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Abstract—Workflow scheduling (WFS) in a heterogeneous
multi-cloud (HMC) environment is a critical problem, aiming
to minimize overall completion time (i.e., makespan) and maxi-
mize resource utilization. Numerous heuristic and metaheuristic
algorithms have been developed to address the problem of WFS.
One well-known and benchmark algorithm is called hetero-
geneous earliest finish time (HEFT). This algorithm allocates
the precedence-constrained workflow tasks to the clouds by
calculating the task prioritization, followed by the cloud selection.
However, it does not consider the task characterization phases,
namely initialization, processing, and finalization (IPF), which
leads to poor makespan and resource utilization. Therefore,
this paper introduces a WFS algorithm called HEFT-IPF to
enhance the HEFT algorithm’s performance by considering task
characterization. HEFT-IPF algorithm overlaps the execution of
tasks by executing their initialization and finalization phases
while strictly preserving their precedence constraints. The HEFT-
IPF algorithm performance is compared with that of the HEFT
algorithm by considering various scientific workflows, namely
epigenomics, laser interferometer gravitational-wave observatory
(LIGO), cybershake, sRNA identification protocol using high-
throughput technology (SIPHT), and montage. Two performance
measures, makespan and resource utilization, are used to com-
pare with HEFT and HEFT-IPF algorithms. Simulation results
show that the HEFT-IPF algorithm outperforms the HEFT
algorithm, achieving a 28.36% average reduction in makespan
and a 23.33% average improvement in resource utilization.

Index Terms—Cloud Computing, Workflow Scheduling, Het-
erogeneous Earliest Finish Time, Initialization, Processing, Final-
ization, Scientific Workflow, Makespan.

I. INTRODUCTION

Cloud computing delivers a wide range of services over the
Internet. The services include computing, network, storage,
database, software, and analytics [1], [2]. It provides an
infrastructure to rent these services on-demand whenever and
wherever required [3], [4]. It utilizes the resources efficiently
and ensures service availability and reliability, reducing the
risk of failures [5]. As a result, there is a surge in the
wide range of users, particularly among small to medium-
scale enterprises [6]. Therefore, efficient scheduling algorithms
are essential to manage the resources without scaling up the
existing infrastructure [7]-[12]. However, these algorithms
may be designed to handle independent or dependent tasks
structured as a workflow [13], [14]. On the other hand, one
cloud may collaborate with another cloud to meet the dynamic
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demands. In such cases, WFS is quite challenging as these
clouds are heterogeneous and provide services in a federated
manner.

WES aims to minimize makespan by executing the
precedence-constrained tasks and to maximize the utilization
of cloud resources [7]-[11], [15], [16]. These tasks differ
in their computational needs and execution durations, which
diverge from cloud to cloud due to the heterogeneity of
available resources [5], [17], [18]. Researchers develop many
heuristic and metaheuristic algorithms to handle the WFS
problem in the HMC environment. Some of the existing
algorithms include HEFT [8], critical path on a processor
(CPOP) [7], cluster combining algorithm (CCA) [9], granu-
larity score scheduling (GSS) [10], and performance effective
task scheduling (PETS) [11]. However, HEFT is a well-
known and benchmark algorithm that assigns tasks to the
clouds in a two-step process: task prioritization and cloud
selection [8]. The first step prioritizes the tasks by evaluating
their communication and computation costs to determine the
execution order. The later step assigns each task to a cloud
in that order, which gives the earliest finish time to improve
scheduling efficiency. However, this algorithm considers a task
as a whole without dividing it into IPF, which characterizes
the task. As a result, successor tasks must wait to complete
their predecessor tasks, leading to poor makespan and resource
utilization. However, the finalization of a task can overlap with
the initialization of the successor task(s). This phenomenon
inspires us to introduce a three-phase WFS algorithm.

This paper addresses the problem of assigning a workflow
that consists of n dependent tasks to a set of m clouds to
minimize the makespan and maximize resource utilization. For
this, a three-phase WES algorithm called HEFT-IPF is intro-
duced, which enhances the performance of the existing algo-
rithm (i.e., HEFT) by considering task characterization phases,
IPF. The initialization phase includes data loading, memory
configuration, and resource preparation. The computations are
carried out in the processing phase. The finalization phase
focuses on storing results and releasing resources. HEFT-IPF
algorithm overlaps the execution of tasks by overlapping their
initialization and finalization phases without violating their
precedence constraints. It reduces idle time and enhances par-
allel execution, improving makespan and resource utilization.



We compare the existing algorithm, HEFT, and the proposed
algorithm, HEFT-IPF, using various simulation runs by taking
scientific workflows, namely epigenomics [19], [20], LIGO
[21], cybershake [22], SIPHT [23] and montage [24]. Each
algorithm is assessed by the makespan and resource utilization.
The results show that the HEFT-IPF performs comparatively
better than the HEFT across all workflows, with improvements
in makespan ranging from 2% to 59% and resource utilization
from 15% to 48%. However, the average improvement of the
HEFT-IPF algorithm is 28.36% in makespan and 23.33% in
resource utilization, showing the significance of the proposed
algorithm.

A. Motivational Example

The assembly language instructions are used to illustrate
how the HEFT algorithm works and the need for the HEFT-
IPF algorithm, as shown in Fig. 1 and Fig. 2. For this, we
consider two dependent tasks, namely 77 and T», and two
clouds, namely C; and C5. Note that task 75 is dependent on
task 7T7. Assume that task 77 is allotted to cloud C; and task
T is allotted to cloud Cy for execution. However, cloud Cs
can execute task 75 only after the completion of task 77 by
cloud C1. In the HEFT algorithm, cloud C executes the task
T as follows. Register B is loaded with data 03H, and register
A is loaded with a value from the memory location 2000H.
Then, it adds the values of the registers and stores the result
in the memory location 3000H. It completes the execution of
task 77. Note that cloud Cs is completely idle until task 7}
is completed. Now, cloud C5 executes the task 75 by loading
the results of 7} from the memory location 3000H into the
accumulator. Additionally, it loads the data O5H to register B.
Then, it subtracts the values of the registers and stores the
result in the memory location 4000H, as seen in Fig. 1. This
completes the execution of task 7,. However, loading the data
O5H into register B by cloud Cj is entirely independent of any
operations performed by cloud ;. Therefore, the HEFT-IPF
algorithm performs this independent operation or initialization
before completing task 737 by cloud C, especially during
the finalization phase of task 7j, as seen in Fig. 2. This
example shows that the HEFT-IPF algorithm improves parallel
execution and is a better choice than the HEFT algorithm.

Cloud Cjp: Executing Task T

MVI B, 03H ; Load data

LDA 2000H ; Load data

ADD B ; Perform computation
STA 3000H ; Store result

Cloud C2: Executing Task Ta
LDA 3000H ; Wait for Task 71 to finalize

MVI B, 05H ; Load data
SUB B ; Perform computation
STA 4000H ; Store result

Fig. 1: An illustration to demonstrate the working of HEFT.

The other sections of the paper are arranged as follows.
Section II discusses related work. Section III shows the

Cloud Cp: Executing Task T}

MVI B, O03H ; Load data (Initialization)
LDA 2000H ; Load data (Initialization)
ADD B ; Perform computation (Processing)

Cloud C2: Executing Task Ta
MVI B, 05H ; Load data (Initialization)

Cloud Cp: Executing Task T}
STA 3000H ; Store result (Finalization)

Cloud C2: Executing Task Ta

LDA 3000H ; Load data (Initialization)

SUB B ; Perform computation (Processing)
STA 4000H ; Store result (Finalization)

Fig. 2: An example to show the working of HEFT-IPF.

problem statement. Section IV describes the HEFT-IPF and its
illustration. Section V discusses the simulation setup, results,
and discussion. Section VI presents the paper’s conclusion and
outlines directions for future work.

II. RELATED WORK

Many WES algorithms have been developed to execute the
precedence-constrained tasks in a heterogeneous environment.
Some of these algorithms are briefly discussed here. Topcuoglu
et al. [8] have introduced the HEFT algorithm to schedule
dependent tasks in different processors to minimize makespan.
The HEFT algorithm does not support task overlapping, indi-
cating that a successor task cannot initiate its initialization
while the previous task is finalized. Samadi et al. [25] have
proposed enhancing the HEFT algorithm by using matching
game theory to distribute the tasks among the virtual ma-
chines. However, they have shown the results in two scientific
workflows, cybershake and montage. Dubey et al. [26] have
improved the distribution of tasks to reduce the makespan by
introducing the modified HEFT algorithm. However, eleven
tasks and three resources without scientific workflows show
the algorithm’s performance.

Sun et al. [27] have proposed the HEFT-dynamic algorithm
by focusing on virtual machine selection and allocation. How-
ever, their algorithm has only been tested in three scientific
workflows: cybershake, SIPHT, and montage. Hai et al. [28]
have proposed an enhanced version of the HEFT algorithm by
addressing its limitations regarding selecting the first available
time slot and average computation cost. However, they have
highlighted the trade-off between cost and performance and
suggested applying nature-inspired optimization algorithms.
Gupta et al. [29] have proposed an improved version of the
HEFT algorithm by applying different ranking methodologies,
namely average, maximum, and minimum computation cost,
and determining idle slots for task scheduling. However, they
have not considered the task characterization phases. Chopra
et al. [30] have proposed a HEFT-based hybrid scheduling
algorithm by introducing the deadline constraints and targeting
the hybrid clouds. However, they have not used the complete
workflow application in their performance analysis. The above



algorithms do not consider the task characterization phases.
Therefore, the proposed algorithm is entirely different from
those and compared with the baseline algorithm, HEFT.

III. PROBLEM STATEMENT

Consider a directed acyclic graph (DAG), G = (T, E),
where T = {1}, Ts, T5,..., T,,} denotes the set of n tasks,
E represents the set of o edges. Let C' = {C}, Co, Cs,...,
C) } denotes set of m heterogeneous clouds. Each edge C O,
represents the communication time between task 7;, 1 < i <
n and task Ty, 1 < ¢/ < n, i # 7. The expected time to
complete (ETC) of a task 73, 1 < ¢ < n, on a cloud Cj,
1 < j < m, is represented as ETC;;. Note that ETC;; #
ETCij, 1 <i<n,1<4j, 5 <m,j#j. Given an ETC
matrix, the WFS problem involves assigning n tasks to m
clouds while respecting task precedence constraints, with the
objectives of (1) minimizing makespan, and (2) maximizing
resource utilization.

IV. PROPOSED ALGORITHM

The HEFT-IPF algorithm is developed to address the WFS
problem in an HMC environment, with the dual objective of
reducing makespan and increasing resource utilization. The
algorithm characterizes the tasks by dividing their execution
into three phases: initialization, processing, and finalization.
It allows a dependent task to start the initialization phase
in a cloud before its predecessor completes its finalization
phase on another cloud. For instance, assume that the ETC
of a task 7; and a successor task 7y on a cloud Cj is
ETC;; and ETCyj. This value represents the total time
spent across three distinct phases. As a result, the ET'C};; or
ETCy; is divided using three values based on 71, 72, and T3,
respectively. Specifically, the initialization (), processing (P)
and finalization (F') phases take 7 x ETC;;, 72 x ETCyj,
and 73 x ETC;; time units for task T; and 7y x ETCly,
7o X ETCyj;, and 73 x ETCy; time units for task 77,
respectively. Note that 71 + o + T3 = 1l and 0 < 7y, T2, T3 <
1. Mathematically,

I(T;,Cj) =1 X ETC,j, P(T;,Cj) = 79 x ETCy;, F(T;,C;) = 73 X ETC;; (1)

(T, Cj) =71 X BETCyy;, P(Ty, C5) = w3 x BETC,y;, F(T;, Cj) = 73 x BETCy,

(27)

HEFT-IPF algorithm allows a dependent task 7}, to start the
initialization phase in a cloud (i.e., 7 x ET'Cy ;) before its
predecessor task T; completes its finalization phase on another
cloud (i.e., 73 x E'T'C;;). The processing phase of the depen-
dent task 7T can commence after the finalization of task 7.
HEFT-IPF algorithm performs the mapping process between
the tasks and clouds by following matching and scheduling. In
the matching, tasks are prioritized to determine their execution
order according to computation and communication times. Let
priority,(T;) represent the upward priority of task 7;, which
is calculated by adding the average ETC across all the clouds
(i.e., ETC;) and the maximum sum of the communication
time between task 7; and successor task(s), and the upward
priority of the successor task(s). Let T, represent the only

successor of task T;, and succ(T;) denote the set of successors
of T;. The upward priority is calculated as follows.

priorityy(T;) = ETC; + maz  (CO;y + priority.(Ty))  (3)

i’ €suce(Ty)

The upward priority helps to determine the critical tasks
and ensures that those tasks are scheduled earlier. It plays a
significant role in the HEFT-IPF algorithm by determining the
task order to improve workflow efficiency. The upward priority
of the exit task 7T.,;; is determined as follows.

PTiOTityu (Tezit) = ETCcz'Lt (4)

Once the upward priorities of the tasks are calculated,
they are sorted according to their priority values. Tasks are
scheduled to the most suitable cloud based on the minimum
start time (MST) and minimum completion time (MCT). Note
that MST and MCT help in selecting the most appropriate
cloud for a task while considering resource availability and
task dependencies. The MST of task 7; on cloud C; (i.e.,
MST(T;,Cj)) is determined by considering the maximum
of the ready time of cloud Cj; (i.e., ready(C;)) and the
maximum of the MCT of all the predecessors of task 7; (i.e.,
MCT(pred(T;))) if task T; and its pred(T;) are assigned to
the cloud in which one of the predecessors is assigned on
the cloud C;. Otherwise, the MST(T;,C;) is calculated by
taking the maximum of the ready(C;) and the maximum end
time of the processing of all the predecessors of task 7; (i.e.,
P.,q(pred(T;))). Mathematically,

max(ready(C;), max(MCT (pred(T5)))),

if one of the predecessors is assigned on the cloud C);
MST(T;,Cj) = (5)
max(ready(C;), max(Pena(pred(T;)))),

Otherwise

The MST of the entry task Ty, is calculated as zero.
Once the MST is calculated, the MCT is calculated by adding
the MST and ETC. For instance, the MCT of task 7’; on cloud
Cj is calculated as follows.

MCT(TZ', Cj) = MST(TZ', Cj) + ETCZ'j 6)

Once the HEFT-IPF algorithm has determined the upward
priority, MST, and MCT, it allocates the tasks to the clouds as
follows. The MST of the initialization phase of task 7 starts
only when cloud Cj is ready, and the processing phase of its
predecessor task (i.e., pred(T5;)) is completed. Mathematically,

MST(I(T;), Cj) = max(ready(Cy), Pend(pred(T;))) @)

Note that the max(Penq(pred(T;))) is not used in Eq. (7) as
the cloud Cj is already determined using Eq. (6). The MCT of
the initialization phase of task 7; on cloud C} is calculated as
the sum of M ST(I(T;),C;) and I(T;,C;), where I(T;,C;)
be the duration of the initialization phase of task 7} on cloud
C;. Mathematically,

MCT(I(T3),Cj) = MST(I(T),Cy) + I(T3, Cj) (8)



The MST of task T; processing phase on cloud C; starts
only after completing its initialization phase and the finaliza-
tion phase of all the predecessor tasks of task 7;. Mathemati-
cally,

MST(P(Ty),Cy) = maz(MCT(I(T3), C;), MCT (pred(T3))))  (9)

The MCT of the processing phase of task 7; on cloud C}
is calculated as the sum of M ST (P(T;),C;) and P(T;,C}),
where P(T;,C;) be the duration of the processing phase of
task 7; on cloud C;. Mathematically,

MCT(P(T;),C;j) = MST(P(T3;),Cj) + P(T3,C)) (10)

The MCT of the finalization phase of task 7; on cloud C}
(.e., MCT(T;,C;) or MCT(F(T;),C})) is calculated as the
sum of MCT(P(T;),C;) and F(T;, C;), where F(T;,Cj;) be
the duration of the finalization phase of task 7; on cloud Cj.
Mathematically,

an

The step-by-step process of the HEFT-IPF algorithm is
presented in Algorithm 1.

MCT(T;,C;) = MCT(P(T}), Cy) + F(T;, Cy)

Algorithm 1 HEFT-IPF: A Three-Phase Scheduling Algorithm

Inputs: G(V, E), ETC, and CO
Outputs: Task ordering, makespan, and resource utilization
1: for each task 7; in reverse topological order do
2: Compute the upward priority of task 7; using Eq. (3)
3: end for
4: Sort the tasks in non-increasing order of priority and place them
in queue
: while there are tasks that are unscheduled in queue ) do
Select task 7; with highest-priority from queue @
for each cloud C; do
Calculate M ST (T3, C;) using Eq. (5)
9: Calculate MCT(T;,C;) using Eq. (6)
10: end for
11: Allocate task 75 to cloud C; with the minimum MCT
12: Remove task T; from queue Q
13: Divide ETC” into I(Ti,C]’), P(Ti,Cj), and F(Tl,C])
using Eq. (1)
14: Calculate the M ST and M CT using Eq. (7) to Eq. (11)
15: Update the ready(Cj)
16: Execute the task 75
17: end while

AN

A. Illustration

Consider a DAG with ten tasks (i.e., 17 to T}g) as shown
in Fig. 3 and three clouds (i.e., C; to C3). The computation
time for each task on the different clouds is presented in the
second to fourth columns of Table I. The communication times
between tasks are indicated alongside the edges in Fig. 3.

HEFT-IPF algorithm uses Eq. (3) to compute the priority
of each task starting from the exit task, where the priority of
the exit task is initialized using Eq. (4). The priority of task
Ty is determined as 19 (i.e., ET'C;) and the priority of task
Ty is determined as 46.67 (i.e., 17.67 + maxz(10.00 + 19.00)).
Table I presents the task priority calculation in the last column.
The tasks are then sorted in decreasing order based on their
priority Values, i.e., Tl, T3, Tg, T4, TG, T5, T7, Tg, Tg, and

Fig. 3: A DAG with ten tasks.

TABLE I: Task computation times across different clouds and
the calculation of task priorities

Task | C1 | C2 | C3 ETC; suce(Ty) | priority, (T;)
| 13| 12 | 15 | 1325 o333 1 2,34 148.66
T, | 16 | 17 | 14 15.67 5 115.00
T5 | 12 | 18 | 19 1633 6 123.33
Ty | 17 | 15 | 14 15.33 7 102.33
Ts | 19 | 16 | 12 15.67 8 079.33
Ts | 14 | 21 | 17 17.33 8 089.00
Ty | 18 | 13 | 15 1533 9 073.00
Ts |21 | 14| 12 15.67 10 050.67
To | 15 | 20 | 18 17.67 10 046.67
Tw | 22 | 19 | 16 19.00 - 019.00

T1o. Next, the MST and MCT are calculated using Eq. (5)
and Eq. (6) to assign tasks to the clouds. For instance, the
MST of task T} on three clouds is 0, and the MCT of task T}
on three clouds is 13 (i.e., 0 + 13), 12, and 15, respectively.
Since cloud C5 gives MCT as 12, task 77 is allocated to
cloud C5. Here, the execution time ETCio = 12 is divided
into three phases: initialization I(7T7,C3) = 1.2, processing
P(T1,C3) = 9.6, and finalization F(T1,C3) = 1.2. The
minimum start and completion times for the initialization
phase are M ST(I(Ty),C3) =0 and MCT(I(Ty),C3) = 1.2,
respectively. The processing phase starts at M ST (P(Ty),C5)
= 1.2 and completes at MCT(P(Ty),Cs) = 10.8. The MCT
of task 77 on cloud Cy is MCT(Ty,Cs) = 12.

The next highest-priority task is 73, which is scheduled as
follows. The MST of task 73 on clouds C7, C5, and Cj is
10.8, 12, and 10.8, respectively. The corresponding MCTs are
22.8 (i.e., 10.8 + 12.0), 30, and 29.8. Since cloud C; gives
the minimum completion time of 22.8, task T3 is allotted to
cloud C7. Here, the execution time ETC3; = 12 is divided
into three phases: initialization I(7T3,C7) = 1.2, processing
P(T5,C1) = 9.6, and finalization F(T5,C4) = 1.2. The min-
imum start and completion times for the initialization phase
are MST(I(T3),C1) = 10.8 and MCT(I(T3),C) = 12,
respectively. The processing phase starts at M ST (P(T13),C1)
= 12 and completes at M CT(P(T5),C1) = 21.6. The MCT of
task T3 on cloud C; is MCT (T3, Cy) = 22.8. Similarly, other
tasks are allotted to the respective clouds, as shown in Fig.
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Fig. 4: Gantt chart of the HEFT-IPF algorithm.

4. The makespan of the HEFT-IPF and HEFT algorithms is
68.20 and 99 time units for executing ten tasks on three clouds.
On the other hand, the resource utilization of the HEFT-IPF
and HEFT algorithms is 79.13% and 53.87%. It shows the
superior performance of the HEFT-IPF algorithm compared
to the HEFT algorithm.

V. SIMULATION SETUP, RESULTS AND DISCUSSION

The simulations were conducted on an ASUS Vivobook
Pro 15 system configured with Windows 11 operating system
(OS), an advanced micro devices (AMD) Ryzen 5 5600H
processor, integrated Radeon graphics, and 16 gigabytes (GB)
of random access memory (RAM). The HEFT and HEFT-IPF
algorithms were implemented in Python and executed using
Google Colab. We used five standard scientific workflows,
namely epigenomics, LIGO, cybershake, SIPHT, and montage,
from the pegasus workflow gallery [13], [14], as shown in
Fig. 5 to compare the HEFT and HEFT-IPF algorithms. These
workflows are briefly discussed as follows. Epigenomics [20]
workflow was developed by the University of Southern Cali-
fornia (USC) epigenome center to automate genome sequenc-
ing tasks. It processes deoxyribonucleic acid (DNA) sequence
data in parallel, converts file formats, filters out noisy and con-
taminating sequences, maps sequences to a reference genome,
and generates a global map of sequence densities. LIGO [20],
[21] workflow analyzes data to detect gravitational waves from
cosmic events like the merging of black holes or neutron stars.
It divides time-frequency data into smaller blocks and applies
matched filtering to identify potential signals. Cybershake
[20], [22] workflow was developed by the Southern California
earthquake center and is used to study earthquake risks in
different regions. It simulates fault movements, models ground
shaking, generates synthetic seismograms, and estimates the
probability and effects of earthquakes. SIPHT [20], [23] is
a bioinformatics workflow that identifies small untranslated
RNAs (sRNAs) using the national center for biotechnology
information (NCBI) database. It processes genomic sequences,
predicts transcriptional terminators, and annotates potential
SRNA genes. Montage [20], [24] is an open-source application
developed by the national aeronautics and space administration
(NASA) or the infrared processing and analysis center (IPAC).
It combines images in a specific format, called a flexible
image transport system (FITS), to create custom sky mosaics.
It adjusts the image scale and orientation of the input images,

corrects background emission levels, and merges the results
into a final mosaic. It can be executed in a grid computing
platform like TeraGrid. Each workflow contains different lev-
els of complexity and task dependencies, which helped us to
measure and validate the existing and proposed algorithms’
performance regarding the makespan and resource utilization
metrics. The maximum completion time across all clouds is
called the makespan (MS). Mathematically,

MS =max(MS(Cy), MS(Cs),...,MS(Cy))  (12)

where Cj, 1 < j < m, represents the MS of cloud Cj in
the HMC environment. Resource utilization (RU) is the ratio
between the average makespan over all the clouds and the
overall makespan. Mathematically,

., MS(C)

RU = 13)

MS

We took two datasets, namely small and large. In the
small dataset, the number of tasks is 20 for epigenomics,
cybershake, and montage. These workflows’ computation and
communication times are considered as [5 ~ 21] and [9 ~
24], respectively. The number of tasks in LIGO and SIPHT
is 40 and 30. LIGO’s computation and communication times
are [9 ~ 21] and [9 ~ 27]. SIPHT’s computation and com-
munication times are [5 ~ 21] and [9 ~ 24]. Fig. 6 and
Fig. 7 show the comparison of MS and RU between the
existing algorithm, HEFT, and the proposed algorithm, HEFT-
IPF, in the small dataset. The HEFT-IPF algorithm improves
the MS compared to the HEFT algorithm as follows. In the
epigenomics workflow, the MS of the HEFT algorithm is 127
time units, while the MS of the HEFT-IPF algorithm reduces
it to 94.30 time units. On the other hand, the RU of the HEFT-
IPF algorithm achieves 86.82%, while the RU of the HEFT
algorithm achieves 58.53%. We found similar improvements in
the other scientific workflows, LIGO, cybershake, SIPHT and
montage. The results clearly show that the HEFT-IPF algo-
rithm minimizes the MS and utilizes the resources efficiently
than the HEFT algorithm in all the workflows.

In the large dataset, the number of tasks, computation,
and communication times for the scientific workflows are
considered as per the pegasus workflow gallery [13]. Fig. 8
shows a makespan comparison between HEFT and HEFT-
IPF algorithms. In the epigenomics workflow with 529 tasks,
the HEFT-IPF algorithm achieves an MS of 3796.13 time
units, compared to the MS of 3855.95 time units in the
HEFT algorithm, showing its superiority. Similar improve-
ments are observed in other workflows. Fig. 9 shows a RU
comparison between the HEFT and HEFT-IPF algorithms. In
the epigenomics workflow, the HEFT-IPF algorithm achieves
an RU of 99.32%, compared to the RU of 98.36% in the
HEFT algorithm. Similar improvements are observed in the
remaining workflows. The simulation results in terms of MS
and RU show that the HEFT-IPF algorithm effectively im-
proves the HEFT algorithm across all the scientific workflows.
Specifically, we found that the HEFT-IPF algorithm achieves a
varying improvement of 2% to 59% in MS and 15% to 48% in
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Fig. 5: Scientific workflow diagrams: (a) Epigenomics, (b) LIGO, (c) CyberShake, (d) SIPHT, and (¢) Montage.
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Fig. 6: Comparison of makespan across scientific workflows
using HEFT and HEFT-IPF algorithms in the small dataset.
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Fig. 7: Comparison of resource utilization across scientific
workflows using HEFT and HEFT-IPF algorithms in the small
dataset.

RU, compared to the HEFT algorithm. However, the average
improvement of the HEFT-IPF algorithm is 28.36% in MS and
23.33% in RU, compared to the HEFT algorithm, showing the
effectiveness of the proposed algorithm.

VI. CONCLUSION

We have proposed the HEFT-IPF WEFS algorithm for an
HMC environment. It characterizes the tasks into three phases:
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Fig. 8: Comparison of makespan across scientific workflows
using HEFT and HEFT-IPF algorithms in the large dataset.
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Fig. 9: Comparison of resource utilization across scientific
workflows using HEFT and HEFT-IPF algorithms in the large
dataset.

initialization, processing, and finalization, and it performs the
dependent task(s) initialization during the finalization of the
predecessor task(s). The HEFT-IPF algorithm’s performance
is compared with the existing algorithm HEFT by considering
five scientific workflows and assessed using two performance
metrics, MS and RU. The results indicate that the HEFT-IPF
algorithm achieves an improvement of 28.36% in MS and



23.33% in RU compared to the HEFT algorithm. However,
the proposed algorithm doesn’t consider energy while mapping
the tasks with clouds, which can be integrated to make it more
realistic.
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