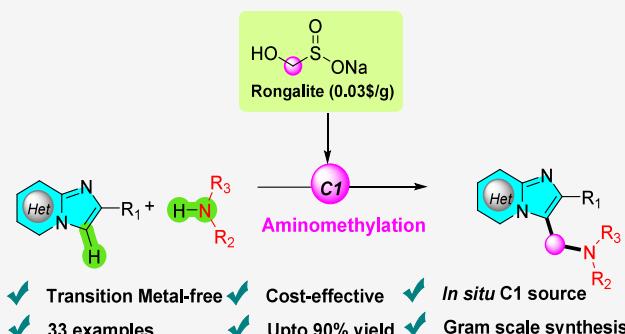


One-Pot Aminomethylation of Heteroarenes by Rongalite as *In Situ* C1 Source

Sanjeeva Thunga, Neetika Singh, Naveenkumar Anugu, and Hari Prasad Kokatla*

Cite This: *J. Org. Chem.* 2024, 89, 18649–18653

Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Rongalite-mediated one-pot aminomethylation of heteroarenes using secondary amines/anilines has been developed. This transition-metal-free and mild reaction offers an efficient way to synthesize aminomethylated heteroaromatic compounds with high yields and broad functional group tolerance. Here, Rongalite plays a key role in generating the C1 unit source *in situ*, which triggers the aminomethylation process. This approach provides a library of aminomethylated imidazo[1,2-*a*]pyridines and imidazo[2,1-*b*]-thiazoles.

Rongalite, also known as sodium hydroxymethanesulfinate ($\text{NaHOCH}_2\text{SO}_2$), is a multifunctional reagent that has gained prominence due to its wide applications in organic synthesis.¹ It has unique structural features and serves as the source of (i) sulfoxylate dianion (SO_2^{2-}),² (ii) hydride-free reducing agent,³ (iii) single electron donor⁴ and (iv) C1 unit source.⁵ The C1 unit source gained much attention from chemists all over the world in recent years, offering novel pathways for constructing complex organic molecules.⁶ This allows the introduction of both carbon (C–C) and nitrogen (C–N) bonds in a single step, making it a highly versatile reaction in organic synthesis.

The development of efficient methods for functionalizing heterocyclic compounds is a cornerstone of modern organic chemistry, particularly in the pharmaceutical industry.⁷ Imidazoheterocycles are ubiquitous in nature and are key structures in pharmaceuticals⁸ (Figure 1) and functional materials.⁹

There has been a recent surge in interest among organic chemists to synthesize and alter the core structure of imidazo[1,2-*a*]pyridines at different positions to increase the biological activities.¹⁰

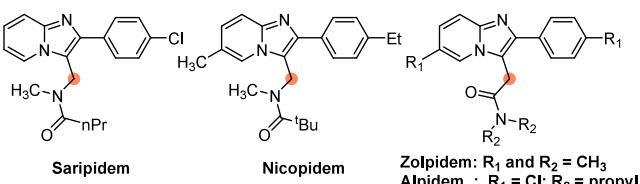
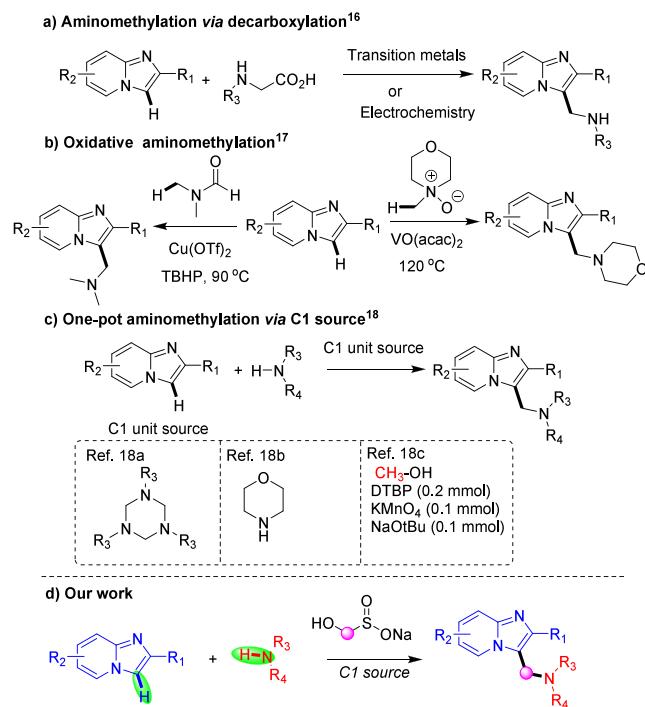


Figure 1. 2-Arylimidazo[1,2-*a*]pyridine containing pharmaceuticals.

The aminomethylation of imidazo[1,2-*a*]pyridine and imidazo[2,1-*b*]thiazole can further enhance these properties by introducing functional groups that improve solubility, receptor binding, and metabolic stability.¹¹ On the other hand, morpholines are particularly valuable due to their broad range of pharmacological applications, which include acting as antihypertensive, antidepressant and anti-inflammatory agents.¹² By creating hybrids of these pharmacophores through aminomethylation, the biological activities of both morpholines and imidazo[1,2-*a*]pyridine/imidazo[2,1-*b*]thiazoles can be enhanced, leading to the development of new therapeutic agents with improved efficacy and a broader spectrum of action.^{13,14} This approach not only expands the chemical space for drug discovery but also provides opportunities for fine-tuning the pharmacokinetic and pharmacodynamic properties of potential drugs.¹⁵ Thus development of methodologies to make this hybrid molecule emerges in organic synthesis. Generally, these hybrid molecules are achieved *via* a) aminomethylation by decarboxylation in the presence of transition-metals (Scheme 1a),¹⁶ b) aminomethylation by oxidative cross-coupling of sp^3 - and sp^2 -hybridized C–H bonds (Scheme 1b),¹⁷ and c) use of *in situ* C-1 unit source (Scheme 1c).¹⁸

Although these new methods provide good C1 unit sources, they require harsh reaction conditions, such as the use of

Received: August 15, 2024


Revised: October 24, 2024

Accepted: November 21, 2024

Published: December 4, 2024

Scheme 1. Strategies for C–C Bond Construction

metals, toxic formalin,¹⁹ long reaction time, risk of over oxidation, use of methanol, expensive reagents, and limited availability.²⁰ As a result, finding an alternative C1 unit source has become a key goal in one-pot aminomethylation strategies.

Therefore, we aim to develop a novel method for the *in situ* generation of a C1 source to overcome the constraints associated with these methods. In this context, we are utilizing rongalite, a commercially inexpensive reagent (ca. \$0.03/g), as a C1 unit source under mild conditions for aminomethylation (Scheme 1d).

To validate our hypothesis, a test reaction was conducted between imidazo[1, 2-*a*]pyridine **1a**, morpholine **2a** and rongalite **3** in CH₂Cl₂ solvent, and the results are outlined in Table 1.

Initially, the reaction mixture was stirred at room temperature for 12 h; no change in the starting material was observed (Table 1, entry 1). Then, the reaction mixture was heated to 45 °C, and surprisingly, the formation of desired product **4a** was observed in a low yield (Table 1, entry 2).

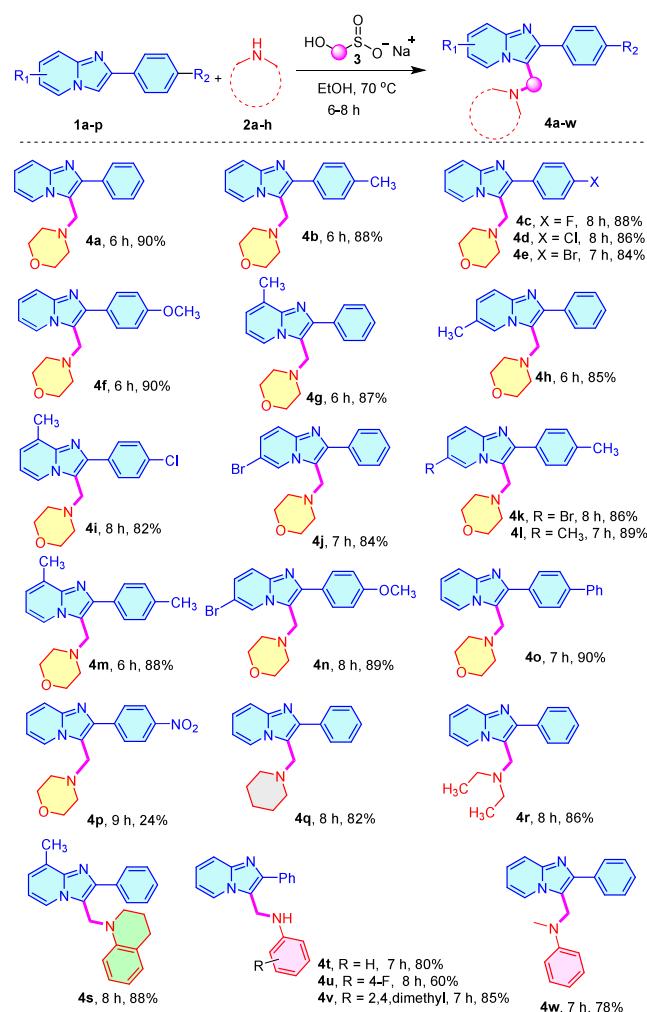
The above result provoked us to optimize the reaction protocol to improve the product yield by changing the reaction conditions, and the results are presented in Table 1. Hence, we have focused on the screening of solvents. The reaction was conducted in other solvents, such as chloroform, dichloroethane and toluene, but gave a low yield (Table 1, entries 3–5).

Later, we changed the reaction medium to other polar aprotic solvents, such as CH₃CN, THF, 1,4-dioxane, DMF, and DMSO, which gave improved yields (Table 1, entries 6–10).

Finally, we have tested the same reaction in polar protic solvents, i.e., methanol and ethanol, which surprisingly gave good yields (Table 1, entries 11 and 12). Ethanol was found to be the best reaction medium among all the solvents tested to produce quantitative yield. To improve the product yield further, we shifted our focus to the stoichiometry of rongalite.

Table 1. Optimization of Reaction Conditions^a

Entry	Solvent	Temperature (°C)	Time (h)	Yield (%) ^b
1	CH ₂ Cl ₂	rt	12	n.d. ^c
2	CH ₂ Cl ₂	45	12	10
3	CHCl ₃	65	12	20
4	DCE	70	12	30
5	Toluene	80	10	45
6	CH ₃ CN	80	12	40
7	THF	70	12	20
8	1,4-Dioxane	70	12	20
9	DMF	90	10	50
10	DMSO	100	12	60
11	MeOH	70	6	70
12	EtOH	70	6	75
13	EtOH	70	5	90 ^d
14	EtOH	70	5	90 ^e
15	EtOH	70	5	90 ^f
16	H ₂ O	100	24	n.d. ^c

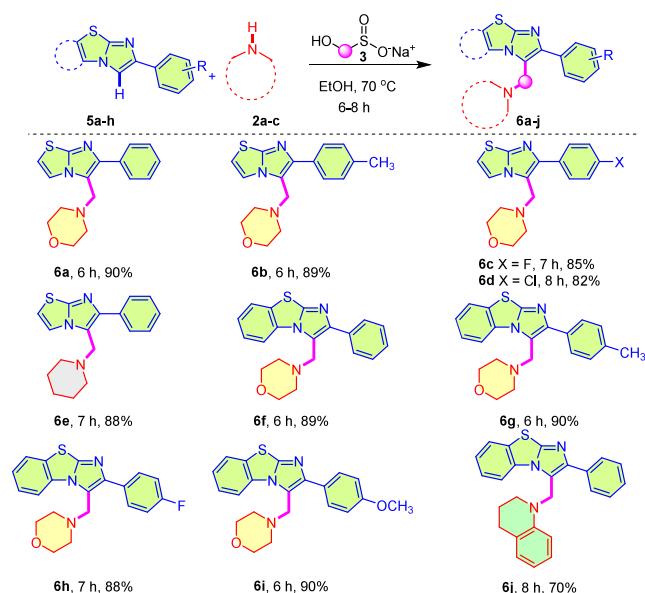

^aAll the reactions were conducted in 1.0 mmol scale of **1a** (1.0 mmol), **2a** (1.0 mmol) and **3** (1.0 mmol) in solvent (2 mL), unless otherwise mentioned. ^bIsolated yields. ^cNot detected. ^d1.5 mmol of rongalite used. ^e2.0 mmol of rongalite used. ^f1.5 mmol of morpholine used.

Notably, changing the stoichiometry of rongalite from 1.0 to 1.5 mmol gave the product a 90% yield (Table 1, entry 13). Further increments of rongalite and morpholine did not affect the yield (Table 1, entries 14 and 15). We wanted to test our protocol in water as a reaction medium, but it failed to produce the desired product **4a**, possibly due to solubility issues (Table 1, entry 16).

Later, we tested the substrate scope of the imidazo[1,2-*a*]pyridine with electron-releasing groups such as methyl, methoxy, phenyl, and halogens (–F, –Cl, –Br) on C-2-phenyl, which gave target compounds in good to excellent yields (Scheme 2, **4b**–**4f**). Substrates that have substitution on the pyridine ring also provided title products in excellent yields (Scheme 2, **4g**–**4j**). Also, the substitution on both the pyridine ring and C-2-phenyl participated in this reaction and furnished the product in good yields (Scheme 2, **4k**–**4o**). The electron-withdrawing nitro group on the C-2 phenyl of imidazo[1,2-*a*]pyridine gave a poor yield (Scheme 2, **4p**). Later, we tested our protocol with other secondary amines, such as piperidine, *N,N*-diethylamine, and 1,2,3,4-tetrahydroquinoline, which gave satisfactory results (Scheme 2, **4q**–**4s**). It is worth mentioning that primary amines such as *n*-butylamine and *n*-hexylamine are unreactive under optimized conditions. However, anilines smoothly reacted with rongalite and imidazo[1,2-*a*]pyridine to furnish the target compounds in good yields (Scheme 2, **4t**–**4w**).

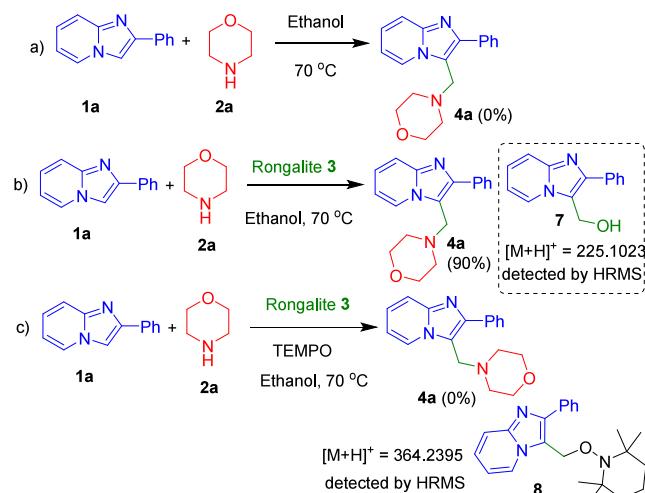
Further, the same reactions conditions were applied to other heteroarenes, i.e., imidazo[2,1-*b*]thiazole and benzo[*d*]-imidazo[2,1-*b*]thiazole, and the results are shown in Scheme 3. A similar reactivity pattern was observed with imidazo[2,1-*b*]thiazole and benzo[*d*]-imidazo[2,1-*b*]thiazole, which gave the end products in good yields (Scheme 3, **6a**–**6j**).

Scheme 2. One-Pot Aminomethylation of Imidazo[1,2-*a*]pyridine Derivatives^{a,b}


^aAll the reactions were conducted on a 1.0 mmol scale of 1a–o (1.0 mmol), 2a–c (1.0 mmol) and 3 (1.5 mmol) in solvent (2 mL), unless otherwise mentioned. ^bIsolated yields.

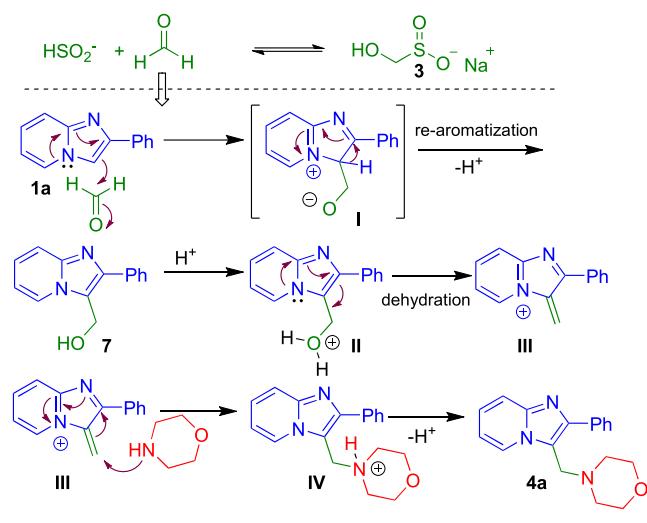
Finally, we have also tested our protocol on gram scale for the industrial applications with 4a (1g) scale and obtained the product in 84% yield.

To gain mechanistic insight into one-pot aminomethylations, we conducted control experiments (Scheme 4). First, we carried out control experiments on imidazo[1,2-*a*]pyridine 1a (1.0 mmol) and morpholine 2a (1.0 mmol) in 2 mL of ethanol at 70 °C without rongalite 3 (Scheme 4a). However, this failed to produce target compound 4a. This result indicates that C1 is sourced from rongalite. Next, we repeated the same reaction in the presence of rongalite (1.5 mmol) and recorded the HRMS of the samples at different intervals. These samples showed the formation of (2-phenylimidazo[1,2-*a*]pyridin-3-yl)methanol 7 (Scheme 4b).


Finally, the aminomethylation reaction was conducted in the presence of TEMPO (3.0 mmol) in 2 mL of ethanol at 70 °C. No progress in the reaction was observed to provide 4a (Scheme 4c). However, the formation of a TEMPO adduct with imidazo[1,2-*a*]pyridine 8 was observed when HRMS of the sample was recorded (Scheme 4c).

Scheme 3. Aminomethylation of Imidazo[2,1-*b*]thiazole Derivatives^{a,b}

^aAll the reactions were conducted on a 1.0 mmol scale of 5a–h (1.0 mmol), 2a–c (1.0 mmol) and 3 (1.5 mmol) in solvent (2 mL), unless otherwise mentioned. ^bIsolated yields.


Scheme 4. Control Experiments

Based on the control experiments and previous literature reports,^{5,7} a plausible mechanism is proposed in Scheme 5. Initially, the rongalite dissociated itself into formaldehyde and HSO_2^- . Later on, imidazo[1,2-*a*]pyridine 1a reacts with *in situ* generated formaldehyde to obtain intermediate 7. The intermediate 7 undergoes dehydration to yield the iminium ion III. Further, morpholine attacks the iminium ion to form intermediate IV, which further deprotonates to form the desired compound 4a.

In summary, this study successfully demonstrates a one-pot aminomethylation strategy for imidazo[1,2-*a*]pyridine and heteroarenes using secondary amines/anilines and rongalite as an *in situ* C1 source. The method is efficient, providing high yields under mild conditions and offers a green alternative to traditional aminomethylation techniques. Rongalite's role as a nontoxic, easily handled formaldehyde equivalent enhances the

Scheme 5. Plausible Reaction Mechanism

method's practicality and environmental friendliness. This approach broadens the scope of aminomethylation in organic synthesis, paving the way for its application in pharmaceuticals.

■ ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its [Supporting Information](#).

■ Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.joc.4c02050>.

Experimental details, procedures, characterization data, and spectral data for all new compounds ([PDF](#))

■ AUTHOR INFORMATION

Corresponding Author

Hari Prasad Kokatla – Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana 506004, India; orcid.org/0000-0001-7517-3377; Email: harikokatla@nitw.ac.in

Authors

Sanjeeva Thunga – Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana 506004, India

Neetika Singh – Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana 506004, India

Naveenkumar Anugu – Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana 506004, India

Complete contact information is available at: <https://pubs.acs.org/10.1021/acs.joc.4c02050>

Author Contributions

The manuscript was written through contributions of all authors.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by Science and Engineering Research Board (SERB), New Delhi (EEQ/2022/000511). H.P.K., S.T., N.S. and N.A. are thankful to NIT Warangal for fellowship. CRIF centre NITW for NMR & HRMS analysis and NITW for infrastructure is acknowledged.

■ REFERENCES

- (a) Kotha, S.; Khedkar, P. Rongalite: A Useful Green Reagent in Organic Synthesis. *Chem. Rev.* **2012**, *112*, 1650–1680. (b) Kotha, S.; Meshram, M. Development of New Synthetic Strategies, Tactics and their Applications. *Chem. Rec.* **2019**, *19*, 2480–2504.
- (a) Kotha, S.; Chavan, A. S. Design and Synthesis of Benzosultine-sulfone as a α -Oxylene Precursor *via* Cross-enzyme Metathesis and Rongalite: Further Expansion to Polycyclics *via* Regioselective Diels-Alder Reaction. *J. Org. Chem.* **2010**, *75* (12), 4319–4322. (b) Kotha, S.; Ali, R. Diversity-oriented approach to spirooxindoles: application of a green reagent 'rongalite'. *Tetrahedron Lett.* **2015**, *56*, 3992–3995. (c) Kotha, S.; Kashinath, D.; Khedkar, P. Synthesis of crown-based sulfones *via* rongalite: diversity-oriented approach to annulated benzocrowns by Diels-Alder reactions. *Synthesis* **2007**, *21*, 3357–3360.
- (3) Wang, M.; Tang, B.-C.; Xiang, J.-C.; Chen, X.-L.; Ma, J.-T.; Wu, Y.-D.; Wu, A.-X. Aryldiazonium Salts Serve as a Dual Synthon: Construction of Fully Substituted Pyrazoles *via* Rongalite-Mediated Three-Component Radical Annulation Reaction. *Org. Lett.* **2019**, *21*, 8934–8937.
- (4) Golla, S.; Kokatla, H. P. Rongalite-Mediated Transition Metal- and Hydride-Free Chemoselective Reduction of α -Keto Esters and α -Keto Amides. *J. Org. Chem.* **2022**, *87*, 9915–9925.
- (5) (a) Thunga, S.; Singh, N.; Inapanuri, M.; Kokatla, H. P. Rongalite induced metal-free $C(sp^2)$ -H functionalization of indoles: direct access to 3-(sulfonylmethyl) indoles. *Org. Biomol. Chem.* **2024**, *22*, 8787–8792. (b) Golla, S.; Jalagam, S.; Poshala, S.; Kokatla, H. P. Transition metal-free functionalization of 2-oxindoles *via* sequential aldol and reductive aldol reactions using rongalite as a C1 reagent. *Org. Biomol. Chem.* **2022**, *20*, 4926–4932. (c) Golla, S.; Anugu, N.; Jalagam, S.; Kokatla, H. P. Rongalite-induced transition-metal and hydride-free reductive aldol reaction: a rapid access to 3, 3'-disubstituted oxindoles and its mechanistic studies. *Org. Biomol. Chem.* **2022**, *20*, 808–816.
- (6) (a) Kotha, S.; Khedkar, P.; Dommaraju, Y. Synthetic applications of rongalite: A green tool in the service of Diels-Alder chemistry and beyond. *Tetrahedron Lett.* **2019**, *60*, 631–648. (b) Ali, R. New Dimensions in Rongalite Chemistry: The Land of Opportunities in Organic Synthesis and Material Sciences. *ChemistrySelect* **2020**, *5*, 10795–10815.
- (7) Qadir, T.; Amin, A.; Sharma, P. K.; Jeelani, I.; Abe, H. A Review on Medicinally Important Heterocyclic Compounds. *Open Med. Chem. J.* **2022**, *16*, e2202280.
- (8) (a) Enguehard-Gueiffier, C.; Gueiffier, A. Recent Progress in the Pharmacology of Imidazo[1,2-*a*]pyridines. *Med. Chem.* **2007**, *7*, 888–899. (b) Deep, A.; Bhatia, R. K.; Kaur, R.; Kumar, S.; Jain, U. K.; Singh, H.; Batra, S.; Kaushik, D.; Deb, P. K. Imidazo[1,2-*a*]pyridine Scaffold as Prospective Therapeutic Agents. *Curr. Top. Med. Chem.* **2016**, *17*, 238–250.
- (9) (a) Qiu, Z.; Xie, W.; Yang, Z.; Tan, J.-H.; Yuan, Z.; Xing, J.; L. S.; Chen, W.-C.; Huo, Y.; Su, S.-J. Nanosecond-time-scale delayed fluorescence towards fast triplet-singlet spin conversion for efficient orange-red OLEDs with negligible efficiency roll-off. *Chem. Eng. J.* **2021**, *415*, 128949. (b) Stasyuk, J.; Banasiewicz, M.; Cyrański, M. K.; Gryko, D. T. Imidazo[1,2-*a*]pyridines Susceptible to Excited State Intramolecular Proton Transfer: One-Pot Synthesis *via* an Ortoleva-King Reaction. *J. Org. Chem.* **2012**, *77*, 5552–5558.
- (10) (a) Jin, C.; Xu, Q.; Feng, G.; Jin, Y.; Zhang, L. Progress in C–H bond functionalization on C-3 position of imidazo[1,2-*a*]pyridines. *Chin. J. Org. Chem.* **2018**, *38*, 775–790. (b) Patel, O. P. S.; Nandwana, N. K.; Legoaibe, L. J.; Das, B. C.; Kumar, A. Recent Advances in

Radical C-H Bond Functionalization of Imidazoheterocycles. *Adv. Synth. Catal.* **2020**, *362*, 4226–4255. (c) Tashrif, Z.; Mohammadi-Khanaposhani, M.; Larijani, B.; Mahdavi, M. C3-Functionalization of Imidazo[1,2-*a*]pyridines. *Eur. J. Org. Chem.* **2020**, *2020*, 269–284. (d) Cao, H.; Liu, H. W. Li; Liu, X. Application on the construction of imidazo[1,2-*a*]pyridines C-3 carbon-hetero bonds by visible-light catalysis and electrochemistry. *Chin. J. Org. Chem.* **2021**, *41*, 1759–1773. (e) Ma, C.-H.; Chen, M.; Feng, Z.-W.; Zhang, Y.; Wang, J.; Jiang, Y.-Q.; Yu, B. Functionalization of imidazo[1,2-*a*]pyridines via radical reactions. *New J. Chem.* **2021**, *45*, 9302–9314. (f) Ghosh, D.; Ghosh, S.; Hajra, A. Electrochemical Functionalization of Imidazopyridine and Indazole: An Overview. *Adv. Synth. Catal.* **2021**, *363*, 5047–5071. (g) Ravi, C.; Adimurthy, S. Synthesis of Imidazo[1,2-*a*]pyridines: C-H Functionalization in the Direction of C-S Bond Formation. *Chem. Rec.* **2017**, *17*, 1019–1038.

(11) Ibrahim, I.; Casas, J.; Cordova, A. Direct Catalytic Enantioselective *a*-aminomethylation of ketones. *Angew. Chem., Int. Ed.* **2004**, *43*, 6528–6531.

(12) Lenci, E.; Calugi, L.; Trabocchi, A. Occurrence of morpholine in central nervous system drug discovery. *ACS Chem. Neurosci.* **2021**, *12* (3), 378–390.

(13) (a) Chang, Q.; Liu, Z.; Liu, P.; Yu, L.; Sun, P. Visible-light-induced regioselective cyanomethylation of imidazopyridines and its application in drug synthesis. *J. Org. Chem.* **2017**, *82*, 5391–5397. (b) Hwang, D. R.; Uang, B. A Modified Mannich-Type Reaction Catalyzed by VO(acac)₂. *J. Org. Lett.* **2002**, *4*, 463–466.

(14) (a) Hanlon, S. P.; Camattari, A.; Abad, S.; Glieder, A.; Kittelmann, M.; Lutz, S.; Wirz, B.; Winkler, M. Expression of recombinant human flavin monooxygenase and moclobemide-*N*-oxide synthesis on multi-mg scale. *Chem. Commun.* **2012**, *48*, 6001–6003. (b) Mir, N. A.; Shah, T. A.; Ahmed, S.; Muneer, M.; Rath, N. P.; Ahmad, M. One pot synthesis of imidazo[2,1-*b*]thiazoles and benzothiazolo[3,2-*a*]imidazoles. *Tetrahedron Lett.* **2014**, *55*, 1706–1710. (c) Zhang, X.; Jia, J.; Ma, C. A. One-pot regioselective synthesis of benzoimidazo[2,1-*b*]thiazoles. *Org. Biomol. Chem.* **2012**, *10*, 7944–7948. (d) Wu, Z.; Huang, Q.; Zhou, X.; Yu, L.; Li, Z.; Wu, D. Synthesis of Pyrido[1,2-*a*]benzimidazoles through a Copper-Catalyzed Cascade C-N Coupling Process. *Eur. J. Org. Chem.* **2011**, *2011*, 5242–5245. (e) Mishra, S.; Monir, K.; Mitra, S.; Hajra, A. FeCl₃/ZnI₂-Catalyzed Synthesis of Benzo[*d*]imidazo[2,1-*b*]thiazole through Aerobic Oxidative Cyclization between 2-Aminobenzothiazole and Ketone. *Org. Lett.* **2014**, *16*, 6084–6087.

(15) Wavhale, R. D.; Martis, E. A. F.; Ambre, P. K.; Wan, B.; Franzblau, S. G.; Iyer, K. R.; Raikuvar, K.; Macegoniuk, K.; Berlicki, L.; Nandan, S. R.; Coutinho, E. C. Discovery of new leads against *Mycobacterium tuberculosis* using scaffold hopping and shape based similarity. *Bioorg. Med. Chem.* **2017**, *25*, 4835–4844.

(16) (a) Li, S.; Li, X.; Wang, T.; Yang, Q.; Ouyang, Z.; Chen, J.; Zhai, H.; Li, X.; Cheng, B. Electrochemical Decarboxylative Coupling of *N*-Substituted Glycines under Air: Access to C3-Aminomethylated Imidazo[1,2-*a*]pyridines. *Adv. Synth. Catal.* **2022**, *364*, 2346–2351. (b) Zhu, X.; Li, X.; Li, X.; Lv, J.; Sun, K.; Song, X.; Yang, D. Decarboxylative C-H alkylation of heteroarenes by copper catalysis. *Org. Chem. Front.* **2021**, *8*, 3128–3136. (c) Liu, R.; Wei, Y.; Shi, M. Rhodium(III)-Catalyzed Decarboxylative Aminomethylation of Glycine Derivatives with Indoles via C-H Activation. *J. Org. Chem.* **2020**, *85*, 2838–2845. (d) Shi, T.; Sun, K.; Chen, X. L.; Zhang, Z. X.; Huang, X. Q.; Peng, Y. Y.; Qu, L. B.; Yu, B. Recyclable Perovskite as Heterogeneous Photocatalyst for Aminomethylation of Imidazo-Fused Heterocycles. *Adv. Synth. Catal.* **2020**, *362*, 2143–2149.

(17) (a) Kaswan, P.; Porter, A.; Pericherla, K.; Simone, M.; Peters, S.; Kumar, A.; DeBoef, B. Oxidative Cross-Coupling of sp³- and sp²-Hybridized C-H Bonds: Vanadium-Catalyzed Aminomethylation of Imidazo[1,2-*a*]pyridines. *Org. Lett.* **2015**, *17*, 5208–5211. (b) Ghosh, P.; Samanta, S.; Ghosh, S.; Jana, S.; Hajra, A. Aminomethylation of imidazopyridines using *N,N*-dimethylformamide as an aminomethylating reagent under Cu(II)-catalysis. *Tetrahedron Lett.* **2020**, *61*, 152581.

(18) (a) Wang, Y.; Zheng, H.; Xu, J.; Zhuang, C.; Liu, X.; Cao, H. Access to diverse primary, secondary, and tertiary amines via the merger of controllable cleavage of triazines and site-selective functionalization. *Org. Chem. Front.* **2021**, *8*, 4706–4714. (b) Mondal, S.; Samanta, S.; Singsardar, M.; Hajra, A. Aminomethylation of imidazoheterocycles with morpholine. *Org. Lett.* **2017**, *19*, 3751–3754. (c) Zhao, X.-M.; Huang, E.-L.; Zhu, Y.-S.; Li, J.; Song, B.; Zhu, X.; Hao, X.-Q. Oxidative sulfonamidomethylation of imidazopyridines utilizing methanol as the main C1 source. *Org. Biomol. Chem.* **2019**, *17*, 4869–4878. (d) Bodke, Y. D.; Biradar, S. A.; Kenchappa, R. Synthesis and biological evaluation of imidazo[1,2-*a*]pyridine derivatives containing morpholine nucleus. *Heterocycl. Lett.* **2016**, *6*, 173–180.

(19) Review of the Formaldehyde Assessment in the National Toxicology Program 12th Report on Carcinogens National Academies Press (US); **2014** Sep 8.

(20) Bagdi, A. K.; Santra, S.; Monir, K.; Hajra, A. Synthesis of imidazo[1,2-*a*]pyridines: a decade update. *Chem. Commun.* **2015**, *51*, 1555.