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Abstract
In this report, energy harvesting properties ofNafionfilmswere investigated using piezoionic
generator (PIOG) and triboelectric generator (TEG) devices. Nafionfilmswere prepared by simple
doctor blade deposition of aNafion ionomer solution onto the aluminumelectrode. TheNafionfilms
were characterized for their surfacemorphology, composition, and crystallinity. Furthermore, the
Nafionfilm exhibited strong substrate adhesion, a smooth surface, and amorphous nature. The
depositedNafionfilmwas used directly as an active layer to fabricate the PIOG andTEGdevices with
ITO electrodes. Output voltages of∼450mVand∼1.9 V have been observed for the PIOG andTEG
devices against biomechanical energy. Themaximum instantaneous power produced by these devices
is approximately∼0.205μWcm−2, and∼0.128μWcm−2 for the PIOG andTEG, respectively. The
PIOGperformance can be further improved usingNafion composite films. Similarly, the TEG
performance can be enhancedwith other friction layers such as PVDF, PDMS, PMMA, and PVCfilms
instead of ITO. Therefore, the proposed nanogenerators can be used as touch sensors and energy
sources forwearable electronic devices in the future.

1. Introduction

Energy harvesting from the environment (e.g., solar, thermal, wind, tidal, andmechanical energy) is cost-
effective for sustainable economic growth and environmental concerns [1, 2]. Scavenging ubiquitous yet
unexplored forms ofmechanical energy from the surroundings has recently gained research interest owing to its
easy availability in daily life. Triboelectric and piezoelectric energy harvesting devices have been developed to
scavengemechanical energy [3, 4]. These devices convert ambientmechanical energy into electrical energy and
power portable electronic devices, sensors, healthcare, and Internet of Things (IoT) systems [5, 6]. In
piezoelectric energy harvesting, electrical output is generated due to the re-orientation ofmolecular dipole
momentswithmechanical force [7]. In triboelectric energy harvesting, two dissimilarmaterials with opposite
electron affinities produce electrical energy due to the coupling effect of contact electrification and electrostatic
induction [8–10]. Themajor drawback of these devices is their low output powers. Currently, research focuses
on developing high-performance energy harvesting devices using different strategies [11, 12]. Common
strategies for both devices include testing/using newmaterials ormaterial composites [13, 14] and poling the
materials [15, 16]. In the case of TENG, other strategies, such as increasing the effective contact area, surface
charge density, and device size, have been used to enhance the performance of TEGdevices [17–19]. In the
present study, exploring newmaterials has been adopted for energy harvesting devices. A newmaterial Nafion
was selected to fabricate energy harvesting devices using piezoionic effect and triboelectric effects. Nafion is the
generic name for a sulfonated tetrafluoroethylene-based fluoropolymer-copolymer. Nafion has been used
extensively in fuel cells as an excellent proton exchangemembrane [20], in fuel cell applications [21, 22],
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actuators [23–27] supercapacitors [28], sensors [29], and energy harvesting [30–35]. In actuator applications,
not only pureNafion but alsoNafion composites such asNafion-ZnO [36], andNafion-CNT composite films
were used to enhance the actuation response [37]. It is also used in awide range of applications like electrode
modifiers for sensor fabrication [38, 39], biosensors [40], controlled drug release [41], formation of an
antimicrobial coating [42], fluorinemagnetic resonance imaging [43], gas drying [44], and catalysis [45, 46].
Recently, Self-charging supercapacitor power cells (SCSPCs)were demonstrated using piezoionic properties of
Nafionfilms [47]. These devices can be charged viamechanical stimulation due to the piezoelectric effect of the
separator. These SCSPCs have high potential applications in self-poweredwearable healthcaremonitoring
devices.

Only limited reports are available on the energy harvesting properties ofNafion polymer to the best of our
knowledge [30–35]. In a few reports, energy harvesting has been done from an oceanwave, underwater
vibration. In other reports, Nafion-filled PVDFfilmswere used for energy harvesting. In all the reports, the
piezoelectric property of theNafion polymer is utilized.However, Nafionfilm-based triboelectric energy
harvestingwas not reported so far, and the presentmanuscript reports the same. In addition,most reports
directly utilized theNafionmembrane for energy harvesting.Whereas in thismanuscript, Nafionfilms are
prepared using the doctor blademethod, and this was not reported earlier in the literature. There are reports on
energy harvesting devices using polymers such as polyvinylidene fluoride (PVDF), its copolymers (PVDF-TrFE),
polydimethylsiloxane (PDMS), nylon, and PVA [48, 49]. These devices utilized the piezoelectric and
triboelectric effects. The dielectric and induced charges are responsible for energy conversion in the case of
piezoelectric and triboelectric effects. In contrast, in the piezoionic effect, an electrical voltage is generated in
response tomechanical deformationwith themechanism of ion redistribution in specific ionic polymers and
polymer composites [29, 50, 51].

The presentmanuscript reports the energy harvesting properties ofNafion polymer filmprepared by the
doctor blade coating technique. The fabricated piezoionic generator (PIOG) and triboelectric generator (TEG)
devices are demonstrated for bio-mechanical energy harvesting applications.

2. Experimental:materials andmethods

2.1.Materials
Aperfluorinated resin solution containingNafion 1100W-20wt.% ionomer procured commercially from
Dupont, Tin doped indiumoxide (ITO)PET substrates with sheet resistance (10Ω/,) obtained fromSigma
Aldrich and used as conducting electrodes. The aluminum (Al) foil of 0.1mmof thickness was procured from
Ms−1 SpecialMetals Pvt. Ltd, India.

2.2. Preparation and characterization details of nafionfilms
TheNafion perfluorinated resin solutionwas directly coated on cleanAl substrates using the doctor blade
coating technique. Figures 1(a)–(d) show the deposition process steps schematics. BeforeNafionfilm
deposition, a clean aluminum substrate wasmasked on four sides, as shown in the schematic infigure 1(b), to
obtain a uniform shape and thickness of the film.

Themasked substrate was placed on the smooth glass to support the substrate during the doctor-blading
operation.Nafion solutionwas initially dropped onto the Al substrate, and a spreader was driven through the
solution at a blade speed of 30mm s−1. The obtainedfilmswere dried for 6 h, and themasked portions were
removed for electrode connections. Figure 1(e) shows the photograph of the transparentNafionfilm obtained
on the substrate. Figure 1(f) shows the cross-sectional view of theNafionfilm captured using an optical
microscope (Olympus BX53). TheNafionfilm thickness wasmeasured at different locations from the cross-
sectional view of theNafionfilm andwas found to be∼75μm.The preparedNafionfilm’s crystallinity,
morphology, and compositionwere characterized usingX-ray diffraction (XRD, BrukerD8) and scanning
electronmicroscopy (SEM, ZEISS). Fourier transform infrared spectroscopy (FTIR-4200)was used for the
identification of functional groups present in theNafionfilm. Raman spectroscopywas performed usingHoriba
Jobin YvonMicroRamanHR800, using 532 nmHe-Ne laser as the excitation source.

2.3. PIOG andTEGdevice fabrication and testing procedure
The schematics of both devices are shown infigures 2(a) and (d). The PIOGdevice (2 cm× 3 cm)was fabricated
by keeping the ITO electrode on theNafionfilm surface andwas sealed perfectly usingKapton tape to avoid
slightmovement and shorting problems (figure 2(b)). For the TEGdevice preparation (5 cm×5 cm), the PET/
ITO electrode film andNafion deposited substrate was placed on cardboard support, as shown infigures 2(e)–
(f). In the next step, a sponge spacer was positioned such that a distance of 3 cm separates theNafion and the top
electrode. Two connecting wires were attached to the aluminumand ITO in both devices, as shown in
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figures 2(c) and (d), respectively, to record the output voltage. The open-circuit voltage (Voc)wasmeasured
using a digital oscilloscope (TBS1102)with an input impedance of 1MΩ. Furthermore, the output power and
stability of PIOG andTEGdevices have been studied.

3. Results and discussions

3.1. Nafion thinfilm characterization
Figures 3(a)–(b) shows the surfacemorphology of theNafionfilm at low and highmagnifications. TheNafion
film surface is smooth overall, with a rough surfaces in a few places. Figure 3(c) shows the EDX spectrumof the
Nafionfilm, which reveals the presence of carbon, sulfur, and fluorinewithout any other impurity elements.
Figure 3(d) shows theXRDpattern ofNafionfilms coated on anAluminum substrate, and it has two diffraction
peaks related to theNafion at 2θ=16.5 and 39.5°. Thefirst diffraction peak (2θ=16.5°) is associatedwith the
crystalline peak ofNafion, and the second diffraction peak (2θ=39.5°) refers to polyfluorocarbon chains in the
Nafion structure [52, 53]. The Raman spectra of theNafionfilm is as shown infigure 3(e). The peaks around

Figure 1. (a)–(d) schematic of the steps involved in theNafionfilm preparation, (e)ObtainedNafionfilm on the aluminum substrate,
(f) cross-sectional view of theNafion film in the opticalmicroscope for thicknessmeasurement.

Figure 2. (a) 3D Schematic of PIOGdevice, (b)–(c) photographs of the fabricated PIOGdevice, (d) 3D Schematic of TEGdevice,
(e)–(g) photographs of the TEGdevice fabrication steps and final device.
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1060, 972.7, and 804 cm−1 originate from the stretching vibrations of S–O,C–O, and S–C in theNafion side
chains. The peaks observed at 730.5 cm−1 correspond to symmetric stretching vibrations of CF2. The peaks
observed at 382.5 and 291 cm−1 correspond to thewagging vibrationmode of SO2 and the twisting vibration of
CF2, respectively. TheC–C single bond peakswere observed around 1295.4 and 1378.4 cm−1. The Raman
spectrumof theNafionmembrane is consistent with previous reports [54, 55]. Figure 3(f) shows the FTIR
spectrumof theNafion. The transmittance band at 1236 cm−1 and 1126, 1153 cm−1 is due to the symmetric and
asymmetric vibrations of CF2, respectively. The peak around 814 cm

−1 is due to the symmetric stretching
vibrations of theC–S group. The small peak observed at 1053 cm−1, and 982.2 cm−1 are attributed to the
symmetric SO3

− stretching vibration andC–O–C linkage [56]. The peak observed at 1410.9 cm−1 is assigned an
anti-symmetric stretching S=0 band in the -SO3H group. The transmittance peak at 1302 cm−1 corresponds
to theCF2 stretching vibration [57]. At 1466.9 cm

−1, the asymmetric peak is due to the combination of C-F
bands that occurs at the 1420 cm−1 and 1450 cm−1 of the amorphous PTFE [58].

3.2. PIOG andTEGdevice performance
TheVoc values of PIOG (finger tapping) andTEG (hand tapping) for repeated application of biomechanical
force are presented infigures 4(a) and (b), respectively. For each tapping, theVoc of∼450mVand∼1.9Vwere
observed for PIOG andTEGdevices. In the PIOG, finger tapping induces deformation of theNafionfilm.
Consequently, ions are redistributed and produce a potential difference [29]. In a TEG, voltage is generated
owing to contact electrification and electrostatic induction [6].

Further, a switching polarity test was performed for both devices by reversing the connections to the
oscilloscope [59]. The response signals of the PIOG andTEG in both connection geometries are opposite with
respect to the previous signal, and this confirms the output generated by the PIOG andTEGdevices alone, not
from the instrument noise. Noise cannot change polarity upon reversal of the connection. In addition to the
switching polarity test, a linear superposition of the voltage test was performed using two series-connected PIOG
devices. The resultant voltage of the series-connected PIOGdevices (∼900mV) is almost double the single
device voltage (∼450mV) (See supplementary information, S1) [59, 60].

Further, the nanogenerator’s output voltage wasmeasured across different load resistance values ((10 kΩ to
100MΩ) to calculate the instantaneous power and power density of the PIOG andTEGdevices (See
supplementary information, S2). The output voltages of PIOG (finger tapping), TEG (hand tapping) at
different load resistance values are presented infigures 4(c) and (d), respectively.

The output voltage increasedwith the load resistance and saturated at a higher value of resistances for both
devices. The saturation voltage of∼454mVand∼1.9 Vwere observed at load resistance values of 5MΩ and 10
MΩ for PIOG andTEG, respectively. The difference in the saturation in output voltage at different load
resistance values for PIOG andTEG is due to their different internal resistances. The PIOG andTEGdevices
have different device resistances due to the different sizes of the devices. Further, instantaneous power density
(P=V2/(A*RL)) values nanogenerators are calculated and presented infigures 4(e)–(f). The power density

Figure 3. (a)–(b) SEM image of theNafionfilm surface, (c)EDX spectrum collected from theNafion surface, Nafion film (d)XRD
pattern, (e)Raman spectrum, and (f) FT-IR spectrum.
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characteristics of PIOG, andTEG is in good agreementwith the previously reported literature [61, 62]. The
maximum instantaneous output power density of∼0.205μWcm−2, 0.128μWcm−2 at load resistance values of
∼100KΩ, 1MΩ for PIOG andTEG, respectively.

The operating principle of polymer-based triboelectric generators has beenwell explained in the literature,
and the exactmechanism is adopted in this study [63–66]. A schematic description of electrical energy
generation based on contact electrification and electrostatic induction is presented infigure 5(a). The TEG is in
equilibrium at the initial state because there is no contact between the top ITO electrode andNafionfilm
(figures 5(a) (i)).When an external force is applied to the TEG, these layers come into contact, and they exchange
charges based on their electron affinities to lose or gain charges. Nafion carries a negative charge, while the ITO
electrode carries the same amount of positive charge, keeping the TEG in a balanced state (figures 5(a) (ii)). An
electric potential is induced between the TEG’s top and bottom electrodes when the external force is removed
due to electrostatic induction. This potential difference drives the electrons from the bottom electrode to the top
electrode through the load resistance until the equilibrium state is reached. (figures 5(a) (iii)–(iv)).When an
external force was applied again, the electrostatically induced charges flowed back from the top electrode to the
bottom electrode and reached a balanced state (figures 5(a) (v)).When the ITOandNafionfilms are in complete
contact again, all inducted charges are neutralized, and the TEG returns to the equilibrium state. This process of
the pressing and releasing cycle produces anAC electrical output. In the case of the PIOGdevice, protons and
sulfonic ions are randomly distributed in theNafionpolymer in the absence of external force, which results in

Figure 4. Forward and reverse connectionVoc of (a)PIOG, (b)TEG; output voltage of (c)PIOG, (d)TEG across the different load
resistances; instantaneous power density of (e)PIOG, (f)TEG across the different load resistances.

Figure 5.Theworkingmechanism of (a)TEG, (b)POIG.
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zero potential across the electrodes.When force is applied to the POIGdevice, the potential difference is
generated due to the redistribution of protons and sulfonic ions in theNafionfilm, as shown infigure 5(b).

Furthermore, the stability of the nanogenerator was tested over 460 cycles, and responses are shown in
figures 6(a)–(b). Figures 6(c)–(d) represent themagnified views of the selected regions of the stability graphs. The
high stability of PIOG, andTEG can be evidenced infigure 6.

4. Conclusions

In summary, piezoionic and triboelectric generators were fabricated usingNafionfilms, and their energy
harvesting properties were studied. The fabricated PIOGdevice exhibited an open-circuit voltage and output
power density of∼450mVand∼0.205μWcm−2 againstfinger tapping. Similarly, the fabricated TEGdevice has
shownopen-circuit voltage and output power density of∼1.9 V and∼0.128μWcm−2, against hand tapping,
respectively. These two devices exhibited excellent stability overmany test cycles. Further investigations are
required to understand the piezoionic effectmore clearly and improve the performance of PIOG andTEG
devices.
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