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ABSTRACT

Hyper-redundant manipulators possess more degrees of freedom (DOF) than the required
number of DOF to perform a particular task. The additional DOF enables to fulfill the
secondary criterion such as obstacle avoidance, singularity avoidance, and joint-limit
avoidance by satisfying the primary task of reaching end-effector to required task space
location. Inverse kinematics (IK) of redundant manipulators remained challenging due to
more number of unknown variables compared to their kinematic equations and equations are

transcendental in nature.

This research proposed an optimization-based approach for determining IK solutions and
redundancy resolution methods of hyper-redundant robots. Planar kinematic model have been
developed and IK solutions are determined for different task space locations by avoiding
polygonal obstacles. An effective collision detection scheme is devised and classical
optimization algorithms were used for evaluating the IK solution. Redundancy resolution is
performed by considering various performance metrics such as joint-distance minimization,
maximization of manipulability measure, and minimization of power consumption. The task
of redundancy resolution is posed as a constrained optimization problem for different end-
effector paths and working environments. Simulations were performed on planar redundant

manipulators with different performance measures.

Spatial representation of the redundant manipulator has been chosen for simulation which can
be suitable for a real-time working environment. To accommodate the flexibility and
manipulability in narrow regions, the joints were modeled with multiple degrees of freedom
(DOF) and are considered as universal joints. Each universal joint has two orthogonal DOF
which are made by pitch axis and yaw axis. The IK problem is multi-modal in nature and it
has multiple solutions. A global search and Multi-start framework have been implemented to
determine the multiple kinematic configurations for a given task location. Performance
criteria such as joint-distance minimization, singularity avoidance, and collision avoidance
have been chosen to perform the task of redundancy resolution. A classical non-linear
constrained optimization technique has been implemented to perform the tasks of inverse
kinematics and redundancy resolution. The 3D collision avoidance scheme was implemented
with a collision detection algorithm by using a bounding box approach. Simulations were
performed for 9-DOF spatial manipulators with 3D obstacles in the workspace. To compute
the IK solution of robot working in complex working environments, restart procedure with

Vi



different initial guess is required with classical optimization algorithms. For such cases, a
population-based TLBO algorithm is implemented to compute the joint configurations of the
robot.

A realistic working environment has been modelled, similar to the industries at which
redundant robots are deployed. IK simulations of 9 DOF spatial robot are performed for
several cases such as pipeline inspection, welding of pipe joints, and pick and place
applications in work facility layout and warehouses. Results of joint configurations are
reported while avoiding the obstacles in the working domains. Results show that the proposed
method is accurate and computationally efficient in determining the IK solution of spatial

redundant manipulators in a multi-obstacle and restricted environment.
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CHAPTER-I

1. Introduction
1.1. Overview:

Recent growth in automation and control improved the rate of advancement and productivity
in industries. Significant part of automation research has been in the field of robotics.
Industrial robots have been used in a wide range of applications for the past several decades
and their usage has been increasing remarkably. These are being used in various applications
such as material transfer, assembling of parts, packing, hazardous environments, etc.

Kinematic control of the robotic system is very crucial while it is working in complex
environments. An essential requirement of a robot is to precisely reach the required location
in the task space by avoiding the obstacles in the workspace. As the robot manipulators are
usually controlled at a joint level, there is a need to transform the trajectory from the
Cartesian space to joint space, which is known as inverse kinematics [1]. Inverse kinematics
and trajectory planning for redundant manipulators is the main task in the development of
robot technology. In many manipulator controllers such as resolved acceleration control [2]
and nonlinear control [3], the IK solutions are used to determine the correction of joint
motions for actuators to move the end-effector to the required pose. The IK problem has got
different applications in other fields like Biomechanics [4] and computer graphics [5] etc.
The motion of the robot is usually undergoing various constraints in both joint space and task
space. Apart from the constraints related to kinematic and dynamic aspects, the performance

metrics of the robot manipulator needs to be optimized.

This research deals with a redundant robotic manipulator working in complex environments

subjected to task space constraints.

1.2. Evolution of robotics

The concept of the robot was first recognized by the Czech playwright Karel Capek in his
drama in 1921. The term “robot™ is derived from Czech word “robota” which means forced
labourer. In 1940, the interaction between robots and humans was envisioned by the three
fundamental laws of Isaac Asimov, the Russian science-fiction writer in his novel “Run-

around”.

The early robots built in 1960’s originated from the combination of two technologies such as

numerical control machines for manufacturing and tele-operators for remote radioactive

1



material handling. During the mid-20" century, the development of integrated circuits, digital
computers and miniaturized components enabled computer-controlled robots to be designed
and programmed. Then industrial robots became essential devices in the automation of
flexible manufacturing systems in the late 1970’s. Further to their wide applications in the
automotive industry, industrial robots were successfully employed in general industry, such
as the metal products, chemical, electronics and food industries.

In the 1980’s, robotics was defined as the science that studies the intelligent connection
between perception and action. The action of a robotic system is assigned to a locomotion
apparatus (wheels, crawlers, legs, and propellers) to move in the environment or to a
manipulation apparatus (arms, end effectors, and artificial hands) to operate on objects
present in the environment. The perception is extracted from various sensors providing
information on state of the robot (position and speed) and its surrounding environment (force
and tactile, range and vision). The intelligent connection is assigned to programming,
planning and control architecture that relies on the perception, which exploits learning and
skill acquisition of robot.

In the 1990°s research was boosted by the need to utilize the robots to address the challenges
in human safety in hazardous environments (field robotics), enhance the human operator
ability and reduce fatigue, develop products with wide potential markets aimed at improving

the quality of life (service robotics).

Robotics has been rapidly expanding into the challenges of the human world in early 21%
century. The new generation of robots is expected to safely co-habitat with humans in homes,
workplaces, and communities, providing support in services, entertainment, education,

healthcare, manufacturing, and assistance.

Artificial intelligence in robotics is revealing a much wider range of applications reaching
across diverse research areas such as biomechanics, haptics, neurosciences, virtual
simulation, animation, surgery, and sensor networks among others. In return, the challenges
of the new emerging areas are proving an abundant source of stimulation and insights for the
field of robotics. Robotics today is dealing with research and development in a number of
inter-disciplinary areas including kinematics, dynamics, control, motion planning, sensing,

programming, and machine intelligence.



1.3. Robot classification

This section presents the classification of robots mainly with focus on serial structures.
Robots can usually be classified based on the number of degrees of freedom (DOF) and their
kinematic configuration. The working capability of a robot can be evaluated by the number of
DOF. A robotic manipulator usually requires a minimum of 6 DOF to reach any position and
orientation in its three-dimensional workspace, whereas the planar manipulator needs 3 DOF
for a specific position and orientation. For a specific application, one needs to design a robot
manipulator based on the number of DOF and kinematic characteristic features of the robot.

Based on the kinematic configuration of the robot structure, robots are mainly categorized
into robot manipulators and mobile robots shown in Fig. 1.1. The basic difference in the
classification lies in the fact that the base link involving a robotic manipulator is fixed
whereas all the links are movable in the task space for mobile robots. Typically, a robot
manipulator is a serial type having an open-loop structure and a parallel type with a closed-
loop structure. Moreover, there can be a hybrid structure that consists of both an open-loop or
closed-loop structure. In general, the type of joints in a robot manipulator can be either
prismatic (P) or revolute (R) whereas the link type may be either rigid or flexible. There are

many combinations of these joints and links create a different configuration of a robot

manipulator.
Robots
A
v v
Robot Manipulators Mobile Robots
A\ 4
J' y A
Serial Manipulators Parallel Manipulators Hvbrid Manipulators

Fig. 1.1. Flow chart representing classification of robots.



The Fig. 1.1 represents the classification of robots when the links of the robot are connected
in a sequential manner forming an open kinematic chain. If there is only one possible path to
track from one end to the other end of the kinematic chain, then it is known as an open-loop
kinematic chain whereas if there is more than one feasible path from one end to the other of
the chain, it is called a closed-loop serial manipulator. The serial manipulator with planar
linkages are easy to model due to their simple kinematic structures. Examples of open-loop
industrial robots include PUMA and SCARA Robots. Serial robots are mainly used in
industries for welding, machining, assembling, and material handling tasks, etc. Fig. 1.2
shows a PUMA robot and Fig. 1.3 depicts a robotic arm performing welding operation. Serial
robots with more number of DOF than the required to perform a desired task is defined as
redundant manipulators. Additional DOF of the robot improves the robot capability and
allows the robot to work in various working conditions. A class of manipulators that denotes
the combination of open-loop and closed-loop kinematic chains are referred to as hybrid
manipulators. This thesis mainly focused on serial manipulators with redundant degrees of

freedom.

WAIST ROTATION

ELBOW ROTATION

GRIPPER MOUNTI!

Fig. 1.2. PUMA 560 robot arm [6]. Fig. 1.3. Robot in industrial applications [7]

1.3.1. Classification based on workspace

The workspace of the robot is defined as the total volume covered by the end-effector while
the manipulator completes the maximum possible movements. The workspace of the
manipulator can be determined by the geometry of the robot structure and the limits of the

joint parameters. There are two types of workspaces which are reachable and dexterous



workspace. Reachable workspace can be described as a space which the end—effector can
reach the limited volume of the workspace in any arbitrary orientation, whereas in the
dexterous workspace the end-effector can access any point in the workspace in any
orientation. But practically dextrous workspace is appropriate for ideal geometries and
generally, it does not suit industrial manipulators. Thus there is a need for the usage of
redundant manipulators in different complex environments, these robots improve the
dexterity of the manipulator. A classification of the robot is explained based on its kinematic

configuration and work envelope of the robot.

Cartesian robot

Cartesian robots have three orthogonal perpendicular slides, giving linear motions along the
three principal axes shown in Fig. 1.4 (a). The endpoint of the arm is capable to work in a
cuboidal workspace shown in Fig. 1.4 (b). The Cartesian configuration can be used when a

large work volume with low dexterity is the requirement.

Cartesian robot ___'f./'ﬂ.
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(a) (b)
Fig. 1.4. (a) Cartesian robot configuration [8] (b) Work volume [9].

Cylindrical robot

Cylindrical robots possess one revolute joint along with two prismatic joints (RPP), this
arrangement creates cylindrical coordinates of end-effector shown in Fig. 1.5 (a). The
workspace of this configuration is restricted as two concentric structures of a cylinder with
finite length as shown in Fig. 1.5 (b). It is suitable to access narrow horizontal spaces and

hence it can be used for assembly and machine loading operations.



(a) (b)
Fig. 1.5. (a) Cylindrical robot configuration [10] (b) Work volume [9].

Spherical (polar) robot

It consists of a prismatic joint that can be raised or lowered about a horizontal revolute joint.
These two links mounted on a rotating base. This arrangement is known as the RRP
configuration shown in Fig. 1.6 (a), which allows the endpoint of the arm to move in a
spherical workspace as shown in Fig. 1.6 (b). Polar configuration robot arms are mainly

employed for industrial applications such as machining, spray painting, and so on.

Fig. 1.6. (a) Spherical robot configuration [10] (b) Work volume [9]

Selective compliance assembly robot arm (SCARA)

SCARA robot is designed for assembly tasks, which provide rigidity along the vertical axis
and compliance along the horizontal axis. The SCARA configuration has vertical major axis
rotations such that gravitational load, Coriolis, and centrifugal forces do not stress the
structure. This makes the SCARA configuration suitable for assembly tasks. This

configuration possesses three revolute joints and one prismatic joint knows RRRP shown in



Fig. 1.7 (a). The workspace of the SCARA configuration is a concentric hollow cylinder
shown in Fig. 1.7 (b).

(a) (b)

Fig. 1.7. (a) SCARA robot configuration [8] (b) Work volume [9].

Articulated robot configuration

The articulated arm is the type of configuration that simulates a human arm and this type of
arm is referred to as an anthropomorphic manipulator. It consists of two links corresponding
to the human forearm and upper arm with two rotary joints corresponding to elbow and
shoulder joints. These two links are mounted on a rotary table corresponding to the human
waist. This configuration is defined as RRR configuration (shown in Fig. 1.8 (a)), the work
volume of his configuration is spherical shape, with proper sizing of links and design of joints
the endpoint of the arm can access full spherical space shown in Fig. 1.8 (b). The
anthropomorphic structure is the most dexterous one and suitable for a wide range of

industrial applications.
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Fig. 1.8. (a) Articulated robot configuration [10] (b) Work volume [9].



1.3.2. Classification of robots based on DOF

Robots are generally classified according to the number of degrees of freedom, degrees of
freedom indicates the capability of the robot. A general task of robot consisting of arbitrary
positioning and orienting the end-effector or tool can be achieved by six DOF or six-axis
robots. Simple tasks such as painting and simple welding can be done with the five-axis robot
and assembly robots often required four DOF to perform a given task

Redundant robots/ hyper-redundant robots

Redundant manipulators have more degrees of freedom than the required to perform a
particular task in the workspace. This high DOF allows the robot to work in the cluttered
environment by avoiding obstacles [11], singular configurations [12], and mechanical joint
limits [13]. This in turn improves the dexterity of the robot in the workspace. Inverse
kinematics of redundant manipulators have multiple solutions, which provides the flexibility
to choose the best solution from the available solutions based on some performance criteria
such as joint torque minimization [14], joint distance minimization [ 15] , and consumption of

energy minimization [16].

Hyper-redundant robot possesses a large number of degrees of freedom shown in Fig. 1.9,
such robots are similar to snakes or continuum robots and are useful in the operation of
highly constrained environments. High degrees of freedom and greater maneuverability in the
workspace makes these robots widely applicable in the fields of medical [17], aerospace [18],
space exploration [19], orbital servicing such as space craft construction repair maintanence
[20] etc, underwater exploration, and nuclear core reactors. The additional DOF of the
redundant manipulator makes this robot more suitable to work in a wide range of
applications. Some of the industrial applications of redundant robots are welding,
Assembling, machining and additive manufacturing [21], shown in Fig. 1.10. Redundant
robots has been employed in rescue missions, inspection and manipulation of complex pipe
installation and nuclear plant installations [22] etc. Fig. 1.11 shows the robot employed in on-
orbital servicing. Redundant robots working in space exploration shown in Fig. 1. 12. The
kinematic structure of the redundant manipulators offers an advantage to applying various
additional task constraints other than the primary task of reaching the end effector in the task

space.



Fig. 1.10. Redundant robots working in industrial
applications [21]
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Fig. 1.11. Hyper-redundant manipulator
working in on-orbital servicing
applications [24]

Fig. 1.12. Redundant robot working in
space exploration [25]

Deficient manipulator

Deficient manipulators are referred to as those that possess less degrees of freedom than
required to achieve admissible configuration in the workspace [26]. This type of manipulator
can be used to perform certain tasks in the operational space, for which total DOF of the
robot is not required to move the manipulator in a specified direction. Multiple kinematic
deficient robots can be employed as cooperating robots to perform a common task in
industrial application. Kinematic deficient manipulators can be used, unless kinematic
redundancy is required in the task space and joint space to avoid obstacles and singularities.
These manipulators gain the advantage over redundant manipulators in terms of

manufacturing cost and compactness.

In this thesis, hyper-redundant manipulators working under different environments were

presented.



1.4. Motivation

Generally, more complex serial robots are designed and built to suit a wide variety of
applications. Many of them are modelled with multiple links/arms and they are redundant.
This redundancy gives more flexibility and the robots can not only reach a particular position
but also reach it with several configurations, thereby secondary goals can be achieved. More
recently, there is renewed interest in the use of hyper-redundant manipulators due to their
increased applications in all the fields. The use of redundant robots in different applications
is shown in Fig. 1.13 (a-c). Fig. 1.14 (a-c) shows the use of hyper-redundant robots in
medical and surgical applications. The characteristic equations of kinematic problems are
non-linear and transcendental for which, closed-form solutions are not always possible. The
variables in the equation are multi-valued and provide multiple solutions and they are
configuration dependent. The task of resolving the best solution among the multiple solutions

is known as redundancy resolution, which requires to choose objective satisfying task

~rnnctrainte
Industrial robot

Stern propeller
module

Tunnel thruster module

(a) (b) ()

Fig. 1.13. Hyper-redundant manipulator (a) Industrial application [27] (b) Tunnel inspection [28]
(c) Under water inspection [29].

Simalated pelvic adoesa with
B ovaries and anteverted uterus
\

Alignment target; defines
start and end of task. I

(a) (b) (c)

Fig. 1.14(a-c) Hyper-redundant manipulator in surgical applications [17, 30, 31].
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There are several methods for redundancy resolutions. Some of the issues with redundancy
resolution methods such as computation of Jacobian inverse for the under-determined system
are computationally expensive and it is sensitive at singular configuration. The kinematic
control of redundant manipulator, suitable to access narrow regions such as ducts and
pipeline passages involves a certain difficulty in avoiding different shapes obstacles and
accessing in different working environments. The task of modelling a suitable kinematic
structure of a redundant robot for the required environment is crucial. The design of a
redundant manipulator is suitable to work in narrow regions and hazardous working
environments. Parameters to be considered while controlling and designing a redundant robot
such as type of DOF, kinematic structure, mechanism, and type of material. The challenges
involved in solving the inverse kinematics of redundant robots increased the attention of
researchers towards the problem. The research presented here was focused on the IK solution
and trajectory planning of a 9 degree-of-freedom manipulator, meant to use in an industrial

manufacturing environment

1.5. Problem formulation

The general purpose of the IK problem of a manipulator is to find a configuration in the joint
space so that the position and/or orientation of the end-effector(s) satisfy desired kinematic

constraints.

The configuration of the end-effector is expressed by a vector function x(@) in terms of joint

variables. The target location for the end-effector pose can be given by a vector x ,. The aim
is to find the feasible values of a vector@ such that X(g) =X, .The solution of the IK

problem leads to minimization of the Eucledian distance between current configuration of the
end-effector and the configuration at the target location, this can be obtained by solving the

following non-linear system of equations
E(6)=0 (1.1)
subjected to constraints

6<6<6, (1.2)

where 6, and 6, represents the lower and upper bounds of the joint variable and
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E(@)=E(X(8),X,) is a positional error function vector, the detail of the error function

vector will be discussed in chapter 3. This error function allows the robot to reach required

task space location. In addition, to the primary task of reaching end-effector to the task space

location an additional performance criterion such as Joint-distance minimization joint-torque

minimization and singularity avoidance have been considered. The formulation of these

performance criteria have been presented in subsequent chapters

1.6. Outline/ organization of the thesis:

The thesis is organized in the following manner,

VI.

VII.

Chapter 2 deals with literature related to inverse kinematics and redundancy
resolution methods of hyper-redundant manipulators. This chapter also presents
different techniques of obstacle avoidance, singularity avoidance, and joint limit
avoidance and their limitations.

Chapter 3 describes kinematic and dynamic analysis of robot. This analysis helps to
understand the fundamental concepts of manipulation and performance criteria of the
robot.

Redundancy resolution techniques were presented in chapter 4. These techniques find
the best solution among feasible solutions based on robot performance criterion.
Collision avoidance is a crucial requirement for a redundant robot while working in a
cluttered environment. Chapter 5 presents different types of collision detection and
avoidance techniques of a redundant manipulator working in a planar and 3D
environment.

The optimization techniques used for determining IK solutions are briefly explained
in chapter 6. Global optimization techniques used to evaluate multiple solutions of the
robot are also presented in this chapter.

In chapter 7, IK simulation of the redundant robot in a planar workspace with convex
and non-convex obstacles is presented. The task of redundancy resolution is
implemented on a planar robot while avoiding both obstacles and singularities. The
objective of minimizing power consumption of planar robot tracing different paths is
performed

In chapter 8, IK simulations are performed on a 9 DOF spatial redundant manipulator
by avoiding 3D obstacles. Multiple solutions of the spatial robot are attained using a

global optimization approach. Spatial redundant robot simulations are performed

12



while the robot is deployed in real-time applications such as work facility layout, pipe
layout, and warehouse models.

VIII.  Concluding remarks of the thesis and scope for the future research work is included in
chapter 9.
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CHAPTER-II

2. Literature Review

The advancement of robot technology and the increasing use of robots in various applications
IS gaining the attention of researchers in the field of robotics. The focus has been laid on the
issues related to kinematic and dynamic aspects is important as the robots are used for
different tasks. There is a large increase in the use of redundant manipulators in a wide range
of applications due to their additional degrees of freedom (DOF). This extra DOF improves
the capability of the robot to work in narrow and cluttered environments. The inverse
kinematic (IK) solution is the primary task while exploiting different abilities of the
manipulator such as obstacle avoidance, joint limit avoidance, and singularity avoidance, etc.
Hence, this draws huge research attention to IK and control of redundant robots. A lot of
research has been carried out in IK solution and redundancy resolution techniques of
redundant manipulators. This chapter describes various IK solution, redundancy resolution,

and obstacle avoidance techniques of redundant manipulators.

2.1 Kinematic modelling

A robot consists of a set of rigid bodies called links connected by joints. A simple type of
joints that are generally used are revolute (rotational) and prismatic joints (translational). The
kinematics of any robot can be described by its position and orientation of end-effector
corresponding to the joint configuration. This is a mapping from joint space to task space and
is known as forward kinematics. Therefore, kinematic modelling is commonly referred to as
the forward kinematics of the manipulator. Several schemes have been proposed for the

forward kinematics of robot manipulators.

2.1.1. Denavit-Hartenberg notation

The manipulator motion can be analyzed by considering a standard procedure of building a
coordinate system on each link. This was first introduced by Denavit and Hartenberg (DH) in
1955 [32] which establishes coordinate frames attached to each link of the frame in a
systematic manner. The DH representation for a given posture of end-effector specifies a
displacement for the joint-link couple by defining four parameters the link length a; , link
twist a; joint angle 8; and link offset d;, shown in Fig. 2.1. According to this convention,
the position and orientation of each link in the coordinate system are related to the previous

link is represented by a 4x4 homogenous transformation matrix.
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Fig. 2.1. Standard DH representation of a revolute joint [32].

Although DH notation represents convenient kinematic modelling, it is only suitable for some
classes of robots because of constraints involved with an overdetermined system that is used
to describe the displacement between two frames. This issue can be handled by providing

some virtual joints on some links whose geometry violates these constraints.
2.1.2. Gupta notation

K C Gupta [33] introduced the zero reference position method as a new technique for
handling the kinematic problem. The computation of the current posture of the link depends
on the displacement of the mechanism from the zero reference position instead of joint-to-
joint computations. Manipulator description in this approach gives a better understanding of
motion. The disadvantage of this convention is that it cannot furnish itself with a robot

functional classification.

2.1.3. Sheth and Uicker convention

This convention was developed by P. N. Sheth and J.J. Uicker [SU] in 1971 [34], which

extends the use of DH parameters to all rigid link mechanisms. Due to the increased
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flexibility in the choice of a coordinate system, this convention requires six parameters to
define the shape of the link. SU is known as two frame convention since it requires two
frames that are specifically defined and placed for each joint. This convention simplifies the
kinematic description of an arbitrary mechanism and enables the computation of forward
kinematics. In comparison with the standard DH convention, this convention establishes an
extra frame for each joint and generality of the description can be attained.

2.2. Inverse kinematics solution techniques

Kinematic control of redundant manipulator mainly requires IK solver, Inverse kinematics
approaches have been extensively investigated. 1K methods are broadly categorized into
analytical, geometrical, numerical, or iterative and evolutionary-based approaches. This
section describes the inverse kinematic approaches of redundant manipulators by considering

secondary criteria such as obstacle, singularity, and joint-limit avoidance.

2.2.1. Analytical approaches

Analytical or closed-form solutions for the IK problem can be obtained for a simple
manipulator with less number of DOF. This approach is computationally fast and it can find
all possible solutions. One of the first analytic solution was proposed by Piper in 1968 [35],
presented closed-form techniques for six DOF manipulators when any three consecutive joint

axes intersect at a common point.

It was observed that arms with serial links are best suitable for having an analytic solution
with spherical wrist manipulation. In many of the arm chain models, the wrist partitioning
technique has been used [36]. In this technique, the arm is assumed to be separated at the
wrist joint and the hand is desired to move in the space so that the end-effector satisfies
desired kinematic constraints. In this method, the position of the wrist center is determined
according to the desired position and orientation of the end-effector. The remaining portion
of the arm is assumed to trace the position of the hand so that the wrist joint is considered as
an end-effector for the rest of the arm. Hollerbach and Sahar in 1983 [37] proposed analytical
solutions for 6R human arm using wrist partitioning technique. Shimano and paul [38] also
proposed an analytical IK solution for Stanford robotic arm. A unique closed-form IK
formulation is not available for all 6 DOF manipulators. In such cases, numerical techniques
have been implemented. Several innovative analytical approaches have been proposed for
certain specific geometries. Mihelji [39] proposed an analytical approach for the IK solution

of a human arm model robot used for rehabilitation purposes. Analytical approaches have

16



also been proposed for robots with more than 6 DOF. Shimizu et al. [40] Proposed an
analytical IK solution for 7 DOF redundant manipulators by specifying joint limits, which
furnish all the feasible 1K solutions among the global configuration space. In this approach, a
closed-form IK Solution was achieved using the parameterization method and later analytical
technique has been developed for computing the IK solution within the joint limits. The
redundancy resolution problem has also been solved using this approach in the position
domain. The disadvantage with the analytical approach is that, these are configuration

dependant methods and do not exist for a general manipulator with arbitrary geometry.

2.2.2. Numerical iterative approaches

The numerical iterative approach has been widely employed for IK of redundant

manipulators, for those explicit closed-form solutions do not exist.

The most commonly used algorithm to solve the non-linear kinematic equations is the
Newton-Raphson technique, which works based on simultaneous successive linear
interpolation of non-linear equations [41]. In this method, the non-linear system is
represented with a linear function by considering only first-order terms of the Taylor series of
the function representing the kinematic constraints [42]. As this approach uses a first-order
approximation to the non-linear equations, the convergence rate is slower when compared
with second-order approaches. Although these techniques have faster convergence than the
gradient descent method. The disadvantage with this approach is that the iterative procedures
may diverge due to poor initial guess. Piper [35] used the Newton Raphson approach initially
for solving the IK problem. In his approach, he proposed two different methods for the
forward kinematics problem with different conventions. In one case, the forward kinematics
is assumed as homogenous transformation matrix multiplication and in the other, it is viewed

as a screw transformation matrix.
Jacobian based methods

The Jacobian of a manipulator is the matrix that linearly transforms joint velocities into the
end-effector velocities [43]. Different Jacobian based approaches have been implemented for

solving the IK problem, some of them are presented below
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Gradient descent method

This approach tries to move the joint variable value towards the direction in which the square
norm of error vector decreases with the maximum possible rate [44], the direction is defined
as the steepest descent direction which is specified as

§=-vg(8)=-3,(6) .¢(9) (2.2)
where e (6 ) is the vector representing the error residual function, J, is the Jacobian matrix.

g(9) is the square of the norm of error residual function, given as.

g(@)=lle(0)I 2.3)
The joint angle update rule is represented as
AO=pu-6 (2.4)

where u indicates the value of step size.

The procedure continues till the norm converges to zero [45] i.e. all the kinematic constraints
are fulfilled. This approach does not require Jacobian inverse, thus it is computationally
inexpensive and there are fewer chances of facing divergence issues in the iterative process
when compared with Newton Raphson algorithms. The limitation of this approach is that it

has a slow convergence rate after some iterations.
Jacobian inverse

A solution to the IK problem aims to determine the roots of the nonlinear equation by using a

Newton-Raphson technique.

The formulation of the IK problem creates m equations and n unknowns, where n is the
number of joints and m is the number of elements corresponding to the task space locations,

by assuming the equality of number of equations and number of unknowns. Solution of this

problem using Newton-Raphson approach leads to joint update rule

AG=-1"e (2.5)

e

The Jacobian inverse method converges faster than the gradient descent method however it
suffers from a limitation that the inverse of Jacobian is sensitive and ill-conditioned at the

vicinity of the singularity.
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Hessian based methods

Unlike the Jacobian based methods used to solve the system of kinematic equations, in
optimization-based or Hessian based approaches, the IK problem is considered as a nonlinear
optimization problem [46]. In this method, the problem is formulated in a way to find joint
variable vector @ that minimizes the objective function f(#). Computation of the Hessian
matrix is required to compute the solution of the IK problem. Hessian matrix deals with the
second derivative of the error function with respect to the joint variable. Although this
approach is numerically stable than Jacobian inverse methods, higher complexity is involved
while calculating the Hessian inverse. The major issue with this approach is, the algorithm
needs to perform the pseudo-inverse of Jacobian to exploit the redundancy of the

manipulators. This increases the computational cost even further.
Heuristic search methods

The heuristic search method does not require gradient information for solving the IK
problem, these methods are not computationally expensive but the local convergence rate is

slow when compared with gradient-based methods

The cyclic coordinate descent (CCD) method is being used popularly for solving the IK
problem of serial manipulators [47]. It is a numerical iterative approach that works to
minimize positional and orientation errors by operating a single joint at a time, starting from
end-effector to base. Although this approach is effective, it cannot handle the global

constraints of the manipulator.

2.2.3. Hybrid analytical/numerical methods

Analytical methods for solving the IK problem involve complex trigonometric equations. For
redundant manipulators, the problem is underdetermined and it is also required to satisfy
additional task constraints. However, there are some approaches to exploit the features of
analytical solutions for a manipulator with complex geometries. Some algebraic methods
have been used for IK solutions using algebraic elimination which expresses one of the joint
variables as the roots of the polynomial equation and other joint variables are determined in
terms of a known variable using closed-form procedures [48]. These methods are sometimes
referred to as analytical solutions. As the degree of the polynomial is greater than four, an
iterative procedure must be employed to solve the given problem. However numerical

algorithms for solving the roots of the polynomial equations are fast and reliable. These
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solutions are not available for all categories of the manipulator, but they are less
configuration dependent when compared with pure analytical approaches. Algebraic
techniques can give all feasible solutions for a given IK problem. These approaches can also
be used for the symbolic computation of the IK solutions. Ananthanarayanan and Ordonez
[49] presented a hybrid approach by combining analytical and numerical approaches for
computing the IK solution of generalized (2n+1) hyper-redundant manipulators. In this
approach, a spherical joint is considered at a wrist with obstacle avoidance and joint-limit
avoidance as a secondary criterion. This method utilizes the simplicity of the analytical
approaches to improve the speed of the numerical solvers that operate on each joint position
individually, thus this method considerably improves computational efficiency.

2.2.4. Geometric approach

The geometrical approach has been largely used for computing the 1K solution of redundant
robots. It has the benefit of good geometric intuition and less computational cost . Chirikjian
and Burdick [50] adopted a geometric technique for computing the IK of hyper-redundant
manipulators by representing them as a characteristic curve of a robot, known as the
backbone curve. The discrete manipulator was modelled as a continuous curve. The IK
analysis was performed by fitting the physical manipulator to the backbone curve. In this
approach, obstacle avoidance has been performed by considering tunnels as obstacles. This
approach is suitable for a discrete planar manipulator with high DOF and also well suits for
the continuous manipulator. Xu et al. [24] proposed a modified modal approach for
computing the mission-oriented IK of hyper-redundant manipulators that are used for orbit
servicing applications. To represent the geometry of the manipulator the 3D backbone curve
is specified using the mode functions. The equivalent link of the robot is fitted to the
appropriate backbone function. Joint angles were determined by evaluating the position of
each node. The coordinate points of each node can be obtained by fusing the complete length
of the manipulator and mode functions. An additional parameter called arm angle is used for
the redundancy problem. This approach is implemented for 12 DOF robots satisfying
additional tasks such as obstacle avoidance and singularity avoidance. Menon et al. [51]
presented a geometric approach for motion planning of hyper-redundant manipulators. This is
an optimization-based approach where the motion of the links of the manipulator was
supposed to take the motion of the Tractrix curve. The velocity of the curve lies along with
the link and it is least among all the possible velocities. The hyper-redundant manipulators

are represented by splines and a Tractrix based algorithm is employed to obtain length
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conserving motion of the hyper-redundant robot. In this approach, better visualization of
motion can be obtained due to localized shape control and higher-order continuities that are
available in splines. Sardana et al. [52] presented a simple geometric technique for computing
the inverse kinematics of a four-link redundant manipulator of an in-vivo robot for medical
applications. In this approach, redundancies are introduced by providing twisting joints to
some of the joints. This approach provides an IK solution easily for a surgical robot used for
biopsy application and it is computationally efficient. Yahya et al. [53] used a geometric
approach for computing the IK solution of redundant manipulators for a given path.
Manipulability measure has been calculated to show how far the manipulability value is from
the singularity configuration. The advantage of this approach is, the angle between two
adjacent links is assumed to be the same. This makes the movement of links stable and hence
controlling of links is easier. The limitation with the geometrical approach is that a closed-
form solution should be available geometrically for the first three joints and computing the 1K

solutions for these joints are time-consuming.

2.2.5. Evolutionary approaches

Computation of IK solution by the evolutionary approach is popular and they have been
widely used for different robot configurations. Parker et al. [54] make use of genetic
algorithms to compute the IK problem of redundant robots by minimizing joint displacement.
This approach has a limitation of poor precision in the solution. Koker [55] applied neural
networks and genetic algorithms jointly to determine the solution to the IK problem of the
Stanford robot by minimizing the positional error at the end-effector. This approach
combines the features of both neural networks and evolutionary approaches and results in
more precise solutions. Better accuracy of the solution can be achieved by training three
Elman neural networks using separate training sets. One of these trained sets gives better
results than the other two training sets and the floating portion of each set is placed in the
initial population of the genetic algorithm. Bingul et al. [56] applied a neural network by
employing a back-propagation algorithm to compute the IK problem of an industrial robot
with an offset wrist. The limitation of this approach is, it cannot give multiple solutions to the
IK equations. The neural network approach typically requires large training sets whose size
increases exponentially with the number of DOFs. Nearchou [57] proposed an evolutionary
approach of binary-coded genetic algorithm to find out the unique solution to the IK
equations of the redundant and non-redundant robots. This work shows that the evolutionary

approach was superior to the pseudo-inverse method and simple binary-coded genetic
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algorithm. Further, it was shown by Deb and Agrawal [58], is that for continuous search
spaces real-coded genetic algorithms were more suitable.

One of the popularly used evolutionary approach which mimics the teaching learning
environment in a class room is teaching-learning-based optimization (TLBO). TLBO
algorithm has been applied in various fields of science and engineering. The main advantage
of TLBO is that, it doesn’t require any algorithm-specific tuning parameters like crossover
and mutation rate in GA, acceleration constants like c; and c; as in PSO, etc. Rao et al. [59]
proposed the Teaching-Learning-Based Optimization (TLBO) algorithm for the optimization
of mechanical design problems.The effectiveness of the method is validated on several
problems. The examples considered include five benchmark optimization test functions, four
mechanical design problems and six real-world mechanical design optimization problems.
The obtained results of the proposed algorithm outperformed the previous results obtained by
other population-based optimization algorithms. The convergence rate and computational
effort are better for TLBO over other evolutionary optimization methods. Rao et al. [60]
applied TLBO for large scale non-linear optimization problems. The efficiency of the TLBO
algorithm was compared with other popular optimization algorithms (GA, ABC, PSO, HS,
DE, Hybrid-PSO) by considering several different benchmark problems with different
characteristics. The results obtained by TLBO algorithm showed its applicability for large
scale problems. Awatef et al. [61] adopted TLBO technique for navigation problem of mobile
robots, this technique is employed for optimum trajectory and minimum travelling time of the
robot to reach the goal. To show the efficacy of the approach, the TLBO approach has been
compared with other evolutionary approaches. Savsani et al. [62] made a comparative study
of seven different metahueristic methods for the trajectory planning of 3 DOF robotic arm by
minimizing joint travelling time, joint travelling distance and total joint Cartesian lengths
simultaneously. Results show that TLBO algorithm is significant over other optimization
algorithms. In the present thesis, TLBO algorithm is used for solving IK problem of hyper-
redundant manipulator working in complex environment. In general, classical optimization
techniques can be employed for solving IK problems. But in complex domains, classical
approaches fails to give solution with single initial guess. Thus, TLBO algorithm is employed
for solving the IK problem in complex domains. The detailed explanation of TLBO approach
is presented in chapter 6. IK simulation results using TLBO algorithm are reported in chapter
8.
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2.3. Methods of redundancy resolution

To take the advantage of redundancy, numerous computational schemes have been adopted.
Many researchers have implemented the idea of the pseudo-inverse technique [42] to attain

the joint velocities which minimize the joint rates in the least square sense.

2.3.1. Jacobian pseudo-inverse and its variants

One of the extensively used redundancy resolution techniques is the optimized inverse of
Jacobian, known as least square or Moorse-Penrose inverse [63]. This inverse can minimize
the cost function instantaneously. The cost function is defined as the Euclidean norm of the

joint velocity vector
j=n
g(Af) =2 (40))? (2.6)
j=1

This cost function is better approximated when compared with the Newton-Raphson
technique. Hence, this approach leads to faster convergence. In the pseudo-inverse approach,
redundancy is utilized to minimize the joint velocities or norm of deviation of joint velocities

from the current configuration.

This method is also utilized at the joint acceleration level by adding the null-space term to
satisfy the additional secondary criteria such as obstacles [64], singularity [65], and joint-

limit avoidance [66], and joint torque minimization [14].

The idea of the extended Jacobian method was first proposed by Baillieul [67], this approach
is used to execute obstacle avoidance based on optimizing a distance criterion. In this
approach, the equations of velocity have been provided with additional equations equal to the
number of unknown joint velocities. To make the gradient as zero in the null space of
Jacobian, n-m rows are added to the Jacobian matrix. Maciejewski and Klein [64] proposed
an extension to Jacobian based IK formulation to integrate obstacle avoidance. This approach
is to evaluate the joint angle velocities of redundant manipulator working with multiple goals
such as the primary target of reaching specified end-effector trajectory and the secondary
criterion as obstacle avoidance. This was achieved by decomposing the solution into a
particular and homogenous solution, which will exactly represent the priority of the tasks.
The end-effector control is achieved by maximizing the distance of links from obstacles. In

general, Jacobian methods lack sensitivity at joint limits and have singularities. Kircanski and
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Petrovic [68] proposed an IK solution for 7 DOF Robot avoiding singularities. This approach
reduces the computational burden by combining the analytical and pseudo-inverse approach.

Liegieos [69] proposed the idea of generalized inverses by utilizing the null space of the
rectangular Jacobian. The null space combines the homogenous solution that provides joint
motion and does not contribute to end-effector motion. A performance function is being
projected on to the null space and the obtained IK solution can optimize the function value. A
potential function can be chosen to fulfill the performance requirement of a redundant
manipulator. For the task of joint limit avoidance, the joint midrange is selected as a
performance metric that measures the deviation of joints from the mid-value, which is given

as

n mid 2
g(a) Z((gmax eemmj (27)

Similarly, a performance measure of redundant manipulators has been chosen, that avoids
singular configurations. The main limitation of the gradient projection method is that it
cannot guarantee that a given configuration is feasible or not since the performance criteria
are expressed by a scalar metric. A feasible configuration might be exist corresponding to a

higher value of the potential function when compared to a non-feasible configuration.

A new redundancy resolution technique using task priority proposed by Chiaverini [70], this
approach can deal with kinematic and algorithmic singularities. This technique has been
implemented for 7 DOF redundant robot arm. Huo and Baron [71] presented a twist
decomposition algorithm avoiding joint limits and singularities of a redundant robot in a
welding application. Singla et al. [72] presented a high index norm minimization approach
for redundancy resolution of serial manipulators. In this approach, they have interpreted
different norms of intermediate indices and observed that 8-norm solutions are found to be

better than other minimum norm solutions.

2.3.2. Configuration control

Another redundancy resolution technique is the configuration control method proposed by
seraji [73]. This approach combines the forward kinematics of manipulator with a set of
kinematic functions in joint space or Cartesian space that consider the additional task of the

redundant robot.
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2.3.3. Penalty function method

A popular approach implemented for redundancy resolution is the penalty function method
[74] in this approach penalty function is being added to the objective function. The algorithm
searches for the minimum value while the penalty function increases its value when a specific
condition violates. This approach can be used to avoid joint limits and obstacle avoidance.
Zhang et al [75] proposed a similarity in position-based and velocity-based redundancy
resolution approaches and found they were equivalent. A classical optimization-based
approach has been presented for the IK solution of hyper-redundant manipulator avoiding
both obstacles and singularities [76] was implemented at a joint position level. In this
approach, there is no Jacobian computation thus reduces the computational burden of the IK

solution.

2.4. Trajectory planning

The redundant manipulators while operating in different environments, it is important to
attain smooth trajectories that avoid mechanical vibrations of the robot. Thus trajectory
planning of redundant manipulators is an important aspect to be considered in the kinematic
analysis of robots. Menasri et al [77] formulated a bi-level optimization problem for trajectory
planning of redundant manipulators and solved using a bi-genetic algorithm.

B-spline interpolation [78, 79] techniques are another class of approaches for solving
trajectory planning. In these approaches, trajectory planning is executed without using the
inverse of the Jacobian matrix. The idea of using optimal motion planning with optimal time
as a performance criterion has been chosen for path planning under the B-Spline assumption
in the task space [80]. A new idea based on the variational approach [81] was attempted. In
this approach, the trajectories of the robot joint space were represented as a B-spline curve
and the measure of performance is directly integrated through the trajectory of the end-
effector. Xidias [82] implemented an optimal time trajectory planning for hyper-redundant
manipulator in 3-Dimensional workspaces with obstacles. This approach evaluates an
optimization problem to determine the joint trajectories with minimum time consumption
while executing the required tasks.

Numerous works have been carried out on the optimization of robot trajectories by
minimizing the total energy consumption [83] and torque minimization [14]. Devendra and
Manish [84] presented an approach to optimize the torque applied at the joints and they have

implemented a genetic algorithm to solve the problem. Hirakawa and Kawamura [85] adopted
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a new scheme for achieving the trajectory of a redundant robotic arm that minimizes the total
energy consumption of the robot. Saramago and Stefen [86] implemented the trajectory
planning of a robotic arm to minimize energy consumption and travel time. Zhang et al. [87]
implemented a unified quadratic programming-based dynamic system for minimizing the

applied torque of redundant robots.

2.5. Obstacle avoidance techniques

Collision avoidance is an important criterion to be considered in IK and motion planning of
robots. Different Collision avoidance techniques have been adopted for redundant robots. The
most popular method proposed for obstacle avoidance is an artificial potential field approach
[88]. In this approach, an artificial potential field was developed and geometric modelling of
obstacles was done using analytical primitives. This potential field forces the manipulator
towards the target location while moving the links of the robot away from the obstacles. The
task of collision avoidance is considered as high-level planning which is executed as an
effective component of low-level real-time control. This approach has been used for robot
manipulators and mobile robots. The limitation with the potential field approach is that the
solution traps in the local minima. The Pseudo inverse of Jacobian and its variants such as
extended Jacobian [67] and task priority approaches [89] have been widely used for local
control of redundant robots avoiding obstacles. The main limitation of the Jacobian-based

methods is that the kinematic and algorithmic singularities are involved in IK computation.

Chirikjian and Burdick [90] implemented a geometric approach to manipulate the robot in
tunnels based on discrete modal technique. Differential geometry methods are used to
formulate the equations of manipulator that locates inside the tunnels without colliding the
obstacles. The limitation of this approach is defining the modal functions, which require
several sets of modes to span the entire robot workspace, and proper mode switching
mechanisms need to be performed. Choset and Henning [91] proposed a road map based
generalized VVoronoi graph for motion planning of a serpentine robot. This approach offers an
advantage since it uses the follow the leader approach to represent the backbone curves
through the environment. This approach reduces the computational burden associated with
highly redundant manipulators. Menon et al. [51] presented an optimization-based approach
for motion planning of hyper-redundant manipulators avoiding obstacles. In this approach,
the algorithm is purely geometric and the obstacles were defined by smooth and

differentiable functions that are suitable for a gradient-based optimized algorithm.
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Another class of obstacle avoidance methods was performed by implementing polyhedral
collision detection techniques. These techniques works based on computational geometry
algorithms. The polyhedral interference-based approaches have been used for collision
detection and computation of the distance between two objects [92]. Hubbard [93]
implemented a method for collision detection by modelling polyhedral objects with bounding
spheres, which are hierarchically arranged for the representation of the robot model. In this
approach, the condition for collision detection was performed by checking the distance
between the centers of two spheres is smaller than the sum of their radii. The limitation of
this approach is that the accuracy of collision detection can be improved by approximating
the geometric model with more number of spheres, which is computationally expensive. The
bounding box approach has been used extensively for collision detection of robots. Van
Henten et al. [94] implemented a bounding box approach for representing the links of the
robot, and later the bounding boxes were transformed into hierarchical bounding spheres with
different levels of refinement. This technique is computationally fast but accuracy in collision
interference is low. The collision avoidance techniques presented in the literature are adopted
for different types of obstacles. The limitation with these approaches is, obstacle modelling

and collision interference techniques are quite complex.

2.6. Multi-modal optimization

The modularity of robots has been practiced in the design of robot mechanisms for flexibility
and ease in maintenance. A modular, reconfigurable robot consists of a set of standardized
modules that can be arranged to different structures and DOFs for diverse task requirements
[95]. The multi-modal nature of the IK problem offers multiple solutions. Kalra et al. [96]
solved the multi-modal IK problem of an industrial robot by using a real-coded genetic
algorithm, which is a fitness sharing niching method. The task of redundancy resolution in
this approach is performed by selecting the joint configuration that is closest to the current
robot configuration in the joint space. The limitation of this approach is to set more unknown
parameters. These parameters rely significantly on the nature of search space, which makes
the approach configuration dependent. Tabandeh et al. [97] proposed an adaptive niching
technique to solve the IK of a serial robotic manipulator with an application to modular
robots, which was able to determine multiple IK solutions. This approach combines the real
coding and clustering process, this improves the accuracy of the end-effector for random task
points. Unlike other niching algorithms, this approach needs a few parameters to be set. This

feature permits the algorithm to be applied for computing the IK solution of any robot
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configuration. From the literature, it is observed that the use of the niching based approach
for computing the multiple IK solutions of industrial and redundant robots. Though the
method is efficient it is computationally expensive. Espinoza et al. [98] proposed an inverse
kinematic solution of a 10 DOF modular hyper-redundant robots, multiple solutions of the
robots are evaluated using exhaustive and error-optimization approaches. In this approach, a
comparison has been made among different global optimization approaches. In this thesis,
classical optimization methods have been used for evaluating the global minimum and
multiple 1K solutions. This significantly reduces the time, and it can also be applied to a wide
variety of robot configurations.

2.7. Observations from the literature

Some of the major points observed in the literature

I. Due to increase in the use of redundant manipulators in all the fields of science and
engineering, there is a huge research scope in analysis and development of these
manipulators in different working environments. Since IK is the basic requirement for
the control of robots, a lot of research has been carried out in inverse kinematics and
redundancy resolution methods of hyper-redundant manipulators.

Il.  The pseudo-inverse of Jacobian is extensively used to determine the IK solution of a
redundant manipulator. The task of redundancy resolution is implemented by
satisfying different secondary requirements using the null space of the Jacobian
matrix. The limitation of this technique is sensitivity at singular configurations.

1. Another popular approach used for IK solution is the geometric approach, this is used
because of its good geometric intuition and low computational cost. The difficulty
with this approach is that a closed-form solution must prevail geometrically at least
for a few joints.

IV. In the literature, several collision detections and avoidance techniques have been
implemented for collision avoidance of redundant manipulators in different working
environments, these approaches are quite complex. Hence, there is a need for simple
and effective collision avoidance.

V. Evolutionary approaches have also been used for solving the inverse kinematics
problem. These approaches are computationally expensive and lack in precision.

VI.  The characteristic feature of the IK problem is multi-modal in nature, hence global

optimization techniques need to be implemented to determine multiple solutions.
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VII.

VIII.

These multiple solutions are helpful to evaluate the configurations of reconfigurable
robots.

Multiple configurations of the robot were determined using the niching based
approach, which is a fitness sharing method. These approaches require more
algorithmic control parameters to initiate the process.

In the literature [24,52,71], redundant robots has been employed in orbital servicing,
medical and welding applications. The issues related to kinematics, dynamics, and
design of these manipulators remained challenging. Hence, there is a need for
analyzing IK Solutions and kinematic control of redundant robots with different

kinematic structures working in complex environments.

2.8. Objectives of the Thesis

The main focus of the thesis is

To develop a computationally efficient method for the 1K solution of hyper-redundant
robots working in complex environments.

To improve the performance of redundant manipulators while reaching the desired
task space location by optimizing different performance criterion such as

e Joint distance minimization

e Singularity avoidance

e Joint torque minimization

To develop an effective collision avoidance scheme for redundant robots with
polygonal and 3D obstacles in the working environments.

To analyze multiple 1K solutions of the robot that are suitable for working in diverse
task space requirements.

To explore the performance of spatial redundant robots that are adaptable for working
in realistic environments such as plant layout, pipe-line inspection, work facility
layout, and warehouse application, etc.

Research hypothesis

Research hypothesis is to employ classical optimization techniques to solve IK

problem of hyper-redundant manipulators in complex working environments.

The charecteristic feature of IK problem is of multi-modal in nature. The task of evaluating

multiple IK solutions has been performed using classical optimzation techniques. This

approach is computationally efficient when compared with global optimization approaches.
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Multi-start approach have been performed to evaluate multiple IK solutions of the spatial

robot.

2.9. Overview of the Thesis

This section describes the overview of the thesis. In this work, IK simulation of hyper-

redundant robots working in planar and spatial workspace. A classical optimization

approach have been considered for the evaluating IK solution. Different secondary

performance criterion have been considered for redundancy resolution. The over of work

has been represented in block diagram shown in Fig. 2.2. It shows different techniges

adopted for solving IK problem and redundancy resolution of hyper-redundant robots.

IK Simulations

!

y

[ Planar Redundant Robots

!

[ Spatial Redundant Robots

L ]

Traversing a
Path

= Singularity Avoidance

| Y
i imiza ti - . L (Classi
Constrained Optimization Un-Constrained Optimization |If C'25sical .
Redundancy resolution optimization Multi-Modal
= Joint Distance For a task space methods optimization
Minimization location \JLBO algorithm

'

1 \ 1 i

— |

[Case studies A

Pipe layout

Without
Obstacles

-
In Presence Without In Presence of
of Obstacles Obstacles Obstacles
.

In Presence of
Obstacles

inspection
Without = Pipe Welding
Obstacles = Automated

facility layout

= Pick and Place

in warehouse

—

Multiple IK

Solutions

Fig. 2.2. Flow chart representing the overview of the IK simulations.
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CHAPTER-III

3. Fundamentals of Robot Manipulation

The description of the manipulator movement involves kinematics, dynamics, trajectory
planning, and control of the robot. The forward and inverse kinematics analysis of a robot is a
basic requirement for mathematical modelling of kinematic structure and its control. For the
redundant manipulators, the IK problem is a more complex and challenging aspect for
modelling and control. Several methods have been employed for solving the IK problem,
which is explained in chapter 2. In this thesis, IK computation of hyper-redundant
manipulators working in planar and 3D workspaces are presented. There is a focus on
redundancy resolution techniques that are implemented for achieving secondary criteria such
as obstacle and singularity avoidance while satisfying the primary task requirement. An
additional performance criterion, joint torque minimization and power consumption have also
been chosen in the IK analysis of redundant manipulator. To satisfy all these performance
metrics, it is required to analyze the kinematic and dynamic aspects of the robot. This chapter

describes the fundamental concepts of robot manipulation.

3.1. Kinematic modelling

A robot consists of a set of rigid bodies called links which are connected by joints. The
kinematics of any robot can be described by the position and orientation of the end-effector
corresponding to the joint configuration, known as forward kinematics. Therefore, kinematic

modelling is commonly referred to as the forward kinematics of the manipulator.

3.1.1. D-H Parameters:

The motion analysis of the robotic manipulator can be performed by considering a standard
procedure to model a coordinate system on each link. This was first introduced by Denavit
and Hartenberg [23] in 1955 (Denavit) which systematically establishes a relationship of each
coordinate frame with respect to the previous frame attached on the link. The coordinate
frame assignment for the links of the manipulator using this convention can be performed by

the following operations,

o Consider Z; , as the axis for the joint, between link 1—1 and link 1 to

define the homogenous transformation between frames 1 —1 and [

e Setaxis Z; asthe axis of rotation or displacement of joint 1+1
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e Find the common normal line a; between Z;_; and Z; and define the origin of

frame i as the intersection of a; and Z;, which is o;
o Axis X isdefined in the direction of a;, from joint I to 1+1

e AXis Yi

following the right-hand rule.

is defined as the mutual perpendicular to the axis Z; and X; by

The DH representation of a particular pose describes a displacement for i** joint-link pair in

a mechanism by defining four parameters: The link length a; , link twist «; joint angle 6;

and link offset d;.

According to this convention, the transformation of i frame relative to the (i —1)th frame

is expressed by a generalized homogeneous transformation matrix. It is given by

SN
|

[cosd, -sind cose
sin cosd cose,
0 sing,

0 0

sing, sine;, . cosé,
-c0s6 sine; & sin 4
C0s¢, d;
0 1

(3.1)

The homogenous transformation for a given pose is a function of DH variable i. e. 8 for

revolute joints and d for prismatic joints as the most of the robot joints are either prismatic or

revolute. Assignment of coordinate frames and identification of joint-link parameters are

shown in Fig. 3.1.
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Fig. 3.1. Description of DH parameters for a joint i and link i [32].
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3.1.2. Forward and inverse kinematics of serial manipulators

Forward kinematics can be defined as the mapping from the joint space (8) to the Cartesian

space (X, Y, z), mathematically defined as
QcR">WcR", (3.2a)
Inverse kinematics is the mapping from the Cartesian space (X, y, z) to the joint space ().

WcR" > QcR", (3.2 b)
where Q = subset of joint variables as the solution of the inverse kinematics equations, W =

subset of Cartesian space, R™ = universal set of joint variables, R" = universal set of Cartesian

space.
3.1.3. Forward Kinematis of serial planar redundant robot

A generalized n linked robot is modelled with link length [, [, ...1,, and the angle between

link and x-axis is 8,6, ...0, . The forward kinematic model is represented by a simple

geometric and analytical interpretation of the robot.

End effector position in workspace is given as

E, =1 cosd,+1, cos 0, +1, cos O, +... I cos O, (3.3a)
E,= | sind+ 1, sin0,+1L;sin6;+... [ sin6, (3.3 b)

3.1. 4. Kinematic model of a spatial redundant manipulator

The joints of the spatial redundant robot are modeled with universal joints for better
accessibility and control in the workspace. These joints have two orthogonal DOFs that are
formed by the pitch axis and yaw axis at all the joints except at the jointl. A generalized
spatial hyper-redundant manipulator is shown in Fig. 3.2. The forward kinematic analysis
begins with the assignment of coordinate frames at the robot joints, and these frames are used
to describe the position and orientation of one frame relative to another frame. The frame
assignment of the hyper-redundant manipulator is shown in Fig. 3.2. The Denavit-Hartenberg

(D-H) parameters for the assigned frames are given as per the standard convention.
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Fig. 3.2. Schematic diagram of spatial hyper-redundant manipulator.

The transformation of the i frame relative to the (i-1)™ frame is derived from the generalized

homogeneous transformation matrix. It is given by Eq. 3.1.

For the robot shown in Fig. 3.4, the position of the end-effector with respect to the base frame
is given by

O_+0+1+2 +3 +4 +5 +6 +7 +8
T9 —Tl T2 T3 T4 T5 T6 T7 T8 T9 (3.4)

From the above equation of the homogeneous transformation matrix, the final end-effector
position and orientation can be determined. Which is taken as the required inputs to perform
the IK analysis.

3.2. Robot positioning

A joint configuration of the robot is to be provided to position the robot end-effector in the
task space. The task of computing joint variables was carried out by the inverse kinematics of
the robot. This section describes the inverse kinematics methods and challenges involved in

IK problem of serial robots.

3.2.1. Analytical method for inverse kinematics

An analytical approach is recommended while attempting inverse kinematics of serial robots.
The forward kinematic equations of the serial robot in a planar workspace are often easy to
obtain, whereas in complex robots DH parameters might be useful for arriving forward
kinematic equations. The Kinematic equations involve the trigonometric function, which

makes the problem complex. Moreover, multiple solutions of trigonometric functions need to
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be considered. An example of a 3DOF planar robot illustrates the IK Model using an

analytical approach.

3.2.2. A 3 DOF Manipulator with revolute joints

For the 3R manipulator shown in Fig. 3.3, the analytical approach for the IK problem is
determined by understanding its forward kinematic model. As the joints are revolute and it is
a planar robot, only one joint variable is involved, the forward kinematic model of this can be
easily determined. By analyzing its geometry, the forward kinematic relation is given by i.e

the position and orientation of the end-effector (x, y).

Fig. 3.3. A 3 DOF Serial robot arm

From the geometry of the robot, forward kinematic equations are given as

x=1,cos(g,)+l,cos( 6 +6,)+l,cos( 6 +6,+6,) (3.54a)
y=Isin(g)+1,sin(6,+6,)+1;sin(6,+6,+6;) (3.5h)
P=06,+06,+6, (3.5¢)

The location of point P can be computed as
P, =x—1, cos(¢)=1,cos(6,)+1,cos(é +6,) (3.6 a)
P, =y—l;sin(¢)=1,sin(g )+1,sin(& +6,) (3.6 b)

Squaring the two sides of Eq (3.6 a-b) and adding, gives

2 2 12 g2
cos( 6, )= P +PY2” L=l (3.79)
1°2
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The existence of solution for Eq. (3.7a) imposes the condition, -1<cos(s,) < 1, beyond this
range the point is outside the reachable workspace of the arm, then set

sin( 6, ) = im)z (3.7 b)
where the positive sign is with reference to elbow up posture and the negative sign is the
elbow down posture. Hence, the angle o, is computed as

6, =atan2 (sin( 6, ),cos(6,)) (3.8)
where atan2 is the function that computes the value of tan™ in the appropriate quadrant.

g, can be determined by expanding cos(é,+6,) and sin(é, +6,) of Eq.(3.5) and rearranging
them
P, =(l, +1, cos(6,))cos(4,) —1, sin(E,)sin(6,) (3.9a)
R = (1, +1,cos(8,))sin(E,)+1,cos(6,)sin(6,) (3.9b)
To evaluate @, Eq. (3.9a) is multiplied by I,sin(g,)and Eq. (3.9b) by |, +1,cos(4,), followed

by the subtraction of former from latter, this gives the value

sin(8,) = (|1+|20205 (;92 )Py —lsin(6, ) P, (3.10 a)
l,“+1,°+21,1,cos(6,)
Similarly
I, +1,cos(6,))P, —1,sin( &, )P,
cos(,) = {5t 10OS(0, )P, — Lsin(6, )P, 10b)
I +1,°+2ll,cos(6,)
The solution 4, can be obtained by
6, = atan2 (sin(6, ),cos(4, )) (3.10¢)
Finally, the angle is found from the expression
0,=p-6,-0, (3.11)

These equations have two solutions @, as they are involved with trigonometric functions,
therefore two sets of solutions &, , @, , @, can be achieved, the two solutions corresponding

to different joint configurations give the same end-effector position. It is implied from the
above derivation the complexity of the analytical solution increases with the complexity of
robot geometry and the number of DOFS i.e for redundant robots. As this approach is
geometry dependent, the IK solution for a general manipulator with arbitrary geometry does
not exist. Due to the limitations in analytical approaches, some of the numerical approaches
have been used for the IK solution of different robot configurations with redundant DOF. A

detailed discussion of IK solution methods was presented in the literature review. The
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redundancy of the robot, despite its advantages with respect to additional capabilities,
computational complexity involves solving IK problems using analytical approaches is high.

In such cases, numerical methods are often employed for the IK solution.

3.3. Manipulation of redundant robots

Redundant manipulators have more DOFs, than the required to reach a task space location. In
the case of 2D planar manipulating systems with position and orientation as required targets,
redundant manipulator possess more than three DOF. The additional DOFs allow multiple
solutions in joint space for a given task space position and orientation. Availability of
multiple solutions leads the controller of the manipulator to choose the best solution from the
feasible solutions that satisfy secondary criteria. Fig. 3.4(a) depicts multiple solutions of a
redundant system and selecting the solution based on the performance criteria. Fig. 3.4(b)
shows joint configuration while avoiding obstacles. While Fig 3.4(c) shows configuration

that minimizes joint rotation with respect to home position.

@

a b Cc

Fig. 3.4. IK solution of redundant robot (a) Multiple solutions (b) Avoiding obstacle (c)
Minimizing joint distance.

3.3.1. Robot differential kinematics

For redundant manipulators, kinematic equations are highly non-linear and closed-form
solutions are not always possible. Thus, numerical approximations are used to solve the IK
problem. Differential velocity kinematics is used while predicting these approximations. In
differential kinematics, the Jacobian matrix is used which maps from joint space velocity to

Cartesian space velocity. The forward velocity relation is given by

J(0)o=Xx (3.12)
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where @ represents joint rates and X is the end-effector velocities. The Jacobian matrix of 6
DOF manipulator is represented by 6 x n matrix, n being the number of manipulator's joints.
The first three rows of the Jacobian matrix indicate joint velocities corresponding to linear
task space velocities and the last three rows relate joint velocities corresponding to angular

joint space velocities.

3(0)= (3.13)

The i" column of the Jacobian matrix corresponds to i" joint velocities by combining both

linear and angular velocities, a column of the Jacobian matrix for a revolute joint is given by

o | [z xo
5 17, (3.14)

o, i

where the joint linear velocity is the cross product of the joint's motion axis vector z, with

the distance between the i joint origin and the end-effector, 0,. In the case of a prismatic

joint, an i joint column of Jacobian is given by
JVi Zi
3 1710 (3.15)

The Jacobian matrix inverse methods have been used extensively in IK computations and it

3.3.2. Jacobian inverse methods

has been performed in several ways. Based on kinematic structure and configuration, if the
kinematic configuration produces full rank i.e. square Jacobian matrix, matrix inverse can be

computed using standard methods.

By considering equation 3.10 with joint space dimension is equal to task space dimension, the

joint velocities can be obtained by inversion of Jacobian matrix [100]
0=J37(0) X (3.16)

If the initial posture of the robot is known, the joint positions can be computed by integrating

velocities over time
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a(t):jédtw(o) (3.17)

o(t..)=0(t)+6(t)at (3.18)

If a kinematic structure is redundant when the Jacobian matrix is a rank deficit or non-square,
an alternative formulations for Jacobian inverse were used. A possible solution method is to

formulate the problem as constrained optimization problem.

Once the end-effector velocity and Jacobian are known it is desired to find the solution theta
that satisfy the equation 3.10 and minimize the quadratic cost function of joint velocities

9(6) = %wwé (3.19)

where W is a suitable symmetric positive definite weighting matrix. This problem can be
solved by using method of Lagrange multipliers

3.3.3. Pseudo-inverse of Jacobian

The pseudo-inverse matrix or Moore-Penrose [100] is the most widely used in IK
computation of redundant robots i.e. dealing with the rank deficit and non-square Jacobian

matrices. The pseudo-inverse is given by

J =J37AJ3N)* (3.20)

This computes the 1K problem by minimizing the magnitude of joint angle variation required
to achieve an end-effector posture in the least square sense. This property is beneficial since
the minimization of joint velocity tends to reduce kinematic motion requirements. The
computation cost involved in determining pseudo inverse is high and it also increases with an
increase in the number of DOF. The pseudo-inverse approach performs well in general, but it
suffers when the robot configuration is close to singularities, where the Jacobian loses its

rank.

3.3.4. Jacobian transpose

This method attempts to move the joint values in the direction of the square of the norm of
error vector which reduces in the highest rate [99]. This Jacobian transpose is the least
computationally expensive. The joint motion is updated by a small displacement in the joint

vector which is given by
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AO=J_0)".K.e(8) (3.21)

where €(f) is the positional error function vector which represents the required kinematic
constraint, Af is the incremental joint configuration vector and J, is the error Jacobian

matrix, K is a stiffness constant that pulls the end-effector towards the target location.

This approach has a limitation, of slow convergence after a few iterations because Jacobian
transpose inherently takes large steps of joint increments. 1K solution does not minimize the

norm of joint angle.

3.4. Position based inverse kinematics

For a long period, there was a conception that closed-form IK solutions for redundant robots
are highly complicated and difficult. Thus, the IK problems have been approached by
linearizing the configuration space to velocity space. That is, the problem is mapped into
velocity space of end effector by using linearized derivatives of the joint space, which is
represented by the Jacobian matrix. Numerical approaches used for the velocity-based 1K
problem suffers from a sort of limitations such as higher computational time and joint
velocities at singular configurations. Position based inverse kinematics techniques are faster,
reliable, and more accurate. IK problem has been solved using analytical, geometric, and
evolutionary-based approaches. The IK problem in the position-based approach can be
modelled as an optimization problem. This gives the Joint configuration that minimizes the

Euclidian distance of end-effector location and desired location in the workspace.

3.4.1. Desired position and error representation

The Inverse kinematics solution of a redundant manipulator is computed by formulating it as
an optimization problem with the objective of minimizing positional error i.e. distance
between the current position of end-effector and desired position in the task space. The
objective function is the reachability of the manipulator in the task space. This is measured as
the total Euclidean distance (D), i.e., the distance between the current position of the end-
effector (E) and the task space location (P), as shown in Fig. 3.5, and the vectorial

representation of distance is given by.

D=[|E-P]| (3.22)
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Revolute Joint End-effector position

£

Distance, D

Desired position

Fig. 3.5. Schematic diagram of serial hyper-redundant manipulator
representing the objective.

For a given joint configuration (@), the end effector position E (Ey, Ey, E;) can be calculated
using the forward kinematic relationship. The current end-effector position is a function of
joint angle (@), hence the distance can be represented as

D=||E(@)-P]| (3.23)
where, =[ 61 0, 03 0O,,.............. 600 ]
To reach the specified task space location, P (Py, Py, P;) from the end-effector position (E),

the distance between E and P should be zero. Hence, the problem is posed as minimization of

a square of total Euclidean distance, which is given as
Minimize: f =D’ = ((EX -P)*+(E,-PB)*+(E, - Pz)z) (3.24)

In this thesis, IK computation has been performed for both planar and spatial redundant
manipulators. The IK computation of the planar robot does not include the Z-coordinate term.

Thus the equation is simplified as
Minimize: f = D’ =((EX ~P)? +(E, —Py)z) (3.23)
The minimization of the objective function given in Eg. (3.20-3.21) results in a joint

configuration that reaches the manipulator to the desired position and orientation in task

space.

3. 5. Robot dynamics

During the performance of a task, the manipulator needs to carry payloads and undergo

different accelerations, sometimes moves at a constant speed and declaration. The variation
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of position and orientation with respect to time is termed as the dynamic behaviour of the
robot. Torques need to apply at the joints to balance the internal and external forces of the
robot. The internal forces are due to the inertia of links, Coriolis forces, and frictional forces.
External forces are due to payload and forces caused by the environment such as gravity. This
section describes the mathematical model for the dynamic behaviour of the robot.

The dynamic equations are often referred to as a set of the equation of motion that represents
the dynamic response of the manipulator to input actuator torques. The dynamic model of the
manipulator is convenient for the computation of torques and forces required for the
execution of the end-effector task. The complex dynamic system of serial link manipulator
can be modelled systematically by using physical laws of Lagrangian mechanics or

Newtonian mechanics.

Approaches such as Lagrangian-Euler formulation, energy-based and Newton-Euler
approach, based on force-balance can be applied to the manipulator equations of motion. The
Newton-Euler and Lagrangian-Euler formulations provide computationally expensive closed-
form solutions. To improve the computational speed recursive methods and approximate
methods have been developed. This section provides the basic formulation of manipulator

dynamics using the Lagrangian-Euler approach [1, 100].

3.5.1. Lagrangian mechanics

A scalar function called Lagrangian L is defined as the difference between the total Kinetic

energy K and potential energy P of a mechanical system
L=K-P (3.25)

The Lagrange-Euler formulation is based on a set of generalized coordinates to describe the
variables of the system. In generalized coordinate, displacement q is used as a joint variable,
which represents a linear displacement d for a prismatic joint and angular displacement 9 for
a rotary joint. Similarly, g describes linear velocity and angular velocity for prismatic and
rotary joints. A generalized torque = is required at the joint to produce desired dynamics.

Force f represents for a prismatic joint and torque z for a revolute joint. For the robot in Fig.

3.6, iri be the point fixed and at rest on a link i
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Fig. 3.6. A 3 DOF manipulator showing base coordinate frame and homogenous
coordinate frame.

The homogenous coordinates with respect to the coordinate frame of i link are given as
=06 Y520 (3.26)
The position of point r with respect to the base coordinate frame is
o =T 'r = (°T,'T,...MT)'r (3.27)

The velocity of point r with respect to the base frame is obtained as

i A0 _
V=, ="r = ﬂqj ' (3.28)
i

The transformation matrix °T; involve complex trigonometric terms and its partial derivatives

with respect to q;. in Eq. 3.25 involves complex computation. The following steps simplify

the computation of the partial derivative of the homogenous transformation matrix.

Consider the transformation matrix for link j for a rotary joint

Co, -S0Ca;, SOSa; aCo,

S9, CéCa, -COSa; a5,

j—1
oT= ) (3.29)
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Partial derivative with respect to ¢

-S0, -CO,Ca; COSa; a,Ch,
o°T, | ¢, -S6Ca; SO,Sa; a;So,
oq, | O 0 0 0

0 0 0 0

(3.30)

The partial derivative of j—1Tj with respect to Hj can be obtained without differentiating the
terms, the same result can be attained using matrix operations, by pre multiplying J"lTjwith

Qj

0 -1 00 0 00O
1 0 0O 0 00O
o= for revolute joint L= for prismatic joint 3.31
Q’oooo( J)Q,Oooo(p joint)  (3.31)
0 0 0O 0 01 0
o°T, o
i_Q T 3.32
) Q,™T, (3.32)
oIt .
Since — ="T,'T, J72TJ 1 ! jTj+l.. T
i aqi

Using Eq. 3.29 the partial derivative can be simplified as

8°Ti . o - -
a—qonlsz""J 2TH(QJ- J lTJ- )JTJ-+1.... 1Ti :OTJ-_le J 1Tj (3.33)
J

The result is valid only for j<i, hence fori=1,2,......n

o0 |T_Q, T, forj<i
o _ JleJ j .J . (3.34)
a; |0 for j > i
The link velocity is thus simplified as
v, => °T,,Q;"Tq; ', (3.35)
j=1
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Kinetic energy

The kinetic energy of the differential mass dm; on link i, located at °r. and moving with the

velocity °V; with respect to the base frame is
1 2
dk, :Edmi(vi) (3.36)
The trace operator is used to obtain (v, )>as

vE=Tr(°r %) =Tr(vv,") (3.37)

Substituting v from Eq .3.32 in Eq.3.34, the kinetic energy of differential mass is obtained as

dk; = %Tr Hi QT gy ](2 TeaQ T 'r j ]dmi (3.38)
j=1 k=1

The total kinetic energy of link i is then

= [ dk

: :%T{ii T,.Q, j‘ITJ"r 'r"dm, (OTk Q. 1T) of qk} (3.39)

j=1 k=1
The integral term _[iri irdemi is the moment of inertia tensor I, which is given as

_szidmi jxiyidmi jxizidmi jxidm.

Ixiyidmi Iyzidmi J-yizidmi _[Yidmi

| = (3.40)
| J'xizidmi inzidmi jzzidmi J'zidmi
I Ixidmi jyidmi jzidmi J.dmi |
Therefore K; is, K; ——Trlii( T.Q; TN, (OTk_le T, )T qjqk:| (3.41)
j=1 k=1

Thus for the n-DOF manipulator, the total kinetic energy of the manipulator is

K= EZK-—’ EZTr{EZEZ(ﬁle SO (T, ) qqk} (3.42)

j=1 k=1
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Exchanging the trace and sum operations

1 i a0\ L
S IEIT (T TR ) i (349
The kinetic energy k of the manipulator is a scalar and is a function of joint position and
velocity.
Potential Energy

The potential energy r of link i in a gravity field g is

P =-mg("F)=-mg’TT (344

The total potential energy of the manipulator is the sum of the potential energy of the links,
that is

- $p- gt 6

i= i=1
Equation of motion

The Lagrangian is given by L =K —P , from Eq. (3.40) and (3.42)

=333, (T T (TeQ ) g+ X me T (346)

i=1 j=1 k=1

According to the Lagrange-Euler dynamic formulation, the generalized torque 7; of the

actuator at joint i, to drive link i of the manipulator, is given by

-4z
7=y M (@d,+ > hy d; G+G; fori=1,2,....n (3.48)
where
M, = i( .)Tr [dyled," | (3.49)
p=max (i]
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hi = T I dT (3.50)
Y | 0g, "
G =m0 T, (3.51)
d. = T;.Q; T, for j<i 052
bo(o for j>i :
o TQ, TT QT for ik >
aij =1 T Q 'T,,Q, T, forix j=k (3.53)
k

0 fori<jori<k

Eq. (3.45) is the dynamic model of the manipulator and gives a set of n nonlinear, coupled,
second-order ordinary differential equations for n-links of the n-DOF manipulator. In this
work, optimum joint trajectories were computed with an objective of minimization of power
consumption. For which, computation of torques is required, which are evaluated from the

equations of motion.

3.6. Trajectory planning

During the motion of the robot, it needs to be provided with initial and final positions,
intermediate locations and travelling time along a defined path. Specification of robot
position as a function of time is called trajectory planning. In general, trajectories are
completely specified for a task such as tracing a path of robot motion during its operation or a
task can be moving from one position to another. Trajectory planning can be implemented in
joint space and also in Cartesian space. A geometric path cannot be completely specified. A
reduced number of path parameters are specified such as initial and final position,
intermediate positions, constraints on the maximum accelerations and velocities. Based on
the above inputs trajectory planning generates variables of motion in a sequence of time
which describes the end-effector position and orientation by respecting the task constraints.
As the control action of the manipulator is performed in joint space, a suitable IK algorithm is
to be implemented to generate the time sequence of joint variables corresponding to the task

space location of the end-effector.
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This section describes joint space trajectory planning techniques [9] for different polynomial
functions and problem formulation for optimum trajectory planning. Each point in the task
space can be specified by the desired position and orientation of the end-effector. These
points are transformed into a set of desired joint angles by the use of inverse kinematics.
Then a smooth polynomial function is interpolated for each of these joints while satisfying
different kinematic constraints. Kinematic constraints are position, velocity, and acceleration

conditions at the start, via, and endpoints in the joint space.

3.6.1. Cubic polynomial function

Inverse kinematics allows determining a set of joint angles corresponding to the target
position and orientation. A polynomial function for each joint value at time t; is the initial
position of the joint and the value at t; is the goal position of that joint, a smooth polynomial
function might be used to interpolate the joint motion between starting and end position.

For a smooth polynomial function, a minimum of four constraints on 6(z) is required. Two

constraints on the function values are chosen as initial and final position values
0(0)=6 (3.54 a)
0 (t;)=6, (3.54 b)

Additional constraints are taken to satisfy the function continuous in velocity, in general,

initial and final velocities are taken as zero
6 (0)=0 (3.55 a)
0 (t;)=0 (3.55 b)

These four constraints can be satisfied with the polynomial function of the third degree, a

cubic polynomial function has the form
o(t) =a, +at+at’ +at’ (3.56)
The joint velocities and accelerations are given as
6(t) = at +2a,t + 3a,t> (3.57 a)

4(t) = 2a, +6a,t (3.57 b)
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Combining the Eq 3.56 & 3.57 with the four desired constraints gives four equations in four

unknowns
&, =a, (3.58 a)
0, =a,+at, +at’+at’ (3.58 h)
0=a, (3.58 )
0=a +2at, +3at,’ (3.58 d)

By solving these equations, the coefficients are

a, =0, (3.59 a)
a,=0 (3.59 b)
3
a, :t_z(ef — &) (3.59¢)
2
a, =—t3—(<9f — &) (3.59 d)

f

3.6.2. Cubic path for via points

In the trajectory planning with cubic polynomial functions, we have considered the motions
described by a set of constraints such as initial position, final position and duration of time. In
general, it is required to allow the paths that include intermediate via points. Normally the
manipulator can pass through the via points without stopping. For this, a generalized cubic fit
that satisfies the path constraints is required. Each of these via points is converted into a set of
joint configurations by the application of inverse kinematics. Then the smooth joint

trajectories that connect via points can be computed.

If desired velocities of the joints at the via points are known, then cubic polynomials
functions can be approximated. However, the velocity constraints at each end are not zero,

rather some known velocity. The velocity constraints are
0(0)=0, (3.60 a)

o(t;) =6, (3.60 b)
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The equations describing general cubic spline are

6 =2 (3.60 a)

0, =a,+at, +at *+at’ (3.60 b)
0,=a (3.60 c)

0, =a, +2a,t, +3a;t? (3.60 d)

Solving these equations for the coefficients, we obtain

a, = 6, (3.61 a)
a, =6, (3.61b)
3 2 . 1.
a,=— (6, —6,)——06,——06, (3.61 c)
tf tf tf
2 1 . .
8 =5 (0, =)+ 5 (0, +,) (3610)
f f

If the desired joint velocities are known at each via point, then the coefficients in the equation

can be applied to determine the required cubic functions for each segment.

3.6.3. Higher-order polynomials

Higher-order polynomials are sometimes used for path segments. For which, the position,
velocity, and acceleration at the beginning and end of a path segment need to be specified. A

quintic polynomial function is represented as
O(t) =a, +at+at’ +at’ +a,t* +at’ (3.62)

where the constraints are given as

g, =a, (3.63 a)

0, =a,+at, +at.’+at’+at] +at’ (3.63 b)
0,=a (3.63¢)

6, =a, +2at, +3at? +4a,t’ +5at? (3.63 d)
é, = 2a, (3.63 ¢)

6, =2a, +6ajt, +12a,t? + 20a,t> (3.63f)

These constraints specify a linear set of six equations with six unknowns, whose solution is

50



a, =0, (3.64 a)

3, =6, (3.64 b)
a, =&, (3.64 c)
2
200, —200. — (80, +120.)t. — (39, — 6 t?
_ f 0 ( f - o)f ( 0 f)tf (364d)
2t?
300, —300, + (140, +160)t. + (36, —20.)t?
3.4: 0 f ( f ; o)f ( 0 f)f (3649)
2t!
_ 120, -126, - (66, +60,)t, —(6,—6,)t (3641

2t
In this thesis, the redundant robot is simulated for different paths and the corresponding joint
configurations were evaluated. A suitable trajectory planning scheme has been implemented
to determine the joint trajectories by considering the IK solutions at the via points of the path.
This work also focuses on optimum trajectory planning in the joint space of a planar
redundant robot, traversing in a constrained path and point to point applications. Trajectory
planning of spatial redundant manipulators is also performed with a performance criterion of

singularity avoidance.
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CHAPTER-IV

4. Redundancy Resolution Techniques

In the redundant manipulators, the number of DOF is greater than the number of end-effector
kinematic constraints. This extra DOF makes some of the joint parameters redundant.
Displacement of these redundant joint variables causes the change in robot configuration, but
it does not necessarily produce a change in end-effector pose. Redundant joint parameters
were chosen arbitrarily for the desired end-effector location. The task of selecting the best IK
solution from the available feasible solutions is known as redundancy resolution. The
additional DOF of the manipulator can accomplish the desired objectives, which can be

considered as secondary goals.

4.1. Kinematic redundancy

Kinematic redundancy is crucial in adopting the utilization of robots in versatile applications,
in the areas of automotive industries, medical field, and space explorations. This chapter

describes kinematic redundancy and redundancy resolution techniques.

4.1.1. Kinematic null space
The null space of a matrix A is a subspace of vectors for which AX =0 written as
Null(A)={X e R"; AX =0} (4.1)

where n is the column dimension of A. In inverse kinematics, the null space of the Jacobian is

referred to as a set of all vectors of & which satisfy the equation
Null(3)={6 € R"; 6 =0} (4.2)

The vector @ in the Eq. 4.2 is in the null space of matrix J, which does not cause any
movement to the end-effector with the change in joint velocity.

The null space of a kinematic system exists only when the system has a Jacobian matrix J,
J e R™™ with m<n, in which the system is redundant and underdetermined. The generalized
pseudo inverse formulation [93] describes the kinematic null space in a way that it can be

utilized by projecting a vector onto the IK solution via a null space projector.

4.1.2. Generalized pseudo inverse

The generalized pseudo-inverse matrix for a system is derived from the forward kinematic
equation
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JO=X (4.3)
Premultiplying by J" to get a square matrix JJ" leads to
JT10=37 X (4.4)
To get the joint velocity term on the left side of the equation, premultiply by (J7J)™
(ATI)YITI0=(3TI) T X (4.5)
further, 1 =(373)1J37J =J"J (4.6)

where 133" orl1-JJ* =20, from this it is observed that there is an additional term called null
space projection operator

(1-3%3)z (4.7)

From the Eq. 4.8 it can be shown that the IK solution with secondary velocity vector z is not
effecting the end-effector velocity

O=(1-3"1)z2=X=J386
X =J(1=3%3)z
X =(J=333)z (4.8)
X =(J-J)z
X =0
assembling the homogenous and particular solution, the generalized inverse is

O=3"X+(1-3"3)z (4.9)

4.2. Velocity based redundancy resolution

The redundancy resolution techniques have been implemented to improve manipulator
performance. This has been achieved through motion control at the velocity level and
position level. Research has been carried out in redundancy resolution techniques to meet
performance criteria such as improvement of manipulability, joint torque optimization, joint

limit avoidance, and collision avoidance.
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4.2.1. Jacobian pseudo-inverse

One of the early implemented techniques for redundancy resolution is to use the optimized
inverse of Jacobian. The pseudo-inverse of generalized Jacobian [42] can be used to
minimize a scalar function g which is the Euclidean norm of joint velocity vector or joint

deviation vector A g

j=n
9(A0) = > (A0)) (4.10)
j=1
Subjected to the constraints

Ae =J.Aq (4.11)

where e is the error function related to end-effector velocity, J is the Jacobian for a particular

configuration.

In the Jacobian pseudo-inverse method, redundancy is utilized to minimize the norm of

deviation from the present configuration or joint speeds.

4.2.2. Extended Jacobian method

In the extended Jacobian method [67, 102], the degree of redundancy i. e. n-m rows are
augmented to the Jacobian matrix to make gradient g(#) as zero in the null space of Jacobian,

where g(0) represented as an objective of the secondary goal cost function

se=| 2O 15g
9.0 (4.12)

where J, is the end-effector Jacobian matrix J_, is the extended Jacobian matrix

ext

o (0)

Joi=
ext Y,

(4.13)

9
f.(0)=N"3¢9 , where g(#) is the scalar kinematic objective function and N is the null

spacematrix of J that correlates the self-motion of the redundant manipulator.
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4.2.3. Gradient projection method

The gradient projection method proposed by Liegeois [69] used to exploit the redundancy to
avoid joint limits, the pseudo-inverse solution can be extended and the general solution for

the IK problem can be expressed as
60=3"6x+(1-37J)Z (4.14)

where 6@ is the differential joint angular motion, o X is the differential variation in the end-
effector motion J*is the pseudo-inverse of Jacobian of the manipulator, (1-3*J)is the

projector matrix and Z is an arbitrary vector.

First-term in the equation is the least norm solution and the second term is the null-space
solution, which is orthogonal to least norm solution. The null space solution is the self-
motion of the manipulator which produces no end-effector motion. For the desired end-
effector motion a null space or homogenous solution is chosen in such a way that the
resulting joint configuration optimizes the performance measure, known as h(é), Z is chosen
to be

Z=:KVh (0) (4.15)

where K is the positive real number and vh(o) is the gradient of h(¢), a positive sign indicates

the criterion is to be maximized and a negative indicates minimization of criterion.

The potential function has been chosen for different secondary goals of redundant

manipulator such as obstacle avoidance and singularity avoidance

4.2.4. Singularity avoidance at velocity level

In singularity avoidance, the potential function is selected as the manipulability index, which

can be expressed as

U= «fdet J") (4.16)

The redundancy can be used to maximize this measure so that the algorithm avoids the
singular configurations. Some of the methods such as Damped Least Square (DLS) [45,103]
and Selective damped least squares (SDLS) [45,104] are used to improve the dexterity of
redundant manipulators based on the IK solution which deals with singularity avoidance and

does not use the null space through the projection operator. The DLS inverse is the variation
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of pseudo-inverse which reduces the effect of singularities on IK solutions. The DLS
conditions the pseudo inverse by the formula given by

6=37(337 +721)  x (4.17)
where | is the n x n identity matrix and A is damping constant with non-zero value instead of

minimizing 0 alone which solves the 1K Problem, DLS minimizes the quantity

130-X || +A 116 |7 (4.18)

This approach improves the 1K solution near the singularities by limiting the projection of
task space velocity onto joint space velocity when the Jacobian is near-singular. The value of
damping parameter A should be selected very large, such that it improves the behaviour of
the solution near singularities. Selectively damped least squares and numeric filtering are
singular value decomposition-based approaches. DLS method uses a single and fixed
damping constant, whereas SDLS uses variable damping constants. These variable constants

are automatically adjusted based on the error distance of the end-effector target.

4.2 5. Collision avoidance

Collision avoidance is often implemented for controlling redundant manipulators, when they
were work in complex workspaces with obstacles. The task of collision avoidance is solved
using different redundancy resolution methods. Collision avoidance of robots is very crucial
for avoiding collisions with obstacles and also for preventing self-collisions. Several
redundancy resolution methods have been developed for collision avoidance. The most
popular approach, proposed by Maciejewski and Klien [64] includes calculating both the
minimum distance between the obstacle and redundant manipulator and the point on the

manipulator closest to the obstacle.

Any set of joint rotations that obtains goal configurations without collisions is considered as
collision avoidance. Obstacle avoidance scheme has been implemented by considering vector

z, which specifies velocity i.e collision free joint space vector, the solution is given as

0=3"X+(1-3°J)z (4.19)

The homogenous part of the solution is used to reconfigure the manipulator to be nearer to

the collision-free joint configuration.
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The obstacle avoidance approach is to identify the point on the manipulator that is closest to
an obstacle which is referred to as an obstacle avoidance point. A velocity is assigned to this
obstacle avoidance point in a direction away from the obstacle. The primary target of

specified end-effector velocity and secondary criterion of obstacle avoidance is given by

J,0=x and

. (4.20)
Jo0 =X,

where J.= Jacobian of end-effector

Jo=Jacobian of obstacle avoidance point

X, =Specified end-effector velocity

X, =Specified velocity of obstacle point

For obstacle avoidance, the matrix has been modified by adjoining the two Jacobians. The
two equations in 4.20 were modified into a single equation

Je |4 Xe
]

The set of solutions that exactly satisfy the primary goal and secondary goal of obstacle
avoidance is given by

I X+ (1=3.73,)2= X%, (4.22)

This equation can be solved for the desired homogenous solution. A solution that increases
minimum obstacle distance is given by

2=[3,(1-3,"3,) ] (X,-3,3,°X,) (4.23)

The desired solution satisfying two goals satisfying the constraints imposed by the available
degrees of freedom

0=3,"%+(1-3,3)[3,(1-3,3,) | (X;=30,°%,) (4.24)
the solution can be simplified as
6=3,%,+[3,(1-3,73,) | (X,-3,,°X,) (4.25)

Several collision avoidance techniques have been implemented using the pseudo-inverse of
Jacobian such as the extended Jacobian technique and task priority approach. The details and

limitations of these approaches are presented in chapter 2.
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4.3. Position based redundancy resolution

Different redundancy resolution methods at the velocity level have been presented. Velocity
level methods determine the required joint velocities while achieving specified end-effector
velocity. These methods are not able to give directly the joint positions that result in a
specified end-effector position. To find the joint positions, joint rates that are evaluated by the
redundancy resolution at velocity level must be integrated.

Mathematically, the redundancy resolution in the position level is described by finding &
which results in best configuration that fulfills the performance criterion of robot and
reaching desired task space location, given as

Xy = T(6) (4.26)
where x, is the desired end-effector position in the task space, @ is the joint configuration

corresponding to x,

As the problem at the position level is to be solved by the integration of joint velocities, for
which an initial condition is required. The initial condition is described by defining the initial

configuration of the manipulator from which the motion towards the target location begins

[75]. The initial posture @, , when the end-effector is located at X,

x,=1(6,) (4.27)

The end-effector path is assumed between the initial position X; and the desired position Xg.

The simplest assumption for this path is a line segment joining two positions in the
workspace. This line segment is divided into N smaller segments for numerical integration.
At any position on the line segment, the joint rates required to move the end-effector along
the path can be determined.
These joint velocities are integrated sequentially till the end-effector reaches the target
location. The redundancy resolution algorithm is as follows

1. Assume an initial configuration @, of the manipulator and calculate the initial

position of the end-effector X;
2. Plan atrajectory from x; to X4 and assume time period of motion, T
3. Determine the velocity at an interval k that moves the end-effector towards the
desired position
Xg = Xy T

X, =a——9 "k At= ,
TP UN+1-K)AL N (4.28)
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4. Joint rates are generated for the specified end-effector velocity at the interval Kk,

joint velocity using the pseudo inverse of Jacobian

d, =37 (6%, (4.29)
5. Determine the g, at the next interval by numerically integrating
6., =6, +6 At (4.30)
6. The new end-effector position
X = f(0k+1) (4.31)

7. Repeat the steps 2-6 for time interval k=1:n

In this work, redundancy resolution at position level has been carried out while the robot is
traversing a path in different working environments. Performance metrics such as joint-
rotation minimization, singularity avoidance, joint-torque minimization have been
considered. The task of redundancy resolution was performed for a robot while moving along
a specific path and the path is discretized into several points. A non-linear constrained
optimization algorithm is implemented for every point on the path by assuming an initial
guess, which is the home configuration of the robot. A performance measure has been chosen
for the redundancy resolution. The optimization process results in the best configuration that
satisfies the required performance criteria. Different performance metrics chosen for

computing an IK solution are discussed below.

4.3.1. Joint distance minimization

Minimization of the sum of individual joint rotation between the home configuration, which
is assumed as initial configuration, and the configuration corresponding to end-effector task
space location i.e., final configuration, used as the optimization criterion given in Eq. (4.32).
The reachability of the end effector in task space is chosen as constraints of the problem
given in Eq. (4.33). The IK problem formulated as a constrained optimization problem in the

2D workspace is stated as

Minimize: P %(Qij —0¢,)? (4.32)
Subject to: g=((E, —P)? +(Ey —P)?) =0 (4.33)
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where ‘9ij is the initial joint configuration of the corresponding j" joint; Hfj is the final joint
configuration of the corresponding j™ joint.

In the 3D workspace, the objective of individual joint distance minimization remains the
same whereas reaching of end-effector to task location is stated as

Subjected t0: g=((E, ~B)? +(E, - Ry)? +(E, ~P,)?) =0 (4.34)

The task of redundancy resolution was performed using the sequential quadratic
programming technique. This criterion has been implemented for planar and spatial
redundant manipulators traversing specified paths with and without obstacles in the
workspace. Obstacle avoidance was also included in this scheme using the penalty approach.

4.3.2. Singularity avoidance at position level

Singular configurations are defined as the configurations of the robot at which the required
joint rates to achieve an end-effector motion along one or more directions are extremely high.
At singular configuration, Jacobian loses its full rank. Singularities of serial manipulators are
of two types, boundary singularity, and interior singularity. Boundary singularities are
observed when the robot is fully stretched out in such a way that the end-effector is very near
to the boundary of the workspace. Interior singularities occurred by lining up two or more
joint axes. Because of this, robot performance is affected. Hence, these singular

configurations are to be avoided.

The measure of manipulability can be used as the potential function for singularity avoidance,

which is given as follows
u=( ‘JJT‘ ) (4.35)

The measure of manipulability is non-negative at non-singular configurations. It becomes
zero only at singular points. The higher the manipulability measure, the robot is away from
the singular configuration. Here, the problem of singularity avoidance is performed by
maximizing the manipulability measure with the constraint of reaching the task space
location shown in Eqg. 4.34. The optimization problem is solved and the configurations
avoiding singularities have been obtained for a redundant robot while traversing a path in the
planar and 3D workspace. Results are also shown when the obstacles are included in the

workspace.
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4.3.3. Optimum trajectory planning

Optimum trajectory planning of redundant manipulator has been evaluated, while the robot is
performing the task and the power consumed to move the joints of the robot is being
minimized. The end-effector of the robot is commanded to traverse a path in the workspace.
The Lagrangian formulation is used to determine the joint torques and equations of motion,

which is given by

diob |, (4.36)
dt | o, aq;
where, L represents the Lagrangian, which is defined as the difference between total kinetic

energy and total potential energy of the manipulator. The joint torque applied is specified as

7;.

The total torque of the manipulator is put in the matrix form after applying Lagrangian

equations of motion, is given by

Tl M 11 M 12 M 13 ?1 C11 ClZ Cl3 9‘12 H 11 H 12 H 13 9192 Gll
T2 =M 21 M 22 M 23 Q.Z + CZl CZZ C23 022 +|H 21 H 22 H 23 6103 + GZZ (4 37)
T3 M 31 M 32 M 33 03 C31 C32 C33 032 H 31 H 32 H 33 92 03 G33

where M, C, H, G represents inertia, centrifugal, Coriolis, and gravity matrix. A 3 DOF

planar manipulator is chosen for optimal trajectory simulation.

The trajectory of each joint is interpolated with a quintic polynomial function
6(t)=at’ +bt* +ct’ +dt’ +et+f, (4.38)

where the coefficients of the polynomial equations are to be determined, the values of the
coefficients should minimize the objective of power consumption while satisfying the end

conditions.

The objective of the optimum trajectory planning problem is to manipulate the end-effector

of the planar redundant robot along a given path with minimum power consumption.

The objective function of the optimization problem is stated as
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=3 |(e )| - X |(6m (439)
Subjected to constraints
2 2
glz(xle_xtp) +(yte_ytp) =0 (4.40)
9, =6 (4.41)

where, w; is the angular velocity of the i" joint, z; is the torque applied at the i joint, (Xe, Ve
jare the coordinates of end-effector (xy, yi) are the coordinates of task space and ;represents
angular acceleration at the i™ joint. Trajectory planning is implemented for the 3DOF planar

robot for two different types of point-to-point motion and continuous path motion.

In this thesis, the minimization of power consumption at each joint was analysed. Thus the
individual joint torques were minimized. The task of minimization of power consumption
was performed by formulating the dynamic equations of a planar redundant manipulator
which gives the equations of motions in terms of joint torques. Joint motions are interpolated
with a polynomial equation. Coefficients of the polynomial equations were chosen as the
variable of the optimization problem. An optimization algorithm is implemented, which gives
the values of coefficients of the polynomial equation which results in minimum total power

consumption.

62



CHAPTER V

5. Collision Avoidance Techniques

5.1. Collision avoidance

Redundant robots performing the required task need to avoid collisions with obstacles in the
workspace. The collision avoidance requires collision detection i.e., to find whether a robot is
in a collision with any obstacle at a given configuration. Collisions in the workspace occur in
two aspects namely, the collision of a link with obstacles and other links. Collision is an
undesirable effect, as it causes a loss of energy and damage to the parts of the manipulator.
This section demonstrates collision avoidance techniques for planar and spatial redundant
robots with polygonal and 3D obstacles.

5.1.1. Collision avoidance for planar robots

Collision avoidance requires collision detection, for which links of a robot are modelled as
line segments and obstacles are modelled as polygons shown in Fig. 5.1. The problem of
detecting collisions between links and obstacles boils down to finding the intersection of line
segments and a polygon. The line segments are discretized into a set of points proportionate
to their link length shown in Fig. 5.1 a. Collision detection of link with polygon can be
obtained by checking whether the points on the link lie inside, outside, or boundary of the

polygon. This problem can be considered as a detection of point-in-polygon.

B1
P4 Al
Ai, Bi
P
o
A2
a B2
b

Fig. 5.1. Schematic sketch of collision detection scheme (a) Link and polygon (b) Self-
intersection of links

Point-in-polygon detection is a computational geometry technique used in computer graphics
and motion planning application [105, 106]. Generally, this check is performed using two

types of algorithm such as winding number and ray casting algorithm.
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5.1.1.1. Winding number algorithm

Winding number is defined as the number of times a curve travels around a point [107]. This
algorithm states that for a point in a polygon this number will be non-zero. To determine the
winding number, it is to calculate the angle subtended by each side of the polygon with the
query point. This is indicated by angles 61, 62, 65 and 6, with the edges of polygon AB, BC,
CD, and DA respectively shown in Fig. 5.2. If the summation of these angles adds up to 277
the point lies inside the polygon, for a query point P; shown in Fig and if the sum is 0, the
point lies outside, for a query point P2, shown in Fig. 5.2.

&
P NN
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//ll 91 \‘\
Dk ~C D “C
a b
Fig. 5.2. Hlustration of point detection in polygon (a) Point located inside (b) Point located
outside.

5.1.1.2. Ray casting algorithm

Ray casting algorithm is also known as the crossing number algorithm [106,108]. This
algorithm determines if a point located inside or outside a polygon by finding how many
times a ray (starting from a point and going in a fixed direction) intersects the edges of the
polygon. The condition to check if a point lies outside the polygon, the ray will intersect the
edges of the polygon for an even number of times. If a point lies inside, the ray intersects the
edges of the polygon for odd number of times. The illustration of this technique is shown in
Fig. 5.3.

Fig. 5.3. lllustration of ray casting algorithm for a point-in-polygon.
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The task of computing a point in a polygon is performed using inpolygon function of
MATLAB. This MATLAB function works on the principle of winding number algorithm
[107]. This algorithm evaluates a given set of points on the links whether they lie inside,
outside, or on the boundary of the polygonal obstacles for a given configuration.

Winding number and ray casting algorithms are popularly referred as “Point in
Polygon” algorithm which have been implemented in different areas such as computer
graphics [109], computer vision, geographical information system [110], motion planning of
robots [111], CAD [112]. Huang [113] proposed comparison of different point in polygon
methods. In his research, it is shown that among the different approaches, ray casting method
and winding number methods are well suited for non-convex shaped polygons.

Some of the limitations with this approach are

I.  The computational complexity increases with an increase in the number of nodes of a
polygon.

Il.  Although it can deal with all kinds of polygons, it is difficult to detect if the
investigated point lies on the polygon circumference or if the ray intersects a polygon
vertex.

1. Evaluation of point in polyhedron is difficult for 3D obstacles when the boundary of a
geometric object is represented as a triangulated surface.

Although this approach has certain limitations, the advantages of computational time
and suitability for convex and non-convex obstacles made this approach to select this method
for collision detection of polygonal obstacles.

In robotic applications, polygons with a limited number of nodes without self-
intersection have been considered. For this application ray casting approach is appropriate
and computational complexity is less.[113].

However, the limitation of 3D obstacles with ray casting method has been overcome
by adopting bounding box approach in the thesis.

Most of the obstacle avoidance methods of redundant manipulators use pseudo-inverse
techniques [67], configuration space approach [73] and artificial potential field approach
[88]. The above mentioned approaches are velocity based methods which work by assigning
velocity to the critical point on the robot and directs away from the obstacle.
These methods suffer from following limitations
1. Sensitivities at the singular configuration and are known to be computationally
expensive.

2. Difficulty with local minima.
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By considering the above limitations in the velocity based schemes the proposed
approach adopts ray casting algorithm for collision detection of planar robot avoiding convex
and non-convex obstacles.

The Problem of self-intersection of two links (detecting whether a pair of links collide in a
particular configuration) boils down to finding the intersection of two line segments, which is
illustrated by Fig. 5.1(b). This collision is detected using polyxpoly function of MATLAB,
which returns the coordinates of the intersecting points of links in the planar workspace.
Once the configurations with collisions are identified, these are to be avoided. Collision
avoidance of obstacles and self-collisions are handled with a penalty approach. An
optimization problem is being solved for computing joint configurations, which minimizes
the objective function. If the collision occurs in a particular configuration, a penalty value is
being added, which increases the value of the objective function. Further optimization
algorithm attempts to minimize the increased objective function. This results in a robot
configuration reaching task space by avoiding obstacles.

The modified statement of the optimization problem has been used when the workspace has
obstacles, it is given by

f :((EX—PX)2+(Ey—Py)2)+ZCi (5.1)

where ¢; is the i"™ penalty, m is the number of collisions

5.2. Obstacle avoidance of 3D obstacles

Robots performing a required task in a real-time working environment need to avoid 3D
obstacles. This section describes the collision avoidance scheme of redundant robots avoiding
3D obstacles. The task of collision detection has been carried out by using a bounding box
approach. In this work, 3D obstacles such as spheres, cylinders, and cones were considered
and the boundaries of these solids are enveloped by a box. For generating bounding boxes,
the obstacles were represented as a set of points on solid boundaries. From the point set, the
extremum coordinates of the points are determined. By using these coordinates, the vertices
of the box are determined. The facet information i. e. the vertices that are used to form a
particular face are computed using the convex hull algorithm [114]. The facets and their
corresponding vertices are used to model the bounding boxes used in collision avoidance.

Once the obstacles in 3D space were surrounded by a bounding box, the configurations that
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lead to collision need to be detected. The collision detection scheme is illustrated through the
Fig. 5.4.

Fig. 5.4. Schematic representation of 3D collision detection scheme.

Several points that are uniformly distributed on the robot link are considered say, P,
P,, .....Py and a check is performed whether these points lie within the bounding box of an
obstacle. If any of these points lie in the bounding box, then the collision occurs. The
algorithm for collision detection is shown in Table 5.1. This algorithm takes the extremum
coordinates of the box as input and checks for a set of points on the links of the robot if they
lie within the bounding box. In the algorithm, n represents the number of query points on

each link for collision check.

Table 5.1. Algorithm for collision detection

Algorithm: Collision detection

1. Input: Extremum coordinates of the bounding box of the obstacle
Xmin, XmaX1Ymin,Ymax, Zmin, Zmax and pOint Pi( I:)ix, I:)iy, I:)iz)

2. Collision check for points, P;......... P,
fori=1: n

If Xmin<= Pix<= Xmax&& Ymin<= Piy<= Y max && Zmin<= Piz<= Zmax
Collision
Else
No Collision
End

End
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By using the above algorithm, configurations leading to the collision have been identified.
These configurations need to be avoided, and the robot should move away from the obstacle.
The penalty approach has been implemented for obstacle avoidance. The penalties are
imposed for the configurations that are interfering with obstacles by augmenting them with
the objective function. The modified statement of the optimization problem has been used
when the workspace has obstacles, which is given by

Minimize: f:((EX—PX)2+(Ey—Py)2+(EZ—PZ)2)+§:Ci (5.2)
i=1

where ¢; is the i penalty, m is the number of collisions.

In practice, the immediate surroundings of an obstacle may get in contact with links. The
bounding box approach considers an additional space beyond the volume of the obstacles,
which make the robot to maintain some clearance with the obstacles while moving in the
workspace. Thus the bounding box model is appropriate for different types of obstacles.

In this thesis, a collision-avoidance scheme has been implemented for hyper-redundant robots
working in 2D and 3D workspaces. Simulations have been performed for a robot working in
an environment with different shapes of (non-convex and convex) obstacles. Hyper-
redundant robots are deployed to work in narrow, confined, and hazardous workspace. A
realistic working environment with 3D obstacles has been modelled and a collision avoidance
scheme is implemented for robots working in these environments. Case studies of hyper-
redundant robot avoiding complex obstacles are presented in chapters 7-8 of this thesis.

Collision avoidance scheme of planar and hyper redundant robots is represented with a flow

chart shown in Fig. 5.5

: : Joint configurations ]

Collision detection IK Solution

<
Optimization Collision
Modeling

J

Penalty ]

Fig. 5.5. Flow chart showing obstacle avoidance scheme of hyper-redundant robots
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CHAPTER-VI

6. Optimization Methods

IK problem of the redundant manipulator is posed as an optimization problem. Optimization
techniques employed for solving the IK problem are briefly reviewed in this section. Initially,
the IK problem posed as an unconstrained problem i.e. without obstacles, later obstacles have
been considered and solved using the penalty approach. An unconstrained and constrained 1K

problem in planar and 3D environments have been solved using optimization approaches.

6.1. Nelder-Mead’s simplex search algorithm

The IK problem posed as a non-linear optimization problem without constraints has been
attempted to solve using Nelder and Mead simplex search method [115], this method is a
direct search and derivative-free method. This approach is preferable for non-linear and
multivariable problems without constraints. This method executes by developing a geometric
simplex, which is a geometric figure formed (n+1) vertices, where n is the number of
variables of the optimization problem. If the points of the simplex are equidistant then the
simplex is regular. In two-dimensional space, the simplex is a triangle and in three
dimensions it is a tetrahedron. The idea in this method is to check the values of the objective
function at the (n+1) vertices and move the simplex gradually towards the optimum value
during the iterative process. At each iteration, the worst value of the vertex is evaluated first.
Then a new simplex is formed from the existing simplex by a rule that moves the search
away from the worst value of the simplex. Four different situations may occur based on the
function values in every iteration. The algorithm carries out the operations such as reflection,

extension, and contraction to determine a new vertex, shown in Fig. 6.1.

ﬁ, -0 /5' =0

y>1
(a) (b)

Fig. 6.1. Hlustration of simplex search method (a) Reflection (b) Expansion (c), and (d),
Contractions.

Simplex method at first, evaluates the centroid of the worst vertex. Then the worst point in

the simplex is reflected about the centroid and the new point X, is found, shown in Fig. 6.1(a).
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If the function value at the reflected point is better than the current best point in the vertex,
then the reflection leads to a good region in the search space. Thus an expansion along the
direction from the centroid to the reflected point is performed shown in Fig. 6.1(b). The

amount of expansion is governed by a factor . If the function value at the reflected point is

worse than the current worst point in the simplex, the reflection is taken the point to the bad
region of the search space. Thus a contraction in the direction from the centroid to the
reflected point is made shown in Fig. 6.1(c). The amount of contraction is governed by a

factor g . Contractions with positive and negative values g are shown in fig 6.1(c-d). The

algorithm continues iteratively and the obtained new point replaces the worst point in the
simplex. These operations continue till the desired minimum is obtained. This method is used
for solving the IK problem without constraints and results are reported.

Nelder-mead simplex method is one of the well-known direct search algorithm for multi-
dimensional unconstrained optimization problems [116]. Nelder and mead proposed two
ways for handling constraints by transforming the scale of variables and modifying the
function value such that it takes the high function value when the constraints are violated.
The limitation in this approach in handling of constraints is the necessity for the initial

simplex to lie in the feasible region.

Sakai and Iwane [117] proposed a methodogy that overcomes the limitation of
handling the constraints, this approach involves the independent treatment for constraint
violation and objective function. The effectiveness of simplex search algorithm equipped
with constraint handling method has been compared with evolutionary methods by Mehta and
Dasgupta [118]. This approach has been implemented on various benchmark problems.
Results show that the proposed method performs much better than the several evolutionary
algorithms. The strategy of assigning the values to an infeasible point, performs better with
simplex method in comparison with GA based approach. Dasgupta et al. [119] proposed an
approach to exploit classical optimization algorithms for multi-modal optimization, which

gives multiple solutions of the problem.

The limitation of attaining single local solution has been resolved with this approach.
Due to the advantages of the Nelder-Mead simplex method it is implemented in the proposed
approach for solving IK problem of hyper-redundant manipulator. As the IK problem have
multiple solution, this algorithm is used to find multiple 1K solutions of the problem. From

the results it is inferred that the computational time for solving the IK problem of hyper-
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redundant robot in complex environment is less and it is about 2 minutes. Multiple 1K

solutions of robot is also achieved even with less computational time (60 seconds).

6.2. Multi-start method for multiple optima

The optimization algorithms implemented for solving IK and redundancy resolution are local
search algorithms. These algorithms often suffer from getting trapped in a local optimum
point. Multi-modal optimization deals with the task of evaluating multiple local optimal
solutions while optimizing multi-modal functions. Generally, global optimization algorithms
are employed to determine multiple solutions and these algorithms search through more than
the single basin of attraction. The task of evaluating multiple 1K solutions has been
performed using global search and multi-start framework which performs the optimization
process with the generation of a number of starting points and use local optimization solver to
find the optimal solutions. These optimization routines can be applied to the problems with a
smooth objective and constraint function and the solvers search for a global minimum or for a

set of local minima.

6.2.1. Optimization workflow

The optimization solver can be employed to determine global or multiple local solutions
using a sequence of operations [120]. The optimization workflow starts with the creation of a
problem structure. A problem structure specifies a local optimization problem and its solver
is used to minimize a given problem. A set of input parameters needs to be defined while
creating a problem structure. Parameters such as local solver, objective, constraints, and
options of the solver are to be supplied. The structure of the problem is created using
createoptimproblem function in MATLAB. After the creation of the problem structure, the
solver object is to be created which contains the preferences of a global portion of the object.
Once the solver objects were created the number of start points from which the optimization
process starts is to be defined. The start points can be defined using random start point
generation or custom start point generation. Then run solver allows the optimization process
to execute and arrives at multiple local solutions and global solution. The workflow of the

optimization process is illustrated in Fig. 6.2.
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Fig. 6.2. Work flow of global optimization problem.
6.2.2.Multi-start framework

The Multi-Start method [121] has two phases. In the first phase, the solution is generated, and
in the second phase, the solution is usually improved. Then, each iteration produces a
solution, and the best of overall solutions is the output. The algorithm of the multi-start
procedure is described below in Table 6.1. This method generates uniformly distributed
points [122] within the search space (S) and starts a local solver from each of these points. In
general, this approach converges to a global solution when there are a large number of start
points in search space, and there is also a chance of arriving at the same local solution many
times. To overcome this difficulty, some potential start points that are close to the previous

solution have to be eliminated.
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Table 6.1. Algorithm for multi-start procedure

Algorithm: Multi-start Procedure

1. Initialize i=0
2. While (stopping condition)
(a) Select a decision variable x; from the multiple start point
(b) Apply a local search optimization algorithm to improve Xx;.
(c) Let the x; be the solution obtained
If (x; improves the function value)
(d) Update the best local minimum obtained so far
i=i+1
End
Output: Obtained all local minima

The elimination procedure is performed by generating uniformly distributed start points in S,
and the objective function value is evaluated at each point. The points are sorted according to
their function value and the best points are retained. A local solver starts from each point of
the reduced sample, except if there is another sample point within a certain critical distance
that has a lower function value. The local solver is not started from the sample points that are
very close to a previously discovered local minimum. Then, again additional uniformly
distributed points are generated, and the procedure is applied to all the points which are
retained from previous iterations and newly generated set of points. The implementation of
this algorithm provides multiple IK solutions. A few cases of multiple configurations of
spatial hyper-redundant robot were reported for a given task space location. These multiple
solutions can be considered as suitable kinematic configurations of a robot working in diverse

environments.
6.2.3. Global search algorithm

A global search algorithm has been implemented to compare the solutions that are obtained
through the multi-start approach are close to the global minimum. This algorithm generates
start points using a scatter search mechanism [123]. The main feature of this algorithm is that
it analyses start points and eliminates the points that are not likely to improve the function
value. Initially, it generates potential start points then it evaluates score function for a set of

trial points. The points with the best score function have been chosen and use that as an initial
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point for the local solver. If the remaining trail points satisfy function score and constraint
filters, the global search runs the local solver. Finally, this process creates a global optimum
solution vector. Joint configurations corresponding to the global minimum for different task

space locations are reported using this approach.

6.3. Sequential quadratic programming

The optimization problem with constraints was handled by a non-linear constrained
optimization technique called sequential quadratic programming (SQP). This method mimics
the Newtons method for constrained optimization problem which is a quadratic
approximation of the Lagrangian function with linearization of constraints [124,125]. A
quadratic sub-problem is formulated and solved to develop a search direction. The line search
can be performed with respect to two alternative merit functions, and a modified BFGS

formula updates the Hessian matrix.
A quadratic programming subproblem is formulated based on a quadratic approximation of
the Lagrangian function. It is given as

L(X,2) = F(X)+ 3 4.0,(X) (6.1)

where ), is a Lagrangian multiplier

The solution vector 4X is treated as the search direction S, and subproblem of quadratic

programming is stated as

Q(S):Vf(X)TSJr%ST[H]S (6.2)

Subjected to
£,9,(X)+Vg,(X")$<0,j=12, ..., m (6.3a)
B (X)+Vh (XT)S=0, k=12, ......p (6.3b)

where H is a positive definite matrix that is initially considered as the identity matrix and it is
updated in the subsequent iterations so as to converge to the Hessian matrix of the

Lagrangian function, g, and z are the constants that ensure the linearized constraints lie in

the feasible space.

Once the search direction S is found by solving the problem given in Eq. 6.2, the design

vector is updated as
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X=X, +as (6.4)
where O is the step length parameter along the direction S.

The step length parameter is evaluated by an appropriate line search procedure so that a
required decrease in the merit function can be achieved, Hessian matrix can be updated by
any quasi-Newton methods, BFGS method has been used in this approach for updating the
Hessian matrix [125].

A non-linear constrained optimization problem can be solved in a few number of iterations
than an unconstrained problem using SQP. The reason is because of the limits of feasible
search space, the solver can make a decision regarding search direction and step length. The
SQP implementation mainly consists of three stages namely updating the Hessian matrix,

solution of quadratic programming, line search, and merit function.
Hessian matrix update

Hessian matrix is updated at each iteration as a positive definite quasi-Newton approximation

of the Hessian of the Lagrangian function. The H is evaluated using the BFGS method

T T T
Hk+1:Hk+qkSk _H, fk S H, (6.5)
Ok Sk S HS,
where
Sk = KX (66)
O = (Vf (X ) + Z&VQi (Xk+1)j_(Vf (X)) + z/%Vgi (Xk)j (6.7)
i=1 i=1

A positive definite Hessian is maintained by providing q,’s, positive at each update and H is

initialized with a positive definite matrix.

Quadratic programming solution

At each iteration of the SQP method, an active set strategy is being implemented. The QP
solution procedure involves two phases, the first phase performs the calculation of a feasible
point. If it exists, then the second phase involves the generation of an iterative sequence of

feasible points that converge to the solution.
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Line search and merit function

The solution to the QP problem produces a vector S, which is used to form a new iteration
given in EqQ. 6.4. The step length parameter « is determined in order to produce a sufficient
decrease in the merit function. This allows the positive contribution from constraints that are
inactive in the QP solution. A penalty parameter is initially set. This ensures a larger
contribution to the penalty parameter from constraints with smaller gradients, which would
be the case for active constraints at the solution point.

By using this approach a few simulations of robot tracing a specified path with constraints are
presented in chapters 7-8.

6.4. Teaching learning based optimization

TLBO is an evolutionary algorithm which mimics the teaching and learning environment for
the optimization process. TLBO is a population-based method which uses a population of the
solution to arrive at a global solution. It is a simple and fast converging algorithm. The
performance of the algorithm is improved due to the absence of algorithmic tuning
parameters that are present in GA and PSO. A group of learners has been considered as a
population in this approach [59]. In general, the population of the optimization algorithm
consists of design variables. In TLBO, the number of students in the classroom is considered
as population size. Design variables are analogous to subjects furnished to the learners. The
total marks secured in all subjects by each learner is equivalent to the fitness of the function
value. The teacher is regarded as the best solution for the whole population. The operation in
the TLBO technique is divided into two phases, i.e, the Teacher phase and Learner phase
illustrated in Fig. 6.3.

Teacher phase

In this phase, the teacher attempts to improve the mean result of the class in his subject. A
good teacher tries to bring the learners up to his level with respect to his knowledge. But in
reality, this is not feasible and a teacher can only improve the mean of the class up to some
level depending on the potentiality of the class, which follows a random process based on
many factors. At any iteration i, consider M; be the mean and T; be the teacher. T; will try to
move the mean M; with regard to its own level, now the new mean will be T; represented as
Mnew. The solution is upgraded according to the difference between the prevailing and new

mean which is stated as

Difference_mean i=r,(M,, —T-Mi) (6.8)
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where, TF is a teaching factor that determines the value of the mean to be modified, and r; is
a random number in the range [0, 1]. The value of TF can be either 1 or 2, which is again a
heuristic step and determined randomly with the same probability as TF = round [1 + rand
0. 1) {2-1}].

This difference mean changes the existing solution, as stated by the following expression

Xoeni = Xoq,; + Difference _Meani (6.9)

new, i
This is repeated for the entire population. After updating the design variables, the fitness
values of the population are computed and are compared with the old fitness values. The best
fitness values and their corresponding design variables are selected and defined as the teacher
phase set. The best solution among the teacher phase set is selected as the present ‘teacher’.

Learner phase

Learners improve their knowledge in two different ways: one is through the instruction from
the teacher and the other through interaction among themselves. A learner communicates
randomly with other learners for increasing their knowledge. A learner learns something new
if the other learner has higher knowledge than him or her. Learning phenomenon is
expressed for a population size n.

Randomly select two learners X;and X; such that i # j.
oo™ Xt 1 (X=X ), if £(X,) <f (X)) (6.10)
X=Xt 1 (X=X ) i (X)) <f (X)) (6.11)
Accept Xew if it performs better.
This task is repeated for the whole population. The modified values of the design variables
are used to evaluate the new fitness value. The fitness values obtained in the learner's phase
has been compared with the values in the teacher's phase and the best values are selected.
Finally, the best value among the population is chosen as the best solution for the current

iteration. This ends the learner's phase. The process is repeated until the convergence criteria

is achieved.
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Fig. 6.3. Flow chart of TLBO algorithm.
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TLBO algorithm is used for simulating the IK problem of spatial redundant robots avoiding

complex 3D obstacles in realistic working environments. IK problem with obstacle avoidance

in narrow regions cannot be computed in a single attempt using a classical optimization
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algorithm. For complex cases, classical algorithms need to restart several times with different

initial guesses for solving the problem. Hence a global optimization based TLBO algorithm is

used for computing the IK problem in restricted areas. The results are reported for the cases

of robot deployed in inspection and welding of a pipeline, pick and place operation in work

facility layout.

6.5. Overview of optimization techniques

The overview of optimization techniques implemented for IK simulation of hyper-redundant

robot is described in flow chart given below.
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Fig. 6.4. Flow chart of optimization techniques for IK simulation of
hyper-redundant robots.
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CHAPTER-VII

7. Results of IK Solution of Planar Hyper-Redundant
Manipulators

In this chapter, simulation results of the IK solution of planar hyper-redundant manipulators
working with and without obstacles in the workspace have been presented. A redundancy
resolution scheme is implemented for a planar manipulator traversing along a path by
avoiding obstacles in the workspace. The task of redundancy resolution (finding the best
solution among the available solutions) is performed using an optimization criterion such as
joint-distance minimization and singularity avoidance. Optimum trajectory planning of
redundant manipulator is also performed to evaluate joint trajectories while the robot is

traversing a straight-line path.

7.1. IK solutions of planar hyper-redundant manipulators

This section shows joint configurations of a robot while the end-effector is commanded to
move along the path. The links of the robot are considered uniform in length. Simulations
have been performed for 5 DOF and 10 DOF planar redundant robots. Following cases were

considered for IK simulation.

Table 7.1. Cases performed for IK simulation of robot in 2D workspace.

Joint Task

Configurations |  Performed No of DOF Workspace
Without obstacles
Traversing a 21Ok Two polygonal obstacles
path e
10 DOF Without obstacles

Two polygonal obstacles

IK Solution of | Specific task (5-10)

PI space Convex polygonal obstacles
anar

X DOF
Redundant location Non-convex polygonal obstacles
robots Redundancy
resoluton of 5 DOF Avoiding complex polygonal obstacles
planar robots
Minimizaton
of Joint Power 3 DOF Without obstacles

consumption
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Different cases of IK simulation and redundancy resolution of planar hyper-redundant robots
working in various environments has been shown in the flow chart shown in Fig. 7.1. Results

of the following simulations have been presented in subsequent sections.

IK Simulations
of Planar Robot

= Singularity
Avoidance

Redundancy resolution
= Joint Distance Traversing a Path For atask space
Minimization location

In Presence of Without In Presence of Without In Presence o Without
Obstacles Obstacles Obstacles Obstacles Obstacles Obstacles

Fig. 7.1. Flow chart representing the IK simulations and redundancy resolution of
hyper-redundant robots

7.1.1. Without obstacles in the workspace

IK simulations are performed for 5 linked and 10 linked robot configurations without
obstacles in the workspace. A path is chosen in the workspace and a set of points were
chosen on the path. The coordinates of the points were given as a task space location (TSL)
of the end-effector. Joint configurations are shown for the given task space coordinates. The
IK problem is posed as a distance minimization problem i.e. distance between the current
location and target location of the end effector, given in Eq. 3.21. The forward kinematic
relationship gives the current end-effector location as a function of joint variables. The robot
with 5 DOF has five unknown variables and two equations corresponding to the coordinates
of the target location in the workspace. In a given path, ten points were chosen and the
optimization problem is solved for each point to determine the joint configuration to reach a
specific point. The red circle in Fig. 7.2 represents the boundary of the workspace. For this
simulation, the home position of robot links is assumed as zero degrees with X-axis. Fig. 7.2
shows the joint configurations while the end-effector is tracing a path. Table 7.2 shows the

angles of the links for each robotic configuration.
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The values of the positional error in Table 7.2 infers that the end-effector is reaching the
desired TSL accurately. The number of iterations required to minimize the objective function
value is 20 as shown in Fig. 7.4 (a). The computational time for the IK solution of a robot for
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Fig. 7.2. A 5-linked robot configurations without obstacles in the workspace.
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all the TSL’s on the path is 32.542 seconds, performed on a PC with Intel Xeon E5 processor
@3.50 GHz with 32 GB RAM.

Table 7.2. Joint configuration of 5 DOF robot traversing a path without obstacles in

workspace.

S.NO Path Angle of links in degrees Positional

Coordinate 0, 0, 03 0, 0s Error

(mm) ( mm)
1 (33,21) 4.82 325.07 | 62.64 | 73.30 42.19 3.10 x10™®
2 (20,28) 159.52 46.36 | 21.38 | 31.94 60.01 2.38 x10™®
3 (9,27) 220.66 81.06 | 69.19 | 85.54 27.82 5.33 x10™®
4 (0,20) 198.87 87.08 | 175.58 | 139.60 45.46 2.48 x10™°
5 (-8,9) 8.568 40.21 | 137.31 | 178.40 | 221.37 | 3.30x10™
6 (-16,-4) 256.30 139.10 | 284.56 | 175.31 54.84 4.01 x10®
7 (-24,-13) 258.12 183.81 | 231.63 | 194.48 62.16 5.51 x10”
8 (-31,-12) 235.13 202.17 | 214.22 | 220.49 77.26 1.17 x10%®
9 (-38,0) 246.73 158.72 | 225.47 | 160.48 | 140.79 | 1.74x10™
10 (-44,-22) 141.02 124.07 | 188.25 | 154.26 | 166.70 | 2.72x10™

An IK simulation for 10 DOF robot is also performed without obstacles in the workspace
while traversing the same path, this simulation is performed to observe the computational
time taken to perform the IK problem with the increase in the number of DOF. Fig.7.3 shows
two robot configurations corresponding to the task location on the path. Fig.7.4 (b) shows
the number of iterations required to minimize the objective function value is 180.

Computational time for the solution to this problem is 66.232 seconds.

Final Configuration
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Initial Configuration
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Y-axis
o
Y-axis
o
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Fig.7.3. A 10-linked robot configuration without obstacles.
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Fig. 7.4. Convergence plot of IK solution without obstacles (a) 5 DOF robot (b) 10 DOF
robot.

7.1.2. Polygonal obstacles in the workspace

A workspace with polygonal obstacles has been considered for the IK simulation of
redundant robots. Initially, a 5 DOF robot is considered and two polygonal obstacles such as
triangle and hexagon have been chosen. A curved path is taken, which is passing in between
the obstacles. IK simulations are performed for the TSL chosen on the path. Fig. 7.5 shows

the configurations of the robot while traversing a path avoiding obstacles in the workspace.

The task of collision detection is performed using the point-in-polygon technique discussed
in section 5.1. Collision avoidance of redundant robot is implemented by adding a penalty
value to the objective function given in Eq. 5.1. Further optimized to given IK solution of
robot avoiding obstacles. The computational time for the solution to this problem is 62.323

seconds.

An IK simulation of 10 DOF robot avoiding obstacles have shown in Fig. 7.6. The
computational time for the solution to this problem is 120.452 seconds. Fig.7.7 shows that the
number of iterations for convergence of solution for 5 DOF robot is 120 whereas, for 10 DOF
robot, it is 180.
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Fig. 7.5. A 5-linked robot configuration with two obstacles in workspace.
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Fig. 7.6. A 10-linked robot configuration with two obstacles in workspace.
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7.1.3. IK Simulation with polygonal obstacles in the environment

Workspace with multi-shaped obstacles is modelled, which significantly reduces the free
space and makes the workspace more complex. IK Simulations have been performed for

planar redundant manipulator in these complex workspaces.
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Fig. 7.8. Robot configurations avoiding multi-shaped polygonal obstacles (a) 5 DOF
manipulator (b) 6 DOF manipulator.
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Fig. 7.8 (a) depicts the IK solution of 5 DOF robot at different task space locations avoiding
three polygonal obstacles in the workspace. Fig. 7.8 (b) shows a 6 DOF robot avoiding five

polygonal obstacles. For all the TSL’s robot reached accurately without colliding obstacles.

7.1.4. IK Simulation with non-convex obstacles in the environment

Workspace with non-convex shaped obstacles has been considered for IK simulation of
hyper-redundant manipulators shown in Fig. 7.9 (a-f). This case study focuses on robot

configurations while avoiding E-shaped and C shaped obstacles.

E~d.

i

-200 |,

-200 -150 -100 -50 0 50 100 150 200 -200 -100 o 100 200

. . -100 50 0 50 100
X-axis X-axis X-axis
(a) (b) (c)
80 80 100
.
L 4 J 80
60 - 60
60 "
a .
40 1Y 1 40
. 40 .
201 1 20 B .
9 ] @ E 20 ® .
3 o | 5 0 >0 &
> Base - Base
-20
20 -20 Obstacle
-40
aof 1 -40
-60
ol \/ | a5
Obstacle A
Obstacle
-80 -80 -100
-100 50 4 s 100 50 0 50 -150 -100 -50 0 50 100
X-axis X-axis X-axis

(d) (e) (f)

Fig. 7.9. Joint configurations of redundant robot avoiding non-convex obstacles.

This helps us to understand how accurately a robot is positioned in cluttered environments
and in the narrow regions of the workspace. Fig. 7.9 (a-c) shows the robot configurations
when the E-shaped obstacles are placed in different regions of the workspace. Fig. 7.9 (d-f)
shows a different workspace with non-convex obstacles that are similar to a realistic cluttered

environment.
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These cases are difficult to solve than the previous ones because the obstacle is a non-convex
object and target points are difficult to reach. It is observed that the solution may not be found
always for all the target points with one initial guess itself. Hence, an automatic restart with a
different initial guess is incorporated to handle such cases. Simulations have been performed
for a different number of DOF robot varying from 6 to 10. It is observed in all the cases the
end-effector reached the target location accurately without colliding the obstacles. The IK
solutions of the redundant robot has been compared with different evolutionary based
approaches. Kalra [96] proposed genetic algorithms for solving IK problem of industrial
robots, in this work he reported that the number of generations needed for PUMA robot as
300 and the precision of the solution is 0.5 mm. Koker [55] proposed hybrid approach using
neural networks and genetic algorithms to solve the IK solution of 6 DOF robot. This study
has been made to improve the accuracy of solution. In above studies, the population size
and number of generations results in high computational time for the solution. Increase in
the number of DOF further increase of computational burden with these approaches. In the
proposed work IK solution of hyper-redundant manipulator with 10 DOF working in complex
workspace has been simulated. The computational time in cluttered workspaces is less than
120 seconds. The task of achieving multiple IK solution has also performed for spatial
redundant robots, for which computational time is less than 60 seconds. Redundant robots
are employed in different industrial and medical applications, where high accuracy and
repeatability is required. Modern developments in manufacturing technologies such as
semiconductor processing and assembly and precision material processing taken place.
Micro assembly involves in joining of parts that have atleast one dimension less than 1 mm
and that must be assembeled with micrometer accuracy. The accuracy of the solution with
the proposed approach is 10° mm, satisfies the requirement of above applications. The

accuracy of the solution is much better than the evolutionary based approaches

7.2. Redundancy resolution with joint distance minimization

Results demonstrate the redundancy resolution scheme of the serial redundant manipulator at
the position level. In this case, a 5-DOF planar redundant robot of equal link lengths has been
considered. Polygonal obstacles are chosen in the workspace, the robot has to trace the path

in the workspace without colliding the obstacles.

89



60
60

401

Obstacles

401

201
20

0
] ig 0
%
g 0 >
>.
20
20 Obstacles
40
40 F
& | | | | |
60 -40 -20 0 20 40 60
60 ‘ | ‘ .
-60 40 -20 0. 0 40 60 X-axis
X-axis (b)
(a)
60 T T T T T 60 - - -
Obstacle wl
401 Obstacle
20 27
° 8
$ 0 E 0
>
20
20
401
40t
50 | | | | |
50 | | 60 -40 20 0 20 40 60
80 -40 20 0 20 40 60 X-axis
X-axis (d)
(c)

Fig. 7.10. Evaluation of joint configurations (a) Straight line path avoiding polygonal
obstacles (b) Circular path avoiding polygonal obstacles (c) Straight line path in narrow

passage (d) Circular path in narrow passages.

Here, the problem of redundancy resolution is carried out by minimizing the joint rotations
while the robot is assumed to traverse a path in the task space. This was solved as a
constrained optimization problem with the objective function, given in Eq. 4.32 and the task
space constraints are shown in Eq. 4.33. The task of collision avoidance is implemented using
a penalty approach, solved using Eq. 5.1. Results are reported by changing the position and

shapes of the obstacles and path to be traced by the end-effector, to show the efficacy of the
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proposed resolution scheme. In Fig. 7.10 (a-b), the robot is following a circular and straight-
line path with polygonal obstacles in the workspace. Fig. 7.10 (c-d) shows the robot
following the straight line and circular path accessing narrow passages. In each of these
cases, the computational time with the proposed approach is about 30-60 seconds. Fig. 7.10
(c-d) illustrates that the optimization problem may not converge easily because the path in
which the robot has to travel is very narrow and difficult to reach. This problem can be
handled by restarting the optimization algorithm with different initial guesses. It is observed
from all these cases that the solutions are resolved by minimizing the objective function while
satisfying the constraints of reaching task space and avoiding collisions.

In the literatre [42], redundancy resolution has been performed for minimum norm solution at
velocity domain, for which computation of Jacobian inverse is required. This increases the
computational time with increase in number DOF of the robot and sensitive at singular
positions. To reduce the computation cost associated with pseudo-inverse solution many
researches proposed several methods for redundancy resolution. Kircanski [68] proposed
combination of analytical and pseudo inverse solution. By adopting this approach the
dimensions of Jacobian are reduced, which decreases computational complexity. Applying
gradient projection method to this approach will further reduces computational burden. In the
proposed approach redundancy resolution at position domain, this does not involve the
computation of pseudo inverse of Jacobian. Classical optimization algorithm has been
implemented for solving the redundancy resolution problem in narrow workspace. The
computational time for this simulation is less than 60 seconds, which is less than Jacobian

based methods and evolutionary approaches.

7.3. Singularity avoidance of planar redundant robots

Singularity avoidance is determined by choosing an objective of maximizing the
manipulability measure of a robot, given in Eg. 4.35 with task space constraint (reaching the
task space location), shown in Eg. 4.34. In this case, boundary singularity avoidance for the
5-DOF manipulator is considered. Fig. 7.11 shows singular configurations while the robot is
tracking a straight-line path in the workspace, where the robot configurations are stretched.
Fig. 7.12 shows the configurations that are away from singular points. Manipulability values
are calculated for both cases to show how far the manipulator is away from singularities. Fig.
7.13 illustrates manipulability measure along with the points of the given path for both

singular and non-singular configurations. The value of manipulability measure for singular
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configuration is varying in the range of 580-860 on the corresponding points of the path.
Whereas for the non-singular case it is about 738-1020. The percentage improvement of
manipulability measure is about 27.8% for non-singular cases compared to singular

configurations.
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Fig. 7.13. Manipulability measure along Fig.7.14. Robot configurations with
desired path. obstacle and singularity avoidance.

The task of obstacle avoidance and singularity avoidance for a given path is also performed
and Fig. 7.14 shows non-singular configurations of the robot while avoiding a rectangular

obstacle. In the literature [12] singularity avoidance has been performed for planar
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manipulators without obstacles in the environment. In the proposed approach singularity
avoidance is implemented for redundant robots by considering obstacle avoidance as
additional criterion. Existing methods in the literature present obstacle avoidance of
redundant manipulators using pseudo-inverse techniques [64]. These methods suffer from
sensitivities at the singular configuration and are known to be computationally expensive.
Popularly used method for obstacle avoidance is an artificial potential method [88], this
technique known to be face difficulty with local minimum. To check the computational
efficiency and accuracy of IK solution, redundancy resolution of planar robots has been
implemented at velocity level using pseudo-inverse of Jacobian. The computational time of
IK solution using pseudo-inverse technique is high and it is twice the time when compared
with IK solution performed at position level. The accuracy of the IK solution performed at
joint position level is found to be better than the solution at velocity level. As shown in the
results, the proposed work handled collision avoidance in a 2-Dimensional workspace using
the penalty approach. This approach is computationally fast due to its simple and effective

obstacle modelling.

7.4. Optimum trajectory planning of redundant manipulator

A 3-degrees of freedom planar redundant manipulator has been considered for optimal
trajectory planning of robot by minimizing total power consumption at the joints. Trajectories
have been evaluated for 3DOF robot for two kinds of motion such as continuous and point-
to-point motion. For continuous motion, the end effector is constrained to move in a straight
line path while optimizing power consumption, which is shown in Fig.7.15. A non-linear
constrained optimization algorithm has been used for achieving the required objective of
minimum power consumption, given in Eq. 4.39. The constraints of the optimization
problem are reaching the end-effector to the task space and accelerations of joints, shown in
Eq. 4.40& 4.41. For the point-to-point motion simulation, the optimal trajectories have been
evaluated by posing it as a non-linear constrained optimization problem with an objective
shown in Eqg. 4.39. The constraints of an optimization problem are the end-conditions of the
manipulator such as starting point, goal point, start velocities, and end velocities. Fig. 7.16
shows the path traced by the end-effector by minimizing the objective while satisfying the
constraints. For simulation of this case, the parameters of manipulator considered are mass
(m;=1 kg m,=2 kg ms=1 kg), link lengths, inertia of links. Joint trajectories are evaluated

using a quintic polynomial equation, which ensures smooth joint velocities and accelerations.
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Fig. 7.17 (a) depicts the variation of joint displacement for a given time interval for
continuous motion along a straight line. It was observed that the variation of angular
displacement at jointl is more compared to the other joints. Fig. 7.17 (b) shows the variation
of angular velocity against the time, it is observed that joint velocities are satisfying end
conditions and also ensuring smooth variation. Fig. 7.17 (c) depicts the variation of angular
accelerations at respective joints. Fig. 7.17 (d) shows the variation of joint torques.

The joint trajectories are computed for point to point motion simulation of the redundant
manipulator. Fig.7.18 shows the variation of angular displacement, velocity, accelerations,

and applied torques at each joint Fig. 7.18 (a) depicts the variation of angular displacements
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at the individual joints. The variation of the joint displacement is uniform. The variation of
angular velocities and accelerations are shown in Fig. 7.18 (b-c).

The variations are uniform and satisfying the end conditions of the robot. Joint torques
applied at each joint are shown in Fig. 7.18(d). From Fig. 7.18 (d), the variation of torque
applied at jointl is more when compared with other joints. The maximum torque at jointl is
9.5 N-m, which is higher than the joint torque of a continuous motion robot. In this
simulation, 3 DOF planar robot has been presented. This approach can be extended for planar
robots with more number of DOF.

In the above simulations redundant robots with different DOF that are suitable for a
specific task has been choosen. The choice of selecting DOF for a robot depends on the

following aspects

1. Geometry of the workspace

2. Geometry of the obstacles

3. Number of obstacles

4. Nature of the task to be accomplished.
The present work is not dwelling into the issue of selection of DOF for a specific task. The
focus of the work is to analyze how the IK Solution methods perform while accomplishing
different tasks. In this sense, different DOF of the robots that are appropriate for a particular
task has been chosen to demonstrate the effectiveness of the method. Different simulations

have been carried out for different tasks that are given in table 7.1.

7.5. Observations from the results
1. A general inverse kinematic method is proposed which is efficient and effective i.e.,
the method is capable of finding an inverse kinematic solution quickly (1-3 minutes
for all the cases) for highly redundant planar robots even with obstacles in the
workspace. Computational time for different performance measures are given below
(a) Computational time for the task of redundancy resolution in complex workspace
is 150 seconds.
(b) Computational time for the task of singularity avoidance with obstacles is 120
seconds.
2. Efficiency is due to the simple and effective modeling techniques and classical

optimization methods employed to solve the problem. The method can also be used

96



for real-time applications because of its efficiency.

The IK simulation has been performed in cluttered workspace. Results shows that
there is no collision of joint configurations with the obstacles in all the cases and able
to reach the task space precisely. Collision avoidance is tackled effectively using
penalty approach. The task of collision detection is performed by modeling obstacles
as polygons and robot links as lines.

A restart procedure with a different initial guess is included when the solution is not
found in the first attempt itself. This makes sure that repeated attempts are made even
if the classical optimization method fails to find the solution because of the multi-
modality of the objective function.

Both convex and non-convex obstacles can be handled using the proposed method.
Redundancy resolution techniques have been implemented to determine the best joint
configurations by satisfying the additional performance criterion.

The accuracy of the IK solution in all the cases is high, which is in the order of

5.3335x10° mm.
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CHAPTER-VIII

8. Results of IK Solution of Spatial Redundant Manipulators

IK simulations of spatial 9 DOF robot have been performed in different workspaces such as
un-constrained environment without obstacles and with multi-shaped 3D obstacles. A
redundancy resolution scheme is also implemented with a different secondary criterion such
as joint-distance minimization and singularity avoidance. Simulations of a hyper-redundant
robot are performed in a realistic environment similar to plant-layout, pipe-layout inspection,
and work facility layout. Different cases of IK simulation and redundancy resolution of
spatial hyper-redundant robots working in various environments has been shown in the flow

chart in Fig. 8.1. Results of the following simulations have been presented in subsequent

sections.

IK Simulations
of Spatial redundant
Robot

Classical optimization
methods

TLBO algorithm

f Case studies

» Pipe layout
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= Pipe Welding

= Automated
facility layout

» Pick and Place in
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® Joint Distance

For atask space

i Multi-Modal
Minimization location optmization
= Singularity
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In Presence of Without In Presence of Without Multiple IK
3D Obstacles Obstacles 3D Obstacles Obstacles Solutions

Fig.8.1. Flow chart representing the IK simulations and redundancy resolution of

spatial redundant robots
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8.1. IK Simulations without obstacles in the workspace

The inverse kinematics of spatial hyper-redundant manipulator is determined for a 9-DOF
manipulator at different task space locations (TSL). The IK problem is posed as an
optimization problem with the objective as minimization of total Euclidean distance shown in
Eq. 3.20, which is a non-linear problem without constraints. The IK solution is computed
using fminsearch function of MATLAB. This function works based on the Nelder and Mead
simplex algorithm mentioned in section 6.1. Table 8.1 shows joint configurations of the 9-
DOF robot for a set of six TSL’s. The forward kinematic model of the end effector (given in
Eqg. 3.17) is a function of nine joint variables that are to be determined for each TSL specified

in three-dimensional coordinates.

Table 8.1. Joint configurations corresponding to task space locations.

Positional

Task Space Joint Configuration (in degrees) Error

S.No Location

01 0, 03 04 05 06 67 0s 0y
1 (18,18,20) -23.69 -17.01 -64.86 10.12 100.68 3.53 53.67 43.87 49.54 4.23e-10
2 (28,28,20) 4220 -25.64 63.96 261.04 -84.29 -40.09 -5.61 -15.03 -113.1 6.16e-11

3 (38,3525 -63.29 -10.33 39.40 89.77 77.20 43.95 4.84 -89.56 19.27 7.3%-11
4 (-18,-18,-20) -27.16 -107.0 -4.96 80.52 -45.78 -43.66 -83.03 -114.28 -101.1 6.78e-11
5 (-28,-28,20) -17.57 740 -72.33 16.89 -20.60 64.60 30.46 -19.58 -136.5 6.22e-10
6 (-38,-35,25) 22.13 3243 -96.91 23.98 -33.32 38.20 -52.29 46.21 20.45 8.08e-10

Fig. 8.2 (a-d) shows the joint configurations of 9-DOF robot at TSL of (18, 18, 20), (38, 35,
25), (-28, -28, 20) and (-38, -35, 25). The positional error obtained after the convergence is
about 7.39e-11. The values of positional error at different task space coordinates are reported

in Table 8.1, which ensures the accuracy of the end-effector.
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target point(-28, -28, 20) (d) Joint configuration for target point(-38, -35, 25).

The positional error obtained has been compared with the existing literature [96, 97], and it
was observed that the order of positional error is negligible (10" times) shown in Table 8.2.
From the values of positional error, it was observed that the end-effector is precisely located

at desired task space locations.
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Table 8.2. Results of positional error comparing between a redundant robot [96, 97] and

9-DOF spatial hyper redundant robot.

Type of the Robot SCARA[88] 7 DOF spatial robot 9-DOF spatial hyper
[89] redundant robot.
0.69 0.002 4.23¢-10
Positional Error
0.50 6.16e-11
(mm) 0.003
0:55 0.004 7.39 x10™

The convergence of function value during the optimization process is shown in Fig. 8.3. The

number of iterations required to attain the minimum function value for a task coordinate of

(18, 18, 20) mm is at 900, which is shown in Fig. 8.3(a). From Fig. 8.3 (b) it is observed that

the convergence of function is achieved after 400 iterations for a task coordinate (38, 35, 25).

From the rate of convergence, it is inferred that the computational time for this simulation is
less, and it is about 10 seconds.
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Fig. 8.3. Function plots. (a) Convergence plot for target point(18, 18, 20)
(b) Convergence plot for target point (38, 35, 25).
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8.2. Multiple IK solutions using multi-modal optimization

Multiple IK solutions of spatial redundant robots for a given TSL are computed using a
global search optimization algorithm, presented in section 6.2. The objective function for this
simulation is similar to the function chosen for a general IK procedure. The multi-start
framework has been implemented to determine the local optimum solutions for the problem.
The optimization procedure starts with the generation of start points in search space, and a
non-linear optimization solver was executed at each start point to compute optimal solutions.
The start points and basin of attractions are visualized through basins of attraction shown in
Fig. 8.4. Start points at which the optimization algorithm executes are represented as dots,
and basins of attractions are depicted as stars in Fig. 8.4. The dots that are closer to the basins
of attraction represent the required local optimal solutions. The global optimization process
has been implemented by considering ten start points initially. Fig. 8.5 (a-f) shows six
different kinematic configurations of the same TSL (18, 18, 20) for ten optimal solutions.
From Fig. 8.5 (a-f), it was observed that all kinematic configurations are distinct, and these

can be a suitable candidate solution for reconfigurable spatial redundant manipulators.

Visualization of basins of attraction in global optimization algorithm
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Fig. 8.4. Visualization of basins of attraction and multiple solutions for a task location (18, 18, 20).
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Here, ten feasible kinematic configurations are obtained as optimal solutions. The
computational time for attaining multiple IK solutions, i.e., ten joint configurations of a

redundant manipulator, is about 45 seconds.

To show the efficacy of the approach, this algorithm has been executed with a different
number of start points. Fig. 8.6 (a-d) show the minimized objective function values of

multiple solutions
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Fig. 8.6 (a-d). Plot showing converged function values with different number of start

points.

for a range of 10- 40 start points. It was observed that the least positional error is achieved

with 40 start points, and it is in the order of 2.36e-13. From Fig. 8.6 (a-d), it was also
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observed that the magnitude of positional error was less at different start points range. The

solutions are consistent even for less number of start points.

In the existing literature [96, 97], multiple IK solutions have been computed using niching
based approaches, they require more algorithmic control parameters. For the same problem,
using the proposed approach solutions have converged quickly even with ten start points. The
global optimization techniques [97] require a large population size to obtain multiple joint
configurations. In the multi-modal approach of industrial robots [96], a maximum of four
different kinematic configurations have been obtained with a population size of 50. From the
size of the population and the number of iterations required to converge a solution, it is
known that the evolutionary algorithms are computationally expensive. The proposed global
optimization algorithm can achieve ten distinct kinematic configurations for a 9 DOF spatial
robot in less time. As shown in Fig. 8.6, the number of distinct configurations can be

increased by increasing the number of start points.

Table 8.3. Multiple kinematic configurations corresponding to the task space coordinate
(18, 18, 20).

Task Space Joint Configuration (in degrees) Positional
i Error
S.No Coordinate -
(in mm) (in mm)
0 0, 03 0, 05 06 0, 0g 05

1 (18, 18,20) -268.04 -5.78 740.7 -546.1 -100.4 -403.1 -3.06 360.02 -310.1 9.023e-13
2 (18,18,20) 301.13 885 10497 -680.9 -756.1 -391.9 113.14 -211.6 296.41 1.55e-12
3 (18,18,20) 476.55 -31.048 62250 -116.6 -159.6 166.92 577.33 81.96 858.93 2.462e-12
4 (18,18,20) -807.8 -67.03 192.53 -404.8 -747.6 480.14 -827.6 -566.3 575.05 9.37e-12
5 (18,18,20) 544.99 678.83 260.47 -571.4 -481.76 -128.7 -526.0 -248.6 -730.6 1.03e-11
6 (18,18,20) -383.3 558.38 -2740 -377.9 807.81 -479.6 -490.4 84.97 781.19 1.74e-11
7 (18,18,20) 359.32 -127.1 -296.4 649.42 799.88 -549.4 878.67 -24.502 -765.2 2.16e-11
8 (18,18,20) -834.7 690.71 139.19 -191.3 -173.47 84.70 -136.5 963.91 421.78 8.27e-11
9 (18,18,20) -721.8 -415.0 8329 -628.4 1020.7 -792.9 44498 238.99 -488.9 1.30e-10

10 (18,18,20) 122.74 890.86 294.89 -590.8 -429.16 181.93 -815.3 910.6 -925.4 1.07e-09

Table 8.3 shows ten distinct joint configurations corresponding to the TSL (18, 18, 20). The
positional error is also reported in Table 8.3, which is almost zero and ensures that the end-

effector reaches the desired target precisely. From the IK solutions in Table 8.3, it was
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observed that the solutions were not repetitive. The function value of the local optimum IK
solution has been compared with the global optimum solution to check if the function value
of a local solution is close to the global solution. The global solution can be obtained using a
global search algorithm described in section 6.2.3. This was implemented for the redundant
robot at different TSL.

Start points in the global search algorithm were generated using a scatter search mechanism.
Local optimization solver runs based on the score of the start points, and this feature enables
the algorithm to arrive at the global optimal solution without trapping at the local optimal
point. Table 8.4 shows the joint configurations and corresponding global minimum function
values at different task space coordinates. From the values of positional error in Table 8.4, it
was observed that the magnitude of the converged objective function is almost the same as
the positional error magnitudes reported in Tables 8.1& 8.3.

Table 8.4: Joint configurations corresponding to a global minimum at different task space

locations.
. . L Positional
Task Space Joint Configuration (in degrees)
- Error
S.No Location
01 0, 03 04 05 06 07 0s 09

[N

(18, 18, 20) -239.05 0 -239.05 0 183.73 0  386.28 0  260.72 1.529%-13
2 (28, 28, 20) -18.333 0 -18.333 0 48.447 0  66.641 0  47.152 1.801e-13
3 (38,3525) -13.515 -0.321 -10.035 0.626 39.576 10.441 53.674 11.184 36.676 1.950e-13
4 (-18,-18,20) -47.67 -121.9 -11.07 -114.45 -72.44 -108.7 -71.70 -52.96 -40.06 6.71le-13
5 (-28,-28,20) -24.74 0 -24.74 0 5332 0 -65.87 0 -43.40 8.975e-14

6 (-38,-35,25) -72.46 49.945 -57.04 59.662 -157.07 58.02 -180.36 -3.564 -31.59 3.188e-12

8.3. IK Solutions in a 3D cluttered environment

This section presents the results of different IK solutions of the robot operating in the
cluttered environment. A wide variety of 3D working environments are considered to
simulate the robots working in real-time applications. For this simulation, a redundant robot
with five links and 9 DOF is considered. Each joint of the robot is modelled with 2 DOF
(universal joints), which allows the robot to move easily in a cluttered environment. The
kinematic modelling of this robot is described in section 3.4.2. All the links are of uniform

length and are taken as 20 units. The IK solutions of the robot are computed using
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optimization techniques discussed in section 6.1. The collision detection scheme is
implemented using the bounding box technique, discussed in section 5.2. Collision avoidance
of robots with different types of 3D obstacles was implemented using the penalty approach.
The modified equation of objective function with a penalty is given by Eq. 5.2. To determine
the collision of a specific link with any of the obstacle, the links of the robot has been
modelled as line segments, which are discretized as a series of points. A set of points are
chosen uniformly along with the link so that all portions on the link are considered for
collision avoidance. Fig. 8.7 (a) shows the joint configuration of the robot for a TSL (14, 14,
14) with three spherical obstacles in the workspace. While Fig. 8.7 (b) depicts the IK solution
of the robot with four spherical obstacles. The end-effector of the robot reached the task

space location accurately, and the positional error is negligible.
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Fig. 8.7. IK Solution of spatial redundant robot with spherical obstacles (a) 3 spherical
obstacles (b) 4 spherical obstacles.

Robot configurations at different TSL while avoiding 3D obstacles of different shapes in the
workspace are shown in Fig. 8.8. IK solution of robot at TSL (5, 25, 25) and (22, 15, 30)
shown in Fig. 8.8 (a), while Fig. 8.8 (b) shows IK solution at task space locations (-10, 30,
30) and (24, 12, 25). A workspace with cylindrical and conical obstacles has been considered,
and kinematic configurations of the robot are shown while avoiding these obstacles. Fig. 8.9
(a) shows the joint configurations of the robot at task space locations (50, 20, 30) and (50, 15,
20), while Fig. 8.9 (b) shows the configuration at the TSL (46, 22, 30).
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Fig. 8.8. IK solution of spatial redundant robot avoiding multi shaped obstacles (a) At task
space location (5, 5, 25), (22, 15, 30) (b) At task space location (-10, 30, 30), (24, 12, 25).
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Fig. 8.9. IK Solution of spatial redundant robot avoiding cylindrical and conical obstacles
(a) At task space location (50, 20, 30), (50, 15, 20) (b) At task space location (46, 22, 30).

To show the realistic robot model, the links of the robot are considered as cylinders. The
collision detection scheme in section 5.2 has been extended for cylindrical links. The axis of
the cylinder is considered along the length of the link. The link length is discretized
intopoints and a series of circles are generated along the axis by choosing the points on the
axis as the center of the circles. The coordinates on the circle are represented as points on the

surface of the cylindrical link. Collision detection has been performed by checking whether
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the points on the surface of the cylinder lie within the bounding box, which is implemented
using an algorithm in Table 5.1. Fig. 8.10 shows the joint configurations of the robot, whose
links were modelled as cylinders at task space locations (35, 20, 30) and (46, 22, 30).
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30

Y -axis

X-axis

Fig. 8.10. IK Solution of spatial redundant robot avoiding cylindrical and conical
obstacles links modelled as cylinders (a) At task space location (35, 20, 30) (b) At task
space location (46, 22, 30).

Narrow passages similar to ducts and frame cut-outs were modelled in the workspace, and the

task coordinates are chosen in a way that robot enters through those passages.
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Fig. 8.11. IK Solution of spatial redundant robot avoiding obstacles (a) With a duct shaped
object as obstacle (b) Rectangular frame as obstacle at task space location at task space
location (20 15 13).
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Fig. 8.11 (a) shows the robot configuration while passing through the duct-like passage and
reached the target location inside the duct without colliding with the boundary of the duct.
Fig. 8.11 (b) shows the IK solution of the robot at the task location of (20, 15, 13) entering
through a frame. The computational time for a single 1K solution with multiple obstacles is

less than 120 seconds.

The collision avoidance schemes proposed in the literature [24, 94] are implemented for
different types of obstacles, but the obstacle modelling and collision detection techniques are
quite complex. Collision detection in the 3D workspace has been implemented by enclosing
the obstacles by bounding boxes. Due to the simplicity of the collision detection technique,
this approach can be implemented for any shape of obstacles. As shown in the results, this
approach can be easily adopted in real-time working environments. From the results of
obstacle avoidance, in all the cases the manipulator able to reach the required TSL by

avoiding obstacles with less computational time.

8.4. Results of redundancy resolution using SQP without obstacles

Simulations present the redundancy resolution scheme of hyper-redundant manipulators.
Here, the problem is to evaluate the best IK solution among the multiple solutions by
considering the performance criterion of joint rotation minimization from the previous

position, given in Eq. 4.32, and the corresponding task constraint is given in Eq. 4.34

Z-axis
Z-axis

Fig. 8.12. Joint configurations of a 9-DOF robot. (a) Joint configurations of robot for a
straight-line path (b) Joint configurations of robot for a circular path.
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Here, 9-DOF redundant manipulator was considered to trace two different paths, such as a

straight line and circular path in task space. The path in the task space is taken as a series of

points, and the optimization algorithm is implemented at every point to determine the

kinematic configuration at the corresponding point.
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Fig. 8.13. Angle variation of a 9-DOF robot at task locations while tracing a straight line

path.

Fig. 8.12(a) shows the kinematic configurations of the robot while tracing a straight-line

path, whereas Fig. 8.12(b) shows kinematic configurations while tracing a circular path. In
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both cases, the accuracy in reaching the task space is ensured. The computational time for the

simulation of the robot while tracing each path is about 90 seconds. The angular displacement

at each DOF, while the manipulator is tracing a straight-line path in the task space, is shown

in Fig. 8.13. As the objective formulated is joint distance minimization, which provides the

least movement of joints from the previous configurations.
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Fig. 8.14. Angle variation of a 9 -DOF robot at task locations while tracing a circular path.
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The variation of joint rotation at each DOF corresponding to task space coordinates is shown
in Fig. 8.13 (a)-(f), and these variations are shown for both redundancy resolution and no
redundancy resolution. While Fig. 8.14 (a)-(f) shows the angular displacement at each DOF
while the robot is tracing a circular path in task space, with and without redundancy
resolution. In both cases, it is evident that the joint rotations were minimized with redundancy

resolution along the defined path when compared with no redundancy resolution.

8.4.1. Redundancy resolution of the spatial robot with obstacles

A redundancy resolution scheme has been implemented for the spatial redundant robot while
tracing a path in the 3D cluttered environment. Fig. 8.15 shows a case with a circular path
around the spherical obstacle. In this case, the robot configurations corresponding to the
target points along the path are evaluated by applying the redundancy resolution scheme
discussed in section 4.3.1. The obstacle avoidance has been carried out by adding penalties to
the optimization criteria given in Eq. 5.2. From Fig. 8.15, it was observed that the joint

displacements are reduced while tracing a path in the workspace.

ol 0
/ Path- ¢

40
30 -

N'F 20
10 -
0~

Y-axis 10
Fig. 8.15. IK solution of spatial redundant Fig. 8.16. IK solution of spatial redundant
robot while tracing a circular path around the robot while tracing a semi-circular path

spherical obstacle. around the spherical obstacle.

The path chosen was very close to the obstacle, and the IK solution in the figure ensures no
collision with the sphere. Fig. 8.16 shows the robot configurations while tracing a semi-
circular path behind the spherical obstacle. For better visibility of the path in the workspace, a
magnified view has been shown in Fig. 8.16, which depicts the robot configurations along the

path without colliding with the obstacle. Another case of IK simulation of a robot has been
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performed in the 3D environment similar to a closed chamber with a spherical obstacle
resting on a support member. Here, the path is chosen in a confined area so that the robot
should trace the path without colliding the walls of the chamber and sphere.

Z-axis

40
.axi -20
X-axis 60

Fig. 8.17. IK Solution of spatial redundant robot while tracing a semi-circular path in a
closed and cluttered environment.

The working environment and the path traced are similar to robots working in real-time
applications like welding and painting. Fig. 8.17 shows the IK solution of the robot while
tracing a semi-circular path in the 3D working environment. It was observed that all the robot
configurations reaching the given task locations in the path are accurately reached without

colliding the obstacles.

8.5. Singularity avoidance of spatial redundant robots

Singularity avoidance is chosen as performance criteria to improve the manipulability
measure of robots at singular configurations in workspace, which is given in Eq. 4.35. Fig.
8.18 (a) shows the joint configurations of a robot while traversing a path without singularity

avoidance. While Fig. 8.18 (b) shows the joint configurations with singularity avoidance.

114



Simulation of singularity avoidance along with obstacle avoidance has also been

implemented.
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Fig. 8.18. Joint configurations while traversing a straight line path (a) Without singularity
avoidance (b) With singularity avoidance.
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Fig. 8.19. Joint configurations while traversing a straight line path avoiding obstacles (a)
Without singularity avoidance (b) With singularity avoidance.
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Fig. 8.19 (a) shows robot avoiding obstacles with singular configurations, whereas Fig. 8.19
(b) illustrates robot avoiding both obstacles and singularities. Manipulability values are also
calculated for both cases to show how far the manipulator is away from singularities. The
value of manipulability measure for singular configuration is varying in the range of 1550-
1700 on the corresponding points of the Path, whereas for the non-singular case, it is about
2200-2450. The percentage improvement of manipulability measure is about 41.21% for non-

singular configurations compared to singular configurations.

The joint trajectories are evaluated by approximating a cubic polynomial equation for a given
path with via points by considering both the cases i.e. with and without singularity avoidance.
Fig. 8.20 shows the variation of the joint velocities. It was observed that there is a uniform

velocity for non-singular configurations when compared with singular configurations.
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Fig. 8.20. Joint velocities of 9 DOF robot while traversing a path corresponding to singular
and non-singular configurations.
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Joint rotation

The joint displacements were shown in Fig. 8.21. From Fig. 8.21, it is observed that the joint
displacements are more for the configurations avoiding singularities, whereas the joint
displacements are less for singular configurations. But, singular configurations require high
joint velocities to move in a specified path. Thus, from Fig. 8.20 it is known that the joint

velocities are uniform and not varying suddenly, which is observed for singular

configurations.

Variation of joint rotation for DOF7
80 T T T T T T T T
—#— Joint rotation with singularity avoidance

Variation of joint rotation for DOF6

80

—#—Joint rotation with singularity avoidance —#— Joint rotation without singularity avoidance | |
—#— Joint rotation without Singularity avoidance

B0

Joint rotation

Joint rotation

80 L 1 1 1 1 1 1 . 1 100 L
0 01 02 03 04 05 06 07 08 09 1 0 0.1 02 0.3 0.4 05 06 07 0.8 09 1

Tlaan
Variation of joint rotation for DOF8 Variation of joint rotation for DOF9

40 T T T T T T T

60

—#— Joint rotation with singularity avoidance —#— Joint rotation with singularity avoidance

501 —#—Joint rotation without singularity avoidance | 4 a0l === Joint rotation without singularity avoidance |

40

Joint rotation

. . . . . L
] 01 02 03 04 0.5 06 07 08 09 1
Time Time

Fig. 8.21. Joint displacements of 9 DOF robot while traversing a path corresponding to
singular and non-singular configurations.
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8.6. IK Simulation of the spatial redundant robot in a realistic environment

Different domains of working environments have been modelled for implementation and
illustration of inverse kinematics of spatial redundant manipulators reaching a specific task
location and traversing a path while satisfying a secondary criterion such as joint distance
minimization and maximization of manipulability measure. Simulation results are presented
for a redundant robot operating in different realistic working environments such as pipe
layout model, pipe-line welding, work cell, and warehouse environment. Six such case

studies are presented in this section.

8.6.1. Case study 1

A spatial redundant manipulator employed at pipe layout resembling a nuclear power plant or
air-conditioning applications is considered. In these application areas, the environment is
cluttered and hazardous for human exposure. Redundant robots are employed for checking
leakages and welding of pipes at the junctions. Joint configurations have been evaluated for a
spatial redundant manipulator with 9 DOF.
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Fig. 8.22. IK solution of 9 DOF robot deployed in pipe layout application (a) At task
space location (-20,-10,123), (b) At task space location (37,-18, 25).
IK solutions are determined by posing it as an optimization problem with an objective of
Euclidean distance minimization and obstacles in the environment have been avoided by
using the penalty approach shown in Eq. 5.2. The link lengths are uniform in size and they

are considered as 40 units. The manipulator has to reach the TSL (-20, -10, 123) shown in
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Fig. 8.22(a). Fig. 8.22(b) shows the joint configuration of the robot at TSL (37, -18, 25). The
task of redundancy resolution has been implemented with an objective of joint distance
minimization shown in Eq. 4.32. A spatial redundant robot is commanded to traverse a path
around the pipe joint suitable for welding application. The joint configurations along the path

with minimized joint rotation are shown in Fig.8.23.

Z- axis

Fig. 8.23. Redundancy resolution scheme while end-effector is traversing a circular path at
pipe joint of 9 DOF robot deployed in pipe layout application.

The magnified portion of the Fig. 8.23 shows the joint configurations of the spatial robot
traversing a path at the junction of the pipe. In this case, the joints of the robot travelled with

minimum joint rotation without colliding obstacles.

8.6.2. Case Study 2

A robot employed for pipeline inspection and welding at pipeline joint has been simulated.
IK solution of the robot is shown at TSL (25, 60, 10) shown in Fig. 8.24 (a). Fig. 8.24 (b)
shows the joint configuration of the robot at TSL (-15, 50, 10). A circular path has been
chosen around the pipe near the junction. A redundancy resolution scheme has been
implemented for evaluating joint configurations of the robot along the path. Fig. 8.25 shows

the IK solution of a robot for a prescribed path.
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Fig. 8.24. IK solution of 9 DOF robot deployed in pipe line application (a) at task space
location (25, 60, 10) (b) at task space location (-15, 50, 10)

Z- axis

Fig. 8.25. Redundancy resolution scheme while end-effector is traversing a circular path
at the pipe-joint of 9 DOF robot deployed in pipe line application.
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8.6.3. Case Study 3

This case represents a robot that has been deployed in a work cell environment in industry.
The spatial redundant robot is simulated for pick and place operation in work cell from the
conveyer to workbench avoiding a cylindrical obstacle. IK solution of the robot is shown in
Fig. 8.26 for corresponding task space locations (-10, 70, 62).
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Fig. 8.26. IK solution of 9 DOF robot deployed in work facility for pick and place
application.

IK solutions of spatial redundant robots employed in real-time applications have been
proposed in the literature [42], but the solution techniques to obtain the joint configurations
are complex. The proposed approach adopts classical optimization techniques to solve the IK
problem. The problem of the multi-modal optimization has also been addressed by using a
global optimization approach, by which multiple IK solutions can be obtained. To show the
efficacy, the proposed approach has been applied to spatial redundant robot deployed in

different working environments.

8.6.4. Case Study 4

In this case, the workspace is cluttered and narrow to reach a specific TSL. Minimization of
geometric distance is chosen as an objective for determining the IK solution of the robot. The
workspace in this cases have considered in such a way that classical optimization approaches
fail to give solution in a single attempt, rather they require multiple restart procedure with

different initial guesses to arrive the desired solution. The working environment chosen in
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these simulations is similar to the realistic complex environments, where the workspace is
cluttered and hazardous. Computing IK solution using classical approaches remains
challenging for these cases. Hence, a population-based TLBO approach, has been
implemented for solving the IK problem by minimizing the objective function shown in Eq.
3.20. IK solutions of spatial redundant robots have been depicted for pick and place
operations in warehouse applications.
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Fig. 8.27. IK solution of 9 DOF robot deployed in ware house environment for pick and
place application at TSL (50, 80, 60) (a) Front view (b) Side view (c) At TSL (30,45,55).

Fig. 8.27 shows the robot deployed in a warehouse model of an environment suitable for
pick and place operations. IK solution of the robot at a TSL of (50, 80, 60) mm is shown in
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Fig. 8.27 (a). Joint configuration in Fig. 8.27 (b) are for the same TSL, but it has shown in
two different views. Fig. 8.27 (c) depicts the IK solution of redundant robots working in the
different workspace at TSL (30, 45, 55) mm, and the robot can be used for the same pick and
place operation.

8.6.5. Case Study 5

A spatial 9 DOF robot when it is employed for an application in servicing and inspection of
heat exchanger models have been investigated in this case.
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Fig. 8.28. IK solution of 9 DOF robot deployed in narrow environment at task space
locations (a) (16, 50, 80) (b) (50, 50, 60) (c) (50, 60, 50) (d) (55, 60, 50).
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Fig. 8.28 (a) shows the IK solution of the robot at TSL (16, 50, 80) by avoiding obstacles.
Fig. 8.28 (b) shows the IK solution of the robot at task location (50, 50, 60). Fig. 8.28 (c-d)
shows another IK simulation of robot deployed in servicing of fin models in cooling
applications of server rooms and heat exchangers in a power plant. IK solution of the robot at
TSL (50, 60, 50) shown in Fig. 8.28 (c). Fig. 8.28 (d) shows the joint configuration of the
robot at TSL (55, 60, 50).

8.6.6. Case Study 6

IK simulation of the robot is performed in an environment with large structures like trusses.
The working environment is similar to on-orbit servicing and the large structural environment
in the construction of plants, where the robot is deployed for servicing by avoiding collisions
with the structural elements in the environment. Fig. 8.29 (a) shows the IK solution of the
robot at TSL (50, 40, 80). Joint configuration of the robot at TSL (53, 78, 87) shown in Fig.
8.29 (b). From Fig. 8.29 it is shown the end-effector of the robot is accessing the narrow
regions of the workspace without colliding the obstacles.
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Fig. 8.29. IK solution of 9 DOF robot deployed at large structures with task space location
(@) (50, 40, 80) (b) (53, 78, 87).

The environment modelled for this simulation is complex and cluttered. The obstacles have
been modelled with different shapes that are similar to the real working environment. From
the simulation results, it is shown that spatial redundant robot can reach the confined regions
in the workspace without colliding obstacles.
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8.7. Observation from the results

1.

IK simulation of spatial redundant robots have been performed with two DOF at each
joint

Multi-modal optimization is performed to achieve multiple 1K solutions and these are
utilized for switching from one configuration to another when robots are employed for
diverse tasks

The computational time for the IK solution is less due to the use of classical
optimization algorithms and simple collision modelling techniques.

An effective collision detection and avoidance technique has been implemented,
which make the robot work in a cluttered environment and avoid obstacles of
different shapes.

Simulations are performed on 9 DOF robot working in different real-time
environments such as pipe joint inspection and welding, pick and place operation in
plant layout and warehouse models, etc.

The spatial redundant robot successfully reached the confined zones by avoiding

obstacles with an accuracy of 8.185x10™'° mm.
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CHAPTER-IX

9. Summary and Conclusions

Inverse kinematics of redundant manipulators has been solved from long time. The issues
related to IK solution techniques and increasing use of redundant manipulators in the fields of
engineering and science makes this study challenging. A lot of research has been carried out
in computation of IK problem of redundant manipulators with additional capability such as
obstacle avoidance, singularity avoidance, joint-distance minimization and joint torque
minimization. Some of the issues with these techniques are computational cost, sensitive at
singular configurations, complex collision avoidance techniques etc. The proposed approach

addresses these issues.

In the present thesis, 1K solution and redundancy resolution of hyper-redundant manipulators
have been presented. The simulations of hyper-redundant robots are performed while they
were working in planar and spatial environments. The proposed IK solution technique is
efficient and effective, the method is capable of finding an IK solution quickly
(computational time of 1-3 minutes for planar robots in all the cases) for highly redundant
robots with obstacles in the workspace. The efficiency of the proposed approach lies in the
use of classical optimization methods and effective collision detection techniques. Collisions
in the workspace are handled using penalty approach by modelling the obstacles as polygons
in 2D environments and bounding boxes in 3D workspace. A restart procedure with a
different initial guess is included when the solution is not found in first attempt itself. This
ensures that repeated attempts are made if the classical methods fails to give solution because
of multi-modality of the objective function. The proposed approach is used for avoiding
convex and non-convex obstacles. The task of redundancy resolution has been implemented
to determine the best joint configuration satisfying the secondary criterion such as joint-
distance minimization, minimization of power consumption and singularity avoidance. For all
the cases, IK solution of redundant robots are achieved while satisfying task space constraints

and performance metrics with good accuracy (in the order of 10 mm).

IK simulation of spatial redundant robots is performed with 2 DOF at each joint, this type of
robots able to access narrow regions of workspace. Since the classical optimization methods
suffer from local optima, a multi-start frame work has been implemented to determine
multiple IK solutions. The multiple 1K solutions can be used to switch the configurations of

the reconfigurable robots when they are employed in cluttered environments. Collision
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avoidance of redundant robot is performed exclusively in 3D workspace by considering
different shapes of obstacles and in cluttered environment. Collision detection and avoidance
of 3D obstacles is performed using bounding box approach. To show the efficacy of the
approach, realistic working environments are modelled and simulations have been performed
on spatial redundant robot to reach the target location without collisions in the workspace.
Redundancy resolution of spatial robot is performed with a performance criteria of
minimizing joint rotation and singularity avoidance. The singularity avoidance of the spatial
robots while traversing a straight line path with obstacles in the environment has been
performed. Manipulability measure of the robot is chosen as performance criterion for
singularity avoidance. Manipulability measure of robot with non-singular configurations is
found to be improved and it is increased by 41.21% when compared with singular

configurations.

The multi-modal nature of the objective function leads to furnish a local optimum solution in
optimization process. This solution is not feasible in the cases of robot working in confined
environments. Thus, a population based TLBO algorithm is used. This algorithm is global
optimization approach, which requires less algorithmic control parameters when compared
with other evolutionary approach. The computational time to solve the IK problem is about
(5-10 minutes) in complex working environments. By using this approach simulations of
robot in the complex working environments has been performed. As shown in the results, the

robot able to reach the target location accurately by avoiding obstacles.

For the future scope, the proposed approach can be implemented for real time kinematic
control of hyper-redundant robots suitable for industrial applications. The multi-start global
optimization approach can be adopted for reconfigurable robots used in diverse working
environments. Different performance criterion of the robot can be chosen as multi-objective
optimization problem and compute the solution that satisfy several objectives simultaneously.
An experimental model can be developed for the proposed robot, which is suitable to work in
different environments. The flexibility of hyper-redundant robots, increased their application
in various fields. Hence a detailed investigation of inverse kinematics and control of spatial
redundant robots with different configurations suitable for different applications can be

performed.
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Appendices

Appendix I. Optimization work flow to find global or multiple local solutions

Steps to run global optimization frame work in MATLAB

1
2
3.
4

Create problem structure
Create solver object
Set start points for multi-start

Run the solver

Inputs for problem structure

S. NO | Required Inputs of the problem

1 Local Solver (fmincon MATLAB function)
2 Objective Function

3 Start point Xo

4 Constraint functions

5 Local option structure

Create problem structure

To use global search or multi-start, create a problem structure. The problem structure can be

created by create createOptimProblem Function

Steps to create a problem structure using the “createOptimProblem” function

Define your objective function as a file or anonymous function. If the solver is
Isqcurvefit or Isqnonlin, ensure the objective function returns a vector, not scalar.
Create constraints, such as bounds and nonlinear constraint functions.

Create a start point. For example, to create a three-dimensional random start point

xstart:
xstart = randn(3,1);

Create an options structure using optimoptions.
For example, options = optimoptions(@fmincon,'Algorithm','interior-point’);
Enter problem = createOptimProblem(solver, where solver is the name of your local

solver)
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VI.

VII.

VIII.

e For GlobalSearch: ‘fmincon’
e For MultiStart the choices are:
= ‘fmincon’
= ‘fminunc'
= Isgcurvefit'
= Isgnonlin’
Set an initial point using the 'x0' parameter. If your initial point is xstart, and your
solver is fmincon
Include the function handle for your objective function in objective
problem = createOptimProblem(‘fmincon’,'x0",xstart, ... 'objective’,@objfun)

Set bounds and other constraints as applicable.

Constraint Name
lower bounds ‘1b'

upper bounds ‘ub’
matrix Aineq for linear inequalities Aineq x =bineq ‘Alneq’
vector bineq for linear inequalities Aineq x < bineq ‘bineq’
matrix Aeq for linear equalities Aeq x = beq ‘Aeq’
vector beq for linear equalities Aeq x = beqg 'beq’
nonlinear constraint function ‘nonlcon’

If using the Isqcurvefit local solver, include vectors of input data and response data,
named 'xdata’ and 'ydata' respectively.
validate the problem structure by running your solver on the structure.

For example, if the solver is fmincon: [x fval eflag output] = fmincon(problem);
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Appendix Il. DH Algorithm and Forward Kinematics of Serial Robots

The definition of a manipulator with four joint-link parameters for each link and a
systematic procedure for assigning right-handed orthonormal coordinate frames, one to each
link in an open kinematic chain, was proposed by Denavit and Hartenberg (1955) and is
known as Denavit-Hartenberg (DH) notation.

Axis (i~ 2) \ Ao {-1)
i f - ' S (/- 8a:®
Joint (/- 1) . Joint | Ads |
) b a Joint (i +1)

A, Y T " D
) 8.1 C'

Xy
Fig. All.1. Standard DH representation of a revolute joint.

A frame {l} is rigidly attached to distal end of link i and it moves with link i. An n DOF

manipulator will have (n + 1) frames with the frame {0} or base frame acting as the reference
inertial frame and frame {n} being the "tool-frame".
Figure 3.8 shows a pair of adjacent links, link (i-1) and link i, their associated joints, joints (i-
1), iand (i+1), and axes (i-2), (i-1). and i, respectively. Line AB in the figure, is the common
normal to (i-2) and (i-1) axes and line CD is the common normal to (i-1) and i-axes. A frame
{i} is assigned to link i as follows:
(i) The z-axis is aligned with axis i, its direction being arbitrary. The choice of direction
defines the positive sense of joint variable 9,
(i) The x;-axis is perpendicular to axis zj.; and z;, and points away from axis zj.; that is, X
axis is directed along the common normal CD.
(iii) The origin of the i" coordinate frame, frame {i}, is located at the intersection of axis of
joint (i+1), that is, axis i, and the common normal between axes (i-1) and i (common
normal is CD), as shown in the figure.

(iv) Finally, y-axis completes the right-hand orthonormal coordinate frame {i}.
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Note that the frame {i} for link i is at the distal end of link i and moves with the link. With
respect to frame {i-1} and frame {i), the four DH-parameters two link parameters (&, , o) and

two joint parameters (d,,6,) are defined as:

(@) Link Length (a,) distance measured along x; axis from the point of intersection of x;
axis with z;.; axis (point C) to the origin of frame {i}, that is, distance CD.

(b) Link twist (o) angle between z;.; and z;axes measured about x; axis in the right-hand
sense.

(c) Joint distance (d,) distance measured along z;.; axis from the origin of frame {i-1}
(point B) to the intersection of x; axis with zi.; axis (point C), that is, distance BC.

(d) Joint angle (6,) angle between x;.; and x; axes measured about the z;.; axis in the
right-hand sense.

The convention outlined above does not result in a unique attachment of frames to links
because alternative choices are available. For example, joint axis i has two choices of
direction to point z; axis, one pointing upward (as in Fig. All. 1) and other pointing
downward. To minimize such options and get a consistent set of frames.

Once the frames are assigned to each link, the joint-link parameters (0,,d,,a;,a;) can be
easily identified for each link, using which, the direct kinematic model is developed.

In fixing the frames. It is desirable to make as many of the joint-link parameters Zero as
possible because the amount of computations necessary in later analysis is dependent on
these. Hence, whenever there is a choice in frame assignment, emphasis is on making a
choice, which results in as many zero parameters as possible

KINEMATIC RELATIONSHIP BETWEEN ADJACENT LINKS

To find the transformation matrix relating two frames attached to the adjacent links, consider
frame {i-1} and frame {i} as shown in Fig. 3.9. These two frame are associated with link (i-1)

and i but for clarity the links are not shown in the figure. The kinematic joint-link parameters

involved ((6,,d,,a;,a,) are shown therein. Points B, C, D and frame {i-1} and {i} are the

same as in Fig. 3.8. The transformation of frame {i-1} to frame {i} consists of four basic

transformations as shown in Fig. 3.9.

(a) A rotation about z;.; axis by an angle 6, ;

131



(b) Translation along z;.; axis by distance (d,):(6,,d,,a;,a,)
(c) Translation by distance o; along x; axis, and

(d) Rotation by an angle o, about x; axis

Using the spatial coordinate transformations, the composite transformation matrix, which describes
frame {i} with respect frame {i-1}. is obtained using Equation given below.

ST =T,(6)T,(d)T, () T (o) (All. 1)
co, -s6, 0 0][1 00 O0]f1t 00 aljft 0 0 O
. |so, co, 0 0[|0 10 0[|0 10 0|0 Ca -Sa; O
T = (All. 2)
0 0 10[/0014d[|001 0|0 So; Ca; O
0 0 01]/]/0 00 1]/00O0 1J0 0 o0 1

CO, -S0,Co, SO.Sc, a,Co,

S0, COCa, -COSa, 250,

i-1 _ i
T = 0 (All. 3)

0 0 0 1

The homogeneous transformation matrix "*T, describes the position and orientation of

frame {i} relative to frame {i-1} and completely specifies the geometric relationship between

these links in terms of four DH-parameters (0,,d,,a,,a;) . These four parameters, only one
is a variable for link i, the displacement variable 6, and other three are constant. The matrix

"IT . is known as link i transformation matrix. As shown before, the 3 x 3 upper left corner

sub-matrix of Eq. All. 3 gives the orientation of coordinate axes of frame {i}, while the 3 xI

upper right corner sub-matrix represents the position of the origin of frame {i}.
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Appendix I11. Robotic toolbox commands of redundant manipulator

To illustrate this create a PUMA robot.
mdIl_puma560

Creating a manipulator arm
L(2)=Link(‘d’, 0, ‘a’, 0.302, ‘alpha’, -pi/2)
SerialLink(L, ‘name’, ‘Puma’)

Rotation and Translation

T=transl(x, y, z)*trotx(theta)

T=trans(x, y, )

T= trotx(theta)

Forward and Inverse Kinematics and Plotting
T= p560.fkine(q)

g= p560.ikine(T)

g= p560.ikine6s(T)

p560.plot(q)

Trajectory Planning

Preparing a time vector for the trajectory:

t = [0:0.05:2]'

Converting the initial pose and final pose from Cartesian Space to Joint Space:
gi = p560.ikine6s(Ti)

gf= p560.ikine6s (Tf)

Generating a trajectory vector in joint space:

q = jtraj(ai, qf, )

Ploting the angles of the joints against time:

gplot(t,q)
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The following command extracts the vectors for the position, rotational velocity and
rotational acceleration from the joint space trajectory planning:

[9. ad, qdd]=jtraj(ai, qf, 1)

Plotting the angular velocity of the joints against time:
gplot(t,qd)

Plotting the angular acceleration of the joints against time:
gplot(t,qdd)

Plotting each joint’s kinematics separately:

plot(t, q(:,1), t, qd(:,1), t, qdd(:,1))

plot(t, q(:,2), t, qd(:,2), t, qdd(:,2))

plot(t, q(:,3), t, qd(:,3), t, qdd(:,3))

plot(t, q(:,4), t, qd(:,4), t, qdd(:,4))

Cartesian space trajectory planning:

Generating a series of poses in Cartesian space (in a straight line)
T=ctraj(T1, T2, length(t))

Plotting a straight line between T1 and T2:
pl=transl(T1)

p2=transl(T2)
x=[p1(1),p2(1)]
y=[p1(2).p2(2)]

z=[p1(3),p2(3)]

plot3(x,y,z)
The Jacobian and manipulability

Finding the manipulability at a certain pose:

m=p560.maniplty(q)
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Finding the Jacobean at a certain pose and checking its properties:
Jn=p560.jacob0(qn)

det(Jn)

rank(Jn)

jsingu(Jn)

Calculating the Jacobean elements manually:
dTdgl=(Tp1l-TO)/dq

dRdq1=dTdqg1(1:3,1:3)

R=T0(1:3,1:3)

S1=dRdq1*R'

vex(S1)

Manipulator dynamics

Finding the joint torques required for a certain trajectory:
Q=p560.rne(q, dg, ddq)

Finding the dynamic properties of a link of manipulator arm:
p560.links(1).dyn

Finding the torques caused by gravity
p560.gravioad(gn)

Changing the payload

p560.payload(2.5, [0, 0, 0.1])

Changing the gravity settings:
p560.gravity=p560.gravity/6
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Appendix IV. TLBO algorithm code

%Population initialization
pp= input(‘enter the population size’);
DV= input(‘enter the number of the design variables’);

iter= input(‘enter the maximum number of iterations’);

Ib=input(‘enter the lower bounds of the design variables’);

ub= input(‘enter the higher bounds of the design variables’);

for i=1:DV
a=Ib(i)+(ub(i)-Ib(i))*rand(pp,1);
x(;,0)=a;

end

%%Teacher phase
for kk=1:iter
for i=1:pp
x(i,DV+1)=myobjj(x(i,1:DV));
end
temp=Xx;
teachr=find(trial1(:,DV+1)==min(trial1(:,DV+1)));
if size(teachr,1)>1
teachr=teachr(1);
end
for i=1:DV
meantriall(i)=mean(triall(:,i));
r=rand(1,1);

meandiff_trial1(i)=r*(x(teachr,i)-1*meantriall(i));
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trial1(:,i)=meandiff_trial1(i)+triall(:,i);

for ii=1:pp

if trial1(ii,i) >ub(i)
rr=rand(1,1);

trial1(if, i) =Ib(i)+(ub(i)-Io(D)*rr;

end
if trial1(ii,i) <Ib(i)
rr=rand(1,1);

trialL (i, i) =Ib(i)+(ub(i)-Io(D)*rr;
end

end

end

for i=1:pp
trial1(i,DV+1)=myobjj(triall(i,1:DV) ); %% Objective function %

end

for i=1:pp
if(trial1(i,DV+1)>x(i,DV+1))
trial1(i,:)=x(i,:);
end
end
%%End of teacher phase%

%% Start of learner phase
for i=1:pp

k=1;
trial2(1,:)=triall(i,);
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end
end
trial2(k,DV+1)=myobjj(trial2(k,1:DV) );
end
end
end

I=find(trial2(:,DV+1)==min(trial2(:,DV+1)));

if size(1,1)>1
1=1(1);
end
x(i,:)=trial2(l,:);

End

%% End of learner phase

% fprintf('At the end of %d iteration',icount);
% disp(x)
I=find(x(:,DV+1)==min(x(;,DV+1)));

if size(1,1)>1

1=1(2);

end
best(kk,:)=x(l,3);
% fprintf('The best solution in the iteration\n');
% disp(best)
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