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ABSTRACT: A transition metal- and hydride-free protocol has been
developed for the chemoselective reduction of α-keto esters and α-
keto amides using rongalite as a reducing agent. Here, rongalite acts as
a hydride-free reducing agent via a radical mechanism. This protocol
offers the synthesis of a wide range of α-hydroxy esters and α-hydroxy
amides with 85−98% yields. This chemoselective method is
compatible with other reducible functionalities such as halides,
alkenes, amides, and nitriles. The use of inexpensive rongalite (ca.
$0.03/1 g), mild reaction conditions, and gram-scale synthesis are
some of the key features of this methodology. Also, cyclandelate, a
vasodilator drug, has been synthesized in gram scale with 79% yield.

■ INTRODUCTION
Chemoselective reduction of the ketone moiety to an alcohol
in the presence of other reducible functionalities is a
ubiquitous process, and it helps in complex molecule
synthesis.1 The chemoselective reduction of α-keto esters
and α-keto amides gives α-hydroxy esters and α-hydroxy
amides, respectively, which are important building blocks in
many bio-active compounds2 and agrochemicals3 (Figure 1)

and are also employed as ligands in the metal-catalyzed
asymmetric synthesis due to their variable coordinating
capabilities.4 These are versatile synthetic intermediates in
organic synthesis, enabling the preparation of a wide range of
functionalized compounds.5

Many reducing agents are employed for the chemoselective
reduction of α-keto esters such as Ru clay-H2,

6 catecholbor-
ane,7 I2-HSiEt3,

8 and alkyl phosphines9 (Scheme 1). Recently,
transfer hydrogenation (TH)10 and electrochemical reduc-
tion11 have become popular alternatives for this chemo-
selective reduction to avoid hydride-based reducing agents. In

addition to α-hydroxy esters, α-hydroxy amides also received
great attention from researchers all around the world. Although
many primeval methods are available for the synthesis of α-
hydroxy amides,12 the chemoselective reduction of α-keto
amides is one of the most straightforward methods in this
category. Mainly three groups, viz., Wu et al., Sekar et al., and
Bhanage et al., have made significant contributions via (i)
transfer hydrogenation using Hantzsch ester,13 i-PrOH/Ru-g-
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Figure 1. Some of the pharmaceuticals and agrochemicals containing
α-hydroxy esters and α-hydroxy amides.

Scheme 1. Chemoselective Reduction of α-Keto Esters and
α-Keto Amides
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C3N4,
14 HCOONa,15 i-PrOH/zirconium MOF,16 and DMF/

NaOH/H2O system17 and (ii) catalysts such as Cu,18 TBAF,19

Cs2CO3,
20 K3PO4,

21 Ni,22 and NS-CeO2
23 with the help of a

hydride source (Scheme 1). Although these methods give good
results, they suffer from their own set of limitations such as
high temperatures, long reaction times, and production of large
amounts of silanol-based byproducts.
Thus, we sought to develop a novel method for chemo-

selective reduction of α-keto esters and α-keto amides to
circumvent all of the constraints associated with the above
methods. In this context, we are developing a transition metal-
and hydride-free method using rongalite as a reducing agent.
Sodium hydroxymethanesulfinate dihydrate (SHM), com-

monly known as rongalite, is a commercially inexpensive
(0.03$/1 g) industrial product, and Kotha and co-workers
widely used rongalite in organic synthesis.24,25 It acts as a
super-electron donor,26 a source of C1 unit, and a sulfoxylate
dianion (SO2

2−).27 In continuation of our efforts to explore the
synthetic utility of rongalite as an electron source and in
hydride-free reduction,28 herein, we report a chemoselective
transition metal- and hydride-free protocol to prepare α-
hydroxy esters/amides from the respective α-keto esters/
amides by exploring the super-electron-donating nature of
rongalite.

■ RESULTS AND DISCUSSION
In our initial studies, a test reaction was conducted between
ethyl 2-oxo-2-phenylacetate 1a (1 mmol) as a model substrate
and rongalite 2 (2 mmol) in EtOH + H2O to obtain the
desired product ethyl 2-hydroxy-2-phenylacetate 3a, and only
the key points are summarized in Table 1 (see Table S1 for
more details). At room temperature, only 5% yield of 3a was

observed (Table 1, entry 1). To our delight, the yield of 3a was
dramatically increased to 82% when the same reaction was
conducted at 70 °C (Table 1, entry 2). The structure of 3a was
confirmed by 1H and 13C NMR and HRMS spectral data.
Later, screening was continued in polar protic solvents such as
H2O, aq. MeOH, and aq. i-PrOH, resulting in low yields
(Table 1, entries 3−5). Further, the polar aprotic solvents such
as aq. acetone, aq. CH3CN, and DMF also followed the same
trend of polar protic solvents (Table 1, entries 6−8).
Fortunately, DMSO gave 3a in 93% yield within 10 min
(Table 1, entry 9). Notably, there was a drop in the yield of 3a
when loading of rongalite was decreased (Table 1, entry 10).
Additionally, variants in temperature and increasing equivalent
of rongalite did not improve the yield of 3a (Table 1, entries
11−13). To check the importance of rongalite, we have
performed the same reaction with other sulfur-containing
reducing agents such as thiourea dioxide and sodium
dithionite, which were found to be nonreactive with α-keto
esters (Table 1, entries 14 and 15).
With the optimized reaction conditions in hand (Table 1,

entry 9), then we have turned our attention to the testing of
the scope of the reaction with diversely substituted α-keto
esters (Table 2). Electron-donating groups such as methyl- and
methoxy-substituted α-keto esters reacted smoothly with
rongalite to furnish 3b−3d in 89−92% yields (Table 2).
This method can also tolerate halogen (F, Cl, and Br)
derivatives and afforded the corresponding α-hydroxy esters
3e−3i in 89−92% yields (Table 2). Biphenyl, naphthyl, and
heteroaromatic α-keto esters were also effortlessly involved in
the reaction to afford the reduced products 3j−3m in 90−94%
yields (Table 2). α-Keto benzyl esters, which have various
substitutions on the benzyl group, also well participated in the
reaction and delivered 3n−3q in 85−92% yields (Table 2).
Interestingly, cinnamyl and phthalimide α-keto esters offered
the respective reduced products 3r and 3s in 85−91% yields
with functional groups being intact (Table 2). This method-
ology is also applicable to α-keto esters that were formed by
the secondary alcohols such as isopropyl alcohol and
benzhydrol, which furnished 3t and 3u in 89−95% yields,
respectively (Table 2).
To check the generality and scope of the protocol, we have

extended our optimized method to α-keto amides to produce
α-hydroxy amides, owing their applications in the synthetic
and medicinal chemistry. 2-Oxo-N,2-diphenylacetamide 4a (1
mmol) was treated with rongalite 2 (2 mmol) under optimized
reaction conditions, and the formation of 2-hydroxy-N,2-
diphenylacetamide 5a in 62% yield was observed, which is
lower compared to esters (Table 3, entry 1). Then, the same
reaction was conducted in the presence of K2CO3, but this did
not improve the product yield (Table 3, entry 2). Later, we
conducted the reaction with other solvents such as CH3CN
and EtOH (with water to dissolve rongalite) in basic
conditions and observed that aq. EtOH gave 76% yield in 2
h (Table 3, entries 3 and 4). Further, we conducted the
reaction in DMSO + H2O (8:2, v/v) with K2CO3; surprisingly,
the reaction was completed within 15 min and resulted in 5a
with 96% yield (Table 3, entry 5).
Also, reaction was tested with aq. DMSO without a base to

know the role of the base in the aqueous condition and found
an inferior result (Table 3, entry 6), which indicates that the
aq. basic condition was required to produce 5a in good yield.
Further, the ratio of the solvent mixture was also examined and
it was observed that the increasing amount of H2O resulted in

Table 1. Optimization of Reaction Conditions for
Chemoselective Reduction of α-Keto Estersa

s.
no. solvent (8:2, v/v) reagent

temp.
(°C) time

yield
(%)b

1 EtOH + H2O rongalite rt 24 h 5
2 EtOH + H2O rongalite 70 20 min 82
3 H2O + β-CD rongalite 70 24 h trace
4 MeOH + H2O rongalite 65 20 min 70
5 i-PrOH + H2O rongalite 70 20 min 71
6 acetone + H2O rongalite 60 8 h 41
7 CH3CN + H2O rongalite 70 20 min 60
8 DMF rongalite 70 20 min 71
9 DMSO rongalite 70 10 min 93
10 DMSO rongalite 70 30 min 75c

11 DMSO rongalite 70 10 min 93d

12 DMSO rongalite 80 10 min 93
13 DMSO rongalite 60 15 min 91
14 DMSO thiourea

dioxide
70 8 h n.r.e

15 DMSO sodium
dithionite

70 10 h n.r.e

aReaction conditions: ethyl 2-oxo-2-phenylacetate 1a (1 mmol) and
reagent 2 (2 mmol) in different solvent mixtures at variable
temperatures. bYield of the isolated product. c1.5 equiv of rongalite
was used. d2.5 equiv of rongalite was used. en.r. = no reaction.
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long reaction times (Table 3, entries 7 and 8). Later, screening
was continued with other bases such as Cs2CO3, DBU, and 4-
DMAP and low yields were observed (Table 3, entries 9−11).
Further, the change in the loadings of the base and rongalite
also resulted in low yields (Table 3, entries 12 and 13).
Therefore, the optimized reaction conditions are 2-oxo-N,2-
diphenylacetamide 4a (1 mmol), rongalite 2 (2 mmol), and
K2CO3 (1.5 mmol) in DMSO + H2O (8:2, v/v) at 70 °C
(Table 3, entry 5).
With the optimized reaction conditions for α-keto amides in

hand (Table 3, entry 5), to check the generality of this
chemoselective reduction, various α-keto amides were used,
and the findings are discussed in Table 4. Electron-donating
groups such as methyl- and methoxy-substituted α-keto amides
underwent reaction smoothly with rongalite to furnish 5b, 5c,
5j, and 5k in 90−95% yields (Table 4). This method can also

Table 2. Substrate Scope of the Chemoselective Reduction
of α-Keto Esters by Rongalitea,b

aReaction conditions: α-keto ester 1 (1 mmol) and rongalite 2 (2
mmol) in 2 mL of DMSO at 70 °C. bYield of isolated products.

Table 3. Optimization of Reaction Conditions for
Chemoselective Reduction of α-Keto Amidesa

s. no. solvent base (equiv) time yield (%)b

1 DMSO 16 h 62
2 DMSO K2CO3 16 h 60
3 CH3CN + H2O (8:2, v/v) K2CO3 8 h 40
4 EtOH + H2O (8:2, v/v) K2CO3 2 h 76
5 DMSO + H2O (8:2, v/v) K2CO3 15 min 96
6 DMSO + H2O (8:2, v/v) 24 h 50
7 DMSO + H2O (6:4, v/v) K2CO3 30 min 92
8 DMSO + H2O (1:1, v/v) K2CO3 50 min 90
9 DMSO + H2O (8:2, v/v) Cs2CO3 15 min 91
10 DMSO + H2O (8:2, v/v) DBU 15 min 85
11 DMSO + H2O (8:2, v/v) DMAP 15 min 81
12 DMSO + H2O (8:2, v/v) K2CO3 40 min 89c

13 DMSO + H2O (8:2, v/v) K2CO3 60 min 65d

aReaction conditions: 2-oxo-N,2-diphenylacetamide 4a (1 mmol),
rongalite 2 (2 mmol), and base (1.5 mmol) in 2 mL of solvent at 70
°C. bYield of isolated products. c1.2 equiv of K2CO3 was used.

d1.5
equiv of rongalite was used.

Table 4. Substrate Scope of the Chemoselective Reduction
of α-Keto Amides by Rongalitea,b

aReaction conditions: α-keto amide 4 (1 mmol), rongalite 2 (2
mmol), and K2CO3 (1.5 mmol) in 2 mL of DMSO + H2O (8:2, v/v)
at 70 °C. bYield of isolated products. cα-Keto amide 4x (1 mmol) and
rongalite 2 (2 mmol) in DMSO (2 mL) at 70 °C.
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tolerate halogen derivatives (F, Cl, and Br) and afforded the
reduced products 5d−5g and 5l−5p in 90−98% yields (Table
4). Electron-withdrawing groups such as cyano-, formyl-, and
acetyl-containing α-keto amides were effortlessly involved in
the reaction to give 5q−5s in 90−92% yields (Table 4). Also,
heteroaromatic α-keto amides delivered the corresponding α-
hydroxy amides 5h, 5i, and 5t−5v in 90−94% yields (Table 4).
Additionally, this protocol is applicable to α-keto amides that
were formed by benzyl amine and secondary aniline, which
readily gave reduced products 5w and 5x in 92−93% yields
(Table 4).
Finally, we have evaluated the synthetic potential of our

methodology for gram-scale synthesis, which is more useful in
industry. Ethyl 2-oxo-2-phenylacetate 1a (2.67 g, 15 mmol)
and rongalite 2 (4.62 g, 30 mmol) were added in DMSO (15
mL) at 70 °C, resulting in ethyl 2-hydroxy-2-phenylacetate 3a
with 81% yield (Scheme 2a). Similarly, we have prepared 2-

hydroxy-N,2-diphenylacetamide 5a in 90% yield using 2-oxo-
N,2-diphenylacetamide 4a (3.37 g, 15 mmol), rongalite 2 (4.62
g, 30 mmol), and K2CO3 (22.5 mmol) in DMSO + H2O (8:2,
v/v; 15 mL) at 70 °C (Scheme 2b).
Also, we have synthesized “cyclandelate”, a vasodilator drug

7, which is used to treat heart and blood-vessel diseases and
reduces high blood pressure,2f using 3,3,5-trimethylcyclohexyl
2-oxo-2-phenylacetate 6 (2.74 g, 10 mmol) and rongalite 2
(3.08 g, 20 mmol) in DMSO (25 mL) at 70 °C in 79% yield
(Scheme 3).

To gain mechanistic insight into these chemoselective
reductions, we have conducted some control experiments
with radical scavengers such as TEMPO ((2,2,6,6-tetrame-
thylpiperidin-1-yl)oxyl), DPPH (2,2-diphenyl-1-picryl-hydra-
zyl-hydrate), and hydroquinone (Scheme 4). First, control
experiments were conducted on α-keto ester by taking ethyl 2-

oxo-2-phenylacetate 1a (1 mmol), rongalite 2 (2 mmol), and
TEMPO/DPPH/hydroquinone (2 equiv) in DMSO (2 mL) at
70 °C. No progress of the reaction was observed to provide
ethyl 2-hydroxy-2-phenylacetate 3a in the case of TEMPO and
DPPH, and only trace amounts of 3a were observed in the case
of hydroquinone (Scheme 4a).
The above results clearly indicate that the reduction of α-

keto esters by rongalite is undergoing a radical mechanism.
Similarly, some more control experiments were conducted on
α-keto amide using 2-oxo-N,2-diphenylacetamide 4a (1
mmol), rongalite 2 (2 mmol), K2CO3 (1.5 mmol), and
TEMPO/DPPH/hydroquinone (2 equiv) in 2 mL of DMSO +
H2O (8:2, v/v) at 70 °C (Scheme 4b). The product, i.e., 2-
hydroxy-N,2-diphenylacetamide 5a, was formed in 15−30%
yield, which indicated that the reduction of α-keto amides by
rongalite also follows through a radical mechanism. Addition-
ally, the TEMPO adduct with α-keto amide was detected in
HRMS analysis (see the Supporting Information, Figure S1).
Further, to know the proton source in the hydroxy products,
we have conducted a reaction between α-keto ester 1o (0.05
mmol) and anhydrous deuterated rongalite 2-D (0.1 mmol) in
DMSO-d6 at 70 °C and observed the incorporation of 28 and
38% deuterium into −CH and −OH groups of α-hydroxy
ester, respectively (see the Supporting Information, Figures S3
and S4).
Based on the control experiments and previous literature

reports,26 a plausible mechanism is proposed in Scheme 5.
Initially, the reductant rongalite dissociates itself into form-
aldehyde and HSO2

−. Later on, a single-electron transfer
(SET) takes place from HSO2

− to α-keto ester/amide to form
ketyl radical anion intermediate I, which further converts into
ketyl radical II by protonation. Subsequently, another single-
electron transfer occurs at ketyl radical II from HSO2

− to
generate intermediate III, which finally yields the title
compound α-hydroxy ester/amide IV by abstraction of proton.
In conclusion, we have developed a transition metal- and

hydride-free protocol for the chemoselective reduction of α-
keto esters and α-keto amides to produce diversely substituted
α-hydroxy esters and α-hydroxy amides with 85−98% yields,

Scheme 2. Gram-Scale Synthesis

Scheme 3. Application of the Protocol for the Synthesis of
Cyclandelate

Scheme 4. Control Experiments
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respectively, using rongalite as a reducing agent. Rongalite is an
inexpensive industrial product (1 g, 0.03$) found to be a
potential radical source of hydride-free reducing agent. This
protocol overcomes all the constraints associated with the
existing methods such as hazardous byproducts, long reaction
times, elevated temperatures, and chemoselectivity problems.
Also, we applied our protocol to synthesize cyclandelate, a
vasodilator drug, in gram scale with 79% yield.

■ EXPERIMENTAL SECTION
General Information. All chemicals and solvents were purchased

from Alfa Aesar, Spectrochem, SRL, and Finar and used as received.
Thin-layer chromatography was performed on 200 μm aluminum-foil
backed silica gel plates, and column chromatography was performed
using 100−200 mesh silica gel (Merck). The 1H NMR spectra were
recorded on a Bruker Avance 400 MHz spectrometer with CDCl3 and
DMSO-d6 as solvents and TMS as an internal standard. The following
abbreviations were used to explain multiplicities: s = singlet, d =
doublet, t = triplet, q = quartet, and m = multiplet. Coupling
constants J were reported in Hertz unit (Hz). The 13C{1H} NMR
spectra were recorded on a Bruker Avance 100/125 MHz
spectrometer, and they were fully decoupled by broad band proton
decoupling. Chemical shifts were reported in ppm in reference to the
center line of a triplet at 77.16 ppm of chloroform-d (a multiplet at
39.52 ppm of DMSO-d6). Melting points were determined with a
Stuart SMP30 apparatus and were uncorrected. The FT-IR spectra
were recorded on a PerkinElmer spectrometer. HRMS data were
analyzed with an Agilent Q-TOF 6230.

General Procedure (A) for the Synthesis of α-Hydroxy
Esters (3a−3u). An oven-dried 10 mL reaction flask equipped with a
magnetic stirring bar was charged with appropriate α-keto ester 1 (1
mmol, 0.5 M), rongalite 2 (2 mmol, 2 equiv), and DMSO (2 mL).
The reaction mixture was stirred at 70 °C using an oil bath for the
appropriate time (5−20 min). The progress of the reaction was
monitored by TLC using hexanes and ethyl acetate as an eluent. After
the completion of reaction, water was added to the reaction mixture
and the organic compound was extracted with ethyl acetate (3 × 10
mL). The combined organic layers were dried on Na2SO4 and
evaporated to give a residue that was purified on a short pad of silica
gel by column chromatography using hexanes and ethyl acetate as an
eluent.

General Procedure (B) for the Synthesis of α-Hydroxy
Amides (5a−5x). An oven-dried 10 mL reaction flask equipped with
a magnetic stirring bar was charged with appropriate α-keto amide 4

(1 mmol, 0.5 M), rongalite 2 (2 mmol, 2 equiv), K2CO3 (1.5 mmol,
1.5 equiv), and DMSO + H2O (2 mL; 8:2, v/v). The reaction mixture
was stirred at 70 °C using an oil bath for the appropriate time (15 min
to 1 h and 30 min). The progress of the reaction was monitored by
TLC using hexanes and ethyl acetate as an eluent. After the
completion of reaction, water was added to the reaction mixture and
the organic compound was extracted with ethyl acetate (3 × 10 mL).
The organic layers were dried on Na2SO4 and evaporated to give a
residue that was purified on a short pad of silica gel by column
chromatography using hexanes and ethyl acetate as an eluent.

Ethyl 2-Hydroxy-2-phenylacetate (3a).29 Colorless liquid; yield:
167 mg, 93%. The title compound was prepared according to the
general procedure (A) described above (EtOAc:hexanes = 10:90).
FT-IR (KBr, cm−1): 3456, 3064, 2983, 1737, 1211, 733; 1H NMR
(400 MHz, DMSO-d6) δ (ppm): 7.41 (d, J = 7.6 Hz, 2H), 7.36 (t, J =
7.6 Hz, 2H), 7.30 (t, J = 7.2 Hz, 1H), 6.03 (d, J = 5.2 Hz, 1H), 5.12
(d, J = 5.6 Hz, 1H), 4.15−4.01 (m, 2H), 1.13 (t, J = 7.2 Hz, 3H);
13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 173.0, 140.2, 128.7,
128.3, 127.1, 72.9, 60.9, 14.5; HRMS (ESI) m/z: [M + Na]+ calcd for
C10H12NaO3, 203.0684; found, 203.0680.

Ethyl 2-Hydroxy-2-(p-tolyl)acetate (3b).9a White solid; yield: 178
mg, 92%; mp 76−77 °C. The title compound was prepared according
to the general procedure (A) described above (EtOAc:hexanes =
10:90). FT-IR (KBr, cm−1): 3458, 3091, 2954, 1738, 1215, 791; 1H
NMR (400 MHz, CDCl3) δ (ppm): 7.22−7.09 (AB quartet, 4H, J =
8.0 Hz), 5.04 (s, 1H), 4.21−4.05 (m, 2H), 3.32 (s, 1H), 2.27 (s, 3H),
1.15 (d, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ
(ppm): 173.9, 138.2, 135.5, 129.3, 126.5, 72.8, 62.2, 21.2, 14.0.

Ethyl 2-Hydroxy-2-mesitylacetate (3c).10a White crystalline solid;
yield: 202 mg, 91%; mp 54−55 °C. The title compound was prepared
according to the general procedure (A) described above (EtOAc:hex-
anes = 10:90). FT-IR (KBr, cm−1): 3450, 3092, 2945, 1736, 1218,
802; 1H NMR (400 MHz, CDCl3) δ (ppm): 6.83 (s, 2H), 5.52 (s,
1H), 4.32−4.15 (m, 2H), 3.28 (s, 1H), 2.32 (s, 6H), 2.25 (s, 3H),
1.22 (d, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ
(ppm): 174.9, 137.8, 137.2, 131.5, 129.8, 69.1, 62.2, 20.9, 19.9, 14.1;
HRMS (ESI) m/z: [M + Na]+ calcd for C13H18NaO3, 245.1154;
found, 245.1146.

Ethyl 2-Hydroxy-2-(4-methoxyphenyl)acetate (3d).10a White
solid; yield: 187 mg, 89%; mp 51−52 °C. The title compound was
prepared according to the general procedure (A) described above
(EtOAc:hexanes = 10:90). FT-IR (KBr, cm−1): 3455, 2982, 1735,
1713, 1250, 837; 1H NMR (400 MHz, CDCl3) δ (ppm): 7.25−6.80
(AB quartet, 4H, J = 8.6 Hz), 5.03 (s, 1H), 4.21−4.07 (m, 2H), 3.73
(s, 3H), 3.14 (s, 1H), 1.15 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100
MHz, CDCl3) δ (ppm): 173.9, 159.7, 130.7, 127.8, 114.0, 72.5, 62.1,
55.3, 14.1; HRMS (ESI) m/z: [M + Na]+ calcd for C11H14NaO4,
233.0790; found, 233.0785.

Ethyl 2-(4-Fluorophenyl)-2-hydroxyacetate (3e).30 White solid;
yield: 178 mg, 90%; mp 71−72 °C. The title compound was prepared
according to the general procedure (A) described above (EtOAc:hex-
anes = 5:95). FT-IR (KBr, cm−1): 3441, 3095, 2982, 1732, 1387,
1324; 1H NMR (400 MHz, CDCl3) δ (ppm): 7.36−7.30 (m, 2H),
7.01−6.94 (m, 2H), 5.06 (s, 1H), 4.22−4.08 (m, 2H), 3.43 (s, 1H),
1.15 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ (ppm):
173.5, 162.7 (d, 1JC−F = 245.2 Hz), 134.2 (d, 4JC−F = 3.2 Hz), 128.3
(d, 3JC−F = 8.3 Hz), 115.5 (d, 2JC−F = 21.6 Hz), 72.2, 62.4, 14.0; 19F
NMR (376 MHz, CDCl3) δ (ppm): −113.78; HRMS (ESI) m/z: [M
+ Na]+ calcd for C10H11FNaO3, 221.0590; found, 221.0585.

Ethyl 2-(2-Chlorophenyl)-2-hydroxyacetate (3f).31 Colorless
liquid; yield: 197 mg, 92%. The title compound was prepared
according to the general procedure (A) described above (EtOAc:hex-
anes = 5:95). FT-IR (KBr, cm−1): 3451, 3091, 2925, 1732, 1191, 790;
1H NMR (400 MHz, CDCl3) δ (ppm): 7.34−7.30 (m, 2H), 7.21−
7.18 (m, 2H), 5.47 (s, 1H), 4.22−4.10 (m, 2H), 3.44 (s, 1H), 1.15 (t,
J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ (ppm): 173.2,
136.2, 133.6, 129.9, 129.7, 128.8, 127.1, 70.4, 62.4, 13.9.

Ethyl 2-(2,4-Dichlorophenyl)-2-hydroxyacetate (3g).32 White
solid; yield: 224 mg, 90%; mp 54−55 °C. The title compound was
prepared according to the general procedure (A) described above

Scheme 5. Plausible Reaction Mechanism
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(EtOAc:hexanes = 5:95). FT-IR (KBr, cm−1): 3457, 3095, 2937,
1738, 1218, 1188, 571; 1H NMR (400 MHz, DMSO-d6) δ (ppm):
7.62 (d, J = 2.0 Hz, 1H), 7.55 (d, J = 8.4 Hz, 1H), 7.47 (dd, J = 8.4,
2.0 Hz, 1H), 6.45 (d, J = 6.0 Hz, 1H), 5.38 (d, J = 5.6 Hz, 1H), 4.14−
4.07 (m, 2H), 1.14 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz,
DMSO-d6) δ (ppm): 171.6, 137.1, 133.7, 133.4, 130.5, 129.1, 128.0,
69.8, 61.3, 14.4.

Ethyl 2-(2-Bromophenyl)-2-hydroxyacetate (3h). Colorless
liquid; yield: 231 mg, 89%. The title compound was prepared
according to the general procedure (A) described above (EtOAc:hex-
anes = 5:95). FT-IR (KBr, cm−1): 3440, 3090, 2952, 1735, 1121; 1H
NMR (400 MHz, CDCl3) δ (ppm): 7.50 (dd, J = 8.0, 1.2 Hz, 1H),
7.31 (dd, J = 7.6, 2.0 Hz, 1H), 7.25 (td, J = 7.2, 1.2 Hz, 1H), 7.14−
7.08 (m, 1H), 5.49 (s, 1H), 4.22−4.10 (m, 2H), 3.35 (s, 1H), 1.15 (t,
J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ (ppm): 173.2,
137.9, 133.2, 129.9, 128.8, 127.8, 123.6, 72.4, 62.5, 13.9; HRMS (ESI)
m/z: [M + Na]+ calcd for C10H11BrNaO3, 280.9789; found, 280.9783.

Ethyl 2-(4-Bromophenyl)-2-hydroxyacetate (3i).31 White solid;
yield: 236 mg, 91%; mp 63−64 °C. The title compound was prepared
according to the general procedure (A) described above (EtOAc:hex-
anes = 5:95). FT-IR (KBr, cm−1): 3441, 3092, 2986, 1731, 1021, 523;
1H NMR (400 MHz, CDCl3) δ (ppm): 7.42 (d, J = 8.4 Hz, 2H), 7.24
(d, J = 8.4 Hz, 2H), 5.04 (s, 1H), 4.23−4.07 (m, 2H), 3.42 (s, 1H),
1.16 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ (ppm):
173.2, 137.4, 131.7, 128.2, 122.4, 72.2, 62.5, 14.0; HRMS (ESI) m/z:
[M + Na]+ calcd for C10H11BrNaO3, 280.9789; found, 280.9777.

Ethyl 2-([1,1′-Biphenyl]-4-yl)-2-hydroxyacetate (3j).11b White
solid; yield: 241 mg, 94%; mp 117−118 °C. The title compound
was prepared according to the general procedure (A) described above
(EtOAc:hexanes = 5:95). FT-IR (KBr, cm−1): 3456, 3061, 2991,
1731, 1210, 692; 1H NMR (400 MHz, CDCl3) δ (ppm): 7.61−7.57
(m, 4H), 7.49 (d, J = 8.0 Hz, 2H), 7.43 (t, J = 7.2 Hz, 2H), 7.34 (t, J
= 7.2 Hz, 1H), 5.20 (d, J = 5.6 Hz, 1H), 4.32−4.16 (m, 2H), 3.53 (d,
J = 5.6 Hz, 1H), 1.25 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz,
CDCl3) δ (ppm): 172.6, 140.3, 139.6, 136.4, 127.8, 126.4, 126.3,
126.1, 125.9, 71.6, 61.3, 13.0.

Ethyl 2-Hydroxy-2-(naphthalen-1-yl)acetate (3k).33 Colorless
liquid; yield: 212 mg, 92%. The title compound was prepared
according to the general procedure (A) described above (EtOAc:hex-
anes = 5:95). FT-IR (KBr, cm−1): 3456, 3064, 2983, 1737, 1211, 721;
1H NMR (400 MHz, CDCl3) δ (ppm): 8.03 (d, J = 8.4 Hz, 1H),
7.71−7.63 (m, 2H), 7.38−7.22 (m, 4H), 5.63 (s, 1H), 4.07−3.92 (m,
2H), 3.84 (s, 1H), 0.93 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100
MHz, CDCl3) δ (ppm): 172.9, 133.2, 132.9, 129.9, 128.2, 127.6,
125.3, 124.7, 124.6, 124.1, 122.8, 70.3, 60.9, 12.8.

Ethyl 2-(Furan-2-yl)-2-hydroxyacetate (3l).34 Colorless liquid;
yield: 153 mg, 90%. The title compound was prepared according to
the general procedure (A) described above (EtOAc:hexanes = 10:90).
FT-IR (KBr, cm−1): 3444, 3097, 2984, 1740, 1370, 804; 1H NMR
(400 MHz, CDCl3) δ (ppm): 7.40−7.38 (m, 1H), 6.38−6.35 (m,
2H), 5.18 (d, J = 6.8 Hz, 1H), 4.32−4.25 (m, 2H), 3.38 (d, J = 6.8
Hz, 1H), 1.27 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3)
δ (ppm): 171.5, 150.9, 142.9, 110.5, 108.6, 66.9, 62.5, 14.1; HRMS
(ESI) m/z: [M + Na]+ calcd for C8H10NaO4, 193.0477; found,
193.0469.

Ethyl 2-Hydroxy-2-(thiophen-2-yl)acetate (3m).31 Colorless
liquid; yield: 169 mg, 91%. The title compound was prepared
according to the general procedure (A) described above (EtOAc:hex-
anes = 10:90). FT-IR (KBr, cm−1): 3452, 3097, 2982, 1736, 1664,
1227; 1H NMR (400 MHz, CDCl3) δ (ppm): 7.21 (dd, J = 5.2, 1.2
Hz, 1H), 7.03 (d, J = 3.6 Hz, 1H), 6.91 (dd, J = 5.2, 3.6 Hz, 1H), 5.33
(s, 1H), 4.25−4.17 (m, 2H), 3.43 (s, 1H), 1.22 (t, J = 7.2 Hz, 3H);
13C{1H} NMR (100 MHz, CDCl3) δ (ppm): 172.5, 141.6, 126.9,
125.7, 125.3, 69.1, 62.6, 14.1; HRMS (ESI) m/z: [M + Na]+ calcd for
C8H10NaO3S, 209.0248; found, 209.0245.

Benzyl 2-Hydroxy-2-phenylacetate (3n).31 White crystalline solid;
yield: 220 mg, 91%; mp 95−96 °C. The title compound was prepared
according to the general procedure (A) described above (EtOAc:hex-
anes = 10:90). FT-IR (KBr, cm−1): 3445, 3078, 2950, 1955, 1739,
1727, 1211, 724; 1H NMR (400 MHz, CDCl3) δ (ppm): 7.43−7.18

(m, 8H), 7.17−7.04 (m, 2H), 5.18−5.03 (m, 3H), 3.28 (s, 1H);
13C{1H} NMR (100 MHz, CDCl3) δ (ppm): 173.5, 138.2, 135.0,
128.6, 128.6, 128.5, 128.5, 127.9, 126.6, 72.9, 67.7; HRMS (ESI) m/z:
[M + Na]+ calcd for C15H14NaO3, 265.0841; found, 265.0839.

4-Methoxybenzyl 2-Hydroxy-2-phenylacetate (3o). White solid;
yield: 231 mg, 85%; mp 66−67 °C. The title compound was prepared
according to the general procedure (A) described above (EtOAc:hex-
anes = 10:90). FT-IR (KBr, cm−1): 3377, 3047, 2951, 1712, 1384,
1086; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 7.42−7.26 (m, 5H),
7.19 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 6.08 (d, J = 5.2 Hz,
1H), 5.16 (d, J = 5.2 Hz, 1H), 5.06 (d, J = 12.0 Hz, 1H), 5.00 (d, J =
12.0 Hz, 1H), 3.73 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ
(ppm): 172.9, 159.6, 140.0, 130.1, 128.7, 128.4, 128.3, 127.1, 114.2,
72.9, 66.1, 55.6; HRMS (ESI) m/z: [M + Na]+ calcd for C16H16NaO4,
295.0946; found, 295.0941.

4-Chlorobenzyl 2-Hydroxy-2-phenylacetate (3p).35 White crys-
talline solid; yield: 254 mg, 92%; mp 133−134 °C. The title
compound was prepared according to the general procedure (A)
described above (EtOAc:hexanes = 10:90). FT-IR (KBr, cm−1): 3377,
3047, 2954, 1715, 1384, 1086; 1H NMR (400 MHz, CDCl3) δ
(ppm): 7.34−7.26 (m, 5H), 7.20 (d, J = 8.4 Hz, 2H), 7.03 (d, J = 8.5
Hz, 2H), 5.14 (s, 1H), 5.06 (t, J = 10.0 Hz, 2H), 3.31 (s, 1H);
13C{1H} NMR (100 MHz, CDCl3) δ (ppm): 173.4, 138.1, 134.4,
133.5, 129.3, 128.8, 128.7, 128.6, 126.6, 72.9, 66.8; HRMS (ESI) m/z:
[M + Na]+ calcd for C15H13ClNaO3, 299.0451; found, 299.0449.

4-Cyanobenzyl 2-Hydroxy-2-phenylacetate (3q). White solid;
yield: 238 mg, 89%; mp 141−142 °C. The title compound was
prepared according to the general procedure (A) described above
(EtOAc:hexanes = 10:90). FT-IR (KBr, cm−1): 3442, 3062, 2924,
2230, 1737, 1728, 896; 1H NMR (400 MHz, CDCl3) δ (ppm): 7.49
(d, J = 8.4 Hz, 2H), 7.35−7.27 (m, 5H), 7.14 (d, J = 8.4 Hz, 2H),
5.20−5.11 (m, 3H), 3.33 (s, 1H); 13C{1H} NMR (100 MHz, CDCl3)
δ (ppm): 173.3, 140.3, 137.9, 132.4, 128.8, 128.8, 127.9, 126.6, 118.4,
112.3, 73.0, 66.2; HRMS (ESI) m/z: [M + Na]+ calcd for
C16H13NNaO3, 290.0793; found, 290.0791.

Cinnamyl 2-Hydroxy-2-phenylacetate (3r). White solid; yield:
244 mg, 91%; mp 68−69 °C. The title compound was prepared
according to the general procedure (A) described above (EtOAc:hex-
anes = 10:90). FT-IR (KBr, cm−1): 3449, 3031, 2980, 1731, 1493,
1200; 1H NMR (400 MHz, CDCl3) δ (ppm): 7.40−7.36 (m, 2H),
7.33−7.14 (m, 8H), 6.42 (dt, J = 15.6, 1.2 Hz, 1H), 6.11 (dt, J = 16.0,
6.4 Hz, 1H), 5.15 (s, 1H), 4.79−4.69 (m, 2H), 3.37 (s, 1H); 13C{1H}
NMR (100 MHz, CDCl3) δ (ppm): 173.5, 138.3, 135.9, 134.6, 128.7,
128.6, 128.6, 128.3, 126.7, 122.0, 73.0, 66.5; HRMS (ESI) m/z: [M +
Na]+ calcd for C17H16NaO3, 291.0997; found, 291.1000.

2-(1,3-Dioxoisoindolin-2-yl)ethyl 2-Hydroxy-2-phenylacetate
(3s). White solid; yield: 276 mg, 85%; mp 89−90 °C. The title
compound was prepared according to the general procedure (A)
described above (EtOAc:hexanes = 10:90). FT-IR (KBr, cm−1): 3470,
2959, 1774, 1742, 1712, 529; 1H NMR (400 MHz, CDCl3) δ (ppm):
7.78−7.74 (m, 2H), 7.68−7.65 (m, 2H), 7.28−7.25 (m, 2H), 7.16−
7.09 (m, 3H), 5.09 (s, 1H), 4.42−4.36 (m, 1H), 4.28−4.21 (m, 1H),
3.94−3.83 (m, 2H), 3.31 (s, 1H); 13C{1H} NMR (100 MHz, CDCl3)
δ (ppm): 173.3, 167.9, 137.8, 134.1, 131.8, 128.4, 128.3, 126.5, 123.5,
72.9, 63.0, 36.6; HRMS (ESI) m/z: [M + Na]+ calcd for
C18H15NNaO5, 348.0848; found, 348.0843.

Isopropyl 2-(4-Bromophenyl)-2-hydroxyacetate (3t). White crys-
talline solid; yield: 243 mg, 89%; mp 72−73 °C. The title compound
was prepared according to the general procedure (A) described above
(EtOAc:hexanes = 10:90). FT-IR (KBr, cm−1): 3444, 3091, 2989,
1740, 1108, 513; 1H NMR (400 MHz, CDCl3) δ (ppm): 7.40−7.24
(AB quartet, 4H, J = 8.4 Hz), 5.04−4.94 (m, 2H), 3.44 (s, 1H), 1.21
(d, J = 6.4 Hz, 3H), 1.04 (d, J = 6.4 Hz, 3H); 13C{1H} NMR (100
MHz, CDCl3) δ (ppm): 172.7, 137.6, 131.6, 128.1, 122.3, 72.3, 70.5,
21.7, 21.4; HRMS (ESI) m/z: [M + Na]+ calcd for C11H13BrNaO3,
294.9946; found, 294.9937.

Benzhydryl 2-Hydroxy-2-phenylacetate (3u).36 White solid; yield:
302 mg, 95%; mp 115−116 °C. The title compound was prepared
according to the general procedure (A) described above (EtOAc:hex-
anes = 10:90). FT-IR (KBr, cm−1): 3443, 3095, 2982, 1735, 1265,

The Journal of Organic Chemistry pubs.acs.org/joc Article

https://doi.org/10.1021/acs.joc.2c00936
J. Org. Chem. 2022, 87, 9915−9925

9920

pubs.acs.org/joc?ref=pdf
https://doi.org/10.1021/acs.joc.2c00936?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


1172; 1H NMR (400 MHz, CDCl3) δ (ppm): 7.35−7.20 (m, 10H),
7.11−7.04 (m, 3H), 6.83 (d, J = 6.8 Hz, 2H), 6.80 (s, 1H), 5.20 (s,
1H), 3.39 (s, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ (ppm):
172.8, 139.3, 139.2, 138.1, 128.7, 128.6, 128.6, 128.4, 128.3, 127.9,
127.4, 126.8, 126.3, 78.8, 73.2.

2-Hydroxy-N,2-diphenylacetamide (5a).23 White solid; yield: 218
mg, 96%; mp 150−151 °C. The title compound was prepared
according to the general procedure (B) described above (EtOAc:hex-
anes = 20:80). FT-IR (KBr, cm−1): 3444, 3064, 2973, 1642, 1563,
880; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.90 (s, 1H), 7.70 (d,
J = 8.8 Hz, 2H), 7.53 (d, J = 7.2 Hz, 2H), 7.36 (t, J = 7.2 Hz, 2H),
7.29 (t, J = 7.2 Hz, 3H), 7.05 (t, J = 7.6 Hz, 1H), 6.43 (d, J = 4.8 Hz,
1H), 5.11 (d, J = 4.4 Hz, 1H); 13C{1H} NMR (100 MHz, DMSO-d6)
δ (ppm): 171.6, 141.3, 138.9, 129.1, 128.6, 128.1, 127.0, 124.0, 120.2,
74.5.

2-Hydroxy-N-phenyl-2-(p-tolyl)acetamide (5b).23 White crystal-
line solid; yield: 229 mg, 95%; mp 145−146 °C. The title compound
was prepared according to the general procedure (B) described above
(EtOAc:hexanes = 20:80). FT-IR (KBr, cm−1): 3373, 3092, 2973,
1642, 1557, 1076; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.90 (s,
1H), 7.73 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.34 (t, J = 8.0
Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 7.10 (t, J = 7.2 Hz, 1H), 6.39 (d, J
= 4.8 Hz, 1H), 5.10 (d, J = 4.4 Hz, 1H), 2.33 (s, 3H); 13C{1H} NMR
(100 MHz, DMSO-d6) δ (ppm): 171.8, 138.9, 138.4, 137.2, 129.1,
129.1, 126.9, 123.9, 120.1, 74.3, 21.2.

N-(4-Fluorophenyl)-2-hydroxy-2-(4-methoxyphenyl)acetamide
(5c). White crystalline solid; yield: 261 mg, 95%; mp 156−157 °C.
The title compound was prepared according to the general procedure
(B) described above (EtOAc:hexanes = 25:75). FT-IR (KBr, cm−1):
3351, 3012, 2842, 1659, 1273, 832; 1H NMR (400 MHz, CDCl3 +
DMSO-d6) δ (ppm): 9.03 (s, 1H), 7.54−7.48 (m, 2H), 7.36 (d, J =
8.8 Hz, 2H), 6.91 (t, J = 8.8 Hz, 2H), 6.81 (d, J = 8.8 Hz, 2H), 5.87
(s, 1H), 5.04 (s, 1H), 3.71 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3
+ DMSO-d6) δ (ppm): 171.1, 159.5, 159.1 (d, 1JC−F = 241.3 Hz),
133.9, 132.5, 128.0, 121.3 (d, 3JC−F = 7.8 Hz), 115.4 (d, 2JC−F = 22.3
Hz), 113.8, 73.8, 55.3; HRMS (ESI) m/z: [M + Na]+ calcd for
C15H14FNNaO3, 298.0855; found, 298.0849.

2-(4-Fluorophenyl)-2-hydroxy-N-phenylacetamide (5d).23 White
crystalline solid; yield: 230 mg, 94%; mp 115−116 °C. The title
compound was prepared according to the general procedure (B)
described above (EtOAc:hexanes = 20:80). FT-IR (KBr, cm−1): 3301,
3095, 1656, 1512, 1231, 1061; 1H NMR (400 MHz, DMSO-d6) δ
(ppm): 9.91 (s, 1H), 7.72−7.67 (m, 2H), 7.59−7.53 (m, 2H), 7.32−
7.27 (m, 2H), 7.19 (t, J = 9.2 Hz, 2H), 7.06 (t, J = 7.6 Hz, 1H), 6.49
(d, J = 4.8 Hz, 1H), 5.13 (d, J = 4.4 Hz, 1H); 13C{1H} NMR (100
MHz, DMSO-d6) δ (ppm): 171.5, 162.1 (d, 1JC−F = 241.8 Hz), 138.9,
137.5 (d, 3JC−F = 11.2 Hz), 129.1 (d, 4JC−F = 4.6 Hz), 128.9, 124.1,
120.2, 115.4 (d, 2JC−F = 21.2 Hz), 73.7.

2-(2-Chlorophenyl)-2-hydroxy-N-phenylacetamide (5e).37 White
crystalline solid; yield: 238 mg, 91%; mp 158−159 °C. The title
compound was prepared according to the general procedure (B)
described above (EtOAc:hexanes = 20:80). FT-IR (KBr, cm−1): 3300,
3179, 3091, 2915, 1656, 1061; 1H NMR (400 MHz, DMSO-d6) δ
(ppm): 10.02 (s, 1H), 7.75−7.70 (m, 2H), 7.58 (dd, J = 7.6, 2.4 Hz,
1H), 7.48−7.42 (m, 1H), 7.39−7.29 (m, 4H), 7.08 (t, J = 7.6 Hz,
1H), 6.65 (d, J = 5.2 Hz, 1H), 5.49 (d, J = 5.2 Hz, 1H); 13C{1H}
NMR (100 MHz, DMSO-d6) δ (ppm): 170.5, 139.2, 138.9, 133.1,
129.9, 129.7, 129.6, 129.1, 127.7, 124.1, 120.3, 71.6.

N-(4-Bromophenyl)-2-(2,4-dichlorophenyl)-2-hydroxyacetamide
(5f). White crystalline solid; yield: 338 mg, 90%; mp 155−156 °C.
The title compound was prepared according to the general procedure
(B) described above (EtOAc:hexanes = 20:80). FT-IR (KBr, cm−1):
3433, 3061, 2977, 1641, 1556, 1077; 1H NMR (400 MHz, DMSO-d6)
δ (ppm): 10.22 (s, 1H), 7.70 (d, J = 8.8 Hz, 2H), 7.66−7.53 (m, 2H),
7.52−7.45 (m, 3H), 6.76 (d, J = 5.2 Hz, 1H), 5.45 (d, J = 5.2 Hz,
1H); 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 170.3, 138.3,
138.2, 133.9, 133.6, 131.9, 130.9, 129.1, 127.9, 122.3, 115.9, 71.3;
HRMS (ESI) m/z: [M + H]+ calcd for C14H11BrCl2NO2, 373.9350;
found, 373.9323.

2-(4-Bromophenyl)-2-hydroxy-N-(p-tolyl)acetamide (5g).17 Off-
white crystalline solid; yield: 294 mg, 92%; mp 166−167 °C. The title
compound was prepared according to the general procedure (B)
described above (EtOAc:hexanes = 20:80). FT-IR (KBr, cm−1): 3412,
3062, 2978, 1640, 1557, 1077; 1H NMR (400 MHz, DMSO-d6) δ
(ppm): 9.83 (s, 1H), 7.56 (d, J = 8.4 Hz, 4H), 7.47 (d, J = 8.4 Hz,
2H), 7.09 (d, J = 8.0 Hz, 2H), 6.49 (d, J = 4.8 Hz, 1H), 5.09 (d, J =
4.8 Hz, 1H), 2.24 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ
(ppm): 170.9, 140.8, 136.4, 133.0, 131.4, 129.5, 129.2, 121.2, 120.2,
73.7, 20.9; HRMS (ESI) m/z: [M + H]+ calcd for C15H15BrNO2,
320.0286; found, 320.0280.

2-(Furan-2-yl)-2-hydroxy-N-(p-tolyl)acetamide (5h). White crys-
talline solid; yield: 208 mg, 90%; mp 163−164 °C. The title
compound was prepared according to the general procedure (B)
described above (EtOAc:hexanes = 20:80). FT-IR (KBr, cm−1): 3286,
3036, 1651, 1602, 1232, 507; 1H NMR (400 MHz, DMSO-d6) δ
(ppm): 9.83 (s, 1H), 7.64−7.56 (m, 3H), 7.11 (d, J = 8.4 Hz, 2H),
6.44 (d, J = 5.6 Hz, 1H), 6.44−6.37 (m, 2H), 5.13 (d, J = 5.6 Hz,
1H), 2.25 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm):
169.1, 153.8, 143.0, 136.3, 133.1, 129.5, 120.2, 110.9, 108.4, 68.5,
20.9; HRMS (ESI) m/z: [M + Na]+ calcd for C13H13NNaO3,
254.0793; found, 254.0792.

2-Hydroxy-2-(thiophen-2-yl)-N-(p-tolyl)acetamide (5i).17 White
solid; yield: 222 mg, 90%; mp 172−173 °C. The title compound was
prepared according to the general procedure (B) described above
(EtOAc:hexanes = 20:80). FT-IR (KBr, cm−1): 3344, 3090, 2925,
1651, 1233, 819; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.85 (s,
1H), 7.58 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 5.2 Hz, 1H), 7.15−7.07
(m, 3H), 6.99 (dd, J = 5.2, 4.0 Hz, 1H), 6.69 (d, J = 5.2 Hz, 1H), 5.34
(d, J = 4.8 Hz, 1H), 2.24 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-
d6) δ (ppm): 170.4, 144.6, 136.3, 133.2, 129.5, 127.0, 125.9, 125.3,
120.3, 70.6, 20.9; HRMS (ESI) m/z: [M + Na]+ calcd for
C13H13NNaO2S, 270.0565; found, 270.0561.

2-Hydroxy-N-mesityl-2-phenylacetamide (5j).38 Off-white crys-
talline solid; yield: 256 mg, 95%; mp 126−127 °C. The title
compound was prepared according to the general procedure (B)
described above (EtOAc:hexanes = 20:80). FT-IR (KBr, cm−1): 3329,
3036, 2917, 1659, 1440, 1065, 697; 1H NMR (400 MHz, DMSO-d6)
δ (ppm): 9.26 (s, 1H), 7.53 (d, J = 7.2 Hz, 2H), 7.36 (t, J = 7.2 Hz,
2H), 7.28 (t, J = 7.2 Hz, 1H), 6.82 (s, 2H), 6.29 (d, J = 4.4 Hz, 1H),
5.09 (d, J = 4.4 Hz, 1H), 2.19 (s, 3H), 1.96 (s, 6H); 13C{1H} NMR
(100 MHz, DMSO-d6) δ (ppm): 171.5, 141.8, 135.8, 135.5, 132.5,
128.6, 128.4, 127.9, 127.0, 74.4, 20.9, 18.3; HRMS (ESI) m/z: [M +
Na]+ calcd for C17H19NNaO2, 292.1313; found, 292.1317.

2-Hydroxy-N-(4-methoxyphenyl)-2-phenylacetamide (5k).17

White crystalline solid; yield: 231 mg, 90%; mp 152−153 °C. The
title compound was prepared according to the general procedure (B)
described above (EtOAc:hexanes = 25:75). FT-IR (KBr, cm−1): 3349,
3095, 2942, 1659, 1271, 762; 1H NMR (400 MHz, DMSO-d6) δ
(ppm): 9.82 (s, 1H), 7.64 (d, J = 9.2 Hz, 2H), 7.55 (d, J = 7.2 Hz,
2H), 7.39 (t, J = 7.2 Hz, 2H), 7.33 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 8.8
Hz, 2H), 6.42 (d, J = 4.4 Hz, 1H), 5.12 (d, J = 4.8 Hz, 1H), 3.75 (s,
3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 171.1, 155.9,
141.5, 132.1, 128.5, 128.0, 127.0, 121.7, 114.2, 74.4, 55.6.

N-(3-Fluoro-4-morpholinophenyl)-2-hydroxy-2-phenylaceta-
mide (5l). Off-white solid; yield: 314 mg, 95%; mp 176−177 °C. The
title compound was prepared according to the general procedure (B)
described above (EtOAc:hexanes = 25:75). FT-IR (KBr, cm−1): 3299,
3091, 2829, 1659, 1652, 1304, 1251; 1H NMR (400 MHz, DMSO-d6)
δ (ppm): 9.98 (s, 1H), 7.63 (dd, J = 14.8, 2.0 Hz, 1H), 7.50 (d, J =
7.6 Hz, 2H), 7.43 (d, J = 8.8 Hz, 1H), 7.35 (t, J = 6.8 Hz, 2H), 7.29
(t, J = 6.8 Hz, 1H), 6.97 (t, J = 9.2 Hz, 1H), 6.46 (d, J = 4.4 Hz, 1H),
5.08 (d, J = 4.8 Hz, 1H), 3.715 (t, J = 4.4 Hz, 4H), 2.93 (t, J = 4.4 Hz,
4H); 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 171.6, 154.8
(d, 1JC−F = 241.4 Hz), 141.2, 135.9 (d, 2JC−F = 14 Hz), 134.1 (d, 3JC−F
= 10.6 Hz), 128.6, 128.1, 127.0, 119.4 (d, 3JC−F = 3.9 Hz), 116.3 (d,
4JC−F = 2.7 Hz), 108.4 (d, 2JC−F = 25.5 Hz), 74.4, 66.6, 51.2 (d, 4JC−F
= 2.4 Hz); 19F NMR (376 MHz, CDCl3) δ (ppm): −120.77; HRMS
(ESI) m/z: [M + H]+ calcd for C18H20FN2O3, 331.1458; found,
331.1449.
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N-(4-Fluorophenyl)-2-hydroxy-2-phenylacetamide (5m).17 White
solid; yield: 230 mg, 94%; mp 162−163 °C. The title compound was
prepared according to the general procedure (B) described above
(EtOAc:hexanes = 20:80). FT-IR (KBr, cm−1): 3303, 3100, 1656,
1513, 1236, 1064, 504; 1H NMR (400 MHz, DMSO-d6) δ (ppm):
10.00 (s, 1H), 7.77−7.70 (m, 2H), 7.52 (d, J = 7.6 Hz, 2H), 7.36 (t, J
= 7.2 Hz, 2H), 7.29 (t, J = 7.2 Hz, 1H), 7.13 (t, J = 8.8 Hz, 2H), 6.45
(d, J = 4.8 Hz, 1H), 5.10 (d, J = 4.8 Hz, 1H); 13C{1H} NMR (100
MHz, DMSO-d6) δ (ppm): 171.6, 158.6 (d, 1JC−F = 238.5 Hz), 141.3,
135.4 (d, 4JC−F = 2.2 Hz), 128.6, 128.1, 127.1, 121.9 (d, 3JC−F = 7.8
Hz), 115.6 (d, 2JC−F = 22.0 Hz), 74.5; HRMS (ESI) m/z: [M + Na]+
calcd for C14H12FNNaO2, 268.0750; found, 268.0747.

N-(2-Chlorophenyl)-2-hydroxy-2-phenylacetamide (5n).21 White
solid; yield: 245 mg, 94%; mp 167−168 °C. The title compound was
prepared according to the general procedure (B) described above
(EtOAc:hexanes = 20:80). FT-IR (KBr, cm−1): 3299, 3184, 3092,
2842, 1651, 1062; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.65 (s,
1H), 8.11 (d, J = 8.4 Hz, 1H), 7.52 (t, J = 8.4 Hz, 3H), 7.40−7.30 (m,
4H), 7.16 (t, J = 7.6 Hz, 1H), 6.95 (d, J = 4.4 Hz, 1H), 5.20 (d, J = 4.4
Hz, 1H); 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 171.4,
140.8, 134.6, 129.8, 128.7, 128.3, 127.2, 125.9, 124.3, 122.7, 74.1.

N-(4-Chlorophenyl)-2-hydroxy-2-phenylacetamide (5o).22 White
solid; yield: 256 mg, 98%; mp 164−165 °C. The title compound was
prepared according to the general procedure (B) described above
(EtOAc:hexanes = 20:80). FT-IR (KBr, cm−1): 3317, 3157, 3092,
2842, 1650, 1060; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.08
(s, 1H), 7.70 (d, J = 8.8 Hz, 2H), 7.53−7.45 (m, 4H), 7.36 (t, J = 7.2
Hz, 2H), 7.29 (t, J = 7.2 Hz, 1H), 6.47 (d, J = 4.4 Hz, 1H), 5.10 (d, J
= 4.8 Hz, 1H); 13C{1H} NMR (125 MHz, DMSO-d6) δ (ppm):
171.9, 141.1, 138.4, 131.9, 128.6, 128.1, 127.0, 122.2, 115.7, 74.5;
HRMS (ESI) m/z: [M + Na]+ calcd for C14H12ClNNaO2, 284.0454;
found, 284.0448.

N-(4-Bromophenyl)-2-hydroxy-2-phenylacetamide (5p).17 Off-
white crystalline solid; yield: 285 mg, 93%; mp 127−128 °C. The
title compound was prepared according to the general procedure (B)
described above (EtOAc:hexanes = 20:80). FT-IR (KBr, cm−1): 3343,
3294, 3091, 2900, 1668, 751; 1H NMR (400 MHz, DMSO-d6) δ
(ppm): 9.65 (s, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.52 (t, J = 8.4 Hz,
3H), 7.41−7.30 (m, 4H), 7.16 (t, J = 7.6 Hz, 1H), 6.95 (d, J = 4.4 Hz,
1H), 5.20 (d, J = 4.4 Hz, 1H); 13C{1H} NMR (100 MHz, DMSO-d6)
δ (ppm): 171.9, 141.1, 138.4, 131.9, 128.6, 128.1, 127.0, 122.2, 115.7,
74.5.

N-(4-Cyanophenyl)-2-hydroxy-2-phenylacetamide (5q).21 Off-
white crystalline solid; yield: 229 mg, 91%; mp 169−170 °C. The
title compound was prepared according to the general procedure (B)
described above (EtOAc:hexanes = 20:80). FT-IR (KBr, cm−1): 3358,
3092, 2913, 2224, 1667, 1309; 1H NMR (400 MHz, DMSO-d6) δ
(ppm): 10.39 (s, 1H), 7.95−7.76 (AB quartet, 4H, J = 8.8 Hz), 7.52
(d, J = 7.2 Hz, 2H), 7.37 (t, J = 6.8 Hz, 2H), 7.30 (t, J = 7.2 Hz, 1H),
6.57 (d, J = 4.4 Hz, 1H), 5.16 (d, J = 4.4 Hz, 1H); 13C{1H} NMR
(100 MHz, DMSO-d6) δ (ppm): 172.6, 143.3, 140.8, 133.6, 128.7,
128.3, 127.1, 120.3, 119.5, 105.8, 74.6.

N-(4-Formylphenyl)-2-hydroxy-2-(p-tolyl)acetamide (5r). Off-
white solid; yield: 247 mg, 92%; mp 164−165 °C. The title
compound was prepared according to the general procedure (B)
described above (EtOAc:hexanes = 25:75). FT-IR (KBr, cm−1): 3434,
3092, 2976, 1692, 1562, 802; 1H NMR (400 MHz, DMSO-d6) δ
(ppm): 10.29 (s, 1H), 9.87 (s, 1H), 7.94 (d, J = 8.8 Hz, 2H), 7.84 (d,
J = 8.8 Hz, 2H), 7.40 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H),
6.43 (s, 1H), 5.11 (s, 1H), 2.28 (s, 3H); 13C{1H} NMR (100 MHz,
DMSO-d6) δ (ppm): 192.1, 172.6, 144.6, 137.9, 137.4, 132.0, 131.1,
129.2, 127.0, 119.9, 74.4, 21.2; HRMS (ESI) m/z: [M + Na]+ calcd
for C16H15NNaO3, 292.0950; found, 292.0936.

N-(4-Acetylphenyl)-2-hydroxy-2-phenylacetamide (5s).21 White
solid; yield: 242 mg, 90%; mp 169−170 °C. The title compound was
prepared according to the general procedure (B) described above
(EtOAc:hexanes = 25:75). FT-IR (KBr, cm−1): 3434, 3092, 2975,
1672, 1644, 1556, 815; 1H NMR (400 MHz, DMSO-d6) δ (ppm):
10.29 (s, 1H), 7.98−7.89 (m, 4H), 7.57 (d, J = 7.2 Hz, 2H), 7.41 (t, J
= 7.2 Hz, 2H), 7.34 (t, J = 7.2 Hz, 1H), 6.55 (d, J = 4.8 Hz, 1H), 5.20

(d, J = 4.8 Hz, 1H), 2.56 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-
d6) δ (ppm): 197.1, 172.3, 143.4, 140.9, 132.5, 129.8, 128.6, 128.2,
127.1, 119.5, 74.6, 26.9.

2-Hydroxy-N-(4-methylpyridin-2-yl)-2-phenylacetamide (5t).
White solid; yield: 225 mg, 93%; mp 142−143 °C. The title
compound was prepared according to the general procedure (B)
described above (EtOAc:hexanes = 30:70). FT-IR (KBr, cm−1): 3410,
3056, 2978, 1685, 1647, 1552, 850; 1H NMR (400 MHz, DMSO-d6)
δ (ppm): 9.90 (s, 1H), 8.22 (d, J = 4.8 Hz, 1H), 7.93 (s, 1H), 7.55 (d,
J = 7.2 Hz, 2H), 7.40 (t, J = 7.2 Hz, 2H), 7.34 (t, J = 7.2 Hz, 1H),
7.03−6.98 (m, 1H), 6.57 (d, J = 4.8 Hz, 1H), 5.26 (d, J = 4.8 Hz,
1H), 2.33 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm):
171.8, 151.5, 149.7, 148.3, 140.9, 128.6, 128.2, 127.0, 121.4, 114.0,
73.8, 21.3; HRMS (ESI) m/z: [M + H]+ calcd for C14H15N2O2,
243.1134; found, 243.1127.

2-Hydroxy-2-phenyl-N-(quinolin-8-yl)acetamide (5u). Off-white
crystalline solid; yield: 261 mg, 94%; mp 136−137 °C. The title
compound was prepared according to the general procedure (B)
described above (EtOAc:hexanes = 30:70). FT-IR (KBr, cm−1): 3419,
3071, 2980, 1641, 1554, 881; 1H NMR (400 MHz, DMSO-d6) δ
(ppm): 11.23 (s, 1H), 9.02 (dd, J = 4.4, 1.6 Hz, 1H), 8.70 (dd, J =
7.6, 1.2 Hz, 1H), 8.45 (dd, J = 8.4, 1.6 Hz, 1H), 7.73−7.67 (m, 2H),
7.63−7.55 (m, 3H), 7.41 (t, J = 7.2 Hz, 2H), 7.34 (t, J = 7.2 Hz, 1H),
7.08 (d, J = 4.4 Hz, 1H), 5.29 (d, J = 4.0 Hz, 1H); 13C{1H} NMR
(100 MHz, DMSO-d6) δ (ppm): 171.5, 149.7, 141.1, 138.5, 137.2,
134.1, 128.7, 128.3, 128.2, 127.5, 127.1, 122.8, 122.5, 115.9, 74.5;
HRMS (ESI) m/z: [M + H]+ calcd for C17H15N2O2, 279.1134; found,
279.1131.

2-Hydroxy-2-phenyl-N-(thiazol-2-yl)acetamide (5v). White solid;
yield: 213 mg, 91%; mp 150−151 °C. The title compound was
prepared according to the general procedure (B) described above
(EtOAc:hexanes = 30:70). FT-IR (KBr, cm−1): 3432, 3082, 2979,
1645, 1554, 1077; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 12.07
(s, 1H), 7.60−7.55 (m, 2H), 7.54 (d, J = 3.6 Hz, 1H), 7.41 (t, J = 7.2
Hz, 2H), 7.35 (t, J = 7.2 Hz, 1H), 7.27 (d, J = 3.6 Hz, 1H), 6.38 (s,
1H), 5.37 (s, 1H); 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm):
171.6, 157.9, 140.4, 138.2, 128.7, 128.4, 127.1, 114.3, 73.4; HRMS
(ESI) m/z: [M + H]+ calcd for C11H11N2O2S, 235.0541; found,
235.0538.

N-Benzyl-2-hydroxy-2-phenylacetamide (5w).39 White crystalline
solid; yield: 222 mg, 92%; mp 110−111 °C. The title compound was
prepared according to the general procedure (B) described above
(EtOAc:hexanes = 20:80). FT-IR (KBr, cm−1): 3278, 3083, 2976,
1619, 1295, 754; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.52 (t, J
= 6.0 Hz, 1H), 7.43 (d, J = 7.6 Hz, 2H), 7.32 (t, J = 7.2 Hz, 2H),
7.29−7.24 (m, 3H), 7.23−7.18 (m, 3H), 6.19 (d, J = 4.8 Hz, 1H),
4.97 (d, J = 4.8 Hz, 1H), 4.33−4.23 (m, 2H); 13C{1H} NMR (100
MHz, DMSO-d6) δ (ppm): 172.7, 141.8, 140.0, 128.6, 128.4, 127.9,
127.6, 127.1, 127.0, 74.0, 42.2.

2-Hydroxy-N-methyl-N,2-diphenylacetamide (5x).21 White crys-
talline solid; yield: 224 mg, 93%; mp 128−129 °C. The title
compound was prepared according to the general procedure (A)
described above (EtOAc:hexanes = 30:70). FT-IR (KBr, cm−1): 3423,
3091, 2954, 1656, 1495, 707; 1H NMR (400 MHz, DMSO-d6) δ
(ppm): 7.49−7.38 (m, 3H), 7.30−6.90 (m, 7H), 5.59 (d, J = 6.4 Hz,
1H), 5.06 (s, 1H), 3.22 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-
d6) δ (ppm): 172.2, 143.1, 140.7, 129.9, 128.5, 128.3, 128.2, 128.1,
127.4, 70.6, 37.9; HRMS (ESI) m/z: [M + Na]+ calcd for
C15H15NNaO2, 264.1000; found, 264.0995.

3,3,5-Trimethylcyclohexyl 2-Hydroxy-2-phenylacetate (Cyclan-
delate) (7).35 Colorless liquid; yield: 2.18 g, 79%. Cyclandelate was
prepared according to the general procedure (A) as a mixture of
diastereomers (EtOAc:hexanes = 10:90). FT-IR (KBr, cm−1): 3458,
3091, 2994, 2954, 1738, 1215, 786; 1H NMR (400 MHz, CDCl3) δ
(ppm): 7.43−7.27 (m, 5H), 5.18−5.13 (m, 0.2 H), 5.12−5.07 (m,
1H), 4.99−4.90 (m, 0.8H), 3.67 (dd, J = 13.2, 5.6 Hz, 0.2H), 3.58 (d,
J = 5.6 Hz, 0.8H), 2.05−1.98 (m, 0.4H), 1.81−1.61 (m, 2H), 1.51−
1.41 (m, 0.6H), 1.35−1.25 (m, 2H), 0.95−0.82 (m, 9H), 0.77−0.67
(m, 2H); 13C{1H} NMR (100 MHz, CDCl3) δ (ppm): 173.4, 173.4,
173.3, 173.3, 138.8, 138.8, 138.5, 128.6, 128.5, 128.5, 128.4, 127.0,
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126.7, 126.6, 126.5, 73.8, 73.7, 73.6, 73.4, 73.3, 73.1, 48.0, 47.5, 47.5,
43.9, 43.5, 41.4, 41.2, 40.3, 39.9, 38.5, 38.1, 34.0, 33.8, 33.1, 33.0,
32.5, 32.4, 27.4, 27.2, 27.1, 26.8, 25.6, 25.5, 23.4, 23.1, 22.5, 22.4,
22.3.
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