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Abstract—The rapid growth in the number of vehicles and
limited parking slots has made on-street parking management an
increasingly complex challenge. Intelligent transportation systems
(ITS) have emerged as a key solution, enhancing the efficiency
of smart on-street parking management by delivering real-time
information on slot availability, optimizing space utilization,
and significantly reducing the time drivers spend searching for
parking. Researchers have developed various pricing strategies
to map the parking requests to the parking slots, maximizing
revenue generation. However, most strategies only consider the
provider’s perspective to improve the utilization of parking slots
without considering the user’s perspective, leading to dissatisfac-
tion among the users. Therefore, we model the user’s perspective
using the quality of service (QoS) and introduce a QoS-aware
least utilization first (LUF) algorithm for smart on-street parking
management. LUF aims to maximize revenue generation through
a dynamic pricing strategy without compromising user satis-
faction. It satisfies the QoS of the parking requests submitted
by the users, thereby selecting the less-utilized parking slots.
The performance of LUF is evaluated by taking the Seattle city
dataset and compared using three algorithms, namely first come,
first serve (FCFS), round robin (RR), and highest price first
(HPF), in terms of number of accepted requests (Racc), number
of rejected requests (Rrej), average price (AV) and revenue (RV).
The simulation results across ten areas of the Seattle city dataset
show that LUF outperforms in all the performance metrics
compared to FCFS, RR, and HPF.

Index Terms—Intelligent Transportation Systems, Smart On-
Street Parking Management, Quality of Service, Least Utilization
First, Dynamic Pricing Strategy, Seattle City, Revenue Genera-
tion.

I. INTRODUCTION

On-street parking management is a significant challenge for
urban cities, where growing vehicle ownership and restricted
parking infrastructure create a complex optimization problem
[1], [2]. Improper parking management leads to traffic conges-
tion, fuel wastage, higher carbon emissions, and compromised
quality of life for urban residents [1]. For instance, it is
estimated that drivers looking for parking slots cause at least
30% of traffic congestion in urban cities [2]. Consequently,
congestion prolongs the travel time for drivers who do not
seek parking and further reduces the available road space. On
the other hand, as per the Precedence research [3], the United
States (US) smart parking systems market exceeds US dollar
(USD) 2.47 billion in 2024, and it is expected to reach 17.78
billion by 2034 with a compound annual growth rate (CAGR)

of 21.82% from 2025 to 2034. Similarly, the global smart
parking systems market was estimated at USD 9.15 billion in
2024, and it is expected to reach 64.50 billion by 2034 with a
CAGR of 21.57% from 2025 to 2034 [3]. ITS presents a viable
solution for effective on-street parking management by pro-
viding real-time data on parking slot availability, optimizing
space utilization, streamlining revenue tracking, prioritizing
parking allocation, and minimizing drivers’ time searching for
parking [4]–[10]. Therefore, many researchers have developed
various algorithms to maximize parking slot availability, space
utilization, and revenue, thereby minimizing search time [4],
[11], [12]. Specifically, researchers have developed various
pricing strategies to map between the parking requests and
the parking slots to maximize revenue generation. However,
such strategies must consider both the service provider’s and
the user’s perspectives to enhance parking slot utilization and
user satisfaction [13].

Efficient on-street parking management is vital for gener-
ating revenue that can be reinvested in infrastructure devel-
opment and improving public transportation systems [1], [2].
However, a common challenge is the uneven distribution of
parking demand, where high-demand areas experience full
occupancy while adjacent areas remain underutilized. As a
result, parking requests in high-demand areas are often dis-
regarded or not fulfilled as per choice, leading to reduced
QoS and increased dissatisfaction among drivers [4], [11],
[12]. On the other hand, pricing strategies are vital in the
on-street parking management. Such strategies can be broadly
categorized into fixed and dynamic. In a fixed pricing strategy,
all parking requests are charged a uniform rate regardless of
parking slot location and/or current space utilization, often
resulting in suboptimal revenue generation [14]. Alternatively,
such a strategy fails to generate revenue on the dynamic
nature of parking slot demand patterns, resulting in inefficient
utilization of parking slots. In contrast, a dynamic pricing
strategy determines charges based on various factors such
as parking slot location, current utilization levels, demand
patterns, etc. [11], [15]. It is also regarded as a future-proof
parking management strategy, providing drivers with real-
time pricing information based on current demand patterns
[15]. However, the efficiency of the dynamic pricing strategy
heavily depends on the underlying mapping algorithm that



distributes available parking slots to incoming parking requests
by looking into the user’s and provider’s perspectives.

This paper addresses the mapping problem of n parking
requests to m parking slots to maximize the Racc and the
RV, and introduces a QoS-aware LUF algorithm for smart on-
street parking management. LUF algorithm assigns the parking
requests to the parking slots by keeping both the user’s and
provider’s perspectives. Specifically, once a parking request is
received, the LUF algorithm checks the corresponding QoS.
The QoS is high if the parking request is specified with a
particular location. Otherwise, it is low. Then, the LUF algo-
rithm determines the least utilized parking slot and assigns the
parking request to the corresponding parking slot. Moreover,
the LUF algorithm employs a dynamic pricing strategy with
three zones, namely green, yellow, and red, based on the
utilization rate of parking locations without compromising user
satisfaction. We perform a series of simulation runs using ten
distinct areas from the Seattle city dataset to assess the perfor-
mance of the LUF algorithm. Then, we compare the simulation
results of the LUF algorithm with three algorithms, FCFS,
RR [16]–[19], and HPF, in terms of the four performance
metrics, Racc, Rrej , AV, and RV. Here, the FCFS algorithm
sequentially assigns parking requests to the parking slots
without considering the parking locations. The RR algorithm
sequentially assigns parking requests to the parking slots by
considering the utilization of parking locations without QoS.
The HPF algorithm assigns the parking requests to the parking
slots that generate maximum revenue. The comparison results
show that the LUF algorithm outperforms three algorithms
in four performance metrics, showing a balance between the
QoS of parking requests, revenue generation, and utilization
of parking slots.

The remainder of the paper is structured as follows. Sec-
tion II reviews the related work and the gaps filled by the
LUF algorithm. Section III outlines the system model and
formally defines the problem. Section IV presents the LUF
algorithm. Section V shows the datasets, simulation results,
and discussion. Finally, Section VI concludes the paper and
offers directions for future research.

II. RELATED WORK

Efficient on-street parking management is quite challenging
in many urban cities, exacerbated by the increased number of
vehicles and the lack of parking slots. Many algorithms have
been developed to fulfill various objectives, from parking slot
management to dynamic pricing strategies. However, many
existing algorithms fail to align with both user and provider
perspectives, overlook QoS considerations, and are not well-
suited for real-time decision-making.

Lei and Jasin [20] have presented real-time dynamic pricing
for resource management to maximize revenues by developing
two heuristics. However, their heuristics do not consider user
preferences and QoS. Therefore, they are unsuitable for on-
street parking scenarios, especially when real-time availability
and user satisfaction hold key importance. Ahmed and Rahman
[21] have proposed a blockchain-enabled architecture designed

to support integrated smart parking systems. Their architecture
aims to improve data integrity and security. However, it
neither utilizes dynamic pricing nor considers the utilization
of parking slots to maximize revenue generation and user
satisfaction.

Mak [22] has shown the importance of operations man-
agement for smart city initiatives. They have focused on
both the public and private sectors. They have mentioned
transportation as one of the promising research domains.
Bhatia and Sood [23] have mapped the large Internet of Things
(IoT) applications and the fog resources to perform real-time
data analysis by incorporating scheduling. They emphasize
predictive load scheduling. However, their scheduling does
not explicitly consider the utilization of fog resources. Qin
et al. [24] have proposed a parking recommendation model
based on traveler psychological behavior and various parking
factors. However, their model fails to incorporate dynamic
pricing based on the variation in demand. Zhu and Cai [25]
have presented a multi-agent model to optimize installation
configurations of electric vehicle charging piles in public
garages. The model is introduced to show parking behavior.
However, they have not considered the differences in the
charges for parking slots.

Garra et al. [26] have discussed the privacy issues related
to parking information, especially user profiles, and suggested
a pay-by-phone system without creating the user profiles to
preserve privacy. However, they have not shown any mapping
between the parking request and the parking slots, thereby
any pricing strategy. Saharan et al. [11] have investigated
adaptive solutions like machine learning-based predictions to
predict parking demand dynamically and enhance allocation
efficiency. An et al. [27] have utilized deep learning techniques
to improve the pricing strategy by using real-time traffic flow
and parking occupancy. Saharan et al. [12] have developed the
foggy-park framework based on dynamic pricing and multi-
objective optimization for on-street parking. Their framework
uses a non-dominated sorting genetic algorithm (NSGA) al-
location to increase revenue. However, their framework does
not explicitly consider the utilization of parking slots. The
proposed algorithm, LUF, is similar to and differs from the
existing works in the following ways. (1) Unlike foggy-park
[12], the LUF algorithm considers the user preference in terms
of QoS for assigning a parking slot. (2) Unlike foggy-park
[12], the LUF algorithm considers the utilization of parking
slots to select an appropriate parking slot for each parking
request. (3) Unlike foggy-park [12], the LUF algorithm uses a
dynamic pricing strategy with three zones to hike the revenue
of parking slots based on the dynamic demands.

III. SYSTEM MODEL AND PROBLEM FORMULATION

The system model considers an area (AR) that provides on-
street parking management. Each AR is divided into multiple
sub-areas (SAs), which are further divided into block faces
(BFs). A BF may be further divided into street sides (SSs),
which are further divided into parking lots (PLs). A PL may
further be divided into parking slots (PSs). Alternatively, PSs
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Fig. 1: A parking system with a single AR.

on one side of the street are grouped into a single PL. The
system model follows a hierarchical structure, as shown in
Fig. 1. A user submits a parking request through an Internet-
based application. This request is captured by the computing
device (CD) deployed by the provider within the AR. Note that
the parking request can be submitted in two forms, i.e., with
and without QoS. A parking request with QoS is associated
with a specific BF, whereas a request without QoS does not
specify a BF. Once the QoS is determined, the dynamic price
is calculated based on the utilization of the BF. Then, the
user must pay the price for assigning the PS for the specified
duration.

Consider a set of n parking requests, R = {R1, R2, R3,. . .,
Rn}, a set of m PSs, PS = {PS1, PS2, PS3,. . ., PSm}
in an AR and n >> m. Each parking request, Ri, 1 ≤ i
≤ n, is represented in a 4-tuple, <TS, AR, BF, D>, where
TS denotes the arrival timestamp of the parking request and
D denotes duration in time units. Note that the time of the
day (TD) is determined as morning (M), afternoon (A), and
evening (E) based on the TS. A global queue Q is maintained
to keep the parking requests that arrived at CD based on the
timestamp. If a parking request is specified with the BF, then
we consider the request as with QoS. On the other hand, if it is
not specified, then we consider the request to be without QoS.
Similarly, each PSj , 1 ≤ j ≤ m is associated with attributes,
such as its current occupancy status and the base pricing (BP)
according to its AR and/or SA. The problem is to map the
parking requests to available PSs in such a manner that the
following objectives are satisfied. (1) Maximize the Racc and
RV (2) Minimize the Rrej and AV. Mathematically,

Maximize Racc and RV (1)

Minimize Rrej and AV (2)

The problem is restricted to the following constraints. (1)
The mapping must ensure that no two parking requests occupy
the same PS at the same time. (2) If two parking requests arrive
at the same time, one with QoS and one without QoS, then
they are processed in the order of QoS and then without QoS.
In other cases, they are processed in chronological order.

IV. PROPOSED ALGORITHM

We propose a QoS-aware LUF algorithm for smart on-street
parking management. The objective is to maximize the Racc

and RV , and minimize the Rrej and AV . The LUF algorithm
makes the trade-off between RV and user dissatisfaction. We
initialize the total number of PSs (TP ) and the number of
occupied PSs (OP ) for each BF . The LUF algorithm picks a
parking request from the Q and determines its QoS, as shown
in Algorithm 1. Here, QoS is determined based on the BF
that the user requests. If the parking request is submitted
with QoS, then the utilization of BF is calculated, and the
dynamic price is calculated. The utilization of the BF (UZ)
is the ratio between the OP and the TP . Mathematically,
UZ = OP

TP . Then, the LUF algorithm orders the available
BFs from lowest to highest UZ to increase the utilization of
underutilized BFs. On the other hand, if the parking request is
submitted without QoS, then the least utilized BF is identified,
and the dynamic price is calculated accordingly. For this, the
LUF algorithm introduces three zones: green, yellow, and red.
In the green zone, the user pays the base price (BP ) as the
utilization of BF is less than or equal to τ1. The BP is taken
based on the TD and the SA. This zone does not charge users
more as there is sufficient availability of PSs. Note that this



Algorithm 1 LUF
Input(s): Q, R, PS, n, m, TS, AR, BF , SS, D, BP , τ1
and τ2
Output(s): Racc, Rrej , AV and RV

1: for each BFi in AR do
2: if TP - OP > 0 then
3: Calculate UZ = OP

TP
4: end if
5: end for
6: Sort the queue Q based on QoS
7: for each request Ri in Q do
8: Determine ID, AR, BF and D
9: for each BFi in AR do

10: if BF of request Ri matches with BFi then
11: if TP - OP > 0 then
12: OP = OP + 1
13: Determine TD based on TS
14: FP = DYNAMIC-PRICE(TD, UZ,

BP , τ1 and τ2)
15: Racc = Racc + 1 . Assign request Ri to

the available PS
16: Update UZ
17: break
18: end if
19: end if
20: end for
21: Sort the BFs based on their UZ
22: if BF of request Ri is not specified then
23: Determine the BF with the least UZ
24: if TP - OP > 0 then
25: OP = OP + 1
26: Determine TD based on TS
27: FP = DYNAMIC-PRICE(TD, UZ, BP ,

τ1 and τ2)
28: Racc = Racc + 1
29: Update UZ
30: break
31: end if
32: end if
33: if no slot is found then
34: Rrej = Rrej + 1 . Reject request Ri

35: end if
36: end for
37: Calculate AV using Eq. (6)
38: Calculate RV using Eq. (7)

zone is considered to deal with low-demand hours without
charging any dynamic price component. The final price is
calculated as the base price. Mathematically,

FP = BP (3)

In the yellow zone, the user pays the BP as well as the
dynamic price as the UZ is more than τ1 and less than or
equal to τ2. This zone applies a dynamic factor for moderately

Procedure 1 DYNAMIC-PRICE(TD, UZ, BP , τ1 and
τ2)

1: Find the BP for given TD
2: if UZ ≤ τ1 then
3: Calculate FP using Eq. (3)
4: return FP
5: else if UZ ≤ τ2 then
6: Calculate FP using Eq. (4)
7: return FP
8: else if UZ > τ2 then
9: Calculate FP using Eq. (5)

10: return FP
11: end if

raising the price and showing the increasing demand. More-
over, this zone prevents sudden price hikes, thus ensuring user
satisfaction. The final price is calculated as follows.

FP = BP ×
√
1 + UZ (4)

In the red zone, the user also pays the BP as well as the
dynamic price as the UZ is more than τ2. This zone applies a
much higher dynamic factor (i.e., α) for aggressively raising
the price and showing the huge demand. Moreover, this zone
hikes prices to minimize congestion and assigns the PSs
only to the more needy users. The final price is calculated
as follows.

FP = BP × (
√
1 + UZ + eUZ) (5)

The above pricing strategy ensures fair access to PSs while
increasing RV and user satisfaction and reducing congestion.
It is also shown in Procedure 1. Once the user pays the
required price, one of the available PSs under the BF is
assigned to the user for parking. Note that the LUF algorithm
determines the dynamic price based on the real-time utilization
rate of BFs, ensuring less congestion and proper distribution
and utilization of the PSs. The AV is the ratio between
the sum of the FP of the accepted requests and the Racc.
Mathematically,

AV =

∑
FP

Racc
(6)

The RV is the sum of the product of the FP and the D.
It can be expressed as follows.

RV =
∑

(FP ×D) (7)

A. Illustration

We consider a typical illustration with 17 parking requests
(R1 to R17) with QoS as shown in Table I, 15 PSs (PS1

to PS15) and an occupancy data as shown in Table II. This
illustration presents a condition of moderate over-demand,
which reflects typical congestion situations in urban cities.
The current UZ of SSs of BFs is 50%, 80%, 80%, 81.81%,
75%, 66.67%, 85.71%, 60%, 85.71%, 83.34%, 87.50% and
33.34%, respectively. Here, we consider BP as 1 unit. The
LUF algorithm first assigns the parking requests with QoS.



TABLE I: Parking requests and QoS

Parking
Request R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17

TS 27-04-2025 10:10
AR AR1

BF - - - 3 0 2 - 5 1 4 6 - - - - 5 0
D

(in minutes) 60 120 90 240 240 120 240 240 120 240 240 60 120 30 30 240 120

QoS No No No Yes Yes Yes No Yes Yes Yes Yes No No No No Yes Yes

TABLE II: Occupancy data

BF 0 0 1 1 2 3 3 4 4 5 5 6
SS East West East West West East West East West East West West
TP 2 5 5 11 4 3 7 5 7 6 8 3
OP 1 4 4 9 3 2 6 3 6 5 7 1

TABLE III: Comparison of four performance metrics for
FCFS, RR, HPF, and LUF algorithms

Algorithm n m Racc Rrej AV RV
FCFS 17 15 14 3 2.96 086.78
RR 17 15 14 3 2.96 086.75
HPF 17 15 15 2 2.85 090.45
LUF 17 15 15 2 2.85 110.69

For instance, R4 is assigned to east side of BF3, R5 is
assigned to east side of BF0, R6 is assigned to west side
of BF2, and so on. The current UZ of SSs of BFs is 100%,
100%, 100%, 81.81%, 100%, 100%, 85.71%, 80%, 85.71%,
100%, 100% and 66.67%, respectively.

Next, the LUF algorithm assigns the parking requests with-
out QoS. For instance, R1 is assigned to west side of BF6,
R2 is assigned to east side of BF4, R3 is assigned to west
side of BF1, and so on. The current UZ of SSs of BFs is
100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%,
100%, 100% and 100%, respectively. However, R14 and R15

are rejected due to the unavailability of PSs. Therefore, Racc,
Rrej , AV , and RV are 15, 2, 2.85 (i.e., 42.70

15 ), and 110.69. We
compare the illustration results with three algorithms, FCFS,
RR, and HPF, as shown in Table III. As seen from the table, the
LUF algorithm outperforms all the other algorithms in Racc,
Rrej , AV , and RV . This improvement demonstrates the LUF
algorithm’s ability to gain maximum revenue by strategically
mapping parking requests according to real-time utilization.

V. SIMULATION RESULTS AND DISCUSSION

We conducted a series of simulation runs by taking ten ARs
of the Seattle city dataset of 09-04-2024 [28]. The names
of these areas are 12th avenue, 15th avenue E, commercial
core, ballard, ballard locks, green lake, cherry hill, roosevelt,
university district and first hill, and they are denoted as A
to J, respectively. Table IV contains the initial setup of ten
ARs in which US and RS represent the number of unique
PSs and the number of remaining PSs (i.e., TP - OP). It is
noteworthy to mention that the US is not the product of BF
and SS, as SS may be in any of the cardinal and intercardinal
directions, namely north, south, east, west, northeast, north-
west, southeast, southwest, or any of their combinations. In

TABLE IV: Ten ARs of the Seattle city dataset

AR BF SS US TP OP RS n TD BP
A 07 2 012 065 031 034 039 E 5.0
B 10 4 016 080 037 043 048 E 3.0
C 92 7 122 690 211 479 527 E 1.0 (FC),

1.5 (RL),
4.5 (WF)

D 34 8 062 527 181 364 401 E 5.5 (CR),
5.0 (ED)

E 01 2 002 072 012 060 066 A 2.0
F 20 8 030 136 050 086 095 M 2.0
G 04 3 006 056 006 050 055 M 2.0
H 08 4 010 069 021 048 053 M 1.0
I 57 8 089 812 190 622 685 A 5.5 (CR),

1.5 (ED)
J 83 7 126 777 141 636 700 A 5.0

the AR C, there are three SAs, namely financial (FC), retail
(RL), and waterfront (WF). Similarly, there are two SAs in
AR D and AR I, namely core (CR) and edge (ED). The BP
varies with respect to the SA of a corresponding AR and the
TD (i.e., M, A, and E), as shown in [29]. We considered
n as 10% higher than RS to create a more detailed and
rigorous evaluation. We assumed a standard vehicle system for
simulating the parking requests under smart on-street parking
management. This system also assumes standard PSs and
vehicle characteristics, namely types (i.e., electric vehicle,
commercial vehicle, or oversized vehicle), length, width, and
duration in time units. However, these are not explicitly shown
in the simulation results.

We simulate the LUF algorithm using ten ARs of the Seattle
city dataset and compare it with the FCFS, RR, and HPF
algorithms in terms of four performance metrics, as shown
in Table V. Note that there is no direct comparison between
the proposed algorithm, LUF, and the existing literature.
Therefore, we compare it with three baseline algorithms:
FCFS, RR, and HPF. The simulation results indicate that
the LUF algorithm consistently achieves superior performance
compared to all other baseline algorithms.

We found that the LUF algorithm accepts 87.18%, 77.09%,
90.33%, 86.29%, 90.91%, 87.37%, 90.91%, 90.57%, 90.81%
and 90.86% of parking requests on ten ARs, respectively.
Moreover, the LUF algorithm improves the Racc by 09.68%,
17.53%, 09.15%, 10.67%, 04.35%, 04.71%, and 13.37%,



TABLE V: Comparison of four performance metrics for FCFS, RR, HPF, and LUF algorithms

Algorithm Parameter A B C D E F G H I J

FCFS

Racc 031 037 405 317 060 075 050 046 594 561
Rrej 008 011 122 084 006 020 005 007 091 139
AV 10.03 04.51 02.68 10.27 04.02 03.70 03.66 01.86 07.66 08.79
RV 0586.93 0421.09 2659.41 5807.61 0428.70 0533.40 0287.96 0141.15 8197.48 9100.94

RR

Racc 031 037 405 317 060 075 050 046 594 561
Rrej 008 011 122 084 006 020 005 007 091 139
AV 10.03 05.85 03.49 10.27 04.02 03.70 03.66 01.86 07.66 08.79
RV 0586.64 0420.88 2659.64 5807.70 0428.76 0532.93 0288.02 0141.20 8196.04 9101.48

HPF

Racc 031 036 385 305 060 071 050 041 562 527
Rrej 008 012 142 096 006 024 005 012 123 173
AV 10.41 06.34 02.79 10.23 04.02 03.58 03.66 01.89 07.04 08.90
RV 0484.34 0390.45 1889.35 5359.42 0428.75 0482.75 0272.05 0131.74 6962.98 8287.95

LUF

Racc 034 037 476 346 060 083 050 048 622 636
Rrej 005 011 051 055 006 12 005 005 063 064
AV 10.04 05.85 03.53 10.53 04.02 3.50 3.66 01.94 07.73 08.91
RV 00588.27 00421.09 02929.31 06264.11 00430.27 00544.82 00288.80 00152.10 09116.59 10521.20

compared to FCFS for AR A, C, D, F, H, I, and J, respec-
tively. Similarly, it achieves improvements of 09.68%, 17.53%,
09.15%, 10.67%, 04.35%, 04.71%, and 13.37%, compared to
RR for the same ARs. However, there is no improvement
for ARs B, E, and G when compared to both FCFS and
RR. Furthermore, the LUF algorithm enhances the Racc by
09.68%, 02.78%, 23.64%, 13.44%, 16.90%, 17.07%, 10.68%,
and 20.68% for AR A, B, C, D, F, H, I, and J, respectively,
while no improvement is seen for AR E and G, compared
to HPF. On the other hand, the LUF algorithm improves the
RV by 00.23%, 10.16%, 07.87%, 00.37%, 02.14%, 00.29%,
07.75%, 11.22%, and 15.61%, compared to FCFS for ARs
A, C, D, E, F, G, H, I, and J. However, no improvement is
observed for AR B. When compared to RR, the improvements
of the LUF algorithm are 00.28%, 00.05%, 10.16%, 07.86%,
00.35%, 02.24%, 00.27%, 07.71%, 11.26%, and 15.61% for
ARs A, B, C, D, E, F, G, H, I, and J. Similarly, when compared
to HPF, the LUF algorithm shows enhancements of 21.47%,
07.83%, 55.04%, 16.88%, 00.35%, 12.86%, 06.19%, 15.44%,
30.88%, and 26.97% for the respective ARs. Note that the
best-performing results are shown in bold in Table V.

The rationality behind the better performance of the LUF
algorithm is as follows. (1) Unlike the FCFS algorithm, the
LUF algorithm considers the QoS of the parking requests.
It increases the Racc and RV. (2) Unlike the RR algorithm,
the LUF algorithm selects the least utilized BF for assigning
parking requests. It ensures that the PSs under the BFs are
utilized efficiently, avoiding traffic congestion. (3) Unlike the
HPF algorithm, the LUF algorithm selects the PS with the
least FP for the parking requests without QoS, increasing user
satisfaction. Overall, the LUF algorithm outperforms all ARs
by optimizing parking request allocation and utilizing the PSs
efficiently. Alternatively, the LUF algorithm improves the UZ
of PSs in an equitable and equal manner. Moreover, it excels
in minimizing Rrej and maximizing RV while maintaining
user satisfaction, demonstrating its strength as smart on-street
parking management in urban cities.

VI. CONCLUSION

We have introduced the QoS-aware LUF algorithm for
smart on-street parking management. The algorithm aims to

maximize the Racc and RV and minimize the Rrej and AV. It
handles parking requests with QoS and without QoS. It maps
the parking requests to PSs by determining the least utilized
BFs. We have used a real-time dataset of Seattle city with ten
ARs and occupancy data to evaluate the performance of the
LUF algorithm by conducting a series of simulation runs. We
have compared the simulation results of the LUF algorithm
with three baseline algorithms, FCFS, RR, and HPF, in terms
of four performance metrics. We found that the proposed al-
gorithm excels in all the performance metrics compared to the
baseline algorithms. Specifically, the LUF algorithm shows an
average improvement of 06.95% in Racc, a 28.35% reduction
in Rrej , a 06.52% decrease in AV, and a 05.56% increase
in RV, compared to the FCFS algorithm. It also improves by
06.95% in Racc, reduces Rrej by 28.35%, decreases AV by
00.50%, and increases RV by 05.57%, compared to the RR
algorithm. Furthermore, compared to the HPF algorithm, it
improves 11.49% in Racc, reduces Rrej by 37.27%, decreases
AV by 02.85%, and increases RV by 19.39%, irrespective of
the ARs of the dataset, compared to the HPF algorithm.

The LUF algorithm can effectively balance performance
with user satisfaction by giving equal importance to RV
generation and fair use of PSs. Its ability to redirect traffic
to less congested BFs while adapting to demand fluctuations
makes it a better algorithm for real-time smart on-street park-
ing management. However, the proposed algorithm utilizes
simulated data that provides valuable insights to evaluate the
performance of different algorithms; their real-world applica-
bility is limited and can be modeled through machine learning
techniques. Moreover, the proposed algorithm can be extended
by considering real-time traffic and user behavior patterns. On
the other hand, the proposed algorithm may occasionally map
the few parking requests to slightly farther PSs in case they
tend to full occupancy, which can increase user walking time
or reduce user satisfaction.
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