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Abstract

In this report, energy harvesting properties of Nafion films were investigated using piezoionic
generator (PIOG) and triboelectric generator (TEG) devices. Nafion films were prepared by simple
doctor blade deposition of a Nafion ionomer solution onto the aluminum electrode. The Nafion films
were characterized for their surface morphology, composition, and crystallinity. Furthermore, the
Nafion film exhibited strong substrate adhesion, a smooth surface, and amorphous nature. The
deposited Nafion film was used directly as an active layer to fabricate the PIOG and TEG devices with
ITO electrodes. Output voltages of ~450 mV and ~1.9 V have been observed for the PIOG and TEG
devices against biomechanical energy. The maximum instantaneous power produced by these devices
is approximately ~0.205 /W cm ™2, and ~0.128 W cm > for the PIOG and TEG, respectively. The
PIOG performance can be further improved using Nafion composite films. Similarly, the TEG
performance can be enhanced with other friction layers such as PVDF, PDMS, PMMA, and PVC films
instead of ITO. Therefore, the proposed nanogenerators can be used as touch sensors and energy
sources for wearable electronic devices in the future.

1. Introduction

Energy harvesting from the environment (e.g., solar, thermal, wind, tidal, and mechanical energy) is cost-
effective for sustainable economic growth and environmental concerns [1, 2]. Scavenging ubiquitous yet
unexplored forms of mechanical energy from the surroundings has recently gained research interest owing to its
easy availability in daily life. Triboelectric and piezoelectric energy harvesting devices have been developed to
scavenge mechanical energy [3, 4]. These devices convert ambient mechanical energy into electrical energy and
power portable electronic devices, sensors, healthcare, and Internet of Things (IoT) systems [5, 6]. In
piezoelectric energy harvesting, electrical output is generated due to the re-orientation of molecular dipole
moments with mechanical force [7]. In triboelectric energy harvesting, two dissimilar materials with opposite
electron affinities produce electrical energy due to the coupling effect of contact electrification and electrostatic
induction [8—10]. The major drawback of these devices is their low output powers. Currently, research focuses
on developing high-performance energy harvesting devices using different strategies [11, 12]. Common
strategies for both devices include testing/using new materials or material composites [13, 14] and poling the
materials [15, 16]. In the case of TENG, other strategies, such as increasing the effective contact area, surface
charge density, and device size, have been used to enhance the performance of TEG devices [17-19]. In the
present study, exploring new materials has been adopted for energy harvesting devices. A new material Nafion
was selected to fabricate energy harvesting devices using piezoionic effect and triboelectric effects. Nafion is the
generic name for a sulfonated tetrafluoroethylene-based fluoropolymer-copolymer. Nafion has been used
extensively in fuel cells as an excellent proton exchange membrane [20], in fuel cell applications [21, 22],
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actuators [23—27] supercapacitors [28], sensors [29], and energy harvesting [30-35]. In actuator applications,
not only pure Nafion but also Nafion composites such as Nafion-ZnO [36], and Nafion-CNT composite films
were used to enhance the actuation response [37]. It is also used in a wide range of applications like electrode
modifiers for sensor fabrication [38, 39], biosensors [40], controlled drug release [41], formation of an
antimicrobial coating [42], fluorine magnetic resonance imaging [43], gas drying [44], and catalysis [45, 46].
Recently, Self-charging supercapacitor power cells (SCSPCs) were demonstrated using piezoionic properties of
Nafion films [47]. These devices can be charged via mechanical stimulation due to the piezoelectric effect of the
separator. These SCSPCs have high potential applications in self-powered wearable healthcare monitoring
devices.

Only limited reports are available on the energy harvesting properties of Nafion polymer to the best of our
knowledge [30-35]. In a few reports, energy harvesting has been done from an ocean wave, underwater
vibration. In other reports, Nafion-filled PVDF films were used for energy harvesting. In all the reports, the
piezoelectric property of the Nafion polymer is utilized. However, Nafion film-based triboelectric energy
harvesting was not reported so far, and the present manuscript reports the same. In addition, most reports
directly utilized the Nafion membrane for energy harvesting. Whereas in this manuscript, Nafion films are
prepared using the doctor blade method, and this was not reported earlier in the literature. There are reports on
energy harvesting devices using polymers such as polyvinylidene fluoride (PVDEF), its copolymers (PVDF-TrFE),
polydimethylsiloxane (PDMS), nylon, and PVA [48, 49]. These devices utilized the piezoelectric and
triboelectric effects. The dielectric and induced charges are responsible for energy conversion in the case of
piezoelectric and triboelectric effects. In contrast, in the piezoionic effect, an electrical voltage is generated in
response to mechanical deformation with the mechanism of ion redistribution in specific ionic polymers and
polymer composites [29, 50, 51].

The present manuscript reports the energy harvesting properties of Nafion polymer film prepared by the
doctor blade coating technique. The fabricated piezoionic generator (PIOG) and triboelectric generator (TEG)
devices are demonstrated for bio-mechanical energy harvesting applications.

2. Experimental: materials and methods

2.1. Materials

A perfluorinated resin solution containing Nafion 1100W-20 wt. % ionomer procured commercially from
Dupont, Tin doped indium oxide (ITO) PET substrates with sheet resistance (10 £2/0J) obtained from Sigma
Aldrich and used as conducting electrodes. The aluminum (Al) foil of 0.1 mm of thickness was procured from
M s~ Special Metals Pvt. Ltd, India.

2.2. Preparation and characterization details of nafion films

The Nafion perfluorinated resin solution was directly coated on clean Al substrates using the doctor blade
coating technique. Figures 1(a)—(d) show the deposition process steps schematics. Before Nafion film
deposition, a clean aluminum substrate was masked on four sides, as shown in the schematic in figure 1(b), to
obtain a uniform shape and thickness of the film.

The masked substrate was placed on the smooth glass to support the substrate during the doctor-blading
operation. Nafion solution was initially dropped onto the Al substrate, and a spreader was driven through the
solution at a blade speed of 30 mm s~ . The obtained films were dried for 6 h, and the masked portions were
removed for electrode connections. Figure 1(e) shows the photograph of the transparent Nafion film obtained
on the substrate. Figure 1(f) shows the cross-sectional view of the Nafion film captured using an optical
microscope (Olympus BX53). The Nafion film thickness was measured at different locations from the cross-
sectional view of the Nafion film and was found to be ~75 pm. The prepared Nafion film’s crystallinity,
morphology, and composition were characterized using X-ray diffraction (XRD, Bruker D8) and scanning
electron microscopy (SEM, ZEISS). Fourier transform infrared spectroscopy (FTIR-4200) was used for the
identification of functional groups present in the Nafion film. Raman spectroscopy was performed using Horiba
Jobin Yvon Micro Raman HR800, using 532 nm He-Ne laser as the excitation source.

2.3.PIOG and TEG device fabrication and testing procedure

The schematics of both devices are shown in figures 2(a) and (d). The PIOG device (2 cm x 3 cm) was fabricated
by keeping the ITO electrode on the Nafion film surface and was sealed perfectly using Kapton tape to avoid
slight movement and shorting problems (figure 2(b)). For the TEG device preparation (5 cm x5 cm), the PET/
ITO electrode film and Nafion deposited substrate was placed on cardboard support, as shown in figures 2(e)—
(). In the next step, a sponge spacer was positioned such that a distance of 3 cm separates the Nafion and the top
electrode. Two connecting wires were attached to the aluminum and ITO in both devices, as shown in

2



10P Publishing

Eng. Res. Express4(2022) 045015 ABabuetal

~ Doctor blade

/

(c)

Clean Aluminum substrate ||
pr i e

g(d) m

Figure 1. (a)—(d) schematic of the steps involved in the Nafion film preparation, (e) Obtained Nafion film on the aluminum substrate,
(f) cross-sectional view of the Nafion film in the optical microscope for thickness measurement.
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Figure 2. (a) 3D Schematic of PIOG device, (b)—(c) photographs of the fabricated PIOG device, (d) 3D Schematic of TEG device,
(e)-(g) photographs of the TEG device fabrication steps and final device.

figures 2(c) and (d), respectively, to record the output voltage. The open-circuit voltage (V,.) was measured
using a digital oscilloscope (TBS1102) with an input impedance of 1 M. Furthermore, the output power and
stability of PIOG and TEG devices have been studied.

3. Results and discussions

3.1. Nafion thin film characterization

Figures 3(a)—(b) shows the surface morphology of the Nafion film at low and high magnifications. The Nafion
film surface is smooth overall, with a rough surfaces in a few places. Figure 3(c) shows the EDX spectrum of the
Nafion film, which reveals the presence of carbon, sulfur, and fluorine without any other impurity elements.
Figure 3(d) shows the XRD pattern of Nafion films coated on an Aluminum substrate, and it has two diffraction
peaks related to the Nafion at 20 = 16.5 and 39.5°. The first diffraction peak (26 = 16.5°) is associated with the
crystalline peak of Nafion, and the second diffraction peak (26 = 39.5°) refers to polyfluorocarbon chains in the
Nafion structure [52, 53]. The Raman spectra of the Nafion film is as shown in figure 3(e). The peaks around
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Figure 3. (a)-(b) SEM image of the Nafion film surface, (c) EDX spectrum collected from the Nafion surface, Nafion film (d) XRD
pattern, (e) Raman spectrum, and (f) FT-IR spectrum.

1060, 972.7,and 804 cm ™+ originate from the stretching vibrations of S—O, C-O, and S—C in the Nafion side
chains. The peaks observed at 730.5 cm ™' correspond to symmetric stretching vibrations of CF,. The peaks
observed at 382.5and 291 cm ' correspond to the wagging vibration mode of SO, and the twisting vibration of
CF,, respectively. The C—C single bond peaks were observed around 1295.4 and 1378.4 cm™'. The Raman
spectrum of the Nafion membrane is consistent with previous reports [54, 55]. Figure 3(f) shows the FTIR
spectrum of the Nafion. The transmittance band at 1236 cm ™' and 1126, 1153 cm ™" is due to the symmetric and
asymmetric vibrations of CF,_ respectively. The peak around 814 cm ™' is due to the symmetric stretching
vibrations of the C—S group. The small peak observed at 1053 cm™ "> and 982.2 cm ™" are attributed to the
symmetric SO5 stretching vibration and C—-O-C linkage [56]. The peak observed at 1410.9 cm ™ is assigned an
anti-symmetric stretchingS = 0 band in the -SO;H group. The transmittance peak at 1302 cm ™' corresponds
to the CF, stretching vibration [57]. At 1466.9 cm ™" the asymmetric peak is due to the combination of C-F
bands that occurs at the 1420 cm ™' and 1450 cm ™! of the amorphous PTFE [58].

3.2.PIOG and TEG device performance

The V,,. values of PIOG (finger tapping) and TEG (hand tapping) for repeated application of biomechanical
force are presented in figures 4(a) and (b), respectively. For each tapping, the V,,. of ~450 mV and ~1.9 V were
observed for PIOG and TEG devices. In the PIOG, finger tapping induces deformation of the Nafion film.
Consequently, ions are redistributed and produce a potential difference [29]. In a TEG, voltage is generated
owing to contact electrification and electrostatic induction [6].

Further, a switching polarity test was performed for both devices by reversing the connections to the
oscilloscope [59]. The response signals of the PIOG and TEG in both connection geometries are opposite with
respect to the previous signal, and this confirms the output generated by the PIOG and TEG devices alone, not
from the instrument noise. Noise cannot change polarity upon reversal of the connection. In addition to the
switching polarity test, alinear superposition of the voltage test was performed using two series-connected PIOG
devices. The resultant voltage of the series-connected PIOG devices (~900 mV) is almost double the single
device voltage (~450 mV) (See supplementary information, S1) [59, 60].

Further, the nanogenerator’s output voltage was measured across different load resistance values ((10 k€2 to
100 M) to calculate the instantaneous power and power density of the PIOG and TEG devices (See
supplementary information, S2). The output voltages of PIOG (finger tapping), TEG (hand tapping) at
different load resistance values are presented in figures 4(c) and (d), respectively.

The output voltage increased with the load resistance and saturated at a higher value of resistances for both
devices. The saturation voltage of ~454 mV and ~1.9 V were observed at load resistance values of 5 M2 and 10
M€ for PIOG and TEG, respectively. The difference in the saturation in output voltage at different load
resistance values for PIOG and TEG is due to their different internal resistances. The PIOG and TEG devices
have different device resistances due to the different sizes of the devices. Further, instantaneous power density
(P = V?/(A*Ry)) values nanogenerators are calculated and presented in figures 4(e)—(f). The power density
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Figure 5. The working mechanism of (a) TEG, (b) POIG.

characteristics of PIOG, and TEG is in good agreement with the previously reported literature [61, 62]. The
maximum instantaneous output power density of ~0.205 4W cm™%,0.128 W cm™? at load resistance values of
~100K€2, 1 M2 for PIOG and TEG, respectively.

The operating principle of polymer-based triboelectric generators has been well explained in the literature,
and the exact mechanism is adopted in this study [63—66]. A schematic description of electrical energy
generation based on contact electrification and electrostatic induction is presented in figure 5(a). The TEG is in
equilibrium at the initial state because there is no contact between the top ITO electrode and Nafion film
(figures 5(a) (i)). When an external force is applied to the TEG, these layers come into contact, and they exchange
charges based on their electron affinities to lose or gain charges. Nafion carries a negative charge, while the ITO
electrode carries the same amount of positive charge, keeping the TEG in a balanced state (figures 5(a) (ii)). An
electric potential is induced between the TEG’s top and bottom electrodes when the external force is removed
due to electrostatic induction. This potential difference drives the electrons from the bottom electrode to the top
electrode through the load resistance until the equilibrium state is reached. (figures 5(a) (iii)—(iv)). When an
external force was applied again, the electrostatically induced charges flowed back from the top electrode to the
bottom electrode and reached a balanced state (figures 5(a) (v)). When the ITO and Nafion films are in complete
contact again, all inducted charges are neutralized, and the TEG returns to the equilibrium state. This process of
the pressing and releasing cycle produces an AC electrical output. In the case of the PIOG device, protons and
sulfonic ions are randomly distributed in the Nafion polymer in the absence of external force, which results in
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Figure 6. Stability of the (a) PIOG and (b) TEG devices over 460 cycles, (c)-(d) Magnified view of the selected region of the stability
graphs.

zero potential across the electrodes. When force is applied to the POIG device, the potential difference is
generated due to the redistribution of protons and sulfonic ions in the Nafion film, as shown in figure 5(b).
Furthermore, the stability of the nanogenerator was tested over 460 cycles, and responses are shown in

figures 6(a)—(b). Figures 6(c)—(d) represent the magnified views of the selected regions of the stability graphs. The
high stability of PIOG, and TEG can be evidenced in figure 6.

4. Conclusions

In summary, piezoionic and triboelectric generators were fabricated using Nafion films, and their energy
harvesting properties were studied. The fabricated PIOG device exhibited an open-circuit voltage and output
power density of ~450 mV and ~0.205 /W cm > against finger tapping. Similarly, the fabricated TEG device has
shown open-circuit voltage and output power density of ~1.9 V and ~0.128 W cm ™ ?, against hand tapping,
respectively. These two devices exhibited excellent stability over many test cycles. Further investigations are

required to understand the piezoionic effect more clearly and improve the performance of PIOG and TEG
devices.
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