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ABSTRACT 

Hyper-redundant manipulators possess more degrees of freedom (DOF) than the required 

number of DOF to perform a particular task. The additional DOF enables to fulfill the 

secondary criterion such as obstacle avoidance, singularity avoidance, and joint-limit 

avoidance by satisfying the primary task of reaching end-effector to required task space 

location. Inverse kinematics (IK) of redundant manipulators remained challenging due to 

more number of unknown variables compared to their kinematic equations and equations are 

transcendental in nature. 

This research proposed an optimization-based approach for determining IK solutions and 

redundancy resolution methods of hyper-redundant robots. Planar kinematic model have been 

developed and IK solutions are determined for different task space locations by avoiding 

polygonal obstacles. An effective collision detection scheme is devised and classical 

optimization algorithms were used for evaluating the IK solution. Redundancy resolution is 

performed by considering various performance metrics such as joint-distance minimization, 

maximization of manipulability measure, and minimization of power consumption. The task 

of redundancy resolution is posed as a constrained optimization problem for different end-

effector paths and working environments. Simulations were performed on planar redundant 

manipulators with different performance measures. 

Spatial representation of the redundant manipulator has been chosen for simulation which can 

be suitable for a real-time working environment. To accommodate the flexibility and 

manipulability in narrow regions, the joints were modeled with multiple degrees of freedom 

(DOF) and are considered as universal joints. Each universal joint has two orthogonal DOF 

which are made by pitch axis and yaw axis. The IK problem is multi-modal in nature and it 

has multiple solutions. A global search and Multi-start framework have been implemented to 

determine the multiple kinematic configurations for a given task location. Performance 

criteria such as joint-distance minimization, singularity avoidance, and collision avoidance 

have been chosen to perform the task of redundancy resolution. A classical non-linear 

constrained optimization technique has been implemented to perform the tasks of inverse 

kinematics and redundancy resolution. The 3D collision avoidance scheme was implemented 

with a collision detection algorithm by using a bounding box approach. Simulations were 

performed for 9-DOF spatial manipulators with 3D obstacles in the workspace. To compute 

the IK solution of robot working in complex working environments, restart procedure with 
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different initial guess is required with classical optimization algorithms. For such cases, a 

population-based TLBO algorithm is implemented to compute the joint configurations of the 

robot. 

A realistic working environment has been modelled, similar to the industries at which 

redundant robots are deployed. IK simulations of 9 DOF spatial robot are performed for 

several cases such as pipeline inspection, welding of pipe joints, and pick and place 

applications in work facility layout and warehouses. Results of joint configurations are 

reported while avoiding the obstacles in the working domains. Results show that the proposed 

method is accurate and computationally efficient in determining the IK solution of spatial 

redundant manipulators in a multi-obstacle and restricted environment.  
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CHAPTER-I 

1. Introduction 

1.1. Overview: 

Recent growth in automation and control improved the rate of advancement and productivity 

in industries. Significant part of automation research has been in the field of robotics. 

Industrial robots have been used in a wide range of applications for the past several decades 

and their usage has been increasing remarkably. These are being used in various applications 

such as material transfer, assembling of parts, packing, hazardous environments, etc. 

Kinematic control of the robotic system is very crucial while it is working in complex 

environments. An essential requirement of a robot is to precisely reach the required location 

in the task space by avoiding the obstacles in the workspace. As the robot manipulators are 

usually controlled at a joint level, there is a need to transform the trajectory from the 

Cartesian space to joint space, which is known as inverse kinematics [1]. Inverse kinematics 

and trajectory planning for redundant manipulators is the main task in the development of 

robot technology. In many manipulator controllers such as resolved acceleration control [2] 

and nonlinear control [3], the IK solutions are used to determine the correction of joint 

motions for actuators to move the end-effector to the required pose. The IK problem has got 

different applications in other fields like Biomechanics [4] and computer graphics [5] etc. 

The motion of the robot is usually undergoing various constraints in both joint space and task 

space. Apart from the constraints related to kinematic and dynamic aspects, the performance 

metrics of the robot manipulator needs to be optimized. 

This research deals with a redundant robotic manipulator working in complex environments 

subjected to task space constraints. 

1.2. Evolution of robotics 

The concept of the robot was first recognized by the Czech playwright Karel Capek in his 

drama in 1921. The term “robot” is derived from Czech word “robota” which means forced 

labourer. In 1940, the interaction between robots and humans was envisioned by the three 

fundamental laws of Isaac Asimov, the Russian science-fiction writer in his novel “Run-

around”.  

The early robots built in 1960’s originated from the combination of two technologies such as 

numerical control machines for manufacturing and tele-operators for remote radioactive 
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material handling. During the mid-20
th 

century, the development of integrated circuits, digital 

computers and miniaturized components enabled computer-controlled robots to be designed 

and programmed. Then industrial robots became essential devices in the automation of 

flexible manufacturing systems in the late 1970’s. Further to their wide applications in the 

automotive industry, industrial robots were successfully employed in general industry, such 

as the metal products, chemical, electronics and food industries.  

In the 1980’s, robotics was defined as the science that studies the intelligent connection 

between perception and action. The action of a robotic system is assigned to a locomotion 

apparatus (wheels, crawlers, legs, and propellers) to move in the environment or to a 

manipulation apparatus (arms, end effectors, and artificial hands) to operate on objects 

present in the environment. The perception is extracted from various sensors providing 

information on state of the robot (position and speed) and its surrounding environment (force 

and tactile, range and vision). The intelligent connection is assigned to programming, 

planning and control architecture that relies on the perception, which exploits learning and 

skill acquisition of robot. 

In the 1990’s research was boosted by the need to utilize the robots to address the challenges 

in human safety in hazardous environments (field robotics),  enhance the human operator 

ability and reduce fatigue, develop products with wide potential markets aimed at improving 

the quality of life (service robotics).  

Robotics has been rapidly expanding into the challenges of the human world in early 21
st
 

century. The new generation of robots is expected to safely co-habitat with humans in homes, 

workplaces, and communities, providing support in services, entertainment, education, 

healthcare, manufacturing, and assistance. 

Artificial intelligence in robotics is revealing a much wider range of applications reaching 

across diverse research areas such as biomechanics, haptics, neurosciences, virtual 

simulation, animation, surgery, and sensor networks among others. In return, the challenges 

of the new emerging areas are proving an abundant source of stimulation and insights for the 

field of robotics. Robotics today is dealing with research and development in a number of 

inter-disciplinary areas including kinematics, dynamics, control, motion planning, sensing, 

programming, and machine intelligence. 
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1.3. Robot classification 

This section presents the classification of robots mainly with focus on serial structures. 

Robots can usually be classified based on the number of degrees of freedom (DOF) and their 

kinematic configuration. The working capability of a robot can be evaluated by the number of 

DOF. A robotic manipulator usually requires a minimum of 6 DOF to reach any position and 

orientation in its three-dimensional workspace, whereas the planar manipulator needs 3 DOF 

for a specific position and orientation. For a specific application, one needs to design a robot 

manipulator based on the number of DOF and kinematic characteristic features of the robot. 

Based on the kinematic configuration of the robot structure, robots are mainly categorized 

into robot manipulators and mobile robots shown in Fig. 1.1. The basic difference in the 

classification lies in the fact that the base link involving a robotic manipulator is fixed 

whereas all the links are movable in the task space for mobile robots. Typically, a robot 

manipulator is a serial type having an open-loop structure and a parallel type with a closed-

loop structure. Moreover, there can be a hybrid structure that consists of both an open-loop or 

closed-loop structure. In general, the type of joints in a robot manipulator can be either 

prismatic (P) or revolute (R) whereas the link type may be either rigid or flexible. There are 

many combinations of these joints and links create a different configuration of a robot 

manipulator. 

 

 

 

                                                                  

 

        

 

 

 

 

 

 

 

  Robots 

Robot Manipulators Mobile Robots 

Serial Manipulators Parallel Manipulators Hybrid Manipulators 

Fig. 1.1. Flow chart representing classification of robots. 
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The Fig. 1.1 represents the classification of robots when the links of the robot are connected 

in a sequential manner forming an open kinematic chain. If there is only one possible path to 

track from one end to the other end of the kinematic chain, then it is known as an open-loop 

kinematic chain whereas if there is more than one feasible path from one end to the other of 

the chain, it is called a closed-loop serial manipulator. The serial manipulator with planar 

linkages are easy to model due to their simple kinematic structures. Examples of open-loop 

industrial robots include PUMA and SCARA Robots. Serial robots are mainly used in 

industries for welding, machining, assembling, and material handling tasks, etc. Fig. 1.2 

shows a PUMA robot and Fig. 1.3 depicts a robotic arm performing welding operation. Serial 

robots with more number of DOF than the required to perform a desired task is defined as 

redundant manipulators. Additional DOF of the robot improves the robot capability and 

allows the robot to work in various working conditions. A class of manipulators that denotes 

the combination of open-loop and closed-loop kinematic chains are referred to as hybrid 

manipulators. This thesis mainly focused on serial manipulators with redundant degrees of 

freedom. 

 

 

 

 

 

 

 

 

 

 

 

1.3.1. Classification based on workspace 

The workspace of the robot is defined as the total volume covered by the end-effector while 

the manipulator completes the maximum possible movements. The workspace of the 

manipulator can be determined by the geometry of the robot structure and the limits of the 

joint parameters. There are two types of workspaces which are reachable and dexterous 

Fig. 1.2. PUMA 560 robot arm [6]. Fig. 1.3. Robot in industrial applications [7] 
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workspace. Reachable workspace can be described as a space which the end–effector can 

reach the limited volume of the workspace in any arbitrary orientation, whereas in the 

dexterous workspace the end-effector can access any point in the workspace in any 

orientation. But practically dextrous workspace is appropriate for ideal geometries and 

generally, it does not suit industrial manipulators. Thus there is a need for the usage of 

redundant manipulators in different complex environments, these robots improve the 

dexterity of the manipulator. A classification of the robot is explained based on its kinematic 

configuration and work envelope of the robot. 

Cartesian robot 

Cartesian robots have three orthogonal perpendicular slides, giving linear motions along the 

three principal axes shown in Fig. 1.4 (a). The endpoint of the arm is capable to work in a 

cuboidal workspace shown in Fig. 1.4 (b). The Cartesian configuration can be used when a 

large work volume with low dexterity is the requirement. 

 

 

 

 

 

 

 

 

Cylindrical robot 

Cylindrical robots possess one revolute joint along with two prismatic joints (RPP), this 

arrangement creates cylindrical coordinates of end-effector shown in Fig. 1.5 (a). The 

workspace of this configuration is restricted as two concentric structures of a cylinder with 

finite length as shown in Fig. 1.5 (b). It is suitable to access narrow horizontal spaces and 

hence it can be used for assembly and machine loading operations. 

 

 

 

Fig. 1.4. (a) Cartesian robot configuration [8] (b) Work volume [9]. 

(a) (b) 
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Spherical (polar) robot 

It consists of a prismatic joint that can be raised or lowered about a horizontal revolute joint. 

These two links mounted on a rotating base. This arrangement is known as the RRP 

configuration shown in Fig. 1.6 (a), which allows the endpoint of the arm to move in a 

spherical workspace as shown in Fig. 1.6 (b). Polar configuration robot arms are mainly 

employed for industrial applications such as machining, spray painting, and so on. 

 

 

 

 

 

 

 

 

 

Selective compliance assembly robot arm (SCARA)  

SCARA robot is designed for assembly tasks, which provide rigidity along the vertical axis 

and compliance along the horizontal axis. The SCARA configuration has vertical major axis 

rotations such that gravitational load, Coriolis, and centrifugal forces do not stress the 

structure. This makes the SCARA configuration suitable for assembly tasks. This 

configuration possesses three revolute joints and one prismatic joint knows RRRP shown in 

Fig. 1.6. (a) Spherical robot configuration [10] (b) Work volume [9] 

(a) (b) 

Fig. 1.5. (a) Cylindrical robot configuration [10] (b) Work volume [9]. 

(a) (b) 
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Fig. 1.7 (a). The workspace of the SCARA configuration is a concentric hollow cylinder 

shown in Fig. 1.7 (b). 

 

 

 

 

 

 

 

 

Articulated robot configuration 

The articulated arm is the type of configuration that simulates a human arm and this type of 

arm is referred to as an anthropomorphic manipulator. It consists of two links corresponding 

to the human forearm and upper arm with two rotary joints corresponding to elbow and 

shoulder joints. These two links are mounted on a rotary table corresponding to the human 

waist. This configuration is defined as RRR configuration (shown in Fig. 1.8 (a)), the work 

volume of his configuration is spherical shape, with proper sizing of links and design of joints 

the endpoint of the arm can access full spherical space shown in Fig. 1.8 (b). The 

anthropomorphic structure is the most dexterous one and suitable for a wide range of 

industrial applications. 

 

 

 

 

 

 

 

Fig. 1.7. (a) SCARA robot configuration [8] (b) Work volume [9]. 

(a) (b) 

Fig. 1.8. (a) Articulated robot configuration [10] (b) Work volume [9]. 

(a) (b) 
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1.3.2. Classification of robots based on DOF 

Robots are generally classified according to the number of degrees of freedom, degrees of 

freedom indicates the capability of the robot. A general task of robot consisting of arbitrary 

positioning and orienting the end-effector or tool can be achieved by six DOF or six-axis 

robots. Simple tasks such as painting and simple welding can be done with the five-axis robot 

and assembly robots often required four DOF to perform a given task 

Redundant robots/ hyper-redundant robots 

 Redundant manipulators have more degrees of freedom than the required to perform a 

particular task in the workspace. This high DOF allows the robot to work in the cluttered 

environment by avoiding obstacles [11], singular configurations [12], and mechanical joint 

limits [13]. This in turn improves the dexterity of the robot in the workspace. Inverse 

kinematics of redundant manipulators have multiple solutions, which provides the flexibility 

to choose the best solution from the available solutions based on some performance criteria 

such as joint torque minimization [14], joint distance minimization [ 15] , and consumption of 

energy minimization [16]. 

Hyper-redundant robot possesses a large number of degrees of freedom shown in Fig. 1.9, 

such robots are similar to snakes or continuum robots and are useful in the operation of 

highly constrained environments. High degrees of freedom and greater maneuverability in the 

workspace makes these robots widely applicable in the fields of medical [17], aerospace [18], 

space exploration [19], orbital servicing such as space craft construction repair maintanence 

[20] etc, underwater exploration, and nuclear core reactors.  The additional DOF of the 

redundant manipulator makes this robot more suitable to work in a wide range of 

applications. Some of the industrial applications of redundant robots are welding, 

Assembling, machining and additive manufacturing [21], shown in Fig. 1.10. Redundant 

robots has been employed in rescue missions, inspection and manipulation of complex pipe 

installation and nuclear plant installations [22] etc. Fig. 1.11 shows the robot employed in on-

orbital servicing. Redundant robots working in space exploration shown in Fig. 1. 12. The 

kinematic structure of the redundant manipulators offers an advantage to applying various 

additional task constraints other than the primary task of reaching the end effector in the task 

space.  
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Deficient manipulator 

Deficient manipulators are referred to as those that possess less degrees of freedom than 

required to achieve admissible configuration in the workspace [26]. This type of manipulator 

can be used to perform certain tasks in the operational space, for which total DOF of the 

robot is not required to move the manipulator in a specified direction. Multiple kinematic 

deficient robots can be employed as cooperating robots to perform a common task in 

industrial application. Kinematic deficient manipulators can be used, unless kinematic 

redundancy is required in the task space and joint space to avoid obstacles and singularities. 

These manipulators gain the advantage over redundant manipulators in terms of 

manufacturing cost and compactness. 

In this thesis, hyper-redundant manipulators working under different environments were 

presented. 

Fig. 1.9. Hyper-redundant manipulator [23]. 

Fig. 1.11. Hyper-redundant manipulator 

working in on-orbital servicing 

applications [24] 

Fig. 1.12. Redundant robot working in 

space exploration [25] 

Fig. 1.10. Redundant robots working in industrial 

applications [21] 
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1.4. Motivation  

Generally, more complex serial robots are designed and built to suit a wide variety of 

applications. Many of them are modelled with multiple links/arms and they are redundant. 

This redundancy gives more flexibility and the robots can not only reach a particular position 

but also reach it with several configurations, thereby secondary goals can be achieved. More 

recently, there is renewed interest in the use of hyper-redundant manipulators due to their 

increased applications in all the fields. The use of redundant  robots in different applications 

is shown in Fig. 1.13 (a-c). Fig. 1.14 (a-c) shows the use of hyper-redundant robots in 

medical and surgical applications. The characteristic equations of kinematic problems are 

non-linear and transcendental for which, closed-form solutions are not always possible. The 

variables in the equation are multi-valued and provide multiple solutions and they are 

configuration dependent. The task of resolving the best solution among the multiple solutions 

is known as redundancy resolution, which requires to choose objective satisfying task 

constraints.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.13. Hyper-redundant manipulator (a) Industrial application [27] (b) Tunnel inspection [28] 

(c) Under water inspection [29]. 

(a) (b) (c) 

Fig. 1.14(a-c) Hyper-redundant manipulator in surgical applications [17, 30, 31]. 

(a)  (b)  (c)  
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There are several methods for redundancy resolutions. Some of the issues with redundancy 

resolution methods such as computation of Jacobian inverse for the under-determined system 

are computationally expensive and it is sensitive at singular configuration. The kinematic 

control of redundant manipulator, suitable to access narrow regions such as ducts and 

pipeline passages involves a certain difficulty in avoiding different shapes obstacles and 

accessing in different working environments. The task of modelling a suitable kinematic 

structure of a redundant robot for the required environment is crucial. The design of a 

redundant manipulator is suitable to work in narrow regions and hazardous working 

environments. Parameters to be considered while controlling and designing a redundant robot 

such as type of DOF, kinematic structure, mechanism, and type of material. The challenges 

involved in solving the inverse kinematics of redundant robots increased the attention of 

researchers towards the problem. The research presented here was focused on the IK solution 

and trajectory planning of a 9 degree‐of‐freedom manipulator, meant to use in an industrial 

manufacturing environment 

1.5. Problem formulation 

The general purpose of the IK problem of a manipulator is to find a configuration in the joint 

space so that the position and/or orientation of the end-effector(s) satisfy desired kinematic 

constraints. 

The configuration of the end-effector is expressed by a vector function X( )  in terms of joint 

variables. The target location for the end-effector pose can be given by a vector
dX . The aim 

is to find the feasible values of a vectorθ such that
dX( ) = X .The solution of the IK 

problem leads to minimization of the Eucledian distance between current configuration of the 

end-effector and the configuration at the target location, this can be obtained by solving the 

following non-linear system of equations 

                                       0E( )θ                                                           (1.1) 

                       subjected to constraints 

l u                                                                    (1.2) 

where l  and u represents the lower and upper bounds of the joint variable and 
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E E
d

( ) ( X( ), X )   is a positional error function vector, the detail of the error function 

vector will be discussed in chapter 3. This error function allows the robot to reach required 

task space location. In addition, to the primary task of reaching end-effector to the task space 

location an additional performance criterion such as Joint-distance minimization joint-torque 

minimization and singularity avoidance have been considered. The formulation of these 

performance criteria have been presented in subsequent chapters 

1.6. Outline/ organization of the thesis: 

The thesis is organized in the following manner,  

I. Chapter 2 deals with literature related to inverse kinematics and redundancy 

resolution methods of hyper-redundant manipulators. This chapter also presents 

different techniques of obstacle avoidance, singularity avoidance, and joint limit 

avoidance and their limitations. 

II. Chapter 3 describes kinematic and dynamic analysis of robot. This analysis helps to 

understand the fundamental concepts of manipulation and performance criteria of the 

robot. 

III. Redundancy resolution techniques were presented in chapter 4. These techniques find 

the best solution among feasible solutions based on robot performance criterion. 

IV. Collision avoidance is a crucial requirement for a redundant robot while working in a 

cluttered environment. Chapter 5 presents different types of collision detection and 

avoidance techniques of a redundant manipulator working in a planar and 3D 

environment. 

V. The optimization techniques used for determining IK solutions are briefly explained 

in chapter 6. Global optimization techniques used to evaluate multiple solutions of the 

robot are also presented in this chapter. 

VI. In chapter 7, IK simulation of the redundant robot in a planar workspace with convex 

and non-convex obstacles is presented. The task of redundancy resolution is 

implemented on a planar robot while avoiding both obstacles and singularities. The 

objective of minimizing power consumption of planar robot tracing different paths  is 

performed 

VII.  In chapter 8, IK simulations are performed on a 9 DOF spatial redundant manipulator 

by avoiding 3D obstacles. Multiple solutions of the spatial robot are attained using a 

global optimization approach. Spatial redundant robot simulations are performed 
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while the robot is deployed in real-time applications such as work facility layout, pipe 

layout, and warehouse models. 

VIII. Concluding remarks of the thesis and scope for the future research work is included in   

chapter 9. 
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CHAPTER-II 

2. Literature Review 

The advancement of robot technology and the increasing use of robots in various applications 

is gaining the attention of researchers in the field of robotics. The focus has been laid on the 

issues related to kinematic and dynamic aspects is important as the robots are used for 

different tasks. There is a large increase in the use of redundant manipulators in a wide range 

of applications due to their additional degrees of freedom (DOF). This extra DOF improves 

the capability of the robot to work in narrow and cluttered environments. The inverse 

kinematic (IK) solution is the primary task while exploiting different abilities of the 

manipulator such as obstacle avoidance, joint limit avoidance, and singularity avoidance, etc. 

Hence, this draws huge research attention to IK and control of redundant robots. A lot of 

research has been carried out in IK solution and redundancy resolution techniques of 

redundant manipulators. This chapter describes various IK solution, redundancy resolution, 

and obstacle avoidance techniques of redundant manipulators. 

2.1 Kinematic modelling 

A robot consists of a set of rigid bodies called links connected by joints. A simple type of 

joints that are generally used are revolute (rotational) and prismatic joints (translational). The 

kinematics of any robot can be described by its position and orientation of end-effector 

corresponding to the joint configuration. This is a mapping from joint space to task space and 

is known as forward kinematics. Therefore, kinematic modelling is commonly referred to as 

the forward kinematics of the manipulator. Several schemes have been proposed for the 

forward kinematics of robot manipulators. 

2.1.1. Denavit-Hartenberg notation 

The manipulator motion can be analyzed by considering a standard procedure of building a 

coordinate system on each link. This was first introduced by Denavit and Hartenberg (DH)  in 

1955 [32] which establishes coordinate frames attached to each link of the frame in a 

systematic manner. The DH representation for a given posture of end-effector specifies a 

displacement for the joint-link couple by defining four parameters the link length    , link 

twist     joint angle     and link offset   , shown in Fig. 2.1. According to this convention, 

the position and orientation of each link in the coordinate system are related to the previous 

link is represented by a 4x4 homogenous transformation matrix. 
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Although DH notation represents convenient kinematic modelling, it is only suitable for some 

classes of robots because of constraints involved with an overdetermined system that is used 

to describe the displacement between two frames. This issue can be handled by providing 

some virtual joints on some links whose geometry violates these constraints. 

2.1.2. Gupta notation  

K C Gupta [33] introduced the zero reference position method as a new technique for 

handling the kinematic problem. The computation of the current posture of the link depends 

on the displacement of the mechanism from the zero reference position instead of joint-to-

joint computations. Manipulator description in this approach gives a better understanding of 

motion. The disadvantage of this convention is that it cannot furnish itself with a robot 

functional classification. 

2.1.3. Sheth and Uicker convention 

This convention was developed by P. N. Sheth and J.J. Uicker [SU] in 1971 [34], which 

extends the use of DH parameters to all rigid link mechanisms. Due to the increased 
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(2.1) 

Fig. 2.1. Standard DH representation of a revolute joint [32]. 
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flexibility in the choice of a coordinate system, this convention requires six parameters to 

define the shape of the link. SU is known as two frame convention since it requires two 

frames that are specifically defined and placed for each joint. This convention simplifies the 

kinematic description of an arbitrary mechanism and enables the computation of forward 

kinematics. In comparison with the standard DH convention, this convention establishes an 

extra frame for each joint and generality of the description can be attained.  

2.2. Inverse kinematics solution techniques 

Kinematic control of redundant manipulator mainly requires IK solver, Inverse kinematics 

approaches have been extensively investigated. IK methods are broadly categorized into 

analytical, geometrical, numerical, or iterative and evolutionary-based approaches. This 

section describes the inverse kinematic approaches of redundant manipulators by considering 

secondary criteria such as obstacle, singularity, and joint-limit avoidance. 

2.2.1. Analytical approaches 

Analytical or closed-form solutions for the IK problem can be obtained for a simple 

manipulator with less number of DOF. This approach is computationally fast and it can find 

all possible solutions. One of the first analytic solution was proposed by Piper in 1968 [35], 

presented closed-form techniques for six DOF manipulators when any three consecutive joint 

axes intersect at a common point. 

It was observed that arms with serial links are best suitable for having an analytic solution 

with spherical wrist manipulation. In many of the arm chain models, the wrist partitioning 

technique has been used [36]. In this technique, the arm is assumed to be separated at the 

wrist joint and the hand is desired to move in the space so that the end-effector satisfies 

desired kinematic constraints. In this method, the position of the wrist center is determined 

according to the desired position and orientation of the end-effector.  The remaining portion 

of the arm is assumed to trace the position of the hand so that the wrist joint is considered as 

an end-effector for the rest of the arm. Hollerbach and Sahar in 1983 [37] proposed analytical 

solutions for 6R human arm using wrist partitioning technique. Shimano and paul [38] also 

proposed an analytical IK solution for Stanford robotic arm. A unique closed-form IK 

formulation is not available for all 6 DOF manipulators. In such cases, numerical techniques 

have been implemented. Several innovative analytical approaches have been proposed for 

certain specific geometries. Mihelji [39] proposed an analytical approach for the IK solution 

of a human arm model robot used for rehabilitation purposes. Analytical approaches have 
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also been proposed for robots with more than 6 DOF. Shimizu et al. [40] Proposed an 

analytical IK solution for 7 DOF redundant manipulators by specifying joint limits, which 

furnish all the feasible IK solutions among the global configuration space. In this approach, a 

closed-form IK Solution was achieved using the parameterization method and later analytical 

technique has been developed for computing the IK solution within the joint limits. The 

redundancy resolution problem has also been solved using this approach in the position 

domain. The disadvantage with the analytical approach is that, these are configuration 

dependant methods and do not exist for a general manipulator with arbitrary geometry. 

2.2.2. Numerical iterative approaches 

The numerical iterative approach has been widely employed for IK of redundant 

manipulators, for those explicit closed-form solutions do not exist.  

The most commonly used algorithm to solve the non-linear kinematic equations is the 

Newton-Raphson technique, which works based on simultaneous successive linear 

interpolation of non-linear equations [41]. In this method, the non-linear system is 

represented with a linear function by considering only first-order terms of the Taylor series of 

the function representing the kinematic constraints [42]. As this approach uses a first-order 

approximation to the non-linear equations, the convergence rate is slower when compared 

with second-order approaches. Although these techniques have faster convergence than the 

gradient descent method. The disadvantage with this approach is that the iterative procedures 

may diverge due to poor initial guess. Piper [35] used the Newton Raphson approach initially 

for solving the IK problem. In his approach, he proposed two different methods for the 

forward kinematics problem with different conventions. In one case, the forward kinematics 

is assumed as homogenous transformation matrix multiplication and in the other, it is viewed 

as a screw transformation matrix. 

 Jacobian based methods 

The Jacobian of a manipulator is the matrix that linearly transforms joint velocities into the 

end-effector velocities [43]. Different Jacobian based approaches have been implemented for 

solving the IK problem, some of them are presented below 
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Gradient descent method 

This approach tries to move the joint variable value  towards the direction in which the square 

norm of error vector decreases with the maximum possible rate [44], the direction is defined 

as the steepest descent direction which is specified as                                                                                            

 

     
T

eg e J  .                                            (2.2) 

where  e    is the vector representing the error residual function, 
eJ  is the Jacobian matrix. 

 g   is the square of the norm of error residual function, given as. 

    2=g e                                          (2.3) 

The joint angle update rule is represented as 

                              μ                                                      (2.4) 

where μ   indicates the value of step size.  

The procedure continues till the norm converges to zero [45] i.e. all the kinematic constraints 

are fulfilled. This approach does not require Jacobian inverse, thus it is computationally 

inexpensive and there are fewer chances of facing divergence issues in the iterative process 

when compared with Newton Raphson algorithms. The limitation of this approach is that it 

has a slow convergence rate after some iterations. 

 Jacobian inverse 

A solution to the IK problem aims to determine the roots of the nonlinear equation by using a 

Newton-Raphson technique.  

The formulation of the IK problem creates m equations and n unknowns, where n is the 

number of joints and m is the number of elements corresponding to the task space locations, 

by assuming the equality of number of equations and number of unknowns. Solution of this  

problem using Newton-Raphson approach leads to joint update rule 

1.eJ e   
                                                             

 (2.5)
   

 

The Jacobian inverse method converges faster than the gradient descent method however it 

suffers from a limitation that the inverse of Jacobian is sensitive and ill-conditioned at the 

vicinity of the singularity. 
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Hessian based methods 

Unlike the Jacobian based methods used to solve the system of kinematic equations, in 

optimization-based or Hessian based approaches, the IK problem is considered as a nonlinear 

optimization problem [46]. In this method, the problem is formulated in a way to find joint 

variable vector θ that minimizes the objective function f(θ). Computation of the Hessian 

matrix is required to compute the solution of the IK problem. Hessian matrix deals with the 

second derivative of the error function with respect to the joint variable. Although this 

approach is numerically stable than Jacobian inverse methods, higher complexity is involved 

while calculating the Hessian inverse. The major issue with this approach is, the algorithm 

needs to perform the pseudo-inverse of Jacobian to exploit the redundancy of the 

manipulators. This increases the computational cost even further. 

 Heuristic search methods 

The heuristic search method does not require gradient information for solving the IK 

problem, these methods are not computationally expensive but the local convergence rate is 

slow when compared with gradient-based methods 

The cyclic coordinate descent (CCD) method is being used popularly for solving the IK 

problem of serial manipulators [47]. It is a numerical iterative approach that works to 

minimize positional and orientation errors by operating a single joint at a time, starting from 

end-effector to base. Although this approach is effective, it cannot handle the global 

constraints of the manipulator.  

2.2.3. Hybrid analytical/numerical methods 

Analytical methods for solving the IK problem involve complex trigonometric equations. For 

redundant manipulators, the problem is underdetermined and it is also required to satisfy 

additional task constraints. However, there are some approaches to exploit the features of 

analytical solutions for a manipulator with complex geometries. Some algebraic methods 

have been used for IK solutions using algebraic elimination which expresses one of the joint 

variables as the roots of the polynomial equation and other joint variables are determined in 

terms of a known variable using closed-form procedures [48]. These methods are sometimes 

referred to as analytical solutions. As the degree of the polynomial is greater than four, an 

iterative procedure must be employed to solve the given problem. However numerical 

algorithms for solving the roots of the polynomial equations are fast and reliable. These 
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solutions are not available for all categories of the manipulator, but they are less 

configuration dependent when compared with pure analytical approaches. Algebraic 

techniques can give all feasible solutions for a given IK problem. These approaches can also 

be used for the symbolic computation of the IK solutions. Ananthanarayanan and Ordonez 

[49] presented a hybrid approach by combining analytical and numerical approaches for 

computing the IK solution of generalized (2n+1) hyper-redundant manipulators. In this 

approach, a spherical joint is considered at a wrist with obstacle avoidance and joint-limit 

avoidance as a secondary criterion. This method utilizes the simplicity of the analytical 

approaches to improve the speed of the numerical solvers that operate on each joint position 

individually, thus this method considerably improves computational efficiency.  

2.2.4. Geometric approach 

The geometrical approach has been largely used for computing the IK solution of redundant 

robots. It has the benefit of good geometric intuition and less computational cost . Chirikjian 

and Burdick [50] adopted a geometric technique for computing the IK of hyper-redundant 

manipulators by representing them as a characteristic curve of a robot, known as the 

backbone curve. The discrete manipulator was modelled as a continuous curve. The IK 

analysis was performed by fitting the physical manipulator to the backbone curve. In this 

approach, obstacle avoidance has been performed by considering tunnels as obstacles. This 

approach is suitable for a discrete planar manipulator with high DOF and also well suits for 

the continuous manipulator. Xu et al.  [24] proposed a modified modal approach for 

computing the mission-oriented IK of hyper-redundant manipulators that are used for orbit 

servicing applications. To represent the geometry of the manipulator the 3D backbone curve 

is specified using the mode functions. The equivalent link of the robot is fitted to the 

appropriate backbone function. Joint angles were determined by evaluating the position of 

each node. The coordinate points of each node can be obtained by fusing the complete length 

of the manipulator and mode functions. An additional parameter called arm angle is used for 

the redundancy problem. This approach is implemented for 12 DOF robots satisfying 

additional tasks such as obstacle avoidance and singularity avoidance.  Menon et al.  [51] 

presented a geometric approach for motion planning of hyper-redundant manipulators. This is 

an optimization-based approach where the motion of the links of the manipulator was 

supposed to take the motion of the Tractrix curve. The velocity of the curve lies along with 

the link and it is least among all the possible velocities. The hyper-redundant manipulators 

are represented by splines and a Tractrix based algorithm is employed to obtain length 
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conserving motion of the hyper-redundant robot. In this approach, better visualization of 

motion can be obtained due to localized shape control and higher-order continuities that are 

available in splines. Sardana et al. [52] presented a simple geometric technique for computing 

the inverse kinematics of a four-link redundant manipulator of an in-vivo robot for medical 

applications. In this approach, redundancies are introduced by providing twisting joints to 

some of the joints. This approach provides an IK solution easily for a surgical robot used for 

biopsy application and it is computationally efficient. Yahya et al. [53] used a geometric 

approach for computing the IK solution of redundant manipulators for a given path. 

Manipulability measure has been calculated to show how far the manipulability value is from 

the singularity configuration. The advantage of this approach is, the angle between two 

adjacent links is assumed to be the same.  This makes the movement of links stable and hence 

controlling of links is easier. The limitation with the geometrical approach is that a closed-

form solution should be available geometrically for the first three joints and computing the IK 

solutions for these joints are time-consuming. 

2.2.5. Evolutionary approaches  

 Computation of IK solution by the evolutionary approach is popular and they have been 

widely used for different robot configurations. Parker et al. [54] make use of genetic 

algorithms to compute the IK problem of redundant robots by minimizing joint displacement. 

This approach has a limitation of poor precision in the solution. Koker [55]  applied neural 

networks and genetic algorithms jointly to determine the solution to the IK problem of the 

Stanford robot by minimizing the positional error at the end-effector. This approach 

combines the features of both neural networks and evolutionary approaches and results in 

more precise solutions. Better accuracy of the solution can be achieved by training three 

Elman neural networks using separate training sets.  One of these trained sets gives better 

results than the other two training sets and the floating portion of each set is placed in the 

initial population of the genetic algorithm. Bingul et al. [56] applied a neural network by 

employing a back-propagation algorithm to compute the IK problem of an industrial robot 

with an offset wrist. The limitation of this approach is, it cannot give multiple solutions to the 

IK equations. The neural network approach typically requires large training sets whose size 

increases exponentially with the number of DOFs. Nearchou [57] proposed an evolutionary 

approach of binary-coded genetic algorithm to find out the unique solution to the IK 

equations of the redundant and non-redundant robots. This work shows that the evolutionary 

approach was superior to the pseudo-inverse method and simple binary-coded genetic 
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algorithm. Further, it was shown by Deb and Agrawal [58], is that for continuous search 

spaces real-coded genetic algorithms were more suitable.  

One of the popularly used evolutionary approach which mimics the teaching learning 

environment in a class room is teaching-learning-based optimization (TLBO). TLBO 

algorithm has been applied in various fields of science and engineering. The main advantage 

of TLBO is that, it doesn’t require any algorithm-specific tuning parameters like crossover 

and mutation rate in GA, acceleration constants like c1 and c2 as in PSO, etc. Rao et al. [59] 

proposed the Teaching-Learning-Based Optimization (TLBO) algorithm for the optimization 

of mechanical design problems.The effectiveness of the method is validated on several 

problems. The examples considered include five benchmark optimization test functions, four 

mechanical design problems and six real-world mechanical design optimization problems. 

The obtained results of the proposed algorithm outperformed the previous results obtained by 

other population-based optimization algorithms. The convergence rate and computational 

effort are better for TLBO over other evolutionary optimization methods. Rao et al. [60] 

applied TLBO for large scale non-linear optimization problems. The efficiency of the TLBO 

algorithm was compared with other popular optimization algorithms (GA, ABC, PSO, HS, 

DE, Hybrid-PSO) by considering several different benchmark problems with different 

characteristics. The results obtained by TLBO algorithm showed its applicability for large 

scale problems. Awatef et al. [61] adopted TLBO technique for navigation problem of mobile 

robots, this technique is employed for optimum trajectory and minimum travelling time of the 

robot to reach the goal. To show the efficacy of the  approach, the TLBO approach has been 

compared with other evolutionary approaches. Savsani et al. [62]  made a comparative study 

of seven different metahueristic methods for the trajectory planning of 3 DOF robotic arm  by  

minimizing joint travelling time, joint travelling distance and total joint Cartesian lengths 

simultaneously. Results show that TLBO algorithm is significant over other optimization 

algorithms. In the present thesis, TLBO algorithm is used for solving IK problem of hyper-

redundant manipulator working in complex environment. In general, classical optimization 

techniques can be employed for solving IK problems. But in complex domains, classical 

approaches fails to give solution with single initial guess. Thus, TLBO algorithm is employed 

for solving  the IK problem in complex domains. The detailed explanation of TLBO approach 

is presented in chapter 6. IK simulation results using TLBO algorithm are reported in chapter 

8.  
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2.3. Methods of redundancy resolution 

To take the advantage of redundancy, numerous computational schemes have been adopted. 

Many researchers have implemented the idea of the pseudo-inverse technique [42] to attain 

the joint velocities which minimize the joint rates in the least square sense.  

2.3.1. Jacobian pseudo-inverse and its variants 

One of the extensively used redundancy resolution techniques is the optimized inverse of 

Jacobian, known as least square or Moorse-Penrose inverse [63]. This inverse can minimize 

the cost function instantaneously. The cost function is defined as the Euclidean norm of the 

joint velocity vector 

 2

1

( ) ( )
j n

j

j

g Δθ




 
                                                  

 (2.6) 

This cost function is better approximated when compared with the Newton-Raphson 

technique. Hence, this approach leads to faster convergence. In the pseudo-inverse approach, 

redundancy is utilized to minimize the joint velocities or norm of deviation of joint velocities 

from the current configuration. 

This method is also utilized at the joint acceleration level by adding the null-space term to 

satisfy the additional secondary criteria such as obstacles [64], singularity [65], and joint-

limit avoidance [66], and joint torque minimization [14]. 

The idea of the extended Jacobian method was first proposed by Baillieul [67], this approach 

is used to execute obstacle avoidance based on optimizing a distance criterion. In this 

approach, the equations of velocity have been provided with additional equations equal to the 

number of unknown joint velocities. To make the gradient as zero in the null space of 

Jacobian,  n-m rows are added to the Jacobian matrix. Maciejewski and Klein [64] proposed 

an extension to Jacobian based IK formulation to integrate obstacle avoidance. This approach 

is to evaluate the joint angle velocities of redundant manipulator working with multiple goals 

such as the primary target of reaching specified end-effector trajectory and the secondary 

criterion as obstacle avoidance. This was achieved by decomposing the solution into a 

particular and homogenous solution, which will exactly represent the priority of the tasks. 

The end-effector control is achieved by maximizing the distance of links from obstacles. In 

general, Jacobian methods lack sensitivity at joint limits and have singularities. Kircanski and 



24 
 

Petrovic [68] proposed an IK solution for 7 DOF Robot avoiding singularities. This approach 

reduces the computational burden by combining the analytical and pseudo-inverse approach.  

Liegieos [69] proposed the idea of generalized inverses by utilizing the null space of the 

rectangular Jacobian. The null space combines the homogenous solution that provides joint 

motion and does not contribute to end-effector motion. A performance function is being 

projected on to the null space and the obtained IK solution can optimize the function value. A 

potential function can be chosen to fulfill the performance requirement of a redundant 

manipulator. For the task of joint limit avoidance, the joint midrange is selected as a 

performance metric that measures the deviation of joints from the mid-value, which is given 

as  
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Similarly, a performance measure of redundant manipulators has been chosen, that avoids 

singular configurations. The main limitation of the gradient projection method is that it 

cannot guarantee that a given configuration is feasible or not since the performance criteria 

are expressed by a scalar metric. A feasible configuration might be exist corresponding to a 

higher value of the potential function when compared to a non-feasible configuration.  

A new redundancy resolution technique using task priority proposed by Chiaverini [70], this 

approach can deal with kinematic and algorithmic singularities. This technique has been 

implemented for 7 DOF redundant robot arm. Huo and Baron [71] presented a twist 

decomposition algorithm avoiding joint limits and singularities of a redundant robot in a 

welding application. Singla et al. [72] presented a high index norm minimization approach 

for redundancy resolution of serial manipulators. In this approach, they have interpreted 

different norms of intermediate indices and observed that 8-norm solutions are found to be 

better than other minimum norm solutions. 

2.3.2. Configuration control 

Another redundancy resolution technique is the configuration control method proposed by 

seraji [73]. This approach combines the forward kinematics of manipulator with a set of 

kinematic functions in joint space or Cartesian space that consider the additional task of the 

redundant robot. 
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2.3.3. Penalty function method 

A popular approach implemented for redundancy resolution is the penalty function method 

[74] in this approach penalty function is being added to the objective function. The algorithm 

searches for the minimum value while the penalty function increases its value when a specific 

condition violates. This approach can be used to avoid joint limits and obstacle avoidance.  

Zhang et al [75] proposed a similarity in position-based and velocity-based redundancy 

resolution approaches and found they were equivalent. A classical optimization-based 

approach has been presented for the IK solution of hyper-redundant manipulator avoiding 

both obstacles and singularities [76] was implemented at a joint position level. In this 

approach, there is no Jacobian computation thus reduces the computational burden of the IK 

solution.   

2.4. Trajectory planning 

The redundant manipulators while operating in different environments, it is important to 

attain smooth trajectories that avoid mechanical vibrations of the robot. Thus trajectory 

planning of redundant manipulators is an important aspect to be considered in the kinematic 

analysis of robots. Menasri et al [77] formulated a bi-level optimization problem for trajectory 

planning of redundant manipulators and solved using a bi-genetic algorithm. 

B-spline interpolation [78, 79] techniques are another class of approaches for solving 

trajectory planning. In these approaches, trajectory planning is executed without using the 

inverse of the Jacobian matrix.  The idea of using optimal motion planning with optimal time 

as a performance criterion has been chosen for path planning  under the B-Spline assumption 

in the task space [80]. A new idea based on the variational approach [81] was attempted. In 

this approach, the trajectories of the robot joint space were represented as a B-spline curve 

and the measure of performance is directly integrated through the trajectory of the end-

effector. Xidias [82] implemented an optimal time trajectory planning for hyper-redundant 

manipulator in 3-Dimensional workspaces with obstacles. This approach evaluates an 

optimization problem to determine the joint trajectories with minimum time consumption 

while executing the required tasks. 

Numerous works have been carried out on the optimization of robot trajectories by 

minimizing the total energy consumption  [83] and torque minimization [14]. Devendra and 

Manish [84] presented an approach to optimize the torque applied at the joints and they have 

implemented a genetic algorithm to solve the problem. Hirakawa and Kawamura [85] adopted 
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a new scheme for achieving the trajectory of a redundant robotic arm that minimizes the total 

energy consumption of the robot. Saramago and Stefen [86] implemented the trajectory 

planning of a robotic arm to minimize energy consumption and travel time. Zhang et al. [87] 

implemented a unified quadratic programming-based dynamic system for minimizing the 

applied torque of redundant robots. 

2.5. Obstacle avoidance techniques 

Collision avoidance is an important criterion to be considered in IK and motion planning of 

robots. Different Collision avoidance techniques have been adopted for redundant robots. The 

most popular method proposed for obstacle avoidance is an artificial potential field approach 

[88]. In this approach, an artificial potential field was developed and geometric modelling of 

obstacles was done using analytical primitives. This potential field forces the manipulator 

towards the target location while moving the links of the robot away from the obstacles. The 

task of collision avoidance is considered as high-level planning which is executed as an 

effective component of low-level real-time control. This approach has been used for robot 

manipulators and mobile robots. The limitation with the potential field approach is that the 

solution traps in the local minima.  The Pseudo inverse of Jacobian and its variants such as 

extended Jacobian [67] and task priority approaches [89] have been widely used for local 

control of redundant robots avoiding obstacles. The main limitation of the Jacobian-based 

methods is that the kinematic and algorithmic singularities are involved in IK computation.  

Chirikjian and Burdick [90] implemented a geometric approach to manipulate the robot in 

tunnels based on discrete modal technique. Differential geometry methods are used to 

formulate the equations of manipulator that locates inside the tunnels without colliding the 

obstacles. The limitation of this approach is defining the modal functions, which require 

several sets of modes to span the entire robot workspace, and proper mode switching 

mechanisms need to be performed. Choset and Henning [91] proposed a road map based 

generalized Voronoi graph for motion planning of a serpentine robot. This approach offers an 

advantage since it uses the follow the leader approach to represent the backbone curves 

through the environment. This approach reduces the computational burden associated with 

highly redundant manipulators. Menon et al. [51] presented an optimization-based approach 

for motion planning of hyper-redundant manipulators avoiding obstacles. In this approach, 

the algorithm is purely geometric and the obstacles were defined by smooth and 

differentiable functions that are suitable for a gradient-based optimized algorithm. 
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Another class of obstacle avoidance methods was performed by implementing polyhedral 

collision detection techniques. These techniques works based on computational geometry 

algorithms. The polyhedral interference-based approaches have been used for collision 

detection and computation of the distance between two objects [92]. Hubbard [93] 

implemented a method for collision detection by modelling polyhedral objects with bounding 

spheres, which are hierarchically arranged for the representation of the robot model. In this 

approach, the condition for collision detection was performed by checking the distance 

between the centers of two spheres is smaller than the sum of their radii. The limitation of 

this approach is that the accuracy of collision detection can be improved by approximating 

the geometric model with more number of spheres, which is computationally expensive. The 

bounding box approach has been used extensively for collision detection of robots. Van 

Henten et al. [94] implemented a bounding box approach for representing the links of the 

robot, and later the bounding boxes were transformed into hierarchical bounding spheres with 

different levels of refinement. This technique is computationally fast but accuracy in collision 

interference is low.  The collision avoidance techniques presented in the literature are adopted 

for different types of obstacles. The limitation with these approaches is, obstacle modelling 

and collision interference techniques are quite complex.   

2.6. Multi-modal optimization 

The modularity of robots has been practiced in the design of robot mechanisms for flexibility 

and ease in maintenance. A modular, reconfigurable robot consists of a set of standardized 

modules that can be arranged to different structures and DOFs for diverse task requirements 

[95]. The multi-modal nature of the IK problem offers multiple solutions. Kalra et al. [96] 

solved the multi-modal IK problem of an industrial robot by using a real-coded genetic 

algorithm, which is a fitness sharing niching method. The task of redundancy resolution in 

this approach is performed by selecting the joint configuration that is closest to the current 

robot configuration in the joint space. The limitation of this approach is to set more unknown 

parameters. These parameters rely significantly on the nature of search space, which makes 

the approach configuration dependent. Tabandeh et al. [97] proposed an adaptive niching 

technique to solve the IK of a serial robotic manipulator with an application to modular 

robots, which was able to determine multiple IK solutions. This approach combines the real 

coding and clustering process, this improves the accuracy of the end-effector for random task 

points.  Unlike other niching algorithms, this approach needs a few parameters to be set. This 

feature permits the algorithm to be applied for computing the IK solution of any robot 
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configuration. From the literature, it is observed that the use of the niching based approach 

for computing the multiple IK solutions of industrial and redundant robots. Though the 

method is efficient it is computationally expensive. Espinoza et al. [98] proposed an inverse 

kinematic solution of a 10 DOF modular hyper-redundant robots, multiple solutions of the 

robots are evaluated using exhaustive and error-optimization approaches. In this approach, a 

comparison has been made among different global optimization approaches. In this thesis, 

classical optimization methods have been used for evaluating the global minimum and 

multiple IK solutions. This significantly reduces the time, and it can also be applied to a wide 

variety of robot configurations. 

2.7. Observations from the literature 

Some of the major points observed in the literature 

I. Due to  increase in the use of redundant manipulators in all the fields of science and 

engineering, there is a huge research scope in analysis and development  of these 

manipulators in different working environments. Since IK is the basic requirement for 

the control of robots, a lot of research has been carried out in inverse kinematics and 

redundancy resolution methods of hyper-redundant manipulators.  

II. The pseudo-inverse of Jacobian is extensively used to determine the IK solution of a 

redundant manipulator. The task of redundancy resolution is implemented by 

satisfying different secondary requirements using the null space of the Jacobian 

matrix. The limitation of this technique is sensitivity at singular configurations. 

III. Another popular approach used for IK solution is the geometric approach, this is used 

because of its good geometric intuition and low computational cost. The difficulty 

with this approach is that a closed-form solution must prevail geometrically at least 

for a few joints. 

IV. In the literature, several collision detections and avoidance techniques have been 

implemented for collision avoidance of redundant manipulators in different working 

environments, these approaches are quite complex. Hence, there is a need for simple 

and effective collision avoidance. 

V. Evolutionary approaches have also been used for solving the inverse kinematics 

problem. These approaches are computationally expensive and lack in precision. 

VI. The characteristic feature of the IK problem is multi-modal in nature, hence global 

optimization techniques need to be implemented to determine multiple solutions. 
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These multiple solutions are helpful to evaluate the configurations of reconfigurable 

robots. 

VII. Multiple configurations of the robot were determined using the niching based 

approach, which is a fitness sharing method. These approaches require more 

algorithmic control parameters to initiate the process. 

VIII. In the literature [24,52,71],  redundant robots has been employed in orbital servicing, 

medical and welding applications. The issues related to kinematics, dynamics, and 

design of these manipulators remained challenging. Hence, there is a need for 

analyzing IK Solutions and kinematic control of redundant robots with different 

kinematic structures working in complex environments. 

2.8. Objectives of the Thesis 

The main focus of the thesis is 

I. To develop a computationally efficient method for the IK solution of hyper-redundant 

robots working in complex environments. 

 

II. To improve the performance of redundant manipulators  while reaching  the  desired 

task space  location by optimizing different performance criterion such as 

 Joint distance minimization  

 Singularity avoidance 

 Joint torque minimization 

 

III. To develop an effective collision avoidance scheme for redundant robots with 

polygonal and 3D obstacles in the working environments. 

 

IV. To analyze multiple IK solutions of the robot that are suitable for working in diverse 

task space requirements. 

 

V. To explore the performance of spatial redundant robots that are adaptable for working 

in realistic environments such as plant layout, pipe-line inspection, work facility 

layout, and warehouse application, etc. 

 

Research hypothesis 

 Research hypothesis is to employ classical optimization techniques to solve IK 

problem of hyper-redundant manipulators in complex working environments. 

The charecteristic feature of IK problem is of multi-modal in nature. The task of evaluating 

multiple IK solutions has been performed using classical optimzation techniques. This 

approach is computationally efficient when compared with global optimization approaches. 
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Multi-start approach have been performed to evaluate multiple IK solutions of the spatial 

robot. 

2.9. Overview of the Thesis 

This section describes the overview of the thesis. In this work, IK simulation of hyper-

redundant robots working in planar and spatial workspace. A classical optimization 

approach have been considered for the evaluating IK solution. Different secondary 

performance criterion have been considered for redundancy resolution. The over of work 

has been represented in block diagram shown in Fig. 2.2. It shows different techniqes 

adopted for solving IK problem and redundancy resolution of hyper-redundant robots. 

 

Fig. 2.2. Flow chart representing the overview of the IK simulations. 
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CHAPTER-III 

3. Fundamentals of Robot Manipulation 

The description of the manipulator movement involves kinematics, dynamics, trajectory 

planning, and control of the robot. The forward and inverse kinematics analysis of a robot is a 

basic requirement for mathematical modelling of kinematic structure and its control. For the 

redundant manipulators, the IK problem is a more complex and challenging aspect for 

modelling and control. Several methods have been employed for solving the IK problem, 

which is explained in chapter 2. In this thesis, IK computation of hyper-redundant 

manipulators working in planar and 3D workspaces are presented. There is a focus on 

redundancy resolution techniques that are implemented for achieving secondary criteria such 

as obstacle and singularity avoidance while satisfying the primary task requirement. An 

additional performance criterion, joint torque minimization and power consumption have also 

been chosen in the IK analysis of redundant manipulator. To satisfy all these performance 

metrics, it is required to analyze the kinematic and dynamic aspects of the robot. This chapter 

describes the fundamental concepts of robot manipulation. 

3.1. Kinematic modelling 

A robot consists of a set of rigid bodies called links which are connected by joints. The 

kinematics of any robot can be described by the position and orientation of the end-effector 

corresponding to the joint configuration, known as forward kinematics. Therefore, kinematic 

modelling is commonly referred to as the forward kinematics of the manipulator.  

3.1.1. D-H Parameters: 

The motion analysis of the robotic manipulator can be performed by considering a standard 

procedure to model a coordinate system on each link. This was first introduced by Denavit 

and Hartenberg [23] in 1955 (Denavit) which systematically establishes a relationship of each 

coordinate frame with respect to the previous frame attached on the link. The coordinate 

frame assignment for the links of the manipulator using this convention can be performed by 

the following operations,  

 Consider 1iz    as the axis for the joint, between link 1i   and link i   to 

define the homogenous transformation between frames 1i   and i  

 Set axis iz   as the axis of rotation or displacement of joint 1i   
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 Find the common normal line     between 1iz   and iz  and define the origin of  

frame i as the intersection of    and iz , which is    

 Axis  ix   is defined in the direction of    , from joint i  to 1i   

 Axis  iy   is defined as the mutual perpendicular to the axis iz  and ix   by 

following the right-hand rule. 

The DH representation of a particular pose describes a displacement for     joint-link pair in 

a mechanism by defining four parameters: The link length    , link twist     joint angle     

and link offset   . 

According to this convention, the transformation of 
thi  frame relative to the 1 th( i )   frame 

is expressed by a generalized homogeneous transformation matrix. It is given by 
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The homogenous transformation for a given pose is a function of DH variable i. e. θ  for 

revolute joints and d for prismatic joints as the most of the robot joints are either prismatic or 

revolute. Assignment of coordinate frames and identification of joint-link parameters are 

shown in Fig. 3.1. 

 

 

 

 

 

 

 

 

 Fig. 3.1. Description of DH parameters for a joint i and link i [32]. 
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3.1.2. Forward and inverse kinematics of serial manipulators 

Forward kinematics can be defined as the mapping from the joint space ( ) to the Cartesian 

space (x, y, z), mathematically defined as 

                                                  ,m nQ R W R                                                         (3.2 a) 

Inverse kinematics is the mapping from the Cartesian space (x, y, z) to the joint space ( ).                                                                                                                                     

                                                 ,n mW R Q R                                                          (3.2 b) 

where Q = subset of joint variables as the solution of the inverse kinematics equations, W = 

subset of Cartesian space, R
m 

= universal set of joint variables, R
n 
= universal set of Cartesian 

space. 

3.1.3. Forward  Kinematis  of serial planar redundant robot 

A generalized n linked robot is modelled with link length         …       the angle between 

link and x-axis is       …    . The forward kinematic model is represented by a simple 

geometric and analytical interpretation of the robot. 

End effector position in workspace is given as 

                          1 1 2 2 3 3x n n +  +E l cos θ l cos θ l cos   θ  l cos θ                                     (3.3 a) 

     1 1 2 2 3 3y n nE l sin θ l sin θ l sin θ l sin θ                                                   (3.3 b) 

3.1. 4. Kinematic model of a spatial redundant manipulator 

The joints of the spatial redundant robot are modeled with universal joints for better 

accessibility and control in the workspace. These joints have two orthogonal DOFs that are 

formed by the pitch axis and yaw axis at all the joints except at the joint1. A generalized 

spatial hyper-redundant manipulator is shown in Fig. 3.2. The forward kinematic analysis 

begins with the assignment of coordinate frames at the robot joints, and these frames are used 

to describe the position and orientation of one frame relative to another frame. The frame 

assignment of the hyper-redundant manipulator is shown in Fig. 3.2. The Denavit-Hartenberg 

(D-H) parameters for the assigned frames are given as per the standard convention. 
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The transformation of the i
th

 frame relative to the (i-1)
th

 frame is derived from the generalized 

homogeneous transformation matrix. It is given by Eq. 3.1. 

For the robot shown in Fig. 3.4, the position of the end-effector with respect to the base frame 

is given by 

   

0 0 1 2 3 4 5 6 7 8
9 1 2 3 4 5 6 7 8 9
T T  T  T  T  T  T  T  T  T                                 (3.4) 

From the above equation of the homogeneous transformation matrix, the final end-effector 

position and orientation can be determined. Which is taken as the required inputs to perform 

the IK analysis.  

 

3.2. Robot positioning 

A joint configuration of the robot is to be provided to position the robot end-effector in the 

task space. The task of computing joint variables was carried out by the inverse kinematics of 

the robot. This section describes the inverse kinematics methods and challenges involved in 

IK problem of serial robots. 

3.2.1. Analytical method for inverse kinematics 

An analytical approach is recommended while attempting inverse kinematics of serial robots. 

The forward kinematic equations of the serial robot in a planar workspace are often easy to 

obtain, whereas in complex robots DH parameters might be useful for arriving forward 

kinematic equations. The Kinematic equations involve the trigonometric function, which 

makes the problem complex. Moreover, multiple solutions of trigonometric functions need to 

Fig. 3.2. Schematic diagram of spatial hyper-redundant manipulator. 
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be considered. An example of a 3DOF planar robot illustrates the IK Model using an 

analytical approach. 

3.2.2. A 3 DOF Manipulator with revolute joints 

For the 3R manipulator shown in Fig. 3.3, the analytical approach for the IK problem is 

determined by understanding its forward kinematic model. As the joints are revolute and it is 

a planar robot, only one joint variable is involved, the forward kinematic model of this can be 

easily determined. By analyzing its geometry, the forward kinematic relation is given by i.e 

the position and orientation of the end-effector (x, y). 

 

 

 

 

 

 

  

 

 

From the geometry of the robot, forward kinematic equations are given as 

                         1 1 2 1 2 3 1 2 3x l cos( ) l cos( ) l cos( )                               (3.5 a)                                                                                                                                                                                                                                         

                            1 1 2 1 2 3 1 2 3y l sin( ) l sin( ) l sin( )                                     (3.5 b) 

                                                  1 2 3                                                                             (3.5 c) 

The location of point P can be computed as 

                                  3 1 1 2 1 2xP x ( ) l cos( ) l col co s(s )                                 (3.6 a)    

                                        3 1 1 2 1 2yP ( ) l sin( ) l sy l s in(n )i                               (3.6 b) 

Squaring the two sides of Eq (3.6 a-b) and adding, gives 

                                            
2 2 2 2

2

2

1 2

12

X YP P l l
co (s

l l
)

  
                                             (3.7 a) 

Fig. 3.3. A 3 DOF Serial robot arm 

P 

l3 

l1 

(x, y) 

θ3 θ2 

θ1 
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The existence of solution for Eq. (3.7a) imposes the condition, -1
2Cos( )   1, beyond this 

range the point is outside the reachable workspace of the arm, then set  

                                              
2

2 21sin( ) cos( )                                           (3.7 b) 

where the positive sign is with reference to elbow up posture and the negative sign is the 

elbow down posture. Hence, the angle 
2  is computed as 

                                            2 2 22atan  (sin( ),cos( ))                                           (3.8) 

where atan2 is the function that computes the value of 1tan   in the appropriate quadrant. 

1  can be determined  by expanding cos( 1 2  ) and sin( 1 2  ) of Eq.(3.5) and rearranging 

them  

                                        1 2 2 1 2 1 2( cos( ))cos( ) sin( )sin( )xP l l l                        (3.9 a)    

                                      1 2 2 1 2 1 2yP ( l l cos( ))sin( ) l cos( )sin( )                      (3.9 b) 

To evaluate 
1 Eq. (3.9a) is multiplied by 

2 2sin( )l  and Eq. (3.9b) by 1 2 2cos( )l l  , followed 

by the subtraction of former from latter, this gives the value 

                                                1 2 2 2 2
1 2 2

1 2 1 2 2

( ( )) ( )
( )

2 ( )

y xl l cos P l sin P
sin   

l l l l cos

 




 


 

                              (3.10 a) 

Similarly 

                                              
1 2 2 2 2

1 2 2

1 2 1 2 22

x y( l l cos( ))P l sin( )P
cos( )

l l l l cos( )

 




 


 
                      (3.10 b) 

The solution 
1  can be obtained by 

                                                    1 1 1atan2 (sin( ),cos( ))                                     (3.10 c) 

Finally, the angle is found from the expression                  

                                                            3 1 2                                                              (3.11) 

These equations have two solutions 
1 as they are involved with trigonometric functions, 

therefore two sets of solutions 
1 2 3, ,   can be achieved, the two solutions corresponding 

to different joint configurations give the same end-effector position. It is implied from the 

above derivation the complexity of the analytical solution increases with the complexity of 

robot geometry and the number of DOFS i.e for redundant robots. As this approach is 

geometry dependent, the IK solution for a general manipulator with arbitrary geometry does 

not exist. Due to the limitations in analytical approaches, some of the numerical approaches 

have been used for the IK solution of different robot configurations with redundant DOF. A 

detailed discussion of IK solution methods was presented in the literature review. The 
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redundancy of the robot, despite its advantages with respect to additional capabilities, 

computational complexity involves solving IK problems using analytical approaches is high. 

In such cases, numerical methods are often employed for the IK solution. 

3.3. Manipulation of redundant robots 

Redundant manipulators have more DOFs, than the required to reach a task space location. In 

the case of 2D planar manipulating systems with position and orientation as required targets, 

redundant manipulator possess more than three DOF. The additional DOFs allow multiple 

solutions in joint space for a given task space position and orientation. Availability of 

multiple solutions leads the controller of the manipulator to choose the best solution from the 

feasible solutions that satisfy secondary criteria. Fig. 3.4(a) depicts multiple solutions of a 

redundant system and selecting the solution based on the performance criteria. Fig. 3.4(b) 

shows joint configuration while avoiding obstacles. While Fig 3.4(c) shows configuration 

that minimizes  joint rotation with respect to home position. 

 

 

 

 

 

 

 

  

 

 

3.3.1. Robot differential kinematics 

For redundant manipulators, kinematic equations are highly non-linear and closed-form 

solutions are not always possible. Thus, numerical approximations are used to solve the IK 

problem. Differential velocity kinematics is used while predicting these approximations. In 

differential kinematics, the Jacobian matrix is used which maps from joint space velocity to 

Cartesian space velocity. The forward velocity relation is given by 

                                                                             J θ X                                                                    (3.12) 

Fig. 3.4. IK solution of redundant robot (a) Multiple solutions (b) Avoiding obstacle (c) 

Minimizing joint distance. 

a b c 
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where   represents joint rates and X


 is the end-effector velocities. The Jacobian matrix of 6 

DOF manipulator is represented by 6 x n matrix, n being the number of manipulator's joints. 

The first three rows of the Jacobian matrix indicate joint velocities corresponding to linear 

task space velocities and the last three rows relate joint velocities corresponding to angular 

joint space velocities. 

                                                                  J θ =
1 2

1 2

....

....



  

 
 
  

n

n

v vJ J J

J J J
                                               (3.13) 

 The i
th 

column of the Jacobian matrix corresponds to i
th

 joint velocities by combining both 

linear and angular velocities, a column of the Jacobian matrix for a revolute joint is given by 

                                              
i

i

v i i

i

J z   o

zJ

   
   
   

                                                      (3.14) 

where the joint linear velocity is the cross product of the joint's motion axis vector i
z  with 

the distance between the i
th

 joint origin and the end-effector, i
o . In the case of a prismatic 

joint, an i
th

 joint column of Jacobian is given by 

                                                          
0

i

i

v i
J z

J

   
   
   

                                                                (3.15) 

3.3.2. Jacobian inverse methods 

The Jacobian matrix inverse methods have been used extensively in IK computations and it 

has been performed in several ways. Based on kinematic structure and configuration, if the 

kinematic configuration produces full rank i.e. square Jacobian matrix, matrix inverse can be 

computed using standard methods.  

By considering equation 3.10 with joint space dimension is equal to task space dimension, the 

joint velocities can be obtained by inversion of Jacobian matrix [100] 

   
1

J ( ) X                                                          (3.16) 

If the initial posture of the robot is known, the joint positions can be computed by integrating 

velocities over time 
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   
0

0

t

t dt                                                       (3.17) 

     1k k kt t t t                                                 (3.18) 

If a kinematic structure is redundant when the Jacobian matrix is a rank deficit or non-square, 

an alternative formulations for Jacobian inverse were used. A possible  solution method is to 

formulate the problem as constrained optimization problem. 

Once the end-effector velocity and Jacobian are known it is desired to find the solution theta 

that satisfy the equation 3.10 and minimize the quadratic cost function of joint velocities 

1

2
W

Tg ( )                                                         (3.19) 

where W is a suitable symmetric positive definite weighting matrix. This problem can be 

solved by using method of Lagrange multipliers 

3.3.3. Pseudo-inverse of Jacobian 

The pseudo-inverse matrix or Moore-Penrose [100] is the most widely used in IK 

computation of redundant robots i.e. dealing with the rank deficit and non-square Jacobian 

matrices. The pseudo-inverse is given by 

                                                       
1( )T T

J J JJ
                                                      (3.20) 

This computes the IK problem by minimizing the magnitude of joint angle variation required 

to achieve an end-effector posture in the least square sense. This property is beneficial since 

the minimization of joint velocity tends to reduce kinematic motion requirements. The 

computation cost involved in determining pseudo inverse is high and it also increases with an 

increase in the number of DOF. The pseudo-inverse approach performs well in general, but it 

suffers when the robot configuration is close to singularities, where the Jacobian loses its 

rank. 

3.3.4. Jacobian transpose 

This method attempts to move the joint values in the direction of the square of the norm of 

error vector which reduces in the highest rate [99]. This Jacobian transpose is the least 

computationally expensive. The joint motion is updated by a small displacement in the joint 

vector which is given by 
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 K  ( ) . . ( ) T

e
J e                                           (3.21) 

where ( )θe is the positional error function vector which represents the required kinematic 

constraint,   is the incremental joint configuration vector and Je
 is the error Jacobian 

matrix, K is a stiffness constant that pulls the end-effector towards the target location. 

This approach has a limitation, of slow convergence after a few iterations because Jacobian 

transpose inherently takes large steps of joint increments. IK solution does not minimize the 

norm of joint angle. 

3.4. Position based inverse kinematics  

For a long period, there was a conception that closed-form IK solutions for redundant robots 

are highly complicated and difficult. Thus, the IK problems have been approached by 

linearizing the configuration space to velocity space. That is, the problem is mapped into 

velocity space of end effector by using linearized derivatives of the joint space, which is 

represented by the Jacobian matrix. Numerical approaches used for the velocity-based IK 

problem suffers from a sort of limitations such as higher computational time and joint 

velocities at singular configurations. Position based inverse kinematics techniques are faster, 

reliable, and more accurate. IK problem has been solved using analytical, geometric, and 

evolutionary-based approaches. The IK problem in the position-based approach can be 

modelled as an optimization problem. This gives the Joint configuration that minimizes the 

Euclidian distance of end-effector location and desired location in the workspace. 

3.4.1. Desired position and error representation 

The Inverse kinematics solution of a redundant manipulator is computed by formulating it as 

an optimization problem with the objective of minimizing positional error i.e. distance 

between the current position of end-effector and desired position in the task space. The 

objective function is the reachability of the manipulator in the task space. This is measured as 

the total Euclidean distance (D), i.e., the distance between the current position of the end-

effector (E) and the task space location (P), as shown in Fig. 3.5, and the vectorial 

representation of distance is given by. 

E PD                                                                        (3.22) 
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For a given joint configuration (θ), the end effector position E (Ex, Ey, Ez) can be calculated 

using the forward kinematic relationship. The current end-effector position is  a function of 

joint angle (θ), hence the distance  can be represented as 

D E P( )                                                             (3.23) 

where, θ=[ θ1, θ2, θ3, θ4,………….., θn ] 

To reach the specified task space location, P (Px, Py, Pz) from the end-effector position (E), 

the distance between E and P should be zero. Hence, the problem is posed as minimization of 

a square of total Euclidean distance, which is given as 

                               Minimize:  2 2 2 2( ) ( ) ( )x x y y z zf D E P E P E P                           (3.24) 

In this thesis, IK computation has been performed for both planar and spatial redundant 

manipulators. The IK computation of the planar robot does not include the Z-coordinate term. 

Thus the equation is simplified as  

                                Minimize:  2 2 2( ) ( )x x y yf D E P E P                                            (3.23) 

The minimization of the objective function given in Eq. (3.20-3.21) results in a joint 

configuration that reaches the manipulator to the desired position and orientation in task 

space. 

3. 5. Robot dynamics 

During the performance of a task, the manipulator needs to carry payloads and undergo 

different accelerations, sometimes moves at a constant speed and declaration. The variation 

Fig. 3.5. Schematic diagram of serial hyper-redundant manipulator 

representing the objective. 
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of position and orientation with respect to time is termed as the dynamic behaviour of the 

robot. Torques need to apply at the joints to balance the internal and external forces of the 

robot. The internal forces are due to the inertia of links, Coriolis forces, and frictional forces. 

External forces are due to payload and forces caused by the environment such as gravity. This 

section describes the mathematical model for the dynamic behaviour of the robot. 

The dynamic equations are often referred to as a set of the equation of motion that represents 

the dynamic response of the manipulator to input actuator torques. The dynamic model of the 

manipulator is convenient for the computation of torques and forces required for the 

execution of the end-effector task. The complex dynamic system of serial link manipulator 

can be modelled systematically by using physical laws of Lagrangian mechanics or 

Newtonian mechanics. 

Approaches such as Lagrangian-Euler formulation, energy-based and Newton-Euler 

approach, based on force-balance can be applied to the manipulator equations of motion. The 

Newton-Euler and Lagrangian-Euler formulations provide computationally expensive closed-

form solutions. To improve the computational speed recursive methods and approximate 

methods have been developed. This section provides the basic formulation of manipulator 

dynamics using the Lagrangian-Euler approach [1, 100]. 

3.5.1. Lagrangian mechanics 

A scalar function called Lagrangian L is defined as the difference between the total kinetic 

energy K and potential energy P of a mechanical system 

                                                                   L=K-P                                                              (3.25) 

The Lagrange-Euler formulation is based on a set of generalized coordinates to describe the 

variables of the system. In generalized coordinate, displacement q is used as a joint variable, 

which represents a linear displacement d for a prismatic joint and angular displacement θ for 

a rotary joint. Similarly, q describes linear velocity and angular velocity for prismatic and 

rotary joints. A generalized torque  is required at the joint to produce desired dynamics. 

Force f represents for a prismatic joint and torque  for a revolute joint. For the robot in Fig. 

3.6,  
i

ir  be the point fixed and at rest on a link i  
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The homogenous coordinates with respect to the coordinate frame of i
th 

link are given as                                           

                                                             ( , , ,1)i T

i i i ix y zr                                                   (3.26) 

The position of point r with respect to the base coordinate frame is 

                                              0 0 0 1 1

1 2

i i i

i i i i i

 r T r ( T T .... T ) r                                      (3.27) 

The velocity of point r with respect to the base frame is obtained as  

                                                       

0
0 0

1

T
v v r r

i
ii

i i i j i

j j

q
q

 
    

  
                                      (3.28) 

The transformation matrix 
o
Ti involve complex trigonometric terms and its partial derivatives 

with respect to jq , in Eq. 3.25 involves complex computation. The following steps simplify 

the computation of the partial derivative of the homogenous transformation matrix. 

Consider the transformation matrix for link j for a rotary joint 

1

0

0 0 0 1

T

j j j j j j j

j j j j j jj

j

j j j

C S C S S a C

S C C C S a S

s C d

     

     

 



 
 


 
 
 
 

                                   (3.29) 
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Fig. 3.6. A 3 DOF manipulator showing base coordinate frame and homogenous 

coordinate frame. 
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       Partial derivative with respect to 
j   

                                      

0

0 0 0 0

0 0 0 0

T

j j j j j j j

j j j j j ji

j

S C C C S a C

c S C S S a S

q

     

     

  
 

  
 
 
 

                           (3.30) 

The partial derivative of 1
T

j

j

  with respect to θ j
  can be obtained without differentiating the 

terms, the same result can be attained using matrix operations, by pre multiplying 1
T

j

j

 with 

Qj 

 

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

jQ

 
 
 
 
 
 

 (for revolute joint)      

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

Q j

 
 
 
 
 
 

(for prismatic joint)       (3.31) 

        
0

1T
Q T

ji
j j

jq





                                                                                                             (3.32) 

Since 

10
0 1 2 1

1 2 1 1

TT
T T T T T

j

jj j ii
j j i

j j

.... ....
q q



 

 




 
                                                                                                                                                  

Using Eq. 3.29 the partial derivative can be simplified as  

                        

0
0 1 2 1 1 0 1

1 2 1 1 1

T
T T T Q T T T T Q T

j j j i ji
j j j j i j j j

j

.... ( ) ....
q

   

  


 


                          (3.33) 

The result is valid only for j i , hence for i=1,2,…….n 

                             

0 10
1

0

T Q T      T

                     

j

j j ji

j

for j i

q for j i




  


 



                                                          (3.34) 

The link velocity is thus simplified as  

                             0 1

1

1

v T Q T q r
i

j i

i j j i j i

j







                                                                         (3.35) 
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Kinetic energy 

The kinetic energy of the differential mass dm1 on link i, located at 
0
ri  and moving with the 

velocity v
o

i  with respect to the base frame is  

                                                
21

2
vi i idk dm ( )                                                                 (3.36) 

The trace operator is used to obtain 2

iv( ) as 

                                              
2

v r r v v
o o T T

i i i i iTr( ) Tr( )                                                   (3.37) 

Substituting 
iv  from Eq .3.32 in Eq.3.34, the kinetic energy of differential mass is obtained as              

                           0 1 0 1

1 1

1 1

1

2
T Q T  q r T Q T q r

T
i i

j i k i

i j j i j i k k i k i i

j k

dk Tr dm 

 

 

   
   
    
              (3.38) 

The total kinetic energy of link i is then 

                                                     i iK dk    

                      0 1 0 1

1 1

1 1

1

2
T Q T r r T Q T q q

i i T
j i i T k

i j j i i i i k k i j k

j k

K Tr dm 

 

 

 
  

 
                                  (3.39) 

The integral term r r
i i T

i i idm  is the moment of inertia tensor Ii, which is given as 

                             

2

2

2
I

i i i i i i i i i i

i i i i i i i i i i

i

i i i i i i i i i i

i i i i i i i

x dm x y dm x z dm x dm

x y dm y dm y z dm y dm

x z dm y z dm z dm z dm

x dm y dm z dm dm

 
 
 
 
 
 
 
 

   

   

   

   

                                     (3.40) 

Therefore Ki is,  0 1 0 1

1 1

1 1

1

2
( T Q T )I T Q T q q

i i T
j k

i j j i i k k i j k

j k

K Tr  

 

 

 
  

 
                            (3.41) 

Thus for the n-DOF manipulator, the total kinetic energy of the manipulator is 

                     0 1 0 1

1 1

1 1 1 1

1

2
( T Q T )I T Q T q q

n n i i T
j k

i j j i i k k i j k

i i j k

K K Tr  

 

   

 
   

 
                   (3.42) 
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Exchanging the trace and sum operations 

                             0 1 0 1

1 1

1

2
T Q T I T Q T q q

T
j k

r j j i k k i j kK T  

 
 
  

                          (3.43) 

The kinetic energy k of the manipulator is a scalar and is a function of joint position and 

velocity. 

Potential Energy 

The potential energy 
iP  of link i in a gravity field g is  

                                      
0 0

ir T r
i

i i i i iP m g( ) m g                                                 (3.44) 

The total potential energy of the manipulator is the sum of the potential energy of the links, 

that is 

                                                0

1 1

T r
n n

i

i i i i

i i

P P m g
 

                                                      (3.45) 

Equation of motion 

The Lagrangian is given by L K P   , from Eq. (3.40) and (3.42) 

                          0 1 0 1 0

1 1

1 1 1 1

T Q T I T Q T q q T r
n i i nT

j k i

r j j i k k i j k i i i

i j k i

L T m g 

 

   

  
  

        (3.46) 

According to the Lagrange-Euler dynamic formulation, the generalized torque i  of the 

actuator at joint i, to drive link i of the manipulator, is given by 

                                              
i

i i

d L L

dt q q


    
    

    

                                                            (3.47) 

                       i ij j ijk j k i
= M (q)q +  q  q +  for i=1,2,.....nh G                                                  (3.48) 

where 

max (i,j)

d I d
n

T

ij r pj P pi

p

M T


                                                              (3.49) 
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 
 max (ijk)

d
I d

n
pk T

ijk r p pi

p p

h T
q

 
 

  
                                                    (3.50) 

d r
p

i p pi pG m g                                                                                                              (3.51) 
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
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 


                                                                                             (3.52) 
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 

 

 

  
 

  
 

 

                                                                     (3.53) 

Eq. (3.45) is the dynamic model of the manipulator and gives a set of n nonlinear, coupled, 

second-order ordinary differential equations for n-links of the n-DOF manipulator. In this 

work, optimum joint trajectories were computed with an objective of minimization of power 

consumption. For which, computation of torques is required, which are evaluated from the 

equations of motion. 

3.6. Trajectory planning 

During the motion of the robot, it needs to be provided with initial and final positions, 

intermediate locations and travelling time along a defined path.  Specification of robot 

position as a function of time is called trajectory planning. In general, trajectories are 

completely specified for a task such as tracing a path of robot motion during its operation or a 

task can be moving from one position to another. Trajectory planning can be implemented in 

joint space and also in Cartesian space. A geometric path cannot be completely specified. A 

reduced number of path parameters are specified such as initial and final position, 

intermediate positions, constraints on the maximum accelerations and velocities. Based on 

the above inputs trajectory planning generates variables of motion in a sequence of time 

which describes the end-effector position and orientation by respecting the task constraints. 

As the control action of the manipulator is performed in joint space, a suitable IK algorithm is 

to be implemented to generate the time sequence of joint variables corresponding to the task 

space location of the end-effector. 
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This section describes joint space trajectory planning techniques [9] for different polynomial 

functions and problem formulation for optimum trajectory planning. Each point in the task 

space can be specified by the desired position and orientation of the end-effector. These 

points are transformed into a set of desired joint angles by the use of inverse kinematics. 

Then a smooth polynomial function is interpolated for each of these joints while satisfying 

different kinematic constraints. Kinematic constraints are position, velocity, and acceleration 

conditions at the start, via, and endpoints in the joint space. 

3.6.1. Cubic polynomial function 

Inverse kinematics allows determining a set of joint angles corresponding to the target 

position and orientation. A polynomial function for each joint value at time ti is the initial 

position of the joint and the value at tf is the goal position of that joint, a smooth polynomial 

function might be used  to interpolate the joint motion between starting and end position. 

For a smooth polynomial function, a minimum of four constraints on θ(t) is required. Two 

constraints on the function values are chosen as initial and final position values 

                                                                   0 i                                                         (3.54 a) 

                                                                  f f t                                                        (3.54 b) 

Additional constraints are taken to satisfy the function continuous in velocity, in general, 

initial and final velocities are taken as zero 

                                                               (0) 0                                                          (3.55 a) 

                                                               (t ) 0f                                                           (3.55 b) 

These four constraints can be satisfied with the polynomial function of the third degree, a 

cubic polynomial function has the form 

                                                  
2 3

0 1 2 3( )t a a t a t a t                                                (3.56) 

The joint velocities and accelerations are given as  

                                                   
2

1 2 3( ) 2 3t a t a t a t                                                    (3.57 a) 

                                                         2 3( ) 2 6t a a t                                                         (3.57 b) 
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Combining the Eq 3.56 & 3.57 with the four desired constraints gives four equations in four 

unknowns 

                                                              0 0a                                                                 (3.58 a) 

                                             
2 3

0 1 2 3f f f fa a t a t a t                                                    (3.58 b) 

                                                                                         10 a                                                                                                        (3.58 c) 

                                                                  
2

1 2 30 2 3f fa a t a t                                                                                         (3.58 d) 

By solving these equations, the coefficients are  

                                                             0 0a                                                                  (3.59 a) 

                                                             1 0a                                                                     (3.59 b) 

                                                     2 02

3
( )f

f

a
t

                                                           (3.59 c) 

                                                     3 03

2
( )f

f

a
t

                                                         (3.59 d) 

3.6.2. Cubic path for via points  

In the trajectory planning with cubic polynomial functions, we have considered the motions 

described by a set of constraints such as initial position, final position and duration of time. In 

general, it is required to allow the paths that include intermediate via points. Normally the 

manipulator can pass through the via points without stopping. For this, a generalized cubic fit 

that satisfies the path constraints is required. Each of these via points is converted into a set of 

joint configurations by the application of inverse kinematics. Then the smooth joint 

trajectories that connect via points can be computed. 

If desired velocities of the joints at the via points are known, then cubic polynomials 

functions can be approximated. However, the velocity constraints at each end are not zero, 

rather some known velocity. The velocity  constraints  are 

                                                              0 o                                                               (3.60 a) 

 f ft                                                                (3.60 b) 
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The equations describing general cubic spline are  

                                                            0 0a                                                                   (3.60 a) 

                                                 
2 3

0 1 2 3f f f fa a t a t a t                                                (3.60 b) 

                                                             
1o a                                                                 (3.60 c) 

                                                   2

1 2 32 3f f fa a t a t                                                    (3.60 d) 

Solving these equations for the coefficients, we obtain 

 

                                                             
0 0a                                                                  (3.61 a) 

                                                            1 0a                                                                   (3.61 b) 

                                           2 0 02

3 2 1
( )f f

f f f

a
t t t

                                                   (3.61 c) 

                                            3 03 2

2 1
( ) ( )f f o

f f

a
t t

                                                  (3.61 d) 

If the desired joint velocities are known at each via point, then the coefficients in the equation 

can be applied to determine the required cubic functions for each segment. 

3.6.3. Higher-order polynomials  

Higher-order polynomials are sometimes used for path segments. For which, the position, 

velocity, and acceleration at the beginning and end of a path segment need to be specified.  A 

quintic polynomial function is represented as  

                                           2 3 4 5

0 1 2 3 4 5( )t a a t a t a t a t a t                                          (3.62) 

where the constraints are given as 

                                                           0 0a                                                                   (3.63 a) 

                                 
2 3 4 5

0 1 2 3 4 5f f f f f fa a t a t a t a t a t                                           (3.63 b) 

                                                          1o a                                                                    (3.63 c) 

                               
2 3 4

1 2 3 4 52 3 4 5f f f f fa a t a t a t a t                                                  (3.63 d) 

                                                       
0 22a                                                                     (3.63 e) 

                                  
2 3

2 3 4 52 6 12 20f f f fa a t a t a t                                                     (3.63 f) 

These constraints specify a linear set of six equations with six unknowns, whose solution is 
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                                                    0 0a                                                                           (3.64 a) 

                                                     1 0a                                                                          (3.64 b) 

                                                   0
2 ,

2
a 


                                                                        (3.64 c) 

                      

2

0

3 3

20 20 (8 12 ) (3 )

2

f o f o f f f

f

t t
a

t

         
                                       (3.64 d) 

                      

2

0 0

4 4

30 30 (14 16 ) (3 2 )

2

f f o f f f

f

t t
a

t

         
                                  (3.64 e) 

                       

2

0 0

5 5

12 12 (6 6 ) ( )

2

f f o f f f

f

t t
a

t

         
                                          (3.64 f) 

In this thesis, the redundant robot is simulated for different paths and the corresponding joint 

configurations were evaluated. A suitable trajectory planning scheme has been implemented 

to determine the joint trajectories by considering the IK solutions at the via points of the path. 

This work also focuses on optimum trajectory planning in the joint space of a planar 

redundant robot, traversing in a constrained path and point to point applications. Trajectory 

planning of spatial redundant manipulators is also performed with a performance criterion of 

singularity avoidance. 
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CHAPTER-IV 

4. Redundancy Resolution Techniques 

In the redundant manipulators, the number of DOF is greater than the number of end-effector 

kinematic constraints. This extra DOF makes some of the joint parameters redundant. 

Displacement of these redundant joint variables causes the change in robot configuration, but 

it does not necessarily produce a change in end-effector pose. Redundant joint parameters 

were chosen arbitrarily for the desired end-effector location. The task of selecting the best IK 

solution from the available feasible solutions is known as redundancy resolution. The 

additional DOF of the manipulator can accomplish the desired objectives, which can be 

considered as secondary goals.  

4.1. Kinematic redundancy 

Kinematic redundancy is crucial in adopting the utilization of robots in versatile applications, 

in the areas of automotive industries, medical field, and space explorations. This chapter 

describes kinematic redundancy and redundancy resolution techniques. 

4.1.1. Kinematic null space 

The null space of a matrix A is a subspace of vectors for which 0AX  written as  

                                              Null(A)= ; 0Rn
X AX                                                     (4.1) 

where n is the column dimension of A. In inverse kinematics, the null space of the Jacobian is 

referred to as a set of all vectors of   which satisfy the equation 

                                               Null(J)= 0R ;
n

J                                                       (4. 2) 

The vector    in the Eq. 4.2 is in the null space of matrix J, which does not cause any 

movement to the end-effector with the change in joint velocity. 

The null space of a kinematic system exists only when the system has a Jacobian matrix J,

mxnRJ  with mn, in which the system is redundant and underdetermined. The generalized 

pseudo inverse formulation [93] describes the kinematic null space in a way that it can be 

utilized by projecting a vector onto the IK solution via a null space projector. 

4.1.2. Generalized pseudo inverse 

The generalized pseudo-inverse matrix for a system is derived from the forward kinematic 

equation 
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                                                                      J X                                                           (4.3) 

Premultiplying by J
T
 to get a square matrix JJ

T
 leads to 

                                                                T T
J J J X                                                      (4.4) 

To get the joint velocity term on the left side of the equation, premultiply by 1T
J J( )


 

                                                      1 1T T T TJ J J J J J J X( ) ( )                                         (4.5) 

                                                 further, 1T T
I J J J J J J( )

                                               (4.6) 

where I JJ
  or 0I JJ

  , from this it is observed that there is an additional term called null 

space projection operator 

                                                                     ( )I J J z
                                                      (4.7) 

From the Eq. 4.8 it can be shown that the IK solution with secondary velocity vector z is not 

effecting the end-effector velocity 

                                                          ( )I J J z X J 
 

                                                          

                                                                 ( )X J I J J z


                                                             

                                                                ( )X J JJ J z


                                                   (4.8)     

                                                                 X J J z( )


                                                                

                                                                     0X


                                                               

assembling the homogenous and particular solution, the generalized inverse is 

                                                          J X I J J z( )                                                    (4.9) 

 

4.2. Velocity based redundancy resolution 

The redundancy resolution techniques have been implemented to improve manipulator 

performance. This has been achieved through motion control at the velocity level and 

position level. Research has been carried out in redundancy resolution techniques to meet 

performance criteria such as improvement of manipulability, joint torque optimization, joint 

limit avoidance, and collision avoidance. 
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4.2.1. Jacobian pseudo-inverse 

One of the early implemented techniques for redundancy resolution is to use the optimized 

inverse of Jacobian. The pseudo-inverse of generalized Jacobian [42] can be used to 

minimize a scalar function g which is the Euclidean norm of joint velocity vector or joint 

deviation vector Δ   

                                                2

j

1

( ) (Δθ )
j n

j

g




                                                  (4.10) 

Subjected to the constraints 

                                                  .e J q                                                                       (4.11) 

where e is the error function related to end-effector velocity, J is the Jacobian for a particular 

configuration. 

In the Jacobian pseudo-inverse method, redundancy is utilized to minimize the norm of 

deviation from the present configuration or joint speeds. 

4.2.2. Extended Jacobian method 

In the extended Jacobian method [67, 102], the degree of redundancy i. e. n-m rows are 

augmented to the Jacobian matrix to make gradient g(θ) as zero in the null space of Jacobian, 

where g(θ) represented as an objective of the secondary goal cost function 

                             
( )

( )

e

ext

J

J






 
  
 

Δx                                                           (4.12) 

where 
eJ  is the end-effector Jacobian matrix 

extJ is the extended Jacobian matrix 

                                                            

                                                Jext= 
( )θcf






                                                                (4.13)  

( )θcf =N
T

g






 
, where g(θ) is the scalar kinematic objective function and N is the null 

spacematrix of J that correlates the self-motion of the redundant manipulator. 
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4.2.3. Gradient projection method 

The gradient projection method proposed by Liegeois [69] used to exploit the redundancy to 

avoid joint limits, the pseudo-inverse solution can be extended and the general solution for 

the IK problem can be expressed as 

                           (I J J)ZJ x                                                      (4.14) 

where  is the differential joint angular motion, x is the differential variation in the end-

effector motion J
 is the pseudo-inverse of Jacobian of the manipulator, +

(I-J J) is the 

projector matrix and Z is an arbitrary vector. 

First-term in the equation is the least norm solution and the second term is the null-space 

solution, which is orthogonal to least norm solution. The null space solution is the self-

motion of the manipulator which produces no end-effector motion. For the desired end-

effector motion a null space or homogenous solution is chosen in such a way that the 

resulting joint configuration optimizes the performance measure, known as h(θ), Z is chosen 

to be  

                                        Z=  K ( ) θh                                                           (4.15) 

where K is the positive real number and ( )h  is the gradient of h( ), a positive sign indicates 

the criterion is to be maximized and a negative indicates minimization of criterion.  

The potential function has been chosen for different secondary goals of redundant 

manipulator such as obstacle avoidance and singularity avoidance 

4.2.4. Singularity avoidance at velocity level 

In singularity avoidance, the potential function is selected as the manipulability index, which 

can be expressed as                                     

                                              det T
(JJ )                                                    (4.16) 

The redundancy can be used to maximize this measure so that the algorithm avoids the 

singular configurations. Some of the methods such as Damped Least Square (DLS) [45,103] 

and Selective damped least squares (SDLS) [45,104] are used to improve the dexterity of 

redundant manipulators based on the IK solution which deals with singularity avoidance and 

does not use the null space through the projection operator. The DLS inverse is the variation 
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of pseudo-inverse which reduces the effect of singularities on IK solutions. The DLS 

conditions the pseudo inverse by the formula given by 

                                        2 1λ
•

( )T TJ JJ I x                                            (4.17) 

where I is the n x n identity matrix and λ is damping constant with non-zero value instead of 

minimizing 


  alone which solves the IK Problem, DLS minimizes the quantity  

                                          2J X θ                                                 (4.18) 

This approach improves the IK solution near the singularities by limiting the projection of 

task space velocity onto joint space velocity when the Jacobian is near-singular. The value of 

damping parameter  should be selected very large, such that it improves the behaviour of 

the solution near singularities. Selectively damped least squares and numeric filtering are 

singular value decomposition-based approaches. DLS method uses a single and fixed 

damping constant, whereas SDLS uses variable damping constants. These variable constants 

are automatically adjusted based on the error distance of the end-effector target. 

4.2.5. Collision avoidance 

Collision avoidance is often implemented for controlling redundant manipulators, when they 

were work in complex workspaces with obstacles. The task of collision avoidance is solved 

using different redundancy resolution methods. Collision avoidance of robots is very crucial 

for avoiding collisions with obstacles and also for preventing self-collisions. Several 

redundancy resolution methods have been developed for collision avoidance. The most 

popular approach, proposed by Maciejewski and Klien [64] includes calculating both the 

minimum distance between the obstacle and redundant manipulator and the point on the 

manipulator closest to the obstacle. 

Any set of joint rotations that obtains goal configurations without collisions is considered as 

collision avoidance. Obstacle avoidance scheme has been implemented by considering vector 

z, which specifies velocity i.e collision free joint space vector, the solution is given as 

                                  J X I J J z( )                                                          (4.19) 

The homogenous part of the solution is used to reconfigure the manipulator to be nearer to 

the collision-free joint configuration. 
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The obstacle avoidance approach is to identify the point on the manipulator that is closest to 

an obstacle which is referred to as an obstacle avoidance point. A velocity is assigned to this 

obstacle avoidance point in a direction away from the obstacle. The primary target of 

specified end-effector velocity and secondary criterion of obstacle avoidance is given by 

                                                         
e e

0 0

J x  and

J x








                                                             (4.20) 

where Je= Jacobian of end-effector 

J0= Jacobian of obstacle avoidance point 

ex =Specified end-effector velocity 

0x =Specified velocity of obstacle point 

For obstacle avoidance, the matrix has been modified by adjoining the two Jacobians. The 

two equations in 4.20 were modified into a single equation 

                                                                    
0 0

e e
J x

J x


   
   

   
                                                                      (4.21) 

The set of solutions that exactly satisfy the primary goal and secondary goal of obstacle 

avoidance is given by 

                                                      0 0 0e e e e
J J X J I J J z x( )

                                                           (4.22) 

This equation can be solved for the desired homogenous solution. A solution that increases 

minimum obstacle distance is given by 

                                             0 0 0e e e ez J I J J X J J X( ) ( )


                                                         (4.23) 

The desired solution satisfying two goals satisfying the constraints imposed by the available 

degrees of freedom  

                        0 0 0e e e e e e e eJ x I J J J I J J X J J X( ) ( ) ( )


                                            (4.24) 

the solution can be simplified as 

                           0 0 0e e e e e eJ x J I J J X J J X( ) ( )


                                                 (4.25) 

Several collision avoidance techniques have been implemented using the pseudo-inverse of 

Jacobian such as the extended Jacobian technique and task priority approach. The details and 

limitations of these approaches are presented in chapter 2. 
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4.3. Position based redundancy resolution  

Different redundancy resolution methods at the velocity level have been presented. Velocity 

level methods determine the required joint velocities while achieving specified end-effector 

velocity. These methods are not able to give directly the joint positions that result in a 

specified end-effector position. To find the joint positions, joint rates that are evaluated by the 

redundancy resolution at velocity level must be integrated. 

Mathematically, the redundancy resolution in the position level is described by finding    

which results in best configuration that fulfills the performance criterion of robot and 

reaching desired task space location, given as 

                                    ( )dx f                                                              (4.26) 

where xd
 is the desired end-effector position in the task space,   is the joint configuration 

corresponding to xd    
 

As the problem at the position level is to be solved by the integration of joint velocities, for 

which an initial condition is required. The initial condition is described by defining the initial 

configuration of the manipulator from which the motion towards the target location begins 

[75]. The initial posture 1θ , when the end-effector is located at 1x    

                                11
x = f ( )                                                            (4.27)                  

The end-effector path is assumed between the initial position 1x and the desired position xd. 

The simplest assumption for this path is a line segment joining two positions in the 

workspace. This line segment is divided into N smaller segments for numerical integration. 

At any position on the line segment, the joint rates required to move the end-effector along 

the path can be determined.  

These joint velocities are integrated sequentially till the end-effector reaches the target 

location. The redundancy resolution algorithm is as follows 

1. Assume an initial configuration 
1 of the manipulator and calculate the initial 

position of the end-effector 1x  

2. Plan a trajectory from x1 to xd and assume time period of motion, T 

3. Determine the velocity at an interval k that moves the end-effector towards the 

desired position 

                                                       
1

x - x
x ,

( - )

d k
k

T
t

N k t N
  

 
                                            (4.28) 
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4. Joint rates are generated for the specified end-effector velocity at the interval k, 

joint velocity using the pseudo inverse of Jacobian 

                                                                   
k

q = e k k
J ( ) x                                                                           (4.29) 

5. Determine the 
k   at the next interval by numerically integrating 

                                                                    1k k k t                                                                             (4.30) 

6. The new end-effector position 

                                                                        1 1x ( )k kf                                                                           (4.31) 

7. Repeat the steps 2-6 for time interval k=1:n 

 

In this work, redundancy resolution at position level has been carried out while the robot is 

traversing a path in different working environments. Performance metrics such as joint-

rotation minimization, singularity avoidance, joint-torque minimization have been 

considered. The task of redundancy resolution was performed for a robot while moving along 

a specific path and the path is discretized into several points. A non-linear constrained 

optimization algorithm is implemented for every point on the path by assuming an initial 

guess, which is the home configuration of the robot. A performance measure has been chosen 

for the redundancy resolution. The optimization process results in the best configuration that 

satisfies the required performance criteria. Different performance metrics chosen for 

computing an IK solution are discussed below. 

4.3.1. Joint distance minimization 

Minimization of the sum of individual joint rotation between the home configuration, which 

is assumed as initial configuration, and the configuration corresponding to end-effector task 

space location i.e., final configuration, used as the optimization criterion given in Eq. (4.32). 

The reachability of the end effector in task space is chosen as constraints of the problem 

given in Eq. (4.33). The IK problem formulated as a constrained optimization problem in the 

2D workspace is stated as 

 

  Subject to: g=  2 2( ) ( ) 0x x y yE P E P                                                                              (4.33)                                                                                            

Minimize: 2

1

( )
n

i fj j
j

f   


  (4.32)                  
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where i j
  is the initial joint configuration of the corresponding j

th
 joint; f j

  is the final joint 

configuration of the corresponding j
th 

joint.  

In the 3D workspace, the objective of individual joint distance minimization remains the 

same whereas reaching of end-effector to task location is stated as 

Subjected to:  g=  2 2 2( ) ( ) ( ) 0     x x y y z zE P E P E P                                                        (4.34)             

The task of redundancy resolution was performed using the sequential quadratic 

programming technique. This criterion has been implemented for planar and spatial 

redundant manipulators traversing specified paths with and without obstacles in the 

workspace. Obstacle avoidance was also included in this scheme using the penalty approach.  

4.3.2. Singularity avoidance at position level 

Singular configurations are defined as the configurations of the robot at which the required 

joint rates to achieve an end-effector motion along one or more directions are extremely high. 

At singular configuration, Jacobian loses its full rank. Singularities of serial manipulators are 

of two types, boundary singularity, and interior singularity. Boundary singularities are 

observed when the robot is fully stretched out in such a way that the end-effector is very near 

to the boundary of the workspace. Interior singularities occurred by lining up two or more 

joint axes. Because of this, robot performance is affected. Hence, these singular 

configurations are to be avoided.  

 

The measure of manipulability can be used as the potential function for singularity avoidance, 

which is given as follows 

                                                                   T
  JJ  µ                                                 (4.35) 

The measure of manipulability is non-negative at non-singular configurations. It becomes 

zero only at singular points. The higher the manipulability measure, the robot is away from 

the singular configuration. Here, the problem of singularity avoidance is performed by 

maximizing the manipulability measure with the constraint of reaching the task space 

location shown in Eq. 4.34. The optimization problem is solved and the configurations 

avoiding singularities have been obtained for a redundant robot while traversing a path in the 

planar and 3D workspace.  Results are also shown when the obstacles are included in the 

workspace.  
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4.3.3. Optimum trajectory planning 

Optimum trajectory planning of redundant manipulator has been evaluated, while the robot is 

performing the task and the power consumed to move the joints of the robot is being 

minimized. The end-effector of the robot is commanded to traverse a path in the workspace. 

The Lagrangian formulation is used to determine the joint torques and equations of motion, 

which is given by    

                                                          
i

i i

d L L

dt q q


    
    

    

                                                 (4.36) 

where, L represents the  Lagrangian, which is defined as the difference between total kinetic 

energy and total potential energy of the manipulator. The joint torque applied is specified as  

i . 

The total torque of the manipulator is put in the matrix form after applying Lagrangian 

equations of motion, is given by 
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           (4.37) 

where M, C, H, G represents inertia, centrifugal, Coriolis, and gravity matrix. A 3 DOF 

planar manipulator is chosen for optimal trajectory simulation. 

 

The trajectory of each joint is interpolated with a quintic polynomial function 

                                     
5 4 3 2( )i i i i i i it a t b t c t d t e t f                                                  (4.38) 

where the coefficients of the polynomial equations are to be determined, the values of the 

coefficients should minimize the objective of power consumption while satisfying the end 

conditions. 

The objective of the optimum trajectory planning problem is to manipulate the end-effector 

of the planar redundant robot along a given path with minimum power consumption. 

The objective function of the optimization problem is stated as 



62 
 

                                        
22

i i i if T T                                                            (4.39) 

 Subjected to constraints  

                                          
2 2

1 0te tp te tpg x x y y                                                (4.40) 

                                                         
..

2 ig                                                                   (4.41)   

where,    is the angular velocity of the i
th

 joint,    is the torque applied at the i
th

 joint, (xte, yte 

)are the coordinates of end-effector (xtp, ytp) are the coordinates of task space and  ̈ represents 

angular acceleration at the i
th

 joint. Trajectory planning is implemented for the 3DOF planar 

robot for two different types of point-to-point motion and continuous path motion. 

 

In this thesis, the minimization of power consumption at each joint was analysed. Thus the 

individual joint torques were minimized. The task of minimization of power consumption 

was performed by formulating the dynamic equations of a planar redundant manipulator 

which gives the equations of motions in terms of joint torques. Joint motions are interpolated 

with a polynomial equation. Coefficients of the polynomial equations were chosen as the 

variable of the optimization problem. An optimization algorithm is implemented, which gives 

the values of coefficients of the polynomial equation which results in minimum total power 

consumption. 
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CHAPTER V 

5. Collision Avoidance Techniques 

5.1. Collision avoidance 

Redundant robots performing the required task need to avoid collisions with obstacles in the 

workspace. The collision avoidance requires collision detection i.e., to find whether a robot is 

in a collision with any obstacle at a given configuration. Collisions in the workspace occur in 

two aspects namely, the collision of a link with obstacles and other links. Collision is an 

undesirable effect, as it causes a loss of energy and damage to the parts of the manipulator. 

This section demonstrates collision avoidance techniques for planar and spatial redundant 

robots with polygonal and 3D obstacles. 

 5.1.1. Collision avoidance for planar robots 

Collision avoidance requires collision detection, for which links of a robot are modelled as 

line segments and obstacles are modelled as polygons shown in Fig. 5.1. The problem of 

detecting collisions between links and obstacles boils down to finding the intersection of line 

segments and a polygon. The line segments are discretized into a set of points proportionate 

to their link length shown in Fig. 5.1 a. Collision detection of link with polygon can be 

obtained by checking whether the points on the link lie inside, outside, or boundary of the 

polygon. This problem can be considered as a detection of point-in-polygon.  

 

 

 

 

 

 

 

 

 

 

Point-in-polygon detection is a computational geometry technique used in computer graphics 

and motion planning application [105, 106]. Generally, this check is performed using two 

types of algorithm such as winding number and ray casting algorithm.  

Fig. 5.1. Schematic sketch of collision detection scheme (a) Link and polygon (b) Self- 

intersection of links 

 

a 
b 
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5.1.1.1. Winding number algorithm 

Winding number is defined as the number of times a curve travels around a point [107]. This 

algorithm states that for a point in a polygon this number will be non-zero. To determine the 

winding number, it is to calculate the angle subtended by each side of the polygon with the 

query point. This is indicated by angles θ1, θ2, θ3 and θ4 with the edges of polygon AB, BC, 

CD, and DA respectively shown in Fig. 5.2. If the summation of these angles adds up to 2Π 

the point lies inside the polygon, for a query point P1 shown in Fig and if the sum is 0, the 

point lies outside, for a query point P2, shown in Fig. 5.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.1.2. Ray casting algorithm 

Ray casting algorithm is also known as the crossing number algorithm [106,108]. This 

algorithm determines if a   point located inside or outside a polygon by finding how many 

times a ray (starting from a point and going in a fixed direction) intersects the edges of the 

polygon. The condition to check if a point lies outside the polygon, the ray will intersect the 

edges of the polygon for an even number of times. If a point lies inside, the ray intersects the 

edges of the polygon for odd number of times. The illustration of this technique is shown in 

Fig. 5.3. 
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Fig. 5.2. Illustration of point detection in polygon (a) Point located inside (b) Point located 

outside. 
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Fig. 5.3. Illustration of ray casting algorithm for a point-in-polygon. 
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The task of computing a point in a polygon is performed using inpolygon function of 

MATLAB. This MATLAB function works on the principle of winding number algorithm 

[107]. This algorithm evaluates a given set of points on the links whether they lie inside, 

outside, or on the boundary of the polygonal obstacles for a given configuration.  

 Winding number and ray casting algorithms are popularly referred as “Point in 

Polygon” algorithm which have been implemented in different areas such as computer 

graphics [109], computer vision, geographical information system [110], motion planning of 

robots [111], CAD [112]. Huang [113] proposed comparison of different point in polygon 

methods.  In his research, it is shown that among the different approaches, ray casting method 

and winding number methods are well suited for non-convex shaped polygons. 

Some of the limitations with this approach are 

I. The computational complexity increases with an increase in the number of nodes of a 

polygon. 

II. Although it can deal with all kinds of polygons, it is difficult to detect if the 

investigated point lies on the polygon circumference or if the ray intersects a polygon 

vertex. 

III. Evaluation of point in polyhedron is difficult for 3D obstacles when the boundary of a 

geometric object is represented as a triangulated surface. 

 Although this approach has certain limitations, the advantages of computational time 

and suitability for convex and non-convex obstacles made this approach to select this method 

for collision detection of polygonal obstacles. 

  In robotic applications, polygons with a limited number of nodes without self-

intersection have been considered. For this application ray casting approach is appropriate 

and computational complexity is less.[113]. 

 However, the limitation of 3D obstacles with ray casting method has been overcome 

by adopting bounding box approach in the thesis.  

Most of the obstacle avoidance methods of redundant manipulators use pseudo-inverse 

techniques [67], configuration space approach [73] and artificial potential field approach 

[88]. The above mentioned approaches are velocity based methods which work by assigning 

velocity to the critical point on the robot and directs away from the obstacle. 

 These methods suffer from following limitations  

1. Sensitivities at the singular configuration and are known to be computationally 

expensive. 

2. Difficulty with local minima. 
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 By considering the above limitations in the velocity based schemes the proposed 

approach adopts ray casting algorithm for collision detection of planar robot avoiding convex 

and non-convex obstacles.  

The Problem of self-intersection of two links (detecting whether a pair of links collide in a 

particular configuration) boils down to finding the intersection of two line segments, which is 

illustrated by Fig. 5.1(b). This collision is detected using polyxpoly function of MATLAB, 

which returns the coordinates of the intersecting points of links in the planar workspace.  

Once the configurations with collisions are identified, these are to be avoided. Collision 

avoidance of obstacles and self-collisions are handled with a penalty approach. An 

optimization problem is being solved for computing joint configurations, which minimizes 

the objective function. If the collision occurs in a particular configuration, a penalty value is 

being added, which increases the value of the objective function.  Further optimization 

algorithm attempts to minimize the increased objective function. This results in a robot 

configuration reaching task space by avoiding obstacles.    

The modified statement of the optimization problem has been used when the workspace has 

obstacles, it is given by 

                                       2 2

1

( ) ( )
m

x x y y i
i

f E P E P C



                                                         (5.1) 

where ci    is the i
th

 penalty, m is the number of collisions 

5.2. Obstacle avoidance of 3D obstacles 

Robots performing a required task in a real-time working environment need to avoid 3D 

obstacles. This section describes the collision avoidance scheme of redundant robots avoiding 

3D obstacles. The task of collision detection has been carried out by using a bounding box 

approach. In this work, 3D obstacles such as spheres, cylinders, and cones were considered 

and the boundaries of these solids are enveloped by a box. For generating bounding boxes, 

the obstacles were represented as a set of points on solid boundaries. From the point set, the 

extremum coordinates of the points are determined. By using these coordinates, the vertices 

of the box are determined. The facet information i. e. the vertices that are used to form a 

particular face are computed using the convex hull algorithm [114]. The facets and their 

corresponding vertices are used to model the bounding boxes used in collision avoidance. 

Once the obstacles in 3D space were surrounded by a bounding box, the configurations that 
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lead to collision need to be detected. The collision detection scheme is illustrated through the 

Fig. 5.4.  

 

 

 

 

 

 

 

 

Several points that are uniformly distributed on the robot link are considered say, P1, 

P2, …..Pn and a check is performed whether these points lie within the bounding box of an 

obstacle. If any of these points lie in the bounding box, then the collision occurs. The 

algorithm for collision detection is shown in Table 5.1. This algorithm takes the extremum 

coordinates of the box as input and checks for a set of points on the links of the robot if they 

lie within the bounding box. In the algorithm, n represents the number of query points on 

each link for collision check.  

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm: Collision detection 

1. Input: Extremum coordinates of the bounding box of the obstacle  

    Xmin, Xmax,Ymin,Ymax, Zmin, Zmax  and point  Pi( Pix, Piy, Piz) 

2. Collision check for points,  P1………Pn 

   for i=1: n 

        If  Xmin<= Pix<= Xmax&& Ymin<= Piy<= Ymax && Zmin<= Piz<= Zmax 

         Collision 

          Else 

          No Collision 

          End 

     End 

Table 5.1. Algorithm for collision detection 

Fig. 5.4. Schematic representation of 3D collision detection scheme. 
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By using the above algorithm, configurations leading to the collision have been identified. 

These configurations need to be avoided, and the robot should move away from the obstacle. 

The penalty approach has been implemented for obstacle avoidance. The penalties are 

imposed for the configurations that are interfering with obstacles by augmenting them with 

the objective function. The modified statement of the optimization problem has been used 

when the workspace has obstacles, which is given by 

 where ci    is the i
th

 penalty, m is the number of collisions.  

 

In practice, the immediate surroundings of an obstacle may get in contact with links. The 

bounding box approach considers an additional space beyond the volume of the obstacles, 

which make the robot to maintain some clearance with the obstacles while moving in the 

workspace. Thus the bounding box model is appropriate for different types of obstacles. 

In this thesis, a collision-avoidance scheme has been implemented for hyper-redundant robots 

working in 2D and 3D workspaces. Simulations have been performed for a robot working in 

an environment with different shapes of (non-convex and convex) obstacles. Hyper-

redundant robots are deployed to work in narrow, confined, and hazardous workspace. A 

realistic working environment with 3D obstacles has been modelled and a collision avoidance 

scheme is implemented for robots working in these environments. Case studies of hyper-

redundant robot avoiding complex obstacles are presented in chapters 7-8 of this thesis. 

Collision avoidance scheme of planar and hyper redundant robots is represented with a flow 

chart shown in Fig. 5.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.5. Flow chart showing obstacle avoidance scheme of hyper-redundant robots 
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CHAPTER-VI 

6. Optimization Methods 

IK problem of the redundant manipulator is posed as an optimization problem. Optimization 

techniques employed for solving the IK problem are briefly reviewed in this section. Initially, 

the IK problem posed as an unconstrained problem i.e. without obstacles, later obstacles have 

been considered and solved using the penalty approach. An unconstrained and constrained IK 

problem in planar and 3D environments have been solved using optimization approaches. 

6.1. Nelder-Mead’s simplex search algorithm 

The IK problem posed as a non-linear optimization problem without constraints has been 

attempted to solve using Nelder and Mead simplex search method [115], this method is a 

direct search and derivative-free method. This approach is preferable for non-linear and 

multivariable problems without constraints. This method executes by developing a  geometric 

simplex, which is a geometric figure formed (n+1) vertices, where n is the number of 

variables of the optimization problem. If the points of the simplex are equidistant then the 

simplex is regular. In two-dimensional space, the simplex is a triangle and in three 

dimensions it is a tetrahedron. The idea in this method is to check the values of the objective 

function at the (n+1) vertices and move the simplex gradually towards the optimum value 

during the iterative process. At each iteration, the worst value of the vertex is evaluated first. 

Then a new simplex is formed from the existing simplex by a rule that moves the search 

away from the worst value of the simplex. Four different situations may occur based on the 

function values in every iteration. The algorithm carries out the operations such as reflection, 

extension, and contraction to determine a new vertex, shown in Fig. 6.1.   

 

 

  

 

 

Simplex method at first, evaluates the centroid of the worst vertex. Then the worst point in 

the simplex is reflected about the centroid and the new point xr is found, shown in Fig. 6.1(a). 

xnew xh xr xnew 

xnew 

(a) (b)  (c)        

Fig. 6.1. Illustration of simplex search method (a) Reflection (b) Expansion (c), and (d), 

Contractions. 

(d)  
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If the function value at the reflected point is better than the current best point in the vertex, 

then the reflection leads to a good region in the search space. Thus an expansion along the 

direction from the centroid to the reflected point is performed shown in Fig. 6.1(b). The 

amount of expansion is governed by a factor γ . If the function value at the reflected point is 

worse than the current worst point in the simplex, the reflection is taken the point to the bad 

region of the search space. Thus a contraction in the direction from the centroid to the 

reflected point is made shown in Fig. 6.1(c). The amount of contraction is governed by a 

factor β . Contractions with positive and negative values β are shown in fig 6.1(c-d). The 

algorithm continues iteratively and the obtained new point replaces the worst point in the 

simplex. These operations continue till the desired minimum is obtained. This method is used 

for solving the  IK problem without constraints and results are reported. 

Nelder-mead simplex method is one of the well-known direct search algorithm for multi-

dimensional unconstrained optimization problems [116]. Nelder and mead proposed two 

ways for handling constraints by transforming the scale of variables and modifying the 

function value such that it takes the high function value when the constraints are violated. 

The limitation in this approach in handling of constraints is the necessity for the initial 

simplex to lie in the feasible region. 

  Sakai and Iwane [117]  proposed a methodogy that overcomes the limitation of 

handling the constraints, this approach involves the independent treatment for constraint 

violation and objective function. The effectiveness of simplex search algorithm equipped 

with constraint handling method has been compared with evolutionary methods by Mehta and 

Dasgupta [118].  This approach has been implemented on various benchmark problems. 

Results show that the proposed method performs much better than the several evolutionary 

algorithms. The strategy of assigning the values to an infeasible point, performs better with 

simplex method in comparison with GA based approach. Dasgupta et al. [119] proposed an 

approach to exploit  classical optimization algorithms for multi-modal optimization, which 

gives multiple solutions of the problem.   

 The limitation of attaining single local solution has been resolved with this approach. 

Due to the advantages of the Nelder-Mead simplex method it is implemented in the proposed 

approach for solving IK problem of hyper-redundant manipulator. As the IK problem have 

multiple solution, this algorithm is used to find multiple IK solutions of the problem. From 

the results it is inferred that the computational time for solving the IK problem of hyper-
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redundant robot in complex environment is less and it is about 2 minutes. Multiple IK 

solutions of robot is also achieved even with less computational time (60 seconds). 

6.2. Multi-start method for multiple optima 

The optimization algorithms implemented for solving IK and redundancy resolution are local 

search algorithms. These algorithms often suffer from getting trapped in a local optimum 

point. Multi-modal optimization deals with the task of evaluating multiple local optimal 

solutions while optimizing multi-modal functions. Generally, global optimization algorithms 

are employed to determine multiple solutions and these algorithms search through more than 

the single basin of attraction. The task of evaluating multiple IK solutions has been 

performed using global search and multi-start framework which performs the optimization 

process with the generation of a number of starting points and use local optimization solver to 

find the optimal solutions. These optimization routines can be applied to the problems with a 

smooth objective and constraint function and the solvers search for a global minimum or for a 

set of local minima. 

6.2.1. Optimization workflow 

The optimization solver can be employed to determine global or multiple local solutions 

using a sequence of operations [120]. The optimization workflow starts with the creation of a 

problem structure. A problem structure specifies a local optimization problem and its solver 

is used to minimize a given problem. A set of input parameters needs to be defined while 

creating a problem structure. Parameters such as local solver, objective, constraints, and 

options of the solver are to be supplied. The structure of the problem is created using 

createoptimproblem function in MATLAB. After the creation of the problem structure, the 

solver object is to be created which contains the preferences of a global portion of the object. 

Once the solver objects were created the number of start points from which the optimization 

process starts is to be defined. The start points can be defined using random start point 

generation or custom start point generation. Then run solver allows the optimization process 

to execute and arrives at multiple local solutions and global solution. The workflow of the 

optimization process is illustrated in Fig. 6.2. 
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6.2.2.Multi-start framework 

The Multi-Start method [121] has two phases. In the first phase, the solution is generated, and 

in the second phase, the solution is usually improved. Then, each iteration produces a 

solution, and the best of overall solutions is the output. The algorithm of the multi-start 

procedure is described below in Table 6.1. This method generates uniformly distributed 

points [122] within the search space (S) and starts a local solver from each of these points. In 

general, this approach converges to a global solution when there are a large number of start 

points in search space, and there is also a chance of arriving at the same local solution many 

times. To overcome this difficulty, some potential start points that are close to the previous 

solution have to be eliminated. 

 

 

Fig. 6.2. Work flow of global optimization problem. 
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The elimination procedure is performed by generating uniformly distributed start points in S, 

and the objective function value is evaluated at each point. The points are sorted according to 

their function value and the best points are retained. A local solver starts from each point of 

the reduced sample, except if there is another sample point within a certain critical distance 

that has a lower function value. The local solver is not started from the sample points that are 

very close to a previously discovered local minimum. Then, again additional uniformly 

distributed points are generated, and the procedure is applied to all the points which are 

retained from previous iterations and newly generated set of points. The implementation of 

this algorithm provides multiple IK solutions. A few cases of multiple configurations of 

spatial hyper-redundant robot were reported for a given task space location. These multiple 

solutions can be considered as suitable kinematic configurations of a robot working in diverse 

environments. 

6.2.3. Global search algorithm 

A global search algorithm has been implemented to compare the solutions that are obtained 

through the multi-start approach are close to the global minimum. This algorithm generates 

start points using a scatter search mechanism [123]. The main feature of this algorithm is that 

it analyses start points and eliminates the points that are not likely to improve the function 

value. Initially, it generates potential start points then it evaluates  score function for a set of 

trial points. The points with the best score function have been chosen and use that as an initial 

Algorithm: Multi-start Procedure 

1. Initialize i=0 

2. While (stopping condition) 

    (a) Select a decision variable xi from the multiple start point 

    (b) Apply a local search optimization algorithm to improve xi. 

    (c) Let the xi
*
 be the solution obtained 

         If (xi
*
 improves the function value) 

    (d) Update the best local minimum obtained so far 

          i=i+1 

   End 

Output: Obtained all local minima 

Table 6.1. Algorithm for multi-start procedure 
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point for the local solver. If the remaining trail points satisfy function score and constraint 

filters, the global search runs the local solver. Finally, this process creates a global optimum 

solution vector. Joint configurations corresponding to the global minimum for different task 

space locations are reported using this approach.  

6.3. Sequential quadratic programming 

The optimization problem with constraints was handled by a non-linear constrained 

optimization technique called sequential quadratic programming (SQP). This method mimics 

the Newtons method for constrained optimization problem which is a quadratic 

approximation of the Lagrangian function with linearization of constraints [124,125]. A 

quadratic sub-problem is formulated and solved to develop a search direction. The line search 

can be performed with respect to two alternative merit functions, and a modified BFGS 

formula updates the Hessian matrix. 

A quadratic programming subproblem is formulated based on a quadratic approximation of 

the Lagrangian function. It is given as  

                                              
1

( , ) ( ) . ( )
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i i

i

L f gX X X


                                                     (6.1) 

where 
i  is a Lagrangian multiplier 

The solution vector ΔX  is treated as the search direction S, and subproblem of quadratic 

programming is stated as 
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T

k kh h k p                                                (6.3b) 

where H is a positive definite matrix that is initially considered as the identity matrix and it is 

updated in the subsequent iterations so as to converge to the Hessian matrix of the 

Lagrangian function, 
j and  are the constants that ensure the linearized constraints lie in 

the feasible space. 

Once the search direction S is found by solving the problem given in Eq. 6.2, the design 

vector is updated as  
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                                                         1X X SJ J                                                                 (6.4) 

where α is the step length parameter along the direction S. 

The step length parameter is evaluated by an appropriate line search procedure so that a 

required decrease in the merit function can be achieved, Hessian matrix can be updated by 

any quasi-Newton methods, BFGS method has been used in this approach for updating the 

Hessian matrix [125]. 

A non-linear constrained optimization problem can be solved in a few number of iterations 

than an unconstrained problem using SQP. The reason is because of the limits of feasible 

search space, the solver can make a decision regarding search direction and step length. The 

SQP implementation mainly consists of three stages namely updating the Hessian matrix, 

solution of quadratic programming, line search, and merit function. 

Hessian matrix update 

Hessian matrix is updated at each iteration as a positive definite quasi-Newton approximation 

of the Hessian of the Lagrangian function.  The H is evaluated using the BFGS method 
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A positive definite Hessian is maintained by providing T

k kq s   positive at each update and H is 

initialized with a positive definite matrix. 

Quadratic programming solution 

At each iteration of the SQP method, an active set strategy is being implemented. The QP 

solution procedure involves two phases, the first phase performs the calculation of a feasible 

point. If it exists, then the second phase involves the generation of an iterative sequence of 

feasible points that converge to the solution. 
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Line search and merit function 

The solution to the QP problem produces a vector S, which is used to form a new iteration 

given in Eq. 6.4. The step length parameter   is determined in order to produce a sufficient 

decrease in the merit function. This allows the positive contribution from constraints that are 

inactive in the QP solution. A penalty parameter is initially set. This ensures a larger 

contribution to the penalty parameter from constraints with smaller gradients, which would 

be the case for active constraints at the solution point.   

By using this approach a few simulations of robot tracing a specified path with constraints are 

presented in chapters 7-8. 

6.4. Teaching learning based optimization 

TLBO is an evolutionary algorithm which mimics the teaching and learning environment for 

the optimization process. TLBO is a population-based method which uses a population of the 

solution to arrive at a global solution. It is a simple and fast converging algorithm. The 

performance of the algorithm is improved due to the absence of algorithmic tuning 

parameters that are present in GA and PSO. A group of learners has been considered as a 

population in this approach [59]. In general, the population of the optimization algorithm 

consists of design variables. In TLBO, the number of students in the classroom is considered 

as population size. Design variables are analogous to subjects furnished to the learners. The 

total marks secured in all subjects by each learner is equivalent to the fitness of the function 

value. The teacher is regarded as the best solution for the whole population. The operation in 

the TLBO technique is divided into two phases, i.e, the Teacher phase and Learner phase 

illustrated in Fig. 6.3. 

Teacher phase 

In this phase, the teacher attempts to improve the mean result of the class in his subject. A 

good teacher tries to bring the learners up to his level with respect to his knowledge. But in 

reality, this is not feasible and a teacher can only improve the mean of the class up to some 

level depending on the potentiality of the class, which follows a random process based on 

many factors.  At any iteration i, consider Mi be the mean and Ti be the teacher. Ti will try to 

move the mean Mi with regard to its own level, now the new mean will be Ti represented as 

Mnew. The solution is upgraded according to the difference between the prevailing and new 

mean which is stated as 

                                         i new F
Difference mean i r M T Mi _                                        (6.8) 
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where, TF is a teaching factor that determines the value of the mean to be modified, and ri is 

a random number in the range [0, 1]. The value of TF can be either 1 or 2, which is again a 

heuristic step and determined randomly with the same probability as TF = round [1 + rand 

(0, 1) {2 − 1}]. 

This difference mean changes the existing solution, as stated by the following expression 

                                 new i old i
X  X  Difference Meani  

, ,
_                                                (6.9) 

This is repeated for the entire population. After updating the design variables, the fitness 

values of the population are computed and are compared with the old fitness values. The best 

fitness values and their corresponding design variables are selected and defined as the teacher 

phase set. The best solution among the teacher phase set is selected as the present ‘teacher’.  

Learner phase 

Learners improve their knowledge in two different ways: one is through the instruction from 

the teacher and the other through interaction among themselves. A learner communicates 

randomly with other learners for increasing their knowledge. A learner learns something new 

if the other learner has higher knowledge than him or her.  Learning phenomenon is 

expressed for a population size n. 

 Randomly select two learners Xi and Xj such that i ≠ j. 

                             new i i i j i j
   X = X + r X - X ,  if  f X  < f X                                                              (6.10) 

                                       new i i j i j i
X = X + r X – X , if  f X  < f X                                                  (6.11) 

 Accept Xnew if it performs better. 

This task is repeated for the whole population. The modified values of the design variables 

are used to evaluate the new fitness value. The fitness values obtained in the learner's phase 

has been compared with the values in the teacher's phase and the best values are selected. 

Finally, the best value among the population is chosen as the best solution for the current 

iteration. This ends the learner's phase. The process is repeated until the convergence criteria 

is achieved. 
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TLBO algorithm is used for simulating the IK problem of spatial redundant robots avoiding 

complex 3D obstacles in realistic working environments. IK problem with obstacle avoidance 

in narrow regions cannot be computed in a single attempt using a classical optimization 

Teacher   

Learner  

Fig. 6.3. Flow chart of TLBO algorithm. 
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algorithm. For complex cases, classical algorithms need to restart several times with different 

initial guesses for solving the problem. Hence a global optimization based TLBO algorithm is 

used for computing the IK problem in restricted areas. The results are reported for the cases 

of robot deployed in inspection and welding of a pipeline, pick and place operation in work 

facility layout.  

6.5. Overview of optimization techniques 

The overview of optimization techniques implemented for IK simulation of hyper-redundant 

robot is described in flow chart given below. 

 

 

 

 

 

 

 

 

 

 

Fig. 6.4. Flow chart of optimization techniques for IK simulation of 

hyper-redundant robots. 
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CHAPTER-VII 

7. Results of IK Solution of Planar Hyper-Redundant 

Manipulators 

 In this chapter, simulation results of the IK solution of planar hyper-redundant manipulators 

working with and without obstacles in the workspace have been presented. A redundancy 

resolution scheme is implemented for a planar manipulator traversing along a path by 

avoiding obstacles in the workspace. The task of redundancy resolution (finding the best 

solution among the available solutions) is performed using an optimization criterion such as 

joint-distance minimization and singularity avoidance. Optimum trajectory planning of 

redundant manipulator is also performed to evaluate joint trajectories while the robot is 

traversing a straight-line path. 

7.1. IK solutions of planar hyper-redundant manipulators 

This section shows joint configurations of a robot while the end-effector is commanded to 

move along the path. The links of the robot are considered uniform in length. Simulations 

have been performed for 5 DOF and 10 DOF planar redundant robots. Following cases were 

considered for IK simulation. 

Joint 

Configurations 

Task 

Performed 
No of DOF Workspace 

 

 

IK Solution of 

Planar 

Redundant 

robots 

 

 

Traversing a 

path 

5 DOF 
Without obstacles 

Two polygonal obstacles 

10 DOF 
Without obstacles 

Two polygonal obstacles 

Specific task 

space 

location 

(5-10) 

DOF 

Convex polygonal obstacles 

Non-convex polygonal obstacles 

Redundancy 

resoluton of 

planar robots 

5 DOF Avoiding complex polygonal obstacles 

Minimizaton 

of Joint Power 

consumption 

3 DOF Without obstacles 

Table 7.1. Cases performed for IK simulation of robot in 2D workspace. 
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Different cases of IK simulation and redundancy resolution of planar hyper-redundant robots 

working in various environments has been shown in the flow chart shown in Fig. 7.1. Results 

of the following simulations have been presented in subsequent sections. 

  

 

7.1.1. Without obstacles in the workspace 

IK simulations are performed for 5 linked and 10 linked robot configurations without 

obstacles in the workspace. A path is chosen in the workspace and a set of points were 

chosen on the path. The coordinates of the points were given as a task space location (TSL) 

of the end-effector. Joint configurations are shown for the given task space coordinates. The 

IK problem    is posed as a distance minimization problem i.e. distance between the current 

location and target location of the end effector, given in Eq. 3.21. The forward kinematic 

relationship gives the current end-effector location as a function of joint variables.  The robot 

with 5 DOF has five unknown variables and two equations corresponding to the coordinates 

of the target location in the workspace. In a given path, ten points were chosen and the 

optimization problem is solved for each point to determine the joint configuration to reach a 

specific point. The red circle in Fig. 7.2 represents the boundary of the workspace. For this 

simulation, the home position of robot links is assumed as zero degrees with X-axis. Fig. 7.2 

shows the joint configurations while the end-effector is tracing a path. Table 7.2 shows the 

angles of the links for each robotic configuration. 

Fig. 7.1. Flow chart representing the IK simulations and redundancy resolution of 
hyper-redundant robots 
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 The values of the positional error in Table 7.2 infers that the end-effector is reaching the 

desired TSL accurately.  The number of iterations required to minimize the objective function 

value is 20 as shown in Fig. 7.4 (a). The computational time for the IK solution of a robot for 

Fig. 7.2. A 5-linked robot configurations without obstacles in the workspace. 
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all the TSL’s on the path is 32.542 seconds, performed on a PC with Intel Xeon E5 processor 

@3.50 GHz with 32 GB RAM. 

 

 

 

An IK simulation for 10 DOF robot is also performed without obstacles in the workspace 

while traversing the same path, this simulation is performed to observe the computational 

time taken to perform the IK problem with the increase in the number of DOF. Fig.7.3 shows 

two robot configurations corresponding to the task location on the path. Fig.7.4 (b)  shows 

the number of iterations required to minimize the objective function value is 180. 

Computational time for the solution to this problem is 66.232 seconds.  

 

 

S.NO Path 

Coordinate  

( mm) 

Angle of links in degrees Positional 

Error 

( mm) 

θ1 θ2 θ3 θ4 θ5 

1 (33,21) 4.82 325.07 62.64 73.30 42.19 3.10 x10
-06

 

2 (20,28) 159.52 46.36 21.38 31.94 60.01 2.38 x10
-06

 

3 (9,27) 220.66 81.06 69.19 85.54 27.82 5.33 x10
-08

 

4 (0,20) 198.87 87.08 175.58 139.60 45.46 2.48 x10
-06

 

5 (-8,9) 8.568 40.21 137.31 178.40 221.37  3.30 x10
-06

 

6 (-16,-4) 256.30 139.10 284.56 175.31 54.84 4.01 x10
-06

 

7 (-24,-13) 258.12 183.81 231.63 194.48 62.16 5.51 x10
-07

 

8 (-31,-12) 235.13 202.17 214.22 220.49 77.26 1.17 x10
-06

 

9 (-38,0) 246.73 158.72 225.47 160.48 140.79 1.74 x10
-06

 

10 (-44,-22) 141.02 124.07 188.25 154.26 166.70 2.72 x10
-06

 

 
 

Table 7.2. Joint configuration of 5 DOF robot traversing a path without obstacles in 

workspace. 

Fig.7.3. A 10-linked robot configuration without obstacles. 
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7.1.2. Polygonal obstacles in the workspace 

A workspace with polygonal obstacles has been considered for the IK simulation of 

redundant robots. Initially, a 5 DOF robot is considered and two polygonal obstacles such as 

triangle and hexagon have been chosen. A curved path is taken, which is passing in between 

the obstacles. IK simulations are performed for the TSL chosen on the path. Fig. 7.5 shows 

the configurations of the robot while traversing a path avoiding obstacles in the workspace.  

The task of collision detection is performed using the point-in-polygon technique discussed 

in section 5.1. Collision avoidance of redundant robot is implemented by adding a penalty 

value to the objective function given in Eq. 5.1. Further optimized to given IK solution of 

robot avoiding obstacles. The computational time for the solution to this problem is 62.323 

seconds. 

An IK simulation of 10 DOF robot avoiding obstacles have shown in Fig. 7.6. The 

computational time for the solution to this problem is 120.452 seconds. Fig.7.7 shows that the 

number of iterations for convergence of solution for 5 DOF robot is 120 whereas, for 10 DOF 

robot, it is 180. 

 

 

 

                                             (a)                                              (b)          

Fig. 7.4. Convergence plot of IK solution without obstacles (a) 5 DOF robot (b) 10 DOF 

robot. 
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Fig. 7.5. A 5-linked robot configuration with two obstacles in workspace. 
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Fig. 7.6. A 10-linked robot configuration with two obstacles in workspace. 
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7.1.3. IK Simulation with polygonal obstacles in the environment 

Workspace with multi-shaped obstacles is modelled, which significantly reduces the free 

space and makes the workspace more complex. IK Simulations have been performed for 

planar redundant manipulator in these complex workspaces.  

                                           (a)                                               (b) 

 

                                            (a)                                              (b) 

Fig. 7.7. Convergence plot of IK solutions with polygonal obstacles (a) 5 DOF 

robot (b) 10 DOF robot. 

Fig. 7.8.  Robot configurations avoiding multi-shaped polygonal obstacles (a) 5 DOF 

manipulator (b) 6 DOF manipulator. 
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Fig. 7.8 (a) depicts the IK solution of 5 DOF robot at different task space locations avoiding 

three polygonal obstacles in the workspace.  Fig. 7.8 (b) shows a 6 DOF robot avoiding five 

polygonal obstacles. For all the TSL’s robot reached accurately without colliding obstacles. 

7.1.4. IK Simulation with non-convex obstacles in the environment 

Workspace with non-convex shaped obstacles has been considered for IK simulation of 

hyper-redundant manipulators shown in Fig. 7.9 (a-f). This case study focuses on robot 

configurations while avoiding E-shaped and C shaped obstacles.  

  

                             (a)       (b)        (c) 

(d)    (e)    (f) 

 

 

This helps us to understand how accurately a robot is positioned in cluttered environments 

and in the narrow regions of the workspace. Fig. 7.9 (a-c) shows the robot configurations 

when the E-shaped obstacles are placed in different regions of the workspace. Fig. 7.9 (d-f) 

shows a different workspace with non-convex obstacles that are similar to a realistic cluttered 

environment.

Fig. 7.9. Joint configurations of redundant robot avoiding non-convex obstacles. 
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These cases are difficult to solve than the previous ones because the obstacle is a non-convex 

object and target points are difficult to reach. It is observed that the solution may not be found 

always for all the target points with one initial guess itself. Hence, an automatic restart with a 

different initial guess is incorporated to handle such cases. Simulations have been performed 

for a different number of DOF robot varying from 6 to 10. It is observed in all the cases the 

end-effector reached the target location accurately without colliding the obstacles. The IK 

solutions of the redundant robot has been compared with different evolutionary based 

approaches. Kalra [96] proposed genetic algorithms for solving IK problem of industrial 

robots, in this work he reported that the number of generations needed for PUMA robot as 

300 and the precision of the solution  is 0.5 mm.  Koker [55] proposed hybrid approach using 

neural networks and genetic algorithms to solve the IK solution of 6 DOF robot. This study 

has been made to improve the accuracy of solution. In above studies, the population size 

and number of generations results in high computational time for the solution.  Increase in 

the number of DOF further increase of computational burden with these approaches. In the 

proposed work IK solution of hyper-redundant manipulator with 10 DOF working in complex 

workspace has been simulated. The computational time in cluttered workspaces is less than 

120 seconds. The task of achieving multiple IK solution has also performed for spatial 

redundant robots, for which computational time is less than 60 seconds. Redundant robots 

are employed in different industrial and medical applications, where high accuracy and 

repeatability is required. Modern developments in manufacturing technologies such as 

semiconductor processing and assembly and precision material processing taken place. 

Micro assembly involves in joining of parts that have atleast one dimension less than 1 mm 

and that must be assembeled with micrometer accuracy. The accuracy of the solution with 

the proposed approach is 10-5 mm, satisfies the requirement of above applications.  The 

accuracy of the solution is much better than the evolutionary based approaches 

7.2. Redundancy resolution with joint distance minimization  

Results demonstrate the redundancy resolution scheme of the serial redundant manipulator at 

the position level. In this case, a 5-DOF planar redundant robot of equal link lengths has been 

considered.  Polygonal obstacles are chosen in the workspace, the robot has to trace the path 

in the workspace without colliding the obstacles.  
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                                            (a) 
                                           (b) 

                                               (c) 
                                           (d) 

 

 

 

Here, the problem of redundancy resolution is carried out by minimizing the joint rotations 

while the robot is assumed to traverse a path in the task space. This was solved as a 

constrained optimization problem with the objective function, given in Eq. 4.32 and the task 

space constraints are shown in Eq. 4.33. The task of collision avoidance is implemented using 

a penalty approach, solved using Eq. 5.1. Results are reported by changing the position and 

shapes of the obstacles and path to be traced by the end-effector, to show the efficacy of the 

Fig. 7.10. Evaluation of joint configurations (a) Straight line path avoiding polygonal 

obstacles (b) Circular path avoiding polygonal obstacles (c) Straight line path in narrow 

passage (d) Circular path in narrow passages. 
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proposed resolution scheme. In Fig. 7.10 (a-b), the robot is following a circular and straight-

line path with polygonal obstacles in the workspace. Fig. 7.10 (c-d) shows the robot 

following the straight line and circular path accessing narrow passages. In each of these 

cases, the computational time with the proposed approach is about 30-60 seconds. Fig. 7.10  

(c-d) illustrates that the optimization problem may not converge easily because the path in 

which the robot has to travel is very narrow and difficult to reach. This problem can be 

handled by restarting the optimization algorithm with different initial guesses. It is observed 

from all these cases that the solutions are resolved by minimizing the objective function while 

satisfying the constraints of reaching task space and avoiding collisions.  

In the literatre [42], redundancy resolution has been performed for minimum norm solution at 

velocity domain, for which computation of Jacobian inverse is required. This increases the 

computational time with increase in number DOF of the robot and sensitive at singular 

positions. To reduce the computation cost associated with pseudo-inverse solution many 

researches proposed several methods for redundancy resolution. Kircanski [68] proposed 

combination of analytical and pseudo inverse solution. By adopting this approach the 

dimensions of Jacobian are reduced, which decreases computational complexity. Applying 

gradient projection method to this approach will further reduces computational burden. In the 

proposed approach redundancy resolution at position domain, this does not involve the 

computation of pseudo inverse of Jacobian. Classical optimization algorithm has been 

implemented for solving the redundancy resolution problem in narrow workspace. The 

computational time for this simulation is less than 60 seconds, which is less than Jacobian 

based methods and evolutionary approaches. 

7.3. Singularity avoidance of planar redundant robots 

Singularity avoidance is determined by choosing an objective of maximizing the 

manipulability measure of a robot, given in Eq. 4.35 with task space constraint (reaching the 

task space location), shown in Eq. 4.34. In this case, boundary singularity avoidance for the 

5-DOF manipulator is considered. Fig. 7.11 shows singular configurations while the robot is 

tracking a straight-line path in the workspace, where the robot configurations are stretched. 

Fig. 7.12 shows the configurations that are away from singular points. Manipulability values 

are calculated for both cases to show how far the manipulator is away from singularities. Fig. 

7.13 illustrates manipulability measure along with the points of the given path for both 

singular and non-singular configurations. The value of manipulability measure for singular 



92 
 

configuration is varying in the range of 580-860 on the corresponding points of the path. 

Whereas for the non-singular case it is about 738-1020. The percentage improvement of 

manipulability measure is about 27.8% for non-singular cases compared to singular 

configurations.  

Fig.7.11. Robot configurations without 

    singularity avoidance. 

Fig. 7.12. Robot configurations with 

singularity avoidance. 
 

Fig. 7.13. Manipulability measure along 
desired path. 

Fig.7.14. Robot configurations with 
obstacle and singularity avoidance. 

 

The task of obstacle avoidance and singularity avoidance for a given path is also performed 

and Fig. 7.14 shows non-singular configurations of the robot while avoiding a rectangular 

obstacle. In the literature [12] singularity avoidance has been performed for planar 
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manipulators without obstacles in the environment. In the proposed approach singularity 

avoidance is implemented for redundant robots by considering obstacle avoidance as 

additional criterion. Existing methods in the literature present obstacle avoidance of 

redundant manipulators using pseudo-inverse techniques [64]. These methods suffer from 

sensitivities at the singular configuration and are known to be computationally expensive. 

Popularly used method for obstacle avoidance is an artificial potential method [88], this 

technique known to be face difficulty with local minimum. To check the computational 

efficiency and accuracy of IK solution, redundancy resolution of planar robots has been 

implemented at velocity level using pseudo-inverse of Jacobian. The computational time of 

IK solution using pseudo-inverse technique is high and it is twice the time when compared 

with IK solution performed at position level. The accuracy of the IK solution performed at 

joint position level is found to be better than the solution at velocity level. As shown in the 

results, the proposed work handled collision avoidance in a 2-Dimensional workspace using 

the penalty approach. This approach is computationally fast due to its simple and effective 

obstacle modelling.  

7.4. Optimum trajectory planning of redundant manipulator 

A 3-degrees of freedom planar redundant manipulator has been considered for optimal 

trajectory planning of robot by minimizing total power consumption at the joints. Trajectories 

have been evaluated for 3DOF robot for two kinds of motion such as continuous and point-

to-point motion. For continuous motion, the end effector is constrained to move in a straight 

line path while optimizing power consumption, which is shown in Fig.7.15. A non-linear 

constrained optimization algorithm has been used for achieving the required objective of 

minimum power consumption, given in Eq. 4.39.  The constraints of the optimization 

problem are reaching the end-effector to the task space and accelerations of joints, shown in 

Eq. 4.40& 4.41. For the point-to-point motion simulation, the optimal trajectories have been 

evaluated by posing it as a non-linear constrained optimization problem with an objective 

shown in Eq. 4.39. The constraints of an optimization problem are the end-conditions of the 

manipulator such as starting point, goal point, start velocities, and end velocities. Fig. 7.16 

shows the path traced by the end-effector by minimizing the objective while satisfying the 

constraints. For simulation of this case, the parameters of manipulator considered are mass 

(m1=1 kg m2=2 kg m3=1 kg), link lengths, inertia of links. Joint trajectories are evaluated 

using a quintic polynomial equation, which ensures smooth joint velocities and accelerations. 
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Fig.7.15. Joint configurations while traversing 

continuous path in Cartesian space. 
Fig. 7.16. Joint configurations while       

traversing point to point motion in Cartesian 

space. 

(a)                               (b) 

(c) 
(d) 

Fig. 7.17. Joint trajectories of 3DOF manipulator for continuous motion (a) Angular 

displacement (b) Angular velocity (c)  Angular acceleration (d) Applied torques. 
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Fig. 7.17 (a) depicts the variation of joint displacement for a given time interval for 

continuous motion along a straight line. It was observed that the variation of angular 

displacement at joint1 is more compared to the other joints. Fig. 7.17 (b) shows the variation 

of angular velocity against the time, it is observed that joint velocities are satisfying end 

conditions and also ensuring smooth variation. Fig. 7.17 (c) depicts the variation of angular 

accelerations at respective joints. Fig. 7.17 (d) shows the variation of joint torques. 

The joint trajectories are computed for point to point motion simulation of the redundant 

manipulator. Fig.7.18 shows the variation of angular displacement, velocity, accelerations, 

and applied torques at each joint   Fig. 7.18 (a) depicts the variation of angular displacements 

  (a)                                          (b) 

                                     (c)                                    (d) 

Fig. 7. 18. Joint trajectories of 3DOF manipulator for point to point motion (a) Angular 

displacement (b) Angular velocity (c) Angular acceleration (d) Applied torques. 



96 
 

at the individual joints. The variation of the joint displacement is uniform. The variation of 

angular velocities and accelerations are shown in Fig. 7.18 (b-c). 

The variations are uniform and satisfying the end conditions of the robot.  Joint torques 

applied at each joint are shown in Fig. 7.18(d). From Fig. 7.18 (d), the variation of torque 

applied at joint1 is more when compared with other joints. The maximum torque at joint1 is 

9.5 N-m, which is higher than the joint torque of a continuous motion robot. In this 

simulation, 3 DOF planar robot has been presented. This approach can be extended for planar 

robots with more number of DOF. 

 In the above simulations redundant robots with different DOF that are suitable for a 

specific task has been choosen. The choice of selecting DOF for a robot depends on the 

following aspects 

1. Geometry of the workspace 

2. Geometry of the obstacles  

3. Number of obstacles 

4. Nature of the task to be accomplished. 

The present work is not dwelling into the issue of selection of DOF for a specific task. The 

focus of the work is to analyze how the IK Solution methods perform while accomplishing 

different tasks. In this sense, different DOF of the robots that are appropriate for a particular 

task has been chosen to demonstrate the effectiveness of the method. Different simulations 

have been carried out for different tasks that are given in table 7.1. 

7.5. Observations from the results 

1. A general inverse kinematic method is proposed which is efficient and effective i.e., 

the method is capable of finding an inverse kinematic solution quickly (1-3 minutes 

for all the cases) for highly redundant planar robots even with obstacles in the 

workspace. Computational time for different performance measures are given below 

(a) Computational time for the task of redundancy resolution in complex workspace 

is 150 seconds. 

(b) Computational time for the task of singularity avoidance with obstacles is 120 

seconds. 

2. Efficiency is due to the simple and effective modeling techniques and classical 

optimization methods employed to solve the problem. The method can also be used 
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for real-time applications because of its efficiency. 

3. The IK simulation has been performed in cluttered workspace. Results shows that 

there is no collision of joint configurations with the obstacles in all the cases and able 

to reach the task space precisely. Collision avoidance is tackled effectively using 

penalty approach. The task of collision detection is performed by modeling obstacles 

as polygons and robot links as lines. 

4. A restart procedure with a different initial guess is included when the solution is not 

found in the first attempt itself. This makes sure that repeated attempts are made even 

if the classical optimization method fails to find the solution because of the multi-

modality of the objective function. 

5. Both convex and non-convex obstacles can be handled using the proposed method. 

6. Redundancy resolution techniques have been implemented to determine the best joint 

configurations by satisfying the additional performance criterion. 

7. The accuracy of the IK solution in all the cases is high, which is in the order of 

5.3335x10
-8 

mm.  
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CHAPTER-VIII 

8. Results of IK Solution of Spatial Redundant Manipulators 
 

IK simulations of spatial 9 DOF robot have been performed in different workspaces such as 

un-constrained environment without obstacles and with multi-shaped 3D obstacles. A 

redundancy resolution scheme is also implemented with a different secondary criterion such 

as joint-distance minimization and singularity avoidance. Simulations of a hyper-redundant 

robot are performed in a realistic environment similar to plant-layout, pipe-layout inspection, 

and work facility layout. Different cases of IK simulation and redundancy resolution of 

spatial hyper-redundant robots working in various environments has been shown in the flow 

chart  in Fig. 8.1. Results of the following simulations have been presented in subsequent 

sections. 

 

 

 

 

 

 

 

 

 

 

 

Fig.8.1. Flow chart representing the IK simulations and redundancy resolution of 
spatial redundant robots 
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8.1. IK Simulations without obstacles in the workspace 

The inverse kinematics of spatial hyper-redundant manipulator is determined for a 9-DOF 

manipulator at different task space locations (TSL). The IK problem is posed as an 

optimization problem with the objective as minimization of total Euclidean distance shown in 

Eq. 3.20, which is a non-linear problem without constraints. The IK solution is computed 

using fminsearch function of MATLAB. This function works based on the Nelder and Mead 

simplex algorithm mentioned in section 6.1. Table 8.1 shows joint configurations of the 9-

DOF robot for a set of six TSL’s. The forward kinematic model of the end effector (given in 

Eq. 3.17) is a function of nine joint variables that are to be determined for each TSL specified 

in three-dimensional coordinates. 

 

 

Fig. 8.2 (a-d) shows the joint configurations of 9-DOF robot at TSL of (18, 18, 20), (38, 35, 

25), (-28, -28, 20) and (-38, -35, 25). The positional error obtained after the convergence is 

about 7.39e-11. The values of positional error at different task space coordinates are reported 

in Table 8.1, which ensures the accuracy of the end-effector.  

S. No 

Task Space 

Location  

 

Joint Configuration (in degrees) 

 

Positional 

Error 

 

θ1          θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9  

1 (18, 18, 20) -23.69 -17.01 -64.86 10.12 100.68 3.53   53.67 43.87 49.54 4.23e-10 

2 (28, 28, 20) 42.20 -25.64 63.96 261.04 -84.29 -40.09 -5.61 -15.03 -113.1 6.16e-11 

3 (38, 35, 25) -63.29 -10.33 39.40 89.77 77.20 43.95 4.84 -89.56 19.27 7.39e-11 

4 (-18, -18,-20) -27.16 -107.0 -4.96 80.52 -45.78 -43.66 -83.03 -114.28 -101.1  6.78e-11 

5 (-28, -28, 20) -17.57 74.0 -72.33 16.89 -20.60 64.60 30.46 -19.58 -136.5 6.22e-10 

6 (-38, -35, 25) 22.13 32.43 -96.91 23.98 -33.32 38.20 -52.29 46.21 20.45  8.08e-10 

Table 8.1. Joint configurations corresponding to task space locations. 
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The positional error obtained has been compared with the existing literature [96, 97], and it 

was observed that the order of positional error is negligible (10
-11

 times) shown in Table 8.2. 

From the values of positional error, it was observed that the end-effector is precisely located 

at desired task space locations. 

 

 

                                    (a)                                          (b) 

                                    (c)                                      (d) 

Fig. 8.2. IK Solutions of Spatial Hyper-redundant manipulator. (a) Joint configuration for target 

point(18, 18, 20) (b) Joint configuration for target point(20, 25, 25) (c) Joint configuration for 

target point(-28, -28, 20) (d) Joint configuration for target point(-38, -35, 25). 
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The convergence of function value during the optimization process is shown in Fig. 8.3.  The 

number of iterations required to attain the minimum function value for a task coordinate of 

(18, 18, 20) mm is at 900, which is shown in Fig. 8.3(a). From Fig. 8.3 (b) it is observed that 

the convergence of function is achieved after 400 iterations for a task coordinate (38, 35, 25). 

From the rate of convergence, it is inferred that the computational time for this simulation is 

less, and it is about 10 seconds.  

Type of the Robot SCARA[88] 

 

7 DOF spatial robot  

[89] 

9-DOF spatial hyper 

redundant robot. 

 

Positional Error  

(mm) 

 

0.69 
 

0.002 4.23e-10 

0.50 
 

0.003 6.16e-11 

0.45 
 

0.004 7.39 x10
-11

 

                                          (a)                                        (b) 

Table 8.2.  Results of positional error comparing between a redundant robot [96, 97] and 

9-DOF spatial hyper redundant robot. 

 

Fig. 8.3. Function plots. (a) Convergence plot for target point(18, 18, 20)  

(b) Convergence plot for target point (38, 35, 25). 
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8.2. Multiple IK solutions using multi-modal optimization 

Multiple IK solutions of spatial redundant robots for a given TSL are computed using a 

global search optimization algorithm, presented in section 6.2. The objective function for this 

simulation is similar to the function chosen for a general IK procedure. The multi-start 

framework has been implemented to determine the local optimum solutions for the problem. 

The optimization procedure starts with the generation of start points in search space, and a 

non-linear optimization solver was executed at each start point to compute optimal solutions. 

The start points and basin of attractions are visualized through basins of attraction shown in 

Fig. 8.4. Start points at which the optimization algorithm executes are represented as dots, 

and basins of attractions are depicted as stars in Fig. 8.4. The dots that are closer to the basins 

of attraction represent the required local optimal solutions. The global optimization process 

has been implemented by considering ten start points initially. Fig. 8.5 (a-f) shows six 

different kinematic configurations of the same TSL (18, 18, 20) for ten optimal solutions. 

From Fig. 8.5 (a-f), it was observed that all kinematic configurations are distinct, and these 

can be a suitable candidate solution for reconfigurable spatial redundant manipulators.  

 

 

 

 

 

 

Fig. 8.4. Visualization of basins of attraction and multiple solutions for a task location (18, 18, 20). 
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                                        (a) 
 

                                            (b) 

                                       (c) 
                                            (d) 

                                           (e) 
                                             (f) 

 

Fig. 8.5 (a-f). Multiple kinematic configurations of 9- DOF robot at end-effector position (18, 18, 20).  
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Here, ten feasible kinematic configurations are obtained as optimal solutions. The 

computational time for attaining multiple IK solutions, i.e., ten joint configurations of a 

redundant manipulator, is about 45 seconds. 

To show the efficacy of the approach, this algorithm has been executed with a different 

number of start points. Fig. 8.6 (a-d) show the minimized objective function values of 

multiple solutions  

 

 

for a range of 10- 40 start points. It was observed that the least positional error is achieved 

with 40 start points, and it is in the order of 2.36e-13. From Fig. 8.6 (a-d), it was also 

                             (a)                                             (b) 

                                   (c)                                  (d) 

Fig. 8.6 (a-d). Plot showing converged function values with different number of start 

points. 
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observed that the magnitude of positional error was less at different start points range. The 

solutions are consistent even for less number of start points. 

In the existing literature [96, 97], multiple IK solutions have been computed using niching 

based approaches, they require more algorithmic control parameters. For the same problem, 

using the proposed approach solutions have converged quickly even with ten start points. The 

global optimization techniques [97] require a large population size to obtain multiple joint 

configurations. In the multi-modal approach of industrial robots [96], a maximum of four 

different kinematic configurations have been obtained with a population size of 50.  From the 

size of the population and the number of iterations required to converge a solution, it is 

known that the evolutionary algorithms are computationally expensive. The proposed global 

optimization algorithm can achieve ten distinct kinematic configurations for a 9 DOF spatial 

robot in less time. As shown in Fig. 8.6, the number of distinct configurations can be 

increased by increasing the number of start points.  

 

 

Table 8.3 shows ten distinct joint configurations corresponding to the TSL (18, 18, 20). The 

positional error is also reported in Table 8.3, which is almost zero and ensures that the end-

effector reaches the desired target precisely. From the IK solutions in Table 8.3, it was 

S. No 

Task Space 

Coordinate  

(in mm) 

Joint Configuration (in degrees) 

 

Positional 

Error 

(in mm) 

θ1          θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9  

1 (18, 18, 20) -268.04    -5.78   740.7 -546.1 -100.4 -403.1    -3.06   360.02 -310.1 9.023e-13 

2 (18, 18, 20) 301.13     8.85   104.97 -680.9 -756.1 -391.9   113.14 -211.6   296.41 1.55e-12 

3 (18, 18, 20) 476.55   -31.048   622.50 -116.6 -159.6   166.92   577.33 81.96   858.93 2.462e-12 

4 (18, 18, 20) -807.8   -67.03   192.53 -404.8 -747.6   480.14 -827.6 -566.3   575.05   9.37e-12 

5 (18, 18, 20) 544.99   678.83   260.47 -571.4 -481.76 -128.7 -526.0 -248.6 -730.6 1.03e-11 

6 (18, 18, 20) -383.3   558.38 -274.0 -377.9   807.81 -479.6 -490.4    84.97   781.19 1.74e-11 

7 (18, 18, 20)   359.32 -127.1 -296.4   649.42   799.88 -549.4   878.67   -24.502 -765.2 2.16e-11 

8 (18, 18, 20) -834.7   690.71   139.19 -191.3 -173.47    84.70 -136.5   963.91   421.78 8.27e-11 

9 (18, 18, 20) -721.8 -415.0 832.9 -628.4 1020.7 -792.9 444.98 238.99 -488.9 1.30e-10 

10 (18, 18, 20) 122.74 890.86 294.89 -590.8 -429.16 181.93 -815.3 910.6 -925.4 1.07e-09 

Table 8.3. Multiple kinematic configurations corresponding to the task space coordinate 

(18, 18, 20). 
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observed that the solutions were not repetitive. The function value of the local optimum IK 

solution has been compared with the global optimum solution to check if the function value 

of a local solution is close to the global solution. The global solution can be obtained using a 

global search algorithm described in section 6.2.3. This was implemented for the redundant 

robot at different TSL. 

Start points in the global search algorithm were generated using a scatter search mechanism. 

Local optimization solver runs based on the score of the start points, and this feature enables 

the algorithm to arrive at the global optimal solution without trapping at the local optimal 

point. Table 8.4 shows the joint configurations and corresponding global minimum function 

values at different task space coordinates. From the values of positional error in Table 8.4, it 

was observed that the magnitude of the converged objective function is almost the same as 

the positional error magnitudes reported in Tables 8.1& 8.3.  

 

 

8.3. IK Solutions in a 3D cluttered environment 

This section presents the results of different IK solutions of the robot operating in the 

cluttered environment. A wide variety of 3D working environments are considered to 

simulate the robots working in real-time applications. For this simulation, a redundant robot 

with five links and 9 DOF is considered. Each joint of the robot is modelled with 2 DOF 

(universal joints), which allows the robot to move easily in a cluttered environment. The 

kinematic modelling of this robot is described in section 3.4.2. All the links are of uniform 

length and are taken as 20 units. The IK solutions of the robot are computed using 

S. No 

Task Space 

Location 

 

Joint Configuration (in degrees) 

 

Positional 

Error 

 

θ1          θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9  

1 (18, 18, 20) -239.05    0 -239.05    0 183.73     0 386.28    0 260.72      1.529e-13 

2 (28, 28, 20) -18.333    0 -18.333    0 48.447 0 66.641 0 47.152  1.801e-13 

3 (38, 35,25) -13.515    -0.321 -10.035     0.626    39.576    10.441   53.674    11.184    36.676          1.950e-13 

4 (-18, -18, 20)   -47.67 -121.9   -11.07 -114.45   -72.44 -108.7  -71.70 -52.96 -40.06  6.711e-13 

5 (-28, -28, 20) -24.74    0 -24.74    0 -53.32 0 -65.87 0 -43.40  8.975e-14 

6 (-38, -35, 25) -72.46    49.945   -57.04    59.662 -157.07 58.02 -180.36 -3.564 -31.59  3.188e-12 

Table 8.4: Joint configurations corresponding to a global minimum at different task space 

locations. 
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optimization techniques discussed in section 6.1. The collision detection scheme is 

implemented using the bounding box technique, discussed in section 5.2. Collision avoidance 

of robots with different types of 3D obstacles was implemented using the penalty approach. 

The modified equation of objective function with a penalty is given by Eq. 5.2. To determine 

the collision of a specific link with any of the obstacle, the links of the robot has been 

modelled as line segments, which are discretized as a series of points.  A set of points are 

chosen uniformly along with the link so that all portions on the link are considered for 

collision avoidance. Fig. 8.7 (a) shows the joint configuration of the robot for a TSL (14, 14, 

14) with three spherical obstacles in the workspace. While Fig. 8.7 (b) depicts the IK solution 

of the robot with four spherical obstacles. The end-effector of the robot reached the task 

space location accurately, and the positional error is negligible. 

                                    (a)                                                   (b) 

 

 

Robot configurations at different TSL while avoiding 3D obstacles of different shapes in the 

workspace are shown in Fig. 8.8. IK solution of robot at TSL (5, 25, 25) and (22, 15, 30) 

shown in Fig. 8.8 (a), while Fig. 8.8 (b) shows IK solution at task space locations (-10, 30, 

30) and (24, 12, 25). A workspace with cylindrical and conical obstacles has been considered, 

and kinematic configurations of the robot are shown while avoiding these obstacles. Fig. 8.9 

(a) shows the joint configurations of the robot at task space locations (50, 20, 30) and (50, 15, 

20), while Fig. 8.9 (b) shows the configuration at the TSL (46, 22, 30).  

Fig. 8.7. IK Solution of spatial redundant robot with spherical obstacles (a) 3 spherical 

obstacles (b) 4 spherical obstacles. 
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                                         (a)                                               (b) 

 

 

 

To show the realistic robot model, the links of the robot are considered as cylinders.  The 

collision detection scheme in section 5.2 has been extended for cylindrical links. The axis of 

the cylinder is considered along the length of the link.  The link length is discretized 

intopoints and a series of circles are generated along the axis by choosing the points on the 

axis as the center of the circles. The coordinates on the circle are represented as points on the 

surface of the cylindrical link. Collision detection has been performed by checking whether 

                                    (a)                                     (b) 

Fig. 8.8. IK solution of spatial redundant robot avoiding multi shaped obstacles (a) At task 

space location (5, 5, 25), (22, 15, 30) (b) At task space location (-10, 30, 30), (24, 12, 25). 

 

Fig. 8.9. IK Solution of spatial redundant robot avoiding cylindrical and conical obstacles 

(a) At task space location (50, 20, 30), (50, 15, 20) (b) At task space location (46, 22, 30). 
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the points on the surface of the cylinder lie within the bounding box, which is implemented 

using an algorithm in Table 5.1. Fig. 8.10 shows the joint configurations of the robot, whose 

links were modelled as cylinders at task space locations (35, 20, 30) and (46, 22, 30).  

 

 

 

Narrow passages similar to ducts and frame cut-outs were modelled in the workspace, and the 

task coordinates are chosen in a way that robot enters through those passages.  

                                  (a)                                                 (b) 

 

 

                           (a)                                     (b) 

Fig. 8.10. IK Solution of spatial redundant robot avoiding cylindrical and conical 

obstacles links modelled as cylinders (a) At task space location (35, 20, 30) (b) At task 

space location (46, 22, 30). 

 

Fig. 8.11. IK Solution of spatial redundant robot avoiding obstacles (a) With a duct shaped 

object as obstacle (b) Rectangular frame as obstacle at task space location at task space 

location (20 15 13). 
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Fig. 8.11 (a) shows the robot configuration while passing through the duct-like passage and 

reached the target location inside the duct without colliding with the boundary of the duct. 

Fig. 8.11 (b) shows the IK solution of the robot at the task location of (20, 15, 13) entering 

through a frame. The computational time for a single IK solution with multiple obstacles is 

less than 120 seconds.  

The collision avoidance schemes proposed in the literature [24, 94] are implemented for 

different types of obstacles, but the obstacle modelling and collision detection techniques are 

quite complex. Collision detection in the 3D workspace has been implemented by enclosing 

the obstacles by bounding boxes. Due to the simplicity of the collision detection technique, 

this approach can be implemented for any shape of obstacles. As shown in the results, this 

approach can be easily adopted in real-time working environments. From the results of 

obstacle avoidance, in all the cases the manipulator able to reach the required TSL by 

avoiding obstacles with less computational time. 

8.4. Results of redundancy resolution using SQP without obstacles 

 Simulations present the redundancy resolution scheme of hyper-redundant manipulators. 

Here, the problem is to evaluate the best IK solution among the multiple solutions by 

considering the performance criterion of joint rotation minimization from the previous 

position, given in Eq. 4.32, and the corresponding task constraint is given in Eq. 4.34 

                            (a)                                             (b) 

 

 
Fig. 8.12. Joint configurations of a 9-DOF robot. (a) Joint configurations of robot for a 

straight-line path (b) Joint configurations of robot for a circular path. 
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Here, 9-DOF redundant manipulator was considered to trace two different paths, such as a 

straight line and circular path in task space. The path in the task space is taken as a series of 

points, and the optimization algorithm is implemented at every point to determine the 

kinematic configuration at the corresponding point. 

 

 

 

 Fig. 8.12(a) shows the kinematic configurations of the robot while tracing a straight-line 

path, whereas Fig. 8.12(b) shows kinematic configurations while tracing a circular path. In 

                          (a) 

  
 
 
 
 
 
 
 
 
 
     

                           (b) 

 
 
 
 
 
 
 
 
 
 
 

                        (c) 

                       (d)                          (e) 

                                                             
 
 
 
 
 
 
 
 
 
 

                            (f) 

 

                         (g) 

 

                     (h) 

 

                            (i) 

Fig. 8.13. Angle variation of a 9-DOF robot at task locations while tracing a straight line 

path. 
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both cases, the accuracy in reaching the task space is ensured. The computational time for the 

simulation of the robot while tracing each path is about 90 seconds. The angular displacement 

at each DOF, while the manipulator is tracing a straight-line path in the task space, is shown 

in Fig. 8.13. As the objective formulated is joint distance minimization, which provides the 

least movement of joints from the previous configurations.  

 

 

 
                          (a) 

                        (b)                           (c) 

                          (d)                          (e)                          (f) 

 
                          (g) 

 
                        (h) 

 
                         (i) 

Fig. 8.14. Angle variation of a 9 -DOF robot at task locations while tracing a circular path. 
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The variation of joint rotation at each DOF corresponding to task space coordinates is shown 

in Fig. 8.13 (a)-(f), and these variations are shown for both redundancy resolution and no 

redundancy resolution. While Fig. 8.14 (a)-(f) shows the angular displacement at each DOF 

while the robot is tracing a circular path in task space, with and without redundancy 

resolution. In both cases, it is evident that the joint rotations were minimized with redundancy 

resolution along the defined path when compared with no redundancy resolution. 

8.4.1. Redundancy resolution of the spatial robot with obstacles 

A redundancy resolution scheme has been implemented for the spatial redundant robot while 

tracing a path in the 3D cluttered environment. Fig. 8.15 shows a case with a circular path 

around the spherical obstacle. In this case, the robot configurations corresponding to the 

target points along the path are evaluated by applying the redundancy resolution scheme 

discussed in section 4.3.1. The obstacle avoidance has been carried out by adding penalties to 

the optimization criteria given in Eq. 5.2. From Fig. 8.15, it was observed that the joint 

displacements are reduced while tracing a path in the workspace. 

Fig. 8.15. IK solution of spatial redundant 

robot while tracing a circular path around the 

spherical obstacle. 

Fig. 8.16. IK solution of spatial redundant 

robot while tracing a semi-circular path 

around the spherical obstacle. 

 

The path chosen was very close to the obstacle, and the IK solution in the figure ensures no 

collision with the sphere. Fig. 8.16 shows the robot configurations while tracing a semi-

circular path behind the spherical obstacle. For better visibility of the path in the workspace, a 

magnified view has been shown in Fig. 8.16, which depicts the robot configurations along the 

path without colliding with the obstacle. Another case of IK simulation of a robot has been 
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performed in the 3D environment similar to a closed chamber with a spherical obstacle 

resting on a support member. Here, the path is chosen in a confined area so that the robot 

should trace the path without colliding the walls of the chamber and sphere.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The working environment and the path traced are similar to robots working in real-time 

applications like welding and painting. Fig. 8.17 shows the IK solution of the robot while 

tracing a semi-circular path in the 3D working environment. It was observed that all the robot 

configurations reaching the given task locations in the path are accurately reached without 

colliding the obstacles. 

8.5. Singularity avoidance of spatial redundant robots 

Singularity avoidance is chosen as performance criteria to improve the manipulability 

measure of robots at singular configurations in workspace, which is given in Eq. 4.35. Fig. 

8.18 (a) shows the joint configurations of a robot while traversing a path without singularity 

avoidance. While Fig. 8.18 (b) shows the joint configurations with singularity avoidance. 

Fig. 8.17. IK Solution of spatial redundant robot while tracing a semi-circular path in a 

closed and cluttered environment. 
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Simulation of singularity avoidance along with obstacle avoidance has also been 

implemented. 

                            (a) 
                                        (b) 

 

 

 

 

 

                                    (a)                                         (b) 

Fig. 8.18. Joint configurations while traversing a straight line path (a) Without singularity 

avoidance (b) With singularity avoidance. 

 

Fig. 8.19. Joint configurations while traversing a straight line path avoiding obstacles (a) 

Without singularity avoidance (b) With singularity avoidance. 
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Fig. 8.19 (a) shows robot avoiding obstacles with singular configurations, whereas Fig. 8.19 

(b) illustrates robot avoiding both obstacles and singularities. Manipulability values are also 

calculated for both cases to show how far the manipulator is away from singularities. The 

value of manipulability measure for singular configuration is varying in the range of 1550-

1700 on the corresponding points of the Path, whereas for the non-singular case, it is about 

2200-2450. The percentage improvement of manipulability measure is about 41.21% for non-

singular configurations compared to singular configurations. 

The joint trajectories are evaluated by approximating a cubic polynomial equation for a given 

path with via points by considering both the cases i.e. with and without singularity avoidance. 

Fig. 8.20 shows the variation of the joint velocities. It was observed that there is a uniform 

velocity for non-singular configurations when compared with singular configurations.  

  

  

 
Fig. 8.20. Joint velocities of 9 DOF robot while traversing a path corresponding to singular 

and non-singular configurations. 
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The joint displacements were shown in Fig. 8.21. From Fig. 8.21, it is observed that the joint 

displacements are more for the configurations avoiding singularities, whereas the joint 

displacements are less for singular configurations. But, singular configurations require high 

joint velocities to move in a specified path. Thus, from Fig. 8.20 it is known that the joint 

velocities are uniform and not varying suddenly, which is observed for singular 

configurations. 

  

 

  

  

Fig. 8.21. Joint displacements of 9 DOF robot while traversing a path corresponding to 

singular and non-singular configurations. 
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8.6. IK Simulation of the spatial redundant robot in a realistic environment 

Different domains of working environments have been modelled for implementation and 

illustration of inverse kinematics of spatial redundant manipulators reaching a specific task 

location and traversing a path while satisfying a secondary criterion such as joint distance 

minimization and maximization of manipulability measure. Simulation results are presented 

for a redundant robot operating in different realistic working environments such as pipe 

layout model, pipe-line welding, work cell, and warehouse environment. Six such case 

studies are presented in this section. 

8.6.1. Case study 1 

A spatial redundant manipulator employed at pipe layout resembling a nuclear power plant or 

air-conditioning applications is considered. In these application areas, the environment is 

cluttered and hazardous for human exposure. Redundant robots are employed for checking 

leakages and welding of pipes at the junctions. Joint configurations have been evaluated for a 

spatial redundant manipulator with 9 DOF.  

                                            (a)                                              (b) 

 

 

IK solutions are determined by posing it as an optimization problem with an objective of 

Euclidean distance minimization and obstacles in the environment have been avoided by 

using the penalty approach shown in Eq. 5.2. The link lengths are uniform in size and they 

are considered as 40 units. The manipulator has to reach the TSL (-20, -10, 123) shown in 

Fig. 8.22.  IK solution of 9 DOF robot deployed in pipe layout application (a) At task 

space location (-20,-10,123), (b) At task space location (37,-18, 25). 
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Fig. 8.22(a). Fig. 8.22(b) shows the joint configuration of the robot at TSL (37, -18, 25). The 

task of redundancy resolution has been implemented with an objective of joint distance 

minimization shown in Eq. 4.32. A spatial redundant robot is commanded to traverse a path 

around the pipe joint suitable for welding application. The joint configurations along the path 

with minimized joint rotation are shown in Fig.8.23. 

  

 

The magnified portion of the Fig. 8.23 shows the joint configurations of the spatial robot 

traversing a path at the junction of the pipe. In this case, the joints of the robot travelled with 

minimum joint rotation without colliding obstacles. 

8.6.2. Case Study 2 

A robot employed for pipeline inspection and welding at pipeline joint has been simulated. 

IK solution of the robot is shown at TSL (25, 60, 10) shown in Fig. 8.24 (a). Fig. 8.24 (b) 

shows the joint configuration of the robot at TSL (-15, 50, 10). A circular path has been 

chosen around the pipe near the junction. A redundancy resolution scheme has been 

implemented for evaluating joint configurations of the robot along the path. Fig. 8.25 shows 

the IK solution of a robot for a prescribed path. 

Fig. 8.23. Redundancy resolution scheme while end-effector is traversing a circular path at 

pipe joint of 9 DOF robot deployed in pipe layout application. 
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                                 (a)                                            (b) 

Fig. 8.24.  IK solution of 9 DOF robot deployed in pipe line application (a) at task space 

location (25, 60, 10)  (b) at task space location (-15, 50, 10) 

 

Fig. 8.25. Redundancy resolution scheme while end-effector is traversing a circular path 

at the pipe-joint of 9 DOF robot deployed in pipe line application. 
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8.6.3. Case Study 3 

This case represents a robot that has been deployed in a work cell environment in industry. 

The spatial redundant robot is simulated for pick and place operation in work cell from the 

conveyer to workbench avoiding a cylindrical obstacle. IK solution of the robot is shown in 

Fig. 8.26 for corresponding task space locations (-10, 70, 62). 

 

 

 

 

 

 

 

 

 

 

 

IK solutions of spatial redundant robots employed in real-time applications have been 

proposed in the literature [42], but the solution techniques to obtain the joint configurations 

are complex. The proposed approach adopts classical optimization techniques to solve the IK 

problem. The problem of the multi-modal optimization has also been addressed by using a 

global optimization approach, by which multiple IK solutions can be obtained. To show the 

efficacy, the proposed approach has been applied to spatial redundant robot deployed in 

different working environments. 

8.6.4. Case Study 4 

In this case, the workspace is cluttered and narrow to reach a specific TSL. Minimization of 

geometric distance is chosen as an objective for determining the IK solution of the robot. The 

workspace in this cases have considered in such a way that classical optimization approaches 

fail to give solution in a single attempt,  rather they require multiple restart procedure with 

different initial guesses to arrive the desired solution. The working environment chosen in 

Fig. 8.26.  IK solution of 9 DOF robot deployed in work facility for pick and place 

application. 
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these simulations is similar to the realistic complex environments, where the workspace is 

cluttered and hazardous. Computing IK solution using classical approaches remains 

challenging for these cases. Hence, a population-based TLBO approach, has been 

implemented for solving the IK problem by minimizing the objective function shown in Eq. 

3.20.  IK solutions of spatial redundant robots have been depicted for pick and place 

operations in warehouse applications.   

                                 (a) 
 

                                           (b) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                       
                                                                                         (c) 

 

Fig. 8.27   shows the robot deployed in a warehouse model of an environment suitable for 

pick and place operations. IK solution of the robot at a TSL of (50, 80, 60) mm is shown in 

Fig. 8.27. IK solution of 9 DOF robot deployed in ware house environment for pick and 

place application at TSL (50, 80, 60) (a) Front view (b) Side view (c) At TSL (30,45,55). 

 



123 
 

Fig. 8.27 (a). Joint configuration in Fig. 8.27 (b) are for the same TSL, but it has shown in 

two different views. Fig. 8.27 (c) depicts the IK solution of redundant robots working in the 

different workspace at TSL (30, 45, 55) mm, and the robot can be used for the same pick and 

place operation. 

8.6.5. Case Study 5 

A spatial 9 DOF robot when it is employed for an application in servicing and inspection of 

heat exchanger models have been investigated in this case.  

                                         (a)  
 

                                       (b) 

                                            (c)                                             (d) 

 

 Fig. 8.28. IK solution of 9 DOF robot deployed in narrow environment at task space 

locations (a) (16, 50, 80) (b) (50, 50, 60) (c) (50, 60, 50) (d) (55, 60, 50). 
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Fig. 8.28 (a) shows the IK solution of the robot at TSL (16, 50, 80) by avoiding obstacles. 

Fig. 8.28 (b) shows the IK solution of the robot at task location (50, 50, 60). Fig. 8.28 (c-d) 

shows another IK simulation of robot deployed in servicing of fin models in cooling 

applications of server rooms and heat exchangers in a power plant. IK solution of the robot at 

TSL (50, 60, 50) shown in Fig. 8.28 (c). Fig. 8.28 (d) shows the joint configuration of the 

robot at TSL (55, 60, 50). 

8.6.6. Case Study 6 

IK simulation of the robot is performed in an environment with large structures like trusses. 

The working environment is similar to on-orbit servicing and the large structural environment 

in the construction of plants, where the robot is deployed for servicing by avoiding collisions 

with the structural elements in the environment. Fig. 8.29 (a) shows the IK solution of the 

robot at TSL (50, 40, 80). Joint configuration of the robot at TSL (53, 78, 87) shown in Fig. 

8.29 (b). From Fig. 8.29 it is shown the end-effector of the robot is accessing the narrow 

regions of the workspace without colliding the obstacles. 

 

 

The environment modelled for this simulation is complex and cluttered. The obstacles have 

been modelled with different shapes that are similar to the real working environment. From 

the simulation results, it is shown that spatial redundant robot can reach the confined regions 

in the workspace without colliding obstacles. 

                                    (a)                                             (b) 

Fig. 8.29. IK solution of 9 DOF robot deployed at large structures with task space location 

(a) (50, 40, 80) (b) (53, 78, 87). 
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8.7. Observation from the results 

1. IK simulation of spatial redundant robots have been performed with two DOF at each 

joint 

2. Multi-modal optimization is performed to achieve multiple IK solutions and these are 

utilized for switching from one configuration to another when robots are employed for 

diverse tasks  

3. The computational time for the IK solution is less due to the use of classical 

optimization algorithms and simple collision modelling techniques. 

4. An effective collision detection and avoidance technique has been implemented, 

which make the robot work in a cluttered environment and avoid obstacles of 

different shapes. 

5. Simulations are performed on 9 DOF robot working in different real-time 

environments such as pipe joint inspection and welding, pick and place operation in 

plant layout and warehouse models, etc. 

6. The spatial redundant robot successfully reached the confined zones by avoiding 

obstacles with an accuracy of 8.185x10
-10

 mm. 
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CHAPTER-IX 

9. Summary and Conclusions 

Inverse kinematics of redundant manipulators has been solved from long time. The issues 

related to IK solution techniques and increasing use of redundant manipulators in the fields of 

engineering and science makes this study challenging. A lot of research has been carried out 

in computation of IK problem of redundant manipulators with additional capability such as 

obstacle avoidance, singularity avoidance, joint-distance minimization and joint torque 

minimization. Some of the issues with these techniques are computational cost, sensitive at 

singular configurations, complex collision avoidance techniques etc. The proposed approach 

addresses these issues. 

In the present thesis, IK solution and redundancy resolution of hyper-redundant manipulators 

have been presented. The simulations of hyper-redundant robots are performed while they 

were working in planar and spatial environments. The proposed IK solution technique is 

efficient and effective, the method is capable of finding an IK solution quickly 

(computational time of 1-3 minutes for planar robots in all the cases) for highly redundant 

robots with obstacles in the workspace. The efficiency of the proposed approach lies in the 

use of classical optimization methods and effective collision detection techniques. Collisions 

in the workspace are handled using penalty approach by modelling the obstacles as polygons 

in 2D environments and bounding boxes in 3D workspace. A restart procedure with a 

different initial guess is included when the solution is not found in first attempt itself. This 

ensures that repeated attempts are made if the classical methods fails to give solution because 

of multi-modality of the objective function. The proposed approach is used for avoiding 

convex and non-convex obstacles. The task of redundancy resolution has been implemented 

to determine the best joint configuration satisfying the secondary criterion such as joint-

distance minimization, minimization of power consumption and singularity avoidance. For all 

the cases, IK solution of redundant robots are achieved while satisfying task space constraints 

and performance metrics with good accuracy (in the order of 10
-11

mm). 

IK simulation of spatial redundant robots is performed with 2 DOF at each joint, this type of 

robots able to access narrow regions of workspace. Since the classical optimization methods 

suffer from local optima, a multi-start frame work has been implemented to determine 

multiple IK solutions. The multiple IK solutions can be used to switch the configurations of 

the reconfigurable robots when they are employed in cluttered environments. Collision 
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avoidance of redundant robot is performed exclusively in 3D workspace by considering 

different shapes of obstacles and in cluttered environment. Collision detection and avoidance 

of 3D obstacles is performed using bounding box approach. To show the efficacy of the 

approach, realistic working environments are modelled and simulations have been performed 

on spatial redundant robot to reach the target location without collisions in the workspace. 

Redundancy resolution of spatial robot is performed with a performance criteria of 

minimizing joint rotation and singularity avoidance. The singularity avoidance of the spatial 

robots while traversing a straight line path with obstacles in the environment has been 

performed. Manipulability measure of the robot is chosen as performance criterion for 

singularity avoidance. Manipulability measure of robot with non-singular configurations is 

found to be improved and it is increased by 41.21% when compared with singular 

configurations.   

The multi-modal nature of the objective function leads to furnish a local optimum solution in 

optimization process. This solution is not feasible in the cases of robot working in confined 

environments. Thus, a population based TLBO algorithm is used. This algorithm is global 

optimization approach, which requires less algorithmic control parameters when compared 

with other evolutionary approach. The computational time to solve the IK problem is about 

(5-10 minutes) in complex working environments. By using this approach simulations of 

robot in the complex working environments has been performed. As shown in the results, the 

robot able to reach the target location accurately by avoiding obstacles.  

For the future scope, the proposed approach can be implemented for real time kinematic 

control of hyper-redundant robots suitable for industrial applications. The multi-start global 

optimization approach can be adopted for reconfigurable robots used in diverse working 

environments. Different performance criterion of the robot can be chosen as multi-objective 

optimization problem and compute the solution that satisfy several objectives simultaneously. 

An experimental model can be developed for the proposed robot, which is suitable to work in 

different environments. The flexibility of hyper-redundant robots, increased their application 

in various fields. Hence a detailed investigation of inverse kinematics and control of spatial 

redundant robots with different configurations suitable for different applications can be 

performed. 
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Appendices 

Appendix I. Optimization work flow to find global or multiple local solutions 

Steps to run global optimization frame work in MATLAB 

1. Create problem structure  

2. Create solver object 

3. Set start points for multi-start  

4. Run the solver 

Inputs for problem structure 

S. NO Required Inputs of the problem 

1 Local Solver (fmincon MATLAB function) 

2 Objective Function  

3 Start point x0 

4 Constraint functions 

5 Local option structure 

 

Create problem structure 

To use global search or multi-start, create a problem structure. The problem structure can be 

created by create createOptimProblem Function 

 Steps to create a problem structure using the “createOptimProblem” function 

I. Define your objective function as a file or anonymous function. If the solver is 

lsqcurvefit or lsqnonlin, ensure the objective function returns a vector, not scalar. 

II. Create constraints, such as bounds and nonlinear constraint functions. 

III. Create a start point. For example, to create a three-dimensional random start point 

xstart: 

                                                xstart = randn(3,1); 

IV. Create an options structure using optimoptions. 

For example, options = optimoptions(@fmincon,'Algorithm','interior-point'); 

V. Enter problem = createOptimProblem(solver, where solver is the name of your local 

solver) 
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 For GlobalSearch: 'fmincon'  

 For MultiStart the choices are: 

 'fmincon'  

 'fminunc'  

 'lsqcurvefit'  

 'lsqnonlin' 

VI. Set an initial point using the 'x0' parameter. If your initial point is xstart, and your 

solver is fmincon 

VII. Include the function handle for your objective function in objective 

problem = createOptimProblem('fmincon','x0',xstart, ... 'objective',@objfun) 

VIII. Set bounds and other constraints as applicable. 

 

 

 

 

 

 

IX. If using the lsqcurvefit local solver, include vectors of input data and response data, 

named 'xdata' and 'ydata' respectively. 

X. validate the problem structure by running your solver on the structure. 

For example, if the solver is fmincon: [x fval eflag output] = fmincon(problem); 
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Appendix II. DH Algorithm and Forward Kinematics of Serial Robots 

 The definition of a manipulator with four joint-link parameters for each link and a 

systematic procedure for assigning right-handed orthonormal coordinate frames, one to each 

link in an open kinematic chain, was proposed by Denavit and Hartenberg (1955) and is 

known as Denavit-Hartenberg (DH) notation.  

 

 

 

 

 

 

 

 

 

 

 

 

A frame  i   is rigidly attached to distal end of link i and it moves with link i. An n DOF 

manipulator will have (n + 1) frames with the frame {0} or base frame acting as the reference 

inertial frame and frame {n} being the "tool-frame". 

Figure 3.8 shows a pair of adjacent links, link (i-1) and link i, their associated joints, joints (i-

1), i and (i+1), and axes (i-2), (i-1). and i, respectively. Line AB in the figure, is the common 

normal to (i-2) and (i-1) axes and line CD is the common normal to (i-1) and i-axes. A frame 

{i} is assigned to link i as follows: 

(i) The zi-axis is aligned with axis i, its direction being arbitrary. The choice of direction 

     defines the positive sense of joint variable i
  

(ii) The xi-axis is perpendicular to axis zi-1 and zi, and points away from axis zi-1 that is, xi  

      axis is directed along the common normal CD. 

(iii) The origin of the i
th

 coordinate frame, frame {i}, is located at the intersection of axis of 

       joint (i+1), that is, axis i, and the common normal between axes (i-1) and i (common 

       normal is CD), as shown in the figure. 

(iv) Finally, y-axis completes the right-hand orthonormal coordinate frame {i}. 

 

Fig. AII.1. Standard DH representation of a revolute joint. 
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Note that the frame {i} for link i is at the distal end of link i and moves with the link. With 

respect to frame {i-1} and frame {i), the four DH-parameters two link parameters (
i

a ,
i

 ) and 

two joint parameters (
i

d ,
i
 )  are defined as: 

 

(a) Link Length (
i

a )  distance measured along xi axis from the point of intersection of xi 

axis with zi-1 axis (point C) to the origin of frame {i}, that is, distance CD. 

 

(b) Link twist (
i

 ) angle between zi-1 and zi axes measured about xi axis in the right-hand 

sense. 

 

(c) Joint distance ( i
d ) distance measured along zi-1 axis from the origin of frame {i-1} 

(point B) to the intersection of xi axis with zi-1  axis (point C), that is, distance BC. 

 

(d)  Joint angle ( i
 ) angle between xi-1 and xi axes measured about the zi-1  axis in the 

right-hand sense. 

 

The convention outlined above does not result in a unique attachment of frames to links 

because alternative choices are available. For example, joint axis i has two choices of 

direction to point zi axis, one pointing upward (as in Fig. AII. 1) and other pointing 

downward. To minimize such options and get a consistent set of frames. 

Once the frames are assigned to each link, the joint-link parameters ( i
 , i

d , i
 , i

a ) can be 

easily identified for each link, using which, the direct kinematic model is developed. 

In fixing the frames. It is desirable to make as many of the joint-link parameters Zero as 

possible because the amount of computations necessary in later analysis is dependent on 

these. Hence, whenever there is a choice in frame assignment, emphasis is on making a 

choice, which results in as many zero parameters as possible 

 

KINEMATIC RELATIONSHIP BETWEEN ADJACENT LINKS 

 
To find the transformation matrix relating two frames attached to the adjacent links, consider 

frame {i-1} and frame {i} as shown in Fig. 3.9. These two frame are associated with link (i-1) 

and i but for clarity the links are not shown in the figure. The kinematic joint-link parameters 

involved (( i
 , i

d , i
 , i

a ) are shown therein. Points B, C, D and frame {i-1} and {i} are the 

same as in Fig. 3.8. The transformation of frame {i-1} to frame {i} consists of four basic 

transformations as shown in Fig. 3.9.  

(a) A rotation about zi-1  axis by an angle i
  ;  



132 
 

(b) Translation along zi-1  axis by distance (
i

d ):(
i
 ,

i
d ,

i
 ,

i
a ) 

(c) Translation by distance 
i

   along xi axis, and  

(d) Rotation by an angle 
i

   about xi axis 

Using the spatial coordinate transformations, the composite transformation matrix, which describes 

frame {i} with respect frame {i-1}.  is obtained using Equation given below. 

1i

i z i z i x i X i
T T ( )T (d )T (a )T ( )

                                                        (AII. 1) 

1i

i
T

 =

0 0 1 0 0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0 0 0 0

0 0 1 0 0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

  

i i i

i i i i

i i i

C S a

S C C S

d S C

         
       
    

       
        
       
       

     (AII. 2) 

1

0

0 0 0 1

 

i i i i i i i

i i i i i i ii

i

i i i

C S C S S a C

S C C C S a S
T

S C d



       
 
      

 
  
 
 

                                    (AII. 3) 

The homogeneous transformation matrix 1i

i
T

  describes the position and orientation of 

frame {i} relative to frame {i-1} and completely specifies the geometric relationship between 

these links in terms of four DH-parameters ( i
 , i

d , i
 , i

a ) . These four parameters, only one 

is a variable for link i, the displacement variable i
  and other three are constant. The matrix 

1i

i
T

   is known as link i transformation matrix. As shown before, the 3 x 3 upper left corner 

sub-matrix of Eq. AII. 3 gives the orientation of coordinate axes of frame {i}, while the 3 xl 

upper right corner sub-matrix represents the position of the origin of frame {i}. 
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Appendix III. Robotic toolbox commands of redundant manipulator 

To illustrate this create a PUMA robot. 

mdl_puma560 

Creating a manipulator arm 

 L(2)=Link(‘d’, 0, ‘a’, 0.302, ‘alpha’, -pi/2) 

SerialLink(L, ‘name’, ‘Puma’) 

Rotation and Translation  

T=transl(x, y, z)*trotx(theta)  

T= trans(x, y, z) 

T= trotx(theta) 

Forward and Inverse Kinematics and Plotting  

T= p560.fkine(q)  

q= p560.ikine(T) 

q= p560.ikine6s(T) 

p560.plot(q) 

Trajectory Planning  

Preparing a time vector for the trajectory: 

 t = [0:0.05:2]' 

Converting the initial pose and final pose from Cartesian Space to Joint Space:  

qi = p560.ikine6s(Ti)  

qf= p560.ikine6s (Tf) 

Generating a trajectory vector in joint space:  

q = jtraj(qi, qf, t) 

Ploting the angles of the joints against time:  

qplot(t,q) 
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The following command extracts the vectors for the position, rotational velocity and 

rotational acceleration from the joint space trajectory planning: 

 [q, qd, qdd]=jtraj(qi, qf, t) 

Plotting the angular velocity of the joints against time: 

 qplot(t,qd) 

Plotting the angular acceleration of the joints against time: 

 qplot(t,qdd) 

Plotting each joint’s kinematics separately: 

plot(t, q(:,1), t, qd(:,1), t, qdd(:,1)) 

 plot(t, q(:,2), t, qd(:,2), t, qdd(:,2)) 

 plot(t, q(:,3), t, qd(:,3), t, qdd(:,3)) 

 plot(t, q(:,4), t, qd(:,4), t, qdd(:,4)) 

Cartesian space trajectory planning:  

Generating a series of poses in Cartesian space (in a straight line)  

T=ctraj(T1, T2, length(t)) 

Plotting a straight line between T1 and T2:  

p1=transl(T1)  

p2=transl(T2) 

x=[p1(1),p2(1)]  

y=[p1(2),p2(2)]  

z=[p1(3),p2(3)]  

plot3(x,y,z) 

The Jacobian and manipulability 

Finding the manipulability at a certain pose: 

m=p560.maniplty(q) 
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Finding the Jacobean at a certain pose and checking its properties: 

Jn=p560.jacob0(qn) 

det(Jn) 

rank(Jn) 

jsingu(Jn) 

Calculating the Jacobean elements manually: 

dTdq1=(Tp1-T0)/dq 

dRdq1=dTdq1(1:3,1:3) 

R=T0(1:3,1:3) 

S1=dRdq1*R' 

vex(S1) 

Manipulator dynamics 

Finding the joint torques required for a certain trajectory: 

Q=p560.rne(q, dq, ddq) 

Finding the dynamic properties of a link of manipulator arm: 

p560.links(1).dyn 

Finding the torques caused by gravity 

p560.gravload(qn) 

Changing the payload 

p560.payload(2.5, [0, 0, 0.1]) 

Changing the gravity settings: 

p560.gravity=p560.gravity/6  
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Appendix IV. TLBO algorithm code 

 

%Population initialization 

pp= input(‘enter the population size’); 

DV= input(‘enter the number of the design variables’); 

iter= input(‘enter the maximum number of iterations’); 

 

lb=input(‘enter the lower bounds of the design variables’); 

ub= input(‘enter the higher bounds of the design variables’); 

 

for i=1:DV 

 a=lb(i)+(ub(i)-lb(i))*rand(pp,1); 

 x(:,i)=a; 

end  

 

%%Teacher phase 

for kk=1:iter 

for i=1:pp 

  x(i,DV+1)=myobjj(x(i,1:DV)); 

end 

temp=x; 

teachr=find(trial1(:,DV+1)==min(trial1(:,DV+1))); 

   if size(teachr,1)>1 

        teachr=teachr(1); 

    end 

for i=1:DV 

meantrial1(i)=mean(trial1(:,i)); 

r=rand(1,1); 

meandiff_trial1(i)=r*(x(teachr,i)-1*meantrial1(i)); 
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 trial1(:,i)=meandiff_trial1(i)+trial1(:,i); 

 

for ii=1:pp 

    if trial1(ii,i) >ub(i) 

        rr=rand(1,1); 

   trial1(ii,i)=lb(i)+(ub(i)-lb(i))*rr; 

    end 

       if trial1(ii,i) <lb(i) 

        rr=rand(1,1); 

   trial1(ii,i)=lb(i)+(ub(i)-lb(i))*rr; 

       end 

    end 

end 

 

for i=1:pp 

  trial1(i,DV+1)=myobjj(trial1(i,1:DV) ); %% Objective function % 

end 

  

for i=1:pp 

     if(trial1(i,DV+1)>x(i,DV+1)) 

         trial1(i,:)=x(i,:); 

     end 

 end 

%%End of teacher phase% 

 

%% Start of learner phase  

for i=1:pp 

    k=1; 

trial2(1,:)=trial1(i,:); 
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end 

                end  

                trial2(k,DV+1)=myobjj(trial2(k,1:DV) ); 

            end 

        end 

    end 

   

  I=find(trial2(:,DV+1)==min(trial2(:,DV+1))); 

    

 if size(I,1)>1 

        I=I(1); 

    end 

    x(i,:)=trial2(I,:); 

      

End 

%% End of learner phase 

 

% fprintf('At the end of %d iteration',icount); 

% disp(x) 

I=find(x(:,DV+1)==min(x(:,DV+1))); 

   if size(I,1)>1 

        I=I(1); 

    end 

best(kk,:)=x(I,:); 

% fprintf('The best solution in the iteration\n'); 

% disp(best) 
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