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A B S T R A C T

As people became more aware of environmental issues, several designs of triboelectric energy harvesters based
on biocompatible and eco-friendly natural materials have been developed in recent years. This manuscript
reports a plant-based green triboelectric nanogenerator using extracted leaf powder of the Rumex vesicarius
plant and PET as triboelectric layers. When hand-tapped, the developed TENG generated an open-circuit
voltage (𝑉oc) of 3.86 V, and a short-circuit current (𝐼sc) of 3.78 μA, respectively. The device has the highest
power density of 0.1894 μW/cm2 at load resistances of ∼20 MΩ and can directly power up one light-emitting
diode. The TENG response has been tested over 1200 cycles, confirming its remarkable stability. The proposed
TENG can be a promising sustainable tool to capture mechanical energy from nature and our everyday actions
and thus convert it into electricity.
. Introduction

Over the decades, harvesting energy from the living environment
as been a global area of research due to its potential to produce
lean and sustainable energy to combat the energy crisis and the grow-
ng environmental issues caused by fossil fuels (Silva, 2013). Energy
arvesting technologies have been developed to transform renewable
nergy sources such as solar, wave, tidal, and wind into electrical
nergy to power a wide range of devices from micro to large-scale
ystems (Dambhare et al., 2021; Wang et al., 2018; Zheng et al., 2022).
owever, these energy resources require ample installation space and
aintenance costs, are confined to specific locations, are larger, and
epend on weather conditions.

Unlike other renewable energy sources, mechanical energy is safe,
vailable everywhere, and considered the most promising candidate to
eet increasing energy requirements. Various methods have been pro-
osed to extract electricity from mechanical energy such as human mo-
ion, wind, water waves, or other kinds of mechanical vibration based
n triboelectric, piezoelectric, and electromagnetic mechanisms (Zhou
t al., 2018; Zheng et al., 2017; Hu and Wang, 2014; Wang and Chang,
010). Triboelectric energy harvesting exhibits high energy conversion
fficiency, high output power, simple structure, flexibility, low produc-
ion cost, and a broad selection of materials (Luo and Wang, 2020; Zhu
t al., 2020; Walden et al., 2022; Li et al., 2020; Yang et al., 2022a;
uo et al., 2022; Hu et al., 2022; Zhang et al., 2021). Prof. Z.L Wang
oined triboelectric generator/ triboelectric nanogenerator names for
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triboelectric energy harvesting device (Wang and Song, 2006; Xu et al.,
2010). Triboelectric nanogenerators (TENGs) have recently emerged as
a very powerful method for harvesting mechanical energy into electri-
cal energy based on the triboelectric effect and electrostatic induction.
TENG’s vertical contact-separation (VCS) mode is best because of its
simple structure design, and physical damage due to the frictional force
between tribolayers is less than others (Supraja et al., 2022; Hasan
et al., 2022). The triboelectric layer material is the core element of the
TENG, which determines its output performance; therefore, exploration
and use of novel materials are critical areas of TENG research (Zhang
and Olin, 2020; Kim et al., 2020). In this manuscript, we used the
vertical contact-separation mode of TENG.

The most commonly used friction layers are polytetrafluoroethylene
(PTFE), fluorinated ethylene propylene (FEP), polyethylene terephtha
late (PET), PDMS, PVDF, Nylon, Kapton, Cu, Al, ITO, Graphene, few
are expensive and non-biodegradable (Dzhardimalieva et al., 2021; Ko
et al., 2014; Nurmakanov et al., 2021). As people become increasingly
concerned about environmental protection, it is crucial to identify a tri-
boelectric material with excellent biocompatibility, degradability, and
triboelectric effect. Researchers have recently opened up the possibility
of using natural materials such as leaves (Jie et al., 2018; Feng et al.,
2019), wood (Luo et al., 2019; Hao et al., 2020),flowers (Chen et al.,
2018), egg white, chitin (Jiang et al., 2018), spider web (Zhang et al.,
2018), rice paper (Chi et al., 2019; Slabov et al., 2020). In this study, we
demonstrated for the first-time leaves powder from Rumex. vesicarius
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Fig. 1. (a) Schematic of the R. vesicarius leaves powder preparation and obtained powder (e) Flow chart showing the sequential maceration method (lower inset shows the
synthesized leaves powder.
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(R. vesicarius) plants as natural candidate for the development of tribo-
electric nanogenerators. The triboelectric nanogenerator was fabricated
using dried R. vesicarius leaves powder and PET as the triboelectric
layers in VCS mode to harvest mechanical energy. It is reported in the
literature that leaves powder-based TENG exhibits high output power
compared to leaves-based TENG (Feng et al., 2019). Therefore, we
preferred to use R. vesicarius leaves powder instead of direct leaves
in the present work.

2. Experimental method

2.1. Materials

ITO-PET substrates with sheet resistance (60 Ω∕□) were obtained
from Sigma Aldrich, aluminum (Al) foil of 0.1 mm thickness purchased
from Special metals Pvt. Ltd. Cardboards, sponges, LEDs were brought
from a local market.

2.2. Preparation of leaves powder and its film on aluminum substrate

Fig. 1(a) shows the schematic of the different stages of leaves
powder preparation. The leaves of R. vesicarius were collected in bulk
from the local area of Warangal, Telangana state, India (Davella and
Mamidala, 2021). The collected leaves were washed and dried in the
shade at room temperature until they were free from dust and moisture.
Using a mechanical mixer, the dried leaves were then reduced to a
coarse powder. Sequential maceration process using non-polar to polar
solvents (hexane, ethyl acetate, acetone, and methanol) was used to
get powder extract, as shown in the flow chart in Fig. 1(b). The bottom
inset of Fig. 1(b) shows the final extracted leaves powder. The extracted
leaves powder was dispensed in a solution mixture of ethanol and
deionized water (1:1 ratio) and kept under sonication for 20 min to
get the uniform solution, as shown in Fig. 2(a). The resulting solution
was drop cast onto a clean aluminum foil (6 × 6 cm2) and dried at
40 ◦C for 1 h. Fig. 2(c) shows the deposited film on the aluminum foil.

2.3. Fabrication of TENG device

Fig. 2(b) shows a schematic of the TENG device in VCS mode and
its components. Initially, leaves powder-coated aluminum foil and ITO-
PET were attached to the cardboard base, as shown in Fig. 2(c)–(d).
Aluminum foil and ITO surface serve as electrodes for the TENG device
((5 𝑥 5 cm2)). Finally, both geometries were connected using a sponge
spacer and attached to connecting wires, as shown in Fig. 2(e). Bio-
mechanical (hand slapping) force was repeatedly applied to the TENG
device and recorded its electrical output response. The TENG volt-
age and current were recorded using a digital oscilloscope (Tektronix

TBS1102) and a low-noise current preamplifier (SRS, SR 570).

2

3. Results and discussion

The surface of the prepared R. vesicarius leaves powder film was
xamined using SEM, and the corresponding images at different mag-
ifications are shown in Fig. 3(a)–(c). It is clear from the SEM images
hat the prepared film has microlevel roughness. This high roughness
f R. vesicarius leaves powder film makes fewer contact points with PET

during the TENG operation, significantly affecting TENG performance.
Further, energy dispersive X-ray (EDX) analysis was performed, and the
corresponding spectrum is shown in Fig. 3(d). EDX spectrum reveals the
presence of O, Na, Si, Mg, P, Cl, K, and Ca. The weight percentage of
different elements are shown in the inset of Fig. 3(d).

Fig. 4(a) – (b) shows the open-circuit voltage (Voc) and short
circuit current (Isc) of the fabricated TENG in forward and reverse
connections, respectively. The Voc and Isc of ∼3.86 V and ∼3.78 μA
were observed for the TENG device for repeated hand tapping. A
switching polarity test was performed by reversing the TENG input
connection to the oscilloscope to confirm that the output response is
only due to the fabricated TENG. The polarity test shows that the output
voltage/current is the same in both connections geometry and thus
confirms the voltage/current is generated from the developed TENG
and not from the instrument noise. The low output voltage for the
TENG can be explained using high roughness observed in the SEM
images of leaf powder film. This high roughness produces only a few
contact points with PET during TENG operation, which results in low
output.

Fig. 4(e) depicts the working mechanism of the fabricated leaf-TENG
based on the coupling effect of triboelectrification and electrostatic
induction. In the original state, leaves powder film and PET friction
layers are separated and in an electrically neutral state; therefore, no
electricity is produced. When a mechanical force is applied, the PET
layer is brought into contact with leaves powder film in VSC mode.

Due to the difference in electron affinity between the materials,
positive and negative charges are developed on the surface of PET
and leaves powder film, respectively. When the triboelectric layers
separate, resulting in a potential difference between the electrodes.
The induced potential difference drives the electrons from ITO to Al
electrodes through an external load that produces an output current.
Current flow continues until the charges reach a state of equilibrium.
When the triboelectric layers are brought back into contact, a reversed
output current is generated in the circuit. An alternating current is
created in the external circuit with periodic contact and separation of
the tribolayers through mechanical force.

The Voc and Isc of fabricated TENG were measured at different
oad resistances (10 KΩ −100 MΩ) to determine the maximum output
ower density. The variation of the output voltage and current with
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Fig. 2. (a) Solution of extracted leaves powder, (b) Schematic diagram of the fabricated TENG device, (c) leaves powder film on aluminum foil and its attachment to cardboard
heet, (d) ITO/PET substrate attached to another cardboard sheet with PET side facing up, (e) final fabricated TENG device with top layer as leaves powder film/Al substrate and
ottom layer as ITO/PET and its electrode connections.
Fig. 3. (a)–(c) Surface of the R. vesicarius leaves powder film SEM images at different magnifications, (d) EDX spectrum of R. vesicarius leaves powder film (inset weight percentage
of elements).
the resistance is shown in Fig. 4(c). The output voltage increases
with the load resistance and saturates at a higher resistance value
from 37.69 MΩ. Due to ohmic losses, the current starts at 3.72 μA
at 200 KΩ and decreases with the load resistance (Niu et al., 2015).
The instantaneous power of TENG was calculated from the equation
P =IV, and the highest output power, 4.75 μW, was obtained at a
load resistance ∼20 MΩ (see supplementary information SI, S1) (Bird,
2003). The instantaneous power density was calculated by considering
the active area of the device and found ∼0.1894 μW/cm2 at a load
3

resistance of ∼20 MΩ, as shown in Fig. 4(d). The highest power density
at 20 MΩ is due to impedance matching conditions (Bird, 2003). The
TENG’s low output power can be improved by selecting the second
triboelectric layer such as PDMS, FEP, and PTFE instead of PET (Yang
et al., 2022b). In another strategy, leaf powder can be ball milled
to get the film with nanoscale roughness. The nanoscale roughness
creates more contact points with PET during TENG operation, effec-
tively improving the TENG output. In addition, surface modification
which includes physical modification (Zhao et al., 2016), chemical
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Fig. 4. (a) Voc of TENG device under switching polarity test, (b) Isc of TENG device under switching polarity test, (c) Voc and Isc measured as a function of different load resistances,
d) instantaneous power density of the TENG device as a function of load resistance, (e) schematic illustration of the working mechanism of TENG in vertical contact-separation
ode, (f) TENG stability test under 1200 cycles.
urface functionalization (Lin et al., 2013), surface ion injection (Wang
t al., 2014) and use of liquid-dielectric/electrode (Li et al., 2018)
re also considered best for TENG output improvement. In addition to
he above, standardization of TENG and finite element simulations of
ENG will provide new insights in improving the TENG performance (Li
t al., 2019b,a). Further, the fabricated TENG can turn on one LED
irectly without using any charged capacitor. The snapshot of the
lowing LED powered by TENG is shown in the inset of Fig. 4(d) (See
upplementary video V1). The applications of TENG can be further
xtended to self-powered humidity sensors (Su et al., 2017), touch
ensors (Jeong et al., 2020), health monitoring (Cao et al., 2018).

Finally, to examine the stability and durability, the output voltage
f the fabricated TENG was tested over 1200 cycles, and the responses
re shown in Fig. 4(f). The generated output voltage did not vary
onsiderably; hence the fabricated device exhibits high stability. The
4

minor deviation in the output voltage is due to the variation in hand
tapping.

4. Conclusion

In this work, a TENG based on biodegradable leaves powder of R.
vesicarius was fabricated for the first instance to harvest the mechanical
energy from the surrounding. The measured open-circuit voltage and
short circuit current of the fabricated TENG are 3.86 V and 3.78 μA,
respectively. The TENG device with an area of 25 cm2 shows a power
density of 0.1894 μW/cm2 at load resistances of 20 MΩ. As a power
source, it can light up one light-emitting diode directly. A stability
test of TENG was performed for 1200 cycles, and the output voltages
were found to be essentially invariant. The leaf powder-based TENG,
which is inexpensive and biodegradable, is ideal for mechanical energy
harvesting and green energy sources.
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