
specific classification utilising genomes data. Most of the biomarkers for brain cancer until this
point have been discovered using inconclusive, low-throughput techniques without taking
omics data into account. Most observations from low-throughput experiments fail to provide
therapeutic solutions since they cannot provide a comprehensive perspective of the complex
systems of cancer. With the aim of resolving this issue, omics data analysis is a rapidly growing
area of research to effectively capture complex relationships from multiple omics layers, i.e.,
genomics, transcriptomics, and epigenomics. Because of the advancement of high-throughput
technologies, the size of these omics data is increasing exponentially. In order to extract new

insights from vast amounts of data, powerful computing approaches are needed. In this context,
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machine learning (ML) and deep learning (DL) algorithms have emerged as one of the most
successful techniques because of their capacity for handling high dimensional data, effective
data integration, efficient dimensionality reduction, stability, and higher prediction accuracy.
While various techniques exist for integrating multi-omics data, such as the utilisation of
autoencoders, there is still a lack of research demonstrating the categorization of glioma
subtypes using multi-omics data. Numerous machine learning (ML) models have been
developed for the purpose of cancer classification, exhibiting superior accuracy. However, these
models are limited in their ability to identify the cancer causing genes that trigger the
tumorigenesis process. Integrating the methylome and transcriptome is crucial in finding the
genetic and epigenetic features that cause cancer, which is also important for making
biologically relevant models. Univariate cox analysis facilitates identifying the biologically
important and cancer-associated features, which can lead to the development of a clinically
relevant DL model. Another relevant task for precision medicine is to find the targets and
develop a drug response prediction model for cancer subtypes as we know that every individual
has different genetic makeup. They respond differently to the same drug and same tumor type
due to their inter and intra-tumor heterogeneity. Considering the complexity of glioma, network
medicine-based approaches should be implemented to find the subtype-specific drug targets.
Advances in sequencing techniques and genome-wide association studies have revealed that
accumulated genetic variations associated with an increased risk for cancer are distributed
throughout the genome. Further studies illustrate that genes affected by genomic variations are
not randomly distributed in molecular networks. Indeed, genes associated with the same disease
are more likely to interact with each other. As a result, a disease module forms, a subnetwork
linked to a disease. Numerous genes that are known to be relevant to disease are found in disease
modules. Utilizing disease modules in each subtype of glioma, subtype-specific target can be
identified. Identification of cancer-specific disease modules can help to identify novel
biomarkers for therapeutic targets. Therefore, network medicine and rational drug-designing
approaches recognize these modules as pharmacological targets as opposed to the individual
genes or proteins in the network. However, the therapeutic efficiency of drugs in cancer is
highly context-dependent; often, drug resistance reduces the effectiveness of chemotherapy.
Therefore, the prediction of drug response, i.e., resistance or sensitivity, is essential for
improving the efficacy of chemotherapy. Therefore, Al-based drug response prediction models

can be developed using genomics data for precision therapy. Based on the present lacuna, the
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present thesis develops Al-based models to support the clinical diagnosis of glioma subtypes

and drug response prediction.

Objectives

The objective of the work is to develop a machine-learning and deep-learning based framework
for subtype classification of glioma and identify the biomarkers in each subtype of glioma. Al-
based diagnostic tool and drug response prediction model for the precision therapy of glioma is

developed. This thesis focuses on the following objectives.

1. Development of a machine learning-based framework for subtyping and grading
of lower-grade glioma (LGG) using transcriptome data and identification of
biomarkers.

2. Development of Deep learning and machine learning framework based on
genomic data for subtyping the glioblastoma multiforme (GBM) and identification
of biomarkers.

3. Implementation of Deep learning embedding system for multi-omics data
integration for subtyping of Glioma.

4. ldentification of subtype-specific disease modules and development of drug
response prediction models by combining network medicine and Al-based

approaches.
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Chapter 3: Objective 1
Development of a machine learning-based framework for
subtyping and grading of lower-grade glioma (LGG) using
transcriptome data and the identification of biomarkers

3.1 Introduction

Classifying lower-grade gliomas (LGG) is a crucial step for accurate therapeutic intervention.
The histopathological classification of various subtypes of LGG, including astrocytoma,
oligodendroglioma, and oligoastrocytoma, suffers from intraobserver and interobserver
variability leading to inaccurate classification and greater risk to patient health. The accurate
classification of glioma types and grades is vital to improving brain cancer patient's prognosis.
Due to the enormous complexity at the molecular level, the critical molecular driver of gliomas
is poorly understood. Therefore, there is an urgent need to identify the subtype-specific
molecular marker for personalized therapy. Over the past decade, advances in sequencing
technology have provided the opportunity to understand complex disorders holistically and
have contributed to designing effective therapeutic approaches. RNA sequencing technology
provided the opportunity to study genome-wide expression patterns. Changes in gene
expression patterns are a prominent feature of any cancer cell, which have been successfully
implemented to explain the mechanism of cancer. However, whole-genome expression data or
transcriptomes are barely used to classify the brain cancer type and grade. In this chapter, a
comprehensive analysis was performed to develop an interpretable machine learning (ML)

framework using the transcriptome data of LGG to diagnose subtypes and grades.

To develop a model for subtype and grade classification, both unsupervised and supervised
learning techniques was applied. However, unsupervised methods were unable to separate the
subtypes and grades. Therefore an ML framework was developed based on supervised learning
techniques. In brief, correlation, support vector machine recursive feature elimination (SVM-
RFE), and Boruta algorithm was implemented for feature selection. Subsequently, the
classification using Support Vector Machine (SVM), k-nearest neighbors (KNN), Gaussian
Naive Bayes (GNB), Decision Tree (DT), and Random forest (RF) was performed and
compared their performance. Most published reports focus on the two-class normal vs. cancer

cell classification. In comparison, our approach has efficiently categorized multiple classes, i.e.,
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astrocytoma, oligodendroglioma, and oligoastrocytoma cells, including grades. Further to find
the biological relevancy of feature genes, the gene expression pattern among the LGG of
different subtypes and grades was compared using co-expression analysis. Additionally,
subtype-specific prognostic markers for diagnosis and treatment was identified.

3.2 Methodology

3.2.1 Data Collection and Balancing of the Dataset

Healthy brain tissue (n = 93) gene expression data of GTEx and mRNA expression data of
LGG (n = 281) patients were obtained from UCSC Xena % (https://xena.ucsc.edu/). Based on

the clinical information, LGG samples were divided into specific subtypes and grades (Table
3.1 and results section, Figure 3.2 A). The external data set (GSE74462 and GSE43378) was
collected from the Gene Expression Omnibus (GEO) repository for validation. In table 3.1,
there are unequal number of samples in different subtypes and grades of LGG; due to unequal
number of samples the model can become biased towards one class, leading to poor
performance of the model. Hence, random sampling was performed to select the equal number
of patients in each subtype before the feature selection. The oversampling technique was used
to reduce the bias and variance of the classifier. Dataset balancing was done using the
imbalanced-learn package in Python, and the minority class was randomly oversampled to
obtain a balanced dataset. The oversampling technique was used to reduce the bias and variance
of the classifier.

Table 3.1: Details the tumor, normal samples in LGG

Transcriptome

Type Grades | Subtypes Samples
Astrocytoma (G I1) 30
Grade Il | Oligoastrocytoma (G 11) | 42
Oligodendroglioma (G Il) | 67

LGG
Astrocytoma (G 1) 66
Grade Il | Oligoastrocytoma (G I11) | 33
Oligodendroglioma (G I11) | 43
Healthy | Normal — 93
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3.2.2 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical technique used for analysing high
dimensional datasets containing a high number of features per instance helps to preserve the
maximum amount of information while converting into high dimensional space to low
dimensional space. PCA is widely used for reducing the dimension of the features and
visualization. In PCA, data is linearly transformed into new coordinates where most of the
variation in the data can be described in fewer dimensions than the initial input dataset. Most
of the studies use the first two principal components because it explains most variance; in order
to plot the two dimension data for the visualization of data points that are clustered and closely
related. PCA is used when many variables are highly correlated, and it is desirable to reduce
the dimension of the variable into independent variables. Further, these independent variables
are taken for making predictive models %, The principal component analysis (PCA) was used
to observe the gene expression patterns in different subtypes and grades of LGG. Principal
components analysis (PCA) of the gene expression data of LGG was performed using the
ggfortify package in R. PCA was done on scaled data. A cancer subtype-wise cluster was

generated using the cluster package in R.

3.2.3 Correlation-based Feature Selection

The feature subset with low feature-feature correlation avoids redundancy. The feature sets
with high predictive power contain highly correlated features with the class but are uncorrelated
with each other. Genes with the same expression pattern in different subtypes are highly
correlated and redundant because they cannot distinguish different classes. Therefore, highly
correlated genes between the subtypes were removed to improve classification accuracy. We
measured the correlation coefficient between the gene expression values in the different class
labels (subtypes) separately for grade 2, grade 3, and mixed grade. In this approach, the
correlation was measured on gene expression data using the Pearson correlation coefficient
(PCC). The correlation coefficient is a statistical metric that quantifies the magnitude and
direction of the association between two variables, with values ranging from -1 to 1. The
correlation was calculated using the NumPy package in Python using formula shown in the
below. PCC > 0.7 is set as the threshold, and genes that had PCC > 0.7 in between the classes

were dropped, and the remaining features were taken for model development.
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n(Txy) — (Tx) (Ty)
JInZx? — (X2l [n3y? — ()2

Where,

r = Pearson Coefficient

n=number of pairs of genes

> xy = sum of products of the paired genes
> x = sum of the x scores

>'y=sum of the y scores

Y'x2=sum of the squared x scores

Yy?%=sum of the squared y scores

3.2.4 Machine Learning-based Feature Selection
We have applied supervised machine learning-based feature selection methods, support
vector machine recursive feature elimination (SVM-RFE), and Boruta. These algorithms were

used to find the features that optimized the classifier's performance.

3.2.4.1 Support Vector Machine Recursive Feature Elimination (SVM-RFE)
Support vector machine recursive feature elimination (SVM-RFE) is a supervised machine

learning-based feature selection method 7. It is a potent feature selection algorithm. Avoiding
overfitting. The aim of recursive feature elimination (RFE) is to select features by recursively
considering smaller and smaller sets of features. In brief, SVM-RFE initializes the data set for
all features and trains the SVM using the dataset, and then it ranks the features. Feature selection
is done only on the training dataset by use of SVM-RFE. SVM-RFE deletes features having the
minimum weight to obtain the optimum rank list of the features. Next based on ranking it
screens the optimum features and eliminates the lower-ranked features. The process of selecting
feature sets for SVM-RFE may be broken down primarily into three steps: (1) input of the
datasets to be classified; (2) computation of each feature's weight; and (3) deletion of the feature
with the lowest weight to determine the ranking of features. This way, recursively deleting the
least important features from the ranked list and selecting the optimum gene set improved
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classification accuracy %81%°, SVM-RFE was used to find the features that optimized the
classifier's performance. SVM-RFE was implemented using the Scikit-Learn (https://scikit-
learn.org) package in Python. After selecting the features by RFE, the best features were
identified by rank, and features were selecting according to the highest rank. The top-rank

features (20, 50, 100, 200, and 500) were selected as variables for classifications.

3.2.4.2 Boruta
The Boruta algorithm iteratively removes the statistically less relevant features than the

shuffled copies of the features. This algorithm selects the important features by comparing the
Z-scores of the shuffled features with the original features 1.  We have used the Boruta
algorithm for feature selection using the Boruta package in R.

3.2.5 Machine Learning Algorithms

Supervised machine learning is a type of machine learning algorithm that needs the labeled
dataset to train the algorithms that to classify the data and predict the outcomes accurately for
unforeseen data. It means a small set of data is already tagged with the correct label. For
example, ‘cancer’, and ‘non-cancer’ for a cancer classification problem. Classification-based
supervised learning methods are probability-based and find the category of outcome (discrete
values); the algorithm finds the highest probability of a set of data items belonging to. In the
classification approach, discrete values of a particular class are predicted and evaluated based
on the accuracy of the model. This is either binary classification or multiclass classification. In
binary classification, the model either predicts cancer and normal (0, or 1), whereas in
multiclass classification model predicts more than one class, for example, cancer subtypes
astrocytoma, oligoastrocytoma and oligodendroglioma (0, 1, and 2). Here, in this thesis, we
classified the subtypes of LGG using several ML algorithms. We used the sklearn library in
Python to build the ML models. Supervised ML methods which are implemented in the present
work are Support Vector Machine (SVM), k-nearest neighbors (KkNN), Gaussian naive bayes
(GNB), Decision Tree (DT), and Random Forest (RF). A brief description of each algorithm is
provided here.
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3.2.5.1 Support Vector Machine (SVM)
Support Vector machine (SVM) is a popular supervised machine learning algorithm, which

is used for classification problems. This method is based on statistical learning theory. The main
objective of the SVM algorithm is to maximize the margin or to create the best linear decision
boundary that can segregate the n-dimensional space into the classes of data points on either
side of the decision boundary, and the best decision boundary is called a hyperplane *"*. The
training samples that are close to the hyperplane are called support vectors. The margin is
calculated as the perpendicular distance from the line to the closest point. Therefore, SVM
computes the maximum boundary that leads to a uniform split of all data points. If a dataset is
noisy and messy, then it cannot be separated with a hyperplane. In some cases, a hyperplane or
linear decision boundary cannot be found, and a kernel is used. SVM uses support vectors that
separate data points in different hyperplanes . SVM selects optimal hyperplanes for
classification. In SVM, we tuned the hyperparameter, i.e., regularization parameter ¢ (c = 10),
and applied a linear kernel to achieve higher accuracy. SVM was implemented using the

SVC package in Python.

3.2.5.2 k-nearest neighbors (KNN)
K-nearest neighbors (KNN) is one of the simplest supervised machine learning algorithms

considered a lazy learner (it does not learn from the training set immediately; instead, it stores
the dataset, and at the time of classification, it performs an action on the dataset) as there is no
learning is required in the model. It is a non-parametric (it does not make any assumption on
underlying data) algorithm that categorizes data points based on their proximity and association
to other available data. This algorithm assumes that similar data points are nearby. As a result,
Euclidean distance (which is calculated as the square root of the sum of the squared differences

between a point a and b across all input attributes i, and which is represented as d (a, b) =

\/Z?zl(ai — bl-)z. Euclidean distance is a good distance measure to use if the input variables

are similar in type). It is usually used to calculate the distance between data points and assign
categories based on the most common category or average. For new data points, predictions are
made by finding the K most similar instances (neighbors) across the training set and
summarizing the output variables for those K instances ">, KNN was implemented using the

KNeighborsClassifier package in Python.

38



Chapter 3 Obijective 1

The following steps are to be followed in KNN:

1. Select the number of K of the neighbors.

2. Calculate the Euclidean distance of k number of neighbors of the sample that have to
classify.

3. Among the k neighbors, count the number of data points in each category.

4. Assign the new data point to the class label for maximum number of neighbors.

5. The model is ready.

3.2.5.3 Gaussian naive bayes (GNB)
Naive bayes is a probabilistic classification approach based on Bayes theorem and used for

solving classification problems 172, It is a simple and effective classification algorithm to build
the model for large datasets and make quick predictions, but it has high functionality. First, it
is called Naive because it assumes that a certain feature is independent of the occurrence of
other features. Second, it is called Bayes because it depends on the principle of Bayes' Theorem
(Conditional and Joint Probability). This implies that each predictor has an equivalent influence
on the outcome, and the presence of one feature does not influence the presence of another in

determining the probability of a specific event.

Here, Gaussian naive bayes (GNB) are used for classification of LGG subtype. GNB is a
generative model. It is an approach to create a simple model to assume that each datapoint
follow the Gaussian distribution with no co-variance (independent dimensions) between
dimensions. This model can be fit by simply finding the mean and standard deviation of the
points within each label. This is all it takes to define such a distribution. This is how the GNB
classifier works. Gaussian Naive Bayes is a probabilistic machine learning classifier based on
the Bayes theorem. It assumes that the data from each label is drawn from a simple Gaussian
distribution and considers all the features are independent 1”®. GNB was implemented using the

GaussianNB package in Python.

3.2.5.4 Decision Tree (DT)
Decision Trees (DT) are the supervised machine learning algorithm preferred to solve

classification problems and predictions. It is a hierarchical tree-like structure where internal

nodes denote a test on the features, branches represent the decision rules (outcome of the test),
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and each leaf node holds the class label. It boosts the predictive model accuracy and ease in
interpretation and stability. In Decision Tree, the main aim is to create a model that predicts the
value of a target variable by learning simple decision rules. The decision tree is constructed by
repeatedly splitting a node into two child nodes, beginning from the root node containing the
whole learning sample. Decision tree learning follows a divide-and-conquer strategy by
performing a greedy search to identify the optimal split points in the tree 1’4, The process of
splitting the nodes is repeated in a top-down manner until all data are classified into particular
class labels homogeneously. DT was implemented using the DecisionTreeClassifier package

in Python.

3.2.5.5 Random Forest (RF)
Random forest (RF) is a very popular and fast supervised machine learning algorithm. It is

used for classification problems. Random forest is an ensemble technique used for classification
by several estimators (decision trees). Classification is done using the majority vote among
estimators. Random forest prevents overfitting and leads to higher accuracy because it contains
many trees, leading to a more generalizable model. It is diverse, and more stable models are

formed 17°. RF was implemented using the RandomForestClassifier package in Python.

3.2.5.6 K-fold Cross Validation
When enough validation set is not available to tune the hyperparameter, this k-fold cross-

validation technique is used. A validation and test set may be burdensome when you have few
training samples. You would instead train the model with more data. Then only divide the data
into a training set and a test set. After that, mimic a validation set on the training set using cross-
validation. K-fold cross-validation is the randomized subset of data. Here, stratified k-fold
cross-validation (CV) was applied to each model's training dataset (70%). Stratified k-fold
cross-validation was employed in cases when the dataset size is small. It described the reliability
and stability of the models. The stratified k-fold data is split into k equal parts, where k-1 is
used to train a model, and the remaining portion is used as a test data to evaluate the model's
performance. This is an iterative process repeated up to k times. The final output is then
computed by averaging over the obtained performance parameters from each test set. Figure
3.1 shows an example of 10-fold cross-validation. The calculation of the standard deviation was

performed on the mean accuracy in order to get the error rate for classification. Additionally, a
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statistical test was conducted using pairwise comparison for each machine learning method to

assess the average accuracy scores obtained from the 10-fold cross-validation.

Test data < Training data  ——————p
Fold-2 ——3( ) OOPDOO OOO0O OO0
Fold-3 —)1—\1 |/_\l ",,~—~\} |‘_/ _..TH_"/._\:I 4 _Rj’l |_\n_n |'i“_-\'| 4_;
Fold -k =3 ) OO0 OO0 OO
& All data >

Figure 3.1: Demonstration of k-fold cross-validation.

3.2.6 Model Evaluation Metrics for Classification

Evaluating the performance of a model is one of the important tasks of machine learning.
Before creating a model, datasets are divided into training and test datasets, and the model
trained on the training datasets and model evaluation is done on the test datasets with labels. In
which the predicted label is compared with the actual label, and measure the performance of
the model using several evaluation metrics. Creating a precise model that can forecast
previously unobserved data is essential. The model may perform exceptionally well on some
criteria while doing poorly on others. Therefore, it is crucial to analyze the model using a variety
of measures. Once the model is prepared, it should undergo an evaluation to assess its
performance.

3.2.6.1 Confusion Matrix
A confusion matrix is in the form of a contingency table or matrix of output and describes

the performance of the model. Sometimes, it is known as an error matrix. The matrix consists
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of prediction results in summarized form, showing the total number of correct and incorrect

predictions. The description of a matrix is given below:

Actual Actual

positive negative
Predicted positive TP FP
Predicted negative FN TN

True positive (TP) — the number of samples with the absence of brain cancer predicted as an

absence of brain cancer.

False positive (FP) — the number of samples with the presence of brain cancer predicted as an

absence of brain cancer.

True negative (TN) — the number of samples with the presence of brain cancer predicted as

the presence of brain cancer.

False negative (FN) — the number of samples that have an absence of brain cancer predicted

as the presence of brain cancer.

3.2.6.2 Computation of Performance Measures
From the contingency table, several parameters are selected, and the performance of ML

models was evaluated using accuracy, specificity, precision, sensitivity (recall), F1-score,
Geometric mean (GM), and Matthews correlation coefficient (MCC). At first, a confusion
matrix was generated to compute these performance scores. True positive (TP), true negative
(TN), false positive (FP), and false negative (FN) was calculated from the confusion matrix.

Then we calculated the accuracy or success rate as follows,

| ~ TP + TN
CCUracy =Tp ¥ TN + FP + FN
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The sensitivity or true positive rate of a ML model was measured using the following equation.

TP
TP+ FN

Sensitivity =
The specificity or true negative rate of a ML model was measured using the following equation.

TN

Specificity = m

The precision or positive predicted value was measured using the following equation.

TP

p . . __
recision TP + FP

A measure of model performance that combines precision and recall into a single number is

known as the F-measure or F1-score. The following equation was used to compute the F1-score.

TP

F1 — score = 1
TP +7(FP + FN)

Geometric mean (GM) is the average value or mean, which signifies the central tendency of the
set of numbers by taking the n root of the product of their values. The higher value of GM

indicates better balance classification.

Geometric mean(GM) = (x1.Xp . ... X))/

Matthews correlation coefficient MCC measures the correlation of the true classes with the
predicted labels.

_ (TP +«TN) — (FP *FN)
~ J(TP + FP)(TP + FN)(TN + FP)(TN + FN)

McCC
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We used sklearn.metrics library in Python to calculate the above measures.

AUC-ROC curve
ROC curve stands for Receiver Operating Characteristics Curve 6 and AUC stands for Area

Under the Curve. It is a graph that shows the performance of the classification model, the
probability of true positive results against the probability of false positive results for a range of
different cut-off points. The formula of TPR and FPR are given below:

TPR =25 TFN
FPR = kP
~ FP+TN

AUC-ROC curve is used for the visualization of the model. The higher the area under the
ROC curve, the model will be better. A classifier that exhibits superior performance is
characterized by AUC value that surpasses 0.5. The AUC of a perfect classifier would be 1.
Typically, assuming model performance, an effective classifier can be obtained by selecting a
threshold value that maintains a low false positive rate (FPR) and a high true positive rate
(TPR). Further, we also visualized the model performance across a wide range of conditions

using receiver operating characteristic (ROC) plots.

3.2.7 Ranking of the Models

Multiple Criteria Decision Making (MCDM) "7 was used to select the best model. MCDM
was implemented in Python, and the Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) was used to find the rank. The performance parameters, i.e., accuracy,

recall, precision, F1-score, GM, and MCC, were used for ranking.

3.2.8 Survival Analysis
Survival analysis of feature genes having correlation > 0.5 (p < 0.05) of LGG patient samples
was conducted using Gene Expression Profiling Interactive Analysis (GEPIA) databases

(http://gepia.cancer-pku.cn/). GEPIA utilises the log-rank test to perform survival analysis by

employing TCGA clinical data. The overall survival of feature genes was generated based on
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the high and low expression of genes. The cut-off value set as quartile (upper-quartile = 75%

and lower-quartile = 25%) and p < 0.05 was considered as statistically significant.

3.2.9 Biological Pathway and Process Enrichment Analysis

Pathway and process enrichment analysis was carried out using the Metascape tool with the
following ontology sources: GO Biological Processes, KEGG Pathway, and Reactome Gene
Sets 1’8, Metascape combines functional enrichment, interactome analysis, and gene annotation.
If the adjusted p-value < 0.05, the biological process or pathway was considered significantly
enriched.

3.2.10 Statistical Analysis

One-way ANOVA followed by a post-hoc Tukey-HSD test was performed using Sigma Plot
11.0. A hypergeometric test was conducted using R.

3.3 Results

3.3.1 Development of Machine Learning-based Classifier for Diagnosis of the

LGG Subtypes
Genome-wide mMRNA expression data of LGG (n = 281) patients were obtained from UCSC

Xena (https://xena.ucsc.edu/). Based on clinical information, LGG patients were segregated

into grade 2 and grade 3 of astrocytoma (n = 30 and 66), and oligoastrocytoma (n = 42 and 33)
oligodendroglioma (n = 67 and 43) (Figure 3.2A).
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Figure 3.2: Division of sample and clustering of patients. (A) The flow diagram shows the
histological classes of LGG and the scheme of sample division. PCA plots show the clustering
of the patients using gene expression data of (B), mixed grade (C), grade 2 and (D), grade 3 of
LGG. A: astrocytoma, OA: oligoastrocytoma, OD: oligodendroglioma, N: healthy, G2: grade
2, G3: grade 3, G2+G3: mixed grade.

Next, the gene expression data was pre-processed to remove the merely expressed genes,
log> (RSEM +1) < 0.1 in 90% samples, to implement the machine learning algorithms, reducing
the computing time. Finally, 14,517 genes expressed in cancer and healthy tissue were
subjected for further analysis. Next, the principal component analysis (PCA) was performed to
observe the gene expression patterns in different subtypes and grades of LGG. We also wanted
to observe the clustering of LGG patients based on the information contained in gene expression
data. The first two principal components (PCs) was focused, as they captured the most
variations in the data set °8  The PCA was performed using mixed grade (without
considering the cancer grade), grade 2, and grade 3 gene expression data to separate the
subtypes. The resulting projection of PC1 and PC2 is shown in Figure 3.2 (B, C, and D),

representing the clear separation between LGG and healthy cells. However, PCA could not
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separate LGG subtypes. PCA successfully clustered the healthy and LGG patients due to
distinct gene expression patterns. However, it failed to separate the LGG subtypes, which may
be due to highly heterogeneous gene expression within the cancer patients. These results
indicated a need for efficient computational tools to diagnose LGG subtypes to support the

clinician.

Hence, supervised machine learning approaches were implemented to develop a framework
for patient classification (Figure 3.3). The subtype classification of patients were performed
using mixed grade (without considering cancer grade), grade 2, and grade 3 transcriptomics
data. From the previous step, 14,517 pre-processed gene expression data of cancer cells were
taken for analysis. This expression data was high-dimensional, and the number of genes was
much larger than the number of patient samples; therefore, to improve the classification
accuracy, we performed feature selection or gene selection before applying the supervised
machine learning algorithm 8, Besides, feature selection removes the irrelevant genes and
identifies the discriminatory genes, which facilitates the improved performance of the classifier.
The feature selection was done separately on grade2, grade3 and mixed grade patients. A two-
step process was applied for feature gene selection. At first, a correlation-based approach was
used to eliminate redundant and irrelevant features. The Pearson correlation coefficient (rs) was
computed and genes with rs > 0.7 were dropped. The remaining genes, i.e., 5,943 genes in grade
2, 7,007 genes in grade 3, and 7,375 genes in the mixed grade, were taken for further analysis.
Due to an unequal number of patients in different subtypes and grades of LGG (Figure 3.2A),
the model can become biased towards one class, leading to poor performance of the model.
Hence, we performed random sampling to select the equal number of patients in each subtype
before the feature selection. We divided the balanced data into training (70%), and test (30%)
datasets. Next, we have performed supervised ML-based methods for feature gene selection,
i.e., SVM-RFE and Random Forest-based Boruta algorithm to select the most variable features
among the classes (see Materials and methods).

Linear SVM-RFE was computed on the training data set with 5-fold cross-validation (CV).
We performed the CV to avoid the issue of overfitting 82183, The separate rank list of genes
were generated in grade2, grade3, and mixed grade cancer, and from these lists, the top 20, 50,
100, 200, and 500 feature genes were selected for further analysis. Next, different machine
learning (ML) algorithms were applied to classify subtypes of LGG. Support vector machine
(SVM), k-nearest neighbors (KNN), GaussianNB (GNB), Decision Tree (DT), and Random
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forest (RF) was used on top 20, 50, 100, 200, 500 feature genes for classification (Figure 3.4).
Initially, our objective was to determine the best set of features with the best accuracy.
Therefore, we compared the accuracy score of each model for each feature gene set. The 100
feature genes had shown the best prediction accuracy by all ML models (Figure 3.4A, B, and
C). The other performance parameters, i.e., recall, precision, and F1 score were also evaluated,
and it is observed that 100 feature genes provided the overall highest score (appendix table 1.1)
in test dataset (30%). Furthermore, the PCA was performed using expression data of 100 feature
genes to examine the clustering of patients. It is observed that improved subtype-specific
separation between patients using 100 feature genes compared to pre-processed data, indicating
that the integrated feature selection method efficiently extracted most variable features from the

transcriptome data (appendix figure 1.1).
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Figure 3.3: The machine-learning framework and classification accuracy with a different set

of features. The flow chart shows the machine-learning pipeline using transcriptomics data to

classify the subtypes and grades of LGG.
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Figure 3.4: (A, B, and C) bar plots show the accuracy of subtype prediction using different
feature genes and ML algorithms.
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Next, stratified k-fold CV (k = 10) was performed using all ML algorithms on 100 feature
genes. CV was performed for estimating the true accuracy of a given model; in turn, it described
the reliability and stability of the models. In cross-validation, the dataset was divided into a
training set and a test set. This process was repeated ten times, and in each split model’s
performances were measured. Then the average performance was calculated, such as average
accuracy. Here, along with the average accuracy, the recall, precision, F1-score, GM, and MCC
were calculated (Table 3.2). Then the overall performance of subtype classification of the ML
models were compared in mixed grade, grade 2, and grade 3. It is observed that the average
prediction accuracy of SVM was superior compared to the other ML models, i.e., 82% (+0.08)
in mixed grade, 90% (+0.08) in grade 2, and 94% (+£0.03) in grade 3. Moreover, Table 3.2 shows
a key finding, the classification of subtype is always high in the specific grade of cancer
compared to mixed grade. Except for SVM, for all classifiers, the accuracy of subtype
classification drops below 80% with mixed grade transcriptome data. The MCC score, which
represents the correlation between the observed and predicted classifications, was less in mixed
grade; for SVM, the MCC score was 0.6. Whereas in grade 2 and grade 3, MCC scores were
0.79 and 0.87, respectively. A similar observation was made (appendix Table 1.1 and Figure
3.4A, B, and C), that irrespective of ML-method and the number of features genes, the subtype
classification accuracy was always less with mixed grade data compared to grade 2 and grade
3. These results showed that prediction of the subtype was more accurate in a particular grade
of cancer. This also indicates ML- algorithms are sensitive to cancer grade. Next, the SVM
performance was statistically validated using one-way ANOVA followed by Tukey-HSD test.
The pairwise comparison was performed and compared the average accuracy score from the k-
fold CV of SVM with other machine learning algorithms. In the previous section, it is observed
that the accuracy score of SVM was always high compared to the other algorithms. Therefore,

we constructed the null hypothesis as follows:
HO: The accuracy of all models is equivalent.
The alternative hypothesis is

H1: The accuracy of all models is not equivalent.

The ANOVA test result on the accuracy is provided in Table 3.3, and it is observed that
SVM performance was significantly high (p < 0.05) compared to KNN and DT. At the same

time, RF and GNB showed no significant difference in classification accuracy. A ranking was
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done in order to find the best classifier. The multiple-criteria decision-making (MCDM) was
performed using TOPSIS on each k-fold result 8. All performance measures mentioned in
Table 3.2 were considered for the ranking, and SVM topped the overall ranking. It is always
desirable to have a highly sensitive and specific model for diagnosis. Therefore, the relationship
was visualized between sensitivity and specificity using the ROC curve. ROC curve represents
the probability of a true positive result or the test's sensitivity against the probability of a false-
positive result for a range of different cut-off points. Figure 3.5 (A, B, and C), shows the area
under the ROC curve (AUC) of all ML models, and it is observed AUC for SVM was higher in
all three cases, i.e., 0.87 in mixed grade, 0.98 in grade 2, and 0.951 in grade 3. The overall
performance of SVM was superior compared to other ML models. The classification was
performed using two external datasets from GEO (GSE74462 and GSE43378) to validate this
observation. The random sampling method was used on external datasets to equalize number
of patients in each subtype before classification (appendix Table 1.2) 858 The prediction
accuracy of SVM for a mixed grade, grade 2, and grade 3 was 89% (+0.11), 90% (0.08), 94%
(x0.12), respectively (Table 3.4). It is also observed that the MCC score was > 0.80 in all three
classifications. Hence, SVM was the best classifier for subtype classification for transcriptome
data from model building to validation. To compare the efficiency of the present framework,
the subtype classification was performed again using the features computed by the Boruta
algorithm. The performance of all five ML algorithms were compared, i.e., SVM, KNN, GNB,
DT, and RF, using the Boruta features gene. Results are summarized in appendix Table 1.3 and
indicate that features computed using SVM-RFE were substantially better than the Boruta in
terms of classification accuracy. Therefore, correlation and SVM-RFE for feature gene
selection and then subtyping using SVM can be efficient tools for clinical diagnosis of LGG
subtypes. However, interestingly the feature genes from Boruta showed a similar trend of
classification, i.e., classification accuracy was high with only grade 2 or grade 3 gene expression

data compared to mixed grade.
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Table 3.2: Models' performance and ranking
Methods Performance measureg _(Average of 10 fold cross-validation) Rank
Accuracy Precision | Recall F1-score | Gmean | MCC
SVM 0.82%(+0.08) 0.7263 0.7439 0.7237 0.8196 | 0.6 1
) RF 0.79%(£0.05) 0.6768 0.7044 0.6724 0.784 | 0.53 2
';J"r';‘(jg DT 0.66%(+0.05) | 0.4925 | 05303 |0.4853 |0.6567 |0.25 |5
KNN 0.69%(+0.05) 0.5382 0.5645 0.5381 0.6904 | 0.32 4
GNB 0.77%(£0.05) 0.6504 0.6733 0.6511 0.7664 | 0.49 3
SVM 0.909%(+0.08) 0.8607 0.8676 0.8558 0.9035 | 0.79 1
RF 0.86%(+0.05) 0.7967 0.808 0.791 0.8598 | 0.69 3
Grade2 | DT 0.79%(+0.08) 0.6929 0.7231 0.6722 0.7866 | 0.55 4
KNN 0.75%(%0.09) 0.6321 0.6546 0.6245 0.7482 | 0.45 5
GNB 0.88%(+0.06) 0.8186 0.8353 0.8119 0.8747 | 0.73 2
SVM 0.949%(+0.03) 0.9035 0.9267 0.9016 0.9368 | 0.87 1
RF 0.86%(%0.05) 0.795 0.827 0.7882 0.8575 | 0.7 3
Grade3 | DT 0.78%(%0.07) 0.6729 0.671 0.6603 0.7797 | 0.52 5
KNN 0.809%(+0.04) 0.6938 0.6847 0.6606 0.7923 | 0.56 4
GNB 0.89%(+0.07) 0.8469 0.8496 0.8383 0.8924 | 0.77 2
Table 3.3: ANOVA followed by Tukey-HSD test
Mixed Grade Grade2 Grade3
SI.No. | Comparison
p-value<0.05 | p-value<0.05 | p-value<0.05
1 SVM vs. KNN Yes Yes Yes
2 SVM vs. DT Yes Yes Yes
3 SVM vs. RF No No No
4 SVM vs. GNB No No No
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Figure 3.5: ROC of various prediction models. (A—C) ROC plots were generated using an

independent dataset. SVM, support vector machine; KNN, k-nearest neighbors; GNB,

ROC plots
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Table 3.4: Performance of SVM with independent datasets

Performance measures (Average of 10 fold cross-validation)

Accuracy | Precision | Recall | F1-score | GM | MCC
Mixed Grade | 0.89(%0.11) 0.8583 | 0.8700 0.8420 | 0.8869 | 0.80
Grade 2 0.90(0.08) 0.8350 | 0.8558 0.8199 | 0.9025 | 0.81

Grade 3 0.94(x0.12) 0.9300 | 0.9350 0.9216 | 0.9453 | 0.88

3.3.2 Simultaneous Subtyping and Grading of LGG using SVM

In the previous section, it was observed that it was necessary to identify grades to achieve
higher accuracy in subtype classification. Additionally, the grade of cancer determines the
malignancy level. The correct grade stratification has significant implications in determining
the patient treatment plan *¥7. Therefore, simultaneous identification of grade and subtype will
greatly support clinicians in deciding accurate treatment strategies. Henceforth, we decided to
classify the six classes, and subsequently divided the whole LGG data set into astrocytoma
grade 2 (n = 30), astrocytoma grade 3 (n = 66), oligoastrocytoma grade 2 (n = 42),
oligoastrocytoma grade 3 (n = 33), oligodendrogliomas grade 2 (n = 67), and
oligodendrogliomas grade 3 (n = 43) (Figure 3.2 A). For classification, the top 100 feature genes
of grade 2 and grade 3 were used from previous steps. The grade 2 and grade 3 features were
combined and screened the unique list of 178 features out of 200. It is worth mentioning that
only 11 % of feature genes were common between grade 2 and grade 3, which is a
nonsignificant overlap (p =1.0, hypergeometric test). This shows that these feature genes could
be used as grade and subtype-specific biomarkers. Next, the SVM was implemented using the
gene expression data of 178 genes and calculated the performance measures as previously
described (Table 3.5). The average accuracy of the model in k-fold CV (k = 10) was 91%
(x0.02), indicating that SVM efficiently classified the six classes and showed stable
performance. To further confirm, the model was executed on the independent test dataset, and
accuracy was 93.39%. It is also examined the accuracy of prediction of individual class, that is,
astrocytoma grade 2 (accuracy = 93.38%), astrocytoma grade 3 (accuracy = 95.04%),
oligoastrocytoma grade 2 (accuracy = 87.60%), oligoastrocytoma grade 3 (accuracy = 94.21%),
oligodendrogliomas grade 2 (accuracy = 95.86%), and oligodendrogliomas grade 3 (accuracy

= 94.21%). It was noted that the prediction accuracy was > 90% in maximum classes.

55



Chapter 3 Obijective 1

Furthermore, we analyzed the performance using the ROC plots (Figure 3.6). The average AUC
for the six classes is 0.88 and the individual class AUC varies from 0.79 to 0.94. This indicates
that the model was highly specific and sensitive. The simultaneous classification of grade and
subtype with higher accuracy can be a major support and breakthrough for clinicians for patient

management.

Table 3.5: Performance of SVM for multi-class (six class) classification to predict the grade

and subtype simultaneously

Performance measures

Accuracy | Precision | Recall | F1-score GM | MCC

Training data | 1,002 | 0.7646 | 0.7502 | 0.7444 | 0.8372| 0.70

(k=10)
'”degaetr;de”t 09339 | 0.8168| 0.8024 | 0.8024 | 0.8714| 0.76
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Figure 3.6: Model performance. ROC plot for multi-class (six class) classification.
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3.3.3 Grade and Subtype-specific Co-expression Pattern of Feature Genes

and Biological Relevance

In our approach, feature selection has a crucial role in achieving higher prediction accuracy.
However, ML algorithms were restricted from constructing an accurate prediction model as a
black box because they are rarely linked with biological processes and functions. However, the
association of these features with biological processes would allow us to explore them as
potential biomarkers. Furthermore, if these biomarkers are specific to a subtype in a particular
grade, then it will be an advantage for precision therapy. The co-expression network was
constructed and analyzed between the feature genes to explore such a possibility. The gene to
gene correlation is linked with specific disease states because gene expression patterns are not
the same in different cellular conditions. Again, the gene expression level often determines the
corresponding protein's functional activity, which is directly linked with the biological
processes and molecular functions 2%. Hence, our study focused on the examination of the co-
expression pattern of the feature gene and its association to specific-subtype in a grade. The
Pearson correlation coefficient (r) was computed for each pair of feature genes using the gene
expression data of a specific subtype in a grade. r > 0.5 (p < 0.05) was selected as the threshold
to screen the statistically significant co-expressed gene pairs. A total of 82, 36, and 73 correlated
gene pairs in grade 2 (Figure 3.7A, B, and C), and 27, 116, and 98 correlated gene pairs in grade
3 (Figure 3.7D, E, and F) were present in astrocytoma, oligoastrocytoma, and
oligodendroglioma, respectively. Next, the list of co-expressed genes was compared between
the subtypes using a hypergeometric test. It was found there was a nonsignificant (p > 0.05)
overlap between the genes in subtypes except astrocytoma and oligodendroglioma (p = 0.004)
(Table 3.6). The nonsignificant overlap indicates that many co-expressed genes are specifically

associated with a particular subtype in a grade.
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0D(G2)

E 7 OA(G3)

Figure 3.7: Biological relevance of feature genes. (A-F) The correlation heat maps of feature
genes in different subtypes and grades as mentioned in the figure. A, astrocytoma; OA,

oligoastrocytoma; OD, oligodendroglioma; G2, grade 2; G3, grade 3.

Table 3.6: Statistical significance of the overlap between two groups of feature genes

Hypergeometric test

Grade 2 p-value

Astrocytoma Vs oligoastrocytoma 0.0824

Astrocytoma Vs oligodendroglioma 0.004

Oligoastrocytoma Vs oligodendroglioma | 0.032

Grade 3 p-value

Astrocytoma Vs oligoastrocytoma 0.7771

Astrocytoma Vs oligodendroglioma 0.2437

Oligoastrocytoma Vs oligodendroglioma 1

58



Chapter 3 Obijective 1

Next, the gene set enrichment analysis was performed to understand the biological relevance
of co-expressed feature genes in a specific subtype and grade using the Metascape tool 178, It
was observed that enriched biological processes and pathways were linked to oncogenic events
(Figure 3.8). Such as extracellular matrix organization in astrocytoma (grade 2), TNF signaling
pathways and PI3k-Akt signaling pathway in oligodendroglioma. These biological processes
are generally activated in glioma, affecting the biological behavior of tumors, and linking to
patient prognosis and survival 1819 Fyrthermore, hemophilic cell adhesion molecules in
oligoastrocytoma are involved in the growth and progression of glial tumors L. Similarly, the
calcium signaling pathway in astrocytoma (grade3), chemical synaptic transmission in
oligoastrocytoma, and NF-kappa 3 signaling pathway in oligodendroglioma are the prominent

signature of brain cancer formation and progression 192-194,

Biological processes and pathway enrichment analysis
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Figure 3.8: Biological processes and pathway enrichment analysis of co-expressed feature
genes. (G2), grade 2; (G3), grade 3.

It was noticed that various biological processes and pathways had been enriched, which
differed among the cancer subtype in a grade (Figure 3.8). These results represent that a distinct
gene expression pattern and biological processes are linked with the subtypes within a particular
grade of LGG. There are many divergences between grade 2 and grade 3, although both grades
are considered lower-grade cancer. This observation again illustrates that identifying grade and

subtype is crucial for finding a proper therapeutic intervention.
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3.3.4 Identification of Prognostic Biomarkers of LGG for Diagnosis and

Treatment

Correlation analysis and hypergeometric test in the previous section revealed that many of
the co-expressed genes (features) were unique to the specific subtype in a grade. Importantly,
biological processes and pathway enrichment analysis showed that these co-expressed genes
were also associated with oncogenic processes. This allows further evaluation of these genes as
a potential biomarker for cancer therapy and diagnosis. Next, survival analysis and log-rank
test was performed using GEPIA web tools of the genes unique to a specific subtype in a
particular grade (PCC>0.5, and p < 0.05). Survival analysis revealed that several genes were
linked to patient survival. Here, the Kaplan—Meier survival plot has been shown, illustrating
the genes whose higher expression is associated with poor prognosis (Figure 3.9). Furthermore,
several experimental pieces of evidence showed that many genes are involved in oncogenic
processes in brain cancer. Such as in grade 2 cancer, MGC12982 (FOXD2-AS1) 1%, ITGA7
19% EpS8L1 %7 DDR2 % STAG3L2, and HLA-G %°2% jn astrocytoma, TP53 201202 and
PDGFD 20329 in oligodendroglioma, were significantly (p < 0.05) associated with worse patient
survival. In grade 3 cancer, GATM 2% PCDHGA9 2% and GPR126 (ADGRG6) 2% in
oligoastrocytoma, and GLI1 2% TC2N 2% PKD2L1 2° LTBP4 !, and VGLL3 2, in
oligodendroglioma, were linked to worse patient survival. Additionally, we identified several
new genes, i.e, which are not reported before in LGG, such as N6AMT2, CCDC125, and
RFESD in astrocytoma, HRCT1 in Oligoastrocytoma, LEKR1 in oligodendroglioma of grade
2, and in grade 3, WBSCR27 in astrocytoma, PCDHB16 in oligoastrocytoma, and PCDHB7 in
Oligodendroglioma. The higher expression of these genes affects patient survival. The co-
expression of these genes in LGG subtypes and association with patient survival shows the

possibility to identify them as grade and subtype-specific prognostic biomarkers.

60



Chapter 3 Obijective 1

Analysis of Overall Survival
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Figure 3.9: Survival analysis of feature genes., (A-1) astrocytoma grade2, (J) oligoastrocytoma
grade2, (K-M) oligodendroglioma grade2, (N) astrocytoma grade3, (O-R) oligoastrocytoma
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grade3, (S-X) oligodendroglioma grade3.Overall survival was analyzed based on the clinical
information of the patients from TCGA and quartile method of 75 % cut-off of higher and 25%

cut-off of lower limit.

3.4 Discussion

In this chapter, publicly available transcriptomes of LGG for subtyping and grading was
explored. Heterogeneity in the tumour is the main issue for molecular subtyping and precision
treatment of brain cancer patients. We present a comprehensive and precise ML-based approach
for cancer grading and subtyping. It was observed that a subtype of LGG was not separable
using PCA. This result led us to design an ML-based framework for the accurate prediction of
LGG subtypes. It is found an integrated approach consisting of correlation and SVF-RFE
algorithm for feature gene selection, and then computation of SVM using those feature genes
(n = 100) had shown superior performance (accuracy > 90%). We found that the accuracy of
subtype classification is always good using the gene expression data of a specific grade of
cancer rather than a mixed grade. We repeatedly observed the same with other ML
techniques. This gave us clues that cancer grading is essential to achieve higher accuracy for
subtype prediction. Further, the performance of the SVM was statistically verified through the
one-way ANOVA followed by a Tukey-HSD test. A pairwise comparison was conducted to
evaluate and contrast the average accuracy score obtained from 10-fold cross-validation of
SVM with that of other machine learning techniques. The results indicate that the performance
of SVM was significantly higher (p < 0.05) when compared to other machine learning
techniques. Then, six-class classification was performed for simultaneous grading and
subtyping using the same ML framework and attained an overall accuracy of 91.0%
(x0.02) and AUC=0.88. Therefore, the findings of this study strongly strengthen the fact that
grading and subtyping are both required to achieve a higher accuracy of prediction. Indeed,
cancer grade and subtype are the essential clinical parameters to design the treatment

plan and determine the patient’s prognosis.

The correct set of feature genes and their discriminative ability play a crucial role in the
superior performance of ML algorithms. In addition, the biological relevance of these features
could lead to finding the formation and therapeutic targets. It is analyzed that the expression

data of feature genes and their biological significance in a similar line of thought. We identified
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the subtype and grade-specific co-expressed feature genes associated with the
oncogenesis. Furthermore, survival analysis of these genes revealed several predictive
biomarkers, which could be used as potential molecular indicators for diagnosis and treatment.
Therefore, we conclude that gene expression data of a subtype of LGG without considering
the grade is more heterogeneous than data of a specific grade. The higher heterogeneity in
the data resulted in lower accuracy of subtype prediction. Lastly, the findings of the present
study and ML-based framework can offer new avenues for developing subtype- and
grade-specific therapeutic strategies. To promote the further development for building more
accurate biological relevant models and identification of novel therapeutic marker multi-omics
data analysis is essential, which has grown in popularity in cancer research in recent decades.
Moreover, the integration of transcriptomic, epigenomic, proteomic, and metabolomic data can
reveal the intricate systemic dysregulation linked to the phenotype of lower-grade glioma.
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Chapter 4: Objective 2
Development of Deep learning and machine learning
frameworks based on genomic data for subtyping
glioblastoma multiforme (GBM) and identification of
biomarkers

4.1 Background

Glioblastoma multiforme (GBM), which is the grade IV of glioma, is a highly invasive and
devastating primary form of brain cancer. The complexity and molecular heterogeneity of GBM
pose the challenge for accurate diagnosis and therapy 2%6. Because of enormous molecular
heterogeneity and difficulty in early diagnosis, the molecular mechanisms of GBM
tumorigenesis is not clear. Understanding molecular features that facilitate aggressive
phenotypes in glioblastoma multiforme (GBM) remains a major clinical challenge. There are
many other studies to find other subtypes using omics and clinical data '3, Histopathological-
based diagnosis is the most common method for subtype identification. However, it often leads
to inaccurate classification of subtypes due to inter-observer variability 8. To find the curative
solution, understanding the molecular features and identification of GBM subtypes is crucial.
GBM is currently classified into three subtypes i.e., classical, proneural, and mesenchymal.
Accurate pathological subtype diagnosis is pivotal for optimal patient management. Because,
GBM subtypes are histologically and genetically heterogeneous, differs in gene expression,
mutation, and epigenetic states, which lead to different therapeutic response and clinical

outcome 1920,

Recent advances of sequencing technologies have helped generate massive omics data in
cancer, leading to a deep understanding of the molecular mechanisms in both common and rare
cancers 2215 The Genome-wide analysis revealed that changes in gene expression and
methylation patterns in several positions in the genome are strongly associated with the GBM
formation and progression 2628 Gene expression and methylation are both strongly
interlinked processes; methylation levels in promoter regions influence the gene expression by
regulating the transcription factors binding . On many occasions, hypermethylation of CpG

sites on promoter regions inhibits the gene expression, whereas hypomethylation causes higher

65



Chapter 4 Obijective 2

expression of genes 2%°

. Therefore, classification using multiple “omics” data, i.e.,
transcriptome and methylome, can provide optimal features for the clinical diagnosis of cancer
subtypes. However, enormous amounts of genetic and epigenetic alterations pose challenges to
finding the unique molecular marker for diagnosing GBM subtypes. Benefitting from recent
advances in computational methods such as deep learning (DL) and traditional machine
learning (ML), it is possible to scan the genome-wide transcriptome and methylome data to find

the subtype-specific molecular feature for diagnosis 2%,

In this chapter, ML and DL algorithms were implemented for the precise and accurate
classification of GBM subtypes. Each data type (i.e., transcriptome and methylome) and their
integrated data (patients having both transcriptome and methylome data of GBM) were
separately used for classification. In addition, the biological relevancy of features were
examined using weighted gene co-expression network analysis (WGCNA) and Gene Ontology
(GO) analysis. Furthermore, these co-expression module genes were used to identify subtype-

specific prognostic biomarkers for GBM diagnosis and treatment.

4.2 Methodology

4.2.1 Data collection, preprocessing, and integration

In this study, we analyzed TCGA glioblastoma multiforme (GBM) transcriptome (RNA-
seq) and methylome (Illumina Infinium HumanMethylation450 platform) data. The dataset was
retrieved from UCSC Xena (https://xena.ucsc.edu/) 1%°. Log2 (RSEM +1) (RSEM: RNA-Seq

by Expectation Maximization) values for transcriptome and f§ values for methylation were used
for analysis. Next, the lowly expressed genes were removed from transcriptome data (log2
(RSEM +1) <0.1 in 90% sample), and data was scaled before analysis. Based on the clinical
information, patients (n=155) were divided into three categories based on cancer subtype, i.e.,
classical (n=42), mesenchymal (n=55), and proneural (n=39) for transcriptome data (Table 4.1).
Similarly, we have divided the methylome data (n=84) into a particular subtype, i.e., classical
(n=29), mesenchymal (n=32), and proneural (n=23) (Table 4.1). Next, based on the clinical
information, patients with both transcriptome and methylome profiles in TCGA were screened
to integrate the transcriptome and methylome data. The total number of these patients with
transcriptome and methylome data was 52, including classical (n=16), mesenchymal (n=22),
and proneural (n=14) (Table 4.2).
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Table 4.1: Details the tumor samples in transcriptome and methylome data of GBM.

Transcriptome Methylome
Type | Grades | Subtypes Samples | Grades | Subtypes Samples
Classical 42 Classical 29
GBM | Grade IV | Mesenchymal | 55 Grade IV | Mesenchymal | 32
Proneural 39 Proneural 23

Table 4.2: Details the tumor samples having both transcriptome and methylome data of GBM.

Patients with transcriptome and methylome samples
Type | Grades Subtypes Samples
Classical 16
GBM | Grade IV Mesenchymal 22
Proneural 14

Due to the unavailability of healthy patient data for both transcriptome and methylome, we
used the Z-score to classify higher and lower expression of genes and hyper-and hypo-
methylated CpG sites. We have calculated the Z-score for each gene or CpG site in a specific

subtype using the following formula.

X—Hu
Z — score = ——
o

Here, X represents subtype-specific average expression or methylation level of a gene/CpG
site, while 4 and o represent the population mean and population standard deviation,
respectively 22!, We have applied Z-score>1 for higher expression and hypermethylation and
Z-score<-1 for lower expression and hypomethylated on each subtype of GBM. Next, we
screened the higher and lower expressed genes whose promoter regions were differentially
methylated, considering that the differential methylation in the promoter regions may alter the
corresponding gene’s expression. Finally, genes with both differential expression patterns and
differential methylation promoter regions were used for further analysis 22?22, We have

collected the external dataset from the Gene Expression Omnibus (GEO) repository for
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validation. GSE145645 was used to validate the model constructed using transcriptome and
integrated data. GSE145645 contained all the subtypes of GBM, i.e., classical (n=9),
mesenchymal (n=14), and proneural (n=9). Models built on methylome data were further
validated using GSE128654, which consisted of classical (n=11), mesenchymal (n=8), and
proneural (n=10) subtypes.

4.2.2 Clustering using Principle component analysis (PCA)

The subtype-specific clustering of patients using transcriptome, methylome, and patients
having transcriptome and methylome samples named as integrated data was visualized by
principal component analysis (PCA) (A detailed description was provided in the chapter 3.2.2).
We used PCA for visualization of GBM subtypes; ggfortify and cluster package in R was used.

4.2.3 Features selection by Least absolute shrinkage and selection operator
(LASSO)

The feature or variable selection was performed to improve the performance of ML and DL
algorithms. The least absolute shrinkage and selection operator (LASSO) approach regularises
model parameters by decreasing some regression coefficients to zero. After the shrinkage,
comes the feature selection phase, during which all non-zero values are chosen to be
incorporated in the model. LASSO regularization is a crucial idea that helps to prevent data
overfitting. In order to attain a lower variance with the tested data, regularization is
accomplished by adding a penalty term to the best fit produced from the trained data.
Regularization also limits the effect of predictor variables over the output variable by
compressing their coefficients. LASSO models provide good prediction accuracy. Since the
method involves shrinking of coefficients, which lowers variance and minimizes bias, the
accuracy increases. The LASSO was performed on all types of preprocessed data 22, The
default parameter values were used for lambda (tuning factor that controls the strength of
penalty) and dropped those genes with a coefficient value 0. LASSO was implemented in the
ScikitLearn (https://scikit-learn.org) package in Python.
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4.2.4 Machine learning and Deep learning models for classification of GBM

subtypes

Classification was performed on the subtype of GBM as a multi-classification problem using
gene expression levels as covariates. Several machine learning and deep learning algorithms
were used for classification: support vector machine (SVM), K-nearest neighbors (KNN), naive
bayes (NB), random forest (RF) (A detailed description of above classifiers were provided in
the chapter 3.2.5 in details), logistic regression (LR), and convolutional neural network (CNN).

LR and CNN models are discussed here:

4.2.4.1 Logistic Regression (LR)
Logistic regression (LR) is the most popular supervised machine learning algorithm. A

logistic regression classifier predicts the response based on one or more predictor variables. It
measures the relationship between the categorical dependent variable and one or more
independent variables by estimating probabilities using a logistic function. Logistic regression
is basically used for solving classification problems. The logistic function curve indicates that,
whether the cancer patients are healthy or cancerous. It has the ability to provide a probability
to classify new data using discrete datasets %?*. LR was implemented using the

LogisticRegression package in Python.

4.2.4.2 Convolutional neural network (CNN)
Convolutional neural network (CNN) is one of the deep feed-forward artificial neural

network architectures that consist of the convolutional layer, activation function, and pooling
layer. CNN's is a type of neural network that are fully connected networks extracts the features
from the training dataset i.e., each neuron in a layer is directly connected to all neurons of the
next layer. It is consist of sequence of layers, each has specific functions such as convolution,
pooling and fully connected layer. Each layer takes the output from the previous layer as an
input. This is followed by certain number of convolution layers composed of certain number of
filters called kernel that are convolved with the input data to obtain feature maps. CNN's have
a kernel that convolves the input to extract localized features and aggregate those using a

pooling layer, enabling the model to extract features at all levels.
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Convolution is one type of linear operation used instead of general matrix multiplication in
convolution layers where filters are applied to original data or to feature maps in deep CNN.

The convolution operation (denoted by an asterisk) is defined by:

f@) = (x*K)(®)

Where the function x (t) is referred to as input, K(t) is referred to as kernel, and the f(t)

is referred to as output.

Next, convolutional layer followed by pooling layer that introduces non-linearity to the
activations and performing down sampling reducing the number of parameters and select more
salient features that the network needs to learn. Most common activation is rectified linear unit
(ReLu). It allows for faster and more effective training by mapping negative values to zero and
maintaining positive values. The activated features are carried forward into the next layer. Next,
layer is fully connected layer (FC) that is the end of the CNN model. The input of the FC layer
comes from the last pooling or convolutional layer. Finally FC layer convert the data into
suitable form, flattened into the vector and fed into the feed forward neural network. After
training of many epoch, cancer and normal or multiclass classes are identified by CNN using
softmax classifier. Therefore, it is efficient in extracting the relevant features from
multidimensional data. CNN is widely used for feature extraction to classify cancer using
genomics data such as gene expression data 22226, and methylation 22722, Here 1D-CNN was
used to perform the classification of GBM subtypes using gene expression, methylation and

integrated data. The 1D-CNN architecture is provided in the figure 4.1.

70



Chapter 4 Obijective 2

feature
maps

]
l
l

L

\\H/
)

)
/

] : = %
- —(J , .
‘ L3 - g
o NG
| d @ Y e ¥ output
@ S i dense layer
S WYl o —w o
connected
layer
input layer  convolution pooling flatten
layer layer layer

Figure 4.1: Architecture of 1D-CNN used for GBM subtype classification.

4.2.4.3 Hyperparameter tuning
Most machine learning and deep learning algorithms require optimum parameters to reach

the robust performance of the model. Sometimes default parameters are not reached at that
point. Only a hyperparameter is one way to select the best parameters while training the model.
GridsearchCV from the sklearn library provides the best hyperparameters of the model, as it
tries with all the given parameters using cross-validation. Hyperparameters selected from the

grid search module for every model.

In this paper, all machine learning classifiers are built on the Python platform by using
sklearn library. Keras library was used to construct the model architecture for CNN. Eight
convolutional layers were used for obtaining the best result. All parameters for CNN were
provided in table 4.3. After obtaining optimal features, stratified k-fold was applied on the 70%
training dataset and average performance measures were recorded. In Stratified k-fold CV, the
dataset is divided into k independent folds where k-1 folds were used to train the network, and
the remaining one is reserved for the test purpose. This procedure is then repeated until all folds
are used once as a test set. The final output is then computed by averaging over the obtained
performance parameters from each test set (A detailed description was provide in the chapter 3

section 3.2.5.6 and figure 3.1 in details).
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Table 4.3: Parameters of CNN
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Parameters Datasets
Transcriptome | Methylome | Integrated
Activation relu relu relu
Batch_size 50 50 50
Dropout_rate 0.1 0.1 0.1
epochs 100 100 100
filters 32 1 3
Init_mode uniform uniform uniform
Kernel_size 5 3 3
optimizer RMSprop RMSprop Adam

4.2.4.4 Performance evaluation
The performance of ML and deep learning models was evaluated using accuracy, recall,

precision, F1-score, FPR, GM, and MCC. As described in previous chapter, we generated a
confusion matrix to compute these performance scores. True positive (TP), true negative (TN),
false positive (FP), false negative (FN) were calculated from the confusion matrix 22°. Then, we

calculated the accuracy or success rate as,

TP+TN
TP+TN+FP+FN

Accuracy =

The sensitivity or true positive rate of a ML model was measured using the following equations

TP

Sensitivity = TP-l-—FIV

The specificity or true negative rate a ML model was measured using the following equations

TN
SPGCifiCity = m

The precision or positive predicted value was measured using the following equations
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TP
TP + FP

Precision =

A measure of model performance that combines precision and recall into a single number is

known as the F measure or F1-score. The following equation was used to compute the F1-score.

2XTP
2XTP+FP+FN

F1 — score =

The FPR of a ML model was measured using the following equations

FPR = oN T FP

Geometric mean (GM) is the average value or mean which signifies the central tendency of the

set of numbers by taking the n' root of the product of their values.

Geometric mean(GM) = (x1.Xp w. . Xp) /™

Mattews correlation coefficient (MCC) measures the correlation of the true classes with the

predicted labels.

_ (TPxTN)— (FP *FN)
~ J(TP + FP)(TP + FN)(TN + FP)(TN + FN)

We used the sklearn.metrics library in Python to calculate the above score by importing
functions such as confusion_matrix and classification_performance. Finally, we visualized the
model performance across a wide range of conditions using receiver operating characteristic

curve (ROC) plots using the roc_curve function.

4.2.4.5 Ranking of the model
Algorithms performance was compared using Multi-Criteria Decision Analysis

(MCDA)/Multi-Criteria Decision Making (MCDM). Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS), an established MCDM method, was used to rank.
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Multiple criteria, such as accuracy, sensitivity, precision, G-mean. F-measure, FPR, and MCC

were used in TOPSIS 177,

4.2.5 Weighted correlation network analysis

We identified co-expressed gene modules and analyzed the module-trait relationship using
the WGCNA package in R 2% . First, the similarity matrix between each pair of feature genes
in a specific subtype was measured based on Pearson’s correlation coefficient. Next, we
transformed the similarity matrix into an adjacency matrix. The soft power B value was
calculated for building the proximity matrix so that the co-expression network conformed to a
scale-free network based on connectivity. Subsequently, we computed the topological overlap
matrix (TOM) and the corresponding dissimilarity (1-TOM) value. Next, a dynamic tree-cut
algorithm was implemented to detect gene co-expression modules. The co-expression modules
were constructed with a cut height of 0.6, and a minimum module size was set to 10

(transcriptome), 10 (methylome), and 5 (integrated) genes, respectively.

4.2.6 Gene set enrichment and survival analysis

The biological process and functional enrichment analysis was performed using Enrichr 2.
Enrichr uses Fisher exact test to rank terms from gene-set libraries. Terms were considered
statistically significantly enriched if the adjusted p-value was less than 0.05. The gene list from
each positively correlated module was used to examine the enrichment of GO Biological
Processes and Molecular Function terms. Overall survival and log-rank test of a coexpressed
module was performed using the survminer and survival package in R. We calculated the
average expression of all genes in the module. Survival was compared between two groups:
patients with higher (> 75 percentile) and lower (<25 percentile) gene expression levels.
Furthermore, we performed the overall survival analysis of specific gene using GEPIA 32,
GEPIA performs survival analysis based on The Cancer Genome Atlas (TCGA) gene
expression levels and patient clinical information (A detailed description of GEPIA tool was
provided in the chapter 3.2.8 in details). Here, the TCGA GBM dataset was used for survival
analysis. GEPIA generates Kaplan-Meier plots and performs the log-Rank test to identify the

genes associated with patient survival.
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4.3 Results

The etiology of GBM is associated with the alteration of transcriptome and methylome
patterns. Therefore, the multi-omics approach that combines genome-wide methylation with
transcriptome (RNA-seq) data can provide novel insights into biological function and disease
mechanisms. In this chapter, first the transcriptome and methylome data were separately
analyzed and then integrated both data types were analyzed to classify the GBM subtypes.
LASSO feature selection method was used to find the relevant features using transcriptome,
methylome and integrated data. Next, ML and DL algorithms were employed to classify the
GBM subtypes. WGCNA was performed to observe the association of subtypes and identify
the molecular feature. Further, biomarkers were identified in each subtypes of GBM from

transciptome, methylome and integrated data.

4.3.1 Classification of GBM subtype using transcriptome

The transcriptome data of the GBM at TCGA contained 20,531 genes. After removing the
low expressed genes, a total of 14,125 genes were found expressed in all GBM subtypes,
including classical (n=42), mesenchymal (n=55), and proneural (n=39). These genes were taken
for further analysis. However, 14,125 genes could not be used as variables for prediction, as the
data is high-dimensional, leading to the inaccurate classification of subtypes. Therefore, we
performed the LASSO to reduce the dimension of data and subsequently for selecting top key
feature genes to enhance the prediction accuracy of the DL and ML model. LASSO performs
L1 regularization and adds a penalty to the loss function. A total of 201 feature genes were
obtained after performing the LASSO analysis. Next, we performed PCA to examine the local
structure of data, including 14,125 genes and 201 feature genes. We observed improved
subtype-specific separation between patients using 201 feature genes compared to 14,125
genes, indicating that the LASSO feature selection method efficiently extracted most variable
features having higher percentage of variability in principal component 1 (PC1) in PCA of 201
feature genes compared to the preprocessed data in the transcriptome data (Figure 4.3A-B).
These results indicated that information contained in 201 feature genes could separate the
subtype with higher accuracy upon implementing DL and ML algorithms. However, distinct

clusters of subtypes were not formed in PCA.
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Figure 4.2: Pipeline of GBM subtype classification using transcriptome data. The flow chart
shows DL and ML pipelines using transcriptome data to classify the subtypes.
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Figure 4.3: In (A) and (B) PCA plots to visualize the subtype-specific clustering of patients

using preprocessed data and feature genes.

Next, DL (CNN) and ML algorithms (i.e., SVM, KNN, RF, NB, LR) were applied to classify
subtypes of GBM using these feature genes as variables. The data was divided into training
(70%) and test (30%) datasets. 70% of the data was used for parameter optimization and to
assess the performance of each model. The remaining 30% of data was used for independent
predictors. Additionally, an external dataset was also used for the final validation of models. In
the model training step, 70% of the data was used to obtain the best combination of
hyperparameters using the grid search method for each DL and ML model. Next, we performed
the stratified k-fold cross-validation (k=10) on the training data using the optimal
hyperparameters obtained from the grid search and recorded average performance measures of
each model (Table 4.4). The performance of the models was evaluated using average accuracy,
recall, precision, F1-score, FPR, GM, and MCC (see Methodology). It is observed that the
prediction accuracy of CNN was superior (98.56%) compared to the other ML models. Even
standard deviation (£0.03) and FPR (0.01) were minimum in the case of CNN. The MCC score
is 0.97 for CNN, which represents the excellent correlation between the observed and predicted
classifications. It is observed that the performance of other ML classifiers was also good
(accuracy >90%). Therefore, to compare the overall performance, the multiple-criteria decision

making (MCDM) was performed using TOPSIS 8. All performance measures mentioned in
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Table 4.4 were considered for the ranking, and CNN topped the overall ranking. To validate

this observation, we have performed the classification using two datasets, i.e., 30% data as the
test data (or independent data) and an external dataset from GEO (GSE145645). In test data,

prediction accuracy (98.33%) of CNN was superior to other ML models and the MCC score
was 0.96 (Table 4.5).

Table 4.4: Models performance and ranking for transcriptome data

Method | Performance measures (Average of 10-fold cross-validation) MCDM
Accuracy Recall | Precision | Fl-score | FPR | GM MCC Rank
SVM 91.42%(+0.08) | 84.48 | 91.80 85.51 0.06 | 9152 |0.82 4
KNN 91.03%(+0.06) | 85.78 | 90.59 86.06 0.07 | 9144 |0.82 5
RF 93.06%(+0.08) | 88.52 | 93.04 89.15 0.05 |93.02 |0.85 3
NB 90.15% (+0.07) | 86.08 | 87.16 85.38 0.08 |90.52 |0.80 6
LR 93.32 %(+0.05) | 89.47 | 92.12 89.97 0.05 | 9361 |0.86 2
CNN 98.56%(+0.03) | 97.86 | 98.36 97.81 0.01 |98.64 |0.97 1
Table 4.5: Models performance and AUC using test data (transcriptome)
Method | Performance measures (on test dataset)
Accuracy | Recall Precision | Fl-score | FPR | GM MCC AUC
SVM 95.12 93.14 92.82 92.57 0.04 | 95.12 0.89 0.94
KNN 93.46 90.70 90.70 89.80 0.05 |93.49 0.85 0.92
RF 91.73 87.14 87.61 87.30 0.06 |91.86 0.81 0.91
NB 96.61 95.58 94.80 94.92 0.02 | 96.74 0.92 0.96
LR 96.61 95.58 94.80 94.92 0.02 | 96.74 0.92 0.96
CNN 98.33 97.56 97.21 97.28 0.01 | 98.37 0.96 0.99
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It is always desirable to have a highly sensitive and highly specific model for diagnosis.
Therefore, we visualized the relationship between sensitivity and specificity using the ROC
curve (Figure 4.4A-F). The ROC curve represents the probability of a true positive result or the
test's sensitivity against the probability of a false-positive result for a range of different cut-off
points. Figure 4.4A shows the area under the ROC curve (AUC) is 0.99 for CNN, indicating
that CNN can classify the GBM subtype with high specificity and sensitivity for clinical
diagnosis. Additionally, classification with the external dataset also represented a similar
outcome, i.e., the performance of CNN was higher (Table 4.6). While validating with the
external dataset, 10-fold cross-validation was implemented to calculate the average
performance measure and compared the model performance by computing the rank.
Furthermore, the classification accuracy of LASSO feature was compared with the features
selected using the variance. Gene with higher variance may contain more useful information.
To compare the performance with LASSO, we selected the top 201 variable genes according to
the degree of variance across all samples. The CNN was performed using the same parameters
and 10 fold cross-validation. The average accuracy was 84.02% (+0.08). Therefore, the
accuracy of prediction was less than LASSO features (98.56%). Hence, model building to
validation, it is observed that the feature genes from LASSO and CNN were the best for subtype
classification for the transcriptome data. Therefore, we implemented this framework in

subsequent analysis.
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Figure 4.4: In (A - F) ROC of various prediction models. ROC plots were generated using a test
dataset.
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Table 4.6: Models performance and ranking for validation data (transcriptome)

Method | Performance measures (Average of 10 fold cross-validation) MCDM
Rank

Accuracy Recall | Precision | F1-score | FPR GM MCC

SVM 79.14 %(x0.14) | 71.33 63.57 65.68 0.11 84.07 |0.71 4

KNN 79.15 %(+0.14) | 71.33 63.57 65.68 0.11 84.07 |0.71 5

RF 80.57%(+0.22) | 71.38 65.75 67.54 0.10 85.85 | 0.66 3
NB 77.59 %(+0.17) | 68.28 61.90 64.02 0.12 82.99 |0.68 6
LR 81.20%(+0.15) | 74.68 66.01 68.90 0.10 86.44 |0.75 2

CNN 92.70 %(x0.12) | 90.20 88.77 89.24 0.01 98.25 |0.96 1

4.3.2 Classification of GBM subtype using methylome

In the previous section, the GBM subtype were classified using the transcriptome data (or
gene expression data), because the alteration of gene expression is a hallmark of oncogenesis.
However, the level of gene expression is regulated by DNA methylation. Therefore changes in
DNA methylation patterns can play a crucial role in GBM development. Recent studies show
that methylation biomarkers are essential for improving and designing cancer therapy 2%.
Hence, the information contained in methylation data could possibly help to classify the GBM
subtype. The genome-wide methylation or methylome data of 84 GBM patients were retrieved
from the UCSC Xena database. The data from the lllumina Infinium HumanMethylation450
platform (450K array) were selected that has 4,85,577 probe sites. In this dataset, the
methylation level is estimated using the beta value. The beta value ranges from 0 to 1,
representing the ratio of the intensity of the methylated bead type to the combined locus
intensity. Thus, higher beta values represent a higher level of DNA methylation, i.e.
hypermethylation and lower beta values represent a lower level of DNA methylation, i.e.
hypomethylation. The recent reports show that hypermethylation/hypomethylation level in the
promoter region (e.g., defined as TSS1500 upstream to TSS200 downstream of TSS, 5’UTR,
and first exon; TSS denotes transcription start site.) and gene body determine the gene
expression level 234235, Therefore, we screened the promoter and gene body methylation data
to perform classification because the alteration of methylation levels in these regions can

influence the gene expression level and subsequently influence the biological processes 2%. The
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CpG sites which include all promoter regions and gene body, were screened for feature
selection. By using LASSO, we obtained 498 features CpG sites. Next, the subtype-specific
clustering of patients were examined with these 498 features CpG sites using PCA. Results
showed that there was slighter mixing among the different subtypes (Figure 4.6). Next, the DL
and ML was performed using these 498 CpG sites as variables. We repeated the same
methodology as described in the previous section. First, the methylome data were divided into
training (70%) and test (30%). The hyperparameters were optimized using the grid search
method, and 10-fold cross-validation was performed on the training data. The average
performance measures were used to select the top-performing model using MCDM (Figure
4.5). The overall performance of CNN was superior compared to other ML models using
methylation data as well (Table 4.7). Next, our observation was validated with the 30% test
data set (Table 4.8) and an external data set (GSE128654) (Table 4.9). ROC plots (Figure 4.7A-
F) showed that the performance of the CNN (AUC=0.98) was better when compared to other
ML models. However, the accuracy value is 89.0%, which is lower than the ML models. The
overall performance of CNN on external data is superior (Rank =1, see Table 4.9). These results
indicate that CNN is the best classifier for predicting the GBM subtype using DNA methylation
data.
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Figure 4.5: Pipeline of GBM subtype classification using methylome data. The flow chart
shows deep-learning and machine-learning pipelines using genome-wide DNA methylation
data to classify the subtypes.
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Figure 4.6: PCA plots to visualize the subtype-specific clustering of the patients from features

gene.

Table 4.7: Models performance and ranking for methylation data

Method | Performance measures (Average of 10-fold cross-validation) MCDM
Accuracy Recall | Precision | F1-score | FPR | GM MCC Rank
SVM 90.61%(+0.09) | 86.40 87.67 84.49 0.07 | 90.55 0.81 4
KNN 90.72 %(+0.12) | 85.86 88.10 84.90 0.07 [ 90.36 |0.81 5
RF 91.03 %(+0.10) | 86.92 89.74 86.33 0.06 | 90.81 0.82 3
NB 92.34 %(+0.08) | 88.85 92.63 88.46 0.05 | 92.03 0.84 2
LR 89.84%(+0.11) | 83.71 82.70 81.80 0.08 | 89.46 |0.78 6
CNN 97.54%(+0.05) | 96.77 97.71 96.47 0.01 | 97.47 0.95 1
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Table 4.8: Models performance and AUC from test data (methylation)
Method | Performance measures (on test dataset)
Accuracy | Recall Precision | Fl-score | FPR | GM MCC AUC
SVM 97.19 95.73 96.85 96.09 0.02 | 97.42 0.94 0.97
KNN 89.94 84.15 86.98 84.86 0.07 | 89.73 0.77 0.88
RF 89.50 84.96 84.62 84.62 0.08 | 89.73 0.76 0.89
NB 95.12 92.26 94.02 92.55 0.02 | 94.85 0.89 0.95
LR 94.82 92.26 93.17 92.48 0.03 | 94.85 0.88 0.95
CNN 89.50 85.38 86.54 84.55 0.08 | 89.73 0.78 0.98
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Figure 4.7: In (A-F) ROC of various prediction models. ROC plots were generated using the

test dataset.
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Table 4.9: Models performance and ranking for external data (methylation)

Method | Performance measures (Average of 10-fold cross-validation) MCDM
Rank

Accuracy Recall | Precision | F1-score | FPR | GM MCC

SVM 82.42%(+0.23) | 76.65 73.58 74.60 0.09 [ 8526 |[0.76 4

KNN 79.09 %(+0.20) | 68.00 63.19 64.22 0.13 | 81.49 | 0.66 6

RF 82.81 %(+0.16) | 76.27 70.31 72.29 0.08 | 88.19 |0.78 3
NB 81.52%(+0.15) | 71.46 65.50 66.91 0.11 | 8345 |0.71 5
LR 87.42%(+0.17) | 84.34 81.08 82.17 0.05 | 9292 | 0.86 2

CNN 91.91 %(+0.13) | 90.50 89.15 89.60 0.01 | 97.63 | 0.96 1

4.3.3 Classification of GBM subtype by integrating the methylation and

transcriptome data.

There are several studies where only one type of “omics” data was used, such as either gene
expression or methylation data to identify the biomarkers or classify the cancers 2372%,
However, DNA methylation and gene expression are the integrated processes that determine
cellular fate 2. The perturbation of gene expression in many human cancers is due to the
change of methylation pattern 2%, Hence, integrating these strongly interlink cellular processes
and subsequent analysis could facilitate finding a more effective diagnostic option . The
patients having both transcriptome and methylome data were selected for data integration. Next,
the gene and methylation sites were screened based on z-score, i.e. z>1 and z<-1. Z-score
greater than 1 or less than -1 indicates the expression and methylation is greater or less than the
population mean. We identified common genes whose expression and methylation both are z>1
or z <-1 in each subtype. Next, all these genes (n=4231) were combined and used their gene
expression level to find the most variable features (n=75) using LASSO. We observed that 75
feature genes form the distinct subtype-specific clusters with PCA (Figure 4.9). Compared to
previous features from transcriptome and methylome data, the feature genes of integrated data
significantly improved the clustering of the GBM subtype. Next, CNN was implemented using
these feature genes and compared CNN performance with the other five ML algorithms (Figure
4.8).
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Figure 4.8: Pipeline of GBM subtype classification using integrated data. The flow chart shows
deep-learning and machine-learning pipelines using the integrated data of transcriptome and
methylome to classify the subtypes.

86



Chapter 4 Obijective 2

A Preprocessed data B LASSO Feature genes

0.2
0.25

cluster

«| Classical
*| Mesenchymal
Proneural

0.01

PC2 (8.72%)
PC2 (16.27%)

025 -0.2

-0.50 ” 0.4
-0.2 0.2 0.4 -0.2

0.2 0.4

0.0 0.0
PC1 (18.51%) PC1 (17.97%)

Figure 4.9: In (A) and (B), PCA plots to visualize the subtype-specific clustering of patient from

features gene.

In this case, the CNN performance was also ranked on top (Table 4.10). Furthermore, we
validated the model with 30% test data (Tables 4.11) and external data (Table 4.12). ROC plots
generated using test data explain the decent performance of CNN (AUC=0.91 and
accuracy=87.50%) (Figure 4.10A-F). The validation with external data showed that CNN was
the top performer (accuracy=94.48%) for classification (Table 4.12). It can be concluded that
in all three types of analysis, CNN efficiently classified the GBM subtypes. However, the
features from integrated data specifically cluster the subtype of GBM with PCA. Moreover, the
consistent all-around performance of CNN proves that CNN can be used as a computational
tool for the clinical diagnosis GBM subtype.

Table 4.10: Models performance and ranking using integrated data

Method | Performance measures (Average of 10-fold cross-validation) MCDM
Accuracy Recall | Precision | F1-score | FPR | GM MCC Rank
SVM 89.94 %(+0.10) 86.47 81.11 81.65 | 0.07 90.02 0825
KNN 91.87%(+0.13) 88.35 82.68 84.57 | 0.06 | 91.81 0843
RF 93.67%(+0.10) 88.70 84.63 86.06 | 0.04 | 93.52 0892
NB 89.95%(+0.14) 83.16 77.12 79.14 | 0.08 89.43 0.79 | 6
LR 92.18%(£0.10) 87.10 81.38 83.43 | 0.06 91.77 0854
CNN 98.20%(+0.05) 98.44 97.97 97.60 | 0.01 98.25 0971
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Table 4.11: Models performance and AUC using test data (integrated)
Method | Performance measures (on test dataset)
Accuracy | Recall Precision | F1-score | FPR GM MCC AUC
SVM 90.63 82.50 93.06 85.16 0.06 91.48 0.82 0.9
KNN 88.28 84.82 81.25 82.56 0.09 87.35 0.71 0.86
RF 87.50 80.54 80.54 80.54 0.09 87.50 0.71 0.85
NB 95.70 93.75 92.71 92.45 0.04 95.79 0.90 0.94
LR 95.70 93.75 92.71 92.45 0.04 95.79 0.90 0.94
CNN 87.50 78.75 84.31 79.01 0.10 87.50 0.72 0.91
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Figure 4.10: In (A-F), ROC of various prediction models. ROC plots were generated using the

test dataset.
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Table 4.12: Models performance and ranking for external data (transcriptome)

Method | Performance measures (Average of 10-fold cross-validation) MCMC
Accuracy Recall | Precision | Fl-score | FPR | GM MCC Rank
SVM 63.15%(+0.12) | 46.43 | 35.70 37.89 022 |6838 038 |6
KNN 67.08%(+0.17) | 49.56 | 38.83 42.39 0.20 | 7231 0.39 5
RF 80.00%(+0.19) | 72.24 | 66.21 67.70 0.09 | 8581 0.73 2
NB 66.14%(£0.17) | 55.59 | 45.69 48.47 0.22 | 71.35 0.43 4
LR 70.74%(£0.10) | 49.26 | 37.11 41.14 0.16 | 75.89 0.48 3
CNN 94.48%(+£0.11) | 94.48 |94.48 94.48 0 1 1 1

4.3.4 The biological relevance of features and identification of biomarkers

In the preceding steps, features were extracted from large-scale transcriptome and
methylome datasets to develop the predictive tool for subtype identification. It is observed that
selected features from each type of data have excellent separability power, and therefore we
achieved classification accuracy > 90% in every case. This indicates that any subset of these
features is probably associated with a particular subtype (or phenotype). Therefore, further
analysis of these features genes can link the genotype to phenotype. Weighted gene co-
expression network analysis (WGCNA) was performed to understand genotype-to-phenotype
relationships. WGCNA can find the module of highly correlated genes and their association
with a specific subtype of GBM 3°. The co-expression module was constructed using the
feature genes expression from transcriptome, methylome, and integrated data and examined
their association with specific subtypes. To find the co-expression module of feature
methylation sites, we mapped the methylation site to gene name and extracted the gene
expression data to construct co-expression modules. To construct the co-expression modules,
the soft threshold, B (B= 4, 6, and 5 for transcriptome, methylome, and integrated data,
respectively) was determined based on scale independence and mean connectivity (Appendix
Figure 11. 1). We then merged modules with similarities above 0.6 for all three types of data.
Finally, the dynamic tree cut showed a gene cluster dendrogram containing 3, 6, 5 co-expression
models in the features of transcriptome, methylome, and integrated data, respectively (Figure

4.11.A, Figure 4.12.A, Figure 4.13.A). To understand the genotype-phenotype relationship, the
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module-trait relationship plot was generated. We found distinct patterns of association between
modules and subtypes (Figure 4.11.B, Figure 4.12.B, Figure 4.13.B). Results showed that the
blue module (Figure 4.11 B) was significantly and positively associated with the proneural
subtype (r = 0.53, p = 4E-11). In contrast, it was negatively associated with mesenchymal (r =
-0.73, p = 2E-23), and weakly correlated with classical subtype (r = 0.25, p = 0.004). Similarly,
we found a distinct pattern of association between other modules (i.e., brown and turquoise)
and subtypes (Figure 4.11 B). We observed the same in the features from methylome and
integrated data. In methylome (Figure 4.12 B), brown module significantly and positively
associated with only proneural subtype (r = 0.33, p = 0.02). The green module is positively
associated with classical (r = 0.32, p = 0.03) and negatively associated with proneural (r = -
0.46, p = 9E-04). The Blue module is strongly and positively correlated with mesenchymal
subtype (r = 0.55, p = 4E-05), whereas it was negatively associated with proneural (r =-0.6, p
=5E-06). However, the feature from integrated data showed a more specific module-subtype
association. At least one module was strongly and positively correlated with a specific subtype.
The red (r = 0.64, p = 3E-07), turquoise (r = 0.66, p = 8E-08) and blue (r = 0.56, p =1E-05)
were explicitly and positively associated with classical, mesenchymal, and proneural,
respectively (Figure 4.13B). The module-trait relationship analysis indicated that integration of
transcriptome and methylome resulted in subsets of features strongly correlated with a
particular subtype of GBM. Probably, the integrated datasets are mechanistically more relevant
as the methylation, and gene expression are integrated cellular processes. Next, the gene set
enrichment analysis (GSEA) was performed, i.e., GO Biological Process (BP) and Molecular
Function (MF), using Enrichr to understand the biological relevance of each data type's top
three positively correlated modules 2%°. It was observed that modules were significantly
(adjusted p < 0.05) associated with several BP and MF that are linked to the oncogenesis. For
example, the turquoise module from transcriptome data in the classical subtype is involved in
the RIG-I signaling pathway that elicits RIG-I-like receptors' expression and activity (RLRS)
(Figure 4.11 C). These receptors stimulate both innate and adaptive immune responses against
tumor antigens and promote the apoptosis of cancer cells ?°, In contrast, the brown module
associated with the mesenchymal subtype (leukocyte adhesion to vascular endothelial cell) may
be linked to the GBM-associated with endothelial cell, that is resistant to cytotoxic drugs, and
also less apoptotic than healthy cells ?** (Figure 4.11 C). Phosphatidylinositol 3 phosphate
activity enriched in the turquoise module, solute proton symporter activity in the brown module,
and syndecan binding in the blue module are associated with higher tumor grades and poor

90



Chapter 4 Obijective 2

prognosis in GBM 2% (Figure 4.11 D). Similarly, it is observed that the blue module in the
mesenchymal and brown module in the proneural are linked to positive regulation of GTPase
activity and positive regulation of phosphorylation in methylome data (Figure 4.12 C) These
processes are signatures of GBM formation and progression 243, Even molecular functions of
several co-expression modules are involved in tumorigenesis, like phosphatidylinositol 3, 4, 5
triphosphate binding enriched in the green module deregulates many key signaling pathways
involving growth, proliferation, survival, and apoptosis in GBM 2* (Figure 4.12 D).
Furthermore, endopeptidase inhibitor activity, GABA receptor activity enriched in blue and
brown modules, respectively, are predominant events in GBM 245246 (Figure 4.12 D) The gene
co-expressed modules in integrated data, i.e., and turquoise module (mesenchymal) involved
with negative regulation of T cell activation and proliferation is one of the signatures of GBM
247 The MF of the same module shows it is associated with gap junction channel activity

involved in cell communication, which is also linked to GBM 2* (Figure 4.13 C, D).

Biological relevance of features from transcriptome data
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Figure 4.11: Weighted gene co-expression network analysis and gene set enrichment of feature
used for model building. (A) co-expression gene module, (B) module-trait relationship, (C)
biological process, and (D) molecular function of feature from transcriptome data.
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Biological relevance of features from methylation data
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Our results show that most of the positively correlated modules in GBM subtypes were
involved in several BP and MF. Besides, many of these BP and MF are involved in oncogenic
processes. This shows a possibility of identifying these modules’ genes as cancer biomarkers
for therapy or diagnosis. We performed survival analysis of positively correlated modules
(Appendix Figure 11.2). The turquoise module in the integrated feature is significantly (log-rank
test, p=0.029) associated with the patient survival. Hence, we performed survival analysis of
all genes separately present in these modules using GEPIA web tools (Figure 4.14 and appendix
Figure 11.3.) We found several genes that were present in the co-expression module and were
also associated with the patient’s survival (log-rank test, p<0.05). The higher expression of most
of the genes was associated with worse survival of the patients, except DUOX1 (Figure 4.140)
and FOXNZ2 (Appendix Figure 11.3). However, higher or lower expression of genes associated
with worse survival can be considered biomarkers 2422, Furthermore, several experimental
articles confirm the involvement of these genes in GBM formation and progression. For
example, CCDC8, CLDN1, JMJD8, PTRF, RNF135, and SNX21 in classical %% (Figure
4.14 Ato F); GCNTL, RAB38, HLX, ZDHHC12, SRCRB4D (SSC4D), GNB2 and LETM2 in
mesenchymal 27263 (Figure4.14 G to M); and TOLLIP, DUOX1 2642%° in proneural (Figure
4.14 N to O) are linked to GBM patients' survival. The association of genes from the modules
with patient survival shows the possibility to identify them as subtype-specific prognostic
biomarkers. We also observed that expression pattern of survival associated genes varied across
the subtype (Appendix Figure 11.4). Further, we illustrated with gene enrichment analysis that
their biological process and molecular functions are also linked to oncogenic events. Therefore,
these findings confirm the clinical validity of our models and can provide insight into the

complex regulatory processes in different subtypes of GBM.
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Figure 4.14: Survival analysis of gene present in co-expression module. (A-F), Kaplan-Meier
plots of genes from positively associated modules with classical subtype. (G-M), Kaplan-Meier
plots of gene from positively associated modules with mesenchymal subtype. (N-O), Kaplan-
Meier plots of gene from positively associated modules with proneural subtype. Overall
survival was analyzed based on the clinical information of the patients from TCGA and quartile
method of 75 % cut-off of higher and 25% cut-off of lower limit (Extended version of this figure

is provided in appendix figure 11.3.).

4.4 Discussion

This chapter indicates that DL and ML can be powerful tools for finding patterns in large-
scale genetic and epigenetic data sets related to human cancer. In general, efficient DL and ML
tools work like a ‘black -box’; researchers or clinicians may not be confident in diagnosing or
classifying cancer patients using these approaches. However, if the basis of classification is
biologically relevant and has higher accuracy, the diagnosis and patient management will be
more assured and systematic. Here a biologically relevant DL and ML-based framework was
presented to classify the subtype of GBM to increase accuracy in diagnosis; in turn, it can lead
to better patient management. The previous studies tried to develop the subtype classification
model for GBM using either imaging data or single type of omics data, however, these models
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exhibited lower accuracy compared to our framework 256267 Additionally, models were mainly
developed for binary classification to identify healthy and cancer patients. However, two types
of high-throughput data were used, i.e., transcriptome and methylome; integrated forms of these
data were explored to develop the classification framework. Most importantly, we have
successfully separated three subtypes, classical, mesenchymal, and proneural of GBM.
Although we have dealt with multi-class classification problems, we still achieved
classification accuracy >90%. DL and ML techniques were also compared to identify the
most suitable method for interpreting the transcriptome, methylome, and integrated data.
DL method, i.e., CNN outperforms other ML models. Using CNN, we were able to classify
the tumor into the correct subtype from the test and external cohort. We observed that overall
classification performance was higher using the transcriptome and integrated data than

the methylome data.

Another significant finding of this chapter is the biological relevance of features and
the identification of subtype-specific prognostic biomarkers. To find the association of
features genes with specific subtypes, WGCNA was performed. The gene co-expression
module-subtype relation analysis revealed how a subset of features is strongly and
positively correlated with a particular subtype of GBM. In addition to that, the gene set
enrichment analysis revealed that all positively correlated modules are biologically relevant,
even those that are linked to oncogenic processes. Among all data types, a strong module-trait
relationship was observed in feature genes from integrated data. Furthermore, several genes
present in these co-expressed modules were identified, which were linked to patient survival.
Our study explained how the features genes from the DL/ML framework could be used
to find the subtype-specific biomarkers. Good agreement was found when comparing
prognostic markers from this work against published experimental data. The feature genes of
this study and CNN can provide assured and clinically relevant deep learning-based diagnostic
tools for the proper treatment of GBM patients. Furthermore, the results of this work will
elucidate and shed light on the understanding of genotype-phenotype relationships of the GBM
subtype.
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Chapter 5: Objective 3
Implementation of a deep learning embedding system for
multi-omics data integration for the subtyping of Glioma

5.1 Introduction

The majority of deep learning models are commonly perceived as black boxes, wherein they
generate precise predictions without offering any accompanying explanations. One of the
primary constraints associated with the utilisation of deep learning in the field of cancer
research pertains to its lack of interpretability, which limit their application in biomedical
settings. To increase clinical applicability, the classification model for glioma subtyping using
machine learning (ML) and deep learning (DL) techniques should be biologically informed.
Because biologically relevant approaches were employed to identify disease-specific
biomarkers that exhibit associations with specific disease phenotype. Furthermore, it is a well-
established that perturbations in various genomics layers can lead to cancer. The integration of
these genomics layers with an Al-based model can aid in capturing the unique pattern necessary
for developing accurate subtype classification models 28, However, employing of data from
different genomics layer can increase the dimensionality of the data, hence reducing of
dimension is crucial step to develop the efficient model. Deep learning (DL) techniques such
as autoencoder effectively integrate the genomics data and simultaneously reduce the
dimension. The integration of multi-omics data across several levels can yields a more
comprehensive understanding of disease specific alterations, and identification of cancer
subtypes. Moreover, this approach elucidates the interconnections among diverse omics data

modalities pertaining to a certain disease.

This chapter presents the development of deep-neural network-based framework, called
DeepAutoGlioma for integrating the transcriptome and methylome and subsequently classified
the subtypes of LGG and GBM. Transcriptome and methylome data of glioma patients were
pre-processed and differentially expressed features from both datasets were identified.
Subsequently, a cox regression analysis determined genes and CpGs associated with survival.
Gene set enrichment analysis was carried out to examine the biological significance of the
features. Further, CpG and gene pairs were identified by mapping them in the promoter region

of corresponding genes. The methylation and gene expression levels of these CpGs and genes
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were embedded in a lower dimensional space with an autoencoder. Next, ANN and CNN were
used to classify subtypes using the latent features from embedding space. The framework is
called DeepAutoGlioma. The present work introduces a new way for subtyping brain cancer,
and it is believe that this research will shed light on the DL-based clinical support system for

accurate disease prediction using multi-omic data.

5.2 Methodology

5.2.1 Data Collection and Preprocessing

The methylome (Illumina Infinium HumanMethylation450 platform), and transcriptome
(RNA-seq) data of TCGA were retrieved from UCSC Xena (https://xena.ucsc.edu) 1. log2

(RSEM + 1) values for gene expression and beta-values for methylation levels were considered
for analysis. Here, RSEM stands for RNA-Seq by Expectation Maximization. Next, low-
expressed genes were filtered out of the transcriptome data [log2 (RSEM +1) <0.1 in 90%
sample]. Patients with both a transcriptome and methylome profile were considered for
analysis. GBM patients (n = 52) were divided into three groups based on their clinical
information: classical (n = 16), mesenchymal (n = 22), and proneural (n = 14). Similarly, the
LGG patients (n = 281) were divided into three groups based on cancer subtype, i.e.,
astrocytoma (n = 96), oligoastrocytoma (n= 75), and oligodendroglioma (n= 110). The
external data set was obtained from the Gene Expression Omnibus (GEO) repository. The
subtyping of LGG was validated using the GSE74462, GSE43378 (gene expression data), and
GSE129477 (DNA methylation data). The subtyping of GBM was validated using the gene
expression data from GSE145645 and the DNA methylation data from GSE128654.

5.2.2 ldentification of differentially expressed genes and differentially

methylated regions

DEGs and DMRs were identified by z-score. The categorization of genes with high and low
expression levels, as well as CpG sites with hyper- and hypo-methylation, was performed using
the Z-score. This approach was used due to the unavailability of healthy patient data for both
the transcriptome and methylome. The following formula was used to determine the Z-score

for each gene or CpG site in a certain subtype:
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*H
o

Z — score =

Here, x denotes the subtype-specific average gene expression or methylation level, whereas
u and o stand for the population mean and population standard deviation, respectively. For each
subtype of LGG and GBM, Z-score > 1 for higher expression and hypermethylation and Z-
score < -1 for lower expression and hypomethylation were used. Then, considering that
differential methylation in the promoter regions may affect the related gene's expression, the
higher and lower-expressed genes whose promoter regions were differentially methylated were
screened. Finally, genes with differential expression and methylated promoter regions were

used for further analysis.

5.2.3 Construction of univariate Cox regression models and survival analysis

Univariate Cox regression analysis was implemented to build the prognostic risk-score
model for a particular gene and CpG site 2%°. Univariate Cox regression analysis was performed
using the survminer and survival package in R. The p-value < 0.05 was considered the

significant association of a gene or CpG site with patients' overall survival (OS).

h(t) = ho(t) X eXp {blxl + bzxz + o + bpxp}

Where t is survival time, h(t) is the hazard function determined by a set of covariates (x; ,
X2y eerenen x,) for genes or methylation sites, by , b, ......., b, are the coefficients of regression,
h, is baseline hazard.

5.2.4 Mapping and integration of methylation and gene expression data

CpG ids and genes were mapped through the promoter region. The TSS1500, TSS200, the
first exon, and the 5" UTR were considered promoters of a gene. If both gene expression and
methylation levels at the promoter alter (i.e., DEGs and DMRs), then the CpG-gene pairings

were subjected to screening. Next, the construction of methylation and gene expression matrices
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was performed utilizing these CpGs and genes. These matrices were then utilized as input for

an autoencoder, which consisted of two separate layers.

5.2.5 Biological processes and pathway enrichment analysis

The biological processes and pathway enrichment were analyzed using the Metascape tool
(A detailed description of Metascape tool was provided in the chapter 3.2.9 in details) 8.
Enrichment analysis was performed using the following ontology sources: Gene Ontology (GO)
Biological Processes, KEGG Pathway and Reactome Gene Sets, and the Kyoto Encyclopedia
of Genes and Genomes (KEGG). If the adjusted p-value < 0.05, the biological process or

pathway was considered significantly enriched.

5.2.6 Autoencoder Implementation

Autoencoders are feed-forward neural networks that aim to copy the input variable to the
output variable with the minimum loss of information. It compresses the inputs into latent
variables in the bottleneck layer's embedding space and then reconstructs the output from the
embedding space. The autoencoder is composed of two parts: the encoder and the decoder. The
encoder maps the high dimensional input data into latent variables in embedding space, and the
decoder reconstructs the input data from the embedding. Here, one concatenated layer, one
hidden layer and bottleneck layer were employed in the encoding part. A concatenated
autoencoder to integrate the gene expression and methylation data were used. The concatenated
autoencoder was implemented using the Keras library with TensorFlow 27° (Figure 5.1). To
integrate the gene expression and metylation level of LGG, in the hidden layer of autoencoder,
a rectified linear activation function (ReLU) was used. In bottleneck layer, uniform kernel
initializer and linear activation function were implemented. Similarly in the decoding layer also
one hidden layer and concatenated layer were used. ReL U activation function was applied to
the decoder layer. Same architecture employed in the GBM dataset for integrating the gene
expression and methylation data. Inthe GBM dataset Exponential Linear Unit (ELU) activation
function was used in the hidden layers. Linear activation function and uniform kernel initializer
were employed at bottleneck layer. Further, ELU activation function is applied to the decoder
layer. Epoch size and batch size were 1500 and 16, respectively, in each dataset. The network
design was implemented following the Fig. 5.1. A total of 1110 features from gene expression,
and 3204 features from DNA methylation were selected, in the LGG dataset, while in the GBM
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dataset, 268 features from gene expression, 447 features from DNA methylation were selected
for the input layer. For the autoencoder, concatenate layer, hidden layers, and a bottleneck layer
was set, respectively. The 400 and 100 features were obtained from the bottleneck in LGG and

GBM datasets, respectively.
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Figure 5.1.: Architecture of autoencoder: The autoencoder used in DeepAutoGlioma consists
of an encoder and a decoder made from 2 hidden layers and one bottleneck layer. The
autoencoder has two input layers for DNA methylation and gene expression; in the first hidden
layer, data is concatenated, and is passed to another hidden layer and finally compressed in
the bottleneck layer. In the decoder part, the latent variables from the bottleneck layer are

reconstructed to the initial ones.

5.2.7 Deep learning classifier

ANNSs, which imitate the human brain, are feed-forward neural networks. ANNSs are
represented by a weighted, directed graph connecting inputs to a series of interconnected
“hidden” layers that are composed of multiple nodes called “neurons,” that are in turn connected
to an output layer 8. ANNs are trained to recognize and categorize complex patterns. There are
one input layer, one output layer and one hidden layer in the network. The hidden layers lies
between the input and output layers. The number of output neurons varies depending on the
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specific application, while the number of input neurons is equal to the number of attributes.

Here latent variable obtained from bottleneck layer of autoencoder were used as input.

CNN is a type of deep learning method that directly learns from the data. CNN consists of
three layers: convolutional, pooling and fully connected (FC) layers 82. The convolutional layer
is the first layer, while the FC layer is the last. In the first layer i.e., the convolutional layer,
where filters are applied to raw data or feature maps in deep CNN, convolution is one linear
operation utilized in place of generic matrix multiplication. The convolution operation (denoted
by an asterisk) is defined by:

f@) = (x*K)(®)

Where the function x (t) is referred to as input, K(t) is referred to as kernel, and the f(t)
is referred to as output. After convolutional layer, the genes is downscaled by the Pooling layer
to save computation, and the final prediction is made by the fully connected layer. Since every
node in a single layer is fully connected to every node in the subsequent layer, it represents a
network that is fully connected. This paper uses the Keras library to build these two deep-
learning classifiers on the Python platform. Furthermore, parameters were optimized with the
grid search method using the GridSearchCV package in Python. After finding the best features,
the 70% training dataset was employed using a stratified k-fold. In a stratified k-fold CV, the
dataset is split into k different folds, of which k-1 was utilized to train the network, and the final
fold was set aside for testing. This procedure is then repeated until all folds are used once as a
test set. The final output is then computed by averaging the performance parameters obtained

from each test set.

5.2.8 Performance evaluation
The performance of the DL model was evaluated based on the eight criteria: Accuracy,
Sensitivity, Specificity, Precision, F1-score, FPR, Geometric mean, and MCC. All the matrices

are described in chapter 3 in details.

5.2.9 Statistical analysis

Pairwise comparison was done using Mann-Whitney U test using Sigma Plot 11.0.
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5.3 Results

5.3.1 Identification of biologically relevant features for classification of LGG
and GBM subtypes

Deregulated gene expression and aberrant methylation are the hallmarks of human cancer
211 Methylation status in the promoter region determines the level of gene expression.
Therefore, linking the methylome and transcriptome is crucial in finding the genetic and
epigenetic features that cause cancer, which is also important for making biologically relevant
models. To connect the methylome and transcriptome, patients with transcriptome and
methylome profiles were chosen to identify the upregulated, downregulated genes (DEGs) and
hypomethylated and hypermethylated CpGs (DMRs). A z-score method was used to screen the
DEGs and DMRs (see methodology). A z-score greater than 1 or less than -1 indicates the gene
expression and methylation are greater or less than the population mean, respectively. The
DEGs and DMRs for each subtype of LGG and GBM were identified. In LGG, a total of 3972,
4024, and 4088 DEGs (Figure 5.2A) and 177458, 181957, and 181163 DMRs were found
(Figure 5.2B) in astrocytoma, oligoastrocytoma, and oligodendroglioma, respectively. In
subtypes of GBM, a total of 3910, 3767, and 3745 DEGs (Figure 5.2C), and 211764, 208111,
and 190743 DMRs were found (Figure 5.2D) in classical, mesenchymal, and proneural,
respectively. It is also found that differences in average expression and methylation level
between z > 1 and z <- 1 are statistically significant (p-value < 0.001) in all subtypes (Figure
5.2A-D). Next, a univariate cox regression analysis was performed to find the correlation
between patient prognosis with DEGs and DMRs. The univariate predictive models for each
differentially expressed gene (DEG) and differentially methylated region (DMR) were
separately generated. Next, the survival-associated genes and CpG sites were screened based
on the p-value < 0.05. Our results showed that, in LGG, a total of 2295 DEGs and 18068 DMRs,
and in GBM total of 1055 DEGs and 5033 DMRs were linked to the patient's survival. It is
found that a total of 50.83 % of DEGs and 20.35% of DMR in LGG; and 23.30% of DEGs and
5.41% of DMR in GBM were linked with patient survival. This indicates that a higher
percentage of genes, or CpGs, are not linked with patient's survival. Therefore univariate cox
analysis facilitates identifying the biologically important and cancer-associated features, which
can lead to the development of a clinically relevant DL model while reducing the dimension of
data to build better-fit prediction models. Subsequently, the survival-associated CpGs located
in promoters, namely in regions (TSS1500, TSS200, the first exon, and the 5" UTR) were

mapped and subsequently linked to their respective survival-associated genes. The linking of

103



Chapter 5 Obijective 3

these two layers of genomic data confirms that particular CpG and associated gene pairs are
involved in cancer progression. It is found that in LGG, a total of 1110 genes (DEGs) and 3204
CpGs (DMRs) in the promoter, and in GBM, 268 genes (DEGSs) and their 447 CpGs (DMRs)
in the promoter are linked to the patient survival. If a gene is involved in patient survival, and
if its methylation level in the promoter, which regulates its expression, is also linked to survival,
indicating an additive impact of methylation and gene expression on patient prognosis. It is
believed that integrating methylation level with gene expression data will be more biologically
valid for diagnostic model development. It is also found that these genes (prognostic genes) are
involved in biological processes and pathways that are linked to cancer (Figure 5.3 A and B)
such as signaling by ALK in cancer 27, cell-cell adhesion 2’3, signaling by receptor tyrosine
kinase 2’4, PID INTEGRIN A4B1 pathway 27>, gliogenesis 2’®, positive regulation of cell
adhesion 2’7 and VEGFA-VEGFR?2 signaling pathways 2827° Therefore, these prognostic

genes and CpGs were used for autoencoder-based data integration and model building.
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Figure 5.2: Boxplots show the difference in gene expression and methylation level between
Z>1and Z<—1. (A) DEGs and (B) DMRs in each LGG subtype; (C) DEGs and (D) DMRs in
each GBM subtype (***p< 0.001). DEGs: differentially expressed genes, DMRs: differentially
methylated CpGs.
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Figure 5.3: (A) and (B) Bar plots represent significantly enriched Biological processes and

pathways of genes used as input in the autoencoder (*p< 0.05).

5.3.2 Integration of gene expression and its promoter methylation level by

autoencoders shows superior accuracy in subtyping.

In the previous section, It is derived the list of genes and their CpG sites in promoters linked
to patient survival using univariate cox regression analysis. Next, the gene expression and
methylation matrix were extracted. These datasets into training (70%), and validation (30%)
sets were divided. 70% of the data was utilized to optimize the model’s parameters and evaluate
the performance of each model, and the remaining 30% of data was employed as independent
predictors. The gene expression and methylation matrices were fed into the autoencoder with
concatenated inputs (CNC-AE). The methylation and gene expression levels are combined and
compressed in the latent space or bottleneck layer learned by the autoencoder 220284, All the
dimensions and parameters of the different layers in the autoencoder were optimized. The
autoencoder consists of two parts, an encoder, and a decoder network. In the encoder network,
gene expression and DNA methylation profiles of LGG and GBM are first encoded into two
4314 and 715-dimensional vectors separately through hidden layers, respectively. Next, the
dimensions of the bottleneck layers at 400 and 100 for LGG and GBM were set. In the decoder
network, the latent variables were again used to decode the original input data, and this was
used to measure the reconstruction loss, which indicates the performance of the autoencoder.
The network structure of the decoder is similar to the mirror image of the encoder network
(Figure 5.1). If a latent variable captures the actual data pattern, i.e., intrinsic relationships
between the variables, then the difference between the encoded and decoded vectors will be
less. The reconstruction loss was measured by using Mean Squared Error (MSE). It is found
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that MSE was significantly lower, i.e., 0.04 in LGG and 0.04 in GBM. This shows that the
autoencoder efficiently learned the pattern in gene expression and methylation and encoded it
in the latent space. Then these latent variables were used to develop the DL models for the
classification of LGG and GBM subtypes.

Two DL algorithms, i.e., artificial neural network (ANN) and Convolutional neural network
(CNN) were implemented, and compared their performance for subtype classification. During
the model training step, the grid search method to find the best combination of hyperparameters
were used (Table 5.1). Then, using these optimal hyperparameters, stratified k-fold cross-
validation (k = 10) on the latent variables was performed and computed the average
performance measures for each DL model (Table 5.2). Average accuracy, recall, precision, F1-
score, False positive rate (FPR), Geometric mean (GM), and Matthew’s Correlation Coefficient
(MCC) were used to assess the model's performance (see materials and methods). It is found
that CNN models had higher prediction accuracy in subtyping, i.e, 98.03 % and 94.07%, for
LGG and GBM, respectively, than the ANN models. The standard deviation (SD) of accuracy
from a 10-fold cross-validation was measured. The SD was between +£0.06 and £0.10, indicating
the stability of the CNN model in a wide range of patient samples. It is found that FPR (0.01
and 0.02) was minimal, and the MCC scores were high (0.96 and 0.93) in the case of CNN
(Table 5.2). The higher MCC score represents a good correlation between the observed and

predicted classes.

Table 5.1: Hyperparameters for ANN and CNN models

Datasets
Parameters " 'GG [ LGG | GBM | GBM
(ANN) | (CNN) (ANN) (CNN)
Activation relu relu linear elu
Batch_size 32 64 30 64
Dropout_rate | - 0.2 0.1 0.2
epochs 100 2000 50 2000
filters - 1 - 1
Kernel_size - 3 - 3
optimizer adam [ RMSprop | RMSprop | RMSprop
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Table 5.2: Performance evaluation of LGG and GBM subtypes classification

Performance measures (Average of 10 fold cross-validation)

Methods .
Accuracy Precision | Recall | F1-score | FPR | Gmean | MCC
LGG ANN 95.40%(x0.09) | 92.50 92.73 | 92.45 0.03 | 95.28 |0.89
CNN 98.03%(x0.06) | 97.67 96.96 | 96.97 0.01 | 9799 |0.96
GBM ANN 92.19%(+0.10) | 88.05 89.77 | 87.75 0.03 | 94.76 | 0.90

CNN 94.07%(+0.10) | 90.40 91.18 | 90.25 0.02 196,51 ]0.93

Next, the classification using validation datasets were performed to check the reproducibility
of the DL framework. It is found the accuracy of subtype classification (for LGG 95.23 % and
GBM 90.26%) of CNN was superior, and the MCC score was 0.90 and 0.92 (Table 5.3). The
accuracy of the current framework for subtyping LGG and GBM outperforms that of earlier
machine learning (ML) and deep learning (DL) models 2852 This framework was named as
DeepAutoGlioma (Figure 5.4). It is also observed the superior performance of
DeepAutoGlioma using external GEO datasets (Table 5.4). The combination of feature genes
and CpG sites in the model construction likely accounts for the impressive performance of
DeepAutoGlioma. In most cases, feature selection approaches that rely on ML or DL ignore
the biological relevance of features 27-22°, However, here the DEGs and DMRs in each subtype
were screened, which was associated with LGG and GBM patients' survival. Also, the genes
and methylation sites used as inputs into the autoencoder are linked through their genomic
locations. Together, these approaches reduce the dimension of data, which significantly
influences the model's performance. In our opinion, biologically relevant inputs to the
autoencoder provided superior accuracy (95-98%) in the subtype classification achieved with
CNN.
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Table 5.3: Classification performance of deep learning algorithms on LGG and GBM subtypes

for validation set

Performance measures (Average of 10 fold cross-validation on test dataset)
Methods . F1-
Accuracy Precision | Recall score FPR | Gmean | MCC
LGG ANN 90.18%(+0.13) | 82.4 84.23 | 82.42 0.07 | 90.06 0.80
CNN 95.23%(+0.09) | 92.08 9263 |91.84 0.03 |95.3 0.90
cem ANN 93.85%(+0.13) | 93.85 93.85 |93.85 |0.00 |100 1
CNN 90.26%(+0.14) | 85.38 87.69 | 86.15 0.02 | 95.26 0.92

Table 5.4: Classification performance of DeepAutoGlioma on external datasets

Performance measures (Average of 10 fold cross-validation)

Methods .
Accuracy Precision | Recall | F1-score | FPR | Gmean | MCC
LGG ANN 91.89%(+0.13) 91.20 | 88.00 86.90 | 0.06 | 92.13| 0.83
CNN 91.38%(+0.09) 91.38 | 91.38 91.38 | 0.00 100 1
GBM ANN 84.1%(+0.23) 74.48 | 79.48 76.15] 0.06 | 90.55| 0.72

CNN 86.41%(x0.24) 79.87 | 83.33 81.02 | 0.05 9292 | 0.76
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Figure 5.4: Subtype classification framework of the DeepAutoGlioma. Methylome and
transcriptome data are preprocessed, differentially expressed genes (DEGs) and differentially
methylated regions (DMRs) are identified, and clinically significant features are extracted.
Further, these features are mapped according to the genomic region to integrate the CpG-gene
pair. Then, clinically relevant methylation (CpGs) and gene expression data are fed into the
autoencoder, and latent variables are extracted to build deep learning models for subtyping

brain cancer.
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5.3.3 DL-models with a random feature set, preprocessed data, and single

omics data

To validate our findings and better understand the role of feature selection in model
performance, the DL-based model by feeding different sets of inputs (features) were extended
to the autoencoder and compared their performance to that of DeepAutoGlioma. First, the
performance of mapped CpGs and gene expression with randomized CpG-genes pairs as input
into the autoencoder were compared. The randomly the CpGs (n = 3204 for LGG and n = 447
for GBM) and genes (n = 1110 for LGG and n = 268 for GBM) from preprocessed data were
selected. Then this unmapped randomly selected methylation and gene expression data were
fed into the autoencoder. Then, ANN and CNN were used to classify the subtypes using the
latent features from random datasets. This process was repeated ten times, and the accuracy
varied from 60.68 - 71.43% in LGG, and 62.42 - 72.14% in GBM in all iterations (Table 5.5
and 5.6). And the average accuracy of all iterations in CNN are 66.12 and 66.59% in LGG and
GBM, respectively. When compared to DeepAutoGlioma, the average accuracy of all ten
iterations in CNN is significantly less (p-value < 0.001, Figure 5.5). Not only the accuracy but
other parameters such as precision, MCC and FPR are very less compared to DeepAutoGlioma.
This finding confirms that mapping the promoter methylation region to the gene has aided in

predicting LGG and GBM subtypes with greater accuracy and precision.
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Table 5.5: Model performance in LGG subtype classification using random features

Performance measures (Average of 10 fold cross-validation)

Methods .
Accuracy Precision | Recall | F1-score | FPR | Gmean | MCC
lterationl ANN 64.02%(+0.08) 45.77 | 43.67 43.51 | 0.26 64.22 0.2
CNN 64.09%(%0.05) 4351 | 43.43 425 | 0.26 64.24 0.2
lteration? ANN 60.68%(+0.04) 23.49 | 33.52 22.72 | 0.28 58.33 | 0.08
CNN 62.44%(%0.08) 31.62 | 37.27 28.9 | 0.27 60.23 | 0.11
. ANN 69.06%(%0.08) 53.01 | 51.34 51.55| 0.22 68.77 0.3

Iteration3

CNN 70.62%(+0.08) 55.78 | 53.29 52.82 | 0.22 70.34 | 0.33
ANN 68.79%(x0.09) 51.89 | 51.21 51.05| 0.23 68.92 0.3
CNN 67.29%(x0.07) 47.83 | 48.09 47.03 ] 0.24| 6752 | 0.27
ANN 65.69%(x0.10) 4781 | 4781 46.48 | 0.25| 65.69| 0.23
CNN 68.24%(x0.07) 50.68 | 51.05 4936 | 0.24| 6833 | 0.29
ANN 64.65%(+0.07) 45.16 | 44.47 43.76 | 0.26 | 64.35 0.2
CNN 64.23%(=0.06) 4492 | 44.12 4353 | 026 | 63.75| 0.18
ANN 69.14%(=0.04) 53.62 | 51.78 50.93 | 0.23 | 69.08 | 0.31

Iteration4

Iteration5

Iteration6

Iteration7
CNN 65.96%(+0.07) 47.14 | 45.73 4467 | 0.25| 65.74| 0.23
lterations ANN 68.21%(+0.05) 51.45 | 49.82 488 | 0.23| 6822| 0.28
CNN 65.72%(+0.06) 47.76 | 47.07 4588 | 0.25| 65.75| 0.24
lterationg ANN 64.9%(+0.11) 4571 | 44.66 43.87 | 0.26 649 | 0.21
CNN 65.74%(+0.08) 46.01 | 46.24 4458 | 0.25| 6582 | 0.24
) ANN 71.43%(+0.06) 55.35 | 54.88 53.7| 0.21| 7156| 0.36
Iteration10

CNN 66.88%(+0.05) 50.12 | 48.96 48.47 | 0.24 | 66.88 | 0.26
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Table 5.6: Model performance in GBM subtype classification using random features

Performance measures (Average of 10 fold cross-validation)

Methods .
Accuracy Precision | Recall | F1-score | FPR | Gmean | MCC

ANN 64.59%(+0.11) 31.46 | 43.83 35.25 | 0.24 64.4 | 0.25
CNN 62.42%(+0.16) 39.26 | 43.68 38.79| 027 | 60.67| 0.17
ANN 69.55%(+0.16) 46.55 | 57.47 47.91| 022 | 68.81| 0.39
CNN 71.49%(x0.12) 50.88 | 56.94 4959 | 021 | 70.36| 0.38
ANN 69.68%(+0.18) 53.81 | 60.21 52.84 | 0.22 | 68.71| 0.39
CNN 70.31%(+0.16) 61.3 | 62.06 57.24| 0.21| 6856 | 0.38
ANN 66.59%(+0.18) 46.9 | 48.83 4535 | 0.26 | 61.95| 0.27
CNN 62.64%(+0.18) 35.44 | 43.66 36.27 | 0.28 | 61.94| 0.18
ANN 65.64%(+0.12) 39.77 | 46.62 4061 | 0.25| 64.85| 0.25
CNN 69.71%(+0.13) 51.31 | 57.76 50.84 | 0.22 69.2 | 0.38
ANN 65.09%(+0.12) 38.56 | 48.02 39.36 | 0.26 | 64.46 | 0.25
CNN 65.01%(+0.14) 33.05 | 48.04 37.55| 0.26 63.7 | 0.24
ANN 68.64%(+0.17) 432 | 51.9 4494 | 0.24 | 67.29| 0.29
CNN 68.47%(+0.07) 46.11 | 56.26 4758 | 022 | 67.63| 0.37
ANN 68.13%(+0.11) 37.23 | 45.75 39.30 | 0.22| 65.76| 0.26
CNN 63.19%(+0.15) 32.73 | 41.66 3425| 0.26 | 6249 | 0.23
ANN 72.14%(+0.17) 51.47 | 53.64 50.68 | 0.2| 7129| 0.4
CNN 67.36%(+0.08) 4273 | 52.43 4416 | 0.24 | 66.53| 0.32
ANN 65.19%(+0.10) 33.65 | 48.04 37.07 | 0.24 | 64.09| 0.26
CNN 65.36%(+0.15) 39.78 | 50.04 41.71| 026 | 63.02| 0.26

Iterationl

Iteration2

Iteration3

Iteration4

Iteration5

Iteration6

Iteration7

Iteration8

Iteration9

Iteration10

To better understand the significance of biologically relevant features, such as DEGs and
DMRs, as well as univariate Cox regression analysis for feature selection, the autoencoder is
executed on preprocessed data and then classify using ANN and CNN. LGG and GBM gene
expression and methylation data matrices contain 14517 and 14125 genes, respectively, as well
as 139403 and 141672 CpGs. The autoencoder was then run on these preprocessed datasets,
and the accuracy of prediction, as well as other model evaluation parameters, were measured
(Table 5.7). When compared to DeepAutoGlioma, the prediction accuracy is significantly (p -
value < 0.001) lower (Figure 5.5). The subtypes classification accuracy of LGG was 83.73%
(£0.11) in CNN and 69.86% (+0.07) in ANN. Whereas in GBM classification, accuracy was
61.54% (£0.19) in CNN and 67.58 %( +0.15) in ANN. Furthermore, the results of other
evaluation parameters were too low to be considered. This unequivocally demonstrates that
cancer-associated features or features that are biologically relevant played a crucial role in

achieving higher classification accuracy.
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Table 5.7: Model performance in LGG and GBM subtyping using preprocessed data as a feature

Performance measures (Average of 10 fold cross-validation)

Methods .
Accuracy Precision | Recall | F1-score | FPR | Gmean | MCC
LGG ANN 69.86%(x0.07) 53.46 53.4 50.47 | 0.22 70.22 | 0.35
CNN 83.73%(+0.11) 75.77 | 73.99 734 0.11 835 | 0.64
GBM ANN 67.58%(%0.15) 39.24 | 48.83 41.05 | 0.24 65.9 | 0.27

CNN 61.54%(+0.19) 34.77 | 44.05 36.26 | 0.29 61.35| 0.18

Furthermore, the classification accuracy between di-omics and mono-omics data were
compared. The mono-omics data, i.e., methylation or gene expression matrix, was used as input
to the autoencoder. As previously stated, compressed features from latent space were extracted,
used DL algorithms, and calculated average performance metrics for each DL model. It is
observed that in the case of LGG, the single omics data showed good accuracy of prediction,
i.e., 96.27% (x0.11) and 96.55 % (+0.10) using gene expression and methylation data,
respectively (Table 5.8). But these accuracies are lower in comparison to the DeepAutoGlioma
(98.03% =0.06). However, the accuracy of prediction using test and external gene expression
(66.07+£0.08% and 63.81+0.13%) and methylation (66.51+0.09% and 74.79+0.12%) datasets is

considerably less.

Whereas in the case of GBM subtype prediction accuracy using gene expression and
methylation data were 91.54% (+0.11) and 43.89% (£0.07), respectively (Table 5.8). Although
gene expression data showed an accuracy, however in the test and external datasets, the
accuracy was 85.48% (+0.23) and 72.68% (+£0.15). The good prediction accuracy in LGG and
GBM was observed utilizing mono-omics data, particularly gene expression, models were
unable to accurately predict subtypes using test and external datasets. This demonstrated that
the individual omics data were inadequate for cancer subtype classification with superior
accuracy. The models trained on multi-omics data outperformed those trained on single-omics
data, owing to the fact that multi-omics data contains a wealth of information not found in a

single type of omics data alone.
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Table 5.8: Classification performance of deep learning algorithms on LGG and GBM subtyping

using mono-omics data

N
o

Performance measures (Average of 10 fold cross-validation)
Method . -
ethods Accuracy Precision | Recall ls:clore FPR | Gmean | MCC
only Gene ANN 94.70%(+0.11) | 91.22 91.41 |91.29 | 0.03 | 94.64 0.87
LGG expression CNN 96.27%(£0.11) | 94.25 94.3 94.15 | 0.02 | 96.3 0.91
only DNA ANN 92.61%(+0.13) | 88.22 87.73 | 87.73 | 0.05 | 92.52 0.83
Methylation CNN 96.55%(+0.10) | 93.81 94.32 | 94.03 | 0.02 | 96.6 0.92
only Gene ANN 85.92%(+0.10) | 73.87 78.83 | 74.24 | 0.08 | 88.91 0.8
GBM expression CNN 91.54%(+0.11) | 85.25 88.45 | 8591 | 0.04 | 94.14 0.89
only DNA ANN 44.60%(x0.06) | 42.67 11.88 | 18.52 | 0.2 43.13 0
Methylation CNN 43.89%(x0.07) | 42.67 13.05 | 19.77 | 0.19 | 44.89 0
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Figure 5.5: Comparison of model performance using different sets of features to that of
DeepAutoGlioma (***p< 0.001).
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5.4 Discussion

It is well established that molecular perturbations in different genomic layers cause cancer
occurrence and progression. Therefore, it is crucial to perform integrative approaches that
combine multi-omics data to comprehend the disease mechanism and develop novel diagnostic
tools for brain cancer detection. The integration of high-throughput omics data from distinct
genome layers can capture the interrelationships of biomolecules and facilitate interpreting their
function in disease onset. Transcriptomics and epigenomics data are unpaired because they are
usually measured in separate experiments, which demands effective and efficient in-silico
multi-omics integration 28, In the present study, the deep autoencoder and deep learning
(ANN & CNN) -based clinically relevant framework was designed for integrating the
methylome and transcriptome to classify the glioma subtype with superior accuracy. To
strengthen the biological relevance, patient samples with transcriptome and methylome profiles
were screened and measured the DEGs and DMRs in each subtype of LGG and GBM cancer.
Further, a univariate cox regression analysis was performed to identify the DEGs and DMRs
associated with the patient’s survival. Univariate cox regression approach helps to determine
clinically relevant feature genes and CpG sites based on the patient's overall survival
information; further, it also decreases the data dimension. Next, we map the CpGs and genes
based on the promoter regions. The linked CpGs and genes were used as input in the
autoencoder. As a result, the input features in the autoencoder were biologically and clinically
relevant in three ways, first, they are differentially regulated; second, they are linked to the
patient's survival; and third, methylation in the promoter is linked to gene expression. It is
found that using latent variables learned by autoencoder as an input in deep learning
models (ANN & CNN), we were able to predict the subtype of LGG and GBM with the
accuracy of 98.03%(+0.06) and 94.07%(+0.10), respectively, using CNN. Furthermore, the
current framework classifies the GBM and LGG subtypes using the external datasets with
86.41% and 91.89% accuracy, respectively. On the other hand, autoencoder-based deep
learning with a single type of omics data, randomized CpG-gene pair, and preprocessed
dataset did not perform well compared to DeepAutoGlioma. We believe that feature
screening using various statistical methods and integration of di-omics data using
autoencoders played an essential role in achieving higher subtyping accuracy. The current
study demonstrated how data integration could lead to the discovery of novel patterns in

transcriptomics and epigenomics data and aid in developing efficient diagnostic tools.
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Chapter 6: Objective 4
Identification of subtype-specific disease modules and
development of drug response prediction models by
combining network medicine and Al-based approaches

6.1 Introduction

Due to distinct molecular characteristics, the subtypes of glioma have different clinical
outcomes and responses to treatment, highlighting the importance of personalized medicine for
brain cancer treatment %°, Hence, to address this issue, a framework by combining network
medicine and Al-based approaches to systematically integrate omics data to identify subtype-
specific disease modules for precision therapy and drug response prediction was developed.
Cancer is developed through an evolutionary process in which healthy cells accumulate several
genomic changes, including mutations and gene expression 2°2%1, Some of these alterations
provide a positive selection to cancerous cells, giving them an advantage in uncontrolled
proliferation, which lead to the formation of tumors. Advances in sequencing techniques and
genome-wide association studies have revealed that accumulated genetic variations associated
with an increased risk for cancer are distributed throughout the genome. Further studies
illustrate that disease genes are not distributed randomly in molecular networks. However, these
genes work together in a biological pathway. Furthermore, genes associated with the same
phenotype exhibit a tendency to interact with one another and form clusters within the same
network neighborhood. As a result, a disease module forms, a subnetwork linked to a disease.
Numerous genes that are known to be relevant to disease are found in disease modules. The
disease modules, consisting of a known group of genes in cancers such as kidney, breast,
sarcoma, colorectal, leukemia, and head and neck cancers, were found to be associated with
cancer-specific biological processes 2°2. Wu et al., showed that the active disease modules in
breast and cervical cancer are associated with many cancer-related pathways 2%3. These studies
indicate that the identification of cancer-specific disease modules can help to identify novel
biomarkers for therapeutic targets. Therefore, network medicine and rational drug-designing
approaches recognize these modules as pharmacological targets as opposed to the individual
genes or proteins in the network. Network medicine is the utilisation of network science to

identify, prevent, and treat diseases. It provides a platform to comprehensively investigate the
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molecular complexity of a specific disease, enabling the identification of disease modules and
pathways. Network medicine have provided valuable insights into the connection between
drugs targets and disease genes in disease modules. However, the therapeutic efficiency of
drugs in cancer is highly context-dependent; often, drug resistance reduces the effectiveness of
chemotherapy. Molecular heterogeneity is a major contributor to cancer drug resistance, as it
can create subpopulations of cancer cells that may have different mutations or molecular
characteristics that allow them to survive even in the presence of the drug. Therefore, the
prediction of drug response, i.e., resistance or sensitivity, is essential for improving the efficacy
of chemotherapy.

Here, algorithms relying on network medicine and artificial intelligence was deployed to
design the framework for subtype-specific target identification and drug response prediction in
glioma. The driver mutations that were differentially expressed in each subtype of lower-grade
glioma and glioblastoma multiforme was identified that were linked to cancer-specific
processes. Driver mutations that were differentially expressed were also subjected to subtype-
specific disease module identification. The drugs from the drug bank database were retrieved
to target these disease modules. However, the efficacy of anticancer drugs depends on the
molecular profile of the cancer and varies among cancer patients due to intratumor
heterogeneity. Hence, a deep-learning-based drug response prediction framework was
developed using the experimental drug screening data. Models for 30 drugs that can target the
disease module, were developed, where drug response measured by IC50 was considered a
response; and gene expression and mutation data were considered predictor variables. The
model construction consists of three steps, feature selection, data integration, and classification.
The consistent performance of the models in training, test, and validation datasets was observed.
We predicted drug responses for specific cell lines obtained from different subtypes of glioma.
It is found that subtypes of gliomas respond differently to the drug, highlighting the importance
of subtype-specific drug response prediction. Therefore, the development of personalized
therapy by integrating network medicine and a DL-based approach can lead to the cancer-
specific treatment and improved patient care.
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6.2 Methodology

6.2.1 Driver gene identification
Brain cancer somatic mutation data was downloaded from the COSMIC database

(https://cancer.sanger.ac.uk/cosmic/download) for each subtype 2°*. Based on the clinical

information, the patient’s mutational data were stratified into different subtypes. There are a
total of 281 and 123 samples of LGG and GBM, respectively. The LGG into astrocytoma (n =
96), oligoastrocytoma (n = 75), and oligodendroglioma (n = 110); and the GBM into classical
(n = 39), mesenchymal (n = 48), and proneural (n = 36) was divided. OncodriveCLUSTL was
used to find the driver mutation in subtypes 2%°. OncodriveCLUSTL is an unsupervised
clustering algorithm that can detect clusters of somatic mutations across a cohort of tumor
samples. This algorithm OncodriveCLUSTL is a clustering method that utilizes nucleotide
sequence data to identify cancer driver events inside genomic regions. Not all mutations are
causative factors of cancer; rather, only certain mutations have the potential to aggregate and
contribute to the development and progression of cancer (Figure 6.1). Based on the mutation
frequency in each gene and statistical significance (number of mutations >2 and p-value <0.05),

driver genes were selected in each subtype of glioma.

®® e ® © oo
—] }—— All mutations do not cause cancer
@ mutation

(@ oo

l—— Mutations clusters cause cancer evolution
Driver mutation

Passenger mutation

Figure 6.1: Hlustration of finding driver gene in mutation clusters by OncodriveCLUSTL.

6.2.2 Identification of differentially expressed genes (DEGS)
For computing the DEGs, RNA sequencing data of LGG (n=281) and GBM (n = 123)
patients were obtained from UCSC Xena (https://xena.ucsc.edu/) ¢°. Additionally, GTEXx

healthy brain gene expression data (n = 93) were obtained from the same database. Similarly,
like in the previous step, patients were segregated into astrocytoma (n = 96), oligoastrocytoma
(n =75), oligodendroglioma (n = 110), classical (n = 39), mesenchymal (n = 48), and proneural
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(n =36). Next, the data was preprocessed, and low-expressed genes were removed. The cut-off
of log2 (RSEM +1)<0.1 (RSEM: RNA-Seq by Expectation Maximization) in 90% of the
samples was used because they did not have any promising information. Finally, in LGG, there
are 12,532 genes, and in GBM, 12,183 genes are expressed in cancer and healthy tissue. Next,
the differentially expressed genes in each subtype of LGG and GBM was identified using the
"limma" package in R. A Q-value (adjusted p-value) <0.05 and a logFC > 1 were used as the

statistical threshold for screening DEGs.

6.2.3 Construction of subtype-specific disease module and network analysis
Human brain interactome data was retrieved from TissueNet v.2 database 2%. Brain
interactome data contains 165,240 interactions. In TissueNet v.2, the RNA-sequencing raw
counts were collected from the Genotype-Tissue Expression (GTEX) project, whereas the
protein expression data were obtained from the Human Protein Atlas (HPA). The computation
of tissue interactomes was performed for each RNA-sequencing data source, employing a
threshold of 8 normalized counts. We performed this computation in order to eliminate protein-
coding genes that were not consistently expressed in a brain tissue. Additionally, for the HPA
protein, a threshold of low expression was utilized. TissueNet offers comprehensive insights
into 16 major human tissues by integrating gene and protein expression profiles into a uniform
dataset. It provides a comprehensive network of protein-protein interactions (PPI) partners
specific to each tissue. TissueNet v.2 uses human PPIs and tissue-specific expression patterns
to make PPIs that are specific to each tissue. The Disease Module Detection (DIAMOND)
algorithm was implemented to identify the disease modules in subtype 2°2. DIAMOND
algorithm was used to identify the surrounding genes around a collection of known disease
genes, helping to identify new biomarkers. In DIAMOND algorithm, first connectivity
significance was determined for all genes connected to the disease genes. Subsequently, the
genes were ranked based on p-values. Those genes having the highest rank or lowest p-value
was added to the set of seed node until the whole genes were added into the disease module
network. TissueNet v.2 brain interactome and subtype-specific DEDGs are used as seed genes
to identify the disease module. All the parameters in the DIAMOND were kept as default.

Cytoscape and the igraph package in R were used for network visualization and analysis.
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6.2.4 The pipeline of DNN-based drug response prediction

Experimental data for cancer cell drug sensitivity were obtained from the Genomics of Drug
Sensitivity in Cancer (GDSC) 2’ project to develop drug response prediction models. This data
set contains 1001 cancer cell lines and 288 drugs. The drug and target information were derived
from the DrugBank database 2%, All the drugs for which the target genes are present in the
disease modules were extracted. The 30 FDA-approved and investigational drugs were screened
that can target the disease module and also have brain cancer-specific experimental data in
GDSC. The drug response models were developed for these 30 drugs. Therefore, the IC50
values of these 30 drugs were downloaded for all cell lines along with the gene expression and
mutational data. A total of 886 cell line data were used for model development. To develop the
model, the following steps were performed: 1. Data preprocessing; 2. Feature selection; 3. Data

integration; 4. Model development and evaluation; and 5. Model validation on external data.

Data preprocessing: The gene expression data was normalized using the log2 (TPM+1).
The low expressed genes were removed using a cutoff (log2 (TPM +1) <0.1 in 90% of samples.
Genes possessing any mutation were assigned a value of 1; genes lacking mutations were

assigned a value of 0.

Feature selection: A two-step feature selection method was employed to get more variable
features from gene expression data. First, the genes were pre-selected based on a Pearson
correlation coefficient r<0.5, and then LASSO was used 22 (A detailed description was
provided in the chapter 4) to fine-select the predictor genes. For mutational data, the LASSO

feature selection method was only used.

Data integration: After the feature selection step, gene expression and mutation data was
integrated using a concatenated autoencoder (Figure 6.2) (A detailed description was provided
in the chapter chapter 5). The Keras library with TensorFlow 27° was used to implement the
concatenated autoencoder. To integrate the gene expression and mutation data, in the hidden
layer of the autoencoder, a rectified linear activation function (ReLU) was used. In the
bottleneck layer, uniform kernel initializer and linear activation function were implemented.

RelLU activation function was applied to the decoder layer.
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Figure 6.2: Architecture of autoencoder used for integrating the gene expression and mutation
profiles. It consists of an encoder and a decoder made from 2 hidden layers and one bottleneck
layer. In the first hidden layer, data is concatenated, and is passed to another hidden layer and
finally compressed in the bottleneck layer. In the decoder part, the latent variables from the
bottleneck layer are reconstructed to the initial ones.

Model development and evaluation:

A deep neural network (DNN) classification model was applied to predict the sensitive vs
resistance. The input and output layers of a DNN are separated by a number of hidden layers.
Complex non-linear relationships can be modelled using it. Deep neural networks handle data
in intricate ways by using advanced mathematical modelling. DNNSs are frequently used for
their accuracy and adaptive nature in the research field of automatic classification tasks. For
each drug, the model hyperparameters were optimized by the grid search method using the
GridSearchCV package in Python. The DNN architecture consists of two hidden layers for all
drugs: the ReLU activation function, adam optimizer, batch size 32, and epochs 2000. IC50
values were binarized to be sensitive and resistant. The model was trained on the 70% training
dataset, and stratified k-fold (A detailed description was provided in the chapter 3) was used to

compute the performance of the model.

The performance of the DL-model was evaluated based on eight criteria: accuracy,
sensitivity, specificity, precision, F1-score, false positive rate, geometric mean, and Matthew’s
correlation coefficient. A true positive (TP) would indicate that the drug-sensitive cell was
correctly identified, while a false positive (FP) indicates that a drug sensitive cell is identified
as resistant. Conversely, true negatives (TN) and false negatives (FN) are also calculated (A

detailed description was provided in the chapter 3).
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Model validation on external data:

The model's performance was validated using the dataset from Cancer Cell Line

Encyclopedia (CCLE) (https://portals.broadinstitute.org/ccle) 2. The cell line gene expression

profiles in CCLE and GDSC were generated using different platforms, and thus the data sets
have significantly different magnitudes (Figure 6.3). To make these two datasets uniformly
distributed, the batch effect was removed using the pyComBat package in Python 30301 Then
the standardized gene expression profile (brain cancer cell lines) of CCLE was fed to the model

built with GDSC datasets to validate the drug response.
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Figure 6.3: Removal of Batch effect by ComBat. Boxplot showing gene expression distributions
before (A) and after (B) ComBat for ten cell lines from GDSC and CCLE.

6.2.5 Performance evaluation

The performance of the DNN model was evaluated based on the eight criteria: Accuracy,
Sensitivity, Specificity, Precision, F1-score, FPR, Geometric mean, and MCC. All the matrices

are described in chapter 3 in details.
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6.3 Results

6.3.1 Genome-wide screening to identify the driver genes

Cancer mutation can be synonymous and non-synonymous. Synonymous mutations do not
affect the amino acid sequence of proteins, whereas non-synonymous mutations cause a
different amino acid to be included in the protein and have more immediate consequences for
protein function. It is anticipated that nonsynonymous mutations will come under strong
positive selection in order to drive oncogenesis. Owing to this fact, the non-synonymous driver
mutations in each subtype of LGG and GBM was identified by implementing the
OncodriveCLUSTL algorithm 2% and using somatic mutation data from the COSMIC (Table
6.1). It is observed that several driver mutations were associated with each subtype of glioma.
Higher-grade tumors frequently have more aggressive features because they typically have
more genetic mutations than lower-grade tumors. It is also found that all subtypes of GBM have
a higher number of driver mutations than LGG subtypes (Table 6.1). This demonstrates why
GBM is more aggressive than other varieties of brain cancer. It is also noticed that these
mutations are scattered across the genome rather than being concentrated in a particular location
(Figure 6.4 A - F). It is frequently observed that changes in coding sequence cause changes in
the expression of driving genes. For instance, a mutation in an oncogene can result in it being
overexpressed, promoting the development of cancer. Similar to this, a tumor suppressor gene's
expression can be depleted as a result of a mutation, which reduces its growth inhibitory effect.
Hence, the differentially expressed genes (DEGs) was identified in each subtype of cancer. The
genes with log2Fold Change (FC) > 1 and < -1 and adjusted p-value <0.05 were considered
DEGs (Figure 6.5 A-F and Table 6.1). The driver genes that are differentially expressed are
named as differentially expressed driver genes (DEDGs) (Table 6.1). It is noticeable that a high
percentage of the driver genes are differentially expressed, indicating that these genes, i.e.,
DEDGs, play a critical role in tumorigenesis (Table 6.1). The combined effect of mutations in
cancer driver genes and changes in gene expression can enhance the oncogenic effects 3%2. These
genes may be involved in key pathways and processes involved in cancer development and
progression. Therefore, DEDGs can be used to develop targeted therapies that can be used to

selectively disrupt subtype-specific processes to regulate cancer.
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Table 6.1: Differentially expressed driver genes (DEDGS) in subtypes of glioma

Number of
Dhilijvrzfel(;r?;s d,i\ll?erpfniga?lc differentially | Percentage of
Grade | Histological Type ( g expressed y expressed driver gene
valuego 05) penes driver genes | differentially
' g (DEDGS) expressed
Astrocytoma 1043 6825 460 44.1
LGG | oligoastrocytoma 719 6738 321 44.64
oligodendroglioma 994 6562 427 42.95
Classical 1114 6920 424 38.06
GBM | Mesenchymal 1338 7154 553 41.33
Proneural 1117 6771 426 38.13
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Figure 6.4: Genome-wide distribution of driver genes in glioma subtypes. Circus plots show
the driver genes in different subtypes of LGG and GBM (A-F). Blue and orange dots represent
the chromosomal location of driver mutations in the circus plot and mutations are distributed

throughout the genome in each subtypes.
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Figure 6.5: (A-F), the volcano plots represent the differentially expressed genes (DEGS) in
different subtypes of glioma. LogFC>1 (p-value< 0.05) is the upregulated gene (orange) and
LogFC<-1 (p-value< 0.05) is the downregulated gene (Blue).

6.3.2 Subtype-specific networks of driver genes (DEDGs) and identification
of disease modules

In the previous section, it is observed that in all subtypes, driver genes are distributed across
the genome. Many driver genes are also differentially expressed. This two-level perturbation in
genes indicates their crucial role in cancer development because biological pathways and
processes that involve these genes will likely be deregulated. The gene set enrichment analysis
was conducted on DEDGs from each subtype to investigate the affected biological pathways
and processes. It is found that cancer-associated processes and pathways were enriched in
different subtypes of gliomas (Figure 6.6 A-F). Interestingly, it is found that processes and
pathways are mostly distinct among the subtypes, such as in the astrocytoma NOTCH signaling
pathway, ATM signaling pathway, and regulation of RNA splicing; in the oligoastrocytoma
neovascularization process, EGFR signaling pathways, and FoxO signaling pathway; and in the
oligodendroglioma PID ERBB1 internalization pathway and endocrine resistance, which were
significantly (p < 0.05) enriched. In classical signal transduction by growth factor receptors and
second messengers, negative regulation of cellular component organization and regulation of
cellular response to stress are prevalent; in mesenchymal focal adhesion, proteoglycan in cancer

and cytokine signaling in immune system, and in proneural glioblastoma signaling pathways
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and MAPK signaling pathways are prevalent. These results demonstrate how the subtypes

differ from one another in terms of their molecular function and biological processes.
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Figure 6.6: The bar diagrams represent the biological process and pathway enrichment
analysis of differentially expressed driver genes (DEDGS) in glioma subtypes (A-F). The highly

significant (p-value<0.05) processes and pathways are shown in the figures.

However, to be involved in biological processes and to drive cancer, these genes must
interact. Network-based approaches to human disease demonstrate that abnormalities in a single
effector gene product are infrequent causes of disease. Indeed, there is a higher likelihood that
genes linked to the same disease will interact with one another **3. Using the brain interactome
data from the TissueNet v.2 database 2%, the subtype-specific protein-protein interaction
network of DEDGs was built, named the differentially expressed driver gene network
(DEDGN), to analyze the interaction pattern. It is observed that a moderate portion of the
DEDGs directly interact with each other. The size of the largest connected component (LCC)
was calculated in each subtype. LCC refers to the largest subset of nodes in the network that
are connected to each other, and often LCCs are involved in crucial signaling pathways that are
essential to cellular function. Additionally, it can aid in the identification of prospective drug
targets for therapeutic intervention. Figure 6.7 (A-F) shows the LCC in each subtype. It is
observed that a lower percentage of DEDGs, i.e., 36.30% in astrocytoma, 34.26% in
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oligoastrocytoma, 32.31% in oligodendroglioma, 23.11% in classical, 42.67% in mesenchymal,
and 39.67% in proneural, form the LCC. The size of the LCC in reality may be larger than what
we have depicted here because the human interactome is incomplete. These LCCs in each
subtype, however, provided us with evidence that the development of a precision therapeutic

strategy can be aided by the identification of subtype-specific disease modules.

Largest connected component (LCC) in DEDGN
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Figure 6.7: (A-F), show the largest connected component (LCC) of the DEDGs networks in
each subtype.

Therefore, the process of disease module identification was initiated by applying the
DIAMOND algorithm. (Figure 6.8) DIAMOND enables us to systematically examine the local
network neighborhood surrounding a particular collection of known disease proteins in order
to find new disease proteins. All DEDGs in each subtype to be known disease genes was
considered and used them as seed genes in DIAMOND. The number of DIAMOND disease
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module genes in each subtype of LGG and GBM was 607 in astrocytoma, 487in
oligoastrocytoma, and 578 in oligodendroglioma; 572 in classical, 675 in mesenchymal, and
574 in proneural. Hence, a higher number of disease-associated genes were identified in each
subtype by DIAMOND. It is observed that the size of the LCC in each subtype provided by the
DIAMOND was much larger than the LCC DEDGN (Figure 6.9A). It should be noted that
DIAMOND LCCs contain DEDGs and relevant disease genes in the network neighbourhood.
There is a higher percentage of genes, i.e., almost 72-80% of seed genes, present in the LCC.
The clustering coefficients of the DIAMOND LCCs are much higher than the LCC of DEDGN
(Figure 6.9B). The higher clustering coefficient of genes in the LCC shows that each subtype
has a local aggregation disease gene, and these genes interact with each other more frequently
than would be predicted in a random network. This finding also implies that module genes work
together in biological processes and pathways and aid in the development of disease. Therefore,

these disease modules can be identified as targets for precision therapy of glioma subtypes.
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Figure 6.8: Disease module in subtypes. The flow diagram shows the steps involved in disease
module identification. DEDGs are screened from the list of driver genes and DEGs. DEDGs

and brain interactome data are fed into DIAMOND for disease module identification.
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Figure. 6.9: Disease module in subtypes. (A), The bar diagram compares the size of the LCC
of DEDGs network (gray) and DIAMOND disease module (brown). (B), The bar diagram
compares clustering coefficient of LCC of DEDGs network (gray) and DIAMOND disease
module (brown).

6.3.3 Targeting the disease module and developing the drug response
prediction model

To target the disease module in glioma subtypes, the FDA-approved and investigational
drugs were retrieved from the DrugBank database. The drugs for which the disease module has
target genes were selected. It is observed that a total of 234, 187, 234, 178, 226, and 185 drugs
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can be used to target the module genes in astrocytoma, oligoastrocytoma, oligodendroglioma,
classical, mesenchymal, and proneural, respectively. Although there are targets in the modules,
all these drugs may not be useful for anti-cancer therapy. Many times, drug resistance reduces
the effectiveness of chemotherapy. The accurate prediction of cancer-specific drug responses
is one of the significant challenges in precision medicine. Due to the genetic heterogeneity of
cancers, patients' responses to cancer treatments vary depending on their distinctive genomic
profiles. Due to this complexity, Al methods like ML and DL are becoming more efficient for
predicting drug responses. Several large-scale drug screening programmes have made their data
publicly available, such as GDSC and CCLE. These databases provide the IC50 (50% inhibitory
concentration) of a particular drug on specific cancer cell lines along with cancer cell omics
profiles. A lower 1C50 value indicates a better sensitivity of the cell line to a given drug. Here
the single-drug response classification model was developed using GDSC gene expression and
driver mutation data to train and test the model, and CCLE data was used for external validation.
Out of the 288 drugs that target disease modules, it is found that only 30 have experimental data
on brain cancer cells. Hence, these 30 drugs were chosen to develop the drug response model.
For a drug, the cell lines were classified as sensitive or resistant based on 1C50 values. 1C50
values at or below the 25th percentile were considered sensitive, and IC50 values at or above
the 75th percentile were considered resistant for each drug. The GDSC dataset were randomly
divided into 70:30 training and test sets. The model was developed on GDSC data, excluding
brain cell lines. First, the gene expression and driver mutation data from GDSC were pre-
processed, and feature selection was performed to reduce the multicollinearity and
dimensionality of the data. The gene expression and mutation data were separately treated.
Correlation-based feature selection was implemented to eliminate multicollinearity from gene
expression data. The Pearson Correlation Coefficient (PCC) was computed, and genes with a
PCC> 0.5 were dropped. The remaining 5233 genes were taken for dimensionality reduction
using LASSO. LASSO feature selection was also employed on mutation data. After feature
selection, both gene expression and mutation data were fed into the autoencoder with
concatenated inputs (CNC-AE). Then, these two types of data were integrated and compressed
in the bottleneck layer learned by the autoencoder 26%283, All the parameters of the different
layers in the autoencoder were optimized for individual drugs. However, the architecture of the
autoencoder is almost the same for all drugs; for example, one hidden layer for data integration
was used, and the dimension of the bottleneck layer was set to 64. An autoencoder consists of
two parts: an encoder and a decoder network (Figure 6.10). The latent variables from the

131



Chapter 6 Obijective 4

bottleneck layer were employed in the decoder network to decode the original input data, and
this was done in order to quantify the reconstruction loss, which represents the efficiency of the
autoencoder. The mean squared error (MSE) was used to calculate the reconstruction loss. It is
found that MSE was considerably lower in the range (0.02-0.19). This demonstrates that the
autoencoder correctly learns to encode the pattern of gene expression and mutation in the latent
space. Next, the DNN model was built to predict the drug response, i.e., whether it is sensitive
or resistant, using the latent variables from the bottleneck layer of the autoencoder. In order to
identify the optimized set of hyperparameters, the grid search method was employed. The
average performance measures for each DNN model were then calculated using k-fold CV (k
= 10). The model's performance was evaluated by computing the average accuracy, recall,
specificity, precision, Fl-score, FPR, GM, and MCC (see methodology). The performance
matrix on training data and test data for 30 drugs is provided in the Table 6.2 and 6.3.
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Figure 6.10: The overall workflow of drug response model development. The gene expression
and mutation data from GDSC are subjected to feature selection, and both data are integrated
using an autoencoder. The latent variable from the bottleneck layer is used for developing the
DNN model. The model validation was performed using test data, brain cancer data, and

external data from CCLE.
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Table 6.2: Performance matrix of drug response on training data

Drugs Accuracy Recall | Specificity | Precision | F1-score | FPR | GM | MCC
Ruxolitinib 96.27%(+0.02) | 96.26 | 96.15 96.55 96.23 0.03 | 97.49 | 0.92
Entinostat 95.78%(+0.01) | 95.89 | 95.88 95.83 95.77 0.04 | 97.16 | 0.91
Lapatinib 95.62%(+0.02) | 95.58 | 95.40 95.96 95.55 0.04 | 97.05 | 0.91
Vorinostat 94.94%(+0.02) | 94.89 | 94.80 94.96 94.89 0.05 | 96.60 | 0.89
Tretinoin 94.50%(x0.07) | 95.26 | 94.75 94.92 94.40 0.05 | 96.24 | 0.90
Olaparib 93.03%(+0.02) | 93.22 | 93.05 93.03 92.99 0.06 | 95.29 | 0.86
Vinblastine 92.34%(x0.03) | 92.30 | 92.27 92.45 92.31 0.07 | 94.82 | 0.84
Axitinib 91.80%(+0.03) | 91.85 | 91.88 91.77 91.75 0.08 | 94.44 | 0.83
Crizotinib 91.69%(+£0.01) | 91.96 | 91.78 91.61 91.64 0.08 | 94.37 | 0.83
Trametinib 91.35%(£0.02) | 91.56 | 91.52 91.44 91.29 0.08 | 94.14 | 0.82
Selumetinib 91.42%(£0.02) | 91.37 | 91.31 91.48 91.38 0.08 | 94.19 | 0.82
Dasatinib 91.01%(£0.01) | 91.15 | 91.00 91.28 90.96 0.08 | 93.91 | 0.82
Sorafenib 90.79%(0.02) | 90.69 | 90.53 90.76 90.68 0.09 | 93.75 | 0.81
Niraparib 90.36%(+0.02) | 90.57 | 90.37 90.62 90.31 0.09 | 93.46 | 0.81
Rucaparib 89.77%(£0.03) | 89.79 | 89.72 89.73 89.70 0.1 ]93.05]0.79
Dabrafenib 88.98%(+0.03) | 88.98 | 88.95 88.91 88.88 0.11 [ 92.49 | 0.78
Bicalutamide | 87.50%(+0.05) | 87.82 | 87.63 87.25 87.37 0.12 | 91.44 | 0.75
Bosutinib 87.16%(+0.03) | 87.27 | 87.14 87.22 87.09 0.12 | 91.23 | 0.74
Erlotinib 86.25%(+0.03) | 86.29 | 86.23 86.36 86.13 0.13 | 90.6 | 0.73
Nilotinib 85.80%(+0.03) | 86.11 | 85.91 85.84 85.72 0.14 | 90.28 | 0.72
Vinorelbine 85.73%(£0.03) | 85.87 | 85.64 85.92 85.64 0.14 | 90.23 | 0.72
Vincristine 85.52%(+0.04) | 85.75 | 85.62 85.70 85.34 0.14 | 90.08 | 0.71
Ibrutinib 85.37%(+£0.04) | 85.40 | 85.37 85.46 85.32 0.14 | 89.97 | 0.71
Talazoparib 84.61%(+£0.02) | 84.64 | 84.55 84.57 84.52 0.15 | 89.45 | 0.69
Alpelisib 84.38%(+0.03) | 84.53 | 84.38 84.42 84.28 0.15 | 89.28 | 0.69
Afatinib 84.16%(£0.04) | 84.20 | 84.04 84.25 84.07 0.15 | 89.12 | 0.68
Osimertinib 84.04%(+0.02) | 84.00 | 83.56 84.21 83.86 0.16 | 89.05 | 0.68
Gefitinib 83.37%(x+0.03) | 83.51 | 83.68 83.69 83.28 0.16 | 88.57 | 0.67
Tamoxifen 82.25%(+0.05) | 82.12 | 81.93 82.18 82.04 0.18 | 87.74 | 0.64
Fulvestrant 70.90%(£0.03) | 71.14 | 70.97 71.11 70.82 0.29 | 79.50 | 0.42
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Table 6.3: Performance matrix of drug response on test data

Drugs Accuracy | Recall | Specificity | Precision | F1-score | FPR | GM | MCC | AUC
Ruxolitinib | 94.12 94.12 | 94.22 94.74 94.10 0.05 | 96.04 | 0.88 | 0.97
Entinostat 94.96 94.96 | 94.87 95.42 94.94 0.05 | 96.61 | 0.90 | 0.95
Lapatinib 96.09 96.09 | 96.09 96.38 96.09 0.03 | 97.38 1092 |0.98
Vorinostat 91.27 91.27 |91.27 91.36 91.26 0.08 | 94.09 | 0.82 | 0.91
Tretinoin 82.76 82.76 | 81.53 87.07 82.12 0.18 | 88.15|0.69 | 0.82
Olaparib 93.75 93.75 | 93.75 93.92 93.74 0.06 | 95.79 | 0.87 | 0.95
Vinblastine | 85.87 85.87 | 85.87 85.89 85.87 0.14 | 90.34 | 0.71 | 0.86
Axitinib 91.27 91.27 | 91.27 91.36 91.26 0.08 | 94.09 | 0.82 | 0.91
Crizotinib 94.53 94.53 | 94.53 94.63 94.53 0.05 | 96.32 | 0.89 | 0.95
Trametinib | 89.84 89.84 | 89.84 89.85 89.84 0.10 | 93.11 | 0.79 | 0.90
Selumetinib | 87.78 87.78 | 87.75 87.93 87.77 0.12 | 91.68 | 0.75 | 0.88
Dasatinib 92.91 9291 |92.90 92.92 92.91 0.07 | 95.22 | 0.85 | 0.96
Sorafenib 92.86 92.86 | 92.86 93.13 92.85 0.07 | 95.18 | 0.85 | 0.97
Niraparib 89.83 89.83 | 89.83 90.01 89.82 0.10 | 931 |0.79 |0.93
Rucaparib 88.8 88.80 | 88.77 88.84 88.8 0.11 | 92.39 | 0.77 | 0.90
Dabrafenib | 85.71 85.71 | 85.71 85.75 85.71 0.14 |1 90.23 | 0.71 | 0.86
Bicalutamide | 86.21 86.21 | 85.70 86.85 86.11 0.14 | 90.58 | 0.72 | 0.86
Bosutinib 85.60 85.60 | 85.50 86.18 85.53 0.14 | 90.15|0.71 | 0.86
Erlotinib 82.54 82.54 | 82.54 82.57 82.54 0.17 | 87.99 | 0.65 | 0.83
Nilotinib 83.33 83.33 | 83.33 83.75 83.28 0.16 | 88.55|0.67 | 0.83
Vinorelbine | 85.71 85.71 | 85.71 85.75 85.71 0.14 |1 90.23 | 0.71 | 0.86
Vincristine | 85.42 85.42 | 85.42 85.98 85.36 0.14 | 90.02 | 0.71 | 0.85
Ibrutinib 83.76 83.76 | 83.80 83.86 83.75 0.16 | 88.86 | 0.67 | 0.85
Talazoparib | 84.13 84.13 | 84.13 84.13 84.13 0.15 | 89.12 | 0.68 | 0.84
Alpelisib 76.56 76.56 | 76.56 76.67 76.54 0.23 | 83.69 | 0.53 | 0.77
Afatinib 84.38 84.38 | 84.38 84.51 84.36 0.15 | 89.29 | 0.68 | 0.84
Osimertinib | 84.13 84.13 | 84.13 84.27 84.11 0.15 | 89.12 | 0.68 | 0.85
Gefitinib 84.92 84.92 | 84.92 86.02 84.80 0.15 | 89.68 | 0.70 | 0.85
Tamoxifen 82.54 82.54 | 82.54 82.57 82.54 0.17 | 87.99 | 0.65 | 0.85
Fulvestrant | 73.54 73.54 | 73.52 73.58 73.53 0.26 | 81.48 | 0.47 |0.74

Based on the performance parameters, the Ruxolitinib drug had an accuracy to predict
sensitivity or resistance was 96.26% (+£0.02). The precision and specificity of the model were
>0.90. Due to the superior performance of the Ruxolitinib model, further investigation was done
and found that it is a potent inhibitor of the JAK/STAT signaling pathway and can inhibit the
invasion and tumorigenesis of glioma cells 3. This drug is also in clinical trials for glioma

treatment (https://clinicaltrials.gov/). Further, It is found that the accuracy of prediction using

134



https://clinicaltrials.gov/

Chapter 6 Obijective 4

test data was 94.12% and that using only brain cancer cell lines was 84.28%. It is tempting to
state that the model prediction was as per the independent observations made by other
researchers. Figure 6.11 A and B show that all models for the top 10 drugs have higher accuracy
of prediction using training (91.34-96.26%), test (82.76-96.09%) data.
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Figure 6.11: Classification accuracy of DL models (A), training (B), test dataset of top 10
drugs.

A highly sensitive and specific model for drug response prediction is always ideal.
Therefore, the receiver operating characteristic (ROC) curve was used to illustrate the
sensitivity and specificity of each model. For a range of different cutoff points, the ROC curve
compares the probability of a true positive result, or the test's sensitivity, to the probability of a
false positive result. Figure 6.12 (A-J) shows the area under the ROC curve (AUC) of the DNN
models of the top 10 drugs. It is observed that the AUC values were high, i.e., 0.97 in
Ruxolotinib, 0.95 in Entinostat, 0.98 in Lapatinib, 0.91 in Vorinostat, and 0.95 in Olaparib.
Overall, all models show consistent prediction accuracy in training, testing, and brain cancer
cell data. The performance matrix on brain cancer cell line data for 30 drugs is provided in the
Table 6.4. The model accuracy >80% was obtained using only brain cancer cell line data (Figure
6.13).

135



Chapter 6 Obijective 4

ROC plots
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Figure 6.12: (A-J), ROC plots of the top 10 drugs.
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Table 6.4: Performance matrix of drug response on brain cancer cell lines

Drugs Accuracy Recall | Specificity | Precision | F1-score | FPR | GM | MCC
Lapatinib 91.25%(+0.13) | 93.38 | 93.63 92.69 91.23 0.06 | 93.86 | 0.86
Vinblastine | 90.00%(+0.19) | 90.08 | 89.09 90.55 87.66 0.1 |9266|0.79
Niraparib 90.00%(*0.11) | 92.51 | 91.16 90.47 89.47 0.08 | 93.05 | 0.83
Rucaparib | 88.75%(+0.12) | 90.54 | 92.46 90.7 88.43 0.07 | 92.16 | 0.81
Ruxolitinib | 84.29%(+0.10) | 84.67 | 82.83 86.8 82.84 0.17 | 89.09 | 0.7
Entinostat 84.29%(i0.10) 85.4 86.93 85.6 83.77 0.13 | 89.09 | 0.7
Vorinostat | 82.50%(+0.10) | 85.46 | 84.04 84.89 81.5 0.15 | 87.82 | 0.7
Olaparib 81.25%(+0.13) | 84.46 | 84.54 84.86 80.47 0.15 | 86.81 | 0.69
Sorafenib 80.009(+0.12) | 82 80.67 81.75 78.51 0.19 | 85.98 | 0.63
Dasatinib 80.009%(x0.06) | 81.67 | 82 81.04 79.05 0.18 | 86.12 | 0.62
Selumetinib | 79.17%(%0.09) | 80.64 | 79.59 79.08 78.52 0.2 |8547 0.6
Talazoparib | 77.50%(+0.11) | 79.38 | 82.13 81.25 76.84 0.17 | 84.19 | 0.61
Trametinib | 77.50%(%0.11) | 80.17 | 79.83 77.84 76.82 0.2 |84.19|0.58
Axitinib 76.25%(+0.13) | 81.54 | 79.46 80.53 76.11 0.2 |83.17]0.61
Osimertinib | 76.25%(+0.13) | 79.54 | 78.8 79.02 74.98 0.21 | 83.19 | 0.58
Ibrutinib 72.86%(+0.12) | 74.06 | 77.61 77.13 71.88 0.22 | 80.73 | 0.5
Dabrafenib | 72.50%(+0.19) | 76.13 | 78.71 73.73 70.62 0.21 | 79.96 | 0.55
Tamoxifen | 72.50%(0.12) | 74.63 | 75.21 75 71.63 0.24 | 80.44 | 0.49
Crizotinib 72.50%(+0.07) | 75.5 | 73.83 75.28 71.49 0.26 | 80.61 | 0.49
Vinorelbine | 68.75%(0.16) | 73 72.83 74.9 67.69 0.27 | 77.38 | 0.47
Nilotinib 68.75%(+0.08) | 71.58 | 70.92 71.66 67.87 0.29 | 77.77 | 0.42
Afatinib 67.50%(+0.20) | 72.54 | 75.29 72.68 65.77 0.24 | 76.22 | 0.48
Bosutinib 66.25%(+0.22) | 70.54 | 70.79 68.32 64.63 0.29 | 75.04 | 0.43
Vincristine 66.00%(+0.18) | 73.7 73.8 69.7 61.77 0.26 | 75.16 | 0.46
Bicalutamide | 63.33%(+0.33) | 62.33 | 62.35 62 60.8 0.32 | 70.14 | 0.45
Fulvestrant | 61.67%(+0.15) | 61.13 | 61.65 62.1 60.33 0.38 | 71.97 | 0.24
Erlotinib 60.00%(+0.18) | 66.92 | 67.42 67.24 59.34 0.32 | 70.37 | 0.36
Alpelisib 58.75%(+0.26) | 65.17 | 64.33 69.57 57.47 0.35 | 67.23 | 0.34
Gefitinib 57.50%(+0.15) | 63.46 | 61.38 59.82 55.86 0.38 | 68.63 | 0.25
Tretinoin 56.67%(x0.38) | 57.67 | 57.32 55 53.13 04 |6251]0.2
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Figure 6.13: Classification accuracy of DL models on test dataset of brain cancer cell lines of
top 10 drugs.

From earlier articles, it was also learned that several of the top 10 drugs in the training data
exhibit promising anti-glioma cell activities, such as Entinostat, a histone deacetylase inhibitor,
which can inhibit GBM growth 3%, Vorinostat, an FDA-approved drug, is already in use to treat
cutaneous T-cell lymphoma, but it is now in a Phase Il clinical trial to treat recurrent
glioblastoma multiforme 3%, Vinblastine shows sensitivity for both LGG and GBM 37:308 gnd
it is in clinical trials for the treatment of these cancers. Other drugs such as Olaparib 3%,
Crizotinib 31°, Trametinib 3 have also shown encouraging results for the treatment of brain
cancer. Our findings, along with those from the existing literature, suggest that the current
approach may be used to aid in clinical decision-making for the treatment of gliomas. We
forecast the drug sensitivity of 30 different drugs against 49 brain cancer cell lines using the
saved models to assess their potential clinical utility. The features from gene expression and
mutation data from particular cell line data were extracted, and integrated these two data sets,
i.e., gene expression and mutation, using an autoencoder, and then fed this integrated data into
the 30 different drug-specific DNN models. Lastly, the sensitivity or resistance of a drug against
a particular brain cancer cell line were predicted. The drug sensitivity data for 10 drugs for 49
brain cancer cells is shown in Figure 14. The cell line's lineage from ATCC

(https://www.atcc.org/) and cellosaurus (https://www.cellosaurus.org/) was acquired in order to

demonstrate subtype-specific drug sensitivity. We were able to provide the drug sensitivity
results for oligodendroglioma, astrocytoma, and GBM based on the data that was available. It
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is found that the drug sensitivity of various cell types varied, and a major factor contributing to
this variation is the cell line's genetic background, including both gene expression and mutation.
Indeed, gene expression and mutations as features was used while developing the models. This
provides a comprehensive view of the significance of subtype-specific drug response prediction

utilizing genomic data in enhancing the clinical efficacy of the therapy.

Hs-683 (Oligodendroglioma)
Becker (Astrocytoma)
GMS-1.50 (GBM){ [ |

Al172 (GBM){ |
D-566MG (GBM)
H4 (Astrocytoma){ |
AM-38 (GBM)

LN-18 (GBM)
DK-MG (GBM){ |
SF539 (Diffuse Glioma)

YKG-1 (GBM)
CAS-1 (GBM)

YH-13 (GBM)
D-5.502MG (GBM)
D-263MG (GBM)
GB-1 (GBM)
no-11 (GBM)
LN-4.505 (GBM)
LN-229 (GBM){ |

D-336MG (Diffuse Glioma)
SF126 (GBM)

SNB75 (GBM) [ | |
KINGS-1 (AA)

U251 (Astrocytoma)
U-118-MG (Astrocytoma)
DBTRG-.505MG (AA)
M.5059) (GBM)

GAMG (GBM)
MOG-G-UVW (AA)
D-392MG (GBM)

no-1.50 (GBM)

D-423MG (GBM) -

SF295 (GBM)

SW1783 (AA)

SF268 (Astrocytoma)-
LNZTA3WT4 (Astrocytoma)
KS-1 (GBM)

Figure 6.14: Prediction of drug sensitivity in brain cancer cell lines. The heat map represents
the drug sensitivity data for 49 brain cancer cell lines against 30 drugs. The red color indicates
the resistant cell lines and the green color indicates the sensitive cell lines. The origin (or
subtype) of each of the cell lines is mentioned in the figure.
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Lastly, this DL framework with external datasets was validated from CCLE, and the accuracy
of prediction for drugs, Erlotinib, Lapatinib, Nilotinib, and Sorafenib was fairly accurate (Table
6.5). These results show that our models were able to consistently predict accurate drug
responses. However, experimental investigations, i.e., in vitro and in vivo drug efficacy assays
and sensitivity data across the many cancer cell types, need to be analyzed before the current

framework is put into use in a clinical context.

Table 6.5: Model validation on external dataset from CCLE

Drugs Accuracy Recall | specificity | precision | F1 FPR | GM | MCC

Erlotinib | 74.00% (+0.21) | 77.27 79.39 72.87 | 70.95| 0.2 |81.06 | 057

lapatinib | 70.00 % (+0.16) | 71.06 72.27 75.08 | 68.86 | 0.27 | 78.35 | 0.46

Nilotinib | 62.50 % (+0.35) | 63.43 64.36 64.06 | 61.5| 0.35 69 | 0.45

Sorafenib | 88.00 % (+0.10) | 88.79 89.55 90.68 | 87.53| 0.1| 91.7| 0.79
6.4 DISCUSSION

The clinical development of targeted and personalized brain cancer treatments continues to
be a significant issue. There are many different types of brain cancer, and the fact that they each
possess their own unique genetic abnormalities makes it challenging to design effective
treatments. Finding a disease-specific biomarker for targeted therapy is a commonly used
strategy. However, due to the molecular heterogeneity of cancer, targeted therapy is not always
effective in treatment and frequently develops drug resistance. To address this, the current study
combines network medicine-based techniques with DL-based drug response prediction to target
glioma subtypes for precision therapy. Among all cancer-associated alterations, driver
mutations and altered gene expression are majorly involved in oncogenic transformation 32,
Therefore, genome-wide screening of driver mutations was performed and identified the DEGs
from transcriptome data in each subtype of LGG and GBM. From the list of driver mutations
and DEGs, the DEDGs were identified, which are further subjected to disease module
identification. Cancer is not a single gene disorder; rather, the interaction between many genes
causes cancer. Hence, the identification of disease modules using DEDGs can
comprehensively represent the core structure of the subtype-specific network associated
with the cancer phenotype. The network medicine-based approach demonstrates that effective

drugs must target the protein within or in the disease modules’ immediate vicinity. Therefore,

140



Chapter 6 Obijective 4

drugs from the DrugBank database to target these disease modules were selected. Patients'
responses to drugs, however, differ greatly from one another due to the diversity of molecular
profiles. To address this further, a DL-based framework was developed to predict drug response
using gene expression, mutation, and 1C50 values from large-scale experimental data. The
novel framework was designed by combining LASSO-based feature selection, autoencoder-
based data integration, and then prediction using the DNN. It is noticed the consistent
performance of the model in test data, brain cancer cell lines, and validation data. To examine
the clinical application, we predict the drug response for each brain cancer cell line using a
drug-specific model. Additionally, it is shown that cancer cell lines from various subtypes
of glioma exhibit varying degrees of drug sensitivity. Earlier, several studies reported the
drug response model for a particular cancer type, but in our study, we have shown that models
can be used to predict drug response for a specific subtype of cancer.
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Chapter 7: Conclusion and future scope

In this thesis, discusses the ML and DL models that were utilized in the field of cancer
genomics, and focusing on their respective architectures. ML & DL has the enormous
potentiality to assist clinicians by reducing human error, helping in cancer diagnosis, and
analyzing complex data. Therefore, it is proved as cutting-edge technology in cancer research.
In this thesis, a comprehensive and precise ML-based approach was presented for cancer
grading and subtyping. It is found an integrated approach consisting of correlation and SVF-
RFE algorithm for feature gene selection, and then computation of SVM using those feature
genes (n =100) had shown superior performance (accuracy >90%). It is found that the accuracy
of subtype classification is always good using the gene expression data of a specific grade of
cancer rather than a mixed grade. It is observed that other ML techniques produced repeatedly
the same results. This gave us clues that cancer grading is essential to achieve higher accuracy
for subtype prediction. It is also observed six-class classification for simultaneous grading and
subtyping using the same ML framework and attained an overall accuracy of 91.0% (+£0.02)
and AUC=0.88. Therefore, the findings of this study strongly strengthen the fact that grading
and subtyping are both required to achieve a higher accuracy of prediction. The correct set of
feature genes and their discriminative ability play a crucial role in the superior performance of
ML algorithms. In addition, the biological relevance of these features could lead to finding the
mechanisms behind LGG formation and therapeutic targets. The subtype and grade-specific
co-expressed feature genes associated with the oncogenesis was identified. Furthermore,
survival analysis of these genes revealed several predictive biomarkers, which could be used as
potential molecular indicators for diagnosis and treatment. Therefore, we conclude that gene
expression data of a subtype of LGG without considering the grade is more heterogeneous than
data of a specific grade. Further, the study of chapter 4 indicates that DL and ML can be
powerful tools for finding patterns in large-scale genetic and epigenetic data sets related to
human cancer. Here, a biologically relevant DL and ML-based framework was presented to
classify the subtype of GBM to increase accuracy in diagnosis; in turn, it can lead to better
patient management. Here, the successful separation of three subtypes of glioblastoma
multiforme (GBM), namely classical, mesenchymal, and proneural, has been performed with a
classification accuracy >90%. It is also compared DL and ML techniques to identify the most
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suitable method for interpreting the transcriptome, methylome, and integrated data. DL method,
i.e., CNN outperforms other ML models. It is observed that overall classification performance
was higher using the transcriptome and integrated data than the methylome data. Another
significant aspect of our findings is the biological relevance of features and the identification
of subtype-specific prognostic biomarkers. To find the association of features genes with
specific subtypes, we performed WGCNA. Furthermore, several genes present in these co-
expressed modules was identified, which were linked to patient survival. Our study explained
how the features genes from the DL/ML framework could be used to find the subtype-specific
biomarkers. The feature genes of this study and CNN can provide assured and clinically
relevant deep learning-based diagnostic tools for the proper treatment of GBM patients. These
results indicate that DL is better than the ML algorithms. However, development of DL-based
model with large scale multi-omics data can improve the overall precision and efficacy of
diagnostic processes. However, clinical diagnosis still raises questions about the validity and
interpretability of DL- or Al-based diagnostic models. In general, efficient DL and ML tools
work like a ‘black -box’; researchers or clinicians may not be confident in diagnosing or
classifying cancer patients using these approaches. However, if the basis of classification is
biologically relevant and has higher accuracy, the diagnosis and patient management will be
more assured and systematic. To promote the further development for building more accurate
biological relevant models and identification of novel therapeutic marker multi-omics data
analysis is essential, which has grown in popularity in cancer research in recent decades.
Moreover, the integration of transcriptomic, mutational, and methylome data can reveal the

intricate systemic dysregulation linked to the phenotype of glioma.

Therefore, it is essential to design a biologically and clinically relevant Al-based diagnostic
model to increase the reliability of diagnosis. Hence, in the chapter5 the Al-based diagnostic
tool was designed, i.e., DeepAutoGlioma, for subtyping the glioma. The transcriptome and
methylome data of glioma patients were used to extract biologically and clinically relevant
features for model development. The features from two levels of genomic layers were integrated
to capture cancer-specific patterns for accurate subtyping. Integration of omics data enables us
to achieve greater model performance because it provides a wealth of information from
different genomic layers. The model developed based on multi-omics data can greatly support
the clinician in personalizing treatment. Here, in chapter 6 the clinical development of targeted
and personalized brain cancer treatments continues to be a significant issue. Finding a disease-

specific biomarker for targeted therapy is a commonly used strategy. In this study, network
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medicine-based techniques with DL-based drug response prediction was combined to target
glioma subtypes for precision therapy. Therefore, gene expression and mutational profiles was
integrated and performed genome-wide screening of driver mutations and identified the DEGs
from transcriptome data in each subtype of LGG and GBM. From the list of driver mutations
and DEGs, the DEDGs were identified, which are further subjected to disease module
identification. Hence, the identification of disease modules using DEDGs can comprehensively
represent the core structure of the subtype-specific network associated with the cancer
phenotype. Therefore, drugs from the DrugBank database to target these disease modules were
selected. Next, a DL-based framework was developed to predict drug response using gene
expression, mutation, and IC50 values from large-scale experimental data. The novel
framework by combining LASSO-based feature selection, autoencoder-based data integration
was designed, and then prediction using the DNN was performed. It is noticed the consistent
performance of the model in test data, brain cancer cell lines, and validation data. Additionally,
it is shown that cancer cell lines from various subtypes of glioma exhibit varying degrees of
drug sensitivity. Due to the limitations of the dataset and lack of information on cell lineage,
we were unable to predict the drug response for all subtypes of LGG and GBM. But It is

expected that this problem will be solved soon because the size of datasets is growing rapidly.

This thesis has enlightened with various aspects and use of ML and DL models from brain
cancer diagnosis to the development of precision medicine. The Superior accuracies of ML
and DL in each type of genomic data show the possibility to develop a robust Al model from
heterogeneous data of cancer patients. The Al-models discussed in this thesis were developed
using data from brain cancer tissue. Al developers and cancer biologists should focus on the
data generated from liquid biopsies samples using non-invasive techniques, such as blood,
saliva, serum, and urine. Data from liquid biopsies samples will facilitate the biomarker
identification at an early stage of brain cancer. Furthermore, it will be less complicated for
multiple time sample collection to evaluate the patient's response to the treatment. For complex
diseases like cancer, combining the approaches of network medicine and DL-based drug
response prediction presents enormous promise for the development of novel and efficient
treatments. Network medicine can reveal the complex molecular interactions in the disease
state, which can lead to the identification of novel drug targets, whereas DL can extract hidden
patterns from large-scale omics data to develop a predictive model to determine the patient-

specific therapeutic approach. It is believed that the present work can be extended to other types
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of cancer to find subtype-specific targets and predict the drug response, and that it can

contribute to developing personalized medicine and improving patient outcomes.
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Appendix |
Subtyping and grading of lower-grade glioma (LGG)

Table 1.1: Performance of various machine learning models for subtype classification using
different sets of feature genes

Mixed grade Grade2 Grade3

Nggﬁ’ﬁg’f 20 |50 |100 | 200 | 500 [ 20 |50 | 100 [ 200 | 500 |20 |50 | 200 | 200 | 500
Accuracy 07 | 074 |08 |073|072| 085|088 | 093|083 | 081|088 | 086 | 096|088 | 085
F1 score 07 | 074 |08 |073|072| 085 |08 | 092|083 | 081|088 | 086 | 096 | 087 | 0.85
SYM Precision 071 | 074 | 081 | 0.72 | 072 | 0.86 | 0.88 | 0.93 | 0.84 | 0.82 | 0.88 | 0.86 | 0.96 | 0.87 | 0.86
AUC 085 | 0.86 | 087 | 0.9 | 091 | 09 | 093|098 | 094|094 095|095 095|098 | 0.98
Accuracy 066 | 0.67 | 067 | 0.64 | 06 | 068 | 072 | 0.73 | 0.72 | 068 | 071 | 0.75 | 0.8 | 0.71 | 0.65
F1 score 0.66 | 0.67 | 067 | 064 | 06 | 069 | 07 | 074 | 072 | 07 | 068 | 072 | 08 | 072 | 0.64
i Precision 067 | 068 | 067 | 0.64 | 06 | 069 | 071 | 0.75 | 0.72 | 0.72 | 0.72 | 0.73 | 0.81 | 0.73 | 0.64
AUC 071|071 | 072 |07 | 076 | 085|075 | 073|082 |08 |08 |08 |084|08 |077
Accuracy 067 | 072 | 072 | 0.66 | 065 | 0.7 | 075 | 0.83 | 0.78 | 0.73 | 0.73 | 0.75 | 0.93 | 0.78 | 0.75
F1 score 066 | 072 | 071 | 066 | 065 | 0.7 | 073 | 082 | 0.77 | 0.72 | 0.71 | 0.74 | 0.93 | 0.77 | 0.74

GaussianNB

Precision 068 | 0.72 | 071 | 067 | 065 | 0.7 | 073 | 0.83 | 079 | 0.73 | 072 | 0.74 | 0.93 | 0.79 | 0.75
AUC 078 | 08 |08 | 077 | 076 | 0.84 | 089 | 0.91 | 092 | 0.9 | 083 | 0.88 | 0.89 | 0.87 | 0.87

Accuracy 06 | 062 |062|06 |057|068|073|075|068]|06 |063]|066]| 068/ 06106
B F1 score 059 | 06 | 062 |06 | 057|068 |072|075|068|06 |063| 063|067 | 061|058

Decision tree

Precision 061 | 061 | 064 | 0.63 | 062 | 0.69 | 0.72 | 0.76 | 0.72 | 0.63 | 0.71 | 0.73 | 0.67 | 0.64 | 0.61
AUC 072 | 072 | 065 | 061 | 072 | 072 | 072 | 071 | 075 | 0.79 | 077 | 0.7 | 073 | 0.77 | 0.73
Accuracy 07 | 072|074 | 068 | 066 | 078 | 085 | 0.8 | 078 | 0.75 | 0.76 | 0.86 | 0.88 | 0.83 | 0.76
Random F1 score 07 | 072|074 | 068 | 066 | 077 | 084 | 0.87 | 0.78 | 0.75 | 0.76 | 0.86 | 0.87 | 0.83 | 0.75
forest Precision 07 | 073|074 | 069 | 066 | 0.79 | 0.83 | 0.88 | 0.81 | 0.78 | 0.76 | 0.86 | 0.9 | 0.83 | 0.77
AUC 081 | 082 | 084 | 085 | 086 | 0.9 | 091 | 0.95 | 0.93 | 0.95 | 0.91 | 0.93 | 0.95 | 0.94 | 0.94
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Table 1.2: External dataset sample details

Original sample Sample number after
Dataset Subtype g P P |
Number random sampling
Astrocytoma 2 11
GSE74462 ]
Oligoastrocytoma 11 11
(Grade2) 9 y
Oligodendroglioma 1 11
Astrocytoma 12 12
GSE43378 "
Oligoastrocytoma 2 12
(Grade3) g Y
Oligodendroglioma 4 12
Preprocessed data
A B _ C
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Figure 1.1: PCA of preprocessed data and feature genes. (A, B, C) dot plots show the PCA
using preprocessed gene expression data. (D, E, F) show the PCA using expression data of 100
feature genes. A: astrocytomas, OA: oligoastrocytomas, OD: oligodendrogliomas, N: healthy,
G2: grade2, and G3: grade3, and G2+G3: mixed grade.
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Table 1.3: Performance of subtype classification using Boruta feature selection method

Grade Mixed grade | Grade2 | Grade3
Number of Feature 132 209 170
Accuracy 0.7172 0.8525 | 0.8333
F1 score 0.7102 0.8405 | 0.8338
SVM
AUC 0.69 0.91 0.89
Precision 0.7213 0.8508 0.846
Accuracy 0.6465 0.7541 | 0.7333
F1 score 0.6509 0.7307 0.7352
KNN
AUC 0.76 0.86 0.78
Precision 0.6846 0.7533 0.757
Accuracy 0.6667 0.8033 0.75
] F1 score 0.6646 0.7974 | 0.7315
GaussianNB
AUC 0.78 0.89 0.83
Precision 0.6677 0.8091 | 0.7519
Accuracy 0.6061 0.6885 | 0.7167
o F1 score 0.5941 0.689 0.709
Decision tree
AUC 0.66 0.8 0.72
Precision 0.6009 0.7343 0.742
Accuracy 0.7071 0.8852 0.90
F1 score 0.7035 0.8811 0.897
Random forest
AUC 0.83 0.95 0.91
Precision 0.7109 0.8801 | 0.9002
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Appendix Il

Subtyping of glioblastoma multiforme (GBM)
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Figure 11.1: Analysis of network topology for several soft thresholding power () in WGCNA
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associated modules with proneural subtype. Overall survival was analyzed based on quartile
method of 75 % cut-off of higher and 25% cutoff of lower limit.
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Figure 11.4: Expression pattern of genes associated with patient survival. Heatmaps show the

genes present in coexpressed modules of (A) transcriptome (B) methylome (C) integrated data.

152



REFERENCES



10.

11.

12.

13.

14.

15.

16.

17.

References

Gould, J. Breaking down the epidemiology of brain cancer. Nature 561, S40-S41 (2018).

Louis, D. N. et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a
summary. Neuro Oncol 23, 1231-1251 (2021).

Qazi, M. A., Bakhshinyan, D. & Singh, S. K. Deciphering brain tumor heterogeneity, one cell at
atime. Nat Med 25, 1474-1476 (2019).

Perry, A. & Wesseling, P. Histologic classification of gliomas. Handb Clin Neurol 134, 71-95
(2016).

Maintz, D. et al. Molecular genetic evidence for subtypes of oligoastrocytomas. J Neuropathol
Exp Neurol 56, 1098-1104 (1997).

DJ, B. et al. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N
Engl J Med 372, 24812498 (2015).

Ostrom, Q. T. et al. CBTRUS statistical report: Primary brain and central nervous system tumors
diagnosed in the United States in 2006-2010. Neuro Oncol 15 Suppl 2, (2013).

Wang, Q. et al. Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with
Immunological Changes in the Microenvironment. Cancer Cell 32, 42-56.e6 (2017).

Witthayanuwat, S. et al. Survival Analysis of Glioblastoma Multiforme. Asian Pac J Cancer
Prev 19, 2613-2617 (2018).

Zhang, P., Xia, Q., Liu, L., Li, S. & Dong, L. Current Opinion on Molecular Characterization for
GBM Classification in Guiding Clinical Diagnosis, Prognosis, and Therapy. Front Mol Biosci 7,
(2020).

Mallik, S., Seth, S., Bhadra, T. & Zhao, Z. A Linear Regression and Deep Learning Approach
for Detecting Reliable Genetic Alterations in Cancer Using DNA Methylation and Gene
Expression Data. Genes (Basel) 11, 1-15 (2020).

Crucitta, S. et al. Treatment-driven tumour heterogeneity and drug resistance: Lessons from solid
tumours. Cancer Treat Rev 104, (2022).

Lim, Z. F. & Ma, P. C. Emerging insights of tumor heterogeneity and drug resistance
mechanisms in lung cancer targeted therapy. J Hematol Oncol 12, (2019).

Sung, H. etal. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality
Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71, 209-249 (2021).

Eoli, M. et al. Reclassification of oligoastrocytomas by loss of heterozygosity studies. Int J
Cancer 119, 84-90 (2006).

Kim, Y. H. et al. Molecular classification of low-grade diffuse gliomas. Am J Pathol 177, 2708-
2714 (2010).

Sahm, F. et al. Farewell to oligoastrocytoma: in situ molecular genetics favor classification as
either oligodendroglioma or astrocytoma. Acta Neuropathol 128, 551-559 (2014).

154



18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

References

Van Den Bent, M. J. Interobserver variation of the histopathological diagnosis in clinical trials
on glioma: a clinician’s perspective. Acta Neuropathol 120, 297-304 (2010).

Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462 (2013).

Zhang, P., Xia, Q., Liu, L., Li, S. & Dong, L. Current Opinion on Molecular Characterization for
GBM Classification in Guiding Clinical Diagnosis, Prognosis, and Therapy. Front Mol Biosci 7,
(2020).

Das, A. B. Small-world networks of prognostic genes associated with lung adenocarcinoma
development. Genomics 112, 4078-4088 (2020).

Sumithra, B., Saxena, U. & Das, A. B. A comprehensive study on genome-wide coexpression
network of KHDRBS1/Sam68 reveals its cancer and patient-specific association. Sci Rep 9,
11083 (2019).

Ludwig, J. A. & Weinstein, J. N. Biomarkers in cancer staging, prognosis and treatment
selection. Nat Rev Cancer 5, 845-856 (2005).

Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies.
Nature 439, 353-357 (2006).

Jayanthi, V. S. P. K. S. A, Das, A. B. & Saxena, U. Grade-specific diagnostic and prognostic
biomarkers in breast cancer. Genomics 112, 388-396 (2020).

Di Carlo, A. et al. Epidermal growth factor receptor in human brain tumors. J Endocrinol Invest
15, 31-37 (1992).

A, S. & K, F. Platelet-derived growth factor (PDGF) in primary brain tumours of neuroglial
origin. Histol Histopathol 13, 511-520 (1998).

Machein, M. R. & Plate, K. H. VEGF in brain tumors. J Neurooncol 50, 109-120 (2000).

Wu, A., Aldape, K. & Lang, F. F. High rate of deletion of chromosomes 1p and 19q in insular
oligodendroglial tumors. J Neurooncol 99, 57-64 (2010).

Vastrad, B., Vastrad, C., Godavarthi, A. & Chandrashekar, R. Molecular mechanisms underlying
gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data.
Med Oncol 34, (2017).

Zhong, S. et al. Identification of Driver Genes and Key Pathways of Glioblastoma Shows JNJ-
7706621 as a Novel Antiglioblastoma Drug. World Neurosurg 109, e329-e342 (2018).

D S Rickman et al. Distinctive molecular profiles of high-grade and low-grade gliomas based on
oligonucleotide microarray analysis. Cancer Res 61, 6885-68891 (2001).

Ahmadov, U. et al. The long non-coding RNA HOTAIRM1 promotes tumor aggressiveness and
radiotherapy resistance in glioblastoma. Cell Death Dis 12, (2021).

Cai, H. Q. et al. Overexpression of MCM6 predicts poor survival in patients with glioma. Hum
Pathol 78, 182-187 (2018).

155



35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

References

Sugur, H. S. et al. IRX1 is a novel gene, overexpressed in high-grade IDH-mutant astrocytomas.
Pathol Res Pract 245, (2023).

Karsy, M., Guan, J. & Eric Huang, L. Prognostic role of mitochondrial pyruvate carrier in
isocitrate dehydrogenase-mutant glioma. J Neurosurg 130, 56-66 (2018).

Zou, Y. F. et al. Screening and authentication of molecular markers in malignant glioblastoma
based on gene expression profiles. Oncol Lett 18, 4593-4604 (2019).

Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719-724
(2009).

Cohen, A. L., Holmen, S. L. & Colman, H. IDH1 and IDH2 mutations in gliomas. Curr Neurol
Neurosci Rep 13, (2013).

Balss, J. et al. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116,
597-602 (2008).

Ichimura, K. et al. IDH1 mutations are present in the majority of common adult gliomas but rare
in primary glioblastomas. Neuro Oncol 11, 341-347 (2009).

Watanabe, T., Nobusawa, S., Kleihues, P. & Ohgaki, H. IDH1 mutations are early events in the
development of astrocytomas and oligodendrogliomas. Am J Pathol 174, 1149-1153 (2009).

Wijnenga, M. M. J. et al. Prognostic relevance of mutations and copy number alterations assessed
with targeted next generation sequencing in IDH mutant grade Il glioma. J Neurooncol 139, 349—
357 (2018).

Sanson, M. et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic
biomarker in gliomas. J Clin Oncol 27, 4150-4154 (2009).

Bleeker, F. E. et al. IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-
grade gliomas but not in other solid tumors. Hum Mutat 30, 7-11 (2009).

Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science
321, 1807-1812 (2008).

McLendon, R. et al. Comprehensive genomic characterization defines human glioblastoma
genes and core pathways. Nature 455, 1061-1068 (2008).

Draaisma, K. et al. PI3 kinase mutations and mutational load as poor prognostic markers in
diffuse glioma patients. Acta Neuropathol Commun 3, 88 (2015).

Sahm, F. et al. CIC and FUBP1 mutations in oligodendrogliomas, oligoastrocytomas and
astrocytomas. Acta Neuropathol 123, 853-860 (2012).

Chatterjee, D., Radotra, B., Kumar, N., Vasishta, R. & Gupta, S. IDH1, ATRX, and BRAF
V600E mutation in astrocytic tumors and their significance in patient outcome in north Indian
population. Surg Neurol Int 9, (2018).

156



51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

References

Reis, G. F. et al. CDKN2A loss is associated with shortened overall survival in lower-grade
(World Health Organization Grades I1-111) astrocytomas. J Neuropathol Exp Neurol 74, 442-452
(2015).

Huang, L. E. Impact of CDKN2A/B Homozygous Deletion on the Prognosis and Biology of
IDH-Mutant Glioma. Biomedicines 10, (2022).

Smith, J. S. et al. PTEN mutation, EGFR amplification, and outcome in patients with anaplastic
astrocytoma and glioblastoma multiforme. J Natl Cancer Inst 93, 1246-1256 (2001).

Abdulghani, M. M., Abbas, M. N. & Mohammed, W. R. Immunohistochemical Expression of
Epidermal Growth Factor Receptor in Astrocytic Tumors in Iragi Patients. Open Access Maced
J Med Sci 7, 3514-3520 (2019).

Karsy, M., Guan, J., Cohen, A. L., Jensen, R. L. & Colman, H. New Molecular Considerations
for Glioma: IDH, ATRX, BRAF, TERT, H3 K27M. Curr Neurol Neurosci Rep 17, (2017).

Ebrahimi, A. et al. ATRX immunostaining predicts IDH and H3F3A status in gliomas. Acta
Neuropathol Commun 4, 60 (2016).

Lee, Y. etal. The frequency and prognostic effect of TERT promoter mutation in diffuse gliomas.
Acta Neuropathol Commun 5, 62 (2017).

Weller, M. et al. Molecular predictors of progression-free and overall survival in patients with
newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network.
J Clin Oncol 27, 5743-5750 (20009).

Krex, D. et al. Long-term survival with glioblastoma multiforme. Brain 130, 2596-2606 (2007).

Zhang, M., Yang, D. & Gold, B. Origin of mutations in genes associated with human
glioblastoma multiform cancer: random polymerase errors versus deamination. Heliyon 5,
(2019).

Verhaak, R. G. W. et al. Integrated genomic analysis identifies clinically relevant subtypes of
glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell
17,98-110 (2010).

Mischel, P. S. & Cloughesy, T. F. Targeted molecular therapy of GBM. Brain Pathol 13, 5261
(2003).

Sanson, M. et al. Chromosome 7p11.2 (EGFR) variation influences glioma risk. Hum Mol Genet
20, 2897-2904 (2011).

Shete, S. et al. Genome-wide association study identifies five susceptibility loci for glioma. Nat
Genet 41, 899-904 (2009).

Wrensch, M. et al. Variants in the CDKN2B and RTEL1 regions are associated with high-grade
glioma susceptibility. Nat Genet 41, 905-908 (2009).

Enciso-Mora, V. et al. Low penetrance susceptibility to glioma is caused by the TP53 variant
rs78378222. Br J Cancer 108, 2178-2185 (2013).

157



67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

17,

78.

79.

80.

81.

82.

References

Walsh, K. M. et al. Variants near TERT and TERC influencing telomere length are associated
with high-grade glioma risk. Nat Genet 46, 731-735 (2014).

Kinnersley, B. et al. Genome-wide association study identifies multiple susceptibility loci for
glioma. Nat Commun 6, (2015).

Mallik, S., Qin, G., Jia, P. & Zhao, Z. Molecular signatures identified by integrating gene
expression and methylation in non-seminoma and seminoma of testicular germ cell tumours.
Epigenetics 16, 1-15 (2021).

Mellai, M. et al. MGMT promoter hypermethylation and its associations with genetic alterations
in a series of 350 brain tumors. J Neurooncol 107, 617-631 (2012).

Wang, W. et al. A three-gene signature for prognosis in patients with MGMT promoter-
methylated glioblastoma. Oncotarget 7, 69991-69999 (2016).

Kanwal, R. & Gupta, S. Epigenetic modifications in cancer. Clin Genet 81, 303-311 (2012).

Zacher, A. et al. Molecular Diagnostics of Gliomas Using Next Generation Sequencing of a
Glioma-Tailored Gene Panel. Brain Pathol 27, 146-159 (2017).

Afifi, S., Gholamhosseini, H. & Sinha, R. SVM classifier on chip for melanoma detection. Annu
Int Conf IEEE Eng Med Biol Soc 2017, 270-274 (2017).

Liu, Z., Bensmail, H. & Tan, M. Efficient feature selection and multiclass classification with
integrated instance and model based learning. Evol Bioinform Online 8, 197-205 (2012).

Yao, Z. & Ruzzo, W. L. A regression-based K nearest neighbor algorithm for gene function
prediction from heterogeneous data. BMC Bioinformatics 7 Suppl 1, (2006).

Kaviarasi, R. & Gandhi Raj, R. Accuracy Enhanced Lung Cancer Prognosis for Improving
Patient Survivability Using Proposed Gaussian Classifier System. J Med Syst 43, (2019).

Qiu, Y. L., Zheng, H. & Gevaert, O. Genomic data imputation with variational auto-encoders.
Gigascience 9, (2020).

Franco, E. F. et al. Performance Comparison of Deep Learning Autoencoders for Cancer Subtype
Detection Using Multi-Omics Data. Cancers (Basel) 13, (2021).

Way, G. P. & Greene, C. S. Extracting a biologically relevant latent space from cancer
transcriptomes with variational autoencoders. Pacific Symposium on Biocomputing 0, 80-95
(2018).

Bukhari, M. M. et al. An Improved Artificial Neural Network Model for Effective Diabetes
Prediction. Complexity 2021, (2021).

Basha, S. H. S., Dubey, S. R., Pulabaigari, V. & Mukherjee, S. Impact of fully connected layers
on performance of convolutional neural networks for image classification. Neurocomputing 378,
112-119 (2020).

158



83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

References

Garcia-Diaz, P., Sdnchez-Berriel, 1., Martinez-Rojas, J. A. & Diez-Pascual, A. M. Unsupervised
feature selection algorithm for multiclass cancer classification of gene expression RNA-Seq data.
Genomics 112, 1916-1925 (2020).

Awada, H. et al. Machine learning integrates genomic signatures for subclassification beyond
primary and secondary acute myeloid leukemia. Blood 138, 1885-1895 (2021).

Aruna, S. A Novel SVM based CSSFFS Feature Selection Algorithm for Detecting Breast
Cancer. Int J Comput Appl 31, 975-8887 (2011).

Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by
gene expression monitoring. Science 286, 531-527 (1999).

Kori, M. & Gov, E. Bioinformatics Prediction and Machine Learning on Gene Expression Data
Identifies Novel Gene Candidates in Gastric Cancer. Genes (Basel) 13, (2022).

Moler, E. J., Chow, M. L. & Mian, I. S. Analysis of molecular profile data using generative and
discriminative methods. Physiol Genomics 4, 109-126 (2000).

Liu, Y. Active learning with support vector machine applied to gene expression data for cancer
classification. J Chem Inf Comput Sci 44, 1936-1941 (2004).

Ayyad, S. M., Saleh, A. I. & Labib, L. M. Gene expression cancer classification using modified
K-Nearest Neighbors technigue. Biosystems 176, 41-51 (2019).

C, L. et al. Novel Biomarker Prediction for Lung Cancer Using Random Forest Classifiers.
Cancer Inform 22, (2023).

Li, M. X. et al. Using a machine learning approach to identify key prognostic molecules for
esophageal squamous cell carcinoma. BMC Cancer 21, (2021).

Su, Y. et al. Colon cancer diagnosis and staging classification based on machine learning and
bioinformatics analysis. Comput Biol Med 145, (2022).

Maniruzzaman, M. et al. Statistical characterization and classification of colon microarray gene
expression data using multiple machine learning paradigms. Comput Methods Programs Biomed
176, 173-193 (2019).

Wu, Q., Ma, Z.,, Fan, J., Xu, G. & Shen, Y. A Feature Selection Method Based on Hybrid
Improved Binary Quantum Particle Swarm Optimization. IEEE Access 7, 80588-80601 (2019).

Salem, H., Attiya, G. & El-Fishawy, N. Classification of human cancer diseases by gene
expression profiles. Appl Soft Comput 50, 124-134 (2017).

Yuan, B., Yang, D., Rothberg, B. E. G., Chang, H. & Xu, T. Unsupervised and supervised
learning with neural network for human transcriptome analysis and cancer diagnosis. Sci Rep 10,
(2020).

Shah, S. H., Ighal, M. J., Ahmad, I., Khan, S. & Rodrigues, J. J. P. C. Optimized gene selection
and classification of cancer from microarray gene expression data using deep learning. Neural
Comput Appl 1-12 (2020) doi:10.1007/S00521-020-05367-8/ TABLES/4.

159



99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111

112.

113.

114.

References

Mohammed, M., Mwambi, H., Mboya, I. B., Elbashir, M. K. & Omolo, B. A stacking ensemble
deep learning approach to cancer type classification based on TCGA data. Sci Rep 11, (2021).

Rezaee, K., Jeon, G., Khosravi, M. R., Attar, H. H. & Sabzevari, A. Deep learning-based
microarray cancer classification and ensemble gene selection approach. IET Syst Biol 16, 120—
131 (2022).

Almarzouki, H. Z. Deep-Learning-Based Cancer Profiles Classification Using Gene Expression
Data Profile. J Healthc Eng 2022, (2022).

Tasaki, S., Gaiteri, C., Mostafavi, S. & Wang, Y. Deep learning decodes the principles of
differential gene expression. Nat Mach Intell 2, 376-386 (2020).

Sekhon, A., Singh, R. & Qi, Y. DeepDiff: DEEP-learning for predicting DIFFerential gene
expression from histone modifications. Bioinformatics 34, i891-i900 (2018).

Singh, R., Lanchantin, J., Robins, G. & Qi, Y. DeepChrome: deep-learning for predicting gene
expression from histone modifications. Bioinformatics 32, i639-i648 (2016).

Suo, Y., Liu, T., Jia, X. & Yu, F. Application of Clustering Analysis in Brain Gene Data Based
on Deep Learning. IEEE Access 7, 29472956 (2019).

Eraslan, G., Avsec, Z., Gagneur, J. & Theis, F. J. Deep learning: new computational modelling
techniques for genomics. Nat Rev Genet 20, 389-403 (2019).

Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence.
Nat Med 25, 44-56 (2019).

Tokheim, C. J., Papadopoulos, N., Kinzler, K. W., Vogelstein, B. & Karchin, R. Evaluating the
evaluation of cancer driver genes. Proc Natl Acad Sci U S A 113, 14330-14335 (2016).

Bailey, M. H. et al. Comprehensive Characterization of Cancer Driver Genes and Mutations.
Cell 173, 371-385.e18 (2018).

Cheng, F. et al. A genome-wide positioning systems network algorithm for in silico drug
repurposing. Nat Commun 10, (2019).

Azuaje, F. Artificial intelligence for precision oncology: beyond patient stratification. NPJ
Precis Oncol 3, (2019).

Vural, S., Wang, X. & Guda, C. Classification of breast cancer patients using somatic mutation
profiles and machine learning approaches. BMC Syst Biol 10 Suppl 3, (2016).

Amrane, M., Oukid, S., Gagaoua, |. & Ensari, T. Breast cancer classification using machine

learning. 2018 Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting,
EBBT 2018 1-4 (2018) doi:10.1109/EBBT.2018.8391453.

Li, Y. & Luo, Y. Performance-weighted-voting model: An ensemble machine learning method
for cancer type classification using whole-exome sequencing mutation. Quant Biol 8, 347-358
(2020).

160



115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

References

Chen, Y., Sun, J., Huang, L. C., Xu, H. & Zhao, Z. Classification of Cancer Primary Sites Using
Machine Learning and Somatic Mutations. Biomed Res Int 2015, (2015).

Pandey, M., Anoosha, P., Yesudhas, D. & Gromiha, M. M. Identification of potential driver
mutations in glioblastoma using machine learning. Brief Bioinform 23, (2022).

Palazzo, M., Beauseroy, P. & Yankilevich, P. A pan-cancer somatic mutation embedding using
autoencoders. BMC Bioinformatics 20, (2019).

Maruf, F. A., Pratama, R. & Song, G. DNN-Boost: Somatic mutation identification of tumor-
only whole-exome sequencing data using deep neural network and XGBoost. J Bioinform
Comput Biol 19, (2021).

Yuan, Y. et al. DeepGene: an advanced cancer type classifier based on deep learning and somatic
point mutations. BMC Bioinformatics 17, (2016).

Zeng, Z. et al. Deep learning for cancer type classification and driver gene identification. BMC
Bioinformatics 22, (2021).

Jin, B., Li, Y. & Robertson, K. D. DNA methylation: superior or subordinate in the epigenetic
hierarchy? Genes Cancer 2, 607-617 (2011).

Jurmeister, P. et al. DNA methylation-based machine learning classification distinguishes
pleural mesothelioma from chronic pleuritis, pleural carcinosis, and pleomorphic lung
carcinomas. Lung Cancer 170, 105-113 (2022).

Tao, M. et al. Classifying Breast Cancer Subtypes Using Multiple Kernel Learning Based on
Omics Data. Genes (Basel) 10, (2019).

Leitheiser, M. et al. Machine learning models predict the primary sites of head and neck
squamous cell carcinoma metastases based on DNA methylation. J Pathol 256, 378-387 (2022).

Ren, J. et al. Identification of Methylation Signatures and Rules for Sarcoma Subtypes by
Machine Learning Methods. Biomed Res Int 2022, (2022).

Cai, Z. et al. Classification of lung cancer using ensemble-based feature selection and machine
learning methods. Mol Biosyst 11, 791-800 (2015).

Ma, B. et al. Diagnostic classification of cancers using DNA methylation of paracancerous
tissues. Sci Rep 12, (2022).

Bedon, L. et al. A Novel Epigenetic Machine Learning Model to Define Risk of Progression for
Hepatocellular Carcinoma Patients. Int J Mol Sci 22, 1-25 (2021).

Eissa, N. S., Khairuddin, U. & Yusof, R. A hybrid metaheuristic-deep learning technique for the
pan-classification of cancer based on DNA methylation. BMC Bioinformatics 23, (2022).

Levy, J. J. et al. MethylNet: an automated and modular deep learning approach for DNA
methylation analysis. doi:10.1186/s12859-020-3443-8.

Tian, Q. et al. MRCNN: a deep learning model for regression of genome-wide DNA methylation.
14-16 (2019) doi:10.1186/s12864-019-5488-5.

161



132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144,

145.

146.

147.

148.

References

Zheng, C. & Xu, R. Predicting cancer origins with a DNA methylation-based deep neural
network model. (2020) doi:10.1371/journal.pone.0226461.

Khwaja, M., Kalofonou, M. & Toumazou, C. A Deep Autoencoder System for Differentiation
of Cancer Types Based on DNA Methylation State. (2018).

Angermueller, C., Lee, H. J., Reik, W. & Stegle, O. DeepCpG: accurate prediction of single-cell
DNA methylation states using deep learning. Genome Biol 18, (2017).

Danielsson, A. et al. MethPed: a DNA methylation classifier tool for the identification of
pediatric brain tumor subtypes. (2011) doi:10.1186/s13148-015-0103-3.

Choi, J. M., Park, C. & Chae, H. meth-SemiCancer: a cancer subtype classification framework
via semi-supervised learning utilizing DNA methylation profiles. BMC Bioinformatics 24,
(2023).

Yuan, F., Lu, L. & Zou, Q. Analysis of gene expression profiles of lung cancer subtypes with
machine learning algorithms. Biochim Biophys Acta Mol Basis Dis 1866, (2020).

Ramos, B. et al. An Interpretable Approach for Lung Cancer Prediction and Subtype
Classification using Gene Expression. Annu Int Conf IEEE Eng Med Biol Soc 2021, 1707-1710
(2021).

Tao, M. et al. Classifying Breast Cancer Subtypes Using Multiple Kernel Learning Based on
Omics Data. Genes (Basel) 10, (2019).

Shen, J. et al. Deep learning approach for cancer subtype classification using high-dimensional
gene expression data. BMC Bioinformatics 23, (2022).

Xiao, Y., Bi, M., Guo, H. & Li, M. Multi-omics approaches for biomarker discovery in early
ovarian cancer diagnosis. EBioMedicine 79, (2022).

Yang, C., Wang, Y. T. & Zheng, C. H. A Random Walk Based Cluster Ensemble Approach for
Data Integration and Cancer Subtyping. Genes (Basel) 10, (2019).

Mohaiminul Islam, M. et al. An integrative deep learning framework for classifying molecular
subtypes of breast cancer. Comput Struct Biotechnol J 18, 2185-2199 (2020).

Vale-Silva, L. A. & Rohr, K. Long-term cancer survival prediction using multimodal deep
learning. Sci Rep 11, (2021).

Zhang, X., Xing, Y., Sun, K. & Guo, Y. OmiEmbed: A Unified Multi-Task Deep Learning
Framework for Multi-Omics Data. Cancers (Basel) 13, (2021).

Chaudhary, K., Poirion, O. B., Lu, L. & Garmire, L. X. Deep Learning-Based Multi-Omics
Integration Robustly Predicts Survival in Liver Cancer. Clin Cancer Res 24, 1248-1259 (2018).

Xu, J. et al. A hierarchical integration deep flexible neural forest framework for cancer subtype
classification by integrating multi-omics data. BMC Bioinformatics 20, (2019).

Dincer, A. B., Celik, S., Hiranuma, N. & Lee, S.-l. DeepProfile: Deep learning of cancer
molecular profiles for precision medicine. bioRxiv 278739 (2018) doi:10.1101/278739.

162



149.

150.

151.

152.

153.

154,

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

References

Jia, P. et al. Deep generative neural network for accurate drug response imputation. Nat Commun
12, (2021).

van Hilten, A. et al. GenNet framework: interpretable deep learning for predicting phenotypes
from genetic data. Commun Biol 4, (2021).

Nguyen, N. D., Jin, T. & Wang, D. Varmole: a biologically drop-connect deep neural network
model for prioritizing disease risk variants and genes. Bioinformatics 37, 1772-1775 (2021).

Argelaguet, R. et al. Multi-Omics Factor Analysis-a framework for unsupervised integration of
multi-omics data sets. Mol Syst Biol 14, (2018).

Chiu, Y. C. et al. Predicting drug response of tumors from integrated genomic profiles by deep
neural networks. BMC Med Genomics 12, (2019).

Wang, C., Lye, X,, Kaalia, R., Kumar, P. & Rajapakse, J. C. Deep learning and multi-omics
approach to predict drug responses in cancer. BMC Bioinformatics 22, (2022).

Almutiri, T., Alomar, K. & Alganmi, N. Predicting Drug Response on Multi-Omics Data Using
a Hybrid of Bayesian Ridge Regression with Deep Forest. IJACSA) International Journal of
Advanced Computer Science and Applications 14, (2023).

Malik, V., Kalakoti, Y. & Sundar, D. Deep learning assisted multi-omics integration for survival
and drug-response prediction in breast cancer. BMC Genomics 22, (2021).

Sharifi-Noghabi, H., Zolotareva, O., Collins, C. C. & Ester, M. MOLI: multi-omics late
integration with deep neural networks for drug response prediction. Bioinformatics 35, i501—
i509 (2019).

Feng, R. et al. AGMI: Attention-Guided Multi-omics Integration for Drug Response Prediction
with Graph Neural Networks. Proceedings - 2021 IEEE International Conference on
Bioinformatics and Biomedicine, BIBM 2021 1295-1298 (2021)
d0i:10.1109/BIBM52615.2021.9669314.

Hiort, P. et al. DrDimont:; explainable drug response prediction from differential analysis of
multi-omics networks. Bioinformatics 38, 11113-11119 (2022).

Eckel-Passow, J. E. et al. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations
in Tumors. N Engl J Med 372, 2499-2508 (2015).

Hartmann, C. et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic
and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol
118, 469-474 (2009).

Ball, M. K. et al. Frequency of false-positive FISH 1p/19q codeletion in adult diffuse astrocytic
gliomas. Neurooncol Adv 2, (2020).

Forst, D. A., Nahed, B. V., Loeffler, J. S. & Batchelor, T. T. Low-grade gliomas. Oncologist 19,
403-413 (2014).

Claus, E. B. et al. Survival and low-grade glioma: the emergence of genetic information.
Neurosurg Focus 38, (2015).

163



165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

References

Goldman, M. J. et al. Visualizing and interpreting cancer genomics data via the Xena platform.
Nat Biotechnol 38, 675-678 (2020).

Wold, S., Esbensen, K. & Geladi, P. Principal component analysis. Chemometrics and Intelligent
Laboratory Systems 2, 37-52 (1987).

Sanz, H., Valim, C., Vegas, E., Oller, J. M. & Reverter, F. SVM-RFE: selection and visualization
of the most relevant features through non-linear kernels. BMC Bioinformatics 19, (2018).

Pirooznia, M., Yang, J. Y., Qu, M. Q. & Deng, Y. A comparative study of different machine
learning methods on microarray gene expression data. BMC Genomics 9 Suppl 1, (2008).

Li, Z., Xie, W. & Liu, T. Efficient feature selection and classification for microarray data. PLoS
One 13, (2018).

Degenhardt, F., Seifert, S. & Szymczak, S. Evaluation of variable selection methods for random
forests and omics data sets. Brief Bioinform 20, 492-503 (2019).

Burges, C. J. C. A tutorial on support vector machines for pattern recognition. Data Min Knowl
Discov 2, 121-167 (1998).

Heckerman, D., Geiger, D. & Chickering, D. M. Learning Bayesian Networks: The Combination
of Knowledge and Statistical Data. Mach Learn 20, 197-243 (1995).

Kaviarasi, R. & Gandhi Raj, R. Accuracy Enhanced Lung Cancer Prognosis for Improving
Patient Survivability Using Proposed Gaussian Classifier System. J Med Syst 43, (2019).

Song, Y. Y. & Lu, Y. Decision tree methods: applications for classification and prediction.
Shanghai Arch Psychiatry 27, 130-135 (2015).

Breiman, L. Random forests. Mach Learn 45, 5-32 (2001).
Metz, C. E. Basic principles of ROC analysis. Semin Nucl Med 8, 283-298 (1978).

Triantaphyllou, E. Multi-Criteria Decision Making Methods. 5-21 (2000) doi:10.1007/978-1-
4757-3157-6_2.

Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level
datasets. Nat Commun 10, (2019).

Butte, A. The use and analysis of microarray data. Nat Rev Drug Discov 1, 951-960 (2002).

Lenz, M., Muller, F. J., Zenke, M. & Schuppert, A. Principal components analysis and the
reported low intrinsic dimensionality of gene expression microarray data. Sci Rep 6, (2016).

Al-Rajab, M., Lu, J. & Xu, Q. Examining applying high performance genetic data feature
selection and classification algorithms for colon cancer diagnosis. Comput Methods Programs
Biomed 146, 11-24 (2017).

Lever, J., Krzywinski, M. & Altman, N. Model selection and overfitting. Nature Methods 2016
13:9 (2016).

164



183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

References

Cawley, G. C. & Talbot, N. L. C. On Over-fitting in Model Selection and Subsequent Selection
Bias in Performance Evaluation. Journal of Machine Learning Research 11, 2079-2107 (2010).

Si, T., Miranda, P., Galdino, J. V. & Nascimento, A. Grammar-based automatic programming
for medical data classification: an experimental study. Artif Intell Rev 54, 4097-4135 (2021).

Wei, Q. & Dunbrack, R. L. The Role of Balanced Training and Testing Data Sets for Binary
Classifiers in Bioinformatics. PLoS One 8, e67863 (2013).

Wang, X. et al. Protein-protein interaction sites prediction by ensemble random forests with
synthetic minority oversampling technique. Bioinformatics 35, 2395-2402 (2019).

Yao, F., Zhang, C., Du, W., Liu, C. & Xu, Y. Identification of Gene-Expression Signatures and
Protein Markers for Breast Cancer Grading and Staging. PLoS One 10, (2015).

Zamecnik, J. The extracellular space and matrix of gliomas. Acta Neuropathol 110, 435-442
(2005).

Wang, Q. W, Lin, W. W. & Zhu, Y. J. Comprehensive analysis of a TNF family based-signature
in diffuse gliomas with regard to prognosis and immune significance. Cell Commun Signal 20,
(2022).

Colardo, M., Segatto, M. & Di Bartolomeo, S. Targeting RTK-PI3BK-mTOR Axis in Gliomas:
An Update. Int J Mol Sci 22, (2021).

Jiang, Q. et al. Glioma malignancy is linked to interdependent and inverse AMOG and L1
adhesion molecule expression. BMC Cancer 19, (2019).

Maklad, A., Sharma, A. & Azimi, I. Calcium Signaling in Brain Cancers: Roles and Therapeutic
Targeting. Cancers (Basel) 11, (2019).

Venkatesh, H. S. et al. Electrical and synaptic integration of glioma into neural circuits. Nature
573, 539-545 (2019).

Atkinson, G. P., Nozell, S. E. & Benveniste, E. N. NF-kappaB and STAT3 signaling in glioma:
targets for future therapies. Expert Rev Neurother 10, 575-586 (2010).

Shangguan, W., Lv, X. & Tian, N. FoxD2-AS1 is a prognostic factor in glioma and promotes
temozolomide resistance in a O 6-methylguanine-DNA methyltransferase-dependent manner.
Korean J Physiol Pharmacol 23, 475-482 (2019).

Zalenski, A., De, K. & Venere, M. Not just another biomarker: the role of integrin alpha 7 in
glioblastoma. Stem Cell Investig 4, (2017).

Ding, X. et al. Eps8 promotes cellular growth of human malignant gliomas. Oncol Rep 29, 697—
703 (2013).

Rammal, H. et al. Discoidin Domain Receptors: Potential Actors and Targets in Cancer. Front
Pharmacol 7, (2016).

165



199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

2009.

210.

211.

212.

213.

214,

215.

References

Wastowski, I. J. et al. Human leukocyte antigen-G is frequently expressed in glioblastoma and
may be induced in vitro by combined 5-aza-2’-deoxycytidine and interferon-y treatments: results
from a multicentric study. Am J Pathol 182, 540-552 (2013).

Wiendl, H. et al. A functional role of HLA-G expression in human gliomas: an alternative
strategy of immune escape. J Immunol 168, 4772-4780 (2002).

Jesionek-Kupnicka, D. et al. TP53 promoter methylation in primary glioblastoma: relationship
with TP53 mRNA and protein expression and mutation status. DNA Cell Biol 33, 217-226
(2014).

Lee, Y. J. et al. Gene expression profiling of glioblastoma cell lines depending on TP53 status
after tumor-treating fields (TTFields) treatment. Sci Rep 10, (2020).

Liu, K. W., Hu, B. & Cheng, S. Y. Platelet-derived growth factor receptor alpha in glioma: a bad
seed. Chin J Cancer 30, 590-602 (2011).

Peng, G. et al. The HIFla-PDGFD-PDGFRa axis controls glioblastoma growth at
normoxia/mild-hypoxia and confers sensitivity to targeted therapy by echinomycin. J Exp Clin
Cancer Res 40, (2021).

Auvergne, R. M. et al. Transcriptional differences between normal and glioma-derived glial
progenitor cells identify a core set of dysregulated genes. Cell Rep 3, 2127-2141 (2013).

Weng, J. et al. PCDHGA®9 acts as a tumor suppressor to induce tumor cell apoptosis and
autophagy and inhibit the EMT process in human gastric cancer. Cell Death Dis 9, (2018).

Bayin, N. S. et al. GPR133 (ADGRD1), an adhesion G-protein-coupled receptor, is necessary
for glioblastoma growth. Oncogenesis 5, (2016).

Wang, K. et al. Hedgehog/Glil signaling pathway regulates MGMT expression and
chemoresistance to temozolomide in human glioblastoma. Cancer Cell Int 17, (2017).

Dou, Y., Xu, H., Wu, X. & Liu, P. Tac2-N Promotes Glioma Proliferation and Indicates Poor
Clinical Outcomes. Tohoku J Exp Med 255, 247-256 (2021).

Azoitei, N. et al. Protein kinase D2 is a novel regulator of glioblastoma growth and tumor
formation. Neuro Oncol 13, 710-724 (2011).

Tritschler, 1. et al. Modulation of TGF-beta activity by latent TGF-beta-binding protein 1 in
human malignant glioma cells. Int J Cancer 125, 530-540 (2009).

Yamaguchi, N. Multiple Roles of Vestigial-Like Family Members in Tumor Development. Front
Oncol 10, (2020).

Park, A. K., Kim, P., Ballester, L. Y., Esquenazi, Y. & Zhao, Z. Subtype-specific signaling
pathways and genomic aberrations associated with prognosis of glioblastoma. Neuro Oncol 21,
59-70 (2019).

Mardis, E. R. & Wilson, R. K. Cancer genome sequencing: a review. Hum Mol Genet 18, (2009).

Campbell, P. J. et al. Pan-cancer analysis of whole genomes. Nature 578, 82—93 (2020).

166



216.

217.

218.

219.

220.

221.

222.

223.

224,

225.

226.

227.

228.

229.

230.

231.

References

Bozdag, S. et al. Age-specific signatures of glioblastoma at the genomic, genetic, and epigenetic
levels. PLoS One 8, (2013).

Dong, Z. & Cui, H. Epigenetic modulation of metabolism in glioblastoma. Semin Cancer Biol
57, 45-51 (2019).

Vinel, C. et al. Comparative epigenetic analysis of tumour initiating cells and syngeneic EPSC-
derived neural stem cells in glioblastoma. Nat Commun 12, (2021).

Moore, L. D.,, Le, T. & Fan, G. DNA methylation and its basic function.
Neuropsychopharmacology 38, 23-38 (2013).

Qin, G. et al. MicroRNA and transcription factor co-regulatory networks and subtype
classification of seminoma and non-seminoma in testicular germ cell tumors. Sci Rep 10, (2020).

Bandyopadhyay, S., Mallik, S. & Mukhopadhyay, A. A Survey and Comparative Study of
Statistical Tests for Identifying Differential Expression from Microarray Data. IEEE/ACM Trans
Comput Biol Bioinform 11, 95-115 (2014).

Maegawa, S. et al. Widespread and tissue specific age-related DNA methylation changes in mice.
Genome Res 20, 332-340 (2010).

Muthukrishnan, R. & Rohini, R. LASSO: A feature selection technique in predictive modeling
for machine learning. 2016 IEEE International Conference on Advances in Computer
Applications, ICACA 2016 18-20 (2017) doi:10.1109/ICACA.2016.7887916.

Hosmer, D. W., Lemeshow, S. & Sturdivant, R. X. Applied Logistic Regression: Third Edition.
Applied Logistic Regression: Third Edition 1-510 (2013) doi:10.1002/9781118548387.

Lopez-Garcia, G., Jerez, J. M., Franco, L. & Veredas, F. J. Transfer learning with convolutional
neural networks for cancer survival prediction using gene-expression data. PLoS One 15, (2020).

Mostavi, M., Chiu, Y. C., Huang, Y. & Chen, Y. Convolutional neural network models for cancer
type prediction based on gene expression. BMC Med Genomics 13, (2020).

Chatterjee, S., lyer, A., Avva, S., Kollara, A. & Sankarasubbu, M. Convolutional Neural
Networks In Classifying Cancer Through DNA Methylation. (2018).

Xia, C., Xiao, Y., Wu, J., Zhao, X. & Li, H. A convolutional neural network based ensemble
method for cancer prediction using DNA methylation data. ACM International Conference
Proceeding Series Part F148150, 191-196 (2019).

Mallik, S. & Zhao, Z. Graph- and rule-based learning algorithms: a comprehensive review of
their applications for cancer type classification and prognosis using genomic data. Brief
Bioinform 21, 221-247 (2020).

Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis.
BMC Bioinformatics 9, (2008).

Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016
update. Nucleic Acids Res 44, W90-W97 (2016).

167



232.

233.

234.

235.

236.

237.

238.

239.

240.

241.

242.

243.

244,

245.

246.

247.

References

Tang, Z. et al. GEPIA: a web server for cancer and normal gene expression profiling and
interactive analyses. Nucleic Acids Res 45, W98-W102 (2017).

Locke, W. J. et al. DNA Methylation Cancer Biomarkers: Translation to the Clinic. Front Genet
10, (2019).

Sandoval, J. et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the
human genome. Epigenetics 6, 692-702 (2011).

Yang, X. et al. Gene body methylation can alter gene expression and is a therapeutic target in
cancer. Cancer Cell 26, 577-590 (2014).

Dhar, G. A., Saha, S., Mitra, P. & Nag Chaudhuri, R. DNA methylation and regulation of gene
expression: Guardian of our health. Nucleus (Calcutta) 64, 259-270 (2021).

Diaz-Uriarte, R. & Alvarez de Andrés, S. Gene selection and classification of microarray data
using random forest. BMC Bioinformatics 7, (2006).

Wang, X. et al. Comprehensive analysis of gene expression and DNA methylation data identifies
potential biomarkers and functional epigenetic modules for lung adenocarcinoma. Genet Mol
Biol 43, (2020).

Basu, A. & Tiwari, V. K. Epigenetic reprogramming of cell identity: lessons from development
for regenerative medicine. Clin Epigenetics 13, (2021).

Bufalieri, F., Basili, 1., Di Marcotullio, L. & Infante, P. Harnessing the Activation of RIG-I Like
Receptors to Inhibit Glioblastoma Tumorigenesis. Front Mol Neurosci 14, (2021).

Charalambous, C., Chen, T. C. & Hofman, F. M. Characteristics of tumor-associated endothelial
cells derived from glioblastoma multiforme. Neurosurg Focus 20, (2006).

Shi, S. et al. Syndecan-1 knockdown inhibits glioma cell proliferation and invasion by
deregulating a c-src/FAK-associated signaling pathway. Oncotarget 8, 40922-40934 (2017).

He, H. et al. The roles of GTPase-activating proteins in regulated cell death and tumor immunity.
J Hematol Oncol 14, (2021).

Mao, H., Lebrun, D. G., Yang, J., Zhu, V. F. & Li, M. Deregulated signaling pathways in
glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer Invest 30, 48—
56 (2012).

C,L. S,P.,J, H. &H, K. Functional GABA(A) receptors on human glioma cells. Eur J Neurosci
10, 231-238 (1998).

Lin, Y. et al. Role of Asparagine Endopeptidase in Mediating Wild-Type p53 Inactivation of
Glioblastoma. J Natl Cancer Inst 112, 343-355 (2020).

Woroniecka, K. I., Rhodin, K. E., Chongsathidkiet, P., Keith, K. A. & Fecci, P. E. T-cell
Dysfunction in Glioblastoma: Applying a New Framework. Clin Cancer Res 24, 3792-3802
(2018).

168



248.

249.

250.

251.

252.

253.

254,

255.

256.

257.

258.

259.

260.

261.

262.

263.

References

Aasen, T., Mesnil, M., Naus, C. C., Lampe, P. D. & Laird, D. W. Gap junctions and cancer:
communicating for 50 years. Nat Rev Cancer 16, 775-788 (2016).

Sun, J. et al. The survival analysis and oncogenic effects of CFP1 and 14-3-3 expression on
gastric cancer. Cancer Cell Int 19, (2019).

Liu, Z.,Ru, L. & Ma, Z. Low Expression of ADCY4 Predicts Worse Survival of Lung Squamous
Cell Carcinoma Based on Integrated Analysis and Immunohistochemical Verification. Front
Oncol 11, (2021).

Berezovsky, A. D. et al. Sox2 promotes malignancy in glioblastoma by regulating plasticity and
astrocytic differentiation. Neoplasia 16, 193-206.e25 (2014).

Karnati, H. et al. Down regulated expression of Claudin-1 and Claudin-5 and up regulation of -
catenin: association with human glioma progression. CNS Neurol Disord Drug Targets 13,
1413-1426 (2014).

Pangeni, R. P. et al. The GALNT9, BNC1 and CCDC8 genes are frequently epigenetically
dysregulated in breast tumours that metastasise to the brain. Clin Epigenetics 7, (2015).

Yeo, K. S. et al. IMJD8 is a positive regulator of TNF-induced NF-«kB signaling. Sci Rep 6,
(2016).

Huang, K. et al. The role of PTRF/Cavinl as a biomarker in both glioma and serum exosomes.
Theranostics 8, 1540-1557 (2018).

Zhang, Y. et al. Downregulation of miR-485-3p promotes glioblastoma cell proliferation and
migration via targeting RNF135. Exp Ther Med 18, (2019).

Thaker, N. G. et al. Identification of survival genes in human glioblastoma cells by small
interfering RNA screening. Mol Pharmacol 76, 1246-1255 (2009).

Chen, X. et al. Protein Palmitoylation Regulates Cell Survival by Modulating XBP1 Activity in
Glioblastoma Multiforme. Mol Ther Oncolytics 17, 518-530 (2020).

Chen, Z., Gulzar, Z. G., St. Hill, C. A., Walcheck, B. & Brooks, J. D. Increased expression of
GCNT1 is associated with altered O-glycosylation of PSA, PAP, and MUC1 in human prostate
cancers. Prostate 74, 1059-1067 (2014).

Toton, E. et al. Impact of PKCe downregulation on autophagy in glioblastoma cells. BMC
Cancer 18, (2018).

Bianchetti, E., Bates, S. J., Nguyen, T. T. T., Siegelin, M. D. & Roth, K. A. RAB38 Facilitates
Energy Metabolism and Counteracts Cell Death in Glioblastoma Cells. Cells 10, (2021).

Giambra, M. et al. Characterizing the Genomic Profile in High-Grade Gliomas: From Tumor
Core to Peritumoral Brain Zone, Passing through Glioma-Derived Tumorspheres. Biology
(Basel) 10, (2021).

Katsushima, K. et al. The long noncoding RNA Inc-HLX-2-7 is oncogenic in Group 3
medulloblastomas. Neuro Oncol 23, 572-585 (2021).

169



264.

265.

266.

267.

268.

2609.

270.

271.

272.

273.

274.

275.

276.

277.

278.

279.

280.

References

Humbert-Claude, M. et al. Tollip, an early regulator of the acute inflammatory response in the
substantia nigra. J Neuroinflammation 13, (2016).

Little, A. C. et al. DUOX1 silencing in lung cancer promotes EMT, cancer stem cell
characteristics and invasive properties. Oncogenesis 5, (2016).

Crisman, T. J. et al. Identification of an Efficient Gene Expression Panel for Glioblastoma
Classification. PLoS One 11, (2016).

Le, N. Q. K. et al. Radiomics-based machine learning model for efficiently classifying
transcriptome subtypes in glioblastoma patients from MRI. Comput Biol Med 132, (2021).

Zhao, L. et al. DeepOmix: A scalable and interpretable multi-omics deep learning framework
and application in cancer survival analysis. Comput Struct Biotechnol J 19, 2719-2725 (2021).

Stel, V. S., Dekker, F. W., Tripepi, G., Zoccali, C. & Jager, K. J. Survival analysis Il: Cox
regression. Nephron Clin Pract 119, (2011).

Abadi, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems. (2016) doi:10.48550/arxiv.1603.04467.

Darwiche, N. Epigenetic mechanisms and the hallmarks of cancer: an intimate affair. Am J
Cancer Res 10, 1954 (2020).

Azab, M. A. Expression of Anaplastic Lymphoma Kinase (ALK) in glioma and possible clinical
correlations. A retrospective institutional study. Cancer Treat Res Commun 36, 100703 (2023).

Jiang, Q. et al. Glioma malignancy is linked to interdependent and inverse AMOG and L1
adhesion molecule expression. BMC Cancer 19, (2019).

Cheng, F. & Guo, D. MET in glioma: signaling pathways and targeted therapies. J Exp Clin
Cancer Res 38, (2019).

Ellert-Miklaszewska, A., Poleszak, K., Pasierbinska, M. & Kaminska, B. Integrin Signaling in
Glioma Pathogenesis: From Biology to Therapy. Int J Mol Sci 21, (2020).

Shafi, O. & Siddiqui, G. Tracing the origins of glioblastoma by investigating the role of gliogenic
and related neurogenic genes/signaling pathways in GBM development: a systematic review.
World J Surg Oncol 20, (2022).

Mala, U., Baral, T. K. & Somasundaram, K. Integrative analysis of cell adhesion molecules in
glioblastoma identified prostaglandin F2 receptor inhibitor (PTGFRN) as an essential gene. BMC
Cancer 22, (2022).

Xu, C., Wu, X. & Zhu, J. VEGF promotes proliferation of human glioblastoma multiforme stem-
like cells through VEGF receptor 2. ScientificWorldJournal 2013, (2013).

Michaelsen, S. R. et al. VEGF-C sustains VEGFR2 activation under bevacizumab therapy and
promotes glioblastoma maintenance. Neuro Oncol 20, 1462-1474 (2018).

Tan, K., Huang, W., Hu, J. & Dong, S. A multi-omics supervised autoencoder for pan-cancer
clinical outcome endpoints prediction. BMC Med Inform Decis Mak 20, (2020).

170



281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

295.

296.

References

Kang, M., Ko, E. & Mersha, T. B. A roadmap for multi-omics data integration using deep
learning. Brief Bioinform 23, (2022).

Zhang, L. et al. Deep Learning-Based Multi-Omics Data Integration Reveals Two Prognostic
Subtypes in High-Risk Neuroblastoma. Front Genet 9, (2018).

Madhumita & Paul, S. Capturing the latent space of an Autoencoder for multi-omics integration
and cancer subtyping. Comput Biol Med 148, (2022).

Wu, X. & Fang, Q. Stacked Autoencoder Based Multi-Omics Data Integration for Cancer
Survival Prediction. (2022) doi:10.48550/arxiv.2207.04878.

Munquad, S., Si, T., Mallik, S., Li, A. & Das, A. B. Subtyping and grading of lower-grade
gliomas using integrated feature selection and support vector machine. Brief Funct Genomics 21,
408-421 (2022).

Munquad, S., Si, T., Mallik, S., Das, A. B. & Zhao, Z. A Deep Learning-Based Framework for
Supporting Clinical Diagnosis of Glioblastoma Subtypes. Front Genet 13, (2022).

Dwivedi, A. K. Artificial neural network model for effective cancer classification using
microarray gene expression data. Neural Comput Appl 29, 1545-1554 (2018).

Yuvaraj, N. & Vivekanandan, P. An efficient SVM based tumor classification with symmetry
Non-negative Matrix Factorization using gene expression data. 2013 International Conference
on Information Communication and Embedded Systems (ICICES) 761-768 (2013)
d0i:10.1109/ICICES.2013.6508193.

Nguyen, T., Khosravi, A., Creighton, D. & Nahavandi, S. Hidden Markov models for cancer
classification using gene expression profiles. Inf Sci (N Y) 316, 293-307 (2015).

Foo, J. et al. An Evolutionary Approach for Identifying Driver Mutations in Colorectal Cancer.
PLoS Comput Biol 11, (2015).

Ostroverkhova, D., Przytycka, T. M. & Panchenko, A. R. Cancer driver mutations: predictions
and reality. Trends Mol Med (2023) doi:10.1016/J.MOLMED.2023.03.007.

Ghiassian, S. D., Menche, J. & Barabési, A. L. A DlseAse MOdule Detection (DIAMOND)
algorithm derived from a systematic analysis of connectivity patterns of disease proteins in the
human interactome. PLoS Comput Biol 11, (2015).

Wu, J., Zhang, Q. & Li, G. Identification of cancer-related module in protein-protein interaction
network based on gene prioritization. J Bioinform Comput Biol 20, (2022).

Forbes, S. A. et al. COSMIC: exploring the world’s knowledge of somatic mutations in human
cancer. Nucleic Acids Res 43, D805-D811 (2015).

Arnedo-Pac, C., Mularoni, L., Muifios, F., Gonzalez-Perez, A. & Lopez-Bigas, N.
OncodriveCLUSTL: a sequence-based clustering method to identify cancer drivers.
Bioinformatics 35, 4788-4790 (2019).

Basha, O. et al. The TissueNet v.2 database: A quantitative view of protein-protein interactions
across human tissues. Nucleic Acids Res 45, D427-D431 (2017).

171



297.

298.

299.

300.

301.

302.

303.

304.

305.

306.

307.

308.

3009.

310.

311.

312.

References

Yang, W. et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic
biomarker discovery in cancer cells. Nucleic Acids Res 41, (2013).

Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic
Acids Res 46, D1074-D1082 (2018).

Stransky, N. et al. Pharmacogenomic agreement between two cancer cell line data sets. Nature
528, 84-87 (2015).

Behdenna, A., Haziza, J., Azencott, C.-A. & Nordor, A. pyComBat, a Python tool for batch
effects correction in high-throughput molecular data using empirical Bayes methods. bioRxiv
2020.03.17.995431 (2021) doi:10.1101/2020.03.17.995431.

Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for
removing batch effects and other unwanted variation in high-throughput experiments.
Bioinformatics 28, 882-883 (2012).

Tegally, H. et al. Discovering novel driver mutations from pan-cancer analysis of mutational and
gene expression profiles. PLoS One 15, (2020).

Barabasi, A. L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to
human disease. Nat Rev Genet 12, 56-68 (2011).

Delen, E. & Doganlar, O. The Dose Dependent Effects of Ruxolitinib on the Invasion and
Tumorigenesis in Gliomas Cells via Inhibition of Interferon Gamma-Depended JAK/STAT
Signaling Pathway. J Korean Neurosurg Soc 63, 444-454 (2020).

Chen, R. et al. The application of histone deacetylases inhibitors in glioblastoma. J Exp Clin
Cancer Res 39, (2020).

Galanis, E. et al. Phase Il trial of vorinostat in recurrent glioblastoma multiforme: a north central
cancer treatment group study. J Clin Oncol 27, 2052-2058 (2009).

Kipper, F. C. et al. Vinblastine and antihelmintic mebendazole potentiate temozolomide in
resistant gliomas. Invest New Drugs 36, 323-331 (2018).

Vairy, S. et al. Phase | study of vinblastine in combination with nilotinib in children, adolescents,
and young adults with refractory or recurrent low-grade glioma. Neurooncol Adv 2, (2020).

Schaff, L. R. et al. Combination Olaparib and Temozolomide for the Treatment of Glioma: A
Retrospective Case Series. Neurology 99, 750-755 (2022).

Junca, A. et al. Crizotinib targets in glioblastoma stem cells. Cancer Med 6, 2625-2634 (2017).

Banasavadi-Siddegowda, Y. K. et al. Targeting protein arginine methyltransferase 5 sensitizes
glioblastoma to trametinib. Neurooncol Adv 4, (2022).

Chakravarthi, B. V. S. K., Nepal, S. & Varambally, S. Genomic and Epigenomic Alterations in
Cancer. Am J Pathol 186, 1724-1735 (2016).

172



Publications and Conferences

Publications

Sana Munquad, Tapas Si, Saurav Mallik, Asim Bikas Das* and Zhongming
Zhao*, 2022. A Deep Learning—Based Framework for Supporting Clinical
Diagnosis of Glioblastoma Subtypes. Frontiers in genetics, 13:855420.

Sana Munquad, Tapas Si, Saurav Mallik, Aimin Li, Asim Bikas Das*, 2022.
“Subtyping and Grading of Lower-grade Gliomas Using Integrated Feature

Selection and Support Vector Machine” Briefings in Functional Genomics, 21(5),
pp.408-421.

Sana Munquad, Asim Bikas Das*, 2023. DeepAutoGlioma: A Deep learning
autoencoder-based multi-omics data integration and classification tools for glioma
subtyping”. BioData Mining, 16(1), p.32.

Sana Munquad, Asim Bikas Das*, 2023. Uncovering the subtype-specific disease
module and the development of drug response prediction models for glioma.
(Under-review).

Sana Munquad, Asim Bikas Das*, 2023. The expression pattern of genes
encoding secretory proteins exhibits opportunities for improved clinical diagnosis
and prognosis prediction in glioblastoma multiforme. (Submitted).

Conferences and Workshops

Sana Munquad, Asim Bikas Das (2019), Genome-wide screening to identify
driver mutations leading to the development of Astrocytoma to glioblastoma,
International conference on “World Congress on Biotechnology-2019, Current
Research & Innovations in Biotechnology” held on 28th & 29th August 2019
organized by Indian Institute of Science, Bengaluru, India, 81-82

Sana Munquad, Asim Bikas Das (2020), Tree-based classifier to predict brain
cancer using whole-genome expression profile, 5th ITM - Tokyo Tech Joint
Symposium on “Current trends in Bioinformatics: Big data analysis, Machine
Learning and Drug Design™ held on 6th - 7th March 2020 at IIT Madras, India,
45-46, Machine Learning, Large scale data analysis.

Sana Munquad, Asim Bikas Das (2023), Development of deep-learning based
diagnostic tools for glioma subtyping, Great Lakes Bioinformatics Conference

173



10.

11.

12.

Publications and Conferences

2023, the 15th conference, was hosted by the International Society for
Computational Biology (ISCB) held on May 15 - 18, 2023 at Mcgill University,
Canada.

Attended ‘Analysis of Genome scale Data from Bulk and Single-cell sequencing’
conducted by NIBMG-EMBL-EBI, Kalyani from 19th Nov to 23rd Nov 2018.

Attended ‘Research Methodology & Scholarly writing Skills (RMSWS-2019)’
organized by SC-ST Cell at NIT Warangal from 21st Jan to 25th Jan 2019.

Participated in “Recent Trends in Computer Simulations for Applications in
Biotechnology: Teaching and Learning Strategies” organized by Department of
Biotechnology at NIT Warangal from 17th to 21st August 2020.

Participated in virtual workshop on “Essential Bioinformatics for Life Science
Researchers” organized by SynBiogenica Labs from 24th to 26th August 2020.

Participated in “Current Trends in Data Analytics through Hands-on Experience”
conducted by Department of Computer Science and Engineering and Department
of Biotechnology from 31-08-2020 to 04-09-2020.

Participated in the International Workshop on ‘Basic to Advanced Bioinformatics
(Linux, Python, R, and NGS Data Analysis)’ organized by Nextgenhelper, New
Delhi from September 17-20, 2020.

Participated in Industrial training on "Basics to Advanced data analysis for
Bioinformatics, Genomics, Proteomics, and NGS datasets” organized by
Nextgenhelper, New Delhi from January 23-24 & 30, 2020.

Participated in “A 5-day online FDP on “Advances in Biotechnology and
Bioinformatics (ABB-2021)” conducted by the Department of Biotechnology
from 22-03-2021 to 26-03-2021.

Participated in digital training on “Genome Informatics - Second Edition, 2021”
conducted by Decode Life from 6th December to 20th December 2021.

174



