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ABSTRACT: Rongalite-mediated one-pot aminomethylation of
heteroarenes using secondary amines/anilines has been developed.
This transition-metal-free and mild reaction offers an efficient way to
synthesize aminomethylated heteroaromatic compounds with high
yields and broad functional group tolerance. Here, Rongalite plays a
key role in generating the C1 unit source in situ, which triggers the
aminomethylation process. This approach provides a library of
aminomethylated imidazo[1,2-a]pyridines and imidazo[2,1-b]-
thiazoles.

Rongalite, also known as sodium hydroxymethanesulfinate
(NaHOCH2SO2), is a multifunctional reagent that has

gained prominence due to its wide applications in organic
synthesis.1 It has unique structural features and serves as the
source of (i) sulfoxylate dianion (SO2

2−),2 (ii) hydride-free
reducing agent,3 (iii) single electron donor4 and (iv) C1 unit
source.5 The C1 unit source gained much attention from
chemists all over the world in recent years, offering novel
pathways for constructing complex organic molecules.6 This
allows the introduction of both carbon (C−C) and nitrogen
(C−N) bonds in a single step, making it a highly versatile
reaction in organic synthesis.
The development of efficient methods for functionalizing

heterocyclic compounds is a cornerstone of modern organic
chemistry, particularly in the pharmaceutical industry.7

Imidazoheterocycles are ubiquitous in nature and are key
structures in pharmaceuticals8 (Figure 1) and functional
materials.9

There has been a recent surge in interest among organic
chemists to synthesize and alter the core structure of
imidazo[1,2-a]pyridines at different positions to increase the
biological activities.10

The aminomethylation of imidazo[1,2-a]pyridine and
imidazo[2,1-b]thiazole can further enhance these properties
by introducing functional groups that improve solubility,
receptor binding, and metabolic stability.11 On the other hand,
morpholines are particularly valuable due to their broad range
of pharmacological applications, which include acting as
antihypertensive, antidepressant and anti-inflammatory
agents.12 By creating hybrids of these pharmacophores through
aminomethylation, the biological activities of both morpho-
lines and imidazo[1,2-a]pyridine/imidazo[2,1-b]thiazoles can
be enhanced, leading to the development of new therapeutic
agents with improved efficacy and a broader spectrum of
action.13,14 This approach not only expands the chemical space
for drug discovery but also provides opportunities for fine-
tuning the pharmacokinetic and pharmacodynamic properties
of potential drugs.15 Thus development of methodologies to
make this hybrid molecule emerges in organic synthesis.
Generally, these hybrid molecules are achieved via a)
aminomethylation by decarboxylation in the presence of
transition-metals (Scheme 1a),16 b) aminomethylation by
oxidative cross-coupling of sp3- and sp2-hybridized C−H bonds
(Scheme 1b),17 and c) use of in situ C-1 unit source (Scheme
1c).18

Although these new methods provide good C1 unit sources,
they require harsh reaction conditions, such as the use of
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Figure 1. 2-Arylimidazo[1,2-a]pyridine containing pharmaceuticals.
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metals, toxic formalin,19 long reaction time, risk of over
oxidation, use of methanol, expensive reagents, and limited
availability.20 As a result, finding an alternative C1 unit source
has become a key goal in one-pot aminomethylation strategies.
Therefore, we aim to develop a novel method for the in situ

generation of a C1 source to overcome the constraints
associated with these methods. In this context, we are utilizing
rongalite, a commercially inexpensive reagent (ca. $0.03/g), as
a C1 unit source under mild conditions for aminomethylation
(Scheme 1d).
To validate our hypothesis, a test reaction was conducted

between imidazo[1, 2-a]pyridine 1a, morpholine 2a and
rongalite 3 in CH2Cl2 solvent, and the results are outlined in
Table 1.
Initially, the reaction mixture was stirred at room temper-

ature for 12 h; no change in the starting material was observed
(Table 1, entry 1). Then, the reaction mixture was heated to
45 °C, and surprisingly, the formation of desired product 4a
was observed in a low yield (Table 1, entry 2).
The above result provoked us to optimize the reaction

protocol to improve the product yield by changing the reaction
conditions, and the results are presented in Table 1. Hence, we
have focused on the screening of solvents. The reaction was
conducted in other solvents, such as chloroform, dichloro-
ethane and toluene, but gave a low yield (Table 1, entries 3−
5).
Later, we changed the reaction medium to other polar

aprotic solvents, such as CH3CN, THF, 1,4-dioxane, DMF,
and DMSO, which gave improved yields (Table 1, entries 6−
10).
Finally, we have tested the same reaction in polar protic

solvents, i.e., methanol and ethanol, which surprisingly gave
good yields (Table 1, entries 11 and 12). Ethanol was found to
be the best reaction medium among all the solvents tested to
produce quantitative yield. To improve the product yield
further, we shifted our focus to the stoichiometry of rongalite.

Notably, changing the stoichiometry of rongalite from 1.0 to
1.5 mmol gave the product a 90% yield (Table 1, entry 13).
Further increments of rongalite and morpholine did not affect
the yield (Table 1, entries 14 and 15). We wanted to test our
protocol in water as a reaction medium, but it failed to produce
the desired product 4a, possibly due to solubility issues (Table
1, entry 16).

Later, we tested the substrate scope of the imidazo[1,2-
a]pyridine with electron-releasing groups such as methyl,
methoxy, phenyl, and halogens (−F, −Cl, −Br) on C-2-phenyl,
which gave target compounds in good to excellent yields
(Scheme 2, 4b−4f). Substrates that have substitution on the
pyridine ring also provided title products in excellent yields
(Scheme 2, 4g−4j). Also, the substitution on both the pyridine
ring and C-2-phenyl participated in this reaction and furnished
the product in good yields (Scheme 2, 4k−4o). The electron-
withdrawing nitro group on the C-2 phenyl of imidazo[1,2-
a]pyridine gave a poor yield (Scheme 2, 4p). Later, we tested
our protocol with other secondary amines, such as piperidine,
N,N-diethylamine, and 1,2,3,4-tetrahydroquinoline, which gave
satisfactory results (Scheme 2, 4q−4s). It is worth mentioning
that primary amines such as n-butylamine and n-hexylamine
are unreactive under optimized conditions. However, anilines
smoothly reacted with rongalite and imidazo[1,2-a]pyridine to
furnish the target compounds in good yields (Scheme 2, 4t−
4w).

Further, the same reactions conditions were applied to other
heteroarenes, i.e., imidazo[2,1-b]thiazole and benzo[d]-
imidazo[2,1-b]thiazole, and the results are shown in Scheme
3. A similar reactivity pattern was observed with imidazo[2,1-
b]thiazole and benzo[d]imidazo[2,1-b]thiazole, which gave the
end products in good yields (Scheme 3, 6a−6j).

Scheme 1. Strategies for C−C Bond Construction Table 1. Optimization of Reaction Conditionsa

Entry Solvent Temperature (°C) Time (h) Yield (%)b

1 CH2Cl2 rt 12 n.dc

2 CH2Cl2 45 12 10
3 CHCl3 65 12 20
4 DCE 70 12 30
5 Toluene 80 10 45
6 CH3CN 80 12 40
7 THF 70 12 20
8 1,4-Dioxane 70 12 20
9 DMF 90 10 50
10 DMSO 100 12 60
11 MeOH 70 6 70
12 EtOH 70 6 75
13 EtOH 70 5 90d

14 EtOH 70 5 90e

15 EtOH 70 5 90f

16 H2O 100 24 n.dc

aAll the reactions were conducted in 1.0 mmol scale of 1a (1.0
mmol), 2a (1.0 mmol) and 3 (1.0 mmol) in solvent (2 mL), unless
otherwise mentioned. bIsolated yields. cNot detected. d1.5 mmol of
rongalite used. e2.0 mmol of rongalite used. f1.5 mmol of morpholine
used.
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Finally, we have also tested our protocol on gram scale for
the industrial applications with 4a (1g) scale and obtained the
product in 84% yield.
To gain mechanistic insight into one-pot aminomethyla-

tions, we conducted control experiments (Scheme 4). First, we
carried out control experiments on imidazo[1,2-a]pyridine 1a
(1.0 mmol) and morpholine 2a (1.0 mmol) in 2 mL of ethanol
at 70 °C without rongalite 3 (Scheme 4a). However, this failed
to produce target compound 4a. This result indicates that C1
is sourced from rongalite. Next, we repeated the same reaction
in the presence of rongalite (1.5 mmol) and recorded the
HRMS of the samples at different intervals. These samples
showed the formation of (2-phenylimidazo[1,2-a]pyridin-3-
yl)methanol 7 (Scheme 4b).
Finally, the aminomethylation reaction was conducted in the

presence of TEMPO (3.0 mmol) in 2 mL of ethanol at 70 °C.
No progress in the reaction was observed to provide 4a
(Scheme 4c). However, the formation of a TEMPO adduct
with imidazo[1,2-a]pyridine 8 was observed when HRMS of
the sample was recorded (Scheme 4c).

Based on the control experiments and previous literature
reports,5,7 a plausible mechanism is proposed in Scheme 5.
Initially, the rongalite dissociated itself into formaldehyde and
HSO2

−. Later on, imidazo[1,2-a]pyridine 1a reacts with in situ
generated formaldehyde to obtain intermediate 7. The
intermediate 7 undergoes dehydration to yield the iminium
ion III. Further, morpholine attacks the iminium ion to form
intermediate IV, which further deprotonates to form the
desired compound 4a.

In summary, this study successfully demonstrates a one-pot
aminomethylation strategy for imidazo[1,2-a]pyridine and
heteroarenes using secondary amines/anilines and rongalite
as an in situ C1 source. The method is efficient, providing high
yields under mild conditions and offers a green alternative to
traditional aminomethylation techniques. Rongalite’s role as a
nontoxic, easily handled formaldehyde equivalent enhances the

Scheme 2. One-Pot Aminomethylation of Imidazo[1,2-
a]pyridine Derivativesa,b

aAll the reactions were conducted on a 1.0 mmol scale of 1a−o (1.0
mmol), 2a−c (1.0 mmol) and 3 (1.5 mmol) in solvent (2 mL), unless
otherwise mentioned. bIsolated yields.

Scheme 3. Aminomethylation of Imidazo[2,1-b]thiazole
Derivativesa,b

aAll the reactions were conducted on a 1.0 mmol scale of 5a−h (1.0
mmol), 2a−c (1.0 mmol) and 3 (1.5 mmol) in solvent (2 mL), unless
otherwise mentioned. bIsolated yields.

Scheme 4. Control Experiments
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method’s practicality and environmental friendliness. This
approach broadens the scope of aminomethylation in organic
synthesis, paving the way for its application in pharmaceuticals.
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