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ABSTRACT: An efficient method for the synthesis of hetero- 0
diarylmethanes through the coupling of imidazo[1,2-a]pyridines HO IS!\
and heteroarenes using indoles employing rongalite as a 0" 0Na N
methylenating reagent has been developed. This regioselective M (ca. $0.03/g) DR
C—H functionalization provides a wide range of heterodiaryl- @ N
methanes of imidazo[1,2-a]pyridines and imidazo[2,1-b]thiazole. H H . ¢ NH
Here, rongalite plays a crucial role in generating a C1 unit in situ, N’S’ WY/ . o

=R, Heterodiarylmethylenat
which triggers the heterodiarylmethylation process. The use of r\} RN R ricterodiaryimethylenation / \\
inexpensive rongalite (ca. $0.03/1 g), mild reaction conditions, and H Re

gram-scale synthesis are some of the key features of this

methodology.

B INTRODUCTION

C1 homologation is a powerful tool for selectively introducin%
a methylene group (—CH,) into parent compounds,
increasing their molecular diversity, and altering their organic
framework to regulate physical and chemical properties such as
lipophilicity and chemical reactivity.” Methylenation chemistry
offers many advantages, including lengthening carbon chains,
adding essential functionalities, and combining organic
molecules to create valuable heterocyclic products.” In
particular, the installation of methylene groups can dramati-
cally improve the ICj, values of a specific drug.*> Ideally, this
process allows for the precise incorporation of the methylene
unit between pre-existing molecular linkages, underscoring
methylene’s central role in advancing synthetic methodologies
and expanding the diversity of chemical structures. A plethora
of reagents were developed in this regard (e.g., diazomethane,
ylides, carbenoid, etc.).”” In recent years, the release of
methylene under tunable reaction conditions has become an
emerging area in organic synthesis. Researchers have explored
the various sources of C1 synthon donors such as methanol,
dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF),
N,N-dimethylacetamide (DMA), and tetramethyl urea in the
presence of a suitable metal catalyst.” However, these methods
require harsh reaction conditions, including the use of metals,
toxic formalin, and long reaction time to provide CI1
homologation.

Therefore, developing an alternate source of C1 homo-
logation under transition-metal-free conditions has gained
significant attention in synthetic organic chemistry. On the
other hand, rongalite, an industrial product (ca. 0.03$/1g), is a
potential source of both formaldehyde and sulfoxylate dianion
and is widely used in organic synthesis.”
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N-Heterocyclics are recognized for their high-end position
as a valuable source of therapeutic agents in medicinal
chemistry.'” FDA databases reveal nearly 75% of small-
molecule drugs contain a nitrogen heterocycle.'' In particular,
imidazo[1,2-a]pyridines are privileged scaffolds that are
extensively utilized in the pharmaceutical industry due to
their diverse biological properties.”” Many pharmaceutical
drugs on the market contain imidazopyridine derivatives as
active ingredients such as zolpidem, necopidem, saripidem, and
minodronic acid. Similarly, heterodiarylmethanes are also a
privileged skeleton in several pharmaceutical drugs (Figure 1).

In addition, imidazo[1,2-a]pyridines are widely applied in
material sciences because of their unique photophysical
properties.”” Imidazo[1,2-a]pyridine is a key structure that
can be combined with other fragments to create complex
molecules for potential use in drug discovery.'* In recent years,
there has been a great deal of interest in hybrid drugs, which
aim to create potent new small molecules with combined
biological effects. Indole is commonly known as the “Lord of
the Rings” of heterocyclic compounds and is widely used in the
synthesis of organic compounds due to its significant
importance among heterocyclic structures."

Imidazo[1,2-a]pyridines and indoles are commonly used in
drug discovery programs and have been found in therapeutics
for diseases like diabetes, cancers, and microbial infections.*®
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Figure 1. Imidazo[1,2-a]pyridines and heterodiarylmethane containing pharmaceuticals.

Scheme 1. Strategies for the Formation of Diarylmethylenation. Adapted with Permission from ref 17b.

Copyright 2021 Royal

Society of Chemistry and ref 18a—bcd. Copyright 2016 and 2023 John Wiley and Sons
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Therefore, it is desirable and significant to explore new
methods for synthesizing imidazopyridine hybrids. Few reports
are available for direct imidazopyridine hybrids, but the hybrids
of indole-methylimidazopyridine have been less explored. The
synthetic routes available for heterodiarylmethanes are (a)
diarylmethylenation by decarboxylation'” and (b) the use of a
C-1 unit source."®

These methods require harsh reaction conditions such as the
use of metals and toxic methylene sources. As a result, finding
an alternative C1 unit source has become a key goal in
diarylmethylenation strategies. Therefore, we aim to develop a
novel method for the in situ generation of a Cl source to
overcome the constraints associated with these methods. In

this context, we are utilizing the rongalite, a commercially
inexpensive reagent (ca. $0.03/ g) as a Cl unit source under
mild conditions for diarylmethylenation (Scheme 1c).

B RESULTS AND DISCUSSION

To test the proposed hypothesis for the synthesis of the 3-
((1H-indol-3-yl)methyl)-2-phenylimidazo[ 1,2-a]pyridine, we
have initially set up a reaction with imidazo[1,2-a]pyridine
1a, indole 2a, and rongalite 3 in acetonitrile stirred at room
temperature, but there is no change observed in the reaction
progress (Table 1, entry 1).

However, starting material was consumed when the reaction
mixture was heated in an oil bath to 80 °C and gave desired

18314 https://doi.org/10.1021/acsjoc.4c02143
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Table 1. Optimization of Reaction Condition”

2 N
=
HO S =
O . Ph
NN o A 3 ONa*2H,0 s N/
—_—
\ Nf * N
H solvent, temperature —
HN
1a 2a 4a

rongalite
entry solvent (equiv) temp. (°C) time (h) yield (%)"
1 CH,CN 1 rt 12 n.d®
2 CH;CN 1 70 12 40
3 CHCL 1 45 12 12
4 CHCL 1 65 12 10
S DCE 1 70 12 10
6 toluene 1 80 10 45
7 THF 1 70 12 22
8 1,4-dioxane 1 70 12 20
9 MeOH 1 70 6 50
10 EtOH 1 70 6 SS
11 DMF 1 70 5 68
12 DMF 1.5 70 S 75
13 DMF 2 80 S 90
14 DMF 2.5 80 N 920
15 DMSO 2 80 10 40
16  H,0 2 80 24 n.d°

“All the reactions were conducted on a 1.0 mmol scale of 1a (1.0
mmol), 2a (1.0 mmol), and 3 (2.0 mmol) in solvent (2 mL),
otherwise mentioned. “Isolated yields. “Not detected.

compounds 4a in 40% yield (Table 1, entry 2). This promising
result motivated us to further optimize and increase the
product yield by modifying the reaction conditions. After initial
screening, we switched to chlorinated solvents such as
dichloromethane, chloroform, and dichloroethane but gave
unsatisfactory yields (Table 1, entries 3—5). Further, we
screened in toluene, THF, 1,4-dioxane, methanol, ethanol
solvent (Table 1, entries 6—10), and DMF, which gave
moderate yields. Surprisingly, DMF gave a 68% yield in S h
(Table 1, entry 11). This led us to investigate the
stoichiometry of rongalite and attempt the reaction with 1.5,
2.0, and 2.5 equiv, with 2.0 equiv of rongalite yielding a 90%
product yield (1, entries 12—14). Unfortunately, DMSO and
H,O solvents are inefficient for this methodology to yield the
desired product (Table 1, entries 15—16).

After testing various solvents, we determined that DMF is
the most effective reaction medium for producing the
compound with a high yield. The established conditions for
synthesizing diarylmethane are as follows: imidazo[1,2-a]-
pyridine 1a (1.0 mmol), indole 2a (1.0 mmol), and rongalite 3
(2.0 mmol) in 2 mL of DMF solvent at 80 °C in an oil bath for
Sh

After optimizing the reaction conditions for the metal-free
protocol of heterodiarylmethanes between imidazo[1,2-a]-
pyridines, indoles, and rongalite in DMF, we concentrated
on the scope of the substitutions on both the imidazo[1,2-
a]pyridines and indoles; the results are shown in Scheme 2.
Fortunately, the substitution such as methyl, —F, —Br, —Ph,
methoxy, and —Cl on both the imidazo-[1,2-a]pyridine and
indoles is well tolerated, given the corresponding 3-((1H-
indol-3-yl)methyl)-2-phenylimidazo[ 1,2-a]pyridine derivative
in good to excellent yields (Scheme 2a, 4a—4p), and also N-
methyl, N-butyl, N-allyl indoles reacted with imidazo-[1,2-

a]pyridine and gave good yields (Scheme 2a, 4q—4s). Further,
the above methodology was extended for the synthesis of other
heteroarene, i.e., imidazo[2,1-b]thiazole and benzo[d]imidazo-
[2,1-b]-thiazole. Notably, these substrates also showed similar
reactivity patterns of imidazo[1, 2-a]pyridines and furnished
the titled compounds in excellent yield (Scheme 2b, 6a—6f).

Finally, we have tested our method in gram scale for
industrial applications with 5 g scale and obtained target
compounds 4a in 90% yield (Scheme 3).

To gain mechanistic insight into one-pot heterodiarylme-
thylation, we conducted control experiments (Scheme 4).
First, we carried out control experiments on 2-phenylimidazo-
[1,2-a]pyridine 1a (1.0 mmol) and indole 2a (1.0 mmol) in 2
mL of DMF at 80 °C without rongalite 3 (Scheme 4a).
However, this failed to produce target compound 4a. This
result indicates that C1 is sourced from rongalite. Next, we
repeated the same reaction in the presence of rongalite 3 (2.0
mmol) and recorded the HRMS data of the samples at
different intervals. These samples showed the formation of (2-
phenylimidazo[1,2-a]pyridin-3-yl)methanol 7 (Scheme 4b).
The adduct of (1H-indol-3-yl)methanol 9 was not detected in
HRMS, indicating that rongalite primarily reacts with
phenylimidazo[1,2-a]pyridine 1a. Finally, the heterodiarylme-
thylation reaction was conducted in the presence of a radical
quencher, TEMPO (3.0 mmol), in 2 mL of DMF at 80 °C. No
progress in the reaction was observed to provide 4a (Scheme
4c). However, the formation of a TEMPO adduct with
imidazo-[1,2-a]pyridine 8 was observed when the HRMS of
the sample was recorded (Scheme 4c).

The plausible reaction mechanism pathway is proposed for
the heterodiarylmethanes via metal-free coupling between
imidazo[1,2-a]pyridines or imidazo[2,1-b]thiazole and indoles,
basle7d on control experiments and literature reports (Scheme
5)."~

In the first step, rongalite dissociates and generates
formaldehyde in situ under thermal conditions.'” Next, the
formaldehyde may further react with electronically rich
heterocyclic imidazo[1,2-a]pyridines or imidazo[2,1-b]-
thiazole. The C-3 position of imidazo[1,2-a]pyridine forms
an intermediate I upon reaction with formaldehyde, which
then rearomatizes to form compound (2-phenylimidazo[1,2-
a]pyridin-3-yl)methanol 7 (detected by HRMS). Upon
dehydration of intermediate 7, Michael acceptor 3-methyl-
ene-2-phenyl-3H-imidazo[ 1,2-a]pyridin-4-ium III is formed.
Subsequently, indole 7 electrons attack intermediate III via
Michael addition to form intermediate IV, which then
undergoes aromatization to produce the desired product 4a
(Scheme S).

B CONCLUSIONS

In this study, rongalite, a cost-effective reagent, was utilized as
a powerful in situ methylenating agent for the synthesis of
heterodiarylmethanes under metal-free conditions. This
strategy demonstrates a wide functional group tolerance and
offers the corresponding 3-((1H-indol-3-yl)methyl)-2-
phenylimidazo[1,2-a]pyridines and $-((1H-indol-3-yl)-
methyl)-6-phenylimidazo[2,1-b]thiazoles in good to excellent
yields under mild conditions. We anticipate that this approach
will be a convenient, economical, and practical tool to
synthesize structurally diversified heterodiarylmethanes. Addi-
tionally, this protocol has been tested for large-scale industrial
applications.
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Scheme 2. Substrate Scope of 3-((1H-Indol-3-yl)methyl)-2-phenylimidazo[1,2-a]pyridine”
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“All the reactions were conducted on a 1 mmol scale of 1a—1 (1 mmol), 2a—h (1 mmol), and 3 (2 mmol) in DMF solvent (2 mL). “Isolated yields.
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Scheme 3. Gram-Scale Synthesis of Compound 4a

I
S.
\/ “ONa-2H,0

/ Ph
=N \, _79g514mmol
/ Ph 4+
N H DMF
80°C,8h
1a 2a
5.0 g, 25.7 mmol 3.02 g, 25.7 mmol 7.59,90%

Scheme 4. Control Experiments
=N
Qv
HN 4a (0%)

HO

=N N
) )—Ph 4 S
XN N DMF, 80°C

1a 2a
Z =N oh @\/\> Rongalite 3 =N oh
) N * NGO T N
H DMF, 80 °C
1a 2a HN | 43 (90%)
=N \\ Rongalite 3 _
c) / Ph + —_— /) Ph
XN N TEMPO XN
DMF, 80°C
— o,
1a 2a HN 4a (0%)
i Detected intermediates by HRI\:I\]S Ph OHE
a
Ph 7 N o AN :
_ N N 1
: 8 o 1
3 [M+H]" = 225.1023 iy = 364 2395 1

i detected by HRMS detected by HRMS

N
Ph ———> TN ph re-aromatization N\
GNrf @\g T LN {*Ph

HO 7

H _N
- (N\’/ Ph —— @E/\ Ph —>
XN dehydration NH

A =N

Ph
s N7
H-N 4a

B EXPERIMENTAL SECTION

General Information. All chemicals and solvents were purchased
from Alfa Aesar, Spectrochem, SRL, and Finar and used as received.

Imidazo-[1,2-a]pyridine 1a—I and imidazo[2,1-b]thiazoles Sa—f were
prepared from literature reports,”> and rongalite 3 was purchased
from Sisco Research Laboratories Pvt. Ltd. The conformation of the
reactions was monitored using analytical thin layer chromatography
(TLC) Merck silica gel G/GF 5, plates, and UV-Cabinet was used
for visualization of compound spots on TLC plate. Purification of
compounds using column chromatography was performed with the
Rankem silica gel (60—120 mesh). Spectral analysis for Fourier
transform infrared was recorded using a PerkinElmer IR spectrometer.
Finding the melting points of solid compounds was determined by
open capillaries using the Stuart SMP30 melting point apparatus and
is uncorrected. NMR ("H, *C, and '’F) spectra of all the synthesized
compounds were recorded on a Bruker AVANCE HD (400 MHz/
100 MHz) spectrometer using CDCl; and DMSO-d; as solvents and
TMS as an internal standard. The data of the compounds was
recorded as chemical shifts (§ ppm) (multiplicity, coupling constant
(Hz), and integration). Abbreviations for the multiplicity are as
follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet,
and dd = doublet of doublet. The mass spectrum analysis was
recorded in a Bruker-micro-TOF MS analyzer.

General Procedure for the Synthesis of 2-Arylimidazo[1,2-
alpyridines. To an oven-dried SO mL round-bottom flask were
added 2-bromo-1-arylethanone (2.51 mmol) and pyridin-2-amine
(2.51 mmol) in 10 mL of ethanol, and then NaHCOj; (3.76 mmol)
was added.”’ The resulting mixture was refluxed in an oil bath for 3 h;
after completion of the reaction, the solvent was evaporated under a
vacuum, EtOAc (3 X 10 mL) was added and washed with excess
water. The organic layers were dried on Na,SO, and evaporated to
give 2-arylimidazo[1,2-a]pyridines, which were used directly in the
next step without further purification.

General Procedure for the Synthesis of 6-Phenylimidazo-
[2,1-b]thiazoles. In an oven-dried SO mL round-bottom flask,
phenacyl bromide (1.0 mmol), 2-aminothiazole (1.0 mmol), and
NaHCO; (1.5 mmol) were dissolved in S mL of ethanol and stirred at
80 °C in an oil bath for 6 h. After completion of the reaction
(monitored by TLC), the reaction mixture was quenched with water
and extracted with ethyl acetate (3 X 10 mL). The combined organic
layers were washed with brine solution, dried over anhydrous Na,SO,,
and evaporated under reduced pressure. The product was purified by
column chromatography on silica gel with EtOAc/petroleum ether
(10/90) as the eluent.

General Procedure for the Preparation of Substituted 3-
((1H-Indol-3-yl)methyl)-2-phenylimidazo[1,2-alpyridine (4a—
4s). To a clean and dry round-bottom flask equipped with a magnetic
bead were added imidazo-[1, 2-a] pyridine 1a (1.0 mmol), indole 2a
(1.0 mmol), and rongalite 3 (2 mmol) in 2 mL of DMF solvent. The
reaction mixture was allowed to stir in an oil bath at 80 °C for 6—8 h
for completion. After completion of the reaction (monitored by
TLC), the reaction mixture was poured into an ice-cold water and
extracted with ethyl acetate (3 X 10 mL), dried over anhydrous
sodium sulfate, filtered, and evaporated under reduced pressure. The
crude mixture was separated by using column chromatography with
silica gel (100—200 mesh) by eluting with ethyl acetate/hexanes as a
mobile phase.

General Procedure for the Preparation of Substituted 5-
((1H-Indol-3-yl)methyl)-6-phenylimidazo[2,1-b]thiazole and
3-((1H-Indol-3-yl)methyl)-2-phenylbenzo[dlimidazo[2,1-b]-
thiazole (6a—6f). To a clean and dry round-bottom flask equipped
with magnetic beads were added indole 2a (1.0 mmol), 6-
phenylimidazo[2,1-b]thiazole or 2-phenylbenzo[d]imidazo[2,1-b]-
thiazole Sa (1.0 mmol), and rongalite 3 (2.0 mmol) in DMF solvent
(2 mL). The reaction mixture was allowed to stir in an oil bath at 80
°C for 6—8 h for completion. After conforming the reaction
(monitored by TLC), the reaction mixture was poured into ice cold
water, extracted with ethyl acetate (3 X 10 mL), dried over anhydrous
sodium sulfate, filtered, and evaporated under reduced pressure. The
crude mixture was separated by using column chromatography with
silica gel (100—200 mesh) by eluting with ethyl acetate/hexanes as a
mobile phase.

3-((1H-Indol-3-yl)methyl)-2-phenylH-imidazo[1,2-a]-
pyridine (4a). The product was purified by column chromatog-
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raphy'”'® (EtOAc/hexanes = 15:85) (292 mg, 90%), brown solid, mp
160—162 °C. 'H NMR (400 MHz, CDCl,): § 8.65 (s, 1H), 7.73 (d, J
= 7.0 Hz, 2H), 7.67 (d, ] = 7.1 Hz, 1H), 7.56 (t, ] = 8.8 Hz, 2H),
7.30-7.28 (m, 1H), 7.26 (d, ] = 3.8 Hz, 1H), 7.23—7.19 (m, 1H),
7.18—7.12 (m, 2H), 7.10—7.02 (m, 2H), 6.55 (t, ] = 6.8 Hz, 1H),
6.45 (s, 1H), 4.43 (s, 2H). C{'H} NMR (100 MHz, CDCL,): 6
144.8, 143.2, 136.8, 134.5, 128.7, 1282, 127.7, 127.0, 124.2, 123.9,
122.4, 122.2, 119.6, 118.6, 118.4, 117.3, 112.0, 111.5, 110.9, 20.7.
HRMS (ESI-TOF) m/z: [M + HJ]" calcd for C,,H N, 324.1495;
found, 324.1496.
3-((1H-Indol-3-yl)methyl)-8-methyl-2-phenylH-imidazo[1,2-
alpyridine (4b). The product was purified by column chromatog-
raphy'”*® (EtOAc/hexanes = 20:80) (289 mg, 86%), brown solid, mp
142—144 °C. 'H NMR (400 MHz, CDCl,): § 8.32 (s, 1H), 7.74 (d, ]
=7.2 Hz, 2H), 7.56 (t, ] = 7.9 Hz, 2H), 7.29 (t, ] = 7.1 Hz, 3H), 7.21
(t, J=7.3 Hz, 1H), 7.16 (d, ] = 5.0 Hz, 1H), 7.08 (t, ] = 7.4 Hz, 1H),
6.88 (d, ] = 6.8 Hz, 1H), 6.50 (t, ] = 6.8 Hz, 1H), 6.47 (s, 1H), 4.41
(s, 2H), 2.62 (s, 3H). BC{'H} NMR (100 MHz, CDCl,): § 145.1,
142.5, 136.7, 134.5, 128.6, 128.4, 127.6, 127.2, 127.0, 123.2, 122.4,
122.1, 121.7, 119.6, 118.7, 118.6, 112.2, 111.4, 111.2, 20.8, 17.3.
HRMS (ESI-TOF) m/z: [M + HJ]* caled for C,3H,Ns, 338.1652;
found, 338.1647.
3-((1H-Indol-3-yl)methyl)-2-p-tolylH-imidazo[1,2- a]pyrldlne
(4c). The product was purified by column chromatography'’
(EtOAc/hexanes = 20:80) (287 mg, 85%), brown solid, mp 106—
108 °C. 'H NMR (400 MHz, CDCL,): 5 8.38 (s, 1H), 7.69 (d, ] = 6.5
Hz, 1H), 7.63 (t, ] = 7.3 Hz, 3H), 7.56 (d, ] = 7.4 Hz, 1H), 7.31 (d, ]
= 7.9 Hz, 1H), 7.09 (dd, ] = 18.3, 7.6 Hz, 4H), 6.59 (t, ] = 6.4 Hz,
1H), 6.51 (s, 1H), 4.44 (s, 2H), 2.28 (s, 3H). *C{"H} NMR (100
MHz, CDCL): § 144.5, 142.8, 137.6, 136.8, 131.2, 129.4, 128.1,
126.9, 124.4, 123.8, 122.5, 122.1, 119.7, 118.6, 118.0, 117.1, 112.2,
111.5, 111.0, 21.3, 20.7. HRMS (ESI-TOF) m/z: [M + H]" calcd for
C,3H, 0N, 338.1652; found, 338.1654.
3-((1H-Indol-3-yl)methyl)-2-(4-fluorophenyl)H-imidazo[1,2-
alpyridine (4d). The product was purified by column chromatog-
raphy'” (EtOAc/hexanes = 15:85) (286 mg, 84%), white solid, mp
178—180 °C. '"H NMR (400 MHz, CDCL,): 6 8.33 (s, 1H), 7.75—
7.70 (m, 3H), 7.64 (d, ] = 9.0 Hz, 1H), 7.56 (d, ] = 7.8 Hz, 1H), 7.33
(d, J = 8.1 Hz, 1H), 7.18 (d, J = 4.8 Hz, 1H), 7.15—7.08 (m, 2H),
7.01 (t, ] = 8.6 Hz, 2H), 6.64 (t, ] = 6.7 Hz, 1H), 6.54 (s, 1H), 4.44 (s,
2H). ¥C {!H} NMR (100 MHz, CDCL,): & 163.9 (d,'Jc_r = 250
Hz), 144.3, 141.5, 136.8, 129.9 (d, ¥J._r = 8 Hz), 126.8, 124.9, 123.9,
122.6, 122.0, 119.8, 118.5, 118.2, 117.0, 115.8 (d, *Jo_r = 20 Hz),
112.6, 111.5, 110.7. F NMR (376 MHz, CDCl,): § —114.4. HRMS
(ESI-TOF) m/z: [M + H]* calcd for Cy,H;,FN;, 342.1401; found,
342.1401.
3-((1H-Indol-3-yl)methyl)-2-(4-bromophenyl)H-imidazo[1,2-
alpyridine (4e). The product was purified by column chromatog-
raphy (EtOAc/hexanes = 15:85) (322 mg, 80%), brown solid, mp
193—195 °C. "H NMR (400 MHz, CDCl,):  8.40 (s, 2H), 7.70 (d, |
= 6.9 Hz, 1H), 7.61 (d, ] = 8.4 Hz, 2H), 7.58—7.53 (m, 1H), 7.41 (d,
J=8.4Hz 2H), 7.31 (d, ] = 8.1 Hz, 1H), 7.20—7.15 (m, 2H), 7.10 (t,
J =89 Hz, 2H), 6.61 (t, ] = 6.6 Hz, 1H), 6.49 (s, 1H), 4.42 (s, 2H).
BC {'H} NMR (100 MHz, CDCL,): & 144.6, 141.6, 136.8, 133.1,
131.9, 129.7, 126.8, 124.8, 123.8, 122.7, 122.0, 121.9, 119.8, 118.5,
117.2, 112.5, 111.5, 110.7, 20.7. HRMS (ESI-TOF) m/z: [M + H]*
caled for C,,H,,BrN;, 402.0600; found, 402.0609 (Br peak
404.0592).
3-((1H-Indol-3-yl)methyl)-2-([1,1’-biphenyl]-4-yl)imidazo-
[1,2-alpyridine (4f). The product was purified by column
chromatography (EtOAc/hexanes = 20:80) (318 mg, 80%), brown
solid, mp 101—102 °C. '"H NMR (400 MHz, CDCL,): 6 8.50 (s, 1H),
7.90 (d, J = 8.2 Hz, 2H), 7.77 (d, ] = 6.8 Hz, 1H), 7.66 (t, ] = 7.3 Hz,
2H), 7.60 (t, ] = 8.5 Hz, 4H), 7.44—7.36 (m, 3H), 7.32 (t, ] = 7.3 Hz,
1H), 7.24 (t, ] = 7.4 Hz, 1H), 7.20—-7.11 (m, 2H), 6.64 (t, ] = 6.7 Hz,
2H), 6.59 (s, 1H), 4.56 (s, 2H). *C {*H} NMR (100 MHz, DMSO-
dg + CDCLy): 6 144.4, 141.9, 140.5, 140.1, 137.0, 133.4, 128.9, 128.6,
127.4, 127.2, 126.9, 124.6, 124.1, 122.5, 121.9, 119.1, 118.9, 118.3,
116.9, 112.3, 111.8, 109.7, 20.8 HRMS (ESI-TOF) m/z: [M + H]*
caled for C,5H,,N3, 400.1808; found, 400.1792.

3-((1H-Indol-3-yl)methyl)-2-([1,1’-biphenyl]-3-yl)imidazo-
[1,2-alpyridine (4g). The product was purified by column
chromatography (EtOAc/hexanes = 20:80) (328 mg, 82%), brown
solid, mp 105—107 °C. 'H NMR (400 MHz, DMSO-dy): 6 10.89 (s,
1H), 8.26 (d, ] = 6.8 Hz, 1H), 8.07 (s, 1H), 7.86 (d, ] = 9.3 Hz, 1H),
7.69—7.63 (m, 2H), 7.59—7.52 (m, 3H), 7.43—7.30 (m, SH), 7.29—
7.23 (m, 1H), 7.10 (t, ] = 7.0 Hz, 1H), 7.03—6.84 (m, 3H), 4.65 (s,
2H). 3C {'"H} NMR (100 MHz, DMSO-dy): & 144.3, 141.8, 140.9,
140.4, 137.1, 135.9, 129.8, 129.4, 128.0, 127.2,, 127.1, 126.5, 126.1,
125.0, 124.7, 1232, 121.8, 119.8, 119.0, 118.8, 117.3, 112.5, 112.1,
110.3, 20.6. HRMS (ESI-TOF) m/z: [M + H]* caled for C,gH,,Nj;,
400.1808; found, 400.1828.
3-((1H-Indol-3-yl)methyl)-8-methyl-2-p-tolylH-imidazo[1,2-
alpyridine (4h). The product was purified by column chromatog-
raphy (EtOAc/hexanes = 20:80) (316 mg, 90%), brown solid, mp
195—197 °C. '"H NMR (400 MHz, CDCL,): § 8.08 (s, 1H), 7.65 (d, J
= 8.0 Hz, 2H), 7.58 (dd, J = 12.1, 7.4 Hz, 2H), 7.32 (d, ] = 8.1 Hg,
1H), 7.19 (s, 1H), 7.13 (d, ] = 7.9 Hz, 2H), 7.09 (d, ] = 7.2 Hz, 1H),
6.91 (d, ] = 6.8 Hz, 1H), 6.54 (t, ] = 6.8 Hz, 2H), 4.43 (s, 2H), 2.64
(s, 3H), 2.28 (s, 3H). *C {"H} NMR (100 MHz, CDCL): § 144.7,
142.1, 137.6, 136.7, 129.4, 128.3, 127.0, 123.6, 122.4, 122.1, 121.7,
119.6,118.6,118.4, 112.3, 111.4, 111.2, 21.3, 20.7, 17.3. HRMS (ESI-
TOF) m/z: [M + HJ]' caled for C,H,,N, 352.1808; found,
352.181S.
3-((1H-Indol-3-yl)methyl)-2-(4-methoxyphenyl)-6-
methylimidazo[1,2-alpyridine (4i). The product was purified by
column chromatography (EtOAc/hexanes = 20:80) (331 mg, 90%),
white solid, mp 121—123 °C. "H NMR (400 MHz, CDCl,): 6 8.29 (s,
1H), 7.73 (d, J = 8.5 Hz, 2H), 7.67 (d, ] = 7.8 Hz, 1H), 7.62 (d, ] =
9.0 Hz, 1H), 7.58 (s, 1H), 7.42 (d, ] = 8.1 Hz, 1H), 7.28 (d, ] = 7.2
Hz, 1H), 7.19 (t, ] = 7.4 Hz, 1H), 7.04 (d, ] = 9.2 Hz, 1H), 6.91 (d, ]
= 8.5 Hz, 2H), 6.61 (s, 1H), 4.48 (s, 2H), 3.80 (s, 3H), 2.21 (s, 3H).
BC {'H} NMR (100 MHz, CDCL,): § 159.4, 143.2, 141.8, 136.9,
129.4, 128.0, 126.9, 1262, 122.5, 122.3, 122.1, 121.3, 119.7, 118.6,
117.3,116.1, 114.2, 111.5, 111.1, 55.3, 20.7, 18.3. HRMS (ESI-TOF)
m/z: [M + H]* caled for C,,H,,N;0, 368.1757; found, 368.1764.
3-((1H-Indol-3-yl)methyl)-6-bromo-2-p-tolylH-imidazo[1,2-
alpyridine (4j). The product was purified by column chromatog-
raphy (EtOAc/hexanes = 20:80) (375 mg, 85%), brown solid, mp
151-153 °C. 'H NMR (400 MHz, CDCL,): § 8.57 (s, 1H), 7.91 (s,
1H), 7.67 (4, J = 8.0 Hz, 2H), 7.60 (d, J = 7.8 Hz, 1H), 7.53 (4, ] =
9.5 Hz, 1H), 7.37 (d, ] = 8.0 Hz, 1H), 7.16 (t, ] = 7.7 Hz, SH), 6.57
(s, 1H), 4.48 (s, 2H), 2.34 (s, 3H). C {*H} NMR (100 MHz,
CDCly): § 143.8, 143.0, 138.0, 136.9, 130.8, 129.5, 128.0, 127.6,
126.8, 123.7, 122.6, 122.0, 199.7, 118.6, 118.5, 117.7, 111.6, 110.4,
106.9, 21.3, 20.8. HRMS (ESI-TOF) m/z: [M + H]" calcd for
C,3H,oBrN;, 416.0757; found, 416.0740. (Br peak 418.0722).
3-((5-Methoxy-1H-indol-3-yl)methyl)-2-p-tolylH-imidazo-
[1,2-alpyridine (4k). The product was purified by column
chromatography (EtOAc/hexanes = 20:80) (323 mg, 88%), brown
solid, mp 98—100 °C. '"H NMR (400 MHz, CDCly): & 8.09 (s, 1H),
7.76 (d, ] = 6.9 Hz, 1H), 7.68 (t, ] = 7.4 Hz, 3H), 7.21 (d, ] = 8.8 Hz,
1H), 7.17—7.11 (m, 3H), 6.91 (d, ] = 2.3 Hz, 1H), 6.83 (dd, ] = 8.8,
2.4 Hz, 1H), 6.66 (td, ] = 6.8, 0.8 Hz, 1H), 6.60—6.57 (m, 1H), 4.43
(s, 2H), 3.74 (s, 3H), 2.30 (s, 3H). C {H} NMR (100 MHz,
CDCly): 6 154.2, 144.1, 137.9, 131.8, 129.5, 1282, 127.2, 124.8,
123.8, 122.7, 118.1, 116.9, 112.8, 112.5, 112.1, 110.5, 100.2, 55.9,
21.3, 20.7. HRMS (ESI-TOF) m/z: [M + H]* calcd for C,,H,,N;0,
368.1757; found, 368.1758.
3-((5-Methoxy-1H-indol-3-yl)methyl)-2-p-tolylH-imidazo-
[1,2-alpyridine (4l). The product was purified by column
chromatography (EtOAc/hexanes = 20:80) (325 mg, 88%), brown
solid, mp 191—193 °C. '"H NMR (400 MHz, CDCL,): & 8.17 (s, 1H),
7.70—7.67 (m, 2H), 7.57 (, ] = 7.9 Hz, 2H), 7.32 (d, ] = 8.1 Hz, 1H),
7.20—7.15 (m, 2H), 7.12—7.07 (m, 1H), 6.90 (d, ] = 6.8 Hz, 1H),
6.86—6.84 (m, 2H), 6.53 (t, ] = 6.8 Hz, 2H), 4.41 (s, 2H), 3.73 (s,
3H), 2.63 (s, 3H). C {'H} NMR (100 MHz, CDCl,): 6§ 159.3,
144.8, 142.1, 136.7, 129.6, 127.0, 123.3, 122.5, 122.0, 121.6, 119.7,
118.6, 118.0, 114.1, 112.2, 111.4, 55.3, 20.8, 17.3 HRMS (ESI-TOF)
m/z: [M + H]* caled for C,,H,,N;0, 368.1757; found, 368.174S.

https://doi.org/10.1021/acs joc.4c02143
J. Org. Chem. 2024, 89, 18313—-18321


pubs.acs.org/joc?ref=pdf
https://doi.org/10.1021/acs.joc.4c02143?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The Journal of Organic Chemistry

pubs.acs.org/joc

3-((5-Methoxy-1H-indol-3-yl)methyl)-2-(4-methoxyphenyl)-
6-methylH-imidazo[1,2-alpyridine (4m). The product was
purified by column chromatography (EtOAc/hexanes = 20:80)
(351 mg, 88%), brown solid, mp 163—164 °C. 'H NMR (400
MHz, CDCL,): § 8.21 (s, 1H), 7.68—7.64 (m, 2H), 7.61 (dd, ] = 7.8,
1.1 Hz, 1H), 7.51-7.48 (m, 2H), 7.33 (dt, ] = 8.1, 1.0 Hz, 1H), 7.22—
7.19 (m, 1H), 7.12 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 6.93 (dd, ] = 9.3,
1.6 Hz, 1H), 6.86—6.82 (m, 2H), 6.53 (dd, ] = 2.5, 1.3 Hz, 1H), 4.41
(s, 2H), 3.73 (s, 3H), 2.14 (s, 3H). *C{'H} NMR (100 MHz,
CDCLy): § 159.2, 154.0, 143.7, 142.7, 132.0, 129.3, 127.3, 127.1,
122.9, 121.5, 121.3, 117.3, 116.3, 114.1, 112.5, 112.2, 110.7, 100.3,
55.9, 55.2, 20.8, 18.3. HRMS (ESI-TOF) m/z: [M + H]" calcd for
C,sH,,N;0,, 398.1863; found, 398.1855.
3-((5-Fluoro-1H-indol-3-yl)methyl)-2-(4-fluorophenyl)H-
imidazo[1,2-alpyridine (4n). The product was purified by column
chromatography (EtOAc/hexanes = 20:80) (302 mg, 84%), white
solid, mp 180—182 °C. '"H NMR (400 MHz, DMSO-dy): 5 10.99 (s,
1H), 8.19 (d, ] = 6.9 Hz, 1H), 7.87 (dd, J = 8.5, 5.5 Hz, 2H), 7.62 (d,
J = 9.0 Hz, 1H), 7.36—7.22 (m, SH), 7.01 (td, ] = 5.1, 2.4 Hz, 2H),
6.95-6.83 (m, 3H), 4.56 (s, 2H). ®C {'H} NMR (100 MHz,
DMSO-dg): & 163.3 (d, YJc_p = 240 Hz), 158.2 (d, 'J_r = 230 Hz),
1442, 141.1, 133.7, 131.8, 131.7, 130.2 (d, *Jc_r = 10 Hz), 127.2 (d,
3Jc_r = 10 Hz), 125.3, 124.9, 124.7, 119.0, 117.2, 116.1 (d, ¥Jc_p = 20
Hz), 113.0 (d, ¥c_g = 10 Hz), 112.4, 110.3 (d, *J_z = 10 Hz), 110.0,
109.7, 103.5 (d, ¥Jc_r = 30 Hz), 20.2. ’F NMR (376 MHz, DMSO-
dg): 6 —114.7, —125.05. HRMS (ESI-TOF) m/z: [M + H]* calcd for
C,,H,¢F,N;, 360.1307; found, 360.1301.
2-(4-Bromophenyl)-3-((5-chloro-1H-indol-3-yl)methyl)H-
imidazo[1,2-alpyridine (40). The product was purified by column
chromatography (EtOAc/hexanes = 20:80) (362 mg, 82%), brown
solid, mp 196—198 °C. '"H NMR (400 MHz, CDCL,): § 8.42 (s, 1H),
7.71 (d, ] = 6.8 Hz, 1H), 7.60 (t, ] = 9.3 Hz, 3H), 7.43 (t, ] = 9.5 Hz,
3H), 7.30 (s, 1H), 7.13 (t, ] = 7.8 Hz, 1H), 7.06 (dd, ] = 8.5, 1.6 Hz,
1H), 6.66 (t, ] = 6.7 Hz, 1H), 6.54 (s, 1H), 4.40 (s, 2H). °C {'H}
NMR (100 MHz, CDCLy): § 144.6, 141.6, 137.1, 132.9, 131.9, 129.7,
128.6, 125.4, 124.9, 123.7, 122.6, 122.1, 120.6, 119.4, 118.2, 117.3,
112.6, 111.5, 111.0, 20.6. HRMS (ESI-TOF) m/z: [M + H]" calcd for
C,,H,(BrCINj, 436.0211; found, 436.0227 (Br peak 438.0207).
3-((5-Chloro-1H-indol-3-yl)methyl)-2-(4-chlorophenyl)-8-
methylH-imidazo[1,2-alpyridine (4p). The product was purified
by column chromatography (EtOAc/hexanes = 20:80) (325 mg,
80%), red solid, mp 191—193 °C. '"H NMR (400 MHz, DMSO-d; +
CDCLy): § 10.74 (s, 1H), 7.85—7.74 (m, 3H), 7.46—7.34 (m, 4H),
7.02 (d, ] = 6.4 Hz, 1H), 6.96 (dd, J = 8.5, 1.5 Hz, 1H), 6.78—6.68
(m, 2H), 4.50 (s, 2H), 2.63 (s, 3H). *C {"H} NMR (100 MHz,
DMSO-dg + CDCLy): § 144.6, 137.4,133.2, 129.7, 128.8, 127.2, 126.7,
125.5, 123.5, 122.1, 119.5, 119.3, 112.7, 111.6, 110.0, 20.6, 17.0.
HRMS (ESI-TOF) m/z: [M + H]" calcd for C,3;H,CL,N3, 406.0872;
found, 406.0886.
8-Methyl-3-((1-methyl-1H-indol-3-yl)methyl)-2-p-tolylH-
imidazo[1,2-alpyridine (4q). The product was purified by column
chromatography (EtOAc/hexanes = 15:85) (300 mg, 82%), brown
solid, mp 111-113 °C. 'H NMR (400 MHz, CDCl;): § 7.67 (d, ] =
8.0 Hz, 2H), 7.57 (t, ] = 8.9 Hz, 2H), 7.25 (d, ] = 8.0 Hz, 1H), 7.21(t,
J = 7.5 Hz, 2H), 7.14 (d, ] = 7.9 Hz, 2H), 7.09 (t, ] = 7.3 Hz, 1H),
6.89 (d, ] = 6.8 Hz, 1H), 6.52 (t, ] = 6.8 Hz, 1H), 6.42 (s, 1H), 4.42
(s, 2H), 3.57 (s, 3H), 2.64 (s, 3H), 2.29 (s, 3H). *C {"H} NMR (100
MHz, CDCL): § 145.0, 142.6, 137.5, 137.3, 131.8, 129.3, 128.2,
127.4, 127.2, 126.7, 122.9, 122.0, 121.6, 119.1, 118.8, 118.4, 112.0,
109.9, 32.7, 21.3, 20.7, 17.3. HRMS (ESI-TOF) m/z: [M + H]* calcd
for C,sH,,N;, 366.1965; found, 366.1976.
6-Bromo-3-((1-butyl-1H-indol-3-yl)methyl)-2-p-tolylH-
imidazo[1,2-alpyridine (4r). The product was purified by column
chromatography (EtOAc/hexanes = 15:85) (380 mg, 81%), brown
solid, mp 105—107 °C. '"H NMR (400 MHz, CDCL): § 7.93 (s, 1H),
7.71 (d, ] = 8.0 Hz, 2H), 7.58 (dd, ] = 8.6, 4.8 Hz, 2H), 7.36 (d, ] =
8.3 Hz, 1H), 7.27 (t, ] = 7.6 Hz, 1H), 7.21 (dd, ] = 6.9, 4.4 Hz, 3H),
7.14 (t, ] = 7.4 Hz, 1H), 6.54 (s, 1H), 4.50 (s, 2H), 4.00 (t, ] = 7.0 Hz,
2H), 2.37 (s, 3H), 1.71 (dt, J = 14.6, 7.1 Hz, 2H), 1.26—1.20 (m,
2H), 0.86 (t, ] = 7.3 Hz, 3H). *C {"H} NMR (100 MHz, CDCL,): §

144.0, 143.1, 137.8, 136.9, 131.1, 129.5, 128.1, 127.4, 125.7, 123.8,
122.0, 119.2, 118.9, 118.6, 118.0, 109.8, 108.7, 106.7, 46.1, 32.2, 21.3,
20.9, 20.1, 13.7. HRMS (ESI-TOF) m/z: [M + H]" caled for
C,,H,,BrN;, 472.1383; found, 472.1380 (Br peak 474.1363).
3-((1-Allyl-1H-indol-3-yl)methyl)-6-bromo-2-phenylH-
imidazo[1,2-alpyridine (4s). The product was purified by column
chromatography (EtOAc/hexanes = 15:85) (355 mg, 80%), red solid,
mp 104—106 °C. '"H NMR (400 MHz, CDCL,): 6 7.94 (s, 1H), 7.82
(d,J =72 Hz, 2H), 7.59 (dd, ] = 8.7, 4.3 Hz, 2H), 7.41 (t, ] = 7.4 Hz,
2H), 7.35 (d, ] = 8.8 Hz, 2H), 7.28 (t, ] = 7.5 Hz, 1H), 7.22 (dd, ] =
9.6, 1.5 Hz, 1H), 7.16 (t, ] = 7.4 Hz, 1H), 6.57 (s, 1H), 5.90 (ddd, ] =
22.2, 104, 5.3 Hz, 1H), 5.14 (d, ] = 10.2 Hz, 1H), 499 (d, ] = 17.9
Hz, 1H), 4.62 (d, ] = 5.2 Hz, 2H), 4.53 (s, 2H). C {'"H} NMR (100
MHz, CDCL): § 144.0, 143.2, 137.1, 134.0, 133.3, 128.8, 1282,
128.0, 127.5, 127.4, 125.7, 123.8, 123.3, 119.5, 118.9, 118.8, 118.1,
117.3, 110.0, 109.4, 106.8, 48.8, 20.8. HRMS (ESI-TOF) m/z: [M +
H]" caled for C,H, BrN;, 442.0913; found, 442.0911 (Br peak
444.0893).
3-((6-Phenylimidazo[2,1-blthiazol-5-yl)methyl)-1H-indole
(6a). The product was purified by column chromatography (EtOAc/
hexanes = 25:75) (298 mg, 90%), red solid, mp 62—65 °C. '"H NMR
(400 MHz, CDCl,): 6 8.35 (s, 1H), 7.66 (d, ] = 7.2 Hz, 2H), 7.46 (d,
J =79 Hz, 1H), 7.33—7.26 (m, 3H), 7.20 (t, ] = 7.4 Hz, 1H), 7.17—
7.12 (m, 1H), 7.08—7.03 (m, 1H), 6.94 (d, ] = 4.5 Hz, 1H), 6.65 (s,
1H), 6.55 (d, ] = 4.5 Hz, 1H), 4.36 (s, 2H). C {*H} NMR (100
MHz, CDCL): & 148.3, 143.7, 136.7, 134.6, 128.7, 127.5, 127.2,
126.9, 122.5, 122.3, 120.4, 119.7, 118.6, 117.6, 112.1, 111.9, 111.5,
21.6. HRMS (ESI-TOF) m/z: [M + HJ]" caled for C,gH4N;S,
330.1059; found, 330.1059.
3-((6-p-Tolylimidazo[2,1-b]thiazol-5-yl)methyl)-1H-indole
(6b). The product was purified by column chromatography (EtOAc/
hexanes = 30:70) (305 mg, 88%), brown solid, mp 168—170 °C. 'H
NMR (400 MHz, CDCl,): § 8.68 (s, 1H), 7.62 (d, J = 8.0 Hz, 2H),
7.51 (d, ] = 7.9 Hz, 1H), 7.31 (d, ] = 8.1 Hz, 1H), 7.20 (t, ] = 7.0 Hz,
1H), 7.15 (d, ] = 8.0 Hz, 2H), 7.09 (t, ] = 7.4 Hz, 1H), 6.92 (d, ] = 4.5
Hz, 1H), 6.63 (s, 1H), 6.51 (d, ] = 4.5 Hz, 1H), 4.38 (s, 2H), 2.32 (s,
3H). BC {’H} NMR (100 MHz, CDCl,): § 1482, 143.8, 137.0,
136.7, 131.8, 129.4, 127.4, 126.9, 122.4, 122.3, 120.2, 119.6, 118.6,
117.6, 111.9, 111.8, 111.5, 21.5, 21.3. HRMS (ESI-TOF) m/z: [M +
H]* caled for C, H;gN,S, 344.1216; found, 344.1213.
3-((6-(4-Chlorophenyl)imidazo[2,1-b]lthiazol-5-yl)methyl)-
1H-indole (6¢). The product was purified by column chromatog-
raphy'® (EtOAc/hexanes = 30:70) (300 mg, 82%), orange solid, mp
130—131 °C. "H NMR (400 MHz, CDCl,): § 8.42 (s, 1H), 7.57 (d, ]
= 8.4 Hz,2H), 744 (d,] = 7.8 Hz, 1H), 7.28 (d, ] = 8.2 Hz, 1H), 7.23
(d, ] = 8.4 Hz, 2H), 7.13 (d, ] = 7.6 Hz, 1H), 7.0S (t, ] = 7.4 Hz, 1H),
6.94 (d, ] = 4.5 Hz, 1H), 6.62 (s, 1H), 6.55 (d, J = 4.5 Hz, 1H), 4.32
(s, 2H). BC {"H} NMR (100 MHz, CDCL;): § 148.5, 142.5, 136.7,
133.1, 128.8, 128.7, 126.8, 122.6, 122.2, 120.7, 119.8, 118.5, 117.5,
112.5, 111.5. HRMS (ESI-TOF) m/z: [M + HJ]" caled for
CyH;5CIN;S, 364.0670; found, 364.0671.
5-((1H-Indol-3-yl)methyl)-6-(4-methoxyphenyl)imidazo[2,1-
blthiazole (6d). The product was purified by column chromatog-
raphy (EtOAc/hexanes = 30:70) (312 mg, 86%), brown solid, mp
120—125 °C. 'H NMR (400 MHz, CDCL): & 8.42 (s, 1H), 7.59—
7.56 (m, 2H), 7.45 (d, J = 7.9 Hz, 1H), 7.26 (d, J = 8.2 Hz, 1H), 7.13
(t, J = 7.6 Hz, 1H), 7.06—7.01 (m, 1H), 6.90 (d, ] = 4.5 Hz, 1H),
6.83—6.80 (m, 2H), 6.62—6.60 (m, 1H), 6.49 (d, ] = 4.5 Hz, 1H),
431 (s, 2H), 3.70 (s, 3H). BC{*H} NMR (100 MHz, CDCL,): §
158.9, 148.1, 143.7, 136.7, 128.7, 127.5, 126.9, 122.4, 122.3, 119.7,
119.6, 118.6, 117.6, 114.1, 112.1, 111.7, 111.5, 55.3, 21.5.
2-(4-Bromophenyl)-3-((1-propyl-1H-indol-3-yl)methyl)-
benzo[d]imidazo[2,1-b]thiazole (6e). The product was purified by
column chromatography (EtOAc/hexanes = 30:70) (380 mg, 84%),
orange solid, mp 139—140 °C. 'H NMR (400 MHz, CDCL): § 7.62
(dt, J = 13.6, 6.7 Hz, 3H), 7.52 (d, ] = 8.4 Hz, 2H), 7.41 (d, ] = 8.4
Hz, 2H), 7.33 (t, ] = 6.8 Hz, 2H), 7.25 (t, ] = 7.3 Hz, 1H), 7.15 (d, ] =
7.1 Hz, 1H), 7.08 (t, ] = 7.6 Hz, 1H), 6.61 (s, 1H), 4.55 (s, 14H),
3.88 (t, ] = 7.0 Hz, 2H), 1.64 (dd, ] = 14.4, 7.2 Hz, 2H), 0.67 (t, ] =
7.4 Hz, 3H). C {'H} NMR (100 MHz, CDCL,): § 147.1, 137.0,
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132.7, 132.5, 131.9, 130.3, 128.9, 127.0, 126.4, 126.2, 124.8, 124.2,
122.7,122.2,121.7, 119.3, 118.7, 113.9, 110.0, 109.9, 48.0, 23.4, 22.2,
11.3. HRMS (ESI-TOF) m/z: [M + H]" caled for C,,H,;BrN;,S,
500.0791; found, 500.0786 (Br peak 502.0786).

3-((1-Methyl-1H-indol-3-yl)methyl)-2-(p-tolyl)benzo[d]-
imidazo[2,1-blthiazole (6f). The product was purified by column
chromatography (EtOAc/hexanes = 30:70) (294 mg, 82%), brown
solid, mp 191—193 °C. 'H NMR (400 MHz, CDCL;): § 7.66 (d, ] =
7.9 Hz, 1H), 7.59 (d, ] = 7.9 Hz, 1H), 7.54 (d, ] = 8.0 Hz, 2H), 7.33
(t, ] = 8.4 Hz, 1H), 7.26 (t, ] = 7.9 Hz, 2H), 7.15 (dd, ] = 10.4, 4.6
Hz, 2H), 7.12—7.0S (m, 3H), 6.58 (s, 1H), 4.56 (s, 2H), 3.58 (s, 3H),
227 (s, 3H). ®C {'H} NMR (100 MHz, CDCL): § 146.7, 144.2,
137.1, 133.0, 131.2, 130.4, 129.4, 127.3, 126.2, 124.3, 124.1, 122.1,
122.0,119.2, 118.7, 113.7, 110.9, 109.6, 32.8, 22.1, 21.3. HRMS (ESI-
TOF) m/z: [M + H]" caled for C,H,,N,S, 408.1529; found,
408.1528.
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