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Abstract—The rapid expansion of cloud computing has
made it increasingly difficult for users to determine the most
appropriate cloud service provider (CSP). The provider offers
diverse services, typically assessed based on quality of service
(QoS) attributes, including throughput, reliability, availability,
latency, and response time. Researchers often present these
QoS attributes in a decision matrix and apply multi-attribute
decision-making (MADM) algorithms to evaluate and rank the
CSPs. However, in practical scenarios, not all CSPs satisfy
every QoS attribute, leading to unavailable performance mea-
sure values in a decision matrix. To address this challenge, we
develop a hybrid MADM framework for CSP selection that
handles an incomplete decision matrix. The framework inte-
grates QoS-aware MADM (QMADM) algorithms, QTOPSIS-
W and QVIKOR-W with attribute weights (QMADM-W). It
employs three imputation techniques to determine unavailable
performance values: minimum (min), maximum (max), and
mean. The weights are derived using the analytic hierarchy
process (AHP) and the analytic network process (ANP). Sim-
ulation results using the QoS for web services (QWS) dataset
demonstrate the framework’s effectiveness in QTPOSIS-W,
with consistent and robust performance observed under the
mean imputation technique through sensitivity analysis. The
proposed algorithms offer a reliable solution for selecting an
optimal CSP, even for an incomplete decision matrix.

Index Terms—Analytic Hierarchy Process, Analytic Network
Process, Cloud Service Selection, Imputation, Multi-Attribute
Decision-Making, Quality of Service, Sensitivity.

I. INTRODUCTION

The rapid expansion of cloud computing has revolution-
ized how computing resources are accessed by users and
managed by CSPs [1], [2]. CSPs offer diverse services
measured through various QoS attributes, including through-
put, reliability, availability, latency, and response time [3].
However, selecting the most suitable CSP is challenging due
to variations in performance measure values across CSPs
[4]. MADM algorithms have been developed to rank CSPs
based on QoS attributes [5], [6] to address this. Nevertheless,
the selection process is quite challenging with unavailable or
incomplete QoS data in a decision matrix, as many CSPs do
not satisfy all QoS attributes [7], [8]. Some other challenges
include categorizing QoS attributes, determining weights,
and adapting to evolving user requirements [9], [10].

This paper proposes a hybrid MADM framework for
selecting the best CSP from m CSPs. Each CSP is char-
acterized by n QoS attributes, with each QoS attribute
assigned a corresponding weight, hence called QMADM-W.
The QoS attribute weights are derived using the AHP and the
ANP. QMADM-W uses two QMADM algorithms, namely
the technique for order preference by similarity to ideal

solution (TOPSIS) and VlseKriterijumska Optimizacija I
Kompromisno Resenje (VIKOR) from our earlier study [11],
[12], hence called QTOPSIS-W and QVIKOR-W, and three
imputation techniques, min, max, and mean, to determine
unavailable performance values in the decision matrix. The
simulation results are presented for both QMADM algo-
rithms with and without unavailable performance measure
values, using the QWS dataset. The results indicate that
the mean imputation technique consistently provides more
stable and reliable rankings than other techniques in the
QTOPSIS-W algorithm. This paper uses sensitivity analysis
to determine the robustness of the proposed framework,
which can be applied to select CSPs in real-life scenarios.

To motivate the significance of the problem addressed
in this paper, consider three CSPs: Amazon web services
(AWS), Google cloud platform (GCP), and Microsoft Azure.
While all offer core compute services, such as AWS elastic
compute cloud, GCP compute engine, and Azure virtual
machines, their support for advanced features varies. For in-
stance, Azure supports blockchain-as-a-service, while AWS
and GCP do not. AWS and Azure provide edge artificial
intelligence (AI) through Panorama and Azure percept, re-
spectively, but GCP lacks a native counterpart. The presence
and absence of specialized services can significantly impact
the decision-making process. Therefore, selecting the most
appropriate CSP becomes challenging when specific per-
formance measure values are unavailable or inconsistently
supported across CSPs [13].

The rest of this paper is structured as follows: Section II
discusses related work and its insights. Section III defines
the problem statement. Section IV introduces the proposed
framework. Section V presents the simulation results and
sensitivity analysis. Finally, Section VI recaps the paper and
presents future work.

II. PREVIOUS STUDIES

The selection of a CSP is a challenging MADM problem,
as it relies on various QoS attributes and their associated
weights. Several MADM algorithms, especially TOPSIS
and VIKOR, have been widely used in the literature. A
brief overview of the various application domains where re-
searchers have utilized these algorithms is stated as follows.
Singh and Sidhu [14] have employed the AHP algorithm
to calculate attribute weights. They have integrated it with
the TOPSIS algorithm to rank CSPs, thereby evaluating the
performance of cloud services. Lee et al. [15] have proposed



MADM algorithms, including the weighted sum method
and TOPSIS, to rank renewable energy sources in Taiwan’s
electricity generation. Rafieyan et al. [9] have developed a
framework for cloud computing by integrating the best-worst
and VIKOR algorithms. Their results have shown improved
performance over existing algorithms, making it effective for
large-scale cloud systems.

Kumar et al. [16] have proposed a framework to choose
the CSP using MADM algorithms. Their framework has
combined the AHP and the TOPSIS algorithms to identify
the best CSP. Their approach has offered users a systematic
and effective decision-making tool, enhancing their ability
to make informed cloud service choices and improving
user satisfaction and trust in cloud computing environ-
ments. Saha et al. [17] have applied MADM algorithms,
TOPSIS, and VIKOR, to find the best CSP by assessing
QoS attributes. Zoel et al. [18] have proposed a hybrid
Internet of things (IoT) selection framework combining
TOPSIS and VIKOR algorithms, with criteria weights de-
rived using the best-worst method from multiple decision-
makers. Their approach has delivered consistent and robust
rankings. However, most existing studies assume a complete
decision matrix, where all QoS attributes are available. Some
QoS attributes may be unavailable in practice, especially in
dynamic cloud environments. This gap motivates our work
on CSP selection under the incomplete decision matrix.

III. PROBLEM STATEMENT

Let us consider a set of m CSPs, denoted as C'SP
= {CSP,,CSP,,CSPs,...,CSP,}, and a set of n at-
tributes, A = {4y, Ag, A3, ..., A,}, where n > m. Each
attribute A;, 1 < j < n, is associated with a weight W
and is categorized as beneficial (to be maximized) or non-
beneficial (to be minimized). The sum of the weights of
the QoS attributes need not be equal to 1. Mathematically,
>_5—y Wj # 1. The decision matrix consists of 1 rows and
n columns, where each value P;; represents the performance
value of the CSP, C'SP;, 1 < i < m, with respect to the
QoS attribute A;, 1 < j < n. The objective is to identify
the best CSP and rank the CSPs based on the QoS attributes
when some performance measure values are unavailable.

IV. PROPOSED HYBRID MADM FRAMEWORK

This section outlines the proposed hybrid MADM frame-
work incorporating AHP and ANP algorithms to determine
QoS attribute weights (Algorithms 1 and 2) and two MADM
algorithms, QTOPSIS-W and QVIKOR-W, to rank CSPs
and identify the best CSP (Algorithms 3 and 4), in order to
handle the unavailable performance measure values in the
decision matrix. AHP forms a comparison matrix by taking
every pair of QoS attributes and assessing their relative
importance on a 1 to 9 scale. The matrix is then normalized,
and the average of each row gives the final weights, which
reflect the priority of attributes. A consistency check is
also performed to ensure the weight calculation is logically
consistent and reliable [19]. Unlike AHP, which assumes
attributes are independent, ANP considers the interdepen-
dencies and feedback among them. Pairwise comparisons are

used to build a supermatrix, which is then normalized and
raised to a limit to obtain the final weights, reflecting more
realistic priorities of QoS attributes [19]. These QoS attribute
weights are subsequently used in the QTOPSIS-W and
QVIKOR-W algorithms. Further, we use three imputation
techniques: min, max, and mean to handle these values. The
detailed description of two MADM algorithms is discussed
in the following subsections.

Algorithm 1 Weight Calculation using the AHP Algorithm
Inputs: A set of n QoS attributes

Output: A set of n weights, W = {W1,Wa,..., Wy}
1: for j =1 to n do

2 for ' =1 ton do

3 if j = j/ then

4: Set M;;r =1

5: else if 7 # j/ then

6: Set M;;» = relative importance of attribute j over 7’
7 Set M/ ; = ﬁ

8: end if

9: end for

10: end for

11: for j =1 to n do
12: for 5/ =1 ton do

13: Set M, = il
. Jj’ Z?Zl ]V[j]‘/

14: end for

15: end for

16: for 5/ =1 to n do
17: Set Wj, = %

n_oMY.
Jj=1 ’
18: end for 7

Algorithm 2 Weight Calculation using the ANP Algorithm

Inputs: A set of n QoS attributes, ¢ iterations, and e tolerance
Output: A set of n weights, W = {Wy, Wa,..., Wy}

1: Steps 1 to 10 are same as Steps 1 to 10 of AHP algorithm
11: for 5 =1 to n do

120 Set Wy = L 3% My
13: end for

14: for 5 =1 to n do

15: for ;' =1 to n do

> Local priority vector

16: Set SM;;r = W; > SM = Supermatrix
17: end for
18: end for

19: Initialize SMjjmie = SM

20: for [ =1 to t do

21: Set SMpew = SMijmit X SM
22: if |SMnew - SMlimitI < € then

> SMjimi¢ = Limit supermatrix

23: break

24: end if

25: Set SMiimit = SMnew
26: end for

27: for j =1 ton do
28:  Set W; = SMiimit(4, 1)

29: end for
30: for j =1 ton do
31 Set W; = 2
T Wy
32: end for

A. QTOPSIS-W Algorithm

QTOPSIS-W is a QMADM algorithm that is based on
an ideal CSP. It selects the CSP with the greatest geo-
metric distance from the ideal worst-performing CSP and
the smallest distance from the ideal best-performing CSP.
This algorithm consists of five steps: normalization, handling
unavailable performance measure values, determining the



product, value selection and distance measurement, and CSP
selection. These steps are described as follows.

1) Normalization: 1t is the ratio between the performance
measure value and the square root of the sum of all the
squared performance measure values. Mathematically,
ET?G*P (D

i=1\1

2) Handling Unavailable Performance Measure Values:
Unavailable performance measure values create a significant
challenge in the decision matrix and conducting subsequent
analysis [11], [12]. To address this, we apply imputation
techniques as follows. We mitigate the unavailable perfor-
mance measure values by replacing them with the minimum
normalized value corresponding to the respective QoS at-
tribute. Mathematically,

NV, =

zij = min(NViy),1 < ik <m1<j<n 6)

where x;; is the unavailable performance measure value,
NV is the normalized value of attribute A; irrespective
of the CSP, and min is a pre-defined function to find
the minimum of a set of normalized values. Similarly, we
substitute the maximum normalized value for the unavailable
performance measure value. Mathematically,

Zij =mar(NVi;),1 <ik<m,1<j<n 3)

where max is a pre-defined function to find the maximum of
a set of normalized values. Similarly, we substitute the mean
normalized value for the unavailable performance measure
value. Mathematically,

1 ‘ .
mijfakZ_INij,lgzgm,lgjgn (@)

3) Determine the Product: QTOPSIS-W algorithm com-
putes the product of normalized QoS attribute weights and
normalized performance measure values.

4) Determine Best and Worst Solutions: The max (mx;)
and min (mn;) normalized performance measure values
concerning each attribute A;, 1 < j < n, are stated as
follows.

mz; =mar(NVi;),1<k<m,1<j<n 5)
mn; =min(NVi;),1<k<m,1<j<n (6)

Then the Euclidean distance, E Dgpest (EDgworst), 1 < k
< m, between the normalized performance measure values
of each CSP over the attributes and the best (worst)
normalized performance measure values among the CSPs
over the attributes is determined. Note that the best (worst)
normalized performance measure value is the maximum
(minimum) value for beneficial and the minimum (maxi-
mum) for non-beneficial QoS attributes. Mathematically,

n

EDgpest = | Y _(NVij — ma; or mn;)? (N
=1
EDiworst = Z(Nij — mn; or mx;)? ®)

Jj=1

Next, QTOPSIS-W finds the similarity index, Sg, 1 < k <
m, as follows.

EDyworst
" EDypest + EDguorst ©)
If S, =1 (S; = 0), then the CSP CSP; is the best (worst)
CSP over all the CSPs.

5) Ranking the CSPs: QTOPSIS-W algorithm ranks the
CSPs and selects the CSP with the maximum Sy, 1 < k <
m. The decreasing order of the Sj determines the rank of
the CSPs.

Sk

Algorithm 3 QTOPSIS-W Algorithm

Inputs: A decision matrix with m CSPs and n QoS attributes with weights
W) using AHP/ANP
Output: Ranking of CSPs
1: Normalize the decision matrix using Eq. (1)
2: for each unavailable performance measure value do
3: Replace the value with min, max, or mean normalized performance
measure value concerning the corresponding QoS attribute
: end for
: Find the sum of the product.
: for j=1tondo
Determine the max and min normalized performance measure
values with respect to each attribute by using the Eqs. (5) and (6)
8: end for
9: for £ =1 to m do
10: Calculate the ideal best-performing CSP using Eq. (7) and ideal
worst-performing CSP using Eq. (8)
11: end for
12: for k =1 to m do
13: Calculate the Sy using Eq. (9)
14: end for
15: Select the CSP with the maximum Sy,

Sowuas

B. QVIKOR-W Algorithm

QVIKOR-W is a QMADM algorithm that undergoes
five steps: normalization, handling unavailable performance
measure values, weighted and normalized distance, total
score, and CSP selection. Note that the process for handling
unavailable performance measure values in QVIKOR-W is
the same as QTOPSIS-W.

1) Normalization: The performance measure values are
normalized based on whether a QoS attribute is beneficial
or non-beneficial. The normalized value for a beneficial
QoS attribute is the ratio between the performance measure
value and the maximum performance value among all CSPs
concerning the corresponding attribute. Mathematically,

Py

ijam

NV = A1<k<m,1<j<n (10)
On the contrary, for a non-beneficial QoS attribute, the
normalized value is the ratio between the minimum perfor-
mance value among all CSPs concerning the corresponding
attribute and the performance measure value. Mathemati-
cally,

wazamﬂlgknggjgn (11)
Py;
Once the performance measure values are normalized,
QVIKOR-W checks for unavailable performance measure
values and replaces these values as explained in the Section
IV-A2.



2) Weighted Normalized Distance: QVIKOR-W algo-
rithm calculates the weighted normalized Manhattan dis-
tance (Q), as shown in Eq. (12), and the weighted normal-
ized Chebyshev distance (R), as shown in Eq. (13).

J X ( ] N[ k]) 2
(? = E 1<k< 1
k = mx; —mn; = =m ( )

Wj X (mxj 7Nij)

mx; —mn;
3) Total Score: QVIKOR-W algorithm calculates the
total score (1'Sy) by taking both @) and R values. Math-
ematically,

g = MQe=min(@) (1= 0)(Re —min(@)

maz(Q) — min(Q) ' maz(Q) — min(Q)
where v and (1 — v) are the weights of maximum group
utility and individual regret.
4) Ranking of CSPs: QVIKOR-W selects the minimum
total score. On the other hand, the increasing order of the
TS}, values specifies the rank of the CSPs.

Ry, = max(

y1<k<m  (13)

Algorithm 4 QVIKOR-W Algorithm

Inputs: A decision matrix with m CSPs and n QoS attributes with weights
W using AHP/ANP
Output: Ranking of CSPs
1: Normalize the decision matrix using Eq. (10) and Eq. (11)
2: Steps 2 to 4 are the same as Steps 2 to 4 of the QTOPSIS-W algorithm
3: Steps 5 to 7 are the same as Steps 6 to 8 of the QTOPSIS-W algorithm
8: for k=1 to m do
9: Compute @, and Ry using Eq. (12) and Eq. (13)
10: end for
11: for k =1 to m do
12: Calculate the T'S}, for each CSP using Eq. (14)
13: end for
14: Select the CSP with the minimum 7°S},

V. SIMULATION RESULTS AND SENSITIVITY ANALYSIS

The simulation runs were conducted on a system with an
Intel(R) Core(TM) ¢7-9700 central processing unit (CPU) @
3.00 GHz, 4.00 GB random access memory (RAM), running
a 64-bit Windows 10 Home operating system (OS) on an
x64-based architecture, using Python. The QWS dataset
[20] was used to evaluate QTOPSIS-W and QVIKOR-W
algorithms by considering the QoS attribute weights from
AHP and ANP algorithms under three imputation tech-
niques, namely, min, max, and mean, to identify the best five
CSPs. QTOPSIS-W algorithm (QVIKOR-W algorithm) sim-
ulation results, obtained using AHP and ANP algorithms, are
compared with the traditional TOPSIS algorithm (VIKOR
algorithm). The comparison, conducted on both incomplete
and complete decision matrices, is presented in Fig. 1 and
Fig. 2 (Fig. 3 and Fig. 4), respectively.

The QoS attribute weights of the AHP algorithm are 0.22,
0.12, 0.07, 0.06, 0.13, 0.04, 0.03, and 0.32, respectively.
Similarly, the weights of the ANP algorithm are 0.23, 0.16,
0.12, 0.14, 0.08, 0.10, 0.07, and 0.08, respectively. Note
that the results corresponding to each imputation technique
in the QTOPSIS-W algorithm (QVIKOR-W algorithm) are
denoted as QTOPSIS-WMin algorithm (QVIKOR-WMin

algorithm), QTOPSIS-WMax algorithm (QVIKOR-WMax
algorithm), and QTOPSIS-WMean algorithm (QVIKOR-
WDMean algorithm). In each figure, the z-axis denotes the
ranks (1 to 5), while the y-axis indicates the CSP numbers.
The results show minimal variation in rankings across impu-
tation techniques. Notably, the QTOPSIS-WMean algorithm
yields identical top five CSPs as the TOPSIS algorithm under
the AHP and ANP algorithms, indicating strong consistency.
In contrast, QTOPSIS-WMin and QTOPSIS-WMax algo-
rithms exhibit some ranking deviations. Similarly, QVIKOR-
WDMean algorithm aligns closely with VIKOR algorithm,
especially under AHP algorithm weighting, as seen in Fig.
3, where CSP 1161 consistently ranks first except under the
max imputation. Greater differences in ranking are observed
for QVIKOR-WMin and QVIKOR-WMax algorithms with
ANP algorithm weights (Fig. 4). These observations affirm
that the mean imputation technique provides more stable
and robust rankings within the hybrid MADM framework,
maintaining performance even with unavailable data.

A. Sensitivity Analysis

Sensitivity analysis is performed to evaluate CSPs’ rank-
ing stability and robustness against variations in QoS at-
tribute weights. We consider ten distinct scenarios, C; to
Cho. They are defined by pairwise exchanges (denoted as <)
of weights between selected QoS attributes: (A1 <> As), (Ao
< Az), (A3 < Ay), (A < As), (A5 < Ap), (Ag < Ar),
(A7 s Ag), (Al A Ag), (A2 <~ A4), and (A4 g A6) These
variations allow us to examine how changes in the relative
importance of QoS attributes influence the ranking of CSPs.
The results are illustrated in Fig. 5 and Fig. 6, which show
the ranking variations using the QTOPSIS-W algorithm with
the AHP algorithm and the QVIKOR-W algorithm with the
ANP algorithm, respectively. The z-axis represents the ten
scenarios in each figure, while the y-axis denotes the CSP
numbers. The figures visualize mostly stable rankings across
scenarios, offering insight into each algorithm’s resilience to
QoS attribute weight changes.
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Fig. 1. Comparison of best five CSPs using three imputation techniques
for QTOPSIS-W and TOPSIS using AHP.
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Fig. 2. Comparison of best five CSPs using three imputation techniques
for QTOPSIS-W and TOPSIS using ANP.

Our analysis shows that the QTOPSIS-W and QVIKOR-
W algorithms consistently rank CSP 1161 as the best CSP



across different weight configurations, except when using
the max imputation technique. Under this technique, CSP
1333 is ranked best by the QTOPSIS-WMax algorithm with
the AHP algorithm, while CSP 1190 is ranked best by the
QVIKOR-WMax algorithm with the ANP algorithm. These
results suggest that both algorithms demonstrate strong con-
sistency and robustness, even in the presence of unavailable
data. Additionally, the CSP rankings remain largely stable
across different imputation techniques. This highlights the
importance of using reliable decision-making processes to
manage uncertainty in performance data. Overall, the find-
ings confirm that these algorithms maintain stable rankings
despite variations in QoS attribute weights.
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Fig. 3. Comparison of best five CSPs using three imputation techniques
for QVIKOR-W and VIKOR using AHP.
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Fig. 4. Comparison of best five CSPs using three imputation techniques
for QVIKOR-W and VIKOR using ANP.
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Fig. 5. Sensitivity analysis of QTOPSIS-W and TOPSIS algorithms using
AHP in ten different scenarios.
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Fig. 6. Sensitivity analysis of QVIKOR-W and VIKOR algorithms using
ANP in ten different scenarios.

VI. CONCLUSION

This study has proposed a hybrid MADM framework for
CSP selection that effectively addresses unavailable perfor-
mance measure values in the decision matrix. Specifically,
two QMADM algorithms, QTOPSIS-W and QVIKOR-W,
are demonstrated in combination with two QoS attribute
weighting algorithms, AHP and ANP, to capture depen-

dencies among criteria and three imputation techniques to
identify the best CSPs while managing unavailable data. Our

analysis shows that imputation significantly helps in CSP
rankings, which remains stable even with unavailable data,
as per the sensitivity analysis. In particular, the mean im-
putation technique demonstrates superior consistency. This
framework enables informed decision-making even with
unavailable data. Future work could explore advanced im-
putation techniques, like machine learning-based techniques,
and adapt the framework for dynamic environments.
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