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ABSTRACT: A logic-based replacement of the carboxylic acid
component of the Ugi reaction by quinoline N-oxides has been
developed. In this approach, the carboxylic isostere, quinoline N-oxide,
plays a vital role by shifting the equilibria toward the product side with
irreversible addition onto the C2-position of the N-oxide. Thus,
aldehydes react with amines, isocyanides, and quinoline N-oxides to
furnish quinoline four-component Ugi adducts. The unique reactivity
of N-oxides with Ugi components opens an efficient synthetic route

for the preparation of biologically active compounds.

The Ugi four-component reaction (U-4CR) is one of the most
extensively studied multicomponent reactions, which readily
gives access to peptide-like structures known as bis-amides or
peptomers with potent biological activity and structural
diversity."” This revolutionary approach by Ugi in 1959 has
opened a new platform in isocyanide-based multicomponent
reactions (IMCRs), and it has also been in the limelight
recently for adhering to green chemistry principles such as
atom-economy, reduced number of steps, and use of green
solvents.’

Due to the emergence of combinatorial chemistry and high-
throughput screening for efficient preparation of bioactive
molecules, medicinal chemists have focused more on the Ugi
reaction in polymer-supported solid-phase synthesis, in
combination with postcondensation and modified Ugi
conditions.” Modifications to the Ugi reaction have mainly
relied on the single reactant replacement (SRR) approach.”
The single reactant replacement approach involves the logic-
based alteration of one component by another component
with a similar mode of reactivity which is required for the
known MCR to improve its efficiency and to provide new
synthetic routes. For instance, the Ugi reaction is the first SRR
approach of the Passerini reaction and has led to new MCRs in
which imines were introduced in place of carbonyls to
synthesize a library of @-acylamino amides. This novel SSR
approach triggered the development of new MCRs in the field
of drug discovery (Scheme 1a).

In this approach, replacement of multifaceted carboxylic
acids in U-4CR poses challenges because of the key role they
play in many equilibrium steps, including formation of the
imine, nucleophilic addition of moderately reactive isocya-
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* Single reactant replacement
* N-Oxide induced Ugi reaction
* Metal free C2-H-amination
* Broad substrate scope

* 37 examples

3 Examples, 54~ 66% yield

Scheme 1. Single Reactant Replacements in the Ugi
Reaction
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nides, and the final Mumm rearrangement to provide the target
compound.’ In fact, exchange of the carboxylic acid with other
acidic components in the Ugi reaction has shown inferior
results.” "

Later in 2005, El Kaim et al. reported the first use of Smiles
rearrangements in the Ugi reaction to synthesize N-arylated
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peptides (Scheme 1b)."* In this phenol Ugi—Smiles multi-
component reaction, electron-deficient phenols are used as
acidic surrogates to give O-aryl- and N-arylamides."> This
sequence opened rapid access to O-aryl- and N-arylamides but
has its own limitations such as the requirement of strong
activation energy, moderate yields, and pK, dependency. Thus,
replacement of the carboxylic acid in U-4CR with (i) weak
inorganic acids (H,O, HN;, HOCN, HSCN, H,S, H,Se) or
(ii) electron-deficient nitrophenols, pyridines, and pyrimidines
has found limited access since the discovery of the reactions.

Recently, aromatic amine N-oxides have attracted consid-
erable attention due to the ability of the N-oxide moiety to act
as an ortho-directing group to control the regioselectivity of
the C—H activation.'® In particular, N-oxide-directed C2-
selective C—N bond formation has become a focus due to the
importance of 2-aminoquinolines in medicinal chemistry and
pharmaceuticals.17 In all the approaches, N-oxides either react
with promotors or coordinate with metals to activate the C2-
position of aromatic N-oxides. Thus, the activated C2-position
and nucleophilicity of oxygen of the N-oxide could be a
promising route for single reactant replacement in the Ugi
reaction to achieve a N-oxide-mediated Ugi four-component
reaction (Scheme 1c).

In the continuation of our work on C2—H functionalization
of aromatic amine N-oxides using isocyanides,'® herein we
report a N-oxide-induced Ugi reaction to access a library of 2-
phenyl-2-(phenyl(quinolin-2-yl)amino)acetamide derivatives
in one-pot reactions via C(sp*)—H functionalization.

To test our hypothesis, initial screening experiments were
conducted on quinoline N-oxide la with benzaldehyde 2a,
aniline 3a, and p-toluenesulfonylmethyl isocyanide (TosMIC)
4a in suitable solvents and at temperatures to optimize the
reaction conditions, and only the key results are reported in
Table 1. The reaction of quinoline N-oxide la (0.5 mmol)
with benzaldehyde 2a (0.5 mmol), aniline 3a (0.5 mmol), and
TosMIC 4a (0.5 mmol) in CH,Cl, at room temperature failed
to give Sa but at elevated temperature afforded the desired

Table 1. Optimization of Reaction Conditions”

X
@f@j . cHo NH, ®, CO Solvent \ u
N + ©/ + Ts\/N’ e P ,\“ .
o e A
ta 2 3a 5a © 0

4a

entry solvent temp (°C) time (h) yieldb
1 CH,Cl, rt 24 0
2 CH,Cl, 40 12 10
3 CHCl, 60 12 40
4 DCE 60 12 60
S toluene 60 12 10
6 CH,CN 60 9 80
7 CH,NO, 60 12 40
8 THF 60 12 70
9 CH,OH 60 8 50
10 EtOH 60 8 45
11 DMF 60 12 trace
12 DMSO 60 2 20
13 CH;CN 80 24 79

“Reaction conditions: quinoline N-oxide la (0.5 mmol), benzalde-
hyde 2a (0.5 mmol), aniline 3a (0.5 mmol), isocyanide 4a (0.5
mmol), and solvent (2.0 mL). “Isolated yield.

product Sa in 10% yield (Table 1, entries 1 and 2). Standard
spectroscopic analysis identified Sa as N-(4-methylbenzyl)-2-
phenyl-2-(phenyl(quinolin-2-yl)amino)acetamide, in line with
the original design. This result revealed that the quinoline N-
oxide la indeed acted as a carboxylic acid isostere in the
traditional Ugi reaction.

To our delight, the yield of N-(4-methylbenzyl)-2-phenyl-2-
(phenyl(quinolin-2-yl)amino)acetamide Sa was increased to
60% at elevated temperatures (Table 1, entries 3 and 4). These
results suggested that heating is required to get a better yield of
product. Next, we carried out the reaction in various solvents
to assess their effect on the reaction efficiency. Among other
solvents tested, such as toluene, CH;NO,, THF, alcohols,
DME, and DMSO, CH;CN turned out to be superior for this
transformation (Table 1, entries 5—12). Further change in the
temperature and time has no effect on the yields of the reaction
(Table 1, entry 13).

To explore the scope of this new four-component reaction,
we examined diversely substituted quinoline N-oxides with
aromatic aldehydes, anilines, and TosMIC (Table 2a).
Quinoline N-oxides unsubstituted and substituted at various
positions reacted smoothly to give the respective products in
excellent yields (Table 2a). Substitutions on the nitrogenous
quinoline ring were also well tolerated to deliver corresponding
N-(4-methylbenzyl)-2-phenyl-2-(phenyl(quinolin-2-yl)-
amino )acetamides Se,f in 74—77% yields (Table 2a). Presence
of a donor group on the fourth and sixth position of quinoline
gave the target products Sgh in 80% yield.

Likewise, 4,7-dichloro- and 4-chloro-6-bromo substitutions
on the quinoline N-oxides gave target products 5i,j in 70—75%
yields, respectively. Electron-donating and electron-withdraw-
ing groups on the aldehyde allowed smooth reaction under the
optimized reaction conditions.

Next, we turned our attention to test the scope of various
isocyanides with different quinoline N-oxides. Methyl 2-
isocyanoacetate, ethyl 2-isocyanoacetate, benzyl isocyanide,
and cyclohexyl isocyanide reacted smoothly with various
quinoline N-oxides to obtain the Ugi products 6a—x in 70—
85% yield (Table 2b). The substitution on quinoline N-oxides
with methyl, F, Cl, Br, and alkyl ethers did not alter the
product yields (Table 2b).

Surprisingly, aliphatic aldehydes such as paraformaldehyde,
propionaldehyde, and valeraldehyde gave the corresponding
adducts 6y, 6z, and 6aa in 60%, 54%, and 66% yields,
respectively, which are less in comparison with aromatic
aldehydes (Table 2c). Simple pyridine N-oxides are not
reactive under these optimized conditions, which could be on
account of their lower reactivity. Finally, we have evaluated the
gram-scale synthesis of the developed protocol and obtained
6a (2.17g) in 74% yield (see SI).

Next, we carried out several control experiments to
determine the reaction mechanism (Scheme 2). Initially,
quinoline 7 was treated with benzaldehyde 2a, aniline 3a, and
isocyanide 4a under the standard conditions, but no reaction
was observed, which indicated the important role of N-oxide in
this transformation (Scheme 2a). Later, 2-substituted quino-
line N-oxide 8 was used to test the reactive position of
quinoline N-oxide and found to be nonreactive under the
optimized conditions (Scheme 2b). Then we conducted three-
component reactions by varying the isocyanide and quinoline
N-oxide and recorded the HRMS of reaction aliquots during
the course of the reaction to determine the formation of
intermediates (Scheme 2c,d).
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Table 2. Substrate Scope™”
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Scheme 2. Control Experiments
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The HRMS data reveal the following points: (i) 4-
methylbenzaldehyde 2b initially reacts with p-toluidine 3b to
form an imine intermediate (observed m/z = 210.1280) which
further undergoes addition by the ethyl 2-isocyanoacetate 4b
followed by hydrolysis to obtain product 10 (observed m/z =
341.1864) in the absence of quinoline N-oxide (Scheme 2c);
(ii) quinoline N-oxides do not undergo [3 + 2] cycloaddition
with the imine intermediate under standard conditions
(Scheme 2d). On the basis of our control experiments and
previous literature,"”*" a plausible mechanism is illustrated in
Scheme 3.

Initially, reaction between benzaldehyde 2a and aniline 3a
forms imine intermediate I. Next, intermediate I undergoes

Scheme 3. Proposed Mechanism

CHO S
©/ * -H,0 “OH

2a 3a I

B X Mumm-type
OH )<H reaction X
_— N —_— = H
) Rearomatization NG N-r
O.
N :
N.
v R 5

protonation followed by nucleophilic addition of isocyanide 4
to form intermediate III. Later, the nucleophilic oxygen of N-
oxide subsequently adds the carbon of the nitrilium ion to
generate intermediate IV. Further, an irreversible nucleophilic
addition of nitrogen (aniline) onto the activated C2-carbon of
quinoline furnishes bicyclic intermediate V. Finally, inter-
mediate V undergoes a Mumm-type reaction and rear-
omatization to obtain the desired product S.

In summary, an aromatic N-oxide-based single reactant
replacement approach of the Ugi reaction has been successfully
developed. This approach opens a new era for quinoline N-
oxides to be potent acid surrogates in multicomponent
reactions. This method provides a one-pot synthesis of a-
quinolinamino amides while ensuring a wide substrate scope
with functional group tolerance. Further, exploring the use of
Lewis acids and expanding the substrate scope of other
aromatic N-oxides are currently in progress.
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