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SUMMARY 

 

Classifying lower-grade gliomas (LGGs) and glioblastoma multiforme (GBM) is a 

crucial step for accurate therapeutic intervention. The histopathological classification of 

various subtypes of LGG and GBM suffers from intraobserver and interobserver variability, 

leading to inaccurate classification and greater risk to patient health. Accurate diagnosis of 

glioma subtypes and identification of specific molecular features are crucial for clinicians for 

systematic treatment. The efficient machine learning and deep learning-based classification 

frameworks were designed to diagnose subtypes and grades of glioma using transcriptome 

and methylome data. The frameworks achieved >90% accuracy in diagnosing the subtypes. 

To evaluate the biological and clinical applicability of the classification, weighted gene 

correlation network analysis, co-expression, gene set enrichment, and survival analysis of 

the feature genes were performed, and subtype-specific prognostic biomarkers were 

identified. Furthermore, a biologically and clinically interpretable deep learning-based model 

was developed by integrating transcriptome and methylome data using an autoencoder for 

glioma subtype classification. The method of precision therapy is more expansive than just 

subtype classification, and the accurate selection of drugs is a major challenge. The poor 

prognosis of glioma patients brought attention to the need for effective therapeutic 

approaches for precision therapy. Here, algorithms relying on network medicine and artificial 

intelligence were deployed to design the framework for subtype-specific target identification 

and drug response prediction in glioma. Subtype-specific disease modules in each subtype 

of glioma were identified by utilizing a network-based approach, and drugs for which the 

disease module has a target gene were identified. However, the efficacy of anti-cancer drugs 

depends on the molecular profile of the cancer and varies among cancer patients due to 

intratumor heterogeneity. To overcome this limitation, the present thesis designed an AI-

based drug response prediction model for different subtypes of glioma. Results showed that 

subtypes of gliomas respond differently to the drug, highlighting the importance of subtype-

specific drug response prediction. Overall, the thesis shows how personalized therapies may 

be developed using AI models based on genomic data, which can result in cancer-specific 

treatments and better patient care. 
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Chapter 1: Introduction 

     Brain cancer is a destructive complex genomic disease with a low survival rate. It arises 

from an accumulation of genetic and epigenetic changes in somatic cells. Although brain cancer 

comprises only 2% of all human cancer, the treatment of brain cancer is challenging due to 

molecular heterogeneity and late diagnosis, which leads to an increase in the mortality rate 1. 

The latest WHO documentation indicates over 100 distinct forms of brain tumors 2. The most 

common form of brain tumor is gliomas, a category of primary brain tumors that arise from 

glial cells in the Central Nervous System (CNS), are highly heterogeneous, and exhibit a wide 

range of morphological, molecular, and clinical characteristics. This heterogeneity poses 

significant challenges to the diagnosis, treatment, and prognosis of gliomas 3. Accurately 

classifying Gliomas type and grade is vital to improving brain cancer patients' prognosis. Due 

to the enormous complexity at the molecular level, the critical molecular driver of glioma is 

poorly understood. Gliomas are the most prevalent type of brain tumor, accounting for 

approximately 33% of all cases. Gliomas are classified based on histologic types and 

malignancy grades. Most gliomas are infiltrative and diffuse gliomas 4. Gliomas are classified 

according to how rapidly or slowly the cells divide. Slower-growing gliomas are known as 

lower-grade glioma (LGG), whereas more aggressive or rapidly-growing gliomas are named 

glioblastoma multiforme (GBM). LGG occurs more frequently in younger people, whereas 

GBM is more common in older patients. The LGG is a grade II and III tumor with three 

subtypes: astrocytoma, oligoastrocytoma, and oligodendroglioma. Astrocytomas arise from 

astrocytes, and oligodendrogliomas arise from oligodendrocytes, whereas oligoastrocytomas 

are mixed glioma, including oligodendroglioma and astrocytoma cells. Therefore, the 

pathological classification of oligoastrocytoma remains controversial due to its resemblance to 

both subtypes 5. Some of these LGG turn into GBM, the grade IV tumor, but others stay in this 

stage for a long time 6,7. Glioblastoma (GBM) is characterised by its significant invasiveness 

and is recognised as the most lethal form of brain tumour in the adult population. Similarly, 

there are three subtypes of GBM, i.e., classical, proneural, and mesenchymal 8.  

     The prognosis for patients with GBM is poor, and median survival is 12 months 9. The 

molecular mechanisms of GBM tumorigenesis is unknown. This leads to ineffective therapeutic 

intervention, and many patients relapse. However, with the current treatment options for both 

LGG and GBM, i.e., surgery, radiotherapy, and chemotherapy, patient life expectancy can be 
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increased, but these are not curative. Understanding the molecular features and identification 

of LGG and GBM subtypes is crucial to find the remedial solution. Due to distinct molecular 

characteristics, the subtypes of glioma have different clinical outcomes and responses to 

treatment, highlighting the importance of personalized medicine for brain cancer treatment 10. 

To find the curative solution, understanding the molecular features and identification of glioma 

subtypes is crucial. Therefore, there is an urgent need to identify the subtype-specific molecular 

marker for personalized therapy. Each of the subtypes of LGG and GBM has distinct molecular 

features, and they can be classified using genomics, epigenomics, and mutational profiles for 

clinical diagnosis. The rapid progress in high throughput genomics technology has resulted in 

the generation of a substantial volume of data pertaining to various molecular layers that can 

be used to detect features and find genomic connections between them. 

 

Figure 1.1: Division of glioma based on slow growing and rapidly growing cells. Lower grade 

glioma (LGG) comes under in slow growing glioma and high-grade glioma (HGG) comes 

under the rapidly growing glioma. 

     Data from sequencing experiments reveal that cancer initiation, progression, and 

maintenance are caused by perturbations in multiple genomics, epigenomics, and mutational 

factors. Gene expression and methylation are strongly interlinked processes; methylation levels 

in promoter regions influence gene expression by regulating transcription factor binding 11. 

Similarly, gene expression and mutations are closely interconnected processes; mutations have 

the ability to modify gene expression within a protein coding sequence, hence impacting the 
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functionality of the protein and disrupting cellular pathways. Therefore, classification using 

multiple omics data, i.e., transcriptome, methylome, and mutation data can provide optimal 

features for the clinical diagnosis of cancer subtypes. Analysis of high-throughput omics data 

from different molecular layers can decipher the link between molecular signatures and cancer 

phenotype. Indeed, multi-omics data integration can elucidate how the molecular alterations at 

different layers contribute to disease formation and provide a global view of the molecular 

signature of disease. The biologically relevant diagnostic model can be developed by 

integrating gene expression, methylation, and mutation data because these data are biologically 

interlinked. Therefore, integration of multi-omics is essential to develop efficient AI-based 

diagnostic tools for accurate classification of cancer subtypes.  

     The method of precision therapy is more expansive than just subtype classification, and the 

accurate selection of drugs is a major challenge. However, anti-cancer drugs frequently do not 

work effectively. Molecular heterogeneity is a major contributor to cancer drug resistance, as it 

can create subpopulations of cancer cells with different mutations or molecular characteristics 

that allow them to survive even in the presence of the drug 12,13. Hence, cancer patients with the 

same pathological conditions differ greatly in treatments. Therefore, the prediction of drug 

response, i.e., resistance or sensitivity, is essential for improving the efficacy of chemotherapy. 

Both accurate subtyping and drug response prediction model are crucial for the precision 

therapy of glioma. A DL-based model can improve the overall precision and efficacy of 

diagnostic processes using large-scale omics data. However, it is essential to design a 

biologically and clinically relevant AI-based diagnostic model to increase the reliability of 

diagnosis. In the present thesis, an AI-based diagnostic tool and drug response prediction model 

was developed for the precision therapy of glioma. 

     In this thesis, our focus has been directed towards the utilisation of artificial intelligence 

(AI), specifically machine learning (ML) and deep learning (DL) algorithms, to analyse data.  

These algorithms dive into the data, finding patterns, extracting a relationship between complex 

features discovering properties in genomics data such as transcriptome, methylome, and 

mutational data that the human brain cannot perceive.  AI integration in brain cancer care could 

enhance brain cancer diagnosis and prognosis, stimulating the drug discovery and the 

development of effective therapies, aid clinical decision-making, and result in better health 

outcomes. Next, developed a biological interpretable model for glioma subtype classification 

and identify subtype-specific biomarkers of glioma. Further, a framework was developed by 
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combining network medicine and AI-based approaches to systematically integrate omics data 

to identify subtype-specific disease modules for precision therapy of glioma and drug response 

prediction models. Therefore, this thesis aims to contribute a novel perspective on enhancing 

the accuracy of cancer diagnosis, prognosis, and treatment with the help of AI. 

Organization of the Thesis 

The thesis presents the work in seven chapters, and the following section gives the outline.  

Chapter 1: Presents a general introduction to brain cancer: presents diagnosing methods of 

brain cancer, data integration of different molecular levels of genomics in glioma, and precision 

therapy of glioma. 

Chapter 2: Presents literature review on brain cancer classification, genomic alternations in 

brain cancer such as gene expression data, mutational profiles, DNA methylation data. Artificial 

intelligence techniques in cancer classification. Artificial intelligence techniques in genomics 

data types and Integration of genomic data for brain cancer classification. Cancer classification 

by utilizing machine learning and deep learning methods are also discussed, and finally, the 

Aim of the Work is enlisted. This chapter underlines gaps in the present knowledge and the 

objectives framed for the present study. 

Chapter 3: Presents a detailed description of the Development of a machine learning-based 

framework for subtyping and grading of lower-grade glioma (LGG) using transcriptome data 

and the identification of biomarkers (objective 1). An efficient machine learning-based 

classification framework to diagnose LGG subtypes and grades using transcriptome data is 

presented. The development of an integrated feature selection method based on correlation and 

support vector machine (SVM) recursive feature elimination was done. Then machine learning 

models, i.e., Support Vector Machine (SVM) k-nearest neighbors (kNN), Gaussian Nave Bayes 

(GNB), Decision Tree (DT), and Random Forest (RF), were developed. This chapter also shows 

a 6-class classification model to predict grades and subtypes simultaneously. Furthermore, 

several predictive biomarkers using co-expression, gene set enrichment, and survival analysis 

were identified. 

Chapter 4: Presents a detailed description of the Development of Deep learning and machine 

learning frameworks based on genomic data for subtyping glioblastoma multiforme (GBM) and 

identification of biomarkers (objective 2). In this chapter, a biologically interpretable and highly 

efficient deep learning framework based on a convolutional neural network for subtype 
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identification was developed. The classifiers were generated from high-throughput data at 

different molecular levels, i.e., transcriptome and methylome. An integrated subsystem of 

transcriptome and methylome data was also used to build the biologically relevant model. 

Furthermore, to evaluate the biological and clinical applicability of the classification, weighted 

gene correlation network analysis was performed, gene set enrichment, and survival analysis of 

the feature genes. 

Chapter 5: Presents a detailed description of the Implementation of a deep learning embedding 

system for multi-omics data integration for the subtyping of Glioma (objective 3). Here, the 

transcriptome and methylome data of glioma patients were preprocessed, and differentially 

expressed features from both datasets were identified. Subsequently, a Cox regression analysis 

was performed to determine the genes and CpGs associated with survival. Gene set enrichment 

analysis was carried out to examine the biological significance of the features. Further, CpG 

and gene pairs were mapped based on the promoter region. The methylation and gene 

expression levels of these mapped CpGs and genes were embedded in a lower-dimensional 

space with an autoencoder. Next, ANN and CNN were used to classify subtypes using the latent 

features from embedding space. This chapter shows that multi-omics data integration performed 

better than mono-omics data for subtype classification. 

Chapter 6: Presents a detailed description of the Identification of subtype-specific disease 

modules and development of drug response prediction models by combining network medicine 

and AI-based approaches (objective 4). The algorithms relying on network medicine and 

artificial intelligence were deployed to design the framework for subtype-specific target 

identification and drug response prediction in glioma. The driver mutations that were 

differentially expressed in each subtype of lower-grade glioma and glioblastoma multiforme 

were identified. Differentially expressed driver mutations were subjected to subtype-specific 

disease module identification. The drugs from the drug bank database were retrieved to target 

these disease modules. Next, a deep-learning-based drug response prediction framework was 

developed using the experimental drug screening data.  

Chapter 7: Presents the conclusions drawn from the results. Potential future work and the scope 

of this work are also summarized.
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Chapter 2: Review of Literature 
 

2.1 Brain cancer epidemiology 

     Brain tumors are relatively rare but deadly cancers that preferentially arise in the cerebral 

hemispheres of the central nervous system (CNS). According to the 2021 report by the World 

Health Organisation (WHO), the death rate of central nervous system (CNS) brain cancer 

exhibits the highest prevalence in Asia (https://gco.iarc.fr/). The 2020 global cancer statistics 

show that the number of new cases of brain cancer worldwide is about 308,102. The number of 

brain cancer deaths is 251,329 accounting for 2.8% of the total new cancer deaths 14. The 

mortality rate among male brain cancer patients is 138,277, representing 3.2% of the overall 

new cancer-related deaths. Similarly, the mortality rate among female brain cancer patients is 

113,052, accounting for 2.4% of the total new cancer-related deaths. The number of new 

patients with brain cancer in India is 31.5k, and the number of deaths is 26.7K, accounting for 

43.9% and 48.6% of global cases, respectively. The mortality rate of brain cancer is relatively 

high because most patients are already at an advanced stage when they are detected. Therefore, 

finding effective biomarkers of early brain cancer is a vital way to reduce the high mortality 

rate of brain cancer. It is difficult to cure brain cancer because of its protected location. 

Nowadays, brain tumors can only partially cure by surgery, radiation, chemotherapy, and 

targeted therapy, having the risk of long-term patient morbidity. For targeted therapy, cancer 

grading is essential, as a cancer diagnosis is highly invasive, time-consuming, and expensive. 

There is a requirement for the development of affordable, and effective technologies for 

classifying and grading brain cancer and the advancement of targeted therapeutics involves the 

utilisation of molecularly targeted drugs that specifically target the cellular alterations 

responsible for the transformation of normal cells into cancerous cells, by which cancer should 

be detected at the earliest stage, so that many lives can be saved. However, when cancer is 

advanced, and the chances of survival are minimal, treatment becomes quite challenging.

 

2.2 Classification of brain cancer  

     Brain tumors can be classified either benign or malignant. Benign brain tumor cells have 

defined borders, seldom spread to nearby healthy cells, and develop slowly. Malignant brain 

tumor cells readily attack nearby cells, have hazy borders, and develop quickly. There are exist 

various forms of brain tumours, including choroid plexus tumours, embryonal tumours, 
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meningiomas, gliomas, and pituitary tumours. Glioma is the most prevalent type of brain 

tumour among all patients 1. According to the growth rate of cancer cells, brain cancer can be 

classified into different grades, varying growth rates from low aggressive metastasis to high 

aggressive metastasis grade, i.e., low-grade glioma (LGG) and high-grade glioma (HGG). 

Grade I, II, and III come under the LGG, and Grade IV comes under the HGG, i.e., glioblastoma 

multiforme (GBM). The LGG are classified as astrocytoma, oligodendroglioma, and 

oligoastrocytoma. Astrocytomas arise from astrocytes, and oligodendrogliomas arise from 

oligodendrocytes, whereas oligoastrocytomas are mixed glioma, including oligodendroglioma 

and astrocytoma cells. Therefore, the pathological classification of oligoastrocytoma remains 

controversial due to its resemblance to both subtypes 5. However, several attempts have been 

made to classify the oligoastrocytoma subtypes based on the genetic profile of individual 

markers 15–17. GBM could be classified into four subtypes based on transcriptional features, i.e., 

classical, neural, proneural, and mesenchymal. However, recent findings suggest that the neural 

subtype probably arises due to the contamination of normal neuronal tissue tumor margins 8. 

Therefore, GBM is currently classified into three subtypes. Histopathological-based diagnosis 

is the most common method for subtype identification. However, it often leads to inaccurate 

classification of subtypes due to inter-observer variability 18. Accurate pathological subtype 

diagnosis is pivotal for optimal patient management. Because glioma subtypes are 

histologically and genetically heterogeneous, they differ in gene expression, mutation, and 

epigenetic states, which lead to different therapeutic response and clinical outcome 19,20. 

 

2.3 Genomic alterations in brain cancer 

     A series of genetic abnormalities affect brain cancer at a molecular level, and impact 

signaling cascades that lead to the cancer initiation. The onset of brain cancer is triggered by 

modifications in the genome or DNA sequence, which disrupt the expression of genes, cell 

proliferation, and cellular behaviour. These alterations in gene sequences lead to the 

uncontrolled growth of cells. The anomalies include alterations in gene expression, DNA 

mutations, and variations in genome methylation profiles. Gene Expression data is primarily 

generated by two high throughput methods: RNA-sequencing (RNA-seq) and microarray. 

These techniques are efficient in capturing the genome-wide gene expression level. Cancer is a 

multifactorial disorder; therefore, studying all genes' expressions helps identify the critical 

player associated with cancer formation. Gene expression refers to the mRNA level for 
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particular genes at a given time point in the cells. Therefore, alteration of mRNA expression 

causes the change in protein level, thereby affecting the normal operations of the cells. Change 

of gene expression is a genome-level alteration in cancer; such alterations cause changes in 

cellular functions, resulting in a disease phenotype (Figure 2.1). Capturing such alteration from 

high dimensional gene expression data will aid in identifying the disease-causing gene and 

subsequently facilitate the discovery of novel biomarkers 21,22. Furthermore, it is essential to 

track gene expression patterns to monitor the cancer progression from lower to a higher stage 

or understand the effectiveness of therapies 23–25. This type of investigation required multiple 

comparisons of data from different time points.  

 

Figure 2.1: Overview of genomics alternations in brain cancer. 

 

     Altered expression of genes such as epidermal growth factor (EGF) 26, platelet-derived 

growth factor (PDGF) 27, vascular endothelial growth factor (VEGF) 28 and their receptor 

involved in the development of cancer progression. Several other genes are involved in brain 

tumors that exhibit irregular expression or have genetic changes have been discovered recently, 

including chromosomal irregularities of 1p19q have been reported in the oligodendroglioma 29.  

     The analysis of microarray data from various studies has revealed the presence of unique 

molecular profiles in high grade and low-grade glioma. The implementation of microarray 

technology enables the concurrent examination of alterations in the expression of numerous 

genes, hence facilitating the identification of gene sets that has the potential to predict glioma 

30. Differentially expressed genes (DEGs) have been found to be linked with the grade of 

tumours and the patient prognosis of glioma 31. A comparison was conducted on 45 astrocytic 

tumours, consisting of 21 glioblastomas (GBMs) and 19 pilocytic astrocytomas. Through the 
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examination of a set of 360 genes, a distinct molecular signature was identified, enabling 

differentiation between GBMs and pilocytic astrocytomas 32. The prognosis of IDH-mutant 

astrocytoma grade II to IV was found to be inversely correlated with the high expression of 

several specific genes. These genes include HOTAIRM1 33, MCM6 34, IRX1 35, and MPC2 36. 

     Several prior research have been conducted on bioinformatics analyses to examine the 

expression patterns of genes that are differentially expressed (DEGs) in patients with 

glioblastoma (GBM). These studies have also explored the functions of these DEGs in various 

pathways, molecular activities, and biological processes. Zou et al 2019, analysed the 

microarray data and reported that CDK1, BUB1B, NDC80, NCAPG, BUB1, CCNB1, TOP2A, 

DLGAP5, ASPM and MELK were significantly associated with carcinogenesis and the 

development of GBM 37.   

     Another most reported genetic alternations are mutations in glioma. Mutations in the coding 

genes alter the expression of mRNA; subsequently, proteins participate in the various biological 

processes inside the cells. Genetic mutations alter proteins in manners that induce the 

transformation of normal cells into malignant cells. A combination of mutated genes determines 

the deadliness of cancer (Figure 2.1). Several mutations in cancer contribute to the 

heterogeneity and complexity of the disease. Mutations greatly vary between the patients of the 

same cancer and pose a daunting obstacle to cancer treatment 38.  There are two types of 

mutations in cancer, driver mutations and passenger mutations. The driver mutations participate 

in uncontrolled cell growth, whereas passenger mutations usually do not involve oncogenesis. 

Driver mutations in the gene affect the protein structure and perturb normal biological 

processes. Mutation (driver mutations) in the tumor suppressor genes or oncogene can 

transform normal cells into cancer cells. Due to advancements in high throughput sequencing 

technologies, a large amount of tumor data has been generated that provide an opportunity to 

combine the gene mutations data and phenotypic information of cancer patients. However, the 

relationship between these mutations and clinical symptoms is still not revealed, this creates an 

obstacle to designing genomic medicine.  

     It has been determined that the primary genetic causes of gliomas are mutations in the 

isocitrate dehydrogenase (IDH) 1/2 enzymes 39–42. In astrocytoma and oligodendroglioma IDH 

gene and PTEN mutations are frequently mutated and identified as a molecular marker in 

glioma 43. The IDH1 gene is of great interest due to its association with alterations shown in 

both glioblastoma and low-grade gliomas. These mutations have been found in over 70% of 
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cases, encompassing the whole protein coding genes 44–46.  Genomic DNA samples, obtained 

from both tumour and normal tissues of glioma, were subjected to whole mutational data in 

order to determine the prevalent mutations in genes EGFR, ERBB2, IDH1, NF1, PIK3CA, 

PIK3R1, PTEN, PTPRD, RB1, and TP53 47. From the literature, it is observed that mutations 

in PI3K are novel prognostic markers in gliomas 48. Mutations in FUBP1 and CIC are shown 

in astrocytomas oligoastrocytomas, and oligodendrogliomas 49. ATRX 50, CDKN2A/B 51,52, 

EGFR 53,54, BRAF 55, H3 histone, family 3A (H3F3A) mutations 56 are reported in astrocytoma. 

Similarly, TERT promoter mutation was observed in oligodendroglioma 57.  Frequent mutations 

in some genes, such as TP53 and PTEN, have been observed in glioblastoma. However, it has 

been shown that these mutations do not significantly impact on prognosis 58,59.  The most 

commonly observed mutations in glioblastoma (GBM) subtypes are alterations in 

neurofibromin 1 (NF1), as well as epidermal growth factor receptor (EGFR) mutations 53. 

Additionally, frequently observed genetic alterations in GBM include mutations in PIK3R1, 

PIK3CA, RB1, and IDH1, as reported in the data obtained from The Cancer Genome Atlas 

(TCGA) 60. The presence of TERT promoter mutation has also been reported in glioblastoma 

multiforme (GBM) 57. Multiple molecular markers are commonly observed in different 

subtypes of glioblastoma (GBM). For example, in the classical subtype, molecular markers such 

as PTEN, CHKN2, PDGFRA, TP53, and EGFR are frequently identified. In the mesenchymal 

subtype, NF-κB, NF1, PTEN, and in the proneural subtype, TP53, PI3K, IDH1, PDGFRA, and 

EGFR are commonly observed molecular markers 61. Mutations occurring in these genes result 

in the activation of the PI3K/Akt and Ras/MAPK signalling pathways, hence presenting 

potential targets for therapeutic intervention 62.  

 

     Genome-wide association studies (GWASs) have additionally demonstrated that the 

heritable risk of glioma is influenced by common genetic variations. GWASs have successfully 

identified single-nucleotide polymorphisms (SNPs) at eight specific loci that have been found 

to influence glioma risk. These loci include 3q26.2 (near TERC), 5p15.33 (near TERT), 7p11.2 

(near EGFR), 8q24.21 (near CCDC26), 9p21.3 (near CDKN2A/CDKN2B), 11q23.3 (near 

PHLDB1), 17p13.1 (TP53), and 20q13.33 (near RTEL1) 63–67. Kinnersley, B., et al., 2015 

identified the risk loci for glioblastoma (GBM) at 12q23.33 (rs3851634, near POLR3B) and 

non-GBM at 10q25.2 (rs11196067, near VTI1A), 11q23.2 (rs648044, near ZBTB16), 12q21.2 

(rs12230172) and 15q24.2 (rs1801591, near ETFA) by using 1,490 cases and 1,723 controls 68. 

The genes influenced by the risk single nucleotide polymorphisms (SNPs) that we have 
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identified is anticipated to result in enhanced understanding of the pathogenesis of this 

particular malignancy. GWASs have identified several genetic variants that are associated with 

glioma. These genetic variations have an impact on the DNA methylation levels of genes in 

close proximity and have a role in the susceptibility to cancer. 

 

     One of the most often observed genetic alterations in glioma is the changes the DNA 

methylation patterns. DNA methylation is a biological process that involves the addition of 

methyl groups to the DNA molecule without affecting the sequence. The level of DNA 

methylation can affect gene expression. When DNA methylation occurs at the promoter regions 

of a gene (also known as hypermethylation), it usually suppresses gene transcription and 

subsequently lowers gene expression levels 69. Whereas a decrease in methylation level, known 

as hypomethylation, can elevate the gene expression level. Cancer pathogenesis is often caused 

by hypermethylation of tumor-suppressive genes and hypomethylation of oncogenes. 

Therefore, the methylation level of the promoter region is recently established as a promising 

biomarker in cancer (Figure 2.1). Methylation level not only influences the gene expression but 

also contributes to several other critical processes, such as X-chromosome inactivation, 

including genomic imprinting.  

     The MGMT, is a prominent epigenetic biomarker in glioma and its alterations play a central 

role in classification, treatment, and survival outcomes 70. Wang et al. (2016) performed an 

analysis on three prognostic genes, specifically formyl peptide receptor 3, IKBKB interacting 

protein, and S100 calcium binding protein A9. These genes were selected from the 

comprehensive mRNA expression profile of the Chinese Glioma Genome Atlas (CGGA) and 

the RNAseq data obtained from The Cancer Genome Atlas (TCGA). They have conducted both 

univariate and multivariate Cox regression analyses on the entire genome mRNA expression in 

order to forecast the survival outcomes of patients with comparable MGMT methylation status. 

The expression of the three genes exhibits variation between glioblastoma multiforme (GBM) 

samples and non-cancerous tissues, and all three genes possess prognostic significance. The 

concurrent presence of these three genes holds predictive significance for individuals diagnosed 

with MGMT promoter-methylated glioblastomas 71. DNA methylation may cause somatic 

mutations in driver genes, which would activate carcinogenesis. Additionally, DNA 

methylation can be utilized to categorise the molecular subtypes of glioma and might be more 

useful than gene expression changes. It has been determined that changes in epigenetic regulator 

genes are the primary cause of particular glioma subtypes with distinctive clinical 
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characteristics 72. In the case of lower grade glioma, IDH1 or IDH2 mutations are associated 

with a specific pattern of DNA methylation while histone 3 mutations are commonly observed 

in paediatric high grade gliomas. These mutations are often accompanied by distinct DNA 

methylation patterns 73.  

     Here we have observed that the glioma subtypes of glioblastoma multiforme (GBM) and 

lower-grade glioma (LGG) have distinct genetic alterations. The utilisation of integrated 

analysis of genetic changes across many molecular levels can be employed to find the cause of 

cancer. The emergence of the big-data in the field of cancer genomics can be attributed to the 

widespread accessibility of genetic information facilitated by next-generation sequencing 

technology. The advancement of high-throughput genomics technologies, the size of genomics 

data is increasing exponentially. Simple statistical tests are inadequate for analyzing high-

dimensional genome-wide data. The utilisation of artificial intelligence (AI) methodologies, 

including machine learning, and deep learning, is increasingly being employed to address the 

issues of scalability and high dimensionality of data. Currently, artificial intelligence (AI) is 

extensively employed for the purpose of cancer classification. 

 

2.4 Artificial intelligence methods in cancer classification 

     Machine learning (ML) and deep learning (DL) is a subfield of artificial intelligence (AI) 

that involves the utilization of algorithms to acquire knowledge from datasets through training. 

These algorithms then utilize the acquired knowledge to draw inferences about outcomes based 

on the patterns and rules identified during the training process. ML, and DL algorithms and 

statistical modeling tasks have been found to enhance the efficiency and speed of processing 

complicated datasets in the field of cancer research. Due to the vast array of genomes data, the 

manual and rule-based analysis of such data poses significant challenges. Consequently, ML 

and DL approaches have gained prominence in this field, as they possess the capability to 

effectively handle the complexity inherent in genomics data and offer ease of implementation. 

Machine learning algorithms are employed to identify the grades and subtypes of the cancer. 

Classification is a form of supervised machine learning in which a model endeavors to 

accurately predict the appropriate label for a given set of input data. For example, in cancer 

subtype classification, models are trained on the training data (cancer samples) and predict the 

accurate output on the test data (new cancer samples or unseen data). In the figure 2.2 

classification models are built on cancer samples used as a training data and new unseen cancer 
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samples are taken for model prediction. The aim of ML algorithms are to categorize the samples 

into different cancer subtypes. The models are able to predict the given samples are belong to 

which subtypes of cancer.  

 

Figure 2.2: Demonstration of ML based models for cancer subtype classification. 

 

     There are two types of machine learning algorithms as: Un-supervised, and Supervised 

learnings. Unsupervised machine learning does not require the output label during the training 

phase. These algorithms possess the capability to identify similarities, and differences within a 

dataset. Principal Component Analysis (PCA), is an unsupervised technique that are well-suited 

for tasks such as dimensionality reduction and clustering analysis. These unsupervised machine 

learning techniques are unable to classify the cancer data. Therefore, the supervised machine 

learning techniques was used to efficiently classify the cancer grades and subtypes. Supervised 

machine learning refers to a type of learning algorithm that requires the availability of output 

labels during the training phase. This provision of labels enables the algorithm to discern and 

categorize data accurately, or make predictions based on the given labels. For instance, in the 

context of a cancer classification problem, the algorithm would require the labels 'cancer' and 

https://www.ibm.com/cloud/learn/unsupervised-learning
https://www.ibm.com/cloud/learn/unsupervised-learning
https://www.ibm.com/cloud/learn/unsupervised-learning
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'non-cancer' to effectively carry out its classification task. Several examples of supervised 

machine learning algorithms include Support Vector Machines (SVM), k-Nearest Neighbors 

(KNN), Naive Bayes (NB), Decision Trees (DT), Random Forest (RF), Logistic Regression 

(LR), and others. A brief description of each algorithm is provided here. SVM uses support 

vectors that separate data points in different hyperplanes 74. SVM selects optimal hyperplanes 

for classification. In SVM, the hyperparameters were tuned i.e., regularization parameter c (c = 

10), and applied a linear kernel to achieve higher accuracy. K-nearest neighbors (KNN) is a 

non-parametric method, and it utilizes neighboring elements that are trained to measure the 

accuracy of classification. KNN has two phases: the first is finding the nearest neighbors, and 

the second is assigning the class of a new sample using those neighbors by the majority vote 

rule 75,76. Gaussian Naive Bayes is a probabilistic machine learning classifier based on the Bayes 

theorem. It assumes that the data from each label is drawn from a simple Gaussian distribution 

and considers all the features are independent 77. In Decision Tree, the main aim is to create a 

model that predicts the value of a target variable by learning simple decision rules. The decision 

tree is constructed by repeatedly splitting a node into two child nodes, beginning from the root 

node containing the whole learning sample. Random forest is an ensemble technique used for 

classification by several estimators (decision trees). A logistic regression classifier predicts the 

response based on one or more predictor variables. It measures the relationship between the 

categorical dependent variable and one or more independent variables by estimating 

probabilities using a logistic function. 

     DL are also divided into supervised and unsupervised learning techniques. Supervised deep 

learning techniques include Convolutional neural networks (CNN) and artificial neural 

networks (ANN), whereas unsupervised learning includes tsne and autoencoders. Unsupervised 

deep neural networks and autoencoders are successfully applied for model building in cancer 

genomics. Autoencoders are most recent and widely used in the DL. It is feed-forward neural 

network where input is the same as the output 78,79. Autoencoders are used for analyzing 

transcriptomic, methylomic and mutational cancer data 80. Conversely, supervised deep 

learning techniques ie., ANNs, which imitate the human brain, are feed-forward neural 

networks. ANNs are represented by a weighted, directed graph connecting inputs to a series of 

interconnected “hidden” layers that are composed of multiple nodes called “neurons,” that are 

in turn connected to an output layer 81. ANNs are trained to recognize and categorize complex 

patterns. There are one input layer, one output layer and one hidden layer in the network. The 

hidden layers lies between the input and output layers. Similarly, CNN's are fully connected 



 
 
Chapter 2   Review of Literature 

17 
 

networks, i.e., each neuron in a layer is directly connected to all neurons of the next layer. 

CNN's have a kernel that convolves the input to extract localized features and aggregate those 

using a pooling layer, enabling the model to extract features at all levels 82. Therefore, it is 

efficient in extracting the relevant features from multidimensional data. These ML and DL 

learning approaches are used in abundance for cancer diagnosis and prognosis prediction 

(Figure 2.3).  

 

 

Figure 2.3: Demonstration of DL based models for data integration and cancer classification. 

 

2.5 Artificial intelligence in genomics data types for cancer 

classification 

2.5.1 Gene Expression Data for cancer classification 

     Several machine learning and deep learning techniques are applied to investigate cancer 

causing factors and help to cancer prediction and classification using gene expression data. The 

utilisation of machine learning (ML) approaches for cancer classification based on genomic 

data is driven by two key factors: cancer heterogeneity and the availability of various cancer 

genomic data. Machine learning models are utilised in the study of gene expression data to 

efficiently predict cancer categorization and diagnosis. Some unsupervised ML algorithms such 
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as Grouping Genetic Algorithm (GGA) and Bayesian latent (clustering algorithm) were used 

for multiclass cancer classification of gene expression RNA-Seq data 83,84. In comparison to 

other machine learning algorithms, SVM exhibits a high degree of efficacy to find hidden 

patterns inside complex datasets 85. SVM was incorporated to analyse the gene expression 

profiles of leukemia, gastric cancer, colon cancer, lung cancer, and prostate cancer samples for 

cancer classification 86–89. Other machine learning models such as KNN were also used in the 

cancer classification and prediction of biomarkers by employing gene expression data that leads 

to improvement in the prognosis and treatment of cancer 90. Random forest was used to classify 

lung cancer and esophageal squamous cell carcinoma 91,92. Su, Y., et al. 2022 reported that 

random forest classifier was used to diagnose the colon cancer staging I, II, III and IV and 

predicted average accuracy of 99.81% and eight genes were selected as biomarkers such as 

GCNT2, GLDN, SULT1B1, UGT2B15, PTGDR2, GPR15, BMP5 and CPT2 93. 

Maniruzzaman, M., et al, 2019 developed a method of Statistical analysis of machine learning 

for classification of colon microarray gene expression data. They have used four statistical tests 

such as Wilcoxon sign rank sum (WCSRS), t-test, Kruskal-Wallis (KW) and F-test to identify 

the differential genes based on p-value. Further, identified differential expressed genes were 

employed in the ML models such as naïve Bayes (NB), support vector machine (SVM), linear 

discriminant analysis (LDA), Gaussian process classification (GPC), artificial neural network 

(ANN), quadratic discriminant analysis (QDA), decision tree (DT), random forest (RF), logistic 

regression (LR), and Adaboost (AB), to the classification of colon cancer. The mean accuracy 

of the machine learning system, encompassing all four statistical tests and all ten classifiers, 

was found to be 90.50% 94. Kori, M. et al. 2022 applied CatBoost, Random forest, Decision 

Tree, KNN, Gradient boosting, MLP, LGBM, and XGB, classifier to classify gastric cancer 

into normal and cancer patients using microarray gene expression data in order to identify the 

novel biomarkers. The classification accuracy of eight ML models ranged from 92.6% to 

89.4%. They have identified several novel biomarkers such as AES, CEBPZ, GRK6, HPGDS, 

SKIL, and SP3 for gastric cancer (GC), both in terms of diagnosis and prognosis 87. WU et al. 

2019 proposed a maximum information coefficient binary quantum particle swarm 

optimization (MIC- BQPSO) on SVM classifier method for brain cancer classification and 

achieved a classification accuracy of 74.64% 95. Salem et al. 2017, developed a methodology 

that involved the utilization of the Information Gain (IG) technique for feature selection. 

Following this, the researchers deployed the Genetic Algorithm (GA) to perform feature 

reduction. Subsequently, they employed Genetic Programming (GP) to classify various types 
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of cancer, including brain cancer, into distinct categories of cancer and normal samples. The 

results of their analysis yielded a prediction accuracy of 86.67% 96. The DL-based method 

outperformed the traditional statistical techniques. Yuan et al, 2020 reported the use of 

unsupervised deep autoencoder to extract features from high dimensional transcriptomic 

data.  They implemented the supervised classifier, DeepC, using the extracted features to 

distinguish normal samples of different tissue origins. The authors have successfully diagnosed 

tumors in Pan-cancer with an accuracy of 90% or tissue-specific cancer with an average 

accuracy of 94% 97. Shah et al. have employed a hybrid deep learning model based on Laplacian 

Score and CNN (LS-CNN) to classify brain cancer using the microarray gene expression data. 

They have shown that the LS-CNN model (average accuracy = 97%) outperformed the 

traditional machine learning model in terms of accuracy 98. Mohammed et al. (2021) proposed 

a novel stacking ensemble deep learning approach utilizing a one-dimensional convolutional 

neural network (1D-CNN). The objective of their research was to conduct a multi-class 

classification of five prevalent cancers in women, including breast, lung, colorectal, thyroid, 

and ovarian, using RNA-seq data. The researchers employed the least absolute shrinkage and 

selection operator (LASSO) as a technique for selecting features. The researchers conducted a 

comparative analysis of the outcomes of the newly proposed model, with and without LASSO, 

with the outcomes of the single 1D-CNN and several machine learning approaches. The 

findings indicate that the proposed model with LASSO and without LASSO exhibit superior 

performance in comparison to alternative classifiers. The utilization of a one-dimensional 

convolutional neural network (1D-CNN) in conjunction with the least absolute shrinkage and 

selection operator (LASSO) yielded a prediction accuracy of 99.22%. In contrast, when LASSO 

was not employed, the prediction accuracy was somewhat lower at 98.06% 99. Rezaee et al. 

(2022) proposed a novel approach that employs ensemble learning in conjunction with deep 

neural network (DNN) for the purpose of classifying three distinct forms of cancer, namely 

diffuse large cell lymphoma, leukemia, and prostate cancer. The prediction accuracies obtained 

were 97.51%, 99.6%, and 96.34%, respectively. Moreover, the researchers confirmed the 

model's generalizability by assessing its performance on brain tissue lesions associated with 

multiple sclerosis 100. Almarzouki (2022) proposed a novel approach known as the Artificial 

Bee Colony (ABC) technique for the purpose of feature selection. This strategy was employed 

in conjunction with Convolutional Neural Networks (CNNs) to classify gene expression data 

from kidney, brain, and lung tissues into cancerous and normal states. To achieve this, the 
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researchers combined all available datasets. The Convolutional Neural Network demonstrates 

a high level of accuracy, i.e, 96.43% 101.  

     Further, several other deep learning models have been developed to predict the regulation of 

the gene expression, such as DEcode, which can predict the differential gene expression based 

on binding sites on RNAs and promoters 102. Similarly, Deepdiff and DeepChrome predict the 

gene expression from histone modifications 103,104.  These DL-based tools can be explored for 

the diagnosis of cancer. Furthermore, it was observed that unsupervised DL was also 

implemented to generate the gene expression cluster in brain cancer and has been used to 

improve the model accuracy 105. 

 

2.5.2 Mutational data for cancer classification 

     In several studies, artificial intelligence and machine learning have been successfully 

employed to draw the relationship between cancer mutations and clinical symptoms 106,107, 

including driver gene identification 108,109, drug development 110, and precision oncology 111. 

However, challenges such as high data sparsity, and short sample size, are roadblocks for 

superior classification performance using the mutation-related genomic data in cancer. Somatic 

mutations provide us a great opportunity to investigate cancer classification using machine 

learning. Gene mutation profiles are used to classify, characterize and predict the subgroups of 

cancers. In breast cancer patients, somatic mutation profiles were used to classify the subgroup 

using machine learning methods such as Random Forest (RF), Support Vector Machine (SVM), 

C4.5, Naïve Bayes, and k-Nearest Neighbor (KNN). Among all classifier performances RF 

outperformed and achieved the average prediction accuracy of 70.86% than the other machine 

learning models 112.  In another case of breast cancer, machine learning methods such as naive 

bayes and KNN were used to classify the breast cancer patients and healthy patients. The K-

nearest neighbors (KNN) algorithm had the highest classification accuracy, with a rate of 

97.51%, while the Naive Bayes (NB) classifier displayed a classification accuracy of 96.19% 

113. Furthermore, Li, Y. et al, (2020), proposed an ensemble machine learning model including 

five classifiers for cancer classification of fourteen types of cancer utilizing mutation data. They 

achieved an overall accuracy of 71.46% 114. Chen et al. investigated the distribution of 

1,760,846 somatic mutations observed in 230,255 cancer patients. They have employed a 

Support Vector Machine (SVM) approach to analyze these mutations in conjunction with gene 

function information, in 17 types of cancer including glioma. They conducted a multiclass 
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classification experiment employing the gene symbol, somatic mutation, chromosome, and 

gene functional pathway. The prediction performance of primary sites in terms of accuracy was 

reached to 57% by using genes as features, by including the genes, mutation and chromosome 

information, it was improved to 62% 115. Similarly, a machine learning model was developed 

for distinguishing between driver and passenger mutations in GBM using sequence based 

features and physiochemical properties, named GBMDriver; showed accuracy of 73.59% and 

AUC score of 0.82. The accuracy was 81. 99% and AUC was 0.87 on 10-fold cross validation. 

By this method driver mutations in glioblastoma are prioritized and therapeutic targets are 

identified 116. 

 

     Palazzo, M., et al (2019) developed a pipeline based on an unsupervised deep learning 

method known as autoencoder. This pipeline aims to uncover concealed patterns within lower 

dimensional space using somatic mutation data derived from a diverse range of 40 tumor types 

and subtypes. In order to assess the effectiveness of the acquired somatic mutation embedding, 

a combination of kernel learning and hierarchical cluster analysis was employed. This approach 

yielded an accuracy rate exceeding 75% across various types of cancer, with the exception of 

stomach, colorectal, and liver malignancies 117. Furthermore, DNN-Boost model was also 

developed to classify the tumor and normal samples by employing mutation data 118. Yuan et 

al., developed DeepGene, an advanced cancer type classifier based on deep learning and DNA 

point mutation data. DeepGene was designed to extract the critical features between 

combinatorial point mutations and cancer types 119.  Furthermore, Zeng et al., proposed deep 

learning-based model DeepCues that utilizes CNN to find features from DNA sequencing data 

for cancer classification. DeepCues uses whole-exome sequencing, germline variants, and 

somatic mutations, including insertions and deletions, for feature extraction and classification. 

The overall accuracy of DeepCues is 77.6% 120.  

 

2.5.3 DNA methylation data for cancer classification 

     The investigation of methylation patterns assumes a crucial role in comprehending the 

progression of diseases. Therefore, methylome data is used in cancer classification and 

diagnosis 121. Several machine learning approaches are developed to accurately classify the 

cancers such as lung cancer 122, breast cancer 123, and head and neck squamous cell cancers 

(HNSCs) 124 by utilizing DNA methylation data.  Ren, J., et al, (2022) utilized DNA methylation 

data to identify potential biomarkers in different subtypes of sarcoma. They employed an 
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unsupervised machine learning algorithm, specifically boruta, for feature filtration. This was 

followed by the use of LASSO, Light Gradient Boosting Machine (GBM), and Monte Carlo 

Feature Selection (MCFS) for feature selection. To develop a classification model, they 

employed supervised machine learning methods including decision trees (DT) and random 

forests (RF). The random forest (RF) model demonstrated superior predictive accuracy 

compared to the decision tree (DT) model.  The prediction accuracies of LASSO with RF, Light 

GBM with RF, and MCFS with RF were found to be 98.70%, 99.10%, and 98.70% respectively. 

The present study employed a specific approach to identify biomarkers that exhibit gene 

expression patterns derived from the annotation of methylation site features that are strongly 

connected. Notably, the genes PRKAR1B, INPP5A, and GLI3 were found to be associated with 

these biomarkers. They were found to be linked with sarcoma 125. Cai, Z.,(2015) developed a 

ML based method to classify the lung cancers types into small cell lung cancer (SCLC), lung 

adenocarcinoma (LADC), and squamous cell lung cancer (SQCLC) using DNA methylation 

data. RF and Maximum Relevancy and Minimum Redundancy (mRMR) were used to classify 

LADC, SQCLC and SCLC and achieved a prediction accuracy of 86.54% 126. Moreover, ML 

models such as XGBoost, SVM, RF, NB and KNN were employed to classify the different 

types of cancers by employing DNA methylation data 127. These studies have contributed novel 

perspectives on cancer detection from an epigenetic standpoint, and may lead to personalized 

and therapeutic approaches. Interestingly, survival of the patients were also predicted by the 

machine learning models in different types of cancer by DNA methylation data 128. 

     Eissa et al. (2022) constructed a deep neural network (DNN) model based on DNA 

methylation data for the purpose of classifying various types of cancer, including Breast Cancer 

(BRCA), Ovary Cancer (OV), Stomach Cancer (STOMACH), Colon Cancer (COAD), Kidney 

Cancer (KIRC), Liver Cancer (LIHC), Lung Cancer (LUSC), Prostate Cancer (PRAD), and 

Thyroid cancer (THCA). The classification was based on DNA methylation data obtained from 

the TCGA database. The system that was developed also shown exceptional performance in 

terms of receiver operating characteristic area under the curve (ROC AUC) values, ranging 

from 0.85 to 0.89 129. A few studies have attempted to uncover DNA methylation indicators 

that can be used to diagnose various cancer types using deep learning techniques such as 

MethylNet 130, MRCNN 131, deep neural network (DNN) 132, and deep autoencoder 133. 

DeepCpG is another CNN-based approach for predicting methylation states and has accurately 

identified the changes in methylation levels 134. A DNA methylation-based cancer classification 

tool, MethPed 135 was developed for pediatric brain tumors. The present methylome data 



 
 
Chapter 2   Review of Literature 

23 
 

consists of more than 800000 CpG sites; therefore, extracting the relevant features is 

challenging. Further, exploration of DL algorithms and methylation data may contribute to 

understanding the complex mechanism of gene regulation to identify the brain cancer-specific 

markers. The above literature showed that DNA methylation data have a potential to serve as a 

biomarker for several cancers. 

It is observed that artificial intelligence techniques are used for cancer classification using 

genomics data. Apart from cancer classification, molecular subtyping of cancer is also 

important step towards the personalized therapy. 

 

2.6 AI in cancer subtype classification  

     The precise identification of the specific subtype of cancer is of utmost importance in order 

to get an accurate diagnosis and effective therapy for patients. This is because the cancer 

subtype plays a critical role in improving clinical outcomes. Many human cancers have multiple 

subtypes with unique molecular signatures, and these subtypes also show different prognosis 

and treatment responses. Choi, J.M., et al. 2023 proposed a semi-supervised method for 

classifying breast cancer subtypes using DNA methylation profiles. The accuracy of the subtype 

classification was determined to be 82.3% 136. Yuan, F., et al, 2020 applied ML algorithms such 

as SVM and RF on lung cancer data to classify the subtypes of lung cancer into Lung 

adenocarcinoma (LUAD) and lung squamous cell cancer (LUSC) by employing the gene 

expression profiles. They observed that SVM outperformed RF to classify the lung cancer 

subtypes; and achieved classification accuracy of 96.7% 137. Similarly, DL-based methods were 

employed for the classification of lung cancer subtypes.  For example, XGBoost algorithm was 

used to classify the subtypes of lung cancer into LUAD and LUSC using gene expression data. 

The models showed excellent subtype classification accuracy of 97.1% 138. Tao, M., et al, 2019 

applied Multiple Kernel Learning (MKL) on breast cancer to classify the breast cancer subtypes 

using gene expression, methylation and copy number data. They obtained a classification 

accuracy of 79.8% 139. Shen, J., 2022 introduced a novel methodology that integrates a 

convolutional neural network (CNN) with a bidirectional gated recurrent unit (BiGRU) as a 

deep learning strategy named DCGN. This approach was used to classify the cancer subtypes 

of breast cancer and bladder cancer using high dimensional gene expression data. They 

compared the DCGN performance with seven other methods and DCGN outperformed among 
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all. The DCGN showed the subtype classification accuracy in breast cancer was 96% and in 

bladder cancer 95.5% 140.  

     It is observed that there are only few reports are available for subtype classification of 

cancers using genomics data. Based on whole genomics data, cancer subtyping studies is carried 

out and demonstrated that it is efficient approach for dissecting cancer heretogeneity. The 

advent and swift progress of high-throughput sequencing technologies, including next-

generation sequencing technology, RNA sequencing (RNA-seq), DNA methylation arrays, and 

a lots of mutations in entire genome, have facilitated the exploration of disease mechanisms at 

the genome, transcriptome, epigenome and mutational levels. However, the use of single omic 

data is limited to examining only one component of omics data, and it lacks the ability to 

elucidate the intricate relationships among genetic alterations, such as mutations, gene 

expression, and methylation. On the other hand, the integration of multi-omics data from 

different genomic levels provides a more extensive comprehension of intricate disease 

modifications and helps to understand the cancer initiation, facilitating cancer detection, and 

improved therapy strategies. 

 

2.7 Integration of genomic data for cancer classification 

     To predict cancer from single-omics data such as genome, transcriptome, methylome or 

mutational data are widely used. However, these single layers of genomics data individually do 

not explain every aspect of cancer. Although integration of all genomics layer interaction 

collectively explains the complex relationships between molecular layers that leads to cancer. 

With only a single type of omics data, tumour occurrence and development cannot be 

effectively predicted. Accurate multi-omics integration techniques are required to combine data 

from diverse patients because multi-omics data typically come from entirely distinct sources. 

Consequently, a pressing issue in precision medicine is how to rationally integrate the current 

chaotic multi-group data to increase the accuracy of disease diagnosis. 

     Genomics data from different molecular levels are linked to one another. Such as, mutation 

changes the mRNA expression level of the genes or methylation level in the promoter region 

determines the depleted or elevated expression of the genes. Therefore, recently researchers 

have tried to integrate multiple genomics data or multi-omics data to develop powerful ML and 

DL-based tools. Moreover, to capture crucial cellular mechanisms or interactions between 
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biomolecules, it is essential to analyze the multi-omics data, which can facilitate the discovery 

of the new diagnosis and therapeutic approach for cancer treatment. In order to find the new 

patterns in cancer patients, multi-omics data was used by employing machine learning methods 

141. Many multi-omics integration studies for various cancers have been conducted in recent 

years. However, in the field of diagnosis of brain cancer, there are very few studies on multi-

omics integration. Yang et al. (2019) proposed a novel approach for data integration and cancer 

subtyping, specifically targeting seven forms of cancer, including GBM. The approach is based 

on a Random Walk based cluster ensemble (RWCE) method that incorporates mRNA, miRNA, 

and methylation data. This study provides evidence that it possesses the capacity to identify 

subtypes that hold clinical and biological relevance 142.  

     Recently a deep neural network (DNN) learning model was proposed to effectively integrate 

the omics datasets of copy number alteration and gene expression data. The objective of this 

integration was to accurately predict the molecular subtypes of breast cancer. The researchers 

showed that an integrative deep learning model provided good prediction accuracy. The study 

demonstrated an accuracy rate of 79.2% 143. Furthermore, another multimodal DL tool, 

MultiSurv, was designed to estimate the long-term survival prediction of cancer patients 144. 

MultiSurv integrates clinical, imaging, and multi-omics data (mRNA, miRNA, DNA 

methylation, CNA data) to predict patient survival with high accuracy. Zhang et al. designed a 

multi-view multi-task deep learning framework, OmiEmbed, to integrate the high dimensional 

multi-omics data. OmiEmbed can be used for demographic and clinical feature reconstruction 

and survival prediction 145. The authors also explained that OmiEmbed could facilitate accurate 

and personalized treatment for cancer. This evidence shows that implementing a deep learning-

based framework for integrating and analyzing the various omics data could revolutionize the 

clinical diagnosis of cancer. 

     Autoencoders are used for data integration of multi-omics data to identify disease states and 

cancer subtyping. Subtype identification is a challenging task, therefore identifying the 

particular patient subgroup necessitates the integration of multi-omics data. Two patient 

subgroups with significant survival differences have been found using supervised and 

unsupervised learning on transcriptomics, and DNA methylation data of hepatocellular 

carcinoma (HCC) 146. Xu et al, 2019 proposed a hierarchical integration approach called HI-

DFNForest, which utilises deep flexible neural forest data to effectively integrate multi-omics 

data for the purpose of cancer subtype classification. The researchers employed a Stacked 
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Autoencoder (SAE) technique to extract meaningful features, followed by the utilisation of a 

Deep Flexible Neural Forest (DFNForest) model for the classification of patients into breast 

cancer subtypes using data sets obtained from TCGA. This integration involved the 

incorporation of gene expression, miRNA expression, and DNA methylation data. The 

integration of multi-omics data of breast cancer demonstrated favourable predictive accuracy, 

with percentages of 84.6% 147. 

     Artificial intelligence can effectively manage high-dimensional genome-wide data and 

discern concealed patterns that may not be noticeable in individual genetic data. This integration 

aims to convert large datasets into clinically actionable knowledge, thereby serving as the basis 

for precision medicine. 

 

2.8 Artificial intelligence and personalized medicine 

     Precision medicine is a method to develop personalized care for patients based on an 

individual patient's molecular profile. The approaches in precision medicine are designed to 

investigate the relationship between genomic alteration and its contribution to the risk of 

developing specific cancer or its effect on treatment. Inter- and intra-tumor heterogeneity causes 

the genotypic differences between patients, showing the necessity of personalized medicine for 

effective treatment. Due to the abundance of available data and high-throughput experimental 

techniques, DL can revolutionize decision support systems in oncology and decipher the hidden 

phenotypic and genotype patterns, as well as their correlations.  

     The deepProfile, a DL-based framework uses the unlabeled gene expression data to predict 

the complex disease phenotype.  deepProfile can be implemented on gene expression data from 

brain cancer to find the phenotype-genotype relationship for personalized treatment 148. The 

differences in Drug response occur due to inter-and intra-tumor heterogeneity. A deep 

variational autoencoder (VAE) model was demonstrated to predict the accurate drug response 

with higher efficiency with these heterogeneous data. In addition, the authors identified 

molecular features associated with drug response in 33 cancer types, including the brain 149. 

Identifying the genotype to phenotype relationship is a crucial step to finding the molecular 

signature of the disease. GenNet, a deep learning framework, can predict phenotypes from 

genetic variants 150. Another biologically interpretable tool Varmole 151 embeds multi-omics 

networks data into a deep neural network framework and prioritizes variants, genes, and 
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regulatory linkages, subsequently predicting genotype to phenotype relationships. For complex 

diseases like brain cancer, personalized medicine based on individual molecular signatures is 

essential for targeted therapy. Furthermore, to avoid the adverse effects of drugs and to increase 

the life expectancy of brain cancer patients, a DL-based support system will be most desirable 

in modern medicine. The utilisation of artificial intelligence (AI) presents an opportunity to 

leverage genomic information across many molecular layers. This has the potential to facilitate 

prognostic predictions regarding patient outcomes, including the probability of a positive 

response to a cancer treatment intervention. 

 

2.9 Integration of multi-omics data for Drug Development 

     The integration of multi-omics data, which encompasses information on biomolecules from 

several levels, has great promise in facilitating a comprehensive and systematic understanding 

of complicated biological processes. Argelaguet, R., et al., 2018 introduced a computational 

approach called Multi-Omics Factor Analysis (MOFA) to identify hidden components within a 

multi-omics dataset that capture both biological and technical sources of variability 152. 

Integrated approaches aid in the evaluation of the transfer of information between different 

omics levels, hence facilitating the connection between genotype and phenotype. There are 

exists substantial evidence indicating that modifications in the genomes of cancer cells can 

significantly impact the efficacy of anticancer treatments in clinical settings. There are various 

cases in which genetic variations have been utilised as molecular biomarkers to identify 

individuals who are most likely to derive therapeutic advantages from a specific treatment. The 

utilisation of integrative analyses that effectively synthesise and establish connections between 

molecular data and treatment sensitivity is of utmost importance in order to comprehensively 

capture the intricate biological complexity that underlies precision medicine. The primary 

objective of precision medicine is to administer the right drug to the right patient at the right 

time. Different patients respond differently for the same drug due to intratumor heterogeneity. 

The main challenge in the field of oncology research is the prediction of individual response 

for different treatments. To overcome this problem, AI based techniques are widely used. 

Artificial intelligence-based discovery has gained attention recently since it drastically cuts the 

time and money needed to produce novel drugs. To identify drug response on cancer to 

therapies based on molecular profiles of multi-omics data, deep learning models can be used, 

this can lead to profiling of the modern era of precision medicine and yield the clinical 
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relevance. Chiu et al. 2019 introduced a pair of deep neural networks, wherein one network was 

designed to handle gene expression data and the other network was tailored for gene mutation 

data. Subsequently, the two networks were integrated to collectively forecast drug response 153. 

Wang, C., et al., 2021 developed deep neural network architecture to integrate the multi-omics 

data encompassing gene expressions, copy number variations, gene mutations, reverse phase 

protein array expressions, and metabolomics expressions from cancer cell lines data available 

in CCLE and GDSC. They employed a graph embedding layer to incorporate the interactome 

data and attention layer to combine different omics features and achieved the drug response 

prediction accuracy was 98% 154. Almutiri et al. (2023) proposed a novel methodology that 

integrates Bayesian Ridge Regression (BRR) with Deep Forest.  The BRR method was 

employed for the purpose of integrating several omics datasets, while the DF approach was 

utilised for drug response prediction. The Cancer Cell Line Encyclopaedia (CCLE) dataset was 

utilised to integrate gene expression, copy number variation, and single nucleotide variation. 

The evaluation criteria employed in this study included Root Mean Square Error (RMSE), 

Pearson Correlation Coefficient (PCC), and the coefficient of determination (R2). The model 

obtained an RMSE value of 0.175, a PCC value of 0.842, and an R2 value of 0.708 155. Malik 

et al. (2021) introduced a comprehensive methodology that integrates multi-omics data 

including copy number variation (CNV), mutation, methylation, miRNA, RNA, and protein 

expression. To accurately assess the survival outcomes and medication responsiveness in 

individuals diagnosed with breast cancer. The Neighbourhood Component Analysis (NCA) 

algorithm, which is a supervised feature selection method, was utilised to identify pertinent 

features from multi-omics datasets obtained from The Cancer Genome Atlas (TCGA) and 

Genomics of Drug Sensitivity in Cancer (GDSC) databases. The survival prediction framework 

shown a high level of effectiveness in classifying patients into risk subtypes, with an accuracy 

rate of 94% 156. Recently several other are also avalaible such as MOLI 157, AGMI 158, and 

DrDimont 159 for drug response prediction. These computational models of drug sensitivity 

prediction help to aid in the selection and prioritization of candidate compounds for pre-clinical 

research.  

     It has been observed that none of the reports presented thus far provide information on the 

subtype-specific drugs for the treatment of glioma. Through the integration of multi-omics data 

with pre-existing knowledge of molecular interactions, artificial intelligence (AI) has the 

capability to identify potential drug targets that play a critical role in the advancement of cancer 

and can be potentially influenced by therapeutic treatments. For the advancement of precision 
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medicine and the development of tailored cancer treatment, individualized medication response 

prediction is essential. Large-scale multi-omics profiles provide unprecedented opportunities 

for precision cancer therapy.  

Lacunas 

     Brain cancer classification was done by histopathological methods that suffer from 

intraobserver and interobserver variability 6, which causes poor clinical outcomes. Introducing 

genetic markers (WHO classification, 2016), such as a mutation in either the Isocitrate 

dehydrogenase IDH1 or IDH2 gene and co-deletion of 1p and 19q chromosomes, provides more 

persistent diagnosis options and better clinical management 160. IDH1 mutation and 1p/19q co-

deletion are diagnostically and prognostically significant. However, this may not always 

provide accurate classification, as IDH mutation was reported in all types of LGGs 161. 

Therefore, 1p/19q co-deletion testing may lead to a false positive (FP) result 162. Alternatively, 

imaging techniques, such as magnetic resonance spectroscopy and positron emission 

tomography, are used for grading the LGG 163. However, these techniques do not provide the 

genetic basis of cancer grade. Consequently, several studies suggest the requirement of 

additional clinical variables to increase the sensitivity of current treatment 164. Most of the 

research papers have reported AI–based binary classification methods to classify cancer and 

healthy samples using image data or mono omics data (i.e., gene expression). None of the 

reports shows the subtyping of brain cancer with multi-omics data till now. As previously 

mentioned, LGG can be classified into three subtypes: astrocytoma, oligoastrocytoma, and 

oligodendroglioma, of grade 2 and grade 3.  Similary, GBM has three distinct subtypes, namely 

classical, mesenchymal, and proneural. To yet, the classification of grade and subtype based on 

genomes data has not been undertaken. To date, there has been a lack of grade and subtype-

specific classification utilising genomes data. Most of the biomarkers for brain cancer until this 

point have been discovered using inconclusive, low-throughput techniques without taking 

omics data into account. Most observations from low-throughput experiments fail to provide 

therapeutic solutions since they cannot provide a comprehensive perspective of the complex 

systems of cancer. With the aim of resolving this issue, omics data analysis is a rapidly growing 

area of research to effectively capture complex relationships from multiple omics layers, i.e., 

genomics, transcriptomics, and epigenomics. Because of the advancement of high-throughput 

technologies, the size of these omics data is increasing exponentially. In order to extract new 

insights from vast amounts of data, powerful computing approaches are needed. In this context, 



 
 
Chapter 2   Review of Literature 

30 
 

machine learning (ML) and deep learning (DL) algorithms have emerged as one of the most 

successful techniques because of their capacity for handling high dimensional data, effective 

data integration, efficient dimensionality reduction, stability, and higher prediction accuracy. 

While various techniques exist for integrating multi-omics data, such as the utilisation of 

autoencoders, there is still a lack of research demonstrating the categorization of glioma 

subtypes using multi-omics data. Numerous machine learning (ML) models have been 

developed for the purpose of cancer classification, exhibiting superior accuracy. However, these 

models are limited in their ability to identify the cancer causing genes that trigger the 

tumorigenesis process. Integrating the methylome and transcriptome is crucial in finding the 

genetic and epigenetic features that cause cancer, which is also important for making 

biologically relevant models. Univariate cox analysis facilitates identifying the biologically 

important and cancer-associated features, which can lead to the development of a clinically 

relevant DL model. Another relevant task for precision medicine is to find the targets and 

develop a drug response prediction model for cancer subtypes as we know that every individual 

has different genetic makeup. They respond differently to the same drug and same tumor type 

due to their inter and intra-tumor heterogeneity. Considering the complexity of glioma, network 

medicine-based approaches should be implemented to find the subtype-specific drug targets. 

Advances in sequencing techniques and genome-wide association studies have revealed that 

accumulated genetic variations associated with an increased risk for cancer are distributed 

throughout the genome. Further studies illustrate that genes affected by genomic variations are 

not randomly distributed in molecular networks. Indeed, genes associated with the same disease 

are more likely to interact with each other. As a result, a disease module forms, a subnetwork 

linked to a disease. Numerous genes that are known to be relevant to disease are found in disease 

modules. Utilizing disease modules in each subtype of glioma, subtype-specific target can be 

identified. Identification of cancer-specific disease modules can help to identify novel 

biomarkers for therapeutic targets. Therefore, network medicine and rational drug-designing 

approaches recognize these modules as pharmacological targets as opposed to the individual 

genes or proteins in the network. However, the therapeutic efficiency of drugs in cancer is 

highly context-dependent; often, drug resistance reduces the effectiveness of chemotherapy. 

Therefore, the prediction of drug response, i.e., resistance or sensitivity, is essential for 

improving the efficacy of chemotherapy. Therefore, AI-based drug response prediction models 

can be developed using genomics data for precision therapy. Based on the present lacuna, the 
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present thesis develops AI-based models to support the clinical diagnosis of glioma subtypes 

and drug response prediction. 

 

Objectives 

The objective of the work is to develop a machine-learning and deep-learning based framework 

for subtype classification of glioma and identify the biomarkers in each subtype of glioma. AI-

based diagnostic tool and drug response prediction model for the precision therapy of glioma is 

developed. This thesis focuses on the following objectives. 

1. Development of a machine learning-based framework for subtyping and grading 

of lower-grade glioma (LGG) using transcriptome data and identification of 

biomarkers. 

2. Development of Deep learning and machine learning framework based on 

genomic data for subtyping the glioblastoma multiforme (GBM) and identification 

of biomarkers. 

3. Implementation of Deep learning embedding system for multi-omics data 

integration for subtyping of Glioma. 

4. Identification of subtype-specific disease modules and development of drug 

response prediction models by combining network medicine and AI-based 

approaches. 
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Chapter 3: Objective 1 

Development of a machine learning-based framework for 

subtyping and grading of lower-grade glioma (LGG) using 

transcriptome data and the identification of biomarkers 

 

3.1 Introduction 

    Classifying lower-grade gliomas (LGG) is a crucial step for accurate therapeutic intervention. 

The histopathological classification of various subtypes of LGG, including astrocytoma, 

oligodendroglioma, and oligoastrocytoma, suffers from intraobserver and interobserver 

variability leading to inaccurate classification and greater risk to patient health. The accurate 

classification of glioma types and grades is vital to improving brain cancer patient's prognosis. 

Due to the enormous complexity at the molecular level, the critical molecular driver of gliomas 

is poorly understood. Therefore, there is an urgent need to identify the subtype-specific 

molecular marker for personalized therapy. Over the past decade, advances in sequencing 

technology have provided the opportunity to understand complex disorders holistically and 

have contributed to designing effective therapeutic approaches. RNA sequencing technology 

provided the opportunity to study genome-wide expression patterns. Changes in gene 

expression patterns are a prominent feature of any cancer cell, which have been successfully 

implemented to explain the mechanism of cancer. However, whole-genome expression data or 

transcriptomes are barely used to classify the brain cancer type and grade. In this chapter, a 

comprehensive analysis was performed to develop an interpretable machine learning (ML) 

framework using the transcriptome data of LGG to diagnose subtypes and grades. 

     To develop a model for subtype and grade classification, both unsupervised and supervised 

learning techniques was applied. However, unsupervised methods were unable to separate the 

subtypes and grades. Therefore an ML framework was developed based on supervised learning 

techniques. In brief, correlation, support vector machine recursive feature elimination (SVM-

RFE), and Boruta algorithm was implemented for feature selection. Subsequently, the 

classification using Support Vector Machine (SVM), k-nearest neighbors (KNN), Gaussian 

Naïve Bayes (GNB), Decision Tree (DT), and Random forest (RF) was performed and 

compared their performance. Most published reports focus on the two-class normal vs. cancer 

cell classification. In comparison, our approach has efficiently categorized multiple classes, i.e., 
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astrocytoma, oligodendroglioma, and oligoastrocytoma cells, including grades. Further to find 

the biological relevancy of feature genes, the gene expression pattern among the LGG of 

different subtypes and grades was compared using co-expression analysis. Additionally, 

subtype-specific prognostic markers for diagnosis and treatment was identified.  

 

3.2 Methodology 

3.2.1 Data Collection and Balancing of the Dataset 

     Healthy brain tissue (n = 93) gene expression data of GTEx and mRNA expression data of 

LGG (n = 281) patients were obtained from UCSC Xena 165 (https://xena.ucsc.edu/). Based on 

the clinical information, LGG samples were divided into specific subtypes and grades (Table 

3.1 and results section, Figure 3.2 A). The external data set (GSE74462 and GSE43378) was 

collected from the Gene Expression Omnibus (GEO) repository for validation. In table 3.1, 

there are unequal number of samples in different subtypes and grades of LGG; due to unequal 

number of samples the model can become biased towards one class, leading to poor 

performance of the model. Hence, random sampling was performed to select the equal number 

of patients in each subtype before the feature selection. The oversampling technique was used 

to reduce the bias and variance of the classifier. Dataset balancing was done using the 

imbalanced-learn package in Python, and the minority class was randomly oversampled to 

obtain a balanced dataset. The oversampling technique was used to reduce the bias and variance 

of the classifier.  

 

Table 3.1: Details the tumor, normal samples in LGG 

  Transcriptome 

Type Grades Subtypes Samples 

LGG 

Grade II 

Astrocytoma (G II) 30 

Oligoastrocytoma (G II) 42 

Oligodendroglioma (G II) 67 

Grade III 

Astrocytoma (G III) 66 

Oligoastrocytoma (G III) 33 

Oligodendroglioma (G III) 43 

Healthy Normal                 — 93 

 

 

https://xena.ucsc.edu/
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3.2.2 Principal Component Analysis  

     Principal Component Analysis (PCA) is a statistical technique used for analysing high 

dimensional datasets containing a high number of features per instance helps to preserve the 

maximum amount of information while converting into high dimensional space to low 

dimensional space. PCA is widely used for reducing the dimension of the features and 

visualization. In PCA, data is linearly transformed into new coordinates where most of the 

variation in the data can be described in fewer dimensions than the initial input dataset. Most 

of the studies use the first two principal components because it explains most variance; in order 

to plot the two dimension data for the visualization of data points that are clustered and closely 

related. PCA is used when many variables are highly correlated, and it is desirable to reduce 

the dimension of the variable into independent variables. Further, these independent variables 

are taken for making predictive models 166. The principal component analysis (PCA) was used 

to observe the gene expression patterns in different subtypes and grades of LGG. Principal 

components analysis (PCA) of the gene expression data of LGG was performed using the 

ggfortify package in R. PCA was done on scaled data. A cancer subtype-wise cluster was 

generated using the cluster package in R. 

 

 

3.2.3 Correlation-based Feature Selection 

     The feature subset with low feature-feature correlation avoids redundancy. The feature sets 

with high predictive power contain highly correlated features with the class but are uncorrelated 

with each other. Genes with the same expression pattern in different subtypes are highly 

correlated and redundant because they cannot distinguish different classes. Therefore, highly 

correlated genes between the subtypes were removed to improve classification accuracy. We 

measured the correlation coefficient between the gene expression values in the different class 

labels (subtypes) separately for grade 2, grade 3, and mixed grade. In this approach, the 

correlation was measured on gene expression data using the Pearson correlation coefficient 

(PCC). The correlation coefficient is a statistical metric that quantifies the magnitude and 

direction of the association between two variables, with values ranging from -1 to 1. The 

correlation was calculated using the NumPy package in Python using formula shown in the 

below. PCC > 0.7 is set as the threshold, and genes that had PCC > 0.7 in between the classes 

were dropped, and the remaining features were taken for model development.  
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𝑟 =
𝑛(∑𝑥𝑦) − (∑𝑥) (∑𝑦)

√[𝑛∑𝑥2 − (∑𝑥)2] [𝑛∑𝑦2 − (∑𝑦)2]
 

 

Where, 

 

r = Pearson Coefficient 

n= number of pairs of genes 

∑xy = sum of products of the paired genes 

∑x = sum of the x scores 

∑y= sum of the y scores 

∑𝑥2= sum of the squared x scores 

∑𝑦2= sum of the squared y scores 

 

 

3.2.4 Machine Learning-based Feature Selection  

     We have applied supervised machine learning-based feature selection methods, support 

vector machine recursive feature elimination (SVM-RFE), and Boruta. These algorithms were 

used to find the features that optimized the classifier's performance.  

 

3.2.4.1 Support Vector Machine Recursive Feature Elimination (SVM-RFE) 

     Support vector machine recursive feature elimination (SVM-RFE) is a supervised machine 

learning-based feature selection method 167. It is a potent feature selection algorithm. Avoiding 

overfitting. The aim of recursive feature elimination (RFE) is to select features by recursively 

considering smaller and smaller sets of features. In brief, SVM-RFE initializes the data set for 

all features and trains the SVM using the dataset, and then it ranks the features. Feature selection 

is done only on the training dataset by use of SVM-RFE. SVM-RFE deletes features having the 

minimum weight to obtain the optimum rank list of the features. Next based on ranking it 

screens the optimum features and eliminates the lower-ranked features. The process of selecting 

feature sets for SVM-RFE may be broken down primarily into three steps: (1) input of the 

datasets to be classified; (2) computation of each feature's weight; and (3) deletion of the feature 

with the lowest weight to determine the ranking of features. This way, recursively deleting the 

least important features from the ranked list and selecting the optimum gene set improved 
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classification accuracy 168,169. SVM-RFE was used to find the features that optimized the 

classifier's performance. SVM-RFE was implemented using the Scikit-Learn (https://scikit-

learn.org) package in Python. After selecting the features by RFE, the best features were 

identified by rank, and features were selecting according to the highest rank. The top-rank 

features (20, 50, 100, 200, and 500) were selected as variables for classifications. 

 

3.2.4.2 Boruta 

    The Boruta algorithm iteratively removes the statistically less relevant features than the 

shuffled copies of the features. This algorithm selects the important features by comparing the 

Z-scores of the shuffled features with the original features 170.   We have used the Boruta 

algorithm for feature selection using the Boruta package in R.  

 

3.2.5 Machine Learning Algorithms 

     Supervised machine learning is a type of machine learning algorithm that needs the labeled 

dataset to train the algorithms that to classify the data and predict the outcomes accurately for 

unforeseen data. It means a small set of data is already tagged with the correct label. For 

example, ‘cancer’, and ‘non-cancer’ for a cancer classification problem. Classification-based 

supervised learning methods are probability-based and find the category of outcome (discrete 

values); the algorithm finds the highest probability of a set of data items belonging to. In the 

classification approach, discrete values of a particular class are predicted and evaluated based 

on the accuracy of the model. This is either binary classification or multiclass classification. In 

binary classification, the model either predicts cancer and normal (0, or 1), whereas in 

multiclass classification model predicts more than one class, for example, cancer subtypes 

astrocytoma, oligoastrocytoma and oligodendroglioma (0, 1, and 2). Here, in this thesis, we 

classified the subtypes of LGG using several ML algorithms. We used the sklearn library in 

Python to build the ML models. Supervised ML methods which are implemented in the present 

work are Support Vector Machine (SVM), k-nearest neighbors (kNN), Gaussian naïve bayes 

(GNB), Decision Tree (DT), and Random Forest (RF). A brief description of each algorithm is 

provided here.  
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3.2.5.1 Support Vector Machine (SVM) 

     Support Vector machine (SVM) is a popular supervised machine learning algorithm, which 

is used for classification problems. This method is based on statistical learning theory. The main 

objective of the SVM algorithm is to maximize the margin or to create the best linear decision 

boundary that can segregate the n-dimensional space into the classes of data points on either 

side of the decision boundary, and the best decision boundary is called a hyperplane 171. The 

training samples that are close to the hyperplane are called support vectors. The margin is 

calculated as the perpendicular distance from the line to the closest point. Therefore, SVM 

computes the maximum boundary that leads to a uniform split of all data points. If a dataset is 

noisy and messy, then it cannot be separated with a hyperplane. In some cases, a hyperplane or 

linear decision boundary cannot be found, and a kernel is used. SVM uses support vectors that 

separate data points in different hyperplanes 74. SVM selects optimal hyperplanes for 

classification. In SVM, we tuned the hyperparameter, i.e., regularization parameter c (c = 10), 

and applied a linear kernel to achieve higher accuracy. SVM was implemented using the 

SVC package in Python. 

 

3.2.5.2 k-nearest neighbors (kNN) 

     K-nearest neighbors (KNN) is one of the simplest supervised machine learning algorithms 

considered a lazy learner (it does not learn from the training set immediately; instead, it stores 

the dataset, and at the time of classification, it performs an action on the dataset) as there is no 

learning is required in the model. It is a non-parametric (it does not make any assumption on 

underlying data) algorithm that categorizes data points based on their proximity and association 

to other available data. This algorithm assumes that similar data points are nearby. As a result, 

Euclidean distance (which is calculated as the square root of the sum of the squared differences 

between a point a and b across all input attributes i, and which is represented as 𝑑 (𝑎, 𝑏) =

√∑ (𝑎𝑖 − 𝑏𝑖)𝑛
𝑖=1

2
. Euclidean distance is a good distance measure to use if the input variables 

are similar in type). It is usually used to calculate the distance between data points and assign 

categories based on the most common category or average. For new data points, predictions are 

made by finding the K most similar instances (neighbors) across the training set and 

summarizing the output variables for those K instances 75,76. KNN was implemented using the 

KNeighborsClassifier package in Python. 
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The following steps are to be followed in KNN: 

1. Select the number of K of the neighbors. 

2. Calculate the Euclidean distance of k number of neighbors of the sample that have to 

classify.  

3. Among the k neighbors, count the number of data points in each category. 

4. Assign the new data point to the class label for maximum number of neighbors. 

5. The model is ready. 

 

3.2.5.3 Gaussian naïve bayes (GNB) 

     Naïve bayes is a probabilistic classification approach based on Bayes theorem and used for 

solving classification problems 172. It is a simple and effective classification algorithm to build 

the model for large datasets and make quick predictions, but it has high functionality. First, it 

is called Naïve because it assumes that a certain feature is independent of the occurrence of 

other features. Second, it is called Bayes because it depends on the principle of Bayes' Theorem 

(Conditional and Joint Probability). This implies that each predictor has an equivalent influence 

on the outcome, and the presence of one feature does not influence the presence of another in 

determining the probability of a specific event. 

    Here, Gaussian naïve bayes (GNB) are used for classification of LGG subtype. GNB is a 

generative model. It is an approach to create a simple model to assume that each datapoint 

follow the Gaussian distribution with no co-variance (independent dimensions) between 

dimensions. This model can be fit by simply finding the mean and standard deviation of the 

points within each label. This is all it takes to define such a distribution. This is how the GNB 

classifier works. Gaussian Naive Bayes is a probabilistic machine learning classifier based on 

the Bayes theorem. It assumes that the data from each label is drawn from a simple Gaussian 

distribution and considers all the features are independent 173. GNB was implemented using the 

GaussianNB package in Python. 

 

3.2.5.4 Decision Tree (DT)  

    Decision Trees (DT) are the supervised machine learning algorithm preferred to solve 

classification problems and predictions. It is a hierarchical tree-like structure where internal 

nodes denote a test on the features, branches represent the decision rules (outcome of the test), 
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and each leaf node holds the class label. It boosts the predictive model accuracy and ease in 

interpretation and stability. In Decision Tree, the main aim is to create a model that predicts the 

value of a target variable by learning simple decision rules. The decision tree is constructed by 

repeatedly splitting a node into two child nodes, beginning from the root node containing the 

whole learning sample. Decision tree learning follows a divide-and-conquer strategy by 

performing a greedy search to identify the optimal split points in the tree 174. The process of 

splitting the nodes is repeated in a top-down manner until all data are classified into particular 

class labels homogeneously. DT was implemented using the DecisionTreeClassifier package 

in Python. 

 

3.2.5.5 Random Forest (RF) 

     Random forest (RF) is a very popular and fast supervised machine learning algorithm. It is 

used for classification problems. Random forest is an ensemble technique used for classification 

by several estimators (decision trees). Classification is done using the majority vote among 

estimators. Random forest prevents overfitting and leads to higher accuracy because it contains 

many trees, leading to a more generalizable model. It is diverse, and more stable models are 

formed 175. RF was implemented using the RandomForestClassifier package in Python. 

 

3.2.5.6 K-fold Cross Validation 

     When enough validation set is not available to tune the hyperparameter, this k-fold cross-

validation technique is used. A validation and test set may be burdensome when you have few 

training samples. You would instead train the model with more data. Then only divide the data 

into a training set and a test set. After that, mimic a validation set on the training set using cross-

validation. K-fold cross-validation is the randomized subset of data. Here, stratified k-fold 

cross-validation (CV) was applied to each model's training dataset (70%). Stratified k-fold 

cross-validation was employed in cases when the dataset size is small. It described the reliability 

and stability of the models. The stratified k-fold data is split into k equal parts, where k-1 is 

used to train a model, and the remaining portion is used as a test data to evaluate the model's 

performance. This is an iterative process repeated up to k times. The final output is then 

computed by averaging over the obtained performance parameters from each test set. Figure 

3.1 shows an example of 10-fold cross-validation. The calculation of the standard deviation was 

performed on the mean accuracy in order to get the error rate for classification. Additionally, a 
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statistical test was conducted using pairwise comparison for each machine learning method to 

assess the average accuracy scores obtained from the 10-fold cross-validation. 

 

Figure 3.1: Demonstration of k-fold cross-validation. 

 

3.2.6 Model Evaluation Metrics for Classification 

     Evaluating the performance of a model is one of the important tasks of machine learning. 

Before creating a model, datasets are divided into training and test datasets, and the model 

trained on the training datasets and model evaluation is done on the test datasets with labels. In 

which the predicted label is compared with the actual label, and measure the performance of 

the model using several evaluation metrics. Creating a precise model that can forecast 

previously unobserved data is essential. The model may perform exceptionally well on some 

criteria while doing poorly on others. Therefore, it is crucial to analyze the model using a variety 

of measures. Once the model is prepared, it should undergo an evaluation to assess its 

performance.  

 

3.2.6.1 Confusion Matrix 

     A confusion matrix is in the form of a contingency table or matrix of output and describes 

the performance of the model. Sometimes, it is known as an error matrix. The matrix consists 
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of prediction results in summarized form, showing the total number of correct and incorrect 

predictions. The description of a matrix is given below: 

 

 

 

 

 

True positive (TP) — the number of samples with the absence of brain cancer predicted as an 

absence of brain cancer. 

False positive (FP) — the number of samples with the presence of brain cancer predicted as an 

absence of brain cancer. 

True negative (TN) — the number of samples with the presence of brain cancer predicted as 

the presence of brain cancer. 

False negative (FN) — the number of samples that have an absence of brain cancer predicted 

as the presence of brain cancer. 

 

3.2.6.2 Computation of Performance Measures 

     From the contingency table, several parameters are selected, and the performance of ML 

models was evaluated using accuracy, specificity, precision, sensitivity (recall), F1-score, 

Geometric mean (GM), and Matthews correlation coefficient (MCC). At first, a confusion 

matrix was generated to compute these performance scores. True positive (TP), true negative 

(TN), false positive (FP), and false negative (FN) was calculated from the confusion matrix. 

Then we calculated the accuracy or success rate as follows, 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

TP FP 

FN TN 

Actual 

positive 

Actual 

negative 

Predicted positive 

Predicted negative 
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The sensitivity or true positive rate of a ML model was measured using the following equation.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

The specificity or true negative rate of a ML model was measured using the following equation. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

The precision or positive predicted value was measured using the following equation. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

A measure of model performance that combines precision and recall into a single number is 

known as the F-measure or F1-score. The following equation was used to compute the F1-score. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃 +
1
2 (𝐹𝑃 + 𝐹𝑁)

 

 

Geometric mean (GM) is the average value or mean, which signifies the central tendency of the 

set of numbers by taking the nth root of the product of their values. The higher value of GM 

indicates better balance classification. 

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛(𝐺𝑀) = (𝑥1. 𝑥2 … … . 𝑥𝑛)1/𝑛 

 

Matthews correlation coefficient MCC measures the correlation of the true classes with the 

predicted labels. 

𝑀𝐶𝐶 =
(𝑇𝑃 ∗ 𝑇𝑁) −  (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
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We used sklearn.metrics library in Python to calculate the above measures.  

 

AUC-ROC curve 

     ROC curve stands for Receiver Operating Characteristics Curve 176 and AUC stands for Area 

Under the Curve. It is a graph that shows the performance of the classification model, the 

probability of true positive results against the probability of false positive results for a range of 

different cut-off points. The formula of TPR and FPR are given below: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

     AUC-ROC curve is used for the visualization of the model. The higher the area under the 

ROC curve, the model will be better. A classifier that exhibits superior performance is 

characterized by AUC value that surpasses 0.5. The AUC of a perfect classifier would be 1. 

Typically, assuming model performance, an effective classifier can be obtained by selecting a 

threshold value that maintains a low false positive rate (FPR) and a high true positive rate 

(TPR). Further, we also visualized the model performance across a wide range of conditions 

using receiver operating characteristic (ROC) plots.  

 

3.2.7 Ranking of the Models 

     Multiple Criteria Decision Making (MCDM) 177 was used to select the best model. MCDM 

was implemented in Python, and the Technique for Order of Preference by Similarity to Ideal 

Solution (TOPSIS) was used to find the rank. The performance parameters, i.e., accuracy, 

recall, precision, F1-score, GM, and MCC, were used for ranking.  

 

3.2.8 Survival Analysis 

     Survival analysis of feature genes having correlation > 0.5 (p < 0.05) of LGG patient samples 

was conducted using Gene Expression Profiling Interactive Analysis (GEPIA) databases 

(http://gepia.cancer-pku.cn/). GEPIA utilises the log-rank test to perform survival analysis by 

employing TCGA clinical data. The overall survival of feature genes was generated based on 

http://gepia.cancer-pku.cn/
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the high and low expression of genes. The cut-off value set as quartile (upper-quartile = 75% 

and lower-quartile = 25%) and p < 0.05 was considered as statistically significant. 

 

3.2.9 Biological Pathway and Process Enrichment Analysis  

     Pathway and process enrichment analysis was carried out using the Metascape tool with the 

following ontology sources: GO Biological Processes, KEGG Pathway, and Reactome Gene 

Sets 178. Metascape combines functional enrichment, interactome analysis, and gene annotation. 

If the adjusted p-value < 0.05, the biological process or pathway was considered significantly 

enriched. 

 

3.2.10 Statistical Analysis 

     One-way ANOVA followed by a post-hoc Tukey-HSD test was performed using Sigma Plot 

11.0. A hypergeometric test was conducted using R. 

 

3.3 Results  

3.3.1 Development of Machine Learning-based Classifier for Diagnosis of the 

LGG Subtypes 

     Genome-wide mRNA expression data of LGG (n = 281) patients were obtained from UCSC 

Xena (https://xena.ucsc.edu/). Based on clinical information, LGG patients were segregated 

into grade 2 and grade 3 of astrocytoma (n = 30 and 66), and oligoastrocytoma (n = 42 and 33) 

oligodendroglioma (n = 67 and 43) (Figure 3.2A).  

 

https://xena.ucsc.edu/
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Figure 3.2: Division of sample and clustering of patients. (A) The flow diagram shows the 

histological classes of LGG and the scheme of sample division. PCA plots show the clustering 

of the patients using gene expression data of (B), mixed grade (C), grade 2 and (D), grade 3 of 

LGG. A: astrocytoma, OA: oligoastrocytoma, OD: oligodendroglioma, N: healthy, G2: grade 

2, G3: grade 3, G2+G3: mixed grade.  

 

 

     Next, the gene expression data was pre-processed to remove the merely expressed genes, 

log2 (RSEM +1) < 0.1 in 90% samples, to implement the machine learning algorithms, reducing 

the computing time.  Finally, 14,517 genes expressed in cancer and healthy tissue were 

subjected for further analysis. Next, the principal component analysis (PCA) was performed to 

observe the gene expression patterns in different subtypes and grades of LGG. We also wanted 

to observe the clustering of LGG patients based on the information contained in gene expression 

data. The first two principal components (PCs) was focused, as they captured the most 

variations in the data set 179,180. The PCA was performed using mixed grade (without 

considering the cancer grade), grade 2, and grade 3 gene expression data to separate the 

subtypes. The resulting projection of PC1 and PC2 is shown in Figure 3.2 (B, C, and D), 

representing the clear separation between LGG and healthy cells. However, PCA could not 
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separate LGG subtypes. PCA successfully clustered the healthy and LGG patients due to 

distinct gene expression patterns. However, it failed to separate the LGG subtypes, which may 

be due to highly heterogeneous gene expression within the cancer patients. These results 

indicated a need for efficient computational tools to diagnose LGG subtypes to support the 

clinician.   

    Hence, supervised machine learning approaches were implemented to develop a framework 

for patient classification (Figure 3.3). The subtype classification of patients were performed 

using mixed grade (without considering cancer grade), grade 2, and grade 3 transcriptomics 

data. From the previous step, 14,517 pre-processed gene expression data of cancer cells were 

taken for analysis. This expression data was high-dimensional, and the number of genes was 

much larger than the number of patient samples; therefore, to improve the classification 

accuracy, we performed feature selection or gene selection before applying the supervised 

machine learning algorithm 181. Besides, feature selection removes the irrelevant genes and 

identifies the discriminatory genes, which facilitates the improved performance of the classifier. 

The feature selection was done separately on grade2, grade3 and mixed grade patients. A two-

step process was applied for feature gene selection. At first, a correlation-based approach was 

used to eliminate redundant and irrelevant features. The Pearson correlation coefficient (rs) was 

computed and genes with rs > 0.7 were dropped. The remaining genes, i.e., 5,943 genes in grade 

2, 7,007 genes in grade 3, and 7,375 genes in the mixed grade, were taken for further analysis. 

Due to an unequal number of patients in different subtypes and grades of LGG (Figure 3.2A), 

the model can become biased towards one class, leading to poor performance of the model. 

Hence, we performed random sampling to select the equal number of patients in each subtype 

before the feature selection. We divided the balanced data into training (70%), and test (30%) 

datasets. Next, we have performed supervised ML-based methods for feature gene selection, 

i.e., SVM-RFE and Random Forest-based Boruta algorithm to select the most variable features 

among the classes (see Materials and methods).  

     Linear SVM-RFE was computed on the training data set with 5-fold cross-validation (CV). 

We performed the CV to avoid the issue of overfitting 182,183. The separate rank list of genes 

were generated in grade2, grade3, and mixed grade cancer, and from these lists, the top 20, 50, 

100, 200, and 500 feature genes were selected for further analysis. Next, different machine 

learning (ML) algorithms were applied to classify subtypes of LGG. Support vector machine 

(SVM), k-nearest neighbors (KNN), GaussianNB (GNB), Decision Tree (DT), and Random 
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forest (RF) was used on top 20, 50, 100, 200, 500 feature genes for classification (Figure 3.4). 

Initially, our objective was to determine the best set of features with the best accuracy. 

Therefore, we compared the accuracy score of each model for each feature gene set. The 100 

feature genes had shown the best prediction accuracy by all ML models (Figure 3.4A, B, and 

C). The other performance parameters, i.e., recall, precision, and F1 score were also evaluated, 

and it is observed that 100 feature genes provided the overall highest score (appendix table I.1) 

in test dataset (30%). Furthermore, the PCA was performed using expression data of 100 feature 

genes to examine the clustering of patients. It is observed that improved subtype-specific 

separation between patients using 100 feature genes compared to pre-processed data, indicating 

that the integrated feature selection method efficiently extracted most variable features from the 

transcriptome data (appendix figure I.1).  
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Figure 3.3: The machine-learning framework and classification accuracy with a different set 

of features. The flow chart shows the machine-learning pipeline using transcriptomics data to 

classify the subtypes and grades of LGG. 
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Figure 3.4: (A, B, and C) bar plots show the accuracy of subtype prediction using different 

feature genes and ML algorithms. 
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     Next, stratified k-fold CV (k = 10) was performed using all ML algorithms on 100 feature 

genes. CV was performed for estimating the true accuracy of a given model; in turn, it described 

the reliability and stability of the models. In cross-validation, the dataset was divided into a 

training set and a test set. This process was repeated ten times, and in each split model’s 

performances were measured. Then the average performance was calculated, such as average 

accuracy. Here, along with the average accuracy, the recall, precision, F1-score, GM, and MCC 

were calculated (Table 3.2). Then the overall performance of subtype classification of the ML 

models were compared in mixed grade, grade 2, and grade 3. It is observed that the average 

prediction accuracy of SVM was superior compared to the other ML models, i.e., 82% (±0.08) 

in mixed grade, 90% (±0.08) in grade 2, and 94% (±0.03) in grade 3. Moreover, Table 3.2 shows 

a key finding, the classification of subtype is always high in the specific grade of cancer 

compared to mixed grade. Except for SVM, for all classifiers, the accuracy of subtype 

classification drops below 80% with mixed grade transcriptome data. The MCC score, which 

represents the correlation between the observed and predicted classifications, was less in mixed 

grade; for SVM, the MCC score was 0.6. Whereas in grade 2 and grade 3, MCC scores were 

0.79 and 0.87, respectively. A similar observation was made (appendix Table I.1 and Figure 

3.4A, B, and C), that irrespective of ML-method and the number of features genes, the subtype 

classification accuracy was always less with mixed grade data compared to grade 2 and grade 

3. These results showed that prediction of the subtype was more accurate in a particular grade 

of cancer. This also indicates ML- algorithms are sensitive to cancer grade. Next, the SVM 

performance was statistically validated using one-way ANOVA followed by Tukey-HSD test. 

The pairwise comparison was performed and compared the average accuracy score from the k-

fold CV of SVM with other machine learning algorithms. In the previous section, it is observed 

that the accuracy score of SVM was always high compared to the other algorithms. Therefore, 

we constructed the null hypothesis as follows: 

H0: The accuracy of all models is equivalent.  

The alternative hypothesis is  

H1: The accuracy of all models is not equivalent. 

     The ANOVA test result on the accuracy is provided in Table 3.3, and it is observed that 

SVM performance was significantly high (p < 0.05) compared to KNN and DT. At the same 

time, RF and GNB showed no significant difference in classification accuracy. A ranking was 
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done in order to find the best classifier. The multiple-criteria decision-making (MCDM) was 

performed using TOPSIS on each k-fold result 184. All performance measures mentioned in 

Table 3.2 were considered for the ranking, and SVM topped the overall ranking. It is always 

desirable to have a highly sensitive and specific model for diagnosis. Therefore, the relationship 

was visualized between sensitivity and specificity using the ROC curve. ROC curve represents 

the probability of a true positive result or the test's sensitivity against the probability of a false-

positive result for a range of different cut-off points. Figure 3.5 (A, B, and C), shows the area 

under the ROC curve (AUC) of all ML models, and it is observed AUC for SVM was higher in 

all three cases, i.e., 0.87 in mixed grade, 0.98 in grade 2, and 0.951 in grade 3. The overall 

performance of SVM was superior compared to other ML models. The classification was 

performed using two external datasets from GEO (GSE74462 and GSE43378) to validate this 

observation. The random sampling method was used on external datasets to equalize number 

of patients in each subtype before classification (appendix Table I.2) 185,186. The prediction 

accuracy of SVM for a mixed grade, grade 2, and grade 3 was 89% (±0.11), 90% (±0.08), 94% 

(±0.12), respectively (Table 3.4). It is also observed that the MCC score was ≥ 0.80 in all three 

classifications. Hence, SVM was the best classifier for subtype classification for transcriptome 

data from model building to validation. To compare the efficiency of the present framework, 

the subtype classification was performed again using the features computed by the Boruta 

algorithm. The performance of all five ML algorithms were compared, i.e., SVM, KNN, GNB, 

DT, and RF, using the Boruta features gene. Results are summarized in appendix Table I.3 and 

indicate that features computed using SVM-RFE were substantially better than the Boruta in 

terms of classification accuracy. Therefore, correlation and SVM-RFE for feature gene 

selection and then subtyping using SVM can be efficient tools for clinical diagnosis of LGG 

subtypes. However, interestingly the feature genes from Boruta showed a similar trend of 

classification, i.e., classification accuracy was high with only grade 2 or grade 3 gene expression 

data compared to mixed grade.   
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Table 3.2: Models' performance and ranking 

  Methods 
Performance measures (Average of 10 fold cross-validation) 

Rank 
Accuracy Precision Recall F1-score Gmean MCC 

Mixed 

grade 

SVM 0.82%(±0.08) 0.7263 0.7439 0.7237 0.8196 0.6 1 

RF 0.79%(±0.05) 0.6768 0.7044 0.6724 0.784 0.53 2 

DT 0.66%(±0.05) 0.4925 0.5303 0.4853 0.6567 0.25 5 

KNN 0.69%(±0.05) 0.5382 0.5645 0.5381 0.6904 0.32 4 

GNB 0.77%(±0.05) 0.6504 0.6733 0.6511 0.7664 0.49 3 

Grade2 

SVM 0.90%(±0.08) 0.8607 0.8676 0.8558 0.9035 0.79 1 

RF 0.86%(±0.05) 0.7967 0.808 0.791 0.8598 0.69 3 

DT 0.79%(±0.08) 0.6929 0.7231 0.6722 0.7866 0.55 4 

KNN 0.75%(±0.09) 0.6321 0.6546 0.6245 0.7482 0.45 5 

GNB 0.88%(±0.06) 0.8186 0.8353 0.8119 0.8747 0.73 2 

Grade3 

SVM 0.94%(±0.03) 0.9035 0.9267 0.9016 0.9368 0.87 1 

RF 0.86%(±0.05) 0.795 0.827 0.7882 0.8575 0.7 3 

DT 0.78%(±0.07) 0.6729 0.671 0.6603 0.7797 0.52 5 

KNN 0.80%(±0.04) 0.6938 0.6847 0.6606 0.7923 0.56 4 

GNB 0.89%(±0.07) 0.8469 0.8496 0.8383 0.8924 0.77 2 

 

 

Table 3.3: ANOVA followed by Tukey-HSD test 

SI.No. Comparison 
Mixed Grade Grade2 Grade3 

p-value<0.05 p-value<0.05 p-value<0.05 

1 SVM vs. KNN Yes Yes Yes 

2 SVM vs. DT Yes Yes Yes 

3 SVM vs. RF No No No 

4 SVM vs. GNB No No No 
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Figure 3.5: ROC of various prediction models. (A–C) ROC plots were generated using an 

independent dataset. SVM, support vector machine; KNN, k-nearest neighbors; GNB, 

Gaussian Naïve Bayes; DT, Decision Tree; RF, Random Forest. 
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Table 3.4: Performance of SVM with independent datasets 

  Performance measures (Average of 10 fold cross-validation) 

  Accuracy Precision Recall F1-score GM MCC 

Mixed Grade 0.89(±0.11) 0.8583 0.8700 0.8420 0.8869 0.80 

Grade 2 0.90(±0.08) 0.8350 0.8558 0.8199 0.9025 0.81 

Grade 3 0.94(±0.12) 0.9300 0.9350 0.9216 0.9453 0.88 

 

 

3.3.2 Simultaneous Subtyping and Grading of LGG using SVM 

     In the previous section, it was observed that it was necessary to identify grades to achieve 

higher accuracy in subtype classification. Additionally, the grade of cancer determines the 

malignancy level. The correct grade stratification has significant implications in determining 

the patient treatment plan 187. Therefore, simultaneous identification of grade and subtype will 

greatly support clinicians in deciding accurate treatment strategies. Henceforth, we decided to 

classify the six classes, and subsequently divided the whole LGG data set into astrocytoma 

grade 2 (n = 30), astrocytoma grade 3 (n = 66), oligoastrocytoma grade 2 (n = 42), 

oligoastrocytoma grade 3 (n = 33), oligodendrogliomas grade 2 (n = 67), and 

oligodendrogliomas grade 3 (n = 43) (Figure 3.2 A). For classification, the top 100 feature genes 

of grade 2 and grade 3 were used from previous steps. The grade 2 and grade 3 features were 

combined and screened the unique list of 178 features out of 200. It is worth mentioning that 

only 11 % of feature genes were common between grade 2 and grade 3, which is a 

nonsignificant overlap (p =1.0, hypergeometric test). This shows that these feature genes could 

be used as grade and subtype-specific biomarkers. Next, the SVM was implemented using the 

gene expression data of 178 genes and calculated the performance measures as previously 

described (Table 3.5). The average accuracy of the model in k-fold CV (k = 10) was 91% 

(±0.02), indicating that SVM efficiently classified the six classes and showed stable 

performance. To further confirm, the model was executed on the independent test dataset, and 

accuracy was 93.39%. It is also examined the accuracy of prediction of individual class, that is, 

astrocytoma grade 2 (accuracy = 93.38%), astrocytoma grade 3 (accuracy = 95.04%), 

oligoastrocytoma grade 2 (accuracy = 87.60%), oligoastrocytoma grade 3 (accuracy = 94.21%), 

oligodendrogliomas grade 2 (accuracy = 95.86%), and oligodendrogliomas grade 3 (accuracy 

= 94.21%). It was noted that the prediction accuracy was > 90% in maximum classes. 
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Furthermore, we analyzed the performance using the ROC plots (Figure 3.6). The average AUC 

for the six classes is 0.88 and the individual class AUC varies from 0.79 to 0.94. This indicates 

that the model was highly specific and sensitive. The simultaneous classification of grade and 

subtype with higher accuracy can be a major support and breakthrough for clinicians for patient 

management.   

 

Table 3.5: Performance of SVM for multi-class (six class) classification to predict the grade 

and subtype simultaneously 

  Performance measures  

  Accuracy Precision Recall F1-score GM MCC 

Training data    

(k=10) 
0.91(±0.02) 0.7646 0.7502 0.7444 0.8372 0.70 

Independent 

data 
0.9339 0.8168 0.8024 0.8024 0.8714 0.76 

 

 

 

Figure 3.6: Model performance. ROC plot for multi-class (six class) classification. 
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3.3.3 Grade and Subtype-specific Co-expression Pattern of Feature Genes 

and Biological Relevance   

     In our approach, feature selection has a crucial role in achieving higher prediction accuracy. 

However, ML algorithms were restricted from constructing an accurate prediction model as a 

black box because they are rarely linked with biological processes and functions. However, the 

association of these features with biological processes would allow us to explore them as 

potential biomarkers. Furthermore, if these biomarkers are specific to a subtype in a particular 

grade, then it will be an advantage for precision therapy. The co-expression network was 

constructed and analyzed between the feature genes to explore such a possibility. The gene to 

gene correlation is linked with specific disease states because gene expression patterns are not 

the same in different cellular conditions. Again, the gene expression level often determines the 

corresponding protein's functional activity, which is directly linked with the biological 

processes and molecular functions 21. Hence, our study focused on the examination of the co-

expression pattern of the feature gene and its association to specific-subtype in a grade. The 

Pearson correlation coefficient (r) was computed for each pair of feature genes using the gene 

expression data of a specific subtype in a grade. r > 0.5 (p < 0.05) was selected as the threshold 

to screen the statistically significant co-expressed gene pairs. A total of 82, 36, and 73 correlated 

gene pairs in grade 2 (Figure 3.7A, B, and C), and 27, 116, and 98 correlated gene pairs in grade 

3 (Figure 3.7D, E, and F) were present in astrocytoma, oligoastrocytoma, and 

oligodendroglioma, respectively. Next, the list of co-expressed genes was compared between 

the subtypes using a hypergeometric test. It was found there was a nonsignificant (p > 0.05) 

overlap between the genes in subtypes except astrocytoma and oligodendroglioma (p = 0.004) 

(Table 3.6). The nonsignificant overlap indicates that many co-expressed genes are specifically 

associated with a particular subtype in a grade.  
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Figure 3.7: Biological relevance of feature genes. (A-F) The correlation heat maps of feature 

genes in different subtypes and grades as mentioned in the figure. A, astrocytoma; OA, 

oligoastrocytoma; OD, oligodendroglioma; G2, grade 2; G3, grade 3.  

 

Table 3.6: Statistical significance of the overlap between two groups of feature genes 

 

Hypergeometric test 

Grade 2 p-value 

Astrocytoma Vs oligoastrocytoma 0.0824 

Astrocytoma Vs oligodendroglioma 0.004 

Oligoastrocytoma Vs oligodendroglioma 0.032 

Grade 3 p-value 

Astrocytoma Vs oligoastrocytoma 0.7771 

Astrocytoma Vs oligodendroglioma 0.2437 

Oligoastrocytoma Vs oligodendroglioma 1 
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     Next, the gene set enrichment analysis was performed to understand the biological relevance 

of co-expressed feature genes in a specific subtype and grade using the Metascape tool 178. It 

was observed that enriched biological processes and pathways were linked to oncogenic events 

(Figure 3.8). Such as extracellular matrix organization in astrocytoma (grade 2), TNF signaling 

pathways and PI3k-Akt signaling pathway in oligodendroglioma. These biological processes 

are generally activated in glioma, affecting the biological behavior of tumors, and linking to 

patient prognosis and survival 188–190. Furthermore, hemophilic cell adhesion molecules in 

oligoastrocytoma are involved in the growth and progression of glial tumors 191. Similarly, the 

calcium signaling pathway in astrocytoma (grade3), chemical synaptic transmission in 

oligoastrocytoma, and NF-kappa β signaling pathway in oligodendroglioma are the prominent 

signature of brain cancer formation and progression 192–194.  

 

 

Figure 3.8: Biological processes and pathway enrichment analysis of co-expressed feature 

genes. (G2), grade 2; (G3), grade 3.  

 

     It was noticed that various biological processes and pathways had been enriched, which 

differed among the cancer subtype in a grade (Figure 3.8). These results represent that a distinct 

gene expression pattern and biological processes are linked with the subtypes within a particular 

grade of LGG. There are many divergences between grade 2 and grade 3, although both grades 

are considered lower-grade cancer. This observation again illustrates that identifying grade and 

subtype is crucial for finding a proper therapeutic intervention.  
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3.3.4 Identification of Prognostic Biomarkers of LGG for Diagnosis and 

Treatment 

     Correlation analysis and hypergeometric test in the previous section revealed that many of 

the co-expressed genes (features) were unique to the specific subtype in a grade. Importantly, 

biological processes and pathway enrichment analysis showed that these co-expressed genes 

were also associated with oncogenic processes. This allows further evaluation of these genes as 

a potential biomarker for cancer therapy and diagnosis. Next, survival analysis and log-rank 

test was performed using GEPIA web tools of the genes unique to a specific subtype in a 

particular grade (PCC>0.5, and p < 0.05). Survival analysis revealed that several genes were 

linked to patient survival. Here, the Kaplan–Meier survival plot has been shown, illustrating 

the genes whose higher expression is associated with poor prognosis (Figure 3.9). Furthermore, 

several experimental pieces of evidence showed that many genes are involved in oncogenic 

processes in brain cancer. Such as in grade 2 cancer, MGC12982 (FOXD2-AS1) 195, ITGA7 

196, EPS8L1 197, DDR2 198, STAG3L2, and HLA-G 199,200 in astrocytoma, TP53 201,202, and 

PDGFD 203,204 in oligodendroglioma, were significantly (p < 0.05) associated with worse patient 

survival. In grade 3 cancer, GATM 205, PCDHGA9 206 and GPR126 (ADGRG6) 207 in 

oligoastrocytoma, and GLI1 208, TC2N 209, PKD2L1 210, LTBP4 211, and VGLL3 212, in 

oligodendroglioma, were linked to worse patient survival. Additionally, we identified several 

new genes, i.e, which are not reported before in LGG, such as N6AMT2, CCDC125, and 

RFESD in astrocytoma, HRCT1 in Oligoastrocytoma, LEKR1 in oligodendroglioma of grade 

2, and in grade 3, WBSCR27 in astrocytoma, PCDHB16 in oligoastrocytoma, and PCDHB7 in 

Oligodendroglioma. The higher expression of these genes affects patient survival. The co-

expression of these genes in LGG subtypes and association with patient survival shows the 

possibility to identify them as grade and subtype-specific prognostic biomarkers.  
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Figure 3.9: Survival analysis of feature genes., (A-I) astrocytoma grade2, (J) oligoastrocytoma 

grade2, (K-M) oligodendroglioma grade2, (N) astrocytoma grade3, (O-R) oligoastrocytoma 
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grade3, (S-X) oligodendroglioma grade3.Overall survival was analyzed based on the clinical 

information of the patients from TCGA and quartile method of 75 % cut-off of higher and 25% 

cut-off of lower limit. 

 

3.4 Discussion  

     In this chapter, publicly available transcriptomes of LGG for subtyping and grading was 

explored. Heterogeneity in the tumour is the main issue for molecular subtyping and precision 

treatment of brain cancer patients. We present a comprehensive and precise ML-based approach 

for cancer grading and subtyping.  It was observed that a subtype of LGG was not separable 

using PCA. This result led us to design an ML-based framework for the accurate prediction of 

LGG subtypes. It is found an integrated approach consisting of correlation and SVF-RFE 

algorithm for feature gene selection, and then computation of SVM using those feature genes 

(n = 100) had shown superior performance (accuracy > 90%). We found that the accuracy of 

subtype classification is always good using the gene expression data of a specific grade of 

cancer rather than a mixed grade. We repeatedly observed the same with other ML 

techniques. This gave us clues that cancer grading is essential to achieve higher accuracy for 

subtype prediction. Further, the performance of the SVM was statistically verified through the 

one-way ANOVA followed by a Tukey-HSD test. A pairwise comparison was conducted to 

evaluate and contrast the average accuracy score obtained from 10-fold cross-validation of 

SVM with that of other machine learning techniques. The results indicate that the performance 

of SVM was significantly higher (p < 0.05) when compared to other machine learning 

techniques. Then, six-class classification was performed for simultaneous grading and 

subtyping using the same ML framework and attained an overall accuracy of 91.0% 

(±0.02) and AUC=0.88. Therefore, the findings of this study strongly strengthen the fact that 

grading and subtyping are both required to achieve a higher accuracy of prediction. Indeed, 

cancer grade and subtype are the essential clinical parameters to design the treatment 

plan and determine the patient’s prognosis.  

     The correct set of feature genes and their discriminative ability play a crucial role in the 

superior performance of ML algorithms. In addition, the biological relevance of these features 

could lead to finding the formation and therapeutic targets.  It is analyzed that the expression 

data of feature genes and their biological significance in a similar line of thought.  We identified 
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the subtype and grade-specific co-expressed feature genes associated with the 

oncogenesis.  Furthermore, survival analysis of these genes revealed several predictive 

biomarkers, which could be used as potential molecular indicators for diagnosis and treatment. 

Therefore, we conclude that gene expression data of a subtype of LGG without considering 

the grade is more heterogeneous than data of a specific grade. The higher heterogeneity in 

the data resulted in lower accuracy of subtype prediction. Lastly, the findings of the present 

study and ML-based framework can offer new avenues for developing subtype- and 

grade-specific therapeutic strategies. To promote the further development for building more 

accurate biological relevant models and identification of novel therapeutic marker multi-omics 

data analysis is essential, which has grown in popularity in cancer research in recent decades. 

Moreover, the integration of transcriptomic, epigenomic, proteomic, and metabolomic data can 

reveal the intricate systemic dysregulation linked to the phenotype of lower-grade glioma. 
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Chapter 4: Objective 2 

Development of Deep learning and machine learning 

frameworks based on genomic data for subtyping 

glioblastoma multiforme (GBM) and identification of 

biomarkers 

 

4.1 Background 

     Glioblastoma multiforme (GBM), which is the grade IV of glioma, is a highly invasive and 

devastating primary form of brain cancer. The complexity and molecular heterogeneity of GBM 

pose the challenge for accurate diagnosis and therapy 20,61. Because of enormous molecular 

heterogeneity and difficulty in early diagnosis, the molecular mechanisms of GBM 

tumorigenesis is not clear. Understanding molecular features that facilitate aggressive 

phenotypes in glioblastoma multiforme (GBM) remains a major clinical challenge. There are 

many other studies to find other subtypes using omics and clinical data 213. Histopathological-

based diagnosis is the most common method for subtype identification. However, it often leads 

to inaccurate classification of subtypes due to inter-observer variability 18. To find the curative 

solution, understanding the molecular features and identification of GBM subtypes is crucial. 

GBM is currently classified into three subtypes i.e., classical, proneural, and mesenchymal. 

Accurate pathological subtype diagnosis is pivotal for optimal patient management. Because, 

GBM subtypes are histologically and genetically heterogeneous, differs in gene expression, 

mutation, and epigenetic states, which lead to different therapeutic response and clinical 

outcome 19,20. 

     Recent advances of sequencing technologies have helped generate massive omics data in 

cancer, leading to a deep understanding of the molecular mechanisms in both common and rare 

cancers 214,215. The Genome-wide analysis revealed that changes in gene expression and 

methylation patterns in several positions in the genome are strongly associated with the GBM 

formation and progression 216–218. Gene expression and methylation are both strongly 

interlinked processes; methylation levels in promoter regions influence the gene expression by 

regulating the transcription factors binding 11. On many occasions, hypermethylation of CpG 

sites on promoter regions inhibits the gene expression, whereas hypomethylation causes higher 
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expression of genes 219. Therefore, classification using multiple “omics” data, i.e., 

transcriptome and methylome, can provide optimal features for the clinical diagnosis of cancer 

subtypes. However, enormous amounts of genetic and epigenetic alterations pose challenges to 

finding the unique molecular marker for diagnosing GBM subtypes. Benefitting from recent 

advances in computational methods such as deep learning (DL) and traditional machine 

learning (ML), it is possible to scan the genome-wide transcriptome and methylome data to find 

the subtype-specific molecular feature for diagnosis 220.  

     In this chapter, ML and DL algorithms were implemented for the precise and accurate 

classification of GBM subtypes. Each data type (i.e., transcriptome and methylome) and their 

integrated data (patients having both transcriptome and methylome data of GBM) were 

separately used for classification. In addition, the biological relevancy of features were 

examined using weighted gene co-expression network analysis (WGCNA) and Gene Ontology 

(GO) analysis. Furthermore, these co-expression module genes were used to identify subtype-

specific prognostic biomarkers for GBM diagnosis and treatment. 

 

4.2 Methodology 

4.2.1 Data collection, preprocessing, and integration 

     In this study, we analyzed TCGA glioblastoma multiforme (GBM) transcriptome (RNA-

seq) and methylome (Illumina Infinium HumanMethylation450 platform) data. The dataset was 

retrieved from UCSC Xena (https://xena.ucsc.edu/) 165. Log2 (RSEM +1) (RSEM: RNA-Seq 

by Expectation Maximization) values for transcriptome and ꞵ values for methylation were used 

for analysis. Next, the lowly expressed genes were removed from transcriptome data (log2 

(RSEM +1) <0.1 in 90% sample), and data was scaled before analysis. Based on the clinical 

information, patients (n=155) were divided into three categories based on cancer subtype, i.e., 

classical (n=42), mesenchymal (n=55), and proneural (n=39) for transcriptome data (Table 4.1). 

Similarly, we have divided the methylome data (n=84) into a particular subtype, i.e., classical 

(n=29), mesenchymal (n=32), and proneural (n=23) (Table 4.1). Next, based on the clinical 

information, patients with both transcriptome and methylome profiles in TCGA were screened 

to integrate the transcriptome and methylome data. The total number of these patients with 

transcriptome and methylome data was 52, including classical (n=16), mesenchymal (n=22), 

and proneural (n=14) (Table 4.2).  

https://xena.ucsc.edu/
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Table 4.1: Details the tumor samples in transcriptome and methylome data of GBM. 

 

  Transcriptome Methylome 

Type Grades Subtypes Samples Grades Subtypes Samples 

GBM Grade IV 

Classical 42 

Grade IV 

Classical 29 

Mesenchymal 55 Mesenchymal 32 

Proneural 39 Proneural 23 

 

Table 4.2: Details the tumor samples having both transcriptome and methylome data of GBM. 

 

  Patients with transcriptome and methylome samples 

Type Grades Subtypes Samples 

GBM Grade IV 

Classical 16 

Mesenchymal 22 

Proneural 14 

 

    Due to the unavailability of healthy patient data for both transcriptome and methylome, we 

used the Z-score to classify higher and lower expression of genes and hyper-and hypo-

methylated CpG sites.  We have calculated the Z-score for each gene or CpG site in a specific 

subtype using the following formula.   

𝑍 − 𝑠𝑐𝑜𝑟𝑒 =
𝑥 − 𝜇

𝜎
 

 

     Here, 𝑥 represents subtype-specific average expression or methylation level of a gene/CpG 

site, while µ and 𝜎 represent the population mean and population standard deviation, 

respectively 221. We have applied Z-score>1 for higher expression and hypermethylation and 

Z-score<-1 for lower expression and hypomethylated on each subtype of GBM. Next, we 

screened the higher and lower expressed genes whose promoter regions were differentially 

methylated, considering that the differential methylation in the promoter regions may alter the 

corresponding gene’s expression. Finally, genes with both differential expression patterns and 

differential methylation promoter regions were used for further analysis 22,222. We have 

collected the external dataset from the Gene Expression Omnibus (GEO) repository for 
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validation. GSE145645 was used to validate the model constructed using transcriptome and 

integrated data. GSE145645 contained all the subtypes of GBM, i.e., classical (n=9), 

mesenchymal (n=14), and proneural (n=9).  Models built on methylome data were further 

validated using GSE128654, which consisted of classical (n=11), mesenchymal (n=8), and 

proneural (n=10) subtypes.  

 

4.2.2 Clustering using Principle component analysis (PCA) 

     The subtype-specific clustering of patients using transcriptome, methylome, and patients 

having transcriptome and methylome samples named as integrated data was visualized by 

principal component analysis (PCA) (A detailed description was provided in the chapter 3.2.2). 

We used PCA for visualization of GBM subtypes; ggfortify and cluster package in R was used.  

 

4.2.3 Features selection by Least absolute shrinkage and selection operator 

(LASSO)  

     The feature or variable selection was performed to improve the performance of ML and DL 

algorithms. The least absolute shrinkage and selection operator (LASSO) approach regularises 

model parameters by decreasing some regression coefficients to zero. After the shrinkage, 

comes the feature selection phase, during which all non-zero values are chosen to be 

incorporated in the model. LASSO regularization is a crucial idea that helps to prevent data 

overfitting. In order to attain a lower variance with the tested data, regularization is 

accomplished by adding a penalty term to the best fit produced from the trained data. 

Regularization also limits the effect of predictor variables over the output variable by 

compressing their coefficients. LASSO models provide good prediction accuracy. Since the 

method involves shrinking of coefficients, which lowers variance and minimizes bias, the 

accuracy increases. The LASSO was performed on all types of preprocessed data 223. The 

default parameter values were used for lambda (tuning factor that controls the strength of 

penalty) and dropped those genes with a coefficient value 0. LASSO was implemented in the 

ScikitLearn (https://scikit-learn.org) package in Python.   
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4.2.4 Machine learning and Deep learning models for classification of GBM 

subtypes 

     Classification was performed on the subtype of GBM as a multi-classification problem using 

gene expression levels as covariates. Several machine learning and deep learning algorithms 

were used for classification: support vector machine (SVM), K-nearest neighbors (kNN), naïve 

bayes (NB), random forest (RF) (A detailed description of above classifiers were provided in 

the chapter 3.2.5 in details), logistic regression (LR), and convolutional neural network (CNN). 

LR and CNN models are discussed here: 

 

4.2.4.1 Logistic Regression (LR) 

     Logistic regression (LR) is the most popular supervised machine learning algorithm. A 

logistic regression classifier predicts the response based on one or more predictor variables. It 

measures the relationship between the categorical dependent variable and one or more 

independent variables by estimating probabilities using a logistic function. Logistic regression 

is basically used for solving classification problems. The logistic function curve indicates that, 

whether the cancer patients are healthy or cancerous. It has the ability to provide a probability 

to classify new data using discrete datasets 224. LR was implemented using the 

LogisticRegression package in Python. 

 

4.2.4.2 Convolutional neural network (CNN) 

     Convolutional neural network (CNN) is one of the deep feed-forward artificial neural 

network architectures that consist of the convolutional layer, activation function, and pooling 

layer. CNN's is a type of neural network that are fully connected networks extracts the features 

from the training dataset i.e., each neuron in a layer is directly connected to all neurons of the 

next layer. It is consist of sequence of layers, each has specific functions such as convolution, 

pooling and fully connected layer. Each layer takes the output from the previous layer as an 

input. This is followed by certain number of convolution layers composed of certain number of 

filters called kernel that are convolved with the input data to obtain feature maps. CNN's have 

a kernel that convolves the input to extract localized features and aggregate those using a 

pooling layer, enabling the model to extract features at all levels.  
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     Convolution is one type of linear operation used instead of general matrix multiplication in 

convolution layers where filters are applied to original data or to feature maps in deep CNN. 

The convolution operation (denoted by an asterisk) is defined by: 

 

𝑓(𝑡) = (𝑥 ∗ 𝐾)(𝑡) 

 

     Where the function  𝑥 (𝑡) is referred to as input,  𝐾(𝑡) is referred to as kernel, and the 𝑓(𝑡) 

is referred to as output.  

     Next, convolutional layer followed by pooling layer that introduces non-linearity to the 

activations and performing down sampling reducing the number of parameters and select more 

salient features that the network needs to learn. Most common activation is rectified linear unit 

(ReLu). It allows for faster and more effective training by mapping negative values to zero and 

maintaining positive values. The activated features are carried forward into the next layer.  Next, 

layer is fully connected layer (FC) that is the end of the CNN model. The input of the FC layer 

comes from the last pooling or convolutional layer. Finally FC layer convert the data into 

suitable form, flattened into the vector and fed into the feed forward neural network. After 

training of many epoch, cancer and normal or multiclass classes are identified by CNN using 

softmax classifier. Therefore, it is efficient in extracting the relevant features from 

multidimensional data. CNN is widely used for feature extraction to classify cancer using 

genomics data such as gene expression data 225,226, and methylation 227,228.  Here 1D-CNN was 

used to perform the classification of GBM subtypes using gene expression, methylation and 

integrated data. The 1D-CNN architecture is provided in the figure 4.1. 
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Figure 4.1: Architecture of 1D-CNN used for GBM subtype classification. 

 

4.2.4.3 Hyperparameter tuning 

     Most machine learning and deep learning algorithms require optimum parameters to reach 

the robust performance of the model. Sometimes default parameters are not reached at that 

point. Only a hyperparameter is one way to select the best parameters while training the model. 

GridsearchCV from the sklearn library provides the best hyperparameters of the model, as it 

tries with all the given parameters using cross-validation. Hyperparameters selected from the 

grid search module for every model. 

     In this paper, all machine learning classifiers are built on the Python platform by using 

sklearn library. Keras library was used to construct the model architecture for CNN. Eight 

convolutional layers were used for obtaining the best result. All parameters for CNN were 

provided in table 4.3.  After obtaining optimal features, stratified k-fold was applied on the 70% 

training dataset and average performance measures were recorded. In Stratified k-fold CV, the 

dataset is divided into k independent folds where k-1 folds were used to train the network, and 

the remaining one is reserved for the test purpose. This procedure is then repeated until all folds 

are used once as a test set. The final output is then computed by averaging over the obtained 

performance parameters from each test set (A detailed description was provide in the chapter 3 

section 3.2.5.6 and figure 3.1 in details).  
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Table 4.3: Parameters of CNN 

Parameters Datasets 

Transcriptome Methylome Integrated 

Activation relu relu relu 

Batch_size 50 50 50 

Dropout_rate 0.1 0.1 0.1 

epochs 100 100 100 

filters 32 1 3 

Init_mode uniform uniform uniform 

Kernel_size 5 3 3 

optimizer RMSprop RMSprop Adam 

 

 

4.2.4.4 Performance evaluation 

     The performance of ML and deep learning models was evaluated using accuracy, recall, 

precision, F1-score, FPR, GM, and MCC. As described in previous chapter, we generated a 

confusion matrix to compute these performance scores. True positive (TP), true negative (TN), 

false positive (FP), false negative (FN) were calculated from the confusion matrix 229. Then, we 

calculated the accuracy or success rate as, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

The sensitivity or true positive rate of a ML model was measured using the following equations 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

The specificity or true negative rate a ML model was measured using the following equations  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

The precision or positive predicted value was measured using the following equations 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

A measure of model performance that combines precision and recall into a single number is 

known as the F measure or F1-score. The following equation was used to compute the F1-score. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

The FPR of a ML model was measured using the following equations 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

 

Geometric mean (GM) is the average value or mean which signifies the central tendency of the 

set of numbers by taking the nth root of the product of their values. 

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛(𝐺𝑀) = (𝑥1. 𝑥2 … … . 𝑥𝑛)1/𝑛 

 

Mattews correlation coefficient (MCC) measures the correlation of the true classes with the 

predicted labels. 

𝑀𝐶𝐶 =
(𝑇𝑃 ∗ 𝑇𝑁) −  (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 

     We used the sklearn.metrics library in Python to calculate the above score by importing 

functions such as confusion_matrix and classification_performance. Finally, we visualized the 

model performance across a wide range of conditions using receiver operating characteristic 

curve (ROC) plots using the roc_curve function. 

 

4.2.4.5 Ranking of the model  

     Algorithms performance was compared using Multi-Criteria Decision Analysis 

(MCDA)/Multi-Criteria Decision Making (MCDM). Technique for Order of Preference by 

Similarity to Ideal Solution (TOPSIS), an established MCDM method, was used to rank. 
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Multiple criteria, such as accuracy, sensitivity, precision, G-mean. F-measure, FPR, and MCC 

were used in TOPSIS 177.   

 

4.2.5 Weighted correlation network analysis  

     We identified co-expressed gene modules and analyzed the module-trait relationship using 

the WGCNA package in R 230 . First, the similarity matrix between each pair of feature genes 

in a specific subtype was measured based on Pearson’s correlation coefficient. Next, we 

transformed the similarity matrix into an adjacency matrix. The soft power β value was 

calculated for building the proximity matrix so that the co-expression network conformed to a 

scale-free network based on connectivity. Subsequently, we computed the topological overlap 

matrix (TOM) and the corresponding dissimilarity (1-TOM) value. Next, a dynamic tree-cut 

algorithm was implemented to detect gene co-expression modules. The co-expression modules 

were constructed with a cut height of 0.6, and a minimum module size was set to 10 

(transcriptome), 10 (methylome), and 5 (integrated) genes, respectively.  

 

4.2.6 Gene set enrichment and survival analysis  

     The biological process and functional enrichment analysis was performed using Enrichr 231. 

Enrichr uses Fisher exact test to rank terms from gene-set libraries. Terms were considered 

statistically significantly enriched if the adjusted p-value was less than 0.05. The gene list from 

each positively correlated module was used to examine the enrichment of GO Biological 

Processes and Molecular Function terms. Overall survival and log-rank test of a coexpressed 

module was performed using the survminer and survival package in R. We calculated the 

average expression of all genes in the module. Survival was compared between two groups: 

patients with higher (⋝ 75 percentile) and lower (⋜25 percentile) gene expression levels. 

Furthermore, we performed the overall survival analysis of specific gene using GEPIA 232. 

GEPIA performs survival analysis based on The Cancer Genome Atlas (TCGA) gene 

expression levels and patient clinical information (A detailed description of GEPIA tool was 

provided in the chapter 3.2.8 in details). Here, the TCGA GBM dataset was used for survival 

analysis. GEPIA generates Kaplan-Meier plots and performs the log-Rank test to identify the 

genes associated with patient survival.  
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4.3 Results  

     The etiology of GBM is associated with the alteration of transcriptome and methylome 

patterns. Therefore, the multi-omics approach that combines genome-wide methylation with 

transcriptome (RNA-seq) data can provide novel insights into biological function and disease 

mechanisms. In this chapter, first the transcriptome and methylome data were separately 

analyzed and then integrated both data types were analyzed to classify the GBM subtypes. 

LASSO feature selection method was used to find the relevant features using transcriptome, 

methylome and integrated data. Next, ML and DL algorithms were employed to classify the 

GBM subtypes. WGCNA was performed to observe the association of subtypes and identify 

the molecular feature. Further, biomarkers were identified in each subtypes of GBM from 

transciptome, methylome and integrated data. 

 

4.3.1 Classification of GBM subtype using transcriptome 

     The transcriptome data of the GBM at TCGA contained 20,531 genes. After removing the 

low expressed genes, a total of 14,125 genes were found expressed in all GBM subtypes, 

including classical (n=42), mesenchymal (n=55), and proneural (n=39). These genes were taken 

for further analysis. However, 14,125 genes could not be used as variables for prediction, as the 

data is high-dimensional, leading to the inaccurate classification of subtypes. Therefore, we 

performed the LASSO to reduce the dimension of data and subsequently for selecting top key 

feature genes to enhance the prediction accuracy of the DL and ML model. LASSO performs 

L1 regularization and adds a penalty to the loss function. A total of 201 feature genes were 

obtained after performing the LASSO analysis. Next, we performed PCA to examine the local 

structure of data, including 14,125 genes and 201 feature genes. We observed improved 

subtype-specific separation between patients using 201 feature genes compared to 14,125 

genes, indicating that the LASSO feature selection method efficiently extracted most variable 

features having higher percentage of variability in principal component 1 (PC1) in PCA of 201 

feature genes compared to the preprocessed data in the transcriptome data (Figure 4.3A-B). 

These results indicated that information contained in 201 feature genes could separate the 

subtype with higher accuracy upon implementing DL and ML algorithms. However, distinct 

clusters of subtypes were not formed in PCA. 
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Figure 4.2: Pipeline of GBM subtype classification using transcriptome data. The flow chart 

shows DL and ML pipelines using transcriptome data to classify the subtypes. 
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PCA plots  

 

Figure 4.3: In (A) and (B) PCA plots to visualize the subtype-specific clustering of patients 

using preprocessed data and feature genes. 

 

     Next, DL (CNN) and ML algorithms (i.e., SVM, KNN, RF, NB, LR) were applied to classify 

subtypes of GBM using these feature genes as variables. The data was divided into training 

(70%) and test (30%) datasets. 70% of the data was used for parameter optimization and to 

assess the performance of each model. The remaining 30% of data was used for independent 

predictors. Additionally, an external dataset was also used for the final validation of models. In 

the model training step, 70% of the data was used to obtain the best combination of 

hyperparameters using the grid search method for each DL and ML model. Next, we performed 

the stratified k-fold cross-validation (k=10) on the training data using the optimal 

hyperparameters obtained from the grid search and recorded average performance measures of 

each model (Table 4.4). The performance of the models was evaluated using average accuracy, 

recall, precision, F1-score, FPR, GM, and MCC (see Methodology). It is observed that the 

prediction accuracy of CNN was superior (98.56%) compared to the other ML models. Even 

standard deviation (±0.03) and FPR (0.01) were minimum in the case of CNN. The MCC score 

is 0.97 for CNN, which represents the excellent correlation between the observed and predicted 

classifications. It is observed that the performance of other ML classifiers was also good 

(accuracy >90%). Therefore, to compare the overall performance, the multiple-criteria decision 

making (MCDM) was performed using TOPSIS 184. All performance measures mentioned in 
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Table 4.4 were considered for the ranking, and CNN topped the overall ranking. To validate 

this observation, we have performed the classification using two datasets, i.e., 30% data as the 

test data (or independent data) and an external dataset from GEO (GSE145645). In test data, 

prediction accuracy (98.33%) of CNN was superior to other ML models and the MCC score 

was 0.96 (Table 4.5).  

 

Table 4.4: Models performance and ranking for transcriptome data 

Method Performance measures (Average of 10-fold cross-validation) MCDM 

Rank 
Accuracy Recall Precision F1-score FPR GM MCC 

SVM 91.42%(±0.08) 84.48 91.80 85.51 0.06 91.52 0.82 4 

KNN 91.03%(±0.06) 85.78 90.59 86.06 0.07 91.44 0.82 5 

RF 93.06%(±0.08) 88.52 93.04 89.15 0.05 93.02 0.85 3 

NB 90.15% (±0.07) 86.08 87.16 85.38 0.08 90.52 0.80 6 

LR 93.32 %(±0.05) 89.47 92.12 89.97 0.05 93.61 0.86 2 

CNN 98.56%(±0.03) 97.86 98.36 97.81 0.01 98.64 0.97 1 

 

Table 4.5: Models performance and AUC using test data (transcriptome) 

Method Performance measures (on test dataset) 

Accuracy Recall Precision F1-score FPR GM MCC AUC 

SVM 95.12 93.14 92.82 92.57 0.04 95.12 0.89 0.94 

KNN 93.46 90.70 90.70 89.80 0.05 93.49 0.85 0.92 

RF 91.73 87.14 87.61 87.30 0.06 91.86 0.81 0.91 

NB 96.61 95.58 94.80 94.92 0.02 96.74 0.92 0.96 

LR 96.61 95.58 94.80 94.92 0.02 96.74 0.92 0.96 

CNN 98.33 97.56 97.21 97.28 0.01 98.37 0.96 0.99 
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     It is always desirable to have a highly sensitive and highly specific model for diagnosis. 

Therefore, we visualized the relationship between sensitivity and specificity using the ROC 

curve (Figure 4.4A-F). The ROC curve represents the probability of a true positive result or the 

test's sensitivity against the probability of a false-positive result for a range of different cut-off 

points. Figure 4.4A shows the area under the ROC curve (AUC) is 0.99 for CNN, indicating 

that CNN can classify the GBM subtype with high specificity and sensitivity for clinical 

diagnosis. Additionally, classification with the external dataset also represented a similar 

outcome, i.e., the performance of CNN was higher (Table 4.6). While validating with the 

external dataset, 10-fold cross-validation was implemented to calculate the average 

performance measure and compared the model performance by computing the rank. 

Furthermore, the classification accuracy of LASSO feature was compared with the features 

selected using the variance. Gene with higher variance may contain more useful information. 

To compare the performance with LASSO, we selected the top 201 variable genes according to 

the degree of variance across all samples. The CNN was performed using the same parameters 

and 10 fold cross-validation. The average accuracy was 84.02% (±0.08). Therefore, the 

accuracy of prediction was less than LASSO features (98.56%). Hence, model building to 

validation, it is observed that the feature genes from LASSO and CNN were the best for subtype 

classification for the transcriptome data. Therefore, we implemented this framework in 

subsequent analysis.  

ROC plots 

Figure 4.4:  In (A – F) ROC of various prediction models. ROC plots were generated using a test 

dataset.  
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Table 4.6: Models performance and ranking for validation data (transcriptome) 

Method Performance measures (Average of 10 fold cross-validation) MCDM 

Rank 
Accuracy Recall Precision F1-score FPR GM MCC 

SVM 79.14 %(±0.14) 71.33 63.57 65.68 0.11 84.07 0.71 4 

KNN 79.15 %(±0.14) 71.33 63.57 65.68 0.11 84.07 0.71 5 

RF 80.57%(±0.22) 71.38 65.75 67.54 0.10 85.85 0.66 3 

NB 77.59 %(±0.17) 68.28 61.90 64.02 0.12 82.99 0.68 6 

LR 81.20%(±0.15) 74.68 66.01 68.90 0.10 86.44 0.75 2 

CNN 92.70 %(±0.12) 90.20 88.77 89.24 0.01 98.25 0.96 1 

 

4.3.2 Classification of GBM subtype using methylome 

     In the previous section, the GBM subtype were classified using the transcriptome data (or 

gene expression data), because the alteration of gene expression is a hallmark of oncogenesis. 

However, the level of gene expression is regulated by DNA methylation. Therefore changes in 

DNA methylation patterns can play a crucial role in GBM development. Recent studies show 

that methylation biomarkers are essential for improving and designing cancer therapy 233. 

Hence, the information contained in methylation data could possibly help to classify the GBM 

subtype. The genome-wide methylation or methylome data of 84 GBM patients were retrieved 

from the UCSC Xena database. The data from the Illumina Infinium HumanMethylation450 

platform (450K array) were selected that has 4,85,577 probe sites. In this dataset, the 

methylation level is estimated using the beta value. The beta value ranges from 0 to 1, 

representing the ratio of the intensity of the methylated bead type to the combined locus 

intensity. Thus, higher beta values represent a higher level of DNA methylation, i.e. 

hypermethylation and lower beta values represent a lower level of DNA methylation, i.e. 

hypomethylation. The recent reports show that hypermethylation/hypomethylation level in the 

promoter region (e.g., defined as TSS1500 upstream to TSS200 downstream of TSS, 5’UTR, 

and first exon; TSS denotes transcription start site.) and gene body determine the gene 

expression level 234,235. Therefore, we screened the promoter and gene body methylation data 

to perform classification because the alteration of methylation levels in these regions can 

influence the gene expression level and subsequently influence the biological processes 236. The 
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CpG sites which include all promoter regions and gene body, were screened for feature 

selection. By using LASSO, we obtained 498 features CpG sites. Next, the subtype-specific 

clustering of patients were examined with these 498 features CpG sites using PCA. Results 

showed that there was slighter mixing among the different subtypes (Figure 4.6). Next, the DL 

and ML was performed using these 498 CpG sites as variables. We repeated the same 

methodology as described in the previous section. First, the methylome data were divided into 

training (70%) and test (30%). The hyperparameters were optimized using the grid search 

method, and 10-fold cross-validation was performed on the training data. The average 

performance measures were used to select the top-performing model using MCDM (Figure 

4.5). The overall performance of CNN was superior compared to other ML models using 

methylation data as well (Table 4.7). Next, our observation was validated with the 30% test 

data set (Table 4.8) and an external data set (GSE128654) (Table 4.9). ROC plots (Figure 4.7A-

F) showed that the performance of the CNN (AUC=0.98) was better when compared to other 

ML models. However, the accuracy value is 89.0%, which is lower than the ML models. The 

overall performance of CNN on external data is superior (Rank =1, see Table 4.9). These results 

indicate that CNN is the best classifier for predicting the GBM subtype using DNA methylation 

data.  
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Figure 4.5:  Pipeline of GBM subtype classification using methylome data. The flow chart 

shows deep-learning and machine-learning pipelines using genome-wide DNA methylation 

data to classify the subtypes. 
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Figure 4.6:  PCA plots to visualize the subtype-specific clustering of the patients from features 

gene. 

 

Table 4.7: Models performance and ranking for methylation data 

Method Performance measures (Average of 10-fold cross-validation) MCDM 

Rank 
Accuracy Recall Precision F1-score FPR GM MCC 

SVM 90.61%(±0.09) 86.40 87.67 84.49 0.07 90.55 0.81 4 

KNN 90.72 %(±0.12) 85.86 88.10 84.90 0.07 90.36 0.81 5 

RF 91.03 %(±0.10) 86.92 89.74 86.33 0.06 90.81 0.82 3 

NB 92.34 %(±0.08) 88.85 92.63 88.46 0.05 92.03 0.84 2 

LR 89.84%(±0.11) 83.71 82.70 81.80 0.08 89.46 0.78 6 

CNN 97.54%(±0.05) 96.77 97.71 96.47 0.01 97.47 0.95 1 
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Table 4.8: Models performance and AUC from test data (methylation) 

Method Performance measures (on test dataset) 

Accuracy Recall Precision F1-score FPR GM MCC AUC 

SVM 97.19 95.73 96.85 96.09 0.02 97.42 0.94 0.97 

KNN 89.94 84.15 86.98 84.86 0.07 89.73 0.77 0.88 

RF 89.50 84.96 84.62 84.62 0.08 89.73 0.76 0.89 

NB 95.12 92.26 94.02 92.55 0.02 94.85 0.89 0.95 

LR 94.82 92.26 93.17 92.48 0.03 94.85 0.88 0.95 

CNN 89.50 85.38 86.54 84.55 0.08 89.73 0.78 0.98 

 

ROC plots 

 

Figure 4.7: In (A-F) ROC of various prediction models. ROC plots were generated using the 

test dataset.  
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Table 4.9: Models performance and ranking for external data (methylation) 

Method Performance measures (Average of 10-fold cross-validation) MCDM 

Rank 
Accuracy Recall Precision F1-score FPR GM MCC 

SVM 82.42%(±0.23) 76.65 73.58 74.60 0.09 85.26 0.76 4 

KNN 79.09 %(±0.20) 68.00 63.19 64.22 0.13 81.49 0.66 6 

RF 82.81 %(±0.16) 76.27 70.31 72.29 0.08 88.19 0.78 3 

NB 81.52%(±0.15) 71.46 65.50 66.91 0.11 83.45 0.71 5 

LR 87.42%(±0.17) 84.34 81.08 82.17 0.05 92.92 0.86 2 

CNN 91.91 %(±0.13) 90.50 89.15 89.60 0.01 97.63 0.96 1 

 

4.3.3 Classification of GBM subtype by integrating the methylation and 

transcriptome data.  

     There are several studies where only one type of “omics” data was used, such as either gene 

expression or methylation data to identify the biomarkers or classify the cancers 237,238. 

However, DNA methylation and gene expression are the integrated processes that determine 

cellular fate 239. The perturbation of gene expression in many human cancers is due to the 

change of methylation pattern 230. Hence, integrating these strongly interlink cellular processes 

and subsequent analysis could facilitate finding a more effective diagnostic option 69. The 

patients having both transcriptome and methylome data were selected for data integration. Next, 

the gene and methylation sites were screened based on z-score, i.e. z>1 and z<-1. Z-score 

greater than 1 or less than -1 indicates the expression and methylation is greater or less than the 

population mean. We identified common genes whose expression and methylation both are z>1 

or z <-1 in each subtype. Next, all these genes (n=4231) were combined and used their gene 

expression level to find the most variable features (n=75) using LASSO. We observed that 75 

feature genes form the distinct subtype-specific clusters with PCA (Figure 4.9). Compared to 

previous features from transcriptome and methylome data, the feature genes of integrated data 

significantly improved the clustering of the GBM subtype. Next, CNN was implemented using 

these feature genes and compared CNN performance with the other five ML algorithms (Figure 

4.8).  
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Figure 4.8: Pipeline of GBM subtype classification using integrated data. The flow chart shows 

deep-learning and machine-learning pipelines using the integrated data of transcriptome and 

methylome to classify the subtypes. 
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Figure 4.9: In (A) and (B), PCA plots to visualize the subtype-specific clustering of patient from 

features gene. 

     In this case, the CNN performance was also ranked on top (Table 4.10). Furthermore, we 

validated the model with 30% test data (Tables 4.11) and external data (Table 4.12). ROC plots 

generated using test data explain the decent performance of CNN (AUC=0.91 and 

accuracy=87.50%) (Figure 4.10A-F). The validation with external data showed that CNN was 

the top performer (accuracy=94.48%) for classification (Table 4.12). It can be concluded that 

in all three types of analysis, CNN efficiently classified the GBM subtypes. However, the 

features from integrated data specifically cluster the subtype of GBM with PCA. Moreover, the 

consistent all-around performance of CNN proves that CNN can be used as a computational 

tool for the clinical diagnosis GBM subtype.  

Table 4.10: Models performance and ranking using integrated data 

Method Performance measures (Average of 10-fold cross-validation) MCDM 

Rank 
Accuracy Recall Precision F1-score FPR GM MCC 

SVM 89.94 %(±0.10) 86.47 81.11 81.65 0.07 90.02 0.82 5 

KNN 91.87%(±0.13) 88.35 82.68 84.57 0.06 91.81 0.84 3 

RF 93.67%(±0.10) 88.70 84.63 86.06 0.04 93.52 0.89 2 

NB 89.95%(±0.14) 83.16 77.12 79.14 0.08 89.43 0.79 6 

LR 92.18%(±0.10) 87.10 81.38 83.43 0.06 91.77 0.85 4 

CNN 98.20%(±0.05) 98.44 97.97 97.60 0.01 98.25 0.97 1 

 



 
 
Chapter 4  Objective 2 

88 
 

 

Table 4.11: Models performance and AUC using test data (integrated) 

Method Performance measures (on test dataset) 

Accuracy Recall Precision F1-score FPR GM MCC AUC 

SVM 90.63 82.50 93.06 85.16 0.06 91.48 0.82 0.9 

KNN 88.28 84.82 81.25 82.56 0.09 87.35 0.71 0.86 

RF 87.50 80.54 80.54 80.54 0.09 87.50 0.71 0.85 

NB 95.70 93.75 92.71 92.45 0.04 95.79 0.90 0.94 

LR 95.70 93.75 92.71 92.45 0.04 95.79 0.90 0.94 

CNN 87.50 78.75 84.31 79.01 0.10 87.50 0.72 0.91 

 

 

ROC plots 

 

 

 

Figure 4.10: In (A-F), ROC of various prediction models. ROC plots were generated using the 

test dataset.  
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Table 4.12: Models performance and ranking for external data (transcriptome) 

Method Performance measures (Average of 10-fold cross-validation) MCMC 

Rank 
Accuracy Recall Precision F1-score FPR GM MCC 

SVM 63.15%(±0.12) 46.43 35.70 37.89 0.22 68.38 0.38 6 

KNN 67.08%(±0.17) 49.56 38.83 42.39 0.20 72.31 0.39 5 

RF 80.00%(±0.19) 72.24 66.21 67.70 0.09 85.81 0.73 2 

NB 66.14%(±0.17) 55.59 45.69 48.47 0.22 71.35 0.43 4 

LR 70.74%(±0.10) 49.26 37.11 41.14 0.16 75.89 0.48 3 

CNN 94.48%(±0.11) 94.48 94.48 94.48 0 1 1 1 

 

4.3.4 The biological relevance of features and identification of biomarkers 

     In the preceding steps, features were extracted from large-scale transcriptome and 

methylome datasets to develop the predictive tool for subtype identification. It is observed that 

selected features from each type of data have excellent separability power, and therefore we 

achieved classification accuracy > 90% in every case. This indicates that any subset of these 

features is probably associated with a particular subtype (or phenotype). Therefore, further 

analysis of these features genes can link the genotype to phenotype. Weighted gene co-

expression network analysis (WGCNA) was performed to understand genotype-to-phenotype 

relationships. WGCNA can find the module of highly correlated genes and their association 

with a specific subtype of GBM 230. The co-expression module was constructed using the 

feature genes expression from transcriptome, methylome, and integrated data and examined 

their association with specific subtypes. To find the co-expression module of feature 

methylation sites, we mapped the methylation site to gene name and extracted the gene 

expression data to construct co-expression modules. To construct the co-expression modules, 

the soft threshold, β (β= 4, 6, and 5 for transcriptome, methylome, and integrated data, 

respectively) was determined based on scale independence and mean connectivity (Appendix 

Figure II. 1). We then merged modules with similarities above 0.6 for all three types of data. 

Finally, the dynamic tree cut showed a gene cluster dendrogram containing 3, 6, 5 co-expression 

models in the features of transcriptome, methylome, and integrated data, respectively (Figure 

4.11.A, Figure 4.12.A, Figure 4.13.A). To understand the genotype-phenotype relationship, the 
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module-trait relationship plot was generated. We found distinct patterns of association between 

modules and subtypes (Figure 4.11.B, Figure 4.12.B, Figure 4.13.B). Results showed that the 

blue module (Figure 4.11 B) was significantly and positively associated with the proneural 

subtype (r = 0.53, p = 4E-11). In contrast, it was negatively associated with mesenchymal (r = 

-0.73, p = 2E-23), and weakly correlated with classical subtype (r = 0.25, p = 0.004). Similarly, 

we found a distinct pattern of association between other modules (i.e., brown and turquoise) 

and subtypes (Figure 4.11 B). We observed the same in the features from methylome and 

integrated data. In methylome (Figure 4.12 B), brown module significantly and positively 

associated with only proneural subtype (r = 0.33, p = 0.02). The green module is positively 

associated with classical (r = 0.32, p = 0.03) and negatively associated with proneural (r = -

0.46, p = 9E-04).  The Blue module is strongly and positively correlated with mesenchymal 

subtype (r = 0.55, p = 4E-05), whereas it was negatively associated with proneural (r = -0.6, p 

=5E-06). However, the feature from integrated data showed a more specific module-subtype 

association. At least one module was strongly and positively correlated with a specific subtype. 

The red (r = 0.64, p = 3E-07), turquoise (r = 0.66, p = 8E-08) and blue (r = 0.56, p =1E-05) 

were explicitly and positively associated with classical, mesenchymal, and proneural, 

respectively (Figure 4.13B). The module-trait relationship analysis indicated that integration of 

transcriptome and methylome resulted in subsets of features strongly correlated with a 

particular subtype of GBM. Probably, the integrated datasets are mechanistically more relevant 

as the methylation, and gene expression are integrated cellular processes. Next, the gene set 

enrichment analysis (GSEA) was performed, i.e., GO Biological Process (BP) and Molecular 

Function (MF),  using Enrichr to understand the biological relevance of each data type's top 

three positively correlated modules 229. It was observed that modules were significantly 

(adjusted p < 0.05) associated with several BP and MF that are linked to the oncogenesis. For 

example, the turquoise module from transcriptome data in the classical subtype is involved in 

the RIG-I signaling pathway that elicits RIG-I-like receptors' expression and activity (RLRs) 

(Figure 4.11 C). These receptors stimulate both innate and adaptive immune responses against 

tumor antigens and promote the apoptosis of cancer cells 240. In contrast, the brown module 

associated with the mesenchymal subtype (leukocyte adhesion to vascular endothelial cell) may 

be linked to the GBM-associated with endothelial cell, that is resistant to cytotoxic drugs, and 

also less apoptotic than healthy cells 241 (Figure 4.11 C). Phosphatidylinositol 3 phosphate 

activity enriched in the turquoise module, solute proton symporter activity in the brown module, 

and syndecan binding in the blue module are associated with higher tumor grades and poor 
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prognosis in GBM 242 (Figure 4.11 D). Similarly, it is observed that the blue module in the 

mesenchymal and brown module in the proneural are linked to positive regulation of GTPase 

activity and positive regulation of phosphorylation in methylome data (Figure 4.12 C) These 

processes are signatures of GBM formation and progression 243. Even molecular functions of 

several co-expression modules are involved in tumorigenesis, like phosphatidylinositol 3, 4, 5 

triphosphate binding  enriched in the green module deregulates many key signaling pathways 

involving growth, proliferation, survival, and apoptosis in GBM 244 (Figure 4.12 D). 

Furthermore, endopeptidase inhibitor activity, GABA receptor activity enriched in blue and 

brown modules, respectively, are predominant events in GBM 245,246 (Figure 4.12 D) The gene 

co-expressed modules in integrated data, i.e., and turquoise module (mesenchymal) involved 

with negative regulation of T cell activation and proliferation is one of the signatures of GBM 

247. The MF of the same module shows it is associated with gap junction channel activity 

involved in cell communication, which is also linked to GBM 248 (Figure 4.13 C, D). 

 

 

Figure 4.11: Weighted gene co-expression network analysis and gene set enrichment of feature 

used for model building. (A) co-expression gene module, (B) module-trait relationship, (C) 

biological process, and (D) molecular function of feature from transcriptome data.  
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Figure 4.12: Weighted gene co-expression network analysis and gene set enrichment of feature 

used for model building. (A) co-expression gene module, (B) module-trait relationship, (C) 

biological process, and (D) molecular function of feature from methylome data. 

 

 

Figure 4.13: Weighted gene co-expression network analysis and gene set enrichment of feature 

used for model building.  (A) co-expression gene module, (B) module-trait relationship, (C) 

GO Biological Process term analysis, and (D) GO Molecular Function of feature from 

integrated data.  
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     Our results show that most of the positively correlated modules in GBM subtypes were 

involved in several BP and MF. Besides, many of these BP and MF are involved in oncogenic 

processes. This shows a possibility of identifying these modules’ genes as cancer biomarkers 

for therapy or diagnosis. We performed survival analysis of positively correlated modules 

(Appendix Figure II.2). The turquoise module in the integrated feature is significantly (log-rank 

test, p=0.029) associated with the patient survival. Hence, we performed survival analysis of 

all genes separately present in these modules using GEPIA web tools (Figure 4.14 and appendix 

Figure II.3.) We found several genes that were present in the co-expression module and were 

also associated with the patient’s survival (log-rank test, p<0.05). The higher expression of most 

of the genes was associated with worse survival of the patients, except DUOX1 (Figure 4.14O) 

and FOXN2 (Appendix Figure II.3). However, higher or lower expression of genes associated 

with worse survival can be considered biomarkers 249,250. Furthermore, several experimental 

articles confirm the involvement of these genes in GBM formation and progression. For 

example, CCDC8, CLDN1, JMJD8, PTRF, RNF135, and SNX21 in classical 251–256 (Figure 

4.14 A to F); GCNT1, RAB38, HLX, ZDHHC12, SRCRB4D (SSC4D), GNB2 and LETM2 in 

mesenchymal 257–263 (Figure4.14 G to M); and TOLLIP, DUOX1 264,265 in proneural (Figure 

4.14 N to O) are linked to GBM patients' survival. The association of genes from the modules 

with patient survival shows the possibility to identify them as subtype-specific prognostic 

biomarkers. We also observed that expression pattern of survival associated genes varied across 

the subtype (Appendix Figure II.4). Further, we illustrated with gene enrichment analysis that 

their biological process and molecular functions are also linked to oncogenic events. Therefore, 

these findings confirm the clinical validity of our models and can provide insight into the 

complex regulatory processes in different subtypes of GBM.  
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Figure 4.14: Survival analysis of gene present in co-expression module. (A-F), Kaplan-Meier 

plots of genes from positively associated modules with classical subtype. (G-M), Kaplan-Meier 

plots of gene from positively associated modules with mesenchymal subtype. (N-O), Kaplan-

Meier plots of gene from positively associated modules with proneural subtype. Overall 

survival was analyzed based on the clinical information of the patients from TCGA and quartile 

method of 75 % cut-off of higher and 25%  cut-off of lower limit (Extended version of this figure 

is provided in appendix figure II.3.).   

4.4 Discussion 

     This chapter indicates that DL and ML can be powerful tools for finding patterns in large-

scale genetic and epigenetic data sets related to human cancer. In general, efficient DL and ML 

tools work like a ‘black -box’; researchers or clinicians may not be confident in diagnosing or 

classifying cancer patients using these approaches. However, if the basis of classification is 

biologically relevant and has higher accuracy, the diagnosis and patient management will be 

more assured and systematic. Here a biologically relevant DL and ML-based framework was 

presented to classify the subtype of GBM to increase accuracy in diagnosis; in turn, it can lead 

to better patient management. The previous studies tried to develop the subtype classification 

model for GBM using either imaging data or single type of omics data, however, these models 
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exhibited lower accuracy compared to our framework 266,267. Additionally, models were mainly 

developed for binary classification to identify healthy and cancer patients. However, two types 

of high-throughput data were used, i.e., transcriptome and methylome; integrated forms of these 

data were explored to develop the classification framework. Most importantly, we have 

successfully separated three subtypes, classical, mesenchymal, and proneural of GBM. 

Although we have dealt with multi-class classification problems, we still achieved 

classification accuracy >90%. DL and ML techniques were also compared to identify the 

most suitable method for interpreting the transcriptome, methylome, and integrated data. 

DL method, i.e., CNN outperforms other ML models. Using CNN, we were able to classify 

the tumor into the correct subtype from the test and external cohort. We observed that overall 

classification performance was higher using the transcriptome and integrated data than 

the methylome data.  

     Another significant finding of this chapter is the biological relevance of features and 

the identification of subtype-specific prognostic biomarkers. To find the association of 

features genes with specific subtypes, WGCNA was performed. The gene co-expression 

module-subtype relation analysis revealed how a subset of features is strongly and 

positively correlated with a particular subtype of GBM. In addition to that, the gene set 

enrichment analysis revealed that all positively correlated modules are biologically relevant, 

even those that are linked to oncogenic processes.   Among all data types, a strong module-trait 

relationship was observed in feature genes from integrated data. Furthermore, several genes 

present in these co-expressed modules were identified, which were linked to patient survival. 

Our study explained how the features genes from the DL/ML framework could be used 

to find the subtype-specific biomarkers. Good agreement was found when comparing 

prognostic markers from this work against published experimental data. The feature genes of 

this study and CNN can provide assured and clinically relevant deep learning-based diagnostic 

tools for the proper treatment of GBM patients. Furthermore, the results of this work will 

elucidate and shed light on the understanding of genotype-phenotype relationships of the GBM 

subtype.  
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Chapter 5: Objective 3 

Implementation of a deep learning embedding system for 

multi-omics data integration for the subtyping of Glioma 

 

5.1 Introduction  

     The majority of deep learning models are commonly perceived as black boxes, wherein they 

generate precise predictions without offering any accompanying explanations. One of the 

primary constraints associated with the utilisation of deep learning in the field of cancer 

research pertains to its lack of interpretability, which limit their application in biomedical 

settings. To increase clinical applicability, the classification model for glioma subtyping using 

machine learning (ML) and deep learning (DL) techniques should be biologically informed. 

Because biologically relevant approaches were employed to identify disease-specific 

biomarkers that exhibit associations with specific disease phenotype. Furthermore, it is a well-

established that perturbations in various genomics layers can lead to cancer. The integration of 

these genomics layers with an AI-based model can aid in capturing the unique pattern necessary 

for developing accurate subtype classification models 268. However, employing of data from 

different genomics layer can increase the dimensionality of the data, hence reducing of 

dimension is crucial step to develop the efficient model. Deep learning (DL) techniques such 

as autoencoder effectively integrate the genomics data and simultaneously reduce the 

dimension.  The integration of multi-omics data across several levels can yields a more 

comprehensive understanding of disease specific alterations, and identification of cancer 

subtypes. Moreover, this approach elucidates the interconnections among diverse omics data 

modalities pertaining to a certain disease.

 

     This chapter presents the development of deep-neural network-based framework, called 

DeepAutoGlioma for integrating the transcriptome and methylome and subsequently classified 

the subtypes of LGG and GBM. Transcriptome and methylome data of glioma patients were 

pre-processed and differentially expressed features from both datasets were identified. 

Subsequently, a cox regression analysis determined genes and CpGs associated with survival. 

Gene set enrichment analysis was carried out to examine the biological significance of the 

features. Further, CpG and gene pairs were identified by mapping them in the promoter region 

of corresponding genes. The methylation and gene expression levels of these CpGs and genes 
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were embedded in a lower dimensional space with an autoencoder. Next, ANN and CNN were 

used to classify subtypes using the latent features from embedding space. The framework is 

called DeepAutoGlioma. The present work introduces a new way for subtyping brain cancer, 

and it is believe that this research will shed light on the DL-based clinical support system for 

accurate disease prediction using multi-omic data. 

 

5.2 Methodology 

5.2.1 Data Collection and Preprocessing  

     The methylome (Illumina Infinium HumanMethylation450 platform), and transcriptome 

(RNA-seq) data of TCGA were retrieved from UCSC Xena (https://xena.ucsc.edu) 165.  log2 

(RSEM + 1) values for gene expression and beta-values for methylation levels were considered 

for analysis. Here, RSEM stands for RNA-Seq by Expectation Maximization. Next, low-

expressed genes were filtered out of the transcriptome data [log2 (RSEM +1) <0.1 in 90% 

sample]. Patients with both a transcriptome and methylome profile were considered for 

analysis. GBM patients (n = 52) were divided into three groups based on their clinical 

information: classical (n = 16), mesenchymal (n = 22), and proneural (n = 14). Similarly, the 

LGG patients (n = 281) were divided into three groups based on cancer subtype, i.e., 

astrocytoma (n = 96), oligoastrocytoma (n = 75), and oligodendroglioma (n = 110). The 

external data set was obtained from the Gene Expression Omnibus (GEO) repository. The 

subtyping of LGG was validated using the GSE74462, GSE43378 (gene expression data), and 

GSE129477 (DNA methylation data). The subtyping of GBM was validated using the gene 

expression data from GSE145645 and the DNA methylation data from GSE128654. 

 

5.2.2 Identification of differentially expressed genes and differentially 

methylated regions 

     DEGs and DMRs were identified by z-score. The categorization of genes with high and low 

expression levels, as well as CpG sites with hyper- and hypo-methylation, was performed using 

the Z-score. This approach was used due to the unavailability of healthy patient data for both 

the transcriptome and methylome. The following formula was used to determine the Z-score 

for each gene or CpG site in a certain subtype: 

 

https://xena.ucsc.edu/
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𝑍 − 𝑠𝑐𝑜𝑟𝑒 =
𝑥̅– 𝜇

𝜎
 

 

     Here, 𝑥̅ denotes the subtype-specific average gene expression or methylation level, whereas 

µ and 𝜎 stand for the population mean and population standard deviation, respectively. For each 

subtype of LGG and GBM, Z-score > 1 for higher expression and hypermethylation and Z-

score < -1 for lower expression and hypomethylation were used. Then, considering that 

differential methylation in the promoter regions may affect the related gene's expression, the 

higher and lower-expressed genes whose promoter regions were differentially methylated were 

screened. Finally, genes with differential expression and methylated promoter regions were 

used for further analysis.  

 

5.2.3 Construction of univariate Cox regression models and survival analysis 

     Univariate Cox regression analysis was implemented to build the prognostic risk-score 

model for a particular gene and CpG site 269. Univariate Cox regression analysis was performed 

using the survminer and survival package in R. The p-value < 0.05 was considered the 

significant association of a gene or CpG site with patients' overall survival (OS). 

  

ℎ(𝑡) = ℎ0(𝑡 ) × exp {𝑏1𝑥1 +  𝑏2𝑥2 + ․․․․․․․․ + 𝑏𝑝𝑥𝑝} 

  

     Where t is survival time,  h(t) is the hazard function determined by a set of covariates (𝑥1 , 

𝑥2, ……., 𝑥𝑝) for genes or methylation sites, 𝑏1 , 𝑏2, ……., 𝑏𝑝 are the coefficients of regression, 

ℎ1 is baseline hazard. 

 

5.2.4 Mapping and integration of methylation and gene expression data  

     CpG ids and genes were mapped through the promoter region. The TSS1500, TSS200, the 

first exon, and the 5′ UTR were considered promoters of a gene. If both gene expression and 

methylation levels at the promoter alter (i.e., DEGs and DMRs), then the CpG-gene pairings 

were subjected to screening. Next, the construction of methylation and gene expression matrices 
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was performed utilizing these CpGs and genes. These matrices were then utilized as input for 

an autoencoder, which consisted of two separate layers.   

 

5.2.5 Biological processes and pathway enrichment analysis    

     The biological processes and pathway enrichment were analyzed using the Metascape tool 

(A detailed description of Metascape tool was provided in the chapter 3.2.9 in details) 178. 

Enrichment analysis was performed using the following ontology sources: Gene Ontology (GO) 

Biological Processes, KEGG Pathway and Reactome Gene Sets, and the Kyoto Encyclopedia 

of Genes and Genomes (KEGG). If the adjusted p-value < 0.05, the biological process or 

pathway was considered significantly enriched. 

 

5.2.6 Autoencoder Implementation 

     Autoencoders are feed-forward neural networks that aim to copy the input variable to the 

output variable with the minimum loss of information. It compresses the inputs into latent 

variables in the bottleneck layer's embedding space and then reconstructs the output from the 

embedding space. The autoencoder is composed of two parts: the encoder and the decoder. The 

encoder maps the high dimensional input data into latent variables in embedding space, and the 

decoder reconstructs the input data from the embedding. Here, one concatenated layer, one 

hidden layer and bottleneck layer were employed in the encoding part. A concatenated 

autoencoder to integrate the gene expression and methylation data were used. The concatenated 

autoencoder was implemented using the Keras library with TensorFlow 270 (Figure 5.1). To 

integrate the gene expression and metylation level of LGG, in the hidden layer of autoencoder, 

a rectified linear activation function (ReLU) was used. In bottleneck layer, uniform kernel 

initializer and linear activation function were implemented. Similarly in the decoding layer also 

one hidden layer and concatenated layer were used. ReLU activation function was applied to 

the decoder layer. Same architecture employed in the GBM dataset for integrating the gene 

expression and methylation data.  In the GBM dataset Exponential Linear Unit (ELU) activation 

function was used in the hidden layers. Linear activation function and uniform kernel initializer 

were employed at bottleneck layer.  Further, ELU activation function is applied to the decoder 

layer. Epoch size and batch size were 1500 and 16, respectively, in each dataset. The network 

design was implemented following the Fig. 5.1. A total of 1110 features from gene expression, 

and 3204 features from DNA methylation were selected, in the LGG dataset, while in the GBM 
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dataset, 268 features from gene expression, 447 features from DNA methylation were selected 

for the input layer. For the autoencoder, concatenate layer, hidden layers, and a bottleneck layer 

was set, respectively. The 400 and 100 features were obtained from the bottleneck in LGG and 

GBM datasets, respectively. 

 

Figure 5.1.: Architecture of autoencoder: The autoencoder used in DeepAutoGlioma consists 

of an encoder and a decoder made from 2 hidden layers and one bottleneck layer. The 

autoencoder has two input layers for DNA methylation and gene expression; in the first hidden 

layer, data is concatenated, and is passed to another hidden layer and finally compressed in 

the bottleneck layer. In the decoder part, the latent variables from the bottleneck layer are 

reconstructed to the initial ones. 

 

5.2.7 Deep learning classifier 

     ANNs, which imitate the human brain, are feed-forward neural networks. ANNs are 

represented by a weighted, directed graph connecting inputs to a series of interconnected 

“hidden” layers that are composed of multiple nodes called “neurons,” that are in turn connected 

to an output layer 81. ANNs are trained to recognize and categorize complex patterns. There are 

one input layer, one output layer and one hidden layer in the network. The hidden layers lies 

between the input and output layers. The number of output neurons varies depending on the 
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specific application, while the number of input neurons is equal to the number of attributes. 

Here latent variable obtained from bottleneck layer of autoencoder were used as input. 

     CNN is a type of deep learning method that directly learns from the data. CNN consists of 

three layers: convolutional, pooling and fully connected (FC) layers 82. The convolutional layer 

is the first layer, while the FC layer is the last. In the first layer i.e., the convolutional layer, 

where filters are applied to raw data or feature maps in deep CNN, convolution is one linear 

operation utilized in place of generic matrix multiplication. The convolution operation (denoted 

by an asterisk) is defined by: 

𝑓(𝑡) = (𝑥 ∗ 𝐾)(𝑡) 

 

     Where the function  𝑥 (𝑡) is referred to as input,  𝐾(𝑡) is referred to as kernel, and the 𝑓(𝑡) 

is referred to as output. After convolutional layer, the genes is downscaled by the Pooling layer 

to save computation, and the final prediction is made by the fully connected layer. Since every 

node in a single layer is fully connected to every node in the subsequent layer, it represents a 

network that is fully connected. This paper uses the Keras library to build these two deep-

learning classifiers on the Python platform. Furthermore, parameters were optimized with the 

grid search method using the GridSearchCV package in Python. After finding the best features, 

the 70% training dataset was employed using a stratified k-fold. In a stratified k-fold CV, the 

dataset is split into k different folds, of which k-1 was utilized to train the network, and the final 

fold was set aside for testing. This procedure is then repeated until all folds are used once as a 

test set. The final output is then computed by averaging the performance parameters obtained 

from each test set.  

 

5.2.8 Performance evaluation 

     The performance of the DL model was evaluated based on the eight criteria: Accuracy, 

Sensitivity, Specificity, Precision, F1-score, FPR, Geometric mean, and MCC. All the matrices 

are described in chapter 3 in details. 

 

5.2.9 Statistical analysis 

     Pairwise comparison was done using Mann-Whitney U test using Sigma Plot 11.0. 
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5.3 Results  

5.3.1 Identification of biologically relevant features for classification of LGG 

and GBM subtypes   

     Deregulated gene expression and aberrant methylation are the hallmarks of human cancer 

271. Methylation status in the promoter region determines the level of gene expression. 

Therefore, linking the methylome and transcriptome is crucial in finding the genetic and 

epigenetic features that cause cancer, which is also important for making biologically relevant 

models. To connect the methylome and transcriptome, patients with transcriptome and 

methylome profiles were chosen to identify the upregulated, downregulated genes (DEGs) and 

hypomethylated and hypermethylated CpGs (DMRs). A z-score method was used to screen the 

DEGs and DMRs (see methodology). A z-score greater than 1 or less than -1 indicates the gene 

expression and methylation are greater or less than the population mean, respectively. The 

DEGs and DMRs for each subtype of LGG and GBM were identified. In LGG, a total of 3972, 

4024, and 4088 DEGs (Figure 5.2A) and 177458, 181957, and 181163 DMRs were found 

(Figure 5.2B) in astrocytoma, oligoastrocytoma, and oligodendroglioma, respectively. In 

subtypes of GBM, a total of 3910, 3767, and 3745 DEGs (Figure 5.2C), and 211764, 208111, 

and 190743 DMRs were found (Figure 5.2D) in classical, mesenchymal, and proneural, 

respectively. It is also found that differences in average expression and methylation level 

between z > 1 and z <- 1 are statistically significant (p-value < 0.001) in all subtypes (Figure 

5.2A-D). Next, a univariate cox regression analysis was performed to find the correlation 

between patient prognosis with DEGs and DMRs. The univariate predictive models for each 

differentially expressed gene (DEG) and differentially methylated region (DMR) were 

separately generated. Next, the survival-associated genes and CpG sites were screened based 

on the p-value < 0.05. Our results showed that, in LGG, a total of 2295 DEGs and 18068 DMRs, 

and in GBM total of 1055 DEGs and 5033 DMRs were linked to the patient's survival. It is 

found that a total of 50.83 % of DEGs and 20.35% of DMR in LGG; and 23.30% of DEGs and 

5.41% of DMR in GBM were linked with patient survival. This indicates that a higher 

percentage of genes, or CpGs, are not linked with patient's survival. Therefore univariate cox 

analysis facilitates identifying the biologically important and cancer-associated features, which 

can lead to the development of a clinically relevant DL model while reducing the dimension of 

data to build better-fit prediction models. Subsequently, the survival-associated CpGs located 

in promoters, namely in regions (TSS1500, TSS200, the first exon, and the 5' UTR) were 

mapped and subsequently linked to their respective survival-associated genes. The linking of 
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these two layers of genomic data confirms that particular CpG and associated gene pairs are 

involved in cancer progression. It is found that in LGG, a total of 1110 genes (DEGs) and 3204 

CpGs (DMRs) in the promoter, and in GBM,  268 genes (DEGs) and their 447 CpGs (DMRs) 

in the promoter are linked to the patient survival. If a gene is involved in patient survival, and 

if its methylation level in the promoter, which regulates its expression, is also linked to survival, 

indicating an additive impact of methylation and gene expression on patient prognosis. It is 

believed that integrating methylation level with gene expression data will be more biologically 

valid for diagnostic model development. It is also found that these genes (prognostic genes) are 

involved in biological processes and pathways that are linked to cancer (Figure 5.3 A and B) 

such as signaling by ALK in cancer 272, cell-cell adhesion 273, signaling by receptor tyrosine 

kinase 274, PID INTEGRIN A4B1 pathway 275, gliogenesis 276, positive regulation of cell 

adhesion 277 and VEGFA-VEGFR2 signaling pathways 278,279. Therefore, these prognostic 

genes and CpGs were used for autoencoder-based data integration and model building. 

 

Figure 5.2: Boxplots show the difference in gene expression and methylation level between 

Z > 1 and Z < −1. (A) DEGs and (B) DMRs in each LGG subtype; (C) DEGs and (D) DMRs in 

each GBM subtype (***p< 0.001). DEGs: differentially expressed genes, DMRs: differentially 

methylated CpGs. 
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Figure 5.3: (A) and (B) Bar plots represent significantly enriched Biological processes and 

pathways of genes used as input in the autoencoder (*p< 0.05).  

 

5.3.2 Integration of gene expression and its promoter methylation level by 

autoencoders shows superior accuracy in subtyping.  

     In the previous section, It is derived the list of genes and their CpG sites in promoters linked 

to patient survival using univariate cox regression analysis. Next, the gene expression and 

methylation matrix were extracted. These datasets into training (70%), and validation (30%) 

sets were divided. 70% of the data was utilized to optimize the model’s parameters and evaluate 

the performance of each model, and the remaining 30% of data was employed as independent 

predictors. The gene expression and methylation matrices were fed into the autoencoder with 

concatenated inputs (CNC-AE). The methylation and gene expression levels are combined and 

compressed in the latent space or bottleneck layer learned by the autoencoder 280–284. All the 

dimensions and parameters of the different layers in the autoencoder were optimized. The 

autoencoder consists of two parts, an encoder, and a decoder network. In the encoder network, 

gene expression and DNA methylation profiles of LGG and GBM are first encoded into two 

4314 and 715-dimensional vectors separately through hidden layers, respectively. Next, the 

dimensions of the bottleneck layers at 400 and 100 for LGG and GBM were set. In the decoder 

network, the latent variables were again used to decode the original input data, and this was 

used to measure the reconstruction loss, which indicates the performance of the autoencoder. 

The network structure of the decoder is similar to the mirror image of the encoder network 

(Figure 5.1). If a latent variable captures the actual data pattern, i.e., intrinsic relationships 

between the variables, then the difference between the encoded and decoded vectors will be 

less. The reconstruction loss was measured by using Mean Squared Error (MSE). It is found 
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that MSE was significantly lower, i.e., 0.04 in LGG and 0.04 in GBM. This shows that the 

autoencoder efficiently learned the pattern in gene expression and methylation and encoded it 

in the latent space. Then these latent variables were used to develop the DL models for the 

classification of LGG and GBM subtypes.   

     Two DL algorithms, i.e., artificial neural network (ANN) and Convolutional neural network 

(CNN) were implemented, and compared their performance for subtype classification. During 

the model training step, the grid search method to find the best combination of hyperparameters 

were used (Table 5.1). Then, using these optimal hyperparameters, stratified k-fold cross-

validation (k = 10) on the latent variables was performed and computed the average 

performance measures for each DL model (Table 5.2). Average accuracy, recall, precision, F1-

score, False positive rate (FPR), Geometric mean (GM), and Matthew’s Correlation Coefficient 

(MCC) were used to assess the model's performance (see materials and methods). It is found 

that CNN models had higher prediction accuracy in subtyping, i.e, 98.03 % and 94.07%, for 

LGG and GBM, respectively, than the ANN models. The standard deviation (SD) of accuracy 

from a 10-fold cross-validation was measured. The SD was between ±0.06 and ±0.10, indicating 

the stability of the CNN model in a wide range of patient samples. It is found that FPR (0.01 

and 0.02) was minimal, and the MCC scores were high (0.96 and 0.93) in the case of CNN 

(Table 5.2). The higher MCC score represents a good correlation between the observed and 

predicted classes. 

Table 5.1: Hyperparameters for ANN and CNN models 

Parameters 

Datasets 

LGG 

(ANN) 

LGG 

(CNN) 

GBM 

(ANN) 

GBM 

(CNN) 

Activation relu relu linear elu 

Batch_size 32 64 30 64 

Dropout_rate - 0.2 0.1 0.2 

epochs 100 2000 50 2000 

filters - 1 - 1 

Kernel_size - 3 - 3 

optimizer adam RMSprop RMSprop RMSprop 
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Table 5.2: Performance evaluation of LGG and GBM subtypes classification 

 

  

Methods 

Performance measures (Average of 10 fold cross-validation) 

Accuracy Precision Recall F1-score FPR Gmean MCC 

LGG 
ANN 95.40%(±0.09) 92.50 92.73 92.45 0.03 95.28 0.89 

CNN 98.03%(±0.06) 97.67 96.96 96.97 0.01 97.99 0.96 

GBM 
ANN 92.19%(±0.10) 88.05 89.77 87.75 0.03 94.76 0.90 

CNN 94.07%(±0.10) 90.40 91.18 90.25 0.02 96.51 0.93 

 

     Next, the classification using validation datasets were performed to check the reproducibility 

of the DL framework. It is found the accuracy of subtype classification (for LGG 95.23 % and 

GBM 90.26%) of CNN was superior, and the MCC score was 0.90 and 0.92 (Table 5.3). The 

accuracy of the current framework for subtyping LGG and GBM outperforms that of earlier 

machine learning (ML) and deep learning (DL) models 285,286. This framework was named as 

DeepAutoGlioma (Figure 5.4). It is also observed the superior performance of 

DeepAutoGlioma using external GEO datasets (Table 5.4). The combination of feature genes 

and CpG sites in the model construction likely accounts for the impressive performance of 

DeepAutoGlioma. In most cases, feature selection approaches that rely on ML or DL ignore 

the biological relevance of features 287–289. However, here the DEGs and DMRs in each subtype 

were screened, which was associated with LGG and GBM patients' survival. Also, the genes 

and methylation sites used as inputs into the autoencoder are linked through their genomic 

locations. Together, these approaches reduce the dimension of data, which significantly 

influences the model's performance. In our opinion, biologically relevant inputs to the 

autoencoder provided superior accuracy (95-98%) in the subtype classification achieved with 

CNN. 
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Table 5.3: Classification performance of deep learning algorithms on LGG and GBM subtypes 

for validation set  

 

  

Methods 

Performance measures (Average of 10 fold cross-validation on test dataset) 

Accuracy Precision Recall 
F1-

score 
FPR Gmean MCC 

LGG 
ANN 90.18%(±0.13) 82.4 84.23 82.42 0.07 90.06 0.80 

CNN 95.23%(±0.09) 92.08 92.63 91.84 0.03 95.3 0.90 

GBM 
ANN 93.85%(±0.13) 93.85 93.85 93.85 0.00 100 1 

CNN 90.26%(±0.14) 85.38 87.69 86.15 0.02 95.26 0.92 

 

 

Table 5.4: Classification performance of DeepAutoGlioma on external datasets 

  

Methods 

Performance measures (Average of 10 fold cross-validation) 

Accuracy Precision Recall F1-score FPR Gmean MCC 

LGG 
ANN 91.89%(±0.13) 91.20 88.00 86.90 0.06 92.13 0.83 

CNN 91.38%(±0.09) 91.38 91.38 91.38 0.00 100 1 

GBM 
ANN 84.1%(±0.23) 74.48 79.48 76.15 0.06 90.55 0.72 

CNN 86.41%(±0.24) 79.87 83.33 81.02 0.05 92.92 0.76 
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Figure 5.4: Subtype classification framework of the DeepAutoGlioma. Methylome and 

transcriptome data are preprocessed, differentially expressed genes (DEGs) and differentially 

methylated regions (DMRs) are identified, and clinically significant features are extracted. 

Further, these features are mapped according to the genomic region to integrate the CpG-gene 

pair. Then, clinically relevant methylation (CpGs) and gene expression data are fed into the 

autoencoder, and latent variables are extracted to build deep learning models for subtyping 

brain cancer. 
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5.3.3 DL-models with a random feature set, preprocessed data, and single 

omics data  

     To validate our findings and better understand the role of feature selection in model 

performance, the DL-based model by feeding different sets of inputs (features) were extended 

to the autoencoder and compared their performance to that of DeepAutoGlioma. First, the 

performance of mapped CpGs and gene expression with randomized CpG-genes pairs as input 

into the autoencoder were compared. The randomly the CpGs (n = 3204 for LGG and n = 447 

for GBM) and genes (n = 1110 for LGG and n = 268 for GBM) from preprocessed data were 

selected. Then this unmapped randomly selected methylation and gene expression data were 

fed into the autoencoder. Then, ANN and CNN were used to classify the subtypes using the 

latent features from random datasets. This process was repeated ten times, and the accuracy 

varied from 60.68 - 71.43% in LGG, and 62.42 - 72.14% in GBM in all iterations (Table 5.5 

and 5.6). And the average accuracy of all iterations in CNN are 66.12 and 66.59% in LGG and 

GBM, respectively. When compared to DeepAutoGlioma, the average accuracy of all ten 

iterations in CNN is significantly less (p-value < 0.001, Figure 5.5). Not only the accuracy but 

other parameters such as precision, MCC and FPR are very less compared to DeepAutoGlioma. 

This finding confirms that mapping the promoter methylation region to the gene has aided in 

predicting LGG and GBM subtypes with greater accuracy and precision. 
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Table 5.5: Model performance in LGG subtype classification using random features  

  
Methods 

Performance measures (Average of 10 fold cross-validation) 

Accuracy Precision Recall F1-score FPR Gmean MCC 

Iteration1 
ANN 64.02%(±0.08) 45.77 43.67 43.51 0.26 64.22 0.2 

CNN 64.09%(±0.05) 43.51 43.43 42.5 0.26 64.24 0.2 

Iteration2 
ANN 60.68%(±0.04) 23.49 33.52 22.72 0.28 58.33 0.08 

CNN 62.44%(±0.08) 31.62 37.27 28.9 0.27 60.23 0.11 

Iteration3 
ANN 69.06%(±0.08) 53.01 51.34 51.55 0.22 68.77 0.3 

CNN 70.62%(±0.08) 55.78 53.29 52.82 0.22 70.34 0.33 

Iteration4 
ANN 68.79%(±0.09) 51.89 51.21 51.05 0.23 68.92 0.3 

CNN 67.29%(±0.07) 47.83 48.09 47.03 0.24 67.52 0.27 

Iteration5 
ANN 65.69%(±0.10) 47.81 47.81 46.48 0.25 65.69 0.23 

CNN 68.24%(±0.07) 50.68 51.05 49.36 0.24 68.33 0.29 

Iteration6 
ANN 64.65%(±0.07) 45.16 44.47 43.76 0.26 64.35 0.2 

CNN 64.23%(±0.06) 44.92 44.12 43.53 0.26 63.75 0.18 

Iteration7 
ANN 69.14%(±0.04) 53.62 51.78 50.93 0.23 69.08 0.31 

CNN 65.96%(±0.07) 47.14 45.73 44.67 0.25 65.74 0.23 

Iteration8 
ANN 68.21%(±0.05) 51.45 49.82 48.8 0.23 68.22 0.28 

CNN 65.72%(±0.06) 47.76 47.07 45.88 0.25 65.75 0.24 

Iteration9 
ANN 64.9%(±0.11) 45.71 44.66 43.87 0.26 64.9 0.21 

CNN 65.74%(±0.08) 46.01 46.24 44.58 0.25 65.82 0.24 

Iteration10 
ANN 71.43%(±0.06) 55.35 54.88 53.7 0.21 71.56 0.36 

CNN 66.88%(±0.05) 50.12 48.96 48.47 0.24 66.88 0.26 
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Table 5.6: Model performance in GBM subtype classification using random features  

  

Methods 

Performance measures (Average of 10 fold cross-validation) 

Accuracy Precision Recall F1-score FPR Gmean MCC 

Iteration1 
ANN 64.59%(±0.11) 31.46 43.83 35.25 0.24 64.4 0.25 

CNN 62.42%(±0.16) 39.26 43.68 38.79 0.27 60.67 0.17 

Iteration2 
ANN 69.55%(±0.16) 46.55 57.47 47.91 0.22 68.81 0.39 

CNN 71.49%(±0.12) 50.88 56.94 49.59 0.21 70.36 0.38 

Iteration3 
ANN 69.68%(±0.18) 53.81 60.21 52.84 0.22 68.71 0.39 

CNN 70.31%(±0.16) 61.3 62.06 57.24 0.21 68.56 0.38 

Iteration4 
ANN 66.59%(±0.18) 46.9 48.83 45.35 0.26 61.95 0.27 

CNN 62.64%(±0.18) 35.44 43.66 36.27 0.28 61.94 0.18 

Iteration5 
ANN 65.64%(±0.12) 39.77 46.62 40.61 0.25 64.85 0.25 

CNN 69.71%(±0.13) 51.31 57.76 50.84 0.22 69.2 0.38 

Iteration6 
ANN 65.09%(±0.12) 38.56 48.02 39.36 0.26 64.46 0.25 

CNN 65.01%(±0.14) 33.05 48.04 37.55 0.26 63.7 0.24 

Iteration7 
ANN 68.64%(±0.17) 43.2 51.9 44.94 0.24 67.29 0.29 

CNN 68.47%(±0.07) 46.11 56.26 47.58 0.22 67.63 0.37 

Iteration8 
ANN 68.13%(±0.11) 37.23 45.75 39.30 0.22 65.76 0.26 

CNN 63.19%(±0.15) 32.73 41.66 34.25 0.26 62.49 0.23 

Iteration9 
ANN 72.14%(±0.17) 51.47 53.64 50.68 0.2 71.29 0.4 

CNN 67.36%(±0.08) 42.73 52.43 44.16 0.24 66.53 0.32 

Iteration10 
ANN 65.19%(±0.10) 33.65 48.04 37.07 0.24 64.09 0.26 

CNN 65.36%(±0.15) 39.78 50.04 41.71 0.26 63.02 0.26 

 

     To better understand the significance of biologically relevant features, such as DEGs and 

DMRs, as well as univariate Cox regression analysis for feature selection, the autoencoder is 

executed on preprocessed data and then classify using ANN and CNN. LGG and GBM gene 

expression and methylation data matrices contain 14517 and 14125 genes, respectively, as well 

as 139403 and 141672 CpGs. The autoencoder was then run on these preprocessed datasets, 

and the accuracy of prediction, as well as other model evaluation parameters, were measured 

(Table 5.7). When compared to DeepAutoGlioma, the prediction accuracy is significantly (p -

value < 0.001) lower (Figure 5.5). The subtypes classification accuracy of LGG was 83.73% 

(±0.11) in CNN and 69.86% (±0.07) in ANN. Whereas in GBM classification, accuracy was 

61.54% (±0.19) in CNN and 67.58 %( ±0.15) in ANN. Furthermore, the results of other 

evaluation parameters were too low to be considered. This unequivocally demonstrates that 

cancer-associated features or features that are biologically relevant played a crucial role in 

achieving higher classification accuracy. 
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Table 5.7: Model performance in LGG and GBM subtyping using preprocessed data as a feature  

  

Methods 

Performance measures (Average of 10 fold cross-validation) 

Accuracy Precision Recall F1-score FPR Gmean MCC 

LGG 
ANN 69.86%(±0.07) 53.46 53.4 50.47 0.22 70.22 0.35 

CNN 83.73%(±0.11) 75.77 73.99 73.4 0.11 83.5 0.64 

GBM 
ANN 67.58%(±0.15) 39.24 48.83 41.05 0.24 65.9 0.27 

CNN 61.54%(±0.19) 34.77 44.05 36.26 0.29 61.35 0.18 

 

     Furthermore, the classification accuracy between di-omics and mono-omics data were 

compared. The mono-omics data, i.e., methylation or gene expression matrix, was used as input 

to the autoencoder. As previously stated, compressed features from latent space were extracted, 

used DL algorithms, and calculated average performance metrics for each DL model. It is 

observed that in the case of LGG, the single omics data showed good accuracy of prediction, 

i.e., 96.27% (±0.11) and 96.55 % (±0.10) using gene expression and methylation data, 

respectively (Table 5.8). But these accuracies are lower in comparison to the DeepAutoGlioma 

(98.03% ±0.06). However, the accuracy of prediction using test and external gene expression 

(66.07±0.08% and 63.81±0.13%) and methylation (66.51±0.09% and 74.79±0.12%) datasets is 

considerably less. 

      Whereas in the case of GBM subtype prediction accuracy using gene expression and 

methylation data  were 91.54% (±0.11) and 43.89% (±0.07), respectively (Table 5.8). Although 

gene expression data showed an accuracy, however in the test and external datasets, the 

accuracy was 85.48% (±0.23) and 72.68% (±0.15). The good prediction accuracy in LGG and 

GBM was observed utilizing mono-omics data, particularly gene expression, models were 

unable to accurately predict subtypes using test and external datasets. This demonstrated that 

the individual omics data were inadequate for cancer subtype classification with superior 

accuracy. The models trained on multi-omics data outperformed those trained on single-omics 

data, owing to the fact that multi-omics data contains a wealth of information not found in a 

single type of omics data alone. 
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Table 5.8: Classification performance of deep learning algorithms on LGG and GBM subtyping 

using mono-omics data  

    

Methods 

Performance measures (Average of 10 fold cross-validation) 

Accuracy Precision Recall 
F1-

score 
FPR Gmean MCC 

LGG 

only Gene 

expression 

ANN 94.70%(±0.11) 91.22 91.41 91.29 0.03 94.64 0.87 

CNN 96.27%(±0.11) 94.25 94.3 94.15 0.02 96.3 0.91 

only DNA 

Methylation 

ANN 92.61%(±0.13) 88.22 87.73 87.73 0.05 92.52 0.83 

CNN 96.55%(±0.10) 93.81 94.32 94.03 0.02 96.6 0.92 

GBM 

only Gene 

expression 

ANN 85.92%(±0.10) 73.87 78.83 74.24 0.08 88.91 0.8 

CNN 91.54%(±0.11) 85.25 88.45 85.91 0.04 94.14 0.89 

only DNA 

Methylation 

ANN 44.60%(±0.06) 42.67 11.88 18.52 0.2 43.13 0 

CNN 43.89%(±0.07) 42.67 13.05 19.77 0.19 44.89 0 

 

 

 

Figure 5.5: Comparison of model performance using different sets of features to that of 

DeepAutoGlioma (***p< 0.001). 
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5.4 Discussion 

     It is well established that molecular perturbations in different genomic layers cause cancer 

occurrence and progression. Therefore, it is crucial to perform integrative approaches that 

combine multi-omics data to comprehend the disease mechanism and develop novel diagnostic 

tools for brain cancer detection. The integration of high-throughput omics data from distinct 

genome layers can capture the interrelationships of biomolecules and facilitate interpreting their 

function in disease onset. Transcriptomics and epigenomics data are unpaired because they are 

usually measured in separate experiments, which demands effective and efficient in-silico 

multi-omics integration 283. In the present study, the deep autoencoder and deep learning 

(ANN & CNN) -based clinically relevant framework was designed for integrating the 

methylome and transcriptome to classify the glioma subtype with superior accuracy. To 

strengthen the biological relevance, patient samples with transcriptome and methylome profiles 

were screened and measured the DEGs and DMRs in each subtype of LGG and GBM cancer. 

Further, a univariate cox regression analysis was performed to identify the DEGs and DMRs 

associated with the patient’s survival. Univariate cox regression approach helps to determine 

clinically relevant feature genes and CpG sites based on the patient's overall survival 

information; further, it also decreases the data dimension. Next, we map the CpGs and genes 

based on the promoter regions. The linked CpGs and genes were used as input in the 

autoencoder. As a result, the input features in the autoencoder were biologically and clinically 

relevant in three ways, first, they are differentially regulated; second, they are linked to the 

patient's survival; and third, methylation in the promoter is linked to gene expression. It is 

found that using latent variables learned by autoencoder as an input in deep learning 

models (ANN & CNN), we were able to predict the subtype of LGG and GBM with the 

accuracy of 98.03%(±0.06) and 94.07%(±0.10), respectively, using CNN. Furthermore, the 

current framework classifies the GBM and LGG subtypes using the external datasets with 

86.41% and 91.89% accuracy, respectively. On the other hand, autoencoder-based deep 

learning with a single type of omics data, randomized CpG-gene pair, and preprocessed 

dataset did not perform well compared to DeepAutoGlioma. We believe that feature 

screening using various statistical methods and integration of di-omics data using 

autoencoders played an essential role in achieving higher subtyping accuracy. The current 

study demonstrated how data integration could lead to the discovery of novel patterns in 

transcriptomics and epigenomics data and aid in developing efficient diagnostic tools. 
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Chapter 6: Objective 4 

Identification of subtype-specific disease modules and 

development of drug response prediction models by 

combining network medicine and AI-based approaches 

 

6.1 Introduction 

     Due to distinct molecular characteristics, the subtypes of glioma have different clinical 

outcomes and responses to treatment, highlighting the importance of personalized medicine for 

brain cancer treatment 20. Hence, to address this issue, a framework by combining network 

medicine and AI-based approaches to systematically integrate omics data to identify subtype-

specific disease modules for precision therapy and drug response prediction was developed. 

Cancer is developed through an evolutionary process in which healthy cells accumulate several 

genomic changes, including mutations and gene expression 290,291. Some of these alterations 

provide a positive selection to cancerous cells, giving them an advantage in uncontrolled 

proliferation, which lead to the formation of tumors.  Advances in sequencing techniques and 

genome-wide association studies have revealed that accumulated genetic variations associated 

with an increased risk for cancer are distributed throughout the genome. Further studies 

illustrate that disease genes are not distributed randomly in molecular networks. However, these 

genes work together in a biological pathway. Furthermore, genes associated with the same 

phenotype exhibit a tendency to interact with one another and form clusters within the same 

network neighborhood. As a result, a disease module forms, a subnetwork linked to a disease. 

Numerous genes that are known to be relevant to disease are found in disease modules. The 

disease modules, consisting of a known group of genes in cancers such as kidney, breast, 

sarcoma, colorectal, leukemia, and head and neck cancers, were found to be associated with 

cancer-specific biological processes 292. Wu et al., showed that the active disease modules in 

breast and cervical cancer are associated with many cancer-related pathways 293. These studies 

indicate that the identification of cancer-specific disease modules can help to identify novel 

biomarkers for therapeutic targets. Therefore, network medicine and rational drug-designing 

approaches recognize these modules as pharmacological targets as opposed to the individual 

genes or proteins in the network. Network medicine is the utilisation of network science to 

identify, prevent, and treat diseases. It provides a platform to comprehensively investigate the 
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molecular complexity of a specific disease, enabling the identification of disease modules and 

pathways. Network medicine have provided valuable insights into the connection between 

drugs targets and disease genes in disease modules. However, the therapeutic efficiency of 

drugs in cancer is highly context-dependent; often, drug resistance reduces the effectiveness of 

chemotherapy. Molecular heterogeneity is a major contributor to cancer drug resistance, as it 

can create subpopulations of cancer cells that may have different mutations or molecular 

characteristics that allow them to survive even in the presence of the drug. Therefore, the 

prediction of drug response, i.e., resistance or sensitivity, is essential for improving the efficacy 

of chemotherapy.  

     Here, algorithms relying on network medicine and artificial intelligence was deployed to 

design the framework for subtype-specific target identification and drug response prediction in 

glioma. The driver mutations that were differentially expressed in each subtype of lower-grade 

glioma and glioblastoma multiforme was identified that were linked to cancer-specific 

processes. Driver mutations that were differentially expressed were also subjected to subtype-

specific disease module identification. The drugs from the drug bank database were retrieved 

to target these disease modules. However, the efficacy of anticancer drugs depends on the 

molecular profile of the cancer and varies among cancer patients due to intratumor 

heterogeneity. Hence, a deep-learning-based drug response prediction framework was 

developed using the experimental drug screening data. Models for 30 drugs that can target the 

disease module, were developed, where drug response measured by IC50 was considered a 

response; and gene expression and mutation data were considered predictor variables. The 

model construction consists of three steps, feature selection, data integration, and classification. 

The consistent performance of the models in training, test, and validation datasets was observed. 

We predicted drug responses for specific cell lines obtained from different subtypes of glioma. 

It is found that subtypes of gliomas respond differently to the drug, highlighting the importance 

of subtype-specific drug response prediction. Therefore, the development of personalized 

therapy by integrating network medicine and a DL-based approach can lead to the cancer-

specific treatment and improved patient care. 
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6.2 Methodology  

6.2.1 Driver gene identification  

     Brain cancer somatic mutation data was downloaded from the COSMIC database 

(https://cancer.sanger.ac.uk/cosmic/download) for each subtype 294. Based on the clinical 

information, the patient’s mutational data were stratified into different subtypes. There are a 

total of 281 and 123 samples of LGG and GBM, respectively. The LGG into astrocytoma (n = 

96), oligoastrocytoma (n = 75), and oligodendroglioma (n = 110); and the GBM into classical 

(n = 39), mesenchymal (n = 48), and proneural (n = 36) was divided. OncodriveCLUSTL was 

used to find the driver mutation in subtypes 295. OncodriveCLUSTL is an unsupervised 

clustering algorithm that can detect clusters of somatic mutations across a cohort of tumor 

samples. This algorithm OncodriveCLUSTL is a clustering method that utilizes nucleotide 

sequence data to identify cancer driver events inside genomic regions. Not all mutations are 

causative factors of cancer; rather, only certain mutations have the potential to aggregate and 

contribute to the development and progression of cancer (Figure 6.1). Based on the mutation 

frequency in each gene and statistical significance (number of mutations >2 and p-value <0.05), 

driver genes were selected in each subtype of glioma. 

 

 

Figure 6.1: Illustration of finding driver gene in mutation clusters by OncodriveCLUSTL. 

 

6.2.2 Identification of differentially expressed genes (DEGs) 

     For computing the DEGs, RNA sequencing data of LGG (n = 281) and GBM (n = 123) 

patients were obtained from UCSC Xena (https://xena.ucsc.edu/) 165. Additionally, GTEx 

healthy brain gene expression data (n = 93) were obtained from the same database. Similarly, 

like in the previous step, patients were segregated into astrocytoma (n = 96), oligoastrocytoma 

(n = 75), oligodendroglioma (n = 110), classical (n = 39), mesenchymal (n = 48), and proneural 

https://cancer.sanger.ac.uk/cosmic/download
https://xena.ucsc.edu/
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(n = 36). Next, the data was preprocessed, and low-expressed genes were removed. The cut-off 

of log2 (RSEM +1) < 0.1 (RSEM: RNA-Seq by Expectation Maximization) in 90% of the 

samples was used because they did not have any promising information. Finally, in LGG, there 

are 12,532 genes, and in GBM, 12,183 genes are expressed in cancer and healthy tissue. Next, 

the differentially expressed genes in each subtype of LGG and GBM was identified using the 

"limma" package in R. A Q-value (adjusted p-value) < 0.05 and a logFC ≥ 1 were used as the 

statistical threshold for screening DEGs. 

 

 

6.2.3 Construction of subtype-specific disease module and network analysis  

     Human brain interactome data was retrieved from TissueNet v.2 database 296. Brain 

interactome data contains 165,240 interactions. In TissueNet v.2, the RNA-sequencing raw 

counts were collected from the Genotype-Tissue Expression (GTEx) project, whereas the 

protein expression data were obtained from the Human Protein Atlas (HPA).  The computation 

of tissue interactomes was performed for each RNA-sequencing data source, employing a 

threshold of 8 normalized counts. We performed this computation in order to eliminate protein-

coding genes that were not consistently expressed in a brain tissue. Additionally, for the HPA 

protein, a threshold of low expression was utilized. TissueNet offers comprehensive insights 

into 16 major human tissues by integrating gene and protein expression profiles into a uniform 

dataset. It provides a comprehensive network of protein-protein interactions (PPI) partners 

specific to each tissue. TissueNet v.2 uses human PPIs and tissue-specific expression patterns 

to make PPIs that are specific to each tissue. The Disease Module Detection (DIAMOnD) 

algorithm was implemented to identify the disease modules in subtype 292. DIAMOnD 

algorithm was used to identify the surrounding genes around a collection of known disease 

genes, helping to identify new biomarkers. In DIAMOnD algorithm, first connectivity 

significance was determined for all genes connected to the disease genes. Subsequently, the 

genes were ranked based on p-values. Those genes having the highest rank or lowest p-value 

was added to the set of seed node until the whole genes were added into the disease module 

network. TissueNet v.2 brain interactome and subtype-specific DEDGs are used as seed genes 

to identify the disease module. All the parameters in the DIAMOnD were kept as default. 

Cytoscape and the igraph package in R were used for network visualization and analysis. 
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 6.2.4 The pipeline of DNN-based drug response prediction 

     Experimental data for cancer cell drug sensitivity were obtained from the Genomics of Drug 

Sensitivity in Cancer (GDSC) 297 project to develop drug response prediction models. This data 

set contains 1001 cancer cell lines and 288 drugs. The drug and target information were derived 

from the DrugBank database 298. All the drugs for which the target genes are present in the 

disease modules were extracted. The 30 FDA-approved and investigational drugs were screened 

that can target the disease module and also have brain cancer-specific experimental data in 

GDSC. The drug response models were developed for these 30 drugs. Therefore, the IC50 

values of these 30 drugs were downloaded for all cell lines along with the gene expression and 

mutational data. A total of 886 cell line data were used for model development. To develop the 

model, the following steps were performed: 1. Data preprocessing; 2. Feature selection; 3. Data 

integration; 4. Model development and evaluation; and 5. Model validation on external data. 

     Data preprocessing: The gene expression data was normalized using the log2 (TPM+1). 

The low expressed genes were removed using a cutoff (log2 (TPM +1) < 0.1 in 90% of samples. 

Genes possessing any mutation were assigned a value of 1; genes lacking mutations were 

assigned a value of 0. 

     Feature selection: A two-step feature selection method was employed to get more variable 

features from gene expression data. First, the genes were pre-selected based on a Pearson 

correlation coefficient r<0.5, and then LASSO was used 223 (A detailed description was 

provided in the chapter 4) to fine-select the predictor genes. For mutational data, the LASSO 

feature selection method was only used. 

     Data integration: After the feature selection step, gene expression and mutation data was 

integrated using a concatenated autoencoder (Figure 6.2) (A detailed description was provided 

in the chapter chapter 5). The Keras library with TensorFlow 270 was used to implement the 

concatenated autoencoder. To integrate the gene expression and mutation data, in the hidden 

layer of the autoencoder, a rectified linear activation function (ReLU) was used. In the 

bottleneck layer, uniform kernel initializer and linear activation function were implemented. 

ReLU activation function was applied to the decoder layer.  
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Figure 6.2: Architecture of autoencoder used for integrating the gene expression and mutation 

profiles. It consists of an encoder and a decoder made from 2 hidden layers and one bottleneck 

layer. In the first hidden layer, data is concatenated, and is passed to another hidden layer and 

finally compressed in the bottleneck layer. In the decoder part, the latent variables from the 

bottleneck layer are reconstructed to the initial ones. 

Model development and evaluation: 

     A deep neural network (DNN) classification model was applied to predict the sensitive vs 

resistance. The input and output layers of a DNN are separated by a number of hidden layers. 

Complex non-linear relationships can be modelled using it. Deep neural networks handle data 

in intricate ways by using advanced mathematical modelling. DNNs are frequently used for 

their accuracy and adaptive nature in the research field of automatic classification tasks. For 

each drug, the model hyperparameters were optimized by the grid search method using the 

GridSearchCV package in Python. The DNN architecture consists of two hidden layers for all 

drugs: the ReLU activation function, adam optimizer, batch size 32, and epochs 2000. IC50 

values were binarized to be sensitive and resistant. The model was trained on the 70% training 

dataset, and stratified k-fold (A detailed description was provided in the chapter 3) was used to 

compute the performance of the model.  

     The performance of the DL-model was evaluated based on eight criteria: accuracy, 

sensitivity, specificity, precision, F1-score, false positive rate, geometric mean, and Matthew’s 

correlation coefficient. A true positive (TP) would indicate that the drug-sensitive cell was 

correctly identified, while a false positive (FP) indicates that a drug sensitive cell is identified 

as resistant. Conversely, true negatives (TN) and false negatives (FN) are also calculated (A 

detailed description was provided in the chapter 3).  
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Model validation on external data:  

     The model's performance was validated using the dataset from Cancer Cell Line 

Encyclopedia (CCLE) (https://portals.broadinstitute.org/ccle) 299. The cell line gene expression 

profiles in CCLE and GDSC were generated using different platforms, and thus the data sets 

have significantly different magnitudes (Figure 6.3). To make these two datasets uniformly 

distributed, the batch effect was removed using the pyComBat package in Python 300,301. Then 

the standardized gene expression profile (brain cancer cell lines) of CCLE was fed to the model 

built with GDSC datasets to validate the drug response. 

 

 

 

Figure 6.3: Removal of Batch effect by ComBat. Boxplot showing gene expression distributions 

before (A) and after (B) ComBat for ten cell lines from GDSC and CCLE.  

 

6.2.5 Performance evaluation 

     The performance of the DNN model was evaluated based on the eight criteria: Accuracy, 

Sensitivity, Specificity, Precision, F1-score, FPR, Geometric mean, and MCC. All the matrices 

are described in chapter 3 in details. 

 

 

 

 

https://portals.broadinstitute.org/ccle
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6.3 Results  

6.3.1 Genome-wide screening to identify the driver genes  

     Cancer mutation can be synonymous and non-synonymous. Synonymous mutations do not 

affect the amino acid sequence of proteins, whereas non-synonymous mutations cause a 

different amino acid to be included in the protein and have more immediate consequences for 

protein function. It is anticipated that nonsynonymous mutations will come under strong 

positive selection in order to drive oncogenesis. Owing to this fact, the non-synonymous driver 

mutations in each subtype of LGG and GBM was identified by implementing the 

OncodriveCLUSTL algorithm 295 and using somatic mutation data from the COSMIC (Table 

6.1). It is observed that several driver mutations were associated with each subtype of glioma. 

Higher-grade tumors frequently have more aggressive features because they typically have 

more genetic mutations than lower-grade tumors. It is also found that all subtypes of GBM have 

a higher number of driver mutations than LGG subtypes (Table 6.1). This demonstrates why 

GBM is more aggressive than other varieties of brain cancer. It is also noticed that these 

mutations are scattered across the genome rather than being concentrated in a particular location 

(Figure 6.4 A - F). It is frequently observed that changes in coding sequence cause changes in 

the expression of driving genes. For instance, a mutation in an oncogene can result in it being 

overexpressed, promoting the development of cancer. Similar to this, a tumor suppressor gene's 

expression can be depleted as a result of a mutation, which reduces its growth inhibitory effect. 

Hence, the differentially expressed genes (DEGs) was identified in each subtype of cancer. The 

genes with log2Fold Change (FC)  > 1 and < -1 and adjusted p-value <0.05 were considered 

DEGs (Figure 6.5 A-F and Table 6.1). The driver genes that are differentially expressed are 

named as differentially expressed driver genes (DEDGs) (Table 6.1). It is noticeable that a high 

percentage of the driver genes are differentially expressed, indicating that these genes, i.e., 

DEDGs, play a critical role in tumorigenesis (Table 6.1). The combined effect of mutations in 

cancer driver genes and changes in gene expression can enhance the oncogenic effects 302. These 

genes may be involved in key pathways and processes involved in cancer development and 

progression. Therefore, DEDGs can be used to develop targeted therapies that can be used to 

selectively disrupt subtype-specific processes to regulate cancer. 
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Table 6.1: Differentially expressed driver genes (DEDGs) in subtypes of glioma 

Grade Histological Type 

Number of 

Driver genes   

(p-

value<0.05) 

Number of 

differentially 

expressed 

genes  

Number of 

differentially 

expressed 

driver genes 

(DEDGs) 

Percentage of 

driver gene 

differentially 

expressed 

LGG 

Astrocytoma 1043 6825 460 44.1 

oligoastrocytoma 719 6738 321 44.64 

oligodendroglioma 994 6562 427 42.95 

GBM 

Classical 1114 6920 424 38.06 

Mesenchymal 1338 7154 553 41.33 

Proneural 1117 6771 426 38.13 

 

 

 

Figure 6.4: Genome-wide distribution of driver genes in glioma subtypes. Circus plots show 

the driver genes in different subtypes of LGG and GBM (A-F). Blue and orange dots represent 

the chromosomal location of driver mutations in the circus plot and mutations are distributed 

throughout the genome in each subtypes.  
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Figure 6.5: (A-F), the volcano plots represent the differentially expressed genes (DEGs) in 

different subtypes of glioma. LogFC>1 (p-value< 0.05) is the upregulated gene (orange) and 

LogFC<-1 (p-value< 0.05) is the downregulated gene (Blue).  

6.3.2 Subtype-specific networks of driver genes (DEDGs) and identification 

of disease modules 

     In the previous section, it is observed that in all subtypes, driver genes are distributed across 

the genome. Many driver genes are also differentially expressed. This two-level perturbation in 

genes indicates their crucial role in cancer development because biological pathways and 

processes that involve these genes will likely be deregulated. The gene set enrichment analysis 

was conducted on DEDGs from each subtype to investigate the affected biological pathways 

and processes. It is found that cancer-associated processes and pathways were enriched in 

different subtypes of gliomas (Figure 6.6 A-F). Interestingly, it is found that processes and 

pathways are mostly distinct among the subtypes, such as in the astrocytoma NOTCH signaling 

pathway, ATM signaling pathway, and regulation of RNA splicing; in the oligoastrocytoma 

neovascularization process, EGFR signaling pathways, and FoxO signaling pathway; and in the 

oligodendroglioma PID ERBB1 internalization pathway and endocrine resistance, which were 

significantly (p < 0.05) enriched. In classical signal transduction by growth factor receptors and 

second messengers, negative regulation of cellular component organization and regulation of 

cellular response to stress are prevalent; in mesenchymal focal adhesion, proteoglycan in cancer 

and cytokine signaling in immune system, and in proneural glioblastoma signaling pathways 
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and  MAPK signaling pathways are prevalent. These results demonstrate how the subtypes 

differ from one another in terms of their molecular function and biological processes. 

 

Biological processes and pathways 

 

Figure 6.6: The bar diagrams represent the biological process and pathway enrichment 

analysis of differentially expressed driver genes (DEDGs) in glioma subtypes (A-F). The highly 

significant (p-value<0.05) processes and pathways are shown in the figures.  

 

     However, to be involved in biological processes and to drive cancer, these genes must 

interact. Network-based approaches to human disease demonstrate that abnormalities in a single 

effector gene product are infrequent causes of disease. Indeed, there is a higher likelihood that 

genes linked to the same disease will interact with one another 303. Using the brain interactome 

data from the TissueNet v.2 database 296, the subtype-specific protein-protein interaction 

network of DEDGs was built, named the differentially expressed driver gene network 

(DEDGN), to analyze the interaction pattern.  It is observed that a moderate portion of the 

DEDGs directly interact with each other. The size of the largest connected component (LCC) 

was calculated in each subtype. LCC refers to the largest subset of nodes in the network that 

are connected to each other, and often LCCs are involved in crucial signaling pathways that are 

essential to cellular function. Additionally, it can aid in the identification of prospective drug 

targets for therapeutic intervention. Figure 6.7 (A-F) shows the LCC in each subtype. It is 

observed that a lower percentage of DEDGs, i.e., 36.30% in astrocytoma, 34.26% in 
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oligoastrocytoma, 32.31% in oligodendroglioma, 23.11% in classical, 42.67% in mesenchymal, 

and 39.67% in proneural, form the LCC. The size of the LCC in reality may be larger than what 

we have depicted here because the human interactome is incomplete. These LCCs in each 

subtype, however, provided us with evidence that the development of a precision therapeutic 

strategy can be aided by the identification of subtype-specific disease modules. 

 

Largest connected component (LCC) in DEDGN 

 

Figure 6.7: (A-F), show the largest connected component (LCC) of the DEDGs networks in 

each subtype.   

 

     Therefore, the process of disease module identification was initiated by applying the 

DIAMOnD algorithm. (Figure 6.8) DIAMOnD enables us to systematically examine the local 

network neighborhood surrounding a particular collection of known disease proteins in order 

to find new disease proteins. All DEDGs in each subtype to be known disease genes was 

considered and used them as seed genes in DIAMOnD. The number of DIAMOnD disease 
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module genes in each subtype of LGG and GBM was 607 in astrocytoma, 487in 

oligoastrocytoma, and 578 in oligodendroglioma; 572 in classical, 675 in mesenchymal, and 

574 in proneural. Hence, a higher number of disease-associated genes were identified in each 

subtype by DIAMOnD. It is observed that the size of the LCC in each subtype provided by the 

DIAMOnD was much larger than the LCC DEDGN (Figure 6.9A). It should be noted that 

DIAMOnD LCCs contain DEDGs and relevant disease genes in the network neighbourhood. 

There is a higher percentage of genes, i.e., almost 72–80% of seed genes, present in the LCC. 

The clustering coefficients of the DIAMOnD LCCs are much higher than the LCC of DEDGN 

(Figure 6.9B). The higher clustering coefficient of genes in the LCC shows that each subtype 

has a local aggregation disease gene, and these genes interact with each other more frequently 

than would be predicted in a random network. This finding also implies that module genes work 

together in biological processes and pathways and aid in the development of disease. Therefore, 

these disease modules can be identified as targets for precision therapy of glioma subtypes. 

 

 

 

Figure 6.8: Disease module in subtypes. The flow diagram shows the steps involved in disease 

module identification. DEDGs are screened from the list of driver genes and DEGs. DEDGs 

and brain interactome data are fed into DIAMOnD for disease module identification. 
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Figure. 6.9: Disease module in subtypes. (A), The bar diagram compares the size of the LCC 

of DEDGs network (gray) and DIAMOnD disease module (brown). (B), The bar diagram 

compares clustering coefficient of LCC of DEDGs network (gray) and DIAMOnD disease 

module (brown).  

6.3.3 Targeting the disease module and developing the drug response 

prediction model  

     To target the disease module in glioma subtypes, the FDA-approved and investigational 

drugs were retrieved from the DrugBank database. The drugs for which the disease module has 

target genes were selected. It is observed that a total of 234, 187, 234, 178, 226, and 185 drugs 
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can be used to target the module genes in astrocytoma, oligoastrocytoma, oligodendroglioma, 

classical, mesenchymal, and proneural, respectively. Although there are targets in the modules, 

all these drugs may not be useful for anti-cancer therapy. Many times, drug resistance reduces 

the effectiveness of chemotherapy. The accurate prediction of cancer-specific drug responses 

is one of the significant challenges in precision medicine. Due to the genetic heterogeneity of 

cancers, patients' responses to cancer treatments vary depending on their distinctive genomic 

profiles. Due to this complexity, AI methods like ML and DL are becoming more efficient for 

predicting drug responses. Several large-scale drug screening programmes have made their data 

publicly available, such as GDSC and CCLE. These databases provide the IC50 (50% inhibitory 

concentration) of a particular drug on specific cancer cell lines along with cancer cell omics 

profiles. A lower IC50 value indicates a better sensitivity of the cell line to a given drug. Here 

the single-drug response classification model was developed using GDSC gene expression and 

driver mutation data to train and test the model, and CCLE data was used for external validation. 

Out of the 288 drugs that target disease modules, it is found that only 30 have experimental data 

on brain cancer cells. Hence, these 30 drugs were chosen to develop the drug response model. 

For a drug, the cell lines were classified as sensitive or resistant based on IC50 values. IC50 

values at or below the 25th percentile were considered sensitive, and IC50 values at or above 

the 75th percentile were considered resistant for each drug. The GDSC dataset were randomly 

divided into 70:30 training and test sets. The model was developed on GDSC data, excluding 

brain cell lines. First, the gene expression and driver mutation data from GDSC were pre-

processed, and feature selection was performed to reduce the multicollinearity and 

dimensionality of the data. The gene expression and mutation data were separately treated. 

Correlation-based feature selection was implemented to eliminate multicollinearity from gene 

expression data. The Pearson Correlation Coefficient (PCC) was computed, and genes with a 

PCC > 0.5 were dropped. The remaining 5233 genes were taken for dimensionality reduction 

using LASSO. LASSO feature selection was also employed on mutation data. After feature 

selection, both gene expression and mutation data were fed into the autoencoder with 

concatenated inputs (CNC-AE). Then, these two types of data were integrated and compressed 

in the bottleneck layer learned by the autoencoder 281,283. All the parameters of the different 

layers in the autoencoder were optimized for individual drugs. However, the architecture of the 

autoencoder is almost the same for all drugs; for example, one hidden layer for data integration 

was used, and the dimension of the bottleneck layer was set to 64. An autoencoder consists of 

two parts: an encoder and a decoder network (Figure 6.10). The latent variables from the 
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bottleneck layer were employed in the decoder network to decode the original input data, and 

this was done in order to quantify the reconstruction loss, which represents the efficiency of the 

autoencoder. The mean squared error (MSE) was used to calculate the reconstruction loss. It is 

found that MSE was considerably lower in the range (0.02-0.19). This demonstrates that the 

autoencoder correctly learns to encode the pattern of gene expression and mutation in the latent 

space. Next, the DNN model was built to predict the drug response, i.e., whether it is sensitive 

or resistant, using the latent variables from the bottleneck layer of the autoencoder. In order to 

identify the optimized set of hyperparameters, the grid search method was employed. The 

average performance measures for each DNN model were then calculated using k-fold CV (k 

= 10). The model's performance was evaluated by computing the average accuracy, recall, 

specificity, precision, F1-score, FPR, GM, and MCC (see methodology). The performance 

matrix on training data and test data for 30 drugs is provided in the Table 6.2 and 6.3. 

 

 

Figure 6.10: The overall workflow of drug response model development. The gene expression 

and mutation data from GDSC are subjected to feature selection, and both data are integrated 

using an autoencoder. The latent variable from the bottleneck layer is used for developing the 

DNN model. The model validation was performed using test data, brain cancer data, and 

external data from CCLE.   
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Table 6.2: Performance matrix of drug response on training data 

Drugs Accuracy Recall Specificity Precision F1-score FPR GM MCC 

Ruxolitinib 96.27%(±0.02) 96.26 96.15 96.55 96.23 0.03 97.49 0.92 

Entinostat 95.78%(±0.01) 95.89 95.88 95.83 95.77 0.04 97.16 0.91 

Lapatinib 95.62%(±0.02) 95.58 95.40 95.96 95.55 0.04 97.05 0.91 

Vorinostat 94.94%(±0.02) 94.89 94.80 94.96 94.89 0.05 96.60 0.89 

Tretinoin 94.50%(±0.07) 95.26 94.75 94.92 94.40 0.05 96.24 0.90 

Olaparib 93.03%(±0.02) 93.22 93.05 93.03 92.99 0.06 95.29 0.86 

Vinblastine 92.34%(±0.03) 92.30 92.27 92.45 92.31 0.07 94.82 0.84 

Axitinib 91.80%(±0.03) 91.85 91.88 91.77 91.75 0.08 94.44 0.83 

Crizotinib 91.69%(±0.01) 91.96 91.78 91.61 91.64 0.08 94.37 0.83 

Trametinib 91.35%(±0.02) 91.56 91.52 91.44 91.29 0.08 94.14 0.82 

Selumetinib 91.42%(±0.02) 91.37 91.31 91.48 91.38 0.08 94.19 0.82 

Dasatinib 91.01%(±0.01) 91.15 91.00 91.28 90.96 0.08 93.91 0.82 

Sorafenib 90.79%(±0.02) 90.69 90.53 90.76 90.68 0.09 93.75 0.81 

Niraparib 90.36%(±0.02) 90.57 90.37 90.62 90.31 0.09 93.46 0.81 

Rucaparib 89.77%(±0.03) 89.79 89.72 89.73 89.70 0.1 93.05 0.79 

Dabrafenib 88.98%(±0.03) 88.98 88.95 88.91 88.88 0.11 92.49 0.78 

Bicalutamide 87.50%(±0.05) 87.82 87.63 87.25 87.37 0.12 91.44 0.75 

Bosutinib 87.16%(±0.03) 87.27 87.14 87.22 87.09 0.12 91.23 0.74 

Erlotinib 86.25%(±0.03) 86.29 86.23 86.36 86.13 0.13 90.6 0.73 

Nilotinib 85.80%(±0.03) 86.11 85.91 85.84 85.72 0.14 90.28 0.72 

Vinorelbine 85.73%(±0.03) 85.87 85.64 85.92 85.64 0.14 90.23 0.72 

Vincristine 85.52%(±0.04) 85.75 85.62 85.70 85.34 0.14 90.08 0.71 

Ibrutinib 85.37%(±0.04) 85.40 85.37 85.46 85.32 0.14 89.97 0.71 

Talazoparib 84.61%(±0.02) 84.64 84.55 84.57 84.52 0.15 89.45 0.69 

Alpelisib 84.38%(±0.03) 84.53 84.38 84.42 84.28 0.15 89.28 0.69 

Afatinib 84.16%(±0.04) 84.20 84.04 84.25 84.07 0.15 89.12 0.68 

Osimertinib 84.04%(±0.02) 84.00 83.56 84.21 83.86 0.16 89.05 0.68 

Gefitinib 83.37%(±0.03) 83.51 83.68 83.69 83.28 0.16 88.57 0.67 

Tamoxifen 82.25%(±0.05) 82.12 81.93 82.18 82.04 0.18 87.74 0.64 

Fulvestrant 70.90%(±0.03) 71.14 70.97 71.11 70.82 0.29 79.50 0.42 
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Table 6.3: Performance matrix of drug response on test data 

Drugs Accuracy Recall Specificity Precision F1-score FPR GM MCC AUC 

Ruxolitinib 94.12 94.12 94.22 94.74 94.10 0.05 96.04 0.88 0.97 

Entinostat 94.96 94.96 94.87 95.42 94.94 0.05 96.61 0.90 0.95 

Lapatinib 96.09 96.09 96.09 96.38 96.09 0.03 97.38 0.92 0.98 

Vorinostat 91.27 91.27 91.27 91.36 91.26 0.08 94.09 0.82 0.91 

Tretinoin 82.76 82.76 81.53 87.07 82.12 0.18 88.15 0.69 0.82 

Olaparib 93.75 93.75 93.75 93.92 93.74 0.06 95.79 0.87 0.95 

Vinblastine 85.87 85.87 85.87 85.89 85.87 0.14 90.34 0.71 0.86 

Axitinib 91.27 91.27 91.27 91.36 91.26 0.08 94.09 0.82 0.91 

Crizotinib 94.53 94.53 94.53 94.63 94.53 0.05 96.32 0.89 0.95 

Trametinib 89.84 89.84 89.84 89.85 89.84 0.10 93.11 0.79 0.90 

Selumetinib 87.78 87.78 87.75 87.93 87.77 0.12 91.68 0.75 0.88 

Dasatinib 92.91 92.91 92.90 92.92 92.91 0.07 95.22 0.85 0.96 

Sorafenib 92.86 92.86 92.86 93.13 92.85 0.07 95.18 0.85 0.97 

Niraparib 89.83 89.83 89.83 90.01 89.82 0.10 93.1 0.79 0.93 

Rucaparib 88.8 88.80 88.77 88.84 88.8 0.11 92.39 0.77 0.90 

Dabrafenib 85.71 85.71 85.71 85.75 85.71 0.14 90.23 0.71 0.86 

Bicalutamide 86.21 86.21 85.70 86.85 86.11 0.14 90.58 0.72 0.86 

Bosutinib 85.60 85.60 85.50 86.18 85.53 0.14 90.15 0.71 0.86 

Erlotinib 82.54 82.54 82.54 82.57 82.54 0.17 87.99 0.65 0.83 

Nilotinib 83.33 83.33 83.33 83.75 83.28 0.16 88.55 0.67 0.83 

Vinorelbine 85.71 85.71 85.71 85.75 85.71 0.14 90.23 0.71 0.86 

Vincristine 85.42 85.42 85.42 85.98 85.36 0.14 90.02 0.71 0.85 

Ibrutinib 83.76 83.76 83.80 83.86 83.75 0.16 88.86 0.67 0.85 

Talazoparib 84.13 84.13 84.13 84.13 84.13 0.15 89.12 0.68 0.84 

Alpelisib 76.56 76.56 76.56 76.67 76.54 0.23 83.69 0.53 0.77 

Afatinib 84.38 84.38 84.38 84.51 84.36 0.15 89.29 0.68 0.84 

Osimertinib 84.13 84.13 84.13 84.27 84.11 0.15 89.12 0.68 0.85 

Gefitinib 84.92 84.92 84.92 86.02 84.80 0.15 89.68 0.70 0.85 

Tamoxifen 82.54 82.54 82.54 82.57 82.54 0.17 87.99 0.65 0.85 

Fulvestrant 73.54 73.54 73.52 73.58 73.53 0.26 81.48 0.47 0.74 

 

 

     Based on the performance parameters, the Ruxolitinib drug had an accuracy to predict 

sensitivity or resistance was 96.26% (±0.02). The precision and specificity of the model were 

>0.90. Due to the superior performance of the Ruxolitinib model, further investigation was done 

and found that it is a potent inhibitor of the JAK/STAT signaling pathway and can inhibit the 

invasion and tumorigenesis of glioma cells 304. This drug is also in clinical trials for glioma 

treatment (https://clinicaltrials.gov/). Further, It is found that the accuracy of prediction using 

https://clinicaltrials.gov/
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test data was 94.12% and that using only brain cancer cell lines was 84.28%. It is tempting to 

state that the model prediction was as per the independent observations made by other 

researchers. Figure 6.11 A and B show that all models for the top 10 drugs have higher accuracy 

of prediction using training (91.34–96.26%), test (82.76–96.09%) data.  

 

 

Figure 6.11: Classification accuracy of DL models (A), training (B), test dataset of top 10 

drugs. 

 

     A highly sensitive and specific model for drug response prediction is always ideal. 

Therefore, the receiver operating characteristic (ROC) curve was used to illustrate the 

sensitivity and specificity of each model. For a range of different cutoff points, the ROC curve 

compares the probability of a true positive result, or the test's sensitivity, to the probability of a 

false positive result. Figure 6.12 (A-J) shows the area under the ROC curve (AUC) of the DNN 

models of the top 10 drugs. It is observed that the AUC values were high, i.e., 0.97 in 

Ruxolotinib, 0.95 in Entinostat, 0.98 in Lapatinib, 0.91 in Vorinostat, and 0.95 in Olaparib. 

Overall, all models show consistent prediction accuracy in training, testing, and brain cancer 

cell data. The performance matrix on brain cancer cell line data for 30 drugs is provided in the 

Table 6.4. The model accuracy >80% was obtained using only brain cancer cell line data (Figure 

6.13). 
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ROC plots 

 

Figure 6.12: (A-J), ROC plots of the top 10 drugs.  
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Table 6.4: Performance matrix of drug response on brain cancer cell lines 

Drugs Accuracy Recall Specificity Precision F1-score FPR GM MCC 

Lapatinib 91.25%(±0.13) 93.38 93.63 92.69 91.23 0.06 93.86 0.86 

Vinblastine 90.00%(±0.19) 90.08 89.09 90.55 87.66 0.1 92.66 0.79 

Niraparib 90.00%(±0.11) 92.51 91.16 90.47 89.47 0.08 93.05 0.83 

Rucaparib 88.75%(±0.12) 90.54 92.46 90.7 88.43 0.07 92.16 0.81 

Ruxolitinib 84.29%(±0.10) 84.67 82.83 86.8 82.84 0.17 89.09 0.7 

Entinostat 84.29%(±0.10) 85.4 86.93 85.6 83.77 0.13 89.09 0.7 

Vorinostat 82.50%(±0.10) 85.46 84.04 84.89 81.5 0.15 87.82 0.7 

Olaparib 81.25%(±0.13) 84.46 84.54 84.86 80.47 0.15 86.81 0.69 

Sorafenib 80.00%(±0.12) 82 80.67 81.75 78.51 0.19 85.98 0.63 

Dasatinib 80.00%(±0.06) 81.67 82 81.04 79.05 0.18 86.12 0.62 

Selumetinib 79.17%(±0.09) 80.64 79.59 79.08 78.52 0.2 85.47 0.6 

Talazoparib 77.50%(±0.11) 79.38 82.13 81.25 76.84 0.17 84.19 0.61 

Trametinib 77.50%(±0.11) 80.17 79.83 77.84 76.82 0.2 84.19 0.58 

Axitinib 76.25%(±0.13) 81.54 79.46 80.53 76.11 0.2 83.17 0.61 

Osimertinib 76.25%(±0.13) 79.54 78.8 79.02 74.98 0.21 83.19 0.58 

Ibrutinib 72.86%(±0.12) 74.06 77.61 77.13 71.88 0.22 80.73 0.5 

Dabrafenib 72.50%(±0.19) 76.13 78.71 73.73 70.62 0.21 79.96 0.55 

Tamoxifen 72.50%(±0.12) 74.63 75.21 75 71.63 0.24 80.44 0.49 

Crizotinib 72.50%(±0.07) 75.5 73.83 75.28 71.49 0.26 80.61 0.49 

Vinorelbine 68.75%(±0.16) 73 72.83 74.9 67.69 0.27 77.38 0.47 

Nilotinib 68.75%(±0.08) 71.58 70.92 71.66 67.87 0.29 77.77 0.42 

Afatinib 67.50%(±0.20) 72.54 75.29 72.68 65.77 0.24 76.22 0.48 

Bosutinib 66.25%(±0.22) 70.54 70.79 68.32 64.63 0.29 75.04 0.43 

Vincristine 66.00%(±0.18) 73.7 73.8 69.7 61.77 0.26 75.16 0.46 

Bicalutamide 63.33%(±0.33) 62.33 62.35 62 60.8 0.32 70.14 0.45 

Fulvestrant 61.67%(±0.15) 61.13 61.65 62.1 60.33 0.38 71.97 0.24 

Erlotinib 60.00%(±0.18) 66.92 67.42 67.24 59.34 0.32 70.37 0.36 

Alpelisib 58.75%(±0.26) 65.17 64.33 69.57 57.47 0.35 67.23 0.34 

Gefitinib 57.50%(±0.15) 63.46 61.38 59.82 55.86 0.38 68.63 0.25 

Tretinoin 56.67%(±0.38) 57.67 57.32 55 53.13 0.4 62.51 0.2 
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Figure 6.13: Classification accuracy of DL models on test dataset of brain cancer cell lines of 

top 10 drugs. 

 

     From earlier articles, it was also learned that several of the top 10 drugs in the training data 

exhibit promising anti-glioma cell activities, such as Entinostat, a histone deacetylase inhibitor, 

which can inhibit GBM growth 305. Vorinostat, an FDA-approved drug, is already in use to treat 

cutaneous T-cell lymphoma, but it is now in a Phase II clinical trial to treat recurrent 

glioblastoma multiforme 306. Vinblastine shows sensitivity for both LGG and GBM  307,308 and 

it is in clinical trials for the treatment of these cancers. Other drugs such as Olaparib 309, 

Crizotinib 310, Trametinib 311 have also shown encouraging results for the treatment of brain 

cancer. Our findings, along with those from the existing literature, suggest that the current 

approach may be used to aid in clinical decision-making for the treatment of gliomas. We 

forecast the drug sensitivity of 30 different drugs against 49 brain cancer cell lines using the 

saved models to assess their potential clinical utility. The features from gene expression and 

mutation data from particular cell line data were extracted, and integrated these two data sets, 

i.e., gene expression and mutation, using an autoencoder, and then fed this integrated data into 

the 30 different drug-specific DNN models. Lastly, the sensitivity or resistance of a drug against 

a particular brain cancer cell line were predicted. The drug sensitivity data for 10 drugs for 49 

brain cancer cells is shown in Figure 14. The cell line's lineage from ATCC 

(https://www.atcc.org/) and cellosaurus (https://www.cellosaurus.org/) was acquired in order to 

demonstrate subtype-specific drug sensitivity. We were able to provide the drug sensitivity 

results for oligodendroglioma, astrocytoma, and GBM based on the data that was available. It 

https://www.atcc.org/
https://www.cellosaurus.org/search
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is found that the drug sensitivity of various cell types varied, and a major factor contributing to 

this variation is the cell line's genetic background, including both gene expression and mutation. 

Indeed, gene expression and mutations as features was used while developing the models. This 

provides a comprehensive view of the significance of subtype-specific drug response prediction 

utilizing genomic data in enhancing the clinical efficacy of the therapy.  

 

Figure 6.14: Prediction of drug sensitivity in brain cancer cell lines. The heat map represents 

the drug sensitivity data for 49 brain cancer cell lines against 30 drugs. The red color indicates 

the resistant cell lines and the green color indicates the sensitive cell lines. The origin (or 

subtype) of each of the cell lines is mentioned in the figure.  
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Lastly, this DL framework with external datasets was validated from CCLE, and the accuracy 

of prediction for drugs, Erlotinib, Lapatinib, Nilotinib, and Sorafenib was fairly accurate (Table 

6.5). These results show that our models were able to consistently predict accurate drug 

responses. However, experimental investigations, i.e., in vitro and in vivo drug efficacy assays 

and sensitivity data across the many cancer cell types, need to be analyzed before the current 

framework is put into use in a clinical context. 

 

Table 6.5: Model validation on external dataset from CCLE 

 Drugs Accuracy  Recall  specificity  precision  F1  FPR  GM MCC 

Erlotinib 74.00 % (±0.21) 77.27 79.39 72.87 70.95 0.2 81.06 0.57 

lapatinib 70.00 % (±0.16) 71.06 72.27 75.08 68.86 0.27 78.35 0.46 

Nilotinib 62.50 % (±0.35) 63.43 64.36 64.06 61.5 0.35 69 0.45 

Sorafenib 88.00 % (±0.10) 88.79 89.55 90.68 87.53 0.1 91.7 0.79 

 

 

6.4 DISCUSSION 

     The clinical development of targeted and personalized brain cancer treatments continues to 

be a significant issue. There are many different types of brain cancer, and the fact that they each 

possess their own unique genetic abnormalities makes it challenging to design effective 

treatments. Finding a disease-specific biomarker for targeted therapy is a commonly used 

strategy. However, due to the molecular heterogeneity of cancer, targeted therapy is not always 

effective in treatment and frequently develops drug resistance. To address this, the current study 

combines network medicine-based techniques with DL-based drug response prediction to target 

glioma subtypes for precision therapy. Among all cancer-associated alterations, driver 

mutations and altered gene expression are majorly involved in oncogenic transformation 312. 

Therefore, genome-wide screening of driver mutations was performed and identified the DEGs 

from transcriptome data in each subtype of LGG and GBM. From the list of driver mutations 

and DEGs, the DEDGs were identified, which are further subjected to disease module 

identification. Cancer is not a single gene disorder; rather, the interaction between many genes 

causes cancer. Hence, the identification of disease modules using DEDGs can 

comprehensively represent the core structure of the subtype-specific network associated 

with the cancer phenotype. The network medicine-based approach demonstrates that effective 

drugs must target the protein within or in the disease modules’ immediate vicinity. Therefore, 
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drugs from the DrugBank database to target these disease modules were selected. Patients' 

responses to drugs, however, differ greatly from one another due to the diversity of molecular 

profiles. To address this further, a DL-based framework was developed to predict drug response 

using gene expression, mutation, and IC50 values from large-scale experimental data. The 

novel framework was designed by combining LASSO-based feature selection, autoencoder-

based data integration, and then prediction using the DNN. It is noticed the consistent 

performance of the model in test data, brain cancer cell lines, and validation data. To examine 

the clinical application, we predict the drug response for each brain cancer cell line using a 

drug-specific model. Additionally, it is shown that cancer cell lines from various subtypes 

of glioma exhibit varying degrees of drug sensitivity. Earlier, several studies reported the 

drug response model for a particular cancer type, but in our study, we have shown that models 

can be used to predict drug response for a specific subtype of cancer.  
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Chapter 7: Conclusion and future scope 
 

In this thesis, discusses the ML and DL models that were utilized in the field of cancer 

genomics, and focusing on their respective architectures. ML & DL has the enormous 

potentiality to assist clinicians by reducing human error, helping in cancer diagnosis, and 

analyzing complex data. Therefore, it is proved as cutting-edge technology in cancer research. 

In this thesis, a comprehensive and precise ML-based approach was presented for cancer 

grading and subtyping.  It is found an integrated approach consisting of correlation and SVF-

RFE algorithm for feature gene selection, and then computation of SVM using those feature 

genes (n = 100) had shown superior performance (accuracy > 90%). It is found that the accuracy 

of subtype classification is always good using the gene expression data of a specific grade of 

cancer rather than a mixed grade. It is observed that other ML techniques produced repeatedly 

the same results. This gave us clues that cancer grading is essential to achieve higher accuracy 

for subtype prediction. It is also observed six-class classification for simultaneous grading and 

subtyping using the same ML framework and attained an overall accuracy of 91.0% (±0.02) 

and AUC=0.88. Therefore, the findings of this study strongly strengthen the fact that grading 

and subtyping are both required to achieve a higher accuracy of prediction.  The correct set of 

feature genes and their discriminative ability play a crucial role in the superior performance of 

ML algorithms. In addition, the biological relevance of these features could lead to finding the 

mechanisms behind LGG formation and therapeutic targets.  The subtype and grade-specific 

co-expressed feature genes associated with the oncogenesis was identified.  Furthermore, 

survival analysis of these genes revealed several predictive biomarkers, which could be used as 

potential molecular indicators for diagnosis and treatment. Therefore, we conclude that gene 

expression data of a subtype of LGG without considering the grade is more heterogeneous than 

data of a specific grade. Further, the study of chapter 4 indicates that DL and ML can be 

powerful tools for finding patterns in large-scale genetic and epigenetic data sets related to 

human cancer. Here, a biologically relevant DL and ML-based framework was presented to 

classify the subtype of GBM to increase accuracy in diagnosis; in turn, it can lead to better 

patient management. Here, the successful separation of three subtypes of glioblastoma 

multiforme (GBM), namely classical, mesenchymal, and proneural, has been performed with a 

classification accuracy >90%. It is also compared DL and ML techniques to identify the most 
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suitable method for interpreting the transcriptome, methylome, and integrated data. DL method, 

i.e., CNN outperforms other ML models. It is observed that overall classification performance 

was higher using the transcriptome and integrated data than the methylome data. Another 

significant aspect of our findings is the biological relevance of features and the identification 

of subtype-specific prognostic biomarkers. To find the association of features genes with 

specific subtypes, we performed WGCNA. Furthermore, several genes present in these co-

expressed modules was identified, which were linked to patient survival. Our study explained 

how the features genes from the DL/ML framework could be used to find the subtype-specific 

biomarkers. The feature genes of this study and CNN can provide assured and clinically 

relevant deep learning-based diagnostic tools for the proper treatment of GBM patients. These 

results indicate that DL is better than the ML algorithms. However, development of DL-based 

model with large scale multi-omics data can improve the overall precision and efficacy of 

diagnostic processes. However, clinical diagnosis still raises questions about the validity and 

interpretability of DL- or AI-based diagnostic models. In general, efficient DL and ML tools 

work like a ‘black -box’; researchers or clinicians may not be confident in diagnosing or 

classifying cancer patients using these approaches. However, if the basis of classification is 

biologically relevant and has higher accuracy, the diagnosis and patient management will be 

more assured and systematic. To promote the further development for building more accurate 

biological relevant models and identification of novel therapeutic marker multi-omics data 

analysis is essential, which has grown in popularity in cancer research in recent decades. 

Moreover, the integration of transcriptomic, mutational, and methylome data can reveal the 

intricate systemic dysregulation linked to the phenotype of glioma. 

Therefore, it is essential to design a biologically and clinically relevant AI-based diagnostic 

model to increase the reliability of diagnosis. Hence, in the chapter5 the AI-based diagnostic 

tool was designed, i.e., DeepAutoGlioma, for subtyping the glioma. The transcriptome and 

methylome data of glioma patients were used to extract biologically and clinically relevant 

features for model development. The features from two levels of genomic layers were integrated 

to capture cancer-specific patterns for accurate subtyping. Integration of omics data enables us 

to achieve greater model performance because it provides a wealth of information from 

different genomic layers. The model developed based on multi-omics data can greatly support 

the clinician in personalizing treatment. Here, in chapter 6 the clinical development of targeted 

and personalized brain cancer treatments continues to be a significant issue. Finding a disease-

specific biomarker for targeted therapy is a commonly used strategy. In this study, network 
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medicine-based techniques with DL-based drug response prediction was combined to target 

glioma subtypes for precision therapy. Therefore, gene expression and mutational profiles was 

integrated and performed genome-wide screening of driver mutations and identified the DEGs 

from transcriptome data in each subtype of LGG and GBM. From the list of driver mutations 

and DEGs, the DEDGs were identified, which are further subjected to disease module 

identification. Hence, the identification of disease modules using DEDGs can comprehensively 

represent the core structure of the subtype-specific network associated with the cancer 

phenotype. Therefore, drugs from the DrugBank database to target these disease modules were 

selected. Next, a DL-based framework was developed to predict drug response using gene 

expression, mutation, and IC50 values from large-scale experimental data. The novel 

framework by combining LASSO-based feature selection, autoencoder-based data integration 

was designed, and then prediction using the DNN was performed. It is noticed the consistent 

performance of the model in test data, brain cancer cell lines, and validation data. Additionally, 

it is shown that cancer cell lines from various subtypes of glioma exhibit varying degrees of 

drug sensitivity. Due to the limitations of the dataset and lack of information on cell lineage, 

we were unable to predict the drug response for all subtypes of LGG and GBM. But It is 

expected that this problem will be solved soon because the size of datasets is growing rapidly.  

This thesis has enlightened with various aspects and use of ML and DL models from brain 

cancer diagnosis to the development of precision medicine.  The Superior accuracies of ML 

and DL in each type of genomic data show the possibility to develop a robust AI model from 

heterogeneous data of cancer patients. The AI-models discussed in this thesis were developed 

using data from brain cancer tissue. AI developers and cancer biologists should focus on the 

data generated from liquid biopsies samples using non-invasive techniques, such as blood, 

saliva, serum, and urine. Data from liquid biopsies samples will facilitate the biomarker 

identification at an early stage of brain cancer. Furthermore, it will be less complicated for 

multiple time sample collection to evaluate the patient's response to the treatment.  For complex 

diseases like cancer, combining the approaches of network medicine and DL-based drug 

response prediction presents enormous promise for the development of novel and efficient 

treatments. Network medicine can reveal the complex molecular interactions in the disease 

state, which can lead to the identification of novel drug targets, whereas DL can extract hidden 

patterns from large-scale omics data to develop a predictive model to determine the patient-

specific therapeutic approach. It is believed that the present work can be extended to other types 
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of cancer to find subtype-specific targets and predict the drug response, and that it can 

contribute to developing personalized medicine and improving patient outcomes.
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Appendix I 

Subtyping and grading of lower-grade glioma (LGG)  

 

Table I.1: Performance of various machine learning models for subtype classification using 

different sets of feature genes 

  

  
Mixed grade Grade2 Grade3 

Number of 

Feature 
20 50 100 200 500 20 50 100 200 500 20 50 100 200 500 

SVM 

Accuracy 0.7 0.74 0.8 0.73 0.72 0.85 0.88 0.93 0.83 0.81 0.88 0.86 0.96 0.88 0.85 

F1 score 0.7 0.74 0.8 0.73 0.72 0.85 0.88 0.92 0.83 0.81 0.88 0.86 0.96 0.87 0.85 

Precision 0.71 0.74 0.81 0.72 0.72 0.86 0.88 0.93 0.84 0.82 0.88 0.86 0.96 0.87 0.86 

AUC 0.85 0.86 0.87 0.9 0.91 0.9 0.93 0.98 0.94 0.94 0.95 0.95 0.95 0.98 0.98 

KNN 

Accuracy 0.66 0.67 0.67 0.64 0.6 0.68 0.72 0.73 0.72 0.68 0.71 0.75 0.8 0.71 0.65 

F1 score 0.66 0.67 0.67 0.64 0.6 0.69 0.7 0.74 0.72 0.7 0.68 0.72 0.8 0.72 0.64 

Precision 0.67 0.68 0.67 0.64 0.6 0.69 0.71 0.75 0.72 0.72 0.72 0.73 0.81 0.73 0.64 

AUC 0.71 0.71 0.72 0.7 0.76 0.85 0.75 0.73 0.82 0.86 0.82 0.8 0.84 0.8 0.77 

GaussianNB 

Accuracy 0.67 0.72 0.72 0.66 0.65 0.7 0.75 0.83 0.78 0.73 0.73 0.75 0.93 0.78 0.75 

F1 score 0.66 0.72 0.71 0.66 0.65 0.7 0.73 0.82 0.77 0.72 0.71 0.74 0.93 0.77 0.74 

Precision 0.68 0.72 0.71 0.67 0.65 0.7 0.73 0.83 0.79 0.73 0.72 0.74 0.93 0.79 0.75 

AUC 0.78 0.8 0.8 0.77 0.76 0.84 0.89 0.91 0.92 0.9 0.83 0.88 0.89 0.87 0.87 

Decision tree 

Accuracy 0.6 0.62 0.62 0.6 0.57 0.68 0.73 0.75 0.68 0.6 0.63 0.66 0.68 0.61 0.6 

F1 score 0.59 0.6 0.62 0.6 0.57 0.68 0.72 0.75 0.68 0.6 0.63 0.63 0.67 0.61 0.58 

Precision 0.61 0.61 0.64 0.63 0.62 0.69 0.72 0.76 0.72 0.63 0.71 0.73 0.67 0.64 0.61 

AUC 0.72 0.72 0.65 0.61 0.71 0.71 0.71 0.71 0.75 0.79 0.77 0.7 0.73 0.77 0.73 

Random 

forest 

Accuracy 0.7 0.72 0.74 0.68 0.66 0.78 0.85 0.88 0.78 0.75 0.76 0.86 0.88 0.83 0.76 

F1 score 0.7 0.72 0.74 0.68 0.66 0.77 0.84 0.87 0.78 0.75 0.76 0.86 0.87 0.83 0.75 

Precision 0.7 0.73 0.74 0.69 0.66 0.79 0.83 0.88 0.81 0.78 0.76 0.86 0.9 0.83 0.77 

AUC 0.81 0.82 0.84 0.85 0.86 0.9 0.91 0.95 0.93 0.95 0.91 0.93 0.95 0.94 0.94 
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Table I.2: External dataset sample details 

Dataset  Subtype  
Original sample 

Number  

Sample number after 

random sampling  

GSE74462 

(Grade2) 

Astrocytoma 2 11 

Oligoastrocytoma 11 11 

Oligodendroglioma 1 11 

GSE43378 

(Grade3) 

Astrocytoma 12 12 

Oligoastrocytoma 2 12 

Oligodendroglioma 4 12 

 

  

 

 

 

Figure I.1: PCA of preprocessed data and feature genes.  (A, B, C) dot plots show the PCA 

using preprocessed gene expression data. (D, E, F) show the PCA using expression data of 100 

feature genes. A: astrocytomas, OA: oligoastrocytomas, OD: oligodendrogliomas, N: healthy, 

G2: grade2, and G3: grade3, and G2+G3: mixed grade. 
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Table I.3: Performance of subtype classification using Boruta feature selection method 

  

Grade Mixed grade Grade2 Grade3 

Number of Feature 132 209 170 

SVM 

Accuracy 0.7172 0.8525 0.8333 

F1 score 0.7102 0.8405 0.8338 

AUC 0.69 0.91 0.89 

Precision 0.7213 0.8508 0.846 

KNN 

Accuracy 0.6465 0.7541 0.7333 

F1 score 0.6509 0.7307 0.7352 

AUC 0.76 0.86 0.78 

Precision 0.6846 0.7533 0.757 

GaussianNB 

Accuracy 0.6667 0.8033 0.75 

F1 score 0.6646 0.7974 0.7315 

AUC 0.78 0.89 0.83 

Precision 0.6677 0.8091 0.7519 

Decision tree 

Accuracy 0.6061 0.6885 0.7167 

F1 score 0.5941 0.689 0.709 

AUC 0.66 0.8 0.72 

Precision 0.6009 0.7343 0.742 

Random forest 

Accuracy 0.7071 0.8852 0.90 

F1 score 0.7035 0.8811 0.897 

AUC 0.83 0.95 0.91 

Precision 0.7109 0.8801 0.9002 

 

 

 

 

 

 

 



 
 
   Appendix II 

150 
 

Appendix II 

Subtyping of glioblastoma multiforme (GBM) 

 

 

 

Figure II.1: Analysis of network topology for several soft thresholding power (β) in WGCNA 

 

 

Figure II.2: Survival analysis of positively associated module. Overall survival was analyzed 

based on quartile method of 75 % cut-off of higher and 25% cut-off of lower limit. 
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Figure II.3: (Extended figure of Fig.5) Survival analysis using GEPIA of gene present in 

coexpression module. (i to iii), Kaplan-Meier plots of genes from positively associated modules 

with classical subtype. (iv to xxiv), Kaplan-Meier plots of gene from positively associated 

modules with mesenchymal subtype. (xxv to xxvii), Kaplan-Meier plots of gene from positively 
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associated modules with proneural subtype. Overall survival was analyzed based on quartile 

method of 75 % cut-off of higher and 25% cutoff of lower limit. 

 

Figure II.4: Expression pattern of genes associated with patient survival. Heatmaps show the 

genes present in coexpressed modules of (A) transcriptome (B) methylome (C) integrated data. 
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